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Chapter 1

Introduction (francais)

Ce travail s'inscrit dans le cadre de I'Analyse Topologique des Données (ou TDA, pour
Topological Data Analysis), qui est ici abordée selon deux points de vue di érents

. celui de l'inférence géométrique et celui de la théorie de I'homologie persistante.
Ces deux approches visent toutes deux a extraire (dans des cadres di érents) des
informations pertinentes de nature géométrique et topologique sur des jeux de données
complexes possédant des structuress priori non linéaires.

1 Les enjeux de l'inférence géomeétrique

La théorie statistique classique développée dans les années 1930 par Fisher fait les
hypothéses suivantes : on observe des données en basse dimension, et on posséede
un modele génératif simple expliquant ces données (gaussien, exponentiel, etc.). On
s'intéresse alors a des estimateurs de parameétres caractérisant la loi des données, pour
lesquels on est capable de donner des garanties fortes d'optimalité. A linverse, les
jeux de données modernes se présentent typiqguement sous la forme de nuages de
points en grande dimension. Si les méthodes classiques peuvent s'appliquer dans ce
cadre, leurs performances théorique et pratique deviennent médiocres. Ce phénomene,
couramment appelé éau de la dimension, montre la nécessité d'un changement de
paradigme. |l s'agit tout d'abord, dans une phase de modélisation, de développer
des jeux d'hypotheses raisonnables que véri ent une large classe de données acquises
en grande dimension. Dans un second temps, il s'agira de développer des méthodes
statistiques adaptées a ces nouveaux jeux d'hypothéses.

Ainsi, certaines méthodes, telle le LASSO [Tib96], ont des bonnes performances sous
une hypothése de parcimonie sur les jeux de données. Des méthodes de régression, telle
la régression ridge [HK70], s'adaptent a la grande dimension en pénalisant la complexité
de la fonction de régression proposée. On peut aussi mentionner d'autres méthodes
standard, telle I'analyse en composante principale [Pea01l; Hot33], dont I'utilisation
suppose que les données sont proches d'un espace vectoriel de basse dimension en un
sensL,. Les hypotheses que nous venons de mentionner reposent toutes sur l'existence
d'une structure linéaire de basse dimension pertinente pour expliquer le jeu de données.
En particulier, elles nécessitent d'avoir une grande con ance en la paramétrisation des
données utilisées, et toute reparamétrisation peut briser cette structure linéaire (voir
la gure 1.1). L'idée clé de l'inférence géométrique est de relaxer cette hypothése en
supposant que les données en grande dimension se concentrent autour d'une forme de
basse dimensiona priori non linéaire. Mathématiqguement, on suppose alors quies
données observées sont proches d'une vari®® de dimensiond petite dans un espace
de dimension ambianteD possiblement grande.

D'un point de vue statistique, ce type d'hypothéses a d'abord été étudié dans
le cas ou la variétéM est connue [Hen90; Pel05]. C'est notamment le cas pour des
problémes de géolocalisation [IPT19], ol les données sont des élémentsSe ou
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Figure 1.1: La structure linéaire du jeu de données bleu disparait

lorsque I'axe vertical est reparamétrisé par une fonction non-linéaire

(ici sinusoidale). Le jeu de données orange reste cependant pres d'une
variéte.

lors de I'étude d'images de visages se présentant sous di érents éclairages [Cha+07]
dans laquelle les jeux de données présents se trouvent étre sur une Grassmannienne
G(k;d). Connaitre la variété M est le plus souvent trop exigeant, et, au cours des
années 2000, une autre famille de techniques, que I'on peut regrouper sous le terme de
méthodes de réduction de dimension non-linéaire, est apparue [RS00; ZZ03; WSS04]
(on pourrait aussi mentionner des techniques proposées antérieurement comme les
cartes autoadaptatives [Koh89] ou les surfaces principales adaptatives [LT94]). Ces
méthodes, ne nécessitant pas une connaissare@riori de la variété M, cherchent a
plonger de la maniére la plus déle possible un nuage de points proche d'une forme
non-linéaire dans un espace euclidierR® pour d petit. Par exemple, la méthode
ISOMAP [TDSLO00] est basée sur le plongement danRY, & l'aide d'un positionnement
multidimensionnel (ou MDS pour multidimensional scaling), d'un graphe de voisinage
construit sur les observations. Elle permet ainsi de déplier des jeux de données qui se
trouveraient sur des objets di @omorphes a un ouvert convexe (voir la gure 1.2). On
peut ensuite appliquer des techniques standard de classi cation ou de régression aux
données dépliées . Notons tout de méme que ces approches ne possédent des garanties
théoriques que dans un cadre restreint, qui nécessite au moins que le jeu de données
soit di @omorphe & RY. Il est ainsi par exemple impossible de plonger continiment
une sphére dansR?.

Parallelement a cette ligne de travaux, se sont développées dans le domaine de
la géométrie algorithmique des méthodes de reconstruction d'une variétd RP a
partir d'un échantillon ni X, avec une attention toute particuliére portée aux courbes
et aux surfaces [BTG95; AB99]. Ainsi, l'algorithme COCONE [Ame+00] permet la
reconstruction d'une surface lisseM a partir d'une approximation nie, si le taux
d'approximation "(X) := supfd(x; X): x 2 Mg de I'échantillon X est su samment
petit, tandis que le Tangential Delaunay Complexde Boissonnat et Ghosh [BG14]
permet une telle reconstruction en dimension supérieure. On peut aussi se poser des
guestions sur la reconstruction d'invariants topologiques ou géométriques dd , comme
son axe médian [ABE09] ou ses groupes d’homologie ou d’homotopie [CO08]. Encore
une fois, ces travaux requiérent uniguement une échantillon niX se trouvant sur la
variété M et ayant un bon taux d'échantillonnage. Un autre point de vue consiste
a supposer que l'approximationX est la réalisation d'un processus aléatoire, de
observations indépendantes d'une certaine loi concentrée autour de la variétéM :
on peut alors espérer que les méthodes de reconstruction fonctionnent avec grande
probabilité, sur des échantillons typiques . Cette approche statistique des problémes



1. Les enjeux de l'inférence géométrique 3

Figure 1.2: A gauche : un ensembleX de 3000 points échantillonnés
sur un swiss roll. A droite : sortie de I'algorithme ISOMAP appliqué a
X (implémenté sur scikit-learn [Bui+13]).

de géométrie algorithmique a pour la premiére fois été adoptée dans un article de
Niyogi, Smale et Weinberger [NSWO08], ou les auteurs montrent que I'homologie d'une
variété M est reconstruite avec grande probabilité a partir du complexe de fech (un
objet combinatoire dé ni dans le chapitre 3) d'un n-échantillon aléatoire X,. Dans

les années 2010, a ensuite été abordée I'estimation au sens statistique du terme de
plusieurs descripteurs deM , comme sa dimension [HAO5; LIM09; KRW19], ses espaces
tangents [AL19; CC16], son reach [Aam+19; Ber+21], sa courbure [AL19], ses distances
géodésiques [ACC20], ou la variété! elle-méme [Gen+12a; Gen+12b; MMS16; AL1S;
AL19].

Ce point de vue statistique sur les problémes de reconstruction géomeétrique a
l'avantage de permettre de poser simplement la question de l'optimalité des procédures
envisagées. Ceci est rendu possible grace a la théorie statistique minimax. Considérons
par exemple le probléme de l'estimation d'une variétéM a partir d'un n-échantillon
aléatoire X,. Un estimateur M de M est alors n'importe quel sous-ensemble compact
de RP, fonction (mesurable) de I'échantillon. La qualité de I'estimateurM sous loi

, appelée son -risque, est donnée par sa distance de Hausdordy moyenne aM ,
c'est-a-dire
Rn(M; ;d 1) := E[du (M;M)]; (1.1)

ou il est sous-entendu quét = M (Xn) et X,, est unn-échantillon de loi . En pratique,

la loi générant les données est inconnue, et il est plus intéressant de contrdler ce
risque uniformément sur tout un ensembleQ de lois , que I'on appelle unmodeéle
statistiqgue. En inférence géométrique, plusieurs modéles statistiques ont été introduits,
prenant en compte di érents modéles de bruits et de régularité pouM . Le risque
uniforme de l'estimateur M sur une classeQ est alors donné par

Rn(M; Q;dy) :=supfRa(M; ;d 1):  2Qg; (1.2)

tandis qu'un estimateur sera dit minimax si il atteint (& une constante multiplicative
pres) lerisque minimax dé ni par

Rn(M; Q;dy) :=inf fRy(M; Q;dy): M est un estimateum: (1.3)

Mentionnons par exemple la famille de modéle@zr;:n foi o e introduite par Genovese
et al. dans [Gen+12a], comprenant les lois supportées sur une variétdl de dimension
d satisfaisant certaines propriétés. Tout d'abord, on suppose que a une densitéf

sur M comprise entre deux borne$ min et fmax > 0. Cela permet d'assurer que toutes
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Figure 1.3: Si le reach de la courbeM est grand, alors la courbe
ne peut pas étre trop courbée (gauche) et ne peut pas présenter une
structure ne en goulot d'étranglement (droite)

les régions de la variété sont a peu prés autant échantillonnées : on parle alors de lois
presque-uniformes suM . Le paramétre i, impose une borne inférieure sur le reach

(M) de la variété. Ce dernier est une notion centrale en inférence géométrique. Le
reach (M) est dé ni comme le plus grand rayonr tel que, sid(x;M) r, alors il
existe une unique projectiony de x sur M, c'est-a-dire un pointy 2 M satisfaisant
X yj=d(x;M). D'un point de vue plus géométrique, avoir un reach (M) plus
grand quer implique qu'il est possible de faire rouler une boule le long d& sans se
cogner a une autre partie deM [PL0O8, Lemma A.0.6]. Ainsi, le reach (M) contrble
deux quantités di érentes, d'une part le rayon de courbure de la variétéM (donc une
régularité locale), et d'autre part une régularité globale, contrdlant la présence de
structure en goulot d'étranglement dans la variété (voir la gure 1.3). Sur le modéle
QZ;d , la vitesse minimax satisfait

min 5f min f max

R n(M; Q~ ydy) o — (1.4)

min +f min ;f max n

Inn
Ch —

pour deux constantescy; ¢; > 0 dépendant de min, fmin, fmax €t d. La borne inférieure
dans cette inégalité a été montrée par Kim et Zhou [KZ15], tandis que la borne
supérieure est obtenue en fournissant un estimateur ayant un risque uniforme de I'ordre
de (Inn=n)Z9. Un tel estimateur (non calculable en pratique) a tout d'abord été
proposé par Genoveset al. dans [Gen+12a], tandis qu'un autre estimateur, cette
fois-ci calculable, atteignant cette méme vitesse, basé sur [Eangential Delaunay
Complex a été introduit par Aamari et Levrard [AL18].

1.1 Le probleme de l'adaptivité

Notons que leTangential Delaunay Complexdépend de plusieurs parametres, comme
par exemple d'un rayon quanti ant la taille des voisinages utilisés pour calculer des
analyses en composantes principales locales. Pour queTengential Delaunay Complex
soit minimax, ces paramétres doivent étre calibrés d'une certaine maniére par rapport
aux variables min, fmin et f max dé nissant le modéle. Or, ces quantités sona priori
inconnues. Se pose alors la question du choix en pratique des paramétres dé nissant
I'estimateur. Cette question du calibrage pratique des parameétres dé nissant un
estimateur n'est pas restreint a I'estimation de variétés, mais est un probléme classique
en statistique.

Citons par exemple la question du choix de la largeur de bande dans I'estimation a
noyaux. Soit X 1;:::; X un n-échantillon d'une certaine loi ayant une densitéf sur
R, et supposons que I'on souhaite reconstruire la valeur de la densitéxo) en un point
Xé Xo 2 R. Une méthode standard pour réaliser cet objectif est de convoler la mesure
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E{mpirique n = %P | x, parun certain noyauKy, o K, = h 1K (=h) etK vérie

K =1. On obtient alors une fonctionfy, = K;, . Supposons que la densité soit
de régularité s, c'est-a-dire quef 2 C5(R), I'ensemble des fonctions dérivablebsc fois,
dont la dérivée bscieme est(s b sc)-Hoélder. Alors, en choisissant bien le noyak , on
sait qu'il est optimal de choisir la largeur de bandehop: de l'ordre dec n 1¥2*D [ ouc
dépend de la normeC def [Tsy08, Chapitre 1]. Le risque associé est alors de I'ordre de
n s¥2s*1) ce qui est la vitesse minimax d'estimation sur les densités de régularigé En
pratique, il est impossible de connaitre exactemens, de sorte que nous devons trouver
une autre stratégie pour choisirh. Les méthodes adaptatives consistent a choisir une

largeur de bandefi en fonction des donnéesde sorte que I‘estimateuﬂ aitun -risque

presque aussi bon que l'estimateur optimaf'\hopt sous des hypothéses faibles sur. En
particulier, la méthode PCO (pour Penalized Comparison to Over tting) introduite
par Lacour, Massart et Rivoirard [LMR17] consiste & comparer chaque estimatetff;

a un estimateur dégénéré’\hmm pour un certain hmin trés petit. La largeur de bandef
sélectionnée est choisie parmi une famillel de largeurs de bande (toutes supérieures
& hmin), €N Minimisant un critére qui dépend de la distancekfy,  h.,, KL r) €t qui
pénalise les petites valeurs dé&. Lacour, Massart et Rivoirard montrent alors une
inégalité oracle pour leur estimateur, c'est-a-dire une inégalité du type

Ekfy Tk, CminfEKf, fkZ, g : h2Hg + C(n;jHj); (1.5)

ou C(n;jHj) est un terme de reste négligeable devant le risque optimal. On obtient
ainsi quef’% a un risque presque aussi bon que le meilleur estimatetﬁrlopt , Sans jamais
avoir eu a estimer les paramétres dé nissant le modeéle (ici la régularité de la densité
ainsi que sa norme).

Dans le chapitre 4, nous nous inspirons de la philosophie de la méthode PCO pour
créer un estimateur adaptatif de variété. Une premiére étape consiste a créer une
famille d'estimateurs (M;): o, analogue des estimateurs & noyaux pour I'estimation
de variété. Ceci est permis par la notion de-enveloppe convexe. Pout 0O, la
t-enveloppe convexeConv(t; A) d'un ensembleA interpole entre A (t = 0) et son
enveloppe convexeConv(A) (t = 1 ). Elle est dé nie par

Conv(t;A) = [ Conv( ); (1.6)
A
r() t

our( ) estle rayon de I'ensemble , a savoir le rayon de la plus petite boule contenant

. On montre dans un premier temps que pout = ¢ (Inn=n)1=¢, ot c dépend ded
et des parameétres min et f min, la t-enveloppe convexeConv(t; X,) d'un n-échantillon
aléatoire de points fournit un estimateur de variétés qui est minimax sur le modéle
inn‘i’n £ e - D@NS UN deuxiéme temps, nous considerons le probleme de la sélection
adaptative du paramétret. Un analogue de l'estimateur dégénérég,  est ici donné
par le choix det = 0 : on trouve alors l'estimateur Conv(0; X,,) = Xu. Si on croit
en la méthode PCO, il s'agira donc de comparer les estimateuGonv(t; Xp) a Xp,
c'est-a-dire d'étudier la fonctiont 7! h(t; Xp) = dy (Conv(t; Xpn); Xn). |l se trouve
que cette fonction a été précédemment introduite sous le nom ddéfaut de convexité
de I'ensembleX, dans un papier d'Attali, Lieutier et Salinas [ALS13], ou elle était
utilisée pour étudier le type d’homotopie des complexes de Rips. Nous montrons que le
défaut de convexité de I'échantillon aléatoireX,, exhibe des comportements di érents
dans deux régimes : avant une certaine valeur seil (X,), elle a un comportement
globalement linéaire, tandis qu'aprés cette valeur seuil, elle posséde un comportement
(sous-)quadratique. Le défaut de convexité est calculable uniquement a partir des
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Figure 1.4: Gauche. Echantillon X,,. Centre. Défaut de convexité de
X, et échelle sélectionnéd' . Droite. L'ensemble Conv(f ; X,).

données, et on peut donc en pratique observer ces deux phases. On peut alors montrer
gue les valeurs de juste au-dessus de la valeur seutl (X,) fournissent un risque
minimax de l'ordre de (Inn=n)2=4. En pratique, nous xons deux hyperparamétres
0< < 1ettmax, posons

£ =supft<tmax: h(t;Xn) >t g; (1.7)

et montrons que, Sitmax €St assez petit par rapport a min, alors Conv(f' ; X,) fournit
un estimateur minimax adaptatif de variétés, voir la gure 1.4. Notons que nous
n'‘obtenons pas le caractére adaptatif de notre estimateur en montrant une inégalité
oracle du type (1.5), mais en montrant quef est plus grand que la valeur seuil
t (Xn) (tout en restant du bon ordre de grandeur) avec grande probabilité, ce qui
sut a montrer le caractére minimax de I'estimateur correspondant. On peut aussi
montrer que le parameétref est en fait proche du taux d'approximation " (X,). Comme
mentionné précédemment, un certain nombre d'algorithmes en géométrie algorithmique
nécessitent la connaissance du taux d'échantillonnage (ou plutét d'un encadrement du
taux d'échantillonnage), et peuvent donc étre utilisés en utilisant le parametref* .

1.2 Reconstruire la mesure plutdt que la variété

La deuxieme contribution proposée ici est motivée par les problématiques d'estimation
de densité. En inférence géométrique, la possibilité de reconstruire la densitéde
la mesure générant les observations{, a d'abord été considérée dans le cas du
est connue. Hendriks [Hen90] propose d'utiliser les fonctions propres de l'opérateur
de Laplace-Beltrami sur la variété pour reconstruire la densité, tandis que Pelletier
[Pel05] propose un estimateur & noyaux utilisant la distance géodésique sur la variété.
Dans le cadre de l'inférence géométrique, ou la variétél est supposée inconnue, les
travaux d'estimation de densité sont plus récents. Soit un pointxy que I'on suppose
appartenir a M. L'estimation de de f (Xg), la densité def en xg, a été abordée
dans [BS17; WW20], ou des vitesses de convergence des estimateurs a noyaux sont
exhibées, respectivement dans le cas ou la variété est a bord et dans le cas ou la densité
est supposée Holder. Berenfeld et Ho mann [BH19] exhibent des vitesses minimax
d'estimation pour ce probléme, et montrent que deux régularités entrent en jeu dans
la vitesse optimale : d'une part la régularité s de la densitéf, et d'autre part la
régularité k de la variété M . De plus, les auteurs montrent que la méthode de sélection
de Goldenshluger-Lepski [GL13] s'appliqgue dans ce cadre pour sélectionner la largeur
de bande du noyau et permet d'obtenir des estimateurs adaptatifs d&(xo).

Pour aller au-dela de I'estimation ponctuelle def (ou de maniére équivalente de la
mesure associée), le choix de la fonction de perte est un probleme délicat. En e et,
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les choix standard en estimation de densité comprennent la distande,, la distance de
Hellinger ou encore la divergence de Kullback-Leibler. Toutes ces fonctions de perte
deviennent dégénérées pour la comparaison de deux mesures mutuellement singuliéres.
Or, si le support M de la mesure est inconnu, il sera impossible de construire a
partir d'un n-échantillon une mesure non-singuliére par rapport a la mesure volume
voly sur M, quand bien méme son support serait trés proche del pour la distance
de Hausdor . Au contraire, les distances de WassersteiWw, (1 p 1 ) sont par
construction robustes aux perturbations métriques du support d'une mesure, et sont
donc particulierement adaptées a notre probleme. Elles sont dé nies de la maniére
suivante. Etant données deux mesures de probabilité et , nous dé nissons un plan
de transport entre et comme une mesure suR® RP ayant pour premiére
marginale et seconde marginale . Informellement, au point x 2 RP, une fraction

d (x;y) de la massed (x) présgpfe enx est envoyée ery. Le colt d'un tel plan de
transport est donné parCp( ) = d(x;y)Pd (x;y), tandis que la distance Wasserstein
W, est donné par le codt du plus petit plan de transport :

Wp(; )=inffCy™(): 2 (5 )g (1.8)

ou ( ; ) estl'ensemble des plans de transport entre et

L'utilisation des distances de Wasserstein, et plus généralement de la théorie du
transport optimal, a montré son e cacité dans une large gamme de problémes récents
d'apprentissage automatique, avec des algorithmes e caces et des garanties théoriques
fortes (voir par exemple le livre de Peyré et Cuturi [PC19]). D'un intérét tout particulier
pour nous, Niles-Weed et Berthet ont abordé le probleme de I'estimation d'une densité
f supportée sur le cubd0; 1]¢ pour les distances de Wasserstein [WB19b]. Supposons
quef appartienne a I'espace de BesoBj.4([0; 1]%) de régularité s sur le cube (pour
s 0Oetl p<1l el g 1 ,voirlechapitre 5 pourune dé nition précise). Alors,
Niles-Weed et Berthet montrent qu'une modi cation d'un estimateur par ondelettes
classique atteint la vitesse de convergence de (5*1)=2s*d) pnour d 3 en distance
WassersteinW,, (a comparer avec la vitesse de convergenoe $=(2s*d) pour I'estimation
ponctuelle de densité). De plus, cette vitesse est la vitesse minimax.

Notre contribution principale, décrite dans le chapitre 5, est d'étendre ce résultat
minimax en remplagant le cube par n'importe quelle sous-variété! de régularité k
pour k s+ 1. Nous montrons alors qu'une mesure ayant pour densité par rapport a
voly un estimateur & noyaux pondéré atteint la méme vitesse minimax (st1) =@s+d)
Dans le cas d'intérét ou la variétéM est inconnue, nous ne pouvons pas utiliseroly ,
de sorte que l'estimateur précédent n'est pas calculable. Nous proposons donc dans
un premier temps d'estimer la mesure volume. Nous exhibons ainsi un estimateur
¥oly et montrons que Oy := Yoly 5j¥oly j est un estimateur minimax de la mesure
uniforme sur M . La reconstruction de la mesure volume est basée sur les procédures
d'estimation de paramétrisations C¢ locales de la variétéM introduites par Aamari et
Levrard [AL19].

2 Un point de vue multi-échelle : la persistance des don-
nées

Les travaux que nous avons mentionné jusqu'a maintenant font tous I'hypothése forte
de I'existence d'une variété de basse dimension interpolant les données. Il est légitime
de s'intéresser a des questions de nature topologique dans un cadre beaucoup plus
général. Par exemple, on peut imaginer qu'une information pertinente est présente dans
la structure topologique ne de processus spatiaux, information pouvant servir dans
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Figure 1.5: Gauche : un graphe d'interactions entre utilisateurs de

Reddit provenant du jeu de donnéesREDDIT-5Kprésenté dans [YV15].

Droite : simulation d'un ot de turbulence donné par I'équation de
Navier-Stokes [Sch+06].

un obijectif de classi cation [Bro+20]. Dans certains problemes, les données observées
ne se présentent pas sous la forme de nuages de points, alors qu'une topologie reste
présente. C'est le cas notamment lorsque I'on observe une famille de graphes, ou
la topologie est alors décrite par I'existence de cycles ou de plusieurs composantes
connexes [AMAQ7; Hof+17; ZW19; Car+20], voir aussi la gure 1.5. La théorie de
I'hnomologie persistante en TDA se propose de quanti er en un sens précis ce qu'est la
topologie sous-jacente a un jeu de données de fagon trés générale. Pour cela, nous
adoptons une approche multi-échelle.

Considérons tout d'abord un exemple simple. SoiX,, un ensemble ni den points
dans RP. D'un point de vue topologique, I'ensembleX,, est particulierement peu
intéressant : il comporten composantes connexes, chacune réduite a un point. Une
possibilité pour obtenir un ensemble plus riche topologiqguement est de choisir une
échellet a laquelle regarder les données, dans la veine desnveloppes convexes du
chapitre 4, ou plus simplement en considérant l¢-voisinage deX,, :

X\ = [ B(x;t): (1.9)
X2Xn

Comme expligué précédemment, choisir une bonne échelleest alors un probléme
délicat, bien que nous ayons proposé dans le chapitre 4 un algorithme dans le cas ou
I'échantillon X, est susamment proche d'une variété M . La théorie de I'homologie
persistante propose d'éviter ce choix du paramétré en regardant comment évoluent
les groupes d'homologie déX! lorsquet grandit de 0 a +1 . Si on s'intéresse par
exemple a 'homologie de dimension (c'est-a-dire a la présence de boucles dans
un espace), on peut observer que des boucles apparaitront a certains instants dans
le processus, avant d'étre bouchées par la suite lorsque le paramétrelu rayon des
boules deviendra plus grand (voir la gure 1.6). Lorsquet devient trés grand, nous
obtenons un ensemble homotopiquement équivalent a une boule, qui ne posséde plus
de cycles. Cette évolution peut étre résumée par un ensemble d'intervalles, chaque
intervalle [b;d) représentant une boucle apparue a I'échellb, et ayant disparue a
I'échelle d. De maniére équivalente, nous pouvons considérer la collection de points
(b:d 2 R?, que nous appelons laliagramme de persistanceassocié au processus.
Notons que l'on a forcémentd > b, de sorte qu'un diagramme de persistance est une
liste de points dans := fu = (us;uy) 2 R?: us > u1g, ou de maniére équivalente
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Figure 1.6: Le diagramme de persistance de dimension 1 associé a la
ltration  (X!)t o-

une mesure de la formeP i21 u; sur . Plus un cycle sera resté longtemps dans le
processus(X}!)t o, plus il aura de I'importance. On appellepersistance du cycle la
durée de vied bde lintervalle associé. Ainsi, dans un diagramme de persistance, les
points loin de la diagonale@ = f(t;t): t 2 Rg correspondent a des caractéristiques
topologiques importantes du processus sous-jacent. De maniére plus générale, la théorie
de I'nomologie persistante peut s'appliquer a n'importe quelleltration d'espaces
topologiques, c'est-a-dire a une suite croissante d'espaces topologiqs)i,r. Ceci
inclut donc notamment les sous-niveaux d'une fonctiorf : X ! R, ou X peut étre

un graphe, une image, ou un espace métrigue quelconque. Quand la fonctibrest la
distance a un ensembleX,,, hous retrouvons le processus décrit précédemment, tandis
gue le diagramme de persistance associé est appelé diagramme de fech de I'ensemble
Xn. De plus, on peut s'intéresser a di érentes dimensions d’homologie : composantes
connexes (dimension 0), boucles (dimension 1), cavités (dimension 2), etc.

La théorie de I'nomologie persistante et la notion de diagramme de persistance
se sont construites progressivement durant la premiére moitié des années 2000, voir
par exemple [Rob99; ELZ00; Car+04], tandis que le concept de persistance a aussi
été introduit de maniére indépendante par Barannikov dans le domaine de la théorie
de Morse [Bar94]. Un des premiers résultats majeurs de la TDA a consisté a montrer
gue les diagrammes de persistance sont en un sens fort stables vis-a-vis des objets sur
lesquels ils sont construits [CSEHO7]. Cette propriété, couramment appelée théoréme
de stabilité , repose sur un résultat puissant de stabilité algébrique énoncé précisément
dans le chapitre 3. Ce théoréme de stabilité est basé sur une notion de distance entre
diagrammes, appelée la distancéottleneckd; . Par la suite, les distancesd, pour
1 p 1 ontétéintroduites, généralisant la distance bottleneck, et pour lesquelles
des résultats de stabilité plus faibles existent (découlant de la stabilité en distance
bottleneck) [CS+10]. Soienta et b deux diagrammes de persistance, oa est donné
par la liste de points x1;:::;Xn 2 et bpar la liste de pointsys;:::;ym 2 . On
appelle un appariement entrea et b une bijection entrea[] @ et b[ @ : chaque
point x; est envoyé par soit sur un certain y;, soit sur un point quelconque de la
diagonale, et lesy; non atteints sont I'image par d'un certain point de la diagonale.
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Figure 1.7: Gauche : deux diagrammes de persistance. Centre : un

appariement entre les deux diagrammes. Le colC,( ) est donné

par la somme des longueurs a la puissangedes segments apparaissant

dans l'appariement, tandis que le colthottleneck C; ( ) est donné par

la longueur du plus long segment. Droite : un appariement optimal
pour tout p2 [1;+1 ].

Le colt Cy( ) de l'appariement est donné par
X
Co( )= kx — (X)kP; (1.10)
x2a[ @

ol k k représente une norme quelconque siR?. Un appariement de colt minimal est
dit optimal, et on pose

dp(a;b) =inf fCp( )™ 2 (a;bg; (1.11)

ou ( a;b est I'ensemble des appariements entra et b (voir la gure 1.7). On peut
par ailleurs noter que dans un appariement optimal, tout point envoyé sur la diagonale
@ est en fait envoyé sur son projeté orthogonal sur la diagonale. Intuitivement, on
est en train d'apparier les di érents cycles correspondant a chaque point des deux
diagrammes, tandis qu'apparier un point a la diagonale, revient a I'apparier a un
cycle n'ayant par persisté, de la forme[b;d) avecb= d. D'intérét tout particulier

en TDA est la distance bottleneckd; , obtenue comme limite des distancesl, pour
p!l . De maniére équivalente, on peut dé nir le coGtC; ( ) d'un appariement

par supfk x (X)k: x2 a[ @ g et dénir

di (a;b) =inffCy (): 2 (abg (1.12)

Les diagrammes de persistance encodent une information topologique riche sur les
données qu'ils résument, et souvent complémentaires d'autres méthodes plus classiques.
N'étant pas naturellement des éléments d'un espace vectoriel, il est cependant délicat
de les incorporer directement dans des algorithmes d'apprentissage automatique. Deux
approches ont été proposées dans la littérature. La premiére consiste en I'utilisation
de feature maps (ou représentations) sur I'espace des diagrammes, qui permettent
de transformer les diagrammes de persistance en vecteurs, qui peuvent alors étre
facilement inclus dans des algorithmes standard d'apprentissage automatique. La
seconde est de travailler malgré tout directement dans I'espace des diagrammigs
par exemple en utilisant des méthodes nécessitant uniguement des distances en entrée
(comme lemultidimensional scaling précédemment mentionné). Nous étudierons ici
ces deux approches.
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2.1 L'espace des diagrammes de persistance étudié a travers le trans-
port optimal partiel

Pour ce qui est de la deuxiéme approche, il est capital de tout d'abord comprendre
de maniére ne la structure de l'espace des diagrammes de persistance, vu en tant
gu'espace métrique. Cette étude a été initiée par Mileyko, Mukherjee et Harer [MMH11],
qui montrent des propriétés de l'espace métrique

DP:=fa2D : dy(a;0) < 1g ; muni de la distanced,, (1.13)

ou 0 est le diagramme vide, de sorte quelp(a; 0)° = P uw2alU2 u1)P, quantité appelee
la p-persistance totaledu diagramme a, et notée Pers,(a). Notons que nous nous
autorisons ici a avoir des diagrammes possédant un nombre in ni de points, de sorte
qu'il est possible d'avoirdy(a;0) = 1 .

Nous proposons dans le chapitre 6 de participer a I'étude de la structure de l'espace
des diagrammes de persistance en adoptant un point de vue di érent de celui de
[MMH11]. Nous avons déja mentionné qu'un diagramme de persistance peut de
maniére équivalente étli§ dé ni soit comme une liste de points dans, soit comme
une mesure ponctuelle ,,, . Bien que l'approche liste semble étre favorisée
dans la littérature, le point de vue mesure s'avére plus riche. D'une part, ce point de
vue permet de dé nir sans e ort la somme, ou la moyenne de plusieurs diagrammes,
qui sera alors une mesure quelconque (et non plus une mesure ponctuelle). D'autre
part, cela permet d'appliquer la théorie du transport optimal aux diagrammes de
persistance. En e et, la théorie du transport optimal, et plus précisément les distances
de Wasserstein déja mentionnées précédemment, permettent de comparer des mesures.
Les distancesd, et W, partagent des points communs : elles sont toutes deux dé nies
comme étant le colt minimal de transport (ou d'appariement) entre deux mesures. De
par ces similitudes, les distancesl, sont couramment appelées distances de Wasserstein
dans la littérature en TDA. Cette appellation est cependant trompeuse, puisqu'il existe
une di érence fondamentale entre les distanced, et W,, : les distancesw, ne sont
dé nies que pour des mesures de probabilité (ou ayant la méme masse), tandis que
les distancesd, ne sont dé nies que pour des mesures ponctuelles, mais de masses
potentiellement di érentes.

Nous établissons dans le chapitre 6 un lien précis entre la structure métrique de
I'espace des diagrammes de persistance et le transport optimal, en faisant le lien
entre les distancesd, et des distances de transport optimal partiel introduites par
Figalli et Gigli [FG10]. Etablir ce lien permet d'une part d'obtenir certaines propriétés
métriques de l'espaceDP (telle sa complétude, ou l'existence de barycentres), mais
aussi d'étendre I'espacdP a un espace plus grandv P, que nous appelons I'espace des
mesures persistanteset que nous munissons de la distance de Figalli-GighGp, étendant
la distance d,. L'espace des mesures persistantes a l'avantage d'étre linéairement
convexe, ce qui nous permet de dé nir des moyennes de diagrammes, le diagramme de
persistance moyerE (P) d'une loi P sur lI'espace des diagrammes de persistance étant
au centre du chapitre 8. De plus, exhiber ce lien justi e I'adaptation d'algorithmes
utilisés en transport optimal pour les diagrammes de persistances, une approche qui
peut se révéler fructueuse [LCO18]. Le chapitre 6 est tiré de l'article [DL20], écrit en
collaboration avec Théo Lacombe.

2.2 Représentations linéaires sur I'espace des diagrammes et le choix
de la fonction de poids

La premiére approche que nous avions évoquée pour e ectuer des procédures statistiques
a l'aide de diagrammes de persistance consiste a utiliser une application D! B,
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Figure 1.8: Le diagramme de persistancea, de n = 700 points

aléatoires sur le tore (pour 'homologie de dimensiorl). Les deux

points de haute persistance dans le diagramme donne des informations

sur la géométrie du tore (ses deux trous), tandis que les points proches
de la diagonale@ représentent du bruit topologique.

ou D est l'espace des diagrammes de persistance Bt est un espace de Banach.
Une telle application, appeléefeature map ou représentation, permet de transformer
un échantillon de diagrammes de persistance en échantillon de vecteurs, qui peut
ensuite s'incorporer facilement dans un algorithme d'apprentissage automatique. De
nombreuses représentations ont été proposées dans la littérature. On peut en identi er
une grande classe, que nous appelons représentatidimgaires, et qui inclut par exemple

la surface persistante [Ada+17] (et ses variantes [Che+15; KHF16; Rei+15]), la fonction
d'accumulation persistante [BM19] ou la silhouette persistante [Cha+15a].

De nition 2.1  (Représentation linéaire) Soitf : ! B une applicag,ion, ouB est
un espace de Banach. L'application  : D! B dé nie par ¢(a) = f (u) est
appelée lareprésentation linéaireassaociée af .

u2a

Un premier critére pour évaluer la pertinence d'une représentation est sa stabilité :
est-ce que est Lipschitz (ou Holder) pour une certaine distanced, ? Nous donnons
dans le chapitre 8 des critéres sur la fonctioh qui permettent d'établir la continuité
de la fonction ¢, puis son caractere Lipschitz (ou Holder) pour les distances.

Il apparait alors, que pour obtenir des représentations stables, il est primordial de
pondérer la fonctionf par une fonction de poidsw qui s'écrase su samment proche
de la diagonale. Nous donnons des conditions su santes sur la fonctiow permettant
d'assurer la stabilité de toute représentation de la forme s avecf Lipschiz bornée.
En particulier, une fonction de poids de la formew : u 7! (u2 u;)P permet la création

de représentations Hélder sur I'ensemble des diagrammes construits sur une variété de
dimensiond < p.

Nous nous proposons ensuite d'éclairer le choix de la fonction de poidsen prenant
un point de vue asymptotiqgue. Nous avons mentionné précédemment que les points
de haute persistance dans un diagramme de persistance ont plus d'importance et
représentent des caractéristiques topologiques importantes de l'objet sous-jacent. Dans
le cas ou un ensemble da points X, est échantillonné sur une variétéM , on observe
ainsi dans le diagramme de persistanca, de X, (par exemple de fech) deux types de
points : des points de haute persistance correspondant au diagramme de persistance
de la variété, et un grand nombre de points de basse persistance mesurant le bruit
topologique de I'échantillonnage, voir par exemple la gure 1.8 pour un exemple
sur le tore. Nous nous intéressons alors a la structure du bruit topologique dans
un cadre simpli é, ol des points sont tirés aléatoirement dans le cubf0; 1]9. Nous
montrons qug la taille du bruit topologique a,, mesurée par sa persistance totale
Pers(an) i= 24, (U2 U1)P, estdordrec nl P=d avec une constantec dépendant
de la densité d'échantillonnage. Ceci suggére que si les points de haute persistance
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dans le diagramme d'un nuage de points donnent des informations sur la structure
macroscopique de I'ensemble, le bruit topologique fournit d'autres types d'information,
telle la dimension intrinséque de I'échantillonnage. Ces remarques ont par la suite été
utilisées par Adamset al. [Ada+20] pour dé nir une notion de dimension persistante
d'un ensemble. De maniére plus générale, nous montrons que le diagramme normalisé
n 79, (qui est une mesure persistante) converge pour les meétriquéss, vers une
certaine mesure persistante limite dépendant de la densité d'échantillonnage. D'autre
part, ceci implique que les représentations de la forme s (a,) convergent pourw
de la formeu 7! (u2 u1)? et p > d. Nous retrouvons dans les deux cas la méme
heuristique : une fonction de poids de la formes 7! (u, u;)P est Iégitime pourp >d
si les diagrammes sont construits sur un objet de dimensiod.

Le contenu du chapitre 7 est basé sur une collaboration avec Wolfgang Polonik
[DP19].

2.3 Le diagramme de persistence moyen

Dans un cadre statistique, nous serons souvent en présence d'un échantillon de

pertinent de commencer par s'intéresser a des quantités simples, telles leur moyenne
%(( ai) + + ( an)). Silaloi des grands nombres implique directement que cette
moyenne converge verkE, p[( a)], ou P est la loi générant lesa;, rien ne nous dit a

quoi ressemble cette espérance, et quelles sont ses propriétés. Nous nous proposons de
répondre a cette question dans le cas des représentations linéaires. Dans ce cas Ia,

si on note

1
a, = ﬁ(al+ + ap) (1.14)

la moyenne empirique des;, qui est une mesure persistante, nous avons
1 —
SCi(a)+  + p(@))= @) (1.15)

Cette quantité converge vers ¢ (E(P)) = Rf (WAE(P)(u), ouE(P) = E4 p[a] est le
diagramme moyen deP, dé ni précisément dans le chapitre 8 et initialement dé ni dans
une publication écrite en collaboration avec Frédeéric Chazal [DC19]. Le diagramme
moyen est une mesure sur , qui donne l'intensité moyenne de points d'un diagramme
aléatoire a P dans une région donnée. Nous montrons dans le chapitre 8 des
propriétés variées des diagrammes moyens : leur stabilité par rapport a la |8, des
vitesses d'estimation du diagramme moyen empiriqua, vers E(P) (pour les distances
de Figalli-Gigli FGp), ou encore I'existence d'une densité p pour E(P) dans un
cadre trés général. Ce dernier résultat décrit en particulier de gganiére précise ce vers
quoi converge%( f(a1) + + ¢(an)) : lalimite est égale a f (u) p(u)du, etla
connaissance de p (qui est possible a travers des procédures d'estimation) permet une
connaissance précise de cette limite. Un des inconvénients du diagramme de persistance
empirique a, est qu'il contient potentiellement un trés grand nombre de points, ce
qui peut limiter son utilisation en pratique. Nous étudions ainsi le probleme de la
guantization d'une telle mesure, c'est-a-dire de celui de trouver une mesure de petit
support qui va approchera,. Le chapitre 8 compile des résultats sur le diagramme
de persistance moyen obtenus en collaboration avec Théo Lacombe [DL20; DL21] et
Frédéric Chazal [DC19].
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Chapter 2

Introduction (English)

This thesis ts within the framework of Topological Data Analysis (or TDA), which

is here tackled from two dierent perspectives, namely geometric inference, and
persistent homology theory. These two approaches both aim at extracting, in di erent

contexts, relevant information of a geometric and topological nature on complex
datasets exhibiting nonlinear structures.

1 Challenges in geometric inference

The classical statistical theory developed in the 30s by Fischer relies on the following
hypothesis: we observe a low-dimensional dataset, for which we possess a simple
generative model (gaussian, exponential, etc.). The goal is then to nd estimators of
parameters characterizing the law of the dataset, for which we are able to give strong
optimality guarantees. In contrast, modern datasets are typically high-dimensional
point clouds. If classical methods can still be applied to such datasets, their performance
(both in theory and in practice) becomes poor. This phenomenon, called theurse of
dimensionality, shows the need of a paradigm shift. First, in a modelization step, sets
of hypotheses tailored to a large class of high-dimensional datasets must be designed.
Second, it is necessary to develop statistical methods adapted to those new sets of
hypotheses.

For instance, some methods, such as the LASSO [Tib96], are e ective under a
sparsity assumption on the dataset. Some regression methods, such as ridge regression
[HK70], penalize the complexity of the proposed regression function to adapt to
the high-dimensional setting. Let us also mention the PCA method (for Principal
Component Analysis [Pea01; Hot33]), which aims at nding the subspace tting the
best the dataset with respect to theL ,-norm. All the methods we have mentioned rely
on the existence of a low-dimensional linear structure being relevant to explain the
dataset. In particular, they require to have a high level of trust in the parametrization
of the dataset, while any reparametrization can break this linear structure (see Figure
2.1). The key idea of geometric inference consists in relaxing this hypothesis by
supposing that the dataset in high dimension lies around a low-dimensional shapa,
priori non-linear. Mathematically, we suppose thatthe observed dataset is close to a
manifold M of dimensiond small in an ambient space of dimensioD, possibly large

From a statistical point of view, this type of hypotheses was rst studied in the
case where one has access to the manifdidi [Hen90; Pel05]. This is for instance the
case for geolocalization problems [IPT19], where datasets are located on the sphere
S?, or for studying images of faces under di erent lightings, the dataset then lying
on a GrassmannianG(k; d) [Cha+07]. Having access to the manifold is however
most of the time too demanding. During the 2000s, another family of techniques
was developed, that may be aggregated under the name of non-linear dimensionality
reduction methods [RS00; ZZ03; WSS04] (let us also mention earlier attempts like
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Figure 2.1: The linear structure of the blue dataset disappears
when the vertical axis is reparametrized by a non-linear function (here
sinusoidal). The orange dataset is however still close to a manifold.

self-organizing maps [Koh89] or adaptive principal surfaces [LT94]). Those methods,
which do not require the knowledge of the manifoldM , aim at embedding in the most
faithful way possible a point cloud close to a non-linear shape in the Euclidean space
RY for some smalld. For instance, the ISOMAP method [TDSLOQ], relies on the
embedding inRY, thanks to a multidimensional scaling (or MDS), of a neighborhood
graph built on top of the observations. It allows the unfolding of datasets lying
on objects which are di eomorphic to an open convex set (see Figure 2.2). We may
then apply standard classi cation or regression techniques to the unfolded dataset.
However, those techniques possess theoretical guarantees only in a restricted setting:
the dataset must be close to a shape at least di eomorph t&R¢Y, while it is for instance
impossible to embed continuously a sphere iR

Around the same time, the eld of computational geometry has witnessed the
development of algorithms allowing the reconstruction of a manifoldM  RP based
on a nite sample X, with the emphasis being put on the reconstruction of curves and
surfaces [BTG95; AB99]. For example, the COCONE algorithm [Ame+00] reconstructs
a smooth surfaceM thanks to a nite approximation, under the condition that the
approximation rate "(X) := supfd(x; X): x 2 Mg of the sampleX is small enough,
while the Tangential Delaunay Complex [BG14] allows such a reconstruction in higher
dimension. The reconstruction of topological or geometric invariants oM , like its
medial axis [ABEO09] or its homology and homotopy groups [CO08] has also been
addressed. Once again, those results only require a nite sampb¢ of the manifold M
having a good approximation rate. Another point of view consists in assuming thafX
is the realization of a random process ofi independent observations from some law

concentrated aroundM . One can then hope that methods of interest have a good

performance with high probability, on typical samples. This statistical approach on
computational geometry problems was rst proposed in a seminal paper by Niyogi,
Smale and Weinberger [NSWO08], where the authors show that the homology of a
manifold M is recovered with high probability by the fech complex (a combinatorial
object de ned in Chapter 3) of the n-sampleX,. In the 2010s, the estimation of other
descriptors of M was proposed: its dimension [HAO05; LIM09; KRW19], its tangent
spaces [AL19; CC16], its reach [Aam+19; Ber+21], its curvature [AL19], its geodesic
distances [ACC20], or the manifoldM itself [Gen+12a; Gen+12b; MMS16; AL18;
AL19].

This statistical point of view on computational geometry allows us to de ne
in a simple manner what it means for a procedure to be optimal. This is made
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Figure 2.2: Left: a set X of 3000 points sampled on a swiss roll.
Right: output of the ISOMAP algorithm with input X (implemented
with scikit-learn [Bui+13]).

possible thanks to the minimax statistical theory. Consider for instance the problem
of estimating a manifold M thanks to a random n-sample X,,. An estimator M of M

is by de nition any compact subset of RP, being a measurable function of the sample.
The quality of the estimator M with respect to the law , called its -risk, is given by
the average Hausdor distancedy between the estimator andM :

Ra(M; ;d w) := Eldu (M;M)]; (2.1)

whereM = M (X,) and X,, is an-sample of law . In reality, the law  generating the
dataset is unknown, and it is more interesting to control the -risk over a setQ of laws

, that we call a statistical model In geometric inference, several statistical models
were introduced, which take into account di erent noise models and regularities of the
manifold M . The uniform risk of the estimator M on the classQ is given by

Rn(M; Q;dy) :=supfRa(M; ;d 1):  2Qg; (2.2)

while we say that an estimator isminimax if it attains (up to a multiplicative constant
asn goes tol ) the minimax risk

Rn(M; Q:dy) :=inf fRy(M; Q;dy): M is an estimatory: (2.3)

Let us mention for instance the family of modeIsQZ:n‘j'n £t INtroduced by Genovese
et al. in [Gen+12a], consisting of the laws supporfed on ad-dimensional manifold
M satisfying some additional properties. First, we assume that has a densityf
on M, lower bounded by some constanf ,;, > 0 and upper bounded by another
constant f max. This ensures that all the parts of the manifold M are approximately
evenly sampled: we then say that the law is almost-uniform onM . The parameter
min gives a lower bound on the reach (M) of the manifold. The reach is a central
notion in geometric inference, de ned as the largest radiug such that, if some point
X is at distance less thanr to M, then there exists a unique projectiony of x on
M. More geometrically, having a reach larger thanr implies that it is possible to
make a ball roll along the manifold M without bumping into another part of M
[PLO8, Lemma A.0.6]. Therefore, the reach (M) controls two di erent quantities: the
curvature radius of M (that is a local regularity), and a global regularity parameter,
indicating the presence of a bottleneck structure in the manifold (see Figure 2.3). On

the statistical model sz , the minimax rate of convergence satis es

in +f min ;f max

Inn 2 : Inn 2
o — R n(M; Q*¢ ;dy) o — (2.4)

min »f min 3 max
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Figure 2.3: If the reach of the curve M s too large, then the curve
cannot be too pinched (left) and cannot present a tight bottleneck
structure (right).

for two positive constants ¢g; ¢; depending on min, fmin, fmax and d. The lower bound
in this inequality was shown by Kim and Zhou [KZ15], while the upper bound is
obtained by exhibiting an estimator having a uniform risk of order (In n=n)?=9. Such an
estimator (although not computable in practice) was rst proposed by Genoveseet al.
in [Gen+12a], while another estimator attaining this same minimax rate (computable
in practice), and based on the Tangential Delaunay Complex, was proposed by Aamari
and Levrard [AL18].

1.1 The adaptivity problem

The Tangential Delaunay Complex depends on several parameters, like for instance a
radius quantifying the size of the neighborhoods used to compute local PCAs. For the
Tangential Delaunay Complex to be minimax, those parameters have to be calibrated in
a precise manner with respect to the quantities nmin, f min and f max de ning the model.
However, those quantities area priori unknown. The question of the practical choice
of the parameters de ning the estimator is then raised. This question of the tuning
of parameters de ning an estimator is not restricted to the framework of manifold
estimation, but is a classical problem in statistics.

