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1

Chapter 1

Introduction (français)

Ce travail s'inscrit dans le cadre de l'Analyse Topologique des Données (ou TDA, pour
Topological Data Analysis), qui est ici abordée selon deux points de vue di�érents
: celui de l'inférence géométrique et celui de la théorie de l'homologie persistante.
Ces deux approches visent toutes deux à extraire (dans des cadres di�érents) des
informations pertinentes de nature géométrique et topologique sur des jeux de données
complexes possédant des structuresa priori non linéaires.

1 Les enjeux de l'inférence géométrique

La théorie statistique classique développée dans les années 1930 par Fisher fait les
hypothèses suivantes : on observe des données en basse dimension, et on possède
un modèle génératif simple expliquant ces données (gaussien, exponentiel, etc.). On
s'intéresse alors à des estimateurs de paramètres caractérisant la loi des données, pour
lesquels on est capable de donner des garanties fortes d'optimalité. À l'inverse, les
jeux de données modernes se présentent typiquement sous la forme de nuages de
points en grande dimension. Si les méthodes classiques peuvent s'appliquer dans ce
cadre, leurs performances théorique et pratique deviennent médiocres. Ce phénomène,
couramment appelé�éau de la dimension, montre la nécessité d'un changement de
paradigme. Il s'agit tout d'abord, dans une phase de modélisation, de développer
des jeux d'hypothèses raisonnables que véri�ent une large classe de données acquises
en grande dimension. Dans un second temps, il s'agira de développer des méthodes
statistiques adaptées à ces nouveaux jeux d'hypothèses.

Ainsi, certaines méthodes, telle le LASSO [Tib96], ont des bonnes performances sous
une hypothèse de parcimonie sur les jeux de données. Des méthodes de régression, telle
la régression ridge [HK70], s'adaptent à la grande dimension en pénalisant la complexité
de la fonction de régression proposée. On peut aussi mentionner d'autres méthodes
standard, telle l'analyse en composante principale [Pea01; Hot33], dont l'utilisation
suppose que les données sont proches d'un espace vectoriel de basse dimension en un
sensL 2. Les hypothèses que nous venons de mentionner reposent toutes sur l'existence
d'une structure linéaire de basse dimension pertinente pour expliquer le jeu de données.
En particulier, elles nécessitent d'avoir une grande con�ance en la paramétrisation des
données utilisées, et toute reparamétrisation peut briser cette structure linéaire (voir
la �gure 1.1). L'idée clé de l'inférence géométrique est de relaxer cette hypothèse en
supposant que les données en grande dimension se concentrent autour d'une forme de
basse dimension,a priori non linéaire. Mathématiquement, on suppose alors queles
données observées sont proches d'une variétéM de dimensiond petite dans un espace
de dimension ambianteD possiblement grande.

D'un point de vue statistique, ce type d'hypothèses a d'abord été étudié dans
le cas où la variétéM est connue [Hen90; Pel05]. C'est notamment le cas pour des
problèmes de géolocalisation [IPT19], où les données sont des éléments deS2, ou
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Figure 1.1: La structure linéaire du jeu de données bleu disparaît
lorsque l'axe vertical est reparamétrisé par une fonction non-linéaire
(ici sinusoïdale). Le jeu de données orange reste cependant près d'une

variété.

lors de l'étude d'images de visages se présentant sous di�érents éclairages [Cha+07]
dans laquelle les jeux de données présents se trouvent être sur une Grassmannienne
G(k; d). Connaître la variété M est le plus souvent trop exigeant, et, au cours des
années 2000, une autre famille de techniques, que l'on peut regrouper sous le terme de
méthodes de réduction de dimension non-linéaire, est apparue [RS00; ZZ03; WSS04]
(on pourrait aussi mentionner des techniques proposées antérieurement comme les
cartes autoadaptatives [Koh89] ou les surfaces principales adaptatives [LT94]). Ces
méthodes, ne nécessitant pas une connaissancea priori de la variété M , cherchent à
plonger de la manière la plus �dèle possible un nuage de points proche d'une forme
�non-linéaire� dans un espace euclidienRd pour d petit. Par exemple, la méthode
ISOMAP [TDSL00] est basée sur le plongement dansRd, à l'aide d'un positionnement
multidimensionnel (ou MDS pour multidimensional scaling), d'un graphe de voisinage
construit sur les observations. Elle permet ainsi de �déplier� des jeux de données qui se
trouveraient sur des objets di�éomorphes à un ouvert convexe (voir la �gure 1.2). On
peut ensuite appliquer des techniques standard de classi�cation ou de régression aux
données �dépliées�. Notons tout de même que ces approches ne possèdent des garanties
théoriques que dans un cadre restreint, qui nécessite au moins que le jeu de données
soit di�éomorphe à Rd. Il est ainsi par exemple impossible de plonger continûment
une sphère dansR2.

Parallèlement à cette ligne de travaux, se sont développées dans le domaine de
la géométrie algorithmique des méthodes de reconstruction d'une variétéM � RD à
partir d'un échantillon �ni X , avec une attention toute particulière portée aux courbes
et aux surfaces [BTG95; AB99]. Ainsi, l'algorithme COCONE [Ame+00] permet la
reconstruction d'une surface lisseM à partir d'une approximation �nie, si le taux
d'approximation "(X ) := supf d(x; X ) : x 2 M g de l'échantillon X est su�samment
petit, tandis que le Tangential Delaunay Complexde Boissonnat et Ghosh [BG14]
permet une telle reconstruction en dimension supérieure. On peut aussi se poser des
questions sur la reconstruction d'invariants topologiques ou géométriques deM , comme
son axe médian [ABE09] ou ses groupes d'homologie ou d'homotopie [CO08]. Encore
une fois, ces travaux requièrent uniquement une échantillon �niX se trouvant sur la
variété M et ayant un bon taux d'échantillonnage. Un autre point de vue consiste
à supposer que l'approximationX est la réalisation d'un processus aléatoire, den
observations indépendantes d'une certaine loi� concentrée autour de la variétéM :
on peut alors espérer que les méthodes de reconstruction fonctionnent avec grande
probabilité, sur des échantillons �typiques�. Cette approche statistique des problèmes



1. Les enjeux de l'inférence géométrique 3

Figure 1.2: À gauche : un ensembleX de 3000 points échantillonnés
sur un swiss roll. À droite : sortie de l'algorithme ISOMAP appliqué à

X (implémenté sur scikit-learn [Bui+13]).

de géométrie algorithmique a pour la première fois été adoptée dans un article de
Niyogi, Smale et Weinberger [NSW08], où les auteurs montrent que l'homologie d'une
variété M est reconstruite avec grande probabilité à partir du complexe de ƒech (un
objet combinatoire dé�ni dans le chapitre 3) d'un n-échantillon aléatoire Xn . Dans
les années 2010, a ensuite été abordée l'estimation au sens statistique du terme de
plusieurs descripteurs deM , comme sa dimension [HA05; LJM09; KRW19], ses espaces
tangents [AL19; CC16], son reach [Aam+19; Ber+21], sa courbure [AL19], ses distances
géodésiques [ACC20], ou la variétéM elle-même [Gen+12a; Gen+12b; MMS16; AL18;
AL19].

Ce point de vue statistique sur les problèmes de reconstruction géométrique a
l'avantage de permettre de poser simplement la question de l'optimalité des procédures
envisagées. Ceci est rendu possible grâce à la théorie statistique minimax. Considérons
par exemple le problème de l'estimation d'une variétéM à partir d'un n-échantillon
aléatoire Xn . Un estimateur M̂ de M est alors n'importe quel sous-ensemble compact
de RD , fonction (mesurable) de l'échantillon. La qualité de l'estimateurM̂ sous loi
� , appelée son� -risque, est donnée par sa distance de Hausdor�dH moyenne àM ,
c'est-à-dire

Rn (M̂ ; �; d H ) := E[dH (M̂ ; M )]; (1.1)

où il est sous-entendu queM̂ = M̂ (Xn ) et Xn est un n-échantillon de loi � . En pratique,
la loi � générant les données est inconnue, et il est plus intéressant de contrôler ce
risque uniformément sur tout un ensembleQ de lois � , que l'on appelle unmodèle
statistique. En inférence géométrique, plusieurs modèles statistiques ont été introduits,
prenant en compte di�érents modèles de bruits et de régularité pourM . Le risque
uniforme de l'estimateur M̂ sur une classeQ est alors donné par

Rn (M̂ ; Q; dH ) := supf Rn (M̂ ; �; d H ) : � 2 Qg; (1.2)

tandis qu'un estimateur sera dit minimax si il atteint (à une constante multiplicative
près) le risque minimax dé�ni par

R n (M; Q; dH ) := inf f Rn (M̂ ; Q; dH ) : M̂ est un estimateurg: (1.3)

Mentionnons par exemple la famille de modèlesQ2;d
� min ;f min ;f max

introduite par Genovese
et al. dans [Gen+12a], comprenant les lois� supportées sur une variétéM de dimension
d satisfaisant certaines propriétés. Tout d'abord, on suppose que� a une densitéf
sur M comprise entre deux bornesf min et f max > 0. Cela permet d'assurer que toutes
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Figure 1.3: Si le reach de la courbeM est grand, alors la courbe
ne peut pas être trop courbée (gauche) et ne peut pas présenter une

structure �ne en goulot d'étranglement (droite)

les régions de la variété sont à peu près autant échantillonnées : on parle alors de lois
presque-uniformes surM . Le paramètre � min impose une borne inférieure sur le reach
� (M ) de la variété. Ce dernier est une notion centrale en inférence géométrique. Le
reach � (M ) est dé�ni comme le plus grand rayonr tel que, si d(x; M ) � r , alors il
existe une unique projectiony de x sur M , c'est-à-dire un point y 2 M satisfaisant
jx � yj = d(x; M ). D'un point de vue plus géométrique, avoir un reach� (M ) plus
grand quer implique qu'il est possible de faire �rouler� une boule le long deM sans �se
cogner� à une autre partie deM [PL08, Lemma A.0.6]. Ainsi, le reach� (M ) contrôle
deux quantités di�érentes, d'une part le rayon de courbure de la variétéM (donc une
régularité locale), et d'autre part une régularité globale, contrôlant la présence de
structure en goulot d'étranglement dans la variété (voir la �gure 1.3). Sur le modèle
Q2;d

� min ;f min ;f max
, la vitesse minimax satisfait

c0

�
ln n
n

� 2=d

� R n (M; Q2;d
� min ;f min ;f max

; dH ) � c1

�
ln n
n

� 2=d

(1.4)

pour deux constantesc0; c1 > 0 dépendant de� min , f min , f max et d. La borne inférieure
dans cette inégalité a été montrée par Kim et Zhou [KZ15], tandis que la borne
supérieure est obtenue en fournissant un estimateur ayant un risque uniforme de l'ordre
de (ln n=n)2=d. Un tel estimateur (non calculable en pratique) a tout d'abord été
proposé par Genoveseet al. dans [Gen+12a], tandis qu'un autre estimateur, cette
fois-ci calculable, atteignant cette même vitesse, basé sur leTangential Delaunay
Complex, a été introduit par Aamari et Levrard [AL18].

1.1 Le problème de l'adaptivité

Notons que leTangential Delaunay Complexdépend de plusieurs paramètres, comme
par exemple d'un rayon quanti�ant la taille des voisinages utilisés pour calculer des
analyses en composantes principales locales. Pour que leTangential Delaunay Complex
soit minimax, ces paramètres doivent être calibrés d'une certaine manière par rapport
aux variables � min , f min et f max dé�nissant le modèle. Or, ces quantités sonta priori
inconnues. Se pose alors la question du choix en pratique des paramètres dé�nissant
l'estimateur. Cette question du calibrage pratique des paramètres dé�nissant un
estimateur n'est pas restreint à l'estimation de variétés, mais est un problème classique
en statistique.

Citons par exemple la question du choix de la largeur de bande dans l'estimation à
noyaux. Soit X 1; : : : ; X n un n-échantillon d'une certaine loi � ayant une densitéf sur
R, et supposons que l'on souhaite reconstruire la valeur de la densitéf (x0) en un point
�xé x0 2 R. Une méthode standard pour réaliser cet objectif est de convoler la mesure
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empirique � n = 1
n

P n
i =1 � X i par un certain noyau K h , où K h = h� 1K (�=h) et K véri�e

R
K = 1 . On obtient alors une fonction f̂ h = K h � � n . Supposons que la densitéf soit

de régularité s, c'est-à-dire quef 2 Cs(R), l'ensemble des fonctions dérivablesbsc fois,
dont la dérivée bscième est(s � b sc)-Hölder. Alors, en choisissant bien le noyauK , on
sait qu'il est optimal de choisir la largeur de bandehopt de l'ordre dec� n� 1=(2s+1) , où c
dépend de la normeCs de f [Tsy08, Chapitre 1]. Le risque associé est alors de l'ordre de
n� s=(2s+1) , ce qui est la vitesse minimax d'estimation sur les densités de régularités. En
pratique, il est impossible de connaître exactements, de sorte que nous devons trouver
une autre stratégie pour choisirh. Les méthodes adaptatives consistent à choisir une
largeur de bandêh en fonction des données, de sorte que l'estimateurf̂ ĥ ait un � -risque
presque aussi bon que l'estimateur optimal̂f hopt sous des hypothèses faibles sur� . En
particulier, la méthode PCO (pour Penalized Comparison to Over�tting) introduite
par Lacour, Massart et Rivoirard [LMR17] consiste à comparer chaque estimateur̂f h

à un estimateur dégénéréf̂ hmin pour un certain hmin très petit. La largeur de bandeĥ
sélectionnée est choisie parmi une familleH de largeurs de bande (toutes supérieures
à hmin ), en minimisant un critère qui dépend de la distancekf̂ h � f̂ hmin kL 2 (R) et qui
pénalise les petites valeurs deh. Lacour, Massart et Rivoirard montrent alors une
inégalité oracle pour leur estimateur, c'est-à-dire une inégalité du type

Ekf̂ ĥ � f k2
L 2 (R) � C minf Ekf̂ h � f k2

L 2 (R) : h 2 Hg + C(n; jHj ); (1.5)

où C(n; jHj ) est un terme de reste négligeable devant le risque optimal. On obtient
ainsi que f̂ ĥ a un risque presque aussi bon que le meilleur estimateur̂f hopt , sans jamais
avoir eu à estimer les paramètres dé�nissant le modèle (ici la régularité de la densité
ainsi que sa norme).

Dans le chapitre 4, nous nous inspirons de la philosophie de la méthode PCO pour
créer un estimateur adaptatif de variété. Une première étape consiste à créer une
famille d'estimateurs (M̂ t )t � 0, analogue des estimateurs à noyaux pour l'estimation
de variété. Ceci est permis par la notion det-enveloppe convexe. Pourt � 0, la
t-enveloppe convexeConv(t; A ) d'un ensembleA interpole entre A (t = 0 ) et son
enveloppe convexeConv(A) (t = 1 ). Elle est dé�nie par

Conv(t; A ) :=
[

� � A
r (� )� t

Conv(� ); (1.6)

où r (� ) est le rayon de l'ensemble� , à savoir le rayon de la plus petite boule contenant
� . On montre dans un premier temps que pourt = c � (ln n=n)1=d, où c dépend ded
et des paramètres� min et f min , la t-enveloppe convexeConv(t; Xn ) d'un n-échantillon
aléatoire de points fournit un estimateur de variétés qui est minimax sur le modèle
Q2;d

� min ;f min ;f max
. Dans un deuxième temps, nous considérons le problème de la sélection

adaptative du paramètre t. Un analogue de l'estimateur dégénéréêf hmin est ici donné
par le choix de t = 0 : on trouve alors l'estimateur Conv(0; Xn ) = Xn . Si on croît
en la méthode PCO, il s'agira donc de comparer les estimateursConv(t; Xn ) à Xn ,
c'est-à-dire d'étudier la fonction t 7! h(t; Xn ) := dH (Conv(t; Xn ); Xn ). Il se trouve
que cette fonction a été précédemment introduite sous le nom dedéfaut de convexité
de l'ensembleXn dans un papier d'Attali, Lieutier et Salinas [ALS13], où elle était
utilisée pour étudier le type d'homotopie des complexes de Rips. Nous montrons que le
défaut de convexité de l'échantillon aléatoireXn exhibe des comportements di�érents
dans deux régimes : avant une certaine valeur seuilt � (Xn ), elle a un comportement
globalement linéaire, tandis qu'après cette valeur seuil, elle possède un comportement
(sous-)quadratique. Le défaut de convexité est calculable uniquement à partir des
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Figure 1.4: Gauche. Échantillon Xn . Centre. Défaut de convexité de
Xn et échelle sélectionnéêt � . Droite. L'ensemble Conv(t̂ � ; Xn ).

données, et on peut donc en pratique observer ces deux phases. On peut alors montrer
que les valeurs det juste au-dessus de la valeur seuilt � (Xn ) fournissent un risque
minimax de l'ordre de (ln n=n)2=d. En pratique, nous �xons deux hyperparamètres
0 < � < 1 et tmax , posons

t̂ � := supf t < t max : h(t; Xn ) > �t g; (1.7)

et montrons que, sitmax est assez petit par rapport à� min , alors Conv(t̂ � ; Xn ) fournit
un estimateur minimax adaptatif de variétés, voir la �gure 1.4. Notons que nous
n'obtenons pas le caractère adaptatif de notre estimateur en montrant une inégalité
oracle du type (1.5), mais en montrant que t̂ � est plus grand que la valeur seuil
t � (Xn ) (tout en restant du bon ordre de grandeur) avec grande probabilité, ce qui
su�t à montrer le caractère minimax de l'estimateur correspondant. On peut aussi
montrer que le paramètret̂ � est en fait proche du taux d'approximation "(Xn ). Comme
mentionné précédemment, un certain nombre d'algorithmes en géométrie algorithmique
nécessitent la connaissance du taux d'échantillonnage (ou plutôt d'un encadrement du
taux d'échantillonnage), et peuvent donc être utilisés en utilisant le paramètrêt � .

1.2 Reconstruire la mesure plutôt que la variété

La deuxième contribution proposée ici est motivée par les problématiques d'estimation
de densité. En inférence géométrique, la possibilité de reconstruire la densitéf de
la mesure� générant les observationsXn a d'abord été considérée dans le cas oùM
est connue. Hendriks [Hen90] propose d'utiliser les fonctions propres de l'opérateur
de Laplace-Beltrami sur la variété pour reconstruire la densité, tandis que Pelletier
[Pel05] propose un estimateur à noyaux utilisant la distance géodésique sur la variété.
Dans le cadre de l'inférence géométrique, où la variétéM est supposée inconnue, les
travaux d'estimation de densité sont plus récents. Soit un pointx0 que l'on suppose
appartenir à M . L'estimation de de f (x0), la densité de f en x0, a été abordée
dans [BS17; WW20], où des vitesses de convergence des estimateurs à noyaux sont
exhibées, respectivement dans le cas où la variété est à bord et dans le cas où la densité
est supposée Hölder. Berenfeld et Ho�mann [BH19] exhibent des vitesses minimax
d'estimation pour ce problème, et montrent que deux régularités entrent en jeu dans
la vitesse optimale : d'une part la régularité s de la densitéf , et d'autre part la
régularité k de la variétéM . De plus, les auteurs montrent que la méthode de sélection
de Goldenshluger-Lepski [GL13] s'applique dans ce cadre pour sélectionner la largeur
de bande du noyau et permet d'obtenir des estimateurs adaptatifs def (x0).

Pour aller au-delà de l'estimation ponctuelle def (ou de manière équivalente de la
mesure associée� ), le choix de la fonction de perte est un problème délicat. En e�et,
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les choix standard en estimation de densité comprennent la distanceL p, la distance de
Hellinger ou encore la divergence de Kullback-Leibler. Toutes ces fonctions de perte
deviennent dégénérées pour la comparaison de deux mesures mutuellement singulières.
Or, si le support M de la mesure� est inconnu, il sera impossible de construire à
partir d'un n-échantillon une mesure non-singulière par rapport à la mesure volume
volM sur M , quand bien même son support serait très proche deM pour la distance
de Hausdor�. Au contraire, les distances de WassersteinWp (1 � p � 1 ) sont par
construction robustes aux perturbations métriques du support d'une mesure, et sont
donc particulièrement adaptées à notre problème. Elles sont dé�nies de la manière
suivante. Étant données deux mesures de probabilité� et � , nous dé�nissons un plan
de transport � entre � et � comme une mesure surRD � RD ayant pour première
marginale � et seconde marginale� . Informellement, au point x 2 RD , une fraction
d� (x; y) de la massed� (x) présente enx est envoyée eny. Le coût d'un tel plan de
transport est donné parCp(� ) =

RR
d(x; y)pd� (x; y), tandis que la distance Wasserstein

Wp est donné par le coût du plus petit plan de transport :

Wp(�; � ) := inf f C1=p
p (� ) : � 2 �( �; � )g; (1.8)

où �( �; � ) est l'ensemble des plans de transport entre� et � .
L'utilisation des distances de Wasserstein, et plus généralement de la théorie du

transport optimal, a montré son e�cacité dans une large gamme de problèmes récents
d'apprentissage automatique, avec des algorithmes e�caces et des garanties théoriques
fortes (voir par exemple le livre de Peyré et Cuturi [PC19]). D'un intérêt tout particulier
pour nous, Niles-Weed et Berthet ont abordé le problème de l'estimation d'une densité
f supportée sur le cube[0; 1]d pour les distances de Wasserstein [WB19b]. Supposons
que f appartienne à l'espace de BesovB s

p;q([0; 1]d) de régularité s sur le cube (pour
s � 0, et 1 � p < 1 et 1 � q � 1 , voir le chapitre 5 pour une dé�nition précise). Alors,
Niles-Weed et Berthet montrent qu'une modi�cation d'un estimateur par ondelettes
classique atteint la vitesse de convergence den� (s+1) =(2s+ d) pour d � 3 en distance
WassersteinWp (à comparer avec la vitesse de convergencen� s=(2s+ d) pour l'estimation
ponctuelle de densité). De plus, cette vitesse est la vitesse minimax.

Notre contribution principale, décrite dans le chapitre 5, est d'étendre ce résultat
minimax en remplaçant le cube par n'importe quelle sous-variétéM de régularité k
pour k � s + 1 . Nous montrons alors qu'une mesure ayant pour densité par rapport à
volM un estimateur à noyaux pondéré atteint la même vitesse minimaxn� (s+1) =(2s+ d) .
Dans le cas d'intérêt où la variétéM est inconnue, nous ne pouvons pas utiliservolM ,
de sorte que l'estimateur précédent n'est pas calculable. Nous proposons donc dans
un premier temps d'estimer la mesure volume. Nous exhibons ainsi un estimateur
cvolM et montrons queÛM := cvolM =j cvolM j est un estimateur minimax de la mesure
uniforme sur M . La reconstruction de la mesure volume est basée sur les procédures
d'estimation de paramétrisationsCk locales de la variétéM introduites par Aamari et
Levrard [AL19].

2 Un point de vue multi-échelle : la persistance des don-
nées

Les travaux que nous avons mentionné jusqu'à maintenant font tous l'hypothèse forte
de l'existence d'une variété de basse dimension interpolant les données. Il est légitime
de s'intéresser à des questions de nature topologique dans un cadre beaucoup plus
général. Par exemple, on peut imaginer qu'une information pertinente est présente dans
la structure topologique �ne de processus spatiaux, information pouvant servir dans
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Figure 1.5: Gauche : un graphe d'interactions entre utilisateurs de
Reddit provenant du jeu de donnéesREDDIT-5K, présenté dans [YV15].
Droite : simulation d'un �ot de turbulence donné par l'équation de

Navier-Stokes [Sch+06].

un objectif de classi�cation [Bro+20]. Dans certains problèmes, les données observées
ne se présentent pas sous la forme de nuages de points, alors qu'une �topologie� reste
présente. C'est le cas notamment lorsque l'on observe une famille de graphes, où
la topologie est alors décrite par l'existence de cycles ou de plusieurs composantes
connexes [AMA07; Hof+17; ZW19; Car+20], voir aussi la �gure 1.5. La théorie de
l'homologie persistante en TDA se propose de quanti�er en un sens précis ce qu'est la
�topologie� sous-jacente à un jeu de données de façon très générale. Pour cela, nous
adoptons une approche multi-échelle.

Considérons tout d'abord un exemple simple. SoitXn un ensemble �ni de n points
dans RD . D'un point de vue topologique, l'ensembleXn est particulièrement peu
intéressant : il comporten composantes connexes, chacune réduite à un point. Une
possibilité pour obtenir un ensemble plus riche topologiquement est de choisir une
échellet à laquelle regarder les données, dans la veine dest-enveloppes convexes du
chapitre 4, ou plus simplement en considérant let-voisinage deXn :

X t
n :=

[

x2X n

B(x; t ): (1.9)

Comme expliqué précédemment, choisir une �bonne� échellet est alors un problème
délicat, bien que nous ayons proposé dans le chapitre 4 un algorithme dans le cas où
l'échantillon Xn est su�samment proche d'une variété M . La théorie de l'homologie
persistante propose d'éviter ce choix du paramètret en regardant comment évoluent
les groupes d'homologie deX t

n lorsque t grandit de 0 à + 1 . Si on s'intéresse par
exemple à l'homologie de dimension1 (c'est-à-dire à la présence de �boucles� dans
un espace), on peut observer que des boucles apparaîtront à certains instants dans
le processus, avant d'être bouchées par la suite lorsque le paramètret du rayon des
boules deviendra plus grand (voir la �gure 1.6). Lorsquet devient très grand, nous
obtenons un ensemble homotopiquement équivalent à une boule, qui ne possède plus
de cycles. Cette évolution peut être résumée par un ensemble d'intervalles, chaque
intervalle [b; d) représentant une boucle apparue à l'échelleb, et ayant disparue à
l'échelle d. De manière équivalente, nous pouvons considérer la collection de points
(b; d) 2 R2, que nous appelons lediagramme de persistanceassocié au processus.
Notons que l'on a forcémentd > b, de sorte qu'un diagramme de persistance est une
liste de points dans
 := f u = ( u1; u2) 2 R2 : u2 > u 1g, ou de manière équivalente
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Figure 1.6: Le diagramme de persistance de dimension 1 associé à la
�ltration (X t

n )t � 0.

une mesure de la forme
P

i 2 I � u i sur 
 . Plus un cycle sera resté longtemps dans le
processus(X t

n )t � 0, plus il aura de l'importance. On appellepersistancedu cycle la
durée de vied � b de l'intervalle associé. Ainsi, dans un diagramme de persistance, les
points loin de la diagonale@
 := f (t; t ) : t 2 Rg correspondent à des caractéristiques
topologiques importantes du processus sous-jacent. De manière plus générale, la théorie
de l'homologie persistante peut s'appliquer à n'importe quelle�ltration d'espaces
topologiques, c'est-à-dire à une suite croissante d'espaces topologiques(X t )t2 R. Ceci
inclut donc notamment les sous-niveaux d'une fonctionf : X ! R, où X peut être
un graphe, une image, ou un espace métrique quelconque. Quand la fonctionf est la
distance à un ensembleXn , nous retrouvons le processus décrit précédemment, tandis
que le diagramme de persistance associé est appelé diagramme de ƒech de l'ensemble
Xn . De plus, on peut s'intéresser à di�érentes dimensions d'homologie : composantes
connexes (dimension 0), boucles (dimension 1), cavités (dimension 2), etc.

La théorie de l'homologie persistante et la notion de diagramme de persistance
se sont construites progressivement durant la première moitié des années 2000, voir
par exemple [Rob99; ELZ00; Car+04], tandis que le concept de persistance a aussi
été introduit de manière indépendante par Barannikov dans le domaine de la théorie
de Morse [Bar94]. Un des premiers résultats majeurs de la TDA a consisté à montrer
que les diagrammes de persistance sont en un sens fort stables vis-à-vis des objets sur
lesquels ils sont construits [CSEH07]. Cette propriété, couramment appelée �théorème
de stabilité�, repose sur un résultat puissant de stabilité algébrique énoncé précisément
dans le chapitre 3. Ce théorème de stabilité est basé sur une notion de distance entre
diagrammes, appelée la distancebottleneck d1 . Par la suite, les distancesdp pour
1 � p � 1 ont été introduites, généralisant la distance bottleneck, et pour lesquelles
des résultats de stabilité plus faibles existent (découlant de la stabilité en distance
bottleneck) [CS+10]. Soient a et b deux diagrammes de persistance, oùa est donné
par la liste de points x1; : : : ; xn 2 
 et b par la liste de points y1; : : : ; ym 2 
 . On
appelle un appariement entrea et b une bijection entre a [ @
 et b [ @
 : chaque
point x i est envoyé par
 soit sur un certain yj , soit sur un point quelconque de la
diagonale, et lesyj non atteints sont l'image par 
 d'un certain point de la diagonale.
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Figure 1.7: Gauche : deux diagrammes de persistance. Centre : un
appariement 
 entre les deux diagrammes. Le coûtCp(
 ) est donné
par la somme des longueurs à la puissancep des segments apparaissant
dans l'appariement, tandis que le coûtbottleneck C1 (
 ) est donné par
la longueur du plus long segment. Droite : un appariement optimal

pour tout p 2 [1; + 1 ].

Le coût Cp(
 ) de l'appariement 
 est donné par

Cp(
 ) :=
X

x2 a[ @


kx � 
 (x)kp; (1.10)

où k � k représente une norme quelconque surR2. Un appariement de coût minimal est
dit optimal, et on pose

dp(a; b) := inf f Cp(
 )1=p : 
 2 �( a; b)g; (1.11)

où �( a; b) est l'ensemble des appariements entrea et b (voir la �gure 1.7). On peut
par ailleurs noter que dans un appariement optimal, tout point envoyé sur la diagonale
@
 est en fait envoyé sur son projeté orthogonal sur la diagonale. Intuitivement, on
est en train d'apparier les di�érents cycles correspondant à chaque point des deux
diagrammes, tandis qu'apparier un point à la diagonale, revient à l'apparier à un
cycle �n'ayant par persisté�, de la forme[b; d) avec b = d. D'intérêt tout particulier
en TDA est la distance bottleneck d1 , obtenue comme limite des distancesdp pour
p ! 1 . De manière équivalente, on peut dé�nir le coûtC1 (
 ) d'un appariement 

par supfk x � 
 (x)k : x 2 a [ @
 g et dé�nir

d1 (a; b) := inf f C1 (
 ) : 
 2 �( a; b)g: (1.12)

Les diagrammes de persistance encodent une information topologique riche sur les
données qu'ils résument, et souvent complémentaires d'autres méthodes plus classiques.
N'étant pas naturellement des éléments d'un espace vectoriel, il est cependant délicat
de les incorporer directement dans des algorithmes d'apprentissage automatique. Deux
approches ont été proposées dans la littérature. La première consiste en l'utilisation
de feature maps (ou représentations) sur l'espace des diagrammes, qui permettent
de transformer les diagrammes de persistance en vecteurs, qui peuvent alors être
facilement inclus dans des algorithmes standard d'apprentissage automatique. La
seconde est de travailler malgré tout directement dans l'espace des diagrammesD,
par exemple en utilisant des méthodes nécessitant uniquement des distances en entrée
(comme lemultidimensional scaling précédemment mentionné). Nous étudierons ici
ces deux approches.
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2.1 L'espace des diagrammes de persistance étudié à travers le trans-
port optimal partiel

Pour ce qui est de la deuxième approche, il est capital de tout d'abord comprendre
de manière �ne la structure de l'espace des diagrammes de persistance, vu en tant
qu'espace métrique. Cette étude a été initiée par Mileyko, Mukherjee et Harer [MMH11],
qui montrent des propriétés de l'espace métrique

Dp := f a 2 D : dp(a; 0) < 1g ; muni de la distancedp, (1.13)

où 0 est le diagramme vide, de sorte quedp(a; 0)p =
P

u2 a(u2 � u1)p, quantité appelée
la p-persistance totaledu diagramme a, et notée Persp(a). Notons que nous nous
autorisons ici à avoir des diagrammes possédant un nombre in�ni de points, de sorte
qu'il est possible d'avoir dp(a; 0) = 1 .

Nous proposons dans le chapitre 6 de participer à l'étude de la structure de l'espace
des diagrammes de persistance en adoptant un point de vue di�érent de celui de
[MMH11]. Nous avons déjà mentionné qu'un diagramme de persistance peut de
manière équivalente être dé�ni soit comme une liste de points dans
 , soit comme
une mesure ponctuelle

P
i 2 I � u i . Bien que l'approche �liste� semble être favorisée

dans la littérature, le point de vue mesure s'avère plus riche. D'une part, ce point de
vue permet de dé�nir sans e�ort la somme, ou la moyenne de plusieurs diagrammes,
qui sera alors une mesure quelconque (et non plus une mesure ponctuelle). D'autre
part, cela permet d'appliquer la théorie du transport optimal aux diagrammes de
persistance. En e�et, la théorie du transport optimal, et plus précisément les distances
de Wasserstein déjà mentionnées précédemment, permettent de comparer des mesures.
Les distancesdp et Wp partagent des points communs : elles sont toutes deux dé�nies
comme étant le coût minimal de transport (ou d'appariement) entre deux mesures. De
par ces similitudes, les distancesdp sont couramment appelées distances de Wasserstein
dans la littérature en TDA. Cette appellation est cependant trompeuse, puisqu'il existe
une di�érence fondamentale entre les distancesdp et Wp : les distancesWp ne sont
dé�nies que pour des mesures de probabilité (ou ayant la même masse), tandis que
les distancesdp ne sont dé�nies que pour des mesures ponctuelles, mais de masses
potentiellement di�érentes.

Nous établissons dans le chapitre 6 un lien précis entre la structure métrique de
l'espace des diagrammes de persistance et le transport optimal, en faisant le lien
entre les distancesdp et des distances de transport optimal partiel introduites par
Figalli et Gigli [FG10]. Établir ce lien permet d'une part d'obtenir certaines propriétés
métriques de l'espaceDp (telle sa complétude, ou l'existence de barycentres), mais
aussi d'étendre l'espaceDp à un espace plus grandM p, que nous appelons l'espace des
mesures persistantes, et que nous munissons de la distance de Figalli-GigliFGp étendant
la distance dp. L'espace des mesures persistantes a l'avantage d'être �linéairement�
convexe, ce qui nous permet de dé�nir des moyennes de diagrammes, le diagramme de
persistance moyenE(P) d'une loi P sur l'espace des diagrammes de persistance étant
au centre du chapitre 8. De plus, exhiber ce lien justi�e l'adaptation d'algorithmes
utilisés en transport optimal pour les diagrammes de persistances, une approche qui
peut se révéler fructueuse [LCO18]. Le chapitre 6 est tiré de l'article [DL20], écrit en
collaboration avec Théo Lacombe.

2.2 Représentations linéaires sur l'espace des diagrammes et le choix
de la fonction de poids

La première approche que nous avions évoquée pour e�ectuer des procédures statistiques
à l'aide de diagrammes de persistance consiste à utiliser une application	 : D ! B ,
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Figure 1.8: Le diagramme de persistancean de n = 700 points
aléatoires sur le tore (pour l'homologie de dimension1). Les deux
points de haute persistance dans le diagramme donne des informations
sur la géométrie du tore (ses deux trous), tandis que les points proches

de la diagonale@
 représentent du bruit topologique.

où D est l'espace des diagrammes de persistance etB est un espace de Banach.
Une telle application, appeléefeature map ou représentation, permet de transformer
un échantillon de diagrammes de persistance en échantillon de vecteurs, qui peut
ensuite s'incorporer facilement dans un algorithme d'apprentissage automatique. De
nombreuses représentations ont été proposées dans la littérature. On peut en identi�er
une grande classe, que nous appelons représentationslinéaires, et qui inclut par exemple
la surface persistante [Ada+17] (et ses variantes [Che+15; KHF16; Rei+15]), la fonction
d'accumulation persistante [BM19] ou la silhouette persistante [Cha+15a].

De�nition 2.1 (Représentation linéaire). Soit f : 
 ! B une application, où B est
un espace de Banach. L'application	 f : D ! B dé�nie par 	 f (a) :=

P
u2 a f (u) est

appelée lareprésentation linéaireassociée àf .

Un premier critère pour évaluer la pertinence d'une représentation	 est sa stabilité :
est-ce que	 est Lipschitz (ou Hölder) pour une certaine distancedp ? Nous donnons
dans le chapitre 8 des critères sur la fonctionf qui permettent d'établir la continuité
de la fonction 	 f , puis son caractère Lipschitz (ou Hölder) pour les distancesdp.
Il apparaît alors, que pour obtenir des représentations stables, il est primordial de
pondérer la fonction f par une fonction de poidsw qui s'écrase su�samment proche
de la diagonale. Nous donnons des conditions su�santes sur la fonctionw permettant
d'assurer la stabilité de toute représentation de la forme	 wf avec f Lipschiz bornée.
En particulier, une fonction de poids de la formew : u 7! (u2 � u1)p permet la création
de représentations Hölder sur l'ensemble des diagrammes construits sur une variété de
dimension d < p.

Nous nous proposons ensuite d'éclairer le choix de la fonction de poidsw en prenant
un point de vue asymptotique. Nous avons mentionné précédemment que les points
de haute persistance dans un diagramme de persistance ont �plus d'importance� et
représentent des caractéristiques topologiques importantes de l'objet sous-jacent. Dans
le cas où un ensemble den points Xn est échantillonné sur une variétéM , on observe
ainsi dans le diagramme de persistancean de Xn (par exemple de ƒech) deux types de
points : des points de haute persistance correspondant au diagramme de persistance
de la variété, et un grand nombre de points de basse persistance mesurant le �bruit
topologique� de l'échantillonnage, voir par exemple la �gure 1.8 pour un exemple
sur le tore. Nous nous intéressons alors à la structure du bruit topologique dans
un cadre simpli�é, où des points sont tirés aléatoirement dans le cube[0; 1]d. Nous
montrons que la taille du bruit topologique an , mesurée par sa persistance totale
Persp(an ) :=

P
u2 an

(u2 � u1)p, est d'ordre c � n1� p=d, avec une constantec dépendant
de la densité d'échantillonnage. Ceci suggère que si les points de haute persistance
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dans le diagramme d'un nuage de points donnent des informations sur la structure
macroscopique de l'ensemble, le bruit topologique fournit d'autres types d'information,
telle la dimension intrinsèque de l'échantillonnage. Ces remarques ont par la suite été
utilisées par Adamset al. [Ada+20] pour dé�nir une notion de dimension persistante
d'un ensemble. De manière plus générale, nous montrons que le diagramme normalisé
n� 1=dan (qui est une mesure persistante) converge pour les métriquesFGp vers une
certaine mesure persistante limite dépendant de la densité d'échantillonnage. D'autre
part, ceci implique que les représentations de la forme	 wf (an ) convergent pourw
de la forme u 7! (u2 � u1)p et p > d. Nous retrouvons dans les deux cas la même
heuristique : une fonction de poids de la formeu 7! (u2 � u1)p est légitime pour p > d
si les diagrammes sont construits sur un objet de dimensiond.

Le contenu du chapitre 7 est basé sur une collaboration avec Wolfgang Polonik
[DP19].

2.3 Le diagramme de persistence moyen

Dans un cadre statistique, nous serons souvent en présence d'un échantillon den
diagrammes de persistancea1; : : : ; an , provenant par exemple d'une collection de
graphes [Car+20], de séries temporelles [SDB16], ou de formes 3D [COO15b]. On
peut alors considérer leur représentation associée	( a1); : : : ; 	( an ). Si l'on souhaite
obtenir des résultats statistiques sur l'échantillon	( a1); : : : ; 	( an ), il est sans doute
pertinent de commencer par s'intéresser à des quantités simples, telles leur moyenne
1
n (	( a1) + � � � + 	( an )) . Si la loi des grands nombres implique directement que cette
moyenne converge versEa� P [	( a)], où P est la loi générant lesai , rien ne nous dit à
quoi ressemble cette espérance, et quelles sont ses propriétés. Nous nous proposons de
répondre à cette question dans le cas des représentations linéaires	 f . Dans ce cas là,
si on note

an :=
1
n

(a1 + � � � + an ) (1.14)

la moyenne empirique desai , qui est une mesure persistante, nous avons

1
n

(	 f (a1) + � � � + 	 f (an )) = 	 f (an ): (1.15)

Cette quantité converge vers	 f (E (P)) =
R

f (u)dE(P)(u), où E(P) = Ea� P [a] est le
diagramme moyen deP, dé�ni précisément dans le chapitre 8 et initialement dé�ni dans
une publication écrite en collaboration avec Frédéric Chazal [DC19]. Le diagramme
moyen est une mesure sur
 , qui donne l'intensité moyenne de points d'un diagramme
aléatoire a � P dans une région donnée. Nous montrons dans le chapitre 8 des
propriétés variées des diagrammes moyens : leur stabilité par rapport à la loiP, des
vitesses d'estimation du diagramme moyen empiriquean vers E(P) (pour les distances
de Figalli-Gigli FGp), ou encore l'existence d'une densité� P pour E(P) dans un
cadre très général. Ce dernier résultat décrit en particulier de manière précise ce vers
quoi converge1

n (	 f (a1) + � � � + 	 f (an )) : la limite est égale à
R

f (u)� P (u)du, et la
connaissance de� P (qui est possible à travers des procédures d'estimation) permet une
connaissance précise de cette limite. Un des inconvénients du diagramme de persistance
empirique an est qu'il contient potentiellement un très grand nombre de points, ce
qui peut limiter son utilisation en pratique. Nous étudions ainsi le problème de la
quantization d'une telle mesure, c'est-à-dire de celui de trouver une mesure de petit
support qui va approcheran . Le chapitre 8 compile des résultats sur le diagramme
de persistance moyen obtenus en collaboration avec Théo Lacombe [DL20; DL21] et
Frédéric Chazal [DC19].
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Chapter 2

Introduction (English)

This thesis �ts within the framework of Topological Data Analysis (or TDA), which
is here tackled from two di�erent perspectives, namely geometric inference, and
persistent homology theory. These two approaches both aim at extracting, in di�erent
contexts, relevant information of a geometric and topological nature on complex
datasets exhibiting nonlinear structures.

1 Challenges in geometric inference

The classical statistical theory developed in the 30s by Fischer relies on the following
hypothesis: we observe a low-dimensional dataset, for which we possess a simple
generative model (gaussian, exponential, etc.). The goal is then to �nd estimators of
parameters characterizing the law of the dataset, for which we are able to give strong
optimality guarantees. In contrast, modern datasets are typically high-dimensional
point clouds. If classical methods can still be applied to such datasets, their performance
(both in theory and in practice) becomes poor. This phenomenon, called thecurse of
dimensionality, shows the need of a paradigm shift. First, in a modelization step, sets
of hypotheses tailored to a large class of high-dimensional datasets must be designed.
Second, it is necessary to develop statistical methods adapted to those new sets of
hypotheses.

For instance, some methods, such as the LASSO [Tib96], are e�ective under a
sparsity assumption on the dataset. Some regression methods, such as ridge regression
[HK70], penalize the complexity of the proposed regression function to adapt to
the high-dimensional setting. Let us also mention the PCA method (for Principal
Component Analysis [Pea01; Hot33]), which aims at �nding the subspace �tting the
best the dataset with respect to theL 2-norm. All the methods we have mentioned rely
on the existence of a low-dimensional linear structure being relevant to explain the
dataset. In particular, they require to have a high level of trust in the parametrization
of the dataset, while any reparametrization can break this linear structure (see Figure
2.1). The key idea of geometric inference consists in relaxing this hypothesis by
supposing that the dataset in high dimension lies around a low-dimensional shape,a
priori non-linear. Mathematically, we suppose thatthe observed dataset is close to a
manifold M of dimension d small in an ambient space of dimensionD , possibly large.

From a statistical point of view, this type of hypotheses was �rst studied in the
case where one has access to the manifoldM [Hen90; Pel05]. This is for instance the
case for geolocalization problems [IPT19], where datasets are located on the sphere
S2, or for studying images of faces under di�erent lightings, the dataset then lying
on a GrassmannianG(k; d) [Cha+07]. Having access to the manifold is however
most of the time too demanding. During the 2000s, another family of techniques
was developed, that may be aggregated under the name of non-linear dimensionality
reduction methods [RS00; ZZ03; WSS04] (let us also mention earlier attempts like
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Figure 2.1: The linear structure of the blue dataset disappears
when the vertical axis is reparametrized by a non-linear function (here
sinusoidal). The orange dataset is however still close to a manifold.

self-organizing maps [Koh89] or adaptive principal surfaces [LT94]). Those methods,
which do not require the knowledge of the manifoldM , aim at embedding in the most
faithful way possible a point cloud close to a �non-linear� shape in the Euclidean space
Rd for some smalld. For instance, the ISOMAP method [TDSL00], relies on the
embedding inRd, thanks to a multidimensional scaling (or MDS), of a neighborhood
graph built on top of the observations. It allows the �unfolding� of datasets lying
on objects which are di�eomorphic to an open convex set (see Figure 2.2). We may
then apply standard classi�cation or regression techniques to the �unfolded� dataset.
However, those techniques possess theoretical guarantees only in a restricted setting:
the dataset must be close to a shape at least di�eomorph toRd, while it is for instance
impossible to embed continuously a sphere inR2.

Around the same time, the �eld of computational geometry has witnessed the
development of algorithms allowing the reconstruction of a manifoldM � RD based
on a �nite sample X , with the emphasis being put on the reconstruction of curves and
surfaces [BTG95; AB99]. For example, the COCONE algorithm [Ame+00] reconstructs
a smooth surfaceM thanks to a �nite approximation, under the condition that the
approximation rate "(X ) := supf d(x; X ) : x 2 M g of the sampleX is small enough,
while the Tangential Delaunay Complex [BG14] allows such a reconstruction in higher
dimension. The reconstruction of topological or geometric invariants ofM , like its
medial axis [ABE09] or its homology and homotopy groups [CO08] has also been
addressed. Once again, those results only require a �nite sampleX of the manifold M
having a good approximation rate. Another point of view consists in assuming thatX
is the realization of a random process ofn independent observations from some law
� concentrated aroundM . One can then hope that methods of interest have a good
performance with high probability, on �typical� samples. This statistical approach on
computational geometry problems was �rst proposed in a seminal paper by Niyogi,
Smale and Weinberger [NSW08], where the authors show that the homology of a
manifold M is recovered with high probability by the ƒech complex (a combinatorial
object de�ned in Chapter 3) of the n-sampleXn . In the 2010s, the estimation of other
descriptors ofM was proposed: its dimension [HA05; LJM09; KRW19], its tangent
spaces [AL19; CC16], its reach [Aam+19; Ber+21], its curvature [AL19], its geodesic
distances [ACC20], or the manifoldM itself [Gen+12a; Gen+12b; MMS16; AL18;
AL19].

This statistical point of view on computational geometry allows us to de�ne
in a simple manner what it means for a procedure to be optimal. This is made
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Figure 2.2: Left: a set X of 3000 points sampled on a swiss roll.
Right: output of the ISOMAP algorithm with input X (implemented

with scikit-learn [Bui+13]).

possible thanks to the minimax statistical theory. Consider for instance the problem
of estimating a manifold M thanks to a random n-sampleXn . An estimator M̂ of M
is by de�nition any compact subset of RD , being a measurable function of the sample.
The quality of the estimator M̂ with respect to the law � , called its � -risk, is given by
the average Hausdor� distancedH between the estimator andM :

Rn (M̂ ; �; d H ) := E[dH (M̂ ; M )]; (2.1)

whereM̂ = M̂ (Xn ) and Xn is a n-sample of law� . In reality, the law � generating the
dataset is unknown, and it is more interesting to control the� -risk over a setQ of laws
� , that we call a statistical model. In geometric inference, several statistical models
were introduced, which take into account di�erent noise models and regularities of the
manifold M . The uniform risk of the estimator M̂ on the classQ is given by

Rn (M̂ ; Q; dH ) := supf Rn (M̂ ; �; d H ) : � 2 Qg; (2.2)

while we say that an estimator isminimax if it attains (up to a multiplicative constant
as n goes to1 ) the minimax risk

R n (M; Q; dH ) := inf f Rn (M̂ ; Q; dH ) : M̂ is an estimatorg: (2.3)

Let us mention for instance the family of modelsQ2;d
� min ;f min ;f max

introduced by Genovese
et al. in [Gen+12a], consisting of the laws� supported on ad-dimensional manifold
M satisfying some additional properties. First, we assume that� has a density f
on M , lower bounded by some constantf min > 0 and upper bounded by another
constant f max . This ensures that all the parts of the manifoldM are approximately
evenly sampled: we then say that the law is �almost-uniform� onM . The parameter
� min gives a lower bound on the reach� (M ) of the manifold. The reach is a central
notion in geometric inference, de�ned as the largest radiusr such that, if some point
x is at distance less thanr to M , then there exists a unique projectiony of x on
M . More geometrically, having a reach larger thanr implies that it is possible to
make a ball �roll� along the manifold M without �bumping� into another part of M
[PL08, Lemma A.0.6]. Therefore, the reach� (M ) controls two di�erent quantities: the
curvature radius of M (that is a local regularity), and a global regularity parameter,
indicating the presence of a bottleneck structure in the manifold (see Figure 2.3). On
the statistical model Q2;d

� min ;f min ;f max
, the minimax rate of convergence satis�es

c0

�
ln n
n

� 2=d

� R n (M; Q2;d
� min ;f min ;f max

; dH ) � c1

�
ln n
n

� 2=d

(2.4)
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Figure 2.3: If the reach of the curve M is too large, then the curve
cannot be too pinched (left) and cannot present a tight bottleneck

structure (right).

for two positive constants c0; c1 depending on� min , f min , f max and d. The lower bound
in this inequality was shown by Kim and Zhou [KZ15], while the upper bound is
obtained by exhibiting an estimator having a uniform risk of order (ln n=n)2=d. Such an
estimator (although not computable in practice) was �rst proposed by Genoveseet al.
in [Gen+12a], while another estimator attaining this same minimax rate (computable
in practice), and based on the Tangential Delaunay Complex, was proposed by Aamari
and Levrard [AL18].

1.1 The adaptivity problem

The Tangential Delaunay Complex depends on several parameters, like for instance a
radius quantifying the size of the neighborhoods used to compute local PCAs. For the
Tangential Delaunay Complex to be minimax, those parameters have to be calibrated in
a precise manner with respect to the quantities� min , f min and f max de�ning the model.
However, those quantities area priori unknown. The question of the practical choice
of the parameters de�ning the estimator is then raised. This question of the tuning
of parameters de�ning an estimator is not restricted to the framework of manifold
estimation, but is a classical problem in statistics.

Let us cite for instance the question of the choice of the bandwidth for kernel
density estimation. Let X 1; : : : ; X n be an-sample of some law� having a density f on
R, and suppose that we want to recover the valuef (x0) of the density at some �xed
point x0 2 R. A standard method to achieve this goal is to consider the convolution of
the empirical measure� n = 1

n

P n
i =1 � X i by some kernelK h , where K h = h� 1K (�=h)

and K satis�es
R

K = 1 . We then obtain a function f̂ h = K h � � n . Assume that
the density f is of regularity s, that is f 2 Cs(R), the set of bsc-times di�erentiable
functions, whosebscth derivative is (s � b sc)-Hölder continuous. Then, for a good
choice of kernelK , it is optimal to choose the bandwidth hopt of order c � n� 1=(2s+1) ,
where c depends of theCs-norm of f [Tsy08, Chapter 1]. The associated risk is then
of order n� s=(2s+1) , which is the minimax rate of estimation on the class of densities
of regularity s. In practice, it is impossible to know exactly the value ofs, so that
we must �nd another strategy to choose the bandwidthh. Adaptive methods consist
in choosing a bandwidthĥ in a data-dependent way, such that the estimatorf̂ ĥ has
a � -risk almost as good as the optimal estimatorf̂ hopt under weak hypotheses on
� . One of such method, the PCO method (for Penalized Comparison to Over�tting)
introduced by Lacour, Massart and Rivoirard [LMR17] consists in comparing each
estimator f̂ h to some degenerate estimator̂f hmin for some very smallhmin . The selected
bandwidth ĥ is chosen among a familyH of bandwidths (all larger than hmin ), by
minimizing a criterion depending on the distancekf̂ h � f̂ hmin kL 2 (R) , while penalizing
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small values ofh. Lacour, Massart and Rivoirard then show anoracle inequality for
their estimator, that is an inequality of the form

Ekf̂ ĥ � f k2
L 2 (R) � C minf Ekf̂ h � f k2

L 2 (R) : h 2 Hg + C(n; jHj ); (2.5)

where C(n; jHj ) is a reminder term negligible in front of the optimal risk. Thus, we
obtain that f̂ ĥ has a risk almost as good as the best estimator̂f hopt , while we never
had to estimate the parameters de�ning the statistical model (that is the regularity s
of the density and the Cs-norm of f ).

In Chapter 4, we draw inspiration from the PCO method to create an adaptive
manifold estimator. A �rst step consists in creating a family of estimators (M̂ t )t � 0,
similar to kernel density estimators for manifold estimation. This is made possible with
t-convex hulls. For t � 0, the t-convex hull Conv(t; A ) of a setA is an interpolation
between the setA (t = 0 ) and its convex hull Conv(A) (t = 1 ). It is de�ned by

Conv(t; A ) :=
[

� � A
r (� )� t

Conv(� ); (2.6)

where r (� ) is the radius of the set � , that is the radius of the smallest enclosing
ball of � . We �rst show that for t = c � (ln n=n)1=d, where c depends ond and on
the parameters � min , f min and f max , the t-convex hull Conv(t; Xn ) of a n-sample is
a manifold estimator which is minimax on the statistical model Q2;d

� min ;f min ;f max
. We

then consider the problem of selecting the parametert. An analog of the degenerate
estimator f̂ hmin is given by the choicet = 0 , with Conv(0; Xn ) = Xn . The PCO method
therefore suggests comparing the estimatorsConv(t; Xn ) with Xn , that is to study
the function t 7! h(t; Xn ) := dH (Conv(t; Xn ); Xn ). This function was actually already
introduced under the name of �convexity defect function of the setXn � in a paper by
Attali, Lieutier and Salinas [ALS13], where it was used to study the homotopy type of
Rips complexes. We show that the convexity defect function ofXn exhibits di�erent
behaviors in two di�erent regimes: before a certain threshold valuet � (Xn ), it has a
globally linear behavior, whereas after this threshold value, it has a (sub)quadratic
behavior. The convexity defect function is computable based on the dataset, so that
we may in practice observe those two regimes. We are then able to show that values of
t just above the threshold valuet � (Xn ) provide a minimax risk of order (ln n=n)2=d.
More precisely, we �x two hyperparameters0 < � < 1 and tmax , and let

t̂ � := supf t < t max : h(t; Xn ) > �t g: (2.7)

Our main result states that if tmax is small enough with respect to � min , then
Conv(t̂ � ; Xn ) is a minimax adaptive manifold estimator (see Figure 2.4). Note that we
do not obtain the adaptive property of the estimator by providing an oracle inequality
of the type (2.5), but by showing that t̂ � is larger than the threshold value t � (Xn )
(while being of the right order of magnitude) with high probability, this property
being enough to ensure the minimax behavior of the corresponding estimator. We
also are able to show that the parameter̂t � is actually close to the approximation rate
" (Xn ). As mentioned earlier, some algorithms in computational geometry require the
knowledge of the approximation rate (or rather of bounds on the approximation rate),
and may therefore be used with plugging in the parameter̂t � .

1.2 Reconstructing the measure rather than the manifold

The second contribution proposed here is motivated by the density estimation problem.
In geometric inference, the issue of reconstructing the densityf of the measure�
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Figure 2.4: Left. Sample Xn . Center. Convexity defect function of
Xn and selected scalêt � . Right. The set Conv(t̂ � ; Xn ).

generating the observationsXn was �rst addressed in the case where one has access to
the manifold M . Hendriks [Hen90] proposes to use the eigenfunctions of the Laplace-
Beltrami operator on the manifold to estimate the density, whereas Pelletier [Pel05]
introduces a kernel density estimator using the geodesic distance on the manifold. In
the setting of manifold inference, where the manifoldM is supposed to be unknown,
papers addressing density estimation are more recent. Letx0 be a point that we
assume belongs toM . The estimation of f (x0), the density of f at x0, was �rst
tackled in [BS17; WW20], where estimation rates of kernel density estimators are given,
respectively in the case where the manifold has a boundary and in the case where the
density is supposed to be Hölder continuous. Berenfeld and Ho�mann [BH19] exhibit
minimax rates of convergence for this problem, and show that two regularities come
into play in the optimal rate: on one hand the regularity s of the density f , and on
the other hand the regularity k of the manifold M . Moreover, authors show that the
Goldenshluger-Lepski method [GL13] can be applied in this setting to select a kernel
bandwidth, producing a minimax adaptive estimator of f (x0).

