
HAL Id: tel-03533097
https://theses.hal.science/tel-03533097

Submitted on 18 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sliced-Wasserstein distance for large-scale machine
learning : theory, methodology and extensions

Kimia Nadjahi

To cite this version:
Kimia Nadjahi. Sliced-Wasserstein distance for large-scale machine learning : theory, methodology
and extensions. Signal and Image processing. Institut Polytechnique de Paris, 2021. English. �NNT :
2021IPPAT050�. �tel-03533097�

https://theses.hal.science/tel-03533097
https://hal.archives-ouvertes.fr


626

N
N

T
:2

02
1I

P
PA

T0
50 Sliced-Wasserstein Distance for

Large-Scale Machine Learning:
Theory, Methodology and Extensions
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École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
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Professeur, Université de Bretagne Sud (IRISA) Rapporteur

Gabriel Peyré
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Abstract

Many methods for statistical inference and generative modeling rely on a probability divergence

to e�ectively compare two probability distributions. This divergence should be carefully chosen
as its theoretical properties and practical implications strongly a�ect the performance of the
associated algorithm. In that context, the Wasserstein distance, which emerges from optimal

transport (OT) theory, has been an interesting choice due to its theoretical guarantees. However,
it su�ers from important computational and statistical limitations, which have severly hindered
its use to problems with large amounts of high-dimensional data.

In recent years, several workarounds have been proposed to alleviate these issues thus enable
the use of OT in machine learning (ML) applications. In particular, the Sliced-Wasserstein

distance (SW) is an alternative OT metric, which compares two distributions by computing the
expected Wasserstein distance between their one-dimensional linear projections. SW has been
increasingly popular since it can o�er signi�cant computational advantages over the Wasserstein
distance, especially on large-scale problems, and has been successfully applied in many practical
tasks, such as classi�cation, Bayesian inference, and implicit generative modeling. Nevertheless,
there has been little work regarding the theoretical guarantees of such SW-based methods.
This thesis further explores the use of the Sliced-Wasserstein distance in modern statistical and
ML problems, with a twofold objective: on the one hand, provide new theoretical insights to
understand in depth the empirical behavior of existing SW-based algorithms; on the other hand,
design novel tools inspired by SW to extend its applicability and o�er increased scalability.

We �rst focus on the estimators obtained by minimizing SW, which form the basis of several
recently proposed generative modeling methods. We prove a set of asymptotic properties of
these estimators, as well as a central limit theorem which characterizes their asymptotic distri-
bution and exhibits a dimension-free convergence rate. We also develop a novel likelihood-free
inference technique, SW-ABC, by incorporating SW in the Approximate Bayesian Computation

framework. We prove asymptotical guarantees on the convergence of the posterior distribution
returned by SW-ABC, and illustrate the advantages of our algorithm in practice, on synthetic
data and an image denoising problem.

By de�nition, SW is an expectation over random projections, which is intractable in general
and commonly estimated with a simple Monte Carlo procedure. This approximation induces an
error that can potentially degrade the performance of SW-based algorithms on high-dimensional
settings. To overcome this issue, we introduce the Generalized Sliced-Wasserstein distances

(GSW), which extends the de�nition of SW by considering nonlinear projections of the distri-
butions. We study the metric axioms of GSW using the theory of the Radon transform, and
show that GSW can yield better results than SW on generative modeling applications.

We then adopt another perspective to address the issues due to the Monte Carlo approxima-
tion: we leverage the concentration of measure phenomenon, which states under mild assump-
tions that one-dimensional linear projections of a high-dimensional random vector are approx-
imately Gaussian. Based on this result, we develop a simple deterministic approximation for
SW, which can lead to a signi�cant computational time reduction over Monte Carlo. We derive
nonasymptotical guarantees for our methodology under a weak dependence condition, validate
them on synthetic experiments, and illustrate the proposed approximation on image generation.

Inspired by the growing success of SW, new instances of sliced probability divergences (SPDs)

have been deployed in statistical and ML applications, but their theoretical implications have

not been well established. To bridge this gap, we introduce the �rst general de�nition of SPDs

and investigate their statistical and topological properties. Our theoretical analysis sheds light

to the consequences of slicing: in particular, we prove that the sample complexity of any SPD

does not depend on the data dimension, but can be impacted by an additional error term due

to the Monte Carlo approximation. We then apply our general results to speci�c SPDs in order

to gain a better understanding of them.
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Résumé

De nombreuses méthodes d'inférence statistique et de modélisation générative reposent sur une
divergence pour comparer de façon pertinente deux distributions de probabilité. Cette divergence
doit être choisie avec soin puisque ses propriétés théoriques et répercussions pratiques a�ectent
fortement les performances de l'algorithme en question. Dans ce contexte, la distance de Wasser-

stein, qui découle de la théorie du transport optimal, est un choix intéressant de par ses garanties
théoriques. Cependant, elle présente d'importantes limites computationnelle et statistique qui
l'empêchent de traiter e�cacement de grandes quantités de données à haute dimension.

Plusieurs méthodes visant à atténuer ces problèmes ont été proposées ces dernières années,
permettant ainsi l'utilisation du transport optimal pour l'apprentissage automatique. En par-
ticulier, la distance de Sliced-Wasserstein (SW) est une métrique alternative qui compare deux
distributions en calculant la distance de Wasserstein moyenne entre leurs projections linéaires
unidimensionnelles. SW est de plus en plus utilisée en raison de sa capacité à fournir des
avantages calculatoires signi�catifs par rapport à la distance de Wasserstein, surtout pour les
problèmes à grande échelle, et a fait ses preuves dans de nombreuses tâches pratiques, telles
que la classi�cation, l'inférence bayésienne et la modélisation générative implicite. Néanmoins,
peu de travaux ont étudié les garanties théoriques des méthodes basées sur SW. Cette thèse
explore plus en profondeur l'utilisation de SW pour des problèmes modernes de statistique et
d'apprentissage automatique, avec un double objectif : d'une part, apporter de nouvelles con-
naissances théoriques permettant une compréhension approfondie des algorithmes basés sur SW;
d'autre part, concevoir de nouveaux outils inspirés de SW a�n d'élargir son champ d'applications
et o�rir une meilleure scalabilité.

Nous nous focalisons d'abord sur les estimateurs obtenus en minimisant SW, qui constituent
la base de plusieurs méthodes de modélisation générative. Nous prouvons un ensemble de pro-
priétés asymptotiques pour ces estimateurs, ainsi qu'un théorème central limite qui caractérise
leur distribution asymptotique avec un taux de convergence indépendent de la dimension des
données. Nous développons également une nouvelle technique d'inférence qui n'utilise pas la
vraisemblance, appelée SW-ABC, en incorporant SW dans un algorithme de type Approximate

Bayesian Computation. Nous prouvons des garanties asymptotiques sur la convergence de la
distribution a posteriori calculée par SW-ABC, et illustrons les avantages de notre algorithme
en pratique, sur des données synthétiques et un problème de débruitage d'image.

Par dé�nition, SW est une espérance sur des projections aléatoires, qui est di�cile à calculer
en général et couramment estimée par une méthode de Monte Carlo simple. Cette approximation
entraîne une erreur susceptible de dégrader les performances des algorithmes basés sur SW en
grande dimension. A�n de pallier à ce problème, nous introduisons les distances de Sliced-

Wasserstein généralisées (SWG), en étendant la dé�nition des SW de façon à y inclure les
projections non linéaires des distributions. Nous étudions dans quelle mesure SWG véri�ent les
axiomes d'une distance en utilisant la théorie autour de la transformation de Radon, et montrons
que SWG peut fournir de meilleurs résultats que SW dans des applications de modélisation
générative.

Nous adoptons ensuite une autre perspective pour résoudre les problèmes dus à l'estimation
par Monte Carlo : nous tirons parti du phénomène de concentration de mesure qui a�rme,
selon des hypothèses modérées, que les projections linéaires unidimensionnelles d'une variable
aléatoire à grande dimension suivent une loi presque gaussienne. A partir de ce résultat, nous
proposons une nouvelle formule simple et déterministe pour calculer SW bien plus rapidement
qu'avec Monte Carlo. Nous prouvons des garanties non-asymptotiques pour notre méthodologie
sous une condition de dépendance faible, les validons sur des expériences synthétiques, puis
utilisons notre nouvelle approximation pour la génération d'images.

Motivées par le succès grandissant de SW, de nouvelles divergences �sliced� (DS) ont été dé-

ployées pour des applications statistiques et d'apprentissage, mais leurs implications théoriques

restent méconnues. Nous introduisons alors la première dé�nition des DS et étudions leurs pro-

priétés statistiques et topologiques. Notre analyse théorique met en lumière les conséquences du

slicing : en particulier, nous prouvons que l'erreur d'approximation de tout DS par des échan-

tillons ne dépend pas de la dimension des données, mais peut être a�ectée par l'approximation

par Monte Carlo. Nous appliquons ensuite nos résultats à des DS spéci�ques pour mieux les

comprendre.
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Summary of Notations

Throughout this thesis, we consider a probability space (Ω,F ,P) with associated expec-
tation operator E, on which all the random variables are de�ned.

B(Y) Borel set of Y

P(Y) Set of probability distributions supported on Y

Pp(Y) Set of distributions of P(Y) with �nite p'th moment

δy Dirac measure with mass on y

Lebd Lebesgue measure on Rd

N (m,Σ) Gaussian distribution with mean m and covariance matrix Σ

µ⊗ ν Product measure of two probability distributions µ and ν

µ̂n Empirical distribution computed over n ∈ N∗ samples i.i.d. from

the probability distribution µ, µ̂n = n−1
∑n

i=1 δxi

Fµ Cumulative distribution function of the probability distribution µ

F−1
µ Quantile function of the probability distribution µ

F [µ] Fourier transform of the probability distribution µ

f]µ Push-forward measure of the probability measure µ by the

measurable function f

x ∼ µ x is a sample drawn from the probability distribution µ

‖x‖ Euclidean norm of the vector x

〈x, y〉 Euclidean inner-product between the vectors x and y

card(X) Cardinal of the set X

diam(X) Diameter of the compact set X

Tr(A) Trace of the matrix A

Det(A) Determinant of the matrix A

‖A‖F Frobenius norm of the matrix A

0 Vector in Rd whose d components are all equal to 0

Id Identity matrix of size d× d
∇zf Gradient of the function f with respect to its variable z

F [f ] Fourier transform of the function f

‖f‖∞ Supremum norm of the function f

Sd−1 Unit sphere on Rd, Sd−1 =
{
θ ∈ Rd : ‖θ‖ = 1

}

Lp(X, µ) Set of functions whose p'th power is absolutely integrable

with respect to the measure µ,

Lp(X, µ) =
{
f : X→ R,

∫
X |f(x)|p dµ(x) <∞

}

M(X) Set of real-valued measurable functions on X

Mb(X) Set of bounded functions of M(X)

Bd(0, R) Open ball in Rd of radius R > 0 centered around 0 ∈ Rd,
Bd(0, R) =

{
x ∈ Rd : ‖x‖ < R

}
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Abbreviations

ABC Approximate Bayesian Computation

CDF Cumulative Distribution Function

GMM Gaussian Mixture Model

GSW Generalized Sliced-Wasserstein (distance)

IGM Implicit Generative Modeling

IPMs Integral Probability Metrics

KL Kullback-Leibler (divergence)

max-GSW Maximum Generalized Sliced-Wasserstein (distance)

max-SW Maximum Sliced-Wasserstein (distance)

ML Machine Learning

MMD Maximum Mean Discrepancy

OT Optimal Transport

SPD Sliced Probability Divergence

SSD Sliced-Sinkhorn Divergences

SW Sliced-Wasserstein (distance)

i.i.d. independent and identically distributed

s.t. such that

w.r.t. with respect to
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Chapter 1

Introduction

The signi�cant breakthroughs achieved in the �eld of machine learning (ML) over the
last decades have, in turn, raised many technical questions. In particular, building a
successful machine learning algorithm remains an important problem, which is even more
challenging given the evergrowing collection of data in various forms as well as the limits
of available computational resources: the success of an algorithm is not only measured
by the accuracy of the returned results, but also by its computational requirements and
processing speed. As a result, many e�orts have been made in machine learning research
to improve existing methods so that, for example, they produce more accurate results,
require less hyperparameters tuning, or execute faster, especially on large datasets.

The performance of machine learning algorithms depends on many design elements
taking into account di�erent factors, such as the formalism of the problem, the nature
of data, and the computational resources at hand. This thesis focuses on a crucial
component for many algorithms, that is the probability divergence used to compare two
distributions. To further clarify our motivation, we consider a concrete problem, namely
generative modeling, and illustrate the importance of having an �appropriate� divergence
within this framework.

1.1 Motivation: Probability Divergences and Generative

Models

The goal of generative modeling is to reproduce new data points, by learning a prob-
abilistic model that best describes how the input dataset is generated. Speci�cally,
generative models receive as input a set of n ∈ N∗ observations, generally assumed to
be independent and identically distributed (i.i.d.) samples from an unknown probability
distribution µ?, and aim at learning µ?. Many di�erent techniques can be employed to
reach this objective, thus de�ning a variety of generative models.

A common practice consists in �tting µ? with a parametric distribution: one de�nes
a statistical model, M = {µθ : θ ∈ Θ}, and �nds the optimal parameters θ? ∈ Θ such
that µθ? ∈ M yields the most accurate approximation of µ?. For instance, Gaussian
mixture models (GMMs) propose to �t µ? with a mixture of K ∈ N∗ Gaussian distri-
butions (Figure 1.1). The parameters θ then refer to the mean and covariance matrix
of each Gaussian, and mixing coe�cients {πk}Kk=1, where πk is the probability for the
observations {xi}ni=1 to be sampled from the k'th Gaussian distribution. While GMMs
de�ne simple and powerful generative models with many applications, their performance
can be limited by the fact that a mixture of Gaussians does not necessarily describe well

15
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Figure 1.1: Illustration of Gaussian mixture models: the goal is to �t the true unknown
distribution of the observations, µ?, with a mixture of K = 7 Gaussian distributions, µθ.
Figure courtesy of Soheil Kolouri (adapted from one of his presentations).

the structure of the observations.

To address the drawbacks of such �explicit� generative models, e.g. GMMs, the im-
plicit generative modeling (IGM) methodology builds on the recent advances in deep
learning and has attracted considerable attention within the ML community. The strat-
egy, illustrated in Figure 1.2, consists in �rst choosing a distribution ζ from which it
is easy to sample (e.g., a standard Gaussian distribution), then apply nonlinear di�er-
entiable operators which de�ne a (deep) neural network with parameters θ, denoted by
Tθ. The transformed distribution then corresponds to µθ. Once the neural network is
trained, it can map z ∼ ζ, received as input, to new data points. The most common
methods include generative adversial networks (GANs, Goodfellow et al. [2014]) and
auto-encoders [Kingma and Welling, 2014]. Despite their ability to generate samples of
high quality, such approaches inherit from the drawbacks of deep learning: designing and
training a neural network can be highly di�cult and time-consuming. More precisely,
de�ning an implicit generative model amounts to choosing, for example, the nature of
the nonlinear operators, the number of hidden layers, the latent distribution ζ or its
objective function. To this day, why some architectures perform better than others is
still an open question. On the other hand, the performance of implicit generative models
also depends on how the similarity between µθ ∈M and µ? is measured. We expand on
this aspect in the remainder of this section, since the general intention of this thesis is
to study a speci�c distance between probability distibutions.

As we described above, IGM de�nes a methodology to address the general problem
of density �tting : the goal is to �nd a parametric distribution µθ that best approximates
the true underlying distribution µ?. In practical terms, this task requires having a tool
that e�ectively measures how close one distribution is to another. Probability divergences
are suited for the job, since they compute a certain notion of distance between two distri-
butions. More formally, let X be a Polish space, i.e. a topological space that is separable
and completely metrizable, and denote by P(X) the class of probability distributions
supported on X; we will use the notation D : P(X) × P(X) → R+ ∪ {+∞} to refer to
a generic divergence used to compare any two distributions in P(X). The objective of
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density �tting is a minimum distance estimation problem, written as

min
θ∈Θ

D(µθ, µ?) .

In implicit generative modeling, µθ in (1.1) corresponds to the output of a deep neural
network. Since there are several options available for the choice of D, which will be
presented later on, the question becomes, �what probability divergence should one use in
their generative models? �.
As a �rst answer, we provide general informal guidelines by enumerating some of the
main desirable properties for D.

(P1) D is a �proper� distance function, i.e. it veri�es the metric axioms.

(P2) D satis�es a certain notion of continuity, which can be described as follows: if
a sequence of distributions (µk)k∈N �gets closer� to µ as k grows to in�nity, then
D(µk, µ) shrinks to 0.

(P3) θ 7→ D(µθ, µ?) is di�erentiable and has a unique minimizer.

(P4) D(µ, ν) can be e�ectively estimated from samples drawn from µ and ν.

We will give the formal statement for the metric axioms (P1) and the continuity (P2) in
Section 2.1. (P4) is motivated by the fact that in most problems in data sciences, one has
access to �nite sets of observations instead of the underlying probability distributions.
Therefore, any distribution ξ is only accessible through an empirical approximation,
which usually corresponds to a discrete measure ξ̂n computed over the sequence of n ∈ N∗
random variables {Yi}ni=1 i.i.d. from ξ, given by

ξ̂n =
1

n

n∑

i=1

δYi ,

with δY being the Dirac measure with mass on the point Y . In that case, the chosen
probability divergence D must have speci�c practical features in order to appropriately
handle the empirical approximations, which will be discussed in Section 2.1.

Overall, properties (P1) to (P4) re�ect that D should be a su�ciently regular and
computationally practical divergence, so that the associated generative model is easy to
use, somewhat robust and able to capture relevant information regarding the geometry
of the problem.

1.2 Classical Probability Divergences

We now present traditional choices of probability divergences and explain their impli-
cations in terms of the criteria listed in the previous section. If D satis�es (P2), we
say that D is weakly continuous and report the associated mathematical de�nition in
Section 2.1.

f-divergences. These divergences were introduced in [Rényi, 1961] and also referred
to as ϕ-divergences, Ciszár divergences [Ciszár, 1967] or Ali-Silvey distances [Ali and
Silvey, 1966]. They include widely known instances which have played a crucial role in
various areas such as probability theory, statistics and information theory. For example,
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Figure 1.2: Illustration of implicit generative modeling: ζ is a distribution easy to sample
from (e.g., a standard Gaussian distribution), which is then mapped to a more compli-
cated distribution µθ by applying the parametric map Tθ (e.g., a deep neural network).
The goal is to �t the true unknown distribution of the observations, µ?, with µθ. Figure
courtesy of Soheil Kolouri (adapted from one of his presentations).

the χ2-divergence has commonly been used for adaptive importance sampling [Cornebise
et al., 2008]; the Kullback-Leibler divergence (KL) is related to the notions of mutual
information and relative entropy [Cover and Thomas, 2006, Section 2.3] and is the core
component of variational inference [Blei et al., 2017] and more recently, of variational
auto-encoders [Kingma and Welling, 2014].

In the context of generative modeling, f -divergences su�er from important draw-
backs. First, they do not metrize weak convergence, which might severely a�ect the
quality of the comparisons made. This is illustrated by the fact that KL evaluated be-
tween µ and ν is in�nite when the two distributions µ and ν are supported on domains
that do not overlap. On the other hand, approximating a f -divergence, denoted by
Df , from a set of samples is not computationally simple: the straightforward estimator
Df (µ̂n, ν̂n) obtained by plugging the empirical measures in place of µ and ν does not
converge to Df (µ, ν) as n increases in general. Several workarounds have then been
developed, but they solve provably hard problems, induce a sample complexity with
slow convergence rates, or rely on strong structural assumptions: see the discussion in
[Rubenstein et al., 2019].

Integral Probability Metrics (IPMs). Introduced by Müller [1997], the class of
IPMs provides important advantages over f -divergences for generative modeling: they
satisfy almost all metric axioms, are weakly continuous under mild assumptions, and
can easily be estimated from the available samples. More details on these aspects are
provided in Section 2.2.

A popular example of IPMs is given by the Maximum Mean Discrepancy (MMD,
Gretton et al. [2012]), whose attractive analytical and computational properties make
it an interesting probability divergence for many applications, especially statistical hy-
pothesis testing [Gretton et al., 2012] and generative modeling [Li et al., 2015, Dziugaite
et al., 2015, Sutherland et al., 2017, Bi«kowski et al., 2018, Arbel et al., 2019]. However,
the training and performance of these generative models are highly sensitive to the ker-
nel function de�ning MMD and its parametrization. For example, the Gaussian RBF
kernel is a very traditional choice, but its bandwith parameter determines the statistical
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e�ciency of the associated MMD and is not easy to tune appropriately [Li et al., 2015].
Besides, its derivatives decay exponentially which cause important stability issues when
training deep neural networks, as discussed in Arbel et al. [2019].

A second important instance of IPMs corresponds to the Wasserstein distance of
order 1 [Villani, 2008, Theorem 5.10]. This metric also falls into the category of optimal
transport metrics, which is presented next.

Optimal transport divergences. Optimal transport (OT) is a mathematical theory
on a speci�c optimization problem, which has been extensively studied and leveraged in
various applied �elds such as economics, combinatorial optimization and more recently,
data sciences. Speci�c formulations of the OT problem de�ne a family of powerful prob-
ability divergences: the Wasserstein distances. These metrics, which will be formally
presented in Section 2.4, are able to capture key information for comparing two dis-
tributions µ and ν, since they rely on a cost function that carries relevant geometric
properties of the supports of µ and ν. If the cost function c is the p'th power of the
Euclidean distance, i.e. for any x, y ∈ Rd, c : (x, y) 7→ ‖x − y‖p with p ∈ [1,+∞), then
the resulting Wasserstein distance is known as the Wasserstein distance of order p and
denoted by Wp. This divergence satisfy all metric axioms and is weakly continuous when
evaluated on the space of probability distributions with �nite p'th moment [Villani, 2008,
Chapter 6]. Therefore, the Wasserstein distance of order p can e�ectively compare any
two distributions even when their supports do not overlap, as opposed to f -divergences,
and does not require tedious hyperparameter tuning, unlike MMD.

However, it is well known that Wasserstein distances su�er from important compu-
tational and statistical limitations, especially in high dimensions. Indeed, their compu-
tation is expensive, apart in some special settings presented in Section 2.4.1, for exam-
ple when comparing two probability distributions supported on R. Let us assume the
following typical scenario in machine learning: one would like to compare two distri-
butions µ and ν supported on Rd, but only observe n samples drawn from them. In
general, Wasserstein distances are not analytically available but can be estimated with
approximate solvers, which tend to have a super-cubic cost in practice and executes
in O(n3 log(n)) in the worst case. This implies that a single evaluation of Wasserstein
distances is computationally demanding, especially on large-scale datasets.

Besides, the Wasserstein distance computed from the empirical approximations µ̂n
and ν̂n has been shown to converge to the true value, i.e. the Wasserstein distance
between µ and ν, with a rate in O(n−1/d): see our discussion in Section 2.4.2. Therefore,
for high values of the ambient dimension d, the estimates computed from n samples are
reasonably accurate provided that n is su�ciently large, which induces an important
computational complexity according to the previous paragraph.

Hence, the computational and statistical limitations of Wasserstein distances have
considerably prevented their application in data sciences for a long time, in particular
in generative modeling, which was studied solely from a theoretical perspective [Bassetti
et al., 2006]. Nevertheless, in recent years, number of studies have introduced various
methods to alleviate the practical issues of Wasserstein distances and thus managed
to expand the domain of applicability of OT. These techniques de�ne the active re-
search topic of Computational Optimal Transport [Peyré and Cuturi, 2019], and their
development was made possible by the progress in optimization and large-scale machine
learning. For instance, Wasserstein distances have recently been incorporated within the
IGM framework, leading to the formulation of novel e�ective models [Arjovsky et al.,
2017, Bousquet et al., 2017, Gulrajani et al., 2017, Tolstikhin et al., 2018].



20 Chapter 1. Introduction

Figure 1.3: Illustration of the Sliced-Wasserstein distance of order p ∈ [1,+∞). The
two distributions to compare, µ and ν, are projected along any direction u on the unit
sphere Sd−1. This gives the univariate distributions denoted by u?]µ and u?]ν, which
are then compared with the Wasserstein distance of order p. SW is �nally de�ned as
E[Wp

p(u?]µ, u
?
]ν)] where the expectation is computed over u uniformly distributed on

Sd−1. Figure courtesy of Soheil Kolouri (adapted from [Kolouri et al., 2017]).

The �eld of computational optimal transport also gave rise to the formulation of alter-
native metrics to the Wasserstein distance, such as Sinkhorn divergences, which emerge
from the regularization of the OT problem [Cuturi, 2013], and the Sliced-Wasserstein
distance. We dedicate the next section to the latter distance, as it constitutes the main
focus of this thesis, and will discuss the former in Section 2.5.

1.3 Focus on the Sliced-Wasserstein Distance

While regularized OT and Sinkhorn divergences have strongly help OT theory gain
immense interest from the machine learning community, another alternative to classical
OT has become increasingly popular in the last few years: the Sliced-Wasserstein distance
(SW).

In this section, we explain the de�nition of SW and its practical implications; the
formal statements will be given in Section 2.6. We then discuss related work to review
the existing theoretical properties and applications of SW, as well as motivate why this
metric is the central object of this thesis. In what follows, SWp with p ∈ [1,+∞) de-
notes the Sliced-Wasserstein of order p (De�nition 2.9).

SW was �rst introduced by Rabin et al. [2012] and Bonneel et al. [2015] as a practical
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alternative to the Wasserstein distance to speed up the computation of barycenters of
measures. The idea behind SW is to o�er computational e�ciency by leveraging the an-
alytical form of the Wasserstein distance between univariate distributions: SW compares
two multivariate probability distributions by �rst, obtaining a family of representations
in R for each distribution through projections, then computing the expected value of
the Wasserstein distance between these univariate representations. We illustrate the
Sliced-Wasserstein distance in Figure 1.3 and provide its de�nition in the caption of that
�gure.

The expectation that de�nes SW does not admit an analytical expression in general
and is thus commonly estimated with a simple Monte Carlo average based on L ∈ N∗
samples. In other words, computing SW amounts to solving a �nite number of one-
dimensional OT problems, which can conveniently be done in closed-form. This approx-
imation technique has a complexity in O

(
Ldn+Ln log(n)

)
, thus can provide signi�cant

computational bene�ts over Wasserstein distances.

Many methods building on the Sliced-Wasserstein distance have been developed to
address various applied problems in a computationally e�cient way, such as in machine
learning, imaging and statistics. Barycenters of measures based on SW have successfully
been used on several image processing tasks, i.e. color transfer, texture synthesis and
texture mixing [Rabin et al., 2012, Bonneel et al., 2015]. Very recently, these barycenters
have been extended to the case where SW compares more than two measures [Cohen
et al., 2021].

Novel kernel functions based on SW have also been proposed, and their bene�ts
have been illustrated in topological data analysis and pattern recognition tasks, e.g.,
classi�cation and clustering [Kolouri et al., 2016, Carrière et al., 2017].

Lastly, an important body of literature is dedicated to applying SW in generative
modeling applications: in [Karras et al., 2017], SW serves as a score to evaluate the per-
formance of GANs; [Kolouri et al., 2018] build a novel GMM which learns the parameters
of Gaussian distributions by minimizing SW; �nally, SW forms the basis of several new
IGM models, including auto-encoders and GANs [Deshpande et al., 2018, Liutkus et al.,
2019, Wu et al., 2019, Kolouri et al., 2019b, Dai and Seljak, 2021].

On the theoretical side, SW has been shown to satisfy the metric axioms [Bonnotte,
2013, Proposition 5.1.2], is always bounded above by the Wasserstein distance [Bonnotte,
2013, Proposition 5.1.3], and both metrics are equivalent when computed between com-
pactly supported probability measures [Bonnotte, 2013, Theorem 5.1.5]. The equivalence
between the Wasserstein distance and SW has further been studied in a very recent study
[Bayraktar and Guo, 2021]. A mathematical analysis of gradient �ows based on SW is
provided in [Bonnotte, 2013, Chapter 5] and has been used to derive the theoretical
guarantees of the IGM methodology proposed in [Liutkus et al., 2019]. Finally, recent
work observed the statistical bene�ts of SW in practice, and consequently, derived a
concentration inequality to bound |SW2(µ̂n, ν̂n)− SW2(µ, ν)| with high probability for
the speci�c case where µ, ν are Gaussian [Deshpande et al., 2019].

Hence, the Sliced-Wasserstein distance has established itself as a powerful practi-
cal metric for data sciences, due to its connection to OT, computational e�ciency and
�exibility. Besides, SW shares certain properties with the Wasserstein distance, while
providing statistical advantages on very speci�c settings. The contributions to the the-
oretical analysis of SW are nevertheless limited, which contrasts with the availability of
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numerous empirical studies. This imbalance forms the starting point of this thesis.

1.4 Outline and Contributions

Computational optimal transport has become a very active and popular �eld within the
machine learning community in recent years, and the growing literature on the subject
has demonstrated that SW is a practical tool with broad application. Motivated by the
reported empirical success of SW and its increasing popularity, this thesis further studies
this metric, with particular focus on its theoretical guarantees, relevance to approximate
inference and generative modeling, and extensions. The broad objective is to conduct
a thorough analysis of the theoretical and empirical implications of SW, which helps
unlock its full potential on modern machine learning problems. More precisely, our
contributions revolve around the following research directions.

Objective 1. While the empirical performance of SW has been analyzed on a wide
range of practical tasks, there has been little work regarding its theoretical guarantees.
This implies that most SW-based methods are not su�ciently theoretically grounded.
Our �rst goal is then to bridge this gap by investigating the theoretical properties of SW
and their repercussions in practice.

Objective 2. Since the literature on SW is quite recent, we believe that there are other
applied problems where this metric �nds relevance. We thus explore how SW can be
used to design novel methods for tasks that have not been addressed in prior work, such
as Bayesian inference.

Objective 3. For the sake of providing a balanced analysis, we examine the known
major limitation of SW, caused by its Monte Carlo approximation: the computational
e�ciency induced by this method is o�set by an approximation error, which can be im-
portant depending on the problem at hand. We further illustrate this issue and develop
new techniques to mitigate it, by leveraging existing tools from other �elds.

Objective 4. Our last objective aims at better understanding an essential component
of SW, that is the slicing operation: we step back from the OT paradigm and study
from a theoretical perspective the consequences of slicing any divergence other than the
Wasserstein distance. This analysis will allow us to broaden the reach of SW, as well as
sharpen its theoretical analysis.

We now present an overview of the organization of this thesis: for each chapter, we
explain the motivation, present related work, and summarize our key �ndings which are
in line with the aforementioned objectives.

Chapter 3: Asymptotic Guarantees for Learning Generative Models

with the Sliced-Wasserstein Distance

Let us consider the minimum distance estimation (MDE, Wolfowitz [1957], Basu et al.
[2011]) problem, formally de�ned as

θ̂n = argminθ∈Θ D(µ̂n, µθ) , (1.1)
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where D denotes a divergence between probability measures, Θ is the parameter space,
µθ is a probability measure indexed by θ ∈ Θ, and µ̂n = n−1

∑n
i=1 δYi is the empirical

distribution of a set of i.i.d. observations {Yi}ni=1. MDE has been extremely useful in
statistical inference to infer the parameters of a distribution whose analytical expres-
sion is unknown [Basu et al., 2011], and have inspired the formulation of several IGM
strategies. In that context, optimal transport metrics have become increasingly popu-
lar due to their attractive theoretical properties: the minimum Wasserstein estimator
[Bassetti et al., 2006, Bernton et al., 2019], obtained by replacing D in (1.1) with Wp,
forms the basis of popular IGM algorithms [Arjovsky et al., 2017, Genevay et al., 2017,
Tolstikhin et al., 2018]. Motivated by its practical success, the theoretical properties
of this estimator have been studied [Bousquet et al., 2017, Liu et al., 2017] and very
recently, Bernton et al. [2019] have derived a set of asymptotic properties, including the
asymptotic distribution of the estimator when the distributions are supported on R.

Due to the computational limitations induced by Wp, the computational complexity
of minimum Wasserstein estimators rapidly becomes excessive with the increasing prob-
lem dimension. To avoid this problem, several practical alternatives to the Wasserstein
distance have been proposed, and in particular, the Sliced-Wasserstein distance has been
an increasingly popular metric, including in IGM [Deshpande et al., 2018, Liutkus et al.,
2019, Wu et al., 2019, Kolouri et al., 2019b]. However, since the theoretical properties
of these estimators had not been established, the techniques based on them are not suf-
�ciently theoretically grounded.

Summary of our contributions in Chapter 3. To further motivate the use of SW
in statistical inference, we investigate the asymptotic properties of the minimum Sliced-
Wasserstein estimators, which are obtained by replacing D in (1.1) with SWp. Our
theoretical contributions are summarized below.

1. We prove that convergence under SW implies weak convergence of probability mea-
sures on general domains.

2. We show, under some assumptions, that minimum SW estimators exist, are mea-
surable, and are consistent in the sense that as the number of observations n
increases, in well-speci�ed models, the estimates will converge to the parameters
that generated the observed dataset. Similar consistency guarantees hold for mis-
speci�ed models.

3. We �nally derive a central limit theorem which characterizes the asymptotic distri-
bution of minimum SW estimators, and establishes a convergence rate of

√
n for

any �nite dimension.

Our work is inspired by [Bernton et al., 2019] and the adaptation of their techniques was
made possible by the identi�cation of novel properties regarding the topology induced by
SW: for example, we established for the �rst time that convergence in SW implies weak
convergence of probability measures, which generalizes the results given in [Bonnotte,
2013]. Besides, our CLT is stronger than the analogous one derived in [Bernton et al.,
2019] for minimumWasserstein estimators, since ours is not restricted to one-dimensional
data, and our convergence rate in

√
n is valid for any dimension.
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Our theoretical �ndings are supported with experiments that we conducted on syn-
thetic and real data. We �rst consider a classical statistical inference problem, where the
statistical models are characterized by a Gaussian or a multidimensional α-stable distri-
bution. In both models, the experiments validate our consistency and CLT results. We
also illustrate that, as expected, the minimum SW estimators have signi�cantly better
computational properties as compared to the minimum Wasserstein estimators, espe-
cially on high-dimensional problems. Finally, we consider the deep generative model in
[Deshpande et al., 2018] and conduct an empirical analysis on the MNIST dataset, which
con�rms the consistent behavior of minimum SW estimators in IGM applications.

Chapter 4: Approximate Bayesian Computation with the Sliced-Wasser-

stein Distance

We consider the problem of estimating the posterior distribution of some model parame-
ters θ ∈ Θ given n data points y1:n = (y1, . . . , yn). By the Bayes' theorem, this distribu-
tion has a closed-form expression which depends on the likelihood π(y1:n|θ). For many
statistical models of interest, π(y1:n|θ) cannot be numerically evaluated in a reasonable
amount of time, which prevents the application of classical likelihood-based approximate
inference methods.

Nevertheless, in various settings, it is possible to generate data from the likelihood
given any parameter value θ. This generative setting gave rise to the popular likelihood-
free framework for approximate inference, called Approximate Bayesian Computation
[Tavaré et al., 1997, Beaumont et al., 2002], which has proven useful in various practi-
cal applications, e.g. in ecology [Wood, 2010] and biology [Tanaka et al., 2006]. ABC
approximates the exact posterior π(θ|y1:n) from the parameter values for which the syn-
thetic data z1:m generated from the likelihood are close enough to the observations y1:n.
Closeness is usually measured with a discrepancy measure between the two datasets re-
duced to some �summary statistics� (e.g., empirical mean or empirical covariance). The
quality of the approximate posterior distribution highly depends on these summaries,
and �nding relevant statistics is a non-trivial and tedious task.

Recently, discrepancy measures that view data sets as empirical probability distri-
butions to eschew the construction of summary statistics have been proposed for ABC.
Examples include the Kullback-Leibler divergence [Jiang et al., 2018], maximum mean
discrepancy [Park et al., 2016], and Wasserstein distance (WABC, Bernton et al. [2019]).
While the Wasserstein distance seems like a relevant choice of discrepancy in that con-
text thanks to its strong theoretical properties, its computational and statistical issues
can strongly a�ect the performance of WABC applied to high-dimensional data.

Summary of our contributions for Chapter 4. Motivated by the computational
e�ciency of SW and its successful performance in generative settings, we develop a
novel framework for likelihood-free approximate Bayesian inference, which estimates the
posterior by retaining the parameter values for which

SWp(µ̂n, ν̂m) ≤ ε , (1.2)

where µ̂n denotes the empirical distributions of the observations y1:n, ν̂m is the empirical
distribution of the samples z1:n drawn from the likelihood, and ε > 0 is a tolerance
threshold. This results in a novel ABC method, called Sliced-Wasserstein ABC (SW-
ABC), which does not require choosing summary statistics. Besides, SW-ABC is more
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e�cient than WABC on high-dimensional settings, thanks to the computational and sta-
tistical bene�ts of SW.

We show that SW-ABC comes with guarantees on the convergence of the resulting
posterior, under two asymptotic regimes.

1. On the one hand, we prove that for a �xed set of observations y1:n, the posterior
approximated by SW-ABC converges to the true posterior as ε goes to 0, under
speci�c assumptions on the density used to generate synthetic data.

2. On the other hand, we study the SW-ABC posterior when the value of ε is kept
�xed and the number of observations grows. We show that, as n goes to +∞,
the approximate posterior converges to the prior distribution on θ restricted to a
speci�c subset of Θ that depends on ε.

We then illustrate on a synthetical problem the superior empirical performance of SW-
ABC against existing ABC techniques based on other divergences. We also demonstrate
the �exibility and computational advantages of our methodology by designing a novel
algorithm for image denoising, which corresponds to a combination of SW-ABC with a
widely used technique for this task, Non-Local Means [Buades et al., 2005].

Chapter 5: Generalized Sliced Wasserstein Distances

By de�nition, the Sliced-Wasserstein distance measures the dissimilarity between µ, ν ∈
P(Rd) by comparing �linear� projections of µ and ν along all possible directions on
Sd−1. These projections correspond to the push-forward measures u?]µ and u?]ν for any

u ∈ Sd−1, and are actually closely related to the Radon transform [Rabin et al., 2012,
Proposition 6], which is widely used in tomography [Radon, 1917, Helgason, 2011]. SW
does not admit an analytical formula in general and is thus commonly estimated by
Monte Carlo: in practice, one approximates the expectation over u ∼ σ in (2.20) with
an average over a �nite number of directions {ul}Ll=1, where for l

′ ∈ {1, . . . , L}, u′l ∼ σ.

Previous empirical studies have reported that this Monte Carlo strategy might de-
grade the performance of SW-based algorithms on high-dimensional settings because of
the induced approximation error, and propose to change the nature of the projections
to overcome this problem. For instance, in [Rowland et al., 2019, Wu et al., 2019], SW
is estimated with a Monte Carlo average based on a �nite number of orthogonal pro-
jection directions. An alternative OT metric called the �maximum Sliced-Wasserstein
distance� is introduced in [Deshpande et al., 2019], and extends SW by replacing the
expectation with a maximum operator so that one retains the �most informative� pro-
jection direction. The information returned by a direction u ∈ Sd−1 is measured by
Wp(u

?
]µ, u

?
]ν): the larger this Wasserstein distance, the more informative u. Paty and

Cuturi [2019] generalizes this idea by considering k-dimensional projections of µ, ν with
k ∈ {1, . . . , d}: the goal is then to �nd the most informative subspace on which µ and
ν are being projected. While these methods reduce the computational cost by requiring
a lower number of projections, they incur an additional cost due to the resolution of a
non-convex optimization problem over manifolds.

Summary of our contributions in Chapter 5. In this chapter, we take an alterna-
tive route to alleviate the ine�ciencies caused by the Monte Carlo approximation of SW,
by assuming that the linear nature of the projections might not guarantee an e�cient
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evaluation of SW. Indeed, in very high-dimensional settings, the data often lives in a
thin manifold, so the number of randomly chosen linear projections required to capture
the structure of the data distribution grows very quickly.

We introduce a novel class of divergences between probability distributions, called
generalized Sliced-Wasserstein distances (GSW). GSW are de�ned as SW, except they
compute di�erent types of projections: to compare µ and ν, one chooses a function
gu : Rd → R de�ned for any u ∈ Rq (q ∈ N∗), and collect the pushforward measures
(gu)]µ, (g

u)]ν for any u ∈ Rq. GSW is then de�ned as the expected value of the Wasser-
stein distance between these one-dimensional representations. As the name suggests,
GSW generalizes the concept behind SW: when gu = u?, its de�nition boils down to
the Sliced-Wasserstein distance. We also use these non-linear projections to extend the
maximum Sliced-Wasserstein distance and introduce the maximum generalized Sliced-
Wasserstein distances (max-GSW).

Analogously to (max-)SW, our de�nition of (max-)GSW is connected with the Radon
transform: by using the theory of the generalized Radon transform (GRT, Beylkin
[1984]), we identify some regularity conditions gu needs to satisfy to ensure that the
resulting generalized distance is well-de�ned. We also prove that GSW and max-GSW
verify all metric axioms if and only if the GRT they rely on is injective; otherwise, they
are pseudo-metrics. This result helps us identify useful instances of gu that guarantee
the injectivity of the associated GRT.

Then, we demonstrate that GSW and max-GSW can outperform SW and max-SW in
several generative modeling applications, with both synthetic and real data: the inherent
non-linearity of the one-dimensional representations used in (max-)GSW seems to cap-
ture the complex structure of high-dimensional distributions with much less projections.
Besides, to ensure an automatic tuning of gu, we propose to de�ne it as a neural network.
This scheme brings practical advantages and an interesting perspective on adversarial
generative modeling, showing that such algorithms contain an implicit stage for learning
projections with di�erent cost functions than ours.

Chapter 6: Fast Approximation of the Sliced-Wasserstein Distance Us-

ing Concentration of Random Projections

The motivations of this chapter are the same as in Chapter 5: although SW has been
shown to o�er important computational and theoretical advantages over the Wasserstein
distance, its practical performance can be limited by the error induced by the commonly
used Monte Carlo approximation. To ensure that this approximation error is reasonably
small, one might need to choose a large number of projections L, which inevitably in-
creases the computational complexity of SW. We thus aim at developing an alternative
method to overcome this issue.

We adopt a di�erent perspective to approximate SW by leveraging concentration re-
sults on random projections: under relatively mild conditions, the typical distribution of
low-dimensional projections of high-dimensional random variables is close to some Gaus-
sian law [Sudakov, 1978, Diaconis and Freedman, 1984]. This result has recently been
illustrated with a bound in terms of the Wasserstein distance [Reeves, 2017, Theorem
1]: let {Xi}di=1 be a sequence of real random variables with distribution µd, such that
X1, . . . , Xd are independent with �nite fourth-order moments; then, E[W2

2(u?]µ,Nµ)2]
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goes to zero as d increases, where Nµ denotes a univariate Gaussian distribution whose
variance depends on µd, and the expectation is taken with respect to a Gaussian vari-
able u. This result has very recently been used to bound the �maximum-sliced distance�
between any probability measure and its Gaussian approximation [Goldt et al., 2021].

Summary of our contributions in Chapter 6. We develop a novel technique that
approximates SW with a simple deterministic formula, which builds on [Reeves, 2017,
Theorem 1]. As opposed to Monte Carlo, our methodology does not rely on a �nite set
of random projections, thus eliminates the need of tuning the hyperparameter L and can
lead to a signi�cant computational time reduction.

The formulation of our approximate SW is supported by the following �ndings.

1. We de�ne an alternative SW whose projection directions are drawn from the same
Gaussian distribution as in [Reeves, 2017], instead of uniformly on Sd−1. We es-
tablish its relation with the original SW, and in particular, we prove that the two
distances are equal when p = 2.

2. We use this alternative SW and [Reeves, 2017, Theorem 1] to bound the absolute
di�erence between SW applied to any two probability measures µd, νd on Rd and
the Wasserstein distance between the univariate Gaussians Nµd , Nνd . We explain
why the mean parameters of µd and νd should necessarily be zero for the absolute
di�erence to decrease as d grows.

3. We show that the requirement on the mean parameters is not a practical problem,
by proving the following result: SW between µd, νd can be equivalently written as
the sum of the di�erence between their means and the SW between the centered
versions of µd, νd.

Based on the aforementioned results, we introduce a novel estimate of SW, de�ned as

ŜW
2

2(µd, νd) =
1

d
‖mµd −mνd‖2 + W2

2(Nµ̄d ,Nν̄d) , (1.3)

where for ξ ∈ {µd, νd}, mξ is the mean parameter of ξ and ξ̄ denotes the centered version
of ξ. Since the Wasserstein distance between Gaussian distributions admits a closed-form
solution, (1.3) is very easy to compute, and faster than the Monte Carlo estimate ob-
tained with a large number of projections.

We derive nonasymptotical guarantees on the error induced by our approach: we
de�ne a weak dependence condition that is weaker than the one in [Doukhan and Neu-
mann, 2007], which is a notion commonly used in statistics, and prove that under this

condition, |SW2(µd, νd)− ŜW2(µd, νd)| goes to zero as d grows to +∞.

The nonasymptotical guarantees of our approximate SW, as well as its computational
e�ciency, are then validated with experiments conducted on synthetic data. We �nally
leverage our theoretical insights to design a novel adversarial framework for a typical
generative modeling problem, namely image generation. As compared to generative
models based on SW estimated with Monte Carlo, our framework produces images of
higher quality with further computational bene�ts.
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Chapter 7: Statistical and Topological Properties of Sliced Probability

Divergences

Recent years have witnessed the formulation of novel sliced probability divergences
(SPDs), such as Sliced Gromov-Wasserstein [Vayer et al., 2019] or Sliced-Cramér [Kolouri
et al., 2020a], due to the success of the Sliced-Wasserstein distance in generative model-
ing. We identify two reasons why �slicing� a divergence is bene�cial. First, some prob-
ability divergences are only de�ned to compare measures supported on one-dimensional
spaces, for instance the Cramér distance [Cramér, 1928]. The slicing operation thus ex-
tends these divergences to multivariate distributions [Knop et al., 2020, Kolouri et al.,
2020a]. Then, slicing leverages the computational advantages available in one dimension
to de�ne divergences achieving computational e�ciency on multivariate settings [Rabin
et al., 2012, Deshpande et al., 2019, Paty and Cuturi, 2019, Kolouri et al., 2019b, Vayer
et al., 2019].

Even though various sliced divergences have successfully been deployed in practical
applications, their theoretical properties have not yet been well understood. Indeed, the
literature on such divergences has largely been devoted to the study of SW. Besides,
some properties of SW have only been characterized for speci�c settings, in particular
its statistical bene�ts observed in practice [Deshpande et al., 2018, 2019].

Summary of our contributions in Chapter 7. We conduct a theoretical analysis
on sliced probability divergences, in order to bridge the gap between theory and practice
and gain insight on what the slicing operation itself is bringing. To this end, we formu-
late the �rst general de�nition of the class of SPDs, which includes existing instances in
the literature and enables us to adopt a general point of view. Speci�cally, we consider
a generic base divergence ∆ between one-dimensional probability measures, and de�ne
its sliced version, denoted by S∆, which operates on multivariate settings.

We �rst prove several results on the topology induced by S∆, whose statements can be
summarized as follows.

1. If ∆ is a metric, so is S∆. In other words, slicing preserves the metric properties.

2. If the convergence in ∆ implies the weak convergence of measures (or conversely),
then slicing preserves this property, i.e. the convergence in S∆ implies the weak
convergence of measures (or conversely).

3. If ∆ is an integral probability metric, ∆ and S∆ are strongly equivalent under
speci�c su�cient conditions which we identify.

We also study the statistical properties of S∆.

4. We show that the sample complexity of S∆ is proportional to the sample com-
plexity of ∆ for one-dimensional measures. Therefore, the sample complexity of
any SPDs does not depend on the dimension d.

5. We also derive a bound on the error made when estimating divergences with Monte
Carlo, which is the most common practice: we prove that this approximation
scheme induces an additional variance term in the complexity of computing the
sliced divergence.



1.5. List of Publications 29

Hence, our results demonstrate that while SPDs can o�er important statistical bene�ts
thanks to the dimension-free rate in their sample complexity, the Monte Carlo strategy
induces an error that might a�ect the overall complexity of computing SPDs in practice,
especially on high-dimensional settings. Our results con�rm the recent empirical obser-
vations reported in [Deshpande et al., 2019], which motivated Chapters 5 and 6, and
provide a better understanding for them.

We demonstrate the applicability of our general theoretical results by applying them
to speci�c instances of SPDs. For example, we establish a novel result on the topology
induced by the Sliced-Cramér distance. We also derive a sample complexity result for
SW which has never been shown before, under di�erent assumptions on the measures to
be compared.

We then introduce the sliced version of Sinkhorn divergences and demonstrate its
statistical and computational advantages. Indeed, by combining our general results with
recent work [Genevay et al., 2019, Mena and Niles-Weed, 2019], we derive the sample
complexity of Sliced-Sinkhorn divergences, and obtain rates which, as opposed the sample
complexity of Sinkhorn divergences, do not depend on d nor on the regularization param-
eter ε. We also show that this sliced divergence improves the worst-case computational
complexity bounds of Sinkhorn divergences in Rd.

Finally, we support our theory by conducting numerical experiments on synthetic and
real data: we consider examples of sliced divergences (Sliced-MMD, Sliced-Wasserstein
distance, Sliced-Sinkhorn divergences) and provide an empirical analysis of their topo-
logical, statistical or computational properties, which agrees with our theoretical results.

1.5 List of Publications

The contributions that we described in Section 1.4 led to the following publications.

