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Résumé : Cette thèse d’informatique et de mathé-
matiques s’applique au domaine des neurosciences,
et plus particulièrement aux recherches sur la mo-
délisation de l’activité cérébrale humaine par élec-
trophysiologie et imagerie. Dans ce champ, la ten-
dance est actuellement d’expérimenter avec des
stimuli naturels, comme le visionnage d’un film ou
l’écoute d’une piste audio, et non plus avec des
stimuli étroitement contrôlés mais outrageusement
simples. L’analyse de ces stimuli « naturels » et
de leurs effets demande toutefois de disposer d’une
immense quantité d’images, par ailleurs très coû-
teuses. Sans outils mathématique, identifier l’acti-
vité neuronale à partir des données est quasi impos-
sible. Toutefois, ces stimuli sont compliqués à mo-
déliser et à analyser, car l’utilisation de méthodes
fondées sur des régressions est limitée par la dif-
ficulté de modéliser les stimuli. C’est ce qui mo-
tive l’utilisation de méthodes non-supervisées qui
ne font pas d’hypothèses sur ce qui déclenche les
activations neuronales.

Dans cette thèse, nous considérons d’abord
le cas du modèle de réponse partagée (MRP),
dans lequel les sujets sont supposés partager une
réponse commune. Ce modèle est utile pour ré-
duire la dimension des données, mais son entraîne-
ment est coûteux pour les données d’imagerie fonc-
tionnelle (IRMf) dont la dimension peut être im-
mense. Nous présentons une version bien plus ra-
pide et beaucoup plus économe en mémoire. Mais
le MRP fait des hypothèses irréalistes sur les don-
nées d’imagerie.

Des hypothèses plus réalistes sont utilisées
dans l’analyse en composantes indépendantes
(ACI) mais cette méthode est difficile à généraliser
aux jeux de données qui contiennent plusieurs su-
jets. Nous proposons alors une extension de l’ACI
appelée ACI multi-vue, fondée sur le principe de
maximum de vraisemblance et qui convient à des
jeux de données multi-sujets. L’ACI multi-vue a
une vraisemblance en forme fermée qui peut être
maximisée efficacement. Toutefois, cette méthode
suppose la même quantité de bruit pour tous les
sujets.

Nous présentons donc l’ACI partagée, une gé-
néralisation de l’ACI multi-vue qui s’accompagne
d’un modèle de bruit plus général. Contrairement
à presque tous les modèles fondés sur l’ACI, l’ACI
partagée peut séparer des sources gaussiennes et
non gaussiennes et propose une estimation opti-
male des sources communes (au sens des moindres
carrés), qui pondère chaque sujet en fonction de
son niveau de bruit estimé. En pratique, l’ACI par-
tagée et l’ACI multi-vue permettent d’obtenir, en
magnéto-encéphalographie et en IRMf, une esti-
mation plus fiable de la réponse commune que leurs
concurrents.

Enfin, nous utilisons l’ACI comme base pour
faire de l’augmentation de données. Plus précisé-
ment, nous présentons l’ACI conditionnelle, une
méthode d’augmentation de données qui exploite
la grande quantité de données d’IRMf non étique-
tées pour construire un modèle génératif en uti-
lisant seulement un petit nombre de données éti-
quetées. L’ACI conditionnelle permet d’augmenter
de façon appréciable la précision du décodage sur
huit grands jeux de données d’IRMf.

Nos principaux apports nous semblent consis-
ter dans l’accélération de l’entraînement du MRP
ainsi que dans l’introduction de deux modèles plus
réalistes pour l’analyse de l’activité cérébrale de su-
jets exposés à des stimuli naturels : l’ACI multi-vue
et l’ACI partagée. Enfin, nos résultats sont promet-
teurs concernant l’utilisation de l’ACI pour faire de
l’augmentation de données.

Nous présentons pour finir quelques pistes
qui pourraient guider des travaux ultérieurs. D’un
point de vue pratique, des modifications mineures
de nos méthodes pourraient permettre l’analyse
des données d’imagerie obtenues sur des sujets
au repos en faisant l’hypothèse d’une organisation
spatiale partagée à la place d’une réponse parta-
gée. D’un point de vue théorique, les travaux futurs
pourraient se concentrer sur la compréhension de
la façon dont la réduction de dimensions et l’iden-
tification de la réponse partagée peuvent être réa-
lisées conjointement.
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Abstract :
This thesis in computer science and mathe-

matics is applied to the field of neuroscience, and
more particularly to the mapping of brain activity
based on imaging electrophysiology. In this field,
a rising trend is to experiment with naturalistic
stimuli such as movie watching or audio track lis-
tening, rather than tightly controlled but outra-
geously simple stimuli. However, the analysis of
these "naturalistic" stimuli and their effects re-
quires a huge amount of images that remain hard
and costly to acquire. Without mathematical mo-
deling, the identification of neural signal from the
measurements is very hard if not impossible. Howe-
ver, the stimulations that elicit neural activity are
challenging to model in this context, and therefore,
the statistical analysis of the data using regression-
based approaches is difficult. This has motivated
the use of unsupervised learning methods that do
not make assumptions about what triggers brain
activations in the presented stimuli.

In this thesis, we first consider the case of the
shared response model (SRM), where subjects are
assumed to share a common response. While this
algorithm is useful to perform dimension reduction,
it is particularly costly on functional magnetic re-
sonance imaging (fMRI) data where the dimension
can be very large. We considerably speed up the
algorithm and reduce its memory usage. However,
SRM relies on assumptions that are not biologically
plausible.

In contrast, independent component analysis
(ICA) is more realistic but not suited to multi-
subject datasets. In this thesis, we present a well-
principled method called MultiViewICA that ex-
tends ICA to datasets containing multiple subjects.
MultiViewICA is a maximum likelihood estimator.
It comes with a closed-form likelihood that can

be efficiently optimized. However, it assumes the
same amount of noise for all subjects.

We therefore introduce ShICA, a generaliza-
tion of MultiViewICA that comes with a more
general noise model. In contrast to almost all
ICA-based models, ShICA can separate Gaussian
and non-Gaussian sources and comes with a mini-
mum mean square error estimate of the common
sources that weights each subject according to its
estimated noise level. In practice, MultiViewICA
and ShICA yield on magnetoencephalography and
functional magnetic resonance imaging a more re-
liable estimate of the shared response than com-
petitors.

Lastly, we use independent component analy-
sis as a basis to perform data augmentation. More
precisely, we introduce CondICA, a data augmen-
tation method that leverages a large amount of
unlabeled fMRI data to build a generative model
for labeled data using only a few labeled samples.
CondICA yields an increase in decoding accuracy
on eight large fMRI datasets.

Our main contributions consist in the reduction
of SRM’s training time as well as in the introduc-
tion of two more realistic models for the analysis
of brain activity of subjects exposed to naturalis-
tic stimuli : MultiViewICA and ShICA. Lastly, our
results showing that ICA can be used for data aug-
mentation are promising.

In conclusion, we present some directions that
could guide future work. From a practical point of
view, minor modifications of our methods could al-
low the analysis of resting state data assuming a
shared spatial organization instead of a shared res-
ponse. From a theoretical perspective, future work
could focus on understanding how dimension re-
duction and shared response identification can be
achieved jointly.
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S Y N T H È S E

Cette thèse d’informatique et de mathématiques s’applique au do-
maine des neurosciences, et plus particulièrement aux recherches sur
la modélisation de l’activité cérébrale humaine par électrophysiologie
et imagerie. Dans ce champ, la tendance est actuellement d’expéri-
menter avec des stimuli naturels, comme le visionnage d’un film ou
l’écoute d’une piste audio, et non plus avec des stimuli étroitement
contrôlés mais outrageusement simples. L’analyse de ces stimuli «
naturels » et de leurs effets demande toutefois de disposer d’une
immense quantité d’images, par ailleurs très coûteuses. Sans outils
mathématique, identifier l’activité neuronale à partir des données est
quasi impossible. Toutefois, ces stimuli sont compliqués à modéliser
et à analyser, car l’utilisation de méthodes fondées sur des régres-
sions est limitée par la difficulté de modéliser les stimuli. C’est ce
qui motive l’utilisation de méthodes non-supervisées qui ne font pas
d’hypothèses sur ce qui déclenche les activations neuronales.

Dans cette thèse, nous considérons d’abord le cas du modèle de
réponse partagée (MRP), dans lequel les sujets sont supposés partager
une réponse commune. Ce modèle est utile pour réduire la dimension
des données, mais son entraînement est coûteux pour les données
d’imagerie fonctionnelle (IRMf) dont la dimension peut être immense.
Nous présentons une version bien plus rapide et beaucoup plus éco-
nome en mémoire. Mais le MRP fait des hypothèses irréalistes sur les
données d’imagerie.

Des hypothèses plus réalistes sont utilisées dans l’analyse en com-
posantes indépendantes (ACI) mais cette méthode est difficile à gé-
néraliser aux jeux de données qui contiennent plusieurs sujets. Nous
proposons alors une extension de l’ACI appelée ACI multi-vue, fondée
sur le principe de maximum de vraisemblance et qui convient à des
jeux de données multi-sujets. L’ACI multi-vue a une vraisemblance en
forme fermée qui peut être maximisée efficacement. Toutefois, cette
méthode suppose la même quantité de bruit pour tous les sujets.

Nous présentons donc l’ACI partagée, une généralisation de l’ACI
multi-vue qui s’accompagne d’un modèle de bruit plus général.
Contrairement à presque tous les modèles fondés sur l’ACI, l’ACI
partagée peut séparer des sources gaussiennes et non gaussiennes
et propose une estimation optimale des sources communes (au sens
des moindres carrés), qui pondère chaque sujet en fonction de son
niveau de bruit estimé. En pratique, l’ACI partagée et l’ACI multi-vue
permettent d’obtenir, en magnéto-encéphalographie et en IRMf, une
estimation plus fiable de la réponse commune que leurs concurrents.
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Enfin, nous utilisons l’ACI comme base pour faire de l’augmentation
de données. Plus précisément, nous présentons l’ACI conditionnelle,
une méthode d’augmentation de données qui exploite la grande quan-
tité de données d’IRMf non étiquetées pour construire un modèle
génératif en utilisant seulement un petit nombre de données étique-
tées. L’ACI conditionnelle permet d’augmenter de façon appréciable
la précision du décodage sur huit grands jeux de données d’IRMf.

Nos principaux apports nous semblent consister dans l’accélération
de l’entraînement du MRP ainsi que dans l’introduction de deux
modèles plus réalistes pour l’analyse de l’activité cérébrale de sujets
exposés à des stimuli naturels : l’ACI multi-vue et l’ACI partagée.
Enfin, nos résultats sont prometteurs concernant l’utilisation de l’ACI
pour faire de l’augmentation de données.

Nous présentons pour finir quelques pistes qui pourraient guider
des travaux ultérieurs. D’un point de vue pratique, des modifica-
tions de nos méthodes pourraient permettre l’analyse des données
d’imagerie obtenues sur des sujets au repos en faisant l’hypothèse
d’une organisation spatiale partagée à la place d’une réponse partagée.
Une autre extension possible serait de prendre en compte le décalage
temporel entre sujets que l’on observe en magnéto-encéphalographie.
D’un point de vue théorique, les travaux futurs pourraient se concen-
trer sur la compréhension de la façon dont la réduction de dimensions
et l’identification de la réponse partagée peuvent être réalisées conjoin-
tement.
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A C R O N Y M S

BOLD Blood oxygenated level dependent
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N O TAT I O N S

We write vectors in bold letter v and scalars in lower case a. Upper
case letters M are used to denote matrices. We denote |W| the absolute
value of the determinant of W. x ∼ N(µ,Σ) means that x ∈ Rk follows
a multivariate normal distribution of mean µ ∈ Rk and covariance
Σ ∈ Rk×k. When x ∼ N(µ,Σ), its density is given by x → N(x;µ,Σ).
The j, j entry of a diagonal matrix Σi is denoted Σij, the j entry of yi is
denoted yij. δ is the Kronecker delta. We use the usual scalar product
for matrices 〈A,B〉 = tr(A>B) and the associated norm is denoted
‖A‖ =

√
〈A,A〉. Vectors can be seen as tall matrices and therefore the

scalar product and the norm are the same as for matrices. The gradient
of a real function f(x) ∈ R is denoted ∂f(x)

∂x and is seen as a column
vector. The Jacobian of a vector valued function f(x) is denoted ∂f(x)

∂x

and is a matrix such that the line j is given by ∂f(xj)
∂x

>
where xj is the

j-th coordinate of x.
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1
O V E RV I E W

1.1 introduction

1.1.1 Controlled experiments in cognitive brain imaging

When a subject is reading a sentence or when she is listening to a
sentence, her brain activity is expected to differ. In order to measure
where it differs and by which amount, one can perform a controlled
experiment. The controlled experiment comes with a design matrix
that describes the features driving her brain activation across time. In
the above case, the occurrences of the subject listening to a sentence or
reading a sentence are encoded in a design matrix. Then, a model is
introduced to explain how the design matrix relates to brain activity.
A simple model can consider that brain activity only differs when the
task differs and therefore have a stereotypical representation of brain
activity when she is reading a sentence and another one when she
is listening to a sentence. While this model may simplify the reality
(two repetitions of the same task would never yield exactly the same
pattern or amount of brain activity), it is easy to interpret: the two
stereotypical representations of each task can easily be compared and
analyzed.

This procedure naturally extends to multiple subjects. Indeed, a
model can be fit independently for each subject using the same design
matrix.

1.1.2 Naturalistic stimuli

While controlled experiments give some insights about brain function-
ality, the subjects’ experience is far from their every-day life. Natural-
istic stimuli are meant to overcome this issue. Example of naturalistic
stimuli include movie watching, music listening or resting (subjects
are just asked to lie still in the scanner without further instruction).
While there is a broad interest in understanding how the brain reacts
in such ecological conditions, the recorded brain activity is difficult
to analyze. In particular, design matrices are notoriously difficult to
construct for naturalistic stimuli.

1.1.3 Component analysis

A possible solution is to learn the design matrix as part of the model.
The widely used independent component analysis applied on the
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2 overview

data of one subject extracts a set of components that are maximally
independent. Such components give a plausible design matrix as each
component may be seen as a different set of features driving brain
activity. However, many questions remain. How do we efficiently
generalize such methods to multi-subject data ? How to measure
their performance ? Why is it useful to construct a generative model
for neuroimaging data ? In this thesis, we develop well principled
unsupervised methods for component analysis of neuroimaging data.

1.2 organization of the manuscript

In part I, we give some background on statistical learning and op-
timization (chapter 2), neuroscience (chapter 3) and unsupervised
methods popular in neuroimaging (chapter 4).

The parts II, III, IV and V highlight four different contributions that
led to different publications.

1.2.1 Fast shared response model for fMRI data

When subjects are exposed to the same stimuli, their brain activity
likely exhibits some common, or shared response. Our goal is to
recover this shared response. The shared response model is one possible
solution to this problem. However, the algorithm used in the shared
response model does not scale well with the size of input . This is
problematic because fMRI data have a very large size. Indeed, the
fMRI data of each subject have a dimension on the order of p = 105

and a number of samples on the order of n = 103. Therefore, there is
a need for faster algorithms. This will be presented in part II.

1.2.2 MultiViewICA for neuroimaging data

In order to obtain a meaningful shared response, we need to impose
constraints on the model. In the shared response model, the linear com-
bination of the shared sources is done under orthogonality constraints
which are often deemed not biologically plausible. A more biologi-
cally plausible constraint is to assume independence of the recovered
responses. However, most popular methods using this assumption are
partially heuristic when multiple subjects are involved. In part III, we
introduce MultiViewICA: a method based on the maximum likelihood
principle that can be efficiently optimized. In practice our method is
able to recover more reliable estimate of the shared response on fMRI
and MEG data than competitors.

published work (Spotlight) H. Richard et al. “Modeling Shared
responses in Neuroimaging Studies through MultiView ICA.” In:
Advances in Neural Information Processing Systems 33. Dec. 2020
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1.2.3 Shared ICA for neuroimaging data

The model used in MultiViewICA allows the response of each subject
to differ from the stereotypical response. However, it is assumed that
the deviation is on the same order of magnitude for all subjects and
all components. In Shared ICA, we use a more general model that
allows to model different deviations from the stereotypical response
depending on the subject considered and/or on the response. Impor-
tantly, the difference between subjects can be used as an additional
source of information to recover an even better estimate of the shared
response. In practice, we observe that Shared ICA improves upon
MultiViewICA. This work will be presented in part IV.

published work H. Richard et al. “Shared Independent Compo-
nent Analysis for Multi-Subject Neuroimaging.” In: Advances in Neural
Information Processing Systems 33. Dec. 2021

1.2.4 Conditional ICA

Our results suggest that ICA is a good generative model for fMRI
data. Can it be used to perform data augmentation ? We design a data
augmentation method, that leverages the large amount of (unlabeled)
resting state data to generate realistic fake task data from a small set
of images. Our data augmentation method yields an improvement in
classification accuracy on eight large datasets. This will be discussed
in part V.

published work Badr Tajini, Hugo Richard, and Bertrand Thirion.
“Functional Magnetic Resonance Imaging data augmentation through
conditional ICA.” In: MICCAI (2021) (Oral, co-first authorship with
equal contribution)

1.3 chapter ordering

The appendices can be skipped at first read. Chapters 2, 3 and 4

present the necessary background. The reader more interested in the
theory should first read chapters 5, 7, 9 and 11. Chapters 6, 8, 10

and 12 focus on practical results.





Part I

B A C K G R O U N D C O N C E P T S





2
S TAT I S T I C A L L E A R N I N G A N D O P T I M I Z AT I O N

In this chapter, we present the probabilistic modeling and optimization
background needed for the present thesis. The material presented in
section 2.1 is inspired from the section 4 of [87], the section 1.1 of [1],
the chapter 17 of [54] and [140]. The material presented in section 2.2
comes from the chapter 9 of [24] and from [106].

2.1 probabilistic generative models

In a probabilistic generative modeling framework, learning from ex-
periments means identifying the underlying process that generates
the data we observe.

More formally, consider X = x(1), . . . , x(n) ∈ Rk, n random vectors
with joint density ν∗X and consider the available data X ∈ Rk,n as
an observation of X. We also say that data X are generated from ν∗X.
The broad goal of probabilistic generative modeling is to recover ν∗X
from X. When samples x(1), . . . , x(n) are independent and identically
distributed, ν∗X = ⊗ni=1ν∗x so that X can be seen as n observations of
the random variable x with density ν∗x. In the remaining of the thesis,
we use the same notation x(i) for the random variable associated to
the i-th sample and its observation (the i-th column of X). In addition,
we use ν∗ to denote both ν∗x and ν∗X depending on whether samples
are independent and identically distributed or not.

In practice, we assume a model for the true density ν∗ meaning
that we assume that ν∗ belongs to a family of densities F. When it is
indeed true that ν∗ ∈ F, we say that the model holds.

Often, we assume F to be a set of parametric densities so that any
density in F can be written as νθ where θ ∈ Θ is a set of parameters
and Θ is the set of all possible θ. When the model holds, there exists
an optimal set of parameters θ∗ such that ν∗ = νθ∗ . The goal is then
to find θ∗.

Before we even try to find θ∗, it is instructive to wonder whether
the problem is well defined. Ideally we would like our model to be
such that if νθ1 = νθ2 then θ1 = θ2. When this is the case, we say
that the model is identifiable.

In all the proofs in this section, we assume that the integration
and differentiation operators can always be exchanged and that all
quantities introduced are well defined. The set of parameters θ is
viewed as a vector.

Note that our definition of a model includes the latent variable
model (which specifies the dependencies across the different random

7
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variables) and the densities of each random variable. However it does
not include the estimation procedure. Including the densities in the
model allows us to state claims like : “this model is identifiable” which
would not always be possible if the densities were not included. Yet,
a model is most useful when it comes with an efficient estimation
procedure so we often present together the model and the algorithm
used to estimate its parameters.

2.1.1 Desirable properties of estimators

An estimator θ̂n of θ∗ is a function of the observations X =

x(1), . . . , x(n) that aims at finding θ∗. An estimator is a random vari-
able, as it depends on X. Therefore, it can almost never be perfectly
accurate and that is why we need a criterion to measure its inaccuracy.

A common choice is the mean squared error criterion given by:

E[‖θ̂n −θ∗‖2] = E[‖θ̂n − E[θ̂n] + E[θ̂n] −θ∗‖2] (2.1)

= E[‖θ̂n − E[θ̂n]‖2] + ‖E[θ̂n] −θ∗‖2 (2.2)

= tr(V(θ̂n)) + ‖E[θ̂n] −θ∗‖2 (2.3)

where the right hand side in equation 2.3 gives the bias-variance
decomposition. The left term is the trace of the covariance V(θ̂n) =

Cov(θ̂n − E[θ̂n], θ̂n − E[θ̂n]) where Cov(a,b) = E[(a − E[a])(b −

E[b])>] and the right term is the squared norm of the bias given by
E[θ̂n] −θ∗ .

The norm of the bias can be minimized exactly and such estimators
that achieve E[θ̂n] −θ∗ = 0 are called unbiased.

In Example 1, we study the bias of the sample mean and sample
variance. The sample mean is shown to be unbiased. In contrast, the
sample variance is biased: we show how to correct the estimator of
the variance so that it becomes unbiased.

Example 1 (Biased and unbiased estimate of the parameters of a 1D
Gaussian). Consider n observations x(1), . . . x(n) of x with mean µ∗ and
variance σ2∗ . Consider the sample mean: µ̂e = 1

n

∑n
i=1 x

(i). This estimate is
unbiased as E[µ̂e] =

1
n

∑n
i=1E[x(i)] = µ∗.

Consider the sample variance: σ̂2e =
1
n

∑n
i=1(x

(i) −
∑n
z=1

1
nx

(z))2.
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We have

E[σ̂2e] =
1

n

n∑
i=1

E[(x(i) −

n∑
z=1

1

n
x(z))2] (2.4)

=
1

n

n∑
i=1

E[(x(i))2 − 2x(i)(

n∑
z=1

1

n
x(z)) + (

n∑
z=1

1

n
x(z))2] (2.5)

=
1

n

n∑
i=1

E[(x(i))2 − 2x(i)(

n∑
z=1

1

n
x(z)) +

1

n2

n∑
y=1,z=1

x(y)x(z)]

(2.6)

=
1

n

n∑
i=1

(σ2∗ + µ
2
∗ −

2

n
σ2∗ − 2µ

2
∗ +

1

n2
(

n∑
z=1

σ2∗ +n
2µ2∗))

(2.7)

= σ2∗ −
1

n
σ2∗ (2.8)

=
n− 1

n
σ2∗ (2.9)

so the sample covariance is biased. In contrast, if we consider the estimator

σ̂2u =
n

n− 1
σ̂e
2 (2.10)

we can see that it is unbiased.

However the variance of an estimator cannot be arbitrarily low as
shown by Proposition 1 (Cramer-Rao bound).

Proposition 1 (Cramer-Rao bound). Let θ̂n be an estimator of θ∗. Then,
V(θ̂n) � ∂E[θ̂n]

∂θ In(θ∗)
−1(

∂E[θ̂n]
∂θ )>

where A � B is understood as A− B is positive semi-definite. We
introduced In(θ), the Fisher information matrix given by

In(θ) = E[
∂ log(νθ(X))

∂θ

∂ log(νθ(X))
∂θ

>
] (2.11)

Lastly, the quantity l(x,θ) = log(νθ(x)) is called log-likelihood of x and
its derivative ψ(x,θ) = ∂ log(νθ(x))

∂θ is called the score function of x.
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Proof of Cramer-Rao bound. First let us show that when the optimal
parameter is used, the expected score function cancels:

EX[ψ(θ∗)] = EX[
∂ log(νθ∗(X))

∂θ
] (2.12)

= EX[
1

νθ∗(X)

∂νθ∗(X)

∂θ
] (2.13)

=

∫
X

1

νθ∗(X)

∂νθ∗(X)

∂θ
νθ∗(X)dX (2.14)

=

∫
X

∂νθ∗(X)

∂θ
dX (2.15)

=
∂
∫
X νθ∗(X)dX

∂θ
(2.16)

=
∂1

∂θ
(2.17)

= 0 (2.18)

so that V[ψ(θ∗)] = In(θ∗).
We also have that:

Cov(θ̂n,ψ(θ∗)) = E[(θ̂n − E[θ̂n])(ψ(θ∗) − E[ψ(θ∗)])
>] (2.19)

= E[θ̂nψ(θ∗)
>] (2.20)

=

∫
X

θ̂n
∂νθ∗(X)

∂θ

>
dX (2.21)

=
∂
∫
X θ̂nνθ∗(X)dX

∂θ
(2.22)

=
∂E[θ̂n]

∂θ
(2.23)

and similarly Cov(ψ(θ∗), θ̂n) = (
∂E[θ̂n]
∂θ )>.

Then we apply the following Cauchy Schwartz inequality for ran-
dom vectors:

∀x,y Var(y) � Cov(y, x)Var(x)−1Cov(x,y) (2.24)

(see a proof in [148]) and therefore get the expected result:

Var(θ̂n) �
∂E[θ̂n]

∂θ
In(θ∗)

−1(
∂E[θ̂n]

∂θ
)> (2.25)

When an estimator is both unbiased and reaches the Cramer-
Rao bound we call the estimator efficient. If we assume that sam-
ples are independent and identically distributed we have: ψ(X, θ) =∑n
i=1ψ(x

(i), θ) and therefore

In(θ∗) = E[ψ(X, θ∗)ψ(X, θ∗)>] (2.26)

=

n∑
i=1

E[ψ(x(i), θ∗)ψ(x(i), θ∗)>] (2.27)

= nI(θ∗) (2.28)
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where

I(θ∗) = Ex∼νθ∗ [ψ(x, θ∗)ψ(x, θ∗)>] (2.29)

When samples are independent and identically distributed and θ̂n
is unbiased the Cramer-Rao bound is given by:

Var(θ̂n) �
1

n
I(θ∗)

−1 (2.30)

The Example 2 hows that the sample mean is efficient.

Example 2 (Sample mean is efficient). Consider n observations
x(1), . . . x(n) of x generated from νµ∗(x) = N(x;µ∗,σ2∗) and consider the
sample mean µ̂e = 1

n

∑n
i=1 x

(i). The variance is given by:

V[µ̂e] = V[
1

n

n∑
i=1

x(i)] (2.31)

=
σ2∗
n

(2.32)

The Fisher information matrix is given by

I = E[(
∂ log(νµ∗(x))

∂µ
)2] (2.33)

= E[(
∂− 1

2σ2∗
(x− µ∗)

2 − 1
2 log(2πσ2∗)

∂µ
)2] (2.34)

= E[(−
1

σ2∗
(µ∗ − x))

2] (2.35)

=
1

σ4∗
E[(µ∗ − x)

2] (2.36)

=
1

σ2∗
(2.37)

and therefore we have

V[µ̂e] =
1

n
I−1 (2.38)

so the sample mean is efficient.

In practice, efficient estimators are extremely rare. In the next section,
we introduce the maximum likelihood estimator which is not always
unbiased nor efficient in the finite sample case, but satisfies these
properties asymptotically.

2.1.2 Maximum likelihood

The maximum likelihood estimates the parameters θ̂ such that the
density νθ̂ at x(1), . . . , x(n) is the highest among all possible values
for θ ∈ Θ:

θ̂n = argmax
θ∈Θ

νθ(x
(1), . . . , x(n)) (2.39)
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The quantity νθ(x(1), . . . , x(n)) is called the likelihood and we call
θ̂n the maximum likelihood estimator.

It is often assumed that samples are independent and identically dis-
tributed so that the joint density can be written: νθ(x(1), . . . , x(n)) =∏n
i=1 νθ(x

(i))

Let us define the empirical expected log-likelihood:

ln(θ) =
1

n

n∑
i=1

l(x(i),θ) (2.40)

= Enl(x,θ) (2.41)

where En is the empirical expectation operator defined by

Enf(x) =
1

n

n∑
i=1

f(x(i)) (2.42)

The next lines show that finding the maximum likelihood is done
by optimizing the empirical expected log-likelihood.

θ̂n = argmax
θ∈Θ

νθ(x
(1), . . . , x(n)) (2.43)

= argmax
θ∈Θ

n∏
i=1

νθ(x
(i)) (2.44)

= argmax
θ∈Θ

n∑
i=1

log(νθ(x(i))) (2.45)

= argmax
θ∈Θ

1

n

n∑
i=1

l(x(i),θ) (2.46)

= argmax
θ∈Θ

ln(θ) (2.47)

(2.48)

By the law of large numbers, as the number of samples increases, the
empirical expected likelihood converges almost surely to the expected
log-likelihood: l(θ) = Ex[l(x,θ)].

Example 3 shows that, under a Gaussian model, the maximum
likelihood estimator of the mean and the variance is the sample mean
and sample variance respectively.

Example 3. Consider n observations x(1), . . . , x(n) of an unknown random
variable x and consider the model x ∼ N(µ,σ2). The empirical expected
log-likelihood is:

ln(µ,σ2) = −
1

n

n∑
i=1

1

2σ2
(x(i) − µ)2 −

1

2
log(2πσ2) (2.49)
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First order conditions yield:

n∑
i=1

(µ− x(i)) = 0 ⇐⇒ µ =
1

n

n∑
i=1

x(i) (2.50)

1

n

n∑
i=1

1

(σ2)2
(x(i) − µ)2 −

1

σ2
= 0 ⇐⇒ σ2 =

1

n

n∑
i=1

(x(i) − µ)2

(2.51)

So the maximum likelihood estimators of the mean and the variance are the
sample mean and sample variance respectively.

The maximum likelihood estimator θ̂n is a random variable as it de-
pends on X = x(1), . . . , x(n). As the number of samples n increases, we
expect θ̂n to get closer to the optimal set of parameters θ∗. In Proposi-
tion 2, it is shown that the maximum likelihood estimator is consistent
meaning θ̂n

P−−−−→
n→∞ θ∗ where θ̂n

P−−−−→
n→∞ θ∗ denotes the convergence

in probability defined by ∀ε > 0, p(‖θ̂n −θ∗‖ < ε) −−−−→
n→∞ 1.

Proposition 2 (Consistency of the maximum likelihood estimator).
Assume Θ is compact, Assume ln converge uniformly in probability to l and
assume l is continuous. Lastly, assume that the model is identifiable. Then, the
maximum likelihood estimator θ̂n is consistent meaning that θ̂n

P−−−−→
n→∞ θ∗.

where uniform convergence in probability means supθ‖ln(θ) −
l(θ)‖ P−−−−→

n→∞ 0.

Proof. We first show that l is maximum at θ∗:

l(θ∗) − l(θ) = Ex∼νθ∗ [logνθ∗(x) − log(νθ(x)] (2.52)

= DKL(νθ∗ ,νθ) (2.53)

> 0 (2.54)

where DKL is the Kullback-Leibler divergence that is always positive.
The maximum is unique. This comes from the identifiability of the
model that implies

l(θ∗) = l(θ) =⇒ θ∗ = θ (2.55)

Let ε > 0 and define Vε = {θ, ‖θ−θ∗‖ < ε} an open neighborhood
of θ∗. Because Θ is compact and Vε open, Θ∩VCε is compact and since
l is continuous, maxθ∈Θ∩VCε l(θ) is reached for a value θ0 ∈ Θ∩ VCε .

Let us define δ = l(θ∗) − l(θ0) > 0 and consider the events

An = supθ∈Θ∩VCε ‖ln(θ) − l(θ)‖ <
δ

2
(2.56)

Bn = supθ∈Vε‖ln(θ) − l(θ)‖ <
δ

2
(2.57)
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We have

An =⇒ ∀θ ∈ Θ∩ VCε , ln(θ) − l(θ) <
δ

2
(2.58)

=⇒ ∀θ ∈ Θ∩ VCε , ln(θ) <
δ

2
+ l(θ0) (2.59)

=⇒ ∀θ ∈ Θ∩ VCε , ln(θ) < −
δ

2
+ l(θ∗) (2.60)

and

Bn =⇒ ∀θ ∈ Vε, ln(θ) > −
δ

2
+ l(θ) (2.61)

=⇒ ln(θ∗) > −
δ

2
+ l(θ∗) (2.62)

(2.63)

Then consider θ̂n = argmaxθ∈Θ(ln(θ)) and assume θ̂n ∈ VCε ∩Θ.
We have

An ∩Bn =⇒ ln(θ̂n) < −
δ

2
+ l(θ∗) < ln(θ∗) (2.64)

So if θ̂n ∈ VCε ∩ Θ, An ∩ Bn contradicts the fact that θ̂n =

argmaxθ∈Θ(ln(θ)).
Therefore An ∩ Bn =⇒ θ̂n ∈ Vε. From the uniform convergence

in probability of ln to l we have p(An ∩ Bn) −−−−→
n→∞ 1 and therefore

p(θ̂n ∈ Vε) −−−−→
n→∞ 1 which means θ̂n

P−−−−→
n→∞ θ∗.