To go beyond the pointwise estimation off (or equivalently of the associated
measure� ), the choice of the loss function is a delicate issue. Indeed, standard choices
in density estimation include the L p distance, the Hellinger distance, or the Kullback-
Leibler divergence. All those loss functions become degenerate for the comparison of
two mutually singular measures. If the supportM of the measure� is unknown, it
will be impossible to build, thanks to a �nite sample, a measure which is non-singular
with respect to the volume measurevolM on M , even though we may be able to
build measures whose supports are very close toM for the Haussdorf distance. On
the contrary, Wasserstein distancesWp (1 � p � 1 ) are by design robust to metric
perturbations of the support of a measure, and are therefore particularly adapted to
our problem. They are de�ned in the following way. Given two probability measures�
and � , we de�ne a transport plan � between� and � as a measure onRD � RD having
�rst marginal � and second marginal� . Informally, at the point x 2 RD , a fraction
d� (x; y) of the massd� (x) located at x is sent to y. The cost of such a plan is given
by Cp(� ) =

RR
d(x; y)pd� (x; y), whereas the Wasserstein distanceWp is given by the

optimal cost of a transport plan:

Wp(�; � ) := inf f C1=p
p (� ) : � 2 �( �; � )g; (2.8)

where �( �; � ) is the set of transport plans between� and � .
Using Wasserstein distances, and more generally the theory of optimal transport,

has shown its e�ciency in a wide class of modern machine learning problems (see
e.g. [PC19]). In particular, Niles-Weed and Berthet have tackled the problem of
estimating the density f supported on the cube[0; 1]d using Wasserstein distances as
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Figure 2.5: Left: an interaction graph between Reddit users, from
the dataset REDDIT-5K, presented in [YV15]. Right: simulation of

turbulent �ows given by Navier-Stokes equation [Sch+06].

loss functions [WB19b]. Assume thatf belongs to the Besov spaceB s
p;q (see Chapter

5 for details). Then, they show that a modi�cation of a classical wavelet density
estimator attains the rate of convergencen� (s+1) =(2s+ d) for d � 3 with respect to the
Wasserstein distanceWp (whereas the rate of convergence for the pointwise estimation
of the density is of ordern� s=(2s+ d) ). Moreover, this rate is the minimax rate.

Our contribution, presented in Chapter 5, consists in extending this minimax result
by replacing the cube by any submanifoldM of regularity k for k � s + 1 . We show
that a measure having a density with respect tovolM given by a weighted kernel
density estimator, attains the same minimax rate ofn� (s+1) =(2s+ d) . In the case of
interest where the manifoldM is unknown, we cannot usevolM , such that the previous
estimator cannot be computed. We therefore propose in a �rst step to estimate the
volume measure, thanks to some estimatorcvolM , and show that ÛM := cvolM =j cvolM j is
a minimax estimator of the uniform measure onM . The reconstruction of the volume
measure is based on the estimation of localCk parametrizations of the manifold M
introduced by Aamari and Levrard [AL19].

2 A multiscale perspective: persistent homology theory

Works we have mentioned so far all rely on the strong hypothesis of the existence of a
low-dimensional manifold interpolating the dataset. It is however reasonable to ask
questions of a topological nature in a much more general framework. For instance,
one can imagine that relevant information is present in the �ne topological structure
of a spatial process, information which can be used for a classi�cation task [Bro+20].
In certain problems, the observed dataset is not a point cloud, whereas a notion of
topology is still relevant. This is for instance the case if a family of graphs is observed,
where topology is then described by the presence of cycles or connected components
[AMA07; Hof+17; ZW19; Car+20], see also Figure 2.5. Persistent homology theory
in TDA aims at quantifying in a precise sense what is the underlying topology of a
dataset in a very general way. To do so, we adopt a multiscale approach.

Consider �rst a simple example. Let Xn be a �nite set of n points in RD . From a
topological perspective, the setXn is trivial: it consists of n connected components,
each of them being reduced to a point. A possibility to obtain a topologically more
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Figure 2.6: The one-dimensional persistence diagram associated with
the �ltration (X t

n )t � 0.

complex set is to choose a scalet and to consider thet-neihborhood ofXn :

X t
n :=

[

x2X n

B(x; t ): (2.9)

As explained previously, choosing a �right� scalet is then a delicate issue, although
we proposed in Chapter 4 an algorithm to select such a scale in the case where the
sampleXn is close enough to a manifoldM . Persistent homology theory proposes to
avoid the choice of the parametert by tracking the evolution of the homology groups
of X t

n as t grows from 0 to + 1 . If for instance one is interested in1-dimensional
homology (that is the presence of �loops� in a shape), one can observe that loops will
appear at certain times in the process, before being �lled when the radiust of the balls
becomes larger. Whent becomes very large, the set becomes homotopy equivalent to
a ball, and does not possess any non-trivial cycle. This process can be summarized
by a set of intervals, each interval[b; d) representing a loop appearing at scaleb, and
disappearing at scaled. An equivalent point of view is to consider the collection of
points (b; d) 2 R2, that we call the persistence diagramassociated with the process,
see Figure 2.6). Note that we always haved > b, so that a persistence diagram is
a list of points in 
 := f u = ( u1; u2) 2 R2 : u2 > u 1g, or equivalently a measure
of the form

P
i 2 I � u i on 
 . The longer a loop was present in the process(X t

n )t � 0,
the more important it is. We call persistence of the loop the lifetimed � b of the
associated interval. Therefore, in a persistence diagram, points far away from the
diagonal @
 := f (t; t ) : t 2 Rg correspond to important topological features of the
underlying process. More generally, persistent homology theory can be applied to any
�ltration of topological spaces, that is any increasing sequence of topological spaces
(X t )t2 R. This includes in particular the sublevel sets of a functionf : X ! R, whereX
can be a graph, an image, or any metric space. When the functionf is the distance to
a set Xn � X , we recover the process mentioned before, while the persistence diagram
is called the ƒech persistence diagram of the setXn . Moreover, di�erent homology
dimensions may be considered: connected components (dimension 0), loops (dimension
1), cavities (dimension 2), etc.
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Persistent homology theory and the notion of persistence diagram were progressively
introduced in the early 2000s [Rob99; ELZ00; Car+04], while the concept of persistence
was also introduced independently by Barannikov in the �eld of Morse theory [Bar94].
One of the �rst major results in TDA consisted in showing that persistence diagrams
are in a strong sense stable with respect to the object on top of which they are built
[CSEH07]. This property, commonly called the stability theorem, relies on a powerful
algebraic stability result which is precisely stated in Chapter 3. This stability theorem
is based on a notion of distance between diagrams, called the bottleneck distanced1 .
Subsequently, distancesdp for 1 � p � 1 were introduced. These generalizations of
the bottleneck distance are known to satisfy weaker stability results (stemming from
the bottleneck stability result) [CS+10]. Let a and b be two persistence diagrams,
with a being given by the list of points x1; : : : ; xn 2 
 and b by the list y1; : : : ; ym 2 
 .
A matching 
 betweena and b is given by a bijection betweena [ @
 and b [ @
 .
Precisely, each pointx i is sent by 
 either towards someyj , or to some point of the
diagonal, while the yj s that are not the image of somex i are the image by
 of some
point of the diagonal. The costCp(
 ) of the matching 
 is given by

Cp(
 ) :=
X

x2 a[ @


kx � 
 (x)kp; (2.10)

where k � k represents any norm onR2. A matching with minimal cost is said to be
optimal, while we let

dp(a; b) := inf f Cp(
 )1=p : 
 2 �( a; b)g; (2.11)

with �( a; b) being the set of matchings betweena and b (see Figure 2.7). We may
moreover remark that in an optimal matching, every point sent towards the diagonal
is actually sent towards its orthogonal projection on the diagonal. Intuitively, we are
matching the di�erent cycles corresponding to each point of the two diagrams, whereas
matching a point to the diagonal corresponds to matching a cycle to a �non-persistent�
cycle, with an interval of the form [b; d) with b = d. Of particular interest in TDA
is the bottleneck distanced1 , obtained as the limit of the dp distances forp ! 1 .
Equivalently, the cost C1 (
 ) of a matching 
 is given by supfk x � 
 (x)k : x 2 a[ @
 g
whereas the bottleneck distance is given by

d1 (a; b) := inf f C1 (
 ) : 
 2 �( a; b)g: (2.12)

Persistence diagrams encode rich topological information of the dataset they
summarize, and often complementary to more classical methods. However, they do
not naturally belong to a vector space, so that it is unclear how to use them directly
in standard machine learning algorithms. Two approaches have been proposed in the
literature. The �rst one consists in using feature maps (also called representations)
on the space of persistence diagrams, which allow the transformation of persistence
diagrams into vectors, which can then be easily plugged in standard machine learning
pipelines. The second one is to work directly in the space of diagramsD, by example
by using methods requiring only distances in entry (like the multidimensional scaling
previously mentioned). We will study those two approaches.

2.1 The space of persistence diagrams studied through partial opti-
mal transport

Concerning the second approach, it is �rst necessary to understand precisely the
structure of the space of persistence diagrams, seen as a metric space. This study
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Figure 2.7: Left: two persistence diagrams. Center: a matching

between the two diagrams. The costCp(
 ) is given by the sum of the
lengths to the power p of the edges appearing in the matching, while
the bottleneck cost C1 (
 ) is given by the length of the longest edge.

Right: an optimal matching for every 1 � p � 1 .

was initiated by Mileyko, Mukherjee and Harer [MMH11], who show properties of the
metric space

Dp := f a 2 D : dp(a; 0) < 1g ; endowed with the distancedp, (2.13)

where 0 is the empty diagram, so that dp(a; 0)p =
P

u2 a(u2 � u1)p, a quantity called
the p-total persistenceof the diagram a, and denoted byPersp(a). Note that we allow
here diagrams with in�nitely many points, so that it is possible to have dp(a; 0) = 1 .

We propose in Chapter 6 to participate in the study of the structure of the space of
persistence diagrams by adopting a di�erent point of view than in [MMH11]. We have
already mentioned that a persistence diagram can be seen either as a list of points in
 ,
or as a point measure on

P
i 2 I � u i . Although the �list� approach appears to be favored

in the literature, the measure point of view turns out to be more fruitful. On the one
hand, this point of view allows us to de�ne in an e�ortless manner the sum, or the
average of several diagrams, which would then be a general measure (and not a point
measure). On the other hand, this allows us to apply the theory of optimal transport
to study persistence diagrams. Indeed, the Wasserstein distancesWp used in optimal
transport, that we have already mentionned, allow for the comparison of measures,
while the distancesdp and Wp share common aspects: they are both de�ned as some
minimal transport/matching cost between two measures. Because of this similarity,
distancesdp are commonly called Wasserstein distances in TDA literature. This name
is however misleading, as there is a fundamental di�erence between thedp and Wp

distances: theWp distances are only de�ned for probability measures (or measures
having the same mass), whiledp distances are de�ned for measures having possibly
di�erent masses, but that have to be point measures.

We establish in Chapter 6 a precise link between the metric structure of the space
of persistence diagrams and optimal transport, by leveraging partial optimal transport
distances introduced by Figalli and Gigli [FG10]. By establishing this link, we are able
to obtain metric properties of the spaceDp (such as its completeness, or the existence
of barycenters), but also to extend the spaceDp to some larger spaceM p, that we call
the space ofpersistence measures, and that we endow with the Figalli-Gigli distance
FGp, extending the distancedp. The space of persistence measures bene�ts from
being �linearly� convex, so that averages of diagrams are easily de�ned, the expected
persistence diagramE(P) of a law P on the space of diagrams being at the core of
Chapter 8. Furthermore, exhibiting this link justi�es the adaptation of algorithms
used in optimal transport for persistence diagrams, an approach which can be fruitful
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Figure 2.8: The persistence diagraman of n = 700 random points
on the torus (for 1-dimensional homology). The two topmost points
in the diagram give information on the geometry of the torus (its two
holes), whereas points close to the diagonal represent topological noise.

[LCO18]. Chapter 6 is taken from the paper [DL20], written in collaboration with
Théo Lacombe.

2.2 Linear representations on the space of persistence diagrams and
the choice of the weight function

The �rst approach we have mentioned to perform statistical procedures using persistence
diagrams consists in using a map	 : D ! B , where D is the space of persistence
diagrams andB is a Banach space. Such an application, that is called afeature map
or a representation allows the transformation of a sample of persistence diagrams into
a sample of vectors, which can then be plugged easily in a machine learning algorithm.
Numerous representations were introduced in the literature. We may identify a large
subclass of representations, that we calllinear representations, and that includes for
instance the persistence surface [Ada+17] (and its variants [Che+15; KHF16; Rei+15]),
the accumulated persistence function [BM19] or the persistence silhouette [Cha+15a].

De�nition 2.1 (Linear representation). Let f : 
 ! B be any map, whereB is a
Banach space. The application	 f : D ! B de�ned by 	 f (a) :=

P
u2 a f (u) is called

the linear representation associated withf .

A �rst criterion to evaluate the relevance of a representation 	 is its stability: is
	 Lipschitz-continuous (or Hölder continuous) for a certain distancedp? We give in
Chapter 8 criteria on the function f which ensure the continuity of the function 	 f ,
then its Lipschitz (or Hölder) behavior with respect to the dp distances. It appears
that, to obtain stable representations, it is fundamental to weight the function f
by some weight function w which is su�ciently small close to the diagonal. We
give su�cient conditions on w to ensure that representations of the form	 wf for
f Lipschitz continuous and bounded are stable. In particular, a weight function of
the form u 7! (u2 � u1)p produces Hölder continuous linear representations on ƒech
persistence diagrams built on top ofd-dimensional manifolds, as long asp > d.

We then address the question of the choice of the weight functionw by taking an
asymptotic point of view. We have mentioned earlier that points of high persistence
in a persistence diagram are �more important� and represent important topological
features of the underlying object. In the case wheren points Xn are sampled on
a manifold M , we observe that the persistence diagraman of Xn (for the �ltration
(X t

n )t � 0) contains two types of points: points with high persistence corresponding
to the persistence diagram of the manifold, and a large number of points with low
persistence measuring the �topological noise� of the sample, see Figure 2.8 for an
example on the torus. We explore the behavior of the structure of the topological noise
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in a simpli�ed framework, where points are randomly sampled on the cube[0; 1]d. We
show that the size of the topological noise ofan , measured by its total persistence
Persp(an ) :=

P
u2 an

(u2 � u1)p, is of order c � n1� p=d, with a constant c depending
on the sampling density. This suggests that if points with high persistence in the
diagram of a point cloud informs us on the macroscopic structure of the shape, the
topological noise contains other types of information, such as the intrinsic dimension
of the sample. These remarks were then used by Adamset al. [Ada+20] to de�ne
a notion of persistent dimension of a set. More generally, we show that the rescaled
diagram n� 1=dan (which is a persistence measure) converges with respect to the metric
FGp towards some limit persistence measure depending on the sampling density. This
implies in particular that representations of the form 	 wf (an ) converge forw of the
form u 7! (u2 � u1)p for p > d. We �nd in the two cases the same heuristic: a weight
function of the form u 7! (u2 � u1)p for p > d should be chosen if the persistence
diagrams are built on top of ad-dimensional object.

Chapter 7 is based on a collaboration with Wolfgang Polonik [DP19].

2.3 The expected persistence diagram

In a statistical context, we are often in presence of an-sample of persistence diagrams
a1; : : : ; an arising from e.g. a collection of graphs [Car+20], of time series [SDB16],
or of 3D shapes [COO15b]. We may then consider their associated representations
	( a1); : : : ; 	( an ). To obtain statistical results on the sample	( a1); : : : ; 	( an ), it is best
to start by considering simple quantities such as their average1n (	( a1) + � � � + 	( an )) .
The law of large numbers implies that the average converges towardsEa� P [	( a)],
where P is the law generating the diagramsai . However, it is not clear a priori what
are the properties of this limit. We propose to describe this expectation for linear
representations	 f . In this case, if we denote by

an :=
1
n

(a1 + � � � + an ) (2.14)

the average of theai s, which is a persistence measure, we have

1
n

(	 f (a1) + � � � + 	 f (an )) = 	 f (an ): (2.15)

This quantity converges towards	 f (E (P)) =
R

f (u)dE(P)(u), whereE(P) = Ea� P [a]
is the expected persistence diagram ofP, de�ned precisely in Chapter 8 and �rst de�ned
in a publication written in collaboration with Frédéric Chazal [DC19]. The expected
persistence diagram is a measure on
 , which gives the average intensity of the number
of points of a random diagrama � P in a given zone. We establish in Chapter 8
various properties of expected persistence diagrams: their stability with respect to the
law P, rates of convergence of the empirical expected persistence diagraman towards
E(P) (with respect to Figalli-Gigli distances FGp), or the existence of a density� P

for E (P) in a very general framework. This last result implies in particular a precise
description of the limit of 1

n (	 f (a1) + � � � + 	 f (an )) : it is equal to
R

f (u)� P (u)du, and
the knowledge of� P (which is possible through estimation procedures) allows us to
have a precise knowledge of the limit. One of the drawbacks of the empirical expected
persistence diagraman is that it potentially contains a very large number of points,
which may hinder its use in practice. We therefore also study the problem of the
quantization of such a measure, that is the problem of �nding a measure with small
support which approximates it. Chapter 8 gathers results on the expected persistence
diagram obtained in collaboration with Théo Lacombe [DL20; DL21] and Frédéric
Chazal [DC19].
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Chapter 3

Background

3.1 Elements of measure theory

Let (X ; G) be a measurable space. We denote byP � (X ) the set of signed measures
on X , while P(X ) is the set of �nite measures on the space(X ; G). By the Jordan
decomposition theorem [Fol13, Proposition 3.4], every measure� 2 P � (X ) can be
decomposed into two positive mutually singular measures� + and � � , such that
� = � + � � � . For m > 0, we let Pm (X ) be the set of measures inP(X ) having mass
m, i.e. such that � (X ) = m.

We will focus on the case whereX is endowed with some metricd and G = B(X ) is
the associated Borel� -algebra. In that case, we letCb(X ) be the space of continuous
bounded functions onX , which is a Banach space when endowed with the1 -norm
k � k1 . Every � 2 P (X ) then induces a linear functional onCb(X ), de�ned by

f 2 Cb(X ) 7! � (f ): (3.1)

As j� (f )j � � (X )kf k1 , this linear functional is continuous, so that P(X ) can be
identi�ed with a subset of Cb(X ) � , the topological dual of Cb(X ). The weak topology
on P(X ) is the topology induced by the weak-* topology onCb(X ) � . Concretely, a
sequence(� n )n in P(X ) weakly converges towards� in P(X ) if for all f 2 Cb(X ) we
have � n (f ) ! � (f ). We then write � n

w�! � . A stronger topology on P(X ) is given by
the dual norm on Cb(X ) � , that we call the total variation norm : for �; � 2 P (X ),

j� � � j :=
1
2

supfj � (f ) � � (f )j : f 2 Cb(X ); kf k1 � 1g: (3.2)

When (X ; d) is locally compact and separable [AFP00, Proposition 1.47], this formula
coincides with more common de�nitions of the total variation:

j� � � j = supfj � (A) � � (A)j : A 2 B(X )g

=
1
2

Z �
�
�
�
d�
d�

�
d�
d�

�
�
�
� d�;

(3.3)

where � is any measure dominating� and � .
We now state elementary topological properties ofP(X ). We make the distinction

between a Polishmetric space, that is a complete separable metric space, and a Polish
space, the latter being atopological spaceX (not necessarily associated with a metric)
for which there exists a distanced metrizing the topology such that (X ; d) is a Polish
metric space. The following proposition appears for instance in [Var58].

Proposition 3.1.1. Let m > 0. We endowPm (X ) with the weak topology.

1. The spaceX is separable if and only ifPm (X ) is separable.

2. The spaceX is compact if and only if Pm (X ) is compact.
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3. The spaceX is a Polish space if and only ifPm (X ) is a Polish space.

Persistence diagrams, that are de�ned rigorously in Section 3.8, are not �nite
measures in general, but may have in�nite masses. The spaceP(X ) is therefore not
suited to study them, while the larger space of Radon measures provides a satisfactory
framework to handle such non-�nite measures. We assume for the remainder of the
section that (X ; d) is a locally compact Polish metric space.

De�nition 3.1.2 (Radon measures). A Radon measure� on X is a locally �nite
measure, that is such that for every pointx 2 X , there exists a neighborhoodU of x
with � (U) < 1 . We denote byM (X ) the set of Radon measures onX .

Remark 3.1.3. It is common in the literature to de�ne Radon measures by imposing
further regularity conditions on � (namely inner regularity on open sets and outer
regularity on Borel sets). When X is a locally compact Polish metric space, those
regularity conditions are automatically satis�ed, and the de�nition of a Radon measure
becomes more straightforward, see [Fol13, Theorem 7.8].

The Riesz�Markov�Kakutani representation theorem asserts that Radon measures
correspond exactly to nonnegative elements of the dual space ofCc(X ), the space of
continuous functions with compact support onX . Before stating the theorem, we need
to endow Cc(X ) with a topology. Let An be a sequence of relatively compact open
subsets such that

S
n� 0 An = X . We let C0(An ) be the completion ofCc(An ) for the

k � k1 -norm (the space of functions which vanish on the boundary ofAn ). We then
endow Cc(X ) with the strongest locally convex topology such that all the inclusions
C0(An ) ,! C c(X ) are continuous, and which makesCc(X ) a complete topological
vector space. More concretely, endowed with this topology, a sequence(f n )n in Cc(X )
converges towards some functionf 2 Cc(X ) if and only if there exists a compact set
containing the supports of all the functions and we have uniform convergence of(f n )n

towards f .

De�nition 3.1.4. Let Cc(X )� be the topological dual ofCc(X ). We say that � 2 Cc(X ) �

is nonnegative if � (f ) � 0 for any f 2 Cc(X ) which is nonnegative.

The following theorem is for instance found in [AFP00, Theorem 1.54].

Theorem 3.1.5 (Riesz�Markov�Kakutani representation theorem) .

1. Let � 2 M (X ). Then, the application f 2 Cc(X ) 7! � (f ) is continuous.

2. If � 2 Cc(X )� is nonnegative, then there exists a unique Radon measure� 2 M (X )
such that � (f ) = � (f ) for every f 2 Cc(X ).

As such, M (X ) can be identi�ed with a subset of Cc(X ) � . We endow M (X )
with the topology induced by the weak-* topology on Cc(X ) � , that we call the vague
topology. Concretely, a sequence of Radon measures(� n )n converges vaguely towards
some Radon measure� if, for all f 2 Cc(X ), we have� n (f ) ! � (f ). We then write
� n

v�! � .
The following propositions are standard results. Corresponding proofs can be found

for instance [Kal83, Section 15.7].

Proposition 3.1.6. The spaceM (X ) is a Polish space.

Also, P(X ) � M (X ), with the injection being continuous: if a sequence of �nite
measures converges weakly to some �nite measure, then the vague convergence also
holds.
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De�nition 3.1.7. A set F � M (X ) is said to betight if, for every " > 0, there exists
a compact setK with � (X nK ) � " for every � 2 F .

Proposition 3.1.8. A set F � M (X ) is relatively compact for the vague topology if
and only if for every compact setK included in X ,

supf � (K ) : � 2 F g < 1 :

Proposition 3.1.9 (Prokhorov's theorem). A set F � P (X ) is relatively compact for
the weak topology if and only ifF is tight and supfj � j : � 2 F g < 1 .

Proposition 3.1.10. Let �; � 1; � 2; : : : be measures inP(X ). Then, � n
w�! � if and

only if j� n j ! j � j and � n
v�! � .

Proposition 3.1.11 (The Portmanteau theorem). Let �; � 1; � 2; : : : be measures in
M (X ). Then, � n

v�! � if and only if one of the following propositions holds:

� for all open setsU � X and all bounded closed setsF � X ,

lim sup
n!1

� n (F ) � � (F ) and lim inf
n!1

� n (U) � � (U):

� for all bounded Borel setsA with � (@A) = 0 , lim
n!1

� n (A) = � (A).

Finally, we de�ne D(X ) the set of integer measures onX , that is Radon measures
of the form

P
i 2I � x i for some index setI . Integer measures will be particularly

important in the following, as they will be identi�ed with persistence diagrams.

Proposition 3.1.12. The set D(X ) is closed inM (X ) for the vague topology.

3.2 Optimal transport

Optimal transport is a widely developed theory providing tools to study and compare
probability measures supported on some metric spaceX [Vil03; Vil08; San15], that is,
up to a renormalization factor, non-negative measures with same mass. The optimal
transport problem was �rst introduced by Gaspard Monge in 1781 in its �Mémoire
sur la théorie des déblais et des remblais� [Mon81]. Consider a distribution of dirt (or
�remblais�) � and a distribution of holes (or �déblais�) � , see Figure 3.1. A transport
plan � between� and � is a strategy for moving the dirt to �ll the holes: at each point
x, a fraction d� (x; y) of the massd� (x) is moved to y. The quantity of mass moved
from x, which could be written as

R
y d� (x; y) should be exactly equal tod� (x), the

total mass originally present at x. Likewise, the quantity of mass
R

x d� (x; y) arriving
to y should be equal tod� (y). Mathematically, if � and � are measures on some metric
space(X ; d), then a transport plan is a measure onX � X , which must satisfy the
marginal constraints � 1 = � and � 2 = � (the �rst and second marginals of � ). Remark
that for a transport plan to exist, � and � must necessarily have the same mass. For
p = 1 , the cost of the transport plan � is then given by

RR
d(x; y)d� (x; y), that is we

consider the total distance covered by the dirt through the transport plan � . The
1-Wasserstein distanceW1(�; � ) between� and � (also called earthmover distance)
is then given by the smallest cost possible of a transport plan. More generally, we
introduce the following problem.

Given a metric space(X ; d), 1 � p < 1 and m > 0, we let Pp
m (X ) be the set of

distributions � 2 P m (X ) such that there existsx0 2 X with
R

d(x; x 0)pd� (x) < 1 .
Remark that if � 2 P p

m (X ), then the previous integral is actually �nite for every
x0 2 X . For p = 1 , we let P1

m (X ) be the set of distributions � 2 P m (X ) with
bounded support. We write �( �; � ) for the set of transport plans between� and � .



30 Chapter 3. Background

Figure 3.1: A distribution � of �remblais� (in blue) and a distribution
� of �déblais� (in red).

De�nition 3.2.1 (Wasserstein distances). Let 1 � p � 1 and let �; � 2 P p
m (X ). Let

� 2 �( �; � ). For p < 1 , the p-cost of � is equal to

Cp(� ) :=
ZZ

X �X
d(x; y)pd� (x; y); (3.4)

while C1 (� ) := � � ess supd(�; �). The Wasserstein distanceWp;d(�; � ) between� and
� is given by

Wp;d(�; � ) := inf f Cp(� )1=p : � 2 �( �; � )g (3.5)

for p < 1 , and Cp(� )1=p should be replaced byC1 (� ) for p = 1 .

When there is no ambiguity on the distanced used, we simply writeWp instead of
Wp;d. We refer to [Vil08, Chapter 6] for the following proposition.

Proposition 3.2.2. For 1 � p � 1 , the Wasserstein distanceWp is a distance on
Pp

m (X ). Furthermore, there exist transport plans attaining the in�mum in (3.5), that
we call optimal transport plans. If p < 1 and (X ; d) is a Polish metric space, then
the following propositions hold.

1. The space(Pp
m (X ); Wp) is a Polish metric space.

2. If X is compact, thenPp
m (X ) = Pm (X ) and Wp metricizes the weak topology.

3. Let �; � 1; � 2; : : : be measures inPp
m (X ). Then, Wp(� n ; � ) ! 0 if and only if

� n
w�! � and

R
d(x; x 0)pd� n (x) !

R
d(x; x 0)pd� (x).

We will denote by OptWp
(�; � ) the set of optimal transport plans between� and

� . One of the key speci�cities of optimal transport distances with respect to other
distances between measures lies in that they are closely linked to the geometry of the
underlying metric space(X ; d). For instance the embeddingx 2 X 7! � x 2 P p

1 (X )
is an isometry whenPp

1 (X ) is endowed with the Wasserstein distance. Also, metric
properties of (X ; d) (e.g. compactness, completeness or separability) are inherited
by the space(Pp

1 (X ); Wp). More profound results indicate that studying the space
(Pp

1 (X ); Wp) can in turn give insights on the geometry of the space(X ; d), and more
precisely on its curvature, see [Vil08, Part II].

For p = 1 , the Wasserstein distance satis�es a duality formula, known as the
Kantorovitch-Rubinstein duality formula [Vil08, Chapter 5].

Proposition 3.2.3. Let �; � 2 P 1
m (X ). Then,

W1(�; � ) = sup fj � (f ) � � (f )j : f : X ! R is 1-Lipschitz continuousg: (3.6)
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Note that the above formula shows thatW1 acts as a norm on the space of signed
measures with zero mass.

In this thesis, the theory of optimal transport will have two di�erent uses. First,
it will be used in Chapter 5 where we propose estimators to reconstruct measures
supported on unknown manifolds. The quality of the reconstruction will be measured
thanks to Wasserstein distances. Second, metrics used in Topological Data Analysis
(see Section 3.8) share key ideas with metrics used in optimal transport. Making this
connection precise will be at the core of Chapter 6, and will in particular allow us to
introduce generalizations of persistence diagrams, that we call persistence measures.
Persistence measures will then be studied in the remainder of Part II, while optimal
transport will be a key technical tool to analyze their behaviors.

3.3 Statistical models and minimax rates

We end the prerequisites on measure theory by de�ning minimax rates in statistical
theory, which will be at the core of Part I.

Let (X ; G) be a measurable space. Astatistical model is given by the data of
(X ; G; Q), where Q is a subset ofP1(X ). Let (E; E) be another measurable space and
let � : Q ! (E; E) be a functional to be estimated. Given a numbern of observations,
an estimator of � is a measurable function�̂ : X n ! E , whereas the quality of the
estimator is measured through a measurable loss functionL : E � E ! [0; + 1 ]. The
risk of the estimator �̂ in � 2 Q is equal to

Rn (�̂; �; L ) := E(X 1 ;:::;X n )� � 
 n [L (�̂ (X 1; : : : ; X n ); � (� ))] ; (3.7)

and the smaller the risk, the better the estimator. Theminimax risk for the estimation
of � on the modelQ with respect to the lossL is given by

R n (�; Q; L ) := inf
�̂

sup
� 2Q

Rn (�̂; �; L ); (3.8)

where the in�mum is taken over all estimators �̂ of � . An estimator attaining the
minimax rate (up to a constant) as n goes to+ 1 is called aminimax estimator.

It will be sometimes necessary to allow forQ to vary with n (for instance if the
model Q includes a noise which we assume is small with respect to some function of
n). Also, there will sometimes be latent variables in the model. For instance, in the
deconvolution problem, we observe some random variablesX i = Yi + " i , where " i is a
small noise, and the goal is to recover some information� (� ) about the distribution �
of Yi (e.g. its support). Depending on what is assumed on the noise" i , the quantity
� (� ) may not be characterized by the distribution � of X i , so that we have to extend
slightly the previous de�nition. Let � : (Y; H ) ! (X ; G) be a measurable function. We
now consider a subsetQ of P1(Y) and assume that we do not observe an-sample of
distribution � 2 Q , but of distribution �# � (the pushforward of � by � ). The minimax
risk is then de�ned by

Rn (�̂; �; L ) := E(X 1 ;:::;X n )� (� # � ) 
 n [L (�̂ (X 1; : : : ; X n ); � (� ))] : (3.9)

For instance, in the deconvolution problem,Q would be a (strict) subset of the possible
distributions of the couple (Yi ; " i ), whereas� would be the addition. This generalization
will be useful to deal with noise in a rigorous manner when the model is not completely
identi�able .

Statistical models of interest in this thesis describe strong geometrical hypotheses
on the way the observations are distributed, and are detailed in Section 3.5.
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Figure 3.2: The Hausdor� distance between the two closed setsA
and B is given by dH (AjB ).

3.4 Elements of metric geometry

We now introduce basic concepts of metric geometry.

Hausdor� distance. The Hausdor� distance is a measure of proximity between
subsets of some metric space(X ; d). Let A; B � X be two sets. We de�ne the
asymmetric Hausdor� distance dH (AjB ) := supf d(x; B ) : x 2 Ag, and the Hausdor�
distance dH (A; B ) = dH (AjB ) _ dH (B jA), see Figure 3.2. When comparing general
subsetsA and B , the Hausdor� distance is not very well-behaved: it may be equal
to + 1 , or be equal to0 for two di�erent sets. It becomes a proper distance when we
restrict to compact sets ofX . We let K(X ) be the space of nonempty compact subsets
of X .

Proposition 3.4.1 (Proposition III.6 in [Aam17]) . Let (X ; d) be a metric space. Then,
dH is a distance onK(X ). Furthermore, endowed with this metric:

1. K(X ) is separable if and only ifX is separable.

2. K(X ) is compact if and only if X is compact.

3. K(X ) is complete if and only if X is complete.

Note that the asymmetric Hausdor� distance also veri�es the following pseudo
triangle inequality: for A; B; C � RD ,

dH (AjC) � dH (AjB ) + dH (B jC): (3.10)

An equivalent formulation of the Hausdor� distance is given by the 1 -norm between
the distance functions to a set.

Proposition 3.4.2 (Example 4.13 in [RW09]). Let A; B 2 K (X ). Then,

dH (A; B ) = kd(�; A) � d(�; B )k1 : (3.11)

It will also be useful to compare objects up to isometry: for instance, two segments
of comparable lengths are in some sense close to each others, even if they live in
di�erent spaces. The Gromov-Hausdor� distance allows us to formalize this concept,
see also Figure 3.3.
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Figure 3.3: The Gromov-Hausdor� distance between the two curves
X and Y is obtained as the Hausdor� distance between� 1(X ) and

� 2(Y).

De�nition 3.4.3. Let (X ; d1) and (Y; d2) be two metric spaces. We letdGH (X ; Y) be
the in�mum of the numbers r > 0 such that there exists a metric space(Z ; d3) and
isometries � 1 : (X ; d1) ! (Z ; d3), � 2 : (Y; d2) ! (Z ; d3) such thatdH (� 1(X ); � 2(Y)) �
r .

The set Z in the previous de�nition can actually be chosen equal toX t Y , with
d3 being any distance extendingd1 on X and d2 on Y. Furthermore, two compact
metric spaces are at distance0 for the Gromov-Hausdor� distance if and only if they
are isometric, and the distancedGH becomes a proper distance on the set of classes of
isometric compact spaces [Mém08].

Of particular interest for us will be the space(K(RD ); dH ), as the estimators built
in Chapter 4 will take their values in this space. We will show that our estimators are
measurable as composition of elementary operations on the spaceK(RD ).

Proposition 3.4.4. 1. The function x 2 RD 7! f xg 2 K (RD ) is an isometry.

2. The �union� function (A; B ) 2 K (RD ) � K (RD ) 7! A [ B 2 K (RD ) is continuous.

3. The �convex hull� function A 2 K (RD ) 7! Conv(A) 2 K (RD ) is continuous.

4. Let E 2 B(K(RD )) be a measurable event. Then, the function

GE : (A; B ) 2 K (RD ) � K (RD ) 7!

(
A if A 2 E

B else.

is measurable.

Proof. For the �rst three functions, see the proof of Proposition III.7 in [Aam17]. For
the last function, let F be any measurable set inK(RD ). Then, the preimage ofF is
given by

((F \ E) � K (RD )) [ (E c � F );

which is measurable. Therefore, the function is measurable.

We end this paragraph by introducing two di�erent quantities measuring the size
of a compact setA 2 K (RD ). The �rst one is the diameter diam(A) := supfj x � yj :
x; y 2 Ag. The second is theradius of A. It is by de�nition the radius of the smallest
ball B such that A � B . We denote by r (A) this radius.

Proposition 3.4.5. The function diam is 2-Lipschitz continuous and the functionr
is 1-Lipschitz continuous.
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Figure 3.4: The radius and diameter of a setA � R2.

Figure 3.5: The three �rst shapes have positive reach, whereas the
square (boundary of[0; 1]2) has zero reach.

Proof. For the 1-Lipschitz continuity of the radius, see [ALS13, Lemma 16]. For the
diameter, let x1; x2 2 A such that jx1 � x2j = diam(A). Let y1 2 B be such that
jx1 � y1j = d(x1; B ) and y2 2 B with jx2 � y2j = d(x2; B ). Then,

diam(A) = jx1 � x2j � j x1 � y1j + jy1 � y2j + jy2 � x2j

� d(x1; B ) + diam( B ) + d(x2; B ) � diam(B ) + 2 dH (AjB ):

We conclude by exchanging the roles ofA and B .

Reach of a set. Let A � RD be a closed subset. Givenx 2 RD , we denote by� A (x)
the set of points realizing the distance fromx to A:

y 2 � A (x) () (jx � yj = d(x; A ) and y 2 A):

Two situations may arise: either � A (x) is a singleton (and we then identify the set
with its unique element) or it is not. In the latter case, we say that x is in the medial
axis Med(A) of A.

De�nition 3.4.6. The reach of a non-empty closed setA � RD is given by

� (A) := inf f d(x; Med(A)) : x 2 Ag: (3.12)

By de�nition, for every r < � (A), if d(x; A ) � r , then there exists a unique point
� A (x) 2 A such that d(x; A ) = jx � � A (x)j. In particular, the projection � A on A is a
well-de�ned map on A r := f x 2 RD : d(x; A ) � r g, the r -tubular neighborhood of A.
A more visual way to understand the reach is given by the �rolling-ball condition�: if a
set A has reach larger thanr , then it is possible to make a ball of radiusr roll freely
around A without ever bumping into another part of A [CFPL12]. See Figure 3.5 for
examples of setsA having positive (and zero) reach.

Examples of sets with positive reach include convex sets (for which� (A) = + 1 )
and compact submanifolds without boundary. More generally, having a large reach



3.5. Elements of di�erential geometry 35

imposes both a local regularity condition onA (it cannot be too �curved�) and a global
regularity condition (it cannot have a �bottleneck structure�), ideas which can be made
mathematically precise [Aam+19], see also Figure 2.3 in the introduction. The reach
was originally introduced by Fereder [Fed59] when studying generalizations of Steiner
formula for convex sets [Ste40] and Weyl's tube formula for submanifolds [Wey39]. He
proved that such a formula relating the volume of tubular neighborhoods of a setA
to some notion of curvature also holds for the large class of sets with positive reach.
Considering sets with positive reach is often considered as a minimal requirement
in computational geometry. For instance, minimax rates of estimation in manifold
inference are known to break down when no assumptions on the reach of the underlying
sets are made [AL18; AL19].

The positivity of the reach is actually linked to the regularity of the distance
function to a set. We say that a function f : RD ! Rl is C1;1 if it is di�erentiable and
its di�erential is Lipschitz continuous.

Proposition 3.4.7 (Theorem 6.3 in [DZ01]). Let A � RD be a non-empty closed set.
Then, � (A) > 0 if and only if the function x 2 RD 7! d2(x; A ) is of classC1;1 in some
tubular neighborhood ofA.

Remark that the distance function d(�; A) is in general not di�erentiable on a
tubular neighborhood of A, even if A is a smooth object (think of a circle for instance),
so that considering the squared distance in the above proposition is required. From a
statistical perspective, the estimation of the reach of a manifold has been tackled in
[Aam+19] and [Ber+21].

Another point of view consists in seeing the reach as a function� : K(RD ) !
[0; + 1 ]. It is clear that this function is not continuous: take a set A = f x; yg.
If x 6= y, then � (A) is given by the half-distance betweenx and y, whereas when
x ! y, we obtain a singleton at the limit, whose reach is in�nite. However, such a
discontinuity may only happen with an increase of the reach, that is the reach is upper
semi-continuous.

Proposition 3.4.8 (Remark 4.14 in [Fed59]). The function � is upper semi-continuous.

Hausdor� measure. The d-dimensional Hausdor� measure is a generalization of
the d-dimensional Lebesgue measure to arbitrary subsets ofRD . For instance, the
1-dimensional Hausdor� measure of a curve is given by its length, the2-dimensional
Hausdor� of a surface is given by its area, etc.

De�nition 3.4.9. Let d � 0 be an integer. ForA � RD , and � > 0, consider

H �
d(A) := inf

8
<

:

X

i � 0

! d

�
diam(Ui )

2

� d

: A �
[

i � 0

Ui and diam(Ui ) < �

9
=

;
; (3.13)

where ! d = � d=2=�
� d

2 + 1
�

is the volume of thed-dimensional unit ball. The d-
dimensional Hausdor� measureof A is de�ned by H d(A) := lim � ! 0 H �

d(A).

3.5 Elements of di�erential geometry

The goal of this section is twofold. First, we introduce succinctly the language of
di�erential geometry to �x notation that will be used throughout Part I. Second, we
explore in more detail the geometry of submanifolds ofRD . In particular, we introduce
statistical models tailored to the estimation of geometric quantities related toCk
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submanifolds, introduced in [AL19] and [BH19]. We refer to do Carmo's book [Car92]
for a more thorough introduction to Riemannian geometry. Due to their primary
importance in manifold inference, we will focus onsubmanifoldsin this presentation.
This simpli�es most de�nitions, while Nash's embedding theorem actually ensures that
this is not restrictive [Nas56]. We begin with preliminary de�nitions.

� Let G(d; D) be the Grassmannian manifold of alld-dimensional subspaces of
RD . For E 2 G(d; D), we denote by� E the orthogonal projection on E and
� ?

E := id � � E the orthogonal projection on E ? , the orthogonal complement of
E . The angle \ (E; F ) between two subspacesE; F 2 G(d; D) is de�ned as the
distance k� E � � F kop, the operator norm between the orthogonal projections on
E and F .

� Let U � RD be an open set andf : U ! R be a Ck function. We denote by
dk f (x) : (RD )k ! R the k-th di�erential of f at x 2 U. The Ck -norm of f is
equal to

kf kCk := sup
x2 U






 dk f (x)








op
: (3.14)

The C0-norm is equal to the L 1 -norm, and we will often write k � k1 instead of
k � kC0 .

De�nition 3.5.1. A topological d-dimensional (sub)manifold M of RD is a subset of
RD (endowed with the subspace topology) such that everyx 2 M has a neighborhood
homeomorphic toRd.

This de�nition has the advantage of being very simple. It is however not restrictive
enough for our purposes. Indeed, every graph of a continuous functionRd ! RD is a
topological submanifold, including wild objects such as the Koch snow�ake.

De�nition 3.5.2 (see Chapter 8 in [Lee13]). Let k � 1. A Ck d-dimensional
(sub)manifold M of RD is a set such that, for everyx 2 M , there exists aCk di�eo-
morphism � : Vx ! RD , where Vx � RD is a neighborhood ofx, such that � (Vx \ M )
is the intersection of a d-dimensional plane with� (Vx ).

If M is a submanifold, we de�ne thetangent spaceTxM of x 2 M as the set

TxM :=
�

u 2 RD : 8" > 0; 9y 2 M;

�
�
�
�

x � y
jx � yj

�
u
juj

�
�
�
� � "

�
: (3.15)

In particular, the tangent spaces are elements of the Grassmannian manifoldG(d; D),
and we write � x for � Tx M . If U is a neighborhood of0 in TxM , we say that a Ck

function 	 : U ! M � RD is a local parametrization of M at x if it is a one-to-one
function such that 	(0) = x, d	(0) is the inclusion TxM ,! RD , and d	( u) is of full
rank for every u 2 U. One can show that a manifoldM is Ck if and only if there are
Ck local parametrizations at everyx 2 M .

Proposition 3.4.7 states that the positivity of the reach of a set is equivalent to the
C1;1 regularity of the squared distance to the set. When the set is assumed to be a
manifold, this is in turn equivalent to the manifold being of regularity C1;1 (that is the
di�eomorphisms are of regularity C1;1 in the previous de�nition).

Proposition 3.5.3. Let M � RD be a compact topological submanifold. Then,� (M ) >
0 if and only if M is of regularity C1;1.
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Proof. The direct implication is proved in [RZ17]. For the converse implication, we
�rst show that given a point y 2 RD , if z 2 � M (y), then y � z is orthogonal to TzM .
Indeed, let 	 be a local parametrization in z. Then, 0 is a local minimum of the
function u 2 TzM 7! j y � 	( u)j2. The gradient of this function at 0 is null, and is
given by � 2� z(y � z), implying that y � z is orthogonal to TzM .

We now show that for everyx 2 M , there is a small neighborhood ofx in RD on
which there is a unique projection onM . The compactness ofM then implies the
conclusion. Let	 be a localC1;1 parametrization of M at x, de�ned on a neighborhood
U of 0 in TxM . Let F : U � RD ! TxM be de�ned by F (u; y) = d	( u)> (	( u) � y).
The function F is Lipschitz continuous in u and linear in y. We apply a version of the
implicit function theorem for Lipschitz continuous maps [Kum91], which holds under
the condition that, for any sequences� k ! 0, uk ! 0, yk ! y and v 2 TxM nf 0g, we
have

lim
k

F (uk + � kv; yk ) � F (uk ; yk )
� k

6= 0

whenever the limit exists. One can check directly that this limit always exist, and is
given by d	(0) � d	(0)[ v] = v 6= 0 . Therefore, by [Kum91, Theorem 1], asF is Lipschitz
continuous, there exists, for"; " 0 > 0 small enough, a unique map� : B(x; " ) ! TxM
such that, for y 2 B(x; " ) and u 2 BTx M (0; "0),

F (u; y) = 0 if and only if u = � (y):

Fix y 2 B(x; " 00) for some"00> 0 to �x. If z 2 M belongs to � M (y), then y � z is
orthogonal to TzM , that is F (	 � 1(z); y) = 0 . Furthermore,

jz � xj � j z � yj + jy � xj � 2jy � xj � 2"00;

which implies that 	 � 1(z) 2 	 � 1(BM (x; 2"00)) � B Tx M (0; "0) for "00small enough.
Therefore, we have that	 � 1(z) = � (y), that is z = 	( � (y)) is uniquely determined by
y. Hence, there is a unique projection onM on B(x; " 00), proving that the reach � (M )
is positive.

We will consider in the following a slightly stronger requirement: all manifolds are
now assumed to be at leastC2. This ensures that thesecond fundamental formof the
manifold M (that we de�ne below) is well-de�ned.

De�nition 3.5.4. Let � min > 0 and 1 � d < D . We let M 2;d
� min be the set of closed

C2 d-dimensional submanifolds without boundary, with reach larger than� min and let
furthermore M 2;d :=

S
� min > 0 M 2;d

� min be the set of closedC2 d-dimensional submanifolds
without boundary with positive reach.

Let M 2 M 2;d. A geodesicis the analogue of a straight line onM . It is a C2

curve 
 : I ! M � RD de�ned on some interval I satisfying that 
 00(t) 2 T
 (t )M ? for
every t 2 I (where 
 is seen as taking its values inRD ). The geodesic distancedg(x; y)
between two pointsx and y in M is de�ned as the in�mum over all geodesics
 joining
x and y of the length of the geodesic, de�ned as

L(
 ) :=
Z

I
j
 0(t)jdt: (3.16)

Also, we denote byvolM the d-dimensional Hausdor� measure restricted toM .
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De�nition 3.5.5. Let M 2 M 2;d. Let x 2 M and � 2 TxM ? . Let N be a local
extension of � normal to M , that is N : Ux ! RD is de�ned on a neighborhood
Ux � RD of x, is of classC2 and satis�es N (x) = � and N (y) 2 TyM ? for y 2 M .
The second fundamental formSM (x; � ) : TxM ! TxM of M at x along the normal�
is the operator given by

SM (x; � )[u] = � � x (dxN [u]) 8u 2 TxM: (3.17)

One can check that the second fundamental form does not depend on the extension
N . Furthermore, for each x 2 M and � 2 TxM ? , the operator SM (x; � ) is a linear
self-adjoint operator on TxM . Given a normal direction � and a tangent vector u, the
second fundamental form describes how the normal direction� varies asx is moved
in the direction u. As such, it gives a description of the extrinsic curvature of the
manifold M .

Proposition 3.5.6 (Proposition 6.1 in [NSW08]). Let M 2 M 2;d, x 2 M and
� 2 TxM ? . Then,

kSM (x; � )kop �
1

� (M )
: (3.18)

We now give further geometric constraints given by the reach.

Proposition 3.5.7. Let M 2 M 2;d and x; y 2 M .

1. If some point z is at distance less than� (M ) from M with � M (z) = x, then
� x (z � x) = 0 .

2. We havejvolM j � ! d� (M )d, where ! d is the volume of thed-dimensional sphere.
Furthermore, the equality is attained only if M is a d-dimensional sphere of
radius � (M ).

3. We havediam(M ) � Cd
jvolM j

� (M )d� 1 for some positive constantCd. Furthermore,

� (M ) �
q

D
2(D +1) diam(M ).

4. We havej� ?
x (y � x)j � jx � yj2

2� (M ) :

5. We have\ (TxM; T yM ) � 2 jx � yj
� (M ) .

6. If dg(x; y) � �� (M ) (or if jx � yj � � (M )=2), then jx � yj � dg(x; y) �

jx � yj min
�

�
2 ; 1 + c0

� (M )2 jx � yj
�

, where c0 = � 2=50.

7. If h � � (M )=4, then 8� d! dhd � volM (BM (x; h)) � 8d! dhd.

Proof. Point 1 was already shown in the proof of Proposition 3.5.3. Point 2 is stated
in [Alm86], whereas Point 3 is proved in [Aam17, Section III.3.4]. Point 4 is proved
in Federer's article [Fed59, Theorem 4.18]. Point 5 is stated in [BSW09, Lemma 3.4].
For Point 6, see the proof of [ACLG19, Lemma 3.12]. Also, havingjx � yj � � (M )=2
implies that dg(x; y) � �� (M ) is a consequence of [NSW08, Proposition 6.3]. Finally
we prove Point 7. Proposition 8.7 in [AL18] states that forh � � (M )=4,

2� d� dhd � volM (BM (x; h)) � 2d� dhd;

where � d is the volume of thed-dimensional ball. It remains to show that 2d� d � 8d! d

and that 2d! d � 8d� d. One can check by recursion ond that those inequalities hold
for any d � 1, concluding the proof.
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In particular, if jvolM j < 1 and � (M ) > 0, then M is automatically compact.
Among all local parametrizations of a manifold M , a particularly natural one is
given by the inverse of the projection on the tangent space. We let~� x be de�ned by
~� x (y) = x + � x (y � x) (so that ~� x (x) = x) and let ~TxM = x + TxM be the image of
~� x .

Proposition 3.5.8. Let x 2 M . For r � � (M )=3, the application ~� x is a di�eor-
morphism from BM (x; r ) on its image. Moreover, its image~� x (BM (x; r )) contains
B ~Tx M (x; 7r=8). In particular, if y 2 BM (x; � (M )=4), then

j~� x (y) � yj �
7
8

jy � xj: (3.19)

Proof. We �rst show that ~� x is injective on BM (x; � (M )=3). Assume that ~� x (y) =
~� x (y0) for somey 6= y0 2 M . Consider without loss of generality that jx � yj � j x � y0j.
The goal is to show thatjx � yj > � (M )=3. If jx � yj > � (M )=2, the conclusion obviously
holds. Proposition 3.5.7.5 states that if it is not the case then,\ (TxM; T yM ) < 2 jx � yj

� (M ) .
Also, by de�nition,

\ (TxM; T yM ) �
j(� x � � y)(y � y0)j

jy � y0j

=
j� y(y � y0)j

jy � y0j
�

jy � y0j � j � ?
y (y � y0)j

jy � y0j

� 1 �
jy � y0j
2� (M )

by Proposition 3.5.7.4

� 1 �
jx � yj
� (M )

by the triangle inequality.

Therefore, we have3jx � yj=� (M ) > 1, i.e. jx � yj > � (M )=3 and ~� x is injective on
BM (x; � (M )=3). To conclude that ~� x is a di�eomorphism, it su�ces to show that its
di�erential is always invertible. As ~� x is an a�ne application, the di�erential d~� x (y)
is equal to � x . Therefore, the JacobianJ ~� x (y) of the function ~� x : M ! TxM in y is
given by the determinant of the projection � x restricted to TyM . In particular, it is
larger than the smallest singular value of� x � � y to the power d, which is larger than

(1 � \ (TxM; T yM ))d �
�

1 � 2
jx � yj
� (M )

� d

�
�

1
3

� d

;

thanks to Proposition 3.5.7.5 and using that jx � yj � � (M )=3. In particular, the
Jacobian is positive, and~� x is a di�eormorphism from BM (x; � (M )=3) to its image. The
second statement is stated in [AL19, Lemma A.2]. The last statement is a consequence
of the two �rst, using that if jy � xj � � (M )=4, then 8j~� x (y) � xj=7 � � (M )=3.

Note that this proposition was already proven in [ACLZ17, Lemma 5], but with
a slightly worse constant of � (M )=12. We write 	 x for the inverse of the map
y 2 M 7! � x (y � x) 2 TxM , which is de�ned according to the previous lemma on
BTx M (0; 7r=24) for r � � (M )=3 (in particular it is de�ned on BTx M (0; � (M )=4)). The
parametrizations 	 x will be used in the following to quantify the regularity of the
manifold M .

Proposition 3.5.9. Let M be aCk submanifold for k � 2 and let x 2 M . Then, 	 x

is a local Ck parametrization of M .
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Proof. Let 	 be a Ck parametrization at x. We may write 	 x = 	 � (	 � 1 � 	 x ) on a
small neighborhood of0. As 	 is Ck , it su�ces to show G = 	 � 1 � 	 x : TxM ! TxM
is Ck on a neighborhood of0. Given u 2 TxM small enough,v = G(u) is characterized
by the equation � x (	( v) � x) = u. This expression isCk in (u; v) and, by the implicit
function theorem, using that d	(0) is the inclusion TxM ,! RD , we obtain that G is
indeed Ck .

We denote by M k;d the set of Ck closed d-dimensional submanifolds without
boundary with positive reach.

De�nition 3.5.10 (Class of regular manifolds). Let d � 1; k � 2 and L; � min > 0. Let
r0 = ( � min ^ L)=4. We say that M 2 M k;d

� min ;L if M is in M k;d with � (M ) � � min and
if, for all x 2 M , 	 x is de�ned on BTx M (0; r0) and the function u 2 BTx M (0; r0) 7!
	 x (u) � x has aCknorm smaller than L .

The second di�erential of 	 x can be expressed thanks to the second fundamental
form of M . In particular, one can obtain using Proposition 3.5.6 an inequality of the
form k	 x � xkC2 � L d;� (M ) , implying that the parameter L is not relevant to quantify
the C2-regularity of a manifold. For k � 3, there are no constraints on theCk -norm of
the local parametrizations based on the reach, and the parameterL becomes useful.

We say that a function f : M ! Rl is Ck if f � 	 x is Ck for every x 2 M . We
de�ne the norm




 dk f (x)






op at x as



 dk (f � 	 x )(0)






op. De�ning rigorously what is
the kth di�erential of the function f is more delicate and would require introducing
concepts such as the Levi-Civita connection, whereas only de�ning a notion ofCk -
norm of a function is of interest for us. If l � d, the Jacobian of f is de�ned by
Jf =

p
det((df )(df ) � ).

We compare our de�nition with other models of Ck manifolds appearing in the
manifold inference literature. In [BH19], a similar approach is taken to measure the
regularity of manifolds, but with exponential maps used as local parametrizations.
However, exponential maps may only beCk� 2 on a Ck manifold [Har51] so that we
prefer to use the inverse projections	 x as parametrizations. In [AL19], Aamari and
Levrard assume the existence of a local parametrization~	 x at x 2 M with Ck norm
smaller than L , not necessarily equal to the inverse	 x of the projection ~� x . However,
the choice of	 x as a local parametrization is not restrictive. Indeed, one can write
	 x = ~	 x � (� x � ~	 x )� 1, so that, by the inverse function theorem, theCk norm of 	 x is
controlled by the Ck norm of ~	 x .

Statistical models for measures supported on manifolds Statistical models
of interest in the following correspond to sampling �almost-uniformly� points on (or
close to) a manifold which is regular enough.

De�nition 3.5.11. Let 1 � d < D , k � 2, � min ; L > 0 and 0 < f min � f max � 1 .
The set Qk;d

� min ;L;f min ;f max
is the set of all probability measures� , whose supportM

belongs toM k;d
� min ;L , and which have a densityf with respect to the volume measure on

M , satisfying f min � f � f max .

We also consider sampling with a bounded additive noise: each observationX i

is of the form Yi + Z i , where the law ofYi is supported on a manifold andjZ i j � 
 ,
whereasYi and Z i are not necessarily independent.