• Kimia Nadjahi, Alain Durmus, Umut �im³ekli, and Roland Badeau. Asymp-
totic Guarantees for Learning Generative Models with the Sliced-Wasserstein Dis-
tance. In Advances in Neural Information Processing Systems (NeurIPS), volume
32, 2019. (Spotlight presentation)

• Soheil Kolouri∗, Kimia Nadjahi∗, Umut �im³ekli, Roland Badeau, and Gustavo
Rohde. Generalized Sliced Wasserstein Distances. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), volume 32, 2019. (Star ′∗′ means equal
contribution)

• Kimia Nadjahi, Valentin De Bortoli, Alain Durmus, Roland Badeau, and Umut
�im³ekli. Approximate Bayesian Computation with the Sliced-Wasserstein Dis-
tance. In IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2020. (Won the Best Student Paper Award)

• Kimia Nadjahi, Alain Durmus, Lénaïc Chizat, Soheil Kolouri, Shahin Shahram-
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ity Divergences. In Advances in Neural Information Processing Systems (NeurIPS),
volume 33, 2020. (Spotlight presentation)
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�im³ekli. Fast Approximation of the Sliced-Wasserstein Distance Using Concen-
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Chapter 2

Technical Background

This chapter provides a set of technical results to specify the notions addressed in Chap-
ter 1, which will be useful for the remainder of the thesis. We �rst describe some of the
theoretical properties that help evaluate the advantages of a probability divergence when
used in generative modeling applications, speci�cally its metric axioms, metrization of
weak convergence and sample complexity.

Then, we examine these properties for speci�c instances of probability divergences,
namely the general class of Integral Probability Metrics, with a special focus on the
Maximum Mean Discrepancy, and the Wasserstein distance. To properly introduce this
latter metric, we give some background on optimal transport theory.

Finally, we explain the computational and statistical limitations of the Wasserstein
distance to motivate the use of alternatives, including Sinkhorn divergences and the
Sliced-Wasserstein distance. We de�ne these two divergences, which rely on fundamen-
tally di�erent approaches, and present their known bene�ts over classical optimal trans-
port metrics.

2.1 General Properties on Probability Divergences

In this section, we give the formal statement of desirable properties for a probability
divergence in the context of generative modeling, starting with the metric axioms.

De�nition 2.1 (Metric axioms). Let X be a Polish space and consider a divergence D
on the space of probability distributions P(X). D is a metric if it takes �nite values,
i.e. D : P(X)× P(X)→ R+, and satis�es the following axioms.

1. Symmetry: For any µ, ν ∈ P(X), D(µ, ν) = D(ν, µ).

2. Triangle inequality: For any µ, ν, ξ ∈ P(X), D(µ, ν) ≤ D(µ, ξ) + D(ξ, ν).

3. Identity of indiscernibles: For any µ, ν ∈ P(X), D(µ, ν) = 0 if and only if µ = ν.

If D only veri�es some of these axioms, then it is said to be a pseudo-metric.

To clarify the property of continuity described in (P2) (page 17), we de�ne the weak
convergence of measures, an important topological notion that characterizes a certain
type of convergence for sequences of probability distributions [Billingsley, 1999, Problem
1.11, Chapter 1].

31
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De�nition 2.2 (Weak convergence). Let X be a Polish space, (µk)k∈N a sequence of
probability measures supported on X, and µ ∈ P(X). We say that µk converges weakly to
a probability measure µ on X, and write (µk)k∈N

w−→ µ (or µk
w−→ µ), if for any continuous

and bounded function f : X→ R,

lim
k→+∞

∫

X
f dµk =

∫

X
f dµ .

Another type of convergence for probability distributions can be characterized through
a probability divergence: consider a Polish space X and D : P(X)×P(X)→ R+∪{+∞};
using the same notations as in De�nition 2.2, we say that (µk)k∈N converges to µ under
D if limk→∞D(µk, µ) = 0.

Depending on the choice of D and X, convergence under D can imply weak con-
vergence, and conversely. If weak convergence implies convergence under D, i.e. prop-
erty (P2) (page 17) is true, then we say that D is weakly continuous. If the reverse
implication also holds, i.e. convergence under D is equivalent to weak convergence, and
D is additionally a metric, then D is said to metrize the weak convergence in P(X).

Finally, property (P4) (page 17) is directly related to the statistical e�ciency of
a divergence. Indeed, consider that one has access to sets of samples drawn from un-
known or intractable distributions, which is typically the case in data sciences. Then,
from a practical point of view, a probability divergence D is useful in that context if
it is able to appropriately handle the empirical approximations. Above all, this means
that the evaluation of D from samples, or equivalently from empirical measures, must
be easy to implement. Then, the error induced by this empirical approximation should
be su�ciently small: given two unknown distributions µ, ν ∈ P(X) and their respective
empirical instantiations µ̂n, ν̂n, the deviation |D(µ̂n, ν̂n)−D(µ, ν)| must shrink to 0 as
n increases with a reasonably fast convergence rate. This rate is commonly referred to
as the sample complexity of D.

2.2 Integral Probability Metrics

We now study the family of Integral Probability Metrics, introduced by Müller [1997] and
characterized through the generic formula recalled in De�nition 2.3.

De�nition 2.3 (Integral Probability Metrics). Let Y be a measurable space and denote
by M(Y) the set of real-valued measurable functions on Y. Let F ⊂ M(Y) and PF(Y) be
the subset of measures in P(Y) characterized as

PF(Y) = {µ ∈ P(Y) : ∀f ∈ F,

∫

Y
|f(y)| dµ(y) < +∞} .

The Integral Probability Metric associated with F, denoted by γF, is de�ned for any
µ, ν ∈ PF(Y) as

γF(µ, ν) = sup
f∈F

∣∣∣∣
∫

Y
f(y)d(µ− ν)(y)

∣∣∣∣ . (2.1)

If µ or ν does not belong to PF(Y), we set γF(µ, ν) = +∞.
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IPMs o�er several theoretical guarantees which suggest that their deployment in gener-
ative modeling applications is relevant. First, they are pseudo-metrics [Sriperumbudur
et al., 2009]: they are non-negative, symmetric, verify the triangle inequality and for any
µ ∈ PF(Y), γF(µ, µ) = 0. Besides, γF metrizes weak convergence, provided that the span
of F is dense in the space of continous and bounded functions on Y endowed with the
supremum norm [Ambrosio et al., 2005, Section 5.1].

Finally, any IPM admits an empirical estimate which is consistent: consider the
empirical distributions µ̂n = 1

n

∑n
i=1 δxi and ν̂n = 1

n

∑n
i=1 δyi , where {xi}ni=1 and {yi}ni=1

are two sets of n ∈ N∗ samples i.i.d. from µ and ν respectively, and denote by

γ̂F(µ̂n, ν̂n) = sup
f∈F

∣∣∣∣∣
1

n

n∑

i=1

(
f(xi)− f(yi)

)
∣∣∣∣∣ . (2.2)

Then, γ̂F(µ̂n, ν̂n) converges to γF(µ, ν) as n grows to +∞, under some mild assumptions
on µ, ν and their empirical instances [Sriperumbudur et al., 2012, Lemma 3.1]. Neverthe-
less, for arbitrary F, the empirical estimate γ̂F(µ̂n, ν̂n) is not always simple to compute
nor converges to γF(µ, ν) su�ciently fast. An important example of IPMs which admits
a consistent and statistically e�cient empirical estimator is the Maximum Mean Dis-
crepancy (MMD, Gretton et al. [2012]), which is de�ned below.

De�nition 2.4 (Maximum Mean Discrepancy). Let H be a reproducing kernel Hilbert
space (RKHS) for real-valued functions on a measurable space Y, and F be the unit ball
in H. Then, γF (De�nition 2.3) de�nes the MMD in RKHS: for any µ, ν ∈ PF(Y),

MMD(µ, ν;F) = sup
f∈F, i.e. f :Y→R,‖f‖H≤1

∣∣∣∣
∫

Y
f(y)d(µ− ν)(y)

∣∣∣∣ (2.3)

By [Gretton et al., 2012, Lemma 6], the above de�nition can equivalently be written in
terms of the kernel k associated to H,

MMD2(µ, ν;F) =

∫

Y×Y
k(x, x′)d(µ⊗ µ)(x, x′) +

∫

Y×Y
k(y, y′)d(ν ⊗ ν)(y, y′)

− 2

∫

Y×Y
k(x, y)d(µ⊗ ν)(x, y) (2.4)

MMD has been shown to metrize weak convergence when Y is a compact space or Y = Rd,
under speci�c conditions on its de�ning kernel k [Sriperumbudur et al., 2010]. One of
the most popular kernels is the Gaussian (RBF) kernel, de�ned for any x, y ∈ Rd as

k(x, y) = exp
(
−‖x−y‖2

2σ2

)
, where σ > 0 is called the bandwidth parameter. According to

the aforementioned general result, MMD based on the Gaussian kernel metrizes weak
convergence on compact spaces.

When F is the unit ball of an RKHS, the solution of (2.2) is unique and available
in closed form, thus de�nes an empirical estimator for MMD that is easy to implement

[Sriperumbudur et al., 2012, Theorem 2.4]. This estimate, denoted by M̂MD(·, ·;F),
is consistent and exhibits a rate that does not depend on the data dimension d: by
[Sriperumbudur et al., 2012, Corollary 3.5],

∣∣∣M̂MD(µ̂n, ν̂n;F)−MMD(µ, ν;F)
∣∣∣ = O(n−1/2) . (2.5)
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The analytical properties of MMD have been especially useful for statistical hypothe-
sis testing [Gretton et al., 2008, Fukumizu et al., 2008, Gretton et al., 2012] and generative
modeling [Li et al., 2015, Dziugaite et al., 2015, Sutherland et al., 2017, Bi«kowski et al.,
2018, Arbel et al., 2019]. However, these studies also demonstrate that the theoreti-
cal guarantees and practical implications induced by MMD are strongly a�ected by the
choice of its kernel function. For instance, the constant in the sample complexity (2.5)
depends on supx∈Y

√
k(x, x) [Sriperumbudur et al., 2012, Corollary 3.5]. The in�uence

of the kernel function on the training and performance of MMD-based IGM methods has
not been fully understood, and the study of this aspect is an active research topic: while
[Arbel et al., 2019] provided some answers by identifying the settings where the gradient
estimators used in MMD GANs are unbiased, it is still unclear why some kernel choices
yields better results than others in their experiments.

We conclude this section by presenting another important instance of IPMs: when
F = {f : Y → R : ‖f‖Lip ≤ 1}, where

‖f‖Lip = sup
x,y∈Y,x 6=y

|f(x)− f(y)|
‖x− y‖ , (2.6)

γF is then known as the Wasserstein distance of order 1 [Villani, 2008, Theorem 5.10].
This metric is directly related to the �eld of optimal transport theory, as we explain in
the next sections.

2.3 Optimal Transport

We provide the basics of optimal transport theory in order to give a better understanding
of the roots of the Wasserstein distance.

OT was �rst formulated by Monge [1781] and de�nes a mathematical formalism
which, intuitively, aims at �nding a way to move the probability mass from one distri-
bution to another with least e�ort. This e�ort is quanti�ed by means of a cost function,
which operates as follows: denote by µ ∈ P(X) the source distribution and by ν ∈ P(Y)
the target distribution, where X and Y are two Polish spaces. Then, c : X×Y → R+∪{∞}
de�nes the function that returns for any (x, y) ∈ X× Y the cost of transporting x to y.
This cost function is typically chosen as a distance on X × Y, so that it evaluates how
far x and y are from each other: the smaller c(x, y), the closer x is to y, so the least e�ort.

On the other hand, the idea of transporting one distribution to another is described
by the notion of push-forward. To illustrate how this mathematical operator works, we
consider the speci�c case of discrete measures: let f : X → Y be a continuous map,
and ξ ∈ P(X) supported over n points, i.e. ξ = n−1

∑n
i=1 δxi . Then, the push-forward

operator associated to f , denoted by f], takes ξ as input and returns a probability
distribution on Y characterized by

f]ξ =
1

n

n∑

i=1

δf(xi) .

In other words, f] moves ξ ∈ P(X) towards a new distribution on Y, by applying f to its
support points {xi}ni=1. This operation can be generalized to continuous distributions:
in this case, f moves each elementary mass of the input distribution. We give the formal
de�nition of the push-forward operator in De�nition 2.5.
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De�nition 2.5 (Push-forward operator). Let X,Y be two Polish spaces, f : X → Y
a continuous map, and ξ ∈ P(X). We denote by f] : P(X) → P(Y) the push-forward
operator associated to f . The evaluation of f] at ξ yields a probability distribution sup-
ported on Y, denoted by f]ξ and characterized by the following two properties, which are
equivalent.

1. For any measurable set A in Y, f]ξ(A) = ξ(f−1(A)) where

f−1(A) = {x ∈ X : f(x) ∈ A} .

2. For any g ∈ C(Y),
∫
Y h(y)df]ξ(y) =

∫
X g ◦ f(x)dξ(x) .

f]ξ can be referred to as the push-forward measure of ξ by f .

The OT problem as formulated by Monge consists in �nding the map T : X→ Y that
transports the source distribution µ ∈ P(X) to its target ν ∈ P(Y) (via the push-forward
operator T]) with minimal total cost (measured by the cost function c). Formally, the
corresponding optimization problem is given by

min
T

∫

X
c
(
x, T (x)

)
dµ(x) s.t. T]µ = ν . (2.7)

Monge's formulation leads to a nonconvex optimization problem (2.7), which boils down
to a combinatorial assignment problem in the discrete case [Peyré and Cuturi, 2019,
Section 2.2]. Such problems are di�cult to solve in general, and feasible solutions do not
always exist.

To overcome the issues induced by the resolution of Monge's OT problem, Kan-
torovich [1942] introduced a relaxed version of (2.7) such that the transportation be-
comes probabilistic: the probability mass of any source point can be split into smaller
masses which are then assigned to di�erent target points, whereas the Monge problem
performs a one-to-one assignment. To allow for mass splitting, Kantorovich proposes to
use couplings instead of deterministic transport maps, i.e. the feasible set of solutions now
corresponds to the set of joint distributions on X×Y whose �rst and second marginals are
given by µ and ν respectively. The condition on the marginals re�ects the conservation
of total probability mass when carried from µ to ν. Kantorovich's formulation of OT is
�nally given by

min
π∈Π(µ,ν)

∫

X×Y
c(x, y)dπ(x, y) , (2.8)

with, Π(µ, ν) =
{
π ∈ P(X× Y) : for any measurable sets A ⊂ X, B ⊂ Y,

π(A× Y) = µ(A), π(X× B) = ν(B)
}
.

The solution to (2.8) has been shown to always exist, provided that the following condi-
tions are satis�ed.

(i) X and Y are compact metric spaces, and the cost function c is continuous [San-
tambrogio, 2015, Theorem 1.4] or lower semi-continuous and bounded from below
[Santambrogio, 2015, Theorem 1.5],

(ii) or alternatively, X and Y are Polish spaces and c is lower semi-continuous [San-
tambrogio, 2015, Theorem 1.7].

These theoretical guarantees provides a signi�cant advantage over the Monge problem,
which can be ill-posed. Furthermore, Kantorovich's formulation led to the de�nition of
powerful probability divergences, namely Wasserstein distances.



36 Chapter 2. Technical Background

2.4 Wasserstein Distances

Wasserstein distances de�ne a class of probability divergences which compare two dis-
tributions by solving a transport problem, and have gradually become a useful tool for
many other applications than OT theory. In this section, we introduce the mathematical
de�nition of Wasserstein distances, specify some of their key theoretical properties and
present two special settings where they are easily computable. Then, we explain the
main limitations of these OT metrics, which makes them impractical when deployed in
modern machine learning applications.

2.4.1 De�nition and elementary properties

We start by de�ning the Wasserstein distance of order p between any two distributions.
In what follows, we will assume for ease of reading that the compared distributions are
supported on the same space, i.e. X = Y.

De�nition 2.6 (Wasserstein distances). Let X be a Polish space equipped with a distance
ρ, and p ∈ [1,+∞). The Wasserstein distance of order p is de�ned for any µ, ν ∈ P(X)
as

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫

X×X
ρ(x, y)pdπ(x, y)

)1/p

. (2.9)

One can easily see from De�nition 2.6 that Wasserstein distances correspond to speci�c
instances of the Kantorovich transport problem recalled in (2.8). Hence, comparing two
distributions µ and ν via the Wasserstein distance amounts to solving a transport prob-
lem where the source and target distributions are given by µ and ν; or conversely, by ν
and µ, since this order has no importance in Kantorovich's formulation.

By de�nition, Wasserstein distances leverage the information captured by the cost
function c on the geometry of the supports of µ and ν in order to optimally move the
probability mass from µ to ν. The comparisons made via this OT metric are then
conceptually more powerful than with traditional divergences, e.g. f -divergences which
perform pointwise comparisons of the probability mass [Rényi, 1961].

The bene�ts of Wasserstein distances are further con�rmed by the following theo-
retical results: denote by Pp(X) the set of probability measures on X with �nite p'th
moment, i.e.

Pp(X) =

{
µ ∈ P(X) :

∫

X
ρ(x0, x)pdµ(x) < +∞, for some x0 ∈ X

}
.

Then, Wp is a metric on Pp(X) [Villani, 2008, Chapter 6] which metrizes the weak
convergence, i.e. the weak convergence of probability measures supported on Pp(X) is
equivalent to convergence under Wp [Villani, 2008, Theorem 6.9]. These properties ex-
plain why the Wasserstein distance can e�ectively compare any two distributions, even
when their supports do not overlap, as opposed to f -divergences, e.g. KL, and some
instances of IPMs: see [Arjovsky et al., 2017, Example 1] for an illustration of this ad-
vantage.

There are some special cases where computing the Wasserstein distance, i.e. solving
the corresponding Kantorovich problem, is easy and reasonably cheap. We present two
of these settings, which provide closed-form solutions and are of signi�cant important in
this thesis.
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Gaussian distributions. Denote by N (m,Σ) the Gaussian distribution on Rd with
mean m ∈ Rd and covariance matrix Σ ∈ Rd×d symmetric positive-de�nite. The Wasser-
stein distance of order 2 between two Gaussians, also known as the Wasserstein-Bures
metric [Dowson and Landau, 1982], is given by

W2
2{N (m1,Σ1),N (m2,Σ2)} = ‖m1−m2‖2 +Tr

[
Σ1 +Σ2−2

(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2]
, (2.10)

where Tr denotes the trace operator.

Besides, if Σ1Σ2 = Σ2Σ1, (2.10) can be written in the following simpler form

W2
2{N (m1,Σ1),N (m2,Σ2)} = ‖m1 −m2‖2 + ‖Σ1/2

1 − Σ
1/2
2 ‖2F , (2.11)

where ‖ · ‖F denotes the Frobenius norm.

Univariate distributions. Consider µ, ν ∈ Pp(R), and denote by F−1
µ and F−1

ν the
quantile functions of µ and ν respectively. By [Rachev and Rüschendorf, 1998, Theorem
3.1.2.(a)],

Wp
p(µ, ν) =

∫ 1

0

∣∣F−1
µ (t)− F−1

ν (t)
∣∣p dt . (2.12)

The analytical formula in (2.12) can be e�ciently approximated by replacing the integral
with a Monte Carlo estimate. The �rst approximation scheme we consider is given by,

Wp
p(µ, ν) ≈ 1

K

K∑

k=1

∣∣∣F̃−1
µ (tk)− F̃−1

ν (tk)
∣∣∣
p
, (2.13)

where {tk}Kk=1 are uniform and independent samples from [0, 1] and for ξ ∈ {µ, ν}, F̃−1
ξ

is a linear interpolation of F̄−1
ξ which denotes either the exact quantile function of ξ if ξ

is discrete, or an approximation by a Monte Carlo procedure. This last option is justi�ed
by the Glivenko-Cantelli theorem [Loève, 1977].

The second approximation is given by,

Wp
p(µ, ν) ≈ 1

K

K∑

k=1

∣∣∣sk − F̃−1
ν (F̃µ(sk))

∣∣∣
p
, (2.14)

where {sk}Ki=1 are uniform and independent samples from µ and for ξ ∈ {µ, ν}, F̃ξ (resp.
F̃−1
ξ ) is a linear interpolation of F̄ξ (resp. F̄

−1
ξ ) which denotes either the exact cumulative

distribution function (resp. quantile function) of ξ if ξ is discrete or an approximation
by a Monte Carlo procedure.

Let us �nally mention the convenient case of univariate discrete measures: if µ =
n−1

∑n
i=1 δxi and ν = n−1

∑n
i=1 δyi , where {xi}ni=1, {yi}ni=1 are two sets of n ∈ N∗

observations taking values in R, then (2.12) can simply be calculated by sorting {xi}ni=1

and {yi}ni=1. In this case,

Wp
p(µ, ν) =

1

n

n∑

i=1

|x(i) − y(i)|p , (2.15)
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where x(1) ≤ . . . ≤ x(n) and y(1) ≤ . . . ≤ y(n).

However, apart from favorable singular cases such as the ones discussed above, com-
puting Wasserstein distances entails several issues in practice, which are especially prob-
lematic in data sciences. We elaborate on these practical limitations in the next section.

2.4.2 Practical aspects and limitations

When evaluated between two multivariate empirical distributions, the Wasserstein dis-
tance admits a discrete formulation which can be rewritten as a linear program [Peyré
and Cuturi, 2019, Section 3.1] and the solution is not analytically available in general.
Standard solvers from linear programming and combinatorial optimization (e.g., the sim-
plex method) are then particularly relevant in that context, since they can be used to
compute Wp(µ̂n, ν̂n) [Peyré and Cuturi, 2019, Chapter 3]. While they participated in
the spread of OT, these methods tend to have a super-cubic cost in practice, and their
worst-case computational complexity scales in O(n3 log(n)). Therefore, Wasserstein dis-
tances usually require important computational resources when deployed in applications
that deal with medium-to-large volumes of data, such as machine learning problems.

Additionally, several prior studies have demonstrated the statistical limitations of
the Wasserstein distance by deriving its sample complexity: the convergence rate of
Wp(µ̂n, ν̂n) to Wp(µ, ν) is inO(n−1/d). This result was �rst established by Dudley [1969]
for p = 1 and compactly supported measures, and has been extended and sharpened in
subsequent work [Dereich et al., 2013, Boissard and Gouic, 2014, Fournier and Guillin,
2015]. Their contribution show that in general, the convergence rate of Wp(µ, µ̂n) to
zero (consequently, of Wp(µ̂n, ν̂n) to Wp(µ, ν), by the triangle inequality) degrades ex-
ponentially in the ambient dimension d, meaning that for high data dimensions, n must
be very large for Wp(µ̂n, ν̂n) to yield an accurate approximation of Wp(µ, ν). This re-
quirement might be unrealistic or too restrictive, since increasing n inevitably increases
the complexity of computing Wp(µ̂n, ν̂n), let alone that it might be di�cult to collect
su�ciently many samples in some practical settings. We note however that a recent
study drew a more optimistic conclusion by considering measures that are intrinsically
lower-dimensional: in this speci�c case, the rate can be reasonably fast as it depends on
that intrinsic dimension [Weed and Bach, 2019].

Because of these computational and statistical limitations, deploying the Wasser-
stein distance to address practical tasks in data sciences can result in highly ine�cient
algorithms. Nevertheless, these issues have in turn paved the way for novel research di-
rections within the machine learning community, which taken altogether, de�ne a whole
new �eld called computational optimal transport (COT).

The next two sections are precisely dedicated to the main classes of probability diver-
gences that have emerged from COT: Sinkhorn divergences, which stem from regularized
optimal transport, and the Sliced-Wasserstein distance, which is the central object of this
thesis. Thanks to their favorable computational and statistical properties, these diver-
gences serve as practical alternatives to the Wasserstein distance and have inspired the
design of novel e�cient techniques in data sciences.
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2.5 Regularized Optimal Transport, Sinkhorn Divergences

Popularized by Cuturi [2013], regularized optimal transport is one of the main method-
ologies that have allowed the application of OT in high-dimensional applied problems.
Its guiding principle consists in adding a penalty term to the Kantorovich problem in
order to approximate its solution. This penalty can be any strictly convex function, and
this choice of regularization leads to di�erent practical consequences [Peyré and Cuturi,
2019, Remark 4.10]. We will only describe the most common practice, which is entropic
penalization and thereby de�nes the following regularized version of (2.9),

Wp,ε(µ, ν) = min
π∈Π(µ,ν)

{∫

X×X
ρ(x, y)pdπ(x, y) + εH(π|µ⊗ ν)

}
, (2.16)

where ε > 0 acts as a regularization parameter and H(π|µ ⊗ ν) denotes the relative
entropy (or Kullback-Leibler divergence) of the transport plan π with respect to µ⊗ ν:
if π is absolutely continuous with respect to µ⊗ ν,

H(π|µ⊗ ν) =

∫

X×X
log
( dπ(x, y)

dµ(x)dν(y)

)
dπ(x, y) , (2.17)

otherwise, H(π|µ⊗ ν) = +∞.

This entropic regularization provides a number of desirable properties and has there-
upon contributed signi�cantly to the renewed interest in OT for data sciences, e.g. in
supervised learning [Frogner et al., 2015], computer vision [Solomon et al., 2015], domain
adaptation [Courty et al., 2017, Redko et al., 2019], dictionary or embeddings learning
[Schmitz et al., 2018, Frogner et al., 2019] and generative modeling [Genevay et al., 2018].

The �rst major advantage is that the solutions of the Kantorovich problem can be
e�ciently approximated via this regularization. Indeed, when µ and ν are two dis-
crete distributions based on n points, the penalized problem in (2.16) can be e�ciently
solved by applying an iterative numerical solver called Sinkhorn's algorithm [Franklin
and Lorenz, 1989], where each iteration consists in matrix-vector products. Such op-
erations induce a complexity in O(n2), which can further be improved for example by
implementing them on GPU since they can be carried out in parallel, or by leveraging
the structure of the cost function: see [Peyré and Cuturi, 2019, Section 4.3] for the
explanation of such acceleration techniques. Therefore, Sinkhorn's algorithm executes
considerably faster than the approximate solvers used in classical OT, and has been
shown to converge to the solution of the unregularized Kantorovich problem with an
accuracy of δ in O(n2‖c‖2∞ log(n)δ−2) operations [Dvurechensky et al., 2018]. Several
algorithms for regularized optimal transport have then been developed and can achieve
improved convergence rates or a superior empirical performance, e.g. a better compu-
tational e�ciency [Altschuler et al., 2017, Dvurechensky et al., 2018, Seguy et al., 2018,
Abid and Gower, 2018, Lin et al., 2019].

On the other hand, the entropic regularization of OT yields an alternative divergence
to the Wasserstein distance that is better suited for data sciences: Wp,ε(µ, ν) is convex
as a function of (µ, ν) for ε ≥ 0, and is always smooth provided that ε > 0, with
a gradient known in closed-form [Feydy et al., 2019]. Therefore, adding an entropic
penalty has been especially useful in de�ning a reliable loss function which, as opposed
to the unregularized Wasserstein distance, can e�ciently be di�erentiated in general: a
detailed discussion on this aspect accompanied with concrete examples is provided in
[Peyré and Cuturi, 2019, Section 9.1].
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Nevertheless, this divergence does not verify all metric axioms since the entropic
penalty term introduces the following bias: for any distribution µ, Wp,ε(µ, µ) 6= 0.
The family of Sinkhorn divergences has then been introduced to �x this problem, while
inheriting from the bene�ts of entropic regularized OT.

De�nition 2.7 (Sinkhorn divergences). Let X be a Polish space equipped with a distance
ρ. Let p ∈ [1,+∞) and ε > 0. The Sinkhorn divergence is de�ned for any µ, ν ∈ P(X)
as

Wp,ε(µ, ν) = Wp,ε(µ, ν)− 1

2

{
Wp,ε(µ, µ) + Wp,ε(ν, ν)

}
, (2.18)

where Wp,ε is the regularized OT cost given by (2.16).

Sinkhorn divergences have been proved to be smooth and convex, similarly to Wp,ε,
but they are also symmetric positive de�nite and metrize the weak convergence [Feydy
et al., 2019]. Regarding their practical implications, computing Wp,ε is not much more
expensive than for Wp,ε, and can be done e�ciently on GPU [Feydy et al., 2019, Section
3].

Another important feature of Sinkhorn divergences is that they interpolate between
the Wasserstein distance (when ε → 0) and MMD (when ε → +∞) [Ramdas et al.,
2017]. Hence, Sinkhorn divergences achieve a trade-o� between these two divergences,
which is clearly re�ected in their sample complexity recalled below.

Theorem 2.8 (Theorem 3 in Genevay et al. [2019]). Let X be a compact set of Rd
with diameter denoted by DX, and consider µ, ν ∈ P(X). The sample complexity of the
Sinkhorn divergence is given by

E
∣∣Wp,ε(µ̂n, ν̂n)−Wp,ε(µ, ν)

∣∣ ≤ Kd,DX

(
1 + ε−bd/2c

)
exp

(
kDX

ε

)
n−1/2 , (2.19)

where Kd,DX
is a constant that depends on d and DX, and kDX

is a constant that depends
on DX.

Theorem 2.8 has very recently been re�ned to the case where µ, ν are subgaussian [Mena
and Niles-Weed, 2019]. In both [Genevay et al., 2019] and [Mena and Niles-Weed, 2019],
the convergence rate is consistent with the aforementioned interpolation property: when
ε goes to in�nity, it scales in n−1/2 and is thus comparable to the MMD case (2.5); when
ε shrinks to 0, the rate gets signi�cantly slower and, analogously to the Wasserstein
distance, further degrades as the dimension d increases.

2.6 Sliced-Wasserstein Distance

Another important class of alternative divergence emerging for computational optimal
transport relies on the use of low-dimensional projections of probability distributions.
This line of work was initiated by Rabin et al. [2012] and Bonneel et al. [2015], which de-
signed the Sliced-Wasserstein distance in order to speed up the computation of Wasser-
stein barycenters. We give the formal de�nition of SW in De�nition 2.9, which we
illustrate in Figure 1.3 (page 20).

De�nition 2.9 (Sliced-Wasserstein distance). Let X ⊂ Rd be a Polish space endowed
with the Euclidean distance and denote by Sd−1 =

{
θ ∈ Rd : ‖θ‖ = 1

}
the unit sphere in

Rd. For any u ∈ Sd−1, denote by u? : X→ R the linear form given by u?(x) = 〈u, x〉. Let
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Algorithm 1: Monte Carlo approximation of SW

Input: Two sets of observations {xi}ni=1 and {yi}ni=1, number of projection
directions L, order p.

SW = 0
for l = 1, . . . , L do

Sample: ul ∼ σ
for i = 1, . . . , n do

Project: x′i = 〈ul, xi〉, y′i = 〈ul, yi〉
Sort: x′(1) ≤ x′(2) ≤ · · · ≤ x′(n), y

′
(1) ≤ y′(2) ≤ · · · ≤ y′(n)

SW = SW + (1/n)
∑n

i=1 |x′(i) − y′(i)|p
SW = (SW/L)1/p

return SW

p ∈ [1,+∞). The Sliced-Wasserstein distance of order p is de�ned for any µ, ν ∈ Pp(X)
as

SWp
p(µ, ν) =

∫

Sd−1

Wp
p(u

?
]µ, u

?
]ν)dσ(u) , (2.20)

where σ is the uniform distribution on Sd−1, and for any u ∈ Sd−1, u?] = (u?)] denotes
the push-forward operator associated to u?.

In other words, SW measures the dissimilarity between µ, ν ∈ Pp(X) by computing
E[Wp

p(u?]µ, u
?
]ν)], where E is taken with respect to u uniformly distributed on Sd−1. The

push-forward measures u?]µ and u?]ν are univariate since they correspond to �projections�

of µ and ν along the direction u ∈ Sd−1. In particular, when ξ ∈ {µ, ν} is approximated
by the empirical measure ξ̂n = (1/n)

∑n
i=1 δxi , where {xi}ni=1 are i.i.d. samples from ξ,

then

u?] ξ̂n =
1

n

n∑

i=1

δ〈u,xi〉 .

This means that empirical approximations of u?]µ and u?]ν can simply be obtained by
projecting the available samples from µ and ν along u.

Besides, the expectation that de�nes SW can easily be approximated with a standard
Monte Carlo method: one draws L ∈ N∗ samples i.i.d. from σ, denoted by {ul}Ll=1, and
approximates SW (2.20) with

SWp
p,L(µ, ν) =

1

L

L∑

l=1

Wp
p

(
u?l]µ, u

?
l]ν
)
, (2.21)

where for l ∈ {1, . . . , L}, u?l] = {(ul)?}] is the push-forward operator associated to (ul)
?,

the linear form introduced in De�nition 2.9. The Monte Carlo estimate of SW thus re-
quires solving �nitely many OT problems in R, which is convenient given our discussion
in Section 2.4.1. This approximation method is summarized in Algorithm 1, and has a
complexity in O

(
Ldn+ Ln log(n)

)
due to the projecting and sorting operations.

The computational bene�ts of SW over the Wasserstein distance have encouraged its
use in various practical applications, thus making it an increasingly popular divergence
over the last few years. We present hereafter the main contributions on the theoretical
properties of SW.
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First, [Bonnotte, 2013, Chapter 5] provides a collection of useful results on SW,
including the following: SW is a distance on Pp(Rd) [Bonnotte, 2013, Proposition 5.1.2],
and its relation with the Wasserstein distance of order p has been rigorously established
as follows.

Theorem 2.10 (Proposition 5.1.3 and Theorem 5.1.5 of Bonnotte [2013]). Let µ, ν ∈
Pp(Rd). There exists a positive constant cd,p ≤ 1 depending on d and p such that

SWp
p(µ, ν) ≤ cd,pWp

p(µ, ν) . (2.22)

Besides, denote by Bd(0, R) =
{
x ∈ Rd : ‖x‖ < R

}
the open ball in Rd of radius R > 0

centered around 0 ∈ Rd, and assume that µ and ν are supported on Bd(0, R). Then,
there exists a constant Cd,p > 0 such that

Wp
p(µ, ν) ≤ Cd,p

cd,p
Rp−1/(d+1)SWp(µ, ν)1/(d+1) (2.23)

Very recently, Bayraktar and Guo [2021] conducted a thorough theoretical analysis on the
equivalence between the Wasserstein distance and SW, which nicely complements The-
orem 2.10. Their results also concern a variant of SW, the maximum Sliced-Wasserstein
distance [Deshpande et al., 2019], which we described in Section 1.4 (page 25) and de�ne
in Chapter 5.

Finally, only a few studies have investigated the sample complexity of SW to justify
the statistical e�ciency of SW-based methods. If µ, ν are two isotropic Gaussian distri-
butions supported on Rd, then |SW2(µ̂n, ν̂n)− SW2(µ, ν)| can be bounded with high
probability using the concentration inequality derived in [Deshpande et al., 2019, Claim
1], which shows that SW2 o�ers a �polynomial� sample complexity. A very recent study
derived two upper bounds on E[SWp(µ̂n, µ)], which demonstrate that the rate in the
sample complexity of SWp cannot be worse than n−1/2p and can achieve n−1/2, under
speci�c assumptions on the regularity of µ as measured by a certain functional [Manole
et al., 2019, Proposition 1].

To conclude, let us mention that the complete review of the literature on SW pro-
vided in Sections 1.3 and 1.4 con�rms the relevance of this metric in data sciences, but
also emphasizes a severe lack of theoretical insights. As explained in Section 1.4, one of
the objectives of this thesis is then to bridge this gap between theory and practice: in
particular, the next chapter aims at making SW-based generative models more theoret-
ically grounded, by analyzing the asymptotic properties of the estimators obtained by
minimizing SW.



Chapter 3

Asymptotic Guarantees for

Learning Generative Models with

the Sliced-Wasserstein Distance

This chapter is based on [Nadjahi et al., 2019].

Minimum expected distance estimation (MEDE) algorithms have been widely used for
probabilistic models with intractable likelihood functions, and have become increasingly
popular due to their use in implicit generative modeling. Emerging from computational
optimal transport, the Sliced-Wasserstein distance has become a popular choice in MEDE
thanks to its simplicity and computational bene�ts. While several studies have reported
empirical success on generative modeling with SW, the theoretical properties of such
estimators have not yet been established.

In this chapter, we investigate the asymptotic properties of estimators that are ob-
tained by minimizing SW. We �rst show that convergence in SW implies weak con-
vergence of probability measures in general Wasserstein spaces. Then we show that
estimators obtained by minimizing SW (and also an approximate version of SW) are
asymptotically consistent. We �nally prove a central limit theorem, which characterizes
the asymptotic distribution of the estimators and establish a convergence rate of

√
n,

where n denotes the number of observed data points. We illustrate the validity of our
theory on both synthetic data and neural networks.

3.1 Introduction

Minimum distance estimation (MDE) is a generalization of maximum-likelihood infer-
ence, where the goal is to minimize a distance between the empirical distribution of a
set of i.i.d. observations Y1:n = (Y1, . . . , Yn) and a family of distributions indexed by a
parameter θ. The problem is formally de�ned as follows [Wolfowitz, 1957, Basu et al.,
2011],

θ̂n = argminθ∈Θ D(µ̂n, µθ) , (3.1)

where D denotes a distance (or a divergence in general) between probability measures,
µθ denotes a probability measure indexed by θ, Θ denotes the parameter space, and

µ̂n =
1

n

∑n

i=1
δYi (3.2)

43
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denotes the empirical measure of Y1:n. When D is chosen as the Kullback-Leibler diver-
gence, this formulation coincides with the maximum likelihood estimation (MLE, Basu
et al. [2011]).

While MDE provides a fruitful framework for statistical inference, when working
with generative models, solving the optimization problem in (3.1) might be intractable
since it might be impossible to evaluate the probability density function associated with
µθ. Nevertheless, in various settings, even if the density is not available, one can still
generate samples from the distribution µθ, and such samples turn out to be useful for
making inference. More precisely, under such settings, a natural alternative to (3.1) is
the minimum expected distance estimator [Bernton et al., 2019], which is de�ned as

θ̂n,m = argminθ∈Θ E [D(µ̂n, µ̂θ,m)|Y1:n] , (3.3)

where

µ̂θ,m =
1

m

∑m

i=1
δZi (3.4)

denotes the empirical distribution of Z1:m, that is a sequence of i.i.d. random variables
with distribution µθ. This algorithmic framework has computationally favorable proper-
ties since one can replace the expectation with a simple Monte Carlo average in practical
applications.

In the context of MDE, distances that are based on optimal transport have become
increasingly popular due to their computational and theoretical properties [Arjovsky
et al., 2017, Tolstikhin et al., 2018, Genevay et al., 2018, Patrini et al., 2018, Adler and
Lunz, 2018]. For instance, if we replace the distance D in (3.3) with the Wasserstein
distance, we obtain the minimum expected Wasserstein estimator [Bassetti et al., 2006,
Bernton et al., 2019]. In the classical statistical inference setting, the typical use of
such an estimator is to infer the parameters of a measure whose density does not admit
an analytical closed-form formula [Basu et al., 2011]. On the other hand, in the im-
plicit generative modeling (IGM) setting, this estimator forms the basis of two popular
IGM strategies: Wasserstein generative adversarial networks [Arjovsky et al., 2017] and
Wasserstein auto-encoders [Tolstikhin et al., 2018]. These methods are related to each
other according to [Genevay et al., 2017], and fall within the IGM framework explained
in Section 1.1: the goal is to �nd the best parametric transport map Tθ, such that Tθ
transforms a simple distribution µ (e.g., standard Gaussian or uniform) to a potentially
complicated data distribution µ̂n, by minimizing the Wasserstein distance between the
transported distribution µθ = Tθ]µ and µ̂n. In practice, θ is typically chosen as a neural
network, for which it is often impossible to evaluate the induced density µθ. However,
one can easily generate samples from µθ by �rst generating a sample from µ and then
applying Tθ to that sample, making minimum expected distance estimation (3.3) fea-
sible for this setting. Motivated by its practical success, the theoretical properties of
this estimator have been recently taken under investigation [Bousquet et al., 2017, Liu
et al., 2017] and very recently, Bernton et al. [2019] have established the consistency (for
the general setting) and the asymptotic distribution (for one dimensional setting) of this
estimator.

Even though estimation with the Wasserstein distance has served as a fertile ground
for many generative modeling applications, except for the case when the measures are
supported on R1, the computational complexity of minimum Wasserstein estimators
rapidly becomes excessive with the increasing problem dimension, and developing accu-
rate and e�cient approximations is a highly non-trivial task. Therefore, there have been
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several attempts to use more practical alternatives to the Wasserstein distance [Cuturi,
2013, Genevay et al., 2018], and in this context, the Sliced-Wasserstein distance has been
an increasingly popular alternative to the Wasserstein distance. While several studies
have reported empirical success on generative modeling with SW, the theoretical proper-
ties of such estimators have not yet been fully established, as we discussed in Section 1.3.

In this chapter, we investigate the asymptotic properties of estimators given in (3.1)
and (3.3) when D is replaced with SWp. We �rst prove that convergence in SW implies
weak convergence of probability measures de�ned on general domains, which generalizes
the results given in [Bonnotte, 2013]. Then, by using similar techniques to the ones
in [Bernton et al., 2019], we show that the estimators de�ned by (3.1) and (3.3) are
consistent, meaning that as the number of observations n increases the estimates will get
closer to the data-generating parameters. We �nally prove a central limit theorem (CLT)
in the multidimensional setting, which characterizes the asymptotic distribution of these
estimators and establishes a convergence rate of

√
n. The CLT that we prove is stronger

than the one derived in [Bernton et al., 2019] in the sense that it is not restricted to the
one-dimensional setting, as opposed to [Bernton et al., 2019].

We support our theory with experiments that are conducted on both synthetic and
real data. We �rst consider a more classical statistical inference setting, where we con-
sider a Gaussian model and a multidimensional α-stable model whose density is not
available in closed-form. In both models, the experiments validate our consistency and
CLT results. We further observe that, especially for high-dimensional problems, the es-
timators obtained by minimizing SW have signi�cantly better computational properties
when compared to the ones obtained by minimizing the Wasserstein distance, as ex-
pected. In the IGM setting, we consider the neural network-based generative modeling
algorithm proposed in [Deshpande et al., 2018] to show that our results also hold in the
real data setting as well.

3.2 Asymptotic Guarantees for Minimum Sliced-Wasserstein

Estimators

We �rst clarify the mathematical formalism for the problem of parameter inference in
purely generative models. Let (Yk)k∈N be a sequence of random variables associated
with observations, where each observation takes value in Y ⊂ Rd. We assume that
these observations are i.i.d. from µ? ∈ P(Y), and we consider the statistical model
M = {µθ ∈ P(Y), θ ∈ Θ}, where Θ ⊂ Rdθ is the parametric space. For all θ ∈ Θ,
we can generate i.i.d. samples (Zk)k∈N∗ ∈ YN∗ from µθ, but the associated likelihood is
numerically intractable. The empirical approximation of µθ based on m ∈ N∗ samples is
then given by µ̂θ,m = m−1

∑m
i=1 δZi .

Throughout this chapter, we assume that the following conditions hold:

(C1) Y, endowed with the Euclidean distance ρ, is a Polish space,

(C2) Θ, endowed with the distance ρΘ, is a Polish space,

(C3) Θ is a σ-compact space, i.e. the union of countably many compact subspaces,

(C4) Parameters are identi�able, i.e. µθ = µθ′ implies θ = θ′.
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We endow P(Y) with the Lévy-Prokhorov distance dP , which metrizes the weak conver-
gence by [Billingsley, 1999, Theorem 6.8] since Y is assumed to be a Polish space.

We de�ne the minimum Sliced-Wasserstein estimator (MSWE) of order p as the
estimator obtained by plugging SWp in place of D in (3.1). Similarly, we de�ne the
minimum expected Sliced-Wasserstein estimator (MESWE) of order p as the estimator
obtained by plugging SWp in place of D in (3.3). In the rest of the chapter, MSWE and

MESWE will be denoted by θ̂n and θ̂n,m respectively.
In what follows, we present the asymptotic properties that we derived for MSWE

and MESWE, namely their existence, consistency and measurability. We also formu-
late a CLT that characterizes the asymptotic distribution of MSWE and establishes a
convergence rate for any dimension. All the proofs for these results are provided in
Sections 3.5.3 to 3.5.7.

Note that since the Sliced-Wasserstein distance is de�ned as an average of one-
dimensional Wasserstein distances, some proofs are inevitably similar to the proofs done
in [Bernton et al., 2019]. However, the adaptation of these techniques to the SW case is
made possible by the identi�cation of novel properties regarding the topology induced
by the SW distance, which we establish for the �rst time in this study: see Sections 3.2.1
and 3.5.1.

3.2.1 Topology induced by the Sliced-Wasserstein distance

We begin this section by a useful result which we believe is interesting on its own and
implies that the topology induced by SWp on Pp(Rd) is �ner than the weak topology
induced by the Lévy-Prokhorov metric dP .

Theorem 3.1. Let p ∈ [1,+∞). The convergence in SWp implies the weak convergence
in P(Rd), i.e. if (µk)k∈N is a sequence of measures in Pp(Rd) satisfying

lim
k→+∞

SWp(µk, µ) = 0

with µ ∈ Pp(Rd), then (µk)k∈N
w−→ µ.

The property that convergence in SWp implies weak convergence has already been
proven in [Bonnotte, 2013] for compact domains only. While the implication of weak
convergence is one of the most crucial requirements that a distance metric should satisfy,
to the best of our knowledge, this implication has not been proved for general domains
before. In [Bonnotte, 2013], the main proof technique was based on showing that SWp

is equivalent to Wp in compact domains, whereas we follow a di�erent path and use the
Lévy characterization: see Section 3.5.2 for the detailed proof.

3.2.2 Existence and consistency of MSWE and MESWE

In our next set of results, we will show that both MSWE and MESWE are consistent, in
the sense that, when the number of observations n increases, the estimators will converge
to a parameter θ? that minimizes the ideal problem θ 7→ SWp(µ?, µθ). Before we make
this argument more precise, let us �rst present the assumptions that will imply our
results.

A1. The map θ 7→ µθ is continuous from (Θ, ρΘ) to (P(Y),dP), i.e. for any sequence
(θn)n∈N in Θ satisfying limn→+∞ ρΘ(θn, θ) = 0, then (µθn)n∈N

w−→ µθ.
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A2. The data-generating process is such that limn→+∞ SWp(µ̂n, µ?) = 0, P-almost
surely.

A3. There exists ε > 0, such that setting ε? = infθ∈Θ SWp(µ?, µθ), the set

Θ?
ε = {θ ∈ Θ : SWp(µ?, µθ) ≤ ε? + ε}

is bounded.

These assumptions are mostly related to the identi�ability of the statistical model
and the regularity of the data generating process. They are arguably mild assumptions,
analogous to those that have already been considered in the literature [Bernton et al.,
2019]. Note that, without Theorem 3.1, the formulation and use of A2 in our proofs
would not be possible. In the next result, we establish the consistency of MSWE.

Theorem 3.2 (Existence and consistency of MSWE). Assume A1, A2 and A3. There
exists E ∈ F with P(E) = 1 such that, for all ω ∈ E,

lim
n→+∞

inf
θ∈Θ

SWp(µ̂n(ω), µθ) = inf
θ∈Θ

SWp(µ?, µθ), and (3.5)

lim sup
n→+∞

argminθ∈ΘSWp(µ̂n(ω), µθ) ⊂ argminθ∈ΘSWp(µ?, µθ) , (3.6)

where µ̂n is de�ned by (3.2).

Besides, for all ω ∈ E, there exists n(ω) such that, for all n ≥ n(ω), the set
argminθ∈ΘSWp(µ̂n(ω), µθ) is non-empty.

Our proof technique is similar to the one given in [Bernton et al., 2019]. This result
shows that, when the number of observations goes to in�nity, the estimate θ̂n will con-
verge to a global minimizer of the problem minθ∈Θ SWp(µ?, µθ). In our next result, we
prove a similar property for MESWEs as min(m,n) goes to in�nity. In order to increase
clarity, and without loss of generality, in this setting, we consider m as a function of n
such that limn→+∞m(n) = +∞.

Now, we derive an analogous version of Theorem 3.2 for MESWE. For this result, we
need to introduce another continuity assumption.

A4. If limn→+∞ ρΘ(θn, θ) = 0, then limn→+∞ E [SWp(µθn , µ̂θn,n)|Y1:n] = 0.

The next theorem establishes the consistency of MESWE.

Theorem 3.3 (Existence and consistency of MESWE). Assume A1, A2, A3 and A4.
Let (m(n))n∈N∗ be an increasing sequence satisfying limn→+∞m(n) = +∞. There exists
a set E ⊂ Ω with P(E) = 1 such that, for all w ∈ E,

lim
n→+∞

inf
θ∈Θ

E
[
SWp(µ̂n, µ̂θ,m(n))

∣∣Y1:n

]
= inf

θ∈Θ
SWp(µ?, µθ), and (3.7)

lim sup
n→+∞

argminθ∈Θ E
[
SWp(µ̂n, µ̂θ,m(n))

∣∣Y1:n

]
⊂ argminθ∈Θ SWp(µ?, µθ) , (3.8)

where µ̂n and µ̂θ,m(n) are de�ned by (3.2) and (3.4) respectively.

Besides, for all ω ∈ E, there exists n(ω) such that, for all n ≥ n(ω), the set
argminθ∈Θ E

[
SWp(µ̂n, µ̂θ,m(n))|Y1:n

]
is non-empty.

Similar to Theorem 3.2, this theorem shows that, when the number of observations
goes to in�nity, the estimator obtained with the expected distance will converge to a
global minimizer.
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3.2.3 Convergence of MESWE to MSWE

Since in practical applications, we can only use a �nite number of generated samples
Z1:m, we analyze the case where the observations Y1:n are kept �xed while the number
of generated samples increases, i.e. m → +∞. We show in this scenario that MESWE
converges to MSWE, assuming the latter exists. Before deriving this result, we formulate
a technical assumption below.

A5. For some ε > 0 and εn = infθ∈Θ SWp(µ̂n, µθ), the set

Θε,n = {θ ∈ Θ : SWp(µ̂n, µθ) ≤ εn + ε}

is bounded almost surely.

