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Chapter 1

Introduction (francais)

Ce travail s’inscrit dans le cadre de I’Analyse Topologique des Données (ou TDA, pour
Topological Data Analysis), qui est ici abordée selon deux points de vue différents
. celui de I'inférence géométrique et celui de la théorie de ’homologie persistante.
Ces deux approches visent toutes deux a extraire (dans des cadres différents) des
informations pertinentes de nature géométrique et topologique sur des jeux de données
complexes possédant des structures a priori non linéaires.

1 Les enjeux de l'inférence géométrique

La théorie statistique classique développée dans les années 1930 par Fisher fait les
hypothéses suivantes : on observe des données en basse dimension, et on posséde
un modeéle génératif simple expliquant ces données (gaussien, exponentiel, etc.). On
s’'intéresse alors & des estimateurs de paramétres caractérisant la loi des données, pour
lesquels on est capable de donner des garanties fortes d’optimalité. A I'inverse, les
jeux de données modernes se présentent typiquement sous la forme de nuages de
points en grande dimension. Si les méthodes classiques peuvent s’appliquer dans ce
cadre, leurs performances théorique et pratique deviennent médiocres. Ce phénomeéne,
couramment appelé fléau de la dimension, montre la nécessité d’'un changement de
paradigme. Il s’agit tout d’abord, dans une phase de modélisation, de développer
des jeux d’hypothéses raisonnables que vérifient une large classe de données acquises
en grande dimension. Dans un second temps, il s’agira de développer des méthodes
statistiques adaptées & ces nouveaux jeux d’hypothéses.

Ainsi, certaines méthodes, telle le LASSO [Tib96], ont des bonnes performances sous
une hypothése de parcimonie sur les jeux de données. Des méthodes de régression, telle
la régression ridge [HK70], s’adaptent a la grande dimension en pénalisant la complexité
de la fonction de régression proposée. On peut aussi mentionner d’autres méthodes
standard, telle ’analyse en composante principale [Pea0l; Hot33], dont l'utilisation
suppose que les données sont proches d’un espace vectoriel de basse dimension en un
sens Lo. Les hypothéses que nous venons de mentionner reposent toutes sur l’existence
d’une structure linéaire de basse dimension pertinente pour expliquer le jeu de données.
En particulier, elles nécessitent d’avoir une grande confiance en la paramétrisation des
données utilisées, et toute reparamétrisation peut briser cette structure linéaire (voir
la figure 1.1). L’idée clé de I'inférence géométrique est de relaxer cette hypothése en
supposant que les données en grande dimension se concentrent autour d’une forme de
basse dimension, a priori non linéaire. Mathématiquement, on suppose alors que les
données observées sont proches d’une variété M de dimension d petite dans un espace
de dimension ambiante D possiblement grande.

D’un point de vue statistique, ce type d’hypothéses a d’abord été étudié dans
le cas ou la variété M est connue [Hen90; Pel05]. C’est notamment le cas pour des
problémes de géolocalisation [[PT19], ot les données sont des éléments de S?, ou
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FIGURE 1.1: La structure linéaire du jeu de données bleu disparait

lorsque ’axe vertical est reparamétrisé par une fonction non-linéaire

(ici sinusoidale). Le jeu de données orange reste cependant prés d’une
variété.

lors de 'étude d’images de visages se présentant sous différents éclairages [Cha+07]
dans laquelle les jeux de données présents se trouvent étre sur une Grassmannienne
G(k,d). Connaitre la variété M est le plus souvent trop exigeant, et, au cours des
années 2000, une autre famille de techniques, que 'on peut regrouper sous le terme de
méthodes de réduction de dimension non-linéaire, est apparue [RS00; ZZ03; WSS04]
(on pourrait aussi mentionner des techniques proposées antérieurement comme les
cartes autoadaptatives [Koh89] ou les surfaces principales adaptatives [LT94]). Ces
méthodes, ne nécessitant pas une connaissance a priori de la variété M, cherchent a
plonger de la maniére la plus fidéle possible un nuage de points proche d’une forme
"non-linéaire” dans un espace euclidien R? pour d petit. Par exemple, la méthode
ISOMAP [TDSLO00] est basée sur le plongement dans R%, a I’aide d’un positionnement
multidimensionnel (ou MDS pour multidimensional scaling), d’un graphe de voisinage
construit sur les observations. Elle permet ainsi de "déplier” des jeux de données qui se
trouveraient sur des objets diffeomorphes & un ouvert convexe (voir la figure 1.2). On
peut ensuite appliquer des techniques standard de classification ou de régression aux
données "dépliées”. Notons tout de méme que ces approches ne possédent des garanties
théoriques que dans un cadre restreint, qui nécessite au moins que le jeu de données
soit diffeomorphe a R%. 11 est ainsi par exemple impossible de plonger continiment
une sphére dans R2.

Paralléelement & cette ligne de travaux, se sont développées dans le domaine de
la géométrie algorithmique des méthodes de reconstruction d’une variéte M C RP a
partir d’un échantillon fini X, avec une attention toute particuliére portée aux courbes
et aux surfaces [BTG95; AB99|. Ainsi, I'algorithme COCONE [Ame-+00] permet la
reconstruction d’une surface lisse M & partir d’'une approximation finie, si le taux
d’approximation e(X) := sup{d(z, X) : = € M} de I’échantillon X est suffisamment
petit, tandis que le Tangential Delaunay Compler de Boissonnat et Ghosh [BG14]
permet une telle reconstruction en dimension supérieure. On peut aussi se poser des
questions sur la reconstruction d’invariants topologiques ou géométriques de M, comme
son axe médian [ABE09| ou ses groupes d’homologie ou d’homotopie [CO08]. Encore
une fois, ces travaux requiérent uniquement une échantillon fini X’ se trouvant sur la
variété M et ayant un bon taux d’échantillonnage. Un autre point de vue consiste
4 supposer que 'approximation X est la réalisation d’un processus aléatoire, de n
observations indépendantes d’une certaine loi p concentrée autour de la variété M :
on peut alors espérer que les méthodes de reconstruction fonctionnent avec grande
probabilité, sur des échantillons "typiques”. Cette approche statistique des problémes
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FIGURE 1.2: A gauche : un ensemble X de 3000 points échantillonnés
sur un swiss roll. A droite : sortie de I’algorithme ISOMAP appliqué a
X (implémenté sur scikit-learn [Bui+13]).

de géométrie algorithmique a pour la premiére fois été adoptée dans un article de
Niyogi, Smale et Weinberger [NSWO08|, ou les auteurs montrent que I’homologie d’une
variété M est reconstruite avec grande probabilité & partir du complexe de Cech (un
objet combinatoire défini dans le chapitre 3) d’un n-échantillon aléatoire &,,. Dans
les années 2010, a ensuite été abordée 'estimation au sens statistique du terme de
plusieurs descripteurs de M, comme sa dimension [HA05; LIM09; KRW19], ses espaces
tangents [AL19; CC16], son reach [Aam-+19; Ber+21], sa courbure [AL19], ses distances
géodésiques [ACC20], ou la variété M elle-méme [Gen+12a; Gen | 12b; MMS16; ALIS;
AL19].

Ce point de vue statistique sur les problémes de reconstruction géométrique a
I’avantage de permettre de poser simplement la question de 'optimalité des procédures
envisagées. Ceci est rendu possible grace a la théorie statistique minimax. Considérons
par exemple le probléme de ’estimation d’une variété M & partir d’'un n-échantillon
aléatoire X,. Un estimateur M de M est alors n’importe quel sous-ensemble compact
de RP| fonction (mesurable) de Péchantillon. La qualité de I'estimateur M sous loi
1, appelée son p-risque, est donnée par sa distance de Hausdorff diy moyenne a M,
c’est-a-~dire R X

ol il est sous-entendu que M=M (X)) et X, est un n-échantillon de loi . En pratique,
la loi g générant les données est inconnue, et il est plus intéressant de controler ce
risque uniformément sur tout un ensemble Q de lois u, que 'on appelle un modéle
statistique. En inférence géométrique, plusieurs modéles statistiques ont été introduits,
prenant en compte différents modeéles de bruits et de régularité pour M. Le risque
uniforme de Iestimateur M sur une classe Q est alors donné par

Ro(M, Q,dp) = sup{Ry(M,p,dp) : p€ Q}, (1.2)

tandis qu'un estimateur sera dit minimaz si il atteint (& une constante multiplicative
prés) le risque minimaz défini par

Rn(M,Q,dy) := inf{R, (M, Q,dy) : M est un estimateur}. (1.3)
Mentionnons par exemple la famille de modéles Qi’in Fonins Frnas introduite par Genovese
et al. dans [Gen | 12a], comprenant les lois 1 supportées sur une variété M de dimension
d satisfaisant certaines propriétés. Tout d’abord, on suppose que p a une densité f
sur M comprise entre deux bornes fumin €t fmax > 0. Cela permet d’assurer que toutes
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FIGURE 1.3: Si le reach de la courbe M est grand, alors la courbe
ne peut pas étre trop courbée (gauche) et ne peut pas présenter une
structure fine en goulot d’étranglement (droite)

les régions de la variété sont a peu prés autant échantillonnées : on parle alors de lois
presque-uniformes sur M. Le paramétre Ty, impose une borne inférieure sur le reach
7(M) de la variété. Ce dernier est une notion centrale en inférence géométrique. Le
reach 7(M) est défini comme le plus grand rayon r tel que, si d(z, M) < r, alors il
existe une unique projection y de x sur M, c’est-a-dire un point y € M satisfaisant
|x —y| = d(x, M). D’un point de vue plus géométrique, avoir un reach 7(M) plus
grand que r implique qu’il est possible de faire "rouler” une boule le long de M sans "se
cogner” a une autre partie de M [PL08, Lemma A.0.6|. Ainsi, le reach 7(M) controle
deux quantités différentes, d’une part le rayon de courbure de la variété M (donc une
régularité locale), et d’autre part une régularité globale, contrdlant la présence de

structure en goulot d’étranglement dans la variété (voir la figure 1.3). Sur le modéle
2.d

Tminsfmin;fmax

, la vitesse minimax satisfait

Inn\ 2/ 2d Inn
co | — < Rn(M, Q7 ) <ca | — (1.4)

n Tminfmin;fmax n

pour deux constantes ¢y, ¢; > 0 dépendant de Tyin, fmin, fmax €t d. La borne inférieure
dans cette inégalité a été montrée par Kim et Zhou [KZ15|, tandis que la borne
supérieure est obtenue en fournissant un estimateur ayant un risque uniforme de I’ordre
de (Inn/n)*%. Un tel estimateur (non calculable en pratique) a tout d’abord été
proposé par Genovese et al. dans [Gen+12a], tandis qu'un autre estimateur, cette
fois-ci calculable, atteignant cette méme vitesse, basé sur le Tangential Delaunay
Complez, a été introduit par Aamari et Levrard [AL18].

1.1 Le probléme de I’adaptivité

Notons que le Tangential Delaunay Compler dépend de plusieurs parameétres, comme
par exemple d’un rayon quantifiant la taille des voisinages utilisés pour calculer des
analyses en composantes principales locales. Pour que le Tangential Delaunay Complex
soit minimax, ces paramétres doivent étre calibrés d’une certaine maniére par rapport
aux variables Timin, fmin €t fmax définissant le modeéle. Or, ces quantités sont a priori
inconnues. Se pose alors la question du choix en pratique des paramétres définissant
Iestimateur. Cette question du calibrage pratique des paramétres définissant un
estimateur n’est pas restreint a I’estimation de variétés, mais est un probléme classique
en statistique.

Citons par exemple la question du choix de la largeur de bande dans I'estimation &
noyaux. Soit X7, ..., X, un n-échantillon d’une certaine loi p ayant une densité f sur
R, et supposons que 1’on souhaite reconstruire la valeur de la densité f(z() en un point
fixé g € R. Une méthode standard pour réaliser cet objectif est de convoler la mesure
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empirique i, = = 3% | §x, par un certain noyau Kj, ot Kj, = h™'K(-/h) et K vérifie
J K =1. On obtient alors une fonction fh = K}, * pp,. Supposons que la densité f soit
de régularité s, c’est-a-dire que f € C*(R), I'ensemble des fonctions dérivables |s] fois,
dont la dérivée |s]iéme est (s — |s])-Holder. Alors, en choisissant bien le noyau K, on
sait qu’il est optimal de choisir la largeur de bande hgp de 'ordre de c-n /st oy e
dépend de la norme C* de f [Tsy08, Chapitre 1. Le risque associé est alors de I'ordre de
n =8/ (25t " ce qui est la vitesse minimax d’estimation sur les densités de régularité s. En
pratique, il est impossible de connaitre exactement s, de sorte que nous devons trouver
une autre stratégie pour choisir h. Les méthodes adaptatives consistent & choisir une
largeur de bande h en fonction des données, de sorte que I'estimateur fh ait un p-risque

presque aussi bon que 'estimateur optimal fhopt sous des hypotheéses faibles sur u. En
particulier, la méthode PCO (pour Penalized Comparison to Overfitting) introduite
par Lacour, Massart et Rivoirard [LMR17] consiste & comparer chaque estimateur fh
4 un estimateur dégénéré fh pour un certain hpy, trés petit. La largeur de bande h
sélectionnée est choisie parmi une famille H de largeurs de bande (toutes supérieures
& hmin), en minimisant un critére qui dépend de la distance || frn— fhmin | 2o(r) et qui
pénalise les petites valeurs de h. Lacour, Massart et Rivoirard montrent alors une
wmégalité oracle pour leur estimateur, c’est-a-dire une inégalité du type

E|f;, = flTm < CmindE|fr = fllT,@ : b€ H}+Cln, [H), (1.5)

ou C(n,|H|) est un terme de reste négligeable devant le risque optimal. On obtient
ainsi que fh a un risque presque aussi bon que le meilleur estimateur fhopt7 sans jamais
avoir eu a estimer les paramétres définissant le modéle (ici la régularité de la densité
ainsi que sa norme).

Dans le chapitre 4, nous nous inspirons de la philosophie de la méthode PCO pour
créer un estimateur adaptatif de variété. Une premiére étape consiste a créer une
famille d’estimateurs (Mt)tz(], analogue des estimateurs & noyaux pour I’estimation
de variété. Ceci est permis par la notion de t-enveloppe convexe. Pour ¢t > 0, la
t-enveloppe convexe Conv(t, A) d’un ensemble A interpole entre A (t = 0) et son
enveloppe convexe Conv(A) (¢t = oo). Elle est définie par

Conv(t, A) U Conv (o (1.6)

ocCA
r(o)<t

ou r(0o) est le rayon de ’ensemble o, & savoir le rayon de la plus petite boule contenant
o. On montre dans un premier temps que pour ¢t = ¢ - (In n/n)l/d, ou ¢ dépend de d
et des parameétres Tiin €t fmin, la t-enveloppe convexe Conv(t, ;) d’un n-échantillon
aléatoire de points fournit un estimateur de variétés qui est minimax sur le modéle

2,d . Dans un deuxiéme temps, nous considérons le probléme de la sélection

Tmin;fmin s fmax
adaptative du parameétre . Un analogue de l'estimateur dégénérée fhmin est ici donné
par le choix de ¢ = 0 : on trouve alors 'estimateur Conv(0, X,,) = A},. Si on croit
en la méthode PCO, il s’agira donc de comparer les estimateurs Conv(t, X,,) & X,
c’est-a-dire d’étudier la fonction t — h(t, X,) := dg(Conv(t, X, ), Xy). Il se trouve
que cette fonction a été précédemment introduite sous le nom de défaut de convexité
de l’ensemble X, dans un papier d’Attali, Lieutier et Salinas [ALS13], ou elle était
utilisée pour étudier le type d’homotopie des complexes de Rips. Nous montrons que le
défaut de convexité de I’échantillon aléatoire X, exhibe des comportements différents
dans deux régimes : avant une certaine valeur seuil t*(X},), elle a un comportement
globalement linéaire, tandis qu’apreés cette valeur seuil, elle posséde un comportement

(sous-)quadratique. Le défaut de convexité est calculable uniquement & partir des



6 Chapter 1. Introduction (frangais)
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FIGURE 1.4: Gauche. Echantillon X,,. Centre. Défaut de convexité de
X, et échelle sélectionnée ty. Droite. L’ensemble Conv(ty, ;).

données, et on peut donc en pratique observer ces deux phases. On peut alors montrer
que les valeurs de t juste au-dessus de la valeur seuil ¢*(X),) fournissent un risque
minimax de lordre de (Inn/n)?¢. En pratique, nous fixons deux hyperparamétres
0 < A< 1 et tpax, posons

ty 1= sup{t < tmax : h(t, X,) > At}, (1.7)

et montrons que, si tyax €st assez petit par rapport & Tin, alors Conv(f,\, X,,) fournit
un estimateur minimax adaptatif de variétés, voir la figure 1.4. Notons que nous
n’obtenons pas le caractére adaptatif de notre estimateur en montrant une inégalité
oracle du type (1.5), mais en montrant que fy est plus grand que la valeur seuil
t*(AX,) (tout en restant du bon ordre de grandeur) avec grande probabilité, ce qui
suffit & montrer le caractére minimax de l'estimateur correspondant. On peut aussi
montrer que le paramétre £y est en fait proche du taux d’approximation e(AX,). Comme
mentionné précédemment, un certain nombre d’algorithmes en géométrie algorithmique
nécessitent la connaissance du taux d’échantillonnage (ou plutoét d’un encadrement du
taux d’échantillonnage), et peuvent donc étre utilisés en utilisant le parameétre ty.

1.2 Reconstruire la mesure plutét que la variété

La deuxiéme contribution proposée ici est motivée par les problématiques d’estimation
de densité. En inférence géométrique, la possibilité de reconstruire la densité f de
la mesure p générant les observations X,, a d’abord été considérée dans le cas ot M
est connue. Hendriks [Hen90| propose d’utiliser les fonctions propres de l'opérateur
de Laplace-Beltrami sur la variété pour reconstruire la densité, tandis que Pelletier
[Pel05] propose un estimateur a noyaux utilisant la distance géodésique sur la variété.
Dans le cadre de l'inférence géométrique, ou la variété M est supposée inconnue, les
travaux d’estimation de densité sont plus récents. Soit un point xy que ’on suppose
appartenir & M. L’estimation de de f(zg), la densité de f en xp, a été abordée
dans [BS17; WW20], ot des vitesses de convergence des estimateurs & noyaux sont
exhibées, respectivement dans le cas ol la variété est a bord et dans le cas oil la densité
est supposée Holder. Berenfeld et Hoffmann [BH19] exhibent des vitesses minimax
d’estimation pour ce probléme, et montrent que deux régularités entrent en jeu dans
la vitesse optimale : d’une part la régularité s de la densité f, et d’autre part la
régularité k de la variété M. De plus, les auteurs montrent que la méthode de sélection
de Goldenshluger-Lepski |GL13| s’applique dans ce cadre pour sélectionner la largeur
de bande du noyau et permet d’obtenir des estimateurs adaptatifs de f(xg).

Pour aller au-dela de I'estimation ponctuelle de f (ou de maniére équivalente de la
mesure associée 1), le choix de la fonction de perte est un probléme délicat. En effet,
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les choix standard en estimation de densité comprennent la distance Ly, la distance de
Hellinger ou encore la divergence de Kullback-Leibler. Toutes ces fonctions de perte
deviennent dégénérées pour la comparaison de deux mesures mutuellement singuliéres.
Or, si le support M de la mesure p est inconnu, il sera impossible de construire a
partir d’un n-échantillon une mesure non-singuliére par rapport & la mesure volume
volys sur M, quand bien méme son support serait trés proche de M pour la distance
de Hausdorff. Au contraire, les distances de Wasserstein W), (1 < p < oo) sont par
construction robustes aux perturbations métriques du support d’une mesure, et sont
donc particuliérement adaptées a notre probléme. Elles sont définies de la maniére
suivante. Etant données deux mesures de probabilité p et v, nous définissons un plan
de transport 7 entre p et ¥ comme une mesure sur RP x RP ayant pour premiére
marginale y et seconde marginale v. Informellement, au point z € RP, une fraction
dn(x,y) de la masse du(x ) présente en x est envoyée en y. Le cotit d’un tel plan de
transport est donné par Cp(7) = [[ d(z,y)Pdn(x,y), tandis que la distance Wasserstein
W), est donné par le cott du plus petit plan de transport :

Wy(p,v) == inf{C’;/p(W) comell(p,v)}, (1.8)

ou IT(u, v) est 'ensemble des plans de transport entre p et v.

L’utilisation des distances de Wasserstein, et plus généralement de la théorie du
transport optimal, a montré son efficacité dans une large gamme de problémes récents
d’apprentissage automatique, avec des algorithmes efficaces et des garanties théoriques
fortes (voir par exemple le livre de Peyré et Cuturi [PC19]). D’un intérét tout particulier
pour nous, Niles-Weed et Berthet ont abordé le probléme de I'estimation d’une densité
f supportée sur le cube [0, 1] pour les distances de Wasserstein [WB19b]. Supposons
que f appartienne a l'espace de Besov B, ([0, 1]4) de régularité s sur le cube (pour
s>0,etl <p<ooetl<qg< oo, voir le chapitre 5 pour une définition précise). Alors,
Niles-Weed et Berthet montrent qu'une modification d’un estimateur par ondelettes
classique atteint la vitesse de convergence de n~(s+)/@2std) hour d > 3 en distance
Wasserstein W), (& comparer avec la vitesse de convergence n~%/(2s+d) pour Pestimation
ponctuelle de densité). De plus, cette vitesse est la vitesse minimax.

Notre contribution principale, décrite dans le chapitre 5, est d’étendre ce résultat
minimax en remplacant le cube par n’importe quelle sous-variété M de régularité k
pour k > s+ 1. Nous montrons alors qu'une mesure ayant pour densité par rapport a
volps un estimateur & noyaux pondéré atteint la méme vitesse minimax p~(s+1)/(2s+d)
Dans le cas d’intérét ou la variété M est inconnue, nous ne pouvons pas utiliser volyy,
de sorte que l'estimateur précédent n’est pas calculable. Nous proposons donc dans
un premier temps d’estimer la mesure volume. Nous exhibons ainsi un estimateur
vol M et montrons que U M= — vol M/ ]VOI M| est un estimateur minimax de la mesure
uniforme sur M. La reconstruction de la mesure volume est basée sur les procédures
d’estimation de paramétrisations C* locales de la variété M introduites par Aamari et
Levrard [AL19].

2 Un point de vue multi-échelle : la persistance des don-
nées

Les travaux que nous avons mentionné jusqu’a maintenant font tous I’hypothése forte
de l'existence d’une variété de basse dimension interpolant les données. Il est 1égitime
de s’intéresser a des questions de nature topologique dans un cadre beaucoup plus
général. Par exemple, on peut imaginer qu’une information pertinente est présente dans
la structure topologique fine de processus spatiaux, information pouvant servir dans
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F1GURE 1.5: Gauche : un graphe d’interactions entre utilisateurs de

Reddit provenant du jeu de données REDDIT-5K, présenté dans [YV15].

Droite : simulation d’un flot de turbulence donné par ’équation de
Navier-Stokes [Sch+06].

un objectif de classification [Bro+20]. Dans certains problémes, les données observées
ne se présentent pas sous la forme de nuages de points, alors qu’une “topologie” reste
présente. C’est le cas notamment lorsque 1’on observe une famille de graphes, ou
la topologie est alors décrite par 1’existence de cycles ou de plusieurs composantes
connexes [AMAOQT; Hof + 17; ZW19; Car20], voir aussi la figure 1.5. La théorie de
I’homologie persistante en TDA se propose de quantifier en un sens précis ce qu’est la
“topologie” sous-jacente & un jeu de données de fagon trés générale. Pour cela, nous
adoptons une approche multi-échelle.

Considérons tout d’abord un exemple simple. Soit X,, un ensemble fini de n points
dans RP. D’un point de vue topologique, I’ensemble X,, est particuliérement peu
intéressant : il comporte n composantes connexes, chacune réduite & un point. Une
possibilité pour obtenir un ensemble plus riche topologiquement est de choisir une
échelle t a laquelle regarder les données, dans la veine des t-enveloppes convexes du
chapitre 4, ou plus simplement en considérant le ¢-voisinage de X, :

Xl = U B(z,t). (1.9)

LL'GXn

Comme expliqué précédemment, choisir une "bonne” échelle t est alors un probléme
délicat, bien que nous ayons proposé dans le chapitre 4 un algorithme dans le cas ol
I’échantillon A, est suffisamment proche d’une variété M. La théorie de ’homologie
persistante propose d’éviter ce choix du paramétre ¢ en regardant comment évoluent
les groupes d’homologie de X! lorsque t grandit de 0 & +o00. Si on s’intéresse par
exemple a I'homologie de dimension 1 (c’est-a-dire a la présence de "boucles” dans
un espace), on peut observer que des boucles apparaitront a certains instants dans
le processus, avant d’étre bouchées par la suite lorsque le paramétre ¢ du rayon des
boules deviendra plus grand (voir la figure 1.6). Lorsque ¢ devient trés grand, nous
obtenons un ensemble homotopiquement équivalent a une boule, qui ne posséde plus
de cycles. Cette évolution peut étre résumée par un ensemble d’intervalles, chaque
intervalle [b, d) représentant une boucle apparue a l’échelle b, et ayant disparue a
I’échelle d. De maniére équivalente, nous pouvons considérer la collection de points
(b,d) € R?, que nous appelons le diagramme de persistance associé au processus.
Notons que l'on a forcément d > b, de sorte qu'un diagramme de persistance est une
liste de points dans € := {u = (u1,us) € R?: ug > u;}, ou de maniére équivalente
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birth

FIGURE 1.6: Le diagramme de persistance de dimension 1 associé a la
filtration (X} );>o.

une mesure de la forme ), ; 0y, sur Q. Plus un cycle sera resté longtemps dans le
processus (X! );>0, plus il aura de 'importance. On appelle persistance du cycle la
durée de vie d — b de l'intervalle associé. Ainsi, dans un diagramme de persistance, les
points loin de la diagonale 02 := {(¢,t) : ¢t € R} correspondent a des caractéristiques
topologiques importantes du processus sous-jacent. De maniére plus générale, la théorie
de ’homologie persistante peut s’appliquer a n’importe quelle filtration d’espaces
topologiques, c’est-a-dire & une suite croissante d’espaces topologiques (X?);cr. Ceci
inclut donc notamment les sous-niveaux d’une fonction f : X — R, ou X peut étre
un graphe, une image, ou un espace métrique quelconque. Quand la fonction f est la
distance & un ensemble X,,, nous retrouvons le processus décrit précédemment, tandis
que le diagramme de persistance associé est appelé diagramme de Cech de I'ensemble
X,. De plus, on peut s’intéresser a différentes dimensions d’homologie : composantes
connexes (dimension 0), boucles (dimension 1), cavités (dimension 2), etc.

La théorie de I’homologie persistante et la notion de diagramme de persistance
se sont construites progressivement durant la premiére moitié des années 2000, voir
par exemple [Rob99; ELZ00; Car-+04], tandis que le concept de persistance a aussi
été introduit de maniére indépendante par Barannikov dans le domaine de la théorie
de Morse [Bar94|. Un des premiers résultats majeurs de la TDA a consisté & montrer
que les diagrammes de persistance sont en un sens fort stables vis-a-vis des objets sur
lesquels ils sont construits [CSEH07|. Cette propriété, couramment appelée “théoréme
de stabilité”, repose sur un résultat puissant de stabilité algébrique énoncé précisément
dans le chapitre 3. Ce théoréme de stabilité est basé sur une notion de distance entre
diagrammes, appelée la distance bottleneck d,. Par la suite, les distances d,, pour
1 < p < oo ont été introduites, généralisant la distance bottleneck, et pour lesquelles
des résultats de stabilité plus faibles existent (découlant de la stabilité en distance
bottleneck) [CS+10]. Soient a et b deux diagrammes de persistance, ol a est donné
par la liste de points z1,...,x, € Q et b par la liste de points y1,...,ym € €. On
appelle un appariement entre a et b une bijection entre a U 02 et b U 0f2 : chaque
point x; est envoyé par <y soit sur un certain y;, soit sur un point quelconque de la
diagonale, et les y; non atteints sont I'image par v d’un certain point de la diagonale.
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FIGURE 1.7: Gauche : deux diagrammes de persistance. Centre : un

appariement vy entre les deux diagrammes. Le cott Cp,(7) est donné

par la somme des longueurs a la puissance p des segments apparaissant

dans 'appariement, tandis que le cott bottleneck Coo(7y) est donné par

la longueur du plus long segment. Droite : un appariement optimal
pour tout p € [1, +00].

Le cotit Cy(y) de 'appariement 7 est donné par

Co() = Y eI, (1.10)

€aAUON
oil || - || représente une norme quelconque sur R2. Un appariement de cotit minimal est
dit optimal, et on pose
dy(a,b) := inf{C,(7)"/? : v € (a,b)}, (1.11)

ot I'(a, b) est 'ensemble des appariements entre a et b (voir la figure 1.7). On peut
par ailleurs noter que dans un appariement optimal, tout point envoyé sur la diagonale
0f) est en fait envoyé sur son projeté orthogonal sur la diagonale. Intuitivement, on
est en train d’apparier les différents cycles correspondant & chaque point des deux
diagrammes, tandis qu’apparier un point & la diagonale, revient & 'apparier & un
cycle "n’ayant par persisté”, de la forme [b,d) avec b = d. D’intérét tout particulier
en TDA est la distance bottleneck d,, obtenue comme limite des distances d, pour
p — 00. De maniére équivalente, on peut définir le cotit Coo(y) d’un appariement -y

par sup{||lz — v(x)| : = € a U 0N} et définir
doo(a,b) :=Inf{Cx(7y) : v € I'(a, b) }. (1.12)

Les diagrammes de persistance encodent une information topologique riche sur les
données qu’ils résument, et souvent complémentaires d’autres méthodes plus classiques.
N’étant pas naturellement des éléments d’un espace vectoriel, il est cependant délicat
de les incorporer directement dans des algorithmes d’apprentissage automatique. Deux
approches ont été proposées dans la littérature. La premiére consiste en I'utilisation
de feature maps (ou représentations) sur l'espace des diagrammes, qui permettent
de transformer les diagrammes de persistance en vecteurs, qui peuvent alors étre
facilement inclus dans des algorithmes standard d’apprentissage automatique. La
seconde est de travailler malgré tout directement dans 'espace des diagrammes D,
par exemple en utilisant des méthodes nécessitant uniquement des distances en entrée
(comme le multidimensional scaling précédemment mentionné). Nous étudierons ici
ces deux approches.



2. Un point de vue multi-échelle : la persistance des données 11

2.1 L’espace des diagrammes de persistance étudié a travers le trans-
port optimal partiel

Pour ce qui est de la deuxiéme approche, il est capital de tout d’abord comprendre
de maniére fine la structure de ’espace des diagrammes de persistance, vu en tant
qu’espace métrique. Cette étude a été initiée par Mileyko, Mukherjee et Harer [MMH11],
qui montrent des propriétés de I’espace métrique

DP:={aeD: dy(a,0) < oo}, munide la distance d, (1.13)

ot 0 est le diagramme vide, de sorte que dp(a,0)P = >, . (u2 —u1)P, quantité appelée
la p-persistance totale du diagramme a, et notée Pers,(a). Notons que nous nous
autorisons ici & avoir des diagrammes possédant un nombre infini de points, de sorte
qu’il est possible d’avoir d,(a,0) = co.

Nous proposons dans le chapitre 6 de participer a I'étude de la structure de 'espace
des diagrammes de persistance en adoptant un point de vue différent de celui de
[MMHI11]. Nous avons déja mentionné qu'un diagramme de persistance peut de
maniére équivalente étre défini soit comme une liste de points dans €2, soit comme
une mesure ponctuelle >, ;d,,. Bien que I'approche "liste” semble étre favorisée
dans la littérature, le point de vue mesure s’avére plus riche. D’une part, ce point de
vue permet de définir sans effort la somme, ou la moyenne de plusieurs diagrammes,
qui sera alors une mesure quelconque (et non plus une mesure ponctuelle). D’autre
part, cela permet d’appliquer la théorie du transport optimal aux diagrammes de
persistance. En effet, la théorie du transport optimal, et plus précisément les distances
de Wasserstein déja mentionnées précédemment, permettent de comparer des mesures.
Les distances d, et W, partagent des points communs : elles sont toutes deux définies
comme étant le cotit minimal de transport (ou d’appariement) entre deux mesures. De
par ces similitudes, les distances d, sont couramment appelées distances de Wasserstein
dans la littérature en TDA. Cette appellation est cependant trompeuse, puisqu’il existe
une différence fondamentale entre les distances d, et W), : les distances W), ne sont
définies que pour des mesures de probabilité (ou ayant la méme masse), tandis que
les distances d;, ne sont définies que pour des mesures ponctuelles, mais de masses
potentiellement différentes.

Nous établissons dans le chapitre 6 un lien précis entre la structure métrique de
I’espace des diagrammes de persistance et le transport optimal, en faisant le lien
entre les distances d, et des distances de transport optimal partiel introduites par
Figalli et Gigli [FG10]. Etablir ce lien permet d'une part d’obtenir certaines propriétés
meétriques de Pespace DP (telle sa complétude, ou l'existence de barycentres), mais
aussi d’étendre I'espace DP a un espace plus grand MP, que nous appelons ’espace des
mesures persistantes, et que nous munissons de la distance de Figalli-Gigli FG,, étendant
la distance d,. L’espace des mesures persistantes a l'avantage d’étre "linéairement”
convexe, ce qui nous permet de définir des moyennes de diagrammes, le diagramme de
persistance moyen F/(P) d'une loi P sur 'espace des diagrammes de persistance étant
au centre du chapitre 8. De plus, exhiber ce lien justifie I’adaptation d’algorithmes
utilisés en transport optimal pour les diagrammes de persistances, une approche qui
peut se révéler fructueuse [LCO18|. Le chapitre 6 est tiré de 'article [DL20], écrit en
collaboration avec Théo Lacombe.

2.2 Représentations linéaires sur ’espace des diagrammes et le choix
de la fonction de poids

La premiére approche que nous avions évoquée pour effectuer des procédures statistiques
a l'aide de diagrammes de persistance consiste a utiliser une application ¥ : D — B,
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FIGURE 1.8: Le diagramme de persistance a, de n = 700 points

aléatoires sur le tore (pour ’homologie de dimension 1). Les deux

points de haute persistance dans le diagramme donne des informations

sur la géométrie du tore (ses deux trous), tandis que les points proches
de la diagonale J) représentent du bruit topologique.

olt D est l'espace des diagrammes de persistance et B est un espace de Banach.
Une telle application, appelée feature map ou représentation, permet de transformer
un échantillon de diagrammes de persistance en échantillon de vecteurs, qui peut
ensuite s’incorporer facilement dans un algorithme d’apprentissage automatique. De
nombreuses représentations ont été proposées dans la littérature. On peut en identifier
une grande classe, que nous appelons représentations linéaires, et qui inclut par exemple
la surface persistante [Ada-+17] (et ses variantes [Che+15; KHF16; Rei+15]), la fonction
d’accumulation persistante [BM19] ou la silhouette persistante [Cha-+15a].

Definition 2.1 (Représentation linéaire). Soit f : Q — B une application, ou B est
un espace de Banach. L’application Wy : D — B définie par Wy(a) 1=, ., f(u) est
appelée la représentation linéaire associée a f.

Un premier critére pour évaluer la pertinence d’une représentation U est sa stabilité :
est-ce que ¥ est Lipschitz (ou Hélder) pour une certaine distance d, ? Nous donnons
dans le chapitre 8 des critéres sur la fonction f qui permettent d’établir la continuité
de la fonction Wy, puis son caractére Lipschitz (ou Hélder) pour les distances d.
Il apparait alors, que pour obtenir des représentations stables, il est primordial de
pondérer la fonction f par une fonction de poids w qui s’écrase suffisamment proche
de la diagonale. Nous donnons des conditions suffisantes sur la fonction w permettant
d’assurer la stabilité de toute représentation de la forme W,,; avec f Lipschiz bornée.
En particulier, une fonction de poids de la forme w : u +— (ug — u1 )P permet la création
de représentations Holder sur ’ensemble des diagrammes construits sur une variété de
dimension d < p.

Nous nous proposons ensuite d’éclairer le choix de la fonction de poids w en prenant
un point de vue asymptotique. Nous avons mentionné précédemment que les points
de haute persistance dans un diagramme de persistance ont “plus d’importance” et
représentent des caractéristiques topologiques importantes de I’'objet sous-jacent. Dans
le cas ou un ensemble de n points A}, est échantillonné sur une variété M, on observe
ainsi dans le diagramme de persistance a,, de X, (par exemple de éech) deux types de
points : des points de haute persistance correspondant au diagramme de persistance
de la variété, et un grand nombre de points de basse persistance mesurant le "bruit
topologique” de I’échantillonnage, voir par exemple la figure 1.8 pour un exemple
sur le tore. Nous nous intéressons alors & la structure du bruit topologique dans
un cadre simplifié, ol des points sont tirés aléatoirement dans le cube [0,1]¢. Nous
montrons que la taille du bruit topologique a,, mesurée par sa persistance totale
Pers,(an) = > _,cq, (U2 — u1)?P, est d'ordre c- n'~P/? avec une constante ¢ dépendant
de la densité d’échantillonnage. Ceci suggére que si les points de haute persistance
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dans le diagramme d’un nuage de points donnent des informations sur la structure
macroscopique de I'ensemble, le bruit topologique fournit d’autres types d’information,
telle la dimension intrinséque de I’échantillonnage. Ces remarques ont par la suite été
utilisées par Adams et al. [Ada 20| pour définir une notion de dimension persistante
d’un ensemble. De maniére plus générale, nous montrons que le diagramme normalisé
n~Y dan (qui est une mesure persistante) converge pour les métriques FG, vers une
certaine mesure persistante limite dépendant de la densité d’échantillonnage. D’autre
part, ceci implique que les représentations de la forme W,,r(a,) convergent pour w
de la forme u + (ug — u1)P et p > d. Nous retrouvons dans les deux cas la méme
heuristique : une fonction de poids de la forme u — (ug — up)P est légitime pour p > d
si les diagrammes sont construits sur un objet de dimension d.

Le contenu du chapitre 7 est basé sur une collaboration avec Wolfgang Polonik
[DP19].

2.3 Le diagramme de persistence moyen

Dans un cadre statistique, nous serons souvent en présence d’un échantillon de n
diagrammes de persistance ai,...,a,, provenant par exemple d’une collection de
graphes [Car 20|, de séries temporelles [SDB16], ou de formes 3D [COO15b]. On
peut alors considérer leur représentation associée ¥(aq), ..., ¥(a,). Sil'on souhaite
obtenir des résultats statistiques sur 1’échantillon ¥(a;), ..., ¥(ay), il est sans doute
pertinent de commencer par s’intéresser a des quantités simples, telles leur moyenne
L(W(a1) + -+ ¥(ay)). Silaloi des grands nombres implique directement que cette
moyenne converge vers E,.p[¥(a)], ot P est la loi générant les a;, rien ne nous dit &
quoi ressemble cette espérance, et quelles sont ses propriétés. Nous nous proposons de
répondre a cette question dans le cas des représentations linéaires W;. Dans ce cas 1,
si on note

1
ap, = - (a1 4+ apn) (1.14)

la moyenne empirique des a;, qui est une mesure persistante, nous avons

L(Wplar) + e+ Uplan)) = V(). (1.15)
Cette quantité converge vers U (E(P)) = [ f(u)dE(P)(u), ot E(P) = E,.p[a] est le
diagramme moyen de P, défini précisément dans le chapitre 8 et initialement défini dans
une publication écrite en collaboration avec Frédéric Chazal [DC19]. Le diagramme
moyen est une mesure sur {2, qui donne l'intensité moyenne de points d’un diagramme
aléatoire a ~ P dans une région donnée. Nous montrons dans le chapitre 8 des
propriétés variées des diagrammes moyens : leur stabilité par rapport a la loi P, des
vitesses d’estimation du diagramme moyen empirique a,, vers F(P) (pour les distances
de Figalli-Gigli FG,), ou encore l'existence d’une densité Ap pour E(P) dans un
cadre trés général. Ce dernier résultat décrit en particulier de maniére précise ce vers
quoi converge 2(Wy(ar) + -+ ¥y(ay)) : la limite est égale a [ f(u)Ap(u)du, et la
connaissance de Ap (qui est possible a travers des procédures d’estimation) permet une
connaissance précise de cette limite. Un des inconvénients du diagramme de persistance
empirique a,, est qu’il contient potentiellement un trés grand nombre de points, ce
qui peut limiter son utilisation en pratique. Nous étudions ainsi le probléme de la
quantization d’une telle mesure, c’est-a-dire de celui de trouver une mesure de petit
support qui va approcher a,. Le chapitre 8 compile des résultats sur le diagramme
de persistance moyen obtenus en collaboration avec Théo Lacombe [DL.20; DL21] et
Frédéric Chazal [DC19].
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Chapter 2

Introduction (English)

This thesis fits within the framework of Topological Data Analysis (or TDA), which
is here tackled from two different perspectives, namely geometric inference, and
persistent homology theory. These two approaches both aim at extracting, in different
contexts, relevant information of a geometric and topological nature on complex
datasets exhibiting nonlinear structures.

1 Challenges in geometric inference

The classical statistical theory developed in the 30s by Fischer relies on the following
hypothesis: we observe a low-dimensional dataset, for which we possess a simple
generative model (gaussian, exponential, etc.). The goal is then to find estimators of
parameters characterizing the law of the dataset, for which we are able to give strong
optimality guarantees. In contrast, modern datasets are typically high-dimensional
point clouds. If classical methods can still be applied to such datasets, their performance
(both in theory and in practice) becomes poor. This phenomenon, called the curse of
dimensionality, shows the need of a paradigm shift. First, in a modelization step, sets
of hypotheses tailored to a large class of high-dimensional datasets must be designed.
Second, it is necessary to develop statistical methods adapted to those new sets of
hypotheses.

For instance, some methods, such as the LASSO [Tib96], are effective under a
sparsity assumption on the dataset. Some regression methods, such as ridge regression
[HK70], penalize the complexity of the proposed regression function to adapt to
the high-dimensional setting. Let us also mention the PCA method (for Principal
Component Analysis [Pea0l; Hot33]), which aims at finding the subspace fitting the
best the dataset with respect to the La-norm. All the methods we have mentioned rely
on the existence of a low-dimensional linear structure being relevant to explain the
dataset. In particular, they require to have a high level of trust in the parametrization
of the dataset, while any reparametrization can break this linear structure (see Figure
2.1). The key idea of geometric inference consists in relaxing this hypothesis by
supposing that the dataset in high dimension lies around a low-dimensional shape, a
priori non-linear. Mathematically, we suppose that the observed dataset is close to a
manifold M of dimension d small in an ambient space of dimension D, possibly large.