As we have ween in Example 1, the sample variance is biased.
However, in the large sample limit the bias disappears. Is this a conse-
quence of consistency ? Intuitively, consistency seems to be a stronger
condition than asymptotic unbiasedness since consistency implies con-
vergence of the random variable θ̂n whereas asymptotic unbiasedness
only implies convergence of the mean E[θ̂n]. Proposition 3 shows that
this intuition is correct as long as the variance is bounded.

Proposition 3 (Consistency implies asymptotic unbiasedness). Assume
θn

P−−−−→
n→∞ θ∗ and assume ∃M ∈ R, E[‖θn −θ∗‖2] < M.

Then E[‖θn −θ∗‖] −−−−→
n→∞ 0

Proof. Set ε > 0, we have

θn
P−−−−→

n→∞ θ∗ =⇒ p(‖θn −θ∗‖ >
ε

2
) −−−−→
n→∞ 0 (2.65)

=⇒ ∃N ∈N, ∀n > N, p(‖θn −θ∗‖ >
ε

2
) <

ε

M
(2.66)

So ∀n > N we get:

E[‖θn −θ∗‖] = E[‖θn −θ∗‖1‖θn−θ∗‖6 ε
2
] + E[‖θn −θ∗‖1‖θn−θ∗‖> ε2 ]

(2.67)

6
ε

2
+ E[‖θn −θ∗‖2]p(‖θn −θ∗‖ >

ε

2
) (2.68)

< ε (2.69)



2.1 probabilistic generative models 15

Where equation (2.68) follows from Cauchy-Schwarz, for the scalar
product a,b→ E[ab>].

While Proposition 2 states that θ̂n
P−−−−→

n→∞ θ∗, Proposition 4 goes fur-

ther in the analysis. It states that
√
n‖θ̂n−θ∗‖ approaches a Gaussian

density as n gets large. This property is called asymptotic normality.

Proposition 4 (Asymptotic normality of maximum likelihood estima-
tors). We assume the same hypothesis as in Proposition 2. We further assume
that θ∗ is in the interior of Θ. Lastly, denoting Jn(θn) = ∂2ln

∂θ2
(θn) and

J(θ∗) =
∂2l
∂θ2

(θ∗) we assume that

θn
P−−−−→

n→∞ θ∗ =⇒ Jn(θn)
P−−−−→

n→∞ J(θ∗)

Then,√
n‖θ̂n −θ∗‖ D−−−−→

n→∞ N(0, I(θ∗)−1)

where the convergence in distribution x(n)
D−−−−→

n→∞ x means

∀t, Fx(n)(t) −−−−→n→∞ Fx(t) where Fx is the distribution function of x.

Proof. First order conditions give ∂ln(θ̂n)∂θ = 0.
From the mean value theorem there exists θ0 such that

∂ln(θ̂n)

∂θ
−
∂ln(θ∗)

∂θ
= Jn(θ0)(θ̂n −θ∗) (2.70)

⇐⇒ −
1√
n

n∑
i=1

ψθ∗(x
(i)) = Jn(θ0)

√
n(θ̂n −θ∗) (2.71)

We know from the proof of the Cramer-Rao bound (Proposition 1)
that Ex[ψθ∗(x)] = 0. We can use the central limit theorem and write:

1√
n

n∑
i=1

ψθ∗(x
(i))

D−→ N(0, I(θ∗)) (2.72)

Then, we have:

J(θ∗) = Ex[
∂ψθ∗(x)

∂θ
] (2.73)

= Ex[
∂ 1
νθ∗(x)

∂νθ∗(x)
∂θ

∂θ
] (2.74)

= Ex[
1

νθ∗(x)

∂2νθ∗(x)

∂θ2
−

∂νθ∗(x)
∂θ

νθ∗(x)

∂νθ∗(x)
∂θ

νθ∗(x)

>

] (2.75)

= −I(θ∗) (2.76)

(2.77)

Then since θ̂n
P−−−−→

n→∞ θ∗, θ0
P−−−−→

n→∞ θ∗ and from our assumption

about Jn we get Jn(θ0)
P−−−−→

n→∞ J(θ∗) = −I(θ∗).
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From Slutsky’s theorem we have

I(θ∗)
√
n(θ̂n −θ∗)

D−→ N(0, I(θ∗)) (2.78)

⇐⇒
√
n(θ̂n −θ∗)

D−→ N(0, I(θ∗)−1) (2.79)

Looking at the variance of θ̂n − θ∗, we see that it behaves like
1
nI(θ∗)

−1 which is the quantity in the Cramer-Rao bound for unbiased
estimators (see Proposition 1). Because of this, the maximum likelihood
estimator is called asymptotically efficient.

2.1.3 Some shortcomings

It may look like an efficient and unbiased estimator should always
yield the best possible mean squared error. However, this is not the
case. A striking example is given by the Stein paradox [140]. As can be
seen in Example 4, there exists an estimator of the mean that achieves
a strictly better mean squared error than the sample mean. However,
we have shown that the sample mean (which is also the maximum
likelihood estimator) is unbiased and efficient. Stein’s estimate shows
that biased estimators can sometimes achieve lower mean squared
error than unbiased ones.

Example 4 (Stein’s estimate of the mean). Let us consider a single obser-
vation x generated from a multivariate Gaussian of dimension v > 3: N(µ, I)
where I is the identity matrix and µ ∈ Rv is the unknown mean that we
want to estimate. As in the one-dimensional case, the sample mean e(x) = x
is unbiased and efficient. The mean squared error is given by:

E[(e(x) − µ)2] = tr(V(e(x))) = v (2.80)

Now consider the estimator s(x) = x− (v− 2) x
‖x‖2 . The mean squared error

is given by:

E[(s(x) − µ)2] (2.81)

= E[(x− (v− 2)
x

‖x‖2 − µ)2] (2.82)

= E[(x− µ)2] − 2(v− 2)E[
(x− µ)>x

‖x‖2 ] + (v− 2)2E[
1

‖x‖2 ] (2.83)

= E[(x− µ)2] − 2(v− 2)

v∑
j=1

E[
(xj − µj)xj
‖x‖2 ] + (v− 2)2E[

1

‖x‖2 ]

(2.84)

where xj is the j-th coordinate of x
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By integration by part

E[
(xj − µj)xj
‖x‖2 ] = E[

∂
xj
‖x‖2

∂xj
] (2.85)

= E[
1

‖x‖2 −
2x2j

‖x‖4 ] (2.86)

so that

E[(s(x) − µ)2] (2.87)

= E[(x− µ)2] − 2(v− 2)

v∑
j=1

E[
1

‖x‖2 −
2x2j

‖x‖4 ] + (v− 2)2E[
1

‖x‖2 ]

(2.88)

= E[(x− µ)2] − 2(v− 2)E[
v

‖x‖2 −
2
∑v
j=1 x

2
j

‖x‖4 ] + (v− 2)2E[
1

‖x‖2 ]

(2.89)

= E[(x− µ)2] − 2(v− 2)2E[
1

‖x‖2 ] + (v− 2)2E[
1

‖x‖2 ] (2.90)

= v− (v− 2)2E[
1

‖x‖2 ] (2.91)

Therefore s(x) always yields lower expected mean squared error than e(x).

Example 4 shows that shrinking the sample mean towards the origin
decreases the mean squared error of the estimate in high dimensions.
A similar technique can also be used for estimating the covariance of
variables. For instance, Ledoit and Wolf showed in [84] that shrinking
the sample covariance towards identity decreases lower expected mean
squared error in high dimensions.

2.2 optimization

The maximum likelihood estimator gives a natural way to obtain
estimators that are consistent and asymptotically efficient. However, it
requires finding the maximum of the empirical expected log-likelihood.
This can rarely be done using a closed form formula and one almost
always have to resort to iterative methods.

2.2.1 Some iterative optimization algorithms

Let us consider a function f : Rv → R that we want to minimize. f(θ),
where θ ∈ Rv, can be seen as the negative expected likelihood.

Optimization algorithms that only use first order derivatives to make
a step are called first order methods. We will begin by presenting the
famous gradient descent. Then, we move on to second order methods
with Newton and quasi-Newton methods. This section closely follows the
chapter 9 of [24].
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2.2.1.1 Gradient descent

We assume that f is differentiable everywhere. From a point θ0, as-
suming a small step size α and a direction d such that ‖d‖ = 1, a Taylor
decomposition at first order gives:

f(θ0 +αd) = f(θ0) + 〈
∂f(θ0)

∂θ
,αd〉+ o(α) (2.92)

The best direction is the one that minimizes f(θ0 +αd). If we neglect
the terms in o(α), it is given by

argmin
d,‖d‖=1

f(θ0) + 〈
∂f(θ0)

∂θ
,αd〉 = −

∂f(θ0)
∂θ

‖∂f(θ0)∂θ ‖
(2.93)

Therefore, gradient descent updates are given by:

θk+1 = θk −α
∂f(θk)

∂θ
(2.94)

where α is a small quantity.
Under certain conditions that we specify in Proposition 5, gradient

descent converges to the minimum.

Proposition 5 (Convergence of gradient descent). Assume that f is twice
differentiable and µ-strongly convex:

∂2f(θ)

∂θ2
� µI (2.95)

In addition, assume that f is `-smooth:

∂2f(θ)

∂θ2
� `I (2.96)

where I is the identity matrix. From θ0 ∈ Rv and given α ∈ R such that
1
` > α > 0, the iterates θk+1 = θk − α

∂f(θk)
∂θ converge to the minimum

θ∗ according to

‖θk+1 −θ∗‖2 6 (1−αµ)k+1‖θ0 −θ∗‖2 (2.97)

Proof. We have

‖θk+1 −θ∗‖2 = ‖θk −α
∂f(θk)

∂θ
−θ∗‖2 (2.98)

= ‖θk −θ∗‖2 − 2〈θk −θ∗,α
∂f(θk)

∂θ
〉+ ‖α∂f(θk)

∂θ
‖2

(2.99)

From µ-strong convexity and Lagrange inequality we get:

f(θ∗) > f(θk) + 〈
∂f(θk)

∂θk
,θ∗ −θk〉+

µ

2
‖θ∗ −θk‖2 (2.100)
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so that

−2α〈∂f(θk)
∂θk

,θk −θ∗〉 6 −2α(f(θk) − f(θ∗)) − µα‖θ∗ −θk‖2

(2.101)

and using the fact that f is `-smooth we have:

∀θ,y, f(y) 6 f(θ) +
∂f(θ)

∂θ
(y−θ) +

`

2
‖y−θ‖2 (2.102)

=⇒ ∀θ, f(θ−
1

`

∂f(θ)

∂θ
) − f(θ) 6 −

1

2`
‖∂f(θ)
∂θ
‖2 (2.103)

=⇒ ∀θ, f(θ∗) − f(θ) 6 −
1

2`
‖∂f(θ)
∂θ
‖2 (2.104)

=⇒ ‖α∂f(θk)
∂θ

‖2 6 2α2l(f(θk) − f(θ∗)) (2.105)

So from (2.99) using the inequalities (2.101) and (2.105) we get

‖θk+1 −θ∗‖2 6 (1−αµ)‖θk −θ∗‖2 − 2α(1−α`)(f(θk) − f(θ∗))
(2.106)

and since 0 < α < 1
` we get that

‖θk+1 −θ∗‖2 6 (1−αµ)‖θk −θ∗‖2 (2.107)

which by induction yields the desired result.

The type of convergence we get in Proposition 5 is called a linear
convergence (because ‖θk+1 −θ∗‖ is bounded by a linear function of
‖θk −θ∗‖) .

2.2.1.2 Newton method and quasi-Newton methods

We assume that f is twice differentiable everywhere. As in gradient
descent, we depart from a point θ0, assume a small step size α and
consider a direction d such that ‖d‖ = 1. A Taylor decomposition at
the second order gives:

f(θ0 +αd) = f(θ0) + 〈
∂f(θ0)

∂θ
,αd〉+ 〈αd,

∂2f(θ0)

∂θ2
αd〉+ o(α2)

(2.108)

If we neglect the terms in o(α2), the best direction is given by

argmin
d,‖d‖=1

f(θ0) + 〈
∂f(θ0)

∂θ
,αd〉+ 〈αd,

∂2f(θ0)

∂θ2
αd〉 (2.109)

= −
(
∂2f(θ0)
∂θ2

)−1
∂f(θ0)
∂θ

‖(∂2f(θ0)
∂θ2

)−1
∂f(θ0)
∂θ ‖

(2.110)
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Therefore, Newton updates are given by:

θk+1 = θk −α(
∂2f(θk)

∂θ2
)−1

∂f(θk)

∂θ
(2.111)

where α is a small quantity.
Unfortunately, Newton’s method is not guaranteed to converge.

This contrasts with the gradient descent method that is guaranteed
to converge when the step-size is small enough. In order to converge,
Newton’s method needs that each step yields a sufficient decrease of
the loss. This is done by a line search.

The exact line search sets α = argmint∈[0,1] f(θk− t(
∂2f(θ0)
∂θ2

)−1
∂f(θk)
∂θ )

while the backtracking line search is an iterative procedure where one
starts with α = 1 and repeatedly halves α until f(θk+1) < f(θk).

As shown by Proposition 6, Newton’s method is guaranteed to
converge when an exact line search is used.

Proposition 6 (Convergence of Newton’s method). Assume that f is
twice differentiable, µ-strongly convex and `-smooth:

µI � ∂
2f(θ)

∂θ2
� `I (2.112)

where I is the identity matrix. Assume that the Hessian is Lipschitz with
constant h:

‖∂
2f(θ)

∂θ2
−
∂2f(θ ′)

∂θ2
‖ 6 h‖θ−θ ′‖ (2.113)

From θ0 ∈ Rv the iterates θk+1 = θk − α(
∂2f(θ0)
∂θ2

)−1
∂f(θk)
∂θ where α

is chosen using an exact line search converge to the minimum θ∗. Depending
on the norm of the gradient two phases exist:

• The damped phase where ‖∂f(θ)∂θ ‖ > µ2

h . In this phase we have
f(θk+1) − f(θk) 6

µ5

2h2`2
. Therefore the number of iterations in this

phase i cannot be larger than 2h2`2

µ5
(f(θ0) − f(θ∗)).

• The pure Newton phase where ‖∂f(θ)∂θ ‖ <
µ2

h . In this phase ‖f(θk) −
f(θ∗)‖ 6 2µ3

h2
(12)

2k−i+1

Once the Newton phase is reached, it continues until convergence of the
algorithm.

Proof. In the damped phase we have ‖∂f(θ)∂θ ‖ >
µ2

h . From Lagrange

inequality and `-smoothness, denoting dk = −(
∂2f(θ)
∂θ2

)−1
∂f(θ)
∂θ we

have:

f(θk + tdk) 6 f(θ) + t〈
∂f(θ)

∂θ
,dk〉+

t2`

2
‖dk‖2 (2.114)

6 f(θ) + t〈∂f(θ)
∂θ

,dk〉−
t2`

2µ
〈∂f(θ)
∂θ

,dk〉 (2.115)

(2.116)
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We then have

f(θk +αdk) 6 f(θ) + t〈
∂f(θ)

∂θ
,dk〉−

t2`

2µ
〈∂f(θ)
∂θ

,dk〉 (2.117)

(2.118)

setting t = µ
` gives

f(θk +αdk) 6 f(θ) +
µ

2`
〈∂f(θ)
∂θ

,dk〉 (2.119)

6 f(θ) −
µ

2`2
‖∂f(θ)
∂θ
‖2 (2.120)

6 f(θ) −
µ5

2h`2
(2.121)

(2.122)

which gives the desired result.
In the pure Newton phase, we assume α = 1 (the exact line search

can only be better than this). We have

∂f(θk+1)

∂θ
=
∂f(θk +dk)

∂θ
−
∂f(θk)

∂θ
−
∂2f(θk)

∂θ2
dk (2.123)

=

∫
t∈[0,1]

∂2f(θk + tdk)

∂θ2
dkdt−

∂2f(θk)

∂θ2
dk (2.124)

=

∫
t∈[0,1]

(
∂2f(θk + tdk)

∂θ2
−
∂2f(θk)

∂θ2
)dkdt (2.125)

(2.126)

Then

‖∂f(θk+1)
∂θ

‖ 6
∫
t∈[0,1]

‖(∂
2f(θk + tdk)

∂θ2
−
∂2f(θk)

∂θ2
)dk‖dt

(2.127)

6
∫
t∈[0,1]

‖(∂
2f(θk + tdk)

∂θ2
−
∂2f(θk)

∂θ2
)‖‖dk‖dt

(2.128)

6
∫
t∈[0,1]

th‖dk‖2dt (2.129)

6
h

2µ2
‖∂f(θk)
∂θ

‖2 (2.130)

(2.131)

Since ‖∂f(θk)∂θ ‖ 6 µ2

h the sequence of gradients converges to zero. The
convergence is quadratic. At iteration k we therefore have:

h

2µ2
‖∂f(θk)
∂θ

‖ 6 (
1

2
)2
k−i

(2.132)

(2.133)



22 statistical learning and optimization

Using strong convexity we conclude that

f(θk) − f(θ∗) 6
1

2µ
‖∂f(θk)
∂θ

‖2 6 2µ
3

h2
(
1

2
)2
k−i

(2.134)

In the pure Newton phase, the convergence is quadratic. This is a
very strong advantage of Newton methods. A second advantage of
Newton method is its equivariance as demonstrated in Proposition 7.
Equivariance means that for any invertible matrix A, working with
parameters Aθ instead of parameters θ has no impact on the result
given by the algorithm.

Proposition 7 (Newton algorithms are equivariant). Let us consider θk
the current estimate of the minimum of f obtained by the Newton method after
k iterations starting from θ0. For any invertible matrix A, consider yk the
current estimate of the minimum of g(y) = f(Ay) obtained by the Newton
method after k iterations starting from y0 = A−1θ0. Then, yk = A−1θk.

Proof. The relation holds for k = 0 and assuming yk = A−1θk we
have:

yk+1 = yk −α(
∂2g(yk)

∂y2
)−1

∂g(yk)

∂y
(2.135)

= yk −αA
−2(

∂2f(θk)

∂θ2
)−1A

∂f(θk)

∂θ
(2.136)

= A−1(θk −α(
∂2f(θk)

∂θ2
)−1

∂f(θk)

∂θ
) (2.137)

= A−1θk+1 (2.138)

(2.139)

In contrast, gradient descent is not equivariant. However, despite
its attractive properties, Newton’s method is rarely used in practice
because it is often intractable. Indeed inverting the Hessian ∂2f

∂θ2
is

difficult as it is an operator in dimension Rv×v×v×v. In some cases, it is
possible to construct an approximation of the inverse of the Hessian in
a reasonable time. This can be done iteratively by building a sequence
of matrices Bk that approaches the inverse of the Hessian as k grows.
Methods that use an approximation of the inverse instead of the true
inverse are called quasi-Newton methods [56].

2.2.2 EM and generalized EM

In the maximum likelihood framework, our goal is to find the param-
eters θ∗ that maximize the expected likelihood l(θ) of observations
X = x(1), . . . , x(n) assuming a model νθ(X). In the previous section,
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we have presented some iterative optimization methods that can be
used to directly maximize the log-likelihood. In this section, we present
an alternative technique suited to latent variable models. Latent variable
models include, in addition to observed data x, unobserved data z
called latent variables. The observed data x is assumed to depend on
the unobserved data z. With some abuse of notation we denote νθ(z)
the likelihood of z, νθ(x|z) the density of x|z evaluated at x, z and
νθ(x, z) = νθ(z)νθ(x|z) the joint likelihood of x, z called the complete
likelihood.

We can relate the likelihood and the completed likelihood by:

νθ(x) =

∫
z

νθ(x, z)dz (2.140)

The EM algorithm maximizes an expression that depends on the
complete log-likelihood rather than the log-likelihood so it is useful
when the former is much simpler to maximize than the later. This
section follows the work in [106].

In order to make this more concrete, let us focus on the Gaussian
mixture model in Example 5.

Example 5 (Gaussian mixture models). Let us consider a latent variable
z sampled from a Bernoulli distribution with parameter φ, and x is given by
x|z = 0 ∼ N(µ0, 1) and and x|z = 1 ∼ N(µ1, 1).

We call x(1), . . . , x(n) the observed samples and z(1), . . . , z(n) the corre-
sponding unobserved latent variables.

The log-likelihood of x(i) is given by:

l(x(i), (µ0,µ1,φ)) (2.141)

= log(φN(x(i),µ1, 1) + (1−φ)N(x(i),µ0, 1)) (2.142)

= log
(
φ

exp(− (x(i)−µ1)2

2 )√
2π

+ (1−φ)
exp(− (x(i)−µ0)2

2 )√
2π

)
(2.143)

Whereas the completed log-likelihood of (x(i), z(i)) is given by

l((x(i), z(i)), (µ0,µ1,φ)) (2.144)

= log((φN(x(i),µ1, 1))z
(i)
((1−φ)N(x(i),µ0, 1))1−z

(i)
) (2.145)

= z(i)(−
(x(i) − µ1)2

2
+ log(φ)) (2.146)

+ (1− z(i))(−
(x(i) − µ0)2

2
+ log(1−φ)) + c (2.147)

where c is a constant that does not depend on µ1 or µ2.
It is easy to see that the expected completed log-likelihood will be much

easier to maximize than the expected log-likelihood.

This example shows that unsurprisingly, it would be easier to find
the parameters of a Gaussian mixture model if we knew the compo-
nent from which are generated each sample.
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Instead of optimizing the expected log-likelihood l(θ) directly, the
EM algorithm optimizes the following function:

F(q, θ) = Eq[log(νθ(x, z))] +Hq (2.148)

where q is a density and

Eq[log(νθ(x, z))] =
∫
z

log(νθ(x, z))q(z)dz (2.149)

Hq =

∫
z

− log(q(z))q(z)dz (2.150)

Hq is called the entropy of q and is always positive. Let us intro-
duce νθ(z|x) the density of z|x, we have: νθ(x, z) = νθ(z|x)νθ(x) and
therefore

F(q, θ) = Eq[log(νθ(z|x)) + log(νθ(x))] + Eq[− log(q)] (2.151)

= log(νθ(x)) − Eq[log(q) − log(νθ(z|x))] (2.152)

= l(x, θ) −DKL(q,νθ(z|x)) (2.153)

From the fact that DKL is positive and DKL(a,b) = 0 ⇐⇒ a = b we
have that

F(q, θ) 6 l(x, θ) (2.154)

F(νθ(z|x), θ) = l(x, θ) (2.155)

and therefore

max
q,θ

F(q, θ) = max
θ

(max
q
F(q, θ)) = max

θ
l(x, θ) (2.156)

Any EM algorithm maximizes l by maximizing F. The most common
practice is to maximize alternatively F with respect to q and θ. At
iteration k, let us call θk the current estimate of θ. According to
equation (2.155), the maximum with respect to q is given by q =

νθk(z|x). Then, we have to maximize equation (2.148) with respect to
θ. As the entropy H does not depend on θ the function to maximize is
given by:

Q(θ) = Ez∼νθk(z|x)
[log(νθ(x, z))] (2.157)

Computing Q is called the E-step. Then we maximize Q and set

θk+1 = argmax
θ

Q(θ) (2.158)

This step is called the M-step.
In Example 6 we us use the EM algorithm to optimize the Gaussian

mixture model introduced in Example 5.
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Example 6 (Optimizing the Gaussian mixture via EM). Let us take the
same data as in Example 5. We call µ0k,µ1k,φk the estimates of µ0,µ1,φ at
iteration k and define:

γ
(i)
k = p(z(i) = 1|x(i)) =

φkN(x(i);µ0k, 1)
φkN(x(i);µ0k, 1) + (1−φk)N(x(i);µ1k, 1)

(2.159)

The E-step is given by:

Q(µ0,µ1,φ) =
n∑
i=1

(
γ
(i)
k log(νµ0,µ1,φ(x

(i), 1)) (2.160)

+ (1− γ
(i)
k ) log(νµ0,µ1,φ(x

(i), 0))
)

(2.161)

=

n∑
i=1

(
γ
(i)
k (−

(x(i) − µ1)2

2
+ log(φ)) (2.162)

+ (1− γ
(i)
k )(−

(x(i) − µ0)2

2
+ log(1−φ)) + c

)
(2.163)

The M-step is given by:

∂Q

∂φ
(φk+1) = 0 ⇐⇒ φk+1 =

∑n
i=1 γ

(i)
k

n
(2.164)

∂Q

∂φ
(µk+10 ) = 0 ⇐⇒ µk+10 =

∑n
i=1(1− γ

(i)
k )x(i)

n
(2.165)

∂Q

∂φ
(µk+11 ) = 0 ⇐⇒ µk+11 =

∑n
i=1 γ

(i)
k x

(i)

n
(2.166)

The maximization of F via the E-step and M-step, like in Example 6,
is the historical version of the EM algorithm. However, other optimiza-
tion techniques referred to as EM variants are possible. For instance,
one could replace the maximization in equation (2.158) by just one
step of an iterative optimization algorithm giving a set of parameters
θk+1 that verifies:

Q(θk+1) > Q(θk) (2.167)

When the M-step is performed in such an approximated way, the EM
algorithm is renamed generalized EM [44]. Similarly, one could replace
the exact E-step by just improving the current density estimate with
respect to the value function q→ F(q, θ) [67].

2.3 conclusion

In this chapter, we have introduced the maximum-likelihood estimator
and have shown that it is consistent and asymptotically efficient. This
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estimator is the solution of an optimization problem. We have pre-
sented gradient descent and Newton’s method, two popular iterative
optimization methods that can be used to maximize the likelihood
directly. Lastly, we explored the special case of latent variable models,
where the maximum likelihood estimator can be estimated via the EM
algorithm.

In the next chapter, we introduce the necessary background on
neuro-imaging.



3
N E U R O S C I E N C E B A C K G R O U N D

In the previous chapter, we have introduced some background on
statistics and optimization. In this chapter, we present the necessary
background on the data used in this thesis. In our experiments, we use
functional magnetic resonance imaging (fMRI) or magnetoencephalo-
grapy (MEG) data. As will be seen in this chapter, these two modalities
have very different characteristics.

3.1 functional magnetic resonance imaging (fmri)

This section relies on the handbook of fMRI data analysis [128].

3.1.1 The BOLD signal and hemodynamic response

The story of fMRI begins with the discovery of the blood-oxygen-
level-dependent (BOLD) imaging contrast in 1990 by Ogawa [110].
When neurons fire, they consume oxygen and therefore, the level of
oxygen in blood changes (it is actually over-compensated by blood
supply). Since oxygenated and deoxygenated blood (oxyhemoglobin
and deoxyhemoglobin) do not have the same magnetic susceptibility,
changes in the oxygen level in blood can be tracked by a magnetic
resonance imaging (MRI) scanner.

When a short stimuli occurs, the relative change in the MRI signal
(BOLD signal) is not instantaneous. The typical response to a short
stimuli follows the curve displayed in figure 3.1 and is called the
hemodynamic response. The BOLD signal can be seen as the convolution
of neural activation with the hemodynamic response.

3.1.2 Spatial and temporal resolution of fMRI data

The success of fMRI is due to its advantages compared to positron
emission topography (PET) that uses radioactive tracers to follow
glucose or water levels. PET and fMRI both have a spatial resolution
of a few millimeters (which still encompasses several hundred thou-
sands of neurons). However, while taking an image with PET takes
about a minute, it takes on the order of 2s to produce with fMRI. In
addition, fMRI is non-invasive and, unlike PET, it does not involve
being exposed to radioactive tracers.

27



28 neuroscience background

0 10 20 30

time (s)

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

B
O

L
D

si
gn

al

Figure 3.1: A model of the hemodynamic response function

3.1.3 Experimental designs

In resting state fMRI, subjects are instructed to lie still in the scanner
without further instruction. This kind of data can be used to extract
networks that highlight regions that tend to co-activate. This contrasts
with task fMRI, in which subjects have to comply with specific instruc-
tions. In task fMRI, two types of experimental designs are widespread.
Block designs are suited to functional imaging modalities with low
temporal resolutions. In block designs, subjects are exposed to a con-
tinuous stimulus that lasts of a rather long period of time before it
switches to another. This contrasts with event related designs that are
only suited to modalities with a finer time resolution. In event related
designs, a sequence of short events are presented and separated by a
time window (inter-stimulus interval). When the inter-stimulus inter-
val is shorter than the length of the hemodynamic response, we talk
about “fast” even related designs. While block designs or event related
designs are controlled designs, a rising trend is to use more naturalis-
tic paradigms that are unconstrained from behavioral manipulations
and thus, more ecological with respect to real-world conditions. In
such naturalistic paradigms, referred to as naturalistic task fMRI in
this thesis, subjects are exposed to naturalistic stimuli such as movie
watching or audio track listening. These kinds of stimuli constitute a
middle ground between resting state and task fMRI data as activations
are time-locked but the environment is not as controlled as in a typical
task fMRI setting. In this thesis, we use mostly naturalistic task fMRI, as
one of our motivations is to propose a suitable framework to analyse
such data.
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3.1.4 Preprocessing

The fMRI signal is particularly noisy. Several techniques are used to
reduce the noise and enhance the quality of the data.

3.1.4.1 Distortion correction

In the MRI scanner, a constant magnetic field is applied. However,
in areas where there is an air/tissue interface, the magnetic field is
distorted leading to errors in the localization of voxels near the sinus
or ears. However, most scanners come with a map quantifying the
distance that each voxel has been shifted. By inverting the map, one
can try and recover the correct location of voxels.

3.1.4.2 Slice timing correction

Images are acquired in slices, a few slices at a time, so that different
voxels are acquired at different times. In order to correct for this effect,
a reference slice is chosen and other slices are interpolated so that we
can consider that all voxels are acquired at the same time.

3.1.4.3 Motion correction

Head motion causes massive distortion of the signal. Such effects
are corrected by chosing a reference image and applying a rigid
body transformations so that other images match the orientation and
localization of the reference image. One also records estimated head
movements parameters so that they can be regressed out. However, if
the task is correlated with head motion, this regression can lead to a
loss of information.

3.1.4.4 Spatial smoothing

Spatial smoothing blurs the image through the application of a Gaus-
sian kernel with a given width (in mm). When the signal of interest
has a large spatial extend, smoothing increases the signal to noise
ratio. Smoothing is also used as a way to decrease between-subject
variability. In our experiments, we usually don’t apply smoothing in
order to measure how our methods are able to handle fined grained
details. While there is currently no consensus on smoothing, we ob-
serve that a smoothing of 3 mm generally improves most analysis on
fMRI data.

3.1.4.5 Frequency filtering

Heating of the scanner causes a low temporal frequency noise to
appear. In order to remove such noise, a high-pass filtering is applied
with a cut-off frequency of 0.01Hz. Sometimes a low-pass filter with
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a cut-off frequency of 0.1 Hz is also used since artifacts induced by
motion are usually of higher frequency than the signal of interest.

3.1.4.6 Spatial normalization

Each subject has a brain of different size and shape. The goal of spatial
normalization is to align brain images of different subjects in order to
reduce anatomical variability.

The most widespread technique is to register all images into the
Montreal Neurological Institute template (MNI template). The MNI
template is built from 305 anatomical images that are aligned based
on anatomical features via a non-linear registration model. The non-
linear registration model uses rigid body transformations followed by
non-linear diffeomorphic deformations to better match brain shape.

The projection of fMRI data to the MNI space proceeds in two steps.
First, a high dimensional anatomical image of each subject is aligned
on the MNI template. Then the fMRI images of each subjects are
aligned on the anatomical image of the same subject (this step is called
co-registration). The fMRI images are mapped to the MNI template by
composing the two transformations.

3.1.4.7 Masking

It is often the case that only a subpart of the brain is of interest.
When this is the case, we use a mask to only keep the set of voxels
corresponding to particular locations defined by the mask. In the case
of our experiments, we use a gray-matter mask, since this is the only
part that matters when one wants to capture functional activations in
the brain that reflect behavioral responses.

3.1.4.8 Runs

For the comfort of participants and to ensure their active participation,
it is in general not possible to use the scanner without interruptions
for more than 15 minutes. When long acquisitions must be performed,
they are split into short runs of approximately 15 minutes.

3.1.5 Example of fMRI Datasets

In this subsection we provide examples of fMRI datasets. These
datasets will be used to evaluate the methods developed in this
thesis. Datasets are preprocessed with FSL http://fsl.fmrib.ox.

ac.uk/fsl and SPM https://www.fil.ion.ucl.ac.uk/spm/software

using slice timing correction, distortion correction spatial realign-
ment, co-registration to the T1 image and affine transformation of
the functional volumes to a template brain (MNI). Using Nilearn
[4], preprocessed data are masked (using a full brain mask available

http://fsl.fmrib.ox.ac.uk/fsl
http://fsl.fmrib.ox.ac.uk/fsl
https://www.fil.ion.ucl.ac.uk/spm/software
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at http://cogspaces.github.io/assets/data/hcp_mask.nii.gz), de-
trended and standardized (so that any voxel’s timecourse has zero
mean and unit variance). We also apply a high-pass filter and a low-
pass filter with cut-off frequencies of 0.01 Hz and 0.1 Hz respectively).