Theorem 3.4 (MESWE converges to MSWE as m→ +∞). Assume A1, A4 and A5.
Then,

lim
m→+∞

inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] = inf
θ∈Θ

SWp(µ̂n, µθ) (3.9)

lim sup
m→+∞

argminθ∈ΘE [SWp(µ̂n, µ̂θ,m)|Y1:n] ⊂ argminθ∈ΘSWp(µ̂n, µθ) (3.10)

There exists m∗ such that, for any m ≥ m∗, argminθ∈ΘE [SWp(µ̂n, µ̂θ,m)|Y1:n] is a non-
empty set.

This result shows that MESWE would be indeed promising in practice, as one get
can more accurate estimations by increasing m.

3.2.4 Measurability of MSWE and MESWE

The measurability of the MSWE and MESWE follows from the application of [Brown
and Purves, 1973, Corollary 1], also used in [Bassetti et al., 2006, Bernton et al., 2019],
and which we recall in Theorem 3.18.

Theorem 3.5 (Measurability of the MSWE). Assume A1. For any n ≥ 1 and ε > 0,
there exists a Borel measurable function θ̂n,ε : Ω→ Θ that satis�es: for any ω ∈ Ω,

θ̂n,ε(ω) ∈





argminθ∈Θ SWp(µ̂n(ω), µθ), if this set is non-empty,

{θ ∈ Θ : SWp(µ̂n(ω), µθ) ≤ ε? + ε}, otherwise.

where ε? = infθ∈Θ SWp(µ?, µθ).

We prove an analogous result to Theorem 3.5 in Section 3.5.6, which establishes the
measurability of MESWE.

3.2.5 Rate of convergence and the asymptotic distribution

In our last set of theoretical results, we investigate the asymptotic distribution of MSWE
and we establish a rate of convergence. We now suppose that we are in the well-speci�ed
setting, i.e. there exists θ? in the interior of Θ such that µθ? = µ?, and we consider
additional assumptions, as stated below.

For any u ∈ Sd−1 and t ∈ R, we de�ne Fθ(u, t) =
∫
Y 1(−∞,t](〈u, y〉)dµθ(y). Note that

for any u ∈ Sd−1, Fθ(u, ·) is the cumulative distribution function (CDF) associated to
the measure u?]µθ.
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A6. For all ε > 0, there exists δ > 0 such that

inf
θ∈Θ: ρΘ(θ,θ?)≥ε

SW1(µθ? , µθ) > δ .

Let L1(Sd−1×R,σ⊗Leb1) denote the class of functions that are absolutely integrable
on the domain Sd−1 × R w.r.t. the product measure σ ⊗ Leb1, where Leb1 denotes the
Lebesgue measure on R.

A7. Assume that there exists a measurable function D? = (D?,1, . . . , D?,dθ) : Sd−1×R 7→
Rdθ such that for each i = 1, . . . , dθ, D?,i ∈ L1(Sd−1 × R,σ ⊗ Leb1) and

∫

Sd−1

∫

R
|Fθ(u, t)− Fθ?(u, t)− 〈θ − θ?, D?(u, t)〉|dtdσ(u) = ε(ρΘ(θ, θ?)) ,

where ε : R+ → R+ satis�es limt→0 ε(t) = 0. Besides, {D?,i}dθi=1 are linearly independent
in L1(Sd−1 × R,σ ⊗ Leb1).

For any u ∈ Sd−1, and t ∈ R, de�ne

F̂n(u, t) = n−1 card {i ∈ {1, . . . , n} : 〈u, Yi〉 ≤ t} ,

where card denotes the cardinality of a set, and for any u ∈ Sd−1, F̂n(u, ·) is the CDF
associated to the measure u?] µ̂n.

A8. There exists a random element G? : Sd−1 × R 7→ R such that the stochastic process√
n(F̂n − Fθ?) converges weakly in L1(Sd−1 × R,σ ⊗ Leb1) to G?.

Under mild assumptions on the tails of u?]µ? for any u ∈ Sd−1, we believe that one
can prove that A8 holds in general by extending [Dede, 2009, Proposition 3.5] and [del
Barrio et al., 1999, Theorem 2.1a].

We can now formulate our central limit theorem based on these assumptions.

Theorem 3.6. Assume A1, A2, A3, A6, A7 and A8. Then, the asymptotic distribution
of the goodness-of-�t statistic is given by,

√
n inf
θ∈Θ

SW1(µ̂n, µθ)
w−→ inf

θ∈Θ

∫

Sd−1

∫

R
|G?(u, t)− 〈θ,D?(u, t)〉|dtdσ(u)

as n→ +∞, where µ̂n is de�ned by (3.2).

Theorem 3.7. Assume A1, A2, A3, A6, A7 and A8. Suppose also that the random
map θ 7→

∫
Sd−1

∫
R |G?(u, t)− 〈θ,D?(u, t)〉|dtdσ(u) has a unique in�mum almost surely.

Then, MSWE with p = 1 satis�es,

√
n(θ̂n − θ?) w−→ argminθ∈Θ

∫

Sd−1

∫

R
|G?(u, t)− 〈θ,D?(u, t)〉|dtdσ(u)

as n→ +∞, where θ̂n is de�ned by (3.1) with SW1 in place of D.

These results show that the estimator and the associated goodness-of-�t statistics
will converge to a random variable in distribution, where the rate of convergence is

√
n.

Note that G? is de�ned as a random element (see A8), therefore we cannot claim that
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Figure 3.1: Probability density estimates of the MSWE σ̂2
n of order 1, centered and

rescaled by
√
n, on the 10-dimensional Gaussian model for di�erent values of n.

the convergence in distribution derived in Theorem 3.6 and 3.7 implies the convergence
in probability.

This CLT is also inspired by [Bernton et al., 2019], where they identi�ed the asymp-
totic distribution associated to the minimum Wasserstein estimator. However, since Wp

admits an analytical form only when d = 1, their result is restricted to the scalar case,
and in their conclusion, Bernton et al. [2019] conjecture that the rate of the minimum
Wasserstein estimators would depend negatively on the dimension of the observation
space. On the contrary, since SWp is de�ned in terms of one-dimensional Wp distances,
we circumvent the curse of dimensionality and our result holds for any �nite dimen-
sion. While the perceived computational burden has created a pessimism in the machine
learning community about the use of Wasserstein-based methods in large dimensional
settings, which motivated the rise of regularized optimal transport, we believe that our
�ndings provide another interesting counter-example to this conception.

3.3 Experiments

We conduct experiments on synthetic and real data to empirically con�rm our theorems.
We explain in Section 3.5.8 the optimization methods used to �nd the estimators. Specif-
ically, we can use stochastic iterative optimization algorithm (e.g., stochastic gradient
descent). Note that, since we calculate (expected) SW with Monte Carlo approxima-
tions over a �nite set of projections (and a �nite number of `generated datasets' ), MSWE
and MESWE fall into the category of doubly stochastic algorithms. Our experiments on
synthetic data actually show that using only one random projection and one randomly
generated dataset at each iteration of the optimization process is enough to illustrate
our theorems. We provide the code to reproduce the experiments1.
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Figure 3.2: Min. SW estimation on Gaussians in R10. Figure 3.2a and Figure 3.2b show
the mean squared error between (m?, σ

2
?) = (0, 1) and MSWE (m̂n, σ̂

2
n) (resp. MESWE

(m̂n,n, σ̂
2
n,n)) for n from 10 to 10 000, illustrating Theorems 3.2 and 3.3. Figure 3.2c

shows the error between (m̂n, σ̂
2
n) and (m̂n,m, σ̂

2
n,m) for n = 2000 observations and m

from 10 to 10 000, to illustrate Theorem 3.4. Results are averaged over 100 runs, the
shaded areas represent the standard deviation.

3.3.1 Multivariate Gaussian distributions

We consider the task of estimating the parameters of a 10-dimensional Gaussian distri-
bution using our SW estimators: we are interested in the model

M =
{
N (m, σ2I) : m ∈ R10, σ2 > 0

}
,

and we draw i.i.d. observations with (m?, σ
2
?) = (0, 1). The advantage of this simple

setting is that the density of the generated data has a closed-form expression, which
makes MSWE tractable.

We empirically verify our central limit theorem: for di�erent values of n, we com-
pute 500 times MSWE of order 1 using one random projection, then we estimate the
density of σ̂2

n with a kernel density estimator. Figure 3.1 shows the distributions cen-
tered and rescaled by

√
n for each n, and con�rms the convergence rate that we derived

(Theorem 3.7).

To illustrate the consistency property in Theorem 3.2, we approximate MSWE of
order 2 for di�erent numbers of observed data n using one random projection and we
report for each n the mean squared error between the estimate mean and variance and the
data-generating parameters (m?, σ

2
?). We proceed the same way to study the consistency

of MESWE (Theorem 3.3), which we approximate using one random projection and one
generated dataset z1:m of size m = n for di�erent values of n. We also verify the
convergence of MESWE to MSWE (Theorem 3.4): we compute these estimators on a
�xed set of n = 2000 observations for di�erent m, and we measure the error between
them for each m. Results are shown in Figure 3.2. We see that our estimators indeed
converge to (m?, σ

2
?) as the number of observations increases (Figures 3.2a, 3.2b), and

on a �xed observed dataset, MESWE converges to MSWE as we generate more samples
(Figure 3.2c).

1See our GitHub repository: https://github.com/kimiandj/min_swe.

https://github.com/kimiandj/min_swe


52 Chapter 3. Asymptotic Guarantees for Generative Models based on SW

2 5 10

dimension

0.000

0.005

0.010

0.015

0.020
‖m̂
−

m
?
‖2 2

MESWE

approx. MEWE

exact MEWE

2 5 10

dimension

0

500

1000

av
er

ag
e

ti
m

e
(s

)

(a) Comparison of MESWE and MEWE

101 102 103 104

number of observations n

0.0

0.1

0.2

0.3

0.4

0.5

‖m̂
n
,n
−

m
?
‖2 2

(b) MESWE

101 102 103

number of generated samples m

0.0000

0.0005

0.0010

0.0015

‖m̂
n
∗ ,
m
−

m̂
n
∗ ‖

2 2

(c) MESWE (n∗=100)

Figure 3.3: Min. SW estimation for the location parameter of multivariate elliptically
contoured stable distributions. Figure 3.3a compares the quality of the estimation pro-
vided by SW and Wasserstein-based estimators as well as their average computational
time, for di�erent values of dimension d. Figure 3.3b and Figure 3.3c illustrate, for
d = 10, the consistency of MESWE m̂n,m and its convergence to the MSWE m̂n. Re-
sults are averaged over 100 runs, the shaded area represent the standard deviation.

3.3.2 Multivariate elliptically contoured stable distributions

We focus on parameter inference for a subclass of multivariate stable distributions, called
elliptically contoured stable distributions and denoted by EαSc [Nolan, 2013]. Stable
distributions refer to a family of heavy-tailed probability distributions that generalize
Gaussian laws and appear as the limit distributions in the generalized central limit
theorem [Samorodnitsky and Taqqu, 1994]. These distributions have many attractive
theoretical properties and have been proven useful in modeling �nancial [Mandelbrot,
2013] data or audio signals [�im³ekli et al., 2015, Leglaive et al., 2017]. While special
univariate cases include Gaussian, Lévy and Cauchy distributions, the density of stable
distributions has no general analytic form, which restricts their practical application,
especially for the multivariate case.

If Y ∈ Rd ∼ EαSc(Σ,m), then its joint characteristic function is de�ned for any
t ∈ Rd as

E
[
exp(itTY )

]
= exp

(
−(tTΣt)α/2 + itTm

)
,

where Σ is a positive de�nite matrix (akin to a correlation matrix), m ∈ Rd is a location
vector (equal to the mean if it exists) and α ∈ (0, 2) controls the thickness of the
tail. Even though their densities cannot be evaluated easily, it is straightforward to
sample from EαSc [Nolan, 2013], and we explain the sampling method in Section 3.5.8.
Therefore, it is particularly relevant to apply MESWE instead of MSWE here.

To demonstrate the computational advantage of MESWE over the minimum expected
Wasserstein estimator (MEWE, Bernton et al. [2019]), we consider observations in Rd
i.i.d. from EαSc(I,m?) where each component of m? is 2 and α = 1.8, and

M =
{
EαSc(I,m) : m ∈ Rd

}
.

The Wasserstein distance on multivariate data is either computed exactly by solving the
linear program, or approximated by solving a regularized version of this problem with
Sinkhorn's algorithm (Section 2.5). The MESWE is approximated using 10 random pro-
jections and 10 sets of generated samples. Then, following the approach in [Bernton
et al., 2019], we use the gradient-free optimization method Nelder-Mead [Nelder and
Mead, 1965] to minimize the Wasserstein and SW distances. We report on Figure 3.3a
the mean squared error between each estimate and m?, as well as their average compu-
tational time for di�erent values of dimension d. We see that MESWE provides the same
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Figure 3.4: Mean-squared error between the training (test) loss for (n,m) ∈{
(1, 1), (100, 20), (1000, 40), (10 000, 60)

}
and the training (test) loss for (n,m) =

(60 000, 200) on MNIST using the SW generator. We trained for 20 000 iterations with
the ADAM optimizer Kingma and Ba [2015].

quality of estimation as its Wasserstein-based counterparts while considerably reducing
the computational time, especially in higher dimensions.

We focus on this model in R10 and we illustrate the consistency of the MESWE m̂n,m,
approximated with one random projection and one generated dataset, the same way as
for our previous Gaussian model: see Figure 3.3b. To con�rm the convergence of m̂n,m

to the MSWE m̂n, we �x n = 100 observations and we compute the mean squared error
between the two approximate estimators (using one random projection and one generated
dataset) for di�erent values of m (Figure 3.3c). Note that the MSWE is approximated
with the MESWE obtained for a large enough value of m: m̂n ≈ m̂n,10 000.

3.3.3 High-dimensional real data using GANs

Finally, we run experiments on image generation using the Sliced-Wasserstein Generator
(SWG), an alternative GAN formulation based on the minimization of the SW distance
[Deshpande et al., 2018]. The goal is to optimize the neural network parameters such
that the generated images are close to the observed ones. Deshpande et al. [2018] pro-
poses to minimize the SW distance between µθ and the real data distribution over θ as
the generator objective, and train on MESWE in practice.

For our experiments, we design a neural network with the fully-connected con�gu-
ration given in [Deshpande et al., 2018, Appendix D] and we use the MNIST dataset
[LeCun and Cortes, 2010], made of 60 000 training images and 10 000 test images of size
28 × 28. Our training objective is MESWE of order 2 approximated with 20 random
projections and 20 di�erent generated datasets. We study the consistent behavior of
the MESWE by training the neural network on di�erent sizes n of training data and
di�erent numbers m of generated samples, and by comparing the �nal training loss and
test loss to the ones obtained when learning on the whole training dataset (n = 60 000)
and m = 200. Results are averaged over 10 runs and shown on Figure 3.4, where the
shaded areas correspond to the standard deviation over the runs. We observe that our
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results con�rm Theorem 3.3.

3.4 Conclusion

The Sliced-Wasserstein distance has been an attractive metric choice for learning in
generative models, where the densities cannot be computed directly. In this chapter, we
investigated the asymptotic properties of estimators that are obtained by minimizing SW
and the expected SW. We showed that (i) convergence in SW implies weak convergence
of probability measures in general Wasserstein spaces, (ii) the estimators are consistent,
and (iii) the estimators converge to a random variable in distribution with a rate of

√
n.

We validated our mathematical results on both synthetic data and neural networks.

We would like to point out that, in all of our experiments, the random projections
used in the Monte Carlo estimate of SW were picked uniformly on Sd−1: see Section 3.5.8
for more details. The sampling on Sd−1 directly impacts the quality of the resulting
approximation of SW, and might induce variance in practice when learning generative
models: this aspect is addressed in the next chapters, speci�cally in Chapters 5 to 7. On
the theoretical side, studying the asymptotic properties of SW-based estimators obtained
with a �nite number of projections is an interesting question (e.g., their behavior might
depend on the sampling method or the number of projections used). We leave this study
for future research.

3.5 Appendix: Postponed Proofs and Experimental Details

3.5.1 Preliminary theoretical results

We �rst recall the de�nition of epi-convergence and gather technical results regarding the
lower semi-continuity of (expected) Sliced-Wasserstein distances, which will be needed
in our proofs.

De�nition 3.8 (Epi-convergence). Let Θ be a metric space and f : Θ → R. Consider
a sequence (fk)k∈N of functions from Θ to R. We say that the sequence (fk)k∈N epi-
converges to a function f : Θ→ R, and write (fk)k∈N

e−→ f , if for each θ ∈ Θ,

lim inf
k→∞

fk(θk) ≥ f(θ) for every sequence (θk)n∈N s.t. lim
k→+∞

θk = θ ,

and lim sup
k→∞

fk(θk) ≤ f(θ) for a sequence (θk)n∈N s.t. lim
k→+∞

θk = θ .

An equivalent and useful characterization of epi-convergence is given in [Rockafellar
et al., 2009, Proposition 7.29], which we paraphrase in Proposition 3.10 after recalling
the de�nition of lower semi-continuous functions.

De�nition 3.9 (Lower semi-continuity). Let Θ be a metric space and f : Θ → R. We
say that f is lower semi-continuous (l.s.c.) on Θ if for any θ0 ∈ Θ,

lim inf
θ→θ0

f(θ) ≥ f(θ0)

Proposition 3.10 (Characterization of epi-convergence via minimization, Proposition
7.29 of Rockafellar et al. [2009]). Let Θ be a metric space and f : Θ→ R be a l.s.c. func-
tion. The sequence (fk)k∈N, with fk : Θ → R for any n ∈ N, epi-converges to f if and
only if
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(a) lim infk→∞ infθ∈K fk(θ) ≥ infθ∈K f(θ) for every compact set K ⊂ Θ ;

(b) lim supk→∞ infθ∈O fk(θ) ≤ infθ∈O f(θ) for every open set O ⊂ Θ.

[Rockafellar et al., 2009, Theorem 7.31], paraphrased below, gives asymptotic prop-
erties for the in�mum and argmin of epiconvergent functions and will be useful to prove
the existence and consistency of our estimators.

Theorem 3.11 (Inf and argmin in epiconvergence, Theorem 7.31 of Rockafellar et al.
[2009]). Let Θ be a metric space, f : Θ→ R be a l.s.c. function and (fk)k∈N be a sequence
with fk : Θ→ R for any n ∈ N. Suppose (fk)k∈N

e−→ f with −∞ < infθ∈Θ f(θ) <∞.

(a) It holds limk→∞ infθ∈Θ fk(θ) = infθ∈Θ f(θ) if and only if for every η > 0 there
exists a compact set K ⊂ Θ and N ∈ N such for any k ≥ N ,

inf
θ∈K

fk(θ) ≤ inf
θ∈Θ

fk(θ) + η .

(b) In addition, lim supk→∞ argminθ∈Θfk(θ) ⊂ argminθ∈Θf(θ).

Now, we derive novel topological results regarding SW.

Lemma 3.12 (Lower semi-continuity of SWp). Let p ∈ [1,∞). The Sliced-Wasserstein
distance of order p is lower semi-continuous on Pp(Y)×Pp(Y) endowed with the topology
of weak convergence, i.e. for any sequences (µk)k∈N and (νk)k∈N of Pp(Y) which converge
weakly to µ ∈ Pp(Y) and ν ∈ Pp(Y) respectively, we have

SWp(µ, ν) ≤ lim inf
k→+∞

SWp (µk, νk) .

Proof. First, by the continuous mapping theorem, if a sequence (µk)k∈N of elements of
Pp(Y) converges weakly to µ, then for any continuous function f : Y → R, (f]µk)k∈N
converges weakly to f]µ. In particular, for any u ∈ Sd−1, u?]µk

w−→ u?]µ since u? is a
bounded linear form thus continuous.

Let p ∈ [1,∞). We introduce the two sequences (µk)k∈N and (νk)k∈N of elements of
Pp(Y) such that µk

w−→ µ and νk
w−→ ν. We show that for any u ∈ Sd−1,

Wp
p(u

?
]µ, u

?
]ν) ≤ lim inf

k→+∞
Wp

p(u
?
]µk, u

?
]νk) . (3.11)

Indeed, if (3.11) holds, then the proof is completed using the de�nition of the Sliced-
Wasserstein distance and Fatou's Lemma. Let u ∈ Sd−1. For any k ∈ N, let γk ∈
P(R × R) be an optimal transference plan between u?]µk and u?]νk for the Wasserstein

distance of order p, which exists by [Villani, 2008, Theorem 4.1], i.e. Wp
p(u?]µk, u

?
]νk) =∫

R×R |a− b| dγk(a, b). Note that by [Villani, 2008, Lemma 4.4] and Prokhorov's Theorem,
(γk)k∈N is sequentially compact in P(R× R) for the topology associated with the weak
convergence. Now, consider a subsequence (γφ1(k))k∈N where φ1 : N → N is increasing
such that

lim
k→+∞

∫

R×R
|a− b|p dγφ1(k)(a, b) = lim

k→+∞
Wp

p(u
?
]µφ1(k), u

?
]νφ1(k))

= lim inf
k→+∞

Wp
p(u

?
]µk, u

?
]νk) . (3.12)
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Since (γk)k∈N is sequentially compact, (γφ1(k))k∈N is sequentially compact as well, so there
exists an increasing function φ2 : N → N and a probability distribution γ ∈ P(R × R)
such that (γφ2(φ1(k)))k∈N converges weakly to γ. Then, we obtain by (3.12),

∫

R×R
‖a− b‖p dγ(a, b) = lim

k→+∞

∫

R×R
‖a− b‖p dγφ2(φ1(k))(a, b)

= lim inf
k→+∞

Wp
p(u

?
]µk, u

?
]νk) .

If we show that γ ∈ Γ(u?]µ, u
?
]ν), it will conclude the proof of (3.11) by de�nition of

the Wasserstein distance (De�nition 2.6). But for any continuous and bounded function
f : R→ R, since for any k ∈ N, γk ∈ Γ(µk, νk), and (µk)k∈N, (νk)k∈N converge weakly to
µ and ν respectively, we have

∫

R×R
f(a)dγ(a, b) = lim

k→+∞

∫

R×R
f(a)dγφ2(φ1(k))(a, b)

= lim
k→+∞

∫

R
f(a)du?]µφ2(φ1(k))(a)

=

∫

R
f(a)du?]µ(a) ,

and similarly, ∫

R×R
f(b)dγ(a, b) =

∫

R
f(b)du?]ν(a) .

This shows that γ ∈ Γ(u?]µ, u
?
]ν) and therefore, (3.11) is true. We conclude by applying

Fatou's Lemma.

By a direct application of Lemma 3.12, we obtain the following corollary.

Corollary 3.13. Assume A1. Then, (µ, θ) 7→ SWp(µ, µθ) is lower semi-continuous in
Pp(Y)×Θ.

Next, we establish analogous properties for the expected SW distance.

Lemma 3.14 (Lower semi-continuity of ESWp). Let p ∈ [1,∞) and m ∈ N∗. Denote
for any µ ∈ Pp(Y), µ̂m = (1/m)

∑m
i=1 δZi, where Z1:m are i.i.d. samples from µ. Then,

the map (ν, µ) 7→ E [SWp(ν, µ̂m)] is lower semi-continuous on Pp(Y) × Pp(Y) endowed
with the topology of weak convergence.

Proof. We consider two sequences (µk)k∈N and (νk)k∈N of probability measures in Y,
such that (µk)k∈N

w−→ µ and (νk)k∈N
w−→ ν, and we �x m ∈ N∗.

By Skorokhod's representation theorem, there exists a probability space (Ω̃, F̃ , P̃),
a sequence of random variables (X̃1

k , . . . , X̃
m
k )k∈N and a random variable (X̃1, . . . , X̃m)

de�ned on Ω̃ such that for any k ∈ N and i ∈ {1, . . . ,m}, X̃i
k has distribution µk, X̃

i

has distribution µ and (X̃1
k , . . . , X̃

m
k )k∈N∗ converges to (X̃1, . . . , X̃m), P̃-almost surely.

We then show that the sequence of (random) empirical distributions (µ̂k,m)k∈N de�ned
by µ̂k,m = (1/m)

∑m
i=1 δX̃i

k
, weakly converges to µ̂m = (1/m)

∑m
i=1 δX̃i , P̃-almost surely.

Note that it is su�cient to show that for any deterministic sequence (x1
k, . . . , x

m
k )k∈N∗

which converges to (x1, . . . , xm), i.e. limk→+∞maxi∈{1,...,m} ρ(xik, x
i) = 0, then the se-

quence of empirical distributions (ν̂k,m)k∈N de�ned by ν̂k,m = (1/m)
∑m

i=1 δxik
, weakly

converges to ν̂m = (1/m)
∑m

i=1 δxi . Since the Lévy-Prokhorov metric dP metrizes



3.5. Appendix: Postponed Proofs and Experimental Details 57

the weak convergence by [Billingsley, 1999, Theorem 6.8], we only need to show that
limk→+∞ dP(ν̂k,m, ν̂m) = 0. More precisely, since for any probability measure ζ1 and ζ2,

dP(ζ1, ζ2)

= inf {ε > 0 : for any A ∈ B(Y), ζ1(A) ≤ ζ2(Aε) + ε and ζ2(A) ≤ ζ1(Aε) + ε} ,

where B(Y) is the Borel σ-�eld of (Y, ρ) and for any A ∈ B(Y), Aε = {x ∈ Y : ρ(x, y) <
ε for any y ∈ A}, we get

dP(ν̂k,m, ν̂m) ≤ 2 max
i∈{1,...,m}

ρ(xik, x
i) ,

and therefore limk→+∞ dP(ν̂k,m, ν̂m) = 0, so that, (ν̂k,m)k∈N weakly converges to ν̂m.
Finally, we have that µ̂k,m = (1/m)

∑m
i=1 δX̃i

k
, weakly converges to µ̂m = (1/m)

∑m
i=1 δX̃i

P̃-almost surely and we obtain the �nal result using the lower semi-continuity of the
Sliced-Wasserstein distance derived in Lemma 3.12 and Fatou's lemma,

Ẽ [SWp(ν, µ̂m)] ≤ Ẽ
[
lim inf
i→∞

SWp(νi, µ̂m,i)

]
≤ lim inf

i→∞
Ẽ [{SWp(νi, µ̂m,i)] ,

where Ẽ is the expectation corresponding to P̃.

The following corollary is a direct consequence of Lemma 3.14.

Corollary 3.15. Assume A1. Then, (ν, θ) 7→ E[SWp(ν, µ̂θ,m)|Y1:n] is lower semi-
continuous on P(Y)×Θ.

3.5.2 Proof of Theorem 3.1

Lemma 3.16. Let (µk)k∈N be a sequence of probability measures on Rd and µ a measure
in Rd such that

lim
k→∞

SW1(µk, µ) = 0 .

Then, there exists an increasing function φ : N→ N such that the subsequence (µφ(k))k∈N
converges weakly to µ.

Proof. By de�nition, we have that

lim
k→∞

∫

Sd−1

W1(u?]µk, u
?
]µ)dσ(u) = 0 .

Therefore, by [Bogachev, 2007, Theorem 2.2.5], there exists an increasing mapping φ :
N→ N such that for σ-almost every (σ-a.e.) u ∈ Sd−1,

lim
k→∞

W1(u?]µφ(k), u
?
]µ) = 0 .

By [Villani, 2008, Theorem 6.9], it implies that for σ-a.e. u ∈ Sd−1,

(u?]µφ(k))k∈N
w−→ u?]µ .

Lévy's characterization [Kallenberg, 1997, Theorem 4.3] gives that, for σ-a.e. u ∈
Sd−1 and any s ∈ R,

lim
k→∞

Φu?]µφ(k)
(s) = Φu?]µ

(s) ,
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where, for any distribution ν ∈ P(Rp), Φν denotes the characteristic function of ν and
is de�ned for any v ∈ Rp as

Φν(v) =

∫

Rp
ei〈v,w〉dν(w) .

Then, we can conclude that for Lebesgue-almost every z ∈ Rd,

lim
k→∞

Φµφ(k)
(z) = Φµ(z) . (3.13)

We can now show that (µφ(k))k∈N
w−→ µ, i.e. for any f : Rd → R continuous with

compact support,

lim
n→∞

∫

Rd
f(z)dµn(z) =

∫

Rd
f(z)dµ(z) . (3.14)

Let f : Rd → R be a continuous function with compact support and σ > 0. Consider
the function fσ de�ned for any x ∈ Rd as

fσ(x) = (2πσ2)−d/2
∫

Rd
f(x− z) exp

(
−‖z‖

2

2σ2

)
dLebd(z) = f ∗ gσ(x) ,

where ∗ denotes the convolution product and gσ is the density of the d-dimensional
Gaussian with zero mean and covariance matrix σ2Id. We �rst show that (3.14) holds
with fσ in place of f . Since for any z ∈ Rd,

E [exp(i 〈G, z〉)] = exp

(
i 〈m, z〉+

‖z‖2
2σ2

)

if G is a d-dimensional Gaussian random variable with zero mean and covariance matrix
(1/σ2) Id, then by Fubini's theorem, we get for any k ∈ N,

∫

Rd
fσ(z)dµφ(k)(z) =

∫

Rd

∫

Rd
f(w)gσ(z − w)dwdµφ(k)(z)

=

∫

Rd

∫

Rd
f(w)(2πσ2)−d/2

∫

Rd
ei〈z−w,x〉g1/σ(x)dxdwdµφ(k)(z)

=

∫

Rd

∫

Rd
(2πσ2)−d/2f(w)e−i〈w,x〉g1/σ(x)Φµφ(k)

(x)dxdw

= (2πσ2)−d/2
∫

Rd
F [f ](x)g1/σ(x)Φµφ(k)

(x)dx , (3.15)

where F [f ](x) =
∫
Rd f(w)ei〈w,x〉dw denotes the Fourier transform of f , which exists since

f is assumed to have a compact support. In an analogous manner, we prove that

∫

Rd
fσ(z)dµ(z) = (2πσ2)−d/2

∫

Rd
F [f ](x)g1/σ(x)Φµ(x)dx . (3.16)

Now, using that F [f ] is bounded by
∫
Rd |f(w)|dw < +∞ since f has compact support,

we obtain that, for any k ∈ N and x ∈ Rd,
∣∣∣F [f ](x)g1/σ(x)Φµφ(k)

(x)
∣∣∣ ≤ g1/σ(x)

∫

Rd
|f(w)|dw .
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By (3.13), (3.15), (3.16) and Lebesgue's Dominated Convergence Theorem, we obtain

lim
k→∞

∫

Rd
(2πσ2)−d/2F [f ](x)g1/σ(x)Φµφ(k)

(x)dx =

∫

Rd
(2πσ2)−d/2F [f ](x)g1/σ(x)Φµ(x)dx

lim
k→∞

∫

Rd
fσ(z)dµφ(k)(z) =

∫

Rd
fσ(z)dµ(z) . (3.17)

We can now complete the proof of (3.14). For any σ > 0, we have

∣∣∣∣
∫

Rd
f(z)dµφ(k)(z)−

∫

Rd
f(z)dµ(z)

∣∣∣∣

≤ 2 sup
z∈Rd

|f(z)− fσ(z)|+
∣∣∣∣
∫

Rd
fσ(z)dµφ(k)(z)−

∫

Rd
fσ(z)dµ(z)

∣∣∣∣ .

Therefore, by (3.17), for any σ > 0, we get

lim sup
k→+∞

∣∣∣∣
∫

Rd
f(z)dµφ(k)(z)−

∫

Rd
f(z)dµ(z)

∣∣∣∣ ≤ 2 sup
z∈Rd

|f(z)− fσ(z)| .

Finally, [Folland, 1999, Theorem 8.14-b] implies that

lim
σ→0

sup
z∈Rd

|fσ(z)− f(z)| = 0 ,

which concludes the proof.

Proof of Theorem 3.1. Now, assume that

lim
k→∞

SWp(µk, µ) = 0 (3.18)

and that (µk)k∈N does not converge weakly to µ. Therefore, limk→∞ dP(µk, µ) 6= 0,
where dP denotes the Lévy-Prokhorov metric, and there exists ε > 0 and a subsequence
(µψ(k))k∈N with ψ : N→ N increasing, such that for any k ∈ N,

dP(µψ(k), µ) > ε (3.19)

In addition, by Hölder's inequality, we know that W1(µk, µ) ≤ Wp(µk, µ), thus
SW1(µk, µ) ≤ SWp(µk, µ), and by (3.18), limk→∞ SW1(µψ(k), µ) = 0. Then, according
to Lemma 3.16, there exists a subsequence (µφ(ψ(k)))k∈N with φ : N→ N increasing, such
that

µφ(ψ(k))
w−→ µ

which is equivalent to limk→∞ dP(µφ(ψ(k)), µ) = 0, thus contradicts (3.19). We conclude

that (3.18) implies (µk)k∈N
w−→ µ.

3.5.3 Proof of Theorem 3.2

This result is proved analogously to [Bernton et al., 2019, Theorem 2.1]. The key step is
to show that the function θ 7→ SWp(µ̂n, µθ) epi-converges to θ 7→ SWp(µ?, µθ) P-almost
surely, and then apply [Rockafellar et al., 2009, Theorem 7.31], recalled in Theorem 3.11.
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Proof of Theorem 3.2. First, by A1 and Corollary 3.13, the map θ 7→ SWp(µ, µθ) is
l.s.c. on Θ for any µ ∈ Pp(Y). Therefore, by A3, there exists θ? ∈ Θ such that
SWp(µ?, µθ?) = ε?, and the set Θ?

ε is non-empty as it contains θ?, closed by lower
semi-continuity of θ 7→ SWp(µ?, µθ), and bounded. Θ?

ε is thus compact, and we con-
clude again by lower semi-continuity that the set argminθ∈ΘSWp(µ?, µθ) is non-empty
[Aliprantis et al., 1999, Theorem 2.43].

Consider the event given by A2, E ∈ F such that P(E) = 1 and for any ω ∈ E,
limn→∞ SWp(µ̂n(ω), µ?) = 0. Then, we prove that θ 7→ SWp(µ̂n, µθ) epi-converges to
θ 7→ SWp(µ?, µθ) P-almost surely using the characterization in [Rockafellar et al., 2009,
Proposition 7.29], i.e. we verify that, for any ω ∈ E, the two conditions below hold:
for every compact set K ⊂ Θ and every open set O ⊂ Θ,

lim inf
n→∞

inf
θ∈K

SWp(µ̂n(ω), µθ) ≥ inf
θ∈K

SWp(µ?, µθ)

lim sup
n→∞

inf
θ∈O

SWp(µ̂n(ω), µθ) ≤ inf
θ∈O

SWp(µ?, µθ) .
(3.20)

We �x ω in E. Let K ⊂ Θ be a compact set. By lower semi-continuity of θ 7→
SWp(µ̂n(ω), µθ), there exists θn = θn(ω) ∈ K such that for any n ∈ N,

inf
θ∈K

SWp(µ̂n(ω), µθ) = SWp(µ̂n(ω), µθn) . (3.21)

We consider the subsequence (µ̂φ(n))n∈N where φ : N → N is increasing such that
SWp(µ̂φ(n)(ω), µθφ(n)

) converges to lim infn→∞ SWp(µ̂n(ω), µθn), which is equal to

lim inf
n→∞

inf
θ∈K

SWp(µ̂n(ω), µθ)

by (3.21). Since K is compact, there also exists an increasing function ψ : N → N such
that, for θ̄ ∈ K, limn→∞ ρΘ(θψ(φ(n)), θ̄) = 0. Therefore,

lim inf
n→∞

inf
θ∈K

SWp(µ̂n(ω), µθ) = lim
n→∞

SWp(µ̂φ(n)(ω), µθφ(n)
)

= lim
n→∞

SWp(µ̂ψ(φ(n))(ω), µθψ(φ(n))
)

= lim inf
n→∞

SWp(µ̂ψ(φ(n))(ω), µθψ(φ(n))
)

≥ SWp(µ?, µθ̄) (3.22)

≥ inf
θ∈K

SWp(µ?, µθ) ,

where (3.22) is obtained by lower semi-continuity since µ̂ψ(φ(n))(ω)
w−→ µ? by A2 and

Theorem 3.1, and µθψ(φ(n))

w−→ µθ̄ by A1. We conclude that the �rst condition in (3.20)
holds.

Now, we �x O ⊂ Θ open. There exists a sequence (θn)n∈N in O such that the
sequence {SWp(µ?, µθn)}n∈N converges to infθ∈O SWp(µ?, µθ) as n → +∞, and for
n ∈ N, infθ∈O SWp(µ̂n(ω), µθ) ≤ SWp(µ̂n(ω), µθn), by de�nition of the in�mum. Then,

lim sup
n→∞

inf
θ∈O

SWp(µ̂n(ω), µθ)

≤ lim sup
n→∞

SWp(µ̂n(ω), µθn)

≤ lim sup
n→∞

(
SWp(µ̂n(ω), µ?) + SWp(µ?, µθn)

)
(by the triangle inequality)

≤ lim sup
n→∞

SWp(µ?, µθn) (by A2)

= inf
θ∈O

SWp(µ?, µθ) (by de�nition of (θn)n∈N) .
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This shows that the second condition in (3.20) holds, and hence, the sequence of func-
tions θ 7→ SWp(µ̂n(ω), µθ) epi-converges to θ 7→ SWp(µ?, µθ).

Next, we apply [Rockafellar et al., 2009, Theorem 7.31]. First, by [Rockafellar et al.,
2009, Theorem 7.31(b)], (3.6) immediately follows from the epi-convergence of θ 7→
SWp(µ̂n(ω), µθ) to θ 7→ SWp(µ?, µθ). We then show that [Rockafellar et al., 2009,
Theorem 7.31(a)] can be applied by proving that, for any η > 0, there exists a compact
set B ⊂ Θ and N ∈ N such that, for all n ≥ N ,

inf
θ∈B

SWp(µ̂n(ω), µθ) ≤ inf
θ∈Θ

SWp(µ̂n(ω), µθ) + η . (3.23)

In fact, we simply show that there exists a compact set B ⊂ Θ and N ∈ N such that, for
all n ≥ N ,

inf
θ∈B

SWp(µ̂n(ω), µθ) = inf
θ∈Θ

SWp(µ̂n(ω), µθ) .

On the one hand, the second condition in (3.20) gives us

lim sup
n→∞

inf
θ∈Θ

SWp(µ̂n(ω), µθ) ≤ inf
θ∈Θ

SWp(µ?, µθ) = ε? .

We deduce that there exists nε/4(ω) such that, for n ≥ nε/4(ω),

inf
θ∈Θ

SWp(µ̂n(ω), µθ) ≤ ε? + ε/4 ,

where ε is given by A3. As n ≥ nε/4(ω), the set Θ̂ε/2 = {θ ∈ Θ : SWp(µ̂n(ω), µθ) ≤
ε? + ε

2} is non-empty since it contains θ∗ de�ned as

SWp(µ̂n(ω), µθ∗) = inf
θ∈Θ

SWp(µ̂n(ω), µθ) .

On the other hand, by A2, there exists nε/2(ω) such that, for n ≥ nε/2(ω),

SWp(µ̂n(ω), µ?) ≤
ε

2
. (3.24)

Let n ≥ n∗(ω) = max{nε/4(ω), nε/2(ω)} and θ ∈ Θ̂ε/2. By the triangle inequality,

SWp(µ?, µθ) ≤ SWp(µ̂n(ω), µ?) + SWp(µ̂n(ω), µθ)

≤ ε? + ε (since θ ∈ Θ̂ε/2 and by (3.24))

This means that, when n ≥ n∗(ω), Θ̂ε/2 ⊂ Θ?
ε , and since infθ∈Θ SWp(µ̂n(ω), µθ) is

attained in Θ̂ε/2, we have

inf
θ∈Θ?ε

SWp(µ̂n(ω), µθ) = inf
θ∈Θ

SWp(µ̂n(ω), µθ) . (3.25)

As shown in the �rst part of the proof Θ?
ε is compact and then by [Rockafellar et al., 2009,

Theorem 7.31(a)], (3.5) is a direct consequence of (3.23)-(3.25) and the epi-convergence
of θ 7→ SWp(µ̂n(ω), µθ) to θ 7→ SWp(µ?, µθ).

Finally, by the same arguments used in this proof for argminθ∈ΘSWp(µ?, µθ), the
set argminθ∈ΘSWp(µ̂n(ω), µθ) is non-empty for n ≥ n∗(ω).
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3.5.4 Proof of Theorem 3.3

This result is proved analogously to [Bernton et al., 2019, Theorem 2.4]. The key
step is to show that the function θ 7→ E[SWp(µ̂n, µ̂θ,m(n))|Y1:n] epi-converges to θ 7→
E[SWp(µ?, µθ)|Y1:n], and then apply [Rockafellar et al., 2009, Theorem 7.31], which we
recall in Theorem 3.11.

Proof of Theorem 3.3. Since we assume A1 and A3, we can apply the same reasoning
as in the proof of Theorem 3.2 to show that argminθ∈ΘSWp(µ?, µθ) is a non-empty set.

Next, consider the event given by A2, E ∈ F such that P(E) = 1 and for any ω ∈ E,
limn→∞ SWp(µ̂n(ω), µ?) = 0. Then, we prove that θ 7→ E[SWp(µ̂n, µ̂θ,m(n))|Y1:n] epi-
converges to θ 7→ SWp(µ?, µθ) P-almost surely using the characterization of [Rockafellar
et al., 2009, Proposition 7.29], i.e. we verify that, for any ω ∈ E, the two conditions
below hold: for every compact set K ⊂ Θ and for every open set O ⊂ Θ,

lim inf
n→+∞

inf
θ∈K

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≥ inf

θ∈K
SWp(µ?, µθ)

lim sup
n→+∞

inf
θ∈O

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ inf

θ∈O
SWp(µ?, µθ)

(3.26)

We �x ω in E. Let K ⊂ Θ be a compact set. By A1 and Corollary 3.15, the mapping
θ 7→ E[SWp(µ̂n(ω), µ̂θ,m(n))|Y1:n] is l.s.c., so there exists θn = θn(ω) ∈ K such that for
any n ∈ N,

inf
θ∈K

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
= E

[
SWp(µ̂n(ω), µ̂θn,m(n))

∣∣Y1:n

]
.

We consider the subsequence (µ̂φ(n))n∈N where φ : N → N is increasing such that
E[SWp(µ̂φ(n)(ω), µ̂θφ(n),m(φ(n)))|Y1:n] converges to

lim inf
n→∞

E[SWp(µ̂n(ω), µ̂θn,m(n)
)|Y1:n] = lim inf

n→∞
inf
θ∈K

E[SWp(µ̂n(ω), µ̂θ,m(n))|Y1:n] .

Since K is compact, there also exists an increasing function ψ : N → N such that, for
any θ̄ ∈ K, limn→∞ ρΘ(θψ(φ(n)), θ̄) = 0. Therefore,

lim inf
n→∞

inf
θ∈K

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]

= lim
n→∞

E
[
SWp(µ̂φ(n)(ω), µ̂θφ(n),m(φ(n)))

∣∣∣Y1:n

]

= lim
n→∞

E
[
SWp(µ̂ψ(φ(n))(ω), µ̂θψ(φ(n)),m(ψ(φ(n))))

∣∣∣Y1:n

]

= lim inf
n→∞

E
[
SWp(µ̂ψ(φ(n))(ω), µ̂θψ(φ(n)),m(ψ(φ(n))))

∣∣∣Y1:n

]

≥ lim inf
n→∞

{
SWp(µ̂ψ(φ(n))(ω), µθψ(φ(n))

)− E
[
SWp(µθψ(φ(n))

, µ̂θψ(φ(n)),m(ψ(φ(n))))
∣∣∣Y1:n

]}

(3.27)

≥ lim inf
n→∞

SWp(µ̂ψ(φ(n))(ω), µθψ(φ(n))
)

− lim sup
n→∞

E
[
SWp(µθψ(φ(n))

, µ̂θψ(φ(n)),m(ψ(φ(n))))
∣∣∣Y1:n

]

≥ SWp(µ?, µθ̄) (3.28)

≥ inf
θ∈K

SWp(µ?, µθ)
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where (3.27) follows from the triangle inequality, and (3.28) is obtained on one hand by
lower semi-continuity since µ̂ψ(φ(n))(ω)

w−→ µ? by A2 and Theorem 3.1 and µθψ(φ(n))

w−→ µθ̄
by A1, and on the other hand by A4 which gives

lim sup
n→∞

E[SWp(µθψ(φ(n))
, µ̂θψ(φ(n)),m(ψ(φ(n))))|Y1:n] = 0 .

We conclude that the �rst condition in (3.26) holds.

Now, we �x O ⊂ Θ open. By de�nition of the in�mum, there exists a sequence (θn)n∈N
in O such that {SWp(µ?, µθn)}n∈N converges to infθ∈O SWp(µ?, µθ) as n → +∞, and
infθ∈O E

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ E

[
SWp(µ̂n(ω), µ̂θn,m(n))

∣∣Y1:n

]
for any n ∈ N.

Then,

lim sup
n→∞

inf
θ∈O

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]

≤ lim sup
n→∞

E
[
SWp(µ̂n(ω), µ̂θn,m(n))

∣∣Y1:n

]

≤ lim sup
n→∞

{
SWp(µ̂n(ω), µ?) + SWp(µ?, µθn) + E

[
SWp(µθn , µ̂θn,m(n))

∣∣Y1:n

]}
(3.29)

= lim sup
n→∞

SWp(µ?, µθn) (by A2 and A4)

= inf
θ∈O

SWp(µ?, µθ) (by de�nition of (θn)n∈N)

where (3.29) follows from the triangle inequality. This shows that the second condi-
tion in (3.26) holds, hence θ 7→ E

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
epi-converges to θ 7→

SWp(µ?, µθ).

We now apply [Rockafellar et al., 2009, Theorem 7.31]. First, by [Rockafellar et al.,
2009, Theorem 7.31(b)], (3.8) immediately follows from the epi-convergence of θ 7→
E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
to θ 7→ SWp(µ?, µθ). Next, we show that [Rockafellar

et al., 2009, Theorem 7.31(a)] holds by �nding, for any η > 0, a compact set B ⊂ Θ and
N ∈ N such that, for all n ≥ N ,

inf
θ∈B

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ inf

θ∈Θ
E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
+ η .

In fact, we simply show that there exists a compact set B ⊂ Θ and N ∈ N such that, for
all n ≥ N ,

inf
θ∈B

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
= inf

θ∈Θ
E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
.

On the one hand, the second condition in (3.26) gives us

lim sup
n→∞

inf
θ∈Θ

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ inf

θ∈Θ
SWp(µ?, µθ) = ε? .

We deduce that there exists nε/6(ω) such that, for n ≥ nε/6(ω),

inf
θ∈Θ

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
≤ ε? +

ε

6
,

with ε from A3. When n ≥ nε/6(ω), Θ̂ε/3 = {θ ∈ Θ : E[SWp(µ̂n(ω), µ̂θ,m(n))|Y1:n] ≤
ε? + ε

3} is a non-empty set as it contains θ∗ de�ned as E
[
SWp(µ̂n(ω), µ̂θ∗,m(n))

∣∣Y1:n

]
=

infθ∈Θ E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
.
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On the other hand, by A2, there exists nε/3(ω) such that, for n ≥ nε/3(ω),

SWp(µ̂n(ω), µ?) ≤
ε

3
. (3.30)

Finally, by A4, there exists n′ε/3(ω) such that, for n ≥ n′ε/3(ω),

E
[
SWp(µθ, µ̂θ,m(n))

∣∣Y1:n

]
≤ ε

3
. (3.31)

Let n ≥ n∗(ω) = max{nε/6(ω), nε/3(ω), n′ε/3(ω)} and θ ∈ Θ̂ε/3. By the triangle inequal-
ity,

SWp(µ?, µθ)

≤ SWp(µ̂n(ω), µ?) + E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
+ E

[
SWp(µθ, µ̂θ,m(n))

∣∣Y1:n

]

≤ ε? + ε (since θ ∈ Θ̂ε/3 and by (3.30) and (3.31))

This means that, when n ≥ n∗(ω), Θ̂ε/3 ⊂ Θ?
ε with Θ?

ε as de�ned in A3, and since

infθ∈Θ E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
is attained in Θ̂ε/3, we obtain

inf
θ∈Θ?ε

E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
= inf

θ∈Θ
E
[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
. (3.32)

By [Rockafellar et al., 2009, Theorem 7.31(a)], (3.7) is a direct consequence of (3.32) and
the epi-convergence of θ 7→ E

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
to θ 7→ SWp(µ?, µθ).

Finally, by the same arguments used in this proof for argminθ∈ΘSWp(µ?, µθ), the
set argminθ∈ΘE

[
SWp(µ̂n(ω), µ̂θ,m(n))

∣∣Y1:n

]
is non-empty for n ≥ n∗(ω).

3.5.5 Proof of Theorem 3.4

Here again, the result follows from applying [Rockafellar et al., 2009, Theorem 7.31]
paraphrased in Theorem 3.11.

Proof of Theorem 3.4. First, by A1 and Corollary 3.13, the map θ 7→ SWp(µ̂n, µθ) is
l.s.c. on Θ. Therefore, there exists θn ∈ Θ such that SWp(µ̂n, µθn) = εn. The set Θε,n

with the ε from A5 is non-empty as it contains θn, closed by lower semi-continuity of
θ 7→ SWp(µ̂n, µθ), and bounded. Θε,n is thus compact, and we conclude again by lower
semi-continuity that the set argminθ∈ΘSWp(µ̂n, µθ) is non-empty [Aliprantis et al., 1999,
Theorem 2.43].