Let us cite for instance the question of the choice of the bandwidth for kernel

R, and suppose that we want to recover the valud (xo) of the density at some xed
point Xg 2 R. A standard methg,d to achieve this goal is to consider the convolution of
the empirical measure , = 11, x, by some kernelKp, whereKp, = h 1K (=h)
and K satises K = 1. We then obtain a function f}, = K, n. Assume that
the density f is of regularity s, that is f 2 C5(R), the set of bsc-times di erentiable
functions, whosebscth derivative is (s b sc)-Hoélder continuous. Then, for a good
choice of kernelK , it is optimal to choose the bandwidth hepe of orderc n 172s*D) |
where ¢ depends of theC>-norm of f [Tsy08, Chapter 1]. The associated risk is then
of order n S72s*1) "which is the minimax rate of estimation on the class of densities
of regularity s. In practice, it is impossible to know exactly the value ofs, so that
we must nd another strategy to choose the bandwidthh. Adaptive methods consist
in choosing a bandwidthfi in a data-dependent way, such that the estimatorf’\ﬁ has
a -risk almost as good as the optimal estimatorf’}lopt under weak hypotheses on
. One of such method, the PCO method (for Penalized Comparison to Over tting)
introduced by Lacour, Massart and Rivoirard [LMR17] consists in comparing each
estimator f'\h to some degenerate estimatof\hmm for some very smallhmin . The selected
bandwidth fi is chosen among a familyH of bandwidths (all larger than hpy,;,), by
minimizing a criterion depending on the distancekf, f'\hmm KL ,(r),» While penalizing



1. Challenges in geometric inference 19

small values ofh. Lacour, Massart and Rivoirard then show anoracle inequality for
their estimator, that is an inequality of the form

Ekfy Tkl CminfEKf, fk, g : h2Hg + C(n;jHj); (2.5)

where C(n; jHj) is a reminder term negligible in front of the optimal risk. Thus, we
obtain that f’\ﬁ has a risk almost as good as the best estimatd’r\hOpt , while we never
had to estimate the parameters de ning the statistical model (that is the regularity s
of the density and the C*-norm of ).

In Chapter 4, we draw inspiration from the PCO method to create an adaptive
manifold estimator. A rst step consists in creating a family of estimators (M+); o,
similar to kernel density estimators for manifold estimation. This is made possible with
t-convex hulls. Fort 0, the t-convex hull Conv(t; A) of a setA is an interpolation
between the setA (t =0) and its convex hull Conv(A) (t = 1). Itis de ned by

Conv(t;A) = [ Conv( ); (2.6)
A
r( )t

wherer( ) is the radius of the set , that is the radius of the smallest enclosing
ball of . We rst show that for t = ¢ (Inn=n)"9, where ¢ depends ond and on
the parameters min, fmin and f max, the t-convex hull Conv(t; X,) of a n-sample is
a manifold estimator which is minimax on the statistical modeIQZ:i'n o o - V€
then consider the problem of selecting the parameter. An analog of the degenerate
estimator f/\hmin is given by the choicet = 0, with Conv(0; X,,) = X,,. The PCO method
therefore suggests comparing the estimator€onv(t; X,) with X,, that is to study
the function t 7! h(t; X,) = dy (Conv(t; X,); Xp). This function was actually already
introduced under the name of convexity defect function of the setX,, in a paper by
Attali, Lieutier and Salinas [ALS13], where it was used to study the homotopy type of
Rips complexes. We show that the convexity defect function oK,, exhibits di erent
behaviors in two di erent regimes: before a certain threshold valug (X,), it has a
globally linear behavior, whereas after this threshold value, it has a (sub)quadratic
behavior. The convexity defect function is computable based on the dataset, so that
we may in practice observe those two regimes. We are then able to show that values of
t just above the threshold valuet (X,) provide a minimax risk of order (In n=n)2=,
More precisely, we x two hyperparametersO< < 1 and tmax, and let

£ =supft<tma: h(t;Xn)>1t g (2.7

Our main result states that if tmax is small enough with respect to min, then
Conv(f ;X;) is a minimax adaptive manifold estimator (see Figure 2.4). Note that we
do not obtain the adaptive property of the estimator by providing an oracle inequality
of the type (2.5), but by showing that f is larger than the threshold valuet (X,)
(while being of the right order of magnitude) with high probability, this property
being enough to ensure the minimax behavior of the corresponding estimator. We
also are able to show that the parametef* is actually close to the approximation rate
"(Xn). As mentioned earlier, some algorithms in computational geometry require the
knowledge of the approximation rate (or rather of bounds on the approximation rate),
and may therefore be used with plugging in the parametef' .

1.2 Reconstructing the measure rather than the manifold

The second contribution proposed here is motivated by the density estimation problem.
In geometric inference, the issue of reconstructing the density of the measure
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Figure 2.4: Left. Sample X,,. Center. Convexity defect function of
X, and selected scald' . Right. The set Conv(f ; X,).

generating the observationsX,, was rst addressed in the case where one has access to
the manifold M . Hendriks [Hen90] proposes to use the eigenfunctions of the Laplace-
Beltrami operator on the manifold to estimate the density, whereas Pelletier [Pel05]
introduces a kernel density estimator using the geodesic distance on the manifold. In
the setting of manifold inference, where the manifoldM is supposed to be unknown,
papers addressing density estimation are more recent. Letg be a point that we
assume belongs tavi. The estimation of f (xg), the density of f at xg, was rst
tackled in [BS17; WW20], where estimation rates of kernel density estimators are given,
respectively in the case where the manifold has a boundary and in the case where the
density is supposed to be Holder continuous. Berenfeld and Ho mann [BH19] exhibit
minimax rates of convergence for this problem, and show that two regularities come
into play in the optimal rate: on one hand the regularity s of the density f, and on
the other hand the regularity k of the manifold M. Moreover, authors show that the
Goldenshluger-Lepski method [GL13] can be applied in this setting to select a kernel
bandwidth, producing a minimax adaptive estimator of f (xg).

To go beyond the pointwise estimation off (or equivalently of the associated
measure ), the choice of the loss function is a delicate issue. Indeed, standard choices
in density estimation include the L, distance, the Hellinger distance, or the Kullback-
Leibler divergence. All those loss functions become degenerate for the comparison of
two mutually singular measures. If the supportM of the measure is unknown, it
will be impossible to build, thanks to a nite sample, a measure which is non-singular
with respect to the volume measurevoly, on M, even though we may be able to
build measures whose supports are very close td for the Haussdorf distance. On
the contrary, Wasserstein distancesV, (1 p 1 ) are by design robust to metric
perturbations of the support of a measure, and are therefore particularly adapted to
our problem. They are de ned in the following way. Given two probability measures
and , we de ne a transport plan between and as a measure orR® RP having
rst marginal  and second marginal . Informally, at the point x 2 RP, a fraction
d (x;y) of tﬂ%massd (x) located at x is sent toy. The cost of such a plan is given
by Cpo( )= d(x;y)Pd (x;y), whereas the Wasserstein distanciV, is given by the
optimal cost of a transport plan:

Wp(; ):=inffCi™®(): 2 (5 )g; (2.8)

where ( ; ) is the set of transport plans between and

Using Wasserstein distances, and more generally the theory of optimal transport,
has shown its e ciency in a wide class of modern machine learning problems (see
e.g. [PC19]). In particular, Niles-Weed and Berthet have tackled the problem of
estimating the density f supported on the cube[0; 1] using Wasserstein distances as
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Figure 2.5: Left: an interaction graph between Reddit users, from
the dataset REDDIT-5K presented in [YV15]. Right: simulation of
turbulent ows given by Navier-Stokes equation [Sch+06].

loss functions [WB19b]. Assume thatf belongs to the Besov spac8;3., (see Chapter
5 for details). Then, they show that a modi cation of a classical wavelet density
estimator attains the rate of convergencen ($*1)=2s*d) for d 3 with respect to the
Wasserstein distanceW, (whereas the rate of convergence for the pointwise estimation
of the density is of ordern 52s* ) Moreover, this rate is the minimax rate.

Our contribution, presented in Chapter 5, consists in extending this minimax result
by replacing the cube by any submanifoldM of regularity k for k s+ 1. We show
that a measure having a density with respect tovoly given by a weighted kernel
density estimator, attains the same minimax rate ofn ($*1)=2s*d) |n the case of
interest where the manifoldM is unknown, we cannot usevoly , such that the previous
estimator cannot be computed. We therefore propose in a rst step to estimate the
volume measure, thanks to some estimatofoly, , and show that Oy := Yoly 5j%oly j is
a minimax estimator of the uniform measure onM . The reconstruction of the volume
measure is based on the estimation of local¥ parametrizations of the manifold M
introduced by Aamari and Levrard [AL19].

2 A multiscale perspective: persistent homology theory

Works we have mentioned so far all rely on the strong hypothesis of the existence of a
low-dimensional manifold interpolating the dataset. It is however reasonable to ask
questions of a topological nature in a much more general framework. For instance,
one can imagine that relevant information is present in the ne topological structure
of a spatial process, information which can be used for a classi cation task [Bro+20].
In certain problems, the observed dataset is not a point cloud, whereas a notion of
topology is still relevant. This is for instance the case if a family of graphs is observed,
where topology is then described by the presence of cycles or connected components
[AMAO7; Hof+17; ZW19; Car+20], see also Figure 2.5. Persistent homology theory
in TDA aims at quantifying in a precise sense what is the underlying topology of a
dataset in a very general way. To do so, we adopt a multiscale approach.

Consider rst a simple example. LetX,, be a nite set of n points in R®. From a
topological perspective, the setX, is trivial: it consists of n connected components,
each of them being reduced to a point. A possibility to obtain a topologically more
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Figure 2.6: The one-dimensional persistence diagram associated with
the ltration (X!): o.

complex set is to choose a scaleand to consider thet-neihborhood of X;,:

X\ = [ B(x;t): (2.9)
X2X n

As explained previously, choosing a right scald is then a delicate issue, although
we proposed in Chapter 4 an algorithm to select such a scale in the case where the
sample X, is close enough to a manifoldV . Persistent homology theory proposes to
avoid the choice of the parametert by tracking the evolution of the homology groups

of X! ast grows from0to +1 . If for instance one is interested in1-dimensional
homology (that is the presence of loops in a shape), one can observe that loops will
appear at certain times in the process, before being lled when the radius of the balls
becomes larger. Whert becomes very large, the set becomes homotopy equivalent to
a ball, and does not possess any non-trivial cycle. This process can be summarized
by a set of intervals, each interval[b; d) representing a loop appearing at scalb, and
disappearing at scaled. An equivalent point of view is to consider the collection of
points (b;d 2 R?, that we call the persistence diagramassociated with the process,
see Figure 2.6). Note that we always havel > b, so that a persistence diagram is

a list of poiq_x,s in = fu=(uyux) 2 R?: uy > uig, or equivalently a measure
of the form ~ ,, 4, on . The longer a loop was present in the procesgX}): o,
the more important it is. We call persistence of the loop the lifetimed b of the
associated interval. Therefore, in a persistence diagram, points far away from the
diagonal @ := f(t;t) : t 2 Rg correspond to important topological features of the
underlying process. More generally, persistent homology theory can be applied to any
Itration of topological spaces, that is any increasing sequence of topological spaces
(XY¢2r. This includes in particular the sublevel sets of a functionf : X ! R, whereX
can be a graph, an image, or any metric space. When the functioh is the distance to
asetX, X ,we recover the process mentioned before, while the persistence diagram
is called the fech persistence diagram of the seX,,. Moreover, di erent homology
dimensions may be considered: connected components (dimension 0), loops (dimension
1), cavities (dimension 2), etc.
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Persistent homology theory and the notion of persistence diagram were progressively
introduced in the early 2000s [Rob99; ELZ00; Car+04], while the concept of persistence
was also introduced independently by Barannikov in the eld of Morse theory [Bar94].
One of the rst major results in TDA consisted in showing that persistence diagrams
are in a strong sense stable with respect to the object on top of which they are built
[CSEHO7]. This property, commonly called the stability theorem, relies on a powerful
algebraic stability result which is precisely stated in Chapter 3. This stability theorem
is based on a notion of distance between diagrams, called the bottleneck distande .
Subsequently, distancesi, for 1 p 1 were introduced. These generalizations of
the bottleneck distance are known to satisfy weaker stability results (stemming from
the bottleneck stability result) [CS+10]. Let a and b be two persistence diagrams,

A matching betweena and b is given by a bijection betweena| @ and b[ @ .
Precisely, each pointx; is sent by either towards somey;, or to some point of the
diagonal, while they; s that are not the image of somex; are the image by of some
point of the diagonal. The costCy( ) of the matching is given by
X
Co( )= kx  (xX)kP; (2.10)
x2a[ @

wherek k represents any norm onR?. A matching with minimal cost is said to be
optimal, while we let

dp(a;b) :=inffCp( )*™: 2 (abg; (2.11)

with ( a;b) being the set of matchings betweera and b (see Figure 2.7). We may
moreover remark that in an optimal matching, every point sent towards the diagonal
is actually sent towards its orthogonal projection on the diagonal. Intuitively, we are
matching the di erent cycles corresponding to each point of the two diagrams, whereas
matching a point to the diagonal corresponds to matching a cycle to a non-persistent
cycle, with an interval of the form [b;d) with b= d. Of particular interest in TDA

is the bottleneck distanced; , obtained as the limit of the d, distances forp! 1
Equivalently, the cost C; ( ) of a matching is given bysuptk x  (X)k: x2 a[ @ g
whereas the bottleneck distance is given by

di (b :=inffCy (): 2 (abg (2.12)

Persistence diagrams encode rich topological information of the dataset they
summarize, and often complementary to more classical methods. However, they do
not naturally belong to a vector space, so that it is unclear how to use them directly
in standard machine learning algorithms. Two approaches have been proposed in the
literature. The rst one consists in using feature maps (also called representations)
on the space of persistence diagrams, which allow the transformation of persistence
diagrams into vectors, which can then be easily plugged in standard machine learning
pipelines. The second one is to work directly in the space of diagrani3, by example
by using methods requiring only distances in entry (like the multidimensional scaling
previously mentioned). We will study those two approaches.

2.1 The space of persistence diagrams studied through partial opti-
mal transport

Concerning the second approach, it is rst necessary to understand precisely the
structure of the space of persistence diagrams, seen as a metric space. This study
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Figure 2.7: Left: two persistence diagrams. Center: a matching

between the two diagrams. The costC,( ) is given by the sum of the

lengths to the power p of the edges appearing in the matching, while

the bottleneck costC; ( ) is given by the length of the longest edge.
Right: an optimal matching forevery 1 p 1

was initiated by Mileyko, Mukherjee and Harer [MMH11], who show properties of the
metric space

DP:=fa2D : dy(a;0) < 1g ; endowed with the distanced, (2.13)

where 0 is the empty diagram, so that dp(a; 0)P = P u2alUz2  U1)P, a quantity called
the p-total persistence of the diagram a, and denoted by Pers,(a). Note that we allow
here diagrams with in nitely many points, so that it is possible to have dy(a;0) = 1 .

We propose in Chapter 6 to participate in the study of the structure of the space of
persistence diagrams by adopting a di erent point of view than in [MMH11]. We have
already mentioned that anersistence diagram can be seen either as a list of points in
or as a point measure on ;,, ;. Although the list approach appears to be favored
in the literature, the measure point of view turns out to be more fruitful. On the one
hand, this point of view allows us to de ne in an e ortless manner the sum, or the
average of several diagrams, which would then be a general measure (and not a point
measure). On the other hand, this allows us to apply the theory of optimal transport
to study persistence diagrams. Indeed, the Wasserstein distanc®¥, used in optimal
transport, that we have already mentionned, allow for the comparison of measures,
while the distancesd, and W, share common aspects: they are both de ned as some
minimal transport/matching cost between two measures. Because of this similarity,
distancesd, are commonly called Wasserstein distances in TDA literature. This name
is however misleading, as there is a fundamental di erence between thd, and W,
distances: theW, distances are only de ned for probability measures (or measures
having the same mass), whilel, distances are de ned for measures having possibly
di erent masses, but that have to be point measures.

We establish in Chapter 6 a precise link between the metric structure of the space
of persistence diagrams and optimal transport, by leveraging partial optimal transport
distances introduced by Figalli and Gigli [FG10]. By establishing this link, we are able
to obtain metric properties of the spaceDP (such as its completeness, or the existence
of barycenters), but also to extend the spacdP to some larger spacév P, that we call
the space ofpersistence measuresand that we endow with the Figalli-Gigli distance
FGy, extending the distanced,. The space of persistence measures bene ts from
being linearly convex, so that averages of diagrams are easily de ned, the expected
persistence diagramE (P) of a law P on the space of diagrams being at the core of
Chapter 8. Furthermore, exhibiting this link justi es the adaptation of algorithms
used in optimal transport for persistence diagrams, an approach which can be fruitful
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Figure 2.8: The persistence diagrama, of n = 700 random points
on the torus (for 1-dimensional homology). The two topmost points
in the diagram give information on the geometry of the torus (its two
holes), whereas points close to the diagonal represent topological noise.

[LCO18]. Chapter 6 is taken from the paper [DL20], written in collaboration with
Théo Lacombe.

2.2 Linear representations on the space of persistence diagrams and
the choice of the weight function

The rst approach we have mentioned to perform statistical procedures using persistence
diagrams consists in usinga map: D! B, whereD is the space of persistence
diagrams andB is a Banach space. Such an application, that is called geature map
or a representation allows the transformation of a sample of persistence diagrams into
a sample of vectors, which can then be plugged easily in a machine learning algorithm.
Numerous representations were introduced in the literature. We may identify a large
subclass of representations, that we calinear representations and that includes for
instance the persistence surface [Ada+17] (and its variants [Che+15; KHF16; Rei+15]),
the accumulated persistence function [BM19] or the persistence silhouette [Cha+15a].

De nition 2.1  (Linear representation). Letf : ! B be anygmap, whereB is a
Banach space. The application ¢ : D! B dened by ¢(a):= f (u) is called
the linear representation associated withf .

u2a

A rst criterion to evaluate the relevance of a representation s its stability: is

Lipschitz-continuous (or Holder continuous) for a certain distanced,? We give in
Chapter 8 criteria on the function f which ensure the continuity of the function ¢,
then its Lipschitz (or HOlder) behavior with respect to the d, distances. It appears
that, to obtain stable representations, it is fundamental to weight the function f
by some weight function w which is su ciently small close to the diagonal. We
give su cient conditions on w to ensure that representations of the form ; for
f Lipschitz continuous and bounded are stable. In particular, a weight function of
the form u 7! (u2 u;)P produces Hdolder continuous linear representations on fech
persistence diagrams built on top ofd-dimensional manifolds, as long ap > d.

We then address the question of the choice of the weight functiow by taking an
asymptotic point of view. We have mentioned earlier that points of high persistence
in a persistence diagram are more important and represent important topological
features of the underlying object. In the case where&n points X,, are sampled on
a manifold M, we observe that the persistence diagranma, of X, (for the Itration
(X!t o) contains two types of points: points with high persistence corresponding
to the persistence diagram of the manifold, and a large number of points with low
persistence measuring the topological noise of the sample, see Figure 2.8 for an
example on the torus. We explore the behavior of the structure of the topological noise
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in a simpli ed framework, where points are randomly sampled on the cubd0; 1]9. We
show that thessize of the topological noise o&,, measured by its total persistence
Pers,(an) == 24,(U2  U1)P, is of orderc n! P=d with a constant ¢ depending
on the sampling density. This suggests that if points with high persistence in the
diagram of a point cloud informs us on the macroscopic structure of the shape, the
topological noise contains other types of information, such as the intrinsic dimension
of the sample. These remarks were then used by Adanet al. [Ada+20] to de ne
a notion of persistent dimension of a set. More generally, we show that the rescaled
diagram n 1¥9a, (which is a persistence measure) converges with respect to the metric
FG, towards some limit persistence measure depending on the sampling density. This
implies in particular that representations of the form s (a,) converge forw of the
formu 7! (u2 u1)P for p>d. We nd in the two cases the same heuristic: a weight
function of the form u 7! (u2 u1)P for p > d should be chosen if the persistence
diagrams are built on top of ad-dimensional object.

Chapter 7 is based on a collaboration with Wolfgang Polonik [DP19].

2.3 The expected persistence diagram

In a statistical context, we are often in presence of aai-sample of persistence diagrams

to start by considering simple quantities such as their average;}(( ai) + + ( an)).
The law of large numbers implies that the average converges towards, p[( a)],
where P is the law generating the diagramsa;. However, it is not cleara priori what
are the properties of this limit. We propose to describe this expectation for linear
representations :. In this case, if we denote by

1
an = ﬁ(al + + an) (2.14)
the average of thea;s, which is a persistence measure, we have

Y@+ @)= @) (215)

This quantity converges towards ¢ (E(P)) = Rf (WdE(P)(u), whereE(P) = E4 pla]

is the expected persistence diagram d#, de ned precisely in Chapter 8 and rst de ned

in a publication written in collaboration with Frédéric Chazal [DC19]. The expected
persistence diagram is a measure on, which gives the average intensity of the number
of points of a random diagrama P in a given zone. We establish in Chapter 8
various properties of expected persistence diagrams: their stability with respect to the
law P, rates of convergence of the empirical expected persistence diagray towards
E(P) (with respect to Figalli-Gigli distances FGy), or the existence of a density p
for E(P) in a very general framework. This last result implies irhparticular a precise
description of the limit of %( f(a)+ + ¢(ap)):itisequalto f(u) p(u)du, and
the knowledge of p (which is possible through estimation procedures) allows us to
have a precise knowledge of the limit. One of the drawbacks of the empirical expected
persistence diagrang, is that it potentially contains a very large number of points,
which may hinder its use in practice. We therefore also study the problem of the
guantization of such a measure, that is the problem of nding a measure with small
support which approximates it. Chapter 8 gathers results on the expected persistence
diagram obtained in collaboration with Théo Lacombe [DL20; DL21] and Frédéric
Chazal [DC19].
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Chapter 3

Background

3.1 Elements of measure theory

Let (X;G) be a measurable space. We denote iy (X) the set of signed measures
on X, while P(X) is the set of nite measures on the spacéX;G). By the Jordan
decomposition theorem [Fol13, Proposition 3.4], every measure 2 P (X) can be
decomposed into two positive mutually singular measures * and , such that

= 7 . For m> 0, we let P, (X) be the set of measures if° (X) having mass
m, i.e. such that (X)= m.

We will focus on the case wheré&X is endowed with some metricd and G= B(X) is
the associated Borel -algebra. In that case, we letG,(X) be the space of continuous
bounded functions onX, which is a Banach space when endowed with th& -norm
k ki . Every 2P (X) then induces a linear functional onG,(X), de ned by

f2GC(X) 7! (F): (3.1)

As | (f)j (X)kf k1 , this linear functional is continuous, so that P(X) can be
identi ed with a subset of G,(X) , the topological dual of G,(X). The weak topology
on P(X) is the topology induced by the weak-* topology onG,(X) . Concretely, a
sequencqg ), in P(X) weakly converges towards in P(X) if for all f 2 Cy(X) we
have ,(f)! (f). We thenwrite ,!'" . A stronger topology onP(X) is given by
the dual norm on G,(X) , that we call the total variation norm: for ; 2P (X),

j = %Supfj (f) (B f 2G(X); kiky 1g: (3.2)

When (X; d) is locally compact and separable [AFP0O, Proposition 1.47], this formula
coincides with more common de nitions of the total variation:

i J'=Su§fj (A)  (A)j: A2B(X)g

17 d d o (3.3)

2 d d
where is any measure dominating and

We now state elementary topological properties oP (X). We make the distinction

between a Polishmetric space, that is a complete separable metric space, and a Polish
space, the latter being atopological spaceX (not necessarily associated with a metric)
for which there exists a distanced metrizing the topology such that (X; d) is a Polish
metric space. The following proposition appears for instance in [Var58].

Proposition 3.1.1. Let m> 0. We endowP,(X) with the weak topology.
1. The spaceX is separable if and only ifP, (X) is separable.

2. The spaceX is compact if and only if P, (X) is compact.
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3. The spaceX is a Polish space if and only ifPy, (X) is a Polish space.

Persistence diagrams, that are de ned rigorously in Section 3.8, are not nite
measures in general, but may have in nite masses. The spad®(X) is therefore not
suited to study them, while the larger space of Radon measures provides a satisfactory
framework to handle such non- nite measures. We assume for the remainder of the
section that (X; d) is a locally compact Polish metric space

De nition 3.1.2 (Radon measures) A Radon measure on X is a locally nite
measure, that is such that for every poink 2 X , there exists a neighborhood) of x
with (U) < 1 . We denote byM (X) the set of Radon measures oiX .

Remark 3.1.3 It is common in the literature to de ne Radon measures by imposing
further regularity conditions on  (namely inner regularity on open sets and outer
regularity on Borel sets). When X is a locally compact Polish metric space, those
regularity conditions are automatically satis ed, and the de nition of a Radon measure

becomes more straightforward, see [Fol13, Theorem 7.8].

The Riesz Markov Kakutani representation theorem asserts that Radon measures
correspond exactly to nonnegative elements of the dual space Gf(X), the space of
continuous functions with compact support onX . Before stating the theorem, we need
to endow G(X) W'gh a topology. Let A, be a sequence of relatively compact open
subsets such that | A, = X. We let G(An) be the completion of C(A,) for the
k ki -norm (the space of functions which vanish on the boundary oA). We then
endow CG.(X) with the strongest locally convex topology such that all the inclusions
G(An) 1 C (X) are continuous, and which makesC.(X) a complete topological
vector space. More concretely, endowed with this topology, a sequen¢g,)n in G(X)
converges towards some functiom 2 C¢(X) if and only if there exists a compact set
containing the supports of all the functions and we have uniform convergence ¢f)n
towards f .

De nition 3.1.4. Let G(X) be the topological dual of(X). We say that 2 C;(X)
is nonnegative if (f) O for any f 2 C,(X) which is nonnegative.

The following theorem is for instance found in [AFP0OO, Theorem 1.54].
Theorem 3.1.5 (Riesz Markov Kakutani representation theorem) .
1. Let 2 M (X). Then, the applicationf 2 C;(X) 7! (f) is continuous.

2. If 2 C(X) isnonnegative, then there exists a uniqgue Radon measure2 M (X)
such that (f)= (f) for everyf 2 Cc(X).

As such, M (X) can be identi ed with a subset of G(X) . We endow M (X)
with the topology induced by the weak-* topology on G.(X) , that we call the vague
topology. Concretely, a sequence of Radon measuré€s,), converges vaguely towards
some Radon measure if, for all f 2 C,(X), we have (f)! (f). We then write

| \
n. .
The following propositions are standard results. Corresponding proofs can be found

for instance [Kal83, Section 15.7].
Proposition 3.1.6. The spaceM (X) is a Polish space.

Also, P(X) M (X), with the injection being continuous: if a sequence of nite
measures converges weakly to some nite measure, then the vague convergence also
holds.



3.2. Optimal transport 29

De nition 3.1.7. AsetF M (X) is said to betight if, for every " > 0, there exists
a compact setK with (XnK) " forevery 2F.

Proposition 3.1.8. A setF M (X) is relatively compact for the vague topology if
and only if for every compact setK included in X,

supf (K): 2Fg<1:

Proposition 3.1.9 (Prokhorov's theorem). A setF P (X) is relatively compact for
the weak topology if and only ifF is tight and supfj j: 2 Fg<1.

Proposition 3.1.10. Let ; 1; 2;::: be measures inP(X). Then, ;! W if and
onlyifj nj!j jand "
Proposition 3.1.11 (The Portmanteau theorem). Let ; 1; 2;::: be measures in

M (X). Then, 4 " if and only if one of the following propositions holds:

for all open setsU X and all boundedclosed set X ,

Iirrrlsup n(F) (F) and Iimlinf n(U) (V):

for all bounded Borel setsA with (@A =0, nIli{n n(A)Y= (A).

Finally, = de ne D(X) the set of integer measures oiX, that is Radon measures
of the form , x, for some index setl . Integer measures will be particularly
important in the following, as they will be identi ed with persistence diagrams.

Proposition 3.1.12. The setD(X) is closed inM (X) for the vague topology.

3.2 Optimal transport

Optimal transport is a widely developed theory providing tools to study and compare
probability measures supported on some metric spac¥ [Vil03; Vil08; Sanl5], that is,
up to a renormalization factor, hon-negative measures with same mass. The optimal
transport problem was rst introduced by Gaspard Monge in 1781 in its Mémoire
sur la théorie des déblais et des remblais [Mon81]. Consider a distribution of dirt (or
remblais) and a distribution of holes (or déblais) , see Figure 3.1. A transport
plan between and is a strategy for moving the dirt to Il the holes: at each point
X, a fraction d (x;y) of the masst(x) is moved toy. The quantity of mass moved
from x, which could be written as v d (x;y) should be exactly ﬁqual tod (x), the
total mass originally present atx. Likewise, the quantity of mass , d (x;y) arriving
to y should be equal tod (y). Mathematically, if and are measures on some metric
space(X;d), then a transport plan is a measure onX X , which must satisfy the
marginal constraints 1= and 2= (the rst and second marginals of ). Remark
that for a transport plan to exist, ~and must necessgjily have the same mass. For
p =1, the cost of the transport plan is then given by  d(x;y)d (X;y), that is we
consider the total distance covered by the dirt through the transport plan . The
1-Wasserstein distanceW;(; ) between and (also called earthmover distance)
is then given by the smallest cost possible of a transport plan. More generally, we
introduce the following problem.

Given a metric space(X;d), 1 p<1 andm> 0, we IehPr‘%(X) be the set of
distributions 2 P,(X) such that there existsxp 2 X with  d(x;xp)Pd (x) < 1.
Remark that if 2 PR (X), then the previous integral is actually nite for every
Xp 2 X. Forp= 1, we let P} (X) be the set of distributions 2 P,(X) with
bounded support. We write ( ; ) for the set of transport plans between and
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Figure 3.1: A distribution  of remblais (in blue) and a distribution
of déblais (in red).

De nition 3.2.1  (Wasserstein distances) Let 1 p 1 andlet; 2PR(X). Let
2 (; ). Forp<1,thep-costof isequalto

ZZ
Co( )= d(x;y)Pd (x;y); (3.4)
X X
while C1 () := esssuml( ; ). The Wasserstein distanceWpq(; ) between and
is given by
Wpa(; ) :=inffCo( )P 2 (5 )g (3.5)

for p< 1, and Cy( )P should be replaced bg; () for p= 1 .

When there is no ambiguity on the distanced used, we simply write W, instead of
Wp.a- We refer to [VilO8, Chapter 6] for the following proposition.

Proposition 3.2.2. For 1 p 1 , the Wasserstein distanceW, is a distance on
PR (X). Furthermore, there exist transport plans attaining the in mum in (3.5), that
we call optimal transport plans. If p< 1 and (X;d) is a Polish metric space, then
the following propositions hold.

1. The space(Pr‘%(X);Wp) is a Polish metric space.
2. If X is compact, thenP§(X) = Pn(X) and W), metricizes the weak topology.

3. Let ; q; 2" be measures inPF%(X). Then, Wy( n; ) ! Oif and only if

Y and T d(xxg)Pd n(X) ! d(x; xo)Pd (x).

We will denote by Optwp( ;) the set of optimal transport plans between and

. One of the key speci cities of optimal transport distances with respect to other

distances between measures lies in that they are closely linked to the geometry of the
underlying metric space(X;d). For instance the embeddingx 2 X 7! 2 Pf(X)
is an isometry whenPP(X) is endowed with the Wasserstein distance. Also, metric
properties of (X;d) (e.g. compactness, completeness or separability) are inherited
by the space(Pf(X);Wp). More profound results indicate that studying the space
(Pf(X);Wp) can in turn give insights on the geometry of the spacéX ; d), and more
precisely on its curvature, see [Vil08, Part II].

For p = 1, the Wasserstein distance satis es a duality formula, known as the
Kantorovitch-Rubinstein duality formula [Vil08, Chapter 5].

Proposition 3.2.3. Let ; 2PL(X). Then,

Wi(; ) =supfj (f) (f)j: f: X! Ris 1-Lipschitz continuousy: (3.6)
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Note that the above formula shows thatW; acts as a norm on the space of signed
measures with zero mass.

In this thesis, the theory of optimal transport will have two di erent uses. First,
it will be used in Chapter 5 where we propose estimators to reconstruct measures
supported on unknown manifolds. The quality of the reconstruction will be measured
thanks to Wasserstein distances. Second, metrics used in Topological Data Analysis
(see Section 3.8) share key ideas with metrics used in optimal transport. Making this
connection precise will be at the core of Chapter 6, and will in particular allow us to
introduce generalizations of persistence diagrams, that we call persistence measures.
Persistence measures will then be studied in the remainder of Part I, while optimal
transport will be a key technical tool to analyze their behaviors.

3.3 Statistical models and minimax rates

We end the prerequisites on measure theory by de ning minimax rates in statistical
theory, which will be at the core of Part I.

Let (X;G) be a measurable space. Atatistical model is given by the data of
(X; G, Q), where Q is a subset ofP1(X). Let (E; E) be another measurable space and
let :Q! (E;E) be afunctional to be estimated. Given a numbem of observations,
an estimator of is a measurable function™ : X" ! E, whereas the quality of the
estimator is measured through a measurable loss functiobh : E  E ! [0;+1 ]. The
risk of the estimator “in 2 Q is equal to

Ro(75 L) = By o LCXasii X)) O (3.7)

and the smaller the risk, the better the estimator. Theminimax risk for the estimation
of on the modelQ with respect to the lossL is given by

Rn(; Q;L) :=inf supRa(% ; L); (3.8)
2Q

where the in mum is taken over all estimators " of . An estimator attaining the
minimax rate (up to a constant) as n goes to+1 is called aminimax estimator.

It will be sometimes necessary to allow foiQ to vary with n (for instance if the
model Q includes a noise which we assume is small with respect to some function of
n). Also, there will sometimes be latent variables in the model. For instance, in the
deconvolution problem we observe some random variableX; = Y; + ";, where"; is a
small noise, and the goal is to recover some information( ) about the distribution
of Y; (e.qg. its support). Depending on what is assumed on the noisg, the quantity

( ) may not be characterized by the distribution of X;, so that we have to extend
slightly the previous de nition. Let : (Y;H)! (X;G) be a measurable function. We
now consider a subsef) of P1(Y) and assume that we do not observe a-sample of
distribution 2 Q, but of distribution 4 (the pushforward of by ). The minimax
risk is then de ned by

Rn(} 5 L) = Exyxny (4 ) oLz X0); (O (3.9)

For instance, in the deconvolution problem,Q would be a (strict) subset of the possible
distributions of the couple (Y;;"i), whereas would be the addition. This generalization
will be useful to deal with noise in a rigorous manner when the model is not completely
identi able .

Statistical models of interest in this thesis describe strong geometrical hypotheses
on the way the observations are distributed, and are detailed in Section 3.5.
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Figure 3.2: The Hausdor distance between the two closed set#A
and B is given by dy (AjB).

3.4 Elements of metric geometry

We now introduce basic concepts of metric geometry.

Hausdor distance. The Hausdor distance is a measure of proximity between
subsets of some metric spacéX;d). Let A;B X be two sets. We de ne the
asymmetric Hausdor distance dy (AjB) := supfd(x;B): x 2 Ag, and the Hausdor
distancedy (A;B) = dy (AjB) _ dy (BjA), see Figure 3.2. When comparing general
subsetsA and B, the Hausdor distance is not very well-behaved: it may be equal
to +1 , or be equal toO for two di erent sets. It becomes a proper distance when we
restrict to compact sets ofX. We let K(X) be the space of nonempty compact subsets
of X.

Proposition 3.4.1  (Proposition 1.6 in [Aam17]) . Let (X;d) be a metric space. Then,
dy is a distance onK(X). Furthermore, endowed with this metric:

1. K(X) is separable if and only ifX is separable.
2. K(X) is compact if and only if X is compact.
3. K(X) is complete if and only if X is complete.

Note that the asymmetric Hausdor distance also veri es the following pseudo
triangle inequality: for A;B;C RP,

du (AJC)  du (AjB) + dy (BC): (3.10)

An equivalent formulation of the Hausdor distance is given by the 1 -norm between
the distance functions to a set.

Proposition 3.4.2 (Example 4.13 in [RWO09]). Let A;B 2 K(X). Then,
dy (A;B) = kd(;A) d(;B)ky: (3.11)

It will also be useful to compare objects up to isometry: for instance, two segments
of comparable lengths are in some sense close to each others, even if they live in
di erent spaces. The Gromov-Hausdor distance allows us to formalize this concept,
see also Figure 3.3.
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Figure 3.3: The Gromov-Hausdor distance between the two curves
X and Y is obtained as the Hausdor distance between 1(X) and

2(Y).

De nition 3.4.3.  Let (X;d;) and (Y;d;) be two metric spaces. We letlgy (X;Y) be
the in mum of the numbersr > 0 such that there exists a metric spacéZ ; d3) and
isometries 1:(X;d1)! (Z;d3), 2:(Y;d2)! (Z;d3) suchthatdy( 1(X); 2(Y))

r.

The setZ in the previous de nition can actually be chosen equal toX tY , with
d3 being any distance extendingd; on X and d, on Y. Furthermore, two compact
metric spaces are at distancé for the Gromov-Hausdor distance if and only if they
are isometric, and the distancedgy becomes a proper distance on the set of classes of
isometric compact spaces [MémO08].

Of particular interest for us will be the space(K(RP);dy ), as the estimators built
in Chapter 4 will take their values in this space. We will show that our estimators are
measurable as composition of elementary operations on the spakgRP).

Proposition 3.4.4. 1. The function x 2 RP 7! f xg 2 K(RP) is an isometry.
2. The union function (A;B) 2 K(RP) K (RP) 7! A[ B 2 K(RP) is continuous.
3. The convex hull function A 2 K (RP) 7! Conv(A) 2 K (RP) is continuous.

4. Let E 2 B(K(RP)) be a measurable event. Then, the function

(
A fA2E
Ge : (A:B) 2K (RP) K (RP) 7! '
B else.

iS measurable.

Proof. For the rst three functions, see the proof of Proposition I11.7 in [Aam17]. For
the last function, let F be any measurable set irK (RP). Then, the preimage ofF is
given by

(FVE) K (R°) [ (E® F);

which is measurable. Therefore, the function is measurable. O

We end this paragraph by introducing two di erent quantities measuring the size
of a compact setA 2 K (RP). The rst one is the diameter diam(A) := supfjx vj:
X;y¥ 2 Ag. The second is theradius of A. It is by de nition the radius of the smallest
ball B such that A B. We denote byr(A) this radius.

Proposition 3.4.5.  The function diam is 2-Lipschitz continuous and the functionr
is 1-Lipschitz continuous.
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Figure 3.4: The radius and diameter of a setA  RZ.

Figure 3.5: The three rst shapes have positive reach, whereas the
square (boundary of[0; 1]?) has zero reach.

Proof. For the 1-Lipschitz continuity of the radius, see [ALS13, Lemma 16]. For the
diameter, let x1;X2 2 A such that jx; Xx»j = diam(A). Let y; 2 B be such that
jX1 y1j = d(x1;B) and y2 2 B with jx2 yoj = d(x2;B). Then,

diam(A) = jx1  X2j | X1 Yaj*tijy1r VYai+ijy2 X
d(x1;B) +diam( B) + d(xz;B) diam(B)+2dy (AjB):

We conclude by exchanging the roles ofA and B. O

Reach of aset. LetA RP be aclosed subset. Givex 2 RP, we denote by a(x)
the set of points realizing the distance fromx to A:

y2 a(x)0 (x yj=dxA)andy2A):

Two situations may arise: either a(x) is a singleton (and we then identify the set
with its unique element) or it is not. In the latter case, we say that x is in the medial
axis Med(A) of A.

De nition 3.4.6.  The reach of a non-empty closed seA  RP is given by
(A) :==inf fd(x; Med(A)): x 2 Ag: (3.12)

By de nition, for every r< (A),if d(x;A) r, then there exists a unique point
a(X) 2 A such that d(x;A) = jx a(X)j. In particular, the projection A onA is a
well-de ned map on A" := fx 2 RP : d(x;A) rg, the r-tubular neighborhood of A.
A more visual way to understand the reach is given by the rolling-ball condition : if a
set A has reach larger thanr, then it is possible to make a ball of radiusr roll freely
around A without ever bumping into another part of A [CFPL12]. See Figure 3.5 for
examples of setA having positive (and zero) reach.
Examples of sets with positive reach include convex sets (for which(A) =+ 1)
and compact submanifolds without boundary. More generally, having a large reach
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imposes both a local regularity condition onA (it cannot be too curved ) and a global
regularity condition (it cannot have a bottleneck structure ), ideas which can be made
mathematically precise [Aam+19], see also Figure 2.3 in the introduction. The reach
was originally introduced by Fereder [Fed59] when studying generalizations of Steiner
formula for convex sets [Ste40] and Weyl's tube formula for submanifolds [Wey39]. He
proved that such a formula relating the volume of tubular neighborhoods of a sef
to some notion of curvature also holds for the large class of sets with positive reach.
Considering sets with positive reach is often considered as a minimal requirement
in computational geometry. For instance, minimax rates of estimation in manifold
inference are known to break down when no assumptions on the reach of the underlying
sets are made [AL18; AL19].

The positivity of the reach is actually linked to the regularity of the distance
function to a set. We say that a functionf : RP I R' is Ct1 if it is di erentiable and
its di erential is Lipschitz continuous.

Proposition 3.4.7 (Theorem 6.3 in [DZ01]) Let A RP be a non-empty closed set.
Then, (A) > 0if and only if the function x 2 RP 7! d?(x; A) is of classCl? in some
tubular neighborhood ofA.

Remark that the distance function d( ; A) is in general not di erentiable on a
tubular neighborhood of A, even if A is a smooth object (think of a circle for instance),
so that considering the squared distance in the above proposition is required. From a
statistical perspective, the estimation of the reach of a manifold has been tackled in
[Aam+19] and [Ber+21].

Another point of view consists in seeing the reach as a function : K(RP) !
[0;+1 ]. It is clear that this function is not continuous: take a set A = fx;yg.
If x 6 y, then (A) is given by the half-distance betweerx and y, whereas when
x ! 'y, we obtain a singleton at the limit, whose reach is in nite. However, such a
discontinuity may only happen with an increase of the reach, that is the reach is upper
semi-continuous.

Proposition 3.4.8 (Remark 4.14 in [Fed59]) The function is upper semi-continuous.
Hausdor measure. The d-dimensional Hausdor measure is a generalization of
the d-dimensional Lebesgue measure to arbitrary subsets &°. For instance, the

1-dimensional Hausdor measure of a curve is given by its length, th&-dimensional
Hausdor of a surface is given by its area, etc.

De nition 3.4.9. Letd O be an integer. ForA RP, and > 0, consider

8 9
< X . ) d [ =

H4(A) ==inf I g dILZ(U') DA Ui and diam(U;) <  ; (3.13)
i i 0 '

where ! 4 = 92= g+ 1 is the volume of thed-dimensional unit ball. The d-

dimensional Hausdor measureof A is de ned by Hq(A) :=1lim | gH4(A).

3.5 Elements of di erential geometry

The goal of this section is twofold. First, we introduce succinctly the language of
di erential geometry to x notation that will be used throughout Part I. Second, we
explore in more detail the geometry of submanifolds oRP . In particular, we introduce
statistical models tailored to the estimation of geometric quantities related toC¥
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submanifolds, introduced in [AL19] and [BH19]. We refer to do Carmo's book [Car92]
for a more thorough introduction to Riemannian geometry. Due to their primary
importance in manifold inference, we will focus orsubmanifoldsin this presentation.
This simpli es most de nitions, while Nash's embedding theorem actually ensures that
this is not restrictive [Nas56]. We begin with preliminary de nitions.

Let G(d; D) be the Grassmannian manifold of alld-dimensional subspaces of
RP. For E 2 G(d;D), we denote by g the orthogonal projection on E and
E = id g the orthogonal projection on E?, the orthogonal complement of
E. The angle\ (E;F) between two subspace&;F 2 G(d;D) is de ned as the
distancek g rk,,, the operator norm between the orthogonal projections on

E and F.

op’

Let U RP beanopensetand : U! R be aC* function. We denote by
d¥f (x) : (RP)X 1 R the k-th dierential of f at x 2 U. The C¢-norm of f is
equal to
kf ke == sup d*f(x) (3.14)
x2U op
The C°-norm is equal to the L1 -norm, and we will often write k k; instead of
K Keo.

De nition 3.5.1. A topological d-dimensional (sub)manifoldM of RP is a subset of
RP (endowed with the subspace topology) such that every2 M has a neighborhood
homeomorphic toRY.

This de nition has the advantage of being very simple. It is however not restrictive
enough for our purposes. Indeed, every graph of a continuous functidR? ! RP is a
topological submanifold, including wild objects such as the Koch snow ake.

De nition 3.5.2 (see Chapter 8 in [Leel3]) Let k 1. A C d-dimensional
(sub)manifold M of RP is a set such that, for everyx 2 M, there exists aC* di eo-
morphism :V, ! RP, whereVy, RP is a neighborhood of, such that (Vx\ M)
is the intersection of ad-dimensional plane with (V).

If M is a submanifold, we de ne thetangent spaceTxM of x 2 M as the set

TM:= u2RP: 8> o09y2M —~— Y Y .. (3.15)
xXoyp oy

In particular, the tangent spaces are elements of the Grassmannian manifol@(d; D),
and we write 4 for 1. If U is a neighborhood of0 in T,M, we say that a C¢
function : U! M RP is alocal parametrization of M at x if it is a one-to-one
function such that (0) = x, d(0) is the inclusionTyM ,! RP,andd( u) is of full
rank for every u 2 U. One can show that a manifoldM is C¢ if and only if there are
C* local parametrizations at everyx 2 M .

Proposition 3.4.7 states that the positivity of the reach of a set is equivalent to the
CU1 regularity of the squared distance to the set. When the set is assumed to be a
manifold, this is in turn equivalent to the manifold being of regularity C5* (that is the
di eomorphisms are of regularity C-! in the previous de nition).

Proposition 3.5.3. LetM  RP be a compact topological submanifold. Then,(M) >
0 if and only if M is of regularity C1,
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Proof. The direct implication is proved in [RZ17]. For the converse implication, we
rst show that given a point y 2 RP,if z2 \(y), theny zis orthogonal to T;M .
Indeed, let be a local parametrization inz. Then, 0 is a local minimum of the
function u2 T,M 7!jy ( u)j2. The gradient of this function at 0 is null, and is
given by 2 ,(y z),implying that y z is orthogonal to T,M .

We now show that for everyx 2 M, there is a small neighborhood ok in RP on
which there is a unique projection onM . The compactness oM then implies the
conclusion. Let be a localCt! parametrization of M at x, de ned on a neighborhood
UofOin TyuM. LetF:U RP! T,M bedenedbyF(uy)=d( u)”(( u) vy.
The function F is Lipschitz continuous in u and linear in y. We apply a version of the
implicit function theorem for Lipschitz continuous maps [Kum91], which holds under
the condition that, for any sequences ! 0, uf! 0,yk! yandv2 T,Mnf0Og, we
have k -k K.k
im FUE vy FUEYY o

k k
whenever the limit exists. One can check directly that this limit always exist, and is
givenbyd (0) d(0) v]= v 60. Therefore, by [Kum91, Theorem 1], ag- is Lipschitz
continuous, there exists, for";" %> 0 small enough, a unique map :B(x;")! TxM
such that, fory 2 B(x;") and u 2 Bt v (0;"9),

F(u;y)=0 ifand only if u=(y):

Fix y 2 B(x;"%) for some"®> 0to x. If z2 M belongs to y(y), theny zis
orthogonal to T,M , thatis F( %(z);y) = 0. Furthermore,

iz xjjz vyi+ijy xji 2y xj 2%

which implies that  %(z) 2 Bw(x;2'%%) B 1.m(0;"9 for "®small enough.
Therefore, we have that 1(z) = (y), thatis z= ( (y)) is uniquely determined by
y. Hence, there is a unique projection orM on B(x;" %, proving that the reach (M)
is positive. O

We will consider in the following a slightly stronger requirement: all manifolds are
now assumed to be at leasC2. This ensures that the second fundamental formof the
manifold M (that we de ne below) is well-de ned.

