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1

Chapter 1

Introduction (français)

Ce travail s’inscrit dans le cadre de l’Analyse Topologique des Données (ou TDA, pour
Topological Data Analysis), qui est ici abordée selon deux points de vue différents
: celui de l’inférence géométrique et celui de la théorie de l’homologie persistante.
Ces deux approches visent toutes deux à extraire (dans des cadres différents) des
informations pertinentes de nature géométrique et topologique sur des jeux de données
complexes possédant des structures a priori non linéaires.

1 Les enjeux de l’inférence géométrique

La théorie statistique classique développée dans les années 1930 par Fisher fait les
hypothèses suivantes : on observe des données en basse dimension, et on possède
un modèle génératif simple expliquant ces données (gaussien, exponentiel, etc.). On
s’intéresse alors à des estimateurs de paramètres caractérisant la loi des données, pour
lesquels on est capable de donner des garanties fortes d’optimalité. À l’inverse, les
jeux de données modernes se présentent typiquement sous la forme de nuages de
points en grande dimension. Si les méthodes classiques peuvent s’appliquer dans ce
cadre, leurs performances théorique et pratique deviennent médiocres. Ce phénomène,
couramment appelé fléau de la dimension, montre la nécessité d’un changement de
paradigme. Il s’agit tout d’abord, dans une phase de modélisation, de développer
des jeux d’hypothèses raisonnables que vérifient une large classe de données acquises
en grande dimension. Dans un second temps, il s’agira de développer des méthodes
statistiques adaptées à ces nouveaux jeux d’hypothèses.

Ainsi, certaines méthodes, telle le LASSO [Tib96], ont des bonnes performances sous
une hypothèse de parcimonie sur les jeux de données. Des méthodes de régression, telle
la régression ridge [HK70], s’adaptent à la grande dimension en pénalisant la complexité
de la fonction de régression proposée. On peut aussi mentionner d’autres méthodes
standard, telle l’analyse en composante principale [Pea01; Hot33], dont l’utilisation
suppose que les données sont proches d’un espace vectoriel de basse dimension en un
sens L2. Les hypothèses que nous venons de mentionner reposent toutes sur l’existence
d’une structure linéaire de basse dimension pertinente pour expliquer le jeu de données.
En particulier, elles nécessitent d’avoir une grande confiance en la paramétrisation des
données utilisées, et toute reparamétrisation peut briser cette structure linéaire (voir
la figure 1.1). L’idée clé de l’inférence géométrique est de relaxer cette hypothèse en
supposant que les données en grande dimension se concentrent autour d’une forme de
basse dimension, a priori non linéaire. Mathématiquement, on suppose alors que les
données observées sont proches d’une variété M de dimension d petite dans un espace
de dimension ambiante D possiblement grande.

D’un point de vue statistique, ce type d’hypothèses a d’abord été étudié dans
le cas où la variété M est connue [Hen90; Pel05]. C’est notamment le cas pour des
problèmes de géolocalisation [IPT19], où les données sont des éléments de S2, ou
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Figure 1.1: La structure linéaire du jeu de données bleu disparaît
lorsque l’axe vertical est reparamétrisé par une fonction non-linéaire
(ici sinusoïdale). Le jeu de données orange reste cependant près d’une

variété.

lors de l’étude d’images de visages se présentant sous différents éclairages [Cha+07]
dans laquelle les jeux de données présents se trouvent être sur une Grassmannienne
G(k, d). Connaître la variété M est le plus souvent trop exigeant, et, au cours des
années 2000, une autre famille de techniques, que l’on peut regrouper sous le terme de
méthodes de réduction de dimension non-linéaire, est apparue [RS00; ZZ03; WSS04]
(on pourrait aussi mentionner des techniques proposées antérieurement comme les
cartes autoadaptatives [Koh89] ou les surfaces principales adaptatives [LT94]). Ces
méthodes, ne nécessitant pas une connaissance a priori de la variété M , cherchent à
plonger de la manière la plus fidèle possible un nuage de points proche d’une forme
”non-linéaire” dans un espace euclidien Rd pour d petit. Par exemple, la méthode
ISOMAP [TDSL00] est basée sur le plongement dans Rd, à l’aide d’un positionnement
multidimensionnel (ou MDS pour multidimensional scaling), d’un graphe de voisinage
construit sur les observations. Elle permet ainsi de ”déplier” des jeux de données qui se
trouveraient sur des objets difféomorphes à un ouvert convexe (voir la figure 1.2). On
peut ensuite appliquer des techniques standard de classification ou de régression aux
données ”dépliées”. Notons tout de même que ces approches ne possèdent des garanties
théoriques que dans un cadre restreint, qui nécessite au moins que le jeu de données
soit difféomorphe à Rd. Il est ainsi par exemple impossible de plonger continûment
une sphère dans R2.

Parallèlement à cette ligne de travaux, se sont développées dans le domaine de
la géométrie algorithmique des méthodes de reconstruction d’une variété M ⊂ RD à
partir d’un échantillon fini X , avec une attention toute particulière portée aux courbes
et aux surfaces [BTG95; AB99]. Ainsi, l’algorithme COCONE [Ame+00] permet la
reconstruction d’une surface lisse M à partir d’une approximation finie, si le taux
d’approximation ε(X ) := sup{d(x,X ) : x ∈M} de l’échantillon X est suffisamment
petit, tandis que le Tangential Delaunay Complex de Boissonnat et Ghosh [BG14]
permet une telle reconstruction en dimension supérieure. On peut aussi se poser des
questions sur la reconstruction d’invariants topologiques ou géométriques deM , comme
son axe médian [ABE09] ou ses groupes d’homologie ou d’homotopie [CO08]. Encore
une fois, ces travaux requièrent uniquement une échantillon fini X se trouvant sur la
variété M et ayant un bon taux d’échantillonnage. Un autre point de vue consiste
à supposer que l’approximation X est la réalisation d’un processus aléatoire, de n
observations indépendantes d’une certaine loi µ concentrée autour de la variété M :
on peut alors espérer que les méthodes de reconstruction fonctionnent avec grande
probabilité, sur des échantillons ”typiques”. Cette approche statistique des problèmes
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Figure 1.2: À gauche : un ensemble X de 3000 points échantillonnés
sur un swiss roll. À droite : sortie de l’algorithme ISOMAP appliqué à

X (implémenté sur scikit-learn [Bui+13]).

de géométrie algorithmique a pour la première fois été adoptée dans un article de
Niyogi, Smale et Weinberger [NSW08], où les auteurs montrent que l’homologie d’une
variété M est reconstruite avec grande probabilité à partir du complexe de Čech (un
objet combinatoire défini dans le chapitre 3) d’un n-échantillon aléatoire Xn. Dans
les années 2010, a ensuite été abordée l’estimation au sens statistique du terme de
plusieurs descripteurs de M , comme sa dimension [HA05; LJM09; KRW19], ses espaces
tangents [AL19; CC16], son reach [Aam+19; Ber+21], sa courbure [AL19], ses distances
géodésiques [ACC20], ou la variété M elle-même [Gen+12a; Gen+12b; MMS16; AL18;
AL19].

Ce point de vue statistique sur les problèmes de reconstruction géométrique a
l’avantage de permettre de poser simplement la question de l’optimalité des procédures
envisagées. Ceci est rendu possible grâce à la théorie statistique minimax. Considérons
par exemple le problème de l’estimation d’une variété M à partir d’un n-échantillon
aléatoire Xn. Un estimateur M̂ de M est alors n’importe quel sous-ensemble compact
de RD, fonction (mesurable) de l’échantillon. La qualité de l’estimateur M̂ sous loi
µ, appelée son µ-risque, est donnée par sa distance de Hausdorff dH moyenne à M ,
c’est-à-dire

Rn(M̂, µ, dH) := E[dH(M̂,M)], (1.1)

où il est sous-entendu que M̂ = M̂(Xn) et Xn est un n-échantillon de loi µ. En pratique,
la loi µ générant les données est inconnue, et il est plus intéressant de contrôler ce
risque uniformément sur tout un ensemble Q de lois µ, que l’on appelle un modèle
statistique. En inférence géométrique, plusieurs modèles statistiques ont été introduits,
prenant en compte différents modèles de bruits et de régularité pour M . Le risque
uniforme de l’estimateur M̂ sur une classe Q est alors donné par

Rn(M̂,Q, dH) := sup{Rn(M̂, µ, dH) : µ ∈ Q}, (1.2)

tandis qu’un estimateur sera dit minimax si il atteint (à une constante multiplicative
près) le risque minimax défini par

Rn(M,Q, dH) := inf{Rn(M̂,Q, dH) : M̂ est un estimateur}. (1.3)

Mentionnons par exemple la famille de modèles Q2,d
τmin,fmin,fmax

introduite par Genovese
et al. dans [Gen+12a], comprenant les lois µ supportées sur une variétéM de dimension
d satisfaisant certaines propriétés. Tout d’abord, on suppose que µ a une densité f
sur M comprise entre deux bornes fmin et fmax > 0. Cela permet d’assurer que toutes
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τ (A)

A

τ (A)
A

Figure 1.3: Si le reach de la courbe M est grand, alors la courbe
ne peut pas être trop courbée (gauche) et ne peut pas présenter une

structure fine en goulot d’étranglement (droite)

les régions de la variété sont à peu près autant échantillonnées : on parle alors de lois
presque-uniformes sur M . Le paramètre τmin impose une borne inférieure sur le reach
τ(M) de la variété. Ce dernier est une notion centrale en inférence géométrique. Le
reach τ(M) est défini comme le plus grand rayon r tel que, si d(x,M) ≤ r, alors il
existe une unique projection y de x sur M , c’est-à-dire un point y ∈ M satisfaisant
|x − y| = d(x,M). D’un point de vue plus géométrique, avoir un reach τ(M) plus
grand que r implique qu’il est possible de faire ”rouler” une boule le long de M sans ”se
cogner” à une autre partie de M [PL08, Lemma A.0.6]. Ainsi, le reach τ(M) contrôle
deux quantités différentes, d’une part le rayon de courbure de la variété M (donc une
régularité locale), et d’autre part une régularité globale, contrôlant la présence de
structure en goulot d’étranglement dans la variété (voir la figure 1.3). Sur le modèle
Q2,d
τmin,fmin,fmax

, la vitesse minimax satisfait

c0

(
lnn

n

)2/d

≤ Rn(M,Q2,d
τmin,fmin,fmax

, dH) ≤ c1

(
lnn

n

)2/d

(1.4)

pour deux constantes c0, c1 > 0 dépendant de τmin, fmin, fmax et d. La borne inférieure
dans cette inégalité a été montrée par Kim et Zhou [KZ15], tandis que la borne
supérieure est obtenue en fournissant un estimateur ayant un risque uniforme de l’ordre
de (lnn/n)2/d. Un tel estimateur (non calculable en pratique) a tout d’abord été
proposé par Genovese et al. dans [Gen+12a], tandis qu’un autre estimateur, cette
fois-ci calculable, atteignant cette même vitesse, basé sur le Tangential Delaunay
Complex, a été introduit par Aamari et Levrard [AL18].

1.1 Le problème de l’adaptivité

Notons que le Tangential Delaunay Complex dépend de plusieurs paramètres, comme
par exemple d’un rayon quantifiant la taille des voisinages utilisés pour calculer des
analyses en composantes principales locales. Pour que le Tangential Delaunay Complex
soit minimax, ces paramètres doivent être calibrés d’une certaine manière par rapport
aux variables τmin, fmin et fmax définissant le modèle. Or, ces quantités sont a priori
inconnues. Se pose alors la question du choix en pratique des paramètres définissant
l’estimateur. Cette question du calibrage pratique des paramètres définissant un
estimateur n’est pas restreint à l’estimation de variétés, mais est un problème classique
en statistique.

Citons par exemple la question du choix de la largeur de bande dans l’estimation à
noyaux. Soit X1, . . . , Xn un n-échantillon d’une certaine loi µ ayant une densité f sur
R, et supposons que l’on souhaite reconstruire la valeur de la densité f(x0) en un point
fixé x0 ∈ R. Une méthode standard pour réaliser cet objectif est de convoler la mesure
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empirique µn = 1
n

∑n
i=1 δXi par un certain noyau Kh, où Kh = h−1K(·/h) et K vérifie∫

K = 1. On obtient alors une fonction f̂h = Kh ∗ µn. Supposons que la densité f soit
de régularité s, c’est-à-dire que f ∈ Cs(R), l’ensemble des fonctions dérivables bsc fois,
dont la dérivée bscième est (s− bsc)-Hölder. Alors, en choisissant bien le noyau K, on
sait qu’il est optimal de choisir la largeur de bande hopt de l’ordre de c ·n−1/(2s+1), où c
dépend de la norme Cs de f [Tsy08, Chapitre 1]. Le risque associé est alors de l’ordre de
n−s/(2s+1), ce qui est la vitesse minimax d’estimation sur les densités de régularité s. En
pratique, il est impossible de connaître exactement s, de sorte que nous devons trouver
une autre stratégie pour choisir h. Les méthodes adaptatives consistent à choisir une
largeur de bande ĥ en fonction des données, de sorte que l’estimateur f̂ĥ ait un µ-risque
presque aussi bon que l’estimateur optimal f̂hopt sous des hypothèses faibles sur µ. En
particulier, la méthode PCO (pour Penalized Comparison to Overfitting) introduite
par Lacour, Massart et Rivoirard [LMR17] consiste à comparer chaque estimateur f̂h
à un estimateur dégénéré f̂hmin

pour un certain hmin très petit. La largeur de bande ĥ
sélectionnée est choisie parmi une famille H de largeurs de bande (toutes supérieures
à hmin), en minimisant un critère qui dépend de la distance ‖f̂h − f̂hmin

‖L2(R) et qui
pénalise les petites valeurs de h. Lacour, Massart et Rivoirard montrent alors une
inégalité oracle pour leur estimateur, c’est-à-dire une inégalité du type

E‖f̂ĥ − f‖2L2(R) ≤ C min{E‖f̂h − f‖2L2(R) : h ∈ H}+ C(n, |H|), (1.5)

où C(n, |H|) est un terme de reste négligeable devant le risque optimal. On obtient
ainsi que f̂ĥ a un risque presque aussi bon que le meilleur estimateur f̂hopt , sans jamais
avoir eu à estimer les paramètres définissant le modèle (ici la régularité de la densité
ainsi que sa norme).

Dans le chapitre 4, nous nous inspirons de la philosophie de la méthode PCO pour
créer un estimateur adaptatif de variété. Une première étape consiste à créer une
famille d’estimateurs (M̂t)t≥0, analogue des estimateurs à noyaux pour l’estimation
de variété. Ceci est permis par la notion de t-enveloppe convexe. Pour t ≥ 0, la
t-enveloppe convexe Conv(t, A) d’un ensemble A interpole entre A (t = 0) et son
enveloppe convexe Conv(A) (t =∞). Elle est définie par

Conv(t, A) :=
⋃
σ⊂A
r(σ)≤t

Conv(σ), (1.6)

où r(σ) est le rayon de l’ensemble σ, à savoir le rayon de la plus petite boule contenant
σ. On montre dans un premier temps que pour t = c · (lnn/n)1/d, où c dépend de d
et des paramètres τmin et fmin, la t-enveloppe convexe Conv(t,Xn) d’un n-échantillon
aléatoire de points fournit un estimateur de variétés qui est minimax sur le modèle
Q2,d
τmin,fmin,fmax

. Dans un deuxième temps, nous considérons le problème de la sélection
adaptative du paramètre t. Un analogue de l’estimateur dégénérée f̂hmin

est ici donné
par le choix de t = 0 : on trouve alors l’estimateur Conv(0,Xn) = Xn. Si on croît
en la méthode PCO, il s’agira donc de comparer les estimateurs Conv(t,Xn) à Xn,
c’est-à-dire d’étudier la fonction t 7→ h(t,Xn) := dH(Conv(t,Xn),Xn). Il se trouve
que cette fonction a été précédemment introduite sous le nom de défaut de convexité
de l’ensemble Xn dans un papier d’Attali, Lieutier et Salinas [ALS13], où elle était
utilisée pour étudier le type d’homotopie des complexes de Rips. Nous montrons que le
défaut de convexité de l’échantillon aléatoire Xn exhibe des comportements différents
dans deux régimes : avant une certaine valeur seuil t∗(Xn), elle a un comportement
globalement linéaire, tandis qu’après cette valeur seuil, elle possède un comportement
(sous-)quadratique. Le défaut de convexité est calculable uniquement à partir des
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Figure 1.4: Gauche. Échantillon Xn. Centre. Défaut de convexité de
Xn et échelle sélectionnée t̂λ. Droite. L’ensemble Conv(t̂λ,Xn).

données, et on peut donc en pratique observer ces deux phases. On peut alors montrer
que les valeurs de t juste au-dessus de la valeur seuil t∗(Xn) fournissent un risque
minimax de l’ordre de (lnn/n)2/d. En pratique, nous fixons deux hyperparamètres
0 < λ < 1 et tmax, posons

t̂λ := sup{t < tmax : h(t,Xn) > λt}, (1.7)

et montrons que, si tmax est assez petit par rapport à τmin, alors Conv(t̂λ,Xn) fournit
un estimateur minimax adaptatif de variétés, voir la figure 1.4. Notons que nous
n’obtenons pas le caractère adaptatif de notre estimateur en montrant une inégalité
oracle du type (1.5), mais en montrant que t̂λ est plus grand que la valeur seuil
t∗(Xn) (tout en restant du bon ordre de grandeur) avec grande probabilité, ce qui
suffit à montrer le caractère minimax de l’estimateur correspondant. On peut aussi
montrer que le paramètre t̂λ est en fait proche du taux d’approximation ε(Xn). Comme
mentionné précédemment, un certain nombre d’algorithmes en géométrie algorithmique
nécessitent la connaissance du taux d’échantillonnage (ou plutôt d’un encadrement du
taux d’échantillonnage), et peuvent donc être utilisés en utilisant le paramètre t̂λ.

1.2 Reconstruire la mesure plutôt que la variété

La deuxième contribution proposée ici est motivée par les problématiques d’estimation
de densité. En inférence géométrique, la possibilité de reconstruire la densité f de
la mesure µ générant les observations Xn a d’abord été considérée dans le cas où M
est connue. Hendriks [Hen90] propose d’utiliser les fonctions propres de l’opérateur
de Laplace-Beltrami sur la variété pour reconstruire la densité, tandis que Pelletier
[Pel05] propose un estimateur à noyaux utilisant la distance géodésique sur la variété.
Dans le cadre de l’inférence géométrique, où la variété M est supposée inconnue, les
travaux d’estimation de densité sont plus récents. Soit un point x0 que l’on suppose
appartenir à M . L’estimation de de f(x0), la densité de f en x0, a été abordée
dans [BS17; WW20], où des vitesses de convergence des estimateurs à noyaux sont
exhibées, respectivement dans le cas où la variété est à bord et dans le cas où la densité
est supposée Hölder. Berenfeld et Hoffmann [BH19] exhibent des vitesses minimax
d’estimation pour ce problème, et montrent que deux régularités entrent en jeu dans
la vitesse optimale : d’une part la régularité s de la densité f , et d’autre part la
régularité k de la variété M . De plus, les auteurs montrent que la méthode de sélection
de Goldenshluger-Lepski [GL13] s’applique dans ce cadre pour sélectionner la largeur
de bande du noyau et permet d’obtenir des estimateurs adaptatifs de f(x0).

Pour aller au-delà de l’estimation ponctuelle de f (ou de manière équivalente de la
mesure associée µ), le choix de la fonction de perte est un problème délicat. En effet,
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les choix standard en estimation de densité comprennent la distance Lp, la distance de
Hellinger ou encore la divergence de Kullback-Leibler. Toutes ces fonctions de perte
deviennent dégénérées pour la comparaison de deux mesures mutuellement singulières.
Or, si le support M de la mesure µ est inconnu, il sera impossible de construire à
partir d’un n-échantillon une mesure non-singulière par rapport à la mesure volume
volM sur M , quand bien même son support serait très proche de M pour la distance
de Hausdorff. Au contraire, les distances de Wasserstein Wp (1 ≤ p ≤ ∞) sont par
construction robustes aux perturbations métriques du support d’une mesure, et sont
donc particulièrement adaptées à notre problème. Elles sont définies de la manière
suivante. Étant données deux mesures de probabilité µ et ν, nous définissons un plan
de transport π entre µ et ν comme une mesure sur RD × RD ayant pour première
marginale µ et seconde marginale ν. Informellement, au point x ∈ RD, une fraction
dπ(x, y) de la masse dµ(x) présente en x est envoyée en y. Le coût d’un tel plan de
transport est donné par Cp(π) =

∫∫
d(x, y)pdπ(x, y), tandis que la distance Wasserstein

Wp est donné par le coût du plus petit plan de transport :

Wp(µ, ν) := inf{C1/p
p (π) : π ∈ Π(µ, ν)}, (1.8)

où Π(µ, ν) est l’ensemble des plans de transport entre µ et ν.
L’utilisation des distances de Wasserstein, et plus généralement de la théorie du

transport optimal, a montré son efficacité dans une large gamme de problèmes récents
d’apprentissage automatique, avec des algorithmes efficaces et des garanties théoriques
fortes (voir par exemple le livre de Peyré et Cuturi [PC19]). D’un intérêt tout particulier
pour nous, Niles-Weed et Berthet ont abordé le problème de l’estimation d’une densité
f supportée sur le cube [0, 1]d pour les distances de Wasserstein [WB19b]. Supposons
que f appartienne à l’espace de Besov Bs

p,q([0, 1]d) de régularité s sur le cube (pour
s ≥ 0, et 1 ≤ p <∞ et 1 ≤ q ≤ ∞, voir le chapitre 5 pour une définition précise). Alors,
Niles-Weed et Berthet montrent qu’une modification d’un estimateur par ondelettes
classique atteint la vitesse de convergence de n−(s+1)/(2s+d) pour d ≥ 3 en distance
WassersteinWp (à comparer avec la vitesse de convergence n−s/(2s+d) pour l’estimation
ponctuelle de densité). De plus, cette vitesse est la vitesse minimax.

Notre contribution principale, décrite dans le chapitre 5, est d’étendre ce résultat
minimax en remplaçant le cube par n’importe quelle sous-variété M de régularité k
pour k ≥ s+ 1. Nous montrons alors qu’une mesure ayant pour densité par rapport à
volM un estimateur à noyaux pondéré atteint la même vitesse minimax n−(s+1)/(2s+d).
Dans le cas d’intérêt où la variété M est inconnue, nous ne pouvons pas utiliser volM ,
de sorte que l’estimateur précédent n’est pas calculable. Nous proposons donc dans
un premier temps d’estimer la mesure volume. Nous exhibons ainsi un estimateur
v̂olM et montrons que ÛM := v̂olM/|v̂olM | est un estimateur minimax de la mesure
uniforme sur M . La reconstruction de la mesure volume est basée sur les procédures
d’estimation de paramétrisations Ck locales de la variété M introduites par Aamari et
Levrard [AL19].

2 Un point de vue multi-échelle : la persistance des don-
nées

Les travaux que nous avons mentionné jusqu’à maintenant font tous l’hypothèse forte
de l’existence d’une variété de basse dimension interpolant les données. Il est légitime
de s’intéresser à des questions de nature topologique dans un cadre beaucoup plus
général. Par exemple, on peut imaginer qu’une information pertinente est présente dans
la structure topologique fine de processus spatiaux, information pouvant servir dans
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Figure 1.5: Gauche : un graphe d’interactions entre utilisateurs de
Reddit provenant du jeu de données REDDIT-5K, présenté dans [YV15].
Droite : simulation d’un flot de turbulence donné par l’équation de

Navier-Stokes [Sch+06].

un objectif de classification [Bro+20]. Dans certains problèmes, les données observées
ne se présentent pas sous la forme de nuages de points, alors qu’une ”topologie” reste
présente. C’est le cas notamment lorsque l’on observe une famille de graphes, où
la topologie est alors décrite par l’existence de cycles ou de plusieurs composantes
connexes [AMA07; Hof+17; ZW19; Car+20], voir aussi la figure 1.5. La théorie de
l’homologie persistante en TDA se propose de quantifier en un sens précis ce qu’est la
”topologie” sous-jacente à un jeu de données de façon très générale. Pour cela, nous
adoptons une approche multi-échelle.

Considérons tout d’abord un exemple simple. Soit Xn un ensemble fini de n points
dans RD. D’un point de vue topologique, l’ensemble Xn est particulièrement peu
intéressant : il comporte n composantes connexes, chacune réduite à un point. Une
possibilité pour obtenir un ensemble plus riche topologiquement est de choisir une
échelle t à laquelle regarder les données, dans la veine des t-enveloppes convexes du
chapitre 4, ou plus simplement en considérant le t-voisinage de Xn :

X tn :=
⋃
x∈Xn

B(x, t). (1.9)

Comme expliqué précédemment, choisir une ”bonne” échelle t est alors un problème
délicat, bien que nous ayons proposé dans le chapitre 4 un algorithme dans le cas où
l’échantillon Xn est suffisamment proche d’une variété M . La théorie de l’homologie
persistante propose d’éviter ce choix du paramètre t en regardant comment évoluent
les groupes d’homologie de X tn lorsque t grandit de 0 à +∞. Si on s’intéresse par
exemple à l’homologie de dimension 1 (c’est-à-dire à la présence de ”boucles” dans
un espace), on peut observer que des boucles apparaîtront à certains instants dans
le processus, avant d’être bouchées par la suite lorsque le paramètre t du rayon des
boules deviendra plus grand (voir la figure 1.6). Lorsque t devient très grand, nous
obtenons un ensemble homotopiquement équivalent à une boule, qui ne possède plus
de cycles. Cette évolution peut être résumée par un ensemble d’intervalles, chaque
intervalle [b, d) représentant une boucle apparue à l’échelle b, et ayant disparue à
l’échelle d. De manière équivalente, nous pouvons considérer la collection de points
(b, d) ∈ R2, que nous appelons le diagramme de persistance associé au processus.
Notons que l’on a forcément d > b, de sorte qu’un diagramme de persistance est une
liste de points dans Ω := {u = (u1, u2) ∈ R2 : u2 > u1}, ou de manière équivalente
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Figure 1.6: Le diagramme de persistance de dimension 1 associé à la
filtration (X tn)t≥0.

une mesure de la forme
∑

i∈I δui sur Ω. Plus un cycle sera resté longtemps dans le
processus (X tn)t≥0, plus il aura de l’importance. On appelle persistance du cycle la
durée de vie d− b de l’intervalle associé. Ainsi, dans un diagramme de persistance, les
points loin de la diagonale ∂Ω := {(t, t) : t ∈ R} correspondent à des caractéristiques
topologiques importantes du processus sous-jacent. De manière plus générale, la théorie
de l’homologie persistante peut s’appliquer à n’importe quelle filtration d’espaces
topologiques, c’est-à-dire à une suite croissante d’espaces topologiques (X t)t∈R. Ceci
inclut donc notamment les sous-niveaux d’une fonction f : X → R, où X peut être
un graphe, une image, ou un espace métrique quelconque. Quand la fonction f est la
distance à un ensemble Xn, nous retrouvons le processus décrit précédemment, tandis
que le diagramme de persistance associé est appelé diagramme de Čech de l’ensemble
Xn. De plus, on peut s’intéresser à différentes dimensions d’homologie : composantes
connexes (dimension 0), boucles (dimension 1), cavités (dimension 2), etc.

La théorie de l’homologie persistante et la notion de diagramme de persistance
se sont construites progressivement durant la première moitié des années 2000, voir
par exemple [Rob99; ELZ00; Car+04], tandis que le concept de persistance a aussi
été introduit de manière indépendante par Barannikov dans le domaine de la théorie
de Morse [Bar94]. Un des premiers résultats majeurs de la TDA a consisté à montrer
que les diagrammes de persistance sont en un sens fort stables vis-à-vis des objets sur
lesquels ils sont construits [CSEH07]. Cette propriété, couramment appelée ”théorème
de stabilité”, repose sur un résultat puissant de stabilité algébrique énoncé précisément
dans le chapitre 3. Ce théorème de stabilité est basé sur une notion de distance entre
diagrammes, appelée la distance bottleneck d∞. Par la suite, les distances dp pour
1 ≤ p ≤ ∞ ont été introduites, généralisant la distance bottleneck, et pour lesquelles
des résultats de stabilité plus faibles existent (découlant de la stabilité en distance
bottleneck) [CS+10]. Soient a et b deux diagrammes de persistance, où a est donné
par la liste de points x1, . . . , xn ∈ Ω et b par la liste de points y1, . . . , ym ∈ Ω. On
appelle un appariement entre a et b une bijection entre a ∪ ∂Ω et b ∪ ∂Ω : chaque
point xi est envoyé par γ soit sur un certain yj , soit sur un point quelconque de la
diagonale, et les yj non atteints sont l’image par γ d’un certain point de la diagonale.
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Figure 1.7: Gauche : deux diagrammes de persistance. Centre : un
appariement γ entre les deux diagrammes. Le coût Cp(γ) est donné
par la somme des longueurs à la puissance p des segments apparaissant
dans l’appariement, tandis que le coût bottleneck C∞(γ) est donné par
la longueur du plus long segment. Droite : un appariement optimal

pour tout p ∈ [1,+∞].

Le coût Cp(γ) de l’appariement γ est donné par

Cp(γ) :=
∑

x∈a∪∂Ω

‖x− γ(x)‖p, (1.10)

où ‖ · ‖ représente une norme quelconque sur R2. Un appariement de coût minimal est
dit optimal, et on pose

dp(a, b) := inf{Cp(γ)1/p : γ ∈ Γ(a, b)}, (1.11)

où Γ(a, b) est l’ensemble des appariements entre a et b (voir la figure 1.7). On peut
par ailleurs noter que dans un appariement optimal, tout point envoyé sur la diagonale
∂Ω est en fait envoyé sur son projeté orthogonal sur la diagonale. Intuitivement, on
est en train d’apparier les différents cycles correspondant à chaque point des deux
diagrammes, tandis qu’apparier un point à la diagonale, revient à l’apparier à un
cycle ”n’ayant par persisté”, de la forme [b, d) avec b = d. D’intérêt tout particulier
en TDA est la distance bottleneck d∞, obtenue comme limite des distances dp pour
p→∞. De manière équivalente, on peut définir le coût C∞(γ) d’un appariement γ
par sup{‖x− γ(x)‖ : x ∈ a ∪ ∂Ω} et définir

d∞(a, b) := inf{C∞(γ) : γ ∈ Γ(a, b)}. (1.12)

Les diagrammes de persistance encodent une information topologique riche sur les
données qu’ils résument, et souvent complémentaires d’autres méthodes plus classiques.
N’étant pas naturellement des éléments d’un espace vectoriel, il est cependant délicat
de les incorporer directement dans des algorithmes d’apprentissage automatique. Deux
approches ont été proposées dans la littérature. La première consiste en l’utilisation
de feature maps (ou représentations) sur l’espace des diagrammes, qui permettent
de transformer les diagrammes de persistance en vecteurs, qui peuvent alors être
facilement inclus dans des algorithmes standard d’apprentissage automatique. La
seconde est de travailler malgré tout directement dans l’espace des diagrammes D,
par exemple en utilisant des méthodes nécessitant uniquement des distances en entrée
(comme le multidimensional scaling précédemment mentionné). Nous étudierons ici
ces deux approches.
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2.1 L’espace des diagrammes de persistance étudié à travers le trans-
port optimal partiel

Pour ce qui est de la deuxième approche, il est capital de tout d’abord comprendre
de manière fine la structure de l’espace des diagrammes de persistance, vu en tant
qu’espace métrique. Cette étude a été initiée par Mileyko, Mukherjee et Harer [MMH11],
qui montrent des propriétés de l’espace métrique

Dp := {a ∈ D : dp(a, 0) <∞}, muni de la distance dp, (1.13)

où 0 est le diagramme vide, de sorte que dp(a, 0)p =
∑

u∈a(u2 − u1)p, quantité appelée
la p-persistance totale du diagramme a, et notée Persp(a). Notons que nous nous
autorisons ici à avoir des diagrammes possédant un nombre infini de points, de sorte
qu’il est possible d’avoir dp(a, 0) =∞.

Nous proposons dans le chapitre 6 de participer à l’étude de la structure de l’espace
des diagrammes de persistance en adoptant un point de vue différent de celui de
[MMH11]. Nous avons déjà mentionné qu’un diagramme de persistance peut de
manière équivalente être défini soit comme une liste de points dans Ω, soit comme
une mesure ponctuelle

∑
i∈I δui . Bien que l’approche ”liste” semble être favorisée

dans la littérature, le point de vue mesure s’avère plus riche. D’une part, ce point de
vue permet de définir sans effort la somme, ou la moyenne de plusieurs diagrammes,
qui sera alors une mesure quelconque (et non plus une mesure ponctuelle). D’autre
part, cela permet d’appliquer la théorie du transport optimal aux diagrammes de
persistance. En effet, la théorie du transport optimal, et plus précisément les distances
de Wasserstein déjà mentionnées précédemment, permettent de comparer des mesures.
Les distances dp et Wp partagent des points communs : elles sont toutes deux définies
comme étant le coût minimal de transport (ou d’appariement) entre deux mesures. De
par ces similitudes, les distances dp sont couramment appelées distances de Wasserstein
dans la littérature en TDA. Cette appellation est cependant trompeuse, puisqu’il existe
une différence fondamentale entre les distances dp et Wp : les distances Wp ne sont
définies que pour des mesures de probabilité (ou ayant la même masse), tandis que
les distances dp ne sont définies que pour des mesures ponctuelles, mais de masses
potentiellement différentes.

Nous établissons dans le chapitre 6 un lien précis entre la structure métrique de
l’espace des diagrammes de persistance et le transport optimal, en faisant le lien
entre les distances dp et des distances de transport optimal partiel introduites par
Figalli et Gigli [FG10]. Établir ce lien permet d’une part d’obtenir certaines propriétés
métriques de l’espace Dp (telle sa complétude, ou l’existence de barycentres), mais
aussi d’étendre l’espace Dp à un espace plus grandMp, que nous appelons l’espace des
mesures persistantes, et que nous munissons de la distance de Figalli-Gigli FGp étendant
la distance dp. L’espace des mesures persistantes a l’avantage d’être ”linéairement”
convexe, ce qui nous permet de définir des moyennes de diagrammes, le diagramme de
persistance moyen E(P ) d’une loi P sur l’espace des diagrammes de persistance étant
au centre du chapitre 8. De plus, exhiber ce lien justifie l’adaptation d’algorithmes
utilisés en transport optimal pour les diagrammes de persistances, une approche qui
peut se révéler fructueuse [LCO18]. Le chapitre 6 est tiré de l’article [DL20], écrit en
collaboration avec Théo Lacombe.

2.2 Représentations linéaires sur l’espace des diagrammes et le choix
de la fonction de poids

La première approche que nous avions évoquée pour effectuer des procédures statistiques
à l’aide de diagrammes de persistance consiste à utiliser une application Ψ : D → B,
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Figure 1.8: Le diagramme de persistance an de n = 700 points
aléatoires sur le tore (pour l’homologie de dimension 1). Les deux
points de haute persistance dans le diagramme donne des informations
sur la géométrie du tore (ses deux trous), tandis que les points proches

de la diagonale ∂Ω représentent du bruit topologique.

où D est l’espace des diagrammes de persistance et B est un espace de Banach.
Une telle application, appelée feature map ou représentation, permet de transformer
un échantillon de diagrammes de persistance en échantillon de vecteurs, qui peut
ensuite s’incorporer facilement dans un algorithme d’apprentissage automatique. De
nombreuses représentations ont été proposées dans la littérature. On peut en identifier
une grande classe, que nous appelons représentations linéaires, et qui inclut par exemple
la surface persistante [Ada+17] (et ses variantes [Che+15; KHF16; Rei+15]), la fonction
d’accumulation persistante [BM19] ou la silhouette persistante [Cha+15a].

Definition 2.1 (Représentation linéaire). Soit f : Ω→ B une application, où B est
un espace de Banach. L’application Ψf : D → B définie par Ψf (a) :=

∑
u∈a f(u) est

appelée la représentation linéaire associée à f .

Un premier critère pour évaluer la pertinence d’une représentation Ψ est sa stabilité :
est-ce que Ψ est Lipschitz (ou Hölder) pour une certaine distance dp ? Nous donnons
dans le chapitre 8 des critères sur la fonction f qui permettent d’établir la continuité
de la fonction Ψf , puis son caractère Lipschitz (ou Hölder) pour les distances dp.
Il apparaît alors, que pour obtenir des représentations stables, il est primordial de
pondérer la fonction f par une fonction de poids w qui s’écrase suffisamment proche
de la diagonale. Nous donnons des conditions suffisantes sur la fonction w permettant
d’assurer la stabilité de toute représentation de la forme Ψwf avec f Lipschiz bornée.
En particulier, une fonction de poids de la forme w : u 7→ (u2−u1)p permet la création
de représentations Hölder sur l’ensemble des diagrammes construits sur une variété de
dimension d < p.

Nous nous proposons ensuite d’éclairer le choix de la fonction de poids w en prenant
un point de vue asymptotique. Nous avons mentionné précédemment que les points
de haute persistance dans un diagramme de persistance ont ”plus d’importance” et
représentent des caractéristiques topologiques importantes de l’objet sous-jacent. Dans
le cas où un ensemble de n points Xn est échantillonné sur une variété M , on observe
ainsi dans le diagramme de persistance an de Xn (par exemple de Čech) deux types de
points : des points de haute persistance correspondant au diagramme de persistance
de la variété, et un grand nombre de points de basse persistance mesurant le ”bruit
topologique” de l’échantillonnage, voir par exemple la figure 1.8 pour un exemple
sur le tore. Nous nous intéressons alors à la structure du bruit topologique dans
un cadre simplifié, où des points sont tirés aléatoirement dans le cube [0, 1]d. Nous
montrons que la taille du bruit topologique an, mesurée par sa persistance totale
Persp(an) :=

∑
u∈an(u2 − u1)p, est d’ordre c · n1−p/d, avec une constante c dépendant

de la densité d’échantillonnage. Ceci suggère que si les points de haute persistance
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dans le diagramme d’un nuage de points donnent des informations sur la structure
macroscopique de l’ensemble, le bruit topologique fournit d’autres types d’information,
telle la dimension intrinsèque de l’échantillonnage. Ces remarques ont par la suite été
utilisées par Adams et al. [Ada+20] pour définir une notion de dimension persistante
d’un ensemble. De manière plus générale, nous montrons que le diagramme normalisé
n−1/dan (qui est une mesure persistante) converge pour les métriques FGp vers une
certaine mesure persistante limite dépendant de la densité d’échantillonnage. D’autre
part, ceci implique que les représentations de la forme Ψwf (an) convergent pour w
de la forme u 7→ (u2 − u1)p et p > d. Nous retrouvons dans les deux cas la même
heuristique : une fonction de poids de la forme u 7→ (u2 − u1)p est légitime pour p > d
si les diagrammes sont construits sur un objet de dimension d.

Le contenu du chapitre 7 est basé sur une collaboration avec Wolfgang Polonik
[DP19].

2.3 Le diagramme de persistence moyen

Dans un cadre statistique, nous serons souvent en présence d’un échantillon de n
diagrammes de persistance a1, . . . , an, provenant par exemple d’une collection de
graphes [Car+20], de séries temporelles [SDB16], ou de formes 3D [COO15b]. On
peut alors considérer leur représentation associée Ψ(a1), . . . ,Ψ(an). Si l’on souhaite
obtenir des résultats statistiques sur l’échantillon Ψ(a1), . . . ,Ψ(an), il est sans doute
pertinent de commencer par s’intéresser à des quantités simples, telles leur moyenne
1
n(Ψ(a1) + · · ·+ Ψ(an)). Si la loi des grands nombres implique directement que cette
moyenne converge vers Ea∼P [Ψ(a)], où P est la loi générant les ai, rien ne nous dit à
quoi ressemble cette espérance, et quelles sont ses propriétés. Nous nous proposons de
répondre à cette question dans le cas des représentations linéaires Ψf . Dans ce cas là,
si on note

an :=
1

n
(a1 + · · ·+ an) (1.14)

la moyenne empirique des ai, qui est une mesure persistante, nous avons

1

n
(Ψf (a1) + · · ·+ Ψf (an)) = Ψf (an). (1.15)

Cette quantité converge vers Ψf (E(P )) =
∫
f(u)dE(P )(u), où E(P ) = Ea∼P [a] est le

diagramme moyen de P , défini précisément dans le chapitre 8 et initialement défini dans
une publication écrite en collaboration avec Frédéric Chazal [DC19]. Le diagramme
moyen est une mesure sur Ω, qui donne l’intensité moyenne de points d’un diagramme
aléatoire a ∼ P dans une région donnée. Nous montrons dans le chapitre 8 des
propriétés variées des diagrammes moyens : leur stabilité par rapport à la loi P , des
vitesses d’estimation du diagramme moyen empirique an vers E(P ) (pour les distances
de Figalli-Gigli FGp), ou encore l’existence d’une densité λP pour E(P ) dans un
cadre très général. Ce dernier résultat décrit en particulier de manière précise ce vers
quoi converge 1

n(Ψf (a1) + · · ·+ Ψf (an)) : la limite est égale à
∫
f(u)λP (u)du, et la

connaissance de λP (qui est possible à travers des procédures d’estimation) permet une
connaissance précise de cette limite. Un des inconvénients du diagramme de persistance
empirique an est qu’il contient potentiellement un très grand nombre de points, ce
qui peut limiter son utilisation en pratique. Nous étudions ainsi le problème de la
quantization d’une telle mesure, c’est-à-dire de celui de trouver une mesure de petit
support qui va approcher an. Le chapitre 8 compile des résultats sur le diagramme
de persistance moyen obtenus en collaboration avec Théo Lacombe [DL20; DL21] et
Frédéric Chazal [DC19].
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Chapter 2

Introduction (English)

This thesis fits within the framework of Topological Data Analysis (or TDA), which
is here tackled from two different perspectives, namely geometric inference, and
persistent homology theory. These two approaches both aim at extracting, in different
contexts, relevant information of a geometric and topological nature on complex
datasets exhibiting nonlinear structures.

1 Challenges in geometric inference

The classical statistical theory developed in the 30s by Fischer relies on the following
hypothesis: we observe a low-dimensional dataset, for which we possess a simple
generative model (gaussian, exponential, etc.). The goal is then to find estimators of
parameters characterizing the law of the dataset, for which we are able to give strong
optimality guarantees. In contrast, modern datasets are typically high-dimensional
point clouds. If classical methods can still be applied to such datasets, their performance
(both in theory and in practice) becomes poor. This phenomenon, called the curse of
dimensionality, shows the need of a paradigm shift. First, in a modelization step, sets
of hypotheses tailored to a large class of high-dimensional datasets must be designed.
Second, it is necessary to develop statistical methods adapted to those new sets of
hypotheses.

For instance, some methods, such as the LASSO [Tib96], are effective under a
sparsity assumption on the dataset. Some regression methods, such as ridge regression
[HK70], penalize the complexity of the proposed regression function to adapt to
the high-dimensional setting. Let us also mention the PCA method (for Principal
Component Analysis [Pea01; Hot33]), which aims at finding the subspace fitting the
best the dataset with respect to the L2-norm. All the methods we have mentioned rely
on the existence of a low-dimensional linear structure being relevant to explain the
dataset. In particular, they require to have a high level of trust in the parametrization
of the dataset, while any reparametrization can break this linear structure (see Figure
2.1). The key idea of geometric inference consists in relaxing this hypothesis by
supposing that the dataset in high dimension lies around a low-dimensional shape, a
priori non-linear. Mathematically, we suppose that the observed dataset is close to a
manifold M of dimension d small in an ambient space of dimension D, possibly large.

From a statistical point of view, this type of hypotheses was first studied in the
case where one has access to the manifold M [Hen90; Pel05]. This is for instance the
case for geolocalization problems [IPT19], where datasets are located on the sphere
S2, or for studying images of faces under different lightings, the dataset then lying
on a Grassmannian G(k, d) [Cha+07]. Having access to the manifold is however
most of the time too demanding. During the 2000s, another family of techniques
was developed, that may be aggregated under the name of non-linear dimensionality
reduction methods [RS00; ZZ03; WSS04] (let us also mention earlier attempts like
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Figure 2.1: The linear structure of the blue dataset disappears
when the vertical axis is reparametrized by a non-linear function (here
sinusoidal). The orange dataset is however still close to a manifold.

self-organizing maps [Koh89] or adaptive principal surfaces [LT94]). Those methods,
which do not require the knowledge of the manifold M , aim at embedding in the most
faithful way possible a point cloud close to a ”non-linear” shape in the Euclidean space
Rd for some small d. For instance, the ISOMAP method [TDSL00], relies on the
embedding in Rd, thanks to a multidimensional scaling (or MDS), of a neighborhood
graph built on top of the observations. It allows the ”unfolding” of datasets lying
on objects which are diffeomorphic to an open convex set (see Figure 2.2). We may
then apply standard classification or regression techniques to the ”unfolded” dataset.
However, those techniques possess theoretical guarantees only in a restricted setting:
the dataset must be close to a shape at least diffeomorph to Rd, while it is for instance
impossible to embed continuously a sphere in R2.

Around the same time, the field of computational geometry has witnessed the
development of algorithms allowing the reconstruction of a manifold M ⊂ RD based
on a finite sample X , with the emphasis being put on the reconstruction of curves and
surfaces [BTG95; AB99]. For example, the COCONE algorithm [Ame+00] reconstructs
a smooth surface M thanks to a finite approximation, under the condition that the
approximation rate ε(X ) := sup{d(x,X ) : x ∈M} of the sample X is small enough,
while the Tangential Delaunay Complex [BG14] allows such a reconstruction in higher
dimension. The reconstruction of topological or geometric invariants of M , like its
medial axis [ABE09] or its homology and homotopy groups [CO08] has also been
addressed. Once again, those results only require a finite sample X of the manifold M
having a good approximation rate. Another point of view consists in assuming that X
is the realization of a random process of n independent observations from some law
µ concentrated around M . One can then hope that methods of interest have a good
performance with high probability, on ”typical” samples. This statistical approach on
computational geometry problems was first proposed in a seminal paper by Niyogi,
Smale and Weinberger [NSW08], where the authors show that the homology of a
manifold M is recovered with high probability by the Čech complex (a combinatorial
object defined in Chapter 3) of the n-sample Xn. In the 2010s, the estimation of other
descriptors of M was proposed: its dimension [HA05; LJM09; KRW19], its tangent
spaces [AL19; CC16], its reach [Aam+19; Ber+21], its curvature [AL19], its geodesic
distances [ACC20], or the manifold M itself [Gen+12a; Gen+12b; MMS16; AL18;
AL19].

This statistical point of view on computational geometry allows us to define
in a simple manner what it means for a procedure to be optimal. This is made
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Figure 2.2: Left: a set X of 3000 points sampled on a swiss roll.
Right: output of the ISOMAP algorithm with input X (implemented

with scikit-learn [Bui+13]).

possible thanks to the minimax statistical theory. Consider for instance the problem
of estimating a manifold M thanks to a random n-sample Xn. An estimator M̂ of M
is by definition any compact subset of RD, being a measurable function of the sample.
The quality of the estimator M̂ with respect to the law µ, called its µ-risk, is given by
the average Hausdorff distance dH between the estimator and M :

Rn(M̂, µ, dH) := E[dH(M̂,M)], (2.1)

where M̂ = M̂(Xn) and Xn is a n-sample of law µ. In reality, the law µ generating the
dataset is unknown, and it is more interesting to control the µ-risk over a set Q of laws
µ, that we call a statistical model. In geometric inference, several statistical models
were introduced, which take into account different noise models and regularities of the
manifold M . The uniform risk of the estimator M̂ on the class Q is given by

Rn(M̂,Q, dH) := sup{Rn(M̂, µ, dH) : µ ∈ Q}, (2.2)

while we say that an estimator is minimax if it attains (up to a multiplicative constant
as n goes to ∞) the minimax risk

Rn(M,Q, dH) := inf{Rn(M̂,Q, dH) : M̂ is an estimator}. (2.3)

Let us mention for instance the family of models Q2,d
τmin,fmin,fmax

introduced by Genovese
et al. in [Gen+12a], consisting of the laws µ supported on a d-dimensional manifold
M satisfying some additional properties. First, we assume that µ has a density f
on M , lower bounded by some constant fmin > 0 and upper bounded by another
constant fmax. This ensures that all the parts of the manifold M are approximately
evenly sampled: we then say that the law is ”almost-uniform” on M . The parameter
τmin gives a lower bound on the reach τ(M) of the manifold. The reach is a central
notion in geometric inference, defined as the largest radius r such that, if some point
x is at distance less than r to M , then there exists a unique projection y of x on
M . More geometrically, having a reach larger than r implies that it is possible to
make a ball ”roll” along the manifold M without ”bumping” into another part of M
[PL08, Lemma A.0.6]. Therefore, the reach τ(M) controls two different quantities: the
curvature radius of M (that is a local regularity), and a global regularity parameter,
indicating the presence of a bottleneck structure in the manifold (see Figure 2.3). On
the statistical model Q2,d

τmin,fmin,fmax
, the minimax rate of convergence satisfies

c0

(
lnn

n

)2/d

≤ Rn(M,Q2,d
τmin,fmin,fmax

, dH) ≤ c1

(
lnn

n

)2/d

(2.4)
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τ (A)
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A

Figure 2.3: If the reach of the curve M is too large, then the curve
cannot be too pinched (left) and cannot present a tight bottleneck

structure (right).

for two positive constants c0, c1 depending on τmin, fmin, fmax and d. The lower bound
in this inequality was shown by Kim and Zhou [KZ15], while the upper bound is
obtained by exhibiting an estimator having a uniform risk of order (lnn/n)2/d. Such an
estimator (although not computable in practice) was first proposed by Genovese et al.
in [Gen+12a], while another estimator attaining this same minimax rate (computable
in practice), and based on the Tangential Delaunay Complex, was proposed by Aamari
and Levrard [AL18].

1.1 The adaptivity problem

The Tangential Delaunay Complex depends on several parameters, like for instance a
radius quantifying the size of the neighborhoods used to compute local PCAs. For the
Tangential Delaunay Complex to be minimax, those parameters have to be calibrated in
a precise manner with respect to the quantities τmin, fmin and fmax defining the model.
However, those quantities are a priori unknown. The question of the practical choice
of the parameters defining the estimator is then raised. This question of the tuning
of parameters defining an estimator is not restricted to the framework of manifold
estimation, but is a classical problem in statistics.

Let us cite for instance the question of the choice of the bandwidth for kernel
density estimation. Let X1, . . . , Xn be a n-sample of some law µ having a density f on
R, and suppose that we want to recover the value f(x0) of the density at some fixed
point x0 ∈ R. A standard method to achieve this goal is to consider the convolution of
the empirical measure µn = 1

n

∑n
i=1 δXi by some kernel Kh, where Kh = h−1K(·/h)

and K satisfies
∫
K = 1. We then obtain a function f̂h = Kh ∗ µn. Assume that

the density f is of regularity s, that is f ∈ Cs(R), the set of bsc-times differentiable
functions, whose bscth derivative is (s − bsc)-Hölder continuous. Then, for a good
choice of kernel K, it is optimal to choose the bandwidth hopt of order c · n−1/(2s+1),
where c depends of the Cs-norm of f [Tsy08, Chapter 1]. The associated risk is then
of order n−s/(2s+1), which is the minimax rate of estimation on the class of densities
of regularity s. In practice, it is impossible to know exactly the value of s, so that
we must find another strategy to choose the bandwidth h. Adaptive methods consist
in choosing a bandwidth ĥ in a data-dependent way, such that the estimator f̂ĥ has
a µ-risk almost as good as the optimal estimator f̂hopt under weak hypotheses on
µ. One of such method, the PCO method (for Penalized Comparison to Overfitting)
introduced by Lacour, Massart and Rivoirard [LMR17] consists in comparing each
estimator f̂h to some degenerate estimator f̂hmin

for some very small hmin. The selected
bandwidth ĥ is chosen among a family H of bandwidths (all larger than hmin), by
minimizing a criterion depending on the distance ‖f̂h − f̂hmin

‖L2(R), while penalizing
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small values of h. Lacour, Massart and Rivoirard then show an oracle inequality for
their estimator, that is an inequality of the form

E‖f̂ĥ − f‖2L2(R) ≤ C min{E‖f̂h − f‖2L2(R) : h ∈ H}+ C(n, |H|), (2.5)

where C(n, |H|) is a reminder term negligible in front of the optimal risk. Thus, we
obtain that f̂ĥ has a risk almost as good as the best estimator f̂hopt , while we never
had to estimate the parameters defining the statistical model (that is the regularity s
of the density and the Cs-norm of f).

In Chapter 4, we draw inspiration from the PCO method to create an adaptive
manifold estimator. A first step consists in creating a family of estimators (M̂t)t≥0,
similar to kernel density estimators for manifold estimation. This is made possible with
t-convex hulls. For t ≥ 0, the t-convex hull Conv(t, A) of a set A is an interpolation
between the set A (t = 0) and its convex hull Conv(A) (t =∞). It is defined by

Conv(t, A) :=
⋃
σ⊂A
r(σ)≤t

Conv(σ), (2.6)

where r(σ) is the radius of the set σ, that is the radius of the smallest enclosing
ball of σ. We first show that for t = c · (lnn/n)1/d, where c depends on d and on
the parameters τmin, fmin and fmax, the t-convex hull Conv(t,Xn) of a n-sample is
a manifold estimator which is minimax on the statistical model Q2,d

τmin,fmin,fmax
. We

then consider the problem of selecting the parameter t. An analog of the degenerate
estimator f̂hmin

is given by the choice t = 0, with Conv(0,Xn) = Xn. The PCO method
therefore suggests comparing the estimators Conv(t,Xn) with Xn, that is to study
the function t 7→ h(t,Xn) := dH(Conv(t,Xn),Xn). This function was actually already
introduced under the name of ”convexity defect function of the set Xn” in a paper by
Attali, Lieutier and Salinas [ALS13], where it was used to study the homotopy type of
Rips complexes. We show that the convexity defect function of Xn exhibits different
behaviors in two different regimes: before a certain threshold value t∗(Xn), it has a
globally linear behavior, whereas after this threshold value, it has a (sub)quadratic
behavior. The convexity defect function is computable based on the dataset, so that
we may in practice observe those two regimes. We are then able to show that values of
t just above the threshold value t∗(Xn) provide a minimax risk of order (lnn/n)2/d.
More precisely, we fix two hyperparameters 0 < λ < 1 and tmax, and let

t̂λ := sup{t < tmax : h(t,Xn) > λt}. (2.7)

Our main result states that if tmax is small enough with respect to τmin, then
Conv(t̂λ,Xn) is a minimax adaptive manifold estimator (see Figure 2.4). Note that we
do not obtain the adaptive property of the estimator by providing an oracle inequality
of the type (2.5), but by showing that t̂λ is larger than the threshold value t∗(Xn)
(while being of the right order of magnitude) with high probability, this property
being enough to ensure the minimax behavior of the corresponding estimator. We
also are able to show that the parameter t̂λ is actually close to the approximation rate
ε(Xn). As mentioned earlier, some algorithms in computational geometry require the
knowledge of the approximation rate (or rather of bounds on the approximation rate),
and may therefore be used with plugging in the parameter t̂λ.

1.2 Reconstructing the measure rather than the manifold

The second contribution proposed here is motivated by the density estimation problem.
In geometric inference, the issue of reconstructing the density f of the measure µ
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Figure 2.4: Left. Sample Xn. Center. Convexity defect function of
Xn and selected scale t̂λ. Right. The set Conv(t̂λ,Xn).

generating the observations Xn was first addressed in the case where one has access to
the manifold M . Hendriks [Hen90] proposes to use the eigenfunctions of the Laplace-
Beltrami operator on the manifold to estimate the density, whereas Pelletier [Pel05]
introduces a kernel density estimator using the geodesic distance on the manifold. In
the setting of manifold inference, where the manifold M is supposed to be unknown,
papers addressing density estimation are more recent. Let x0 be a point that we
assume belongs to M . The estimation of f(x0), the density of f at x0, was first
tackled in [BS17; WW20], where estimation rates of kernel density estimators are given,
respectively in the case where the manifold has a boundary and in the case where the
density is supposed to be Hölder continuous. Berenfeld and Hoffmann [BH19] exhibit
minimax rates of convergence for this problem, and show that two regularities come
into play in the optimal rate: on one hand the regularity s of the density f , and on
the other hand the regularity k of the manifold M . Moreover, authors show that the
Goldenshluger-Lepski method [GL13] can be applied in this setting to select a kernel
bandwidth, producing a minimax adaptive estimator of f(x0).

To go beyond the pointwise estimation of f (or equivalently of the associated
measure µ), the choice of the loss function is a delicate issue. Indeed, standard choices
in density estimation include the Lp distance, the Hellinger distance, or the Kullback-
Leibler divergence. All those loss functions become degenerate for the comparison of
two mutually singular measures. If the support M of the measure µ is unknown, it
will be impossible to build, thanks to a finite sample, a measure which is non-singular
with respect to the volume measure volM on M , even though we may be able to
build measures whose supports are very close to M for the Haussdorf distance. On
the contrary, Wasserstein distances Wp (1 ≤ p ≤ ∞) are by design robust to metric
perturbations of the support of a measure, and are therefore particularly adapted to
our problem. They are defined in the following way. Given two probability measures µ
and ν, we define a transport plan π between µ and ν as a measure on RD ×RD having
first marginal µ and second marginal ν. Informally, at the point x ∈ RD, a fraction
dπ(x, y) of the mass dµ(x) located at x is sent to y. The cost of such a plan is given
by Cp(π) =

∫∫
d(x, y)pdπ(x, y), whereas the Wasserstein distance Wp is given by the

optimal cost of a transport plan:

Wp(µ, ν) := inf{C1/p
p (π) : π ∈ Π(µ, ν)}, (2.8)

where Π(µ, ν) is the set of transport plans between µ and ν.
Using Wasserstein distances, and more generally the theory of optimal transport,

has shown its efficiency in a wide class of modern machine learning problems (see
e.g. [PC19]). In particular, Niles-Weed and Berthet have tackled the problem of
estimating the density f supported on the cube [0, 1]d using Wasserstein distances as
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Figure 2.5: Left: an interaction graph between Reddit users, from
the dataset REDDIT-5K, presented in [YV15]. Right: simulation of

turbulent flows given by Navier-Stokes equation [Sch+06].

loss functions [WB19b]. Assume that f belongs to the Besov space Bs
p,q (see Chapter

5 for details). Then, they show that a modification of a classical wavelet density
estimator attains the rate of convergence n−(s+1)/(2s+d) for d ≥ 3 with respect to the
Wasserstein distance Wp (whereas the rate of convergence for the pointwise estimation
of the density is of order n−s/(2s+d)). Moreover, this rate is the minimax rate.

Our contribution, presented in Chapter 5, consists in extending this minimax result
by replacing the cube by any submanifold M of regularity k for k ≥ s+ 1. We show
that a measure having a density with respect to volM given by a weighted kernel
density estimator, attains the same minimax rate of n−(s+1)/(2s+d). In the case of
interest where the manifold M is unknown, we cannot use volM , such that the previous
estimator cannot be computed. We therefore propose in a first step to estimate the
volume measure, thanks to some estimator v̂olM , and show that ÛM := v̂olM/|v̂olM | is
a minimax estimator of the uniform measure on M . The reconstruction of the volume
measure is based on the estimation of local Ck parametrizations of the manifold M
introduced by Aamari and Levrard [AL19].

2 A multiscale perspective: persistent homology theory

Works we have mentioned so far all rely on the strong hypothesis of the existence of a
low-dimensional manifold interpolating the dataset. It is however reasonable to ask
questions of a topological nature in a much more general framework. For instance,
one can imagine that relevant information is present in the fine topological structure
of a spatial process, information which can be used for a classification task [Bro+20].
In certain problems, the observed dataset is not a point cloud, whereas a notion of
topology is still relevant. This is for instance the case if a family of graphs is observed,
where topology is then described by the presence of cycles or connected components
[AMA07; Hof+17; ZW19; Car+20], see also Figure 2.5. Persistent homology theory
in TDA aims at quantifying in a precise sense what is the underlying topology of a
dataset in a very general way. To do so, we adopt a multiscale approach.

Consider first a simple example. Let Xn be a finite set of n points in RD. From a
topological perspective, the set Xn is trivial: it consists of n connected components,
each of them being reduced to a point. A possibility to obtain a topologically more
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Figure 2.6: The one-dimensional persistence diagram associated with
the filtration (X tn)t≥0.

complex set is to choose a scale t and to consider the t-neihborhood of Xn:

X tn :=
⋃
x∈Xn

B(x, t). (2.9)

As explained previously, choosing a ”right” scale t is then a delicate issue, although
we proposed in Chapter 4 an algorithm to select such a scale in the case where the
sample Xn is close enough to a manifold M . Persistent homology theory proposes to
avoid the choice of the parameter t by tracking the evolution of the homology groups
of X tn as t grows from 0 to +∞. If for instance one is interested in 1-dimensional
homology (that is the presence of ”loops” in a shape), one can observe that loops will
appear at certain times in the process, before being filled when the radius t of the balls
becomes larger. When t becomes very large, the set becomes homotopy equivalent to
a ball, and does not possess any non-trivial cycle. This process can be summarized
by a set of intervals, each interval [b, d) representing a loop appearing at scale b, and
disappearing at scale d. An equivalent point of view is to consider the collection of
points (b, d) ∈ R2, that we call the persistence diagram associated with the process,
see Figure 2.6). Note that we always have d > b, so that a persistence diagram is
a list of points in Ω := {u = (u1, u2) ∈ R2 : u2 > u1}, or equivalently a measure
of the form

∑
i∈I δui on Ω. The longer a loop was present in the process (X tn)t≥0,

the more important it is. We call persistence of the loop the lifetime d − b of the
associated interval. Therefore, in a persistence diagram, points far away from the
diagonal ∂Ω := {(t, t) : t ∈ R} correspond to important topological features of the
underlying process. More generally, persistent homology theory can be applied to any
filtration of topological spaces, that is any increasing sequence of topological spaces
(X t)t∈R. This includes in particular the sublevel sets of a function f : X → R, where X
can be a graph, an image, or any metric space. When the function f is the distance to
a set Xn ⊂ X , we recover the process mentioned before, while the persistence diagram
is called the Čech persistence diagram of the set Xn. Moreover, different homology
dimensions may be considered: connected components (dimension 0), loops (dimension
1), cavities (dimension 2), etc.
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Persistent homology theory and the notion of persistence diagram were progressively
introduced in the early 2000s [Rob99; ELZ00; Car+04], while the concept of persistence
was also introduced independently by Barannikov in the field of Morse theory [Bar94].
One of the first major results in TDA consisted in showing that persistence diagrams
are in a strong sense stable with respect to the object on top of which they are built
[CSEH07]. This property, commonly called the stability theorem, relies on a powerful
algebraic stability result which is precisely stated in Chapter 3. This stability theorem
is based on a notion of distance between diagrams, called the bottleneck distance d∞.
Subsequently, distances dp for 1 ≤ p ≤ ∞ were introduced. These generalizations of
the bottleneck distance are known to satisfy weaker stability results (stemming from
the bottleneck stability result) [CS+10]. Let a and b be two persistence diagrams,
with a being given by the list of points x1, . . . , xn ∈ Ω and b by the list y1, . . . , ym ∈ Ω.
A matching γ between a and b is given by a bijection between a ∪ ∂Ω and b ∪ ∂Ω.
Precisely, each point xi is sent by γ either towards some yj , or to some point of the
diagonal, while the yjs that are not the image of some xi are the image by γ of some
point of the diagonal. The cost Cp(γ) of the matching γ is given by

Cp(γ) :=
∑

x∈a∪∂Ω

‖x− γ(x)‖p, (2.10)

where ‖ · ‖ represents any norm on R2. A matching with minimal cost is said to be
optimal, while we let

dp(a, b) := inf{Cp(γ)1/p : γ ∈ Γ(a, b)}, (2.11)

with Γ(a, b) being the set of matchings between a and b (see Figure 2.7). We may
moreover remark that in an optimal matching, every point sent towards the diagonal
is actually sent towards its orthogonal projection on the diagonal. Intuitively, we are
matching the different cycles corresponding to each point of the two diagrams, whereas
matching a point to the diagonal corresponds to matching a cycle to a ”non-persistent”
cycle, with an interval of the form [b, d) with b = d. Of particular interest in TDA
is the bottleneck distance d∞, obtained as the limit of the dp distances for p → ∞.
Equivalently, the cost C∞(γ) of a matching γ is given by sup{‖x−γ(x)‖ : x ∈ a∪∂Ω}
whereas the bottleneck distance is given by

d∞(a, b) := inf{C∞(γ) : γ ∈ Γ(a, b)}. (2.12)

Persistence diagrams encode rich topological information of the dataset they
summarize, and often complementary to more classical methods. However, they do
not naturally belong to a vector space, so that it is unclear how to use them directly
in standard machine learning algorithms. Two approaches have been proposed in the
literature. The first one consists in using feature maps (also called representations)
on the space of persistence diagrams, which allow the transformation of persistence
diagrams into vectors, which can then be easily plugged in standard machine learning
pipelines. The second one is to work directly in the space of diagrams D, by example
by using methods requiring only distances in entry (like the multidimensional scaling
previously mentioned). We will study those two approaches.

2.1 The space of persistence diagrams studied through partial opti-
mal transport

Concerning the second approach, it is first necessary to understand precisely the
structure of the space of persistence diagrams, seen as a metric space. This study
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Figure 2.7: Left: two persistence diagrams. Center: a matching γ
between the two diagrams. The cost Cp(γ) is given by the sum of the
lengths to the power p of the edges appearing in the matching, while
the bottleneck cost C∞(γ) is given by the length of the longest edge.

Right: an optimal matching for every 1 ≤ p ≤ ∞.

was initiated by Mileyko, Mukherjee and Harer [MMH11], who show properties of the
metric space

Dp := {a ∈ D : dp(a, 0) <∞}, endowed with the distance dp, (2.13)

where 0 is the empty diagram, so that dp(a, 0)p =
∑

u∈a(u2 − u1)p, a quantity called
the p-total persistence of the diagram a, and denoted by Persp(a). Note that we allow
here diagrams with infinitely many points, so that it is possible to have dp(a, 0) =∞.

We propose in Chapter 6 to participate in the study of the structure of the space of
persistence diagrams by adopting a different point of view than in [MMH11]. We have
already mentioned that a persistence diagram can be seen either as a list of points in Ω,
or as a point measure on

∑
i∈I δui . Although the ”list” approach appears to be favored

in the literature, the measure point of view turns out to be more fruitful. On the one
hand, this point of view allows us to define in an effortless manner the sum, or the
average of several diagrams, which would then be a general measure (and not a point
measure). On the other hand, this allows us to apply the theory of optimal transport
to study persistence diagrams. Indeed, the Wasserstein distances Wp used in optimal
transport, that we have already mentionned, allow for the comparison of measures,
while the distances dp and Wp share common aspects: they are both defined as some
minimal transport/matching cost between two measures. Because of this similarity,
distances dp are commonly called Wasserstein distances in TDA literature. This name
is however misleading, as there is a fundamental difference between the dp and Wp

distances: the Wp distances are only defined for probability measures (or measures
having the same mass), while dp distances are defined for measures having possibly
different masses, but that have to be point measures.

We establish in Chapter 6 a precise link between the metric structure of the space
of persistence diagrams and optimal transport, by leveraging partial optimal transport
distances introduced by Figalli and Gigli [FG10]. By establishing this link, we are able
to obtain metric properties of the space Dp (such as its completeness, or the existence
of barycenters), but also to extend the space Dp to some larger spaceMp, that we call
the space of persistence measures, and that we endow with the Figalli-Gigli distance
FGp, extending the distance dp. The space of persistence measures benefits from
being ”linearly” convex, so that averages of diagrams are easily defined, the expected
persistence diagram E(P ) of a law P on the space of diagrams being at the core of
Chapter 8. Furthermore, exhibiting this link justifies the adaptation of algorithms
used in optimal transport for persistence diagrams, an approach which can be fruitful
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Figure 2.8: The persistence diagram an of n = 700 random points
on the torus (for 1-dimensional homology). The two topmost points
in the diagram give information on the geometry of the torus (its two
holes), whereas points close to the diagonal represent topological noise.

[LCO18]. Chapter 6 is taken from the paper [DL20], written in collaboration with
Théo Lacombe.

2.2 Linear representations on the space of persistence diagrams and
the choice of the weight function

The first approach we have mentioned to perform statistical procedures using persistence
diagrams consists in using a map Ψ : D → B, where D is the space of persistence
diagrams and B is a Banach space. Such an application, that is called a feature map
or a representation allows the transformation of a sample of persistence diagrams into
a sample of vectors, which can then be plugged easily in a machine learning algorithm.
Numerous representations were introduced in the literature. We may identify a large
subclass of representations, that we call linear representations, and that includes for
instance the persistence surface [Ada+17] (and its variants [Che+15; KHF16; Rei+15]),
the accumulated persistence function [BM19] or the persistence silhouette [Cha+15a].

Definition 2.1 (Linear representation). Let f : Ω → B be any map, where B is a
Banach space. The application Ψf : D → B defined by Ψf (a) :=

∑
u∈a f(u) is called

the linear representation associated with f .

A first criterion to evaluate the relevance of a representation Ψ is its stability: is
Ψ Lipschitz-continuous (or Hölder continuous) for a certain distance dp? We give in
Chapter 8 criteria on the function f which ensure the continuity of the function Ψf ,
then its Lipschitz (or Hölder) behavior with respect to the dp distances. It appears
that, to obtain stable representations, it is fundamental to weight the function f
by some weight function w which is sufficiently small close to the diagonal. We
give sufficient conditions on w to ensure that representations of the form Ψwf for
f Lipschitz continuous and bounded are stable. In particular, a weight function of
the form u 7→ (u2 − u1)p produces Hölder continuous linear representations on Čech
persistence diagrams built on top of d-dimensional manifolds, as long as p > d.

We then address the question of the choice of the weight function w by taking an
asymptotic point of view. We have mentioned earlier that points of high persistence
in a persistence diagram are ”more important” and represent important topological
features of the underlying object. In the case where n points Xn are sampled on
a manifold M , we observe that the persistence diagram an of Xn (for the filtration
(X tn)t≥0) contains two types of points: points with high persistence corresponding
to the persistence diagram of the manifold, and a large number of points with low
persistence measuring the ”topological noise” of the sample, see Figure 2.8 for an
example on the torus. We explore the behavior of the structure of the topological noise
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in a simplified framework, where points are randomly sampled on the cube [0, 1]d. We
show that the size of the topological noise of an, measured by its total persistence
Persp(an) :=

∑
u∈an(u2 − u1)p, is of order c · n1−p/d, with a constant c depending

on the sampling density. This suggests that if points with high persistence in the
diagram of a point cloud informs us on the macroscopic structure of the shape, the
topological noise contains other types of information, such as the intrinsic dimension
of the sample. These remarks were then used by Adams et al. [Ada+20] to define
a notion of persistent dimension of a set. More generally, we show that the rescaled
diagram n−1/dan (which is a persistence measure) converges with respect to the metric
FGp towards some limit persistence measure depending on the sampling density. This
implies in particular that representations of the form Ψwf (an) converge for w of the
form u 7→ (u2 − u1)p for p > d. We find in the two cases the same heuristic: a weight
function of the form u 7→ (u2 − u1)p for p > d should be chosen if the persistence
diagrams are built on top of a d-dimensional object.

Chapter 7 is based on a collaboration with Wolfgang Polonik [DP19].

2.3 The expected persistence diagram

In a statistical context, we are often in presence of a n-sample of persistence diagrams
a1, . . . , an arising from e.g. a collection of graphs [Car+20], of time series [SDB16],
or of 3D shapes [COO15b]. We may then consider their associated representations
Ψ(a1), . . . ,Ψ(an). To obtain statistical results on the sample Ψ(a1), . . . ,Ψ(an), it is best
to start by considering simple quantities such as their average 1

n(Ψ(a1) + · · ·+ Ψ(an)).
The law of large numbers implies that the average converges towards Ea∼P [Ψ(a)],
where P is the law generating the diagrams ai. However, it is not clear a priori what
are the properties of this limit. We propose to describe this expectation for linear
representations Ψf . In this case, if we denote by

an :=
1

n
(a1 + · · ·+ an) (2.14)

the average of the ais, which is a persistence measure, we have

1

n
(Ψf (a1) + · · ·+ Ψf (an)) = Ψf (an). (2.15)

This quantity converges towards Ψf (E(P )) =
∫
f(u)dE(P )(u), where E(P ) = Ea∼P [a]

is the expected persistence diagram of P , defined precisely in Chapter 8 and first defined
in a publication written in collaboration with Frédéric Chazal [DC19]. The expected
persistence diagram is a measure on Ω, which gives the average intensity of the number
of points of a random diagram a ∼ P in a given zone. We establish in Chapter 8
various properties of expected persistence diagrams: their stability with respect to the
law P , rates of convergence of the empirical expected persistence diagram an towards
E(P ) (with respect to Figalli-Gigli distances FGp), or the existence of a density λP
for E(P ) in a very general framework. This last result implies in particular a precise
description of the limit of 1

n(Ψf (a1) + · · ·+ Ψf (an)): it is equal to
∫
f(u)λP (u)du, and

the knowledge of λP (which is possible through estimation procedures) allows us to
have a precise knowledge of the limit. One of the drawbacks of the empirical expected
persistence diagram an is that it potentially contains a very large number of points,
which may hinder its use in practice. We therefore also study the problem of the
quantization of such a measure, that is the problem of finding a measure with small
support which approximates it. Chapter 8 gathers results on the expected persistence
diagram obtained in collaboration with Théo Lacombe [DL20; DL21] and Frédéric
Chazal [DC19].
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Chapter 3

Background

3.1 Elements of measure theory

Let (X ,G) be a measurable space. We denote by P±(X ) the set of signed measures
on X , while P(X ) is the set of finite measures on the space (X ,G). By the Jordan
decomposition theorem [Fol13, Proposition 3.4], every measure µ ∈ P±(X ) can be
decomposed into two positive mutually singular measures µ+ and µ−, such that
µ = µ+ − µ−. For m > 0, we let Pm(X ) be the set of measures in P(X ) having mass
m, i.e. such that µ(X ) = m.

We will focus on the case where X is endowed with some metric d and G = B(X ) is
the associated Borel σ-algebra. In that case, we let Cb(X ) be the space of continuous
bounded functions on X , which is a Banach space when endowed with the ∞-norm
‖ · ‖∞. Every µ ∈ P(X ) then induces a linear functional on Cb(X ), defined by

f ∈ Cb(X ) 7→ µ(f). (3.1)

As |µ(f)| ≤ µ(X )‖f‖∞, this linear functional is continuous, so that P(X ) can be
identified with a subset of Cb(X )∗, the topological dual of Cb(X ). The weak topology
on P(X ) is the topology induced by the weak-* topology on Cb(X )∗. Concretely, a
sequence (µn)n in P(X ) weakly converges towards µ in P(X ) if for all f ∈ Cb(X ) we
have µn(f)→ µ(f). We then write µn

w−→ µ. A stronger topology on P(X ) is given by
the dual norm on Cb(X )∗, that we call the total variation norm: for µ, ν ∈ P(X ),

|µ− ν| := 1

2
sup{|µ(f)− ν(f)| : f ∈ Cb(X ), ‖f‖∞ ≤ 1}. (3.2)

When (X , d) is locally compact and separable [AFP00, Proposition 1.47], this formula
coincides with more common definitions of the total variation:

|µ− ν| = sup{|µ(A)− ν(A)| : A ∈ B(X )}

=
1

2

∫ ∣∣∣∣dµdλ − dν

dλ

∣∣∣∣ dλ, (3.3)

where λ is any measure dominating µ and ν.
We now state elementary topological properties of P(X ). We make the distinction

between a Polish metric space, that is a complete separable metric space, and a Polish
space, the latter being a topological space X (not necessarily associated with a metric)
for which there exists a distance d metrizing the topology such that (X , d) is a Polish
metric space. The following proposition appears for instance in [Var58].

Proposition 3.1.1. Let m > 0. We endow Pm(X ) with the weak topology.

1. The space X is separable if and only if Pm(X ) is separable.

2. The space X is compact if and only if Pm(X ) is compact.
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3. The space X is a Polish space if and only if Pm(X ) is a Polish space.

Persistence diagrams, that are defined rigorously in Section 3.8, are not finite
measures in general, but may have infinite masses. The space P(X ) is therefore not
suited to study them, while the larger space of Radon measures provides a satisfactory
framework to handle such non-finite measures. We assume for the remainder of the
section that (X , d) is a locally compact Polish metric space.

Definition 3.1.2 (Radon measures). A Radon measure µ on X is a locally finite
measure, that is such that for every point x ∈ X , there exists a neighborhood U of x
with µ(U) <∞. We denote byM(X ) the set of Radon measures on X .

Remark 3.1.3. It is common in the literature to define Radon measures by imposing
further regularity conditions on µ (namely inner regularity on open sets and outer
regularity on Borel sets). When X is a locally compact Polish metric space, those
regularity conditions are automatically satisfied, and the definition of a Radon measure
becomes more straightforward, see [Fol13, Theorem 7.8].

The Riesz–Markov–Kakutani representation theorem asserts that Radon measures
correspond exactly to nonnegative elements of the dual space of Cc(X ), the space of
continuous functions with compact support on X . Before stating the theorem, we need
to endow Cc(X ) with a topology. Let An be a sequence of relatively compact open
subsets such that

⋃
n≥0An = X . We let C0(An) be the completion of Cc(An) for the

‖ · ‖∞-norm (the space of functions which vanish on the boundary of An). We then
endow Cc(X ) with the strongest locally convex topology such that all the inclusions
C0(An) ↪→ Cc(X ) are continuous, and which makes Cc(X ) a complete topological
vector space. More concretely, endowed with this topology, a sequence (fn)n in Cc(X )
converges towards some function f ∈ Cc(X ) if and only if there exists a compact set
containing the supports of all the functions and we have uniform convergence of (fn)n
towards f .

Definition 3.1.4. Let Cc(X )∗ be the topological dual of Cc(X ). We say that φ ∈ Cc(X )∗

is nonnegative if φ(f) ≥ 0 for any f ∈ Cc(X ) which is nonnegative.

The following theorem is for instance found in [AFP00, Theorem 1.54].

Theorem 3.1.5 (Riesz–Markov–Kakutani representation theorem).

1. Let µ ∈M(X ). Then, the application f ∈ Cc(X ) 7→ µ(f) is continuous.

2. If φ ∈ Cc(X )∗ is nonnegative, then there exists a unique Radon measure µ ∈M(X )
such that φ(f) = µ(f) for every f ∈ Cc(X ).

As such, M(X ) can be identified with a subset of Cc(X )∗. We endow M(X )
with the topology induced by the weak-* topology on Cc(X )∗, that we call the vague
topology. Concretely, a sequence of Radon measures (µn)n converges vaguely towards
some Radon measure µ if, for all f ∈ Cc(X ), we have µn(f)→ µ(f). We then write
µn

v−→ µ.
The following propositions are standard results. Corresponding proofs can be found

for instance [Kal83, Section 15.7].

Proposition 3.1.6. The spaceM(X ) is a Polish space.

Also, P(X ) ⊂M(X ), with the injection being continuous: if a sequence of finite
measures converges weakly to some finite measure, then the vague convergence also
holds.
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Definition 3.1.7. A set F ⊂M(X ) is said to be tight if, for every ε > 0, there exists
a compact set K with µ(X\K) ≤ ε for every µ ∈ F .
Proposition 3.1.8. A set F ⊂M(X ) is relatively compact for the vague topology if
and only if for every compact set K included in X ,

sup{µ(K) : µ ∈ F} <∞.
Proposition 3.1.9 (Prokhorov’s theorem). A set F ⊂ P(X ) is relatively compact for
the weak topology if and only if F is tight and sup{|µ| : µ ∈ F} <∞.

Proposition 3.1.10. Let µ, µ1, µ2, . . . be measures in P(X ). Then, µn
w−→ µ if and

only if |µn| → |µ| and µn v−→ µ.