3.1.5.1 Sherlock

In the SHERLOCK dataset, 17 participants are watching "Sherlock"
BBC TV show (episode 1). These data are downloaded from http:

//arks.princeton.edu/ark:/88435/dsp01nz8062179. Data were ac-
quired using a 3T scanner with an isotropic spatial resolution of 3 mm.
More information including the preprocessing pipeline is available in
[35]. Subject 5 is removed because of missing data, leaving us with
16 participants. Although SHERLOCK data contains originally only 1

run, we split it into 4 blocks of 395 timeframes and one block of 396

timeframes for the needs of our experiments.

3.1.5.2 Forrest

In the FORREST dataset, 20 participants are listening to an audio ver-
sion of the movie Forrest Gump. FORREST data are downloaded
from OpenNeuro [126]. Data were acquired using a 7T scanner
with an isotropic spatial resolution of 1 mm (see more details in
[65]. More information about the forrest project can be found at
http://studyforrest.org. Subject 10 and run 8 are discarded be-
cause of missing data. We therefore use full brain data of 19 subjects
split in 7 runs of respectively 451, 441, 438, 488, 462, 439 and 542

timeframes.

3.1.5.3 CamCAN

In the fMRI CamCAN dataset, 647 participants aged from 18 to 88 years
are watching Alfred Hitchcock’s "Bang! You’re Dead" (edited so that
it lasts only 8 minutes). CamCAN consists of data obtained from the
CamCAN repository (available at http://www.mrc-cbu.cam.ac.uk/

datasets/camcan/) (see [146] and [137]). We use all available subjects
and runs yielding 647 participants and 1 run of 193 timeframes.

3.1.5.4 Raiders

The RAIDERS dataset reproduces the protocol described in [69]. 10

participants are watching the movie "Raiders of the Lost Ark". This
dataset pertains to the Individual Brain Charting dataset [124, 125]. We
use full brain data of 10 subjects split in 9 runs of respectively 374, 297,
314, 379, 347, 346, 350, 353 and 211 timeframes. Note that the Raiders
dataset is different from the one used in [36], as it involves different
subjects, and because data were acquired at NeuroSpin using a 3T
scanner with an isotropic spatial resolution of 1.5 mm. The raiders-full

http://cogspaces.github.io/assets/data/hcp_mask.nii.gz
http://arks.princeton.edu/ark:/88435/dsp01nz8062179
http://arks.princeton.edu/ark:/88435/dsp01nz8062179
http://studyforrest.org
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
http://www.mrc-cbu.cam.ac.uk/datasets/camcan/
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Dataset Subjects Runs Average run Voxels

length (per subject)

(in timeframes)

m v

CLIPS 10 17 325 212445

SHERLOCK 16 5 395 212445

RAIDERS 10 9 330 212445

FORREST 19 7 465 212445

CamCAN 647 1 193 212445

Table 3.1: Datasets description

dataset [124, 125] is an extension of the raiders dataset where the first
two scenes of the movie are shown twice (130 mins).

3.1.5.5 CLIPS

The CLIPS dataset reproduces the protocol of original studies de-
scribed in [108] and [71]. 10 participants are exposed to short clips.
The data were acquired in 17 runs of 325 timeframes. The CLIPS
dataset also pertains to the Individual Brain Charting dataset ([124,
125]). The CLIPS and RAIDERS data are available in OpenNeuro
under the identification number: ds002685. Protocols on the visual
stimuli presented are available in a dedicated repository on Github:
https://github.com/hbp-brain-charting/public_protocols.

Unless stated otherwise we use spatially unsmoothed data, except
for the sherlock dataset, for which the available data are already pre-
processed with a 6 mm spatial smoothing. The temporal resolution
or repetition time (TR) is 2s for all datasets except for the Sherlock
dataset where the TR is 1.5s.

A summary about the size of each dataset is available in Table 3.1.
Note in particular that all datasets have been resampled to 2mm
isotropic resolution, leading to 212,445 voxels in the brain mask.

3.1.6 An example of univariate analysis: analyzing task fMRI data via the
general linear model

In this section, we describe a framework successfully applied to iden-
tify brain regions involved in specific tasks: the general linear model
(GLM) [55]. We refer the reader to Poline [129] for a more detailed
description of the model and only cover here what we consider to be
the most important parts.

We associate to each image t a set of numbers s(t) that de-
scribe the experiment and nuisance parameters. For instance, in

https://github.com/hbp-brain-charting/public_protocols
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an experiment where the subject is either asked to listening a sen-
tence or reading a sentence we could have the association: s(t) =

(φ(t), τ(t), x(t),y(t), z(t)) where φ(t) = 1 if the subject is reading a
sentence and 0 otherwise, τ(t) = 1 if the subject is listening to a
sentence and 0 otherwise and x(t),y(t), z(t) describe the position of
the head. While φ and τ describe the experiment, x,y, z describe nui-
sance parameters. Note that in practice we use many more nuisance
regressors, such as parameters describing the rotation of the head,
heartbeats, respiration rhythm and really any other parameter that
might introduce artifacts. We also usually convolve the regressors
describing the experiment with the hemodynamic function so that
they are closer to the actual brain response and sometimes also its
derivative to account for small temporal deviations from our model of
hemodynamic response. We call S ∈ Rk,n the design matrix such that
column t of S is given by s(t). Then, the general linear model sees the
data of one subject X ∈ Rv×n as a linear combination of the design
matrix S with additive noise N.

X = AS+N (3.1)

where A ∈ Rv×k contains k spatial maps in the sense that column j
of A can be plotted as a brain image representing the localization of
activity described by the row j of S. The noise is often assumed to be
Gaussian with unit variance so that A can be obtained as the result of a
linear regression. Another common hypothesis is to assume temporal
correlation of the noise in the form of an AR-1 process. In this case, we
consider instead the data XB where B ∈ Rn×n is chosen so that the
noise BN has no temporal correlation allowing us to perform linear
regression.

The result of the GLM procedure is often given by contrasts maps
where the spatial maps corresponding to conditions of interest are sub-
tracted. In our reading versus listening example, we would typically
display the first column of A (that corresponds to φ which describes
the activation related to reading a sentence) minus the second column
of A (that corresponds to τ which describes the activation related
to listening to a sentence). An example of “reading versus listening
contrast is displayed in Figure 3.2.

In this thesis, we always work with unthresholded contrast maps
like the one in Figure 3.2. For interpretation purposes, contrast maps
are usually z-scored and thresholded to keep only activity that is
significantly different from zero. The GLM model is called univariate
since interactions between voxels are not modeled. Univariate methods
are often criticized for their inability to capture well correlations and
interactions between brain-wide measurements. This makes it difficult
to precisely locate brain functions from brain maps. An approach
to overcome this issue is to train classifiers to decode brain maps,
i.e to discriminate between different stimulus of task types [95, 138,
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Figure 3.2: Contrast “sentence listening versus sentence reading” computed
from the fMRI data of one subject in the IBC dataset [124, 125]. This contrast
was downloaded from neurovault [59] (collection 2138 subject 1 session 0) .

151]. When linear classifiers are used, the weights of this classifiers
localize the brain functions. This approach can be more powerful, as
classifiers take correlations between voxels into account. Decoding is
also popular for individual imaging-based diagnosis.

3.2 magneto electro encephalography (meg)

Most material in this section is inspired from the book of Riitta Hari
and Aina Puce [66].

3.2.1 Principle of MEG

When a neuron fires, it emits a current that generates a magnetic field.
By recording the magnetic field close to the skull, we gain insight on
neural activity.

A limiting factor is that the magnetic fields induced by neuronal
currents are extremely weak (on the order of 10fT ) which is much
lower than the ambient magnetic noise (108fT ). Therefore recordings
are performed in a shielded room and extremely sensitive magne-
tometers are used. The best current tools can measure the magnetic
field generated by approximately 50 000 neurons oriented in the same
direction.

MEG recording device also include gradiometers in addition to mag-
netometers. These are sensitive to the local variations of the magnetic
field. However in our experiments, we only use the magnetometers
data.
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MEG has a temporal resolution on the order of the ms which is
essentially the same as electroencephalography (EEG). This is much
better than fMRI. The spatial resolution is similar to that of EEG and is
on the order of the centimeter. In general the brain sources are slightly
better localized in MEG since the magnetic field is not affected by
changes in conductivity in the head.

3.2.2 Solving the inverse problem

In order to locate activation from the brain measurements, we need
to solve an inverse problem: what kind of sources can generate the
magnetic field we observe ? This section gives an overview of the
sLORETA method [113] and is strongly inspired from the tutorial of
the authors [112].

From a vector describing the 3D current density inside the brain
j ∈ R3×v (v is the number of voxels) we can predict the magnetic
field recorded by the sensors b ∈ Rp (p is the number of sensors) by
solving Maxwell’s equations. This is called the forward model. Models
describing the geometry of the head (head models) are used to provide
an approximate solution. We have therefore

b = Kj (3.2)

where K ∈ Rp×3v is the solution to the forward model. K can be seen
as K = [K1 . . . Kv] where Ki ∈ Rp×3 describes how voxel i contributes
to the measured magnetic field b.

Note that if b and K are given there is an infinite number of possible
j that satisfy equation (3.2), so the inverse problem must be regularized
in order to select a solution among all possible ones. A common
parametrization is to assume that the current at voxel i, ji ∈ R3

verifies:

ji = (K>i CKi)
− 1
2K>i Cb (3.3)

for a symmetric matrix C ∈ Rp×p. In sLORETA, we have C = (KK> +

αI)† where † represents Moore’s pseudo inverse, I is the identity
matrix and α is an hyperparameter.

Taking a point wise source a ∈ R3 at voxel i∗ equation (3.2) yields
b = Ki∗a. Then, ji = (K>i CKi)Ki∗a is such that ‖ji‖2 is maximum at
i = i∗ showing that the method can correctly recover point sources.

3.2.3 Preprocessing steps

This section is inspired from the preprocessing recommandations
in [77] and the book of Riitta Hari and Aina Puce [66].
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3.2.3.1 Temporal filtering

Temporal filtering is performed in two steps. First an analogous pass
band filter selects a large band of frequencies between 0.01Hz and
200Hz. Then, a digital filtering is applied. Typically, a low-pass filter-
ing with cut-off frequency at 40Hz is used as it is removes the line
frequency at 50Hz while keeping most of the brain’s signals.

3.2.3.2 Independent component analysis

Independent component analysis (ICA) can be used to isolate arti-
facts due to heart beating or muscle contraction. As will be seen
in section 4.1. ICA extracts independent components from the data.
The data can be cleaned by removing components corresponding to
artifacts [78].

3.2.3.3 Maxwell filtering

Maxwell filtering also called signal space separation (SSS) [145] identi-
fies the contributions to the magnetic field from brain sources outside
the brain and removes it. This decreases the effects of outside noise
and even allows to scan subjects with implanted stimulators.

3.2.4 Experimental designs

In magneto-encephalography, we measure event related fields (ERF)
related to an evoked response in the brain. Experiments are often re-
peated several times yielding a number of trials. By averaging the
event related fields over trials, the signal to noise ratio increases.

3.2.5 MEG datasets

In this section, we give examples of MEG datasets. These examples
are used in the rest of the thesis to evaluate the methods we develop.

The Sinusoidal Phantom MEG dataset uses data collected with a
realistic head phantom, which is a plastic device mimicking real elec-
trical brain components. Eight current dipoles positioned at different
locations can be switched on or off. We only consider the 102 magne-
tometers. An epoch corresponds to 3 s of MEG signals where a dipole
is switched on for 0.4 s with an oscillation at 20 Hz and a peak-to-
peak amplitude of 200 nAm. We have access to 100 epochs per dipole.
Maxwell filtering is applied on the data as well as low-pass filtering
with a cut-off frequency at 40 Hz.

The Elekta Phantom MEG dataset also uses data collected with a
realistic head phantom and is available as part of the Brainstorm
application [143]. This dataset uses 32 dipoles positioned at different
locations. Like in the Sinusoidal Phantom MEG dataset, we only consider
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the 102 magnetometers and apply Maxwell filtering and low-pass
filtering with a cut-off frequency at 40 Hz. The dipoles emit a signal at
either a strong, medium or low amplitude yielding 3 different datasets.
We use the dataset where the emitted signal is very strong to recover
the true signal by performing a PCA with 1 component. Then we work
with the dataset where the emitted signal is the weakest. Each epoch
corresponds to 301 samples and 20 epochs are available in total.

The CamCAN dataset [137] contains the MEG data of 647 different
subjects exposed to an audio-visual stimuli. More precisely, subjects
are presented simultaneously an auditory stimuli lasting 300ms at
frequency 300, 600 or 1200 Hz and a checkerboard pattern lasting
34ms. 120 trials are available.

3.3 conclusion

In this chapter, we described the principles on which fMRI and MEG
imaging are based as well as the standard preprocessing pipelines and
the datasets used in this thesis.

In the next chapter, we review several methods to perform unsuper-
vised analysis of neuroimaging data.





4
R E V I E W O F S E L E C T E D U N S U P E RV I S E D M E T H O D S
P O P U L A R I N N E U R O I M A G I N G S T U D I E S

When exposed to naturalistic stimuli (e.g. movie watching or simu-
lated driving), subjects’ experience is closer to their every-day life
than with classical psychological experiments. This makes natural-
istic paradigms an attractive class of stimulation protocols for brain
imaging. However, such stimulations are difficult to model, therefore
the statistical analysis of the data using supervised regression-based
approaches is challenging. This has motivated the use of unsupervised
learning methods that do not make assumptions about what triggers
brain activations in the presented stimuli.

In this chapter, we first present independent component analysis
(ICA), a widely used unsupervised method for neuroimaging stud-
ies routinely applied on individual subject electroencephalography
(EEG) [97], magnetoencephalography (MEG) [154] or functional MRI
(fMRI) [100] data. Then, we review multiview unsupervised techniques
that leverage the availability of data from multiple subjects performing
the same experiments.

4.1 independent component analysis

Independent component analysis (ICA) models a set of signals as
the product of a mixing matrix and a component matrix containing
independent components. As will be seen in this section, the required
assumptions on the independent components to guarantee identifia-
bility are rather weak, making ICA a method of choice to analyze the
data of subjects exposed to a stimulus that is difficult to quantify.

ICA is applied to fMRI data to analyze resting state data [16] or
when subjects are exposed to natural [98] [14] or complex stimuli [30].
In M/EEG processing, it is widely used to isolate acquisitions arti-
facts from neural signal [78], and to identify brain components of
interest [43, 155].

Mainly for computational reasons, it is often assumed that the num-
ber of components k is much lower than the dimensionality of the data
v. However in ICA, the dimensionality of the data must be equal to
the number of components. We therefore first present principal com-
ponent analysis, a standard method to perform dimension reduction,
then present non-Gaussian ICA and non-stationary ICA.

39
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4.1.1 Principal component analysis (PCA)

Let us assume our data are given by n observations of a random vector
x ∈ Rv that we stack into a matrix X ∈ Rv×n. The data are centered
(E[x] = 0). Principal component analysis (PCA) yields an orthonormal
familly of p vectors R ∈ Rv×p,R>R = Ip, such that the projected data
RR>x does not yield a large mean reconstruction error in Frobenius
norm. The corresponding optimization problem is given by:

argmin
R,R>R=I

Ex‖x− RR>x‖2 (4.1)

= argmin
R,R>R=I

Extrace(x>(I− RR>)(I− RR>)x) (4.2)

= argmin
R,R>R=I

Ex(‖x‖2 − ‖R>x‖2) (4.3)

= argmax
R,R>R=I

Ex‖R>x‖2 (4.4)

= argmax
R,R>R=I

trace(R>V[x]R) (4.5)

Therefore the matrix R is just given by the first p eigenvectors of V[x].
In practice, we can use the sample variance 1

nXX
> to estimate V[x].

However, such an estimate is not practical in high dimension: when v
is very large XX> is a prohibitively large matrix.

In such case, assuming n is small, we rely instead of the singular
value decomposition (SVD) of X:

X = UDV (4.6)

where U ∈ Rv×n is an orthogonal matrix (U>U = It) of left-singular
vectors, D ∈ Rn is a positive diagonal matrix of singular values and
V ∈ Rn×n is an orthogonal matrix of right-singular vectors. Such a
decomposition can be computed in Õ(vn2) operations which is not
prohibitive when n is small enough. Every matrix has a singular value
decomposition and, provided that all singular values are distinct, this
decomposition is unique up to a permutation and sign indeterminacy.
More precisely, if UDV and U ′D ′V ′ are two singular decomposition
of X and if D has only distinct values, then U ′ = UΠΞ, D ′ = Π>DΠ

and V ′ = ΞΠ>V where Π is a permutation matrix and Ξ a diagonal
matrix with diagonal values in {−1, 1}.

Let X = UDV be a singular value decomposition of X, we have
XX> = UD2U> and therefore the left-singular vectors Up correspond-
ing to the largest p singular values of X yield the p largest eigenvectors
of XX>. Therefore R is given by the left-singular vectors corresponding
to the largest p singular values: R = Up.

Sometimes the PCA includes whitening R = UpD
−1
p where Dp

contains the p largest singular values of X so that the components of
R>x are uncorrelated (but R is no longer orthonormal). In this thesis
what we call PCA does not include signal whitening.
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After the data are reduced, we can perform independent component
analysis (ICA). ICA can exploit a number of different properties of the
signal. We focus in the next section on non-Gaussian ICA.

4.1.2 Non Gaussian ICA

ICA sees the data x ∈ Rp as a linear mixtures of components s ∈ Rp.
Data are therefore modeled as:

x = As (4.7)

where A is the unmixing matrix and s is a vector with independent
components, of which at most one is Gaussian and whose densities
are not reduced to a point-like mass. Without loss of generality, the
data x are assumed centered (E[x] = 0). This section relies heavily on
the ICA review [76] and on [32].

4.1.2.1 Identifiability

A matrix P that can be written P = ΞΠ, where Ξ is a diagonal matrix
and Π is a permutation matrix, is called a scale and permutation matrix.
If furthermore Ξ only has diagonal values in {−1, 1}, then P is a sign
and permutation matrix.

It is easily seen that if s is a vector with independent components,
of which at most one is Gaussian and whose densities are not reduced
to a point-like mass, so is Ps where P is a scale and permutation
matrix. Therefore, if x = As, take A ′ = AP> and s ′ = Ps and we
have x = A ′s ′. In other words, there exists a permutation and scaling
indeterminacy.

To fix the scaling indeterminacy, we assume that s has unit variance
(V[s] = I). In addition, we assume that the data are whitened (V[x] =

I). Note that the whitening assumption does not imply any loss of
generality. If a matrix H is used to whiten the data, the mixing matrix
of the unwhitened data is given by H−1A where A is the unmixing
matrix obtained on the whitened data. With these assumptions, A is
orthogonal. Indeed, V[x] = A>A = I.

Are there any other indeterminacies ? Assume that there exists two
mixing matrices A1 and A2 such that x = A1s1 and x = A2s2 with A1
and A2 orthogonal. Then s1 = Os2 where O = A2A

>
1 is an orthogonal

matrix. The following theorem in [38] shows that O is necessarily a
sign and permutation matrix.

Theorem 8. Let s2 be a vector with independent components, of which at
most one is Gaussian, and whose densities are not reduced to a point-like
mass. Let O be an orthogonal matrix and s such that s = Os2. Then, s has
independent component if and only if O is a sign and permutation matrix.
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As a result, if we assume that at most one component is Gaussian
and that components densities are not reduced to a point-like mass,
ICA is identifiable up to a scale and permutation indeterminacy.

4.1.2.2 Infomax: Maximum likelihood estimation

Infomax is introduced in [19] and although initially formulated as a
maximum entropy problem, it has been shown in [31] to be equivalent
to maximum likelihood.

Assume for simplicity that the components have the same density
δ, denoting f(x) = − log(δ(x)) and f(x) =

∑m
i=1 f(xi) the expected

negative log-likelihood is given by:

L(W) = E[−l(x, θ)] = E[− log(p(x))] (4.8)

= − log(|W|) − E[log(δ(Wx))] (4.9)

= − log(|W|) − E[log(δ(y))] (4.10)

= − log(|W|) + E[f(y)] (4.11)

= − log(|W|) + E[

m∑
i=1

f(yi)] (4.12)

where y = Wx and yi is the i-th component of y. At line (4.9) we
used the change of variable s =Wx.

4.1.2.3 Optimizing the maximum likelihood: relative gradient, Hessian and
approximations

The matrix W needs to be invertible. In practice, if the constraint is
not enforced, we could see numerical instabilities appear. A simple
rule that preserves the invertibility of W is to use updates of the form:

W ← (I+αD)W (4.13)

where α is a small step-size andD is a direction to be found. Following
the same reasonning as in section 2.2.1.1, we assume a small step-size
and write at first order:

argmin
D,‖D‖=1

L((I+αD)W) = argmin
D,‖D‖=1

L(W) + 〈∂L(W)

∂W
,αDW〉

(4.14)

= argmin
D,‖D‖=1

L(W) + 〈∂L(W)

∂W
W>,αD〉

(4.15)

= −
∂L(W)
∂W W>

‖∂L(W)
∂W W>‖

(4.16)

Therefore the steepest direction for that update rule is D =
∂L(W)
∂W W>

and therefore updates are given by: W ← (I − αG)W where G =
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∂L(W)
∂W W> is called the relative gradient [34]. Second order extensions

of the method are obtained by following the steps in section 2.2.1.2.
The corresponding Hessian is called the relative Hessian.

Let us follow [3] and use a quasi-Newton algorithm to minimize
the likelihood. The relative gradient and Hessian of L are given by:

G = E[f ′(y)y>] − Ip, (4.17)

where y =Wx and f ′(y) = ∂f(y)
∂y and

Habcd = δadδbc + δacE[f ′′(ya)ybyd] (4.18)

Following [3], we can approximate the Hessian by

H̃abcd = δadδbc + δacδbdΓab (4.19)

where Γab = E[f ′′(ya)y
2
b]. The approximation is exact when the true

unmixing matrix is found since E[sbsd] = s
2
bδbd.

The updates are then given by:

W ← (I−αH̃−1G)W (4.20)

The approximated Hessian H̃ is block diagonal. Indeed we have for
any matrix M:[

(H̃M)ab

(H̃M)ba

]
=

[
Γab 1

1 Γba

][
Mab

Mba

]
if a 6= b

(H̃M)aa = (1+ Γaa)Maa (4.21)

So that each block corresponds to a pair (a,b) and is of size 2 if a 6= b
and of size 1 when a = b. Therefore H̃ can be easily regularized and
inverted.

4.1.2.4 Robustness to density mismatch

In practice, we observe that sometimes, the quasi-Newton algorithm
described in the previous section fails to recover the true mixing
matrix. This happens when the sources used in the model are too far
from the actual generating sources. In this section, we explain why
this happens and derive stability conditions. This follows the work
done in [33].

When the density of the sources corresponds to the one used in the
model, one recovers the correct unmixing matrices via the maximum
likelihood estimate in the limit of large samples. This comes from
the consistency of maximum likelihood estimators. When this is not
the case, a mismatch appears which can be quantified. Let us denote
x∗ the true data. As highlighted in (2.54) the expected negative log-
likelihood coincides, up to a constant, with the KL divergence between
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the true distribution of the data and the distribution of the data as
hypothesized in the model:

L(W) (4.22)

= DKL(p(x
∗),p(W−1s)) (4.23)

= DKL(p(Wx
∗),p(s)) (4.24)

= DKL(p(Wx
∗),

∏
i

pi(wix
∗)) +DKL(

∏
i

pi(wix
∗),p(s))

(4.25)

= DKL(p(Wx
∗),

∏
i

pi(wix
∗)) +DKL(

∏
i

pi(wix
∗),

∏
i

pi(si))

(4.26)

= DKL(p(Wx
∗),

∏
i

pi(wix
∗)) +

∑
i

DKL(pi(wix
∗),pi(si))

(4.27)

where equation (4.24) comes from the invariance of the KL divergence
and we denote

∏
i pi(xi) the product of the marginal densities of x.

The first term in equation (4.27) is the mutual information. It quanti-
fies the independence of unmixed dataWx. The second term quantifies
the mismatch between the assumed distribution of the components
and the marginals of unmixed data. Therefore if the assumed compo-
nents are too far from the true components, the recovered unmixing
matrices may be far from the true ones.

Looking at the relative gradient G, we see that if components are
truly independent, the true unmixing matrix will be a stationary point
of the loss up to a scaling: G(ΛA−1) = 0 where Λ = diag(λ1 . . . λp).
However, in order for the quasi-Newton to reach this point, it must be
a local minimum (the Hessian must be definite positive).

Let us therefore consider the Hessian H at point W = ΛA−1 where
Λ is chosen such that G = 0. The unmixed data y = Wx = Λs are
independent and therefore, we have H̃ = H. As already mentioned,
H̃ is block diagonal with blocks described by equation (4.21). The
condition for stability is that the Hessian is positive definite. Therefore
all the blocks need to be positive definite so we get the conditions:

∀a, 1+ Γaa > 0 for blocks of size 1 (4.28)

∀a 6= b, ΓabΓba > 1 for blocks of size 2 (4.29)

When the conditions are satisfied, the quasi-Newton algorithms will
recover the true unmixing matrices if initialized close to a solution.
However, we have no theoretical guarantees of convergence because
of the non-convexity of the problem.

4.1.3 Non-stationary ICA and joint diagonalization

Up to now we have assumed that samples were independent an
identically distributed. In non-stationary ICA, samples are no longer
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identically distributed as the distribution can vary over time. This
section follows the work in [120]. The components are assumed to be
Gaussian with a variance that varies between samples but is assumed
to be piece-wise constant Σt = Σk for t ∈ Tk where (Tk)k is a partition
of [1, 2, . . . ,n] and Σk is a positive diagonal matrix.

Denote X[i] to be sample i of the observed data X. The negative
empirical expected log-likelihood is given by:

L = − log(|W|) +
1

n

∑
k

(1
2

∑
i∈Tk

‖Σ− 1
2

k WX[i]‖2 + 1
2

log(|Σk|)
)
(4.30)

Denoting Ck =
∑
i∈Tk X[i]X[i]

> we have

L = − log(|W|) +
1

n

∑
k

(1
2

trace(Σ−1
k WCkW

>) +
1

2
log(|Σk|)

)
(4.31)

Minimizing L with respect to Σk yields Σk = diag(WCkW>) and
therefore up to a constant:

L = − log(|W|) +
1

n

∑
k

(1
2

log(|diag(WCkW>)|)
)

(4.32)

which up to a constant can be rewritten:

L =
1

2n

∑
k

( log(|diag(WCkW>)|)
log(|WCkW>|)

)
(4.33)

L is a joint diagonalization criterion. The optimal W can be found
via a quasi-Newton method very similar to the one we used for non-
Gaussian ICA [2]. However, the updates only depend on the covariance
matrices Ck and no longer on the number of samples making this
approach very fast when the number of samples is large.

4.1.4 Other approaches and extensions

non-white ica While non-stationary ICA relaxes the assumption
that samples are identically distributed, non-white ICA relaxes the
assumption that samples are independent. Following the work in [118],
the entropy of a stationary Gaussian process y(t) is given by:

h(y(t)) =
1

4π

∫π
−π

log(det(4π2eF(λ)))dλ (4.34)

where F is the spectral density matrix of the process. Then the authors
define the Gaussian mutual information between stationary processes
y1(t), . . . ,yk(t) by:

Ig(y1, . . . ,yk) =
1

4π

∫π
−π

log(det(diag(F(λ)))) − log(det(F(λ)))dλ

(4.35)
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which is a joint diagonalization criterion similar to (4.33).

extended infomax : more flexible densities In Infomax, the
densities are fixed once and for all. However, it can be useful to make
them more flexible. Note that the updates in equation (4.20) and the
stability criterion in equation (4.28) only depend on the score function
f ′(y) =

∂f(y)
∂y . Choosing f ′(x) = x + tanh(x) would only separate

super-Gaussian sources while choosing f ′(x) = x − tanh(x) would
only separate sub-Gaussian sources. In [86], the authors therefore
propose an extended Infomax algorithm, where the score function can
change based on observed statistics so that the stability criterion is
fulfilled in any case.

ica via mutual information minimization In the limit
of large samples, we have seen in equation (4.27) that maximum
likelihood minimizes the sum of two terms: the mutual information
and a second term that quantifies the mismatch between the assumed
distribution of the components and the marginals of unmixed data.
It might be desirable to only minimize the mutual information and
forget the second term. Since the mutual information depends on the
entropy, different works such as [72] [88] [89] or [90] studied how the
entropy can be estimated accurately and efficiently.

4.2 analysis of multiview data

In this section, we present multiview unsupervised techniques suited
to analyze the data of multiple subjects exposed to the same complex
stimuli. Such techniques assume some similarity between the data of
different subjects. This assumption can be justified by the findings
of [68] showing that brains exposed to the same natural stimuli ex-
hibit synchronous activity. The task of finding common patterns or
responses that are shared between subjects is called shared response
modeling.

In the general linear model presented in section 3.1.6, the shared
response is assumed to be known. Therefore, multiple subjects can
be studied separately assuming that the data of different subjects are
independent given the shared response. In the unsupervised setting
it may not be so straightforward to deal with multiple subjects and
therefore many different methods for data-driven multivariate analysis
of neuroimaging group studies have been proposed. We summarize
the characteristics of some of the most commonly used ones.

4.2.1 Multiset canonical correlation analysis

Canonical correlation analysis is initially designed to find a linear
combination that maximizes the correlation between two datasets. The
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extension to more than two datasets is ambiguous, and many different
generalized CCA methods have been proposed. [79] introduces 6 ob-
jective functions that reduce to CCA when m = 2 and [107] considered
4 different possible constraints leading to 24 different formulations of
Multiset CCA.

In [79], the different formulations of multiset CCA are not derived
from a probabilistic model. However, later works (see [92] or [5]) have
shown that some formulations of multiset CCA can be related to
probabilistic models.

In this section, we present the formulation refered to in [107] as
“SUMCORR with constraint 4” which is one of the fastest to fit.

Let us consider X1, . . . ,Xm ∈ Rp,n, m datasets and consider the
following (SUMCORR) objective:

max
a1∈Rv,...,am∈Rv

m∑
i=1

m∑
j=1

〈ai,XiX>j aj〉 (4.36)

This objective can be arbitrarily large if not constrained. Constraint 4

is given by:

m∑
i=1

〈ai,XiX>i ai〉 = 1 (4.37)

The Lagrangian is given by:

m∑
i=1

m∑
j=1

〈ai,XiX>j aj〉− λ(
m∑
i=1

〈ai,XiX>i ai〉− 1) (4.38)

Taking the gradient with respect to ai we obtain

m∑
j=1

XiX
>
j aj = λXiX

>
i ai (4.39)

This is a generalized eigenvalue problem of the form Ca = λDa

where C is a block matrix where block i, j is given by XiX>j , D is the
block diagonal matrix formed by the block i, i of C and a ∈ Rm×v

yields the dataset specific projections vectors: a =

a1· · ·
am

.

The leading eigenvector correspond to the first canonical vectors.
The second canonical vectors is given by the second eigenvalues and
so on. They are orthogonal for the scalar product: 〈a,b〉D = 〈a,Db〉.

4.2.2 Group independent component analysis

Given the success of ICA in analyzing the data of one subject. It is
natural to look for extensions of ICA in a multiview setting. Several
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works assume that the subjects share a common mixing matrix, but
with different components [117] [142]. Instead, we focus on models
where the subjects share a common components matrix, but have
different mixing matrices.

4.2.2.1 CanICA and ConcatICA

In the single subject setting, we reduce the data (for example using
PCA) and apply ICA on reduced data. Therefore a natural framework
to perform group ICA is to first aggregate the data of individual
subjects into a single dataset, often resorting to dimension reduction
technique and then apply off-the-shelf ICA on the aggregated dataset.
When PCA is used to aggregate the data, the method is referred to as
ConcatICA [28]. An alternative is to use multiset canonical correlation
analysis (CCA) leading to a method called CanICA [150].

This framework has the advantage of being simple and straightfor-
ward to implement since it resorts to customary single-subject ICA
method.

When datasets are high-dimensional, a three steps procedure is
often used: first dimensionality reduction is performed on data of
each subject separately; then the reduced data are merged into a
common representation; finally, an ICA algorithm is applied for shared
components extraction.

CanICA and ConcatICA are popular methods for fMRI [29] and
EEG [48] group studies. These methods directly recover only group
level, shared components; when individual components are needed,
a back-reconstruction step is required (such as GICA1 [28] GICA2,
GICA3 [50] or dual-regression [17]).