De�nition 3.5.12. Let 1 � d < D , k � 2, � min ; L; 
 > 0 and 0 < f min � f max � 1 .
The set Qk;d

� min ;L;f min ;f max
(
 ) is the set of all probability measures� on RD � RD , such

that the �rst marginal of � belongs toQk;d
� min ;L;f min ;f max

and the second marginal of� is
supported onB(0; 
 ).
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We then assume that we observe samples having distribution�# � , where � :
RD � RD ! RD is the addition. As explained in Section 3.3, this slightly more
technical de�nition allows us to de�ne the function � (� ) = M as the support of the
�rst marginal of � , whereasM cannot be recovered solely thanks to the law of the
observation X = Y + Z , where (Y; Z) � � .

For k = 2 , the parameter L has no impact on the statistical rates of convergence,
and we only considerQ2;d

� min ;f min ;f max
(
 ) := Q2;d

� min ;+ 1 ;f min ;f max
(
 ). The minimax rates

for the estimation of the manifold M are known to satisfy:

c0

�
ln n
n

� 2=d

� R n (M; Q2;d
� min ;f min ;f max

(
 ); dH ) � c1

 �
ln n
n

� 2=d

_ 


!

(3.20)

c2

�
1
n

� k=d

� R n (M; Qk;d
� min ;L;f min ;f max

(
 ); dH ) � c1

 �
ln n
n

� k=d

_ 


!

: (3.21)

The lower bound in (3.20) is provided in [KZ15] while the upper bound was �rst
given in [Gen+12a]. The statistical modelsQk;d

� min ;L;f min ;f max
(
 ) were introduced in

[AL19], where(3.21) is also shown. The upper bound follows from exhibiting a minimax
estimator, obtained by using a local polynomial estimator around every observation
point. In particular, these estimators will be used in Chapter 5 to estimate the volume
measure ofM .

The coarea formula Finally, we introduce the coarea formula, which is a far-
reaching generalization of the change of variables formula for integrals on manifolds.

Theorem 3.5.13 (Coarea formula [Mor16]). Let M (resp. N ) be a submanifold of
dimension m (resp. n). Assume that m � n and let � : M ! N be a di�erentiable
map. For f : M ! [0; + 1 ) a measurable function, the following equality holds:

Z

M
f (x)J� (x)dvolM (x) =

Z

N

 Z

x2 � � 1 (f yg)
f (x)dH m� n (x)

!

dvolN (y): (3.22)

In particular, if J� > 0 almost everywhere, one can apply the coarea formula to
f � (J� ) � 1 to compute

R
M f , while having J� > 0 is equivalent to d� being of full rank.

3.6 Simplicial complexes

Simplicial complexes are higher dimensional analogs of graphs. Their simple combina-
torial structure makes their use particularly appealing in computational geometry, as
they can be easily stored on a computer. We refer to [EH10] for results in this section.

De�nition 3.6.1 (Simplicial complex). Let S be a set. Asimplicial complex with
vertex setS is a family of �nite subsets of S containing all the singletons and such
that, if � � � 0 is nonempty and if � 0 2 K , then � 2 K .

Let K be a simplicial complex with vertex setS and K 0 be a simplicial complex
with vertex setS0. We say that a mapf : S ! S0 is a simplicial map betweenK and
K 0 if for every � 2 K the image of� by f belongs toK 0.

A subset � 2 K is called a simplex, and its dimension j� j is equal to # � � 1
(where # � denotes the cardinality of the set� ). The dimension of K is the maximal
dimension of its simplexes (possibly+ 1 ). The q-skeleton Sq(K ) of K is the set of
simplexes ofK of dimensionq.
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Figure 3.6: The geometric realization ofK 0 as a subset ofR3.

A simplicial complex is a purely combinatorial object and does not possess any
geometric structure. It is however possible to associate with each simplicial complex
K a topological space ~K , called its geometric realization. As a set, ~K is the set of
functions � 2 [0; 1]S with

P
s2 S � (s) = 1 and such that the set spt(� ) := f s 2 S :

� (s) > 0g 2 K . For � 2 K of dimensionq, let ~� := f � 2 [0; 1]S : � = spt(� )g. This
is a topological subspace of[0; 1]S endowed with the product topology (the space~�
is actually homeomorphic to ~� q = f (x0; x1; : : : ; xq) 2 [0; 1]q+1 :

P q
i =0 x i = 1g, the

standard q-dimensional simplex). We then endow the set ~K with the �nal topology
associated with the inclusions~� , ! ~K for � 2 K .

Example 3.6.2. The geometric realization of very simplicial complex with vertex set
f 0; 1; 2; 3g has its geometric realization that is homeomorphic to a subset ofR3. In
Figure 3.6, we display the geometric realization of the2-dimensional simplicial complex

K 0 = f 0; 1; 2; 3; f 0; 1g; f 0; 2g; f 1; 2g; f 2; 3g; f 0; 1; 2gg:

Example 3.6.3. Let S � RD and t > 0. We review di�erent simplicial complexes of
geometric interest that can be built on top of S.

1. The Rips complexRips(t; S) of S at scalet is the simplicial complex with vertex
set S, and such that � 2 Rips(t; S) if � is �nite and of diameter diam(� ) smaller
than t.

2. Given a compact set� � RD , there exists a unique ballB(� ) with minimal
radius such that � � B (� ) [ALS13]. The radius of this ball is called theradius
of � and is denoted byr (� ). The ƒech complex Cech(t; S) of S at scale t is
the simplicial complex with vertex set S, and such that � 2 Cech(t; S) if � is
�nite and r (� ) � t. The nerve theoremasserts that (the geometric realization
of) Cech(t; S) is homotopy equivalent to St , the t-neighborhood ofS [Hat02,
Corollary 4G.3].

3. If S is �nite, a triangulation of S is a simplicial complexT of dimensionD with
vertex set S such that

(a) every simplex ofT is included in a D-simplex of T.

(b) for � 6= � 0 2 T the interior of Conv(� ) is disjoint from the interior of
Conv(� 0).

(c)
S

� 2 T Conv(� ) = Conv( S).

(d) if � 2 SD (T), then Conv(� ) \ S = � .

In particular, a triangulation is uniquely determined by its D-skeleton.
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Figure 3.7: Left. The ƒech complex Cech(S; t) of a �nite set S � R2.
A simplex is in the ƒech complex only if it �ts in a circle of radius
t. Brighter colors indicate that a simplex of dimension larger than 3
is present. Right. The Delaunay triangulation of S, and its � -shape

Alpha(S; t) for a certain value of t.

4. Assume that S is �nite and does not lie on a hyperplane ofRD . Then, for each
D-simplex of S, there exists a unique(D � 1)-dimensional sphere containing� ,
called the circumsphereof � . A Delaunay triangulation of S is a triangulation
Del(S) of S such that the interior of every circumsphere of� 2 SD (Del(S)) does
not contain any point of S [EH10, Chapter III.3]. It is unique when S is in
general position, in the sense that no set ofD + 2 points of S lies on a sphere.

5. Under the same assumptions, the� -complex Alpha(S; t) of S is equal toDel(S) \
Cech(S; t) [EH10, Chapter III.4]. The ƒech complex and the � -complex are
homotopy equivalent, see Figure 3.7.

Both the Rips and the ƒech complex of a setS capture the geometry of the set at
scalet. Note however that such objects may be very wild. For instance, there exists
a compact setS � R4 with Rips(t; S) having singular homology (see below) with
uncountable dimension for everyt in some interval [Dro12]. From a computational
point of view, their sizes may become prohibitively large forjSj even of moderate size if
t is too large. Although computing the radius of a set� is possible in quasi-linear time
in R2, such a computation becomes a non-trivial task in moderate dimensions, which
may be a serious issue to compute the ƒech complex of a set in practice. Algorithms
with O(jSj log jSj) complexity exist to compute the Delaunay triangulation for D � 3,
whereas algorithms withO(jSjbD=2c) time complexity exist for larger D . In practice,
computing a Delaunay triangulation becomes prohibitive forD > 6 [HB08]. Unlike the
ƒech and the Rips complexes, the size of the Delaunay triangulation does not explode,
as it is of order O(jSjbD=2c). In practice, the � -complex is therefore often computed
instead of the ƒech complex.

3.7 Simplicial and singular homologies

Homological algebra is a general theory which gives a mathematically precise meaning
to the presence of topological features in an object. Di�erent versions of homologies
exist and are de�ned for di�erent mathematical structures. We will focus on simplicial
homology, de�ned for simplicial complexes and which has the bene�t of being easily
computable, and then on singular homology, which is de�ned for any topological space.
We �rst de�ne homology groups in an abstract setting. An introduction to homology
theory may be found in [Hat02].
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3.7.1 Homological algebra

Let G be an abelian group (only the casesG = Z and G a �nite �eld will be relevant
for us). A chain complexC� is a sequence of abelianG-modules(Cq)q�� 1 together
with homomorphisms @q : Cq ! Cq� 1 for q � 0, such that @q@q+1 = 0 and C� 1 = f 0g.
The map @q is called aboundary map. Elements of Zq := ker @q are calledq-cycles
whereas elements ofBq := im @q+1 are calledq-boundaries. The relation @q@q+1 = 0
implies that Bq � Zq, i.e. every boundary is a cycle. Two cycles are calledhomologous
if they di�er by a boundary, and we refer to Hq(C) = Zq=Bq as the qth homology
group of C� . The dimension ofHq(C) (should it be �nite) is called the Betti number
� q(C) of the chain complex.

If C� and C0
� are two chain complexes, achain map is a collection of morphisms

' q : Cq ! C0
q such that the following diagram commutes.

Cq Cq� 1

C0
q C0

q� 1

@q

' q ' q� 1

@0
q

This commutation property ensures that the morphisms' q induces morphisms at the
homology levelHq(' ) : Hq(C) ! Hq(C0). Two chain complexesC and C0 are said
to be isomorphic if there exist two chain maps' : C ! C0 and ' 0 : C0 ! C with
' q' 0

q = id C0
q

and ' 0
q' q = id Cq for every q � 0.

3.7.2 Simplicial homology

Let K be a simplicial complex. An ordering of a simplex� = f x0; : : : ; xqg is an
enumeration of x0; : : : ; xq. We say that two orderings of a simplex� have the same
orientation if they di�er by an even permutation. This de�nes an equivalence relation
on the set of orderings of� , with two equivalence classes, that we call oriented simplexes
and denote by~� and � ~� . The chain complexC� (K ) = C� (K; G ) is de�ned by letting
Cq(K ) be the free group generated by the orientedq-simplexes ofK with coe�cients
in G. Given ~� an oriented q-simplex, we denote by~� i the oriented (q � 1)-simplex
obtained from ~� , with i th entry omitted. The boundary operator is de�ned by

@q~� =
qX

i =0

(� 1)i ~� i ; (3.23)

and is then extended by linearity to Cq(K ). One can check that@q@q+1 = 0 , so that
C� (K ) is indeed a chain complex. The corresponding homology groups are called
the simplicial homology groupsof K (with coe�cients in G), and are denoted by
H � (K ) = H � (K; G ).

3.7.3 Singular homology

Let X be a topological space. A singular simplex is a continuous map� : � q ! X . We
let � i be the map(t1; : : : ; tq� 1) ! � (t1; : : : ; 0; : : : ; tq� 1), where 0 is at the i th position.
The chain complexC� (X; G ) is de�ned by letting Cq(X ) be the free group generated
by the q-dimensional singular simplexes ofX with coe�cients in G. The boundary
operator is de�ned by

@q� =
qX

i =0

(� 1)i � i ; (3.24)
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and is then extended by linearity to Cq(X ). The corresponding homology groups are
called the singular homology groupsof X (with coe�cients in G), and are denoted by
H � (X ) = H � (X; G ).

Simplicial homology can be seen as a particular case of singular homology. Indeed,
the singular chain complexC� ( ~K ) of the geometric realization ofK can be shown to be
isomorphic to the simplicial chain complexC� (K ), so that in particular the homology
groups are also isomorphic [Spa12, Section 4.4].

For both homologies, maps between objects (simplicial complexes or topological
spaces) induce maps between chain complexes, and therefore also maps between
homology groups. Precisely, iff : X ! Y is a continuous map, then there exists a
chain map C� (f ) : C� (X ) ! C� (Y ), obtained by de�ning C� (f )( � ) = f � � for � a
singular simplex in X (and extended by linearity). The map f � := H � (C� (f )) is then
de�ned between the homology groupsH � (X ) and H � (Y ). A similar statement holds
for simplicial homology, with continuous maps replaced by simplicial maps. We will
drop the C in the notation when the context is clear, e.g. � q(X ) for � q(C(X )) , Zq(X )
for Zq(C(X )) , etc.

Remark 3.7.1. The universal coe�cient theorem asserts that the integral homology
groupsH � (C; Z) completely determines the homology groupsH � (C; G) for any abelian
group G [Hat02, Chapter 3.A]. However, the theory of persistence homology is
developed for vector spaces over some �eldk (having a �eld is in particular required
for the decomposition theorem to hold, see Theorem 3.8.4 below). We will therefore
chooseG to be a �nite �eld. This has an impact on the homology groups only if the
underlying space has non-null torsion, whereas in practice, the choice of the �eld for
which persistent homology is computed seems to have very little impact [OY20].

3.8 Theoretical foundations of Topological Data Analysis

The fundamental object of persistent homology theory is the persistence module. We
�x a �eld k and a homology dimensionq � 0 in the following. We refer to the book
[Cha+16] for a thorough presentation of the content of this section.

De�nition 3.8.1 (Persistence modules). A persistence moduleV is a family of k-
vector spaces(Vt )t2 R together with linear mapsvs;t : Vs ! Vt for all s � t, satisfying
the conditions vt;t = id Vt and vt;r vs;t = vs;r for all s � t � r .

Persistence modules are typically induced by a �ltration of some topological space
X . Let � : X ! R be a function and � t := f x 2 X : � (x) � tg be the sublevel sets
of � . The collection (� t )t2 R forms an increasing sequence of spaces that we call a
�ltration. Letting V (� )q;t = Hq(� t ; k) be the q-dimensional singular homology group
of � t with coe�cients in k, we obtain a persistent moduleVq(� ), with maps v(� )s;t

being induced by the inclusion maps� s ,! � t for s � t. The persistent moduleVq(� )
describes the evolution of the homology of� through di�erent scales t. A similar class
of persistence modules is given by the simplicial homology of �ltrations of simplicial
complexes. A �ltration K of simplicial complexes is an increasing sequence of simplicial
complexes(K t )t � 0 sharing the same vertex set. One can de�ne the persistence module
Vq(K ) with V (K )q;t = Hq(K t ; k) being the simplicial homology group ofK t . Of
particular interest are the Rips �ltration Rips(A) = ( Rips(t; A )) t � 0 of a setA and its
ƒech �ltration Cech(A) = (Cech( t; A )) t � 0.
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3.8.1 The interleaving distance

Two persistence modulesV and W are close if for everyt 2 R, Vt is similar to Wt0 for
somet0 close tot. This idea is made precise by theinterleaving distance. Let " � 0.
An "-morphism between two persistence modulesV and W is a collection of linear
maps ' t : Vt ! Wt+ " for t � 0 such that the following diagram commutes.

Vs Vt

Ws+ " Wt+ "

vs;t

' t ' t

ws+ ";t + "

The persistence modulesV and W are "-interleaved if there exists two"-morphisms
' : V ! W and ' 0 : W ! V such that the following diagrams commute for every
t 2 R.

Vt Vt+2 " Vt+ "

Wt+ " Wt Wt+2 "

vt;t +2 "

' t ' t + "' 0
t + "

wt;t +2 "

' 0
t

The interleaving distancedi betweenV and W is equal to

di (V; W) := inf f " � 0 : V and W are "-interleavedg: (3.25)

The interleaving distance can be bounded e�ciently in di�erent settings.

Theorem 3.8.2 (Stability theorem) .

1. Let f; g : X ! R be two functions. Then,

di (Vq(f ); Vq(g)) � k f � gk1 : (3.26)

2. Let A; B be two compact sets inRD . Then,

di (Vq(Cech(A)) ; Vq(Cech(B )) � dGH (A; B );

di (Vq(Rips(A)) ; Vq(Rips(B )) � dGH (A; B ):
(3.27)

3.8.2 The decomposition theorem

In general, a persistence module is a complex object that may be cumbersome to work
with. However, it turns out that under �niteness assumptions, persistence modules
enjoy a simple combinatorial description given by the so-calleddecomposition theorem.
Before stating the result, we explicit what it means for two persistence modules to be
isomorphic (see also Figure 3.8).

De�nition 3.8.3. An (observable) morphism' : V ! W between persistence modules
is a collection of linear maps' s;t : Vs ! Wt , such that for everys � u < v � t, the
following diagram commutes.

Vs Vu

Wt Wv

vs;u

' s;t ' u;v

wv;t



3.8. Theoretical foundations of Topological Data Analysis 47

Figure 3.8: A morphism ' between persistence modules is a collection
of maps which satisfy some coherence properties.

If ' : V ! W and ' 0 : W ! U are two observable morphisms, the composition'' 0 is
de�ned by ('' 0)s;t = ' u;t � ' 0

s;u for any u 2 (t; s). The identity morphism idV : V ! V
is de�ned by ' s;t = vs;t for all s < t . A morphism ' : V ! W is an isomorphism
if there exists another morphism' 0 : W ! V with '' 0 = idW and ' 0' = idV . The

persistence modulesV and W are then said to beisomorphic, and we write V
ob
' W.

It can be shown that two persistence modulesV and W are at distance0 for the

interleaving distance if and only if V
ob
' W, while being 0-interleaved is a slightly

stronger notion [CCBS16].
The direct sum V � W between two persistence modulesV and W is de�ned by

(Vt � Wt )t2 R, with linear maps vt;s � wt;s . Let 
 1 := f u = ( u1; u2) 2 [�1 ; + 1 ]2 :
u1 < u 2g. Given a point u 2 
 1 , we let ku be the persistence module withku

t = k if
u1 � t � u2 and f 0g otherwise, with arrows given byvs;t = idk if u1 � s � t � u2 and
0 otherwise. Those persistence modules, that we callinterval modules, serve as building
blocks for more complex persistence modules. We call a persistence module tame (or
q-tame) if, for all s < t , the rank of the map vs;t is �nite. We call this quantity the
persistent Betti number � s;t (V) of the persistence moduleV.

Theorem 3.8.4 (Decomposition theorem). Let V be a tame persistence module. Then,
there exists a unique multisetdgm(V) in 
 1 such that V is isomorphic to

V
ob
'

M

u2 dgm( V)

ku : (3.28)

The multiset dgm(V) is called the persistence diagramof V.

There are two types of pointsu appearing in the decomposition(3.28): those which
contain in�nite coordinates, called essential points, and the others. It can be shown
that if two persistence modulesV and W possess a di�erent number of essential points,
then di (V; W) = + 1 , while the distance is �nite otherwise. To simplify the exposition,
we will only consider persistence modules with no essential points , so that
the interleaving distance is always �nite. Properties of persistence diagrams with a
�xed number n > 0 of essential points can then be easily inferred from this case.

With this assumption in mind, a persistence diagram is actually a multiset of
points in 
 := f u = ( u1; u2) 2 R2 : u1 < u 2g. Equivalently, it can be considered as a
discrete measure on
 , by identifying a multiset a with the measure

P
u2 a � u . Both

perspectives are relevant, and we will often switch between the two without mentioning
it. Each point u = ( u1; u2) of a persistence diagram corresponds to some interval
in the decomposition(3.28), which informally represents a topological feature of the
associated persistence module, which appeared atVu1 and disappeared atVu2 . The
persistencepers(u) := u2 � u1 of the point u represents the length of the corresponding



48 Chapter 3. Background

Figure 3.9: Left. A �ltration of simplicial complexes. Positive
simplexes are displayed in red, whereas negative simplexes are displayed
in blue. Right. The corresponding persistence diagrams forq = 0

(crosses) andq = 1 (dots).

interval, while the associated topological feature is considered relevant ifpers(u) is
large. As such, points close to the diagonal@
 := f (u1; u2); u1 = u2g in a persistence
diagram are often thought of as representing topological noise whereas points with
large persistence are considered to contain relevant topological information.

The �q� in q-tame is for quadrant: a persistence module isq-tame if the associated
persistence diagram, seen as a measure, gives �nite mass to every quadrant¸ u = f v 2

 : u1 � v1 < v 2 � u2g, with the relation

� u1 ;u2 (V) = dgm( V)(¸ u); 8u = ( u1; u2) 2 
 : (3.29)

Proposition 3.8.5 (Theorem 3.37 in [Cha+16]). Fix an integer q � 0.

1. Let X be a topological space homeomorphic to a locally �nite simplicial complex,
and let � : X ! R be a proper continuous function bounded below. Then,Vq(� )
is tame.

2. Let S be a compact subset ofRD . Then, Vq(Cech(S)) and Vq(Rips(S)) are tame.

In particular, under such assumptions, by Theorem 3.8.4, the persistence diagram
dgmq(� ) := dgm(Vq(� )) of � is well-de�ned, and so are the ƒech and Rips persis-
tence diagrams ofS, denoted respectively bydgmC

q (S) := dgm(Vq(Cech(S))) and
dgmR

q (S) := dgm( Vq(Rips(S))) .

De�nition 3.8.6 (Space of persistence diagrams). The spaceD of persistence diagrams
is the space of all discrete Radon measures on
 with integer masses.

To put it another way, we have a 2 D if and only if a(¸ u) < 1 for every u 2 
 .
By the decomposition theorem, the spaceD is precisely the set of persistence diagrams
of q-tame persistence modulesV. We introduce also the spaceDf of �nite persistence
diagrams.

3.8.3 Persistence diagrams in the �nite setting

In practice, persistence modules will be obtained through the simplicial homology of
some �nite �ltration K = ( K t i )0� i � N of simplicial complexes with t0 � � � � � tN and
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�nite vertex set S:
K t0 � K t1 � � � � � K tN :

We may assume without loss of generality that at each step only one simplex is added,
so that K t i +1 = K t i [ f � i g. If � i is of dimensionq + 1 , then two di�erent situations
may arise:

1. Either � i 2 Zq+1 (K t i +1 ). In that case, one can show that� i cannot be homologous
to a cycle in K t i , and

Hq+1 (K t i +1 ) ' Hq+1 (K t i ) � [� i ]t i +1 ;

where [� i ]t i +1 represents the class of cycles homologous to� i in K t i +1 . The
simplex � i is then called positive.

2. Either � i 62Zq+1 (K t i +1 ). In that case, one can show that@q+1 � i 2 Bq(K t i ) and
that

Hq(K t i +1 ) ' Hq(K t i )=[@q+1 � i ]t i :

where [@q+1 � i ]t i represents the class of cycles homologous to� i in K t i . The
simplex � i is then called negative.

When a negative simplex� i appears, then the �hole� corresponding to the class[@q+1 � i ]t i

in Hq(K t i ) is ��lled�. The class [@q+1 � i ]t i appeared with some positiveq-dimensional
simplex � j : informally, the �hole� was born with � j . Those two simplexes (one positive
and one negative) form aq-simplex pair. The persistence diagramdgm(V(K )) of the
�ltration for q-dimensional homology is given by the collection of the pairs(t j ; t i )
for (� i ; � j ) a q-simplex pair (if t i = t j , we discard the pair). Those pairings can be
e�ciently computed by a Gaussian elimination algorithm on the boundary matrix
operator, see [EH10] for details.

3.8.4 The bottleneck distance

The stability theorem (Theorem 3.8.2) justi�es the use of the interleaving distance
as a meaningful distance between persistence modules. However, detecting if two
persistence modules are"-interleaved isa priori a nontrivial task, so that it is not clear
how the interleaving distance can be computed. Theisometry theorem states that
the interleaving distance is actually equal to a distance between persistence diagrams,
called the bottleneck distance, which is de�ned as the optimum of some matching
problem. As such, the bottleneck distance can be computed e�ciently on a computer,
opening the door to the use of persistence diagrams in real-life applications. We �x an
arbitrary norm k � k on R2.

De�nition 3.8.7 (Bottleneck distances). Let a; b2 D . The set of partial matchings
�( a; b) betweena and b is the set of bijections
 : a [ @
 ! b[ @
 . For 1 � p < 1 ,
the p-bottleneck distance is de�ned as

dp(a; b) := inf

 2 �( a;b)

 
X

x2 a[ @


kx � 
 (x)kp

! 1=p

: (3.30)

while the bottleneck distance is equal tod1 (a; b) := inf 
 2 �( a;b) supx2 a[ @
 kx � 
 (x)k.

Given two persistence diagramsa and b, a partial matching is a way to transport
the points of a towards the points of b. However, the total masses ofa and b may
di�er. Therefore, the diagonal is used as an in�nite reservoir of mass, and one can
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Figure 3.10: Two matchings between a blue persistence diagram and
a red persistence diagram. The rightmost matching is optimal, i.e. it

attains the minimum in De�nition 3.8.7.

freely map points from a or b towards the diagonal with cost given by the distance
to the diagonal. In the persistence module decomposition

L
u2 a ku associated with a

diagram a, points on the diagonal represent interval modulesku with length 0, and
one can indeed show that for any �nite setc � @
 ,

M

u2 a[ c

ku ob
'

M

u2 a

ku ; (3.31)

justifying the use of @
 as a reservoir. The bottleneck distance is then given by the
longest edge in an optimal matching between two diagramsa and b. The distance
is then not changed if we add an arbitrary number of points in the two diagrams
at distance less thand1 (a; b) from the diagonal. On the contrary, the p-bottleneck
distance for p �nite is not blind to points close to the diagonal, as every edge is taken
into account when computing the cost of a matching.

Remark 3.8.8. The p-bottleneck distance for p < 1 was originally introduced in
[CS+10] as a generalization of the bottleneck distance. Due to its similarities with
optimal transport metrics, it was then called the Wasserstein distance between persis-
tence diagrams. There are however key di�erences between the metricsdp and classical
Wasserstein distances betweenWp. Exploring the di�erences (and the similarities)
between the two notions will be at the core of Chapter 6. To avoid confusion, we
therefore choose the name ofp-bottleneck distance for thedp distance, although it is
not standard in the literature.

Theorem 3.8.9 (Isometry theorem). Let k � k be the1 -norm on R2. Let V, W be
q-tame persistence modules. Then,

di (V; W) = d1 (dgm(V); dgm(W)) : (3.32)

The three theorems we have introduced (the stability theorem, the decomposition
theorem and the isometry theorem) lay the theoretical foundations of TDA. They
ensure that persistence diagrams exist in a large variety of settings (decomposition
theorem), while a meaningful distance between them exists (stability theorem), which
can be e�ciently computed (isometry theorem).

Remark that for persistence diagrams having an in�nite number of points, the
p-bottleneck distancedp (p < 1 ) can be in�nite. For p � 1 , we introduce the class
Dp of persistence diagrams which are at �nitedp-distance from the empty diagram
0. Precisely, for a 2 D , we call the quantity Persp(a) := dp

p(a; 0) =
P

u2 a pers(u)p the
total p-persistence ofa, and let

Dp := f a 2 D ; Persp(a) < 1g : (3.33)
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For p = 1 , we haved1 (a; 0) < 1 for any a 2 D , so that the analog ofDp is simply D.
Although smaller than D, the metric space(Dp; dp) possesses better properties than
(D; d1 ) from a geometric and topological perspective (see Chapter 6). However, the
fundamental isometry theorem does not hold forp < 1 . A weaker form of stability is
still satis�ed by the p-bottleneck distance forp < 1 , proven in [CS+10]. We say that
a function � : X ! R is tame if Vq(� ) is tame for everyq � 0.

De�nition 3.8.10. Let (X ; d) be a metric space and1 � p < 1 . We say that (X ; d)
implies bounded degree-p total persistence if there exists a positive constantC such
that, for every 1-Lipschitz tame function � : X ! R, we havePersp(dgmq(� )) � C for
every q � 0.

Spaces implying bounded degree-p total persistence included-dimensional Rie-
mannian compact manifolds for p > d, but also bilipschitz images of (geometric
realizations of) �nite simplicial complexes. In particular, a d-dimensional Rieman-
nian compact manifold M implies bounded degree-p total persistence with constant
CM diam(M )p� d p

p� d .

Theorem 3.8.11 (p-bottleneck stability theorem). Let (X ; d) be a space which implies
bounded degree-p total persistence with associated constantC. Let � 1; � 2 : X ! R be
two L-Lipschitz tame functions. Then, for all p0 > p ,

dp0(dgm(� 1); dgm(� 2)) � (CLp)
1
p0k� 1 � � 2k

1� p
p0

1 : (3.34)

We end this section by mentioning some basic results on the topological properties
of Dp, see [MMH11] for details.

Theorem 3.8.12. For 1 � p � 1 , the space(Dp; dp) is complete. If p < 1 , it is
also separable, so that(Dp; dp) is a Polish metric space. The space(D1 ; d1 ) is not
separable.

Considering the spaceDp instead of the set Df of �nite persistence diagrams
is required to have a complete space. Indeed, the sequence(an )n in Df given by
an =

P n
i =0 � u i , where ui = (0 ; 2� i ) converges towardsa =

P
i � 0 � u i 2 D p. Actually,

we have the following result.

Proposition 3.8.13. For 1 � p < 1 , the spaceDp is the completion ofDf for the
dp metric.

3.9 Statistical methods in Topological Data Analysis

The standard pipeline in TDA goes as follows. We observe a collectionX 1; : : : ; X n

of complex objects with some task in mind (e.g. classi�cation or regression). Those
objects can for instance be graphs, point clouds, 3D shapes, time series, images, etc.
A �rst step consists in building �ltrations K 1; : : : ; K n on top of them, which will then
be used in a second step to obtain a collection of persistence diagramsa1; : : : ; an .
We think of this set of persistence diagrams as containing the relevant topological
information to explain the underlying phenomenon generating the dataset. The goal
is then to treat e�ciently this topological information, either to directly use it for
the learning task at stake or by plugging it in a larger pipeline (for instance by using
persistence diagrams as a layer in a neural network).

A �rst approach consists in performing the statistical analysis directly in the space
of persistence diagrams. As the space of persistence diagrams is only a metric space
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and lacks additional structure, this is not a trivial task, and even simple objects like
the expected value or the variance are not trivially de�ned. The metric analogue of
the expected value is the Fréchet mean of a distribution. Fréchet means for persistence
diagrams were introduced in a seminal paper by Mileyko, Mukherjee and Harer
[MMH11], where authors study the metric properties of the spaceDp.

De�nition 3.9.1. Let (X ; d) be a metric space andP 2 P p
1 (X ). De�ne the energy of

y 2 X as
E(y) := Ex� P [dp(x; y)]: (3.35)

A p-Fréchet mean ofP is an elementy� 2 X such that

E(y� ) = inf fE (x) : x 2 X g: (3.36)

We denote byFr�echet p(P) the set ofp-Fréchet means ofP.

In particular, if (X ; d) is the Euclidean space andp = 2 , then there exists a unique
barycenter, given by the expected value. The conditionEx� P [d(x; x 0)p] < 1 (that
is P 2 P p

1 (X )) ensures the �niteness of the energy functional. In general, the set of
p-Fréchet means may either be empty or contain several elements. Mileyko, Mukherjee
and Harer show that there exist2-Fréchet means for distributions P with compact
support.

Theorem 3.9.2 (Theorem 24 in [MMH11]). Let P 2 P 2
1 (Dp). Assume that P has

compact support. Then,Fr�echet 2(P) is non-empty.

The spaceDp is not locally compact, so that the condition in the above theorem
is strong. It can actually be replaced by a weaker tail condition on the random
variable Persp(a) for a � P [MMH11, Theorem 28]. In Chapter 6, we will show that
Fr�echet p(P) is non-empty for the dp distance for any1 � p < 1 , without any further
assumptions onP.

From a computational perspective, several algorithms exist to compute Fréchet
means of a set of persistence diagrams. A �rst algorithm, based on the Hungarian
algorithm used in optimal transport, was proposed in [Tur+14]. Although it runs in
polynomial time, it only converges to a local minimum of the energy functional, so
that it may not output a Fréchet mean with a bad initialization. A faster version of
the algorithm was then proposed in [KVT19; VBT19], without still any guarantees on
the convergence towards a Fréchet mean. Another approach, developed by Lacombe,
Cuturi and Oudot [LCO18], consists in relaxing the problem to make it convex, using
an Eulerian approach. The output of their algorithm is provably close to a Fréchet
mean, although it is not a persistence diagram, but a more generalpersistence measure.
Persistence measures are natural generalizations of persistence diagrams in random
settings and will be studied in detail in Chapter 6.

A second possibility to perform statistical tasks with persistence diagrams consists
in creating easier to handle statistics by mapping the diagrams to a vector space thanks
to a feature map 	 , also called a representation or a vectorization.

De�nition 3.9.3 (Representation of persistence diagrams). A representation of a
persistence diagram is a map	 : Dp ! B , where B is a Banach space.

Numerous representations have been introduced in the literature (see, e.g., [Ada+17;
BM19; Bub15; Cha+15a; Che+15; KHF16; Rei+15]). Let us give several examples,
see also Figure 3.11.
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Figure 3.11: Some common representations of persistence diagrams.
From left to right: A persistence diagram. Its persistence surface
[Ada+17], which is a persistence measure. The corresponding persis-
tence silhouette [Cha+15a]. The corresponding Betti Curve [Ume17].

� Let K : R2 ! R be a nonnegative Lipschitz continuous bounded function
(e.g.K (x; y) = exp

�
� kx� yk2

2

�
) and de�ne f : x 2 
 7! d(x; @
 )p�K (x; �), so that

f (x) : R2 ! R is a real-valued function. The representation	 : a 7!
P

x2 a f (x)
takes its values in(Cb(R2); k � k1 ), the (Banach) space of continuous bounded
functions. This representation is called the persistence surface and has been
introduced with slight variations in di�erent works [Ada+17; Che+15; KHF16;
Rei+15].

� Let u = ( u1; u2) 2 
 . We let f u : t 2 R 7! max(0; min(u1 + t; u2 � t) be the tent
function in u. The persistence landscapeof a persistence diagrama is a sequence
of functions (� k )k� 1, where � k (t) is the kth largest value among thef u(t) for
u 2 a [Bub15]. A related representation is given by the persistence silhouette
[Cha+15a]. Given a weight function w : 
 ! [0; + 1 ), the persistence silhouette
of a is obtained as the weighted average of the tent functions:

Silhouettew(a) =
X

u2 a

w(u)f u : (3.37)

� The Betti curve associated to a persistence diagrama is the curve � : t 2 R 7!
a(¸ t;t ). If a is obtained as the persistence diagram of some �ltrationK for
q-dimensional homology, then we indeed have� (t) which is equal to the Betti
number of the q-dimensional homology group ofK t .

� A kernel on the space of persistence diagrams is a mapk : Dp � D p ! R such
that, for every persistence diagramsa1; : : : ; an and real numbersc1; : : : ; cn , we
have X

1� i;j � n

k(ai ; aj )ci cj � 0: (3.38)

Mercer's theorem asserts that for such a kernel there exists a Hilbert space
(H; h�; �i ), called a Reproducing Kernel Hilbert Space (or RKHS) such that
k(a; b) = h	( a); 	( b)i for some map	 : Dp ! H . Kernel methods are typically
used to perform non-linear classi�cations using SVMs. Kernels on the space
of persistence diagrams can be seen as special instances of representations,
although the map 	 is never computed in practice (only the numbersk(ai ; aj )
are computed). An example of a kernel on the space of persistence diagrams is
given by the sliced Wasserstein kernel[CCO17].

Let us also mention that more recent approaches propose to use representations
of persistence diagrams as a layer in a neural network architecture [Hof+17; Car+20;
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Kim+20]. The representations are then parametrized by some set� � Rd (e.g. we
consider a parametrized family of weight functions in the persistence silhouette) and
the parameter � 2 � is optimized to solve the learning task at stake.

In Chapter 8, we will propose a systemic study of representations onDp, by giving
characterization of continuity for representations and by identifying a subclass of
feature maps having particularly pleasant properties, that we will call linear.
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Part I

Contributions to manifold
inference
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Chapter 4

Adaptive estimation in manifold
inference

Given Xn = f X 1; : : : ; X ng a set of i.i.d. observations from some law� on RD supported
on (or concentrated around) ad-dimensional manifoldM , the goal of manifold inference
is to design estimators�̂ which approximate accurately some quantity� (M ) related
to the geometry of M (e.g. its dimensiond, its homology groups, its tangent spaces,
or M itself). As explained in the introductory chapter (Chapter 2), the emphasis
has mostly been put on designing estimators attaining minimax rates on a variety
of models, which take into account di�erent regularities of the manifold and noise
models. We focus in this chapter on the problem of estimating a manifold in the
modelsQ2;d

� min ;f min ;f max
(
 ) introduced in Chapter 3. The estimators introduced in the

literature all rely on the knowledge of the quantities d, � min , f min and f max , whereas
those quantities are unknown in practice. One possibility to overcome this issue is to
estimate in a preprocessing step those parameters. This may however become the main
bottleneck in the estimating process, as regularity parameters are typically harder
to estimate than the manifold itself. This is for instance the case of the reach� (M )
[Aam+19], while no procedures with theoretical guarantees exist to estimatef min and
f max .

Another approach, to which this chapter is dedicated, consists in designingadaptive
estimators of � (M ). An estimator is called adaptive if it attains optimal rates of
convergence on a large class of models (see Section 4.1 for a precise de�nition). Our
main contribution consists in introducing a manifold estimator M̂ which is minimax
(with respect to the Hausdor� distance dH ) simultaneously on all the statistical models
Q2;d

� min ;f min ;f max
(
 ). Our adaptive estimator, is built by selecting an estimator in a

family of estimators de�ned in Section 4.2. The latter is based on thet-convex hull
Conv(t; Xn ) of the set of observationsXn . For a given setA � RD , the t-convex hull
Conv(t; A ) is de�ned by

Conv(t; A ) :=
[

� � A; r (� )� t

Conv(� ); (4.1)

where r (� ) is the radius of a set � , i.e. the radius of the smallest enclosing ball of
� and Conv(� ) is its convex hull. The t-convex hull is an interpolation between the
convex hull Conv(A) of A (t = + 1 ) and the set A itself (t = 0 ): it gives a �local
convex hull� of A at scalet. See Figure 4.1 for an example.

The loss dH (Conv(t; Xn ); M ) of the t-convex hull Conv(t; Xn ) can be e�ciently
controlled for t larger than some thresholdt � (Xn ) (see De�nition 4.2.2). As the
threshold t � (Xn ) is very close to the approximation rate"(Xn ) := dH (Xn ; M ) of the
point cloud, it is known to be of the order (log n=n)1=d (see e.g. [RC07, Theorem 2]),
and one obtains a minimax estimator on theC2-models by taking the parametert of
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Figure 4.1: The t-convex hull Convt (A) (in green) of a curveA (in
black).

this order (see Theorem 4.2.8). The exact value oft depends crucially on the parameter
f min which is unknown, so that it is unclear how the parametert should be chosen in
practice.

In Section 4.3, we build an adaptive estimator by selecting a parametert � (Xn )
(depending on some hyperparameter� 2 (0; 1)), which is chosen solely based on the
observationsXn . More precisely, we consider the convexity defect function of a setA,
originally introduced in [ALS13], and de�ned by

h(t; A ) = dH (Conv(t; A ); A) 2 [0; t]: (4.2)

As its name indicates, the convexity defect function measures how far a set is from being
convex at a given scale. For instance, the convexity defect function of a convex set is
null, whereas for a manifoldM with positive reach � (M ), we haveh(t; M ) � t2=� (M )
for t > 0, so that a manifold M is �locally almost convex� (see Proposition 4.3.2). We
show that the convexity defect function of Xn exhibits a sharp change of behavior
around the threshold t � (Xn ). Namely, for valuest which are smaller than a fraction
of t � (Xn ), the convexity defect function h(t; Xn ) has a linear behavior, with a slope
approximately equal to 1 (see Proposition 4.4.1), whereas fort � t � (Xn ), the convexity
defect function exhibits the same quadratic behavior than the convexity defect of a
manifold (see Proposition 4.3.3). In particular, its slope is much smaller than1 as long
as t � t � (Xn ) is signi�cantly smaller than the reach � (M ). This change of behavior at
the value t � (Xn ) suggests selecting the parameter

t � (Xn ) := supf t < t max ; h(t; Xn ) > �t g;

where � 2 (0; 1) and tmax is a parameter which has to be smaller than the reach� (M )
of the manifold (see De�nition 4.3.4). We show (see Proposition 4.3.5) that with high
probability, in the case where the sampleXn is exactly on the manifold M , we have

t � (Xn ) � t � (Xn ) �
2t � (Xn )

�

�
1 +

t � (Xn )
� (M )

�
: (4.3)

In particular, we are able to control the loss ofConv(t � (Xn ); Xn ) with high probability.
By choosingtmax as a slowly decreasing function ofn (for instance, tmax = ( logn) � 1),
we obtain an estimator

M̂ := Conv( t � (Xn ); Xn )

which is adaptive on the whole collection ofC2-models (see Corollary 4.3.6).
The estimator M̂ is to our knowledge the �rst minimax adaptive manifold estimator.

Our procedure allows us to actually estimate the approximation rate"(Xn ). The
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parameter t � (Xn ) can therefore be used as a hyperparameter in di�erent settings.
To illustrate this general idea, we show how to create an adaptive estimator of the
homology groups (see Corollary 4.3.9) and of the tangent spaces (see Corollary 4.3.10)
of a manifold.

Related work

�Localized� versions of convex hulls such as thet-convex hulls have already been
introduced in the support estimation literature. For instance, slightly modi�ed versions
of the t-convex hull have been used as estimators in [AB16] under the assumption
that the support has a smooth boundary and in [RC07] under reach constraints on
the support, with di�erent rates obtained in those models. Selection procedures were
not designed in those two papers, and whether our selection procedure leads to an
adaptive estimator in those frameworks is an interesting question.

The statistical models we study in this article were introduced in [Gen+12a] and
[AL18], in which manifold estimators were also proposed. If the estimator in [Gen+12a]
is of purely theoretical interest, the estimator proposed by Aamari and Levrard in
[AL18], based on the Tangential Delaunay complex, is computable in polynomial time
in the number of inputs and linear in the ambient dimensionD. Furthermore, it is a
simplicial complex which is known to be ambient isotopic to the underlying manifold
M with high probability. It however requires the tuning of several hyperparameters in
order to be minimax, which may make its use delicate in practice. In contrast, the
t-convex hull estimator with parameter t � (Xn ) is completely data-driven, while keeping
the minimax property. In Section 4.5, we propose to select some parameter~t � (Xn )
which shares some properties witht � (Xn )�although with less optimal constants�
while being e�ciently computable. However, unlike in the case of the Tangential
Delaunay complex, we have no guarantees on the homotopy type of the corresponding
estimator.

4.1 Preliminaries

Before going further, let us note that there are implicit constraints on the di�erent
parameters of the modelQ2;d

� min ;f min ;f max
. Indeed, by Proposition 3.5.7.2, ifM 2 M 2;d,

we havejvolM j � ! d� (M )d, with equality if and only if M is a d-dimensional sphere
of radius � (M ). Hence, if � has a densityf on M lower bounded byf min , we have

1 =
Z

M
f (x)dx � f min jvolM j � f min ! d� (M )d;

with equality if and only if � is the uniform distribution on a d-sphere of radius� (M ).
We therefore have the following lemma.

Lemma 4.1.1. Let d be an integer smaller thanD and � min , f min be positive con-
stants. Let ! d be the volume of the unitd-sphere. Then,Q2;d

� min ;f min ;+ 1 is empty for
f min ! d� d

min > 1 and contains only uniform distributions on d-sphere of radius� min if
f min ! d� d

min = 1 .

A model containing only spheres is degenerate from a minimax perspective, as laws
in the model are then characterized by onlyd + 1 observations. To discard such a
model, we will assume in the following that there exists a constant� < 1 such that
f min ! d� d

min � � d. Note that this is not restrictive as any � 2 Q 2;d
� min ;f min ;+ 1 also belongs

to Q2;d
� 0

min ;f 0
min ;+ 1 for � 0

min � � min and f 0
min � f min .
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We let Q2;d be the union of the Q2;d
� min ;f min ;f max

(
 ) for � min , f min , f max , 
 > 0 with
f min ! d� d

min � � d. For � 2 Q 2;d, let M (� ) be equal to the support of its �rst marginal � 1

(recall that the �rst marginal corresponds to the distribution supported on a manifold,
whereas� 2 corresponds to the noise, see Chapter 3). ThenM takes its values in the
metric space(K(RD ); dH ). We use the following parametrization of the setQ2;d :
let � d be the set of tuplesq = ( � min ; f min ; f max ; � ), with � min ; f min ; f max ; � > 0 and
f min ! d� d

min � � d. We let Q2;d
q;n = Q2;d

� min ;f min ;f max
(
 n ) for 
 n = � (log n=n)2=d.

Theorem 4.1.2. Let � 2 (0; 1). For any 1 � d < D and q = ( � min ; f min ; f max ; � ) 2 � d

with f max < 1 , we have forn large enough,
�

C(1 � � )
(! df min )2=d� min

+
�
2

�
� lim inf

n

R n (M; Q2;d
q;n; dH )

(log n=n)2=d
� lim sup

n

R n (M; Qq;n; dH )

(log n=n)2=d
� Cq;d

(4.4)

whereC is an absolute constant andCq;d is a constant which depends onq and d.

The upper bound in the previous theorem was already stated in Chapter 3, whereas
the constant in the lower bound follows from a careful adaptation of the proof of
Theorem 1 in [KZ15], detailed in Section 4.7.

Note that the statistical model Q2;d
q;n is not identi�able because of the presence of

noise. It however becomes identi�able �at the limit�, as the size of the noise is assumed
to converge to0 at a certain rate. Changing the model by adding a small proportion
of outliers would not change the minimax rates, as explained in [Gen+12a] or [AL18].
However, the t-convex hull estimators proposed in the next section are very sensible to
this addition and some decluttering preprocessing would be needed to obtain better
estimators on such models. Note also that thet-convex hull estimators will be minimax
on the modelQ2;d

� min ;f min ;+ 1 (
 n ), that is without any upper bound needed onf , while

the minimax rate is also equal to(log n=n)2=d (the lower bound is clear, and the next
section will show the upper bound).

The goal of the chapter is to design an estimatorM̂ which is minimax adaptive on
the scale of modelsQ2;d

q;n, 1 � d < D and q 2 � d, i.e. such that

sup
1� d<D

sup
q2 � d

lim sup
n!1

Rn (M̂ ; Q2;d
q;n; dH )

R n (M ; Q2;d
q;n; dH )

< C; (4.5)

for some constantC.

4.2 Minimax manifold estimation with t-convex hulls

Let Xn be a n-sample from law� , where � 2 Q 2;d
q;n. In this section, we derive rates of

convergence forConv(t; Xn ). First, we note that Conv(t; Xn ) is indeed an estimator,
that is the application

(x1; : : : ; xn ) 2 (RD )n 7! Conv(t; f x1; : : : ; xng)

is measurable. Indeed, using notation from Proposition 3.4.4, it can be written as
[

I �f 1;:::;n g

GE (Conv(f x i gi 2 I ); f x i gi 2 I )

whereE is the closed set ofK(RD ) given by f K 2 K (RD ) : r (K ) � tg. As the function
r is continuous and the functions[ , Conv and GE are measurable, the measurability
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Figure 4.2: The t-convex hull of the �nite set A (red crosses) is
displayed (in green) for two values oft. The black curve represents
the (one dimensional) manifold M . On the �rst display, the value of t
is smaller than t � (A), as there are regions of the manifold (circled in
blue) which are not attained by the projection � M restricted to the
t-convex hull. The value of t is larger than t � (A) on the second display.

follows. In order to obtain rates of convergence, we bound the Hausdor� distance
dH (Conv(t; A ); M ) for a general subsetA � M . First, [ALS13, Lemma 12] gives a
bound on the asymmetric Hausdor� distance between the convex hull of a subset of
M and the manifold M .

Lemma 4.2.1. Let � � M with r (� ) < � (M ) and let y 2 Conv(� ). Then,

d(y; M ) �
r (� )2

� (M )
: (4.6)

Proof. Lemma 12 in [ALS13] states that if � � M satis�es r (� ) < � (M ) and y 2
Conv(� ), then,

d(y; M ) � � (M )

 

1 �

s

1 �
r (� )2

� (M )2

!

:

As
p

u � u for u 2 [0; 1], one obtains the conclusion.

This lemma directly implies that dH (Conv(t; A )jM ) � t2=� (M ) if t < � (M ),
so that the set Conv(t; A ) is included in the t-neighborhood ofM . Therefore, the
projection � M is well-de�ned on the t-convex hull of A for such at. We introduce a
scale parametert � (A), which has to be thought of as the �best� scale parametert for
approximating M with Conv(t; A ).

De�nition 4.2.2. For A � M , let

t � (A) := inf f t < � (M ) : � M (Conv(t; A )) = M g: (4.7)

See Figure 4.2 for an illustration. Fort � (A) < t < � (M ), and for any point x 2 M ,
there existsy 2 Conv(t; A ) with � M (y) = x. Therefore,

d(x; Conv(t; A )) � j y � xj = d(y; M ) � dH (Conv(t; A )jM ):

By taking the supremum over x 2 M , we obtain that for any t � (A) < t < � (M ).

dH (Conv(t; A ); M ) = max f dH (Conv(t; A )jM ); dH (M j Conv(t; A ))

= dH (Conv(t; A )jM ) �
t2

� (M )
:

(4.8)
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The minimax rate is now obtained thanks to two observations: (i) t � (A) is close to
the approximation rate " (A) := dH (A; M ) and (ii) the approximation rate of a random
sample can be very well controlled.

Proposition 4.2.3. There exist absolute constantsC1 and C2 such that the following
holds. Let A � M be a �nite set. If " (A) � � (M )=8, then

"(A)
�

1 � C1
" (A)
� (M )

�
� t � (A) � " (A)

�
1 + C2

" (A)
� (M )

�
: (4.9)

The proof of Proposition 4.2.3 relies on considering Delaunay triangulations. Given
d + 1 points � in Rd that do not lie on a hyperplane, there exists a unique ball that
contains the points on its boundary. It is called the circumball of � , and its radius is
called the circumradiuscirc(� ) of � . Given a �nite set A � Rd that does not lie on a
hyperplane, there exists a triangulation ofA, called the Delaunay triangulation, such
that for each simplex � in the triangulation, the circumball of � contains no point of
A in its interior. Note that there may exist several Delaunay triangulations of a setA,
should the setA not be in general position. With a slight abuse, we will still refer to
�the� Delaunay triangulation of A, by simply choosing a Delaunay triangulation among
the possible ones should several exist. If the setA lies on lower dimensional subspace,
we consider the Delaunay triangulation ofA in the a�ne vector space spanned byA.
Therefore, for every setA, the Delaunay triangulation is well de�ned (for instance,
the Delaunay triangulation of three points aligned in the plane is the1-dimensional
triangulation obtained by joining the middle point with the two others).

Proof. Let x 2 M be such that d(x; A ) = "(A). By de�nition, there exists a simplex
� � A of radius smaller than t � (A) with x = � M (y) for some point y 2 Conv(� ). We
have, using Lemma 4.2.1,

" (A) = d(x; A ) � j x � yj + d(y; A) �
t � (A)2

� (M )
+ d(y; A):

Furthermore, d(y; A) � d(y; � ) � r (� ) � t � (A) by [ALS13, Lemma 1]. Therefore,

" (A) � t � (A)
�

1 +
t � (A)
� (M )

�
: (4.10)

If we prove the upper bound in Proposition 4.2.3, then the previous equation is enough
to imply the lower bound in Proposition 4.2.3. Let us show the upper bound. Without
loss of generality, we assume that0 2 M and we show that 0 2 � M (Conv(t; A )) for
t = "(A)(1 + 6 "(A)=� (M )) . This implies that t � (A) � " (A)(1 + 6 "(A)=� (M )) . Let
~A = � 0(A \ B (0; R)) for R = "(A)(2 + c0" (A)=� (M )) and c0 = 32=49. Note that the
condition "(A) � � (M )=8 implies that R < 7� (M )=24. We �rst state two lemmas.

Lemma 4.2.4. Assume that" (A) � 7� (M )=24. Let ~x 2 T0M with j~xj � " (A). Then
d(~x; ~A) � " (A).

Proof. By continuity, it su�ces to prove the claim for j~xj < " (A). In this case, according
to Proposition 3.5.8, if " (A) � 7� (M )=24, then there existsx 2 BM (0; 8" (A)=7) with
� 0(x) = ~x. Furthermore, by Proposition 3.5.7.4,

jxj � j ~xj + jx � ~xj � " (A) +
jxj2

2� (M )
� " (A)

�
1 +

32"(A)
49� (M )

�
:

We have d(x; A ) = jx � aj for some point a 2 A, and jaj � j x � aj + jxj � " (A)(2 +
c0" (A)=� (M )) . As � 0(a) 2 ~A, we haved(~x; ~A) � j ~x � � 0(a)j � j x � aj = d(x; A ) �
" (A).
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Lemma 4.2.5. Let V � Rd be a �nite set and t > 0. If dH (B(0; t)jV ) � t, then
0 2 Conv(V ).

Proof. We prove the contrapositive. If 0 62Conv(V ), then there exists an open half
space which containsV . Let x be the unit vector orthogonal to this halfspace. Then,
d(tx; V ) > t .

Apply Lemma 4.2.5 to V = ~A and t = "(A). For ~x 2 BT0M (0; " (A)) , we have
d(~x; ~A) � " (A) according to Lemma 4.2.4. Therefore, we have0 2 Conv( ~A). Consider
the Delaunay triangulation of ~A. The point 0 belongs to the convex hull of some
simplex ~� of the triangulation, with circumradius circ(~� ) and center of the circumball
~q. The simplex ~� corresponds to some simplex� in A, and the point 0 is equal to � 0(y)
for some point y 2 Conv(� ). By Proposition 3.5.7.1, we actually have� M (y) = 0 , and

to conclude, it su�ces to show that r (� ) � " (A)
�

1 + 6 " (A )
� (M )

�
. To do so, we use the

next lemma (recall that � � B M (0; R) with R < 7� (M )=24).

Lemma 4.2.6. Let � � B M (0; 7� (M )=24) and ~� = ~� 0(� ). Assume that0 2 Conv(~� ).
Then,

r (~� ) � r (� ) � r (~� )
�

1 + 6
r (~� )
� (M )

�
: (4.11)

Proof. As the projection is 1-Lipschitz, it is clear that r (~� ) � r (� ). Let us prove
the other inequality. Let � = f y0; : : : ; ykg, ~� = f ~y0; : : : ; ~ykg and �x 0 � i � k. As
yi 2 BM (0; 7� (M )=24), we have by Proposition 3.5.8

jyi j �
8
7

j~yi j �
16
7

r (~� ); (4.12)

where we used thatj~yi j � 2r (~� ) as 0 2 Conv(~� ). Let ~z be the center of the minimum
enclosing ball of~� . Write ~z =

P k
j =0 � j ~yj and let z =

P k
j =0 � j yj 2 Conv(� ). Then, we

have

jz � yi j � j z � ~zj + j~z � ~yi j + j~yi � yi j

�
kX

j =0

� j jyj � ~yj j + r (~� ) +
jyi j2

2� (M )
using Proposition 3.5.7.4

�
kX

j =0

� j
jyj j2

2� (M )
+ r (~� ) +

128
49

r (~� )2

� (M )
using Proposition 3.5.7.4 and (4.12)

� r (~� ) +
256
49

r (~� )2

� (M )
� r (~� ) + 6

r (~� )2

� (M )
using (4.12):

We obtain the conclusion as� is included in the ball of radius maxi jz � yi j and center
z.

Using the previous lemma, we are left with showing thatr (~� ) � " (A). We will
actually show the stronger inequality circ(~� ) � " (A) (the radius of a set is always
smaller than its circumradius). As 0 is in the circumball (that is centered at ~q), the ball
centered at ~q of radius j~qj does not intersect ~A. This enforcesj~qj � " (A): otherwise,
there would exist a ball of radius "(A) and at distance less than"(A) from 0 not
intersecting ~A, a contradiction with Lemma 4.2.4 (see Figure 4.3). Asj~qj � " (A), we
obtain, once again according to Lemma 4.2.4, thatcirc(~� ) = d(~q; ~A) � " (A) concluding
the proof.
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Figure 4.3: If j ~qj > " (A), then the ball BT0 M (~q;j~qj) contains a ball of
radius " (A) centered at a point at distance less than"(A) from 0 (here

denoted by ~w).

Proposition 4.2.7. Let � 2 Q 2;d
� min ;f min ;+ 1 and let Xn = f X 1; : : : ; X ng be an-sample

of law � . If r � � min =2, then

P("(Xn ) > r ) �
32d

! df min r d exp(� n8� d! df min r d): (4.13)

In particular, for n large enough

E[" (Xn )2] � 16
�

logn
! df min n

� 2=d

: (4.14)

Proof. The inequality (4.13) follows from Proposition 3.5.7.2, which implies that the
measure� is (a; d)-standard with a = 8 � d! df min : Proposition III.14 in [Aam17] then
yields the result. To prove the second inequality, we letr = 8(3 logn=(n! df min ))1=d.
Then, " (Xn ) � r with probability of order (logn)n� 2. If this event is not satis�ed, we
bound "(Xn ) by diam(M ), that is bounded by a constant depending ond; f min ; � min

(see Proposition 3.5.7.3 and the fact thatjvolM j � f � 1
min ). Therefore, for n large enough,

E[" (Xn )2] � 16
�

log n
! d f min n

� 2=d
.