Proposition 3.1.11 (The Portmanteau theorem). Let µ, µ1, µ2, . . . be measures in
M(X ). Then, µn

v−→ µ if and only if one of the following propositions holds:

• for all open sets U ⊂ X and all bounded closed sets F ⊂ X ,

lim sup
n→∞

µn(F ) ≤ µ(F ) and lim inf
n→∞

µn(U) ≥ µ(U).

• for all bounded Borel sets A with µ(∂A) = 0, lim
n→∞

µn(A) = µ(A).

Finally, we define D(X ) the set of integer measures on X , that is Radon measures
of the form

∑
i∈I δxi for some index set I. Integer measures will be particularly

important in the following, as they will be identified with persistence diagrams.

Proposition 3.1.12. The set D(X ) is closed inM(X ) for the vague topology.

3.2 Optimal transport

Optimal transport is a widely developed theory providing tools to study and compare
probability measures supported on some metric space X [Vil03; Vil08; San15], that is,
up to a renormalization factor, non-negative measures with same mass. The optimal
transport problem was first introduced by Gaspard Monge in 1781 in its ”Mémoire
sur la théorie des déblais et des remblais” [Mon81]. Consider a distribution of dirt (or
”remblais”) µ and a distribution of holes (or ”déblais”) ν, see Figure 3.1. A transport
plan π between µ and ν is a strategy for moving the dirt to fill the holes: at each point
x, a fraction dπ(x, y) of the mass dµ(x) is moved to y. The quantity of mass moved
from x, which could be written as

∫
y dπ(x, y) should be exactly equal to dµ(x), the

total mass originally present at x. Likewise, the quantity of mass
∫
x dπ(x, y) arriving

to y should be equal to dν(y). Mathematically, if ν and µ are measures on some metric
space (X , d), then a transport plan is a measure on X × X , which must satisfy the
marginal constraints π1 = µ and π2 = ν (the first and second marginals of π). Remark
that for a transport plan to exist, µ and ν must necessarily have the same mass. For
p = 1, the cost of the transport plan π is then given by

∫∫
d(x, y)dπ(x, y), that is we

consider the total distance covered by the dirt through the transport plan π. The
1-Wasserstein distance W1(µ, ν) between µ and ν (also called earthmover distance)
is then given by the smallest cost possible of a transport plan. More generally, we
introduce the following problem.

Given a metric space (X , d), 1 ≤ p <∞ and m > 0, we let Ppm(X ) be the set of
distributions µ ∈ Pm(X ) such that there exists x0 ∈ X with

∫
d(x, x0)pdµ(x) < ∞.

Remark that if µ ∈ Ppm(X ), then the previous integral is actually finite for every
x0 ∈ X . For p = ∞, we let P∞m (X ) be the set of distributions µ ∈ Pm(X ) with
bounded support. We write Π(µ, ν) for the set of transport plans between µ and ν.
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µ ν

Figure 3.1: A distribution µ of ”remblais” (in blue) and a distribution
ν of ”déblais” (in red).

Definition 3.2.1 (Wasserstein distances). Let 1 ≤ p ≤ ∞ and let µ, ν ∈ Ppm(X ). Let
π ∈ Π(µ, ν). For p <∞, the p-cost of π is equal to

Cp(π) :=

∫∫
X×X

d(x, y)pdπ(x, y), (3.4)

while C∞(π) := π − ess sup d(·, ·). The Wasserstein distance Wp,d(µ, ν) between µ and
ν is given by

Wp,d(µ, ν) := inf{Cp(π)1/p : π ∈ Π(µ, ν)} (3.5)

for p <∞, and Cp(π)1/p should be replaced by C∞(π) for p =∞.

When there is no ambiguity on the distance d used, we simply write Wp instead of
Wp,d. We refer to [Vil08, Chapter 6] for the following proposition.

Proposition 3.2.2. For 1 ≤ p ≤ ∞, the Wasserstein distance Wp is a distance on
Ppm(X ). Furthermore, there exist transport plans attaining the infimum in (3.5), that
we call optimal transport plans. If p <∞ and (X , d) is a Polish metric space, then
the following propositions hold.

1. The space (Ppm(X ),Wp) is a Polish metric space.

2. If X is compact, then Ppm(X ) = Pm(X ) and Wp metricizes the weak topology.

3. Let µ, µ1, µ2, . . . be measures in Ppm(X ). Then, Wp(µn, µ) → 0 if and only if
µn

w−→ µ and
∫
d(x, x0)pdµn(x)→

∫
d(x, x0)pdµ(x).

We will denote by OptWp
(µ, ν) the set of optimal transport plans between µ and

ν. One of the key specificities of optimal transport distances with respect to other
distances between measures lies in that they are closely linked to the geometry of the
underlying metric space (X , d). For instance the embedding x ∈ X 7→ δx ∈ Pp1 (X )
is an isometry when Pp1 (X ) is endowed with the Wasserstein distance. Also, metric
properties of (X , d) (e.g. compactness, completeness or separability) are inherited
by the space (Pp1 (X ),Wp). More profound results indicate that studying the space
(Pp1 (X ),Wp) can in turn give insights on the geometry of the space (X , d), and more
precisely on its curvature, see [Vil08, Part II].

For p = 1, the Wasserstein distance satisfies a duality formula, known as the
Kantorovitch-Rubinstein duality formula [Vil08, Chapter 5].

Proposition 3.2.3. Let µ, ν ∈ P1
m(X ). Then,

W1(µ, ν) = sup{|µ(f)− ν(f)| : f : X → R is 1-Lipschitz continuous}. (3.6)
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Note that the above formula shows that W1 acts as a norm on the space of signed
measures with zero mass.

In this thesis, the theory of optimal transport will have two different uses. First,
it will be used in Chapter 5 where we propose estimators to reconstruct measures
supported on unknown manifolds. The quality of the reconstruction will be measured
thanks to Wasserstein distances. Second, metrics used in Topological Data Analysis
(see Section 3.8) share key ideas with metrics used in optimal transport. Making this
connection precise will be at the core of Chapter 6, and will in particular allow us to
introduce generalizations of persistence diagrams, that we call persistence measures.
Persistence measures will then be studied in the remainder of Part II, while optimal
transport will be a key technical tool to analyze their behaviors.

3.3 Statistical models and minimax rates

We end the prerequisites on measure theory by defining minimax rates in statistical
theory, which will be at the core of Part I.

Let (X ,G) be a measurable space. A statistical model is given by the data of
(X ,G,Q), where Q is a subset of P1(X ). Let (E, E) be another measurable space and
let θ : Q → (E, E) be a functional to be estimated. Given a number n of observations,
an estimator of θ is a measurable function θ̂ : X n → E, whereas the quality of the
estimator is measured through a measurable loss function L : E × E → [0,+∞]. The
risk of the estimator θ̂ in µ ∈ Q is equal to

Rn(θ̂, µ,L) := E(X1,...,Xn)∼µ⊗n [L(θ̂(X1, . . . , Xn), θ(µ))], (3.7)

and the smaller the risk, the better the estimator. The minimax risk for the estimation
of θ on the model Q with respect to the loss L is given by

Rn(θ,Q,L) := inf
θ̂

sup
µ∈Q

Rn(θ̂, µ,L), (3.8)

where the infimum is taken over all estimators θ̂ of θ. An estimator attaining the
minimax rate (up to a constant) as n goes to +∞ is called a minimax estimator.

It will be sometimes necessary to allow for Q to vary with n (for instance if the
model Q includes a noise which we assume is small with respect to some function of
n). Also, there will sometimes be latent variables in the model. For instance, in the
deconvolution problem, we observe some random variables Xi = Yi + εi, where εi is a
small noise, and the goal is to recover some information θ(µ) about the distribution µ
of Yi (e.g. its support). Depending on what is assumed on the noise εi, the quantity
θ(µ) may not be characterized by the distribution ν of Xi, so that we have to extend
slightly the previous definition. Let ι : (Y,H)→ (X ,G) be a measurable function. We
now consider a subset Q of P1(Y) and assume that we do not observe a n-sample of
distribution µ ∈ Q, but of distribution ι#µ (the pushforward of µ by ι). The minimax
risk is then defined by

Rn(θ̂, µ,L) := E(X1,...,Xn)∼(ι#µ)⊗n [L(θ̂(X1, . . . , Xn), θ(µ))]. (3.9)

For instance, in the deconvolution problem, Q would be a (strict) subset of the possible
distributions of the couple (Yi, εi), whereas ι would be the addition. This generalization
will be useful to deal with noise in a rigorous manner when the model is not completely
identifiable.

Statistical models of interest in this thesis describe strong geometrical hypotheses
on the way the observations are distributed, and are detailed in Section 3.5.
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A

B

dH(A|B)

dH(B|A)

Figure 3.2: The Hausdorff distance between the two closed sets A
and B is given by dH(A|B).

3.4 Elements of metric geometry

We now introduce basic concepts of metric geometry.

Hausdorff distance. The Hausdorff distance is a measure of proximity between
subsets of some metric space (X , d). Let A,B ⊂ X be two sets. We define the
asymmetric Hausdorff distance dH(A|B) := sup{d(x,B) : x ∈ A}, and the Hausdorff
distance dH(A,B) = dH(A|B) ∨ dH(B|A), see Figure 3.2. When comparing general
subsets A and B, the Hausdorff distance is not very well-behaved: it may be equal
to +∞, or be equal to 0 for two different sets. It becomes a proper distance when we
restrict to compact sets of X . We let K(X ) be the space of nonempty compact subsets
of X .

Proposition 3.4.1 (Proposition III.6 in [Aam17]). Let (X , d) be a metric space. Then,
dH is a distance on K(X ). Furthermore, endowed with this metric:

1. K(X ) is separable if and only if X is separable.

2. K(X ) is compact if and only if X is compact.

3. K(X ) is complete if and only if X is complete.

Note that the asymmetric Hausdorff distance also verifies the following pseudo
triangle inequality: for A,B,C ⊂ RD,

dH(A|C) ≤ dH(A|B) + dH(B|C). (3.10)

An equivalent formulation of the Hausdorff distance is given by the∞-norm between
the distance functions to a set.

Proposition 3.4.2 (Example 4.13 in [RW09]). Let A,B ∈ K(X ). Then,

dH(A,B) = ‖d(·, A)− d(·, B)‖∞. (3.11)

It will also be useful to compare objects up to isometry: for instance, two segments
of comparable lengths are in some sense close to each others, even if they live in
different spaces. The Gromov-Hausdorff distance allows us to formalize this concept,
see also Figure 3.3.
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X

Y
φ1(X )

φ2(Y)

Figure 3.3: The Gromov-Hausdorff distance between the two curves
X and Y is obtained as the Hausdorff distance between φ1(X ) and

φ2(Y).

Definition 3.4.3. Let (X , d1) and (Y, d2) be two metric spaces. We let dGH(X ,Y) be
the infimum of the numbers r > 0 such that there exists a metric space (Z, d3) and
isometries φ1 : (X , d1)→ (Z, d3), φ2 : (Y, d2)→ (Z, d3) such that dH(φ1(X ), φ2(Y)) ≤
r.

The set Z in the previous definition can actually be chosen equal to X t Y, with
d3 being any distance extending d1 on X and d2 on Y. Furthermore, two compact
metric spaces are at distance 0 for the Gromov-Hausdorff distance if and only if they
are isometric, and the distance dGH becomes a proper distance on the set of classes of
isometric compact spaces [Mém08].

Of particular interest for us will be the space (K(RD), dH), as the estimators built
in Chapter 4 will take their values in this space. We will show that our estimators are
measurable as composition of elementary operations on the space K(RD).

Proposition 3.4.4. 1. The function x ∈ RD 7→ {x} ∈ K(RD) is an isometry.

2. The ”union” function (A,B) ∈ K(RD)×K(RD) 7→ A∪B ∈ K(RD) is continuous.

3. The ”convex hull” function A ∈ K(RD) 7→ Conv(A) ∈ K(RD) is continuous.

4. Let E ∈ B(K(RD)) be a measurable event. Then, the function

GE : (A,B) ∈ K(RD)×K(RD) 7→
{
A if A ∈ E
B else.

is measurable.

Proof. For the first three functions, see the proof of Proposition III.7 in [Aam17]. For
the last function, let F be any measurable set in K(RD). Then, the preimage of F is
given by

((F ∩ E)×K(RD)) ∪ (Ec × F ),

which is measurable. Therefore, the function is measurable.

We end this paragraph by introducing two different quantities measuring the size
of a compact set A ∈ K(RD). The first one is the diameter diam(A) := sup{|x− y| :
x, y ∈ A}. The second is the radius of A. It is by definition the radius of the smallest
ball B such that A ⊂ B. We denote by r(A) this radius.

Proposition 3.4.5. The function diam is 2-Lipschitz continuous and the function r
is 1-Lipschitz continuous.
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r(σ)

diam(σ)

Figure 3.4: The radius and diameter of a set A ⊂ R2.

Figure 3.5: The three first shapes have positive reach, whereas the
square (boundary of [0, 1]2) has zero reach.

Proof. For the 1-Lipschitz continuity of the radius, see [ALS13, Lemma 16]. For the
diameter, let x1, x2 ∈ A such that |x1 − x2| = diam(A). Let y1 ∈ B be such that
|x1 − y1| = d(x1, B) and y2 ∈ B with |x2 − y2| = d(x2, B). Then,

diam(A) = |x1 − x2| ≤ |x1 − y1|+ |y1 − y2|+ |y2 − x2|
≤ d(x1, B) + diam(B) + d(x2, B) ≤ diam(B) + 2dH(A|B).

We conclude by exchanging the roles of A and B.

Reach of a set. Let A ⊂ RD be a closed subset. Given x ∈ RD, we denote by πA(x)
the set of points realizing the distance from x to A:

y ∈ πA(x)⇐⇒ (|x− y| = d(x,A) and y ∈ A).

Two situations may arise: either πA(x) is a singleton (and we then identify the set
with its unique element) or it is not. In the latter case, we say that x is in the medial
axis Med(A) of A.

Definition 3.4.6. The reach of a non-empty closed set A ⊂ RD is given by

τ(A) := inf{d(x,Med(A)) : x ∈ A}. (3.12)

By definition, for every r < τ(A), if d(x,A) ≤ r, then there exists a unique point
πA(x) ∈ A such that d(x,A) = |x− πA(x)|. In particular, the projection πA on A is a
well-defined map on Ar := {x ∈ RD : d(x,A) ≤ r}, the r-tubular neighborhood of A.
A more visual way to understand the reach is given by the ”rolling-ball condition”: if a
set A has reach larger than r, then it is possible to make a ball of radius r roll freely
around A without ever bumping into another part of A [CFPL12]. See Figure 3.5 for
examples of sets A having positive (and zero) reach.

Examples of sets with positive reach include convex sets (for which τ(A) = +∞)
and compact submanifolds without boundary. More generally, having a large reach
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imposes both a local regularity condition on A (it cannot be too ”curved”) and a global
regularity condition (it cannot have a ”bottleneck structure”), ideas which can be made
mathematically precise [Aam+19], see also Figure 2.3 in the introduction. The reach
was originally introduced by Fereder [Fed59] when studying generalizations of Steiner
formula for convex sets [Ste40] and Weyl’s tube formula for submanifolds [Wey39]. He
proved that such a formula relating the volume of tubular neighborhoods of a set A
to some notion of curvature also holds for the large class of sets with positive reach.
Considering sets with positive reach is often considered as a minimal requirement
in computational geometry. For instance, minimax rates of estimation in manifold
inference are known to break down when no assumptions on the reach of the underlying
sets are made [AL18; AL19].

The positivity of the reach is actually linked to the regularity of the distance
function to a set. We say that a function f : RD → Rl is C1,1 if it is differentiable and
its differential is Lipschitz continuous.

Proposition 3.4.7 (Theorem 6.3 in [DZ01]). Let A ⊂ RD be a non-empty closed set.
Then, τ(A) > 0 if and only if the function x ∈ RD 7→ d2(x,A) is of class C1,1 in some
tubular neighborhood of A.

Remark that the distance function d(·, A) is in general not differentiable on a
tubular neighborhood of A, even if A is a smooth object (think of a circle for instance),
so that considering the squared distance in the above proposition is required. From a
statistical perspective, the estimation of the reach of a manifold has been tackled in
[Aam+19] and [Ber+21].

Another point of view consists in seeing the reach as a function τ : K(RD) →
[0,+∞]. It is clear that this function is not continuous: take a set A = {x, y}.
If x 6= y, then τ(A) is given by the half-distance between x and y, whereas when
x → y, we obtain a singleton at the limit, whose reach is infinite. However, such a
discontinuity may only happen with an increase of the reach, that is the reach is upper
semi-continuous.

Proposition 3.4.8 (Remark 4.14 in [Fed59]). The function τ is upper semi-continuous.

Hausdorff measure. The d-dimensional Hausdorff measure is a generalization of
the d-dimensional Lebesgue measure to arbitrary subsets of RD. For instance, the
1-dimensional Hausdorff measure of a curve is given by its length, the 2-dimensional
Hausdorff of a surface is given by its area, etc.

Definition 3.4.9. Let d ≥ 0 be an integer. For A ⊂ RD, and δ > 0, consider

Hδd(A) := inf

∑
i≥0

ωd

(
diam(Ui)

2

)d
: A ⊂

⋃
i≥0

Ui and diam(Ui) < δ

 , (3.13)

where ωd = πd/2/Γ
(
d
2 + 1

)
is the volume of the d-dimensional unit ball. The d-

dimensional Hausdorff measure of A is defined by Hd(A) := limδ→0Hδd(A).

3.5 Elements of differential geometry

The goal of this section is twofold. First, we introduce succinctly the language of
differential geometry to fix notation that will be used throughout Part I. Second, we
explore in more detail the geometry of submanifolds of RD. In particular, we introduce
statistical models tailored to the estimation of geometric quantities related to Ck
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submanifolds, introduced in [AL19] and [BH19]. We refer to do Carmo’s book [Car92]
for a more thorough introduction to Riemannian geometry. Due to their primary
importance in manifold inference, we will focus on submanifolds in this presentation.
This simplifies most definitions, while Nash’s embedding theorem actually ensures that
this is not restrictive [Nas56]. We begin with preliminary definitions.

• Let G(d,D) be the Grassmannian manifold of all d-dimensional subspaces of
RD. For E ∈ G(d,D), we denote by πE the orthogonal projection on E and
π⊥E := id−πE the orthogonal projection on E⊥, the orthogonal complement of
E. The angle ∠(E,F ) between two subspaces E,F ∈ G(d,D) is defined as the
distance ‖πE − πF ‖op, the operator norm between the orthogonal projections on
E and F .

• Let U ⊂ RD be an open set and f : U → R be a Ck function. We denote by
dkf(x) : (RD)k → R the k-th differential of f at x ∈ U . The Ck-norm of f is
equal to

‖f‖Ck := sup
x∈U

∥∥∥dkf(x)
∥∥∥

op
. (3.14)

The C0-norm is equal to the L∞-norm, and we will often write ‖ · ‖∞ instead of
‖ · ‖C0 .

Definition 3.5.1. A topological d-dimensional (sub)manifold M of RD is a subset of
RD (endowed with the subspace topology) such that every x ∈M has a neighborhood
homeomorphic to Rd.

This definition has the advantage of being very simple. It is however not restrictive
enough for our purposes. Indeed, every graph of a continuous function Rd → RD is a
topological submanifold, including wild objects such as the Koch snowflake.

Definition 3.5.2 (see Chapter 8 in [Lee13]). Let k ≥ 1. A Ck d-dimensional
(sub)manifold M of RD is a set such that, for every x ∈M , there exists a Ck diffeo-
morphism φ : Vx → RD, where Vx ⊂ RD is a neighborhood of x, such that φ(Vx ∩M)
is the intersection of a d-dimensional plane with φ(Vx).

If M is a submanifold, we define the tangent space TxM of x ∈M as the set

TxM :=

{
u ∈ RD : ∀ε > 0, ∃y ∈M,

∣∣∣∣ x− y|x− y| −
u

|u|

∣∣∣∣ ≤ ε} . (3.15)

In particular, the tangent spaces are elements of the Grassmannian manifold G(d,D),
and we write πx for πTxM . If U is a neighborhood of 0 in TxM , we say that a Ck
function Ψ : U → M ⊂ RD is a local parametrization of M at x if it is a one-to-one
function such that Ψ(0) = x, dΨ(0) is the inclusion TxM ↪→ RD, and dΨ(u) is of full
rank for every u ∈ U . One can show that a manifold M is Ck if and only if there are
Ck local parametrizations at every x ∈M .

Proposition 3.4.7 states that the positivity of the reach of a set is equivalent to the
C1,1 regularity of the squared distance to the set. When the set is assumed to be a
manifold, this is in turn equivalent to the manifold being of regularity C1,1 (that is the
diffeomorphisms are of regularity C1,1 in the previous definition).

Proposition 3.5.3. LetM ⊂ RD be a compact topological submanifold. Then, τ(M) >
0 if and only if M is of regularity C1,1.
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Proof. The direct implication is proved in [RZ17]. For the converse implication, we
first show that given a point y ∈ RD, if z ∈ πM (y), then y − z is orthogonal to TzM .
Indeed, let Ψ be a local parametrization in z. Then, 0 is a local minimum of the
function u ∈ TzM 7→ |y − Ψ(u)|2. The gradient of this function at 0 is null, and is
given by −2πz(y − z), implying that y − z is orthogonal to TzM .

We now show that for every x ∈M , there is a small neighborhood of x in RD on
which there is a unique projection on M . The compactness of M then implies the
conclusion. Let Ψ be a local C1,1 parametrization ofM at x, defined on a neighborhood
U of 0 in TxM . Let F : U × RD → TxM be defined by F (u, y) = dΨ(u)>(Ψ(u)− y).
The function F is Lipschitz continuous in u and linear in y. We apply a version of the
implicit function theorem for Lipschitz continuous maps [Kum91], which holds under
the condition that, for any sequences λk → 0, uk → 0, yk → y and v ∈ TxM\{0}, we
have

lim
k

F (uk + λkv, y
k)− F (uk, yk)

λk
6= 0

whenever the limit exists. One can check directly that this limit always exist, and is
given by dΨ(0)∗dΨ(0)[v] = v 6= 0. Therefore, by [Kum91, Theorem 1], as F is Lipschitz
continuous, there exists, for ε, ε′ > 0 small enough, a unique map φ : B(x, ε)→ TxM
such that, for y ∈ B(x, ε) and u ∈ BTxM (0, ε′),

F (u, y) = 0 if and only if u = φ(y).

Fix y ∈ B(x, ε′′) for some ε′′ > 0 to fix. If z ∈ M belongs to πM (y), then y − z is
orthogonal to TzM , that is F (Ψ−1(z), y) = 0. Furthermore,

|z − x| ≤ |z − y|+ |y − x| ≤ 2|y − x| ≤ 2ε′′,

which implies that Ψ−1(z) ∈ Ψ−1(BM (x, 2ε′′)) ⊂ BTxM (0, ε′) for ε′′ small enough.
Therefore, we have that Ψ−1(z) = φ(y), that is z = Ψ(φ(y)) is uniquely determined by
y. Hence, there is a unique projection on M on B(x, ε′′), proving that the reach τ(M)
is positive.

We will consider in the following a slightly stronger requirement: all manifolds are
now assumed to be at least C2. This ensures that the second fundamental form of the
manifold M (that we define below) is well-defined.

Definition 3.5.4. Let τmin > 0 and 1 ≤ d < D. We let M2,d
τmin be the set of closed

C2 d-dimensional submanifolds without boundary, with reach larger than τmin and let
furthermoreM2,d :=

⋃
τmin>0M

2,d
τmin be the set of closed C2 d-dimensional submanifolds

without boundary with positive reach.

Let M ∈ M2,d. A geodesic is the analogue of a straight line on M . It is a C2

curve γ : I →M ⊂ RD defined on some interval I satisfying that γ′′(t) ∈ Tγ(t)M
⊥ for

every t ∈ I (where γ is seen as taking its values in RD). The geodesic distance dg(x, y)
between two points x and y in M is defined as the infimum over all geodesics γ joining
x and y of the length of the geodesic, defined as

L(γ) :=

∫
I
|γ′(t)|dt. (3.16)

Also, we denote by volM the d-dimensional Hausdorff measure restricted to M .
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Definition 3.5.5. Let M ∈ M2,d. Let x ∈ M and η ∈ TxM
⊥. Let N be a local

extension of η normal to M , that is N : Ux → RD is defined on a neighborhood
Ux ⊂ RD of x, is of class C2 and satisfies N(x) = η and N(y) ∈ TyM⊥ for y ∈ M .
The second fundamental form SM (x, η) : TxM → TxM of M at x along the normal η
is the operator given by

SM (x, η)[u] = −πx(dxN [u]) ∀u ∈ TxM. (3.17)

One can check that the second fundamental form does not depend on the extension
N . Furthermore, for each x ∈ M and η ∈ TxM⊥, the operator SM (x, η) is a linear
self-adjoint operator on TxM . Given a normal direction η and a tangent vector u, the
second fundamental form describes how the normal direction η varies as x is moved
in the direction u. As such, it gives a description of the extrinsic curvature of the
manifold M .

Proposition 3.5.6 (Proposition 6.1 in [NSW08]). Let M ∈ M2,d, x ∈ M and
η ∈ TxM⊥. Then,

‖SM (x, η)‖op ≤
1

τ(M)
. (3.18)

We now give further geometric constraints given by the reach.

Proposition 3.5.7. Let M ∈M2,d and x, y ∈M .

1. If some point z is at distance less than τ(M) from M with πM (z) = x, then
πx(z − x) = 0.

2. We have |volM | ≥ ωdτ(M)d, where ωd is the volume of the d-dimensional sphere.
Furthermore, the equality is attained only if M is a d-dimensional sphere of
radius τ(M).

3. We have diam(M) ≤ Cd
|volM |
τ(M)d−1 for some positive constant Cd. Furthermore,

τ(M) ≤
√

D
2(D+1) diam(M).

4. We have |π⊥x (y − x)| ≤ |x−y|22τ(M) .

5. We have ∠(TxM,TyM) ≤ 2 |x−y|τ(M) .

6. If dg(x, y) ≤ πτ(M) (or if |x − y| ≤ τ(M)/2), then |x − y| ≤ dg(x, y) ≤
|x− y|min

(
π
2 , 1 + c0

τ(M)2 |x− y|
)
, where c0 = π2/50.

7. If h ≤ τ(M)/4, then 8−dωdhd ≤ volM (BM (x, h)) ≤ 8dωdh
d.

Proof. Point 1 was already shown in the proof of Proposition 3.5.3. Point 2 is stated
in [Alm86], whereas Point 3 is proved in [Aam17, Section III.3.4]. Point 4 is proved
in Federer’s article [Fed59, Theorem 4.18]. Point 5 is stated in [BSW09, Lemma 3.4].
For Point 6, see the proof of [ACLG19, Lemma 3.12]. Also, having |x− y| ≤ τ(M)/2
implies that dg(x, y) ≤ πτ(M) is a consequence of [NSW08, Proposition 6.3]. Finally
we prove Point 7. Proposition 8.7 in [AL18] states that for h ≤ τ(M)/4,

2−dαdh
d ≤ volM (BM (x, h)) ≤ 2dαdh

d,

where αd is the volume of the d-dimensional ball. It remains to show that 2dαd ≤ 8dωd
and that 2dωd ≤ 8dαd. One can check by recursion on d that those inequalities hold
for any d ≥ 1, concluding the proof.
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In particular, if |volM | < ∞ and τ(M) > 0, then M is automatically compact.
Among all local parametrizations of a manifold M , a particularly natural one is
given by the inverse of the projection on the tangent space. We let π̃x be defined by
π̃x(y) = x+ πx(y − x) (so that π̃x(x) = x) and let T̃xM = x+ TxM be the image of
π̃x.

Proposition 3.5.8. Let x ∈ M . For r ≤ τ(M)/3, the application π̃x is a diffeor-
morphism from BM (x, r) on its image. Moreover, its image π̃x(BM (x, r)) contains
BT̃xM (x, 7r/8). In particular, if y ∈ BM (x, τ(M)/4), then

|π̃x(y)− y| ≥ 7

8
|y − x|. (3.19)

Proof. We first show that π̃x is injective on BM (x, τ(M)/3). Assume that π̃x(y) =
π̃x(y′) for some y 6= y′ ∈M . Consider without loss of generality that |x− y| ≥ |x− y′|.
The goal is to show that |x−y| > τ(M)/3. If |x−y| > τ(M)/2, the conclusion obviously
holds. Proposition 3.5.7.5 states that if it is not the case then, ∠(TxM,TyM) < 2 |x−y|τ(M) .
Also, by definition,

∠(TxM,TyM) ≥ |(πx − πy)(y − y
′)|

|y − y′|

=
|πy(y − y′)|
|y − y′| ≥

|y − y′| − |π⊥y (y − y′)|
|y − y′|

≥ 1− |y − y
′|

2τ(M)
by Proposition 3.5.7.4

≥ 1− |x− y|
τ(M)

by the triangle inequality.

Therefore, we have 3|x − y|/τ(M) > 1, i.e. |x − y| > τ(M)/3 and π̃x is injective on
BM (x, τ(M)/3). To conclude that π̃x is a diffeomorphism, it suffices to show that its
differential is always invertible. As π̃x is an affine application, the differential dπ̃x(y)
is equal to πx. Therefore, the Jacobian Jπ̃x(y) of the function π̃x : M → TxM in y is
given by the determinant of the projection πx restricted to TyM . In particular, it is
larger than the smallest singular value of πx ◦ πy to the power d, which is larger than

(1− ∠(TxM,TyM))d ≥
(

1− 2
|x− y|
τ(M)

)d
≥
(

1

3

)d
,

thanks to Proposition 3.5.7.5 and using that |x − y| ≤ τ(M)/3. In particular, the
Jacobian is positive, and π̃x is a diffeormorphism from BM (x, τ(M)/3) to its image. The
second statement is stated in [AL19, Lemma A.2]. The last statement is a consequence
of the two first, using that if |y − x| ≤ τ(M)/4, then 8|π̃x(y)− x|/7 ≤ τ(M)/3.

Note that this proposition was already proven in [ACLZ17, Lemma 5], but with
a slightly worse constant of τ(M)/12. We write Ψx for the inverse of the map
y ∈ M 7→ πx(y − x) ∈ TxM , which is defined according to the previous lemma on
BTxM (0, 7r/24) for r ≤ τ(M)/3 (in particular it is defined on BTxM (0, τ(M)/4)). The
parametrizations Ψx will be used in the following to quantify the regularity of the
manifold M .

Proposition 3.5.9. Let M be a Ck submanifold for k ≥ 2 and let x ∈M . Then, Ψx

is a local Ck parametrization of M .
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Proof. Let Ψ be a Ck parametrization at x. We may write Ψx = Ψ ◦ (Ψ−1 ◦Ψx) on a
small neighborhood of 0. As Ψ is Ck, it suffices to show G = Ψ−1 ◦Ψx : TxM → TxM
is Ck on a neighborhood of 0. Given u ∈ TxM small enough, v = G(u) is characterized
by the equation πx(Ψ(v)− x) = u. This expression is Ck in (u, v) and, by the implicit
function theorem, using that dΨ(0) is the inclusion TxM ↪→ RD, we obtain that G is
indeed Ck.

We denote by Mk,d the set of Ck closed d-dimensional submanifolds without
boundary with positive reach.

Definition 3.5.10 (Class of regular manifolds). Let d ≥ 1, k ≥ 2 and L, τmin > 0. Let
r0 = (τmin ∧ L)/4. We say that M ∈Mk,d

τmin,L
if M is inMk,d with τ(M) ≥ τmin and

if, for all x ∈ M , Ψx is defined on BTxM (0, r0) and the function u ∈ BTxM (0, r0) 7→
Ψx(u)− x has a Cknorm smaller than L.

The second differential of Ψx can be expressed thanks to the second fundamental
form of M . In particular, one can obtain using Proposition 3.5.6 an inequality of the
form ‖Ψx − x‖C2 ≤ Ld,τ(M), implying that the parameter L is not relevant to quantify
the C2-regularity of a manifold. For k ≥ 3, there are no constraints on the Ck-norm of
the local parametrizations based on the reach, and the parameter L becomes useful.

We say that a function f : M → Rl is Ck if f ◦ Ψx is Ck for every x ∈ M . We
define the norm

∥∥dkf(x)
∥∥

op
at x as

∥∥dk(f ◦Ψx)(0)
∥∥

op
. Defining rigorously what is

the kth differential of the function f is more delicate and would require introducing
concepts such as the Levi-Civita connection, whereas only defining a notion of Ck-
norm of a function is of interest for us. If l ≤ d, the Jacobian of f is defined by
Jf =

√
det((df)(df)∗).

We compare our definition with other models of Ck manifolds appearing in the
manifold inference literature. In [BH19], a similar approach is taken to measure the
regularity of manifolds, but with exponential maps used as local parametrizations.
However, exponential maps may only be Ck−2 on a Ck manifold [Har51] so that we
prefer to use the inverse projections Ψx as parametrizations. In [AL19], Aamari and
Levrard assume the existence of a local parametrization Ψ̃x at x ∈M with Ck norm
smaller than L, not necessarily equal to the inverse Ψx of the projection π̃x. However,
the choice of Ψx as a local parametrization is not restrictive. Indeed, one can write
Ψx = Ψ̃x ◦ (πx ◦ Ψ̃x)−1, so that, by the inverse function theorem, the Ck norm of Ψx is
controlled by the Ck norm of Ψ̃x.

Statistical models for measures supported on manifolds Statistical models
of interest in the following correspond to sampling ”almost-uniformly” points on (or
close to) a manifold which is regular enough.

Definition 3.5.11. Let 1 ≤ d < D, k ≥ 2, τmin, L > 0 and 0 < fmin ≤ fmax ≤ ∞.
The set Qk,dτmin,L,fmin,fmax

is the set of all probability measures µ, whose support M
belongs toMk,d

τmin,L
, and which have a density f with respect to the volume measure on

M , satisfying fmin ≤ f ≤ fmax.

We also consider sampling with a bounded additive noise: each observation Xi

is of the form Yi + Zi, where the law of Yi is supported on a manifold and |Zi| ≤ γ,
whereas Yi and Zi are not necessarily independent.

Definition 3.5.12. Let 1 ≤ d < D, k ≥ 2, τmin, L, γ > 0 and 0 < fmin ≤ fmax ≤ ∞.
The set Qk,dτmin,L,fmin,fmax

(γ) is the set of all probability measures ξ on RD × RD, such
that the first marginal of ξ belongs to Qk,dτmin,L,fmin,fmax

and the second marginal of ξ is
supported on B(0, γ).
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We then assume that we observe samples having distribution ι#ξ, where ι :
RD × RD → RD is the addition. As explained in Section 3.3, this slightly more
technical definition allows us to define the function θ(ξ) = M as the support of the
first marginal of ξ, whereas M cannot be recovered solely thanks to the law of the
observation X = Y + Z, where (Y,Z) ∼ ξ.

For k = 2, the parameter L has no impact on the statistical rates of convergence,
and we only consider Q2,d

τmin,fmin,fmax
(γ) := Q2,d

τmin,+∞,fmin,fmax
(γ). The minimax rates

for the estimation of the manifold M are known to satisfy:

c0

(
lnn

n

)2/d

≤ Rn(M,Q2,d
τmin,fmin,fmax

(γ), dH) ≤ c1

((
lnn

n

)2/d

∨ γ
)

(3.20)

c2

(
1

n

)k/d
≤ Rn(M,Qk,dτmin,L,fmin,fmax

(γ), dH) ≤ c1

((
lnn

n

)k/d
∨ γ
)
. (3.21)

The lower bound in (3.20) is provided in [KZ15] while the upper bound was first
given in [Gen+12a]. The statistical models Qk,dτmin,L,fmin,fmax

(γ) were introduced in
[AL19], where (3.21) is also shown. The upper bound follows from exhibiting a minimax
estimator, obtained by using a local polynomial estimator around every observation
point. In particular, these estimators will be used in Chapter 5 to estimate the volume
measure of M .

The coarea formula Finally, we introduce the coarea formula, which is a far-
reaching generalization of the change of variables formula for integrals on manifolds.

Theorem 3.5.13 (Coarea formula [Mor16]). Let M (resp. N) be a submanifold of
dimension m (resp. n). Assume that m ≥ n and let φ : M → N be a differentiable
map. For f : M → [0,+∞) a measurable function, the following equality holds:∫

M
f(x)Jφ(x)dvolM (x) =

∫
N

(∫
x∈φ−1({y})

f(x)dHm−n(x)

)
dvolN (y). (3.22)

In particular, if Jφ > 0 almost everywhere, one can apply the coarea formula to
f · (Jφ)−1 to compute

∫
M f , while having Jφ > 0 is equivalent to dφ being of full rank.

3.6 Simplicial complexes

Simplicial complexes are higher dimensional analogs of graphs. Their simple combina-
torial structure makes their use particularly appealing in computational geometry, as
they can be easily stored on a computer. We refer to [EH10] for results in this section.

Definition 3.6.1 (Simplicial complex). Let S be a set. A simplicial complex with
vertex set S is a family of finite subsets of S containing all the singletons and such
that, if σ ⊂ σ′ is nonempty and if σ′ ∈ K, then σ ∈ K.

Let K be a simplicial complex with vertex set S and K ′ be a simplicial complex
with vertex set S′. We say that a map f : S → S′ is a simplicial map between K and
K ′ if for every σ ∈ K the image of σ by f belongs to K ′.

A subset σ ∈ K is called a simplex, and its dimension |σ| is equal to #σ − 1
(where #σ denotes the cardinality of the set σ). The dimension of K is the maximal
dimension of its simplexes (possibly +∞). The q-skeleton Sq(K) of K is the set of
simplexes of K of dimension q.
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Figure 3.6: The geometric realization of K0 as a subset of R3.

A simplicial complex is a purely combinatorial object and does not possess any
geometric structure. It is however possible to associate with each simplicial complex
K a topological space K̃, called its geometric realization. As a set, K̃ is the set of
functions α ∈ [0, 1]S with

∑
s∈S α(s) = 1 and such that the set spt(α) := {s ∈ S :

α(s) > 0} ∈ K. For σ ∈ K of dimension q, let σ̃ := {α ∈ [0, 1]S : σ = spt(α)}. This
is a topological subspace of [0, 1]S endowed with the product topology (the space σ̃
is actually homeomorphic to ∆̃q = {(x0, x1, . . . , xq) ∈ [0, 1]q+1 :

∑q
i=0 xi = 1}, the

standard q-dimensional simplex ). We then endow the set K̃ with the final topology
associated with the inclusions σ̃ ↪→ K̃ for σ ∈ K.

Example 3.6.2. The geometric realization of very simplicial complex with vertex set
{0, 1, 2, 3} has its geometric realization that is homeomorphic to a subset of R3. In
Figure 3.6, we display the geometric realization of the 2-dimensional simplicial complex

K0 = {0, 1, 2, 3, {0, 1}, {0, 2}, {1, 2}, {2, 3}, {0, 1, 2}}.

Example 3.6.3. Let S ⊂ RD and t > 0. We review different simplicial complexes of
geometric interest that can be built on top of S.

1. The Rips complex Rips(t, S) of S at scale t is the simplicial complex with vertex
set S, and such that σ ∈ Rips(t, S) if σ is finite and of diameter diam(σ) smaller
than t.

2. Given a compact set σ ⊂ RD, there exists a unique ball B(σ) with minimal
radius such that σ ⊂ B(σ) [ALS13]. The radius of this ball is called the radius
of σ and is denoted by r(σ). The Čech complex Cech(t, S) of S at scale t is
the simplicial complex with vertex set S, and such that σ ∈ Cech(t, S) if σ is
finite and r(σ) ≤ t. The nerve theorem asserts that (the geometric realization
of) Cech(t, S) is homotopy equivalent to St, the t-neighborhood of S [Hat02,
Corollary 4G.3].

3. If S is finite, a triangulation of S is a simplicial complex T of dimension D with
vertex set S such that

(a) every simplex of T is included in a D-simplex of T .

(b) for σ 6= σ′ ∈ T the interior of Conv(σ) is disjoint from the interior of
Conv(σ′).

(c)
⋃
σ∈T Conv(σ) = Conv(S).

(d) if σ ∈ SD(T ), then Conv(σ) ∩ S = σ.

In particular, a triangulation is uniquely determined by its D-skeleton.
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t

Figure 3.7: Left. The Čech complex Cech(S, t) of a finite set S ⊂ R2.
A simplex is in the Čech complex only if it fits in a circle of radius
t. Brighter colors indicate that a simplex of dimension larger than 3
is present. Right. The Delaunay triangulation of S, and its α-shape

Alpha(S, t) for a certain value of t.

4. Assume that S is finite and does not lie on a hyperplane of RD. Then, for each
D-simplex of S, there exists a unique (D − 1)-dimensional sphere containing σ,
called the circumsphere of σ. A Delaunay triangulation of S is a triangulation
Del(S) of S such that the interior of every circumsphere of σ ∈ SD(Del(S)) does
not contain any point of S [EH10, Chapter III.3]. It is unique when S is in
general position, in the sense that no set of D + 2 points of S lies on a sphere.

5. Under the same assumptions, the α-complex Alpha(S, t) of S is equal to Del(S)∩
Cech(S, t) [EH10, Chapter III.4]. The Čech complex and the α-complex are
homotopy equivalent, see Figure 3.7.

Both the Rips and the Čech complex of a set S capture the geometry of the set at
scale t. Note however that such objects may be very wild. For instance, there exists
a compact set S ⊂ R4 with Rips(t, S) having singular homology (see below) with
uncountable dimension for every t in some interval [Dro12]. From a computational
point of view, their sizes may become prohibitively large for |S| even of moderate size if
t is too large. Although computing the radius of a set σ is possible in quasi-linear time
in R2, such a computation becomes a non-trivial task in moderate dimensions, which
may be a serious issue to compute the Čech complex of a set in practice. Algorithms
with O(|S| log |S|) complexity exist to compute the Delaunay triangulation for D ≤ 3,
whereas algorithms with O(|S|bD/2c) time complexity exist for larger D. In practice,
computing a Delaunay triangulation becomes prohibitive for D > 6 [HB08]. Unlike the
Čech and the Rips complexes, the size of the Delaunay triangulation does not explode,
as it is of order O(|S|bD/2c). In practice, the α-complex is therefore often computed
instead of the Čech complex.

3.7 Simplicial and singular homologies

Homological algebra is a general theory which gives a mathematically precise meaning
to the presence of topological features in an object. Different versions of homologies
exist and are defined for different mathematical structures. We will focus on simplicial
homology, defined for simplicial complexes and which has the benefit of being easily
computable, and then on singular homology, which is defined for any topological space.
We first define homology groups in an abstract setting. An introduction to homology
theory may be found in [Hat02].
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3.7.1 Homological algebra

Let G be an abelian group (only the cases G = Z and G a finite field will be relevant
for us). A chain complex C• is a sequence of abelian G-modules (Cq)q≥−1 together
with homomorphisms ∂q : Cq → Cq−1 for q ≥ 0, such that ∂q∂q+1 = 0 and C−1 = {0}.
The map ∂q is called a boundary map. Elements of Zq := ker ∂q are called q-cycles
whereas elements of Bq := im ∂q+1 are called q-boundaries. The relation ∂q∂q+1 = 0
implies that Bq ⊂ Zq, i.e. every boundary is a cycle. Two cycles are called homologous
if they differ by a boundary, and we refer to Hq(C) = Zq/Bq as the qth homology
group of C•. The dimension of Hq(C) (should it be finite) is called the Betti number
βq(C) of the chain complex.

If C• and C ′• are two chain complexes, a chain map is a collection of morphisms
ϕq : Cq → C ′q such that the following diagram commutes.

Cq Cq−1

C ′q C ′q−1

∂q

ϕq ϕq−1

∂′q

This commutation property ensures that the morphisms ϕq induces morphisms at the
homology level Hq(ϕ) : Hq(C) → Hq(C

′). Two chain complexes C and C ′ are said
to be isomorphic if there exist two chain maps ϕ : C → C ′ and ϕ′ : C ′ → C with
ϕqϕ

′
q = idC′q and ϕ′qϕq = idCq for every q ≥ 0.

3.7.2 Simplicial homology

Let K be a simplicial complex. An ordering of a simplex σ = {x0, . . . , xq} is an
enumeration of x0, . . . , xq. We say that two orderings of a simplex σ have the same
orientation if they differ by an even permutation. This defines an equivalence relation
on the set of orderings of σ, with two equivalence classes, that we call oriented simplexes
and denote by ~σ and −~σ. The chain complex C•(K) = C•(K,G) is defined by letting
Cq(K) be the free group generated by the oriented q-simplexes of K with coefficients
in G. Given ~σ an oriented q-simplex, we denote by ~σi the oriented (q − 1)-simplex
obtained from ~σ, with ith entry omitted. The boundary operator is defined by

∂q~σ =

q∑
i=0

(−1)i~σi, (3.23)

and is then extended by linearity to Cq(K). One can check that ∂q∂q+1 = 0, so that
C•(K) is indeed a chain complex. The corresponding homology groups are called
the simplicial homology groups of K (with coefficients in G), and are denoted by
H•(K) = H•(K,G).

3.7.3 Singular homology

Let X be a topological space. A singular simplex is a continuous map σ : ∆q → X. We
let σi be the map (t1, . . . , tq−1)→ σ(t1, . . . , 0, . . . , tq−1), where 0 is at the ith position.
The chain complex C•(X,G) is defined by letting Cq(X) be the free group generated
by the q-dimensional singular simplexes of X with coefficients in G. The boundary
operator is defined by

∂qσ =

q∑
i=0

(−1)iσi, (3.24)
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and is then extended by linearity to Cq(X). The corresponding homology groups are
called the singular homology groups of X (with coefficients in G), and are denoted by
H•(X) = H•(X,G).

Simplicial homology can be seen as a particular case of singular homology. Indeed,
the singular chain complex C•(K̃) of the geometric realization of K can be shown to be
isomorphic to the simplicial chain complex C•(K), so that in particular the homology
groups are also isomorphic [Spa12, Section 4.4].

For both homologies, maps between objects (simplicial complexes or topological
spaces) induce maps between chain complexes, and therefore also maps between
homology groups. Precisely, if f : X → Y is a continuous map, then there exists a
chain map C•(f) : C•(X) → C•(Y ), obtained by defining C•(f)(σ) = f ◦ σ for σ a
singular simplex in X (and extended by linearity). The map f∗ := H•(C•(f)) is then
defined between the homology groups H•(X) and H•(Y ). A similar statement holds
for simplicial homology, with continuous maps replaced by simplicial maps. We will
drop the C in the notation when the context is clear, e.g. βq(X) for βq(C(X)), Zq(X)
for Zq(C(X)), etc.

Remark 3.7.1. The universal coefficient theorem asserts that the integral homology
groups H•(C,Z) completely determines the homology groups H•(C,G) for any abelian
group G [Hat02, Chapter 3.A]. However, the theory of persistence homology is
developed for vector spaces over some field k (having a field is in particular required
for the decomposition theorem to hold, see Theorem 3.8.4 below). We will therefore
choose G to be a finite field. This has an impact on the homology groups only if the
underlying space has non-null torsion, whereas in practice, the choice of the field for
which persistent homology is computed seems to have very little impact [OY20].

3.8 Theoretical foundations of Topological Data Analysis

The fundamental object of persistent homology theory is the persistence module. We
fix a field k and a homology dimension q ≥ 0 in the following. We refer to the book
[Cha+16] for a thorough presentation of the content of this section.

Definition 3.8.1 (Persistence modules). A persistence module V is a family of k-
vector spaces (Vt)t∈R together with linear maps vs,t : Vs → Vt for all s ≤ t, satisfying
the conditions vt,t = idVt and vt,rvs,t = vs,r for all s ≤ t ≤ r.

Persistence modules are typically induced by a filtration of some topological space
X . Let φ : X → R be a function and φt := {x ∈ X : φ(x) ≤ t} be the sublevel sets
of φ. The collection (φt)t∈R forms an increasing sequence of spaces that we call a
filtration. Letting V (φ)q,t = Hq(φ

t,k) be the q-dimensional singular homology group
of φt with coefficients in k, we obtain a persistent module Vq(φ), with maps v(φ)s,t
being induced by the inclusion maps φs ↪→ φt for s ≤ t. The persistent module Vq(φ)
describes the evolution of the homology of φ through different scales t. A similar class
of persistence modules is given by the simplicial homology of filtrations of simplicial
complexes. A filtration K of simplicial complexes is an increasing sequence of simplicial
complexes (Kt)t≥0 sharing the same vertex set. One can define the persistence module
Vq(K) with V (K)q,t = Hq(K

t,k) being the simplicial homology group of Kt. Of
particular interest are the Rips filtration Rips(A) = (Rips(t, A))t≥0 of a set A and its
Čech filtration Cech(A) = (Cech(t, A))t≥0.
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3.8.1 The interleaving distance

Two persistence modules V and W are close if for every t ∈ R, Vt is similar to Wt′ for
some t′ close to t. This idea is made precise by the interleaving distance. Let ε ≥ 0.
An ε-morphism between two persistence modules V and W is a collection of linear
maps ϕt : Vt →Wt+ε for t ≥ 0 such that the following diagram commutes.

Vs Vt

Ws+ε Wt+ε

vs,t

ϕt ϕt

ws+ε,t+ε

The persistence modules V and W are ε-interleaved if there exists two ε-morphisms
ϕ : V → W and ϕ′ : W → V such that the following diagrams commute for every
t ∈ R.

Vt Vt+2ε Vt+ε

Wt+ε Wt Wt+2ε

vt,t+2ε

ϕt ϕt+εϕ′t+ε

wt,t+2ε

ϕ′t

The interleaving distance di between V and W is equal to

di(V,W) := inf{ε ≥ 0 : V and W are ε-interleaved}. (3.25)

The interleaving distance can be bounded efficiently in different settings.

Theorem 3.8.2 (Stability theorem).

1. Let f, g : X → R be two functions. Then,

di(Vq(f),Vq(g)) ≤ ‖f − g‖∞. (3.26)

2. Let A,B be two compact sets in RD. Then,

di(Vq(Cech(A)),Vq(Cech(B)) ≤ dGH(A,B),

di(Vq(Rips(A)),Vq(Rips(B)) ≤ dGH(A,B).
(3.27)

3.8.2 The decomposition theorem

In general, a persistence module is a complex object that may be cumbersome to work
with. However, it turns out that under finiteness assumptions, persistence modules
enjoy a simple combinatorial description given by the so-called decomposition theorem.
Before stating the result, we explicit what it means for two persistence modules to be
isomorphic (see also Figure 3.8).

Definition 3.8.3. An (observable) morphism ϕ : V→W between persistence modules
is a collection of linear maps ϕs,t : Vs → Wt, such that for every s ≤ u < v ≤ t, the
following diagram commutes.

Vs Vu

Wt Wv

vs,u

ϕs,t ϕu,v

wv,t
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V

W

s u

v t

vs,u

ϕu,v
wv,t

Figure 3.8: A morphism ϕ between persistence modules is a collection
of maps which satisfy some coherence properties.

If ϕ : V→W and ϕ′ : W→ U are two observable morphisms, the composition ϕϕ′ is
defined by (ϕϕ′)s,t = ϕu,t ◦ ϕ′s,u for any u ∈ (t, s). The identity morphism idV : V→ V
is defined by ϕs,t = vs,t for all s < t. A morphism ϕ : V → W is an isomorphism
if there exists another morphism ϕ′ : W → V with ϕϕ′ = idW and ϕ′ϕ = idV. The
persistence modules V and W are then said to be isomorphic, and we write V ob'W.

It can be shown that two persistence modules V and W are at distance 0 for the
interleaving distance if and only if V ob' W, while being 0-interleaved is a slightly
stronger notion [CCBS16].

The direct sum V⊕W between two persistence modules V and W is defined by
(Vt ⊕Wt)t∈R, with linear maps vt,s ⊕ wt,s. Let Ω∞ := {u = (u1, u2) ∈ [−∞,+∞]2 :
u1 < u2}. Given a point u ∈ Ω∞, we let ku be the persistence module with kut = k if
u1 ≤ t ≤ u2 and {0} otherwise, with arrows given by vs,t = idk if u1 ≤ s ≤ t ≤ u2 and
0 otherwise. Those persistence modules, that we call interval modules, serve as building
blocks for more complex persistence modules. We call a persistence module tame (or
q-tame) if, for all s < t, the rank of the map vs,t is finite. We call this quantity the
persistent Betti number βs,t(V) of the persistence module V.

Theorem 3.8.4 (Decomposition theorem). Let V be a tame persistence module. Then,
there exists a unique multiset dgm(V) in Ω∞ such that V is isomorphic to

V ob'
⊕

u∈dgm(V)

ku. (3.28)

The multiset dgm(V) is called the persistence diagram of V.

There are two types of points u appearing in the decomposition (3.28): those which
contain infinite coordinates, called essential points, and the others. It can be shown
that if two persistence modules V and W possess a different number of essential points,
then di(V,W) = +∞, while the distance is finite otherwise. To simplify the exposition,
we will only consider persistence modules with no essential points, so that
the interleaving distance is always finite. Properties of persistence diagrams with a
fixed number n > 0 of essential points can then be easily inferred from this case.

With this assumption in mind, a persistence diagram is actually a multiset of
points in Ω := {u = (u1, u2) ∈ R2 : u1 < u2}. Equivalently, it can be considered as a
discrete measure on Ω, by identifying a multiset a with the measure

∑
u∈a δu. Both

perspectives are relevant, and we will often switch between the two without mentioning
it. Each point u = (u1, u2) of a persistence diagram corresponds to some interval
in the decomposition (3.28), which informally represents a topological feature of the
associated persistence module, which appeared at Vu1 and disappeared at Vu2 . The
persistence pers(u) := u2−u1 of the point u represents the length of the corresponding
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K3 K4 K5

K6 K7 K8

K0 K1 K2

Figure 3.9: Left. A filtration of simplicial complexes. Positive
simplexes are displayed in red, whereas negative simplexes are displayed
in blue. Right. The corresponding persistence diagrams for q = 0

(crosses) and q = 1 (dots).

interval, while the associated topological feature is considered relevant if pers(u) is
large. As such, points close to the diagonal ∂Ω := {(u1, u2), u1 = u2} in a persistence
diagram are often thought of as representing topological noise whereas points with
large persistence are considered to contain relevant topological information.

The ”q” in q-tame is for quadrant: a persistence module is q-tame if the associated
persistence diagram, seen as a measure, gives finite mass to every quadrant ⌟u = {v ∈
Ω : u1 ≤ v1 < v2 ≤ u2}, with the relation

βu1,u2(V) = dgm(V)(⌟u), ∀u = (u1, u2) ∈ Ω. (3.29)

Proposition 3.8.5 (Theorem 3.37 in [Cha+16]). Fix an integer q ≥ 0.

1. Let X be a topological space homeomorphic to a locally finite simplicial complex,
and let φ : X → R be a proper continuous function bounded below. Then, Vq(φ)
is tame.

2. Let S be a compact subset of RD. Then, Vq(Cech(S)) and Vq(Rips(S)) are tame.

In particular, under such assumptions, by Theorem 3.8.4, the persistence diagram
dgmq(φ) := dgm(Vq(φ)) of φ is well-defined, and so are the Čech and Rips persis-
tence diagrams of S, denoted respectively by dgmC

q (S) := dgm(Vq(Cech(S))) and
dgmR

q (S) := dgm(Vq(Rips(S))).

Definition 3.8.6 (Space of persistence diagrams). The space D of persistence diagrams
is the space of all discrete Radon measures on Ω with integer masses.

To put it another way, we have a ∈ D if and only if a(⌟u) <∞ for every u ∈ Ω.
By the decomposition theorem, the space D is precisely the set of persistence diagrams
of q-tame persistence modules V. We introduce also the space Df of finite persistence
diagrams.

3.8.3 Persistence diagrams in the finite setting

In practice, persistence modules will be obtained through the simplicial homology of
some finite filtration K = (Kti)0≤i≤N of simplicial complexes with t0 ≤ · · · ≤ tN and
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finite vertex set S:
Kt0 ⊂ Kt1 ⊂ · · · ⊂ KtN .

We may assume without loss of generality that at each step only one simplex is added,
so that Kti+1 = Kti ∪ {σi}. If σi is of dimension q + 1, then two different situations
may arise:

1. Either σi ∈ Zq+1(Kti+1). In that case, one can show that σi cannot be homologous
to a cycle in Kti , and

Hq+1(Kti+1) ' Hq+1(Kti)⊕ [σi]ti+1 ,

where [σi]ti+1 represents the class of cycles homologous to σi in Kti+1 . The
simplex σi is then called positive.

2. Either σi 6∈ Zq+1(Kti+1). In that case, one can show that ∂q+1σi ∈ Bq(Kti) and
that

Hq(Kti+1) ' Hq(Kti)/[∂q+1σi]ti .

where [∂q+1σi]ti represents the class of cycles homologous to σi in Kti . The
simplex σi is then called negative.

When a negative simplex σi appears, then the ”hole” corresponding to the class [∂q+1σi]ti
in Hq(Kti) is ”filled”. The class [∂q+1σi]ti appeared with some positive q-dimensional
simplex σj : informally, the ”hole” was born with σj . Those two simplexes (one positive
and one negative) form a q-simplex pair. The persistence diagram dgm(V(K)) of the
filtration for q-dimensional homology is given by the collection of the pairs (tj , ti)
for (σi, σj) a q-simplex pair (if ti = tj , we discard the pair). Those pairings can be
efficiently computed by a Gaussian elimination algorithm on the boundary matrix
operator, see [EH10] for details.

3.8.4 The bottleneck distance

The stability theorem (Theorem 3.8.2) justifies the use of the interleaving distance
as a meaningful distance between persistence modules. However, detecting if two
persistence modules are ε-interleaved is a priori a nontrivial task, so that it is not clear
how the interleaving distance can be computed. The isometry theorem states that
the interleaving distance is actually equal to a distance between persistence diagrams,
called the bottleneck distance, which is defined as the optimum of some matching
problem. As such, the bottleneck distance can be computed efficiently on a computer,
opening the door to the use of persistence diagrams in real-life applications. We fix an
arbitrary norm ‖ · ‖ on R2.

Definition 3.8.7 (Bottleneck distances). Let a, b ∈ D. The set of partial matchings
Γ(a, b) between a and b is the set of bijections γ : a ∪ ∂Ω→ b ∪ ∂Ω. For 1 ≤ p <∞,
the p-bottleneck distance is defined as

dp(a, b) := inf
γ∈Γ(a,b)

( ∑
x∈a∪∂Ω

‖x− γ(x)‖p
)1/p

. (3.30)

while the bottleneck distance is equal to d∞(a, b) := infγ∈Γ(a,b) supx∈a∪∂Ω ‖x− γ(x)‖.

Given two persistence diagrams a and b, a partial matching is a way to transport
the points of a towards the points of b. However, the total masses of a and b may
differ. Therefore, the diagonal is used as an infinite reservoir of mass, and one can
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Figure 3.10: Two matchings between a blue persistence diagram and
a red persistence diagram. The rightmost matching is optimal, i.e. it

attains the minimum in Definition 3.8.7.

freely map points from a or b towards the diagonal with cost given by the distance
to the diagonal. In the persistence module decomposition

⊕
u∈a k

u associated with a
diagram a, points on the diagonal represent interval modules ku with length 0, and
one can indeed show that for any finite set c ⊂ ∂Ω,⊕

u∈a∪c
ku

ob'
⊕
u∈a

ku, (3.31)

justifying the use of ∂Ω as a reservoir. The bottleneck distance is then given by the
longest edge in an optimal matching between two diagrams a and b. The distance
is then not changed if we add an arbitrary number of points in the two diagrams
at distance less than d∞(a, b) from the diagonal. On the contrary, the p-bottleneck
distance for p finite is not blind to points close to the diagonal, as every edge is taken
into account when computing the cost of a matching.
Remark 3.8.8. The p-bottleneck distance for p < ∞ was originally introduced in
[CS+10] as a generalization of the bottleneck distance. Due to its similarities with
optimal transport metrics, it was then called the Wasserstein distance between persis-
tence diagrams. There are however key differences between the metrics dp and classical
Wasserstein distances between Wp. Exploring the differences (and the similarities)
between the two notions will be at the core of Chapter 6. To avoid confusion, we
therefore choose the name of p-bottleneck distance for the dp distance, although it is
not standard in the literature.

Theorem 3.8.9 (Isometry theorem). Let ‖ · ‖ be the ∞-norm on R2. Let V, W be
q-tame persistence modules. Then,

di(V,W) = d∞(dgm(V), dgm(W)). (3.32)

The three theorems we have introduced (the stability theorem, the decomposition
theorem and the isometry theorem) lay the theoretical foundations of TDA. They
ensure that persistence diagrams exist in a large variety of settings (decomposition
theorem), while a meaningful distance between them exists (stability theorem), which
can be efficiently computed (isometry theorem).

Remark that for persistence diagrams having an infinite number of points, the
p-bottleneck distance dp (p <∞) can be infinite. For p ≤ ∞, we introduce the class
Dp of persistence diagrams which are at finite dp-distance from the empty diagram
0. Precisely, for a ∈ D, we call the quantity Persp(a) := dpp(a, 0) =

∑
u∈a pers(u)p the

total p-persistence of a, and let

Dp := {a ∈ D, Persp(a) <∞}. (3.33)
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For p =∞, we have d∞(a, 0) <∞ for any a ∈ D, so that the analog of Dp is simply D.
Although smaller than D, the metric space (Dp, dp) possesses better properties than
(D, d∞) from a geometric and topological perspective (see Chapter 6). However, the
fundamental isometry theorem does not hold for p <∞. A weaker form of stability is
still satisfied by the p-bottleneck distance for p <∞, proven in [CS+10]. We say that
a function φ : X → R is tame if Vq(φ) is tame for every q ≥ 0.

Definition 3.8.10. Let (X , d) be a metric space and 1 ≤ p <∞. We say that (X , d)
implies bounded degree-p total persistence if there exists a positive constant C such
that, for every 1-Lipschitz tame function φ : X → R, we have Persp(dgmq(φ)) ≤ C for
every q ≥ 0.

Spaces implying bounded degree-p total persistence include d-dimensional Rie-
mannian compact manifolds for p > d, but also bilipschitz images of (geometric
realizations of) finite simplicial complexes. In particular, a d-dimensional Rieman-
nian compact manifold M implies bounded degree-p total persistence with constant
CM diam(M)p−d p

p−d .

Theorem 3.8.11 (p-bottleneck stability theorem). Let (X , d) be a space which implies
bounded degree-p total persistence with associated constant C. Let φ1, φ2 : X → R be
two L-Lipschitz tame functions. Then, for all p′ > p,

dp′(dgm(φ1), dgm(φ2)) ≤ (CLp)
1
p′ ‖φ1 − φ2‖

1− p
p′

∞ . (3.34)

We end this section by mentioning some basic results on the topological properties
of Dp, see [MMH11] for details.

Theorem 3.8.12. For 1 ≤ p ≤ ∞, the space (Dp, dp) is complete. If p < ∞, it is
also separable, so that (Dp, dp) is a Polish metric space. The space (D∞, d∞) is not
separable.

Considering the space Dp instead of the set Df of finite persistence diagrams
is required to have a complete space. Indeed, the sequence (an)n in Df given by
an =

∑n
i=0 δui , where ui = (0, 2−i) converges towards a =

∑
i≥0 δui ∈ Dp. Actually,

we have the following result.

Proposition 3.8.13. For 1 ≤ p < ∞, the space Dp is the completion of Df for the
dp metric.

3.9 Statistical methods in Topological Data Analysis

The standard pipeline in TDA goes as follows. We observe a collection X1, . . . , Xn

of complex objects with some task in mind (e.g. classification or regression). Those
objects can for instance be graphs, point clouds, 3D shapes, time series, images, etc.
A first step consists in building filtrations K1, . . . ,Kn on top of them, which will then
be used in a second step to obtain a collection of persistence diagrams a1, . . . , an.
We think of this set of persistence diagrams as containing the relevant topological
information to explain the underlying phenomenon generating the dataset. The goal
is then to treat efficiently this topological information, either to directly use it for
the learning task at stake or by plugging it in a larger pipeline (for instance by using
persistence diagrams as a layer in a neural network).

A first approach consists in performing the statistical analysis directly in the space
of persistence diagrams. As the space of persistence diagrams is only a metric space
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and lacks additional structure, this is not a trivial task, and even simple objects like
the expected value or the variance are not trivially defined. The metric analogue of
the expected value is the Fréchet mean of a distribution. Fréchet means for persistence
diagrams were introduced in a seminal paper by Mileyko, Mukherjee and Harer
[MMH11], where authors study the metric properties of the space Dp.

Definition 3.9.1. Let (X , d) be a metric space and P ∈ Pp1 (X ). Define the energy of
y ∈ X as

E(y) := Ex∼P [dp(x, y)]. (3.35)

A p-Fréchet mean of P is an element y∗ ∈ X such that

E(y∗) = inf{E(x) : x ∈ X}. (3.36)

We denote by Fréchetp(P ) the set of p-Fréchet means of P .

In particular, if (X , d) is the Euclidean space and p = 2, then there exists a unique
barycenter, given by the expected value. The condition Ex∼P [d(x, x0)p] < ∞ (that
is P ∈ Pp1 (X )) ensures the finiteness of the energy functional. In general, the set of
p-Fréchet means may either be empty or contain several elements. Mileyko, Mukherjee
and Harer show that there exist 2-Fréchet means for distributions P with compact
support.

Theorem 3.9.2 (Theorem 24 in [MMH11]). Let P ∈ P2
1 (Dp). Assume that P has

compact support. Then, Fréchet2(P ) is non-empty.

The space Dp is not locally compact, so that the condition in the above theorem
is strong. It can actually be replaced by a weaker tail condition on the random
variable Persp(a) for a ∼ P [MMH11, Theorem 28]. In Chapter 6, we will show that
Fréchetp(P ) is non-empty for the dp distance for any 1 ≤ p <∞, without any further
assumptions on P .

From a computational perspective, several algorithms exist to compute Fréchet
means of a set of persistence diagrams. A first algorithm, based on the Hungarian
algorithm used in optimal transport, was proposed in [Tur+14]. Although it runs in
polynomial time, it only converges to a local minimum of the energy functional, so
that it may not output a Fréchet mean with a bad initialization. A faster version of
the algorithm was then proposed in [KVT19; VBT19], without still any guarantees on
the convergence towards a Fréchet mean. Another approach, developed by Lacombe,
Cuturi and Oudot [LCO18], consists in relaxing the problem to make it convex, using
an Eulerian approach. The output of their algorithm is provably close to a Fréchet
mean, although it is not a persistence diagram, but a more general persistence measure.
Persistence measures are natural generalizations of persistence diagrams in random
settings and will be studied in detail in Chapter 6.

A second possibility to perform statistical tasks with persistence diagrams consists
in creating easier to handle statistics by mapping the diagrams to a vector space thanks
to a feature map Ψ, also called a representation or a vectorization.

Definition 3.9.3 (Representation of persistence diagrams). A representation of a
persistence diagram is a map Ψ : Dp → B, where B is a Banach space.

Numerous representations have been introduced in the literature (see, e.g., [Ada+17;
BM19; Bub15; Cha+15a; Che+15; KHF16; Rei+15]). Let us give several examples,
see also Figure 3.11.
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Figure 3.11: Some common representations of persistence diagrams.
From left to right: A persistence diagram. Its persistence surface
[Ada+17], which is a persistence measure. The corresponding persis-
tence silhouette [Cha+15a]. The corresponding Betti Curve [Ume17].

• Let K : R2 → R be a nonnegative Lipschitz continuous bounded function
(e.g.K(x, y) = exp

(
−‖x−y‖22

)
) and define f : x ∈ Ω 7→ d(x, ∂Ω)p·K(x, ·), so that

f(x) : R2 → R is a real-valued function. The representation Ψ : a 7→∑
x∈a f(x)

takes its values in (Cb(R2), ‖ · ‖∞), the (Banach) space of continuous bounded
functions. This representation is called the persistence surface and has been
introduced with slight variations in different works [Ada+17; Che+15; KHF16;
Rei+15].

• Let u = (u1, u2) ∈ Ω. We let fu : t ∈ R 7→ max(0,min(u1 + t, u2 − t) be the tent
function in u. The persistence landscape of a persistence diagram a is a sequence
of functions (λk)k≥1, where λk(t) is the kth largest value among the fu(t) for
u ∈ a [Bub15]. A related representation is given by the persistence silhouette
[Cha+15a]. Given a weight function w : Ω→ [0,+∞), the persistence silhouette
of a is obtained as the weighted average of the tent functions:

Silhouettew(a) =
∑
u∈a

w(u)fu. (3.37)

• The Betti curve associated to a persistence diagram a is the curve β : t ∈ R 7→
a(⌟t,t). If a is obtained as the persistence diagram of some filtration K for
q-dimensional homology, then we indeed have β(t) which is equal to the Betti
number of the q-dimensional homology group of Kt.

• A kernel on the space of persistence diagrams is a map k : Dp ×Dp → R such
that, for every persistence diagrams a1, . . . , an and real numbers c1, . . . , cn, we
have ∑

1≤i,j≤n
k(ai, aj)cicj ≥ 0. (3.38)

Mercer’s theorem asserts that for such a kernel there exists a Hilbert space
(H, 〈·, ·〉), called a Reproducing Kernel Hilbert Space (or RKHS) such that
k(a, b) = 〈Ψ(a),Ψ(b)〉 for some map Ψ : Dp → H. Kernel methods are typically
used to perform non-linear classifications using SVMs. Kernels on the space
of persistence diagrams can be seen as special instances of representations,
although the map Ψ is never computed in practice (only the numbers k(ai, aj)
are computed). An example of a kernel on the space of persistence diagrams is
given by the sliced Wasserstein kernel [CCO17].

Let us also mention that more recent approaches propose to use representations
of persistence diagrams as a layer in a neural network architecture [Hof+17; Car+20;



54 Chapter 3. Background

Kim+20]. The representations are then parametrized by some set Θ ⊂ Rd (e.g. we
consider a parametrized family of weight functions in the persistence silhouette) and
the parameter θ ∈ Θ is optimized to solve the learning task at stake.

In Chapter 8, we will propose a systemic study of representations on Dp, by giving
characterization of continuity for representations and by identifying a subclass of
feature maps having particularly pleasant properties, that we will call linear.
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Part I

Contributions to manifold
inference
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Chapter 4

Adaptive estimation in manifold
inference

Given Xn = {X1, . . . , Xn} a set of i.i.d. observations from some law µ on RD supported
on (or concentrated around) a d-dimensional manifoldM , the goal of manifold inference
is to design estimators θ̂ which approximate accurately some quantity θ(M) related
to the geometry of M (e.g. its dimension d, its homology groups, its tangent spaces,
or M itself). As explained in the introductory chapter (Chapter 2), the emphasis
has mostly been put on designing estimators attaining minimax rates on a variety
of models, which take into account different regularities of the manifold and noise
models. We focus in this chapter on the problem of estimating a manifold in the
models Q2,d

τmin,fmin,fmax
(γ) introduced in Chapter 3. The estimators introduced in the

literature all rely on the knowledge of the quantities d, τmin, fmin and fmax, whereas
those quantities are unknown in practice. One possibility to overcome this issue is to
estimate in a preprocessing step those parameters. This may however become the main
bottleneck in the estimating process, as regularity parameters are typically harder
to estimate than the manifold itself. This is for instance the case of the reach τ(M)
[Aam+19], while no procedures with theoretical guarantees exist to estimate fmin and
fmax.

Another approach, to which this chapter is dedicated, consists in designing adaptive
estimators of θ(M). An estimator is called adaptive if it attains optimal rates of
convergence on a large class of models (see Section 4.1 for a precise definition). Our
main contribution consists in introducing a manifold estimator M̂ which is minimax
(with respect to the Hausdorff distance dH) simultaneously on all the statistical models
Q2,d
τmin,fmin,fmax

(γ). Our adaptive estimator, is built by selecting an estimator in a
family of estimators defined in Section 4.2. The latter is based on the t-convex hull
Conv(t,Xn) of the set of observations Xn. For a given set A ⊂ RD, the t-convex hull
Conv(t, A) is defined by

Conv(t, A) :=
⋃

σ⊂A, r(σ)≤t
Conv(σ), (4.1)

where r(σ) is the radius of a set σ, i.e. the radius of the smallest enclosing ball of
σ and Conv(σ) is its convex hull. The t-convex hull is an interpolation between the
convex hull Conv(A) of A (t = +∞) and the set A itself (t = 0): it gives a ”local
convex hull” of A at scale t. See Figure 4.1 for an example.

The loss dH(Conv(t,Xn),M) of the t-convex hull Conv(t,Xn) can be efficiently
controlled for t larger than some threshold t∗(Xn) (see Definition 4.2.2). As the
threshold t∗(Xn) is very close to the approximation rate ε(Xn) := dH(Xn,M) of the
point cloud, it is known to be of the order (log n/n)1/d (see e.g. [RC07, Theorem 2]),
and one obtains a minimax estimator on the C2-models by taking the parameter t of
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Figure 4.1: The t-convex hull Convt(A) (in green) of a curve A (in
black).

this order (see Theorem 4.2.8). The exact value of t depends crucially on the parameter
fmin which is unknown, so that it is unclear how the parameter t should be chosen in
practice.

In Section 4.3, we build an adaptive estimator by selecting a parameter tλ(Xn)
(depending on some hyperparameter λ ∈ (0, 1)), which is chosen solely based on the
observations Xn. More precisely, we consider the convexity defect function of a set A,
originally introduced in [ALS13], and defined by

h(t, A) = dH(Conv(t, A), A) ∈ [0, t]. (4.2)

As its name indicates, the convexity defect function measures how far a set is from being
convex at a given scale. For instance, the convexity defect function of a convex set is
null, whereas for a manifold M with positive reach τ(M), we have h(t,M) ≤ t2/τ(M)
for t > 0, so that a manifold M is ”locally almost convex” (see Proposition 4.3.2). We
show that the convexity defect function of Xn exhibits a sharp change of behavior
around the threshold t∗(Xn). Namely, for values t which are smaller than a fraction
of t∗(Xn), the convexity defect function h(t,Xn) has a linear behavior, with a slope
approximately equal to 1 (see Proposition 4.4.1), whereas for t ≥ t∗(Xn), the convexity
defect function exhibits the same quadratic behavior than the convexity defect of a
manifold (see Proposition 4.3.3). In particular, its slope is much smaller than 1 as long
as t ≥ t∗(Xn) is significantly smaller than the reach τ(M). This change of behavior at
the value t∗(Xn) suggests selecting the parameter

tλ(Xn) := sup{t < tmax, h(t,Xn) > λt},

where λ ∈ (0, 1) and tmax is a parameter which has to be smaller than the reach τ(M)
of the manifold (see Definition 4.3.4). We show (see Proposition 4.3.5) that with high
probability, in the case where the sample Xn is exactly on the manifold M , we have

t∗(Xn) ≤ tλ(Xn) ≤ 2t∗(Xn)

λ

(
1 +

t∗(Xn)

τ(M)

)
. (4.3)

In particular, we are able to control the loss of Conv(tλ(Xn),Xn) with high probability.
By choosing tmax as a slowly decreasing function of n (for instance, tmax = (log n)−1),
we obtain an estimator

M̂ := Conv(tλ(Xn),Xn)

which is adaptive on the whole collection of C2-models (see Corollary 4.3.6).
The estimator M̂ is to our knowledge the first minimax adaptive manifold estimator.

Our procedure allows us to actually estimate the approximation rate ε(Xn). The
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parameter tλ(Xn) can therefore be used as a hyperparameter in different settings.
To illustrate this general idea, we show how to create an adaptive estimator of the
homology groups (see Corollary 4.3.9) and of the tangent spaces (see Corollary 4.3.10)
of a manifold.

Related work

”Localized” versions of convex hulls such as the t-convex hulls have already been
introduced in the support estimation literature. For instance, slightly modified versions
of the t-convex hull have been used as estimators in [AB16] under the assumption
that the support has a smooth boundary and in [RC07] under reach constraints on
the support, with different rates obtained in those models. Selection procedures were
not designed in those two papers, and whether our selection procedure leads to an
adaptive estimator in those frameworks is an interesting question.

The statistical models we study in this article were introduced in [Gen+12a] and
[AL18], in which manifold estimators were also proposed. If the estimator in [Gen+12a]
is of purely theoretical interest, the estimator proposed by Aamari and Levrard in
[AL18], based on the Tangential Delaunay complex, is computable in polynomial time
in the number of inputs and linear in the ambient dimension D. Furthermore, it is a
simplicial complex which is known to be ambient isotopic to the underlying manifold
M with high probability. It however requires the tuning of several hyperparameters in
order to be minimax, which may make its use delicate in practice. In contrast, the
t-convex hull estimator with parameter tλ(Xn) is completely data-driven, while keeping
the minimax property. In Section 4.5, we propose to select some parameter t̃λ(Xn)
which shares some properties with tλ(Xn)—although with less optimal constants—
while being efficiently computable. However, unlike in the case of the Tangential
Delaunay complex, we have no guarantees on the homotopy type of the corresponding
estimator.

4.1 Preliminaries

Before going further, let us note that there are implicit constraints on the different
parameters of the model Q2,d

τmin,fmin,fmax
. Indeed, by Proposition 3.5.7.2, if M ∈M2,d,

we have |volM | ≥ ωdτ(M)d, with equality if and only if M is a d-dimensional sphere
of radius τ(M). Hence, if µ has a density f on M lower bounded by fmin, we have

1 =

∫
M
f(x)dx ≥ fmin|volM | ≥ fminωdτ(M)d,

with equality if and only if µ is the uniform distribution on a d-sphere of radius τ(M).
We therefore have the following lemma.

Lemma 4.1.1. Let d be an integer smaller than D and τmin, fmin be positive con-
stants. Let ωd be the volume of the unit d-sphere. Then, Q2,d

τmin,fmin,+∞ is empty for
fminωdτ

d
min > 1 and contains only uniform distributions on d-sphere of radius τmin if

fminωdτ
d
min = 1.

A model containing only spheres is degenerate from a minimax perspective, as laws
in the model are then characterized by only d + 1 observations. To discard such a
model, we will assume in the following that there exists a constant κ < 1 such that
fminωdτ

d
min ≤ κd. Note that this is not restrictive as any µ ∈ Q2,d

τmin,fmin,+∞ also belongs
to Q2,d

τ ′min,f
′
min,+∞

for τ ′min ≤ τmin and f ′min ≤ fmin.
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We let Q2,d be the union of the Q2,d
τmin,fmin,fmax

(γ) for τmin, fmin, fmax, γ > 0 with
fminωdτ

d
min ≤ κd. For ξ ∈ Q2,d, let M(ξ) be equal to the support of its first marginal ξ1

(recall that the first marginal corresponds to the distribution supported on a manifold,
whereas ξ2 corresponds to the noise, see Chapter 3). Then M takes its values in the
metric space (K(RD), dH). We use the following parametrization of the set Q2,d :
let Θd be the set of tuples q = (τmin, fmin, fmax, η), with τmin, fmin, fmax, η > 0 and
fminωdτ

d
min ≤ κd. We let Q2,d

q,n = Q2,d
τmin,fmin,fmax

(γn) for γn = η(log n/n)2/d.

Theorem 4.1.2. Let κ ∈ (0, 1). For any 1 ≤ d < D and q = (τmin, fmin, fmax, η) ∈ Θd

with fmax <∞, we have for n large enough,(
C(1− κ)

(ωdfmin)2/dτmin
+
η

2

)
≤ lim inf

n

Rn(M,Q2,d
q,n, dH)

(log n/n)2/d
≤ lim sup

n

Rn(M,Qq,n, dH)

(log n/n)2/d
≤ Cq,d

(4.4)

where C is an absolute constant and Cq,d is a constant which depends on q and d.

The upper bound in the previous theorem was already stated in Chapter 3, whereas
the constant in the lower bound follows from a careful adaptation of the proof of
Theorem 1 in [KZ15], detailed in Section 4.7.