From a statistical point of view, this type of hypotheses was first studied in the
case where one has access to the manifold M [Hen90; Pel05]. This is for instance the
case for geolocalization problems [[PT19], where datasets are located on the sphere
S?, or for studying images of faces under different lightings, the dataset then lying
on a Grassmannian G(k,d) [Cha+07]. Having access to the manifold is however
most of the time too demanding. During the 2000s, another family of techniques
was developed, that may be aggregated under the name of non-linear dimensionality
reduction methods [RS00; ZZ03; WSS04| (let us also mention earlier attempts like
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FIGURE 2.1: The linear structure of the blue dataset disappears
when the vertical axis is reparametrized by a non-linear function (here
sinusoidal). The orange dataset is however still close to a manifold.

self-organizing maps [Koh89] or adaptive principal surfaces [LT94]). Those methods,
which do not require the knowledge of the manifold M, aim at embedding in the most
faithful way possible a point cloud close to a "non-linear” shape in the Euclidean space
R? for some small d. For instance, the ISOMAP method [TDSLO0], relies on the
embedding in R?, thanks to a multidimensional scaling (or MDS), of a neighborhood
graph built on top of the observations. It allows the "unfolding” of datasets lying
on objects which are diffeomorphic to an open convex set (see Figure 2.2). We may
then apply standard classification or regression techniques to the "unfolded” dataset.
However, those techniques possess theoretical guarantees only in a restricted setting:
the dataset must be close to a shape at least diffeomorph to R?, while it is for instance
impossible to embed continuously a sphere in R2.

Around the same time, the field of computational geometry has witnessed the
development of algorithms allowing the reconstruction of a manifold M C RP based
on a finite sample X', with the emphasis being put on the reconstruction of curves and
surfaces [BTG95; AB99|. For example, the COCONE algorithm [Ame-+00] reconstructs
a smooth surface M thanks to a finite approximation, under the condition that the
approximation rate ¢(X') := sup{d(z,X') : * € M} of the sample X is small enough,
while the Tangential Delaunay Complex [BG14] allows such a reconstruction in higher
dimension. The reconstruction of topological or geometric invariants of M, like its
medial axis [ABE09] or its homology and homotopy groups [CO08| has also been
addressed. Once again, those results only require a finite sample X of the manifold M
having a good approximation rate. Another point of view consists in assuming that X’
is the realization of a random process of n independent observations from some law
u concentrated around M. One can then hope that methods of interest have a good
performance with high probability, on "typical” samples. This statistical approach on
computational geometry problems was first proposed in a seminal paper by Niyogi,
Smale and Weinberger [NSWO08|, where the authors show that the homology of a
manifold M is recovered with high probability by the Cech complex (a combinatorial
object defined in Chapter 3) of the n-sample &,,. In the 2010s, the estimation of other
descriptors of M was proposed: its dimension [HA05; LIM09; KRW19], its tangent
spaces |[AL19; CC16], its reach [Aam+19; Ber+21], its curvature [AL19], its geodesic
distances [ACC20], or the manifold M itself [Gen+12a; Gen+12b; MMS16; AL1S;
AL19].

This statistical point of view on computational geometry allows us to define
in a simple manner what it means for a procedure to be optimal. This is made
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FIGURE 2.2: Left: a set X of 3000 points sampled on a swiss roll.
Right: output of the ISOMAP algorithm with input X (implemented
with scikit-learn [Bui+13]).

possible thanks to the minimax statistical theory. Consider for instance the problem
of estimating a manifold M thanks to a random n-sample X,,. An estimator M of M
is by definition any compact subset of RP, being a measurable function of the sample.
The quality of the estimator M with respect to the law pu, called its p-risk, is given by
the average Hausdorff distance d between the estimator and M:

where M = M (X,) and X, is a n-sample of law p. In reality, the law p generating the
dataset is unknown, and it is more interesting to control the p-risk over a set Q of laws
1, that we call a statistical model. In geometric inference, several statistical models
were introduced, which take into account different noise models and regularities of the
manifold M. The uniform risk of the estimator M on the class Q is given by

Ro(M, Q,dp) = sup{Ry(M,p,dp) : p€ Q}, (2.2)

while we say that an estimator is minimaz if it attains (up to a multiplicative constant
as n goes to 0o) the minimax risk

Ron(M, Q,dy) := inf{R, (M, Q,dy) : M is an estimator}. (2.3)

Let us mention for instance the family of models Qi’im Fovin fonae introduced by Genovese
et al. in |Gen+12al, consisting of the laws u supported on a d-dimensional manifold
M satisfying some additional properties. First, we assume that p has a density f
on M, lower bounded by some constant funi, > 0 and upper bounded by another
constant fmax. This ensures that all the parts of the manifold M are approximately
evenly sampled: we then say that the law is “almost-uniform” on M. The parameter
Tmin gives a lower bound on the reach 7(M) of the manifold. The reach is a central
notion in geometric inference, defined as the largest radius r such that, if some point
x is at distance less than r to M, then there exists a unique projection y of z on
M. More geometrically, having a reach larger than r implies that it is possible to
make a ball "roll” along the manifold M without "bumping” into another part of M
[PLO8, Lemma A.0.6]. Therefore, the reach 7(M) controls two different quantities: the
curvature radius of M (that is a local regularity), and a global regularity parameter,
indicating the presence of a bottleneck structure in the manifold (see Figure 2.3). On
the statistical model Q2’d

Tmin 7fmin 7fmax

Inn\ 2/ 2.d Inn\ 2/
o (™) < R0 )< (M) (2.4

n Tmin>fmin;fmax n

, the minimax rate of convergence satisfies



18 Chapter 2. Introduction (English)

FI1GURE 2.3: If the reach of the curve M is too large, then the curve
cannot be too pinched (left) and cannot present a tight bottleneck
structure (right).

for two positive constants cg, c; depending on Tmin, fmin, fmax and d. The lower bound
in this inequality was shown by Kim and Zhou [KZ15], while the upper bound is
obtained by exhibiting an estimator having a uniform risk of order (Inn/n)%%. Such an
estimator (although not computable in practice) was first proposed by Genovese et al.
in [Gen+12al, while another estimator attaining this same minimax rate (computable
in practice), and based on the Tangential Delaunay Complex, was proposed by Aamari
and Levrard [AL18|.

1.1 The adaptivity problem

The Tangential Delaunay Complex depends on several parameters, like for instance a
radius quantifying the size of the neighborhoods used to compute local PCAs. For the
Tangential Delaunay Complex to be minimax, those parameters have to be calibrated in
a precise manner with respect to the quantities Tinin, fimin and fiax defining the model.
However, those quantities are a priori unknown. The question of the practical choice
of the parameters defining the estimator is then raised. This question of the tuning
of parameters defining an estimator is not restricted to the framework of manifold
estimation, but is a classical problem in statistics.

Let us cite for instance the question of the choice of the bandwidth for kernel
density estimation. Let X1,..., X, be a n-sample of some law p having a density f on
R, and suppose that we want to recover the value f(xg) of the density at some fixed
point 2y € R. A standard method to achieve this goal is to consider the convolution of
the empirical measure p, = 1 3" | §x, by some kernel K}, where Kj, = h™'K(-/h)
and K satisfies [ K = 1. We then obtain a function fh = K}, % u,. Assume that
the density f is of regularity s, that is f € C*(R), the set of |s]-times differentiable
functions, whose [s|th derivative is (s — |s|)-Holder continuous. Then, for a good
choice of kernel K, it is optimal to choose the bandwidth hqp of order c- n~1/@2s+1)
where ¢ depends of the C*-norm of f [Tsy08, Chapter 1]. The associated risk is then
of order n=5/(25%1) which is the minimax rate of estimation on the class of densities
of regularity s. In practice, it is impossible to know exactly the value of s, so that
we must find another strategy to choose the bandwidth h. Adaptive methods consist
in choosing a bandwidth hin a data-dependent way, such that the estimator f;l has
a p-risk almost as good as the optimal estimator fhopt under weak hypotheses on
. One of such method, the PCO method (for Penalized Comparison to Overfitting)
introduced by Lacour, Massart and Rivoirard [LMR17]| consists in comparing each
estimator f;, to some degenerate estimator fhmin for some very small hpin. The selected
bandwidth & is chosen among a family H of bandwidths (all larger than hpyiy), by
minimizing a criterion depending on the distance || frn— fhmin | 2, (r), While penalizing
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small values of h. Lacour, Massart and Rivoirard then show an oracle inequality for
their estimator, that is an inequality of the form

E|fy — 1@ < Cmin{Elfi — fI2,m : heH)+CnJH]),  (25)

where C'(n, |H]) is a reminder term negligible in front of the optimal risk. Thus, we
obtain that fh has a risk almost as good as the best estimator fhopt7 while we never
had to estimate the parameters defining the statistical model (that is the regularity s
of the density and the C%-norm of f).

In Chapter 4, we draw inspiration from the PCO method to create an adaptive
manifold estimator. A first step consists in creating a family of estimators (Mt)tz(),
similar to kernel density estimators for manifold estimation. This is made possible with
t-convex hulls. For ¢ > 0, the t-convex hull Conv(¢, A) of a set A is an interpolation
between the set A (t = 0) and its convex hull Conv(A) (t = co). It is defined by

Conv(t, A) := U Conv(o), (2.6)
oCA
r(o)<t

where r(o) is the radius of the set o, that is the radius of the smallest enclosing
ball of . We first show that for t = ¢ - (Inn/n)"/? where ¢ depends on d and on
the parameters Tmin, fmin and fmax, the t-convex hull Conv(t, X;,) of a n-sample is
a manifold estimator which is minimax on the statistical model Qi’im Fonins o We
then consider the problem of selecting the parameter t. An analog of the degenerate
estimator fhmin is given by the choice t = 0, with Conv(0, X,,) = &,,. The PCO method
therefore suggests comparing the estimators Conv(¢, X,,) with X,,, that is to study
the function t — h(t, X,) := dg(Conv(t, X,), X, ). This function was actually already
introduced under the name of "convexity defect function of the set X}, in a paper by
Attali, Lieutier and Salinas [ALS13], where it was used to study the homotopy type of
Rips complexes. We show that the convexity defect function of X&), exhibits different
behaviors in two different regimes: before a certain threshold value t*(A&},), it has a
globally linear behavior, whereas after this threshold value, it has a (sub)quadratic
behavior. The convexity defect function is computable based on the dataset, so that
we may in practice observe those two regimes. We are then able to show that values of
t just above the threshold value t*(&;,) provide a minimax risk of order (Inn/n)?®.
More precisely, we fix two hyperparameters 0 < A < 1 and t,,x, and let

ty 1= sup{t < tmax : h(t, &) > At} (2.7)

Our main result states that if ¢,,x is small enough with respect to 7Ty, then
Conv(ty, &,) is a minimax adaptive manifold estimator (see Figure 2.4). Note that we
do not obtain the adaptive property of the estimator by providing an oracle inequality
of the type (2.5), but by showing that £, is larger than the threshold value ¢*(X},)
(while being of the right order of magnitude) with high probability, this property
being enough to ensure the minimax behavior of the corresponding estimator. We
also are able to show that the parameter ) is actually close to the approximation rate
e(X,). As mentioned earlier, some algorithms in computational geometry require the
knowledge of the approximation rate (or rather of bounds on the approximation rate),
and may therefore be used with plugging in the parameter £y.

1.2 Reconstructing the measure rather than the manifold

The second contribution proposed here is motivated by the density estimation problem.
In geometric inference, the issue of reconstructing the density f of the measure pu
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FIGURE 2.4: Left. Sample &,,. Center. Convexity defect function of
X, and selected scale ). Right. The set Conv(fy, X,,).

generating the observations &, was first addressed in the case where one has access to
the manifold M. Hendriks [Hen90] proposes to use the eigenfunctions of the Laplace-
Beltrami operator on the manifold to estimate the density, whereas Pelletier [Pel05]
introduces a kernel density estimator using the geodesic distance on the manifold. In
the setting of manifold inference, where the manifold M is supposed to be unknown,
papers addressing density estimation are more recent. Let xg be a point that we
assume belongs to M. The estimation of f(z¢), the density of f at xg, was first
tackled in [BS17; WW20], where estimation rates of kernel density estimators are given,
respectively in the case where the manifold has a boundary and in the case where the
density is supposed to be Hélder continuous. Berenfeld and Hoffmann [BH19| exhibit
minimax rates of convergence for this problem, and show that two regularities come
into play in the optimal rate: on one hand the regularity s of the density f, and on
the other hand the regularity k£ of the manifold M. Moreover, authors show that the
Goldenshluger-Lepski method [GL13] can be applied in this setting to select a kernel
bandwidth, producing a minimax adaptive estimator of f(zo).

To go beyond the pointwise estimation of f (or equivalently of the associated
measure 4), the choice of the loss function is a delicate issue. Indeed, standard choices
in density estimation include the L,, distance, the Hellinger distance, or the Kullback-
Leibler divergence. All those loss functions become degenerate for the comparison of
two mutually singular measures. If the support M of the measure p is unknown, it
will be impossible to build, thanks to a finite sample, a measure which is non-singular
with respect to the volume measure voly; on M, even though we may be able to
build measures whose supports are very close to M for the Haussdorf distance. On
the contrary, Wasserstein distances W, (1 < p < oo) are by design robust to metric
perturbations of the support of a measure, and are therefore particularly adapted to
our problem. They are defined in the following way. Given two probability measures p
and v, we define a transport plan 7 between p and v as a measure on RP x R” having
first marginal ;1 and second marginal v. Informally, at the point z € RP, a fraction
dr(x,y) of the mass du(x) located at x is sent to y. The cost of such a plan is given
by Cp(m) = [[ d(z,y)Pdn(z,y), whereas the Wasserstein distance W), is given by the
optimal cost of a transport plan:

Wp(p,v) == inf{C}/P(x) : 7€ M(p,v)}, (2.8)

where II(p, v) is the set of transport plans between p and v.

Using Wasserstein distances, and more generally the theory of optimal transport,
has shown its efficiency in a wide class of modern machine learning problems (see
e.g. [PC19]). In particular, Niles-Weed and Berthet have tackled the problem of
estimating the density f supported on the cube [0, 1]% using Wasserstein distances as
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FI1GURE 2.5: Left: an interaction graph between Reddit users, from
the dataset REDDIT-5K, presented in [YV15]. Right: simulation of
turbulent flows given by Navier-Stokes equation [Sch-+06].

loss functions [WB19b]. Assume that f belongs to the Besov space B, , (see Chapter
5 for details). Then, they show that a modification of a classical wavelet density
estimator attains the rate of convergence n~(5t1)/(s+d) for ¢ > 3 with respect to the
Wasserstein distance W), (whereas the rate of convergence for the pointwise estimation
of the density is of order n=%/(2574))  Moreover, this rate is the minimax rate.

Our contribution, presented in Chapter 5, consists in extending this minimax result
by replacing the cube by any submanifold M of regularity k for k£ > s + 1. We show
that a measure having a density with respect to voly; given by a weighted kernel
density estimator, attains the same minimax rate of n~(t1/2s+d) Ip the case of
interest where the manifold M is unknown, we cannot use voly, such that the previous
estimator cannot be computed. We therefore propose in a first step to estimate the
volume measure, thanks to some estimator vol A, and show that Upy := = voly; / |v01 M| s
a minimax estimator of the uniform measure on M. The reconstruction of the volume
measure is based on the estimation of local C* parametrizations of the manifold M
introduced by Aamari and Levrard [AL19].

2 A multiscale perspective: persistent homology theory

Works we have mentioned so far all rely on the strong hypothesis of the existence of a
low-dimensional manifold interpolating the dataset. It is however reasonable to ask
questions of a topological nature in a much more general framework. For instance,
one can imagine that relevant information is present in the fine topological structure
of a spatial process, information which can be used for a classification task [Bro-20)].
In certain problems, the observed dataset is not a point cloud, whereas a notion of
topology is still relevant. This is for instance the case if a family of graphs is observed,
where topology is then described by the presence of cycles or connected components
[AMAOT; Hof+17; ZW19; Car+20], see also Figure 2.5. Persistent homology theory
in TDA aims at quantifying in a precise sense what is the underlying topology of a
dataset in a very general way. To do so, we adopt a multiscale approach.

Consider first a simple example. Let X}, be a finite set of n points in R”. From a
topological perspective, the set A, is trivial: it consists of n connected components,
each of them being reduced to a point. A possibility to obtain a topologically more
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birth

FIGURE 2.6: The one-dimensional persistence diagram associated with
the filtration (X!);>0.

complex set is to choose a scale t and to consider the t-neihborhood of A;:

Xti= | B(a,1). (2.9)

$€Xn

As explained previously, choosing a "right” scale t is then a delicate issue, although
we proposed in Chapter 4 an algorithm to select such a scale in the case where the
sample X, is close enough to a manifold M. Persistent homology theory proposes to
avoid the choice of the parameter ¢ by tracking the evolution of the homology groups
of X! as t grows from 0 to +oo. If for instance one is interested in 1-dimensional
homology (that is the presence of "loops” in a shape), one can observe that loops will
appear at certain times in the process, before being filled when the radius ¢ of the balls
becomes larger. When ¢ becomes very large, the set becomes homotopy equivalent to
a ball, and does not possess any non-trivial cycle. This process can be summarized
by a set of intervals, each interval [b, d) representing a loop appearing at scale b, and
disappearing at scale d. An equivalent point of view is to consider the collection of
points (b,d) € R?, that we call the persistence diagram associated with the process,
see Figure 2.6). Note that we always have d > b, so that a persistence diagram is
a list of points in Q = {u = (u1,u2) € R? : ug > uy}, or equivalently a measure
of the form Y, ;d,, on Q. The longer a loop was present in the process (X!)i>o,
the more important it is. We call persistence of the loop the lifetime d — b of the
associated interval. Therefore, in a persistence diagram, points far away from the
diagonal 0Q := {(¢,t) : t € R} correspond to important topological features of the
underlying process. More generally, persistent homology theory can be applied to any
filtration of topological spaces, that is any increasing sequence of topological spaces
(XY)4er. This includes in particular the sublevel sets of a function f : X — R, where X
can be a graph, an image, or any metric space. When the function f is the distance to
a set X, C X, we recover the process mentioned before, while the persistence diagram
is called the Cech persistence diagram of the set &,,. Moreover, different homology
dimensions may be considered: connected components (dimension 0), loops (dimension
1), cavities (dimension 2), etc.
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Persistent homology theory and the notion of persistence diagram were progressively
introduced in the early 2000s [Rob99; ELZ00; Car-+04], while the concept of persistence
was also introduced independently by Barannikov in the field of Morse theory [Bar94].
One of the first major results in TDA consisted in showing that persistence diagrams
are in a strong sense stable with respect to the object on top of which they are built
[CSEHO7]. This property, commonly called the stability theorem, relies on a powerful
algebraic stability result which is precisely stated in Chapter 3. This stability theorem
is based on a notion of distance between diagrams, called the bottleneck distance d.
Subsequently, distances d;, for 1 < p < oo were introduced. These generalizations of
the bottleneck distance are known to satisfy weaker stability results (stemming from
the bottleneck stability result) [CS+10]. Let a and b be two persistence diagrams,
with a being given by the list of points z1,...,z, € Q and b by the list y1,...,ym € Q.
A matching + between a and b is given by a bijection between a U 92 and b U 0.
Precisely, each point z; is sent by v either towards some y;, or to some point of the
diagonal, while the y;s that are not the image of some z; are the image by « of some
point of the diagonal. The cost Cp(7y) of the matching v is given by

Co(M) = Y llz—~@)|", (2.10)

€U0
where || - || represents any norm on R?. A matching with minimal cost is said to be
optimal, while we let
dy(a,b) := inf{Cp(7)"/?: v € T(a,b)}, (2.11)

with T'(a,b) being the set of matchings between a and b (see Figure 2.7). We may
moreover remark that in an optimal matching, every point sent towards the diagonal
is actually sent towards its orthogonal projection on the diagonal. Intuitively, we are
matching the different cycles corresponding to each point of the two diagrams, whereas
matching a point to the diagonal corresponds to matching a cycle to a "non-persistent”
cycle, with an interval of the form [b,d) with b = d. Of particular interest in TDA
is the bottleneck distance d,, obtained as the limit of the d, distances for p — oo.
Equivalently, the cost Coo(7y) of a matching + is given by sup{||z —y(z)|| : = € aUIQ}
whereas the bottleneck distance is given by

doo(a,b) :=inf{Cx(y) : v € I'(a,b)}. (2.12)

Persistence diagrams encode rich topological information of the dataset they
summarize, and often complementary to more classical methods. However, they do
not naturally belong to a vector space, so that it is unclear how to use them directly
in standard machine learning algorithms. Two approaches have been proposed in the
literature. The first one consists in using feature maps (also called representations)
on the space of persistence diagrams, which allow the transformation of persistence
diagrams into vectors, which can then be easily plugged in standard machine learning
pipelines. The second one is to work directly in the space of diagrams D, by example
by using methods requiring only distances in entry (like the multidimensional scaling
previously mentioned). We will study those two approaches.

2.1 The space of persistence diagrams studied through partial opti-
mal transport

Concerning the second approach, it is first necessary to understand precisely the
structure of the space of persistence diagrams, seen as a metric space. This study
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FIGURE 2.7: Left: two persistence diagrams. Center: a matching ~

between the two diagrams. The cost Cp(7y) is given by the sum of the

lengths to the power p of the edges appearing in the matching, while

the bottleneck cost Coo(7) is given by the length of the longest edge.
Right: an optimal matching for every 1 < p < cc.

was initiated by Mileyko, Mukherjee and Harer [MMH11], who show properties of the
metric space

DP:={ae€D: dy(a,0) < oo}, endowed with the distance d,, (2.13)

where 0 is the empty diagram, so that dy(a,0)? =3 ., (u2 — u1)P, a quantity called
the p-total persistence of the diagram a, and denoted by Pers,(a). Note that we allow
here diagrams with infinitely many points, so that it is possible to have dp(a,0) = cc.

We propose in Chapter 6 to participate in the study of the structure of the space of
persistence diagrams by adopting a different point of view than in [MMHI11]. We have
already mentioned that a persistence diagram can be seen either as a list of points in €2,
or as a point measure on ) . dy;. Although the "list” approach appears to be favored
in the literature, the measure point of view turns out to be more fruitful. On the one
hand, this point of view allows us to define in an effortless manner the sum, or the
average of several diagrams, which would then be a general measure (and not a point
measure). On the other hand, this allows us to apply the theory of optimal transport
to study persistence diagrams. Indeed, the Wasserstein distances W), used in optimal
transport, that we have already mentionned, allow for the comparison of measures,
while the distances d, and W), share common aspects: they are both defined as some
minimal transport/matching cost between two measures. Because of this similarity,
distances d,, are commonly called Wasserstein distances in TDA literature. This name
is however misleading, as there is a fundamental difference between the d, and W),
distances: the W), distances are only defined for probability measures (or measures
having the same mass), while d,, distances are defined for measures having possibly
different masses, but that have to be point measures.

We establish in Chapter 6 a precise link between the metric structure of the space
of persistence diagrams and optimal transport, by leveraging partial optimal transport
distances introduced by Figalli and Gigli [FG10]. By establishing this link, we are able
to obtain metric properties of the space DP (such as its completeness, or the existence
of barycenters), but also to extend the space DP to some larger space MP, that we call
the space of persistence measures, and that we endow with the Figalli-Gigli distance
FG,, extending the distance d,. The space of persistence measures benefits from
being "linearly” convex, so that averages of diagrams are easily defined, the expected
persistence diagram E(P) of a law P on the space of diagrams being at the core of
Chapter 8. Furthermore, exhibiting this link justifies the adaptation of algorithms
used in optimal transport for persistence diagrams, an approach which can be fruitful
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FIGURE 2.8: The persistence diagram a,, of n = 700 random points
on the torus (for 1-dimensional homology). The two topmost points
in the diagram give information on the geometry of the torus (its two
holes), whereas points close to the diagonal represent topological noise.

[LCO18|. Chapter 6 is taken from the paper [DL20], written in collaboration with
Théo Lacombe.

2.2 Linear representations on the space of persistence diagrams and
the choice of the weight function

The first approach we have mentioned to perform statistical procedures using persistence
diagrams consists in using a map ¥ : D — B, where D is the space of persistence
diagrams and B is a Banach space. Such an application, that is called a feature map
or a representation allows the transformation of a sample of persistence diagrams into
a sample of vectors, which can then be plugged easily in a machine learning algorithm.
Numerous representations were introduced in the literature. We may identify a large
subclass of representations, that we call linear representations, and that includes for
instance the persistence surface [Ada+17] (and its variants [Che-+15; KHF16; Rei+15]),
the accumulated persistence function [BM19] or the persistence silhouette [Cha-+15a].

Definition 2.1 (Linear representation). Let f : Q@ — B be any map, where B is a
Banach space. The application Wy : D — B defined by Wy(a) := ), . f(u) is called
the linear representation associated with f.

A first criterion to evaluate the relevance of a representation W is its stability: is
U Lipschitz-continuous (or Hélder continuous) for a certain distance d,? We give in
Chapter 8 criteria on the function f which ensure the continuity of the function ¥,
then its Lipschitz (or Holder) behavior with respect to the d,, distances. It appears
that, to obtain stable representations, it is fundamental to weight the function f
by some weight function w which is sufficiently small close to the diagonal. We
give sufficient conditions on w to ensure that representations of the form W, for
f Lipschitz continuous and bounded are stable. In particular, a weight function of
the form u — (ug — u;)? produces Holder continuous linear representations on Cech
persistence diagrams built on top of d-dimensional manifolds, as long as p > d.

We then address the question of the choice of the weight function w by taking an
asymptotic point of view. We have mentioned earlier that points of high persistence
in a persistence diagram are “more important” and represent important topological
features of the underlying object. In the case where n points X, are sampled on
a manifold M, we observe that the persistence diagram a,, of &,, (for the filtration
(X!)i>0) contains two types of points: points with high persistence corresponding
to the persistence diagram of the manifold, and a large number of points with low
persistence measuring the "topological noise” of the sample, see Figure 2.8 for an
example on the torus. We explore the behavior of the structure of the topological noise
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in a simplified framework, where points are randomly sampled on the cube [0, 1]¢. We
show that the size of the topological noise of a,, measured by its total persistence
Pers,(an) 1= Y ,cq, (u2 — u1)P, is of order c- n'~P/¢  with a constant ¢ depending
on the sampling density. This suggests that if points with high persistence in the
diagram of a point cloud informs us on the macroscopic structure of the shape, the
topological noise contains other types of information, such as the intrinsic dimension
of the sample. These remarks were then used by Adams et al. [Ada+20] to define
a notion of persistent dimension of a set. More generally, we show that the rescaled
diagram n~Y4q,, (which is a persistence measure) converges with respect to the metric
FG,, towards some limit persistence measure depending on the sampling density. This
implies in particular that representations of the form W, ¢(a,) converge for w of the
form u — (ug — uq)P for p > d. We find in the two cases the same heuristic: a weight
function of the form u +— (ua — u1)P for p > d should be chosen if the persistence
diagrams are built on top of a d-dimensional object.
Chapter 7 is based on a collaboration with Wolfgang Polonik [DP19].

2.3 The expected persistence diagram

In a statistical context, we are often in presence of a n-sample of persistence diagrams
ai,...,a, arising from e.g. a collection of graphs [Car+20]|, of time series [SDB16],
or of 3D shapes [COO15b]. We may then consider their associated representations
U(ay),...,¥(ay). To obtain statistical results on the sample ¥(ay),. .., ¥(ay), it is best
to start by considering simple quantities such as their average 2 (¥(a1) + -+ + ¥(an)).
The law of large numbers implies that the average converges towards E,.p[¥(a)],
where P is the law generating the diagrams a;. However, it is not clear a priori what
are the properties of this limit. We propose to describe this expectation for linear
representations V. In this case, if we denote by

1
Ap = - (a1 4+ apn) (2.14)

the average of the a;s, which is a persistence measure, we have

(W) + o+ Vy(an) = V(). (215)
This quantity converges towards ¥ ;(E(P)) = [ f(u)dE(P)(u), where E(P) = Eqp[a]
is the expected persistence diagram of P, defined precisely in Chapter 8 and first defined
in a publication written in collaboration with Frédéric Chazal [DC19|. The expected
persistence diagram is a measure on {2, which gives the average intensity of the number
of points of a random diagram a ~ P in a given zone. We establish in Chapter 8
various properties of expected persistence diagrams: their stability with respect to the
law P, rates of convergence of the empirical expected persistence diagram a,, towards
E(P) (with respect to Figalli-Gigli distances FGy), or the existence of a density Ap
for E(P) in a very general framework. This last result implies in particular a precise
description of the limit of 2(¥s(ar)+- 4 ¥y(ay,)): it is equal to [ f(u)Ap(u)du, and
the knowledge of Ap (which is possible through estimation procedures) allows us to
have a precise knowledge of the limit. One of the drawbacks of the empirical expected
persistence diagram @, is that it potentially contains a very large number of points,
which may hinder its use in practice. We therefore also study the problem of the
quantization of such a measure, that is the problem of finding a measure with small
support which approximates it. Chapter 8 gathers results on the expected persistence
diagram obtained in collaboration with Théo Lacombe [DL20; DL21| and Frédéric
Chazal |[DC19].
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Chapter 3

Background

3.1 Elements of measure theory

Let (X,G) be a measurable space. We denote by P*(X) the set of signed measures
on X, while P(X) is the set of finite measures on the space (X,G). By the Jordan
decomposition theorem [Foll3, Proposition 3.4], every measure u € P*(X) can be
decomposed into two positive mutually singular measures p+ and p~, such that
p=pu"—p". For m > 0, we let P,,(X) be the set of measures in P(X) having mass
m, i.e. such that u(X) = m.

We will focus on the case where X is endowed with some metric d and G = B(X) is
the associated Borel o-algebra. In that case, we let Cy(X') be the space of continuous
bounded functions on X, which is a Banach space when endowed with the co-norm
| - [|oo- Every p € P(X) then induces a linear functional on Cy(X'), defined by

f € Co(X) = p(f). (3.1)

As |pu(f)] < w(X)||flloo, this linear functional is continuous, so that P(X) can be
identified with a subset of Cy(X')*, the topological dual of Cy(X'). The weak topology
on P(X) is the topology induced by the weak-* topology on Cp(X)*. Concretely, a
sequence (pi,)n in P(X) weakly converges towards p in P(X) if for all f € Cp(X) we
have i, (f) = p(f). We then write u,, — p. A stronger topology on P(X) is given by
the dual norm on Cp(X)*, that we call the total variation norm: for p,v € P(X),

= vl i= gsup{lu(f) — vl f € G, 1fll < 1. (3.2)

When (X, d) is locally compact and separable [AFP00, Proposition 1.47|, this formula
coincides with more common definitions of the total variation:

| = v| = sup{|p(4) — (A)I A e B(X)}

-2 Jl-

where A is any measure dominating 4 and v.

We now state elementary topological properties of P(X’). We make the distinction
between a Polish metric space, that is a complete separable metric space, and a Polish
space, the latter being a topological space X (not necessarily associated with a metric)
for which there exists a distance d metrizing the topology such that (X', d) is a Polish
metric space. The following proposition appears for instance in [Var58g].

(3.3)

Proposition 3.1.1. Let m > 0. We endow Py, (X) with the weak topology.
1. The space X is separable if and only if P, (X) is separable.

2. The space X is compact if and only if Pp,(X) is compact.
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3. The space X is a Polish space if and only if Pp,(X) is a Polish space.

Persistence diagrams, that are defined rigorously in Section 3.8, are not finite
measures in general, but may have infinite masses. The space P(&X) is therefore not
suited to study them, while the larger space of Radon measures provides a satisfactory
framework to handle such non-finite measures. We assume for the remainder of the
section that (X, d) is a locally compact Polish metric space.

Definition 3.1.2 (Radon measures). A Radon measure p on X is a locally finite
measure, that is such that for every point x € X, there exists a neighborhood U of x
with p(U) < oo. We denote by M(X) the set of Radon measures on X .

Remark 3.1.3. It is common in the literature to define Radon measures by imposing
further regularity conditions on p (namely inner regularity on open sets and outer
regularity on Borel sets). When X is a locally compact Polish metric space, those
regularity conditions are automatically satisfied, and the definition of a Radon measure
becomes more straightforward, see [Foll3, Theorem 7.8].

The Riesz—Markov—Kakutani representation theorem asserts that Radon measures
correspond exactly to nonnegative elements of the dual space of C.(X'), the space of
continuous functions with compact support on X. Before stating the theorem, we need
to endow C.(&X') with a topology. Let A, be a sequence of relatively compact open
subsets such that | J,,~q An = X. We let Co(Ay) be the completion of C.(Ay,) for the
| - |lso-norm (the space of functions which vanish on the boundary of A,). We then
endow C.(X) with the strongest locally convex topology such that all the inclusions
Co(A,) — C.(X) are continuous, and which makes C.(X) a complete topological
vector space. More concretely, endowed with this topology, a sequence (fy,), in C.(X)
converges towards some function f € C.(X) if and only if there exists a compact set
containing the supports of all the functions and we have uniform convergence of (f,,)n
towards f.

Definition 3.1.4. Let C.(X)* be the topological dual of C.(X). We say that ¢ € C.(X)*
is nonnegative if ¢(f) > 0 for any f € Co.(X) which is nonnegative.

The following theorem is for instance found in [AFP00, Theorem 1.54].
Theorem 3.1.5 (Riesz—Markov-Kakutani representation theorem).
1. Let p € M(X). Then, the application f € Co(X) — u(f) is continuous.

2. If ¢ € C.(X)* is nonnegative, then there exists a unique Radon measure p € M(X)
such that ¢(f) = u(f) for every f € C.(X).

As such, M(X) can be identified with a subset of C.(X)*. We endow M(X)
with the topology induced by the weak-* topology on C.(X)*, that we call the vague
topology. Concretely, a sequence of Radon measures (), converges vaguely towards
some Radon measure p if, for all f € C.(X), we have u,(f) = u(f). We then write
Lin — L.

The following propositions are standard results. Corresponding proofs can be found
for instance [Kal83, Section 15.7].

Proposition 3.1.6. The space M(X) is a Polish space.

Also, P(X) C M(X), with the injection being continuous: if a sequence of finite
measures converges weakly to some finite measure, then the vague convergence also

holds.
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Definition 3.1.7. A set F C M(X) is said to be tight if, for every e > 0, there exists
a compact set K with pn(X\K) < e for every u € F.

Proposition 3.1.8. A set F' C M(X) is relatively compact for the vague topology if
and only if for every compact set K included in X,

sup{u(K): p€ F} < oc.

Proposition 3.1.9 (Prokhorov’s theorem). A set F' C P(X) is relatively compact for
the weak topology if and only if F is tight and sup{|p|: p € F} < oo.

Proposition 3.1.10. Let p, py, po, ... be measures in P(X). Then, p, 2w if and
only if |pn| = |p| and pn = p.

Proposition 3.1.11 (The Portmanteau theorem). Let u, u1, pi2,... be measures in
M(X). Then, pin, = p if and only if one of the following propositions holds:

o for all open sets U C X and all bounded closed sets F' C X,
lim sup g, (F) < u(F) and lirginf wn(U) > p(U).

n—oo
e for all bounded Borel sets A with u(0A) =0, 1Lm tn(A) = p(A).

Finally, we define D(X) the set of integer measures on X, that is Radon measures
of the form ) ; 7 d;, for some index set Z. Integer measures will be particularly
important in the following, as they will be identified with persistence diagrams.

Proposition 3.1.12. The set D(X) is closed in M(X) for the vague topology.

3.2 Optimal transport

Optimal transport is a widely developed theory providing tools to study and compare
probability measures supported on some metric space X [Vil03; Vil08; San15], that is,
up to a renormalization factor, non-negative measures with same mass. The optimal
transport problem was first introduced by Gaspard Monge in 1781 in its "Mémoire
sur la théorie des déblais et des remblais” [Mon81]. Consider a distribution of dirt (or
"remblais”) p and a distribution of holes (or ”déblais”) v, see Figure 3.1. A transport
plan 7 between p and v is a strategy for moving the dirt to fill the holes: at each point
x, a fraction dz(x,y) of the mass du(x) is moved to y. The quantity of mass moved
from z, which could be written as fy dr(x,y) should be exactly equal to du(x), the
total mass originally present at x. Likewise, the quantity of mass fx dn(z,y) arriving
to y should be equal to dv(y). Mathematically, if ¥ and p are measures on some metric
space (X,d), then a transport plan is a measure on X x X', which must satisfy the
marginal constraints 7! = p and 72 = v (the first and second marginals of 7). Remark
that for a transport plan to exist, u and v must necessarily have the same mass. For
p =1, the cost of the transport plan 7 is then given by [[ d(z,y)dn(z,y), that is we
consider the total distance covered by the dirt through the transport plan w. The
1-Wasserstein distance Wi (u,v) between p and v (also called earthmover distance)
is then given by the smallest cost possible of a transport plan. More generally, we
introduce the following problem.

Given a metric space (X,d), 1 < p < oo and m > 0, we let P, (X) be the set of
distributions p € Py, (X) such that there exists z9 € X with [ d(z,zo)Pdu(z) < .
Remark that if yu € Ph,(X), then the previous integral is actually finite for every
xzg € X. For p = oo, we let PX(X) be the set of distributions p € Pp,(X) with
bounded support. We write II(u, v) for the set of transport plans between p and v.
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M N 1%

FIGURE 3.1: A distribution p of "remblais” (in blue) and a distribution
v of "déblais” (in red).

Definition 3.2.1 (Wasserstein distances). Let 1 < p < oo and let p,v € Ph(X). Let
m € l(p,v). For p < oo, the p-cost of w is equal to

Gy = [[dtayranay) (3.4)

while Coo(m) := 1 — esssupd(-,-). The Wasserstein distance Wy, q(p1,v) between p and
v s given by

Wil v) i= m{Cy(m) 7 : 7 € T, )} (3.5)
for p < 00, and Cy(m)"/P should be replaced by Coo(m) for p = oco.

When there is no ambiguity on the distance d used, we simply write W), instead of
Wp.a. We refer to [Vil08, Chapter 6] for the following proposition.

Proposition 3.2.2. For 1 < p < oo, the Wasserstein distance W, is a distance on
PL(X). Furthermore, there exist transport plans attaining the infimum in (3.5), that
we call optimal transport plans. If p < oo and (X,d) is a Polish metric space, then
the following propositions hold.

1. The space (Ph(X),W,) is a Polish metric space.
2. If X is compact, then Ph,(X) = Pp(X) and W, metricizes the weak topology.

3. Let pu, pu1, pia, . .. be measures in Ph(X). Then, Wy(pn, ) — 0 if and only if
fin — pand [ d(z,20)Pdun(x) — [ d(z,z0)Pdu(z).

We will denote by Opth(u, v) the set of optimal transport plans between p and
v. One of the key specificities of optimal transport distances with respect to other
distances between measures lies in that they are closely linked to the geometry of the
underlying metric space (X,d). For instance the embedding = € X + &, € P (X)
is an isometry when PY(X) is endowed with the Wasserstein distance. Also, metric
properties of (X,d) (e.g. compactness, completeness or separability) are inherited
by the space (PY(X),W,). More profound results indicate that studying the space
(PP (X),W,) can in turn give insights on the geometry of the space (X, d), and more
precisely on its curvature, see [Vil08, Part II].

For p = 1, the Wasserstein distance satisfies a duality formula, known as the
Kantorovitch-Rubinstein duality formula [Vil08, Chapter 5|.

Proposition 3.2.3. Let u,v € PL(X). Then,

Wi(p,v) =sup{|u(f) —v(f)|: f:X — R is 1-Lipschitz continuous}. (3.6)
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Note that the above formula shows that W) acts as a norm on the space of signed
measures with zero mass.

In this thesis, the theory of optimal transport will have two different uses. First,
it will be used in Chapter 5 where we propose estimators to reconstruct measures
supported on unknown manifolds. The quality of the reconstruction will be measured
thanks to Wasserstein distances. Second, metrics used in Topological Data Analysis
(see Section 3.8) share key ideas with metrics used in optimal transport. Making this
connection precise will be at the core of Chapter 6, and will in particular allow us to
introduce generalizations of persistence diagrams, that we call persistence measures.
Persistence measures will then be studied in the remainder of Part II, while optimal
transport will be a key technical tool to analyze their behaviors.

3.3 Statistical models and minimax rates

We end the prerequisites on measure theory by defining minimax rates in statistical
theory, which will be at the core of Part I.

Let (X,G) be a measurable space. A statistical model is given by the data of
(X,G,Q), where Q is a subset of P;(X). Let (E, &) be another measurable space and
let 0: Q — (E,€) be a functional to be estimated. Given a number n of observations,
an estimator of 6 is a measurable function 6§ : X" — E , Whereas the quality of the
estimator is measured through a measurable loss function £ : E x E — [0, 4+0c]. The
risk of the estimator 4 in u € Q is equal to

Rn(év H, ﬁ) = E(Xl,...,Xn)~u®" [ﬁ(é<X1a <o ,Xn), 9(:“’))]7 (37)

and the smaller the risk, the better the estimator. The minimazx risk for the estimation
of 8 on the model Q with respect to the loss L is given by

Rn(0,Q, L) := inf sup Ry (6, 1, L), (3.8)
0 peQ

where the infimum is taken over all estimators § of 6. An estimator attaining the
minimax rate (up to a constant) as n goes to +oo is called a minimaz estimator.

It will be sometimes necessary to allow for Q to vary with n (for instance if the
model ©Q includes a noise which we assume is small with respect to some function of
n). Also, there will sometimes be latent variables in the model. For instance, in the
deconvolution problem, we observe some random variables X; =Y, 4 ¢;, where ¢; is a
small noise, and the goal is to recover some information () about the distribution
of Y; (e.g. its support). Depending on what is assumed on the noise ¢;, the quantity
0(u) may not be characterized by the distribution v of X, so that we have to extend
slightly the previous definition. Let ¢ : (¥, H) — (X, G) be a measurable function. We
now consider a subset Q of P;()) and assume that we do not observe a n-sample of
distribution p € Q, but of distribution ¢4 (the pushforward of p by ¢). The minimax
risk is then defined by

Rn(éa K, E) = E(Xl,...,Xn)N(L#,u)‘@" [E(é(Xla cee aXn)a 9(1“))] (39)

For instance, in the deconvolution problem, Q would be a (strict) subset of the possible
distributions of the couple (Y;, ;), whereas ¢ would be the addition. This generalization
will be useful to deal with noise in a rigorous manner when the model is not completely
identifiable.

Statistical models of interest in this thesis describe strong geometrical hypotheses
on the way the observations are distributed, and are detailed in Section 3.5.
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FIGURE 3.2: The Hausdorff distance between the two closed sets A
and B is given by dy(A|B).

3.4 Elements of metric geometry

We now introduce basic concepts of metric geometry.

Hausdorff distance. The Hausdorff distance is a measure of proximity between
subsets of some metric space (X,d). Let A,B C X be two sets. We define the
asymmetric Hausdorff distance dg(A|B) := sup{d(z, B) : = € A}, and the Hausdorff
distance dg (A, B) = dg(A|B) V du(B|A), see Figure 3.2. When comparing general
subsets A and B, the Hausdorff distance is not very well-behaved: it may be equal
to 400, or be equal to 0 for two different sets. It becomes a proper distance when we
restrict to compact sets of X. We let K(X') be the space of nonempty compact subsets
of X.