In our experiments, when we fit CanICA or ConcatICA, we use
Infomax and the picard solver [3] with the tanh non-linearity. To
obtain k components, we first apply a subject specific PCA with k
components and then aggregate the data using either a Group PCA
(in ConcatICA) or a multiset CCA (in CanICA) with k components.
When individual sources are needed, we use dual-regression. As
already noted, many different procedure to perform single subject
ICA exists (such as Infomax, EBM [89], ERBM [90]), the number of
components in the first PCA can be chosen in many different ways
and so can the back-reconstruction method. This leads to a number
of different CanICA / ConcatICA algorithms. Many of these different
versions of CanICA / ConcatICA are implemented in the GIFT toolbox
https://trendscenter.org/software/gift/. We highlight that GIFT
uses a slightly different terminology as us: dual-regression is referred
to as spatial-temporal regression and ConcatICA is simply referred to
as GroupICA. In this work, GroupICA describes instead the problem
of recovering common sources from multiple subjects.

In the rest of the thesis, we often make the point that CanICA and
ConcatICA are not maximum likelihood estimators. This is because

https://trendscenter.org/software/gift/
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the group PCA / multiset CCA used to fuse the data of different
subjects does not come from a maximum likelihood approach.

4.2.2.2 Likelihood based method

While CanICA and ConcatICA are simple to implement and very
fast to fit, they do not rely on maximum likelihood estimators. There-
fore they do not benefit of advantages of such estimators such as
asymptotic efficiency.

The model of [64] considers the very general model xi = Ais+

ni where Ai represent mixing matrices, s the common sources and
ni are view specific noise. Therefore this model is an instance of
noisy ICA as defined in [75]. The noise covariance is learned from
the data and each source is assumed to be a mixture of Gaussians
p(sj) =

∑q
z=1N(µzj,σzj). The parameters of the Gaussian mixtures

are learned which makes the E-step impossible to compute in closed
form. In order to solve this issue, an approximate E-step is introduced.
Unfortunately, it leads to an update rule involving a sum over qp terms
making their algorithm intractable when the number of components
p is larger than 20.

In this section, we show why a sum of an exponential number of
terms appears. We start with the same model as in [64] but to make the
computations more tractable, we assume that the Gaussian mixture is
given by:

p(sj) =
1

q

∑
αj∈A

p(sj|αj) (4.40)

p(sj|αj) = N(sj; 0,αj), (4.41)

where αj takes its value in a known discrete set A with equal probabil-
ity 1

q where q is the cardinal of A. We call α the random vector with
independent coordinates such that coordinate j is given by αj. We fur-
ther assume that the noise distribution is the same for all components
and all subjects leading to the formulation:

x = As+n (4.42)

where A =


A1

...

Am

, x =


x1
...

xm

 and n =


n1
...

nm

 with n ∼ N(0,σ2I). This

formulation is a special case of [64] and constitues a single subject
noisy ICA problem almost identical to [104].
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We now follow [104] and write:

p(x, s,α) (4.43)

= p(x|s)p(s|α)p(α) (4.44)

= N(x;As,σ2Ip)N(s; 0, diag(α))
1

2p
(4.45)

∝
exp

(
− 1
2(
1
σ2
‖x−As‖2 + 〈s, diag(α)−1s〉)

)
(|σ2Ip||diag(α)|)

1
2

(4.46)

=
exp

(
− 1
2(
1
σ2

(‖x‖2 − 2〈x,As〉+ ‖As‖2) + 〈s, diag(α)−1s〉)
)

(|σ2Ip||diag(α)|)
1
2

(4.47)

∝ exp
(
− 1
2(〈s− µα,V−1

α (s− µα)〉− 〈µα,V−1
α µα〉)

)
(|σ2Ip||diag(α)|)

1
2

, (4.48)

where Vα = ( 1
σ2
A>A+ diag(α)−1)−1, µα = 1

σ2
VαA

>x and the pro-
portionality constant contains terms that do not depend on s or α.

From p(x, s,α), we get:

p(s|x,α) = N(s,µα,Σα) (4.49)

Then, we have that:

p(α|x) =

∫
s

p(α, s|x)ds (4.50)

∝
∫
s

p(x, s,α)ds (4.51)

∝ exp
(
1
2(〈µα,V−1

α µα〉)
)

(|diag(α)||V−1
α |)

1
2

(4.52)

(4.53)

where we leave out terms that do not depend on α. The normalizing
constant can be computed by summing over possible values of α:

p(α|x) =

exp
(
1
2 (〈µα,V−1

α µα〉)
)

(|diag(α)||V−1
α |)

1
2∑

α,αj∈A
exp
(
1
2 (〈µα,V−1

α µα〉)
)

(|diag(α)||V−1
α |)

1
2

(4.54)

Then, we can obtain a formula in closed form for p(s|x) using

p(s|x) =
∑

α,αj∈A
p(s|x,α)p(α|x) (4.55)

The problem here is that the size of the set {α,αj ∈ A} is qp where
q = |A| is the cardinal of A. This quantity quickly gets large when p
increases making p(s|x) difficult to compute.

In this section, we have studied a simplified version of the model
in [64] and shown that it is difficult to fit. This is often the case with
maximum likelihood approaches. Despite, their advantages they are
often intractable.
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4.2.3 Independent vector analysis

Independent vector analysis [85] (IVA) models the data as a linear mix-
ture of independent components xi = Aisi, where each component
sij of a given view i can depend on the corresponding component in
other views: s[j] = (sij)

m
i=1 are not independent.

Introducing x ∈ Rm×p such that x = [x1, . . . , xm]>, s ∈ Rm×p such
that s = [s1, . . . , sm]> and y ∈ Rm×p such that y = [y1, . . . ,ym]>

where yi = Wixi with Wi = A−1
i , the expected negative log-

likelihood is given by:

L = −E[log(p(x))]

=

m∑
i=1

− log(|Wi|) − E[log(p(y))]

=

m∑
i=1

− log(|Wi|) +
p∑
j=1

−E[log(ps[j](y[j]))]

where we used the notation y[j] = (yij)
m
i=1.

The optimization can be carried out using alternate minimization
keeping the mixing matrices of all subjects fixed but one. We can rely
on the relative gradient as in section 4.1.2.3 and use update of the form
Wi ← (I−αiGi)Wi where αi is given by backtracking line search and
Gi is the relative gradient given by:

Gi = −Ip + E[φi(yi)y
>
i ] (4.56)

where component j of φi(yi) is given by

φij(yi) =
∂− log(ps[j](y[j]))

∂yij
(4.57)

Practical implementations of this general model assume a distribu-
tion for ps[j] . In IVA-L [85],

ps[j](y[j]) ∝ exp(−
√∑

i

(yij)2) (4.58)

and therefore

φij(yi) =
yij√∑
i(yij)

2
(4.59)

In IVA-G [7] [152],

ps[j](y[j]) = N(y[j]; 0,Σj) (4.60)

and therefore

φij(yi) =
∑
l

Σ−1
j [il]ylj (4.61)



52 review of selected unsupervised methods popular in neuroimaging studies

where Σ−1
j [il] is the coordinate i, l of Σ−1

j and ylj is the jth coordinate
of yi.

In IVA-G, an estimate of Σj is needed at each iteration. This is
computed using the sample covariance:

Σj =
1

n
Y[j]Y

>
[j] (4.62)

Second order extensions and Hessian approximations can be used
in IVA as well. This is described in [7]. Also note that although IVA-
G and IVA-L are the two most popular implementations of the IVA
framework, others exist (see for instance the work in [8]).

4.2.4 Hyperalignment

Hyperalignment is a model initially designed for fMRI data to reduce
inter-subject variability [69].

Let us assume we have access to the data of two subjects: x1, x2.
Assuming these subjects are exposed to a time-locked stimuli (such as
a movie), a possible alignment is given by the Procrustes transform:

minP∈Rp×p,PP>=IpE[‖Px1 − x2‖2] (4.63)

This can be solved efficiently by

P = P(E[x2x
>
1 ]) (4.64)

where P is the projection on the orthogonal manifold: P(M) =

M(M>M)−
1
2 . In practice P(M) is computed by performing an SVD

of M, M = UMDMVM so that P(M) = UMVM.
Hyperalignment is the combination of the Procrustes transform and

an iterative procedure to produce a template from multiple alignments.
In an initialization step, a random subject i is chosen and the alignment
between all subjects s 6= i and the target are computed. The initial
template t is given by the averaged aligned data. Then, all subjects
are aligned to the current template t and the template is recomputed
using the averaged aligned data. This procedure is repeated for a
given number of iterations until convergence.

The intuition behind the iterative procedure is that averaging the
aligned data will tend to move the template away from the initial
target. However, they are no theoretical guarantees associated with
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this procedure and even no associated loss. We describe formally the
method in Algorithm 1.

Algorithm 1: Hyperalignment

Input: Data X1, . . . ,Xm ∈ Rp×n, number of iterations niter
I Select a random subject
i ∼ U(1,m)

I Initialize the alignment operators
for s = 1 . . .m do

if s = i then
Pst = Ip

end
else

Pst = P(XtX
>
s )

end
end

T =
∑m
s=1 PstXs
m

I Main loop
for it = 1 . . . niter do

I Align data and the current template
for s = 1 . . .m do

Pst = P(TX>s )

end
I Compute the template as the mean of aligned data
T =

∑m
s=1 PstXs
m

end
return Estimated template T and operators Pst

4.2.5 The shared response model (SRM)

The shared response model [36] is a multi-view latent factor model.
The data x1 . . . xm are modeled as random vectors following the
model:

xi = Ais+ni (4.65)

A>i Ai = Ip (4.66)

where xi ∈ Rv is the data of view i, Ai ∈ Rp×v is the mixing matrix of
view i, ni is the noise of view i and s ∈ Rp are the shared components
referred to as the shared response in fMRI applications. The mixing
matricesAi are assumed to be orthogonal so thatA>i Ai = Ip. However,
in general the matrix AiA>i is different from identity. The noise ni is
assumed to be Gaussian with covariance Σi and independent across
views. We assume the number of features v to be much larger than
the number of components p: v� p.

The conceptual figure 4.1 illustrates an application of the shared
response model to fMRI data. The mixing matrices are spatial topogra-
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Figure 4.1: Shared response model: The raw fMRI data are modeled as a
weighted combination of subject-specific spatial components with additive
noise. The weights are shared between subjects and constitute the shared
response to the stimuli.

phies specific to each subjects while the shared components give the
common timecourses.

In [10, 36], two versions of the shared response model are introduced
which we now present.

4.2.5.1 Deterministic shared response model

Let us consider n observations of xi and s that we stack into matrices
Xi ∈ Rv,n and S ∈ Rp,n. The deterministic shared response model
sees both the mixing matrices Ai and the n observations of the shared
response S as parameters to be estimated. The noise variance is fixed
to a multiple of identity: ∀i,Σi = σ2Iv where σ is an hyper-parameter
to choose. The model is optimized by maximizing the log-likelihood.
The likelihood is given by: p(x) =

∏
iN(xi;Ais,σ2I) and therefore the

empirical expected negative log-likelihood is given up to a constant
independent of Ai and S by:

L =
1

n

∑
i

‖AiS−Xi‖2 =
1

n

(
‖S‖2 − 2〈AiS,Xi〉+ ‖Xi‖2

)
(4.67)

The negative log-likelihood L is optimized by performing alternate
minimization on (A1 . . . Am) and S. Note that the hyper-parameter
σ does not have an influence on the loss and can therefore be safely
ignored.

The gradient with respect to S is given by
∑
iA
>
i (AiS − Xi) =∑

i(S−A
>
i Xi) yielding the closed form updates:

S← 1

m

∑
i

(A>i Xi) (4.68)

From (4.67), minimizing L with respect to Ai is equivalent to maxi-
mizing 〈Ai,XiS>〉 and therefore we have:

Ai ← P(
1

n
XiS
>) (4.69)
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where P is the projection on the Stiefel manifold: P(M) =

M(M>M)−
1
2 .

The complexity of Deterministic SRM is in Õ(nitermpvn) where n is
the number of samples and niter the number of iterations. We monitor
the convergence by looking at the `∞ norm of the gradient. Note
that we can monitor the gradient without any increase in complexity.
Indeed, after the updates with respect to each mixing matrix have been
carried out, only the gradient with respect to S remains:

∑
i(S−A

>
i xi).

The algorithm is stopped when the gradient falls below a chosen
tolerance.

4.2.5.2 Probabilistic SRM

In Probabilistic SRM , Σi = σ2i Iv and the shared components are
assumed to be Gaussian s ∼ N(0,Σs). In [36], Σs is only assumed to
be definite positive. However, as will be seen in the FastSRM chapter
(chapter 5), enforcing a diagonal Σs ensures identifiability (provided
the diagonal values are different). So we assume that Σs is diagonal.

The model is optimized via the expectation maximization algorithm.
Denoting V[s|x] = (

∑
i
1
σ2i
I+ Σ−1

s )−1 and E[s|x] = V[s|x]
∑
i
1
σ2i
A>i xi,

we have

p(x, s) =
∏
i

exp(−‖xi−Ais‖
2

2σ2i
)

(2πσ2vi )
1
2

exp(−12〈s,Σ−1
s s〉)

(2π|Σs|)
1
2

(4.70)

= c1 exp(−
1

2

(∑
i

1

σ2i
‖xi‖2 − 2〈

∑
i

1

σ2i
A>i xi, s〉 (4.71)

+
∑
i

1

σ2i
‖s‖2 + 〈s,Σ−1

s s〉
)
) (4.72)

= c2(x) exp(−
1

2

(
〈s− E[s, x], V[s|x]−1(s− E[s|x])〉

)
)

(4.73)

where c1 = 1

(2πσ2vi )
1
2

1

(2π|Σs|)
1
2

and c2(x) = c1 exp(−12(
∑
i
1
σ2i
‖xi‖2 −

〈E[s, x], V[s|x]−1E[s|x]〉)) are independent of s. Therefore s|x ∼

N(E[s|x], V[s, x])
The negative expected completed log-likelihood is given by

L =
∑
i

1

2
v log(σ2i ) +

1

2σ2i
E[‖xi −Ais‖2] (4.74)

updates are therefore given by:

σ2i ←
1

v
(E[‖xi −AiE[s|x]‖2] + ‖diag(V[s|x])‖2) (4.75)

Ai ← P(E[xiE[s|x]>]) (4.76)

Σs ← V[s|x] + E[E[s|x]E[s|x]>] (4.77)
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It is useful to access the log-likelihood to check the implementation
of the algorithm and monitor the convergence. From equation (4.73),
the likelihood is given by:

p(x) = c2(x)

∫
s

exp(−
1

2

(
〈s− E[s, x], V[s|x]−1(s− E[s|x])〉

)
)ds

(4.78)

= c2(x)(2π|V[s|x]|)
1
2 (4.79)

replacing c2(x) by its expression and taking the log, the expected
negative log-likelihood is (up to constants) given by:

E[− log(p(x))] =
∑
i

v

2
log(σ2i ) +

1

2
log(|Σs|) −

1

2
log(|V[s|x]|)

+
∑
i

1

2

1

σ2i
E[‖xi‖2] −

1

2
E[〈E[s, x], V[s|x]−1E[s|x]〉]

(4.80)

The complexity of Probabilistic SRM is Õ(nitermpvn), the same as in
Deterministic SRM. We can monitor the convergence by looking at the
log-likelihood decrease at each iteration and stop the algorithm when
the magnitude of the decrease is below some tolerance. The storage
requirements of Deterministic or Probabilistic SRM are in Õ(mvn)
which simply means that the dataset needs to hold in memory.

4.3 conclusion

In this chapter, we have reviewed several methods to perform unsu-
pervised analysis of neuroimaging data. We have introduced methods
most suited to the analysis of the data of a single subject such as ICA
and have explored some of the extensions to multiple subjects such
as CanICA, ConcatICA, IVA or SRM. In the next chapter, we present
our first contribution: an efficient implementation of SRM that we call
FastSRM.
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5
FA S T S R M T H E O RY

In the previous chapter, we have decribed multiple unsupervised
methods to analyze multiview data. As described in section 4.2.5, the
shared response model [36] (SRM) is a multi-view latent factor model.
It sees the data (xi)

m
i=1 as:

xi = Ais+ni (5.1)

A>i Ai = Ip (5.2)

with ni ∼ N(0,Σi) where Σi = σ2Iv in deterministic SRM and Σi =
σ2i Iv in probabilistic SRM.

In practice, we have access to n observations of xi stacked in a matrix
Xi ∈ Rv×n. The corresponding observations of s called S ∈ Rk×n are
unknown.

When working with high dimensional data, SRM is particularly
interesting as it provides a principled way to perform dimension
reduction. Note that this contrasts with ICA-like methods that do not
incorporate dimension reduction in their model.

However SRM has initially been designed to work within regions
of interest using only few subjects. When using full brain data, com-
putational costs become high. In addition, memory requirements are
difficult to meet since the full dataset needs to hold in memory.

Fortunately, these high costs can be reduced. Intuitively, since the
shared response lives in a reduced space, a compressed representation
of the input is good enough to find a suitable estimate of the shared
response. FastSRM implements this idea. It turns out that there exists
an optimal compression of the input for which we can obtain the same
solution as with the full data.

5.1 the fastsrm algorithm

SRM algorithms use different set of parameters θ to represent the
data. In deterministic SRM θ = (Ai)

m
i=1,S where (Ai)

m
i=1 are the

mixing matrices and S are the n observations of the shared response S
while in probabilistic SRM θ = (Ai)

m
i=1,Σs, (σi)mi=1 where (Ai)

m
i=1 are

the mixing matrices, (σi)mi=1 the noise levels and Σs the components
variance.

In fMRI, the classical approach used to reduce the data is to apply
an atlas. A deterministic atlas such as [20] is a parcellation of the
brain into r regions. Reducing an image using a deterministic atlas
corresponds to averaging the signal within each region of the atlas.
A probabilistic atlases such as [41] describes each region as a set of

59



60 fastsrm theory

STEP 1: Reduce data

STEP 2: Apply SRM algorithm
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Figure 5.1: FastSRM algorithm In step 1, data xi are projected onto an atlas
Ui that may depend on the subject i (top). In step 2 a SRM algorithm is
applied on reduced data to compute the shared response.

weights across the full brain. Therefore, the image reduction can be
done with a matrix product.

In FastSRM we consider a set of view specific atlases Ui ∈ Rv×r

such thatU>i Ui = Ir where r is the number of regions in the atlas. Data
are reduced using zi = U>i xi and an SRM algorithm is applied on
data zi yielding parameters θ ′. The figure 5.1 illustrates this process.

Note that the parameters obtained with FastSRM θ ′ are different
from the parameters obtained with the corresponding SRM algorithm
θ (the unmixing matrices in θ ′ do not even have the same shape as the
unmixing matrices in θ). However, as we will see in the next section,
there exists atlases such as the correspondence between θ and θ ′ can
be made explicit.

From a computational stand point, the dimension reduction pro-
vides a large reduction in memory usage. Indeed as the original data
are seen only once, it is no longer necessary to keep the full dataset
in memory (we can load data Xi one after the other and similarly for
the atlases Ui). Therefore the memory consumption is only in Õ(vn)
(where v is the number of voxels and n is the number of samples)
which is lower than SRM by a factor of m, the number of subjects.
The number of subjects is typically between 10 and 1000. This yields a
practical benefit: on fMRI datasets with many subjects, one no longer
needs a large cluster to run the shared response model but only a
modern laptop. Additionally, low memory consumption reduces the
risk of thrashing [45], a phenomenon that causes large increase in
computation time when the memory used is close to the total available
memory in the hardware.

After preprocessing, the reduced representation zi is used instead
of the original data xi yielding a time complexity of Õ(Tpreprocessing +
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nitermpnr). Let us highlight that an experiment is often run multiple
times such as when cross validated results are needed. In these cases,
the pre-processing is performed only once and the apparent complex-
ity becomes Õ(nitermpnr) which is faster than SRM by a factor of vr .
The number of regions in large atlases is about r = 1000 and in full
brain data, the number of voxels is about 300 000 so that vr is typically
about 1000.

It remains to show how to draw a correspondence between FastSRM
and SRM which is addressed in the following section.

5.2 optimal atlases

In principle, FastSRM can be used with any atlas. However, in general,
working with reduced data induces a loss of information and therefore
there is little hope to recover the parameters that would have been
obtained from SRM from the parameters of FastSRM. However, in this
section, we show that there exists an optimal atlas in the sense that
SRM and FastSRM yield the same results.

Let us consider xi = Uxizi a PCA of xi with the maximum number
of components. As the number of samples n is lower than the number
of features, Uxi ∈ Rv×n and zi ∈ Rn. We also have U>xiUxi = I.
Therefore Uxi constitutes a possible choice of subject specific atlas.

As the next property shows, Uxi is an optimal atlas for deterministic
FastSRM.

Proposition 9 (Optimal atlas for deterministic FastSRM). Let (Ai)i,S
be the solution obtained by deterministic SRM on data (Xi)i and (A ′i)i,S

′

the solution obtained by deterministic FastSRM on data (Xi)i using atlases
(UXi)i where Xi = UxiZi is a PCA of Xi. Then Ai = UXiA

′
i and S = S ′.

Proof. Updates of the mixing matrices Ai in deterministic SRM equa-
tion (4.69) can be written:

Ai ← P(
1

n
XiS
>) = UXiP(

1

n
ZiS
>) (5.3)

where P is the projection on the Stiefel manifold: P(M) =

M(M>M)−
1
2 .

Therefore we can look for Ai as Ai = UXiÃi. Ãi is orthogonal.
Indeed

A>i Ai = Ip (5.4)

=⇒ Ã>i U
>
Xi
UXiÃi = Ip (5.5)

=⇒ Ã>i Ãi = Ip (5.6)

Then, we use the fact that

‖Xi −AiS‖2 = ‖UXiZi −UXiÃiS‖2 = ‖Zi − ÃiS‖2 (5.7)
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so that A ′i = Ãi.
Therefore, the solution of deterministic SRM on data (zi)

m
i=1 and

(xi)
m
i=1 are linked by the change of parameters Ai = UxiA

′
i and S = S ′.

This concludes the proof.

In the case of probabilistic SRM we can obtain very similar results.
However the algorithm applied on reduced data need to be slightly
modified. We call probSRM(ψ) the probabilistic SRM algorithm modi-
fied such that updates

σ2i ←
1

v
(E[‖xi −AiE[s|x]‖2] + ‖diag(V[s|x])‖2) (5.8)

are replaced by updates

σ2i ←
1

ψ
(E[‖xi −AiE[s|x]‖2] + ‖diag(V[s|x])‖2) (5.9)

We have the following result:

Proposition 10 (Optimal atlas for probabilistic FastSRM). Let
(Ai)i,σi,Σs be the solution obtained by probabilistic SRM on data xi and
(A ′i)i,σ

′
i,Σ
′
s the solution obtained by ProbSRM(v) on data zi = U>xixi.Then

Ai = UxiA
′
i, σi = σ

′
i and Σs = Σ ′s.

Proof. Updates of the mixing matrices Ai in probabilistic SRM equa-
tion (4.76) can be written:

Ai ← UxiP(E[ziE[s|xi]
T ]) (5.10)

so we can look for Ai as Ai = UxiÃi and, as in the deterministic case,
Ãi is orthogonal. Therefore equality (5.7) holds.

Then we consider the expected negative log-likelihood of probabilis-
tic srm:

L =
∑
i

1

2
v log(σ2i ) +

1

2
log(|Σs|) + E[

∫
s

∑
i

1

2σ2i
‖xi −Ais‖2

+
1

2
〈s,Σ−1

s s〉ds] (5.11)

=
∑
i

1

2
v log(σ2i ) +

1

2
log(|Σs|) + E[

∫
s

∑
i

1

2σ2i
‖zi − Ãis‖2

+
1

2
〈s,Σ−1

s s〉ds] (5.12)

where we use equality (5.7). Optimizing the log-likelihood via expecta-
tion maximization yields the exact same updates as probabilistic srm
on data zi except that updates

σ2i ←
1

t
(E[‖zi − ÃiE[s|z]‖2] + ‖diag(V[s|z])‖2) (5.13)
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are replaced by updates

σ2i ←
1

v
(E[‖zi − ÃiE[s|z]‖2] + ‖diag(V[s|z])‖2) (5.14)

so that Ãi = A ′i.
Therefore, the updates in both algorithms are linked by Ai = UxiA

′
i,

σ ′i = σi and Σ ′s = Σs.
This concludes the proof.

The properties 9 and 10 show that no information is lost by replacing
xi ∈ Rv by its reduced representation zi ∈ Rn. A key property of
the optimal atlas Uxi is that it is valid whether or not the model for
deterministic (respectively probabilistic) SRM holds.

A complexity analysis shows that finding the optimal atlas becomes
the limiting step of the pipeline. Even with fast implementations, the
subject specific PCA is costly. However FastSRM only works on zi so
we do not need to know the value of Uxi . In practice, we observe data
Xi ∈ Rv×n and we want to get Zi ∈ Rn×n such that Xi = UxiZi. This
can be done by performing an SVD of X>i Xi yielding X>i Xi = ViDiV

>
i

and setting Zi = D
1
2

i V
>
i . Although computing the product X>i Xi has

time complexity Õ(vt2) there is exactly vt2 multiplications and addi-
tions so it costs a lot less than the PCA on full data. When estimates
of the mixing matrices are needed, they can be obtained by applying
equation (5.3) in the deterministic SRM case and equation (5.10) in
the probabilistic SRM case which only costs Õ(mvp2). In practice the
cost of the matrix products X>i Xi is often still the limiting step of the
pipeline (this depends on the number of iterations) but as we show in
the next chapter, it is much more efficient than performing SRM on
the full data. Note than if memory allows it, these matrix products
can be computed in parallel.

Up to now, we have assumed that the covariance of components
is diagonal in probabilistic SRM. In the next section we justify this
assumption.

5.3 identifiablity of the shared response model

We first show why deterministic SRM and probabilistic SRM without
any restrictions on the covariance of the components can only recover
unmixing matrices up to an arbitrary rotation.

Let us consider data Xi generated from deterministic SRM (meaning
deterministic SRM holds exactly for these data) with mixing matrices
Ai and shared response S. Then deterministic SRM with parameters
A ′i = AiR and S ′ = R>,where R ∈ Rk×k is an orthogonal matrix, also
generates Xi. This shows that deterministic SRM is not identifiable.

Similarly, in the probabilistic SRM case, if data xi are generated from
the probabilistic SRM model with parameters Ai, Σs, σ2i (where Σs
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can be any symmetric positive definite matrix) then the probabilistic
SRM model with parameters AiR, R>ΣsR, σ2i where R ∈ Rk×k is an
orthogonal matrix also generates xi. This shows that if no constraints
are imposed on Σs, then probabilistic SRM is not identifiable.

In Proposition 11, we show that if Σs is assumed to be diagonal,
then, under weak assumptions, probabilistic SRM is identifiable.

Proposition 11 (Identifiability of probabilistic SRM). Let xi be generated
from a probabilistic SRM with parameters Ai, Σs, σ2i (where Σs is diagonal
positive with distinct values on the diagonal) and assume there exists another
set of parameters A ′i, Σ

′
s, σ ′i

2 (where Σ ′s is diagonal positive with distinct
values on the diagonal) that also generate xi. Then if m > 3, A ′i = AiP

>,
Σ ′s = PΣsP

> and σ2i
′
= σi

2 where P is a sign and permutation matrix
(meaning P is the product of a diagonal matrix with values in {−1, 1} and a
permutation matrix).

Proof. Let us consider E[xix
>
j ] for i 6= j. We have:

AiΣsA
>
j = A ′iΣ

′
sA
′
j
> (5.15)

up to re-ordering, equation (5.15) gives two singular value decomposi-
tions of the same matrix. Therefore, by unicity of the singular value
decomposition we have: Σ ′s = PiΣsP>j and A ′i = AiP

>
i and Aj = AjP>j

where Pi and Pj are sign and permutation matrices. Since there are
more than three subjects, there exists subject z such that Σ ′s = PiΣsP>z
and therefore PiΣsP>z = PiΣsP

>
j so that Pj = Pz. So all sign and

permutations are the same and we call P their common value. Then
we consider E[xix

>
j ] = AiΣA

>
i + σ2Iv = A ′iΣ

′
sA
′
i
> + σ2

′
Iv so we get

σ2
′
= σ2

Proposition (11) justifies that Σs should be assumed to be diagonal
in probabilistic SRM. In addition, working with a diagonal covariance
matrix allows to speed up slightly the computations (although this
does not change the time complexity of the algorithm).

5.4 conclusion

In this chapter, we have presented FastSRM, an efficient implemen-
tation of SRM that uses optimal atlases to speed up computations
and reduce memory requirements without loss of performance. We
have also discussed the identifiability of SRM. In the next chapter, we
measure the performance of FastSRM in practice and compare it to
available implementations.
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FA S T S R M E X P E R I M E N T S

In the previous chapter we introduced the FastSRM algorithm, a
framework to efficiently compute shared responses from the full brain
data of multiple subjects. In this chapter, we investigate the practical
benefits of FastSRM on synthetic and real fMRI data. FastSRM reduces
the fitting time and memory requirements considerably, making it
possible to compute shared responses using a laptop in a reasonable
amount of time even on datasets that do not hold in RAM. The
efficiency of FastSRM allows us to apply SRM on a large number of
subjects. As an example, we apply FastSRM on 647 subjects from the
CamCAN dataset and study how the mixing matrices of the SRM
model are predictive of age.

6.1 comparing fitting time and performance of fastsrm

and srm on synthetic data

We generate synthetic data xi according to the model of Probabilistic
SRM. The parameters σi, Ai and Σs are generated randomly. We
sample the value of the subject specific noise level from a normal
distribution: σi ∼ N(0, 0.1). The mixing matrices Ai are obtained by
sampling their coefficient from a standardized normal distribution.
Lastly, the covariance of the shared response Σs is diagonal and the
diagonal values are obtained by sampling from a Dirichlet distribution
with parameter (1 . . . 1). We set the number of voxels to v = 125 000,
the number of subjects to m = 10 and the number of components to
p = 50. We generate n = 1000 samples.

We benchmark deterministic SRM, probabilistic SRM and their
FastSRM counterparts in terms of fitting time and performance. Al-
gorithms are designated by the atlas they use and therefore SRM
algorithms described in section 4.2.5.2 and 4.2.5.1 are refered to as
None because no atlas is used and FastSRM algorithms will have the
label Optimal. Note that it would be possible to use FastSRM with
sub-optimal atlases (there exists a wide variety of atlases available [20,
101, 136]) but without any guarantees that the performance are the
same as SRM.

We use a number of iterations between 1 and 100 and report the per-
formance, fitting time and a measure of convergence. In FastSRM, we
do not compute the unmixing matrices but only the shared response.
We measure the performance of an algorithm by computing the error
between the true component S ∈ Rp×n and the predicted component
Ŝ ∈ Rp×n using the quantity: mse(Ŝ,S) = minA∈Rp×p‖AŜ− S‖2F =
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‖SŜ†Ŝ− S‖2F. This way of measuring errors is insensitive to the inde-
terminacies in DetSRM. We measure the fitting time in seconds. Lastly,
we measure convergence by computing the gradient `∞ norm in case
of DetSRM given by max(abs(G)) where G is the gradient and use the
distance between consecutive values of the loss for ProbSRM.

Results are plotted in figure 6.1. We empirically see that the optimal
approach is equivalent to using no atlas in terms of performance.
This is predicted by the theory in the previous chapter where we
demonstrate that these two algorithms yield exactly the same output
from the same input. In general probabilistic methods give much
better results than their deterministic counterpart. This shows the
superiority of likelihood based methods. In terms of fitting time,
FastSRM is about a thousand time faster than SRM after 100 iterations.
When no atlas is used, the number of iterations has a very strong
impact on performance while it has a small impact when the optimal
atlas is used. Lastly, looking at the convergence curves, we see that
even after 100 iterations, algorithms did not fully converge. This means
that in practice a much larger number of iterations is needed which
would yield an even higher difference in fitting time between methods
using no atlas and methods using the optimal atlas.

6.2 experiments on fmri data

We evaluate the performance of FastSRM on three fMRI datasets of
subjects exposed to naturalistic stimuli: Sherlock, Forrest and Cam-
CAN (more details about these datasets are available in section 3.1.5).

6.2.1 Comparing fitting time, memory usage and performance on a timeseg-
ment matching experiment

The timesegment matching experiment is first introduced in [36]. In a
nutshell, the time-segment matching accuracy measures the similarity
between two multivariate time-series by trying to localize a time-
segment in one time-series by correlation with the other. In the context
of movie watching, this measure has a lot of sense: if we split the
movies in scenes and compute a representation per scene and per
subject, it makes sense to assume that different subjects watching
the movie would still have closer representation of the same scenes
than of different scenes. This explains why timesegment matching is a
standard evaluation of SRM-like methods also used in [63], [105] or
[157].