Note that the statistical model Q2,d
q,n is not identifiable because of the presence of

noise. It however becomes identifiable ”at the limit”, as the size of the noise is assumed
to converge to 0 at a certain rate. Changing the model by adding a small proportion
of outliers would not change the minimax rates, as explained in [Gen+12a] or [AL18].
However, the t-convex hull estimators proposed in the next section are very sensible to
this addition and some decluttering preprocessing would be needed to obtain better
estimators on such models. Note also that the t-convex hull estimators will be minimax
on the model Q2,d

τmin,fmin,+∞(γn), that is without any upper bound needed on f , while
the minimax rate is also equal to (log n/n)2/d (the lower bound is clear, and the next
section will show the upper bound).

The goal of the chapter is to design an estimator M̂ which is minimax adaptive on
the scale of models Q2,d

q,n, 1 ≤ d < D and q ∈ Θd, i.e. such that

sup
1≤d<D

sup
q∈Θd

lim sup
n→∞

Rn(M̂,Q2,d
q,n, dH)

Rn(M ;Q2,d
q,n, dH)

< C, (4.5)

for some constant C.

4.2 Minimax manifold estimation with t-convex hulls

Let Xn be a n-sample from law µ, where µ ∈ Q2,d
q,n. In this section, we derive rates of

convergence for Conv(t,Xn). First, we note that Conv(t,Xn) is indeed an estimator,
that is the application

(x1, . . . , xn) ∈ (RD)n 7→ Conv(t, {x1, . . . , xn})

is measurable. Indeed, using notation from Proposition 3.4.4, it can be written as⋃
I⊂{1,...,n}

GE(Conv({xi}i∈I), {xi}i∈I)

where E is the closed set of K(RD) given by {K ∈ K(RD) : r(K) ≤ t}. As the function
r is continuous and the functions ∪, Conv and GE are measurable, the measurability
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t ≥ t∗(A)t < t∗(A)

Figure 4.2: The t-convex hull of the finite set A (red crosses) is
displayed (in green) for two values of t. The black curve represents
the (one dimensional) manifold M . On the first display, the value of t
is smaller than t∗(A), as there are regions of the manifold (circled in
blue) which are not attained by the projection πM restricted to the
t-convex hull. The value of t is larger than t∗(A) on the second display.

follows. In order to obtain rates of convergence, we bound the Hausdorff distance
dH(Conv(t, A),M) for a general subset A ⊂ M . First, [ALS13, Lemma 12] gives a
bound on the asymmetric Hausdorff distance between the convex hull of a subset of
M and the manifold M .

Lemma 4.2.1. Let σ ⊂M with r(σ) < τ(M) and let y ∈ Conv(σ). Then,

d(y,M) ≤ r(σ)2

τ(M)
. (4.6)

Proof. Lemma 12 in [ALS13] states that if σ ⊂ M satisfies r(σ) < τ(M) and y ∈
Conv(σ), then,

d(y,M) ≤ τ(M)

(
1−

√
1− r(σ)2

τ(M)2

)
.

As
√
u ≥ u for u ∈ [0, 1], one obtains the conclusion.

This lemma directly implies that dH(Conv(t, A)|M) ≤ t2/τ(M) if t < τ(M),
so that the set Conv(t, A) is included in the t-neighborhood of M . Therefore, the
projection πM is well-defined on the t-convex hull of A for such a t. We introduce a
scale parameter t∗(A), which has to be thought of as the ”best” scale parameter t for
approximating M with Conv(t, A).

Definition 4.2.2. For A ⊂M , let

t∗(A) := inf{t < τ(M) : πM (Conv(t, A)) = M}. (4.7)

See Figure 4.2 for an illustration. For t∗(A) < t < τ(M), and for any point x ∈M ,
there exists y ∈ Conv(t, A) with πM (y) = x. Therefore,

d(x,Conv(t, A)) ≤ |y − x| = d(y,M) ≤ dH(Conv(t, A)|M).

By taking the supremum over x ∈M , we obtain that for any t∗(A) < t < τ(M).

dH(Conv(t, A),M) = max{dH(Conv(t, A)|M), dH(M |Conv(t, A))

= dH(Conv(t, A)|M) ≤ t2

τ(M)
.

(4.8)
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The minimax rate is now obtained thanks to two observations: (i) t∗(A) is close to
the approximation rate ε(A) := dH(A,M) and (ii) the approximation rate of a random
sample can be very well controlled.

Proposition 4.2.3. There exist absolute constants C1 and C2 such that the following
holds. Let A ⊂M be a finite set. If ε(A) ≤ τ(M)/8, then

ε(A)

(
1− C1

ε(A)

τ(M)

)
≤ t∗(A) ≤ ε(A)

(
1 + C2

ε(A)

τ(M)

)
. (4.9)

The proof of Proposition 4.2.3 relies on considering Delaunay triangulations. Given
d+ 1 points σ in Rd that do not lie on a hyperplane, there exists a unique ball that
contains the points on its boundary. It is called the circumball of σ, and its radius is
called the circumradius circ(σ) of σ. Given a finite set A ⊂ Rd that does not lie on a
hyperplane, there exists a triangulation of A, called the Delaunay triangulation, such
that for each simplex σ in the triangulation, the circumball of σ contains no point of
A in its interior. Note that there may exist several Delaunay triangulations of a set A,
should the set A not be in general position. With a slight abuse, we will still refer to
”the” Delaunay triangulation of A, by simply choosing a Delaunay triangulation among
the possible ones should several exist. If the set A lies on lower dimensional subspace,
we consider the Delaunay triangulation of A in the affine vector space spanned by A.
Therefore, for every set A, the Delaunay triangulation is well defined (for instance,
the Delaunay triangulation of three points aligned in the plane is the 1-dimensional
triangulation obtained by joining the middle point with the two others).

Proof. Let x ∈M be such that d(x,A) = ε(A). By definition, there exists a simplex
σ ⊂ A of radius smaller than t∗(A) with x = πM (y) for some point y ∈ Conv(σ). We
have, using Lemma 4.2.1,

ε(A) = d(x,A) ≤ |x− y|+ d(y,A) ≤ t∗(A)2

τ(M)
+ d(y,A).

Furthermore, d(y,A) ≤ d(y, σ) ≤ r(σ) ≤ t∗(A) by [ALS13, Lemma 1]. Therefore,

ε(A) ≤ t∗(A)

(
1 +

t∗(A)

τ(M)

)
. (4.10)

If we prove the upper bound in Proposition 4.2.3, then the previous equation is enough
to imply the lower bound in Proposition 4.2.3. Let us show the upper bound. Without
loss of generality, we assume that 0 ∈ M and we show that 0 ∈ πM (Conv(t, A)) for
t = ε(A)(1 + 6ε(A)/τ(M)). This implies that t∗(A) ≤ ε(A)(1 + 6ε(A)/τ(M)). Let
Ã = π0(A ∩ B(0, R)) for R = ε(A)(2 + c0ε(A)/τ(M)) and c0 = 32/49. Note that the
condition ε(A) ≤ τ(M)/8 implies that R < 7τ(M)/24. We first state two lemmas.

Lemma 4.2.4. Assume that ε(A) ≤ 7τ(M)/24. Let x̃ ∈ T0M with |x̃| ≤ ε(A). Then
d(x̃, Ã) ≤ ε(A).

Proof. By continuity, it suffices to prove the claim for |x̃| < ε(A). In this case, according
to Proposition 3.5.8, if ε(A) ≤ 7τ(M)/24, then there exists x ∈ BM (0, 8ε(A)/7) with
π0(x) = x̃. Furthermore, by Proposition 3.5.7.4,

|x| ≤ |x̃|+ |x− x̃| ≤ ε(A) +
|x|2

2τ(M)
≤ ε(A)

(
1 +

32ε(A)

49τ(M)

)
.

We have d(x,A) = |x − a| for some point a ∈ A, and |a| ≤ |x − a| + |x| ≤ ε(A)(2 +
c0ε(A)/τ(M)). As π0(a) ∈ Ã, we have d(x̃, Ã) ≤ |x̃ − π0(a)| ≤ |x − a| = d(x,A) ≤
ε(A).
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Lemma 4.2.5. Let V ⊂ Rd be a finite set and t > 0. If dH(B(0, t)|V ) ≤ t, then
0 ∈ Conv(V ).

Proof. We prove the contrapositive. If 0 6∈ Conv(V ), then there exists an open half
space which contains V . Let x be the unit vector orthogonal to this halfspace. Then,
d(tx, V ) > t.

Apply Lemma 4.2.5 to V = Ã and t = ε(A). For x̃ ∈ BT0M (0, ε(A)), we have
d(x̃, Ã) ≤ ε(A) according to Lemma 4.2.4. Therefore, we have 0 ∈ Conv(Ã). Consider
the Delaunay triangulation of Ã. The point 0 belongs to the convex hull of some
simplex σ̃ of the triangulation, with circumradius circ(σ̃) and center of the circumball
q̃. The simplex σ̃ corresponds to some simplex σ in A, and the point 0 is equal to π0(y)
for some point y ∈ Conv(σ). By Proposition 3.5.7.1, we actually have πM (y) = 0, and
to conclude, it suffices to show that r(σ) ≤ ε(A)

(
1 + 6 ε(A)

τ(M)

)
. To do so, we use the

next lemma (recall that σ ⊂ BM (0, R) with R < 7τ(M)/24).

Lemma 4.2.6. Let σ ⊂ BM (0, 7τ(M)/24) and σ̃ = π̃0(σ). Assume that 0 ∈ Conv(σ̃).
Then,

r(σ̃) ≤ r(σ) ≤ r(σ̃)

(
1 + 6

r(σ̃)

τ(M)

)
. (4.11)

Proof. As the projection is 1-Lipschitz, it is clear that r(σ̃) ≤ r(σ). Let us prove
the other inequality. Let σ = {y0, . . . , yk}, σ̃ = {ỹ0, . . . , ỹk} and fix 0 ≤ i ≤ k. As
yi ∈ BM (0, 7τ(M)/24), we have by Proposition 3.5.8

|yi| ≤
8

7
|ỹi| ≤

16

7
r(σ̃), (4.12)

where we used that |ỹi| ≤ 2r(σ̃) as 0 ∈ Conv(σ̃). Let z̃ be the center of the minimum
enclosing ball of σ̃. Write z̃ =

∑k
j=0 λj ỹj and let z =

∑k
j=0 λjyj ∈ Conv(σ). Then, we

have

|z − yi| ≤ |z − z̃|+ |z̃ − ỹi|+ |ỹi − yi|

≤
k∑
j=0

λj |yj − ỹj |+ r(σ̃) +
|yi|2

2τ(M)
using Proposition 3.5.7.4

≤
k∑
j=0

λj
|yj |2

2τ(M)
+ r(σ̃) +

128

49

r(σ̃)2

τ(M)
using Proposition 3.5.7.4 and (4.12)

≤ r(σ̃) +
256

49

r(σ̃)2

τ(M)
≤ r(σ̃) + 6

r(σ̃)2

τ(M)
using (4.12).

We obtain the conclusion as σ is included in the ball of radius maxi |z − yi| and center
z.

Using the previous lemma, we are left with showing that r(σ̃) ≤ ε(A). We will
actually show the stronger inequality circ(σ̃) ≤ ε(A) (the radius of a set is always
smaller than its circumradius). As 0 is in the circumball (that is centered at q̃), the ball
centered at q̃ of radius |q̃| does not intersect Ã. This enforces |q̃| ≤ ε(A): otherwise,
there would exist a ball of radius ε(A) and at distance less than ε(A) from 0 not
intersecting Ã, a contradiction with Lemma 4.2.4 (see Figure 4.3). As |q̃| ≤ ε(A), we
obtain, once again according to Lemma 4.2.4, that circ(σ̃) = d(q̃, Ã) ≤ ε(A) concluding
the proof.
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0 w̃

ε(A)

q̃

Figure 4.3: If |q̃| > ε(A), then the ball BT0M (q̃, |q̃|) contains a ball of
radius ε(A) centered at a point at distance less than ε(A) from 0 (here

denoted by w̃).

Proposition 4.2.7. Let µ ∈ Q2,d
τmin,fmin,+∞ and let Xn = {X1, . . . , Xn} be a n-sample

of law µ. If r ≤ τmin/2, then

P(ε(Xn) > r) ≤ 32d

ωdfminrd
exp(−n8−dωdfminr

d). (4.13)

In particular, for n large enough

E[ε(Xn)2] ≤ 16

(
log n

ωdfminn

)2/d

. (4.14)

Proof. The inequality (4.13) follows from Proposition 3.5.7.2, which implies that the
measure µ is (a, d)-standard with a = 8−dωdfmin: Proposition III.14 in [Aam17] then
yields the result. To prove the second inequality, we let r = 8(3 log n/(nωdfmin))1/d.
Then, ε(Xn) ≤ r with probability of order (log n)n−2. If this event is not satisfied, we
bound ε(Xn) by diam(M), that is bounded by a constant depending on d, fmin, τmin

(see Proposition 3.5.7.3 and the fact that |volM | ≤ f−1
min). Therefore, for n large enough,

E[ε(Xn)2] ≤ 16
(

logn
ωdfminn

)2/d
.

By gathering those different observations (Proposition 4.2.3 and Proposition 4.2.7)
and by using stability properties of t-convex hulls with respect to noise, we show that
t-convex hulls are minimax estimators on C2-models.

Theorem 4.2.8. Let 0 < d < D, n > 0 and q = (τmin, fmin,+∞, η) ∈ Θd. If
tn = C0 (log n/(ωdfminn))1/d (for some absolute constant C0), then we have for n large
enough, and some absolute constant C1,

Rn(Conv(tn,Xn),Q2,d
q,n, dH) ≤

(
log n

n

)2/d(
η +

C1

τmin(ωdfmin)2/d

)
(4.15)

i.e. Conv(tn,Xn) is a minimax estimator of M on Q2,d
q,n.

Proof. We first state a lemma which shows that the t-convex hull is stable under small
perturbations with respect to the Hausdorff distance.

Lemma 4.2.9. Let t, γ > 0 and A,B ⊂ RD with dH(A,B) ≤ γ. Then,

dH(Conv(t, B)|Conv(t+ γ,A)) ≤ γ. (4.16)
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Proof. Let σ ⊂ B be a simplex with r(σ) ≤ t. For each y ∈ σ, let x ∈ A with
d(x, y) ≤ γ. By doing so, we create a non-empty simplex ξ ⊂ A with dH(σ|ξ) ≤ γ. One
has r(ξ) ≤ t+ γ (see [ALS13, Lemma 16]) and dH(Conv(σ)|Conv(ξ)) ≤ dH(σ|ξ) ≤ γ.
This implies the conclusion.

Let A ⊂ M and B ⊂ RD with dH(A,B) ≤ γ. Then, if t∗(A) < t + γ < τ(M),
using (3.10), Lemma 4.2.9 and (4.8),

dH(Conv(t, B)|M) ≤ dH(Conv(t, B)|Conv(t+ γ,A)) + dH(Conv(t+ γ,A),M)

≤ γ +
(t+ γ)2

τ(M)
. (4.17)

Let q ∈ Θd, let ξ ∈ Q2,d
q,n with underlying manifold M and let Xn = {X1, . . . , Xn}

be a n-sample of law ι#ξ, with Yn = {Y1, . . . , Yn} the corresponding sample of law
µ, the first marginal of ξ (that is Xi = Yi + Zi with Yi ∼ µ and |Zi| ≤ γ). Then, for
0 ≤ t < τ(M)− γ,

EdH(Conv(t,Xn),M) = EdH(Conv(t,Xn),M)1{t+ γ > t∗(Yn)}
+ EdH(Conv(t,Xn),M)1{t+ γ ≤ t∗(Yn)}

≤ γ +
(t+ γ)2

τ(M)
+ (diam(M) + γ)P(t∗(Yn) ≥ t).

By Proposition 4.2.3, if ε(Yn) ≤ C0τ(M), then t∗(Yn) ≥ t implies that

ε(Yn) ≥ t
(

1 + C1
ε(Yn)

τ(M)

)−1

≥ C2t

for some absolute constant C2. Therefore, t∗(Yn) ≥ t implies

ε(Yn) ≥ min (C0τ(M), C2t) = C2t (4.18)

if t ≤ C0τ(M)/C2. By using Proposition 4.2.7, and by noting that diam(M) is bounded
by a constant depending on d, fmin, τmin (see Proposition 3.5.7.3), we obtain that, if
t ≤ C0τ(M)/C2,

EdH(Conv(t,Xn),M) ≤ γ +
(t+ γ)2

τ(M)
+ cd,τmin,fmin

exp(−8−dωdfminn(C2t)
d)

(C2t)d
. (4.19)

In particular, we obtain the desired control for n large enough by letting t =
C3 (log n/(ωdfminn))1/d for some constant C3 large enough, if γ ≤ η (log n/n)2/d.

4.3 Selection procedure for the t-convex hulls

Assuming that we have observed a n-sample Xn, we were able in the previous section to
build a minimax estimator of the underlying manifold M . The tuning of this estimator
requires the knowledge of fmin, whereas this quantity will likely not be accessible in
practice. A powerful idea to overcome this issue is to design a selection procedure
for the family of estimators (Conv(t,Xn))t≥0. Assume first for the sake of simplicity
that the noise level η is null. As the loss of the estimator Conv(t,Xn) is controlled
efficiently for t ≥ t∗(Xn) (see (4.8)), a good idea is to select the parameter t larger than
t∗(Xn). We however do not have access to this quantity based on the observations Xn,
as the manifold M is unknown. To select a scale close to t∗(Xn), we monitor how the
estimators Conv(t,Xn) deviate from Xn as t increases. Namely, we use the convexity
defect function introduced in [ALS13].
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Figure 4.4: Left. n-sample Xn close to a circle. Right. Convexity
defect function of Xn.

Definition 4.3.1. Let A ⊂ RD and t > 0. The d-dimensional convexity defect function
at scale t of A is defined as

h(t, A) := dH(Conv(t, A), A). (4.20)

As its name indicates, the convexity defect function measures the (lack of) convexity
of a set A at a given scale t. The next proposition states preliminary results on the
convexity defect function.

Proposition 4.3.2. Let A ⊂ RD be a closed set and t ≥ 0.

1. We have 0 ≤ h(t, A) ≤ t.

2. If A is convex then h(·, A) ≡ 0.

3. If M is a manifold of reach τ(M) and t < τ(M), then

h(t,M) ≤ t2/τ(M). (4.21)

Proof. Point 1 is stated in [ALS13, Section 3.1], Point 2 is clear and Point 3 is a
consequence of Lemma 4.2.1.

As expected, the convexity defect of a convex set is null, whereas for small values of
t, the convexity defect of a manifold h(t,M) is very small (compared to the maximum
value possible, which is t): when looked at locally, M is ”almost flat” (and thus
almost convex). We first show that the convexity defect function h(·,Xn) also has a
subquadratic behavior for t ≥ t∗(Xn).

Proposition 4.3.3 (Long-scale behavior). Let A ⊂M . For t∗(A) < t < τ(M),

h(t, A) ≤ t2

τ(M)
+ t∗(A)

(
1 +

t∗(A)

τ(M)

)
. (4.22)

Proof. By using that h(t, A) ≤ t and (4.8), for any t∗(A) < s < t,

h(t, A) = dH(Conv(t, A), A)

≤ dH(Conv(t, A),M) + dH(M,Conv(s,A)) + dH(Conv(s,A), A)

≤ t2

τ(M)
+

s2

τ(M)
+ s.

The conclusion is obtained by letting s go to t∗(A).
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Proposition 4.3.3 indicates that, for t∗(Xn) � t � τ(M), the ratio h(t,Xn)/t is
very small, while it might be of order 1 at the value t∗(Xn). This suggests the following
strategy to obtain a scale t which is larger than t∗(Xn): choose the largest scale t such
that h(t,Xn) is of order t.

Definition 4.3.4. Let A ⊂M , λ > 0 and tmax > 0. We define

tλ(A) := sup{t < tmax : h(t, A) ≥ λt}. (4.23)

The following theorem ensures that the scale tλ(A) is as expected, close to t∗(A),
as long as the approximation rate of A is small enough.

Theorem 4.3.5. Let 0 < λ < 1, γ ≥ 0 and M ∈ M2,d. Let A ⊂ M be a finite set
with ε(A) ≤ C1τ(M) and B ⊂ RD with dH(A,B) ≤ γ. Assume that

1. t∗(A) + γ < tmax < τ(M)λ/2− γ,

2. t∗(A) < C2(1− λ)τ(M) and t∗(A) ≤ C3λ
2τ(M),

3. γ ≤ C4(1− λ)t∗(A).

Then,

t∗(A) + γ ≤ tλ(B) ≤ 2t∗(A)

λ

(
1 +

t∗(A)

τ(M)

)
+

6γ

λ
. (4.24)

Proof. Upper bound on tλ(B):
By [ALS13, Lemma 5] for any t ≥ 0, we have h(B, t) ≤ h(A, t+ γ) + 2γ. Therefore,

according to Proposition 4.3.3, we have for t∗(A) ≤ t+ γ < τ(M),

h(t, B) ≤ (t+ γ)2

τ(M)
+ t∗(A)

(
1 +

t∗(A)

τ(M)

)
+ 2γ.

Therefore, h(t, B) < λt if (t+γ)2

τ(M) + t∗(A)
(

1 + t∗(A)
τ(M)

)
+ 2γ < λt. A straightforward

computation shows that this is the case if γ ≤ t∗(A) ≤ C0λ
2τ(M) for some absolute

constant C0 and t0 < t+ γ < t1 with (using
√

1− u ≥ 1− u for u ∈ [0, 1]),

t0 :=
τ(M)λ

2

(
1−

√
1− 4

λ2τ(M)

(
t∗(A)

(
1 +

t∗(A)

τ(M)

)
+ (2 + λ)γ

))

≤ 2t∗(A)

λ

(
1 +

t∗(A)

τ(M)

)
+

6γ

λ

and t1 ≥ τ(M)λ/2. Therefore, tλ(B) ≤ 2t∗(A)
λ

(
1 + t∗(A)

τ(M)

)
+ 6γ

λ , as long as tmax <

τ(M)λ/2− γ.
Lower bound on tλ(A) in the noise-free case:
Assume that ε(A) is sufficiently small so that Proposition 4.2.3 holds. Let q ∈M

with ε(A) = d(q,A). One has q = πM (x) for some x ∈ Conv(t∗(A), A), so that, by
Proposition 4.2.3 and Lemma 4.2.1,

d(x,A) ≥ d(q, A)− |x− q| ≥ t∗(A)(
1 + C0

ε(A)
τ(M)

) − t∗(A)2

τ(M)

≥ t∗(A)

(
1− C0

ε(A)

τ(M)
− t∗(A)

τ(M)

)
≥ t∗(A)

(
1− C0

2t∗(A)

τ(M)
− t∗(A)

τ(M)

)
≥ t∗(A)

(
1− C1

t∗(A)

τ(M)

)
,
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where we used at the last line that ε(A) ≤ 2t∗(A) is ε(A)/τ(M) is sufficiently small
by Proposition 4.2.3. As x ∈ Conv(t∗(A), A), we have,

h(t∗(A), A) ≥ t∗(A)

(
1− C1

t∗(A)

τ(M)

)
. (4.25)

Therefore, if λ ≤ 1− C1t
∗(A)/τ(M) and t∗(A) < tmax, then tλ(A) ≥ t∗(A).

Lower bound on tλ(A) in the tubular noise case:
By [ALS13, Lemma 5] for any t ≥ γ,

h(B, t) ≥ h(A, t− γ)− 2γ. (4.26)

Plugging t = t∗(A) + γ, and using (4.25),

h(B, t∗(A) + γ) ≥ t∗(A)

(
1− C1

t∗(A)

τ(M)

)
− 2γ. (4.27)

This quantity is larger than λ(t∗(A) + γ) as long as

C1
t∗(A)

τ(M)
≤ 1− λ− (2 + λ)

γ

t∗(A)
. (4.28)

If γ ≤ (1−λ) t
∗(A)

6 and C1
t∗(A)
τ(M) ≤ 1−λ

2 , then (4.28) is satisfied, giving the desired lower
bound on tλ(B) under those two conditions, should t∗(A) + γ be smaller than tmax.

As a corollary of this result, we obtain the adaptivity of the t-convex hull estimators
of parameter tλ(Xn).

Corollary 4.3.6. Let 0 < λ < 1 and tmax > 0. Let 0 < d < D and q =
(τmin, fmin,+∞, η) ∈ Θd. Then, if τmin > 2tmax/λ, we have for n large enough

Rn(Conv(tλ(Xn),Xn),Q2,d
q,n, dH) ≤

(
log n

n

)2/d(
η +

130

τmin(ωdfmin)2/d

)
(4.29)

By letting tmax,n be any sequence converging to 0 and larger that (cd log n/(nfmin))1/d

(for instance tmax,n = 1/ log(n) or tmax,n = ((log n)2/n)1/d), we obtain an adaptive
estimator on the scale of models Q2,d

q,n for q ∈ Θd, 1 ≤ d < D, i.e. such that

sup
1≤d<D

sup
q∈Θd

lim sup
n

Rn(Conv(tλ(Xn),Xn),Q2,d
q,n, dH)

Rn(M,Q2,d
q,n, dH)

≤ C. (4.30)

Remark 4.3.7. Note that the previous result is of an asymptotic nature. In particular,
should n not be large enough (i.e. if t∗(Xn) is larger than some fraction of the reach),
then the selection procedure is doomed to fail, as the long-scale behavior corresponding
to the range [t∗(Xn), τ(M)] is too small to be captured by the selection procedure
(or even is non-existent). A non-asymptotic choice of the parameter tmax requires
to find a lower bound on the reach τ(M). If estimators of the reach exist [Aam+19;
Ber+21] they both require the tuning of some scale parameter h (with respect to fmin

for instance), so that it is not clear how we may find such a lower bound in an adaptive
manner.

To prove Corollary 4.3.6, we first state an elementary lemma.
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Lemma 4.3.8. Let A ⊂M be a finite set of cardinality n. Then,

ε(A) ≥ cdτ(M)n−1/d. (4.31)

Proof. As M ⊂ ⋃x∈A B(x, ε(A)), one has |volM | ≤ ncdε(A)d. As |volM | ≥ ωdτ(M)d,
we have the conclusion.

Proof of Corollary 4.3.6. By equation (4.17), if tλ(Xn) ≥ t∗(Yn)− γ, then

dH( Convtλ(Xn)(Xn),M) ≤ γ +
(tλ(Xn) + γ)2

τ(M)
. (4.32)

This relation holds (we even have tλ(Xn) ≥ t∗(Yn) + γ) as long as Conditions 1, 2 and
3 of Theorem 4.3.5 are satisfied. If γ < η (log n/n)2/d and τmin > 2tmax/λ, Conditions
1 and 2 are satisfied as long as t∗(Yn) is small enough with respect to λ, tmax and τ(M)
and n is large enough. Also, by Lemma 4.3.8 and Proposition 4.2.3, Condition 3 is
satisfied as long as n is large enough. Therefore, Conditions 1, 2 and 3 are satisfied with
probability 1 − cd,τmin,fmin,λ,tmax exp(−Cd,τmin,fmin,λ,tmaxn), according to Propositions
4.2.3 and 4.2.7. Therefore, (4.32) holds with high probability, and one obtains the
conclusion by using the upper bound in Theorem 4.3.5, Proposition 4.2.3 and the fact
that E[ε(Yn)2] is of order (log n/n)2/d.

To obtain the adaptive behavior (4.30), it suffices to remark that inequality (4.32)
holds as long as τmin > 2tmax/λ and if t∗(Yn) is small enough with respect to tmax.
Using that t∗(Yn) is approximately equal to ε(Yn) and using Proposition 4.2.7 yields
the conclusion.

Another possible criterion to ensure the quality of an estimator M̂ of a manifold M
is to ensure that M̂ and M are homotopy equivalent. Although we have no guarantees
on the topology of the estimator Conv(tλ(Xn),Xn), our selection procedure also permits
to build a simplicial complex homotopy equivalent to M . We write M ' N to indicate
that the two topological spaces M and N are homotopy equivalent. For A ⊂ RD,
recall the definition of the Čech simplicial complex of parameter t on A:

Cech(t, A) := {σ ⊂ A : r(σ) ≤ t}. (4.33)

We will consider that Cech(t, A) is a topological space by identifying it with its
geometric realization.

Corollary 4.3.9. Let 0 < λ < 1 and tmax > 0. Let d be an integer smaller than D
and fmin, η > 0, τmin > 2tmax/λ. Then, for n large enough, and γn ≤ η (log n/n)2/d,
we have

sup
µ∈Q2,d

τmin,fmin,+∞
(γn)

P(M 6' Cech(5tλ(Xn),Xn)) ≤ C0 exp(−C1n), (4.34)

where C0 and C1 depend on d, τmin, fmin, η, λ, tmax.

This rate matches the exponential minimax rate obtained in [Bal+12] for estimating
homology groups, i.e. the parameter tλ(Xn) also allows creating adaptive minimax
homology estimators (although in a slightly weaker sense that in Section 4.1).

Proof of Corollary 4.3.9. For the sake of simplicity, we only give a proof for η = 0
(no noise), the extension to the noise case being made with similar ideas than in
the previous proof. According to [CCSL09, Theorem 4.6], if ε(Xn) < τ(M)/17 and
4ε(Xn) ≤ t < τ(M) − 3ε(Xn), then Cech(t,Xn) ' M . Also, according to Theorem
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4.3.5 and Proposition 4.2.3, if ε(Xn) is small enough with respect to λ, tmax and τ(M),
then

5tλ(Xn) ≥ 5t∗(Xn) ≥ 5ε(Xn)

(
1− C0

ε(Xn)

τ(M)

)
≥ 4ε(Xn) and (4.35)

5tλ(Xn) ≤ 10
t∗(Xn)

λ

(
1 +

t∗(Xn)

τ(M)

)
≤ 20

t∗(Xn)

λ

≤ τ(M)− 3ε(Xn).

(4.36)

Therefore, if ε(Xn) is small enough, then M ' Cech(5tλ(Xn),Xn). We conclude by
using Proposition 4.2.7.

As a last example, we show that the parameter tλ(Xn) can also be used to estimate
tangent spaces in an adaptive way. Let x ∈M and A ⊂M be a finite set. We denote by
Tx(A, t) to be the d-dimensional vector space U which minimizes dH(A∩B(x, t), x+U).
This estimator was originally studied in [BSW09]. Recall that the angle between
subspaces is denoted by ∠.

Corollary 4.3.10. Let 0 < λ < 1 and tmax > 0. Let d be an integer smaller than D
and fmin > 0, τmin > 2tmax/λ. Then, for n large enough, we have

sup
µ∈Q2,d

τmin,fmin,+∞
(γn)

E∠(TpM,Tp(Xn, 11tλ(Xn))) ≤ C0

(
log n

n

)1/d

, (4.37)

where C0 depends on d, τmin, fmin, λ, tmax.

This rate is the minimax rate (up to logarithmic factors) according to [AL19,
Theorem 3]: we obtain an adaptive estimator (once again in a weaker sense that in
Section 4.1).

Proof of Corollary 4.3.10. According to [BSW09, Theorem 3.2], for A ⊂ M , if t <
τ(M)/2 and t ≥ 10ε(A), then

∠(Tp(A, t), TpM) ≤ C0
t

τ(M)
(4.38)

for some absolute constant C0. According to Theorem 4.3.5 and Proposition 4.2.3, and
arguing as in the two previous proofs, 11tλ(Xn) > 10ε(Xn) and 11tλ(Xn) < τ(M)/2 as
long as ε(Xn) < Cτ(M),λ,tmax

. Therefore,

E∠(TpM,Tp(Xn, 11tλ(Xn)) ≤ 11C0
Etλ(Xn)

τ(M)
+ P(ε(Xn) > Cτ(M),λ,tmax

)

≤ Cd,τmin,fmin,λ,tmax (log n/n)1/d ,

by Theorem 4.3.5 and Proposition 4.2.7.

4.4 Short-scale behavior of the convexity defect functions

The selection procedure described in Section 4.3 relies on the behavior of the convexity
defect function h(·,Xn) on the range [t∗(Xn), τ(M)]. However, it appears in numerical
experiments (see Figure 4.4) that the convexity defect function also exhibits a behavior
worth of interest on the interval [0, t∗(Xn)]: it appears that the convexity defect
function h(t,Xn) stays very close to its maximal value t for t in this range. The next
proposition proves that such a behavior indeed appears in a random setting.
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Proposition 4.4.1 (Short-scale behavior). Let d be an integer smaller than D, and let
q = (τmin, fmin, fmax, 0) ∈ Θd. Let Xn be a n-sample of law µ ∈ Q2,d

q,n. Fix 0 < λ < 1.
There exist positive constants t0, C0, C1 depending on the parameters of the model and
on λ such that the following holds. Let, for x > 0, φ(x) = min(1, x)e−x. Then, for n
large enough and 0 < t ≤ t0, we have

h(t,Xn) ≥ λt with probabilty larger than 1− C0 exp(−C1nφ(nm)). (4.39)

The probability appearing in (4.39) will be close to 1 as long as t is smaller than
a fraction of (log n/n)1/d and larger than (1/n)(2−δ)/d for any 0 < δ < 1. Therefore,
with high probability, the convexity defect function h(t,Xn) is very close to t for
(1/n)(2−δ)/d . t . (log n/n)1/d. On the contrary, standard techniques show that if
t . (1/n)2/d, then h(t,Xn) is null with probability larger than, say, 1/2, indicating
that the lower bound in the previous range is close of being optimal. The arguments
to prove Proposition 4.4.1 are of a purely probabilistic nature and do not rely on the
geometry of the support of µ. The remainder of the Section is dedicated to proving
Proposition 4.4.1.

Let µ ∈ Q2,d
τmin,fmin,fmax

be a probability distribution with support M and let Xn
be a n-sample of law µ. We will use repeatedly in the proof the fact that there exist
constants cd, Cd > 0 such that, if t ≤ τ(M)/4, then cdfmint

d ≤ µ(B) ≤ Cdfmaxt
d for

all balls B of radius t centered at points of M (see Proposition 3.5.7.7).

Lemma 4.4.2. Assume that t ≤ td,τmin,fmax . There exists a partition C = {U1, . . . , UK}
of M into K measurable parts such that:

1. for k = 1, . . . ,K, Uk contains a ball Vk = BM (xk, 2t),

2. for k = 1, . . . ,K, µ(Uk) = 1/K,

3. we have cd,τmin,fmaxt
−d ≤ K ≤ Cd,τmin,fmaxt

−d.

Proof. If t ≤ τ(M)/8, then µ(B) ≤ Cdfmaxt
d for any ball B of radius 2t. Assume

that t is small enough so that Cdfmaxt
d ≤ 1/2 and let K be the largest integer such

that 1/K ≥ Cdfmaxt
d, so that 1/(2Cdfmaxt

d) ≤ K ≤ 1/(Cdfmaxt
d). Build C in the

following way. Start with an union of K disjoint balls Vk of radius 2t, for k = 1, . . . ,K,
choose Wk any measurable set in M\⋃K

k=1 Vk with µ(Wk) = 1/K − µ(Vk) ≥ 0 and let
Uk = Vk ∪Wk. The set M\⋃K

k=1 Uk is of µ-measure null, so that by adding it to U1

for instance, we obtain a partition following the required properties. Note that we
used the fact that for any A ⊂M and 0 ≤ p ≤ µ(A), there exists a subset V ⊂ A with
µ(V ) = p: this holds as µ is absolutely continuous with respect to the volume measure
on M .

We fix such a partition in the following, with balls Vk of radius (2− λ)t. Let Bk be
the ball sharing its center with Vk, of radius t. For W ⊂M , let N(W ) be the number
of points of Xn in W . We also write Nk for N(Uk). Let xk be the center of Bk and e
be a unit vector in TxM , and denote by A+

k (resp. A−k ) the ball of radius (1− λ)t/2
centered at x+ = xk + e(1 + λ)t/2 (resp. x− = xk − e(1 + λ)t/2), see Figure 4.5.

Lemma 4.4.3. Fix k = 1, . . . ,K. If h(t,Xn) < λt and Nk = 2, then we cannot have
both N(A+

k ) = 1 and N(A−k ) = 1.

Proof. Let σ = Xn ∩ Uk. Assume that Nk = 2, and that N(A+
k ) = N(A−k ) = 1. Then,

σ is made of two points, x1 and x2, respectively in A+
k and A−k . As both points belong

to Bk, we have r(σ) ≤ t. Therefore, dH(Conv(σ)|Xn) ≤ h(t,Xn) < λt. In particular,
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λt

t

xk

Bk

A−
k A+

k

(2− λ)t

Uk

Vk

Figure 4.5: Any ball with diameter whose one extremity is in A−k
and the other in A+

k is included in Uk.

the middle point x0 of x1 and x2 is at distance less than λt from Xn. Let us show
that BM (x0, |x1 − x0|) ⊂ Vk. If this is the case, then d(x0,Xn) = |x1 − x2|/2 ≥ λt,
a contradiction with having dH(Conv(σ)|Xn) < λt. Let z ∈ BM (x0, |x1 − x0|) and
denote by πe the projection on e. Then,

|z − xk| ≤ |z − x0|+ |x0 − xk| ≤
|x1 − x2|

2
+ |πe(x0 − xk)|+ |π⊥e (x0 − xk)|

≤ t+
(1− λ)t

2
+

(1− λ)t

2
≤ (2− λ)t,

concluding the proof.

Denote by Fk the complementary event of the event N(A+
k ) = N(A−k ) = 1. We

obtain the bound

P(h(t,Xn) < λt) ≤ P(∀k = 1, . . . ,K, Nk 6= 2 or (Nk = 2 and Fk))
= E [P(∀k = 1, . . . ,K, Nk 6= 2 or (Nk = 2 and Fk)|(Nk)k=1,...,K)]

≤ E

[
K∏
k=1

(1{Nk 6= 2}+ P(Fk|Nk = 2)1{Nk = 2})
]

≤ E

[
K∏
k=1

(1− (1− P(Fk|Nk = 2))1{Nk = 2})
]
.

Lemma 4.4.4. There exists a positive constant C1 such that

P(Fk|Nk = 2) ≤ e−C1 for k = 1, . . . ,K.

Proof. If |x+ − xk| ≤ t ≤ 7τ(M)/24, then there exists y+ ∈M with πxk(y+ − xk) =
x+−xk by Proposition 3.5.8. Furthermore, we have |y+−xk| ≤ 8t/7 and, by Proposition
3.5.7.4, we have |y+ − x+| ≤ (8t/7)2/(2τ(M)) = 32t2/(49τ(M)). In particular,

B(x+, (1− λ)t/2) ⊃ B(y+, (1− λ)t/2− 32t2/(49τ(M))) ⊃ B(y+, (1− λ)t/4),

if t ≤ 49(1− λ)τ(M)/128. According to Proposition 3.5.7.2, we therefore have, also
assuming that t ≤ τ(M)/4,

µ(B(x+, (1− λ)t/2)) ≥ fminαd

(
(1− λ)t

4

47

48

)d
,

and the same inequality holds for x−.
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Let Y1, Y2 be two independent random variables sampled according to µ, conditioned
on being in Uk. Then, as µ(Uk) = m = αd(1 + δ)fmin(2− λ)dtd,

P(Fk|Nk = 2) = 1− 2P(Y1 ∈ A+
k )P(Y2 ∈ A−k )

= 1− 2
µ(B(x+, (1− λ)t/2))µ(B(x−, (1− λ)t/2))

µ(Uk)2

≤ 1− 2

( (
47
48

1−λ
4

)d
(1 + δ)(2− λ)d

)2

≤ e−C1 ,

where C1 = 2

(
( 47

48
1−λ

4 )
d

(1+δ)(2−λ)d

)2

.

We finally obtain

P(h(t,Xn) < λt) ≤ E

[
exp

(
−C1

K∑
k=1

1{Nk = 2}
)]

. (4.40)

Lemma 4.4.5. Assume that nm ≤ max(m−1, (lnn)2). Let φ : x ∈ [0,+∞) →
min(1, x)e−x. Then,

E

[
exp

(
−C1

K∑
k=1

1{Nk = 2}
)]
≤ C2 exp (−C3nφ(nm)) , (4.41)

for some positive constants C2, C3.

Proof. Let S =
∑K

k=1 1{Nk = 2}. Let ñ be the number of points of Xn in
⋃
k Uk,

so that ñ follows a binomial distribution of parameters n and Km. Recall that by
construction, Km ≥ c0 for some constant c0 (see Lemma 4.4.2). Conditionally on ñ, the
random variable S can be realized as the number of urns containing exactly two balls, in
a model where ñ balls are thrown uniformly in K urns. Let pi =

(
ñ
i

)
K−i(1−K−1)ñ−i

be the probability that an urn contains exactly i balls. We have E[S|ñ] = Kp2, and

E[exp(−C1S)|ñ] ≤ E[exp(−C1Kp2/2)1{S ≥ Kp2/2}|ñ] + P(S < Kp2/2|ñ)

≤ exp(−C1Kp2/2) + P(|S −Kp2| > Kp2/2|ñ). (4.42)

Let v = 2K max(2p2, 3p3). According to [BHBO17, Proposition 3.5], if for some s > 0,

Kp2/2 ≥
√

4vs+ 2s/3, (4.43)

then P(|S −Kp2| > Kp2/2|ñ) ≤ 4e−s. Recall that nm2 ≤ 1 by assumption, and that
K ≥ cµ,δt−d ≥ c1/m. We therefore have n/K2 ≤ c−2

1 . Assuming that ñ ≥ 3 and using
the inequality ln(1−K−1) ≥ −K−1 −K−2 for K ≥ 2, we obtain the inequalities

p2 ≥
(ñ/K)2

4ec
−2
1

e−ñ/K and p3 ≤
e3

6
(ñ/K)3e−ñ/K ≤ c2p2(n/K) (4.44)

for some positive constant c2. We consider two different regimes.
• Assume first that n/K ≤ 2/(3c2). Then 3p3 ≤ 2p2 and one can check that

s = Kp2/100 satisfies (4.43). Inequality (4.42) then yields that E[exp(−C1S)|ñ] ≤
5 exp(−C ′1Kp2) for C ′1 = min(C1/2, 1/100). To conclude, we remark that for any
α ∈ (0, 1), by the Hoeffding inequality, the event |ñ − nKm| ≤ nKmα holds with
probability at least 1− exp(−2nα2). Letting α = 1/2, we obtain that, on this event,

1

2
nm ≤ ñ

K
≤ 3

2
nm ≤ 3

2

n

K
mK ≤ 1

c2
,
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where we used that mK ≤ 1. Therefore, p2 ≥ c3(nm)2 ≥ c4(nm)2e−nm for some
constants c3 and c4. The probability of order exp(−2nα2) being negligible, we obtain
a final bound of order exp(−C ′1c4K(nm)2e−nm) ≤ exp(−C2nφ(nm)), concluding the
proof in the regime n/K ≤ 2/(3c2).
• Otherwise, we have n/K > 2/(3c2) and we also assume that |ñ−nKm| ≤ αnKm

for some α ∈ (0, 1) to fix (this happens with probability 1−exp(−2nα2) by Hoeffding’s
inequality). One can then check using (4.44) that s = c5ñe

−ñ/K satisfies (4.43) if c5

is chosen small enough. Furthermore, s ≤ c6Kp2 for some constant c6 (using (4.44)).
The leading term in (4.42) is therefore of the form exp(−c7ñe

−ñ/K). Let α = 1/(lnn)3.
We have, as nm ≥ c0n/K ≥ c8 and as nm ≤ (lnn)2 (by assumption),

c9 ≤ nm(1− α) ≤ ñ

K
≤ nm(1 + α) ≤ nm+

1

lnn
.

Therefore, ñe−ñ/K ≥ (c9/2)Ke−nm. The probability of order exp(−2nα2) is still neg-
ligible, and we obtain a final bound on E[exp(−C1S)] of order exp(−(c9/2)Ke−nm) ≤
exp(−c10nφ(nm)).

4.5 Numerical considerations

Computing Conv(t,Xn) amounts to compute the Čech complex of Xn of parameter
t: we refer to Section 3.6 for a discussion on the computational complexity of this
problem. It remains to discuss the cost of computing tλ(Xn).

The scale tλ(Xn) is easily obtained once the convexity defect function of the set
Xn ⊂ RD has been computed. By the Carathéodory theorem, one can restrict to
simplexes of dimension less than D for the computation of Conv(t,Xn). As there are
O(nD+1) such simplexes, the computation cost of the convexity defect function is
prohibitive for large D. We therefore propose to consider only simplexes of dimension
1 in the convexity defect function. Let Conv1(t,Xn) be equal to the union of the edges
e = {x1, x2} ⊂ Xn of length smaller than 2t, and h1(t,Xn) = dH(Xn,Conv1(t,Xn)).
We define likewise the parameter t1λ(Xn) with the function h being replaced by h1.

Lemma 4.5.1. Let 1 ≤ d < D be an integer and let cD =
√

1
2 − 1

2D . Let B ⊂ RD

and tmax > 0, 0 < λ < 1− cD. Then,

tλ+cD(B) ≤ t1λ(B) ≤ tλ(B). (4.45)

Proof. A direct computation shows that if σ is a D-simplex of radius smaller than t,
then the Hausdorff distance between Conv(σ) and the 1-skeleton of σ (the union of its
edges) is bounded by cDt. Hence, h(t, B) ≥ h1(t, B) ≥ h(t, B)− cDt. The conclusion
follows from the definition of tλ(B).

Hence, if some sets A,B ⊂ M satisfy the conditions of Theorem 4.3.5 for λ and
λ+ cD, then t1λ(B) satisfies

t∗(A) + γ ≤ t1λ(B) ≤ 2t∗(A)

λ

(
1 +

t∗(A)

τ(M)

)
+

6γ

λ
.

The scale t1λ(Xn) can be computed by computing the distance dH(e|Xn) for the n(n−1)
edges e of Xn. Each distance can be obtained by computing the projections of the set
Xn on the line spanned by e. The time complexity can be further reduced by selecting
a random subset of L edges in Xn. If we have no guarantees on the output with such a
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strategy, it appears in our experiments that it is similar to h1(·,Xn) for L significantly
smaller than n2.

As a numerical illustration of our procedure, we compute the convexity defect
function h1(·,Xn) of three synthetic datasets: (a) na = 103 points uniformly sampled
on the unit circle, (b) nb = 104 points sampled on a torus of inner radius 4 and
outer radius 1, and (c) nc = 105 points sampled on a swiss roll implemented with
scipy [Vir+20] (which was also used to compute the Hausdorff distance between point
clouds). The convexity defect functions (a), (b) and (c) were approximated using
the algorithm described in the previous paragraph with parameter La =∞ (all pairs
computed), Lb = 106 and Lc = 107. On each function, displayed in Figure 4.6, the
behavior described in Section 4.3 is observed: first a linear growth up to a certain
value, then a quadratic growth until the reach of the manifold (equal to 1 in the first
two illustrations, and slightly larger than 3 for the swiss roll dataset). We then fix
tmax = 0.5 diam(Xn)/ log(n) and compute t1λ(Xn) for different values of λ. When λ is
very close to 1, t1λ(Xn) is always 0, whereas it slowly increases as λ decreases, until
reaching tmax at some value λmin. As a rule of thumb, we choose λ∗ = 1+λmin

2 and
select the parameter t1λ∗(Xn), which is equal to ta = 0.049, tb = 0.31 and tc = 0.48 in
the different experiments (a), (b) and (c), while the approximation rates ε(Xn) were
evaluated (by oversampling) at εa = 0.021, εb = 0.31 and εc = 0.33.

4.6 Discussion and further works

In this article, we introduced a particularly simple manifold estimator, based on a
unique rule: add the convex hull of any subset of the set of observations which is of
radius smaller than t. After proving that this leads to a minimax estimator for some
choice of t, we explained how to select the parameter t by computing the convexity
defect function of the set of observations. Our selection procedure actually allows us
to find a parameter tλ(Xn) that is very close to ε(Xn) (up to a known multiplicative
constant). The selected parameter can therefore be used as a scale parameter in a
wide range of procedures in geometric inference. We illustrated this general idea by
showing how an adaptive tangent space estimator can be created thanks to tλ(Xn).

The main limitation to our procedure is its non-robustness to outliers. Indeed,
even in the presence of one outlier in Xn, the loss function t 7→ dH(Conv(t,Xn),M)
would be constant, equal to the distance between the outlier and the manifold M : with
respect to the Hausdorff distance, all the estimators Conv(t,Xn) are then equally bad.
Of course, even in that case, we would like to assert that some values of t are ”better”
than others in some sense. A solution to overcome this issue would be to change
the loss function, for instance by using Wasserstein distances on judicious probability
measures built on the t-convex hulls Conv(t,Xn) instead of the Hausdorff distance.

Another way to improve the selection procedure is to exploit the short-scale behavior
of the convexity defect function: its linear behavior suggests that selecting the smallest
value t such that the convexity defect function is small (whereas we select the largest
value tλ(Xn) such that h(t,Xn) is large) would also lead to an adaptive estimator.
With such a method, the hyperparameter tmax is not needed anymore. We refer to
[Div21b] for details on this improved construction.

4.7 Precise lower bound on the minimax risk

The goal of this section is to show the lower bound in Theorem 4.1.2. To do so, we
adapt the construction made in [KZ15] so that the lower bound holds with an explicit
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Figure 4.6: The convexity defect function of the datasets (a), (b) and
(c), and the corresponding choices of t1λ(Xn) with respect to λ.
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constant. Let 0 < d < D and q = (τmin, fmin, fmax, η) ∈ Θd. We denote by M(P ) the
underlying manifold of P ∈ Q2,d

q,n. The lower bound is based on Le Cam’s lemma:

Lemma 4.7.1. Let Q(1), Q(2) be two subfamilies of Q2,d
q,n which are ε-separated, in the

sense that dH(M(P (1)),M(P (2))) ≥ 2ε for all P (1) ∈ Q(1), P (2) ∈ Q(2). Then,

Rn(M,Q2,d
q,n, dH) ≥ ε

∣∣∣∣∣∣ 1

#Q(1)

∑
P (1)∈Q(1)

ι#P
(1) ∧ 1

#Q(2)

∑
P (2)∈Q(2)

ι#P
(2)

∣∣∣∣∣∣ , (4.46)

where |P∧Q| is the testing affinity between two distributions P and Q and ι : RD×RD →
RD is the addition.

To obtain a lower bound on the minimax risk, authors in [KZ15] exhibit two
families of manifolds which are ε-separated, and consider the uniform distributions on
them. Those manifolds are built by considering a base manifold M0 which is locally
flat, and by adding small bumps on the locally flat part. Such a construction leads to
distributions having a density equal roughly to 1/|volM0 |, a constant which might be
smaller than fmin. If this is the case, then the corresponding submodels are not in Q2,d

q,n

and we cannot apply Le Cam’s Lemma. Hence, we consider another base manifold,
which is a sphere M0 of radius R slightly larger than τmin, so that its volume is smaller
than 1/fmin (this is possible as fminωdτ

d
min ≤ κ < 1). The two families are then once

again constructed by adding small bumps on M0. We now detail this construction.
Let R, δ > 0 be two parameters to be fixed later. Let M0 ⊂ Rd+1 ⊂ RD be the

d-sphere of radius R, and let A be a maximal subset of M0 of even size, which is
4δ-separated. Note that, standard packing arguments (and the formula for the volume
of a spherical cap) show that if δ/R is small enough, then the cardinality 2m of A
satisfies 2m ≥

(
c0R
δ

)d for some absolute constant c0. Let φ : R → R be a smooth
function such that 0 ≤ φ ≤ 1, φ ≡ 1 on [−1, 1] and φ ≡ 0 on R\[−2, 2]. For s ∈ {±1}A,
we build a diffeomorphism Φε

s by letting for x ∈ RD

Φε
s(x) = x

1 +
ε

R

∑
y∈A

s(y)φ

( |x− y|
δ

) . (4.47)

Recall that ‖N‖op denotes the operator norm of a linear application N .

Lemma 4.7.2. There exists two absolute constants c1, c2 > 0 such that the following
holds. Assume that δ ≤ R and that c1ε/δ < 1. Then, the function Φε

s : B(0, 3R)→ Rd+1

is a diffeomorphism on its image, with

sup
x∈B(0,3R)

‖id−dxΦε
s‖op ≤ c1ε/δ and sup

x∈B(0,3R)

∥∥d2
xΦε

s

∥∥
op
≤ c2ε/δ

2. (4.48)

Proof. As A is 4δ-separated, at most one term in the sum in (4.47) is non-zero. A
computation gives that the derivative of ΦB is given by, for x ∈ B(0, 3R),

dxΦε
s(h) = h+ h

ε

R

∑
y∈A

s(y)φ

( |x− y|
δ

)
+ x

ε

R

∑
y∈A

1

δ
s(y)φ′

( |x− y|
δ

) 〈x− y, h〉
|x− y| .

(4.49)

Hence,

‖id−dxΦε
s‖op ≤

ε

R

(
‖φ‖∞ + |x|‖φ

′‖∞
δ

)
≤ ε

R

(
‖φ‖∞ + 3R

‖φ′‖∞
δ

)
≤ c1

ε

δ
,
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where c1 = c0‖φ‖∞ + 3‖φ′‖∞. A similar computation gives that
∥∥d2

xΦε
s

∥∥
op
≤ c2ε/δ

2

for c2 = 4‖φ′‖∞ + 3‖φ′′‖∞. We eventually show the injectivity: if Φε
s(x) = Φε

s(x
′),

then x and x′ are colinear. Also, if c0 = ‖φ‖∞ + 3‖φ′‖∞, one can check using (4.49)
that the derivative of the function r ∈ [0, 3R] 7→ 〈Φε

s(ru), u〉 for u an unit vector is
increasing, proving the injectivity.

Therefore, from [Fed59, Theorem 14.19], we infer that M ε
s := Φε

s(M) is a manifold
with reach larger than

τ(M ε
s ) ≥ Rmin

(
1− c1ε/δ,

(1− c1ε/δ)
2

1 + c1ε/δ +Rc2ε/δ2

)
. (4.50)

Also, the volume of M ε
s is smaller than

|volMε
s
| =

∫
M0

JΦε
s(x)dx = ωdR

d +
∑
y∈A

∫
BM0

(y,2δ)
(JΦε

s(x)− 1)dx

≤ ωdRd + 2mCdc1
ε

δ
|volM0 |(B(y, 2δ)) ≤ ωdRd

(
1 + Cdc1

ε

δ

)
, (4.51)

where we used that det(N)− 1 ≤ Cd ‖N − id‖op for some constant Cd if N is a matrix
of size d with operator norm smaller than 1, the fact that 2m|volM0(B(y, 2δ)) ≤ |volM0 |,
and Lemma 4.7.2.

Let R = τmin + 1
2

(
1

(ωdfmin)1/d − τmin

)
and δ =

√
Rεν where ν2 = 2c2τmin

R−τmin
. With

this choice of parameters, one can check that, for ε/δ small enough, τ(M ε
s ) ≥ τmin (by

(4.50)) and |volMε
s
| ≤ 1/fmin (by (4.51) and using that ωdfminτ

d
min ≤ κ < 1).

We define the familyM(1) of manifolds M ε
s where s contains exactly m signs +1

(and m signs −1). The family M(2) is defined likewise by considering M ε
s where s

contains exactly m+ 1 or m− 1 signs +1. We then let Q(1) be the set of distributions
(Qεs, δ0) where Qεs is the uniform distribution on a manifold of M ε

s ∈ M(1), so that
Q(1) is a subset of Q2,d

q,n. We then define Q(2) as follows: let X ∼ Qεs where Qεs is the
uniform distribution on a manifold of M ε

s ∈ M(2). Then, we have X = Φε
s(V ) for

some V ∈M0, and we let

Y = Φε+γ
s (V ), Z = X − Y.

An element of Q(2) is then given by the law of the couple (Y, Z). Note that for
P (2) ∈ Q(2), ι#P (2) is the uniform distribution on a manifold ofM(2). Also, M(P (2))
is equal to M ε+γ

s = Φε+γ
s ◦ (Φε

s)
−1(M ε

s ) for some M ε
s ∈ M(2). By (4.51) and (4.50),

its reach is also larger than τmin, and its volume is smaller than 1/fmin if (ε+ γ)/δ is
small enough. Note also that |Z| = |Φε

s(V )− Φε+γ
s (V )| ≤ |V |γ/R ≤ γ. Hence, Q(2) is

indeed a subset of Qdq,n.
By construction, the two families Q(1), Q(2) are (2ε+ γ)-separated (see Figure 4.7).

Hence, we can apply Le Cam’s lemma. The exact same computations than in [KZ15,
Section 3] show that the testing affinity between Q(1) and Q(2) converge to 1 as long
as 4m = n/ log n. Thus, Le Cam’s Lemma (4.46) yields

lim inf
n

Rn(M,Q2,d
q,n, dH)(

logn
n

)2/d
≥ lim inf

n

(
(m/4)2/dε+

η

2

)
. (4.52)
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ε

ε

γ
Mε+γ
s′ ∈ M2

Mε
s ∈ M1

M0

Figure 4.7: An element P (1) ∈ Q(1) has its first marginal supported
on the blue manifoldMε

s (lower bump), whereas an element P (2) ∈ Q(2)

is such that P (2)
1 is supported on the red manifoldMε+γ

s′ (upper bump),
whereas ι#P (2) is the uniform distribution on the dotted manifold.

As 2m ≥ (c0R/δ)
d, we therefore have

lim inf
n

Rn(M,Q2,d
q,n, dH)(

logn
n

)2/d
≥ c2

0

82/d

R2

δ2
ε+

η

2
=

c2
0

82/d

R

ν2
+
η

2

=
c2

0

82/d

R(R− τmin)

2c2τmin
+
η

2
≥ c4

(ωdfmin)1/dτmin

(
1

(ωdfmin)1/d
− τmin

)
+
η

2
,

for some absolute constant c4, where we used that R− τmin = 1
2

(
1

(ωdfmin)1/d − τmin

)
by definition and that R ≥ 1

2(ωdfmin)−1/d. As τmin ≤ κ/(ωdfmin)1/d, we obtain the
conclusion.





81

Chapter 5

Reconstruction of measures on
manifolds: an optimal transport
approach

Density estimation is one of the most fundamental tasks in non-parametric statistics.
If efficient methods (from both a theoretical and a practical point of view) exist when
the ambient space is of low dimension, minimax rates of estimation become increasingly
slow as the dimension increases. To overcome this so-called curse of dimensionality,
some structural assumptions on the underlying probability are to be made in moderate
to high dimensions, which may take different forms, including e.g. the existence of a
parametric component [LLW07], the single-index model [Liu+13], sparsity assumptions
[Tib96], or constraints on the shape of the support. We focus in this work on the latter,
namely on the case where the probability distribution µ generating the observations is
assumed to be concentrated on a submanifold M of RD, of dimension d smaller than
D. The topic of density estimation in the manifold setting has been studied for over
thirty years, with the emphasis initially being put on reconstructing the density in
the case where the manifold M is given—think for instance of datasets lying on the
space of orthogonal matrices—notable works including [Hen90; Pel05; Cle+20]. Less
attention has been dedicated to the more general setting where the manifold M is
unknown and acts as a nuisance parameter. Kernel density estimators on manifolds are
designed in [BS17; WW20], where rates are exhibited, respectively in the case where
the manifold has a boundary and in the case where the density is Hölder continuous. In
[BH19], kernel density estimators are shown to be minimax, and an adaptive procedure
is designed, based on Lepski’s method, to estimate the unknown density in a point
x ∈ RD which is known to belong to the unknown (and possibly nonsmooth) manifold
M .

To go beyond the pointwise estimation of µ, even the choice of a relevant loss is
nontrivial. Indeed, most standard losses between probability measures (e.g. the Lp
distance, the Hellinger distance or the Kullback-Leibler divergence) are degenerate when
comparing mutually singular measures, which will typically be the case for measures
on two distinct manifolds, even if they are very close to each other with respect to
the Hausdorff distance. This implies that the estimation problem is degenerate from a
minimax perspective when choosing such losses (see Theorem 5.1.9). On the contrary,
the Wasserstein distances Wp, 1 ≤ p ≤ ∞ are particularly adapted to this problem, as
they are by design robust to small metric perturbations of the support of a measure.

Apart from this first motivation, the use of Wasserstein distances, and more
generally of the theory of optimal transport, has shown to be an efficient tool in widely
different recent problems of machine learning, with fast implementations and sound
theoretical results (see e.g. [PC19] for a survey). From a statistical perspective, most of
the attention has been dedicated to studying rates of convergence between a probability
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distribution µ and its empirical counterpart µn [Dud69; DSS13; FG15; SP18; WB19a;
Lei20]. Unsurprisingly, if more regularity is assumed on µ, then it is possible to build
estimators with smaller risks than the empirical measure µn. Assume for instance
that µ is a probability distribution on the cube [−1, 1]D, with density f of regularity s
(measured through the Besov scale Bs

p,q). In this setting, it has been shown in [WB19b]
that, given n i.i.d. points of law µ, the minimax rate (up to logarithmic factors) for
the estimation of µ with respect to the Wasserstein distance Wp is of order

n−
s+1

2s+D if D ≥ 3

n−
1
2 log n if D = 2

n−
1
2 if D = 1,

(5.1)

and that this rate is attained by a modified linear wavelet density estimator. Our
main contribution consists in extending the results of [WB19b] by allowing the support
of the probability to be any d-dimensional compact Ck submanifold M ⊂ RD for
k ≥ 2. More precisely, assume that some probability µ on M has a lower and upper
bounded density f which belongs to the Besov space Bs

p,q(M) for some 0 < s ≤ k − 1,
1 ≤ p < ∞, 1 ≤ q ≤ ∞ (see Section 5.1 for details). We first show (Theorem 5.2.1)
that some weighted kernel density estimator that we integrate against the volume
measure volM on M attains, for the Wp distance, the rate of estimation

n−
s+1
2s+d if d ≥ 3

n−
1
2 (log n)

1
2 if d = 2

n−
1
2 if d = 1.

(5.2)

In the case where the manifold M is unknown, we do not have access to the volume
measure volM , so that the latter estimator is not computable. We therefore propose
to estimate the volume measure volM in a preliminary step. Such an estimator v̂olM
is defined by using local polynomial estimation techniques from [AL19]. We show that
this estimator is a minimax estimator of the volume measure up to logarithmic factors
(Theorem 5.2.6), with a risk of order (log n/n)k/d. We then show (Theorem 5.2.7)
that a weighted kernel density estimator integrated against v̂olM attains the rate (5.2).
Those rates are significantly faster than the rates of (5.1) if d� D and are shown to
be minimax up to logarithmic factors.

In Section 5.1, we define our statistical model and give some preliminary results
on Wasserstein distances. In Section 5.2, we define kernel density estimators on a
manifold M , and state our main results. Proofs of the main theorems are then given
in Section 5.3.

5.1 Preliminaries

For 1 ≤ p ≤ ∞, we let Lp(M) be the set of measurable functions f : M → R with
finite p-norm ‖f‖Lp(M) :=

(∫
fdvolM

)1/p (and usual modification if p =∞). We say
that a locally integrable function is weakly differentiable if there exists a measurable
section ∇f of the tangent bundle TM (uniquely defined almost everywhere) such that
for all smooth vector fields w on M with compact support, we have∫

f(∇ · w) dvolM = −
∫

(∇f) · w dvolM , (5.3)

where ∇ · w denotes the divergence of w (the divergence of w is defined as the real-
valued function satisfying (5.3) for every C1 function f). Furthermore, we will denote
by p∗ ∈ [1,∞] the number satisfying 1

p + 1
p∗ = 1.
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5.1.1 Besov spaces on manifolds

Let M ∈ Mk,d
τmin,L

for some k ≥ 2, τmin, L > 0. We also assume that M is compact.
As stated in the introduction, minimax rates for the estimation of a given probability
will depend crucially on the regularity of its density f , which is assumed to belong to
some Besov space Bs

p,q(M). We first introduce Sobolev spaces H l
p(M) on M for l ≤ k

an integer, and Besov spaces on M are then defined by real interpolation.

Definition 5.1.1 (Sobolev space on a manifold). Let 0 ≤ l ≤ k , 1 ≤ p <∞ and let
f ∈ C∞(M). We let

‖f‖Hl
p(M) := max

0≤i≤l

(∫ ∥∥dif(x)
∥∥p

op
dvolM (x)

)1/p

. (5.4)

The space H l
p(M) is the completion of C∞(M) for the norm ‖ · ‖Hl

p(M).

Remark 5.1.2 (On the case p =∞). The previous definition cannot be extended to
the case p =∞. Indeed, the completion of C∞(M) for the norm ‖ · ‖Hl

∞(M) is equal to
Cl(M), whereas for instance H0

∞(M) should be equal to L∞(M). For l = 1, the space
H1
p (M) can equivalently be defined as the space of weakly differentiable functions f

with ‖f‖H1
p(M) <∞, while this definition can be easily extended to the case p =∞.

In particular, if f ∈ H1
∞(M), then one can verify that f ◦ Ψx ∈ H1

∞(BTxM (0, r0))
for any x ∈M . It follows from standard results on Sobolev spaces on domains that
f ◦ Ψx is Lipschitz continuous (see e.g. [Bre10, Proposition 9.3]). Hence, f is also
locally Lipschitz continuous. By Rademacher theorem, f is therefore almost everywhere
differentiable, and its differential coincides with the weak differential. As a consequence,
a function f ∈ H1

∞(M) is Lipschitz continuous, with Lipschitz constant for geodesic
distance dg equal to ‖f‖H1

∞(M).

For 1 ≤ p <∞, we introduce the negative homogeneous Sobolev norm ‖ · ‖Ḣ−1
p (M),

defined, for f ∈ Lp(M) with
∫
fdvolM = 0, by

‖f‖Ḣ−1
p (M)

:= sup

{∫
fgdvolM , ‖∇g‖Lp∗ (M) ≤ 1

}
, (5.5)

where the supremum is taken over all functions g ∈ H1
p∗(M). For f ∈ Lp(M), the

negative Sobolev norm is defined by

‖f‖H−1
p (M)

:= sup

{∫
fgdvolM , ‖g‖H1

p∗ (M) ≤ 1

}
, (5.6)

and the corresponding Banach space is denoted by H−1
p (M).

Proposition 5.1.3. Let 1 ≤ p <∞ and f ∈ H−1
p (M) ∩ L1(M) with

∫
fdvolM = 0.

(i) We have Cd,τmin
|volM |

d−1
p
−d‖f‖Ḣ−1

p (M) ≤ ‖f‖H−1
p (M) ≤ ‖f‖Ḣ−1

p (M) for some
positive constant Cd,τmin

depending on d and τmin.

(ii) We have ‖f‖Ḣ−1
p (M) = inf{‖w‖Lp(M), ∇ · w = f}, where the infimum is taken

over all measurable vector fields w on M with finite p-norm, and where ∇·w = f
means that

∫
fgdvolM = −

∫
w · ∇gdvolM for all g ∈ C∞(M).

Following [Tri92], Besov spaces on a manifold M are defined as real interpolation
of Sobolev spaces.
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Definition 5.1.4 (Real interpolation of spaces). Let A0, A1 be two Banach spaces,
which continuously embed into some Banach space A. We endow the space A0 ∩ A1

with the norm ‖x‖A0∩A1 = max{‖x‖A0 , ‖x‖A1} for x ∈ A0 ∩A1 and the space A0 +A1

with the norm K(x, 1) for x ∈ A0 +A1, where

K(x, λ) := inf{‖x0‖A0 + λ‖x1‖A1 , x = x0 + x1, x0 ∈ A0, x1 ∈ A1}, λ ≥ 0. (5.7)

For θ ∈ [0, 1] and 1 ≤ q ≤ ∞, we let

‖x‖(A0,A1)θ,q
:=

(∫ ∞
0

λ−θqK(x, λ)q
dλ

λ

)1/q

, x ∈ A0 +A1, (5.8)

and (A0, A1)θ,q := {x ∈ A0 + A1, ‖x‖(A0,A1)θ,q < ∞} (with usual modification if
q = ∞). The pair (A0, A1) is called a compatible pair, and (A0, A1)θ,q is the real
interpolation between A0 and A1 of exponents θ and q.

For A,B two Banach spaces and F : A→ B a bounded operator, we let ‖F‖A,B
be the operator norm of F . Let (A0, A1) and (B0, B1) be two compatible pairs. Let
F : A0 + A1 → B0 + B1 be a linear map such that the restriction of F to Aj is a
bounded linear map into Bj (j = 0, 1). Then, the following interpolation inequality
holds [Lun18, Theorem 1.1.6]

‖F‖(A0,A1)θ,q ,(B0,B1)θ,q ≤ ‖F‖1−θA0,B0
‖F‖θA1,B1

. (5.9)

Definition 5.1.5 (Besov space on a manifold). Let 1 ≤ p <∞ and 0 < s < k. The
Besov space Bs

p,q(M) is defined as Bs
p,q(M) := (Lp(M), Hk

p (M))s/k,q.

Basic results from interpolation theory then imply that ‖ · ‖Bsp,q(M) ≤ ‖ · ‖Bs′p,q(M) if
0 < s ≤ s′ < k (see e.g. [Lun18]).

A crucial point in the study conducted in the next sections is the relation between
Wasserstein distances and negative Sobolev norms.

Proposition 5.1.6 (Wasserstein distances and negative Sobolev norms). Let 1 ≤ p <
∞. Let M ∈ M2,d be a manifold with reach τ(M) ≥ τmin, and let µ, ν ∈ Pp1 (RD) be
two probability measures supported on M , absolutely continuous with respect to volM .
Assume that µ, ν ≥ fmin · volM for some fmin > 0. Then, identifying measures with
their densities, we have

Wp(µ, ν) ≤ p−1/pf
1/p−1
min ‖µ− ν‖Ḣ−1

p (M)

≤ Cd,τmin,fmin
‖µ− ν‖H−1

p (M),
(5.10)

for some constant Cd,τmin,fmin
depending on d, τmin and fmin.

In particular, if p = 1, then the first inequality in (5.10) is actually an equality
by the Kantorovitch-Rubinstein duality formula [Vil08, Particular Case 5.16]. This
inequality appears in [Pey18] for p = 2 and in [San15, Section 5.5.1] for measures
having density with respect to the Lebesgue measure. We carefully adapt their proofs
in Section 5.4.2.

5.1.2 Statistical models and the choice of the loss function

Statistical models in interest for this problem are based on the statistical models
Pk,dτmin,L,fmin,fmax

introduced in Chapter 3, with the additional constraints that conditions
on the regularity of the density of the measures are to be made. Furthermore, we
require the noise to be orthogonal to the manifold in those models.
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Definition 5.1.7 (Noise free model). Let d ≤ D be integers, k ≥ 2, 0 ≤ s < k and 1 ≤
p <∞. Let M ∈Mk

d. For s = 0, the set Q0(M) is the set of probability distributions
µ on RD absolutely continuous with respect to the volume measure volM , with a density
f satisfying fmin ≤ f ≤ fmax almost everywhere. For s > 0, the set Qs(M) is the
set of distributions µ ∈ Q0(M), with density f ∈ Bs

p,q(M) satisfying ‖f‖Bsp,q(M) ≤ Ls.
The model Qs,kd is equal to the union of the sets Qs(M) for M ∈Mk,d.

Definition 5.1.8 (Orthogonal noise model). Let d ≤ D be integers, k ≥ 2, 0 ≤ s < k,
1 ≤ p < ∞ and γ ≥ 0. The set Qs,kd (γ) is the set of probability distributions ξ of
random variables (Y,Z) where Y ∼ µ ∈ Qs,kd and Z ∈ B(0, γ) is such that Z ∈ TYM⊥.

As in the previous chapter, we assume in the orthogonal noise model that we
observe a n-sample of law ι#ξ where ξ ∈ Qs,kd (γ): concretely, a n-sample is given
by X1, . . . , Xn, where Xi is equal to Yi + Zi with Yi supported on some manifold M
and Zi ∈ TYiM⊥ is of norm smaller than γ. The goal is then to reconstruct the law
ϑ(ξ) = µ of Yi. We first show that such a task is impossible if the loss function L is
larger than the total variation distance between measures.

Theorem 5.1.9. Let d ≤ D be integers, k ≥ 2, 0 ≤ s < k, 1 ≤ p < ∞. Let
L : P(RD) × P(RD) → [0,∞] be a measurable map with respect to the Borel σ-
algebra associated to the total variation distance on P(RD) × P(RD). Assume that
L(µ, ν) ≥ g(|µ− ν|) for a convex nondecreasing function g : R→ [0,∞] with g(0) = 0.
Then, for any τmin > 0, if fmin is small enough and Lk, Ls, fmax are large enough, we
have

Rn(µ,Qs,kd ,L) ≥ g(cd), (5.11)

for some constant cd > 0.

Examples of such losses include the total variation distance, the Hellinger distance
(with g(x) = x), the Kullback-Leibler divergence (with g(x) = x2/2), and the Lp
distance with respect to some dominating measure (with g(x) = xp). We give a proof
of Theorem 5.1.9, based on Assouad’s lemma, in Section 5.4.7. A simple example
of loss L which is not degenerate for mutually singular measures is given by the Wp

distance. As stated in the introduction, we will therefore choose this loss, and study
Rn(µ,Qs,kd (γ),Wp), the minimax rate of estimation for µ with respect to Wp, where µ
is the first marginal of ξ ∈ Qs,kd (γ).

Remark 5.1.10. For γ > 0, the statistical model Qs,kd (γ) is not identifiable, in the sense
that there exist ξ, ξ′ in the model for which ι#ξ = ι#ξ

′. Having such an equality
implies that Wp(ϑ(ξ), ϑ(ξ′)) ≤Wp(ϑ(ξ), ι#ξ) +Wp(ι#ξ

′, ϑ(ξ′)) ≤ 2γ. This inequality
is tight up to a constant. Indeed, take Y an uniform random variable on the unit
sphere, let ξ be the law of (Y, 0) and ξ′ be the law of ((1 + γ)Y,−γY ). Then, ξ and
ξ′ are in Qs,kd (γ) and ι#ξ = ι#ξ

′, whereas, by the Kantorovitch-Rubinstein duality
formula,

Wp(ϑ(ξ), ϑ(ξ′)) ≥W1(ϑ(ξ), ϑ(ξ′)) ≥ E[φ((1 + γ)Y )− φ(Y )]

for any 1-Lipschitz function φ. Letting φ be the distance to the unit sphere, we obtain
that this distance is larger than γ. In that sense, γ represents the maximal precision
for the estimation of ϑ(ξ).
Remark 5.1.11. For ease of notation, we will write in the following a . b to indicate
that there exists a constant C depending on the parameters p, k, τmin, Ls, Lk, fmin, fmax,
but not on s and D, such that a ≤ Cb, and write a � b to indicate that a . b and
b . a. Also, we will write cα to indicate that a constant c depends on some parameter
α.
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5.2 Kernel density estimation on an unknown manifold

Before building an estimator in the model Qs,kd (γ), let us consider the easier problem
of the estimation of µ in the case where γ = 0 (noise free model) and the support M is
known. Let µ ∈ Qs(M) and Y1, . . . , Yn be a n-sample of law µ. Let µn = 1

n

∑n
i=1 δYi

be the empirical measure of the sample. Identify Rd with Rd × {0}D−d and consider a
kernel K : RD → R satisfying the following conditions:

• Condition A: The kernel K is a smooth radial function with support B(0, 1)
such that

∫
Rd K = 1.

• Condition B(m): The kernel K is of order m ≥ 0 in the following sense. Let
|α| :=

∑d
j=1 αj be the length of a multiindex α = (α1, . . . , αd). Then, for all

multiindexes α0, α1 with 0 ≤ |α0| < m, 0 ≤ |α1| < m+ |α0|, and with |α1| > 0
if α0 = 0, we have ∫

Rd
∂α

0
K(v)vα

1
dv = 0, (5.12)

where vα =
∏d
j=1 v

αj
j and ∂αK is the partial derivative of K in the direction α.

• Condition C(β): The negative part K− of K satisfies
∫
Rd K− ≤ β.

We show in Section 5.4.8 that for every integer m ≥ 0 and real number β > 0, there
exists a kernel K satisfying conditions A, B(m) and C(β). Define the convolution of
K with a measure ν ∈ P(RD) as

K ∗ ν(x) :=

∫
K(x− y)dν(y), x ∈ RD, (5.13)

and, for h > 0, let Kh := h−dK(·/h). Let ρh := Kh ∗volM and let µn,h be the measure
with density Kh ∗ (µn/ρh) with respect to volM . Dividing by ρh ensures that µn,h is a
measure of mass 1. Remark that the computation of µn,h requires to have access to M ,
that is µn,h is an estimator on Qs(M) but not on Qs,kd . By linearity, the expectation
of µn,h is given by µh, the measure having for density Kh ∗ (µ/ρh) on M .

Theorem 5.2.1. Let d ≤ D be integers, 0 < s ≤ k − 1 with k ≥ 2 and 1 ≤ p < ∞.
Let M ∈ Mk,d and µ ∈ Qs(M) with Y1, . . . , Yn a n-sample of law µ. There exists
a constant β depending on the parameters of the model such that, if K is a kernel
satisfying conditions A, B(k) and C(β), then the measure µn,h satisfies the following:

(i) If (log n/n)1/d . h . 1, then, with probability larger than 1− cn−k/d, the density
of µn,h is larger than fmin/2 and smaller than 2fmax everywhere on M .

(ii) We have

E‖µ− µn,h‖H−1
p (M) ≤ ‖µ− µh‖H−1

p (M) + E‖µn,h − µh‖H−1
p (M) (5.14)

. hs+1 +
h1−d/2Id(h)√

n
, (5.15)

where Id(h) = 1 if d ≥ 3, (− log(h))1/2 if d = 2 and h−1/2 if d = 1.

(iii) Let h � n−1/(2s+d) if d ≥ 3, h � (log n/n)1/d if d ≤ 2. Define µ0
n,h = µn,h if

µn,h is a probability measure and µ0
n,h = δX1 otherwise. Then,

EWp(µ
0
n,h, µ) .


n−

s+1
2s+d if d ≥ 3,

n−
1
2 (log n)

1
2 if d = 2,

n−
1
2 if d = 1.

(5.16)



5.2. Kernel density estimation on an unknown manifold 87

(iv) Furthermore, for any 0 ≤ s < k and τmin > 0, if fmin is small enough and if
fmax and Ls are large enough, then there exists a manifold M ∈Mk

d such that

Rn(µ,Wp,Qs(M)) &

{
n−

s+1
2s+d if d ≥ 3,

n−
1
2 if d ≤ 2.

(5.17)

Remark 5.2.2. The condition C(β) on the kernel is only used to ensure that the
measure µn,h has a lower and upper bounded density on M . An alternative possibility
to ensure this property is to assume that the density of µ is Hölder continuous of
exponent δ for some δ > 0. Techniques from [BH19] then imply that ‖µn,h−µ‖L∞(M) .

hδ + n−1/2h−d/2 � 1 with high probability, ensuring in particular that the density is
lower bounded. If sp > d, then every element of Bs

p,q(M) is Hölder continuous (by
[Tri92, Theorem 7.4.2]), and condition C(β) is no longer required. However, Theorem
5.2.1 also holds for non-continuous densities.

Remark 5.2.3. Let K be a nonnegative kernel satisfying conditions A, B(0) and C(β).
It is straightforward to check that Wp(µn, µn,h) . h. Therefore, Theorem 5.2.1(ii) and
Proposition 5.1.6 imply in particular that Wp(µn, µ) . h+ h1−d/2Id(h)√

n
. By choosing h

of the order n−1/d, we obtain that

Wp(µn, µ) .


n−

1
d if d ≥ 3

n−
1
2 (log n)

1
2 if d = 2

n−
1
2 if d = 1.

(5.18)

Such a result was already shown for p = ∞ [Tri+20] with additional logarithmic
factors, with a proof very different from ours. See also [Div21a] for a short proof of
this result when M is the flat torus.

In (5.15), a classical bias-variance trade-off appears. Namely, the bias of the
estimator is of order hs+1, whereas its fluctuations are of order h1−d/2/

√
n (at least

for d ≥ 3). This decomposition can be compared to the classical bias-variance
decomposition for a kernel density estimator of bandwidth h, say for the pointwise
estimation of a function of class Cs on the cube [0, 1]d. It is then well-known (see
e.g. [Tsy08, Chapter 1]) that the bias of the estimator is of order hs whereas its variance
is of order h−d/2/

√
n. The supplementary factor h appearing both in the bias and

fluctuation terms can be explained by the fact that we are using a norm H−1
p (M)

instead of a pointwise norm to quantify the risk of the estimator: in some sense, we
are estimating the antiderivative of the density rather than the density itself. This
is particularly true if d = 1 and p = 1, where the Wasserstein distance between two
measures is given by the L1 distance between the cumulative distribution functions of
the two measures [San15, Proposition 2.17].