Proposition 3.4.1 (Proposition II1.6 in [Aam17]). Let (X,d) be a metric space. Then,
dp is a distance on KC(X). Furthermore, endowed with this metric:

1. K(X) is separable if and only if X is separable.
2. K(X) is compact if and only if X is compact.
3. KK(X) is complete if and only if X is complete.

Note that the asymmetric Hausdorff distance also verifies the following pseudo
triangle inequality: for A, B,C C RP,

dr(A|C) < du(A|B) + du(B|C). (3.10)

An equivalent formulation of the Hausdorff distance is given by the co-norm between
the distance functions to a set.

Proposition 3.4.2 (Example 4.13 in [RW09]). Let A, B € K(X). Then,
dr (A, B) = ||d(-, A) — d(-, B)||co- (3.11)

It will also be useful to compare objects up to isometry: for instance, two segments
of comparable lengths are in some sense close to each others, even if they live in
different spaces. The Gromov-Hausdorff distance allows us to formalize this concept,
see also Figure 3.3.
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Y

FIGURE 3.3: The Gromov-Hausdorff distance between the two curves
X and ) is obtained as the Hausdorff distance between ¢1(X) and

$2().

Definition 3.4.3. Let (X,dy) and (Y, ds) be two metric spaces. We let dg(X,Y) be
the infimum of the numbers r > 0 such that there exists a metric space (Z,ds) and
isometries g1 : (X, d1) — (Z,d3), ¢2 : (V,d2) = (£, d3) such that dy (p1(X), ¢2(Y)) <
T.

The set Z in the previous definition can actually be chosen equal to X U )Y, with
ds being any distance extending d; on X and do on ). Furthermore, two compact
metric spaces are at distance 0 for the Gromov-Hausdorff distance if and only if they
are isometric, and the distance dg g becomes a proper distance on the set of classes of
isometric compact spaces [Mém08].

Of particular interest for us will be the space (K(R”), dg), as the estimators built
in Chapter 4 will take their values in this space. We will show that our estimators are
measurable as composition of elementary operations on the space IC(]RD ).

Proposition 3.4.4. 1. The function v € RP s {x} € K(RP) is an isometry.
2. The "union” function (A, B) € K(RP) x K(RP) — AUB € K(RP) is continuous.
3. The “convex hull” function A € K(RP) — Conv(A) € K(RP) is continuous.
4. Let E € B(K(RP)) be a measurable event. Then, the function

A ifA€eFE

Gp@&@éK@%xK@%H{B z

1s measurable.

Proof. For the first three functions, see the proof of Proposition II1.7 in [Aam17|. For
the last function, let F' be any measurable set in JC(RP). Then, the preimage of F is
given by

(FNE)x K(RP) U (E® x F),

which is measurable. Therefore, the function is measurable. ]

We end this paragraph by introducing two different quantities measuring the size
of a compact set A € K(RP). The first one is the diameter diam(A) := sup{|z — y| :
x,y € A}. The second is the radius of A. It is by definition the radius of the smallest
ball B such that A C B. We denote by r(A) this radius.

Proposition 3.4.5. The function diam is 2-Lipschitz continuous and the function r
is 1-Lipschitz continuous.
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FIGURE 3.4: The radius and diameter of a set A C R2.

FI1GURE 3.5: The three first shapes have positive reach, whereas the
square (boundary of [0,1]?) has zero reach.

Proof. For the 1-Lipschitz continuity of the radius, see [ALS13, Lemma 16]. For the
diameter, let x1,z9 € A such that |x; — 29| = diam(A). Let y; € B be such that
‘.%'1 — y1| = d(xl,B) and ys € B with ‘.%'2 — yg‘ = d(xQ,B). Then,

diam(A) = |21 — z2| < [x1 — y1] + |y1 — w2l + |y2 — 22
< d(z1, B) + diam(B) + d(z2, B) < diam(B) + 2di (A|B).

We conclude by exchanging the roles of A and B. O

Reach of a set. Let A C R be a closed subset. Given 2 € R”, we denote by 7 (x)
the set of points realizing the distance from x to A:

yema(r) <= (Jr —y| =d(z,A) and y € A).

Two situations may arise: either m4(x) is a singleton (and we then identify the set
with its unique element) or it is not. In the latter case, we say that x is in the medial
azis Med(A) of A.

Definition 3.4.6. The reach of a non-empty closed set A C RP is given by
7(A) := inf{d(x,Med(A)) : = € A}. (3.12)

By definition, for every r < 7(A), if d(x, A) < r, then there exists a unique point
ma(x) € A such that d(z, A) = |z — m4(z)|. In particular, the projection 74 on A is a
well-defined map on A" := {z € R : d(z, A) < r}, the r-tubular neighborhood of A.
A more visual way to understand the reach is given by the "rolling-ball condition”: if a
set A has reach larger than r, then it is possible to make a ball of radius r roll freely
around A without ever bumping into another part of A [CFPLI12|. See Figure 3.5 for
examples of sets A having positive (and zero) reach.

Examples of sets with positive reach include convex sets (for which 7(A) = +00)
and compact submanifolds without boundary. More generally, having a large reach
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imposes both a local regularity condition on A (it cannot be too "curved”) and a global
regularity condition (it cannot have a "bottleneck structure”), ideas which can be made
mathematically precise [Aam-+19], see also Figure 2.3 in the introduction. The reach
was originally introduced by Fereder [Fed59] when studying generalizations of Steiner
formula for convex sets [Ste40] and Weyl’s tube formula for submanifolds [Wey39|. He
proved that such a formula relating the volume of tubular neighborhoods of a set A
to some notion of curvature also holds for the large class of sets with positive reach.
Considering sets with positive reach is often considered as a minimal requirement
in computational geometry. For instance, minimax rates of estimation in manifold
inference are known to break down when no assumptions on the reach of the underlying
sets are made [AL18; AL19).

The positivity of the reach is actually linked to the regularity of the distance
function to a set. We say that a function f : RP — Rl is C11 if it is differentiable and
its differential is Lipschitz continuous.

Proposition 3.4.7 (Theorem 6.3 in [DZ01]). Let A C RP be a non-empty closed set.
Then, T(A) > 0 if and only if the function x € RP s d?(x, A) is of class CY' in some
tubular neighborhood of A.

Remark that the distance function d(-, A) is in general not differentiable on a
tubular neighborhood of A, even if A is a smooth object (think of a circle for instance),
so that considering the squared distance in the above proposition is required. From a
statistical perspective, the estimation of the reach of a manifold has been tackled in
[Aam+19] and [Ber-+21].

Another point of view consists in seeing the reach as a function 7 : K(RP) —
[0,+0c]. It is clear that this function is not continuous: take a set A = {z,y}.
If z # y, then 7(A) is given by the half-distance between x and y, whereas when
r — y, we obtain a singleton at the limit, whose reach is infinite. However, such a
discontinuity may only happen with an increase of the reach, that is the reach is upper
semi-continuous.

Proposition 3.4.8 (Remark 4.14 in [Fed59]). The function T is upper semi-continuous.

Hausdorff measure. The d-dimensional Hausdorff measure is a generalization of
the d-dimensional Lebesgue measure to arbitrary subsets of R”. For instance, the
1-dimensional Hausdorff measure of a curve is given by its length, the 2-dimensional
Hausdorff of a surface is given by its area, etc.

Definition 3.4.9. Let d > 0 be an integer. For A C RP, and 6 > 0, consider

. A d
H5(A) = inf de <dlan21(UZ)> : AC U U; and diam(U;) <6 p,  (3.13)
i>0 i>0

where wg = 7rd/2/F (%l + 1) is the volume of the d-dimensional unit ball. The d-
dimensional Hausdorff measure of A is defined by Hq(A) = lims_,0 H3(A).

3.5 Elements of differential geometry

The goal of this section is twofold. First, we introduce succinctly the language of
differential geometry to fix notation that will be used throughout Part I. Second, we
explore in more detail the geometry of submanifolds of R”. In particular, we introduce
statistical models tailored to the estimation of geometric quantities related to C*



36 Chapter 3. Background

submanifolds, introduced in [AL19] and [BH19]. We refer to do Carmo’s book [Car92]
for a more thorough introduction to Riemannian geometry. Due to their primary
importance in manifold inference, we will focus on submanifolds in this presentation.
This simplifies most definitions, while Nash’s embedding theorem actually ensures that
this is not restrictive [Nas56]. We begin with preliminary definitions.

e Let G(d,D) be the Grassmannian manifold of all d-dimensional subspaces of
RP. For E € G(d, D), we denote by 7 the orthogonal projection on E and
Wé := id —m the orthogonal projection on E', the orthogonal complement of

E. The angle Z(E, F) between two subspaces E, F' € G(d, D) is defined as the

distance ||rp — 7| op» the operator norm between the orthogonal projections on

FE and F.

e Let U € RP be an open set and f : U — R be a C* function. We denote by
d*f(x) : (RP)* — R the k-th differential of f at + € U. The C*-norm of f is

equal to
| Fller = sup [|a* () (3.14)
zcU op
The C%norm is equal to the Lo,-norm, and we will often write || - ||« instead of
- lleo-

Definition 3.5.1. A topological d-dimensional (sub)manifold M of R” is a subset of
RP (endowed with the subspace topology) such that every x € M has a neighborhood
homeomorphic to RY.

This definition has the advantage of being very simple. It is however not restrictive
enough for our purposes. Indeed, every graph of a continuous function R — RP is a
topological submanifold, including wild objects such as the Koch snowflake.

Definition 3.5.2 (see Chapter 8 in [Leel3]). Let & > 1. A CF d-dimensional
(sub)manifold M of R” is a set such that, for every x € M, there exists a C* diffeo-
morphism ¢ : V, — RP  where V, C R is a neighborhood of x, such that ¢p(V, N M)
is the intersection of a d-dimensional plane with ¢(Vy).

If M is a submanifold, we define the tangent space T, M of x € M as the set

T —y U

TwM::{uG]RD: Ve >0,y € M, '

oyl 8w
In particular, the tangent spaces are elements of the Grassmannian manifold G(d, D),
and we write 7, for mr, . If U is a neighborhood of 0 in T, M, we say that a ck
function ¥ : U — M C RP is a local parametrization of M at z if it is a one-to-one
function such that ¥(0) = =, d¥(0) is the inclusion T, M < R”, and d¥(u) is of full
rank for every u € U. One can show that a manifold M is C* if and only if there are
C* local parametrizations at every z € M.

Proposition 3.4.7 states that the positivity of the reach of a set is equivalent to the
ChH! regularity of the squared distance to the set. When the set is assumed to be a
manifold, this is in turn equivalent to the manifold being of regularity C! (that is the
diffeomorphisms are of regularity C! in the previous definition).

Proposition 3.5.3. Let M C RP be a compact topological submanifold. Then, (M) >
0 if and only if M is of reqularity C*'.
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Proof. The direct implication is proved in [RZ17]. For the converse implication, we
first show that given a point y € RP, if z € m(y), then y — 2z is orthogonal to T, M.
Indeed, let ¥ be a local parametrization in z. Then, 0 is a local minimum of the
function u € T,M + |y — ¥(u)|>. The gradient of this function at 0 is null, and is
given by —27,(y — z), implying that y — z is orthogonal to T, M.

We now show that for every x € M, there is a small neighborhood of  in R” on
which there is a unique projection on M. The compactness of M then implies the
conclusion. Let ¥ be a local 1! parametrization of M at z, defined on a neighborhood
Uof0inT,M. Let F': U x RP — T, M be defined by F(u,y) = d¥(u)" (¥(u) —y).
The function F' is Lipschitz continuous in u and linear in y. We apply a version of the
implicit function theorem for Lipschitz continuous maps [Kum91], which holds under
the condition that, for any sequences A\ — 0, u¥ — 0, y¥ — y and v € T, M\ {0}, we
have . N Lk

limF(u + v, y") — F(u”, y") 40

k )\k

whenever the limit exists. One can check directly that this limit always exist, and is

given by d¥(0)*d¥(0)[v] = v # 0. Therefore, by [Kum91, Theorem 1|, as F' is Lipschitz

continuous, there exists, for £, > 0 small enough, a unique map ¢ : B(z,e) — T, M
such that, for y € B(x,e) and u € By, (0,€’),

F(u,y) =0 if and only if u = ¢(y).

Fix y € B(x,&") for some €’ > 0 to fix. If z € M belongs to mps(y), then y — z is
orthogonal to T, M, that is F(¥~!(z),y) = 0. Furthermore,

z—z| <|z—y|+ |y —a| <2ly —a| < 2",

which implies that U=1(2) € =By (x,2¢")) C Br,m(0,€) for &” small enough.
Therefore, we have that W=1(2) = ¢(y), that is z = U(¢(y)) is uniquely determined by
y. Hence, there is a unique projection on M on B(z,&"), proving that the reach 7(M)
is positive. O

We will consider in the following a slightly stronger requirement: all manifolds are
now assumed to be at least C2. This ensures that the second fundamental form of the
manifold M (that we define below) is well-defined.

Definition 3.5.4. Let Timin > 0 and 1 < d < D. We let M%’in be the set of closed
C? d-dimensional submanifolds without boundary, with reach larger than Tmi, and let
furthermore M>% = U, >0 M.erin be the set of closed C? d-dimensional submanifolds
without boundary with positive reach.

Let M € M??. A geodesic is the analogue of a straight line on M. It is a C?
curve v : I — M C RP defined on some interval I satisfying that v"(t) € TypyM L for
every t € I (where 7 is seen as taking its values in R”). The geodesic distance dg(z,y)
between two points z and y in M is defined as the infimum over all geodesics y joining
x and y of the length of the geodesic, defined as

L) = [ Wl (3.16)

Also, we denote by volys the d-dimensional Hausdorff measure restricted to M.
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Definition 3.5.5. Let M € M??. Letx € M and n € T,M*. Let N be a local
extension of n normal to M, that is N : U, — RP is defined on a neighborhood
U, C RY of z, is of class C* and satisfies N(z) = n and N(y) € T,M* fory € M.
The second fundamental form Syr(x,n) : TuM — T, M of M at x along the normal n
is the operator given by

Sy(z,n)[u] = =7z (de Nu)) Vu € T, M. (3.17)

One can check that the second fundamental form does not depend on the extension
N. Furthermore, for each # € M and n € T, M, the operator Sy/(x,7) is a linear
self-adjoint operator on T, M. Given a normal direction 1 and a tangent vector u, the
second fundamental form describes how the normal direction n varies as x is moved
in the direction u. As such, it gives a description of the extrinsic curvature of the
manifold M.

Proposition 3.5.6 (Proposition 6.1 in [NSWO08]). Let M € M?? z € M and
n € T,M~*. Then,

1
S (z, < — 3.18
I3 Dlop < 7375 (318)
We now give further geometric constraints given by the reach.
Proposition 3.5.7. Let M € M?*® and z,y € M.

1. If some point z is at distance less than T(M) from M with wa(z) = x, then
7e(z —x) = 0.

2. We have |volyr| > war(M)?, where wy is the volume of the d-dimensional sphere.
Furthermore, the equality is attained only if M is a d-dimensional sphere of
radius T(M).

3. We have diam(M) < C’dT‘(‘]’\ZI)AjL for some positive constant Cy. Furthermore,

T(M) < ,/ﬁdiam(M).

o2
4. We have |my(y — z)| < & (]l\/} .

~—

5. We have Z(T,M,T,M) < 2524,

6. If dg(z,y) < (M) (or if |z —y| < 7(M)/2), then |z —y| < dg(z,y) <

)
|z —y|min ( 5,1+ T(CTO)z|a: - y|), where co = w2 /50.

7. If h < 7(M)/4, then 8 %wah® < volp (Bas(x, h)) < 8%wah?.

Proof. Point 1 was already shown in the proof of Proposition 3.5.3. Point 2 is stated
in [Alm86], whereas Point 3 is proved in [Aam17, Section II1.3.4]. Point 4 is proved
in Federer’s article [Fed59, Theorem 4.18]. Point 5 is stated in [BSW09, Lemma 3.4].
For Point 6, see the proof of [ACLG19, Lemma 3.12]. Also, having |z —y| < 7(M)/2
implies that dg(x,y) < 77(M) is a consequence of [NSWO08, Proposition 6.3|. Finally
we prove Point 7. Proposition 8.7 in [AL18| states that for h < 7(M)/4,

2 agh?d < voly(Bar(x, b)) < 2%a4h,

where g is the volume of the d-dimensional ball. It remains to show that 2%y < 8%wy
and that 2%w; < 8%ay. One can check by recursion on d that those inequalities hold
for any d > 1, concluding the proof. O
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In particular, if |volys| < oo and 7(M) > 0, then M is automatically compact.
Among all local parametrizations of a manifold M, a particularly natural one is
given by the inverse of the projection on the tangent space. We let 7, be defined by
7o(y) = & + mo(y — ) (so that 7,(x) = x) and let T,M = x + T, M be the image of
T
Proposition 3.5.8. Let x € M. Forr < 7(M)/3, the application 75 is a diffeor-

morphism from By(z,7) on its image. Moreover, its image Tz(By(z,7)) contains
By p (2, Tr/8). In particular, if y € By (z, 7(M)/4), then

N 7
|Te(y) —y| > gly—fvl- (3.19)

Proof. We first show that 7, is injective on Bys(z, 7(M)/3). Assume that 7,(y) =
7 (y') for some y # y' € M. Consider without loss of generality that |z —y| > |z —¢/|.
The goal is to show that |[x—y| > 7(M)/3. If |[x—y| > 7(M)/2, the conclusion obviously
holds. Proposition 3.5.7.5 states that if it is not the case then, Z(T,M,T,M) < Q‘f(gly)'
Also, by definition,

(e — ) (y — ')
ly — /|
B R I e A S L e B
ly—y'| — ly — 9|
L ly=
- 27 (M)
[z —y
>1-
- (M)

L(TuM, T,M) >

by Proposition 3.5.7.4

by the triangle inequality.

Therefore, we have 3|z — y|/7(M) > 1, i.e. |z —y| > 7(M)/3 and 7, is injective on
Basr (x,7(M)/3). To conclude that 7, is a diffeomorphism, it suffices to show that its
differential is always invertible. As 7, is an affine application, the differential d7,(y)
is equal to m,. Therefore, the Jacobian J7,(y) of the function 77, : M — T, M in y is
given by the determinant of the projection 7, restricted to T), M. In particular, it is
larger than the smallest singular value of 7, o m, to the power d, which is larger than

(1 — Z(T M, T,M))* > (1_2|f(M?;|>d = @)d

thanks to Proposition 3.5.7.5 and using that |z — y| < 7(M)/3. In particular, the
Jacobian is positive, and 7, is a diffeormorphism from By (z, 7(M)/3) to its image. The
second statement is stated in [AL19, Lemma A.2]. The last statement is a consequence
of the two first, using that if |y — x| < 7(M)/4, then 8|7, (y) — z|/7 < 7(M)/3. O

Note that this proposition was already proven in [ACLZ17, Lemma 5|, but with
a slightly worse constant of 7(M)/12. We write W, for the inverse of the map
y € M — my(y —x) € T, M, which is defined according to the previous lemma on
Bz, 0(0,7r/24) for r < 7(M)/3 (in particular it is defined on Bz, (0, 7(M)/4)). The
parametrizations ¥, will be used in the following to quantify the regularity of the
manifold M.

Proposition 3.5.9. Let M be a C* submanifold for k > 2 and let x € M. Then, ¥,
is a local C* parametrization of M.
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Proof. Let ¥ be a C* parametrization at . We may write ¥, = W o (V1o W,) on a
small neighborhood of 0. As ¥ is Ck, it suffices to show G =¥ 1o W, : T,M — T, M
is C¥ on a neighborhood of 0. Given u € T, M small enough, v = G(u) is characterized
by the equation 7,(¥(v) — ) = u. This expression is C¥ in (u,v) and, by the implicit
function theorem, using that d¥(0) is the inclusion 7, M < R we obtain that G is
indeed C*. g

We denote by M*? the set of C*¥ closed d-dimensional submanifolds without
boundary with positive reach.

Definition 3.5.10 (Class of regular manifolds). Let d > 1,k > 2 and L, Tyin > 0. Let
70 = (Tmin A L) /4. We say that M € Mkd if M is in /\/lk 4 with (M) > Tmin and
if, for all x € M, U, is defined on Br, M(O 7"0) and the function u € Br,p(0,70) —
U, (u) —x has a Cknorm smaller than L.

The second differential of ¥, can be expressed thanks to the second fundamental
form of M. In particular, one can obtain using Proposition 3.5.6 an inequality of the
form [|[W, — z[|c2 < Lgr(ar), implying that the parameter L is not relevant to quantify
the C%-regularity of a manifold. For k > 3, there are no constraints on the C*-norm of
the local parametrizations based on the reach, and the parameter L becomes useful.

We say that a function f : M — Rl is C* if f o U, is C* for every z € M. We
define the norm Hdkf(a:)Hop at x as Hdk(f o \Ifx)(O)Hop. Defining rigorously what is
the kth differential of the function f is more delicate and would require introducing
concepts such as the Levi-Civita connection, whereas only defining a notion of C*-
norm of a function is of interest for us. If [ < d, the Jacobian of f is defined by
Jf = /At ((dF)(d)").

We compare our definition with other models of C* manifolds appearing in the
manifold inference literature. In [BH19]|, a similar approach is taken to measure the
regularity of manifolds, but with exponential maps used as local parametrizations.
However, exponential maps may only be C¥~2 on a C¥ manifold [Har51] so that we
prefer to use the inverse projections ¥, as parametrizations. In [AL19], Aamari and
Levrard assume the existence of a local parametrization U, at € M with C¥ norm
smaller than L, not necessarily equal to the inverse ¥, of the projection 7,. However,
the choice of ¥, as a local parametrization is not restrictive. Indeed, one can write
U, =U,o0 (my 0 U 2) %, so that, by the inverse function theorem, the Ck norm of ¥, is
controlled by the C* norm of .

Statistical models for measures supported on manifolds Statistical models
of interest in the following correspond to sampling “almost-uniformly” points on (or
close to) a manifold which is regular enough.

Deﬁmtlon 3 5.11. Let 1 <d < D, k> 2, Tmin, L > 0 and 0 < fiin < fimax < 0.

The set QT - Lfmm Fme 18 the set of all probability measures p, whose support M

belongs to ./\/l WL and which have a density f with respect to the volume measure on
M, satzsfymg f,(m1 < f < fumax-

We also consider sampling with a bounded additive noise: each observation X;
is of the form Y; + Z;, where the law of Y] is supported on a manifold and |Z;| < 7,
whereas Y; and Z; are not necessarily independent.

Definition 3.5.12. Let 1 <d < D, k > 2, Tmin, L,¥ > 0 and 0 < fiin < frax < 00.
The set Qk 4 L i e (7) is the set of all probability measures & on RP x RP, such

that the first marginal of £ belongs to gk
supported on B(0,7).

L fonin fonae and the second marginal of € is

Tmin>
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We then assume that we observe samples having distribution ¢4§, where ¢ :
RP x RP — RP is the addition. As explained in Section 3.3, this slightly more
technical definition allows us to define the function 6(§) = M as the support of the
first marginal of &, whereas M cannot be recovered solely thanks to the law of the
observation X =Y + Z, where (Y, Z) ~ &.

For k = 2, the parameter L has no impact on the statistical rates of convergence,
and we only consider o2 (v) = Q24 (7). The minimax rates

Tmin>fmin;fmax Tmin,+09; fmin,fmax

for the estimation of the manifold M are known to satisfy:

nn\ % Inn\ /4
Co (> S Rn(Ma Q27d (’7), dH) S C1 <n> V Yy (320)

n Tminyfmin:fmax

1 k/d k.d Inn k/d
a(s) SRS sa ((B0) e ) e

n

The lower bound in (3.20) is provided in [KZ15] while the upper bound was first
given in [Gen | 12a]. The statistical models Q]:r’im Lo fuin. fruns (Y) Were introduced in
[AL19], where (3.21) is also shown. The upper bound follows from exhibiting a minimax
estimator, obtained by using a local polynomial estimator around every observation
point. In particular, these estimators will be used in Chapter 5 to estimate the volume

measure of M.

The coarea formula Finally, we introduce the coarea formula, which is a far-
reaching generalization of the change of variables formula for integrals on manifolds.

Theorem 3.5.13 (Coarea formula [Morl6|). Let M (resp. N ) be a submanifold of
dimension m (resp. n). Assume that m > n and let ¢ : M — N be a differentiable
map. For f: M — [0,+00) a measurable function, the following equality holds:

/ F(@)Jé(x)dvoly (z) = / ( / f(x)d?—[mn(x)> dvoly(y).  (3.22)
M N \Jzep~1({y})

In particular, if J¢ > 0 almost everywhere, one can apply the coarea formula to
f+(Jp)~! to compute || a J» while having J¢ > 0 is equivalent to d¢ being of full rank.

3.6 Simplicial complexes

Simplicial complexes are higher dimensional analogs of graphs. Their simple combina-
torial structure makes their use particularly appealing in computational geometry, as
they can be easily stored on a computer. We refer to [EH10] for results in this section.

Definition 3.6.1 (Simplicial complex). Let S be a set. A simplicial complex with
verter set S is a family of finite subsets of S containing all the singletons and such
that, if o C o’ is nonempty and if o' € K, then o € K.

Let K be a simplicial complex with vertex set S and K' be a simplicial complex
with vertex set S’. We say that a map f: S — S’ is a simplicial map between K and
K’ if for every o € K the image of o by f belongs to K'.

A subset 0 € K is called a simplex, and its dimension |o| is equal to #o — 1
(where #o0 denotes the cardinality of the set o). The dimension of K is the maximal
dimension of its simplexes (possibly +00). The g-skeleton Sy(K) of K is the set of
simplexes of K of dimension g.
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!
Y 4

FIGURE 3.6: The geometric realization of Ky as a subset of R3.

A simplicial complex is a purely combinatorial object and does not possess any
geometric structure. It is however possible to associate with each simplicial complex
K a topological space K, called its geometric realization. As a set, K is the set of
functions a € [0,1]% with )", g a(s) = 1 and such that the set spt(a) := {s € S :
a(s) > 0} € K. For 0 € K of dimension ¢, let & := {a € [0,1]° : o = spt(a)}. This
is a topological subspace of [0,1]° endowed with the product topology (the space &
is actually homeomorphic to A, = {(xg,21,...,,) € [0, ottt 3z = 1}, the

standard q-dimensional simplez). We then endow the set K with the final topology
associated with the inclusions ¢ — K for ¢ € K.

FEzrample 3.6.2. The geometric realization of very simplicial complex with vertex set
{0,1,2,3} has its geometric realization that is homeomorphic to a subset of R3. In
Figure 3.6, we display the geometric realization of the 2-dimensional simplicial complex

Ky=1{0,1,2,3,{0,1},{0,2},{1,2},{2,3},{0,1,2}}.

Example 3.6.3. Let S € RP and t > 0. We review different simplicial complexes of
geometric interest that can be built on top of S.

1. The Rips complex Rips(t,S) of S at scale ¢ is the simplicial complex with vertex
set S, and such that o € Rips(¢t, S) if ¢ is finite and of diameter diam (o) smaller
than t.

2. Given a compact set ¢ C R, there exists a unique ball B(c) with minimal
radius such that o C B(o) [ALS13]. The radius of this ball is called the radius
of o and is denoted by (o). The Cech complex Cech(t,S) of S at scale t is
the simplicial complex with vertex set S, and such that o € Cech(t, S) if o is
finite and (o) < t. The nerve theorem asserts that (the geometric realization
of) Cech(t,S) is homotopy equivalent to S?, the t-neighborhood of S [Hat02,
Corollary 4G.3].

3. If S is finite, a triangulation of S is a simplicial complex T' of dimension D with
vertex set S such that
(a) every simplex of T is included in a D-simplex of T

(b) for o # o' € T the interior of Conv(o) is disjoint from the interior of
Conv(a”).

(¢) Uyer Conv(o) = Conv(S).

(d) if o € Sp(T'), then Conv(s) NS =o.

In particular, a triangulation is uniquely determined by its D-skeleton.



3.7. Simplicial and singular homologies 43

FIGURE 3.7: Left. The Cech complex Cech(S, ) of a finite set S C R2.

A simplex is in the Cech complex only if it fits in a circle of radius

t. Brighter colors indicate that a simplex of dimension larger than 3

is present. Right. The Delaunay triangulation of S, and its a-shape
Alpha(S,t) for a certain value of .

4. Assume that S is finite and does not lie on a hyperplane of R”. Then, for each
D-simplex of S, there exists a unique (D — 1)-dimensional sphere containing o,
called the circumsphere of 0. A Delaunay triangulation of S is a triangulation
Del(S) of S such that the interior of every circumsphere of o € Sp(Del(S)) does
not contain any point of S [EH10, Chapter II1.3]. It is unique when S is in
general position, in the sense that no set of D + 2 points of S lies on a sphere.

5. Under the same assumptions, the a-complex Alpha(S,t) of S is equal to Del(S)N
Cech(S,t) [EH10, Chapter I11.4]. The Cech complex and the a-complex are
homotopy equivalent, see Figure 3.7.

Both the Rips and the Cech complex of a set S capture the geometry of the set at
scale t. Note however that such objects may be very wild. For instance, there exists
a compact set S C R* with Rips(¢,S) having singular homology (see below) with
uncountable dimension for every ¢ in some interval [Drol2]. From a computational
point of view, their sizes may become prohibitively large for |S| even of moderate size if
t is too large. Although computing the radius of a set ¢ is possible in quasi-linear time
in R2, such a computation becomes a non-trivial task in moderate dimensions, which
may be a serious issue to compute the Cech complex of a set in practice. Algorithms
with O(|S|log |S]|) complexity exist to compute the Delaunay triangulation for D < 3,
whereas algorithms with O(|S|P/2) time complexity exist for larger D. In practice,
computing a Delaunay triangulation becomes prohibitive for D > 6 [HB08|. Unlike the
Cech and the Rips complexes, the size of the Delaunay triangulation does not explode,
as it is of order O(|S|P/2)). In practice, the a-complex is therefore often computed
instead of the Cech complex.

3.7 Simplicial and singular homologies

Homological algebra is a general theory which gives a mathematically precise meaning
to the presence of topological features in an object. Different versions of homologies
exist and are defined for different mathematical structures. We will focus on simplicial
homology, defined for simplicial complexes and which has the benefit of being easily
computable, and then on singular homology, which is defined for any topological space.
We first define homology groups in an abstract setting. An introduction to homology
theory may be found in [Hat02].
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3.7.1 Homological algebra

Let G be an abelian group (only the cases G = Z and G a finite field will be relevant
for us). A chain complex C, is a sequence of abelian G-modules (C;),>—1 together
with homomorphisms 9, : Cy — Cy—1 for ¢ > 0, such that 0;044+1 = 0 and C_; = {0}.
The map 0, is called a boundary map. Elements of Z, := ker 9, are called g-cycles
whereas elements of By := im J,41 are called g-boundaries. The relation 09,0441 = 0
implies that B, C Z, i.e. every boundary is a cycle. Two cycles are called homologous
if they differ by a boundary, and we refer to H,(C) = Z,;/B, as the qth homology
group of C,. The dimension of H,(C) (should it be finite) is called the Betti number
B4(C) of the chain complex.

If Cy and C) are two chain complexes, a chain map is a collection of morphisms
g : Cqg — C'(’I such that the following diagram commutes.

24
Cy —15 Cyy

‘PqJ/ l‘ﬂq—l
8/

! a !
c, s Oy

This commutation property ensures that the morphisms ¢, induces morphisms at the
homology level Hy(p) : Hy(C') — Hy(C’). Two chain complexes C' and C” are said
to be isomorphic if there exist two chain maps ¢ : C' — C" and ¢’ : ¢/ — C with
Py = idey and @jpg = idc, for every ¢ > 0.

3.7.2 Simplicial homology

Let K be a simplicial complex. An ordering of a simplex o = {zg,..., x4} is an
enumeration of o, ...,z,. We say that two orderings of a simplex ¢ have the same
orientation if they differ by an even permutation. This defines an equivalence relation
on the set of orderings of o, with two equivalence classes, that we call oriented simplexes
and denote by & and —&. The chain complex Co(K) = Co(K, G) is defined by letting
Cy(K) be the free group generated by the oriented g-simplexes of K with coefficients
in G. Given & an oriented g-simplex, we denote by & the oriented (¢ — 1)-simplex
obtained from &, with ith entry omitted. The boundary operator is defined by

q
0,6 =Y (-1)'d", (3.23)
=0

and is then extended by linearity to Cy(K'). One can check that 9,0,4+1 = 0, so that
Co(K) is indeed a chain complex. The corresponding homology groups are called

the simplicial homology groups of K (with coefficients in G), and are denoted by
Ho(K) = Ho(K,G).

3.7.3 Singular homology

Let X be a topological space. A singular simplex is a continuous map o : A; — X. We
let 0% be the map (t1,...,t4—1) = o(t1,...,0,...,t,—1), where 0 is at the ith position.
The chain complex Co(X, G) is defined by letting Cy(X) be the free group generated
by the g-dimensional singular simplexes of X with coefficients in G. The boundary

operator is defined by
q

0,0 = (~1)'d’, (3.24)

1=0
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and is then extended by linearity to Cy(X). The corresponding homology groups are
called the singular homology groups of X (with coefficients in (), and are denoted by
H,(X)=H.(X,G).

Simplicial homology can be seen as a particular case of singular homology. Indeed,
the singular chain complex C’.(f( ) of the geometric realization of K can be shown to be
isomorphic to the simplicial chain complex Co(K), so that in particular the homology
groups are also isomorphic [Spal2, Section 4.4].

For both homologies, maps between objects (simplicial complexes or topological
spaces) induce maps between chain complexes, and therefore also maps between
homology groups. Precisely, if f: X — Y is a continuous map, then there exists a
chain map Ce(f) : Co(X) — Co(Y), obtained by defining Co(f)(0) = foo for o a
singular simplex in X (and extended by linearity). The map f. := He(Co(f)) is then
defined between the homology groups He(X) and He(Y'). A similar statement holds
for simplicial homology, with continuous maps replaced by simplicial maps. We will
drop the C' in the notation when the context is clear, e.g. 5,(X) for 5,(C(X)), Z4(X)
for Z,(C(X)), etc.

Remark 3.7.1. The universal coefficient theorem asserts that the integral homology
groups He(C,Z) completely determines the homology groups He(C, G) for any abelian
group G [Hat02, Chapter 3.A]. However, the theory of persistence homology is
developed for vector spaces over some field k (having a field is in particular required
for the decomposition theorem to hold, see Theorem 3.8.4 below). We will therefore
choose G to be a finite field. This has an impact on the homology groups only if the
underlying space has non-null torsion, whereas in practice, the choice of the field for
which persistent homology is computed seems to have very little impact [OY20].

3.8 Theoretical foundations of Topological Data Analysis

The fundamental object of persistent homology theory is the persistence module. We
fix a field k and a homology dimension ¢ > 0 in the following. We refer to the book
|Cha+16] for a thorough presentation of the content of this section.

Definition 3.8.1 (Persistence modules). A persistence module V is a family of k-
vector spaces (Vi)ier together with linear maps vsy = Vs — V; for all s < t, satisfying
the conditions vy = idy, and vi,vss = vs, for all s <t <.

Persistence modules are typically induced by a filtration of some topological space
X. Let ¢ : X — R be a function and ¢! := {z € X' : ¢(z) < t} be the sublevel sets
of ¢. The collection (¢!);cr forms an increasing sequence of spaces that we call a
filtration. Letting V(¢),: = Hy(¢', k) be the g-dimensional singular homology group
of ¢! with coefficients in k, we obtain a persistent module V,(¢), with maps v(¢)s
being induced by the inclusion maps ¢* < ¢’ for s < ¢. The persistent module V,(¢)
describes the evolution of the homology of ¢ through different scales t. A similar class
of persistence modules is given by the simplicial homology of filtrations of simplicial
complexes. A filtration K of simplicial complexes is an increasing sequence of simplicial
complexes (K*');>o sharing the same vertex set. One can define the persistence module
Vy(K) with V(K),: = Hy(K' k) being the simplicial homology group of K*. Of
particular interest are the Rips filtration Rips(A) = (Rips(t, A))i>0 of a set A and its
Cech filtration Cech(A) = (Cech(t, A));>0.
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3.8.1 The interleaving distance

Two persistence modules V and W are close if for every t € R, V; is similar to Wy for
some t’ close to t. This idea is made precise by the interleaving distance. Let € > 0.
An e-morphism between two persistence modules V and W is a collection of linear
maps @z : Vi = Wiye for t > 0 such that the following diagram commutes.

Us,t
Vo ————— W
o I
Wste,tte
Ws-{—a Wt+€

The persistence modules V and W are e-interleaved if there exists two e-morphisms
©0:V —Wand ¢ : W — V such that the following diagrams commute for every
teR.

Ut t+42e

Vitae Vite
\ 7 / N
Wite e > Wigoe
The interleaving distance d; between V and W is equal to
d;(V,W) :=inf{e > 0: V and W are e-interleaved}. (3.25)

The interleaving distance can be bounded efficiently in different settings.
Theorem 3.8.2 (Stability theorem).

1. Let f,g: X — R be two functions. Then,
di(Vq(£), Ve(9)) < If = glloo- (3.26)

2. Let A, B be two compact sets in RP. Then,

di(V4(Cech(A)),V,(Cech(B)) < dgu(A, B), (3.27)
di(Vy(Rips(A)), V,(Rips(B)) < dar (A, B). |

3.8.2 The decomposition theorem

In general, a persistence module is a complex object that may be cumbersome to work
with. However, it turns out that under finiteness assumptions, persistence modules
enjoy a simple combinatorial description given by the so-called decomposition theorem.
Before stating the result, we explicit what it means for two persistence modules to be
isomorphic (see also Figure 3.8).

Definition 3.8.3. An (observable) morphism ¢ : V — W between persistence modules
is a collection of linear maps pst : Vo — Wy, such that for every s <u < v <t, the
following diagram commutes.

Vi —5 1,
l Gun
Wi <— W,

wut
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FIGURE 3.8: A morphism ¢ between persistence modules is a collection
of maps which satisfy some coherence properties.

If o : V=W and ¢ : W — U are two observable morphisms, the composition @' is
defined by (0¢')st = Pu,t © P for any u € (t,5). The identity morphism idy : V —V
is defined by ps1 = vsy for all s <t. A morphism ¢ : V — W is an isomorphism
if there exists another morphism ¢’ : W — V with ¢’ = idw and ¢'¢ = idy. The

b
persistence modules V and W are then said to be isomorphic, and we write VEW.

It can be shown that two persistence modules V and W are at distance 0 for the

interleaving distance if and only if V 9_\]3 W, while being O-interleaved is a slightly
stronger notion [CCBS16].

The direct sum V& W between two persistence modules V and W is defined by
(Vi & Wi)ier, with linear maps v s @ wys. Let Q% := {u = (u,uz2) € [—00,+00]? :
u; < ug}. Given a point u € Q> we let k% be the persistence module with kj* = k if
uy <t < wug and {0} otherwise, with arrows given by v, = idy if u; < s <t < wuy and
0 otherwise. Those persistence modules, that we call interval modules, serve as building
blocks for more complex persistence modules. We call a persistence module tame (or
g-tame) if, for all s < ¢, the rank of the map v, is finite. We call this quantity the
persistent Betti number £, (V) of the persistence module V.

Theorem 3.8.4 (Decomposition theorem). Let V be a tame persistence module. Then,
there ezists a unique multiset dgm(V) in Q°° such that V is isomorphic to

vE P k- (3.28)

uedgm(V)
The multiset dgm(V) is called the persistence diagram of V.

There are two types of points u appearing in the decomposition (3.28): those which
contain infinite coordinates, called essential points, and the others. It can be shown
that if two persistence modules V and W possess a different number of essential points,
then d;(V, W) = +o00, while the distance is finite otherwise. To simplify the exposition,
we will only consider persistence modules with no essential points, so that
the interleaving distance is always finite. Properties of persistence diagrams with a
fixed number n > 0 of essential points can then be easily inferred from this case.

With this assumption in mind, a persistence diagram is actually a multiset of
points in Q := {u = (u1,u2) € R? : u; < ug}. Equivalently, it can be considered as a
discrete measure on €2, by identifying a multiset a with the measure ), . d,. Both
perspectives are relevant, and we will often switch between the two without mentioning
it. Each point u = (u1,u2) of a persistence diagram corresponds to some interval
in the decomposition (3.28), which informally represents a topological feature of the
associated persistence module, which appeared at V,,, and disappeared at V,,. The
persistence pers(u) := ug —uj of the point u represents the length of the corresponding
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FiGURE 3.9: Left. A filtration of simplicial complexes. Positive

simplexes are displayed in red, whereas negative simplexes are displayed

in blue. Right. The corresponding persistence diagrams for ¢ = 0
(crosses) and ¢ = 1 (dots).

interval, while the associated topological feature is considered relevant if pers(u) is
large. As such, points close to the diagonal 992 := {(u1,u2), u; = u2} in a persistence
diagram are often thought of as representing topological noise whereas points with
large persistence are considered to contain relevant topological information.

The ”q” in g-tame is for quadrant: a persistence module is ¢g-tame if the associated
persistence diagram, seen as a measure, gives finite mass to every quadrant _l,, = {v €
Q: up <wvp <wvy <wug}, with the relation

Buius (V) =dgm(V)(dy), Vu = (ui,uz) € . (3.29)
Proposition 3.8.5 (Theorem 3.37 in [Cha+16|). Fiz an integer ¢ > 0.

1. Let X be a topological space homeomorphic to a locally finite simplicial complex,
and let ¢ : X — R be a proper continuous function bounded below. Then, V,(¢)
18 tame.

2. Let S be a compact subset of RP. Then, V,(Cech(S)) and V,(Rips(S)) are tame.

In particular, under such assumptions, by Theorem 3.8.4, thve persistence diagram
dgm,(¢) := dgm(V,(¢)) of ¢ is well-defined, and so are the Cech and Rips persis-
tence diagrams of S, denoted respectively by dgqu(S) = dgm(V4(Cech(S))) and
dgm/}(S) := dgm(V,(Rips(5))).

Definition 3.8.6 (Space of persistence diagrams). The space D of persistence diagrams
is the space of all discrete Radon measures on ) with integer masses.

To put it another way, we have a € D if and only if a(,) < oo for every u € Q.
By the decomposition theorem, the space D is precisely the set of persistence diagrams
of g-tame persistence modules V. We introduce also the space Dy of finite persistence
diagrams.