By gathering those di�erent observations (Proposition 4.2.3 and Proposition 4.2.7)
and by using stability properties of t-convex hulls with respect to noise, we show that
t-convex hulls are minimax estimators onC2-models.

Theorem 4.2.8. Let 0 < d < D , n > 0 and q = ( � min ; f min ; + 1 ; � ) 2 � d. If
tn = C0 (log n=(! df min n))1=d (for some absolute constantC0), then we have forn large
enough, and some absolute constantC1,

Rn (Conv(tn ; Xn ); Q2;d
q;n; dH ) �

�
logn

n

� 2=d �
� +

C1

� min (! df min )2=d

�
(4.15)

i.e. Conv(tn ; Xn ) is a minimax estimator of M on Q2;d
q;n.

Proof. We �rst state a lemma which shows that the t-convex hull is stable under small
perturbations with respect to the Hausdor� distance.

Lemma 4.2.9. Let t; 
 > 0 and A; B � RD with dH (A; B ) � 
 . Then,

dH (Conv(t; B )j Conv(t + 
; A )) � 
: (4.16)



4.3. Selection procedure for thet-convex hulls 65

Proof. Let � � B be a simplex with r (� ) � t. For each y 2 � , let x 2 A with
d(x; y) � 
 . By doing so, we create a non-empty simplex� � A with dH (� j� ) � 
 . One
has r (� ) � t + 
 (see [ALS13, Lemma 16]) anddH (Conv(� )j Conv(� )) � dH (� j� ) � 
 .
This implies the conclusion.

Let A � M and B � RD with dH (A; B ) � 
 . Then, if t � (A) < t + 
 < � (M ),
using (3.10), Lemma 4.2.9 and (4.8),

dH (Conv(t; B )jM ) � dH (Conv(t; B )j Conv(t + 
; A )) + dH (Conv(t + 
; A ); M )

� 
 +
(t + 
 )2

� (M )
: (4.17)

Let q 2 � d, let � 2 Q 2;d
q;n with underlying manifold M and let Xn = f X 1; : : : ; X ng

be a n-sample of law�# � , with Yn = f Y1; : : : ; Yng the corresponding sample of law
� , the �rst marginal of � (that is X i = Yi + Z i with Yi � � and jZ i j � 
 ). Then, for
0 � t < � (M ) � 
 ,

EdH (Conv(t; Xn ); M ) = EdH (Conv(t; Xn ); M )1f t + 
 > t � (Yn )g

+ EdH (Conv(t; Xn ); M )1f t + 
 � t � (Yn )g

� 
 +
(t + 
 )2

� (M )
+ (diam( M ) + 
 )P(t � (Yn ) � t):

By Proposition 4.2.3, if " (Yn ) � C0� (M ), then t � (Yn ) � t implies that

" (Yn ) � t
�

1 + C1
" (Yn )
� (M )

� � 1

� C2t

for some absolute constantC2. Therefore, t � (Yn ) � t implies

"(Yn ) � min (C0� (M ); C2t) = C2t (4.18)

if t � C0� (M )=C2. By using Proposition 4.2.7, and by noting that diam(M ) is bounded
by a constant depending ond; f min ; � min (see Proposition 3.5.7.3), we obtain that, if
t � C0� (M )=C2,

EdH (Conv(t; Xn ); M ) � 
 +
(t + 
 )2

� (M )
+ cd;� min ;f min

exp(� 8� d! df min n(C2t)d)
(C2t)d : (4.19)

In particular, we obtain the desired control for n large enough by letting t =
C3 (log n=(! df min n))1=d for some constantC3 large enough, if
 � � (log n=n)2=d.

4.3 Selection procedure for the t-convex hulls

Assuming that we have observed an-sampleXn , we were able in the previous section to
build a minimax estimator of the underlying manifold M . The tuning of this estimator
requires the knowledge off min , whereas this quantity will likely not be accessible in
practice. A powerful idea to overcome this issue is to design a selection procedure
for the family of estimators (Conv(t; Xn )) t � 0. Assume �rst for the sake of simplicity
that the noise level� is null. As the loss of the estimatorConv(t; Xn ) is controlled
e�ciently for t � t � (Xn ) (see(4.8)), a good idea is to select the parametert larger than
t � (Xn ). We however do not have access to this quantity based on the observationsXn ,
as the manifold M is unknown. To select a scale close tot � (Xn ), we monitor how the
estimators Conv(t; Xn ) deviate from Xn as t increases. Namely, we use the convexity
defect function introduced in [ALS13].
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Figure 4.4: Left. n-sample Xn close to a circle. Right. Convexity
defect function of Xn .

De�nition 4.3.1. Let A � RD and t > 0. The d-dimensional convexity defect function
at scalet of A is de�ned as

h(t; A ) := dH (Conv(t; A ); A): (4.20)

As its name indicates, the convexity defect function measures the (lack of) convexity
of a setA at a given scalet. The next proposition states preliminary results on the
convexity defect function.

Proposition 4.3.2. Let A � RD be a closed set andt � 0.

1. We have0 � h(t; A ) � t.

2. If A is convex thenh(�; A) � 0.

3. If M is a manifold of reach� (M ) and t < � (M ), then

h(t; M ) � t2=� (M ): (4.21)

Proof. Point 1 is stated in [ALS13, Section 3.1], Point 2 is clear and Point 3 is a
consequence of Lemma 4.2.1.

As expected, the convexity defect of a convex set is null, whereas for small values of
t, the convexity defect of a manifoldh(t; M ) is very small (compared to the maximum
value possible, which ist): when looked at locally, M is �almost �at� (and thus
almost convex). We �rst show that the convexity defect function h(�; Xn ) also has a
subquadratic behavior for t � t � (Xn ).

Proposition 4.3.3 (Long-scale behavior). Let A � M . For t � (A) < t < � (M ),

h(t; A ) �
t2

� (M )
+ t � (A)

�
1 +

t � (A)
� (M )

�
: (4.22)

Proof. By using that h(t; A ) � t and (4.8), for any t � (A) < s < t ,

h(t; A ) = dH (Conv(t; A ); A)

� dH (Conv(t; A ); M ) + dH (M; Conv(s; A)) + dH (Conv(s; A); A)

�
t2

� (M )
+

s2

� (M )
+ s:

The conclusion is obtained by lettings go to t � (A).
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Proposition 4.3.3 indicates that, for t � (Xn ) � t � � (M ), the ratio h(t; Xn )=t is
very small, while it might be of order 1 at the value t � (Xn ). This suggests the following
strategy to obtain a scalet which is larger than t � (Xn ): choose the largest scalet such
that h(t; Xn ) is of order t.

De�nition 4.3.4. Let A � M , � > 0 and tmax > 0. We de�ne

t � (A) := supf t < t max : h(t; A ) � �t g: (4.23)

The following theorem ensures that the scalet � (A) is as expected, close tot � (A),
as long as the approximation rate ofA is small enough.

Theorem 4.3.5. Let 0 < � < 1, 
 � 0 and M 2 M 2;d. Let A � M be a �nite set
with " (A) � C1� (M ) and B � RD with dH (A; B ) � 
 . Assume that

1. t � (A) + 
 < t max < � (M )�= 2 � 
 ,

2. t � (A) < C 2(1 � � )� (M ) and t � (A) � C3� 2� (M ),

3. 
 � C4(1 � � )t � (A).

Then,

t � (A) + 
 � t � (B ) �
2t � (A)

�

�
1 +

t � (A)
� (M )

�
+

6

�

: (4.24)

Proof. Upper bound on t � (B ):
By [ALS13, Lemma 5] for anyt � 0, we haveh(B; t ) � h(A; t + 
 ) + 2 
: Therefore,

according to Proposition 4.3.3, we have fort � (A) � t + 
 < � (M ),

h(t; B ) �
(t + 
 )2

� (M )
+ t � (A)

�
1 +

t � (A)
� (M )

�
+ 2 
:

Therefore, h(t; B ) < �t if (t+ 
 )2

� (M ) + t � (A)
�

1 + t � (A )
� (M )

�
+ 2 
 < �t . A straightforward

computation shows that this is the case if
 � t � (A) � C0� 2� (M ) for some absolute
constant C0 and t0 < t + 
 < t 1 with (using

p
1 � u � 1 � u for u 2 [0; 1]),

t0 :=
� (M )�

2

 

1 �

s

1 �
4

� 2� (M )

�
t � (A)

�
1 +

t � (A)
� (M )

�
+ (2 + � )


� !

�
2t � (A)

�

�
1 +

t � (A)
� (M )

�
+

6

�

and t1 � � (M )�= 2. Therefore, t � (B ) � 2t � (A )
�

�
1 + t � (A )

� (M )

�
+ 6


� , as long astmax <

� (M )�= 2 � 
 .

Lower bound on t � (A) in the noise-free case:
Assume that " (A) is su�ciently small so that Proposition 4.2.3 holds. Let q 2 M

with "(A) = d(q; A). One hasq = � M (x) for somex 2 Conv(t � (A); A), so that, by
Proposition 4.2.3 and Lemma 4.2.1,

d(x; A ) � d(q; A) � j x � qj �
t � (A)

�
1 + C0

" (A)
� (M )

� �
t � (A)2

� (M )

� t � (A)
�

1 � C0
" (A)
� (M )

�
t � (A)
� (M )

�

� t � (A)
�

1 � C0
2t � (A)
� (M )

�
t � (A)
� (M )

�
� t � (A)

�
1 � C1

t � (A)
� (M )

�
;
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where we used at the last line that" (A) � 2t � (A) is " (A)=� (M ) is su�ciently small
by Proposition 4.2.3. Asx 2 Conv(t � (A); A), we have,

h(t � (A); A) � t � (A)
�

1 � C1
t � (A)
� (M )

�
: (4.25)

Therefore, if � � 1 � C1t � (A)=� (M ) and t � (A) < t max , then t � (A) � t � (A).

Lower bound on t � (A) in the tubular noise case:
By [ALS13, Lemma 5] for anyt � 
 ,

h(B; t ) � h(A; t � 
 ) � 2
: (4.26)

Plugging t = t � (A) + 
 , and using (4.25),

h(B; t � (A) + 
 ) � t � (A)
�

1 � C1
t � (A)
� (M )

�
� 2
: (4.27)

This quantity is larger than � (t � (A) + 
 ) as long as

C1
t � (A)
� (M )

� 1 � � � (2 + � )



t � (A)
: (4.28)

If 
 � (1 � � ) t � (A )
6 and C1

t � (A )
� (M ) � 1� �

2 , then (4.28) is satis�ed, giving the desired lower
bound on t � (B ) under those two conditions, shouldt � (A) + 
 be smaller than tmax .

As a corollary of this result, we obtain the adaptivity of the t-convex hull estimators
of parameter t � (Xn ).

Corollary 4.3.6. Let 0 < � < 1 and tmax > 0. Let 0 < d < D and q =
(� min ; f min ; + 1 ; � ) 2 � d. Then, if � min > 2tmax=� , we have forn large enough

Rn (Conv(t � (Xn ); Xn ); Q2;d
q;n; dH ) �

�
logn

n

� 2=d �
� +

130
� min (! df min )2=d

�
(4.29)

By letting tmax;n be any sequence converging to0 and larger that (cd logn=(nf min ))1=d

(for instance tmax;n = 1 =log(n) or tmax;n = (( logn)2=n)1=d), we obtain an adaptive
estimator on the scale of modelsQ2;d

q;n for q 2 � d, 1 � d < D , i.e. such that

sup
1� d<D

sup
q2 � d

lim sup
n

Rn (Conv(t � (Xn ); Xn ); Q2;d
q;n; dH )

R n (M; Q2;d
q;n; dH )

� C: (4.30)

Remark 4.3.7. Note that the previous result is of an asymptotic nature. In particular,
should n not be large enough (i.e. ift � (Xn ) is larger than some fraction of the reach),
then the selection procedure is doomed to fail, as the long-scale behavior corresponding
to the range [t � (Xn ); � (M )] is too small to be captured by the selection procedure
(or even is non-existent). A non-asymptotic choice of the parametertmax requires
to �nd a lower bound on the reach � (M ). If estimators of the reach exist [Aam+19;
Ber+21] they both require the tuning of some scale parameterh (with respect to f min

for instance), so that it is not clear how we may �nd such a lower bound in an adaptive
manner.

To prove Corollary 4.3.6, we �rst state an elementary lemma.
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Lemma 4.3.8. Let A � M be a �nite set of cardinality n. Then,

" (A) � cd� (M )n� 1=d: (4.31)

Proof. As M �
S

x2 A B(x; " (A)) , one hasjvolM j � ncd" (A)d. As jvolM j � ! d� (M )d,
we have the conclusion.

Proof of Corollary 4.3.6. By equation (4.17), if t � (Xn ) � t � (Yn ) � 
 , then

dH ( Convt � (Xn ) (Xn ); M ) � 
 +
(t � (Xn ) + 
 )2

� (M )
: (4.32)

This relation holds (we even havet � (Xn ) � t � (Yn ) + 
 ) as long as Conditions 1, 2 and
3 of Theorem 4.3.5 are satis�ed. If
 < � (log n=n)2=d and � min > 2tmax=� , Conditions
1 and 2 are satis�ed as long ast � (Yn ) is small enough with respect to� , tmax and � (M )
and n is large enough. Also, by Lemma 4.3.8 and Proposition 4.2.3, Condition 3 is
satis�ed as long asn is large enough. Therefore, Conditions 1, 2 and 3 are satis�ed with
probability 1 � cd;� min ;f min ;�;t max exp(� Cd;� min ;f min ;�;t max n), according to Propositions
4.2.3 and 4.2.7. Therefore,(4.32) holds with high probability, and one obtains the
conclusion by using the upper bound in Theorem 4.3.5, Proposition 4.2.3 and the fact
that E[" (Yn )2] is of order (log n=n)2=d.

To obtain the adaptive behavior (4.30), it su�ces to remark that inequality (4.32)
holds as long as� min > 2tmax=� and if t � (Yn ) is small enough with respect totmax .
Using that t � (Yn ) is approximately equal to " (Yn ) and using Proposition 4.2.7 yields
the conclusion.

Another possible criterion to ensure the quality of an estimatorM̂ of a manifold M
is to ensure that M̂ and M are homotopy equivalent. Although we have no guarantees
on the topology of the estimatorConv(t � (Xn ); Xn ), our selection procedure also permits
to build a simplicial complex homotopy equivalent to M . We write M ' N to indicate
that the two topological spacesM and N are homotopy equivalent. For A � RD ,
recall the de�nition of the ƒech simplicial complex of parameter t on A:

Cech(t; A ) := f � � A : r (� ) � tg: (4.33)

We will consider that Cech(t; A ) is a topological space by identifying it with its
geometric realization.

Corollary 4.3.9. Let 0 < � < 1 and tmax > 0. Let d be an integer smaller thanD
and f min ; � > 0, � min > 2tmax=� . Then, for n large enough, and
 n � � (log n=n)2=d,
we have

sup
� 2Q 2;d

� min ;f min ;+ 1 (
 n )

P(M 6' Cech(5t � (Xn ); Xn )) � C0 exp(� C1n); (4.34)

whereC0 and C1 depend ond; � min ; f min ; �; �; t max .

This rate matches the exponential minimax rate obtained in [Bal+12] for estimating
homology groups, i.e. the parametert � (Xn ) also allows creating adaptive minimax
homology estimators (although in a slightly weaker sense that in Section 4.1).

Proof of Corollary 4.3.9. For the sake of simplicity, we only give a proof for� = 0
(no noise), the extension to the noise case being made with similar ideas than in
the previous proof. According to [CCSL09, Theorem 4.6], if" (Xn ) < � (M )=17 and
4"(Xn ) � t < � (M ) � 3"(Xn ), then Cech(t; Xn ) ' M . Also, according to Theorem
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4.3.5 and Proposition 4.2.3, if" (Xn ) is small enough with respect to� , tmax and � (M ),
then

5t � (Xn ) � 5t � (Xn ) � 5" (Xn )
�

1 � C0
" (Xn )
� (M )

�
� 4" (Xn ) and (4.35)

5t � (Xn ) � 10
t � (Xn )

�

�
1 +

t � (Xn )
� (M )

�
� 20

t � (Xn )
�

� � (M ) � 3" (Xn ):
(4.36)

Therefore, if " (Xn ) is small enough, thenM ' Cech(5t � (Xn ); Xn ). We conclude by
using Proposition 4.2.7.

As a last example, we show that the parametert � (Xn ) can also be used to estimate
tangent spaces in an adaptive way. Letx 2 M and A � M be a �nite set. We denote by
Tx (A; t ) to be the d-dimensional vector spaceU which minimizesdH (A \B (x; t ); x + U).
This estimator was originally studied in [BSW09]. Recall that the angle between
subspaces is denoted by\ .

Corollary 4.3.10. Let 0 < � < 1 and tmax > 0. Let d be an integer smaller thanD
and f min > 0, � min > 2tmax=� . Then, for n large enough, we have

sup
� 2Q 2;d

� min ;f min ;+ 1 (
 n )

E\ (TpM; Tp(Xn ; 11t � (Xn ))) � C0

�
logn

n

� 1=d

; (4.37)

whereC0 depends ond; � min ; f min ; �; t max .

This rate is the minimax rate (up to logarithmic factors) according to [AL19,
Theorem 3]: we obtain an adaptive estimator (once again in a weaker sense that in
Section 4.1).

Proof of Corollary 4.3.10. According to [BSW09, Theorem 3.2], forA � M , if t <
� (M )=2 and t � 10"(A), then

\ (Tp(A; t ); TpM ) � C0
t

� (M )
(4.38)

for some absolute constantC0. According to Theorem 4.3.5 and Proposition 4.2.3, and
arguing as in the two previous proofs,11t � (Xn ) > 10"(Xn ) and 11t � (Xn ) < � (M )=2 as
long as"(Xn ) < C � (M );�;t max . Therefore,

E\ (TpM; Tp(Xn ; 11t � (Xn )) � 11C0
Et � (Xn )

� (M )
+ P(" (Xn ) > C � (M );�;t max )

� Cd;� min ;f min ;�;t max (log n=n)1=d ;

by Theorem 4.3.5 and Proposition 4.2.7.

4.4 Short-scale behavior of the convexity defect functions

The selection procedure described in Section 4.3 relies on the behavior of the convexity
defect function h(�; Xn ) on the range[t � (Xn ); � (M )]. However, it appears in numerical
experiments (see Figure 4.4) that the convexity defect function also exhibits a behavior
worth of interest on the interval [0; t � (Xn )]: it appears that the convexity defect
function h(t; Xn ) stays very close to its maximal valuet for t in this range. The next
proposition proves that such a behavior indeed appears in a random setting.
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Proposition 4.4.1 (Short-scale behavior). Let d be an integer smaller thanD, and let
q = ( � min ; f min ; f max ; 0) 2 � d. Let Xn be an-sample of law� 2 Q 2;d

q;n. Fix 0 < � < 1.
There exist positive constantst0; C0; C1 depending on the parameters of the model and
on � such that the following holds. Let, forx > 0, � (x) = min(1; x)e� x . Then, for n
large enough and0 < t � t0, we have

h(t; Xn ) � �t with probabilty larger than 1 � C0 exp(� C1n� (nm)) : (4.39)

The probability appearing in (4.39) will be close to1 as long ast is smaller than
a fraction of (log n=n)1=d and larger than (1=n)(2� � )=d for any 0 < � < 1. Therefore,
with high probability, the convexity defect function h(t; Xn ) is very close to t for
(1=n)(2� � )=d . t . (log n=n)1=d. On the contrary, standard techniques show that if
t . (1=n)2=d, then h(t; Xn ) is null with probability larger than, say, 1=2, indicating
that the lower bound in the previous range is close of being optimal. The arguments
to prove Proposition 4.4.1 are of a purely probabilistic nature and do not rely on the
geometry of the support of� . The remainder of the Section is dedicated to proving
Proposition 4.4.1.

Let � 2 Q 2;d
� min ;f min ;f max

be a probability distribution with support M and let Xn

be a n-sample of law� . We will use repeatedly in the proof the fact that there exist
constants cd; Cd > 0 such that, if t � � (M )=4, then cdf min td � � (B ) � Cdf max td for
all balls B of radius t centered at points ofM (see Proposition 3.5.7.7).

Lemma 4.4.2. Assume thatt � td;� min ;f max . There exists a partition C = f U1; : : : ; UK g
of M into K measurable parts such that:

1. for k = 1 ; : : : ; K , Uk contains a ballVk = BM (xk ; 2t),

2. for k = 1 ; : : : ; K , � (Uk ) = 1 =K ,

3. we havecd;� min ;f max t � d � K � Cd;� min ;f max t � d.

Proof. If t � � (M )=8, then � (B ) � Cdf max td for any ball B of radius 2t. Assume
that t is small enough so thatCdf max td � 1=2 and let K be the largest integer such
that 1=K � Cdf max td, so that 1=(2Cdf max td) � K � 1=(Cdf max td). Build C in the
following way. Start with an union of K disjoint balls Vk of radius 2t, for k = 1 ; : : : ; K ,
chooseWk any measurable set inM n

S K
k=1 Vk with � (Wk ) = 1 =K � � (Vk ) � 0 and let

Uk = Vk [ Wk . The set M n
S K

k=1 Uk is of � -measure null, so that by adding it to U1

for instance, we obtain a partition following the required properties. Note that we
used the fact that for any A � M and 0 � p � � (A), there exists a subsetV � A with
� (V ) = p: this holds as� is absolutely continuous with respect to the volume measure
on M .

We �x such a partition in the following, with balls Vk of radius (2 � � )t. Let Bk be
the ball sharing its center with Vk , of radius t. For W � M , let N (W ) be the number
of points of Xn in W . We also write Nk for N (Uk ). Let xk be the center ofBk and e
be a unit vector in TxM , and denote byA+

k (resp. A �
k ) the ball of radius (1 � � )t=2

centered at x+ = xk + e(1 + � )t=2 (resp. x � = xk � e(1 + � )t=2), see Figure 4.5.

Lemma 4.4.3. Fix k = 1 ; : : : ; K . If h(t; Xn ) < �t and Nk = 2 , then we cannot have
both N (A+

k ) = 1 and N (A �
k ) = 1 .

Proof. Let � = Xn \ Uk . Assume that Nk = 2 , and that N (A+
k ) = N (A �

k ) = 1 . Then,
� is made of two points,x1 and x2, respectively in A+

k and A �
k . As both points belong

to Bk , we haver (� ) � t. Therefore, dH (Conv(� )jXn ) � h(t; Xn ) < �t . In particular,
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Figure 4.5: Any ball with diameter whose one extremity is in A �
k

and the other in A+
k is included in Uk .

the middle point x0 of x1 and x2 is at distance less than�t from Xn . Let us show
that BM (x0; jx1 � x0j) � Vk . If this is the case, thend(x0; Xn ) = jx1 � x2j=2 � �t ,
a contradiction with having dH (Conv(� )jXn ) < �t . Let z 2 BM (x0; jx1 � x0j) and
denote by � e the projection on e. Then,

jz � xk j � j z � x0j + jx0 � xk j �
jx1 � x2j

2
+ j� e(x0 � xk )j + j� ?

e (x0 � xk )j

� t +
(1 � � )t

2
+

(1 � � )t
2

� (2 � � )t;

concluding the proof.

Denote by Fk the complementary event of the eventN (A+
k ) = N (A �

k ) = 1 . We
obtain the bound

P(h(t; Xn ) < �t ) � P(8k = 1 ; : : : ; K; N k 6= 2 or (Nk = 2 and Fk ))

= E [P(8k = 1 ; : : : ; K; N k 6= 2 or (Nk = 2 and Fk )j(Nk )k=1 ;:::;K )]

� E

"
KY

k=1

(1f Nk 6= 2g + P(Fk jNk = 2) 1f Nk = 2g)

#

� E

"
KY

k=1

(1 � (1 � P(Fk jNk = 2)) 1f Nk = 2g)

#

:

Lemma 4.4.4. There exists a positive constantC1 such that

P(Fk jNk = 2) � e� C1 for k = 1 ; : : : ; K .

Proof. If jx+ � xk j � t � 7� (M )=24, then there existsy+ 2 M with � xk (y+ � xk ) =
x+ � xk by Proposition 3.5.8. Furthermore, we havejy+ � xk j � 8t=7 and, by Proposition
3.5.7.4, we havejy+ � x+ j � (8t=7)2=(2� (M )) = 32 t2=(49� (M )) . In particular,

B(x+ ; (1 � � )t=2) � B (y+ ; (1 � � )t=2 � 32t2=(49� (M ))) � B (y+ ; (1 � � )t=4);

if t � 49(1� � )� (M )=128. According to Proposition 3.5.7.2, we therefore have, also
assuming that t � � (M )=4,

� (B(x+ ; (1 � � )t=2)) � f min � d

�
(1 � � )t

4
47
48

� d

;

and the same inequality holds forx � .
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Let Y1; Y2 be two independent random variables sampled according to� , conditioned
on being in Uk . Then, as � (Uk ) = m = � d(1 + � )f min (2 � � )dtd,

P(Fk jNk = 2) = 1 � 2P(Y1 2 A+
k )P(Y2 2 A �

k )

= 1 � 2
� (B(x+ ; (1 � � )t=2))� (B(x � ; (1 � � )t=2))

� (Uk )2

� 1 � 2

 � 47
48

1� �
4

� d

(1 + � )(2 � � )d

! 2

� e� C1 ;

where C1 = 2
�

( 47
48

1� �
4 )d

(1+ � )(2 � � )d

� 2

.

We �nally obtain

P(h(t; Xn ) < �t ) � E

"

exp

 

� C1

KX

k=1

1f Nk = 2g

!#

: (4.40)

Lemma 4.4.5. Assume that nm � max(m� 1; (ln n)2). Let � : x 2 [0; + 1 ) !
min(1; x)e� x . Then,

E

"

exp

 

� C1

KX

k=1

1f Nk = 2g

!#

� C2 exp (� C3n� (nm)) ; (4.41)

for some positive constantsC2; C3.

Proof. Let S =
P K

k=1 1f Nk = 2 g. Let ~n be the number of points ofXn in
S

k Uk ,
so that ~n follows a binomial distribution of parameters n and Km . Recall that by
construction, Km � c0 for some constantc0 (see Lemma 4.4.2). Conditionally on~n, the
random variableS can be realized as the number of urns containing exactly two balls, in
a model where~n balls are thrown uniformly in K urns. Let pi =

� ~n
i

�
K � i (1 � K � 1)~n� i

be the probability that an urn contains exactly i balls. We haveE[Sj~n] = Kp 2, and

E[exp(� C1S)j~n] � E[exp(� C1Kp 2=2)1f S � Kp 2=2gj~n] + P(S < Kp 2=2j~n)

� exp(� C1Kp 2=2) + P(jS � Kp 2j > Kp 2=2j~n): (4.42)

Let v = 2K max(2p2; 3p3). According to [BHBO17, Proposition 3.5], if for somes > 0,

Kp 2=2 �
p

4vs + 2s=3; (4.43)

then P(jS � Kp 2j > Kp 2=2j~n) � 4e� s. Recall that nm2 � 1 by assumption, and that
K � c�;� t � d � c1=m. We therefore haven=K 2 � c� 2

1 . Assuming that ~n � 3 and using
the inequality ln(1 � K � 1) � � K � 1 � K � 2 for K � 2, we obtain the inequalities

p2 �
(~n=K )2

4ec� 2
1

e� ~n=K and p3 �
e3

6
(~n=K )3e� ~n=K � c2p2(n=K ) (4.44)

for some positive constantc2. We consider two di�erent regimes.
� Assume �rst that n=K � 2=(3c2). Then 3p3 � 2p2 and one can check that

s = Kp 2=100 satis�es (4.43). Inequality (4.42) then yields that E[exp(� C1S)j~n] �
5exp(� C0

1Kp 2) for C0
1 = min(C1=2; 1=100). To conclude, we remark that for any

� 2 (0; 1), by the Hoe�ding inequality, the event j~n � nKm j � nKm� holds with
probability at least 1 � exp(� 2n� 2). Letting � = 1=2, we obtain that, on this event,

1
2

nm �
~n
K

�
3
2

nm �
3
2

n
K

mK �
1
c2

;
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where we used thatmK � 1. Therefore, p2 � c3(nm)2 � c4(nm)2e� nm for some
constants c3 and c4. The probability of order exp(� 2n� 2) being negligible, we obtain
a �nal bound of order exp(� C0

1c4K (nm)2e� nm ) � exp(� C2n� (nm)) , concluding the
proof in the regime n=K � 2=(3c2).

� Otherwise, we haven=K > 2=(3c2) and we also assume thatj~n � nKm j � �nKm
for some� 2 (0; 1) to �x (this happens with probability 1� exp(� 2n� 2) by Hoe�ding's
inequality). One can then check using(4.44) that s = c5~ne� ~n=K satis�es (4.43) if c5

is chosen small enough. Furthermore,s � c6Kp 2 for some constantc6 (using (4.44)).
The leading term in (4.42) is therefore of the formexp(� c7~ne� ~n=K ). Let � = 1=(ln n)3.
We have, asnm � c0n=K � c8 and asnm � (ln n)2 (by assumption),

c9 � nm(1 � � ) �
~n
K

� nm(1 + � ) � nm +
1

ln n
:

Therefore, ~ne� ~n=K � (c9=2)Ke � nm . The probability of order exp(� 2n� 2) is still neg-
ligible, and we obtain a �nal bound on E[exp(� C1S)] of order exp(� (c9=2)Ke � nm ) �
exp(� c10n� (nm)) .

4.5 Numerical considerations

Computing Conv(t; Xn ) amounts to compute the ƒech complex ofXn of parameter
t: we refer to Section 3.6 for a discussion on the computational complexity of this
problem. It remains to discuss the cost of computingt � (Xn ).

The scalet � (Xn ) is easily obtained once the convexity defect function of the set
Xn � RD has been computed. By the Carathéodory theorem, one can restrict to
simplexes of dimension less thanD for the computation of Conv(t; Xn ). As there are
O(nD +1 ) such simplexes, the computation cost of the convexity defect function is
prohibitive for large D . We therefore propose to consider only simplexes of dimension
1 in the convexity defect function. Let Conv1(t; Xn ) be equal to the union of the edges
e = f x1; x2g � X n of length smaller than 2t, and h1(t; Xn ) = dH (Xn ; Conv1(t; Xn )) .
We de�ne likewise the parametert1

� (Xn ) with the function h being replaced byh1.

Lemma 4.5.1. Let 1 � d < D be an integer and letcD =
q

1
2 � 1

2D . Let B � RD

and tmax > 0, 0 < � < 1 � cD . Then,

t � + cD (B ) � t1
� (B ) � t � (B ): (4.45)

Proof. A direct computation shows that if � is a D-simplex of radius smaller thant,
then the Hausdor� distance betweenConv(� ) and the 1-skeleton of� (the union of its
edges) is bounded bycD t. Hence,h(t; B ) � h1(t; B ) � h(t; B ) � cD t. The conclusion
follows from the de�nition of t � (B ).

Hence, if some setsA; B � M satisfy the conditions of Theorem 4.3.5 for� and
� + cD , then t1

� (B ) satis�es

t � (A) + 
 � t1
� (B ) �

2t � (A)
�

�
1 +

t � (A)
� (M )

�
+

6

�

:

The scalet1
� (Xn ) can be computed by computing the distancedH (ejXn ) for the n(n � 1)

edgese of Xn . Each distance can be obtained by computing the projections of the set
Xn on the line spanned bye. The time complexity can be further reduced by selecting
a random subset ofL edges inXn . If we have no guarantees on the output with such a
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strategy, it appears in our experiments that it is similar to h1(�; Xn ) for L signi�cantly
smaller than n2.

As a numerical illustration of our procedure, we compute the convexity defect
function h1(�; Xn ) of three synthetic datasets: (a)na = 103 points uniformly sampled
on the unit circle, (b) nb = 104 points sampled on a torus of inner radius4 and
outer radius 1, and (c) nc = 105 points sampled on a swiss roll implemented with
scipy [Vir+20] (which was also used to compute the Hausdor� distance between point
clouds). The convexity defect functions (a), (b) and (c) were approximated using
the algorithm described in the previous paragraph with parameterL a = 1 (all pairs
computed), L b = 106 and L c = 107. On each function, displayed in Figure 4.6, the
behavior described in Section 4.3 is observed: �rst a linear growth up to a certain
value, then a quadratic growth until the reach of the manifold (equal to1 in the �rst
two illustrations, and slightly larger than 3 for the swiss roll dataset). We then �x
tmax = 0 :5diam(Xn )=log(n) and compute t1

� (Xn ) for di�erent values of � . When � is
very close to1, t1

� (Xn ) is always 0, whereas it slowly increases as� decreases, until
reaching tmax at some value� min . As a rule of thumb, we choose� � = 1+ � min

2 and
select the parametert1

� �
(Xn ), which is equal to ta = 0 :049, tb = 0 :31 and tc = 0 :48 in

the di�erent experiments (a), (b) and (c), while the approximation rates "(Xn ) were
evaluated (by oversampling) at "a = 0 :021, "b = 0 :31 and " c = 0 :33.

4.6 Discussion and further works

In this article, we introduced a particularly simple manifold estimator, based on a
unique rule: add the convex hull of any subset of the set of observations which is of
radius smaller than t. After proving that this leads to a minimax estimator for some
choice oft, we explained how to select the parametert by computing the convexity
defect function of the set of observations. Our selection procedure actually allows us
to �nd a parameter t � (Xn ) that is very close to "(Xn ) (up to a known multiplicative
constant). The selected parameter can therefore be used as a scale parameter in a
wide range of procedures in geometric inference. We illustrated this general idea by
showing how an adaptive tangent space estimator can be created thanks tot � (Xn ).

The main limitation to our procedure is its non-robustness to outliers. Indeed,
even in the presence of one outlier inXn , the loss function t 7! dH (Conv(t; Xn ); M )
would be constant, equal to the distance between the outlier and the manifoldM : with
respect to the Hausdor� distance, all the estimatorsConv(t; Xn ) are then equally bad.
Of course, even in that case, we would like to assert that some values oft are �better�
than others in some sense. A solution to overcome this issue would be to change
the loss function, for instance by using Wasserstein distances on judicious probability
measures built on thet-convex hulls Conv(t; Xn ) instead of the Hausdor� distance.

Another way to improve the selection procedure is to exploit the short-scale behavior
of the convexity defect function: its linear behavior suggests that selecting the smallest
value t such that the convexity defect function is small (whereas we select the largest
value t � (Xn ) such that h(t; Xn ) is large) would also lead to an adaptive estimator.
With such a method, the hyperparametertmax is not needed anymore. We refer to
[Div21b] for details on this improved construction.

4.7 Precise lower bound on the minimax risk

The goal of this section is to show the lower bound in Theorem 4.1.2. To do so, we
adapt the construction made in [KZ15] so that the lower bound holds with an explicit
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(a) 103 points on a circle

(b) 104 points on a torus

(c) 105 points on a swiss roll

Figure 4.6: The convexity defect function of the datasets (a), (b) and
(c), and the corresponding choices oft1

� (Xn ) with respect to � .



4.7. Precise lower bound on the minimax risk 77

constant. Let 0 < d < D and q = ( � min ; f min ; f max ; � ) 2 � d. We denote byM (P) the
underlying manifold of P 2 Q 2;d

q;n. The lower bound is based on Le Cam's lemma:

Lemma 4.7.1. Let Q(1) , Q(2) be two subfamilies ofQ2;d
q;n which are "-separated, in the

sense thatdH (M (P (1) ); M (P (2) )) � 2" for all P (1) 2 Q (1) , P (2) 2 Q (2) . Then,

R n (M; Q2;d
q;n; dH ) � "

�
�
�
�
�
�

1
# Q(1)

X

P (1) 2Q (1)

�# P (1) ^
1

# Q(2)

X

P (2) 2Q (2)

�# P (2)

�
�
�
�
�
�
; (4.46)

wherejP^ Qj is the testing a�nity between two distributions P and Q and � : RD � RD !
RD is the addition.

To obtain a lower bound on the minimax risk, authors in [KZ15] exhibit two
families of manifolds which are"-separated, and consider the uniform distributions on
them. Those manifolds are built by considering a base manifoldM 0 which is locally
�at, and by adding small bumps on the locally �at part. Such a construction leads to
distributions having a density equal roughly to 1=jvolM 0 j, a constant which might be
smaller than f min . If this is the case, then the corresponding submodels are not inQ2;d

q;n

and we cannot apply Le Cam's Lemma. Hence, we consider another base manifold,
which is a sphereM 0 of radius R slightly larger than � min , so that its volume is smaller
than 1=f min (this is possible asf min ! d� d

min � � < 1). The two families are then once
again constructed by adding small bumps onM 0. We now detail this construction.

Let R; � > 0 be two parameters to be �xed later. Let M 0 � Rd+1 � RD be the
d-sphere of radiusR, and let A be a maximal subset ofM 0 of even size, which is
4� -separated. Note that, standard packing arguments (and the formula for the volume
of a spherical cap) show that if�=R is small enough, then the cardinality 2m of A

satis�es 2m �
� c0R

�

� d
for some absolute constantc0. Let � : R ! R be a smooth

function such that 0 � � � 1, � � 1 on [� 1; 1] and � � 0 on Rn[� 2; 2]. For s 2 f� 1gA ,
we build a di�eomorphism � "

s by letting for x 2 RD

� "
s(x) = x

0

@1 +
"
R

X

y2 A

s(y)�
�

jx � yj
�

�
1

A : (4.47)

Recall that kN kop denotes the operator norm of a linear applicationN .

Lemma 4.7.2. There exists two absolute constantsc1; c2 > 0 such that the following
holds. Assume that� � R and that c1"=� < 1. Then, the function � "

s : B(0; 3R) ! Rd+1

is a di�eomorphism on its image, with

sup
x2B (0;3R)

kid � dx � "
skop � c1"=� and sup

x2B (0;3R)




 d2

x � "
s






op � c2"=� 2: (4.48)

Proof. As A is 4� -separated, at most one term in the sum in(4.47) is non-zero. A
computation gives that the derivative of � B is given by, for x 2 B(0; 3R),

dx � "
s(h) = h + h

"
R

X

y2 A

s(y)�
�

jx � yj
�

�
+ x

"
R

X

y2 A

1
�

s(y)� 0
�

jx � yj
�

�
hx � y; hi

jx � yj
:

(4.49)

Hence,

kid � dx � "
skop �

"
R

�
k� k1 + jxj

k� 0k1

�

�
�

"
R

�
k� k1 + 3R

k� 0k1

�

�
� c1

"
�

;
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where c1 = c0k� k1 + 3k� 0k1 . A similar computation gives that



 d2

x � "
s






op � c2"=� 2

for c2 = 4k� 0k1 + 3 k� 00k1 . We eventually show the injectivity: if � "
s(x) = � "

s(x
0),

then x and x0 are colinear. Also, if c0 = k� k1 + 3 k� 0k1 , one can check using(4.49)
that the derivative of the function r 2 [0; 3R] 7! h� "

s(ru ); ui for u an unit vector is
increasing, proving the injectivity.

Therefore, from [Fed59, Theorem 14.19], we infer thatM "
s := � "

s(M ) is a manifold
with reach larger than

� (M "
s ) � R min

�
1 � c1"=�;

(1 � c1"=� )2

1 + c1"=� + Rc2"=� 2

�
: (4.50)

Also, the volume of M "
s is smaller than

jvolM "
s
j =

Z

M 0

J � "
s(x)dx = ! dRd +

X

y2 A

Z

BM 0 (y;2� )
(J � "

s(x) � 1)dx

� ! dRd + 2mCdc1
"
�

jvolM 0 j(B(y; 2� )) � ! dRd
�

1 + Cdc1
"
�

�
; (4.51)

where we used thatdet(N ) � 1 � Cd kN � idkop for some constantCd if N is a matrix
of sized with operator norm smaller than 1, the fact that 2mjvolM 0 (B(y; 2� )) � j volM 0 j,
and Lemma 4.7.2.

Let R = � min + 1
2

�
1

(! d f min )1=d � � min

�
and � =

p
R"� where � 2 = 2c2 � min

R� � min
. With

this choice of parameters, one can check that, for"=� small enough,� (M "
s ) � � min (by

(4.50)) and jvolM "
s
j � 1=f min (by (4.51) and using that ! df min � d

min � � < 1).
We de�ne the family M (1) of manifolds M "

s where s contains exactly m signs+1
(and m signs � 1). The family M (2) is de�ned likewise by consideringM "

s where s
contains exactly m + 1 or m � 1 signs+1 . We then let Q(1) be the set of distributions
(Q"

s; � 0) where Q"
s is the uniform distribution on a manifold of M "

s 2 M (1) , so that
Q(1) is a subset ofQ2;d

q;n. We then de�ne Q(2) as follows: letX � Q"
s where Q"

s is the
uniform distribution on a manifold of M "

s 2 M (2) . Then, we haveX = � "
s(V ) for

someV 2 M 0, and we let

Y = � "+ 

s (V ); Z = X � Y:

An element of Q(2) is then given by the law of the couple(Y; Z). Note that for
P (2) 2 Q (2) , �# P (2) is the uniform distribution on a manifold of M (2) . Also, M (P (2) )
is equal to M "+ 


s = � "+ 

s � (� "

s)
� 1(M "

s ) for someM "
s 2 M (2) . By (4.51) and (4.50),

its reach is also larger than� min , and its volume is smaller than1=f min if (" + 
 )=� is
small enough. Note also thatjZ j = j� "

s(V ) � � "+ 

s (V )j � j V j
=R � 
 . Hence,Q(2) is

indeed a subset ofQd
q;n.

By construction, the two families Q(1) , Q(2) are (2" + 
 )-separated (see Figure 4.7).
Hence, we can apply Le Cam's lemma. The exact same computations than in [KZ15,
Section 3] show that the testing a�nity between Q(1) and Q(2) converge to1 as long
as 4m = n= logn. Thus, Le Cam's Lemma (4.46) yields

lim inf
n

R n (M; Q2;d
q;n; dH )

�
log n

n

� 2=d
� lim inf

n

�
(m=4)2=d" +

�
2

�
: (4.52)
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Figure 4.7: An element P (1) 2 Q (1) has its �rst marginal supported
on the blue manifold M "

s (lower bump), whereas an elementP (2) 2 Q (2)

is such that P (2)
1 is supported on the red manifoldM " + 


s0 (upper bump),
whereas�# P (2) is the uniform distribution on the dotted manifold.

As 2m � (c0R=� )d, we therefore have

lim inf
n

R n (M; Q2;d
q;n; dH )

�
log n

n

� 2=d
�

c2
0

82=d

R2

� 2 " +
�
2

=
c2

0

82=d

R
� 2 +

�
2

=
c2

0

82=d

R(R � � min )
2c2� min

+
�
2

�
c4

(! df min )1=d� min

�
1

(! df min )1=d
� � min

�
+

�
2

;

for some absolute constantc4, where we used thatR � � min = 1
2

�
1

(! d f min )1=d � � min

�

by de�nition and that R � 1
2(! df min ) � 1=d. As � min � �= (! df min )1=d, we obtain the

conclusion.
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Chapter 5

Reconstruction of measures on
manifolds: an optimal transport
approach

Density estimation is one of the most fundamental tasks in non-parametric statistics.
If e�cient methods (from both a theoretical and a practical point of view) exist when
the ambient space is of low dimension, minimax rates of estimation become increasingly
slow as the dimension increases. To overcome this so-calledcurse of dimensionality,
some structural assumptions on the underlying probability are to be made in moderate
to high dimensions, which may take di�erent forms, including e.g. the existence of a
parametric component [LLW07], the single-index model [Liu+13], sparsity assumptions
[Tib96], or constraints on the shape of the support. We focus in this work on the latter,
namely on the case where the probability distribution� generating the observations is
assumed to be concentrated on a submanifoldM of RD , of dimensiond smaller than
D. The topic of density estimation in the manifold setting has been studied for over
thirty years, with the emphasis initially being put on reconstructing the density in
the case where the manifoldM is given�think for instance of datasets lying on the
space of orthogonal matrices�notable works including [Hen90; Pel05; Cle+20]. Less
attention has been dedicated to the more general setting where the manifoldM is
unknown and acts as a nuisance parameter. Kernel density estimators on manifolds are
designed in [BS17; WW20], where rates are exhibited, respectively in the case where
the manifold has a boundary and in the case where the density is Hölder continuous. In
[BH19], kernel density estimators are shown to be minimax, and an adaptive procedure
is designed, based on Lepski's method, to estimate the unknown density in a point
x 2 RD which is known to belong to the unknown (and possibly nonsmooth) manifold
M .

To go beyond the pointwise estimation of� , even the choice of a relevant loss is
nontrivial. Indeed, most standard losses between probability measures (e.g. theL p

distance, the Hellinger distance or the Kullback-Leibler divergence) are degenerate when
comparing mutually singular measures, which will typically be the case for measures
on two distinct manifolds, even if they are very close to each other with respect to
the Hausdor� distance. This implies that the estimation problem is degenerate from a
minimax perspective when choosing such losses (see Theorem 5.1.9). On the contrary,
the Wasserstein distancesWp, 1 � p � 1 are particularly adapted to this problem, as
they are by design robust to small metric perturbations of the support of a measure.

Apart from this �rst motivation, the use of Wasserstein distances, and more
generally of the theory of optimal transport, has shown to be an e�cient tool in widely
di�erent recent problems of machine learning, with fast implementations and sound
theoretical results (see e.g. [PC19] for a survey). From a statistical perspective, most of
the attention has been dedicated to studying rates of convergence between a probability
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distribution � and its empirical counterpart � n [Dud69; DSS13; FG15; SP18; WB19a;
Lei20]. Unsurprisingly, if more regularity is assumed on� , then it is possible to build
estimators with smaller risks than the empirical measure� n . Assume for instance
that � is a probability distribution on the cube [� 1; 1]D , with density f of regularity s
(measured through the Besov scaleB s

p;q). In this setting, it has been shown in [WB19b]
that, given n i.i.d. points of law � , the minimax rate (up to logarithmic factors) for
the estimation of � with respect to the Wasserstein distanceWp is of order

8
><

>:

n� s+1
2s+ D if D � 3

n� 1
2 logn if D = 2

n� 1
2 if D = 1 ;

(5.1)

and that this rate is attained by a modi�ed linear wavelet density estimator. Our
main contribution consists in extending the results of [WB19b] by allowing the support
of the probability to be any d-dimensional compactCk submanifold M � RD for
k � 2. More precisely, assume that some probability� on M has a lower and upper
bounded density f which belongs to the Besov spaceB s

p;q(M ) for some0 < s � k � 1,
1 � p < 1 , 1 � q � 1 (see Section 5.1 for details). We �rst show (Theorem 5.2.1)
that some weighted kernel density estimator that we integrate against the volume
measurevolM on M attains, for the Wp distance, the rate of estimation

8
><

>:

n� s+1
2s+ d if d � 3

n� 1
2 (log n)

1
2 if d = 2

n� 1
2 if d = 1 :

(5.2)

In the case where the manifoldM is unknown, we do not have access to the volume
measurevolM , so that the latter estimator is not computable. We therefore propose
to estimate the volume measurevolM in a preliminary step. Such an estimator cvolM
is de�ned by using local polynomial estimation techniques from [AL19]. We show that
this estimator is a minimax estimator of the volume measure up to logarithmic factors
(Theorem 5.2.6), with a risk of order (log n=n)k=d. We then show (Theorem 5.2.7)
that a weighted kernel density estimator integrated againstcvolM attains the rate (5.2).
Those rates are signi�cantly faster than the rates of(5.1) if d � D and are shown to
be minimax up to logarithmic factors.

In Section 5.1, we de�ne our statistical model and give some preliminary results
on Wasserstein distances. In Section 5.2, we de�ne kernel density estimators on a
manifold M , and state our main results. Proofs of the main theorems are then given
in Section 5.3.

5.1 Preliminaries

For 1 � p � 1 , we let L p(M ) be the set of measurable functionsf : M ! R with

�nite p-norm kf kL p (M ) :=
� R

f dvolM
� 1=p (and usual modi�cation if p = 1 ). We say

that a locally integrable function is weakly di�erentiable if there exists a measurable
section r f of the tangent bundle TM (uniquely de�ned almost everywhere) such that
for all smooth vector �elds w on M with compact support, we have

Z
f (r � w) dvolM = �

Z
(r f ) � w dvolM ; (5.3)

where r � w denotes the divergence ofw (the divergence ofw is de�ned as the real-
valued function satisfying (5.3) for every C1 function f ). Furthermore, we will denote
by p� 2 [1; 1 ] the number satisfying 1

p + 1
p� = 1 .
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5.1.1 Besov spaces on manifolds

Let M 2 M k;d
� min ;L for somek � 2, � min ; L > 0. We also assume thatM is compact.

As stated in the introduction, minimax rates for the estimation of a given probability
will depend crucially on the regularity of its density f , which is assumed to belong to
some Besov spaceB s

p;q(M ). We �rst introduce Sobolev spacesH l
p(M ) on M for l � k

an integer, and Besov spaces onM are then de�ned by real interpolation.

De�nition 5.1.1 (Sobolev space on a manifold). Let 0 � l � k , 1 � p < 1 and let
f 2 C1 (M ). We let

kf kH l
p (M ) := max

0� i � l

� Z 


 di f (x)




 p

op dvolM (x)
� 1=p

: (5.4)

The spaceH l
p(M ) is the completion ofC1 (M ) for the norm k � kH l

p (M ) .

Remark 5.1.2 (On the casep = 1 ). The previous de�nition cannot be extended to
the casep = 1 . Indeed, the completion ofC1 (M ) for the norm k � kH l

1 (M ) is equal to
Cl (M ), whereas for instanceH 0

1 (M ) should be equal toL 1 (M ). For l = 1 , the space
H 1

p (M ) can equivalently be de�ned as the space of weakly di�erentiable functionsf
with kf kH 1

p (M ) < 1 , while this de�nition can be easily extended to the casep = 1 .
In particular, if f 2 H 1

1 (M ), then one can verify that f � 	 x 2 H 1
1 (BTx M (0; r0))

for any x 2 M . It follows from standard results on Sobolev spaces on domains that
f � 	 x is Lipschitz continuous (see e.g. [Bre10, Proposition 9.3]). Hence,f is also
locally Lipschitz continuous. By Rademacher theorem,f is therefore almost everywhere
di�erentiable, and its di�erential coincides with the weak di�erential. As a consequence,
a function f 2 H 1

1 (M ) is Lipschitz continuous, with Lipschitz constant for geodesic
distance dg equal to kf kH 1

1 (M ) .

For 1 � p < 1 , we introduce the negative homogeneous Sobolev normk � k _H � 1
p (M ) ,

de�ned, for f 2 L p(M ) with
R

f dvolM = 0 , by

kf k _H � 1
p (M ) := sup

� Z
fg dvolM ; kr gkL p� (M ) � 1

�
; (5.5)

where the supremum is taken over all functionsg 2 H 1
p� (M ). For f 2 L p(M ), the

negative Sobolev norm is de�ned by

kf kH � 1
p (M ) := sup

� Z
fg dvolM ; kgkH 1

p� (M ) � 1
�

; (5.6)

and the corresponding Banach space is denoted byH � 1
p (M ).

Proposition 5.1.3. Let 1 � p < 1 and f 2 H � 1
p (M ) \ L 1(M ) with

R
f dvolM = 0 .

(i) We have Cd;� min jvolM j
d� 1

p � dkf k _H � 1
p (M ) � k f kH � 1

p (M ) � k f k _H � 1
p (M ) for some

positive constantCd;� min depending ond and � min .

(ii) We havekf k _H � 1
p (M ) = inf fk wkL p (M ) ; r � w = f g; where the in�mum is taken

over all measurable vector �eldsw on M with �nite p-norm, and wherer � w = f
means that

R
fg dvolM = �

R
w � r gdvolM for all g 2 C1 (M ).

Following [Tri92], Besov spaces on a manifoldM are de�ned as real interpolation
of Sobolev spaces.
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De�nition 5.1.4 (Real interpolation of spaces). Let A0, A1 be two Banach spaces,
which continuously embed into some Banach spaceA. We endow the spaceA0 \ A1

with the norm kxkA 0 \ A 1 = maxfk xkA 0 ; kxkA 1 g for x 2 A0 \ A1 and the spaceA0 + A1

with the norm K (x; 1) for x 2 A0 + A1, where

K (x; � ) := inf fk x0kA 0 + � kx1kA 1 ; x = x0 + x1; x0 2 A0; x1 2 A1g; � � 0: (5.7)

For � 2 [0; 1] and 1 � q � 1 , we let

kxk(A 0 ;A 1 ) �;q
:=

� Z 1

0
� � �q K (x; � )q d�

�

� 1=q

; x 2 A0 + A1; (5.8)

and (A0; A1) �;q := f x 2 A0 + A1; kxk(A 0 ;A 1 ) �;q
< 1g (with usual modi�cation if

q = 1 ). The pair (A0; A1) is called a compatible pair, and(A0; A1) �;q is the real
interpolation betweenA0 and A1 of exponents� and q.

For A; B two Banach spaces andF : A ! B a bounded operator, we letkF kA;B

be the operator norm ofF . Let (A0; A1) and (B0; B1) be two compatible pairs. Let
F : A0 + A1 ! B0 + B1 be a linear map such that the restriction of F to A j is a
bounded linear map into B j (j = 0 ; 1). Then, the following interpolation inequality
holds [Lun18, Theorem 1.1.6]

kF k(A 0 ;A 1 ) �;q ;(B 0 ;B 1 ) �;q
� k F k1� �

A 0 ;B 0
kF k�

A 1 ;B 1
: (5.9)

De�nition 5.1.5 (Besov space on a manifold). Let 1 � p < 1 and 0 < s < k . The
Besov spaceB s

p;q(M ) is de�ned as B s
p;q(M ) := ( L p(M ); H k

p (M )) s=k;q:

Basic results from interpolation theory then imply that k � kB s
p;q (M ) � k � k B s0

p;q (M ) if

0 < s � s0 < k (see e.g. [Lun18]).
A crucial point in the study conducted in the next sections is the relation between

Wasserstein distances and negative Sobolev norms.

Proposition 5.1.6 (Wasserstein distances and negative Sobolev norms). Let 1 � p <
1 . Let M 2 M 2;d be a manifold with reach� (M ) � � min , and let �; � 2 P p

1 (RD ) be
two probability measures supported onM , absolutely continuous with respect tovolM .
Assume that �; � � f min � volM for some f min > 0. Then, identifying measures with
their densities, we have

Wp(�; � ) � p� 1=pf 1=p� 1
min k� � � k _H � 1

p (M )

� Cd;� min ;f min k� � � kH � 1
p (M ) ;

(5.10)

for some constantCd;� min ;f min depending ond, � min and f min .

In particular, if p = 1 , then the �rst inequality in (5.10) is actually an equality
by the Kantorovitch-Rubinstein duality formula [Vil08, Particular Case 5.16]. This
inequality appears in [Pey18] forp = 2 and in [San15, Section 5.5.1] for measures
having density with respect to the Lebesgue measure. We carefully adapt their proofs
in Section 5.4.2.

5.1.2 Statistical models and the choice of the loss function

Statistical models in interest for this problem are based on the statistical models
P k;d

� min ;L;f min ;f max
introduced in Chapter 3, with the additional constraints that conditions

on the regularity of the density of the measures are to be made. Furthermore, we
require the noise to be orthogonal to the manifold in those models.
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De�nition 5.1.7 (Noise free model). Let d � D be integers,k � 2, 0 � s < k and 1 �
p < 1 . Let M 2 M k

d. For s = 0 , the set Q0(M ) is the set of probability distributions
� on RD absolutely continuous with respect to the volume measurevolM , with a density
f satisfying f min � f � f max almost everywhere. Fors > 0, the set Qs(M ) is the
set of distributions � 2 Q 0(M ), with density f 2 B s

p;q(M ) satisfying kf kB s
p;q (M ) � L s.

The modelQs;k
d is equal to the union of the setsQs(M ) for M 2 M k;d .

De�nition 5.1.8 (Orthogonal noise model). Let d � D be integers,k � 2, 0 � s < k ,
1 � p < 1 and 
 � 0. The set Qs;k

d (
 ) is the set of probability distributions � of
random variables(Y; Z) whereY � � 2 Q s;k

d and Z 2 B(0; 
 ) is such thatZ 2 TY M ? .