Then, we prove that θ 7→ E [SWp(µ̂n, µ̂θ,m)|Y1:n] epi-converges to θ 7→ SWp(µ̂n, µθ)
as m → ∞ using the characterization in [Rockafellar et al., 2009, Proposition 7.29],
i.e. we verify that for every compact set K ⊂ Θ and every open set O ⊂ Θ,

lim inf
m→∞

inf
θ∈K

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≥ inf
θ∈K

SWp(µ̂n, µθ)

lim sup
m→∞

inf
θ∈O

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ inf
θ∈O

SWp(µ̂n, µθ) .
(3.33)

Let K ⊂ Θ be a compact set. By A1 and Corollary 3.15, for any m ∈ N, the map
θ 7→ E[SWp(µ̂n, µ̂θ,m)|Y1:n] is l.s.c., so there exists θm ∈ K such that

inf
θ∈K

E[SWp(µ̂n, µ̂θ,m)|Y1:n] = E[SWp(µ̂n, µ̂θm,m)|Y1:n] .
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We consider the subsequence {µ̂θφ(m),φ(m)}m∈N where φ : N→ N is increasing such that

E[SWp(µ̂n, µ̂θφ(m),φ(m))|Y1:n] converges to

lim inf
m→∞

E[SWp(µ̂n, µ̂θm,m)|Y1:n] = lim inf
m→∞

inf
θ∈K

E[SWp(µ̂n, µ̂θ,m)|Y1:n] .

Since K is compact, there also exists an increasing function ψ : N → N such that for
θ̄ ∈ K, limm→∞ ρΘ(θψ(φ(m)), θ̄) = 0. Therefore,

lim inf
m→∞

inf
θ∈K

E [SWp(µ̂n, µ̂θ,m)|Y1:n]

= lim
m→∞

E
[
SWp(µ̂n, µ̂θφ(m),φ(m))

∣∣∣Y1:n

]

= lim
m→∞

E
[
SWp(µ̂n, µ̂θψ(φ(m)),ψ(φ(m)))

∣∣∣Y1:n

]

= lim inf
m→∞

E
[
SWp(µ̂n, µ̂θψ(φ(m)),ψ(φ(m)))

∣∣∣Y1:n

]

≥ lim inf
m→∞

[SWp(µ̂n, µθψ(φ(m))
)− E

[
SWp(µθψ(φ(m))

, µ̂θψ(φ(m)),ψ(φ(m)))
∣∣∣Y1:n

]
] (3.34)

≥ lim inf
m→∞

SWp(µ̂n, µθψ(φ(m))
)− lim sup

m→∞
E
[
SWp(µθψ(φ(m))

, µ̂θψ(φ(m)),ψ(φ(m)))
∣∣∣Y1:n

]

≥ SWp(µ̂n, µθ̄) (3.35)

≥ inf
θ∈K

SWp(µ̂n, µθ)

where (3.34) results from the triangle inequality and (3.35) is obtained by A4 on one
hand and by lower semi-continuity on the other hand since µθψ(φ(n))

w−→ µθ̄ by A1. We
conclude that the �rst condition in (3.33) holds.

Now, we �x O ⊂ Θ open. There exists a sequence (θm)m∈N in O such that the
sequence {SWp(µ̂n, µ̂θm,m)}m∈N converges to infθ∈O SWp(µ̂n, µ̂θ,m), and for any m ∈ N,
infθ∈O E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ E [SWp(µ̂n, µθm,m)|Y1:n], by de�nition of the in�mum.
Then,

lim sup
m→∞

inf
θ∈O

E [SWp(µ̂n, µ̂θ,m)|Y1:n]

≤ lim sup
m→∞

E [SWp(µ̂n, µ̂θm,m)|Y1:n]

≤ lim sup
m→∞

[SWp(µ̂n, µθm) + E [SWp(µθm , µ̂θm,m)|Y1:n]] (3.36)

≤ lim sup
m→∞

SWp(µ̂n, µθm) (by A4)

= inf
θ∈O

SWp(µ̂n, µθ) (by de�nition of (θm)m∈N)

where (3.36) results from applying the triangle inequality. This shows that the second
condition in (3.33) holds, hence the sequence of functions θ 7→ E [SWp(µ̂n, µ̂θ,m)|Y1:n]
epi-converges to θ 7→ SWp(µ̂n, µθ).

Now, we apply [Rockafellar et al., 2009, Theorem 7.31]. By [Rockafellar et al.,
2009, Theorem 7.31(b)], (3.10) immediately follows from the epi-convergence of θ 7→
E [SWp(µ̂n, µ̂θ,m)|Y1:n] to θ 7→ SWp(µ̂n, µθ). Next, we show that [Rockafellar et al.,
2009, Theorem 7.31(a)] holds by �nding for any η > 0 a compact set B ⊂ Θ and N ∈ N
such that, for all n ≥ N ,

inf
θ∈B

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] + η .
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In fact, we simply show that there exists a compact set B ⊂ Θ and N ∈ N such that
infθ∈B E [SWp(µ̂n, µ̂θ,m)|Y1:n] = infθ∈Θ E [SWp(µ̂n, µ̂θ,m)|Y1:n] for all n ≥ N . On one
hand, the second condition in (3.33) gives us

lim sup
m→∞

inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ inf
θ∈Θ

SWp(µ̂n, µθ) = εn .

We deduce that there exists mε/4 such that, for m ≥ mε/4,

inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ εn +
ε

4
, (3.37)

with ε from A5. When m ≥ mε/4, Θε/2 = {θ ∈ Θ : E[SWp(µ̂n, µ̂θ,m)|Y1:n] ≤ εn + ε
2} is

a non-empty set, as it contains θ∗ de�ned as

E[SWp(µ̂n, µ̂θ∗,m)|Y1:n] = inf
θ∈Θ

E[SWp(µ̂n, µ̂θ,m)|Y1:n] .

On the other hand, by A4, there exists mε/2 such that, for m ≥ mε/2,

E [SWp(µθ, µ̂θ,m)|Y1:n] ≤ ε

2
. (3.38)

Let θ ∈ Θε/2 and m ≥ m∗ = max{mε/4,mε/2}. By the triangle inequality,

SWp(µ̂n, µθ) ≤ E [SWp(µ̂n, µ̂θ,m)|Y1:n] + E [SWp(µθ, µ̂θ,m)|Y1:n]

≤ εn + ε (since θ ∈ Θε/2 and by (3.38))

Therefore, when m ≥ m∗, Θε/2 ⊂ Θε,n, and since infθ∈Θ E [SWp(µ̂n, µ̂θ,m)|Y1:n] is at-
tained in Θε/2,

inf
θ∈Θε,n

E [SWp(µ̂n, µ̂θ,m)|Y1:n] = inf
θ∈Θ

E [SWp(µ̂n, µ̂θ,m)|Y1:n] . (3.39)

By [Rockafellar et al., 2009, Theorem 7.31(a)], (3.9) is a direct consequence of (3.39) and
the epiconvergence of θ 7→ E [SWp(µ̂n(ω), µ̂θ,m)|Y1:n] to θ 7→ SWp(µ̂n, µθ).

Finally, by the same arguments used in this proof for argminθ∈ΘSWp(µ̂n, µθ), the
set argminθ∈ΘE [SWp(µ̂n, µ̂θ,m)|Y1:n] is non-empty for m ≥ m∗.

3.5.6 Proof of Theorem 3.5

Let us �rst formally establish measurability for MESWE.

Theorem 3.17 (Measurability of the MESWE). Assume A1. For any n ≥ 1, m ≥ 1
and ε > 0, there exists a Borel measurable function θ̂n,m,ε : Ω→ Θ that satis�es for any
ω ∈ Ω,

θ̂n,m,ε(ω) ∈





argminθ∈Θ E [SWp(µ̂n(ω), µ̂θ,m)|Y1:n] , if this set is non-empty,
{
θ ∈ Θ : E [SWp(µ̂n(ω), µ̂θ,m)|Y1:n] ≤ ε∗ + ε}

}
, otherwise,

where ε∗ = infθ∈Θ E[SWp(µ̂n(ω), µ̂θ,m)|Y1:n].

We prove the measurability of MSWE and MESWE by verifying the conditions of
[Brown and Purves, 1973, Corollary 1], which are recalled below.
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Theorem 3.18 (Corollary 1 in Brown and Purves [1973]). Let U,V be Polish spaces and
f be a real-valued Borel measurable function de�ned on a Borel subset D of U × V. We
denote by proj(D) the set de�ned as

proj(D) = {u : there exists v ∈ V, (u, v) ∈ D} .
Suppose that for each u ∈ proj(D), the section Du = {v ∈ V, (u, v) ∈ D} is σ-compact
and f(u, ·) is lower semi-continuous with respect to the relative topology on Du. Then,

1. The sets proj(D) and I = {u ∈ proj(D), for some v ∈ Du, f(u, v) = inf fu} are
Borel

2. For each ε > 0, there is a Borel measurable function φε satisfying, for u ∈ proj(D),

f(u, φε(u)) = inf
Du
fu, if u ∈ I,

≤ ε+ inf
Du
fu, if u /∈ I, and inf

Du
fu 6= −∞

≤ −ε−1, if u /∈ I, and inf
Du
fu = −∞ .

Proof of Theorems 3.5 and 3.17. We start by proving Theorem 3.5. The empirical mea-
sure µ̂n(ω) depends on ω ∈ Ω only through y = (y1, . . . , yn) ∈ Yn, so we can consider
it as a function on Yn rather than on Ω. We introduce D = Yn × Θ. Since Y is Polish,
Yn (n ∈ N∗) endowed with the product topology is Polish. For any y ∈ Yn, the set
Dy = {θ ∈ Θ, (y, θ) ∈ D} = Θ is assumed to be σ-compact.

The map y 7→ µ̂n(y) is continuous for the weak topology (see the proof of Lemma 3.14),
as well as the map θ 7→ µθ according to A1. We deduce by Corollary 3.13 that
the map (µ, θ) 7→ SWp(µ, µθ) is l.s.c. for the weak topology. Since the composi-
tion of a lower semi-continuous function with a continuous function is l.s.c., the map
(y, θ) 7→ SWp(µ̂n(y), µθ) is l.s.c. for the weak topology, thus measurable and for any
y ∈ Yn, θ 7→ SWp(µ̂n(y), µθ) is l.s.c. on Θ. A direct application of Theorem 3.18 �nal-
izes the proof.

Theorem 3.17 can be proved via the same methodology: we verify that we can apply
Theorem 3.18 using Corollary 3.15 instead of Corollary 3.13.

3.5.7 Proof of Theorems 3.6 and 3.7

The proof of Theorem 3.6 and Theorem 3.7 consists in showing that the conditions of
[Pollard, 1980, Theorems 4.2] and [Pollard, 1980, Theorem 7.2] respectively are satis�ed:
conditions (i), (ii) and (iii) follow from A6, A7 and A8.

3.5.8 Additional details on Section 3.3

Sampling schemes. We �rst explain the methods that we used to generate i.i.d. sam-
ples from the uniform distribution on Sd−1 (required for the Monte Carlo estimate of SW
(2.21)) and multivariate elliptically contoured stable distributions (for Section 3.3.2).

• Uniform sampling on the sphere. To sample from Sd−1, we form the d-
dimensional vector s by drawing each of its d components from the standard normal
distribution N (0, 1) and we normalize it, i.e.

s′ =
s

‖s‖2
,
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so that s′ lies on the sphere.

• Sampling from multivariate elliptically contoured stable distributions.

We recall that if Y ∈ Rd is α-stable and elliptically contoured, i.e. Y ∼ EαSc(Σ,m),
then its joint characteristic function is de�ned as, for any t ∈ Rd,

E[exp(itTY )] = exp
(
−(tTΣt)α/2 + itTm

)
, (3.40)

where Σ is a positive de�nite matrix (akin to a correlation matrix), m ∈ Rd
is a location vector (equal to the mean if it exists) and α ∈ (0, 2) controls the
thickness of the tail. Elliptically contoured stable distributions are scale mixtures of
multivariate Gaussian distributions [Samorodnitsky and Taqqu, 1994, Proposition
2.5.2], whose densities are intractable, but can easily be simulated [Nolan, 2013]:
let A ∼ Sα/2(β, γ, δ) be a one-dimensional positive (α/2)-stable random variable

with β = 1, γ = 2 cos(πα4 )2/α and δ = 0, and G ∼ N (0,Σ). Then,

Y =
√
AG+ m

has (3.40) as characteristic function.

Optimization methods. By de�nition, computing the M(E)SWE and implies mini-
mizing the (expected) Sliced-Wasserstein distance over the set of parameters, which is
in general computationnally intractable. We then resort to numerical methods in our
experiments to approximate these two estimators, as we detail below.

• Multivariate Gaussian distributions. We derive the explicit gradient expres-
sions of the approximate SW2

2 distance with respect to the mean and scale param-
eters m and σ2, and we use the ADAM stochastic optimization method with the
default parameter settings suggested in [Kingma and Ba, 2015]. For the MSWE,
we use (2.14) to approximate the one-dimensional Wasserstein distance, and we
evaluate directly the Gaussian density of the generated samples, utilizing the fact
that the projection of a Gaussian of parameters (m, σ2I) along u ∈ Sd−1 is a 1D
normal distribution of parameters (〈u,m〉, σ2〈u, u〉). In this case, the gradient
of the approximate SW2

2 between µ = N (m, σ2I) and the empirical distribution
associated to n samples drawn by N (m?, σ

2
?I), denoted by ν̂, is given by,

∇mSW2
2(µ, ν̂) =(1/ card(U) card(S))

∑

u∈U,s∈S

( ∣∣∣s− F̃−1
u?] ν̂

(F̃u?]µ(s))
∣∣∣
2

N (s; 〈u,m〉, σ2‖u‖2)
s− 〈u,m〉
σ2‖u‖2 u

)
,

∇σ2SW2
2(µ, ν̂) =(1/ card(U) card(S))

∑

u∈U,s∈S

( ∣∣∣s− F̃−1
u?] ν̂

(F̃u?]µ(s))
∣∣∣
2

N (s; 〈u,m〉, σ2‖u‖2)
1

2σ2

(
(s− 〈u,m〉)2

σ2‖u‖2 − 1

))
,

where U ⊂ Sd−1 is a �nite set of random projections picked uniformly on Sd−1, S
is a �nite subset in R, and for any s ∈ S, N (s; 〈u,m〉, σ2 ‖u‖2) denotes the density
function of the Gaussian of parameters (〈u,m〉, σ2 ‖u‖2) evaluated at s.
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For the MESWE, we use (2.13) and evaluate the empirical distribution of generated
samples instead of their normal density. Therefore, the gradient of the approximate
SW2

2 between the empirical distributions corresponding to one generated dataset
of m samples drawn from N (µ, σ2I) and n samples drawn from N (µ?, σ

2
?I), respec-

tively denoted by µ̂ and ν̂, is obtained with,

∇mSW2
2(µ̂, ν̂) =

−2

card(U).K

∑

u∈U

K∑

k=1

∣∣∣F̃−1
u?] µ̂

(tk)− F̃−1
u?] ν̂

(tk)
∣∣∣u ,

∇σ2SW2
2(µ̂, ν̂) =

1

card(U).K

∑

u∈U

K∑

k=1

∣∣∣F̃−1
u?] µ̂

(tk)− F̃−1
u?] ν̂

(tk)
∣∣∣
〈u,m〉 − F̃−1

u?] µ̂
(tk)

σ2
.

• Multivariate elliptically contoured stable distributions. When comparing
MESWE to MEWE, we approximate these estimators using the derivative-free op-
timization method Nelder-Mead (Nelder and Mead [1965], implemented in Scipy),
following the approach in [Bernton et al., 2019].

When illustrating the theoretical properties of MESWE, we proceed in the same
way as for the multivariate Gaussian experiment: we compute the explicit gradient
expression of the approximate SW2

2 distance with respect to the location parameter
m, and we use the ADAM stochastic optimization method with the default settings.
Equation (3.41) gives the formula of the gradient of the approximate SW2

2 between
the empirical distributions of one generated dataset of m samples drawn from
EαSc(I,m) and n samples drawn from EαSc(I,m?), respectively denoted by µ̂ and
ν̂, with respect to m.

∇mSW2
2(µ̂, ν̂) =

−2

card(U).K

∑

u∈U

K∑

k=1

∣∣∣F̃−1
u?] µ̂

(tk)− F̃−1
u?] ν̂

(tk)
∣∣∣u . (3.41)

• High-dimensional real data using GANs. We use the ADAM optimizer pro-
vided by TensorFlow GPU.

Computing infrastructure. The experiment comparing the computational time of
MESWE and MEWE was conducted on a daily-use laptop (CPU intel core i7, 1.90GHz
× 8 and 16GB of RAM). The neural network experiment was run on a cluster with 4
relatively modern GPUs.
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Chapter 4

Approximate Bayesian Computation

with the Sliced-Wasserstein

Distance

This chapter is based on [Nadjahi et al., 2020a].

Approximate Bayesian Computation (ABC) is a popular method for approximate in-
ference in generative models with intractable but easy-to-sample likelihood. It constructs
an approximate posterior distribution by �nding parameters for which the simulated data
are close to the observations in terms of summary statistics. These statistics are de�ned
beforehand and might induce a loss of information, which has been shown to deteriorate
the quality of the approximation. To overcome this problem, a Wasserstein-based ABC
technique has recently been proposed, and compares the datasets via the Wasserstein
distance between their empirical distributions, but does not scale well to the dimension
or the number of samples.

In this chapter, we propose a new ABC technique, called Sliced-Wasserstein ABC and
relying on the Sliced-Wasserstein distance, which has better computational and statistical
properties. We derive two theoretical results showing the asymptotical consistency of
our approach, and we illustrate its advantages on synthetic data and an image denoising
task.

4.1 Introduction

Consider the problem of estimating the posterior distribution of some model parameters
θ ∈ Rdθ given n data points y1:n ∈ Yn. This distribution has a closed-form expression
given by the Bayes' theorem up to a multiplicative constant,

π(θ|y1:n) ∝ π(y1:n|θ)π(θ) .

For many statistical models of interest, the likelihood π(y1:n|θ) cannot be numerically
evaluated in a reasonable amount of time, which prevents the application of classical
likelihood-based approximate inference methods. Nevertheless, in various settings, even
if the associated likelihood is numerically intractable, one can still generate synthetic
data given any model parameter value. This generative setting gave rise to an alter-
native framework of likelihood-free inference techniques. Among them, Approximate
Bayesian Computation methods [Tavaré et al., 1997, Beaumont et al., 2002] have be-
come a popular choice and have proven useful in various practical applications, e.g.

71
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[Peters and Sisson, 2006, Tanaka et al., 2006, Wood, 2010]. The core idea of ABC is to
bypass calculation of the likelihood by using simulations: the exact posterior is approx-
imated by retaining the parameter values for which the synthetic data are close enough
to the observations. Closeness is usually measured with a discrepancy measure between
the two datasets reduced to some `summary statistics' (e.g., empirical mean or empirical
covariance). While summaries allow a practical and e�cient implementation of ABC,
especially in high-dimensional data spaces, the quality of the approximate posterior dis-
tribution highly depends on them and constructing su�cient statistics is a non-trivial
task. Summary statistics can be designed by hand using expert knowledge, which can
be tedious especially in real-world applications, or in an automated way, for instance see
[Fearnhead and Prangle, 2012].

Recently, discrepancy measures that view data sets as empirical probability distri-
butions to eschew the construction of summary statistics have been proposed for ABC.
Examples include the Kullback-Leibler divergence [Jiang et al., 2018], maximum mean
discrepancy [Park et al., 2016], and Wasserstein distance [Bernton et al., 2019]. As we
discussed in Chapters 1 and 2, this latter distance emerging from optimal transport
theory has attracted abundant attention in statistics and machine learning, due to its
strong theoretical properties and applications on many domains. In particular, we re-
call that it has the ability of making meaningful comparisons even between probability
measures with non-overlapping supports, unlike KL. However, the computational com-
plexity of the Wasserstein distance rapidly becomes a challenge when the dimension of
the observations is large, and several numerical methods have been proposed during the
past few years to speed-up this computation. In particular, Wasserstein-ABC (WABC,
Bernton et al. [2019]) introduces a di�erent computational approach to those presented
in Chapter 2: the Wasserstein distance is estimated with a novel approximation based on
the Hilbert space-�lling curve and termed the Hilbert distance, which is computationally
e�cient but accurate for small dimensions only. Besides, under a general setting, the
Wasserstein distance su�ers from a curse of dimensionality in the sense that the error
made when approximating it from samples grows exponentially fast with the data space
dimension (Section 2.4.2). These computational and statistical issues can strongly a�ect
the performance of WABC applied to high-dimensional data.

Building on the computational e�ciency of SW and its successful performance in
generative settings, as demonstrated by prior studies (reviewed in Section 1.3) and our
previous chapter, we develop a novel ABC framework that uses SW as the data discrep-
ancy measure. This de�nes a likelihood-free method which does not require choosing
summary statistics and is e�cient even with high-dimensional observations, thus over-
coming the limitations of WABC. We derive asymptotical guarantees on the convergence
of the resulting ABC posterior, and we illustrate the superior empirical performance of
our methodology by applying it on a synthetical problem and an image denoising task.

4.2 Background on Approximate Bayesian Computation

In this chapter, we consider the same purely generative modeling framework as in Chap-
ter 3, so we keep the formalism and notations presented in Section 3.1. Additionally, we
assume that conditions (C1), (C2) and (C4) hold. However, instead of using minimum
distance estimation to perform parameter inference in such models, we focus on another
class of approximate inference methods, called Approximation Bayesian Computation
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Algorithm 2: Vanilla ABC.

Input: observations y1:n, number of iterations T , data discrepancy measure D,
summary statistics s, tolerance threshold ε > 0.

for t = 1, . . . , T do

repeat
θ ∼ π(·) and z1:m ∼ µθ i.i.d.

until D
(
s(y1:n), s(z1:m)

)
≤ ε;

θ(t) = θ
return θ(1), . . . , θ(T )

algorithms.
ABC methods are used to approximate the posterior distribution in generative models

when the likelihood is numerically intractable but easy to sample from. The basic and
simplest ABC algorithm is an acceptance-rejection method [Tavaré et al., 1997], which
iteratively draws a candidate parameter θ′ from a prior distribution π, and `synthetic
data' z1:m = (zi)

m
i=1 from µθ′ , and keeps θ′ if z1:m is close enough to the observations

y1:n = (yi)
n
i=1. Speci�cally, the acceptance rule is

D
(
s(y1:n), s(z1:m)

)
≤ ε , (4.1)

where D is a data discrepancy measure taking non-negative values, ε is a tolerance
threshold, and s : tn∈N∗Yn → Rds with small ds is a summary statistics. The algorithm
is summarized in Algorithm 2 and returns samples of θ that are distributed from:

πεy1:n
(θ) =

π(θ)
∫
Ym 1{D

(
s(y1:n), s(z1:m)

)
≤ ε}dµθ(z1:m)∫

Θ dπ(θ)
∫
Ym 1{D

(
s(y1:n), s(z1:m)

)
≤ ε}dµθ(z1:m)

(4.2)

The choice of s(·) directly impacts the quality of the resulting approximate posterior:
if the statistics are su�cient statistics, πεy1:n

(θ) converges to the true posterior π(θ|y1:n)
as ε→ 0, otherwise, the limiting distribution is at best π(θ|s(y1:n)) [Sisson et al., 2018,
Frazier et al., 2018]. Wasserstein-ABC has then been proposed to avoid this loss of in-
formation.

Wasserstein distance and ABC. Wasserstein-ABC [Bernton et al., 2019] is a vari-
ant of ABC (2) that uses Wp, p ∈ [1,+∞) between the empirical distributions of the
observed and synthetic data, in place of the discrepancy measure D between summaries.
To make this method scalable to any dataset size, Bernton et al. [2019] introduces a new
approximation of the Wasserstein distance, called the Hilbert distance, which extends
the idea behind the computation of Wp in 1D to higher dimensions, by sorting samples
according to their projection obtained via the Hilbert space-�lling curve. This alterna-
tive can be computed in O(n log(n)), but yields accurate approximations only for low
dimensions, as emphasized in [Bernton et al., 2019]. The same work also uses a second
approximation, the swapping distance, based on an iterative greedy swapping algorithm.
However, each iteration requires n2 operations, and there is no guarantee of convergence
to Wp.

4.3 Sliced-Wasserstein ABC

Given the computational and statistical issues caused by the Wasserstein distance, we
state that the ABC framework can bene�t from using an alternative computational
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Figure 4.1: Comparison of OT distances and KL between data generated from d-
dimensional Gaussian distributions µσ vs. µσ? , σ

2
? = 4, with 1000 i.i.d draws. SW

is approximated with 100 random projections.

OT metric, especially on high-dimensional settings. We consider the Sliced-Wasserstein
distance based on the computational e�ciency of its Monte Carlo estimate, as well as
its statistical advantages over the Wasserstein distance and the Hilbert and swapping
approximations.

We illustrate the latter statistical aspect on the task of estimating the scaling factor of
the covariance matrix in a multivariate Normal model, as in the supplementary material
of [Bernton et al., 2019]. For any σ > 0, denote by µσ the d-dimensional Gaussian
distribution with zero-mean and covariance matrix σ2Id. Observations are assumed i.i.d.
from µσ? with σ2

? = 4, and we draw the same number of i.i.d. data from µσ for 100
values of σ2 equispaced between 0.1 and 9. We then compute W2 and SW2 between
the empirical distributions of the samples, and the swapping and Hilbert approximations
presented in Bernton et al. [2019], for d ∈ {2, 10, 100} and 1000 observations. We know
that W2 between two Gaussian measures has an analytical formula, which boils down
in our setting to

W2
2(µσ? , µσ) = d(σ? − σ)2 , (4.3)

and we approximate the exact SW using a Monte Carlo approximation of

SW2
2(µσ? , µσ) = W2

2(µσ? , µσ)

∫

Sd−1

uTu dσ(u) , (4.4)

This formula (4.4) follows from De�nition 2.9 and (4.3). We approximate KL with the
estimator proposed for KL-based ABC (KL-ABC, Jiang et al. [2018]).

Figure 4.1 shows the distances plotted against σ2 for each d. When the dimension
increases, we observe that (i) as pointed out in Bernton et al. [2019], the quality of the
approximation of empirical Wasserstein returned by Hilbert and swapping rapidly dete-
riorates, and (ii) SW, approximated using densities or samples, is the only approximate
metric that attains its minimum at σ2

?. This curse of dimensionality can be a limiting
factor for the performance of WABC and KL-ABC in high dimensions.

Motivated by the practical success of SW regardless of the dimension value in the
previous experiment, we propose a variant of ABC based on SW, referred to as Sliced-
Wasserstein ABC (SW-ABC). Our method is similar to WABC in the sense that it
compares empirical distributions, but instead of Wp, we choose the discrepancy measure
to be SWp, p ∈ [1,+∞). The usage of SW allows the method to scale better to the data
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size and dimension. The resulting posterior distribution, called the SW-ABC posterior,
is thus de�ned in (4.2) with D replaced by SWp.

4.4 Theoretical Study

In this section, we analyze the asymptotic behavior of the SW-ABC posterior under two
di�erent regimes. Our �rst result concerns the situation where the observations y1:n

are �xed, and ε goes to zero. We prove that the SW-ABC posterior is asymptotically
consistent in the sense that it converges to the true posterior, under speci�c assumptions
on the density used to generate synthetic data.

Proposition 4.1. Let p ∈ [1,+∞). Suppose that µθ has a density fθ w.r.t. the Lebesgue
measure such that fθ is continuous and there exists NΘ ⊂ Θ satisfying π(NΘ) = 0 and

sup
θ∈Θ\NΘ

fθ(y1:n) <∞ .

In addition, assume that there exists ε̄ > 0 such that,

sup
θ∈Θ\NΘ

sup
z1:m∈Aε̄

fθ(z1:m) <∞ ,

where Aε̄ = {z1:m : SWp(y1:n, z1:m) ≤ ε̄}. Then, with y1:n �xed, the SW-ABC posterior
converges to the true posterior as ε goes to 0, in the sense that, for any measurable
B ⊂ Θ,

lim
ε→0

πεy1:n
(B) = π(B|y1:n) ,

where πεy1:n
is de�ned by (4.2).

The proof of Proposition 4.1 is provided in Section 4.7 and consists in applying [Bern-
ton et al., 2019, Proposition 3.1].

Next, we study the limiting SW-ABC posterior when the value of ε is �xed and
the number of observations increases, i.e. n → ∞. We suppose that the size m of the
synthetic dataset grows to αn with α > 0, such that m can be written as a function of
n, m(n), satisfying limn→∞m(n) = ∞. We show that, under this setting and appro-
priate additional conditions, the resulting approximate posterior converges to the prior
distribution on θ restricted to the region {θ ∈ Θ : SWp(µθ? , µθ) ≤ ε}.

Proposition 4.2. Let p ∈ [1,+∞), ε > 0 and (m(n))n∈N∗ be an increasing sequence
satisfying limn→∞m(n)/n = α, for α > 0. Assume that the statistical model MΘ is well
speci�ed, i.e. there exists θ? ∈ Θ such that µ? = µθ?, and that almost surely the following
holds.

lim
n→∞

SWp(µ̂n, µ̂θ,m(n)) = SWp(µθ? , µθ) , (4.5)

where µ̂n, µ̂θ,m(n) denote the empirical distributions of the observations y1:n and synthetic
data z1:m(n) respectively. Then, the SW-ABC posterior converges to the restriction of the
prior π on the region {θ ∈ Θ : SWp(µθ? , µθ) ≤ ε} as n→∞, i.e. for any θ ∈ Θ,

lim
n→∞

πεy1:n
(θ) = π(θ|SWp(µθ? , µθ) ≤ ε)
∝ π(θ)1{SWp(µθ? , µθ) ≤ ε} .
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Figure 4.2: Comparison of SMC-ABC strategies in the multivariate Gaussians problem.
Each strategy uses 1000 particles and are run for 3 hours max. First row shows ABC
and true posteriors of σ2, second row reports W1-distance to true posterior vs. time.
SW is approximated with its MC estimate over 100 random projections.

Proposition 4.2 follows from the application of [Jiang et al., 2018, Theorem 1] to SWp

and the required conditions. Note that condition (4.5) is a mild assumption, e.g. is
ful�lled if Y is compact and separable: in this case, for any ν ∈ Pp(Y) and its empirical
instantiation ν̂n, limn→∞Wp(ν, ν̂n) = 0 ν-almost surely [Weed and Bach, 2019], then
limn→∞ SWp(ν, ν̂n) = 0 ν-almost surely [Bonnotte, 2013, Proposition 5.1.3], and (4.5)
follows by applying the triangle inequality.

4.5 Experiments

4.5.1 Synthetic experiments

As a �rst set of experiments, we investigate the performance of SW-ABC on a synthetical
setting where the posterior distribution is analytically available. We consider n = 100 ob-
servations (yi)

n
i=1 i.i.d. from a d-dimensional Gaussian N (m?, σ

2
?Id), with m? ∼ N (0, Id)

and σ2
? = 4. The parameter θ is σ2 for which the prior distribution is assigned to be an

inverse gamma distribution IG(1, 1). Therefore, the posterior distribution of σ2 given
(yi)

n
i=1 and m? is an inverse gamma distribution as well, whose parameters are given by

IG
(
1 +

nd

2
, 1 +

1

2

n∑

i=1

‖yi −m?‖2
)
.

We compare SW-ABC against ABC using the Euclidean distance between sample
variances (Euclidean-ABC), WABC with the Hilbert distance, WABC with the swapping
distance and KL-ABC. Each ABC approximation was obtained using the sequential
Monte Carlo sampler-based ABC method [Toni et al., 2009], which is computationally
more e�cient than vanilla ABC (Algorithm 2) and implemented in the package pyABC

[Klinger et al., 2018]. We provide the code to reproduce our empirical results1.

1See our GitHub repository: https://github.com/kimiandj/slicedwass_abc

https://github.com/kimiandj/slicedwass_abc
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Figure 4.2 reports for d ∈ {2, 10, 20}, the resulting ABC posteriors and W1 to the
true posterior (computed with the POT package [Flamary et al., 2021]) vs. time. Due
to the poor performance of the estimator of KL between two empirical distributions
proposed in [Jiang et al., 2018] (see Figure 4.1), KL-ABC fails at approximating well
the posterior in these experiments. Hence, we excluded those results from Figure 4.2 for
clarity. Euclidean-ABC provides the most accurate approximation, as expected since it
relies on statistics that are su�cient in our setting. WABC performs poorly with high-
dimensional observations, contrary to SW-ABC, which approximates well the posterior
for each dimension value and is as fast.

4.5.2 Application to image denoising

We now evaluate our approach on a real application, namely image denoising. We con-
sider a widely used algorithm for this task, the Non-Local Means algorithm (NL-means,
Buades et al. [2005]), and we present a novel variant of it derived from SW-ABC.

We formally de�ne the denoising problem as follows. Let u ∈ RM×N , denote a clean
gray-level image. We observe a corrupted version of this image, v = u + w, where w is
some noise in RM×N . The goal is to restore u from v. We focus on denoising methods
that consider `patch-based representations' of images, e.g. NL-means. Speci�cally, let
r ∈ N be a patch size and I = {1, . . . ,M} × {1, . . . , N} the set of pixel positions. For
i ∈ I, u′(i) denotes the pixel value at position i in image u′, and Pi is a (2r+1)×(2r+1)
window in v centered at i: for k ∈ {−r, . . . , r}2, Pi(k) = v(i + k), where v is extended
to Z2 by periodicity. Let D ⊂ I be a dictionary of positions, and φ : I → D such that,
for i ∈ I,

φ(i) = argminj∈D‖Pi − Pj‖2 ,
i.e. φ(i) is the position in D of the most similar patch to Pi. For j ∈ D, an estimator of
Pj is given by P̂j = Eπ(i|(Pk)k∈φ−1(j))π̃(l)[Pi+l], π̃ being the uniform distribution on φ−1(j).

In practice, it is approximated with a Monte Carlo scheme,

P̂j ≈ (Tn)−1
∑T

t=1

∑S

s=1
Pi(t)+l(s) , (4.6)

where i(t) ∼ π(i(t)|(Pk)k∈φ−1(j)), l(s) ∼ π̃(l), and i, l are mutually independent. Finally,
we construct an estimate û of u as follows: for any i ∈ I,

û(i) =
∑

k,‖k−i‖∞≤r
P̂φ(k)(i− k) (2r + 1)−2 .

The classical NL-means estimator corresponds to the case where D = I (thus φ = Id)
and for any i ∈ I and P ∈ R(2r+1)×(2r+1), π(i, P ) ∝ 1W (i)e−‖P−Pi‖2/(2σ2), where W is a
search window.

In our work, we assume that the likelihood π(P |i) is not available, but we observe
for j ∈ D, (Pk`)

m
`=1 (k` ∈ φ−1(j)) i.i.d. from π(·|i). By replacing π(i|(Pk`)

m
`=1) in (4.6) by

the SW-ABC posterior, we obtain the proposed denoising method, called the SW-ABC
NL-means algorithm. We provide the Python implementation of our algorithm2.

We compare our approach with the classical NL-means. We consider one of the
standard image denoising datasets [Fan et al., 2019], called CBSD68 [Martin et al., 2001]

2See https://vdeborto.github.io/publication/sw_abc

https://vdeborto.github.io/publication/sw_abc
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σ = 10 σ = 20 σ = 30 σ = 50

NL-means 30.43 26.32 24.22 21.99

SW-ABC 27.09 26.26 24.86 22.56

Table 4.1: Comparison of NL-means and SW-ABC on the image denoising task in terms
of average PSNR (dB). For each σ, we �ne-tuned the hyperparameters of NL-means and
reported the best result.

and consisting of 68 colored images of size 321 × 481. We �rst convert the images to
gray scale, then manually corrupt each of them with a Gaussian noise with standard
deviation σ, and try to recover the clean image. The quality of the output images is
evaluated with the Peak Signal to Noise Ratio (PSNR) measure,

PSNR = −10 log10

(‖u− û‖22
2552NM

)
.

In our experiments, we use a dictionary of 1000 patches picked uniformly at random, we
set T = S = m = 10, r = 3, W = {−10, . . . , 10}2, ε = (2r + 1)2, and we compute SW
with a MC scheme over L = 100 projections.

We report the average PSNR values for di�erent values of the noise level σ in Ta-
ble 4.1. We observe that for small σ, NL-means provides more accurate results, whereas
when σ becomes larger SW-ABC outperforms NL-means, thanks to the patch represen-
tation and the use of SW.

On the other hand, another important advantage of SW-ABC becomes prominent
in the computation time: the proposed approach takes ≈ 6s on a standard laptop com-
puter per image whereas the classical NL-means algorithm takes ≈ 30s. Indeed, the
computational complexity of SW-ABC NL-means is upper-bounded by card(D)TSCSW,
where CSW = Lm log(m) is the cost of computing SW, and for the naïve implementa-
tion of NL-means, it is given by NM card(W )(2r + 1)2. We can observe that SW-ABC
has a lower computational complexity since card(D) � NM in practice. We note that
the computation time of NL-means can be improved by certain acceleration techniques,
which can be directly used to improve the speed of SW-ABC NL-means as well.

Finally, in Figure 4.3, we illustrate the performance of SW-ABC on two 512 × 512
images for visual inspection. The results show that the injected noise is successfully
removed by the proposed approach.

4.6 Conclusion

In this chapter, we explored other applications where the Sliced-Wasserstein distance
can be useful, and proposed a novel ABC method, SW-ABC, based on this metric. We
derived asymptotic guarantees for the convergence of the SW-ABC posterior to the true
posterior under di�erent regimes, and we evaluated our approach on a synthetical and
an image denoising problem. Our results showed that SW-ABC provides an accurate
approximation of the posterior, even with high-dimensional data spaces and a small
number of samples.
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Figure 4.3: Visualization of the results. For each couple, the left one is the noisy image
(σ = 20) and the right one is the output of SW-ABC.

4.7 Appendix: Proof of Proposition 4.1

Proof of Proposition 4.1. The proof consists in applying [Bernton et al., 2019, Proposi-
tion 3.1], which establishes the conditions for the data discrepancy measure to yield an
ABC posterior that converges to the true posterior in the asymptotic regime we consider.
This amounts to verify that:

(i) For any y1:n and z1:m, with respective empirical distributions µ̂n and µ̂θ,m,
SWp(µ̂n, µ̂θ,m) = 0 if and only if µ̂n = µ̂θ,m.

(ii) SWp is continuous in the sense that, if (zk1:m)k∈N converges to z1:m in the metric
ρ, then, for any empirical distribution µ̂n, limk→∞ SWp(µ̂n, µ̂

k
θ,m) = SWp(µ̂n, µ̂θ,m),

where µ̂kθ,m is the empirical measure of zk1:m.

Condition (i) follows from the fact that SWp is a distance [Bonnotte, 2013, Proposition
5.1.2]. Now, let y′ ∈ Y and ψ : Y → R be a continuous function such that for any
y ∈ Y, |ψ(y)| ≤ K

(
1 + ρ(y′,y)p

)
with K ∈ R. Since (zk1:m)k∈N converges to z1:m in the

metric ρ and ψ is continuous, we get that limk→∞
∫
ψ dµ̂kθ,m =

∫
ψ dµ̂θ,m. This implies

that µ̂kθ,m weakly converges to µ̂θ,m in Pp(Y) [Villani, 2008, De�nition 6.7], which, by

[Villani, 2008, Theorem 6.8], is equivalent to limk→∞Wp(µ̂
k
θ,m, µ̂θ,m) = 0. By applying

the triangle inequality and [Bonnotte, 2013, Proposition 5.1.3], there exists C ≥ 0 such
that, for any empirical measure µ̂n,

|SWp(µ̂n, µ̂
k
θ,m)− SWp(µ̂n, µ̂θ,m)| ≤ SWp(µ̂

k
θ,m, µ̂θ,m)

≤ C1/p Wp(µ̂
k
θ,m, µ̂θ,m) .

We conclude that limk→∞ SWp(µ̂n, µ̂
k
θ,m) = SWp(µ̂n, µ̂θ,m), making condition (ii) ap-

plicable.
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Chapter 5

Generalized Sliced Wasserstein

Distances

This chapter is based on [Kolouri et al., 2019a].

The Wasserstein distance and its practical alternatives have recently attracted a
lot of attention from the machine learning community. The Sliced-Wasserstein distance,
speci�cally, was shown to have similar theoretical properties to the Wasserstein distance,
while being much simpler to compute thanks to its Monte Carlo approximation. SW has
therefore been used in various applications, including generative modeling and general su-
pervised/unsupervised learning, but its performance might su�er from the error induced
by the Monte Carlo estimation. This limitation has thus motivated the formulation of
alternatives, such as the maximum Sliced-Wasserstein distance (max-SW).

In this chapter, we propose another method to address this issue, by de�ning a
novel family of probability divergences that extends the idea behind SW. We �rst clarify
the mathematical connection between SW and the Radon transform, then leverage the
generalized Radon transform to formulate the class of generalized Sliced-Wasserstein
distances (GSW). We also formulate a generalization of max-SW, called the maximum
generalized Sliced-Wasserstein distances (max-GSW). We identify some conditions on
the generalized Radon transform under which GSW and max-GSW satisfy the metric
axioms. Finally, we compare the empirical performance of the proposed distances on
di�erent implicit generative modeling problems to illustrate their advantages over SW.

5.1 Introduction

To compare two probability distributions µ and ν supported on Rd with the Sliced-
Wasserstein distance, one needs to collect linear projections of µ and ν along all possible
directions on Sd−1, which is done by computing the push-forward measures θ?]µ and θ?] ν

for any θ ∈ Sd−1. As we will detail in the next section, these push-forward measures are
closely related to the Radon transform [Rabin et al., 2012, Proposition 6], which is widely
used in tomography [Radon, 1917, Helgason, 2011]. In practice, unless an analytical for-
mula is known, the integral that de�nes SW (De�nition 2.9) is usually approximated with
a Monte Carlo strategy, which computes an average over a �nite number of directions
uniformly picked at random on Sd−1. Intuitively, the linear nature of these projections
does not guarantee an e�cient approximation of the Sliced-Wasserstein distance: since
in very high-dimensional settings, the data often lives in a thin manifold, one might

81
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have to sample a very large number of directions to e�ectively capture the structure of
the data distribution, which can be very expensive according to our discussion on the
complexity of SW in Section 2.6. Reducing the number of required projections would
thus result in a signi�cant performance improvement.

To alleviate the ine�ciencies caused by the linear projections, several attempts have
recently been made: linear projections can be combined with orthogonal coupling in
Monte Carlo estimation to increase computational e�ciency and estimation quality [Row-
land et al., 2019, Wu et al., 2019]. Alternatively, Deshpande et al. [2019] extended SW
to the �maximum Sliced-Wasserstein distance�, where the integral over Sd−1 in (2.20) is
replaced by a maximum operator so that one retains the �most informative� projection
direction. In this context, the information returned by a direction θ ∈ Sd−1 is measured
by Wp(θ

?
]µ, θ

?
] ν): the larger this Wasserstein distance, the more informative θ. This idea

is also re�ected in another study [Paty and Cuturi, 2019], which considers k-dimensional
projections of µ, ν with k ∈ {1, . . . , d}, and aims at �nding the most informative subspace
on which µ and ν are being projected. While these methods reduce the computational
cost by requiring a lower number of projections, they incur an additional cost due to the
resolution of a non-convex optimization problem over manifolds.

In this chapter, we address the computational limitations of the Sliced-Wasserstein
distance by taking an alternative route: we allow the projections of the compared dis-
tributions µ and ν to be non-linear. More precisely, we use the theory of the generalized
Radon transform [Beylkin, 1984] to extend the de�nition of SW to an entire class of
probability divergences, which we call generalized Sliced-Wasserstein distances (GSW).
We then show that, similar to [Deshpande et al., 2019], we can formulate a metric that
relies on the most informative projection instead of in�nitely many projections. We aptly
call this distance the maximum generalized Sliced-Wasserstein distance (max-GSW). We
prove that replacing the linear projections with non-linear projections can still yield a
valid metric on the space of probability distributions: we identify general conditions
under which GSW and max-GSW satisfy the metric axioms recalled in De�nition 2.1.

As instances of non-linear projections, we �rst investigate projections with polynomial
kernels, which meet all the conditions that we identi�ed. However, we observe that
the memory complexity required by such projections has a combinatorial growth with
respect to the dimension of the problem, which hinders their applications to modern ML
problems, such as IGM. This motivates us to consider a neural-network-based projection
scheme, where we observe that fully connected or convolutional networks with leaky
ReLU activations ful�ll the crucial conditions for the resulting GSW to be a pseudo-
metric.

Due to their inherent non-linearity, GSW and max-GSW are expected to capture
the complex structure of high-dimensional distributions by using much less projections.
Besides, the use of deep learning techniques additionally allows the projections to be
data-adaptive. For these reasons, we expect our metrics to reduce the iteration com-
plexity in a signi�cant amount. We verify this intuition in our experiments, where we
illustrate the superior performance of the proposed generalized distances in IGM prob-
lems, with both synthetic and real data.
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5.2 Background on the Radon transform

We review in this section the Radon transform and explain how it enables the de�nition
of SW and max-SW, accordingly to [Rabin et al., 2012]. Then, we present an extension
of that transform, namely the generalized Radon transform, which is a fundamental tool
in this chapter.

5.2.1 De�nition of the Radon transform

Before formally de�ning the Radon transform, we present some useful notations. De-
note by L1(Rd,Lebd) =

{
f : Rd → R s.t.

∫
Rd |f(x)| dLebd(x) <∞

}
the class of func-

tions that are absolutely integrable on Rd w.r.t. the Lebesgue measure on Rd, Lebd,
and L1(Sd−1 × R,σ ⊗ Leb1) the class of absolutely integrable functions on the domain
Sd−1 × R w.r.t. σ ⊗ Leb1.

The Radon transform, introduced in [Radon, 1917] and denoted by R, maps a
function in L1(Rd,Lebd) to the in�nite set of its integrals over the hyperplanes of Rd,
i.e. R : L1(Rd,Lebd)→ L1(Sd−1 × R,σ ⊗ Leb1), and is de�ned as follows.

De�nition 5.1 (Radon transform). Let I ∈ L1(Rd,Lebd). The Radon transform asso-
ciated to I is a function de�ned for any (t, θ) ∈ R× Sd−1 as

RI(t, θ) =

∫

Rd
I(x)δ(t− 〈x, θ〉)dx . (5.1)

Note that by de�nition, each hyperplane in Rd can be written as

Ht,θ =
{
x ∈ Rd : 〈x, θ〉 = t

}
, (5.2)

where t ∈ R and θ ∈ Sd−1. Therfore, for a �xed θ ∈ Sd−1, RI(·, θ) : R → R integrates
the input function I over all hyperplanes in Rd that are orthogonal to θ, and (5.1) can
be rewritten as

RI(t, θ) =

∫

Ht,θ

I(x)dx . (5.3)

The Radon transform has been shown to be invertible, which allows to recover a
function I out of its projections along hyperplanes, RI [Natterer, 1986, Helgason, 2011].
In particular, the �ltered back-projection method de�nes the inverse formula of the trans-
form when I ∈ L1(R2,Leb2) and has been extensively used for image reconstruction, for
example in tomographic imaging [Deans, 2007].

On the other hand, De�nition 5.1 can be extended so that the Radon transform
applies to measures instead of functions in L1(Rd,Lebd). The formal statement [Bonneel
et al., 2015, De�nition 6] is recalled below.

De�nition 5.2 (Radon transform of measures). Denote by C0(A) the space of continuous
functions on a set A that tend to 0 at in�nity. Let µ ∈ P(Rd). The Radon transform
associated to µ, denoted by Rµ, is de�ned through the following characterization: for any
f ∈ C0(R× Sd−1),

∫

R×Sd−1

f(t, θ)d(Rµ)(t, θ) =

∫

Rd
(R∗f)(x)dµ(x) , (5.4)
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where R∗ : C0(R× Sd−1)→ C0(Rd) is the back-projection operator de�ned as

R∗f(x) =

∫

Sd−1

f(〈x, θ〉 , θ)dθ . (5.5)

Hence, Rµ : P(Rd)→ P(R× Sd−1).

Note that the Radon transform of measures can actually be de�ned on the general space
of Radon measures supported on Rd, instead of the subset of probability measures P(Rd):
the reason why we consider µ ∈ P(Rd) in De�nition 5.2 is that we aim at clarifying the
link between the Sliced-Wasserstein distance and the Radon transform.

5.2.2 Link between Radon transform and Sliced-Wasserstein distance

We �rst present an important result originally established in [Bonneel et al., 2015, Propo-
sition 6], which shows that Radon transforms of measures are equivalent to speci�c
push-forward measures.

Proposition 5.3. Let µ ∈ P(Rd). Then, for any θ ∈ Sd−1,

Rµ(·, θ) = θ?]µ , (5.6)

where θ?] denotes the push-forward operator (De�nition 2.5) associated to the linear form
θ?(x) = 〈θ, x〉.

Therefore, the one-dimensional representations of µ, ν ∈ Pp(Rd) computed by the Sliced-
Wasserstein distance, and respectively denoted by θ?]µ and θ?] ν for θ ∈ Sd−1, are actually
obtained via the Radon transform: by Proposition 5.3, the de�nition of SW of order
p ∈ [1,+∞) between µ and ν (De�nition 2.9) can equivalently be formulated as

SWp
p(µ, ν) =

∫

Sd−1

Wp
p

(
Rµ(·, θ),Rν(·, θ)

)
dσ(θ) . (5.7)

In practice, SWp(µ, ν) is approximated with a simple Monte Carlo scheme (Sec-
tion 2.6), which may lead to underestimating the actual dissimilarity between µ and ν,
especially when these two distributions are supported on a high-dimensional space. To
further illustrate this phenomenon, let us consider µ = N (0, Id) and ν = N (m, Id) with
m ∈ Sd−1. Then, their projected representations are univariate Gaussians, given for any
θ ∈ Sd−1 by,

Rµ(·, θ) = N (0, 1) , and Rν(·, θ) = N (〈θ,m〉 , 1) . (5.8)

It is therefore clear that W2(Rµ(·, θ),Rν(·, θ)) achieves its maximum value when θ = m,
and is equal to zero when θ is orthogonal to m. On the other hand, an application of
Hoe�ding's inequality gives the following concentration inequality for any m′ ∈ Sd−1,

P(|
〈
θ,m′

〉
| ≤ ε) ≥ 1− 2e−

dε2

2 , (5.9)

which implies that for a high dimension d, θ ∼ σ is likely to be nearly orthogonal to m,
so W2(Rµ(·, θ),Rν(·, θ)) is almost null with high probability.