Before giving a proof of Theorem 5.2.1, let us explain how to extend it to the
case where the manifold M is unknown and in the presence of orthogonal noise. The
measure µn,h is the measure having density Kh ∗ (µn/ρh) with respect to volM . Of
course, if M is unknown, then so is volM , and we therefore propose the following
estimation procedure of volM , using local polynomial estimation techniques from
[AL19]. Let X1, . . . , Xn be a n-sample in the model with orthogonal noise Qs,kd (γ),
with Xi = Yi+Zi, Yi of law µ and Zi ∈ TYiM⊥ with |Zi| ≤ γ. Let ν(i)

n be the empirical
measure 1

n−1

∑
j 6=i δXj−Xi . For two positive parameters `, ε, the local polynomial
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estimator (π̂i, V̂2,i, . . . , V̂m−1,i) of order m at Xj is defined as an element of

arg min
π,sup2≤j≤m−1‖Vj‖op≤`

ν(i)
n

∣∣∣∣∣∣x− π(x)−
m−1∑
j=2

Vj [π(x)⊗j ]

∣∣∣∣∣∣
2

1{x ∈ B(0, ε)}

 , (5.19)

where the argmin is taken over all orthogonal projectors π of rank d and symmetric
tensors Vj : (RD)j → RD of order j.1 Let T̂i be the image of π̂i and Ψ̂i : v ∈
RD 7→ Xi + v +

∑m−1
j=2 V̂j,i[v

⊗j ]. We summarize the results of [AL19] in the following
proposition (see Section 5.4.1 for details).

Proposition 5.2.4. With probability at least 1 − cn−k/d, if m ≤ k, (log n/n)1/d .
ε . 1, γ . ε and 1 . ` . ε−1, then,

max
1≤i≤n

∠(TYiM, T̂i) . ε
m−1 + γε−1 (5.20)

and, for all 1 ≤ i ≤ n, if v ∈ T̂i with |v| ≤ 3ε, we have

|Ψ̂i(v)−ΨYi ◦ πYi(v)| . εm + γ (5.21)∥∥∥dΨ̂i(v)− d(ΨYi ◦ πYi)(v)
∥∥∥

op
. εm−1 + γε−1. (5.22)

Hence, if γ is of order at most εk, by choosing m = k, it is possible to approximate
the tangent space at Yi with precision εk−1 and the local parametrization with precision
εk. In particular, authors in [AL19] show that, with high probability,

⋃n
i=1 BΨ̂i(T̂i)

(Xi, ε)

is at Hausdorff distance less than εk + γ from M (up to a constant). We now define
an estimator v̂olM of volM by using an appropriate partition of unity (χj)j , which is
built thanks to the next lemma. We say that a set S is δ-sparse if |x− y| ≥ δ for all
distinct points x, y ∈ S. Recall that M δ denotes the δ-neighborhood of the set M .

Lemma 5.2.5 (Construction of partitions of unity). Let δ . 1. Let S ⊂ M δ be a
set which is 7

3δ-sparse, with dH(M δ|S) ≤ 4δ. Let θ : RD → [0, 1] be a smooth radial
function supported on B(0, 1), which is equal to 1 on B(0, 1/2). Define, for y ∈ M δ

and x ∈ S,
χx(y) =

θ
(y−x

8δ

)∑
x′∈S θ

(
y−x′

8δ

) . (5.23)

Then, the sequence of functions χx : M δ → [0, 1] for x ∈ S, satisfies (i)
∑

x∈S χx ≡ 1,
with at most cd non-zero terms in the sum at any given point of M δ, (ii) ‖χx‖Cl(Mδ) ≤
Cl,dδ

−l for any l ≥ 0 and, (iii) χx is supported on BMδ(x, 8δ).

A proof of Lemma 5.2.5 is given in Section 5.4.1. Given a set S0 ⊂ M δ with
dH(M δ|S0) ≤ 5δ/3, the farthest sampling algorithm with parameter 7δ/3 (see e.g. [AL18,
Section 3.3]) outputs a set S ⊂ S0 which is 7δ/3-sparse and 7δ/3-close from S: the
set S then satisfies the hypothesis of Lemma 5.2.5. The next proposition describes
how we may define a minimax estimator v̂olM of the volume measure on M (up to
logarithmic factors) using such a partition of unity.

Theorem 5.2.6 (Minimax estimation of the volume measure on M). Let d ≤ D be
integers and k ≥ 2. Let ξ ∈ Q0,k

d (γ) and let X1, . . . , Xn be a n-sample of law ι#ξ. Let
(log n/n)1/d . ε . 1, γ . ε, 1 . ` . ε−1.

1The existence of such a measurable application follows from the Kuratowski-Ryll-Nardzewski
selection theorem [AB06, Theorem 18.13].
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(i) Let {Xi1 , . . . , XiJ} be the output of the farthest point sampling algorithm with
parameter 7ε/24 and input {X1, . . . , Xn}. With probability larger than 1−cn−k/d,
there exists a sequence of smooth nonnegative functions χj : M ε/8 → [0, 1] for
1 ≤ j ≤ J , such that χj is supported on BMε/8(Xij , ε), ‖χj‖C1(Mε/8) . ε

−1 and∑J
j=1 χj(z) = 1 for z ∈M ε/8, with at most cd non-zero terms in the sum.

(ii) Let Ψ̂i be the local polynomial estimator of order m ≤ k with parameter ε and `,
and T̂i the associated tangent space. Let v̂olM be the measure defined by, for all
continuous bounded functions f : RD → R,∫

f(x)dv̂olM (x) =
J∑
j=1

∫
Ψ̂ij (T̂ij )

f(x)χj(x)dx, (5.24)

where the integration is taken against the d-dimensional Hausdorff measure on
Ψ̂ij (T̂ij ). Then, for 1 ≤ r ≤ ∞, with probability larger than 1− cn−k/d, we have,
for γ . ε2,

Wr

(
v̂olM

|v̂olM |
,

volM
|volM |

)
. γ + εm. (5.25)

(iii) In particular, if m = k, ε � (log n/n)1/d and γ . ε2, we obtain that

EWr

(
v̂olM

|v̂olM |
,

volM
|volM |

)
. γ +

(
log n

n

) k
d

. (5.26)

Also, for any τmin > 0 and 0 ≤ s < k, if fmin is small enough, and if fmax, Lk, Ls
are large enough, then

Rn
(

volM
|volM |

,Qs,kd (γ),Wr

)
& γ +

(
1

n

) k
d

. (5.27)

Let ρ̂h := Kh ∗ v̂olM . We define ν̂n,h as the measure having density Kh ∗ (νn/ρ̂h)

with respect to the measure v̂olM , where νn = 1
n

∑n
i=1 δXi is the empirical measure of

the sample (X1, . . . , Xn).

Theorem 5.2.7. Let d ≤ D be integers, 0 < s ≤ k − 1 with k ≥ 2 and 1 ≤ p < ∞.
Let ξ ∈ Qs,kd (γ), with µ the first marginal of ξ and let X1, . . . , Xn be a n-sample of law
ι#ξ. There exists a constant β depending on the parameters of the model such that the
following holds. Assume that K is a kernel satisfying conditions A, B(k) and C(β),
that (log n/n)1/d . ε . h . 1, γ . ε2, 1 . ` . ε−1 and consider the estimator v̂olM
defined in (5.24) with parameters m, ε and `. Then,

(i) The measure ν̂n,h is a nonnegative measure with probability larger than 1−cn−k/d.

(ii) Define ν̂0
n,h = ν̂n,h if ν̂n,h is a nonnegative measure and ν̂0

n,h = δX1 otherwise.
Then, with probability larger than 1− cn−k/d,

Wp(ν̂
0
n,h, µ

0
n,h) . γ + εm. (5.28)
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(iii) In particular, let m = ds + 1e, ε � (lnn/n)1/d, ` � ε−1 and h � n−1/(2s+d) if
d ≥ 3, h � (log n/n)1/d if d ≤ 2. Then,

EWp(ν̂
0
n,h, µ) . γ +


n−

s+1
2s+d if d ≥ 3

n−
1
2 (log n)

1
2 if d = 2

n−
1
2 if d = 1.

(5.29)

(iv) Furthermore, if 0 ≤ s < k and τmin > 0, for any fmin small enough and fmax,
Ls, Lk large enough, we have

Rn(µ,Qs,kd (γ),Wp) & γ +

{
n−

s+1
2s+d + n−

k
d if d ≥ 3,

n−
1
2 if d ≤ 2.

(5.30)

Remark 5.2.8 (Numerical considerations). There are several considerations worth of
interest concerning the numerical implementation of the estimators v̂olM and ν̂n,h. In
a preprocessing step, one must first solve the optimization problem (5.19) for each
element Xij of the output of the farthest point sampling algorithm. Let Nj be the
number of points of the sample at distance less than ε from Xij (which is with high
probability of order nεd � log n). For k = 2, minimizing (5.19) is equivalent to
performing a PCA on the Nj neighbors of Xij , with a corresponding time complexity
of order O(N3

j ) with high probability. For k ≥ 3, as the space of orthogonal projectors
of rank d is a non-convex manifold, the minimization of the objective function is more
delicate. In [ZJRS16], a Riemannian SVRG procedure is proposed to minimize a
functional defined on some Riemannian manifold. Their procedure outputs values
whose costs are provably close to the minimal value of the objective function, even for
non-convex smooth functions. The implementation of such an algorithm is a promising
way to minimize (5.19) in practice.

Then, the uniform measure onM can be approximated by considering the empirical
measure (ÛM )N of a N -sample of law ÛM := v̂olM/|v̂olM |. To create such a sample,
we may use importance sampling techniques to sample according to the measure with
density χj on Ψ̂ij (T̂ij ). Finally, the measure ν̂(N)

n,h with density Kh ∗ (νn/ρ̂h) with
respect to (ÛM )N may be used as a proxy for ν̂n,h.

5.3 Proofs of the main theorems

5.3.1 Bias of the kernel density estimator

The first step to prove Theorem 5.2.1 is to study the bias of the estimator, given by
the distance ‖ · ‖H−1

p (M) between µh and µ. Write φ̃ for φ/ρh. Introduce the operator
Ah : Bs

p,q(M)→ H−1
p (M) defined for φ ∈ L1(M) and x ∈M by

Ahφ(x) := Kh ∗
(
φ(x)

ρh(x)

)
− φ(x) =

∫
M
Kh(x− y)

(
φ̃(y)− φ̃(x)

)
dvolM (x). (5.31)

Then,

‖µh − µ‖H−1
p (M) = ‖Ahf‖H−1

p (M) ≤ ‖Ah‖Bsp,q(M),H−1
p (M)‖f‖Bsp,q(M)

≤ ‖Ah‖Bsp,q(M),H−1
p (M)Ls.

(5.32)

Proposition 5.3.1. Let 0 < s ≤ k − 1, 1 ≤ p <∞, and assume that the kernel K is
of order k. Then, if h . 1,

‖Ah‖Bsp,q(M),H−1
p (M) . h

s+1. (5.33)
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The proof of Proposition 5.3.1 consists in using the Taylor expansion of a function
φ ∈ Bs

p,q(M), and by using that all polynomial terms of low order in the Taylor
expansion disappear when integrated against K, as the kernel K is of sufficiently large
order. Namely, we have the following property, whose proof is given in Section 5.4.3.

Lemma 5.3.2. Assume that the kernel K is of order k and let B : (RD)j → R be a
tensor of order 1 ≤ j < k. Then, for all x ∈M ,∣∣∣∣∫

M
Kh(x− y)B[(x− y)⊗j ]dy

∣∣∣∣ . ‖B‖op h
k (5.34)

|ρh(x)− 1| . hk−1 and ‖ρh‖Cj(M) . h
k−1−j (5.35)

Let us now give a sketch of proof of Proposition 5.3.1 in the case 0 < s ≤ 1. The
H−1
p (M)-norm of Ahφ is by definition equal to

‖Ahφ‖H−1
p (M) = sup

{∫
(Ahφ)gdvolM , ‖g‖H1

p∗ (M) ≤ 1

}
.

Let g ∈ H1
p∗(M) with ‖g‖H1

p∗ (M) ≤ 1. We use the following symmetrization trick:∫
Ahφ(x)g(x)dx =

∫∫
Kh(x− y)(φ̃(y)− φ̃(x))g(x)dydx

=

∫∫
Kh(y − x)(φ̃(x)− φ̃(y))g(y)dydx (by swapping the indexes x and y)

=
1

2

∫∫
Kh(x− y)(φ̃(y)− φ̃(x))(g(x)− g(y))dydx (5.36)

where, at the last line, we averaged the two previous lines and used that K is an even
function. Informally, as Kh(x− y) = 0 if |x− y| ≥ h, and as ρh is roughly constant,
we expect |φ̃(y)− φ̃(x)| to be of order hs and |g(x)− g(y)| to be of order h, leading
to a bound of

∫
Ahφ(x)g(x)dx of order hs+1. For l ≥ 1, the following analog of the

symmetrization trick holds.

Lemma 5.3.3 (Symmetrization trick). There exists h0 . 1 such that the following
holds. Let 0 ≤ l ≤ k − 1 be even and let K(l)(x) =

∫ 1
0 Kλ(x) (1−λ)l−1λ−l

(l−1)! dλ for x ∈ RD.
Fix x0 ∈ M and let φ ∈ C∞(M) be a function supported in BM (x0, h0). Define
φ̃l := dl(φ̃ ◦ Ψx0) ◦ π̃x0. Let g ∈ Lp∗(M) with ‖g‖Lp∗ (M) ≤ 1. Then, for h . 1,∫
Ahφ(x)g(x)dx is equal to

1

2

∫∫
BM (x0,h0)2

K
(l)
h (x− y)(φ̃l(y)− φ̃l(x)) [πx0(x− y)]⊗l (g(x)− g(y)) dydx+R,

(5.37)

where R is a remainder term satisfying |R| . ‖φ̃‖Hl
p(M)h

l+1. Furthermore, if l ≤ k− 2

is even, we have |R| . ‖φ̃‖Hl+1
p (M)h

l+2.

Lemma 5.3.4. Let η ∈ C∞(M) and let 0 ≤ l ≤ k − 2. Assume that either l = 0 or
that η is supported on BM (x0, h0). Let ηl = dl(η ◦Ψx0) ◦ π̃x0. Then, for any h . 1,(

h−d
∫∫
BM (x0,h0)2

1{|x− y| ≤ h}
‖ηl(x)− ηl(y)‖pop

|x− y|p dxdy

)1/p

.

(∫
BM (x0,h0)

‖ηl+1(x)‖pop dx

)1/p

. ‖η‖Hl+1
p (M).

(5.38)
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Proofs of Lemma 5.3.3 and Lemma 5.3.4 are found in Section 5.4.3. We may now
conclude the proof using those two lemmas. Let φ ∈ C∞(M) be a function supported
in BM (x0, h0) and g ∈ H1

p∗(M) with ‖g‖H1
p∗ (M) ≤ 1.

Case 1: s is even Let l = s. Assume first that p > 1 and that g is smooth. We
have∫∫
BM (x0,h0)2

|Kλh(x− y)|
∥∥∥φ̃l(y)− φ̃l(x)

∥∥∥
op
|g(x)− g(y)||x− y|ldxdy (5.39)

≤ ‖K‖∞(λh)l+1−d
∫∫
BM (x0,h0)2

1{|x− y| ≤ λh}
∥∥∥φ̃l(y)− φ̃l(x)

∥∥∥
op

|g(x)− g(y)|
|x− y| dxdy

≤ ‖K‖∞(λh)l+1

(
(λh)−d

∫∫
BM (x0,h0)2

1{|x− y| ≤ λh}
∥∥∥φ̃l(y)− φ̃l(x)

∥∥∥p
op

dxdy

)1/p

×
(

(λh)−d
∫∫
BM (x0,h0)2

1{|x− y| ≤ λh}|g(x)− g(y)|p∗

|x− y|p∗ dxdy

)1/p∗

. (λh)l+1

(
2p(λh)−d

∫
x∈BM (x0,h0)

∥∥∥φ̃l(x)
∥∥∥p

op
volM (BM (x, λh))dx

)1/p

‖g‖H1
p∗ (M)

. ‖φ̃‖Hl
p(M)(λh)l+1 . ‖φ‖Hl

p(M)(λh)l+1, (5.40)

where at the last line, we used Proposition 3.5.7.7 to control the volume of BM (x, λh)
and, at the second to last line, we used Lemma 5.3.4. Furthermore, it follows from
Leibniz formula for the derivative of a product and Lemma 5.3.2 that ‖φ̃‖Hl

p(M) .
‖φ‖Hl

p(M).
As C∞(M) is dense in H1

p∗(M), inequality (5.40) actually holds for every g ∈
H1
p∗(M). If p = 1, then every function g ∈ H1

p∗(M) with ‖g‖H1
p∗ (M) ≤ 1 is Lipschitz

continuous for the distance dg (see Remark 5.1.2). Using that dg(x, y) ≤ 2|x− y| if
|x− y| ≤ τmin/2, a similar computation than in the case p <∞ shows that inequality
(5.40) also holds if p =∞.

By integrating inequality (5.40) against λ ∈ (0, 1) and by using Lemma 5.3.3, we
obtain the inequality ‖Ahφ‖H−1

p (M) . h
s+1‖φ‖Hs

p(M).

Case 2: s is odd Similarly, we treat the case where s ≤ k − 1 is odd. Let l = s− 1.
Once again, assume first that p > 1 and that g is smooth. Then,∫∫
BM (x0,h0)2

|Kλh(x− y)|
∥∥∥φ̃l(y)− φ̃l(x)

∥∥∥
op
|g(x)− g(y)||x− y|ldxdy

≤
∫∫
BM (x0,h0)2

|Kλh(x− y)|

∥∥∥φ̃l(y)− φ̃l(x)
∥∥∥

op

|x− y|
|g(x)− g(y)|
|x− y| |x− y|l+2dxdy

≤ ‖K‖∞(λh)l+2−d
∫∫
BM (x0,h0)2

1{|x− y| ≤ λh}

∥∥∥φ̃l(y)− φ̃l(x)
∥∥∥

op

|x− y|
|g(x)− g(y)|
|x− y| dxdy

≤ ‖K‖∞(λh)l+2

(λh)−d
∫∫
BM (x0,h0)2

1{|x− y| ≤ λh}

∥∥∥φ̃l(y)− φ̃l(x)
∥∥∥p

op

|x− y|p dxdy


1/p

×
(

(λh)−d
∫∫
BM (x0,h0)2

1{|x− y| ≤ λh}|g(x)− g(y)|p∗

|x− y|p∗ dxdy

)1/p∗
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. (λh)l+2‖φ‖Hs
p(M), (5.41)

where at last line we used Lemma 5.3.4 and the inequality ‖φ̃‖Hl
p(M) . ‖φ‖Hl

p(M). As
in the previous case, the same inequality holds for g ∈ H1

p∗(M) non necessarily smooth
and if p = 1. By using Lemma 5.3.3 and by integrating (5.41) against λ ∈ (0, 1), we
obtain that ‖Ahφ‖H−1

p (M) . h
s+1‖φ‖Hs

p(M).
So far, we have proven that

‖Ahφ‖H−1
p (M) . h

s+1‖φ‖Hs
p(M) (5.42)

for all integers 0 ≤ s ≤ k − 1 and φ a smooth function supported on BM (x0, h0).
To obtain the result when φ is not supported on some ball BM (x0, h0), we use an
appropriate partition of unity. Indeed, for δ = h0/8, standard packing arguments
show the existence of a set S0 of cardinality N ≤ cd|volM |δ−d with dH(M δ|S0) ≤ 5δ/3.
By the remark following Lemma 5.2.5, the output S of the farthest point sampling
algorithm with parameter 7δ/3 satisfies the assumption of Lemma 5.2.5, and is of
cardinality smaller than N . 1. We consider such a covering (BM (x, h0))x∈S , with
associated partition of unity (χx)x∈S . Then, ‖Ahφ‖H−1

p (M) is bounded by∑
x∈S
‖Ah(χxφ)‖H−1

p (M) . h
s+1
∑
x∈S
‖χxφ‖Hs

p(M)

. hs+1
∑
x∈S
‖χx‖Cs(M)‖φ‖Hs

p(M) . h
l+1‖φ‖Hs

p(M),

where the second to last inequality follows from Leibniz rule for the derivative of a
product. Also, the last inequality follows from the fact that (χx)|M = χx ◦ iM , where
iM : M →M δ is the inclusion, which is a Ck function with controlled Ck-norm. Hence,
‖χx‖Cs(M) . ‖χx‖Cs(Mδ) . 1 by the chain rule.

As C∞(M) is dense in Hs
p(M), this gives the desired bound on the operator

norm of Ah : Hs
p(M) → H−1

p (M) for 0 ≤ s ≤ k − 1 an integer. To obtain the
conclusion for Besov spaces Bs

p,q(M), we use the interpolation inequality (5.9). By
the reiteration theorem [Lun18, Theorem 1.3.5], for 0 < s < k − 1, Bs

p,q(M) =

(Lp(M), Hk−1
p (M))s/(k−1),q, with an equivalent norm. Hence, we have, for 0 < s <

k − 1,

‖Ah‖Bsp,q(M),H−1
p (M) . ‖Ah‖1−θLp(M),H−1

p (M)
‖Ah‖θHk−1

p (M),H−1
p (M)

. h1− s
k−1hk

s
k−1 . hs+1,

so that Proposition 5.3.1 is proven for s < k − 1. It remains to prove the inequality in
the case s = k − 1. By Fatou’s lemma and the definition of interpolation spaces (5.8),
we have, for some constant C not depending on s,

‖Ahf‖Bk−1
p,q (M)≤ lim inf

s→k−1
s<k−1

‖Ahf‖Bsp,q(M)≤ lim inf
s→k−1
s<k−1

(
Chs+1‖f‖Bsp,q(M)

)
≤ Chk‖f‖Bk−1

p,q (M),

where we used that ‖f‖Bsp,q(M) ≤ ‖f‖Bk−1
p,q (M). This concludes the proof of Proposition

5.3.1.

5.3.2 Fluctuations of the kernel density estimator

The purpose of this section is to prove the following bound on the fluctuations of the
kernel density estimator.
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Proposition 5.3.5. Let µ ∈ Qs(M) with Y1, . . . , Yn a n-sample of law µ. Assume
that h . 1 and that nhd & 1. Then,

E‖µn,h − µh‖H−1
p (M) . n

−1/2h1−d/2Id(h), (5.43)

where Id(h) is defined in Theorem 5.2.1.

Let ∆ be the Laplace-Beltrami operator on M and G : UM → R be a Green’s
function, defined on {(x, y) ∈M ×M, x 6= y} (see [Aub82, Chapter 4]). By definition,
if f ∈ C∞(M), then the function Gf : x ∈ M 7→

∫
M G(x, y)f(y)dy is a smooth

function satisfying ∆Gf = f , with ∇Gf(x) =
∫
∇xG(x, y)f(y)dy for x ∈M . Hence,

if w = ∇Gf , then ∇ · w = f , so that, Proposition 5.1.3 yields

‖f‖H−1
p (M) ≤ ‖f‖Ḣ−1

p (M) ≤ ‖∇Gf‖Lp(M).

By linearity, we have

‖µn,h − µh‖H−1
p (M) = ‖Kh ∗ (µn − µ)‖H−1

p (M)

≤
∥∥∥∥∥ 1

n

n∑
i=1

∇G
(
Kh ∗

(
δYi

ρh(Yi)

))
− E

[
∇G

(
Kh ∗

(
δYi

ρh(Yi)

))]∥∥∥∥∥
Lp(M)

.
(5.44)

The expectation of the Lp-norm of the sum of i.i.d. centered functions is controlled
thanks to the next lemma.

Lemma 5.3.6. Let U1, . . . , Un be i.i.d. functions on Lp(M). Then, the expectation
E
∥∥ 1
n

∑n
i=1(Ui − EUi)

∥∥p
Lp(M)

is smaller than{
n−p/2

∫ (
E
[
|U1(z)|2

])p/2
dz if p ≤ 2,

Cpn
−p/2 ∫ (E|U1(z)|2

)p/2
dz + Cpn

1−p ∫
M E [|U1(z)|p] dz if p > 2.

(5.45)

Proof. If p ≤ 2, one has by Jensen’s inequality

E

∣∣∣∣∣
n∑
i=1

(Ui(z)− EUi(z))

∣∣∣∣∣
p

≤

E

∣∣∣∣∣
n∑
i=1

(Ui(z)− EUi(z))

∣∣∣∣∣
2
p/2

≤ np/2
(
E|U1(z)|2

)p/2
and (5.45) follows by integrating this inequality against z ∈ M . For p > 2, we use
Rosenthal inequality [Ros70, Theorem 3] for a fixed z ∈ M , and then integrate the
inequality against z ∈M .

It remains to bound E
[∣∣∣∇G(Kh ∗

(
δY

ρh(Y )

))
(z)
∣∣∣p] where Y ∼ µ, z ∈ M and

p ≥ 2.

Lemma 5.3.7. Let p ≥ 2. Then, for all z ∈M and h . 1,

E
[∣∣∣∣∇G(Kh ∗

(
δY

ρh(Y )

))
(z)

∣∣∣∣p] .


1 if d = 1

− log h if p = d = 2

hp+d−dp else.
(5.46)
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A proof of Lemma 5.3.7 is found in Section 5.4.4. From (5.44), Lemma 5.3.6 and
Lemma 5.3.7, we obtain, in the case p ≥ 2 and d ≥ 3

E‖µn,h − µh‖H−1
p (M) ≤

(
E‖µn,h − µh‖pH−1

p (M)

)1/p

≤ Cpn−1/2

∫ (E ∣∣∣∣∇G(Kh ∗
(

δY
ρh(Y )

))
(z)

∣∣∣∣2
)p/2

dz

1/p

+ Cpn
1/p−1

(∫
E
[∣∣∣∣∇G(Kh ∗

(
δY

ωh(Y )

))
(z)

∣∣∣∣p]dz

)1/p

. n−1/2|volM |1/ph1−d/2 + n1/p−1|volM |1/ph1+d/p−d.

Recalling that |volM | ≤ f−1
min . 1 and that nhd & 1, one can check that this quantity

is smaller up to a constant than n−1/2h1−d/2, proving Proposition 5.3.5 in the case
p ≥ 2 and d ≥ 3. A similar computation shows that Proposition 5.3.5 also holds if
p ≤ 2 or d ≤ 2.

5.3.3 Proof of Theorem 5.2.1

The proof of (i) is found in Section 5.4.5. Let us now prove (ii). If 0 < s ≤ k − 1, by
Proposition 5.3.1 and (5.32), we have

‖µ− µh‖H−1
p (M) ≤ Ls‖Ah‖Bsp,q(M),H−1

p (M) . h
s+1.

Combining this inequality with Proposition 5.3.5 yields (5.15).
Let us prove (iii). Let E be the event described in (i). If E is realized, then

µ0
n,h is equal to µn,h, and it satisfies µ0

n,h ≥ fmin
2 volM . Thus, Proposition 5.1.6 yields

Wp(µ
0
n,h, µ) . ‖µn,h − µ‖H−1

p (M). If E is not realized, we bound Wp(µ
0
n,h, µ) by

diam(M), which is itself bounded by a constant depending only on the parameters of
the model (see Proposition 3.5.7.3). Hence,

EWp(µ
0
n,h, µ) ≤ E

[
Wp(µ

0
n,h, µ)1{E}

]
+ diam(M)P(Ec)

. E‖µn,h − µ‖H−1
p (M) + n−k/d,

and we conclude thanks to (5.15).
Finally, a proof of (iv) is found in Section 5.4.7.

5.3.4 Proofs of Theorem 5.2.6 and Theorem 5.2.7

Proof of Theorem 5.2.6(i).
Assume that γ ≤ ε/24. Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn}. By the

remark following Lemma 5.2.5, the existence of a partition of unity satisfying the
requirements of Theorem 5.2.6(i) is ensured as long as dH(M ε/8|X ) ≤ 5ε/24. We have
dH(M ε/8|X ) ≤ dH(M ε/8|Y) + ε/24 ≤ dH(M |Y) + 4ε/24. Hence, the partition of unity
exists if dH(M |Y) ≤ ε/24. This is satisfied with probability larger than 1− cn−k/d if
ε & (log n/n)1/d by [Aam17, Lemma III.23].

Proof of Theorem 5.2.6(ii).
For ease of notation, we will assume that the output {Xi1 , . . . , XiJ} of the farthest

point sampling algorithm is equal to {X1, . . . , XJ}. Write νj for the measure having
density χj with respect to the d-dimensional Hausdorff measure on Ψ̂j(T̂j).
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T̂j MΨ̂j(T̂j)

ΨYj
◦ πYj

Ψ̂j

Xj 0 Yj

2ε

ε

3ε

Sj

Figure 5.1: Illustration of Lemma 5.3.8(a)

Lemma 5.3.8. If (log n/n)1/d . ε . 1, with probability larger than 1 − cn−k/d, for
all j = 1, . . . , J :

(a) The map ΨYj ◦ πYj : BT̂j (0, 3ε) → M is a diffeomorphism on its image, which
contains BM (Yj , 2ε). Let Sj : BM (Yj , 2ε)→ BT̂j (0, 3ε) be the inverse of ΨYj ◦πYj .
Then, Ψ̂j ◦ Sj : BM (Yj , 2ε) → Ψ̂j(T̂j) is also a diffeomorphism on its image,
which contains BΨ̂j(T̂j)

(Xj , ε). Furthermore, for all z ∈ BM (Yj , 2ε), we have

|Ψ̂j ◦ Sj(z)−Xj | ≥ 7
8 |z − Yj |.

(b) The measure (Ψ̂j ◦ Sj)−1
# νj has a density χ̃j on M equal to

χ̃j(z) = χj(Ψ̂j ◦ Sj(z))J(Ψ̂j ◦ Sj)(z), for z ∈M, (5.47)

where the function is extended by 0 for z ∈M\BM (Yj , 2ε).

(c) For z ∈ BM (Yj , 2ε), we have

|Ψ̂j ◦ Sj(z)− z| . εm + γ, (5.48)
|χ̃j(z)− χj(z)| . εm + γ. (5.49)

A proof of Lemma 5.3.8 is found in Section 5.4.6. Let M̂ε =
⋃J
j=1 BΨ̂j(T̂j)

(Xj , ε)

be the support of v̂olM .

Lemma 5.3.9. Let 1 ≤ r ≤ ∞. Let φ : M → R, φ̃ : M̂ε → R be functions satisfying
φmin ≤ φ, φ̃ ≤ φmax for some positive constants φmin, φmax > 0. Assume further that
for all j = 1, . . . , J and for all z ∈M we have, |φ̃(Ψ̂j ◦Sj(z))−φ(z)| ≤ T . Then, with
probability larger than 1− cn−k/d, we have

Wr

(
φ̃ · v̂olM

|φ̃ · v̂olM |
,
φ · volM
|φ · volM |

)
. C0(T + εm + γ), (5.50)

where C0 depends on φmin and φmax.

In particular, inequality (5.25) is a consequence of Lemma 5.3.9 with φ ≡ φ̃ ≡ 1.

Proof. Assume first that r < ∞. If (εm + γ) & 1, there is nothing to prove, so we
may assume that (εm + γ) ≤ 1/(2Ccd), where cd is the constant of Lemma 5.2.5 and
C := supz∈M |χ̃j(z)− χj(z)|/(εm + γ). We have the bound
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Wr

(
φ̃ · v̂olM

|φ̃ · v̂olM |
,
φ · volM
|φ · volM |

)
=

1

|φ̃ · v̂olM |1/r
Wr

(
φ̃ · v̂olM , φ · volM

|φ̃ · v̂olM |
|φ · volM |

)

≤ 1

|φ̃ · v̂olM |1/r

(
Wr

 J∑
j=1

φ̃ · νj ,
J∑
j=1

(Ψ̂j ◦ Sj)−1
# (φ̃ · νj)


+Wr

 J∑
j=1

(Ψ̂j ◦ Sj)−1
# (φ̃ · νj), φ · volM

|φ̃ · v̂olM |
|φ · volM |

)
(5.51)

We use Proposition 5.1.6 to bound the second term in (5.51). By a change of
variables, the density of (Ψ̂j ◦ Sj)−1

# (φ̃ · νj) is given by φ̃j : z 7→ φ̃(Ψ̂j ◦ Sj(z))χ̃j(z).
With probability larger than 1− cn−k/d, we have for z ∈M ,

J∑
j=1

χ̃j(z) ≥
J∑
j=1

χj(z)− Ccd(εm + γ) ≥ 1− 1

2
=

1

2
.

Hence, by Proposition 5.1.6,

Wr

 J∑
j=1

(Ψ̂j ◦ Sj)−1
# (φ̃ · νj), φ · volM

|φ̃ · v̂olM |
|φ · volM |


≤ r−1/r

(
2

φmin

)1−1/r
∥∥∥∥∥∥

J∑
j=1

φ̃j − φ
|φ̃ · v̂olM |
|φ · volM |

∥∥∥∥∥∥
H−1
r (M)

≤
(

2

φmin
∨ 1

)∥∥∥∥∥∥
n∑
j=1

φ̃j − φ
|φ̃ · v̂olM |
|φ · volM |

∥∥∥∥∥∥
Lr(M)

≤
(

2

φmin
∨ 1

)
∥∥∥∥∥∥

J∑
j=1

φ̃j − φ

∥∥∥∥∥∥
Lr(M)

+
||φ · volM | − |φ̃ · v̂olM ||

|φ · volM |
‖φ‖Lr(M)

 .

Remark that χ̃j(z) ≤ 2 for any z ∈M . Therefore, we have according to Lemma 5.3.8,
|φ̃j(z)− φ(z)χj(z)| ≤ 2T + φmax|χj(z)− χ̃j(z)| . T + φmax(εm + γ). Hence, we have
the bound,

||φ̃ · v̂olM | − |φ · volM || ≤

∥∥∥∥∥∥
J∑
j=1

φ̃j − φ

∥∥∥∥∥∥
L1(M)

≤

∥∥∥∥∥∥
J∑
j=1

φ̃j − φ

∥∥∥∥∥∥
Lr(M)

|volM |1−1/r

≤

∥∥∥∥∥∥
J∑
j=1

φ̃j − φ

∥∥∥∥∥∥
L∞(M)

|volM | . T + φmax(εm + γ).

(5.52)

As ‖φ‖Lr(M) ≤ |volM |1/rφmax and |φ · volM | ≥ φmin|volM |, we finally obtain that

Wr

 J∑
j=1

(Ψ̂j ◦ Sj)−1
# (φ̃ · νj), φ · volM

|φ̃ · v̂olM |
|φ · volM |

 . Cφmin,φmax (T + εm + γ) ,
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with the constant Cφmin,φmax in the upper bound depending on φmin and φmax, but not
on r.

To bound the first term in (5.51), consider the transport plan
∑J

j=1(id, (Ψ̂j ◦
Sj)
−1)#(φ̃ · νj), which has, according to Lemma 5.3.8, a cost bounded by

J∑
j=1

∫
|y − (Ψ̂j ◦ Sj)−1(y)|rd(φ̃ · νj)(y) . φmax (εm + γ)r |v̂olM |.

As |v̂olM | . |volM | + T + φmax(εm + γ), we obtain the desired bound. By letting
r →∞, and remarking that the different constants involved are independent of r, we
observe that the same bound holds for r =∞.

Remark 5.3.10. Inequality (5.52) with φ ≡ φ′ ≡ 1 gives a bound on the distance
between the total mass of v̂olM and the volume |volM | of M : choosing k = m, it is of
order εk + γ with probability larger than 1− cn−k/d.

Proof of Theorem 5.2.6(iii).
Inequality (5.26) is a consequence of Theorem 5.2.6(ii), whereas the lower bound

on the minimax risk (5.27) is proven in Section 5.4.7.

Proof of Theorem 5.2.7.
Note first that ν̂n,h is indeed a measure of mass 1. We show in Lemma 5.4.6 that

T := max
j=1...J

sup
z∈B(Yj ,ε)

∣∣∣∣Kh ∗
(
νn
ρ̂h

)
(Ψ̂j ◦ Sj(z))−Kh ∗

(
µn
ρh

)
(z)

∣∣∣∣
satisfies T . εm+γ with probability larger than 1−cn−k/d. As fmin/2 ≤ Kh∗(µn/ρh) ≤
2fmax on M by Theorem 5.2.1(i), and as every y ∈ M̂ε is in the image of Ψ̂j ◦ Sj for
some j = 1 . . . J , we have fmin/3 ≤ Kh ∗ (νn/ρ̂h) ≤ 3fmax on M̂ε should εk + γ be
small enough. This proves Theorem 5.2.1(i) and, together with Lemma 5.3.9, this also
proves Theorem 5.2.7(ii). Theorem 5.2.7(iii) is a consequence of Theorem 5.2.7(ii) and
Theorem 5.2.7(iv) is proven in Section 5.4.7.

5.4 Appendix to Chapter 5

5.4.1 Geometric properties of Ck manifolds with positive reach and
their estimators

Let M ∈Mk,d
τmin,L

for some k ≥ 2 and τmin, L > 0. We first give elementary properties
of Ck manifolds.

Lemma 5.4.1. Let x ∈M . The following properties hold:

(i) There exists a map Nx : BTxM (0, r0)→ TxM
⊥ satisfying dNx(0) = 0, and such

that, for u ∈ BTxM (0, r0), we have Ψx(u) = x+u+Nx(u) with |Nx(u)| ≤ L|u|2.

(ii) There exist tensors B1
x, . . . , B

k−1
x of operator norm controlled by a constant

depending on L, d, k and τmin, such that, if u ∈ TxM satisfies |u| ≤ Ck,d,L, then
JΨx(u) = 1 +

∑k−1
i=2 B

i
x[u⊗i] +Rx(u), with |Rx(u)| ≤ C ′k,d,L|u|k.
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Proof. By a Taylor expansion of Ψx at u = 0, we have Ψx(u) = x+ u+Nx(u), with
Nx(u) =

∫ 1
0 d

2Ψx(tu)[u⊗2]dt. Hence, |Nx(u)| ≤ L|u|2. Furthermore, as π̃x ◦Ψx(u) = u,
we have πx(Nx(u)) = 0, i.e. Nx takes its values in TxM⊥. This proves (i).

Let us prove (ii). We have dΨx(u) = idTxM +dNx(u), and dΨx(u)∗dΨx(u) =
idTxM +(dNx(u))∗dNx(u). Therefore,

JΨx(u) =
√

det(dΨx(u)∗dΨx(u)) =
√

det(idTxM + (dNx(u))∗dNx(u)).

One has dNx(u) = dNx(0)+
∑k−1

j=2
djNx(0)
(j−1)! [u⊗(j−1)]+Rx(u), with |Rx(u)| ≤ Ck,L|u|k−1

and dNx(0) = 0. Hence, (dNx(u))∗dNx(u) is written as
∑k−1

j=2 Bj [u
⊗j ] +R′x(u), with

|R′x(u)| ≤ C ′k,l|u|k. The operator norm of this operator is smaller than, say, 1/2 for |u|
sufficiently small, and we conclude the proof by writing a Taylor expansion at 0 of the
function F 7→

√
det(id +F ).

We now prove Lemma 5.2.5, on the construction of smooth partitions of unity
based on some set S which is sufficiently sparse and dense over a tubular neighborhood
of M .

Proof of Lemma 5.2.5. Consider the functions θ and (χx)x∈S as in the statement of
the lemma, and, for y ∈ M δ, let Z(y) =

∑
x′∈S θ

(
y−x′

8δ

)
. As dH(M δ|S) ≤ 4δ, we

have Z(y) ≥ 1 and the quantity χx(y) is well-defined. The function χx is smooth,
and we have

∑
x∈S χx ≡ 1 on M δ. One has dlχx(y) which is written as a sum of

terms of the form dl−jθ
(y−x

8δ

)
dj(Z−1)(y), and dj(Z−1)(y) is equal to a sum of terms

of the form Zj
′−j−2(y)dj

′
Z(y) for 1 ≤ j′ ≤ j. Also,

∥∥∥djθ (y−x′8δ

)∥∥∥
op
≤ Cjδ

−j and∥∥djZ(y)
∥∥

op
≤ Cjδ−j

∑
x∈S 1{|x− y| ≤ 8δ}. Hence, as Z ≥ 1, we have for any l ≥ 0∥∥∥dlχx(y)

∥∥∥
op
≤ C ′lδ−l

∑
x∈S

1{|x− y| ≤ 8δ}.

It remains to bound this sum. If x ∈ B(y, 8δ), then πM (x) ∈ B(πM (y), 10δ). Also,
for x 6= x′ ∈ S, we have |πM (x) − πM (x′)| ≥ |x − x′| − 2δ ≥ 2δ. In particular,
the balls BM (πM (x), δ) for x ∈ S are pairwise disjoint, and are all included in
BM (πM (y), 11δ) . Therefore, if 11δ ≤ τ(M)/4, using Proposition 3.5.8.7 twice, we
obtain that volM (BM (πM (x), δ)) ≥ cdδd, and that∑

x∈S
1{|x− y| ≤ 8δ} ≤

∑
x∈S

1{|x− y| ≤ 8δ}volM (BM (πM (x), δ))

cdδd

≤ volM (BM (πM (y), 11δ))

cdδd
≤ c′d.

This concludes the proof.

We end this section by detailing the properties of the local polynomial estimators
Ψ̂i and T̂i defined in [AL19]. In particular, we prove Proposition 5.2.4. Recall that
Xi = Yi + Zi with Yi ∈ M and |Zi| ≤ γ. Aamari and Levrard introduce tensors V ∗j,i
which are defined as djΨXi(0)/j!, where djΨXi(0) is the jth differential of ΨXi at 0
(see the proof of Lemma 2 in [AL19] for details). In particular, we have V ∗1,i = πYi .
Furthermore, as π̃Yj ◦ΨYj = id, we have πYj ◦ V ∗j,i = 0 for j ≥ 2.

Lemma 5.4.2. With probability larger than 1− cn−k/d, for any 1 ≤ i ≤ n,

(i) We have ∠(TYiM, T̂i) . εm−1 + γε−1 .
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(ii) For v ∈ T̂i, we have Ψ̂i(v) = Xi + v + N̂i(v), where N̂i : T̂i → T̂⊥i is defined by
N̂i(v) =

∑m−1
j=2 V̂j,i[v

⊗j ].

(iii) For any 2 ≤ j < m,
∥∥∥V̂j,i ◦ π̂i − V ∗j,i ◦ πYi∥∥∥

op
. εm−j + γε−j .

(iv) For v ∈ BT̂i(0, 3ε), we have

|Ψ̂i(v)−ΨYi(πYi(v))| . εm + γ, (5.53)

|N̂i(v)−NYi(πYi(v))| . εm + γ, (5.54)∥∥∥dΨ̂i(v)− d(ΨYi ◦ πYi)(v)
∥∥∥

op
. εm−1 + γε−1 (5.55)∥∥∥dN̂i(v)− d(NYi ◦ πYi)(v)

∥∥∥
op
. εm−1 + γε−1. (5.56)

Proof of Proposition 5.2.4. Lemma 5.4.2(i) is stated in Theorem 2 in [AL19]. Remark
that for x ∈ B(Xi, ε), with x̃ = x−Xi, and any orthogonal projection π,∣∣∣∣∣∣x̃− π(x̃)−

m−1∑
j=2

Vj [π(x̃)⊗j ]

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣x̃− π(x̃)−
m−1∑
j=2

π⊥ ◦ Vj [π(x̃)⊗j ]

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
m−1∑
j=2

π ◦ Vj [π(x̃)⊗j ]

∣∣∣∣∣∣
2

so that we may always assume that the tensors V̂j,i minimizing the criterion (5.19)
satisfy π̂i ◦ V̂j,i = 0 for j ≥ 2. This proves Lemma 5.4.2(ii).

We prove Lemma 5.4.2(iii) by induction on 2 ≤ j < m. The result for j = 2 is
stated in [AL19, Theorem 2]. It is shown in [AL19] (see Equation (3)) that there exist
tensors V ′j,i for 1 ≤ j < m satisfying with probability larger than 1− cn−k/d,∥∥V ′j,i ◦ πYi∥∥op

. εm−j + γε−j . (5.57)

The tensors V ′j,i are defined by the relations, for y ∈M close enough to Yi,

y − Yi = πYi(y − Yi) +
m−1∑
j=2

V ∗j,i[πYi(y − Yi)⊗j ] +R(y − Yi)

y − Yi − π̂i(y − Yi)−
m−1∑
j=2

V̂j,i[π̂i(y − Yi)⊗j ] =

m−1∑
j=1

V ′j,i[πYi(y − Yi)⊗j ] +R′(y − Yi),

with |R(y − Yi)|, |R′(y − Yi)| . εm, see the proof of Lemma 3 in [AL19]. In particular,
for j ≥ 2, noting that πYi ◦ V ∗j,i = 0, we see that V ′j,i ◦ πYi is written as the sum of
(πYi − π̂i) ◦ V ∗j,i + (V ∗j,i ◦ πYi − V̂j,i ◦ π̂i) and of a sum of terms proportional to

V̂j′,i[π̂i ◦ V ∗a1,i ◦ πYi , . . . , π̂i ◦ V ∗aj′ ,i ◦ πYi ], (5.58)

where 2 ≤ j′ < j and a1 + · · ·+ aj′ = j, 1 ≤ a1, . . . , aj′ < j. There exists in particular
an index in the sum which is larger than 2. Assume without loss of generality that
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a1, . . . , al > 1 and al+1, . . . , aj′ = 1, so that π̂i ◦ V̂au,i = 0 for 1 ≤ u ≤ l. Then,∥∥∥V̂j′,i[π̂i ◦ V ∗a1,i ◦ πYi , . . . , π̂i ◦ V ∗al,i ◦ πYi , . . . , π̂i ◦ V
∗
aj′ ,i
◦ πYi ]

∥∥∥
op

=
∥∥∥V̂j′,i[π̂i ◦ (V ∗a1,i − V̂a1,i) ◦ πYi , . . . , π̂i ◦ (V ∗al,i − V̂al,i) ◦ πYi , . . . , π̂i ◦ V

∗
aj′ ,i
◦ πYi ]

∥∥∥
op

. `
l∏

u=1

∥∥∥V ∗au,i ◦ πYi − V̂au,i ◦ πYi∥∥∥op

. `
l∏

u=1

(∥∥∥V ∗au,i ◦ πYi − V̂au,i ◦ π̂i∥∥∥op
+ ` ‖πYi − π̂i‖op

)

. ε−1
l∏

u=1

(
εm−au + γε−au + εm−2 + γε−2

)
. ε−1(εlm−(j−l) + γlε−(j−l)) . εm−j + γε−j ,

where at the last line we use the induction hypothesis as well as Lemma 5.4.2(i), the
fact that

∑l
u=1 au = j − l and that ` . ε−1. As

∥∥∥(πYi − π̂i) ◦ V ∗j,i
∥∥∥

op
. εm−1 + γε−1,

we obtain that ∥∥∥(V ∗j,i ◦ πYi − V̂j,i ◦ π̂i)− V ′j,i ◦ πYi
∥∥∥

op
. εm−j + γε−j .

Hence, using (5.57),∥∥∥V ∗j,i ◦ πYi − V̂j,i ◦ π̂i∥∥∥
op
≤
∥∥∥(V ∗j,i ◦ πYi − V̂j,i ◦ π̂i)− V ′j,i ◦ πYi

∥∥∥
op

+
∥∥V ′j,i ◦ πYi∥∥op

. εm−j + γε−j .

We now may prove (5.53). Indeed, for v ∈ BT̂i(0, 3ε), we have Ψ̂i(v) = Xi +

v +
∑m−1

j=2 V̂j,i[v
⊗j ], whereas by a Taylor expansion, ΨYi ◦ πYi(v) = Yi + πYi(v) +∑m−1

j=2 Vj,i[πYi(v)⊗j ] + R(v), with |R(v)| . εm. By Lemma 5.4.2(iii), the difference
between the two quantities is bounded with high probability by a sum of terms of
order (εm−j + γε−j)|v|j . εm + γ. Inequality (5.54) is directly implied by (5.53) and
Lemma 5.4.2(i). Inequality (5.55) is proven as (5.53), by noting that, for h ∈ T̂i,{

d(ΨYj ◦ πYj )(v)[h] = πYj (h) +
∑m−1

j=2 jV ∗j,i[πYj (v), πYj (h)⊗(j−1)] +R′(v)h

dΨ̂j(v)[h] = h+
∑m−1

j=2 jV̂j,i[v, h
⊗(j−1)],

with ‖R′(v)‖op . ε
m−1. Equation (5.56) is shown in a similar way.

5.4.2 Properties of negative Sobolev norms

Proof of Proposition 5.1.3. The second inequality in (i) is trivial. The assertion (ii)
is stated in [BCS10, Theorem 2.1] for an open set Ω ⊂ Rd, and their proof can
be straightforwardly adapted to the manifold setting. It remains to prove the first
inequality in (i). Note that for any g with ‖∇g‖Lp∗ (M) ≤ 1, one has

∫
fgdvolM =∫

f(g −
∫
gdvolM )dvolM as

∫
fdvolM = 0. Also, by Poincaré inequality (see [BCH18,

Theorem 0.6]),∥∥∥∥g − ∫
M
g

∥∥∥∥
Lp∗ (M)

≤ C
1
pR

d
p∗+ 1

p ‖∇g‖Lp∗ (M) ≤ C
1
pR

d
p∗+ 1

p ,
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B0

B1

B2

B3

B4

x = x0

x1
x2

x3

x4

y = x5

Figure 5.2: Illustration of the construction in the proof of Lemma
5.4.3

where R = max{dg(x, y), x, y ∈M} and C depends on d and on a lower bound κ on
the Ricci curvature of M . Therefore,

∥∥g − ∫M g
∥∥
H1
p∗ (M)

≤ C
1
pR

d
p∗+ 1

p . The quantity κ

can be further lower bounded by a constant depending on τmin and d. Indeed, a bound
on the second fundamental form of M entails a bound on the Ricci curvature according
to Gauss equation (see e.g. [Car92, Chapter 6]), and the second fundamental form is
controlled by the reach of M , see Proposition 3.5.6. As C

1
p ≤ C ∨ 1, to conclude, it

suffices to bound the geodesic diameter of M . This is done in the following lemma.

Lemma 5.4.3. The geodesic diameter ofM satisfies supx,y∈M dg(x, y) ≤ cd|volM |τ1−d
min .

Proof. Consider a covering of M by N open balls of radius r1 = τ(M)/4 (for the
Euclidean distance) and let x, y ∈ M . Such a covering exists with N ≤ cd|volM |r−d1

by standard packing arguments. Let γ : [0, `] → M be a unit speed curve between
x and y. Let B0 be the ball of the covering such that x ∈ B0. If y ∈ B0, then
|x− y| ≤ 2r1, and by [NSW08, Proposition 6.3], we have dg(x, y) ≤ 4r1. Otherwise, let
t0 = inf{t ∈ [0, `], ∀t′ ≥ t, γ(t′) 6∈ B0}. Then x1 := γ(t0) belong to the boundary of B0,
and is also in some other ball B1. By the previous argument, we have dg(x, x1) ≤ 4r1.
If y ∈ B1, then dg(x1, y) ≤ 4r1 and dg(x, y) ≤ 8r1. Otherwise, we define t1 = inf{t ∈
[t0, `], ∀t′ ≥ t, γ(t′) 6∈ B1} and we iterate the same argument. At the end, we obtain
a sequence x = x0, x1, . . . , xI of points in M with associated balls Bi which contain
xi, such that y ∈ BI and dg(xi, xi+1) ≤ 4r1. Furthermore, all the balls Bi are pairwise
distinct. As dg(xI , y) ≤ 4r1, we have ` ≤ (I + 1)4r1 ≤ (N + 1)4r1 ≤ 8Nr1. By letting
γ be a geodesic, we obtain in particular ` = dg(x, y) ≤ 8Nr1 ≤ 8cd|volM |r1−d

1 .

Proof of Proposition 5.1.6. Given a measurable map ρ : [0, 1] → Pp, Et a vectorial
measure absolutely continuous with respect to ρt (see [San15, Box 4.2]) and v(x, t) a
time-depending vector field, defined as the density of Et with respect to ρt, we define
the Benamou-Brenier functional

Bp(ρ,E) :=

∫
|v(x, t)|pdρt(x)dt. (5.59)

The Benamou-Brenier formula [BB00; Bre03] asserts that for µ, ν ∈ Pp1 supported on
some ball of radius R,

W p
p (µ, ν) = min {Bp(ρ,E), ∂tρt +∇ · Et = 0, ρ0 = µ, ρ1 = ν} , (5.60)
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where ρt is supported on the ball of radius R, and the continuity equation ∂tρ+∇·E =
µ− ν has to be understood in the distributional sense, i.e.∫

[0,1]×RD
∂tφ(t, x)dρ(t, x) +

∫
[0,1]×RD

∇φ(t, x) · dE(t, x) = 0, (5.61)

for all φ ∈ C1((0, 1)× B(0, R)) with compact support.
Assume that µ has a density f0 and ν has a density f1 on M . As τ(M) > 0, the

existence of a probability measure of mass 1, supported on M , with density larger than
fmin implies that |volM | is finite, so that M is compact, see Proposition 3.5.7.3. It is
in particular included in a ball B(0, R) for some R large enough. Let w be a vector
field on M with ∇·w = µ− ν in a distributional sense, i.e.

∫
∇g ·w = −

∫
g(µ− ν) for

all g ∈ C1(M). Let ρt = (1− t)µ+ tν and define E the vector measure having density
w with respect to Leb1×volM , where Leb1 is the Lebesgue measure on [0, 1]. Then
(ρ,E) satisfies the continuity equation and E = v · ρ where v(t, x) = w(x)

(1−t)f0(x)+tf1(x)

for t ∈ [0, 1], x ∈M . Hence,

W p
p (µ, ν) ≤

∫ 1

0

∫
1

p
|v|pdρ

=
1

p

∫ 1

0

∫ |w(x)|p
|(1− t)f0(x) + tf1(x)|p ((1− t)f0(x) + tf1(x))dxdt

≤ 1

p

∫
|w(x)|pdx 1

fp−1
min

.

By taking the infimum on vector fields w on M satisfying ∇ · w = µ − ν and using
Proposition 5.1.3, we obtain the conclusion. The second inequality in (5.10) follows
from Proposition 5.1.3.

5.4.3 Proofs of Section 5.3.1

Proof of Lemma 5.3.2. We first prove (5.34). Note that if |x−y| ≥ h for x, y ∈M , then
Kh(x− y) = 0. Hence, by a change of variable, using that BM (x, h) ⊂ Ψx(BTxM (0, h))
as πx is 1-Lipschitz continuous,∫
M
Kh(x− y)B[(x− y)⊗j ]dy =

∫
BTxM (0,h)

Kh(x−Ψx(v))B[(x−Ψx(v))⊗j ]JΨx(v)dv

=

∫
BTxM (0,1)

K

(
x−Ψx(hv)

h

)
B[(x−Ψx(hv))⊗j ]JΨx(hv)dv.

As the functions Ψx and K are Ck, according to Lemma 5.4.1(i) and Lemma 5.4.1(ii),
we can write by a Taylor expansion, for v, u ∈ BTxM (0, r0),

Ψx(v) = x+ v +
∑k−1

i=2
diΨx(0)

i! [v⊗i] +R1(x, v)

JΨx(v) = 1 +
∑k−1

i=2 B
i
x[v⊗i] +R2(x, v)

K(v + u) = K(v) +
∑k−1

i=1
diK(v)
i! [u⊗i] +R3(v, u)

B[(v + u)⊗j ] = B[v⊗j ] +
∑
∅6=σ⊂{1,...,j}B[vσ, uσ

c
],

(5.62)

where |Rj(x, v)| ≤ Cj |v|k for j = 1, 2, |R3(v, u)| ≤ C3|u|k and (vσ, uσ
c
) is the j-tuple

whose lth entry is equal to v if l ∈ σ, u otherwise. We obtain that

x−Ψx(hv)

h
= −v −

k−1∑
i=2

diΨx(0)

i!
[(hv)⊗i]h−1 −R1(x, hv)h−1,
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and that the expression K
(
x−Ψx(hv)

h

)
B[(x−Ψx(hv))⊗j ]JΨx(hv) is written as a sum

of terms of the form

Ci0,i1,i2h
−i0di0K(v)[(di1Ψx(0)[(hv)⊗i1 ])⊗i0 ]Fi2 [(hv)⊗i2 ] (5.63)

for 0 ≤ i0 ≤ k − 1, 2 ≤ i1 ≤ k − 1 and j ≤ i2 ≤ k′, where Fi2 is some tensor of order
i2 and k′ is some integer depending on k and j, plus a remainder term smaller than
‖B‖op |hv|k−1+j up to a constant depending on k, j, Lk and K. The terms for which
i0i1 + i2 − i0 ≥ k are smaller than ‖B‖op h

k up to a constant, whereas the integrals of
the other the terms are null as the kernel is of order k. The first inequality in (5.35) is
proven in a similar manner. Let us now bound ‖ρh‖Cj(M). Given x ∈M , we have to
bound

∥∥dj(ρh ◦Ψx)(0)
∥∥

op
. We have

dj(ρh ◦Ψx)(0) = h−j
∫
BTxM (0,h)

(djK)h(x−Ψx(v))JΨx(v)dv.

Therefore, using the same argument as before, we obtain that
∥∥dj(ρh ◦Ψx)(0)

∥∥
op
.

hk−1−j .

Proof of Lemma 5.3.3. Let 0 ≤ l ≤ k − 1 be even, φ ∈ C∞(M) be supported in
BM (x0, h0) for some h0 small enough and g ∈ Lp∗(M) with ‖g‖Lp∗ (M) ≤ 1. Let
x = Ψx0(u) ∈ BM (x0, h0) and let φ̃x0 = φ̃ ◦ Ψx0 . Recall that φ̃l = dlφ̃x0 ◦ π̃x0 . We
have Kh(x−Ψx0(v)) 6= 0 only if |x−Ψx0(v)| ≤ h. Hence, as |x−Ψx0(v)| ≥ |u− v|
(recall that Ψx0 is the inverse of the projection π̃x0), the function Kh(x−Ψx0(·)) is
supported on BTx0M

(u, h) ⊂ BTx0M
(0, r0) =: B0 for h, h0 small enough. Thus,

Ahφ(x) =

∫
BM (x,h)

Kh(x− y)(φ̃(y)− φ̃(x))dy

=

∫
B0

Kh(x−Ψx0(v))(φ̃x0(v)− φ̃x0(u))JΨx0(v)dv.

We may write

φ̃x0(v)−φ̃x0(u) =

l−1∑
i=1

diφ̃x0(u)

i!
[(v−u)⊗i]+

∫ 1

0
dlφ̃x0(u+λ(v−u))[(v−u)⊗l]

(1− λ)l−1

(l − 1)!
dλ.

Each term
∫
B0
Kh(x−Ψx0(v))

diφ̃x0 (u)
i! [(v − u)⊗i]JΨx0(v)dv is equal to∫

M
Kh(x− y)

diφ̃x0(π̃x0(x))

i!
[(πx0(y − x))⊗i]dy,

and is therefore of order smaller than hk max1≤i≤l
∥∥∥φ̃i(x)

∥∥∥
op

by Lemma 5.3.2. Hence,

Ahφ(x) is equal to the sum of a remainder term of order hk max1≤i≤l
∥∥∥φ̃i(x)

∥∥∥
op

and of

∫ 1

0

∫
B0

Kh(x−Ψx0(v))dlφ̃x0(u+ λ(v − u))[(v − u)⊗l]
(1− λ)l−1

(l − 1)!
JΨx0(v)dvdλ

=

∫ 1

0

∫
B0

Kh(x−Ψx0(v))
(
dlφ̃x0(u+ λ(v − u))− dlφ̃x0(u)

)
[(v − u)⊗l]

(1− λ)l−1

(l − 1)!

JΨx0(v)dvdλ

+R1(x),
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where |R1(x)| . hk max1≤i≤l
∥∥∥φ̃i(x)

∥∥∥
op

by Lemma 5.3.2. We now fix λ ∈ (0, 1) and

write, by a change of variables, and as BTx0M
(u, h) ⊂ B0 for h0, h small enough,

U(x) :=

∫
B0

Kh(x−Ψx0(v))
(
dlφ̃x0(u+ λ(v − u))− dlφ̃x0(u)

)
[(v − u)⊗l]JΨx0(v)dv

=

∫
B0

Kh

(
x−Ψx0

(
u+

w − u
λ

))(
dlφ̃x0(w)− dlφ̃x0(u)

)[(w − u)⊗l

λl

]
JΨx0

(
u+

w − u
λ

)
dw

λd

Note that |Kh(u)−Kh(v)| . h−d−1|u− v|1{|u| ≤ h or |v| ≤ h}, and that, as Ψx0 is
C2, ∣∣∣∣x−Ψx0

(
u+

w − u
λ

)
− x−Ψx0(w)

λ

∣∣∣∣
≤
∣∣∣∣dΨx0(u)[w − u]− (x−Ψx0(w))

λ

∣∣∣∣+
Lk|w − u|2

2λ2

≤ Lk|w − u|2
λ

.
|w − u|2

λ
,

whereas, as JΨx0 is Lipschitz continuous,∣∣∣∣JΨx0

(
u+

w − u
λ

)
− JΨx0(w)

∣∣∣∣ . ∣∣∣∣u+
w − u
λ
− w

∣∣∣∣ . |w − u|λ
.

Hence, U(x) is equal to the sum of

λ−l
∫
B0

Khλ (x−Ψx0(w))
(
dlφ̃x0(w)− dlφ̃x0(u)

)
[(w − u)⊗l]JΨx0 (w) dw

= λ−l
∫
M
Khλ (x− y)

(
φ̃l(y)− φ̃l(x)

)
[(πx0(y − x))⊗l]dy,

and of a remainder term smaller than

λ−l
∫
B0

∣∣∣∣∣λ−dKh

(
x−Ψx0

(
u+

w − u
λ

))
JΨx0

(
u+

w − u
λ

)

−Khλ (x−Ψx0(w)) JΨx0 (w)

∣∣∣∣∣× ∥∥∥dlφ̃x0(w)− dlφ̃x0(u)
∥∥∥

op
|w − u|ldw

. λ−l
∫
|w−u|.λh

(
|w − u|2
(λh)d+1

JΨx0

(
u+

w − u
λ

)
+ |Khλ (x−Ψx0(w)) | |w − u|

λ

)
×
∥∥∥dlφ̃x0(w)− dlφ̃x0(u)

∥∥∥
op
|w − u|ldw

. hl+1(λh)−d
∫
|w−u|.λh

∥∥∥dlφ̃x0(w)− dlφ̃x0(u)
∥∥∥

op
dw.

Putting all the estimates together, we may now write
∫
M Ahφ(x)g(x)dx as S + R2,

where, by the symmetrization trick (using that l is even)

S =

∫∫
M×M

K
(l)
h (x− y)

(
φ̃l(y)− φ̃l(x)

)
[(πx0(y − x))⊗l]g(x)dydx

=

∫∫
M×M

K
(l)
h (x− y)

(
φ̃l(x)− φ̃l(y)

)
[(πx0(x− y))⊗l]g(y)dydx

=
1

2

∫∫
M×M

K
(l)
h (x− y)

(
φ̃l(y)− φ̃l(x)

)
[(πx0(x− y))⊗l](g(x)− g(y))dydx,
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and, as Ahφ is supported on BM (x0, h0 + h) ⊂ BM (x, 2h0) if h is small enough, R2 is
smaller than,

hl+1(λh)−d
∫
x∈BM (x,2h0)

∫
|w−π̃x0 (x)|.λh

∥∥∥dlφ̃x0(w)− dlφ̃x0(π̃x0(x))
∥∥∥

op
|g(x)|dwdx

(5.64)

+

∫
M
hk max

1≤i≤l

∥∥∥φ̃i(x)
∥∥∥

op
|g(x)|dx

. hl+1(λh)−d
∫
w∈BM (x,3h0)

∥∥∥dlφ̃x0(w)
∥∥∥

op

∫
|w−π̃x0 (x)|.λh

|g(x)|dxdw (5.65)

+ hl+1

∫
x∈BM (x,2h0)

∥∥∥φ̃l(x)
∥∥∥

op
|g(x)|dx+

∫
M
hk max

1≤i≤l

∥∥∥φ̃i(x)
∥∥∥

op
|g(x)|dx,

where we also used Lemma 3.5.87. By the chain rule,

max
1≤i≤l

∥∥∥φ̃i(x)
∥∥∥

op
. max

1≤i≤l

∥∥∥diφ̃(x)
∥∥∥

op
.

l∑
i=1

∥∥∥diφ̃(x)
∥∥∥

op
.

Hence, applying Hölder’s inequality and using that ‖g‖Lp∗ (M) ≤ 1 show that the two
last terms in (5.65) are of order hl+1‖φ̃‖Hl

p(M). To bound the first term in (5.65),
remark that by Young’s inequality for integral operators [Sog17, Theorem 0.3.1], if
Tλh(g)(y) = (λh)−d

∫
|x−y|.λh |g(x)|dx, then ‖Tλhg‖Lp∗ (M) . ‖g‖Lp∗ (M). This yields,

by Hölder’s inequality,

hl+1

∫
w∈BM (x,3h0)

∥∥∥dlφ̃x0(w)
∥∥∥

op
Thλ(g)(Ψx0(w))dw . hl+1‖φ̃‖Hl

p(M),

which concludes the proof of the first statement of Lemma 5.3.3. To bound the
remainder term in terms of ‖φ̃‖Hl+1

p (M), we bound the second term in (5.64) in the
same fashion, while, to bound the first term, we write, by a change of variables,∫

BM (x0,2h0)

∫
|w−π̃x0 (x)|.λh

∥∥∥dlφ̃x0(w)− dlφ̃x0(π̃x0(x))
∥∥∥

op
|g(x)|dxdw

≤
∫ 1

0

∫
BM (x0,2h0)

∫
|w−π̃x0 (x)|.λh

∥∥∥dl+1φ̃x0(π̃x0(x) + λ′(w − π̃x0(x)))
∥∥∥

op

× |π̃x0(x)− w||g(x)|dxdwdλ′

. h
∫ 1

0

∫
BM (x0,2h0)

∫
|u−π̃x0 (x)|.λ′λh

∥∥∥dl+1φ̃x0(u)
∥∥∥

op
|g(x)|dxdu

λ′d
dλ′,

and this term is bounded as the first term in (5.65) by h(hλ)d‖φ̃‖Hl+1
p (M), concluding

the proof of Lemma 5.3.3.

Proof of Lemma 5.3.4. By the chain rule, we have that, for any u ∈ BTx0M
(0, h0),∥∥dl+1(η ◦Ψx0)(u)

∥∥
op
. max1≤i≤l+1

∥∥diη(Ψx0(u))
∥∥

op
. Hence, by a change of variables,∫

BM (x0,h0)
‖ηl+1(x)‖pop dx .

∫
BTx0M

(0,h0)
max

1≤i≤l+1

∥∥diη(Ψx0(u))
∥∥p

op
du

.
l+1∑
i=1

∫
BTx0M

(0,h0)

∥∥diη(Ψx0(u))
∥∥p

op
du

.
l+1∑
i=1

∫
BTx0M

(0,h0)

∥∥diη(Ψx0(u))
∥∥p

op
JΨx0(u)du . ‖η‖p

Hl+1
p (M)

,
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where we used at last line that, by Lemma 3.5.8(ii), JΨx0(u) ≥ 1/2 for |u| ≤ h0 if h0

is small enough. To prove the first inequality, write

h−d
∫∫
BM (x0,h0)2

1{|x− y| ≤ h}
‖ηl(x)− ηl(y)‖pop

|x− y|p dxdy

. h−d
∫∫
BTx0M

(0,h0)2

1{|Ψx0(u)−Ψx0(v)| ≤ h}
∥∥dl(η ◦Ψx0)(u)− dl(η ◦Ψx0)(v)

∥∥p
op

|Ψx0(u)−Ψx0(v)|p dudv

. h−d
∫ 1

0

∫∫
BTx0M

(0,h0)2

1{|u− v| ≤ h}
∥∥∥dl+1(η ◦Ψx0)(u+ λ(v − u))

∥∥∥p
op

dudvdλ

. h−d
∫ 1

0

∫∫
BTx0M

(0,2h0)2

1{|w − u| ≤ λh}
∥∥∥dl+1(η ◦Ψx0)(w)

∥∥∥p
op

dudwλ−ddλ

.
∫ 1

0

∫
BTx0M

(0,2h0)

∥∥∥dl+1(η ◦Ψx0)(w)
∥∥∥p

op
dw .

∫
BM (x0,h0)

‖ηl+1(x)‖pop dx,

where at the second to last line, we used that w = u+λ(v−u) is of norm smaller than
2h0 if |u| ≤ h0 and |v−u| ≤ h ≤ h0, and, at the last line, we used that JΨx0(w) ≥ 1/2
for |w| small enough.

5.4.4 Proof of Lemma 5.3.7

Lemma 5.3.7 is heavily based on the following classical control on the gradient of the
Green function.

Lemma 5.4.4. Let x, y ∈M , then

|∇xG(x, y)| . 1

dg(x, y)d−1
≤ 1

|x− y|d−1
. (5.66)

Proof. For d ≥ 2, a proof of Lemma 5.4.4 is found in [Aub82, Theorem 4.13]. See
also [Hir96, Theorem 5.2] for a proof with more explicit constants in the case d ≥ 3.
Constants in their proofs depend on d, bounds on the curvature of M , |volM | and the
geodesic diameter of M . As, those three last quantities can be further bounded by
constants depending on τmin, fmin and d, see Lemma 5.4.3 and [NSW08, Proposition
6.1], this concludes the proof. For d = 1, M is isometric to a circle, for which a closed
formula for G exists [Bur94], and satisfies |∇xG(x, y)| ≤ 1.

Recall that, by Lemma 5.3.2, |ρh(x)| ≥ 1/2 for all x ∈M . Therefore, Lemma 5.4.4
yields∣∣∣∣∇G(Kh ∗

(
δx
ρh

))
(z)

∣∣∣∣ =

∣∣∣∣∫
M
∇zG(z, y)

Kh(x− y)

ρh(x)
dy

∣∣∣∣ . ∫BM (x,h)

‖K‖∞h−d
|z − y|d−1

dy.

If d = 1, this quantity is smaller than a constant as volM (BM (x, h)) . hd by Lemma
3.5.87. We then obtain directly the result in this case by integrating this inequality
against f(x)dx. If d ≥ 2, we use the following argument.

• If |x−z| ≥ 2h and y ∈ BM (x, h), then |z−y| ≥ |x−z|−h ≥ |x−z|/2. Therefore,
by Proposition 3.5.7.7,∫

BM (x,h)

‖K‖∞h−d
|z − y|d−1

dy ≤ 21−d‖K‖∞h−d
|x− z|d−1

volM (BM (x, h)) .
1

|x− z|d−1
.
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• If |x− z| ≤ 2h, then∫
BM (x,h)

‖K‖∞h−d
|z − y|d−1

dy ≤
∫
BM (z,3h)

‖K‖∞h−d
|z − y|d−1

dy

≤
∫
BTzM (0,3h)

‖K‖∞h−dJΨz(u)

|z −Ψz(u)|d−1
du . h−d

∫
BTzM (0,3h)

du

|u|d−1
. h1−d,

where at the last line we used that |z −Ψz(u)| ≥ |u| and that JΨz(u) . 1 by
Lemma 5.4.1.

Hence,

E [|∇(G(Kh ∗ δX))(z)|p] =

∫
M
f(x)|∇(G(Kh ∗ δx))(z)|pdx

≤ fmax

(∫
BM (z,2h)

|∇(G(Kh ∗ δx))(z)|pdx+

∫
M\BM (z,2h)

|∇(G(Kh ∗ δx))(z)|pdx
)

.
∫
BM (z,2h)

h(1−d)pdx+

∫
M\BM (z,2h)

|z − x|(1−d)pdx

. h(1−d)p+d +

∫
M\BM (z,2h)

|z − x|(1−d)pdx.

The latter integral is bounded by∫
2h≤|x−z|≤r0

|z − x|(1−d)pdx+

∫
|x−z|≥r0

|z − x|(1−d)pdx

≤
∫

2h≤|Ψz(u)−z|≤r0
|z −Ψz(u)|(1−d)pJΨz(u)du+ |volM |r(1−d)p

0

.
∫

14h/8≤|u|≤r0
|u|(1−d)pdu+ 1 . h(1−d)p+d if (1− d)p+ d < 0,

where at the last line we use that |u| ≤ |z −Ψz(u)| ≤ 8|u|/7 by Proposition 3.5.8. If
d > 2 or if d = 2 and p > 2, the condition (1− d)p+ d < 0 is always satisfied. If d = 2
and p = 2, then

∫
14h/8≤|u|≤h0

|u|(1−d)pdu is of order − log h, concluding the proof.

5.4.5 Proof of Theorem 5.2.1(i)

Let f be the density of µ and f̃ = f/ρh. By Lemma 5.3.2, fmin(1 − c0h
k−1) ≤ f̃ ≤

fmax(1 + c0h
k−1) for h small enough. We have

Kh ∗ f(x) =

∫
M
Kh(x− y)f̃(y)dy =

∫
BTxM (0,h)

Kh(x−Ψx(v))f̃ ◦Ψx(v)JΨx(v)dv

≥
∫
BTxM (0,h)

Kh(v)f̃ ◦Ψx(v)JΨx(v)dv (5.67)

−
∫
BTxM (0,h)

|Kh(x−Ψx(v))−Kh(v)|f̃ ◦Ψx(v)JΨx(v)dv. (5.68)

By Lemma 3.5.8(i), the quantity |Kh(x−Ψx(v))−Kh(v)| is bounded by
‖K‖C1(Rd)

hd+1 |x−
v−Ψx(v)| . |v|2

hd+1 , so that the second term in the right-hand side of (5.68) is bounded

by Cfmax

∫
BTxM (0,h)

|v|2
hd+1 dv . h. Also, using that |JΨx(v) − 1| ≤ c1|v| by Lemma
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3.5.8, the first term is larger than

fmin(1− c0h
k−1)(1− c1h)

∫
Rd
K+(v)dv − fmax(1 + c1h)(1 + c0h

k−1)

∫
Rd
K−(v)dv

= fmin(1− c2h)

(
1 +

∫
Rd
K−(v)dv

)
− fmax(1 + c2h)

∫
Rd
K−(v)dv

= fmin(1− c2h)− (fmax(1 + c2h)− fmin(1− c2h))

∫
Rd
K−(v)dv

≥ fmin(1− c2h)− (fmax(1 + c2h)− fmin(1− c2h))β

≥ 3fmin/4,

if β < fmin/(4(fmax − fmin)) and h is small enough. Likewise, we show that Kh ∗
f̃(x) ≤ 3fmax/2. It remains to show that |Kh ∗ f̃(x) − Kh ∗ (µn/ρh)(x)| is small
enough for all x ∈ M with high probability. Note that Kh ∗ f̃ − Kh ∗ (µn/ρh) is
L-Lipschitz with L . h−d−1. Let t = fmin/4 and consider a covering of M by
N balls BM (xj , t/(2L)). By standard packing arguments, such a covering exists
with N . (L/t)d. If |Kh ∗ f̃(xj) − Kh ∗ µn(xj)| ≤ t/2 for all j = 1, . . . , N , then
‖Kh ∗ f̃ − Kh ∗ µn‖L∞(M) ≤ t/2 + Lt/(2L) ≤ t. Hence, using Bernstein inequality
[GN15, Theorem 3.1.7], as |Kh(xj − Yi)| ≤ ‖K‖C0(RD)h

−d and Var(Kh(xj − Yi)) ≤
‖K2‖C0(RD)h

−d, we obtain

P(‖Kh ∗ f̃ −Kh ∗ µn‖L∞(M) ≥ t) ≤ P(∃j, |Kh ∗ f̃(xj)−Kh ∗ µn(xj)| ≥ t/2)

. (L/t)dP(|Kh ∗ f̃(xj)−Kh ∗ µn(xj)| ≥ t/2) . h−d(d+1) exp(−Cnhd).
Choosing nhd = C ′ log n for C ′ large enough yields the conclusion.

5.4.6 Proofs of Section 5.3.4

We first prove Lemma 5.3.8.

Proof of (a). The application ΨYj ◦ πYj : BT̂j (0, 3ε) → M is a diffeomorphism
on BT̂j (0, 3ε), as the composition of the diffeomorphisms ΨYj and (πYj )|T̂j (recall

that ∠(T̂j , TYjM) . εm−1 + γε−1 . 1 by Proposition 5.2.4). Furthermore, as π̃Yj is
1-Lipschitz continuous and using the bound on the angle,

BM (Yj , 2ε) ⊂ ΨYj (BTYjM (0, 2ε)) ⊂ (ΨYj ◦ πYj )(BT̂j (0, 3ε)).
This proves the first part of Lemma 5.3.8(a). Let Sj : BM (Yj , 2ε)→ BT̂j (0, 3ε) be the

inverse of ΨYj ◦ πYj . By Lemma 5.4.2(ii), Ψ̂j is injective on T̂j , while, for v ∈ T̂j with
|v| ≤ 3ε, ∥∥∥id−dΨ̂j(v)

∥∥∥
op
≤
∥∥∥∥∥
m−1∑
a=2

aV̂a,j [·, v⊗(a−1)]

∥∥∥∥∥ . `ε ≤ 1/2 (5.69)

if ` . ε−1 is small enough. Hence, Ψ̂j : BT̂j (0, 3ε)→ Ψ̂j(T̂j) is a diffeomorphism on its

image, and Ψ̂j ◦ Sj is a diffeomorphism as a composition of diffeomorphisms. Note
that the inverse of Ψ̂j is given by π̂j(· −Xj), so that BΨ̂j(T̂j)

(Xj , ε) ⊂ Ψ̂j(BT̂j (0, ε)).
Furthermore, by Proposition 3.5.8,

(ΨYj ◦ πYj )(BT̂j (0, ε)) ⊂ ΨYj (BTYj (0, ε)) ⊂ BM (Yj , 8ε/7),

so that (Ψ̂j ◦ Sj)(BM (Yj , 2ε)) contains BΨ̂j(T̂j)
(Xj , ε). Furthermore, these inclusions

of balls also hold for any ε′ ≤ ε, proving that |Ψ̂j ◦ Sj(z)−Xj | ≥ (7/8)|z − Yj | for any
z ∈ BM (Yj , 2ε).
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Proof of (b). The formula for the density χ̃j follows from a change of variables.

Proof of (c). The inequality (5.48) follows from Proposition 5.2.4. We now prove
that

|πYi(z − Ψ̂j ◦ Sj(z))| . ε(εm + γ). (5.70)

Let u ∈ T̂j be such that z = ΨYj ◦ πYj (u) and y = Ψ̂j(u). Recall that Xj ∈ TYjM⊥ by
assumption, so that πYj (Xj−Yj) = 0. Also, by Lemma 3.5.8(i), we have ΨYj (πYj (u)) =

Yj + πYj (u) +NYj (πYj (u)) with NYj (πYj (u)) ∈ TYjM⊥, while by Lemma 5.4.2(ii), we
have Ψ̂j(u) = Xj + u+ N̂j(u) with N̂j(u) ∈ T̂⊥j . Hence,

|πYj (z − y)| = |πYj (Yj + πYj (u) +NYj (πYj (u))− (Xj + u+ N̂j(u)))|
= |πYj (NYj (πYj (u))− N̂j(u))|
≤ ∠(TYjM, T̂j)|NYj (πYj (u))− N̂j(u)|+ |π̂j(NYj (πYj (u))− N̂j(u))|
. (εm−1 + γε−1)(εm + γ) + |π̂j(π⊥Yj (NYj (πYj (u))))|
. (εm−1 + γε−1)(εm + γ) + ∠(TYjM, T̂j)|NYj (πYj (u))|
. (εm−1 + γε−1)(εm + γ + ε2) . (εm−1 + γε−1)(ε2 + γ),

where we used Proposition 5.2.4 to bound ∠(TYjM, T̂j), Lemma 5.4.2 to bound
|NYj (πYj (u))− N̂j(u)| and Lemma 3.5.8 to bound |NYj (πYj (u))|. Recalling that γ . ε2

by assumption, we obtain (5.70).
To prove inequality (5.49), we first bound |χj(Ψ̂j ◦ Sj(z))− χj(z)| and then bound

|J(Ψ̂j ◦ Sj)(z)− 1|. The first bound is based on the following elementary lemma.