3.8.3 Persistence diagrams in the finite setting

In practice, persistence modules will be obtained through the simplicial homology of
some finite filtration K = (K, )o<i<n of simplicial complexes with ¢y < --- <ty and
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finite vertex set S
Kto C Ky C--- CKtN~

We may assume without loss of generality that at each step only one simplex is added,
so that Ky, , = Ky, U {oi}. If 0; is of dimension ¢ + 1, then two different situations
may arise:

1. Either 0; € Z341 (Ktiﬂ)- In that case, one can show that o; cannot be homologous
to a cycle in Ky;, and

Hq+1(Kti+1) = H‘H-l(Kti) D [Ui]ti+17

where [05],,, represents the class of cycles homologous to o; in Kj The

simplex o; is then called positive.

41"

2. Either 0; ¢ Z;11(Ky,,,). In that case, one can show that 9,110; € B,(Ky,) and
that

HQ(KtiH) = Hq(Kti)/[aq+1ai]ti'

where [0g410;]s, represents the class of cycles homologous to o; in Ky,. The
simplex o; is then called negative.

When a negative simplex o; appears, then the "hole” corresponding to the class [0g+10i]¢,
in Hy(Ky,) is "filled”. The class [0y4+103]; appeared with some positive g-dimensional
simplex o;: informally, the "hole” was born with o;. Those two simplexes (one positive
and one negative) form a g-simplex pair. The persistence diagram dgm(V(K)) of the
filtration for ¢g-dimensional homology is given by the collection of the pairs (t;,t;)
for (0j,0;) a g-simplex pair (if ¢; = t;, we discard the pair). Those pairings can be
efficiently computed by a Gaussian elimination algorithm on the boundary matrix
operator, see [EH10] for details.

3.8.4 The bottleneck distance

The stability theorem (Theorem 3.8.2) justifies the use of the interleaving distance
as a meaningful distance between persistence modules. However, detecting if two
persistence modules are e-interleaved is a priori a nontrivial task, so that it is not clear
how the interleaving distance can be computed. The isometry theorem states that
the interleaving distance is actually equal to a distance between persistence diagrams,
called the bottleneck distance, which is defined as the optimum of some matching
problem. As such, the bottleneck distance can be computed efficiently on a computer,
opening the door to the use of persistence diagrams in real-life applications. We fix an
arbitrary norm || - || on R2.

Definition 3.8.7 (Bottleneck distances). Let a,b € D. The set of partial matchings
I'(a,b) between a and b is the set of bijections v :aU I — bUIN. For 1l <p < oo,
the p-bottleneck distance is defined as

1/p
dy(a,b) ;= inf (Z ||:L'—'y($)\|p> : (3.30)

vel(ab) x€alUof)

while the bottleneck distance is equal to doo(a,b) 1= infcp(q,p) SUPzeqausn |7 — 7(2)]]-

Given two persistence diagrams a and b, a partial matching is a way to transport
the points of a towards the points of b. However, the total masses of ¢ and b may
differ. Therefore, the diagonal is used as an infinite reservoir of mass, and one can
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FIGURE 3.10: Two matchings between a blue persistence diagram and
a red persistence diagram. The rightmost matching is optimal, i.e. it
attains the minimum in Definition 3.8.7.

freely map points from a or b towards the diagonal with cost given by the distance
to the diagonal. In the persistence module decomposition ., k" associated with a
diagram a, points on the diagonal represent interval modules k* with length 0, and
one can indeed show that for any finite set ¢ C 952,

D k=P, (3.31)

ucalc uea
justifying the use of 9f) as a reservoir. The bottleneck distance is then given by the
longest edge in an optimal matching between two diagrams a and b. The distance
is then not changed if we add an arbitrary number of points in the two diagrams
at distance less than ds(a,b) from the diagonal. On the contrary, the p-bottleneck
distance for p finite is not blind to points close to the diagonal, as every edge is taken
into account when computing the cost of a matching.

Remark 3.8.8. The p-bottleneck distance for p < oo was originally introduced in
[CS+10] as a generalization of the bottleneck distance. Due to its similarities with
optimal transport metrics, it was then called the Wasserstein distance between persis-
tence diagrams. There are however key differences between the metrics d, and classical
Wasserstein distances between W,. Exploring the differences (and the similarities)
between the two notions will be at the core of Chapter 6. To avoid confusion, we
therefore choose the name of p-bottleneck distance for the d,, distance, although it is
not standard in the literature.

Theorem 3.8.9 (Isometry theorem). Let || - || be the co-norm on R?. Let V, W be
q-tame persistence modules. Then,
d;(V,W) = doo (dgm(V), dgm(W)). (3.32)

The three theorems we have introduced (the stability theorem, the decomposition
theorem and the isometry theorem) lay the theoretical foundations of TDA. They
ensure that persistence diagrams exist in a large variety of settings (decomposition
theorem), while a meaningful distance between them exists (stability theorem), which
can be efficiently computed (isometry theorem).

Remark that for persistence diagrams having an infinite number of points, the
p-bottleneck distance dp, (p < co) can be infinite. For p < oo, we introduce the class
DP of persistence diagrams which are at finite dj,-distance from the empty diagram
0. Precisely, for a € D, we call the quantity Pers,(a) := dp(a,0) = >, c, pers(u)? the
total p-persistence of a, and let

DP := {a € D, Pers,(a) < co}. (3.33)
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For p = 0o, we have d(a,0) < oo for any a € D, so that the analog of DP is simply D.
Although smaller than D, the metric space (DP, d,) possesses better properties than
(D, dw) from a geometric and topological perspective (see Chapter 6). However, the
fundamental isometry theorem does not hold for p < co. A weaker form of stability is
still satisfied by the p-bottleneck distance for p < oo, proven in [CS-+10]. We say that
a function ¢ : X — R is tame if V,(¢) is tame for every ¢ > 0.

Definition 3.8.10. Let (X, d) be a metric space and 1 < p < co. We say that (X,d)
implies bounded degree-p total persistence if there exists a positive constant C such
that, for every 1-Lipschitz tame function ¢ : X — R, we have Persy(dgm,(¢)) < C for
every q > 0.

Spaces implying bounded degree-p total persistence include d-dimensional Rie-
mannian compact manifolds for p > d, but also bilipschitz images of (geometric
realizations of) finite simplicial complexes. In particular, a d-dimensional Rieman-
nian compact manifold M implies bounded degree-p total persistence with constant

Cu diam(M)p_dﬁ.

Theorem 3.8.11 (p-bottleneck stability theorem). Let (X, d) be a space which implies

bounded degree-p total persistence with associated constant C'. Let ¢1,¢ : X — R be
two L-Lipschitz tame functions. Then, for all p' > p,

dy (dgm(¢), dgm(gs)) < (CLP)7 [|é1 — dalls * - (3.34)

We end this section by mentioning some basic results on the topological properties
of DP| see [MMHI11] for details.

Theorem 3.8.12. For 1 < p < oo, the space (DP,d,) is complete. If p < oo, it is
also separable, so that (DP,dy,) is a Polish metric space. The space (D>, dw) is not
separable.

Considering the space DP instead of the set Dy of finite persistence diagrams
is required to have a complete space. Indeed, the sequence (an), in Dy given by
an = Y g 0u;, where u; = (0,27%) converges towards a = Y.+ 6y, € DP. Actually,
we have the following result. -

Proposition 3.8.13. For 1 < p < oo, the space DP is the completion of Dy for the
d, metric.

3.9 Statistical methods in Topological Data Analysis

The standard pipeline in TDA goes as follows. We observe a collection Xy, ..., X,
of complex objects with some task in mind (e.g. classification or regression). Those
objects can for instance be graphs, point clouds, 3D shapes, time series, images, etc.
A first step consists in building filtrations K1, ..., K, on top of them, which will then
be used in a second step to obtain a collection of persistence diagrams aq, ..., ay,.
We think of this set of persistence diagrams as containing the relevant topological
information to explain the underlying phenomenon generating the dataset. The goal
is then to treat efficiently this topological information, either to directly use it for
the learning task at stake or by plugging it in a larger pipeline (for instance by using
persistence diagrams as a layer in a neural network).

A first approach consists in performing the statistical analysis directly in the space
of persistence diagrams. As the space of persistence diagrams is only a metric space
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and lacks additional structure, this is not a trivial task, and even simple objects like
the expected value or the variance are not trivially defined. The metric analogue of
the expected value is the Fréchet mean of a distribution. Fréchet means for persistence
diagrams were introduced in a seminal paper by Mileyko, Mukherjee and Harer
[MMHT11], where authors study the metric properties of the space DP.

Definition 3.9.1. Let (X,d) be a metric space and P € PY(X). Define the energy of
ye X as
E(y) :=EpopldP(z,y)]. (3.35)

A p-Fréchet mean of P is an element y* € X such that
E(") =inf{&(z) : x € X} (3.36)
We denote by Fréchet,(P) the set of p-Fréchet means of P.

In particular, if (X, d) is the Euclidean space and p = 2, then there exists a unique
barycenter, given by the expected value. The condition E,. p[d(x,z)P] < oo (that
is P € PY(X)) ensures the finiteness of the energy functional. In general, the set of
p-Fréchet means may either be empty or contain several elements. Mileyko, Mukherjee
and Harer show that there exist 2-Fréchet means for distributions P with compact
support.

Theorem 3.9.2 (Theorem 24 in [MMH11]). Let P € P?(DP). Assume that P has
compact support. Then, Fréchets(P) is non-empty.

The space DP is not locally compact, so that the condition in the above theorem
is strong. It can actually be replaced by a weaker tail condition on the random
variable Pers,(a) for a ~ P [MMHI11, Theorem 28|. In Chapter 6, we will show that
Fréchet,(P) is non-empty for the d, distance for any 1 < p < oo, without any further
assumptions on P.

From a computational perspective, several algorithms exist to compute Fréchet
means of a set of persistence diagrams. A first algorithm, based on the Hungarian
algorithm used in optimal transport, was proposed in [Tur-+14]. Although it runs in
polynomial time, it only converges to a local minimum of the energy functional, so
that it may not output a Fréchet mean with a bad initialization. A faster version of
the algorithm was then proposed in [KVT19; VBT19], without still any guarantees on
the convergence towards a Fréchet mean. Another approach, developed by Lacombe,
Cuturi and Oudot [LCO18|, consists in relaxing the problem to make it convex, using
an Eulerian approach. The output of their algorithm is provably close to a Fréchet
mean, although it is not a persistence diagram, but a more general persistence measure.
Persistence measures are natural generalizations of persistence diagrams in random
settings and will be studied in detail in Chapter 6.

A second possibility to perform statistical tasks with persistence diagrams consists
in creating easier to handle statistics by mapping the diagrams to a vector space thanks
to a feature map W, also called a representation or a vectorization.

Definition 3.9.3 (Representation of persistence diagrams). A representation of a
persistence diagram is a map ¥V : DP — B, where B is a Banach space.

Numerous representations have been introduced in the literature (see, e.g., [Ada |+ 17;
BM19; Bub15; Cha+15a; Che+15; KHF16; Rei+15]). Let us give several examples,
see also Figure 3.11.
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FIGURE 3.11: Some common representations of persistence diagrams.
From left to right: A persistence diagram. Its persistence surface
[Ada+17], which is a persistence measure. The corresponding persis-
tence silhouette [Cha+15a]. The corresponding Betti Curve [Umel7].

Let K : R?> — R be a nonnegative Lipschitz continuous bounded function
(e.g. K(x,y) = exp (—M)) and define f : x € Q — d(x,0Q)P-K(z,-), so that

f(z) : R? = R is a real-valued function. The representation ¥ : a — >, . f(z)
takes its values in (Cy(R?), || - ||oo), the (Banach) space of continuous bounded
functions. This representation is called the persistence surface and has been
introduced with slight variations in different works [Ada+17; Che15; KHF16;
Rei+15].

Let u = (ug,u2) € Q. We let f,, : t € R — max(0, min(u; + ¢, ug — t) be the tent
function in u. The persistence landscape of a persistence diagram a is a sequence
of functions (Ag)r>1, where A\i(t) is the kth largest value among the f,(t) for
u € a [Bubl5]. A related representation is given by the persistence silhouette
[Cha+15a]. Given a weight function w :  — [0, +00), the persistence silhouette
of a is obtained as the weighted average of the tent functions:

Silhouettey (a) = > w(u) fu. (3.37)

uca

The Betti curve associated to a persistence diagram a is the curve §:t € R —
a(¢t). If a is obtained as the persistence diagram of some filtration K for
g-dimensional homology, then we indeed have §(t) which is equal to the Betti
number of the ¢g-dimensional homology group of K;.

A kernel on the space of persistence diagrams is a map k : DP x DP — R such

that, for every persistence diagrams aq,...,a, and real numbers ¢y, ..., c,, we
have
Z k(ai, aj)cicj > 0. (3.38)
1<i,j<n

Mercer’s theorem asserts that for such a kernel there exists a Hilbert space
(H,(-,-)), called a Reproducing Kernel Hilbert Space (or RKHS) such that
k(a,b) = (¥(a),¥(b)) for some map ¥ : DP — H. Kernel methods are typically
used to perform non-linear classifications using SVMs. Kernels on the space
of persistence diagrams can be seen as special instances of representations,
although the map W is never computed in practice (only the numbers k(a;, a;)
are computed). An example of a kernel on the space of persistence diagrams is
given by the sliced Wasserstein kernel [CCO17].

Let us also mention that more recent approaches propose to use representations

of persistence diagrams as a layer in a neural network architecture [Hof + 17; Car | 20;
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Kim +20]. The representations are then parametrized by some set © C R? (e.g. we
consider a parametrized family of weight functions in the persistence silhouette) and
the parameter 6 € © is optimized to solve the learning task at stake.

In Chapter 8, we will propose a systemic study of representations on DP, by giving
characterization of continuity for representations and by identifying a subclass of
feature maps having particularly pleasant properties, that we will call linear.
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Chapter 4

Adaptive estimation in manifold
inference

Given &, = {X1,...,X,,} aset of i.i.d. observations from some law p on R” supported
on (or concentrated around) a d-dimensional manifold M, the goal of manifold inference
is to design estimators 6 which approximate accurately some quantity 6(M) related
to the geometry of M (e.g. its dimension d, its homology groups, its tangent spaces,
or M itself). As explained in the introductory chapter (Chapter 2), the emphasis
has mostly been put on designing estimators attaining minimax rates on a variety
of models, which take into account different regularities of the manifold and noise
models. We focus in this chapter on the problem of estimating a manifold in the
models Qi’im Fonim fonax (7) introduced in Chapter 3. The estimators introduced in the
literature all rely on the knowledge of the quantities d, Tmin, fmin and fmax, whereas
those quantities are unknown in practice. One possibility to overcome this issue is to
estimate in a preprocessing step those parameters. This may however become the main
bottleneck in the estimating process, as regularity parameters are typically harder
to estimate than the manifold itself. This is for instance the case of the reach 7(M)
[Aam-19], while no procedures with theoretical guarantees exist to estimate fin;, and
fmax~

Another approach, to which this chapter is dedicated, consists in designing adaptive
estimators of (M). An estimator is called adaptive if it attains optimal rates of
convergence on a large class of models (see Section 4.1 for a precise definition). Our
main contribution consists in introducing a manifold estimator M which is minimax
(with respect to the Hausdorff distance dp) simultaneously on all the statistical models
Qi’im Fonimsfonax (7). Our adaptive estimator, is built by selecting an estimator in a
family of estimators defined in Section 4.2. The latter is based on the t-convex hull
Conv(t, &) of the set of observations X,,. For a given set A C R”, the t-convex hull
Conv(t, A) is defined by

Conv(t,A):= | J  Conv(o), (4.1)

ocCA, r(o)<t

where r(0) is the radius of a set o, i.e. the radius of the smallest enclosing ball of
o and Conv(o) is its convex hull. The ¢-convex hull is an interpolation between the
convex hull Conv(A) of A (t = 4+00) and the set A itself (¢ = 0): it gives a "local
convex hull” of A at scale t. See Figure 4.1 for an example.

The loss di(Conv(t, X,,), M) of the t-convex hull Conv(t, X,,) can be efficiently
controlled for t larger than some threshold ¢*(X,,) (see Definition 4.2.2). As the
threshold t*(A},) is very close to the approximation rate (X},) := dg (&, M) of the
point cloud, it is known to be of the order (log n/n)l/d (see e.g. [RCO7, Theorem 2|),
and one obtains a minimax estimator on the C?-models by taking the parameter ¢ of
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FIGURE 4.1: The t-convex hull Conv(A) (in green) of a curve A (in
black).

this order (see Theorem 4.2.8). The exact value of ¢ depends crucially on the parameter
fmin which is unknown, so that it is unclear how the parameter ¢ should be chosen in
practice.

In Section 4.3, we build an adaptive estimator by selecting a parameter ¢y (X))
(depending on some hyperparameter A € (0,1)), which is chosen solely based on the
observations X,,. More precisely, we consider the convexity defect function of a set A,
originally introduced in [ALS13], and defined by

h(t, A) = dp (Conv(t, A), A) € [0,1]. (4.2)

As its name indicates, the convexity defect function measures how far a set is from being
convex at a given scale. For instance, the convexity defect function of a convex set is
null, whereas for a manifold M with positive reach 7(M), we have h(t, M) < t2/7(M)
for t > 0, so that a manifold M is "locally almost convex” (see Proposition 4.3.2). We
show that the convexity defect function of X&), exhibits a sharp change of behavior
around the threshold t*(X,,). Namely, for values ¢ which are smaller than a fraction
of t*(AX,), the convexity defect function h(t, X,,) has a linear behavior, with a slope
approximately equal to 1 (see Proposition 4.4.1), whereas for t > t*(A,), the convexity
defect function exhibits the same quadratic behavior than the convexity defect of a
manifold (see Proposition 4.3.3). In particular, its slope is much smaller than 1 as long
as t > t*(A,) is significantly smaller than the reach 7(M). This change of behavior at
the value t*(X,,) suggests selecting the parameter

tA(Xn) == sup{t < tmax, h(t,X,) > At},

where A € (0,1) and tyax is a parameter which has to be smaller than the reach 7(M)
of the manifold (see Definition 4.3.4). We show (see Proposition 4.3.5) that with high
probability, in the case where the sample A}, is exactly on the manifold M, we have

£ (Xn) < tA(X) < Qt*(;(”) <1 + t;éf;;) : (4.3)

In particular, we are able to control the loss of Conv(ty(&},), X,,) with high probability.
By choosing tmax as a slowly decreasing function of n (for instance, tyax = (logn)™1),
we obtain an estimator

M := Conv(ty(X,), X,)

which is adaptive on the whole collection of C2-models (see Corollary 4.3.6).
The estimator M is to our knowledge the first minimax adaptive manifold estimator.
Our procedure allows us to actually estimate the approximation rate e(X,,). The
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parameter ty(X,) can therefore be used as a hyperparameter in different settings.
To illustrate this general idea, we show how to create an adaptive estimator of the
homology groups (see Corollary 4.3.9) and of the tangent spaces (see Corollary 4.3.10)
of a manifold.

Related work

"Localized” versions of convex hulls such as the t-convex hulls have already been
introduced in the support estimation literature. For instance, slightly modified versions
of the t-convex hull have been used as estimators in [AB16| under the assumption
that the support has a smooth boundary and in [RCO7] under reach constraints on
the support, with different rates obtained in those models. Selection procedures were
not designed in those two papers, and whether our selection procedure leads to an
adaptive estimator in those frameworks is an interesting question.

The statistical models we study in this article were introduced in [Gen-+12a] and
[AL18], in which manifold estimators were also proposed. If the estimator in [Gen+12a]
is of purely theoretical interest, the estimator proposed by Aamari and Levrard in
[AL18], based on the Tangential Delaunay complex, is computable in polynomial time
in the number of inputs and linear in the ambient dimension D. Furthermore, it is a
simplicial complex which is known to be ambient isotopic to the underlying manifold
M with high probability. It however requires the tuning of several hyperparameters in
order to be minimax, which may make its use delicate in practice. In contrast, the
t-convex hull estimator with parameter ¢, (X,,) is completely data-driven, while keeping
the minimax property. In Section 4.5, we propose to select some parameter ) (X;,)
which shares some properties with ty(X,)—although with less optimal constants—
while being efficiently computable. However, unlike in the case of the Tangential
Delaunay complex, we have no guarantees on the homotopy type of the corresponding
estimator.

4.1 Preliminaries

Before going further, let us note that there are implicit constraints on the different

parameters of the model Qi’in Fovin fanae Indeed, by Proposition 3.5.7.2, if M € M><,

we have |volys| > wqr(M)?, with equality if and only if M is a d-dimensional sphere
of radius 7(M). Hence, if u has a density f on M lower bounded by fuin, we have

1= / f((]?)dﬂ? > fmin|VOlM‘ > fminwdT(M)d7
M

with equality if and only if x is the uniform distribution on a d-sphere of radius 7(M).
We therefore have the following lemma.

Lemma 4.1.1. Let d be an integer smaller than D and Tiin, fmin be positive con-
stants. Let wy be the volume of the unit d-sphere. Then, Qiﬁn,fnnn,+oo is empty for
fminwdTrCrllin > 1 and contains only uniform distributions on d-sphere of radius Tmin if

d
fminwdTmin =1.

A model containing only spheres is degenerate from a minimax perspective, as laws
in the model are then characterized by only d + 1 observations. To discard such a
model, we will assume in the following that there exists a constant x < 1 such that
fmianTfflin < k?. Note that this is not restrictive as any p € o4 also belongs

2d Tminvfminv"roo
to Q77 N for 7/ . < Tin and f . < fmin-

. . min
min’J min’



60 Chapter 4. Adaptive estimation in manifold inference

We let Q%< be the union of the Q> () for Tmin, fmin, fmax: ¥ > 0 with

fminwatdy, < k4. For € € Q%4 let M(€) be equal to the support of its first marginal &;
(recall that the first marginal corresponds to the distribution supported on a manifold,
whereas &» corresponds to the noise, see Chapter 3). Then M takes its values in the
metric space (K(RP),dy). We use the following parametrization of the set Q*9 :
let ©% be the set of tuples ¢ = (Tmin, fmin, fmaxs 1), With Timin, fmins fmax, 7 > 0 and

fminwdTgnn < k® We let ngg = Q2’d () for v, = n(log n/n)2/d.

Tmin»fminafmax
Theorem 4.1.2. Let x € (0,1). Forany1 <d < D and ¢ = (Twmin, fmin, fmax, 1) € O%
with fmax < 00, we have for n large enough,

2.d
<( cll—r) + 77) < liminf Rn(M, Qyin, dir) < lim sup Rn(M, Qo dit) <Cya

1
Wafmin)? Tmin 2 n (logn/n)?/? n (log n/n)?/
(4.4)

where C' s an absolute constant and Cy 4 is a constant which depends on q and d.

The upper bound in the previous theorem was already stated in Chapter 3, whereas
the constant in the lower bound follows from a careful adaptation of the proof of
Theorem 1 in [KZ15], detailed in Section 4.7.

Note that the statistical model Qﬁ;i is not identifiable because of the presence of
noise. It however becomes identifiable ”at the limit”, as the size of the noise is assumed
to converge to 0 at a certain rate. Changing the model by adding a small proportion
of outliers would not change the minimax rates, as explained in [Gen+12a] or [AL18].
However, the ¢t-convex hull estimators proposed in the next section are very sensible to
this addition and some decluttering preprocessing would be needed to obtain better
estimators on such models. Note also that the t-convex hull estimators will be minimax
on the model QQ’d (7n), that is without any upper bound needed on f, while

Tmin,fmin,+00
the minimax rate is also equal to (logn/ n)z/ d (the lower bound is clear, and the next
section will show the upper bound).

The goal of the chapter is to design an estimator M which is minimax adaptive on
the scale of models Qg:ﬁ, 1<d< D and q € ©% ie. such that

y d

- Ra(M, Qi di)
sup sup limsup >d
1<d<D geod n—oo Ry (M; Qgn, dp)

<C, (4.5)

for some constant C.

4.2 Minimax manifold estimation with ¢-convex hulls

Let X, be a n-sample from law p, where p € Qi;g. In this section, we derive rates of
convergence for Conv(t, X),). First, we note that Conv(¢, X,,) is indeed an estimator,
that is the application

(z1,...,2,) € (RP)" = Conv(t, {z1,...,2n})

is measurable. Indeed, using notation from Proposition 3.4.4, it can be written as

U Gp(Conv({z;}ticr), {xi}ier)

Ic{1,...n}

where E is the closed set of IC(RP) given by {K € KK(RP) : r(K) < t}. As the function
r is continuous and the functions U, Conv and G g are measurable, the measurability
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t < t*(A) t > t7(A)

FIGURE 4.2: The t-convex hull of the finite set A (red crosses) is
displayed (in green) for two values of ¢t. The black curve represents
the (one dimensional) manifold M. On the first display, the value of ¢
is smaller than ¢*(A), as there are regions of the manifold (circled in
blue) which are not attained by the projection s restricted to the
t-convex hull. The value of ¢ is larger than ¢*(A) on the second display.

follows. In order to obtain rates of convergence, we bound the Hausdorff distance
dp(Conv(t, A), M) for a general subset A C M. First, [ALS13, Lemma 12| gives a
bound on the asymmetric Hausdorff distance between the convex hull of a subset of
M and the manifold M.

Lemma 4.2.1. Let 0 C M with r(0) < 7(M) and let y € Conv(c). Then,

r(o)?
(M)

dy, M) < (4.6)

\]

Proof. Lemma 12 in [ALS13] states that if o C M satisfies 7(0) < 7(M) and y €
Conv(o), then,

d(y. M) < 7(M) (1 1((;’}))

As \/u > u for u € [0, 1], one obtains the conclusion. O

This lemma directly implies that dy(Conv(t, A)|M) < t3/7(M) if t < 7(M),
so that the set Conv(t, A) is included in the ¢t-neighborhood of M. Therefore, the
projection s is well-defined on the t-convex hull of A for such a t. We introduce a
scale parameter t*(A), which has to be thought of as the "best” scale parameter ¢ for
approximating M with Conv(t, A).

Definition 4.2.2. For A C M, let
t*(A) :=inf{t < 7(M): mp(Conv(t,A)) = M}. (4.7)

See Figure 4.2 for an illustration. For t*(A) <t < 7(M), and for any point z € M,
there exists y € Conv(t, A) with 7/ (y) = x. Therefore,

d(z,Conv(t,A)) < |y —z| = d(y, M) < dg(Conv(t, A)|M).
By taking the supremum over x € M, we obtain that for any t*(A) <t < 7(M).

dp(Conv(t, A), M) = max{dg(Conv(t, A)|M),dy (M| Conv(t, A))
t2 (4.8)
(M)

= dp(Conv(t,A)|M) <
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The minimax rate is now obtained thanks to two observations: (i) t*(A) is close to
the approximation rate £(A) := dg (A, M) and (ii) the approximation rate of a random
sample can be very well controlled.

Proposition 4.2.3. There exist absolute constants C1 and Cy such that the following
holds. Let A C M be a finite set. If e(A) < 7(M)/8, then

e(A) <1 e fé}‘\%) < tH(A) < e(A) (1 + Oy f&‘%) . (4.9)

The proof of Proposition 4.2.3 relies on considering Delaunay triangulations. Given
d + 1 points ¢ in R? that do not lie on a hyperplane, there exists a unique ball that
contains the points on its boundary. It is called the circumball of o, and its radius is
called the circumradius circ(o) of o. Given a finite set A C R? that does not lie on a
hyperplane, there exists a triangulation of A, called the Delaunay triangulation, such
that for each simplex o in the triangulation, the circumball of ¢ contains no point of
A in its interior. Note that there may exist several Delaunay triangulations of a set A,
should the set A not be in general position. With a slight abuse, we will still refer to
“the” Delaunay triangulation of A, by simply choosing a Delaunay triangulation among
the possible ones should several exist. If the set A lies on lower dimensional subspace,
we consider the Delaunay triangulation of A in the affine vector space spanned by A.
Therefore, for every set A, the Delaunay triangulation is well defined (for instance,
the Delaunay triangulation of three points aligned in the plane is the 1-dimensional
triangulation obtained by joining the middle point with the two others).

Proof. Let x € M be such that d(z, A) = £(A). By definition, there exists a simplex
o C A of radius smaller than t*(A) with = mj;(y) for some point y € Conv(c). We
have, using Lemma 4.2.1,

* 2
£(A) = d(o. 4) < Jo = g1+ dln ) < S+ dly. ),

Furthermore, d(y, A) < d(y,o) < r(o) < t*(A) by [ALS13, Lemma 1|. Therefore,

£(A) < *(A) <1 + iéﬁ%) . (4.10)

If we prove the upper bound in Proposition 4.2.3, then the previous equation is enough
to imply the lower bound in Proposition 4.2.3. Let us show the upper bound. Without
loss of generality, we assume that 0 € M and we show that 0 € 7y (Conv(t, A)) for
t =e(A)(1+6e(A)/m(M)). This implies that t*(A) < e(A)(1 + 6e(A)/T(M)). Let
A=my(ANB(0,R)) for R = (A)(2 + coe(A)/7(M)) and ¢o = 32/49. Note that the
condition €(A) < 7(M)/8 implies that R < 77(M)/24. We first state two lemmas.

Lemma 4.2.4. Assume that e(A) < 7r(M)/24. Let & € ToM with |Z| < e(A). Then
d(z,A) < e(A).

Proof. By continuity, it suffices to prove the claim for || < £(A). In this case, according
to Proposition 3.5.8, if e(A) < 77(M)/24, then there exists x € Bs(0,8¢(A)/7) with
mo(z) = . Furthermore, by Proposition 3.5.7.4,

. - |z|? 32e(A)
< -z <e(A <ed) (1 .
We have d(z, A) = |z — a| for some point a € 4, and |a| < |z —a| + [z] < e(A)(2 +
coe(A)/T(M)). As mo(a) € A, we have d(Z,A) < |z — m(a)| < |x —a| = d(z,A) <
e(A). O



4.2. Minimax manifold estimation with t-convex hulls 63

Lemma 4.2.5. Let V C R? be a finite set and t > 0. If dg(B(0,t)|V) < t, then
0 € Conv(V).

Proof. We prove the contrapositive. If 0 ¢ Conv(V'), then there exists an open half
space which contains V. Let x be the unit vector orthogonal to this halfspace. Then,
d(tz,V) > t. O

Apply Lemma 4.2.5 to V = A and t = e(A). For & € Br,n(0,e(A)), we have
d(,A) < e(A) according to Lemma 4.2.4. Therefore, we have 0 € Conv(A). Consider
the Delaunay triangulation of A. The point 0 belongs to the convex hull of some
simplex & of the triangulation, with circumradius circ(6) and center of the circumball
g. The simplex & corresponds to some simplex o in A, and the point 0 is equal to 7y (y)
for some point y € Conv(c). By Proposition 3.5.7.1, we actually have my;(y) = 0, and
to conclude, it suffices to show that r(o) < e(A) (1 +6 (( ))>. To do so, we use the

next lemma (recall that o C Bas(0, R) with R < 77(M)/24).

Lemma 4.2.6. Let 0 C By (0,77(M)/24) and 6 = 7o(0). Assume that 0 € Conv(d).
Then,

r(5) < r(o) < r(5) (1 + 6:&))) . (4.11)

Proof. As the projection is 1-Lipschitz, it is clear that r(6) < r(o). Let us prove
the other inequality. Let o = {yo,...,yx}, & = {Jo,..., U} and fix 0 < ¢ < k. As
y; € Bar(0,77(M)/24), we have by Proposition 3.5.8

16

< 2r(6), (4.12)

|y’L |y1

< 7
where we used that |g;| < 2r(5) as 0 € Conv(d). Let Z be the center of the minimum
enclosing ball of &. Write Z = Z?:o Ajy; and let z = Z?:o Ajy;j € Conv(o). Then, we
have

2 —vil <z = 2|+ |2 = Gil + 9 — wil
k

12
< Z Nily; — g5 +r(F) + 2’3/(1]’%) using Proposition 3.5.7.4
T
& | 128 r(5)?
Z i5 y] +7(6)+ — D) using Proposition 3.5.7.4 and (4.12)
T
_. 256 r(0)2 r()? .

—_ < 6 4.12).

<r(e)+ 19 T(M)_T< 7) + =5 using (4.12)

We obtain the conclusion as ¢ is included in the ball of radius max; |z — y;| and center

z. O

Using the previous lemma, we are left with showing that 7(5) < e(A). We will
actually show the stronger inequality circ(6) < €(A) (the radius of a set is always
smaller than its circumradius). As 0 is in the circumball (that is centered at ), the ball
centered at § of radius |g| does not intersect A. This enforces |G| < e(A): otherwise,
there would exist a ball of radius €(A) and at distance less than €(A) from 0 not
intersecting A, a contradiction with Lemma 4.2.4 (see Figure 4. 3). As |g| < e(A), we
obtain, once again according to Lemma 4.2.4, that circ(5) = d(g, A) < e(A) concluding
the proof. O
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FIGURE 4.3: If |G| > ¢(A), then the ball Br, (4, |q|) contains a ball of
radius (A) centered at a point at distance less than €(A) from 0 (here
denoted by w).

Proposition 4.2.7. Let i € Qi’in i 00 and let X, = {X1,...,Xn} be a n-sample
of law p. If r < Tmin/2, then
Pe(X) > 1) < 22 exp(cn8 o™ (4.13)
r xp(— Wa fminT?)- :
" - Wdfminrd P ¢
In particular, for n large enough
E(X,)? < 16 <10g">2/d (4.14)
" a wdfminn ‘ '

Proof. The inequality (4.13) follows from Proposition 3.5.7.2, which implies that the
measure y is (a,d)-standard with a = 8 %wg fumin: Proposition I11.14 in [Aam17] then
yields the result. To prove the second inequality, we let r = 8(31logn/(nwq fumin)) /%
Then, ¢(&,,) < r with probability of order (logn)n~2. If this event is not satisfied, we
bound &(AX,,) by diam(M), that is bounded by a constant depending on d, fiin, Tmin
(see Proposition 3.5.7.3 and the fact that |[volys| < fl). Therefore, for n large enough,
Ele(X,)?] < 16 (w;‘}@%)w 0

By gathering those different observations (Proposition 4.2.3 and Proposition 4.2.7)
and by using stability properties of t-convex hulls with respect to noise, we show that
t-convex hulls are minimax estimators on C?-models.

Theorem 4.2.8. Let 0 < d < D, n > 0 and ¢ = (Twmin, fmin, +00,1) € 0%, If
tn = Cp (log n/(wdfminn))l/d (for some absolute constant Cy), then we have for n large
enough, and some absolute constant C1,

R (Conv(tn, &), 0% g < (1257 (1) 4 & (4.15)
) )’ =q,n = n Tmin(wdfmin)z/d

. . . . 2,d
i.e. Conv(ty, Xy) is a minimaz estimator of M on Q.

Proof. We first state a lemma which shows that the ¢-convex hull is stable under small
perturbations with respect to the Hausdorff distance.

Lemma 4.2.9. Let t,y >0 and A, B C R” with dg(A, B) <~. Then,

dp(Conv(t, B)| Conv(t + v, A)) < . (4.16)
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Proof. Let ¢ C B be a simplex with (o) < t. For each y € o, let v € A with
d(z,y) < ~. By doing so, we create a non-empty simplex £ C A with dg(o|¢) <. One
has 7(§) <t + v (see [ALS13, Lemma 16]) and dg(Conv(c)| Conv(§)) < dg(olf) < 7.
This implies the conclusion. O

Let A C M and B C RP with dy(A, B) < 5. Then, if t*(A) < t + v < 7(M),
using (3.10), Lemma 4.2.9 and (4.8),

dp(Conv(t, B)|M) < dg(Conv(t, B)| Conv(t + v, A)) + dg(Conv(t + v, A), M)

(t+7)?
=7

. (4.17)

Let g € ©% let £ € Qﬁ;ﬁi with underlying manifold M and let &,, = {Xy,..., X,,}
be a n-sample of law tx&, with YV, = {Y1,...,Y,} the corresponding sample of law
w, the first marginal of £ (that is X; = Y; + Z; with Y; ~ p and |Z;| < ). Then, for
0<t<T7(M)—r,

Edg(Conv(t, X,), M) = Edg(Conv(t, X,), M)1{t +~v > t*(Vn)}
+ Edg (Conv(t, X,), M)1{t + v < t*(Vn)}
(t+9)?
<
=7

By Proposition 4.2.3, if €(),,) < Co7(M), then t*(},,) > ¢ implies that

+ (diam(M) + y)P(t* (V) > t).

-1
e(Wn) >t <1 + ig};) > Cot

for some absolute constant Cy. Therefore, t*()),,) > t implies
€(Vn) = min (Cor (M), Cat) = Cst (4.18)

if t < Cyr(M)/Cs. By using Proposition 4.2.7, and by noting that diam(M) is bounded
by a constant depending on d, fuin, Tmin (see Proposition 3.5.7.3), we obtain that, if
t < Cor(M)/Cq,

(t+7)? exp(—8"wqfminn(Cat)?)

Edy (Conv(t, X,), M) < A
H( OHV( ’ 77»)7 ) =79 + T(M) + Cd: mm:fmm (C2t)d

. (4.19)

In particular, we obtain the desired control for n large enough by letting ¢t =
C3 (log n/(wdfminn))l/d for some constant C3 large enough, if v < 7 (log n/n)2/d. O

4.3 Selection procedure for the t-convex hulls

Assuming that we have observed a n-sample X},, we were able in the previous section to
build a minimax estimator of the underlying manifold M. The tuning of this estimator
requires the knowledge of fuin, whereas this quantity will likely not be accessible in
practice. A powerful idea to overcome this issue is to design a selection procedure
for the family of estimators (Conv(t, X},))¢>0. Assume first for the sake of simplicity
that the noise level n is null. As the loss of the estimator Conv(t, X)) is controlled
efficiently for ¢t > t*(X},) (see (4.8)), a good idea is to select the parameter ¢ larger than
t*(X,). We however do not have access to this quantity based on the observations A,
as the manifold M is unknown. To select a scale close to t*(X),), we monitor how the
estimators Conv(t, ;) deviate from X, as t increases. Namely, we use the convexity
defect function introduced in [ALS13].
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FIGURE 4.4: Left. n-sample X, close to a circle. Right. Convexity
defect function of A,.

Definition 4.3.1. Let A C RP andt > 0. The d-dimensional convezity defect function
at scale t of A is defined as

h(t,A) := dg(Conv(t, A), A). (4.20)

As its name indicates, the convexity defect function measures the (lack of) convexity
of a set A at a given scale t. The next proposition states preliminary results on the
convexity defect function.

Proposition 4.3.2. Let A C RP be a closed set and t > 0.
1. We have 0 < h(t, A) < t.
2. If A is convex then h(-, A) = 0.
3. If M is a manifold of reach 7(M) and t < 7(M), then
h(t, M) < t*/7(M). (4.21)

Proof. Point 1 is stated in [ALS13, Section 3.1], Point 2 is clear and Point 3 is a
consequence of Lemma 4.2.1. O

As expected, the convexity defect of a convex set is null, whereas for small values of
t, the convexity defect of a manifold h(t, M) is very small (compared to the maximum
value possible, which is t): when looked at locally, M is “almost flat” (and thus
almost convex). We first show that the convexity defect function h(-, X;,) also has a
subquadratic behavior for ¢ > t*(X},).

Proposition 4.3.3 (Long-scale behavior). Let A C M. For t*(A) <t < 1(M),

t? . t*(A)
h(t,A)gT(M)+t (A) <1+T<M)>. (4.22)

Proof. By using that h(t, A) <t and (4.8), for any t*(A) < s < t,

h(t, A) = dy(Conv(t, A), A)
< dp(Conv(t,A), M)+ dy(M,Conv(s, A)) + dg(Conv(s, A), A)
t2 s
=700 " 70)

+s.

The conclusion is obtained by letting s go to t*(A). O]
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Proposition 4.3.3 indicates that, for t*(A,,) < t < 7(M), the ratio h(t, X,,)/t is
very small, while it might be of order 1 at the value ¢*(X},). This suggests the following
strategy to obtain a scale ¢ which is larger than t*(A},): choose the largest scale ¢ such
that h(t, X,) is of order t.

Definition 4.3.4. Let A C M, A > 0 and tmax > 0. We define
tA(A) :=sup{t < tmax : h(t,A) > At}. (4.23)

The following theorem ensures that the scale t)(A) is as expected, close to t*(A),
as long as the approximation rate of A is small enough.

Theorem 4.3.5. Let 0 < A <1, v >0 and M € M>?. Let A C M be a finite set
with ¢(A) < C17(M) and B C RP with dy (A, B) < ~. Assume that

1. t"(A) + v < tmax < T(M)A/2 — 7,
2. t*(A) < Co(1 = N)7(M) and t*(A) < CsA\2r(M),
3.y < Cu(1 = N)t*(A).

Then,

2t*(A) t*(A) 6y
t*(A <i\(B) < 1 —. 4.24
)+ <o < 25 (14 E0) 4 6 (1.24)
Proof. Upper bound on ty(B):
By [ALS13, Lemma 5| for any ¢ > 0, we have h(B,t) < h(A,t+ )+ 2. Therefore,
according to Proposition 4.3.3, we have for t*(A4) <t+~y < 7(M),

t+7)?* | . t*(4)
h(t,B) < D) +t*(A) (1+ T(M)) + 2.

(M) (M)
computation shows that this is the case if v < t*(A) < CoA27(M) for some absolute
constant Cy and tg < t + < t; with (using /1 —u > 1 —u for u € [0, 1]),

= O (1 gty (e (1 ) v an))

Szt*(A)( t*(A)) 6y

A (M) LY

Therefore, h(t, B) < At if (ase) gy t*(A) (1 + t*(A)) + 2y < At. A straightforward

and t; > 7(M)A/2. Therefore, t\(B) < 2t*/\(A) (1 + 1;((]\%) + 677, as long as tmax <
T(M)AN/2 — 7.

Lower bound on t)(A) in the noise-free case:

Assume that £(A) is sufficiently small so that Proposition 4.2.3 holds. Let ¢ € M
with €(A) = d(q, A). One has ¢ = mps(z) for some x € Conv(t*(A), A), so that, by
Proposition 4.2.3 and Lemma 4.2.1,

PA) AR
d(x,A) >d(q,A) — |x —q| > -
( ) >d(q, A) — | ql > (1 +COf((]A\4))> (M)
oA ()
>0 (1- Gy - i
c A AN (o A
2 4) (1 o) T<M>> 2 ¥4 (1 ClT<M>>’
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where we used at the last line that £(A)

< 2t*(A) is e(A)/7(M) is sufficiently small
by Proposition 4.2.3. As z € Conv(t*(A), A), w

we have,

h(#(A), A) > £*(A) <1 e j((];‘;) . (4.25)

Therefore, if A <1 — C1t*(A)/7(M) and t*(A) < tmax, then ty(A4) > t*(A).

Lower bound on t)(A) in the tubular noise case:
By [ALS13, Lemma 5] for any ¢ > -,

h(B,t) > h(A,t —7) — 2. (4.26)

Plugging ¢t = t*(A) + v, and using (4.25),

h(B,t"(A) +7) > t"(A) (1 - ié@;) —27. (4.27)

This quantity is larger than A(t*(A) + ) as long as

t*(A) g
C <1—-A—(24+2A . 4.28
17<M> ST BENEG (429
Ify<(1- )\)% and C ((]C[‘; < 152 then (4.28) is satisfied, giving the desired lower
bound on ¢y (B) under those two condltlons, should t*(A) + v be smaller than t;ax.