De nition 3.5.4. Let min > 0andl d<D. WeletM zfi'n be the set of closed
C? d-dimensional sulgnanifolds without boundary, with reach larger thany,;, and let
furthermore M 24 := = M 24 e the set of close@? d-dimensional submanifolds
without boundary with positive reach.

Let M 2 M 29, A geodesicis the analogue of a straight line onM . It is a C?
curve :1! M RP dened on some interval | satisfying that °¢t) 2 T (M ? for
everyt 2 | (where is seen as taking its values irRP). The geodesic distancedy(x;y)
between two pointsx andy in M is de ned as the in mum over all geodesics joining
x and y of the length of the geodesic, de ned as

Z
L():= Ij q)jdt: (3.16)

Also, we denote byvoly the d-dimensional Hausdor measure restricted toM .
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De nition 3.55. LetM 2M 24, Letx 2 M and 2 TyM?. Let N be a local
extension of normal to M, thatis N : Uy ! RP is de ned on a neighborhood
Uy RP of x, is of classC? and satisesN(x) = andN(y) 2 TyM? fory2 M.
The second fundamental formSy (x; ): TxM ! T4M of M at x along the normal
is the operator given by

Sm(X; )ul=  x(dxNTu]) 8u 2 TyM: (3.17)

One can check that the second fundamental form does not depend on the extension
N. Furthermore, for eachx 2 M and 2 T,M?, the operator Sy (x; ) is a linear
self-adjoint operator on TyM . Given a normal direction and a tangent vectoru, the
second fundamental form describes how the normal direction varies asx is moved
in the direction u. As such, it gives a description of the extrinsic curvature of the
manifold M .

Proposition 3.5.6  (Proposition 6.1 in [NSW08]). Let M 2 M 24 x 2 M and

2 TuM?. Then,
1

)

We now give further geometric constraints given by the reach.

KSu (%; )Kep (3.18)

Proposition 3.5.7. LetM 2M 29 andx;y 2 M.

1. If some point z is at distance less than (M) from M with y (z) = X, then
x(z x)=0.

2. We havejvolyj !q (M)Y, where! 4 is the volume of thed-dimensional sphere.
Furthermore, the equality is attained only if M is a d-dimensional sphere of

radius (M).
3. We havediam(M) Cq4 ?[(/?I)'\gjl for some positive constantC4. Furthermore,
(M) ﬁdiam(M ).

4. We havej 7(y x)j 5k

5. We have\ (TyM;TyM) ZJX(MV)’.

6. If dg(X;y) (M) (or if jX yJ (I\/I):2)1 then jX yJ dg(X;y)
x yimin 51+ goix yj , whereco= 2=50.

7.1fh  (M)=4, then 8 9 4h? voly (Bum (x;h)) 891 4hd.

Proof. Point 1 was already shown in the proof of Proposition 3.5.3. Point 2 is stated
in [AIm86], whereas Point 3 is proved in [Aam17, Section 111.3.4]. Point 4 is proved
in Federer's article [Fed59, Theorem 4.18]. Point 5 is stated in [BSW09, Lemma 3.4].
For Point 6, see the proof of [ACLG19, Lemma 3.12]. Also, havingx Vj (M)=2
implies that dg(x;y) (M) is a consequence of [NSWO08, Proposition 6.3]. Finally
we prove Point 7. Proposition 8.7 in [AL18] states that forh (M)=4,

2 9 4h?  voly (Bw (x;h)) 29 4hd;

where 4 is the volume of thed-dimensional ball. It remains to show that2¢ 4 891 4
and that 291 4 89 4. One can check by recursion oml that those inequalities hold
forany d 1, concluding the proof. O
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In particular, if jvolyj < 1 and (M) > 0, then M is automatically compact.
Among all local parametrizations of a manifold M, a particularly natural one is
given by the inverse of the projection on the tangent space. We letyx be de ned by
~(y)= x+ «x(y X) (sothat —(x)= x)and let TxM = x+ TxM be the image of

X«

Proposition 3.5.8. Letx 2 M. For r (M)=3, the application ~ is a di eor-
morphism from By (X;r) on its image. Moreover, its image~x(Bwm (X;r)) contains
Br m (X; 7r=8). In particular, if y2Bm (x; (M)=4), then

. 7. .
I~ Vi gy X (3.19)

Proof. We rst show that ~ is injective on By (x; (M)=3). Assume that ~(y) =
~(y9 for somey 6 y°2 M. Consider without loss of generality thatjx vyj j x V.
The goal is to show thatjx yj> (M)=3. If jx yj> (M)=2, the conclusion obviously

holds. Proposition 3.5.7.5 states that if it is not the case then) (TyM; TyM) < ZjX(My)j.
Also, by de nition,

iCx 9y Y9

\ (TyM; TyM -
(LMTyM) %
iy Y9y I gy v
V'S V'S
iy 9 "
1 2 VM) by Proposition 3.5.7.4
1 X Yl by the triangle inequality.

(M)

Therefore, we have3jx yj= (M) > 1,i.e.jx yj> (M)=3and ~ is injective on
Bm (x; (M)=3). To conclude that ~ is a di eomorphism, it su ces to show that its
di erential is always invertible. As ~ is an a ne application, the di erential d~(y)
is equal to . Therefore, the Jacobiand —«(y) of the function ~ : M ! T4M inyis
given by the determinant of the projection  restricted to TyM . In particular, it is
larger than the smallest singular value of x  y to the power d, which is larger than

. d Xy
1 \(TxM;TyM)) 1 2 ™) 3

d ld_

thanks to Proposition 3.5.7.5 and using thatjx vyj (M)=3. In particular, the
Jacobian is positive, and~ is a di eormorphism from By (x; (M )=3) to itsimage. The
second statement is stated in [AL19, Lemma A.2]. The last statement is a consequence
of the two rst, using that if jy x| (M)=4, then 8~ (y) xj=7 (M)=3. O

Note that this proposition was already proven in [ACLZ17, Lemma 5], but with
a slightly worse constant of (M)=12. We write  for the inverse of the map
y2M 7! 4(y X)2 TxM, which is de ned according to the previous lemma on
Br,.m (0; 7r=24) for r (M)=3 (in particular it is de ned on Br, v (0; (M)=4)). The
parametrizations x will be used in the following to quantify the regularity of the
manifold M .

Proposition 3.5.9. Let M be aC* submanifold fork 2 and letx 2 M. Then,
is a local C¢ parametrization of M .
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Proof. Let be aC¥ parametrization at x. We may write , = (¥ yona
small neighborhood 0f0. As is C¥,itsucestoshow G= 1 ,:T,M! T,M
is C¢ on a neighborhood of0. Given u 2 T,M small enough,v = G(u) is characterized
by the equation 4(( v) x)= u. This expression isC¥ in (u;v) and, by the implicit
function theorem, using that d (0) is the inclusion TyM ,! RP, we obtain that G is
indeed C¥. O

We denote by M X9 the set of C¢ closed d-dimensional submanifolds without
boundary with positive reach.

De nition 3.5.10 (Class of regular manifolds) Letd 1;k 2andL; min > 0. Let

ro=( min " L)=4. We say thatM 2M ““  if M isin Mk with (M)  mpn and

if, for all x 2 M,  is de ned on By, (OY; ro) and the functionu 2 Bt m (0;ro) 7!
«(u)  x has aCnorm smaller thanL.

The second di erential of « can be expressed thanks to the second fundamental
form of M. In particular, one can obtain using Proposition 3.5.6 an inequality of the
formk x xke Lg; (m), implying that the parameter L is not relevant to quantify
the C2-regularity of a manifold. For k 3, there are no constraints on theC<-norm of
the local parametrizations based on the reach, and the parametdr becomes useful.

We say that a functionf : M ! RlisCif f is C< for everyx 2 M. We
de ne the norm  d¥f (x) op At X as d<(f x)(0) op’ De ning rigorously what is
the kth di erential of the function f is more delicate and would require introducing
concepts such as the Levi-Civita connection, whereas only de ning a notion of¥-
norm I5)f a function is of interest for us. Ifl  d, the Jacobian off is de ned by
Jf = det((df )(d) ).

We compare our de nition with other models of C* manifolds appearing in the
manifold inference literature. In [BH19], a similar approach is taken to measure the
regularity of manifolds, but with exponential maps used as local parametrizations.
However, exponential maps may only beZ* 2 on a C< manifold [Har51] so that we
prefer to use the inverse projections x as parametrizations. In [AL19], Aamari and
Levrard assume the existence of a local parametrizationy at x 2 M with C¢ norm
smaller than L, not necessarily equal to the inverse x of the projection ~. However,
the choice of 4 as a local parametrization is not restrictive. Indeed, one can write

x= "x (x ~x) 1 sothat, by the inverse function theorem, theCX norm of  is
controlled by the C¢ norm of ~.

Statistical models for measures supported on manifolds Statistical models
of interest in the following correspond to sampling almost-uniformly points on (or
close to) a manifold which is regular enough.

De nition 3.5.11. letl d<D,k 2, mn;L>0andO0O<fpin fmax 1
The setQ"r;:i'n Lt i oF is the set of all probability measures , whose supportM
belongs toM kﬁn .» and which have a densityf with respect to the volume measure on

We also consider sampling with a bounded additive noise: each observatiof
is of the form Y; + Z;, where the law ofY; is supported on a manifold andjZ;j ,
whereasY; and Z; are not necessarily independent.

De nition 3.5.12. letl d<D,k 2, min:L; > 0andO<f min fmax 1
The Setri;:iin .. () is the set of all probability measures on R®  RP, such
that the rst marginal of  belongs toQkf
supported onB(0; ).

and the second marginal of is

in Lif min 5f max
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We then assume that we observe samples having distribution; , where
RP  RP I RP is the addition. As explained in Section 3.3, this slightly more
technical de nition allows us to de ne the function ( ) = M as the support of the
rst marginal of , whereasM cannot be recovered solely thanks to the law of the
observationX =Y + Z, where(Y; Z)

For k = 2, the parameter L has no impact on the statistical rates of convergence,
and we only consideerr;jn fo o () er;n‘?n 1 f o fme C )- 1HE MiNiMax rates
for the estimation of the manifold M are known to satisfy:

|

Inn 27 : Inn 27
o = RaMQU e ()id) o~ (3.20)
[
1 k= : Inn k=
¢~ RaaMQY iy g ()idh) a = o (320

The lower bound in (3.20) is provided in [KZ15] while the upper bound was rst
given in [Gen+12a]. The statistical modeIsQ"jjn Lt o e () WETE introduced in
[AL19], where (3.21) is also shown. The upper bound follows from exhibiting a minimax
estimator, obtained by using a local polynomial estimator around every observation
point. In particular, these estimators will be used in Chapter 5 to estimate the volume

measure ofM .

The coarea formula Finally, we introduce the coarea formula, which is a far-
reaching generalization of the change of variables formula for integrals on manifolds.

Theorem 3.5.13 (Coarea formula [Morl16]). Let M (resp. N) be a submanifold of
dimension m (resp. n). Assume thatm nandlet : M ! N be a dierentiable
map. Forf : M ! [0;+1 ) a measurable function, the following equality holds:

z z Z !

f(x)d (x)dvoly (x) = f(X)dHm n(x) dvoly(y): (3.22)
M N x2 1(fyg)

In particular, if J 5 0 almost everywhere, one can apply the coarea formula to
f (J ) !tocompute v [, while havingJ > Ois equivalenttod being of full rank.

3.6 Simplicial complexes

Simplicial complexes are higher dimensional analogs of graphs. Their simple combina-
torial structure makes their use particularly appealing in computational geometry, as
they can be easily stored on a computer. We refer to [EH10] for results in this section.

De nition 3.6.1  (Simplicial complex). Let S be a set. Asimplicial complex with
vertex setS is a family of nite subsets of S containing all the singletons and such
that, if Ois nonempty and if °2 K, then 2 K.

Let K be a simplicial complex with vertex se§ and K ° be a simplicial complex
with vertex setS% We say that a mapf : S! SC%is a simplicial map betweenK and
K Oif for every 2 K the image of byf belongs toK °

A subset 2 K is called asimplex and its dimension j j is equal to # 1
(where# denotes the cardinality of the set ). The dimension ofK is the maximal
dimension of its simplexes (possibly+ 1 ). The g-skeleton Sq(K ) of K is the set of
simplexes ofK of dimensionaq.
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Figure 3.6: The geometric realization ofKy as a subset ofR®.

A simplicial complex is a purely combinatorial object and does not possess any
geometric structure. It is however possible to associate with each simplicial complex

K a topological spaceK’, galled its geometric realization As a set,K is the set of
functions 2 [0; 1]° with s (8) =1 and such that the setspt( ) = fs2 S

(s)> 0g2 K. For 2K ofdimensiong, let ~:=f 2[0;1°: = spt( )g. This
is a topological subspace of0; 1]° endowed with the product topgogy (the space~
is actually homeomorphic to ~q = f(Xo;X1;:::;Xg) 2 [0;1]%2 1. x; =1g, the
standard g-dimensional simpleX. We then endow the setK with the nal topology
associated with the inclusions~,! K for 2 K.

Example 3.6.2 The geometric realization of very simplicial complex with vertex set
f0;1; 2; 3g has its geometric realization that is homeomorphic to a subset oR3. In
Figure 3.6, we display the geometric realization of the-dimensional simplicial complex

Ko=10;1;2;3,f0; 1g;f0; 2g;f 1, 29; f 2; 3g; f 0; 1; 290

Example 3.6.3 Let S RP andt> 0. We review di erent simplicial complexes of
geometric interest that can be built on top of S.

1. The Rips complexRips(t; S) of S at scalet is the simplicial complex with vertex
setS, and such that 2 Rips(t;S) if is nite and of diameter diam( ) smaller
than t.

2. Given a compact set RP, there exists a unique ballB( ) with minimal
radius such that B ( ) [ALS13]. The radius of this ball is called theradius
of and is denoted byr( ). The fech complex Cech(t;S) of S at scalet is
the simplicial complex with vertex set S, and such that 2 Cech(t;S) if s
nite and r( ) t. The nerve theoremasserts that (the geometric realization
of) Cech(t;S) is homotopy equivalent to S, the t-neighborhood ofS [Hat02,
Corollary 4G.3].

3. If Sis nite, a triangulation of S is a simplicial complexT of dimensionD with
vertex set S such that
(a) every simplex of T is included in aD-simplex of T.

(b) for 6 02 T the interior of Conv( ) is disjoint from the interior of
Conv( 9.

(© o1 Conv( ) =Conv(S).
(d) if 2Sp(T),then Conv( )\ S=

In particular, a triangulation is uniquely determined by its D -skeleton.
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Figure 3.7: Left. The fech complex Cech(S;t) of a nite set S R?2.

A simplex is in the fech complex only if it ts in a circle of radius

t. Brighter colors indicate that a simplex of dimension larger than 3

is present. Right. The Delaunay triangulation of S, and its -shape
Alpha(S;t) for a certain value oft.

4. Assume that S is nite and does not lie on a hyperplane ofRP. Then, for each
D-simplex of S, there exists a unique(D  1)-dimensional sphere containing ,
called the circumsphere of . A Delaunay triangulation of S is a triangulation
Del(S) of S such that the interior of every circumsphere of 2 Sp(Del(S)) does
not contain any point of S [EH10, Chapter I11.3]. It is uniqgue when S is in
general position, in the sense that no set ob + 2 points of S lies on a sphere.

5. Under the same assumptions, the -complex Alpha(S;t) of S is equal to Del(S)\
Cech(S;t) [EH10, Chapter 111.4]. The fech complex and the -complex are
homotopy equivalent, see Figure 3.7.

Both the Rips and the fech complex of a setS capture the geometry of the set at
scalet. Note however that such objects may be very wild. For instance, there exists
a compact setS  R* with Rips(t;S) having singular homology (see below) with
uncountable dimension for everyt in some interval [Dro12]. From a computational
point of view, their sizes may become prohibitively large foljSj even of moderate size if
t is too large. Although computing the radius of a set is possible in quasi-linear time
in R?, such a computation becomes a non-trivial task in moderate dimensions, which
may be a serious issue to compute the fech complex of a set in practice. Algorithms
with O(jSjlogjSj) complexity exist to compute the Delaunay triangulation for D 3,
whereas algorithms with O(jSjP°=2) time complexity exist for larger D. In practice,
computing a Delaunay triangulation becomes prohibitive forD > 6 [HB08]. Unlike the
fech and the Rips complexes, the size of the Delaunay triangulation does not explode,
as it is of order O(jSj°P=2°). In practice, the -complex is therefore often computed
instead of the fech complex.

3.7 Simplicial and singular homologies

Homological algebra is a general theory which gives a mathematically precise meaning
to the presence of topological features in an object. Di erent versions of homologies
exist and are de ned for di erent mathematical structures. We will focus on simplicial
homology, de ned for simplicial complexes and which has the bene t of being easily
computable, and then on singular homology, which is de ned for any topological space.
We rst de ne homology groups in an abstract setting. An introduction to homology
theory may be found in [Hat02].
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3.7.1 Homological algebra

Let G be an abelian group (only the case§& = Z and G a nite eld will be relevant
for us). A chain complexC is a sequence of abelia-modules(Cq)q 1 together
with homomorphisms @ : Cq! Cq 1forq 0, suchthat @@+1 =0 and C ; = f0g.
The map @ is called aboundary map Elements ofZy := ker@ are calledg-cycles
whereas elements oBq := im @1 are calledg-boundaries The relation @@:1 =0
implies that Bq  Zg, i.e. every boundary is a cycle. Two cycles are calledomologous
if they di er by a boundary, and we refer to Hq(C) = Z4=Bq as the gth homology
group of C . The dimension ofHy(C) (should it be nite) is called the Betti number
q(C) of the chain complex.

If C and CC are two chain complexes, achain map is a collection of morphisms

'q:Cq! C§ such that the following diagram commutes.

| L

0 0
Cq—Cq 1

This commutation property ensures that the morphisms' ¢ induces morphisms at the
homology levelHq(" ) : Hq(C) ! Hg(C9Y. Two chain complexesC and C°are said
to be isomorphic if there exist two chain maps' : C! CC%and' ?: C°! C with

'q g=idcgand’ §' g=idc, foreveryq O.

3.7.2 Simplicial homology

orientation if they di er by an even permutation. This de nes an equivalence relation
on the set of orderings of , with two equivalence classes, that we call oriented simplexes
and denote by~ and ~. The chain complexC (K) = C (K;G) is de ned by letting
Cq(K) be the free group generated by the oriented-simplexes ofK with coe cients

in G. Given ~ an oriented g-simplex, we denote by~' the oriented (q 1)-simplex
obtained from ~, with ith entry omitted. The boundary operator is de ned by

X .
@= (- (3.23)

i=0

and is then extended by linearity to Cq(K). One can check that@@-1 = 0, so that

C (K) is indeed a chain complex. The corresponding homology groups are called
the simplicial homology groupsof K (with coe cients in G), and are denoted by
H (K)=H (K;G).

3.7.3 Singular homology

Let X be a topological space. A singular simplex is a continuous map: ¢! X. We
let ' be the map(ty;::iitq 1) ! (tu;:::;0;:::5tg 1), whereO is at the ith position.
The chain complexC (X;G) is de ned by letting Cy(X) be the free group generated
by the g-dimensional singular simplexes oK with coe cients in G. The boundary

operator is de ned by
xd .
@= (14 (3.24)

i=0
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and is then extended by linearity to Cq(X ). The corresponding homology groups are
called the singular homology groupsof X (with coe cients in G), and are denoted by
H (X)=H (X;G).

Simplicial homology can be seen as a particular case of singular homology. Indeed,
the singular chain complexC (K') of the geometric realization ofK can be shown to be
isomorphic to the simplicial chain complexC (K), so that in particular the homology
groups are also isomorphic [Spal2, Section 4.4].

For both homologies, maps between objects (simplicial complexes or topological
spaces) induce maps between chain complexes, and therefore also maps between
homology groups. Precisely, if : X ! Y is a continuous map, then there exists a
chainmapC (f): C (X)! C (Y), obtained by dening C (f)( )= f for a
singular simplex in X (and extended by linearity). The mapf := H (C (f)) is then
de ned between the homology groupsH (X) andH (Y). A similar statement holds
for simplicial homology, with continuous maps replaced by simplicial maps. We will
drop the C in the notation when the context is clear, e.g. 4(X) for ¢(C(X)), Z4(X)
for Z4(C(X)), etc.

Remark 3.7.1 The universal coe cient theorem asserts that the integral homology
groupsH (C;Z) completely determines the homology group$i (C; G) for any abelian
group G [Hat02, Chapter 3.A]. However, the theory of persistence homology is
developed for vector spaces over some el (having a eld is in particular required
for the decomposition theorem to hold, see Theorem 3.8.4 below). We will therefore
chooseG to be a nite eld. This has an impact on the homology groups only if the
underlying space has non-null torsion, whereas in practice, the choice of the eld for
which persistent homology is computed seems to have very little impact [OY20].

3.8 Theoretical foundations of Topological Data Analysis

The fundamental object of persistent homology theory is the persistence module. We
x a eld k and a homology dimensiong 0 in the following. We refer to the book
[Cha+16] for a thorough presentation of the content of this section.

De nition 3.8.1  (Persistence modules) A persistence moduleV is a family of k-
vector spaceq V;)i2r together with linear mapsvst : Vs ! V; for all s t, satisfying
the conditions vy =idy, and vgr Vst = Vs foralls t r.

Persistence modules are typically induced by a Itration of some topological space
X.Let :X! Rbeafunctionand ':=fx2X : (x) tgbe the sublevel sets
of . The collection ( '){2r forms an increasing sequence of spaces that we call a
ltration. Letting V( )qt= Hq( ' k) be the g-dimensional singular homology group
of ' with coe cients in k, we obtain a persistent moduleVq( ), with maps v( )s:
being induced by the inclusion maps ) ! fors t. The persistent moduleVq( )
describes the evolution of the homology of through di erent scales t. A similar class
of persistence modules is given by the simplicial homology of Itrations of simplicial
complexes. A ltration K of simplicial complexes is an increasing sequence of simplicial
complexes(K !); o sharing the same vertex set. One can de ne the persistence module
Vqo(K) with V(K)q:t = Hgq(K'; k) being the simplicial homology group ofK . Of
particular interest are the Rips Itration Rips(A) = ( Rips(t; A)): o of a setA and its
fech ltration Cech(A) = (Cech(t;A)): o.
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3.8.1 The interleaving distance

Two persistence modules/ and W are close if for everyt 2 R, V; is similar to W;o for
somet? close tot. This idea is made precise by thenterleaving distance Let " 0.
An "-morphism between two persistence module¥ and W is a collection of linear
maps' ;. Vi! Wy fort 0 such that the following diagram commutes.

Vs:t
Vs ————

| '

Wgs "t +"

Wesr —" 0" o Wiy

The persistence moduled/ and W are "-interleaved if there exists two"-morphisms
" V! Wand'% W! V such that the following diagrams commute for every
t2 R.

Vi Lk Vesz® Vs
' ' 0 ) )
NS N
Wt+ . Wt Wit +2 Wt+2 .
The interleaving distanced; betweenV and W is equal to
di(V;W) :=inff" 0: V and W are "-interleavedg: (3.25)

The interleaving distance can be bounded e ciently in di erent settings.
Theorem 3.8.2 (Stability theorem) .

1. Letf;g : X ! R be two functions. Then,

di(Vg(f):Vq(@) kf gki: (3.26)

2. Let A;B be two compact sets irRP. Then,

0i(Vq(Cech(A)); Vo(Cech(B))  dan (A;B); .27
0 (V(RIpS(A)); V(Rips(B))  don (A;B): |

3.8.2 The decomposition theorem

In general, a persistence module is a complex object that may be cumbersome to work
with. However, it turns out that under niteness assumptions, persistence modules
enjoy a simple combinatorial description given by the so-calledlecomposition theorem
Before stating the result, we explicit what it means for two persistence modules to be
isomorphic (see also Figure 3.8).

De nition 3.8.3.  An (observable) morphism' : V! W between persistence modules
is a collection of linear maps' st : Vs ! W, such that for everys u<v t, the
following diagram commutes.

Vs;
Vs —2 5V,

of

Wi g Wy
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Figure 3.8: A morphism' between persistence modules is a collection
of maps which satisfy some coherence properties.

If' :vV! Wand'?% W! U are two observable morphisms, the compositich °is
dened by (" Qs =" wt ' 2, forany u2 (ts). The identity morphismidy : V! V
isdened by ' st = vgt forall s<t. A morphism' :V ! W is an isomorphism
if there exists another morphism' °: W ! V with " %= idy and' ® = idy. The

. . . . , b
persistence moduled/ and W are then said to beisomorphic, and we write V Pw.

It can be shown that two persistence moduled/ and W are at distanceO for the

interleaving distance if and only if V PO W, while being O-interleaved is a slightly
stronger notion [CCBS16].

The direct sumV W between two persistence module¥ and W is de ned by
(Mt Whi)i2gr, with linear maps vi.s  Wps. Let L=fu=(ugu)2[1 ;+17%:
U; <u,g. Given apointu2 1, we letk" be the persistence module withk{' = k if
ui t uyandfOg otherwise, with arrows given byvst = idg ifugz s t u and
0 otherwise. Those persistence modules, that we caliterval modules serve as building
blocks for more complex persistence modules. We call a persistence module tame (or
g-tame) if, for all s <t, the rank of the map vs; is nite. We call this quantity the
persistent Betti number (V) of the persistence module/.

Theorem 3.8.4 (Decomposition theorem) Let V be a tame persistence module. Then,
there exists a unique multisedgm(V) in 1 such thatV is isomorphic to
M
b
v P KY: (3.28)
u2dgm(V)

The multiset dgm(V) is called the persistence diagramof V.

There are two types of pointsu appearing in the decomposition(3.28). those which
contain in nite coordinates, called essential points and the others. It can be shown
that if two persistence modulesV and W possess a di erent number of essential points,
then d;(V; W) =+ 1 , while the distance is nite otherwise. To simplify the exposition,
we will only consider persistence modules with no essential points , SO that
the interleaving distance is always nite. Properties of persistence diagrams with a
xed number n > 0 of essential points can then be easily inferred from this case.

With this assumption in mind, a persistence diagram is actually a multiset of
points in  := fu=(ug;uz) 2 R?: u; <u,g. Equivalently, it can be rl‘:pnsidered as a
discrete measure on , by identifying a multiset a with the measure ,, . Both
perspectives are relevant, and we will often switch between the two without mentioning
it. Each point u = (uj;uy) of a persistence diagram corresponds to some interval
in the decomposition (3.28), which informally represents a topological feature of the
associated persistence module, which appeared %, and disappeared atV,,. The
persistencepergu) := up u; of the point u represents the length of the corresponding
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Figure 3.9: Left. A ltration of simplicial complexes. Positive

simplexes are displayed in red, whereas negative simplexes are displayed

in blue. Right. The corresponding persistence diagrams foq = 0
(crosses) andq=1 (dots).

interval, while the associated topological feature is considered relevant gergu) is
large. As such, points close to the diagona@®@ := f(u1;u»); Uy = UxQg in a persistence
diagram are often thought of as representing topological noise whereas points with
large persistence are considered to contain relevant topological information.
The g in g-tame is for quadrant: a persistence module igrtame if the associated
persistence diagram, seen as a measure, gives nite mass to every quadrang = fv 2
up Vvi<Vy Uag, with the relation

uuz (V) =dgm(V)(, u); 8u=(uguz) 2 (3.29)
Proposition 3.8.5 (Theorem 3.37 in [Cha+16]). Fix an integerq O.

1. Let X be a topological space homeomorphic to a locally nite simplicial complex,
and let : X! R be a proper continuous function bounded below. TheN,( )
is tame.

2. Let S be a compact subset dRP. Then, V4(Cech(S)) and V4(Rips(S)) are tame.

In particular, under such assumptions, by Theorem 3.8.4, the persistence diagram
dgmy( ) := dgm(Vq( )) of is well-de ned, and so are the fech and Rips persis-
tence diagrams ofS, denoted respectively bydgmg(S) = dgm(V4(Cech(S))) and
dgmg (S) := dgm(Vq(Rips(S))).

De nition 3.8.6  (Space of persistence diagrams)The spaceD of persistence diagrams
is the space of all discrete Radon measures on with integer masses.

To put it another way, we have a2 D if and only if a(, y) < 1 for everyu 2
By the decomposition theorem, the spac® is precisely the set of persistence diagrams
of g-tame persistence moduled/. We introduce also the spaceD; of nite persistence
diagrams.

3.8.3 Persistence diagrams in the nite setting

In practice, persistence modules will be obtained through the simplicial homology of
some nite Itration K =(Ky)o i n of simplicial complexes withtg ty and
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nite vertex set S:
Kto Ktl KtN .

We may assume without loss of generality that at each step only one simplex is added,
so that Ky,,, = Ky, [f ig. If ; is of dimensiong+ 1, then two di erent situations
may arise:

1. Either 2 Zg+1 (Ky,,, ). Inthat case, one can show that ; cannot be homologous
to a cycle inKy,, and

Hg+ (Kt ) Hg+1 (Ke) [l

where [ i];,,, represents the class of cycles homologous tg in Ky,,. The
simplex ; is then called positive.

2. Either | 62ZZ4+1 (Ky;,, ). In that case, one can show that@:1 i 2 B4(K¢;) and
that

Hoq(Kti.y ) " Ho(Ke)=@ il

where [@+1 i];; represents the class of cycles homologous tg in Ky,. The
simplex ; is then called negative

When a negative simplex ; appears, thenthe hole corresponding to the clasg@+1 il
in Hg(Ky,) is lled. The class [@+1 il;;, appeared with some positiveg-dimensional
simplex j: informally, the hole was born with ;. Those two simplexes (one positive
and one negative) form ag-simplex pair. The persistence diagramdgm(V(K)) of the
Itration for g-dimensional homology is given by the collection of the pairgt;;t;)
for ( i; j) ag-simplex pair (if tj = t;, we discard the pair). Those pairings can be
e ciently computed by a Gaussian elimination algorithm on the boundary matrix
operator, see [EH10] for details.

3.8.4 The bottleneck distance

The stability theorem (Theorem 3.8.2) justi es the use of the interleaving distance
as a meaningful distance between persistence modules. However, detecting if two
persistence modules aré-interleaved isa priori a nontrivial task, so that it is not clear
how the interleaving distance can be computed. Thdasometry theorem states that
the interleaving distance is actually equal to a distance between persistence diagrams,
called the bottleneck distance which is de ned as the optimum of some matching
problem. As such, the bottleneck distance can be computed e ciently on a computer,
opening the door to the use of persistence diagrams in real-life applications. We x an
arbitrary norm k k on R2.

De nition 3.8.7  (Bottleneck distances) Let a;b2 D. The set of partial matchings
( a;b) betweena and b is the set of bijections :a[] @ ! b[ @. Forl p<1,
the p-bottleneck distance is de ned as

X Hisp
dp(a;b) = 2|r(1f ) kx  (X)kP ; (3.30)
&b yoal @

while the bottleneck distance is equal td; (a;b) :=inf 5 (a1 SUPR2a; @ KX (X)k.

Given two persistence diagramsa and b, a partial matching is a way to transport
the points of a towards the points of b. However, the total masses of and b may
di er. Therefore, the diagonal is used as an in nite reservoir of mass, and one can
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Figure 3.10: Two matchings between a blue persistence diagram and
a red persistence diagram. The rightmost matching is optimal, i.e. it
attains the minimum in De nition 3.8.7.

freely map points from a or b towards the diagonal with cost given by the distance
to the diagonal. In the persistence module decomposition ,, k" associated with a
diagram a, points on the diagonal represent interval modulek" with length 0, and
one can indeed show that for any nite setc @,

M KUY pb M

u2af c u2a

kY; (3.31)

justifying the use of @ as a reservoir. The bottleneck distance is then given by the
longest edge in an optimal matching between two diagrama and b. The distance
is then not changed if we add an arbitrary number of points in the two diagrams
at distance less thand; (a;b) from the diagonal. On the contrary, the p-bottleneck
distance forp nite is not blind to points close to the diagonal, as every edge is taken
into account when computing the cost of a matching.

Remark 3.8.8 The p-bottleneck distance forp < 1 was originally introduced in
[CS+10] as a generalization of the bottleneck distance. Due to its similarities with
optimal transport metrics, it was then called the Wasserstein distance between persis-
tence diagrams. There are however key di erences between the metridg and classical
Wasserstein distances betweehV,. Exploring the di erences (and the similarities)
between the two notions will be at the core of Chapter 6. To avoid confusion, we
therefore choose the name gf-bottleneck distance for thedp, distance, although it is
not standard in the literature.

Theorem 3.8.9 (Isometry theorem). Let k k be thel -norm on R?. Let V, W be
g-tame persistence modules. Then,

di(ViW) = dy (dgm(V); dgm(W)): (3.32)

The three theorems we have introduced (the stability theorem, the decomposition
theorem and the isometry theorem) lay the theoretical foundations of TDA. They
ensure that persistence diagrams exist in a large variety of settings (decomposition
theorem), while a meaningful distance between them exists (stability theorem), which
can be e ciently computed (isometry theorem).

Remark that for persistence diagrams having an in nite number of points, the
p-bottleneck distanced, (p < 1 ) can be innite. For p 1 , we introduce the class
DP of persistence diagrams which are at nitedy-distance from tE,e empty diagram
0. Precisely, fora 2 D, we call the quantity Pers,(a) := dE(a; 0)= ,2aPersu)® the
total p-persistence ofa, and let

DP:=fa2D; Pers(a) < 19 : (3.33)
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Forp= 1, we haved; (a;0)< 1 forany a2 D, so that the analog of DP is simply D.
Although smaller than D, the metric space(DP;d,) possesses better properties than
(D;d; ) from a geometric and topological perspective (see Chapter 6). However, the
fundamental isometry theorem does not hold forp < 1 . A weaker form of stability is
still satis ed by the p-bottleneck distance forp < 1 , proven in [CS+10]. We say that
afunction :X! Ristame if Vq4( ) is tame for everyq 0.

De nition 3.8.10.  Let (X;d) be a metric space and. p< 1 . We say that(X;d)
implies bounded degreg-total persistence if there exists a positive constan€ such
that, for every 1-Lipschitz tame function : X! R, we havePers,(dgmy( )) C for
everyq O.

Spaces implying bounded degrep-total persistence included-dimensional Rie-
mannian compact manifolds forp > d, but also bilipschitz images of (geometric
realizations of) nite simplicial complexes. In particular, a d-dimensional Rieman-
nian compact manifold M implies bounded degreep total persistence with constant
Cwm diam(M )P dpid.

Theorem 3.8.11 (p-bottleneck stability theorem). Let (X;d) be a space which implies
bounded degregtotal persistence with associated constant. Let 1; »2: X! R be
two L -Lipschitz tame functions. Then, for all p°> p,

p

do(dgm( 1);dgm( 2) (CLP)®k 1 ok ™ (3.34)

We end this section by mentioning some basic results on the topological properties
of DP, see [MMH11] for details.

Theorem 3.8.12. For 1 p 1 , the space(DP;dp) is complete. Ifp< 1, itis
also separable, so tha(DP;d,) is a Polish metric space. The spacgD? ;d; ) is not
separable.

Considering the spaceDP instead of the setDs of nite persistence diagrams
is reqyired to have a complete space. Indeed, the seqligen(cmﬁ)n in Df given by
- n — . i —
an = o u,»Whereu; =(0;2 ') converges towardsa= ; , 2 DP. Actually,
we have the following result.

Proposition 3.8.13. For 1 p< 1, the spaceDP is the completion ofD; for the
d, metric.

3.9 Statistical methods in Topological Data Analysis

The standard pipeline in TDA goes as follows. We observe a collectiok 1;:::; Xy,
of complex objects with some task in mind (e.g. classi cation or regression). Those
objects can for instance be graphs, point clouds, 3D shapes, time series, images, etc.

be used in a second step to obtain a collection of persistence diagraras,:::;an.
We think of this set of persistence diagrams as containing the relevant topological
information to explain the underlying phenomenon generating the dataset. The goal
is then to treat e ciently this topological information, either to directly use it for
the learning task at stake or by plugging it in a larger pipeline (for instance by using
persistence diagrams as a layer in a neural network).

A rst approach consists in performing the statistical analysis directly in the space
of persistence diagrams. As the space of persistence diagrams is only a metric space
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and lacks additional structure, this is not a trivial task, and even simple objects like
the expected value or the variance are not trivially de ned. The metric analogue of
the expected value is the Fréchet mean of a distribution. Fréchet means for persistence
diagrams were introduced in a seminal paper by Mileyko, Mukherjee and Harer
[MMHZ11], where authors study the metric properties of the spacéP®.

De nition 3.9.1.  Let (X;d) be a metric space and® 2 P P(X). De ne the energy of
y2X as
E(y) := Ex p[d°(x;y)]: (3.35)

A p-Fréchet mean ofP is an elementy 2 X such that
E(y )=inf fE(X): X 2 Xg: (3.36)
We denote byFechetp(P) the set ofp-Fréechet means ofP.

In particular, if (X;d) is the Euclidean space ang = 2, then there exists a unique
barycenter, given by the expected value. The conditiorEyx p[d(X;Xo)P] < 1 (that
isP 2 Pf(X)) ensures the niteness of the energy functional. In general, the set of
p-Fréchet means may either be empty or contain several elements. Mileyko, Mukherjee
and Harer show that there exist2-Fréchet means for distributions P with compact
support.

Theorem 3.9.2 (Theorem 24 in [MMH11]). Let P 2 P2(DP). Assume thatP has
compact support. Then,Fechet,(P) is hon-empty.

The spaceDP is not locally compact, so that the condition in the above theorem
is strong. It can actually be replaced by a weaker tail condition on the random
variable Pers,(a) fora P [MMH11, Theorem 28]. In Chapter 6, we will show that
Fechet ,(P) is non-empty for the dy, distance for anyl p < 1 , without any further
assumptions onP.

From a computational perspective, several algorithms exist to compute Fréchet
means of a set of persistence diagrams. A rst algorithm, based on the Hungarian
algorithm used in optimal transport, was proposed in [Tur+14]. Although it runs in
polynomial time, it only converges to a local minimum of the energy functional, so
that it may not output a Fréchet mean with a bad initialization. A faster version of
the algorithm was then proposed in [KVT19; VBT19], without still any guarantees on
the convergence towards a Fréchet mean. Another approach, developed by Lacombe,
Cuturi and Oudot [LCO18], consists in relaxing the problem to make it convex, using
an Eulerian approach. The output of their algorithm is provably close to a Fréchet
mean, although it is not a persistence diagram, but a more generglersistence measure
Persistence measures are natural generalizations of persistence diagrams in random
settings and will be studied in detail in Chapter 6.

A second possibility to perform statistical tasks with persistence diagrams consists
in creating easier to handle statistics by mapping the diagrams to a vector space thanks
to a feature map , also called a representation or a vectorization.

De nition 3.9.3  (Representation of persistence diagrams)A representation of a
persistence diagram is a map: DP! B, whereB is a Banach space.

Numerous representations have been introduced in the literature (see, e.g., [Ada+17;
BM19; Bub15; Cha+15a; Che+15; KHF16; Rei+15]). Let us give several examples,
see also Figure 3.11.
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Figure 3.11: Some common representations of persistence diagrams.
From left to right: A persistence diagram. Its persistence surface
[Ada+17], which is a persistence measure. The corresponding persis-
tence silhouette [Cha+15a]. The corresponding Betti Curve [Umel7].

Let K : R?> | R be a nonnegative Lipschitz continuous bounded function

(e.g.K(x;y) = exp % Janddenef :x2 7! d(x;@ )P K(x; ), sothat

f(x): R?! Ris a real-valued function. The representation : a 7! w2af (X)
takes its values in(Cp(R?);k k1 ), the (Banach) space of continuous bounded
functions. This representation is called the persistence surface and has been
introduced with slight variations in di erent works [Ada+17; Che+15; KHF16;
Rei+15].

Letu=(ug;uz) 2 . Weletf,:t2 R7! max(0;min(uy + t;u, t) be the tent
function in u. The persistence landscap®f a persistence diagrana is a sequence
of functions ( k)x 1, where (t) is the kth largest value among thef ,(t) for
u 2 a[Bubl5]. A related representation is given by the persistence silhouette

[Cha+15a]. Given a weight functionw : ! [0;+1 ), the persistence silhouette
of a is obtained as the weighted average of the tent functions:
X
Silhouettey (a) = w(wfy: (3.37)
u2a

The Betti curve associated to a persistence diagrara is the curve :t2 R 7!
a(, tt). If ais obtained as the persistence diagram of some ItrationK for
g-dimensional homology, then we indeed have (t) which is equal to the Betti
number of the g-dimensional homology group oK.

A kernel on the space of persistence diagrams is a ma&p: DP D P! R such

have

k(ai;a)cig O (3.38)

16 n

Mercer's theorem asserts that for such a kernel there exists a Hilbert space
(H; h; i), called a Reproducing Kernel Hilbert Space (or RKHS) such that
k(a;b = h( a); ( bi for some map : DP! H. Kernel methods are typically
used to perform non-linear classi cations using SVMs. Kernels on the space
of persistence diagrams can be seen as special instances of representations,
although the map is never computed in practice (only the numbers(a;; a;)
are computed). An example of a kernel on the space of persistence diagrams is
given by the sliced Wasserstein kerne[CCO17].

Let us also mention that more recent approaches propose to use representations
of persistence diagrams as a layer in a neural network architecture [Hof+17; Car+20;
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Kim+20]. The representations are then parametrized by some set RY (e.g. we
consider a parametrized family of weight functions in the persistence silhouette) and
the parameter 2 is optimized to solve the learning task at stake.

In Chapter 8, we will propose a systemic study of representations oBP, by giving
characterization of continuity for representations and by identifying a subclass of
feature maps having particularly pleasant properties, that we will calllinear.
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Chapter 4

Adaptive estimation in manifold
Inference

on (or concentrated around) ad-dimensional manifoldM , the goal of manifold inference
is to design estimators” which approximate accurately some quantity (M) related
to the geometry of M (e.g. its dimensiond, its homology groups, its tangent spaces,
or M itself). As explained in the introductory chapter (Chapter 2), the emphasis
has mostly been put on designing estimators attaining minimax rates on a variety
of models, which take into account di erent regularities of the manifold and noise
models. We focus in this chapter on the problem of estimating a manifold in the
modeIstr;:n £ foa () INtroduced in Chapter 3. The estimators introduced in the
literature all rely on the knowledge of the quantitiesd, min, fmin and f nax, whereas
those quantities are unknown in practice. One possibility to overcome this issue is to
estimate in a preprocessing step those parameters. This may however become the main
bottleneck in the estimating process, as regularity parameters are typically harder
to estimate than the manifold itself. This is for instance the case of the reach(M)
[Aam+19], while no procedures with theoretical guarantees exist to estimatd i, and
1:max-

Another approach, to which this chapter is dedicated, consists in designingdaptive
estimators of (M). An estimator is called adaptive if it attains optimal rates of
convergence on a large class of models (see Section 4.1 for a precise de nition). Our
main contribution consists in introducing a manifold estimator M which is minimax
(with respect to the Hausdor distance dy) simultaneously on all the statistical models
inn‘i’n £ o ). OUr adaptive estimator, is built by selecting an estimator in a
family of estimators de ned in Section 4.2. The latter is based on thet-convex hull
Conv(t; Xp) of the set of observationsX,,. For a given setA  RP, the t-convex hull
Conv(t; A) is de ned hy

Conv(t;A) = [ Conv( ); (4.2)
Ar() t

wherer( ) is the radius of a set , i.e. the radius of the smallest enclosing ball of

and Conv( ) is its convex hull. The t-convex hull is an interpolation between the
convex hull Conv(A) of A (t =+ 1) and the set A itself (t = 0): it gives a local
convex hull of A at scalet. See Figure 4.1 for an example.

The lossdy (Conv(t; X,); M) of the t-convex hull Conv(t; X,) can be e ciently
controlled for t larger than some thresholdt (X,) (see De nition 4.2.2). As the
threshold t (Xp) is very close to the approximation rate"(Xn) = dy (Xn; M) of the
point cloud, it is known to be of the order (log nzn)lzd (see e.g. [RCO7, Theorem 2]),
and one obtains a minimax estimator on theC2-models by taking the parametert of
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Figure 4.1: The t-convex hull Conv;(A) (in green) of a curve A (in
black).

this order (see Theorem 4.2.8). The exact value df depends crucially on the parameter
fmin Which is unknown, so that it is unclear how the parametert should be chosen in
practice.

In Section 4.3, we build an adaptive estimator by selecting a parameter (Xp)
(depending on some hyperparameter 2 (0; 1)), which is chosen solely based on the
observationsX,. More precisely, we consider the convexity defect function of a sek,
originally introduced in [ALS13], and de ned by

h(t;A) = dy (Conv(t;A);A) 2 [0;t]: (4.2)

As its name indicates, the convexity defect function measures how far a set is from being
convex at a given scale. For instance, the convexity defect function of a convex set is
null, whereas for a manifoldM with positive reach (M), we haveh(t; M) t2= (M)
for t > 0, so that a manifold M is locally almost convex (see Proposition 4.3.2). We
show that the convexity defect function of X,, exhibits a sharp change of behavior
around the thresholdt (Xn). Namely, for valuest which are smaller than a fraction
of t (X,), the convexity defect function h(t; X,) has a linear behavior, with a slope
approximately equal to 1 (see Proposition 4.4.1), whereas for t (X;), the convexity
defect function exhibits the same quadratic behavior than the convexity defect of a
manifold (see Proposition 4.3.3). In particular, its slope is much smaller tharl as long
ast t (X,) is signi cantly smaller than the reach (M). This change of behavior at
the value t (Xn) suggests selecting the parameter

t (Xn) :==supft<tmax; h(t; Xn) > t g;

where 2 (0;1) and tmhax is a parameter which has to be smaller than the reach (M)
of the manifold (see De nition 4.3.4). We show (see Proposition 4.3.5) that with high
probability, in the case where the sampleX;, is exactly on the manifold M , we have

L LX)
(M)

2t (Xn)

t(Xn) t(Xn) 1 (4.3)

In particular, we are able to control the loss ofConv(t (X,); Xn) with high probability.
By choosingtmax as a slowly decreasing function oh (for instance, tmax = (logn) 1),
we obtain an estimator

M := Conv(t (Xn);Xn)

which is adaptive on the whole collection ofC2-models (see Corollary 4.3.6).
The estimator M is to our knowledge the rst minimax adaptive manifold estimator.
Our procedure allows us to actually estimate the approximation rate"(X,). The
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parametert (X,) can therefore be used as a hyperparameter in di erent settings.
To illustrate this general idea, we show how to create an adaptive estimator of the
homology groups (see Corollary 4.3.9) and of the tangent spaces (see Corollary 4.3.10)
of a manifold.

Related work

Localized versions of convex hulls such as thé-convex hulls have already been
introduced in the support estimation literature. For instance, slightly modi ed versions

of the t-convex hull have been used as estimators in [AB16] under the assumption
that the support has a smooth boundary and in [RC07] under reach constraints on
the support, with di erent rates obtained in those models. Selection procedures were
not designed in those two papers, and whether our selection procedure leads to an
adaptive estimator in those frameworks is an interesting question.

The statistical models we study in this article were introduced in [Gen+12a] and
[AL18], in which manifold estimators were also proposed. If the estimator in [Gen+12a]
is of purely theoretical interest, the estimator proposed by Aamari and Levrard in
[AL18], based on the Tangential Delaunay complex, is computable in polynomial time
in the number of inputs and linear in the ambient dimensionD. Furthermore, it is a
simplicial complex which is known to be ambient isotopic to the underlying manifold
M with high probability. It however requires the tuning of several hyperparameters in
order to be minimax, which may make its use delicate in practice. In contrast, the
t-convex hull estimator with parametert (X,) is completely data-driven, while keeping
the minimax property. In Section 4.5, we propose to select some parametér(X,)
which shares some properties witht (X,) although with less optimal constants
while being e ciently computable. However, unlike in the case of the Tangential
Delaunay complex, we have no guarantees on the homotopy type of the corresponding
estimator.

4.1 Preliminaries

Before going further, let us note that there are implicit constraints on the di erent
parameters of the modeIer;:j'n ¢ .- Indeed, by Proposition 3.5.7.2, ifM 2 M 24,
we havejvolyj !4 (M)Y, with equality if and only if M is a d-dimensional sphere
of radius (M). Hence, if has a densityf on M lower bounded byf n;,, we have
z
1= fx)dx fmnjvolmj fmin!a (M)%
M

with equality if and only if  is the uniform distribution on a d-sphere of radius (M ).
We therefore have the following lemma.