We now describe more precisely the experimental design. We split
the runs into a train and test set. After fitting the model on the
training set, we apply the unmixing matrices Wi = A−1

i of each
subject on the test set yielding individual components matrices. We
estimate the shared responses by averaging the individual compo-
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Figure 6.1: Benchmark of SRM algorithms on synthetic data: Performance,
fitting time and convergence of SRM algorithms in the deterministic (left) or
probabilistic (right) case. As expected, when optimal atlases are used, the
performance is the same as if no atlas is used but the fitting time is much
lower. This is even more pronounced when the number of iterations is high
(and looking at convergence curves, we see that more iterations could be
performed to be closer to a stationary point).
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nents of each subjects but one. We select a target time-segment (9
consecutive timeframes) in the shared responses and try to localize
the corresponding time segment in the components of the left-out
subject using a maximum-correlation classifier. The time-segment is
said to be correctly classified if the correlation between the sample
and target time-segment is higher than with any other time-segment
(partially overlapping time windows are excluded). We use 5-Fold
cross-validation across runs: the training set contains 80% of the runs
and the test set 20%, and repeat the experiment using all possible
choices for left-out subjects. The mean accuracy is reported in Fig-
ure 6.2 (bottom). When the optimal atlas is used, the accuracy is the
same as when no atlas is used but the fitting time is reduced by a
factor 10 to 100 and so is the memory usage.

We would like to highlight here that these experiments are not
exactly the same as in [36] as we use full brain data and they use
regions of interest. However, the code used for this experiment is very
similar to the tutorial in https://brainiak.org/tutorials/11-SRM/.

6.2.2 Predict age from spatial components

Because FastSRM is fast and memory efficient, it enables large-scale
analysis of fMRI recordings of subjects exposed to the same natu-
ralistic stimuli. We use all 647 subjects of the CamCAN dataset and
demonstrate the usefulness of FastSRM by showing that the spatial
components that it extracts from movie watching data are predictive
of age. A key asset of FastSRM is that these spatial components can
be visualized and therefore provide meaningful insights.

Note that while it is possible to do the same study using SRM, the
table in figure 6.4 shows that the memory usage of SRM is 10x more
important than FastSRM, almost reaching the memory limits of our
cluster and is about 200x slower. FastSRM could be easily used with a
much higher number of subjects while keeping the computation time
and memory requirements reasonable with SRM would be impossible.

We now describe our age prediction pipeline. Functionally matched
spatial components Ai are obtained using FastSRM. They are divided
into two groups (train and test data) where the train set contains 80%
of the data and the test set 20%. Within the train set we split again our
data into two groups: the first group is used to train one Ridge model
per spatial components to predict age, the second group is used to
train a Random Forest to predict age from Ridge predictions. This
way of stacking models is similar to the pipeline used in [130]. We
use 5 fold cross validation to split the train set (so that the number of
samples used to train the Random Forest is the number of elements in
the train set). After the Random Forest is trained, we re-train one Ridge
model per component using the full train set. On the test set each
Ridge model makes a prediction and the predictions are aggregated

https://brainiak.org/tutorials/11-SRM/
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Figure 6.2: Benchmark of SRM algorithms on fMRI data (top) Timesegment
matching accuracy (middle) Fitting time (bottom) Memory usage. When the
optimal atlas is used, the accuracy is the same as when no atlas is used but
the fitting time is reduced by a factor 10 to 100 and so is the memory usage.
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Figure 6.3: Experiment — Predict age from spatial components extracted
using FastSRM: We first learn the spatial components from fMRI data using
FastSRM. We learn one Ridge model per spatial components to predict age
across subjects. Then, these models are aggregated using a Random Forest
(like in [130]).

using the Random Forest model. An illustration of the process is
available in Figure 6.3.

In each Ridge model, the coefficient that determines the level of l2
penalization is set by generalized cross validation, an efficient form of
leave-one-out cross validation.

The train and test sets are chosen randomly. In Figure 6.4, we
report the average mean absolute error (MAE) on the test set averaged
over the 5 splits. FastSRM predicts age with an accuracy much better
than chance resulting in a mean absolute error (MAE) of 7.5 years.
Note that this is far from being the most accurate method. Using a
combination of different modalities, it is possible to obtain a MAE of
approximately 4.5 years [49]. However, as will be shown in the next
paragraph, our method extracts a set of components specific to each
individual making it more interpretable than other approaches.

In order to assess which spatial components are most predictive of
age, we assess the feature importance via the Gini index defined in [25]
or [96] that measures the relative reduction in Gini impurity brought
by each feature. Feature importance varies with different splits. We
use the averaged feature importance over the 5 splits of our pipeline
and plot the 3 most important spatial components according to this
metric in Figure 6.4. These spatial components represent respectively
16%, 12% and 8% of the total feature importance and they highlight
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the the visual dorsal pathway, the precuneus and the visual ventral
pathway respectively. The fact that averaged spatial components are
interpretable and meaningful allows us to study the influence of age
on brain networks involved in movie-watching. In Figure 6.5, we plot
the most important spatial component averaged within groups of ages.
We see that these spatial components evolve with age allowing us to
visually identify which regions are meaningful. It turns out that aging
is mostly reflected in brain activity as a fading of activity in the spatial
correlates of movie watching, particularly in the dorsal visual cortex.

6.3 conclusion

As studies using naturalistic stimuli will tend to become more common
and large within and across subjects, we need scalable models in
terms of computation time and memory usage. This is what FastSRM
provides. We show that while FastSRM is provably equivalent to its
SRM counterpart in terms of performance, it has much lower fitting
time and memory requirements.

FastSRM allows large scale analysis of fMRI data of subjects exposed
to naturalistic stimuli. As one example of such analysis, we show that
it can be used to predict age from movie-watching data. Interestingly,
although FastSRM is an unsupervised model, it extracts meaningful
networks and as such constitutes a practical way of studying subjects
exposed to naturalistic stimuli.

We also show that individual information can be extracted from the
fMRI activity when subjects are exposed to naturalistic stimuli. Our
predictive model is reminiscent of that of [23], that have shown that
ICA components obtained from the decomposition of resting state data
carry important information on individual characteristics. Our model
inherits from all the weaknesses of SRM including the fact that mixing
matrices are assumed to be orthogonal which is rather unrealistic. In
later chapters, we see how this constraint can be released.
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Algorithm Memory usage (in Go) Fitting time (in minutes)

FastSRM 18 9

ProbSRM 178 2232

L R
L R

L R
L R

L R
L R

Figure 6.4: Age prediction from spatial components: (top) FastSRM predicts
age with a better accuracy than chance resulting in a mean absolute error
(MAE) of 7.5 years. (middle) FastSRM is more than 200x faster than ProbSRM
and uses 10x less memory, hence it scales better than ProbSRM. (bottom)
The three most important spatial components in terms of the reduction
in Gini impurity they bring (see Gini importance or Feature importance
in [25], [96]). From top to bottom, the most important spatial component
(feature importance: 16%) highlights the visual dorsal pathway, the second
most important spatial component (feature importance: 12%) highlights
the precuneus and the third most important spatial component (feature
importance: 8%) highlights the visual ventral pathway.
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Figure 6.5: Evolution of the most predictive spatial component with age:
(Top) Spatial component most predictive of age averaged within groups of
different age (18-35, 36-48, 48-61, 61-74, 74-88). (Bottom) Mean activation
in the region highlighted by the mask on the left. We see that the activity
in the dorsal pathway decreases with age, which explains why this spatial
component is a good predictor of age.
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M U LT I V I E W I C A T H E O RY

In chapter 5 and chapter 6, we have introduced a fast version of the
shared response model (SRM). While SRM provides a useful dimen-
sion reduction framework, it assumes orthogonality of the mixing
matrices, which is not biologically plausible.

In this chapter, we propose a novel group ICA method called Mul-
tiView ICA. In contrast to most Group ICA methods, MultiViewICA
is grounded in a probabilistic model of the problem and comes with
statistical guarantees such as asymptotic efficiency.

MultiViewICA models each subject’s dataset as a linear combination
of a common components matrix with additive Gaussian noise. Im-
portantly, we consider that the noise is on the components and not on
the sensors. This greatly simplifies the likelihood of the model which
can even be written in closed-form.

Despite its simplicity, MultiView ICA allows for an expressive repre-
sentation of inter-subject variability through subject-specific functional
topographies (mixing matrices) and variability in the individual re-
sponse (with noise in the component domain). To the best of our
knowledge, this is the first time that such a tractable likelihood is
proposed for multi-subject ICA. The likelihood formulation shares
similarities with the usual ICA likelihood, which allows us to develop
a fast and robust alternate quasi-Newton method for its maximization.

We first introduce the MultiView ICA model, and show that it is
identifiable. We then write its likelihood in closed form, and maximize
it using an alternate quasi-Newton method. We also provide a sen-
sitivity analysis for MultiView ICA, and show that the choice of the
noise parameter in the algorithm has little influence on the output.

7.1 multiview ica for shared response modelling

7.1.1 Model, likelihood and approximation

Given m subjects, we model the data of subject i as a random vector
xi ∈ Rp such that:

xi = Ai(s+ni), i = 1, . . . ,m (7.1)

where s ∈ Rp are the shared independent components, ni ∈ Rp is
individual noise and Ai ∈ Rp×p are the individual mixing matrices,
assumed to be full-rank. In practice we have access to n observations of
xi assumed independent and identically distributed that we stack into
a matrix Xi ∈ Rp,n. For simplicity, we assume that the components

77
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share the same density δ, so that the independence assumption is
p(s) =

∏p
j=1 δ(sj). Finally, we assume that the noise is Gaussian

decorrelated with variance σ2, ni ∼ N(0,σ2Ip), and that the noise is
independent across subjects and independent from the components.
The assumption of additive white noise on the components models
individual deviations from the shared components s. It is equivalent to
having noise on the sensors with covariance σ2Ai (Ai)

>, i.e. a scaled
version of the data covariance without noise.

Since the components are shared by the subjects, there are many
more observed variables than components in the model: there are p
components, while there are p×m observations. Therefore, model (7.1)
can be seen as an instance of undercomplete ICA. The goal of multiview
ICA is to recover the mixing matrices Ai from observations of the
xi. The following proposition extends the standard idenfitiability
theory of ICA [38] to multiview ICA, and shows that recovering the
components/mixing matrices is a well-posed problem up to scale and
permutation.

Proposition 12 (Identifiability of MultiView ICA). Consider xi, i =
1 . . .m, generated from (7.1). Assume that xi = A ′i(s

′ + n ′i) for some
invertible matrices A ′i ∈ Rp×p, independent non-Gaussian components
s ′ ∈ Rp and Gaussian noise n ′i. Then, there exists a scale and permutation
matrix P ∈ Rp×p such that for all i, A ′i = AiP.

The proof is available in appendix A.1.1.
We propose a maximum-likelihood approach to estimate the mixing

matrices. We denote by Wi = (Ai)
−1 the unmixing matrices, and view

the likelihood as a function of Wi rather than Ai.
To derive the likelihood, we start by conditioning on s. Then, we

make a variable transformation from xi to ni =Wixi − s, as opposed
to the transformation to s as is usual in ICA. Using the probability
transformation formula, we obtain

pxi|s(xi|s) = |Wi|pni(Wixi − s) (7.2)

where pni is the density of ni. Note that the xi are conditionally
independent given s, so we have:

px|s(x|s) =

m∏
i=1

|Wi|pni(Wixi − s) (7.3)

and we next get the joint density as:

px,s(x, s) = ps(s)
m∏
i=1

|Wi|pni(Wixi − s) (7.4)
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Integrating out s and taking the log and expectation gives the
expected negative likelihood:

L(W1, . . . ,Wm) = −

m∑
i=1

log |Wi|

− E[log

(∫
s

exp

(
−
1

2σ2

m∑
i=1

‖Wixi − s‖2
)
p(s)ds

)
]

(7.5)

up to additive constants.
The integral in 7.5 after factorization, is given by∫

s

p∏
j=1

exp

(
−
1

2σ2

m∑
i=1

(W>ijxi − sj)
2

)
δ(sj)ds (7.6)

where Wij is the j-th line of Wi. Denote yij = W>ijxi and s̃j =
1
m

∑m
i=1 yij. Fix j, and drop it to simplify notation. Then we need

to solve the integral∫
s

exp

(
−
1

2σ2

m∑
i=1

(yi − s)
2

)
δ(s)ds

=

∫
s

exp

(
−
1

2σ2
[m(s̃− s)2 +

m∑
i=1

(yi − s̃)
2]

)
δ(s)ds

= exp

(
−
1

2σ2

m∑
i=1

(yi − s̃)
2

) ∫
z

exp
(
−
m

2σ2
z2
)
δ(s̃− z)dz

where we have made the change of variable z = s̃− s. The remaining
integral simply means that δ is smoothed by a Gaussian kernel, which
can be computed exactly if δ is a Gaussian mixture. We therefore
define f(s) = − log

(∫
z exp

(
− m
2σ2
z2
)
δ(s− z)dz

)
.

The expected negative log-likelihood becomes

L(W1, . . . ,Wm) = −

m∑
i=1

log |Wi|+
1

2σ2

m∑
i=1

E[‖Wixi− s̃‖2] +E[f(s̃)]

(7.7)

Multiview ICA is then performed by minimizing L, and the estimated
shared components are S̃ =

∑
iWiXi
m . The negative log-likelihood

L is quite simple, and importantly, can be computed easily given
the parameters of the model and the data; it does not involve any
intractable integral.

For one subject (m = 1), L(W1) simplifies to the negative log-
likelihood of ICA and we recover Infomax [19, 32], where the compo-
nent log-pdf is replaced with the smoothed f.
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7.1.2 Alternate quasi-Newton method for MultiView ICA

The parameters of the model are estimated by minimizing L. We
propose a combination of quasi-Newton method and alternate mini-
mization for this task. First, L is non-convex: it is only defined when
the Wi are invertible, which is a non-convex set. Therefore, we only
look for local minima as usual in ICA. We propose an alternate mini-
mization scheme, where L is alternatively diminished with respect to
each Wi. When all matrices W1, . . . ,Wm are fixed but one, Wi, L can
be rewritten, up to an additive constant

Li(Wi) = − log |Wi|

+
1− 1/m

2σ2
E[‖Wixi −

m

m− 1
s̃−i‖2 + f(

1

m
Wixi + s̃−i)] (7.8)

with s̃−i = 1
m

∑
j6=iWjxj. This function has the same structure

as the usual maximum-likelihood ICA cost function: it is written
Li(Wi) = − log |Wi|+E[g(Wixi)], where g(y) =

∑p
j=1 f(

yj
m + s̃−i,j)+

1−1/m
2σ2

(yj −
m
m−1 s̃−i,j)

2 where s̃−i,j is the j-th component of s̃−i. Fast
quasi-Newton algorithms [3, 160] have been proposed for minimizing
such functions. We employ a similar technique as [160], which we now
describe.

Quasi-Newton methods are based on approximations of the Hessian
of Li. The relative gradient (resp. Hessian) [6, 34] of Li is defined as
the matrix Gi ∈ Rp×p (resp. tensor Hi ∈ Rp×p×p×p) such that as
the matrix E ∈ Rp×p goes to 0, we have Li((Ip + E)Wi) ' Li(Wi) +

〈Gi,Wi〉+ 1
2〈E,HiE〉. Standard manipulations yield:

Gi = E[
1

m
f ′(s̃)(yi)

> +
1− 1/m

σ2
(yi −

m

m− 1
s̃−i)(yi)

>] − Ip (7.9)

where yi =Wixi.

(Hi)abcd = δadδbc + δacE[

(
1

m2
f ′′(s̃a) +

1− 1/m

σ2

)
yibyid]

(7.10)

for a,b, c,d = 1 . . . p

Newton’s direction is then −(Hi)
−1Gi. However, this Hessian is

costly to compute (it has ' p3 non-zero coefficients) and invert (it
can be seen as a big p2 × p2 matrix). Furthermore, to enforce that
Newton’s direction is a descent direction, the Hessian matrix should
be regularized in order to eliminate its negative eigenvalues [109], and
Hi is not guaranteed to be positive definite. These obstacles render the
computation of Newton’s direction impractical. Luckily, if we assume
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that the signals in yi are independent, several coefficients cancel, and
the Hessian simplifies to the approximation

(Hi)abcd = δadδbc + δacδbdΓ
i
ab (7.11)

with (Γi)ab = E[

(
1

m2
f ′′(s̃a) +

1− 1/m

σ2

)
(yib)

2]

This approximation is sparse: it only has p(2p − 1) non-zero coef-
ficients. In order to better understand the structure of the approxi-
mation, we can compute the matrix (HiM) for M ∈ Rp×p. We find
(HiM)ab = (Γi)abMab +Mba: HiMab only depends on Mab and
Mba, indicating a simple block diagonal structure of Hi. The opera-
tor Hi is therefore easily regularized and inverted:

(
(Hi)

−1M
)
ab

=
Γ ibaMab−Mba

Γ iabΓ
i
ba−1

. Finally, since this approximation is obtained by assum-

ing that the yi are independent, the direction −H−1
i Gi is close to

Newton’s direction when the yi are close to independence, leading to
fast convergence. Algorithm 2 alternates one step of the quasi-Newton
method for each subject until convergence. A backtracking line-search
is used to ensure that each iteration leads to a decrease of Li. The
algorithm is stopped when the maximum norm of the gradients over
one pass on each subject is below some tolerance level, indicating that
the algorithm is close to a stationary point.

Algorithm 2: Alternate quasi-Newton method for MultiView
ICA
Input: Dataset (xi)mi=1, initial unmixing matrices Wi, noise

parameter σ, function f, tolerance ε
Set tol= +∞, s̃ = 1

m

∑p
i=1Wixi

while tol> ε do
tol = 0

for i = 1 . . .m do
Compute yi =Wixi, s̃−i = s̃− 1

myi, gradient Gi
(eq. (7.9)) and Hessian Hi (eq. (7.11))

Compute the search direction D = −H−1
i Gi

Find a step size ρ such that Li((Ip + ρD)Wi) < Li(Wi)

with line search
Update s̃ = s̃+ ρ

mDWixi, Wi = (Ip + ρD)Wi,
tol= max(tol, ‖Gi‖)

end
end
return Estimated unmixing matrices Wi, estimated shared
components s̃

7.1.3 Robustness to model misspecification

Algorithm 2 has two hyperparameters: σ and the function f. The latter
is usual for an ICA algorithm, but the former is not. We study the
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impact of these parameters on the separation capacity of the algorithm,
when these parameters do not correspond to those of the generative
model (7.1).

Proposition 13. We consider the cost function L in eq. (7.7) with noise
parameters σ and function f. Assume sub-linear growth on f ′: |f ′(x)| 6
c|x|α + d for some c,d > 0 and 0 < α < 1. Assume that xi is generated
following model (7.1), with noise parameter σ ′ and density of the component
d ′ which need not be related to σ and f. Then, there exists a diagonal matrix
Λ such that (Λ(A1)−1, . . . ,Λ(Am)−1) is a stationary point of L, that is
G1, . . . ,Gm = 0 at this point.

The proof is available in appendix A.1.2.
The sub-linear growth of f ′ is a customary hypothesis in ICA which

implies that d has heavier-tails than a Gaussian, and in appendix A.1.2
we provide other conditions for the result to hold. In this setting,
the shared components estimated by the algorithm are S̃ = Λ(S+
1
m

∑m
i=1Ni), which is a scaled version of the best estimate of the

shared components under the Gaussian noise hypothesis.
This proposition shows that, up to scale, the true unmixing matrices

are a stationary point for Algorithm 2: if the algorithm starts at this
point it will not move. The question of stability is also interesting: if
the algorithm is initialized close to the true unmixing matrices, will
it converge to the true unmixing matrix? In the appendix A.1.3, we
provide an analysis similar to [33], and derive sufficient numerical
conditions for the unmixing matrices to be local minima of L.

7.2 related work

In contrast to ConcatICA or CanICA (see section 4.2.2.1), MultiView
ICA maximizes a likelihood, which brings statistical guarantees like
consistency or asymptotic efficiency. Furthermore MultiViewICA finds
individual and shared independent components in a single step. This
differs from ConcatICA or GroupICA that require additional steps
when individual components are needed such as back-projection [28]
or dual-regression [17].

The approach of [64] (see section 4.2.2.2) optimizes the more gen-
eral model xi = Ais+ni. The likelihood for this model involves an
intractable high dimensional integral that is cumbersome to evaluate,
and is then optimized with an EM algorithm using an inexact E-step.
Having the simpler model xi = Ai(s + ni) leads to a closed-form
likelihood, that can then be optimized by more efficient means. Note
that in MultiView ICA, the noise can be interpreted as individual
variability rather than sensor noise.

The SR-ICA approach of [157] performs dimension reduction, merg-
ing of individual data and independent component estimation. It is
therefore similar to our method. However, they propose to modify the
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FastICA algorithm [74] in a rather heuristic way, without specifying an
optimization problem, let alone maximizing a likelihood. In the exper-
iments on fMRI data in appendix A.1.4, we obtain better performance
with MultiView ICA than the reported performance of SR-ICA.

One strength of our model is that we only assume that the mixing
matrices are invertible and still enjoy identifiability whereas some
other approaches impose additional constraints. For instance tensorial
methods [18] assume that the mixing matrices are the same up to
diagonal scaling. Other methods impose a common mixing matrix [27,
39, 62, 103]. Like PCA, the Shared Response Model [36] (SRM) assumes
orthogonality of the mixing matrices. While the model defines a simple
likelihood and provides an efficient way to reduce dimension, the
orthogonal constraint may not be plausible.

Deep Learning methods, such as convolutional auto-encoders (CAE),
can also be used to find the subject specific unmixing [37]. While these
nonlinear extensions of the aforementioned methods are interesting,
these models are hard to train and interpret. In the experiments on
fMRI data in appendix A.1.4, we obtain better accuracy with MultiView
ICA than that of CAE reported in [37].

A different path to multi-subject ICA is to extract independent
components with individual ICA in each subject and align them. We
propose a simple baseline approach to do so called PermICA. Inspired
by the heuristic of the hyperalignment method [69] we choose a
reference subject and first match the components of all other subjects to
the components of the reference subject. The process is then repeated
multiple times, using the average of previously aligned components as
a reference. Finally, group components are given by the average of all
aligned components. We use the Hungarian algorithm to align pairs
of mixing matrices [147]. Alternative approaches involving clustering
have also been developed [22, 53].

Lastly, IVA based methods (see section 4.2.3) estimate view-specific
components but shared components are not modeled explicitly.

7.3 conclusion

In this chapter, we have proposed a novel unsupervised algorithm that
reveals latent components observed through different views. Using an
independence assumption, we have demonstrated that the model is
identifiable. In contrast to previous approaches, the proposed model
leads to a closed-form likelihood, which we then optimize efficiently
using a dedicated alternate quasi-Newton approach. Our approach
enjoys the statistical guarantees of maximum-likelihood theory, while
still being tractable.

In the next chapter, we evaluate the performance of MultiView ICA
on synthetic data, on EEG and fMRI data and compare its performance
to other GroupICA methods.
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In chapter 7, we have introduced MultiViewICA and presented its
theoretical properties. In this chapter, we empirically verify through
extensive experiments on fMRI and MEG data that MultiView ICA
improves component identification with respect to competing methods,
suggesting that the expressiveness and robustness of this model make
it a useful tool for multivariate neural signal analysis.

8.1 experimental setting

In the following, the noise parameter in MultiviewICA is always
fixed to σ = 1. We use the function f(·) = log cosh(·), giving f ′(·) =
tanh(·) (f ′ is called the learning function or non-linearity [73]). We
use the Infomax cost function [19] with the same non-linearity to
run standard ICA, with the Picard algorithm [3] for fast and robust
minimization of the cost function. Picard is applied with the default
hyper-parameters. The code for MultiViewICA is available online at
https://github.com/hugorichard/multiviewica.

We compare the following methods to obtain p components:
PermICA is described in section 7.2. SRM is the FastSRM algo-

rithm described in part II. ConcatICA is described in section 4.2.2.1.
PCA+ConcatICA corresponds to ConcatICA applied on subject data
that have been first individually reduced by PCA with p components.
CanICA is described in section 4.2.2.1. We define the chance level as the
performance of an algorithm that computes unmixing matrices and
projections to lower dimensional space by sampling random numbers
from a standard normal distribution.

The subject specific dimension reduction in MultiView ICA, Per-
mICA, ConcatICA and CanICA is performed with SRM in fMRI
experiments and subject-specific PCA in MEG experiments.

The shape of the input data (v, t, m) depend on the dataset used
and the experiment performed. A description of the datasets used is
available in section 3.1.5 for fMRI data and in section 3.2.5 for MEG
data. The values for p (the number of components) is given in the de-
scriptions of the experiments. Note that in the special case of the exper-
iments on the sherlock fMRI dataset, the experimental pipeline is avail-
able on github https://github.com/hugorichard/multiviewica/

tree/master/real_data_experiments (including downloading and
preprocessing of the data).

Since the cost function L is non-convex, having a good initialization
can make a difference in the final result. We propose a two stage
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Figure 8.1: Synthetic experiment: reconstruction error of the algorithms on
data following model xi = Ai(s+ni).

approach. We begin by applying PermICA on the datasets, which
gives us a first set of unimixing matrices W1, . . . ,Wm. Note that we
could also use ConcatICA for this task. Next, we perform a diagonal
scaling of the mixing matrices, i.e. we find the diagonal matrices
Λ1, . . . ,Λm such that L(Λ1W1, . . . ,ΛmWm) is minimized. To do so,
we employ Algorithm 2 but only take into account the diagonal of the
descent direction at each step: the update rule becomes Wi ← (Ip +

ρDiag(D))Wi. The initial unmixing matrices for Algorithm 2 are then
taken as Λ1W1, . . . ,ΛmWm. Empirically, we find that this two stage
procedure allows the algorithm to start close to a satisfactory solution.
A summary of our quantitative results on real data is available in
appendix A.6.

8.2 synthetic experiment

We validate our method on synthetic data generated according to the
model in equation (7.1). The components are generated i.i.d. from a
Laplace density d(x) = 1

2 exp(−|x|). The mixing matrices A1, · · · ,Am
are generated with i.i.d. entries following a normal law. Each com-
pared algorithm returns a sequence of estimated unmixing matrices
W1, . . . ,Wm. The performance of an algorithm is measured by the
reconstruction error between the estimated components and the true
components.

We use m = 10 datasets, p = 15 components and n = 1000 samples.
Each experiment is repeated with 100 random seeds. We vary the
noise level in the data generation from 10−2 to 10 and display the
performance of algorithms in Figure 8.1.

Multiview ICA has uniformly better performance than the other
algorithms, which illustrates the strength of maximum-likelihood
based methods. In accordance with results of section 7.1, it is able to
separate the components even with misspecified noise parameter and
component density.
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8.3 fmri experiments

We use the Forrest, Sherlock, Raiders and CLIPS datasets described in
section 3.1.5.

8.3.1 Reconstructing the BOLD signal of missing subjects

We want to show that once unmixing matrices have been learned, they
can be used to predict evoked responses across subjects. This can be
used to perform missing data imputation when the sessions of some
subjects are missing. In [158], the authors consider multiple fMRI
datasets that share a subpart of their subjects and use the fact that
some subjects are shared to transfer information across datasets. Our
reconstruction experiment measures a related quantity: the methods
ability to predict data of left-out subjects from other subjects.

In this experiment we apply a 6 mm spatial smoothing to all datasets.
We split the data into three groups. First, we randomly choose 80% of
all runs from all subjects to form the training set. Then, we randomly
choose 80% of subjects and take the remaining 20% runs as testing set.
The left-out runs of the remaining subjects form the validation set. The
compared algorithms are run on the training set and evaluated using
the testing and validation sets. After an algorithm is run on training
data, it defines for each subject a forward operator that maps individual
data to the space spanned by components and a backward operator that
maps the component space to individual data. For instance in ICA
the forward operator is the product of the dimensionality reduction
projection and unmixing matrix. We estimate the shared responses
on the testing set by applying the forward operators on the testing
data and averaging. Finally, we reconstruct the individual data from
subjects in the validation set by applying the backward operators to the
shared responses. We measure the difference between the true signal
and the reconstructed one using voxel-wise R2 score. The R2 score
between two series x ∈ Rn and y ∈ Rn is defined as R2(x,y) = 1−

1
nVar(y)

∑n
t=1(xt − yt)

2, where Var(y) = 1
n

∑n
t=1(yt −

1
n

∑n
t ′=1 yt ′)

2

is the empirical variance of y. The R2 score is always smaller than
1, and equals 1 when x = y. The experiment is repeated 25 times
with random splits to obtain error bars. Figure 8.2 provides a visual
summary of our experimental procedure.

The R2 score per voxel depends heavily on which voxels are consid-
ered. For example voxels in the visual cortex are better reconstructed
in the sherlock dataset than in the forrest dataset. Performances are
therefore given in terms of mean R2 score inside a region of interest
(ROI) in order to leave out regions where there is no useful informa-
tion. In order to determine the ROIs, we focus on the R2 score per
voxel between the BOLD signal reconstructed by ConcatICA and the
actual bold signal. We run ConcatICA with 10, 20 and 50 components
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Figure 8.2: Reconstructing the BOLD signal of missing subjects - Experi-
mental procedure 80% of the runs are used to compute forward operators
(spatial components) for every subject (left). Then the forward operators and
data from the left-out runs of 80% of the subjects one are used to compute
the shared response during the left-out runs. Lastly, the shared response
during the left-out runs and the forward operators of the test subjects are
used to predict the data of the test subjects during the left-out runs. The
performance of the model is measured by comparing the prediction and true
data using the R2 score.
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forrest sherlock clips raiders

Figure 8.3: Data-driven choice of ROI Chosen ROIs for the experiment:
Reconstructing the BOLD signal of missing subjects.
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Figure 8.4: Top: Reconstructing the BOLD signal of missing subjects. Mean
R2 score between reconstructed data and true data (higher is better). Bot-
tom: Between subjects time-segment matching. Mean classification accuracy.
Error bars represent a 95 % confidence interval over cross validation splits.

and select the voxels that obtained a positive R2 score for all sets of
components. We discard voxels with an R2 score above 80% as they
visually correspond to artefacts and apply a binary opening using a
unit cube as the structuring element. The chosen regions are plotted
in figure 8.3.

In Figure 8.4 (top) we report the mean R2 score within regions of
interest. MultiView ICA has similar or better performance than the
other methods on all datasets. This demonstrates its ability to capture
inter-subject variability, making it a candidate of choice to handle
missing data or perform transfer learning.

For completeness, we plot in Figure 8.5, for ConcatICA, SRM and
MultiViewICA, the R2 score per voxel using 50 components for
datasets sherlock, forrest, raiders and clips. As could be anticipated from
the task definition, forrest obtains high reconstruction accuracy in the
auditory cortices, while clips shows good reconstruction in the visual
cortex (occipital lobe mostly); the richer sherlock and raiders datasets
yield good reconstructions in both domains, but also in other systems
(language, motor). We can also see that data reconstructed by Multi-
ViewICA are a better approximation of the original data than other
methods. This is particularly obvious for the clips datasets where it is
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Figure 8.5: Reconstructing the BOLD signal of missing subjects: Recon-
struction R2 score per voxel We plot for ConcatICA, SRM and Multi-
ViewICA, the R2 score per voxel using 50 components for datasets sherlock,
forrest, raiders and clips. We can see that data reconstructed by MultiViewICA
are more faithful reproduction of the original data than other methods.

clear that voxels in the posterior part of the superior temporal sulcus
are better recovered by MultiViewICA than by SRM or ConcatICA.

8.3.2 Between subjects time-segment matching

We reproduce the time-segment matching experiment described in sec-
tion 6.2.1 and display the results in Figure 8.4 (bottom). MultiView ICA
yields a consistent and substantial improvement in accuracy compared
to other methods on the four datasets. We see a marked improvement
on the sherlock and forrest datasets. A possible explanation lies in
the preprocessing pipeline. Sherlock data undergo a 6 mm spatial
smoothing and Forrest data are acquired at a higher resolution (7T vs
3T for other data). This affects the signal to noise ratio.

In order to investigate the practical impact of the choice of hyper-
parameter σ, we compute the accuracy of the MultiView ICA algo-
rithm with different choice of σ. Results are reported in Figure 8.6.
MultiviewICA performs consistently well for a wide range of noise
parameter values, and only breaks at very high values. It supports the
theoretical claim issued in Proposition 13 that the noise parameter is
of little importance.

In appendix A.4, we plot the average forward operator across sub-
jects of MultiView ICA and ConcatICA with 5 components on the
forrest, sherlock, raiders and clips datasets.
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Figure 8.6: Effect of the parameter σ: We compute the accuracy of the
MultiViewICA pipeline on the time-segment matching experiment for var-
ious values of the σ hyperparameter over a grid. The accuracy varies only
marginally with σ.