O

As a corollary of this result, we obtain the adaptivity of the t-convex hull estimators
of parameter ty(X,).

Corollary 4.3.6. Let 0 < A < 1 and tpax > 0. Let 0 < d < D and q =
(Tmins fmin, +00,1) € O Then, if Tmin > 2tmax/\, we have for n large enough

" (C (t (X) ) QQd d ) logn 2/d N 130 (4 29)
n(ONV(T)(Ap q,n’ n " Tmin(wdfmin)2/d .

By letting tmaxn be any sequence converging to 0 and larger that (cqlog n/(nfmin))l/d
(for instance tmaxn = 1/10g(n) or tmaxn = ((logn)?/n)"/%), we obtain an adaptive
estimator on the scale of models Qi:g forqe ©% 1<d< D, ie. such that

t 2d g
sup sup limsupR n(Conv(t(An )2d n)s Qans i)
1<d<D geod n n(M, qu’ dH)

<C. (4.30)

Remark 4.3.7. Note that the previous result is of an asymptotic nature. In particular,
should n not be large enough (i.e. if t*(X,,) is larger than some fraction of the reach),
then the selection procedure is doomed to fail, as the long-scale behavior corresponding
to the range [t*(X,), 7(M)] is too small to be captured by the selection procedure
(or even is non-existent). A non-asymptotic choice of the parameter ty.x requires
to find a lower bound on the reach 7(M). If estimators of the reach exist [Aam+19;
Ber+21] they both require the tuning of some scale parameter h (with respect to fumin
for instance), so that it is not clear how we may find such a lower bound in an adaptive
manner.

To prove Corollary 4.3.6, we first state an elementary lemma.
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Lemma 4.3.8. Let A C M be a finite set of cardinality n. Then,
e(A) > cgr(M)n~14, (4.31)

Proof. As M C |J,c 4 B(x,2(A)), one has |[volys| < ncge(A)4. As |voly| > war (M),
we have the conclusion. O

Proof of Corollary 4.3.6. By equation (4.17), if t\(X,,) > t*(Vn) — 7, then

2
diz( Convy, oy (X, M) < v 4 21An) £2)7

T (4.32)

This relation holds (we even have t5(X,,) > t*(Vy,) + ) as long as Conditions 1, 2 and
3 of Theorem 4.3.5 are satisfied. If v < 7 (log n/n)z/d and Tiin > 2tmax/A, Conditions
1 and 2 are satisfied as long as t*()/,,) is small enough with respect to A, tmax and 7(M)
and n is large enough. Also, by Lemma 4.3.8 and Proposition 4.2.3, Condition 3 is
satisfied as long as n is large enough. Therefore, Conditions 1, 2 and 3 are satisfied with
probability 1 — ¢z fuin A tmax EXP(—Cd rin fnin Abmax 1), according to Propositions
4.2.3 and 4.2.7. Therefore, (4.32) holds with high probability, and one obtains the
conclusion by using the upper bound in Theorem 4.3.5, Proposition 4.2.3 and the fact
that E[e(),)?] is of order (log n/n)z/d.

To obtain the adaptive behavior (4.30), it suffices to remark that inequality (4.32)
holds as long as Tiin > 2tmax/A and if t*(),) is small enough with respect to tpax.
Using that ¢*()),) is approximately equal to £()/),,) and using Proposition 4.2.7 yields
the conclusion. O

Another possible criterion to ensure the quality of an estimator M of a manifold M
is to ensure that M and M are homotopy equivalent. Although we have no guarantees
on the topology of the estimator Conv(ty(&,,), X,,), our selection procedure also permits
to build a simplicial complex homotopy equivalent to M. We write M ~ N to indicate
that the two topological spaces M and N are homotopy equivalent. For A C RP,
recall the definition of the Cech simplicial complex of parameter ¢ on A:

Cech(t,A):={oc C A: r(o) <t} (4.33)

We will consider that Cech(¢, A) is a topological space by identifying it with its
geometric realization.

Corollary 4.3.9. Let 0 < A < 1 and tmax > 0. Let d be an integer smaller than D
and fmin,M > 0, Tmin > 2tmax/A. Then, for n large enough, and v, < n (log n/n)Q/d,
we have

sup P(M # Cech(5t\(Xy), X)) < Coexp(—Cin), (4.34)
uegz;:invfminv+oo(’yn)

where Cy and C1 depend on d, Tmin, frmins 7, A tmax-

This rate matches the exponential minimax rate obtained in [Bal-+12] for estimating
homology groups, i.e. the parameter (X, ) also allows creating adaptive minimax
homology estimators (although in a slightly weaker sense that in Section 4.1).

Proof of Corollary 4.5.9. For the sake of simplicity, we only give a proof for n = 0
(no noise), the extension to the noise case being made with similar ideas than in
the previous proof. According to [CCSL09, Theorem 4.6], if e(X,,) < 7(M)/17 and
4e(X,) <t < 7(M) — 3e(X,), then Cech(t, X)) ~ M. Also, according to Theorem
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4.3.5 and Proposition 4.2.3, if e(X,,) is small enough with respect to A, tmax and 7(M),
then

5tA(X) > 5% (X)) > be(Xn) (1 - q{iﬁi) > 42(X,) and (4.35)
s < 1005 (1 £O)) 8 "

< 7(M) — 3e(Xy).

Therefore, if ¢(&},) is small enough, then M ~ Cech(5t5(X,,), X,). We conclude by
using Proposition 4.2.7. O

As a last example, we show that the parameter ) (AX},) can also be used to estimate
tangent spaces in an adaptive way. Let x € M and A C M be a finite set. We denote by
T:(A,t) to be the d-dimensional vector space U which minimizes dg(ANB(x,t),z+U).
This estimator was originally studied in [BSW09]|. Recall that the angle between
subspaces is denoted by Z.

Corollary 4.3.10. Let 0 < A < 1 and tymax > 0. Let d be an integer smaller than D
and fumin > 0, Tmin > 2tmax/A. Then, for n large enough, we have

logn)l/d

n

| sup EZL(T,M, T,(X,, 115(X,))) < Co ( (4.37)
2,

NGQTmin’fmin’+°°(’yn)
where Cy depends on d, Tmin, fmins A, tmax-

This rate is the minimax rate (up to logarithmic factors) according to [AL19,
Theorem 3|: we obtain an adaptive estimator (once again in a weaker sense that in
Section 4.1).

Proof of Corollary 4.5.10. According to [BSW09, Theorem 3.2|, for A C M, if t <
T(M)/2 and t > 10e(A), then
t
L(T,(At), T,M) < Cy——— 4.38
(P( 7)’]3 )— OT(M) ( )
for some absolute constant Cjy. According to Theorem 4.3.5 and Proposition 4.2.3, and
arguing as in the two previous proofs, 11ty (X,,) > 10e(&,,) and 11ty (X)) < 7(M)/2 as
long as (&) < Cr(p) A tmax- L herefore,

Et/\(Xn)
BT M, Ty(Xn, 1tA(An)) < 1Co—"7rp%

S CdaTIninafmin,)\ytmax (log n/n)

+ P(g(Xn) > CT(M),)\ytmax)

1/d
M

by Theorem 4.3.5 and Proposition 4.2.7. O

4.4 Short-scale behavior of the convexity defect functions

The selection procedure described in Section 4.3 relies on the behavior of the convexity
defect function h(-, X},) on the range [t*(X),), 7(M)]. However, it appears in numerical
experiments (see Figure 4.4) that the convexity defect function also exhibits a behavior
worth of interest on the interval [0,t*(X),)]: it appears that the convexity defect
function h(t, X,,) stays very close to its maximal value ¢ for ¢ in this range. The next
proposition proves that such a behavior indeed appears in a random setting.
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Proposition 4.4.1 (Short-scale behavior). Let d be an integer smaller than D, and let
g = (Tmins fmins fmax, 0) € ©4. Let X, be a n-sample of law u € ngg. Fiz0< A< 1.
There exist positive constants tg, Coy, C1 depending on the parameters of the model and
on A such that the following holds. Let, for x > 0, ¢(x) = min(1,x)e~*. Then, for n
large enough and 0 < t < ty, we have

h(t, X,) > At with probabilty larger than 1 — Cpexp(—Cing(nm)). (4.39)

The probability appearing in (4.39) will be close to 1 as long as ¢ is smaller than
a fraction of (log n/n)l/d and larger than (1/n)2=9/? for any 0 < § < 1. Therefore,
with high probability, the convexity defect function h(t, X)) is very close to ¢ for
(1/n)@=9/d < ¢ < (log n/n)l/d. On the contrary, standard techniques show that if
t < (1/n)?4, then h(t,X,) is null with probability larger than, say, 1/2, indicating
that the lower bound in the previous range is close of being optimal. The arguments
to prove Proposition 4.4.1 are of a purely probabilistic nature and do not rely on the
geometry of the support of . The remainder of the Section is dedicated to proving
Proposition 4.4.1.

Let p € Qifim Pt frna be a probability distribution with support M and let X,
be a n-sample of law u. We will use repeatedly in the proof the fact that there exist
constants cg, Cy > 0 such that, if t < 7(M)/4, then cgfmint? < u(B) < Cgfmaxt® for
all balls B of radius t centered at points of M (see Proposition 3.5.7.7).

Lemma 4.4.2. Assume thatt < tqr .. #.... There exists a partition C = {Uy,..., Uk}
of M into K measurable parts such that:

1. fork=1,...,K, Uy contains a ball Vi, = Bas(z, 2t),

2. fork=1,...,K, w(Uy) =1/K,

3. we have Cd,Tmi,,,fmaxt_d <K<K Cd,Tmin,fmaxt_d'

Proof. If t < 7(M)/8, then p(B) < Cjfmaxt? for any ball B of radius 2t. Assume
that ¢ is small enough so that Cgfmaxt? < 1/2 and let K be the largest integer such
that 1/K > Cyfmaxt?, so that 1/(2C;fmaxt?) < K < 1/(Cyfmaxt?). Build C in the
following way. Start with an union of K disjoint balls V}, of radius 2¢, for k =1, ..., K,
choose W}, any measurable set in M\ UkK:1 Vi with (W) = 1/K — (Vi) > 0 and let
U = Vi, UWj. The set M\ UkK:1 Uy is of u-measure null, so that by adding it to Uy
for instance, we obtain a partition following the required properties. Note that we
used the fact that for any A C M and 0 < p < p(A), there exists a subset V' C A with
(V') = p: this holds as u is absolutely continuous with respect to the volume measure
on M. ]

We fix such a partition in the following, with balls V}, of radius (2 — \)¢. Let By, be
the ball sharing its center with Vj, of radius t. For W C M, let N(W) be the number
of points of &,, in W. We also write Ny for N(Uy). Let i be the center of By and e
be a unit vector in T, M, and denote by A" (resp. A, ) the ball of radius (1 — \)t/2
centered at 7 = x + e(1 + A\)t/2 (resp. x~ = x, — e(1 + \)t/2), see Figure 4.5.

Lemma 4.4.3. Fizk=1,...,K. If h(t,X,,) < X\t and Ny =2, then we cannot have
both N(A;) =1 and N(A;) = 1.

Proof. Let o = X, N Uy. Assume that N; = 2, and that N(A;) = N(A4; ) = 1. Then,
o is made of two points, x1 and s, respectively in A; and A, . As both points belong
to By, we have (o) < t. Therefore, dg(Conv(o)|X,) < h(t, X,) < At. In particular,
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FIGURE 4.5: Any ball with diameter whose one extremity is in A,
and the other in Az is included in Uy,.

the middle point xg of x1 and x5 is at distance less than At from X,,. Let us show
that Bas(xo,|z1 — zo|) C Vi. If this is the case, then d(zo, X)) = |1 — 22|/2 > M,
a contradiction with having dy(Conv(o)|X,,) < At. Let z € Bys(xo, |21 — x0|) and
denote by m. the projection on e. Then,

|z1 — 22

_ < |y — _ < _ 1 _
- — e
|z — zk| < |z — zo| + |0 — k] + |me(xo — xp)| + |72 (20 — 1) |

1- Nt (1— N\t
<t
<t+ 5 + 5

S (2 - A)ta

concluding the proof. O

Denote by F, the complementary event of the event N(A}) = N(4,) = 1. We
obtain the bound

P(h(t,X,) < At) <PVk=1,...,K, Ny #2or (N =2 and Fy))
= E[P(Vk = 17 s 7K7 Nk 7& 2or (Nk =2 and Fk)|(Nk)k=l,,K)]

K

<E | [JQ{Nk # 2} + P(Fi| Ny = 2)1{N}, = 2})]
k=1
K

<E [H(l — (1 = P(Fy| Ny = 2))1{Ny, = 2})] :
k=1

Lemma 4.4.4. There exists a positive constant Cq such that
P(Fi|N, =2) < e fork=1,..., K.

Proof. If |xq — x| <t < 77(M)/24, then there exists yy € M with mp, (y+ — zx) =
x4+ —xy, by Proposition 3.5.8. Furthermore, we have |y; —x| < 8t/7 and, by Proposition
3.5.7.4, we have |y, — x| < (8¢/7)2/(27(M)) = 32t2/(497(M)). In particular,

Bla, (1= Nt/2) 5 By, (1 — \)t/2 - 3262/ (497(M))) S Bly, (1 — At/4),

if t <49(1 — A\)7(M)/128. According to Proposition 3.5.7.2, we therefore have, also
assuming that t < 7(M)/4,

(1—A)t47>d7

M(B(:u,(l—k)t/?))meino‘d< 4 48

and the same inequality holds for z_.
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Let Y7, Y5 be two independent random variables sampled according to u, conditioned
on being in Uy. Then, as u(Uy) = m = ag(1 + 8) fmin(2 — )%,

P(Fx|N, =2) =1-2P(Y1 € A )P(Y> € 4;)
_1_ QM(B(era (1 =Mt/2))u(B(z~, (1 = N)t/2))

11(Uk)?
2
() e
<1-2| ——=——-— | <e %
= (( +0)@-N)
(471 A)d 2
where C7 =2 <(1ﬁg)(4)d> ) O
We finally obtain
K
P(h(t, X,) < M\t) <E [exp (cq > 1N = 2})] . (4.40)
k=1

Lemma 4.4.5. Assume that nm < max(m~1,(Inn)?). Let ¢ : © € [0,+00) —
min(1,z)e™*. Then,

K
exp <—Cl Z I{Nk = 2})

k=1

E < Cyexp (—Csnp(nm)) , (4.41)

for some positive constants Co, Cs.

Proof. Let S = Z,I::l 1{N, = 2}. Let 7 be the number of points of &, in |J, Uy,
so that 7 follows a binomial distribution of parameters n and K'm. Recall that by
construction, K'm > ¢y for some constant cg (see Lemma 4.4.2). Conditionally on 7, the
random variable S can be realized as the number of urns containing exactly two balls, in
a model where n balls are thrown uniformly in K urns. Let p; = (7}) K1 - K- hn—i
be the probability that an urn contains exactly ¢ balls. We have E[S|n] = Kp2, and

Elexp(—C15)|n1] < Elexp(—C1Kp2/2)1{S > Kps/2}|7] + P(S < Kp2/2|n)
< exp(—C1Kp2/2) + P(|S — Kpa| > Kpz/2|n). (4.42)

Let v = 2K max(2p2, 3ps). According to [BHBO17, Proposition 3.5], if for some s > 0,
Kpy/2 > V4vs + 2s/3, (4.43)

then P(|S — Kpa| > Kpy/2|7) < 4e~%. Recall that nm? < 1 by assumption, and that
K > Cu,gt_d > c1/m. We therefore have n/K2 < CI2. Assuming that n > 3 and using

the inequality In(1 — K1) > —~K~! — K=2 for K > 2, we obtain the inequalities

S 72 3
P2 = (Z/CKQ)eﬁ/K and pg < 6g(ﬁ/K)?’e*’:‘/K < capa(n/K) (4.44)
€1
for some positive constant co. We consider two different regimes.

e Assume first that n/K < 2/(3c2). Then 3p3 < 2py and one can check that
s = Kpo/100 satisfies (4.43). Inequality (4.42) then yields that Elexp(—C15)|n] <
5exp(—C1Kp2) for C{ = min(C1/2,1/100). To conclude, we remark that for any
€ (0,1), by the Hoeffding inequality, the event |7 — nK'm| < nKma holds with
probability at least 1 — exp(—2na?). Letting o = 1/2, we obtain that, on this event,
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2 2

where we used that mK < 1. Therefore, py > c3(nm)® > cq(nm)“e™™™ for some
constants c3 and ¢4. The probability of order exp(—2na?) being negligible, we obtain
a final bound of order exp(—C}cysK (nm)2e=") < exp(—Cang(nm)), concluding the
proof in the regime n/K < 2/(3cz).

e Otherwise, we have n/K > 2/(3c2) and we also assume that |2 —nKm| < anKm
for some a € (0,1) to fix (this happens with probability 1 —exp(—2na?) by Hoeffding’s
inequality). One can then check using (4.44) that s = cyine™™ K satisfies (4.43) if cs
is chosen small enough. Furthermore, s < ¢gKpo for some constant cg (using (4.44)).
The leading term in (4.42) is therefore of the form exp(—criie™™/5). Let o = 1/(Inn)3.
We have, as nm > con/K > cg and as nm < (Inn)? (by assumption),

n 1
< — < =< < —.
cg <nm(l—a)< % <nm(l+a) <nm+ o
Therefore, e~ > (¢g/2)Ke~™". The probability of order exp(—2na?) is still neg-
ligible, and we obtain a final bound on E[exp(—C1.5)] of order exp(—(cg/2)Ke™"") <
exp(—ciong(nm)). 0

4.5 Numerical considerations

Computing Conv(¢, X,,) amounts to compute the Cech complex of X, of parameter
t: we refer to Section 3.6 for a discussion on the computational complexity of this
problem. It remains to discuss the cost of computing ¢ (X},).

The scale (X)) is easily obtained once the convexity defect function of the set
X, C RP has been computed. By the Carathéodory theorem, one can restrict to
simplexes of dimension less than D for the computation of Conv(t, X;,). As there are
O(nP*1) such simplexes, the computation cost of the convexity defect function is
prohibitive for large D. We therefore propose to consider only simplexes of dimension
1 in the convexity defect function. Let Conv!(t, &,) be equal to the union of the edges
e = {x1, 3} C X, of length smaller than 2¢, and h'(t, X,,) = dg(X,, Convl(t,X,)).
We define likewise the parameter ¢} (X;,) with the function h being replaced by h'.

Lemma 4.5.1. Let 1 < d < D be an integer and let cp = ,/% — % Let B C RP
and tmax > 0, 0 < A <1 —cp. Then,

tatep (B) < 1 (B) < tA(B). (4.45)

Proof. A direct computation shows that if o is a D-simplex of radius smaller than t,
then the Hausdorff distance between Conv(c) and the 1-skeleton of o (the union of its
edges) is bounded by cpt. Hence, h(t, B) > h'(t, B) > h(t, B) — cpt. The conclusion
follows from the definition of ¢y (B). O

Hence, if some sets A, B C M satisfy the conditions of Theorem 4.3.5 for A and
A+ cp, then ti(B) satisfies

t*(A) +~ < ti(B) <

2t*(A) t*(A) 6y
1 —.
A < tran) T
The scale ¢ (X,,) can be computed by computing the distance dg (e|X;,) for the n(n—1)
edges e of X),. Each distance can be obtained by computing the projections of the set
X, on the line spanned by e. The time complexity can be further reduced by selecting
a random subset of L edges in X,,. If we have no guarantees on the output with such a
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strategy, it appears in our experiments that it is similar to h'(-, &},) for L significantly
smaller than n?.

As a numerical illustration of our procedure, we compute the convexity defect
function h'(-, &,) of three synthetic datasets: (a) n, = 10% points uniformly sampled
on the unit circle, (b) ny = 10* points sampled on a torus of inner radius 4 and
outer radius 1, and (c) n. = 10° points sampled on a swiss roll implemented with
scipy [Vir+20] (which was also used to compute the Hausdorff distance between point
clouds). The convexity defect functions (a), (b) and (c) were approximated using
the algorithm described in the previous paragraph with parameter L, = oo (all pairs
computed), Ly = 10% and L. = 107. On each function, displayed in Figure 4.6, the
behavior described in Section 4.3 is observed: first a linear growth up to a certain
value, then a quadratic growth until the reach of the manifold (equal to 1 in the first
two illustrations, and slightly larger than 3 for the swiss roll dataset). We then fix
tmax = 0.5 diam(X,,)/ log(n) and compute ¢} (X, ) for different values of A. When \ is
very close to 1, ti(Xn) is always 0, whereas it slowly increases as A decreases, until
reaching tma.x at some value Apin. As a rule of thumb, we choose A, = % and
select the parameter t}\*(é\fn), which is equal to t, = 0.049, t;, = 0.31 and ¢, = 0.48 in
the different experiments (a), (b) and (c), while the approximation rates e(X;,) were
evaluated (by oversampling) at ¢, = 0.021, g, = 0.31 and ¢, = 0.33.

4.6 Discussion and further works

In this article, we introduced a particularly simple manifold estimator, based on a
unique rule: add the convex hull of any subset of the set of observations which is of
radius smaller than ¢. After proving that this leads to a minimax estimator for some
choice of t, we explained how to select the parameter ¢ by computing the convexity
defect function of the set of observations. Our selection procedure actually allows us
to find a parameter t)(AX},) that is very close to e(X},) (up to a known multiplicative
constant). The selected parameter can therefore be used as a scale parameter in a
wide range of procedures in geometric inference. We illustrated this general idea by
showing how an adaptive tangent space estimator can be created thanks to t(X),).

The main limitation to our procedure is its non-robustness to outliers. Indeed,
even in the presence of one outlier in A, the loss function ¢ — dg(Conv(t, X)), M)
would be constant, equal to the distance between the outlier and the manifold M: with
respect to the Hausdorff distance, all the estimators Conv(¢, X)) are then equally bad.
Of course, even in that case, we would like to assert that some values of ¢ are "better”
than others in some sense. A solution to overcome this issue would be to change
the loss function, for instance by using Wasserstein distances on judicious probability
measures built on the ¢-convex hulls Conv(¢, &},) instead of the Hausdorff distance.

Another way to improve the selection procedure is to exploit the short-scale behavior
of the convexity defect function: its linear behavior suggests that selecting the smallest
value t such that the convexity defect function is small (whereas we select the largest
value ty(X,) such that h(t, X)) is large) would also lead to an adaptive estimator.
With such a method, the hyperparameter t,x is not needed anymore. We refer to
[Div21b] for details on this improved construction.

4.7 Precise lower bound on the minimax risk

The goal of this section is to show the lower bound in Theorem 4.1.2. To do so, we
adapt the construction made in [KZ15] so that the lower bound holds with an explicit
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Convexity defect
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(c) 10° points on a swiss roll

FIGURE 4.6: The convexity defect function of the datasets (a), (b) and
(c), and the corresponding choices of ¢} (X,,) with respect to .
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constant. Let 0 < d < D and ¢ = (Tmin, fmin, fmax, 1) € % We denote by M (P) the
underlying manifold of P € qu The lower bound is based on Le Cam’s lemma:

Lemma 4.7.1. Let O, 0@ pe two subfamilies of Qq n whz’ch are €-separated, in the

sense that dg (M (PM), M(P®)) > 2 for all PV ¢ QW) ) € Q). Then,
Rn(M, Q24 dy) > ! Z I ZONN ! Z 1y P (4.46)
N Pl LYo 1) L
rPeg) P e

where |PAQ)| is the testing affinity between two distributions P and Q and v : RP xRP —
RP is the addition.

To obtain a lower bound on the minimax risk, authors in [KZ15| exhibit two
families of manifolds which are e-separated, and consider the uniform distributions on
them. Those manifolds are built by considering a base manifold My which is locally
flat, and by adding small bumps on the locally flat part. Such a construction leads to
distributions having a density equal roughly to 1/|volys,|, a constant which might be
smaller than fu,. If this is the case, then the corresponding submodels are not in Qg;g
and we cannot apply Le Cam’s Lemma. Hence, we consider another base manifold,
which is a sphere My of radius R slightly larger than 7y,i,, so that its volume is smaller
than 1/ fiin (this is possible as frinwg r‘fun < k < 1). The two families are then once
again constructed by adding small bumps on My. We now detail this construction.

Let R,5 > 0 be two parameters to be fixed later. Let My C Rt ¢ RP be the
d-sphere of radius R, and let A be a maximal subset of M, of even size, which is
40-separated. Note that, standard packing arguments (and the formula for the volume
of a spherical cap) show that if §/R is small enough, then the cardinality 2m of A

. d
satisfies 2m > (%) for some absolute constant cg. Let ¢ : R — R be a smooth

function such that 0 < ¢ <1, ¢ =1 on [~1,1] and ¢ = 0 on R\[-2,2]. For s € {£1}4,
we build a diffeomorphism ®¢ by letting for = € R”

(z) = 1+RZ < ‘) . (4.47)

yeA
Recall that || N||,, denotes the operator norm of a linear application N.

Lemma 4.7.2. There exists two absolute constants c1,co > 0 such that the following
holds. Assume that § < R and that c1e/5 < 1. Then, the function ®< : B(0,3R) — RI+!

1s a diffeomorphism on its image, with

sup |[id —d, ®5]|,, < c1€/6 and  sup Hd2®5H < cpe/8°. (4.48)
z€B(0,3R) z€B(0,3R)

Proof. As A is 40-separated, at most one term in the sum in (4.47) is non-zero. A
computation gives that the derivative of ®p is given by, for z € B(0,3R),

dy®E(h) = h + h> 52 s(y ( |> +$%Z%s(y)¢/ <|xgy|> <‘”‘|"x__y’y’|1>.

yGA yeA

(4.49)

Hence,

. c g Moo € Moo
lid =050, < 5 (ol +111%02) < £ (ol + 301702 <05,
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where ¢1 = ¢o|@|loo + 3[|@|lo- A similar computation gives that Hdi@i”op < coe/8?
for co = 4[|¢'|| 00 + 3[|¢"||oc- We eventually show the injectivity: if ®(z) = ®E(a’),

then z and 2’ are colinear. Also, if ¢y = ||}]/occ + 3||¢'||0c, One can check using (4.49)
that the derivative of the function r € [0,3R] — (®%(ru),u) for u an unit vector is
increasing, proving the injectivity. O

Therefore, from [Fed59, Theorem 14.19|, we infer that M := ®S(M) is a manifold
with reach larger than

) (1 —c1/6)?
ME) > 1-— . 4.
7( S)_len( 015/5’1+c15/5+R025/52 (4.50)

Also, the volume of M? is smaller than

volyg:| = / J8 (2)de = wyR? +
My

3 / (J&(x) — 1)da
yeA BMo(y725)

< wde + 2m0d01§|V01M0|(B<y, 25)) < wde (1 + qu%) , (4.51)

where we used that det(N) —1 < Cy |V —id||,, for some constant Cy if N is a matrix
of size d with operator norm smaller than 1, the fact that 2m/|voly, (B(y, 20)) < |volas,|,
and Lemma 4.7.2.

Let R = Toin + % (% ) and § = vV Rev where 12 = 12;3@ With

(@afmin) 172~ Tmin Tmmin *
this choice of parameters, one can check that, for €/6 small enough, 7(M$) > Tmin (by
(4.50)) and |[volpyse| < 1/ fmin (by (4.51) and using that wgfminTliy, < & < 1).

We define the family M®) of manifolds M. < where s contains exactly m signs +1
(and m signs —1). The family M@ is defined likewise by considering M?: where s
contains exactly m + 1 or m — 1 signs +1. We then let Q) be the set of distributions
(Q2,80) where Q¢ is the uniform distribution on a manifold of M € MM so that
oW is a subset of Qi;ﬁi. We then define Q) as follows: let X ~ Q% where @ is the
uniform distribution on a manifold of MS € M. Then, we have X = ®5(V) for
some V € My, and we let

Y = ®<H(V), Z=X-Y.

An element of Q®) is then given by the law of the couple (Y,Z). Note that for
P? € 9@ 1, PP is the uniform distribution on a manifold of M?). Also, M(P®)
is equal to M;TY = &5 o (92)~1(M?) for some M € M), By (4.51) and (4.50),
its reach is also larger than 7y, and its volume is smaller than 1/ fuin if (€ +)/6 is
small enough. Note also that |Z] = |®5(V) — ®577(V)| < |V]y/R < 7. Hence, Q@) is
indeed a subset of Qf]lyn.

By construction, the two families Q1) Q) are (2¢ 4 7)-separated (see Figure 4.7).
Hence, we can apply Le Cam’s lemma. The exact same computations than in [KZ15,
Section 3] show that the testing affinity between QW and Q@ converge to 1 as long
as 4m = n/logn. Thus, Le Cam’s Lemma (4.46) yields

2.d
lim inf Rn(M, Qyn, dn)

ECSE

> Jim inf ((m/4)2/d5 + g) . (4.52)
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MSEE./\/ll

FIGURE 4.7: An element P(Y) € Q) has its first marginal supported
on the blue manifold M¢ (lower bump), whereas an element P(?) € Q)
is such that P1(2) is supported on the red manifold M5 (upper bump),
whereas L#P(z) is the uniform distribution on the dotted manifold.

As 2m > (coR/6)?, we therefore have

o Ra(M,Qindn) & R ¢ R

5 > . - = Y —

llIIlnlIlf logn)z/d _82/d52€+2 82/d1/2+2

n
2

Gy R(R - 7-min) Ui C4 1 n
- - > - i P
82/d 2¢2Tmin * 2~ (wdfmin)l/dTmin (wdfmin)l/d Tmin | 2

for some absolute constant ¢4, where we used that R — 7, = % (W — Tmin)

by definition and that R > %(wdfmin)_l/d. As Tin < m/(wdfmin)l/d, we obtain the
conclusion.
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Chapter 5

Reconstruction of measures on
manifolds: an optimal transport
approach

Density estimation is one of the most fundamental tasks in non-parametric statistics.
If efficient methods (from both a theoretical and a practical point of view) exist when
the ambient space is of low dimension, minimax rates of estimation become increasingly
slow as the dimension increases. To overcome this so-called curse of dimensionality,
some structural assumptions on the underlying probability are to be made in moderate
to high dimensions, which may take different forms, including e.g. the existence of a
parametric component [LLWO07], the single-index model [Liu+ 13|, sparsity assumptions
[Tib96], or constraints on the shape of the support. We focus in this work on the latter,
namely on the case where the probability distribution p generating the observations is
assumed to be concentrated on a submanifold M of R, of dimension d smaller than
D. The topic of density estimation in the manifold setting has been studied for over
thirty years, with the emphasis initially being put on reconstructing the density in
the case where the manifold M is given—think for instance of datasets lying on the
space of orthogonal matrices—notable works including [Hen90; Pel05; Cle 20]. Less
attention has been dedicated to the more general setting where the manifold M is
unknown and acts as a nuisance parameter. Kernel density estimators on manifolds are
designed in [BS17; WW20], where rates are exhibited, respectively in the case where
the manifold has a boundary and in the case where the density is Hélder continuous. In
[BH19], kernel density estimators are shown to be minimax, and an adaptive procedure
is designed, based on Lepski’s method, to estimate the unknown density in a point
x € RP which is known to belong to the unknown (and possibly nonsmooth) manifold
M.

To go beyond the pointwise estimation of pu, even the choice of a relevant loss is
nontrivial. Indeed, most standard losses between probability measures (e.g. the L,
distance, the Hellinger distance or the Kullback-Leibler divergence) are degenerate when
comparing mutually singular measures, which will typically be the case for measures
on two distinct manifolds, even if they are very close to each other with respect to
the Hausdorff distance. This implies that the estimation problem is degenerate from a
minimax perspective when choosing such losses (see Theorem 5.1.9). On the contrary,
the Wasserstein distances W), 1 < p < oo are particularly adapted to this problem, as
they are by design robust to small metric perturbations of the support of a measure.

Apart from this first motivation, the use of Wasserstein distances, and more
generally of the theory of optimal transport, has shown to be an efficient tool in widely
different recent problems of machine learning, with fast implementations and sound
theoretical results (see e.g. [PC19] for a survey). From a statistical perspective, most of
the attention has been dedicated to studying rates of convergence between a probability
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distribution p and its empirical counterpart pu, [Dud69; DSS13; FG15; SP18; WB19a;
Lei20]. Unsurprisingly, if more regularity is assumed on pu, then it is possible to build
estimators with smaller risks than the empirical measure pu,. Assume for instance
that p is a probability distribution on the cube [—1, 1], with density f of regularity s
(measured through the Besov scale B, ). In this setting, it has been shown in [WB19b]
that, given n i.i.d. points of law y, the minimax rate (up to logarithmic factors) for
the estimation of p with respect to the Wasserstein distance W), is of order

s+1
n_ 2s+D if D>3
n~zlogn if D =2 (5.1)
n=s if D=1,

and that this rate is attained by a modified linear wavelet density estimator. Our
main contribution consists in extending the results of [WB19b| by allowing the support
of the probability to be any d-dimensional compact C* submanifold M c RP for
k > 2. More precisely, assume that some probability 4 on M has a lower and upper
bounded density f which belongs to the Besov space B, (M) for some 0 < s <k —1,
1 <p<oo, 1< g< oo (see Section 5.1 for details). We first show (Theorem 5.2.1)
that some weighted kernel density estimator that we integrate against the volume
measure volys on M attains, for the W, distance, the rate of estimation

_ s+1
n~ 2s+d ifd>3
n~3 (logn)?  ifd=2 (5.2)
n"z ifd=1.

In the case where the manifold M is unknown, we do not have access to the volume
measure volys, so that the latter estimator is not computable. We therefore propose
to estimate the volume measure volys in a preliminary step. Such an estimator voly,
is defined by using local polynomial estimation techniques from [AL19]. We show that
this estimator is a minimax estimator of the volume measure up to logarithmic factors
(Theorem 5.2.6), with a risk of order (log n/n)k/d. We then show (Theorem 5.2.7)
that a weighted kernel density estimator integrated against ;(;IM attains the rate (5.2).
Those rates are significantly faster than the rates of (5.1) if d < D and are shown to
be minimax up to logarithmic factors.

In Section 5.1, we define our statistical model and give some preliminary results
on Wasserstein distances. In Section 5.2, we define kernel density estimators on a
manifold M, and state our main results. Proofs of the main theorems are then given
in Section 5.3.

5.1 Preliminaries

For 1 < p < oo, we let L,(M) be the set of measurable functions f : M — R with

finite p-norm || f{|,(ar) = (f fdvolM)l/p (and usual modification if p = oc0). We say
that a locally integrable function is weakly differentiable if there exists a measurable
section V f of the tangent bundle T'M (uniquely defined almost everywhere) such that
for all smooth vector fields w on M with compact support, we have

/ F(V - w) dvoly = — / (V) - w dvolyy, (5.3)

where V - w denotes the divergence of w (the divergence of w is defined as the real-
valued function satisfying (5.3) for every C! function f). Furthermore, we will denote
by p* € [1, 00| the number satisfying % + 1% =1.
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5.1.1 Besov spaces on manifolds

Let M € ./\/lk d 5, for some k > 2, 75, L > 0. We also assume that M is compact.
As stated in the 1ntroduct10n minimax rates for the estimation of a given probability
will depend crucially on the regularity of its density f, which is assumed to belong to
some Besov space By ,(M). We first introduce Sobolev spaces HIZ,(M )yon M for I <k
an integer, and Besov spaces on M are then defined by real interpolation.

Definition 5.1.1 (Sobolev space on a manifold). Let 0 <[ <k , 1 <p < oo and let
fec®(M). Welet

. 1/p
HfHH;(M) ‘= max (/ Hdlf(a:)Hﬁp dvolM(x)) . (5.4)

0<i<l
The space HZZ)(M) is the completion of C*°(M) for the norm || - ||H11)(M)-

Remark 5.1.2 (On the case p = 00). The previous definition cannot be extended to
the case p = oco. Indeed, the completion of C*°(M) for the norm || - || _(ay) is equal to
C!(M), whereas for instance H (M) should be equal to Lo, (M). For [ = 1, the space
H;(M ) can equivalently be defined as the space of weakly differentiable functions f
with HfHH;(M) < 00, while this definition can be easily extended to the case p = co.
In particular, if f € H. (M), then one can verify that f o ¥, € HL (Br,(0,70))
for any «x € M. It follows from standard results on Sobolev spaces on domains that
f oW, is Lipschitz continuous (see e.g. [BrelO, Proposition 9.3]). Hence, f is also
locally Lipschitz continuous. By Rademacher theorem, f is therefore almost everywhere
differentiable, and its differential coincides with the weak differential. As a consequence,
a function f € HL (M) is Lipschitz continuous, with Lipschitz constant for geodesic
distance d, equal to || f[| g1 (ar)-

For 1 < p < oo, we introduce the negative homogeneous Sobolev norm || - || 5 (M)
defined, for f € L,(M) with [ fdvolpys = 0, by

1151y = s { [ Foavola. el eon <1}, (5.5)

where the supremum is taken over all functions g € H;(M ). For f e L,(M), the
negative Sobolev norm is defined by

11 = s { [ Foavota, Nl < 1 56)

and the corresponding Banach space is denoted by H, L(M).

Proposition 5.1.3. Let 1 < p < oo and f € H,*(M) N Li(M) with [ fdvoly = 0.

d—
(1) We have Cr,,[volu| 7 v ”fHH Loy = ||f||H ) = Hf”Hgl(M) for some
positive constant Cq . dependmg on d and Tyin-

(i) We have ”fHHp—l(M) = inf{||lwl|L, ), V-w = f}, where the infimum is taken
over all measurable vector fields w on M with finite p-norm, and where V-w = f
means that [ fgdvolyr = — [w - Vgdvolys for all g € C*°(M).

Following [Tri92|, Besov spaces on a manifold M are defined as real interpolation
of Sobolev spaces.
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Definition 5.1.4 (Real interpolation of spaces). Let Ay, A1 be two Banach spaces,
which continuously embed into some Banach space A. We endow the space Ag N Ay
with the norm ||z|| agna, = max{||z||a,, [|z||a,} for z € AgN A1 and the space Ay + A1
with the norm K(x,1) for x € Ay + Ay, where

K(z,\) :==inf{||zo[| 4, + A|21]|4,, ® =20+ 21, 20 € Ao, 21 € A1}, A >0. (5.7)
For 0 €10,1] and 1 < ¢ < oo, we let

© dx Ve
lellip ane , = (/0 A qu,w) L we Ao+ Ay, (5.3)

A
and (Ao, A1)gq = {z € Ao + A1, ||zll(a9,41)p, < 00} (with usual modification if
q = 00). The pair (Ao, A1) is called a compatible pair, and (Ao, A1)gq is the real
interpolation between Ag and A1 of exponents 0 and q.

For A, B two Banach spaces and F': A — B a bounded operator, we let ||F|| .
be the operator norm of F. Let (Ag, A1) and (By, B1) be two compatible pairs. Let
F : Ay + Ay — By + B; be a linear map such that the restriction of ' to A; is a
bounded linear map into B; (j = 0,1). Then, the following interpolation inequality
holds [Lunl8, Theorem 1.1.6]

—0 0
1 Ao, 41)0,0,(B0, 800 < I g | F 1, 3, - (5.9)

Definition 5.1.5 (Besov space on a manifold). Let 1 <p < 0o and 0 < s < k. The
Besov space By (M) is defined as B, ,(M) := (Lp(M),H}’f(M))s/k’q.

Basic results from interpolation theory then imply that || - |55 () < [ lgs () if
’ p,q

0<s<s <k (see eg. [Lunlg]).
A crucial point in the study conducted in the next sections is the relation between
Wasserstein distances and negative Sobolev norms.

Proposition 5.1.6 (Wasserstein distances and negative Sobolev norms). Let 1 < p <
co. Let M € M?® be a manifold with reach 7(M) > Tiin, and let u,v € Pf(RD) be
two probability measures supported on M, absolutely continuous with respect to vols.
Assume that p,v > fmin - volpr for some fumin > 0. Then, identifying measures with
their densities, we have

—1/p p1/p—1
Wp(p,v) <p 1/pfm/i§ ”N_V”Hp—l(M)

(5.10)
< Cltsraninsfumin 10 = VNl =1 01

for some constant Cyr, .. .. depending on d, Tmin and fmin-

In particular, if p = 1, then the first inequality in (5.10) is actually an equality
by the Kantorovitch-Rubinstein duality formula [Vil08, Particular Case 5.16]. This
inequality appears in [Peyl8| for p = 2 and in [Sanl5, Section 5.5.1] for measures
having density with respect to the Lebesgue measure. We carefully adapt their proofs
in Section 5.4.2.

5.1.2 Statistical models and the choice of the loss function

Statistical models in interest for this problem are based on the statistical models
Pfr’jn L Foins frna introduced in Chapter 3, with the additional constraints that conditions
on the regularity of the density of the measures are to be made. Furthermore, we

require the noise to be orthogonal to the manifold in those models.
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Definition 5.1.7 (Noise free model). Let d < D be integers, k > 2,0<s < k and 1 <
p<oo. Let M € /\/llé. For s =0, the set Q°(M) is the set of probability distributions
w on R absolutely continuous with respect to the volume measure volys, with a density
[ satisfying fmin < f < fmax almost everywhere. For s > 0, the set Q°(M) is the
set of distributions u € Q°(M), with density f € B, (M) satisfying HfHB;’q(M) < L.

The model QZ’k is equal to the union of the sets Q°(M) for M € M*9,

Definition 5.1.8 (Orthogonal noise model). Let d < D be integers, k > 2, 0 < s < k,
1<p<ooand~y > 0. The set QZ’k(*y) 1s the set of probability distributions & of
random variables (Y, Z) where Y ~ u € in’k and Z € B(0,~) is such that Z € Ty M+,

As in the previous chapter, we assume in the orthogonal noise model that we
s,k X . .
observe a n-sample of law 14{ where § € Q" (v): concretely, a n-sample is given
by Xi,...,X,, where X; is equal to Y; + Z; with Y; supported on some manifold M
and Z; € Ty,M L is of norm smaller than . The goal is then to reconstruct the law
¥(&) = p of Y;. We first show that such a task is impossible if the loss function £ is
larger than the total variation distance between measures.

Theorem 5.1.9. Let d < D be integers, k > 2, 0 < s < k, 1 < p < oco. Let
L : P(RP) x P(RP) — [0,00] be a measurable map with respect to the Borel o-
algebra associated to the total variation distance on P(RP) x P(RP). Assume that
L(p,v) > g(|u—v|) for a conver nondecreasing function g : R — [0, oo] with g(0) = 0.
Then, for any Tmin > 0, if fuin s small enough and Ly, Ls, fimax are large enough, we
have

R, Q5% L) > glca), (5.11)

for some constant cqg > 0.