Lemma 5.4.5. Let θ : RD → R be a smooth radial function. Then, |θ(x) − θ(y)| ≤
‖θ‖C2(RD)

2 ||x|2 − |y|2|.

Proof. As dθ(0) = 0, one can write θ(x) = θ̃(|x|2) for some function θ̃ which is Lipschitz
continuous with Lipschitz constant ‖d

2θ‖∞
2 . This implies the conclusion.

Recall from the proof of Lemma 5.2.5 that we have χj(z) = ζj(z)/
∑J

i=1 ζi(z) where
ζi = θ

(
z−Xi
ε

)
for some smooth radial function θ, and that furthermore, there is at

most cd non-zero terms in the sum in the denominator, which is always larger than 1.
Hence, if we control for every i = 1, . . . , J the difference ||z−Xi|2−|Ψ̂j ◦Sj(z)−Xi|2|,
then we obtain a control on |χj(z)− χj(Ψ̂j ◦ Sj(z))|. We have by (5.48) and (5.70),

||Ψ̂j ◦ Sj(z)−Xi|2 − |z −Xi|2| = ||Ψ̂j ◦ Sj(z)− z|2 + 2(Ψ̂j ◦ Sj(z)− z) · (z −Xi)|
. (εm + γ)2 + |(Ψ̂j ◦ Sj(z)− z) · (z − Yi)|+ |(Ψ̂j ◦ Sj(z)− z) · (Xi − Yi)|
. (εm + γ)2 + |πYj (Ψ̂j ◦ Sj(z)− z) · πYj (z − Yi)|

+ |π⊥Yj (Ψ̂j ◦ Sj(z)− z) · π⊥Yj (z − Yi)|+ (εm + γ)γ

. (εm + γ)2 + ε(εm + γ)|z − Yi|+ (εk + γ)|π⊥Yj (z − Yi)|+ (εm + γ)γ.

By Proposition 3.5.7.4, |π⊥Yj (z − Yi)| ≤ |π̃⊥Yj (z)| + |π̃⊥Yj (Yi)| . ε2 + |Yi − Yj |2 and
γ, εm . ε2. Hence, we obtain that

||Ψ̂j ◦ Sj(z)−Xi|2 − |z −Xi|2| . (εm + γ)(ε2 + |Yi − Yj |2). (5.71)
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Therefore,∣∣∣∣∣θ
(
z −Xi

ε

)
− θ

(
Ψ̂j ◦ Sj(z)−Xi

ε

)∣∣∣∣∣ . (εm + γ)(ε2 + |Yi − Yj |2)

ε2

= (εm + γ)

(
1 +
|Yi − Yj |2

ε2

)
.

(5.72)

Note also that if |Yi−Yj | ≥ 3ε, then |z−Xi| ≥ |Xi−Xj | − |z−Xj | ≥ 3ε− ε− 3γ ≥ ε,
while by the same argument |Ψ̂j ◦ Sj(z)−Xi| ≥ ε. Hence, both terms in the left-hand
side of (5.72) are null in that case. Thus, we may assume that |Yi − Yj | ≤ 3ε, so

that
∣∣∣θ ( z−Xiε

)
− θ

(
Ψ̂j◦Sj(z)−Xi

ε

)∣∣∣ . εm + γ. From the definition of χj(z), and as the

function t 7→ 1/t is Lipschitz on [1,∞[, we obtain that |χj(z)−χj(Ψ̂j ◦Sj(z))| . εm+γ.
We now prove a bound on |J(Ψ̂j ◦ Sj)(z)− 1|. One has, for u = Sj(z) ∈ T̂j ,

|J(Ψ̂j ◦ Sj)(z)− 1| = |JΨ̂j(u)− J(ΨYj ◦ πYj )(u)|
J(ΨYj ◦ πYj )(u)

.

By Lemma 3.5.8(i) and Lemma 5.4.2(ii), we have
∥∥∥idT̂j −d(ΨYj ◦ πYj )(u)

∥∥∥
op
. |u| and∥∥∥idT̂j −dΨ̂j(u)

∥∥∥
op
. |u|. As a consequence, both Jacobians are larger than, say 1/2

for u small enough, and, as the function A ∈ Rd×d 7→
√

det(A) is cd Lipschitz on the
set of matrices with det(A) ≥ 1/2 and ‖A‖op ≤ 2, we have

|J(Ψ̂j ◦ Sj)(z)− 1| ≤ 2cd

∥∥∥dΨ̂j(u)∗dΨ̂j(u)− d(ΨYj ◦ πYj )(u)∗d(ΨYj ◦ πYj )(u)
∥∥∥

op
.

(5.73)

Recall that Ψ̂j(u) = Xj + u+ N̂j(u) and ΨYj ◦ πYj (u) = Yj + πYj (u) +NYj ◦ πYj (u).
We may write

dΨ̂j(u)∗dΨ̂j(u) = idT̂j + (dN̂j(u))∗dN̂j(u) and

d(ΨYj ◦ πYj )(u)∗d(ΨYj ◦ πYj )(u) = π̂jπYj π̂j + (d(NYj ◦ πYj )(u))∗d(NYj ◦ πYj )(u).

One has
∥∥∥idT̂j − π̂jπYj π̂j

∥∥∥
op

=
∥∥∥π̂jπ⊥Yjπ⊥Yj π̂j∥∥∥op

≤ ∠(TYjM, T̂j)
2 . (εm−1 + γε−1)2 .

εm + γ (recall that γ . ε2). Furthermore, by Lemma 5.4.2(iv),∥∥∥(dN̂j(u))∗dN̂j(u)− (d(NYj ◦ πYj )(u))∗d(NYj ◦ πYj )(u)
∥∥∥

op

≤
(∥∥∥dN̂j(u)

∥∥∥
op

+
∥∥d(NYj ◦ πYj )(u)

∥∥
op

)∥∥∥dN̂j(u)− d(NYj ◦ πYj )(u)
∥∥∥

op

. ε(εm−1 + γε−1) . εm + γ.

Putting together (5.73) with those two inequalities, we obtain that |J(Ψ̂j ◦Sj)(z)−1| .
εm + γ, concluding the proof of Lemma 5.3.8.

To conclude the section, we state and prove Lemma 5.4.6, which gives an upper
bound on the quantity T appearing in Lemma 5.3.9 for φ = Kh ∗ (νn/ρ̂h) and
φ′ = Kh ∗ (µn/ρh).

Lemma 5.4.6. The quantity T = maxj=1...J supz∈B(Yj ,ε) |φ(Ψ̂j◦Sj(z))−φ′(z)| satisfies
T . εm + γ with probability larger than 1− cn−k/d.
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Proof. For z ∈ B(Yj , ε), we have

|φ(Ψ̂j ◦ Sj(z))− φ′(z)| ≤
1

n

n∑
i=1

∣∣∣∣∣Kh ∗ δXi(Ψ̂j ◦ Sj(z))
ρ̂h(Xi)

− Kh ∗ δYi(z)
ρh(Yi)

∣∣∣∣∣ .
Fix an index i ∈ {1, . . . , n}. By Proposition 3.5.7.4, as Xi − Yi ∈ TYiM⊥, we have for
z ∈M ,

||z − Yi|2 − |z −Xi|2| = ||Xi − Yi|2 − 2(z − Yi) · (Xi − Yi)| ≤ γ2 + |z − Yi|2
γ

τmin
.

This inequality together with (5.71) and Lemma 5.4.5 yield

|Kh(Xi − Ψ̂j ◦ Sj(z))−Kh(Yi − z)|
≤ |Kh(Xi − Ψ̂j ◦ Sj(z))−Kh(Xi − z)|+ |Kh(Xi − z)−Kh(Yi − z)|
. h−d−2

(
(εm + γ)(ε2 + |Yi − Yj |2) + γ2 + γ|z − Yi|2

)
.

We may assume that |Yi − Yj | ≤ 3h and |z − Yi| ≤ 2h, for otherwise both quantities in
the left-hand site of the above equation are zero. Hence, as γ . ε . h by assumption,
we have

|Kh(Xi − Ψ̂j ◦ Sj(z))−Kh(Yi − z)| . h−d(εm + γ)1{Yi ∈ BM (z, 2h)}. (5.74)

Let us now bound |ρ̂h(Ψ̂j ◦ Sj(Xi)) − ρh(Yi)|. By the triangle inequality, and using
(5.49) and (5.74), we obtain that this quantity is smaller than

J∑
j=1

∫
M
|χ̃j(z)Kh(Xi − Ψ̂j ◦ Sj(z))− χj(z)Kh(Yi − z)|dz

.
J∑
j=1

∫
M

(
1{z ∈ BM (Yj , 2ε)}(εm + γ)|Kh(Yi − z)|

+ χ̃j(z)h
−d(εm + γ)1{z ∈ BM (Yi, 2h)}

)
dz

. h−d(εm + γ)
J∑
j=1

∫
M

1{z ∈ BM (Yj , 2ε)}1{z ∈ BM (Yi, 2h)}dz

. εdh−d(εm + γ)

J∑
j=1

1{|Yj − Yi| ≤ 4h}

. h−d(εm + γ)
J∑
j=1

1{|Yj − Yi| ≤ 4h}volM (BM (Yj , ε/8))

. h−d(εm + γ)volM (BM (Yi, 5h)) . εm + γ,

where we use that {X1, . . . , XJ} is 7ε/24-sparse, so that {Y1, . . . , YJ} is ε/4-sparse.
Therefore, the balls BM (Yj , ε/8) for |Yj − Yi| ≤ 4h are pairwise distinct, and are
all included in BM (Yi, 4h + ε/8) ⊂ BM (Yi, 5h). We conclude by Proposition 3.5.7.7.
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Letting N(z, 2h) be the number of points Yi belonging to BM (z, 2h), we obtain

|φ(Ψ̂j ◦ Sj(z))− φ′(z)| .
1

n

n∑
i=1

(
|Kh(Yi − z)|(εm + γ)

+ h−d(εm + γ)1{Yi ∈ BM (z, 2h)}
)

.
N(z, 2h)

nhd
(εm + γ).

If, for every z ∈ M and some λ > 0, N(z, 2h) ≤ λnhd, then we have the conclusion.
Let us bound

P0 = P(∃z ∈M, N(z, 2h) > λnhd).

If N(z, 2h) > λnhd, then there exists a point Yi with N(Yi, 4h) ≥ N(z, 2h) > λnhd.
Hence, P0 ≤ nP(N(Y1, 4h) > λnhd). Conditionally on Y1, N(Y1, 4h) = 1 + U
with U a binomial random variable of parameters n − 1 and µ(BM (Y1, 4h)) ≤
fmaxvolM (BM (Y1, 4h)) . hd (see Proposition 3.5.7.7). In particular, for λ large
enough, the probability P0 is smaller than n−k/d by Hoeffding’s inequality.

5.4.7 Lower bounds on minimax risks

In this section, we prove the different lower bounds on minimax risks stated in the
article. The main tool used will be Assouad’s lemma. Fix as in Chapter 3 a statistical
model (Y,H,Q) with Q ⊂ P1(Y) and ϑ : Y → (E,L) a measurable function taking
its values in some semi-metric space (E,L). We further assume that we observe n
i.i.d. observations from law ι#ξ for some ξ ∈ Q, with ι being the addition in our case.

Lemma 5.4.7 (Assouad’s lemma [Yu97]). Let m ≥ 1 be an integer and Qm = {ξσ, σ ∈
{−1, 1}m} ⊂ Q be a set of probability measures. Assume that for all σ, σ′ ∈ {−1, 1}m,

L(ϑ(ξσ), ϑ(ξσ′)) ≥ |σ − σ′|δ, (5.75)

where |σ − σ′| =
∑m

i=1 1{σ(i) 6= σ′(i)} is the Hamming distance between σ and σ′.
Then,

Rn(ϑ,Q,L) ≥ m δ

16

(
1−max

{
TV (ι#ξσ, ι#ξσ′), |σ − σ′| = 1

})2n
. (5.76)

The lower bound on the minimax rates we prove are actually going to hold on the
smaller model of uniform distributions on manifolds.

Definition 5.4.8. Let k ≥ 2 and γ ≥ 0. The set Qkd(γ) is the set of probability
distributions ξ of random variables (Y, Z), where Y follows the uniform distribution
on some manifold M ∈Mk

d with f−1
max ≤ |volM | ≤ f−1

min, and Z ∈ B(0, γ) is such that
Z ∈ TYM⊥. The statistical model is completed by letting (Y,H) be RD ×RD endowed
with its Borel σ-algebra, ι be the addition RD×RD → RD and ϑ(ξ) be the first marginal
µ of ξ.

We write Qkd for Qkd(0). One can check that Qkd(γ) ⊂ Qk,sd (γ), with parameter
Ls = f

−1/p
min ∨ f1−1/p

max . Therefore, a lower bound on the minimax risk on the model
Qkd(γ) yields a lower bound on the minimax risk on the model Qk,sd (γ) should the
parameter Ls be large enough.

We build a subfamily of manifolds indexed by σ ∈ {−1, 1}m following [AL19]. By
[AL19, Section C.2], there exists a manifold M ⊂ Rd+1 of reach 2τmin, of volume
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Cdτ
d
min which contains BRd(0, τmin). Let δ > 0 and consider a family of m points

x1, . . . , xm ∈ BRd(0, τmin/2), with |xi − xi′ | ≥ 4δ for i 6= i′ and cd(τmin/δ)
d ≤ m ≤

Cd(τmin/δ)
d. Let 0 < Λ < δ and let φ : Rd+1 → [0, 1] be a smooth radial function

supported on B(0, 1), with φ ≡ 1 on B(0, 1/2). Let e be the unit vector in the (d+ 1)th
direction. We then let, for σ ∈ {−1, 1}m,

ΦΛ
σ (x) = x+

m∑
i=1

σi + 1

2
Λφ

(
x− xi
δ

)
e. (5.77)

Let MΛ
σ = ΦΛ

σ (M) and µΛ
σ be the the uniform measure on MΛ

σ . If Λ ≤ ck,d,τmin
δk, then

µΛ
σ ∈ Qkd, provided that Lk is large enough [AL19, Lemma C.13]. If σi = 1, the volume

of ΦΛ
σ (BRd(xi, δ)) satisfies, with ωd the volume of the d-dimensional unit ball,∣∣∣volMΛ

σ
(ΦΛ

σ (BRd(xi, δ))− ωdδd
∣∣∣ ≤ ∫

BRd (xi,δ)
|JΦΛ

σ (x)− 1|dx

≤
∫
BRd (xi,δ)

∣∣∣∣∣∣
√

1 + Λ2δ−2

∣∣∣∣∇φ(x− xiδ

)∣∣∣∣2 − 1

∣∣∣∣∣∣dx ≤ CdδdΛ2δ−2.

Hence, for δ small enough, we have ||volMΛ
σ
| − Cdτdmin| ≤ mCdδ

dΛ2δ−2 ≤ Cdτ
d
min/3,

as m ≤ Cd(τmin/δ)
d and Λ ≤ ck,d,τmin

δk. As a consequence, if |σ − σ′| = 1, with for
instance σi = 1 and σ′i = −1, then

TV(µΛ
σ , µ

′Λ
σ ) ≤ max(µΛ

σ (ΦΛ
σ (BRd(xi, δ))), µΛ

σ′(BRd(xi, δ)) ≤ Cd,τmin
δd. (5.78)

We may now prove the different minimax lower bounds using Assouad’s Lemma on
the family {µΛ

σ , σ ∈ {−1, 1}m}.

Proof of Theorem 5.1.9. As g is nondecreasing and convex, by Jensen’s inequality, we
may assume without loss of generality that L = TV. Let Γ = |(µΛ

σ − µΛ
σ′)(Bi)|, where

Bi = BRd(xi, δ) and σ(i) 6= σ′(i). Then, TV(µΛ
σ , µ

Λ
σ′) ≥ |σ − σ′|Γ. Furthermore, if for

instance σ′(i) = 1, Γ ≥ µΛ
σ′(Bi) = (ωdδ

d)/|volMΛ
σ′
| ≥ cdδd/τdmin. By Assouad’s Lemma,

Rn(µ;Qs,kd ; TV) ≥ Rn(µ;Qkd; TV) ≥ m

16
cd

δd

τdmin

(
1− Cd,τmin

δd
)2n

≥ Cd
(

1− Cd,τmin
δd
)2n

.

We obtain the conclusion by letting δ go to 0.

Lemma 5.4.9. For any τmin > 0 and 1 ≤ r ≤ ∞, for fmin small enough and fmax,
Lk large enough, one has

Rn
(

volM
|volM |

,Qkd(γ),Wr

)
& γ + n−k/d. (5.79)

Proof. As, Wr ≥ W1, we may assume that r = 1. Let σ, σ′ ∈ {−1, 1}m with σ(i) 6=
σ′(i). Let pσ(i) = volMΛ

σ
(B(xi, δ)) and UΛ

σ,i = p−1
σ(i)(volMΛ

σ
)|B(xi,δ). By the Kantorovitch-

Rubinstein duality formula, W1(µ, ν) = max
∫
fd(µ− ν), where the maximum is taken

over all 1-Lipschitz continuous functions f : RD → R. Let f : x 7→ x · e. Assume for
instance that σ(i) = −1 and σ′(i) = 1. We have f(x) = 0 for x ∈ BMΛ

σ
(xi, δ) and

f(x) = Λ for x ∈ BMΛ
σ′

(xi, δ/2). Therefore, we have, as pσ′(i) ≤ cδ−d,

W1(UΛ
σ,i, U

Λ
σ′,i) ≥ p−1

σ′(i)Λωd(δ/2)d ≥ c1Λ.
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Note also that |pσ(i) − pσ′(i)| ≤
∣∣∣volMΛ

σ
(ΦΛ

σ (BRd(xi, δ))− ωdδd
∣∣∣ ≤ CdδdΛ2δ−2. Further-

more, ||volMΛ
σ
| − |volMΛ

σ′
|| ≤ ∑m

i=1 |pσ(i) − pσ′(i)| ≤ |σ − σ′|CdδdΛ2δ−2. Let fi be a
function such that W1(UΛ

σ,i, U
Λ
σ′,i) =

∫
fd(UΛ

σ,i − UΛ
σ′,i). One can choose fi such that

fi(xi) = 0, so that the maximum of |fi| on B(xi, δ) is at most δ. One can then change
the value of fi outside the ball without changing the value of the integral, so that fi is
supported on B(xi, 2δ) and 1-Lipschitz continuous. Consider the function f obtained
by gluing together the different functions fi. The function f is 1-Lipschitz continuous,
so that

W1

(
µΛ
σ , µ

Λ
σ′
)
≥

m∑
i=1

(
pσ(i)

|volMΛ
σ
|U

Λ
σ,i −

pσ′(i)

|volMΛ
σ′
|U

Λ
σ′,i

)
(f)

≥
m∑
i=1

pσ(i)

|volMΛ
σ
|(U

Λ
σ,i − UΛ

σ′,i)(f)− |pσ(i) − pσ′(i)|
|UΛ
σ′,i(f)|
|volMΛ

σ
|

− pσ′(i)|UΛ
σ′,i(f)|

∣∣∣∣∣ 1

|volMΛ
σ
| −

1

|volMΛ
σ′
|

∣∣∣∣∣
≥

m∑
i=1

pσ(i)

|volMΛ
σ
|W1(UΛ

σ,i, U
Λ
σ′,i)−

m∑
i=1

c4|pσ(i) − pσ′(i)|δ1{σ(i) 6= σ′(i)}

− c5δ|σ − σ′|δdΛ2δ−2

≥
m∑
i=1

1{σ(i) 6= σ′(i)}(c6δ
dΛ− c4δ

dΛ2δ−1)− c5δ|σ − σ′|δdΛ2δ−2

≥ c7δ
dΛ|σ − σ′|.

Hence, letting Λ = ck,d,τmin,Lkδ
k and δ = n−1, we have, by Assouad’s Lemma,

Rn
(

volM
|volM |

,Qkd(γ),Wr

)
& n−k/d.

Consider now the case γ > 0. Let M0 be the d-dimensional sphere of radius τmin and
M1 be the d-dimensional sphere of radius τmin + δ. Let Y be uniform on M1, and let
ξ be the law of (Y, 0). Also, let ξ′ be the law of ((1 + γ/τmin)Y,−γ/τminY ). Then,
ι#ξ = ι#ξ

′, whereas W1

(
volM0
|volM0

| ,
volM1
|volM1

|

)
≥ γ. We conclude by Le Cam lemma [Yu97]

that Rn
(

volM
|volM | ,Q

k
d(γ),Wr

)
& γ.

Proof of Theorem 5.2.1(iv). Let an = n−
s+1
2s+d if d ≥ 3 and an = n−1/2 if d ≤ 2. As

Wp ≥W1, we may assume without loss of generality that r = 1, and up to rescaling,
we assume that τmin =

√
d. Consider the manifold M ⊂ Rd+1 containing BRd(0,

√
d) of

the previous proof. In particular, M contains the cube [−1, 1]d. We adapt the proof of
Theorem 3 in [WB19b], where authors consider a family of functions fσ : [−1, 1]d →M
indexed by σ ∈ {−1, 1}m, with fσ = 1 + n−1/2

∑m
j=1 σjψj , where (ψj)j=1,...,m are

elements of a wavelet basis of [−1, 1]d (see [WB19b, Appendix E] for details on the
construction of the wavelet basis). Ifm . nd/(2s+d), then t0 ≤ fσ ≤ t1 for some positive
constants t0 < 1 < t1, and ‖fσ‖Bsp,q([−1,1]d) . 1. Define a function gσ by gσ(x) = fσ(x)

if x ∈ [−1, 1]d and gσ(x) = 1 otherwise. The function gσ satisfies t0 ≤ gσ ≤ t1, as well
as ‖gσ‖Bsp,q(M) . ‖fσ‖Bsp,q + |volM |1/p . 1. Such an inequality is clear for the ‖ ·‖Hl

p(M)

norm for l an integer, as ‖gσ‖pHl
p(M)

= ‖gσ‖pHl
p([−1,1]d)

+ ‖gσ‖pHl
p(M\[−1,1]d)

, while the
result follows from interpolation for Besov spaces [Lun18, Corollary 1.1.7]. Also, as
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∫
[−1,1]d fσ = 1, we have

∫
gσ = |volM |, and gσ/|volM | is larger than fmin = t0/|volM |

and smaller than fmax = t1/|volM |. Hence, identifying measures with their densities,
the set

Qm = {µσ = gσ/|volM |, σ ∈ {−1, 1}m}
is a subset of Qs,kd for fmin small enough and Lk, Ls, fmax large enough. Furthermore,
for σ, σ′ ∈ {−1, 1}m, TV(µσ, µσ′) = TV(fσ, f

′
σ), while W1(µσ, µσ′) = W1(fσ, fσ′) by

the Kantorovitch-Rubinstein duality formula. Hence, applying Assouad’s inequality in
the same fashion than in [WB19b, Theorem 3] yields that Rn(µ,Qs,kd ,W1) & an.

Proof of Theorem 5.2.7(iv). According to Lemma 5.4.9,

Rn(µ,Qs,kd ,Wp) ≥ Rn(µ,Qkd,Wp) & γ + n−k/d,

and according to Theorem 5.2.1(iv), Rn(µ,Qs,kd ,Wp) & an.

5.4.8 Existence of kernels satisfying conditions A, B(m) and C(β)

The goal of the section is to prove the existence of a kernel K satisfying the conditions
A, B(m) and C(β) stated at the beginning of Section 5.2.

If K is a radial kernel, we have by integration by parts, as K is smooth with
compact support,∫

Rd
∂α0K(v)vα1dv = Cα0,α1

∫
Rd
K(v)vα1+α0dv = C ′α0,α1

∫
R
K(r)rd+|α0|+|α1|−1dr.

Hence, to show the existence of such a kernel, it suffices to find for every m ≥ 0 a
smooth even function K : R→ R supported on [−1, 1] satisfying

• Condition A′:
∫
RK(r)rd−1dr = (C ′0,0)−1,

• Condition B′(m):
∫
RK(r)rd+i−1dr = 0 for i = 1, . . . ,m,

• Condition C ′(β):
∫
RK(r)−rd−1dr ≤ β.

We show by recursion on m that for any β > 0, there exists a such a kernel. For m = 0,
let K0 be any smooth even nonnegative function supported on [−1, 1]. Then, letting
K = (C ′0,0)−1K0/

∫
RK0, we obtain a kernel K satisfying the desired conditions for

any β > 0. Consider now the case m > 0. Let β > 0.

• If m+ d is even, then any K satisfying conditions A′, B′(m− 1) and C ′(β) will
also satisfy B′(m). Indeed, as K is even, we have

∫
RK(r)rm+d−1dr = 0, so that

the induction step is proven.

• If m+d is odd, let K be a kernel satisfying conditions A′, B′(m−1) and C ′(β/2).
We use the following lemma.

Lemma 5.4.10. For i ≥ 0, let ei : x ∈ R 7→ xi+d−1 and fix an integer m > 0. Then,
for any a ∈ R, let Fa be the set of smooth functions f : (1,∞) → R with compact
support satisfying

∫
fei = 0 for 0 ≤ i < m and

∫
fem = a. Then,

inf

{∫
|f(r)|rd−1dr, f ∈ Fa

}
= 0. (5.80)
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Assume first the lemma. Let a = −1
2

∫
RK(r)rm+d−1 and f ∈ Fa. Then,

∫
(K(r) + f(|r|))rd−1dr = (C ′0,0)−1 +

∫
f(|r|)rd−1dr = (C ′0,0)−1∫

(K(r) + f(|r|))ri+d−1dr =
∫
f(|r|)ri+d−1dr = 0 for 0 < i < m∫

(K(r) + f(|r|))rm+d−1dr =
∫
K(r)rm+d−1dr + 2

∫∞
1 f(r)rm+d−1dr = 0.

Hence, the kernel K + f(| · |) satisfies the condition B′(m). Also, we have, as K(r) = 0
if |r| ≥ 1, ∫

R
(K(r) + f(|r|))−rd−1dr =

∫
R
K(r)−dr + 2

∫ ∞
1

f(r)−rd−1dr

≤ β/2 +

∫ ∞
1
|f(r)|rd−1dr,

where we used at the last line that∫ ∞
1

f(r)−rd−1dr =

∫ ∞
1

f(r)+r
d−1dr =

1

2

∫ ∞
1
|f(r)|rd−1dr.

Lemma 5.4.10 asserts the existence of f ∈ Fa with
∫
|f(r)|rd−1dr ≤ β/2. For such a

choice of f , the kernel K̃ = K + f(| · |) satisfies also C ′(β). Finally, f has a compact
support, included in [0, R] for some R > 0. The kernel K̃1/R is supported on B(0, 1),
and satisfies conditions A′, B′(m) and C ′(β). This concludes the induction step, and
the proof of the existence of kernels satisfying conditions A, B(m) and C(β).

Proof of Lemma 5.4.10. Consider functions f supported on [r0, r1] for some 1 < r0 ≤
r1 to fix. Let Gr0,r1 be the subspace of L2([r0, r1]) spanned by the functions ei for
0 ≤ i ≤ m−1 and let gm be the projection of em on G⊥r0,r1 the orthogonal space ofGr0,r1 ,
with L2 norm `. The function f = agm

`2
is a polynomial of degree m restricted to [r0, r1]

and satisfies
∫
fei = 0 for 0 ≤ i ≤ m−1 by construction, with

∫
fem = a

`2

∫
emgm = a.

Also, we have for any polynomial P ∈ Gr0,r1 ,

‖em − P‖2L2([r0,r1]) =

∫ r1

r0

|rm+d−1 − P (r)|2dr =

∫ r1
r0

1
r0|(r0r)

d+m−1 − P (rr0)|2dr

= r
2(d+m)−1
0

∫ r1
r0

1
|rd+m−1 − r−(d+m−1)

0 P (rr0)|2dr.

As r 7→ r
−(d+m−1)
0 P (rr0) is an element of G1,r1/r0 , letting r1 = 2r0, we obtain

`2 = ‖gm‖2L2([r0,r1]) = min
P∈Gr0,r1

‖em − P‖2L2([r0,r1])

= r
2(d+m)−1
0 min

P∈G1,2

‖em − P‖2L2([1,2]) = Cr
2(d+m)−1
0 ,

where C = Cm > 0 is the distance between em restricted to [1, 2] and G1,2. The function
f is not smooth so that it does not belong to Fa. To overcome this issue, we consider
a smooth kernel ρ on R satisfying

∫
ρ = 1 and

∫
ρ(r)ridr = 0 for i = 1, . . . ,m+ d− 1,

with support included in BR(0, r0/2). See e.g. [BH19, Section 3.2] for the construction
of such a kernel ρ. The map ρ ∗ f is supported on (1,∞) and it is straightforward to
check that ρ ∗ f ∈ Fa for r0 > 2. By Young’s inequality, ‖ρ ∗ f‖L2(R) ≤ ‖ρ‖∞‖f‖L2(R),
so that∫
|ρ ∗ f(r)|rd−1dr ≤

(∫ 5r0/2

r0/2
r2d−2dr

)1/2

‖ρ ∗ f‖L2(R) ≤
(
cdr

2d−1
0

)1/2
‖ρ‖∞‖f‖L2(R)

≤ Cd,mar−m0

By letting r0 goes to ∞, we see that inf
{∫
|f(r)|rd−1dr, f ∈ Fa

}
= 0.
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Part II

Statistical descriptors in the space
of persistence diagrams
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Chapter 6

Structure of the space of
persistence diagrams

In this chapter, we make the connection between the p-bottleneck metrics between
persistence diagrams introduced in Chapter 3 and optimal partial transport metrics
introduced by Figalli and Gigli [FG10]. Making this link explicit allows us to introduce
distances FGp between non-discrete measures on Ω := {u = (u1, u2) ∈ R2 : u1 < u2},
while we call the corresponding metric space (Mp,FGp) the space of persistence
measures. In particular, in Section 6.5, we leverage the study of the metric and
topological properties of this space to show the existence of p-Fréchet means of
distributions on Dp.

6.1 Elements of optimal partial transport

Let X be some Polish locally compact metric space. In Chapter 3, we introduced
the theory of optimal transport, which allowed us to compare two measures µ and
ν on P(X ) having the same mass by considering the different ways of transporting
the distribution µ towards the distribution ν. In certain situations, measures having
different masses may naturally appear, while the total mass of a measure may carry
a physical meaning worth of interest. In that case, it is therefore not satisfactory
to normalize the measures, and extending optimal transport to measures of different
masses is needed. This more general problem is referred to as optimal partial transport.
Two main approaches have been proposed in the literature.

A first class of methods consists in relaxing the marginal constraints on the transport
plans π ∈ Π(µ, ν), while penalizing the difference between the marginals of π and µ
and ν (for instance by the Kullback-Leibler divergence). Such approaches were first
introduced for computational purposes, as computing this relaxed distance, called the
Sinkhorn distance, turns out to be a strictly convex problem with fast minimization
procedures available [CD14]. This class of distances was then studied theoretically,
and both the geometry of the corresponding spaces and the statistical properties of
such objects are bustling research topics [Chi+15; KMV16].

Another possibility consists in using a waste function ω : X → (0,+∞) to throw
away the excess mass between µ and ν. Informally, we can now either match an element
of mass µ(dx) to another element ν(dy) with cost d(x, y)p, or throw it away with cost
ω(x). The most investigated case in the literature is the case ω ≡ cst [HR95; Han94;
PR14], although the general case was considered for p = 1 in [Gui02]. In [FG10], Figalli
and Gigli consider measures supported on some bounded open set Ω ⊂ Rd and consider
the waste function ω = d(·, ∂Ω)p, while this problem was then further generalized to
asymmetric settings [MJT14]. The p-bottleneck distances introduced in Chapter 3
share key ideas with the distance introduced by Figalli and Gigli, with the caveat that
the space Ω is not bounded, causing some technical difficulties.
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We introduce the more general problem where some locally compact Polish space
X is partitioned into an open set Ω0 and a closed reservoir of mass R, i.e. X = Ω0 tR.
An element of mass µ(dx) can either be mapped to some ν(dy), with cost d(x, y)p, or
to the reservoir R, with cost d(x,R)p (and similarly for ν). Formally, we introduce
the following generalization of [FG10, Problem 1.1].

Definition 6.1.1. Let p ∈ [1,+∞). LetMp(Ω0,R) be the set of Radon measures µ
supported on Ω0 satisfying ∫

Ω0

d(x,R)pdµ(x) < +∞.

Given µ, ν ∈Mp(Ω0,R), the set of admissible transport plans (or couplings) Adm(µ, ν)
is defined as the set of Radon measures π on X × X satisfying for all Borel sets
A,B ⊂ Ω0,

π(A×X ) = µ(A) and π(X ×B) = ν(B).

The cost of π ∈ Adm(µ, ν) is defined as

Cp(π) :=

∫∫
X×X

d(x, y)pdπ(x, y). (6.1)

The Figalli-Gigli distance FGp(µ, ν) is then defined as

FGp(µ, ν) := inf{Cp(π)1/p : π ∈ Adm(µ, ν)}. (6.2)

Plans π ∈ Adm(µ, ν) realizing the infimum in (6.2) are called optimal. The set of
optimal transport plans between µ and ν for the cost (x, y) 7→ d(x, y)p is denoted by
Optp(µ, ν).

We introduce the following definition, which shows how to build an element of
Adm(µ, ν) given a map f : X → X satisfying some balance condition (see Figure 6.1).

Definition 6.1.2. Let µ, ν ∈ M(Ω0). Consider f : X → X a measurable function
satisfying for all Borel set B ⊂ Ω0

µ(f−1(B) ∩ Ω0) + ν(B ∩ f(R)) = ν(B). (6.3)

Define for all Borel sets A,B ⊂ X ,

π(A×B) = µ(f−1(B) ∩ Ω0 ∩A) + ν(Ω0 ∩B ∩ f(A ∩R)). (6.4)

π is called the transport plan induced by the transport map f .

One can easily check that we have indeed π(A×X ) = µ(A) and π(X ×B) = ν(B)
for any Borel sets A,B ⊂ Ω0, so that π ∈ Adm(µ, ν) (see Figure 6.1).
Remark 6.1.3. Since we have no constraints on π(R×R), one may always assume that
a plan π satisfies π(R×R) = 0, so that measures π ∈ Adm(µ, ν) are supported on

EΩ0
:= (X × X )\(R×R). (6.5)

The case Ω0 = Ω and R = ∂Ω will be particularly relevant to the setting of
Topological Data Analysis. In particular, we will show that the Figalli-Gigli distance
coincides with the p-bottleneck distance between persistence diagrams. If all the results
appearing in the remaining of the chapter hold in the general case, we will settle with
the choice (Ω0,R) = (Ω, ∂Ω) to keep the connection with persistence diagrams explicit.
We will writeMp instead ofMp(Ω, ∂Ω) and call this space the space of persistence
measures, while the quantity Persp(µ) :=

∫
Ω d(x, ∂Ω)pdµ(x) is the total persistence of

µ ∈Mp.
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B

f−1(B) ∩Rf−1(B) ∩ Ω0

f

f

B ∩ f (R)

B ∩ f (Ω0) R
Ω0 B

f−1(B) ∩R

R

Ω0 ν

B ∩ f (R)

B ∩ f (Ω0)

f−1(B) ∩ Ω0

f

f

µ

Figure 6.1: A transport map f must satisfy that the mass ν(B)
(light blue) is the sum of the mass µ(f−1(B) ∩ Ω0) given by µ that is
transported by f onto B (light red) and the mass ν(B ∩ f(R)) coming
from R and transported by f onto B. The case (Ω0,R) = (Ω, ∂Ω) is

displayed.

Remark 6.1.4. The choices of reservoir R and groundspace Ω0 are actually very flexible.
In particular, one can recover the optimal transport problem with waste function w on
Ω0 by letting R be the graph of Ω0 (in Ω0 × R), while Ω0 is identified with Ω0 × {0}.
As such, the following propositions also hold in this framework.

6.2 General properties of Mp

This section is dedicated to general properties of the metric space (Mp,FGp). In
particular, we show that FGp coincides with dp when comparing persistence diagrams,
so thatMp is a metric extension of Dp.
Remark 6.2.1. If a (Borel) measure µ satisfies Persp(µ) <∞, then for any Borel set
A ⊂ Ω satisfying d(A, ∂Ω) := infx∈A d(x, ∂Ω) > 0, we have:

µ(A)d(A, ∂Ω)p ≤
∫
A
d(x, ∂Ω)pdµ(x) ≤

∫
Ω
d(x, ∂Ω)pdµ(x) = Persp(µ) <∞, (6.6)

so that µ(A) <∞. In particular, µ is automatically a Radon measure.

Proposition 6.2.2. Let µ, ν ∈M. The set of transport plans Adm(µ, ν) is sequentially
compact for the vague topology on EΩ. Moreover, if µ, ν ∈Mp, for this topology,

• π ∈ Adm(µ, ν) 7→ Cp(π) is lower semi-continuous.

• Optp(µ, ν) is a non-empty sequentially compact set.

• FGp is lower semi-continuous, in the sense that for sequences (µn)n, (νn)n in
Mp satisfying µn

v−→ µ and νn
v−→ ν, we have

FGp(µ, ν) ≤ lim inf
n→∞

FGp(µn, νn).

Moreover, FGp is a metric onMp.

These properties are mentioned in [FG10, pages 4-5] in the bounded case, and
corresponding proofs adapt straightforwardly to the general case. For the sake of
completeness, we provide a detailed proof in Section 6.6.

For r > 0, let Ωr := {u ∈ Ω : d(u, ∂Ω) > r}.
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Lemma 6.2.3. Let µ ∈ Mp. For r > 0, let µr be the restriction of µ to Ωr. Then
FGp(µr, µ)→ 0 when r → 0. Similarly, if a ∈ Dp, we have dp(ar, a)→ 0.

Proof. Let π ∈ Adm(µ, µr) be the transport plan induced by the identity map on Ωr,
and the projection onto ∂Ω on Ω\Ωr. As π is sub-optimal, one has:

FGp
p(µ, µr) ≤ Cp(π) =

∫
Ω\Ωr

d(x, ∂Ω)pdµ(x) = Persp(µ)− Persp(µr).

Thus, by the monotone convergence theorem applied to µ with the functions fr : x 7→
d(x, ∂Ω)p · 1{x ∈ Ω\Ωr}, FGp(µ, µr) → 0 as r → 0. Similar arguments show that
dp(ar, a)→ 0 as r → 0.

Proposition 6.2.4. For a, b ∈ Dp, FGp(a, b) = dp(a, b).

Proof. Let a, b ∈ Dp be two persistence diagrams. If a and b are finite, than the
equality is shown in [LCO18, Proposition 1].

In the general case, let r > 0. Due to (6.6), the diagrams ar and br defined in
Lemma 6.2.3 have a finite mass (thus finite number of points). Therefore, dp(ar, br) =
FGp(ar, br). By Lemma 6.2.3, the former converges to dp(a, b) while the latter converges
to FGp(a, b), giving the conclusion.

Proposition 6.2.5. The space (Mp,FGp) is a Polish metric space.

As for Proposition 6.2.2, this proposition appears in [FG10, Proposition 2.7] in the
bounded case, while a proof is found in Section 6.6.

We now state one of our main result: a characterization of convergence in
(Mp,FGp).

Theorem 6.2.6. Let µ, µ1, µ2, . . . be measures inMp. Then,

FGp(µn, µ)→ 0⇔
{
µn

v−→ µ,

Persp(µn)→ Persp(µ).
(6.7)

This result is analog to the characterization of convergence of probability measures
in the Wasserstein space (see Chapter 3) and can be found in [FG10, Proposition
2.7] in the case where the ground space is bounded. While the proof of the direct
implication can be easily adapted from [FG10] (it can be found in Section 6.6), a new
proof is needed for the converse implication.

Proof of the converse implication. For a given compact set K ⊂ Ω, we denote its
complementary set in Ω by Kc, its interior set by K̊, and its boundary by ∂K. Let
µ, µ1, µ2 . . . be elements ofMp and assume that µn

v−→ µ and Persp(µn)→ Persp(µ).
Since

FGp(µn, µ) ≤ FGp(µn, 0) + FGp(µ, 0) = Persp(µn)1/p + Persp(µ)1/p,

the sequence (FGp(µn, µ))n is bounded. Thus, if we show that (FGp(µn, µ))n admits
0 as an unique accumulation point, then the convergence holds. Up to extracting a
subsequence, we may assume that (FGp(µn, µ))n converges to some limit. For n ≥ 0,
let πn ∈ Opt(µn, µ) be a corresponding optimal transport plan. Let K be a compact
subset of Ω. Recall from Chapter 3 (Proposition 3.1.8) that relative compactness for
the vague convergence of a sequence (µn)n is equivalent to supn{µn(K)} < ∞ for
every compact K ⊂ Ω. Therefore, for any compact K ⊂ Ω, and n ∈ N,

πn((K × Ω) ∪ (Ω×K)) ≤ µn(K) + µ(K) ≤ sup
k
µk(K) + µ(K) <∞.
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As any compact of EΩ is included is some set of the form (K × Ω) ∪ (Ω × K), for
K ⊂ Ω any compact subset, using Proposition 3.1.8 again, it follows that (πn)n is also
relatively compact for the vague convergence.

Let thus π be the limit of any converging subsequence of (πn)n, whose indexes are
still denoted by n. As µn

v−→ µ, π is necessarily in Optp(µ, µ) (see [FG10, Proposition
2.3]), i.e. π is supported on {(x, x) : x ∈ Ω}. The vague convergence of (µn)n and the
convergence of (Persp(µn))n to Persp(µ) imply that for a given compact set K ⊂ Ω,
we have

lim sup
n→∞

∫
Kc

d(x, ∂Ω)pdµn(x)

= lim sup
n→∞

(
Persp(µn)−

∫
K
d(x, ∂Ω)pdµn(x)

)
= Persp(µ)− lim inf

n

∫
K̊
d(x, ∂Ω)pdµn(x)− lim inf

n

∫
∂K

d(x, ∂Ω)pdµn(x)

≤ Persp(µ)−
∫
K̊
d(x, ∂Ω)pdµ(x) by the Portmanteau theorem

=

∫
Kc

d(x, ∂Ω)pdµ(x),

where the Portmanteau theorem is recalled in Chapter 3. As Persp(µ) is finite, for
ε > 0, there exists some compact set K ⊂ Ω with

lim sup
n

∫
Kc

d(x, ∂Ω)pdµn(x) < ε and
∫
Kc

d(x, ∂Ω)pdµ(x) < ε. (6.8)

Let s : Ω → ∂Ω be the projection on ∂Ω for the metric d. Such a projection is not
unique for q = 1 or for the more general reservoir R, but we can always select a
measurable projection s [CR03]. We consider the following transport plan π̃n (consider
informally that what went from K to Kc and from Kc to K is now transported onto
the diagonal, while everything else is unchanged):

π̃n = πn on K2 t (Kc)2,

π̃n = 0 on K ×Kc tKc ×K,
π̃n(A×B) = πn(A×B) + πn(A× (s−1(B) ∩Kc)) for A ⊂ K, B ⊂ ∂Ω,

π̃n(A×B) = πn(A×B) + πn(A× (s−1(B) ∩K)) for A ⊂ Kc, B ⊂ ∂Ω,

π̃n(A×B) = πn(A×B) + πn((s−1(A) ∩Kc)×B) for A ⊂ ∂Ω, B ⊂ K,
π̃n(A×B) = πn(A×B) + πn((s−1(A) ∩K)×B) for A ⊂ ∂Ω, B ⊂ Kc.

(6.9)

Note that π̃n ∈ Adm(µn, µ): for instance, for A ⊂ K a Borel set,

π̃n(A× Ω) = π̃n(A×K) + π̃n(A×Kc) + π̃n(A× ∂Ω)

= πn(A×K) + 0 + πn(A× ∂Ω) + πn(A× (s−1(∂Ω) ∩Kc))

= πn(A× Ω) = µn(A),

and it is shown likewise that the other constraints are satisfied. As π̃n is suboptimal,
FGp

p(µn, µ) ≤
∫

Ω
2 d(x, y)pdπ̃n(x, y). The latter integral is equal to a sum of different

terms, and we will show that each of them converges to 0. Assume without loss of
generality that the compact set K belongs to an increasing sequence of compact sets
whose union is Ω, with π(∂(K ×K)) = 0 for all compacts of the sequence.
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• We have
∫∫
K2 d(x, y)pdπ̃n(x, y) =

∫∫
K2 d(x, y)pdπn(x, y). The lim sup of the

integral is less than or equal to
∫∫
K2 d(x, y)pdπ(x, y) by the Portmanteau theorem

(applied to the sequence (d(x, y)pdπn(x, y))n), and, recalling that π is supported
on the diagonal of EΩ, this integral is equal to 0.

• For optimality reasons, any optimal transport plan must be supported on the set
{d(x, y)p ≤ d(x, ∂Ω)p + d(y, ∂Ω)p} (this fact is detailed in [FG10, Proposition
2.3]). It follows that∫∫

(Kc)2

d(x, y)pdπ̃n(x, y) =

∫∫
(Kc)2

d(x, y)pdπn(x, y)

≤
∫
Kc

d(x, ∂Ω)pdµn(x) +

∫
Kc

d(y, ∂Ω)pdµ(y).

Taking the lim sup in n, and then letting K goes to Ω, this quantity converges
to 0 by (6.8).

• We have ∫∫
K×∂Ω

d(x, ∂Ω)pdπ̃n(x, y)

=

∫∫
K×∂Ω

d(x, ∂Ω)pdπn(x, y) +

∫∫
K×Kc

d(x, ∂Ω)pdπn(x, y)

=

∫∫
K×Ω

d(x, ∂Ω)pdπn(x, y)−
∫∫

K2

d(x, ∂Ω)pdπn(x, y)

=

∫
K
d(x, ∂Ω)pdµn(x)−

∫∫
K2

d(x, ∂Ω)pdπn(x, y)

By the Portmanteau theorem applied to the sequence (d(x, ∂Ω)pdµn(x))n, the
lim sup of the first term is less than or equal to

∫
K d(x, ∂Ω)pdµ(x). Recall that

we assume that π(∂(K × K)) = 0. By applying the second characterization
of Portmanteau theorem (see Proposition 3.1.11) on the second term to the
sequence (d(x, y)pdπn(x, y))n, and using that π is supported on the diagonal
of EΩ, we obtain that the limsup of the second term is less than or equal to
−
∫∫
K2 d(x, ∂Ω)pdπ(x, y) = −

∫
K d(x, ∂Ω)pdµ(x). Therefore, the lim sup of the

integral is equal to 0.

• The three remaining terms (corresponding to the three last lines of the definition
(6.9)) are treated likewise this last case.

Finally, we have proven that (FGp(µn, µ))n is bounded and that for any converging
subsequence (µnk)k, FGp(µnk , µ) converges to 0. It follows that FGp(µn, µ)→ 0.

Remark 6.2.7. The assumption Persp(µn)→ Persp(µ) is crucial to obtain convergence
with respect to FGp assuming vague convergence. For example, the sequence defined
by µn := δ(n,n+1) converges vaguely to µ = 0 and (Persp(µn))n does converge (it
is constant), while FGp(µn, 0) 9 0. This does not contradict Theorem 6.2.6 since
Persp(µ) = 0 6= limn Persp(µn).

Theorem 6.2.6 implies some useful results. First, it entails that the topology of
the metric FGp is stronger than the vague topology. As a consequence, the following
corollary holds, using Proposition 3.1.12 (Dp is closed inMp for the vague topology).

Corollary 6.2.8. Dp is closed inMp for the metric FGp.
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We recover in particular that the space (Dp,FGp) is a Polish space (Proposition
6.2.5), a result already proved in [MMH11, Theorems 7 and 12] with a different
approach.

Secondly, we show that the vague convergence of µn to µ along with the convergence
of Persp(µn)→ Persp(µ) is equivalent to the weak convergence of a weighted measure.
For µ ∈ Mp, let us introduce the Borel measure with finite mass µ(p) defined, for a
Borel subset A ⊂ Ω, as:

µ(p)(A) =

∫
A
d(x, ∂Ω)pdµ(x). (6.10)

Corollary 6.2.9. The space (Mp,FGp) is homeomorphic to P(Ω) endowed with the
weak topology, through the map µ ∈Mp 7→ µ(p) ∈ P(Ω). In particular, for a sequence
(µn)n and a persistence measure µ ∈Mp, we have

FGp(µn, µ)→ 0 if and only if µ(p)
n

w−→ µ(p).

Proof. We first show the equivalence of the two convergences. Consider µ, µ1, µ2, · · · ∈
Mp and assume that FGp(µn, µ)→ 0. By Theorem 6.2.6, this is equivalent to µn

v−→ µ

and µ(p)
n (Ω) = Persp(µn)→ Persp(µ) = µ(p)(Ω). Since for any continuous function f

compactly supported, the map x 7→ d(x, ∂Ω)pf(x) is also continuous and compactly
supported, µn

v−→ µ implies µ(p)
n

v−→ µ(p). Likewise, the map x 7→ d(x, ∂Ω)−pf(x) is
continuous and compactly supported, so that µ(p)

n
v−→ µ(p) also implies µn

v−→ µ. Hence,
µn

v−→ µ is equivalent to µ(p)
n

v−→ µ(p). By Proposition 3.1.10, the vague convergence
µ

(p)
n

v−→ µ(p) along with the convergence of the masses is equivalent to µ(p)
n

w−→ µ(p).
So far, we have proved that both the application G : µ ∈Mp → µ(p) ∈ P(Ω) and

its inverse are sequentially continuous. As the space Mp is a metric space and the
space P(Ω) is metrizable [Var58], sequential continuity is equivalent to continuity, so
that we have the conclusion.

We end this section with a characterization of relatively compact sets in (Mp,FGp).

Proposition 6.2.10. A set F is relatively compact in (Mp,FGp) if and only if the
set {µ(p) : µ ∈ F} is tight and supµ∈F Persp(µ) <∞.

Proof. From Corollary 6.2.9, the relative compactness of a set F ⊂Mp for the metric
FGp is equivalent to the relative compactness of the set {µ(p) : µ ∈ F} for the weak
convergence. Recall that all µ(p) have a finite mass, as µ(p)(Ω) = Persp(µ) < ∞.
Therefore, one can use Prokhorov’s theorem (Proposition 3.1.9) to conclude.

Remark 6.2.11. This characterization is equivalent to the one described in [MMH11,
Theorem 21] for persistence diagrams. The notions introduced by the authors of off-
diagonally birth-death boundedness, and uniformness are rephrased using the notion
of tightness, standard in measure theory.

We end this section with a remark on the existence of transport maps, assuming
that one of the two measures has a density with respect to the Lebesgue measure
on Ω. We denote by f#µ the pushforward of a measure µ by a map f , defined by
f#µ(A) = µ(f−1(A)) for A a Borel set.

Remark 6.2.12. Following [FG10, Corollary 2.5], one can prove that if µ ∈M2 has a
density with respect to the Lebesgue measure on Ω, then for any measure ν ∈ M2,
there exists an unique optimal transport plan π between µ and ν for the OT2 metric.
The restriction of this transport plan to Ω× Ω is equal to (id, T )#µ where T : Ω→ Ω
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is the gradient of some convex function, whereas the transport plan restricted to
∂Ω × Ω is given by (s, id)#(ν − T#µ), where s : Ω → ∂Ω is the projection on the
diagonal. A proof of this fact in the context of persistence measures would require
to introduce various notions that are out of the scope covered by this chapter. We
refer the interested reader to [FG10, Proposition 2.3] and [AGS08, Theorem 6.2.4] for
details.

6.3 Persistence measures in the finite setting

In practice, many statistical results regarding persistence diagrams are stated for sets
of diagrams with uniformly bounded number of points [Kwi+15; CCO17], and the
specific properties of FGp in this setting are therefore of interest. Introduce for m ≥ 0
the subset Mp

≤m of Mp defined as Mp
≤m := {µ ∈ Mp : µ(Ω) ≤ m}, and the set

Mp
f of finite persistence measures,Mp

f :=
⋃
m≥0M

p
≤m. Define similarly the set D≤m

(resp. Df ). Note that the assumption Persp(a) < ∞ is always satisfied for a finite
diagram a (which is not true for general Radon measures), so that the exponent p is
not needed when defining D≤m and Df .

Proposition 6.3.1. Mp
f (resp. Df ) is dense inMp (resp. Dp) for the metric FGp.

Proof. This is a straightforward consequence of Lemma 6.2.3. Indeed, if µ ∈Mp and
r > 0, then (6.6) implies that µr is of finite mass.

Let Ω̃ = Ω t {∂Ω} be the quotient of Ω by the closed subset ∂Ω—i.e. we encode
the diagonal by just one point (still denoted by ∂Ω). The distance d on Ω

2 induces
naturally a function d̃ on Ω̃2, defined for x, y ∈ Ω by d̃(x, y) = d(x, y), d̃(x, ∂Ω) =
d̃(∂Ω, x) = d(x, s(x)) and d̃(∂Ω, ∂Ω) = 0. However, d̃ is not a distance since one can
have d̃(x, y) > d̃(x, ∂Ω) + d̃(y, ∂Ω). Define

ρ(x, y) := min{d̃(x, y), d̃(x, ∂Ω) + d̃(y, ∂Ω)}. (6.11)

It is straightforward to check that ρ is a distance on Ω̃ and that (Ω̃, ρ) is a Polish space.
One can then define the Wasserstein distance Wp,ρ with respect to ρ for finite measures
on Ω̃ which have the same masses, that is the infimum of C̃p(π̃) :=

∫∫
Ω̃2 ρ(x, y)pdπ̃(x, y),

for π̃ a transport plan with corresponding marginals. The following theorem states
that the problem of computing the FGp metric between two persistence measures with
finite masses can be turn into the one of computing the Wasserstein distances between
two measures supported on Ω̃ with the same mass. Recall that s : Ω → ∂Ω is the
orthogonal projection (or a measurable projection in the general case).

Proposition 6.3.2. Let µ, ν ∈Mp
f and r ≥ µ(Ω)+ν(Ω). Define µ̃ = µ+(r−µ(Ω))δ∂Ω

and ν̃ = ν + (r − ν(Ω))δ∂Ω. Then FGp(µ, ν) = Wp,ρ(µ̃, ν̃).

Before proving Proposition 6.3.2, we need the two following lemmas:

Lemma 6.3.3. Let µ, ν ∈Mp
f and r ≥ max(µ(Ω), ν(Ω)). Let µ̃ := µ+ (r−µ(Ω))δ∂Ω,

ν̃ := ν + (r − ν(Ω))δ∂Ω and s : Ω→ ∂Ω be the orthogonal projection on the diagonal.

1. Define T (µ, ν) the set of plans π ∈ Adm(µ, ν) satisfying π({(x, y) ∈ Ω × ∂Ω :
y 6= s(x)}) = π({(x, y) ∈ ∂Ω× Ω : x 6= s(y)}) = 0 along with π(∂Ω× ∂Ω) = 0.
Then, Optp(µ, ν) ⊂ T (µ, ν).
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2. Let π ∈ T (µ, ν) be such that µ(Ω) + π(∂Ω× Ω) ≤ r. Define ι(π) ∈ Π(µ̃, ν̃) by,
for Borel sets A,B ⊂ Ω,

ι(π)(A×B) = π(A×B),

ι(π)(A× {∂Ω}) = π(A× ∂Ω),

ι(π)({∂Ω} ×B) = π(∂Ω×B),

ι(π)({∂Ω} × {∂Ω}) = r − µ(Ω)− π(∂Ω× Ω) ≥ 0.

(6.12)

Then, Cp(π) =
∫∫

Ω̃×Ω̃ d̃(x, y)pdι(π)(x, y).

3. Let π̃ ∈ Π(µ̃, ν̃). Define κ(π̃) ∈ T (µ, ν) by,
κ(π̃)(A×B) = π̃(A×B) for A,B ⊂ Ω,

κ(π̃)(A×B) = π̃((A ∩ s−1(B))× {∂Ω}) for A ⊂ Ω, B ⊂ ∂Ω,

κ(π̃)(A×B) = π̃({∂Ω} × (B ∩ s−1(A))) for A ⊂ ∂Ω, B ⊂ Ω,

κ(π̃)(∂Ω, ∂Ω) = 0.

Then,
∫∫

Ω̃×Ω̃ d̃(x, y)pdπ̃(x, y) = Cp(κ(π̃)).

Proof.

1. Consider π ∈ Adm(µ, ν), and define π′ that coincides with π on Ω× Ω, and is
such that we enforce mass transported on the diagonal to be transported on
its orthogonal projection: more precisely, for all Borel set A ⊂ Ω, B ⊂ ∂Ω,
π′(A × B) = π((s−1(B) ∩ A) × B) and π′(B × A) = π(B × (s−1(B) ∩ A)).
Note that π′ ∈ T (µ, ν). Since s(x) is the unique minimizer of y 7→ d(x, y)p, it
follows that Cp(π′) ≤ Cp(π), with equality if and only if π ∈ T (µ, ν), and thus
Optp(µ, ν) ⊂ T (µ, ν).

2. Write π̃ = ι(π). The mass π̃({∂Ω} × {∂Ω}) is nonnegative by definition. One
has for all Borel sets A ⊂ Ω,

π̃(A× Ω̃) = π̃(A× Ω) + π̃(A× {∂Ω})
= π(A× Ω) + π(A× ∂Ω) = π(A× Ω) = µ(A) = µ̃(A).

Similarly, π̃(Ω̃×B) = ν̃(B) for all B ⊂ Ω. Observe also that

π̃({∂Ω} × Ω̃) = π̃({∂Ω} × {∂Ω}) + π̃({∂Ω} × Ω) = r − µ(Ω) = µ̃({∂Ω}).

Similarly, π̃(Ω̃× {∂Ω}) = ν̃({∂Ω}). It gives that ι(π) ∈ Π(µ̃, ν̃), so that ι is well
defined. Observe that∫∫

Ω̃×Ω̃
d̃(x, y)pdπ̃(x, y) =

∫∫
Ω×Ω

d(x, y)pdπ(x, y)

+

∫
Ω
d(x, ∂Ω)pdπ(x, ∂Ω)

+

∫
Ω
d(∂Ω, y)pdπ(∂Ω, y) + 0

= Cp(π) as π ∈ T (µ, ν).

3. Write π = κ(π̃). For A ⊂ Ω a Borel set,

π(A× Ω) = π(A× Ω) + π(A× ∂Ω)

= π̃(A× Ω) + π̃(A× {∂Ω}) = π̃(A× Ω̃) = µ(A).
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Similarly, π(Ω × B) = ν(B) for all B ⊂ Ω. Therefore, π ∈ Adm(µ, ν), and
by construction, if a point x ∈ Ω is transported on ∂Ω, it is transported on
s(x), so that π ∈ T (µ, ν). Observe that µ(Ω) + π(∂Ω × Ω) ≤ π̃(Ω̃ × Ω̃) = r,
so that ι(π) is well defined. Also, ι(π) = π̃, so that, according to point 2,
Cp(π) =

∫∫
Ω̃×Ω̃ d̃(x, y)pdπ̃(x, y).

We show that the inequality FGp(µ, ν) ≤Wp,ρ(µ̃, ν̃) holds as long as the condition
r ≥ max(µ(Ω), ν(Ω)) holds.

Lemma 6.3.4. Let µ, ν ∈Mp
f and r ≥ max(µ(Ω), ν(Ω)). Let µ̃ := µ+ (r−µ(Ω))δ∂Ω,

ν̃ := ν + (r − ν(Ω))δ∂Ω. Then, FGp(µ, ν) ≤Wp,ρ(µ̃, ν̃).

Proof. Let π̃ ∈ Π(µ̃, ν̃). Define the set H := {(x, y) ∈ Ω̃2 : ρ(x, y) = d(x, y)}, and let
Hc be its complementary set in Ω̃2, i.e. the set where ρ(x, y) = d(x, ∂Ω) + d(∂Ω, y).
Define π̃′ ∈M(Ω̃2) by, for Borel sets A,B ⊂ Ω:

π̃′(A×B) = π̃((A×B) ∩H)

π̃′(A× {∂Ω}) = π̃((A× Ω̃) ∩Hc) + π̃(A× {∂Ω})
π̃′({∂Ω} ×B) = π̃((Ω̃×B) ∩Hc) + π̃({∂Ω} ×B).

We easily check that π̃′ ∈ Π(µ̃, ν̃). Also, using (a+ b)p ≥ ap + bp for positive a, b, we
have ∫∫

Ω̃×Ω̃
ρ(x, y)pdπ̃(x, y) =

∫∫
H
d̃(x, y)pdπ̃(x, y)

+

∫∫
Hc

(d̃(x, ∂Ω) + d̃(∂Ω, y))pdπ̃(x, y)

≥
∫∫

H
d̃(x, y)pdπ̃′(x, y)

+

∫∫
Hc

(
d̃(x, ∂Ω)p + d̃(y, ∂Ω)p

)
dπ̃(x, y)

=

∫∫
Ω̃×Ω̃

d(x, y)pdπ̃′(x, y)

≥ inf
π̃′∈Π(µ̃,ν̃)

∫∫
Ω̃×Ω̃

d̃(x, y)pdπ̃′(x, y).

We conclude by taking the infimum on π̃ that

Wp,ρ(µ̃, ν̃) ≥ inf
π̃′∈Π(µ̃,ν̃)

∫∫
Ω̃×Ω̃

d̃(x, y)pdπ̃′(x, y).

Since ρ(x, y) ≤ d̃(x, y), it follows that

W p
p,ρ(µ̃, ν̃) = inf

π̃∈Π(µ̃,ν̃)

∫∫
Ω̃2

d̃(x, y)pdπ̃(x, y). (6.13)

Since d̃ is continuous, the infimum in the right hand side of (6.13) is reached [Vil08,
Theorem 4.1]. Consider thus π̃ ∈ Π(µ̃, ν̃) which realizes the infimum. We can write,
using Lemma 6.3.3,

W p
p,ρ(µ̃, ν̃) =

∫∫
Ω̃2

d̃(x, y)pdπ̃(x, y) =

∫∫
Ω×Ω

d(x, y)pdκ(π̃)(x, y)

≥ inf
π∈T (µ,ν)

∫∫
Ω×Ω

d(x, y)pdπ(x, y) = FGp
p(µ, ν),

which concludes the proof.
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Proof of Proposition 6.3.2. Let π ∈ T (µ, ν). As µ(Ω) +π(∂Ω×Ω) ≤ µ(Ω) + ν(Ω) ≤ r,
one can define π̃ = ι(π). Since ρ(x, y) ≤ d̃(x, y), we have C̃p(π̃) ≤

∫∫
d̃(x, y)pdπ̃(x, y) =

Cp(π) (Lemma 6.3.3). Taking infimum gives Wp,ρ(µ̃, ν̃) ≤ FGp(µ, ν). The other
inequality holds according to Lemma 6.3.4.

Remark 6.3.5. The starting idea of this theorem—informally, ”adding the mass of one
diagram to the other and vice-versa”—is known in TDA as a bipartite graph matching
[EH10, Ch. VIII.4] and used in practical computations [KMN17]. Here, Proposition
6.3.2 states that solving this bipartite graph matching problem can be formalized as
computing a Wasserstein distance on the metric space (Ω̃, ρ) and as such, makes sense
(and remains true) for more general measures.

Remark 6.3.6. Proposition 6.3.2 is useful for numerical purposes since it allows us in
applications, when dealing with a finite set of finite measures (in particular diagrams),
to directly use the various tools developed in computational optimal transport [PC19]
to compute Wasserstein distances. This alternative to the combinatorial algorithms
considered in the literature [KMN17; Tur+14] is studied in detail in [LCO18]. This
result is also helpful to prove the existence of p-Fréchet means of sets of persistence
measures, Section 6.5 below.

6.4 The FG∞ distance

In classical optimal transport, the ∞-Wasserstein distance is known to have a much
more erratic behavior than its p <∞ counterparts [San15, Section 5.5.1]. However,
in the context of persistence diagrams, the bottleneck distance defined in Chapter
3 appears naturally as an interleaving distance between persistence modules and
satisfies strong stability results: it is thus worthy of interest. It also happens that,
when restricted to diagrams having some specific finiteness properties, most irregular
behaviors are suppressed and a convenient characterization of convergence exists.

Definition 6.4.1. Recall that spt(µ) denote the support of a measure µ and define
Pers∞(µ) := sup{d(x, ∂Ω), x ∈ spt(µ)}. Let

M∞ := {µ ∈M : Pers∞(µ) <∞} and D∞ := D ∩M∞. (6.14)

For µ, ν ∈ M∞ and π ∈ Adm(µ, ν), let C∞(π) := sup{d(x, y) : (x, y) ∈ spt(π)} and
let

FG∞(µ, ν) := inf{C∞(π) : π ∈ Adm(µ, ν)}. (6.15)

The set of transport plans minimizing (6.15) is denoted by Opt∞(µ, ν).

Recall that EΩ = (Ω× Ω)\(∂Ω× ∂Ω).

Proposition 6.4.2. Let µ, ν ∈M∞. For the vague topology on EΩ,

• the map π ∈ Adm(µ, ν) 7→ C∞(π) is lower semi-continuous.

• The set Opt∞(µ, ν) is a non-empty sequentially compact set.

• FG∞ is lower semi-continuous.

Moreover, FG∞ is a metric onM∞.

The proofs of these results are found in Section 6.6. As in the case p <∞, FG∞
and d∞ coincide on D∞.
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Proposition 6.4.3. For a, b ∈ D∞, FG∞(a, b) = d∞(a, b).

Proof. Consider two diagrams a, b ∈ D∞, written as a =
∑

i∈I δxi and b =
∑

j∈J δyj ,
where I, J ⊂ N are (possibly infinite) sets of indices. The marginals constraints imply
that a plan π ∈ Adm(µ, ν) is supported on ({xi}i ∪ ∂Ω)× ({yj}j ∪ ∂Ω). If some of the
mass π({xi}, ∂Ω) (resp. π(∂Ω, {yj})) is sent on a point other than the projection of xi
(resp. yj) on the diagonal ∂Ω, then the cost of such a plan can always be (strictly if
q > 1) reduced. Introduce the matrix C indexed on (−J ∪ I)× (−I ∪ J) defined by

Ci,j = d(xi, yj) for i, j > 0,

Ci,j = d(∂Ω, yj) for i < 0, j > 0,

Ci,j = d(xi, ∂Ω) for i > 0, j < 0,

Ci,j = 0 for i, j < 0.

(6.16)

In this context, an element of Opt(a, b) can be written a matrix P indexed on (−J ∪
I)× (−I ∪ J), and marginal constraints state that P must belong to the set of doubly
stochastic matrices S. Therefore, FG∞(a, b) = infP∈S sup{Ci,j : (i, j) ∈ spt(P )},
where S is the set of doubly stochastic matrices indexed on (−J ∪ I)× (−I ∪ J), and
spt(P ) denotes the support of P , that is the set {(i, j), Pi,j > 0}.

Let P ∈ S. For any k ∈ N, and any set of distinct indices {i1, . . . , ik} ⊂ −J ∪ I,
we have

k =
k∑

k′=1

∑
j∈−I∪J

Pik′ ,j︸ ︷︷ ︸
=1

=
∑

j∈−I∪J

k∑
k′=1

Pik′ ,j︸ ︷︷ ︸
≤1

.

Thus, the cardinality of {j : ∃k′ such that (ik′ , j) ∈ spt(P )} must be larger than k.
Said differently, the marginals constraints impose that any set of k points in a must be
matched to at least k points in b (points are counted with eventual repetitions here).
Under such conditions, the Hall’s marriage theorem (see [Hal86, p. 51]) guarantees the
existence of a permutation matrix P ′ with spt(P ′) ⊂ spt(P ). As a consequence,

sup{Ci,j : (i, j) ∈ spt(P )} ≥ sup{Ci,j : (i, j) ∈ spt(P ′)}
≥ inf

P ′∈S′
sup{Ci,j : (i, j) ∈ spt(P ′)} = d∞(a, b),

where S ′ denotes the set of permutations matrix indexed on (−J ∪ I) × (−I ∪ J).
Taking the infimum on P ∈ S on the left-hand side and using that S ′ ⊂ S finally gives
that FG∞(a, b) = d∞(a, b).

Proposition 6.4.4. The space (M∞,FG∞) is complete.

Proof. Let (µn)n be a Cauchy sequence for FG∞. Fix a compact K ⊂ Ω, and pick
ε = d(K, ∂Ω)/2. There exists n0 such that for n > n0, FG∞(µn, µn0) < ε. Let
Kε := {x ∈ Ω : d(x,K) ≤ ε}. By considering πn ∈ Opt∞(µn, µn0), and since
FG∞(µn, µn0) < ε, we have that

µn(K) = πn(K × Ω) = πn(K ×Kε) ≤ µn0(Kε). (6.17)

Therefore, (µn(K))n is uniformly bounded, and Proposition 3.1.8 implies that (µn)n
is relatively compact. Finally, the exact same computations as in the proof of the
completeness for p < ∞ (see Section 6.6) show that (µn)n converges for the FG∞
metric.
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Remark 6.4.5. Contrary to the case p < ∞, the space D∞ (and therefore M∞) is
not separable. Indeed, for I ⊂ N, define the diagram aI :=

∑
i∈I δ(i,i+1) ∈ D∞. The

family {aI : I ⊂ N} is uncountable, and for two distinct I, I ′, FG∞(aI , aI′) =
√

2
2 .

This result is similar to [BV18, Theorem 4.20].

We now show that the direct implication in Theorem 6.2.6 still holds in the case
p =∞.

Proposition 6.4.6. Let µ, µ1, µ2, . . . be measures inM∞. If FG∞(µn, µ)→ 0, then
(µn)n converges vaguely to µ and Pers∞(µn) converges to Pers∞(µ).

Proof. First, the convergence of Pers∞(µn) towards Pers∞(µ) is a consequence of the
reverse triangle inequality:

|Pers∞(µn)− Pers∞(µ)| = |FG∞(µn, 0)− FG∞(µ, 0)| ≤ FG∞(µn, µ),

which converges to 0 as n goes to ∞.
We now prove the vague convergence. Let f ∈ Cc(Ω), whose support is included

in some compact set K. For any ε > 0, there exists a L-Lipschitz function fε, whose
support is included in K, with ‖f − fε‖∞ ≤ ε. Observe that supk µk(K) <∞ using
the same arguments than for (6.17). Let πn ∈ Opt∞(µn, µ). We have

|µn(f)− µ(f)| ≤ |µn(f − fε)|+ |µ(f − fε)|+ |µn(fε)− µ(fε)|
≤ (µn(K) + µ(K))ε+ |µn(fε)− µ(fε)|
≤ (sup

k
µk(K) + µ(K))ε+ |µn(fε)− µ(fε)|.

Also,

|µn(fε)− µ(fε)| =
∣∣∣∣∫∫

Ω
2
(fε(x)− fε(y))dπn(x, y)

∣∣∣∣
≤
∫∫

Ω
2
|fε(x)− fε(y)|dπn(x, y)

≤ L
∫∫

(K×Ω)∪(Ω×K)

d(x, y)dπn(x, y) as fε is L-Lipschitz continuous

≤ LC∞(πn)(πn(K × Ω) + πn(Ω×K))

≤ LFG∞(µn, µ)

(
sup
k
µk(K) + µ(K)

)
.

This last quantity converge to 0 as n goes to ∞ for fixed ε. Therefore, taking the
lim sup in n and then letting ε go to 0, we obtain that µn(f)→ µ(f).

Remark 6.4.7. As for the case 1 ≤ p < ∞, Proposition 6.4.6 implies that FG∞
metricizes the vague convergence, and thus using Propositions 6.4.3 and 3.1.12, we
have that (D∞, d∞) is closed in (M∞,FG∞) and is—in particular—complete.

Contrary to the p <∞ case, a converse of Proposition 6.4.6 does not hold, even
on the subspace of persistence diagrams (see Figure 6.2). To recover a space with a
structure more similar to Dp, it is useful to look at a smaller set. Introduce D∞0 the set
of persistence diagrams such that for all r > 0, there is a finite number of points of the
diagram of persistence larger than r and recall that Df denotes the set of persistence
diagrams with finite number of points.

Proposition 6.4.8. The closure of Df for the distance FG∞ is D∞0 .
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µn = n−1δx

log(n)−1

µn = nδxn

(a) (b) (c)

. .
.

1
1

an =
n∑

i=1

δxi

1
n

n

1
1

1

Figure 6.2: Illustration of differences between FGp, FG∞, and vague
convergences. Blue color represents the mass on a point while red
color designates distances. (a) A case where FGp(µn, 0)→ 0 for any
p < ∞ while FG∞(µn, 0) = 1. (b) A case where FG∞(µn, 0) → 0
while for all p < ∞, FGp(µn, µ) → ∞. (c) A sequence of persistence
diagrams an ∈ D∞, where (an)n converges vaguely to a =

∑
i δxi and

Pers∞(an) = Pers∞(a), but (an) does not converge to a for FG∞.

Proof. Consider a ∈ D∞0 . By definition, for all n ∈ N, a has a finite number of points
with persistence larger than 1

n , so that the restriction an of a to points with persistence
larger than 1

n belongs to Df . As FG∞(a, an) ≤ 1
n → 0, D∞0 is contained in the closure

of Df .
Conversely, consider a diagram a ∈ D∞\D∞0 . There is a constant r > 0 such that

a has infinitely many points with persistence larger than r. For any finite diagram
a′ ∈ Df , we have FG∞(a′, a) ≥ r, so that a is not the limit for the FG∞ metric of any
sequence in Df .

Remark 6.4.9. The space D∞0 is exactly the set introduced in [Blu+14, Theorem 3.5]
as the completion of Df for the bottleneck metric d∞. Here, we recover that D∞0 is
complete as a closed subset of the complete space D∞.

Define for r > 0 and a ∈ D, a(r) the persistence diagram restricted to Ωr (as in
Lemma 6.2.3). The following characterization of convergence holds in D∞0 .

Proposition 6.4.10. Let a, a1, a2, . . . be persistence diagrams in D∞0 . Then,

FG∞(an, a)→ 0⇔
{
an

v−→ a,

(a
(r)
n )n is tight for all positive r.

Proof. Let us prove first the direct implication. Proposition 6.4.6 states that the
convergence with respect to FG∞ implies the vague convergence. Fix r > 0. By
definition, a(r) is made of a finite number of points, all included in some open bounded
set U ⊂ Ω. As a(r)

n (U c) is a sequence of integers, the bottleneck convergence implies
that for n large enough, a(r)

n (U c) is equal to 0. Thus, (a
(r)
n )n is tight.

Let us prove the converse. Consider a ∈ D∞0 and a sequence (an)n that converges
vaguely to a, with (a

(r)
n ) tight for all r > 0. Fix r > 0 and let x1, . . . , xK be an

enumeration of the points in a(r), the point xk being present with multiplicity mk ∈ N.
Denote by B(x, ε) (resp. B(x, ε)) the open (resp. closed) ball of radius ε centered at x.
By the Portmanteau theorem, for ε small enough,lim inf

n→∞
an(B(xk, ε)) ≥ a(B(xk, ε)) = mk

lim sup
n→∞

an(B(xk, ε)) ≤ a(B(xk, ε)) = mk,
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so that, for n large enough, there are exactly mk points of an in B(xk, ε) (since
(an(B”B(xk, ε)))n is a converging sequence of integers). The tightness of (a

(r)
n )n implies

the existence of some compact K ⊂ Ω such that for n large enough, a(r)
n (Kc) = 0 (as

the measures take their values in N). Applying Portmanteau’s theorem to the closed
set K ′ := K\⋃K

i=1B(xi, ε) gives

lim sup
n→∞

a(r)
n (K ′) ≤ a(r)(K ′) = 0.

This implies that for n large enough, there are no other points in an with persistence
larger than r and thus FG∞(a(r), an) is less than or equal to r + ε. Finally,

lim sup
n→∞

FG∞(an, a) ≤ lim sup
n→∞

FG∞(an, a
(r)) + r ≤ 2r + ε.

Letting ε→ 0 then r → 0, the bottleneck convergence holds.

Remark 6.4.11 (Related work with p = +∞ in standard optimal transport.). Although
it has been less studied than the Wp distances for finite p, there exist some stimulating
works on theW∞ distance. In particular, [CDPJ08] introduces the notion of restrictable
transport plans: these are the transport plans π∞ which appear as the limit as p→∞
of optimal plans πp for Wp. Such optimal plans appear to have nice restriction
properties and satisfy a form of cyclical monotonicity—an important notion in optimal
transport theory that is not introduced in this work for the sake of concision. We
conjecture that the existence and main properties of restrictable transport plans also
hold in the framework of persistence measures with the FG∞ distance.

6.5 Fréchet means of persistence measures

In this section, we state the existence of p-Fréchet means for probability distributions
supported onMp. We start with the finite case (i.e. averaging finitely many persistence
measures) and then extend the result to any probability distribution with finite p-th
moment. We then study the specific case of distributions supported onDp (i.e. averaging
persistence diagrams), and show that in the finite setting, the set of p-Fréchet means
is a convex set whose extreme points are in Dd (i.e. are actual persistence diagrams).
We assume that 1 < p <∞ throughout this section.

Remark 6.5.1. Once again, the content of this section also holds in the more general
setting where a general ground space Ω0 and reservoir R are considered. Besides being
a locally compact Polish space, one needs to assume that X = Ω0 t R is a geodesic
space for Fréchet means to exist. This property ensures that a Fréchet mean of two
Diracs δx and δy) exists (and is given by the ”middle” of a geodesic joining x to y if
both points are sufficiently far away from the reservoir R).

Recall that (Mp,FGp) is a Polish space. The space (Pp1 (Mp),Wp,FGp) is the space
of probability measures P supported onMp, equipped with the Wp,FGp metric, which
are at a finite distance from δ0—the Dirac mass supported on the empty diagram—i.e.

W p
p,FGp

(P, δ0) =

∫
ν∈Mp

FGp
p(ν, 0)dP (ν) =

∫
ν∈Mp

Persp(ν)dP (ν) <∞.

We recall the definition of p-Fréchet mean from Chapter 3.

Definition 6.5.2. Let P ∈ Pp1 (Mp). A measure µ∗ ∈Mp is a p-Fréchet mean of P
if it minimizes E : µ ∈Mp 7→

∫
ν∈Mp FGp

p(µ, ν)dP (ν).
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6.5.1 p-Fréchet means in the finite case

Let P be of the form
∑N

i=1 λiδµi with N ∈ N, µi a persistence measure of finite mass
mi, and (λi)i non-negative weights that sum to 1. Define mtot :=

∑N
i=1mi. To prove

the existence of p-Fréchet means for such a P , we show that, in this case, p-Fréchet
means correspond to p-Fréchet means for the Wasserstein distance of some distribution
onMp

mtot(Ω̃), the sets of measures on Ω̃ that all have the same mass mtot (see Section
6.3), a problem well studied in the literature [AC11; CE10; COO15a].

We start with a lemma which affirms that if a measure µ has too much mass (larger
than mtot), then it cannot be a p-Fréchet mean of µ1 . . . µN .

Lemma 6.5.3. We have inf{E(µ) : µ ∈Mp} = inf{E(µ) : µ ∈Mp
≤mtot

}.

Proof. The idea of the proof is to show that if a measure µ has some mass that is
mapped to the diagonal in each transport plan between µ and µi, then we can build a
measure µ′ by “removing” this mass, and then observe that such a measure µ′ has a
smaller energy.