To remedy the inaccuracies caused by the Monte Carlo estimation, one can pick
projection directions that return discriminant information between µ and ν, instead of
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uniformly sampling them on Sd−1. This idea was for instance used in [Rowland et al.,
2019, Wu et al., 2019], where the Monte Carlo samples {θl}Ll=1 forms a set of orthogonal
vectors, or in [Deshpande et al., 2018, Section 3.2], where implements a GAN to �nd
discriminant projections.

A similarly �avored but less heuristic approach consists in using the maximum Sliced-
Wasserstein distance (max-SW), an alternative OT metric de�ned in [Deshpande et al.,
2019] as follows.

De�nition 5.4 (Maximum Sliced-Wasserstein distance). Let p ∈ [1,+∞). The maxi-
mum Sliced-Wasserstein distance of order p is de�ned for µ, ν ∈ Pp(Rd) as

max�SWp(µ, ν) = max
θ∈Sd−1

Wp(θ
?
]µ, θ

?
] ν) , (5.10)

where for any θ ∈ Sd−1, θ?] = (θ?)] denotes the push-forward operator associated to the

linear form θ? : Rd → R given by θ?(x) = 〈θ, x〉.
By Proposition 5.3, (5.10) is equivalent to

max�SWp(µ, ν) = max
θ∈Sd−1

Wp(Rµ(·, θ),Rν(·, θ)) . (5.11)

Since Wp is a distance (Section 2.4.1), one can show that max�SWp is also a distance:
we will prove in Section 5.3.1 that the metric axioms hold for the class of maximum
Generalized Sliced-Wasserstein distances, which contains max-SW as a special case.

5.2.3 Generalized Radon transform

The generalized Radon transform (GRT) extends the original idea of the classical Radon
transform presented in Section 5.2.1 from integration over hyperplanes of Rd to inte-
gration over hypersurfaces, i.e. (d− 1)-dimensional manifolds [Beylkin, 1984, Denisyuk,
1994, Ehrenpreis, 2003, Gel'fand et al., 1969, Kuchment, 2006, Homan and Zhou, 2017].

According to (5.2), any hyperplane of Rd can alternatively be interpreted as a level
set of the function g ∈ Rd× Sd−1 → R given by g(x, θ) = 〈x, θ〉. Therefore, to generalize
the Radon transform, one can simply consider another function g, which is then referred
to as the de�ning function and characterized as follows.

De�nition 5.5 (De�ning function). Consider a function g : X× (Rq\{0}) → R, where
X ⊂ Rd and q ∈ N∗. We say that g is a de�ning function if it satis�es the four conditions
below.

(D1) g is a real-valued C∞ function on X× (Rn\{0})

(D2) g is homogeneous of degree 1 with respect to its second variable, i.e.

∀(x, θ) ∈ X× (Rq\{0}), ∀λ ∈ R, g(x, λθ) = λg(x, θ) .

(D3) g is non-degenerate in the sense that

∀(x, θ) ∈ X× (Rq\{0}), ∂g

∂x
(x, θ) 6= 0 .

(D4) The mixed Hessian of g is strictly positive, i.e.

Det

[(
∂2g

∂xi∂θj

)

i,j

]
> 0 .
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Figure 5.1: Illustration of the application of the standard or generalized Radon transform
for the Half Moons distribution.

Then, given a de�ning function g, the generalized Radon transform associated to g
and applied to I ∈ L1(Rd,Lebd) integrates I over the hypersurfaces characterized by the
level sets of g, i.e.

H̃t,θ = {x ∈ X : g(x, θ) = t} . (5.12)

De�nition 5.6 (Generalized Radon transform). Consider a de�ning function g : X ×
(Rq\{0})→ R, with X ⊂ Rd and q ∈ N∗. Let I ∈ L1(Rd,Lebd). The generalized Radon
transform of I based on g is a function de�ned for any (t, θ) ∈ X× (Rq\{0}) as

GI(t, θ; g) =

∫

X
I(x)δ(t− g(x, θ))dx . (5.13)

According to De�nition 5.6, the standard Radon transform (De�nition 5.1) is indeed a
special case of the GRT, as it is obtained with g(x, θ) = 〈x, θ〉 for (x, θ) ∈ Rd×Sd−1. GRT
has various applications, including thermoacoustic tomography, where the hypersurfaces
correspond to spheres, and electrical impedance tomography, which requires integration
over hyperbolic surfaces.



5.3. Generalized Sliced-Wasserstein Distances 87

One can also use GRT to project high-dimensional distributions along hypersurfaces
and obtain one-dimensional representations: De�nition 5.6 can be extended so that
GRT receives probability distributions as input, analogously to De�nition 5.2. In that
case, the resulting projections of µ ∈ P(Rd) acquired via the GRT based on a de�ning
function g correspond to (gθ)]µ for any θ ∈ Rq\{0}, where (gθ)] is the push-forward
operator of gθ, de�ned for any x ∈ Rd as gθ(x) = g(x, θ). Figure 5.1 illustrates the
application of di�erent Radon transforms on the �Half Moons� dataset and demonstrates
that the output projections highly depend on the de�ning function. This encourages us
to investigate the consequences of using the generalized Radon transform instead of the
standard one in the de�nition of SW (5.7).

5.3 Generalized Sliced-Wasserstein Distances

We propose in this chapter to extend the de�nition of the Sliced-Wasserstein distance to
formulate new optimal transport metrics, which we call Generalized Sliced-Wasserstein
distances. These are obtained using the same procedure as for SW, except that the one-
dimensional representations are acquired through nonlinear projections via the general-
ized Radon transform. We also extend the concept of max-SW to the class of maximum
generalized Sliced-Wasserstein distances (max-GSW).

In this section, we formally de�ne (maximum) Generalized Sliced-Wasserstein dis-
tances and establish the conditions under which they satisfy the metric axioms. We then
provide examples of de�ning functions such that these conditions are met, and present
an alternative implementation of GSW inspired by neural networks.

5.3.1 De�nition and theoretical properties

Following the de�nition of SW in terms of the Radon transform (5.7), we de�ne Gener-
alized Sliced-Wasserstein distances using the generalized Radon transform as follows.

De�nition 5.7 (Generalized Sliced-Wasserstein distances). Consider a de�ning function
g : X × (Rq\{0}) → R, with X ⊂ Rd and q ∈ N∗. Let p ∈ [1,+∞). The Generalized
Sliced-Wasserstein distance of order p based on g is de�ned for any µ, ν ∈ Pp(Rd) as

GSWp
p(µ, ν) =

∫

Rq\{0}
Wp

p

(
Gµ(·, θ; g),Gν(·, θ; g)

)
dσq(θ) , (5.14)

where σq denotes the uniform distribution on Rq\{0}.

We also formulate the maximum Generalized Sliced-Wasserstein distance, which gen-
eralizes the maximum Sliced-Wasserstein distance de�ned in (5.11).

De�nition 5.8 (Maximum Generalized Sliced-Wasserstein distances). Consider a de�n-
ing function g : X × (Rq\{0}) → R, with X ⊂ Rd and q ∈ N∗. Let p ∈ [1,+∞). The
Maximum Generalized Sliced-Wasserstein distance of order p based on g is de�ned for
any µ, ν ∈ Pp(Rd) as

max�GSWp(µ, ν) = max
θ∈Ωθ

Wp

(
Gµ(·, θ; g),Gν(·, θ; g)

)
, (5.15)

where for any θ ∈ Sd−1, Ωθ ⊂ Rq\{0} is a compact set of feasible parameters for θ 7→
g(·, θ).
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We point out that max-GSW must rely on a compact set Ωθ so that (5.15) is not ill-
de�ned. For instance, for the speci�c case of max-SW where g(·, θ) = θ?(·), we have
Ωθ = Sd−1.

In the next proposition, we show that GSW and max-GSW are, indeed, distances on
Pp(Rd) if and only if the underlying GRT is injective. The proof of this result is given
in Section 5.6.

Proposition 5.9. Let p ∈ [1,+∞). The Generalized Sliced-Wasserstein (or maximum
Generalized Sliced-Wasserstein) distance of order p based on the de�ning function g sat-
is�es all metric axioms if and only if the generalized Radon transform associated to g is
injective.

According to Proposition 5.9, the injectivity of GRT is su�cient and necessary for GSW
to be a metric. In this respect, our result brings a di�erent perspective on [Bonnotte,
2013, Proposition 5.1.2]: since the standard Radon transform is injective, SW is indeed
a distance.

Remark 5.10. If the chosen generalized Radon transform is not injective, then we can
only say that the resulting GSW and max-GSW are pseudo-metrics: they still satisfy non-
negativity, symmetry, the triangle inequality, and GSWp(µ, µ) = 0, max�GSWp(µ, µ) =
0.

5.3.2 Injectivity of the generalized Radon transform

We have shown in Proposition 5.9 that the injectivity of the GRT is crucial for the
resulting GSW and max-GSW to be distances between probability measures. We now
enumerate some of the known de�ning functions that lead to injective GRTs.

The investigation of the su�cient and necessary conditions guaranteeing the injectiv-
ity of GRTs is a long-standing topic [Beylkin, 1984, Homan and Zhou, 2017, Uhlmann,
2003, Ehrenpreis, 2003]. The circular de�ning function, supported on Rd × Sd−1 and
given by

g(x, θ) = ‖x− rθ‖ (5.16)

with r ∈ R+, provides an injective GRT [Kuchment, 2006]. Homogeneous polynomials
with an odd degree also yield an injective GRT [Rouvière, 2015], and are de�ned as

g(x, θ) =
∑

|α|=m
θαx

α , (5.17)

where we use the multi-index notation α = (α1, . . . , αdα) ∈ Ndα , |α| =
∑dα

i=1 αi, and

xα =
∏dα
i=1 x

αi
i . The summation in (5.17) iterates over all possible multi-indices α, such

that |α| = m, where m denotes the degree of the polynomial and θα ∈ R. The parameter
set for homogeneous polynomials is then set to Ωθ = Sdα−1. We can observe that
choosing m = 1 reduces to the linear case g(x, θ) = 〈x, θ〉, since the set of multi-indices
with |α| = 1 becomes

{(α1, . . . , αd) : αi = 1 for a single i ∈ N∗, 1 ≤ i ≤ d, and αj = 0, ∀j 6= i} ,

and contains d elements.
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Algorithm 3: Approximation of GSW

Input: Two sets of observations {xi}ni=1 and {yi}ni=1, number of projection
directions L, order p, de�ning function g supported on X× (Rq\{0}).

GSW = 0
for l = 1, . . . , L do

Sample: θl ∼ σq
for i = 1, . . . , n do

Project: x′i = g(xi, θl), y
′
i = g(yi, θl)

Sort: x′(1) ≤ x′(2) ≤ · · · ≤ x′(n), y
′
(1) ≤ y′(2) ≤ · · · ≤ y′(n)

GSW = GSW + (1/n)
∑n

i=1 |x′(i) − y′(i)|p
GSW = (GSW/L)1/p

return GSW

While the polynomial de�ning functions form an interesting alternative to linear
projections, their memory complexity dα grows exponentially with the dimension of the
data and the degree of the polynomial, hence deteriorates their potential in modern
machine learning problems. As a remedy, inspired by the current success of neural
networks, a natural task in our context would be to come up with a neural network,
which would yield a valid GSW or max-GSW, when used as the de�ning function in the
GRT.

As a neural network-based de�ning function, we propose a multi-layer fully con-
nected network with leaky ReLU activations. Under this speci�c network architecture,
one can easily show that the corresponding de�ning function satis�es (D1) to (D4)
on (X\{0}) × (Rq\{0}), where X ⊂ Rd and q ∈ N∗ is the number of parameters of the
network. On the other hand, proving the injectivity of the associated GRT is highly non-
trivial, so the GSW associated with this particular de�ning function is a pseudo-metric, as
we discussed in Remark 5.10. However, as illustrated in Section 5.4, this neural network-
based de�ning function still performs well in practice, and the non-di�erentiability of the
leaky ReLU function at 0 does not seem to be a big issue in practice.

With a neural network as the de�ning function, minimizing max-GSW between two
distributions is analogical to adversarial learning, where the adversary network's goal
is to distinguish the two distributions. In the max-GSW case, the adversary network,
i.e. the de�ning function, seeks optimal parameters that maximize the GSW distance
between the input distributions.

5.4 Numerical Implementation and Experiments

We conduct several experiments to compare the empirical performance of GSW and
max-SW for di�erent choices of de�ning functions. To this end, we �rst explain how we
compute GSW and max-GSW in practice.

5.4.1 Implementation of generalized Sliced-Wasserstein distances

Consider µ, ν ∈ Pp(Rd), which we wish to compare using GSW. In most machine learning
applications, we do not have access to the distributions, but to two sets of n ∈ N∗
i.i.d. samples from µ and ν, which are respectively denoted by {xi}ni=1 and {yj}nj=1.
This implies that one can only compute GSWp(µ̂n, ν̂n), which is an approximation
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Algorithm 4: Approximation of max-GSW

Input: Two sets of observations {xi}ni=1 and {yi}ni=1, number of projection
directions L, order p, de�ning function g, maximum number of
iterations T , step size ρ.

Randomly initialize θ0 ∈ Ωθ

for t = 0, . . . , T − 1 do
for i = 1, . . . , n do

Project: x′i = g(xi, θt), y
′
i = g(yi, θt)

Sort: x′(1) ≤ x′(2) ≤ · · · ≤ x′(n), y
′
(1) ≤ y′(2) ≤ · · · ≤ y′(n)

W = (1/n)
∑n

i=1 |x′(i) − y′(i)|p
Perform one gradient ascent step: θ′ = θl + ρ∇θW
Project θ′ on Ωθ: θl+1 = projΩθ(θ

′)
for i = 1, . . . , n do

Project: x′i = g(xi, θT ), y′i = g(yi, θT )
Sort: x′(1) ≤ x′(2) ≤ · · · ≤ x′(n), y

′
(1) ≤ y′(2) ≤ · · · ≤ y′(n)

mGSW = (1/n)
∑n

i=1 |x′(i) − y′(i)|p
mGSW = (mGSW)1/p

return mGSW

of GSWp(µ, ν). Besides, the integral in (5.14) is generally intractable, hence will be
estimated.

Similarly to SW, we will use a simple Monte Carlo scheme and the analytical expres-
sion of the Wasserstein distance between univariate distributions (2.15) to compute the
following estimate of GSWp(µ̂n, ν̂n),

ĜSWp(µ̂n, ν̂n) =

(
1

Ln

L∑

l=1

n∑

i=1

|g(x(i), θl)− g(y(i), θl)|p
)1/p

, (5.18)

where for any sequence of vectors {zi}ni=1 and θ ∈ Rq\{0}, {g(z(i), θ)}ni=1 is the sorted
sequence of projections, i.e. g(z(1), θ) ≤ g(z(2), θ) ≤ · · · ≤ g(z(n), θ). The procedure to
approximate GSW is summarized in Algorithm 3.

To compute max�GSWp(µ̂n, ν̂n), we employ a numerical optimization method sim-
ilar to the expectation-maximization (EM) algorithm, which repeats the following: (a)
given θ ∈ Ωθ, {g(xi, θ)}ni=1 and {g(yi, θ)}ni=1 are sorted to compute the one-dimensional
Wasserstein distance, once again according to (2.15), (b) θ is updated with a projected
gradient ascent step. Once the convergence is reached (for example, by setting a maxi-
mum number of iterations), the algorithm returns an nearly-optimal projection direction
θ∗, which is then used to approximate max�GSWp(µ̂n, ν̂n) as follows

max�ĜSWp(µ̂n, ν̂n) =
1

n

n∑

i=1

|g(x(i), θ
∗)− g(y(i), θ

∗)|p .

The whole procedure is summarized in Algorithm 4. Note that the gradient with respect
to θ is computed via automatic di�erentiation, and the gradient ascent can be replaced
with any iterative optimization method, such as Adam [Kingma and Ba, 2015].

Our EM-like method �nds the optimal θ by optimizing the actual Wasserstein dis-
tance between the projected distributions, as opposed to the heuristic approaches pro-
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Figure 5.2: Evaluation of the performance of GSW on the �ows experiment when using
di�erent de�ning functions and four synthetic datasets as the target. �Linear� and �Max
Linear� refer to SW and max-SW respectively.

posed in [Deshpande et al., 2018, Kolouri et al., 2018], where the pseudo-optimal slice is
found with perceptrons or penalized linear discriminant analysis [Wang et al., 2011].

5.4.2 Experiments

Now that we have clari�ed the numerical implementation of (max-)GSW, we present the
experiments that we conducted to evaluate the performance of our metrics in generative
modeling applications. Our empirical results can be reproduced with our open source
code1.

To study the e�ects of the de�ning function on the practical performance of GSW
and max-GSW, we consider the following �ows problem

min
µ

D(µ, ν) , (5.19)

where D denotes an instance of (max-)GSW, ν is a target distribution and µ is the
source distribution. The solution of (5.19) is approximated using the following iterative
optimization scheme: �rst, µ is initialized as the empirical distribution associated to
i.i.d. observations from N (0, Id); then, these observations are updated by performing
gradient descent on D(µ, ν).

The target ν corresponds to the distribution of i.i.d. samples from one of these four
well-known distributions: �25-Gaussians�, �8-Gaussians�, �Swiss Roll� and �Circle�. We

1See our GitHub repository: https://github.com/kimiandj/gsw

https://github.com/kimiandj/gsw
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Figure 5.3: Comparison of max-GSW and max-SW on the �ows experiment applied to
the MNIST dataset.

compare di�erent instances of GSW and max-GSW, characterized by di�erent choices
of de�ning functions, namely �linear� (in that case, GSW and max-GSW are equivalent
to SW and max-SW respectively), homogeneous polynomials of degree 3 and 5, and
the neural networks described in Section 5.3.2 with 1 to 3 hidden layers. We used the
exact same optimization scheme for all instances, and kept only L = 1 projection when
approximating GSW with (5.18). In order to easily compare the results produced by
the di�erent �ows, we computed the Wasserstein distance of order 2 between µt and ν
(by solving the corresponding linear program), where µt denotes the source distribution
at iteration t of the optimization procedure. We repeated each experiment 100 times
and report the average Wasserstein distance (computed with the POT implementation
[Flamary et al., 2021]) for all target datasets in Figure 5.2. We also show in that same
�gure a snapshot of µ100 and ν for all datasets.

We observe that (i) max-GSW outperforms GSW, of course at the cost of an ad-
ditional optimization, and (ii) while the choice of the de�ning function g(·, θ) is data-
dependent, one can see that the homogeneous polynomials are often among the top
performers for all datasets. Speci�cally, SW is always outperformed by GSW with
polynomial projections (�Poly 3� and �Poly 5� in Figure 5.2) and by all the variants
of max-GSW. Besides, max-SW is consistently outperformed by max-GSW based on
neural networks. The only variant of GSW that is outperformed by SW is GSW with
a neural network-based de�ning function, which was expected because of the inherent
complexity of approximating the integral over a very large domain (5.14) with a simple
Monte Carlo average. Similarly to max-SW, max-GSW replaces sampling with optimiza-
tion to circumvent this issue.

We then move to more realistic datasets, by running the same experiment for the
MNIST dataset [LeCun and Cortes, 2010]: we solve (5.19), where µ is initialized to
the distribution of 100 random images of dimension 784, and ν is associated to the
training set of MNIST. Given the high-dimensional nature of the problem, we cannot use
the homogeneous polynomials due to memory constraints caused by the combinatorial
growth of the coe�cients, as discussed in Section 5.3.2. Therefore, we only compare max-
SW against max-GSW whose de�ning function is a 3-layer neural network. We report
the Wasserstein distance of order 2 between each µt (the 100 images) and ν (the training
set of MNIST) in Figure 5.3, where t is the number of training epochs. We observe that
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Max-GSWMax-SW

Figure 5.4: Comparison of max-GSW and max-SW on the �ows experiment applied to
the CelebA dataset.

with the proposed generalized approach, the error is decreasing signi�cantly faster when
compared to max-SW. We also show the generated images and observe that max-GSW
produces �crisper� images than max-SW.

Finally, we considered a larger dataset, namely CelebA [Liu et al., 2015]. Since the
dimension is very large, we ran a pre-trained auto-encoder to �nd a latent space of
dimension 256 for the dataset, then solved the �ows problem on this lower-dimensional
space. We compared max-SW against max-GSW based on a 3-layer neural network, by
measuring the Wasserstein distance of order 2 between the target and optimized source
distributions in the latent space. Figure 5.4 shows the results of this experiment: max-
GSW �nds a better solution than max-SW in fewer iterations, but each iteration takes
more time because of the neural network training. We also report the generated images
in Figure 5.4 and observe that the quality of the images produced by max-GSW is slightly
better. Hence, although max-GSW seems like an interesting alternative to max-SW as
it produces better results, the practitionner should also be careful about the fact that it
has important computational implications and might execute more slowly.

5.5 Conclusion

We introduced a novel family of probability divergences, which extends the concept be-
hind the Sliced-Wasserstein and maximum Sliced-Wasserstein distances: while SW and
max-SW measure the dissimilarity between two distributions by comparing their projec-
tions on hyperplanes, we propose to compare projections on hypersurfaces instead. The
resulting divergences, called the Generalized Sliced-Wasserstein and maximum Sliced-
Wasserstein distances, are characterized through a general version of the Radon trans-
form, whose standard version was originally used to de�ne SW. We proved that GSW
and max-GSW satisfy all metric axioms if and only if the generalized Radon transform
they are based on is injective. We then explained how to implement GSW and max-GSW
between any two empirical measures, and demonstrated the superior performance of our
generalized divergences over SW in several generative modeling applications.
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5.6 Appendix: Proof of Proposition 5.9

The proof of Proposition 5.9 consists in verifying that GSW and max-GSW satisfy all
the metric axioms and relies on the fact that Wp is a metric.

Proof of Proposition 5.9. Let p ∈ [1,+∞). Consider a de�ning function g : X×(Rq\{0})→
R, with X ⊂ Rd and q ∈ N∗. We denote by Ωθ a compact set of feasible parameters for
g(·, θ).

Non-negativity. Since the Wasserstein distance is a distance and is thus non-negative,
we can easily prove that GSW and max-GSW distances satisfy non-negativity as well.
Indeed, consider any de�ning function g. By using the de�nition of GSW and max-GSW,
and the fact that Wp(µ

′, ν ′) ≥ 0 for any two probability distributions µ′, ν ′, we obtain
for any µ, ν ∈ Pp(Rd),

GSWp(µ, ν) =

(∫

Rq\{0}
Wp

p

(
Gµ(·, θ; g),Gν(·, θ; g)

)
dσq(θ)

) 1
p

≥
(∫

Rq\{0}
(0)pdσq(θ)

) 1
p

= 0 ,

and, max�GSWp(µ, ν) = max
θ∈Ωθ

Wp

(
Gµ(·, θ; g),Gν(·, θ; g)

)

= Wp

(
Gµ(·, θ∗; g),Gν(·, θ∗; g)

)

≥ 0 ,

where θ∗ = argmaxθ∈Ωθ
Wp(Gµ(·, θ; g),Gν(·, θ; g)).

Symmetry. Since the Wasserstein distance is symmetric, we have for any two distri-
butions µ′, ν ′, Wp(µ

′, ν ′) = Wp(ν
′, µ′). In particular, we can write for all θ ∈ Rq\{0},

Wp(Gµ(·, θ; g),Gν(·, θ; g)) = Wp(Gν(·, θ; g),Gµ(·, θ; g)) , (5.20)

and max
θ∈Ωθ

Wp(Gµ(·, θ; g),Gν(·, θ; g)) = max
θ∈Ωθ

Wp(Gν(·, θ; g),Gµ(·, θ; g)) . (5.21)

The symmetry of GSW and max-GSW directly follows from (5.20) and (5.21) respec-
tively.

Triange inequality. We now prove that GSW and max-GSW satisfy the triangle
inequality. Let µ1, µ2 and µ3 in Pp(Rd). Since the Wasserstein distance satis�es the
triangle inequality, the following holds for any θ ∈ Rq\{0}.

Wp(Gµ1(·, θ; g),Gµ3(·, θ; g)) ≤Wp(Gµ1(·, θ; g),Gµ2(·, θ; g))

+ Wp(Gµ2(·, θ; g),Gµ3(·, θ; g)) .



5.6. Appendix: Proof of proposition 5.9 95

Therefore, we can write

GSWp(µ1, µ3)

=

(∫

Rq\{0}
Wp

p(Gµ1(·, θ; g),Gµ3(·, θ; g))dσq(θ)

) 1
p

≤
(∫

Rq\{0}

{
Wp(Gµ1(·, θ; g),Gµ2(·, θ; g)) + Wp(Gµ2(·, θ; g),Gµ3(·, θ; g))

}p
dσq(θ)

) 1
p

≤
(∫

Rq\{0}
Wp

p(Gµ1(·, θ; g),Gµ2(·, θ; g))dσq(θ)
) 1
p

+
(∫

Rq\{0}
Wp

p(Gµ2(·, θ; g),Gµ3(·, θ; g))dσq(θ)
) 1
p

(5.22)

where (5.22) follows from the application of the Minkowski inequality in Lp(Rq\{0},σq).
We conclude that GSW satis�es the triangle inequality.

Now, denote by θ∗ = argmaxθ∈Ωθ
Wp(Gµ1(·, θ; g),Gµ3(·, θ; g)); then,

max�GSWp(µ1, µ3)

= max
θ∈Ωθ

Wp(Gµ1(·, θ; g),Gµ3(·, θ; g))

= Wp(Gµ1(·, θ∗; g),Gµ3(·, θ∗; g))

≤Wp(Gµ1(·, θ∗; g),Gµ2(·, θ∗; g)) + Wp(Gµ2(·, θ∗; g),Gµ3(·, θ∗; g))

≤ max
θ∈Ωθ

Wp(Gµ1(·, θ; g),Gµ2(·, θ; g)) + max
θ∈Ωθ

Wp(Gµ2(·, θ; g),Gµ3(·, θ; g))

≤ max�GSWp(µ1, µ2) + max�GSWp(µ2, µ3) ,

hence, max-GSW also satis�es the triangle inequality.

Identity of indiscernibles. Since for any distribution µ′, Wp(µ
′, µ′) = 0, then by

de�nition of GSW and max-GSW, for any µ ∈ Pp(Rd),

GSWp(µ, µ) = 0, and max�GSWp(µ, µ) = 0 . (5.23)

Now, assume for µ, ν ∈ Pp(Rd), GSWp(µ, ν) = 0 and max�GSWp(µ, ν) = 0. Both
statements are equivalent to Gµ(·, θ; g) = Gν(·, θ; g) for almost all θ ∈ Rq\{0}. Therefore,
GSW and max-GSW satisfy the identity of indiscernibles if and only if Gµ(·, θ; g) =
Gν(·, θ; g) implies µ = ν, i.e. the GRT is injective.
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Chapter 6

Fast Approximation of the

Sliced-Wasserstein Distance Using

Concentration of Random

Projections

This chapter is based on [Nadjahi et al., 2021].

The Sliced-Wasserstein distance is being increasingly used in machine learning appli-
cations as an alternative to the Wasserstein distance and o�ers signi�cant computational
and statistical bene�ts. Since it is de�ned as an expectation over random projections,
SW is commonly approximated by Monte Carlo. We adopt a new perspective to ap-
proximate SW by making use of the concentration of measure phenomenon: under mild
assumptions, one-dimensional projections of a high-dimensional random vector are ap-
proximately Gaussian. Based on this observation, we develop a simple deterministic
approximation for SW. Our method does not require sampling a number of random pro-
jections, and is therefore both accurate and easy to use compared to the usual Monte
Carlo approximation. We derive nonasymptotical guarantees for our approach, and show
that the approximation error goes to zero as the dimension increases, under a weak de-
pendence condition on the data distribution. We validate our theoretical �ndings on
synthetic datasets, and illustrate the proposed approximation on a generative modeling
problem.

6.1 Introduction

The Sliced-Wasserstein distance is a practical alternative optimal transport metric, as it
exploits the analytical form of the Wasserstein distance between univariate distributions.
As a reminder, its de�nition, which is formally given in De�nition 2.9, reads as follows:
consider two random variables X and Y in Rd with respective distributions µ and ν, and
denote by θ?]µ, θ

?
] ν the univariate distributions of the projections of X,Y along θ ∈ Rd;

SW then compares µ and ν by computing E[Wp
p(θ?]µ, θ

?
] ν)], where the expectation E

is taken with respect to θ uniformly distributed on the unit sphere, and Wp is the
Wasserstein distance of order p ≥ 1 (De�nition 2.6).

In practice, this expectation is typically estimated by Monte Carlo: one uniformly
draws L projection directions {θl}Ll=1 and approximates SW with L−1

∑L
l=1 Wp

p

(
θ?l]µ, θ

?
l]ν
)
.

97
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Since the Wasserstein distance between univariate distributions can easily be computed
in closed form, this scheme leads to signi�cant computational bene�ts as compared to the
Wasserstein distance, provided that L is not chosen too large. As we discussed in previ-
ous chapters, SW has been successfully applied in several practical tasks, and has been
shown to o�er nice theoretical properties as well. For instance, even though the sample
complexity of Wasserstein grows exponentially with the data dimension (Section 2.4.2),
the sample complexity of SW does not depend on the dimension [Nadjahi et al., 2020b].
This latter study, which will be presented in detail in Chapter 7, also demonstrated with
a theoretical error bound that the quality of the Monte Carlo estimate of SW depends on
the number of projections and the variance of the one-dimensional Wasserstein distances
(Theorem 7.9). In other words, to ensure that the induced approximation error is reason-
ably small, one might need to choose a large value for L, which inevitably increases the
computational complexity of SW. Alternative approaches have been proposed to over-
come this issue, and mainly consist in picking more �informative� projection directions:
e.g., SW based on orthogonal projections [Wu et al., 2019, Meng et al., 2019], maximum
SW [Deshpande et al., 2019], generalized SW distances (Chapter 5) and distributional
SW distances [Nguyen et al., 2021].

In this chapter, we adopt a di�erent perspective and leverage concentration results on
random projections to approximate SW: previous work showed that, under relatively mild
conditions, the typical distribution of low-dimensional projections of high-dimensional
random variables is close to some Gaussian law [Sudakov, 1978, Diaconis and Freedman,
1984]. Recently, this phenomenon has been illustrated with a bound in terms of the
Wasserstein distance [Reeves, 2017]: let {Xi}di=1 be a sequence of real random variables
with distribution µd, such that X1, . . . , Xd are independent with �nite fourth-order mo-
ments; then, E[W2

2(θ?]µd,Nµd)2] goes to zero as d increases, where Nµd is a univariate
Gaussian distribution whose variance depends on µd and the expectation is taken with
respect to a Gaussian variable θ. This result has very recently been used to bound the
�maximum-sliced distance� between any probability measure and its Gaussian approx-
imation [Goldt et al., 2021]. In our work, we use it to design a novel technique that
estimates SW with a simple deterministic formula. As opposed to Monte Carlo, our
method does not depend on a �nite set of random projections, therefore it eliminates the
need of tuning the hyperparameter L and can lead to a signi�cant computational time
reduction. Besides, our proposal is quite di�erent from the aforementioned variants of
SW which consist in selecting �informative� projection directions: these alternatives are
de�ned as optimization problems whose resolution is challenging (e.g., [Nguyen et al.,
2021, Section 3.2]) and are then computed by �nding an approximate solution. This
incurs an additional computational cost and estimation error, while our method directly
approximates SW (thus, does not de�ne an alternative distance) via simple deterministic
operations, does not rely on any hyperparameters, and comes with theoretical guarantees
on its induced error.

The important steps to formulate our approximate SW are summarized as follows.
We �rst de�ne an alternative SW whose projection directions are drawn from the same
Gaussian distribution as in [Reeves, 2017], instead of uniformly on Sd−1, and establish
its relation with the original SW. By combining this property with [Reeves, 2017, The-
orem 1], we bound the absolute di�erence between SW applied to any two probability
measures µd, νd on Rd, and the Wasserstein distance between the univariate Gaussians
Nµd , Nνd . Then, we explain why the mean parameters of µd and νd should be zero for
the approximation error to decrease as d grows. Nevertheless, we show that it is not a
limiting factor, by exploiting the following decomposition of SW: SW between µd, νd can
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be equivalently written as the sum of the di�erence between their means and the SW
between the centered versions of µd, νd.

Our approach then consists in estimating SW between the centered versions with the
Wasserstein term between Gaussian approximations to meet the zero-means condition,
and recover SW between the original measures via the aforementioned property. Since
the Wasserstein distance between Gaussian distributions admits a closed-form solution,
our approximate SW is very easy to compute, and faster than the Monte Carlo estimate
obtained with a large number of projections. We derive nonasymptotical guarantees on
the error induced by our approach. Speci�cally, we de�ne a weak dependence condition
under which the error is shown to go to zero with increasing d. Our theoretical results
are then validated with experiments conducted on synthetic data. Finally, we leverage
our theoretical insights to design a novel adversarial framework for a typical generative
modeling problem in machine learning, and illustrate its advantages in terms of accuracy
and computational time, over generative models based on the Monte Carlo estimate of
SW. Our empirical results can be reproduced with our open source code1.

6.2 Background on Central Limit Theorems for Random

Projections

There is a rich literature on the typical behavior of one-dimensional random projections
of high-dimensional vectors. To be more speci�c, let (θi)i∈N∗ be i.i.d. standard one-
dimensional Gaussian random variables and (Xi)i∈N∗ be a sequence of one-dimensional
random variables. Denote for any d ∈ N∗, θ1:d = {θi}di=1 and X1:d = {Xi}di=1. Sev-
eral central limits theorems ensure that, under relatively mild conditions, the sequence
of distributions of d−1/2 〈θ1:d, X1:d〉 ∈ R given θ1:d ∈ Rd converges in distribution to a
Gaussian random variable in probability. This line of work goes back to [Sudakov, 1978,
Diaconis and Freedman, 1984], whose contributions has then been sharpened and gen-
eralized in [Hall and Li, 1993, von Weizsäcker, 1997, Anttila et al., 2003, Bobkov, 2003,
Klartag, 2007, Meckes, 2010, Dümbgen and Del Conte-Zerial, 2013, Leeb, 2013].

In particular, a recent study [Reeves, 2017] gives a quantitative version of this phe-
nomenon. More precisely, denote for any d ∈ N∗ by µXd , the distribution of X1:d (i.e., the
joint distribution of X1, X2, . . . , Xd), and γd the zero-mean Gaussian distribution with
covariance matrix (1/d)Id. Assume that for any d ∈ N∗, µXd ∈ P2(Rd). Then, [Reeves,
2017, Theorem 1] shows that there exists a universal constant C ≥ 0 such that

∫

Rd
W2

2

(
θ?]µ

X
d ,N

(
0, d−1m2(µXd )

))
dγd(θ) ≤ CΞd(µ

X
d ) , with (6.1)

Ξd(µ
X
d ) = d−1{α(µXd ) +

(
m2(µXd )β1(µXd )

)1/2
+ m2(µXd )1/5β2(µXd )4/5} , (6.2)

m2(µXd ) = E
[
‖X1:d‖2

]
, (6.3)

α(µXd ) = E
[∣∣ ‖X1:d‖2 − m2(µXd )

∣∣
]
, (6.4)

βq(µ
X
d ) = E

1
q [
∣∣〈X1:d, X

′
1:d

〉∣∣q] , (6.5)

where q ∈ {1, 2} and (X ′i)i∈N∗ is an independent copy of (Xi)i∈N∗ . A formal statement
of this result is also given for completeness in Section 6.6.1.

1See our GitHub repository: https://github.com/kimiandj/fast_sw

https://github.com/kimiandj/fast_sw


100 Chapter 6. Fast Approximation of SW

6.3 Approximate Sliced-Wasserstein Distance Based on Con-

centration of Random Projections

We develop a novel method to approximate the Sliced-Wasserstein distance of order 2,
by extending the bound in (6.1) and deriving novel properties for SW. We then derive
nonasymptotical guarantees of the corresponding approximation error, which ensure that
our estimate is accurate for high-dimensional data under a weak dependence condition.

6.3.1 Sliced-Wasserstein distance with Gaussian projections

First, to enable the use of (6.1) for the analysis of SW, we introduce a variant of SWp

(De�nition 2.9) whose projections are drawn from the Gaussian distribution considered
in (6.1), instead of uniformly on the sphere. The Sliced-Wasserstein distance of order
p ∈ [1,+∞) based on Gaussian projections is de�ned for any µ, ν ∈ Pp(Rd) as

S̃W
p

p(µ, ν) =

∫

Rd
Wp

p(θ
?
]µ, θ

?
] ν)dγd(θ) . (6.6)

In the next proposition, we establish a simple mathematical relation between tradi-
tional SW and the newly introduced one: we prove that S̃Wp is equal to SWp up to a
proportionality constant that only depends on the data dimension d and the order p.

Proposition 6.1. Let p ∈ [1,+∞). Then, S̃Wp (6.6) is related to SWp (2.20) as
follows: for any µ, ν ∈ Pp(Rd),

S̃Wp(µ, ν) =

(
2

d

)1/2{Γ(d/2 + p/2)

Γ(d/2)

}1/p

SWp(µ, ν) ,

where Γ is the Gamma function.

Since (6.1) only applies to the Wasserstein distance of order 2, we will focus on SW
of that same order in the rest of the chapter. In this case, SW with Gaussian projections
is equal to the original SW. Indeed, we can show that the constant (2/d)1/2 {Γ(d/2 +
p/2) / Γ(d/2)}1/p de�ned in Proposition 6.1 is equal to 1 when p = 2, by using the
property Γ(d/2 + 1) = (d/2)Γ(d/2).

6.3.2 Approximate Sliced-Wasserstein distance

Our next result is an easy consequence of (6.1) and Proposition 6.1, and shows that, for
any µd, νd ∈ P2(Rd), the di�erence between W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))} and
SW2(µd, νd) in absolute value is bounded from above by Ξd(µd) + Ξd(νd) (6.2).

Theorem 6.2. There exists a universal constant C > 0 such that for any µd, νd ∈
P2(Rd),
∣∣SW2(µd, νd)−W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))}

∣∣ ≤ C
(
Ξd(µd) + Ξd(νd)

)1/2
,

(6.7)
where, for ξd ∈ {µd, νd}, Ξd(ξd) and m2(ξd) are de�ned in (6.2) and (6.3) respectively.

Since W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))} has a closed-form solution given by
(2.10), it provides a computationally e�cient approximation of SW2(µd, νd) whose accu-
racy is quanti�ed by Theorem 6.2. Next, we identify settings where this approximation
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is accurate, by analyzing the error Ξd(µd) + Ξd(νd).

Our �rst observation is that µd and νd should have zero means for the error to go to
zero as d→ +∞, and we develop a novel approximation of SW that takes into account
this constraint. Going back to the de�nition of Ξd(µ

X
d ) in (6.2), setting X̄i = Xi−E[Xi]

and X̄ ′i = X ′i − E[X ′i], we get

m2(µXd ) = E[‖X̄1:d‖2] + ‖E[X1:d]‖2 (6.8)

β2
2(µXd ) = E

[〈
X̄1:d, X̄

′
1:d

〉2
]

+ 4E
[〈
E[X1:d], X̄1:d

〉2
]

+ ‖E[X1:d]‖4 . (6.9)

By Equations (6.8) and (6.9), since in practice the norm of the mean E[X1:d] is expected
to increase linearly with d1/2 at least, so are m2(µXd ) and β2(µXd ) as functions of d. As
a consequence, Ξd(µ

X
d ) cannot be shown to converge to 0 as d→∞ in this setting, but

only to be bounded. However, if the data are centered, the norm of the mean is zero,
thus Ξd(µ

X
d ) might be decreasing. Therefore, we derive a convenient formula to compute

SW2(µd, νd) from SW2(µ̄d, ν̄d) where for any ξd ∈ P2(Rd), ξ̄d is the centered version of
ξd, i.e. the push-forward measure of ξd by x 7→ x−mξd with mξd =

∫
Rd y dξd(y). This

result is the last ingredient to formulate our approximation of SW.

Proposition 6.3. Let µd, νd ∈ P2(Rd) with respective means mµd ,mνd . Then, the
Sliced-Wasserstein distance of order 2 can be decomposed as

SW2
2(µd, νd) = SW2

2(µ̄d, ν̄d) +
1

d
‖mµd −mνd‖2 . (6.10)

Based on Proposition 6.3, instead of approximating SW2(µd, νd) directly with the
term W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))}, we propose estimating SW2(µ̄d, ν̄d) with
W2{N (0, d−1m2(µ̄d)),N (0, d−1m2(ν̄d))} and then using (6.10). This strategy yields our
�nal approximation of SW, which is de�ned for any µd, νd ∈ P2(Rd) as

ŜW
2

2(µd, νd) = W2
2{N (0, d−1m2(µ̄d)),N (0, d−1m2(ν̄d))}+

1

d
‖mµd −mνd‖2 , (6.11)

where for ξd ∈ {µ̄d, ν̄d}, m2(ξd) is de�ned in (6.3). Note that (6.11) can be simpli�ed
since by (2.10),

W2
2{N (0, d−1m2(µ̄d)),N (0, d−1m2(ν̄d))} = d−1(m2(µ̄d)

1/2 − m2(ν̄d)
1/2)2 .

Besides, if µd and νd are both supported on a �nite set of points, ŜW2(µd, νd) has a
closed-form expression: given ξd = n−1

∑n
j=1 δx(j) ∈ P2(Rd) with x(j) ∈ Rd for j ∈

{1, . . . , n}, we then have

mξd =
1

n

n∑

j=1

x(j) , and m2(ξd) =
1

n

n∑

j=1

‖x(j)‖2 .

The associated computational complexity is therefore in O(dn), which constitutes a sig-
ni�cant bene�t of our methodology over the traditional Monte Carlo estimation. Indeed,
as explained in Section 2.6, computing SWp,L (2.21) between two empirical distributions
amounts to projecting sets of n observations in Rd along L directions, and sorting the
projected data. The resulting computational complexity is O(Ldn+Ln log n), meaning
that the Monte Carlo estimate is more expensive when d, n and L increase, and it is



102 Chapter 6. Fast Approximation of SW

often unclear how L should be chosen in order to control the approximation error.

Hence, we introduced an alternative technique to estimate SW which does not rely
on a �nite set of random projections, as opposed to the commonly used Monte Carlo
technique. Our approach thus eliminates the need for practitioners to tune the number of
projections L, but also to sort the projected data. As a consequence, it is more e�cient
to compute ŜW2(µd, νd) than SW2,L(µd, νd) for large L. We illustrate this latter point
with empirical results in Section 6.4.

6.3.3 Error analysis under weak dependence

We have discussed in Section 6.3.2 why centering the data is important to ensure that
the approximation error goes to zero with increasing d. Next, we introduce a weak de-
pendence condition under which the error is guaranteed to decrease as d increases.

We �rst consider a setting mentioned in [Reeves, 2017] where µd = µ(1)⊗· · ·⊗µ(d) and
νd = ν(1)⊗ · · · ⊗ ν(d), ⊗ denoting the tensor product of measures, and µ(j), ν(j) ∈ P4(R)
for j ∈ {1, . . . , d}. We prove in this case that W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))}
converges to SW2(µd, νd) at a rate of d

−1/8. This result is reported in Section 6.6.5, and
can be interpreted as an extension of [Reeves, 2017, Corollary 3] for SW.

We emphasize that the assumptions of this �rst setting severely restrict the scope
of application of our approximation method: in several statistical and machine learning
tasks, the random variables of interest {Xi}di=1 are not independent from each other (e.g.
for image data, each Xi typically represents the value of a pixel at a certain position, thus
depends on the neighboring pixels). Therefore, we relax this independence condition by
considering a concept of �weak dependence� inspired by [Doukhan and Neumann, 2007]
and properly de�ned in De�nition 6.4.

De�nition 6.4. Let (Xj)j∈N∗ be a stationary sequence of one-dimensional random vari-
ables with mean zero, i.e. Xi and Xj have the same distribution for any i, j ∈ N∗ and
E[X1] = 0. We say that (Xj)j∈N∗ is fourth-order weakly dependent if there exist some
constant K ≥ 0 and a nonincreasing sequence of real coe�cients {ρ(n)}n∈N such that,
for any i, j ∈ N∗, i ≤ j,

|Cov(X2
i , X

2
j )| ≤ Kρ(j − i) , |Cov(Xi, Xj)| ≤ Kρ(j − i) . (6.12)

In addition, the sequence {ρ(n)}n∈N satis�es
∑+∞

n=0 ρ(n) ≤ ρ∞ < +∞.

Intuitively, in practical applications, the weak dependence condition would essentially
require the components of the observations not to exhibit strong correlations; yet, they
are allowed to depend on each other. Furthermore, since our weak dependence condition
is weaker than the one introduced in [Doukhan and Neumann, 2007, Theorem 1], it is
satis�ed by the various examples of models described in [Doukhan and Neumann, 2007,
Section 5]. We present some of them below, to illustrate De�nition 6.4 more clearly.

1) Gaussian processes and associated processes [Doukhan and Louhichi, 1999, Section
3.1], provided that they are stationary.

2) Bernoulli shifts: Xt = H(εt, . . . , εt−r) for t ∈ N∗, where H : Rr+1 → R is a mea-
surable function and (εi)i∈N∗ is a sequence of i.i.d. real random variables. A simple
example of such process is given by moving-average models.
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3) Autoregressive models, de�ned as Xt = f(Xt−1, . . . , Xt−r) + εt for t ∈ N∗, where
(εi)i∈N∗ a sequence of i.i.d. real random variables with E |ε1| <∞, and

|f(u1, . . . , ur)− f(v1, . . . , vr)| ≤
r∑

i=1

ai |ui − vi|

for some a1, . . . , ar ≥ 0 such that
(∑r

i=1 ai
)1/r

< 1.

We then consider a sequence of fourth-order weakly dependent random variables
(Xj)j∈N∗ , and prove that Ξd(µ

X
d ) goes to zero as d → ∞, with a rate of convergence

depending on {ρ(n)}n∈N. This result is given in Section 6.6.6, and helps us re�ne The-
orem 6.2 under this weak dependence condition: the next corollary establishes that the
error approaches 0 at a rate of d−1/8.

Corollary 6.5. Let (Xj)j∈N∗ and (Yj)j∈N∗ be sequences of random variables which are
fourth-order weakly dependent. Set for any d ∈ N∗, X1:d = {Xj}dj=1 and Y1:d = {Yj}dj=1,
and denote by µd, νd the distributions of X1:d, Y1:d respectively. Then, there exists a
universal constant C > 0 such that

∣∣SW2(µd, νd)−W2(N (0, d−1m2(µd)),N (0, d−1m2(νd)))
∣∣ ≤ Cd−1/8 .

Hence, by replacing the independence condition of the �rst setting with weak depen-
dence, we broaden the scope of application whilst guaranteeing that the approximation
error goes to zero as d increases. We �nally note that in these two settings, the data
are required to have zero mean, which is automatically veri�ed with our approximation
method since we estimate SW between the centered distributions: see (6.11).

6.4 Experiments

6.4.1 Synthetic experiments

The goal of these experiments is to illustrate our theoretical results derived in Section 6.3.
In each setting, we generate two sets of d-dimensional samples, denoted by {x(j)}nj=1

and {y(j)}nj=1 with n = 104 and x(j), y(j) ∈ Rd for j ∈ {1, . . . , n}. We then approximate

SW between their empirical distributions in P2(Rd), given by µd = n−1
∑n

j=1 δx(j) and

νd = n−1
∑n

j=1 δy(j) .

First, we analyze the consequences of centering data. Here, {x(j)}nj=1 and {y(j)}nj=1

are n independent samples from Gaussian or Gamma distributions: see Section 6.6.7 for
more details. We compute

|W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))} − SW2(µd, νd)|

on the one hand, and

|W2{N (0, d−1m2(µ̄d)),N (0, d−1m2(ν̄d))} − SW2(µ̄d, ν̄d)|

on the other hand. In the Gaussian case, the exact value of SW2 is known (6.73), while
for the Gamma distributions, it is approximated with Monte Carlo based on 2×104 ran-
dom projections. Figures 6.1a and 6.1b show that the error goes to zero as d increases
if the data are centered. This con�rms our analysis provided in Section 6.3.2 about the
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Figure 6.1: Analysis of the approximation according to the dimension: in Figures 6.1a
and 6.1b, data have independent components; in Figures 6.1c and 6.1d, they are station-
ary AR(1) processes. Errors are averaged over 100 runs and reported on log-log scale
with their 10th-90th percentiles.

in�uence of the mean, and in Section 6.3.3 on sequences of independent random variables.

Next, we consider autoregressive processes of order one (AR(1)). An AR(1) process
is de�ned as X1 = ε1 and, for t ∈ N∗, Xt = αXt−1 + εt, where α ∈ [0, 1] and (εi)i∈N∗
is an i.i.d. sequence of real random variables with E[ε1] = 0 and �nite second-order
moment. If α < 1, the process has a stationary distribution and (Xj)j∈N∗ satis�es the
weak dependence condition in its stationary regime [Doukhan and Neumann, 2008]. In
practice, we generate a sample by using this recursion formula for 104 + d steps, and
keeping the last d samples. The discarded samples correspond to a �burn-in� phase
which helps reaching the stationary solution of the process. We generate {x(j)}nj=1 and

{y(j)}nj=1 using the same distribution for the noise (either a Gaussian or Student's t-
distribution, as described in Section 6.6.7). This means that both datasets come from
the same distribution, thus the exact value of SW2 is zero. We plot on Figures 6.1c
and 6.1d the approximation error according to d ∈ [10, 103] for di�erent values of α. The
error converges to zero with increasing d, which is consistent with Corollary 6.5.