Lemma 4.1.1. Let d be an integer smaller thanD and in, fmin be positive con-
stants. Let! 4 be the volume of the unitd-sphere. Then,er'n‘?n £ w1 IS empty for

fmin! ¢ r?]in > 1 and contains only uniform distributions on d-sphere of radius n, if

d =
fmin! d min —1.

A model containing only spheres is degenerate from a minimax perspective, as laws
in the model are then characterized by onlyd + 1 observations. To discard such a
model, we will assume in the following that there exists a constant < 1 such that
fmin!a $n 9 Note that this is not restrictive as any 2 Q%Y . . also belongs

min " min *
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We let Q29 be the union of theQ*? . . (') for min, fmin, fmax, > Owith
fmin'a &, 9 For 2Q29 let M () be equal to the support of its rst marginal 1
(recall that the rst marginal corresponds to the distribution supported on a manifold,
whereas » corresponds to the noise, see Chapter 3). TheM takes its values in the
metric space (K(RP);dy). We use the following parametrization of the setQ?2d :
let 9 be the set of tuplesq—( min s Fmin s Fmax: )s With  min: fmin: fmax; > 0 and

fmin! d r(]j'“n d. We let Qqn = Qz'd ( n)for n= (logn=n)%d

min 1f min 1f max

Theorem 4.1.2. Let 2 (0;1). Foranyl d<D andq=( min;fmin;fmax; )2 d
with f hax < 1, we have forn large enough,

(" dfmin)%% min 2 n (Iog n—n) n (log n=n)*¢

Caud
(4.4)
where C is an absolute constant andCq.q is a constant which depends on and d.

The upper bound in the previous theorem was already stated in Chapter 3, whereas
the constant in the lower bound follows from a careful adaptation of the proof of
Theorem 1 in [KZ15], detailed in Section 4.7.

Note that the statistical model Q is not identi able because of the presence of
noise. It however becomes identi able at the limit, as the size of the noise is assumed
to converge to0 at a certain rate. Changing the model by adding a small proportion
of outliers would not change the minimax rates, as explained in [Gen+12a] or [AL18].
However, thet-convex hull estimators proposed in the next section are very sensible to
this addition and some decluttering preprocessing would be needed to obtain better
estimators on such models. Note also that theé-convex hull estimators will be minimax
on the modeIQzﬁn 1. +1 ( n), thatis without any upper bound needed onf , while

the minimax rate is also equal to(log n=n)2=d (the lower bound is clear, and the next
section will show the upper bound).

The goal of the chapter is to design an estimatoM which is minimax adaptive on
the scale of modeIqu nn1l d<D andqg?2 d i.e. such that

sup sup limsup Rn(M; Qq"’dH) <C
1dD g ¢ n1  Rp(M; Qqn’dH)

; (4.5)

for some constantC.

4.2 Minimax manifold estimation with t-convex hulls

Let X, be an-sample from law , where 2 Qéﬂ In this section, we derive rates of
convergence forConv(t; X,,). First, we note that Conv(t; X,) is indeed an estimator,
that is the application

(x1:::0:%n) 2 (RP)M 70 Conv(t; fx1::11:%nQ)
is measurable. Indeed, using notation from Proposition 3.4.4, it can be written as
Ge (Conv(fxigi21); fXigi21)

whereE is the closed set oK (RP) given byfK 2 K(RP): r(K) tg. As the function
r is continuous and the functions[ , Conv and Gg are measurable, the measurability
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Figure 4.2: The t-convex hull of the nite set A (red crosses) is
displayed (in green) for two values oft. The black curve represents
the (one dimensional) manifoldM . On the rst display, the value of t
is smaller thant (A), as there are regions of the manifold (circled in
blue) which are not attained by the projection \, restricted to the
t-convex hull. The value oft is larger thant (A) on the second display.

follows. In order to obtain rates of convergence, we bound the Hausdor distance
dn (Conv(t; A); M) for a general subsetA M. First, [ALS13, Lemma 12] gives a
bound on the asymmetric Hausdor distance between the convex hull of a subset of
M and the manifold M .

Lemma 4.2.1. Let M withr( )< (M) andlety 2 Conv( ). Then,

r()?
d(y; M : 4.6
O:M) (4.6)
Proof. Lemma 12 in [ALS13] states that if M satisesr( )< (M)andy 2
Conv( ), then, s |
: r( )2
As P u u for u 2 [0; 1], one obtains the conclusion. O

This lemma directly implies that dy (Conv(t;A)jM) t?2= (M) if t< (M),
so that the set Conv(t; A) is included in the t-neighborhood of M. Therefore, the
projection |\ is well-de ned on the t-convex hull of A for such at. We introduce a
scale parametert (A), which has to be thought of as the best scale parameter for
approximating M with Conv(t; A).

De nition 4.2.2. For A M, let
t (A):=infft< (M): m(Conv(t;A))= Ma: (4.7)

See Figure 4.2 for an illustration. Fort (A) <t< (M), and for any pointx 2 M,
there existsy 2 Conv(t; A) with  (y) = x. Therefore,

dix; Conv(t;A)) jy xj=dy;M) dy(Conv(t;A)jM):
By taking the supremum overx 2 M, we obtain that forany t (A) <t< (M).

dn (Conv(t;A); M) = max fdy (Conv(t; A)jM); dy (M jConv(t; A))
t2 (4.8)
(M)

= dy (Conv(t; A)jM)
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The minimax rate is now obtained thanks to two observations: (i)t (A) is close to
the approximation rate "(A) := dy (A; M) and (ii) the approximation rate of a random
sample can be very well controlled.

Proposition 4.2.3.  There exist absolute constant€, and C, such that the following
holds. LetA M be a nite set. If "(A) (M)=8, then

; "(A) ; "(A) .
(A) 1 Cg M) t (A) (A) 1+C, M) (4.9)
The proof of Proposition 4.2.3 relies on considering Delaunay triangulations. Given
d+1 points in RY that do not lie on a hyperplane, there exists a unique ball that
contains the points on its boundary. It is called the circumball of , and its radius is
called the circumradiuscirc( ) of . Given a nite set A RY that does not lie on a
hyperplane, there exists a triangulation ofA, called the Delaunay triangulation, such
that for each simplex in the triangulation, the circumball of  contains no point of
A in its interior. Note that there may exist several Delaunay triangulations of a setA,
should the setA not be in general position. With a slight abuse, we will still refer to
the Delaunay triangulation of A, by simply choosing a Delaunay triangulation among
the possible ones should several exist. If the sé& lies on lower dimensional subspace,
we consider the Delaunay triangulation ofA in the a ne vector space spanned byA.
Therefore, for every setA, the Delaunay triangulation is well de ned (for instance,
the Delaunay triangulation of three points aligned in the plane is thel-dimensional
triangulation obtained by joining the middle point with the two others).

Proof. Let x 2 M be such thatd(x; A) = "(A). By de nition, there exists a simplex
A of radius smaller thant (A) with x =  (y) for some pointy 2 Conv( ). We
have, using Lemma 4.2.1,

t (A)?
(M)
Furthermore, d(y;A) d(y; ) r( ) t (A) by [ALS13, Lemma 1]. Therefore,

t (A)
(M)

If we prove the upper bound in Proposition 4.2.3, then the previous equation is enough
to imply the lower bound in Proposition 4.2.3. Let us show the upper bound. Without
loss of generality, we assume tha® 2 M and we show that0 2 \ (Conv(t;A)) for
t="(A)L1+6"(A)= (M)). This implies that t (A) "(A)(L1+6"(A)=(M)). Let
A= o(A\B (O;R)) for R="(A)2+ c"(A)= (M)) and ¢y = 32=49. Note that the
condition "(A) (M)=8 implies that R< 7 (M)=24. We rst state two lemmas.

Lemma 4.2.4. Assume that"(A) 7 (M)=24. Let x2 ToM with jxj "(A). Then
dee &) "(A).

"(A)=d(x;A) | xyj+dy;A) + d(y; A):

"(A) t(A) 1+ (4.10)

Proof. By continuity, it su ces to prove the claim for jxj <" (A). In this case, according
to Proposition 3.5.8, if "(A) 7 (M)=24, then there existsx 2 By (0; 8"(A)=7) with
o(x) = x. Furthermore, by Proposition 3.5.7.4,

L o jxj? . 32'(A)
Xp X g A+ 5 ) (A) 1+ 5 M)
We haved(x;A) = jx aj for some pointa2 A,andjaj j x aj+jxj "(A)(R2+

C"(A)= (M)). As o(a) 2 A, we haved(A) jx o(@] j x a = d(xA)
"(A). O
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Lemma 4.2.5. LetV RY be a nite set andt > 0. If dy(B(0:t)jV) t, then
02 Conv(V).

Proof. We prove the contrapositive. If 0 62Conv(V), then there exists an open half
space which containsV. Let x be the unit vector orthogonal to this halfspace. Then,
d(tx; V) >t. O

Apply Lemma 4.25toV = Aandt = "(A). For x 2 Bt,m (0;"(A)), we have
de A)  "(A) according to Lemma 4.2.4. Therefore, we hav® 2 Conv(A). Consider
the Delaunay triangulation of A. The point 0 belongs to the convex hull of some
simplex ~ of the triangulation, with circumradius circ(~) and center of the circumball
6 The simplex ~ corresponds to some simplex in A, and the point O is equal to o(y)
for some pointy 2 Conv( ). By Proposition 3.5.7.1, we actually have y (y) =0, and

to conclude, it suces to show that r( ) "(A) 1+ 6-AL  To do so, we use the

(M)

next lemma (recall that B \ (0;R) with R< 7 (M)=24).
Lemma 4.2.6. Let B m(0;7 (M)=24) and ~= ~o( ). Assume that0 2 Conv(~).
Then,

() r() r(v) 1+6- L) (4.11)

(M)

Proof. As the projection is 1-Lipschitz, it is clear that r(~) r( ). Let us prove
the other inequality. Let = fyp;:::;yk0, ~= fyp;iii;wgand x O i k. As
Vi 2Bwm (0;7 (M)=24), we have by Proposition 3.5.8

.. 8. . 16 )

il =¥ 7r( ); (4.12)
where we used thatjyj 2r(~F) as02 Conv(~). Letlg- be the center of the minimum
enclosing ball of~. Write z= [, jy; andletz=" [, jy; 2 Conv( ). Then, we
have

iz yii iz #+jz witiy v

X iyif?
i oyl + > (M) using Proposition 3.5.7.4
i=0
iz 128r(~)? y
j r(~)+ — using Proposition 3.5.7.4 and (4.12)
o 2 49 (M)
2561 (~)2 ()2
r(=)+ 29 EM)) r(~)+6 EM)) using (4.12)

We obtain the conclusion as is included in the ball of radiusmax; jz v;j and center
Z. O

Using the previous lemma, we are left with showing thatr(~) "(A). We will
actually show the stronger inequality circ(~)  "(A) (the radius of a set is always
smaller than its circumradius). As 0 is in the circumball (that is centered at ¢), the ball
centered ater of radius jgf does not intersectA. This enforcesjgi " (A): otherwise,
there would exist a ball of radius"(A) and at distance less than"(A) from 0 not
intersecting A, a contradiction with Lemma 4.2.4 (see Figure 4.3). Agegf "(A), we
obtain, once again according to Lemma 4.2.4, thatirc(~) = d(e;A) "(A) concluding
the proof. O
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Figure 4.3: If jej >" (A), then the ball Br,m (6;j6f) contains a ball of
radius "(A) centered at a point at distance less than"(A) from 0 (here
denoted by w).

Proposition 4.2.7. Let 2 Qzﬁn £l and let X, = fX1;:::;Xg be an-sample
oflaw . If r min =2, then
3
P("(Xn) >1)  ——gexp( n8 4 of minr9): (4.13)
“dlmin'
In particular, for n large enough
I 2=d
E['(Xn)?] 16 29" : (4.14)
lafminn

Proof. The inequality (4.13) follows from Proposition 3.5.7.2, which implies that the
measure is (a;d)-standard with a =8 9! 4f min: Proposition 111.14 in [Aam17] then
yields the result. To prove the second inequality, we letr = 8(3 logn=(n! 4f min))+=°.
Then, "(X,) r with probability of order (logn)n 2. If this event is not satis ed, we
bound " (Xn) by diam(M ), that is bounded by a constant depending ord; f min; min

(see Proposition 3.5.7.3 and the fact thagjvoly j fmi}]). Therefore, for n large enough,

2=d
E['(Xn)?] 16 —%9n . O

Pafmin N

By gathering those di erent observations (Proposition 4.2.3 and Proposition 4.2.7)
and by using stability properties of t-convex hulls with respect to noise, we show that
t-convex hulls are minimax estimators onC?-models.

Theorem 4.28. Let0O<d<D,n>0andq=( mn;fmn;*1; ) 2 d If
th = Co (log n=(! 4f minn)) 1=d (for some absolute constantCy), then we have forn large
enough, and some absolute constaf;,

logn 27 .\ Ci
n min(! df min)2=d

Rn(Conv(ty; Xn); Q30 du) (4.15)

i.e. Conv(th;Xp) is a minimax estimator of M on Qﬁﬂ

Proof. We rst state a lemma which shows that the t-convex hull is stable under small
perturbations with respect to the Hausdor distance.

Lemma 4.2.9. Lett; > OandA;B RP with dy(A;B) . Then,

dy (Conv(t;B)jConv(t+ ;A)) X (4.16)
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Proof. Let B be a simplex withr( ) t. Foreachy 2 , let x 2 A with
d(x;y) . By doing so, we create a non-empty simplex A with dy( j ) . One
hasr() t+ (see[ALS13, Lemma 16]) andly (Conv( )jConv( )) dy( j)
This implies the conclusion. O
Let A M andB RP with dy(A;B) . Then,ift (A) <t + < (M),

using (3.10), Lemma 4.2.9 and (4.8),
dy (Conv(t;B)jM)  dy (Conv(t;B)jConv(t+ ;A))+ dy(Conv(t+ ;A);M)

L )2
(M)

(4.17)

, the rst marginal of (thatis X; = Y; + Z; with Y; and jZjj ). Then, for
0 t< (M)

Edy (Conv(t; Xp); M) = Edy (Conv(t; X,);M)1ft+ >t (Yn)g
+ Edy (Conv(t; X,); M )1ft + t (Yn)g

O Glam(MY+ Pt (V) 1):
(M)
By Proposition 4.2.3, if "(Y,) Co (M), thent (Y,) t implies that
"(Yn) 1

"(Yn) t 1+Cy Cot

(M)
for some absolute constaniC,. Therefore,t (Y,) t implies
"(Yn) min(Co (M);Cat) = Cat (4.18)

ift Co (M)=C,. By using Proposition 4.2.7, and by noting thatdiam(M ) is bounded
by a constant depending ond; f min; min (See Proposition 3.5.7.3), we obtain that, if
t Co (M)=C,

(t+ )2 exp( 8 9 4f minn(Cat)d)
+ ) + Cd: i of o (Cot)e : (4.19)

In particular, we obtain the desired control for n large enough by lettingt =
Cs (log n=(! 4f minN)) ¥~ for some constantCs large enough, if (logn=n)%9. O

Edy (Conv(t; X,); M)

4.3 Selection procedure for the t-convex hulls

Assuming that we have observed a-sampleX,,, we were able in the previous section to
build a minimax estimator of the underlying manifold M. The tuning of this estimator
requires the knowledge of in, whereas this quantity will likely not be accessible in
practice. A powerful idea to overcome this issue is to design a selection procedure
for the family of estimators (Conv(t; X))t o. Assume rst for the sake of simplicity
that the noise level is null. As the loss of the estimatorConv(t; X,) is controlled
eciently for t t (X,) (see(4.8)), a good idea is to select the parametert larger than

t (Xn). We however do not have access to this quantity based on the observations,,
as the manifold M is unknown. To select a scale close tb (X,,), we monitor how the
estimators Conv(t; X,) deviate from X, ast increases. Namely, we use the convexity
defect function introduced in [ALS13].
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Figure 4.4: Left. n-sample X, close to a circle. Right. Convexity
defect function of X,,.

De nition 4.3.1. LetA RP andt> 0. The d-dimensional convexity defect function
at scalet of A is de ned as

h(t; A) := dy (Conv(t;A); A): (4.20)

As its name indicates, the convexity defect function measures the (lack of) convexity
of a setA at a given scalet. The next proposition states preliminary results on the
convexity defect function.

Proposition 4.3.2. Let A RP be a closed set and 0.
1. We have0O h(t;A) t.
2. If A is convex thenh(;A) O.
3. If M is a manifold of reach (M) andt< (M), then
h(tM) t?= (M): (4.21)

Proof. Point 1 is stated in [ALS13, Section 3.1], Point 2 is clear and Point 3 is a
consequence of Lemma 4.2.1. O

As expected, the convexity defect of a convex set is null, whereas for small values of
t, the convexity defect of a manifoldh(t; M ) is very small (compared to the maximum
value possible, which ist): when looked at locally, M is almost at (and thus
almost convex). We rst show that the convexity defect function h( ; X,) also has a
subquadratic behavior fort t (X,).

Proposition 4.3.3 (Long-scale behavior) Let A M. Fort (A) <t< (M),

t? t (A)
) +t (A) 1+ 7(M)

Proof. By using that h(t;A) t and (4.8), foranyt (A) <s<t,

h(t; A) (4.22)

h(t;A) = dy (Conv(t;A);A)
dy (Conv(t; A); M) + dy (M; Conv(s;A)) + dy (Conv(s;A);A)
t? s?
+

M) (M)
The conclusion is obtained by lettings go to t (A). O

+ S
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Proposition 4.3.3 indicates that, fort (X,) t (M), the ratio h(t; X,)=t is
very small, while it might be of order 1 at the value t (X,). This suggests the following
strategy to obtain a scalet which is larger thant (X,): choose the largest scalé such
that h(t; Xp) is of ordert.

De nition 4.3.4. LetA M, > 0Oandtma > 0. We de ne
t (A) ==supft<tmax: h(tA) tg (4.23)

The following theorem ensures that the scaleé (A) is as expected, close to (A),
as long as the approximation rate ofA is small enough.

Theorem 4.3.5. LetO0O< < 1, OandM 2M 29 et A M be a nite set
with "(A) C; (M) andB RP with dy (A;B) . Assume that

1Lt (A)+ <tmax< (M)=2 ;
2.t (A)<C1 ) (M)andt (A) C3 2 (M),
3. Cis(2 )t (A).

Then,
2t (A) 1+ t(A) + 6—: (4.24)

t (A)+  t (B) oF

Proof. Upper bound on t (B):
By [ALS13, Lemma 5] for anyt 0, we haveh(B;t) h(A;t+ )+2 : Therefore,
according to Proposition 4.3.3, we have fot (A) t+ < (M),

(t+ ) t (A)
h(t; B +t (A) 1+ +2:
(tB) ) (A) )
Therefore, h(t;B) < t if (tJ('M))Z +t(A) 1+ % +2 <t . A straightforward

computation shows that this is the case if t (A) Cg 2 (M) for some absolute
constant Cop andto <t + <t swith(using 1 u 1 wuforu?2]J0;1]),

S |
_ (M) 4 t (A)
o= =5 1 1 5 gy tA) v =gy +@+ )
2(A) ,,t(A) L6
(M)

andt;  (M)=2. Therefore,t (B) ZA) 14 % + 5 as long astmax <
M) =2
Lower bound on t (A) in the noise-free case:
Assume that " (A) is su ciently small so that Proposition 4.2.3 holds. Let q2 M
with "(A) = d(g;A). One hasq= y (x) for somex 2 Conv(t (A);A), so that, by
Proposition 4.2.3 and Lemma 4.2.1,

S t (A) t (A)
dix;A) d(q;A
(A)  d(o;A) jx q 1+C0% (M)
"(A)  t(A)
tA) 1 Coruy oy
2t (A) t(A) L)
AL STy Ty TW O Gy
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where we used at the last line that'(A) 2t (A) is"(A)= (M) is su ciently small
by Proposition 4.2.3. Asx 2 Conv(t (A);A), we have,

. t (A) .
h(t (A)A) t(A) 1 Gz (4.25)

Therefore, if 1 Cqit (A)=(M)andt (A) <tmax, thent (A) t (A).

Lower bound on t (A) in the tubular noise case:
By [ALS13, Lemma 5] for anyt ,

h(B:t) h(Ait ) 2: (4.26)

Pluggingt =t (A)+ , and using (4.25),

h(B;t (A)+ ) t(A) 1 clt((,\;\; 2: (4.27)
This quantity is larger than (t (A)+ ) aslong as
t (A)
+ : :

C1 ) 1 (2 A (4.28)
If (1 )% and Cl% 17 then (4.28) is satis ed, giving the desired lower

bound ont (B) under those two conditions, shouldt (A)+ be smaller thant,a.
O

As a corollary of this result, we obtain the adaptivity of the t-convex hull estimators
of parametert (Xp).

Corollary 4.36. lLet 0 < < landtyy > 0. Let0<d<D andqg =
(minifmin:+1; )2 9 Then,if mn > 2tmax= , We have forn large enough

logn % N 130
n min (! df min)zzd

Rn(Conv(t (Xn);Xn); Q5fi dn) (4.29)
By letting tmax:n be any sequence converging ®and larger that (cg log n=(nf min )) ¥4
(for instance tmax:n = 1=l0og(n) or tmaxn = ((logn)?=n)1=%), we obtain an adaptive
estimator on the scale of modelsgczf;?'1 forq2 9,1 d<D,ie. such that

. .02d.
sup  sup lim sup Rn(Conv(t (Xn);Xn); Qgin;dn)

. C: (4.30)
1dDge d n Rn(M; Q&5 du)

Remark 4.3.7. Note that the previous result is of an asymptotic nature. In particular,
should n not be large enough (i.e. ift (X;) is larger than some fraction of the reach),
then the selection procedure is doomed to fail, as the long-scale behavior corresponding
to the range [t (Xn); (M)] is too small to be captured by the selection procedure
(or even is non-existent). A non-asymptotic choice of the parametetnhax requires

to nd a lower bound on the reach (M). If estimators of the reach exist [Aam+19;
Ber+21] they both require the tuning of some scale parameteh (with respect to f nin

for instance), so that it is not clear how we may nd such a lower bound in an adaptive
manner.

To prove Corollary 4.3.6, we rst state an elementary lemma.
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Lemma 4.3.8. Let A M be a nite set of cardinality n. Then,
"(A)  cg (M)n ¥ (4.31)

S
Proof. As M «a B(X"(A)), one hasjvolyj ncg"(A)d. Asjvolyj !¢ (M)Y,
we have the conclusion. O

Proof of Corollary 4.3.6. By equation (4.17), ift (Xn) t (Yn) , then

L () )2,
(M)

This relation holds (we even havet (X,) t (Yn)+ ) aslong as Conditions 1, 2 and
3 of Theorem 4.3.5 are satised. If < (log n:n)2:d and min > 2tmax= , Conditions

1 and 2 are satis ed as long a$ (Y,) is small enough with respectto , tmax and (M)
and n is large enough. Also, by Lemma 4.3.8 and Proposition 4.2.3, Condition 3 is
satis ed as long asn is large enough. Therefore, Conditions 1, 2 and 3 are satis ed with
probability 1 cg: .. i st max €XPC Cd: i Fin 2 2t max M), @ccording to Propositions
4.2.3 and 4.2.7. Therefore(4.32) holds with high probability, and one obtains the
conclusion by using the upper bound in Theorem 4.3.5, Proposition 4.2.3 and the fact
that E["(Yn)?] is of order (log n=n)=.

To obtain the adaptive behavior (4.30), it su ces to remark that inequality (4.32)
holds as long as min > 2tmax= and if t (Yy) is small enough with respect totmax.
Using that t (Yn) is approximately equal to"(Y,) and using Proposition 4.2.7 yields
the conclusion. O

dn (Convy (x,)(Xn): M) (4.32)

Another possible criterion to ensure the quality of an estimatorM of a manifold M
is to ensure thatM and M are homotopy equivalent. Although we have no guarantees
on the topology of the estimatorConv(t (Xn); Xn), our selection procedure also permits
to build a simplicial complex homotopy equivalent toM . We write M ' N to indicate
that the two topological spacesM and N are homotopy equivalent. ForA RP,
recall the de nition of the fech simplicial complex of parametert on A:

Cech{;A) = f A:r() tg (4.33)

We will consider that Cech(t;A) is a topological space by identifying it with its
geometric realization.

Corollary 4.3.9. Let0< < 1landtpax > 0. Let d be an integer smaller thanD
andfmin; > 0, min > 2tmax= . Then, for n large enough, and , (log n=n)2:d,
we have

sup P(M 6' Cech(®& (Xn);Xn)) Coexp( Cin); (4.34)
2Q2;d " 1 ( n)

where Co and C1 depend ond; min;fmin; ; ;t max-

This rate matches the exponential minimax rate obtained in [Bal+12] for estimating
homology groups, i.e. the parametett (X,) also allows creating adaptive minimax
homology estimators (although in a slightly weaker sense that in Section 4.1).

Proof of Corollary 4.3.9. For the sake of simplicity, we only give a proof for =0
(no noise), the extension to the noise case being made with similar ideas than in
the previous proof. According to [CCSL09, Theorem 4.6], if (Xp) < (M)=17 and
4'(Xp) t< (M) 3'(Xp), then Cech(t; X,) * M. Also, according to Theorem
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4.3.5 and Proposition 4.2.3, if*(Xp) is small enough with respect to , tmax and (M),
then

5t (Xp) 5t (Xn) 5'(Xn) 1 Co ((>I\(/In; 4"(Xp) and (4.35)
(M) (4.36)
(M) 3"(Xn):
Therefore, if "(Xp) is small enough, thenM ' Cech(5t (Xp);Xn). We conclude by
using Proposition 4.2.7. O

As a last example, we show that the parametet (X,) can also be used to estimate
tangent spaces in an adaptive way. Lex 2 M andA M be a nite set. We denote by
Tx(A; 1) to be the d-dimensional vector spacdJ which minimizesdy (A\B (x;t);x+ U).
This estimator was originally studied in [BSWO09]. Recall that the angle between
subspaces is denoted by .

Corollary 4.3.10. Let0< < 1landtmax > 0. Let d be an integer smaller thanD
and fmin > 0, min > 2tmax= . Then, for n large enough, we have

logn
sup E\ (ToM; Tp(Xn; 1t (Xn))) Co —— (4.37)

2Q%¢ () n

where Cy depends ond; min;fmin; ;t max-
This rate is the minimax rate (up to logarithmic factors) according to [AL19,

Theorem 3]. we obtain an adaptive estimator (once again in a weaker sense that in
Section 4.1).

Proof of Corollary 4.3.10. According to [BSW09, Theorem 3.2], forA M, if t <
(M)=2andt 10'(A), then

t
(M)

for some absolute constantCy. According to Theorem 4.3.5 and Proposition 4.2.3, and
arguing as in the two previous proofs, 11t (X,) > 10'(Xy) and 11t (X,) < (M)=2as
long as"(Xn) <C (m)::t ma - Therefore,

\ (Tp(At); TpM)  Co (4.38)

Et (Xn)
(M)

—~\1=d.
Cd; min 5f min 5t max (IOg n_n) ,

E\ (TpM; Tp(Xn; 11t (X))  11Co + P("(Xn) >C (M); it max )

by Theorem 4.3.5 and Proposition 4.2.7. O

4.4 Short-scale behavior of the convexity defect functions

The selection procedure described in Section 4.3 relies on the behavior of the convexity
defect function h( ; Xp) on the range[t (Xn); (M)]. However, it appears in numerical
experiments (see Figure 4.4) that the convexity defect function also exhibits a behavior
worth of interest on the interval [0;t (Xp)]: it appears that the convexity defect
function h(t; X,,) stays very close to its maximal valuet for t in this range. The next
proposition proves that such a behavior indeed appears in a random setting.
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Proposition 4.4.1  (Short-scale behavior) Let d be an integer smaller tharD, and let
a=( min;fmin;fmax;0) 2 9. Let X, be an-sample of law 2 ngﬂ. Fix 0< < 1.
There exist positive constantstg; Co; C1 depending on the parameters of the model and
on such that the following holds. Let, fox > 0, (x) = min(1;x)e *. Then, for n
large enough andd <t tg, we have

h(t; Xp) t with probabilty larger than1l Cpexp( Cin (nm)): (4.39)

The probability appearing in (4.39) will be close to1 as long ast is smaller than
a fraction of (logn=n)"" and larger than (1=n)@ )=d for any 0< < 1. Therefore,
with high probability, the convexity defect function h(t; X,,) is very close tot for
(1=n)@ )=d t  (logn=n)¥"Y. On the contrary, standard techniques show that if
t. (1=n)Z9, then h(t; X,)) is null with probability larger than, say, 1=2, indicating
that the lower bound in the previous range is close of being optimal. The arguments
to prove Proposition 4.4.1 are of a purely probabilistic nature and do not rely on the
geometry of the support of . The remainder of the Section is dedicated to proving
Proposition 4.4.1.

Let 2 Qzﬁn £ e be a probability distribution with support M and let X,
be an-sample of law . We will use repeatedly in the proof the fact that there exist
constantscq; Cq > O such that, if t ~ (M)=4, then cqf mint?  (B)  Cgyf maxt® for
all balls B of radiust centered at points ofM (see Proposition 3.5.7.7).

Lemma 4.4.2. Assumethatt tg . foa-
of M into K measurable parts such that:

1. for k=1;:::;K, Ug contains a ballVx = By (Xk; 2t),
2. fork=1;::5;K, (U =1=K,

3. we havecy:

min f max

t d K Cd; min ;fmaxt d'

Proof. If t  (M)=8, then (B) Cgfmaxt? for any ball B of radius 2t. Assume
that t is small enough so thatC4f maxt® 1=2 and let K be the largest integer such
that 1=K Cyf maxt9, so that 1=(2C¢f maxt9) K  1=(Cyf maxt¥). Build Cin the
following way. Start with an union of § disjoint balls Vi of radius 2t, fork = 1;:::;K,
chooseWy any measurable set inM n sz1 Vi with (W) =1=K (Vk) Oand let
Uk = Wk [ Wk. The setMn E:l Uk is of -measure null, so that by adding it to Uy
for instance, we obtain a partition following the required properties. Note that we
used the fact that foranyA M and0 p (A), there exists a subsety A with
(V) = p: this holds as is absolutely continuous with respect to the volume measure
onM. O

We x such a partition in the following, with balls Vy of radius (2  )t. Let By be
the ball sharing its center with Vi, of radiust. For W M, let N (W) be the number
of points of X, in W. We also write Ny for N (Uy). Let xx be the center ofBx and e
be a unit vector in TxM, and denote byA; (resp. A, ) the ball of radius (1 ~ )t=2
centered atx™ = x + e(1+ )t=2(resp.x = xx €1+ )t=2), see Figure 4.5.

Lemma 4.4.3. Fix k=1;:::;K. If h(t; X,;) <t and Ny =2, then we cannot have
bothN(A;)=1 andN (A, )=1.

Proof. Let = Xu\ Uk. Assume that Ny = 2, and that N(A‘k“) = N(A,)=1. Then,
is made of two points,x; and x», respectively inA; and A, . As both points belong
to Bk, we haver( ) t. Therefore,dy (Conv( )jX,) h(t; X,) < t . In particular,
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Figure 4.5:  Any ball with diameter whose one extremity is in A,
and the other in A; is included in U.

the middle point x¢ of x; and x5 is at distance less thant from X,. Let us show
that By (Xo;jX1  Xoj)  VWk. If this is the case, thend(Xg; Xp) = jXx1 Xpj=2 t,
a contradiction with having dy (Conv( )jXp) < t . Let z 2 By (Xo0;jX1  Xoj) and
denote by ¢ the projection on e. Then,

. . o . jX1 X . o .
jz X JzZ Xt jXo Xk “TZJH eXo XK)j+ ] a(Xo X)]
@a Hr, a i
+ + 2 :
concluding the proof. O

Denote by Fx the complementary event of the eventN (A;) = N(A, ) =1. We
obtain the bound

P(h(t; Xp) <t ) P@Bk=1;:::;K; N 62 or (N, =2 and Fy))

¥

E  (1fNg 629+ P(FjNk = 2) 1f Ny = 20)
k=1 4
¥

E (I (1 P(FkiNk=2)1fNg =29)
k=1

Lemma 4.4.4. There exists a positive constantC; such that
P(FkiNk=2) e Ctfork=1;::::K.

Proof. If jx+ Xxj t 7 (M)=24 then there existsy. 2 M with , (y+ Xx) =
X+ Xk by Proposition 3.5.8. Furthermore, we havgy. Xxj 8t=7 and, by Proposition
3.5.7.4, we havgy. xi+j (8t=7)>=(2 (M))=32t2=(49 (M)). In particular,

B(x+;(1  )t=2) B (y+;(1 )2 32°=(49 (M))) B (y+;(1  )t=4);

ift 49(1 ) (M)=128 According to Proposition 3.5.7.2, we therefore have, also
assuming thatt (M)=4,

@ )47 @
4 48

(Bx+; (1 )=2)  fmin d

and the same inequality holds forx .
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Let Yq; Y2 be two independent random variables sampled according to, conditioned
on being inUy. Then,as (Uy)= m= 41+ )Ymn(2 )%9,

P(FkiNk=2)=1  2P(Y1 2 A{)P(Y22 Ay)
, (BOX:( )t=2)) (B(x ;(1  )t=2))

=1

I(Uk)2
1 L
a2 @
gy °
We nally obtain
" 1#
X
P(h(t; Xp)<t) E exp C; 1fNy=2g : (4.40)
k=1
Lemma 4.4.5. Assume thatnm max(m 1;(Inn)?). Let :x 2 [0;+1) !
min(1;x)e *. Then,
" I#
X
Eexp C 1fNy =29 Coexp( Czn (nm)); (4.41)
k=1

for some positive constantsCy; Cs.

Proof. Let S = i I}<<=1 1fNy = 2g. Let r be the number of points of X, in Sk Uk,
so that r follows a binomial distribution of parameters n and Km. Recall that by
construction, Km ¢ for some constantcy (see Lemma 4.4.2). Conditionally o, the
random variable S can be realized as the number of urns containing exactly two balls, in
a model wheren balls are thrown uniformly in K urns. Let p; = ':* K i1 K Hmi
be the probability that an urn contains exactly i balls. We haveE[Sjr] = Kp2, and

Elexp( CiS)jr]  E[exp( CiKp2=2)1fS  Kp2=2gjr]+ P(S <Kp 2=2jr)
exp( CiKp2=2)+ P(jS  Kpaj > Kp 2=2R): (4.42)

Let v = 2K max(2pz; 3ps). According to [BHBO17, Proposition 3.5], if for somes > 0,
Kpo=2 P 4vs + 2s=3; (4.43)

then P(jS Kp,j > Kp 2=2jr) 4e S. Recall that nm? 1 by assumption, and that
K ¢t d  c;=m. We therefore haven=K 2 012. Assuming that r 3 and using
the inequality In(1 K %) K 1 K 2forK 2, we obtain the inequalities
=K)? _ 3 -
P2 (n 2) e "X and p; e—(ﬁzK)3e =K gpa(n=K) (4.44)
4e% 6
for some positive constantc,. We consider two di erent regimes.
Assume rst that n=K 2=(3cy). Then 3p3  2p2 and one can check that
s = Kp»=100 satis es (4.43). Inequality (4.42) then yields that E[exp( C1S)jr]
5exp( CYKpy) for C? = min(Cy=2;1=100). To conclude, we remark that for any
2 (0;1), by the Hoe ding inequality, the event jg&  nKmj nKm holds with
probability at least 1 exp( 2n 2). Letting = 1=2, we obtain that, on this event,
R 3 3n 1

}nm — —-nm —=—mK —
2 K 2 2K c’
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where we used thatmK 1. Therefore,p,  cz3(hm)?  ci(nm)?e "™ for some
constants ¢z and ¢4. The probability of order exp( 2n 2) being negligible, we obtain
a nal bound of order exp( CJcsK (nm)?e ") exp( Czn (nm)), concluding the
proof in the regimen=K  2=(3c,).

Otherwise, we haven=K > 2=(3c;) and we also assume thajsr  nKmj nKm
for some 2 (0;1) to x (this happens with probability 1 exp( 2n 2) by Hoe ding's
inequality). One can then check using(4.44) that s = csre ™K satis es (4.43) if cs
is chosen small enough. Furthermores cgKp» for some constantcg (using (4.44)).
The leading term in (4.42) is therefore of the formexp( c;re ™). Let =1=(Inn)3.
We have, asnm  cogn=K cg and asnm  (In n)? (by assumption),

R 1
co nm(1 ) ra nm(1l+ ) nm+ o
Therefore,re ™K (cg=2)Ke "™ . The probability of order exp( 2n ?) is still neg-
ligible, and we obtain a nal bound on E[exp( C;S)] of order exp( (co=2)Ke ™M)
exp( cign (nm)). O

4.5 Numerical considerations

Computing Conv(t; X,) amounts to compute the fech complex ofX, of parameter
t: we refer to Section 3.6 for a discussion on the computational complexity of this
problem. It remains to discuss the cost of computing (X,).

The scalet (X,) is easily obtained once the convexity defect function of the set
Xn  RP has been computed. By the Carathéodory theorem, one can restrict to
simplexes of dimension less tha® for the computation of Conv(t; X,,). As there are
O(n®P*1) such simplexes, the computation cost of the convexity defect function is
prohibitive for large D. We therefore propose to consider only simplexes of dimension
1 in the convexity defect function. Let Conv(t; X,,) be equal to the union of the edges
e= fx1;x2g X , of length smaller than 2t, and hi(t; X,) = dy (Xn; Convi(t; Xn)).
We de ne likewise the parametert(X,) with the function h being replaced byh?.

q
Lemma 45.1. Letl d<D be aninteger and letcg = 3 . LetB RP
andtpmax > 0,0< < 1 cp. Then,
t s (B) tH(B) t (B): (4.45)

Proof. A direct computation shows that if is a D-simplex of radius smaller thant,
then the Hausdor distance betweenConv( ) and the 1-skeleton of (the union of its
edges) is bounded bycpt. Hence,h(t;B) hi(t;B) h(t;B) cpt. The conclusion
follows from the de nition of t (B). O

Hence, if some set®\;B M satisfy the conditions of Theorem 4.3.5 for and
+ cp, then t1(B) satis es

2A) [, tA) L6

(M)

t (A)+ t1(B)

The scalet!(X,) can be computed by computing the distancely (jX,,) for the n(n 1)
edgese of X,,. Each distance can be obtained by computing the projections of the set
Xn on the line spanned bye. The time complexity can be further reduced by selecting
a random subset ofL edges inX,. If we have no guarantees on the output with such a
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strategy, it appears in our experiments that it is similar to h( ; X) for L signi cantly
smaller than n?.

As a numerical illustration of our procedure, we compute the convexity defect
function hl( ;X,) of three synthetic datasets: (a)n, = 102 points uniformly sampled
on the unit circle, (b) n, = 104 points sampled on a torus of inner radius4 and
outer radius 1, and (c) ne = 10° points sampled on a swiss roll implemented with
scipy [Vir+20] (which was also used to compute the Hausdor distance between point
clouds). The convexity defect functions (a), (b) and (c) were approximated using
the algorithm described in the previous paragraph with parameter., = 1 (all pairs
computed), Ly = 108 and L. = 10’. On each function, displayed in Figure 4.6, the
behavior described in Section 4.3 is observed: rst a linear growth up to a certain
value, then a quadratic growth until the reach of the manifold (equal to 1 in the rst
two illustrations, and slightly larger than 3 for the swiss roll dataset). We then x
tmax = 0:5diam(X,)=log(n) and computet®(X,) for di erent values of . When is
very close to1, t1(X,) is always0, whereas it slowly increases as decreases, until
reachingtmnax at some value nin. As a rule of thumb, we choose = 1*% and
select the parametert® (X,), which is equal toty = 0:049, t, = 0:31 and t. = 0:48in
the di erent experiments (a), (b) and (c), while the approximation rates "(Xp) were
evaluated (by oversampling) at"; =0:021, "y =0:31and " =0:33.

4.6 Discussion and further works

In this article, we introduced a patrticularly simple manifold estimator, based on a
unique rule: add the convex hull of any subset of the set of observations which is of
radius smaller thant. After proving that this leads to a minimax estimator for some
choice oft, we explained how to select the parametet by computing the convexity
defect function of the set of observations. Our selection procedure actually allows us
to nd a parameter t (X,) that is very close to"(Xn) (up to a known multiplicative
constant). The selected parameter can therefore be used as a scale parameter in a
wide range of procedures in geometric inference. We illustrated this general idea by
showing how an adaptive tangent space estimator can be created thanks to(Xp).

The main limitation to our procedure is its non-robustness to outliers. Indeed,
even in the presence of one outlier ifX,, the loss functiont 7! dy (Conv(t; X,); M)
would be constant, equal to the distance between the outlier and the manifold/ : with
respect to the Hausdor distance, all the estimatorsConv(t; X,) are then equally bad.
Of course, even in that case, we would like to assert that some values bfre better
than others in some sense. A solution to overcome this issue would be to change
the loss function, for instance by using Wasserstein distances on judicious probability
measures built on thet-convex hulls Conv(t; X,) instead of the Hausdor distance.

Another way to improve the selection procedure is to exploit the short-scale behavior
of the convexity defect function: its linear behavior suggests that selecting the smallest
value t such that the convexity defect function is small (whereas we select the largest
value t (Xp) such that h(t; X,) is large) would also lead to an adaptive estimator.
With such a method, the hyperparametertyax is not needed anymore. We refer to
[Div21b] for details on this improved construction.

4.7 Precise lower bound on the minimax risk

The goal of this section is to show the lower bound in Theorem 4.1.2. To do so, we
adapt the construction made in [KZ15] so that the lower bound holds with an explicit
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(@) 10° points on a circle

(b) 10* points on a torus

(c) 10° points on a swiss roll

Figure 4.6: The convexity defect function of the datasets (a), (b) and
(c), and the corresponding choices of!(X,) with respect to
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constant. Let0<d<D and g=( min;fmin;fmax; )2 9. We denote byM (P) the
underlying manifold of P 2 Qéﬂ The lower bound is based on Le Cam's lemma:

Lemma 4.7.1. Let Q@, Q@ be two subfamilies 0fQ3% which are "-separated, in the
sense thatdy (M (PW);M (P@)) 2" forall PD 2QW, PA 2Q@. Then,

1 X
#Q®@

. 1 X
Rn(M: Qgiidk) " #PO

7ol #P@ . (4.46)
PO2Q®

P@2Q@

wherejP” Qj is the testing a nity between two distributions P andQ and : RP RP !
RP is the addition.

To obtain a lower bound on the minimax risk, authors in [KZ15] exhibit two
families of manifolds which are"-separated, and consider the uniform distributions on
them. Those manifolds are built by considering a base manifold1y which is locally
at, and by adding small bumps on the locally at part. Such a construction leads to
distributions having a density equal roughly to 15voly,j, a constant which might be
smaller than f . If this is the case, then the corresponding submodels are not @ﬁﬂ
and we cannot apply Le Cam's Lemma. Hence, we consider another base manifold,
which is a sphereM of radius R slightly larger than in, SO that its volume is smaller
than 1=f i, (this is possible asf min! ¢ r?“n < 1). The two families are then once
again constructed by adding small bumps orMy. We now detail this construction.

Let R; > O be two parameters to be xed later. Let Mg R%1 RP be the
d-sphere of radiusR, and let A be a maximal subset ofMy of even size, which is
4 -separated. Note that, standard packing arguments (and the formula for the volume
of a spherical cap) show that if =R is small enough, then the cardinality 2m of A

satis es 2m @R d for some absolute constantcy. Let : R ! R be a smooth

function such that 0 1, lon[ 1;1]and OonRn[ 2;2]. Fors2f 1g",
we build a di eomorphism ¢ by letting for x 2 RP
0 1
(0= x@L+ = s(y) X YA (4.47)
y2A

Recall that kN k,, denotes the operator norm of a linear applicationN .

Lemma 4.7.2. There exists two absolute constants;;c, > 0 such that the following
holds. Assume that R andthatc,"= < 1. Then, the function ;:B(0;3R)! R%!
is a di eomorphism on its image, with

ci'= and sup A2 . o= 2 (4.48)

X S op

sup kid dy ;kop
x2B (0;3R) x2B (0;3R)

Proof. As A is 4 -separated, at most one term in the sum in(4.47) is non-zero. A
computation gives that the derivative of g is given by, forx 2 B(0; 3R),

. " X iX i "X ix yj h y;hi
G sm=heho osy) S exet Tsy) o B B LR
y2A y2A Xyl
(4.49)
Hence,
- . " k% " k % "
Kid de gkop K ki * ] 1 5 Kk +3R ! C—;
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wherec; = cok ki +3k %; . A similar computation gives that d2 | o  C2'= 2
for c = 4k %; +3k %; . We eventually show the injectivity: if 4(x) = (X9,
then x and x%are colinear. Also, ifco = k k; +3k %; , one can check using4.49)
that the derivative of the function r 2 [0;3R] 7! h ¢(ru);ui for u an unit vector is

increasing, proving the injectivity. O]

Therefore, from [Fed59, Theorem 14.19], we infer thaM, := (M) is a manifold
with reach larger than

" . " . (1 C1": )2
(Mg) Rmin 1 c¢"=; 17 o'= + Roy= 2 (4.50)
Also, the volume of M is smaller than
Z x Z
jvolu:j = J J(x)dx =1 4RI+ (I «(x) 1)dx
Mo y2A Bmgo(¥i2)
I 4RY+2mCqci—jvolym,j(B(y;2 ) !gRY 1+ Cyci— ; (4.51)

where we used thatdet(N) 1 CgkN idkop for some constantCy if N is a matrix
of sized with operator norm smaller than 1, the fact that 2mjvoly,(B(y;2 )) j volw,],
and Lemma 4.7.2. D

Let R = min + 3 W mn and = R" where 2= sz?ﬁ With
this choice of parameters, one can check that, fot="small enough, (M) min (by
(4.50)) and jvoly ;]  1=fmin (by (4.51) and using that ! 4f min %in < 1).

We de ne the family M @ of manifolds M wheres contains exactly m signs+1
(and m signs 1). The family M @ is de ned likewise by consideringM ; where s
contains exactym+1 orm 1 signs+1. We then let QM) be the set of distributions
(Qs; o) where Qg is the uniform distribution on a manifold of Mg 2 M &, so that
QM is a subset 0fQ3%4. We then de ne Q@ as follows: letX Qi whereQj is the
uniform distribution on a manifold of M_ 2 M @, Then, we haveX = (V) for
someV 2 Mg, and we let

Y= J(v), zZ=X Y:

An element of Q@ is then given by the law of the couple(Y;Z). Note that for
P@ 2Q®@, ,P® jsthe uniform distribution on a manifold of M . Also, M (P )
isequal toMs* = ¢ (o) Y(M.) for someM: 2 M @ By (4.51) and (4.50),
its reach is also larger than ni,, and its volume is smaller than1=f, if (" + )= is
small enough. Note also thatiZj = j +(V) < (V)j j Vj=R . Hence,Q® is
indeed a subset 0fQ.,.

By construction, the two families Q®, Q@ are (2" + )-separated (see Figure 4.7).
Hence, we can apply Le Cam's lemma. The exact same computations than in [KZ15,
Section 3] show that the testing a nity between Q® and Q@ converge to1 as long
as4m = n=logn. Thus, Le Cam's Lemma (4.46) yields

. 2;_d.
jiminf <n(M; qu‘_'dd*')
n logn <~
n

liminf  (m=4)>%" + -

5 (4.52)
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Figure 4.7: An elementP® 2 QW has its rst marginal supported
on the blue manifold M ; (lower bump), whereas an elemenP @ 2 Q@

is such that Pl(z) is supported on the red manifoIdMgJ' (upper bump),
whereas » P@ is the uniform distribution on the dotted manifold.