As in the previous chapter, we assume in the orthogonal noise model that we
observe an-sample of law�# � where � 2 Q s;k

d (
 ): concretely, a n-sample is given
by X 1; : : : ; X n , where X i is equal to Yi + Z i with Yi supported on some manifoldM
and Z i 2 TYi M

? is of norm smaller than 
 . The goal is then to reconstruct the law
#(� ) = � of Yi . We �rst show that such a task is impossible if the loss functionL is
larger than the total variation distance between measures.

Theorem 5.1.9. Let d � D be integers, k � 2, 0 � s < k , 1 � p < 1 . Let
L : P(RD ) � P (RD ) ! [0; 1 ] be a measurable map with respect to the Borel� -
algebra associated to the total variation distance onP(RD ) � P (RD ). Assume that
L (�; � ) � g(j� � � j) for a convex nondecreasing functiong : R ! [0; 1 ] with g(0) = 0 .
Then, for any � min > 0, if f min is small enough andL k ; L s; f max are large enough, we
have

R n (�; Qs;k
d ; L ) � g(cd); (5.11)

for some constantcd > 0.

Examples of such losses include the total variation distance, the Hellinger distance
(with g(x) = x), the Kullback-Leibler divergence (with g(x) = x2=2), and the L p

distance with respect to some dominating measure (withg(x) = xp). We give a proof
of Theorem 5.1.9, based on Assouad's lemma, in Section 5.4.7. A simple example
of lossL which is not degenerate for mutually singular measures is given by theWp

distance. As stated in the introduction, we will therefore choose this loss, and study
R n (�; Qs;k

d (
 ); Wp), the minimax rate of estimation for � with respect to Wp, where �
is the �rst marginal of � 2 Q s;k

d (
 ).

Remark 5.1.10. For 
 > 0, the statistical model Qs;k
d (
 ) is not identi�able, in the sense

that there exist � , � 0 in the model for which �# � = �# � 0. Having such an equality
implies that Wp(#(� ); #(� 0)) � Wp(#(� ); �# � ) + Wp(�# � 0; #(� 0)) � 2
 . This inequality
is tight up to a constant. Indeed, take Y an uniform random variable on the unit
sphere, let� be the law of (Y;0) and � 0 be the law of ((1 + 
 )Y;� 
Y ). Then, � and
� 0 are in Qs;k

d (
 ) and �# � = �# � 0, whereas, by the Kantorovitch-Rubinstein duality
formula,

Wp(#(� ); #(� 0)) � W1(#(� ); #(� 0)) � E[� ((1 + 
 )Y ) � � (Y )]

for any 1-Lipschitz function � . Letting � be the distance to the unit sphere, we obtain
that this distance is larger than 
 . In that sense, 
 represents the maximal precision
for the estimation of #(� ).

Remark 5.1.11. For ease of notation, we will write in the following a . b to indicate
that there exists a constantC depending on the parametersp; k; � min ; L s; L k ; f min ; f max ,
but not on s and D, such that a � Cb, and write a � b to indicate that a . b and
b . a. Also, we will write c� to indicate that a constant c depends on some parameter
� .
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5.2 Kernel density estimation on an unknown manifold

Before building an estimator in the modelQs;k
d (
 ), let us consider the easier problem

of the estimation of � in the case where
 = 0 (noise free model) and the supportM is
known. Let � 2 Q s(M ) and Y1; : : : ; Yn be a n-sample of law� . Let � n = 1

n

P n
i =1 � Yi

be the empirical measure of the sample. IdentifyRd with Rd � f 0gD � d and consider a
kernel K : RD ! R satisfying the following conditions:

� Condition A: The kernel K is a smooth radial function with support B(0; 1)
such that

R
Rd K = 1 .

� Condition B (m): The kernel K is of order m � 0 in the following sense. Let
j� j :=

P d
j =1 � j be the length of a multiindex � = ( � 1; : : : ; � d). Then, for all

multiindexes � 0, � 1 with 0 � j � 0j < m , 0 � j � 1j < m + j� 0j, and with j� 1j > 0
if � 0 = 0 , we have Z

Rd
@� 0

K (v)v� 1
dv = 0 ; (5.12)

where v� =
Q d

j =1 v� j
j and @� K is the partial derivative of K in the direction � .

� Condition C(� ): The negative part K � of K satis�es
R

Rd K � � � .

We show in Section 5.4.8 that for every integerm � 0 and real number � > 0, there
exists a kernelK satisfying conditions A, B (m) and C(� ). De�ne the convolution of
K with a measure� 2 P (RD ) as

K � � (x) :=
Z

K (x � y)d� (y); x 2 RD ; (5.13)

and, for h > 0, let K h := h� dK (�=h). Let � h := K h � volM and let � n;h be the measure
with density K h � (� n=� h) with respect to volM . Dividing by � h ensures that� n;h is a
measure of mass1. Remark that the computation of � n;h requires to have access toM ,
that is � n;h is an estimator onQs(M ) but not on Qs;k

d . By linearity, the expectation
of � n;h is given by � h , the measure having for densityK h � (�=� h) on M .

Theorem 5.2.1. Let d � D be integers,0 < s � k � 1 with k � 2 and 1 � p < 1 .
Let M 2 M k;d and � 2 Q s(M ) with Y1; : : : ; Yn a n-sample of law� . There exists
a constant � depending on the parameters of the model such that, ifK is a kernel
satisfying conditions A, B (k) and C(� ), then the measure� n;h satis�es the following:

(i) If (logn=n)1=d . h . 1, then, with probability larger than 1� cn� k=d, the density
of � n;h is larger than f min =2 and smaller than2f max everywhere onM .

(ii) We have

Ek� � � n;h kH � 1
p (M ) � k � � � hkH � 1

p (M ) + Ek� n;h � � hkH � 1
p (M ) (5.14)

. hs+1 +
h1� d=2I d(h)

p
n

; (5.15)

where I d(h) = 1 if d � 3, (� log(h))1=2 if d = 2 and h� 1=2 if d = 1 .

(iii) Let h � n� 1=(2s+ d) if d � 3, h � (logn=n)1=d if d � 2. De�ne � 0
n;h = � n;h if

� n;h is a probability measure and� 0
n;h = � X 1 otherwise. Then,

EWp(� 0
n;h ; � ) .

8
><

>:

n� s+1
2s+ d if d � 3;

n� 1
2 (log n)

1
2 if d = 2 ;

n� 1
2 if d = 1 :

(5.16)
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(iv) Furthermore, for any 0 � s < k and � min > 0, if f min is small enough and if
f max and L s are large enough, then there exists a manifoldM 2 M k

d such that

R n (�; W p; Qs(M )) &

(
n� s+1

2s+ d if d � 3;

n� 1
2 if d � 2:

(5.17)

Remark 5.2.2. The condition C(� ) on the kernel is only used to ensure that the
measure� n;h has a lower and upper bounded density onM . An alternative possibility
to ensure this property is to assume that the density of� is Hölder continuous of
exponent� for some� > 0. Techniques from [BH19] then imply that k� n;h � � kL 1 (M ) .
h� + n� 1=2h� d=2 � 1 with high probability, ensuring in particular that the density is
lower bounded. If sp > d, then every element ofB s

p;q(M ) is Hölder continuous (by
[Tri92, Theorem 7.4.2]), and conditionC(� ) is no longer required. However, Theorem
5.2.1 also holds for non-continuous densities.

Remark 5.2.3. Let K be a nonnegative kernel satisfying conditionsA, B (0) and C(� ).
It is straightforward to check that Wp(� n ; � n;h ) . h. Therefore, Theorem 5.2.1(ii) and

Proposition 5.1.6 imply in particular that Wp(� n ; � ) . h + h1� d= 2 I d (h)p
n . By choosingh

of the order n� 1=d, we obtain that

Wp(� n ; � ) .

8
><

>:

n� 1
d if d � 3

n� 1
2 (log n)

1
2 if d = 2

n� 1
2 if d = 1 :

(5.18)

Such a result was already shown forp = 1 [Tri+20] with additional logarithmic
factors, with a proof very di�erent from ours. See also [Div21a] for a short proof of
this result when M is the �at torus.

In (5.15), a classical bias-variance trade-o� appears. Namely, the bias of the
estimator is of order hs+1 , whereas its �uctuations are of orderh1� d=2=

p
n (at least

for d � 3). This decomposition can be compared to the classical bias-variance
decomposition for a kernel density estimator of bandwidthh, say for the pointwise
estimation of a function of classCs on the cube [0; 1]d. It is then well-known (see
e.g. [Tsy08, Chapter 1]) that the bias of the estimator is of orderhs whereas its variance
is of order h� d=2=

p
n. The supplementary factor h appearing both in the bias and

�uctuation terms can be explained by the fact that we are using a normH � 1
p (M )

instead of a pointwise norm to quantify the risk of the estimator: in some sense, we
are estimating the antiderivative of the density rather than the density itself. This
is particularly true if d = 1 and p = 1 , where the Wasserstein distance between two
measures is given by theL 1 distance between the cumulative distribution functions of
the two measures [San15, Proposition 2.17].

Before giving a proof of Theorem 5.2.1, let us explain how to extend it to the
case where the manifoldM is unknown and in the presence of orthogonal noise. The
measure� n;h is the measure having densityK h � (� n=� h) with respect to volM . Of
course, if M is unknown, then so isvolM , and we therefore propose the following
estimation procedure of volM , using local polynomial estimation techniques from
[AL19]. Let X 1; : : : ; X n be a n-sample in the model with orthogonal noiseQs;k

d (
 ),

with X i = Yi + Z i , Yi of law � and Z i 2 TYi M
? with jZ i j � 
 . Let � (i )

n be the empirical
measure 1

n� 1

P
j 6= i � X j � X i . For two positive parameters `, " , the local polynomial
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estimator (�̂ i ; V̂2;i ; : : : ; V̂m� 1;i ) of order m at X j is de�ned as an element of

arg min
�; sup2� j � m � 1kVj kop � `

� (i )
n

0

@

�
�
�
�
�
�
x � � (x) �

m� 1X

j =2

Vj [� (x) 
 j ]

�
�
�
�
�
�

2

1f x 2 B(0; " )g

1

A ; (5.19)

where the argmin is taken over all orthogonal projectors� of rank d and symmetric
tensors Vj : (RD ) j ! RD of order j .1 Let T̂i be the image of �̂ i and 	̂ i : v 2
RD 7! X i + v +

P m� 1
j =2 V̂j;i [v
 j ]. We summarize the results of [AL19] in the following

proposition (see Section 5.4.1 for details).

Proposition 5.2.4. With probability at least 1 � cn� k=d, if m � k, (log n=n)1=d .
" . 1, 
 . " and 1 . ` . " � 1, then,

max
1� i � n

\ (TYi M; T̂i ) . "m� 1 + 
" � 1 (5.20)

and, for all 1 � i � n, if v 2 T̂i with jvj � 3" , we have

j	̂ i (v) � 	 Yi � � Yi (v)j . "m + 
 (5.21)





 d	̂ i (v) � d(	 Yi � � Yi )(v)








op
. "m� 1 + 
" � 1: (5.22)

Hence, if 
 is of order at most " k , by choosingm = k, it is possible to approximate
the tangent space atYi with precision " k� 1 and the local parametrization with precision
" k . In particular, authors in [AL19] show that, with high probability,

S n
i =1 B	̂ i (T̂i )

(X i ; " )

is at Hausdor� distance less than" k + 
 from M (up to a constant). We now de�ne
an estimator cvolM of volM by using an appropriate partition of unity (� j ) j , which is
built thanks to the next lemma. We say that a set S is � -sparse ifjx � yj � � for all
distinct points x; y 2 S. Recall that M � denotes the� -neighborhood of the setM .

Lemma 5.2.5 (Construction of partitions of unity) . Let � . 1. Let S � M � be a
set which is 7

3 � -sparse, withdH (M � jS) � 4� . Let � : RD ! [0; 1] be a smooth radial
function supported onB(0; 1), which is equal to1 on B(0; 1=2). De�ne, for y 2 M �

and x 2 S,

� x (y) =
�

� y� x
8�

�

P
x02 S �

�
y� x0

8�

� : (5.23)

Then, the sequence of functions� x : M � ! [0; 1] for x 2 S, satis�es (i)
P

x2 S � x � 1,
with at most cd non-zero terms in the sum at any given point ofM � , (ii) k� xkCl (M � ) �
Cl;d � � l for any l � 0 and, (iii) � x is supported onBM � (x; 8� ).

A proof of Lemma 5.2.5 is given in Section 5.4.1. Given a setS0 � M � with
dH (M � jS0) � 5�=3, the farthest sampling algorithm with parameter 7�=3 (see e.g. [AL18,
Section 3.3]) outputs a setS � S0 which is 7�=3-sparse and7�=3-close fromS: the
set S then satis�es the hypothesis of Lemma 5.2.5. The next proposition describes
how we may de�ne a minimax estimator cvolM of the volume measure onM (up to
logarithmic factors) using such a partition of unity.

Theorem 5.2.6 (Minimax estimation of the volume measure onM ). Let d � D be
integers andk � 2. Let � 2 Q 0;k

d (
 ) and let X 1; : : : ; X n be an-sample of law�# � . Let
(log n=n)1=d . " . 1, 
 . " , 1 . ` . " � 1.

1The existence of such a measurable application follows from the Kuratowski-Ryll-Nardzewski
selection theorem [AB06, Theorem 18.13].
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(i) Let f X i 1 ; : : : ; X i J g be the output of the farthest point sampling algorithm with
parameter 7"=24 and input f X 1; : : : ; X ng. With probability larger than 1� cn� k=d,
there exists a sequence of smooth nonnegative functions� j : M "=8 ! [0; 1] for
1 � j � J , such that � j is supported onBM "= 8 (X i j ; " ), k� j kC1 (M "= 8 ) . " � 1 and
P J

j =1 � j (z) = 1 for z 2 M "=8, with at most cd non-zero terms in the sum.

(ii) Let 	̂ i be the local polynomial estimator of orderm � k with parameter " and `,
and T̂i the associated tangent space. LetcvolM be the measure de�ned by, for all
continuous bounded functionsf : RD ! R,

Z
f (x)d cvolM (x) =

JX

j =1

Z

	̂ i j (T̂i j )
f (x)� j (x)dx; (5.24)

where the integration is taken against thed-dimensional Hausdor� measure on
	̂ i j (T̂i j ). Then, for 1 � r � 1 , with probability larger than 1 � cn� k=d, we have,
for 
 . "2,

Wr

 
cvolM

j cvolM j
;

volM
jvolM j

!

. 
 + "m : (5.25)

(iii) In particular, if m = k, " � (log n=n)1=d and 
 . "2, we obtain that

EWr

 
cvolM

j cvolM j
;

volM
jvolM j

!

. 
 +
�

logn
n

� k
d

: (5.26)

Also, for any � min > 0 and 0 � s < k , if f min is small enough, and iff max ; L k ; L s

are large enough, then

R n

�
volM
jvolM j

; Qs;k
d (
 ); Wr

�
& 
 +

�
1
n

� k
d

: (5.27)

Let �̂ h := K h � cvolM . We de�ne �̂ n;h as the measure having densityK h � (� n=�̂ h)
with respect to the measurecvolM , where � n = 1

n

P n
i =1 � X i is the empirical measure of

the sample(X 1; : : : ; X n ).

Theorem 5.2.7. Let d � D be integers,0 < s � k � 1 with k � 2 and 1 � p < 1 .
Let � 2 Q s;k

d (
 ), with � the �rst marginal of � and let X 1; : : : ; X n be an-sample of law
�# � . There exists a constant� depending on the parameters of the model such that the
following holds. Assume thatK is a kernel satisfying conditionsA, B (k) and C(� ),
that (logn=n)1=d . " . h . 1, 
 . "2, 1 . ` . " � 1 and consider the estimatorcvolM
de�ned in (5.24) with parametersm, " and `. Then,

(i) The measure�̂ n;h is a nonnegative measure with probability larger than1� cn� k=d.

(ii) De�ne �̂ 0
n;h = �̂ n;h if �̂ n;h is a nonnegative measure and̂� 0

n;h = � X 1 otherwise.

Then, with probability larger than 1 � cn� k=d,

Wp(�̂ 0
n;h ; � 0

n;h ) . 
 + "m : (5.28)
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(iii) In particular, let m = ds + 1e, " � (ln n=n)1=d, ` � " � 1 and h � n� 1=(2s+ d) if
d � 3, h � (log n=n)1=d if d � 2. Then,

EWp(�̂ 0
n;h ; � ) . 
 +

8
><

>:

n� s+1
2s+ d if d � 3

n� 1
2 (log n)

1
2 if d = 2

n� 1
2 if d = 1 :

(5.29)

(iv) Furthermore, if 0 � s < k and � min > 0, for any f min small enough andf max ,
L s, L k large enough, we have

R n (�; Qs;k
d (
 ); Wp) & 
 +

(
n� s+1

2s+ d + n� k
d if d � 3;

n� 1
2 if d � 2:

(5.30)

Remark 5.2.8 (Numerical considerations). There are several considerations worth of
interest concerning the numerical implementation of the estimatorscvolM and �̂ n;h . In
a preprocessing step, one must �rst solve the optimization problem(5.19) for each
element X i j of the output of the farthest point sampling algorithm. Let N j be the
number of points of the sample at distance less than" from X i j (which is with high
probability of order n" d � logn). For k = 2 , minimizing (5.19) is equivalent to
performing a PCA on the N j neighbors ofX i j , with a corresponding time complexity
of order O(N 3

j ) with high probability. For k � 3, as the space of orthogonal projectors
of rank d is a non-convex manifold, the minimization of the objective function is more
delicate. In [ZJRS16], a Riemannian SVRG procedure is proposed to minimize a
functional de�ned on some Riemannian manifold. Their procedure outputs values
whose costs are provably close to the minimal value of the objective function, even for
non-convex smooth functions. The implementation of such an algorithm is a promising
way to minimize (5.19) in practice.

Then, the uniform measure onM can be approximated by considering the empirical
measure(ÛM )N of a N -sample of lawÛM := cvolM =j cvolM j. To create such a sample,
we may use importance sampling techniques to sample according to the measure with
density � j on 	̂ i j (T̂i j ). Finally, the measure �̂ (N )

n;h with density K h � (� n=�̂ h) with

respect to (ÛM )N may be used as a proxy for̂� n;h .

5.3 Proofs of the main theorems

5.3.1 Bias of the kernel density estimator

The �rst step to prove Theorem 5.2.1 is to study the bias of the estimator, given by
the distance k � kH � 1

p (M ) between� h and � . Write ~� for �=� h . Introduce the operator

Ah : B s
p;q(M ) ! H � 1

p (M ) de�ned for � 2 L 1(M ) and x 2 M by

Ah � (x) := K h �
�

� (x)
� h(x)

�
� � (x) =

Z

M
K h(x � y)

�
~� (y) � ~� (x)

�
dvolM (x): (5.31)

Then,

k� h � � kH � 1
p (M ) = kAh f kH � 1

p (M ) � k AhkB s
p;q (M );H � 1

p (M )kf kB s
p;q (M )

� k AhkB s
p;q (M );H � 1

p (M )L s:
(5.32)

Proposition 5.3.1. Let 0 < s � k � 1, 1 � p < 1 , and assume that the kernelK is
of order k. Then, if h . 1,

kAhkB s
p;q (M );H � 1

p (M ) . hs+1 : (5.33)
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The proof of Proposition 5.3.1 consists in using the Taylor expansion of a function
� 2 B s

p;q(M ), and by using that all polynomial terms of low order in the Taylor
expansion disappear when integrated againstK , as the kernelK is of su�ciently large
order. Namely, we have the following property, whose proof is given in Section 5.4.3.

Lemma 5.3.2. Assume that the kernelK is of order k and let B : (RD ) j ! R be a
tensor of order 1 � j < k . Then, for all x 2 M ,

�
�
�
�

Z

M
K h(x � y)B [(x � y) 
 j ]dy

�
�
�
� . kB kop hk (5.34)

j� h(x) � 1j . hk� 1 and k� hkCj (M ) . hk� 1� j (5.35)

Let us now give a sketch of proof of Proposition 5.3.1 in the case0 < s � 1. The
H � 1

p (M )-norm of Ah � is by de�nition equal to

kAh � kH � 1
p (M ) = sup

� Z
(Ah � )gdvolM ; kgkH 1

p� (M ) � 1
�

:

Let g 2 H 1
p� (M ) with kgkH 1

p� (M ) � 1. We use the following symmetrization trick:

Z
Ah � (x)g(x)dx =

ZZ
K h(x � y)( ~� (y) � ~� (x))g(x)dydx

=
ZZ

K h(y � x)( ~� (x) � ~� (y))g(y)dydx (by swapping the indexesx and y)

=
1
2

ZZ
K h(x � y)( ~� (y) � ~� (x))( g(x) � g(y))dydx (5.36)

where, at the last line, we averaged the two previous lines and used thatK is an even
function. Informally, as K h(x � y) = 0 if jx � yj � h, and as� h is roughly constant,
we expectj ~� (y) � ~� (x)j to be of order hs and jg(x) � g(y)j to be of order h, leading
to a bound of

R
Ah � (x)g(x)dx of order hs+1 . For l � 1, the following analog of the

symmetrization trick holds.

Lemma 5.3.3 (Symmetrization trick) . There existsh0 . 1 such that the following

holds. Let 0 � l � k � 1 be even and letK (l ) (x) =
R1

0 K � (x) (1� � ) l � 1 � � l

(l � 1)! d� for x 2 RD .
Fix x0 2 M and let � 2 C1 (M ) be a function supported inBM (x0; h0). De�ne
~� l := dl ( ~� � 	 x0 ) � ~� x0 . Let g 2 L p� (M ) with kgkL p� (M ) � 1. Then, for h . 1,R

Ah � (x)g(x)dx is equal to

1
2

ZZ

BM (x0 ;h0 )2
K (l )

h (x � y)( ~� l (y) � ~� l (x)) [ � x0 (x � y)] 
 l (g(x) � g(y)) dydx + R;

(5.37)

whereR is a remainder term satisfying jRj . k~� kH l
p (M )h

l+1 . Furthermore, if l � k � 2

is even, we havejRj . k~� kH l +1
p (M )h

l+2 .

Lemma 5.3.4. Let � 2 C1 (M ) and let 0 � l � k � 2. Assume that either l = 0 or
that � is supported onBM (x0; h0). Let � l = dl (� � 	 x0 ) � ~� x0 . Then, for any h . 1,

 

h� d
ZZ

BM (x0 ;h0 )2
1fj x � yj � hg

k� l (x) � � l (y)kp
op

jx � yjp
dxdy

! 1=p

.

 Z

BM (x0 ;h0 )
k� l+1 (x)kp

op dx

! 1=p

. k� kH l +1
p (M ) :

(5.38)
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Proofs of Lemma 5.3.3 and Lemma 5.3.4 are found in Section 5.4.3. We may now
conclude the proof using those two lemmas. Let� 2 C1 (M ) be a function supported
in BM (x0; h0) and g 2 H 1

p� (M ) with kgkH 1
p� (M ) � 1.

Case 1: s is even Let l = s. Assume �rst that p > 1 and that g is smooth. We
have
ZZ

BM (x0 ;h0 )2
jK �h (x � y)j






 ~� l (y) � ~� l (x)








op
jg(x) � g(y)jjx � yj l dxdy (5.39)

� k K k1 (�h ) l+1 � d
ZZ

BM (x0 ;h0 )2
1fj x � yj � �h g






 ~� l (y) � ~� l (x)








op

jg(x) � g(y)j
jx � yj

dxdy

� k K k1 (�h ) l+1

 

(�h ) � d
ZZ

BM (x0 ;h0 )2
1fj x � yj � �h g






 ~� l (y) � ~� l (x)








p

op
dxdy

! 1=p

�

 

(�h ) � d
ZZ

BM (x0 ;h0 )2
1fj x � yj � �h g

jg(x) � g(y)jp
�

jx � yjp� dxdy

! 1=p�

. (�h ) l+1

 

2p(�h ) � d
Z

x2B M (x0 ;h0 )






 ~� l (x)








p

op
volM (BM (x; �h ))dx

! 1=p

kgkH 1
p� (M )

. k~� kH l
p (M ) (�h ) l+1 . k� kH l

p (M ) (�h ) l+1 ; (5.40)

where at the last line, we used Proposition 3.5.7.7 to control the volume ofBM (x; �h )
and, at the second to last line, we used Lemma 5.3.4. Furthermore, it follows from
Leibniz formula for the derivative of a product and Lemma 5.3.2 that k~� kH l

p (M ) .
k� kH l

p (M ) .

As C1 (M ) is dense inH 1
p� (M ), inequality (5.40) actually holds for every g 2

H 1
p� (M ). If p = 1 , then every function g 2 H 1

p� (M ) with kgkH 1
p� (M ) � 1 is Lipschitz

continuous for the distancedg (see Remark 5.1.2). Using thatdg(x; y) � 2jx � yj if
jx � yj � � min =2, a similar computation than in the casep < 1 shows that inequality
(5.40) also holds ifp = 1 .

By integrating inequality (5.40) against � 2 (0; 1) and by using Lemma 5.3.3, we
obtain the inequality kAh � kH � 1

p (M ) . hs+1 k� kH s
p (M ) .

Case 2: s is odd Similarly, we treat the case wheres � k � 1 is odd. Let l = s � 1.
Once again, assume �rst that p > 1 and that g is smooth. Then,
ZZ

BM (x0 ;h0 )2
jK �h (x � y)j






 ~� l (y) � ~� l (x)








op
jg(x) � g(y)jjx � yj l dxdy

�
ZZ

BM (x0 ;h0 )2
jK �h (x � y)j






 ~� l (y) � ~� l (x)








op

jx � yj
jg(x) � g(y)j

jx � yj
jx � yj l+2 dxdy

� k K k1 (�h ) l+2 � d
ZZ

BM (x0 ;h0 )2
1fj x � yj � �h g






 ~� l (y) � ~� l (x)








op

jx � yj
jg(x) � g(y)j

jx � yj
dxdy

� k K k1 (�h ) l+2

0

B
@(�h ) � d

ZZ

BM (x0 ;h0 )2
1fj x � yj � �h g






 ~� l (y) � ~� l (x)








p

op

jx � yjp
dxdy

1

C
A

1=p

�

 

(�h ) � d
ZZ

BM (x0 ;h0 )2
1fj x � yj � �h g

jg(x) � g(y)jp
�

jx � yjp� dxdy

! 1=p�
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. (�h ) l+2 k� kH s
p (M ) ; (5.41)

where at last line we used Lemma 5.3.4 and the inequalityk~� kH l
p (M ) . k� kH l

p (M ) . As

in the previous case, the same inequality holds forg 2 H 1
p� (M ) non necessarily smooth

and if p = 1 . By using Lemma 5.3.3 and by integrating(5.41) against � 2 (0; 1), we
obtain that kAh � kH � 1

p (M ) . hs+1 k� kH s
p (M ) .

So far, we have proven that

kAh � kH � 1
p (M ) . hs+1 k� kH s

p (M ) (5.42)

for all integers 0 � s � k � 1 and � a smooth function supported onBM (x0; h0).
To obtain the result when � is not supported on some ballBM (x0; h0), we use an
appropriate partition of unity. Indeed, for � = h0=8, standard packing arguments
show the existence of a setS0 of cardinality N � cdjvolM j� � d with dH (M � jS0) � 5�=3.
By the remark following Lemma 5.2.5, the output S of the farthest point sampling
algorithm with parameter 7�=3 satis�es the assumption of Lemma 5.2.5, and is of
cardinality smaller than N . 1. We consider such a covering(BM (x; h0)) x2 S, with
associated partition of unity (� x )x2 S. Then, kAh � kH � 1

p (M ) is bounded by

X

x2 S

kAh(� x � )kH � 1
p (M ) . hs+1

X

x2 S

k� x � kH s
p (M )

. hs+1
X

x2 S

k� xkCs (M )k� kH s
p (M ) . hl+1 k� kH s

p (M ) ;

where the second to last inequality follows from Leibniz rule for the derivative of a
product. Also, the last inequality follows from the fact that (� x ) jM = � x � i M , where
i M : M ! M � is the inclusion, which is aCk function with controlled Ck -norm. Hence,
k� xkCs (M ) . k� xkCs (M � ) . 1 by the chain rule.

As C1 (M ) is dense inH s
p(M ), this gives the desired bound on the operator

norm of Ah : H s
p(M ) ! H � 1

p (M ) for 0 � s � k � 1 an integer. To obtain the
conclusion for Besov spacesB s

p;q(M ), we use the interpolation inequality (5.9). By
the reiteration theorem [Lun18, Theorem 1.3.5], for0 < s < k � 1, B s

p;q(M ) =
(L p(M ); H k� 1

p (M )) s=(k� 1);q, with an equivalent norm. Hence, we have, for0 < s <
k � 1,

kAhkB s
p;q (M );H � 1

p (M ) . kAhk1� �
L p (M );H � 1

p (M )
kAhk�

H k � 1
p (M );H � 1

p (M )

. h1� s
k � 1 hk s

k � 1 . hs+1 ;

so that Proposition 5.3.1 is proven fors < k � 1. It remains to prove the inequality in
the cases = k � 1. By Fatou's lemma and the de�nition of interpolation spaces (5.8),
we have, for some constantC not depending ons,

kAh f kB k � 1
p;q (M ) � lim inf

s! k� 1
s<k � 1

kAh f kB s
p;q (M ) � lim inf

s! k� 1
s<k � 1

�
Chs+1 kf kB s

p;q (M )

�
� Chkkf kB k � 1

p;q (M ) ;

where we used thatkf kB s
p;q (M ) � k f kB k � 1

p;q (M ) . This concludes the proof of Proposition
5.3.1.

5.3.2 Fluctuations of the kernel density estimator

The purpose of this section is to prove the following bound on the �uctuations of the
kernel density estimator.
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Proposition 5.3.5. Let � 2 Q s(M ) with Y1; : : : ; Yn a n-sample of law� . Assume
that h . 1 and that nhd & 1. Then,

Ek� n;h � � hkH � 1
p (M ) . n� 1=2h1� d=2I d(h); (5.43)

where I d(h) is de�ned in Theorem 5.2.1.

Let � be the Laplace-Beltrami operator onM and G : UM ! R be a Green's
function, de�ned on f (x; y) 2 M � M; x 6= yg (see [Aub82, Chapter 4]). By de�nition,
if f 2 C1 (M ), then the function Gf : x 2 M 7!

R
M G(x; y)f (y)dy is a smooth

function satisfying � Gf = f , with r Gf (x) =
R

r xG(x; y)f (y)dy for x 2 M . Hence,
if w = r Gf , then r � w = f , so that, Proposition 5.1.3 yields

kf kH � 1
p (M ) � k f k _H � 1

p (M ) � kr Gf kL p (M ) :

By linearity, we have

k� n;h � � hkH � 1
p (M ) = kK h � (� n � � )kH � 1

p (M )

�












1
n

nX

i =1

r G
�

K h �
�

� Yi

� h(Yi )

��
� E

�
r G

�
K h �

�
� Yi

� h(Yi )

��� 










L p (M )

:
(5.44)

The expectation of the L p-norm of the sum of i.i.d. centered functions is controlled
thanks to the next lemma.

Lemma 5.3.6. Let U1; : : : ; Un be i.i.d. functions on L p(M ). Then, the expectation
E




 1

n

P n
i =1 (Ui � EUi )




 p

L p (M ) is smaller than

(
n� p=2

R�
E

�
jU1(z)j2

�� p=2 dz if p � 2;

Cpn� p=2
R�

EjU1(z)j2
� p=2 dz + Cpn1� p

R
M E [jU1(z)jp] dz if p > 2:

(5.45)

Proof. If p � 2, one has by Jensen's inequality

E

�
�
�
�
�

nX

i =1

(Ui (z) � EUi (z))

�
�
�
�
�

p

�

0

@E

�
�
�
�
�

nX

i =1

(Ui (z) � EUi (z))

�
�
�
�
�

2
1

A

p=2

� np=2 �
EjU1(z)j2

� p=2

and (5.45) follows by integrating this inequality against z 2 M . For p > 2, we use
Rosenthal inequality [Ros70, Theorem 3] for a �xedz 2 M , and then integrate the
inequality against z 2 M .

It remains to bound E
h�
�
�r G

�
K h �

�
� Y

� h (Y )

��
(z)

�
�
�
pi

where Y � � , z 2 M and
p � 2.

Lemma 5.3.7. Let p � 2. Then, for all z 2 M and h . 1,

E
� �
�
�
�r G

�
K h �

�
� Y

� h(Y )

��
(z)

�
�
�
�

p�
.

8
><

>:

1 if d = 1

� logh if p = d = 2

hp+ d� dp else:

(5.46)
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A proof of Lemma 5.3.7 is found in Section 5.4.4. From(5.44), Lemma 5.3.6 and
Lemma 5.3.7, we obtain, in the casep � 2 and d � 3

Ek� n;h � � hkH � 1
p (M ) �

�
Ek� n;h � � hkp

H � 1
p (M )

� 1=p

� Cpn� 1=2

0

@
Z  

E

�
�
�
�r G

�
K h �

�
� Y

� h(Y )

��
(z)

�
�
�
�

2
! p=2

dz

1

A

1=p

+ Cpn1=p� 1
� Z

E
� �
�
�
�r G

�
K h �

�
� Y

! h(Y )

��
(z)

�
�
�
�

p�
dz

� 1=p

. n� 1=2jvolM j1=ph1� d=2 + n1=p� 1jvolM j1=ph1+ d=p� d:

Recalling that jvolM j � f � 1
min . 1 and that nhd & 1, one can check that this quantity

is smaller up to a constant thann� 1=2h1� d=2, proving Proposition 5.3.5 in the case
p � 2 and d � 3. A similar computation shows that Proposition 5.3.5 also holds if
p � 2 or d � 2.

5.3.3 Proof of Theorem 5.2.1

The proof of (i) is found in Section 5.4.5. Let us now prove (ii). If0 < s � k � 1, by
Proposition 5.3.1 and (5.32), we have

k� � � hkH � 1
p (M ) � L skAhkB s

p;q (M );H � 1
p (M ) . hs+1 :

Combining this inequality with Proposition 5.3.5 yields (5.15).
Let us prove (iii). Let E be the event described in (i). If E is realized, then

� 0
n;h is equal to � n;h , and it satis�es � 0

n;h � f min
2 volM . Thus, Proposition 5.1.6 yields

Wp(� 0
n;h ; � ) . k� n;h � � kH � 1

p (M ) . If E is not realized, we boundWp(� 0
n;h ; � ) by

diam(M ), which is itself bounded by a constant depending only on the parameters of
the model (see Proposition 3.5.7.3). Hence,

EWp(� 0
n;h ; � ) � E

�
Wp(� 0

n;h ; � )1f Eg
�

+ diam( M )P(E c)

. Ek� n;h � � kH � 1
p (M ) + n� k=d;

and we conclude thanks to (5.15).
Finally, a proof of (iv) is found in Section 5.4.7.

5.3.4 Proofs of Theorem 5.2.6 and Theorem 5.2.7

Proof of Theorem 5.2.6(i).
Assume that 
 � "=24. Let X = f X 1; : : : ; X ng and Y = f Y1; : : : ; Yng. By the

remark following Lemma 5.2.5, the existence of a partition of unity satisfying the
requirements of Theorem 5.2.6(i) is ensured as long asdH (M "=8jX ) � 5"=24. We have
dH (M "=8jX ) � dH (M "=8jY ) + "=24 � dH (M jY ) + 4 "=24. Hence, the partition of unity
exists if dH (M jY ) � "=24. This is satis�ed with probability larger than 1 � cn� k=d if
" & (log n=n)1=d by [Aam17, Lemma III.23].

Proof of Theorem 5.2.6(ii).
For ease of notation, we will assume that the outputf X i 1 ; : : : ; X i J g of the farthest

point sampling algorithm is equal to f X 1; : : : ; X J g. Write � j for the measure having
density � j with respect to the d-dimensional Hausdor� measure on	̂ j (T̂j ).
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Figure 5.1: Illustration of Lemma 5.3.8(a)

Lemma 5.3.8. If (logn=n)1=d . " . 1, with probability larger than 1 � cn� k=d, for
all j = 1 ; : : : ; J :

(a) The map 	 Yj � � Yj : BT̂j
(0; 3") ! M is a di�eomorphism on its image, which

contains BM (Yj ; 2" ). Let Sj : BM (Yj ; 2" ) ! B T̂j
(0; 3" ) be the inverse of	 Yj � � Yj .

Then, 	̂ j � Sj : BM (Yj ; 2" ) ! 	̂ j (T̂j ) is also a di�eomorphism on its image,
which contains B	̂ j (T̂j ) (X j ; " ). Furthermore, for all z 2 BM (Yj ; 2" ), we have

j	̂ j � Sj (z) � X j j � 7
8 jz � Yj j.

(b) The measure(	̂ j � Sj ) � 1
# � j has a density~� j on M equal to

~� j (z) = � j (	̂ j � Sj (z))J (	̂ j � Sj )(z); for z 2 M; (5.47)

where the function is extended by0 for z 2 M nBM (Yj ; 2" ).

(c) For z 2 BM (Yj ; 2" ), we have

j	̂ j � Sj (z) � zj . "m + 
; (5.48)

j ~� j (z) � � j (z)j . "m + 
: (5.49)

A proof of Lemma 5.3.8 is found in Section 5.4.6. LetM̂ " =
S J

j =1 B	̂ j (T̂j ) (X j ; " )

be the support of cvolM .

Lemma 5.3.9. Let 1 � r � 1 . Let � : M ! R, ~� : M̂ " ! R be functions satisfying
� min � �; ~� � � max for some positive constants� min ; � max > 0. Assume further that
for all j = 1 ; : : : ; J and for all z 2 M we have,j ~� (	̂ j � Sj (z)) � � (z)j � T . Then, with
probability larger than 1 � cn� k=d, we have

Wr

 
~� � cvolM

j ~� � cvolM j
;

� � volM
j� � volM j

!

. C0(T + "m + 
 ); (5.50)

whereC0 depends on� min and � max .

In particular, inequality (5.25) is a consequence of Lemma 5.3.9 with� � ~� � 1.

Proof. Assume �rst that r < 1 . If ("m + 
 ) & 1, there is nothing to prove, so we
may assume that("m + 
 ) � 1=(2Ccd), where cd is the constant of Lemma 5.2.5 and
C := supz2 M j ~� j (z) � � j (z)j=("m + 
 ). We have the bound
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Wr

 
~� � cvolM

j ~� � cvolM j
;

� � volM
j� � volM j

!

=
1

j ~� � cvolM j1=r
Wr

 

~� � cvolM ; � � volM
j ~� � cvolM j
j� � volM j

!

�
1

j ~� � cvolM j1=r

 

Wr

0

@
JX

j =1

~� � � j ;
JX

j =1

(	̂ j � Sj ) � 1
# ( ~� � � j )

1

A

+ Wr

0

@
JX

j =1

(	̂ j � Sj ) � 1
# ( ~� � � j ); � � volM

j ~� � cvolM j
j� � volM j

1

A

!

(5.51)

We use Proposition 5.1.6 to bound the second term in(5.51). By a change of
variables, the density of (	̂ j � Sj ) � 1

# ( ~� � � j ) is given by ~� j : z 7! ~� (	̂ j � Sj (z)) ~� j (z).

With probability larger than 1 � cn� k=d, we have forz 2 M ,

JX

j =1

~� j (z) �
JX

j =1

� j (z) � Ccd("m + 
 ) � 1 �
1
2

=
1
2

:

Hence, by Proposition 5.1.6,

Wr

0

@
JX

j =1

(	̂ j � Sj ) � 1
# ( ~� � � j ); � � volM

j ~� � cvolM j
j� � volM j

1

A

� r � 1=r
�

2
� min

� 1� 1=r













JX

j =1

~� j � �
j ~� � cvolM j
j� � volM j














H � 1
r (M )

�
�

2
� min

_ 1
�














nX

j =1

~� j � �
j ~� � cvolM j
j� � volM j














L r (M )

�
�

2
� min

_ 1
�

0

B
@














JX

j =1

~� j � �














L r (M )

+
jj � � volM j � j ~� � cvolM jj

j� � volM j
k� kL r (M )

1

C
A :

Remark that ~� j (z) � 2 for any z 2 M . Therefore, we have according to Lemma 5.3.8,
j ~� j (z) � � (z)� j (z)j � 2T + � max j� j (z) � ~� j (z)j . T + � max ("m + 
 ). Hence, we have
the bound,

jj ~� � cvolM j � j � � volM jj �














JX

j =1

~� j � �














L 1 (M )

�














JX

j =1

~� j � �














L r (M )

jvolM j1� 1=r

�














JX

j =1

~� j � �














L 1 (M )

jvolM j . T + � max ("m + 
 ):

(5.52)

As k� kL r (M ) � j volM j1=r � max and j� � volM j � � min jvolM j, we �nally obtain that

Wr

0

@
JX

j =1

(	̂ j � Sj ) � 1
# ( ~� � � j ); � � volM

j ~� � cvolM j
j� � volM j

1

A . C� min ;� max (T + "m + 
 ) ;
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with the constant C� min ;� max in the upper bound depending on� min and � max , but not
on r .

To bound the �rst term in (5.51), consider the transport plan
P J

j =1 (id; (	̂ j �

Sj ) � 1)# ( ~� � � j ); which has, according to Lemma 5.3.8, a cost bounded by

JX

j =1

Z
jy � (	̂ j � Sj ) � 1(y)jr d( ~� � � j )(y) . � max ("m + 
 )r j cvolM j:

As j cvolM j . jvolM j + T + � max ("m + 
 ), we obtain the desired bound. By letting
r ! 1 , and remarking that the di�erent constants involved are independent of r , we
observe that the same bound holds forr = 1 .

Remark 5.3.10. Inequality (5.52) with � � � 0 � 1 gives a bound on the distance
between the total mass ofcvolM and the volume jvolM j of M : choosingk = m, it is of
order " k + 
 with probability larger than 1 � cn� k=d.

Proof of Theorem 5.2.6(iii).
Inequality (5.26) is a consequence of Theorem 5.2.6(ii), whereas the lower bound

on the minimax risk (5.27) is proven in Section 5.4.7.

Proof of Theorem 5.2.7.
Note �rst that �̂ n;h is indeed a measure of mass1. We show in Lemma 5.4.6 that

T := max
j =1 :::J

sup
z2B (Yj ;" )

�
�
�
�K h �

�
� n

�̂ h

�
(	̂ j � Sj (z)) � K h �

�
� n

� h

�
(z)

�
�
�
�

satis�es T . "m + 
 with probability larger than 1� cn� k=d. As f min =2 � K h � (� n=� h) �
2f max on M by Theorem 5.2.1(i), and as everyy 2 M̂ " is in the image of 	̂ j � Sj for
somej = 1 : : : J , we havef min =3 � K h � (� n=�̂ h) � 3f max on M̂ " should " k + 
 be
small enough. This proves Theorem 5.2.1(i) and, together with Lemma 5.3.9, this also
proves Theorem 5.2.7(ii). Theorem 5.2.7(iii) is a consequence of Theorem 5.2.7(ii) and
Theorem 5.2.7(iv) is proven in Section 5.4.7.

5.4 Appendix to Chapter 5

5.4.1 Geometric properties of Ck manifolds with positive reach and
their estimators

Let M 2 M k;d
� min ;L for somek � 2 and � min ; L > 0. We �rst give elementary properties

of Ck manifolds.

Lemma 5.4.1. Let x 2 M . The following properties hold:

(i) There exists a mapNx : BTx M (0; r0) ! TxM ? satisfying dNx (0) = 0 , and such
that, for u 2 BTx M (0; r0), we have	 x (u) = x + u + Nx (u) with jNx (u)j � L juj2.

(ii) There exist tensorsB 1
x ; : : : ; B k� 1

x of operator norm controlled by a constant
depending onL , d, k and � min , such that, if u 2 TxM satis�es juj � Ck;d;L , then
J 	 x (u) = 1 +

P k� 1
i =2 B i

x [u
 i ] + Rx (u), with jRx (u)j � C0
k;d;L jujk .
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Proof. By a Taylor expansion of 	 x at u = 0 , we have	 x (u) = x + u + Nx (u), with
Nx (u) =

R1
0 d2	 x (tu)[u
 2]dt. Hence,jNx (u)j � L juj2. Furthermore, as ~� x � 	 x (u) = u,

we have� x (Nx (u)) = 0 , i.e. Nx takes its values inTxM ? . This proves (i).
Let us prove (ii). We have d	 x (u) = idTx M + dNx (u), and d	 x (u) � d	 x (u) =

idTx M +( dNx (u)) � dNx (u). Therefore,

J 	 x (u) =
p

det(d	 x (u) � d	 x (u)) =
p

det(idTx M + ( dNx (u)) � dNx (u)) :

One hasdNx (u) = dNx (0)+
P k� 1

j =2
dj N x (0)
(j � 1)! [u
 ( j � 1) ]+ Rx (u), with jRx (u)j � Ck;L jujk� 1

and dNx (0) = 0 . Hence,(dNx (u)) � dNx (u) is written as
P k� 1

j =2 B j [u
 j ] + R0
x (u), with

jR0
x (u)j � C0

k;l jujk . The operator norm of this operator is smaller than, say,1=2 for juj
su�ciently small, and we conclude the proof by writing a Taylor expansion at 0 of the
function F 7!

p
det(id + F ).

We now prove Lemma 5.2.5, on the construction of smooth partitions of unity
based on some setS which is su�ciently sparse and dense over a tubular neighborhood
of M .

Proof of Lemma 5.2.5. Consider the functions� and (� x )x2 S as in the statement of

the lemma, and, for y 2 M � , let Z (y) =
P

x02 S �
�

y� x0

8�

�
. As dH (M � jS) � 4� , we

have Z (y) � 1 and the quantity � x (y) is well-de�ned. The function � x is smooth,
and we have

P
x2 S � x � 1 on M � . One hasdl � x (y) which is written as a sum of

terms of the form dl � j �
� y� x

8�

�
dj (Z � 1)(y), and dj (Z � 1)(y) is equal to a sum of terms

of the form Z j 0� j � 2(y)dj 0
Z (y) for 1 � j 0 � j . Also,






 dj �

�
y� x0

8�

� 






op
� Cj � � j and




 dj Z (y)






op � Cj � � j P
x2 S 1fj x � yj � 8� g. Hence, asZ � 1, we have for anyl � 0






 dl � x (y)








op
� C0

l �
� l

X

x2 S

1fj x � yj � 8� g:

It remains to bound this sum. If x 2 B(y; 8� ), then � M (x) 2 B(� M (y); 10� ). Also,
for x 6= x0 2 S, we have j� M (x) � � M (x0)j � j x � x0j � 2� � 2� . In particular,
the balls BM (� M (x); � ) for x 2 S are pairwise disjoint, and are all included in
BM (� M (y); 11� ) . Therefore, if 11� � � (M )=4, using Proposition 3.5.8.7 twice, we
obtain that volM (BM (� M (x); � )) � cd� d, and that

X

x2 S

1fj x � yj � 8� g �
X

x2 S

1fj x � yj � 8� g
volM (BM (� M (x); � ))

cd� d

�
volM (BM (� M (y); 11� ))

cd� d � c0
d:

This concludes the proof.

We end this section by detailing the properties of the local polynomial estimators
	̂ i and T̂i de�ned in [AL19]. In particular, we prove Proposition 5.2.4. Recall that
X i = Yi + Z i with Yi 2 M and jZ i j � 
 . Aamari and Levrard introduce tensorsV �

j;i

which are de�ned asdj 	 X i (0)=j !, where dj 	 X i (0) is the j th di�erential of 	 X i at 0
(see the proof of Lemma 2 in [AL19] for details). In particular, we haveV �

1;i = � Yi .
Furthermore, as ~� Yj � 	 Yj = id , we have� Yj � V �

j;i = 0 for j � 2.

Lemma 5.4.2. With probability larger than 1 � cn� k=d, for any 1 � i � n,

(i) We have \ (TYi M; T̂i ) . "m� 1 + 
" � 1 .
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(ii) For v 2 T̂i , we have	̂ i (v) = X i + v + N̂ i (v), where N̂ i : T̂i ! T̂?
i is de�ned by

N̂ i (v) =
P m� 1

j =2 V̂j;i [v
 j ].

(iii) For any 2 � j < m ,





 V̂j;i � �̂ i � V �

j;i � � Yi








op
. "m� j + 
" � j :

(iv) For v 2 B T̂i
(0; 3" ), we have

j	̂ i (v) � 	 Yi (� Yi (v)) j . "m + 
; (5.53)

jN̂ i (v) � NYi (� Yi (v)) j . "m + 
; (5.54)





 d	̂ i (v) � d(	 Yi � � Yi )(v)








op
. "m� 1 + 
" � 1 (5.55)






 dN̂ i (v) � d(NYi � � Yi )(v)








op
. "m� 1 + 
" � 1: (5.56)

Proof of Proposition 5.2.4. Lemma 5.4.2(i) is stated in Theorem 2 in [AL19]. Remark
that for x 2 B(X i ; " ), with ~x = x � X i , and any orthogonal projection � ,

�
�
�
�
�
�
~x � � (~x) �

m� 1X

j =2

Vj [� (~x) 
 j ]

�
�
�
�
�
�

2

=

�
�
�
�
�
�
~x � � (~x) �

m� 1X

j =2

� ? � Vj [� (~x) 
 j ]

�
�
�
�
�
�

2

+

�
�
�
�
�
�

m� 1X

j =2

� � Vj [� (~x) 
 j ]

�
�
�
�
�
�

2

so that we may always assume that the tensorŝVj;i minimizing the criterion (5.19)
satisfy �̂ i � V̂j;i = 0 for j � 2. This proves Lemma 5.4.2(ii).

We prove Lemma 5.4.2(iii) by induction on 2 � j < m . The result for j = 2 is
stated in [AL19, Theorem 2]. It is shown in [AL19] (see Equation (3)) that there exist
tensorsV 0

j;i for 1 � j < m satisfying with probability larger than 1 � cn� k=d,




 V 0

j;i � � Yi






op
. "m� j + 
" � j : (5.57)

The tensorsV 0
j;i are de�ned by the relations, for y 2 M close enough toYi ,

y � Yi = � Yi (y � Yi ) +
m� 1X

j =2

V �
j;i [� Yi (y � Yi ) 
 j ] + R(y � Yi )

y � Yi � �̂ i (y � Yi ) �
m� 1X

j =2

V̂j;i [�̂ i (y � Yi ) 
 j ] =
m� 1X

j =1

V 0
j;i [� Yi (y � Yi ) 
 j ] + R0(y � Yi );

with jR(y � Yi )j; jR0(y � Yi )j . "m , see the proof of Lemma 3 in [AL19]. In particular,
for j � 2, noting that � Yi � V �

j;i = 0 , we see thatV 0
j;i � � Yi is written as the sum of

(� Yi � �̂ i ) � V �
j;i + ( V �

j;i � � Yi � V̂j;i � �̂ i ) and of a sum of terms proportional to

V̂j 0;i [�̂ i � V �
a1 ;i � � Yi ; : : : ; �̂ i � V �

aj 0;i � � Yi ]; (5.58)

where 2 � j 0 < j and a1 + � � � + aj 0 = j , 1 � a1; : : : ; aj 0 < j . There exists in particular
an index in the sum which is larger than2. Assume without loss of generality that
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a1; : : : ; al > 1 and al+1 ; : : : ; aj 0 = 1 , so that �̂ i � V̂au ;i = 0 for 1 � u � l . Then,





 V̂j 0;i [�̂ i � V �

a1 ;i � � Yi ; : : : ; �̂ i � V �
al ;i � � Yi ; : : : ; �̂ i � V �

aj 0;i � � Yi ]







op

=





 V̂j 0;i [�̂ i � (V �

a1 ;i � V̂a1 ;i ) � � Yi ; : : : ; �̂ i � (V �
al ;i � V̂al ;i ) � � Yi ; : : : ; �̂ i � V �

aj 0;i � � Yi ]







op

. `
lY

u=1






 V �

au ;i � � Yi � V̂au ;i � � Yi








op

. `
lY

u=1

� 




 V �

au ;i � � Yi � V̂au ;i � �̂ i








op
+ ` k� Yi � �̂ i kop

�

. " � 1
lY

u=1

�
"m� au + 
" � au + "m� 2 + 
" � 2�

. " � 1(" lm � (j � l ) + 
 l " � ( j � l ) ) . "m� j + 
" � j ;

where at the last line we use the induction hypothesis as well as Lemma 5.4.2(i), the

fact that
P l

u=1 au = j � l and that ` . " � 1. As





 (� Yi � �̂ i ) � V �

j;i








op
. "m� 1 + 
" � 1,

we obtain that





 (V �

j;i � � Yi � V̂j;i � �̂ i ) � V 0
j;i � � Yi








op
. "m� j + 
" � j :

Hence, using (5.57),





 V �

j;i � � Yi � V̂j;i � �̂ i








op
�






 (V �

j;i � � Yi � V̂j;i � �̂ i ) � V 0
j;i � � Yi








op
+




 V 0

j;i � � Yi






op

. "m� j + 
" � j :

We now may prove (5.53). Indeed, for v 2 B T̂i
(0; 3"), we have 	̂ i (v) = X i +

v +
P m� 1

j =2 V̂j;i [v
 j ], whereas by a Taylor expansion,	 Yi � � Yi (v) = Yi + � Yi (v) +
P m� 1

j =2 Vj;i [� Yi (v) 
 j ] + R(v), with jR(v)j . "m . By Lemma 5.4.2(iii), the di�erence
between the two quantities is bounded with high probability by a sum of terms of
order ("m� j + 
" � j )jvj j . "m + 
 . Inequality (5.54) is directly implied by (5.53) and
Lemma 5.4.2(i). Inequality (5.55) is proven as (5.53), by noting that, forh 2 T̂i ,

(
d(	 Yj � � Yj )(v)[h] = � Yj (h) +

P m� 1
j =2 jV �

j;i [� Yj (v); � Yj (h) 
 ( j � 1) ] + R0(v)h

d	̂ j (v)[h] = h +
P m� 1

j =2 j V̂j;i [v; h
 ( j � 1) ];

with kR0(v)kop . "m� 1. Equation (5.56) is shown in a similar way.

5.4.2 Properties of negative Sobolev norms

Proof of Proposition 5.1.3. The second inequality in (i) is trivial. The assertion (ii)
is stated in [BCS10, Theorem 2.1] for an open set
 � Rd, and their proof can
be straightforwardly adapted to the manifold setting. It remains to prove the �rst
inequality in (i). Note that for any g with kr gkL p� (M ) � 1, one has

R
fg dvolM =R

f (g �
R

gdvolM )dvolM as
R

f dvolM = 0 . Also, by Poincaré inequality (see [BCH18,
Theorem 0.6]),








 g �

Z

M
g










L p� (M )
� C

1
p R

d
p� + 1

p kr gkL p� (M ) � C
1
p R

d
p� + 1

p ;
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Figure 5.2: Illustration of the construction in the proof of Lemma
5.4.3

where R = maxf dg(x; y); x; y 2 M g and C depends ond and on a lower bound� on

the Ricci curvature of M . Therefore,



 g �

R
M g






H 1
p� (M ) � C

1
p R

d
p� + 1

p . The quantity �

can be further lower bounded by a constant depending on� min and d. Indeed, a bound
on the second fundamental form ofM entails a bound on the Ricci curvature according
to Gauss equation (see e.g. [Car92, Chapter 6]), and the second fundamental form is

controlled by the reach ofM , see Proposition 3.5.6. AsC
1
p � C _ 1, to conclude, it

su�ces to bound the geodesic diameter ofM . This is done in the following lemma.

Lemma 5.4.3. The geodesic diameter ofM satis�es supx;y 2 M dg(x; y) � cdjvolM j� 1� d
min .

Proof. Consider a covering ofM by N open balls of radiusr1 = � (M )=4 (for the
Euclidean distance) and letx; y 2 M . Such a covering exists withN � cdjvolM jr � d

1
by standard packing arguments. Let
 : [0; `] ! M be a unit speed curve between
x and y. Let B0 be the ball of the covering such thatx 2 B0. If y 2 B0, then
jx � yj � 2r1, and by [NSW08, Proposition 6.3], we havedg(x; y) � 4r1. Otherwise, let
t0 = inf f t 2 [0; `]; 8t0 � t; 
 (t0) 62B0g. Then x1 := 
 (t0) belong to the boundary ofB0,
and is also in some other ballB1. By the previous argument, we havedg(x; x 1) � 4r1.
If y 2 B1, then dg(x1; y) � 4r1 and dg(x; y) � 8r1. Otherwise, we de�ne t1 = inf f t 2
[t0; `]; 8t0 � t; 
 (t0) 62B1g and we iterate the same argument. At the end, we obtain
a sequencex = x0; x1; : : : ; x I of points in M with associated ballsB i which contain
x i , such that y 2 B I and dg(x i ; x i +1 ) � 4r1. Furthermore, all the balls B i are pairwise
distinct. As dg(x I ; y) � 4r1, we have` � (I + 1)4 r1 � (N + 1)4 r1 � 8Nr 1. By letting

 be a geodesic, we obtain in particular̀ = dg(x; y) � 8Nr 1 � 8cdjvolM jr 1� d

1 .