Examples of such losses include the total variation distance, the Hellinger distance
(with g(z) = z), the Kullback-Leibler divergence (with g(x) = 22/2), and the L,
distance with respect to some dominating measure (with g(z) = aP). We give a proof
of Theorem 5.1.9, based on Assouad’s lemma, in Section 5.4.7. A simple example
of loss £ which is not degenerate for mutually singular measures is given by the W),
distance. As stated in the introduction, we will therefore choose this loss, and study
R (p, QZ’k('y), W),), the minimax rate of estimation for 4 with respect to W), where p

is the first marginal of £ € QZ’k ().

Remark 5.1.10. For v > 0, the statistical model Q;’k(v) is not identifiable, in the sense
that there exist &, ¢ in the model for which 14§ = 12¢. Having such an equality
implies that W, (9(),9(&)) < Wp(9(€), t4&) + Wp(14&',9(§')) < 27. This inequality
is tight up to a constant. Indeed, take Y an uniform random variable on the unit
sphere, let £ be the law of (Y,0) and ¢ be the law of ((1 4+ 7)Y, —Y"). Then, £ and
& are in QZ’k(’y) and 14§ = 14&', whereas, by the Kantorovitch-Rubinstein duality
formula,

Wp(0(6),9(€") = Wi(9(€), 9(§)) = E[g((1 +)Y) — (V)]

for any 1-Lipschitz function ¢. Letting ¢ be the distance to the unit sphere, we obtain
that this distance is larger than «. In that sense, v represents the maximal precision
for the estimation of 9¥(&).

Remark 5.1.11. For ease of notation, we will write in the following a < b to indicate
that there exists a constant C' depending on the parameters p, k, Tmin, Ls, Lk, fmin, fmax;
but not on s and D, such that a < Cb, and write a < b to indicate that a < b and
b < a. Also, we will write ¢, to indicate that a constant ¢ depends on some parameter
.
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5.2 Kernel density estimation on an unknown manifold

Before building an estimator in the model QZ’k(fy), let us consider the easier problem
of the estimation of y in the case where 7 = 0 (noise free model) and the support M is
known. Let u € Q*(M) and Y1,...,Y, be a n-sample of law u. Let p, = L > " | by,

n
be the empirical measure of the sample. Identify R? with R? x {0}”~? and consider a

kernel K : RP — R satisfying the following conditions:

e Condition A: The kernel K is a smooth radial function with support B(0,1)
such that [, K = 1.

e Condition B(m): The kernel K is of order m > 0 in the following sense. Let
la| == Z?Zl a; be the length of a multiindex o = (a1, ..., q). Then, for all
multiindexes o, a! with 0 < |a®| < m, 0 < |al| < m + |ag|, and with |a!| > 0
if a = 0, we have

9" K (v)v® dv = 0, (5.12)
R4
where v* = H?:1 v?j and 0“K is the partial derivative of K in the direction a.
¢ Condition C(f): The negative part K_ of K satisfies [p, K_ < §.
We show in Section 5.4.8 that for every integer m > 0 and real number 5 > 0, there
exists a kernel K satisfying conditions A, B(m) and C(f). Define the convolution of
K with a measure v € P(RP) as

K xv(z) = /K(m —y)dv(y), =eRP, (5.13)

and, for h > 0, let K} := h=%K(-/h). Let pj, := K}, xvolys and let fn,n be the measure
with density K}, * (p,,/pn) with respect to volys. Dividing by pj, ensures that g, p, is a
measure of mass 1. Remark that the computation of 1, 5, requires to have access to M,

that is 1, 5, is an estimator on Q°(M) but not on Qfl’k. By linearity, the expectation
of pinp, is given by gy, the measure having for density K,  (u/pp) on M.

Theorem 5.2.1. Let d < D be integers, 0 < s < k—1 withk >2 and 1 < p < oo.
Let M € MP and p € Q(M) with Yi,...,Y, a n-sample of law u. There exists
a constant B depending on the parameters of the model such that, if K is a kernel
satisfying conditions A, B(k) and C(B), then the measure pu, j, satisfies the following:

(i) If (logn/n)"/* < h < 1, then, with probability larger than 1 — cn™*/4, the density
of pinp s larger than fmin/2 and smaller than 2 fmax everywhere on M.
(i) We have
Ellp— /j’n,hHHgl(M) <|lp— NhHHljl(M) + Ellptn,n — NhHprl(M) (5.14)
hl—d/2Id(h)
Vi
where Ig(h) =1 if d >3, (—log(h))/? if d =2 and h~ Y2 ifd = 1.

(i) Let h =< n=Y/@std) i d > 3 h = (logn/n)/?* if d < 2. Define H%,h = Unp if
Hn,p 18 @ probability measure and ,ug n = 0x, otherwise. Then,

< hST 4 (5.15)

s+1

n~ 2s+d if d >3,
EW, (10 5o 1) S n~3 (logn)2  ifd =2, (5.16)
n=z ifd=1.
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(iv) Furthermore, for any 0 < s < k and Tmin > 0, if fmin s small enough and if
fmax and Lg are large enough, then there exists a manifold M € /\/lfl such that

_sl
n 2std  4fd > 3,

(5.17)
n-z if d < 2.

-

R, Wy, @°(M)) Z {

Remark 5.2.2. The condition C(8) on the kernel is only used to ensure that the
measure /i, , has a lower and upper bounded density on M. An alternative possibility
to ensure this property is to assume that the density of p is Holder continuous of
exponent ¢ for some ¢ > 0. Techniques from [BH19] then imply that ||, n—pl| Loo (ar) S
h® + n~1/2p=4/2 « 1 with high probability, ensuring in particular that the density is
lower bounded. If sp > d, then every element of B, (M) is Hélder continuous (by
[Tri92, Theorem 7.4.2|), and condition C'(f) is no longer required. However, Theorem
5.2.1 also holds for non-continuous densities.

Remark 5.2.3. Let K be a nonnegative kernel satisfying conditions A, B(0) and C(f).

It is straightforward to check that Wp,(fen, ttnn) S h. Therefore, Theorem 5.2.1(ii) and

hl—d/QId(h)
7n

Proposition 5.1.6 imply in particular that Wy (n, ) S h+ . By choosing h

of the order n=1/?, we obtain that
n=difd>3
Wy (ptn, 1) S & n2(logn)? if d = 2 (5.18)
n~2ifd=1.

Such a result was already shown for p = oo [Tri}20] with additional logarithmic
factors, with a proof very different from ours. See also [Div21a] for a short proof of
this result when M is the flat torus.

In (5.15), a classical bias-variance trade-off appears. Namely, the bias of the
estimator is of order h*t!, whereas its fluctuations are of order h'=%2/\/n (at least
for d > 3). This decomposition can be compared to the classical bias-variance
decomposition for a kernel density estimator of bandwidth h, say for the pointwise
estimation of a function of class C* on the cube [0,1]%. It is then well-known (see
e.g. [Tsy08, Chapter 1]) that the bias of the estimator is of order h® whereas its variance
is of order h=%/2 /+/n. The supplementary factor h appearing both in the bias and
fluctuation terms can be explained by the fact that we are using a norm H, L)
instead of a pointwise norm to quantify the risk of the estimator: in some sense, we
are estimating the antiderivative of the density rather than the density itself. This
is particularly true if d = 1 and p = 1, where the Wasserstein distance between two
measures is given by the L distance between the cumulative distribution functions of
the two measures [Sanl15, Proposition 2.17].

Before giving a proof of Theorem 5.2.1, let us explain how to extend it to the
case where the manifold M is unknown and in the presence of orthogonal noise. The
measure fi, is the measure having density Kjp * (i, /pn) with respect to volys. Of
course, if M is unknown, then so is volys, and we therefore propose the following
estimation procedure of volys, using local polynomial estimation techniques from
[AL19]. Let Xi,...,X, be a n-sample in the model with orthogonal noise QZ’k('y),
with X; = Y; 4+ Z;, Y; of law p and Z; € TYZ.ML with |Z;| <. Let u,(f) be the empirical
measure ﬁ Zj 4 dx;-x;. For two positive parameters ¢, €, the local polynomial
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estimator (7;, ng e 7Vm—1,i) of order m at X is defined as an element of
m—1 2
arg min v |z = w(z) — Z Vilr(2)®]| 1{x € B0,e)} |, (5.19)
ﬂlvsup2§j§m—1”v3Hop§e j=

where the argmin is taken over all orthogonal projectors m of rank d and symmetric
tensors Vj : (RP) — RP of order j.! Let T; be the image of 7; and U, v €
RP s X; + v+ 22751 V;.i[v®7]. We summarize the results of [AL19] in the following
proposition (see Section 5.4.1 for details).

Proposition 5.2.4. With probability at least 1 — en= /4, if m < k, (log n/n)l/d <
eSS, ySeand1 <0< ed, then,

max Z(Ty,M,T;) <™ 4 ye? (5.20)
1<i<n

and, for all1 <i <mn, ifveT; with |v| < 3e, we have
Wi(v) = Wy; oy (v)] Se™ 47 (5.21)
Hd\i}i(v) — d(Wy, o in)(v)H < em=l gyl (5.22)
op

Hence, if 7 is of order at most €, by choosing m = k, it is possible to approximate
the tangent space at Y; with precision €*~1 and the local parametrization with precision
ek, In particular, authors in [AL19] show that, with high probability, [ J}_, By, (Ti)(X“ £)
is at Hausdorff distance less than ¥ +~ from M (up to a constant). We now define
an estimator \781M of volys by using an appropriate partition of unity (x;);, which is
built thanks to the next lemma. We say that a set S is d-sparse if |z — y| > ¢ for all
distinct points z,y € S. Recall that M? denotes the 6-neighborhood of the set M.

Lemma 5.2.5 (Construction of partitions of unity). Let 6 < 1. Let S ¢ M? be a
set which is L6-sparse, with dr(M°|S) < 46. Let 6 : RP — [0,1] be a smooth radial
function supported on B(0,1), which is equal to 1 on B(0,1/2). Define, for y € M?°

and x € S,
o (98—7690) (5.23)

Xa(y) = S (%>

Then, the sequence of functions x, : M® — [0,1] for z € S, satisfies (i) Y opes Xa = 1,
with at most cq non-zero terms in the sum at any given point of M, (ii) Xz llerarsy <

Cl7d5_l for any 1l > 0 and, (iii) x. is supported on Bys(x,80).

A proof of Lemma 5.2.5 is given in Section 5.4.1. Given a set Sy C M? with
dr (M?®|Sp) < 58/3, the farthest sampling algorithm with parameter 75/3 (see e.g. [AL1S,
Section 3.3]) outputs a set S C Sy which is 7d/3-sparse and 76/3-close from S: the
set S then satisfies the hypothesis of Lemma 5.2.5. The next proposition describes
how we may define a minimax estimator volys of the volume measure on M (up to
logarithmic factors) using such a partition of unity.

Theorem 5.2.6 (Minimax estimation of the volume measure on M). Let d < D be
integers and k > 2. Let £ € Qg’k(*y) and let X1,..., X, be a n-sample of law 14&. Let
(logn/m'* Se <1, 7Se, 1SS

!The existence of such a measurable application follows from the Kuratowski-Ryll-Nardzewski
selection theorem [AB06, Theorem 18.13].
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(1) Let {X;,,...,X;,} be the output of the farthest point sampling algorithm with
parameter Te /24 and input {X1, ..., X,}. With probability larger than 1—cn=%/?,
there exists a sequence of smooth nonnegative functions x; : Me/® — [0,1] for
1 <j < J, such that x; is supported on Bye/s(Xij,€), IX;jller(arersy S e ! and

Z;’:l xj(z) =1 for z € M¢/8 with at most cq non-zero terms in the sum.

(i) Let U, be the local polynomial estimator of order m < k with parameter € and ¢,
and T} the associated tangent space. Let volps be the measure defined by, for all
continuous bounded functions f : RP — R,

J
/f(m)dvolM(x) = j;/ilij(ﬂj)f(a:)xj(m)dx, (5.24)

where the integration is taken against the d-dimensional Hausdorff measure on
;. (T3;). Then, for 1 <r < oo, with probability larger than 1 — en k4 we have,
fory S e?,

( @M volys

- < m
—, Sy+e. 5.25
[volyy| IvolM\> (5:25)

1/d

(iii) In particular, if m =k, e < (logn/n)Y? and v < €2, we obtain that

o~ k

d

Ew, (Yo volur ) o (log"> . (5.26)
[volp| [volar] n

Also, for any Tmin > 0 and 0 < s < k, if fumin s small enough, and if fmax, Lk, L
are large enough, then

R (2 0zt ) 2+ (1) (527

[volas|’ n

s

Let pp, :== Kp, * @M- We define 7, ;, as the measure having density Kp, * (vy,/pp)

LS™% | dx, is the empirical measure of

with respect to the measure volys, where v, = -

the sample (X1,...,X,).

Theorem 5.2.7. Let d < D be integers, 0 < s < k—1 withk >2 and 1 < p < o0.
Let € € QZ’k('y), with p the first marginal of € and let X1, ..., X, be a n-sample of law
t4&. There exists a constant 3 depending on the parameters of the model such that the
following holds. Assume that K is a kernel satisfying conditions A, B(k) and C(3),
that (logn/n)"/? <e <h<1,v<e?, 1 <0< e ! and consider the estimator Vol
defined in (5.24) with parameters m, € and €. Then,

(i) The measure iy, p, is a nonnegative measure with probability larger than 1 —en~H/d,

(i) Define ﬁg’h = Upph if Upp 18 a nonnegative measure and 1927}1 = 0x, otherwise.

Then, with probability larger than 1 — en k4

W (O o i) S+ €™ (5.28)
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(iii) In particular, let m = [s + 17, e < (Inn/n)"?, £ <=1 and h < n~1/Zs+d) 4f
d >3, h=(logn/n)"/% if d < 2. Then,

s+1

n~ 2s+d ifd >3
EW, (29, 1) Sv+{n"2 (logn)2  ifd =2 (5.29)
n"2 ifd=1.

(iv) Furthermore, if 0 < s < k and Tmin > 0, for any fmin small enough and fax,
Lg, Ly large enough, we have
s+1

ned fnTa ifd> 3,

(5.30)
n-z if d < 2.

-

Ry Q5 (1), W) 27 + {

Remark 5.2.8 (Numerical considerations). There are several considerations worth of
interest concerning the numerical implementation of the estimators vol M and 7y, 5. In
a preprocessing step, one must first solve the optimization problem (5.19) for each
element X;; of the output of the farthest point sampling algorithm. Let N; be the
number of points of the sample at distance less than € from X;; (which is with high
probability of order ne? = logn). For k = 2, minimizing (5.19) is equivalent to
performing a PCA on the N; neighbors of X;,, with a corresponding time complexity
of order O(N. J?’) with high probability. For k& > 3, as the space of orthogonal projectors
of rank d is a non-convex manifold, the minimization of the objective function is more
delicate. In |[ZJRS16], a Riemannian SVRG procedure is proposed to minimize a
functional defined on some Riemannian manifold. Their procedure outputs values
whose costs are provably close to the minimal value of the objective function, even for
non-convex smooth functions. The implementation of such an algorithm is a promising
way to minimize (5.19) in practice.

Then, the uniform measure on M can be approximated by considering the empirical
measure (Uyr)y of a N-sample of law Uy := volM/|volM\ To create such a sample,
we may use importance sampling techniques to sample according to the measure with
density x; on \i/ij (Tl]) Finally, the measure ﬁr(ﬁl) with density K} * (v,/pr) with

respect to (Upr)y may be used as a proxy for o, j,.

5.3 Proofs of the main theorems

5.3.1 Bias of the kernel density estimator

The first step to prove Theorem 5.2.1 is to study the bias of the estimator, given by
the distance || - HH;1(M) between puj, and p. Write ¢ for ¢/pp. Introduce the operator

Ap o By (M) — H,'(M) defined for ¢ € L1 (M) and z € M by

Ad(z) = K » (i(f;)) — o) = [ Ko —) (300) - 6(0)) dvola@). (531

Then,
[ — N”Hp—l(M) = ||Ahf||Hp—1(M) < HAhHBIg’q( M),H M)Hf”B (M)

(5.32)
< 14nll

M),Hﬁl(M) 5

Proposition 5.3.1. Let 0 < s <k —1,1<p < oo, and assume that the kernel K is
of order k. Then, if h <1,

||Ah||Bs JOM),H (M) S <SRt (5.33)
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The proof of Proposition 5.3.1 consists in using the Taylor expansion of a function
QP € p7q(M ), and by using that all polynomial terms of low order in the Taylor
expansion disappear when integrated against K, as the kernel K is of sufficiently large
order. Namely, we have the following property, whose proof is given in Section 5.4.3.

Lemma 5.3.2. Assume that the kernel K is of order k and let B : (RP) — R be a
tensor of order 1 < j < k. Then, for all x € M,

\ [ Fata = )BiGe - y)@ﬂ‘]dy\ < |1BIl,, n* (5.34)
(@) — 11 W and pnllesgany S HE10 (5.35)

~

Let us now give a sketch of proof of Proposition 5.3.1 in the case 0 < s < 1. The

Hp_l(M)—norm of Ap¢ is by definition equal to

41, = 500 { [ CAnlocolr. Lallg <1}

Let g € Hy. (M) with [|g] L (M) < 1. We use the following symmetrization trick:

[ ns@ig(a)ae = [ [ Kt = 0)60) - dla)g(adyda
= / Kin(y — z)(d(z) — ¢(y))g(y)dyda: (by swapping the indexes x and y)

= 5 [[ 7t = 0)6) = 6@ o) — ) avas (5.36)

where, at the last line, we averaged the two previous lines and used that K is an even
function. Informally, as Kp(z —y) =0 if |z — y| > h, and as py, is roughly constant,
we expect |p(y) — ¢(x)| to be of order h® and |g(z) — g(y)| to be of order h, leading
to a bound of fAhqb(:c)g(:p)dx of order h*t1. For [ > 1, the following analog of the
symmetrization trick holds.

Lemma 5.3.3 (Symmetrization trick). There exists hg S 1 such that the following
holds. Let 0 <1<k —1 be even and let KU f Ky(x %d)\forxeRD.
Fiz xg € M and let ¢ € C*(M) be a functzon supported in Bpr(xo, ho). Define
¢ = d(p o Wy,) 0y, Let g € Ly(M) with I9llz,«ary < 1. Then, for h < 1,
[ Apg(z)g(x)dx is equal to

; // KV (x = 9)(di(y) — di(x)) [may (& — 9] (9(2) — g(y)) dyda + R,
B (x0,ho)

2
(5.37)

where R is a remainder term satisfying |R| < HéHH;(M)th- Furthermore, if | < k —2

is even, we have |R| < ng~5\|sz7+1(M)hl+2.

Lemma 5.3.4. Let n € C*°(M) and let 0 <1 < k — 2. Assume that either | =0 or
that 1 is supported on Bar(xo, ho). Let my = d'(no W) o 7y, Then, for any h <1,

1/p
// |<hﬂm@ﬁ W@dd
B (w0,ho)? |z — yl?

1/p
< / s @) 2y dar | € il o any
Bas (zo0,ho)

(5.38)
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Proofs of Lemma 5.3.3 and Lemma 5.3.4 are found in Section 5.4.3. We may now
conclude the proof using those two lemmas. Let ¢ € C°°(M) be a function supported
in By(zo, ho) and g € H). (M) with 9l g1, (ary < 1.

P

Case 1: s is even Let [ = s. Assume first that p > 1 and that g is smooth. We
have

I gl 6w - 4@ 1o - gl - o'ty (5.39)
B (zo,ho)? op

op ’$—y|

< Il [ eyl <) )~ G

1/p
< 1K <Ah>l+l(xh /B . 1{rm—yrgAh}\Ml(y)—él(x)][pdxdy)

1/p*
l9(x) — g(y)?
< (Ah)™ //BM(zo,ho 1z —y| < )\h}—‘ » d:z:dy)

< (AR [ 2P(AR) /
z€B (wo,ho)
S H¢||Hz<M (AR < 101l 712 (ary (AR2) L (5.40)

where at the last line, we used Proposition 3.5.7.7 to control the volume of By (z, Ah)
and, at the second to last line, we used Lemma 5.3.4. Furthermore, it follows from
Leibniz formula for the derivative of a product and Lemma 5.3.2 that ||¢|| HL(M) <

1601501

As C*(M) is dense in Hzl,* (M), inequality (5.40) actually holds for every g €
H;* (M). If p =1, then every function g € H]}* (M) with HgHH;* () < 1is Lipschitz
continuous for the distance d; (see Remark 5.1.2). Using that dy(z,y) < 2|z —y| if
| — y| < Tmin/2, a similar computation than in the case p < oo shows that inequality
(5.40) also holds if p = co.

By integrating inequality (5.40) against A € (0,1) and by using Lemma 5.3.3, we
obtain the inequality [[An@| -1y S W4l g ar

)|

op

1/p
volM<BM<x,Ah>>dx> 9l

Case 2: s is odd Similarly, we treat the case where s <k —1isodd. Let [ =s— 1.
Once again, assume first that p > 1 and that g is smooth. Then,

J[ i = i) - a@)]|, 1o - slle - ylasay
B (z0,ho)? op

|6t - i@
K _ op g() ()| l+2d d
< //B I e e~y dzdy

bl ~ b
< Ikl [ h)Ql{\x—y!gAh}H s L
O ]

<K |loo (AR) 2| (AR)7 //B . 1{|z — y| < Ah} P dzdy
M (Zo,no

|z —y|P

" 1/p*
_ p
(o [[ 1o — y| <y IO —9WI 44,
Ba (20,ho)? |z —ylP
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< W21l s ). (5.41)

where at last line we used Lemma 5.3.4 and the inequality HQBHH;(M) S H(bHH},(M)' As

in the previous case, the same inequality holds for g € H;* (M) non necessarily smooth
and if p = 1. By using Lemma 5.3.3 and by integrating (5.41) against A € (0,1), we
obtain that HAh¢||H;1(M) < thHqSHH;(M).

So far, we have proven that

14wl ary S B 8l s an (5.42)

for all integers 0 < s < k — 1 and ¢ a smooth function supported on Bys(zg, ho).
To obtain the result when ¢ is not supported on some ball Bys(xo, ho), we use an
appropriate partition of unity. Indeed, for 6 = hy/8, standard packing arguments
show the existence of a set Sy of cardinality N < cg|volps|0~¢ with dg(M?|Sg) < 56/3.
By the remark following Lemma 5.2.5, the output S of the farthest point sampling
algorithm with parameter 74/3 satisfies the assumption of Lemma 5.2.5, and is of
cardinality smaller than N < 1. We consider such a covering (Bas(x, ho))zes, with
associated partition of unity (xz)zes. Then, ”Ah¢HH;1(M) is bounded by

Z HAh(X:cﬁb)HH;l(M) S Z HX@v‘bHH;(M)

z€S z€S

<hett Z IXzlles(any 1Dl s (i) < hl+1||¢||Hf,(M)a
€S

where the second to last inequality follows from Leibniz rule for the derivative of a
product. Also, the last inequality follows from the fact that (X.)ar = Xz © in, where
in : M — MP? is the inclusion, which is a C* function with controlled C¥-norm. Hence,
IXzlles(ary S Ixalles(arsy S 1 by the chain rule.

As C*°(M) is dense in H(M), this gives the desired bound on the operator
norm of Ay, : Hy(M) — Hp_l(M) for 0 < s < k —1 an integer. To obtain the
conclusion for Besov spaces B, (M), we use the interpolation inequality (5.9). By
the reiteration theorem [Lunl8, Theorem 1.3.5], for 0 < s < k -1, B, (M) =
(L,,(M),H;“*l(M))s/(k_l)g, with an equivalent norm. Hence, we have, for 0 < s <
k-1,

1-6 0
||AhHB;7q(M)7Hp—1(M) 5 HAhHLp(M)’prl(M)||Ah||H§fl(M)7H;1(M)
5 hl—ﬁhkﬁ S hs+1,

so that Proposition 5.3.1 is proven for s < k — 1. It remains to prove the inequality in
the case s = k — 1. By Fatou’s lemma and the definition of interpolation spaces (5.8),
we have, for some constant C' not depending on s,

40y < T 14 g o < lmind (A1 00 ) < Ml s
s<k—1 s<k—1

where we used that || fllzs () < |]fHB§7;1(M). This concludes the proof of Proposition

5.3.1.

5.3.2 Fluctuations of the kernel density estimator

The purpose of this section is to prove the following bound on the fluctuations of the
kernel density estimator.
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Proposition 5.3.5. Let p € Q*(M) with Y1,...,Y, a n-sample of law p. Assume
that h < 1 and that nh® > 1. Then,

El[ttn,n — MhHHZjl(M) S n_l/th_d/QId(h)7 (5.43)
where I4(h) is defined in Theorem 5.2.1.

Let A be the Laplace-Beltrami operator on M and G : Uy; — R be a Green’s
function, defined on {(z,y) € M x M, x # y} (see [Aub82, Chapter 4]). By definition,
if f € C®(M), then the function Gf : x E M — [,,G(z,y)f(y)dy is a smooth
function satisfying AGf = f, with VG f(z) = [ V,G(z,y) f(y)dy for z € M. Hence,
if w=VGf, then V- w = f, so that, Proposmon 5.1.3 yields

Hf”H;l(M) < Hf”H;l(M) < IVGfllr,
By linearity, we have
[ Fen,n — Nh||H;1(M) = || Kp * (ptn — H)HHZ)—l(M)

1276 (- (555)) [ (- (G5

The expectation of the L,-norm of the sum of i.i.d. centered functions is controlled
thanks to the next lemma.

H (5.44)

Lemma 5.3.6. Let Uy,...,Uy be i.i.d. functions on L,(M). Then, the expectation
E| L0 (Ui — EUy) HL ) 8 smaller than

{”_Wf (E[|U1(2)[2])"" d if p<2, (5.45)

Con?/2 [ (E|UL(2)2)"? dz + Cpn? 7 [, E[|U1(2)PP]dz  if p> 2.
Proof. If p <2, one has by Jensen’s inequality

2 p/2
S np/2 (E‘Ul(,?})‘z)p/2

P
<|E

n

> (Ui(z) — EUi(2))

=1

n

> (Ui(z) — EU(2))

i=1

E

and (5.45) follows by integrating this inequality against z € M. For p > 2, we use
Rosenthal inequality [Ros70, Theorem 3| for a fixed z € M, and then integrate the
inequality against z € M. O

It remains to bound E HVG (Kh * (p:(yy))) (Z>ﬂ where Y ~ p, 2 € M and
p =2

Lemma 5.3.7. Let p > 2. Then, for all z€ M and h <1,

e (5,))

) 1 ifd=1
] <d—logh ifp=d=2  (5.46)
pptd—dp  clge.
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A proof of Lemma 5.3.7 is found in Section 5.4.4. From (5.44), Lemma 5.3.6 and
Lemma 5.3.7, we obtain, in the case p > 2 and d > 3

1/p
Elltn = el s oy < (Ellnss = il )

< Cyn1/? /(1@)%(1@*( Y)) >
et ([ [Joe (K (o07)) ©

< n_1/2]VOl]\/[|1/ph1_d/2 4+ pl/p- 1|V01M]1/ph1+d/p d

1/p

P 1/p
[]e)

Recalling that |volys| < fmlln < 1 and that nh?® > 1, one can check that this quantity
is smaller up to a constant than n=/2pl=4/2 proving Proposition 5.3.5 in the case
p > 2 and d > 3. A similar computation shows that Proposition 5.3.5 also holds if

p<2ord<?2.

5.3.3 Proof of Theorem 5.2.1

The proof of (i) is found in Section 5.4.5. Let us now prove (ii). If 0 < s < k — 1, by
Proposition 5.3.1 and (5.32), we have

_ < pstt
I Mh||H;1(M) < LSHAh”Bgﬁq(M),Hp_l(M) Sh

Combining this inequality with Proposition 5.3.5 yields (5.15).

Let us prove (iii). Let E be the event described in (i). If E is realized, then
,u?hh is equal to pu, p, and it satisfies ,ugyh > f"%volM. Thus, Proposition 5.1.6 yields
Wp(u?%h,u) NIy _/‘HHp‘l(M)' If £ is not realized, we bound Wp(,ug,h,,u) by
diam (M), which is itself bounded by a constant depending only on the parameters of
the model (see Proposition 3.5.7.3). Hence,

EWy (s 1) < E [Wy (g gy 1) 1{E}] + diam(M)P(E°)
S Ellpny = pll g1 ary + n 4,
and we conclude thanks to (5.15).
Finally, a proof of (iv) is found in Section 5.4.7.

5.3.4 Proofs of Theorem 5.2.6 and Theorem 5.2.7

Proof of Theorem 5.2.6(i).

Assume that v < ¢/24. Let X = {X1,..., X} and Y = {¥7,...,Y,,}. By the
remark following Lemma 5.2.5, the existence of a partition of unity satisfying the
requirements of Theorem 5.2.6(i) is ensured as long as dg (M®/8|X) < 5¢/24. We have
dp (M8 X) < d (Me/8|Y) +¢/24 < dy (M|Y) + 4¢/24. Hence, the partition of unity
exists if dir (M|Y) < €/24. This is satisfied with probability larger than 1 — cn =%/ if
e > (logn/n)"/® by [Aam17, Lemma I11.23|.

Proof of Theorem 5.2.6(ii).
For ease of notation, we will assume that the output {X;,,..., X;,} of the farthest
point sampling algorithm is equal to {X1,..., X s}. Write v; for the measure having
density x; with respect to the d- dlmensmnal Hausdorff measure on ¥ (T ).



96 Chapter 5. Reconstruction of measures on manifolds
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FIGURE 5.1: Illustration of Lemma 5.3.8(a)

Lemma 5.3.8. If (logn/n)"/? < & < 1, with probability larger than 1 — en™%/?, for
allj=1,...,J:

(a) The map Wy, owy, : B; (0,3¢) — M is a diffeomorphism on its image, which
J
contains Byr(Yj,2¢). Let S; : By (Y, 2¢) — BTj (0,3¢) be the inverse of Uy, omy,.

Then, W; 0 8; : Ba(Y;,2e) — W;(T}) is also a diffeomorphism on its image,
which contains B@j(fj)(Xj,a). Furthermore, for all z € Ba(Yj,2¢), we have

)0 8(2) = Xj| > &2 = Yjl.
(b) The measure (¥ o Sj);uj has a density X; on M equal to
Xi(2) = x; (U5 0 8;(2)) I (¥ 0 8)(2), for z € M, (5.47)
where the function is extended by 0 for z € M\Ba(Yj,2¢).
(¢) For z € By (Yj,2¢), we have
U5 085(2) — 2| S ™+, (5.48)

Xi(2) = xi () S €™ + - (5.49)

A proof of Lem/riaa 5.3.8 is found in Section 5.4.6. Let M. = U}-Izl B\ifj(Tj)(vag)
be the support of voly,.
Lemma 5.3.9. Let 1 <r <oo. Let ¢ : M = R, b M. — R be functions satisfying
Omin < @, 0 < Pmax for some positive constants Gmin, Pmax > 0. Assume further that

forall 5 =1,...,J and for all z € M we have, |q5(\flj 08;(2)) —¢(2)| < T. Then, with
probability larger than 1 — en™%/? we have

5 vol -vol

[ 2ovolu | ¢ voly < Co(T +e™ +7), (5.50)
|- voly| 19+ vol|

where Cy depends on ¢min and Gmax.
In particular, inequality (5.25) is a consequence of Lemma 5.3.9 with ¢ = b=1.

Proof. Assume first that r < co. If (€™ + v) 2 1, there is nothing to prove, so we
may assume that (¢ + ) < 1/(2C¢4), where ¢4 is the constant of Lemma 5.2.5 and

C :=sup,cpr |x;(2) — x;j(2)|/(e™ + 7). We have the bound
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5 - vol -vol 1 L~ 5 vol
Wr<|¢~5 ‘:(iM’ o) VOM>: F - W, <¢.V01M’¢.V01M¢VOM|>

¢-V01M| ’¢'V01M| ¢-V0]M|1/T ‘¢'V01M|

i (1 (57 B

=16 vol |V
J |6 - volu|
+ W [ Y (T 08)5 (6 i) ¢ volu (ol >
j=1

(5.51)

We use Proposition 5.1.6 to bound the second term in (5.51). By a change of

variables, the density of (\I’ 0 Sj)y Y(¢ - v;) is given by ¢ : 2 ¢(\Pj 0 Sj(2))x;(2).

—k/d_

With probability larger than 1 — cn we have for z € M,

J J 1 1
J=1 J=1
Hence, by Proposition 5.1.6,
. 6 - volu|
; Ui08)5 (¢ ]
W, ;( io55)y (@-v5),¢ VOM]¢-V01M|
~ 9 1-1/r J _ vol
< 1/r< ) S _¢|¢ M|
qbrmn — |¢ V01M|
J H7Y (M
2 G |p - volyy|
< V1 b5 —
((Zsmm ) ng / M) VOIM’
2 - 16+ volas| — |6 - volu||
< V1 - 4
(52 v1) >2d-o L
J (M)

Remark that x; (z) <2 for any z € M. Therefore, we have according to Lemma 5.3.8,
105(2) = ¢(2)x(2)] < 2T + dmax|xj(2) = Xj(2)| ST + Pmax(e™ + ). Hence, we have
the bound,

J J
1|6 - volas| — |¢ - volu|| < Z bi— ¢ < Zggj —¢ Ivoly[1=Y/7
=1 Ly I Lo (M)
J
<D odi-¢ volu| S T + Gmax(e™ + 7).
7=l Loo (M)

(5.52)
As 1Bz, () < [volas| " duax and |¢ - volps| > émin|volps|, we finally obtain that
~ —17 | - volu|
D (U508)51(6-v), 0 vole < Cin e (T HE™ 4 7),

J=1
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with the constant Cy . 4 . in the upper bound depending on ¢uin and ¢max, but not
on r.
To bound the first term in (5.51), consider the transport plan Z;-]:l(id7 (¥j o

S;)~1)4(é - v;), which has, according to Lemma 5.3.8, a cost bounded by
J ) 3 -
S [ 15 (850 8 WG+ 1)(5) S s 7+ 7" oLt
j=1

As |\751M| < volpys| + T + émax (€™ + 7y), we obtain the desired bound. By letting
r — 00, and remarking that the different constants involved are independent of r, we
observe that the same bound holds for r = . O

Remark 5.3.10. Inequality (5.52) with ¢ = ¢/ = 1 gives a bound on the distance

between the total mass of volys and the volume |volys| of M: choosing k = m, it is of
order e¥ + ~ with probability larger than 1 — cn =/,

Proof of Theorem 5.2.6/(iii).
Inequality (5.26) is a consequence of Theorem 5.2.6(ii), whereas the lower bound
on the minimax risk (5.27) is proven in Section 5.4.7.

Proof of Theorem 5.2.7.
Note first that 7, ;, is indeed a measure of mass 1. We show in Lemma 5.4.6 that

T := max sup
J=1T 2eB(Y; 0)

K * <”") (B0 ;(2)) — K, + <“"> (2)

Ph Ph

satisfies T' < €™+ with probability larger than 1—cn=%/%. As fuin/2 < Kp*(in/pn) <
2 fmax on M by Theorem 5.2.1(i), and as every y € M. is in the image of \i/j o S for
some j = 1...J, we have funin/3 < Kp * (Un/pn) < 3fmax on M, should £* + v be
small enough. This proves Theorem 5.2.1(i) and, together with Lemma 5.3.9, this also
proves Theorem 5.2.7(ii). Theorem 5.2.7(iii) is a consequence of Theorem 5.2.7(ii) and

Theorem 5.2.7(iv) is proven in Section 5.4.7.

5.4 Appendix to Chapter 5

5.4.1 Geometric properties of C¥ manifolds with positive reach and
their estimators

Let M € M’:r’in ;, for some k > 2 and 7pin, L > 0. We first give elementary properties
of C*¥ manifolds.

Lemma 5.4.1. Let x € M. The following properties hold:

(i) There exists a map Ny : Br,a(0,70) — T M+ satisfying dN,(0) = 0, and such
that, for u € Br,a(0,70), we have ¥, (u) = x +u+ N (u) with | N, (u)| < Llul?.

(i) There exist tensors BL, ..., BE=1 of operator norm controlled by a constant
depending on L, d, k and Tmin, such that, if u € Ty M satisfies |u| < Cy 41, then
JU,(u) =1+ Y17 Bi[u®] + Ra(u), with |Re(u)] < Cy 4 |ul®.



5.4. Appendix to Chapter 5 99

Proof. By a Taylor expansion of ¥, at u = 0, we have ¥ (u) = 2 + u + Ny (u), with
Ny(u) = fol d? W, (tu)[u®?])dt. Hence, |N,(u)| < L|u|?. Furthermore, as 7, o ¥, (u) = u,
we have 7, (N (u)) = 0, i.e. N, takes its values in T, M. This proves (i).

Let us prove (ii). We have d¥,(u) = idg,a +dNz(u), and d¥,(u)*d¥,(u) =
id7, pr +(dNz(u))*dNy(u). Therefore,

JU, (1) = v/det(dW,(u)*dV,(u)) = v/det(idr, ar + (AN, (w))*dN,(w)).

One has dN,(u) = dN,(0 )—|—Z:;g - d(Jerl [u®U=D]+ Ry (u), with | Ry (u)| < O p|ulF~?

and dN,(0) = 0. Hence, (dNz(u))*dNy(u) is written as Zf;; Bj[u®7] + R, (u), with
|R.(u)] < C’,'gjl\u]k. The operator norm of this operator is smaller than, say, 1/2 for |u|
sufficiently small, and we conclude the proof by writing a Taylor expansion at 0 of the

function F' — y/det(id +F). O

We now prove Lemma 5.2.5, on the construction of smooth partitions of unity

based on some set S which is sufficiently sparse and dense over a tubular neighborhood

of M.

Proof of Lemma 5.2.5. Consider the functions 6 and (x;)zecs as in the statement of
the lemma, and, for y € M?, let Z(y) = 3 ,/cqf (yg—f/). As dy(M?°|S) < 46, we
have Z(y) > 1 and the quantity x,(y) is well-defined. The function y, is smooth,

and we have Y _¢Xs = 1 on M?. One has d'y,(y) which is written as a sum of
terms of the form d' =70 (Y5*) &/(Z1)(y), and d/(Z~*)(y) is equal to a sum of terms

of the form Z7'~I=2(y)d/ Z(y) for 1 < j/ < j. Also, ‘dje (yg;’) < ;077 and
, . op
HdJZ(y)HOp < G073 e M|z —y| <86} Hence, as Z > 1, we have for any [ > 0

[t < cio 3 1lle — ol <o),

€S

It remains to bound this sum. If x € B(y, 8), then my(z) € B(ma(y), 105). Also,
for x # 2/ € S, we have |my(z) — mpr(2')| > |z — 2’| — 20 > 20. In particular,
the balls By (mas(z),0) for x € S are pairwise disjoint, and are all included in
Bar(mar(y),110) . Therefore, if 116 < 7(M)/4, using Proposition 3.5.8.7 twice, we
obtain that volp (B (mar(z),6)) > cq6?, and that

D Hlz—yl <80} <) 1{fe—y| < 85}V°1M(Bﬂic(l75f§4(w)7 9)

€S zeS
< volys (B (mas(y), 116)) <)
cq0?

This concludes the proof. ]

We end this section by detailing the properties of the local polynomial estimators
U; and 7} defined in [AL19]. In particular, we prove Proposition 5.2.4. Recall that
X; =Y+ Z; withY; € M and |Z;| < ~. Aamari and Levrard introduce tensors V5
which are defined as &’V x,(0)/;!, where d’V x,(0) is the jth differential of ¥, at 0
(see the proof of Lemma 2 in [AL19] for details). In particular, we have Vi, = mry;.
Furthermore, as 7y; o Wy, = id, we have my; o V., =0 for j > 2.

k/d

Lemma 5.4.2. With probability larger than 1 —cn™"/% for any 1 <i <mn,

(i) We have Z(Ty,M,T;) < e™ ! 4yt .
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(ii) Forv € T;, we have W;(v) = X; +v + N;(v), where Ny : Ty — Ti- is defined by
Ni(v) = 3275 Viilo™).

S eMmI 4 e,

/\.. A._ *
jii © i = Vi omy,

(i1i) For any 2 < j <m, iy

op
(iv) For v € By (0,3¢), we have
[Bi(v) = Ui (v () S €™ + 7, (5.53)
[Ni(v) = Ny, (my; (0))] S €™ +7, (5.54)
d¥;(v) — d(Vy, o WYZ.)(@)H <eml 4oyl (5.55)
op

Sem et (5.56)

Proof of Proposition 5.2.4. Lemma 5.4.2(i) is stated in Theorem 2 in [AL19]. Remark
that for x € B(X;,¢), with £ = 2 — X;, and any orthogonal projection ,

2
m—1
Vilm(2)®?
j=2
2
m—1 ' m—1 .
o Vilm(@)®)| + | wo Vi[m(#)®]
j=2 j=2

so that we may always assume that the tensors VM minimizing the criterion (5.19)
satisfy 7; o Vj; = 0 for j > 2. This proves Lemma 5.4.2(ii).

We prove Lemma 5.4.2(iii) by induction on 2 < j < m. The result for j = 2 is
stated in [AL19, Theorem 2|. It is shown in [AL19] (see Equation (3)) that there exist
tensors VJ’J for 1 < j < m satisfying with probability larger than 1 — ecn=F/¢,

1Vis omyillop

The tensors V;’ , are defined by the relations, for y € M close enough to Y;,

< eMI 4 e, (5.57)

y—Y;=my,(y—Y) Z ilmvi(y = Y)®] + R(y - Vi)
y—Y; — iy —Y;) — Vjalmily — Y®J: v’ [my, (y — Y))¥) 4+ R (y — Y;),

with |R(y — Y;)|, |R/(y — Y3)| < €™, see the proof of Lemma 3 in [AL19]. In particular,
for j > 2, noting that 7wy, o V', = 0, we see that Vj’ﬂ o Ty, is written as the sum of
(my, — 7)o Vi + (V]*l oy, — Vj;07;) and of a sum of terms proportional to

‘A/j/[ OV

ay,i

owY,...,frioVaj“iom/i], (558)

where 2 < j' <jand a; +---4+ay =j,1<ay,...,ay <j. There exists in particular
an index in the sum which is larger than 2. Assume without loss of generality that
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a,...,a; >1and aj41,...,a5 =1, so that 7;0V,, ; =0 for 1 <wu < [. Then,
A A *
H‘G'ﬁ[ﬂl Valz TY; 5 OValzoﬂ'Yu-Haﬂ'iovaj,,ioﬂ'Yi] op
9 ~ * 9 ~ * ¥ ~ *
= ‘G’J[Trio(Val,i_Val,i)Oﬂ-Yw""ﬂ-io(Val,z‘_Val,i)OW}Q’-",WZ'OV@J.,JOW}Q]
op

A

Y; = Va,,i 0Ty,

op

+Cmy, — ffz'Hop>

u=
l
gﬂ](v
u=1
l
< 8_1 H (em—au +’Y€_a“ _|_€m—2 +’7€_2)

u=1

S e HEmU 4 lem U0y < gm=i 4y

my; — Vau,i o Ty
op

where at the last line we use the induction hypothesis as well as Lemma 5.4.2(i), the
fact that 320 a, = j — [ and that £ < e, As H(?Tyl — 7)oV, o Sem g qel,

we obtain that

< gm=J 4 fys_j.