Let thus µ ∈ Mp. Let πi ∈ Optp(µi, µ) for i = 1, . . . , N . The measure A ⊂ Ω 7→
πi(∂Ω×A) is absolutely continuous with respect to µ. Therefore, it has a density fi
with respect to µ. Define for A ⊂ Ω0 a Borel set,

µ′(A) := µ(A)−
∫
A

min
j
fj(x)dµ(x),

and, for i = 1, . . . , N , a measure π′i, equal to πi on Ω × Ω and which satisfies for
A ⊂ Ω0 a Borel set,

π′i(∂Ω×A) = π′i(s(A)×A) := πi(∂Ω×A)−
∫
A

min
j
fj(x)dµ(x),

where s is the orthogonal projection on ∂Ω. As πi(∂Ω×A) =
∫
A fi(x)dµ(x), π′i(A) is

nonnegative, and as πi(∂Ω×A) ≤ µ(A), it follows that µ′(A) is nonnegative. To prove
that π′i ∈ Adm(µi, µ

′), it is enough to check that for A ⊂ Ω0, π′i(Ω×A) = µ′(A):

π′i(Ω×A) = πi(Ω0 ×A) + πi(∂Ω×A)−
∫
A

min
j
fj(x)dµ(x)

= µ(A)−
∫
A

min
j
fj(x)dµ(x) = µ′(A).

Also,

µ′(Ω) =

∫
Ω

(1−min
j
fj)dµ(x) ≤

N∑
j=1

∫
Ω

(1− fj)dµ(x)

=

N∑
j=1

(µ(Ω)− πj(∂Ω× Ω)) =

N∑
j=1

(πj(Ω× Ω)− πj(∂Ω× Ω))

=

N∑
j=1

πj(Ω× Ω) ≤
N∑
j=1

πj(Ω× Ω) =
N∑
j=1

mj = mtot.
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and thus µ′(Ω) ≤ mtot. To conclude, observe that

E(µ′) ≤
N∑
i=1

λiCp(π
′
i) =

N∑
i=1

λi

(∫∫
Ω×Ω

d(x, y)pdπi(x, y)

+

∫∫
∂Ω×Ω

d(x, y)pdπi(x, y)−
∫

Ω
d(x, ∂Ω)p min

j
fj(x)dµ(x)

)
≤

N∑
i=1

λiCp(π) = E(µ).

Recall that Wp,ρ denote the Wasserstein distance between measures with same
mass supported on the metric space (Ω̃, ρ) (see Chapter 3 and Section 6.3).

Proposition 6.5.4. Let Ψ : µ ∈ Mp
≤mtot

7→ µ̃ ∈ Mp
mtot(Ω̃), where µ̃ := µ+ (mtot −

µ(Ω))δ∂Ω. The functionals

E : µ ∈Mp
≤mtot

7→
N∑
i=1

λiFGp
p(µ, µi) and

F : µ̃ ∈Mp
mtot

(Ω̃) 7→
N∑
i=1

λiW
p
p,ρ(µ̃,Ψ(µi)),

have the same infimum values and arg min E = Ψ−1(arg minF).

Proof. Let G be the set of µ ∈ Mp such that, for all i, there exists πi ∈ Optp(µi, µ)
with πi(Ω, ∂Ω) = 0. By point 2 of Lemma 6.3.3, for µ ∈ G and πi ∈ Optp(µi, µ) with
πi(Ω, ∂Ω) = 0, ι(πi) is well defined and satisfies

FGp
p(µi, µ) = Cp(πi) =

∫∫
Ω̃×Ω̃

d̃(x, y)pdι(πi)(x, y) ≥ C̃p(ι(πi)) ≥W p
p,ρ(µ̃i, µ̃),

so that F(Ψ(µ)) ≤ E(µ). As, by Lemma 6.3.4, E ≤ F ◦ Ψ, we therefore have
E(µ) = F(Ψ(µ)) for µ ∈ G.

We now show that if µ /∈ G, then there exists µ′ ∈ Mp with E(µ′) < E(µ). Let
µ /∈ G and πi ∈ Optp(µi, µ). Assume that for some i, we have πi(Ω, ∂Ω) > 0, and
introduce ν ∈Mp defined as ν(A) = πi(A, ∂Ω) for A ⊂ Ω. Define

T : x ∈ Ω 7→ arg min
y∈Ω

λid(x, y)p +
∑
j 6=i

λjd(y, ∂Ω)p

 ∈ Ω. (6.18)

Note that this function is well defined, with the value of the objective function in T (x)
being strictly smaller than the value in s(x), where s(x) is the projection of x on ∂Ω
(in the general case (Ω0,R), a minimizer T (x) is found on the geodesic between x and
some projection s(x)).

Consider the measure µ′ = µ+ (T#ν), where T#ν is the push-forward of ν by the
application T . Consider the transport plan π′i deduced from πi where ν is transported
onto T#ν instead of being transported to ∂Ω (see Figure 6.3). More precisely, π′i is
the measure on Ω× Ω defined by, for Borel sets A,B ⊂ Ω:

π′i(A×B) = πi(A×B) + ν(A ∩ T−1(B)),

π′i(A× ∂Ω) = 0, π′i(∂Ω×B) = πi(∂Ω×B).
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∂Ω

x

T (x)

A

T (A)

T

π′
i

π′
j

πi

Ω

(T#νi)�T (A)

νi

T

Figure 6.3: Global picture of the proof. The main idea is to observe
that the cost induced by πi (red) is strictly greater than the sum of
costs induces by the π′is (blue), which leads to a strictly better energy.

We have π′i ∈ Adm(µi, µ
′). Indeed, for Borel sets A,B ⊂ Ω:

π′i(A× Ω) = π′i(A× Ω) = πi(A× Ω) + ν(A) = πi(A× Ω) = µi(A),

and

π′i(Ω×B) = π′i(Ω×B) + π′i(∂Ω×B)

= πi(Ω×B) + ν(T−1(B)) + πi(∂Ω×B)

= µ(B) + T#ν(B) = µ′(B).

Using π′i instead of πi changes the transport cost by the quantity∫
Ω

[d(x, T (x))p − d(x, ∂Ω)p]dν(x) ≤ 0.

In a similar way, we define for j 6= i the plan π′j ∈ Adm(µj , µ
′) by transporting the

mass induced by the newly added (T#ν) to the diagonal ∂Ω. Using these modified
transport plans increases the total cost by∑

j 6=i
λj

∫
Ω
d(T (x), ∂Ω)pdν(x).

One can observe that, as the value of the objective function at T (x) in (6.18) is
smaller than the value at s(x),

∫
Ω

λi (d(x, T (x))p − d(x, ∂Ω)p) +
∑
j 6=i

λjd(T (x), ∂Ω)p

dν(x) < 0

due to the fact that ν(Ω) > 0.
Therefore, the total transport cost induced by the (π′i)i=1...N is strictly less or equal

to E(µ), and thus E(µ′) < E(µ). Finally, we have

inf
µ∈Mp

≤mtot

E(µ) = inf
µ∈G
E(µ) = inf

µ∈G
F(Ψ(µ)) ≥ inf

µ∈Mp
≤mtot

F(Ψ(µ)) ≥ inf
µ∈Mp

≤mtot

E(µ),
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where the last inequality comes from F ◦Ψ ≥ E (Lemma 6.3.4). Therefore, inf E =
inf F ◦Ψ, which is equal to inf F , as Ψ is a bijection. Also, if µ is a minimizer of E
(should it exist), then µ ∈ G and E(µ) = F(Ψ(µ)). Therefore, as the infimum are equal,
Ψ(µ) is a minimizer of F . Reciprocally, if µ̃ is a minimizer of F , then, by Lemma 6.3.4,
F(µ̃) ≥ E(Ψ−1(µ̃)), and, as the infimum are equal, Ψ−1(µ̃) is a minimizer of E .

The existence of minimizers µ̃ of F , that is “Wasserstein barycenter” (i.e. p-Fréchet
means for the Wasserstein distance) of P̃ :=

∑N
i=1 λiδµ̃i , is well-known (see [LGL16,

Proposition 1]). Proposition 6.5.4 asserts that Ψ−1(µ̃) is a minimizer of E onMp
≤mtot

,
and thus a p-Fréchet mean of P according to Lemma 6.5.3. We therefore have proved
the existence of p-Fréchet means in the finite case.

6.5.2 Existence and consistency of p-Fréchet means

We now extend the results of the previous section to the p-Fréchet means of general
probability measures supported onMp. First, we show a consistency result, in the
vein of [LGL16, Theorem 3].

Proposition 6.5.5. Let Pn, P be probability measures in Pp1 (Mp). Assume that each
Pn has a p-Fréchet mean µn and that Wp,FGp(Pn, P )→ 0. Then, the sequence (µn)n
is relatively compact in (Mp,FGp), and any limit of a converging subsequence is a
p-Fréchet mean of P .

Proof. In order to prove relative compactness of (µn)n, we use the characterization
stated in Proposition 3.1.8. Consider a compact set K ⊂ Ω. We have, because of (6.6),

µn(K)
1
p ≤ 1

d(K, ∂Ω)
FGp(µn, 0) =

1

d(K, ∂Ω)
Wp,FGp(δµn , δ0)

≤ 1

d(K, ∂Ω)

(
Wp,FGp(δµn , Pn) +Wp,FGp(Pn, δ0)

)
Since µn is a p-Fréchet mean of Pn, it minimizes {Wp,FGp(δν , Pn) : ν ∈ Mp}, and
in particular Wp,FGp(δµn , Pn) ≤ Wp,FGp(δ0, Pn). Furthermore, as by assumption
Wp,FGp(Pn, P ) → 0, we have that supnWp,FGp(Pn, δ0) < ∞. As a consequence
supn µn(K) <∞, and Proposition 3.1.8 allows us to conclude that the sequence (µn)n
is relatively compact for the vague convergence.

To conclude the proof, we use the following two lemmas, whose proofs are found in
Section 6.6.

Lemma 6.5.6. Under the same hypothesis than Proposition 6.5.5, there exists a
subsequence (µnk)k of (µn)n which vaguely converges towards µ a p-Fréchet mean of P
and there exists ν ∈Mp such that FGp(µnk , ν)→ FGp(µ, ν) as k →∞.

Lemma 6.5.7. Let µ, µ1, µ2, · · · ∈ Mp. Then, FGp(µn, µ) → 0 if and only if (i)
µn

v−→ µ and (ii) there exists a persistence measure ν ∈ Mp such that FGp(µn, ν)→
FGp(µ, ν).

Let µ′k = µnk be any subsequence of µn. We want to show that there exists a
subsequence of µ′k which converges with respect to the FGp metric towards some
p-Fréchet mean of P . By Lemma 6.5.6 applied to the sequence (µ′k)k, there exists a
subsequence µ′kl which converges vaguely to some p-Fréchet mean µ of P , and some
ν with FGp(µ

′
kl
, ν) → FGp(µ, ν) as l → ∞. By Lemma 6.5.7, this implies that µ′kl

converges to µ with respect to the FGp metric, showing the conclusion.

As the finite case is solved, generalization follows easily using Proposition 6.5.5.
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Theorem 6.5.8. For any probability distribution P supported onMp with finite p-th
moment, the set of p-Fréchet means of P is a non-empty compact convex set ofMp.

Proof. We first prove the non-emptiness. Let P =
∑N

i=1 λiµi be a probability measure
onMp with finite support µ1, . . . , µN . According to Proposition 6.3.1, there exists
sequences (µ

(n)
i )n inMp

f with FGp(µ
(n)
i , µi) → 0. As a consequence of the result of

Section 6.5.1, the probability measures P (n) :=
∑

i λiδµ(n)
i

admit p-Fréchet means.

Furthermore, W p
p,FGp

(P (n), P ) ≤∑i λiFGp
p(µ

(n)
i , µi) so that this quantity converges to

0 as n→∞. It follows from Proposition 6.5.5 that P admits a p-Fréchet mean.
If P has infinite support, following [LGL16], it can be approximated (in Wp,FGp) by

a empirical probability measure Pn = 1
n

∑n
i=1 δµi where the µi are i.i.d. from P . We

know that Pn admits a p-Fréchet mean since its support is finite, and thus, applying
Proposition 6.5.5 once again, we obtain that P admits a p-Fréchet mean.

Finally, the compactness of the set of p-Fréchet means follows from Proposition
6.5.5 applied with Pn = P : if (µn)n is a sequence of p-Fréchet means, then the sequence
is relatively compact in (Mp,FGp), and any converging subsequence is also a p-Fréchet
mean of P . Also, the convexity of the set of p-Fréchet means follows from the convexity
of FGp

p (see Lemma 8.1.3 in Chapter 8): if µ1, µ2 are two p-Fréchet means with energy
E(µ1) = E(µ2) = E0 and 0 ≤ λ ≤ 1, then

E(λµ1 + (1− λ)µ2) =

∫
ν∈Mp

FGp
p(λµ1 + (1− λ)µ2, ν)dP (ν)

≤
∫
ν∈Mp

(λFGp
p(µ1, ν) + (1− λ)FGp

p(µ2, ν))dP (ν)

= λE(µ1) + (1− λ)E(µ2) = E0,

so that λµ1 + (1− λ)µ2 is also a p-Fréchet mean.

6.5.3 p-Fréchet means in Dp

We now prove the existence of p-Fréchet means for distributions of persistence diagrams
(i.e. probability distributions supported on Dp), extending the results of [MMH11],
in which authors prove their existence for specific probability distributions (namely
distributions with compact support or specific rates of decay). Theorem 6.5.10 below
asserts two different things: that arg min{E(a) : a ∈ Dp} is non empty, and that
min{E(a) : a ∈ Dp} = min{E(µ) : µ ∈Mp}, i.e a persistence measure cannot perform
strictly better than an optimal persistence diagram when averaging diagrams. As for
p-Fréchet means inMp, we start with the finite case. The following lemma actually
gives a geometric description of the set of p-Fréchet means obtained when averaging a
finite number of finite diagrams.

Lemma 6.5.9. Consider a1, . . . , aN ∈ Df , weights (λi)i that sum to 1, and let P :=∑N
i=1 λiδai. Then, the set of minimizers of µ 7→ ∑N

i=1 λiFGp
p(µ, ai) is a non empty

convex subset of Mp
f whose extreme points belong to Df . In particular, P admits a

p-Fréchet mean in Df .
The proof of this lemma is delayed to Section 6.6. Note that, as a straightforward

consequence, if P has a unique minimizer in Df (which is generically true [Tur13]),
then so it does inMp

f .

Theorem 6.5.10. For any probability distribution P supported on Dp with finite p-th
moment, the set of p-Fréchet means of P contains an element of Dp.
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Proof. To prove the existence of a p-Fréchet mean which is a persistence diagram, we
argue as in the proof of Theorem 6.5.8, using additionally the fact that Dp is closed in
Mp (Proposition 3.1.12).

6.6 Additional proofs

For the sake of completeness, we first present proofs which either require very few
adaptations from corresponding proofs in [FG10] or which are close to standard proofs
in optimal transport theory.

Proofs of Proposition 6.2.2 and Proposition 6.4.2.

• For π ∈ Adm(µ, ν) supported on EΩ, and for any compact sets K, K ′ ⊂ Ω, one
has π((K ×Ω)∪ (Ω×K ′)) ≤ µ(K) + ν(K ′) <∞. As any compact subset of EΩ

is included in a set of the form (K × Ω) ∪ (Ω×K ′), Proposition 3.1.8 implies
that Adm(µ, ν) is relatively compact for the vague convergence on EΩ. Also,
if a sequence (πn)n in Adm(µ, ν) converges vaguely to some π ∈M(EΩ), then
the marginals of π are still µ and ν. Indeed, if f is a continuous function with
compact support on Ω, then∫

EΩ

f(x)dπ(x, y) = lim
n

∫
EΩ

f(x)dπn(x, y) = lim
n

∫
Ω
f(x)dµn(x)

=

∫
Ω
f(x)dµ(x),

and we show likewise that the second marginal of π is ν. Hence, Adm(µ, ν) is
closed and relatively compact inM(EΩ): it is therefore sequentially compact.

• To prove the second point of Proposition 6.2.2, consider π, π1, π2, . . . such that
πn

v−→ π, and introduce π′n : A 7→
∫∫
A d(x, y)pdπn. The sequence (π′n)n still

converges vaguely to π′ : A 7→
∫∫
A d(x, y)pdπ. the Portmanteau theorem (Propo-

sition 3.1.11) applied with the open set EΩ to the measures π′n
v−→ π′ implies

that
Cp(π) = π′(EΩ) ≤ lim inf

n
π′n(EΩ) = lim inf

n
Cp(πn),

i.e. Cp is lower semi-continuous.

• We now prove the lower semi-continuity of C∞. Let (πn)n be a sequence
converging vaguely to π on EΩ and let r > lim inf

n→∞
C∞(πn). The set Ur =

{(x, y) ∈ EΩ : d(x, y) > r} is open. By the Portmanteau theorem (Proposition
3.1.11), we have

0 = lim inf
n→∞

πn(Ur) ≥ π(Ur).

Therefore, spt(π) ⊂ U cr and C∞(π) ≤ r. As this holds for any r > lim inf
n→∞

C∞(πn),
we have lim inf

n→∞
C∞(πn) ≥ C∞(π).

• We show that for any 1 ≤ p ≤ ∞, the lower semi-continuity of Cp and the
sequential compactness of Adm(µ, ν) imply that 1. Optp(µ, ν) is a non-empty
compact set for the vague topology on EΩ and that 2. FGp is lower semi-
continuous.
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1. Let (πn)n be a minimizing sequence of (6.2) or (6.15) in Adm(µ, ν). As
Adm(µ, ν) is sequentially compact, it has an adherence value π, and the
lower semi-continuity implies that Cp(π) ≤ lim infn→∞Cp(πn) = FGp

p(µ, ν),
so that Optp(µ, ν) is non-empty. Using once again the lower semi-continuity
of Cp, if a sequence in Optp(µ, ν) converges to some limit, then the cost
of the limit is less than or equal to (and thus equal to) FGp

p(µ, ν), i.e. the
limit is in Optp(µ, ν). The set Optp(µ, ν) being closed in the sequentially
compact set Adm(µ, ν), it is also sequentially compact.

2. Let µn
v−→ µ and νn

v−→ ν. One has

lim inf
n

FGp(µn, νn) = lim
k

FGp(µnk , νnk)

for some subsequence (nk)k. For ease of notation, we will still use the index
n to denote this subsequence. If the limit is infinite, there is nothing to prove.
Otherwise, consider πn ∈ Optp(µn, νn). For any compact sets K, K ′ ⊂ Ω,
one has πn((K×Ω)∪(Ω×K ′)) ≤ supn µn(K)+supn νn(K ′) <∞. Therefore,
by Proposition 3.1.8, there exists a subsequence (πnk)k which converges
vaguely to some measure π ∈ Adm(µ, ν). Note that the first (resp. second)
marginal of π is equal to the limit µ (resp. ν) of the first (resp. second)
marginal of (πnk), so that π is in Adm(µ, ν). Therefore,

FGp
p(µ, ν) ≤ Cp(π) ≤ lim inf

n→∞
Cp(πn) = lim inf

n→∞
FGp

p(µn, νn).

• Finally, we prove that FGp is a metric onMp. Let µ, ν, λ ∈Mp. The symmetry
of FGp is clear. If FGp(µ, ν) = 0, then there exists π ∈ Adm(µ, ν) supported
on {(x, x), x ∈ Ω}. Therefore, for a Borel set A ⊂ Ω, µ(A) = π(A × Ω) =
π(A × A) = π(Ω × A) = ν(A), and µ = ν. To prove the triangle inequality,
we need a variant on the gluing lemma, stated in [FG10, Lemma 2.1]: for
π12 ∈ Opt(µ, ν) and π23 ∈ Opt(ν, λ) there exists a measure γ ∈ M(Ω

3
) such

that the marginal corresponding to the first two entries (resp. two last entries),
when restricted to EΩ, is equal to π12 (resp. π23), and induces a zero cost on
∂Ω× ∂Ω. Therefore, by the triangle inequality and the Minkowski inequality,

FGp(µ, λ) ≤
(∫

Ω
2
d(x, z)pdγ(x, y, z)

)1/p

≤
(∫

Ω
2
d(x, y)pdγ(x, y, z)

)1/p

+

(∫
Ω

2
d(y, z)pdγ(x, y, z)

)1/p

=

(∫
Ω

2
d(x, y)pdπ12(x, y)

)1/p

+

(∫
Ω

2
d(y, z)pdπ23(y, z)

)1/p

= FGp(µ, ν) + FGp(ν, λ).

The proof is similar for p =∞.

Proof of Proposition 6.2.5. We first show the separability. Consider for k > 0 a
partition of Ω into squares (Cki ) of side length 2−k, centered at points xki . Let F be
the set of all measures of the form

∑
i∈I qiδxki for qi positive rationals, k > 0 and I a

finite subset of N. Our goal is to show that the countable set F is dense inMp. Fix
ε > 0, and µ ∈Mp. The proof is in three steps.
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1. Since Persp(µ) < ∞, there exists a compact K ⊂ Ω such that Persp(µ) −
Persp(µ0) < εp, where µ0 is the restriction of µ toK. By considering the transport
plan between µ and µ0 induced by the identity map on K and the projection onto
the diagonal on Ω\K, it follows that FGp

p(µ, µ0) ≤ Persp(µ)− Persp(µ0) ≤ εp.

2. Consider k such that 2−k ≤ ε/(
√

2µ(K)1/p) and denote by I the indices cor-
responding to squares Cki intersecting K. Let µ1 =

∑∞
i∈I µ0(Cki )δxki

. One can
create a transport map between µ0 and µ1 by mapping each square Cki to its
center xki , so that

FGp(µ0, µ1) ≤
(∑

i

µ0(Cki )(
√

2 · 2−k)p
)1/p

≤ µ(K)1/p
√

2 · 2−k ≤ ε.

3. Consider, for i ∈ I, qi a rational number satisfying qi ≤ µ0(Cki ) and |µ0(Cki )−
qi| ≤ εp/

(∑
i∈I d(xki , ∂Ω)p

)
. Let µ2 =

∑
i∈I qiδxki . Consider the transport plan

between µ2 and µ1 that fully transports µ2 onto µ1, and transport the remaining
mass in µ1 onto the diagonal. Then,

FGp(µ1, µ2) ≤
(∑
i∈I
|µ0(Cki )− qi|d(xki , ∂Ω)p

)1/p

≤ ε.

As µ2 ∈ F and FGp(µ, µ2) ≤ 3ε, the separability is proven.
To prove that the space is complete, consider a Cauchy sequence (µn)n. As the

sequence (Persp(µn))n = (FGp
p(µn, 0))n is a Cauchy sequence, it is bounded. Therefore,

for K ⊂ Ω a compact set, (6.6) implies that supn µn(K) < ∞. Proposition 3.1.8
implies that (µn)n is relatively compact for the vague topology on Ω. Consider (µnk)k
a subsequence converging vaguely on Ω to some measure µ. By the lower semi-continuity
of FGp,

Persp(µ) = FGp
p(µ, 0) ≤ lim inf

k→∞
FGp

p(µnk , 0) <∞,

so that µ ∈Mp. Using once again the lower semi-continuity of FGp,

FGp(µn, µ) ≤ lim inf
k→∞

FGp(µn, µnk)

lim
n→∞

FGp(µn, µ) ≤ lim
n→∞

lim inf
k→∞

FGp(µn, µnk) = 0,

ensuring that FGp(µn, µ)→ 0, that is the space is complete.

Proof of the direct implication of Theorem 6.2.6. Let µ, µ1, µ2, . . . be elements ofMp

and assume that the sequence (FGp(µn, µ))n converges to 0. The triangle inequality
implies that Persp(µn) = FGp

p(µn, 0) converges to Persp(µ) = FGp
p(µ, 0). Let f ∈

Cc(Ω), whose support is included in some compact set K. For any ε > 0, there exists
a Lipschitz function fε, with Lipschitz constant L and whose support is included in
K, with the ∞-norm ‖f − fε‖∞ less than or equal to ε. The convergence of Persp(µn)
and (6.6) imply that supk µk(K) <∞. Let πn ∈ Optp(µn, µ), we have

|µn(f)− µ(f)| ≤ |µn(f − fε)|+ |µ(f − fε)|+ |µn(fε)− µ(fε)|
≤ (µn(K) + µ(K))ε+ |µn(fε)− µ(fε)|
≤ (sup

k
µk(K) + µ(K))ε+ |µn(fε)− µ(fε)|.
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Also,

|µn(fε)− µ(fε)| ≤
∫∫

Ω
2
|fε(x)− fε(y)|dπn(x, y) where πn ∈ Opt(µn, µ)

≤ L
∫∫

(K×Ω)∪(Ω×K)

d(x, y)dπn(x, y)

≤ Lπn((K × Ω) ∪ (Ω×K))
1− 1

p

 ∫∫
(K×Ω)∪(Ω×K)

d(x, y)pdπn(x, y)


1
p

by Hölder’s inequality.

≤ L
(

sup
k
µk(K) + µ(K)

)1− 1
p

FGp(µn, µ) −−−→
n→∞

0.

Therefore, taking the limsup in n and then letting ε goes to 0, we obtain that
µn(f)→ µ(f).

The following proof is already found in [LGL16]. We reproduce it here for the sake
of completeness.

Proof of Lemma 6.5.6. Recall that Pn is a sequence in Pp1 (Mp) such that each Pn has
a p-Fréchet mean µn and that Wp,FGp(Pn, P )→ 0 for some P ∈ Pp1 (Mp). According
to the beginning of the proof of Proposition 6.5.5, the sequence (µn)n is relatively
compact for the vague convergence. Let ν ∈Mp and let µ be the vague limit of some
subsequence, which, for ease of notations, will be denoted as the initial sequence. By
Skorokhod’s representation theorem [Bil13, Theorem 6.7], as Pn converges weakly to
P , there exists a probabilistic space on which are defined random variables µ ∼ P and
µn ∼ Pn for n ≥ 0, such that µn converges almost surely with respect to the FGp

metric towards µ. Using those random variables, we have

E(ν) = EFGp
p(ν,µ) = W p

p,FGp
(δν , P )

= lim
n
W p
p,FGp

(δν , Pn) since Wp,FGp(Pn, P )→ 0

= lim
n

EFGp
p(ν,µn)

≥ lim
n

EFGp
p(µn,µn) since µn is a barycenter of Pn

≥ E lim inf
n

FGp
p(µn,µn) by Fatou’s lemma

≥ EFGp
p(µ,µ) = E(µ) by lower semi-continuity of FGp (Proposition 6.2.2).

(6.19)

This implies that µ is a barycenter of P . We are now going to show that, almost
surely, lim infn FGp(µn,µ) = FGp(µ,µ). This concludes the proof by letting nk be the
subsequence attaining the liminf for some fixed realization of µ. By plugging in ν = µ
in (6.19), all the inequalities become equalities, and in particular,

lim
n
W p
p,FGp

(δµn , Pn) = lim
n

EFGp
p(µn,µn) = EFGp

p(µ,µ) = W p
p,FGp

(δµ, P ).

This yields

0 ≤Wp,FGp(δµn , P )−Wp,FGp(δµ, P )

≤Wp,FGp(δµn , Pn) +Wp,FGp(Pn, P )−Wp,FGp(δµ, P )→ 0
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as n goes to +∞, i.e. limnWp,FGp(δµn , P ) = Wp,FGp(δµ, P ). Therefore,

EFGp
p(µ,µ) = W p

p,FGp
(δµ, P ) = lim

n
W p
p,FGp

(δµn , P ) = lim
n

EFGp
p(µn,µ)

≥ E lim inf
n

FGp
p(µn,µ) by Fatou’s lemma

≥ EFGp
p(µ,µ) by lower semi-continuity of FGp.

As lim infn FGp
p(µn,µ) ≥ FGp

p(µ,µ) and E lim infn FGp
p(µn,µ) = EFGp

p(µ,µ), we
actually have lim infn FGp

p(µn,µ) = FGp
p(µ,µ) almost surely, concluding the proof.

LM,r

KM,r

Ar

M

r

M

∂Ω

Ω

Figure 6.4: Partition of Ω used in the proof of Lemma 6.5.7.

We end this section by giving the proof of two technical lemmas of Section 6.5.

Proof of Lemma 6.5.7. For the direct implication, take ν = 0 and apply Theorem
6.2.6.

Let us prove the converse implication. Assume that µn
v−→ µ and FGp(µn, ν) →

FGp(µ, ν) for some ν ∈ Dp. The vague convergence of (µn)n implies that µ(p) is
the only possible accumulation point for weak convergence of the sequence (µ

(p)
n )n.

Therefore, it is sufficient to show that the sequence (µ
(p)
n )n is relatively compact for

weak convergence (i.e. tight and bounded in total variation, see Proposition 3.1.9).
Indeed, this would mean that (µ

(p)
n ) converges weakly to µ(p), or equivalently by

Proposition 3.1.10 that µn
v−→ µ and Persp(µn) → Persp(µ). The conclusion is then

obtained thanks to Theorem 6.2.6.
Thus, let (µn)n be any subsequence and (πn)n be corresponding optimal transport

plans between µn and ν. The vague convergence of (µn)n implies that (πn)n is
relatively compact with respect to the vague convergence on EΩ. Let π be a limit
of any converging subsequence of (πn)n, which indexes are still denoted by n. One
can prove that π ∈ Opt(µ, ν) (see [FG10, Proposition 2.3]). For r > 0, recall that
Ωr = {x ∈ Ω : d(x, ∂Ω) > r} and define Ar := {x ∈ Ω : d(x, ∂Ω) ≤ r}, so that
Ω = Ωr tAr. Write also Ar for Ar ∪ ∂Ω. Consider η > 1. We can write∫
Ar

d(x, ∂Ω)pdµn(x) =

∫∫
Ar×Ω

d(x, ∂Ω)pdπn(x, y)

=

∫∫
Ar×Ωηr

d(x, ∂Ω)pdπn(x, y) +

∫∫
Ar×Aηr

d(x, ∂Ω)pdπn(x, y)

(∗)
≤ 1

(η − 1)p

∫∫
Ar×(Ωηr)

d(x, y)pdπn(x, y) +

∫∫
Ar×Aηr

d(x, ∂Ω)pdπn(x, y)
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≤ 1

(η − 1)p
FGp

p(µn, ν) + 2p−1

( ∫∫
Ar×Aηr

d(x, y)pdπn(x, y) +

∫∫
Ar×Aηr

d(y, ∂Ω)pdπn(x, y)

)

≤ 1

(η − 1)p
FGp

p(µn, ν) + 2p−1

(
FGp

p(µn, ν)−
∫∫

EΩ\(Ar×Aηr)

d(x, y)pdπn(x, y) +

∫
Aηr

d(y, ∂Ω)pdν(y)

)

where (∗) holds because d(x, y) ≥ (η − 1)r ≥ (η − 1)d(x, ∂Ω) for (x, y) ∈ Ar × Acηr.
Therefore,

lim sup
n→∞

∫
Ar

d(x, ∂Ω)pdµn(x) ≤ 1

(η − 1)p
FGp

p(µ, ν) + 2p−1

(
FGp

p(µ, ν)

−
∫∫

EΩ\(Ar×Aηr)

d(x, y)pdπ(x, y) +

∫
Aηr

d(y, ∂Ω)pdν(y)

)

Note that at the last line, we used the Portmanteau theorem (see Proposition 3.1.11) on
the sequence of measures (d(x, y)pdπn(x, y))n for the open set EΩ\(Ar×Aηr). Letting
r goes to 0, then η goes to infinity, one obtains

lim
r→0

lim sup
n→∞

∫
Ar

d(x, ∂Ω)pdµn(x) = 0.

The second part consists in showing that there can not be mass escaping ”at infinity”
in the subsequence (µ

(p)
n )n. Fix r,M > 0. For x ∈ Ω, denote s(x) the projection of x

on ∂Ω. Pose
KM,r := {x ∈ Ωr : d(x, ∂Ω) < M, d(s(x), 0) < M}

and LM,r the closure of Ω\(Ar ∪KM,r) (see Figure 6.4). For r′ > 0,∫
LM,r

d(x, ∂Ω)pdµn(x) =

∫∫
LM,r×Ω

d(x, ∂Ω)pdπn(x, y)

=

∫∫
LM,r×(LM/2,r′∪Ar′ )

d(x, ∂Ω)pdπn(x, y) +

∫∫
LM,r×KM/2,r′

d(x, ∂Ω)pdπn(x, y)

≤ 2p−1

∫∫
LM,r×(LM/2,r′∪Ar′ )

d(x, y)pdπn(x, y)

+ 2p−1

∫∫
LM,r×(LM/2,r′∪Ar′ )

d(∂Ω, y)pdπn(x, y)

+

∫∫
LM,r×KM/2,r′

d(x, ∂Ω)pdπn(x, y).

We treat the three parts of the sum separately. As before, taking the lim sup in n and
letting M goes to ∞, the first part of the sum converges to 0 (apply the Portmanteau
theorem on the open set EΩ\(LM,r × (LM/2,r′ ∪Ar′)). The second part is less than or
equal to

2p−1

∫
LM/2,r′∪Ar′

d(y, ∂Ω)pdν(y),
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which converges to 0 as M → ∞ and r′ → 0. For the third part, notice that if
(x, y) ∈ LM,r ×KM/2,r′ , then

d(x, ∂Ω) ≤ d(x, s(y)) ≤ d(x, y) + d(y, s(y)) ≤ d(x, y) +
M

2
≤ 2d(x, y).

Therefore, ∫∫
LM,r×KM/2,r′

d(x, ∂Ω)pdπn(x, y) ≤ 2p
∫∫

LM,r×KM/2,r′

d(x, y)pdπn(x, y)

≤ 2p
∫∫

LM,r×Ω

d(x, y)pdπn(x, y).

As before, it is shown that lim supn
∫∫
LM,r×Ω d(x, y)pdπn(x, y) converges to 0 when M

goes to infinity by applying the Portmanteau theorem on the open set EΩ\(LM,r ×Ω).
Finally, we have shown, that by taking r small enough andM large enough, one can

find a compact set KM,r such that
∫

Ω\KM,r d(x, ∂Ω)pdµn = µ
(p)
n (Ω\KM,r) is uniformly

small: (µ
(p)
n )n is tight. As we have

µ(p)
n (Ω) = Persp(µn) = FGp

p(µn, 0)

≤ (FGp(µn, ν) + FGp(ν, 0))p → (FGp(µ, ν) + FGp(ν, 0))p,

it is also bounded in total variation. Hence, (µ
(p)
n )n is relatively compact for the weak

convergence: this concludes the proof.

Proof of Lemma 6.5.9. Let P =
∑N

i=1 λiδai a probability distribution with ai ∈ Df of
mass mi ∈ N, and define mtot =

∑N
i=1mi. By Proposition 6.5.4, every p-Fréchet mean

a of P is in correspondence with a p-Fréchet mean for the Wasserstein distance ã of
P̃ =

∑N
i=1 λiδãi , where ãi = ai + (mtot −mi)δ∂Ω, with a being the restriction of ã to

Ω.
Let thus fix m ∈ N, and let ã1, . . . , ãN be point measures of mass m in Ω̃. Write

ãi =
∑m

j=1 δxi,j , so that xi,j ∈ Ω̃ for 1 ≤ i ≤ N, 1 ≤ j ≤ m, with the xi,js non-
necessarily distinct. Define

T : (x1, . . . , xN ) ∈ Ω̃N 7→ arg min

{
N∑
i=1

λiρ(xi, y)p : y ∈ Ω̃

}
∈ Ω̃. (6.20)

Since we assume p > 1, T is well-defined and is continuous, while in the general case
the existence of a measurable minimizer follows from standard arguments [CR03].
Using the localization property stated in [COO15a, Section 2.2], we know that the
support of a p-Fréchet mean of P̃ is included in the finite set

S := {T (x1,j1 , . . . , xN,jN ) : 1 ≤ j1, . . . , jN ≤ m}.

LetK = mN and let z1, . . . , zK be an enumeration of the points of S (with potential
repetitions). Denote by Gr(zk) the N elements x1, . . . , xN , with xi ∈ spt(ãi), such that
zk = T (x1, . . . , xN ). It is explained in [COO15a, Section 2.3], that finding a p-Fréchet
mean of P̃ is equivalent to finding a minimizer of the problem

inf
(γ1,...,γN )∈Π

N∑
i=1

λi

∫∫
Ω̃2

ρ(xi, y)pdγi(xi, y), (6.21)
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where Π is the set of plans (γi)i=1,...,N , with γi having for first marginal ãi, and such
that all γis share the same (non-fixed) second marginal. Furthermore, we can assume
without loss of generality that (γ1 . . . γN ) is supported on (Gr(zk), zk)k, i.e. a point zk
in the p-Fréchet mean is necessary transported to its corresponding grouping Gr(zk)
by (optimal) γ1, . . . γN [COO15a, Section 2.3]. For such a minimizer, the common
second marginal is a p-Fréchet mean of P̃ .

A potential minimizer of (6.21) is described by a vector γ = (γi,j,k) ∈ RNmK+ such
that: {

for 1 ≤ i ≤ N, 1 ≤ j ≤ m, ∑K
k=1 γi,j,k = 1 and

for 2 ≤ i ≤ N, 1 ≤ k ≤ K, ∑m
j=1 γ1,j,k =

∑m
j=1 γi,j,k.

(6.22)

Let c ∈ RNmK be the vector defined by ci,j,k = 1{xi,j ∈ Gr(zk)}λiρ(xi,j , zk)p. Then,
the problem (6.21) is equivalent to

minimize
γ∈RNmK+

γT c under the constraints (6.22). (6.23)

The set of p-Fréchet means of P are in bijection with the set of minimizers of this
Linear Programming problem (see [Sch03, Section 5.15]), which is given by a face of the
polyhedron described by the equations (6.22). Hence, if we show that this polyhedron
is integer (i.e. its vertices have integer values), then it would imply that the extreme
points of the set of p-Fréchet means of P are point measures, concluding the proof.
The constraints (6.22) are described by a matrix A of size (Nm+ (N − 1)K)×NmK
and a vector b = [1Nm,0(N−1)K ], such that γ ∈ RNmK satisfies (6.22) if and only if
Aγ = b. A sufficient condition for the polyhedron {Ax ≤ b} to be integer is to satisfy
the following property (see [Sch03, Section 5.17]): for all u ∈ ZNmK , the dual problem

max{yT b, y ≥ 0 and yTA = u} (6.24)

has either no solution (i.e. there is no y ≥ 0 satisfying yTA = u), or it has an integer
optimal solution y.

For y satisfying yTA = u, write y = [y0, y1] with y0 ∈ RNm and y1 ∈ R(N−1)K , so
that y0 is indexed on 1 ≤ i ≤ N, 1 ≤ j ≤ m and y1 is indexed on 2 ≤ i ≤ N, 1 ≤ k ≤ K.
One can check that, for 2 ≤ i ≤ N, 1 ≤ j ≤ m, 1 ≤ k ≤ K:

u1,j,k = y0
1,j +

N∑
i′=2

y1
i′,k and ui,j,k = y0

i,j − y1
i,k, (6.25)

so that,

yT b =
N∑
i=1

m∑
j=1

y0
i,j =

m∑
j=1

y0
1,j +

N∑
i=2

m∑
j=1

y0
i,j

=

m∑
j=1

(u1,j,k −
N∑
i=2

y1
i,k) +

N∑
i=2

m∑
j=1

(ui,j,k + y1
i,k)

=

N∑
i=1

m∑
j=1

ui,j,k.

Therefore, the function yT b is constant on the set P := {y ≥ 0, yTA = u}, and
any point of the set is an argmax. We need to check that if the set P is non-empty,
then it contains a vector with integer coordinates: this would conclude the proof. A
solution of the homogeneous equation yTA = 0 satisfies y0

i,j = y1
i,k = λi for i ≥ 2 and
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y0
1,j = −∑N

i=2 y
1
i,k = −∑N

i=2 λi and reciprocally, any choice of λi ∈ R gives rise to a
solution of the homogeneous equation. For a given u, one can verify that the set of
solutions of yTA = u is given, for λi ∈ R, by

y0
1,j =

∑N
i=1 ui,j,k −

∑N
i=2 λi

y0
i,j = λi for i ≥ 2,

y1
i,k = −ui,j,k + λi for i ≥ 2.

Such a solution exists if and only if for all j, Uj :=
∑N

i=1 ui,j,k does not depend on k
and for i ≥ 2, Ui,k := ui,j,k does not depend on j. For such a vector u, P corresponds to
the λi ≥ 0 with λi ≥ maxk Ui,k and Uj ≥

∑N
i=1 λi. If this set is non empty, it contains

as least the point corresponding to λi = max{0,maxk Ui,k}, which is an integer: this
point is integer valued, concluding the proof.
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Chapter 7

On the choice of weight functions
for linear representations of
persistence diagrams

A wide class of representations of persistence diagrams, including the persistence
surface [Ada+17] (variants of this object have been also introduced [Che+15; KHF16;
Rei+15]), the accumulated persistence function [BM19] or the persistence silhouette
[Cha+15a] are conveniently expressed as a linear expression of the points of the
diagram.

Definition 7.0.1 (Linear representations). Let f : Ω→ B be a map, where B is some
Banach space. The map Ψf : Dp → B defined by Ψf (a) = a(f) =

∑
u∈a f(u) is called

the linear representation associated with f .

In this chapter, we explore the behavior of linear representations in two different
ways. First, in Section 7.1, using the characterization of convergence with respect to
the Figalli-Gigli metric FGp given in Chapter 6, we give a description of all continuous
linear representations. In particular, we highlight the importance of weighting the
representation by the distance to the diagonal to the power p: the representations
of the form Ψd(·,∂Ω)p·f with f continuous bounded are the only continuous ones
with respect to FGp. In applications, Lipschitz continuity is often more desirable
than continuity. For p = 1, we therefore show a general stability result for linear
representations, which is based on a version of the Kantorovitch-Rubinstein duality
formula for persistence diagrams. Although obtaining a stability result for p > 1 is
somewhat less straightforward, we also give an inequality for bounding the distance
between linear representations by the FGp distance for general p. In this case, the
importance of weighting the underlying map f by the distance to the diagonal is once
again shown.

Our second approach consists in taking an asymptotic point of view, by studying
the behavior of Čech and Rips persistence diagrams built on top of large random point
clouds. Assume for instance that a point cloud X is located on some Riemannian
manifold M . Under this assumption, the Čech persistence diagram a = dgmC

q (X ) of
the data set is made of two different types of points: points atrue far away from the
diagonal, which estimate the diagram of the manifold M , and points anoise close to
the diagonal, which are generally considered to be ”topological noise” (see Figure 7.1).
This interpretation is a consequence of the stability theorem for persistence diagrams;
see Chapter 3. If the relevant information lies in the structure of the manifold, then
the topological noise indeed represents true noise, and linear representations of the
form Ψf (a) are bound to fail if Ψf (anoise) is dominating Ψf (atrue). Once again, we
showcase the advantage of using a weight function w : Ω→ R. If w is chosen properly,
i.e. small enough when close to the diagonal, then one can hope that Ψwf (atrue) can be
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an,true

an,noise

Figure 7.1: The persistence diagram for homology of degree 1 of the
Rips filtration of n = 700 i.i.d. points uniformly sampled on a torus.

separated from Ψwf (anoise). We address this question from an asymptotic perspective:
for which weight functions does Ψwf (anoise) converge to 0?

Of course, for this question to make sense, a model for the dataset has to be
specified. A simple model is given by a Poisson (or binomial) process Xn of intensity n
in a cube of dimension d. We then denote by dgmK

q (Xn) the persistence diagram of Xn
built with either the Čech (K = C) or the Rips (K = R) filtration for q-dimensional
homology. In this setting, there are no ”true” topological features (other than the
trivial topological feature of [0, 1]d being connected), and thus the diagram based on
the sampled data is uniquely made of topological noise. A first promising result is the
vague convergence of the persistence measure µnq := n−1dgmK

q (n1/dXn), which was
proven in [HST18] for homogeneous Poisson processes in the cube and in [GTT19]
for binomial processes on manifolds. However, vague convergence is not enough for
our purpose, as neither f nor w have good reasons to have compact support. Our
main result, Theorem 7.2.4 extends results of [GTT19], for processes on the cube, to a
stronger convergence, allowing test functions to have both non-compact support (but
to converge to 0 near the diagonal) and to have polynomial growth. As a corollary of
this general result, the convergence of the p-th total persistence is shown, as well as
convergence of µnq for the Figalli-Gigli metric.

Theorem 7.0.2. Let p ≥ 0 and let κ be a density on [0, 1]d such that 0 < inf κ ≤
supκ <∞. Let Xn be either a binomial process with parameters n and κ or a Poisson
process of intensity nκ in the cube [0, 1]d. Then, with probability one, as n→∞

n
α
d
−1Persp(dgmK

q (Xn))→ µκq (persp) <∞ (7.1)

for some non-zero persistence measure µκq .
Furthermore, if µnq := n−1dgmK(n1/dXn) and p ≥ 1, we have

FGp(µ
n
q , µ

κ
q )→ 0. (7.2)

Remark that (7.2) is a consequence of (7.1) and of the vague convergence of µnq
proven in [HST18], by using the characterization of convergence for the Figalli-Gigli
metric (Theorem 6.2.6). If an := dgmK

q (X ′n) is built on a point cloud X ′n of size n
on a d-dimensional manifold, one can expect an,noise to behave similarly to that of
dgmK

q (Xn) for Xn a n-sample on a d-dimensional cube (a manifold looking locally
like a cube). Therefore, for p > 0, the quantity Persp(an,noise) should be close to
Persp(dgmK

q (Xn)), and it can be expected to converge to 0 if and only if the weight
function persp is such that p > d. As such, we obtain the following heuristic: a weight
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function of the form persp with p > d is sensible if the data lies near a d-dimensional
object.

Further properties of the process (dgmK
q (Xn))n are also shown, namely non-

asymptotic rates of decays for the number of points in said diagrams, and the absolute
continuity of the marginals of µκq with respect to the Lebesgue measure on R.

Related work Techniques used to derive the large sample results indicated above
are closely related to the field of geometric probability, which is the study of geometric
quantities arising naturally from point processes in Rd. A classical result in this field,
see [Ste88], proves the convergence of the total length of the minimum spanning tree
built on n i.i.d. points in the cube. This pioneering work can be seen as a 0-dimensional
special case of our general results about persistence diagrams built for homology of
dimension q. This type of result has been extended to a large class of functionals in
the works of J. E. Yukich and M. Penrose (see for instance [MY99; Yuk00; PY03] and
[Pen03] or [Yuk06] for monographs on the subject).

The study of higher dimensional properties of such processes is much more recent.
Known results include convergence of Betti numbers for various models and under
various asymptotics (see [Kah11; KM13; YSA17; BO17]). The paper [BKS17] finds
bounds on the persistence of cycles in random complexes, and [HST18] proves limit
theorems for persistence diagrams built on homogeneous point processes. The latter
is extended to non-homogeneous processes in [Tri17], and to processes on manifolds
in [GTT19]. Note that our results constitute a natural extension of [Tri17]. In
[STY17], higher dimensional analogs of minimum spanning trees, called minimal
spanning acycles, were introduced. Minimal spanning acycles exhibits strong links
with persistence diagrams and our main theorem can be seen as a convergence result
for weighted minimal spanning acycle on geometric random complexes. [STY17]
also proves the convergence of the total 1-persistence for Linial-Meshulam random
complexes, which are models of random simplicial complexes of a combinatorial nature
rather than a geometric nature.

7.1 Continuity and stability of linear representations

As mentioned in the introduction, a linear representation of persistence measures (in
particular persistence diagrams) is a mapping Φf :Mp → B for some Banach space
B of the form µ 7→ µ(f), where f : Ω → B is some chosen function. Using such a
representation, one can turn a sample of diagrams into a sample of vectors, making
the use of machine learning tools easier. Of course, a minimal expectation is that Φf

should be continuous. In practice, building a linear representation generally follows
the same pattern: first consider a ”nice” function g, e.g. a gaussian distribution, then
introduce a weight with respect to the distance to the diagonal d(·, ∂Ω)p, and prove
that µ 7→ µ(g(·)d(·, ∂Ω)p) has some regularity properties (continuity, stability, etc.).
Applying Theorem 6.2.6, we show that this approach always gives a continuous linear
representation, and that it is the only way to do so.

For B a Banach space (typically Rd), define the class of functions:

C0
b,p =

{
f : Ω→ B : f is continuous and x 7→ f(x)

d(x, ∂Ω)p
is bounded

}
. (7.3)

Proposition 7.1.1. Let B be a Banach space and f : Ω→ B a function. The linear
representation Ψf :Mp → B is continuous with respect to FGp if and only if f ∈ C0

b,p.
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Proof. Consider first the case B = R. Let f ∈ C0
b,p and µ, µ1, µ2 · · · ∈ Mp be such that

FGp(µn, µ) → 0. Recall the definition (6.10) of µ(p). Using Corollary 6.2.9, having
FGp(µn, µ)→ 0 means that µ(p)

n
w−→ µ(p), and thus that∫

Ω

f(x)

d(x, ∂Ω)p
dµ(p)

n (x)→
∫

Ω

f(x)

d(x, ∂Ω)p
dµ(p)(x),

that is
Ψf (µn) =

∫
Ω
f(x)dµn(x)→

∫
Ω
f(x)dµ(x) = Ψf (µ),

i.e. Ψf is continuous with respect to FGp.
Now, let B be any Banach space. [Nie11, Theorem 2] states that if a sequence of

measures (µn)n weakly converges to µ, then µn(f)→ µ(f) for any continuous bounded
function g : Ω→ B. Applying this result to the sequence (µ

(p)
n with g = f/d(·, ∂Ω)p

yields the desired result.
Conversely, let f : Ω→ B. Assume first that f is not continuous in some x ∈ Ω.

There exist a sequence (xn)n ∈ ΩN such that xn → x but f(xn) 9 f(x). Let µn = δxn
and µ = δx. We have FGp(µn, µ) → 0, but µn(f) = f(xn) 9 f(x0) = µ(f), so that
the linear representation µ 7→ µ(f) cannot be continuous.
Then, assume that f is continuous but that x 7→ f(x)

d(x,∂Ω)p is not bounded. Let

thus (xn)n ∈ ΩN be a sequence such that
∥∥∥ f(xn)
d(xn,∂Ω)p

∥∥∥ → +∞. Define the measure

µn := 1
‖f(xn)‖δxn . Observe that FGp(µn, 0) = d(xn,∂Ω)p

‖f(xn)‖ → 0 by hypothesis. However,
‖µn(f)‖ = 1 for all n, allowing us to conclude once again that µ 7→ µ(f) cannot be
continuous.

Examples of such linear representations commonly used in applications of TDA
include for instance the persistence surface, persistence silhouettes and (weighted)
Betti curves, all introduced in Section 3.9.

Stability in the case p = 1. Continuity is a basic expectation when embedding a
set of diagrams in some Banach space B. One could however ask for more, e.g. some
Lipschitz regularity: given a representation Ψ : Mp → B, one may want to have
‖Ψ(µ)−Ψ(ν)‖ ≤ C ·FGp(µ, ν) for some constant C. This property is generally referred
to as ”stability” in the TDA community and is generally obtained with p = 1, see for
example [Ada+17, Theorem 5], [CCO17, Theorem 3.3 & 3.4], [Som+18, Section4],
[Rei+15, Theorem 2], etc.

Here, we still consider the case of linear representations, and show that stability
always holds with respect to the distance FG1. Informally, this is explained by the
fact that when p = 1, the cost function (x, y) 7→ d(x, y)p is actually a distance.

Proposition 7.1.2. Define L the set of Lipschitz continuous functions f : Ω → R
with Lipschitz constant less than or equal to 1 and that satisfy f(∂Ω) = 0. Let T be
any set, and consider a family (ft)t∈T with ft ∈ L. Then the linear representation
Ψ : µ 7→ (µ(ft))t∈T is 1-Lipschitz continuous in the following sense:

‖Ψ(µ)−Ψ(ν)‖∞ := sup
t∈T
|(µ− ν)(ft)| ≤ FG1(µ, ν), (7.4)

for any measures µ, ν ∈M1.
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Proof. Consider µ, ν ∈M1, and π ∈ Opt(µ, ν) an optimal transport plan. Let t ∈ T .
We have:

(µ− ν)(ft) =

∫
Ω
ft(x)dµ(x)−

∫
Ω
ft(y)dν(y) =

∫∫
Ω×Ω

(ft(x)− ft(y))dπ(x, y)

≤
∫∫

Ω×Ω
d(x, y)dπ(x, y) = FG1(µ, ν),

and thus, ‖Ψ(µ)−Ψ(ν)‖∞ ≤ FG1(µ, ν).

In particular, if f : Ω → B, where B is some Banach space, is 1-Lipschitz
with f(∂Ω) = 0, then one can let T = B∗1 (the unit ball of the dual of B) and
ft(x) := t(f(x)) for t ∈ T . We then obtain that ‖Ψf (µ) − Ψf (ν)‖ ≤ FG1(µ, ν), i.e.
that Ψf : (M1,FG1)→ (B, ‖ · ‖) is 1-Lipschitz.

Remark 7.1.3. One actually has a converse of such an inequality, i.e. it can be shown
that

FG1(µ, ν) = max{(µ− ν)(f) : f ∈ L}. (7.5)

This equation is an adapted version of the well-known Kantorovich-Rubinstein formula,
which is itself a particular version in the case p = 1 of the duality formula in optimal
transport, see for example [Vil08, Theorem 5.10] and [San15, Theorem 1.39]. A proof
of (7.5) would require to introduce several optimal transport notions. The interested
reader can consult Proposition 2.3 in [FG10] for details.

Stability for general weight functions Instead of weighting a representation by
the distance to the diagonal d(·, ∂Ω)p for some p ≥ 1, one could use other schemes.
For instance, in [KFH17, Corollary 12], representations of diagrams are shown to
be Lipschitz with respect to the FG1 distance for weight functions of the form w :
u ∈ Ω = arctan(B · pers(u)α) with α > m + 1, B > 0, provided the diagrams are
built with the sublevels of functions defined on a space X having bounded m-th total
persistence. The stability result is proved for a particular function f : Ω→ B defined
by u ∈ Ω 7→ f(u) = K(u, ·), with K a bounded Lipschitz kernel and B the associated
RKHS (short for Reproducing Kernel Hilbert Space, see [Aro50] for a monograph on
the subject). We present a generalization of the stability result to (i) general weight
functions w, (ii) any bounded Lipschitz function f, and (iii) we only require α > m.

Consider weight functions w : Ω→ R+ of the form w(u) = w̃(pers(u)) for u ∈ Ω,
for a differentiable function w̃ : R+ → R+ satisfying w̃(0) = 0, and, for some A > 0,
α ≥ 1,

∀r ≥ 0, |w̃′(r)| ≤ Arα−1. (7.6)

Examples of such functions include w : u 7→ arctan(B · pers(u)α) for B > 0 and
w : u 7→ pers(u)α. We denote the class of such weight functions by W(α,A). In
contrast to [KFH17], the function f does not necessarily take its values in a RKHS, but
simply in a Banach space. Given R > 0, we let DpR be the set of persistence diagrams
a with Persp(a) ≤ R (i.e. DpR is the ball of radius Rp centered at 0 in Dp).

Theorem 7.1.4. Let (B, ‖ · ‖) be a Banach space, let f : Ω → B be a Lipschitz
continuous function and let w ∈ W(α,A) with A > 0, α ≥ 1. Fix t ∈ [0, 1] and
let p1 = p α

p−1 and p2 = pα−tp−t . Given R1, R2 > 0 and two diagrams a and b in
Dp ∩ Dp1

R1
∩ Dp2

R2
, we have

‖Ψwf (a)−Ψwf (b)‖ ≤ Lip(f)
A

α
R

1− 1
p

1 FGp(a, b) + ‖f‖∞A (2R2)
1− t

p FGp(a, b)
t. (7.7)



156 Chapter 7. Linear representations of persistence diagrams

Proof. We only treat the case p < ∞, the proof being easily adapted to the case
p =∞.

Fix two persistence diagrams a and b. Denote µ = w · a (resp. ν = w · b) the
measure having density w with respect to a (resp. b). Fix ε > 0 and let γ be a matching
between a and b such that the cost of the matching is smaller than FGp(a, b) + ε.
Define

µ̃ =
∑

u∈a∪∂Ω

w(γ(u))δu.

Note that as the cost of γ is finite, there is a finite numbers on points u ∈ ∂Ω with
γ(u) 6= u, so that w(γ(u)) 6= 0 only for a finite number of elements in the definition of
µ̃. Remark also that µ̃ is of finite mass, with |µ̃| = |ν|. We have

‖Ψwf (a)−Ψwf (b)‖ = ‖µ(f)− ν(f)‖ ≤ ‖µ(f)− µ̃(f)‖+ ‖µ̃(f)− ν(f)‖
≤ ‖f‖∞|µ− µ̃|+ Lip(f)W1(µ̃, ν). (7.8)

We bound the two terms in the sum separately. Let us first bound W1(µ̃, ν). Consider
an optimal transport plan between µ̃ and ν, which is built by mapping every point
u ∈ a ∪ ∂Ω towards γ(u) ∈ b ∪ ∂Ω. We have

W1(µ̃, ν) ≤
∑

u∈a∪∂Ω

w(γ(u))|u− γ(u)|.

Let p′ be the conjugate exponent of p, defined by 1
p + 1

p′ = 1. As condition (7.6) implies
that |w(u)| ≤ A

αpers(u)α, the distance W1(µ̃, ν) is bounded by

∑
u∈a∪∂Ω

w(γ(u))|u− γ(u)| ≤
( ∑
u∈a∪∂Ω

w(γ(u))p
′

)1/p′ ( ∑
u∈a∪∂Ω

|u− γ(u)|p
)1/p

≤ A

α

( ∑
u∈a∪∂Ω

pers(γ(r))p
′α

)1/p′

FGp(a, b)

≤ A

α
R

1/p′

1 FGp(a, b), (7.9)

where R1 is a bound on Persαp′(b). We now treat the first part of the sum in
(7.8). For u1, u2, in Ω with pers(u1) ≤ pers(u2), define the path with unit speed
h : [pers(u1), pers(u2)]→ Ω by

h(t) = u2
t− pers(u1)

pers(u2)− pers(u1)
+ u1

pers(u2)− t
pers(u2)− pers(u1)

,

so that it satisfies pers(h(t)) = t. The quantity |w(u1)− w(u2)| is bounded by∫ pers(u2)

pers(u1)
|∇w(h(t)).h′(t)|dt ≤

∫ pers(u2)

pers(u1)
A pers(h(t))α−1dt

≤
∫ pers(u2)

pers(u1)
A tα−1dt

=
A

α
(pers(u2)α − pers(u1)α).

For 0 < y < x and 0 ≤ a ≤ 1, using the convexity of t 7→ tα, it is easy to see that xα−
yα ≤ α(x− y)axα−a. Define q = p

a , q
′ = q′

q′−1 and M(u) := max(pers(u),pers(γ(u))).
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We have,

|µ− µ̃| =
∑

u∈a∪∂Ω

|w(u)− w(γ(u))|

≤ A
∑

u∈a∪∂Ω

|pers(u)− pers(γ(u))|tM(u)α−t

≤ A
( ∑
u∈a∪∂Ω

|pers(u)− pers(γ(u))|tq
)1/q ( ∑

u∈a∪∂Ω

M(u)q
′(α−t)

)1/q′

≤ AFGtq(a, b)
a

( ∑
u∈a∪∂Ω

(
pers(u)q

′(α−t) + pers(γ(u))q
′(α−t)

))1/q′

≤ AFGtq(a, b)
t21/q′R

1/q′

2 , (7.10)

where R2 is a bound on Persq′(α−t)(a) and Persq′(α−t)(b). Combining equations (7.8),
(7.9) and (7.10) concludes the proof.

The total persistence Persq(a) of a diagram a can often be controlled. This is
for instance the case if the diagrams are built with Lipschitz continuous functions
φ : X → R, and X is a space having bounded m-th total persistence (see Chapter 3).
In that case, we are able to give a simpler stability result than Theorem 7.1.4.

Corollary 7.1.5. Let q ≥ 0 an integer, A > 0, α ≥ 1 and consider a space X
having bounded m-th total persistence for some m ≥ 1 and constant CX ,m. Suppose
that φ1, φ2 : X → R are two tame Lipschitz continuous functions, w ∈ W(α,A),
and t ∈ [0, 1]. Let m ≤ p ≤ ∞ be such that α ≥ m + t

(
1− m

p

)
≥ 0. Let C0 =

CX ,m max{Lip(φ1)m,Lip(φ2)m} and ` be the maximum persistence in the two diagrams
dgmq(φ1), dgmq(φ2). Then, we have

‖Ψwf (dgmq(φ1))−Ψwf (dgmq(φ2))‖ ≤ C1FGp(dgmq(φ1),dgmq(φ2))

+ C2FGp(dgmq(φ1),dgmq(φ2))t,
(7.11)

where C1 = Lip(f)Aα `
α−m

(
1− 1

p

)
C

1− 1
p

0 and C2 = ‖f‖∞A`α−m−t
(

1−m
p

)
(2C0)

1− t
p .

Proof. Corollary 7.1.5 follows by using the definition of a space implying bounded
m-th total persistence along with the inequality Perst1+t2(a) ≤ Pers∞(a)t1Perst2(a)
for any persistence diagram a.

If α > m + 1 and p = ∞, then the result is similar to Theorem 3.3 in [KFH17].
However, Corollary 7.1.5 implies that the representations are still continuous (actually
Hölder continuous) when α ∈ (m,m+ 1], and this is the novelty of the result. Indeed,
for such an α, one can always choose t small enough so that the stability result (7.11)
holds. The proofs of Theorem 7.1.4 and Corollary 7.1.5 consist of adaptations of
similar proofs in [KFH17].

Remark 7.1.6. (a) One cannot expect to obtain an inequality of the form (7.7) without
quantities R1 and R2 related to the total persistence of the diagrams appearing on the
right-hand side. For instance, in the case p =∞, it is clear that adding an arbitrary
number of points near the diagonal will not change the bottleneck distance between
the diagrams, whereas the distance between representations can become arbitrarily
large.

(b) Laws of large numbers stated in the next section (see Theorem 8.2.5), show that



158 Chapter 7. Linear representations of persistence diagrams

Corollary 7.1.5 is optimal. Indeed, take w = persα and f ≡ 1. Let X = [0, 1]d be the
d-dimensional cube, which has bounded m-th total persistence for m > d. Let Xn
be a sample of n i.i.d. points on X . Letting φ1 be the distance function to Xn, we
obtain that dgmq(φ1) = dgmC

q (Xn), the Čech persistence diagram of the set Xn. We
let φ2 = 0, so that dgmq(φ2) = 0. Therefore,

‖Ψwf (dgmq(φ1))−Ψwf (dgmq(φ2))‖ = Persα(dgmC
q (Xn)).

We will see in the next section that this quantity does not converge to 0 for α ≤ d (it
even diverges if α < d), whereas the bottleneck distance between dgmC

q (Xn) and the
empty diagram does converge to 0. As such, it is impossible to obtain an inequality of
the form (7.11) for α ≤ m.

We end this section by giving a foretaste of the asymptotic study of persistence
diagrams developed in the next section. The following corollary presents rates of con-
vergence of representations in a random setting. Let Xn = {X1, . . . , Xn} be a n-sample
of i.i.d. points from a distribution on some manifold M . We are interested in the con-
vergence of the representation Ψwf (dgmC

q (Xn)) to the representation Ψwf (dgmC
q (M)).

We obtain the following corollary.

Corollary 7.1.7. Consider a d-dimensional compact Riemannian manifold M , and let
Xn = {X1, . . . , Xn} be a n-sample of i.i.d. points from a distribution having a density
κ with respect to the volume measure on M . Assume that 0 < inf κ ≤ supκ <∞. Let
w ∈ W(α,A) for some A > 0, α > d, and let f : Ω → B be a Lipschitz continuous
function. Then, for n large enough,

E
[
‖Ψwf (dgmC

q (Xn))−Ψwf (dgmC
q (M))‖

]
≤ C‖f‖∞

α

α− d

(
lnn

n

)α
d
−1

, (7.12)

where C is a constant depending on M,A and the density κ.

The study of the next section will show that this rate of convergence is tight up to
logarithmic factors. Once again, this indicates that Corollary 7.1.5 is close to being
tight.

Proof. As already discussed, Theorem 7.1.4 can be applied with φn = d(·,Xn) and φ
the null function on the manifold M . Take p =∞, d < α and 0 < t < min(1, α− d):

‖Ψwf (dgmq(φn))−Ψwf (dgmq(φ))‖

≤ Lip(f)
A

α
Persα(dgmq(φn))) · d∞(dgmq(φn),dgmq(φ))

+ 2‖f‖∞APersα−t(dgmq(φn))d∞(dgmq(φn),dgmq(φ))t.

(7.13)

We mentioned in Chapter 3 that, form > d, we have the inequality Persm(dgmq(φn)) ≤
mCM‖φn‖m−d/(m− d) for some constant CM depending only on M . Moreover, the
stability theorem for the bottleneck distance ensures that d∞(dgmq(φn), dgmq(φ)) ≤
‖φn‖∞. Therefore,

‖Ψwf (dgmq(φn))−Ψwf (dgmq(φ))‖

≤ Lip(f)
αACX
α− d ‖φn‖

α−d+1
∞ + ‖f‖∞

2ACM (α− t)
α− t− d ‖φn‖α−t−d+t

∞

≤ Lip(f)
αACM
α− d ‖φn‖

α−d+1
∞ + ‖f‖∞

2ACMα

α− d ‖φn‖
α−d
∞ , (7.14)
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where, in the last line, the second term was minimized over t ∈ [0, 1]. The quantity
‖φn‖∞ is the Hausdorff distance between Xn and M . Elementary techniques of
geometric probability (see for instance [Cue09]) show that if M is a compact d-
dimensional manifold, then E[‖φn‖β∞] ≤ c

(
lnn
n

)β/d for β ≥ 0, where c is some constant
depending on β,M, inf κ and supκ. Therefore, the first term of the sum (7.14) being
negligible,

E
[
‖Ψwf (dgmq(φn))−Ψwf (dgmq(φ))‖

]
≤

‖f‖∞
2ACMα

α− d c

(
lnn

n

)(α−d)/d

+ o

((
lnn

n

)(α−d)/d
)
.

In particular, the conclusion holds for any C > 2ACMc, for n large enough.

7.2 Limit laws on large persistence diagrams

As a gentle introduction to the formalism used later, we first recall some known results
from geometric probability on the study of Betti numbers, and we also detail relevant
results of [HST18; Tri17; GTT19].

7.2.1 Prior work

In the following, K refers to either the Čech or the Rips filtration. Let κ be a density
on [0, 1]d such that:

0 < inf κ ≤ supκ <∞. (7.15)

Note that the cube [0, 1]d could be replaced by any compact convex body (i.e. the
boundary of an open bounded convex set). However, the proofs (especially geometric
arguments of Section 7.4.1) become much more involved in this greater generality. To
keep the main ideas clear, we therefore restrict ourselves to the case of the cube. We
indicate, however, when challenges arise in the more general setting.

Let (Xi)i≥1 be a sequence of i.i.d. random variables sampled from density κ and
let (Ni)i≥1 be an independent sequence of Poisson variables with parameter i. In the
following Xn denotes either {X1, . . . , Xn}, a binomial process of intensity κ and of size
n, or {X1, . . . , XNn}, a Poisson process of intensity nκ. The fact that the binomial
and Poisson processes are built in this fashion is not important for weak laws of large
numbers (only the law of the variables is of interest), but it is crucial for strong laws
of large numbers to make sense.

Recall the definition of the persistent Betti numbers

βr,s(dgmK
q (Xn)) := dgmK

q (Xn)(⌟r,s), (7.16)

where ⌟r,s = {u = (u1, u2) ∈ Ω : u1 ≤ r ≤ s ≤ u2} for 0 ≤ r ≤ s.

Theorem 7.2.1 (Theorem 1.4 in [Tri17]). Let r > 0 and q ≥ 0. Then, with probability
one, n−1βr,r(dgmK

q (n1/dXn)) converges to some constant. The convergence also holds
in expectation.

The theorem is originally stated with the Čech filtration but its generalization
to the Rips filtration (or even to more general filtrations considered in [HST18]) is
straightforward. The proof of this theorem is based on a simple, yet useful geometric
lemma, which still holds for the persistent Betti numbers, as proven in [HST18]. Recall
that for j ≥ 0, Sj(K) denote the j-skeleton of the simplicial complex K.
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Lemma 7.2.2 (Lemma 2.11 in [HST18]). Let X ⊂ Y be two subsets of Rd. Then

|βr,s(dgmK
q (X ))− βr,s(dgmK

q (Y))| ≤
q+1∑
j=q

|Sj(Ks(Y))\Sj(Ks(X ))|. (7.17)

In [HST18], this lemma was used to prove the convergence of expectations of
diagrams of stationary point processes. As indicated in [GTT19, Remark 2.4], this
lemma can also be used to prove the convergence of the expectations of diagrams
for non-homogeneous binomial processes on manifold. Set µnq = n−1dgmK

q (n1/dXn).
Remark 2.4 in [GTT19] implies the following theorem.

Theorem 7.2.3 (Remark 2.4 in [GTT19] and Theorem 1.5 in [HST18]). Let κ be a
probability density function on a d-dimensional compact C1 manifold M (or the cube),
with

∫
M κj(z)dz <∞ for j ∈ N. Then, for q ≥ 0, there exists a unique Radon measure

µκq on Ω such that
E[µnq ]

v−−−→
n→∞

µκq (7.18)

and
µn

v−−−→
n→∞

µκq a.s.. (7.19)

The measure µκq is called the persistence diagram of intensity κ for the filtration K.

The measure E[µnq ] is by definition the unique measure defined by E[µnq ](A) :=
E[µnq (A)] for every Borel set A. We will investigate in detail the behavior or such
measures, that we call expected persistence diagrams, in Chapter 8.

7.2.2 Main results

A function φ : Ω→ R is said to vanish on the diagonal if

lim
ε→0

sup
pers(r)≤ε

|φ(r)| = 0. (7.20)

Denote by C0(Ω) the set of all such functions. The weight functions of Section 7.1 all
lie in C0(Ω). We say that a function φ : Ω→ R has polynomial growth if there exist
two constants A,α > 0, such that

|φ(r)| ≤ A (1 + pers(r)α) . (7.21)

The class Cpoly(Ω) of functions in C0(Ω) with polynomial growth constitutes a
reasonable class of functions w · φ one may want to build a representation with.
Our goal is to extend the convergence of Theorem 7.2.3 to this larger class of func-
tions. Convergence of measures µn to µ with respect to Cpoly(Ω), i.e. ∀φ ∈ Cpoly(Ω),
µn(φ) −−−→

n→∞
µ(φ), is denoted by

vp−→. Note that this class of functions is standard: it is
for instance known to characterize p-th Wasserstein convergence in optimal transport
(see Chapter 3).

Theorem 7.2.4. (i) For q ≥ 0, there exists a unique Radon measure µκq such that
E[µnq ]

vp−−−→
n→∞

µκq and, with probability one, µnq
vp−−−→

n→∞
µκq . The measure µκq is called the

q-th persistence diagram of intensity κ for either the Čech or Rips filtration. It does
not depend on whether Xn is a Poisson or a binomial process, and is of positive finite
mass.

(ii) The convergence also holds pointwise for the Lp distance: for all φ ∈ Cpoly(Ω), and

for all p ≥ 1, µnq (φ)
Lp−−−→

n→∞
µκq (φ). In particular, |µκq (φ)| <∞.
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Remark 7.2.5. (a) Remark 2.4 together with Theorem 1.1 in [GTT19] imply that the
measure µκq has the following expression:

µκq (φ) = E
[∫

Ω
φ(rκ(X)−1/d)dµq(r)

]
∀φ ∈ Cc(Ω), (7.22)

where µq = µ1q is the q-th persistence diagram of uniform density on [0, 1]d, appearing
in Theorem 7.2.3, and the expectation is taken with respect to a random variable X
having a density κ.

(b) Assume q = 0 and d = 1. Then, the persistence diagram dgmK
0 (Xn) is simply

the collection of the intervals (X(i+1) − X(i)) where X(1) < · · · < Xn is the order
statistics of Xn. The measure E[µn0 ] can be explicitly computed: it converges to
a measure having density u 7→ E[exp(−uκ(X))κ(X)] with respect to the Lebesgue
measure on R+, where X has density κ. Take κ the uniform density on [0, 1]: one sees
that this is coherent with the basic fact that the spacings of a homogeneous Poisson
process on R are distributed according to an exponential distribution. Moreover, the
expression (7.22) is found again in this special case.

(c) Theorem 1.9 in [HST18] states that the support of µ1q is Ω. Using Equation (7.22),
the same holds for µκq .

(d) Theorem 7.0.2 is a direct corollary of Theorem 7.2.4. Indeed, we have

n
α
d
−1Persα(dgmK

q (Xn)) := n
α
d
−1

∑
r∈dgmK

q (Xn)

persα(r)

= n−1
∑

r∈dgmK
q (Xn)

persα(n−
1
d r)

= µnq (persα),

a quantity which converges to µκq (persα). The relevance of Theorem 7.0.2 is
illustrated in Figure 7.2, where Čech complexes are computed on random samples on
the torus.

The core of the proof of Theorem 7.2.4 consists in a control of the number of
points appearing in diagrams. This bound is obtained thanks to geometric properties
satisfied by the Čech and Rips filtrations. Finding good requirements to impose on a
filtration K for this control to hold is an interesting question. The following states
some non-asymptotic controls of the number of points in diagrams which are interesting
by themselves.

Proposition 7.2.6. Let M ≥ 0 and define UM = R × [M,∞). Then, there exist
constants c1, c2 > 0 (which can be made explicit) depending on κ and q, such that, for
any t > 0,

P(µnq (UM ) > t) ≤ c1 exp(−c2(Md + t1/(q+1))). (7.23)

As an immediate corollary, the moments of the total mass |µnq | are uniformly
bounded. However, the proof of the almost sure finiteness of supn |µnq | is much more
intricate. Indeed, we are unable to control directly this quantity, and we prove that a
majorant of |µnq | satisfies concentration inequalities. The majorant arises as the number
of simplicial complexes of a simpler process, whose expectation is also controlled.

It is natural to wonder whether µκq has some density with respect to the Lebesgue
measure on Ω: it is the case for the for d = 1, and it is shown in Chapter 8 that E[µnq ]
also has a density. Even if those elements are promising, it is not clear whether the
limit µκq has a density in a general setting. However, we are able to prove that the
marginals of µκq have densities.
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Weight function n = 500 n = 2000
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Figure 7.2: For n = 500 or 2000 points uniformly sampled on the
torus, persistence images [Ada+17] for different weight functions are
displayed. For α < 2, the mass of the topological noise is far larger
than the mass of the true signal, the latter being comprised by the
two points with high-persistence. For α = 2, the two points with
high-persistence are clearly distinguishable. For α = 100, the noise has
also disappeared, but so has one of the point with high-persistence.
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Proposition 7.2.7. Let π1 (resp. π2) be the projection on the x-axis (resp. y-axis).
Then, for q > 0, the pushforwards (π1)#(µκq ) and (π2)#(µκq ) have densities with respect
to the Lebesgue measure on R. For q = 0, (π2)#(µκq ) has a density.

7.3 Discussion

The tuning of the weight functions in representations of persistence diagrams is a
critical issue in practice. When the statistician has good reasons to believe that the
data lies near a d-dimensional structure, we give, through two different approaches
(stability and limit theorems), a heuristic to tune this weight function: a weight of the
form persα with α ≥ d is sensible. The study carried out in this paper allowed us to
show new results on the asymptotic structure of random persistence diagrams. While
the existence of a limiting measure in a weak sense was already known, we strengthen
the convergence, by showing that the convergence holds for the Figalli-Gigli metrics
FGp. Some results about the properties of the limit are also shown, namely that it
has a finite mass, finite moments, and that its marginals have densities with respect
to the Lebesgue measure. The fact that the limit behavior of the random persistence
diagram is sensitive to the dimension d can also be used to define a notion of fractal
dimension for measures via persistent homology, see [Ada+20].

Challenging open questions on this asymptotic behavior include:

• Existence of a density for the limiting measure: An approach for obtaining such
results would be to control the numbers of points of a diagram in some square
[r1, r2]× [s1, s2].

• Convergence of the number of points in the diagrams: The number of points
in the diagrams is a quantity known to be not stable (motivating the use of
bottleneck distances, which is blind to them). However, experiments show that
this number, conveniently rescaled, converges in this setting. An analog of
Lemma 7.2.2 for the number of points in the diagrams with small persistence
would be crucial to attack this problem.

• Generalization to manifolds: While the vague convergence of the rescaled dia-
grams is already proven in [GTT19], allowing test functions without compact
support appears to be a challenge. Once again, the crucial issue consists in
controlling the total number of points in the diagrams.

7.4 Proofs of Section 7.2

7.4.1 Proof of Proposition 7.2.6

First, as the right hand side of the inequality (7.23) does not depend on n, one may
safely assume that µnq is built with the binomial process. The proof is based on two
observations.

(i) Denote by φ(σ) the filtration time of some simplex σ, given by r(σ) for the Čech
filtration and diam(σ) for the Rips filtration. Recall the definition of a negative and
positive simplexes from Chapter 3. A simplex σ is said to be negative in the filtration
K(Xn) if σ is not included in any cycle of K(φ(σ),Xn). A basic result of persistent
homology states that points in dgmK

q (Xn) are in bijection with pair of simplexes,
one negative and one positive (i.e. non-negative). Moreover, the death time r2 of a
point r = (r1, r2) of the diagram is exactly φ(σ) for some negative (q + 1)-simplex σ.
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Figure 7.3: Illustration of the definition of R := Rδ,η(x,X ) for some
two point clouds X . The dashed line indicates the boundary of [0, 1]d.
On the left display, the radius R is such that there is a point (indicated
in red) on Cδj (x,R). On the right display, there is a cone Aδj(x,R),
indicated in red, for which Cδj (x,R) is on some face of the cube [0, 1]d.

Therefore, nµnq (UM ) is equal to Nq(Xn,M), the number of negative (q + 1)-simplexes
in the filtration K(Xn) appearing after Mn := n−1/dM .

(ii) The number of negative simplexes in the Čech and Rips filtration can be efficiently
bounded thanks to elementary geometric arguments.

Geometric arguments for the Rips filtration

We have

Nq(Xn,M) =
1

q + 2

n∑
i=1

#Ξ(Xi,Xn), (7.24)

where, for x ∈ X , with X a finite set, Ξ(x,X ) is the set of negative (q + 1)-simplexes
(and therefore of size q + 2) in Rips(X ) that are containing x, and have a filtration
time larger than Mn. The following construction is inspired by the proof of Lemma
2.4 in [MY99].

The angle (with respect to 0) of two vectors x, y ∈ Rd is defined as

∠xy := arccos

(〈x, y〉
|x||y|

)
.

The angular section of a cone A is defined as supx,y∈A∠xy. Denote by C(x, r) the
cube centered at x of side length 2r. For 0 < δ < 1, and for each face of the cube
C(x, r), consider a regular grid with spacing δr, so that the center of each face is one
of the grid points. This results in a partition of the boundary of the cube C(x, r) into
(d − 1)-dimensional cubes

(
Cδj (x, r)

)
j=1...Q

of side length δr. Using this partition of
the boundary of C(x, r), we construct a partition of C(x, r) into closed convex cones
(Aδj(x, r))j=1...Q, where each cone Aδj(x, r) is defined as a d-simplex spanned by x and
one of the (d− 1)-dimensional cubes Cδj (x, r) of side length δr on a face of C(x, r). In
other words, the point x is the apex of each Aδj(x, r), and C

δ
j (x, r) is its base. We call

two such cones Aδj(x, r) and Aδj′(x, r) adjacent, if Aδj(x, r) ∩Aδj′(x, r) 6= {x}.
Fix 0 < η < 1, and define Rδ,η(x,Xn) to be the smallest radius r so that each cone

Aδj(x, ηr) in C(x, ηr) either contains a point of Xn other than x, or is not a subset of
(0, 1)d (see Figure 7.3 for an illustration).
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Lemma 7.4.1. Let x ∈ [0, 1]d. Fix δ > 0, and 0 < r ≤ 1
2 , and let Aδj(x, r) be a cone

of C(x, r) whose base Cδj (x, r) intersects [0, 1]d. Then, either Aδj(x, r) is a subset of
[0, 1]d, or there exists a cone Aδj′(x, r) of C(x, r) adjacent to Aδj(x, r) that is a subset
of [0, 1]d.