As 2m  (cR= )Y, we therefore have

. Rn(M; Q34:d R2 R
fiminf ~n¢ qu‘_dH) (Ed S+ o= 0672+7
n m - 8¢= 2 82_d 2
n
_ ¢ R(R i) Ca 1 _ _
= + - - = mn 1 3.
82=d  2Cy min 2 (! of min)l_d min (! of min)l_d 2
for some absolute constant,, where we used thatR ~ min = 3 W min
by de nition and that R 3(! 4fmin) % As min  =(! 4f min)¥9, we obtain the

conclusion.
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Chapter 5

Reconstruction of measures on
manifolds: an optimal transport
approach

Density estimation is one of the most fundamental tasks in non-parametric statistics.
If e cient methods (from both a theoretical and a practical point of view) exist when
the ambient space is of low dimension, minimax rates of estimation become increasingly
slow as the dimension increases. To overcome this so-calledrse of dimensionality,
some structural assumptions on the underlying probability are to be made in moderate
to high dimensions, which may take di erent forms, including e.g. the existence of a
parametric component [LLWO07], the single-index model [Liu+13], sparsity assumptions
[Tib96], or constraints on the shape of the support. We focus in this work on the latter,
namely on the case where the probability distribution generating the observations is
assumed to be concentrated on a submanifolt¥ of RP, of dimensiond smaller than
D. The topic of density estimation in the manifold setting has been studied for over
thirty years, with the emphasis initially being put on reconstructing the density in
the case where the manifoldM is given think for instance of datasets lying on the
space of orthogonal matrices notable works including [Hen90; Pel05; Cle+20]. Less
attention has been dedicated to the more general setting where the manifoll is
unknown and acts as a nuisance parameter. Kernel density estimators on manifolds are
designed in [BS17; WW20], where rates are exhibited, respectively in the case where
the manifold has a boundary and in the case where the density is Hélder continuous. In
[BH19], kernel density estimators are shown to be minimax, and an adaptive procedure
is designed, based on Lepski's method, to estimate the unknown density in a point
x 2 RP which is known to belong to the unknown (and possibly nonsmooth) manifold
M.

To go beyond the pointwise estimation of , even the choice of a relevant loss is
nontrivial. Indeed, most standard losses between probability measures (e.g. thHe,
distance, the Hellinger distance or the Kullback-Leibler divergence) are degenerate when
comparing mutually singular measures, which will typically be the case for measures
on two distinct manifolds, even if they are very close to each other with respect to
the Hausdor distance. This implies that the estimation problem is degenerate from a
minimax perspective when choosing such losses (see Theorem 5.1.9). On the contrary,
the Wasserstein distancedVp, 1 p 1 are particularly adapted to this problem, as
they are by design robust to small metric perturbations of the support of a measure.

Apart from this rst motivation, the use of Wasserstein distances, and more
generally of the theory of optimal transport, has shown to be an e cient tool in widely
di erent recent problems of machine learning, with fast implementations and sound
theoretical results (see e.g. [PC19] for a survey). From a statistical perspective, most of
the attention has been dedicated to studying rates of convergence between a probability
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distribution  and its empirical counterpart , [Dud69; DSS13; FG15; SP18; WB19a;
Lei20]. Unsurprisingly, if more regularity is assumed on , then it is possible to build
estimators with smaller risks than the empirical measure ,. Assume for instance
that is a probability distribution on the cube [ 1;1]°, with density f of regularity s
(measured through the Besov scal8_.,). In this setting, it has been shown in [WB19b]
that, given n i.i.d. points of law , the minimax rate (up to logarithmic factors) for
the estimation of  with respect to the Wasserstein distanceW, is of order

8  su

2N 40 fD 3

_n Zlogn ifD=2 (5.1)
“n 2 ifD=1:

and that this rate is attained by a modi ed linear wavelet density estimator. Our
main contribution consists in extending the results of [WB19b] by allowing the support
of the probability to be any d-dimensional compactC* submanifold M RP for
k 2. More precisely, assume that some probability on M has a lower and upper
bounded densityf which belongs to the Besov spacBS;q(M) forsomeO<s k 1,
1 p<1,1 g 1 (see Section 5.1 for details). We rst show (Theorem 5.2.1)
that some weighted kernel density estimator that we integrate against the volume
measurevoly on M attains, for the W, distance, the rate of estimation

8 s+1

>n v ifd 3

_n z(ogn)? ifd=2 (5.2)
“n if d=1:

In the case where the manifoldM is unknown, we do not have access to the volume
measurevoly , so that the latter estimator is not computable. We therefore propose
to estimate the volume measurevoly in a preliminary step. Such an estimator$oly,

is de ned by using local polynomial estimation techniques from [AL19]. We show that
this estimator is a minimax estimator of the volume measure up to logarithmic factors
(Theorem 5.2.6), with a risk of order (log n:n)k:d. We then show (Theorem 5.2.7)
that a weighted kernel density estimator integrated againstoly, attains the rate (5.2).
Those rates are signi cantly faster than the rates of(5.1) if d D and are shown to
be minimax up to logarithmic factors.

In Section 5.1, we de ne our statistical model and give some preliminary results
on Wasserstein distances. In Section 5.2, we de ne kernel density estimators on a
manifold M, and state our main results. Proofs of the main theorems are then given
in Section 5.3.

5.1 Preliminaries

Forl p 1 ,welet Lp(l}g) be the set of measurable functiong : M ! R with

nite p-norm kf k)=  fdvoly 1=p (and usual modi cation if p= 1 ). We say
that a locally integrable function is weakly di erentiable if there exists a measurable
sectionr f of the tangent bundle TM (uniquely de ned almost everywhere) such that
for all smooth vector Zelds w on M with comfact support, we have

f(r w)dvoly = (r f) wdvoly; (5.3)

wherer w denotes the divergence ofv (the divergence ofw is de ned as the real-
valued function satisfying (5.3) for every C* function f). Furthermore, we will denote
by p 2 [1;1 ] the number satisfying % + pi =1.
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5.1.1 Besov spaces on manifolds

LetM 2 M kr;n‘?n . forsomek 2, mip;L> 0. We also assume thatM is compact.
As stated in the introduction, minimax rates for the estimation of a given probability
will depend crucially on the regularity of its density f , which is assumed to belong to
some Besov spacBS;q(M ). We rst introduce Sobolev spacesHF')(M) onM forl k
an integer, and Besov spaces oWl are then de ned by real interpolation.

De nition 5.1.1  (Sobolev space on a manifold)Let0 | k,1 p<1 andlet
f 2Cl (M). We let
Z 1=p
kf ng)(M) 1= max d'f (x) op dvoly (x) : (5.4)

The spaceH I{,(M) is the completion of Ct (M) for the norm k kH’g(M).

Remark 5.1.2 (On the casep = 1 ). The previous de nition cannot be extended to
the casep = 1 . Indeed, the completion ofCt (M) for the norm k kyj (m) is equal to
C(M), whereas for instanceH (M) should be equal toLy (M). For | =1, the space
Hg(M) can equivalently be de ned as the space of weakly di erentiable functiond
with kf ng(M) < 1 , while this de nition can be easily extended to the casgp= 1 .
In particular, if f 2 H$ (M), then one can verify that f x 2 H} (Bt,m (0;10))
for any x 2 M. It follows from standard results on Sobolev spaces on domains that
f x IS Lipschitz continuous (see e.g. [Brel0, Proposition 9.3]). Hencé, is also
locally Lipschitz continuous. By Rademacher theoremf is therefore almost everywhere
di erentiable, and its di erential coincides with the weak di erential. As a consequence,
a function f 2 H] (M) is Lipschitz continuous, with Lipschitz constant for geodesic
distance dg equal to kf k3 (m)-

Forl p<1,we introdﬁce the negative homogeneous Sobolev norin kH_p 1My
de ned, for f 2 Ly(M) with  fdvoly =0, by
Z
kf kH_pl(M) ‘= sup fgdvoly ; kr gkLp oy 1 (5.5)

where the supremum is taken over all functiongy 2 HF} (M). Forf 2 Lp(M), the
negative Sobolev norm is de ned by

z
kf ka LMy -= Sup fgdvoly ; kng; wmy 13 (5.6)

and the corresponding Banach space is denoted by, L(Mm).

R
Proposition 5.1.3. Letl p<1 andf 2 H, M)\ Ly(M) with  fdvoly =0.

i e have Cy. .jvodelTl Ikfk, 1 k fk, 1 k fk for some
() We h C1m|n I Hp “(M) Hp

positive constantCyq. ... depending ond and min.

(M) Hy *(M)

(i) We havekf kHv LMy = inffk wk, ;(m); r w = fg; where the in mum is taken
over all meﬁurable vector ﬁldsw on M with nite p-norm, and wherer w = f
means that fgdvoly = w r gdvoly forall g2 Ct (M).

Following [Tri92], Besov spaces on a manifoldM are de ned as real interpolation
of Sobolev spaces.
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De nition 5.1.4  (Real interpolation of spaces) Let Ag, A1 be two Banach spaces,
which continuously embed into some Banach spade We endow the spacé\g\ A;
with the norm kxka,\ a, = maxfk xka,; kxka, g for x 2 Ag\ A1 and the spaceAg+ A;
with the norm K (x; 1) for x 2 Ag+ Aj, where

K(x; ):=inffkXoka, + KkXika,; X = Xo+ X1; X0 2 Ag; X1 2 A10; 0 (5.7
For 2[0;1]andl g 1 , we let
Z 1 d 1:q
kxK(ag:a) q = o K% )I— ; X2 Ap+ Ag; (5.8)

and (Ag;A1) q = fX 2 Ao+ A1 kxKagay),, < 19 (with usual modi cation if
q= 1). The pair (Ag;A1) is called a compatible pair, and(Ao;A1) .q is the real
interpolation betweenAg and A; of exponents and q.

For A;B two Banach spaces andr : A! B a bounded operator, we letkF ka.g
be the operator norm ofF. Let (Ag; A1) and (Bg;B1) be two compatible pairs. Let
F :Ag+ A1! Bo+ B1 be a linear map such that the restriction of F to A; is a
bounded linear map intoB; (j =0;1). Then, the following interpolation inequality
holds [Lun18, Theorem 1.1.6]

kF k(AOZAl) q ;(Bo:B1) q k Fki‘-\o;BokF kAliBl: (59)

De nition 5.1.5 (Besov space on a manifold)Let 1 p<1 and0O<s<k. The
Besov spaceB (M) is de ned asB54(M) := (Lp(M); HE(M)) goiq:

Basic results from interpolation theory then imply that k kBS;q(M) k k B3 (M) if
0<s sP<k (see e.g. [Lun18]).

A crucial point in the study conducted in the next sections is the relation between
Wasserstein distances and negative Sobolev norms.

Proposition 5.1.6  (Wasserstein distances and negative Sobolev norms)et 1 p <
1. LetM 2M 29 be a manifold with reach (M)  min, and let ; 2 PP(RP) be
two probability measures supported oM , absolutely continuous with respect to/oly .
Assume that ; fmin Voly for somefin > 0. Then, identifying measures with
their densities, we have
=ps 1=p 1

Wo(; ) p Py Tk Kisy 1v) (5.10)

Cd; min ;f min k ka ™ );

for some constantCy. ... .., depending ond, min and fmin.

In particular, if p =1, then the rst inequality in (5.10) is actually an equality
by the Kantorovitch-Rubinstein duality formula [Vil08, Particular Case 5.16]. This
inequality appears in [Pey18] forp = 2 and in [San15, Section 5.5.1] for measures
having density with respect to the Lebesgue measure. We carefully adapt their proofs
in Section 5.4.2.

5.1.2 Statistical models and the choice of the loss function

Statistical models in interest for this problem are based on the statistical models
kr:ijn Lt e IMErOduced in Chapter 3, with the additional constraints that conditions
on the reg'ularity of the density of the measures are to be made. Furthermore, we

require the noise to be orthogonal to the manifold in those models.
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De nition 5.1.7  (Noise free model) Letd D beintegersk 2,0 s<k and1l
p<1.LetM 2M K For s=0, the setQ%M) is the set of probability distributions

on RP absolutely continuous with respect to the volume measwely, , with a density
f satisfyingfmin f  fmax almost everywhere. Fors > 0, the setQ3(M) is the
set of distributions 2 Q°(M), with density f 2 Bp.q(M) satisfying kf kBg;q(M) Ls.
The model Q5 is equal to the union of the set®S(M) for M 2 M k.

De nition 5.1.8  (Orthogonal noise model) Letd D be integersk 2,0 s<k,
1 p<1 and 0. The set ij( ) is the set of probability distributions of
random variables(Y;Z) whereY 2 Qz;k andZ 2B(0; )issuchthatZ 2 TyM?.

As in the previous chapter, we assume in the orthogonal noise model that we
observe an-sample of law » where 2 QZ"‘( ): concretely, an-sample is given

by Xq1;:::;Xn, where X is equal toY; + Z; with Y; supported on some manifoldV
and Z; 2 Ty, M7 is of norm smaller than . The goal is then to reconstruct the law
#( )= ofY;. We rst show that such a task is impossible if the loss functionL is

larger than the total variation distance between measures.

Theorem 5.1.9. Let d D be integers, k 2,0 s<k,1 p<1. Let
L : P(RP) P (RP) ! [0;1] be a measurable map with respect to the Borel-
algebra associated to the total variation distance oR (RP) P (RP). Assume that
L(; ) 9@ j) for a convex nondecreasing functiorg: R! [0;1 ] with g(0) =0.
Then, for any min > 0, if fqin is small enough andL; Ls; fmax are large enough, we
have

Rn(; QL)  o(ca); (5.11)
for some constantcy > 0.

Examples of such losses include the total variation distance, the Hellinger distance
(with g(x) = x), the Kullback-Leibler divergence (with g(x) = x2=2), and the Lp
distance with respect to some dominating measure (withlg(x) = xP). We give a proof
of Theorem 5.1.9, based on Assouad's lemma, in Section 5.4.7. A simple example
of lossL which is not degenerate for mutually singular measures is given by the/,
distance. As stated in the introduction, we will therefore choose this loss, and study
Rn(; Qz;k( ); Wp), the minimax rate of estimation for ~ with respect to W,, where

is the rst marginal of 2 Q5%( ).

Remark 5.1.1Q For > 0, the statistical model ij;k( ) is not identi able, in the sense
that there exist , 2in the model for which 4 = 4 © Having such an equality
implies that Wp(#( );#( 9)  Wp#( ); # )+ Wp(# %#( 9) 2 . This inequality
is tight up to a constant. Indeed, take Y an uniform random variable on the unit
sphere, let be the law of (Y;0) and °be the law of ((L+ )Y; Y ). Then, and
Oare in ijk( yand 4 = » © whereas, by the Kantorovitch-Rubinstein duality
formula,

Wp(#( )i#( 9 Wa#( );i#( 9 E[ ((1+ )Y) (V)]

for any 1-Lipschitz function . Letting be the distance to the unit sphere, we obtain
that this distance is larger than . In that sense, represents the maximal precision
for the estimation of #( ).

Remark 5.1.11 For ease of notation, we will write in the followinga . bto indicate
that there exists a constantC depending on the parameterp; K; min; Ls; Lk;fmin; f max,
but not on s and D, such thata Chb, and write a bto indicate that a. band
b. a. Also, we will write ¢ to indicate that a constant ¢ depends on some parameter
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5.2 Kernel density estimation on an unknown manifold

Before building an estimator in the modeIQS'k( ), let us consider the easier problem
of the estimation of in the case where =0 (noise free model) and the supfgorﬂvl is
known. Let 2QS(M) and Yz;:::;Y, be an-sample of law . Let , = % =1 Vi
be the empirical measure of the sample. IdentifjfR? with RY f 0g® 9 and consider a
kernel K : RP I R satisfying the following conditions:

Condition 5 A: The kernel K is a smooth radial function with support B(0; 1)
such that re K =1.

Conditilgn B(m): The kernelK is of orderm 0 in the following sense. Let

jj= jdzl j be the length of a multindex = ( 1;:::; ¢). Then, for all
multindexes ©, Twith 0 j % <m,0 j 1j<m+j gj,andwithj >0
if °=0, we have 7
@ K (v)v ‘dv=0; (5.12)
Rd

wherev = de:l v, I and @K is the partial derivative of K in the direction

R
Condition C( ): The negative part K of K satises 4 K
We show in Section 5.4.8 that for every integem 0 and real number > 0, there

exists a kernelK satisfying conditions A, B(m) and C( ). De ne the convolution of
K with a measure 2 P (RP) as

K ()= K yd(); x2R% (5.13)

and, forh > 0, let K, := h 9K (=h). Let = K, voly and let n:h be the measure
with density Ky, ( n= ) with respect to voly . Dividing by 1, ensures that ,y, is a
measure of masd. Remark that the computation of ., requires to have access td/,
thatis ., is an estimator onQ3(M) but not on Qf,;k. By linearity, the expectation
of nn is given by p, the measure having for densityK, (= p) onM.
Theorem 5.2.1. Letd D beintegers,0<s k 1withk 2andl p<1.
Let M 2 M Kd and 2 QS(M) with Y1;:::;Y, a n-sample of law . There exists
a constant depending on the parameters of the model such that, K is a kernel
satisfying conditions A, B (k) and C( ), then the measure  satis es the following:
(i) If (logn=n)¥9. h. 1, then, with probability larger than1 cn %9, the density
of . is larger than f min=2 and smaller than2f nax everywhere onM .

(i) We have
Ek n:h kal(M) k thpl(M) + EK nn thpl(M) (5.14)

ht 9=214(h)
ﬂf!

hS* + (5.15)

wherelg(h)=1 ifd 3, ( log(h))*2if d=2 andh ¥2if d=1.

(Ill) Let h n 1=@std) j d 3, h (Iog n:n)lzd if d 2. De ne g;h = nh if
n:h IS @ probability measure and © nh = x, otherwise. Then,

8

2n z+d ifd 3

EWp( fpni ). n 2(ogn)z if d=2; (5.16)

' ifd=1:

N[

n
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(iv) Furthermore, for any 0 s <k and nin > O, if fin is small enough and if
fmax and Lg are large enough, then there exists a manifoltl 2 M 'é such that

Co 2 ifd 3
2s+d | .

’ 5.17
2 ifd 2 (5.17)

Rn(GWpQ3(M)) &

Remark 5.2.2 The condition C( ) on the kernel is only used to ensure that the
measure ., has a lower and upper bounded density oM . An alternative possibility
to ensure this property is to assume that the density of is Holder continuous of
exponent forsome > 0. Techniques from [BH19] then imply thatk n.n ki1 vy -

h +n ¥2h 92 1 with high probability, ensuring in particular that the density is
lower bounded. Ifsp > d, then every element ofBg;q(M) is Holder continuous (by
[Tri92, Theorem 7.4.2]), and conditionC( ) is no longer required. However, Theorem
5.2.1 also holds for non-continuous densities.

Remark 5.2.3 Let K be a nonnegative kernel satisfying condition®\, B (0) and C( ).
It is straightforward to check that Wp( n; n:n) . h. Therefore, Theorem 5.2.1(ii) and

Proposition 5.1.6 imply in particular that Wp( n; ). h+ h? dzzﬁ'd(h). By choosingh
of the ordern 79, we obtain that

8 1
> nidifd 3

Wo( ni ). n 2(logn)z if d=2 (5.18)
" nzifd=1:

Such a result was already shown fop = 1 [Tri+20] with additional logarithmic
factors, with a proof very di erent from ours. See also [Div21a] for a short proof of
this result when M is the at torus.

In (5.15), a classical bias-variance trade-o appears. Namely, the bias of the
estimator is of order h$*1, whereas its uctuations are of orderh! 9%2="n (at least
for d 3). This decomposition can be compared to the classical bias-variance
decomposition for a kernel density estimator of bandwidthh, say for the pointwise
estimation of a function of classC® on the cube[0; 1]%. It is then well-known (see
e.g. [Tsy08, Chaptsr 1]) that the bias of the estimator is of ordeh® whereas its variance
is of orderh 9%2="n. The supplementary factor h appearing both in the bias and
uctuation terms can be explained by the fact that we are using a normH,, tm)
instead of a pointwise norm to quantify the risk of the estimator: in some sense, we
are estimating the antiderivative of the density rather than the density itself. This
is particularly true if d=1 and p=1, where the Wasserstein distance between two
measures is given by thd.; distance between the cumulative distribution functions of
the two measures [Sanl5, Proposition 2.17].

Before giving a proof of Theorem 5.2.1, let us explain how to extend it to the
case where the manifoldM is unknown and in the presence of orthogonal noise. The
measure np is the measure having densityKy, ( n= ) with respect to voly . Of
course, ifM is unknown, then so isvoly, and we therefore propose the following
estimation procedure ofvoly , using local polynomial estimation techniques from

with X = YiZ;, Y of law andZ; 2 TyM? with jZ;j . Let { be the empirical
measure -1 jsi X; x;. Fortwo positive parameters ", ", the local polynomial
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estimator ("i; Vaoii; it ;Vm 1;j) of orderm at X; is de ned as an element of
0 1
. X 1 . ?
arg min H@x (x) Vi[ (x) '] 1fx2B(0;")gA; (5.19)

; Sup, i om 1kVJ kop X J:Z

where the argmin is taken over all orthogonal projectors of rank d and symmetric
tensorsV; : (R%) ! RP of orderj.! Let T\ be the image of and i : v 2
RD 71 Xi+ v+ jmzzl\’)j;i [v !']. We summarize the results of [AL19] in the following
proposition (see Section 5.4.1 for details).

Proposition 5.2.4.  With probability at least 1 cn ¥4, if m  k, (logn=n)¥ |
"1, . "andl. . " 1 then,

max \ (Tym; fy . »m 14 = 1 (5.20)
I n
and, forall1 i n,if v2 T withjyj 3", we have
T () A )] B (5.21)
d%i(v) d( v, v)(v)  ormter h (5.22)
op

Hence, if is of order at most"¥, by choosingm = k, it is possible to approximate
the tangent space atY; with precision "k * and the local parametrizaéion with precision
"k In particular, authors in [AL19] show that, with high probability, n BAi(ﬁ)(Xi;")
is at Hausdor distance less than"X + from M (up to a constant). We now de ne
an estimator Yoly of voly by using an appropriate partition of unity ( j);, which is
built thanks to the next lemma. We say that a setS is -sparse ifjx yj for all
distinct points x;y 2 S. Recall that M denotes the -neighborhood of the setM .

Lemma 5.2.5 (Construction of partitions of unity) . Let . 1. LetS M be a
set which is% -sparse, withdy (M jS) 4 . Let :RP ! [0;1] be a smooth radial
function supported onB(0; 1), which is equal tol on B(0;1=2). De ne, for y 2 M

andx 2 S,
y X

W)= (5.23)
x2S 8

P
Then, the sequence of functions, : M ! [0;1]for x 2 S, satises (i) ,,5 x 1
with at most cq non-zero terms in the sum at any given point oM , (i) k xkgm )

C.g 'forany!| O0and, (i)  is supported onBy, (x;8 ).

A proof of Lemma 5.2.5 is given in Section 5.4.1. Given a sé M with
dq (M jSg) 5=3, the farthest sampling algorithm with parameter 7 =3 (see e.g. [AL18,
Section 3.3]) outputs a setS Sy which is 7 =3-sparse and7 =3-close fromS: the
set S then satis es the hypothesis of Lemma 5.2.5. The next proposition describes
how we may de ne a minimax estimator ¥ol,, of the volume measure orM (up to
logarithmic factors) using such a partition of unity.

Theorem 5.2.6 (Minimax estimation of the volume measure onM ). Letd D be
integers andk 2. Let 2 Qg;k( ) and let X1;:::; X, be an-sample of law 5 . Let
(logn=p)®4 . » 1, . " 1. . L

1The existence of such a measurable application follows from the Kuratowski-Ryll-Nardzewski
selection theorem [ABO6, Theorem 18.13].
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(i) Let fX;,;:::;Xi,g be the output of the farthest point sampling algorithm with
parameter 7'=24 and input f X 1;:::; X ,g. With probability larger than 1 cn =9,
there exists a sequence of smooth nonnegative functions: M =81 [0:1] for
1 j J,suchthat j is supported onBy,-s(Xj;"), k jkcl(M":S) . " Yand

jJ:l j(z) =1 for z2 M =8, with at most ¢4 non-zero terms in the sum.

(i) Let i be the local polynomial estimator of ordem  k with parameter” and ",
and T} the associated tangent space. Lefioly be the measure de ned by, for all
continuous bounded functiond : RP | R,

Z N Z
f (x)dVoly (x) = . f(x) j(x)dx; (5.24)

j:l ']('J)

where the integration is taken against thel-dimensional Hausdor measure on
" (fi)). Then,for 1 r 1 , with probability larger than 1 cn ¥4, we have,

for "2,
!
. Yolu_. volu_ 4 oum. (5.25)
i$oly j ivolm]
(iii) In particular, if m=k," (logn=n)"9and . "2, we obtain that
|
: K
jfolyj Jvolm]j n

Also, for any min > 0and0 s <Kk, if fyn is small enough, and iff max; Lk;Ls
are large enough, then

a|x

vol .
QE W &+

1
jvolmj’ n

(5.27)

n

Let N = Ky Yoly . We de ne A, as the @easure having densitK, ( n="h)
with respect to the measure$ly , where , = % -1 X, Is the empirical measure of
the sample(Xq;:::; Xn).

Theorem 5.2.7. Letd D beintegers,0<s k 1withk 2andl p<1.

Let 2QS5 (), with the rst marginal of and letXy;:::;X, be an-sample of law

# . There exists a constant depending on the parameters of the model such that the
following holds. Assume thaK is a kernel satisfying conditionsA, B (k) and C( ),
that (logn=n)*=4. " . h. 1, . "2,1. > . " 1 and consider the estimatorfoly

de ned in (5.24) with parametersm, " and *. Then,

() The measure”,;, is a nonnegative measure with probability larger thad cn =9,

(i) Dene "r?;h = "yp if Mqn IS @ nonnegative measure and‘rﬁ’;h = x, otherwise.
Then, with probability larger than1 cn k=9,

Wo("ans ) -+ "™ (5.28)
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(i) In particular, let m= ds+1e, " (Inn=n)¥4, > " landh n 7@s+d) jf
d 3 h (logn=n)*difd 2. Then,
8 s+1
2n zs+d ifd 3
EWp("%ni ).+ _n Z(logn)z ifd=2 (5.29)
“n if d=1:

(iv) Furthermore, if 0 s<k and min > O, for any f,n small enough andf ax,
Ls, Lk large enough, we have

Rn(; Q3( W) & + (5.30)

Remark 5.2.8 (Numerical considerations) There are several considerations worth of
interest concerning the numerical implementation of the estimatorsfolyy and "y . In

a preprocessing step, one must rst solve the optimization problem(5.19) for each
element X;; of the output of the farthest point sampling algorithm. Let N; be the
number of points of the sample at distance less thati from X, (which is with high
probability of order n"d  logn). For k = 2, minimizing (5.19) is equivalent to
performing a PCA on the N;j neighbors ofXj, , with a corresponding time complexity
of order O(Nj3) with high probability. For k 3, as the space of orthogonal projectors
of rank d is a non-convex manifold, the minimization of the objective function is more
delicate. In [ZJRS16], a Riemannian SVRG procedure is proposed to minimize a
functional de ned on some Riemannian manifold. Their procedure outputs values
whose costs are provably close to the minimal value of the objective function, even for
non-convex smooth functions. The implementation of such an algorithm is a promising
way to minimize (5.19) in practice.

Then, the uniform measure onM can be approximated by considering the empirical
measure(Oy )n of a N -sample of lawOy := ¥oly =j%oly j. To create such a sample,
we may use importance sampling techniques to sample according to the measure with
density ; on " (fi,). Finally, the measure "r(]:\:]) with density Kp  ( n="4) with
respect to (Oy )n may be used as a proxy for'nn .

5.3 Proofs of the main theorems

5.3.1 Bias of the kernel density estimator

The rst step to prove Theorem 5.2.1 is to study the bias of the estimator, given by
the distance k kal(M) between  and . Write ~for = 4. Introduce the operator

Ap:B5q(M)! Hp'(M)denedfor 2Liy(M)andx2M by

Z
) = Knx y) ) x) dvoly (x): (5.31)
h(X) M

An (X) == Kp

Then,

k h kal(M) = kAhf kal(M) k AthS;q(M);le(M)kf kBS;q(M)
. (5.32)
k AthS,q(M)erl(M)LS

Proposition 5.3.1. LetO<s Kk 1,1 p< 1, andassume thatthe kerneK is
of order k. Then, if h. 1,

KARKg sy 2(M) - hs*t: (5.33)
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The proof of Proposition 5.3.1 consists in using the Taylor expansion of a function
2 Bpg(M), and by using that all polynomial terms of low order in the Taylor
expansion disappear when integrated against , as the kernelK is of su ciently large
order. Namely, we have the following property, whose proof is given in Section 5.4.3.

Lemma 5.3.2. Assume that the kerneK is of order k and letB : (RP)i | R be a
tensor of orderl j<k . Then, forall x2 M,
z

Kn(x y)B[(x y) 1ldy . kBk,,h" (5.34)
M
i n(x) 1. h* ' and k hkggmy. h* (5.35)

Let us now give a sketch of proof of Proposition 5.3.1 in the case<s 1. The
H, *(M)-norm of A;, is by de nition equal to
Z
kA kal(M) = sup (An )gdvoly ; kng; vy 1

Let g2 HF} (M) with kgky1 (qy 1. We use the following symmetrization trick:
p
z zZ

An (X)g(x)dx = Kn(x  y)(T(y) "(x))g(x)dydx
ZZ
= Knly X)(7(xX) ~(y)o(y)dydx (by swapping the indexesx and y)
7
= % Kn(x  y)(T(y)  ~(x))(a(x)  g(y))dydx (5.36)

where, at the last line, we averaged the two previous lines and used th# is an even
function. Informally, as Kn(x y)=0 if jx yj h, and as j is roughly constant,
we expectj (y) "(x)j to be of orderhs and jg(x) g(y)j to be of orderh, leading
to a bound of A, (x)g(x)dx of order hs*1. For | 1, the following analog of the
symmetrization trick holds.

Lemma 5.3.3 (Symmetrization trick) . There exjstshp . 1 such that the following
holds. Let0 | k 1beevenandleK®O(x)= JK (x)%d for x 2 RP.
Fix Xo 2 M and let 2 C! (M) be a function supported inBy (Xo;ho). De ne
R = d(™  x) ~x- Let g2 Lp (M) with kgk., vy 1. Then, for h . 1,
An (X)g(x)dx is equal to
1ZZ
3 K2 I 00w M1 @) gly)dydx + R;
Bwm (Xo:ho)?
(5.37)

whereR is a remainder term satisfyingjR;j . k*ngJ(M)h'*l. Furthermore, if | k 2

is even, we havgRj . k7, (M)h"’z.

Lemma 5.3.4. Let 2C! (M) andlet0O | k 2. Assume that eitherl =0 or
that is supported onBy (xo; hg). Let | = d'( xo) ~xo- Then, foranyh. 1,
I
ZZ *1=p
K 1(x kP

h d ix yji hg O 1Wkep
Bw (Xo0:ho)2 X yjP 5 38
7 o (5.38)

k 141 (K5, dx - KKy gy

Bm (Xo0;ho)
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Proofs of Lemma 5.3.3 and Lemma 5.3.4 are found in Section 5.4.3. We may now
conclude the proof using those two lemmas. Let 2 C! (M) be a function supported
in By (Xo;ho) and g2 Hy (M) with kgky: vy 1.
p

Case 1: siseven Letl=s. Assume rstthat p> 1 and that g is smooth. We

hpye
Kn(x Y 90 90 jgx)  oiix  yj'dxdy (5.39)
Bm (Xo;h0)?2 op
zz 9 o)
K Kky ()t d 1fix yj hg Ty e S IWgqy
Bm (Xo;ho)?2 op X Y]
z7 ; ' 1=p
k Kky ()"t (h) d fix yj hg 7(y) 7(x) dxdy
Bwm (Xo0;ho0)? op
77 . . ' 1=p
p
(h) d 1fix yj hgd*) I 44
Bwm (X0:h0)2 jx yP
Z 0 ! 1=p
. (h)*t 2°(h) @ ~“(x) "~ voly (Bm (x; h ))dx kgKp1 w)
x2B v (X0;ho) op P
ke oy (D)™ K kg (D) (5.40)

where at the last line, we used Proposition 3.5.7.7 to control the volume dBy (x; h )
and, at the second to last line, we used Lemma 5.3.4. Furthermore, it follows from
Leibniz formula for the derivative of a product and Lemma 5.3.2 thatk‘kH:)(M) .

k kHlp(M).

As C' (M) is dense inHJ (M), inequality (5.40) actually holds for every g 2
HJ (M). If p=1, then every functiong 2 Hj (M) with kng; )  1is Lipschitz
continuous for the distancedy (see Remark 5.1.2). Using thatdg(x;y) 2jx yj if
X yj min =2, @ Similar computation than in the casep < 1 shows that inequality
(5.40) also holds ifp= 1 .

By integrating inequality (5.40) against 2 (0;1) and by using Lemma 5.3.3, we
obtain the inequality kAn Ky 14y - hs*1k Kism)-

Case 2. sis odd Similarly, we treat the case wheres k 1lisodd. Letl=s 1.
C%nzce again, assume rst thatp > 1 and that g is smooth. Then,

Kn(x yi "y) ") OIOJ'g(X) g(y)iix  yj'dxdy

Bwm (Xo;ho)?
zZ ~ ~ . .
| O T ig) g

Knh(x y)j . . . p

Bu (xo:ho)? X Y] X Y]
zz ) Ti(x)

Kk Kky (h)i2 d fix yj hg— —ol8) OO 4
Bur (xo:ho)? X Yj ix i

jx yj"?dxdy

1 4=
27 <) 00 " =

K Kki (h)*2Bhn) ¢ Mix yj hg— —  %Paxdyk
Bwm (xo0;ho)? jx yjP

z7 Pi=p

- -p :
(h) ¢ 1fix yj hg9%) 9P 4
Bwm (Xo:ho)2 X yjP
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(MK ks (5.41)

where at last line we used Lemma 5.3.4 and the inequality‘kH}j(M) .k kHJ)(M). As

in the previous case, the same inequality holds fog 2 Hé (M) non necessarily smooth
and if p=1. By using Lemma 5.3.3 and by integrating(5.41) against 2 (0;1), we
obtain that kAn Ky 1y - h*"k kusm).

So far, we have proven that

kAR Ky hs*1 k Kris(m) (5.42)

(M) -
for all integers0 s k 1and a smooth function supported onBy (Xo; ho).
To obtain the result when is not supported on some ballBy (Xo; hg), we use an
appropriate partition of unity. Indeed, for = hp=8, standard packing arguments
show the existence of a se§y of cardinality N cgjvolyj 9 with dy (M jSp) 5=3.
By the remark following Lemma 5.2.5, the output S of the farthest point sampling
algorithm with parameter 7 =3 satis es the assumption of Lemma 5.2.5, and is of
cardinality smaller than N . 1. We consider such a coverindBy (X; hg))x2s, with
associated partition of unity ( x)x2s. Then, kA ka LM) is bounded by

X KAR( x K et kL K
bt x JRH (M) - x RH(M)
x2S X2S
hS+1 k XkCS(M)k kHS(M) . h|+1k kHS(M)’
x2S

where the second to last inequality follows from Leibniz rule for the derivative of a
product. Also, the last inequality follows from the fact that ( x)ju = x im, Where
im :M ! M s the inclusion, which is aC* function with controlled C¢-norm. Hence,
kK xkesqmy - K xKesm ) - 1 by the chain rule.

As C! (M) is dense inHZ(M), this gives the desired bound on the operator
norm of Ap : H3(M) ! le(M) for0 s k 1 an integer. To obtain the
conclusion for Besov spaceB;.,(M), we use the interpolation inequality (5.9). By
the reiteration theorem [Lun18, Theorem 1.3.5], forO0 < s < k 1, Bg;q(M) =
(Lp(M); H'Ff Y(M))s= 1):q» With an equivalent norm. Hence, we have, fol0 < s <
k 1,

KARKgs vyt - KARKE gy 1y KARK e
hl ks—lhkks—l . hs+1;

EM)Hp T (M)

so that Proposition 5.3.1 is proven fors <k 1. It remains to prove the inequality in
the cases = k 1. By Fatou's lemma and the de nition of interpolation spaces (5.8),
we have, for some constanC not depending ons,

. Lo s+1 k
kAL Kk Isllmkmf1 kAhkag;q(M) |SI!'nkIn]1 Ch>™= kf kBg;q(M) Ch"kf k

s<k 1 s<k 1

Big (M) Bqt(M)’

where we used thatkf kBg.q(M) k f kBl’;Aql(M). This concludes the proof of Proposition
5.3.1. ' ’
5.3.2 Fluctuations of the kernel density estimator

The purpose of this section is to prove the following bound on the uctuations of the
kernel density estimator.
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Proposition 5.3.5. Let 2 QS(M) with Y3;:::;Y, a n-sample of law . Assume
that h. 1 and thatnh® & 1. Then,

EK nh nky ey - N PR 4=2| 4(h); (5.43)

wherel 4(h) is de ned in Theorem 5.2.1.

Let be the Laplace-Beltrami operator onM and G : Uy ! R be a Green's
function, dened on f(x;y) 2 M M; x 6 yg (see [AL{QSZ, Chapter 4]). By de nition,
if f 2 C' (M), then the function Gf : x 2 M 7! " G(x;y)f (y)dy is a smooth
function satisfying Gf = f, with r Gf (x) = r xG(x;y)f (y)dy for x 2 M. Hence,
if w=r Gf,thenr w= f, so that, Proposition 5.1.3 yields

kf K k fk kr Gfke,m):

Hp (M) Hp (M)

By linearity, we have

K nn thpl(M) = kKy (n )kal(M)

1 X v v (5.44)
— ré K ' ErGc K ' :
n_, YD) YD)

Lp(M)

The expectation of the L ,-norm of the sum of i.i.d. centered functions is controlled
thanks to the next lemma.

Lem 5.3.6. Let Uy;:::;U, be iid. functions on L,(M). Then, the expectation

E & LU EU) Ep(M) is smaller than
n 02" E Ui Pz ifp 2
2R ) yi2 b2 R . , " (5.45)
Cpn P EjUi(2)j> "“dz+ Cpnt P, E[jUi(2)jPldz if p> 2
Proof. If p 2, one has by Jensen's inequality
- . 0 o 21 p=2
E (U@ EU@) @ (U@ Eu@) A " EuEP "™

i=1 i=1

and (5.45) follows by integrating this inequality against z 2 M. For p > 2, we use
Rosenthal inequality [Ros70, Theorem 3] for a xedz 2 M, and then integrate the

inequality againstz 2 M. O
h [
p
It remains to bound E r G Ky h(YY) (z) whereY , 22 M and
p 2
Lemma 5.3.7. Letp 2 Then,forallz2 M andh. 1,
8
) 21 ifd=1
Y e
E rG Ky ) (z2) . S logh if p=d=2 (5.46)

© hptd dp o glse
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A proof of Lemma 5.3.7 is found in Section 5.4.4. Fron{5.44), Lemma 5.3.6 and
Lemma 5.3.7, we obtain, in the casgp 2andd 3

1=p
EK nn nky sy EK i hkﬂpl(M)
0 Z 2! p=2 ! =p
Con 2@ Er G Ky A4 (2) dzA
h(Y)
z y P 1%
+Con™* 1 E r G Ky ) (z) dz

n 1:2jVO|Mjl=phl d=2 4 r]l=p 1jVO|Mjl=phl+d=p d:

Recalling that jvoly j fmi}] . 1 and that nh? & 1, one can check that this quantity
is smaller up to a constant thann 172h! 92 proving Proposition 5.3.5 in the case
p 2andd 3. A similar computation shows that Proposition 5.3.5 also holds if

p 2ord 2

5.3.3 Proof of Theorem 5.2.1

The proof of (i) is found in Section 5.4.5. Let us now prove (ii). IfO<s Kk 1, by
Proposition 5.3.1 and (5.32), we have
s+l.
k thpl(M) LSkAthS;q(M);Hp 1wy - PP
Combining this inequality with Proposition 5.3.5 yields (5.15).
Let us prove (iii). Let E be the event described in (i). IfE is realized, then
0n isequalto npn, anditsatises O, 'mmvoly. Thus, Proposition 5.1.6 yields
Wo( i ) - Kn Ky 1) If E is not realized, we boundWpy( py; ) by
diam(M ), which is itself bounded by a constant depending only on the parameters of
the model (see Proposition 3.5.7.3). Hence,

EWp( %n; ) E Wp( pp: )IFEg +diam(M)P(E®)
k=d.
Ek n;h kal(M)+ n y
and we conclude thanks to (5.15).
Finally, a proof of (iv) is found in Section 5.4.7.

5.3.4 Proofs of Theorem 5.2.6 and Theorem 5.2.7

Proof of Theorem 5.2.6(i).

Assume that "=24. Let X = X, Xpgand Y = fYyg;:::;Yag. By the
remark following Lemma 5.2.5, the existence of a partition of unity satisfying the
requirements of Theorem 5.2.6(i) is ensured as long ak; (M =8X) 5'=24. We have
dg (M =8X)  dy (M =8jY)+ "=24 dy(MjY)+4"=24. Hence, the partition of unity
exists if dq (MjY) "=24. This is satis ed with probability larger than 1 cn k=9 if
" & (logn=n)¥9 by [Aam17, Lemma 111.23].

Proof of Theorem 5.2.6(ii).
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Figure 5.1: lllustration of Lemma 5.3.8(a)
Lemma 5.3.8. If (logn=n)1=¢ . " . 1, with probability larger than 1 cn *=9, for

(@) The map v, y ij (0;3") ! M is a di eomorphism on its image, which
contains By (Yj;2"). Let §; : Bm (Yj;2") !B 1 (0;3") be the inverse of v, ;.

Then, ;'S :Bu(Y;;2) ! ";(f}) is also a di eomorphism on its image,
which contains B“j(ﬁ)(xi ;"). Furthermore, for all z 2 By (Yj;2"), we have

i S X gz Y
(b) The measure(”; Sj),! ; has a density~ on M equal to
~@= (" @I S)(2); for 22 M; (5.47)
where the function is extended b@ for z 2 M nBy (Yj;2").

(c) For z2Bwm (Yj;2"), we have

i"i S@ zi. "M+ (5.48)
i~ (2) i(@)j. "™+ (5.49)

S
A proof of Lemma 5.3.8 is found in Section 5.4.6. LeM. = ~J_, Br 1) (Xi:")
be the support of Yol .

Lemma 5.39. letl r 1 .Let :M! R, ~:M:! R be functions satisfying
min T max fOr some positive constants min; max > 0. Assume further that
forallj =1;:::;J and for allz2 M we have, ~(Aj Si(2)) (z)j T. Then, with
probability larger than1 cn k79, we have
!

~ Yol I
W, Mo YOM oy M ) (5.50)
j~ olyj i Vvolmj
where Cy depends on mjn and  max-
In particular, inequality (5.25) is a consequence of Lemma 5.3.9 with ~ 1

Proof. Assume rstthat r< 1. If ("™ + ) & 1, there is nothing to prove, so we
may assume that("™ + ) 1=(2Ccq), Wherecq is the constant of Lemma 5.2.5 and
C :=sup,om j5(2) i (@)j=("™+ ). We have the bound
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Wr - \‘;OlM . VO||\/| — 1 Wr - \‘FO'M VO||\/|j~ \9b||\/|]
i™ Gol 'l volml = ol i1 - Voly j
L @ s A
— — W, T i Si)e (T
j7 Yoly j= j=1 j=1
0 1
X i~ Foly i
+ W, @ (N s) N ) ] VOolmIa
Wi j:1( j SJ)# ( i) V0|Mj VOl |
(5.51)

We use Proposition 5.1.6 to bound the second term irf5.51). By a change of
variables, the density of ("; Sj),(~ j)isgivenby 5 :z7' ("} S(2)~(2).
With probability larger than 1 cn K9, we have forz 2 M,

X X 1 1
~(2) i Ce('™+ ) 1 ;=3
j=1 j=1
Hence, by Proposition 5.1.6,
0 1
X i~ Yoluij
W, @ (" s)NT ) IVERERALUEY
r j:]_( j J)#( i) VOMJ VOIv |
. 1=r 2 1 1=r X] “] J~ \%IMJ
min =1 j  volu]j Mo o)
2 X7 Yoluj
min ~ =1 J j volvj
0 Lr(M) 1
2 X i volmj j =~ %luii
1 ?@ ~ + _MJ J _ MJJk kLr(M)g:
min _— j voluj
! Lr(M)

Remark that ~j(z) 2forany z2 M. Therefore, we have according to Lemma 5.3.8,

J~J (Z) (Z) j(Z)j 2T + maxj j(z) 7] (Z)J T+ max(Ilm + ) Hence, we have
the bound,

X X

i~ $olwjj  volwjj § § jvoly j*
=1 Lymy 17t Ly (M)
X
T jvolmj. T+ max("™+ ):
1=t Ly (M)
(5.52)
Ask ki, (my ] VOIy j¥" max andj  voly j minjvolm j, we nally obtain that
0 1
X i~ Volu j
W@ (Y )N ) volwi——MA e Temy ),
r j:1( J SJ)# ( J)’ VOMJ VOIMJ Cmmymax( )
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with the constant C .
onr.

in the upper bound depending on min and max, but not

max

P
To bound the rst term in (5.51), consider the transport plan j]:]_(id;(l\j
Sj) D (T i); which has, according to Lemma 5.3.8, a cost bounded by
¥ Z
. N . ~ " . .
iy (Cpos) twitdT D) - ma ("M )" jolmj:
j=1
As jYolyj . jvolyj+ T+ max("™+ ), we obtain the desired bound. By letting
r'!'1 , and remarking that the di erent constants involved are independent ofr, we
observe that the same bound holds for = 1 . O
Remark 5.3.1Q Inequality (5.52) with 0 1 gives a bound on the distance

between the total mass oféoly and the volumejvoly j of M : choosingk = m, it is of
order "k +  with probability larger than 1 cn k=9,

Proof of Theorem 5.2.6(iii).
Inequality (5.26) is a consequence of Theorem 5.2.6(ii), whereas the lower bound
on the minimax risk (5.27) is proven in Section 5.4.7.

Proof of Theorem 5.2.7.
Note rst that “,p is indeed a measure of mass. We show in Lemma 5.4.6 that

T:=max sup Kn = (" S@) Kn -2 (2
=153 208 (V) 1) “h b h

satisesT . "M+ with probability largerthan 1 cn ¥4, Asfmin=2 Kpn ( n= )

2f max ON' M by Theorem 5.2.1(i), and as everyy 2 M- is in the image of *; ' S; for
somej =1:::J, we havefmin=3 Kn ( n=%) 3fmax on M- should "k + be
small enough. This proves Theorem 5.2.1(i) and, together with Lemma 5.3.9, this also

proves Theorem 5.2.7(ii). Theorem 5.2.7(iii) is a consequence of Theorem 5.2.7(ii) and
Theorem 5.2.7(iv) is proven in Section 5.4.7.

5.4 Appendix to Chapter 5

5.4.1 Geometric properties of C¢ manifolds with positive reach and
their estimators

LetM 2 M k;fn . forsomek 2and min;L> 0. We rst give elementary properties
of CX manifolds.

Lemma 5.4.1. Let x 2 M. The following properties hold:

(i) There exists a mapNy : Br,m (0;r0) ! TxM? satisfying dNy(0) = 0, and such
that, for u 2 Bt,m (0;ro), we have (u) = x+ u+ Ny(u) with jNy(u)j  Ljuj?.

depending onL, d, k and min, such that, if u2 TyM satises juj Cy.q., then
J xu=1+  [PBIU T+ Ry(u), with jRe(u)]  C2q juik.
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Proof. Bysa Taylor expansion of  at u=0, we have x(u)= X+ u+ Nx(u), with
Nx(u)= g d? «(tu)[u 2]dt. Hence,jNx(u)j Ljuj?. Furthermore, as~  x(u) = u,
we have y(Ny(u)) =0, i.e. Ny takes its values inTxM ? . This proves (i).

Let us prove (ii)). We haved y(u) = idt,m +dNx(u), and d x(u) d x(u) =
idt,m +(dNx(u)) dNx(u). Therefore,

I ()= " deld X(W) d (W) = detidr,w +(dN,(W) dN():

One hasdNy(u) = dNy(0)+ jk=21 déijl()(!’) [u 0 D]+ Ry(u), with jRe(u)]  C. jujk 1

and dNx(0) = 0. Hence,(dNx(u)) dNx(u) is written as }‘:21 Bj[u 11+ RY(u), with
JRO(U)j Cﬁljuj". The operator norm of this operator is smaller than, say,1=2 for juj
su ciently smapy and we conclude the proof by writing a Taylor expansion at 0 of the
function F 7! = det(id+ F). O

We now prove Lemma 5.2.5, on the construction of smooth partitions of unity
based on some se$ which is su ciently sparse and dense over a tubular neighborhood
of M.