~

H(ijzoﬂy_ffmioﬁi) ‘/jZOﬂ-Y

Hence, using (5.57),

- |Viiomy,

* % ~
HV]’,@-OW—VMOM H OWY—VMOM)—V]ZOW op

<M 4 yed,

We now may prove (5.53). Indeed, for v € By (0,3¢), we have U;(v) = X; +
v+ Z;”:_Ql V;:[v®7], whereas by a Taylor expansion, Wy, o my:(v) = Y; + my,(v) +
23”2_21 Viilmy,(v)®7] + R(v), with |R(v)| < ™. By Lemma 5.4.2(iii), the difference
between the two quantities is bounded with high probability by a sum of terms of
order (™7 + v~ |w|l < e™ + 4. Inequality (5.54) is directly implied by (5. 53) and
Lemma 5.4.2(i). Inequality (5.55) is proven as (5.53), by noting that, for h € T},

Ay, 0, )] = v, (0) + 355" V3 (0, 7 (0] 4 R @)
d;(0)[h] = b+ 375 Vil B2,

with ||R'(v)]]

op SEMT L. Equation (5.56) is shown in a similar way. O

5.4.2 Properties of negative Sobolev norms

Proof of Proposition 5.1.5. The second inequality in (i) is trivial. The assertion (ii)
is stated in [BCS10, Theorem 2.1] for an open set @ C R? and their proof can
be straightforwardly adapted to the manifold setting It remains to prove the first
inequality in (i). Note that for any g with ||VgHL y < 1, one has [ fgdvolyr =
[ f(g — [ gdvolpr)dvoly as [ fdvoly = 0. Also, by Pomcare inequality (see [BCHIS,
Theorem 0.6]),

b= Lo

3=

R

hSA

141
< CrRy?|| VgL, < C
L (M)

)
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FIGURE 5.2: Illustration of the construction in the proof of Lemma
5.4.3

where R = max{d,(z,y), z,y € M} and C depends on d and on a lower bound x on
. . 1 i*+l .
the Ricci curvature of M. Therefore, Hg . fMQHH;* (M) < C»R»*"r. The quantity «

can be further lower bounded by a constant depending on 7, and d. Indeed, a bound
on the second fundamental form of M entails a bound on the Ricci curvature according
to Gauss equation (see e.g. [Car92, Chapter 6]), and the second fundamental form is

1
controlled by the reach of M, see Proposition 3.5.6. As C» < C'V 1, to conclude, it
suffices to bound the geodesic diameter of M. This is done in the following lemma. [

7_1—d

min °

Lemma 5.4.3. The geodesic diameter of M satisfies sup,, e dg(,y) < cq|voly|

Proof. Consider a covering of M by N open balls of radius m = 7(M)/4 (for the
Euclidean distance) and let 2,y € M. Such a covering exists with N < ¢g|volps|r?
by standard packing arguments. Let 7 : [0,¢] — M be a unit speed curve between
x and y. Let By be the ball of the covering such that x € By. If y € By, then
|z —y| < 271, and by [NSWO08, Proposition 6.3|, we have dg(z,y) < 4r;. Otherwise, let
to = inf{t € [0,¢], Vt' > t, v(t') & Bo}. Then z1 := 7(to) belong to the boundary of By,
and is also in some other ball By. By the previous argument, we have dg(z, 1) < 471.
If y € By, then dgy(z1,y) < 4r1 and dgy(z,y) < 8r;. Otherwise, we define ¢; = inf{t €
[to, £], Vt' > t, v(t') € By} and we iterate the same argument. At the end, we obtain
a sequence r = xg,x1,...,xy of points in M with associated balls B; which contain
xj, such that y € Br and dy(x;, xi41) < 4rq. Furthermore, all the balls B; are pairwise
distinct. As dg(xr,y) < 4rq1, we have £ < (I 4+ 1)4r; < (N +1)4r; < 8Nrq. By letting
7 be a geodesic, we obtain in particular £ = dg(x,y) < 8Nr; < SCd’V01M|’F%7d. O

Proof of Proposition 5.1.6. Given a measurable map p : [0,1] — PP, E; a vectorial
measure absolutely continuous with respect to p; (see [Sanl5, Box 4.2]) and v(x,t) a
time-depending vector field, defined as the density of E; with respect to ps, we define
the Benamou-Brenier functional

B, (p, E) i= / lo(z, £) Py () dt. (5.59)

The Benamou-Brenier formula [BB00; Bre03] asserts that for u,v € P! supported on
some ball of radius R,

W]I))(:Uﬂ V) = min {Bp(pa E)a 8tpt +V-E=0,p0 = p,p1 = V}a (560)
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where p; is supported on the ball of radius R, and the continuity equation dyp+V-E =
i — v has to be understood in the distributional sense, i.e.

/ Op(t, x)dp(t, x) + / Vo(t,z) - dE(t,z) =0, (5.61)
[0,1]xRD [0,1]xRD
for all ¢ € C((0,1) x B(0, R)) with compact support.

Assume that p has a density fp and v has a density f1 on M. As 7(M) > 0, the
existence of a probability measure of mass 1, supported on M, with density larger than
fmin implies that |volys| is finite, so that M is compact, see Proposition 3.5.7.3. It is
in particular included in a ball B(0, R) for some R large enough. Let w be a vector
field on M with V-w = p— v in a distributional sense, i.e. [Vg-w = — [ g(u—v) for
all g € CY(M). Let py = (1 — t)u + tv and define E the vector measure having density
w with respect to Leb; xvolys, where Leb; is the Lebesgue measure on [0, 1]. Then
(p, E) satisfies the continuity equation and E = v - p where v(t,z) = WM
for t € [0,1], z € M. Hence,

u>§/1/1\v|pdp

)P
/ /I 1—1t)f +tf1( )|p((1_t)f0($)+tf1(x))da:dt
< [ i

mm

/\

By taking the infimum on vector fields w on M satisfying V - w = p — v and using
Proposition 5.1.3, we obtain the conclusion. The second inequality in (5.10) follows
from Proposition 5.1.3. O

5.4.3 Proofs of Section 5.3.1

Proof of Lemma 5.3.2. We first prove (5.34). Note that if [x—y| > h for x,y € M, then
Kp(xz —y) = 0. Hence, by a change of variable, using that Bys(x, h) C W, (Bz,(0,h))
as m, is 1-Lipschitz continuous,

/ K (x — 4)Bl(x — 4)®]dy = / Kn(x — Ua(0) Bl( — a(0)) )0, (0)dv
M B, a1 (0,h)
B x — Uy(hv) . =Y 2)dw
_/stMml)K (h )B[( U, (hv))®9] 0, (hv)do.

As the functions ¥, and K are C*, according to Lemma 5.4.1(i) and Lemma 5.4.1(ii),
we can write by a Taylor expansion, for v,u € By, (0, 79),

U, (v) = 2+ v+ YF) LY i) 4 Ry (x,0)
JU,(v) =1+, B [U®z]+Rg(x,v)
K(v+u)= <>+z’“” [u®] + Rs(v,u)
Bl(v+u)®] = Bu®] + Y yocn,. 4y Blv7, w7,

where |R;(z,v)| < Cjlv|* for j = 1,2, |R3(v,u)| < Cslul¥ and (v7,u’") is the j-tuple
whose [th entry is equal to v if [ € o, u otherwise. We obtain that

(5.62)

r— Wy (hv) — d'W,(0) i1y — _
T = s D ) - R

7!
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and that the expression K (%ﬂ”(h”» Bl(z — Uy(hv))®/]J ¥, (hv) is written as a sum
of terms of the form

Clo.in i~ d K (0)[(d W (0)[(hv) =" ]) 0| Fiy [ (o) 2] (5.63)

for0<ip<k—1,2<i <k—1andj<iy <k, where Fj, is some tensor of order
i9 and &’ is some integer depending on k and j, plus a remainder term smaller than
1Blop |hv|*~1+7 up to a constant depending on k, j, Lj, and K. The terms for which
ioi1 +i2 — ip > k are smaller than || B, hE up to a constant, whereas the integrals of
the other the terms are null as the kernel is of order k. The first inequality in (5.35) is
proven in a similar manner. Let us now bound ||psl|ci(ary- Given z € M, we have to

bound || (py, \I/$>(O>Hop' We have

@ (pp 0 U,)(0) = h‘j/B o h)(de)h(:c — W, (v) Y, (v)dv.

Therefore, using the same argument as before, we obtain that ||d/(pj o \Ifx)(O)Hop S

k=13 -

Proof of Lemma 5.3.5. Let 0 < | < k — 1 be even, ¢ € C*°(M) be supported in
B (2o, ho) for some ho small enough and g € Ly+(M) with [|g[|r .y < 1. Let
x = U, (u) € Byr(xo, ho) and let ¢y, = ¢ 0 U, . Recall that ¢y = d'gy, 0 Tzy. We
have Kj(x — Uy, (v)) # 0 only if |[x — U, (v)| < h. Hence, as |z — Uy, (v)| > Ju —v|
(recall that W, is the inverse of the projection 7, ), the function Kjp(x — Wy (+)) is
supported on BTIOM(U, h) C BTIOM(O, rg) =: By for h, hg small enough. Thus,

Ap(z) = /B e =)0 )y
= [ K — Wy (0)) (B (1) — g (1)) T Wi ()l

Byg

We may write

b ~ L Ay, (u . Lo
Gag (0) =g (w) =) d%O()[(U—U)@ZH/O d' Gy (utA(v—u))[(v—u)®]

il
i=1

(1—-xnt

(B

Each term [ Kj(z — Uy, (v))%}’(u)[(v —u)®JW,, (v)dv is equal to

| #te - TG - ),

and is therefore of order smaller than h* mMaxi<;<j ‘ ng(l“)H by Lemma 5.3.2. Hence,
op

e

and of

App(x) is equal to the sum of a remainder term of order h* maxi<i<j ‘
op

1 |~ . (1 _ )\)Zfl
/0 . Kp(x — Uy (0)d' buy (u + A(v — u))[(v — u) ]WJ\I/IO(U)dUd)\

- 1 R _ (1 _ )\)l*l
_ /0 [ Ko = ) (0 + AW =) = d'uy w)) [0 = )15

JU 4, (v)dvdA
+ Ry (56)7
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where | Ry (7)| < hF maxj<;< ’

qu(x)H by Lemma 5.3.2. We now fix A € (0,1) and
op

write, by a change of variables, and as BTIO wm(u, h) C By for hg, h small enough,

UGw) i= [ K= Wan (0) (@ G+ Mo = ) = 'y (w) ) [(0 = 0) ¥} T W ()0

= [ E (= (0 B ) ) (o) iy ) [(w}f‘)@l]

dw
JUs, <u+ 3 > Y

Note that |Kp(u) — Kp(v)| < h 9 Hu —v|1{|u| < h or |v| < h}, and that, as ¥, is

C2
w—u x— Uy (w)
r— W, <u+ 5 > — )\0 ‘
< [ (Wlw = u] = (2 = T (w)) | | Lilw — uf”
- A 2)2
Li|w — ul? < lw — ul?
- A ~ A

whereas, as JVU,, is Lipschitz continuous,

JUs, (u—i—w;u) —J\I/mo(u))‘ S lu+ v-u —w‘ < ]w}—\u!
Hence, U(z) is equal to the sum of
N Ko (@ = W () (' (w) = @'y () ) [(w = 0) )Wy () du

By

=\ /M Kpy (z —y) (&l(y) - Q;l(x)) (7o (y — $))®l]dy,

and of a remainder term smaller than
A—l/ A UK, (x—\I/x()( u))J\If,m <u+w;“>
By
Hdlmo w) = d'dy(w)]| o — uf'dw

—Kh/\(x—\;[l ( ))J\Pxo
_ "IU — U,‘2 ‘w - U‘

x ‘d%xo (w) — dlg?)xo(u)H w — ul'dw

< h(R)~d / Hdlquo dlézo(u)H dw.
lw—u|SAh op

Putting all the estimates together, we may now write [;, Ap¢(z)g(z)dz as S + Ry,
where, by the symmetrization trick (using that [ is even)

S = //MxM K;(ll) (x—y) (qu(y) - ggz(a:)) (g (y — 2))®g(z)dyda
= // KV (z—y) <€f;l($) - sz(y)) (72 (2 — 4))®Yg(y)dydz:
MxM
=5 [ =9 (3 = @) (s = 1) o(e) = gla)dde
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and, as Ap¢ is supported on Bys(xg, ho + h) C Bas(x,2hg) if h is small enough, Ry is
smaller than,

o [ / |60 0) = 'y (7o)
x€Bur (w,2h0) J|w—Tzq (z)[SAR

9(@)]dwda

op

(5.64)

i(@)|| lg(z)ldz

+/ hE max‘

M 1<¢<]

< hHr(an) / / lg(z)|dzdw (5.65)
’LUGB]W 1’3h0 op |’Ll)—7'f'z (I)‘<)\h

+hl+1/ ¢l(az)H |9(~”U)|d33+/ h max‘dh( )H l9(@)ldz,
a:EBM(ac,QhO) op P

1<i<
where we also used Lemma 3.5.87. By the chain rule,

si\

op

s (w)

bilo)|. d'é(x)

< max ’
1<z<l

max ’
1<i<1

d'¢(x)

op op

Hence, applying Holder’s inequality and using that | g|| L,«(m) < 1 show that the two

last terms in (5.65) are of order thHqNSHHsz(M). To bound the first term in (5.65),
remark that by Young’s inequality for integral operators [Sogl7, Theorem 0.3.1], if

Tl9)w) = OW) 2 [\ lg@)lda, then [ Tngls, .y S Iglz,.(ar)- This vields,
by Holder’s inequality,

hl+1/
weBps (2,3h0)

which concludes the proof of the first statement of Lemma 5.3.3. To bound the
remainder term in terms of ||¢||Hz+1(M), we bound the second term in (5.64) in the
p

0],

Tin(9) (Wag (w))dw S WG| g (0s

same fashion, while, to bound the first term, we write, by a change of variables,

[ [0 () — ' (g ()
B (w0,2h0) Jw—Tz (z)|[SAR

1 ~
<[/ / [ Gy G () + X (w0 — g ()
0 JBur(x0,2h0) Y | w—Tgy (2)|SA
X |7z (2) — w||g(z)|dzdwd N

1
<h / / / [0 )] lg) i Sppa,
0 JBar(z0,2h0) Ju—Tzy ()| SN AR op

and this term is bounded as the first term in (5.65) by h(h/\)d||q5||Hz+1(M), concluding
the proof of Lemma 5.3.3. O

lg(z)|dzdw

op

op

Proof of Lemma 5.5.4. By the chain rule, we have that, for any u € BTZOM(O» ho),

|d (o Wap)(w)]|. S maxi<i<iy ||din(Vay, (u))Hop. Hence, by a change of variables,

Hop ~

o </ d'n(Weo(u))||0 d
foog @S [
I+1
S din P du
Z/TJCOM(OhO ‘ ( H
I+1 '
< Z/ |d*n(P, HP JWso(u)du S ||77||Hl+1(M)

By 1 (0,h0)
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where we used at last line that, by Lemma 3.5.8(ii), JU,,(u) > 1/2 for |u| < hg if ho
is small enough. To prove the first inequality, write

X
(AP e
B (z0,h0)? |.”L’ - y|p
d now, dl (noWy,)
St [ a0 - < TS g b Oy,
BTZOM(OJLO)2 |\ijo(u) - ‘llxo( )|p

1
s ] L~ o] < b} @ (70 ey + A — w))||”. dudud
0 By 1(0,h0)? P
1
5h—d/ // 1w —u| < )\h}Hle(no\IJxO)(w) " dudwr—?dA
Br, M (0,2h0)2 op

/ /BTI M (0,2ho)

where at the second to last line, we used that w = u+ A(v — u) is of norm smaller than
2hg if |u| < hg and |v —u| < h < hg, and, at the last line, we used that J¥,,(w) > 1/2
for |w| small enough. O

‘dl“ oW, )(w )

dw s / i1 @I, da,
B (zo,ho

5.4.4 Proof of Lemma 5.3.7

Lemma 5.3.7 is heavily based on the following classical control on the gradient of the
Green function.

Lemma 5.4.4. Let x,y € M, then

1 1
< < .
|VCEG(x7 y)’ ~ dg(l', y)dfl — |$ _ y|d71

(5.66)

Proof. For d > 2, a proof of Lemma 5.4.4 is found in [Aub82, Theorem 4.13]. See
also [Hir96, Theorem 5.2| for a proof with more explicit constants in the case d > 3.
Constants in their proofs depend on d, bounds on the curvature of M, |volys| and the
geodesic diameter of M. As, those three last quantities can be further bounded by
constants depending on Tyin, fmin and d, see Lemma 5.4.3 and [NSWO08, Proposition
6.1], this concludes the proof. For d = 1, M is isometric to a circle, for which a closed
formula for G exists [Bur94|, and satisfies |V,G(x,y)| < 1. O

Recall that, by Lemma 5.3.2, |pp(x)| > 1/2 for all € M. Therefore, Lemma 5.4.4

yields
K||soh™
( ) B (z,h) 12— Yl
If d = 1, this quantity is smaller than a constant as volys(Bas(z, h)) < h? by Lemma

3.5.87. We then obtain directly the result in this case by integrating this inequality
against f(z)dx. If d > 2, we use the following argument.

o If |[t—2| > 2h and y € Bas(x, h), then |z —y| > |x —2z|—h > |z —z|/2. Therefore,
by Proposition 3.5.7.7,

[y 21| K [l ooh 1 1
dy < las (B h) S ———.
/B]umh ‘Z— ’d 1 y— ’x_z|d_1 VO M( M(ﬂj, ))N ‘m_z‘d_l
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o If |x — z| < 2h, then

K||ooh™ K||ooh™@
/ [ Hood 1dy§/ | ”Ood_ldy
By (z,h) |z =yl Bas(z,3h) |z =y
—d
Br,m(0,3R) |z = W2 (u)| Br,am(0,3R) |ul

where at the last line we used that |z — ¥, (u)| > |u| and that JU,(u) < 1 by
Lemma 5.4.1.

Hence,
E[IV(G(Kp *dx))(2)"] = /M f(@)|V(G(Kp * 62))(2)|Pdz

< Fo ( / V(G (K * 62)) (=) [Pda + / V(G (K + ax»(z)\pdx)
B (z,2h) M\Bps(2,2h)

< / RU=dPdy + / |z — x| DPdy
B}w(z,2h) M\BM(Z,Qh)

< pO-dptd | / 1= — |- Drdg.
M\B}V[ (Z,2h)

The latter integral is bounded by

/ \z—x|(1_d)pdx+/ |z — 2|0 Drdg
2h<|z—z|<ro |z—z|=r0

< / |2 — U, ()| DP T, (u)du + [volp|ri P
2h<|W , (u)—2z|<ro

< / lu| 0= DPdy + 1 < RA-DPtd if (1 — d)p 4+ d < 0,
4h/8<|u|<ro

where at the last line we use that |u| < |z — ¥,(u)| < 8Ju|/7 by Proposition 3.5.8. If
d > 2orif d=2and p > 2, the condition (1 — d)p +d < 0 is always satisfied. If d = 2
and p = 2, then f14h/8<|u\<h0 \u|(1*d)pdu is of order —log h, concluding the proof.

5.4.5 Proof of Theorem 5.2.1(i)

Let f be the density of p and f = f/pn. By Lemma 5.3.2, fuin(1 — coh®™1) < f<
frmax(1 + coh*~1) for h small enough. We have

Kp* f(x / Kp(z—vy )dy—/BT M(Oh)Kh(x—\Ilm(v))follfm(v)J\I/z(v)dv
> [ Ko W)W (e (5.6)
BTQCJ\/[(O h)
—/ |Kp(z — U, (v) — Kp(0)|f 0 () U, (v)dv. (5.68)
By 0 (0,h)

K
By Lemma 3.5.8(i), the quantity |Kp(z — V. (v)) — Kp(v)]| is bounded by ” }Illsing) |z —

v—U,(v)] < h'fjfl , so that the second term in the right-hand side of (5.68) is bounded
by C fmax [, A (O1) h'Zf—fldv < h. Also, using that [JU,(v) — 1] < ¢1|v| by Lemma
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3.5.8, the first term is larger than

Foin(1 — coh*1)(1 — e1h) /R Ky (0)dv — fae(1 4+ c1h)(1 —|—cohk_1)/Rd K_(v)dv

= fmin(1 — c2h) <1 + K(v)dv) — fmax(1 + c2h) /Rd K_(v)dv

R4

= fmin(l - Czh) - (fmax(l + CQh) - fmin(l - CQh)) d K_(U)d’l)

> fmin(1 - CQh) - (fmax(l + CZh) - fmin(l - CZh))ﬁ

Z 3fmin/4a
if 8 < fmin/(4(fmax — fmin)) and h is small enough. Likewise, we show that K} *
f() < 3fmax/2. It remains to show that |Kj * f(x) — Kp, * (un/pn)(x)| is small
enough for all z € M with high probability. Note that Kj * f — K}, * (tn/pn) is
L-Lipschitz with L < h=9"!. Let t = fun/4 and consider a covering of M by
N balls By(xj,t/(2L)). By standard packing arguments, such a covering exists
with N < (L/t)% If |Kp, * f(z;) — Kp * pn(x;)] < t/2 for all j = 1,..., N, then
Ky % f — Kp * pnllpoary < t/2+ Lt/(2L) < t. Hence, using Bernstein inequality
|GN15, Theorem 3.1.7|, as |Kp(z; — Y;)| < |]K||C0(Rp)h_d and Var(Kp(z; —Y;)) <
||K2H60(RD)h_d, we obtain

P(||Kn % f = Kn * pinll Lo ary) > ) < PG, |Kp* flag) = Kp * pn())] > /2)
S (L) P(Kn x flxg) — K * pn(as)| > 1/2) S 74D exp(—Cnh?).

Choosing nh? = C’logn for C’ large enough yields the conclusion.

5.4.6 Proofs of Section 5.3.4

We first prove Lemma 5.3.8.

Proof of (a). The application Wy, o my; : BTJ_(O,?)E) — M is a diffeomorphism
on By (0,3¢), as the composition of the diffeomorphisms Wy, and (7ryj)|T_ (recall
J J
that (T, Ty, M) < e™ ! 4+ ve~! <1 by Proposition 5.2.4). Furthermore, as @y, is

1-Lipschitz continuous and using the bound on the angle,
BM(Yj, 2e) C \I/yj (BTY]_M(O, 2¢)) C (‘I’Yj o W)/j)(BTj (0,3¢)).
This proves the first part of Lemma 5.3.8(a). Let S; : Bas(Y;,2¢) — BTj(O, 3¢e) be the

inverse of Wy, o my;. By Lemma 5.4.2(ii), ‘i/j is injective on Tj, while, for v € Tj with
lv| < 3e,

m—1

Z an[-, v®(a_1)]

a=2

id—d¥,(v)]| <

op

<le<1/2 (5.69)

if ¢ <71 is small enough. Hence, \i’j : B4 (0,3¢) — @](TJ) is a diffeomorphism on its
J

image, and \flj o §; is a diffeomorphism as a composition of diffeomorphisms. Note
that the inverse of V; is given by 7;(- — Xj), so that Bi,j(fj)(Xj,z-:) C \I/j(BTj (0,¢)).
Furthermore, by Proposition 3.5.8,

(Ty; o1y, ) (B, (0,€)) € Py, (B, (0,¢)) C Bar(Y;, 8¢/7),

so that (¥ 0 S;)(By(Yj,2¢)) contains Bifj(fj)<va ¢). Furthermore, these inclusions

of balls also hold for any &’ < ¢, proving that |¥; o S;(2) — X;| > (7/8)|z — Y;| for any
A BM(Y]', 25).
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Proof of (b). The formula for the density x; follows from a change of variables.

Proof of (¢). The inequality (5.48) follows from Proposition 5.2.4. We now prove
that

7y (2 = ¥ 0 55(2)| S e(e™ +). (5.70)

Let u € TJ be such that z = Uy, o 7y, (u) and y = \i’](u) Recall that X; € TijJ- by
assumption, so that 7y, (X; —Yj) = 0. Also, by Lemma 3.5.8(i), we have Wy, (7y, (u)) =
Yj + my, (u) + Ny, (y, (u)) with Ny, (wy, (u)) € Ty, M=+, while by Lemma 5.4.2(ii), we
have W, (u) = X; + u + N;(u) with Nj(u) € TjJ-. Hence,

7y, (2 = )] = [y, (V5 + 7y, (0) + Ny, (my, () = (X + 0+ N(w)
— |y, (Ny, (v, (1) — Nj(u))|
< LTy, ML) Ny, (y, (1) = Ny ()] + 7 (N, (v, () = N ()
(€™ e )E™ + ) + |7 (75 (Ny, (my; ()]
(€™ e ) (E™ +9) + L(Ty, M, T})| Ny, (v, (w)|
™ e Y™+ +D) SET e )(E + ),

AN AN A

where we used Proposition 5.2.4 to bound A(Tij,Tj), Lemma 5.4.2 to bound
| Ny, (my, (u)) — Nj(u)| and Lemma 3.5.8 to bound | Ny, (my; (u))]. Recalling that v < &
by assumption, we obtain (5.70).

To prove inequality (5.49), we first bound |x;(¥; o S;(2)) — x;j(2)| and then bound
|J(¥; 0 S;)(2) — 1]. The first bound is based on the following elementary lemma.

Lemma 5.4.5. Let 0 : RP? — R be a smooth radial function. Then, |0(x) — 0(y)| <

9llc,, wD

—552 [z — yl?l.

Proof. As df(0) = 0, one can write §(z) = (|x|?) for some function § which is Lipschitz
2

continuous with Lipschitz constant %. This implies the conclusion. O

Recall from the proof of Lemma 5.2.5 that we have x;(2) = ¢;(2)/ 327_, ¢i(2) where
G=40 (Z_TXZ> for some smooth radial function 6, and that furthermore, there is at

most ¢q non-zero terms in the sum in the denominator, which is always larger than 1.
Hence, if we control for every i = 1,...,J the difference ||z — X;|> — |¥, 0 S;(2) — X;|?],
then we obtain a control on |x;(2) — x;(¥; 0 S;(2))|. We have by (5.48) and (5.70),

W 08;(2) — Xil?> — |2 — X4l = ||¥; 0 Sj(2) — 22+ 2(F; 0 Sj(2) — 2) - (z — X))
€™+ + (T 08j(2) = 2) - (2 = YD) + [(j 0 Gj(2) — 2) - (X — Vi)
(€™ +7) + |y (U 0 8;(2) — 2) - 7y, (2 = Vi)
+ |7y, (W 0 85(2) — 2) - 7y, (2 = Vi) | + (€™ + )7
SE™+7)? +e(@ + )|z = Yil + (" + )y (2 = Y + (€™ + ).

S
S

By Proposition 3.5.7.4, |7r§;g(z - Y| < |7~T3L/J (2)| + |7~T§;](Yz)| < e+ |V — Y] and

~

v,e™ < 2. Hence, we obtain that

150 8(2) = Xif® = |2 = Xil’| S (€™ +7)(e® + Vi = V). (5.71)
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Therefore,

; <Z—SXZ-> L (@josjiz) —Xi>

(€™ + ) +Yi - Vi)
g2

i - ;P
=(Em+7) <1+62 :

Note also that if |Y; — Yj| > 3¢, then |z — X;| > | X; — Xj| — |2 — Xj| > 3e —e -3y > ¢,
while by the same argument |¥; 0 Sj(z) — X;| > . Hence, both terms in the left-hand
side of (5.72) are null in that case. Thus, we may assume that |Y; — Y;| < 3¢, so
that |0 <Z_TX’) -0 (W)‘ < €™+ . From the definition of x;(z), and as the

function ¢ ~— 1/t is Lipschitz on [1, o[, we obtain that |x;(2) —Xj(\f/jon(z))| Sem+y.
We now prove a bound on |J(¥; 0 .S;)(z) — 1|. One has, for u = 5;(z) € T3,

S

(5.72)

7 0) — Iy, o m) 0)]

(5 08))(z) = 1] = J(Uy, o7y, )(u)

By Lemma 3.5.8(i) and Lemma 5.4.2(ii), we have ide —d(Vy;, o 7ryj)(u)” < |u| and
op

‘ide —d¥; (u)H < |ul. As a consequence, both Jacobians are larger than, say 1/2
op

for 4 small enough, and, as the function A € R%*? i /det(A) is cq Lipschitz on the
set of matrices with det(A4) > 1/2 and [|A]|,, < 2, we have

(8 08,)(2) — 1] < 2¢q Hd@j(u)*d@j(u) — d(Wy, o my,)(u)*d(Ty, o Ty, ) (1)

(5.73)

Recall that ¥;(u) = X; + u+ Nj(u) and Uy, o 1y, (u) = Y + @y, (u) + Ny, o 7y, (u).
We may write

AW (u)*dW(u) = idg, + (dN;j(u))*dN;(u) and
d(\Ifyj o Wy})(u)*d(\lfyj [©] W)/})(u) = 7ATj7TYj7ATj + (d(Ny] O WY})(U))*d(Ny] o 7Tyj)(u)

: - - N | P 712 -1 —1)2
One has Hlde —7rj7ryj7erOp = WJWYJ'WY]'WJHOP < L(Ty, M, Tj)* S (g™ 4412 S

€™+~ (recall that v < €2). Furthermore, by Lemma 5.4.2(iv),

| (@25 ()" () = (d(Ny; o 7y;) ()" d(Ny, o 7y;) ()

a0 7TYJ-)(U)HOP> |4 (w) = a(y; 0 7y, ()

See™ e S+

< Hde(U)

op

Putting together (5.73) with those two inequalities, we obtain that \J(\i/j 0Sj)(2)—1] S
€™ 4+, concluding the proof of Lemma 5.3.8.
To conclude the section, we state and prove Lemma 5.4.6, which gives an upper

=

bound on the quantity 7 appearing in Lemma 5.3.9 for ¢ = K} * (v,/pr) and
"= K (tn/pn)-

Lemma 5.4.6. The quantity T' = max;j—1_j SUp,cp(y, ¢) |p(W;08;(2))— ' (2)| satisfies

T < ™+ ~ with probability larger than 1 — en~k/d,
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Proof. For z € B(Yj,¢e), we have

D il < LS| Bt 0x, (0 85(2) Kk dvi(2)
6(F5055(2) ~ ()| < =3 wle b))

i=1
Fix an index i € {1,...,n}. By Proposition 3.5.7.4, as X; — Y; € Ty, M, we have for
z e M,
~y

Tmin

Iz = Yil? = |z = Xif?| = ||X = Yif* — 22 = ¥0) - (X; = YOl <72+ ]2 = i?

This inequality together with (5.71) and Lemma 5.4.5 yield

| Kp(X; — \ifj o Sj(Z)) — Ky (Y; — 2)|
< |Kn(Xi — W5 085(2) = Kp(X; — 2)| + | Kn(Xi — 2) — Kp(Yi — 2)|
SE 2 (E™ +7) (2 + Y = Y53 + 9% + 9]z - Vi)
We may assume that |Y; —Y;| < 3h and |z — Y;| < 2h, for otherwise both quantities in

the left-hand site of the above equation are zero. Hence, as v < & < h by assumption,
we have

[Kn(Xi — ¥j 0 (=) — Kn(Y; — 2)| S h-4™ +)1{Y € Bug(=,20)}. (5.74)

Let us now bound |p,(¥; 0 S;(X;)) — pr(Y;)|. By the triangle inequality, and using
(5.49) and (5.74), we obtain that this quantity is smaller than

J
> [ PO = by 2 556) e T~
J
X, (1{z € Bar(Y;, 29} + ) K (¥i — 2)
+ X5 (2)h U E™ +9)1{z € Bu(Yi, 2h)}> dz

J
< hd(em 4 ) Z/ 1{z € Ba (Y}, 26)11{= € Bas (Y, 20) }d=
j=1"M

J
SethTUEm +4) Y [V - Y| < 4h}
7j=1
J
ShUE™ +7) Y H{|Y; — Vil < 4h}vola (Bar(Yj,£/8))
7j=1

< B U™ 4 y)volpr (Bar (Y3, 5h)) S ™ + 7,

where we use that {X1,..., X} is 7e/24-sparse, so that {Y1,...,Y;} is €/4-sparse.
Therefore, the balls By(Yj,e/8) for |Y; — Y;| < 4h are pairwise distinct, and are
all included in By (Y, 4h +¢/8) C Ba(Yi, 5h). We conclude by Proposition 3.5.7.7.
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Letting N (z,2h) be the number of points Y; belonging to Bys(z,2h), we obtain

[6(¥j 0 55(2) = ¢'(2)] S . > (!Kh(Yz- —2)[(e™ +7)
i=1

n “—

+h U™ + ) 1Y € Bu(z, Qh)}>

< N(z,2h)

N W(fim +7).

If, for every z € M and some A > 0, N(z,2h) < Anh?, then we have the conclusion.
Let us bound
Py =P(3z € M, N(z,2h) > Anh?).

If N(z,2h) > Anh?, then there exists a point Y; with N(Y;,4h) > N(z,2h) > Anh.
Hence, Py < nP(N(Y1,4h) > Anh?). Conditionally on Y;, N(Y1,4h) = 1+ U
with U a binomial random variable of parameters n — 1 and p(Ba(Y1,4h)) <
fmaxvolas (Bar(Y1,4h)) < he (see Proposition 3.5.7.7). In particular, for \ large
enough, the probability Py is smaller than n=*/¢ by Hoeffding’s inequality. O

5.4.7 Lower bounds on minimax risks

In this section, we prove the different lower bounds on minimax risks stated in the
article. The main tool used will be Assouad’s lemma. Fix as in Chapter 3 a statistical
model (Y, H, Q) with Q@ C P1(Y) and ¥ : Y — (E, L) a measurable function taking
its values in some semi-metric space (E,L). We further assume that we observe n
i.i.d. observations from law (4¢ for some § € Q, with ¢ being the addition in our case.

Lemma 5.4.7 (Assouad’s lemma [Yu97]). Let m > 1 be an integer and Q,, = {&,, 0 €
{=1,1}} C Q be a set of probability measures. Assume that for all 0,0’ € {—1,1}™,

‘C(ﬁ(ga)vﬁ(ga’)) > |0' - 0'/‘5, (575)

where |0 — 0’| = > 1{o(i) # o'(i)} is the Hamming distance between o and o',
Then,
0
Ru(9,Q.£) 2 mo (1—max {TV (e, 1460), |0 — 0’| = 1})*". (5.76)
The lower bound on the minimax rates we prove are actually going to hold on the
smaller model of uniform distributions on manifolds.

Definition 5.4.8. Let k > 2 and v > 0. The set Qlj(’y) is the set of probability
distributions & of random variables (Y, Z), where Y follows the uniform distribution
on some manifold M € ME with fik < |voly| < fil, and Z € B(0,7) is such that

Z € Ty M*. The statistical model is completed by letting (¥, H) be RP x RP endowed
with its Borel o-algebra, v be the addition RP x RP — RP and 9(€) be the first marginal

pof €.
We write QF for Q%(0). One can check that Qf(v) C QS’S(V), with parameter

L, = fr;iln/ Py fél;i/ P Therefore, a lower bound on the minimax risk on the model
O"(7) yields a lower bound on the minimax risk on the model QZ’S(*y) should the
parameter Lg be large enough.

We build a subfamily of manifolds indexed by o € {—1,1}"™ following [AL19]. By

[AL19, Section C.2|, there exists a manifold M C R of reach 27y, of volume
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CdTr‘fﬁn which contains Bga(0, Tmin). Let 6 > 0 and consider a family of m points
T1,. .., Ty € Bga(0, Tmin/2), with |2; — 24| > 46 for i # i’ and cg(Tmin/0)? < m <
Cd(v'min/é)d. Let 0 < A < § and let ¢ : R4 — [0,1] be a smooth radial function
supported on B(0, 1), with ¢ = 1 on B(0,1/2). Let e be the unit vector in the (d+ 1)th

direction. We then let, for o € {—1,1}"™,

OMz) =+ Z 7i t 1A¢ ( ) e. (5.77)

Let M2 = ®X(M) and p2 be the the uniform measure on M2. If A < ¢y, g . 0%, then
pd € QF provided that Ly, is large enough [AL19, Lemma C.13]. If o; = 1, the volume
of ®2(Bga(x;,d)) satisfies, with wy the volume of the d-dimensional unit ball,

ol (3 (Braei,6) — st < [ |78h(a) - 1]do

Bpa(zi,0)
<f e
Bga(zi,9)

R
Hence, for § small enough, we have |[voly/a| — Car.

. 2
Vo (95533)’ —1|dz < Cyd%A262.

’ < mCdédA26 2 < CdTrCIllm/g,
as m < Cg(Tmin/0)? and A < Ck,d,rmin6k~ As a consequence, if |0 — 0’| = 1, with for
instance o; = 1 and o, = —1, then

TV (1) < max(u (O3 (Baa (w1, 6))), pb (Baa (21,6)) < Cannd®.  (5.78)

We may now prove the different minimax lower bounds using Assouad’s Lemma on
the family {2, o € {~1,1}"}.

Proof of Theorem 5.1.9. As g is nondecreasing and convex, by Jensen’s mequahty7 we
may assume without loss of generality that £ = TV Let T = | (1 — 1) (B;)], where

= Bpa(zi,0) and o(7) 75 o'(i). Then, TV (ub, p2) > |a — ¢’|l". Furthermore, if for
1nstance o'(i) =1, T > p(B;) = (wad? )/|V01MA | > cad?/7?. . By Assouad’s Lemma,

mln
s,k k m 54 d 2n
Rn(u; Qd’ 7TV) > Rn(ﬂa Qd§ TV) > EchT (1 - C’d,Tmi,ﬂ(S >
] on min
> Cy (1 — Cdrpin0 ) .
We obtain the conclusion by letting é go to 0. O

Lemma 5.4.9. For any Tmin > 0 and 1 < r < 00, for fmin small enough and fiax,
Ly, large enough, one has

(|Z01M| Qk (), W, >>’y+n k/d, (5.79)

Proof. As, W, > Wi, we may assume that » = 1. Let 0,0’ € {—1,1}"™ with o(i) #
o'(i). Let py(iy = volya(B(z;,0)) and Ué\ﬂ» = p;(li) (volpsa)|B(x;,5)- By the Kantorovitch-
Rubinstein duality formula, Wq(u, v) = max [ fd(u — v), where the maximum is taken
over all 1-Lipschitz continuous functions f : R? — R. Let f : z + x - e. Assume for
instance that o(i) = —1 and o'(i) = 1. We have f(z) = 0 for € Bya(v;,9) and
f(z) = A for z € By (x;,6/2). Therefore, we have, as p,r(;) < c6~4,

Wi(UL,US ) > Pty Awd(6/2) > c1A.

g,
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Note also that |p, (i) — por(i)| < ’volM[/I\ (®A(Bga(zi,6)) — wdéd) < Cg6?A%6~2. Further-
more, |[volya| — \VOIMA | < 3 pot) — Poriy| < o — 0!|C4dA2672. Let f; be a
function such that Wl(Ué\Z, UA =/ fd(Ué\ﬂ. — Ué\,’i). One can choose f; such that
fi(zi) = 0, so that the maximum of |fi| on B(z;,0) is at most 6. One can then change
the value of f; outside the ball without changing the value of the integral, so that f; is
supported on B(z;,20) and 1-Lipschitz continuous. Consider the function f obtained
by gluing together the different functions f;. The function f is 1-Lipschitz continuous,
so that

- Po(i Do’ (i
Wi (M??Mé\’) > Z ( © Ué\,i - © U?/z) (f)

[volpal [volys |

— U () - , U241l
Z |V01MA| I = Ity =Pty o
1 1
— o) |Up _
P (z)‘ o ,z(f)| ‘VOIM(/T\‘ ’VOIMA/|
A A o
= Z |V01MA| Wi (U Ui ) = ; 1 calPoi) — Por(iy|61{0 (i) # o’ (i)}

— ¢50]0 — o|69A%572
> Z 1{o(i) # o’ (i)} (cg0 A — c469A%671) — 58]0 — o |69A%672
> 075 Ao — o]

Hence, letting A = c.a.700.Ls 8% and 6 = n~!, we have, by Assouad’s Lemma,

o (o bW, ) 2 b

[volps|’

Consider now the case v > 0. Let My be the d-dimensional sphere of radius 7, and
M be the d-dimensional sphere of radius 7nin + 0. Let Y be uniform on M7, and let
¢ be the law of (Y,0). Also, let & be the law of ((1 +v/Tmin) Y, —7/TminY’). Then,

L& = 1€, whereas W) ( volury - Yol ) > ~. We conclude by Le Cam lemma [Yu97]

|V01MO| ’ |V011\/11 |

that R, ( vour gk (), Wr) 2 - -

|V01]w‘ ?

Proof of Theorem 5.2.1(iv). Let a, = n” v if d >3 and a, =n Y2ifd <2. As
W, > W1, we may assume without loss of generality that » = 1, and up to rescaling,
we assume that 7, = v/d. Consider the manifold M C R*+! containing Bga (0, v/d) of
the previous proof. In particular, M contains the cube [—1, l]d. We adapt the proof of
Theorem 3 in [WB19b], where authors consider a family of functions f, : [-1,1] — M
indexed by ¢ € {~1,1}™, with f, = 1 4+ n~1/2 ZJ 10, where (v;)j=1,.. m are
elements of a wavelet basis of [—1,1]¢ (see [WB19b, Appendix E| for detallb on the
construction of the wavelet basis). If m < nd/ (23+d), then tg < f, < t; for some positive
constants tp < 1 < ¢;, and Hfg||B;q([,171]d) < 1. Define a function g, by g,(z) = f(2)
if 2 € [~1,1]% and g,(x) = 1 otherwise. The function g, satisfies ¢y < g, < t1, as well
as ||gUHB;q(M) Sfellss, + [volps|*/P < 1. Such an inequality is clear for the || - ”Hzl)(M)
norm for [ an integer, as Hg0||H, () = HggHHl (1) T ||gg||%é(M\[_171]d), while the

result follows from interpolatlon for Besov spaces [Lunl8, Corollary 1.1.7]. Also, as
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f[—l,l}d » = 1, we have [ g, = |volpy|, and g,/|volp| is larger than fuin = to/[voly|
and smaller than fi,.x = t1/|volys|. Hence, identifying measures with their densities,
the set

Qm = {:ua = ga/|V01M’a OIS {_L 1}m}

is a subset of Q;k for fumin small enough and Ly, Ls, fiax large enough. Furthermore,

for 0,0’ € {—1,1}™, TV (o, o) = TV (f5, fL), while Wi (pio, ptor) = Wi(fo, for) by
the Kantorovitch-Rubinstein duality formula. Hence, applying Assouad’s inequality in

the same fashion than in [WB19b, Theorem 3| yields that R, (u, QZ’k, Wh) 2 a,. O

Proof of Theorem 5.2.7(iv). According to Lemma 5.4.9,
Rn(,u7 le’ka Wp) 2 Rn(ﬂ, Qfla WP) 2 Y + n_k/da

and according to Theorem 5.2.1(iv), Ry (y, QZ’k, Wy) Z an. O

5.4.8 Existence of kernels satisfying conditions A, B(m) and C(5)

The goal of the section is to prove the existence of a kernel K satisfying the conditions
A, B(m) and C() stated at the beginning of Section 5.2.