Proof of Proposition 5.1.6. Given a measurable map� : [0; 1] ! P p, E t a vectorial
measure absolutely continuous with respect to� t (see [San15, Box 4.2]) andv(x; t ) a
time-depending vector �eld, de�ned as the density ofE t with respect to � t , we de�ne
the Benamou-Brenier functional

Bp(�; E ) :=
Z

jv(x; t )jpd� t (x)dt: (5.59)

The Benamou-Brenier formula [BB00; Bre03] asserts that for�; � 2 P p
1 supported on

some ball of radiusR,

W p
p (�; � ) = min fB p(�; E ); @t � t + r � E t = 0 ; � 0 = �; � 1 = � g; (5.60)
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where� t is supported on the ball of radiusR, and the continuity equation @t � + r � E =
� � � has to be understood in the distributional sense, i.e.

Z

[0;1]� RD
@t � (t; x )d� (t; x ) +

Z

[0;1]� RD
r � (t; x ) � dE(t; x ) = 0 ; (5.61)

for all � 2 C1((0; 1) � B (0; R)) with compact support.
Assume that � has a densityf 0 and � has a densityf 1 on M . As � (M ) > 0, the

existence of a probability measure of mass1, supported onM , with density larger than
f min implies that jvolM j is �nite, so that M is compact, see Proposition 3.5.7.3. It is
in particular included in a ball B(0; R) for someR large enough. Letw be a vector
�eld on M with r � w = � � � in a distributional sense, i.e.

R
r g� w = �

R
g(� � � ) for

all g 2 C1(M ). Let � t = (1 � t)� + t� and de�ne E the vector measure having density
w with respect to Leb1 � volM , where Leb1 is the Lebesgue measure on[0; 1]. Then
(�; E ) satis�es the continuity equation and E = v � � where v(t; x ) = w(x)

(1� t )f 0 (x)+ tf 1 (x)
for t 2 [0; 1], x 2 M . Hence,

W p
p (�; � ) �

Z 1

0

Z
1
p

jvjpd�

=
1
p

Z 1

0

Z
jw(x)jp

j(1 � t)f 0(x) + tf 1(x)jp
((1 � t)f 0(x) + tf 1(x))dxdt

�
1
p

Z
jw(x)jpdx

1

f p� 1
min

:

By taking the in�mum on vector �elds w on M satisfying r � w = � � � and using
Proposition 5.1.3, we obtain the conclusion. The second inequality in(5.10) follows
from Proposition 5.1.3.

5.4.3 Proofs of Section 5.3.1

Proof of Lemma 5.3.2. We �rst prove (5.34). Note that if jx � yj � h for x; y 2 M , then
K h(x � y) = 0 . Hence, by a change of variable, using thatBM (x; h) � 	 x (BTx M (0; h))
as � x is 1-Lipschitz continuous,
Z

M
K h(x � y)B [(x � y) 
 j ]dy =

Z

BTx M (0;h)
K h(x � 	 x (v))B [(x � 	 x (v)) 
 j ]J 	 x (v)dv

=
Z

BTx M (0;1)
K

�
x � 	 x (hv)

h

�
B [(x � 	 x (hv)) 
 j ]J 	 x (hv)dv:

As the functions 	 x and K are Ck , according to Lemma 5.4.1(i) and Lemma 5.4.1(ii),
we can write by a Taylor expansion, forv; u 2 BTx M (0; r0),

8
>>>><

>>>>:

	 x (v) = x + v +
P k� 1

i =2
di 	 x (0)

i ! [v
 i ] + R1(x; v)

J 	 x (v) = 1 +
P k� 1

i =2 B i
x [v
 i ] + R2(x; v)

K (v + u) = K (v) +
P k� 1

i =1
di K (v)

i ! [u
 i ] + R3(v; u)

B [(v + u) 
 j ] = B [v
 j ] +
P

;6= � �f 1;:::;j g B [v� ; u� c
];

(5.62)

where jRj (x; v)j � Cj jvjk for j = 1 ; 2, jR3(v; u)j � C3jujk and (v� ; u� c
) is the j -tuple

whoselth entry is equal to v if l 2 � , u otherwise. We obtain that

x � 	 x (hv)
h

= � v �
k� 1X

i =2

di 	 x (0)
i !

[(hv) 
 i ]h� 1 � R1(x; hv)h� 1;
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and that the expressionK
�

x� 	 x (hv)
h

�
B [(x � 	 x (hv)) 
 j ]J 	 x (hv) is written as a sum

of terms of the form

Ci 0 ;i 1 ;i 2 h� i 0 di 0 K (v)[(di 1 	 x (0)[(hv) 
 i 1 ]) 
 i 0 ]Fi 2 [(hv) 
 i 2 ] (5.63)

for 0 � i 0 � k � 1, 2 � i 1 � k � 1 and j � i 2 � k0, where Fi 2 is some tensor of order
i 2 and k0 is some integer depending onk and j , plus a remainder term smaller than
kB kop jhvjk� 1+ j up to a constant depending onk, j , L k and K . The terms for which
i 0i 1 + i 2 � i 0 � k are smaller thankB kop hk up to a constant, whereas the integrals of
the other the terms are null as the kernel is of orderk. The �rst inequality in (5.35) is
proven in a similar manner. Let us now boundk� hkCj (M ) . Given x 2 M , we have to
bound




 dj (� h � 	 x )(0)






op. We have

dj (� h � 	 x )(0) = h� j
Z

BTx M (0;h)
(dj K )h(x � 	 x (v))J 	 x (v)dv:

Therefore, using the same argument as before, we obtain that



 dj (� h � 	 x )(0)






op .

hk� 1� j .

Proof of Lemma 5.3.3. Let 0 � l � k � 1 be even, � 2 C1 (M ) be supported in
BM (x0; h0) for some h0 small enough andg 2 L p� (M ) with kgkL p� (M ) � 1. Let

x = 	 x0 (u) 2 BM (x0; h0) and let ~� x0 = ~� � 	 x0 . Recall that ~� l = dl ~� x0 � ~� x0 . We
have K h(x � 	 x0 (v)) 6= 0 only if jx � 	 x0 (v)j � h. Hence, asjx � 	 x0 (v)j � j u � vj
(recall that 	 x0 is the inverse of the projection~� x0 ), the function K h(x � 	 x0 (�)) is
supported onBTx 0 M (u; h) � B Tx 0 M (0; r0) = : B0 for h; h0 small enough. Thus,

Ah � (x) =
Z

BM (x;h )
K h(x � y)( ~� (y) � ~� (x))dy

=
Z

B 0

K h(x � 	 x0 (v))( ~� x0 (v) � ~� x0 (u))J 	 x0 (v)dv:

We may write

~� x0 (v)� ~� x0 (u) =
l � 1X

i =1

di ~� x0 (u)
i !

[(v� u) 
 i ]+
Z 1

0
dl ~� x0 (u+ � (v� u))[( v� u) 
 l ]

(1 � � ) l � 1

(l � 1)!
d�:

Each term
R

B 0
K h(x � 	 x0 (v)) di ~� x 0 (u)

i ! [(v � u) 
 i ]J 	 x0 (v)dv is equal to

Z

M
K h(x � y)

di ~� x0 (~� x0 (x))
i !

[(� x0 (y � x)) 
 i ]dy;

and is therefore of order smaller thanhk max1� i � l






 ~� i (x)








op
by Lemma 5.3.2. Hence,

Ah � (x) is equal to the sum of a remainder term of orderhk max1� i � l






 ~� i (x)








op
and of

Z 1

0

Z

B 0

K h(x � 	 x0 (v))dl ~� x0 (u + � (v � u))[( v � u) 
 l ]
(1 � � ) l � 1

(l � 1)!
J 	 x0 (v)dvd�

=
Z 1

0

Z

B 0

K h(x � 	 x0 (v))
�

dl ~� x0 (u + � (v � u)) � dl ~� x0 (u)
�

[(v � u) 
 l ]
(1 � � ) l � 1

(l � 1)!

J 	 x0 (v)dvd�

+ R1(x);
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where jR1(x)j . hk max1� i � l






 ~� i (x)








op
by Lemma 5.3.2. We now �x � 2 (0; 1) and

write, by a change of variables, and asBTx 0 M (u; h) � B0 for h0, h small enough,

U(x) :=
Z

B 0

K h(x � 	 x0 (v))
�

dl ~� x0 (u + � (v � u)) � dl ~� x0 (u)
�

[(v � u) 
 l ]J 	 x0 (v)dv

=
Z

B 0

K h

�
x � 	 x0

�
u +

w � u
�

�� �
dl ~� x0 (w) � dl ~� x0 (u)

� �
(w � u) 
 l

� l

�

J 	 x0

�
u +

w � u
�

�
dw
� d

Note that jK h(u) � K h(v)j . h� d� 1ju � vj1fj uj � h or jvj � hg, and that, as 	 x0 is
C2,

�
�
�
�x � 	 x0

�
u +

w � u
�

�
�

x � 	 x0 (w)
�

�
�
�
�

�

�
�
�
�
d	 x0 (u)[w � u] � (x � 	 x0 (w))

�

�
�
�
� +

L k jw � uj2

2� 2

�
L k jw � uj2

�
.

jw � uj2

�
;

whereas, asJ 	 x0 is Lipschitz continuous,
�
�
�
�J 	 x0

�
u +

w � u
�

�
� J 	 x0 (w)

�
�
�
� .

�
�
�
�u +

w � u
�

� w

�
�
�
� .

jw � uj
�

:

Hence,U(x) is equal to the sum of

� � l
Z

B 0

K h� (x � 	 x0 (w))
�

dl ~� x0 (w) � dl ~� x0 (u)
�

[(w � u) 
 l ]J 	 x0 (w) dw

= � � l
Z

M
K h� (x � y)

�
~� l (y) � ~� l (x)

�
[(� x0 (y � x)) 
 l ]dy;

and of a remainder term smaller than

� � l
Z

B 0

�
�
�
�
�
� � dK h

�
x � 	 x0

�
u +

w � u
�

��
J 	 x0

�
u +

w � u
�

�

� K h� (x � 	 x0 (w)) J 	 x0 (w)

�
�
�
�
�
�






 dl ~� x0 (w) � dl ~� x0 (u)








op
jw � uj l dw

. � � l
Z

jw� uj. �h

 
jw � uj2

(�h )d+1 J 	 x0

�
u +

w � u
�

�
+ jK h� (x � 	 x0 (w)) j

jw � uj
�

!

�





 dl ~� x0 (w) � dl ~� x0 (u)








op
jw � uj l dw

. hl+1 (�h ) � d
Z

jw� uj. �h






 dl ~� x0 (w) � dl ~� x0 (u)








op
dw:

Putting all the estimates together, we may now write
R

M Ah � (x)g(x)dx as S + R2,
where, by the symmetrization trick (using that l is even)

S =
ZZ

M � M
K (l )

h (x � y)
�

~� l (y) � ~� l (x)
�

[(� x0 (y � x)) 
 l ]g(x)dydx

=
ZZ

M � M
K (l )

h (x � y)
�

~� l (x) � ~� l (y)
�

[(� x0 (x � y)) 
 l ]g(y)dydx

=
1
2

ZZ

M � M
K (l )

h (x � y)
�

~� l (y) � ~� l (x)
�

[(� x0 (x � y)) 
 l ](g(x) � g(y))dydx;
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and, asAh � is supported onBM (x0; h0 + h) � B M (x; 2h0) if h is small enough,R2 is
smaller than,

hl+1 (�h ) � d
Z

x2B M (x;2h0 )

Z

jw� ~� x 0 (x)j. �h






 dl ~� x0 (w) � dl ~� x0 (~� x0 (x))








op
jg(x)jdwdx

(5.64)

+
Z

M
hk max

1� i � l






 ~� i (x)








op
jg(x)jdx

. hl+1 (�h ) � d
Z

w2B M (x;3h0 )






 dl ~� x0 (w)








op

Z

jw� ~� x 0 (x)j. �h
jg(x)jdxdw (5.65)

+ hl+1
Z

x2B M (x;2h0 )






 ~� l (x)








op
jg(x)jdx +

Z

M
hk max

1� i � l






 ~� i (x)








op
jg(x)jdx;

where we also used Lemma 3.5.87. By the chain rule,

max
1� i � l






 ~� i (x)








op
. max

1� i � l






 di ~� (x)








op
.

lX

i =1






 di ~� (x)








op
:

Hence, applying Hölder's inequality and using thatkgkL p� (M ) � 1 show that the two

last terms in (5.65) are of order hl+1 k~� kH l
p (M ) . To bound the �rst term in (5.65),

remark that by Young's inequality for integral operators [Sog17, Theorem 0.3.1], if
T�h (g)(y) = ( �h ) � d

R
jx � yj. �h jg(x)jdx, then kT�h gkL p� (M ) . kgkL p� (M ) . This yields,

by Hölder's inequality,

hl+1
Z

w2B M (x;3h0 )






 dl ~� x0 (w)








op
Th� (g)(	 x0 (w))dw . hl+1 k~� kH l

p (M ) ;

which concludes the proof of the �rst statement of Lemma 5.3.3. To bound the
remainder term in terms of k~� kH l +1

p (M ) , we bound the second term in(5.64) in the
same fashion, while, to bound the �rst term, we write, by a change of variables,

Z

BM (x0 ;2h0 )

Z

jw� ~� x 0 (x)j. �h






 dl ~� x0 (w) � dl ~� x0 (~� x0 (x))








op
jg(x)jdxdw

�
Z 1

0

Z

BM (x0 ;2h0 )

Z

jw� ~� x 0 (x)j. �h






 dl+1 ~� x0 (~� x0 (x) + � 0(w � ~� x0 (x)))








op

� j ~� x0 (x) � wjjg(x)jdxdwd� 0

. h
Z 1

0

Z

BM (x0 ;2h0 )

Z

ju� ~� x 0 (x)j. � 0�h






 dl+1 ~� x0 (u)








op
jg(x)jdx

du
� 0d d� 0;

and this term is bounded as the �rst term in (5.65) by h(h� )dk~� kH l +1
p (M ) , concluding

the proof of Lemma 5.3.3.

Proof of Lemma 5.3.4. By the chain rule, we have that, for any u 2 BTx 0 M (0; h0),


 dl+1 (� � 	 x0 )(u)






op . max1� i � l+1



 di � (	 x0 (u))






op. Hence, by a change of variables,
Z

BM (x0 ;h0 )
k� l+1 (x)kp

op dx .
Z

BTx 0 M (0;h0 )
max

1� i � l+1




 di � (	 x0 (u))




 p

op du

.
l+1X

i =1

Z

BTx 0 M (0;h0 )




 di � (	 x0 (u))




 p

op du

.
l+1X

i =1

Z

BTx 0 M (0;h0 )




 di � (	 x0 (u))




 p

op J 	 x0 (u)du . k� kp
H l +1

p (M )
;
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where we used at last line that, by Lemma 3.5.8(ii),J 	 x0 (u) � 1=2 for juj � h0 if h0

is small enough. To prove the �rst inequality, write

h� d
ZZ

BM (x0 ;h0 )2
1fj x � yj � hg

k� l (x) � � l (y)kp
op

jx � yjp
dxdy

. h� d
ZZ

BTx 0 M (0;h0 )2
1fj 	 x0 (u) � 	 x0 (v)j � hg




 dl (� � 	 x0 )(u) � dl (� � 	 x0 )(v)




 p

op

j	 x0 (u) � 	 x0 (v)jp
dudv

. h� d
Z 1

0

ZZ

BTx 0 M (0;h0 )2
1fj u � vj � hg






 dl+1 (� � 	 x0 )(u + � (v � u))








p

op
dudvd�

. h� d
Z 1

0

ZZ

BTx 0 M (0;2h0 )2
1fj w � uj � �h g






 dl+1 (� � 	 x0 )(w)








p

op
dudw� � dd�

.
Z 1

0

Z

BTx 0 M (0;2h0 )






 dl+1 (� � 	 x0 )(w)








p

op
dw .

Z

BM (x0 ;h0 )
k� l+1 (x)kp

op dx;

where at the second to last line, we used thatw = u + � (v � u) is of norm smaller than
2h0 if juj � h0 and jv � uj � h � h0, and, at the last line, we used thatJ 	 x0 (w) � 1=2
for jwj small enough.

5.4.4 Proof of Lemma 5.3.7

Lemma 5.3.7 is heavily based on the following classical control on the gradient of the
Green function.

Lemma 5.4.4. Let x; y 2 M , then

jr xG(x; y)j .
1

dg(x; y)d� 1 �
1

jx � yjd� 1 : (5.66)

Proof. For d � 2, a proof of Lemma 5.4.4 is found in [Aub82, Theorem 4.13]. See
also [Hir96, Theorem 5.2] for a proof with more explicit constants in the cased � 3.
Constants in their proofs depend ond, bounds on the curvature ofM , jvolM j and the
geodesic diameter ofM . As, those three last quantities can be further bounded by
constants depending on� min , f min and d, see Lemma 5.4.3 and [NSW08, Proposition
6.1], this concludes the proof. Ford = 1 , M is isometric to a circle, for which a closed
formula for G exists [Bur94], and satis�esjr xG(x; y)j � 1.

Recall that, by Lemma 5.3.2, j� h(x)j � 1=2 for all x 2 M . Therefore, Lemma 5.4.4
yields

�
�
�
�r G

�
K h �

�
� x

� h

��
(z)

�
�
�
� =

�
�
�
�

Z

M
r zG(z; y)

K h(x � y)
� h(x)

dy

�
�
�
� .

Z

BM (x;h )

kK k1 h� d

jz � yjd� 1 dy:

If d = 1 , this quantity is smaller than a constant as volM (BM (x; h)) . hd by Lemma
3.5.87. We then obtain directly the result in this case by integrating this inequality
against f (x)dx. If d � 2, we use the following argument.

� If jx � zj � 2h and y 2 BM (x; h), then jz � yj � j x � zj � h � j x � zj=2. Therefore,
by Proposition 3.5.7.7,

Z

BM (x;h )

kK k1 h� d

jz � yjd� 1 dy �
21� dkK k1 h� d

jx � zjd� 1 volM (BM (x; h)) .
1

jx � zjd� 1 :
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� If jx � zj � 2h, then

Z

BM (x;h )

kK k1 h� d

jz � yjd� 1 dy �
Z

BM (z;3h)

kK k1 h� d

jz � yjd� 1 dy

�
Z

BTz M (0;3h)

kK k1 h� dJ 	 z(u)
jz � 	 z(u)jd� 1 du . h� d

Z

BTz M (0;3h)

du
jujd� 1 . h1� d;

where at the last line we used thatjz � 	 z(u)j � j uj and that J 	 z(u) . 1 by
Lemma 5.4.1.

Hence,

E [jr (G(K h � � X ))( z)jp] =
Z

M
f (x)jr (G(K h � � x ))( z)jpdx

� f max

 Z

BM (z;2h)
jr (G(K h � � x ))( z)jpdx +

Z

M nBM (z;2h)
jr (G(K h � � x ))( z)jpdx

!

.
Z

BM (z;2h)
h(1� d)pdx +

Z

M nBM (z;2h)
jz � xj(1� d)pdx

. h(1� d)p+ d +
Z

M nBM (z;2h)
jz � xj(1� d)pdx:

The latter integral is bounded by
Z

2h�j x� zj� r 0

jz � xj(1� d)pdx +
Z

jx � zj� r 0

jz � xj(1� d)pdx

�
Z

2h�j 	 z (u)� zj� r 0

jz � 	 z(u)j(1� d)pJ 	 z(u)du + jvolM jr (1� d)p
0

.
Z

14h=8�j uj� r 0

juj(1� d)pdu + 1 . h(1� d)p+ d if (1 � d)p + d < 0;

where at the last line we use thatjuj � j z � 	 z(u)j � 8juj=7 by Proposition 3.5.8. If
d > 2 or if d = 2 and p > 2, the condition (1 � d)p + d < 0 is always satis�ed. If d = 2
and p = 2 , then

R
14h=8�j uj� h0

juj(1� d)pdu is of order � logh, concluding the proof.

5.4.5 Proof of Theorem 5.2.1(i)

Let f be the density of � and ~f = f=� h . By Lemma 5.3.2, f min (1 � c0hk� 1) � ~f �
f max (1 + c0hk� 1) for h small enough. We have

K h � f (x) =
Z

M
K h(x � y) ~f (y)dy =

Z

BTx M (0;h)
K h(x � 	 x (v)) ~f � 	 x (v)J 	 x (v)dv

�
Z

BTx M (0;h)
K h(v) ~f � 	 x (v)J 	 x (v)dv (5.67)

�
Z

BTx M (0;h)
jK h(x � 	 x (v)) � K h(v)j ~f � 	 x (v)J 	 x (v)dv: (5.68)

By Lemma 3.5.8(i), the quantity jK h(x � 	 x (v)) � K h(v)j is bounded by
kK kC1( Rd )

hd+1 jx �

v � 	 x (v)j . jvj2

hd+1 , so that the second term in the right-hand side of(5.68) is bounded

by Cf max
R

BTx M (0;h)
jvj2

hd+1 dv . h. Also, using that jJ 	 x (v) � 1j � c1jvj by Lemma
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3.5.8, the �rst term is larger than

f min (1 � c0hk� 1)(1 � c1h)
Z

Rd
K + (v)dv � f max (1 + c1h)(1 + c0hk� 1)

Z

Rd
K � (v)dv

= f min (1 � c2h)
�

1 +
Z

Rd
K � (v)dv

�
� f max (1 + c2h)

Z

Rd
K � (v)dv

= f min (1 � c2h) � (f max (1 + c2h) � f min (1 � c2h))
Z

Rd
K � (v)dv

� f min (1 � c2h) � (f max (1 + c2h) � f min (1 � c2h)) �

� 3f min =4;

if � < f min =(4(f max � f min )) and h is small enough. Likewise, we show thatK h �
~f (x) � 3f max=2. It remains to show that jK h � ~f (x) � K h � (� n=� h)(x)j is small
enough for all x 2 M with high probability. Note that K h � ~f � K h � (� n=� h) is
L -Lipschitz with L . h� d� 1. Let t = f min =4 and consider a covering ofM by
N balls BM (x j ; t=(2L)) . By standard packing arguments, such a covering exists
with N . (L=t )d. If jK h � ~f (x j ) � K h � � n (x j )j � t=2 for all j = 1 ; : : : ; N , then
kK h � ~f � K h � � nkL 1 (M ) � t=2 + Lt=(2L) � t. Hence, using Bernstein inequality
[GN15, Theorem 3.1.7], asjK h(x j � Yi )j � k K kC0 (RD )h

� d and Var(K h(x j � Yi )) �
kK 2kC0 (RD )h

� d, we obtain

P(kK h � ~f � K h � � nkL 1 (M ) � t) � P(9j; jK h � ~f (x j ) � K h � � n (x j )j � t=2)

. (L=t )dP(jK h � ~f (x j ) � K h � � n (x j )j � t=2) . h� d(d+1) exp(� Cnhd):

Choosingnhd = C0logn for C0 large enough yields the conclusion.

5.4.6 Proofs of Section 5.3.4

We �rst prove Lemma 5.3.8.

Proof of (a). The application 	 Yj � � Yj : BT̂j
(0; 3") ! M is a di�eomorphism

on BT̂j
(0; 3"), as the composition of the di�eomorphisms	 Yj and (� Yj ) jT̂j

(recall

that \ (T̂j ; TYj M ) . "m� 1 + 
" � 1 . 1 by Proposition 5.2.4). Furthermore, as~� Yj is
1-Lipschitz continuous and using the bound on the angle,

BM (Yj ; 2" ) � 	 Yj (BTYj M (0; 2" )) � (	 Yj � � Yj )(BT̂j
(0; 3" )) :

This proves the �rst part of Lemma 5.3.8(a). Let Sj : BM (Yj ; 2" ) ! B T̂j
(0; 3" ) be the

inverse of	 Yj � � Yj . By Lemma 5.4.2(ii), 	̂ j is injective on T̂j , while, for v 2 T̂j with
jvj � 3" ,






 id � d	̂ j (v)








op
�












m� 1X

a=2

aV̂a;j [�; v
 (a� 1) ]












. `" � 1=2 (5.69)

if ` . " � 1 is small enough. Hence,̂	 j : BT̂j
(0; 3" ) ! 	̂ j (T̂j ) is a di�eomorphism on its

image, and 	̂ j � Sj is a di�eomorphism as a composition of di�eomorphisms. Note
that the inverse of 	̂ j is given by �̂ j (� � X j ), so that B	̂ j (T̂j ) (X j ; " ) � 	̂ j (BT̂j

(0; " )) .
Furthermore, by Proposition 3.5.8,

(	 Yj � � Yj )(BT̂j
(0; " )) � 	 Yj (BTYj

(0; " )) � B M (Yj ; 8"=7);

so that (	̂ j � Sj )(BM (Yj ; 2" )) contains B	̂ j (T̂j ) (X j ; " ). Furthermore, these inclusions

of balls also hold for any"0 � " , proving that j	̂ j � Sj (z) � X j j � (7=8)jz � Yj j for any
z 2 BM (Yj ; 2" ).
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Proof of (b). The formula for the density ~� j follows from a change of variables.

Proof of (c). The inequality (5.48) follows from Proposition 5.2.4. We now prove
that

j� Yi (z � 	̂ j � Sj (z)) j . " ("m + 
 ): (5.70)

Let u 2 T̂j be such that z = 	 Yj � � Yj (u) and y = 	̂ j (u). Recall that X j 2 TYj M ? by
assumption, so that� Yj (X j � Yj ) = 0 . Also, by Lemma 3.5.8(i), we have	 Yj (� Yj (u)) =
Yj + � Yj (u) + NYj (� Yj (u)) with NYj (� Yj (u)) 2 TYj M ? , while by Lemma 5.4.2(ii), we
have 	̂ j (u) = X j + u + N̂ j (u) with N̂ j (u) 2 T̂?

j . Hence,

j� Yj (z � y)j = j� Yj (Yj + � Yj (u) + NYj (� Yj (u)) � (X j + u + N̂ j (u))) j

= j� Yj (NYj (� Yj (u)) � N̂ j (u)) j

� \ (TYj M; T̂j )jNYj (� Yj (u)) � N̂ j (u)j + j�̂ j (NYj (� Yj (u)) � N̂ j (u)) j

. ("m� 1 + 
" � 1)( "m + 
 ) + j�̂ j (� ?
Yj

(NYj (� Yj (u)))) j

. ("m� 1 + 
" � 1)( "m + 
 ) + \ (TYj M; T̂j )jNYj (� Yj (u)) j

. ("m� 1 + 
" � 1)( "m + 
 + "2) . ("m� 1 + 
" � 1)( "2 + 
 );

where we used Proposition 5.2.4 to bound\ (TYj M; T̂j ), Lemma 5.4.2 to bound
jNYj (� Yj (u)) � N̂ j (u)j and Lemma 3.5.8 to boundjNYj (� Yj (u)) j. Recalling that 
 . "2

by assumption, we obtain (5.70).
To prove inequality (5.49), we �rst bound j� j (	̂ j � Sj (z)) � � j (z)j and then bound

jJ (	̂ j � Sj )(z) � 1j. The �rst bound is based on the following elementary lemma.

Lemma 5.4.5. Let � : RD ! R be a smooth radial function. Then,j� (x) � � (y)j �
k� kC2( RD )

2 jj xj2 � j yj2j.

Proof. As d� (0) = 0 , one can write� (x) = ~� (jxj2) for some function~� which is Lipschitz
continuous with Lipschitz constant kd2 � k1

2 . This implies the conclusion.

Recall from the proof of Lemma 5.2.5 that we have� j (z) = � j (z)=
P J

i =1 � i (z) where

� i = �
�

z� X i
"

�
for some smooth radial function� , and that furthermore, there is at

most cd non-zero terms in the sum in the denominator, which is always larger than1.
Hence, if we control for everyi = 1 ; : : : ; J the di�erence jjz � X i j2 � j 	̂ j � Sj (z) � X i j2j,
then we obtain a control on j� j (z) � � j (	̂ j � Sj (z)) j. We have by (5.48) and (5.70),

jj 	̂ j � Sj (z) � X i j2 � j z � X i j2j = jj 	̂ j � Sj (z) � zj2 + 2( 	̂ j � Sj (z) � z) � (z � X i )j

. ("m + 
 )2 + j(	̂ j � Sj (z) � z) � (z � Yi )j + j(	̂ j � Sj (z) � z) � (X i � Yi )j

. ("m + 
 )2 + j� Yj (	̂ j � Sj (z) � z) � � Yj (z � Yi )j

+ j� ?
Yj

(	̂ j � Sj (z) � z) � � ?
Yj

(z � Yi )j + ( "m + 
 )


. ("m + 
 )2 + "("m + 
 )jz � Yi j + ( " k + 
 )j� ?
Yj

(z � Yi )j + ( "m + 
 )
:

By Proposition 3.5.7.4, j� ?
Yj

(z � Yi )j � j ~� ?
Yj

(z)j + j~� ?
Yj

(Yi )j . "2 + jYi � Yj j2 and

; " m . "2. Hence, we obtain that

jj 	̂ j � Sj (z) � X i j2 � j z � X i j2j . ("m + 
 )( "2 + jYi � Yj j2): (5.71)
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Therefore,
�
�
�
�
�
�

�
z � X i

"

�
� �

 
	̂ j � Sj (z) � X i

"

! �
�
�
�
�

.
("m + 
 )( "2 + jYi � Yj j2)

"2

= ( "m + 
 )
�

1 +
jYi � Yj j2

"2

�
:

(5.72)

Note also that if jYi � Yj j � 3" , then jz � X i j � j X i � X j j � j z � X j j � 3" � " � 3
 � " ,
while by the same argumentj	̂ j � Sj (z) � X i j � " . Hence, both terms in the left-hand
side of (5.72) are null in that case. Thus, we may assume thatjYi � Yj j � 3" , so

that
�
�
� �

�
z� X i

"

�
� �

�
	̂ j � Sj (z)� X i

"

� �
�
� . "m + 
 . From the de�nition of � j (z), and as the

function t 7! 1=t is Lipschitz on [1; 1 [, we obtain that j� j (z) � � j (	̂ j � Sj (z)) j . "m + 
 .
We now prove a bound onjJ (	̂ j � Sj )(z) � 1j. One has, foru = Sj (z) 2 T̂j ,

jJ (	̂ j � Sj )(z) � 1j =
jJ 	̂ j (u) � J (	 Yj � � Yj )(u)j

J (	 Yj � � Yj )(u)
:

By Lemma 3.5.8(i) and Lemma 5.4.2(ii), we have





 idT̂j

� d(	 Yj � � Yj )(u)







op
. juj and






 idT̂j

� d	̂ j (u)







op
. juj. As a consequence, both Jacobians are larger than, say1=2

for u small enough, and, as the functionA 2 Rd� d 7!
p

det(A) is cd Lipschitz on the
set of matrices with det(A) � 1=2 and kAkop � 2, we have

jJ (	̂ j � Sj )(z) � 1j � 2cd






 d	̂ j (u) � d	̂ j (u) � d(	 Yj � � Yj )(u) � d(	 Yj � � Yj )(u)








op
:

(5.73)

Recall that 	̂ j (u) = X j + u + N̂ j (u) and 	 Yj � � Yj (u) = Yj + � Yj (u) + NYj � � Yj (u).
We may write

d	̂ j (u) � d	̂ j (u) = id T̂j
+ ( dN̂ j (u)) � dN̂ j (u) and

d(	 Yj � � Yj )(u) � d(	 Yj � � Yj )(u) = �̂ j � Yj �̂ j + ( d(NYj � � Yj )(u)) � d(NYj � � Yj )(u):

One has





 idT̂j

� �̂ j � Yj �̂ j








op
=






 �̂ j � ?

Yj
� ?

Yj
�̂ j








op
� \ (TYj M; T̂j )2 . ("m� 1 + 
" � 1)2 .

"m + 
 (recall that 
 . "2). Furthermore, by Lemma 5.4.2(iv),





 (dN̂ j (u)) � dN̂ j (u) � (d(NYj � � Yj )(u)) � d(NYj � � Yj )(u)








op

�
� 





 dN̂ j (u)








op
+




 d(NYj � � Yj )(u)






op

� 




 dN̂ j (u) � d(NYj � � Yj )(u)








op

. " ("m� 1 + 
" � 1) . "m + 
:

Putting together (5.73) with those two inequalities, we obtain that jJ (	̂ j � Sj )(z) � 1j .
"m + 
 , concluding the proof of Lemma 5.3.8.

To conclude the section, we state and prove Lemma 5.4.6, which gives an upper
bound on the quantity T appearing in Lemma 5.3.9 for� = K h � (� n=�̂ h) and
� 0 = K h � (� n=� h).

Lemma 5.4.6. The quantity T = maxj =1 :::J supz2B (Yj ;" ) j� (	̂ j � Sj (z)) � � 0(z)j satis�es

T . "m + 
 with probability larger than 1 � cn� k=d.
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Proof. For z 2 B(Yj ; " ), we have

j� (	̂ j � Sj (z)) � � 0(z)j �
1
n

nX

i =1

�
�
�
�
�
K h � � X i (	̂ j � Sj (z))

�̂ h(X i )
�

K h � � Yi (z)
� h(Yi )

�
�
�
�
�
:

Fix an index i 2 f 1; : : : ; ng. By Proposition 3.5.7.4, asX i � Yi 2 TYi M
? , we have for

z 2 M ,

jjz � Yi j2 � j z � X i j2j = jjX i � Yi j2 � 2(z � Yi ) � (X i � Yi )j � 
 2 + jz � Yi j2



� min
:

This inequality together with (5.71) and Lemma 5.4.5 yield

jK h(X i � 	̂ j � Sj (z)) � K h(Yi � z)j

� j K h(X i � 	̂ j � Sj (z)) � K h(X i � z)j + jK h(X i � z) � K h(Yi � z)j

. h� d� 2 �
("m + 
 )( "2 + jYi � Yj j2) + 
 2 + 
 jz � Yi j2

�
:

We may assume thatjYi � Yj j � 3h and jz � Yi j � 2h, for otherwise both quantities in
the left-hand site of the above equation are zero. Hence, as
 . " . h by assumption,
we have

jK h(X i � 	̂ j � Sj (z)) � K h(Yi � z)j . h� d("m + 
 )1f Yi 2 BM (z;2h)g: (5.74)

Let us now bound j�̂ h(	̂ j � Sj (X i )) � � h(Yi )j. By the triangle inequality, and using
(5.49) and (5.74), we obtain that this quantity is smaller than

JX

j =1

Z

M
j ~� j (z)K h(X i � 	̂ j � Sj (z)) � � j (z)K h(Yi � z)jdz

.
JX

j =1

Z

M

 

1f z 2 BM (Yj ; 2" )g("m + 
 )jK h(Yi � z)j

+ ~� j (z)h� d("m + 
 )1f z 2 BM (Yi ; 2h)g

!

dz

. h� d("m + 
 )
JX

j =1

Z

M
1f z 2 BM (Yj ; 2" )g1f z 2 BM (Yi ; 2h)gdz

. "dh� d("m + 
 )
JX

j =1

1fj Yj � Yi j � 4hg

. h� d("m + 
 )
JX

j =1

1fj Yj � Yi j � 4hgvolM (BM (Yj ; "=8))

. h� d("m + 
 )volM (BM (Yi ; 5h)) . "m + 
;

where we use thatf X 1; : : : ; X J g is 7"=24-sparse, so thatf Y1; : : : ; YJ g is "=4-sparse.
Therefore, the balls BM (Yj ; "=8) for jYj � Yi j � 4h are pairwise distinct, and are
all included in BM (Yi ; 4h + "=8) � B M (Yi ; 5h). We conclude by Proposition 3.5.7.7.
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Letting N (z;2h) be the number of pointsYi belonging to BM (z;2h), we obtain

j� (	̂ j � Sj (z)) � � 0(z)j .
1
n

nX

i =1

 

jK h(Yi � z)j("m + 
 )

+ h� d("m + 
 )1f Yi 2 BM (z;2h)g

!

.
N (z;2h)

nhd ("m + 
 ):

If, for every z 2 M and some� > 0, N (z;2h) � �nh d, then we have the conclusion.
Let us bound

P0 = P(9z 2 M; N (z;2h) > �nh d):

If N (z;2h) > �nh d, then there exists a point Yi with N (Yi ; 4h) � N (z;2h) > �nh d.
Hence, P0 � nP(N (Y1; 4h) > �nh d). Conditionally on Y1, N (Y1; 4h) = 1 + U
with U a binomial random variable of parametersn � 1 and � (BM (Y1; 4h)) �
f maxvolM (BM (Y1; 4h)) . hd (see Proposition 3.5.7.7). In particular, for � large
enough, the probability P0 is smaller than n� k=d by Hoe�ding's inequality.

5.4.7 Lower bounds on minimax risks

In this section, we prove the di�erent lower bounds on minimax risks stated in the
article. The main tool used will be Assouad's lemma. Fix as in Chapter 3 a statistical
model (Y; H ; Q) with Q � P 1(Y) and # : Y ! (E; L ) a measurable function taking
its values in some semi-metric space(E; L ). We further assume that we observen
i.i.d. observations from law �# � for some� 2 Q , with � being the addition in our case.

Lemma 5.4.7 (Assouad's lemma [Yu97]). Let m � 1 be an integer andQm = f � � ; � 2
f� 1; 1gm g � Q be a set of probability measures. Assume that for all�; � 0 2 f� 1; 1gm ,

L (#(� � ); #(� � 0)) � j � � � 0j�; (5.75)

where j� � � 0j =
P m

i =1 1f � (i ) 6= � 0(i )g is the Hamming distance between� and � 0.
Then,

R n (#; Q; L ) � m
�
16

�
1 � max

�
TV(�# � � ; �# � � 0); j� � � 0j = 1

	� 2n : (5.76)

The lower bound on the minimax rates we prove are actually going to hold on the
smaller model of uniform distributions on manifolds.

De�nition 5.4.8. Let k � 2 and 
 � 0. The set Qk
d(
 ) is the set of probability

distributions � of random variables(Y; Z), where Y follows the uniform distribution
on some manifoldM 2 M k

d with f � 1
max � j volM j � f � 1

min , and Z 2 B(0; 
 ) is such that
Z 2 TY M ? . The statistical model is completed by letting(Y; H) be RD � RD endowed
with its Borel � -algebra,� be the additionRD � RD ! RD and #(� ) be the �rst marginal
� of � .

We write Qk
d for Qk

d(0). One can check thatQk
d(
 ) � Q k;s

d (
 ), with parameter

L s = f � 1=p
min _ f 1� 1=p

max . Therefore, a lower bound on the minimax risk on the model
Qk

d(
 ) yields a lower bound on the minimax risk on the modelQk;s
d (
 ) should the

parameter L s be large enough.
We build a subfamily of manifolds indexed by� 2 f� 1; 1gm following [AL19]. By

[AL19, Section C.2], there exists a manifoldM � Rd+1 of reach 2� min , of volume
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Cd� d
min which contains BRd (0; � min ). Let � > 0 and consider a family ofm points

x1; : : : ; xm 2 BRd (0; � min =2), with jx i � x i 0j � 4� for i 6= i 0 and cd(� min =� )d � m �
Cd(� min =� )d. Let 0 < � < � and let � : Rd+1 ! [0; 1] be a smooth radial function
supported onB(0; 1), with � � 1 on B(0; 1=2). Let e be the unit vector in the (d+ 1) th
direction. We then let, for � 2 f� 1; 1gm ,

� �
� (x) = x +

mX

i =1

� i + 1
2

� �
�

x � x i

�

�
e: (5.77)

Let M �
� = � �

� (M ) and � �
� be the the uniform measure onM �

� . If � � ck;d;� min � k , then
� �

� 2 Q k
d, provided that L k is large enough [AL19, Lemma C.13]. If� i = 1 , the volume

of � �
� (BRd (x i ; � )) satis�es, with ! d the volume of the d-dimensional unit ball,

�
�
�volM �

�
(� �

� (BRd (x i ; � )) � ! d� d
�
�
� �

Z

BRd (x i ;� )
jJ � �

� (x) � 1jdx

�
Z

BRd (x i ;� )

�
�
�
�
�
�

s

1 + � 2� � 2

�
�
�
�r �

�
x � x i

�

� �
�
�
�

2

� 1

�
�
�
�
�
�
dx � Cd� d� 2� � 2:

Hence, for � small enough, we havejjvolM �
�

j � Cd� d
min j � mCd� d� 2� � 2 � Cd� d

min =3,
as m � Cd(� min =� )d and � � ck;d;� min � k . As a consequence, ifj� � � 0j = 1 , with for
instance � i = 1 and � 0

i = � 1, then

TV( � �
� ; � 0�

� ) � max(� �
� (� �

� (BRd (x i ; � ))) ; � �
� 0(BRd (x i ; � )) � Cd;� min � d: (5.78)

We may now prove the di�erent minimax lower bounds using Assouad's Lemma on
the family f � �

� ; � 2 f� 1; 1gm g.

Proof of Theorem 5.1.9. As g is nondecreasing and convex, by Jensen's inequality, we
may assume without loss of generality thatL = TV . Let � = j(� �

� � � �
� 0)(B i )j, where

B i = BRd (x i ; � ) and � (i ) 6= � 0(i ). Then, TV (� �
� ; � �

� 0) � j � � � 0j� . Furthermore, if for
instance � 0(i ) = 1 , � � � �

� 0(B i ) = ( ! d� d)=jvolM �
� 0

j � cd� d=� d
min : By Assouad's Lemma,

R n (� ; Qs;k
d ; TV) � R n (� ; Qk

d; TV) �
m
16

cd
� d

� d
min

�
1 � Cd;� min � d

� 2n

� Cd

�
1 � Cd;� min � d

� 2n
:

We obtain the conclusion by letting � go to 0.

Lemma 5.4.9. For any � min > 0 and 1 � r � 1 , for f min small enough andf max ,
L k large enough, one has

R n

�
volM
jvolM j

; Qk
d(
 ); Wr

�
& 
 + n� k=d: (5.79)

Proof. As, Wr � W1, we may assume thatr = 1 . Let �; � 0 2 f� 1; 1gm with � (i ) 6=
� 0(i ). Let p� ( i ) = volM �

�
(B(x i ; � )) and U �

�;i = p� 1
� (i ) (volM �

�
) jB (x i ;� ) . By the Kantorovitch-

Rubinstein duality formula, W1(�; � ) = max
R

f d(� � � ), where the maximum is taken
over all 1-Lipschitz continuous functions f : RD ! R. Let f : x 7! x � e. Assume for
instance that � (i ) = � 1 and � 0(i ) = 1 . We have f (x) = 0 for x 2 BM �

�
(x i ; � ) and

f (x) = � for x 2 BM �
� 0

(x i ; �=2). Therefore, we have, asp� 0(i ) � c� � d,

W1(U �
�;i ; U �

� 0;i ) � p� 1
� 0(i ) � ! d(�=2)d � c1� :
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Note also that jp� ( i ) � p� 0(i ) j �
�
�
�volM �

�
(� �

� (BRd (x i ; � )) � ! d� d
�
�
� � Cd� d� 2� � 2. Further-

more, jjvolM �
�

j � j volM �
� 0

jj �
P m

i =1 jp� ( i ) � p� 0(i ) j � j � � � 0jCd� d� 2� � 2. Let f i be a

function such that W1(U �
�;i ; U �

� 0;i ) =
R

fd (U �
�;i � U �

� 0;i ). One can choosef i such that
f i (x i ) = 0 , so that the maximum of jf i j on B(x i ; � ) is at most � . One can then change
the value of f i outside the ball without changing the value of the integral, so that f i is
supported onB(x i ; 2� ) and 1-Lipschitz continuous. Consider the function f obtained
by gluing together the di�erent functions f i . The function f is 1-Lipschitz continuous,
so that

W1
�
� �

� ; � �
� 0

�
�

mX

i =1

 
p� ( i )

jvolM �
�

j
U �

�;i �
p� 0(i )

jvolM �
� 0

j
U �

� 0;i

!

(f )

�
mX

i =1

p� ( i )

jvolM �
�

j
(U �

�;i � U �
� 0;i )( f ) � j p� ( i ) � p� 0(i ) j

jU �
� 0;i (f )j

jvolM �
�

j

� p� 0(i ) jU
�
� 0;i (f )j

�
�
�
�
�

1
jvolM �

�
j

�
1

jvolM �
� 0

j

�
�
�
�
�

�
mX

i =1

p� ( i )

jvolM �
�

j
W1(U �

�;i ; U �
� 0;i ) �

mX

i =1

c4jp� ( i ) � p� 0(i ) j� 1f � (i ) 6= � 0(i )g

� c5� j� � � 0j� d� 2� � 2

�
mX

i =1

1f � (i ) 6= � 0(i )g(c6� d� � c4� d� 2� � 1) � c5� j� � � 0j� d� 2� � 2

� c7� d� j� � � 0j:

Hence, letting � = ck;d;� min ;L k � k and � = n� 1, we have, by Assouad's Lemma,

R n

�
volM
jvolM j

; Qk
d(
 ); Wr

�
& n� k=d:

Consider now the case
 > 0. Let M 0 be the d-dimensional sphere of radius� min and
M 1 be the d-dimensional sphere of radius� min + � . Let Y be uniform on M 1, and let
� be the law of (Y;0). Also, let � 0 be the law of ((1 + 
=� min ) Y;� 
=� min Y). Then,

�# � = �# � 0, whereasW1

�
volM 0

jvolM 0 j ;
volM 1

jvolM 1 j

�
� 
 . We conclude by Le Cam lemma [Yu97]

that R n

�
volM

jvolM j ; Qk
d(
 ); Wr

�
& 
 .

Proof of Theorem 5.2.1(iv). Let an = n� s+1
2s+ d if d � 3 and an = n� 1=2 if d � 2. As

Wp � W1, we may assume without loss of generality thatr = 1 , and up to rescaling,
we assume that� min =

p
d. Consider the manifoldM � Rd+1 containing BRd (0;

p
d) of

the previous proof. In particular, M contains the cube[� 1; 1]d. We adapt the proof of
Theorem 3 in [WB19b], where authors consider a family of functionsf � : [� 1; 1]d ! M
indexed by � 2 f� 1; 1gm , with f � = 1 + n� 1=2 P m

j =1 � j  j , where ( j ) j =1 ;:::;m are
elements of a wavelet basis of[� 1; 1]d (see [WB19b, Appendix E] for details on the
construction of the wavelet basis). Ifm . nd=(2s+ d) , then t0 � f � � t1 for some positive
constants t0 < 1 < t 1, and kf � kB s

p;q ([ � 1;1]d ) . 1. De�ne a function g� by g� (x) = f � (x)

if x 2 [� 1; 1]d and g� (x) = 1 otherwise. The function g� satis�es t0 � g� � t1, as well
askg� kB s

p;q (M ) . kf � kB s
p;q

+ jvolM j1=p . 1. Such an inequality is clear for thek �kH l
p (M )

norm for l an integer, askg� kp
H l

p (M ) = kg� kp
H l

p ([ � 1;1]d ) + kg� kp
H l

p (M n[� 1;1]d ) , while the

result follows from interpolation for Besov spaces [Lun18, Corollary 1.1.7]. Also, as
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R
[� 1;1]d f � = 1 , we have

R
g� = jvolM j, and g� =jvolM j is larger than f min = t0=jvolM j

and smaller than f max = t1=jvolM j. Hence, identifying measures with their densities,
the set

Qm = f � � = g� =jvolM j; � 2 f� 1; 1gm g

is a subset ofQs;k
d for f min small enough andL k , L s, f max large enough. Furthermore,

for �; � 0 2 f� 1; 1gm , TV (� � ; � � 0) = TV (f � ; f 0
� ), while W1(� � ; � � 0) = W1(f � ; f � 0) by

the Kantorovitch-Rubinstein duality formula. Hence, applying Assouad's inequality in
the same fashion than in [WB19b, Theorem 3] yields thatR n (�; Qs;k

d ; W1) & an .

Proof of Theorem 5.2.7(iv). According to Lemma 5.4.9,

R n (�; Qs;k
d ; Wp) � R n (�; Qk

d; Wp) & 
 + n� k=d;

and according to Theorem 5.2.1(iv),R n (�; Qs;k
d ; Wp) & an .

5.4.8 Existence of kernels satisfying conditions A, B(m) and C(� )

The goal of the section is to prove the existence of a kernelK satisfying the conditions
A, B (m) and C(� ) stated at the beginning of Section 5.2.

If K is a radial kernel, we have by integration by parts, asK is smooth with
compact support,

Z

Rd
@� 0 K (v)v� 1 dv = C� 0 ;� 1

Z

Rd
K (v)v� 1+ � 0 dv = C0

� 0 ;� 1

Z

R
K (r )r d+ j� 0 j+ j� 1 j� 1dr:

Hence, to show the existence of such a kernel, it su�ces to �nd for everym � 0 a
smooth even functionK : R ! R supported on [� 1; 1] satisfying

� Condition A0:
R

R K (r )r d� 1dr = ( C0
0;0) � 1,

� Condition B 0(m):
R

R K (r )r d+ i � 1dr = 0 for i = 1 ; : : : ; m,

� Condition C0(� ):
R

R K (r ) � r d� 1dr � � .

We show by recursion onm that for any � > 0, there exists a such a kernel. Form = 0 ,
let K 0 be any smooth even nonnegative function supported on[� 1; 1]. Then, letting
K = ( C0

0;0) � 1K 0=
R

R K 0, we obtain a kernelK satisfying the desired conditions for
any � > 0. Consider now the casem > 0. Let � > 0.

� If m + d is even, then anyK satisfying conditions A0, B 0(m � 1) and C0(� ) will
also satisfyB 0(m). Indeed, asK is even, we have

R
R K (r )r m+ d� 1dr = 0 , so that

the induction step is proven.

� If m + d is odd, let K be a kernel satisfying conditionsA0, B 0(m � 1) and C0(�= 2).
We use the following lemma.

Lemma 5.4.10. For i � 0, let ei : x 2 R 7! x i + d� 1 and �x an integer m > 0. Then,
for any a 2 R, let Fa be the set of smooth functionsf : (1; 1 ) ! R with compact
support satisfying

R
fe i = 0 for 0 � i < m and

R
fe m = a. Then,

inf
� Z

jf (r )jr d� 1dr; f 2 Fa

�
= 0 : (5.80)
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Assume �rst the lemma. Let a = � 1
2

R
R K (r )r m+ d� 1 and f 2 Fa. Then,

8
><

>:

R
(K (r ) + f (jr j)) r d� 1dr = ( C0

0;0) � 1 +
R

f (jr j)r d� 1dr = ( C0
0;0) � 1

R
(K (r ) + f (jr j)) r i + d� 1dr =

R
f (jr j)r i + d� 1dr = 0 for 0 < i < m

R
(K (r ) + f (jr j)) r m+ d� 1dr =

R
K (r )r m+ d� 1dr + 2

R1
1 f (r )r m+ d� 1dr = 0 :

Hence, the kernelK + f (j � j ) satis�es the condition B 0(m). Also, we have, asK (r ) = 0
if jr j � 1,

Z

R
(K (r ) + f (jr j)) � r d� 1dr =

Z

R
K (r ) � dr + 2

Z 1

1
f (r ) � r d� 1dr

� �= 2 +
Z 1

1
jf (r )jr d� 1dr;

where we used at the last line that
Z 1

1
f (r ) � r d� 1dr =

Z 1

1
f (r )+ r d� 1dr =

1
2

Z 1

1
jf (r )jr d� 1dr:

Lemma 5.4.10 asserts the existence off 2 Fa with
R

jf (r )jr d� 1dr � �= 2. For such a
choice off , the kernel ~K = K + f (j � j ) satis�es alsoC0(� ). Finally, f has a compact
support, included in [0; R] for someR > 0. The kernel ~K 1=R is supported onB(0; 1),
and satis�es conditions A0, B 0(m) and C0(� ). This concludes the induction step, and
the proof of the existence of kernels satisfying conditionsA, B (m) and C(� ).

Proof of Lemma 5.4.10. Consider functionsf supported on [r0; r1] for some1 < r 0 �
r1 to �x. Let Gr 0 ;r 1 be the subspace ofL 2([r0; r1]) spanned by the functionsei for
0 � i � m� 1 and let gm be the projection ofem on G?

r 0 ;r 1
the orthogonal space ofGr 0 ;r 1 ,

with L 2 norm `. The function f = agm
`2 is a polynomial of degreem restricted to [r0; r1]

and satis�es
R

fe i = 0 for 0 � i � m � 1 by construction, with
R

fe m = a
`2

R
em gm = a.

Also, we have for any polynomialP 2 Gr 0 ;r 1 ,

kem � Pk2
L 2 ([ r 0 ;r 1 ]) =

Z r 1

r 0

jr m+ d� 1 � P(r )j2dr =
Z r 1

r 0

1
r0j(r0r )d+ m� 1 � P(rr 0)j2dr

= r 2(d+ m)� 1
0

Z r 1
r 0

1
jr d+ m� 1 � r � (d+ m� 1)

0 P(rr 0)j2dr:

As r 7! r � (d+ m� 1)
0 P(rr 0) is an element ofG1;r 1=r0 , letting r1 = 2 r0, we obtain

`2 = kgm k2
L 2 ([ r 0 ;r 1 ]) = min

P 2 Gr 0 ;r 1

kem � Pk2
L 2 ([ r 0 ;r 1 ])

= r 2(d+ m)� 1
0 min

P 2 G1;2
kem � Pk2

L 2 ([1;2]) = Cr 2(d+ m)� 1
0 ;

whereC = Cm > 0 is the distance betweenem restricted to [1; 2] and G1;2. The function
f is not smooth so that it does not belong toFa. To overcome this issue, we consider
a smooth kernel� on R satisfying

R
� = 1 and

R
� (r )r i dr = 0 for i = 1 ; : : : ; m + d � 1,

with support included in BR(0; r0=2). See e.g. [BH19, Section 3.2] for the construction
of such a kernel� . The map � � f is supported on(1; 1 ) and it is straightforward to
check that � � f 2 Fa for r0 > 2. By Young's inequality, k� � f kL 2 (R) � k � k1 kf kL 2 (R) ,
so that
Z

j� � f (r )jr d� 1dr �

 Z 5r 0=2

r 0=2
r 2d� 2dr

! 1=2

k� � f kL 2 (R) �
�

cdr 2d� 1
0

� 1=2
k� k1 kf kL 2 (R)

� Cd;m ar � m
0

By letting r0 goes to1 , we see thatinf
� R

jf (r )jr d� 1dr; f 2 Fa
	

= 0 .
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Part II

Statistical descriptors in the space
of persistence diagrams
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Chapter 6

Structure of the space of
persistence diagrams

In this chapter, we make the connection between thep-bottleneck metrics between
persistence diagrams introduced in Chapter 3 and optimal partial transport metrics
introduced by Figalli and Gigli [FG10]. Making this link explicit allows us to introduce
distancesFGp between non-discrete measures on
 := f u = ( u1; u2) 2 R2 : u1 < u 2g,
while we call the corresponding metric space(M p; FGp) the space ofpersistence
measures. In particular, in Section 6.5, we leverage the study of the metric and
topological properties of this space to show the existence ofp-Fréchet means of
distributions on Dp.

6.1 Elements of optimal partial transport

Let X be some Polish locally compact metric space. In Chapter 3, we introduced
the theory of optimal transport, which allowed us to compare two measures� and
� on P(X ) having the same mass by considering the di�erent ways of transporting
the distribution � towards the distribution � . In certain situations, measures having
di�erent masses may naturally appear, while the total mass of a measure may carry
a physical meaning worth of interest. In that case, it is therefore not satisfactory
to normalize the measures, and extending optimal transport to measures of di�erent
masses is needed. This more general problem is referred to as optimalpartial transport.
Two main approaches have been proposed in the literature.

A �rst class of methods consists in relaxing the marginal constraints on the transport
plans � 2 �( �; � ), while penalizing the di�erence between the marginals of� and �
and � (for instance by the Kullback-Leibler divergence). Such approaches were �rst
introduced for computational purposes, as computing this relaxed distance, called the
Sinkhorn distance, turns out to be a strictly convex problem with fast minimization
procedures available [CD14]. This class of distances was then studied theoretically,
and both the geometry of the corresponding spaces and the statistical properties of
such objects are bustling research topics [Chi+15; KMV16].