Proof of Lemma 5.2.5. Consider the functions and ( x)x2s as in the statement of

the lemma, and, fory 2 M , let Z(y) =  ,o05 VS—XO . Asdy(M jS) 4, we

have Z (y) %and the quantity 4(y) is well-de ned. The function  is smooth,

and we have ,,5 x lonM . One hasd'_ x(Y) which is written as a sum of

terms of the formd' | X d(Z )(y), andd (Z Y)(y) is equal to a sum of terms

of the form zi° 1 2(y)d°z(y) for 1 j° j. Also, d %X ¢ | and
. P op

dZ(y) op Ci ! ,,slfix yj 89 Hence asZz 1, we have foranyl 0

X
d «(y) c® ' 1fix yj 8¢
op x2S

It remains to bound this sum. If x 2 B(y;8 ), then u(X) 2 B( m(y);10). Also,
forx 6 x2 S, we havej yv(x) w9 jx x§ 2 2 . In particular,

the balls By ( m(X); ) for x 2 S are pairwise disjoint, and are all included in
Bm ( m(y);11) . Therefore, if 11 (M)=4, using Proposition 3.5.8.7 twice, we
obtain that voly (Bu ( m (X); )) ¢q 9, and that

X X :
ix yi 8g  1fix yj 8g2MBulm:)
x2S x2S Cd
voly (Bm( m(y);11)) .
o ¢ Cy:
This concludes the proof. O

We end this section by detailing the properties of the local polynomial estimators
i and T; de ned in [AL19]. In particular, we prove Proposition 5.2.4. Recall that
Xi=Yi+ Z with Y; 2 M and jZjj . Aamari and Levrard introduce tensors\/j;i
which are de ned asd x,(0)=j!, whered , (0) is the jth dierential of x, at O
(see the proof of Lemma 2 in [AL19] for details). In particular, we haveVy,; = ;.
Furthermore, as ~v, y, =id, we have vy, Vi =0 forj 2

N

Lemma 5.4.2. With probability larger than 1 cn ¥ forany 1 i n,
(i) We have\ (Ty,M; Tj) . "m 14 » 1
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(i) Forv2, we have™i(v)= Xi+ v+ Ni(v), whereN; : fi I 17 is de ned by
Niv) = L 0 Iv 1.
(iiy Forany 2 j<m, O NV, oy . "M+t
op
(iv) For v2B4(0;3"), we have

IO BT E1C) L (5.53)
i) Ny (v ()j. ™+ (5.54)
dN) Ay W) e (5.55)
ali(v) ANy o)) T e (5.56)

Proof of Proposition 5.2.4. Lemma 5.4.2(i) is stated in Theorem 2 in [AL19]. Remark
that for x 2 B(X;;"), with x = x  X;, and any orthogonal projection
2
X 1 .
x (%) Vil 00 ]

X 1 o .
= x (% RN ORI Vil (%) ']
j=2 j=2

so that we may always assume that the tensor§7j;i minimizing the criterion (5.19)
satisfy * Vj;i =0 forj 2. This proves Lemma 5.4.2(ii).

We prove Lemma 5.4.2(iii) by induction on2 j<m . The result forj =2 is
stated in [AL19, Theorem 2]. It is shown in [AL19] (see Equation (3)) that there exist
tensors\/jfi’ for1 j<m satisfying with probability larger than 1 cn k=,
nmog o (5.57)

0
\/J;i Yi op-

The tensors\/j;ﬁ’ are de ned by the relations, fory 2 M close enough toY;,

) 1 ,
y Yi= vy Yo+  Vilwly Y)'I+Ry V)
j=2
'le _ ! ,
y Yoonty ) %o 1= MTvy ) T+ RYy Y);
i=2 j=1

with jR(y  Y)j;iRYy Y))j. "™, see the proof of Lemma 3 in [AL19]. In particular,

for j 2, noting that v, \/j;i =0, we see that\/j;? y, IS written as the sum of

Cvi M) Vg vV Yi \7j;i 7)) and of a sum of terms proportional to

‘Oj o[  Va viiiin Vaj o vil; (5.58)

1

where2 j%<j andag+ +@o=],1 ai::i;go0<]j. There exists in particular
an index in the sum which is larger than2. Assume without loss of generality that
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a;;ii;a > landagg;iii;ao0=1,s0that” Vi =0forl u | Then,

Ojo;i[/\i Vai Yo 5N Vaio vt N Vagio vl

= <>J oi [ (Val;i <>:’:11;i) visiin N (Va| i Oaui) vir i Vaj o vi ]

op
Y
Vau;i Yi Oau;i Yi o
u=1 P
Vasii ¥ <>au;i A o + Ky, Aikop
u=1 P
n 1 nm ay + 1] Ay + nm 2 + n 2
u=1

n l(nlm (J |) + ||| (J |)) . nm ] + n J,

where at the last line we use the induction hypothesis as well as Lemma 5.4.2(i), the

factthat ., a =] landthat™. " L As (y 7)) V; . "mi4 2
i op

we obtain that

Vioov oMy v o U

Hence, using (5.57),

Viooov Vo Vioov oMy v v+ v
op op

nm J + " J:

Yi op

We now may prove (5.53). Indeed, forv 2 B (0;3"), we have “j(v) = X; +
v+ jm=21\7j;i [v 1], whereas by a Taylor expansion, Yi vv(V) = Yi+ vy (v)+

jmzzl\/j;i[ v, (V) 11+ R(v), with jR(v)j . "™M. By Lemma 5.4.2(iii), the di erence
between the two quantities is bounded with high probability by a sum of terms of
order ("™ 1+ " Djvjl . "M+ | Inequality (5.54) is directly implied by (5.53) and
Lemma 5.4.2(i). Inequality (5.55) is proven as (5.53), by noting that, forh 2 f;,

— Pm 1- ) G 1
dC v, v )WIL=E v+ LNV )5y () © D1+ RYwh
d"jMIh = h+ M % vih O D),

with kRO(v)kop . "™ 1 Equation (5.56) is shown in a similar way. O

5.4.2 Properties of negative Sobolev norms

Proof of Proposition 5.1.3. The second inequality in (i) is trivial. The assertion (ii)
is stated in [BCS10, Theorem 2.1] for an open set RY, and their proof can
be straightforwardly adapted to the manifold setting. It remains to pgpve the rst
Eequali% in (). Note that Egr any g with kr gkL'D (m) 1, one has fgdvoly =
f(g gdvoly )dvoly as fdvoly =0. Also, by Poincaré inequality (see [BCH18,
Theorem 0.6]),
Z 1
g g CrR
Mo L, (M)

d
p

d
ok oKL, (M) CoRb ¥
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Figure 5.2: lllustration of the construction in the proof of Lemma
5.4.3

where R = maxfdg(x;y); X;y 2 Mgand C depends ond and on a lower bound on
the Ricci curvature of M. Therefore, g, 9 1 (M) C Rp . The quantity
p

can be further lower bounded by a constant depending onnin and d. Indeed, a bound
on the second fundamental form oM entails a bound on the Ricci curvature according
to Gauss equation (see e.g. [Car92, Chapter 6]), and the second fundamental form is

controlled by the reach ofM, see Proposition 3.5.6. ACP C _ 1, to conclude, it
su ces to bound the geodesic diameter ofM . This is done in the following lemma. O

Lemma 5.4.3. The geodesic diameter oM satis es sup., o dg(X;Y) cgjvolmj * mm .

Proof. Consider a covering ofM by N open balls of radiusr; = (M )=4 (for the
Euclidean distance) and letx;y 2 M. Such a covering exists withN  cgjvolum jrlOI
by standard packing arguments. Let :[0;°]! M be a unit speed curve between
x and y. Let Bg be the ball of the covering such thatx 2 Bg. If y 2 Bg, then
jx yj 2ry, and by [NSWO08, Proposition 6.3], we havedy(x;y) 4ri1. Otherwise, let
to= infft 2 [0;°]; 8t° t; (19 62Bog. Thenxy := (to) belong to the boundary ofB,
and is also in some other balB;. By the previous argument, we havedg(X;x1)  4ri.
If y2 By, then dyg(X1;y) 4rp anddg(x;y) 8ri. Otherwise, we de nety = infft 2
[to; ]; 8t° t; (t9 62B1g and we iterate the same argument. At the end, we obtain
a sequence = Xg; X1;:::;X of points in M with associated ballsB; which contain
Xj, such thaty 2 B, and dg(xi;Xj+1) 4ri1. Furthermore, all the balls B; are pairwise
distinct. As dg(x;;y) 4ri, we have” (I +1)4r; (N +1)4r; 8Nri. By letting
be a geodesic, we obtain in particular = dg(x;y) 8Nry 8cdjvoIMjr} d. O

Proof of Proposition 5.1.6. Given a measurable map : [0;1]! P P, E; a vectorial
measure absolutely continuous with respect to (see [Sanl5, Box 4.2]) and(x;t) a
time-depending vector eld, de ned as the density of E; with respect to ¢, we de ne
the Benamou-Brenier functional

Z

Bo(;E) = jv(x;t)jPd (x)dt: (5.59)

The Benamou-Brenier formula [BBOO; Bre03] asserts that for; 2 PP supported on
some ball of radiusR,

WP(; )=min fBp(GE), @t+r Et=0; 0= ; 1= 0; (5.60)
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where  is supported on the ball of radiusR, and the continuity equation @ +r E =
has to be understood in the distributional sense, i.e.
z z

@ (t;x)d (t;x)+ r (tx) de(t;x)=0; (5.61)
[0;1] RD [0;1] RD

forall 2 C!((0;1) B (0;R)) with compact support.

Assume that has a densityfpo and has a densityf; onM. As (M) > 0, the
existence of a probability measure of mas$, supported onM , with density larger than
fmin implies that jvoly j is nite, so that M is compact, see Proposition 3.5.7.3. It is
in particular included in a ball B(0; R) for someR large gnough. Letw be a vector
eldon M withr w= in a distributional sense, i.e. r g w= o( ) for
alg2C(M). Let {=(1 t) +t anddene E the vector measure having density
w with respect to Leb; voly , where Leb; is the Lebesgue measure of®; 1]. Then
(; E ) satis es the continuity equation and E = v wherev(t;x) = %
fort 2 [0;1], x 2 M. Hence,

Z,7Z 1
Wi ) ~jvjPd
Z
_ 17t jw(x)jP
Py @ DfeQ+ tspop - Vb0 i

1 1
N iPx ——_ -
o jw(x)jPdx 5T

min
By taking the in mum on vector elds w on M satisfyingr w = and using
Proposition 5.1.3, we obtain the conclusion. The second inequality i5.10) follows
from Proposition 5.1.3. O

5.4.3 Proofs of Section 5.3.1

Proof of Lemma 5.3.2. We rst prove (5.34). Note thatif jx yj hforx;y 2 M, then
Knh(x y)=0. Hence, by a change of variable, using thaBy (x; h) x (B, m (0; h))
as y is 1-Lipschitz continuous,

z z
Kn(x Y)B[(x ) ldy= Kn(x  x(W)BI(X  x(v)) 113 x(v)dv
M 7 Brym (O;h)
= k XXM g ) 1 (v
Brym (0;1) h

As the functions  and K are C<, according to Lemma 5.4.1(i) and Lemma 5.4.1(ii),
we can write by a Taylor expansion, forv;u 2 Bt m (0;ro),

% «(V) = x+vI5I-P|kZld X(O)[V 1+ Ry(x;V)
J x(v) =1+ KBV 11+ Ra(x;v)
K(v+u)= K(v)+ Fllde<V>[u 11+ R3(v; )
Bl(v+u) I]=B[v ]+ 4 ;1.44Blv;u ‘1;

(5.62)

wherejR; (x;v)j  Cjjvj* forj =1;2, jRa(v;u)j Csjujk and (v ;u °) is the j -tuple
whoselth entry is equal to v if | 2 , u otherwise. We obtain that

x (v X'd <)

H — X2 [hv) Th ' Ry(x;hv)h %

i=2
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and that the expressionk *—*™ B[(x  ,(hv)) 113 4(hv) is written as a sum
of terms of the form

Cigirih "Cd°K (W[(d* «(O)I(hv) ") "IFi,[(hv) 2] (5.63)

forO ip k 1,2 i; k Zlandj > k% where Fi, is some tensor of order
i» and k%is some integer depending ok and j, plus a remainder term smaller than
kB kopjhvjk +i up to a constant depending onk, j, Ly and K. The terms for which

igip+ 12 1ig k are smaller thankB kOp hk up to a constant, whereas the integrals of
the other the terms are null as the kernel is of ordeik. The rst inequality in (5.35) is

proven in a similar manner. Let us now boundk pkg (M) Given x 2 M, we have to

bound d(n x)0) op- We have

z
d(n x)0)=h (dKn(x  x(v)I x(v)dv:
Brxm (0;h)

Therefore, using the same argument as before, we obtain thatd ( x)(0) op *

hk 11 O
Proof of Lemma 5.3.3. Let 0 | k 1beeven, 2 C! (M) be supported in
Bwm (Xo; ho) for some hp small enough andg 2 L, (M) with kgkLp (M) 1. Let
X =  x(u) 2Bm(xo;ho) and let %, = ~ ,. Recall that 7§ = d' %, ~,. We

have K (x xo(V)) 8 0 only if jx xo (V)] h. Hence, asjx xoM\V)j J u vj
(recall that 4, is the inverse of the projection~,), the function K (x xo()) is
supported onBr, m (u;h) B 1,,m (0;r0) =: Bo for h;ho small enough. Thus,

Z

An (x) Kn(x y(y)  ~(x)dy

ZBM (x;h)
Kh(X  xo(UD( %o (V) “xo(U)J xo(V)dv:

Bo
We may write
X1 g~ 2y |1
S0 o= 2y w e dsr v ouv v 1S
- il 0 (r
Each term RBOKh(X xo(V))d“xi?(u)[(v u) 3 x,(v)dv is equal to
z .
d “x0(™x0 i .
)Tty ) ay;
and is therefore of order smaller thanhkmax; i | 7i(x) op by Lemma 5.3.2. Hence,
Ap (x) is equal to the sum of a remainder term of ordeh* max; ; | ~(X) op and of
VA lZ (1 )I 1
Kh(x  xM)d S(u+ (v u(v u) T3 xo(v)dvd
0 Bg (1) -
1
. Ko xo) do+ (v w) dow v w 1S
0 Bo (1
J xo(v)dvd

+ Ry(x);



5.4. Appendix to Chapter 5 105

wherejR1(x)j . hkmaxy j | 7i(x) by Lemma 5.3.2. We now x 2 (0;1) and
op

write, by a change of variables, and at, m (u;h)  Bg for ho, h small enough,
z
UX) = Kn(x  xoV) d U+ (v ) d5%u) [(v u) ' x(vdv
z P
= Kr X xo U+
Bo

wou (w u) '

d Sow)  d o (u) :

J x, U+t

Note that jKp(u) Kp(v)j. h 9 Yju vjifiuj horjvj hg, andthat, as , is
c,
w u X xo (W)

X xo U+

d oW U (X W) |, Liw up

2 2
Liw  uj® jw  uj?
whereas, as) , is Lipschitz continuous,
w u w u wuj

J x, U+t

J xo(w) . u+

w .

Hence,U(§) is equal to the sum of

L Kn (0 M) dTeW) d o) (W u) T g (w)dw
B
4
= 1 K 00 TG0 00 Kl X)) Ty

and of a remainder term smaller than

Z
| dK h X Xo u + W LI J XO u + W u

Bo

Kh (X Xo (W)) J X0 (W) d| “'XO(W) d| ~x0(u) oij UdeW
Z WU w w uj!
| jwuj® _ .
jw uj. h (h)d+t Joxo U* +JKn (X xo(W)) ]
d W) dSe(u)  jw o ujldw
Z op
. h*(h) @ d W) do(u)  dw:
jw uj. h op

R
Putting all the estimates together, we may now write ,, A, (x)g(x)dx as S + Ry,
where, b%/Zthe symmetrization trick (using that | is even)

o IO T0) 60 (Cxly 200 ey
Z

CKPC Y 300300 10l v) Toty)dydx

S

5 KO y) T 00 1w y) e ay)dydx;
M M
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and, asAy is supported onBy (Xg; ho + h) B wm (X; 2hg) if h is small enough,R> is
smaller than,

Z Z
h*t(h) ¢ d' W) d (e (X)) jg(x)jdwax
x2Bu (x;2ho) W ~xo(X)j. h op
5.64
~ (5.64)
+  hmax T(x)  jg(x)jdx
i op b
h'*1(h) d d 5, (w) jo(x)jdxdw (5.65)
7 w2B y (x;3ho) op jw Zo(x)j- h
+ hi*t () jo(jdx+  h<max T(x)  jg(x)jdx;
x2Bwm (X;2ho) op M il op
where we also used Lemma 3.5.87. By the chain rule,
_ X _
max Ti(x) . max d (x) . d~(x)
10 |l op 10 |l op i1 op

Hence, applying Holder's inequality and using thatkgkLp ) 1show that the two
last terms in (5.65) are of orderh'*lk“kH’g(M). To bound the rst term in (5.65),
remark that by Yougg's inequality for integral operators [Sogl7, Theorem 0.3.1], if

Th(@)(y)=(h) d x yi. h ja(x)jdx, then kT gkLp M) - kgk,_p (M) This yields,
by Holder's inequality,
z

h'*! d W) T (@ xoW)dw . ™ kT w);
w2B y (x;3ho) op

which concludes the proof of the rst statement of Lemma 5.3.3. To bound the
remainder term in terms ofk*kH:;l m)r We bound the second term in(5.64) in the
same fashion, while, to bound the rst term, we write, by a change of variables,

Z

ooy o 800 S0 jg0oidxdw
XQ; W ~x,(X)].
%1% o) | 2 J

| AT () AW (X))
0 Bwm (x0;2ho) jw ~xg(X)j. h op

i ~o(x) _ wijg(x)jdxdwd °
Y4 4

1 1+1 . . du
h d*t So(u)  jo(x)jdx—gd 8
0 Bwm (x0:2ho) ju ~xg(x)i. °h op
and this term is bounded as the rst term in (5.65) by h(h )dk~kH'|)+1 M)’ concluding
the proof of Lemma 5.3.3. O
Proof of Lemma 5.3.4. By the chain rule, we have that, for any u 2 BTXOM (0; hp),
d*1( xo)(U) op - Maxy i 141 d ( x(u) op- HeENce, by a change of variables,
Z Z
K 1+1 (X)KP dx . max d ( x(u) " du
B (o) Bryom (Oiho) 1 1 1+ O o
)1 Z |
d' ( xo(u) gydu
iz1  Bryym (0sho)
)1 Z

d u) P g uwdu. k k..,
i=1 BTxoM (OZhO) ( XO( )) op XO( ) Hll)l(M)
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where we used at last line that, by Lemma 3.5.8(ii),J x,(u) 1=2for juj hqif ho
is small enough. To prove the rst inequality, write

YA
K (x kP
h d tix yi hg ' ®) 1Whkep
Bm (Xo0;ho)? Jx o yjP
7 I I p
d( x)(U) d(  x)(V)
h d 1fj u V)i h : : % dudv
Bty M (0;ho)? I xolW) V) J I xo(U) xo (V)JP
127 ;
h d 1fju vj hg d*i( w)u+ (v u)  dudvd
0 BTXOM (O;ho)2 op
z,22 )
h d 1fiw uj hg d*i( x)(W)  dudw 9
0 BTXOM (O;Zho)z op
z,z ; ya
d*( Q)W) dw. k 141 (K5, dx;
op Bwm (xo0;ho)

0 Bryym (0;2h0)

where at the second to last line, we used thatv = u+ (v u) is of norm smaller than
2hoif juj hgandjv uj h hg, and, at the last line, we used thatd ,(w) 1=2
for jwj small enough. O

5.4.4 Proof of Lemma 5.3.7

Lemma 5.3.7 is heavily based on the following classical control on the gradient of the
Green function.

Lemma 5.4.4. Letx;y 2 M, then

1 1

Gy T X y@ T (5.66)

Ir xG(x;y)j .

Proof. For d 2, a proof of Lemma 5.4.4 is found in [Aub82, Theorem 4.13]. See
also [Hir96, Theorem 5.2] for a proof with more explicit constants in the casd 3.
Constants in their proofs depend ond, bounds on the curvature ofM, jvoly j and the
geodesic diameter oM . As, those three last quantities can be further bounded by
constants depending on min, fmin and d, see Lemma 5.4.3 and [NSWO08, Proposition
6.1], this concludes the proof. Ford =1, M is isometric to a circle, for which a closed
formula for G exists [Bur94], and satis esjr xG(x;y)j 1. O

Recall that, by Lemma 5.3.2,j h(x)] 1=2for all x 2 M. Therefore, Lemma 5.4.4
yields
z z
Kh(X y) kK ki h d
ré Ky =2 7) = r ,G(z;y)———24dy . ————dy:
h () Mo (2Y) h(X) Y By (xhy 12 yi4 1 Y

If d =1, this quantity is smaller than a constant asvoly (By (x;h)) . h9 by Lemma
3.5.87. We then obtain directly the result in this case by integrating this inequality
againstf (x)dx. If d 2, we use the following argument.

Ifjx zj 2handy2Bpm(x;h),thenjz vyj j x 2z h j x zj=2. Therefore,
by Proposition 3.5.7.7,

z kK ky; h d 21 dkK k; h d 1

owom iz Y91 x gor OmMBn) B
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If jx zj 2h,then

z kK ky h d z kK ky h d

By, (1) jz yd1? Y Bu (2:3h) 1Z dezl
KK ki h 93 () . du g
. a1 du. h a1 h ;
Br,w @3h) 12 z(U)] Br,um (0:3n) JUI

where at the last line we used thatjz 2(Wj jujandthat J ,(u). 1hby
Lemma 5.4.1.
Hence,
Z
Elir (G(Kn x)(2)iP]= y fOOIr (G(Kn  x))(2)jPdx
Z Z !
f max Jr (G(Kn  x))(2)jPdx + r (G(Kn  x))(2)jPdx
Bwm (z;2h) M nBwy (z;2h)
Z Z
h(t dPgy + iz xj¢ 9DPdx
7 M nBy (z;2h)

h(d dprdy jz xj® Dpdx:
M nBy (z;2h)

Bwm (z;2h)

The latter integral is bounded by
Z Z
jz xj¢ dpdx + jz xj& dpdx
2hj x f ro X zj ro

iz (Wi PP, (u)du+ jvoly jri P
Z2hj z(U) zj ro

ju* Pdu+1 . h@ DA 1 d)p+ d< O
14h=8j uj ro

where at the last line we use thatjuj j z 2(W)j  8juj=7 by Proposition 3.5.8. If
d>2orifd=2 Ignd p > 2, the condition (1 d)p+ d < Ois always satised. Ifd=2
andp=2,then j,q; he iU @Pdu is of order logh, concluding the proof.

5.4.5 Proof of Theorem 5.2.1(i)

Let f be the density of andf = f= ;. By Lemma 5.3.2,fmin(1 cohk 1)
f max(1 + coh® 1) for h small enough. We have

Z Z
Kh f(x)= Kh(x y)f(y)dy = Kh(x  x(W)fT  x(v)I x(v)dv
7 M Brym (O:h)
Kn(Wf™  x(V)J x(v)dv (5.67)
Brym (Ohy
JKn(x  x(v))  Ka(Wjf™  x(V)I x(v)dv: (5.68)
Brym (O:h)

KK k

By Lemma 3.5.8(i), the quantity jKp(x x(V))  Kn(v)j is bounded by Khdcjl(Rd)jX

v X(V)jR I{;”j , SO that the second term in the right-hand side of(5.68) is bounded
jvi?

by Cf max Br.w (0:h) pardv . h. Also, using that jJ x(v) 1j  cijvj by Lemma
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3.5.8, the rst term is Iargerzthan

y
fmin (1 Goh* 1A cth)  Ke(Wdv  frax(@+ ch)(d+ ch* 1) K (v)dv
z ® y R
= fmn(l Gh) 1+ K (Wdv  fmax(l+ h) K (v)dv
Rd Z Rd

= fmin(l  ch)  (fmax(1+ c2h)  fmin(1  c2h)) K (v)dv
Rd

fmin(l CZh) (frnax(l + CZh) fmin(l CZh))

3f min =4,
if <f mn=(4(fmax fmin)) and h is small enough. Likewise, we show thaKy,
fx) 3fmax=2. It remains to show that K, f1x) Ky ( n=n)(X)j is small
enough for allx 2 M with high probability. Note that Ky, = Ky ( n=hn) is
L-Lipschitz with L . h 91 Lett = fmn,=4 and consider a covering ofVl by
N balls By (xj;t=(2L)). By standard packing arguments, such a covering exists
with N . (L=t)9. If jKp fxj) Kn n(x5)j t=2forallj =1;:::;N, then
kKKn 7 Kn  nky, vy t=2+Lt=(2L) t. Hence, using Bernstein inequality
[GN15, Theorem 3.1.7], agKn(X;  Yi)i k KKkeoroyh d and Var(K h(X;  Yi)
kK 2keoroyh 9, we obtain

P(kkn 7 Kn nkiy vy 8 P95 JKn X)) Kno (X)) t=2)
C(L=)9P(iKp %) Kn ()i t=2). h 4D exp( CnhY):

Choosingnhd = C%ogn for C%large enough yields the conclusion.

5.4.6 Proofs of Section 5.3.4

We rst prove Lemma 5.3.8.

Proof of (a). The application v, Y, ij (0;3") ' M is a dieomorphism
on ij (0;3"), as the composition of the di eomorphisms vy, and ( v, )m_ (recall
that \ (fj;Ty,M). "™ 1+ " 1. 1py Proposition 5.2.4). Furthermore, as~y, is
1-Lipschitz continuous and using the bound on the angle,

Bu(Yi;2") v (Bry,m(0:2)) (v v)(Bg (0:3):
This proves the rst part of Lemma 5.3.8(a). Let S; : By (Y;;2") !B 1 (0;3") be the
inverse of v, v,. By Lemma 5.4.2(ii), " is injective on T}, while, for v 2 T} with
vi 3,
w1
id d"j(v) alpi[;v @ D] . 1= (5.69)
op a=2
if . " 'is small enough. Hence; : By, (0;3") ! ", (1) is a di eomorphism on its
image, and Aj Sj is a di eomorphism as a composition of di eomorphisms. Note
that the inverse of AJ- is given by % ( Xj), so that Bl\j(-ﬁ_)(Xj ") Aj (ij ©;")).
Furthermore, by Proposition 3.5.8,

(v B @) (B, (") B wm(Y;8'=7);

so that (Aj S;)(Bm (Yj;2")) contains BAJ_ (-ﬁ_)(Xj ;™). Furthermore, these inclusions

of balls also hold for any"® ", proving that jAj Sj(z) Xj;j (7=8)jz Y;j for any
z2Bwm(Yj;2").
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Proof of (b). The formula for the density ~ follows from a change of variables.

Proof of (c). The inequality (5.48) follows from Proposition 5.2.4. We now prove
that

vz "pos@)i. e (5.70)
Letu2 T besuchthatz= y, v (u) andy= "j(u). Recall that X; 2 Ty, M? by
assumption, so that v, (Xj Yj)=0. Also, by Lemma 3.5.8(i), we have v, ( v, (u)) =
Yj + v, (U)+ Ny, (v, (u)) with Ny, (v, (u)) 2 Ty, M ?, while by Lemma 5.4.2(ii), we
have "} (u) = X; + u+ Kj(u) with Nj(u) 2 7. Hence,

FvE WIiEiv+ @+ Ny (y ) X+ u+ Ryu))]
= v (Ny, (v () N (u))]
\ (T, M3 TINy, v () N (Wi + 37 (N, oy (U)K ()]
(™t D™ )+ NG (Ny Cy ()]
("™t D™ )+ Ty M TNy (y, ()]
G G I Gt I (GRS

where we used Proposition 5.2.4 to bound (Ty, M; ﬁ), Lemma 5.4.2 to bound
Ny, (v, (u)) Kij (u)j and Lemma 3.5.8 to boundjNy; ( v, (u))j. Recalling that . "2
by assumption, we obtain (5.70).

To prove inequality (5.49), we rst bound | j(/\j Sj (2)) j (z)j and then bound
jJ(Aj S;)(z) 1j. The rst bound is based on the following elementary lemma.

Lemma 5.4.5. Let :RP ! R be asmooth radial function. Then,j (x) 9]

k kCz(RD) D :0-

—3 X7 ] Y.

Proof. Asd (0) =0, one can write (x) = (jxj?) for some function ~which is Lipschitz
2

continuous with Lipschitz constant % This implies the conclusion. O]

P
Recall from the proof of Lemma 5.2.5 that we have (z) = j(2)= iJ:1 i(z) where
- z X

for some smooth radial function , and that furthermore, there is at
most ¢y non-zero terms in the sum in the denominator, which is always larger thari.

Hence, if we control for everyi = 1;:::;J the dierence jiz Xij2 j " Si(z2) Xij3,
then we obtain a control onj ;(z) j(’\j Sj(2))j. We have by (5.48) and (5.70),
i s@ xi?iz xi#=i% @ #*+2" §@ 2 @ X

"™+ )2+i% S 2 2 Wi+ §@ 2 X )
("+ 2+t 5@ 2 vz Wi
+j 4" s5@ 2 Yz Vi+("™+ )
("M )M iz V(N )] Gz V)i )
By Proposition 3.5.7.4, $j (z Y j ~3j (2)j + j~$j (YDj . "2+jY; Y;j?and
"m "2 Hence, we obtain that

% Ss@ Xi? iz XiF. M+ O)(2+iv YA (5.71)
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Therefore,
!
z_ X “oS@ X (Mt )P+ YD)
n n . ||2

_ L (5.72)

My 1a NP
Note also that if jY; Y;j 3",thenjz Xij j Xi Xjjjz X;jj 3 " 3
while by the same argumentj’\j Sj(z) Xij ". Hence, both terms in the left-hand
side of (5.72) are null in that case. Thus, we may assume thafY; Yjj 3", so
that  Z-X0 15@ Xi - emy o From the de nition of (2), and as the

function t 7! 1=tis Lipschitz on [1; 1 [, we obtain that j j(z) j(’\j Si(z))j. "™+
We now prove a bound onjJ("; Sj)(z) 1j. One has, foru = S;(z) 2 Tj,

_ 375 Iy, v
J( Yi Yj)(u) .

BCs)@

By Lemma 3.5.8(i) and Lemma 5.4.2(ii), we have idfj di v, v)(u) . jujand
op
idfj d/\j (u) . Juj. As a consequence, both Jacobians are larger than, say2
op

for u small enough, and, as the functionA 2 RY 9 7! P det(A) is cq Lipschitz on the
set of matrices with det(A) 1=2 and kAkop 2, we have

IG5 4 2 dY(u) dYju) d( v, v d( oy, () o
(5.73)
Recall that "j(u) = Xj +u+ Nj(u)and v, v (u)= Yj+ y (u)+ Ny, v (u).
We may write
d”j(u) d”j(u) =id ? + (dNj (u)) dNj(u) and
d( v, v d( v,  v)(W =" v +(d(Ny, v)(w) d(Ny, v, )(u):
One has id'ﬁj A Y, A = A 3}_ \?(J-Aj o \(TYJ-M;fj)Z- ('m 14 1)2'

op
"M+ (recall that . "2). Furthermore, by Lemma 5.4.2(iv),

(AN (W) dNj(u)  (d(Ny, (W) d(Ny; v )(W) op

dj (u) Op+ d(Ny; (U)o, dNj(u) d(Ny, v, )(u) op

ll(llm l+ n 1) . um + :

Putting together (5.73) with those two inequalities, we obtain thath(’\j S)(z) 1.
"M+ | concluding the proof of Lemma 5.3.8.

To conclude the section, we state and prove Lemma 5.4.6, which gives an upper
bound on the quantity T appearing in Lemma 5.3.9 for = K, ( p="%) and

0= Kh ( n=n)-

Lemma 5.4.6. The quantity T = maxj=1 .3 SUP,2B (v, ) ] (Aj Si(2)) Y2)j satises
T. "™+ with probability larger than1 cn *=d.
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Proof. For z2 B(Y;;"), we have

w 17 K x(i S@) K @

j (AJ SJ (Z)) n -1 /\h(Xi) h(Yi)

Fix anindex i 2 f 1;:::;ng. By Proposition 3.5.7.4, asX; Y; 2 Ty,M ? . we have for
z2 M,

iz Yi?jz Xii#G=iiXi Yi? 2 Y) Xi Y)i Z+jz Yij?

min
This inequality together with (5.71) and Lemma 5.4.5 yield

KnXi " S(@) Kn(Yi 2)j
i Kn(Xi " Si(@) Kn(Xi 2+ iKn(Xi 2) Kn(Yi 2)]
h @2 ¢me )2+ Y+ 2+ jz Y

We may assume thatjY; Yjj 3handjz Y;j 2h, for otherwise both quantities in
the left-hand site of the above equation are zero. Hence, as. " . h by assumption,
we have

IKnXi % Si(@) Kn(Yi 2)ji. h %™+ )Y, 2Bu(z;2h)g  (5.74)

Let us now boundj"h('\j Sj (X)) h(Yi)j. By the triangle inequality, and using
(5.49) and (5.74), we obtain that this quantity is smaller than

¥ Z
I @Ka(X; "S@)  j@Ka(Yi  2)jdz
j=1
¥ Z
1fz2Bm (Y;2)9C"™ + )iKn(Yi  2)]

j=1 M |

+~i(z2)h 9"™+ )1fz2 By (Yi;2h)g dz

¥ Z
h 9em s ) 1fz 2 By (Y;;2")glfz 2 By (Yi; 2h)gdz
j=1 M
X
c e deme ) 1Y, Yo 4hg
j=1
X
h 9™+ ) 1fiY; Yij 4hgvoly (Bu (Y;;"=8))
i=1
h 4™+ Yvoly (Bm (Yi;5h)) . "™+ ;

Therefore, the balls By (Y;;"=8) for jY; Yij  4h are pairwise distinct, and are
all included in By (Y;;4h + "=8) B pm (Y;;5h). We conclude by Proposition 3.5.7.7.
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Letting N (z;2h) be the number of pointsY; belonging to By (z;2h), we obtain

A R I L .
i Cyos@) i. - Kn(Yi  2)i("™+ )

i=1 I
+h 9C"™+ H)1fY; 2 By (z;2h)g

N (z;2h)
nhd

(™)

If, for every z2 M and some > 0, N(z;2h) nh 9, then we have the conclusion.
Let us bound
Po= P(9z 2 M; N (z;2h) > nh 9):

If N(z;2h) > nh 9, then there exists a pointY; with N(Y;;4h) N(z;2h) > nh ¢.
Hence, Pg nP(N (Yy;4h) > nh 9). Conditionally on Y1, N(Y;4h) = 1+ U
with U a binomial random variable of parametersn 1 and (By (Y1;4h))

f maxVOolm (Bm (Y1;4h)) . hd (see Proposition 3.5.7.7). In particular, for large
enough, the probability Py is smaller thann k=9 by Hoe ding's inequality. O

5.4.7 Lower bounds on minimax risks

In this section, we prove the di erent lower bounds on minimax risks stated in the
article. The main tool used will be Assouad's lemma. Fix as in Chapter 3 a statistical
model (Y;H;Q) with Q P i(Y)and#:Y ! (E;L) a measurable function taking
its values in some semi-metric spacéE; L). We further assume that we observen

i.i.d. observations from law » for some 2 Q, with being the addition in our case.

Lemma 5.4.7 (Assouad's lemma[Yu97]) Letm 1be anintegerandQm =f ; 2

f 1;1g™g Q be a set of probability measures. Assume that for atl °2f 1;1g™,

LAHC )#( 9) ] 9; (5.75)

. P m . . . . . 0

where j §="",1f (i) 8 Yi)gis the Hamming distance between and °
Then,

Rn(#QiL) mze 1 max TV(s s o]  9=1 o (5.76)

The lower bound on the minimax rates we prove are actually going to hold on the
smaller model of uniform distributions on manifolds.

De nition 5.4.8. let k 2 and 0. The set Q'g( ) is the set of probability
distributions  of random variables(Y;Z), whereY follows the uniform distribution
on some manifoldM 2 M X with f,.3 j volyj f..r,andZ 2B(0; ) is such that
Z 2 TyM?. The statistical model is completed by lettindY;H) beR® RP endowed
with its Borel -algebra, be the additionRP RP ! RP and#( ) be the rst marginal

of .

We write Q¥ for QX(0). One can check thatQX( ) Q ¥°( ), with parameter

Ls=f " fmax " Therefore, a lower bound on the minimax risk on the model
Q'g( ) yields a lower bound on the minimax risk on the modeIQS;s( ) should the
parameter L be large enough.

We build a subfamily of manifolds indexed by 2f 1;1g™ following [AL19]. By

[AL19, Section C.2], there exists a manifoldM RI*1 of reach 2 min, Of volume
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Cq ,‘T’“n which contains Bra(0; min). Let > 0 and consider a family ofm points
X1, Xm 2 Brd(0; min=2), with jx; Xj 4 fori 6 i%and cq( min= )d m
Ca( mn=)d. Let0< < andlet :R¥! 1 [0;1] be a smooth radial function
supported onB(0; 1), with 1 on B(0; 1=2). Let e be the unit vector in the (d+1)th
direction. We then let, for 2f 1;1g™,

Xn -4 1 .
(x)= x+ '2 XX (5.77)
i=1
LetM = (M)and be the the uniform measure orM . If Ced: o <, then

2 Q'(j, provided that Ly is large enough [AL19, Lemma C.13]. If ; = 1, the volume
of (Bgra(Xi; )) satis es, with ! 4 the volume of the d-dimensional unit ball,
z
voly ( (Bra(xi; )) 'a© 9 (x)  1jdx
Bra(xi; )
Z S >
1+ 2 2y X Xj

1dx Cq49?2 2%
BRd(Xi;)

Hence, for small enough, we havgjvoly j Cq &j mCq 9 2 2 C4 4 =3
asm  Cgy( min=)9 and Ced: . <. As a consequence, if 9 =1, with for
instance =1 and = 1, then

TV %) max( ( (Bre(xii )i ofBra(Xii ) Cape % (5.78)

We may now prove the di erent minimax lower bounds using Assouad's Lemma on
the family f ; 2f 1;1gMg.

Proof of Theorem 5.1.9. As g is hondecreasing and convex, by Jensen's inequality, we

may assume without loss of generality thatL = TV. Let = j( 0)(Bi)j, where
Bi = Bra(xi; )and (i) 6 qi). Then, TV( ; o) | § . Furthermore, if for
instance qi)=1, o(Bi)=(!q NFvoly j c4 9= §,: By Assouad's Lemma,
sk K m d d 2n
Rn( 5Qg 3 TV) R n( ;Qg:TV) RCdT 1 Cg i
min

2n

Cd 1 Cd; min d :
We obtain the conclusion by letting go to 0. O]

Lemma 5.4.9. Forany mn > 0andl1 r 1 , for fun small enough andf nax,
Lk large enough, one has

VOl .
jvolvj’

QX( W, & +n KU (5.79)

n

Proof. As, W, W3y, we may assume thatr = 1. Let ; 02f 1. 1g™ with (i) 6

Yi). Letp i) = Voly (B(xi; )) andU,; = R (1i)(vol,\,I )iB(x;; )- BY the Kantorovitch-
Rubinstein duality formula, W1(; )= max fd( ), where the maximum is taken
over all 1-Lipschitz continuous functionsf : RP | R. Letf :x 7! x e. Assume for
instance that (i) = 1and 4i)=1. We havef (x) =0 for x 2 B,, (xi; ) and
f(x)= forx2By 0(xi; =2). Therefore, we have, ap o) ¢ d

W]_(U;i ;U O;i) p 0](-i) ! d( :Z)d CL -
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Note also thatjp ) P o] onl,\,I ( (Bra(xi; ) '49 Cq9 2 2 Further-
more, jjvoly j j voly i {Qlij(i) P oiyi 4Cg 9 2 2. Let f; be a
function such that Wy(U,; ;U o;) = fd(U; U ;). One can chooséd; such that
fi(xj) =0, so that the maximum of jfij on B(X;; ) is at most . One can then change
the value of f; outside the ball without changing the value of the integral, so thatf; is
supported onB(x;;2 ) and 1-Lipschitz continuous. Consider the functionf obtained
by gluing together the di erent functions fi. The function f is 1-Lipschitz continuous,

so that
I

Wi oo : pl(') U, .pIO(') U (f)
-y JVOlm | VOl )
P () _ _ . U ()]
. . 1 1
X p g o . . .
. -W1(U, ;U o) cip gy P opyi 1f (i) 8 Ki)g
i=1 JVoly ] i=1

SR

1 ()6 Aglcs @ @ ? N o] g2 2
i=1

c7 4 j 9:
Hence, letting = Ccd: i il kand =n 1, we have, by Assouad's Lemma,
Volm . ~k k=d
R —; W, &n :
n JVOIMJ Qd( ) r

Consider now the case > 0. Let Mg be the d-dimensional sphere of radius min and
M, be the d-dimensional sphere of radius min + . Let Y be uniform on M4, and let
be the law of (Y;0). Also, let %be the law of (1+ = min)Y; = minY). Then,

- 0 voly , . voly
# = # - whereasW; Wolﬁ m . We conclude by Le Cam lemma [Yu97]
Iy - :
that Rn oty QE( iWr & . O

Proof of Theorem 5.2.1(iv). Let a5 = n 5evd ifd 3anda,=n ¥ifd 2 As
W, Wi, we may asgyme without loss of generality that = 1, and up to re%@ling,
we assume that min = d. Consider the manifoldM  R%! containing Bga(0; d) of
the previous proof. In particular, M contains the cube[ 1;1]%. We adapt the proof of
Theorem 3 in [WB19b], where authors consider a fgmily of function§ :[ 1;1]9! M
indexed by 2 f 1;1g™, with f =1+ n ¥ 71, ;| ;, where( j)j=1::m are
elements of a wavelet basis of 1;1] (see [WB19b, Appendix E] for details on the
construction of the wavelet basis). Ifm . n9=@s*d) thenty, f  t4 for some positive
constantstg < 1<tq, and kf kBg;q ¢ 119 - 1. Deneafunction g by g (x)=f (x)
if x2[ 1;1]% and g (x) =1 otherwise. The functiong satisestg g ti, as well
askg kBs;q(M) . kf kgs, + jvoly j*=P . 1. Such an inequality is clear for thek kH,g(M)
norm for | an integer, askg kﬂg,(rvn) = kg kﬁ'b([ ey + kg k&,')(M o 114y While the
result follows from interpolation for Besov spaces [Lunl18, Corollary 1.1.7]. Also, as



116 Chapter 5. Reconstruction of measures on manifolds

[ 1;1](,f =1, we haveRg = jvoly J, and g Sjvoly j is larger than f min = to5jvoly |
and smaller than f nax = ti5jvoly j. Hence, identifying measures with their densities,
the set

Qm=1"f =g3voluj; 2f 1;1g"g
is a subset onf,;k for f min small enough andLy, Ls, fmax large enough. Furthermore,
for ; 92f L;1g™, TV( ; o= TV(f ;f9, while W1( ; o = Wy(f ;f o) by
the Kantorovitch-Rubinstein duality formula. Hence, applying Assouad's inequality in
the same fashion than in [WB19b, Theorem 3] yields thaR,(; Q5*; W) & a,. O

Proof of Theorem 5.2.7(iv). According to Lemma 5.4.9,
Rn(; Q3% Wp) R n(; QK:Wp) & +n X9
and according to Theorem 5.2.1(iv),Rn(; Q3*;Wp) & an. O

5.4.8 Existence of kernels satisfying conditions A, B(m) and C( )

The goal of the section is to prove the existence of a kern& satisfying the conditions
A, B(m) and C( ) stated at the beginning of Section 5.2.

If K is a radial kernel, we have by integration by parts, asK is smooth with
compact support,

Z Z Z
@°K (V) 'dv=C ., K(vv 1" odv=CO.  K(r)rdi o+ u 19

Rd Rd R
Hence, to show the existence of such a kernel, it suces to nd for everyn 0a
smooth even functionK : R! R supported on[ 1, 1] satisfying

R
Conditon A% LK (r)r¢ dr = (CQp) 1,

R
Condition CY ): LK(r) r4 dr

We show by recursion onm that for any > 0, there exists a such a kernel. Fom =0,
let Ko be any smq_;pth even nonnegative function supported of 1;1]. Then, letting

K = (08;0) Ko= r Ko, we obtain a kernelK satisfying the desired conditions for
any > 0. Consider now the casen> 0. Let > 0.

If m+ dis even, then anyK  satisfying conditiongA® BYm 1) and CY ) will
also satisfyBYm). Indeed, asK is even, we have ;K (r)r™*¢ dr =0, so that
the induction step is proven.

If m+ dis odd, letK be a kernel satisfying conditionsA® BYm 1) and CY =2).
We use the following lemma.

Lemma 5.4.10. Fori O, letg:x2R7! x*9 1 and x an integer m> 0. Then,
for any a 2 R, IehFa be the set of smooth fq@ctions‘. :(;1) ! R with compact
support satisfying fe; =0 for0 i<m and fe, = a. Then,
VA
inf  jf(r)jr? dr; f 2F, =0: (5.80)
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R
Assume rst the lemma. Leta= 3 K (r)r™* ¢ Tandf 2 Fa. Then,

8 R . R, ..

2 K+ f@ri))rd tdr=(Cgo) t+ f(rj)r? *dr=(Cy) *

R(K (r)+ f(rj)ri+d dr = I:\I(jrj)r"“d ldr =0 for 0<i<m

(K(r)+ f@ri))rm*d Ldr = K (r)r™d Ldr+2 ' f(r)rm*d 1dr = 0:

Hence, the kernelK + f (j j) satis es the condition B{m). Also, we have, aK (r) =0
if jrj 1,

>

Z Z,
(K(r)+ f(@rj) r4 dr= K(r) dr+2 f(r) r9 dr
R 7 1 R 1
=2+ if (r)jr® tdr;
1

where we usici at the last line ”?tl . z,
f(r) r9 dr = f(r),rd dr = > if (n)jrd dr:
1 1 1
R
Lemma 5.4.10 asserts the existence 6f2 F, with  jf (r)jrd 1dr  =2. For such a

choice off , the kernel K = K + f (j j) satis es alsoCYq ). Finally, f has a compact
support, included in [0; R] for someR > 0. The kernel K1 is supported onB(0; 1),
and satis es conditions A% B{m) and CY ). This concludes the induction step, and
the proof of the existence of kernels satisfying conditiong, B(m) and C( ).

Proof of Lemma 5.4.10. Consider functionsf supported on[ro;ri] for somel<rg
ri to x. Let Gy,r, be the subspace ot >([ro;r1]) spanned by the functionse; for

0 i m 1landletgyn be the projection ofe, on Gr?o;rl the orthogonal space ofG,,,
with Lo norrrh‘. The function f = 292 is a polynomial of degregm restricteg to [ro; r]
and satises fe;=0for0 i m 1by construction, with fen, =& engn = a
Also, we have for any polynomialP 2 Gy,
Z r Z ry
kem Pk ,qroryy = Ir™4 T P(n)jfdr = 1'° roj(ror)™™ P (rr o)j?dr
ro Z o
- rS(d+m) 1 o jrd+m 1 ro(d+m 1)P(rr o)jzdri
1

Asr 7! ro(der VP (rr ) is an element 0fGy.r,=r,, letting ry = 2ro, we obtain

2 - 2 — ; 2
= kgkaz([ro;rl]) - Pgn(alr:):rl kem PkLZ([rO;rl])

2(d+m) 1 2(d+m) 1.
o 0 ;

; 2 -
T Kem  Pki,qiz = CF
whereC = Cy;, > 0is the distance betweerey, restricted to [1; 2] and G1.2. The function
f is not smooth so that it does ng§ belong tof,. To overcome this issue, we consider
a smooth kernel on R satisfying =land (r)r'dr=0fori=1;:::;m+d 1,
with support included in Bgr(0;ro=2). See e.g. [BH19, Section 3.2] for the construction
of such a kernel . The map f is supported on(1;1 ) and it is straightforward to
check that f 2 F, forrg> 2. By Young's inequality, k  fk_,r) Kk ki kfk,(r),
so that :
YA z 5ro=2 " 1=2 1=2

i f(r)jrd dr r2d 2gr k fkr  Gréd 'k ke kfk g

ro=2

R
By letting ro goes tol , we see thatinf ~ jf (r)jr? dr; f 2 F, =0. O
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Part Il

Statistical descriptors in the space
of persistence diagrams






121

Chapter 6

Structure of the space of
persistence diagrams

In this chapter, we make the connection between the-bottleneck metrics between
persistence diagrams introduced in Chapter 3 and optimal partial transport metrics
introduced by Figalli and Gigli [FG10]. Making this link explicit allows us to introduce
distancesFGp between non-discrete measures on := fu = (ug;up) 2 R?: uy < u»g,
while we call the corresponding metric spac€M P; FGp) the space ofpersistence
measures In particular, in Section 6.5, we leverage the study of the metric and
topological properties of this space to show the existence gf-Fréchet means of
distributions on DP.