Proof. A necessary and sufficient condition for a cone Aδj(x, r) to be a subset
of [0, 1]d is that Cδj (x, r) ⊂ [0, 1]d. Suppose that this is not the case, i.e. we have
Cδj (x, r)\[0, 1]d 6= ∅. For each coordinate i = 1, . . . , d for which Cδj (x, r) extends beyond
a face of [0, 1]d, move one step in the ‘opposite’ direction, and find the corresponding
adjacent cone. The fact that r ≤ 1/2 ensures that these (at most d) steps, each of
size rδ, do not make the exterior boundary of the corresponding adjacent cone extend
beyond any of the opposite faces of the cube corresponding to the directions of the
steps. �

Note that the angular section (with respect to x) of the union of a cone Aδj(x, r)
and its adjacent cones is bounded by cδ for some constant c.

Lemma 7.4.2. Let η = min{1/
√
d, 1/2}. There exists a δ = δ(d) > 0, such that each

simplex σ of Ξ(x,Xn) is included in C(x,Rδ,η(x,Xn)). Furthermore, Ξ(x,Xn) is empty
if Rδ,η(x,Xn) > Mn.

Proof. To ease notation, denote Rδ,η(x,Xn) by R. We are going to prove that
all negative simplexes containing x are included in C(x,R), a fact that proves the
two assertions of the lemma. First, if ηR ≥ 1/2, then C(x,R) contains [0, 1]d and
the result is trivial. So, assume that ηR < 1/2, and consider a (q + 1)-simplex
σ = {x, x1, . . . , xq+1} that is not contained in C(x,R). Assume without loss of
generality that x1 is the point in σ maximizing the distance to x, which in particular
means that x1 is not in C(x,R). The line [x, x1] hits C(x, ηR) at some cone Aδj(x, ηR).
By Lemma 7.4.1 and the definition of R, if Aδ denotes the union of Aδj(x, ηR) and
its adjacent cones in C(x, ηR), then there exists a point z of Xn in Aδ ⊂ C(x, ηR)
and the angle ∠xzx1 formed by [z, x] and [z, x1] is in smaller than cδ. Let us prove
that all the (q + 1)-simplexes σt of the form (σ\{t}) ∪ {z}, for t ∈ σ, have a filtration
time smaller than r(σ). If this is the case, then the cycle formed by the σt’s and σ is
contained in the complex at time r(σ), meaning that σ is not negative, concluding the
proof. Therefore, it suffices to prove that |z − x| ≤ r(σ) and that |z − xi| ≤ r(σ) for
all i:

• |z − x| ≤
√
dηR ≤ |x− x1|.

• If ∠xzx1 < cδ ≤ π/3,

|z − x1|2 = |z − x|2 + |x1 − x|2 − 2〈z − x, x1 − x〉
≤ |z − x|2 + |x1 − x|2 − |z − x||x1 − x| ≤ |x1 − x|2 ≤ r(σ)2.

For i ≥ 2, we have |x− xi| ≤ |x− x1| by assumption. Let I(z) denote the set of all
t ∈ Rd with |z− t| ≥ |x− t| and |z− t| ≥ |x1− t|, i.e. I(z) is the intersection of two half
spaces (see Figure 7.4). Let Fx(z) = d(I(z), x). If we find a δ with Fx(z) > |x− x1|
for all z ∈ Aδ, then no xi is in I(z), whatever the position of z ∈ Aδ is, meaning that
all xi’s satisfy |z − xi| ≤ max{|x− xi|, |x1 − xi|} ≤ r(σ), concluding the proof. The
method of Lagrange multipliers shows that Fx(z)2 is a continuous function of z, with
a known (but complicated) expression. A straightforward study of this expression
shows that for δ small enough, the minimum of Fx on Aδ can be made arbitrarily
large: therefore, there exists δ such that Fx(z) >

√
d ≥ |x− x1|, for all z ∈ Aδ. �
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x
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I(z)

Aδ

Fx(z)

Figure 7.4: The geometric construction used in the proof of Lemma
7.4.2. The red region represents Aδ whereas the blue region represents
I(z) for some point z in Aδ. If δ is made sufficiently small, the distance

Fx(z) between x and I(z) can be made arbitrarily large.

Construction for the Čech filtration

A similar construction works for the Čech filtration, but the arguments are slightly
different. First, note that each negative simplex σ in the Čech filtration is such that
there exists a subsimplex σ′ of σ that enters in the filtration at the same time r(σ) as
σ, and so that r(σ) is the circumradius of σ′. Then

Nq(Xn,M) =
∑

σ∈Cechq+1(Xn)

1{σ negative, r(σ) ≥M}

=
∑

σ∈Cechq+1(Xn)

1

#σ′

n∑
i=1

1{σ negative, r(σ) ≥M, Xi ∈ σ′}

≤
n∑
i=1

#Ξ′(Xi,Xn),

where Ξ′(x,Xn) the set of negative (q + 1)-simplexes σ in the Čech filtration Cech(Xn)
with r(σ) ≥M and x ∈ σ′.
Lemma 7.4.3. For η = min{1/

√
d, 1/2} and some δ = δ(d) > 0, each simplex

σ of Ξ′(x,Xn) is included in C(x,Rδ,η(x,Xn)). Furthermore, Ξ′(x,Xn) is empty if
Rδ,η(x,Xn) > Mn.

Proof. Recall the definition of C(x, r) and the partition of C(x, r) into the cones
(Aδj(x, r))j=1...Q with corresponding bases (Cδj (x, r))j=1...Q. As above, denoteRδ,η(x,Xn)
by R. Let σ = {x, x1, . . . , xq+1} denote a (q + 1)-simplex not included in C(x,R),
with r(σ) ≥ M . As in the Rips case, the result is trivial if ηR ≥ 1/2. By definition
of the Čech filtration, the intersection

⋂q+1
i=0 B(xi, r(σ)) consists of a singleton {y}. If

there is a point z of Xn in B(y, r(σ)), then, by the nerve theorem applied to σ ∪ {z},
we can conclude with similar arguments as in Lemma 7.4.2 that σ is positive in the
filtration, meaning that every negative σ ∈ Ξ(x,Xn) has to be included in C(x,R).

Let us prove the existence of such a z. As x ∈ σ′, the distance between x and y
is equal to r(σ) ≥ R. Therefore, the line [x, y] hits C(x, ηR) in some cone Aδj(x, ηR),
whose base Cδj (x, r) intersects [0, 1]d, as it intersects [x0, y]. As in the Rips case, there
exists a point z of Xn in C(x, ηR) such that the angle made by z, x and y is smaller
than cδ. As before, it can then be argued that |y−z| ≤ r(σ), concluding the proof.
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Remark 7.4.4. Note that the fact that the support of κ is the cube only enters the
picture through the geometric arguments used here and in the above proof. Some
more refined work is needed to show that a similar construction holds when the cube
is replaced by a convex body.

In the following, fix η = min{1/
√
d, 1/2}, choose δ sufficiently small, and let

Rδ,η(x,Xn), Aδj(x, r) and Cδj (x, r) be denoted by R(x,Xn), Aj(x, r) and Cj(x, r) re-
spectively. Both Ξ(x,Xn) and Ξ′(x,Xn) are included in the set of (q + 1)-tuples of
Xn ∩ C(x,R(x,Xn)), so that the following inequality holds for either the Rips or the
Čech filtration:

Nq(Xn,M) ≤
n∑
i=1

1{R(Xi,Xn) > Mn} (#(Xn ∩ C(Xi, R(Xi,Xn))))q+1 . (7.25)

Denote R(X1,Xn) by Rn. As we will see, an estimate of the tail of Rn is sufficient to
get a control of Nq(Xn,M). The probability P(Rn > t) is bounded by the probability
that one of the cones pointing at X1, of radius t/2, wholly included in the cube [0, 1]d, is
empty. Conditionally on X1, this probability is exactly the probability that a binomial
process with parameters n− 1 and κ does not intersect this cone. Therefore,

P(Rn > t) ≤ c exp(−cntd), (7.26)

and we obtain, for λ > 0,

E
[
eλnR

d
n

]
=

∫ ∞
1

P(λnRdn > ln(t))dt

≤
∫ ∞

1
c exp

(
−c ln(t)

λ

)
dt <∞ if λ < c/2. (7.27)

Lemma 7.4.5. The random variable #(Xn ∩ C(X1, Rn)) has exponential tail bounds:
for t > 0,

P(#(Xn ∩ C(X1, Rn)) > t) ≤ c exp(−ct).

Proof. Conditionally on X1 and Rn, two possibilities may occur. In the first one,
the cube centered at X1 of radius ηRn contains a point on its boundary, in the cone
Aj0(X1, ηRn). Denote this event E and let Q0 be the number of cones wholly included
in the support. The configuration of Xn is a binomial process conditioned to have
at least one point in the cones Aj(X1, ηRn) wholly included in the cube, except for
j = j0, and a point on Cj0(X1, ηRn). In this case, #(Xn ∩ C(X1, Rn)) is equal to
Q0 + Z, where Z is a binomial variable of parameters n−Q0 and∫

C(X1,Rn)\Aj0 (X1,ηRn)
κ(x)dx ≤ cRdn.

Therefore, for β > 0, using a Chernoff bound and a classical bound on the moment
generating function of a binomial variable:

P(#(Xn ∩ C(X1, Rn)) > t|Rn, Q0, E) ≤ P(Q0 + Z > t|Rn, Q0)

≤ eβQ0E[eβZ |Rn]

eβt

≤ eβQecnR
d
n(eβ−1)

eβt
,
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where Q is the number of elements in the partition of C(x,R). Take β sufficiently
small so that E[ecnR

d
n(eβ−1)] <∞ (such a β exists by equation (7.27)). We have the

conclusion in this first case.
The other possibility is that there exists a cone not wholly included in the cube

containing no point of Xn. In this case, the configuration of Xn is a binomial process
conditioned on having at least one point in the cones Aj(X1, Rn) wholly included in
cube and no point in a certain cone not wholly included in the cube. Likewise, a
similar bound is shown.

We are now able to finish the proof of Proposition 7.2.6: for p ≥ 1,

E[µnq (UM )p] = E
[(

Nq(Xn,M)

n

)p]
≤ 1

(q + 2)p
E

[(∑n
i=1 1{R(Xi,Xn) > Mn} (#(Xn ∩ C(Xi, R(Xi,Xn))))q+1

n

)p]
≤ 1

(q + 2)p
E
[
1{Rn > Mn}#(Xn ∩ C(X1, Rn))p(q+1)

]
by Jensen’s inequality

≤ 1

(q + 2)p

(
P (Rn > Mn)E[#(Xn ∩ C(X1, Rn))2p(q+1)]

)1/2
.

Lemma 7.4.5 implies that, for p′ > 0,

E
[
#(Xn ∩ C(X1, Rn))p

′
]
≤
∫ ∞

1
ce−Ct

1/p′
dt =

p′c
Cp′

∫ ∞
1

up
′−1e−udu =

c

Cp′
(p′)!.

Therefore, for q ≥ 1,

E[µnq (UM )p/(q+1)] ≤ c 1

(q + 2)p/(q+1)
exp(−cMd)

(
(2p)!C−2p

)1/2 ≤ exp(−cMd)cpp!.

To finish the proof, we use a simple lemma relating the moments of a random variable
to its tail.

Lemma 7.4.6. Let X be a positive random variable such that there exists constants
A,C > 0 with

E[Xk] ≤ ACkk!. (7.28)

Then, there exists a constant c > 0 such that ∀x > 0,P(X > x) ≤ A exp(−cx).

Proof. Fix λ = 1
2C . The moment generating function of X in λ is bounded by:

E
[
eλX

]
=
∑
k≥0

λkE[Xk]

k!
≤ A

∑
k≥0

λkCk = A.

Therefore, using a Chernoff bound, P(X > x) ≤ A exp(−λx).

Apply Lemma 7.4.6 to X = µnq (UM )1/(q+1) to obtain the assertion of Proposi-
tion 7.2.6.
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7.4.2 Proof of Theorem 7.2.4

Step 1: Convergence for functions vanishing on the diagonal

The first step of the proof is to show that the convergence holds C0(Ω), the set of
continuous bounded functions vanishing of the diagonal. The crucial part of the proof
consists in using Proposition 7.2.6, which bounds the total number of points in the
diagrams. An elementary lemma from measure theory is then used to show that
it implies the a.s. convergence for vanishing functions. We say that a sequence of
measures (µnq )n≥0 converges C0-vaguely to µ if µnq (φ) → µ(φ) for all functions φ in
C0(Ω).

Lemma 7.4.7. Let E be a locally compact Hausdorff space. Let (µn)n≥0 be a sequence
of Radon measure on E which converges vaguely to some measure µ. If supn |µn| <∞,
then (µn)n≥0 converges C0-vaguely to µ.

Proof. Let (hq) be a sequence of functions with compact support converging to 1 and
let φ ∈ C0(E). Fix ε > 0. By definition of C0(E), there exists a compact set Kε such
that f is smaller than ε outside of Kε. For q large enough, the support of hq includes
Kε. Let φq = φ · hq. Then,

|µn(φ)− µ(φ)| ≤ |µn(φ)− µn(φq)|+ |µn(φq)− µ(φq)|+ |µ(φq)− µ(φ)|
≤ (sup

n
|µn|+ |µ|)ε+ |µn(φq)− µ(φq)|.

As (µn)n converges vaguely to µ, the last term of the sum converges to 0 when ε is
fixed. Hence, we have lim supn→∞ |µn(φ)− µ(φ)| ≤ (supn |µn|+ |µ|) ε. As this holds
for all ε > 0, µn(φ) converges to µ(φ).

Taking M = 0 in Proposition 7.2.6, we see that supn E[|µnq |] <∞. Therefore, the
C0-vague convergence of E[µnq ] is shown in the binomial setting. To show that the
convergence also holds almost surely for |µnq |, we need to show that supn |µnq | < ∞.
For this, we use concentration inequalities. We do not show concentration inequalities
for |µnq | directly. Instead, we derive concentration inequalities for

∑n
i=1 #(Xn ∩

C(Xi, R(Xi,Xn)))q+1, which is a majorant of |µnq |. Recall that R(Xi,Xn) is defined
as the smallest radius R such that, for some fixed parameter η > 0, and for each
j = 1 . . . Q, Aj(Xi, ηR), either contains a point of Xn different than Xi, or is not
contained in the cube. To ease the notations, we denote R(Xi,Xn) by Ri,n.

Lemma 7.4.8. Fix M ≥ 0 and define ZMn =
∑n

i=1 #(Xn∩C(Xi, Ri,n))q1{Ri,n ≥M}.
Then, for every ε > 0, there exists a constant cε > 0 such that

P(|ZMn − E[ZMn ]| > t) ≤ n
3
2

+ε

t3
exp(−cεn−1Md). (7.29)

The constant cε depends on ε, d, q and κ.

As a consequence of the concentration inequality, n−1Z0
n is almost surely bounded.

Indeed, choose ε < 1/2:

P(n−1|Z0
n − E[Z0

n]| > t) ≤ n
3
2

+ε

(nt)3
=
n−

3
2

+ε

t3
.

By Borel-Cantelli lemma, almost surely, for n large enough, we have n−1|Z0
n−E[Z0

n]| ≤ 1.
Moreover, supn n

−1E[Z0
n] is finite. As a consequence, supn n

−1Z0
n is almost surely

finite. As this is an upper bound of supn |µnq |, we have proven that supn |µnq | < ∞
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almost surely. By Lemma 7.4.7, the sequence µnq converges C0-vaguely to µ. The proof
of Lemma 7.4.8 is based on an inequality of the Efron-Stein type and is rather long
and technical. It can be found in Section 7.4.4.

We now briefly consider the Poisson setting. Define µ̃nq = µNnq × (Nn/n), where
(Ni)i≥1 is some sequence of independent Poisson variables of parameter n, independent
of (Xi)i≥1.

• E[|µ̃nq |] = E
[
Nn
n E[|µNnq ||Nn]

]
≤ supn E[|µnq |] < ∞. Therefore, C0-convergence of

the expected diagram holds in the Poisson setting.
• Likewise, it is sufficient to show that supn

Nn
n <∞ to conclude to the C0-convergence

of the diagram in the Poisson setting. Fix t > 1. It is shown in the chapter 1 of the
monograph [Pen03] that P(Nn > nt) ≤ exp(−nH(t)), where H(t) = 1− t+ t ln t. This
gives us

P
(

sup
n

Nn

n
≤ t
)

=
∏
n≥0

(1− P(Nn > nt))

≥
∏
n≥0

(1− exp(−nH(t))) = exp

∑
n≥0

ln(1− exp(−nH(t)))


(7.30)

The series
∑

n ln(1− xn) is equal to −∑n σ(n)/nxn when |x| < 1, and where σ(n) is
the sum of the proper divisors of n. Therefore it is a power series, and is continuous
on ]− 1, 1[. Since t tends to infinity, exp(−H(t)) converges to 0, and thus the quantity
appearing in the right hand side of (7.30) converges to 1 as t tends to infinity.

Step 2: Convergence for functions with polynomial growth

The second step consists in extending the convergence to functions φ ∈ Cpoly(Ω).
We only show the result for binomial processes. The proof can be adapted to the
Poisson case using similar techniques as at the end of Step 1. The core of the proof
is a bound on the number of points in a diagram with high persistence. For M > 0,
define TM = {r = (r1, r2) ∈ Ω s.t. pers(r) ≥M}. Let Pn(M) = nµnq (TM ) denote the
number of points in the diagram with persistence larger thanM . We also introduce the
quantity Persα(M ; a) :=

∑
u∈a pers(u)α1{pers(u) ≥M} for a a persistence diagram.

First, we show that the expectation of Pn(M) converges to 0 at an exponential
rate when M tends to ∞. The random variable Pn(M) is bounded by nµnq (UM ). By
Proposition 7.2.6, recalling that q is the degree of homology,

E
[
Pn(M)

]
≤
∫ ∞

0
P
(
nµnq (UM ) ≥ t

)
dt

≤
∫ ∞

0
c exp

(
− c(Md + (t/n)1/(q+1)

)
dt

≤ cn exp(−cMd)

∫ ∞
0

exp(−u)quqdu = cn exp
(
− cMd

)
(7.31)

Fix a sequence (gM ) of continuous functions with support inside the complement
of TM taking their values in [0, 1], equal to 1 on T cM−1. Let φ be a function with
polynomial growth, i.e. satisfying (7.21) for some A,α > 0. Define φM = φ · gM . We
have the decomposition:

E[µnq (φ)] = (E[µnq (φ)]− E[µnq (φM )]) + E[µnq (φM )]. (7.32)
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As φM ∈ C0(Ω), the second term on the right converges to µ(φM ). The first term on
the right is bounded by

E[µnq (φ)]− E[µnq (φM )] ≤ E[µnq (A(1 + persα)(1− gM ))]

≤ AE[Pn(M)]/n+AE[Persα(M ; dgmK
q (Xn))]/n

≤ cA exp
(
−cMd

)
+AE[Persα(M ; dgmK

q (Xn))]/n, (7.33)

using inequality (7.31). It is shown in [CS+10] that

Persα(M ; dgmK
q (Xn)) ≤MαPn(M) + α

∫ ∞
M

Pn(ε)εα−1dε.

Hence, by Fubini’s theorem and inequality (7.31):

E[Persα(M ; dgmK
q (Xn))]/n ≤ cMα exp

(
−cMd

)
+cα

∫ ∞
M

exp
(
−cεd

)
εα−1dε. (7.34)

and this quantity goes to 0 as M goes to infinity. Moreover, applying this inequality
to M = 0, we get that C0 = supn E[µnq (φ)] < ∞. Therefore, limn→∞ E[µnq (φM )] =
µ(φM ) ≤ C0. By the monotone convergence theorem, µ(φM ) converges to µ(φ) when
φ is non negative, with µ(φ) finite by the latter inequality. If φ is not always non
negative, we conclude by separating its positive and negative parts. Finally, looking at
the bounds (7.33) and (7.34),

lim sup
n→∞

|E[µnq (φ)]− µ(φ)| ≤ lim sup
n→∞

(E[µnq (φ)]− E[µnq (φM )])+|µ(φM )− µ(φ)| −−−−→
M→∞

0.

We now prove that µnq (φ)− E[µnq (φ)] converges a.s. to 0. Similar to the above, it
is enough to show that Pn(M) is almost surely bounded by a quantity independent
of n, which converges to 0 at an exponential rate when M goes to ∞. The random
variable (q + 2)Pn(M) is bounded by ZMn , which is defined in Lemma 7.4.8, and
whose expectation is controlled. Therefore, it remains to show that ZMn is close to its
expectation. We have

lim sup
n→∞

|µnq (φ)− E[µnq (φ)]|

≤ lim sup
n→∞

(
|µnq (φ− φM )|+ |(µnq − E[µnq ])(φM )|+ |E[µnq ](φ− φM )|

)
≤ lim sup

n→∞
|µnq (φ− φM )|+ 0 + cA exp

(
−cMd

)
+ cMα exp

(
−cMd

)
+ cα

∫ ∞
M

exp
(
−cεd

)
εα−1dε (7.35)

by inequalities (7.33) and (7.34). The random variable |µnq (φ− φM )| is bounded by

An−1

(
Pn(M) +MαPn(M) + α

∫ ∞
M

Pn(ε)εα−1dε.

)
≤ An−1

(
ZMn
n +MαZMn

n + α

∫ ∞
M

Zεnn εα−1dε,

)
(7.36)

where Mn = n−1/dM and εn = n−1/dε. As a consequence of Lemma 7.4.8, by choosing
ε so that −3/2 + ε < −1,

P
(

sup
n
n−1|ZMn

n − E[ZMn
n ]| > t

)
≤ cexp(−cMd)

t3
.
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Fixing t = exp(−(c/6)Md) and using Borel-Cantelli lemma, for M ∈ N large enough,
supn n

−1|ZMn
n − E[ZMn

n ]| < exp(−(c/6)Md). Also, E[ZMn
n ] ≤ nc exp(−cMd). There-

fore, for α ≥ 0,
lim
M→∞

lim sup
n→∞

n−1MαZMn
n = 0 a.s.

The third term in the sum (7.36) is less straightforward to treat. As ZMn is a decreasing
function of M , for M ∈ N large enough and with kn = n−1/dk:∫ ∞

M
n−1Zεnn εα−1dε ≤

∑
k≥M

n−1Zknn

∫ k+1

k
εα−1dε

≤
∑
k≥M

c exp(−ckd) 1

α
((k + 1)α − kα)

≤
∑
k≥M

c exp(−ckd)k
α2α

α
= o(1).

As a consequence, limM→∞ lim supn |µnq (φ − φM )| = 0. As the three last terms
appearing in inequality (7.35) also converges to 0 when M goes to infinity, we have
proven that µnq (φ)− E[µnq (φ)] converges a.s. to 0. Therefore, µnq (φ) converges a.s. to
µ(φ).

Finally, we have to prove assertion (ii) in Theorem 7.2.4, i.e. that the conver-
gence holds in Lp. As the convergence holds in probability, it is sufficient to show
that (µnq (φ)p)n is uniformly integrable. Observing that E[µnq (φ)p1{µnq (φ)p > M}] ≤(
E[µnq (φ)2p]P(µnq (φ)p > M)

)1/2, uniform integrability follows from supn E[µnq (φ)p] <∞
for any p > 1. We have

µnq (φ)p ≤ µnq (A(1 + persα))p ≤ 2p−1(Ap|µnq |p + µnq (persα)p),

and from Proposition 7.2.6 we easily obtain that E[|µnq |p] is uniformly bounded. We
treat the other part by assuming without loss of generality that p is an integer:

E[µnq (persα)p] ≤ 1

np
E
[(∫ ∞

0
Pn(ε)εα−1dε

)p]
=

1

np
E

[∫
[0,∞[p

Pn(ε1) · · ·Pn(εp)(ε1 · · · εp)α−1dε1 · · · εp
]

=
1

np

∫
[0,∞[p

E[Pn(ε1) · · ·Pn(εp)](ε1 · · · εp)α−1dε1 · · · εp

≤ 1

np

∫
[0,∞[p

(E[Pn(ε1)p] · · ·E[Pn(εp)
p])1/p (ε1 · · · εp)α−1dε1 · · · εp

≤ 1

np

∫
[0,∞[p

(
np

2
c exp(−c(εd1 + · · ·+ εdp))

)1/p
(ε1 · · · εp)α−1dε1 · · · εp

= c

∫
[0,∞[p

exp

(
− c
p

(εd1 + · · ·+ εdp)

)
(ε1 · · · εp)α−1dε1 · · · εp

= c

(∫ ∞
0

exp

(
− c
p
εd
)
εα−1dε

)p
<∞.

7.4.3 Proof of Proposition 7.2.7

The proof relies on the regularity of the number of simplexes appearing at certain
scales.



7.4. Proofs of Section 7.2 173

Lemma 7.4.9. Let q ≥ 0. For r1 < r2, let Fq(Xn, r1, r2) be the number of q-simplexes
σ in the filtration K(Xn) with φ(σ) ∈ [r1, r2]. Assume that Xn is a binomial n-sample
of density κ. Then,

n−1Fq(n
1/dXn, r1, r2)

L2−−−→
n→∞

Fq(r1, r2), (7.37)

where Fq(r1, r2) ≤ cr2dq−1
2 |r2 − r1|.

Proof. For a finite set X ⊂ Rd, define

ξr1,r2(x,X ) =
1

q + 1

∑
σ∈Kq(X )

1{φ(σ) ∈ [r1, r2] and x ∈ σ}.

Then, Fq(Xn, r1, r2) =
∑

x∈X ξ
r1,r2(x,Xn). In [PY03], the convergence in L2 of such

functionals ξ(x,X ) is shown under two conditions. The first one of them is called
stabilization. Let P be a homogeneous Poisson process in Rd. A quantity ξ(x,X ) is
stabilizing if, with probability one, there exists some random radius R <∞ such that,
for all finite sets A which are equal to P on B(0, R),

ξ(0,P ∩ B(0, R)) = ξ(0, A),

Denote this quantity by ξ∞(P). In our case, ξr1,r2 is stabilizing with R = 2r2. The
second condition is a moment condition: there exists some number β > 2 such that

sup
n

E[ξ(n1/dX1, n
1/dXn)β] <∞.

Once again, ξr1,r2 possesses this property: the random variable ξr1,r2(n1/dX1, n
1/dXn)

is bounded by the number of q-simplexes of K(Xn) containing X1 and being included in
B(X1, 2n

−1/dr2). This number of q-simplexes is bounded by #(Xn∩B(X1, 2n
−1/dr2))q,

which, in turn, is stochastically dominated by a binomial random variable with
parameters n and cn−1rd2 . In particular, its moment of order 3q is smaller than
a constant independent of n. This means that the moment condition is satisfied.
Applying the main theorem of [PY03], convergence (7.37) is obtained, with Fq(r1, r2) =
E[ξr1,r2∞ (P)], where ξr1,r2∞ (P) = ξr1,r2(0,P ∩ B(0, 2r2)). The set P ∩ B(0, 2r2) can be
expressed as {X1, . . . , XN}, where (Xi)i≥0 is a sequence of i.i.d. uniform random
variables on B(0, 2r2), and N is an independent Poisson variable with parameter crd2 .
Therefore,

E[ξr1,r2∞ (P)] = E

 ∑
i1,...,iq

1{φ({0, Xi1 , . . . , Xiq}) ∈ [r1, r2]}


= E

[
N !

(N − q)!

]
P(φ({0, X1, . . . , Xq}) ∈ [r1, r2])

≤ cr2dq−1
2 |r2 − r1|.

The last inequality is a consequence of (i) the fact that the q-th factorial moment of
N equals crdq2 , and (ii) of the following lemma.

Lemma 7.4.10. If X1, . . . , Xq is a q-sample of the uniform distribution on B(0, 2) ⊂
Rd, and r is either the filtration time of the Čech or Rips filtration, then, for any
0 < a < b ≤ 2,

P(φ(0, X1, . . . , Xq) ∈ [a, b]) ≤ Cq,d|a− b|, (7.38)

for some constant depending on d and q.

Proof. Such an inequality holds if the filtration time φ(0, X1, . . . , Xq) has a bounded
density on [0, 2]. We treat separately the case of the Rips and of the Čech filtration.
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tθ

0

U

t
rk−1

√
t2 + r2k−1

Φ(t, θ, x)

Figure 7.5: Definition of Φ. We display the plane V (θ).

Rips filtration The quantity φ({0, X1, . . . , Xq}) = diam({0, X1, . . . , Xq}) is equal
to |Xi| or |Xi−Xj | for some indexes i, j. Hence, one has P(φ(0, X1, . . . , Xq) ∈ [a, b]) ≤
qP(|X1| ∈ [a, b])+ q(q−1)

2 P(|X1−X2| ∈ [a, b]). The random variables |X1| and |X1−X2|
have bounded densities on [0, 2], so that the result follows.

Čech filtration Let r′({x1, . . . , xk}) be the radius of the circumsphere of x1, . . . , xk.
Then, φ(x1, . . . , xq) = r′(xi1 , . . . , xik) for a certain subset of {1, . . . , q}. Hence,

P(φ(0, X1, . . . , Xq) ∈ [a, b]) ≤
∑

σ⊂{1,...,q}
(P(r′(0, Xσ) ∈ [a, b]) + P(r′(Xσ) ∈ [a, b])).

(7.39)
We are going to show that r′(Xσ) has a bounded density on [0, 2] by induction on k,
and it is then shown likewise that r′(0, Xσ) has a bounded density. For k = 2, r′(Xσ)
is the distance between X1 and X2, which has a bounded density. If k > 2, we let
rk be the circumradius of {X1, . . . , Xk}, rk−1 the circumradius of {X2, . . . , Xk}, with
associated circumcenters zk, zk−1, respectively, and U be the affine (k−2)-dimensional
space spanned by {X2, . . . , Xk}. The vector zk− zk−1 is orthogonal to U and therefore
r2
k = |zk − zk−1|2 + r2

k−1. For any subspace E, we let πE be the orthogonal projection
onto E, E⊥ be the orthogonal space from E and SE be the unit sphere in E. Without
loss of generality we assume that zk−1 = 0, so that U is a subspace of Rd. For any
θ ∈ SU⊥ , we let V (θ) = U + Rθ. Let θ0 be any vector in SU⊥ , with V0 = V (θ0) and
introduce the function Φ : R+ × SU⊥ × SV0 → Rd defined by

Φ(t, θ, x) = tθ +
√
t2 + r2

k−1R(θ)x,

where R(θ) is an isometry from V0 to V (θ) defined by R(θ)x = πU (x) + (x · θ0)θ for
x ∈ V0. Notice that, for each θ ∈ SU> , we have Φ(t, θ, x) ∈ V (θ). See also Figure 7.5.

Fact. The function Φ is injective and we have {rk ∈ [a, b]} ⊂ {X1 ∈ Φ(Ark−1
)},

where Ark−1
= Ma,b × SU⊥ × SV0 and Ma,b = {t ≥ 0, a2 ≤ t2 + r2

k−1 ≤ b2}.

The proof of this fact is given below. We continue the proof of the lemma by
assuming that the fact holds. Letting λd denote the Lebesgue measure on Rd, and c−1

d
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the d-dimensional volume of B(0, 2), we have

P(r′(Xσ) ∈ [a, b]) = E[P(rk ∈ [a, b]|rk−1)] ≤ E
[
P(X1 ∈ Φ(Ark−1

)|rk−1)
]

≤ cdE
[
λd(Φ(Ark−1

))
]

= cdE

[∫
Ark−1

JΦ(t, θ1, θ2)dtdθ1dθ2

]
(7.40)

Let us compute the Jacobian JΦ(y) of Φ at some point y = (t, θ, x) ∈ Ark−1
. The

tangent space of SU⊥ at θ is equal to U⊥ ∩ (Rθ)⊥ = V (θ)⊥ and the tangent space of
SV0 at x is equal to V0 ∩ (Rx)⊥. We compute the partial derivatives:

∂tΦ(y)[h0] = θh0 +
th0√

t2 + r2
k−1

R(θ)x, h0 ∈ R

∂θΦ(y)[h1] = h1t+
√
t2 + r2

k−1(x · θ0)h1 h1 ∈ V (θ)⊥

∂xΦ(y)[h2] =
√
t2 + r2

k−1R(θ)h2 h2 ∈ V0 ∩ (Rx)⊥.

We decompose the space Rd as follows. Let g = R(θ)x ∈ V (θ), G = (Rg)⊥ ∩ V (θ),
and H = V (θ)⊥. Then, πRg + πG + πH = id (recall that πE denotes the orthogonal
projection onto E). Also, note that, as h2 ∈ V0 ∩ (Rx)⊥ is orthogonal to x, and
R(θ) is an isometry, the vector R(θ)h2 is orthogonal to g = R(θ)x. We have with
sk−1 =

√
t2 + r2

k−1 that
πRg∂tΦ(y)[h0] =

(
(θ · g)h0 + th0

sk−1

)
g

πRg∂θΦ(y)[h1] = 0

πRg∂xΦ(y)[h2] = 0
πG∂tΦ(y)[h0] = πGθh0

πG∂θΦ(y)[h1] = 0

πG∂xΦ(y)[h2] = sk−1πGR(θ)h2
πH∂tΦ(y)[h0] = 0

πH∂θΦ(y)[h1] = h1t+ sk−1(x · θ0)h1

πH∂xΦ(y)[h2] = 0.

Hence, remarking that πGR(θ) is an isometry from V0∩(Rx)⊥ to G = V (θ)∩(Rg)⊥,

JΦ(y) =

∣∣∣∣θ · g +
t

sk−1

∣∣∣∣× ∣∣∣det
(
sk−1πGR(θ)|V0∩(Rx)⊥

)∣∣∣× ∣∣∣∣det

(
(t+ sk−1x · θ0) id

H

)∣∣∣∣
≤ 2× sk−2

k−1 × (t+ sk−1x · θ0)d−k+1

≤ 2d−k+2sd−1
k−1.

Therefore, letting t0 =
√
a2 − r2

k−1 and t1 =
√
b2 − r2

k−1, we may bound (7.40) as
follows

P(r′(Xσ) ∈ [a, b]) ≤ cdE
[∫

Ark−1

2d−k+2
(
t2 + r2

k−1

)(d−1)/2
dtdθ1dθ2

]

≤ cd,kE
[∫ t1

t0

(t2 + r2
k−1)(d−1)/2dt

]
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Introduce F : x 7→
∫√x2−r2

k−1

0 (t2 + r2
k−1)(d−1)/2dt. Then,

F ′(x) = xd−1 × x√
x2 − r2

k−1

=
xd√

x2 − r2
k−1

and, letting fk−1 be the density of rk−1 on [0, 2],

P(r′(Xσ) ∈ [a, b]) ≤ cd,kE
[∫ b

a
F ′(x)dx

]
≤ cd,k

∫ b

a

∫ b

0
1{x ≥ rk−1}fk−1(rk−1)

xd√
x2 − r2

k−1

dxdrk−1

≤ c′d,k
∫ b

a
xd
∫ x

0

1√
x2 − r2

k−1

drk−1dx

≤ c′d,k,
∫ b

a
xd
∫ 1

0

1√
1− u2

dudx ≤ c′′d,k|b− a|,

where at the last line we used that the function x 7→ xd is bounded on [0, 2]. Hence,
r′(Xσ) has a bounded density on [0, 2], and the induction step is proven. It remains to
verify the Fact.

Proof of Fact. We first prove the injectivity. Let v = Φ(t, θ, x) for some y =
(t, θ, x) ∈ R+ × SU⊥ × SV0 . Then, πU⊥(y) is colinear with θ, so that θ is determined
up to a sign by y. Let S1 be the sphere in U , centered at 0, of radius rk−1, and
let S2 be the unique sphere in V (θ) containing both y and S1. Then y ∈ S2, while
the center of S2 is tθ, so that t and θ are uniquely determined by y. It follows that
R(θ)x = y−tθ√

t2+r2
k−1

is also uniquely determined by y, and so is x, showing the injectivity

of Φ.
Let t = |zk− zk−1| and θ = (zk− zk−1)/t. As zk− zk−1 is orthogonal to U , we have

θ ∈ SU⊥ . The point X1 lies inside the sphere of the space spanned by U and zk− zk−1,
centered at zk, of radius rk =

√
t2 + r2

k−1 ∈ [a, b]. Therefore, X1 = tθ +
√
t2 + r2

k−1y,
where y is some unit vector in V (θ), which can be written as R(θ)x for some x ∈ V0.
Hence, X1 ∈ Φ(Ark−1

). This completes the proof of the Fact and of the lemma.

We may now prove Proposition 7.2.7. Fix 0 < r1 < r2. We wish to show that,
as r1 and r2 get closer, (π1)#µ

κ
q (]r1, r2[) goes to 0. By the Portemanteau Theorem,

(π1)#µ
κ
q ([r1, r2]) ≤ lim infn(π1)#µ

n
q (]r1, r2[). It is shown in Lemma 7.4.9 that this

quantity is smaller than cr2dq−1
2 |r2− r1|, a quantity which converges to 0 when r2 goes

to r1. A similar proof holds for (π2)#µ
κ
q .

7.4.4 Proof of Lemma 7.4.8

The lemma is based on an inequality of the Efron-Stein type, combined with Markov’s
inequality.

Theorem 7.4.11 (Theorem 2 in [Bou+05]). Let X be a measurable set and F : X n →
R a measurable function. Define a n-sample Xn = {X1, . . . , Xn} and let Z = F (Xn).
If X ′n is an independent copy of Xn, denote Z ′i = F (X1, . . . , Xi−1, X

′
i, Xi+1, . . . , Xn).

Define

V =

n∑
i=1

E[(Z − Z ′i)2|Xn].
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Then, for p ≥ 2, there exists a constant Cp depending only on p such that

E[|Z − E[Z]|p] ≤ CpE[V p/2].

Denote X in = Xn\{Xi} and S(Xi,Xn) = #(Xn ∩ C(Xi, Ri,n))q1{Ri,n ≥ M}. We
will apply Theorem 7.4.11 to F (Xn) =

∑n
i=1 S(Xi,Xn). The quantity (Z − Z ′i)2 is

bounded by 2(Z −Zi)2 + 2(Z ′i −Zi)2, where Zi = F (X in). For most Xj ’s, S(Xj ,Xn) =
S(Xj ,X in), and therefore V can be efficiently bounded. More precisely,

E[V p/2] = E

( n∑
i=1

E[(Z − Z ′i)2|Xn]

)p/2
≤ np/2E[(Z − Z ′n)p] (by Jensen’s inequality)

≤ np/22p−1E[(Z − Zn)p + (Z ′n − Zn)p]

= np/22pE[(Z − Zn)p] as (Z,Zn) ∼ (Z ′n, Zn)

= 2pnp/2E

S(Xn,Xn) +

n−1∑
j=1

(S(Xj ,Xn)− S(Xj ,Xn−1))

p
≤ 2pnp/22p−1

E[S(Xn,Xn)p] + E

n−1∑
j=1

(S(Xj ,Xn)− S(Xj ,Xn−1))

p .

(7.41)

Fix p = 3. Lemma 7.4.5 shows that for p ≥ 1, Bp = supn E[S(Xn,Xn)p] <∞. Define
Yj = (S(Xj ,Xn) − S(Xj ,Xn−1)). Denote Gj the event that Xn ∈ C(Xj , Rj,n−1). If
Gj is not realized, then Yj = 0. Expanding the product,

E

[( n−1∑
j=1

(S(Xj ,Xn)−S(Xj ,Xn−1))

)3
]
≤

∑
j1,j2,j3

E [1{Gj1 ∩Gj2 ∩Gj3}Yj1Yj2Yj3 ]

≤
∑

j1,j2,j3

P (Gj1 ∩Gj2 ∩Gj3)1/q′ E
[
(Yj1Yj2Yj3)p

′
]1/p′

, (7.42)

where 1
p′ + 1

q′ = 1 and p′ ≥ 1 is some quantity to be fixed later.

• We first bound E
[
(Yj1Yj2Yj3)p

′
]
. If Yj1 6= 0, then Rj1,n−1 > M . Therefore,

E
[
(Yj1Yj2Yj3)p

′
]
≤
√

P(Rj1,n−1 > M)E [(Yj1Yj2Yj3)2p′ ].

Also, E
[
(Yj1Yj2Yj3)2p′

]
≤ E

[
Y 6p′

j1

]
≤ B6p′ , as 0 ≤ Yj1 ≤ S(Xj1 ,Xn). Therefore, using

inequality (7.26):
E
[
(Yj1Yj2Yj3)p

′
]
≤ c exp(−cMd).

• We now bound the probability P(Gj1 ∩Gj2 ∩Gj3).

If j1 = j2 = j3, then it is clear that P(Gj1 ∩Gj2 ∩Gj3) ≤ c/n. However, in the general
case, the joint law of the different Rji,n−1s becomes of interest. To ease the notation,
assume that ji = i and denote Ri,n−1 simply by Ri. Also, define Dij the distance
between Xi and Xj . The fact that inequality (7.26) still holds conditionally on X1, X2

and X3, and with the joint laws of R1, R2 and R3, will be repeatedly used.
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Lemma 7.4.12. The following bound holds:

P(R1 ≥ t1, R2 ≥ t2, R3 ≥ t3|X1, X2, X3) ≤ c exp
(
− cn(td1 + td2 + td3)

)
(7.43)

Proof. Suppose that max ti = t1. Inequality (7.26) states that P(R1 ≥ t1) ≤
c exp(−cntd1). Likewise, it is straightforward to show that a similar bound holds
conditionally on X1, X2 and X3. As td1 ≥

td1+td2+td3
3 , the result follows.

Let us prove that P(G1 ∩G2) ≤ c/n2. If the event is realized, then Xn is in the
intersection of C(X1, R1) and C(X2, R2). Therefore, this intersection is non empty
and D12 ≤

√
d(R1 +R2). Hence,

P(G1 ∩G2) ≤ P(D12 ≤
√
d(R1 +R2) and Xn ∈ C(X1, R1) ∩ C(X2, R2))

≤ 2P(D12 ≤ 2
√
dR1 and Xn ∈ C(X1, R1))

= 2E
[
1{D12 ≤ 2

√
dR1}P (Xn ∈ C(X1, R1)|Xn−1)

]
≤ 2cE

[
1{D12 ≤ 2

√
dR1}Rd1

]
≤ 2cE

[∫
(D12/(2

√
d))

d
P (Rd1,n−1 ≥ t|X1, X2)dt

]

≤ 2cE

[∫
(D12/(2

√
d))

d
exp(−cnt)dt

]
≤ c

n
E
[
exp(−cnDd

12)
]

=
c

n

∫ 1

0
P(cnDd

12 ≤ − ln(t))dt

≤ c

n

∫ 1

0

− ln(t)

cn
dt =

c

n2
.

Finally, we bound P(G1 ∩G2 ∩G3). If the event is realized, then
D12 ≤

√
d(R1 +R2)

D23 ≤
√
d(R2 +R3)

D13 ≤
√
d(R1 +R3)

=⇒


D12 ≤ 2

√
dR1 or D12 ≤ 2

√
dR2

D23 ≤ 2
√
dR2 or D23 ≤ 2

√
dR3

D13 ≤ 2
√
dR1 or D13 ≤ 2

√
dR3

This last event is an union of eight events. Each of these event is either bounded by an
event of the form (D12 ≤ 2

√
dR1 and D13 ≤ 2

√
dR1) (six events), or by an event of

the form (D12 ≤ 2
√
dR1 and D23 ≤ 2

√
dR2 and D13 ≤ 2

√
dR3) (two events). Using

this, we obtain

P(G1 ∩G2 ∩G3)

≤ 6P(Xn ∈ C(X1, R1) and D12 ≤ 2
√
dR1 and D13 ≤ 2

√
dR1)

+ 2P(Xn ∈ C(X1, R1) and D12 ≤ 2
√
dR1 and D23 ≤ 2

√
dR2 and D13 ≤ 2

√
dR3)

≤ cE[Rd11{D12 ≤ 2
√
dR1 and D13 ≤ 2

√
dR1}]

+ cE[Rd11{D12 ≤ 2
√
dR1 and D23 ≤ 2

√
dR2 and D13 ≤ 2

√
dR3}]

= cE

[∫ ∞(
max(D12,D13)

2
√
d

)d P(Rd1 ≥ u|X1, X2, X3)du

]

+ cE

[∫ ∞(
D12
2
√
d

)d P
(
Rd1 ≥ u and R2 ≥

D23

2
√
d
and R3 ≥

D13

2
√
d

∣∣∣∣X1, X2, X3

)
du

]
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≤ cE
[∫ ∞(

max(D12,D13)

2
√
d

)d e−cnudu
]

+ cE

[∫ ∞(
D12
2
√
d

)d e(−cn(u+Dd23+Dd13))du

]
=
c

n
E
[
e−cnmax(D12,D13)d

]
+
c

n
E
[
e−cn(Dd12+Dd23+Dd13)

]
≤ 2

c

n
E
[
e−cnmax(D12,D13)d

]
=
c

n

∫ 1

0
P
(

max(D12, D13)d ≤ − ln(t)

cn

)
dt

≤ c

n

∫ 1

0

(− ln(t)

cn

)2

dt =
c

n3
.

Finally, inequality (7.42) becomes

E[V 3/2] ≤ cn3/2(exp(−cMd) + exp(−cMd)(n1−1/q′ + n2−2/q′ + n3−3/q′)

≤ cn3/2+3(1−1/q′) exp(−cMd).

Choose p′ = 3/ε and apply Markov inequality to conclude.
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Chapter 8

The expected persistence diagram

We have established in the previous chapter various properties of the behavior of
linear representations of persistence diagrams by taking two approaches: studying
their stability, and their asymptotic behavior under certain generative models. In this
chapter, we focus on the behavior of linear representations in a random non-asymptotic
setting. Assume that a1, . . . , an ∼ P is a n-sample of persistence diagrams. To analyze
this sample, one can choose a linear representation Ψf , and consider the vectors
Ψf (a1), . . . ,Ψf (an). If one wants to understand the behavior of this random sample,
it is probably best to start by considering simple quantities such as the sample mean

Ψf (a1) + · · ·+ Ψf (an)

n
, (8.1)

which approximates the expectation Ea∼P [Ψf (a)]. As Ψf (a) = a(f), the integration
of f against a seen as a measure, this is in turn equal to

∫
Ω f(u)dE[a](u), where E[a]

is the expected value of the random measures a ∼ P . We call this object, which is
central to understand the average behavior of linear representations of persistence
diagrams, the expected persistence diagram of P , that we denote either by Ea∼P [a] or
E(P ).

We show in the following various properties of expected persistence diagrams. First,
we show that expected persistence diagrams possess a (smooth) density in a wide
variety of settings (i.e. for filtrations built on top of random point clouds, but also for
the sublevel sets of random functions such as the Brownian motion, see Section 8.2).

Second, we inquire about stability properties of the expected persistence diagram:
if P1 and P2 are close, then so should be E(P1) and E(P2). Stability is treated in two
different ways. When no assumptions are made on the underlying laws P1 and P2, we
prove a general 1-Lipschitz inequality with respect to the Wasserstein distance between
P1 and P2. When the persistence diagrams are built on top of random point clouds,
Section 8.2 ensures that the corresponding expected persistence diagrams possess
densities on Ω. In that case, we are then able to give stronger stability results relating
the densities of the expected persistence diagrams and the densities of the underlying
processes, see Section 8.2.4.

We then focus on the estimation of the expected persistence diagram in a statistical
setting. Given a n-sample a1, . . . , an of law P ∈ P1(D), we study in Section 8.3 a very
natural estimator, the empirical expected persistence diagram, defined by

an :=
a1 + · · ·+ an

n
. (8.2)

We show that this estimator is a minimax estimator of the expected persistence diagram
E(P ) with respect to the FGp-distance on a large class of models, with a minimax
rate of order n−1/(2p). More surprisingly, we show that this estimator is minimax even
on models where E(P ) is assumed to have a smooth density, with the same rate of
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convergence. The empirical expected persistence diagram has the advantage of being
very simple (it consists in ”superposing” the different persistence diagrams a1, . . . , an),
but has the drawback of being possibly very large, its number of points being equal to
the total number of points in all the persistence diagrams of the sample. To overcome
this issue, we consider in Section 8.5 the quantization of the expected persistence
diagram: given a fixed number of points k, this is the best approximation of the
expected persistence diagram supported on k points. We propose an online algorithm
to compute a quantization of the empirical expected persistence diagram and show
that—provided a good initialization—the output of our algorithm approximates a
quantization of the expected persistence diagram at an appropriate rate. Both the
performance of the empirical expected persistence diagram and of its quantization are
then illustrated on synthetic examples.

Finally, we investigate in Section 8.4 the estimation of E(P ) with respect to the
L2-norm on Ω in the case where E(P ) possesses a density. In that case, we show
that smoothing the empirical persistence diagram an is a good idea, and that such
an object is related to the persistence surface of a diagram introduced by [Ada+17].
We then propose a selection procedure for the smoothing parameter and showcase our
procedure on simple numerical experiments.

Throughout this chapter, persistence diagrams in numerical experiments are com-
puted using the Gudhi library [Mar+14] and FGp distances are computed building on
tools available from the POT library [FC17].

8.1 The expected persistence diagram

Given a probability distribution P ∈ P1(M(Ω)), the expected persistence diagram
E(P ) associated to P is given by the relation E(P )(A) := E[µ(A)] if µ ∼ P and
A ⊂ Ω a Borel set. Note that by Fubini’s theorem, this assignment indeed defines
a Radon measure on Ω as long as the minimal requirement E[µ(K)] < ∞ for every
compact set K ⊂ Ω is satisfied (we then say that P is integrable). Of particular
interest for us is the case where P is supported on D ⊂ M(Ω), that is µ ∼ P is
always a persistence diagram, although all the results of this section hold without this
assumption. It is useful to know when the expected persistence diagram E(P ) actually
belongs toMp (and can therefore be compared using the Figalli-Gigli metrics FGp).
We show that this condition is equivalent to having P ∈ Pp1 (Mp). Furthermore, in
that case, an alternative way of defining the expected persistence diagram is possible.
Let Ip :Mp → P(Ω) be the function defined by Ip(µ) = µ(p), the measure with density
d(·, ∂Ω)p with respect to µ ∈Mp introduced in Chapter 6. The space P(Ω) endowed
with the total variation is a Banach space, so that the Bochner integral is well-defined
in this space, see e.g. [Die84, Chapter 4]. Therefore, an alternative possibility to define
E(P ) is to pushforward P to P(Ω) with Ip, define the expected value in the Banach
space using the Bochner integral, and then go back toMp with I−1

p . We show that
this definition is equivalent to the first one, and it will sometimes be useful to use this
alternative definition to exploit properties of the Bochner integral.

Lemma 8.1.1. Let P be an integrable probability distribution on P1(M(Ω)) and let
1 ≤ p ≤ ∞. Let µ ∼ P . Then, we have the equivalence

1. E(P ) ∈Mp,

2. P ∈ Pp1 (Mp),

3. E[Persp(µ)] <∞.
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Furthermore, in that case, for p <∞, we have E(P ) = I−1
p (E[Ip(µ)]), where E[Ip(µ)]

is the Bochner integral of Ip(µ) in the Banach space (P(Ω), | · |).

Proof. The equivalence between the two last items follows from the definition of
Pp1 (Mp), as Persp(µ) = FGp

p(µ, 0). To prove the equivalence between the first and
the last item, it suffices to show that Persp(E(P )) = E[Persp(µ)]. This is implied by
writing d(·, ∂Ω)p as a simple function

∑
i ai1{Ai} for some positive numbers ai and

Borel sets Ai, and then using the definition of E(P ) as well as Fubini’s theorem.
Also, the random variable Ip(µ) is Bochner integrable if E[|Ip(µ)|] < ∞, with

|Ip(µ)| = Persp(µ). Therefore, we indeed have the Bochner integrability of Ip(µ), with,
for K ⊂ Ω a compact set,

I−1
p (E[Ip(µ)])(K) =

∫
K

1

d(u, ∂Ω)p
dE[Ip(µ)](u) = E

[∫
K

1

d(u, ∂Ω)p
dIp(µ)(u)

]
= E

[∫
K

dµ(u)

]
= E[µ](K),

with the second equality following from properties of the Bochner integral (namely,
that the expectation commutes with continuous linear forms).

We now address the question of the stability of the expected persistence diagram
with respect to the underlying phenomenon generating them. As a first result, we
exploit the convexity of the function FGp

p and use Jensen’s inequality to give a simple
inequality relating the distance between two expected persistence diagrams E(P1) and
E(P2) and the Wasserstein distance Wp,FGp(P1, P2) between the associated probability
measures.

Proposition 8.1.2. Let P1, P2 ∈ Pp1 (Dp). Then,

FGp(E(P1), E(P2)) ≤Wp,FGp(P1, P2). (8.3)

To prove Proposition 8.1.2, we first show that the function FGp
p is convex.

Lemma 8.1.3. For 1 ≤ p <∞, the function FGp
p :Mp ×Mp → R is convex.

Proof. Fix µ1, µ2, ν1, ν2 ∈Mp and t ∈ [0, 1]. Our goal is to show that

FGp
p(tµ1 + (1− t)µ2, tν1 + (1− t)ν2) ≤ tFGp

p(µ1, ν1) + (1− t)FGp
p(µ2, ν2).

Let π11 ∈ Optp(µ1, ν1) and π22 ∈ Optp(µ2, ν2). It is straightforward to check that
π := tπ11 + (1− t)π22 is an admissible plan between tµ1 + (1− t)µ2 and tν1 + (1− t)ν2.
The cost of this admissible plan is tFGp

p(µ1, ν1) + (1− t)FGp
p(µ2, ν2), which is therefore

larger than FGp
p(tµ1 + (1− t)µ2, tν1 + (1− t)ν2).

We then use the following result, which is a particular case of [Per74, Theorem
3.10].

Proposition 8.1.4. Let (V, ‖ · ‖) be a Banach space and C ⊂ X a closed convex set.
Let Q be a probability measure on X endowed with its Borelian σ-algebra, which is
supported on C. Assume that

∫
‖x‖dQ(x) <∞. Let f : C → [0,∞) be a continuous

convex function with
∫
f(x)dQ(x) <∞. Then

f

(∫
xdQ(x)

)
≤
∫
f(x)dQ(x),

where
∫
xdQ(x) denotes the Bochner integral of x with respect to Q.
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Proof of Proposition 8.1.2. Let V = Cb(Ω)∗×Cb(Ω)∗ which is a Banach space (endowed
with the product total variation norm). Let C = P(Ω)× P(Ω), which is convex and
closed (closedness follows immediately from the definition of the total variation | · |) and
let f = FGp

p ◦ (I−1
p , I−1

p ) : C → R. The continuity of I−1
p implies that f is continuous

and Lemma 8.1.3 implies the convexity of f . Let P1, P2 be two probability measures
in Pp1 (Mp) and γ be an optimal coupling between P1 and P2. We let Q be the image
measure of γ by (Ip, Ip), so that∫

x∈V
‖x‖dQ(x) =

∫
µ1,µ2∈Mp

max(|µ(p)
1 |, |µ

(p)
2 |)dγ(µ1, µ2)

≤
∫
µ1

Persp(µ1)dP1(µ1) +

∫
µ2

Persp(µ2)dP2(µ2) <∞

and that∫
x∈V

f(x)dQ(x) =

∫
µ1,µ2∈Mp

FGp
p(µ1, µ2)dγ(µ1, µ2) = W p

p,FGp
(P1, P2) <∞.

Also, we have∫
x∈V

xdQ(x) =

∫
ν1,ν2∈Mp

(ν1, ν2)d(Ip, Ip)#γ(ν1, ν2)

=

(∫
ν1∈Mp

ν1d(Ip)#P1(ν1),

∫
ν2∈Mp

ν2d(Ip)#P2(ν2)

)
,

so that by Lemma 8.1.1, f
(∫
xdQ(x)

)
= FGp

p(E[µ1],E[µ2]), where µ1 ∼ P1 and
µ2 ∼ P2. Proposition 8.1.2 yields the conclusion.

Using stability results on the distances dp (= FGp) between persistence diagrams
(see Section 3.8.4), one is able to obtain a more precise control between the expectations
in some situations.

Proposition 8.1.5. Let ξ1, ξ2 be two probability distributions on some metric space
(X , d) which implies bounded p′-total persistence and let p ≤ p′ + 1. Fix an integer
q ≥ 0. For i = 1, 2, let X (i)

n be a set of n random i.i.d. points sampled according to ξi.
Then,

FGp(E[dgmC
q (X (1)

n )],E[dgmC
q (X (2)

n )]) ≤ Cp,p′n1/pWp−p′(ξ1, ξ2)
1− p′

p . (8.4)

Letting p→∞, we obtain the following simple bottleneck stability result

FG∞(E[dgmC
q (X (1)

n )],E[dgmC
q (X (2)

n )]) ≤W∞(ξ1, ξ2). (8.5)

Spaces implying bounded total persistence include for instance compact Riemannian
manifolds, graphs, or simplicial complexes. For p <∞, the bound in (8.4) is of order
n1/p. This constant is however not tight, see Chapter 7 for asymptotic results on
dgmC

q X (i)
n ) for n-samples on the cube.

Proof. Let P1 be the law of dgmC
q (X (1)

n ), P2 be the law of dgmC
q (X (2)

n ) and let γ be
any coupling between X (1)

n a n-sample of law ξ1, and X (2)
n a n-sample of law ξ2. Then,

the law of (dgm(X (1)
n ),dgm(X (2)

n )) is a coupling between P1 and P2. Thus, Proposition
8.1.2 yields

FGp
p(E[dgmC

q (X (1)
n )],E[dgmC

q (X (2)
n )]) ≤ Eγ [FGp

p(dgmC
q (X (1)

n ), dgmC
q (X (2)

n ))].
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It is stated in [CS+10, Wasserstein Stability Theorem] that

FGp
p(dgmC

q (X (1)
n ), dgmC

q (X (2)
n )) ≤ Cp,p′dH(X (1)

n ,X (2)
n )p−p

′
,

where Cp,p′ depends on p, p′ and X , and dH is the Hausdorff distance between sets.
By taking the infimum on transport plans γ, we obtain

FGp
p(E[dgmC

q (X (1)
n )],E[dgmC

q (X (2)
n )]) ≤ Cp,p′W p−p′

p−p′,dH (ξ⊗n1 , ξ⊗n2 ),

whereWp,dH is the p-Wasserstein distance between probability distributions on compact
sets of the space X , endowed with the Hausdorff distance. Lemma 15 of [Cha+15b]
states that

W p−p′
p−p′,dH (ξ⊗n1 , ξ⊗n2 ) ≤ n ·W p−p′

p−p′ (ξ1, ξ2),

concluding the proof.

Note that this proposition illustrates the usefulness of introducing new distances
FGp: considering the proximity between linear expectations requires to extend the
metrics dp to Radon measures.

8.2 Regularity of the expected persistence diagram

Our next contribution to the study of the expected persistence diagram consists in
showing that in two different kinds of situations (e.g. filtrations built on point clouds
in Theorem 8.2.5 or filtration built with the sublevel sets of a Brownian motion in
Theorem 8.2.17), the expected persistence diagram E[a], which is a measure on Ω, has
a density λ with respect to the Lebesgue measure on Ω. Therefore, E[Ψf (a)] is equal
to
∫

Ω f(u)λ(u)du, and if properties of the density λ are shown (such as smoothness),
those properties will also apply to the expectation of the representation Ψf . Note
that Theorem 8.2.17 is, to our knowledge, one of the first result about the persistent
homology of Gaussian random fields.

More precisely, in Theorem 8.2.5, we consider filtrations K(X ) built on top of a
random point cloud X (e.g. K is the Čech filtration or the Rips filtration). The main
argument to prove the existence of a density for the expected persistence diagram
then relies on the basic observation that for a random point cloud X of given size
n, the filtration K(X ) can induce a finite number of ordering configurations of the
simplices. The core of the proof consists in showing that, under suitable assumptions,
this ordering is locally constant for almost all X . As one needs to use geometric
arguments, having properties only satisfied almost everywhere is not sufficient for our
purpose. One needs to show that properties hold in a stronger sense, namely that the
set on which it is satisfied is a dense open set. Hence, a convenient framework to obtain
such properties is given by subanalytic geometry (see [Shi97] for a monograph on the
subject). Subanalytic sets are a class of subsets of Rd that are locally defined as linear
projections of sets defined by analytic equations and inequations. As most considered
filtrations in Topological Data Analysis result from real algebraic constructions, such
sets naturally appear in practice. On open sets where the combinatorial structure of
the filtration is constant, the way the points in the diagrams are matched to pairs
of simplices is fixed: only the times/scales at which those simplices appear change,
see Section 3.8.3. Under an assumption of smoothness of those times, and using the
coarea formula, one then deduces the existence of a density for E[dgmq(K(X ))].
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Background on subanalytic sets We now give basic results on subanalytic ge-
ometry, whose proofs are given in Section 8.6. See [Shi97] for a thorough review of
the subject. Let M ⊂ RD be a connected real analytic submanifold, possibly with
boundary, whose dimension is denoted by d.

Definition 8.2.1. A subset X of M is semianalytic if each point of M has a neigh-
borhood U ⊂M such that X ∩ U is of the form

p⋃
i=1

q⋂
j=1

Xij , (8.6)

where Xij is either f−1
ij ({0}) or f−1

ij ((0,∞)) for some analytic functions fij : U → R.

Definition 8.2.2. A subset X of M is subanalytic if for each point of M , there exists
a neighborhood U of this point, a real analytic manifold N and A, a relatively compact
semianalytic set of N ×M , such that X ∩ U is the projection of A on M . A function
f : X → R is subanalytic if its graph is subanalytic in M × R. The set of real-valued
subanalytic functions on X is denoted by S(X).

A point x in a subanalytic subset X of M is smooth (of dimension k) if, in some
neighborhood of x in M , X is an analytic submanifold (of dimension k). The maximal
dimension of a smooth point of X is called the dimension of X. The smooth points
of X of dimension d are called regular, and the other points are called singular. The
set Reg(X) of regular points of X is an open subset of M , possibly empty; the set of
singular points is denoted by Sing(X).

Lemma 8.2.3. (i) For f ∈ S(M), the set A(f) on which f is analytic is an open
subanalytic set of M . Its complement is a subanalytic set of dimension smaller
than d.

Fix X a subanalytic subset of M . Assume that f, g : X → R are subanalytic
functions such that the image of a bounded set is bounded. Then,

(ii) The functions fg and f + g are subanalytic.

(iii) The sets f−1({0}) and f−1((0,∞)) are subanalytic in M .

As a consequence of point (i), for f ∈ S(M), one can define its gradient ∇f
everywhere but on some subanalytic set of dimension smaller than d.

Lemma 8.2.4. Let X be a subanalytic subset of M . If the dimension of X is smaller
than d, then Hd(X) = 0.

As a direct corollary, we always have

Hd(X) = Hd(Reg(X)). (8.7)

Write N (M) for the class of subanalytic subsets X of M with Reg(X) = ∅. We have
just shown that Hd ≡ 0 on N (M). They form a special class of negligeable sets. We
say that a property is verified almost subanalytically everywhere (a.s.e.) if the set on
which it is not verified is included in a set of N (M). For example, Lemma 8.2.3 implies
that ∇f is defined a.s.e..
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Statements of the main results Let n > 0 be an integer and M a real analytic
compact d-dimensional connected submanifold possibly with boundary. Let ∆n be
the standard n-dimensional simplicial complex, given by all the non-empty subsets of
{1, . . . , n}. Let ϕ = (ϕ[σ])σ∈∆n : Mn → R∆n be a continuous function. The function
ϕ will be used to construct the persistence diagram and is called a filtering function:
a simplex σ is added in the filtration at the time ϕ[σ]. For x = (x1, . . . , xn) ∈Mn and
for σ a simplex, define x(σ) := (xj)j∈σ. We make the following assumptions on ϕ:

(K1) Absence of interaction: For σ ∈ ∆n, ϕ[σ](x) only depends on x(σ).

(K2) Invariance by permutation: For σ ∈ ∆n and for (x1, . . . , xn) ∈Mn, if τ is a permu-
tation of {1, . . . , n} whose support is included in σ, then ϕ[σ](xτ(1), . . . , xτ(n)) =
ϕ[σ](x1, . . . , xn).

(K3) Monotony: For σ ⊂ σ′ ∈ ∆n, ϕ[σ] ≤ ϕ[σ′].

(K4) Compatibility: For a simplex σ ∈ ∆n and for j ∈ σ, if ϕ[σ](x1, . . . , xn) is not a
function of xj on some open set U of Mn, then ϕ[σ] ≡ ϕ[σ\{j}] on U .

(K5) Smoothness: The function ϕ is subanalytic and the gradient of each of its entries
(which is defined a.s.e.) is non vanishing a.s.e..

Assumptions (K2) and (K3) ensure that a filtration K(x) can be defined thanks to ϕ
by:

∀σ ∈ ∆n, σ ∈ K(t, x)⇐⇒ ϕ[σ](x) ≤ t. (8.8)

Assumption (K1) means that the moment a simplex is added in the filtration only
depends on the position of its vertices, but not on their relative position in the point
cloud. For σ ∈ ∆n, the gradient of ϕ[σ] is a vector field in TMn. Its projection on
the jth coordinate is denoted by ∇jϕ[σ]: it is a vector field in TM defined a.s.e.. The
persistence diagram of the filtration K(x) for q-dimensional homology is denoted by
dgmq(K(x)).

Theorem 8.2.5. Fix n ≥ 1. Assume that M is a real analytic compact d-dimensional
connected submanifold possibly with boundary and that X is a random variable on
Mn having a density with respect to the Hausdorff measure Hdn. Assume that K
satisfies the assumptions (K1)-(K5). Then, for q ≥ 0, the expected persistence diagram
E[dgmq(K(X ))] has a density with respect to the Lebesgue measure on Ω.

Remark 8.2.6. The condition that M is compact can be relaxed in most cases: it is
only used to ensure that the subanalytic functions appearing in the proof satisfy the
boundedness condition of Lemma 8.2.3. For the Čech and Vietoris-Rips filtrations,
one can directly verify that the function ϕ (and therefore the functions appearing in
the proofs) satisfies it when M = Rd. Indeed, in this case, the filtering functions are
semi-algebraic.

Classical filtrations such as the Vietoris-Rips and Čech filtrations do not satisfy
the full set of assumptions (K1)-(K5). Specifically, they do not satisfy the second part
of assumption (K5): all singletons {j} are included at time 0 in those filtrations so
that ϕ[{j}] ≡ 0, and the gradient ∇ϕ[{j}] is therefore null everywhere. This leads to
a well-known phenomenon on Vietoris-Rips and Čech diagrams: all the non-infinite
points of the diagram for 0-dimensional homology are included in the vertical line
{0} × [0,∞). A theorem similar to Theorem 8.2.5 still holds in this case:

Theorem 8.2.7. Fix n ≥ 1. Assume that M is a real analytic compact d-dimensional
connected submanifold and that X is a random variable on Mn having a density with
respect to the Hausdorff measure Hdn. Define assumption (K5’):
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(K5’) The function ϕ is subanalytic and the gradient of its entries σ of size larger than
1 is non vanishing a.s.e.. Moreover, for {j} a singleton, ϕ[{j}] ≡ 0.

Assume that K satisfies the assumptions (K1)-(K4) and (K5’). Then, for q ≥ 1,
E[dgmq(K(X ))] has a density with respect to the Lebesgue measure on Ω. Moreover,
E[dgm0(K(X ))] has a density with respect to the Lebesgue measure on the vertical line
{0} × [0,∞).

The proof of Theorem 8.2.7 is very similar to the proof of Theorem 8.2.5. It is
therefore relegated with other additional proofs in Section 8.6.

One can easily generalize Theorem 8.2.5 and assume that the size of the point
process X is itself random. For n ∈ N, define a function ϕ(n) : Mn → R∆n satisfying
the assumption (K1)-(K5). If x is a finite subset of M , define K(x) by the filtration
associated to ϕ(#x) where #x is the size of x. We obtain the following corollary, proven
in Section 8.6.

Corollary 8.2.8. Assume that X has some density with respect to the law of a Poisson
process on M of intensity Hd, such that E

[
2#X

]
<∞. Assume that K satisfies the

assumptions (K1)-(K5). Then, for q ≥ 0, E[dgmq(K(X ))] has a density with respect
to the Lebesgue measure on Ω.

The condition E
[
2#X

]
< ∞ ensures the existence of the expected persistence

diagram and is for example satisfied when X is a Poisson process with finite intensity.
As the way the filtration is created is smooth, one may actually wonder whether

the density of E[dgmq(K(X ))] is smooth as well: it is the case as long as the way the
points are sampled is smooth.

Theorem 8.2.9. Fix 0 ≤ k ≤ ∞ and assume that X ∈Mn has some density of class
Ck with respect to Hnd. Then, for q ≥ 0, the density of E[dgmq(K(X ))] is of class Ck.

The proof is based on classical results of continuity under the integral sign as well
as an use of the implicit function theorem: it can be found in Section 8.6.

As a corollary of Theorem 8.2.9, we obtain the smoothness of various expected
descriptors computed on persistence diagrams. For instance, the expected birth
distribution and the expected death distribution have smooth densities under the
same hypothesis, as they are obtained by projection of the expected diagram on some
axis. Another example is the smoothness of the expected Betti curves. We recall the
definition of the Betti curve introduced in Section 3.9: the Betti number at scale t of a
persistence diagram a is defined as βt(a) := a(⌟t,t), where ⌟t,t = {u = (u1, u2) ∈ Ω :
u1 ≤ t ≤ u2}. The Betti curve is then the function β(a) : t ∈ R 7→ βt(a). The Betti
curves are step functions which can be used as statistics, as in [Ume17] where they are
used for a classification task on time series. With few additional work (see proof in
Section 8.6), the expected Betti curves are shown to be smooth.

Corollary 8.2.10. Under the same hypothesis than Theorem 8.2.9, for q ≥ 0, the
expected Betti curve E[β(dgmq(K(X ))] is a Ck function.

8.2.1 Proof of Theorem 8.2.5

First, one can always replace Mn by A(ϕ) =
⋂
σ∈∆n

A(ϕ[σ]), as Lemma 8.2.3 implies
that it is an open set whose complement is in N (Mn). We will therefore assume that
ϕ is analytic on Mn.

Given x ∈Mn, the different values taken by ϕ(x) on the filtration can be written
t1 < · · · < tL. Define El(x) the set of simplices σ such that ϕ[σ](x) = tl. The sets
E1(x), . . . , EL(x) form a partition of ∆n denoted by A(x).
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Lemma 8.2.11. For a.s.e. x ∈Mn, for l ≥ 1, El(x) has a unique minimal element
σl (for the partial order induced by inclusion).

Proof. Fix σ, σ′ ⊂ {1, . . . , n} with σ 6= σ′ and σ ∩ σ′ 6= ∅. consider the subanalytic
functions f : x ∈Mn 7→ ϕ[σ](x)− ϕ[σ′](x) and g : x ∈Mn 7→ ϕ[σ](x)− ϕ[σ ∩ σ′](x).
The set

C(σ, σ′) := {f = 0} ∩ {g > 0}. (8.9)

is a subanalytic subset ofMn. Assume that it contains some open set U . On U , ϕ[σ](x)
is equal to ϕ[σ′](x). Therefore, it does not depend on the entries xj for j ∈ σ\σ′.
Hence, by assumption (K4), ϕ[σ](x) is actually equal to ϕ[σ ∩ σ′](x) on U . This is
a contradiction with having g > 0 on U . Therefore, C(σ, σ′) does not contain any
open set, and all its points are singular: C(σ, σ′) is in N (Mn). If σ ∩ σ′ = ∅, similar
arguments show that C(σ, σ′) = {f = 0} cannot contain any open set: it would
contradict assumption (K5). On the complement of

C :=
⋃

σ 6=σ′⊂{1,...,n}
C(σ, σ′), (8.10)

having ϕ[σ](x) = ϕ[σ′](x) implies that σ ∩ σ′ 6= ∅ and that ϕ[σ](x) = ϕ[σ ∩ σ′](x).
This show the existence of a unique minimal element σl to El(x) on the complement
of C. This property is therefore a.s.e. satisfied.

Lemma 8.2.12. A.s.e., x 7→ A(x) is locally constant.

Proof. Fix A0 = {E1, . . . , El} a partition of ∆n induced by some filtration, with
minimal elements σ1, . . . , σl. Consider the subanalytic functions F,G defined, for
x ∈Mn, by

F (x) =

L∑
l=1

∑
σ∈El

(ϕ[σ](x)− ϕ[σl](x)) and G(x) =
∑
l 6=l′

(ϕ[σl](x))− ϕ[σl′ ](x))2 .

The set {x ∈Mn,A(x) = A0} is exactly the set C(A0) = {F = 0} ∩ {G > 0}, which
is subanalytic. The sets C(A0) for all partitions A0 of ∆n define a finite partition of
the space Mn. On each open set Reg(C(A0))), the application x 7→ A(x) is constant.
Therefore, x 7→ A(x) is locally constant everywhere but on

⋃
A0

Sing(C(A0)) ∈
N (Mn).

Therefore, the space Mn is partitioned into a negligeable set of N (Mn) and some
open subanalytic sets U1, . . . , UR on which A is constant.

Lemma 8.2.13. Fix 1 ≤ r ≤ R and assume that σ1, . . . , σL are the minimal elements
of A on Ur. Then, for 1 ≤ l ≤ L and j ∈ σl, ∇jϕ[σl] 6= 0 a.s.e. on Ur.

Proof. By minimality of σl, for j ∈ σl, the subanalytic set {∇jϕ[σl] = 0} ∩ Ur cannot
contain an open set. It is therefore in N (Mn).

Fix 1 ≤ r ≤ R and write

Vr = Ur

∖ L⋃
l=1

|σl|⋃
j=1

{∇jϕ[σl] = 0}

 .

The complement of Vr in Ur is still in N (Mn). For x ∈ Vr, dgmq[K(x)] is written∑N
i=1 δui , where

ui = (ϕ[σl1 ](x), ϕ[σl2 ](x)) =: (bi, di).
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The integer N and the simplices σl1 , σl2 depend only on Vr. Note that di is always
larger than bi, so that σl2 cannot be included in σl1 . The map x 7→ ui has its differential
of rank 2. Indeed, take j ∈ σl2\σl1 . By Lemma 8.2.13, ∇jϕ[σl2 ](x) 6= 0. Also, as ϕ[σl1 ]
only depends on the entries of x indexed by σl1 (assumption (K1)), ∇jϕ[σl1 ](x) = 0.
Furthermore, take j′ in σl1 . By Lemma 8.2.13, ∇j′ϕ[σl1 ](x) 6= 0. This implies that the
differential is of rank 2.

We now compute the qth persistence diagram for q ≥ 0. Let κ be the density of X
with respect to the measure Hnd on Mn. Then,

E[dgmq(K(X ))] =
R∑
r=1

E
[
1{X ∈ Vr}dgmq(K(X))]

]
=

R∑
r=1

E

[
1{X ∈ Vr}

Nr∑
i=1

δui

]

=
R∑
r=1

Nr∑
i=1

E [1{X ∈ Vr}δui ]

Let µir be the measure E[1{X ∈ Vr}δui ]. To conclude, it suffices to show that this
measure has a density with respect to the Lebesgue measure on Ω. This is a consequence
of the coarea formula. Define the function Φir : x ∈ Vr 7→ ui = (ϕ[σl1 ](x), ϕ[σl2 ](x)).
We have already seen that Φir is of rank 2 on Vr, so that JΦir > 0. By the coarea
formula (see Theorem 3.5.13), for a Borel set B in Ω,

µir(B) = P(Φir(X ) ∈ B,X ∈ Vr)

=

∫
Vr

1{Φir(x) ∈ B}κ(x)dHnd(x)

=

∫
u∈B

∫
x∈Φ−1

ir ({u})
(JΦir(x))−1κ(x)dHnd−2(x)du.

Therefore, µir has a density with respect to the Lebesgue measure on Ω equal to, for
u ∈ Ω,

λir(u) =

∫
x∈Φ−1

ir ({u})
(JΦir(x))−1κ(x)dHnd−2(x). (8.11)

Finally, E[dgmq(K(X))] has a density equal to

λ(u) =
R∑
r=1

Nr∑
i=1

∫
x∈Φ−1

ir ({u})
(JΦir(x))−1κ(x)dHnd−2(x). (8.12)

8.2.2 Examples

We now note that the Vietoris-Rips and the Čech filtrations satisfy the assumptions
(K1)-(K4) and (K5’) whenM = Rd is an Euclidean space. Note that similar arguments
show that weighted versions of those filtrations (see [Buc+16]) satisfy assumptions
(K1)-(K5).

Vietoris-Rips filtration Let x ∈Mn and σ ∈ ∆n be a simplex. For the Vietoris-
Rips filtration, ϕ[σ](x) = maxi,j∈σ |xi−xj |. The function ϕ clearly satisfies (K1), (K2)
and (K3). It is also subanalytic, as it is the maximum of semi-algebraic functions.
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Also, we have ϕ[σ](x) = |xi − xj | for some indices i, j. Those indices are locally
stable, and ϕ[σ](x) = ϕ[{i, j}](x): hypothesis (K4) is satisfied. Furthermore, on this
set,

∇ϕ[{i, j}](x) =

(
xi − xj
|xi − xj |

,
xj − xi
|xi − xj |

)
6= 0. (8.13)

Hence, (K5’) is also satisfied: both Theorem 8.2.7 and Theorem 8.2.9 are satisfied for
the Vietoris-Rips filtration.

Čech filtration Recall that the ball centered at x of radius r is denoted by B(x, r).
For the Čech filtration,

ϕ[σ](x) = inf
r>0

⋂
j∈σ
B(xj , r) 6= ∅

 . (8.14)

First, it is clear that (K1), (K2) and (K3) are satisfied by ϕ.
We give without proof a characterization of the Čech complex.

Proposition 8.2.14. Let x be in Mn and fix σ ∈ ∆n. If the circumcenter of x(σ)
is in the convex hull of x(σ), then ϕ[σ](x) is the radius of the circumsphere of x(σ).
Otherwise, its projection on the convex hull belongs to the convex hull of some subsimplex
x(σ′) of x(σ) and ϕ[σ](x) = ϕ[σ′](x).

Definition 8.2.15. The Cayley-Menger matrix of a k-simplex x = (x1, . . . , xk) ∈Mk

is the symmetric matrix (CM(x)i,j)i,j of size k + 1, with zeros on the diagonal, such
that CM(x)1,j = 1 for j > 1 and CM(x)i+1,j+1 = |xi − xj |2 for i, j ≤ k.
Proposition 8.2.16 (see [Cox30]). Let x ∈Mk be a point in general position. Then,
the Cayley-Menger matrix CM(x) is invertible with (CM(x))−1

1,1 = −2r2, where r is the
radius of the circumsphere of x. The kth other entries of the first line of CM(x)−1 are
the barycentric coordinates of the circumcenter.

Therefore, the application which maps a simplex to its circumcenter is analytic,
and the set on which the circumcenter of a simplex belongs in the interior of its convex
hull is a subanalytic set. On such a set, the function ϕ is also analytic, as it is the
square root of the inverse a matrix which is polynomial in x. Furthermore, on the
open set on which the circumcenter is outside the convex hull, we have shown that
ϕ[σ](x) = ϕ[σ′](x) for some subsimplex J ′: assumption (K4) is satisfied.

Finally, let us show that assumption (K5’) is satisfied. The previous paragraph
shows the subanalyticity of ϕ. For σ ∈ ∆n a simplex, there exists some subsimplex
σ′ such that ϕ[σ](x) is the radius of the circumsphere of x(σ′). It is clear that there
cannot be an open set on which this radius is constant. Thus, ∇ϕ[σ] is a.s.e. non null.

8.2.3 The expected persistence diagram of a Brownian motion

Another instance of random objects one can build filtrations on are random functions.
The most fundamental instance of such functions is the Brownian motion B : t ∈
[0, 1] 7→ Bt ∈ R, defined as the continuous Gaussian random field on R having
covariance function C(t1, t2) = t1∧ t2 (see [LG16, Chapter 2] for a concise and rigorous
introduction). The continuity of B ensures that the persistence module induced by
the 0-level homology of its sublevel sets is q-tame (see Section 3.8). In particular,
the persistence diagram dgm(B) of this persistence module is well-defined, but may
contain accumulation points close to the diagonal. To put it another way, dgm(B)
belongs to D but not to Df , the space of finite persistence diagrams.
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Theorem 8.2.17. The random persistence diagram dgm(B) is integrable and its
expectation E[dgm(B)] has a density with respect to the Lebesgue measure.