8.3.3 Between-runs time-segment matching

We measure the ability of each algorithm to extract meaningful shared
components that correlate more when they correspond to the same
stimulus than when they correspond to distinct stimuli. We use the
raiders-full dataset, which allows this kind of analysis because subjects
watch some selected scenes from the movie twice, during the first
two runs (1 and 2) and the last two (11 and 12). First, the forward
operators are learned by fitting each algorithm with 20 components
on the data of all 11 subjects using all 12 runs. We then select a
subset of 8 subjects and the shared components are computed by
applying the forward operators and averaging. We select a large target
time-segment (50 timeframes) taken at random from run 1 and 2,
and we try to localize the corresponding sample time-segment from
the 10 last runs using a single component of the shared components.
The time-segment is said to be correctly classified if the correlation
between the target and corresponding sample time-segment is higher
than with any other time-segment (partially overlapping windows
are excluded). In contrast to the between subject time-segment matching
experiment, we obtain one accuracy score per component. We repeat
the experiment 10 times with different subsets of subjects randomly
chosen and report the mean accuracy of the three best performing
components in Figure 8.7. Error bars correspond to a 95 % confidence
interval. MultiView ICA achieves the highest accuracy.

We then focus on the 3 best performing components of MultiView
ICA. For each component, we plot in Figure 8.8 (left) the shared
components during two sets of runs where subjects were exposed
to the same scenes of the movie. We then study the localisation of
these components. We average the forward operators across subjects
and plot the columns corresponding to the components of interest in
Figure 8.8 (right). As each column is seen as a set of weights over all
voxels, it represents a spatial map.



92 multiview ica in practice

1 2 3

Component

0.00

0.25

0.50

0.75

A
cc

ur
ac

y

Raiders Full

MultiViewICA

ConcatICA

PCA+ConcatICA

CanICA

PermICA

SRM

GroupPCA

Chance

Figure 8.7: Between runs time-segment matching. Interesting components
correlates more when they correspond to the same stimulus (same scenes of
the movie) than when they correspond to distinct stimuli (different scenes).
We extract 20 components and report the mean accuracy of the three best
performing components

The component 1 of the shared responses follows almost the same
pattern in the two set of runs corresponding to the same scenes of the
movie. The spatial map corresponding to component 1 highlights the
language network. In component 2, the temporal patterns during the
viewing of identical scenes are also very similar. The corresponding
spatial map highlights the visual network especially the visual dorsal
pathway. In component 3, there exists a similarity however less striking
than with the two previous components. The corresponding spatial
map highlights a contrast between the spatial attention network and
the auditory network.

8.4 phantom meg data

We demonstrate the usefulness of our approach on MEG data using
the Sinusoidal Phantom MEG dataset where m = 8 dipoles at differ-
ent locations produce a known sinusoidal oscillation (more details
in section 3.2.5). 100 epochs are available. For each dipole, we chose
Ne = 2, . . . , 16 epochs at random among our set of 100 epochs and con-
catenate them in the temporal dimension. We then apply algorithms
on these data to extract p = 20 shared components. As we know the
true component (the timecourse of the dipole), we can compute the
reconstruction error of each component as the squared norm of the
difference between the estimated component and the true component,
after normalization to unit variance and fixing the sign. We only retain
the component yielding minimal error. We also estimate for each for-
ward operator the localization of the component by performing dipole
fitting using its column corresponding to the component of minimal
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Figure 8.8: Between-runs time segment matching: spatial maps and time-
courses Left: Timecourses of the 3 shared components yielding the highest
accuracy. The two displayed set of runs correspond to the same scenes in the
movie. Right: Localisation of the same shared components in the brain

error. We then compute the distance of the estimated dipole to the
true dipole. These metrics are reported in figure 8.9 when the number
of epochs considered Ne varies. MultiView ICA requires fewer epochs
to correctly reconstruct and localize the true component.

8.5 experiment on camcan dataset

Finally, we apply MultiView ICA on the CamCAN dataset [146]. A de-
tailed description of the CamCAN dataset is available in section 3.2.5.
We use the magnetometer data from the MEG of 200 subjects cho-
sen randomly. Each subject is repeatedly presented an audio-visual
stimulus. The MEG signal corresponding to these trials are then time-
averaged to isolate the evoked response, yielding individual data.
MultiView ICA is then applied to extract 20 shared components. 9
components were found to correspond to noise by visual inspection,
and the 11 remaining are displayed in Figure 8.9. We observe that
MultiView ICA recovers a very clean sequence of evoked potentials
with sharp peaks for early components and slower responses for late
components. In order to visualize their localization, we perform com-
ponent localization for each subject by solving the inverse problem
using sLORETA [113], providing a component estimate for each com-
ponent. Then, we register each component estimate to a common
reference brain. Finally, the component estimates are averaged, and
thresholded maps are displayed in Figure 8.9. Individual maps cor-
responding to each component are displayed in Appendix A.3. The
figure highlights both early auditory and visual cortices, also sug-
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Figure 8.9: Top: Experiment on MEG Phantom data. Reconstruction error
is the norm of the difference between the estimated and true component.
Localization error is the distance between the estimated and true dipole.
Middle and Bottom: Experiment on 200 subjects from the CAM-can dataset
Middle: Time course of 11 shared components (one color per component). We
recover clean evoked potentials. Bottom: Associated brain maps, obtained by
averaging component estimates registered to a common reference.

gesting a propagation of the activity towards the ventral regions and
higher level visual areas.

8.6 conclusion

In this chapter, we have demonstrated the usefulness of MultiView ICA
for neuroimaging group studies both on fMRI and MEG data, where
it outperforms other methods. A limiting aspect of MultiView ICA
is the assumption that the noise variance is the same across subjects.
This is limiting because it does not properly model between-subjects
variability. In the next chapter, we propose an extension of MultiView
ICA with a more realistic noise model.
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S H A R E D I C A T H E O RY

In chapter 7 and chapter 8, we have introduced MultiView ICA, a
well principled method to perform shared response modeling. While
MultiView ICA yields good practical results, it does not model subject
specific deviations from the shared response. Yet, the magnitude of
the response may differ across subjects [115], as does any noise due to
heart beats, respiratory artefacts or head movements [93].

This drawback is shared by most GroupICA methods that often rely
on single subject ICA to recover the shared response. In addition, such
methods are typically unable to separate Gaussian components.

In contrast, the framework of Independent vector analysis (IVA) [7,
85] allows subject specific variability in the unmixed data. Current
implementations such as IVA-L [85], IVA-G [7], IVA-L-SOS [21], IVA-
GGD [9] or IVA with Kotz distribution [8] estimate view-specific com-
ponents but shared components are not modeled explicitly. Studying
the components post IVA can give great insights about which com-
ponents are shared and by which subjects (see [94]) and individual
responses that are closed enough could be merged to produce a shared
response. However, the flexibility in modeling different components
from each subject comes at the cost of not having a well principled
way of aggregating the components into a common shared response.

In this chapter, we introduce Shared ICA (ShICA), where each
dataset is modeled as a linear transform of shared independent com-
ponents contaminated by additive Gaussian noise. ShICA allows for
principled extraction of the shared components (or responses) in
addition to view-specific components. Since it incorporates a statisti-
cally sound noise model, it enables optimal inference of the shared
responses (minimizing the mean squared error).

We first analyse the theoretical properties of the ShICA model,
before providing powerful inference algorithms. First, we exhibit nec-
essary and sufficient conditions for ShICA to be identifiable (previous
work only shows local identifiability [9]), in the presence of Gaussian
or non-Gaussian components. We then introduce an algorithm called
ShICA-J that uses Multiset CCA to fit the model when all the compo-
nents are assumed to be Gaussian. We exhibit necessary and sufficient
conditions for Multiset CCA to be able to fit the model (previous
work only gives sufficient conditions [92]) and provide examples on
which ShICA-J can recover the mixing matrices, while Multiset CCA
cannot. We next point out a practical problem, namely that even a
small sampling noise can lead to large rotations of unmixing matrices
when Multiset CCA is used. To address this issue and recover the

97
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correct unmixing matrices, we propose to apply joint diagonalization
to the result of Multiset CCA. We further introduce ShICA-ML, a
maximum likelihood estimator of ShICA that models non-Gaussian
components using a Gaussian mixture model. While ShICA-ML yields
more accurate components, ShICA-J is significantly faster and offers a
great initialization to ShICA-ML.

9.1 shared ica (shica): an identifiable multi-view model

We assume a similar generative model as in MultiViewICA:

xi = Ai(s+ni) (9.1)

Like in MultiView ICA we assume that the shared components are
statistically independent p(s) =

∏p
j=1 p(sj), and that the individual

noises are Gaussian and independent from the shared components.
We assume ni ∼ N(0,Σi), where the matrices Σi are assumed diagonal
and positive. This contrasts with MultiView ICA: the individual noise
variances are learned and are not assumed to be the same across
components or subjects. We further assume that there are at least 3

views: m > 3.
In contrast to almost all existing works, we assume that some com-

ponents (possibly all of them) may be Gaussian, and denote G the set
of Gaussian components: sj ∼ N(0, 1) for j ∈ G. The other components
are non-Gaussian: for j /∈ G, sj is non-Gaussian.

identifiability The parameters of the model are Θ =

(A1, . . . ,Am,Σ1, . . . ,Σm). We are interested in the identifiability of
this model: given observations x1, . . . , xm generated with parameters
Θ, are there some other Θ ′ that can generate the same observations?
Let us consider the following assumption that requires that the indi-
vidual noises for Gaussian components are sufficiently diverse:

Assumption 14 (Noise diversity in Gaussian components). For all
j, j ′ ∈ G, j 6= j ′, the sequences (Σij)i=1...m and (Σij ′)i=1...m are different
where Σij is the j, j entry of Σi

It is readily seen that there is one trivial set of indeterminacies in the
problem: if P ∈ Rp×p is a sign and permutation matrix the parameters
(A1P, . . . ,AmP,P>Σ1P, . . . ,P>ΣmP) also generate x1, . . . , xm. The fol-
lowing theorem shows that under the above assumption, these are the
only indeterminacies of the problem.

Theorem 15 (Identifiability). We suppose Assumption 14. We let Θ ′ =
(A ′1, . . . ,A ′m,Σ ′1, . . . ,Σ ′m) another set of parameters, and assume that they
also generate x1, . . . , xm. Then, there exists a sign and permutation matrix
P such that for all i, A ′i = AiP, and Σ ′i = P

>ΣiP.



9.2 estimation of components with noise diversity via joint-diagonalization 99

Proof. By hypothesis, the covariances verify Cij = E[xix
>
j ] = Ai(Ip +

δijΣi)A
>
j = A ′i(Ip + δijΣ

′
i)A
′
j
> for all i, j. We let Pi = A−1

i A ′i. The
previous relationship for j 6= i gives PiP>j = Ip. Because there are
more than 3 views, there is another integer k /∈ {i, j}, and we have
PiP
>
k = PjP

>
k = Ip. This shows that Pi = Pj: all these matrices are

equal, and we call P their common value. The previous equation also
gives PP> = Ip, so P is orthogonal. We have that s+ ni and s ′ + n ′i
have independent components and s+ni = P(s ′ +n ′i). Lemma 21 in
appendix B.1 (a direct consequence of classical ICA results [38], Theo-
rem 10) gives P = Π−1ΩΠ ′ where Π and Π ′ are sign and permutation
matrices such that the first g components of Π(s+ni) and Π ′(s ′ +n ′i)
are Gaussian, and Ω is a block diagonal matrix given by

Ω =

[
Ωg 0

0 Ip−g

]

where Ωg is orthogonal. We call A(g) the first g× g block of a matrix
A so that Ω(g) = Ωg.

Then, considering only the Gaussian components, we can write
for i = j: (ΠΣi)(g) = Ωg(Π

′Σ ′i)
(g)Ω>g for all i. This, combined with

Assumption 14, implies that Ωg is a sign and permutation matrix (see
Lemma 22 in appendix B.1) and therefore P is a sign and permutation
matrix. Then it follows that I+ Σi = P(I+ Σ ′i)P

> and therefore Σi =
PΣ ′iP

> so Σ ′i = P
>ΣiP.

Identifiability in the Gaussian case is a consequence of the identi-
fiability results in [153] and in the general case, local identifiability
results can be derived from the work of [9]. However local identi-
fiability only shows that for a given set of parameters there exists a
neighborhood in which no other set of parameters can generate the
same observations [135]. In contrast, the proof of Theorem 15 shows
global identifiability.

Theorem 15 shows that the task of recovering the parameters from
the observations is a well-posed problem, under the sufficient condi-
tion of Assumption 14. We also note that Assumption 14 is necessary
for identifiability. For instance, if j and j ′ are two Gaussian components
such that Σij = Σij ′ for all i, then a global rotation of the components
j, j ′ yields the same covariance matrices. The current work assumes
m > 3. In appendix B.2 we give an identifiability result for m = 2.

9.2 estimation of components with noise diversity via

joint-diagonalization

We now consider the computational problem of efficient parameter
inference. This section considers components with noise diversity,
while the next section deals with non-Gaussian components.
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9.2.1 Fitting ShICA via Multiset CCA

If we assume that the components are all Gaussian, the covariance
of the observations given by Cij = E[xix

>
j ] = Ai(Ip + δijΣi)A

>
j are

sufficient statistics and methods using only second order information,
like Multiset CCA, are candidates to estimate the parameters of the
model. Consider the matrix C ∈ Rpm×pm containing m×m blocks
of size p× p such that the block i, j is given by Cij. Consider the
matrix D identical to C excepts that the non-diagonal blocks are filled
with zeros. Multiset CCA (using the SUMCORR cost function under
some constraint as described in section 4.2.1) consists in the following
generalized eigenvalue problem:

Cu = λDu, λ > 0, u ∈ Rpm . (9.2)

Consider the matrix U = [u1, . . . ,up] ∈ Rmp×p formed by concate-
nating the p leading eigenvectors of the previous problem ranked
in decreasing eigenvalue order. Then, consider U to be formed of m
blocks of size p× p stacked vertically and define (Wi)

> to be the i-th
block. These m matrices are the output of Multiset CCA. We also
denote λ1 > · · · > λp the p leading eigenvalues of the problem.

The next theorem shows that we only need λ1 . . . λp to be distinct
for Multiset CCA to solve ShICA:

Assumption 16 (Unique eigenvectors). λ1 . . . λp are distinct.

Theorem 17. We suppose Assumption 16 (only). Then, there exists a per-
mutation matrix P and scale matrices Γi such that Wi = PΓiA

−1
i for all

i.

Proof. Let us denote W ∈ Rmp×mp the block diagonal matrix with
block i given by (Ai)

−1. We have Cu = λDu ⇐⇒ WCW>z =

λWDW>z where u = W>z. We call z a reduced eigenvector. Each
block in WCW> and in WDW> is diagonal so any reduced eigen-

vector z =


z1
...

zm

 is such that the matrix Z = [z1 . . . zm] has ex-

actly one non-zero line. Following Lemma 23 in appendix B.1, the
first p leading reduced eigenvectors z1, . . . , zp all have different
first non-zero coordinates. Therefore the concatenation of the first

p leading reduced eigenvectors is given by [z1, . . . zp] =


Γ1
...

Γm

P>
where P> ∈ Rp×p is a permutation matrix and Γi ∈ Rp×p is a



9.2 estimation of components with noise diversity via joint-diagonalization 101

diagonal matrix. Therefore, the first p eigenvectors are given by

[u1 . . .up] =


W>1

...

W>m

 =


(A−1
1 )>Γ1P

>

...

(A−1
m )>ΓmP

>

 and so Wi = PΓiA−1
i

This theorem means that solving the generalized eigenvalue prob-
lem (9.2) allows to recover the mixing matrices up to a scaling and
permutation: this form of generalized CCA recovers the parameters
of the statistical model. Note that Assumption 16 is also a necessary
condition. Indeed, if two eigenvalues are identical, the eigenvalue
problem is not uniquely determined.

Note that the link between Multiset CCA and probabilistic models
has been studied in other contexts [92] or [5] although the authors do
not use the same formulation of MultisetCCA as ours. We highlight
here, that the different versions of Multiset CCA are not equivalent
and may very well produce different results.

We have two different Assumptions, 14 and 16, the first of which
guarantees theoretical identifiability as per Theorem 15 and the second
guarantees consistent estimation by Multiset CCA as per Theorem 17.
Next we will discuss their connections, and show some limitations
of the Multiset CCA approach. To begin with, we have the following
result about the eigenvalues of the problem (9.2) and the Σij.

Proposition 18. For j 6 p, let λj the largest solution of∑m
i=1

1
λj(1+Σij)−Σij

= 1. Then, λ1, . . . , λp are the p largest eigenvalues
of problem (9.2).

It is easy to see that we then have λ1, . . . , λp greater than 1, while the
remaining eigenvalues are lower than 1. From this proposition, two
things appear clearly. First, Assumption 16 implies Assumption 14.
Indeed, if the λj’s are distinct, then the sequences (Σij)i must also
be different from the previous proposition. This is expected as from
Theorem 17, Assumption 16 implies identifiability, which in turn
implies Assumption 14.

Proposition 18 also allows us to derive cases where Assumption 14

holds but not Assumption 16. The following proposition shows that
we can chose parameters of the model so that the model is identifiable
but it cannot be solved using Multiset CCA:

Proposition 19. Assume that for two integers j, j ′, the sequence (Σij)i is
a permutation of (Σij ′)i, i.e. that there exists a permutation of {1, . . . ,p}, π,
such that for all i, Σij = Σπ(i)j ′ . Then, λj = λj ′ .

In this setting, Assumption 14 holds so ShICA is identifiable, while
Assumption 16 does not hold, so Multiset CCA cannot recover the
unmixing matrices.
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9.2.2 Sampling noise and improved estimation by joint diagonalization

The consistency theory for Multiset CCA developed above is con-
ducted under the assumption that the covariances Cij are the true
covariances of the model, and not approximations obtained from ob-
served samples. In practice, however, a serious limitation of Multiset
CCA is that even a slight error of estimation on the covariances, due
to “sampling noise”, can yield a large error in the estimation of the
unmixing matrices, as will be shown next.
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Figure 9.1: Amari distance
between true mixing matri-
ces and estimates of Multi-
set CCA when covariances
are perturbed. Different curves
correspond to different eigen-
gaps. When the gap is small,
a small perturbation can lead
to complete mixing. Joint-
diagonalization (colored dot-
ted lines) fixes the problem.

We begin with an empirical illustra-
tion. We take m = 3, p = 2, and Σi such
that λ1 = 2+ ε and λ2 = 2 for ε > 0.
In this way, we can control the eigen-
gap of the problem, ε. We take Wi the
outputs of Multiset CCA applied to the
true covariances Cij. Then, we generate
a perturbation ∆ = δ · S, where S is a
random positive symmetric pm × pm
matrix of norm 1, and δ > 0 controls
the scale of the perturbation. We take
∆ij the p×p block of ∆ in position (i, j),
and W̃i the output of Multiset CCA ap-
plied to the covariances Cij + ∆ij. We
finally compute the sum of the Amari
distance between the Wi and W̃i: the
Amari distance measures how close the
two matrices are, up to scale and permu-
tation [6]. Fig 9.1 displays the median
Amari distance over 100 random repetitions, as the perturbation scale
δ increases. The different curves correspond to different values of
the eigen-gap ε. We see clearly that the robustness of Multiset CCA
critically depends on the eigen-gap, and when it is small, even a small
perturbation of the input (due, for instance, to sampling noise) can
lead to large estimation errors.

This problem is very general and well studied [141]: the mapping
from matrices to (generalized) eigenvectors is highly non-smooth.
However, the gist of our method is that the span of the leading p
eigenvectors is smooth, as long as there is a large enough gap between
λp and λp+1. For our specific problem we have the following bounds,
derived from Prop. 18.

Proposition 20. We let σmax = maxij Σij and σmin = minij Σij. Then,
λp > 1+ m−1

1+σmax
, while λp+1 6 1− 1

1+σmin
.
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As a consequence, we have λp − λp+1 > m−1
1+σmax

+ 1
1+σmin

: the gap
between these eigenvalues increases with m, and decreases with the
noise power.

Algorithm 3: ShICA-J

Input: Covariances C̃ij = E[xix
>
j ]

(W̃i)i ←MultisetCCA((C̃ij)ij)

Q← JointDiag((W̃iC̃iiW̃>i )i)
Γij ← QW̃iC̃ijW

>
j Q
>

(Φi)i ← Scaling((Γij)ij)
return Unmixing matrices (ΦiQW̃i)i
In this setting, when the magnitude of the perturbation ∆ is

smaller than λp − λp+1, [141] indicates that Span([W1, . . . ,Wm]>) '
Span([W̃1, . . . , W̃m]>), where [W1, . . . ,Wm]> ∈ Rpm×p is the vertical
concatenation of the Wi’s. In turn, this shows that there exists a matrix
Q ∈ Rp×p such that

Wi ' QW̃i for all i. (9.3)

We propose to use joint-diagonalization to recover the matrix
Q. Given the W̃i’s, we consider the set of symmetric matrices
K̃i = W̃iC̃iiW̃

>
i , where C̃ii is the contaminated covariance of xi.

Following Eq. (9.3), we have QK̃iQ> = WiC̃iiW
>
i , and using Theo-

rem 17, we have QK̃iQ> = PΓiA
−1
i C̃iiA

−>
i ΓiP

>. Since C̃ii is close to
Cii = Ai(Ip + Σi)A

>
i , the matrix PΓiA−1

i C̃iiA
−>
i ΓiP

> is almost diag-
onal. In other words, the matrix Q is an approximate diagonalizer
of the K̃i’s, and we approximate Q by joint-diagonalization of the
K̃i’s. In Fig 9.1, we see that this procedure mitigates the problems
of multiset-CCA, and gets uniformly better performance regardless
of the eigen-gap. In practice, we use a fast joint-diagonalization al-
gorithm [2] to minimize a joint-diagonalization criterion for positive
symmetric matrices [119]. The estimated unmixing matrices

Ui = QW̃i (9.4)

correspond to the true unmixing matrices only up to some scaling: the
information that the components are of unit variance is lost.

Scale estimation We form the matrices Γij = UiC̃ijU>j . In order to
estimate the scalings, we solve

LΦ = min
(Φi)

∑
i 6=j
‖Φi diag(Γij)Φj − Ip‖2F (9.5)

where the Φi are diagonal matrices. The gradient is given by

∂LΦ
∂Φi

= 2
∑
j6=i

(Φi diag(Yij)Φj − Ip)Φj (9.6)
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Therefore we get

∂LΦ
∂Φi

= 0 (9.7)

⇐⇒ 2
∑
j6=i

(Φi diag(Yij)Φj − Ip)Φj = 0 (9.8)

⇐⇒ Φi
∑
j6=i

diag(Yij)Φ2j −
∑
j6=i

Φj = 0 (9.9)

⇐⇒ Φi =

∑
j6=iΦj∑

j6=i diag(Yij)Φ2j
(9.10)

We then iterate formula (9.10) over i until convergence. The final
estimates of the unmixing matrices are given by

(ΦiUi)
m
i=1 (9.11)

The full procedure, called ShICA-J, is summarized in Algorithm 3.

9.2.3 Estimation of noise covariance and inference of shared components

In practice, it is important to estimate noise co-variances Σi in order to
take advantage of the fact that some views are noisier than others. As
it is well known in classical factor analysis, modelling noise variances
allows the model to virtually discard variables, or subjects, that are
particularly noisy.

Using the ShICA model with Gaussian components, we derive noise
covariances estimate directly from maximum likelihood. We use an
expectation-maximization (EM) algorithm, which is especially fast
because noise updates are in closed-form. Following derivations given
in appendix B.3.1, the sufficient statistics in the E-step are given by

E[s|x] =

(
m∑
i=1

Σ−1
i + I

)−1 m∑
i=1

(
Σ−1
i yi

)
(9.12)

V[s|x] = (

m∑
i=1

Σ−1
i + I)−1 (9.13)

Incorporating the M-step we get the following updates that only
depend on the covariance matrices:

Σi ←diag(Ĉii − 2V[s|x]

m∑
j=1

Σ−1
j Ĉji

+ V[s|x]

m∑
j=1

m∑
l=1

(
Σ−1
j ĈjlΣ

−1
l

)
V[s|x] + V[s|x]) (9.14)
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9.3 shica-ml : maximum likelihood for non-gaussian

components

ShICA-J only uses second order statistics. However, the ShICA
model (9.1) allows for non-Gaussian components. We now propose
an algorithm for fitting the ShICA model that assumes non-Gaussian
components so that it can separate Gaussian and non-Gaussian com-
ponents. We estimate the parameters by maximum likelihood. Since
most non-Gaussian components in real data are super-Gaussian, we
assume that the non-Gaussian components s have the super-Gaussian
density

p(sj) =
1

2

(
N(sj; 0,

1

2
) +N(sj; 0,

3

2
)

)
(9.15)

We propose to maximize the expected log-likelihood using a gener-
alized EM [44, 106]. Derivations are available in Appendix B.4. Like in
the previous section, the E-step is in closed-form yielding the following
sufficient statistics:

E[sj|x] =

∑
α∈{ 12 , 32 }

θα
αȳj
α+Σ̄j∑

α∈{0.5,1.5} θα
(9.16)

V[sj|x] =

∑
α∈{ 12 , 32 }

θα
Σ̄jα

α+Σ̄j∑
α∈{0.5,1.5} θα

(9.17)

where θα = N(ȳj; 0, Σ̄j + α), ȳj =
∑
iΣ

−1
ij yij∑
iΣ

−1
ij

and Σ̄j = (
∑
i Σ

−1
ij )−1

with yi =Wixi. Noise updates are in closed-form and given by:

Σi ← diag(E[(yi − E[s|x])(yi − E[s|x])>]) + V[s|x]) (9.18)

However, no closed-form is available for the updates of unmixing
matrices. We therefore perform quasi-Newton updates given by

Wi ← (I− ρ(ĤWi)−1GWi)Wi (9.19)

where ρ ∈ R is chosen by backtracking line-search

Ĥ
Wi

a,b,c,d = δadδbc + δacδbd
E[(yib)

2]

Σia
(9.20)

is an approximation of the Hessian of the expected negative complete
log-likelihood and

GWi = −I+ (Σi)
−1E[(yi − E[s|x])(yi)

>] (9.21)

is the gradient.
We alternate between computing the statistics E[s|x], V[s|x] (E-step)

and updates of parameters Σi and Wi for i = 1 . . .m (M-step). Let us
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highlight that our EM algorithm and in particular the E-step resembles
the one used in [104]. However because they assume noise on the
sensors and not on the components, their formula for E[s|x] involves
a sum with 2p terms whereas we have only 2 terms. The resulting
method is called ShICA-ML.

minimum mean squared error estimates in shica In
ShICA-J as well as in ShICA-ML, we have a closed-form for the ex-
pected components given the data E[s|x], shown in equation (9.12)
and (9.16) respectively. This provides minimum mean squared error
estimates of the shared components, and is an important benefit of
explicitly modelling shared components in a probabilistic framework.

9.4 related work

ShICA combines theory and methods coming from different branches
of “component analysis”. It can be viewed as a GroupICA method,
as an extension of Multiset CCA, as an Independent Vector Analysis
method or, crucially, as an extension of SRM. In the setting studied
here, ShICA improves upon all existing methods.

ShICA inherits from all the advantages of MultiView ICA. Unlike
CanICA or ConcatICA (see section 4.2.2.1), it optimizes a proper
likelihood and unlike tensorial methods [18] or SRM, it does not
assume any structure on the mixing matrices.

Compared to the likelihood based method of Guo presented in
section 4.2.2.2 or to MultiView ICA, ShICA allows different subjects to
have different noise variances. This last point is crucial as it allows to
separate Gaussian components. In addition, the estimation in ShICA-
ML relies on a very efficient closed form E-step. This differs from the
likelihood based method of Guo that does not have a closed form
E-step and has to rely on a first order approximation.

ShICA-J uses the Multiset CCA presented in section 4.2.1 which is
one of the fastest as it reduces to solving a generalized eigenvalue
problem. The fact that CCA solves a well defined probabilistic model
has first been studied in [13] where it is shown that CCA is identical to
multiple battery factor analysis [26] (restricted to 2 views). This latter
formulation differs from our model in that the noise is added on the
sensors and not on the components which makes the model uniden-
tifiable. Identifiable variants and generalizations can be obtained by
imposing sparsity on the mixing matrices such as in [11, 81, 156] or
non-negativity [42]. Lastly, the work in [92] exhibits a set of sufficient
(but not necessary) conditions under which a well defined model can
be learnt by the formulation of Multiset CCA used in ShICA-J. The set
of conditions we exhibit in this work are necessary and sufficient. We
further emphasize that basic Multiset CCA provides a poor estimator,
as explained in section 9.2.2.
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Let us highlight that ShICA can be seen as a particular instance of
IVA where subject specific components sij are such that sij = sj +nij.
However, current implementations such as IVA-L [85], IVA-G [7], IVA-
L-SOS [21], IVA-GGD [9] or IVA with Kotz distribution [8] estimate
view-specific components but shared components are not modeled
explicitly. Studying the components post IVA can give great insights
about which components are shared and by which subjects (see [94])
and individual responses that are closed enough could be merged
to produce a shared response. However, the flexibility in modeling
different components from each subject comes at the cost of not having
a well principled way of aggregating the components into a common
shared response. In contrast, ShICA specifically enables extraction
of shared components from the subject specific components via its
minimum mean squared error estimate.

The IVA theory provides global identifiability conditions in the
Gaussian case (IVA-G) [153] and local identifiability conditions in
the general case [9] from which local identifiability conditions of
ShICA could be derived. However, in this work, we provide global
identifiability conditions for ShICA. Lastly, IVA can be performed
using joint diagonalization of cross covariances [40, 91] although
multiple matrices have to be learnt and cross-covariances are not
necessarily symmetric positive definite, which makes the algorithm
slower and less principled.

Let us point out that extracting a shared response from multiple
dataset is also the goal of SRM. Some deep variants [37] release the
orthogonality constrain but they are much more computationally
demanding. ShICA leverages ICA theory to provide a much more
powerful model of shared responses.

limitations The main limitation of this work is that the model
does not reduce the dimension inside each view. In line with other
methods, such view-specific dimension reduction has to be done by
some external method, typically view-specific PCA. Using specialized
methods for the estimation of covariances should also be of interest for
ShICA-J, where it only relies on sample covariances. Finally, ShICA-ML
uses a simple model of a super-Gaussian distribution, while modeling
the non-gaussianities in more detail in ShICA-ML should improve the
performance.

9.5 conclusion

In this chapter, we introduced the ShICA model as a principled uni-
fying solution to the problems of shared response modelling and
GroupICA. ShICA is able to use both the diversity of Gaussian vari-
ances and non-Gaussianity for optimal estimation. We presented two
algorithms to fit the model: ShICA-J, a fast algorithm that uses noise
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diversity, and ShICA-ML, a maximum likelihood approach that can
separate Gaussian and non-Gaussian components. ShICA algorithms
come with principled procedures for shared components estimation, as
well as adaptation and estimation of noise levels in each view (subject)
and component. In the next chapter, we evaluate ShICA using both
real and synthetic data and compare with competitive approaches.
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S H A R E D I C A I N P R A C T I C E

In the previous chapter, we have introduced the ShICA model, a prin-
cipled unifying solution to the problems of shared response modeling
and GroupICA. In this chapter we evaluate its practical utility on
synthetic data and on brain imaging data.

10.1 synthetic experiment

In the following synthetic experiments, data are generated according
to model (9.1) with p = 4 components and m = 5 views and mixing
matrices are generated by sampling coefficients from a standardized
Gaussian.

10.1.1 Separation performance: different use cases

Gaussian components are generated from a standardized Gaussian

and their noise has standard deviation Σ
1
2

i where Σ
1
2

i is a diagonal

matrix. The diagonal coefficients of Σ
1
2

i are obtained by sampling
from a uniform density between 0 and 1. Non-Gaussian components
are generated from a Laplace distribution and their noise standard
deviations are equal. We study 3 cases where either all components are
Gaussian, all components are non-Gaussian or half of the components
are Gaussian and half are non-Gaussian. We vary the number of
samples n between 102 and 105 and display in Fig 10.1 the mean
Amari distance across subjects as a function of n. The experiment
is repeated 100 times using different seeds. We report the median
result and error bars represent the first and last deciles. When all
components are Gaussian (Fig. 10.1 (a)), CanICA cannot separate the
components at all. In contrast ShICA-J, ShICA-ML and Multiset CCA
are able to separate them, but Multiset CCA needs many more samples
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Figure 10.1: Separation performance: Algorithms are fit on data following
model 9.1 (a) Gaussian components with noise diversity (b) Non-Gaussian
components without noise diversity (c) Half of the components are Gaussian
with noise diversity, the other half is non-Gaussian without noise diversity.
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to reach the same Amari distance as ShICA-J or ShICA-ML, which
shows that correcting for the rotation due to sampling noise improves
the results. Looking at error bars, we also see that the performance of
Multiset CCA varies quite a lot with the random seeds: this shows that
depending on the sampling noise, the rotation can be very different
from identity. MultiViewICA does achieve separation but obtains
relatively poor separation performance compared to ShICA or Multiset
CCA. When none of the components are Gaussian (Fig. 10.1 (b)), only
CanICA, ShICA-ML and MultiView ICA are able to separate the
components, as other methods do not make use of non-Gaussianity.
Finally, in the hybrid case (Fig. 10.1 (c)), ShICA-ML is able to separate
the components very well as it can make use of both non-Gaussianity
and noise diversity. As we can see, MultiView ICA yields decent
performance though uniformly worse than ShICA-ML. Also note that
error bars are very large showing that for some seeds it gives poor
results. Overall, MultiView ICA is a lot less reliable than ShICA-ML.