Note that Figure 6.1 exhibits rate of convergence that are better than the one in d−1/8

derived in Section 6.3.3: in Figure 6.1b, the slope is approximately −0.45 (Gaussian)
and −0.7 (Gamma), and in Figures 6.1c and 6.1d, it is on average −0.35. This suggests
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Figure 6.2: Comparison of di�erent methods to approximate SW, according to their
accuracy (left) and computation time (right). The datasets contain n samples of dimen-
sion d independently drawn from Gamma distributions, with d ∈ [101, 103] and n = 104.
Results are averaged over 100 runs.

that our theoretical bounds might be improved, and we further investigate this aspect
for the Gaussian case: we consider the case where {x(j)}nj=1, {y(j)}nj=1 are n independent
samples from Gaussian distributions with diagonal covariance matrices, and we prove
that E|W2{N (0, d−1m2(µ̄d)),N (0, d−1m2(ν̄d))} − SW2(µ̄d, ν̄d)| goes to 0 as dn → +∞
with a convergence rate in d−1/2n−1/2. We provide the complete statement and formal
proof in Section 6.6.7 (Proposition 6.9). This result is consistent with Figure 6.1b, and
is a �rst encouraging step towards the following research direction: we can study if our
proofs and the ones in Reeves [2017] can be re�ned when assuming additional structure
on the distributions (e.g., sub-Gaussian and sub-exponential), in order to identify the
settings under which our current bounds are tight or can be improved.

Finally, we compare our approximation scheme against the standard Monte Carlo
estimation, in terms of accuracy and computation time. We use the same setting as in
Figure 6.1b, where the n samples are independently drawn from Gamma distributions.
We compute ŜW2(µd, νd) (6.11) and SW2,L(µd, νd) (2.21) with L ∈ {100, 1000, 5000},
and we compare each approximation with SW2,2×104(µd, νd), which we consider as the
exact value of SW. Figure 6.2 reports the approximation error and computation time of
each scheme for d ∈ [10, 104], and shows that our method is more accurate and faster
than Monte Carlo. In particular, when d = 103, the average computation time of our
technique is 0.02s, while the second best approximation (Monte Carlo with L = 5000)
takes more than 8s. Besides, we observe that Monte Carlo is very sensitive to the
hyperparameters, since it loses accuracy when L decreases and gets slower as L and d
increase. This observation is consistent with the computational complexity of SW2,L

recalled at the end of Section 6.3.2. On the other hand, our approximation scheme is
extremely e�cient even for large d and n, since it is based on a simple deterministic
formula which does not require projecting and sorting data along random directions.

6.4.2 Image generation

Finally, we leverage our theoretical insights to design a novel method for a typical gener-
ative modeling application. The problem consists in tuning a neural network that takes
as input k-dimensional samples from a reference distribution (e.g., uniform or Gaussian),
to generate images of dimension d > k. During the training phase, the parameters of
the network are updated by iteratively minimizing a dissimilarity measure between the
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dataset to �t and the generated images.

In [Deshpande et al., 2018], the dissimilarity measure is Monte Carlo SW approx-
imated with 104 random projections, and the resulting generative model is called the
Sliced-Wasserstein generator (SWG). This model performs well on moderately high-
dimensional image datasets (e.g., 28 × 28 for MNIST images [LeCun and Cortes, 2010]).
However, for very large dimensions (e.g., 64× 64× 3 for the CelebA dataset [Liu et al.,
2015]), Monte Carlo SW requires more than 104 random projections to capture relevant
information, which leads to very expensive training iterations and potential memory
issues.

To o�er better scalability, SWG can be augmented with a discriminator network
[Deshpande et al., 2018, Section 3.2] that aims at �nding a lower-dimensional space in
which the two projected datasets are clearly distinguishable. The intuition behind this
heuristic is that the more distinct the two datasets are from each other, the fewer pro-
jection directions Monte Carlo SW requires to provide useful information. The training
then consists in optimizing the generator's and discriminator's objective functions in an
alternating fashion.

Our novel approach builds on SWG and modi�es the saddle-point problem in [Desh-
pande et al., 2018, Section 3.2]: motivated by the gain in accuracy and time illustrated
in Figure 6.2 on high-dimensional datasets, we propose to replace Monte Carlo SW with
our approximate SW (6.11) in the generator's objective; then, to make sure that our
approximation is accurate, we regularize the discriminator's objective:

max
ψ

L(ψ) + λ1

∥∥Cov[d′ψ(X)]
∥∥2

F
+ λ1

∥∥Cov[d′ψ(gφ(Z))]
∥∥2

F
(6.13)

+ λ2 E
[
‖d′ψ(X)‖−2

]
+ λ2 E

[
‖d′ψ(gφ(Z))‖−2

]
(6.14)

where L is the discriminator's loss used in SWG, gφ and d′ψ are the generator's last layer
and the discriminator's penultimate layer respectively (parameterized by φ, ψ), X and
Z are the random variables corresponding to the images to �t and the generator's input,
Cov denotes the covariance matrix, ‖ · ‖F the Frobenius norm, and λ1, λ2 ≥ 0. The
regularization in (6.13) enforces the weak dependence condition (Corollary 6.5), while
(6.14) prevents the network to converge to d′ψ = 0. We call this generative adversarial
network regularized deterministic SWG (reg-det-SWG).

To investigate the consequences of (i) regularizing the discriminator, and (ii) re-
placing the Monte Carlo SW with our approximation, we design another model, called
regularized SWG (reg-SWG): similarly to SWG, the generator minimizes SW2,104 , but
the discriminator's objective is regularized as in (6.13), (6.14).

We then compare reg-det-SWG against SWG and reg-SWG, by training the models
on MNIST and CelebA and measuring their respective training time and Fréchet Incep-
tion Distances (FID, Heusel et al. [2017]): see Table 6.1. We used the same network
architectures for all methods, and tuned (λ1, λ2) via cross-validation: more details on
the experimental setup are given in Section 6.6.8. First, we observe that the regular-
ized models produce images of higher quality, since reg-SWG and reg-det-SWG return
lower FID values than SWG. The FID of reg-SWG and reg-det-SWG are close for both
datasets, thus the two models seem to yield similar performances. Hence, we report in
Figure 6.3 the images generated by SWG and reg-det-SWG only.

The training process is more expensive when regularizing the discriminator: the av-
erage running time per epoch is higher for the regularized models. We also observe that
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Dataset Model FID
TSW (s/epoch) Ttot (s/epoch)

GPU CPU GPU CPU

MNIST SWG 22.41 ± 2.34 1.3 1.4 ×102 4.5 2.7 ×102

Reg-SWG 15.53 ± 0.88 1.1 1.1 ×102 6.5 3.0 ×102

Reg-det-SWG 15.72 ± 0.57 0.07 0.2 5.3 1.5 ×102

CelebA SWG 31.04 ± 2.78 10.1 2.7 ×103 3.9 ×102 1.6 ×104

Reg-SWG 24.14 ± 0.48 10.0 2.7 ×103 4.4 ×102 2.0 ×104

Reg-det-SWG 23.65 ± 0.93 1.3 2.6 4.2 ×102 1.7 ×104

Table 6.1: Results obtained after training generative models on MNIST and CelebA,
averaged over 5 runs. FID are reported with their standard deviation (the lower FID,
the better). TSW denotes the average time per epoch for approximating SW. Ttot is the
average running time per epoch.

reg-det-SWG is faster than reg-SWG, which is consistent with the fact that our approx-
imation method is faster than Monte Carlo on high-dimensional settings. To further
illustrate this point, we reported the average time spent in computing the generative
loss per epoch, i.e. SW2,104 for SWG and reg-SWG, and ŜW2 for reg-det-SWG: see
column TSW in Table 6.1. On GPU, reg-det-SWG is at least 15 times faster than SWG
and reg-SWG on MNIST, and 6 times faster on CelebA.

Note that the models were trained using PyTorch, thus Monte Carlo SW bene�ts
from a GPU-accelerated implementation of the sorting operation (with the function
torch.sort). We also reported the computation times when models are trained on CPU.

In this case, computing ŜW2 takes at most less than 3s per epoch, whereas the Monte
Carlo estimation executes in several minutes (e.g., approximately 45min on CelebA).
As a result, the total training time is almost the same for reg-det-SWG and SWG on
CelebA, and the lowest for reg-det-SWG on MNIST. Our approximation method then
fosters the development of models to speed up existing machine learning algorithms on
CPU, which is useful when powerful hardware resources are not available, or when their
use is deliberately avoided for environmental purposes.

6.5 Conclusion

We presented a novel method to approximate the Sliced-Wasserstein distance of order
2, which relies on the concentration-of-measure phenomenon for random projections.
The resulting method computes SW with simple deterministic operations, which are
computationally e�cient even on high-dimensional settings and do not require any hy-
perparameters. We proved nonasymptotical guarantees showing that, under a weak
dependence condition, the approximation error goes to zero as the dimension increases.
Our theoretical �ndings are then illustrated with experiments on synthetic datasets.
Motivated by the computational e�ciency and accuracy of our approximate SW, we
�nally designed a novel approach for image generation that leverages our theoretical in-
sights. As compared to generative models based on SW estimated with Monte Carlo, our
framework produces images of higher quality with further computational bene�ts. This
encourages the use of our approximate SW on other algorithms that rely on Monte Carlo
SW, e.g. autoencoders [Kolouri et al., 2019b] or normalizing �ows [Dai and Seljak, 2021].
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(a) SWG (FID = 19.52) (b) Reg-det-SWG (FID = 14.87)

(c) SWG (FID = 27.75) (d) Reg-det-SWG (FID = 22.87)

Figure 6.3: Images generated after training on MNIST (top row) and CelebA (bottom
row). For each model, the images are associated with the lowest FID obtained over 5
runs.

The weak dependence condition can be inappropriate to describe the underlying ge-
ometry of real data in ML applications, and in that case, approximating SW with our
method seems inadequate. To overcome this problem, we encourage practitioners to
resort to models where real data are represented by features that can be made weakly
dependent. This strategy has proven successful in our image generation experiment: the
reg-det-SWG model uses our approximation to compare two sets of features (instead of
the raw images) whose covariance matrices are regularized to enforce weak dependence.
Since many ML techniques make use of features and regularizers, we believe that our
methodology is not restrictive and can then be applied to other standard problems than
image generation. Besides, our weak dependence condition in De�nition 6.4 is weaker
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than the one in [Doukhan and Neumann, 2007], which is a notion commonly used in
statistics.

Our empirical results on synthetic data show that the approximation error goes to
zero with a faster convergence rate than the one we proved. Then, the main current
limitation of our framework is that our theoretical convergence rate in d−1/8 might be
slower than necessary. We proved that the overall approximation error is upper-bounded
by a term in d−1/2 when comparing Gaussians with diagonal covariance matrices, and
the improvement of our error bounds for other speci�c distributions is left for future
work. On the other hand, the extension of our methodology to variants of SW is another
challenging future research direction. To the best of our knowledge, the literature on the
concentration of measure phenomenon focuses on linear random projections, therefore the
derivation of deterministic approximations for SW based on nonlinear projections seems
highly nontrivial. A more promising direction would be to generalize our approach to
SW based on k-dimensional linear projection by leveraging the bound in [Reeves, 2017,
Theorem 1] for k > 1.

6.6 Appendix: Postponed Proofs and Experimental Details

6.6.1 Conditional central limit theorem for Gaussian projections

We give the formal statement of the result presented in Section 6.2, corresponding to
[Reeves, 2017, Theorem 1] for the special case of one-dimensional projections.

Theorem 6.6 ([Reeves, 2017, Theorem 1]). There exists a constant C such that for any
µ ∈ P2(Rd),

∫

Rd
W2

2

(
θ?]µ,N

(
0, d−1m2(µ)

))
dγd(θ) (6.15)

≤ Cd−1
{
α(µ) +

(
m2(µ)β1(µ)

)1/2
+ m2(µ)1/5β2(µ)4/5

}
, (6.16)

where

m2(µ) =

∫

Rd
‖x‖2 dµ(x) , (6.17)

α(µ) =

∫

Rd

∣∣ ‖x‖2 − m2(µ)
∣∣dµ(x) , (6.18)

βq(µ) =

(∫

Rd×Rd

∣∣〈x, x′
〉∣∣q d(µ⊗ µ)(x, x′)

) 1
q

, (6.19)

with q ∈ {1, 2}.

6.6.2 Proof of Proposition 6.1

Proof of Proposition 6.1. Let θ ∈ Rd and write θ = rθ̄, r ≥ 0 and θ̄ ∈ Sd−1. Then, we
get

Wp
p(θ

?
]µ, θ

?
] ν) = Wp

p

(
(rθ̄)?]µ, (rθ̄)

?
]ν
)

(6.20)

=

∫ 1

0

∣∣F←(rθ̄)?]µ(t)− F←(rθ̄)?] ν(t)
∣∣pdt , (6.21)
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where (6.21) results from (2.12): Fµ̃ and F←µ̃ denote the cumulative distribution and
quantile function respectively, of a one-dimensional probability measure µ̃, i.e. Fµ̃(s) =
µ̃((−∞, s]) and F←µ̃ (t) = inf{s′ ∈ R : Fµ̃(s′) ≥ t} for s ∈ R and t ∈ [0, 1]. For any r > 0

and θ ∈ Sd−1, we get

F(rθ̄)?]µ
(s) =

(
(rθ̄)?]µ

)
{(−∞, s]} (6.22)

=
(
θ̄?]µ
)
{(−∞, s/r]} = Fθ̄?]µ

(s/r) , (6.23)

which easily implies that F←
(rθ̄)?]µ

(t) = rF←
θ̄?]µ

(t). Therefore, using this property in (6.21),

we obtain,

Wp
p(θ

?
]µ, θ

?
] ν) =

∫ 1

0

∣∣rF←θ̄?]µ(t)− rF←θ̄?] ν(t)
∣∣pdt (6.24)

= rp Wp
p(θ̄

?
]µ, θ̄

?
] ν) . (6.25)

By applying a d-spherical change of variables in the de�nition of S̃Wp (6.6) and
plugging (6.25),

S̃W
p

p(µ, ν) =

∫

R+

∫

Sd−1

rpWp
p

(
θ̄?]µ, θ̄

?
] ν
)

(2π)−
d
2 d

d
2 e−

d
2
‖rθ̄‖2rd−1dθ̄dr (6.26)

= (2π)−
d
2 d

d
2

∫

R+

rp+d−1e−
d
2
r2

(∫

Sd−1

Wp
p

(
θ̄?]µ, θ̄

?
] ν
)
dθ̄

)
dr . (6.27)

Since the surface area of Sd−1 is equal to 2π
d
2 Γ(d/2)−1 [Huber, 1982], and by de�nition

of SW (2.20), ∫

Sd−1

Wp
p

(
θ̄?]µ, θ̄

?
] ν
)
dθ̄ = 2π

d
2 Γ(d/2)−1SWp

p(µ, ν) .

Besides, by applying the change of variables t = (d/2)1/2r,

∫

R+

rp+d−1e−
d
2
r2

dr

= 2(p+d)/2d−(p+d)/2

∫

R+

tp+d−1e−t
2
dt

= 2(p+d)/2−1d−(p+d)/2 Γ
(
(d+ p)/2

)
.

We �nally obtain,

S̃W
p

p(µ, ν) =

(
2

d

)p/2 Γ
(
d/2 + p/2

)

Γ(d/2)
SWp

p(µ, ν) . (6.28)

6.6.3 Proof of Theorem 6.2

Proof of Theorem 6.2. By the triangle inequality, for any θ ∈ Rd,
∣∣W2(θ?]µd, θ

?
] νd)−W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))}

∣∣ (6.29)

≤W2{θ?]µd,N (0, d−1m2(µd))}+ W2{θ?] νd,N (0, d−1m2(νd))} (6.30)
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Therefore, taking the integral with respect to γd,
∫

Rd

(
W2(θ?]µd, θ

?
] νd)−W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))}

)2
dγd(θ) (6.31)

≤
∫

Rd

(
W2{θ?]µd,N (0, d−1m2(µd))}+ W2{θ?] νd,N (0, d−1m2(νd))}

)2
dγd(θ) (6.32)

≤ 2

{∫

Rd
W2

2{θ?]µd,N (0, d−1m2(µd))}dγd(θ) +

∫

Rd
W2

2{θ?] νd,N (0, d−1m2(νd))}dγd(θ)
}
,

(6.33)

where (6.33) follows from (a+ b)2 ≤ 2(a2 + b2). Then, we apply Theorem 6.6 to bound
(6.33), and we conclude there exists a universal constant C > 0 such that

∫

Rd

(
W2(θ?]µd, θ

?
] νd)−W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))}

)2
dγd(θ) (6.34)

≤ C
(
Ξd(µd) + Ξd(νd)

)
(6.35)

Using |‖a‖ − ‖b‖| ≤ ‖a− b‖ in L2(Rd,γd) gives
∣∣∣
{ ∫

Rd
W2

2(θ?]µd, θ
?
] νd)dγd(θ)

}1/2

−
{∫

Rd
W2

2{N (0, d−1m2(µd)),N (0, d−1m2(νd))}dγd(θ)
}1/2∣∣∣ (6.36)

≤
{∫

Rd

(
W2(θ?]µd, θ

?
] νd)−W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))}

)2
dγd(θ)

}1/2

(6.37)

≤ C1/2
(
Ξd(µd) + Ξd(νd)

)1/2
(6.38)

By (6.6) and Proposition 6.1,
∫

Rd
W2

2(θ?]µd, θ
?
] νd)dγd(θ) = S̃W

2

2(µd, νd) = SW2
2(µd, νd) .

We then obtain the �nal result by rewritting (6.36) as∣∣SW2(µd, νd)−W2{N (0, d−1m2(µd)),N (0, d−1m2(νd))}
∣∣ .

6.6.4 Proof of Proposition 6.3

Proof of Proposition 6.3. This result follows from an analogous translation property of
the Wasserstein distance: by [Peyré and Cuturi, 2019, Remark 2.19], W2 can factor out
translations; in particular, for any ξ, ξ′ ∈ P2(Rd) with respective means mξ,mξ′ and
centered versions ξ̄, ξ̄′,

W2
2(ξ, ξ′) = W2

2(ξ̄, ξ̄′) + ‖mξ −mξ′‖2 . (6.39)

By using (6.39) in the de�nition of SW of order 2 (2.20), we obtain for any µd, νd ∈
P2(Rd),

SW2
2(µd, νd) =

∫

Sd−1

W2
2(θ?] µ̄d, θ

?
] ν̄d)dσ(θ) +

∫

Sd−1

|mθ?]µd
−mθ?] νd

|2dσ(θ) (6.40)

= SW2
2(µ̄d, ν̄d) +

∫

Sd−1

|mθ?]µd
−mθ?] νd

|2dσ(θ) . (6.41)
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By the properties of push-forward measures, mθ?] ξ
= 〈θ,mξ〉 for any θ ∈ Sd−1 and

ξ ∈ P2(Rd). The second term of (6.41) can thus be reformulated as

∫

Sd−1

|mθ?]µd
−mθ?] νd

|2dσ(θ) (6.42)

=

∫

Sd−1

| 〈θ,mµd −mνd〉 |2dσ(θ) (6.43)

= (mµd −mνd)
>
(∫

Sd−1

θθ>dσ(θ)

)
(mµd −mνd) (6.44)

= (1/d) ‖mµd −mνd‖2 , (6.45)

where the last equation results from
∫
Sd−1 θθ

>dσ(θ) = (1/d)Id. The �nal result is ob-
tained by incorporating (6.45) in (6.41).

6.6.5 Error analysis under independence

This section gives a detailed analysis of the error bound under the �rst setting discussed
in Section 6.3.3: we consider sequences of independent random variables which have zero
means and �nite fourth-order moments, and we derive an upper bound for Ξd in the
next proposition.

Proposition 6.7. Let (Xj)j∈N∗ be a sequence of independent random variables with zero
means and E[X4

j ] < +∞ for j ∈ N∗. Set for any d ∈ N∗, X1:d = {Xj}dj=1 and let µd be
the distribution of X1:d. Then, we have

Ξd(µd) ≤ d−1/2
{

max
1≤j≤d

Var[X2
j ]
}1/2

+
{
d−1/4 + d−2/5

}
max

1≤j≤d
Var[Xj ] . (6.46)

Proof of Proposition 6.7. Given the de�nition of Ξd(µd) (6.2), the proof consists in bound-
ing m2(µd), α(µd) and βq(µd) for q ∈ {1, 2}.

Since for any j ∈ {1, . . . , d}, E[Xj ] = 0, then Var
[
Xj

]
= E[X2

j ] and

m2(µd) =
d∑

j=1

E[X2
j ] =

d∑

j=1

Var[Xj ] ≤ d max
1≤j≤d

Var[Xj ] (6.47)

To bound α(µd), we �rst use the Cauchy�Schwarz inequality.

α(µd) ≤
{∫

Rd

(
‖x1:d‖2 − m2(µd)

)2
dµd(x1:d)

}1/2

(6.48)

Besides,
∫
Rd
(
‖x1:d‖2 − m2(µd)

)2
dµd(x1:d) = Var

[
‖X1:d‖2

]
, and since the d components

of X1:d are assumed to be pairwise independent, Var
[
‖X1:d‖2

]
=
∑d

j=1 Var
[
X2
j

]
. We

conclude that

α(µd) ≤




d∑

j=1

Var
[
X2
j

]



1/2

≤
(
d max

1≤j≤d
Var[X2

j ]
)1/2

. (6.49)
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Finally, we bound βq(µd) for q ∈ {1, 2} by bounding β2(µd) then using the fact that
β1(µd) ≤ β2(µd) by the Cauchy�Schwarz inequality. Denote by X ′1:d an independent
copy of X1:d.

〈
X1:d, X

′
1:d

〉2
=
( d∑

j=1

XjX
′
j

)2
=

d∑

j=1

Xj
2X ′j

2
+ 2

∑

i<j

XiX
′
iXjX

′
j . (6.50)

Since X1:d and X ′1:d are independent on one hand, and they both are sequences of d
independent random variables with zero means on the other hand, we have

∫

Rd×Rd
(
〈
x1:d, x

′
1:d

〉
)2d(µd ⊗ µd)(x1:d, x

′
1:d) (6.51)

=

d∑

j=1

E
[
Xj

2
]
E
[
X ′j

2]
=

d∑

j=1

E
[
X2
j

]2
=

d∑

j=1

Var
[
Xj

]2
. (6.52)

Therefore, β2(µd) ≤ (
∑d

j=1 Var[Xj ]
2)1/2 ≤ (dmax1≤j≤d Var[Xj ]

2)1/2. Since X1:d has
�nite second and fourth-order moments,

max
1≤j≤d

Var[Xj ], max
1≤j≤d

Var[X2
j ] <∞ ,

and we get

m2(µd) ≤ d max
1≤j≤d

Var[Xj ], (6.53)

α(µd) ≤ d1/2( max
1≤j≤d

Var[X2
j ])1/2, (6.54)

β1(µd), β2(µd) ≤ d1/2 max
1≤j≤d

Var[Xj ] . (6.55)

The �nal result is obtained by bounding Ξ(µd) using (6.53), (6.54) and (6.55).

Note that the setting considered in Proposition 6.7 was mentioned in [Reeves, 2017]
to illustrate the conditions of [Reeves, 2017, Corollary 3]. We derived an explicit upper
bound of Ξd under this setting for completeness, showing that Ξd(µd) goes to zero as
d → ∞, which we can then use to re�ne the convergence rate in Theorem 6.2, as we
explained in Section 6.3.3.

6.6.6 Error analysis under weak dependence

We now analyze the error under the weak dependence condition introduced in De�-
nition 6.4. Speci�cally, the proposition below gives the formal statement of the result
mentioned before Corollary 6.5: we consider a sequence of fourth-order weakly dependent
random variables, and we prove that Ξ(µd) goes to zero as d → ∞, with a convergence
rate that depends on {ρ(n)}n∈N∗ .
Proposition 6.8. Let (Xj)j∈N∗ be a sequence of random variables which is fourth-order
weakly dependent. Set for any d ∈ N∗, X1:d = {Xj}dj=1 and denote by µd the distribution
of X1:d. Then, there exists a universal constant C > 0 such that

Ξd(µd) ≤ C
{
d−1/2

(
ρ(0) + 2ρ∞

)1/2
+ d−1/4ρ(0)1/2

(
ρ(0)2 + 2ρ∞ max

1≤k≤d−1
ρ(k)

)1/4

+ d−2/5ρ(0)1/5
(
ρ(0)2 + 2ρ∞ max

1≤k≤d−1
ρ(k)

)2/5}
. (6.56)
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Proof of Proposition 6.8. We proceed as in the proof of Proposition 6.7, i.e. by bounding
m2(µd), α(µd) and β2(µd).

Since (Xj)j∈N∗ is assumed to be fourth-order weakly dependent, then by De�ni-
tion 6.4, there exist some constantK ≥ 0 and a nonincreasing sequence of real coe�cients
{ρ(n)}n∈N such that, for any 1 ≤ i ≤ j ≤ d,

|Cov(X2
i , X

2
j )| ≤ Kρ(j − i), |Cov(Xi, Xj)| ≤ Kρ(j − i) . (6.57)

First, using the same arguments as in (6.47), we have m2(µd) =
∑d

j=1 Var[Xj ]. We
then use the second inequality in (6.57) to bound m2(µd) as follows.

m2(µd) =
d∑

j=1

Cov(Xj , Xj) ≤ dKρ(0) (6.58)

Regarding α(µd), we use the Cauchy�Schwarz inequality again (6.48) but in this
setting, the right-hand side features non-zero covariance terms:

∫

Rd

(
‖x1:d‖2 − m2(µd)

)2
dµd(x1:d) = Var

[
‖X1:d‖2

]
(6.59)

=

d∑

j=1

Var
[
X2
j

]
+ 2

∑

i<j

Cov
(
X2
i , X

2
j

)
. (6.60)

By using the �rst inequality in (6.57), we get for any d ∈ N∗,

d∑

j=1

Var
[
X2
j

]
=

d∑

j=1

Cov(X2
j , X

2
j ) ≤ Kdρ(0) , (6.61)

∑

i<j

Cov
(
X2
i , X

2
j

)
≤
∑

i<j

|Cov
(
X2
i , X

2
j

)
| ≤ K

∑

i<j

ρ(j − i) (6.62)

≤ K
d−1∑

n=1

(d− n)ρ(n) (6.63)

≤ Kd
d−1∑

n=1

ρ(n) ≤ Kdρ∞ (6.64)

where (6.63) results from the change of variable n = j − i. Besides, by De�nition 6.4,
{ρ(n)}n∈N is a nonincreasing sequence satisfying

∑+∞
n=0 ρ(n) ≤ ρ∞ < +∞, hence (6.64).

We conclude that for any d ∈ N∗,

α(µd) ≤ d1/2K1/2
(
ρ(0) + 2ρ∞

)1/2
. (6.65)
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Let us now bound β2(µd). First, for any d ∈ N∗,
∫

Rd×Rd
(
〈
x1:d, x

′
1:d

〉
)2d(µd ⊗ µd)(x1:d, x

′
1:d) (6.66)

=

d∑

j=1

E
[
Xj

2
]
E
[
X ′j

2]
+ 2

∑

i<j

E
[
XiXj

]
E
[
X ′iX

′
j

]
(6.67)

=

d∑

j=1

E
[
Xj

2
]2

+ 2
∑

i<j

E
[
XiXj

]2
(6.68)

=

d∑

j=1

Var
[
Xj

]2
+ 2

∑

i<j

Cov(Xi, Xj)
2 , (6.69)

where we used E[Xi] = 0 for any i ≥ 1. To bound (6.69), we apply the second inequality
in (6.57), and adapt the arguments used to prove (6.61) and (6.63), .

d∑

j=1

Var
[
Xj

]2 ≤ K2dρ(0)2 (6.70)

∑

i<j

Cov(Xi, Xj)
2 ≤ K2d

d−1∑

n=1

ρ(n)2 ≤ K2dρ∞ max
1≤n≤d−1

ρ(n) (6.71)

Since
∑+∞

n=0 ρ(n) ≤ ρ∞ <∞, {ρ(n)}n∈N converges to 0 as n→ +∞ and is thus bounded,
so max1≤n≤d−1 ρ(n) <∞. We then use (6.70) and (6.71) in the de�nition of β2(µd), and
β1(µd) ≤ β2(µd), to derive the upper-bound below for any d ∈ N∗.

β1(µd), β2(µd) ≤ d1/2K
{
ρ(0)2 + 2ρ∞ max

1≤n≤d−1
ρ(n)

}1/2
(6.72)

6.6.7 Setup for synthetic experiments

We explain in more details the setup for the synthetic experiments discussed in Sec-
tion 6.4, speci�cally the procedure to generate data. For d ∈ N∗, we generate n = 104

i.i.d. realizations of two random variables in Rd, denoted by X1:d = {Xj}dj=1 and

Y1:d = {Yj}dj=1 and respectively distributed from µd, νd ∈ P2(Rd). The n generated sam-

ples of X1:d and Y1:d are respectively denoted by {x(j)}nj=1, {y(j)}nj=1, with x
(j), y(j) ∈ Rd

for j ∈ {1, . . . , n}. We approximate SW of order 2 between the empirical distributions
of {x(j)}nj=1 and {y(j)}nj=1, given by µ̂d,n = n−1

∑n
j=1 δx(j) and ν̂d,n = n−1

∑n
j=1 δy(j)

respectively. Note that in Section 6.4, these two distributions were denoted by µd, νd
instead of µ̂d,n, ν̂d,n, to simplify the notation.

We �rst consider the setting described in Section 6.6.5, where µd = µ(1) ⊗ · · · ⊗ µ(d)

and νd = ν(1) ⊗ · · · ⊗ ν(d) with µ(j), ν(j) ∈ P4(R) for j ∈ {1, . . . , d}. This means that
{Xj}dj=1 and {Yj}dj=1 are two sequences of d independent random variables. For each

j ∈ {1, . . . , d}, µ(j) (or ν(j)) refers to a Gaussian or a Gamma distribution, centered or
not, as we explain hereafter.
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Gaussian distributions (Figure 6.1a). Here, for j ∈ {1, . . . , d}, we have µ(j) =

N (m
(j)
1 , σ2

1) and ν(j) = N (m
(j)
2 , σ2

2), wherem
(j)
1 , m

(j)
2 are two i.i.d. samples fromN (1, 1),

σ2
1 = 1 and σ2

2 = 10. Therefore, µd = N (m1, Id) and νd = N (m2, 10 Id), where Id de-

notes the identity matrix of size d, and m1 = {m(j)
1 }dj=1, m2 = {m(j)

2 }dj=1 ∈ Rd.

We prove that the SW of order 2 between such Gaussian distributions admits a
closed-form expression: for any m1,m2 ∈ Rd and σ2

1, σ
2
2 > 0,

SW2
2{N (m1, σ

2
1 Id),N (m2, σ

2
2 Id)} =

1

d
‖m1 −m2‖2 + (σ1 − σ2)2 (6.73)

Proof of (6.73). First, given the properties of a�ne transformations of Gaussian random
variables, we know that for any θ ∈ Sd−1, m ∈ Rd and Σ ∈ Rd×d symmetric positive-
de�nite, θ?]N (m,Σ) is the univariate Gaussian distribution N (〈θ,m〉 , θᵀΣθ). Using this

property in the de�nition of SW (2.20) and the fact that ‖θ‖ = 1 for θ ∈ Sd−1,

SW2
2{N (m1, σ

2
1 Id),N (m2, σ

2
2 Id)}

=

∫

Sd−1

W2
2{N (〈θ,m1〉 , σ2

1),N (〈θ,m2〉 , σ2
2)}dσ(θ) (6.74)

=

∫

Sd−1

{
〈θ,m1 −m2〉2 + (σ1 − σ2)2

}
dσ(θ) , (6.75)

where (6.75) results from the closed-form solution of the Wasserstein distance of order
2 between Gaussian distributions (2.10). Besides, by de�nition of the Euclidean inner-
product, for any θ ∈ Sd−1,

〈θ,m1 −m2〉2 =
(
θᵀ(m1 −m2)

)2
= (m1 −m2)ᵀθθᵀ(m1 −m2) . (6.76)

We can thus rewrite (6.75) to obtain

SW2
2{N (m1, σ

2
1 Id),N (m2, σ

2
2 Id)}

= (m1 −m2)ᵀ
{∫

Sd−1

θθᵀdσ(θ)
}

(m1 −m2) + (σ1 − σ2)2 . (6.77)

We conclude by using the fact that
∫
Sd−1 θθ

ᵀdσ(θ) = (1/d)Id.

Gamma distributions (Figure 6.1a). Denote by Γ(k, s) the Gamma distribution

with shape parameter k > 0 and scale s > 0. For j ∈ {1, . . . , d}, µ(j) = Γ(k
(j)
1 , s1) and

ν(j) = Γ(k
(j)
2 , s2), where k

(j)
1 (respectively, k

(j)
2 ) is drawn from the uniform distribution

over [1, 5) (respectively, over [5, 10)), s1 = 2 and s2 = 3.

Centered (Gaussian or Gamma) distributions (Figures 6.1b and 6.2). We �rst
generate {x(j)}nj=1, {y(j)}nj=1 using the Gaussian (or Gamma) distributions described

in the two paragraphs above. Then, we center the data: for j ∈ {1, . . . , n}, x̄(j) =
x(j) − n−1

∑n
i=1 x

(i) and ȳ(j) = y(j) − n−1
∑n

i=1 y
(i). The two distributions that we

compare with SW, referred to as µ̄d, ν̄d in Section 6.4, correspond to the empirical distri-
butions of the centered datasets {x̄(j)}nj=1, {ȳ(j)}nj=1, which can be denoted by µ̄d,n and
ν̄d,n.
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We prove in the next proposition that our theoretical bounds derived in Section 6.6.5
can be improved for centered Gaussian distributions: in this setting, the expected ap-
proximation error is upper-bounded by a term in d−1/2, which is consistent with the
slope observed in Figure 6.1b.

Proposition 6.9. For d ∈ N∗, let µd = N (m1, σ
2
1Id) and νd = N (m2, σ

2
2Id), and denote

by µ̄d, ν̄d their centered versions, i.e. µ̄d = N (0, σ2
1Id) and ν̄d = N (0, σ2

2Id). Consider
the empirical distributions µ̄d,n, ν̄d,n given by

µ̄d,n = (1/n)
n∑

j=1

δ
(X

(j)
1:d−X̄1:d)

, ν̄d,n = (1/n)
n∑

j=1

δ
(Y

(j)
1:d−Ȳ1:d)

, (6.78)

where {X(j)
1:d}nj=1 (respectively, {Y (j)

1:d }nj=1) is a sequence of n random variables i.i.d. from

µd (respectively, from νd), X̄1:d = n−1
∑n

j=1X
(j)
1:d, and Ȳ1:d = n−1

∑n
j=1 Y

(j)
1:d . Then,

E
∣∣SW2(µ̄d, ν̄d)−W2{N (0, d−1m2(µ̄d,n)),N (0, d−1m2(ν̄d,n))}

∣∣ ≤ σ1 + σ2

(2dn)1/2
+O

(
1

dn

)
,

where E is the expectation with respect to {X(j)
1:d}nj=1 and {Y

(j)
1:d }nj=1, and m2(µ̄d,n), m2(ν̄d,n)

are de�ned in (6.3): m2(µ̄d,n) = n−1
∑n

j=1 ‖X
(j)
1:d − X̄1:d‖2, m2(ν̄d,n) = n−1

∑n
j=1 ‖Y

(j)
1:d −

Ȳ1:d‖2.

Proof of Proposition 6.9. Given the closed-form expressions in (6.73) and (2.10), we have

E
∣∣SW2(µ̄d, ν̄d)−W2{N (0, d−1m2(µ̄d,n)),N (0, d−1m2(ν̄d,n))}

∣∣

= E
∣∣|σ1 − σ2| − |d−1/2m2(µ̄d,n)1/2 − d−1/2m2(ν̄d,n)1/2|

∣∣

≤ E
∣∣σ1 − σ2 − d−1/2m2(µ̄d,n)1/2 + d−1/2m2(ν̄d,n)1/2

∣∣ (6.79)

≤ E
∣∣σ1 − d−1/2m2(µ̄d,n)1/2

∣∣+ E
∣∣σ2 − d−1/2m2(ν̄d,n)1/2

∣∣ . (6.80)

where (6.79) results from applying the reverse triangle inequality, and (6.80) follows from
the triangle inequality and the linearity of the expectation.

The �nal result follows from bounding from above the two terms in (6.80), i.e. E
∣∣σ1−

d−1/2m2(µ̄d,n)1/2
∣∣ and E

∣∣σ2−d−1/2m2(ν̄d,n)1/2
∣∣. First, by the Cauchy�Schwarz inequality,

E
∣∣σ1 − d−1/2m2(µ̄d,n)1/2

∣∣ ≤
{
E
[
(σ1 − d−1/2m2(µ̄d,n)1/2)2

]}1/2
, (6.81)

with

E
[
(σ1 − d−1/2m2(µ̄d,n)1/2)2

]
= σ2

1 − 2σ1d
−1/2E[m2(µ̄d,n)1/2] + E[d−1m2(µ̄d,n)] . (6.82)

Consider the random variable de�ned as Z =
√∑dn

i=1

{
(Xi − X̄)2/σ2

1

}
, where {Xi}dni=1

are i.i.d. from N (0, σ2
1) and X̄ = (dn)−1

∑dn
i=1Xi. Then, by Cochran's theorem, Z is

distributed from the chi distribution with dn− 1 degrees of freedom. This implies that,

E[d−1m2(µ̄d,n)] = σ2
1

dn− 1

dn
,

E[Z] =
√

2
Γ(dn/2)

Γ((dn− 1)/2)
=
√
dn− 1

[
1− 1

4dn
+O

(
1

(dn)2

)]
.
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Hence, (6.82) boils down to

E
[
(σ1 − d−1/2m2(µ̂d,n)1/2)2

]
= σ2

1

[
2− 1

dn
− 2

(
1− 1

dn

)1/2{
1− 1

4dn
+O

(
1

(dn)2

)}]
.

(6.83)

Besides, we know that

(
1− 1

dn

)1/2

= 1− 1

2dn
+O

(
1

(dn)2

)
, (6.84)

so we can write (6.83) as

E
[
(σ1 − d−1/2m2(µ̂d,n)1/2)2

]
=

σ2
1

2dn
+O

(
1

(dn)2

)
. (6.85)

By plugging (6.85) in (6.81), we conclude that

E
∣∣σ1 − d−1/2m2(µ̂d,n)1/2

∣∣ ≤ σ1

(2dn)1/2
+O

(
1

dn

)
. (6.86)

We can use the same reasoning to prove that

E
∣∣σ2 − d−1/2m2(ν̂d,n)1/2

∣∣ ≤ σ2

(2dn)1/2
+O

(
1

dn

)
, (6.87)

and we use (6.86) and (6.87) to bound (6.80), which concludes the proof.

We move on to the explanation of autoregressive processes: let (Xj)j∈N∗ be an autore-
gressive process of order 1 de�ned as X1 = ε1 and for t ∈ N∗, t > 1, Xt = αXt−1 + εt,
where α ∈ [0, 1) and (εj)j∈N∗ is a sequence of i.i.d. real random variables such that
E[ε1] = 0 and E[ε2

1] <∞.
For d ∈ N∗ and B = 104, we generate n realizations of {Xj}B+d

j=B+1 ∈ Rd using the

aforementionned recursion. This gives us our �rst dataset {x(j)}nj=1, where x
(j) ∈ Rd for

j ∈ {1, . . . , n}. Note that the �rst B steps of the process are discarded in order to reach
its stationary regime (which exists since |α| < 1), and thus meet the weak dependence
condition [Doukhan and Neumann, 2008]. We repeat the same procedure to obtain the
second dataset, {y(j)}nj=1. Since the two datasets are generated using the same AR(1)
model, µd and νd are the same distribution, so the exact value of SW is zero.

We conducted our experiments on two types of AR(1) processes, which di�er from
the distribution used to draw n i.i.d. samples of {εj}B+d

j=1 . The two settings are speci�ed
below.

Gaussian noise (Figure 6.1c). For j ∈ {1, . . . , B + d}, εj ∼ N (0, 1).

Student's t noise (Figure 6.1d). Denote by t(r) the Student's t distribution with
r > 0 degrees of freedom. For j ∈ {1, . . . , B + d}, εj ∼ t(10).

Finally, we specify that the experiment comparing the computation time of our
methodology against Monte Carlo estimation (Figure 6.2) was conducted on a daily-
use laptop equipped with 8 × Intel Core i7-8650U CPU @ 1.90GHz, 16GB of RAM.
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6.6.8 Experimental details for image generation

Architecture. For each model (SWG, reg-SWG or reg-det-SWG), we used the ar-
chitectures described in [Deshpande et al., 2018]: the �Conv & Deconv� generator and
discriminator in [Deshpande et al., 2018, Section D] for MNIST, and DCGAN [Radford
et al., 2016] with layernorm for both the generator and discriminator for CelebA.

Data preprocessing. For MNIST, we do not apply any speci�c preprocessing. For
CelebA, each image is cropped at the center and resized to 140×140 (using the notation
width × height, both in pixels), then resized to 64× 64.

Optimization. For each model, we used the same optimization routine as in [Desh-
pande et al., 2018]: one training iteration consists in performing one update for the
generator then one update for the discriminator, both with the default setting of Adam
[Kingma and Ba, 2015] (i.e. β1 = 0.9, β2 = 0.999, ε = 10−8). The values of other
important hyperparameters are given in Table 6.2.

Dataset Batch size Learning rate Total number of epochs

MNIST 512 5× 10−4 200

CelebA 64 1× 10−4 20

Table 6.2: Hyperparameters used when training each model.

Regularization parameters. For reg-SWG and reg-det-SWG, we tuned the reg-
ularization coe�cients (λ1, λ2) via cross-validation: we trained the models for λ1 ∈
{10−3, 10−2, 10−1, 1} and λ2 ∈ {0, 10−3, 10−2, 10−1, 1}, and selected the tuple that min-
imizes the average FID over 5 runs.

Computing infrastructure. The FID and computation times on GPU reported in
Table 6.1 (columns �FID�, �TSW, GPU� and �Ttot, GPU�) were obtained by training
each model on a computer cluster equipped with 3 GPUs (NVIDIA Tesla V100-PCIE-
32GB and 2 × NVIDIA Tesla V100-PCIE-16GB) for CelebA, and with 1 GPU (NVIDIA
GP100GL, Tesla P100 PCIe 16GB) for MNIST.

To obtain the computation times on CPU (Table 6.1, columns �TSW, CPU� and
�Ttot, CPU�), we used a workstation equipped with 24 × Intel Xeon CPU E5-2620 v3 @
2.40GHz.
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Chapter 7

Statistical and Topological

Properties of Sliced Probability

Divergences

This chapter is based on [Nadjahi et al., 2020b].

The idea of slicing divergences has been proven to be successful when comparing
two probability measures in various machine learning applications including generative
modeling, and consists in computing the expected value of a �base divergence� between
one-dimensional random projections of the two measures. However, the topological,
statistical, and computational consequences of this technique have not yet been well-
established.

In this chapter, we aim at bridging this gap and derive various theoretical properties
of sliced probability divergences. First, we show that slicing preserves the metric axioms
and the weak continuity of the divergence, implying that the sliced divergence will share
similar topological properties. We then precise the results in the case where the base
divergence belongs to the class of integral probability metrics. On the other hand, we
establish that, under mild conditions, the sample complexity of a sliced divergence does
not depend on the problem dimension. We �nally apply our general results to several
base divergences, and illustrate our theory on both synthetic and real data experiments.

7.1 Introduction

Most inference methods in implicit generative modeling rely on the use of a particular
divergence in order to be able to discriminate probability distributions. Recent advances
in this �eld have illustrated that the choice of this divergence is of crucial importance
since it can lead to very di�erent practical and theoretical properties (Chapter 1). In
this context, �sliced� probability divergences, such as Sliced-Wasserstein or Sliced-Cramér
[Kolouri et al., 2020a], have become increasingly popular.

This slicing strategy has been essentially motivated by two main purposes. The
�rst purpose is that some probability divergences are only de�ned to compare measures
supported on one-dimensional spaces (e.g., Cramér distance, Cramér [1928]); hence,
the slicing operation allows the use of such divergences to multivariate distributions
[Knop et al., 2020, Kolouri et al., 2020a]. The second purpose arises when the com-
putational complexity of a divergence becomes excessive when comparing measures on

121
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high-dimensional spaces, but can e�ciently be computed in the univariate case (e.g.,
the Wasserstein distance (2.12)). The slicing operation then leverages these advantages
originally available in one dimension to de�ne divergences achieving computational ef-
�ciency on multivariate settings [Rabin et al., 2012, Deshpande et al., 2019, Paty and
Cuturi, 2019, Kolouri et al., 2019b, Vayer et al., 2019].

Even though various sliced divergences have successfully been deployed in practical
applications, their theoretical properties have not yet been well understood, and exist-
ing results are largely restricted to the speci�c case of the Sliced-Wasserstein distance.
Besides, some properties of SW have only been characterized for speci�c settings, in
particular its statistical bene�ts observed in practice [Deshpande et al., 2018, 2019]. In
this chapter, we aim to bridge this gap by investigating the theoretical properties of
sliced probability divergences from a general point of view: since such divergences are all
characterized via the same slicing operation, we explore in depth the topological and sta-
tistical implications of this operation. Speci�cally, we consider a generic base divergence
∆ between one-dimensional probability measures, and de�ne its sliced version, denoted
by S∆, which operates on multivariate settings.

We �rst establish several topological properties of S∆. Thanks to our general ap-
proach, our �ndings can directly be applied to any instance of sliced divergence, including
those motivated by the two aforementioned purposes. Speci�cally, we show that slicing
preserves the metric properties: if ∆ is a metric, so is S∆ (Proposition 7.1). We then
focus on �ner topological properties of S∆ and show in Theorem 7.2 that, if the con-
vergence in ∆ implies the weak convergence of measures (or conversely), then slicing
preserves this property, i.e. the convergence in S∆ implies the weak convergence of
measures (or conversely). We also consider the case when ∆ is an integral probability
metric (De�nition 2.3) and identify su�cient conditions for S∆ to be upper-bounded by
∆, which implies that S∆ induces a weaker topology (Theorem 7.4). Similarly, we iden-
tify su�cient conditions such that ∆ and S∆ are strongly equivalent (Corollary 7.6),
meaning that ∆ is upper- and lower-bounded by S∆.

Then, we derive the following statistical properties of S∆: we prove that the �sample
complexity� of S∆ is proportional to the sample complexity of ∆ for one-dimensional
measures, and does not depend on the dimension d (Theorems 7.7, 7.8). This property
explains why any S∆ motivated by the second purpose o�ers statistical bene�ts when
the original divergence su�ers from the curse of dimensionality. However, this comes with
a caveat: we show that, if one approximates the expectation over the random projections
that appears in S∆ with a Monte Carlo average, which is the most common practice,
then an additional variance term appears in the sample complexity and can limit the
performance of S∆ in high dimensions (Theorem 7.9). Our results agree with the recent
empirical observations reported in [Deshpande et al., 2019], which motivated Chapters 5
and 6, and provide a better understanding for them.

We illustrate all our theoretical �ndings on various examples, which demonstrate
their applicability. In particular, our general topological analysis allows us to establish
a novel result for the Sliced-Cramér distance. We also derive a sample complexity result
for SW which has never been shown before, under di�erent assumptions on the mea-
sures to be compared. We then consider Sinkhorn divergences (De�nition 2.7), whose
sample complexity is known to have an exponential dependence on the dimension d and
regularization parameter ε (Theorem 2.8), and introduce its sliced version, referred to
as the Sliced-Sinkhorn divergence. We prove that this new divergence has several mer-
its: we derive its sample complexity by combining our general results with recent work
[Genevay et al., 2019, Mena and Niles-Weed, 2019], and obtain rates that do not depend
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on d nor on ε. We also show that this divergence improves the worst-case computational
complexity bounds of Sinkhorn divergences in Rd. Finally, we support our theory with
numerical experiments on synthetic and real data.

7.2 Sliced Probability Divergences

In this section, we de�ne the family of Sliced Probability Divergences, then we present
our theoretical contributions regarding their topological and statistical properties. We
provide all the proofs in Sections 7.6.1 and 7.6.3.

7.2.1 De�nition

Consider a �base divergence� ∆ : P(R)×P(R)→ R+ ∪{∞} which measures the dissim-
ilarity between two probability measures on R, and let p ∈ [1,∞). We de�ne the Sliced
Probability Divergence of order p associated to ∆, denoted by S∆p, for µ, ν ∈ P(Rd) as

S∆p
p(µ, ν) =

∫

Sd−1

∆p(θ?]µ, θ
?
] ν)dσ(θ) . (7.1)

We assume that θ 7→ ∆p(θ?]µ, θ
?
] ν) is measurable so that (7.1) is well-de�ned. This can

easily be checked if (µ′, ν ′) 7→ ∆(µ′, ν ′) is continuous for the weak topology on P(R),
since this implies θ 7→∆p(θ?]µ, θ

?
] ν) is continuous.

In practice, since the integration over Sd−1 in (7.1) does not admit an analytical form
in general, it is approximated with a simple Monte Carlo scheme (e.g., Section 2.6, Vayer
et al. [2019], Kolouri et al. [2020a]). The Monte Carlo estimate of S∆p obtained with L
random projection directions is de�ned as

Ŝ∆
p

p,L(µ, ν) =
1

L

∑L

l=1
∆p
(
θ?l]µ, θ

?
l]ν
)
, (7.2)

with {θl}Ll=1 i.i.d. from σ and θ?l (x) = 〈θl, x〉. Since each term of the sum in (7.2)
can be computed independently from each other, the approximation of SPDs can be
carried out in parallel, which constitutes a nice practical feature. Recent work [Paty
and Cuturi, 2019, Deshpande et al., 2019] has shown that sampling many projection
directions uniformly on the sphere might not be the best strategy, in the sense that
some directions can be more helpful than others to discriminate the two distributions at
hand. However, the Monte Carlo estimate based on uniform sampling (7.2) is the most
common method used in practice to approximate sliced divergences, hence we focus on
this approximation throughout the rest of the chapter.