6.1 Elements of optimal partial transport

Let X be some Polish locally compact metric space. In Chapter 3, we introduced
the theory of optimal transport, which allowed us to compare two measures and

on P(X) having the same mass by considering the di erent ways of transporting
the distribution  towards the distribution . In certain situations, measures having
di erent masses may naturally appear, while the total mass of a measure may carry
a physical meaning worth of interest. In that case, it is therefore not satisfactory
to normalize the measures, and extending optimal transport to measures of di erent
masses is needed. This more general problem is referred to as optirpattial transport.
Two main approaches have been proposed in the literature.

A rst class of methods consists in relaxing the marginal constraints on the transport
plans 2 ( ; ), while penalizing the di erence between the marginals of and
and (for instance by the Kullback-Leibler divergence). Such approaches were rst
introduced for computational purposes, as computing this relaxed distance, called the
Sinkhorn distance, turns out to be a strictly convex problem with fast minimization
procedures available [CD14]. This class of distances was then studied theoretically,
and both the geometry of the corresponding spaces and the statistical properties of
such objects are bustling research topics [Chi+15; KMV16].

Another possibility consists in using a waste function! : X I (0;+1 ) to throw
away the excess mass betweenand . Informally, we can now either match an element
of mass (dx) to another element (dy) with cost d(x;y)P, or throw it away with cost
! (x). The most investigated case in the literature is the casé  cst [HR95; Han94;
PR14], although the general case was considered fpr= 1 in [Gui02]. In [FG10], Figalli
and Gigli consider measures supported on som®undedopen set RY and consider
the waste function! = d( ; @) P, while this problem was then further generalized to
asymmetric settings [MJT14]. The p-bottleneck distances introduced in Chapter 3
share key ideas with the distance introduced by Figalli and Gigli, with the caveat that
the space is not bounded, causing some technical di culties.
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We introduce the more general problem where some locally compact Polish space
X is partitioned into an open set o and a closed reservoir of masR, i.e. X = (tR .
An element of mass (dx) can either be mapped to some (dy), with cost d(x;y)P, or
to the reservoir R, with cost d(x; R)P (and similarly for ). Formally, we introduce
the following generalization of [FG10, Problem 1.1].

De nition 6.1.1. Letp2[1;+1). Let M P( o;R) be the set of Radon measures
supported on ( satisfying

d(x;R)Pd (x) < +1:
0
Given ; 2 M P( o;R), the set of admissible transport plans (or couplingshdm(; )
is de ned as the set of Radon measures on X X satisfying for all Borel sets
AB 0s
(A X )= (A) and (X B)= (B):

The cost of 2 Adm(; ) is de ned as

VAV

Co( )= d(x;y)Pd (xy): (6.1)
X X

The Figalli-Gigli distance FGp(; ) is then de ned as
FGp(; ):=inffCp( )*P: 2 Adm(; )g: (6.2)

Plans 2 Adm(; ) realizing the in mum in (6.2) are called optimal. The set of
optimal transport plans between and for the cost(x;y) 7! d(x;y)P is denoted by

Optp(; ).

We introduce the following de nition, which shows how to build an element of
Adm(; ) given a mapf : X ! X satisfying some balance condition (see Figure 6.1).

De nition 6.1.2. Let ; 2 M ( o). Considerf : X I X a measurable function
satisfying for all Borel setB 0

(f '(B)\ o+ (B\f(R)= (B): (6.3)
De ne for all Borel sets A;B X
(A B)= (f Y(B)\ o\ A)+ ( o\ B\ f(A\R)): (6.4)
is called the transport planinduced by the transport map f .

One can easily check that we have indeed(A X )= (A)and (X B)= (B)
for any Borel setsA; B 0, sothat 2 Adm( ; ) (see Figure 6.1).

Remark 6.1.3 Since we have no constraints on (R R ), one may always assume that
aplan satises (R R )=0, sothat measures 2 Adm(; ) are supported on

E,=(X X )n(R R ): (6.5)

The case ¢ = and R = @ will be patrticularly relevant to the setting of
Topological Data Analysis. In particular, we will show that the Figalli-Gigli distance
coincides with the p-bottleneck distance between persistence diagrams. If all the results
appearing in the remaining of the chapter hold in the general case, we will settle with
the choice( o;R) =( ;@ ) to keep the connection with persistence diagrams explicit.
We will write M P instead of M P( ;@ ) Qnd call this space thespace of persistence
measures while the quantity Pers,( ) :=  d(x; @ )Pd (x) is the total persistence of

2M P,
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Figure 6.1: A transport map f must satisfy that the mass (B)

(light blue) is the sum of the mass (f *(B)\ o) given by thatis

transported by f onto B (light red) and the mass (B \ f (R)) coming

from R and transported by f onto B. The case( o;R)=( ;@) is
displayed.

Remark 6.1.4 The choices of reservoiR and groundspace g are actually very exible.
In particular, one can recover the optimal transport problem with waste functionw on

o by letting R be the graph of o (in o R), while g isidentied with o f Og.
As such, the following propositions also hold in this framework.

6.2 General properties of M P

This section is dedicated to general properties of the metric spacéM P; FGp). In
particular, we show that FG, coincides with d, when comparing persistence diagrams,
so that M P is a metric extension ofDP.

Remark 6.2.1 If a (Borel) measure satis es Pers,( ) < 1, then for any Borel set
A satisfying d(A; @) :=inf yoa d(X; @) > 0O, we have:
Z Z

(A)d(A; @) P d(x; @) Pd (x) d(x; @) Pd (x)=Persp( )< 1; (6.6)
A
sothat (A) < 1. In particular, is automatically a Radon measure.

Proposition 6.2.2. Let ; 2 M . The set of transport plansAdm( ; ) is sequentially
compact for the vague topology ot . Moreover, if ; 2 M P, for this topology,

2 Adm(; ) 7! Cp( ) is lower semi-continuous.
Opty(; ) is a non-empty sequentially compact set.

FG, is lower semi-continuous, in the sense that for sequencésn)n;( n)n In
M P satisfying 4 and 4 , we have

FGp(; ) Iiminf FGp( n; n):

Moreover, FGy is a metric on M P.

These properties are mentioned in [FG10, pages 4-5] in the bounded case, and
corresponding proofs adapt straightforwardly to the general case. For the sake of
completeness, we provide a detailed proof in Section 6.6.

Forr> 0O, let [ =fu2 : dlu@ >rg.
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Lemma 6.2.3. Let 2MP. Forr> 0, let , be the restriction of to ,. Then
FGp( r; )! Owhenr! 0. Similarly, if a2 DP, we havedy(a;a)! O.

Proof. Let 2 Adm(; ) be the transport plan induced by the identity map on .,
and the projection onto @ on n . As is sub-optimal, one has:
Z

FGB(; ) Cp( )= d(x; @) Pd (x) =Persp( ) Pers( r):
n
Thus, by the monotone convergence theorem applied to with the functions f, : x 7!
dx;@ )P 1fx 2 n g FGy(; )! Oasr ! 0. Similar arguments show that
dp(ar;a@)! Oasr! O. O

Proposition 6.2.4. For a;b2 DP, FGp(a;b) = dy(a;b).

Proof. Let a;b 2 DP be two persistence diagrams. Ifa and b are nite, than the
equality is shown in [LCO18, Proposition 1].

In the general case, letr > 0. Due to (6.6), the diagramsa, and b de ned in
Lemma 6.2.3 have a nite mass (thus nite number of points). Therefore,dy(ar;by) =
FGp(ar; bx). By Lemma 6.2.3, the former converges taly(a; b) while the latter converges
to FGp(a; b), giving the conclusion. O]

Proposition 6.2.5. The space(M P; FG)) is a Polish metric space.

As for Proposition 6.2.2, this proposition appears in [FG10, Proposition 2.7] in the
bounded case, while a proof is found in Section 6.6.

We now state one of our main result: a characterization of convergence in
(M P;FGp).

Theorem 6.2.6. Let ; 1; »2;::: be measures inlM P. Then,
( v

FG ; ! O ’ " ’ 67

ol ni ) Pers,( n) ! Pers( ): .9
This result is analog to the characterization of convergence of probability measures
in the Wasserstein space (see Chapter 3) and can be found in [FG10, Proposition
2.7] in the case where the ground space is bounded. While the proof of the direct
implication can be easily adapted from [FG10] (it can be found in Section 6.6), a new

proof is needed for the converse implication.

Proof of the converse implication. For a given compact setK , we denote its
complementary set in by K¢, its interior set by K, and its boundary by @K Let
: 1, 2::: be elements ofM P and assume that V' and Pers,( n) ! Pers( ).
Since

FGp( n, ) FGp( n;0)+FG p( ; 0)= Persp( n)1:P + PerSp( )1:p;

the sequencgFGp( n; ))n is bounded. Thus, if we show that(FGp( n; ))n admits
0 as an unique accumulation point, then the convergence holds. Up to extracting a
subsequence, we may assume th@FG,( n; ))n converges to some limit. Forn 0,
let 52 Opt( ,; ) be a corresponding optimal transport plan. LetK be a compact
subset of . Recall from Chapter 3 (Proposition 3.1.8) that relative compactness for
the vague convergence of a sequen¢en), is equivalent to sup,f n(K)g< 1 for
every compactK . Therefore, for any compactK ,andn 2 N,

n(K ) [ K)) n(K)+ (K) SLka K(K)+ (K)< 1:
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As any compact of E— is included is some set of the form(K ) [ ( K), for
K any compact subset, using Proposition 3.1.8 again, it follows thaf ), is also
relatively compact for the vague convergence.

Let thus be the limit of any converging subsequence df ), whose indexes are
still denoted by n. As 4 ¥, is necessarily inOpt,(; ) (see [FG10, Proposition
2.3)), i.e. is supported onf(x;x): x 2 ¢g. The vague convergence of ), and the
convergence of Pers,( n))n to Pers,( ) imply that for a given compact set K ,
we have

z
lim sup d(x; @) Pd n(x)
nll K¢ 7
=limsup Pers( n) d(x; @) Pd n(x)

n'l Z K

Persp( ) liminf dix; @) Pd n(x) liminf
Z n K n @

Pers,( ) d(x; @) Pd (x) by the Portmanteau theorem
yd K

z

d(x; @) Pd n(x)
K

_d(x; @) Pd (x);
KC

where the Portmanteau theorem is recalled in Chapter 3. Aders,( ) is nite, for

"> 0, there exists some compact seK with
z z
lim sup dix;@) Pd h(x) <" and dix;@) Pd (x) <™ (6.8)
n K¢ K¢
Lets: | @ be the projection on@ for the metric d. Such a projection is not

unique for g = 1 or for the more general reservoirR, but we can always select a
measurable projections [CR03]. We consider the following transport plan~, (consider
informally that what went from K to K¢ and from K ¢ to K is now transported onto
the diagonal, while everything else is unchanged):
8"'n= n onK?t (K%?
§~n=0 onK K¢ K¢ K;
~(A B)= n(A B)+ (A (s }¥B)\ K9 forA K;,B @;
~(A B)= n(A B)+ (A (s Y(B)\K)) forA K% B @;
~n(A B)= n(A B)+ a((s (A)\ K9 B) forA @;B K;
“~n(A B)= ,(A B)+ (s {(A)\K) B) forA @;B K¢

(6.9)

Note that ~, 2 Adm( p; ): for instance, forA K a Borel set,

~(A )=~ (A K)+~p(A KY+~p(A @
= n(A K)+0+ (A @+ (A (s Y@ \ K9
= o(A )= a(A)

and it is showQ likewise that the other constraints are satis ed. As~, is suboptimal,
FGB( n ) — d(x;y)Pd~,(x;y). The latter integral is equal to a sum of di erent
terms, and we will show that each of them converges t®. Assume without loss of
generality that the compact setK belongs to an increasing sequence of compact sets
whose union is , with (@K K)) =0 for all compacts of the sequence.
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We have RIEZ d(x;y)Pd~n (X R Riz d(x;y)Pd n(X;y). The limsup of the
integral is less than or equal to , , d(x;y)Pd (x;y) by the Portmanteau theorem
(applied to the sequencegd(x;y)Pd n(x;y))n), and, recalling that is supported
on the diagonal of E—, this integral is equal to 0.

For optimality reasons, any optimal transport plan must be supported on the set
fd(x;y)P d(x;@ )P+ d(y; @ )Pg (this fact is detailed in [FG10, Proposition
2.3]). It follows that
ZZ VA
d(x;y)Pd=n(x;y) = d(x;y)Pd n(x;y)
z z
d(x; @) Pd n(x)+ dly; @ Pd (y):
C K Cc

(Ke)?

K

Taking the limsup in n, and then letting K goes to , this quantity converges

to 0 by (6.8).
We have
zz
d(x; @ Pd~n(x;y)
VA zz
= d(x; @) Pd n(xy)+ d(x; @) Pd n(x;y)
zZ¢ @ zz K K¢
= _d(x; @) Pd n(xy) d(x; @) Pd n(xy)
z K ZZ Kz

KdOc@m‘ﬁ n(X) szxm@)pdrxmy)

By the Portmanteau theorem applied to the seﬁuenceéd(x; @ )Pd h(x))n, the
limsup of the rst term is less than or equal to | d(x; @ )Pd (x). Recall that
we assume that (@K K)) = 0. By applying the second characterization
of Portmanteau theorem (see Proposition 3.1.11) on the second term to the
sequence(d(x;y)Pd (X;y))n, and using that is supported on the diagonal
of &7, we obtain that the limgup of the second term is less than or equal to

k2d(x; @ )Pd (x;y) = x dx; @ )Pd (x). Therefore, thelimsup of the
integral is equal to O.

The three remaining terms (corresponding to the three last lines of the de nition
(6.9)) are treated likewise this last case.

Finally, we have proven that (FGp( n; ))n is bounded and that for any converging
subsequenceg n, )x, FGp( n,; ) converges to0. It follows that FGp( n; )! 0. O

Remark 6.2.7. The assumptionPers,( n) ! Pers,( ) is crucial to obtain convergence
with respect to FGp assuming vague convergence. For example, the sequence de ned
by n = (nn+1) COnverges vaguely to = 0 and (Pers,( n))n does converge (it
is constant), while FGp( ;0) 9 0. This does not contradict Theorem 6.2.6 since
Pers,( ) =0 6lim , Pers( n).

Theorem 6.2.6 implies some useful results. First, it entails that the topology of
the metric FGy, is stronger than the vague topology. As a consequence, the following
corollary holds, using Proposition 3.1.12 DP is closed inM P for the vague topology).

Corollary 6.2.8. DP is closed inM P for the metric FG.
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We recover in particular that the space(DP; FGp) is a Polish space (Proposition
6.2.5), a result already proved in [MMH11, Theorems 7 and 12] with a di erent
approach.

Secondly, we show that the vague convergence of, to  along with the convergence
of Persy( n) ! Persy( ) is equivalent to the weak convergence of a weighted measure.
For 2 M P, let us introduce the Borel measure with nite mass (P de ned, for a
Borel subsetA , as:

Z

P (a)=  dx;@) Pd (x): (6.10)
A

Corollary 6.2.9. The space(M P; FGp) is homeomorphic toP() endowed with the
weak topology, through the map 2M P71 (P 2 P () . In particular, for a sequence
( n)n and a persistence measure 2 M P, we have

FGp( n; )! Oifandonlyif (Pr%

Proof. We rst show the equivalence of the two convergences. Considey 1; »; 2
M P and assume thatFGy( »; )! 0. By Theorem 6.2.6, this is equivalent to Y

and P()= Pers( n)! Pers( )= ®() . Since for any continuous functionf
compactly supported, the mapx 7! d(x; @ )Pf (x) is also continuous and compactly
supported, o ¥ implies 1Y ® . Likewise, the mapx 7! d(x;@ ) Pf (x) is
continuous and compactly supported, so that ﬁp)! Y also implies ¥ . Hence,
4" is equivalent to ﬁp)! Y (M, By Proposition 3.1.10, the vague convergence
(P (M along with the convergence of the masses is equivalent td”!t ¥ .

So far, we have proved that both the applicationG: 2M P!  (® 2P () and
its inverse are sequentially continuous. As the spacM P is a metric space and the
spaceP () is metrizable [Var58], sequential continuity is equivalent to continuity, so
that we have the conclusion. O

We end this section with a characterization of relatively compact sets iM P; FGp).

Proposition 6.2.10. A set F is relatively compact in (M P; FG,) if and only if the
setf (P: 2 Fgis tight and sup ,¢ Pers,( )< 1.

Proof. From Corollary 6.2.9, the relative compactness of a seE M P for the metric
FGp is equivalent to the relative compactness of the set (P . 2 Fgfor the weak
convergence. Recall that all ® have a nite mass, as P() = Perg( ) < 1.
Therefore, one can use Prokhorov's theorem (Proposition 3.1.9) to conclude. O

Remark 6.2.11 This characterization is equivalent to the one described in [MMH11,
Theorem 21] for persistence diagrams. The notions introduced by the authors of o -
diagonally birth-death boundedness, and uniformness are rephrased using the notion
of tightness, standard in measure theory.

We end this section with a remark on the existence of transport maps, assuming
that one of the two measures has a density with respect to the Lebesgue measure
on . We denote byfy the pushforward of a measure by a map f, de ned by
fxu (A)= (f (A)) for A a Borel set.

Remark 6.2.12 Following [FG10, Corollary 2.5], one can prove that if 2 M 2 has a
density with respect to the Lebesgue measure on, then for any measure 2 M 2,
there exists an unique optimal transport plan between and for the OT, metric.
The restriction of this transport plan to ~isequalto(id;T)y whereT: |
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is the gradient of some convex function, whereas the transport plan restricted to
@ is given by (s;id)# ( Tx ), wheres: | @ is the projection on the
diagonal. A proof of this fact in the context of persistence measures would require
to introduce various notions that are out of the scope covered by this chapter. We
refer the interested reader to [FG10, Proposition 2.3] and [AGS08, Theorem 6.2.4] for
details.

6.3 Persistence measures in the nite setting

In practice, many statistical results regarding persistence diagrams are stated for sets
of diagrams with uniformly bounded number of points [Kwi+15; CCO17], and the
speci ¢ properties of FG in this setting are therefore of interest. Introduce form 0
the subsetM P of M P de ned as M pmg,': f 2MP: () mg, and the set
M ! of nite persistence measuresM P := ~ =~ M P . De ne similarly the set D
(resp. Df). Note that the assumption Pers,(a) < 1 is always satis ed for a nite
diagram a (which is not true for general Radon measures), so that the exponent is

not needed when de ningD , and Ds.
Proposition 6.3.1. M f (resp. Dy ) is dense inM P (resp. DP) for the metric FGp.

Proof. This is a straightforward consequence of Lemma 6.2.3. Indeed, if2 M P and
r> 0, then (6.6) implies that | is of nite mass. O

Let ~= tf @ g be the quotient of by the closed subsei@ i.e. we encode
the diagonal by just one point (still denoted by @ ). The distance d on 2 induces
naturally a function @ on ~2, dened for x;y 2 by d(x;y) = d(x;y), d(x;@ ) =
@ ;x) = d(x;s(x)) and d{@ ; @ ) = 0. However, d'is not a distance since one can
have d(x;y) > d(x; @) + d(y; @ . De ne

(x;y) ==minfdx;y); d(x; @+ dy; @ g (6.11)

It is straightforward to check that is a distance on™ and that (™; ) is a Polish space.
One can then de ne the Wasserstein distanc&Vp, with respect togor nite measures
on ~ which have the same masses, thatis the in mum oCp(~) := -, (X;y)Pd~(x;y),
for ~ a transport plan with corresponding marginals. The following theorem states
that the problem of computing the FG, metric between two persistence measures with
nite masses can be turn into the one of computing the Wasserstein distances between
two measures supported on~ with the same mass. Recallthats: ! @ is the
orthogonal projection (or a measurable projection in the general case).

Proposition 6.3.2. Let; 2M Fandr ()+ () .Dene ~= +(r () @
and ~= +(r () @ - Then FGp(; )= Wp, (3 ).

Before proving Proposition 6.3.2, we need the two following lemmas:

Lemma 6.3.3. Let ; 2Mfandr max( () ; () . Let~:= +(r () e,
~i= 4 (r () @ ands: ! @ be the orthogonal projection on the diagonal.

1. Dene T(; ) the set of plans 2 Adm(; ) satisfying (f(x;y) 2 @ :
yés(x)g= (f(xy)2@ : x86 s(y)g)=0 alongwith (@ @)=0.
Then, Opty(; ) T(; ).
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2. let 2T(; )besuchthat ()+ (@ ) r.Dene ()2 ( + ~) by,
for Borel sets A; B
8
%()(A B)= (A B);
(A f@9= (A @ ;

(6.12)
3 ()f@eg B)= (@ B);
(f@eg f@g=r () @ ) ©o
RR
Then, Cp( )= - -d(xy)Pd ( )(Xy).
3. Let~2 (~; ~). Dene (~)2T(; ) by,
8
E (~)(A B)=~(A B) for A;B
(~)A B)=~(A\s '(B) f @g) forA B @;
(~)A B)=~(f@g (B\s A)) forA @;B
()N@;@=0 :
RR
Then, - - d(x;y)Pd~(x;y) = Cp( (~)).
Proof.
1. Consider 2 Adm(; ), and de ne Othat coincides with on ,and is
such that we enforce mass transported on the diagonal to be transported on
its orthogonal projection: more precisely, for all Borel setA , B @ ,

YA B)= ((s(B)\ A) B)and 4B A)= (B (s (B)\ A).
Note that ©2 T(; ). Sinces(x) is the unique minimizer ofy 7! d(x;y)P, it
follows that Cp( 9  Cp( ), with equality if and only if 2 T(; ), and thus
Opto(; ) T(; ).

2. Write ~= (). The mass~(f@ g f @ g) is nonnegative by de nition. One
has for all Borel setsA

~(A J=~ (A )+~ (Af @9
= (A )+ (A @= (A )= (A)=~(A):

Similarly, ~(— B)=~(B) forall B . Observe also that
~(f@eg 7=~ (f@g f @g+~-(f@g )=r (=~ (f@9):

Similarly, ~(~ f @ g)= «(f@ g). ltgivesthat ( )2 ( + ~), sothat is well
de ned. Obsgrzve that

zz
_dxy)Pd~(xy) = d(x;y)Pd (x;y)
z
+  dx@) Pd (x; @)
Z

+  d@;y)Pd (@;y)+0
=Cp()as 2T(; ):
3. Write = (~). For A a Borel set,

A )= (A )+ (A @
=~(A )+~ (A f@g=~A J= (A):
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Similarly, ( B)= (B) forall B . Therefore, 2 Adm(; ), and
by construction, if a point x 2  is transported on @ , it is transported on
s(x), sothat 2 T(; ). Observethat ()+ (@ ) ~(~ )=,
so that &Q is well de ned. Also, ( ) = ~, so that, according to point 2,
Co( )= -~ -dXy)Pd~(xy). O

We show that the inequality FGp(; ) W, (+ ~) holds as long as the condition
r max( () ; ()) holds.

Lemma 6.3.4. Let ; 2Mfandr max( () ; () . Let~:= +(r () e,
~= +(r () @- Then, FGp(; ) Wp (% ).

Proof. Let ~2 ( + ~). DenethesetH := f(x;y) 2 ~2: (x;y)= d(x;y)g, and let
H¢ be its complementary set in~?, i.e. the set where (x;y) = d(x;@ )+ d(@ ;y).
Dene ~°2 M (~2) by, for Borel setsA; B

8

2-YA B)=~((A B)\H)

A f@9=~((A T\HY)+~(A f @9
"qf@g B)=~(~ B)\HY+~(f@g B):

We easily check that~°2 ( <+ ~). Also, using(a+ bP aP + b for positive a; b, we

have
Yy

a(x; y)Pd~(x;y)

_ (xy)Pd~(x;y)
+ (Gx; @)+ &@ ;y))Pd~(x;y)
7z H°

d(x; y)Pd~4x;y)

+ aix; @) P+ dly; @ P d~(xy)

zz H°
= dey)Pd~Axy)
ZZ
inf X;y)Pd~Ax; y):
S _day)Pd-Txy)
We conclude by taking the in mum on ~ that
zZ
Wp (52 inf _d(x;y)Pd~Ax;y):
Since (x;y) d(x;y), it follows that
zZ
W (5 ~)= n da(x; y)Pd~(x;y): (6.13)
’ ~2(~9) -2

Sinced’is continuous, the in mum in the right hand side of (6.13) is reached [Vil08,
Theorem 4.1]. Consider thus~2 ( + ~) which realizes the in mum. We can write,

using Lemma 6.3.3,
7 7

WE (s 9= _dxy)Pd-(xy)=  diy)Pd ()(xy)
zz

ziTn(f; - _dxy)Pd (xy) =FGR(; );

which concludes the proof. O
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Proof of Proposition 6.3.2. Let 2 T(; ). As ()+ (@ )grr Ot () r,
onecandene~= ( ). Since (x;y) d(x;y), we haveCp(~) aix; y)Pd~(x;y) =
Cp( ) (Lemma 6.3.3). Taking in mum gives Wy (+ ) FGp(; ): The other
inequality holds according to Lemma 6.3.4. O

Remark 6.3.5 The starting idea of this theorem informally, adding the mass of one
diagram to the other and vice-versa is known in TDA as a bipartite graph matching
[EH10, Ch. VIIIl.4] and used in practical computations [KMN17]. Here, Proposition
6.3.2 states that solving this bipartite graph matching problem can be formalized as
computing a Wasserstein distance on the metric spac€™; ) and as such, makes sense
(and remains true) for more general measures.

Remark 6.3.6 Proposition 6.3.2 is useful for numerical purposes since it allows us in
applications, when dealing with a nite set of nite measures (in particular diagrams),
to directly use the various tools developed in computational optimal transport [PC19]
to compute Wasserstein distances. This alternative to the combinatorial algorithms
considered in the literature [KMN17; Tur+14] is studied in detail in [LCO18]. This
result is also helpful to prove the existence op-Fréchet means of sets of persistence
measures, Section 6.5 below.

6.4 The FG; distance

In classical optimal transport, the 1 -Wasserstein distance is known to have a much
more erratic behavior than its p < 1 counterparts [Sanl5, Section 5.5.1]. However,
in the context of persistence diagrams, the bottleneck distance de ned in Chapter
3 appears naturally as an interleaving distance between persistence modules and
satis es strong stability results: it is thus worthy of interest. It also happens that,
when restricted to diagrams having some speci ¢ niteness properties, most irregular
behaviors are suppressed and a convenient characterization of convergence exists.

De nition 6.4.1.  Recall that spt( ) denote the support of a measure and de ne
Pers; () :=supfd(x; @) ; x 2 spt( )g. Let

ML :=f 2M : Persg ( )<1g and D! :=D\M 1: (6.14)

For ; 2M 1 and 2 Adm(; ), let Cy () := supfd(x;y): (x;y) 2 spt( )g and
let
FG1 (; )=inffCy (): 2Adm(; )g (6.15)

The set of transport plans minimizing (6.15) is denoted byOpt; (; ).
Recallthat E—=( ) n(@ @) .
Proposition 6.4.2. Let ; 2M ! . For the vague topology orE—,
themap 2 Adm(; ) 7! Cy () is lower semi-continuous.
The setOpt, (; ) is a non-empty sequentially compact set.
FG, is lower semi-continuous.
Moreover, FG; is a metricon M 1 .

The proofs of these results are found in Section 6.6. As in the cage< 1 , FG;
and d; coincide onD1? .
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Proposition 6.4.3. For a;b2D?!, FG1 (a;b = d; (a;b).

Proof. Consider two diagramsa;b2 D! , written as a = i i) x; andb= P 23 Vi
wherel;J N are (possibly in nite) sets of indices. The marginals constraints imply
thata plan 2 Adm(; ) is supported on(fxigi[ @) (fyjg [ @). If some of the
mass (fxjg, @ ) (resp. (@ ;fy;g)) is sent on a point other than the projection of x;
(resp.y;) on the diagonal @ , then the cost of such a plan can always be (strictly if
g > 1) reduced. Introduce the matrix C indexedon( J[ 1) ( 1] J) dened by

8
%Ci;j = d(xj;yj)  forijj> O
Cij = d(@;y;) for | < 0;1: > 0 616
3Cij =dxi;@ fori> 0jj< O
"~ Cij =0 fori;j< O

In this context, an element of Opt(a;b) can be written a matrix P indexed on( J [
1) ( I[ J), and marginal constraints state that P must belong to the set of doubly
stochastic matricesS. Therefore, FG1 (a;b) = infpos supfCi; @ (i;j) 2 spt(P)g,
where S is the set of doubly stochastic matrices indexedorf J[ 1) ( I[ J), and
spt(P) denotes the support ofP, that is the set f(i;j ); Pi; > 0g.

Let P 2S. For any k 2 N, and any set of distinct indicesfiy;:::;ikg J[ I,

we have
Xk X X Xk
= Pioj = Pioj -

k°:1j|2 |[Z j2 I[J\(Oz_l{z_}
1

k

—{z—1}

Thus, the cardinality of fj : 9k®such that (ixo;j) 2 spt(P)g must be larger thank.
Said di erently, the marginals constraints impose that any set ofk points in a must be
matched to at least k points in b (points are counted with eventual repetitions here).
Under such conditions, the Hall's marriage theorem (see [Hal86, p. 51]) guarantees the
existence of a permutation matrix P9with spt(P9 spt(P). As a consequence,

supfCij : (i;j) 2 spt(P)g supfCij : (i) 2 spt(P9g
Jnf supf Cyj < (i:]) 2 spt(P9g = di (a;b);
where S° denotes the set of permutations matrix indexed on( J[ 1) ( I [ J).

Taking the in mum on P 2 S on the left-hand side and using thatS® S nally gives
that FG1 (a;b) = di (a;b). O]

Proposition 6.4.4. The space(M ! ;FG1 ) is complete.

Proof. Let ( ), be a Cauchy sequence foFG; . Fix a compact K , and pick
" = d(K;@ )=2. There existsng such that for n > ngo, FG1 ( n; n,) <". Let
Ke = fx 2 = d(x;K) "g. By considering 2 Opty ( n; n), and since

FG1 ( n; no) <", we have that
n(K)= n(K )= n(K K)o pp(Ke): (6.17)

Therefore, ( n(K))n is uniformly bounded, and Proposition 3.1.8 implies that( n)n
is relatively compact. Finally, the exact same computations as in the proof of the
completeness fop < 1 (see Section 6.6) show thaf ), converges for theFG,
metric. O
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Remark 6.4.5 Contrary to the casep < 1 , the spaceD? I:(and thereforeM 1) is
not separable. Indeed, fo N, de ne the diagram & := |, i+ 2D?'. Tpe

family fa, : | Ng is uncountable, and for two distinct I;1 % FG1 (a ;a0) = 75
This result is similar to [BV18, Theorem 4.20].

We now show that the direct implication in Theorem 6.2.6 still holds in the case
p=1.

Proposition 6.4.6. Let ; 1; 2;::: be measures inM 1 If FG, (n; )! O then
( n)n converges vaguely to and Pers; ( ) converges toPers; ( ).

Proof. First, the convergence ofPers; ( ) towards Pers; ( ) is a consequence of the
reverse triangle inequality:

jPersy ( n) Persy ()j=jFG1 ( n;0) FG1(;0)j FGi(n )

which converges to0 asn goes tol .

We now prove the vague convergence. Ldt 2 C¢() , whose support is included
in some compact setK . For any " > 0, there exists alL -Lipschitz function f-, whose
support is included in K, with kf  f+k; . Observe thatsup, k(K) < 1 using
the same arguments than for (6.17). Let , 2 Opty ( n; ). We have

) B g o fi+j (F fj+j a(f)  (F4)]

(n(K)+ (K)"+] n(f)  (F4)]
(Sllﬂp k(K)+ (K)"+ ] a(f) ()

Also,
zZZ
jon(f) (f9)j= (f-(x)  f-(y)d n(Xy)
zZZ
I f(y)id n(x1y)

YA

L d(x;y)d n(x;y) asf- is L-Lipschitz continuous

K )IC K)

LCl( n)( n(K 7"’ n(i K))
LFG1 ( n; ) SlkJIO k(K)+ (K)

This last quantity converge to 0 asn goes tol for xed ". Therefore, taking the
limsup in n and then letting " go to 0, we obtain that ,(f)! (f). O

Remark 6.4.7. As for the casel p < 1, Proposition 6.4.6 implies that FG;
metricizes the vague convergence, and thus using Propositions 6.4.3 and 3.1.12, we
have that (D' ;d; ) is closed in(M ! ;FG; ) and is in particular complete.

Contrary to the p< 1 case, a converse of Proposition 6.4.6 does not hold, even
on the subspace of persistence diagrams (see Figure 6.2). To recover a space with a
structure more similar to DP, it is useful to look at a smaller set. IntroduceD} the set
of persistence diagrams such that for alt > 0, there is a nite number of points of the
diagram of persistence larger tharr and recall that D denotes the set of persistence
diagrams with nite number of points.

Proposition 6.4.8. The closure ofD; for the distance FG1 is D% .
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Figure 6.2: lllustration of di erences between FG,, FG; , and vague
convergences. Blue color represents the mass on a point while red
color designates distances(a) A case whereFGy( ,;0)! 0 for any
p<1 while FG; ( »;0) =1. (b A case whereFG; ( ,;0)! O
while forall p< 1, FGp( n; )!1 . (c) A sequence oprersistence
diagramsa, 2D?! , where (a,)n converges vaguely toa= , , and
Pers; (an) = Pers;y (a), but (a,) does not converge toa for FG; .

Proof. Considera 2 Dé . By de nition, for all n 2 N, a has a nite number of points
with persistence larger than%, so that the restriction a, of a to points with persistence
larger than % belongs toDs. As FG1 (a;an) % I 0, D} is contained in the closure
of Dg¢.

Conversely, consider a diagrama 2 D* nD} . There is a constantr > 0 such that
a has in nitely many points with persistence larger than r. For any nite diagram
a%2 D¢, we haveFG1 (a%a) r, so that a is not the limit for the FG; metric of any
sequence Dy . O]

Remark 6.4.9 The spaceD} is exactly the set introduced in [Blu+14, Theorem 3.5]
as the completion ofDs for the bottleneck metric d, . Here, we recover thatDé is
complete as a closed subset of the complete spabé .

Dene for r> Oanda?2 D, a) the persistence diagram restricted to , (as in
Lemma 6.2.3). The following characterization of convergence holds iD§ .

Proposition 6.4.10. Let a;a;;ay;::: be persistence diagrams irDcl, . Then,

( v
al ' a;
FG; (an;a)! O, . "
1 (an;a) @), is tight for all positive r:

Proof. Let us prove rst the direct implication. Proposition 6.4.6 states that the
convergence with respect toFG,; implies the vague convergence. Fix > 0. By
de nition, a(") is made of a nite number of points, all included in some open bounded

setU . As aﬁr)(UC) is a sequence of integers, the bottleneck convergence implies

that for n large enough,al” (U®) is equal to 0. Thus, (a{), is tight.
Let us prove the converse. Considea 2 D§ and a sequencda,), that converges

enumeration of the points ina("), the point x, being present with multiplicity my 2 N.
Denote by B(x;") (resp. B(x;")) the open (resp. closed) ball of radius' centered atx.
By the Portmanteau theorem, for " small enough,

8

<liminf a,(B(xk;")) ~ a(B(xk;")) = m

3 ”"]15Upan(§(xk;")) a(B(xk;")) = my;
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so that, for n large enough, there are exactlymy points of a, in B(xg;") (since
(an(B"B (Xk; ")) n is a converging sequence of integers). The tightness @iﬁr))n implies
the existence of some compad such that for n large enough,a.(qr)(K =0 (as
the measuresstake their values iMN). Applying Portmanteau's theorem to the closed
setK%:= Kn™ K, B(x;;") gives

limsupal’(K9 a(KY=0:
nil1

This implies that for n large enough, there are no other points ira, with persistence
larger than r and thus FG1 (a("); a,) is less than or equal tor + ". Finally,

imsupFGy (an;a) limsupFGy (an;a)+r 2r+™
n'l n'l

Letting "! Othenr ! O, the bottleneck convergence holds. O

Remark 6.4.11 (Related work withp =+ 1 in standard optimal transport.) . Although

it has been less studied than thew, distances for nite p, there exist some stimulating
works on theW; distance. In particular, [CDPJO08] introduces the notion of restrictable
transport plans: these are the transport plans 1 which appear as the limitasp! 1

of optimal plans , for W,. Such optimal plans appear to have nice restriction
properties and satisfy a form of cyclical monotonicity an important notion in optimal
transport theory that is not introduced in this work for the sake of concision. We
conjecture that the existence and main properties of restrictable transport plans also
hold in the framework of persistence measures with th&G, distance.

6.5 Fréchet means of persistence measures

In this section, we state the existence op-Fréchet means for probability distributions
supported onM P. We start with the nite case (i.e. averaging nitely many persistence
measures) and then extend the result to any probability distribution with nite p-th
moment. We then study the speci ¢ case of distributions supported orDP (i.e. averaging
persistence diagrams), and show that in the nite setting, the set ofp-Fréchet means
is a convex set whose extreme points are iBY (i.e. are actual persistence diagrams).
We assume thatl <p < 1 throughout this section.

Remark 6.5.1 Once again, the content of this section also holds in the more general
setting where a general ground space and reservoirR are considered. Besides being
a locally compact Polish space, one needs to assume thdt= (tR is a geodesic
space for Fréchet means to exist. This property ensures that a Fréchet mean of two
Diracs x and y) exists (and is given by the middle of a geodesic joining to y if
both points are su ciently far away from the reservoir R).

Recall that (M P; FGp) is a Polish space. The spacéP?(M P); WpirG,) is the space
of probability measuresP supported onM P, equipped with the Wp.rg, metric, which
are at a nite distance from g the Dirac mass supported on the empty diagram i.e.

Z Z
WF‘;FGp(P; 0) = FGB(; 0)dP( )= Pers,( JdP( )< 1:
2M P 2M P

We recall the de nition of p-Fréchet mean from Chapter 3.

De nition 6.5.2. LetP 2 P]RM P). Ameasure 2 M Pis a p-Fréchet meanof P
if it minimizes E: 2M P7! [ FGP(; )dP( ).
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6.5.1 p-Fréchet means in the nite case

Let P be of the formP L, i, with N 2 N, ; a persistence measure of nite mass
m;, and ( j);j non-negative weights that sum tol. De ne myy = iN=1 m;. To prove
the existence ofp-Fréchet means for such &, we show that, in this case,p-Fréchet
means correspond tq-Fréchet means for the Wasserstein distance of some distribution
onM h., (7), the sets of measures on that all have the same massny (see Section
6.3), a problem well studied in the literature [AC11; CE10; COO15a].

We start with a lemma which a rms that if a measure  has too much mass (larger
than myy ), then it cannot be a p-Fréchet mean of 1::: y.

Lemma 6.5.3. We haveinffE( ): 2M Pg=inffE( ): 2M?P

M tot g.

Proof. The idea of the proof is to show that if a measure has some mass that is
mapped to the diagonal in each transport plan between and ;, then we can build a
measure %by removing this mass, and then observe that such a measure® has a
smaller energy.
Letthus 2MP. Let ;2 Optp( i; )fori=1;:::;N. The measureA 7!

i(@ A) is absolutely continuous with respect to . Therefore, it has a densityf;

with respect to . De ne for A o a Borel set,
Z

W= A)  minfi0d ()
A

and, fori = 1;:::;N, a measure iO, equal to  on ~and which satis es for
A o a Borel set,
Z

Y@ A= Is(A) A)= (@ A) L minf;(d ();

R
wheres is the orthogonal projection on@ . As (@ A)= ,fi(x)d (x), YA) is
nonnegative, and as (@ A) (A), it follows that Y A) is nonnegative. To prove
that 22 Adm( i; 9, itis enough to check that forA o, { A)= YA):

Z
A A= (o A+ (@ A  minfj(x)d (x)
yd A
= (A) mjinfj(x)d x)= YA):
A
Also,
Z W Z
%) = (1 rf}infj)d (X) (1 fj)d (x)
j=1
X M
= (0 @ )= (i ) (@ )
i=1 j=1
N W
= J( ) J( )= mj = Miot
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and thus 9) Miot . TO conclude, observe that

W W 7
E( 9 iCp( D)= i _d(x;y)Pd i(xy)
i=1 77 i=1 7
+ o dx;y)Pd i(x;y) d(x; @) IOnr}infj(x)d (x)
X
iCp( )= E( ):

i=1
O

Recall that Wy, denote the Wasserstein distance between measures with same
mass supported on the metric spac€¢™; ) (see Chapter 3 and Section 6.3).

Proposition 6.5.4. Let : 2MP 71 ~2M R, (), where ~:=  + (M
()) @ - The functionals

E: 2MP 7 iFGP(; ) and
i=1
X
F:~2MR (7 7! iWE (= ()
i=1
have the same in mum values andrg minE = LargminF).

Proof. Let G be the set of 2 M P such that, for all i, there exists ;| 2 Opty( i; )
with i( ;@ =0 . By point 2 of Lemma 6.3.3, for 2 G and ; 2 Opt,( i; ) with
i( ;@=0, (;)iswell dened and satis es
ZZ

FGR( i )=Cp( )= dxy)Pd ()(xy)  Cp( (1)) Wg (=)

sothat F(( ) E (). As, by Lemma 6.34,E F , we therefore have
E( )= F(( )) for 2G.

We now show that if 2 G, then there exists °2 M P with E( 9 < E( ). Let

2 Gand ;2 Optp( i; ). Assume that for somei, we have ;( ;@) > 0, and

introduce 2M Pdenedas (A)= (A;@) for A . De ne
8 9
< X =
T:x2 7'argmin_ d(x;y)P+ jdly; @ P, 2 (6.18)
y2 . . ’
j6i

Note that this function is well de ned, with the value of the objective function in T(x)
being strictly smaller than the value in s(x), where s(x) is the projection of x on @
(in the general caseg( o;R), a minimizer T(x) is found on the geodesic betweer and
some projections(x)).

Consider the measure °=  +(Ty ), whereTy is the push-forward of by the
application T. Consider the transport plan iodeduced from ; where is transported
onto T instead of being transported to@ (see Figure 6.3). More precisely, ?is
the measure on  de ned by, for Borel sets A; B

IA B)= (A B)+ (A\ T B));
A @=0; Y@ B)= (@ B):
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Figure 6.3: Global picture of the proof. The main idea is to observe
that the cost induced by ; (red) is strictly greater than the sum of
costs induces by the % (blue), which leads to a strictly better energy.

We have 22 Adm( i; 9. Indeed, for Borel setsA; B
XA )= XA )= (A )+ (A= (A )= (A);

and

—<
o8}

N
1

X B)+ Y@ B)
i( B)+ (T '(B)+ (@ B)
(B)+ Ts (B)= 9B):

Using ioinstead of ; changes the transport cost by the quantity
z
[dx; T(x))P  d(x;@) Pld (x) O

In a similar way, we de ne for j 6 i the plan J_o 2 Adm( j; 9 by transporting the
mass induced by the newly added Tz ) to the diagonal @ . Using these modi ed
transport plans increases the total cost by

X Z
i dT(x);@ Pd (x):

i6i

One can observe that, as the value of the objective function aT (x) in (6.18) is
smaller than the value at s(x),
2 3

X
45 de TP dx;@) P)+ jd(T(x); @ Pod (x)< 0
ji6i

Z

due to the fact that () > 0.

Therefore, the total transport cost induced by the ( i‘bizl;;;N is strictly less or equal
to E( ), and thus E( 9 < E( ). Finally, we have
|r3)f E()= |r12fG E()= |n2fGF(( ) Zery‘ F((C ) 2ery‘ E( );

M tot M tot M tot

2M
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where the last inequality comes fromF E (Lemma 6.3.4). Therefore,inf E =

inf F , Which is equal toinf F, as is a bijection. Also, if is a minimizer of E
(should it exist), then 2 GandE( )= F(( )). Therefore, as the in mum are equal,
() is a minimizer of F. Reciprocally, if ~is a minimizer of F, then, by Lemma 6.3.4,
F(~) E( (), and, as the inmum are equal, (=) is a minimizer of E. [

The existence of minimizers~ of F, that isPWasserstein barycenter (i.e.p-Fréchet
means for the Wasserstein distance) o := iN:1 i ~.Is well-known (see [LGL16,
Proposition 1]). Proposition 6.5.4 asserts that %(~) is a minimizer of E on M pmm ,
and thus a p-Fréchet mean ofP according to Lemma 6.5.3. We therefore have proved

the existence ofp-Fréchet means in the nite case.

6.5.2 Existence and consistency of p-Fréchet means

We now extend the results of the previous section to the-Fréchet means of general
probability measures supported onM P. First, we show aconsistencyresult, in the
vein of [LGL16, Theorem 3].

Proposition 6.5.5. Let P,; P be probability measures irP?(M P). Assume that each
Pn has ap-Fréchet mean , and that Wy.rg,(Pn;P) ! 0. Then, the sequencd n)n

is relatively compact in (M P; FGp), and any limit of a converging subsequence is a
p-Fréchet mean ofP.

Proof. In order to prove relative compactness of ,),, we use the characterization

stated in Proposition 3.1.8. Consider a compact seK . We have, because 0{6.6),
(K)P e FGp( ni0)= — Wi, (i 0)
" dii@) T K@) TPt v ©
1
W Wp;FGp( niPn)+ Wp;FGp(Pn; 0)

Since n is a p-Fréchet mean ofPy, it minimizes fWp.rc,( ;Pn): 2 M Pg, and
in particular Wp.rc,( ,;Pn) WprG,( 0;Pn). Furthermore, as by assumption
Wpirc,(Pn;P) ! O, we have that sup, Wprs,(Pn; 0) < 1. As a consequence
sup, n(K) < 1, and Proposition 3.1.8 allows us to conclude that the sequende n)n
is relatively compact for the vague convergence.

To conclude the proof, we use the following two lemmas, whose proofs are found in
Section 6.6.

Lemma 6.5.6. Under the same hypothesis than Proposition 6.5.5, there exists a
subsequenc¢ n, )k of ( n)n Which vaguely converges towards a p-Fréchet mean ofP
and there exists 2 M P such thatFGy( n,; )! FGp(; )ask!1l

Lemma 6.5.7. Let ; 1; 2; 2 M P. Then, FGp( n; ) ! Oif and only if (i)
4V and (ii) there exists a persistence measure 2 M P such that FGp( n; )!

FGp(; ).

Let ‘k’ = n, be any subsequence of,. We want to show that there exists a
subsequence ofE which converges with respect to theFG, metric towards some
p-Fréchet mean ofP. By Lemma 6.5.6 applied to the sequencé (k))k, there exists a
subsequence El which converges vaguely to some-Fréchet mean of P, and some

with FGp( 2; ) ! FGp(; )asl!1l . By Lemma 6.5.7, this implies that
converges to with respect to the FG, metric, showing the conclusion. O

As the nite case is solved, generalization follows easily using Proposition 6.5.5.
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Theorem 6.5.8. For any probability distribution P supported onM P with nite p-th
moment, the set ofp-Fréchet means ofP is a non-empty compact convex set d¥l P.

P
Proof. We rst prove the non-emptiness. LetP = iN=1 i i be a probability measure
on M P with nite support 1;:::; n. According to Proposition 6.3.1, there exists
sequenceg i(”))n in M F with FGp( i(”); i) ! 0. As a consequence of the result of

Section 6.5.1, the probability measuresP (" := i i (m admit p-Fréchet means.

Furthermore, WFE’;FGP(P(”); P) i iFGH( (M) so that this quantity converges to
Oasn!1l . Itfollows from Proposition 6.5.5 that P admits a p-Fréchet mean.