10.1.2 Separation performance in function of non-Gaussianity

We generate data according to model (9.1). Components s are gener-
ated using sj = d(x) with d(x) = x|x|α−1 and x ∼ N(0, 1). We impose

noise diversity: the noise of view i has standard deviation Σ
1
2

i (ob-
tained by sampling from a uniform density between 0 and 1). Mixing
matrices Ai are generated by sampling their coefficients from a stan-
dardized Gaussian law. The number of samples is fixed to n = 105 and
we vary α between 0.8 and 2. Each experiment is repeated 40 times
using different seeds in the random number generator. We use p = 4

components and m = 5 views. We display in Fig 10.2 the mean Amari
distance across subjects. The experiment is repeated 100 times using
different seeds. We report the median result and error bars represent
the first and last deciles. When α is close to 1 (components are almost
Gaussian), ShICA-J, ShICA-ML and multiset CCA can separate com-
ponents well (but multiset CCA reaches higher Amari distance than
ShICA). In this regime, MultiViewICA yields much higher Amari dis-
tance than ShICA-J, ShICA-ML or Multiset CCA but is still better than
CanICA which cannot separate components at all. As non-Gaussianity
(α) increases, ICA based methods yield better results but ShICA-ML
yields uniformly lower Amari distance.

10.1.3 Computation time

We generate components using a slightly super Gaussian density:
sj = d(x) with d(x) = x|x|0.2 and x ∼ N(0, 1). We vary the number of
samples n between 102 and 104. We compute the mean Amari distance
across subjects and record the computation time. The experiment is
repeated 40 times. We plot the Amari distance as a function of the
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Figure 10.2: Separation performance in function of non-Gaussianity Sepa-
ration performance of algorithms for sub-Gaussian α < 1 and super-Gaussian
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Figure 10.3: Computation time: Algorithms are fit on data generated from
model (9.1) with a super-Gaussian density. For different values of the number
of samples, we plot the Amari distance and the fitting time. Thick lines link
median values across seeds.
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Figure 10.4: Robustness w.r.t intra-subject variability in MEG: (top) `2
distance between shared components corresponding to the same stimuli in
different trials. (bottom) Fitting time.

computation time in Fig 10.3. Each point corresponds to the Amari
distance/computation time for a given number of samples and a given
seed. We then consider for a given number of samples, the median
Amari distance and computation time across seeds and plot them in
the form of a thick line. From Fig 10.3, we see that ShICA-J is the
method of choice when speed is a concern while ShICA-ML yields the
best performance in terms of Amari distance at the cost of an increased
computation time. The thick lines for ShICA-J and Multiset CCA are
quasi-flat, indicating that the number of samples does not have a
strong impact on the fitting time as these methods only work with
covariances. On the other hand CanICA or MultiviewICA computation
time is more sensitive to the number of samples.

10.2 experiments on brain imaging data

The shape of the input data (v, t, m) depend on the dataset used
and the experiment performed. A description of the datasets used is
available in section 3.1.5 for fMRI data and in section 3.2.5 for MEG
data. The values for p (the number of components) is given in the de-
scriptions of the experiments. Note that in the special case of the exper-
iments on the sherlock fMRI dataset, the experimental pipeline is avail-
able on github https://github.com/hugorichard/multiviewica/

tree/master/real_data_experiments (including downloading and
preprocessing of the data).

10.2.1 Robustness w.r.t intra-subject variability in MEG

In the following experiments we consider the Cam-CAN dataset [146].
We use the magnetometer data from the MEG of m = 100 subjects
chosen randomly among 496. Each subject is repeatedly presented

https://github.com/hugorichard/multiviewica/tree/master/real_data_experiments
https://github.com/hugorichard/multiviewica/tree/master/real_data_experiments
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three audio-visual stimuli. For each stimulus, we divide the trials
into two sets and within each set, the MEG signal is averaged across
trials to isolate the evoked response. This procedure yields 6 chunks
of individual data (2 per stimulus). We study the similarity between
shared components corresponding to repetitions of the same stimulus.
This gives a measure of robustness of each ICA algorithm with respect
to intra-subject variability. Data are first reduced using a subject-
specific PCA with p = 10 components. Algorithms are run 10 times
with different seeds on the 6 chunks of data, and shared components
are extracted. When two chunks of data correspond to repetitions of
the same stimulus they should yield similar components. For each
component and for each stimulus, we therefore measure the `2 distance
between the two repetitions of the stimulus. This yields 300 distances
per algorithm that are plotted on Fig 10.4.

The components recovered by ShICA-ML have a much lower vari-
ability than other approaches. The performance of ShICA-J is competi-
tive with Multiview ICA while being much faster to fit. Multiset CCA
yields satisfying results compared with ShICA-J. However we see that
the number of components that do not match at all across trials is
greater in Multiset CCA.

The mixing operators in ShICA define spatial maps. In appendix B.5,
we plot the average spatial maps across subjects.

10.2.2 MEG Phantom experiment

10.2.2.1 Elekta Phantom

We use the Elektra Phantom MEG dataset described in 3.2.5 where
dipoles at m = 32 different locations emit the same signal. We reduce
the data by applying view specific PCA with k = 20 components and
algorithms are applied on the reduced data. We select the component
that is closer to the true one and compute the L2 norm between the
predicted component and the true one after normalization. Then we
attempt to recover the position of each dipole by performing dipole
fitting on the mixing operator of each view (using only the column
corresponding to the true component). The localization error is defined
as the mean l2 distance between the true localization and the predicted
localization where the mean is computed across dipoles. Each epoch
corresponds to 301 samples and 20 epochs are available in total. We
vary the number of epochs between 2 and 18 and display in Fig 10.5
the reconstruction error and the localization error as a function of
the number of epochs used. ShICA-ML outperforms other methods.
ShICA-J gives satisfying results while being much faster.
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Figure 10.5: MEG Phantom (Elekta): (left) L2 distance between the predicted
and actual component (middle) Mean error (in mm) between predicted and
actual dipoles localization (right) Fitting time (in seconds)
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Figure 10.6: MEG Phantom Sinusoidal components: (left) L2 distance be-
tween the predicted and actual component (middle) Mean error (in mm)
between predicted and actual dipoles localization (right) Fitting time (in
seconds)

10.2.2.2 MEG Phantom Sinusoidal components

We reproduce the phantom experiment presented in section 8.4. ShICA-
ML outperforms other methods. ShICA-J gives satisfying results while
being much faster.

10.2.3 Reconstructing the BOLD signal of missing subjects

We reproduce the experiental pipeline described in section 8.3.1.
ShICA-ML yields the best R2 score in all datasets and for any number
of components. ShICA-J yields competitive results with respect to
Multiview ICA while being much faster to fit.
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Figure 10.7: Reconstructing the BOLD signal of missing subjects. (left)
Mean R2 score between reconstructed data and true data. (right) Fitting
time.
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Figure 10.8: Timesegment matching experiment: (left) Accuracy (right) Fit-
ting time (in seconds)

10.2.4 fMRI timesegment matching experiment

A popular benchmark especially in the SRM community is the time-
segment matching experiment [36] which we describe in section 6.2.1.
The left panel in Fig 10.8 shows that ShICA-ML, MultiViewICA and
ShICA-J yield almost equal accuracy and outperform other methods
by a large margin. The right panel in Fig 10.8 shows that ShICA-J is
much faster to fit than MultiViewICA or ShICA-ML.

10.3 conclusion

In this chapter, we have shown the practical benefits of ShICA. On
simulated data, ShICA clearly outperforms all competing methods in
terms of the trade-off between statistical accuracy and computation
time. On brain imaging data, ShICA gives more stable decompositions
for comparable computation times, and more accurately predicts the
data of one subject from the data of other subjects, making it a good
candidate to perform transfer learning. As ShiCA only involves lin-
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ear transforms, decisions based on its output are easier to interpret,
making it accessible to practitioners.

In the next section, we show that ICA can be used to perform data
augmentation in fMRI.



Part V

C O N D I C A
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C O N D I C A T H E O RY

In this chapter, we present an ICA-based method to achieve data
augmentation for fMRI data.

Advances in computational cognitive neuroimaging research are
related to the availability of large amounts of labeled brain imaging
data, since classifiers used to decode brain maps have large sample-
complexity. However, such data are scarce.

To tackle this problem, data generation is an attractive approach, as
it could potentially compensate for the shortage of data. Conditional
Generative Adversarial Networks (CGANs) are promising generative
models [58] designed for computer vision. However, such improve-
ments have not yet carried over to brain imaging. A likely reason is that
CGANs are ill-suited to the noisy, high-dimensional and small-sample
data available in functional neuroimaging. Furthermore the training of
CGANs is notoriously unstable and there are many hyper-parameters
to tune.

In this work, we introduce Conditional ICA: a novel data augmenta-
tion technique using ICA together with conditioning mechanisms to
generate surrogate brain imaging data and improve image classifica-
tion performance. Conditional ICA benefits from the abundant resting
state data and can be trained with only few labeled samples.

Figure 11.1: Conditional ICA approach. Our method aims to generate sur-
rogate data from Task and Rest fMRI data by synthesizing statistical maps
that qualitatively fit the distribution of the original maps. These can be used
to improve the accuracy of machine learning models that identify contrasts
from the corresponding brain activity patterns.
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11.1 methods

11.1.1 Spatial Dimension reduction

The outline of the proposed approach is presented in Fig.11.1. While
brain maps are high-dimensional, they span a smaller space than
that of the voxel grid. For the sake of tractability, we reduce the
dimension of the data by projecting the voxel values on the high-
resolution version of the Dictionaries of Functional Modes DiFuMo
atlas [41], i.e. with p = 1024 components. The choice of dimension
reduction technique generally has an impact on the results. However,
we consider this question to be out of the scope of the current study
and leave this to future work.

11.1.2 A generative model for task data

Consider a task dataset Xtask in Rp,n where n is the number of
observations (samples) and p = 1024 the number of components in
the atlas. Xtask can be seen as n observations of a random vector
xtask ∈ Rp. Let us consider how to learn the distribution of xtask.
Assuming a Gaussian distribution is standard in this setting, yet,
as shown later, it misses key distributional features. Moreover, we
consider a model that subsumes the distribution of any type of fMRI
data (task or rest): a linear mixture of k 6 p independent temporal
signals. We therefore use temporal ICA to learn a dimension reduction
and unmixing matrix Wtask ∈ Rk,p such that the k components of
Wtaskxtask are as independent as possible.

A straightforward method to generate new task data would be to
independently sample them from the distribution of the components.
This is easy because such distribution has supposedly independent
marginals. We apply an invertible quantile transform qtask to the com-
ponents of Wtaskxtask so that the distribution of qtask(Wtaskxtask)

has standardized Gaussian marginals. Since it also has independent
marginals, it is given by N(0k, Ik) from which we can easily sample.

However task datasets have a small number of samples (10 ∼ 102).
As a result, there are too few samples to learn a high quality unmixing
matrix. In contrast, resting state datasets have a large number of sam-
ples (104 ∼ 105). Therefore, we replace the unmixing matrix learned
on task data Wtask by the unmixing matrix learned on resting state
data Wrest.

We form ztask = Wrestxtask and learn its quantile transform q.
The encoding model is thus given by:

ztask = q(Wrestxtask) (11.1)

However, the independence assumption no longer holds and thus
a latent structure among the marginals of ztask has to be taken into
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Figure 11.2: Conditional ICA approach in depth. The approach proceeds by
learning a temporal ICA of rest data Xrest ∈ Rp,n , resulting in independent
components and unmixing matrix Wrest ∈ Rk,p. Applying the unmixing
matrix to the task data, we obtain samples in the component space that we
map to a normal distribution, yielding Ztask ∈ Rk,n. Then, we estimate the
covariance Λ ∈ Rk,k (all classes are assumed to have the same covariance)
and the class-specific means µ1, . . . ,µC ∈ Rk according to Ledoit-Wolf’s
method. For each class c, we can draw random samples Z̃taskc ∈ Rk,nfakes

from the resulting multivariate Gaussian distribution N(µc,Λ) and obtain
fake data X̃c ∈ Rp,nfakes by applying the inverse quantile transform and
re-mixing the data using the pseudo inverse of the unmixing matrix. We
append these synthetic data to the actual data to create our new augmented
dataset on which we train classifiers.

account. In addition the generative model needs to be conditioned to
each class. We therefore assume that the samples in class c, xtaskc are
such that:

q(Wrestxtaskc ) ∼ N(µc,Λ) (11.2)

In order to maximize the number of samples used to learn the
parameters of the model, we assume that the quantile transform q

and the latent covariance Λ do not depend on the class c. However,
the mean µc, that can be learned efficiently using just a few tens
of samples, depends on class c. Λ is learned using all task samples
from a standard shrunk covariance estimator Λ = Σ(1−α)+ α

k tr(Σ)Ik
where α is given by the Ledoit-Wolf formula [84] and Σ is the sample
covariance of ztask.

The generative model of data for brain maps in a certain class c is
given by the pseudo inverse of the encoding model:

xc = (Wrest)†q−1(ε) (11.3)

with ε ∼ N(µc,Λ) and (Wrest)† is the Moore Penrose inverse ofWrest

An overview of our generative method is shown in Fig. 11.2.
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11.2 related work

In image processing, data augmentation is part of standard toolboxes
and typically includes operations like cropping, rotation, translation.
On fMRI data these methods do not make much sense as brain data are
not invariant to such transformations. More advanced techniques [159]
are based on generative models such as CGANs or variatonal auto-
encoders [80]. Although CGAN-based method are powerful they are
slow and difficult to train [12].

Our method is not an adversarial procedure, however it re-
lates to other powerful generative models such as variatonal auto-
encoders [80] with which it shares strong similarities. Indeed the
analog of the encoding function in the variational auto-encoder is
given by e(x) = Λ− 1

2q(Wrestx) in our model and the analog to
the decoding function in the variational auto-encoder is given by
d(z) = (Wrest)†q−1(Λ

1
2z) in our model. As in the variational auto-

encoder, e approximately maps the empirical data distribution to a
standardized Gaussian distribution, while the reconstruction error
defined by the difference in l2 norm ‖d(e(x)) − x‖22 must remain small.
Lastly, another classical generative model related to ours is normaliz-
ing flows. We note that when Wrest is square (no dimension reduction
in ICA), the decoding operator d is invertible (its inverse is e) making
our model an instance of normalizing flows [131]. A great property is
thus the simplicity and reduced cost of data generation.

11.3 conclusion

In this chapter, we introduced Conditional ICA, a fast generative
model for task data. Conditional ICA is essentially a linear generative
model with pointwise non-linearity, which makes it cheap, easy to
instantiate on new data, and to introspect. In the next chapter, we look
at the performance of Conditional ICA on fMRI data.
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In the previous chapter, we have introduced Conditional ICA, an effi-
cient generative model for task fMRI data. In this chapter, we bench-
mark Conditional ICA as a generative model of task data against
various augmentation methods by assessing their ability to improve
classification accuracy on a large task fMRI dataset. We find that
Conditional ICA yields highest accuracy improvements. In particular,
Conditional ICA outperforms conditional GANs [102] while being
much easier to optimize and interpret. Lastly, we show on 8 differ-
ent datasets that the use of Conditional ICA results in systematic
improvements in classification accuracy ranging from 1% to 5%.

12.1 dataset, data augmentation baselines and classi-
fiers used

The unmixing matrices are learned on the rest HCP dataset [149]
using 200 subjects. These data were used after standard preprocessing,
including linear detrending, band-pass filtering ([0.01, 0.1]Hz) and
standardization of the time courses. The other 8 datasets [111, 121–123,
127, 137, 149] are obtained from the Neurovault repository [59]. The
classes used in each of these datasets correspond to the activation
maps related to contrasts (such as “face vs tools”) present in the set of
tasks of each dataset. In table 12.1, we give references to the datasets
used as well as the total number of samples (subjects), the size of train
and test sets in each of the cross validation splits and the number of
classes in each dataset.

We consider 4 alternative augmentation methods: ICA, Covariance,
ICA + Covariance and CGANs. When no augmentation method is
applied, we use the Original label.

The ICA method applies ICA to Xtask to generate unmixing ma-
trices Wtask and components Stask = WtaskXtask. To generate a
sample x̃c from class c, we sample independently from each compo-
nent restricted to the samples of class c yielding s̃taskc and mix the
data: x̃c = (Wtask)†s̃taskc .

The Covariance method generates a new sample of synthetic data in
class c by sampling from a Multivariate Gaussian with mean µc and
covariance Σ, where µc is the class mean and Σ is the covariance of
centered task data estimated using Ledoit-Wolf method. In brief, it
assumes normality of the data per class.

The ICA + Covariance method combines the augmentation methods
ICA and Covariance: samples are drawn following the ICA approach,

123
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Dataset Subjects, Train/Test Neurovault

classes collection

hcp [149] 787, 23 100/687 4337

cam-can [137] 605, 5 100/505 4342

brainomics [111] 94, 19 50/44 4341

archi [123] 78, 30 40/38 4339

la5c [127] 191, 24 100/91 4343

pinel2012archi [123] 76, 10 40/36 1952

pinel2009twins [121] 65, 12 35/30 1952

pinel2007fast [122] 133, 10 70/63 1952

Table 12.1: Datasets used in the experiments. The table provides references
to the datasets that were used for our experiments, with the number of
subjects, the number of classes, the number of subjects in train and test set in
each cross validation split and the collection number in Neurovault

but with some additive non-isotropic Gaussian noise. As in ICA, we
estimate Wtask and Stask from Xtask via ICA. Then we consider
Rtask = Xtask −WtaskStask and estimate the covariance ΣR of Rtask
via LedoitWolf’s method. We then generate a data sample x̃c from
class c as with ICA and add Gaussian noise ñ ∼ N(0,ΣR). Samples are
thus generated as x̃c + ñ.

CGANs can generate fake data from a given class. In the CGAN
method, the generator and discriminator have a mirrored architecture
with 2 fully connected hidden layer of size (256 and 512). The number
of epochs, batch size, momentum and learning rate are set to 20k, 16,
0.9, 0.01 and we use the Leaky RELU activation function.

We evaluate the performance of augmentation methods through
the use of classifiers: logistic regression (LogReg), linear discriminant
analysis with Ledoit-Wold estimate of covariance (LDA), perceptron
with two hidden layers (MLP) and random forrests (RF). The hyper-
parameters in each classifier are optimized through an internal 5-Fold
cross validation. We set the number of iterations in each classifier
so that convergence is reached. The exact specifications are given in
table 12.2.

12.2 comparing classification accuracy gains on task

hcp dataset

In order to compare the different augmentation methods, we measure
their relative benefit in the context of multi-class classification. We use
787 subjects from the HCP task dataset that contains 23 classes and
randomly split the dataset into a train set that contains 100 subjects and
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Methods Optimizer Hyper-parameters

LogReg L-BFGS
(20 000 iterations)

inverse L2 regularization strength
in {0.0001, 0.001, 0.01, 0.1, 1}

LDA Least-squares solver Estimation of covariance
using Ledoit-Wolf’s method

RF - Default parameters in sklearn

MLP Adam
(20 000 iterations,
momentum: 0.9,
batch size: 32,
learning rate: 0.0001)

ReLU activation function, fully con-
nected architecture with two hid-
den layers both of size 1024, L2

penalty coefficient: 10−5

Table 12.2: Optimizers and hyper-parameters of classifiers For each classi-
fier, we give the optimization method used as well as the value of hyper-
parameters.

Models LDA LogReg MLP RF

Original 0.893 0.874 0.779 0.782

ICA 0.814 0.840 0.803 0.778

Covariance 0.895 0.876 0.819 0.780

ICA + Covariance 0.816 0.840 0.815 0.780

CGANs 0.874 0.874 0.726 0.779

Conditional ICA 0.901 0.890 0.832 0.783

Table 12.3: Comparing augmentation methods based on classification ac-
curacy on task HCP dataset We compare augmentation methods based on
the classification accuracy (Acc) obtained by 2 linear classifiers (LDA and
LogReg) and two non-linear classifier (MLP and RF) trained on augmented
datasets on HCP Task fMRI data. We report the mean accuracy across 5

splits.

a test set that contains 687 subjects. In each split, we run augmentation
methods on the train set to generate fake samples corresponding to 200
subjects. These samples are then appended to the train set, resulting in
an augmented train set on which the classifiers are trained. The results
displayed in table 12.3 show that Conditional ICA always yields a
higher accuracy than when no augmentation method is applied. The
gains are over 1% on all classifiers tested excepts with the random
forest classifier which yields much lower accuracy than other methods.
By contrast, ICA+Covariance and ICA lead to a decrease in accuracy
while the Covariance approach leads to non-significant gains.

In table 12.4, we give the running-time of the CGAN method and
Conditional ICA. This shows that in contrast to deep learning based
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Methods Running-time (secs)

CGANs 11015.1 (≈ 3,05 hr)

Conditional ICA 62 s

Table 12.4: Running time. We display the running time of conditional ICA
and conditional GAN (CGANs) methods used to generate synthetic task fMRI
data. Conditional ICA is several orders of magnitude faster than CGANs.
In practice, the computational over-head induced by Conditional ICA is
negligible.

Figure 12.1: Accuracy of models for eight multi-contrast datasets. Cross
validated accuracy of two linear (LDA and LogReg) and one non-linear
classifier (MLP) with or without using data augmentation. The improvement
yielded by data augmentation is displayed in red. Black error bars indicate
standard deviation across splits while white error bars indicate standard
deviation across splits with no augmentation.

methods, the computational over-head induced by CondICA is very
low.

12.3 gains in accuracy brought by conditional ica on

eight datasets .

In this experiment, we assess the gains brought by Conditional ICA
data augmentation on the eight different task fMRI datasets refered
to in section 12.1. The experimental pipeline is exactly the same as
with the HCP task dataset. We report in Fig. 12.1 the cross-validated
accuracy of classifiers with and without augmentation. We notice that
the effect of data augmentation is consistent across datasets, classifiers
and splits, with 1% to 5% net gains.

Lastly, we provide a sensitivity analysis on the number of compo-
nents used in CondICA in figure 12.2. CondICA gives good perfor-
mance for numbers of components between 800 and 1000 components.
In all experiments we used k = 900 components.
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Figure 12.2: Accuracy of augmented discriminative models when varying
k. We use 100 train subjects from the HCP task dataset to train Conditional
ICA with k components and generate 200 fake subjects. Classifiers are trained
on the train and fake subjects and tested on the left-out 687 subjects. We
repeat the procedure for various values of k using 5 random splits per value
and report the mean accuracy across splits as a function of k. The dotted line
represents the number of components that has been used in our experiments
(k = 900).

12.4 conclusion

When Conditional ICA is used as a data augmentation method, it
yields consistent improvement in classification accuracy: on 8 tasks
fMRI datasets, we observe an increase in accuracy between 1% and
5% depending on the dataset and the classifier used. Importantly, this
performance was obtained without any fine-tuning of the method,
showing its reliability. One can also notice that our experiments cover
datasets with different cardinalities, from tens to thousand, and differ-
ent baseline prediction accuracy.

The systematic performance improvement CondICA yields makes
it a promising candidate for data augmentation in a wide range of
contexts. Future work may focus on its applicability to other de-
coding tasks such as the diagnosis of Autism Spectrum Disorder
(ASD) [47, 51, 52] or Attention-Deficit/Hyperactivity Disorder detec-
tion (ADHD) [99]. Other extensions of the present work concern the
adaptation to individual characteristics (e.g. age) prediction where
fMRI has shown some potential.
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C O N C L U S I O N

13.1 a note about resources used

All the code is written in Python. We use Matplotlib for plotting [70]
, scikit-learn for machine-learning pipelines [114], MNE for MEG
processing [60], Nilearn for fMRI processing and for its CanICA im-
plementation [4], Brainiak [83] for its SRM implementation.

13.2 contributions outside of the scope of the thesis

Some of the contributions we have made during the thesis extended
beyond the scope of multivariate decompositions. We now present
these contributions succinctly.

13.2.1 A deep approach to model complex stimuli

In this work, we learn a model to predict fMRI data of subjects watch-
ing a movie from the activities of a deep neural network exposed to
the same movie. The neural network is previously trained to perform
action recognition on a large corpus of movies. The association of ac-
tivity in visual areas with the different layers of the deep architecture
displays complexity-related contrasts across visual areas and reveals a
striking foveal/peripheral dichotomy.

published work Hugo Richard et al. “Optimizing deep video
representation to match brain activity.” In: Computational Cognitive
Neuroscience (2018)

13.2.2 Predicting resting state from fMRI

In this work, we predict task contrasts from rest fMRI data using a
piecewise linear model. This model is shown to outperform linear
models and a fully connected neural network.

published work Elvis Dohmatob et al. “Brain topography beyond
parcellations: local gradients of functional maps.” In: NeuroImage 229

(2021), p. 117706

131



132 conclusion

13.2.3 An optimal transport approach to hyperalignment

In this work, we benchmark optimal transport, ridge regression and
scaled Procrustes to align the data of two subjects. Optimal Transport
and Ridge regression outperformed alternatives in that task.

published work Thomas Bazeille et al. “Local optimal transport
for functional brain template estimation.” In: International Conference on
Information Processing in Medical Imaging. Springer. 2019, pp. 237–248

13.2.4 Software

The implementation of the methods developed in this thesis is freely
available on Github https://github.com/hugorichard. Some of the
code we wrote has made its way to bigger packages.

13.2.4.1 Mvlearn

Mvlearn [116] is a Python package for multiview learning tools. It of-
fers reference implementations for algorithms and methods related to
multiview learning. Its API is close to the scikit-learn [4] one, making
it easy to learn. We have implemented the GroupICA, GroupPCA and
MultiViewICA modules of mvlearn.

published work Ronan Perry et al. “mvlearn: Multiview Machine
Learning in Python.” In: Journal of Machine Learning Research 22.109

(2021), pp. 1–7. url: http://jmlr.org/papers/v22/20-1370.html

13.2.4.2 Brainiak

Brainiak [82, 83], is a Python package that applies machine learning
methods to neuroimaging data. Its API is the same as in scikit-learn
and it includes modules such as Representational Similarity Analysis
or Shared response modeling. We have implemented the FastSRM
module of Brainiak.

published work Manoj Kumar et al. “BrainIAK: The brain imag-
ing analysis kit.” In: Aperture (2020). url: https://osf.io/db2ev/

13.3 conclusion

In this thesis, we have presented three methods to perform component
analysis of multi-subject neuroimaging data and a data augmentation
method for fMRI data.

First, in chapter 5 and chapter 6, we have developed an atlas based
procedure that is shown to accelerate significantly the existing pro-
cedure for performing dimension reduction of fMRI data in a multi-

https://github.com/hugorichard
http://jmlr.org/papers/v22/20-1370.html
https://osf.io/db2ev/
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subject context with provably no loss of performance. It is now possible
to apply these algorithms in big datasets where the number of subjects
is of the order of several hundreds, with several thousand samples
and several hundred thousand features.

Then, we have proposed in chapter 7 and chapter 8 a novel unsuper-
vised algorithm, MultiViewICA, that reveals latent sources observed
through different views. Using an independence assumption, we have
demonstrated that the model is identifiable, provided that the latent
sources are not Gaussian. In contrast to previous approaches, the
proposed model leads to a closed-form likelihood, which we then
optimize efficiently using a dedicated alternate quasi-Newton ap-
proach. Therefore, MultiViewICA enjoys the statistical guarantees of
maximum-likelihood theory, while still being tractable. MultiViewICA
outperforms other unsupervised methods used to process fMRI and
MEG data in the context of shared response modeling. However, it
assumes the same level of noise in all subjects, which does not model
properly between-subjects variability.

In chapter 9 and chapter 10, we have extended MultiViewICA in
orter to deal with source noise heteroscedasticity. In practice ShICA
outperforms MultiViewICA and other unsupervised methods used in
the context of shared response modeling.

Lastly, we have introduced in chapter 11 and chapter 12 a data
augmentation method based on ICA that outperforms deep learning
algorithms in terms of decoding accuracy while being much faster.

13.4 future work and perspectives

Combined with the FastSRM algorithm, MultiViewICA and ShICA
yield a novel way to make use of multi-view data. They yield a set of
operators per view that map the data of each view to a shared response,
reducing the variability between views. In principle, reducing the
variability between views should facilitate the understanding of the
data and therefore increase the performance of classification based
tasks such as contrast maps labeling, automatic diagnosis or age
prediction. Investigating to which extend these benefits are observed
could be the topic of future research.

A second practical direction would be to apply our methods to
different neuroimaging settings in which assumptions differ from
ours. This thesis is geared towards naturalistic imaging, where the
temporal response is assumed to be shared across subjects. We see
at least two other neuroimaging settings in which our methods can
be useful. The first one is the analysis of resting state data assuming
that spatial topographies are shared across subjects. In this setting,
the spatial topographies become the common components while the
mixing operators correspond to a set of time-courses. In practice,
transposing the data is enough to enforce such assumptions. A second
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one is the analysis of MEG / EEG data assuming both a spatial and
temporal mixing. This can be done in practice by stacking the features
of consecutive samples.