7.2.2 Topological properties

We provide several results to describe the topology induced by SPDs, given the properties
of base divergences. We �rst relate in Proposition 7.1 the metric properties of ∆ and
S∆p, p ∈ [1,∞).

Proposition 7.1. (i) If ∆ is non-negative (or symmetric), then S∆p is non-negative
(symmetric resp.).

(ii) If ∆ satis�es for µ′, ν ′ ∈ P(R), ∆(µ′, ν ′) = 0 if and only if µ′ = ν ′, then for
µ, ν ∈ P(Rd), S∆p(µ, ν) = 0 if and only if µ = ν.
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(iii) If ∆ is a metric, then S∆p is a metric.

Next, we extend our result stated in Theorem 3.1, which showed that the convergence
under SW implies the weak convergence of probability measures: we prove that this
property holds for the general class of SPDs, but also that the converse implication is
true, provided that ∆ is weakly continuous. We refer to Section 2.1 for the de�nitions of
convergence under a probability divergence, weak convergence of probability measures,
and weak continuity.

Theorem 7.2. Let p ∈ [1,∞) and ∆ be a non-negative base divergence.

(i) If the convergence under ∆ implies the weak convergence in P(R), then the conver-
gence under S∆p implies the weak convergence in P(Rd).

(ii) If ∆ is bounded and the weak convergence in P(R) implies the convergence under
∆, then the weak convergence in P(Rd) implies the convergence under S∆p.

We now focus on IPMs and formally de�ne Sliced-IPMs, before providing �ner topo-
logical results. We introduce the following notations. Let X be a closed and measurable
subset of Rd. M(X) denotes the set of real-valued measurable functions on X, Mb(X) is
the set of bounded functions of M(X), and Bd(0, R) =

{
x ∈ Rd : ‖x‖ < R

}
is the open

ball in Rd of radius R > 0 centered around 0 ∈ Rd.

De�nition 7.3. Let F̃ ⊂ Mb(R) and p ∈ [1,∞). The Sliced Integral Probability Metric
of order p associated with F̃, denoted by Sγ

F̃,p
, is de�ned for any µ, ν ∈ P(Rd) as

(Sγ
F̃,p

)p(µ, ν) =

∫

Sd−1

γp
F̃
(θ?]µ, θ

?
] ν)dσ(θ) .

Since γ
F̃
is a pseudo-metric, Sγ

F̃,p
is a pseudo-metric as well by Proposition 7.1. We

now identify some regularity conditions on the function classes F and F̃ such that we are
able to show that Sliced-IPMs can be bounded above and below by IPMs. Note that for
the next results, we will assume that the supremum in (2.1) is attained. This property
is for example veri�ed for W1 and MMD, by [Villani, 2008] and [Gretton et al., 2012]
respectively.

Theorem 7.4. Let F̃ ⊂Mb(R), F ⊂Mb(Rd), and assume that
{
f : Rd → R : f = f̃ ◦ θ?, with f̃ ∈ F̃, θ ∈ Sd−1

}
⊂ F .

Then, for any p ∈ [1,∞) and µ, ν ∈ P(Rd), Sγ
F̃,p

(µ, ν) ≤ γF(µ, ν).

Theorem 7.4 states that Sγ
F̃,p

induces a weaker topology, which is computationally ben-

e�cial as argued in Arjovsky et al. [2017], but also indicates that Sγ
F̃,p

comes with less
discriminative power, which can be restrictive for hypothesis testing applications such
as in [Gretton et al., 2012].

We now derive a lower-bound on compact domains.

Theorem 7.5. Let µ, ν ∈ P(Rd), with support included in Bd(0, R). Let G ⊂ Mb(Rd)
and suppose that there exists L ≥ 0 such that for any g ∈ G, g is L-Lipschitz continuous.
Consider a class of functions G̃ satisfying

G̃ ⊃ {g̃ : R→ R : there exist x ∈ Rd, θ ∈ Sd−1, g ∈ G

such that g̃(t) = g(x− θt) for any t ∈ R} .
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Furthermore, suppose that Sγ
G̃,p

is bounded. Then, for any p ∈ [1,+∞), there exists
Cp > 0 such that

γG(µ, ν) ≤ Cp Sγ
G̃,p

(µ, ν)1/(d+1) . (7.3)

One can show that the exponent 1/(d+ 1) in (7.3) is intrinsic to slicing, hence cannot
be avoided. By combining Theorems 7.4 and 7.5, we �nally establish a strong equivalence
result below, which implies that the convergence of probability measures in Sγ

G̃,p
is

equivalent to the convergence in γG.

Corollary 7.6. Let µ, ν ∈ P(Rd), with support included in Bd(0, R), and let G ⊂
Mb(Rd). Assume that the conditions of Theorems 7.4 and 7.5 are satis�ed. Then, for
any p ∈ [1,+∞), there exists Cp ≥ 0 independent of µ, ν such that

Sγ
G̃,p

(µ, ν) ≤ γG(µ, ν) ≤ Cp Sγ
G̃,p

(µ, ν)1/(d+1) .

Our analysis on IPMs builds on [Bonnotte, 2013, Chapter 5.1], which contains anal-
ogous results for the Sliced-Wasserstein distance only. The novelty of Theorems 7.4 and
7.5 is the identi�cation of the relationships between the function classes F̃,F and G̃,G,
which might provide a useful guideline for practitioners interested in slicing any IPM, and
cannot be directly obtained from [Bonnotte, 2013]. We further illustrate these relations
in Section 7.6.2 for classical instances of IPMs.

7.2.3 Statistical properties

In most practical applications, we have at hand �nite sets of samples drawn from un-
known underlying distributions. An important question is then the bound of the error
made when approximating a divergence with �nitely many samples: given S∆p and any
µ, ν ∈ P(Rd), our goal is to quantify the sample complexity of S∆p, i.e. the conver-
gence rate of S∆p(µ̂n, ν̂n) to S∆p(µ, ν) according to n. We show in Theorem 7.7 that
the sample complexity of any SPD is proportional to the sample complexity of the base
divergence, and more importantly, does not depend on d.

Theorem 7.7. Let p ∈ [1,∞). Suppose that ∆p admits the following sample complexity:
for any µ′, ν ′ ∈ P(R) with respective empirical measures µ̂′n, ν̂

′
n,

E
∣∣∆p(µ′, ν ′)−∆p(µ̂′n, ν̂

′
n)
∣∣ ≤ β(p, n) .

Then, for any µ, ν ∈ P(Rd) with respective empirical measures µ̂n, ν̂n, the sample com-
plexity of S∆p is given by

E
∣∣S∆p

p(µ, ν)− S∆p
p(µ̂n, ν̂n)

∣∣ ≤ β(p, n) .

If ∆ is a bounded pseudo-metric and we have a direct control over the convergence rate
of empirical measures in ∆, we can further derive the following result.

Theorem 7.8. Let p ∈ [1,∞). Assume that for any µ′ ∈ P(R) with empirical measure
µ̂′n,

E|∆p(µ̂′n, µ
′)| ≤ α(p, n) .

Then, for any µ ∈ P(Rd) with empirical measure µ̂n, we have

E
∣∣S∆p

p(µ̂n, µ)
∣∣ ≤ α(p, n) .

Besides, if ∆ is non-negative, symmetric, and satis�es the triangle inequality, then

E |S∆p(µ, ν)− S∆p(µ̂n, ν̂n)| ≤ 2 α(p, n)1/p .
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So far, our results show that slicing preserves some useful topological properties of
the base divergence, and additionally o�ers a dimension-free sample complexity. On the
other hand, slicing results in less discriminant divergences, as we mentioned for IPMs
(Theorem 7.4), and in such a case, the improvement in the sample complexity might be
less signi�cant. More analysis is required to understand the potential reduction in the
discriminative power, and we leave it out of scope of this study.

In practice, SPDs also induce an approximation error due to the Monte Carlo estimate
(7.2). We use the term projection complexity to refer to the convergence rate of Ŝ∆p,L

to S∆p as a function of the number of projections L.

Theorem 7.9. Let p ∈ [1,∞) and µ, ν ∈ P(Rd). Then, the error made with the Monte
Carlo estimation of S∆p can be bounded as follows

{
E
∣∣Ŝ∆

p

p,L(µ, ν)− S∆p
p(µ, ν)

∣∣
}2

≤ L−1

∫

Sd−1

{
∆p(θ?]µ, θ

?
] ν)− S∆p

p(µ, ν)
}2

dσ(θ) . (7.4)

By de�nition of S∆p
p(µ, ν), Theorem 7.9 illustrates that the quality of the Monte Carlo

estimates is impacted by the number of projections as well as the variance of the evalua-
tions of the base divergence. This behavior has previously been empirically observed in
di�erent scenarios [Deshpande et al., 2019, Paty and Cuturi, 2019], and paved the way
for the max-sliced distances and our methodologies in Chapters 5 and 6.

We now leverage Theorems 7.7 and 7.9 to derive the overall complexity of sliced di-
vergences, i.e. the convergence rate of Ŝ∆p(µ̂n, ν̂n) to S∆p(µ, ν).

Corollary 7.10. Let p ∈ [1,∞) and µ, ν ∈ P(Rd). Denote by µ̂n (respectively, ν̂n)
the empirical distribution computed over a sequence of i.i.d. random variables X1:n =
{Xk}nk=1 from µ (resp., Y1:n = {Yk}nk=1 from ν). Assume ∆p admits the following
sample complexity: for any µ′, ν ′ ∈ P(R) and empirical instantiations µ̂′n, ν̂

′
n,

E[
∣∣∆p(µ′, ν ′)−∆p(µ̂′n, ν̂

′
n)
∣∣] ≤ β(p, n) .

Then,

E
[
|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ, ν)|

]

≤ β(p, n) + L−1/2

[∫

Sd−1

E
[ (

∆p(θ?] µ̂n, θ
?
] ν̂n)− S∆p

p(µ̂n, ν̂n)
)2 ]

dσ(θ)

]1/2

,

where Ŝ∆
p

p,L(µ̂n, ν̂n) is de�ned by (7.2), and E is the expectation w.r.t. X1:n, Y1:n and
{θl}Ll=1 i.i.d. from the uniform distribution on Sd−1.

Hence, the overall complexity
∣∣Ŝ∆p,L(µ̂n, ν̂n)−S∆p(µ, ν)

∣∣ is bounded by the sum of
the sample and the projection complexities. This result is useful as it helps understanding
the behavior of sliced divergences in most practical applications, where S∆p(µ, ν) is
approximated using �nite sets of samples drawn from µ and ν along with Monte Carlo
estimates.
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7.3 Applications

We already referred to Section 7.6.2, which contains applications of Theorems 7.4 and 7.5
to classical instances of IPMs in order to clarify the assumptions of these theorems. In
this section, we apply the rest of our topological and statistical results to speci�c sliced
divergences and present the interesting properties that we obtained. Our goal is to
further illustrate the signi�cance of the general theoretical analysis that we conducted
in the previous section. In particular, we will introduce a novel divergence based on
Sinkhorn divergences, and provide theoretical results that emphasize its statistical and
computational advantages. The associated proofs are given in Sections 7.6.4 to 7.6.6.

7.3.1 Topology induced by the Sliced-Cramér distance

First, Theorem 7.2 can be applied to various base divergences (e.g., see those listed in
[Gibbs and Su, 2002, Theorem 6]) and foster interesting applications. In particular,
we focus on the Cramér distance [Cramér, 1928] and its sliced version [Knop et al.,
2020, Kolouri et al., 2020a], whose de�nitions are recalled in De�nitions 7.11 and 7.12
respectively.

De�nition 7.11 (Cramér distance). Let p ∈ [1,∞) and µ, ν ∈ P(R). Denote by Fµ, Fν
the cumulative distribution functions of µ, ν respectively. The Cramér distance of order
p between µ and ν is de�ned by

Cp
p(µ, ν) =

∫

R
|Fµ(t)− Fν(t)|p dt . (7.5)

By [Dedecker and Merlevède, 2007, Lemma 1], the Cramér distance can be written as
an IPM.

De�nition 7.12 (Sliced-Cramér distance). Let p ∈ [1,∞) and µ, ν ∈ P(Rd). The
Sliced-Cramér distance of order p between µ and ν is de�ned by

SCp
p(µ, ν) =

∫

Sd−1

Cp
p(θ

?
]µ, θ

?
] ν)dσ(θ) . (7.6)

We establish theoretical guarantees which, to the best of our knowledge, have not
been proved before: we show that convergence under the Sliced-Cramér distance implies
weak convergence in P(Rd), and the converse is true for measures supported on a compact
space.

Corollary 7.13. Let p ∈ [1,∞). For any sequence (µk)k∈N in P(Rd) and µ ∈ P(Rd),
limk→∞ SCp

(
µk, µ

)
= 0 implies (µk)k∈N converges weakly to µ.

Besides, if (µk)k∈N and µ are supported on a compact space K ⊂ Rd, then the converse
implication holds, meaning that the convergence under SCp is equivalent to the weak
convergence in P(K).

Theorem 7.2 also applies to the broader class of Sliced-IPMs, assuming a density
property for the space of functions associated with the base IPM. We provide the formal
statements and proofs of these results in Section 7.6.4.
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7.3.2 Sample complexity of the Sliced-Wasserstein distance

Then, we derive the sample complexity of SWp under di�erent moment conditions.
While previous works have illustrated the statistical bene�ts of SW, our next corollary
establishes a novel result.

Corollary 7.14. Let p ∈ [1,∞), q > p, and µ, ν ∈ Pq(Rd) with corresponding empirical
measures µ̂n, ν̂n. We use the notation

M1/q
q (µ, ν) = M1/q

q (µ) +M1/q
q (ν) ,

whereMq(ζ) refers to the moment of order q of ζ ∈ Pq(Rd). Then, there exists a constant
Cp,q depending on p, q such that

E
∣∣SWp(µ̂n, ν̂n)− SWp(µ, ν)

∣∣

≤ C1/p
p,q M

1/q
q (µ, ν)





n−1/(2p) if q > 2p,

n−1/(2p) log(n)1/p if q = 2p,

n−(q−p)/(pq) if q ∈ (p, 2p).

(7.7)

Corollary 7.14 completes the literature on the sample complexity of SW: [Deshpande
et al., 2019] derived the sample complexity for Gaussian distributions only and [Manole
et al., 2019] provided con�dence intervals which partially cover our result.

7.3.3 Sliced-Sinkhorn divergences

We now introduce a new family of probability divergences obtained by slicing the regu-
larized OT cost and Sinkhorn divergences, and called Sliced-Sinkhorn divergences (SSD):
for p ∈ [1,∞), ε ≥ 0 and µ, ν ∈ Pp(Rd),

SWp,ε(µ, ν) =

∫

Sd−1

Wp,ε(θ
?
]µ, θ

?
] ν) dσ(θ),

SWp,ε(µ, ν) =

∫

Sd−1

Wp,ε(θ
?
]µ, θ

?
] ν) dσ(θ) (7.8)

We show that these divergences enjoy interesting statistical and computational proper-
ties. For clarity purposes, our results are only presented for SWp,ε, but also apply for
SWp,ε. Since Wp,ε is not an IPM, we �rst derive a topological property analogous to
Theorem 7.4.

Theorem 7.15. Let p ∈ [1,∞) and ε ≥ 0. For any µ, ν ∈ Pp(Rd),

SWp,ε(µ, ν) ≤Wp,ε(µ, ν) .

Next, we show that on compact domains, while the sample complexity of regularized
OT exponentially worsens as ε decreases [Genevay et al., 2019, Theorem 3], the sample
complexity of SSD does not depend on ε.

Theorem 7.16. Let X be a compact subset of Rd, p ∈ [1,∞) and µ, ν ∈ P(X), with
respective empirical instanciations µ̂n, ν̂n. Then, there exists a constant C(µ, ν) that
depends on the moments of µ and ν, such that

E
∣∣SWp,ε(µ̂n, ν̂n)− SWp,ε(µ, ν)

∣∣ ≤ diam(X)C(µ, ν)n−1/2 .
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In practice, we approximate SSD by using (7.2). The estimator corresponds to ran-
domly picking a �nite set of directions and solving, for each direction, a regularized
OT problem in R. To obtain solutions associated to the regularized Wasserstein cost,
a method which is now standard is the Sinkhorn's algorithm: more details are given in
Section 2.5 and at the end of Section 7.6.6. In particular, if we use the squared Euclidean
ground cost and consider the empirical measures µ̂n, ν̂n on Rd associated to the observa-
tions (xi)

n
i=1, (yj)

n
j=1 respectively, computing Wp,ε(µ̂n, ν̂n) has a worst-case convergence

rate that depends on

C(µ̂n, ν̂n) = max
i,j∈{1,...,n}

‖xi − yj‖2
ε

.

See also [Altschuler et al., 2017] for a sublinear rate with a better constant, still depend-
ing on this quantity. The rate for Wp,ε(θ

?
] µ̂n, θ

?
] ν̂n), with θ ∈ Sd−1, then depends on

C(θ?] µ̂n, θ
?
] ν̂n) = maxi,j∈{1,...,n} ‖ 〈θ, xi − yj〉 ‖2/ε.

We show in Proposition 7.17 that with high probability, C(θ?] µ̂n, θ
?
] ν̂n) is smaller than

C(µ̂n, ν̂n) by a factor of d at least, unless n grows super-polynomially with d. Our result,
combined with the parallel computation of (7.2), implies that slicing the regularized OT
may lead to signi�cant computational bene�ts.

Proposition 7.17. Let (xi)
n
i=1 be a set of vectors in Rd such that

max
i,j
‖xi − xj‖22 ≤ R2 ,

and θ chosen uniformly at random on Sd−1. Then for δ ∈ (0, 1], it holds with probability
1− δ,

max
i,j
|〈θ, xi − xj〉|2 ≤

2R2

d
log(
√

2πn2/δ) .

Finally, we note that an advantage of the Sinkhorn divergence over the Wasserstein
distance is that the former is always di�erentiable [Feydy et al., 2019, Proposition 2] while
the latter is not. This property, which is crucial in di�erential programming pipelines,
suggests that SSD is potentially better-behaved than SW in tasks such as generative
modeling. We leave its analysis to future work.

7.4 Experiments

We present the numerical experiments that we conducted to illustrate our theoretical
�ndings, and we provide the code to reproduce them1. We also provide additional em-
pirical results in Section 7.6.7.

We �rst verify that IPMs and Sinkhorn divergences are bounded below by their sliced
versions, as demonstrated in Theorems 7.4 and 7.15 respectively. Consider n = 1000
observations i.i.d. from N (0, σ2

?Id), with σ2
? = 4. We generate n i.i.d. samples from

N (0, σ2Id) for σ
2 varying between 0.1 and 9. We compute MMD between the empirical

distributions of the observations and the generated datasets, as well as the Wasserstein
distance of order 1 and normalized Sinkhorn divergence (7.8) with order 1 and ε = 1.
We used a Gaussian kernel for MMD combined with the heuristic proposed in [Gretton
et al., 2012], which sets the kernel width to be the median distance over the aggregated
data, and we approximated this discrepancy with the biased estimator in [Gretton et al.,

1See our GitHub repository: https://github.com/kimiandj/sliced_div

https://github.com/kimiandj/sliced_div
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Figure 7.1: (Sliced-)Divergences between two sets of 1000 samples in R10 i.i.d. from
N (0, 4I) and N (0, σ2I), for varying σ2.

2012, Equation 5]. Then, we compute Sliced-Wasserstein, Sliced-Sinkhorn and Sliced-
MMD. Each of these sliced divergences was approximated with a Monte Carlo estimate
based on 50 randomly picked projections. Figure 7.1 reports the divergences against σ2

for d = 10. Results are averaged over 10 runs, and for clarity reasons, we do not plot
the error bands (based on the 10th-90th percentiles) as these were very tight.

The curves for Wasserstein, Sinkhorn and MMD are above their respective sliced
version's ones, as predicted by our theoretical bounds. This �gure also illustrates the
statistical bene�ts induced by slicing: all sliced divergences attain their minimum at σ?,
while Wasserstein and Sinkhorn fail at this. This observation is in line with [Bellemare
et al., 2017], where the authors showed that both the minimum point and gradients of
the Wasserstein distance have a bias, which can be prominent unless n is large enough.
MMD performs well in this task, and this can be explained by its dimension-free sample
complexity. In that sense, Sliced-MMD acts more as a sanity-check of our theory, rather
than a practical proposal.

The next experiments aim at illustrating our statistical properties. We �rst analyze
the convergence rate of the Monte Carlo estimates (Theorem 7.9) in a synthetical setting.
We consider two sets of 500 samples i.i.d. from the d-dimensional Gaussian distribution
N (0, Id), and we approximate SW2 between the empirical distributions with a Monte
Carlo scheme that uses a high number of projections L? = 10 000. Then, we compute
the Monte Carlo estimate ŜW2,L obtained with L < L? random projections. Figure 7.2a

shows the absolute di�erence of ŜW2,L and ŜW2,L? against L, for di�erent values of
dimension d. We observe that the Monte Carlo error indeed shrinks to zero when we
increase the number of projections, with a convergence rate of order L−1/2.

Then, we illustrate the sample complexity of Sliced-Wasserstein and Sliced-Sinkhorn
(Corollary 7.14 and Theorem 7.16, respectively). We consider two sets of n samples
i.i.d. from N (0, Id), and we compute W2 and W2,ε and their sliced versions approxi-
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Figure 7.2: (Sliced-)Wasserstein distances of order 2 between two sets of n samples
generated from N (0, Id) for di�erent d, on log-log scale. Results are averaged over 100
runs, and the shaded areas correspond to the 10th-90th percentiles.

mated with 100 random projections. We analyze the convergence rate for di�erent n and
dimensions d. We also study the in�uence of the regularization parameter ε for Sinkhorn
divergences. Figure 7.2b reports the Wasserstein and Sliced-Wasserstein distances vs. n,
for d between 2 and 100. We observe that, as opposed to W2, the convergence rate of
SW2 does not depend on the dimension, therefore SW2 converges faster than W2 when
the dimension increases. Figures 7.3a and 7.3b show Sinkhorn and Sliced-Sinkhorn di-
vergences vs. n, and respectively study the in�uence of d and ε on the convergence rate.
As predicted by the theory, Sliced-Sinkhorn o�ers more �robustness� than Sinkhorn: its
convergence rate does not depend on the dimension nor on the regularization coe�cient.
To illustrate Proposition 7.17, we plot on Figure 7.3c the number of iterations when the
convergence of Sinkhorn's algorithm is reached, as a function of d. For Sliced-Sinkhorn,
this number is an average over the number of projections used in the approximation.
Our experiment emphasizes the computational advantages of Sliced-Sinkhorn, since its
number of iterations remains the same with the increasing dimension, while it grows
exponentially for Sinkhorn.

Our last experiment operates on real data and is motivated by the two-sample testing
problem [Gretton et al., 2012], whose goal is to determine whether two sets of samples
were generated from the same distribution or not. This is useful for various applications,
including data integration, where we wish to understand that two datasets were drawn
from the same distribution in order to merge them. In this context, we run the following
experiment: for di�erent values of n, we randomly select two subsets of n samples from
the same dataset, and we compute the Wasserstein and Sliced-Wasserstein distances (of
order 2) between the empirical distributions, as well as the Sinkhorn and Sliced-Sinkhorn
divergences (ε = 1). The sliced divergences are approximated with 10 random projec-
tions. We use the MNIST [LeCun and Cortes, 2010] and CIFAR-10 [Krizhevsky, 2009,
Chapter 3] datasets, and we report the divergences against n, and the mean execution
time for the computation of Sinkhorn and Sliced-Sinkhorn, on Figure 7.4. The sliced
divergences perform the best, in the sense that they need less samples to converge to
zero. Besides, Sliced-Sinkhorn is faster than Sinkhorn in terms of execution time (which
was expected, given our discussion above Proposition 7.17), and the di�erence is even
more visible for a high number of samples. For example, for n = 2500 on MNIST or
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Figure 7.3: (Sliced-)Sinkhorn divergences between two sets of n samples generated from
N (0, Id) for di�erent values of n, dimension d, and regularization coe�cient ε. Results
are averaged over 100 runs, and the shaded areas correspond to the 10th-90th percentiles.
All plots have a log-log scale.

n = 1000 on CIFAR-10, Sliced-Sinkhorn is almost 130 times faster than for Sinkhorn on
average.

7.5 Conclusion

In this study, we considered sliced probability divergences, which have been increasingly
popular in machine learning applications. We derived theoretical results about their
induced topology as well as their statistical e�ciency in terms of number of samples and
projections, and we empirically illustrated our �ndings on di�erent setups. Speci�cally,
we proved that the preserved topology and dimension-free sample complexity are intrinsic
to slicing. Since this was unclear in the previous literature, which combined slicing with
a speci�c distance, our uni�ed treatment of these results brings insight to the properties
of particular instances used in practice.

The gains in statistical e�ciency could be explained by an ability of slicing to overlook
irrelevant characteristics of the distributions. An interesting question for future work is
then to understand precisely what geometrical features are well preserved by the slicing
operation.
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Figure 7.4: (Sliced-)Wasserstein and (Sliced-)Sinkhorn (ε = 1) between two random
subsets of n samples of real datasets (top: MNIST, bottom: CIFAR-10), for di�erent
values of n. Results are averaged over 10 runs, and the shaded areas correspond to the
10th-90th percentiles. All plots have a log-log scale.

7.6 Appendix: Postponed proofs and Additional Empirical

Results

7.6.1 Proofs for Section 7.2.2

Proof of Proposition 7.1. (i) The fact that S∆p is non-negative (or symmetric) if ∆ is,
immediately follows from the de�nition of S∆p (7.1).

(ii) Assume that ∆ satis�es the identity of indiscernibles, i.e. for µ′, ν ′ ∈ P(R), ∆(µ′, ν ′) =
0 if and only if µ′ = ν ′. For any µ ∈ P(Rd) and θ ∈ Sd−1, ∆(θ?]µ, θ

?
]µ) = 0, therefore

S∆p(µ, µ) = 0 by its de�nition (7.1).

Now, consider µ, ν ∈ P(Rd) such that S∆p(µ, ν) = 0. Then, by the de�nition of
S∆p (7.1), we have ∆(θ?]µ, θ

?
] ν) = 0 for σ-almost every (σ-a.e.) θ ∈ Sd−1, therefore

θ?]µ = θ?] ν for σ-a.e. θ ∈ Sd−1. Next, we use the same technique as in [Bonnotte,
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2013, Proposition 5.1.2]: for any measure ξ ∈ P(Rs) (s ≥ 1), F [ξ] denotes the Fourier
transform of ξ and is de�ned as, for any w ∈ Rs,

F [ξ](w) =

∫

Rs
e−i〈w,x〉dξ(x) . (7.9)

Then, by using (7.10) and the property of push-forward measures, we have for any t ∈ R
and θ ∈ Sd−1,

F [θ?]µ](t) =

∫

R
e−itudθ?]µ(u) =

∫

Rd
e−it〈θ,x〉dµ(x) = F [µ](tθ) . (7.10)

Since for σ-a.e. θ ∈ Sd−1, θ?]µ = θ?] ν thus F [θ?]µ] = F [θ?] ν], we obtain F [µ] = F [ν]. By
the injectivity of the Fourier transform, we conclude that µ = ν.

(iii) Suppose ∆ is a metric. Based on the previous results, to show that S∆p is a
metric, all we need to prove here is that it veri�es the triangle inequality. Let µ, ν, ξ ∈
P(Rd). Using that ∆ satis�es the triangle inequality and the Minkowski inequality in
Lp(Sd−1,σ), we get

S∆p(µ, ν) =

{∫

Sd−1

∆p
(
θ?]µ, θ

?
] ν
)
dσ(θ)

}1/p

≤
{∫

Sd−1

[
∆
(
θ?]µ, θ

?
] ξ
)

+ ∆
(
θ?] ξ, θ

?
] ν
)]p

dσ(θ)
}1/p

≤
{∫

Sd−1

∆p
(
θ?]µ, θ

?
] ξ
)
dσ(θ)

}1/p

+

{∫

Sd−1

∆p
(
θ?] ξ, θ

?
] ν
)
dσ(θ)

}1/p

≤ S∆p(µ, ξ) + S∆p(ξ, ν) . (7.11)

For the proof of Theorem 7.2, we start by proving Lemma 7.18 below, which extends
Lemma 3.16 to the more general class of Sliced Probability Divergences.

Lemma 7.18. Consider (µk)k∈N a sequence in P(Rd) satisfying

lim
k→∞

S∆1(µk, µ) = 0 ,

with µ ∈ P(Rd), and assume that the convergence in ∆ implies the weak convergence in
P(R). Then, there exists an increasing function φ : N → N such that the subsequence
(µφ(k))k∈N converges weakly to µ.

Proof. We assume that limk→∞ S∆1(µk, µ) = 0, i.e.:

lim
k→∞

∫

Sd−1

∆(θ?]µk, θ
?
]µ)dσ(θ) = 0 (7.12)

By [Bogachev, 2007, Theorem 2.2.5], (7.12) implies that, there exists an increasing func-
tion φ : N→ N such that for σ-a.e. θ ∈ Sd−1,

lim
k→∞

∆(θ?]µφ(k), θ
?
]µ) = 0 .
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Since ∆ is assumed to imply weak convergence in P(R), then, for σ-a.e. θ ∈ Sd−1,
(θ?]µφ(k))k∈N converges weakly to θ?]µ. By Lévy's characterization [Kallenberg, 1997,

Theorem 4.3], we have for σ-a.e. θ ∈ Sd−1 and any s ∈ R,

lim
k→∞

Φθ?]µφ(k)
(s) = Φθ?]µ

(s) , (7.13)

where Φν is the characteristic function of ν ∈ P(Rs) (s ≥ 1) and is de�ned for any v ∈ Rs
as, Φν(v) =

∫
Rs ei〈v,w〉dν(w). Therefore, for Lebesgue (Leb)-almost every z ∈ Rd,

lim
k→∞

Φµφ(k)
(z) = Φµ(z) . (7.14)

We now use (7.14) to show that (µφ(k))k∈N converges weakly to µ. By [Billingsley,

1999, Problem 1.11, Chapter 1], this boils down to proving that, for any f : Rd → R
continuous with compact support,

lim
k→∞

∫

Rd
f(z)dµφ(k)(z) =

∫

Rd
f(z)dµ(z) . (7.15)

Consider σ > 0 and a continuous function f : Rd → R with compact support. We
introduce the function fσ de�ned as: for any x ∈ Rd,

fσ(x) = (2πσ2)−d/2
∫

Rd
f(x− z) exp

(
−‖z‖2/(2σ2)

)
dz = f ∗ gσ(x) , (7.16)

where ∗ is the convolution product, and gσ is the density of the d-dimensional Gaussian
with zero mean and covariance matrix σ2Id. First, we prove that (7.15) holds with fσ in
place of f . The characteristic function associated to a d-dimensional Gaussian random
variable G with zero mean and covariance matrix (1/σ2)Id is given by: for any z ∈ Rd,
E
[
ei〈z,G〉] = e−‖z‖

2/(2σ2). By plugging this in the de�nition of fσ and using Fubini's
theorem, we obtain for any k ∈ N,

∫

Rd
fσ(z)dµφ(k)(z) =

∫

Rd

∫

Rd
f(w)gσ(z − w)dwdµφ(k)(z)

= (2πσ2)−d/2
∫

Rd

∫

Rd
f(w)

∫

Rd
ei〈z−w,x〉g1/σ(x)dxdwdµφ(k)(z)

= (2πσ2)−d/2
∫

Rd

∫

Rd
f(w)e−i〈w,x〉g1/σ(x)Φµφ(k)

(x)dxdw

= (2πσ2)−d/2
∫

Rd
F [f ](x)g1/σ(x)Φµφ(k)

(x)dx , (7.17)

where F [f ](x) =
∫
Rd f(w)e−i〈w,x〉dw is the Fourier transform of f . Since the support

of f is assumed to be compact, F [f ] exists and is bounded by
∫
Rd |f(w)|dw < +∞,

therefore, for any k ∈ N and x ∈ Rd,
∣∣∣F [f ](x)g1/σ(x)Φµφ(k)

(x)
∣∣∣ ≤ g1/σ(x)

∫

Rd
|f(w)|dw . (7.18)

We can prove with similar techniques that (7.17) holds with µ in place of µφ(k), i.e.

∫

Rd
fσ(z)dµ(z) = (2πσ2)−d/2

∫

Rd
F [f ](x)g1/σ(x)Φµ(x)dx . (7.19)
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Using (7.14), (7.17), (7.19) and Lebesgue's Dominated Convergence Theorem, we obtain:

lim
k→∞

(2πσ2)−d/2
∫

Rd
F [f ](x)g1/σ(x)Φµφ(k)

(x)dx

= (2πσ2)−d/2
∫

Rd
F [f ](x)g1/σ(x)Φµ(x)dx ,

i.e., lim
k→∞

∫

Rd
fσ(z)dµφ(k)(z) =

∫

Rd
fσ(z)dµ(z) . (7.20)

We can now prove (7.15): for any σ > 0,

∣∣∣∣
∫

Rd
f(z)dµφ(k)(z)−

∫

Rd
f(z)dµ(z)

∣∣∣∣ (7.21)

≤ 2 sup
z∈Rd

|f(z)− fσ(z)|+
∣∣∣∣
∫

Rd
fσ(z)dµφ(k)(z)−

∫

Rd
fσ(z)dµ(z)

∣∣∣∣ . (7.22)

By (7.20), we deduce that for any σ > 0,

lim sup
k→+∞

∣∣∣∣
∫

Rd
f(z)dµφ(k)(z)−

∫

Rd
f(z)dµ(z)

∣∣∣∣ ≤ 2 sup
z∈Rd

|f(z)− fσ(z)| , (7.23)

and since limσ→0 supz∈Rd |f(z)−fσ(z)| = 0 [Folland, 1999, Theorem 8.14-b], we conclude
that (µφ(k))k∈N converges weakly to µ.

We can now prove Theorem 7.2.

Proof of Theorem 7.2. Let p ∈ [1,∞) and (µk)k∈N be a sequence of probability measures
in P(Rd).

First, suppose (µk)k∈N converges weakly to µ ∈ P(Rd). By the continuous mapping
theorem, since for any θ ∈ Sd−1, θ? is a bounded linear form thus continuous, then
(θ?]µk)k∈N converges weakly to θ?]µ. Therefore, according to our assumption on ∆, for

any θ ∈ Sd−1,

lim
k→∞

∆(θ?]µk, θ
?
]µ) = 0 . (7.24)

Besides, ∆ is assumed to be non-negative and bounded. Hence, there exists M > 0
such that, for any k ∈ N,

∆p(θ?]µk, θ
?
]µ) ≤M . (7.25)

Using (7.24), (7.25) and the bounded convergence theorem, we obtain

lim
k→∞

S∆p
p(µk, µ) = lim

k→∞

∫

Sd−1

∆p(θ?]µk, θ
?
]µ)dσ(θ) =

∫

Sd−1

0p dσ(θ) = 0 . (7.26)

Since the mapping t 7→ t1/p is continuous on R+ (and can be applied to S∆p
p, which

is non-negative by the non-negativity of ∆ and Proposition 7.1), then (7.26) implies
limk→∞ S∆p(µk, µ) = 0.

Now, let us prove the other implication, i.e. limk→∞ S∆p

(
µk, µ

)
= 0 implies the weak

convergence of (µk)k∈N to µ, given the assumptions on ∆. This result is a generalization
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of Theorem 3.1, and is proved analogously, using Lemma 7.18: consider (µk)k∈N and µ
in P(Rd) such that

lim
k→∞

S∆p(µk, µ) = 0 , (7.27)

and suppose (µk)k∈N does not converge weakly to µ. Then, limk→∞ dP(µk, µ) 6= 0, where
dP is the Lévy-Prokhorov metric, i.e. there exists ε > 0 and a subsequence (µψ(k))k∈N
with ψ : N→ N increasing, such that for any k ∈ N,

dP(µψ(k), µ) > ε . (7.28)

On the other hand, an application of Hölder's inequality on Sd−1 gives for any µ, ν
in P(Rd),

S∆1(µ, ν) ≤ S∆p(µ, ν) . (7.29)

Then, by (7.27), limk→∞ S∆1(µψ(k), µ) = 0. Since we assume the convergence in ∆
implies the weak convergence in P(R), Lemma 7.18 gives us: there exists a subsequence
(µφ(ψ(k)))k∈N with φ : N → N increasing such that (µφ(ψ(k)))k∈N converges weakly to µ.
This is equivalent to

lim
k→∞

dP(µφ(ψ(k)), µ) = 0 ,

which contradicts (7.28). We conclude that (7.27) implies the weak convergence of
(µk)k∈N to µ.

Proof of Theorem 7.4. Let p ∈ [1,∞) and µ, ν ∈ P(Rd).

(Sγ
F̃,p

)p(µ, ν) =

∫

Sd−1

γp
F̃
(θ?]µ, θ

?
] ν)dσ(θ) (7.30)

=

∫

Sd−1

{
sup
f̃∈F̃

∣∣∣∣
∫

R
f̃(t) d(θ?]µ− θ?] ν)(t)

∣∣∣∣

}p
dσ(θ) (7.31)

=

∫

Sd−1

∣∣∣∣
∫

R
f̃∗(t)d(θ?]µ− θ?] ν)(t)

∣∣∣∣
p

dσ(θ) (7.32)

=

∫

Sd−1

∣∣∣∣
∫

Rd
f̃∗
(
θ?(x)

)
d(µ− ν)(x)

∣∣∣∣
p

dσ(θ) , (7.33)

with f̃∗ = argmax
f̃∈F̃

∣∣∣
∫
R f̃(t)dθ?]µ(t)−

∫
R f̃(t)dθ?] ν(t)

∣∣∣, which is assumed to exist. Note

that (7.33) results from applying the property of push-forward measures.

By de�nition of F, for any θ ∈ Sd−1, there exists f∗θ ∈ F such that f∗θ = f̃∗◦θ?. Therefore,
we obtain

(SγF,p)
p(µ, ν) =

∫

Sd−1

∣∣∣∣
∫

Rd
f∗θ (x)d(µ− ν)(x)

∣∣∣∣
p

dσ(θ) (7.34)

≤
∫

Sd−1

{
sup
f∈F

∣∣∣∣
∫

Rd
f(x)d(µ− ν)(x)

∣∣∣∣

}p
dσ(θ) (7.35)

= γpF(µ, ν)

∫

Sd−1

dσ(θ) = γpF(µ, ν) , (7.36)

which completes the proof.
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Proof of Theorem 7.5. We start by upper bounding the distance between two regularized
measures. Denote by supp(ζ) the support of the function ζ. Let ϕ : R→ R∗+ be a smooth
and even function verifying supp(ϕ) ⊂ [−1, 1] and

∫
R ϕ(t)dLeb1(t) = 1. De�ne

ϕλ(x) = λ−dϕ(‖x‖ /λ)/A(Sd−1) ,

with A(Sd−1) denoting the surface area of the d-dimensional unit sphere,i.e.

A(Sd−1) = 2πd/2/Γ(d/2) ,

where Γ is the gamma function. Denote by F [f ] the Fourier transform of any function
f de�ned on Rs (s ≥ 1), given for any x ∈ Rs by, F [f ](x) =

∫
Rs f(w)e−i〈w,x〉dw. Let

g ∈ G. By the isometry properties of the Fourier transform and the de�nition of ϕλ, we
have

∫

Rd
g(x)d(µλ − νλ)(x) =

∫

Rd
F [g](w) {F [µ](w)−F [ν](w)}F [ϕ](λw)dw , (7.37)

where µλ = µ ∗ ϕλ and νλ = ν ∗ ϕλ. By representing w with its polar coordinates
(r, θ) ∈ [0,∞)× Sd−1, we obtain

∫

Rd
g(x)d(µλ − νλ)(x)

=

∫

Sd−1

∫ ∞

0
F [g](rθ) {F [µ](rθ)−F [ν](rθ)}F [ϕ](λr)rd−1drdσ(θ) .

Since g is a real function, F [g] is an even function, hence

∫

Rd
g(x)d(µλ − νλ)(x) (7.38)

=
1

2

∫

Sd−1

∫

R
F [g](rθ) {F [µ](rθ)−F [ν](rθ)}F [ϕ](λr) |r|d−1 drdσ(θ) (7.39)

=
1

2

∫

Sd−1

∫

R
F [g](rθ)

{
F [θ?]µ](r)−F [θ?] ν](r)

}
F [ϕ](λr) |r|d−1 drdσ(θ) (7.40)

=
1

2

∫

Sd−1

∫

R

∫ R

−R
F [g](rθ)e−irud(θ?]µ− θ?] ν)(u)F [ϕ](λr) |r|d−1 drdσ(θ) (7.41)

=
1

2

∫

Sd−1

∫

R

∫

Rd

∫ R

−R
g(x)e−ir(u+〈θ,x〉) {d(θ?]µ− θ?] ν)(u)

}
F [ϕ](λr) |r|d−1 dxdrdσ(θ) ,

(7.42)

where (7.40) follows from (7.10), (7.41) results from the de�nition of the Fourier trans-
form and the fact that u ∈ [−R,R], and in the last line, we used the de�nition of the
Fourier transform and Fubini's theorem. By making the change of variables x→ x−uθ,
we obtain
∫

Rd
g(x)d(µλ − νλ)(x) (7.43)

=
1

2

∫

Sd−1

∫

R

∫

Rd

∫ R

−R
g(x− uθ)e−ir〈θ,x〉d(θ?]µ− θ?] ν)(u)F [ϕ](λr) |r|d−1 dxdrdσ(θ) .

(7.44)
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Since we assumed supp(µ), supp(ν) are included in Bd(0, R), then supp(µλ), supp(µλ)
are in Bd(0, R+λ), and the domain of x 7→ g(x−uθ) must be contained in Bd(0, 2R+λ).
By Fubini's theorem and the de�nition of G̃, we have
∣∣∣∣∣

∫

Rd
g(x)d(µλ − νλ)(x)

∣∣∣∣∣ (7.45)

≤ 1

2

∫

R

∫

Bd(0,2R+λ)

∫

Sd−1

∣∣∣
∫ R

−R
g(x− uθ)d(θ?]µ− θ?] ν)(u)e−ir〈θ,x〉F [ϕ](λr) |r|d−1

∣∣∣dσ(θ)dxdr

(7.46)

≤ 1

2

∫

R

∫

Bd(0,2R+λ)

∫

Sd−1

γ
G̃

(θ?]µ, θ
?
] ν)
∣∣∣e−ir〈θ,x〉F [ϕ](λr) |r|d−1

∣∣∣dσ(θ)dxdr (7.47)

≤ C(2R+ λ)d
∫

Sd−1

γ
G̃

(θ?]µ, θ
?
] ν)dσ(θ)

∫

R
λ−d

∣∣∣F [ϕ](r) |r|d−1
∣∣∣dr (7.48)

≤ C(2R+ λ)dλ−d
(∫

Sd−1

γp
G̃

(θ?]µ, θ
?
] ν)dσ(θ)

)1/p ∫

R

∣∣∣F [ϕ](r)|r|d−1
∣∣∣dr (7.49)

≤ C1(2R+ λ)dλ−dSγ
G̃,p

(µ, ν) , (7.50)

where in (7.48), C > 0 and does not depend on µ and ν, (7.49) results from applying

Hölder's inequality on Sd−1 if p > 1, and in (7.50), C1 = C
∫
R

∣∣∣F [ϕ](r)|r|d−1
∣∣∣dr.

By using the de�nition of γG and (7.50), we obtain

γG(µλ, νλ) = sup
g∈G

∣∣∣
∫

Rd
g(x)d(µλ − νλ)(x)

∣∣∣ ≤ C1(2R+ λ)dλ−dSγ
G̃,p

(µ, ν) . (7.51)

We now relate γG(µλ, νλ) with γG(µ, ν). We start with the following estimate
∫

Rd
g(x)d(µ− ν)(x)− γG(µλ, νλ) (7.52)

≤
∫

Rd
g(x)d(µ− ν)(x)−

∫

Rd
g(x)d(µλ − νλ)(x) (7.53)

≤
∫

Rd

∣∣g(x)− (ϕλ ∗ g)(x)
∣∣dµ(x) +

∫

Rd

∣∣g(x)− (ϕλ ∗ g)(x)
∣∣dν(x) (7.54)

(7.55)

Since we assumed any g ∈ G is L-Lipschitz continuous, we can bound the integrand in
(7.54) as follows: for x ∈ Rd,

∣∣g(x)− (ϕλ ∗ g)(x)
∣∣ =

∣∣∣λ−d
∫

Rd

(
g(x)− g(y)

)
ϕ
(
(x− y)/λ

)
dy
∣∣∣ (7.56)

≤ λ−d
∫

Rd

∣∣g(x)− g(y)
∣∣ϕ
(
(x− y)/λ

)
dy (7.57)

≤ Lλ−d+1

∫

Rd
‖x− y‖λ−1ϕ

(
(x− y)/λ

)
dy (7.58)

≤ Lλ−d+1

∫

Rd
‖u‖λ−1ϕ

(
u/λ

)
du ≤ Lλ

∫
‖z‖ϕ(z)dz . (7.59)

Hence, by denoting by M1(ϕ) the moment of order 1 of ϕ, (7.54) is bounded by
∫

Rd
g(x)d(µ− ν)(x)− γG(µλ, νλ) ≤ 2LM1(ϕ)λ . (7.60)



140 Chapter 7. Theoretical Properties of Sliced Probability Divergences

Taking the supremum of both sides over G gives us

γG(µ, ν)− γG(µλ, νλ) ≤ 2LM1(ϕ)λ . (7.61)

By combining the above inequality with (7.51), we get

γG(µ, ν) ≤ C1(2R+ λ)dλ−dSγ
G̃,p

(µ, ν) + 2LM1(ϕ)λ (7.62)

≤ C2λ
(

(2R+ λ)dλ−(d+1)Sγ
G̃,p

(µ, ν) + 1
)
, (7.63)

with C2 satisfying C2 ≥ C1 and C2 ≥ 2LM1(ϕ). Finally, by choosing

λ = Rd/(d+1)Sγ
G̃,p

(µ, ν)1/(d+1) ,

and using the hypothesis that Sγ
G̃,p

is bounded, we obtain

γG(µ, ν) ≤ C2R
d/(d+1)Sγ

G̃,p
(µ, ν)1/(d+1)

(
(2R+ λ)dR−d + 1

)
(7.64)

≤ CpSγG̃,p
(µ, ν)1/(d+1), (7.65)

for some Cp > 0, as desired. This concludes the proof.

Proof of Corollary 7.6. The desired result is obtained as a direct application of Theo-
rems 7.4 and 7.5.

7.6.2 Application of Theorems 7.4 and 7.5

In order to illustrate their assumptions, we apply Theorems 7.4 and 7.5 to well-known
instances of IPMs given below. Note that some of these IPMs were already presented in
Section 2.2: we recall their de�nitions in this chapter for completeness.

(1) Wasserstein distance of order 1. By the Monge Kantorovich duality theorem [Vil-
lani, 2008, Theorem 5.10], when F = {f : Y → R : ‖f‖Lip ≤ 1}, where ‖f‖Lip =
supx,y∈Y,x 6=y{|f(x)− f(y)| / ‖x− y‖}, γF is the Wasserstein distance of order 1, denoted
by W1.

(2) Maximum mean discrepancy. Let H be a reproducing kernel Hilbert space (RKHS)
for real-valued functions on Y, and F be the unit ball in H. Then, γF de�nes the MMD
in RKHS [Gretton et al., 2012, Section 2].

(3) Total variation distance. (TV) By choosing F = {f : Y → R : ‖f‖∞ ≤ 1}, with
‖f‖∞ = supx∈Y |f(x)|, γF corresponds to TV [Douc et al., 2018, Proposition D.2.4].

Informally, the condition on the function classes in Theorem 7.4 requires that F and
F̃ should be linked to each other in the way that F should be large enough to contain
the composition of all elements of F̃ with all possible linear forms θ? for θ ∈ Sd−1.

Let us illustrate this condition by considering the Wasserstein distance of order 1. In
this case, F is the set of 1-Lipschitz functions from Rd to R, and F̃ is the set of 1-Lipschitz
functions from R to R. Then, the condition on F boils down to showing that the com-
position of any f̃ ∈ F̃ with any linear projection θ? results in a 1-Lipschitz function in
Rd, which is simply true since f̃ is 1-Lipschitz and ‖θ‖ = 1 for all θ ∈ Sd−1.
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In the next three corollaries, we formally prove that Theorem 7.4 holds for the Wasser-
stein distance of order 1 W1, total variation distance TV and maximum mean discrep-
ancy MMD. We denote by SW1, STVp and SMMDp the respective sliced versions of
these IPMs with order p ∈ [1,∞).

Corollary 7.19. Let p ∈ [1,∞). For any µ, ν ∈ P1(Rd), SW1(µ, ν) ≤W1(µ, ν).

Proof. Choose F̃ = {f̃ : R→ R : ‖f̃‖Lip ≤ 1}, where

‖f̃‖Lip = sup
x,y∈Rd,x 6=y

{∣∣f̃(x)− f̃(y)
∣∣/ ‖x− y‖

}
.

Let f : Rd → R such that f = f̃ ◦ θ? with f̃ ∈ F̃, θ ∈ Sd−1. Then, by using the
Cauchy-Schwarz inequality and the de�nition of F̃, we have for any x, y ∈ Rd,

|f(x)− f(y)| =
∣∣f̃
(
θ?(x)

)
− f̃
(
θ?(y)

)∣∣ ≤
∣∣ 〈θ, x− y〉

∣∣ ≤ ‖θ?‖ ‖x−y‖ ≤ ‖x−y‖ . (7.66)

Therefore, f ∈ F = {f : Rd → R : ‖f‖Lip ≤ 1}. Corollary 7.19 follows from the
application of Theorem 7.4 along with the de�nition of W1.

Note that Corollary 7.19 is not a new result: the fact that SWp is bounded above
by Wp for p ∈ [1,∞) was established in [Bonnotte, 2013, Proposition 5.1.3]. While
their result is proved using the primal formulation of the OT problem, we used the dual
formulation available for p = 1 to illustrate the applicability of Theorem 7.4. Our result
is thus consistent with the existing results in the literature.