Another possibility consists in using a waste function! : X ! (0; + 1 ) to throw
away the excess mass between� and � . Informally, we can now either match an element
of mass� (dx) to another element � (dy) with cost d(x; y)p, or throw it away with cost
! (x). The most investigated case in the literature is the case! � cst [HR95; Han94;
PR14], although the general case was considered forp = 1 in [Gui02]. In [FG10], Figalli
and Gigli consider measures supported on someboundedopen set
 � Rd and consider
the waste function ! = d(�; @
) p, while this problem was then further generalized to
asymmetric settings [MJT14]. The p-bottleneck distances introduced in Chapter 3
share key ideas with the distance introduced by Figalli and Gigli, with the caveat that
the space
 is not bounded, causing some technical di�culties.



122 Chapter 6. Structure of the space of persistence diagrams

We introduce the more general problem where some locally compact Polish space
X is partitioned into an open set 
 0 and a closed reservoir of massR, i.e. X = 
 0 t R .
An element of mass� (dx) can either be mapped to some� (dy), with cost d(x; y)p, or
to the reservoir R , with cost d(x; R)p (and similarly for � ). Formally, we introduce
the following generalization of [FG10, Problem 1.1].

De�nition 6.1.1. Let p 2 [1; + 1 ). Let M p(
 0; R) be the set of Radon measures�
supported on
 0 satisfying

Z


 0

d(x; R)pd� (x) < + 1 :

Given �; � 2 M p(
 0; R ), the set of admissible transport plans (or couplings)Adm(�; � )
is de�ned as the set of Radon measures� on X � X satisfying for all Borel sets
A; B � 
 0,

� (A � X ) = � (A) and � (X � B ) = � (B ):

The cost of � 2 Adm( �; � ) is de�ned as

Cp(� ) :=
ZZ

X �X
d(x; y)pd� (x; y): (6.1)

The Figalli-Gigli distance FGp(�; � ) is then de�ned as

FGp(�; � ) := inf f Cp(� )1=p : � 2 Adm( �; � )g: (6.2)

Plans � 2 Adm(�; � ) realizing the in�mum in (6.2) are called optimal. The set of
optimal transport plans between� and � for the cost (x; y) 7! d(x; y)p is denoted by
Optp(�; � ).

We introduce the following de�nition, which shows how to build an element of
Adm(�; � ) given a mapf : X ! X satisfying some balance condition (see Figure 6.1).

De�nition 6.1.2. Let �; � 2 M (
 0). Consider f : X ! X a measurable function
satisfying for all Borel set B � 
 0

� (f � 1(B ) \ 
 0) + � (B \ f (R)) = � (B ): (6.3)

De�ne for all Borel sets A; B � X ,

� (A � B ) = � (f � 1(B ) \ 
 0 \ A) + � (
 0 \ B \ f (A \ R )) : (6.4)

� is called the transport plan induced by the transport map f .

One can easily check that we have indeed� (A � X ) = � (A) and � (X � B ) = � (B )
for any Borel setsA; B � 
 0, so that � 2 Adm( �; � ) (see Figure 6.1).

Remark 6.1.3. Since we have no constraints on� (R � R ), one may always assume that
a plan � satis�es � (R � R ) = 0 , so that measures� 2 Adm( �; � ) are supported on

E 
 0 := ( X � X )n(R � R ): (6.5)

The case
 0 = 
 and R = @
 will be particularly relevant to the setting of
Topological Data Analysis. In particular, we will show that the Figalli-Gigli distance
coincides with thep-bottleneck distance between persistence diagrams. If all the results
appearing in the remaining of the chapter hold in the general case, we will settle with
the choice(
 0; R ) = (
 ; @
 ) to keep the connection with persistence diagrams explicit.
We will write M p instead of M p(
 ; @
 ) and call this space thespace of persistence
measures, while the quantity Persp(� ) :=

R

 d(x; @
 )pd� (x) is the total persistenceof

� 2 M p.
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Figure 6.1: A transport map f must satisfy that the mass � (B )
(light blue) is the sum of the mass� (f � 1(B ) \ 
 0) given by � that is
transported by f onto B (light red) and the mass � (B \ f (R)) coming
from R and transported by f onto B . The case(
 0; R) = (
 ; @
 ) is

displayed.

Remark 6.1.4. The choices of reservoirR and groundspace
 0 are actually very �exible.
In particular, one can recover the optimal transport problem with waste function w on

 0 by letting R be the graph of 
 0 (in 
 0 � R), while 
 0 is identi�ed with 
 0 � f 0g.
As such, the following propositions also hold in this framework.

6.2 General properties of M p

This section is dedicated to general properties of the metric space(M p; FGp). In
particular, we show that FGp coincides with dp when comparing persistence diagrams,
so that M p is a metric extension ofDp.

Remark 6.2.1. If a (Borel) measure� satis�es Persp(� ) < 1 , then for any Borel set
A � 
 satisfying d(A; @
) := inf x2 A d(x; @
) > 0, we have:

� (A)d(A; @
) p �
Z

A
d(x; @
) pd� (x) �

Z



d(x; @
) pd� (x) = Persp(� ) < 1 ; (6.6)

so that � (A) < 1 . In particular, � is automatically a Radon measure.

Proposition 6.2.2. Let �; � 2 M . The set of transport plansAdm(�; � ) is sequentially
compact for the vague topology onE 
 . Moreover, if �; � 2 M p, for this topology,

� � 2 Adm( �; � ) 7! Cp(� ) is lower semi-continuous.

� Optp(�; � ) is a non-empty sequentially compact set.

� FGp is lower semi-continuous, in the sense that for sequences(� n )n ; (� n )n in
M p satisfying � n

v�! � and � n
v�! � , we have

FGp(�; � ) � lim inf
n!1

FGp(� n ; � n ):

Moreover, FGp is a metric on M p.

These properties are mentioned in [FG10, pages 4-5] in the bounded case, and
corresponding proofs adapt straightforwardly to the general case. For the sake of
completeness, we provide a detailed proof in Section 6.6.

For r > 0, let 
 r := f u 2 
 : d(u; @
) > r g.
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Lemma 6.2.3. Let � 2 M p. For r > 0, let � r be the restriction of � to 
 r . Then
FGp(� r ; � ) ! 0 when r ! 0. Similarly, if a 2 D p, we havedp(ar ; a) ! 0.

Proof. Let � 2 Adm(�; � r ) be the transport plan induced by the identity map on 
 r ,
and the projection onto @
 on 
 n
 r . As � is sub-optimal, one has:

FGp
p(�; � r ) � Cp(� ) =

Z


 n
 r

d(x; @
) pd� (x) = Persp(� ) � Persp(� r ):

Thus, by the monotone convergence theorem applied to� with the functions f r : x 7!
d(x; @
 )p � 1f x 2 
 n
 r g, FGp(�; � r ) ! 0 as r ! 0. Similar arguments show that
dp(ar ; a) ! 0 as r ! 0.

Proposition 6.2.4. For a; b2 D p, FGp(a; b) = dp(a; b).

Proof. Let a; b 2 D p be two persistence diagrams. Ifa and b are �nite, than the
equality is shown in [LCO18, Proposition 1].

In the general case, letr > 0. Due to (6.6), the diagrams ar and br de�ned in
Lemma 6.2.3 have a �nite mass (thus �nite number of points). Therefore,dp(ar ; br ) =
FGp(ar ; br ). By Lemma 6.2.3, the former converges todp(a; b) while the latter converges
to FGp(a; b), giving the conclusion.

Proposition 6.2.5. The space(M p; FGp) is a Polish metric space.

As for Proposition 6.2.2, this proposition appears in [FG10, Proposition 2.7] in the
bounded case, while a proof is found in Section 6.6.

We now state one of our main result: a characterization of convergence in
(M p; FGp).

Theorem 6.2.6. Let �; � 1; � 2; : : : be measures inM p. Then,

FGp(� n ; � ) ! 0 ,

(
� n

v�! �;

Persp(� n ) ! Persp(� ):
(6.7)

This result is analog to the characterization of convergence of probability measures
in the Wasserstein space (see Chapter 3) and can be found in [FG10, Proposition
2.7] in the case where the ground space is bounded. While the proof of the direct
implication can be easily adapted from [FG10] (it can be found in Section 6.6), a new
proof is needed for the converse implication.

Proof of the converse implication. For a given compact setK � 
 , we denote its
complementary set in
 by K c, its interior set by �K , and its boundary by @K. Let
�; � 1; � 2 : : : be elements ofM p and assume that� n

v�! � and Persp(� n ) ! Persp(� ).
Since

FGp(� n ; � ) � FGp(� n ; 0) + FG p(�; 0) = Persp(� n )1=p + Persp(� )1=p;

the sequence(FGp(� n ; � ))n is bounded. Thus, if we show that(FGp(� n ; � ))n admits
0 as an unique accumulation point, then the convergence holds. Up to extracting a
subsequence, we may assume that(FGp(� n ; � ))n converges to some limit. Forn � 0,
let � n 2 Opt(� n ; � ) be a corresponding optimal transport plan. LetK be a compact
subset of
 . Recall from Chapter 3 (Proposition 3.1.8) that relative compactness for
the vague convergence of a sequence(� n )n is equivalent to supn f � n (K )g < 1 for
every compactK � 
 . Therefore, for any compactK � 
 , and n 2 N,

� n ((K � 
) [ (
 � K )) � � n (K ) + � (K ) � sup
k

� k (K ) + � (K ) < 1 :
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As any compact of E 
 is included is some set of the form(K � 
) [ (
 � K ), for
K � 
 any compact subset, using Proposition 3.1.8 again, it follows that(� n )n is also
relatively compact for the vague convergence.

Let thus � be the limit of any converging subsequence of(� n )n , whose indexes are
still denoted by n. As � n

v�! � , � is necessarily inOptp(�; � ) (see [FG10, Proposition
2.3]), i.e. � is supported onf (x; x ) : x 2 
 g. The vague convergence of(� n )n and the
convergence of(Persp(� n ))n to Persp(� ) imply that for a given compact set K � 
 ,
we have

lim sup
n!1

Z

K c
d(x; @
) pd� n (x)

= lim sup
n!1

�
Persp(� n ) �

Z

K
d(x; @
) pd� n (x)

�

= Persp(� ) � lim inf
n

Z

�K
d(x; @
) pd� n (x) � lim inf

n

Z

@K
d(x; @
) pd� n (x)

� Persp(� ) �
Z

�K
d(x; @
) pd� (x) by the Portmanteau theorem

=
Z

K c
d(x; @
) pd� (x);

where the Portmanteau theorem is recalled in Chapter 3. AsPersp(� ) is �nite, for
" > 0, there exists some compact setK � 
 with

lim sup
n

Z

K c
d(x; @
) pd� n (x) < " and

Z

K c
d(x; @
) pd� (x) < ": (6.8)

Let s : 
 ! @
 be the projection on @
 for the metric d. Such a projection is not
unique for q = 1 or for the more general reservoirR , but we can always select a
measurable projections [CR03]. We consider the following transport plan~� n (consider
informally that what went from K to K c and from K c to K is now transported onto
the diagonal, while everything else is unchanged):

8
>>>>>>>>><

>>>>>>>>>:

~� n = � n on K 2 t (K c)2;

~� n = 0 on K � K c t K c � K;

~� n (A � B ) = � n (A � B ) + � n (A � (s� 1(B ) \ K c)) for A � K; B � @
 ;

~� n (A � B ) = � n (A � B ) + � n (A � (s� 1(B ) \ K )) for A � K c; B � @
 ;

~� n (A � B ) = � n (A � B ) + � n ((s� 1(A) \ K c) � B ) for A � @
 ; B � K;

~� n (A � B ) = � n (A � B ) + � n ((s� 1(A) \ K ) � B ) for A � @
 ; B � K c:

(6.9)

Note that ~� n 2 Adm( � n ; � ): for instance, for A � K a Borel set,

~� n (A � 
) = ~� n (A � K ) + ~� n (A � K c) + ~� n (A � @
)

= � n (A � K ) + 0 + � n (A � @
) + � n (A � (s� 1(@
) \ K c))

= � n (A � 
) = � n (A);

and it is shown likewise that the other constraints are satis�ed. As~� n is suboptimal,
FGp

p(� n ; � ) �
R



2 d(x; y)pd~� n (x; y). The latter integral is equal to a sum of di�erent

terms, and we will show that each of them converges to0. Assume without loss of
generality that the compact set K belongs to an increasing sequence of compact sets
whose union is
 , with � (@(K � K )) = 0 for all compacts of the sequence.
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� We have
RR

K 2 d(x; y)pd~� n (x; y) =
RR

K 2 d(x; y)pd� n (x; y). The lim sup of the
integral is less than or equal to

RR
K 2 d(x; y)pd� (x; y) by the Portmanteau theorem

(applied to the sequence(d(x; y)pd� n (x; y))n ), and, recalling that � is supported
on the diagonal ofE 
 , this integral is equal to 0.

� For optimality reasons, any optimal transport plan must be supported on the set
f d(x; y)p � d(x; @
 )p + d(y; @
 )pg (this fact is detailed in [FG10, Proposition
2.3]). It follows that

ZZ

(K c )2
d(x; y)pd~� n (x; y) =

ZZ

(K c )2
d(x; y)pd� n (x; y)

�
Z

K c
d(x; @
) pd� n (x) +

Z

K c
d(y; @
) pd� (y):

Taking the lim sup in n, and then letting K goes to
 , this quantity converges
to 0 by (6.8).

� We have
ZZ

K � @

d(x; @
) pd~� n (x; y)

=
ZZ

K � @

d(x; @
) pd� n (x; y) +

ZZ

K � K c
d(x; @
) pd� n (x; y)

=
ZZ

K � 

d(x; @
) pd� n (x; y) �

ZZ

K 2
d(x; @
) pd� n (x; y)

=
Z

K
d(x; @
) pd� n (x) �

ZZ

K 2
d(x; @
) pd� n (x; y)

By the Portmanteau theorem applied to the sequence(d(x; @
 )pd� n (x))n , the
lim sup of the �rst term is less than or equal to

R
K d(x; @
 )pd� (x). Recall that

we assume that� (@(K � K )) = 0 . By applying the second characterization
of Portmanteau theorem (see Proposition 3.1.11) on the second term to the
sequence(d(x; y)pd� n (x; y))n , and using that � is supported on the diagonal
of E 
 , we obtain that the limsup of the second term is less than or equal to
�

RR
K 2 d(x; @
 )pd� (x; y) = �

R
K d(x; @
 )pd� (x). Therefore, the lim sup of the

integral is equal to 0.

� The three remaining terms (corresponding to the three last lines of the de�nition
(6.9)) are treated likewise this last case.

Finally, we have proven that (FGp(� n ; � ))n is bounded and that for any converging
subsequence(� nk )k , FGp(� nk ; � ) converges to0. It follows that FGp(� n ; � ) ! 0.

Remark 6.2.7. The assumption Persp(� n ) ! Persp(� ) is crucial to obtain convergence
with respect to FGp assuming vague convergence. For example, the sequence de�ned
by � n := � (n;n +1) converges vaguely to� = 0 and (Persp(� n ))n does converge (it
is constant), while FGp(� n ; 0) 9 0. This does not contradict Theorem 6.2.6 since
Persp(� ) = 0 6= lim n Persp(� n ).

Theorem 6.2.6 implies some useful results. First, it entails that the topology of
the metric FGp is stronger than the vague topology. As a consequence, the following
corollary holds, using Proposition 3.1.12 (Dp is closed inM p for the vague topology).

Corollary 6.2.8. Dp is closed inM p for the metric FGp.
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We recover in particular that the space(Dp; FGp) is a Polish space (Proposition
6.2.5), a result already proved in [MMH11, Theorems 7 and 12] with a di�erent
approach.

Secondly, we show that the vague convergence of� n to � along with the convergence
of Persp(� n ) ! Persp(� ) is equivalent to the weak convergence of a weighted measure.
For � 2 M p, let us introduce the Borel measure with �nite mass� (p) de�ned, for a
Borel subsetA � 
 , as:

� (p) (A) =
Z

A
d(x; @
) pd� (x): (6.10)

Corollary 6.2.9. The space(M p; FGp) is homeomorphic toP(
) endowed with the
weak topology, through the map� 2 M p 7! � (p) 2 P (
) . In particular, for a sequence
(� n )n and a persistence measure� 2 M p, we have

FGp(� n ; � ) ! 0 if and only if � (p)
n

w�! � (p) :

Proof. We �rst show the equivalence of the two convergences. Consider�; � 1; � 2; � � � 2
M p and assume thatFGp(� n ; � ) ! 0. By Theorem 6.2.6, this is equivalent to� n

v�! �

and � (p)
n (
) = Persp(� n ) ! Persp(� ) = � (p) (
) . Since for any continuous functionf

compactly supported, the mapx 7! d(x; @
 )pf (x) is also continuous and compactly
supported, � n

v�! � implies � (p)
n

v�! � (p) . Likewise, the map x 7! d(x; @
 ) � pf (x) is
continuous and compactly supported, so that� (p)

n
v�! � (p) also implies� n

v�! � . Hence,
� n

v�! � is equivalent to � (p)
n

v�! � (p) . By Proposition 3.1.10, the vague convergence
� (p)

n
v�! � (p) along with the convergence of the masses is equivalent to� (p)

n
w�! � (p) .

So far, we have proved that both the applicationG : � 2 M p ! � (p) 2 P (
) and
its inverse are sequentially continuous. As the spaceM p is a metric space and the
spaceP(
) is metrizable [Var58], sequential continuity is equivalent to continuity, so
that we have the conclusion.

We end this section with a characterization of relatively compact sets in(M p; FGp).

Proposition 6.2.10. A set F is relatively compact in (M p; FGp) if and only if the
set f � (p) : � 2 F g is tight and sup� 2 F Persp(� ) < 1 .

Proof. From Corollary 6.2.9, the relative compactness of a setF � M p for the metric
FGp is equivalent to the relative compactness of the setf � (p) : � 2 F g for the weak
convergence. Recall that all� (p) have a �nite mass, as � (p) (
) = Persp(� ) < 1 .
Therefore, one can use Prokhorov's theorem (Proposition 3.1.9) to conclude.

Remark 6.2.11. This characterization is equivalent to the one described in [MMH11,
Theorem 21] for persistence diagrams. The notions introduced by the authors of o�-
diagonally birth-death boundedness, and uniformness are rephrased using the notion
of tightness, standard in measure theory.

We end this section with a remark on the existence of transport maps, assuming
that one of the two measures has a density with respect to the Lebesgue measure
on 
 . We denote by f # � the pushforward of a measure� by a map f , de�ned by
f # � (A) = � (f � 1(A)) for A a Borel set.

Remark 6.2.12. Following [FG10, Corollary 2.5], one can prove that if� 2 M 2 has a
density with respect to the Lebesgue measure on
 , then for any measure� 2 M 2,
there exists an unique optimal transport plan � between� and � for the OT2 metric.
The restriction of this transport plan to 
 � 
 is equal to (id; T)# � where T : 
 ! 
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is the gradient of some convex function, whereas the transport plan restricted to
@
 � 
 is given by (s; id)# (� � T# � ), where s : 
 ! @
 is the projection on the
diagonal. A proof of this fact in the context of persistence measures would require
to introduce various notions that are out of the scope covered by this chapter. We
refer the interested reader to [FG10, Proposition 2.3] and [AGS08, Theorem 6.2.4] for
details.

6.3 Persistence measures in the �nite setting

In practice, many statistical results regarding persistence diagrams are stated for sets
of diagrams with uniformly bounded number of points [Kwi+15; CCO17], and the
speci�c properties of FGp in this setting are therefore of interest. Introduce form � 0
the subset M p

� m of M p de�ned as M p
� m := f � 2 M p : � (
) � mg, and the set

M p
f of �nite persistence measures,M p

f :=
S

m� 0 M p
� m . De�ne similarly the set D� m

(resp. Df ). Note that the assumption Persp(a) < 1 is always satis�ed for a �nite
diagram a (which is not true for general Radon measures), so that the exponentp is
not needed when de�ningD� m and Df .

Proposition 6.3.1. M p
f (resp. Df ) is dense in M p (resp. Dp) for the metric FGp.

Proof. This is a straightforward consequence of Lemma 6.2.3. Indeed, if� 2 M p and
r > 0, then (6.6) implies that � r is of �nite mass.

Let ~
 = 
 t f @
 g be the quotient of 
 by the closed subset@
 �i.e. we encode
the diagonal by just one point (still denoted by @
 ). The distance d on 


2
induces

naturally a function ~d on ~
 2, de�ned for x; y 2 
 by ~d(x; y) = d(x; y), ~d(x; @
 ) =
~d(@
 ; x) = d(x; s(x)) and ~d(@
 ; @
 ) = 0 . However, ~d is not a distance since one can
have ~d(x; y) > ~d(x; @
) + ~d(y; @
) . De�ne

� (x; y) := min f ~d(x; y); ~d(x; @
) + ~d(y; @
) g: (6.11)

It is straightforward to check that � is a distance on~
 and that ( ~
 ; � ) is a Polish space.
One can then de�ne the Wasserstein distanceWp;� with respect to � for �nite measures
on ~
 which have the same masses, that is the in�mum of~Cp(~� ) :=

RR
~
 2 � (x; y)pd~� (x; y),

for ~� a transport plan with corresponding marginals. The following theorem states
that the problem of computing the FGp metric between two persistence measures with
�nite masses can be turn into the one of computing the Wasserstein distances between
two measures supported on~
 with the same mass. Recall thats : 
 ! @
 is the
orthogonal projection (or a measurable projection in the general case).

Proposition 6.3.2. Let �; � 2 M p
f and r � � (
)+ � (
) . De�ne ~� = � +( r � � (
)) � @


and ~� = � + ( r � � (
)) � @
 . Then FGp(�; � ) = Wp;� (~�; ~� ).

Before proving Proposition 6.3.2, we need the two following lemmas:

Lemma 6.3.3. Let �; � 2 M p
f and r � max(� (
) ; � (
)) . Let ~� := � + ( r � � (
)) � @
 ,

~� := � + ( r � � (
)) � @
 and s : 
 ! @
 be the orthogonal projection on the diagonal.

1. De�ne T(�; � ) the set of plans� 2 Adm(�; � ) satisfying � (f (x; y) 2 
 � @
 :
y 6= s(x)g) = � (f (x; y) 2 @
 � 
 : x 6= s(y)g) = 0 along with � (@
 � @
 ) = 0 .
Then, Optp(�; � ) � T(�; � ).
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2. Let � 2 T(�; � ) be such that� (
) + � (@
 � 
) � r . De�ne �(� ) 2 �( ~�; ~� ) by,
for Borel sets A; B � 
 ,

8
>>>><

>>>>:

� (� )(A � B ) = � (A � B );

� (� )(A � f @
 g) = � (A � @
) ;

� (� )( f @
 g � B ) = � (@
 � B );

� (� )( f @
 g � f @
 g) = r � � (
) � � (@
 � 
) � 0:

(6.12)

Then, Cp(� ) =
RR

~
 � ~

~d(x; y)pd�(� )(x; y).

3. Let ~� 2 �(~�; ~� ). De�ne � (~� ) 2 T(�; � ) by,
8
>>>><

>>>>:

� (~� )(A � B ) = ~� (A � B ) for A; B � 
 ;

� (~� )(A � B ) = ~� ((A \ s� 1(B )) � f @
 g) for A � 
 ; B � @
 ;

� (~� )(A � B ) = ~� (f @
 g � (B \ s� 1(A))) for A � @
 ; B � 
 ;

� (~� )(@
 ; @
) = 0 :

Then,
RR

~
 � ~

~d(x; y)pd~� (x; y) = Cp(� (~� )) .

Proof.

1. Consider � 2 Adm(�; � ), and de�ne � 0 that coincides with � on 
 � 
 , and is
such that we enforce mass transported on the diagonal to be transported on
its orthogonal projection: more precisely, for all Borel setA � 
 , B � @
 ,
� 0(A � B ) = � ((s� 1(B ) \ A) � B ) and � 0(B � A) = � (B � (s� 1(B ) \ A)) .
Note that � 0 2 T(�; � ). Sinces(x) is the unique minimizer of y 7! d(x; y)p, it
follows that Cp(� 0) � Cp(� ), with equality if and only if � 2 T(�; � ), and thus
Optp(�; � ) � T(�; � ).

2. Write ~� = �(� ). The mass~� (f @
 g � f @
 g) is nonnegative by de�nition. One
has for all Borel setsA � 
 ,

~� (A � ~
) = ~� (A � 
) + ~� (A � f @
 g)

= � (A � 
) + � (A � @
) = � (A � 
) = � (A) = ~� (A):

Similarly, ~� ( ~
 � B ) = ~� (B ) for all B � 
 . Observe also that

~� (f @
 g � ~
) = ~� (f @
 g � f @
 g) + ~� (f @
 g � 
) = r � � (
) = ~� (f @
 g):

Similarly, ~� ( ~
 � f @
 g) = ~� (f @
 g). It gives that � (� ) 2 �( ~�; ~� ), so that � is well
de�ned. Observe that

ZZ

~
 � ~


~d(x; y)pd~� (x; y) =
ZZ


 � 

d(x; y)pd� (x; y)

+
Z



d(x; @
) pd� (x; @
)

+
Z



d(@
 ; y)pd� (@
 ; y) + 0

= Cp(� ) as � 2 T(�; � ):

3. Write � = � (~� ). For A � 
 a Borel set,

� (A � 
) = � (A � 
) + � (A � @
)

= ~� (A � 
) + ~� (A � f @
 g) = ~� (A � ~
) = � (A):
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Similarly, � (
 � B ) = � (B ) for all B � 
 . Therefore, � 2 Adm(�; � ), and
by construction, if a point x 2 
 is transported on @
 , it is transported on
s(x), so that � 2 T(�; � ). Observe that � (
) + � (@
 � 
) � ~� ( ~
 � ~
 ) = r ,
so that � (� ) is well de�ned. Also, � (� ) = ~� , so that, according to point 2,
Cp(� ) =

RR
~
 � ~


~d(x; y)pd~� (x; y).

We show that the inequality FGp(�; � ) � Wp;� (~�; ~� ) holds as long as the condition
r � max(� (
) ; � (
)) holds.

Lemma 6.3.4. Let �; � 2 M p
f and r � max(� (
) ; � (
)) . Let ~� := � + ( r � � (
)) � @
 ,

~� := � + ( r � � (
)) � @
 . Then, FGp(�; � ) � Wp;� (~�; ~� ).

Proof. Let ~� 2 �( ~�; ~� ). De�ne the set H := f (x; y) 2 ~
 2 : � (x; y) = d(x; y)g, and let
H c be its complementary set in ~
 2, i.e. the set where� (x; y) = d(x; @
 ) + d(@
 ; y).
De�ne ~� 0 2 M ( ~
 2) by, for Borel setsA; B � 
 :

8
><

>:

~� 0(A � B ) = ~� ((A � B ) \ H )

~� 0(A � f @
 g) = ~� ((A � ~
) \ H c) + ~� (A � f @
 g)

~� 0(f @
 g � B ) = ~� (( ~
 � B ) \ H c) + ~� (f @
 g � B ):

We easily check that ~� 0 2 �( ~�; ~� ). Also, using (a + b)p � ap + bp for positive a; b, we
have

ZZ

~
 � ~

� (x; y)pd~� (x; y) =

ZZ

H

~d(x; y)pd~� (x; y)

+
ZZ

H c
( ~d(x; @
) + ~d(@
 ; y))pd~� (x; y)

�
ZZ

H

~d(x; y)pd~� 0(x; y)

+
ZZ

H c

�
~d(x; @
) p + ~d(y; @
) p

�
d~� (x; y)

=
ZZ

~
 � ~

d(x; y)pd~� 0(x; y)

� inf
~� 02 �(~�; ~� )

ZZ

~
 � ~


~d(x; y)pd~� 0(x; y):

We conclude by taking the in�mum on ~� that

Wp;� (~�; ~� ) � inf
~� 02 �(~�; ~� )

ZZ

~
 � ~


~d(x; y)pd~� 0(x; y):

Since� (x; y) � ~d(x; y), it follows that

W p
p;� (~�; ~� ) = inf

~� 2 �(~�; ~� )

ZZ

~
 2

~d(x; y)pd~� (x; y): (6.13)

Since ~d is continuous, the in�mum in the right hand side of (6.13) is reached [Vil08,
Theorem 4.1]. Consider thus~� 2 �( ~�; ~� ) which realizes the in�mum. We can write,
using Lemma 6.3.3,

W p
p;� (~�; ~� ) =

ZZ

~
 2

~d(x; y)pd~� (x; y) =
ZZ


 � 

d(x; y)pd� (~� )(x; y)

� inf
� 2 T (�;� )

ZZ


 � 

d(x; y)pd� (x; y) = FG p

p(�; � );

which concludes the proof.
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Proof of Proposition 6.3.2. Let � 2 T(�; � ). As � (
) + � (@
 � 
) � � (
) + � (
) � r ,
one can de�ne~� = �(� ). Since� (x; y) � ~d(x; y), we have ~Cp(~� ) �

RR~d(x; y)pd~� (x; y) =
Cp(� ) (Lemma 6.3.3). Taking in�mum gives Wp;� (~�; ~� ) � FGp(�; � ): The other
inequality holds according to Lemma 6.3.4.

Remark 6.3.5. The starting idea of this theorem�informally, �adding the mass of one
diagram to the other and vice-versa��is known in TDA as a bipartite graph matching
[EH10, Ch. VIII.4] and used in practical computations [KMN17]. Here, Proposition
6.3.2 states that solving this bipartite graph matching problem can be formalized as
computing a Wasserstein distance on the metric space( ~
 ; � ) and as such, makes sense
(and remains true) for more general measures.

Remark 6.3.6. Proposition 6.3.2 is useful for numerical purposes since it allows us in
applications, when dealing with a �nite set of �nite measures (in particular diagrams),
to directly use the various tools developed in computational optimal transport [PC19]
to compute Wasserstein distances. This alternative to the combinatorial algorithms
considered in the literature [KMN17; Tur+14] is studied in detail in [LCO18]. This
result is also helpful to prove the existence ofp-Fréchet means of sets of persistence
measures, Section 6.5 below.

6.4 The FG1 distance

In classical optimal transport, the 1 -Wasserstein distance is known to have a much
more erratic behavior than its p < 1 counterparts [San15, Section 5.5.1]. However,
in the context of persistence diagrams, the bottleneck distance de�ned in Chapter
3 appears naturally as an interleaving distance between persistence modules and
satis�es strong stability results: it is thus worthy of interest. It also happens that,
when restricted to diagrams having some speci�c �niteness properties, most irregular
behaviors are suppressed and a convenient characterization of convergence exists.

De�nition 6.4.1. Recall that spt(� ) denote the support of a measure� and de�ne
Pers1 (� ) := supf d(x; @
) ; x 2 spt(� )g. Let

M 1 := f � 2 M : Pers1 (� ) < 1g and D1 := D \ M 1 : (6.14)

For �; � 2 M 1 and � 2 Adm(�; � ), let C1 (� ) := supf d(x; y) : (x; y) 2 spt(� )g and
let

FG1 (�; � ) := inf f C1 (� ) : � 2 Adm( �; � )g: (6.15)

The set of transport plans minimizing (6.15) is denoted byOpt1 (�; � ).

Recall that E 
 = ( 
 � 
) n(@
 � @
) .

Proposition 6.4.2. Let �; � 2 M 1 . For the vague topology onE 
 ,

� the map � 2 Adm( �; � ) 7! C1 (� ) is lower semi-continuous.

� The set Opt1 (�; � ) is a non-empty sequentially compact set.

� FG1 is lower semi-continuous.

Moreover, FG1 is a metric on M 1 .

The proofs of these results are found in Section 6.6. As in the casep < 1 , FG1

and d1 coincide onD1 .
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Proposition 6.4.3. For a; b2 D 1 , FG1 (a; b) = d1 (a; b).

Proof. Consider two diagramsa; b2 D 1 , written as a =
P

i 2 I � x i and b =
P

j 2 J � yj ,
where I; J � N are (possibly in�nite) sets of indices. The marginals constraints imply
that a plan � 2 Adm(�; � ) is supported on(f x i gi [ @
 ) � (f yj gj [ @
 ). If some of the
mass� (f x i g; @
 ) (resp. � (@
 ; f yj g)) is sent on a point other than the projection of x i

(resp. yj ) on the diagonal @
 , then the cost of such a plan can always be (strictly if
q > 1) reduced. Introduce the matrix C indexed on(� J [ I ) � (� I [ J ) de�ned by

8
>>>><

>>>>:

Ci;j = d(x i ; yj ) for i; j > 0;

Ci;j = d(@
 ; yj ) for i < 0; j > 0;

Ci;j = d(x i ; @
) for i > 0; j < 0;

Ci;j = 0 for i; j < 0:

(6.16)

In this context, an element of Opt(a; b) can be written a matrix P indexed on(� J [
I ) � (� I [ J ), and marginal constraints state that P must belong to the set of doubly
stochastic matricesS. Therefore, FG1 (a; b) = inf P 2S supf Ci;j : (i; j ) 2 spt(P)g,
where S is the set of doubly stochastic matrices indexed on(� J [ I ) � (� I [ J ), and
spt(P) denotes the support ofP, that is the set f (i; j ); Pi;j > 0g.

Let P 2 S. For any k 2 N, and any set of distinct indicesf i 1; : : : ; i kg � � J [ I ,
we have

k =
kX

k0=1

X

j 2� I [ J

Pi k 0;j

| {z }
=1

=
X

j 2� I [ J

kX

k0=1

Pi k 0;j

| {z }
� 1

:

Thus, the cardinality of f j : 9k0 such that (i k0; j ) 2 spt(P)g must be larger than k.
Said di�erently, the marginals constraints impose that any set ofk points in a must be
matched to at least k points in b (points are counted with eventual repetitions here).
Under such conditions, the Hall's marriage theorem (see [Hal86, p. 51]) guarantees the
existence of a permutation matrix P0 with spt(P0) � spt(P). As a consequence,

supf Ci;j : (i; j ) 2 spt(P)g � supf Ci;j : (i; j ) 2 spt(P0)g

� inf
P 02S 0

supf Ci;j : (i; j ) 2 spt(P0)g = d1 (a; b);

where S0 denotes the set of permutations matrix indexed on(� J [ I ) � (� I [ J ).
Taking the in�mum on P 2 S on the left-hand side and using thatS0 � S �nally gives
that FG1 (a; b) = d1 (a; b).

Proposition 6.4.4. The space(M 1 ; FG1 ) is complete.

Proof. Let (� n )n be a Cauchy sequence forFG1 . Fix a compact K � 
 , and pick
" = d(K; @
 )=2. There exists n0 such that for n > n 0, FG1 (� n ; � n0 ) < " . Let
K " := f x 2 
 : d(x; K ) � "g. By considering � n 2 Opt1 (� n ; � n0 ), and since
FG1 (� n ; � n0 ) < " , we have that

� n (K ) = � n (K � 
) = � n (K � K " ) � � n0 (K " ): (6.17)

Therefore, (� n (K ))n is uniformly bounded, and Proposition 3.1.8 implies that(� n )n

is relatively compact. Finally, the exact same computations as in the proof of the
completeness forp < 1 (see Section 6.6) show that(� n )n converges for theFG1

metric.
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Remark 6.4.5. Contrary to the case p < 1 , the spaceD1 (and therefore M 1 ) is
not separable. Indeed, forI � N, de�ne the diagram aI :=

P
i 2 I � (i;i +1) 2 D 1 . The

family f aI : I � Ng is uncountable, and for two distinct I; I 0, FG1 (aI ; aI 0) =
p

2
2 .

This result is similar to [BV18, Theorem 4.20].

We now show that the direct implication in Theorem 6.2.6 still holds in the case
p = 1 .

Proposition 6.4.6. Let �; � 1; � 2; : : : be measures inM 1 . If FG1 (� n ; � ) ! 0, then
(� n )n converges vaguely to� and Pers1 (� n ) converges toPers1 (� ).

Proof. First, the convergence ofPers1 (� n ) towards Pers1 (� ) is a consequence of the
reverse triangle inequality:

jPers1 (� n ) � Pers1 (� )j = jFG1 (� n ; 0) � FG1 (�; 0)j � FG1 (� n ; � );

which converges to0 as n goes to1 .
We now prove the vague convergence. Letf 2 Cc(
) , whose support is included

in some compact setK . For any " > 0, there exists aL-Lipschitz function f " , whose
support is included in K , with kf � f " k1 � " . Observe that supk � k (K ) < 1 using
the same arguments than for (6.17). Let� n 2 Opt1 (� n ; � ). We have

j� n (f ) � � (f )j � j � n (f � f " )j + j� (f � f " )j + j� n (f " ) � � (f " )j

� (� n (K ) + � (K )) " + j� n (f " ) � � (f " )j

� (sup
k

� k (K ) + � (K )) " + j� n (f " ) � � (f " )j:

Also,

j� n (f " ) � � (f " )j =

�
�
�
�

ZZ



2
(f " (x) � f " (y))d � n (x; y)

�
�
�
�

�
ZZ



2

jf " (x) � f " (y)jd� n (x; y)

� L
ZZ

(K � 
) [ (
 � K )

d(x; y)d� n (x; y) as f " is L -Lipschitz continuous

� LC1 (� n )( � n (K � 
) + � n (
 � K ))

� LFG1 (� n ; � )
�

sup
k

� k (K ) + � (K )
�

:

This last quantity converge to 0 as n goes to1 for �xed " . Therefore, taking the
lim sup in n and then letting " go to 0, we obtain that � n (f ) ! � (f ).

Remark 6.4.7. As for the case1 � p < 1 , Proposition 6.4.6 implies that FG1

metricizes the vague convergence, and thus using Propositions 6.4.3 and 3.1.12, we
have that (D1 ; d1 ) is closed in(M 1 ; FG1 ) and is�in particular�complete.

Contrary to the p < 1 case, a converse of Proposition 6.4.6 does not hold, even
on the subspace of persistence diagrams (see Figure 6.2). To recover a space with a
structure more similar to Dp, it is useful to look at a smaller set. IntroduceD1

0 the set
of persistence diagrams such that for allr > 0, there is a �nite number of points of the
diagram of persistence larger thanr and recall that Df denotes the set of persistence
diagrams with �nite number of points.

Proposition 6.4.8. The closure ofDf for the distanceFG1 is D1
0 .
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Figure 6.2: Illustration of di�erences between FGp, FG1 , and vague
convergences. Blue color represents the mass on a point while red
color designates distances.(a) A case whereFGp(� n ; 0) ! 0 for any
p < 1 while FG1 (� n ; 0) = 1 . (b) A case whereFG1 (� n ; 0) ! 0
while for all p < 1 , FGp(� n ; � ) ! 1 . (c) A sequence of persistence
diagrams an 2 D 1 , where (an )n converges vaguely toa =

P
i � x i and

Pers1 (an ) = Pers1 (a), but (an ) does not converge toa for FG1 .

Proof. Consider a 2 D 1
0 . By de�nition, for all n 2 N, a has a �nite number of points

with persistence larger than 1
n , so that the restriction an of a to points with persistence

larger than 1
n belongs toDf . As FG1 (a; an ) � 1

n ! 0, D1
0 is contained in the closure

of Df .
Conversely, consider a diagrama 2 D 1 nD1

0 . There is a constantr > 0 such that
a has in�nitely many points with persistence larger than r . For any �nite diagram
a0 2 D f , we haveFG1 (a0; a) � r , so that a is not the limit for the FG1 metric of any
sequence inDf .

Remark 6.4.9. The spaceD1
0 is exactly the set introduced in [Blu+14, Theorem 3.5]

as the completion ofDf for the bottleneck metric d1 . Here, we recover thatD1
0 is

complete as a closed subset of the complete spaceD1 .

De�ne for r > 0 and a 2 D , a(r ) the persistence diagram restricted to
 r (as in
Lemma 6.2.3). The following characterization of convergence holds inD1

0 .

Proposition 6.4.10. Let a; a1; a2; : : : be persistence diagrams inD1
0 . Then,

FG1 (an ; a) ! 0 ,

(
an

v�! a;

(a(r )
n )n is tight for all positive r:

Proof. Let us prove �rst the direct implication. Proposition 6.4.6 states that the
convergence with respect toFG1 implies the vague convergence. Fixr > 0. By
de�nition, a(r ) is made of a �nite number of points, all included in some open bounded
set U � 
 . As a(r )

n (Uc) is a sequence of integers, the bottleneck convergence implies
that for n large enough,a(r )

n (Uc) is equal to 0. Thus,(a(r )
n )n is tight.

Let us prove the converse. Considera 2 D 1
0 and a sequence(an )n that converges

vaguely to a, with (a(r )
n ) tight for all r > 0. Fix r > 0 and let x1; : : : ; xK be an

enumeration of the points in a(r ) , the point xk being present with multiplicity mk 2 N.
Denote by B(x; " ) (resp. B(x; " )) the open (resp. closed) ball of radius" centered atx.
By the Portmanteau theorem, for " small enough,

8
<

:

lim inf
n!1

an (B(xk ; " )) � a(B(xk ; " )) = mk

lim sup
n!1

an (B(xk ; " )) � a(B(xk ; " )) = mk ;
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so that, for n large enough, there are exactlymk points of an in B(xk ; " ) (since
(an (B" B (xk ; " ))) n is a converging sequence of integers). The tightness of(a(r )

n )n implies
the existence of some compactK � 
 such that for n large enough,a(r )

n (K c) = 0 (as
the measures take their values inN). Applying Portmanteau's theorem to the closed
set K 0 := K n

S K
i =1 B (x i ; " ) gives

lim sup
n!1

a(r )
n (K 0) � a(r ) (K 0) = 0 :

This implies that for n large enough, there are no other points inan with persistence
larger than r and thus FG1 (a(r ) ; an ) is less than or equal tor + " . Finally,

lim sup
n!1

FG1 (an ; a) � lim sup
n!1

FG1 (an ; a(r ) ) + r � 2r + ":

Letting " ! 0 then r ! 0, the bottleneck convergence holds.

Remark 6.4.11 (Related work with p = + 1 in standard optimal transport.) . Although
it has been less studied than theWp distances for �nite p, there exist some stimulating
works on theW1 distance. In particular, [CDPJ08] introduces the notion of restrictable
transport plans: these are the transport plans� 1 which appear as the limit asp ! 1
of optimal plans � p for Wp. Such optimal plans appear to have nice restriction
properties and satisfy a form of cyclical monotonicity�an important notion in optimal
transport theory that is not introduced in this work for the sake of concision. We
conjecture that the existence and main properties of restrictable transport plans also
hold in the framework of persistence measures with theFG1 distance.

6.5 Fréchet means of persistence measures

In this section, we state the existence ofp-Fréchet means for probability distributions
supported onM p. We start with the �nite case (i.e. averaging �nitely many persistence
measures) and then extend the result to any probability distribution with �nite p-th
moment. We then study the speci�c case of distributions supported onDp (i.e. averaging
persistence diagrams), and show that in the �nite setting, the set ofp-Fréchet means
is a convex set whose extreme points are inDd (i.e. are actual persistence diagrams).
We assume that1 < p < 1 throughout this section.

Remark 6.5.1. Once again, the content of this section also holds in the more general
setting where a general ground space
 0 and reservoirR are considered. Besides being
a locally compact Polish space, one needs to assume thatX = 
 0 t R is a geodesic
space for Fréchet means to exist. This property ensures that a Fréchet mean of two
Diracs � x and � y) exists (and is given by the �middle� of a geodesic joiningx to y if
both points are su�ciently far away from the reservoir R).

Recall that (M p; FGp) is a Polish space. The space(Pp
1 (M p); Wp;FG p ) is the space

of probability measuresP supported on M p, equipped with the Wp;FG p metric, which
are at a �nite distance from � 0�the Dirac mass supported on the empty diagram�i.e.

W p
p;FG p

(P; � 0) =
Z

� 2M p
FGp

p(�; 0)dP(� ) =
Z

� 2M p
Persp(� )dP(� ) < 1 :

We recall the de�nition of p-Fréchet mean from Chapter 3.

De�nition 6.5.2. Let P 2 P p
1 (M p). A measure � � 2 M p is a p-Fréchet meanof P

if it minimizes E : � 2 M p 7!
R

� 2M p FGp
p(�; � )dP(� ).
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6.5.1 p-Fréchet means in the �nite case

Let P be of the form
P N

i =1 � i � � i with N 2 N, � i a persistence measure of �nite mass
mi , and (� i ) i non-negative weights that sum to1. De�ne mtot :=

P N
i =1 mi . To prove

the existence ofp-Fréchet means for such aP, we show that, in this case,p-Fréchet
means correspond top-Fréchet means for the Wasserstein distance of some distribution
on M p

m tot ( ~
 ), the sets of measures on~
 that all have the same massmtot (see Section
6.3), a problem well studied in the literature [AC11; CE10; COO15a].

We start with a lemma which a�rms that if a measure � has too much mass (larger
than mtot ), then it cannot be a p-Fréchet mean of� 1 : : : � N .

Lemma 6.5.3. We haveinf fE (� ) : � 2 M pg = inf fE (� ) : � 2 M p
� m tot

g.

Proof. The idea of the proof is to show that if a measure� has some mass that is
mapped to the diagonal in each transport plan between� and � i , then we can build a
measure� 0 by �removing� this mass, and then observe that such a measure� 0 has a
smaller energy.

Let thus � 2 M p. Let � i 2 Optp(� i ; � ) for i = 1 ; : : : ; N . The measureA � 
 7!
� i (@
 � A) is absolutely continuous with respect to� . Therefore, it has a densityf i

with respect to � . De�ne for A � 
 0 a Borel set,

� 0(A) := � (A) �
Z

A
min

j
f j (x)d� (x);

and, for i = 1 ; : : : ; N , a measure� 0
i , equal to � i on 
 � 
 and which satis�es for

A � 
 0 a Borel set,

� 0
i (@
 � A) = � 0

i (s(A) � A) := � i (@
 � A) �
Z

A
min

j
f j (x)d� (x);

where s is the orthogonal projection on@
 . As � i (@
 � A) =
R

A f i (x)d� (x), � 0
i (A) is

nonnegative, and as� i (@
 � A) � � (A), it follows that � 0(A) is nonnegative. To prove
that � 0

i 2 Adm( � i ; � 0), it is enough to check that for A � 
 0, � 0
i (
 � A) = � 0(A):

� 0
i (
 � A) = � i (
 0 � A) + � i (@
 � A) �

Z

A
min

j
f j (x)d� (x)

= � (A) �
Z

A
min

j
f j (x)d� (x) = � 0(A):

Also,

� 0(
) =
Z



(1 � min

j
f j )d� (x) �

NX

j =1

Z



(1 � f j )d� (x)

=
NX

j =1

(� (
) � � j (@
 � 
)) =
NX

j =1

(� j (
 � 
) � � j (@
 � 
))

=
NX

j =1

� j (
 � 
) �
NX

j =1

� j (
 � 
) =
NX

j =1

mj = mtot :
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and thus � 0(
) � mtot . To conclude, observe that

E(� 0) �
NX

i =1

� i Cp(� 0
i ) =

NX

i =1

� i

� ZZ


 � 

d(x; y)pd� i (x; y)

+
ZZ

@
 � 

d(x; y)pd� i (x; y) �

Z



d(x; @
) p min

j
f j (x)d� (x)

�

�
NX

i =1

� i Cp(� ) = E(� ):

Recall that Wp;� denote the Wasserstein distance between measures with same
mass supported on the metric space( ~
 ; � ) (see Chapter 3 and Section 6.3).

Proposition 6.5.4. Let 	 : � 2 M p
� m tot

7! ~� 2 M p
m tot ( ~
 ), where ~� := � + ( mtot �

� (
)) � @
 . The functionals

E : � 2 M p
� m tot

7!
NX

i =1

� i FGp
p(�; � i ) and

F : ~� 2 M p
m tot

( ~
) 7!
NX

i =1

� i W p
p;� (~�; 	( � i )) ;

have the same in�mum values andarg min E = 	 � 1(arg min F ).

Proof. Let G be the set of� 2 M p such that, for all i , there exists � i 2 Optp(� i ; � )
with � i (
 ; @
) = 0 . By point 2 of Lemma 6.3.3, for � 2 G and � i 2 Optp(� i ; � ) with
� i (
 ; @
) = 0 , � (� i ) is well de�ned and satis�es

FGp
p(� i ; � ) = Cp(� i ) =

ZZ

~
 � ~


~d(x; y)pd�(� i )(x; y) � ~Cp(� (� i )) � W p
p;� (~� i ; ~� );

so that F (	( � )) � E (� ). As, by Lemma 6.3.4, E � F � 	 , we therefore have
E(� ) = F (	( � )) for � 2 G.

We now show that if � =2 G, then there exists � 0 2 M p with E(� 0) < E(� ). Let
� =2 G and � i 2 Optp(� i ; � ). Assume that for somei , we have� i (
 ; @
 ) > 0, and
introduce � 2 M p de�ned as � (A) = � i (A; @
) for A � 
 . De�ne

T : x 2 
 7! arg min
y2 


8
<

:
� i d(x; y)p +

X

j 6= i

� j d(y; @
) p

9
=

;
2 
 : (6.18)

Note that this function is well de�ned, with the value of the objective function in T(x)
being strictly smaller than the value in s(x), where s(x) is the projection of x on @

(in the general case(
 0; R ), a minimizer T(x) is found on the geodesic betweenx and
some projections(x)).

Consider the measure� 0 = � + ( T# � ), where T# � is the push-forward of � by the
application T. Consider the transport plan � 0

i deduced from� i where � is transported
onto T# � instead of being transported to@
 (see Figure 6.3). More precisely,� 0

i is
the measure on
 � 
 de�ned by, for Borel sets A; B � 
 :

� 0
i (A � B ) = � i (A � B ) + � (A \ T � 1(B )) ;

� 0
i (A � @
) = 0 ; � 0

i (@
 � B ) = � i (@
 � B ):
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Figure 6.3: Global picture of the proof. The main idea is to observe
that the cost induced by � i (red) is strictly greater than the sum of
costs induces by the� 0

i s (blue), which leads to a strictly better energy.

We have � 0
i 2 Adm( � i ; � 0). Indeed, for Borel setsA; B � 
 :

� 0
i (A � 
) = � 0

i (A � 
) = � i (A � 
) + � (A) = � i (A � 
) = � i (A);

and

� 0
i (
 � B ) = � 0

i (
 � B ) + � 0
i (@
 � B )

= � i (
 � B ) + � (T � 1(B )) + � i (@
 � B )

= � (B ) + T# � (B ) = � 0(B ):

Using � 0
i instead of � i changes the transport cost by the quantity

Z



[d(x; T (x))p � d(x; @
) p]d� (x) � 0:

In a similar way, we de�ne for j 6= i the plan � 0
j 2 Adm(� j ; � 0) by transporting the

mass induced by the newly added(T# � ) to the diagonal @
 . Using these modi�ed
transport plans increases the total cost by

X

j 6= i

� j

Z



d(T(x); @
) pd� (x):

One can observe that, as the value of the objective function atT(x) in (6.18) is
smaller than the value at s(x),

Z




2

4� i (d(x; T (x))p � d(x; @
) p) +
X

j 6= i

� j d(T(x); @
) p

3

5 d� (x) < 0

due to the fact that � (
) > 0.
Therefore, the total transport cost induced by the (� 0

i ) i =1 :::N is strictly less or equal
to E(� ), and thus E(� 0) < E(� ). Finally, we have

inf
� 2M p

� m tot

E(� ) = inf
� 2 G

E(� ) = inf
� 2 G

F (	( � )) � inf
� 2M p

� m tot

F (	( � )) � inf
� 2M p

� m tot

E(� );
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where the last inequality comes fromF � 	 � E (Lemma 6.3.4). Therefore,inf E =
inf F � 	 , which is equal to inf F , as 	 is a bijection. Also, if � is a minimizer of E
(should it exist), then � 2 G and E(� ) = F (	( � )) . Therefore, as the in�mum are equal,
	( � ) is a minimizer of F . Reciprocally, if ~� is a minimizer of F , then, by Lemma 6.3.4,
F (~� ) � E (	 � 1(~� )) , and, as the in�mum are equal, 	 � 1(~� ) is a minimizer of E.

The existence of minimizers~� of F , that is �Wasserstein barycenter� (i.e. p-Fréchet
means for the Wasserstein distance) of~P :=

P N
i =1 � i � ~� i , is well-known (see [LGL16,

Proposition 1]). Proposition 6.5.4 asserts that	 � 1(~� ) is a minimizer of E on M p
� m tot

,
and thus a p-Fréchet mean ofP according to Lemma 6.5.3. We therefore have proved
the existence ofp-Fréchet means in the �nite case.

6.5.2 Existence and consistency of p-Fréchet means

We now extend the results of the previous section to thep-Fréchet means of general
probability measures supported onM p. First, we show aconsistencyresult, in the
vein of [LGL16, Theorem 3].

Proposition 6.5.5. Let Pn ; P be probability measures inPp
1 (M p). Assume that each

Pn has ap-Fréchet mean� n and that Wp;FG p (Pn ; P) ! 0. Then, the sequence(� n )n

is relatively compact in (M p; FGp), and any limit of a converging subsequence is a
p-Fréchet mean ofP.

Proof. In order to prove relative compactness of(� n )n , we use the characterization
stated in Proposition 3.1.8. Consider a compact setK � 
 . We have, because of(6.6),

� n (K )
1
p �

1
d(K; @
)

FGp(� n ; 0) =
1

d(K; @
)
Wp;FG p (� � n ; � 0)

�
1

d(K; @
)

�
Wp;FG p (� � n ; Pn ) + Wp;FG p (Pn ; � 0)

�

Since � n is a p-Fréchet mean ofPn , it minimizes f Wp;FG p (� � ; Pn ) : � 2 M pg, and
in particular Wp;FG p (� � n ; Pn ) � Wp;FG p (� 0; Pn ). Furthermore, as by assumption
Wp;FG p (Pn ; P) ! 0, we have that supn Wp;FG p (Pn ; � 0) < 1 . As a consequence
supn � n (K ) < 1 , and Proposition 3.1.8 allows us to conclude that the sequence(� n )n

is relatively compact for the vague convergence.
To conclude the proof, we use the following two lemmas, whose proofs are found in

Section 6.6.

Lemma 6.5.6. Under the same hypothesis than Proposition 6.5.5, there exists a
subsequence(� nk )k of (� n )n which vaguely converges towards� a p-Fréchet mean ofP
and there exists� 2 M p such that FGp(� nk ; � ) ! FGp(�; � ) as k ! 1 .

Lemma 6.5.7. Let �; � 1; � 2; � � � 2 M p. Then, FGp(� n ; � ) ! 0 if and only if (i)
� n

v�! � and (ii) there exists a persistence measure� 2 M p such that FGp(� n ; � ) !
FGp(�; � ).

Let � 0
k = � nk be any subsequence of� n . We want to show that there exists a

subsequence of� 0
k which converges with respect to theFGp metric towards some

p-Fréchet mean ofP. By Lemma 6.5.6 applied to the sequence(� 0
k )k , there exists a

subsequence� 0
k l

which converges vaguely to somep-Fréchet mean� of P, and some
� with FGp(� 0

k l
; � ) ! FGp(�; � ) as l ! 1 . By Lemma 6.5.7, this implies that � 0

k l

converges to� with respect to the FGp metric, showing the conclusion.

As the �nite case is solved, generalization follows easily using Proposition 6.5.5.
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Theorem 6.5.8. For any probability distribution P supported onM p with �nite p-th
moment, the set ofp-Fréchet means ofP is a non-empty compact convex set ofM p.

Proof. We �rst prove the non-emptiness. Let P =
P N

i =1 � i � i be a probability measure
on M p with �nite support � 1; : : : ; � N . According to Proposition 6.3.1, there exists
sequences(� (n)

i )n in M p
f with FGp(� (n)

i ; � i ) ! 0. As a consequence of the result of

Section 6.5.1, the probability measuresP (n) :=
P

i � i � � ( n )
i

admit p-Fréchet means.

Furthermore, W p
p;FG p

(P (n) ; P) �
P

i � i FGp
p(� (n)

i ; � i ) so that this quantity converges to
0 as n ! 1 . It follows from Proposition 6.5.5 that P admits a p-Fréchet mean.

If P has in�nite support, following [LGL16], it can be approximated (in Wp;FG p ) by
a empirical probability measurePn = 1

n

P n
i =1 � � i where the � i are i.i.d. from P. We

know that Pn admits a p-Fréchet mean since its support is �nite, and thus, applying
Proposition 6.5.5 once again, we obtain thatP admits a p-Fréchet mean.

Finally, the compactness of the set ofp-Fréchet means follows from Proposition
6.5.5 applied with Pn = P: if (� n )n is a sequence ofp-Fréchet means, then the sequence
is relatively compact in (M p; FGp), and any converging subsequence is also ap-Fréchet
mean ofP. Also, the convexity of the set ofp-Fréchet means follows from the convexity
of FGp

p (see Lemma 8.1.3 in Chapter 8): if� 1, � 2 are two p-Fréchet means with energy
E(� 1) = E(� 2) = E0 and 0 � � � 1, then

E(�� 1 + (1 � � )� 2) =
Z

� 2M p
FGp

p(�� 1 + (1 � � )� 2; � )dP(� )

�
Z

� 2M p
(� FGp

p(� 1; � ) + (1 � � )FGp
p(� 2; � ))dP(� )

= � E(� 1) + (1 � � )E(� 2) = E0;

so that �� 1 + (1 � � )� 2 is also ap-Fréchet mean.