In terms of methods, we have treated separately dimension reduc-
tion (chapter 5) and source identification (chapter 7 and chapter 9).
Future work might focus on understanding how these two steps can
be performed jointly. Another possible extension in the case of nat-
uralistic stimuli, is to assume that mixing matrices are close to each
other. Indeed, as such matrices represent spatial topographies, such
prior makes sense. Lastly, our data augmentation method does not
make use of our understanding of multiview datasets. This constitutes
an exciting direction of research.
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Part VII

A P P E N D I C E S





A
M U LT I V I E W I C A

a.1 proofs of section 7 .1

a.1.1 Proof of Prop. 12

We fix a subject i. Since s has independent components, so does s+ni.
Following [38], Theorem 11, there exists a scale-permutation matrix Pi

such that A ′i = AiP
i. As a consequence, we have s+ni = Pi(s ′ +n ′i)

for all i.
Then, we focus on subject 1 and subject i 6= 1:

s+n1 − (s+ni) = P
1(s ′ +n ′1) − Pi(s ′ +n ′i) (A.1)

n1 −ni = P
1(s ′ +n ′1) − Pi(s ′ +n ′i) (A.2)

⇐⇒ P1s ′ − Pis ′ = Pin ′i −ni +n
1 − P1n ′1 (A.3)

Since the right hand side of equation (A.3) is a linear combination of
Gaussian random variables, this would imply that P1s ′ − Pis ′ is also
Gaussian. However, given that s ′ is assumed to be non-Gaussian, the
equality can only hold if P1 = Pi and both the right and the left hand
side vanish. Therefore, the matrices Pi are all equal, and there exists a
scale and permutation matrix P such that A ′i = AiP.

a.1.2 Proof of Prop. 13

We consider Wi = Λ(Ai)−1, where Λ is a diagonal matrix. We recall
xi = Ai(s+ni), so that yi =Wixi = Λ(s+ni). The gradient of L is
given by equation (7.9):

Gi =
1

m
E[f ′(s̃)(s+ni)

>]Λ

+
1− 1/m

σ2
ΛE[

ni − 1

m− 1

∑
j6=i
nj

 (s+ni)
>]Λ− Ip

=
1

m
E[f ′(Λ(s+

1

m

∑
j

nj))(s+ni)
>]Λ+

σ ′2(1− 1/m)

σ2
Λ2 − Ip

(A.4)

where we write f ′(s) =


f ′(s1)

...

f ′(sp)

. Therefore, Gi is diagonal and

constant across subjects (because E[f ′(Λ(s + 1
m

∑
j n
j))(ni)

>] =

153
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E[f ′(Λ(s+ 1
m

∑
j n
j))(ni

′
)>]). Let us therefore consider only its co-

efficient (a,a), and let λ = Λaa:

Giaa = G(λ) = φ(λ)λ+
σ ′2(1− 1/m)

σ2
λ2 − 1,

where φ(λ) = 1
mE[f ′(λ(sa +

1
m

∑
j n
j
a))(sa +n

i
a)]. One the one hand,

we have G(0) = −1. On the other hand, if we assume for instance that
f ′ has sub linear growth (i.e. |f ′(x)| 6 c|x|α + d for some α < 1) or that
φ is positive, we find that G(+∞) = +∞. Therefore, G cancels, which
concludes the proof.

a.1.3 Stability conditions

We consider Wi = Λ(Ai)−1 where Λ is such that the gradients Gi all
cancel. We consider a small relative perturbation of Wi of the form
Wi ← (Ip + E

i)Wi, and consider the effect on the gradient. We define
∆i = Gi

(
(Ip + E

1)W1, . . . , (Ip + Em)Wm
)
. Denoting C =

1−1/m
σ2

and
ñ = 1

m

∑m
i=1 ni, we find:

∆i = ∆i1 +C∆
i
2 − Ip

where

∆i1 =

E[
1

m
f ′

Λ(s+ ñ) + 1

m

m∑
j=1

EjΛ(s+nj)

 (s+ni)
>Λ(Ip + E

i)>]

(A.5)

and

∆i2 = E[

Λni − 1

m− 1

∑
j6=i

Λnj + EiΛ(s+ni)

−
1

m− 1

∑
j6=i

EjΛ(s+nj)

 (s+ni)
>Λ(Ip + E

i)>] (A.6)

The first term is expanded at the first order, denoting S =
∑m
j=1 E

j:

∆i1 = E[
1

m

(
f ′′(Λ(s+ ñ))�

( 1
m

m∑
j=1

EjΛ(s+nj)
)

+ f ′(Λ(s+ ñ))

)
(s+ni)

>Λ(Ip + E
i)>]

= E[
1

m
f ′(Λ(s+ ñ))(s+ni)

>Λ(Ip + E
i)>

+
1

m2
S�

(
f ′′(Λ(s+ ñ))(s2)>Λ2

)
+

1

m2
Ei �

(
f ′′(Λ(s+ ñ))((ni)

2)>Λ2
)
] (A.7)
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The symbol � denotes the element-wise multiplication, f ′(s) =
f ′(s1)

...

f ′(sp)

 and f ′′(s) =


f ′′(s1)

...

f ′′(sp)

. Similarly, the second term gives

at the first order:

∆i2 = E[σ ′2Λ2(Ip + E
i)> + (1+ σ ′2)EiΛ2 −

1

m− 1
(S− Ei)Λ2]

(A.8)

Combining this, we find:

∆i = (Ei)> + Ei � ΓE + S� ΓS (A.9)

where

ΓE =

(
1

m2
E[f ′′(Λ(s+ ñ))((ni)

2)>] + (1−
1

m
)
σ ′2

σ2
+
1

σ2

)
Λ2

ΓS =

(
1

m2
E[f ′′(Λ(s+ ñ))(s2)>] −

1

mσ2

)
Λ2

are p× p matrices, independent of the subject. This linear operator
is the Hessian block corresponding to the i-th subject: Denoting H the
Hessian, it is the mapping H(E1, . . . ,Em) = (∆1, . . . ,∆m).

The coefficient ∆iab only depends on (Eiab,Eiba,E1ab, . . . ,Emab).
Therefore, the Hessian is block diagonal with respect to the blocks
of coordinates (E1ab,E1ba, . . . ,Emab,Emba). Denote ε = ΓEab, ε ′ = ΓEba,
β = ΓSab and β ′ = ΓSba. The linear operator for the block is:

K(ε, ε ′,β,β ′) =

ε+β 1 β 0 . . . β 0

1 ε ′ +β ′ 0 β ′ . . . 0 β ′

β 0 ε+β 1 β 0

0 β ′ 1 ε ′ +β ′
. . . 0 β ′

...
...

. . . . . .
...

...

β 0 β 0 . . . ε+β 1

0 β ′ 0 β ′ . . . 1 ε ′ +β ′


The positivity of H is equivalent to the positivity of this operator for
all pairs a,b. We now assume ββ ′ > 0.

First, we should note that K(ε, ε ′,β,β ′) is congruent to

K(ε
√
β ′

β , ε ′
√
β
β ′ ,
√
ββ ′,

√
ββ ′) via the basis
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Figure A.1: Reproducing the time-segment matching experiment of
[37] [157] Mean classification accuracy - error bars represent 95% confidence
interval

diag((β
′

β )1/4, ( ββ ′ )
1/4, · · · , (β

′

β )1/4, ( ββ ′ )
1/4). We denote to simplify no-

tation α = ε
√
β ′

β , α ′ = ε ′
√
β
β ′ and γ =

√
ββ ′. We only have to study

the positivity of K(α, α ′,γ,γ). We have:

K(α,α ′,γ,γ) = Im ⊗Mα + γ1⊗ I2, Mα =

(
α 1

1 α ′

)

Since Im ⊗Mα and γ1⊗ I2 commute, the minimum value of Sp(K)
is min(Im ⊗Mα) + min(γSp(1)) = 1

2(α + α ′ −
√

(α−α ′)2 + 4) +

mmin(0,γ). Since we assumed ββ ′ > 0 we have γ > 0. This is similar
to the usual ICA case, we find that the condition is αα ′ > 1.

If the following conditions hold for all pair of components a,b, the
components are a local minimum of the cost function:

• ΓSabΓ
S
ba > 0

• ΓEabΓ
E
ba > 1

a.1.4 Reproducing time-segment matching experiment

We reproduce the time-segment matching experiments described in
[37] and [157] and use two fold classification over runs instead of 5-
fold as we have done in chapter 8. We used the sherlock data available
at http://arks.princeton.edu/ark:/88435/dsp01nz8062179 and the
full brain mask provided in the Python package associated with the
paper. We applied high-pass filtering (140 s cutoff) and the time series
of each voxel were normalized to zero mean and unit variance.

The results are available in Figure A.1.

http://arks.princeton.edu/ark:/88435/dsp01nz8062179
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a.2 related work

The following table describes some usual method for extracting shared
components from multiple subjects datasets. The column "Modality/-
Components" describes the type of data for which each algorithm
was initially proposed, even though each algorithm could be applied
on any type of data. The components type can be either temporal if
extracted components are time courses or spatial if they are spatial
patterns.

Method Modality
/ Compo-
nents

Dimension
reduction

Description

SRM [36] fMRI /
Temporal

SRM The model is
xi = Ais + ni,
with Gaussian
components
and orthogonal
mixing matrices
Ai

GroupPCA [139] fMRI / Spa-
tial

GroupPCA A memory effi-
cient implemen-
tation of PCA
applied on tem-
porally concate-
nated data.

GIFT [28] fMRI / Spa-
tial

Individual
PCA + Group
PCA (on
component-
wise con-
catenated
data)

Single-subject
ICA is applied
on the aggre-
gated data

EEGIFT [48] EEG / Tem-
poral

Individual
PCA + Group
PCA (on
component-
wise con-
catenated
data)

Single-subject
ICA is applied
on the aggre-
gated data
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PermICA Any Any Single-subject
ICA is applied
on each subject’s
data, and the
components are
matched using
the Hungarian
algorithm

Clustering ap-
proach [53]

fMRI / Spa-
tial

Individual
PCA

Single-subject
ICA is applied
on each subject’s
data, and the
components
are matched
using a hierar-
chical clustering
algorithm.

Measure projec-
tion analysis [22]

EEG / Tem-
poral

Individual
PCA

Single-subject
ICA is applied
on each subject’s
data, and the
components
are matched
using a hierar-
chical clustering
algorithm.

TensorICA [18] fMRI / Spa-
tial

Group PCA
(on spatially
concatenated
data)

TensorICA
incorporates
ICA assump-
tions into the
PARAFAC
model. The
mixing matri-
ces A1 · · ·An
are such that
Ai = ADi
where A is
common to all
subjects and
Di are subject
specific diagonal
matrices.
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Unifying Ap-
proach of [64]

fMRI / Spa-
tial

Group PCA
(on spatially
concate-
nated data)
+ Group-
PCA (on
component-
wise con-
catenated
data).

The model is
xi = Ais + ni
with a Gaussian
mixture model
on independent
components and
a matrix normal
prior on the
noise.

SR-ICA [157] fMRI /
Temporal

SR-ICA SR-ICA incor-
porates ICA
assumptions
into the shared
response model.

CAE-SRM [37] fMRI /
Temporal

CAE-SRM A convolutional
auto-encoder is
used to perform
the unmixing.

CanICA [150] fMRI / Spa-
tial

Individual
PCA + multi
set CCA (on
component-
wise con-
catenated
data)

CanICA applies
single-subject
ICA on data
reduced with
PCA and CCA.

Spatial Concat-
ICA [142]

fMRI / Spa-
tial

Group PCA
(on spatially
concatenated
data)

ICA is applied
on spatially
concatenated
data. The mixing
is constrained
to be the same
across all sub-
jects.

Temporal Concat-
ICA [39]

EEG / Tem-
poral

Group PCA
(on tem-
porally
concatenated
data)

ICA is applied
on temporaly
concatenated
data. The mixing
is constrained
to be the same
across all sub-
jects.
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coroICA [117] Any Any The model is
xi = Asi + ni.
The mixing is
constrained to
be the same
across all sub-
jects.

An additional related model is described in [61]. Similarly to our work,
the ICA model has noise on the components side. However, the model
involves nonlinear mixings, which are computationally unfeasible to
optimize via maximum likelihood; a contrastive learning scheme is
therefore adopted, and the likelihood is not derived in closed form.
No evaluation on neuroimaging datasets is presented.

a.3 detailed cam-can components

We display each of the 11 shared components found by Multiview ICA
on the Cam-CAN. The time-courses are on the left, the corresponding
brain maps are on the right.
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a.4 average forward operators on fmri datasets

We display the average forward operator across subjects on the Raiders,
Forrest, Clips and Sherlock datasets obtained with MultiViewICA
and ConcatICA with 5 components. A 5 mm spatial smoothing was
applied on all datasets, and the confound signals corresponding to
the 5 components with the highest variance were removed before
applying MultiViewICA or ConcatICA.
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Figure A.2: Synthetic experiment with model xi = Ais+ni

a.5 synthetic benchmark using additive noise on the

sensors

We generate data according to the model xi = Ais+ni, where xi ∈
R50, s ∈ R20, and ni ∼ N(0,σ2I50). After applying individual PCA to
obtain signals of dimension 20, we apply the different ICA algorithms
and report the reconstruction error in fig. A.2.

a.6 summary of our quantitative results

Our quantitative results for the fMRI experiments of time-segment
matching and BOLD signal reconstruction and on for the MEG phan-
tom data experiment are summarized, respectively, in Table A.2, Ta-
ble A.3 and Table A.4. All methods are compared upon extraction of
components with the same dimensionality (20 components).
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Dataset Method Accuracy Confidence interval

clips Chance 0.002 [0.001, 0.003]

CanICA 0.130 [0.112, 0.147]

PCA + ConcatICA 0.124 [0.109, 0.139]

ConcatICA 0.152 [0.133, 0.171]

PermICA 0.147 [0.126, 0.169]

SRM 0.115 [0.104, 0.126]

MultiViewICA 0.167 [0.142, 0.192]

forrest Chance 0.002 [0.001, 0.002]

CanICA 0.192 [0.170, 0.214]

PCA + ConcatICA 0.088 [0.077, 0.098]

ConcatICA 0.154 [0.137, 0.170]

PermICA 0.135 [0.118, 0.152]

SRM 0.188 [0.173, 0.203]

MultiViewICA 0.448 [0.411, 0.484]

raiders Chance 0.002 [0.001, 0.003]

CanICA 0.256 [0.220, 0.291]

PCA + ConcatICA 0.331 [0.289, 0.372]

ConcatICA 0.321 [0.281, 0.361]

PermICA 0.381 [0.341, 0.421]

SRM 0.265 [0.240, 0.289]

MultiViewICA 0.408 [0.358, 0.458]

sherlock Chance 0.005 [0.003, 0.006]

CanICA 0.607 [0.567, 0.648]

PCA + ConcatICA 0.454 [0.416, 0.492]

ConcatICA 0.519 [0.481, 0.556]

PermICA 0.399 [0.365, 0.434]

SRM 0.493 [0.465, 0.520]

MultiViewICA 0.873 [0.844, 0.903]

Table A.2: Timesegment matching: Summary of our quantitative results. We
report the mean accuracy across cross-validation splits.
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Dataset Method R2 score Confidence interval

clips Chance 0.000 [0.000 ,0.000]

CanICA 0.110 [ 0.097 , 0.123]

PCA + ConcatICA 0.075 [ 0.058 , 0.092]

ConcatICA 0.077 [ 0.059 , 0.094]

PermICA 0.099 [ 0.087 , 0.111]

SRM 0.081 [ 0.069 , 0.094]

MultiViewICA 0.114 [ 0.099 , 0.128]

forrest Chance 0.000 [0.000 ,0.000]

CanICA 0.181 [ 0.169 , 0.193]

PCA + ConcatICA 0.072 [ 0.054 , 0.090]

ConcatICA 0.081 [ 0.062 , 0.099]

PermICA 0.098 [ 0.090 , 0.106]

SRM 0.180 [ 0.168 , 0.193]

MultiViewICA 0.191 [ 0.177 , 0.204]

raiders Chance 0.000 [0.000 ,0.000]

CanICA 0.136 [ 0.122 , 0.149]

PCA + ConcatICA 0.063 [ 0.045 , 0.080]

ConcatICA 0.062 [ 0.043 , 0.081]

PermICA 0.107 [ 0.091 , 0.124]

SRM 0.138 [ 0.121 , 0.154]

MultiViewICA 0.144 [ 0.124 , 0.164]

sherlock Chance 0.000 [0.000 ,0.000]

CanICA 0.156 [ 0.141 , 0.172]

PCA + ConcatICA 0.087 [ 0.065 , 0.108]

ConcatICA 0.091 [ 0.070 , 0.112]

PermICA 0.067 [ 0.055 , 0.078]

SRM 0.164 [ 0.147 , 0.181]

MultiViewICA 0.161 [ 0.142 , 0.180]

Table A.3: Reconstructing the BOLD signal of missing subjects: Summary of
our quantitative results. We report the mean R2 score across cross-validation
splits.
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Method Reconstruction error 1st and 3d quartiles

MultiViewICA 0.0045 [0.0039, 0.0052]

ConcatICA 0.1098 [0.0549, 0.1734]

PCA+ConcatICA 0.1111 [0.0760, 0.1502]

PermICA 0.0730 [0.0423, 0.1037]

Table A.4: Phantom MEG data: Summary of our quantitative results with 2

epochs. We report the median reconstruction error across cross-validation
splits.
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b.1 lemmas

Lemma 21. Let s ∈ Rk and s ′ ∈ Rk have independent components among
which g are Gaussian, and P a rotation matrix such that s = Ps ′. Then,
P = Π−1OΠ ′ where Π and Π ′ are sign and permutation matrices such that
the first g components of Πs and Π ′s ′ are Gaussian and O is a block diagonal
matrix such that O(g), the first g× g block of O, is orthogonal and the other
block is identity.

Proof. From [38], Theorem 10: Assume s = Ps ′, if the column j of P
has more than one non-zero element then s ′j is Gaussian.

Let us define permutations Π1, Π ′1 such that the first g components
of Π1s and Π ′1s

′ are Gaussian and P1 = Π1P(Π ′1)
−1. We can see that

P1 is orthogonal.
We have Π1s = P1Π ′1s

′. So the last p− g columns of P1 contain at
most one non-zero element. Using orthogonality of P1 this non-zero
element has value 1 or −1 and is also the only one in its line. Let us
focus on column l > g. Assume column l has its non-zero element
at index k 6 g. Then line k in P1 is only non-zero at index l and
therefore (Π1s)k (which is Gaussian) is equal to (Π ′1s

′)l (which is not).
Therefore column l can only have its non-zero element at an index

greater than g. This shows that P1 is block diagonal P1 =

[
Og 0

0 P2

]
where Og is orthogonal and P2 is a sign and permutation matrix.[

Og 0

0 P2

]
= Π1P(Π

′
1)

−1 (B.1)

⇐⇒
[
Og 0

0 I

][
I 0

0 P2

]
= Π1P(Π

′
1)

−1 (B.2)

⇐⇒ Π−1
1

[
Og 0

0 I

][
I 0

0 P2

]
Π ′1 = P (B.3)

Therefore setting Π ′ =

[
I 0

0 P2

]
Π ′1 and Π = Π1 and O =

[
Og 0

0 I

]
concludes the proof.

Lemma 22. Assume that Assumption 2 holds for Σi, and that there is an
orthogonal matrix P and diagonal matrices Σ ′i such that for all i, Σ ′i =

PΣiP
>. Then, P is a permutation matrix.
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Proof. The proof is in two parts. First, we show that there exist some
coefficients α1, . . . ,αm such that the matrix

∑
i αiΣi has distinct coeffi-

cients on the diagonal. Then, since we have
∑
i αiΣ

′
i = P (

∑
i αiΣi)P

>,
and the diagonal

∑
i αiΣi has distinct entries, we can invoke the unic-

ity of the eigenvalue decomposition for symmetric matrices, which
shows that P is necessarily a permutation matrix. Now, the only thing
left is to prove is that Assumption 2 implies the existence of this linear
combination.

We assume by contradiction that any linear combination of the Σi
has two equal entries.

For α = [α1, . . . ,αm], we let S(α) = diag(
∑
i αiΣi) ∈ Rp, where

diag(·) extracts the diagonal entries. The operator S is linear. We now
define for j, j ′ 6 p the linear form `jj ′(α) = S(α)j − S(α)j ′ ∈ R. The
assumption on the linear combinations of Σi simply rewrites: For all
α ∈ Rm, there exists j, j ′ 6 p such that `jj ′(α) = 0.

From a set point of view, this relationship writes⋃
j,j ′

Ker(`jj ′) = Rm .

Since the `jj ′ are all linear forms, the Ker(`jj ′) are subspaces of dimen-
sions m or m− 1, and since their union is of dimension m, there exists
j, j ′ such that Ker(`jj ′) = Rm, i.e. such that `jj ′ = 0.

As a consequence, we have for all α, S(α)j = S(α)j ′ . This implies
that the sequences (Σij)i and (Σij ′)i are equal, which contradicts
Assumption 2.

We have therefore shown that Assumption 2 implies the existence
of a linear combination of the Σi that has distinct entries, which
concludes the proof.

Lemma 23. Let us consider the following eigenvalue problem:

Az = λBz (B.4)

A =


I+ Σ1 I . . . I

I I+ Σ2
. . .

...
...

. . . . . . I

I . . . I I+ Σm



B =


I+ Σ1 0 . . . 0

0 I+ Σ2
. . .

...
...

. . . . . . 0

0 . . . 0 I+ Σm


where ∀i, 1 6 i 6 m, Σm ∈ Rp,p are positive diagonal matrices and
I is the identity matrix. If the first p eigenvalues are distincts, the first p
eigenvectors z1, . . . , zp, zi ∈ Rmp have different first non-zero coordinates.
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Proof. We sort the eigenvectors in p groups of m vectors so that all
vectors in group l have their l-th coordinate different from 0. Let z(l)

be an eigenvector in group l and let us call wl ∈ Rm the non-zero
coordinates of this eigenvector: ∀i ∈ {1 . . .m},wli = z

(l)
l+(i−1)p.

We have:

Alwl = Blwlλl (B.5)

Al =


1+ Σ1l 1 . . . 1

1 1+ Σ2l
. . .

...
...

. . . . . . 1

1 . . . 1 1+ Σml



Bl =


1+ Σ1l 0 . . . 0

0 1+ Σ2l
. . .

...
...

. . . . . . 0

0 . . . 0 1+ Σml


We now show that the biggest eigenvalue of (B.5) is strictly above 1

while all others are strictly below 1. The core of the proof comes from
the study of the eigenvalues of a matrix modified by a rank 1 matrix.
The reasoning we use here follows [57] (end of section 5).

Let us introduce Kl = diag(Σ1l . . . Σml) and u =


1
...

1

. Let us drop

the index l in the notations for simplicity.
The problem can be rewritten

(uu> +K)w = (I+K)wλ (B.6)

⇐⇒ (I+K)−1(uu> +K)w = wλ (B.7)

The characteristic polynomial is given by:

P(λ) = det((I+K)−1K− λI+ (I+K)−1uu>) (B.8)

∝ det(I+ ((I+K)−1K− λI)−1(I+K)−1uu>) (B.9)

where we implicitly focus here on eigenvalues λ such that det((I+
K)−1K− λI) 6= 0 ⇐⇒ ∀i, λ 6= ki

1+ki
.

We then use the following property: Let A ∈ Ra,b and B ∈ Rb,a we
have det(Ia +AB) = det(Ib +BA).

Let us call χ(λ) = det(I + ((I + K)−1K − λI)−1(I + K)−1uu>) we
have:

χ(λ) = 1+u>((I+K)−1K− λI)−1(I+K)−1u (B.10)

= 1+

m∑
i=1

1

1+ ki

1
ki
1+ki

− λ
(B.11)
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where ki = Σil > 0. Taking the derivative we get

χ ′(λ) =

m∑
i=1

1

1+ ki

1

( ki
1+ki

− λ)2
> 0 (B.12)

Trivially, ∀i, ki
1+ki

< 1. We also have

χ(1) = 1+

m∑
i=1

1

1+ ki

1
ki
1+ki

− 1
= 1−m < 0 (B.13)

and limλ→+∞ χ(λ) = 1 so as χ is continuous and strictly increasing on
[1,+∞[. Therefore, it reaches 0 only once on this interval (excluding
1 since we know χ(1) 6= 0). Therefore the greatest eigenvalue λ∗ is
strictly above 1 while all other eigenvalues are strictly below 1.

Note that because χ ′ > 0, λ∗ is of multiplicity 1. In the analysis
above we ignored those eigenvalues λ such that λ = ki

1+ki
for some i.

However since ki
1+ki

< 1, none of these eigenvalues can be the largest
one.

Finally, the p first eigenvectors belong to different groups (the corre-
sponding eigenvalues are all strictly above 1). This shows that these
eigenvectors have different first non-zero coordinates.

b.2 identifiability results for m < 3

We have a slightly weaker identifiability result when m = 2.

Proposition 24. Letm = 2, and suppose that the scalars (1+Σ1j)(1+Σ2j)
for j = 1 . . . p are all different. We let Θ ′ = (A ′1,A ′2,Σ ′1,Σ ′2) that also
generates x1, x2. Then, there exists a permutation and scale matrix P such
that A ′1 = A1P and A ′2 = A2P

−>.

Proof. We let P = A−1
1 A ′1. Since C12 = Ip, it holds A−1

2 A ′2 =

P−>. Then, we have Ip + Σ1 = P(Ip + Σ ′1)P
>. This means that

there exists U ∈ Op such that P = (Ip + Σ1)
1
2U(Ip + Σ ′1)

− 1
2 . Since

P−>(Ip + Σ ′2)P
−1 = Ip + Σ2, we find U(Ip + Σ ′1)(Ip + Σ ′2)U

> =

(Ip +Σ1)(Ip +Σ2). By identification, U is a permutation matrix, and
P is a scale and permutation matrix.

As a consequence, when there are only two subjects, it is pos-
sible to recover the components and noise levels up to a scaling
factor. When there is only one view, m = 1, there is a global ro-
tation indeterminacy: A1(Ip + Σ1)A

>
1 = A ′1(Ip + Σ1)A

′
1
> for A ′1 =

A1(Ip +Σ1)
1
2U(Ip +Σ1)

− 1
2 where U is any orthogonal matrix. In this

case, we lose identifiability.
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b.3 em e-step and m-step for shica with gaussian compo-
nents

b.3.1 E-step

The derivations are the same as in section B.4.1 but the sum over
α ∈ 12 , 32 is replaced by just α = 1.

b.3.2 M-step

The function to minimize in the M-step is then given by:

J = E[− logp(x, s)] (B.14)

=

m∑
i=1

log(|Σi|)+ (B.15)

1

2
tr(Σ−1

i

[
E[(yi − E[s|x])(yi − E[s|x])>] + V[s|x]

]
) (B.16)

+ c (B.17)

where c does not depend on Σi
Therefore we get closed-form updates for Σi:

Σi ← diag(E[(yi − E[s|x])(yi − E[s|x])>] + V[s|x]) (B.18)

Plugging in the closed-form formula for E[s|x] and V[s|x] we get
updates that only depends on the covariances Ĉij = E[xix

>
j ].

Σi ←diag(Ĉii

− 2V[s|x]

m∑
j=1

Σ−1
j Ĉji

+ V[s|x]

m∑
j=1

m∑
l=1

(
Σ−1
j ĈjlΣ

−1
l

)
V[s|x]

+ V[s|x])

b.4 em e-step and m-step for shica with non-gaussian

components

b.4.1 E-step

The complete likelihood is given by

p(x, s) =
∏
i

p(xi|s)p(s) (B.19)

=
∏
i

p(xi|s)
∏
j

∑
α∈{0.5,1.5}

p(sj|α) (B.20)

(B.21)
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where

p(sj|α) = N(sj; 0,α) (B.22)

We have

p(xi|s) = |Wi|N(yi; s,Σi) (B.23)

= |Wi|
∏
j

N(yij; sj,Σij) (B.24)

where Σij is the coefficient j, j of Σi and yi =Wxi.
Let us introduce a first lemma:

Lemma 25.

m∏
i=1

N(xi;u, vi) =
m∏
i=1

N(xi; x̄, vi)
√
2πv̄N(x̄;u, v̄)

where v̄ = (
∑m
i=1 v

−1
i )−1 and x̄ =

∑
i v

−1
i xi∑
i v

−1
i

.

Proof. We have that∑
i

1

vi
(xi − u)

2 =
∑
i

1

vi
(xi − u)

2 (B.25)

=
∑
i

1

vi
(xi − x̄+ x̄− u)

2 (B.26)

=
∑
i

1

vi
(xi − x̄)

2 +
∑
i

1

vi
(x̄− u)2 (B.27)

and therefore∏
i

(
1√
2πvi

exp(−
1

2vi
(xi − µ)

2)) (B.28)

=
∏
i

1√
2πvi

exp(
∑
i

−
1

2
(
1

vi
(xi − x̄)

2 +
1

vi
(x̄− u)2)) (B.29)

=
∏
i

N(xi, x̄, vi) exp(−
1

2
(
∑
i

1

vi
)(x̄− u)2)) (B.30)

(B.31)

so the desired result follow.

By Lemma 25, we have∏
i

p(xi|s) =
∏
i

|Wi|
∏
j

N(yij; ȳj,Σij)
√
2πΣ̄jN(ȳj; sj, Σ̄j)

(B.32)

(B.33)
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where ȳj =
∑
iΣ

−1
ij yij∑
iΣ

−1
ij

and Σ̄j = (
∑
i Σ

−1
ij )−1. Hiding variable that do

not depend on s we obtain

∏
i

p(xi|s) ∝
∏
j

N(ȳj; sj, Σ̄j) (B.34)

(B.35)

Then we get

p(x, s) ∝
∏
j

∑
α∈{0.5,1.5}

N(sj; ȳj, Σ̄j)N(sj; 0,α) (B.36)

Let us now prove a second Lemma:

Lemma 26.

N(x;y,ν)N(x, 0,α) = N(y; 0,ν+α)N(x;
αy

α+ ν
,
να

α+ ν
)

Proof. We have

N(x;y,ν)N(x, 0,α) =
exp

(
−

(x−y)2

2ν

)
√
2πν

exp
(
− x

2

2α

)
√
2πα

(B.37)

Then,

exp
(
−
(x− y)2

2ν

)
(B.38)

= exp
(
−
α(x− y)2 + νx2

2αν

)
(B.39)

= exp
(
−
α(x2 − 2xy+ y2) + νx2

2αν

)
(B.40)

= exp
(
−
x2(α+ ν) − 2x(αy) +αy2

2αν

)
(B.41)

= exp

(
−
x2 − 2x αyα+ν + αy2

α+ν

2 ανα+ν

)
(B.42)

= exp

(
−
(x− αy

α+ν)
2 − ( αyα+ν)

2 + αy2

α+ν

2 ανα+ν

)
(B.43)

= exp

(
−
(x− αy

α+ν)
2

2 ανα+ν

)
exp

(
−
−α2y2 + (α+ ν)αy2

2αν(α+ ν)

)
(B.44)

= exp

(
−
(x− αy

α+ν)
2

2 ανα+ν

)
exp

(
−

ναy2

2αν(α+ ν)

)
(B.45)

and
1√

2πν
√
2πα

=
1√

2π(ν+α)
√
2π να
ν+α

(B.46)

so that the desired result follow.
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By Lemma 26, we have:

p(x, s) (B.47)

∝
∏
j

∑
α∈{0.5,1.5}

N(ȳj; 0, Σ̄j +α)N(sj;
αȳj

α+ Σ̄j
,
Σ̄jα

α+ Σ̄j
) (B.48)

and therefore we get:

p(s|x) =
p(s, x)∫
s p(s, x)

(B.49)

=
∏
j

∑
α∈{0.5,1.5} θαN(sj;

αȳj
α+Σ̄j

, Σ̄jα
α+Σ̄j

)∑
α∈{0.5,1.5} θα

(B.50)

where θα = N(ȳj; 0, Σ̄j +α).
So we obtain the desired result:

E[sj|x] =

∑
α∈{0.5,1.5} θα

αȳj
α+Σ̄j∑

α∈{0.5,1.5} θα
(B.51)

V[sj|x] =

∑
α∈{0.5,1.5} θα

Σ̄jα

α+Σ̄j∑
α∈{0.5,1.5} θα

(B.52)

b.4.2 M-step

The function to minimize in the M-step is then given by:

J = E[− logp(x, s)] (B.53)

=

m∑
i=1

− log(|Wi|) + log(|Σi|)+ (B.54)

1

2
tr(Σ−1

i

[
E[(yi − E[s|x])(yi − E[s|x])>] + V[s|x]

]
) + c

(B.55)

where c does not depend on Σi or Wi
Therefore we get closed-form updates for Σi:

Σi ← diag(E[(yi − E[s|x])(yi − E[s|x])>] + V[s|x]) (B.56)

We update Wi by performing a quasi-Newton step.
We use the relative gradient GWi and HWi defined by

J(Wi + εWi) = J(Wi) + 〈ε,GWi〉+ 1
2
〈ε,HWiε〉 (B.57)



B.4 em e-step and m-step for shica with non-gaussian components 175

We get:

J(Wi + εWi) =

m∑
i=1

[
− log(|Wi|) − log(|Ik + ε|)

− E[log(N(yi + εyi; s;Σi))]
]
+ const (B.58)

= J(Wi) − tr(ε) +
1

2
tr(ε2)

+
1

2

[
E[〈εyi, (Σi)−1(yi − s)〉]+

E[〈(yi − s), (Σi)−1εyi〉] + E[〈εyi, (Σi)−1εyi〉]
]

+ o(‖ε‖2) (B.59)

= J(Wi) −
∑
a

εa,a +
1

2

∑
a,b

εa,bεb,a

+
∑
a,b

εa,b

[
E[(Σi)

−1(yi − s)(yi)
>]
]
a,b

+
1

2

∑
a,b

εa,b

[
E[(Σi)

−1εyi(yi)
>]
]
a,b

+ o(‖ε‖2) (B.60)

= J(Wi) −
∑
a

εa,a +
1

2

∑
a,b

εa,bεb,a

+
∑
a,b

εa,b

[
E[(Σi)

−1(yi − s)(yi)
>]
]
a,b

+

1

2

∑
a,b,d

εa,b(Σi)
−1
a,aεa,d

[
E[yi(yi)

>]
]
d,b

+ o(‖ε‖2) (B.61)

So:

G
Wi

a,b = −δa,b +
[
E[(Σi)

−1(yi − s)(yi)
>]
]
a,b

(B.62)

and

H
Wi

a,b,c,d = δa,dδb,c + δa,c
E[yibyid]

Σia
(B.63)

We approximate the Hessian by

Ĥ
Wi

a,b,c,d = δadδbc + δacδbd
E[(yib)

2]

Σia
(B.64)

where the Hessian approximation is exact when the unmixed data
have truly independent components.

Updates for Wi are then given by Wi ← (I− ρ(ĤWi)−1GWi)Wi,
where ρ is chosen by backtracking line-search. We alternate between
computing the statistics E[s|x] and Var[s|x] (E-step) and updates of
parameters Σi and Wi for i = 1 . . .m (M-step).
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b.5 camcan spatial maps

We use m = 496 subjects and fit ShICA-ML with p = 10 components.
We localize the components of each subject using sLORETA [113].
Then components are registered to a common brain and averaged.
Thresholded maps are displayed below along with the time courses of
each component. Spatial maps obtained with ShICA-ML highlight the
ventral visual cortex and auditive cortex. The results suggest that the
response of the auditive cortex is faster and lasts a shorter time than
the response of the ventral visual cortex.
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