Corollary 7.20. Let p ∈ [1,∞). For any µ, ν ∈ P(Rd),

STVp(µ, ν) ≤ TV(µ, ν) . (7.67)

Proof. Choose F̃ =
{
f̃ : R → R, ‖f̃‖∞ ≤ 1

}
, and let f : Rd → R such that f = f̃ ◦ θ?

with f̃ ∈ F̃, θ ∈ Sd−1. Then,

‖f‖∞ = ‖f̃ ◦ θ?‖∞ = sup
x∈Rd

∣∣f̃
(
θ?(x)

)∣∣ ≤ sup
t∈R

∣∣f̃(t)
∣∣ = ‖f̃‖∞ ≤ 1 , (7.68)

hence, f ∈ F =
{
f : Rd → R : ‖f‖∞ ≤ 1

}
. We obtain the �nal result by using Theo-

rem 7.4 and the de�nition of TV.

Corollary 7.21. Let F̃ ⊂ Mb(R) be the unit ball of the RKHS with reproducing kernel
k̃, and k be the positive de�nite kernel such that for any xi, xj ∈ Rd,

k(xi, xj) =

∫

Sd−1

k̃
(
θ?(xi), θ

?(xj)
)
dσ(θ) . (7.69)

De�ne F ⊂ Mb(Rd) as the unit ball of the RKHS whose reproducing kernel k̂ satis�es
k − k̂ is positive de�nite. Then, for any p ∈ [1,∞) and µ, ν ∈ P(Rd),

SMMDp(µ, ν; F̃) ≤MMD(µ, ν;F) , (7.70)

where MMD(·, · ; F′) and SMMDp(·, · ; F′) respectively denote the MMD and the
Sliced-MMD of order p in the RKHS whose unit ball is F′.

In particular, this property holds for,
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(i) Linear kernels: k̃(ti, tj) = titj for ti, tj ∈ R, and k̂(xi, xj) = x>i xj/d
′ for xi, xj ∈ R

and d′ ≥ d.

(ii) Radial basis function (RBF) kernels: let h ≥ 0, k̃(ti, tj) = e−|ti−tj |
2/h for ti, tj ∈ R,

and k̂(xi, xj) = e−‖xi−xj‖
2/h for xi, xj ∈ Rd.

Proof. De�ne F̃ as the unit ball of an RKHS whose reproducing kernel is denoted by k̃.
Then, any f̃ ∈ F̃ satis�es

‖f̃‖2
F̃

=
n∑

i=1

n∑

j=1

αiαj k̃(ti, tj) ≤ 1, (7.71)

where n ∈ N∗, α1, . . . , αn ∈ R and t1, . . . , tn ∈ R.

Consider f : Rd → R such that f = f̃ ◦ θ∗ with f̃ ∈ F̃ and θ ∈ Sd−1. By (7.71), we
have

n∑

i=1

n∑

j=1

αiαj k̃
(
θ?(xi), θ

?(xj)
)
≤ 1 (7.72)

The integration of (7.72) over Sd−1 gives us

∫

Sd−1

n∑

i=1

n∑

j=1

αiαj k̃
(
θ?(xi), θ

?(xj)
)
dσ(θ) ≤

∫

Sd−1

1 dσ(θ) (7.73)

i.e.,
n∑

i=1

n∑

j=1

αiαj

∫

Sd−1

k̃
(
θ?(xi), θ

?(xj)
)
dσ(θ) ≤ 1 . (7.74)

De�ne k : Rd × Rd → R as k(xi, xj) =
∫
Sd−1 k̃

(
θ?(xi), θ

?(xj)
)
dσ(θ) for xi, xj ∈ Rd.

Since k̃ is positive de�nite, so is k. By the Moore-Aronszajn theorem, there exists a
unique RKHS with reproducing kernel k. Therefore, (7.74) means that f is in the unit
ball of the RKHS associated with k.

Additionally, consider a positive de�nite kernel k̂ : Rd × Rd → R such that k − k̂ is
positive de�nite on Rd. In other words, the following holds for any n ∈ N, v1, . . . , vn ∈ R
and x1, . . . , xn ∈ Rd,

n∑

i=1

n∑

j=1

vivj{k(xi, xj)− k̂(xi, xj)} ≥ 0 . (7.75)

Then, by (7.74), we obtain
∑n

i=1

∑n
j=1 αiαj k̂(xi, xj) ≤ 1.

Therefore, any f de�ned as f = f̃ ◦ θ with f̃ ∈ F̃ and θ ∈ Sd−1 is in the unit ball
of the RKHS associated with k̂, which we denote by F. By using Theorem 7.4 and the
de�nition of MMD, we obtain the desired result: for any p ∈ [1,∞) and µ, ν ∈ P(Rd),

SMMDp(µ, ν; F̃) ≤MMD(µ, ν;F) . (7.76)

Next, we show that this result holds for two popular choices of kernels. First, we
choose k̃ as the linear kernel: k̃(ti, tj) = titj for ti, tj ∈ R. De�ne k̂ as a rescaled version
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of the linear kernel in Rd: k̂(xi, xj) = x>i xj/d
′ for xi, xj ∈ Rd and d′ ≥ d. Then, for any

n ∈ N, v1, . . . , vn ∈ R and x1, . . . , xn ∈ Rd,

n∑

i=1

n∑

j=1

vivj{k(xi, xj)− k̂(xi, xj)} (7.77)

=
n∑

i=1

n∑

j=1

vivj

{∫

Sd−1

θ(xi)θ(xj)dσ(θ)− x>i xj/d′
}

(7.78)

=
n∑

i=1

n∑

j=1

vivj

{
x>i
(∫

Sd−1

θθ>dσ(θ)
)
xj − x>i xj/d′

}
(7.79)

=

n∑

i=1

n∑

j=1

vivjx
>
i xj

(
1/d− 1/d′

)
≥ 0 , (7.80)

where (7.80) results from
∑n

i=1

∑n
j=1 vivjx

>
i xj ≥ 0 (the linear kernel is positive de�nite)

and d′ ≥ d. We conclude that (7.76) holds with F̃ de�ned as the unit ball of the RKHS
associated with the linear kernel k̃(ti, tj) = titj for ti, tj ∈ R, and F being the unit ball of

the RKHS associated with the rescaled linear kernel k̂(xi, xj) = x>i xj/d
′ for xi, xj ∈ Rd

and d′ ≥ d.

We focus now on RBF kernels: let h ≥ 0 and choose k̃(ti, tj) = e−|ti−tj |
2/h for

ti, tj ∈ R, and k̂(xi, xj) = e−‖xi−xj‖
2/h for xi, xj ∈ Rd. We have for any xi, xj ∈ Rd,

k(xi, xj) =

∫

Sd−1

k̃
(
θ(xi), θ(xj)

)
dσ(θ) =

∫

Sd−1

e−|θ
>xi−θ>xj |2/h dσ(θ) (7.81)

=

∫

Sd−1

e−|θ
>(xi−xj)|2/h dσ(θ) (7.82)

=

∫

Sd−1

e(−‖xi−xj‖2/h)(θ>(xi−xj)/‖xi−xj‖)2
dσ(θ) (7.83)

= M

(
1

2
,
d

2
,−‖xi − xj‖

2

h

)
, (7.84)

where M(a, c, κ) stands for the con�uent hypergeometric function evaluated at a, c, κ ∈
R, and appears in the normalizing constant of the multivariate Watson distribution: see
[Sra, 2016, Section 2.3] for more details.

M satis�es the following property,

M

(
1

2
,
d

2
,−‖xi − xj‖

2

h

)
= e−‖xi−xj‖

2/h M

(
d− 1

2
,
d

2
,
‖xi − xj‖2

h

)
. (7.85)

Since ‖xi − xj‖2/h ≥ 0 and κ 7→M(·, ·, κ) is increasing, we have

M

(
d− 1

2
,
d

2
,
‖xi − xj‖2

h

)
≥M

(
d− 1

2
,
d

2
, 0

)
= M

(
1

2
,
d

2
, 0

)
= 1 . (7.86)

Finally, by using (7.84) and (7.85), we obtain: for any n ∈ N, v1, . . . , vn ∈ R and
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x1, . . . , xn ∈ Rd,

n∑

i=1

n∑

j=1

vivj{k(xi, xj)− k̂(xi, xj)} (7.87)

=
n∑

i=1

n∑

j=1

vivj

[
M

(
1

2
,
d

2
,−‖xi − xj‖

2

h

)
− e−‖xi−xj‖2/h

]
(7.88)

=
n∑

i=1

n∑

j=1

vivje
−‖xi−xj‖2/h

[
M

(
d− 1

2
,
d

2
,
‖xi − xj‖2

h

)
− 1

]
(7.89)

≥ 0 , (7.90)

where the last line follows from (7.86) and
∑n

i=1

∑n
j=1 vivje

−‖xi−xj‖2/h ≥ 0 (RBF kernels

are positive de�nite). We conclude that k − k̂ is positive de�nite, hence (7.76) holds for
RBF kernels.

As with Theorem 7.4, Theorem 7.5 assumes that the function classes G and G̃ are
linked to each other and su�ciently regular. The condition on G is veri�ed with W1

(simply by de�nition) and MMD (provided that the reproducing kernel is Lipschitz-
continuous, which holds on compact spaces for classical choices of kernels), but not with
TV.

On the other hand, the second condition requires G̃ to be large enough to contain
any possible slice g(x− uθ) for any g ∈ G.

7.6.3 Proofs for Section 7.2.3

Proof of Theorem 7.7. Let p ∈ [1,∞) and µ, ν in P(Rd) with respective empirical mea-
sures µ̂n, ν̂n. By using the de�nition of S∆p, the triangle inequality and the assumption
on the sample complexity of ∆p, we have

E
∣∣S∆p

p(µ, ν)− S∆p
p(µ̂n, ν̂n)

∣∣

= E
∣∣∣∣
∫

Sd−1

{
∆p(θ?]µ, θ

?
] ν)−∆p(θ?] µ̂n, θ

?
] ν̂n)

}
dσ(θ)

∣∣∣∣ (7.91)

≤ E
{∫

Sd−1

∣∣∆p(θ?]µ, θ
?
] ν)−∆p(θ?] µ̂n, θ

?
] ν̂n)

∣∣dσ(θ)

}
(7.92)

≤
∫

Sd−1

E
∣∣∆p(θ?]µ, θ

?
] ν)−∆p(θ?] µ̂n, θ

?
] ν̂n)

∣∣dσ(θ) (7.93)

≤
∫

Sd−1

β(p, n)dσ(θ) = β(p, n) , (7.94)

which completes the proof.

Proof of Theorem 7.8. Let p ∈ [1,∞) and µ ∈ P(Rd) with corresponding empirical
measure µ̂n. By using the de�nition of S∆p, the triangle inequality and the assumed
convergence rate of empirical measures in ∆p, we obtain the convergence rate in S∆p
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as follows

E
∣∣S∆p

p(µ̂n, µ)
∣∣ = E

∣∣∣∣
∫

Sd−1

∆p(θ?] µ̂n, θ
?
]µ)dσ(θ)

∣∣∣∣ (7.95)

≤ E
{∫

Sd−1

∣∣∆p(θ?] µ̂n, θ
?
]µ)
∣∣dσ(θ)

}
(7.96)

≤
∫

Sd−1

E
∣∣∆p(θ?] µ̂n, θ

?
]µ)
∣∣ dσ(θ) (7.97)

≤
∫

Sd−1

α(p, n)dσ(θ) = α(p, n) . (7.98)

Additionally, if we assume that ∆ satis�es non-negativity, symmetry and the triangle
inequality, then S∆p also veri�es these three properties by Proposition 7.1, and we can
derive its sample complexity: for any µ, ν in P(Rd) with respective empirical measures
µ̂n, ν̂n, the triangle inequality give us

|S∆p(µ, ν)− S∆p(µ̂n, ν̂n)| ≤ S∆p(µ̂n, µ) + S∆p(ν̂n, ν) (7.99)

By taking the expectation of (7.99) with respect to µ̂n, ν̂n, we obtain

E |S∆p(µ, ν)− S∆p(µ̂n, ν̂n)|
≤ E |S∆p(µ̂n, µ)|+ E |S∆p(ν̂n, ν)| (7.100)

≤
{
E
∣∣S∆p

p(µ̂n, µ)
∣∣}1/p

+
{
E
∣∣S∆p

p(ν̂n, ν)
∣∣}1/p

(7.101)

≤ α(p, n)1/p + α(p, n)1/p = 2α(p, n)1/p , (7.102)

where (7.101) results from applying Hölder's inequality on Sd−1 if p > 1, and (7.102)
follows from the convergence rate result in (7.98).

Proof of Theorem 7.9. Let p ∈ [1,∞) and µ, ν ∈ P(Rd). We recall that Ŝ∆p,L(µ, ν)
denotes the approximation of S∆p(µ, ν) obtained with a Monte Carlo scheme that uni-
formly picks L projection directions on Sd−1 (cf. Equation (7.2)).

By using Hölder's inequality and the results on the moments of the Monte Carlo
estimation error, we obtain

Eθ∼σ
∣∣Ŝ∆

p

p,L(µ, ν)− S∆p
p(µ, ν)

∣∣

≤
{
Eθ∼σ

∣∣Ŝ∆
p

p,L(µ, ν)− S∆p
p(µ, ν)

∣∣2}1/2
(7.103)

≤ L−1/2

{∫

Sd−1

{
∆p(θ?]µ, θ

?
] ν)− S∆p

p(µ, ν)
}2

dσ(θ)

}1/2

, (7.104)

Since S∆p
p(µ, ν) =

∫
Sd−1 ∆p(θ?]µ, θ

?
] ν)dσ(θ) by de�nition, the quantity given by,

∫

Sd−1

{
∆p(θ?]µ, θ

?
] ν)− S∆p

p(µ, ν)
}2

dσ(θ)

is the variance of ∆p(θ?]µ, θ
?
] ν) with respect to θ ∼ σ.
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Proof of Corollary 7.10. Let p ∈ [1,∞), µ, ν ∈ P(Rd) and the respective empirical dis-
tributions µ̂n, ν̂n. By the triangle inequality,

|Ŝ∆
p

p,L(µ̂n, ν̂n)− S∆p
p(µ, ν)|

≤ |Ŝ∆
p

p,L(µ̂n, ν̂n)− S∆p
p(µ̂n, ν̂n)|+ |S∆p

p(µ̂n, ν̂n)− S∆p
p(µ, ν)| .

Therefore, by linearity of expectation, we have

E
[
|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ, ν)|

]
(7.105)

≤ E
[
E[|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ̂n, ν̂n)|

∣∣ X1:n, Y1:n]
]

(7.106)

+ E
[
|S∆p

p(µ̂n, ν̂n)− S∆p
p(µ, ν)|

]
. (7.107)

We bound (7.106): by Theorem 7.9, we have

E
[
|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ̂n, ν̂n)|

∣∣ X1:n, Y1:n

]
(7.108)

≤ L−1/2

{∫

Sd−1

{
∆p(θ?] µ̂n, θ

?
] ν̂n)− S∆p

p(µ̂n, ν̂n)
}2

dσ(θ)

}1/2

. (7.109)

By taking the expectation then using Jensen's inequality, we get

E
[
E
[
|Ŝ∆

p

p,L(µ̂n, ν̂n)− S∆p
p(µ̂n, ν̂n)|

∣∣ X1:n, Y1:n

]]
(7.110)

≤ L−1/2 E

[{∫

Sd−1

{
∆p(θ?] µ̂n, θ

?
] ν̂n)− S∆p

p(µ̂n, ν̂n)
}2

dσ(θ)

}1/2
]

(7.111)

≤ L−1/2 E1/2

[∫

Sd−1

{
∆p(θ?] µ̂n, θ

?
] ν̂n)− S∆p

p(µ̂n, ν̂n)
}2

dσ(θ)

]
. (7.112)

Next, we bound (7.107): by the sample complexity assumption for ∆p and Theo-
rem 7.7, we have

E
[
|S∆p

p(µ̂n, ν̂n)− S∆p
p(µ, ν)|

]
≤ β(p, n) . (7.113)

Combining (7.112) and (7.113) in (7.106) and (7.107) completes the proof.

Remark 7.22. Note that by Fubini's theorem,

∫

Sd−1

E[(∆p(θ?] µ̂n, θ
?
] ν̂n)− S∆p

p(µ̂n, ν̂n))2]dσ(θ) ,

which appears in Corollary 7.10, is equal to E[Var{∆p(θ?] µ̂n, θ
?
] ν̂n)|X1:n, Y1:n}], where

Var is the variance w.r.t. X1:n, Y1:n and θ (which is distributed according to the uniform
distribution on Sd−1 and independent of X1:n, Y1:n).

7.6.4 Proofs for Section 7.3.1

As discussed in Section 7.3.1, we can use the general result in Theorem 7.2 to establish
novel topological properties for speci�c sliced probability divergences, for example the
Sliced-Cramér distance (whose de�nition is recalled in De�nition 7.12) and the broader
class of Sliced-IPMs. We present our results and proofs for these examples below.
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Proof of Corollary 7.13. Let p ∈ [1,∞). By Hölder's inequality, for any µ′, ν ′ ∈ P(R),
we have

C1(µ′, ν ′) ≤ Cp(µ
′, ν ′) . (7.114)

Consider a sequence (µ′k)k∈N in P(R) and µ′ ∈ P(R) such that

lim
k→∞

Cp(µ
′
k, µ
′) = 0 .

By (7.114), this implies limk→∞C1(µ′k, µ
′) = 0. Since the Cramér distance of order 1 is

equivalent to the Wasserstein distance of order 1, then by [Villani, 2008, Theorem 6.8],
the convergence of (µ′k)k∈N to µ′ under Cp implies (µ′k)k∈N converges weakly to µ′ in
P(R). By Theorem 7.2, we conclude that the convergence under SCp implies the weak
convergence in P(Rd).

We now show the second part of the statement. This result partly follows from slight
modi�cations of the techniques we used in the proof of Theorem 7.2.

Consider a compact space K′ ⊂ R and a sequence (µ′k)k∈N in P(K′). Suppose that
(µ′k)k∈N converges weakly to µ′ ∈ P(K′). Since Fµ′ is non-decreasing, it is almost ev-
erywhere continuous w.r.t. to the Lebesgue convergence, and using the Portmanteau
theorem, we get that for Leb-almost every t ∈ R, limk→∞ Fµ′k(t) = Fµ′(t). Besides, for

any k ∈ N and t ∈ K′, |Fµ′k(t)| ≤ 1, and since K′ is compact,
(∫

K′ 1
pdt
)1/p

<∞. By the
dominated convergence theorem in Lp-spaces, we conclude that

lim
k→∞

{∫

K′
|Fµ′k(t)− Fµ′(t)|pdt

}1/p

= 0 , (7.115)

in other words, the weak convergence of measures in P(K′), where K′ is a compact
subspace of R, implies the convergence under Cp.

Now, consider a compact space K ⊂ Rd and a sequence (µk)k∈N in P(K) which
converges weakly to µ ∈ P(K). For any θ ∈ Sd−1, de�ne

Kθ = {〈θ, x〉 : x ∈ K} ,
which is a compact subset of R (since it is the image of K by a continuous function) with
diam(Kθ) ≤ diam(K) (by the Cauchy-Schwarz inequality). The sequence of push-forward
measures (θ?]µk)k∈N is in P(Kθ) and, by the continuous mapping theorem, converges

weakly to θ?]µ ∈ P(Kθ). Therefore, by (7.115), for any θ ∈ Sd−1,

lim
k→∞

Cp(θ
?
]µk, θ

?
]µ) = 0 . (7.116)

Besides, for any µ, ν ∈ P(Rd) with support in K, and θ ∈ Sd−1,

Cp(θ
?
] ν, θ

?
]µ) =

∫

R
|Fν(t)− Fµ(t)|p dt =

∫

Kθ

|Fν(t)− Fµ(t)|p dt

≤ 2pdiam(Kθ) ≤ 2pdiam(K) . (7.117)

By (7.116) and the dominated convergence theorem, limk→∞ SCp(µk, µ) = 0.

Corollary 7.23. Let p ∈ [1,∞) and F̃ ⊂ Mb(R). Suppose that the space spanned by F̃
is dense in the space of continous functions for ‖ · ‖∞. Then, the convergence under the
Sliced Integral Probability Metric of order p associated with F̃, Sγ

F̃,p
, implies the weak

convergence in P(Rd). Besides, if γ
F̃
is bounded, the converge implication holds, i.e. the

weak convergence in P(Rd) implies the convergence under Sγ
F̃,p

.
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Proof. By construction of F̃ and [Ambrosio et al., 2005, Section 5.1], γ
F̃
metrizes the weak

convergence in P(R), i.e. the weak convergence in P(R) is equivalent to the convergence
of measures under γ

F̃
. The properties of Sγ

F̃,p
, p ∈ [1,∞) result from the application of

Theorem 7.2.

Remark 7.24. The boundedness assumption for γ
F̃
is achieved if we additionally suppose

that F̃ is a uniformly bounded family of functions in M(R), which is a mild assumption.

7.6.5 Proof of Corollary 7.14

Lemma 7.25. Let p ∈ [1,∞) and µ′ ∈ P(R) with empirical distribution µ̂′n. Sup-
pose there exists q > p such that the moment of order q of µ′, de�ned as Mq(µ

′) =∫
R |t|

q dµ′(t), is bounded above by K <∞. Then, there exists a constant Cp,q depending
on p, q such that

E
[
Wp

p(µ̂
′
n, µ

′)
]
≤ Cp,qK





n−1/2 if q > 2p,

n−1/2 log(n) if q = 2p,

n−(q−p)/q if q ∈ (p, 2p).

(7.118)

Proof. This immediately results from [Fournier and Guillin, 2015, Theorem 1].

Proof of Corollary 7.14. We �rst recall that, for any ξ ∈ P(Rs) (s ≥ 1) and θ ∈ Sd−1, the
moment of order k > 0 of θ?] ξ is lower than the one associated with ξ. Indeed, by using
the property of push-forward measures, the Cauchy-Schwarz inequality, and ‖θ‖ ≤ 1, we
have

Mk(θ
?
] ξ) =

∫

R
|t|k dθ?] ξ(t) =

∫

Rd
|〈θ, x〉|k dξ(x) ≤

∫

Rd
‖x‖k dξ(x) = Mk(ξ) . (7.119)

Now, let p ∈ [1,∞) and µ ∈ Pq(Rd) (q > p) with empirical distribution µ̂n. Then, by
(7.119), for any θ ∈ Sd−1, Mq(θ

?
]µ) ≤ Mq(µ) < ∞, and we can apply Lemma 7.25 and

Theorem 7.8 to derive the convergence rate under SWp : there exists a constant Cp,q
such that,

E
[
SWp

p(µ̂n, µ)
]
≤ Cp,qMp/q

q (µ)





n−1/2 if q > 2p,

n−1/2 log(n) if q = 2p,

n−(q−p)/q if q ∈ (p, 2p).

(7.120)

Besides, since Wp is a metric, we can apply Theorem 7.8 to derive the sample com-
plexity of SWp. Consider µ, ν ∈ Pq(Rd) with q > p, with respective empirical measures
µ̂n, ν̂n. Then, starting from (7.101) and using the convergence rate derived in (7.120),
we obtain the desired result as follows

E [|SWp(µ, ν)− SWp(µ̂n, ν̂n)|] (7.121)

≤
{
E
∣∣SWp

p(µ̂n, µ)
∣∣}1/p

+
{
E
∣∣SWp

p(ν̂n, ν)
∣∣}1/p

(7.122)

≤ C1/p
p,q

(
M1/q
q (µ) +M1/q

q (ν)
)




n−1/(2p) if q > 2p,

n−1/(2p) log(n)1/p if q = 2p,

n−(q−p)/(pq) if q ∈ (p, 2p).

(7.123)
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7.6.6 Proofs for Section 7.3.3

Proof of Theorem 7.15. Let p ∈ [1,∞) and ε ≥ 0. We use the reformulation of Wp,ε as
the maximum of an expectation, as given in [Genevay et al., 2016, Proposition 2.1],

SWp
p,ε(µ, ν) =

∫

Sd−1

Wp
p,ε(θ

?
]µ, θ

?
] ν)dσ(θ) (7.124)

=

∫

Sd−1

{
max

ũ,ṽ∈C(R)
Eθ?]µ⊗θ?] ν

[
φε
(
ũ(X̃), ṽ(Ỹ ), X̃, Ỹ

)]
}p

dσ(θ) , (7.125)

where C(R) denotes the set of continuous real functions, and φε(t, s, x, y) = t + s −
εe(t+s−‖x−y‖p)/ε.

Consider for any θ ∈ Sd−1, ũ?θ, ṽ
?
θ as the functions attaining the maximum in (7.125),

which exist by [Genevay et al., 2019, Theorem 4 in the supplementary document]. We
obtain

SWp
p,ε(µ, ν) =

∫

Sd−1

{
Eθ?]µ⊗θ?] ν

[
φε
(
ũ?θ(X̃), ṽ?θ(Ỹ ), X̃, Ỹ

)]
}p

dσ(θ) (7.126)

=

∫

Sd−1

{
Eµ⊗ν

[
φε
(
ũ?θ ◦ θ?(X), ṽ?θ ◦ θ?(Y ), X, Y

)]
}p

dσ(θ) . (7.127)

Since for all w̃ ∈ C(R) and θ ∈ Sd−1, w̃ ◦ θ? ∈ C(Rd), we can bound (7.127) as follows

SWp
p,ε(µ, ν) ≤

∫

Sd−1

{
max

u,v∈C(Rd)
Eµ⊗ν

[
φε
(
u(X), v(Y ), X, Y

)]
}p

dσ(θ) (7.128)

= Wp
p,ε(µ, ν) . (7.129)

By Proposition 7.1, since Wp,ε is non-negative, so is SWp,ε, and we can apply t 7→ t1/p

on both sides of (7.129) to obtain the �nal result.

We move on to the proof of Theorem 7.16, which requires preliminary technical
results.

Proposition 7.26. Let X̃ be a compact subset of R, and µ′, ν ′ ∈ P(X̃) with respective
empirical instantiations µ̂′n, ν̂

′
n. Let p ∈ [1,∞) and ε ≥ 0. Then,

∣∣Wp,ε(µ̂
′
n, ν̂
′
n)−Wp,ε(µ

′, ν ′)
∣∣ ≤ 2 diam(X̃)

{
W1(µ′, µ̂′n) + W1(ν ′, ν̂ ′n)

}
. (7.130)

Proof. Let p ∈ [1,∞), ε ≥ 0 and X̃ ⊂ R compact. Consider µ′, ν ′ ∈ P(X̃) with respective
empirical distributions µ̂′n, ν̂

′
n. We �rst express the regularized OT cost as the maximum

of an expectation [Genevay et al., 2016, Proposition 2.1]

Wp,ε(µ
′, ν ′) = max

ũ,ṽ∈C(R)
Eµ′⊗ν′

[
φε
(
ũ(X̃), ṽ(Ỹ ), X̃, Ỹ

)]
(7.131)

Wp,ε(µ̂
′
n, ν
′) = max

ũ,ṽ∈C(R)
Eµ̂′n⊗ν′

[
φε
(
ũ(X̃), ṽ(Ỹ ), X̃, Ỹ

)]
, (7.132)

where φε(t, s, x, y) = t + s − εe(t+s−‖x−y‖2/2)/ε. By [Genevay et al., 2019, Proposi-
tion 1], the Sinkhorn potentials (ũ, ṽ) are Lipschitz continuous with Lipschitz constant
diam(X̃) < ∞. Therefore, by denoting by Lipdiam(X̃)(R) the space of diam(X̃)-Lipschitz
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continuous functions de�ned on R, (7.131) and (7.132) can be rewritten with the maxi-
mization over Lipdiam(X̃)(R).

We can now use [Mena and Niles-Weed, 2019, Proposition 2] to bound the absolute
di�erence of Wp,ε(µ

′, ν ′) and Wp,ε(µ̂
′
n, ν
′). We provide the detailed proof below for

completeness. By [Mena and Niles-Weed, 2019, Proposition 6, Appendix A], there exist
smooth potentials (ũ?, ṽ?) attaining the maximum in (7.131) such that, for all x̃, ỹ ∈ R,

∫

R
φε(ũ

?(x̃), ṽ?(ỹ), x̃, ỹ)dν ′(ỹ) = 1 µ′-almost surely, (7.133)

∫

R
φε(ũ

?(x̃), ṽ?(ỹ), x̃, ỹ)dµ′(x̃) = 1 ν ′-almost surely . (7.134)

Analogously, there exist smooth optimal potentials (ũ?n, ṽ
?
n) for (7.132) satisfying

(7.133) and (7.134) where ũ?, ṽ? and µ′ are replaced by ũ?n, ṽ
?
n and µ̂′n respectively.

The optimality of these potentials give us

Eµ′⊗ν′
[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]
(7.135)

≤ Eµ′⊗ν′
[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]
(7.136)

≤ Eµ′⊗ν′
[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
. (7.137)

Therefore,

∣∣Wp,ε(µ
′, ν ′)−Wp,ε(µ̂

′
n, ν
′)
∣∣ (7.138)

=
∣∣∣Eµ′⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]∣∣∣ (7.139)

≤
∣∣∣Eµ′⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]∣∣∣ (7.140)

+
∣∣∣Eµ′⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]∣∣∣ . (7.141)

We bound each term of the sum in (7.141) as follows

∣∣∣Eµ′⊗ν′
[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]∣∣∣ (7.142)

=
∣∣∣
∫

R
ũ?(x̃)d(µ′ − µ̂′n)(x̃)− ε

∫

R

∫

R
e(ũ?(x̃)+ṽ?(ỹ)−|x̃−ỹ|2/2)/εdν ′(ỹ)d(µ′ − µ̂′n)(x̃)

∣∣∣
(7.143)

=
∣∣∣
∫

R
ũ?(x̃)d(µ′ − µ̂′n)(x̃)

∣∣∣ ≤ sup
ũ∈Lipdiam(X̃)(R)

∣∣∣
∫

R
ũ(x̃)d(µ′ − µ̂′n)(x̃)

∣∣∣ , (7.144)

where (7.144) results from (7.133). Since for any f ∈ LipL(R) with L > 0, f/L ∈ Lip1(R),
(7.144) can be bounded as follows

∣∣∣Eµ′⊗ν′
[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]
− Eµ̂′n⊗ν′

[
φε(ũ

?(X̃), ṽ?(Ỹ ), X̃, Ỹ )
]∣∣∣ (7.145)

≤ diam(X̃) sup
ũ∈Lip1(R)

∣∣∣
∫

R
ũ(x̃)d(θ?]µ− θ?] µ̂n)(x̃)

∣∣∣ = diam(X̃)W1(µ′, µ̂′n) , (7.146)

where (7.146) follows from the dual formulation of the Wasserstein distance of order 1
[Villani, 2008, Theorem 5.10].
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We show with an analogous proof that

∣∣∣Eµ′⊗ν′
[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]
− Eµ̂′n⊗ν′

[
φε(ũ

?
n(X̃), ṽ?n(Ỹ ), X̃, Ỹ )

]∣∣∣ (7.147)

≤ diam(X̃)W1(µ′, µ̂′n) , (7.148)

which leads to the conclusion that

∣∣Wp,ε(µ
′, ν ′)−Wp,ε(µ̂

′
n, ν
′)
∣∣ ≤ 2 diam(X̃)W1(µ′, µ̂′n) . (7.149)

By using the triangle inequality and (7.149), we obtain the �nal result

∣∣Wp,ε(µ̂
′
n, ν̂
′
n)−Wp,ε(µ

′, ν ′)
∣∣ (7.150)

≤
∣∣Wp,ε(µ

′, ν ′)−Wp,ε(µ̂
′
n, ν
′)
∣∣+
∣∣Wp,ε(µ̂

′
n, ν
′)−Wp,ε(µ̂

′
n, ν̂
′
n)
∣∣ (7.151)

≤ 2 diam(X̃)
{
W1(µ′, µ̂′n) + W1(ν ′, ν̂ ′n)

}
. (7.152)

Corollary 7.27. Let X̃ be a compact subset of R, and µ′, ν ′ ∈ P(X̃). Denote by µ̂′n, ν̂
′
n

their respective empirical instantiations. Let p ∈ [1,∞) and ε ≥ 0. Then,

E
∣∣Wp,ε(µ̂

′
n, ν̂
′
n)−Wp,ε(µ

′, ν ′)
∣∣ ≤ 2 diam(X̃)Cq

[
M1/q
q (µ′) +M1/q

q (ν ′)
]
n−1/2 , (7.153)

where q > 2, Cq < ∞ is a constant that depends on q, and Mq(µ
′),Mq(ν

′) are the
moments of order q of µ′, ν ′ respectively.

Proof. We apply Proposition 7.26 and take the expectation of (7.130) with respect to
X̃1:n ∼ µ̂′n and Ỹ1:n ∼ ν̂ ′n

E
∣∣Wp,ε(µ̂

′
n, ν̂
′
n)−Wp,ε(µ

′, ν ′)
∣∣ ≤ 2 diam(X̃)E

{
W1(µ′, µ̂′n) + W1(ν ′, ν̂ ′n)

}
. (7.154)

Since µ′ and ν ′ are both supported on a compact space, they have in�nitely many �nite
moments. We can then bound (7.154) using the convergence rate of empirical measures
in W1, recalled in Lemma 7.25. This concludes the proof.

Proof of Theorem 7.16. Let p ∈ [1,∞) and ε ≥ 0. Consider µ, ν ∈ P(X) with X ⊂ Rd
compact, and denote by µ̂n, ν̂n their respective empirical distributions.

Let θ ∈ Sd−1 and de�ne Xθ = {〈θ, x〉 : x ∈ X}. Xθ is compact (since X is compact and
θ? is continuous) and veri�es diam(Xθ) ≤ diam(X) (by the Cauchy-Schwarz inequality).
Besides, by (7.119), for any k > 0, Mk(θ

?
]µ) ≤ Mk(µ) and Mk(θ

?
] ν) ≤ Mk(ν). By

Corollary 7.27, there exists Cq <∞ which depends on q > 2 such that,

E
∣∣Wp,ε(θ

?
] µ̂n, θ

?
] ν̂n)−Wp,ε(θ

?
]µ, θ

?
] ν)
∣∣ (7.155)

≤ 2 diam(X)Cq
[
M1/q
q (µ) +M1/q

q (ν)
]
n−1/2 . (7.156)

The sample complexity of SWp,ε is �nally obtained by applying Theorem 7.7.

Finally, in addition to the background elements given in Section 2.5, we recall an
important result regarding the convergence of Sinkhorn's algorithm, which will be useful
for the proof of Proposition 7.17.
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Sinkhorn's algorithm refers to an iterative procedure which operates on empirical
distributions as follows: consider a cost matrix C between two sets of n samples, and
de�ne the matrix K such that, for 1 ≤ i, j ≤ n,

Ki,j = exp

(
−Ci,j

ε

)
,

and initialize b(0) = 1 ∈ Rn ; then, compute for ` > 1,

a(`) = 1./n(Kb(`−1)) ,

b(`) = 1./n(Ka(`)) ,

where ./ stands for the entry-wise division. This de�nes a sequence γ
(`)
i,j = a

(`)
i Ki,jb

(`)
j ,

which converges to a solution of the regularized OT problem (2.16) at a linear rate. The
convergence rate of Sinkhorn's algorithm is recalled in Theorem 7.28. For an extended
discussion on this result, we refer to [Peyré and Cuturi, 2019, Section 4.2].

Theorem 7.28 (Franklin and Lorenz [1989]). The iterates a(`) and b(`) of Sinkhorn's
algorithm converge linearly for the Hilbert metric at a rate 1−tanh(τ(K)/4), with τ(K) =

log maxi,j,i′,j′
KijKi′j′
Kij′Ki′j

. In particular, for the squared-norm cost, i.e. Kij = exp(−‖xi −
xj‖2/ε), it holds

τ(K) ≤ 2 max
i,j
‖xi − xj‖2/ε. (7.157)

Proof of Proposition 7.17. For i, j ∈ {1, . . . , n}, fi,j : θ ∈ Sd−1 7→ 1
R 〈θ, xi − xj〉 is 1-

Lipschitz and has median 0 for θ uniformly distributed on the unit sphere. Thus, by
concentration of measure on the sphere [Wainwright, 2019, Example 3.12], it holds for
ε > 0,

P (|fi,j(θ)| ≥ ε) ≤
√

2π exp(−dε2/2) .

Taking a union bound over the n(n−1) pairs of indices and setting τ = (Rε)2, it follows

P
(

max
i,j
|〈θ, xi − xj〉|2 ≥ τ

)
≤
√

2πn2 exp(−dτ/2R2) .

Hence, for any δ > 0, it holds with probability 1 − δ that maxi,j |〈θ, xi − xj〉|2 ≤
2R2

d log(
√

2πn2/δ). This argument was suggested to us by an anonymous reviewer at
the NeurIPS 2020 conference.

7.6.7 Additional empirical results

In this section, we provide additional results obtained for the synthetical experiments il-
lustrating the sample complexity of Sliced-Wasserstein and Sliced-Sinkhorn divergences:
we produce �gures analogously to Figures 7.2b, 7.3a and 7.3b, with di�erent hyperpa-
rameter values.
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Figure 7.5: Illustration of Corollary 7.14: Wasserstein and Sliced-Wasserstein distances
of order 2 between two sets of n samples generated from N (0, Id) vs. n, for di�erent d,
on log-log scale. SW2 is approximated with L random projections, L ∈ {1, 10, 1000}.
Results are averaged over 100 runs, and the shaded areas correspond to the 10th-90th
percentiles. Figure 7.2b shows the results for L = 100.
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Figure 7.6: Illustration of Theorem 7.16: Sinkhorn and Sliced-Sinkhorn divergences
between two sets of n samples generated fromN (0, Id) for di�erent values of n, dimension
d, and regularization coe�cient ε. Sliced-Sinkhorn is approximated with 10 random
projections. Results are averaged over 100 runs, and the shaded areas correspond to the
10th-90th percentiles. All plots have a log-log scale. Figure 7.3a shows the in�uence of
the dimension for ε = 1, and Figure 7.3b shows the in�uence of the regularization for
d = 100.
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Chapter 8

Conclusion

8.1 Summary

This thesis builds on the recent success of optimal transport tools for machine learn-
ing models, and is speci�cally focused on the increasingly popular Sliced-Wasserstein
distance. Our general purpose was to provide a more comprehensive understanding of
this metric by investigating its theoretical and practical implications, especially when
applied for parameter inference in generative models. Some of our results enabled us to
identify the limitations caused by the estimation of SW and overcome them by designing
novel methodologies. We summarize our main contributions below, accordingly to the
objectives listed in Section 1.4 (page 22).

Theoretical properties of SW. This paragraph provides answers to objective 1. We
established several theoretical results that aim at shedding light on the empirical behavior
of SW as reported in prior work. Speci�cally, in Chapter 3, we studied the estimators
obtained by minimizing SW over a parametric space and proved some of their asymptotic
properties. Besides ensuring theoretical consistency to existing SW-based generative
models, our results allowed us to derive new topological properties, namely the lower
semi-continuity of SW and the fact that convergence under SW implies weak convergence.

Then, we demonstrate that SW is able to mitigate the statistical limitations of the
Wasserstein distance in high-dimensional settings. The central limit theorem proved in
Chapter 3 and characterizing the asymptotic distribution of minimum SW estimators ex-
hibits a convergence rate of

√
n, where n is the number of observations. This dimension-

free rate as well as the empirical comparison in Chapter 4 (Figure 4.1, page 74) are �rst
evidence that SW o�ers important statistical bene�ts over the Wasserstein distance. This
is further con�rmed by the sample complexity of SW derived in Chapter 7, which does
not depend on the dimension, as opposed to the sample complexity of the Wasserstein
distance which can grow exponentially in dimension.

Finally, our theoretical results in Chapter 7 also explain why the statistical e�ciency
is actually balanced with the fact that SW is de�ned as an integral over Sd−1. We
elaborate on this aspect later, as an answer to objective 3.

New methodology for approximate inference. This paragraph provides answers
to objective 2. We expanded the applicability of SW by developing a likelihood-free ap-
proximation inference technique based on this metric and called SW-ABC (Chapter 4).
We showed that SW-ABC comes with convergence guarantees under di�erent asymp-
totic regimes and o�ers a superior empirical performance as compared to existing ABC
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techniques which rely on di�erent divergences. Besides, we leveraged our methodology to
design a novel image denoising algorithm, which demonstrates the �exibility of SW-ABC.

Limitations of SW and solutions. This paragraph provides answers to objective 3.
As illustrated in previous empirical studies, the common practice that consists in approx-
imating SW with a standard Monte Carlo estimate (over L ∈ N∗ random projections)
can be ine�cient in high-dimensional settings and might thus degrade the performance of
SW-based generative models. We support this observation with our theoretical �ndings
in Chapter 7: we showed that the overall complexity of computing SW (and more gen-
erally, sliced divergences, as explained in objective 4) depends on the sample complexity
but also on an error due to the Monte Carlo approximation, which depends on L and an
additional variance term.

We then proposed two di�erent approaches to overcome the limitations induced by
the Monte Carlo estimates of SW. On the one hand, the literature on concentration of
random projections, combined with the analytical expression of the Wasserstein distance
between Gaussian distributions, helped us formulate a novel technique to compute SW
with simple deterministic operations (Chapter 6). The returned SW estimates are guar-
anteed to converge to the exact value of SW, provided that the compared distributions
satisfy a weak dependence condition. Besides, our approximation method can be used
to improve the performance of generative models that are based on traditional Monte
Carlo estimates.

On the other hand, we de�ned the class of Generalized Sliced-Wasserstein distances
in Chapter 5 and illustrated their ability to outperform SW on generative modeling ap-
plications. These novel metrics bring an interesting perspective on adversarial generative
modeling, showing that such algorithms contain an implicit stage for learning projections
with di�erent cost functions than ours.

Theoretical analysis of �slicing�. This paragraph provides answers to objective 4.
In order to understand what the slicing operation itself is bringing, we introduced in
Chapter 7 the �rst general de�nition for sliced divergences, and derived their topological
and statistical properties. Our results show that slicing leads to a dimension-free sample
complexity, while carrying out useful topological properties of the �base divergence�,
e.g., metric axioms and metrizing weak convergence. If the focus is on sustaining such
topological properties, then the improvement in the convergence rate is meaningful and
circumvents the curse of dimensionality � but in practice, this rate is impacted by the
Monte Carlo approximation.

8.2 Future Research Directions

Eventually, we hope that our contributions provide useful insights for practitioners in
terms of designing new methodologies based on the Sliced-Wasserstein distance and
its variants, as well as obtaining a better understanding of these tools. This thesis
also opens up new prospects which motivate future research directions, notably on the
approximation of sliced divergences and the analysis of GSW, as we describe below.

Improve the estimation of sliced divergences. As we argued in Chapters 5 to 7,
the Monte Carlo strategy, widely used to compute sliced probability divergences in prac-
tice, is not ideal given the induced approximation error. Our alternative SW estimate,
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which we developed in Chapter 6 to address this aspect, provides important compu-
tational advantages over Monte Carlo, but still leaves room for improvement. First,
the convergence rate of our approximate to the true SW seems slow according to our
nonasymptotical guarantees in Section 6.3.3 (page 102), while it is reasonably fast in our
experiments. To bridge this gap between theory and practice, we can study if our proofs
and the ones in [Reeves, 2017] can be re�ned when assuming additional structure on the
distributions, e.g. sub-Gaussian and sub-exponential: this will help identify the settings
under which our current bounds are tight or can be improved.

Furthermore, since our methodology in Chapter 6 applies to the Sliced-Wasserstein
distance only, another crucial question is how to e�ectively approximate the larger class
of sliced divergences introduced in Chapter 7. One idea would be to resort to alterna-
tive Monte Carlo algorithms, such as sequential Monte Carlo samplers [Chopin, 2002,
Del Moral et al., 2006], in order to develop a technique that improves the convergence
rate or the variance of the traditional Monte Carlo estimates.

In-depth analysis of GSW. Our work on Generalized Sliced-Wasserstein distances
in Chapter 5 have since then inspired other follow-up studies, including [Nguyen et al.,
2021, Chen et al., 2021, Naderializadeh et al., 2021], and pave the way for a deeper
theoretical investigation. Indeed, our experiments showed that the choice of the de�ning
function g is data-dependent and highly impacts on the performance of the associated
GSW, and the question �when and why do certain choices of g perform well in practice?�
has not yet been elucidated. To address this matter, we can study to what extent the
theoretical analysis in [Nadjahi et al., 2019, 2020b] can be generalized to GSW: the
topological and statistical properties of GSW might highly depend on the types of one-
dimensional representations used. This requires an analysis of the generalized Radon
transform and would help identifying the advantages of some representations against
others.

On the other hand, we can explore whether a connection can be established between
kernel functions and GSW (see [Kolouri et al., 2020b] as our preliminary study), and
between SW for manifolds and GSW. One hypothesis would be that, with appropri-
ate representations, GSW might be equivalent to de�ning SW on manifolds. To verify
this assumption, a starting point would be to formulate a de�nition of SW on com-
pact Riemannian manifolds, for example by leveraging existing characterizations of the
Wasserstein distance on such spaces [Rabin et al., 2011]. Apart from understanding
better GSW, such a distance would be very useful in practice: the Sliced-Wasserstein
distance has only been de�ned for data living on Rd, although there are various �elds
where the training data are supported on Riemannian manifolds, e.g., in bioinformatics
[Mardia et al., 2018], neurology [Kaufman et al., 2005], life sciences [Ameijeiras-Alonso
et al., 2018] and text mining [Banerjee et al., 2005].
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Titre : La distance de Sliced-Wasserstein pour l’Apprentissage Automatique à Grande Echelle : Théorie,
Méthodologie et Extensions

Mots clés : Apprentissage Automatique, Transport Optimal, Modélisation Générative

Résumé : De nombreuses méthodes d’inférence sta-
tistique et de modélisation générative ont recours à
une divergence pour pouvoir comparer de façon per-
tinente deux distributions de probabilité. La distance
de Wasserstein, qui découle du transport optimal, est
un choix intéressant, mais souffre de limites compu-
tationnelle et statistique à grande échelle. Plusieurs
alternatives ont alors été proposées, notamment la
distance de Sliced-Wasserstein (SW), une métrique
de plus en plus utilisée en pratique en raison de
ses avantages computationnels. Cependant, peu de
travaux ont analysé ses propriétés théoriques. Cette
thèse examine plus en profondeur l’utilisation de SW
pour des problèmes modernes de statistique et d’ap-
prentissage automatique, avec un double objectif :
1) apporter de nouvelles connaissances théoriques
permettant une compréhension approfondie des algo-
rithmes basés sur SW, et 2) concevoir de nouveaux
outils inspirés de SW afin d’améliorer son application
et sa scalabilité. Nous prouvons d’abord un ensemble
de propriétés asymptotiques sur les estimateurs obte-
nus en minimisant SW, ainsi qu’un théorème central
limite dont le taux de convergence est indépendant

de la dimension. Nous développons également une
nouvelle technique d’inférence basée sur SW qui
n’utilise pas la vraisemblance, offre des garanties
théoriques et s’adapte bien à la taille et à la dimen-
sion des données. Etant donné que SW est cou-
ramment estimée par une simple méthode de Monte
Carlo, nous proposons ensuite deux approches pour
atténuer les inefficacités dues à l’erreur d’approxima-
tion : d’une part, nous étendons la définition de SW
pour introduire les distances de Sliced-Wasserstein
généralisées, et illustrons leurs avantages sur des ap-
plications de modélisation générative ; d’autre part,
nous tirons parti des résultats de concentration de
la mesure pour formuler une nouvelle approximation
déterministe de SW, qui est plus efficace à calcu-
ler que la technique de Monte Carlo et présente des
garanties non asymptotiques sous une condition de
dépendance faible. Enfin, nous définissons la classe
générale de divergences “sliced” et étudions leurs
propriétés topologiques et statistiques ; en particulier,
nous prouvons que l’erreur d’approximation de toute
divergence sliced par des échantillons ne dépend pas
de la dimension du problème.

Title : Sliced-Wasserstein Distance for Large-Scale Machine Learning: Theory, Methodology and Extensions

Keywords : Machine Learning, Optimal Transport, Generative Modeling

Abstract : Many methods for statistical inference and
generative modeling rely on a probability divergence
to effectively compare two probability distributions.
The Wasserstein distance, which emerges from op-
timal transport, has been an interesting choice, but
suffers from computational and statistical limitations
on large-scale settings. Several alternatives have then
been proposed, including the Sliced-Wasserstein dis-
tance (SW), a metric that has been increasingly used
in practice due to its computational benefits. Howe-
ver, there is little work regarding its theoretical pro-
perties. This thesis further explores the use of SW
in modern statistical and machine learning problems,
with a twofold objective: 1) provide new theoretical in-
sights to understand in depth SW-based algorithms,
and 2) design novel tools inspired by SW to improve
its applicability and scalability. We first prove a set
of asymptotic properties on the estimators obtained
by minimizing SW, as well as a central limit theorem
whose convergence rate is dimension-free. We also

design a novel likelihood-free approximate inference
method based on SW, which is theoretically groun-
ded and scales well with the data size and dimen-
sion. Given that SW is commonly estimated with a
simple Monte Carlo scheme, we then propose two ap-
proaches to alleviate the inefficiencies caused by the
induced approximation error: on the one hand, we ex-
tend the definition of SW to introduce the Generalized
Sliced-Wasserstein distances and illustrate their ad-
vantages on generative modeling applications; on the
other hand, we leverage concentration of measure re-
sults to formulate a new deterministic approximation
for SW, which is computationally more efficient than
the usual Monte Carlo technique and has nonasymp-
totical guarantees under a weak dependence condi-
tion. Finally, we define the general class of sliced pro-
bability divergences and investigate their topological
and statistical properties; in particular, we establish
that the sample complexity of any sliced divergence
does not depend on the problem dimension.

Institut Polytechnique de Paris
91120 Palaiseau, France
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