6.5.3 p-Fréchet means in Dp

We now prove the existence ofp-Fréchet means for distributions of persistence diagrams
(i.e. probability distributions supported on Dp), extending the results of [MMH11],
in which authors prove their existence for speci�c probability distributions (namely
distributions with compact support or speci�c rates of decay). Theorem 6.5.10 below
asserts two di�erent things: that arg minfE (a) : a 2 D pg is non empty, and that
minfE (a) : a 2 D pg = minfE (� ) : � 2 M pg, i.e a persistence measure cannot perform
strictly better than an optimal persistence diagram when averaging diagrams. As for
p-Fréchet means inM p, we start with the �nite case. The following lemma actually
gives a geometric description of the set ofp-Fréchet means obtained when averaging a
�nite number of �nite diagrams.

Lemma 6.5.9. Consider a1; : : : ; aN 2 D f , weights(� i ) i that sum to 1, and let P :=
P N

i =1 � i � ai . Then, the set of minimizers of � 7!
P N

i =1 � i FGp
p(�; a i ) is a non empty

convex subset ofM p
f whose extreme points belong toDf . In particular, P admits a

p-Fréchet mean in Df .

The proof of this lemma is delayed to Section 6.6. Note that, as a straightforward
consequence, ifP has a unique minimizer inDf (which is generically true [Tur13]),
then so it does inM p

f .

Theorem 6.5.10. For any probability distribution P supported onDp with �nite p-th
moment, the set ofp-Fréchet means ofP contains an element ofDp.
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Proof. To prove the existence of ap-Fréchet mean which is a persistence diagram, we
argue as in the proof of Theorem 6.5.8, using additionally the fact thatDp is closed in
M p (Proposition 3.1.12).

6.6 Additional proofs

For the sake of completeness, we �rst present proofs which either require very few
adaptations from corresponding proofs in [FG10] or which are close to standard proofs
in optimal transport theory.

Proofs of Proposition 6.2.2 and Proposition 6.4.2.

� For � 2 Adm(�; � ) supported on E 
 , and for any compact setsK; K 0 � 
 , one
has � ((K � 
 ) [ (
 � K 0)) � � (K ) + � (K 0) < 1 . As any compact subset ofE 

is included in a set of the form(K � 
 ) [ (
 � K 0), Proposition 3.1.8 implies
that Adm(�; � ) is relatively compact for the vague convergence onE 
 . Also,
if a sequence(� n )n in Adm(�; � ) converges vaguely to some� 2 M (E 
 ), then
the marginals of � are still � and � . Indeed, if f is a continuous function with
compact support on 
 , then

Z

E 


f (x)d� (x; y) = lim
n

Z

E 


f (x)d� n (x; y) = lim
n

Z



f (x)d� n (x)

=
Z



f (x)d� (x);

and we show likewise that the second marginal of� is � . Hence,Adm(�; � ) is
closed and relatively compact inM (E 
 ): it is therefore sequentially compact.

� To prove the second point of Proposition 6.2.2, consider�; � 1; � 2; : : : such that
� n

v�! � , and introduce � 0
n : A 7!

RR
A d(x; y)pd� n . The sequence(� 0

n )n still
converges vaguely to� 0 : A 7!

RR
A d(x; y)pd� . the Portmanteau theorem (Propo-

sition 3.1.11) applied with the open setE 
 to the measures� 0
n

v�! � 0 implies
that

Cp(� ) = � 0(E 
 ) � lim inf
n

� 0
n (E 
 ) = lim inf

n
Cp(� n );

i.e. Cp is lower semi-continuous.

� We now prove the lower semi-continuity of C1 . Let (� n )n be a sequence
converging vaguely to � on E 
 and let r > lim inf

n!1
C1 (� n ). The set Ur =

f (x; y) 2 E 
 : d(x; y) > r g is open. By the Portmanteau theorem (Proposition
3.1.11), we have

0 = lim inf
n!1

� n (Ur ) � � (Ur ):

Therefore,spt(� ) � Uc
r and C1 (� ) � r . As this holds for any r > lim inf

n!1
C1 (� n ),

we havelim inf
n!1

C1 (� n ) � C1 (� ).

� We show that for any 1 � p � 1 , the lower semi-continuity of Cp and the
sequential compactness ofAdm(�; � ) imply that 1. Optp(�; � ) is a non-empty
compact set for the vague topology onE 
 and that 2. FGp is lower semi-
continuous.
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1. Let (� n )n be a minimizing sequence of(6.2) or (6.15) in Adm(�; � ). As
Adm(�; � ) is sequentially compact, it has an adherence value� , and the
lower semi-continuity implies that Cp(� ) � lim inf n!1 Cp(� n ) = FGp

p(�; � ),
so that Optp(�; � ) is non-empty. Using once again the lower semi-continuity
of Cp, if a sequence inOptp(�; � ) converges to some limit, then the cost
of the limit is less than or equal to (and thus equal to)FGp

p(�; � ), i.e. the
limit is in Optp(�; � ). The set Optp(�; � ) being closed in the sequentially
compact setAdm( �; � ), it is also sequentially compact.

2. Let � n
v�! � and � n

v�! � . One has

lim inf
n

FGp(� n ; � n ) = lim
k

FGp(� nk ; � nk )

for some subsequence(nk )k . For ease of notation, we will still use the index
n to denote this subsequence. If the limit is in�nite, there is nothing to prove.
Otherwise, consider� n 2 Optp(� n ; � n ). For any compact setsK; K 0 � 
 ,
one has� n ((K � 
 )[ (
 � K 0)) � supn � n (K )+ supn � n (K 0) < 1 . Therefore,
by Proposition 3.1.8, there exists a subsequence(� nk )k which converges
vaguely to some measure� 2 Adm(�; � ). Note that the �rst (resp. second)
marginal of � is equal to the limit � (resp. � ) of the �rst (resp. second)
marginal of (� nk ), so that � is in Adm( �; � ). Therefore,

FGp
p(�; � ) � Cp(� ) � lim inf

n!1
Cp(� n ) = lim inf

n!1
FGp

p(� n ; � n ):

� Finally, we prove that FGp is a metric on M p. Let �; �; � 2 M p. The symmetry
of FGp is clear. If FGp(�; � ) = 0 , then there exists � 2 Adm(�; � ) supported
on f (x; x ); x 2 
 g. Therefore, for a Borel setA � 
 , � (A) = � (A � 
 ) =
� (A � A) = � (
 � A) = � (A), and � = � . To prove the triangle inequality,
we need a variant on the gluing lemma, stated in [FG10, Lemma 2.1]: for
� 12 2 Opt(�; � ) and � 23 2 Opt(�; � ) there exists a measure
 2 M (


3
) such

that the marginal corresponding to the �rst two entries (resp. two last entries),
when restricted to E 
 , is equal to � 12 (resp. � 23), and induces a zero cost on
@
 � @
 . Therefore, by the triangle inequality and the Minkowski inequality,

FGp(�; � ) �
� Z



2

d(x; z)pd
 (x; y; z)
� 1=p

�
� Z



2

d(x; y)pd
 (x; y; z)
� 1=p

+
� Z



2

d(y; z)pd
 (x; y; z)
� 1=p

=
� Z



2

d(x; y)pd� 12(x; y)
� 1=p

+
� Z



2

d(y; z)pd� 23(y; z)
� 1=p

= FG p(�; � ) + FG p(�; � ):

The proof is similar for p = 1 .

Proof of Proposition 6.2.5. We �rst show the separability. Consider for k > 0 a
partition of 
 into squares(Ck

i ) of side length2� k , centered at pointsxk
i . Let F be

the set of all measures of the form
P

i 2 I qi � xk
i

for qi positive rationals, k > 0 and I a
�nite subset of N. Our goal is to show that the countable setF is dense inM p. Fix
" > 0, and � 2 M p. The proof is in three steps.
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1. Since Persp(� ) < 1 , there exists a compactK � 
 such that Persp(� ) �
Persp(� 0) < " p, where� 0 is the restriction of � to K . By considering the transport
plan between� and � 0 induced by the identity map on K and the projection onto
the diagonal on 
 nK , it follows that FGp

p(�; � 0) � Persp(� ) � Persp(� 0) � "p.

2. Consider k such that 2� k � "=(
p

2� (K )1=p) and denote by I the indices cor-
responding to squaresCk

i intersecting K . Let � 1 =
P 1

i 2 I � 0(Ck
i )� xk

i
. One can

create a transport map between� 0 and � 1 by mapping each squareCk
i to its

center xk
i , so that

FGp(� 0; � 1) �

 
X

i

� 0(Ck
i )(

p
2 � 2� k )p

! 1=p

� � (K )1=p
p

2 � 2� k � ":

3. Consider, for i 2 I , qi a rational number satisfying qi � � 0(Ck
i ) and j� 0(Ck

i ) �
qi j � "p=

� P
i 2 I d(xk

i ; @
) p
�
. Let � 2 =

P
i 2 I qi � xk

i
. Consider the transport plan

between� 2 and � 1 that fully transports � 2 onto � 1, and transport the remaining
mass in� 1 onto the diagonal. Then,

FGp(� 1; � 2) �

 
X

i 2 I

j� 0(Ck
i ) � qi jd(xk

i ; @
) p

! 1=p

� ":

As � 2 2 F and FGp(�; � 2) � 3" , the separability is proven.
To prove that the space is complete, consider a Cauchy sequence(� n )n . As the

sequence(Persp(� n ))n = ( FGp
p(� n ; 0))n is a Cauchy sequence, it is bounded. Therefore,

for K � 
 a compact set, (6.6) implies that supn � n (K ) < 1 . Proposition 3.1.8
implies that (� n )n is relatively compact for the vague topology on
 . Consider (� nk )k

a subsequence converging vaguely on
 to some measure� . By the lower semi-continuity
of FGp,

Persp(� ) = FG p
p(�; 0) � lim inf

k!1
FGp

p(� nk ; 0) < 1 ;

so that � 2 M p. Using once again the lower semi-continuity ofFGp,

FGp(� n ; � ) � lim inf
k!1

FGp(� n ; � nk )

lim
n!1

FGp(� n ; � ) � lim
n!1

lim inf
k!1

FGp(� n ; � nk ) = 0 ;

ensuring that FGp(� n ; � ) ! 0, that is the space is complete.

Proof of the direct implication of Theorem 6.2.6. Let �; � 1; � 2; : : : be elements ofM p

and assume that the sequence(FGp(� n ; � ))n converges to 0. The triangle inequality
implies that Persp(� n ) = FGp

p(� n ; 0) converges toPersp(� ) = FGp
p(�; 0). Let f 2

Cc(
) , whose support is included in some compact setK . For any " > 0, there exists
a Lipschitz function f " , with Lipschitz constant L and whose support is included in
K , with the 1 -norm kf � f " k1 less than or equal to" . The convergence ofPersp(� n )
and (6.6) imply that supk � k (K ) < 1 . Let � n 2 Optp(� n ; � ), we have

j� n (f ) � � (f )j � j � n (f � f " )j + j� (f � f " )j + j� n (f " ) � � (f " )j

� (� n (K ) + � (K )) " + j� n (f " ) � � (f " )j

� (sup
k

� k (K ) + � (K )) " + j� n (f " ) � � (f " )j:
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Also,

j� n (f " ) � � (f " )j �
ZZ



2

jf " (x) � f " (y)jd� n (x; y) where � n 2 Opt( � n ; � )

� L
ZZ

(K � 
) [ (
 � K )

d(x; y)d� n (x; y)

� L� n ((K � 
) [ (
 � K ))1� 1
p

0

B
@

ZZ

(K � 
) [ (
 � K )

d(x; y)pd� n (x; y)

1

C
A

1
p

by Hölder's inequality.

� L
�

sup
k

� k (K ) + � (K )
� 1� 1

p

FGp(� n ; � ) ���!
n!1

0:

Therefore, taking the limsup in n and then letting " goes to 0, we obtain that
� n (f ) ! � (f ).

The following proof is already found in [LGL16]. We reproduce it here for the sake
of completeness.

Proof of Lemma 6.5.6. Recall that Pn is a sequence inPp
1 (M p) such that eachPn has

a p-Fréchet mean� n and that Wp;FG p (Pn ; P) ! 0 for someP 2 P p
1 (M p). According

to the beginning of the proof of Proposition 6.5.5, the sequence(� n )n is relatively
compact for the vague convergence. Let� 2 M p and let � be the vague limit of some
subsequence, which, for ease of notations, will be denoted as the initial sequence. By
Skorokhod's representation theorem [Bil13, Theorem 6.7], asPn converges weakly to
P, there exists a probabilistic space on which are de�ned random variables� � P and
� n � Pn for n � 0, such that � n converges almost surely with respect to theFGp

metric towards � . Using those random variables, we have

E(� ) = EFGp
p(�; � ) = W p

p;FG p
(� � ; P)

= lim
n

W p
p;FG p

(� � ; Pn ) sinceWp;FG p (Pn ; P) ! 0

= lim
n

EFGp
p(�; � n )

� lim
n

EFGp
p(� n ; � n ) since� n is a barycenter ofPn

� E lim inf
n

FGp
p(� n ; � n ) by Fatou's lemma

� EFGp
p(�; � ) = E(� ) by lower semi-continuity of FGp (Proposition 6.2.2).

(6.19)

This implies that � is a barycenter ofP. We are now going to show that, almost
surely, lim inf n FGp(� n ; � ) = FGp(�; � ). This concludes the proof by lettingnk be the
subsequence attaining the liminf for some �xed realization of� . By plugging in � = �
in (6.19), all the inequalities become equalities, and in particular,

lim
n

W p
p;FG p

(� � n ; Pn ) = lim
n

EFGp
p(� n ; � n ) = EFGp

p(�; � ) = W p
p;FG p

(� � ; P):

This yields

0 � Wp;FG p (� � n ; P) � Wp;FG p (� � ; P)

� Wp;FG p (� � n ; Pn ) + Wp;FG p (Pn ; P) � Wp;FG p (� � ; P) ! 0
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as n goes to+ 1 , i.e. limn Wp;FG p (� � n ; P) = Wp;FG p (� � ; P). Therefore,

EFGp
p(�; � ) = W p

p;FG p
(� � ; P) = lim

n
W p

p;FG p
(� � n ; P) = lim

n
EFGp

p(� n ; � )

� E lim inf
n

FGp
p(� n ; � ) by Fatou's lemma

� EFGp
p(�; � ) by lower semi-continuity of FGp.

As lim inf n FGp
p(� n ; � ) � FGp

p(�; � ) and E lim inf n FGp
p(� n ; � ) = EFGp

p(�; � ), we
actually have lim inf n FGp

p(� n ; � ) = FGp
p(�; � ) almost surely, concluding the proof.

Figure 6.4: Partition of 
 used in the proof of Lemma 6.5.7.

We end this section by giving the proof of two technical lemmas of Section 6.5.

Proof of Lemma 6.5.7. For the direct implication, take � = 0 and apply Theorem
6.2.6.

Let us prove the converse implication. Assume that� n
v�! � and FGp(� n ; � ) !

FGp(�; � ) for some � 2 D p. The vague convergence of(� n )n implies that � (p) is

the only possible accumulation point for weak convergence of the sequence(� (p)
n )n .

Therefore, it is su�cient to show that the sequence (� (p)
n )n is relatively compact for

weak convergence (i.e. tight and bounded in total variation, see Proposition 3.1.9).
Indeed, this would mean that (� (p)

n ) converges weakly to� (p) , or equivalently by
Proposition 3.1.10 that � n

v�! � and Persp(� n ) ! Persp(� ). The conclusion is then
obtained thanks to Theorem 6.2.6.

Thus, let (� n )n be any subsequence and(� n )n be corresponding optimal transport
plans between� n and � . The vague convergence of(� n )n implies that (� n )n is
relatively compact with respect to the vague convergence onE 
 . Let � be a limit
of any converging subsequence of(� n )n , which indexes are still denoted byn. One
can prove that � 2 Opt(�; � ) (see [FG10, Proposition 2.3]). Forr > 0, recall that

 r = f x 2 
 : d(x; @
 ) > r g and de�ne A r := f x 2 
 : d(x; @
 ) � r g, so that

 = 
 r t A r . Write also A r for A r [ @
 . Consider � > 1. We can write
Z

A r

d(x; @
) pd� n (x) =
ZZ

A r � 


d(x; @
) pd� n (x; y)

=
ZZ

A r � 
 �r

d(x; @
) pd� n (x; y) +
ZZ

A r � A �r

d(x; @
) pd� n (x; y)

(� )
�

1
(� � 1)p

ZZ

A r � (
 �r )

d(x; y)pd� n (x; y) +
ZZ

A r � A �r

d(x; @
) pd� n (x; y)
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�
1

(� � 1)p FGp
p(� n ; � ) + 2 p� 1

 ZZ

A r � A �r

d(x; y)pd� n (x; y) +
ZZ

A r � A �r

d(y; @
) pd� n (x; y)

!

�
1

(� � 1)p FGp
p(� n ; � ) + 2 p� 1

 

FGp
p(� n ; � ) �

ZZ

E 
 n(A r � A �r )

d(x; y)pd� n (x; y) +
Z

A �r

d(y; @
) pd� (y)

!

where (� ) holds becaused(x; y) � (� � 1)r � (� � 1)d(x; @
 ) for (x; y) 2 A r � Ac
�r .

Therefore,

lim sup
n!1

Z

A r

d(x; @
) pd� n (x) �
1

(� � 1)p FGp
p(�; � ) + 2 p� 1

 

FGp
p(�; � )

�
ZZ

E 
 n(A r � A �r )

d(x; y)pd� (x; y) +
Z

A �r

d(y; @
) pd� (y)

!

Note that at the last line, we used the Portmanteau theorem (see Proposition 3.1.11) on
the sequence of measures(d(x; y)pd� n (x; y))n for the open setE 
 n(A r � A �r ). Letting
r goes to0, then � goes to in�nity, one obtains

lim
r ! 0

lim sup
n!1

Z

A r

d(x; @
) pd� n (x) = 0 :

The second part consists in showing that there can not be mass escaping �at in�nity�
in the subsequence(� (p)

n )n . Fix r; M > 0. For x 2 
 , denote s(x) the projection of x
on @
 . Pose

K M;r := f x 2 
 r : d(x; @
) < M; d (s(x); 0) < M g

and L M;r the closure of
 n(A r [ K M;r ) (see Figure 6.4). Forr 0 > 0,
Z

L M;r

d(x; @
) pd� n (x) =
ZZ

L M;r � 


d(x; @
) pd� n (x; y)

=
ZZ

L M;r � (L M= 2;r 0[ A r 0)

d(x; @
) pd� n (x; y) +
ZZ

L M;r � K M= 2;r 0

d(x; @
) pd� n (x; y)

� 2p� 1
ZZ

L M;r � (L M= 2;r 0[ A r 0)

d(x; y)pd� n (x; y)

+ 2 p� 1
ZZ

L M;r � (L M= 2;r 0[ A r 0)

d(@
 ; y)pd� n (x; y)

+
ZZ

L M;r � K M= 2;r 0

d(x; @
) pd� n (x; y):

We treat the three parts of the sum separately. As before, taking thelim sup in n and
letting M goes to1 , the �rst part of the sum converges to 0 (apply the Portmanteau
theorem on the open setE 
 n(L M;r � (L M=2;r 0 [ A r 0)) . The second part is less than or
equal to

2p� 1
Z

L M= 2;r 0[ A r 0

d(y; @
) pd� (y);
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which converges to0 as M ! 1 and r 0 ! 0. For the third part, notice that if
(x; y) 2 L M;r � K M=2;r 0, then

d(x; @
) � d(x; s(y)) � d(x; y) + d(y; s(y)) � d(x; y) +
M
2

� 2d(x; y):

Therefore,
ZZ

L M;r � K M= 2;r 0

d(x; @
) pd� n (x; y) � 2p
ZZ

L M;r � K M= 2;r 0

d(x; y)pd� n (x; y)

� 2p
ZZ

L M;r � 


d(x; y)pd� n (x; y):

As before, it is shown that lim supn
RR

L M;r � 
 d(x; y)pd� n (x; y) converges to0 when M

goes to in�nity by applying the Portmanteau theorem on the open setE 
 n(L M;r � 
 ).
Finally, we have shown, that by taking r small enough andM large enough, one can

�nd a compact set K M;r such that
R


 nK M;r
d(x; @
 )pd� n = � (p)

n (
 nK M;r ) is uniformly

small: (� (p)
n )n is tight. As we have

� (p)
n (
) = Pers p(� n ) = FG p

p(� n ; 0)

� (FGp(� n ; � ) + FG p(�; 0))p ! (FGp(�; � ) + FG p(�; 0))p;

it is also bounded in total variation. Hence, (� (p)
n )n is relatively compact for the weak

convergence: this concludes the proof.

Proof of Lemma 6.5.9. Let P =
P N

i =1 � i � ai a probability distribution with ai 2 D f of
massmi 2 N, and de�ne mtot =

P N
i =1 mi . By Proposition 6.5.4, everyp-Fréchet mean

a of P is in correspondence with ap-Fréchet mean for the Wasserstein distance~a of
~P =

P N
i =1 � i � ~ai , where ~ai = ai + ( mtot � mi )� @
 , with a being the restriction of ~a to


 .
Let thus �x m 2 N, and let ~a1; : : : ; ~aN be point measures of massm in ~
 . Write

~ai =
P m

j =1 � x i;j , so that x i;j 2 ~
 for 1 � i � N; 1 � j � m, with the x i;j s non-
necessarily distinct. De�ne

T : (x1; : : : ; xN ) 2 ~
 N 7! arg min

(
NX

i =1

� i � (x i ; y)p : y 2 ~


)

2 ~
 : (6.20)

Since we assumep > 1, T is well-de�ned and is continuous, while in the general case
the existence of a measurable minimizer follows from standard arguments [CR03].
Using the localization property stated in [COO15a, Section 2.2], we know that the
support of a p-Fréchet mean of ~P is included in the �nite set

S := f T(x1;j 1 ; : : : ; xN;j N ) : 1 � j 1; : : : ; j N � mg:

Let K = mN and let z1; : : : ; zK be an enumeration of the points ofS (with potential
repetitions). Denote by Gr(zk ) the N elementsx1; : : : ; xN , with x i 2 spt(~ai ), such that
zk = T(x1; : : : ; xN ). It is explained in [COO15a, Section 2.3], that �nding a p-Fréchet
mean of ~P is equivalent to �nding a minimizer of the problem

inf
(
 1 ;:::;
 N )2 �

NX

i =1

� i

ZZ

~
 2
� (x i ; y)pd
 i (x i ; y); (6.21)
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where � is the set of plans(
 i ) i =1 ;:::;N , with 
 i having for �rst marginal ~ai , and such
that all 
 i s share the same (non-�xed) second marginal. Furthermore, we can assume
without loss of generality that (
 1 : : : 
 N ) is supported on(Gr(zk ); zk )k , i.e. a point zk

in the p-Fréchet mean is necessary transported to its corresponding groupingGr(zk )
by (optimal) 
 1; : : : 
 N [COO15a, Section 2.3]. For such a minimizer, the common
second marginal is ap-Fréchet mean of ~P.

A potential minimizer of (6.21) is described by a vector
 = ( 
 i;j;k ) 2 RNmK
+ such

that: (
for 1 � i � N; 1 � j � m;

P K
k=1 
 i;j;k = 1 and

for 2 � i � N; 1 � k � K;
P m

j =1 
 1;j;k =
P m

j =1 
 i;j;k :
(6.22)

Let c 2 RNmK be the vector de�ned by ci;j;k = 1f x i;j 2 Gr(zk )g� i � (x i;j ; zk )p. Then,
the problem (6.21) is equivalent to

minimize

 2 RNmK

+


 T c under the constraints (6.22): (6.23)

The set of p-Fréchet means ofP are in bijection with the set of minimizers of this
Linear Programming problem (see [Sch03, Section 5.15]), which is given by a face of the
polyhedron described by the equations(6.22). Hence, if we show that this polyhedron
is integer (i.e. its vertices have integer values), then it would imply that the extreme
points of the set of p-Fréchet means ofP are point measures, concluding the proof.
The constraints (6.22) are described by a matrixA of size(Nm + ( N � 1)K ) � NmK
and a vector b = [ 1Nm ; 0(N � 1)K ], such that 
 2 RNmK satis�es (6.22) if and only if
A
 = b. A su�cient condition for the polyhedron f Ax � bg to be integer is to satisfy
the following property (see [Sch03, Section 5.17]): for allu 2 ZNmK , the dual problem

maxf yT b; y � 0 and yT A = ug (6.24)

has either no solution (i.e. there is noy � 0 satisfying yT A = u), or it has an integer
optimal solution y.

For y satisfying yT A = u, write y = [ y0; y1] with y0 2 RNm and y1 2 R(N � 1)K , so
that y0 is indexed on1 � i � N; 1 � j � m and y1 is indexed on2 � i � N; 1 � k � K .
One can check that, for2 � i � N; 1 � j � m; 1 � k � K :

u1;j;k = y0
1;j +

NX

i 0=2

y1
i 0;k and ui;j;k = y0

i;j � y1
i;k ; (6.25)

so that,

yT b =
NX

i =1

mX

j =1

y0
i;j =

mX

j =1

y0
1;j +

NX

i =2

mX

j =1

y0
i;j

=
mX

j =1

(u1;j;k �
NX

i =2

y1
i;k ) +

NX

i =2

mX

j =1

(ui;j;k + y1
i;k )

=
NX

i =1

mX

j =1

ui;j;k :

Therefore, the function yT b is constant on the setP := f y � 0; yT A = ug, and
any point of the set is an argmax. We need to check that if the setP is non-empty,
then it contains a vector with integer coordinates: this would conclude the proof. A
solution of the homogeneous equationyT A = 0 satis�es y0

i;j = y1
i;k = � i for i � 2 and
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y0
1;j = �

P N
i =2 y1

i;k = �
P N

i =2 � i and reciprocally, any choice of� i 2 R gives rise to a
solution of the homogeneous equation. For a givenu, one can verify that the set of
solutions of yT A = u is given, for � i 2 R, by

8
><

>:

y0
1;j =

P N
i =1 ui;j;k �

P N
i =2 � i

y0
i;j = � i for i � 2;

y1
i;k = � ui;j;k + � i for i � 2:

Such a solution exists if and only if for all j , Uj :=
P N

i =1 ui;j;k does not depend onk
and for i � 2, Ui;k := ui;j;k does not depend onj . For such a vectoru, P corresponds to
the � i � 0 with � i � maxk Ui;k and Uj �

P N
i =1 � i . If this set is non empty, it contains

as least the point corresponding to� i = maxf 0; maxk Ui;k g, which is an integer: this
point is integer valued, concluding the proof.
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Chapter 7

On the choice of weight functions
for linear representations of
persistence diagrams

A wide class of representations of persistence diagrams, including the persistence
surface [Ada+17] (variants of this object have been also introduced [Che+15; KHF16;
Rei+15]), the accumulated persistence function [BM19] or the persistence silhouette
[Cha+15a] are conveniently expressed as a linear expression of the points of the
diagram.

De�nition 7.0.1 (Linear representations). Let f : 
 ! B be a map, whereB is some
Banach space. The map	 f : Dp ! B de�ned by 	 f (a) = a(f ) =

P
u2 a f (u) is called

the linear representation associated withf .

In this chapter, we explore the behavior of linear representations in two di�erent
ways. First, in Section 7.1, using the characterization of convergence with respect to
the Figalli-Gigli metric FGp given in Chapter 6, we give a description of all continuous
linear representations. In particular, we highlight the importance of weighting the
representation by the distance to the diagonal to the powerp: the representations
of the form 	 d(�;@
) p �f with f continuous bounded are the only continuous ones
with respect to FGp. In applications, Lipschitz continuity is often more desirable
than continuity. For p = 1 , we therefore show a general stability result for linear
representations, which is based on a version of the Kantorovitch-Rubinstein duality
formula for persistence diagrams. Although obtaining a stability result forp > 1 is
somewhat less straightforward, we also give an inequality for bounding the distance
between linear representations by theFGp distance for generalp. In this case, the
importance of weighting the underlying mapf by the distance to the diagonal is once
again shown.

Our second approach consists in taking an asymptotic point of view, by studying
the behavior of ƒech and Rips persistence diagrams built on top of large random point
clouds. Assume for instance that a point cloudX is located on some Riemannian
manifold M . Under this assumption, the ƒech persistence diagrama = dgmC

q (X ) of
the data set is made of two di�erent types of points: points atrue far away from the
diagonal, which estimate the diagram of the manifoldM , and points anoise close to
the diagonal, which are generally considered to be �topological noise� (see Figure 7.1).
This interpretation is a consequence of the stability theorem for persistence diagrams;
see Chapter 3. If the relevant information lies in the structure of the manifold, then
the topological noise indeed represents true noise, and linear representations of the
form 	 f (a) are bound to fail if 	 f (anoise) is dominating 	 f (atrue ). Once again, we
showcase the advantage of using a weight functionw : 
 ! R. If w is chosen properly,
i.e. small enough when close to the diagonal, then one can hope that	 wf (atrue ) can be
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Figure 7.1: The persistence diagram for homology of degree 1 of the
Rips �ltration of n = 700 i.i.d. points uniformly sampled on a torus.

separated from	 wf (anoise). We address this question from an asymptotic perspective:
for which weight functions does	 wf (anoise) converge to0?

Of course, for this question to make sense, a model for the dataset has to be
speci�ed. A simple model is given by a Poisson (or binomial) processXn of intensity n
in a cube of dimensiond. We then denote bydgmK

q (Xn ) the persistence diagram ofXn

built with either the ƒech ( K = C) or the Rips (K = R) �ltration for q-dimensional
homology. In this setting, there are no �true� topological features (other than the
trivial topological feature of [0; 1]d being connected), and thus the diagram based on
the sampled data is uniquely made of topological noise. A �rst promising result is the
vague convergence of the persistence measure� n

q := n� 1dgmK
q (n1=dXn ), which was

proven in [HST18] for homogeneous Poisson processes in the cube and in [GTT19]
for binomial processes on manifolds. However, vague convergence is not enough for
our purpose, as neitherf nor w have good reasons to have compact support. Our
main result, Theorem 7.2.4 extends results of [GTT19], for processes on the cube, to a
stronger convergence, allowing test functions to have both non-compact support (but
to converge to0 near the diagonal) and to have polynomial growth. As a corollary of
this general result, the convergence of thep-th total persistence is shown, as well as
convergence of� n

q for the Figalli-Gigli metric.

Theorem 7.0.2. Let p � 0 and let � be a density on[0; 1]d such that 0 < inf � �
sup� < 1 . Let Xn be either a binomial process with parametersn and � or a Poisson
process of intensityn� in the cube[0; 1]d. Then, with probability one, asn ! 1

n
�
d � 1Persp(dgmK

q (Xn )) ! � �
q(persp) < 1 (7.1)

for some non-zero persistence measure� �
q .

Furthermore, if � n
q := n� 1dgmK (n1=dXn ) and p � 1, we have

FGp(� n
q ; � �

q) ! 0: (7.2)

Remark that (7.2) is a consequence of(7.1) and of the vague convergence of� n
q

proven in [HST18], by using the characterization of convergence for the Figalli-Gigli
metric (Theorem 6.2.6). If an := dgmK

q (X 0
n ) is built on a point cloud X 0

n of sizen
on a d-dimensional manifold, one can expectan;noise to behave similarly to that of
dgmK

q (Xn ) for Xn a n-sample on ad-dimensional cube (a manifold looking locally
like a cube). Therefore, forp > 0, the quantity Persp(an;noise) should be close to
Persp(dgmK

q (Xn )) ; and it can be expected to converge to0 if and only if the weight
function persp is such that p > d. As such, we obtain the following heuristic: a weight
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function of the form persp with p > d is sensible if the data lies near ad-dimensional
object.

Further properties of the process(dgmK
q (Xn ))n are also shown, namely non-

asymptotic rates of decays for the number of points in said diagrams, and the absolute
continuity of the marginals of � �

q with respect to the Lebesgue measure onR.

Related work Techniques used to derive the large sample results indicated above
are closely related to the �eld of geometric probability, which is the study of geometric
quantities arising naturally from point processes inRd. A classical result in this �eld,
see [Ste88], proves the convergence of the total length of the minimum spanning tree
built on n i.i.d. points in the cube. This pioneering work can be seen as a0-dimensional
special case of our general results about persistence diagrams built for homology of
dimension q. This type of result has been extended to a large class of functionals in
the works of J. E. Yukich and M. Penrose (see for instance [MY99; Yuk00; PY03] and
[Pen03] or [Yuk06] for monographs on the subject).

The study of higher dimensional properties of such processes is much more recent.
Known results include convergence of Betti numbers for various models and under
various asymptotics (see [Kah11; KM13; YSA17; BO17]). The paper [BKS17] �nds
bounds on the persistence of cycles in random complexes, and [HST18] proves limit
theorems for persistence diagrams built on homogeneous point processes. The latter
is extended to non-homogeneous processes in [Tri17], and to processes on manifolds
in [GTT19]. Note that our results constitute a natural extension of [Tri17]. In
[STY17], higher dimensional analogs of minimum spanning trees, called minimal
spanning acycles, were introduced. Minimal spanning acycles exhibits strong links
with persistence diagrams and our main theorem can be seen as a convergence result
for weighted minimal spanning acycle on geometric random complexes. [STY17]
also proves the convergence of the total1-persistence for Linial-Meshulam random
complexes, which are models of random simplicial complexes of a combinatorial nature
rather than a geometric nature.

7.1 Continuity and stability of linear representations

As mentioned in the introduction, a linear representation of persistence measures (in
particular persistence diagrams) is a mapping� f : M p ! B for some Banach space
B of the form � 7! � (f ), where f : 
 ! B is some chosen function. Using such a
representation, one can turn a sample of diagrams into a sample of vectors, making
the use of machine learning tools easier. Of course, a minimal expectation is that� f

should be continuous. In practice, building a linear representation generally follows
the same pattern: �rst consider a �nice� function g, e.g. a gaussian distribution, then
introduce a weight with respect to the distance to the diagonald(�; @
 )p, and prove
that � 7! � (g(�)d(�; @
 )p) has some regularity properties (continuity, stability, etc.).
Applying Theorem 6.2.6, we show that this approach always gives a continuous linear
representation, and that it is the only way to do so.

For B a Banach space (typicallyRd), de�ne the class of functions:

C0
b;p =

�
f : 
 ! B : f is continuous andx 7!

f (x)
d(x; @
) p is bounded

�
: (7.3)

Proposition 7.1.1. Let B be a Banach space andf : 
 ! B a function. The linear
representation 	 f : M p ! B is continuous with respect toFGp if and only if f 2 C0

b;p.



154 Chapter 7. Linear representations of persistence diagrams

Proof. Consider �rst the caseB = R. Let f 2 C0
b;p and �; � 1; � 2 � � � 2 M p be such that

FGp(� n ; � ) ! 0. Recall the de�nition (6.10) of � (p) . Using Corollary 6.2.9, having

FGp(� n ; � ) ! 0 means that � (p)
n

w�! � (p) , and thus that

Z




f (x)
d(x; @
) p d� (p)

n (x) !
Z




f (x)
d(x; @
) p d� (p) (x);

that is

	 f (� n ) =
Z



f (x)d� n (x) !

Z



f (x)d� (x) = 	 f (� );

i.e. 	 f is continuous with respect toFGp.
Now, let B be any Banach space. [Nie11, Theorem 2] states that if a sequence of

measures(� n )n weakly converges to� , then � n (f ) ! � (f ) for any continuous bounded
function g : 
 ! B . Applying this result to the sequence(� (p)

n with g = f=d(�; @
 )p

yields the desired result.
Conversely, let f : 
 ! B . Assume �rst that f is not continuous in somex 2 
 .

There exist a sequence(xn )n 2 
 N such that xn ! x but f (xn ) 9 f (x). Let � n = � xn

and � = � x . We have FGp(� n ; � ) ! 0, but � n (f ) = f (xn ) 9 f (x0) = � (f ), so that
the linear representation� 7! � (f ) cannot be continuous.
Then, assume that f is continuous but that x 7! f (x)

d(x;@
) p is not bounded. Let

thus (xn )n 2 
 N be a sequence such that





 f (xn )

d(xn ;@
) p






 ! + 1 . De�ne the measure

� n := 1
kf (xn )k � xn . Observe that FGp(� n ; 0) = d(xn ;@
) p

kf (xn )k ! 0 by hypothesis. However,
k� n (f )k = 1 for all n, allowing us to conclude once again that� 7! � (f ) cannot be
continuous.

Examples of such linear representations commonly used in applications of TDA
include for instance the persistence surface, persistence silhouettes and (weighted)
Betti curves, all introduced in Section 3.9.

Stability in the case p = 1 . Continuity is a basic expectation when embedding a
set of diagrams in some Banach spaceB . One could however ask for more, e.g. some
Lipschitz regularity: given a representation 	 : M p ! B , one may want to have
k	( � ) � 	( � )k � C �FGp(�; � ) for some constantC. This property is generally referred
to as �stability� in the TDA community and is generally obtained with p = 1 , see for
example [Ada+17, Theorem 5], [CCO17, Theorem 3.3 & 3.4], [Som+18, Section4],
[Rei+15, Theorem 2], etc.

Here, we still consider the case of linear representations, and show that stability
always holds with respect to the distanceFG1. Informally, this is explained by the
fact that when p = 1 , the cost function (x; y) 7! d(x; y)p is actually a distance.

Proposition 7.1.2. De�ne L the set of Lipschitz continuous functionsf : 
 ! R
with Lipschitz constant less than or equal to1 and that satisfy f (@
 ) = 0 . Let T be
any set, and consider a family(f t )t2 T with f t 2 L . Then the linear representation
	 : � 7! (� (f t )) t2 T is 1-Lipschitz continuous in the following sense:

k	( � ) � 	( � )k1 := sup
t2 T

j(� � � )( f t )j � FG1(�; � ); (7.4)

for any measures�; � 2 M 1.
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Proof. Consider �; � 2 M 1, and � 2 Opt(�; � ) an optimal transport plan. Let t 2 T.
We have:

(� � � )( f t ) =
Z



f t (x)d� (x) �

Z



f t (y)d� (y) =

ZZ


 � 

(f t (x) � f t (y))d � (x; y)

�
ZZ


 � 

d(x; y)d� (x; y) = FG 1(�; � );

and thus, k	( � ) � 	( � )k1 � FG1(�; � ).

In particular, if f : 
 ! B , where B is some Banach space, is1-Lipschitz
with f (@
 ) = 0 , then one can let T = B �

1 (the unit ball of the dual of B ) and
f t (x) := t(f (x)) for t 2 T. We then obtain that k	 f (� ) � 	 f (� )k � FG1(�; � ), i.e.
that 	 f : (M 1; FG1) ! (B; k � k) is 1-Lipschitz.

Remark 7.1.3. One actually has a converse of such an inequality, i.e. it can be shown
that

FG1(�; � ) = max f (� � � )( f ) : f 2 Lg : (7.5)

This equation is an adapted version of the well-known Kantorovich-Rubinstein formula,
which is itself a particular version in the casep = 1 of the duality formula in optimal
transport, see for example [Vil08, Theorem 5.10] and [San15, Theorem 1.39]. A proof
of (7.5) would require to introduce several optimal transport notions. The interested
reader can consult Proposition 2.3 in [FG10] for details.

Stability for general weight functions Instead of weighting a representation by
the distance to the diagonald(�; @
 )p for somep � 1, one could use other schemes.
For instance, in [KFH17, Corollary 12], representations of diagrams are shown to
be Lipschitz with respect to the FG1 distance for weight functions of the formw :
u 2 
 = arctan(B � pers(u) � ) with � > m + 1 ; B > 0, provided the diagrams are
built with the sublevels of functions de�ned on a spaceX having boundedm-th total
persistence. The stability result is proved for a particular function f : 
 ! B de�ned
by u 2 
 7! f (u) = K (u; �), with K a bounded Lipschitz kernel andB the associated
RKHS (short for Reproducing Kernel Hilbert Space, see [Aro50] for a monograph on
the subject). We present a generalization of the stability result to (i) general weight
functions w, (ii) any bounded Lipschitz function f; and (iii) we only require � > m .

Consider weight functionsw : 
 ! R+ of the form w(u) = ~w(pers(u)) for u 2 
 ,
for a di�erentiable function ~w : R+ ! R+ satisfying ~w(0) = 0 , and, for someA > 0,
� � 1,

8r � 0; j ~w0(r )j � Ar � � 1: (7.6)

Examples of such functions includew : u 7! arctan(B � pers(u) � ) for B > 0 and
w : u 7! pers(u) � . We denote the class of such weight functions byW(�; A ). In
contrast to [KFH17], the function f does not necessarily take its values in a RKHS, but
simply in a Banach space. GivenR > 0, we let Dp

R be the set of persistence diagrams
a with Persp(a) � R (i.e. Dp

R is the ball of radius Rp centered at0 in Dp).

Theorem 7.1.4. Let (B; k � k) be a Banach space, letf : 
 ! B be a Lipschitz
continuous function and let w 2 W(�; A ) with A > 0; � � 1. Fix t 2 [0; 1] and
let p1 = p �

p� 1 and p2 = p � � t
p� t . Given R1; R2 > 0 and two diagramsa and b in

Dp \ D p1
R1

\ D p2
R2

, we have

k	 wf (a) � 	 wf (b)k � Lip( f )
A
�

R
1� 1

p
1 FGp(a; b) + kf k1 A (2R2)1� t

p FGp(a; b)t : (7.7)
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Proof. We only treat the case p < 1 , the proof being easily adapted to the case
p = 1 .

Fix two persistence diagramsa and b. Denote � = w � a (resp. � = w � b) the
measure having densityw with respect to a (resp. b). Fix " > 0 and let 
 be a matching
between a and b such that the cost of the matching is smaller thanFGp(a; b) + " .
De�ne

~� =
X

u2 a[ @


w(
 (u)) � u :

Note that as the cost of 
 is �nite, there is a �nite numbers on points u 2 @
 with

 (u) 6= u, so that w(
 (u)) 6= 0 only for a �nite number of elements in the de�nition of
~� . Remark also that ~� is of �nite mass, with j~� j = j� j. We have

k	 wf (a) � 	 wf (b)k = k� (f ) � � (f )k � k � (f ) � ~� (f )k + k~� (f ) � � (f )k

� k f k1 j� � ~� j + Lip( f )W1(~�; � ): (7.8)

We bound the two terms in the sum separately. Let us �rst boundW1(~�; � ). Consider
an optimal transport plan between ~� and � , which is built by mapping every point
u 2 a [ @
 towards 
 (u) 2 b[ @
 . We have

W1(~�; � ) �
X

u2 a[ @


w(
 (u)) ju � 
 (u)j:

Let p0 be the conjugate exponent ofp, de�ned by 1
p + 1

p0 = 1 . As condition (7.6) implies

that jw(u)j � A
� pers(u) � , the distanceW1(~�; � ) is bounded by

X

u2 a[ @


w(
 (u)) ju � 
 (u)j �

 
X

u2 a[ @


w(
 (u))p0

! 1=p0  
X

u2 a[ @


ju � 
 (u)jp
! 1=p

�
A
�

 
X

u2 a[ @


pers(
 (r ))p0�

! 1=p0

FGp(a; b)

�
A
�

R1=p0

1 FGp(a; b); (7.9)

where R1 is a bound on Pers�p 0(b). We now treat the �rst part of the sum in
(7.8). For u1; u2, in 
 with pers(u1) � pers(u2), de�ne the path with unit speed
h : [pers(u1); pers(u2)] ! 
 by

h(t) = u2
t � pers(u1)

pers(u2) � pers(u1)
+ u1

pers(u2) � t
pers(u2) � pers(u1)

;

so that it satis�es pers(h(t)) = t. The quantity jw(u1) � w(u2)j is bounded by

Z pers(u2 )

pers(u1 )
jr w(h(t)) :h0(t)jdt �

Z pers(u2 )

pers(u1 )
A pers(h(t)) � � 1dt

�
Z pers(u2 )

pers(u1 )
A t � � 1dt

=
A
�

(pers(u2) � � pers(u1) � ):

For 0 < y < x and 0 � a � 1, using the convexity of t 7! t � , it is easy to see thatx � �
y� � � (x � y)ax � � a. De�ne q = p

a , q0 = q0

q0� 1 and M (u) := max(pers(u); pers(
 (u))) .
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We have,

j� � ~� j =
X

u2 a[ @


jw(u) � w(
 (u)) j

� A
X

u2 a[ @


jpers(u) � pers(
 (u)) jt M (u) � � t

� A

 
X

u2 a[ @


jpers(u) � pers(
 (u)) jtq
! 1=q  

X

u2 a[ @


M (u)q0(� � t )

! 1=q0

� AFGtq(a; b)a

 
X

u2 a[ @


�
pers(u)q0(� � t ) + pers(
 (u))q0(� � t )

�
! 1=q0

� AFGtq(a; b)t 21=q0
R1=q0

2 ; (7.10)

where R2 is a bound onPersq0(� � t ) (a) and Persq0(� � t ) (b). Combining equations (7.8),
(7.9) and (7.10) concludes the proof.

The total persistencePersq(a) of a diagram a can often be controlled. This is
for instance the case if the diagrams are built with Lipschitz continuous functions
� : X ! R; and X is a space having boundedm-th total persistence (see Chapter 3).
In that case, we are able to give a simpler stability result than Theorem 7.1.4.

Corollary 7.1.5. Let q � 0 an integer, A > 0, � � 1 and consider a spaceX
having boundedm-th total persistence for somem � 1 and constantCX ;m . Suppose
that � 1; � 2 : X ! R are two tame Lipschitz continuous functions,w 2 W(�; A ),

and t 2 [0; 1]. Let m � p � 1 be such that� � m + t
�

1 � m
p

�
� 0. Let C0 =

CX ;m maxf Lip (� 1)m ; Lip (� 2)m g and ` be the maximum persistence in the two diagrams
dgmq(� 1); dgmq(� 2). Then, we have

k	 wf (dgmq(� 1)) � 	 wf (dgmq(� 2))k � C1FGp(dgmq(� 1); dgmq(� 2))

+ C2FGp(dgmq(� 1); dgmq(� 2)) t ;
(7.11)

whereC1 = Lip( f ) A
� `

� � m
�

1� 1
p

�

C
1� 1

p
0 and C2 = kf k1 A`

� � m� t
�

1� m
p

�

(2C0)1� t
p .

Proof. Corollary 7.1.5 follows by using the de�nition of a space implying bounded
m-th total persistence along with the inequality Perst1+ t2 (a) � Pers1 (a)t1 Perst2 (a)
for any persistence diagrama.

If � > m + 1 and p = 1 , then the result is similar to Theorem 3.3 in [KFH17].
However, Corollary 7.1.5 implies that the representations are still continuous (actually
Hölder continuous) when� 2 (m; m + 1] , and this is the novelty of the result. Indeed,
for such an� , one can always chooset small enough so that the stability result (7.11)
holds. The proofs of Theorem 7.1.4 and Corollary 7.1.5 consist of adaptations of
similar proofs in [KFH17].

Remark 7.1.6. (a) One cannot expect to obtain an inequality of the form(7.7) without
quantities R1 and R2 related to the total persistence of the diagrams appearing on the
right-hand side. For instance, in the casep = 1 , it is clear that adding an arbitrary
number of points near the diagonal will not change the bottleneck distance between
the diagrams, whereas the distance between representations can become arbitrarily
large.

(b) Laws of large numbers stated in the next section (see Theorem 8.2.5), show that
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Corollary 7.1.5 is optimal. Indeed, takew = pers� and f � 1. Let X = [0 ; 1]d be the
d-dimensional cube, which has boundedm-th total persistence for m > d . Let Xn

be a sample ofn i.i.d. points on X . Letting � 1 be the distance function to Xn , we
obtain that dgmq(� 1) = dgmC

q (Xn ), the ƒech persistence diagram of the setXn . We
let � 2 = 0 , so that dgmq(� 2) = 0 . Therefore,

k	 wf (dgmq(� 1)) � 	 wf (dgmq(� 2))k = Pers� (dgmC
q (Xn )) :

We will see in the next section that this quantity does not converge to0 for � � d (it
even diverges if� < d ), whereas the bottleneck distance betweendgmC

q (Xn ) and the
empty diagram does converge to0. As such, it is impossible to obtain an inequality of
the form (7.11) for � � m.

We end this section by giving a foretaste of the asymptotic study of persistence
diagrams developed in the next section. The following corollary presents rates of con-
vergence of representations in a random setting. LetXn = f X 1; : : : ; X ng be an-sample
of i.i.d. points from a distribution on some manifold M . We are interested in the con-
vergence of the representation	 wf (dgmC

q (Xn )) to the representation 	 wf (dgmC
q (M )) .

We obtain the following corollary.

Corollary 7.1.7. Consider ad-dimensional compact Riemannian manifoldM , and let
Xn = f X 1; : : : ; X ng be an-sample of i.i.d. points from a distribution having a density
� with respect to the volume measure onM . Assume that0 < inf � � sup� < 1 . Let
w 2 W(�; A ) for some A > 0; � > d; and let f : 
 ! B be a Lipschitz continuous
function. Then, for n large enough,

E
�
k	 wf (dgmC

q (Xn )) � 	 wf (dgmC
q (M ))k

�
� Ckf k1

�
� � d

�
ln n
n

� �
d � 1

; (7.12)

whereC is a constant depending onM; A and the density� .

The study of the next section will show that this rate of convergence is tight up to
logarithmic factors. Once again, this indicates that Corollary 7.1.5 is close to being
tight.

Proof. As already discussed, Theorem 7.1.4 can be applied with� n = d(�; Xn ) and �
the null function on the manifold M . Take p = 1 , d < � and 0 < t < min(1; � � d):

k	 wf (dgmq(� n )) � 	 wf (dgmq(� ))k

� Lip( f )
A
�

Pers� (dgmq(� n ))) � d1 (dgmq(� n ); dgmq(� ))

+ 2kf k1 APers� � t (dgmq(� n ))d1 (dgmq(� n ); dgmq(� )) t :

(7.13)

We mentioned in Chapter 3 that, for m > d , we have the inequalityPersm (dgmq(� n )) �
mCM k� nkm� d=(m � d) for some constantCM depending only onM . Moreover, the
stability theorem for the bottleneck distance ensures thatd1 (dgmq(� n ); dgmq(� )) �
k� nk1 . Therefore,

k	 wf (dgmq(� n )) � 	 wf (dgmq(� ))k

� Lip( f )
�AC X

� � d
k� nk� � d+1

1 + kf k1
2ACM (� � t)

� � t � d
k� nk� � t � d+ t

1

� Lip( f )
�AC M

� � d
k� nk� � d+1

1 + kf k1
2ACM �
� � d

k� nk� � d
1 ; (7.14)
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where, in the last line, the second term was minimized overt 2 [0; 1]. The quantity
k� nk1 is the Hausdor� distance between Xn and M . Elementary techniques of
geometric probability (see for instance [Cue09]) show that ifM is a compact d-

dimensional manifold, thenE[k� nk�
1 ] � c

� ln n
n

� �=d
for � � 0, wherec is some constant

depending on�; M; inf � and sup� . Therefore, the �rst term of the sum (7.14) being
negligible,

E
�
k	 wf (dgmq(� n )) � 	 wf (dgmq(� ))k

�
�

kf k1
2ACM �
� � d

c
�

ln n
n

� (� � d)=d

+ o

 �
ln n
n

� (� � d)=d
!

:

In particular, the conclusion holds for any C > 2ACM c, for n large enough.

7.2 Limit laws on large persistence diagrams

As a gentle introduction to the formalism used later, we �rst recall some known results
from geometric probability on the study of Betti numbers, and we also detail relevant
results of [HST18; Tri17; GTT19].

7.2.1 Prior work

In the following, K refers to either the ƒech or the Rips �ltration. Let � be a density
on [0; 1]d such that:

0 < inf � � sup� < 1 : (7.15)

Note that the cube [0; 1]d could be replaced by any compact convex body (i.e. the
boundary of an open bounded convex set). However, the proofs (especially geometric
arguments of Section 7.4.1) become much more involved in this greater generality. To
keep the main ideas clear, we therefore restrict ourselves to the case of the cube. We
indicate, however, when challenges arise in the more general setting.

Let (X i ) i � 1 be a sequence of i.i.d. random variables sampled from density� and
let (N i ) i � 1 be an independent sequence of Poisson variables with parameteri . In the
following Xn denotes eitherf X 1; : : : ; X ng, a binomial process of intensity� and of size
n, or f X 1; : : : ; X Nn g, a Poisson process of intensityn� . The fact that the binomial
and Poisson processes are built in this fashion is not important for weak laws of large
numbers (only the law of the variables is of interest), but it is crucial for strong laws
of large numbers to make sense.

Recall the de�nition of the persistent Betti numbers

� r;s (dgmK
q (Xn )) := dgm K

q (Xn )(¸ r;s ); (7.16)

where¸ r;s = f u = ( u1; u2) 2 
 : u1 � r � s � u2g for 0 � r � s.

Theorem 7.2.1 (Theorem 1.4 in [Tri17]). Let r > 0 and q � 0. Then, with probability
one, n� 1� r;r (dgmK

q (n1=dXn )) converges to some constant. The convergence also holds
in expectation.

The theorem is originally stated with the ƒech �ltration but its generalization
to the Rips �ltration (or even to more general �ltrations considered in [HST18]) is
straightforward. The proof of this theorem is based on a simple, yet useful geometric
lemma, which still holds for the persistent Betti numbers, as proven in [HST18]. Recall
that for j � 0, Sj (K ) denote the j -skeleton of the simplicial complexK .
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Lemma 7.2.2 (Lemma 2.11 in [HST18]). Let X � Y be two subsets ofRd. Then

j� r;s (dgmK
q (X )) � � r;s (dgmK

q (Y)) j �
q+1X

j = q

jSj (K s(Y))nSj (K s(X )) j: (7.17)

In [HST18], this lemma was used to prove the convergence of expectations of
diagrams of stationary point processes. As indicated in [GTT19, Remark 2.4], this
lemma can also be used to prove the convergence of the expectations of diagrams
for non-homogeneous binomial processes on manifold. Set� n

q = n� 1dgmK
q (n1=dXn ).

Remark 2.4 in [GTT19] implies the following theorem.

Theorem 7.2.3 (Remark 2.4 in [GTT19] and Theorem 1.5 in [HST18]). Let � be a
probability density function on a d-dimensional compactC1 manifold M (or the cube),
with

R
M � j (z)dz < 1 for j 2 N. Then, for q � 0, there exists a unique Radon measure

� �
q on 
 such that

E[� n
q ] v���!

n!1
� �

q (7.18)

and
� n

v���!
n!1

� �
q a.s.. (7.19)

The measure� �
q is called the persistence diagram of intensity� for the �ltration K .

The measureE[� n
q ] is by de�nition the unique measure de�ned by E[� n

q ](A) :=
E[� n

q (A)] for every Borel set A. We will investigate in detail the behavior or such
measures, that we call expected persistence diagrams, in Chapter 8.

7.2.2 Main results

A function � : 
 ! R is said to vanish on the diagonal if

lim
" ! 0

sup
pers(r )� "

j� (r )j = 0 : (7.20)

Denote by C0(
) the set of all such functions. The weight functions of Section 7.1 all
lie in C0(
) . We say that a function � : 
 ! R has polynomial growth if there exist
two constants A; � > 0, such that

j� (r )j � A (1 + pers(r ) � ) : (7.21)

The classCpoly (
) of functions in C0(
) with polynomial growth constitutes a
reasonable class of functionsw � � one may want to build a representation with.
Our goal is to extend the convergence of Theorem 7.2.3 to this larger class of func-
tions. Convergence of measures� n to � with respect to Cpoly (
) , i.e. 8� 2 Cpoly (
) ,

� n (� ) ���!
n!1

� (� ), is denoted by
vp
�! . Note that this class of functions is standard: it is

for instance known to characterizep-th Wasserstein convergence in optimal transport
(see Chapter 3).

Theorem 7.2.4. (i) For q � 0, there exists a unique Radon measure� �
q such that

E[� n
q ]

vp
���!
n!1

� �
q and, with probability one, � n

q
vp

���!
n!1

� �
q . The measure� �

q is called the

q-th persistence diagram of intensity� for either the ƒech or Rips �ltration. It does
not depend on whetherXn is a Poisson or a binomial process, and is of positive �nite
mass.

(ii) The convergence also holds pointwise for theL p distance: for all � 2 Cpoly (
) , and

for all p � 1, � n
q (� )

L p
���!
n!1

� �
q(� ). In particular, j� �

q(� )j < 1 .
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