The result holds as the persistent Betti numbers, defined by

βr,s := βr,s(dgm(B)) = dgm(B)(]−∞, r]× [s,∞[),

have a particularly convenient expression in this setting. Indeed, βr,s is exactly the
number of upward crossings of the band [r, s] by the Brownian motion. The law of
this quantity is explicitly known, and happens to be continuous with respect to r and
s. Standard measure theoretic arguments are then enough to conclude.

1

r

s

S0 T1S1 T2 S2 T3

t

f(t)

Figure 8.1: Example of a function f : [0, 1] → R with βr,s = 3.
The red region corresponds to f−1((−∞, r]) and the blue region to

f−1((−∞, s]).

More precisely, for a ∈ R, define T (a) := inf{t > 0, Bt = a}. Then, T (a) has a
density with respect to the Lebesgue measure equal to

fa(t) =
a√
2πt3

exp

(
−a

2

2t

)
.

Assume that 0 < r < s (similar arguments hold when both numbers are negative or if
r < 0 < s). Define T0 = S0 = 0 and for i ≥ 0

Ti+1 := inf{t ≥ Si, Bt = r},
Si+1 := inf{t ≥ Ti+1, Bt = s}.

Then βr,s is equal to max{k ≥ 0, Tk ≤ 1} (see Figure 8.1) and P(βr,s ≥ k) = P(Tk ≤ 1).
First, note that T1 is equal to T (r). Also, by Markov property, for i ≥ 1, conditionally
on Si, Ti+1−Si has the same law than T (s− r), and so does Si+1−Ti+1 conditionally
on Ti+1. Therefore for k ≥ 2,

P(βr,s ≥ k) = P(Tk ≤ 1)

=

∫
Σ2k−2

fr(t1)fs−r(s1)fs−r(t2) · · · fs−r(sk−1)fs−r(tk)dsdt,
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where Σ2k−2 := {u = (t1, . . . , tk, s1, . . . , sk−1) ∈ R2k−1, ti ≥ 0, si ≥ 0 and
∑k

i=1 ti +∑k−1
i=1 si ≤ 1}. Therefore,

E[βr,s] =
∑
k≥1

P(βr,s ≥ k)

=
∑
k≥1

∫
Σ2k−2

fr(t1)fs−r(s1)fs−r(t2) · · · fs−r(sk−1)fs−r(tk)dsdt

=
∑
k≥1

∫
Σ2k−2

r(s− r)2k−2∏2k−1
i=1

√
2πu3

i

exp

(
− r2

2u1
− (s− r)2

2

2k−1∑
i=2

u−1
i

)
du

:=
∑
k≥1

∫
Σk

Gk(u; r, s)du :=
∑
k≥1

Ik(r, s).

Note first that this sum is finite. Indeed, for b ≥ 0, the function x ∈ [0, 1] 7→
x−1 + ln(x)

b is bounded from below by b−1(1 + ln(b)). Therefore,

Gk(u; r, s) ≤ r(s− r)2k−2

(2π)k−1/2
exp

(
− r2

2

3

r2

(
1 + ln

(
r2

3

))
− (2k − 2)

(s− r)2

2

3

(s− r)2

(
1 + ln

(
(s− r)2

3

)))
=
r(s− r)2k−2

(2π)k−1/2
exp

(
−(2k − 1)

3

2
(1− ln 3)− ln(r3)− (2k − 2) ln((s− r)3)

)
=
r−2(s− r)−4(k−1)

(2π)k−1/2
BCk

for some constants B,C. As the volume of Σk is
√
k+1
k! ,

∑
k≥0 Ik(r, s) is finite. This

implies that dgm(B) is indeed integrable. Moreover, it is possible to find a local
bound of Ik(r, s) independent of r and s: using classical results on the continuity of
parametric integrals, one has that E[βr,s] = µ(Ar,s) is continuous in r and s. Using the
similar bounds on the derivatives of Ik(r, s), one can show that (r, s) 7→ µ(Ar,s) is a C1

function. This implies that µ is absolutely continuous with respect to the Lebesgue
measure on Ω.

We end this section by mentioning that the behavior of persistence diagrams of
one-dimensional stochastic processes has been further investigated by Daniel Perez
[Per20].

8.2.4 Stability of expected persistence diagrams: the smooth case

We end this section by mentioning a stronger stability result between expected persis-
tence diagrams in the case where they have densities. Indeed, if, in Section 8.1, we
provided a general stability result for expected persistence diagrams with respect to
the Figalli-Gigli metrics, in the case where the expected persistence diagrams possess
densities, there exist other, stronger metrics of interest to compare expected persistence
diagrams. We address stability in this particular setting by using the L1 and L∞
distances.

Theorem 8.2.18. Let n ≥ 1 andM be a real analytic compact d-dimensional connected
submanifold possibly with boundary. Let X1 (resp. X2) be a random variable on Mn

having a density κ1 (resp. κ2) with respect to the Hausdorff measure Hdn. Assume
that K satisfies the assumptions (K1)-(K5) (or (K5’)). Let λ1 be the density of the
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normalized measure E
[

dgmq(K(X1))

|dgmq(K(X1))|

]
and λ2 be the density of E

[
dgmq(K(X2))

|dgmq(K(X2))|

]
. Also,

let λ1 and λ2 be the non-normalized densities. Then,

‖λ1 − λ2‖L1(Ω) ≤ ‖κ1 − κ2‖L1(Mn), and (8.15)

‖λ1 − λ2‖L1(Ω) ≤ Cn|volM |n‖κ1 − κ2‖∞, (8.16)

where Cn is the expected number of points in the persistence diagram built with the
filtration K on n i.i.d. uniform points on M .

It is conjectured (and even proved for M = [0, 1]d in Chapter 7) that Cn is of order
n when K is either the Rips or the Čech filtration.

Proof. Consider first the non-normalized case. Given the expression (8.11), one can
write for u ∈ Ω:

λ1(u)− λ2(u) =
R∑
r=1

Nr∑
i=1

∫
x∈Φ−1

ir ({u})
(JΦir(x))−1(κ1(x)− κ2(x))dHnd−2(x),

so that∫
Ω
|λ1(u)− λ2(u)|du

≤
R∑
r=1

Nr∑
i=1

∫
Ω

∫
x∈Φ−1

ir ({u})
(JΦir(x))−1|κ1(x)− κ2(x)|dHnd−2(x)

=

R∑
r=1

Nr∑
i=1

∫
Vr

1{Φir(x) ∈ Ω}|κ1(x)− κ2(x)|dHnd(x) by the coarea formula

=
R∑
r=1

Nr

∫
Vr

|κ1(x)− κ2(x)|dHnd(x)

≤
R∑
r=1

NrHnd(Vr)‖κ1 − κ2‖∞

= Hnd(Mn)

R∑
r=1

Nr
Hnd(Vr)
Hnd(Mn)

‖κ1 − κ2‖∞ = Hd(M)nCn‖κ1 − κ2‖∞.

Inequality (8.15) is likewise obtained.

8.3 Minimax estimation of the expected persistence dia-
gram

A natural way to estimate the expected persistence diagram of P is to consider its
empirical counterpart, which simply reads an := 1

n(a1 + · · · + an). By leveraging
techniques from optimal transport theory, we show that an approximates E(P ) at the
parametric rate n−1/2 with respect to the loss FGp

p under non-restrictive assumptions,
and that it is optimal from a minimax perspective. We actually consider the more
general case where µ ∼ P is a general persistence measure, with µn = µ1+···+µn

n the
empirical expected persistence diagram.

Before exhibiting rates of convergence, we show that the consistency of the empirical
expected persistence diagram can be directly obtained from the convergence results of
Chapter 6.
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Lemma 8.3.1. Let P ∈ Pp1 (Mp). Let (µn)n≥1 be a sequence of i.i.d. variables of law
P and let µn = 1

n(µ1 + · · ·+ µn). Then,

FGp(µn, E(P )) −−−→
n→∞

0 almost surely. (8.17)

Proof. By the strong law of large numbers applied to the function d(·, ∂Ω)p, we have
Persp(µn)→ Persp(E(P )) almost surely. Also, for any continuous function f : Ω→ R
with compact support, we have µn(f)→ E(P )(f) almost surely. This convergence also
holds almost surely for any countable family (fi)i of functions. Applying this result to
a countable convergence-determining class for the vague convergence, we obtain that
(µn)n converges vaguely towards E(P ) almost surely. We conclude thanks to Theorem
6.2.6.

Rates of convergence are obtained by making stronger assumptions on the distri-
bution P . Let AL be the `1-ball in R2 centered at (−L/

√
8, L/

√
8) of radius L/

√
2

(see Figure 8.2). For 0 ≤ q ≤ ∞ and L,M > 0, we letMq
L,M be the set of measures

µ ∈ Mq which are supported on AL, with Persq(µ) ≤ M . Let PqL,M be the set of
probability distributions which are supported onMq

L,M . It is known that persistence
diagrams belong to the set Mq

L,M as long as they are built as the sublevel sets of
Lipschitz continuous functions f : X → R for some metric space X implying bounded
q total persistence.

In particular, for q > 0, no constraints on the total number of points of the
persistence diagram are imposed. This is particularly interesting in applications, where
the number of points in persistence diagrams is likely to be large, while their total
persistence Persq may be moderate, see e.g. Chapter 7 for asymptotics in the case of
the Čech and Rips persistence diagrams of large samples on the cube.

Theorem 8.3.2. Let 1 ≤ p <∞ and 0 ≤ q < p. Let P ∈ PqL,M and let µ1, . . . , µn be
a n-sample from law P . If µn is the associated empirical expected persistence diagram,
then,

E[FGp
p(µn, E(P ))] ≤ cMLp−q

(
1

n1/2
+
ap(n)

np−q

)
, (8.18)

where c depends on p and q, and ap(n) = 1 if p > 1, log(n) if p = 1.

In particular, if p ≥ q + 1/2, we obtain a parametric rate of convergence of n−1/2.
This is always the case if q = 0, i.e. if we assume that all the diagrams sampled
according to P have less than M points. According to Theorem 3.8.11, it is also the
case if µi = dgm(fi) for some random 1-Lipschitz functions fi : X → R, where X is a
metric space implying bounded q total persistence. p ≥ q + 1/2.

Before proving Theorem 8.3.2, we give a general upper bound on the distance FGp

between two measures inMp. The bound is based on a classical multiscale approach
to control a transportation distance between two measures, appearing for instance in
[SP18]. Let J ∈ N. For k ≥ 0, let Bk = {x ∈ AL : d(x, ∂Ω) ∈ (L2−(k+1), L2−k]}. The
sets {Bk}k≥0 form a partition of AL. We then consider a sequence of nested partitions
{Sk,j}Jj=1 of Bk, where Sk,j is made of Nk,j squares of sidelength εk,j = L2−(k+1)2−j .
See also Figure 8.2. Let µ|Bk be the measure µ restricted to Bk and µk =

µ|Bk
µ(Bk) be

the conditional probability on Bk. If µ(Bk) = 0, we let µk be any fixed measure, for
instance the uniform distribution on Bk.
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Figure 8.2: Partition of AL used in the proof of Theorem 8.3.2

Lemma 8.3.3. Let µ, ν be two measures in Mp, supported on AL. Then, for any
J ≥ 0, with cp = 2−p/2(1 + 1/(2p − 1)),

FGp
p(µ, ν) ≤ 2p/2Lp

∑
k≥0

2−kp
(

2−Jp(µ(Bk) ∧ ν(Bk))

+ cp|µ(Bk)− ν(Bk)|+
∑

1≤j≤J
S∈Sk,j−1

2−jp|µ(S)− ν(S)|
)
.

Proof. Denote by mk the quantity µ(Bk) ∧ ν(Bk). We build a transport plan as
follows: let πk ∈ Π(µk, νk) be an optimal plan (in the sense of Wp). If µ(Bk) ≤ ν(Bk),
then µ(Bk)πk is a transport plan between µ|Bk and µ(Bk)

ν(Bk)ν|Bk . We then build an

admissible plan between the µ(Bk)
ν(Bk)ν|Bk and ν|Bk by making move

(
1− µ(Bk)

ν(Bk)

)
ν|Bk to

the diagonal, with cost bounded by
(

1− µ(Bk)
ν(Bk)

)
ν(Bk)(L2−k)p. Acting in a similar

way if ν(Bk) ≤ µ(Bk), we obtain a total cost of∑
k≥0

(
mkW

p
p (µk, νk) + Lp2−kp|µ(Bk)− ν(Bk)|

)
, (8.19)

which is therefore an upper bound on FGp
p(µ, ν). Lemma 6 in [SP18] shows that

W p
p (µk, νk) ≤ 2p/2Lp2−(k+1)p

(
2−Jp +

∑
1≤j≤J
S∈Sk,j−1

2−jp|µk(S)− νk(S)|
)
.

(8.20)

Furthermore, one can check that

mk|µk(S)− νk(S)| ≤ |µ(S)− ν(S)|+ ν(S) ∧ µ(S)

µ(Bk) ∨ ν(Bk)
|µ(Bk)− ν(Bk)|.

By summing over S ∈ Sk,j+1, we obtain that

mk

∑
S∈Sk,j−1

|µk(S)− νk(S)| ≤
∑

S∈Sk,j−1

|µ(S)− ν(S)|+ |µ(Bk)− ν(Bk)|. (8.21)

By using that
∑J

j=1 2−pj ≤ 2−p/(1− 2−p), and by putting together inequalities (8.19),
(8.20) and (8.21), one obtains the inequality of Lemma 8.3.3.
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Before proving Theorem 8.3.2, we state a useful inequality. Let µ ∈Mq
M,L and let

B ⊂ Ω be at distance ` from the diagonal ∂Ω. Then,

µ(B) =

∫
B

d(x, ∂Ω)q

d(x, ∂Ω)q
dµ(x) ≤M`−q. (8.22)

Proof of Theorem 8.3.2. Consider a distribution P ∈ PqM,L. Remark first that for any
measure µ ∈ Mq

M,L, we have µ(Bk) ≤ ML−q2kq one by (8.22). Let µ be a random
persistence diagram of law P and µn be the empirical expected persistence diagram
associated to a n-sample of law P . By the Cauchy-Schwartz inequality, given a Borel
set A ⊂ Ω, we have

E|µn(A)− E(P )(A)| ≤
√

E[µ(A)2]

n
. (8.23)

The Cauchy-Schwartz inequality also yields, as |Sk,j−1| = 2k+14j−1,

∑
S∈Sk,j−1

E|µ̂n(S)− E(P )(S)| ≤
∑

S∈Sk,j−1

√
E[µ(S)2]

n
≤

√√√√E
[∑

S∈Sk,j−1
µ(S)2

]
n

|Sk,j−1|

≤
√

E [µ(Bk)2]

n
|Sk,j−1| ≤

ML−q2kq√
n

2
k+1

2 2j−1.

Note also that
∑

S∈Sk,j−1
E|µ̂n(S) − E(P )(S)| ≤ 2E(P )(Bk) ≤ 2ML−q2kq and that

µn(Bk) ∧ E(P )(Bk) ≤ML−q2kq. By using those three previous inequalities, Lemma
8.3.3 and inequality (8.23), we obtain that

E[FGp
p(µn, E(P ))]

≤ 2p/2MLp−q
∑
k≥0

2−kp

(2−Jp2kq +
cp√
n

2kq +
J∑
j=1

2−jp2kq
(

2 ∧ 2
k+1

2 2j−1

√
n

)
≤ cp,qMLp−q

(
2−Jp +

1√
n

+ S
)
,

where S =
∑

k≥0

∑J
j=1 2k(q−p)2−jp

(
1 ∧ 2

k
2 2j√
n

)
. To bound S, we remark that if

k ≥ log2(n), then the minimum in the definition of S is equal to 1. Therefore, letting
bJ = 1 if p > 1 and bJ = J if p = 1, we find that S is smaller than

log2(n)∑
k=0

J∑
j=1

2k(q−p+1/2)2(1−p)j
√
n

+
∑

k≥log2(n)

J∑
j=1

2−kp2−jp

≤ cpbJ
log2(n)∑
k=0

2k(q+1/2−p)
√
n

+ cpn
−p

≤ cp,qbJ(n−1/2 ∨ nq−p).

Finally, if p > 1, we may set J = +∞ and obtain a bound of order MLp−q(n−1/2 +
nq−p). If p = 1, we choose J = (q − p)(log n)/(2p) to obtain a rate of order n−1/2 +
nq−p log n.

From a statistical perspective, it is natural to wonder if better estimates of E(P )
exist. A possible way to answer this question is given by the minimax framework. Let
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Q be a set of probability distributions onMp. We recall that the minimax rate for
the estimation of E(P ) on Q is given by

Rn(E(P ),Q,FGp
p) := inf

µ̂n
sup
P∈Q

E[FGp
p(µ̂n, E(P ))], (8.24)

where the infimum is taken over all possible estimators of E(P ). An estimator attaining
the rate Rn(E(P ),Q,FGp

p) (up to a constant) is called minimax, i.e. an estimator is
minimax on the class Q if it has the best possible risk uniformly on this class. We
show that the empirical expected persistence diagram µn is a minimax estimator on
PqL,M as long as p ≥ q + 1/2.

Theorem 8.3.4. Let 1 ≤ p <∞ and q ≥ 0, L,M > 0. One has, for some c depending
on p and q,

Rn(E(P ),PqL,M ,FGp
p) ≥ cMLp−qn−1/2. (8.25)

As the expected persistence diagram E(P ) is known to have a smooth density in a
wide variety of settings, it could be expected (likewise it is the case in density estimation
[Tsy08] or for measure reconstruction on manifolds in Chapter 5), that one could
make use of this regularity to obtain substantially faster minimax rates on appropriate
models. Surprisingly enough, using results from statistical optimal transport theory,
we show that whatever regularity is assumed on the expected persistence diagram, no
estimators can perform better than the empirical expected persistence diagram µn for
the FGp loss (from a minimax perspective). Let Bs

p′,q′ be the set of functions Ω→ R
in the Besov space of parameters s ≥ 0 and 1 ≤ p′, q′ ≤ ∞, see e.g. [Här+12] for an
introduction to Besov spaces. Consider the model Pq,sL,M,T of probability distributions
P ∈ PqL,M whose expected persistence diagram E(P ) belongs to Bs

p′,q′ with associated
norm smaller than T/M .

Theorem 8.3.5. Let 1 ≤ p <∞, q, s ≥ 0, L,M, T > 0 and 1 ≤ p′, q′ ≤ ∞. One has

Rn(E(P ),Pq,sL,M,T ,FGp
p) ≥ cMLp−qn−1/2, (8.26)

where c depends on s, p′, q′, p, q and T .

The proof of Theorem 8.3.5 is based on a similar result appearing in [WB19b],
where minimax rates of estimation with respect to the Wasserstein distance Wp are
exhibited for smooth densities on the cube.

Proof of Theorem 8.3.4. As Pq,sL,M,T ⊂ P
q
L,M , we haveRn(PqL,M ) ≥ Rn(Pq,sL,M,T ). There-

fore, Theorem 8.3.5, whose proof is found below, directly implies Theorem 8.3.4.

Proof of Theorem 8.3.5. We first consider the case q = 0. If µ, ν are two measures on
Ω of mass smaller than M , then FGp(µ, ν) = Wp,ρ(Φ(µ),Φ(ν)), where ρ is the distance
on Ω̃ := Ω ∪ {∂Ω} defined by ∀x, y ∈ Ω̃,

ρ(x, y) = min(|x− y|, d(x, ∂Ω) + d(y, ∂Ω))

and Φ(µ) = µ+ (2M − |µ|)δ∂Ω (see Proposition 6.3.2). Remark that ρ(x, y) = |x− y|
if x, y ∈ UL, where UL ⊂ AL is any `1-ball of radius L/

√
8 at distance L/2 from the

diagonal, see Figure 8.2. As Φ is a bijection, the minimax rates for the estimation of
E(P ) is therefore equal to

inf
Φ(µ̂n)

sup
P∈P0,s

L,M,T

E[W p
p,ρ(Φ(µ̂n),Φ(E(P )))].
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Figure 8.3: From left to right. (a) Empirical expected persistence
diagram µn with n = 103. (b) Histogram of the empirical expected
persistence diagram on a 50×50 grid. (c) expected persistence diagram
E(P ) of P , displayed on the same grid. (d) Distance FGp

p(µn, E(P ))
for p = 2 for different values of n in log-log scale (mean and standard
deviation over 100 runs). A linear regression shows a convergence
rate of order n−0.58, close to the theoretical rate of n−1/2 indicated by

Theorem 8.3.2.

Let Q be the set of probability measures on UL whose densities belong to Bs
p′,q′ with

associated norm smaller than T/M . Then, P0,s
M,L,T contains in particular the set of

all distributions P for which µ ∼ P satisfies Φ(µ) = Mδx and x is sampled according
to some law τ ∈ Q. For such a distribution P , one has Φ(E(P )) = Mτ , so that the
minimax rate is larger than

inf
ân

sup
τ∈Q

E[W p
p (ân,Mτ)],

where the infimum is taken on all measurable functions based on K observations of
the form Mδxi with x1, . . . , xn a n-sample of law τ ∈ Q. Hence, we have shown that
the minimax rate for the estimation of E(P ) with respect to FGp is larger up to a
factor M than the minimax rate for the estimation of τ ∈ Q given n i.i.d. observations
of law τ . As the minimax rate for this problem is known to be larger than Lp/

√
n

[WB19b, Theorem 5], we obtain the conclusion in the case q = 0.
For the general case q > 0, we remark that if M ′ = ML−q then P0,s

M ′,L is included
in Pq,sM,L,T . In particular, the minimax rate on Pq,sM,L,T is larger than the minimax rate
on P0,s

M ′,L,T , which is larger than cM
′Lp√
n

= cMLp−q√
n

for some constant c > 0.

Remark 8.3.6. In the classical setting of the estimation of a measure thanks to a
n-sample with respect to the Wasserstein distance, it has been noted several times
[TS15; WB19b; Div21a] that the problem of estimating the underlying measure is
significantly easier if the measure has a lower bounded density on its domain. In
particular, it is known that the risk for theW p

p loss of the empirical measure attains the
faster rate n−p/2 (instead of n−1/2) under this hypothesis. If such a result is likely to
hold for the FGp

p loss under similar hypothesis, assuming that the expected persistence
diagram has a lower bounded density on some bounded domain U in Ω appears to
be unreasonable. Indeed, this would imply that the density exhibits a sharp change
of behavior at the boundary of U , whereas the density of the expected persistence
diagram is known to be typically smooth on Ω according to Section 8.2. Whether
there exists a more realistic assumption on the expected persistence diagram for which
the rate of convergence of the empirical expected persistence diagram is n−p/2 remains
an open question.

Numerical illustration We showcase the rate of convergence of Theorem 8.3.2.
There are only few cases where explicit expressions for the expected persistence diagram



200 Chapter 8. The expected persistence diagram

Figure 8.4: The convergence rate for a point cloud sampled on the
surface of a torus, exhibiting a rate of n−1/2.

of a process are known. For instance, for Čech persistence diagrams based on a random
sample of points, the corresponding expected persistence diagram is known in closed-
form only if the sample is supported on R, see Chapter 7. We therefore first consider
a simple setting where an explicit expression can be derived. Let X be a set of N
triangles T1, . . . , TN , where N is uniform on {1, . . . , 20}. We let f : X → R be a
random piecewise constant function, which is equal to Ui,j on the jth edge of the
triangle Ti, where the variables (Ui,j) are i.i.d. uniform variables on [0, 1]. Furthermore,
the function f is equal to maxj=1,2,3 Ui,j + Vi on the inside of the triangle Ti, where
the Vis are independent, independent from the Ui,js, and follow a Beta distribution
β(1, 3). Let P be the distribution of the associated random persistence diagram. Let
rec be the rectangle [r1, r2]× [s1, s2] for r1 ≤ r2 ≤ s1 ≤ s2. Then,

E(P )(rec) = 30

∫ r2

r1

t2P(s1 − t ≤ V ≤ s2 − t)dt, (8.27)

where V ∼ β(1, 3). In practice, we compute E(P ) on a discretization of [0, 1]× [0, 2]
through a grid of size 50× 50. Meanwhile, we sample empirical expected persistence
diagrams µn for 10 ≤ n ≤ 103. In order to estimate FGp

p(µn, E(P )), we also turn these
expected persistence diagrams into histograms on the same grid, and then compute
the FGp distance between two histograms. See Figure 8.3 for an illustration which
showcases in particular the expected rate n−1/2.

We also exhibit the convergence of the empirical expected persistence diagram in a
more usual setting for the TDA practitioner. Namely, we build a random point cloud
X with 103 points sampled on the surface of a torus with outer radius r1 = 5 and
inner radius r2 = 2, and then consider the corresponding random Čech diagram for
the 1-dimensional homology. Given n realizations of X , we compute the empirical
expected persistence diagram µn, where n ranges from 10 to nmax = 1000. As no
closed-form for the corresponding expected persistence diagram is known, we use as a
proxy the empirical expected persistence diagram based on a sample of size 2nmax,
and then showcase in Figure 8.4 the convergence of FGp

p(µn, µ2nmax) at rate n−1/2.

8.4 Persistence surface as a kernel density estimator

Among the different linear representations, the persistence surface is of particular
interest. It is defined as the convolution of a diagram with a gaussian kernel. Hence,
the mean persistence surface can be seen as a kernel density estimator of the density λ
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of Theorem 8.2.5. As a consequence, the general theory of kernel density estimation
applies and gives theoretical guarantees about various statistical procedures. As an
illustration, we consider the bandwidth selection problem for persistence surfaces.
Whereas authors in [Ada+17] state that any reasonable bandwidth is sufficient for a
classification task, we give arguments for the opposite when no ”obvious” shapes appear
in the diagrams. We then propose a cross-validation scheme to select the bandwidth
matrix. The consistency of the procedure is shown using Stone’s theorem [Sto84]. This
procedure is implemented on a set of toy examples illustrating its relevance.

Persistence surface is a representation of persistence diagrams introduced by Adams
et al. [Ada+17]. It consists in a convolution of a diagram with a kernel, a general idea
that has been repeatedly and fruitfully exploited, with slight variations, for instance
in [Che+15; KHF16; Rei+15]. For K : R2 → R a kernel and h ≥ 0, we let for u ∈ R2,

Kh(u) = h−2K(u/h). (8.28)

For a a diagram, K : R2 → R a kernel, h ≥ 0 and w : R2 → R+ a weight function, one
defines the persistence surface of a with kernel K and weight function w by:

∀u ∈ R2, Surfw,h(a)(u) := ΦwKh(a)(u) =
∑
v∈a

w(v)Kh(u− v). (8.29)

Assume that X is some point process satisfying the assumptions of Theorem 8.2.5.
Then, for q ≥ 1, µ := E[dgmq(K(X ))] has some density λ with respect to the Lebesgue
measure on Ω. Therefore, w · µ, the measure having density w with respect to µ, has a
density equal to w · λ with respect to the Lebesgue measure. The mean persistence
surface E[Surfw,h(dgmq(K(X )))] is exactly the convolution of w · µ by the kernel
function Kh. As such, the persistence surface Surfw,h(dgmq(K(X ))) is actually a
kernel density estimator of w · λ.

If a point cloud approximates a shape, then its persistence diagram (for the Čech
filtration for instance) is made of numerous points with small persistences and a few
meaningful points of high persistences which correspond to the persistence diagram of
the ”true” shape. As one is interested in the latter points, a weight function w, which is
typically an increasing function of the persistence, is used to suppress the importance
of the topological noise in the persistence surface, see Chapter 7. Authors in [Ada+17]
argue that in this setting, the choice of the bandwidth h has few effects for statistical
purposes (e.g. classification), a claim supported by numerical experiments on simple
sets of synthetic data, e.g. torus, sphere, three clusters, etc.

However, in the setting where the datasets are more complicated and contain no
obvious ”real” shapes, one may expect the choice of the bandwidth parameter h to
become more critical: there are no highly persistent, easily distinguishable points in the
diagrams anymore and the precise structure of the density functions of the processes
becomes of interest. We show that a cross validation approach allows the bandwidth
selection task to be done in an asymptotically consistent way. This is a consequence of
a generalization of Stone’s theorem [Sto84] when observations are not random vectors
but random measures.

Let P ∈ P0
L,M for certain parameters L,M > 0: if µ ∼ P , then |µ| ≤M and µ is

supported on AL. We further assume that the expected persistence diagram E(P ) has
a bounded density λ. Given a kernel K : R2 → R and a bandwidth h, we define the
kernel density estimator

∀u ∈ Ω, λn,h(u) := Kh ∗ µn(u) =
1

n

n∑
i=1

∫
Kh(u− v)dµi(v). (8.30)
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The optimal bandwidth hopt minimizes the Mean Integrated Square Error (MISE)

MISE(h) := E
[
‖λ− λn,h‖2L2(Ω)

]
= E

[∫
(λ(u)− λn,h(u))2du

]
. (8.31)

Of course, as λ is unknown, MISE(h) cannot be computed. Minimizing MISE(h) is
equivalent to minimizing J(h) := MISE(h)− ‖λ‖2L2(Ω). Define

λ
(i)
n,h(u) :=

1

n− 1

∑
j 6=i

∫
Kh(u− v)dµj(v) (8.32)

and

Ĵ(h) :=
1

n2

∑
i,j

∫∫
K

(2)
h (u− v)dµi(u)dµj(v)− 2

n

∑
i

∫
λ

(i)
n,h(u)dµi(u), (8.33)

where K(2) : u 7→
∫
K(u − v)K(v)dv denotes the convolution of K with itself. The

quantity Ĵ(h) is an unbiased estimator of J(h). The selected bandwidth ĥ is then
chosen to be equal to arg minh Ĵ(h).

The following theorem is a straightforward generalization of Stone’s theorem (see
[Sto84]) in the case where observations are random measures.

Theorem 8.4.1. Assume that the kernel K is nonnegative, Hölder continuous and has
a maximum attained in 0. Then, under the previous assumptions, ĥ is asymptotically
optimal in the sense that

‖λ− λn,ĥ‖L2(Ω)

‖λ− λn,hopt‖L2(Ω)
−−−−→
N→∞

1 a.s.. (8.34)

Note that the gaussian kernel K(x) = exp(−|x|2/2) satisfies the assumptions of
Theorem 8.4.1.

The quality of the optimal estimator can also be studied. Indeed, a straightforward
adaptation of the classical study of kernel density estimator (as presented for example
in [Tsy08]) to the case of a sample of i.i.d. random measures shows that there
exists a choice hn of bandwidth depending on n and on the (unknown) regularity
of λ such that the estimator λn,hn is a consistent estimator of λ in the sense that
E[‖λ− λn,hn‖2L2(Ω)]→ 0. Therefore, Theorem 8.4.1 asserts that the cross-validation
procedure is consistent. We may furthermore inquire about the rate of convergence of
the estimator λn,hn . Once again, adapting classical results from [Tsy08] to the case of
random measures, one can see that the optimal rate will be of order n−s/(2s+2) if λ is
of regularity s. As such, contrary to the Figalli-Gigli loss (in Section 8.3), the rates of
convergence are impacted by the underlying smoothness when using a more classical
L2 to estimate the density of the expected persistence diagram.

Let X1, . . . ,Xn be i.i.d. processes on M having a density with respect to the law
of a Poisson process of intensity Hd (with no bounds on the potential size of the
diagrams). As M implies bounded p-total persistence for p > d, we know that the
Čech persistence diagrams dgmC(Xi) will satisfy Persp(dgmC

q (Xi)) < C for p > d
and some deterministic constant C. Let λ be the density of the expected persistence
diagram E[dgmC

q (X1)]. Assume that λ is bounded and has compact support, and let
µi = d(·, ∂Ω)p · dgmC(Xi), the measure with density d(·, ∂Ω)p with respect to the ith
diagram. Then, Theorem 8.4.1 can be applied to the sample µ1, . . . , µn, and we have
the equality

λn,h =
1

n

n∑
i=1

Surfw,h(dgmC(Xi)),
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Figure 8.5: Realization of the processes (a), (b) and (c).

Figure 8.6: Superposition of the N = 40 diagrams of class (a), (b)
and (c), transformed under the map u→ (r1, r2 − r1).

with w = d(·, ∂Ω)p. Therefore, the cross validation procedure (8.33) to select the
bandwidth h in the persistence surface ensures that the mean persistence surface is a
consistent estimator of w · λ.

Numerical illustration We showcase the bandwidth selection procedure for the
persistent surface on simple experiments. Three sets of synthetic data are considered
(see Figure 8.5). The first one (a) is made of N = 40 sets of n = 300 i.i.d. points
uniformly sampled in the square [0, 1]2. The second one (b) is made of N samples of
a clustered process: n/3 cluster’s centers are uniformly sampled in the square. Each
center is then replaced with 3 i.i.d. points following a normal distribution of standard
deviation 0.01×n−1/2. The third dataset (c) is made of N samples of n uniform points
on a torus of inner radius 1 and outer radius 2. For each set, a Čech persistence diagram
for 1-dimensional homology is computed. Persistence diagrams are then transformed
under the map (r1, r2) 7→ (r1, r2− r1), so that they now live in the upper-left quadrant
of the plane. Figure 8.6 shows the superposition of the diagrams in each class. One
may observe the slight differences in the structure of the topological noise over the
classes (a) and (b). The cluster of most persistent points in the diagrams of class (c)
correspond to the two holes of a torus and are distinguishable from the rest of the
points in the diagrams of the class, which form topological noise. The persistence
diagrams are weighted by the weight function w(u) = (r2− r1)3, as advised in [KFH17]
for two-dimensional point clouds. The bandwidth selection procedure will be applied
to the measures having density w with respect to the diagrams, e.g. a measure is a
sum of weighted Dirac measures.

For each class of dataset, the score Ĵ(h) is computed for 50 values h evenly spaced
on a log-scale between 10−5 and 1. Note that the computation of Ĵ(h) only involves
the computations of Kh(u1 − u2) for points u1, u2 in different diagrams. Hence,
the complexity of the computation of Ĵ(h) is in O(T 2), where T is the sum of the
number of points in the diagrams of a given class. If this is too costly, one may
use a subsampling approach to estimate the integrals. The selected bandwidth were
respectively h = 0.22, 0.60, 0.17. Persistence surfaces for the selected bandwidth are
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Figure 8.7: Persistence surfaces for each class (a), (b) and (c), com-
puted with the weight function w(u) = (r2 − r1)3 and with the band-

width matrix selected by the cross-validation procedure.

Figure 8.8: Persistence surfaces for each person A,B and C, computed
with the weight function w(u) = (r2 − r1)3 and with the bandwidth

matrix selected by the cross-validation procedure.

displayed in Figure 8.7. The persistence of the ”true” points of the torus are sufficient
to suppress the topological noise: only two yellow areas are seen in the persistence
surface of the torus. Note that the two areas can be separated, whereas it is not
obvious when looking at the superposition of the diagrams, and would not have been
obvious with an arbitrary choice of bandwidth. The bandwidth for class (b) may look
to have been chosen too large. However, there is much more variability in class (b)
than in the other classes: this phenomenon explains that the density is less peaked
around a few selected areas than in class (a).

The cross-validation scheme has also been applied to non-synthetic data: the
walk of 3 persons A, B and C, has been recorded using the accelerometer sensor of
a smartphone in their pocket, giving rise to 3 multivariate time series in R3. Using
a sliding window, each series has been split in a list of 10 times series made of 200
consecutive points. Using a time-delay embedding technique, those new time series are
embedded into R9: these are the point clouds on which we build the Rips filtration.
For each person, the set of 10 persistence diagrams is transformed under the map
(r1, r2) 7→ (r1, r2 − r1). The persistence diagrams are weighted by the weight function
w(u) = (r2 − r1)3. For each person, the scores Ĵ(h) are computed for 20 values h
evenly spaced on a log-scale between 10−3 and 10−1. The selected bandwidths are
0.0089, 0.01833 and 0.0089 and the corresponding persistence images are displayed
in Figure 8.8. The three images show very distinct patterns: a reasonable machine
learning algorithm will easily make the distinction between the three classes using the
images as input.
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8.5 Quantization of the expected persistence diagram

The problem of the quantization of a measure, namely approximating a given measure
with another measure with support of fixed size, has been studied in depth when those
measures are supported on Rd equipped with its natural Euclidean geometry, see for
instance [GL07; Fis10; Lev15; BSW18]. In the context of persistence diagrams, where
the quantization problem is generally referred to as computing codebooks or bag-of-
words [Zie+19; Zie+20], existing methods propose to quantize persistence diagrams
running a k-mean algorithm on the diagram points. The intuition that points in a
diagram that are close to the boundary ∂Ω of the half-plane Ω represent less important
topological features is taken into account through the introduction of weight functions,
requiring to introduce an important hyper-parameter whose choice is unclear in general
(although we proposed heuristics in Chapter 7).

We propose an alternative approach to quantize persistence diagrams. It differs
from the latter on two aspects: first, we do not quantize a single diagram but work in
an online fashion with a sequence of observed diagrams. Second, we work with the
Figalli-Gigli metric FGp. In doing so, we directly take the boundary ∂Ω into account
in the formulation of our problem without needing to introduce a weight function. Our
quantization algorithm significantly builds on [CLR20, Alg. 2]. The main difference
is that Chazal, Levrard, and Royer intend to quantize a measure with respect to the
2-Wasserstein distance on Rd, while we work with the metric FGp on Ω ⊂ R2. This
change of perspective introduces some specificities in our problem and allows us to
derive results more suited to the context of persistence diagrams. Furthermore, while
standard algorithms work with p = 2, we propose a simple variation to encompass the
case p = +∞, central in TDA as one retrieves the so-called bottleneck distance.

This section consists of three steps. In Section 8.5.1, we introduce and study the
problem of quantizing persistence measures with respect to the metric FGp, proving
in particular the existence of optimal quantizers in general. Section 8.5.2 provides an
online algorithm specifically designed to quantize expected persistence diagrams based
on a sequence of observed diagrams µ1, . . . , µn and provide theoretical guarantees of
convergence. Finally, we provide numerical experiments in Section 8.5.3.

8.5.1 Quantization for persistence measures.

Let µ ∈ Mp be a persistence measure and k be a fixed integer. The goal of the
quantization problem is to build a measure ν =

∑k
j=1mjδcj supported on a set of k

points c = (c1, . . . , ck) called a codebook (while the (cj)js are called centroids) that
approximates µ in an optimal way. Existing works (including previous works in the TDA
literature) treat this problem over the space of probability measures equipped with the
Wasserstein metric Wp over Rd. Here, we use the metric FGp instead, more suited to
persistence diagrams, leading to benefits discussed in Remark 8.5.2 below. Our problem
consists in minimizing the quantity ((m1, c1), . . . , (mk, ck)) 7→ FGp

(∑
jmjδcj , µ

)
where mj ∈ R+ and cj ∈ Ω. However, we show in Lemma 8.5.3 below that—as
in the standard problem using the metric Wp—this problem can be reduced to an
optimization problem on the codebook c ∈ Ωk only. To that aim, we introduce a
notion of Voronoï tesselation relative to a codebook c, with the subtlety that points
closer to the diagonal ∂Ω define a specific cell, see Figure 8.9 for an illustration.
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cj

Vj(c)

V k
+
1
(c

)

∂Ω

N
(c

)

Figure 8.9: Example of partition V1(c), . . . , Vk+1(c) for a given code-
book c.

Definition 8.5.1. Let c = (c1 . . . ck) ∈ Ωk and denote by convention ck+1 := ∂Ω, so
that in particular |x− ck+1| := d(x, ∂Ω). Define for 1 ≤ j ≤ k + 1,

Vj(c) :={x ∈ Ω, ∀j′ < j, |x− cj | ≤ |x− cj′ | and ∀j′ > j, |x− cj | < |x− cj′ |},
N(c) :={x ∈ Ω, ∃j < j′ such that x ∈ Vj(c) and |x− cj | = |x− cj′ |}.

(8.35)

Observe that V1(c), . . . , Vk+1(c) form a partition of Ω.

Remark 8.5.2. The difference between our approach and previous ones (in particular
[CLR20]) lies in the presence of the “diagonal cell” Vk+1(c). This cell introduces
parabolic-shaped boundaries which slightly change the geometry of our problem.
However, it has two major benefits. First, we do not “waste” centroids (cj)

k
j=1 to

encode points close to the diagonal (which are generally accounting for topological
noise). Second, our approach does not require the introduction of a weight function
(that artificially lowers the mass of points close to the diagonal), as typically done;
removing the dependency on an important hyper-parameter.

The following lemma states that given a persistence measure µ and a codebook
c = (c1, . . . , ck), it is always optimal to set mj = µ(Vj(c)).

Lemma 8.5.3. Let c = (c1, . . . , ck). Let µ̂(c) :=
∑k

j=1 µ(Vj(c))δcj and let ν =∑k
j=1mjδcj for some m1, . . . ,mk ≥ 0. Then FGp(µ̂(c), µ) ≤ FGp(ν, µ).

Proof of Lemma 8.5.3. Fix a codebook c = (c1 . . . ck). Let Tc : x 7→ cj if x ∈ Vj(c)
(1 ≤ j ≤ k) and π∂Ω(x) if x ∈ Vk+1(c). Let π be the pushforward of µ by the map
x 7→ (x, Tc(x)), extended on Ω×Ω by π(U,Ω) = 0 for U ⊂ ∂Ω (intuitively, π pushes the
mass of µ on their nearest neighbor in {c1 . . . ck+1}). One has, for A,B ⊂ Ω, π(A,Ω) =
µ((id, Tc)

−1(A,Ω)) = µ(A), and π(Ω, B) = µ(T−1
c (B)) =

∑
j µ(Vj(c))1{cj ∈ B}, that

is π is an admissible between the measures µ and
∑

j µ(Vj(c))δcj . Hence,

FGp
p

µ,∑
j

µ(Vj(c))δcj

 ≤ ∫
Ω

min
1≤j≤k+1

|x− cj |pdµ(x).
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Let (m1 . . .mk) be a vector of non-negative weights, let ν =
∑k

j=1mjδcj , and π be an
admissible transport plan between µ and ν. One has∫

Ω×Ω
|x− y|pdπ(x, y) =

k+1∑
j=1

∫
Ω
|x− cj |pdπ(x, cj)

≥
k+1∑
j=1

∫
Ω

min
j′
|x− cj′ |pdπ(x, cj)

≥
∫

Ω
min
j′
|x− cj′ |pdµ(x)

≥FGp
p

µ, k∑
j=1

µ(Vj(c))δcj

 .

Taking the infimum over π gives the conclusion.

Therefore, quantizing µ boils down to the choice of the codebook c. Formally, given
a persistence measure µ to be quantized, a parameter 1 ≤ p < ∞ and an integer k,
the quantization problem in the space of persistence measures consists in minimizing
Rk,p : Ωk → R defined for c ∈ Ωk by

Rk,p(c) := FGp(µ̂(c), µ) =

k+1∑
j=1

∫
Vj(c)

|x− cj |pdµ(x)

 1
p

, (8.36)

To alleviate notations, we write Rk instead of Rk,p when the parameter p does not
play a significant role. The value Rk(c) is called the distortion achieved by c. Let
R∗k := infc∈Ωk Rk(c) and let Ck := arg minc∈Ωk Rk(c) be the set of optimal codebooks.
Note that R∗k = 0 if (and only if) | spt(µ)| ≤ k. From now on, we assume that µ has at
least k points in its support.

We can now state the main result of this subsection: the existence of an optimal
codebook c∗ for any persistence measure in Mp. This result shares key ideas with
[GL07, Theorem 4.12], although we replace the assumption of finite p-th moment of the
measure to be quantized by the assumption of finite total persistence Persp(µ) <∞.

Proposition 8.5.4 (Existence of minimizers). The set of optimal codebooks Ck is
a non-empty compact set. Furthermore, if c∗ ∈ Ck, then, for all 1 ≤ j 6= j′ ≤ k,
µ(Vj(c

∗)) > 0 and c∗j 6= c∗j′ .

To prove Proposition 8.5.4, we first introduce the following lemma, which states
elementary properties of optimal codebooks. For technical reasons, we extend the
function Rk to Ω

k, by noting that if cj ∈ ∂Ω, then the Voronoï cell Vj(c) is empty by
definition, see (8.35).

Lemma 8.5.5. Let c ∈ Ω
k be such that there exists 1 ≤ j ≤ k with µ(Vj(c

∗)) = 0.
Then, Rk(c) > R∗k.

In particular, if two centroids of a codebook c are equal or if a centroid cj of c
belongs to ∂Ω, then the condition of the above lemma is satisfied, so that the c cannot
be optimal. This proves the second part of Proposition 8.5.4.

Proof. Let c = (c1, . . . , ck) ∈ Ω
k. Assume that without loss of generality that

µ(V1(c)) = 0. Let c0 = (c2, . . . , ck) ∈ Ω
k−1 (that is, c where we removed the first
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centroid). Assume first that µ(Vk+1(c)) > 0, that is there is some mass transported
onto the diagonal. Consider a compact subset A ⊂ Vk+1(c) such that µ(A) > 0 and
the diameter diam(A) of A is smaller than the distance d(A, ∂Ω) between A and ∂Ω.
Let c′ ∈ A and observe that, for x ∈ A, |x− c′| < d(x, ∂Ω). Therefore,∫

A
|x− c′|pdµ(x) <

∫
A
d(x, ∂Ω)pdµ(x).

Consider the measure ν = µ̂(c0) + µ(A)δc′ . Then

FGp
p(ν, µ)

≤
k∑
j=1

∫
Vj(c)

|x− cj |pdµ(x) +

∫
Vk+1(c)\A

d(x, ∂Ω)pdµ(x) +

∫
A
|x− c′|pdµ(A)

< Rk(c),

thus c cannot be optimal. We can thus assume that µ(Vk+1(c)) = 0, in which case we
can reproduce the proof of [GL07, Theorem 4.1], which gives that c cannot be optimal
either in that case, yielding the conclusion.

Lemma 8.5.6. Rk is continuous.

Proof. For a given x ∈ Ω, the map c 7→ mini |x− ci|p is continuous and upper bounded
by d(x, ∂Ω)p. Thus, Rk is continuous by dominated convergence as we have finite
p-total persistence.

Lemma 8.5.7. Let 0 ≤ λ < R∗k−1. Then, the set {c ∈ Ω
k

: Rk(c) ≤ λ} is compact.

Proof. Fix λ < R∗k−1. The set is closed by continuity of Rk, so that it suffices
to show that it is bounded. Let c be such that Rk(c) ≤ λ. Pick L such that∫
AL

d(x, ∂Ω)pdµ(x) ≥ λ and
∫
AcL

d(x, ∂Ω)pdµ(x) < R∗k−1 − λ. Such a L exists since∫
Ω d(x, ∂Ω)pdµ(x) = Persp(µ) = R∗0 ≥ R∗k−1. Then, all the cjs must be in A2L. Indeed,
assume without loss of generality that c1 ∈ Ac2L. Then V1(c) ⊂ AcL, as any point in
AL is closer to the diagonal than to c1. Therefore,

R∗k−1 ≤
k+1∑
j=2

∫
Vj(c)

|x− cj |pdµ(x) +

∫
V1(c)

min
j∈{2...k+1}

|x− cj |pdµ(x)

≤Rk(c) +

∫
V1(c)

d(x, ∂Ω)pdµ(x)

≤Rk(c) +

∫
AcL

d(x, ∂Ω)pdµ(x)

<λ+R∗k−1 − λ = R∗k−1,

leading to a contradiction.

Finally, we are ready to prove Proposition 8.5.4.

Proof of Proposition 8.5.4. We show by recursion on 0 ≤ m ≤ k that R∗m < R∗m−1

and that Cm is a non-empty compact set (with the convention R∗−1 = +∞). The
initialization holds as R∗0 = Persp(µ) < +∞ with the empty codebook being optimal.
We now prove the induction step. Let c = (c1, . . . , cm−1) ∈ Cm−1. Consider c′ =
(c1, c1, c2, . . . , cm−1). Then, µ(V1(c′)) = 0, so that R∗m−1 = Rm−1(c) = Rm(c′) > R∗m
by Lemma 8.5.5. Furthermore, pick λ ∈ (R∗m, R

∗
m−1). Then, R∗m is equal to the
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infimum of Rm on the set {c ∈ Ω
k

: Rm(c) ≤ λ}, which is compact according
to Lemma 8.5.7. As the function Rk is continuous, the set of minimizers Cm is a
non-empty compact set, concluding the induction step.

Corollary 8.5.8. The following quantities are positive:

Dmin := inf
c∗∈Ck,1≤j 6=j′≤k+1

|c∗j − c∗j′ |,

mmin := inf
c∗∈Ck,1≤j≤k

µ(Vj(c
∗)).

(8.37)

Proof of Corollary 8.5.8. The quantities being minimized in the definitions of Dmin

and mmin are both continuous functions of c∗. As the set Ck is compact, the minima
are attained, and cannot be equal to 0 according to Proposition 8.5.4.

Computational aspects. One could consider to numerically solve the quantiza-
tion problem (8.36) deriving optimization algorithms based on their counterpart in
the optimal transport literature [CD14], see [Lac20, Section 7.2] for instance. However,
using such techniques to quantize empirical expected persistence diagrams would not
be satisfactory for two reasons. First, the empirical expected persistence diagram
has in general a large number of points, hindering computational efficiency. Second,
we want to leverage the fact that we observe a sequence of diagrams µ1, . . . , µn, and
not only their sum, to design an online algorithm that remains tractable with large
sequences of large diagrams.

8.5.2 Quantization of an empirical expected persistence diagram

In Algorithm 1, we propose an online algorithm—adapted from [CLR20, Alg. 2] to
the context of persistence diagrams and with arbitrary p > 1 instead of p = 2—that
takes a sequence of observed persistence diagrams µ1, . . . , µn (a n-sample of law P )
and outputs a codebook (c1, . . . , ck) aiming at approximating E(P ). The algorithm
relies on an update function Up for p > 1 defined as

Up(t, c, µ, µ
′) := c−

(
µ(Vj(c))
µ′(Vj(c)) (cj − vp(c, µ)j)

)
j

t+ 1
, (8.38)

where vp(c, µ)j is the p-center of mass of µ over the cell Vj(c):

vp(c, µ)j := arg min
y

(∫
Vj(c)

|y − x|pdµ(x)

) 1
p

. (8.39)

When p = 2, one simply has v2(c, µ)j =
∫
Vj(c) x

dµ(x)
µ(Vj(c)) and if in addition µ = µ′, the

update (8.38) simplifies to

cj 7→
t

t+ 1
cj +

1

t+ 1

∫
Vj(c)

x
dµ(x)

µ(Vj(c))
,

so that roughly speaking, we are pushing cj toward the usual center of mass of µ over
the cell Vj(c), similar to what is done when using the Lloyd algorithm to solve the
k-means problem [Llo82]. More generally, (8.38) can be understood as pushing cj
toward the point that would decrease the distortion Rk,p over the cell Vj(c) the most,
using a step-size (or learning rate) 1

t+1 . There is no closed-form for vp for p 6= 2, though
standard convex solvers may be used [Gon89]. When p = +∞, a central situation
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Algorithm 1: Online quantization of EPDs
Input: A sequence µ1, . . . , µn, integer k, parameter p.
Preprocess: Divide indices {1, . . . , n} into batches (B1, . . . , BT ) of size
(n1, . . . , nT ). Furthermore, divide (Bt)t into two halves B(1)

t and B(2)
t .

Set µ(α)
t := 2

nt

∑
i∈B(α)

t
µi for 1 ≤ t ≤ T, α ∈ {1, 2}.

Init: Sample c(0)
1 . . . c

(0)
k from the diagrams.

for t = 0, . . . , T − 1 do
c(t+1) = Up(c

(t), µ
(1)
t+1, µ

(2)
t+1) using (8.38)

end for
Output: The final codebook c(T ).

in TDA as it means working with the bottleneck distance FG∞, computing v∞ boils
down to get the center of the smallest enclosing circle of Vj(c) ∩ spt(µ). When µ is a
discrete measure (e.g. an empirical expected persistence diagram), this problem can
be solved in linear time with respect to the number of points of µ that belong to Vj(c)
[Meg83].

Note that in Algorithm 1, the split of batches Bt = (B
(1)
t , B

(2)
t ) is only required

for technical considerations (see the proof of Theorem 8.5.10 and [CLR20]). In
practice, this algorithm can be used without further assumptions and empirically,
using Bt = B

(1)
t = B

(2)
t yields substantially similar results. We provide a theoretical

analysis of Algorithm 1 in the case p = 2, in particular through Theorem 8.5.10 which
states that this algorithm is nearly optimal as a way to quantize E(P ), provided the
initialization is good enough. As in Section 8.3, we consider a probability distribution
P ∈ PpL,M . For t > 0 and A ⊂ Ω, recall that At := {x ∈ Ω : ∃a ∈ A, |x − a| ≤ t} is
the t-neighborhood of A.

Definition 8.5.9 (Margin condition). Let c∗ be an optimal quantizer of E(P ). We
say that P satisfies a margin condition of parameter λ > 0 and radius r0 at c∗ if, for
all t ∈ [0, r0], one has E(P )(N(c∗)t) ≤ λt.

Margin-like conditions on optimal codebook are standard in quantization literature
[TM16; Lev18]. Informally, it indicates that the expected persistence diagram concen-
trates around k poles, aside from the mass that is distributed close to the diagonal
∂Ω; the smaller the λ, the more concentrated the measure. Note that this condition
holds as long as the E(P ) has a bounded density (although with possibly large λ), so
that it is satisfied in the framework of Section 8.2

The following theorem states that given a n-sample of law P , Algorithm 1 outputs
in T = n

log(n) steps a codebook c(T ) that approximates (in expectation) an optimal

codebook c∗ for E(P ) at rate log(n)
n , to be compared with the optimal rate of 1

n [Lev18,
Proposition 7]. It echoes [CLR20, Theorem 5] with the difference that, thanks to the
diagonal cell Vk+1, we require a uniform bound on the total persistence of the measures
rather than a uniform bound on their total mass, a more natural assumption in TDA.

Theorem 8.5.10. Let p = 2. Let P ∈ P2
L,M and let c∗ be an optimal codebook for

E(P ). Assume that P satisfies a margin condition at c∗ with parameters r0 large
enough and λ small enough (with respect to Dmin,mmin, L and M). Let µ1, . . . , µn
be a n-sample of law P and B1, . . . , BT be equally sized batches of length C1 log(n).
Finally, let c(T ) denote the output of Algorithm 1. There exists R0 > 0 such that if
|c(0) − c∗| ≤ R0, then

E|c(T ) − c∗|2 ≤ C2(log n)/n,

where C1, C2 and R0 are constants depending on p, L,M, k,Dmin and mmin.
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The remainder of this section is dedicated to proving Theorem 8.5.10. In the
following, we fix a distribution P supported on Mp

L,M and we consider c∗ be an
optimal codebook of E(P ). The different constants encountered in this section all
depend on the parameters p, L,M, k,Dmin and mmin. In particular, we introduce the
quantity

mmax := sup
µ∈Mp

L,M

sup
1≤j≤k

µ(Vj(c
∗)).

Note that mmax ≤ 2pM
Dpmin

as
∫
Vj(c∗)

dµ(x) ≤ 2p

Dpmin

∫
Vj(c∗)

d(x, ∂Ω)pdµ(x).
The proof of Theorem 8.5.10 follows the proof of [CLR20, Theorem 5]. As a first

step, we show that it is enough to prove the following lemma, which relates the loss of
c(t) and the loss of c(t+1).

Lemma 8.5.11. There exists R0 > 0 such that, if |c(0)
j − c∗j | ≤ R0 for 1 ≤ j ≤ k, then

E|c(t+1) − c∗|2 ≤
(

1− C0

t+ 1

)
E|c(t) − c∗|2 +

C1

(t+ 1)2
,

for some constants C0 > 1, C1 > 0.

Proof of Theorem 8.5.10. From Lemma 8.5.11, we show by induction that ut :=
E|c(t) − c∗|2 satisfies ut ≤ α

t+1 for α = C1/(C0 − 1). This concludes the proof as
T is of order n/ log(n). The initialization holds by assumption as long as R0 ≤ α,
whereas we have by induction

ut+1 ≤
(

1− C0

t+ 1

)
α

t+ 1
+

C1

(t+ 1)2

≤ α

(t+ 1)2
(t+ 1− C0 + C1/α) =

αt

(t+ 1)2
,

which is smaller than α/(t+ 2).

The proof of Lemma 8.5.11 is a close adaptation of [CLR20, Lemma 21]. The
proof of the latter contains tedious computations (that we do not reproduce here)
which can be adapted mutatis mutandis to our setting once the two following key
results are shown. Given a codebook c, we let pj(c) = E(P )(Vj(c)) and similarly,
given a n-sample µ1, . . . , µn of law P , we let p̂j(c) = µn(Vj(c)). Note that if |c− c∗|
is small enough, one has pj(c) ≤ 2mmax. Also, we let wp(c, µ)j := µ(Vj(c))vp(c, µ)j
for µ ∈ Mp and 1 ≤ j ≤ k. Recall that we assume that the expected persistence
diagram E(P ) satisfies the margin condition (Definition 8.5.9) with parameters λ and
r0 around the optimal codebook c∗.

Lemma 8.5.12 (Lemma 22 in [CLR20]). Let R0 be small enough respect to r0D
2
min/L

2

and let c be such that |c− c∗| ≤ R0. Then, we have

k∑
j=1

|pj(c)− pj(c∗)| ≤ 2λr0,

and

|w2(c, E(P ))− (pj(c
∗)c∗j )j | ≤ 7

√
2λ

L3

D2
min

|c− c∗|.

As w2(c∗, E(P ))j = pj(c
∗)c∗j , Lemma 8.5.12 indicates that the application c 7→

w2(c, E(P )) is Lipschitz continuous around an optimal codebook c∗, a key property
to show the convergence of the sequence (c(t))t.



212 Chapter 8. The expected persistence diagram
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Figure 8.10: Illustration of the proof of Lemma 8.5.12

Lemma 8.5.13 (Lemma 24 in [CLR20]). Let c be a codebook such that p̂j(c) ≤ 2mmax

(which is always possible if |c− c∗| is small enough). Then, with probability larger than
1− 2ke−x, we have, for all 1 ≤ j ≤ k,

|p̂j(c)− pj(c)| ≤
√

4mmaxpj(c)x

n
+

2mmaxx

3n
. (8.40)

Moreover, with probability larger than 1− e−x, we have

|w2(c, µn)− w2(c, E(P ))| ≤ 2mmaxL

√
2k

n

(
1 +

√
x

2

)
. (8.41)

The proof of this lemma follows from standard concentration inequalities.

Proof of Lemma 8.5.13. Equation (8.40) follows from Bernstein inequality applied
to the real-valued random variable 0 ≤ p̂j(c) ≤ 2mmax, with variance bounded by
E[µ(Vj(c))2]/n ≤ mmaxpj(c)/n.

For equation (8.41), we introduce the function fj : x 7→ x1{x ∈ Vj(c)}, so that
w2(c, µ)j = µ(fj), the integral of fj against µ. We have w2(c, µn)j − w2(c, E(P ))j =
n−1

∑n
i=1(µi(fj)− E(P )(fj)). Note that |µi(fj)| ≤

√
2L · 2mmax. We write

E

∣∣∣∣∣ 1n
n∑
i=1

(µi(fj)− E(P )(fj))j

∣∣∣∣∣
≤

√√√√E

∣∣∣∣∣ 1n
n∑
i=1

(µi(fj)− E(P )(fj))j

∣∣∣∣∣
2

≤
√

1

n
E |(µ1(fj))j |2 ≤ 2

√
k

n

√
2Lmmax.

Also, note that F (µ1, . . . , µn) = |w2(c, µn)−w2(c, E(P ))| satisfies a bounded difference
condition of parameter 4

√
2Lmmax [BLM13, Section 6.1]. A bounded difference

inequality [BLM13, Theorem 6.2] yields the result.

The proof of Lemma 8.5.12 relies on the following lemma, that essentially tells that
the area of misclassified points when using a codebook c instead of an optimal one
c∗ can be controlled linearly in terms of |c∗ − c|. Note that this result is well-known
when boundaries between the cells are hyperplanes (as it is the case in standard
quantization), it remains to treat the case when the boundary is a parabola. Let
d(x,A) be the distance from a point x ∈ Ω to A ⊂ Ω.
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Lemma 8.5.14. Let c∗ be an optimal codebook, and c ∈ AkL. Let x ∈ AL and
1 ≤ j ≤ k. Assume that x ∈ Vj(c∗) ∩ Vk+1(c). Then, d(x, ∂Vj(c

∗)) ≤ 7L2

2D2
min
|c∗ − c|.

Symmetrically, if x ∈ Vk+1(c∗) ∩ Vj(c), one has d(x, ∂Vk+1(c∗)) ≤ 7L2

2D2
min
|c∗ − c|.

Proof of Lemma 8.5.14. For convenience, we write in this proof the coordinates of
points in the basis (∂Ω, ∂Ω⊥), that x ∈ Ω will have coordinates (a, b) where a is the
projection of x on ∂Ω and b = d(x, ∂Ω). Also, given y = (a, b) ∈ Ω, we let Py be the
parabola with focus y and directrix ∂Ω. To put it another way, if y = (a, b), then Py
is the image of ∂Ω by the map

f(a, b, ·) : t 7→ (t− a)2

2b
+
b

2
.

One can check that for all t ∈ [−L/2, L/2], if b = d(y, ∂Ω) ≥ Dmin, we have
∣∣∣∂f∂a ∣∣∣ ≤ L

Dmin

and
∣∣∣∂f∂b ∣∣∣ ≤ 1

2 + (t−a)2

b
1
b ≤ 1

2 + 2L2

D2
min

.
Let c∗j = (a∗, b∗) and cj = (a, b). Let x = (t, u) ∈ Vj(c

∗) ∩ Vk+1(c). Then,
u ≥ f(a∗, b∗, t), whereas u ≤ f(a, b, t). The distance d(x, ∂Vj(c

∗)) is smaller than
u− f(a∗, b∗, t)

u− f(a∗, b∗, t) ≤ f(a, b, t)− f(a∗, b∗, t)

≤ |f(a∗, b∗, t)− f(a, b∗, t)|+ |f(a, b∗, t)− f(a, b, t)|

≤
∫ a∨a∗

a∧a∗

∣∣∣∣∂f∂a (α, b∗, t)

∣∣∣∣ dα+

∫ b∨b∗

b∧b∗

∣∣∣∣∂f∂b (a, β, t)

∣∣∣∣dβ
≤ L

Dmin
|a− a∗|+

(
1

2
+

2L2

D2
min

)
|b− b∗|

≤
(

1

2
+

L

Dmin
+

2L2

D2
min

)
|c− c∗| ≤ 7

2

L2

D2
min

|c− c∗|,

which proves the claim.

Proof of Lemma 8.5.12. This proof is inspired from [Lev15, Appendix A.3]. Let us
prove the first point. One has, with t = 7L2

2D2
min
|c− c∗| ≤ r0,

k∑
j=1

|pj(c)− pj(c∗)| =
k∑
j=1

|E(P )(Vj(c))− E(P )(Vj(c
∗)|

≤ 2
∑
j

∑
j′ 6=j

E(P )(Vj(c) ∩ Vj′(c∗)) ≤ 2E(P )[N(c∗)t] ≤ 2λt ≤ 2λr0.

where we applied Lemma 8.5.14 and the margin condition. To prove the second
inequality, remark that w2(c, E(P ))j =

∫
Vj(c) xdE(P )(x). Therefore,

|w2(c, E(P ))− w2(c∗, E(P ))| ≤
k∑
j=1

|w2(c, E(P ))j − w2(c∗, E(P ))j |

≤
k∑
j=1

∣∣∣∣∣
∫
Vj(c)

xdE(P )(x)−
∫
Vj(c∗)

xdE(P )(x)

∣∣∣∣∣
≤ 2

∑
j

∑
j′ 6=j

∫
Vj(c)∩Vj′ (c∗)

|x|dE(P )(x)

≤ 2
√

2Lλt ≤ 7
√

2λ
L3

D2
min

|c− c∗|. �
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Figure 8.11: From left to right: (a) The quantization output for the
different approaches considered with k = 2. As our approach accounts
for the diagonal through the cell Vk+1, our codebooks retrieve the
two clusters present in the expected persistence diagram, while other
approaches have one centroid used to account for the mass close to
the diagonal. (b,c) The average distortion Rk,p over 10 runs for the

different methods, with p = 2 and p = +∞.

8.5.3 Numerical illustrations

We now illustrate the behavior of Algorithm 1 using p = 2 and p = ∞ (referred
to as “FG2” and “FG∞”, respectively) and compare it to two natural alternatives.
[CLR20, Alg. 2] is essentially the same algorithm without the “diagonal cell” Vk+1(c);
as such, centroids are dramatically influenced by points close to the diagonal which
are likely to be abundant in standard applications of TDA. It is referred to as “W2”
in our illustrations, as it relies on quantization with respect to the Wasserstein
distance with p = 2. The second alternative, referred to as “weighted codebook”,
is the one proposed in [Zie+20], which can be summarized in the following way:
consider the empirical expected persistence diagram an built on top of observations
a1, . . . , an (that is, concatenate the diagrams), and then subsample N points in the
support of the empirical expected persistence diagram, with the subtlety that the
probability of choosing a point x ∈ spt(µn) depends on a weight function w : Ω→ R+.
Typical choices for w are of the form w(x) = min

(
max

(
0, (d(x,∂Ω)q−λ)

θ−λ

)
, 1
)
for some

parameters (λ, q, θ); the goal being to favor sampling points far from the diagonal.
Zieliński et al. propose, in practice, to sample N = 104 points and to set q = 1, while
λ and θ are the 0.05 and 0.95 quantiles of the distribution of {d(x, ∂Ω)q, x ∈ spt(µn)},
respectively. We use these parameters in our experiments. One then runs the Lloyd
algorithm (k-means) on the set of N points that have been sampled to obtain a
quantization of the empirical expected persistence diagram.

We compare the different approaches in the following experiment. We randomly
sample a point cloud X of size m on the surface of a torus with radii (r1, r2), where
m, r1, r2 are random variables that respectively follow a Poisson distribution of param-
eter λ ∈ N, a uniform distribution over [R1− ε,R1 + ε] and a uniform distribution over
[R2 − ε,R2 + ε]. We use λ = 2, 000, ε = 0.1, R1 = 5 and R2 = 2 in our experiments.
Given such a random point cloud X , we build the Čech persistence diagram of its 1-
dimensional features, denoted by a, leading to a distribution P of persistence diagrams.
We then build a n-sample a1, . . . , an with n = 100 and, for k ∈ {1, . . . , 5}, compute
the different codebooks returned by the aforementioned methods, using batches of size
10 for FG2,FG∞ and W2. All algorithms are initialized in the same way: we select the
k points of highest persistence in the first diagram a1. To compare the quality of these
codebooks, we evaluate their distortion (8.36) with p = 2 and p =∞. As we do not
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Figure 8.12: Orbits, expected persistence diagrams and quantizations
for two classes. In the rightmost image, the top centroid using the ”W2”
algorithm is shifted to the right with respect to the ”FG2” algorithm,
as it takes into account points with small persistence but with large
coordinates. The latter corresponds to the diagonal centroid in the

”FG2” approach.

have access to the true expected persistence diagram E(P ), we approximate this quan-
tity through its empirical counterpart R̂k,p(c) :=

(∫
Ω min1≤j≤ck+1

|x− cj |pdan(x)
) 1
p ,

while R̂k,∞(c) = maxx∈spt(an) minj |x− cj |. Results are given in Figure 8.11. Interest-
ingly, when p = 2 our approach is on a par with the weighted codebook approach, but
becomes substantially better when evaluated with p =∞, that is using the bottleneck
distance which is the most natural metric to handle persistence diagrams.

We perform another experiment on the ORBIT5K dataset [Ada+17, Section 6.4.1],
a benchmark dataset in TDA made of 5 classes with 1000 observations each (split
into 70%/30% training/test) representing different dynamical systems, turned into
persistence diagrams through Čech filtrations. For each class i ∈ {1, . . . , 5}, we
compute a 2-quantization ν(i) using our FG2 algorithm and a 3-quantization ζ(i)

using the standard W2 approach [CLR20], i.e. without the diagonal cell Vk+1 (but
with an additional centroid). We then build two simple classifiers: the predicted
class assigned to a test diagram µ is argmini{FG2(µ, ν(i))} (resp. (µ, ζ(i))). Our FG2

classifier achieves a decent test accuracy of 61%. Advanced (kernels,DL) methods in
TDA reach between 72% and 87% of accuracy [Car+20, Table 1]; but we stress that
our classifier is extremely simple (we summarize a whole training class by a measure
with only k = 2 points!), showcasing that our quantizations summarize the training
persistence diagrams in an informative way. More importantly, the W2 classifier (with
k = 3) only achieves 50% of test accuracy even though benefiting from an additional
centroid, illustrating the importance of properly accounting for the diagonal as done
in our approach.

8.6 Additional proofs

Proof of Lemma 8.2.3. (i) Section I.2.1 in [Shi97] states that A(f) is subanalytic.
Therefore, its complement E is also subanalytic: it is enough to show that E is
of empty interior to conclude.

Lemma 8.6.1. The set F of points x where f is not analytic but Gf is locally
a real analytic manifold in (x, f(x)) is a subanalytic set of empty interior.

We prove Lemma 8.6.1 below. The set E is the union of F and of E ∩G where
G is the projection on M of Sing(Gf ). As, by definition, Sing(Gf ) is of empty
interior, G is also of empty interior. Therefore, E is of empty interior, which is
equivalent to say that its dimension is smaller than d.
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(i) See [Shi97, Section II.1.1].

(ii) See [Shi97, Section II.1.6].

Proof of Lemma 8.6.1. Assume F contains an open set U . Replacing U by a smaller
open set if necessary, there exists some local parametrization of Uf = {(x, f(x)), x ∈ U}
by some analytic function Φ : V → R, V being a neighborhood of Uf inM×R. Denote
by ∇uΦ ∈ R the gradient of Φ with respect to the real variable u ∈ R. The set Z on
which ∇uΦ = 0 is an analytic subset of V . As Gf is the graph of a function, Z ∩Gf
is made of isolated points: one can always assume that those points are not in Uf .
Therefore, there exists some neighborhood V ′ of Uf which does not intersect Z. One
can now apply the analytic implicit function theorem (see for instance [KK83, Section
8]) anywhere on Uf : for (x0, u0) ∈ Uf , there exists some neighborhood W ⊂ V ′ and
an analytic function g : Z → R, Z being a neighborhood of x0, such that, on W

Φ(x, u) = 0⇐⇒ u = g(x).

As we also have Φ(x, u) = 0 if and only if u = f(x), f ≡ g on Z and f is analytic on
Z. This is a contradiction with having f not analytic in every point of U .

Proof of Lemma 8.2.4. Let k be the dimension of X. First, one can always assume
that X is closed, as Hd(X) ≥ Hd(X). Therefore, there exists some real analytic
manifold N of dimension k and a proper real analytic mapping Ψ : N →M such that
Ψ(N) = X (see [Shi97, Section I.2.1]). The set X can be written as the union of some
compact sets XK for K ≥ 0. It is enough to show that Hd(XK) = 0. The set XK

can be written Ψ(Ψ−1(XK)), where Ψ−1(XK) is some compact subset of N . We have
Hd(Ψ−1(XK)) = 0 because N is of dimension k < d. Furthermore, as Ψ is analytic
on Y , it is Lipschitz on Ψ−1(XK). Therefore, Hd(Ψ(Ψ−1(XK))) = Hd(XK) is also
null.

Proof of Theorem 8.2.7. Let us indicate how to change the proof of Theorem 8.2.5
when assumption (K5’) is satisfied instead of assumption (K5). In the partition
E1(x), . . . , EL(x) of ∆n, the set E1(x) plays a special role: it corresponds to the value
r1 = 0 and contains all the singletons, which satisfy ϕ[{j}] ≡ 0 by assumption. Lemma
8.2.11 holds for l > 1 and one can always define σ1 = {1} to be a minimal element
of E1(x). With this convention in mind, it is straightforward to check that Lemma
8.2.12 still holds and that Lemma 8.2.13 is satisfied as well for l > 1. Now, one can
define in a likewise manner the sets Vr. For x ∈ Vr, the diagram dgmq(K(x)) is still
decomposed

∑N
i=1 δui , with ui = (ϕ[σl1 ](x), ϕ[σl2 ](x)). If q > 0, the end of the proof is

similar. However, for q = 0, the pairs of simplices (σl1 , σl2) are made of one singleton
Jl1 and of one 2-simplex σl2 . As ϕ is null on singletons, the points in this diagram are
all included in the vertical line L0 := {0} × [0,∞). The map Φir : x ∈ Vr 7→ ui ∈ L0

has a differential of rank 1, as Lemma 8.2.13 ensures that ∇jϕ[σl2 ](x) 6= 0 for j ∈ σl2 .
One can apply the coarea formula to Φir to conclude to the existence of a density with
respect to the Lebesgue measure on L0.

Proof of Corollary 8.2.8. The diagram dgmq(K(X)) can be written

dgmq(K(X)) =
∑
n≥0

1{|X| = n}dgmq(K(X)), (8.42)
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and Theorem 8.2.5 states that 1{|X| = n}dgmq(K(X)) has a density λn with respect
to the Lebesgue measure on Ω. Take B a Borel set in Ω:

E[dgmq(K(X))](B) =
∑
n≥0

E[1{|X| = n}dgmq(K(X))](B)

=
∑
n≥0

∫
B
λn =

∫
B

∑
n≥0

λn by Fubini-Torelli’s theorem.

It is possible to use Fubini-Torelli’s theorem because E[dgmq(K(X))](B) is finite.
Indeed, as dgmq(K(X)) is always made of less than 2#X points, and as we have
supposed that E

[
2#X

]
<∞, the measure E[dgmq(K(X))] is finite as well.

Proof of Theorem 8.2.9. Given the expression (8.11), it is sufficient to show that
integrating a function along the fibers is a smooth operation in the fibers. We only
show that the density is continuous. Continuity of the higher orders derivatives is
obtained in a similar fashion. The proof is a standard application of the implicit
function theorem.

Using the same notations than in the proof of Theorem 8.2.5, fix 1 ≤ r ≤ R and
1 ≤ i ≤ Nr. We will show that λir is continuous. As the indices r and i are now fixed,
we drop the dependency in the notation: V := Vr and Φ := Φir. By using a partition of
unity and taking local diffeomorphisms, one can always assume that V ⊂ Rnd. Define
the function f : (x, u) ∈ V ×Ω 7→ Φ(x)− u ∈ R2. We have already shown in the proof
of Theorem 8.2.5 that for x0 ∈ V , there exists two indices a1 and a2 (depending on
x0) such that the minor M(x0) = (DΦ(x0))a1,2 is invertible. Rewrite x ∈ V in (y, z)
where z = (xa1 , xa2) ∈ R2. By the implicit function theorem, for (x0, u0) such that
f(x0, u0) = 0, there exists a neighborhood Ox0 ⊂ V × Ω of (x0, u0) and an analytic
function gx0 : Wy0 × Yu0 → R2 defined on a neighborhood of (y0, u0) such that for
(x, u) ∈ Ox0

f(x, u) = 0⇐⇒ z = gx0(y, u).

The sets (Ox0)x0∈V constitutes an open cover of the fiber f−1(0). Consider a smooth
partition of unity (ρx0)x0∈V subordinate to this cover. Then, for all (x, u) ∈ f−1(0)

(JΦ(x))−1κ(x) =
∑
x0∈V

ρx0(y, u, gx0(y, u))(JΦ(y, gx0(y, u)))−1κ(y, gx0(y, u))

Therefore,

λir(u) =

∫
x∈Φ−1(u)

(JΦ(x))−1κ(x)dHnd−2(x)

=
∑
x0∈V

∫
y∈Wy0

ρx0(y, u, gx0(y, u))(JΦ(y, gx0(y, u)))−1κ(y, gx0(y, u))dy. (8.43)

We are now faced with a classical continuity under the integral sign problem. First,
the Cauchy-Binet formula (see [KH04, Example 2.15]) states that JΦ is equal to the
square root of the sum of the squares of the determinants of all 2× 2 minors of DΦ.
Therefore, JΦ(x) is larger than the determinant of M(x), the minor of f of indices
a1 and a2. The implicit function theorem gives the exact value of M(x). Indeed, for
X = (x, u) ∈ Ox0 , and for any index k,

∂g

∂Xk
(y, u) = −

(
M−1 · ∂f

∂Xk

)
(y, u, g(y, u)) (8.44)
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Take Xk = u1,2. Then, ∂f/∂Xk = (−1, 0), resp. (0,−1). Therefore,

M−1(y, u, g(y, u)) =
∂g

∂u
(y, u, g(y, u)) (8.45)

As ρx0 has a compact support, it suffices to show that the integrand is bounded by
a constant independent of u. The only issue is that (JΦ)−1 may diverge. Equation
(8.45) shows that it is bounded by det ∂g/∂u. This is bounded, as g is analytic on the
compact support of ρx0 : each term in the sum (8.43) is continuous. By the compactness
of M and f−1(0), all the partitions of unity can be taken finite, and a finite sum of
continuous functions is continuous. This proves the continuity of λ.

Proof of Corollary 8.2.10. Define f(t, u) to be equal to 1 if u1 ≤ t ≤ u2 and 0 otherwise.
Then, βt(dgmq(K(X)))) is equal to dgmq(K(X))(f(t, ·)). Therefore, the expectation
E[βt(dgmq(K(X)))] is equal to ∫

λ(u)f(r, u)du. (8.46)

As we assumed that the hypothesis of Theorem 8.2.9 were satisfied, the density
λ is smooth. Moreover, λ(u)f(r, u) is smaller than λ(u). The function λ being
integrable, one can apply the continuity under the integral sign theorem to conclude
that t 7→ E[βt(dgmq(K(X)))] is continuous. Higher-order derivatives are obtained in a
similar fashion.
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Titre : Quelques contributions à l’inférence géométrique pour les variétés et à l’étude
statistique des diagrammes de persistance

Mots clés : inférence géométrique, analyse topologique des données, transport optimal, dia-
gramme de persistance

Résumé : L’analyse topologique des données
consiste en un ensemble de méthodes permet-
tant d’extraire des informations topologiques et
géométriques de jeux de données. Nous abor-
dons ici ce domaine sous deux angles différents.

Dans un premier temps, nous considérons
des techniques d’inférence géométrique, qui
visent à reconstruire des invariants géométriques
d’une variété à partir d’un nuage de points
proche de celle-ci. Nous étudions d’une part le
problème de construire des estimateurs adaptat-
ifs de cette variété, et d’autre part la question
de la reconstruction de la probabilité générant
les données.

Dans un second temps, nous nous intéres-
sons à la théorie de l’homologie persistante pour
l’analyse de données. Un objet central dans
cette théorie, le diagramme de persistance, per-
met de résumer de manière multi-échelle un
jeu de données. Nous participons à l’étude
statistique des diagrammes de persistance de
plusieurs façons : tout d’abord en étudiant la
structure métrique de l’espace des diagrammes
de persistance, ensuite en définissant une no-
tion de moyenne linéaire dans cet espace. Di-
verses propriétés de cet objet moyen sont alors
exhibées (comportement asymptotique, régular-
ité, etc.).

Title: Contributions to geometric inference on manifolds and to the statistical study of
the space of persistence diagrams

Keywords: geometric inference, topological data analysis, optimal transport, persistence dia-
gram

Abstract: Topological data analysis (or
TDA for short) consists in a set of methods aim-
ing to extract topological and geometric infor-
mation from complex nonlinear datasets. This
field is here tackled from two different perspec-
tives.

First, we consider techniques from geometric
inference, whose goal is to reconstruct geomet-
ric invariants of a manifold thanks to a random
sample. We study from one hand the question
of building an adaptive manifold estimator, and
on the other hand the question of reconstructing

the probability generating the observations.
Second, we study persistent homology the-

ory in TDA. A central tool in this theory, the
persistence diagram, allows one to summarize in
a multiscale fashion a dataset. We participate
to the statistical study of persistence diagrams
in several ways: first, by studying the metric
structure of the space of persistence diagrams,
and second, by defining a notion of linear expec-
tation in this space. Diverse properties of this
average object are then exhibited (asymptotic
behavior, regularity, etc.)
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