If P has in nite support, following [LG‘gl6] it can be approximated (in Wp:rg,) by
a empirical probability measure P, = ﬁ i1 Where the ; are i.i.d. from P. We
know that P, admits a p-Fréchet mean since its support is nite, and thus, applying
Proposition 6.5.5 once again, we obtain thatP admits a p-Fréchet mean.

Finally, the compactness of the set ofp-Fréchet means follows from Proposition
6.5.5 applied withP,, = P: if ( ,)n is a sequence ob-Fréchet means, then the sequence
is relatively compact in (M P; FGp), and any converging subsequence is alsopaFréchet
mean ofP. Also, the convexity of the set ofp-Fréchet means follows from the convexity
of FGJ (see Lemma 8.1.3 in Chapter 8): if 1, » are two p-Fréchet means with energy
E( 1)= E( 2)= EpandO 1, then

z

E( 1+ ) 2)= FGR( 1+(1 ) 2 )dP()
ZZMP

o p( FGR( 1; )+ )FGR( 25 )dP()
= E(1)+(1 )E( 2) = Eo;

sothat 1+(1 ) 2 is also ap-Fréchet mean.

6.5.3 p-Fréchet means in DP

We now prove the existence op-Fréchet means for distributions of persistence diagrams
(i.e. probability distributions supported on DP), extending the results of [MMH11],
in which authors prove their existence for speci c probability distributions (namely
distributions with compact support or speci c rates of decay). Theorem 6.5.10 below
asserts two di erent things: that argminfE(a) : a 2 DPg is non empty, and that
minfE(a): a2DPg=minfE( ): 2 M Pg, i.e a persistence measure cannot perform
strictly better than an optimal persistence diagram when averaging diagrams. As for
p-Fréchet means inM P, we start with the nite case. The following lemma actually
gives a geometric description of the set of-Fréchet means obtained when averaging a
nite number of nite diagrams.

IDemma 6.5.9. Consideras;:::;ay 2 Dy, Welghtlg( i)i that sumtol, and letP :
N, i a. Then, the set of minimizers of 7! [, iFGp(;a) is a non empty
convex subset oM p whose extreme points belong tB; . In particular, P admits a

p-Fréchet mean in Df

The proof of this lemma is delayed to Section 6.6. Note that, as a straightforward
consequence, iP has a unigue minimizer inD; (which is generically true [Turl3]),
then so it does inM .

Theorem 6.5.10. For any probability distribution P supported onDP with nite p-th
moment, the set ofp-Fréchet means ofP contains an element ofDP.
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Proof. To prove the existence of gp-Fréchet mean which is a persistence diagram, we
argue as in the proof of Theorem 6.5.8, using additionally the fact thatDP is closed in
M P (Proposition 3.1.12). O

6.6 Additional proofs

For the sake of completeness, we rst present proofs which either require very few
adaptations from corresponding proofs in [FG10] or which are close to standard proofs
in optimal transport theory.

Proofs of Proposition 6.2.2 and Proposition 6.4.2.

For 2 Adm(; ) supported onE—, and for any compact setsK; K © , one
has (K [ ( K9 (K)+ (K9 < 1. Asany compact subset ofE—
is included in a set of the form(K  )[ ( K9, Proposition 3.1.8 implies
that Adm(; ) is relatively compact for the vague convergence oik—. Also,
if a sequenceg ), in Adm(; ) converges vaguely to some 2 M (E—), then
the marginals of are still and . Indeed, iff is a continuous function with
compact support on , then
Z z Z
f(x)d (x;y)=Im f(x)d n(xy)=lim  f(x)d n(x)
E " E n
Z
= f()d (x);

and we show likewise that the second marginal of is . Hence,Adm(; ) is
closed and relatively compact inM (E-): it is therefore sequentially compact.

To prove the second point of Propoﬁ&on 6.2.2, consider, 1; 2;::: such that
oY, and introduce @ 'AR!'  Ad(xy)Pd . The sequence( Q)n still
converges vaguely to %: A 7! A d(x;y)Pd . the Portmanteau theorem (Propo-
sition 3.1.11) applied with the open setE— to the measures & ¥ Oimplies

that

_ - . . 0 AT . .
Co( )= 9E-) liminf §(E-) =liminf Cp( n);
i.e. Cp is lower semi-continuous.

We now prove the lower semi-continuity of C; . Let ( ,)n be a sequence
converging vaguely to on E— and let r > Iirr]plinf Ci1( n). The setU, =

f(x;y) 2 E—: d(x;y) >r gis open. By the Portmanteau theorem (Proposition
3.1.11), we have
0= Iimlinf n(Ur) (Ur):

Therefore,spt( ) UFfandC; () r. Asthis holds for anyr > Iimlinf C1( n),
we haveliminf Cy (1n) Ci (). '

We show that forany 1 p 1 , the lower semi-continuity of C, and the
sequential compactness ohdm( ; ) imply that 1. Opt,(; ) is a non-empty
compact set for the vague topology onE— and that 2. FG, is lower semi-
continuous.
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1. Let ( 1)n be a minimizing sequence 0f6.2) or (6.15) in Adm(; ). As
Adm(; ) is sequentially compact, it has an adherence value, and the
lower semi-continuity implies that Cy( ) liminfpa;  Cp( n) = FGE( )
so that Opt,(; ) is non-empty. Using once again the lower semi-continuity
of Cp, if a sequence inOpt,(; ) converges to some limit, then the cost
of the limit is less than or equal to (and thus equal to) FGE( ; ), l.e. the
limit is in Opt,(; ). The setOpt,(; ) being closed in the sequentially
compact setAdm( ; ), it is also sequentially compact.

2. Let 4V and 4" . Onehas

Iimninf FGp( n; n):Iink1 FGo( ny ny)

for some subsequencény)y. For ease of notation, we will still use the index
n to denote this subsequence. If the limitis in nite, there is nothing to prove.
Otherwise, consider 2 Opt,( n; n). For any compact setsK; K 0 ,
onehas n(K )[( K9 sup, n(K)+sup, n(K9Y < 1. Therefore,
by Proposition 3.1.8, there exists a subsequende n, )x which converges
vaguely to some measure 2 Adm(; ). Note that the rst (resp. second)
marginal of is equal to the limit (resp. ) of the rst (resp. second)
marginal of ( n, ), so that isin Adm(; ). Therefore,

FGR(: ) Cp( ) liminf Cp( n) =liminf FGR( n; n):

Finally, we prove that FG, is a metriconM P. Let ; ; 2 M P. The symmetry
of FG, is clear. If FGp(; ) =0, then there exists 2 Adm(; ) supported
onf(x;x); x 2 g. Therefore, for a Borel setA , (A= (A )=

(A A)= ( A)= (A),and = . To prove the triangle inequality,

we need a variant on the gluing lemma, stated in [FG10, Lemma 2.1]: for

122 Opt(; ) and 232 Opt(; ) there exists a measure 2 M (73) such
that the marginal corresponding to the rst two entries (resp. two last entries),
when restricted to E—, is equal to 1, (resp. 23), and induces a zero cost on
@ @ . Therefore, by the triangle inequality and the Minkowski inequality,

z 1=p
FGp(; ) _,d(x;2)Pd (x;y;2)
Z 1=p z 1=p
L doey)Pd (xy;z) o+ dy;2)Pd (xy;2)
4 1=p z 1=p

= _dxy)Pd o(xy)  +_ d(y;2)Pd 25(y;2)
=FGp(; )*+FG(; ):

The proof is similar forp= 1 . .

Proof of Proposition 6.2.5. We rst show the separability. Consider for k > 0 a
partition of  into squares(CK) of side length2 k| centered at pointsxX. Let F be
the set of all measures of the form ,,, g .« for g positive rationals, k> Oand | a
nite subset of N. Our goal is to show that the countable setF is dense inM P. Fix
"> 0,and 2M P. The proof is in three steps.
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1. Since Pers( ) < 1, there exists a compactK such that Persy( )
Pers,( o) <" P, where g is the restriction of to K. By considering the transport
plan between and g induced by the identity map on K and the projection onto
the diagonal on nK, it follows that FGp(' o) Pers() Pers(o) P

2. Considerk such that 2 K -( 2 (K)¥P) and deﬁote byl the indices cor-
responding to squares(:k intersecting K. Let 1 = ,2| O(C ) Xk - One can

create a transport map between o and 1 by mapping each squareCi" to its
center xX, so that

! 1o

X
FGy( o) 1) o(C)"2 2 4 K)y=°2 2% =

3. Consider, fori 2 |, g a rational numbgr satisfying g o(CK) andj o(CK)
gj "P= L, dxK@ P .Let 2= g x<- Consider the transport plan
between , and 1 that fuIIy transports . onto 1, and transport the remaining
mass in 1 onto the diagonal. Then,

1o

X
FGp( 1; 2) i o(C) gjd(xi5@) P "
i21

As 72 F andFGy(; 2) 3", the separability is proven.

To prove that the space is complete, consider a Cauchy sequen€e,),. As the
sequencegPers,( n))n = ( FGB( n: 0))n is a Cauchy sequence, it is bounded. Therefore,
for K a compact set, (6.6) implies that sup, n(K) < 1 . Proposition 3.1.8
implies that ( n)n is relatively compact for the vague topology on . Consider( n, )k
a subsequence converging vaguely onto some measure . By the lower semi-continuity
of FGp,

Pers,( ) =FG §(; 0) Iiminf FGR( n;0)< 1

so that 2 M P. Using once again the lower semi-continuity oFGp,
FGp( n; ) Iiminf FGp( n; ny)
nI!llm FGp( n; ) nI!llm |I|£T!11Inf FGp( n; ny)=0

ensuring that FGp( n; )! O, thatis the space is complete. O

Proof of the direct implication of Theorem 6.2.6. Let ; 1; »2;::: be elements oM P

and assume that the sequenc€G,( n; ))n converges to 0. The triangle inequality
implies that Pers,( n) = FGf( n;0) converges toPers,( ) = FGJ(; 0). Let f 2

Ce¢() , whose support is included in some compact sé€ . For any " > 0, there exists
a Lipschitz function f-, with Lipschitz constant L and whose support is included in
K, with the 1 -norm kf  f-k; less than or equal to". The convergence oPers,( n)

and (6.6) imply that sup, k(K)< 1. Let o2 Opty( n; ), we have

Fn@) () g o fi+j (F fj+j n(f)  (F4)]
(n(K)+ (K)"+] n(f)  (f4)]
(Sllfp k(K)+ (K)"+j a(f)  (F))
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Also,
Z7
Jon(fe)  (f0)j () f(y)id n(x;y) where 2 Opt( n; )
7
L dix;y)d n(x;y)
K )YI(C K)
0 1:
) 77 P
LK JTILC K) 7@ dx;y)Pd oY)
(K )YI(C K)
by Holder's inequality.
1 1
L Slka (K)+ (K) pFGp( ni )!m1 0:

Therefore, taking the limsup in n and then letting " goes to 0, we obtain that

n(f) !t (f). O

The following proof is already found in [LGL16]. We reproduce it here for the sake
of completeness.

Proof of Lemma 6.5.6. Recall that P,, is a sequence irPP(M P) such that eachP,, has

a p-Fréchet mean , and that Wyprg,(Pn;P)! 0O for someP 2 Pf(M P). According

to the beginning of the proof of Proposition 6.5.5, the sequencé ), is relatively
compact for the vague convergence. Let 2 M P and let be the vague limit of some
subsequence, which, for ease of notations, will be denoted as the initial sequence. By
Skorokhod's representation theorem [Bil13, Theorem 6.7], aB, converges weakly to
P, there exists a probabilistic space on which are de ned random variables P and

n Pnforn 0 suchthat , converges almost surely with respect to theFG

metric towards . Using those random variables, we have

E( )= EFGR(; )= Wyes,( iP)
= lim W&FGP( ; Pn) sinceWp;rc, (Pn;P) ! 0
= lim EFGR(; 1)
Iirr]n EFGB( n; n) Since p is a barycenter ofP,
EIimninf FGP( n; n) by Fatou's lemma

EFGB( , )= E( ) by lower semi-continuity of FG, (Proposition 6.2.2).
(6.19)
This implies that is a barycenter of P. We are now going to show that, almost
surely, liminf, FGp( n; )= FGp(; ). This concludes the proof by lettingny be the

subsequence attaining the liminf for some xed realization of . By plugging in =
in (6.19), all the inequalities become equalities, and in particular,

lim Wges, (- oiPn) =lim EFG( n; n) = EFGR(; )= Wgeg ( :P):
This yields

0 Wpre,( +;P) Wprs,( ;P)

Wp;FGp( n;Pn)+Wp;FGp(Pn;P) Wp;FGp( P)t 0
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asn goesto+1 ,ie.limyWpec,( ,;P)= Wprs,( ;P). Therefore,
EFGP(; )= WFE’;FGP( ;P)=Iirrr11 WFE’;FGP( n;P)=Iir;1 EFGP( n; )
Elimninf FGP( n; ) by Fatou's lemma
EFGE( ;) by lower semi-continuity of FGp,.

As liminf n FGB( n; ) FGR(; ) and Eliminf, FGB( n; ) = EFGp(; ), we
actually have liminf , FGE( n; )= FGH(; ) almost surely, concluding the proof. [J

Figure 6.4: Partition of  used in the proof of Lemma 6.5.7.

We end this section by giving the proof of two technical lemmas of Section 6.5.

Proof of Lemma 6.5.7. For the direct implication, take = 0 and apply Theorem
6.2.6.

Let us prove the converse implication. Assume that || Y and FGp( n; )!
FGp(; ) for some 2 DP. The vague convergence of n)n implies that ® is
the only possible accumulation point for weak convergence of the sequen(:e§1p))n.
Therefore, it is su cient to show that the sequence ( ﬁp))n is relatively compact for
weak convergence (i.e. tight and bounded in total variation, see Proposition 3.1.9).
Indeed, this would mean that ( ﬁp)) converges weakly to (P, or equivalently by
Proposition 3.1.10 that ! Y and Pers,( n) ! Pers( ). The conclusion is then
obtained thanks to Theorem 6.2.6.

Thus, let ( 1)n be any subsequence an(l ), be corresponding optimal transport
plans between , and . The vague convergence of ), implies that ( ), is
relatively compact with respect to the vague convergence o . Let be a limit
of any converging subsequence df ), which indexes are still denoted byn. One
can prove that 2 Opt(; ) (see [FG10, Proposition 2.3]). Forr > 0, recall that
=fx2 : dx;@)>rganddene A; == fx2 : dx;@) rg, so that

rt A,. Write also A, for A, [ @ . Consider > 1. We can write
z zZ

d(x; @) Pd n(x) = d(x; @) Pd n(xy)

I =

A —
7z Ar zz
= d(x; @) Pd n(x;y)+ d(x; @) Pd n(xy)
Ar r Kr Kr
zz zz
) 1
1 d(x;y)Pd n(xy) + d(x; @) Pd n(xy)

Ar (1) Ar A
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L zz zz !
mproB ni)*2" dxiy)Pd a(xy)+  dy;@ Pd n(xy)
A A Ar A |
1 Y4 Y4 :
OB ni )¥27 T FGR(ni ) d0cy)’d n(ay)+  diy:@ Fd ()
E n(A Ar) r

where ( ) holds becausal(x;y) ( Dr 1d(x; @ ) for (x;y) 2 Ay AS.
Therefore,

z

imsup  d( @ Pd n(x) —oFGR(; )+2° L FGR(; )
nll A

( 1 |
z7 z !
dix;y)Pd (x;y) + . d(y; @ Pd (y)

E n(Ar A;)

Note that at the last line, we used the Portmanteau theorem (see Proposition 3.1.11) on

the sequence of measurgsl(x;y)Pd (x;y))n for the open setE n(A; A ,). Letting
r goes to0, then goes to in nity, one obtains

Z
limlimsup  d(x;@) Pd n(x)=0:
rl 0 n'1l Ar

The second part consists in showing that there can not be mass escaping at in nity

in the subsequence S]p))n. Fix nM > 0. For x 2 , denotes(x) the projection of x
on @ . Pose

Kwr = fx2 1 d(x;@) <M;d(s(x);0)<Mg
and Ly the closure of n(A; [ Kuy) (see Figure 6.4). Forr9> 0,
z zZ
d(x; @) Pd n(x) = d(x; @) Pd n(xy)

I-M;r
77 L 77

= d(x; @) Pd n(xy)+ d(x; @) Pd n(xy)

L myr (LM:Z;rO£§rO) Lmr  Kp=2y0

2r 1 d(x;y)Pd n(X;y)
L mir (L“fzro[ A0

+2P 1 d(@ ;y)°d n(x;y)
Ehﬁf (L= 25 of A 0)
+ d(x; @) Pd n(x;y):
Lmr Kp=2yr0
We treat the three parts of the sum separately. As before, taking thdim sup in n and

letting M goes tol , the rst part of the sum converges to 0 (apply the Portmanteau

theorem on the open seE n(Lyy  (Lm=2r0[ Aro)). The second part is less than or
equal to 7

2?1 d(y; @ Pd (y);

Ly=2r0[ Aro
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which converges toO0asM !'1 and rO1 0. For the third part, notice that if
(X;y) 2 Ly Km=2:r0, then

dx@  doxsy)  doay)+ dyis))  doy)+ 2000y

Therefore,
Y4 Y4

dix; @) Pd n(xy) 2° d(x;y)Pd n(x;y)
Lmr  Ky=2yr0 LMZZKM:z;rO
2P d(x;y)Pd n(x;y):
I—M;r -

RR
As before, it is shown thatlim sup,, Lo —d(x;y)Pd n(x;y) converges to0 when M

goes to in nity by applying the Portmanteau theorem on the open setE n(Ly, ).
Finally, we have shown, that by I;éaking r small enough andM large enough, one can
nd a compact set Ky, such that e dix;@ )Pd , = %p)( NK m:r ) is uniformly

small: ( ), is tight. As we have

(P()=Pers p( n)=FG B( n;0)
(FGp( n; )+FGp(; 0)P! (FGp(; )+FGp(; 0)P;

it is also bounded in total variation. Hence, ( ﬁp))n is relatively compact for the weak

convergence: this concludes the proof. O
P
Proof of Lemma 6.5.9. Let P = p iN=1 i a a probability distribution with & 2 D¢ of
massm; 2 N, and de ne myy = iNzl m;. By Proposition 6.5.4, everyp-Fréchet mean
a of ll% is in correspondence with gp-Fréchet mean for the Wasserstein distance: of
P = iNzl i &,Wheregs = a+(mp: M) @ , with a being the restriction of & to
Le[_t,thus X m2 N, and let &y;:::;ay be point measures of mass in ~. Write
& = jmzl xij» SO thatxi 2 ~“forl i N; 1 | m, with the x;j s non-
necessarily distinct. De ne
( )
T:(xe;::xn) 2 N 71 argmin i Xi;yY)Pry2~ 27 (6.20)

i=1

Since we assum@ > 1, T is well-de ned and is continuous, while in the general case
the existence of a measurable minimizer follows from standard arguments [CRO3].
Using the localization property stated in [COO15a, Section 2.2], we know that the
support of a p-Fréchet mean ofP is included in the nite set

S=fT(XyjsirnXngn) s 1 juiiiiin Mg

mean of P is equivalent to nding a minimizer of the problem

W 7
inf i (xi;y)Pd i (xi;y); (6.21)
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where is the set of plans( i)i=1.::n, With ; having for rst marginal &, and such
that all s share the same (non- xed) second marginal. Furthermore, we can assume
without loss of generality that ( 1::: N) IS supported on(Gr(zk); zk)k, i.e. a point z
in the p-Fréchet mean is necessary transported to its corresponding groupir@r(zx)
by (optimal) 1;::: n [COO15a, Section 2.3]. For such a minimizer, the common
second marginal is gp-Fréchet mean ofP.
A potential minimizer of (6.21) is described by a vector =( ik ) 2 RY™ such
that: ( . ' P K
for 1 | N; 1 j m; b ﬁ]:l ik = 1Pa,:d (6.22)
for2 i N;1 k K; =1 Lik T =1 ik

Let c2 RN™K pe the vector de ned by cjx = 1fxij 2 Gr(zk)g i (Xij;z)P. Then,
the problem (6.21) is equivalent to

miniLane Tc under the constraints (6.22) (6.23)
2RNM

The set of p-Fréchet means ofP are in bijection with the set of minimizers of this
Linear Programming problem (see [Sch03, Section 5.15]), which is given by a face of the
polyhedron described by the equationg6.22). Hence, if we show that this polyhedron

is integer (i.e. its vertices have integer values), then it would imply that the extreme
points of the set of p-Fréchet means ofP are point measures, concluding the proof.
The constraints (6.22) are described by a matrixA of size(Nm +(N 1)K) NmK
and a vectorb=[1xm;On 1k ], such that 2 RN™ satis es (6.22) if and only if

A = b. A sucient condition for the polyhedron fAx bgto be integer is to satisfy
the following property (see [Sch03, Section 5.17]): for ali 2 ZN™K | the dual problem

maxfy'b; y Oandy'A = ug (6.24)

has either no solution (i.e. there is noy 0 satisfying y" A = u), or it has an integer
optimal solution .
For y satisfying yTA = u, write y = [y%y'] with y°2 RN™ andy! 2 RIN DK so

that yCisindexedonl i N; 1 | mandylisindexedon2 i N;1 k K.
One can check that,for2 i N; 1 |J m; 1 k K:
Uik = Y33+ Vi and Uik = VR Vi (6.25)
i0=2
so that,
N X o xXn o X o
y b= Yij = yi; t Yij
i=1 j=1 j=1 i=2 j=1
xn X L XX L
= (ugjk Yix) + (Uigk + Yik)
j=1 i=2 i=2 j=1
X
= Uik -
i=1 j=1

Therefore, the function y"b is constant on the setP := fy 0; yTA = ug, and
any point of the set is an argmax. We need to check that if the seP is non-empty,
then it contains a vector with integer coordinates: this would conclude the proof. A
solution of the homogeneous equatioy™A =0 satisesy) =y, = fori 2and
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0 P N P N . . . .
Yij = i=o yI = i—» i and reciprocally, any choice of ; 2 R gives rise to a

solution of the homogeneous equation. For a given, one can verify that the set of
solutions ofy" A = u is given, for ; 2 R, by

8 P P
2y} = L1 Uik o i
S yp = ifori 2

Such a solution exists if and only if for allj, U; := P Nl Upjk does not depend ork
andfori 2, Uik = ujjx does not deperlt_l,d or) . For such a vectoru, P corresponds to
the ; Owith ; maxc Uk and Y, , 1 i. If this setis non empty, it contains
as least the point corresponding to ; = maxf 0; maxx Uk g, which is an integer: this
point is integer valued, concluding the proof. O
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Chapter 7

On the choice of weight functions
for linear representations of
persistence diagrams

A wide class of representations of persistence diagrams, including the persistence
surface [Ada+17] (variants of this object have been also introduced [Che+15; KHF16;
Rei+15]), the accumulated persistence function [BM19] or the persistence silhouette
[Cha+15a] are conveniently expressed as a linear expression of the points of the
diagram.

De nition 7.0.1  (Linear representations) Letf : ! B be a mgp, whereB is some
Banach space. The map 1 : DP! B dened by ¢(a)= a(f)= f (u) is called
the linear representation associated withf .

u2a

In this chapter, we explore the behavior of linear representations in two di erent
ways. First, in Section 7.1, using the characterization of convergence with respect to
the Figalli-Gigli metric FGp given in Chapter 6, we give a description of all continuous
linear representations. In particular, we highlight the importance of weighting the
representation by the distance to the diagonal to the powelp: the representations
of the form ¢.@ »¢ With f continuous bounded are the only continuous ones
with respect to FGp. In applications, Lipschitz continuity is often more desirable
than continuity. For p = 1, we therefore show a general stability result for linear
representations, which is based on a version of the Kantorovitch-Rubinstein duality
formula for persistence diagrams. Although obtaining a stability result forp > 1 is
somewhat less straightforward, we also give an inequality for bounding the distance
between linear representations by theFG, distance for generalp. In this case, the
importance of weighting the underlying mapf by the distance to the diagonal is once
again shown.

Our second approach consists in taking an asymptotic point of view, by studying
the behavior of fech and Rips persistence diagrams built on top of large random point
clouds. Assume for instance that a point cloudX is located on some Riemannian
manifold M . Under this assumption, the fech persistence diagrana = dgmqC (X) of
the data set is made of two di erent types of points: pointsayye far away from the
diagonal, which estimate the diagram of the manifoldM , and points anise Close to
the diagonal, which are generally considered to be topological noise (see Figure 7.1).
This interpretation is a consequence of the stability theorem for persistence diagrams;
see Chapter 3. If the relevant information lies in the structure of the manifold, then
the topological noise indeed represents true noise, and linear representations of the
form (&) are bound to fail if ¢ (ansise) IS dominating ¢ (ague). Once again, we
showcase the advantage of using a weight functiow : ! R. If w is chosen properly,
i.e. small enough when close to the diagonal, then one can hope thaty; (ayue) can be
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Figure 7.1: The persistence diagram for homology of degree 1 of the
Rips ltration of n =700 i.i.d. points uniformly sampled on a torus.

separated from s (anoise). We address this question from an asymptotic perspective:
for which weight functions does s (anoise) COnverge to0?

Of course, for this question to make sense, a model for the dataset has to be
speci ed. A simple model is given by a Poisson (or binomial) procesX, of intensity n
in a cube of dimensiond. We then denote bydgmg (Xn) the persistence diagram oiX,
built with either the fech ( K = C) or the Rips (K = R) lItration for g-dimensional
homology. In this setting, there are no true topological features (other than the
trivial topological feature of [0; 1] being connected), and thus the diagram based on
the sampled data is uniquely made of topological noise. A rst promising result is the
vague convergence of the persistence measurg := n 1dgmqK (n¥79X,,), which was
proven in [HST18] for homogeneous Poisson processes in the cube and in [GTT19]
for binomial processes on manifolds. However, vague convergence is not enough for
our purpose, as neitherf nor w have good reasons to have compact support. Our
main result, Theorem 7.2.4 extends results of [GTT19], for processes on the cube, to a
stronger convergence, allowing test functions to have both non-compact support (but
to converge to0 near the diagonal) and to have polynomial growth. As a corollary of
this general result, the convergence of the-th total persistence is shown, as well as
convergence of g for the Figalli-Gigli metric.

Theorem 7.0.2. Letp Oandlet be a density on[0;1]° such thatO < inf
sup < 1. Let X, be either a binomial process with parametera and or a Poisson
process of intensityn in the cube[0; 1]%. Then, with probability one, asn ! 1

na 'Pers,(dgmf (Xn)) ! 4(pers’) < 1 (7.1)

for some non-zero persistence measureq.

Furthermore, if §:= n 'dgmy (n™9X,) andp 1, we have

FGp( g: ¢)! O (7.2)

Remark that (7.2) is a consequence of7.1) and of the vague convergence ofg
proven in [HST18], by using the characterization of convergence for the Figalli-Gigli
metric (Theorem 6.2.6). If a, = dgmqK (X)) is built on a point cloud X2 of sizen
on a d-dimensional manifold, one can expectn:noise t0 behave similarly to that of
dgmg (Xp) for X, a n-sample on ad-dimensional cube (a manifold looking locally
like a cube). Therefore, forp > 0, the quantity Pers,(an;noise) should be close to
Pers,p(dgmqK (Xn)); and it can be expected to converge td if and only if the weight
function pers’ is such that p > d. As such, we obtain the following heuristic: a weight
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function of the form pers with p > d is sensible if the data lies near al-dimensional
object

Further properties of the process(dgmg (Xn))n are also shown, namely non-
asymptotic rates of decays for the number of points in said diagrams, and the absolute

continuity of the marginals of  with respect to the Lebesgue measure oR.

Related work  Techniques used to derive the large sample results indicated above
are closely related to the eld of geometric probability, which is the study of geometric
quantities arising naturally from point processes inRY. A classical result in this eld,
see [Ste88], proves the convergence of the total length of the minimum spanning tree
built on n i.i.d. points in the cube. This pioneering work can be seen as @dimensional
special case of our general results about persistence diagrams built for homology of
dimensiong. This type of result has been extended to a large class of functionals in
the works of J. E. Yukich and M. Penrose (see for instance [MY99; Yuk00; PY03] and
[Pen03] or [Yuk06] for monographs on the subject).

The study of higher dimensional properties of such processes is much more recent.
Known results include convergence of Betti numbers for various models and under
various asymptotics (see [Kahl1l; KM13; YSAL17; BO17]). The paper [BKS17] nds
bounds on the persistence of cycles in random complexes, and [HST18] proves limit
theorems for persistence diagrams built on homogeneous point processes. The latter
is extended to non-homogeneous processes in [Tril7], and to processes on manifolds
in [GTT19]. Note that our results constitute a natural extension of [Tril7]. In
[STY17], higher dimensional analogs of minimum spanning trees, called minimal
spanning acycles, were introduced. Minimal spanning acycles exhibits strong links
with persistence diagrams and our main theorem can be seen as a convergence result
for weighted minimal spanning acycle on geometric random complexes. [STY17]
also proves the convergence of the total-persistence for Linial-Meshulam random
complexes, which are models of random simplicial complexes of a combinatorial nature
rather than a geometric nature.

7.1 Continuity and stability of linear representations

As mentioned in the introduction, a linear representation of persistence measures (in
particular persistence diagrams) is a mapping ¢ : M P! B for some Banach space
B of the form 7! (f), wheref : | B is some chosen function. Using such a
representation, one can turn a sample of diagrams into a sample of vectors, making
the use of machine learning tools easier. Of course, a minimal expectation is that;
should be continuous. In practice, building a linear representation generally follows
the same pattern: rst consider a nice function g, e.g. a gaussian distribution, then
introduce a weight with respect to the distance to the diagonald( ; @ )P, and prove
that 7! (g()d(;@ )P) has some regularity properties (continuity, stability, etc.).
Applying Theorem 6.2.6, we show that this approach always gives a continuous linear
representation, and that it is the only way to do so.

For B a Banach space (typicallyRY), de ne the class of functions:

f(x)
dix; @) P

Proposition 7.1.1. Let B be a Banach space anfl : ! B a function. The linear
representation ¢ :M P! B is continuous with respect toFGy, if and only if f 2 Cp..

Cg;pz f: ! B: f iscontinuous andx 7! is bounded : (7.3)
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Proof. Consider rst the caseB = R. Letf 2 Cg;p and ; 1; 2 2M P be such that
FGp( n; ) ! 0. Recall the de nition (6.10) of (P. Using Corollary 6.2.9, having
FGp( n; )! Omeansthat 1" (P and thus that

Z Z
0 o f (%)
@t O Gea e

that is Z Z
f(n)= F0()d n(x)! fx)d (x)= ()

i.e. ¢ is continuous with respect toFGp,.

Now, let B be any Banach space. [Niell, Theorem 2] states that if a sequence of
measures p), weakly convergesto ,then ,(f)! (f) for any continuous bounded
function g: ! B. Applying this result to the sequence( ﬁp) with g= f=d(; @ )P
yields the desired result.

Conversely, letf : ! B. Assume rst that f is not continuous in somex 2
There exist a sequencéxn)n 2 N suchthatx, ! x but f (xp) 9 f(x). Let = «,
and = . We haveFGp( n; )! O, but ,(f)=f(xn)9 f(xo)= (f), so that
the linear representation 7! (f) cannot be continuous.

Then, assume thatf is continuous but that x 7! % is not bounded. Let

d ®P(x);

thus (xn)n 2 N be a sequence such that% I +1 . De ne the measure
n = Wln)k % - Observe that FGp( n;0) = % I 0 by hypothesis. However,

k n(f)k=1 for all n, allowing us to conclude once again that 7! (f) cannot be
continuous. O

Examples of such linear representations commonly used in applications of TDA
include for instance the persistence surface, persistence silhouettes and (weighted)
Betti curves, all introduced in Section 3.9.

Stability in the case p=1. Continuity is a basic expectation when embedding a
set of diagrams in some Banach spad®. One could however ask for more, e.g. some
Lipschitz regularity: given a representation : M P! B, one may want to have
k( ) ( )k C FGp(; )forsome constantC. This property is generally referred
to as stability in the TDA community and is generally obtained with p=1, see for
example [Ada+17, Theorem 5], [CCOL17, Theorem 3.3 & 3.4], [Som+18, Section4],
[Rei+15, Theorem 2], etc.

Here, we still consider the case of linear representations, and show that stability
always holds with respect to the distanceFG;. Informally, this is explained by the
fact that when p =1, the cost function (x;y) 7! d(x;y)P is actually a distance.

Proposition 7.1.2. De ne L the set of Lipschitz continuous functionsf : ! R

with Lipschitz constant less than or equal td and that satisfyf (@ ) =0. Let T be

any set, and consider a family(f);ot with fy 2 L. Then the linear representation
7' ( (fy))t27 is 1-Lipschitz continuous in the following sense:

k() ( )k 1=S;l;gj( ()l FGa(s ); (7.4)

for any measures; 2 M 1.
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Proof. Consider ; 2M 1, and 2 Opt(; ) an optimal transport plan. Let t 2 T.
We have:
z z zZ
( )(Fo) = f(x)d (x) foiyd (y)=  _ _(Fu(x)  f(y)d (Xy)
VAVA

o dxy)d (xy)=FGa(; );

and thus,k( ) ( )ki  FGi(; ). O

In particular, if f : | B, where B is some Banach space, i4-Lipschitz
with f (@ ) = 0, then one can letT = B, (the unit ball of the dual of B) and
fi(x) == t(f (x)) fort 2 T. We then obtain that k ;( ) f( )k FGi(; ), ie.
that ¢ :(M L FGy)! (B;k k) is 1-Lipschitz.

Remark 7.1.3 One actually has a converse of such an inequality, i.e. it can be shown
that
FG1(; ) =maxf( )f): f 2Lg: (7.5)

This equation is an adapted version of the well-known Kantorovich-Rubinstein formula,
which is itself a particular version in the casep = 1 of the duality formula in optimal
transport, see for example [Vil08, Theorem 5.10] and [Sanl15, Theorem 1.39]. A proof
of (7.5) would require to introduce several optimal transport notions. The interested
reader can consult Proposition 2.3 in [FG10] for details.

Stability for general weight functions Instead of weighting a representation by
the distance to the diagonald( ; @ )P for somep 1, one could use other schemes.
For instance, in [KFH17, Corollary 12], representations of diagrams are shown to
be Lipschitz with respect to the FG1 distance for weight functions of the formw :
uz2 = arctan(B perqu) ) with >m +1;B > 0, provided the diagrams are
built with the sublevels of functions de ned on a spaceX having boundedm-th total
persistence. The stability result is proved for a particular functionf : ! B de ned
byu2 7! f(u)= K(u; ), with K a bounded Lipschitz kernel andB the associated
RKHS (short for Reproducing Kernel Hilbert Space, see [Aro50] for a monograph on
the subject). We present a generalization of the stability result to (i) general weight
functions w, (ii) any bounded Lipschitz function f; and (iii) we only require >m .

Consider weight functionsw : ! R. of the form w(u) = w(pergu)) foru2

for a di erentiable function w: R, ! R, satisfying w(0) =0, and, for someA > 0,
1,

8r O jwqr)] Ar % (7.6)

Examples of such functions includew : u 7! arctan(B perqu) ) for B > 0 and
w : u 7! perqu) . We denote the class of such weight functions byV( ;A ). In
contrast to [KFH17], the function f does not necessarily take its values in a RKHS, but
simply in a Banach space. GiverR > 0, we let D} be the set of persistence diagrams
awith Pers,(@) R (i.e. Df is the ball of radius RP centered atO in DP).

Theorem 7.1.4. Let (B;k k) be a Banach space, left : | B be a Lipschitz
continuous function and letw 2 W( ;A ) with A > 0; 1. Fix t 2 [0;1] and
let p1 = P51 and p; = p—tt. Given R3;R2 > 0 and two diagramsa and b in
DP\D R \D &, we have

1
k wi(a) wf (DK Lip(f )éRi PFGp(a; b + kfky A (2R2)l v FGp(a; bt: (7.7)
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Proof. We only treat the casep < 1 , the proof being easily adapted to the case
p=1.

Fix two persistence diagramsa and b. Denote = w a (resp. = w b) the
measure having densityw with respect to a (resp. b). Fix "> Oand let be a matching
betweena and b such that the cost of the matching is smaller thanFGp(a;b) + ".
De ne X
~= w( (u)) u:

u2al @

Note that as the cost of is nite, there is a nite numbers on points u2 @ with
(u) 6 u, so that w( (u)) 6 0 only for a nite number of elements in the de nition of
~. Remark also that ~ is of nite mass, with j~ = j j. We have

kowi(@ w(Bk=k (f) (fk k () ~f)k+k~(f) (f)k
kfkij  ~+Lip(f)Wi(5 ): (7.8)

We bound the two terms in the sum separately. Let us rst boundW;(+ ). Consider
an optimal transport plan between ~and , which is built by mapping every point
u2al @ towards (u)2 b[ @ . We have

X
Wi(s ) w( (u)ju (U
u2al @
Let p°be the conjugate exponent op, de ned by %+ 31, =1. As condition (7.6) implies
that jw(u)j “pers(u) , the distance W1(= ) is bounded by

I ._ o I

x H 1=p x . 1=p
. . pO . p
w( (u)ju  (u)j w( (u)) ju (U]
u2al @ u2al @ u2al @
! 1= 0
A X 0o
— pers( (r))P FGp(a; b
u2al @
éRi:poFGp(a; b); (7.9)

where R; is a bound on Pers, o(b). We now treat the rst part of the sum in
(7.8). For uz;up, in  with perqu;) perquy), de ne the path with unit speed
h : [pers(u1); persu2)] ! by

t pers(uy) N pers(uz) t

ht) = Wpersuz)  persy) | persz) persup)’

so that it satis es pers(h(t)) = t. The quantity jw(ui) w(u)j is bounded by
z z

pers(uz) pers(uz)
jr w(h(t)):hqt)jdt A persth(t)) ldt
pers(us) pers(us)
pers(uy)
At ldt
pers(uy)

= é(pers(uQ) pers(uy) ):

ForO<y<x and0 a 1, usingthe conglexity oft 7! t , itis easy to see thatx
y (X y)® 2 Deneq= 2 ¢’= qqqﬁl and M (u) := max(pers(u); pers( (u))).



7.1. Continuity and stability of linear representations 157

We have,
X
A= jw(u)  w( (u))]

u2a[)2@
A jpersu)  pers( (u)j'M (u) |

u2al @ | |

X 1=y D=
A jpers(u)  pers( (u))j“ M (u)®t O
u2al @ uz2al @
X L=
AFGrg(a; b pers)® Y +pers( (u) Y
u2al @

AFGyy(a; B! 2 FRY, (7.10)

where Rz is a bound onPersp  1)(@) and Persp, 1)(b). Combining equations (7.8),
(7.9) and (7.10) concludes the proof. O

The total persistence Persy(a) of a diagram a can often be controlled. This is

for instance the case if the diagrams are built with Lipschitz continuous functions

: X! R;and X is a space having boundedn-th total persistence (see Chapter 3).
In that case, we are able to give a simpler stability result than Theorem 7.1.4.

Corollary 7.1.5. Letgq 0 an integer, A > 0, 1 and consider a spaceX
having boundedn-th total persistence for somem 1 and constantCyx.y,. Suppose
that 1; 2 : X ! R are two tame Lipschitz continuous functions,w 2 W( ;A ),

andt 2 [0;1]. Let m p 1 be such that m+t 1 % 0. Let Cy =

Cx-m maxfLip( 1)™;Lip( 2)™gand " be the maximum persistence in the two diagrams
dgmy( 1);dgmy( 2). Then, we have

K we(dgmg( 1))  wr (dgmg( 2))k  CiFGp(dgmg( 1);dgmg( 2))

+ CoFGp(dgmy( 2idomg( )t D

1
m 1 ) m t

i A~ 1 1 . 1 m 1 L
whereCq = Lip( f)2 P Cy P andCy= kfky A P (2Co)" ~r.

Proof. Corollary 7.1.5 follows by using the de nition of a space implying bounded
m-th total persistence along with the inequality Pers,+,(a) Pers (a)'tPers,(a)
for any persistence diagrana. O

If >m +1 andp= 1, then the result is similar to Theorem 3.3 in [KFH17].
However, Corollary 7.1.5 implies that the representations are still continuous (actually
Holder continuous) when 2 (m;m + 1], and this is the novelty of the result. Indeed,
for such an , one can always choose small enough so that the stability result (7.11)
holds. The proofs of Theorem 7.1.4 and Corollary 7.1.5 consist of adaptations of
similar proofs in [KFH17].

Remark 7.1.6 (a) One cannot expect to obtain an inequality of the form(7.7) without
guantities R, and R related to the total persistence of the diagrams appearing on the
right-hand side. For instance, in the casgp= 1 , it is clear that adding an arbitrary
number of points near the diagonal will not change the bottleneck distance between
the diagrams, whereas the distance between representations can become arbitrarily
large.

(b) Laws of large numbers stated in the next section (see Theorem 8.2.5), show that
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Corollary 7.1.5 is optimal. Indeed, takew = pers andf 1. Let X =[0;1]% be the
d-dimensional cube, which has boundedn-th total persistence form > d. Let X,
be a sample ofn i.i.d. points on X. Letting 1 be the distance function to X,, we
obtain that dgmg( 1) = dgmqC (Xn), the fech persistence diagram of the seK,. We
let =0, so that dgmy( 2) =0. Therefore,

k wi(dgmg( 1) wr(dgmg( 2))k = Pers (dgmg (Xn)):

We will see in the next section that this quantity does not converge to0 for d (it
even diverges if <d ), whereas the bottleneck distance betweeldgch(xn) and the
empty diagram does converge td. As such, it is impossible to obtain an inequality of
the form (7.11) for m.

We end this section by giving a foretaste of the asymptotic study of persistence
diagrams developed in the next section. The following corollary presents rates of con-

of i.i.d. points from a distribution on some manifold M . We are interested in the con-
vergence of the representation (dgmg(xn)) to the representation (dgmg(M ).
We obtain the following corollary.

Corollary 7.1.7.  Consider ad-dimensional compact Riemannian manifoldM , and let

with respect to the volume measure oM . Assume thatO < inf sup < 1. Let
w2 W(;A) forsomeA> 0; >d; andletf : | B be a Lipschitz continuous
function. Then, for n large enough,

c c Inn @
E k wi(dgmg(Xn))  wr(dgmg(M))k  Ckf kg i o ; (7.12)

where C is a constant depending orM; A and the density .

The study of the next section will show that this rate of convergence is tight up to
logarithmic factors. Once again, this indicates that Corollary 7.1.5 is close to being
tight.

Proof. As already discussed, Theorem 7.1.4 can be applied with, = d( ; X,) and

the null function on the manifold M. Takep=1,d< and0<t< min(l; d):
K wr(dgmg( n))  wr (dgmg( ))k
: A
Lip(f)—Pers (dgmg( n))) di (dgmg( n);dgmy( )) (7.13)

+2kf kg APers ((dgmg( n))d1 (dgmg( n);dgmy( )':

We mentioned in Chapter 3 that, form > d, we have the inequality Persy (dgmg( n))
mCy k nk™ 9=(m d) for some constantCy depending only onM . Moreover, the
stability theorem for the bottleneck distance ensures thatd; (dgmg( n);dgmg( ))

k nki . Therefore,

K wt (dgmg( n))  wr (dgmg( )k
AC x

Lip(f) 1K ke M1y Kf Ky %dt)k nky Ot
Lip(f)&gk nky ¥+ ki kg ZACMd K ok, & (7.14)
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where, in the last line, the second term was minimized ovet 2 [0; 1]. The quantity

k nki is the Hausdor distance betweenX,, and M. Elementary techniques of
geometric probability (see for instance [Cue09]) show that ifM is a compact d-
dimensional manifold, thenE[k ki ] ¢ '”T” = for 0, wherec is some constant
depending on ;M; inf and sup . Therefore, the rst term of the sum (7.14) being

negligible,

E k wi(dgmg( n))  wr(dgmg( )k

( d)=d ( d)y=d
kg 22CM_g Inn +o N
d n n
In particular, the conclusion holds for any C > 2ACy ¢, for n large enough. O

7.2 Limit laws on large persistence diagrams

As a gentle introduction to the formalism used later, we rst recall some known results
from geometric probability on the study of Betti numbers, and we also detail relevant
results of [HST18; Tril7; GTT19].

7.2.1 Prior work

In the following, K refers to either the fech or the Rips ltration. Let  be a density
on [0; 1]% such that:
0 < inf sup < 1: (7.15)

Note that the cube [0; 1] could be replaced by any compact convex body (i.e. the
boundary of an open bounded convex set). However, the proofs (especially geometric
arguments of Section 7.4.1) become much more involved in this greater generality. To
keep the main ideas clear, we therefore restrict ourselves to the case of the cube. We
indicate, however, when challenges arise in the more general setting.

Let (X;); 1 be a sequence of i.i.d. random variables sampled from densityand
let (N;);i 1 be an independent sequence of Poisson variables with parameterin the

and Poisson processes are built in this fashion is not important for weak laws of large
numbers (only the law of the variables is of interest), but it is crucial for strong laws
of large numbers to make sense.

Recall the de nition of the persistent Betti numbers

ns (dgmé (Xn)) = dgmé (Xn)(, rs); (7.16)
where, rs = fu=(ug;u2)2 : ug r s uxgfor0 r s

Theorem 7.2.1 (Theorem 1.4 in [Tril7]). Letr> Oandq 0. Then, with probability
one,n ! (dgmg (n¥79X,)) converges to some constant. The convergence also holds
in expectation.

The theorem is originally stated with the fech lItration but its generalization
to the Rips lItration (or even to more general lItrations considered in [HST18]) is
straightforward. The proof of this theorem is based on a simple, yet useful geometric
lemma, which still holds for the persistent Betti numbers, as proven in [HST18]. Recall
that for j 0, §j(K) denote thej-skeleton of the simplicial complexK .
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Lemma 7.2.2 (Lemma 2.11 in [HST18]) Let X Y be two subsets oRY. Then
1
j rs(dgmg (X)) rs(dgmg (Y))] JSj (K*(Y)nS (K *(X))j: (7.17)
i=q
In [HST18], this lemma was used to prove the convergence of expectations of
diagrams of stationary point processes. As indicated in [GTT19, Remark 2.4], this
lemma can also be used to prove the convergence of the expectations of diagrams
for non-homogeneous binomial processes on manifold. Sef = n dgm§ (n™9X).
Remark 2.4 in [GTT19] implies the following theorem.

Theorem 7.2.3 (Remark 2.4 in [GTT19] and Theorem 1.5 in [HST18]) Let be a
probapility density function on ad-dimensional compactC! manifold M (or the cube),
with , 1(z)dz< 1 forj 2 N. Then, for g 0, there exists a uniqgue Radon measure

g on such that

ELall) q (7.18)
and
n !nllv q sS.. (7.19)

The measure  is called the persistence diagram of intensity for the ltration K.

q

The measureE[ g] is by de nition the unique measure de ned by E[ g](A) :=
E[ §(A)] for every Borel setA. We will investigate in detail the behavior or such
measures, that we call expected persistence diagrams, in Chapter 8.

7.2.2 Main results

A function : ! R is said to vanish on the diagonal if
lim sup j (r)j=0: (7.20)
! Opers(r) "
Denote by Gy() the set of all such functions. The weight functions of Section 7.1 all
liein G() . We say that a function : ! R has polynomial growth if there exist
two constants A; > 0, such that
j (j A@+pers(r) ): (7.22)

The class Gy () of functions in G() with polynomial growth constitutes a
reasonable class of functionsv one may want to build a representation with.
Our goal is to extend the convergence of Theorem 7.2.3 to this larger class of func-
tions. Convergence of measures, to  with respect to Gy () ,i.6.8 2 Cyoy()

n( ) !n|l (), is denoted by! " Note that this class of functions is standard: it is
for instance known to characterizep-th Wasserstein convergence in optimal transport

(see Chapter 3).

Theorem 7.2.4. (i) For q O, there exists a unique Radon measure, such that

E[ ] !n!\f’ q and, with probability one, § !m\;" q- The measure  is called the

g-th persistence diagram of intensity for either the fech or Rips lItration. It does
not depend on whethelX,, is a Poisson or a binomial process, and is of positive nite
mass.

(i) The convergence also holds pointwise for thé., distance: for all 2 Cyqy () , and
Lp

forallp 1, g&( )!nll

q( ). In particular, j 4( )j< 1.
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