If K is a radial kernel, we have by integration by parts, as K is smooth with
compact support,

0K (v)v*dv = Cyyq 0y / K(v)v*teody = C&U o / K(r)rdﬂo‘omo‘ll_ldr.
Rd Rd R
Hence, to show the existence of such a kernel, it suffices to find for every m > 0 a
smooth even function K : R — R supported on [—1, 1] satisfying

e Condition A’: [, K(r)r¢~tdr = (Co0) 7Y,

e Condition B'(m): [ K(r)r®*=ldr =0fori=1,...,m,

e Condition C'(8): [, K(r)~ritdr < 8.

We show by recursion on m that for any 8 > 0, there exists a such a kernel. For m = 0,
let Ky be any smooth even nonnegative function supported on [—1,1]. Then, letting
K = (0670)_1K0 / [z Ko, we obtain a kernel K satisfying the desired conditions for
any 8 > 0. Consider now the case m > 0. Let g > 0.

e If m +d is even, then any K satisfying conditions A’, B'(m — 1) and C’(8) will
also satisfy B'(m). Indeed, as K is even, we have [ K(r)r™T4=!dr = 0, so that
the induction step is proven.

e If m+disodd, let K be a kernel satisfying conditions A’, B'(m —1) and C'(3/2).
We use the following lemma.

Lemma 5.4.10. Fori >0, let e; : x € R — 2791 and fix an integer m > 0. Then,
for any a € R, let Fy be the set of smooth functions f : (1,00) — R with compact
support satisfying [ fe; =0 for 0 <i<m and [ fen, =a. Then,

inf{/|f(r)|rd_1dr, fe Fa} = 0. (5.80)
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Assume first the lemma. Let a = —1 [ K(r)r™™@~! and f € F,. Then,
JE @)+ f(rD)rd=tdr = (Cho) " + [ f(Ir))r® = dr = (Chp) ™

JE @)+ f(rD)ritd=tdr = [ f(jr))rit¢tdr =0 for 0 <i <m

SK () + f(r]))rmtd=tdr = [ K(r)rmtd=tdr +2 [ f(r)rmtd-ldr = 0.

Hence, the kernel K + f(] - |) satisfies the condition B’(m). Also, we have, as K(r) =0
if |r| > 1,

r r))_r?tdr = r)_dr - r)_ridr
/R(K(Hf(ll)) a /RK<>d+2/1 £(r)_ri-1d
< B2+ /1 |F(r)lrtLdr,

where we used at the last line that

/100 fr)_rttdr = /100 fr)rtdr = ;/100 | f(r)|rd—tdr.

Lemma 5.4.10 asserts the existence of f € F, with [|f(r)|r¢~tdr < 3/2. For such a
choice of f, the kernel K = K + f(| - |) satisfies also C’(8). Finally, f has a compact
support, included in [0, R] for some R > 0. The kernel K, /R is supported on B(0, 1),
and satisfies conditions A’, B’(m) and C’(8). This concludes the induction step, and
the proof of the existence of kernels satisfying conditions A, B(m) and C(f).

Proof of Lemma 5.4.10. Consider functions f supported on [rg, 1] for some 1 < rg <
r1 to fix. Let Gy, r, be the subspace of La([ro,r1]) spanned by the functions e; for
0 <i <m—1 and let g, be the projection of e, on G#),ﬁ the orthogonal space of G .,
with Ls norm ¢. The function f = "‘”g—? is a polynomial of degree m restricted to [rg, 1]
and satisfies | fe; = 0 for 0 <4 < m—1 by construction, with [ fe,, = 73 [ emgm = a.
Also, we have for any polynomial P € G, ,,,
- n
llem = P12, o)) :/ [Pt — P(r) Pdr :/1 ro|(ror)™ ™t — P(rro)[dr
To

T

= rg(der)_l /lro |rd+m_1 - r()_(d+m_1)P(rro)|2dr.

Asre— ra(d+m_1)P(rr0) is an element of Gy, /,,, letting r1 = 2r¢, we obtain
2 _ 2 _ ; _ pl?
C = 1gmll 7y trom)) = P lem = Pl (rom)
o(dbm)-1 . o2 L 2(dm)—1
=Ty Plélé?g llem PHLQ([LQ]) =Cry )

where C' = C),, > 0 is the distance between e, restricted to [1,2] and G 2. The function
f is not smooth so that it does not belong to F,. To overcome this issue, we consider
a smooth kernel p on R satisfying [ p =1 and fp(r)ridT =0fori=1,....m+d—1,
with support included in Bg(0,79/2). See e.g. [BH19, Section 3.2| for the construction
of such a kernel p. The map p * f is supported on (1,00) and it is straightforward to
check that p* f € F, for ro > 2. By Young’s inequality, ||p * f[|,®) < l|lpllooll fllLo®)
so that

; 1/2
lp* f(r)|r""dr < r r 1o * fllLo®) < (carg lollooll £1I 2o (R)

0/2
< Cd,maram

By letting ro goes to oo, we see that inf { ['|f(r)[r?"!dr, f € F,} =0. O
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Part 11

Statistical descriptors in the space
of persistence diagrams
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Chapter 6

Structure of the space of
persistence diagrams

In this chapter, we make the connection between the p-bottleneck metrics between
persistence diagrams introduced in Chapter 3 and optimal partial transport metrics
introduced by Figalli and Gigli [FG10]. Making this link explicit allows us to introduce
distances FG, between non-discrete measures on Q := {u = (u1,u) € R? : uy < us},
while we call the corresponding metric space (MP,FGy,) the space of persistence
measures. In particular, in Section 6.5, we leverage the study of the metric and
topological properties of this space to show the existence of p-Fréchet means of
distributions on DP.

6.1 Elements of optimal partial transport

Let & be some Polish locally compact metric space. In Chapter 3, we introduced
the theory of optimal transport, which allowed us to compare two measures p and
v on P(X) having the same mass by considering the different ways of transporting
the distribution p towards the distribution v. In certain situations, measures having
different masses may naturally appear, while the total mass of a measure may carry
a physical meaning worth of interest. In that case, it is therefore not satisfactory
to normalize the measures, and extending optimal transport to measures of different
masses is needed. This more general problem is referred to as optimal partial transport.
Two main approaches have been proposed in the literature.

A first class of methods consists in relaxing the marginal constraints on the transport
plans 7 € II(u, v), while penalizing the difference between the marginals of = and
and v (for instance by the Kullback-Leibler divergence). Such approaches were first
introduced for computational purposes, as computing this relaxed distance, called the
Sinkhorn distance, turns out to be a strictly convex problem with fast minimization
procedures available [CD14|. This class of distances was then studied theoretically,
and both the geometry of the corresponding spaces and the statistical properties of
such objects are bustling research topics [Chi+15; KMV16].

Another possibility consists in using a waste function w : X — (0, +00) to throw
away the excess mass between p and v. Informally, we can now either match an element
of mass pu(dx) to another element v(dy) with cost d(z,y)P, or throw it away with cost
w(x). The most investigated case in the literature is the case w = cst [HR95; Han94;
PR14], although the general case was considered for p = 1 in [Gui02]. In [FG10], Figalli
and Gigli consider measures supported on some bounded open set Q@ C R? and consider
the waste function w = d(-, 9Q)P, while this problem was then further generalized to
asymmetric settings [MJT14]. The p-bottleneck distances introduced in Chapter 3
share key ideas with the distance introduced by Figalli and Gigli, with the caveat that
the space () is not bounded, causing some technical difficulties.
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We introduce the more general problem where some locally compact Polish space
X is partitioned into an open set )y and a closed reservoir of mass R, i.e. X = Qo UR.
An element of mass p(dx) can either be mapped to some v(dy), with cost d(x,y)P, or
to the reservoir R, with cost d(z, R)P (and similarly for v). Formally, we introduce
the following generalization of [FG10, Problem 1.1].

Definition 6.1.1. Let p € [1,4+00). Let MP(€, R) be the set of Radon measures p
supported on £y satisfying

/ d(xz, R)Pdu(z) < +o0.
Qo

Given u,v € MP(Qo,R), the set of admissible transport plans (or couplings) Adm(u, v)
is defined as the set of Radon measures m on X X X satisfying for all Borel sets
A, B C Q,

T(AX X)=u(A) and w(X x B)=v(B).

The cost of m € Adm(u,v) is defined as

Com = [ dayrana.y), (6.1)
XxX
The Figalli-Gigli distance FGy,(u,v) is then defined as

FG, (1, v) := inf{C,(m)/P : 7 € Adm(u,v)}. (6.2)

Plans m € Adm(u,v) realizing the infimum in (6.2) are called optimal. The set of
optimal transport plans between p and v for the cost (x,y) — d(x,y)? is denoted by

Opt, (u,v).
We introduce the following definition, which shows how to build an element of
Adm(p,v) given a map f: X — X satisfying some balance condition (see Figure 6.1).

Definition 6.1.2. Let u,v € M(Qq). Consider f : X — X a measurable function
satisfying for all Borel set B C g

u(f~1(B) N Q) + v(B N f(R)) = v(B). (6.3)
Define for all Borel sets A,B C X,
T(Ax B)=pu(f{(B)NQNA) +v(QnNBNf(ANR)). (6.4)

7 1s called the transport plan induced by the transport map f.

One can easily check that we have indeed m(A x X') = p(A) and (X x B) = v(B)
for any Borel sets A, B C g, so that 7 € Adm(u, v) (see Figure 6.1).

Remark 6.1.3. Since we have no constraints on (R x R), one may always assume that
a plan 7 satisfies 7(R x R) = 0, so that measures 7 € Adm(u, ) are supported on

Eq, = (X x X)\(R x R). (6.5)

The case Q¢ = Q2 and R = 0 will be particularly relevant to the setting of
Topological Data Analysis. In particular, we will show that the Figalli-Gigli distance
coincides with the p-bottleneck distance between persistence diagrams. If all the results
appearing in the remaining of the chapter hold in the general case, we will settle with
the choice (20, R) = (2, 99) to keep the connection with persistence diagrams explicit.
We will write MP instead of MP(£2,9€2) and call this space the space of persistence
measures, while the quantity Pers,(u) := [, d(z,0Q)Pdu(z) is the total persistence of
e MP.
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Qo

FIGURE 6.1: A transport map f must satisfy that the mass v(B)

(light blue) is the sum of the mass p(f~1(B) N Qo) given by p that is

transported by f onto B (light red) and the mass v(B N f(R)) coming

from R and transported by f onto B. The case (9, R) = (€2,0) is
displayed.

Remark 6.1.4. The choices of reservoir R and groundspace €2y are actually very flexible.
In particular, one can recover the optimal transport problem with waste function w on
Qg by letting R be the graph of Qp (in 2y x R), while Qg is identified with 4 x {0}.

As such, the following propositions also hold in this framework.

6.2 General properties of M?

This section is dedicated to general properties of the metric space (MP,FG,). In
particular, we show that FG, coincides with d,, when comparing persistence diagrams,
so that MP is a metric extension of DP.

Remark 6.2.1. If a (Borel) measure y satisfies Pers,(1) < oo, then for any Borel set
A C Q satistying d(A, 9Q) := inf,c 4 d(x, Q) > 0, we have:

H(A)Yd(A, 0 < /

d(z, 0P du(z) < / A, 00)Pdp() = Pers, (1) < 00, (6.6)
A

Q

so that pu(A) < co. In particular, p is automatically a Radon measure.

Proposition 6.2.2. Let u,v € M. The set of transport plans Adm(u, v) is sequentially
compact for the vague topology on Eq. Moreover, if u,v € MP, for this topology,

o m € Adm(u,v) — Cp(m) is lower semi-continuous.
. Optp(u, v) is a non-empty sequentially compact set.

e FG,, is lower semi-continuous, in the sense that for sequences (fin)n, (Vn)n in
MP satisfying pin 4 woand vy % v, we have

FGy(p,v) < lirr_1>inf FGyp(pin, vn).

Moreover, FG,, is a metric on MP.

These properties are mentioned in [FG10, pages 4-5] in the bounded case, and
corresponding proofs adapt straightforwardly to the general case. For the sake of
completeness, we provide a detailed proof in Section 6.6.

For r > 0, let , :={u e Q: d(u,00) > r}.
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Lemma 6.2.3. Let p € MP. Forr > 0, let u, be the restriction of u to .. Then
FGp(pr, ) = 0 when r — 0. Similarly, if a € DP, we have dy(a,,a) — 0.

Proof. Let m € Adm(u, ) be the transport plan induced by the identity map on €,
and the projection onto 02 on Q\2,. As 7 is sub-optimal, one has:

Thus, by the monotone convergence theorem applied to p with the functions f, :  —
d(z,0Q)? - 1{z € N\Q,}, FG, (i, tr) — 0 as r — 0. Similar arguments show that
dp(ar,a) = 0asr — 0. O

Proposition 6.2.4. For a,b € DP, FG,(a,b) = dy(a,b).

Proof. Let a,b € DP be two persistence diagrams. If a and b are finite, than the
equality is shown in [LCO18, Proposition 1].

In the general case, let 7 > 0. Due to (6.6), the diagrams a, and b, defined in
Lemma 6.2.3 have a finite mass (thus finite number of points). Therefore, dy(a,,b,) =
FGy(ay,b,). By Lemma 6.2.3, the former converges to d,(a, b) while the latter converges
to FGp(a,b), giving the conclusion. O

Proposition 6.2.5. The space (MP,FG,) is a Polish metric space.

As for Proposition 6.2.2, this proposition appears in [FG10, Proposition 2.7] in the
bounded case, while a proof is found in Section 6.6.
We now state one of our main result: a characterization of convergence in

(MP,FGy).
Theorem 6.2.6. Let u, p1, po, ... be measures in MP. Then,

[in > [,

(6.7)
Pers,(un) — Pers, ().

FGp(pn, ) = 0 & {

This result is analog to the characterization of convergence of probability measures
in the Wasserstein space (see Chapter 3) and can be found in [FG10, Proposition
2.7] in the case where the ground space is bounded. While the proof of the direct
implication can be easily adapted from [FG10] (it can be found in Section 6.6), a new
proof is needed for the converse implication.

Proof of the converse implication. For a given compact set K C (), we denote its
complementary set in €2 by K€, its interior set by K, and its boundary by 0K. Let
[y fi1, fi2 - .. be elements of MP and assume that p,, — p and Persy(un) — Pers, ().
Since

FG,(fin, 1) < FGp(tin, 0) + FGp(1,0) = Persy(pu,) /P + Pers, (1)*/?,

the sequence (FGp(fin, pt))n is bounded. Thus, if we show that (FGp(pn, 1t))n admits
0 as an unique accumulation point, then the convergence holds. Up to extracting a
subsequence, we may assume that (FG,(n, 1t))n converges to some limit. For n > 0,
let 7, € Opt(un, 1) be a corresponding optimal transport plan. Let K be a compact
subset of Q. Recall from Chapter 3 (Proposition 3.1.8) that relative compactness for
the vague convergence of a sequence (fi,)n is equivalent to sup,{un(K)} < oo for
every compact K C ). Therefore, for any compact K C 2, and n € N,

T (K x Q) U (@ x K)) < pin(K) + p(K) Ssgpuk(K) + pu(K) < oo.
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As any compact of Fg is included is some set of the form (K x Q) U (2 x K), for
K C Q any compact subset, using Proposition 3.1.8 again, it follows that (), is also
relatively compact for the vague convergence.

Let thus 7 be the limit of any converging subsequence of (7)., whose indexes are
still denoted by n. As i, — p1, 7 is necessarily in Opt,(u, i) (see [FG10, Proposition
2.3]), i.e. 7 is supported on {(z,z) : x € Q}. The vague convergence of (i), and the
convergence of (Pers,(i,))r to Pers,(u) imply that for a given compact set K C €2,
we have

limsup/ d(z, 00)Pdpn ()

n—oo
= lim sup <Persp(un) — [ d(=x, OQ)pdun(x)>
n—00 K

= Pers,(p) — lim inf/ d(x,0Q)Pdpy,(z) — lim inf/ d(xz,0Q)Pdpn (z)
nJK 0K

< Persy(u) — / d(x,0Q)Pdu(z) by the Portmanteau theorem
K

— [ d(w.09rdu(a),

where the Portmanteau theorem is recalled in Chapter 3. As Pers,(u) is finite, for
€ > 0, there exists some compact set K C ) with

n c

limsup/ ) d(xz,0Q)Pdpu,(z) <e and / d(xz,0Q)Pdu(z) < e. (6.8)

Let s : Q — 09 be the projection on 9f) for the metric d. Such a projection is not
unique for ¢ = 1 or for the more general reservoir R, but we can always select a
measurable projection s [CR03]. We consider the following transport plan 7,, (consider
informally that what went from K to K¢ and from K¢ to K is now transported onto
the diagonal, while everything else is unchanged):

T = T on K2 U (K°)?,

7o =0 on K x KCUK®x K,
7n(A X B) = (A x B) + (A x (s7YB)N K*¢)) for AC K, B C 99, (6.9)
7n(Ax B) = mp(Ax B) + m(A x (sTH(B)NK)) for AC K¢, B C 09,

7n(A X B) = mp(A x B) + mp((s7H(A)N K¢) x B) for AC 99, B C K,
Fn(Ax B) =mp(Ax B) +m,((sY(A)NK) x B) for AcC 99Q, B C K°.

Note that 7,, € Adm(py, p): for instance, for A C K a Borel set,

Tn(A X Q) = T (A x K) + (A x K + 7, (A x 9Q)
— (A X K) 4+ 0+ (A x 9Q) + 1 (A x (s 1(09) N K°))
— (A X ) = pn(A),

and it is shown likewise that the other constraints are satisfied. As 7, is suboptimal,
FGD(pin; ) < [g2 d(, y)Pd7n(z, y). The latter integral is equal to a sum of different
terms, and we will show that each of them converges to 0. Assume without loss of
generality that the compact set K belongs to an increasing sequence of compact sets
whose union is €2, with 7(90(K x K)) = 0 for all compacts of the sequence.
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o We have [[»d(z,y)Pdm,(z,y) ffK2 x,y)Pdm,(x,y). The limsup of the
integral is less than or equal to [ [} d(z,y)Pdr(z, y) by the Portmanteau theorem
(applied to the sequence (d(z,y)Pdm,(z,y)),), and, recalling that 7 is supported
on the diagonal of Eg, this integral is equal to 0.

e For optimality reasons, any optimal transport plan must be supported on the set
{d(z,y)P < d(z,00Q)P + d(y,00)P} (this fact is detailed in [FG10, Proposition
2.3]). It follows that

d(z,y)Pdin(z,y) = d(z,y)Pdmp(z,y)
//( C)2 //( c)2
S/cd(x,@Q)pd,un(x)—f—/cd(y,aQ)pdu(y).

Taking the lim sup in n, and then letting K goes to €2, this quantity converges
to 0 by (6.8).

o We have

/ /K e 007 (2.)
= //Kxag d(x,0Q)Pdm,(z,y) + //KXKC d(z,00Q)Pdmy (2, y)

- / /K Xﬁd(x,@Q)pdwn(x,y)— / / d(z, 0Q)Pdmy (2, y)
:/K d(, Q)P (x // (2, 0Q)Pdr, (z, y)

By the Portmanteau theorem applied to the sequence (d(x, 9Q)Pdpy,(x))y, the
lim sup of the first term is less than or equal to [} d(z,0Q)Pdu(z). Recall that
we assume that m(9(K x K)) = 0. By applying the second characterization
of Portmanteau theorem (see Proposition 3.1.11) on the second term to the
sequence (d(z,y)Pdm,(x,y))n, and using that 7 is supported on the diagonal
of Eg, we obtain that the limsup of the second term is less than or equal to
— [[x2 d(z, 0Q)Pdn(z,y) = — [ d(x,0Q)Pdu(z). Therefore, the limsup of the

integral is equal to 0.

e The three remaining terms (corresponding to the three last lines of the definition
(6.9)) are treated likewise this last case.

Finally, we have proven that (FG(fn, it))r is bounded and that for any converging
subsequence (fin, )k, FGp(fin,, 1) converges to 0. It follows that FGy(pp, p) — 0. O

Remark 6.2.7. The assumption Persy(u,) — Persy(p) is crucial to obtain convergence
with respect to FG,, assuming vague convergence. For example, the sequence defined
by fin = 6(nn41) converges vaguely to p = 0 and (Pers,(u,)), does converge (it
is constant), while FG,(uyn,0) - 0. This does not contradict Theorem 6.2.6 since
Pers, (1) = 0 # lim,, Pers,(tn).

Theorem 6.2.6 implies some useful results. First, it entails that the topology of
the metric FG,, is stronger than the vague topology. As a consequence, the following
corollary holds, using Proposition 3.1.12 (DP is closed in MP for the vague topology).

Corollary 6.2.8. D? is closed in MP for the metric FG,.
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We recover in particular that the space (DP,FG,) is a Polish space (Proposition
6.2.5), a result already proved in [MMHI11, Theorems 7 and 12] with a different
approach.

Secondly, we show that the vague convergence of i, to p along with the convergence
of Pers,(jt,) — Pers, (1) is equivalent to the weak convergence of a weighted measure.
For 1 € MP, let us introduce the Borel measure with finite mass p(P) defined, for a
Borel subset A C (2, as:

pP)(A) = / d(z, dQ)Pdu(x). (6.10)
A

Corollary 6.2.9. The space (MP,FGy) is homeomorphic to P(2) endowed with the
weak topology, through the map p € MP — p®) € P(Q). In particular, for a sequence
(tin)n and a persistence measure p € MP, we have

FGy(pn, 1) — 0 if and only if ,uq(zp) Ly u),

Proof. We first show the equivalence of the two convergences. Consider p, p1, pt2, -+ €

MP and assume that FGy(un, 1) — 0. By Theorem 6.2.6, this is equivalent to j, S

and uﬁf’)(Q) = Pers,(pun) — Pers, () = uP)(Q). Since for any continuous function f

compactly supported, the map x — d(z,9Q)? f(z) is also continuous and compactly
supported, p, — u implies M%p) s u®). Likewise, the map z — d(z,dQ) P f(x) is
continuous and compactly supported, so that u%p N u(p) also implies 1, — p. Hence,

Ln, S 1 is equivalent to ,ung) % ,u(p). By Proposition 3.1.10, the vague convergence

M%p ) 2, 1) along with the convergence of the masses is equivalent to ,u%p ) w, p®).
So far, we have proved that both the application G : yu € MP — u®) € P(Q) and

its inverse are sequentially continuous. As the space MP is a metric space and the

space P() is metrizable [Var58|, sequential continuity is equivalent to continuity, so

that we have the conclusion. O
We end this section with a characterization of relatively compact sets in (MP?, FG).

Proposition 6.2.10. A set F' is relatively compact in (MP,FGy) if and only if the
set {u®) : e F} is tight and sup e p Pers, (1) < oco.

Proof. From Corollary 6.2.9, the relative compactness of a set F C MP for the metric
FG, is equivalent to the relative compactness of the set {u®) : p € F} for the weak
convergence. Recall that all (P) have a finite mass, as ) (Q) = Pers,(u) < oc.
Therefore, one can use Prokhorov’s theorem (Proposition 3.1.9) to conclude. t

Remark 6.2.11. This characterization is equivalent to the one described in [MMHI1,
Theorem 21] for persistence diagrams. The notions introduced by the authors of off-
diagonally birth-death boundedness, and uniformness are rephrased using the notion
of tightness, standard in measure theory.

We end this section with a remark on the existence of transport maps, assuming
that one of the two measures has a density with respect to the Lebesgue measure
on 2. We denote by fuu the pushforward of a measure p by a map f, defined by
fuu(A) = p(f~(A)) for A a Borel set.

Remark 6.2.12. Following [FG10, Corollary 2.5], one can prove that if u € M? has a
density with respect to the Lebesgue measure on €, then for any measure v € M?,
there exists an unique optimal transport plan m between p and v for the OTy metric.
The restriction of this transport plan to Q x Q is equal to (id, T)yp where T : Q — Q
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is the gradient of some convex function, whereas the transport plan restricted to
0 x Q is given by (s,id)x(v — Tigp), where s : Q — 0Q is the projection on the
diagonal. A proof of this fact in the context of persistence measures would require
to introduce various notions that are out of the scope covered by this chapter. We
refer the interested reader to [FG10, Proposition 2.3] and [AGS08, Theorem 6.2.4] for
details.

6.3 Persistence measures in the finite setting

In practice, many statistical results regarding persistence diagrams are stated for sets
of diagrams with uniformly bounded number of points [Kwi+15; CCO17], and the
specific properties of FG,, in this setting are therefore of interest. Introduce for m > 0
the subset M2~ of MP defined as MY = := {u € MP: p(Q) < m}, and the set
MP of finite persistence measures, M’} = Um>0 Mgm. Define similarly the set D<,,
(resp. Dy). Note that the assumption Pers,(a) < oo is always satisfied for a finite
diagram a (which is not true for general Radon measures), so that the exponent p is

not needed when defining D<,, and Dy.
Proposition 6.3.1. M? (resp. Dy) is dense in MP (resp. DP) for the metric FG,,.

Proof. This is a straightforward consequence of Lemma 6.2.3. Indeed, if y € MP? and
r > 0, then (6.6) implies that pu, is of finite mass. O

Let Q = QU {09} be the quotient of Q by the closed subset 9Q—i.e. we encode
the diagonal by just one point (still denoted by 9€2). The distance d on Q induces
naturally a function d on Q2, defined for z,y € Q by d(z,y) = d(z,y), d(x,0Q) =
d(0Q, x) = d(z, s(x)) and d(99, Q) = 0. However, d is not a distance since one can
have d(z,y) > d(z, Q) + d(y, d9). Define

p(z,y) == min{d(z,y),d(z,dQ) + d(y, OQ)}. (6.11)

It is straightforward to check that p is a distance on Q and that (Q, p) is a Polish space.
One can then define the Wasserstein distance W), , with respect to p for finite measures
on Q which have the same masses, that is the infimum of C,y(7) := [Jaz p(z,y)Pd7(z,y),
for 7 a transport plan with corresponding marginals. The following theorem states
that the problem of computing the FG, metric between two persistence measures with
finite masses can be turn into the one of computing the Wasserstein distances between
two measures supported on  with the same mass. Recall that s : Q — 9 is the
orthogonal projection (or a measurable projection in the general case).

Proposition 6.3.2. Let u,v € ./\/l? andr > p(Q)4+v(Q). Define i = p+(r—pu(2))dan
and v = v + (r —v(2))daq. Then FGy(p,v) = Wy (1, 7).

Before proving Proposition 6.3.2, we need the two following lemmas:

Lemma 6.3.3. Let p,v € M? and r > max(u(Q),v(Q)). Let i := p+ (r— pu(2))dsq,
vi=v+(r—v(Q))dsq and s: Q — 0 be the orthogonal projection on the diagonal.

1. Define T(u,v) the set of plans m € Adm(u,v) satisfying 7({(z,y) € Q x 0N :
y#s(x)}) =n({(z,y) €002 xQ: x#s(y)}) =0 along with w(02 x 9Q) = 0.
Then, Opt,(p,v) C T(p,v).
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2. Let m € T'(u,v) be such that u(2) + 7 (02 x Q) < r. Define v(m) € II(i, 7) by,
for Borel sets A, B C €},

((m)(A x B) =7(A x B),

(7)(A x {00) = n(A x DO),
(m)(

(m)(

LT

(6.12)
u(m) ({09} x B) = w(9Q x B),

o(m) ({00} x {002}) =1 — p(2) — w(002 x 2) > 0.
Then, Cp(r) = [[5..¢ d(@, y)Pde(m) (2, y).
3. Let 7w e H( V). Define k(7) € T'(u,v) by,

)J(Ax B)=7(A x B) for A,B C Q,
7)(Ax B) =7((ANs~1(B)) x {0Q}) for ACQ,B C 09,
7)(

)

k(T)(A x B) = 7({0Q} x (BNs1(A))) for ACoQ,B CQ,
k() (082, 082) = 0.
Then, fo Qd(a:,y) dn(z,y) = Cp(k(7))

Proof.

1. Consider m € Adm(u,v), and define 7’ that coincides with 7 on Q x Q, and is
such that we enforce mass transported on the diagonal to be transported on
its orthogonal projection: more precisely, for all Borel set A C Q, B C 01,
7'(Ax B) = n((s71(B) N A) x B) and 7'(B x A) = 7n(B x (s71(B) N A)).
Note that 7’ € T'(u,v). Since s(z) is the unique minimizer of y — d(z,y)P, it
follows that Cp(n") < Cp(m), with equality if and only if 7 € T'(u,v), and thus
Opt,(u,v) C T(p,v).

2. Write 7 = ¢(m). The mass 7({0Q} x {092}) is nonnegative by definition. One
has for all Borel sets A C 2,

F(Ax Q) =7(Ax Q)+ 7(A x {99Q)})
(A X Q) +7(Ax00) =7(Ax Q) =u(Ad) = a(A).

Similarly, 7#(Q x B) = #(B) for all B C Q. Observe also that
F({09} x ) = 7({09} x {09}) + 7({09} x Q) = r — p(9) = A({O9}).

Similarly, 7(Q x {0Q}) = #({0Q}). It gives that «(7) € TI(j1, 7), so that ¢ is well
defined. Observe that

JIdwraiean = [ @y

+ /Qd(a:, oN)Pdr(x,00)
+ /Qd(ﬁ(l,y)pdw(aﬁ,y) +0
= Cp(m) as m € T(p,v).

3. Write m = k(7). For A C 2 a Borel set,
T(Ax Q) =7(Ax Q)+ 7(Ax IN)
= 7(Ax Q)+ 7(A x {00}) = 7(A x Q) = u(A).
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Similarly, 7(Q x B) = v(B) for all B C Q. Therefore, 7 € Adm(y,v), and
by construction, if a point z € € is transported on 0f2, it is transported on
s(x), so that m € T(u,v). Observe that u(Q) + (AN x Q) < 7(Ax Q) =r
SO that i(m) is well defined. Also, ¢(7) = 7, so that, according to point 2,

= [faxg d(@, y)Pdr(z,y). O

We show that the inequality FGy,(u, v) < W), ,(ji, 7) holds as long as the condition
r > max(u(Q2),v(€2)) holds.

Lemma 6.3.4. Let p,v € M? and r > max(u(Q),v(Q)). Let i := p+ (r— pu(2))dsq,
vi=v+ (r—v(Q))osq. Then, FGy(p,v) < W, (i, 7).

Proof. Let # € I1(ji, 7). Define the set H := {(x,y) € Q*: p(x,y) = d(z,y)}, and let
HC be its complementary set in Q2, i.e. the set where p(z,y) = d(z, dQ) + d(9Q, y).
Define 7’ € M(?) by, for Borel sets A, B C Q:

7(Ax B) =7((Ax B)yNn H)
7(A x {09}) = 7((A x Q) N H®) + 7(A x {99})
7 ({00} x B) = 7((Q x B) N H) + #({0Q} x B).

We easily check that 7' € TI(f1, 7). Also, using (a + b)? > a? + bP for positive a, b, we

have
// plz,y)Pdr(z,y) = // (z,y)Pdm(z,y)
OxQ

+ / / (d(w,09) + (09, y))*d (z, y)

> / /H d(w,y)Pd7 (2, )

+ // ) (d(:c, 00 + d(y, 39)”) d7(z,y)

_ / /Q )P (@,y)

> inf // d(z,y)Pdx (z,y).
7 ell(iv) J JOxQ

We conclude by taking the infimum on 7 that

Wy (i, 7) > inf // d(z,y)Pd7 (z,y).
’ 7 el(inP) J Jax

Since p(z,y) < d(z,y), it follows that

WP (i, 7) = inf //92 x,y)Pdw(x,y). (6.13)

well(i,v

Since d is continuous, the infimum in the right hand side of (6.13) is reached [Vil08,
Theorem 4.1|. Consider thus 7 € II(f, 7) which realizes the infimum. We can write,
using Lemma 6.3.3,

) = / / A, y)Pdi () = / /Q () dn(7) )

—— //Q _dlay)Pdn(e,y) = FGH(p,v),

€T (u,v)

which concludes the proof. O
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Proof of Proposition 6.5.2. Let m € T'(p,v). As p(€2) +m(0Q2 x Q) < pu(Q) +v(2) <,
one can define 7 = «(7). Since p(z,y) < d(x,y), we have Cy(7) < [[ d(z,y)Pd7(x,y) =

Cp(m) (Lemma 6.3.3). Taking infimum gives W), ,(f1,7) < FGp(p,v). The other
inequality holds according to Lemma 6.3.4. O

Remark 6.3.5. The starting idea of this theorem—informally, "adding the mass of one
diagram to the other and vice-versa”™—is known in TDA as a bipartite graph matching
[EH10, Ch. VIIL.4] and used in practical computations [KMN17]. Here, Proposition
6.3.2 states that solving this bipartite graph matching problem can be formalized as
computing a Wasserstein distance on the metric space (Q, p) and as such, makes sense
(and remains true) for more general measures.

Remark 6.3.6. Proposition 6.3.2 is useful for numerical purposes since it allows us in
applications, when dealing with a finite set of finite measures (in particular diagrams),
to directly use the various tools developed in computational optimal transport [PC19]
to compute Wasserstein distances. This alternative to the combinatorial algorithms
considered in the literature [KMN17; Tur+14] is studied in detail in [LCO18|. This
result is also helpful to prove the existence of p-Fréchet means of sets of persistence
measures, Section 6.5 below.

6.4 The FG, distance

In classical optimal transport, the co-Wasserstein distance is known to have a much
more erratic behavior than its p < oo counterparts [Sanl5, Section 5.5.1]. However,
in the context of persistence diagrams, the bottleneck distance defined in Chapter
3 appears naturally as an interleaving distance between persistence modules and
satisfies strong stability results: it is thus worthy of interest. It also happens that,
when restricted to diagrams having some specific finiteness properties, most irregular
behaviors are suppressed and a convenient characterization of convergence exists.

Definition 6.4.1. Recall that spt(p) denote the support of a measure p and define
Persoo (1) := sup{d(z,99), x € spt(u)}. Let

M= :={pe M: Perso(p) < oo} and D> :=DNM™. (6.14)

For pu,v € M*® and 7 € Adm(u,v), let Co(m) := sup{d(z,y) : (z,y) € spt(m)} and
let
FGoo(pt,v) :=inf{Csx(m) : m € Adm(y,v)}. (6.15)

The set of transport plans minimizing (6.15) is denoted by Opt (i, V).
Recall that Eg = (Q x Q)\(9Q x 09).
Proposition 6.4.2. Let p,v € M™>. For the vague topology on Eg,
o the map m € Adm(p,v) — Cx(m) is lower semi-continuous.
o The set Opt,(p,v) is a non-empty sequentially compact set.
o FG is lower semi-continuous.
Moreover, FGo, is a metric on M.

The proofs of these results are found in Section 6.6. As in the case p < 0o, FG
and d., coincide on D>°.
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Proposition 6.4.3. For a,b € D*°, FG(a,b) = dx(a,b).

Proof. Consider two diagrams a,b € D, written as a =}, 0y, and b=, ; 0y,
where I, J C N are (possibly infinite) sets of indices. The marginals constraints imply
that a plan m € Adm(pu, v) is supported on ({z;}; U0Q) x ({y;},; U0N). If some of the
mass 7({z;},0Q) (resp. m(0€2,{y;})) is sent on a point other than the projection of x;
(resp. y;) on the diagonal 052, then the cost of such a plan can always be (strictly if
g > 1) reduced. Introduce the matrix C indexed on (—J U I) x (=1 U J) defined by

Ci’j = d(xi,yj) for ¢,7 > 0,
C;j =d(0S,y;) fori<0,5>0,
Cyj=d(z:,00) fori>0,5<0,
C@j =0 for i,5 < 0.

(6.16)

In this context, an element of Opt(a,b) can be written a matrix P indexed on (—J U
I) x (=I'UJ), and marginal constraints state that P must belong to the set of doubly
stochastic matrices S. Therefore, FGoo(a,b) = infpcssup{C;; : (i,j) € spt(P)},
where S is the set of doubly stochastic matrices indexed on (—J UI) x (=1 U J), and
spt(P) denotes the support of P, that is the set {(4,j), P;; > 0}.

Let P € S. For any k € N, and any set of distinct indices {i1,...,ix} C —JUI,

we have i i
kzz Z P = Z Zpik’vj‘

k'=1jE—IUJ je—IUJ k=1
~—_—
=1 <1

Thus, the cardinality of {j : 3k’ such that (ix,j) € spt(P)} must be larger than k.
Said differently, the marginals constraints impose that any set of k points in a must be
matched to at least k points in b (points are counted with eventual repetitions here).
Under such conditions, the Hall’s marriage theorem (see [Hal86, p. 51]) guarantees the
existence of a permutation matrix P’ with spt(P’) C spt(P). As a consequence,

sup{Ci; : (i,7) € spt(P)} >sup{Ci; : (i,7) € spt(P')}
> Pinf:g Sup{ci,j : (Z7]) € Spt(P/)} = doo(aab)a
/e /

where &’ denotes the set of permutations matrix indexed on (—J U I) x (=1 U J).
Taking the infimum on P € S on the left-hand side and using that S’ C S finally gives
that FGeo(a,b) = doo(a, b). O

Proposition 6.4.4. The space (M, FG) is complete.

Proof. Let (pn)n be a Cauchy sequence for FGo. Fix a compact K C €2, and pick
e = d(K,00)/2. There exists ng such that for n > ng, FGoo(tn, ttn,) < €. Let
K. :={x € Q: d(z,K) < ¢}. By considering m, € Opt.(tin, fin,), and since
FGoo(fin, ting) < €, we have that

fin(K) = 1 (K X Q) = 1 (K % K2) < piny (Ko). (6.17)

Therefore, (p,(K)), is uniformly bounded, and Proposition 3.1.8 implies that (uy)n
is relatively compact. Finally, the exact same computations as in the proof of the
completeness for p < oo (see Section 6.6) show that (u,), converges for the FG
metric. O



6.4. The FG, distance 133

Remark 6.4.5. Contrary to the case p < oo, the space D> (and therefore M) is
not separable. Indeed, for I C N, define the diagram ay := ) ;c; 6 i41) € D*°. The
family {a; : I C N} is uncountable, and for two distinct I,I’, FG(ar,ap) = ?
This result is similar to [BV18, Theorem 4.20].

We now show that the direct implication in Theorem 6.2.6 still holds in the case
p = 00.

Proposition 6.4.6. Let u, j1, f12, ... be measures in M. If FGoo(pin, ) — 0, then
(tin)n converges vaguely to p and Persqo(py) converges to Persso(i).

Proof. First, the convergence of Perss(u,) towards Perso(p) is a consequence of the
reverse triangle inequality:

|[Persos (1in) — Perso (1) = [FGoo(pn; 0) — FGoo (11, 0)| < FGoo (i, 1),

which converges to 0 as n goes to co.

We now prove the vague convergence. Let f € C.(€2), whose support is included
in some compact set K. For any € > 0, there exists a L-Lipschitz function f., whose
support is included in K, with || f — f:|lcc < &. Observe that supy ux(K) < oo using
the same arguments than for (6.17). Let m, € Opt.,(tn, ). We have

[ (f) = (O] < pn(f = SO+ 1 = fl + | (fe) — n(fe)]
< (un(K) + pu(K))e + |pn(fe) — p(fe)l
<(s pﬂk( ) + u(K))e + |pn(fe) — n(fe)l-
Also,
I (fe) — p(fe)l = ‘/ (fe(z) = fe(y))dmn(z,v)

/ V@) = £l .)

// d(z,y)dm,(x,y) as f. is L-Lipschitz continuous
(KxQ)U(OQxK)
< LCoo (1) (mn (K X Q) + m,(Q x K))

< PG () (s0p 1 (K) + () ).

This last quantity converge to 0 as n goes to oo for fixed €. Therefore, taking the
limsup in 7 and then letting ¢ go to 0, we obtain that u,(f) — u(f). O

Remark 6.4.7. As for the case 1 < p < oo, Proposition 6.4.6 implies that FG
metricizes the vague convergence, and thus using Propositions 6.4.3 and 3.1.12; we
have that (D>, dw) is closed in (M>,FGy) and is—in particular—complete.

Contrary to the p < oo case, a converse of Proposition 6.4.6 does not hold, even
on the subspace of persistence diagrams (see Figure 6.2). To recover a space with a
structure more similar to DP, it is useful to look at a smaller set. Introduce Dg° the set
of persistence diagrams such that for all > 0, there is a finite number of points of the
diagram of persistence larger than 7 and recall that D; denotes the set of persistence
diagrams with finite number of points.

Proposition 6.4.8. The closure of Dy for the distance FG, is Dg°.
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n
o =110, fn = N0y, an = Zéz .
TL. o =1 .

1 Jog(n) L

n . “1

.\\1 \\ 1. N
N 1
[ ]

(0) ()

FIGURE 6.2: Illustration of differences between FG,, FG., and vague
convergences. Blue color represents the mass on a point while red
color designates distances. (a) A case where FG,(p,0) — 0 for any
p < oo while FGoo(ptn,0) = 1. (b) A case Where FGoo(phn,0) — 0
while for all p < oo, FG,(pn, t) = 00. (¢) A sequence of persistence
diagrams a,, € D>, where (a,),, converges vaguely to a =) . 0,, and
Persy(an,) = Persoo(a), but (a,) does not converge to a for FG

Proof. Consider a € Dg°. By definition, for all n € N, a has a finite number of points
with persistence larger than %, so that the restriction a,, of a to points with persistence
larger than 2 belongs to Dy. As FGoo(a,an) < 1 — 0, D is contained in the closure
of D f-

Conversely, consider a diagram a € D>*\Dg°. There is a constant r > 0 such that
a has infinitely many points with persistence larger than r. For any finite diagram
a’ € Dy, we have FG(a', a) > r, so that a is not the limit for the FGo metric of any
sequence in Dy. O

Remark 6.4.9. The space DJ° is exactly the set introduced in [Blu+14, Theorem 3.5
as the completion of Dy for the bottleneck metric d,. Here, we recover that Dg° is
complete as a closed subset of the complete space D™

Define for r > 0 and a € D, a(") the persistence diagram restricted to €2, (as in
Lemma 6.2.3). The following characterization of convergence holds in Dg°.

Proposition 6.4.10. Let a,a1,as,... be persistence diagrams in Dg°. Then,

FGoo(an,a) = 0 < {(Z"(? @

ap,’)n 18 tight for all positive .

Proof. Let us prove first the direct implication. Proposition 6.4.6 states that the
convergence with respect to FGo, implies the vague convergence. Fix r > 0. By
definition, a(") is made of a finite number of points, all included in some open bounded
set U C Q. As ag)(Uc) is a sequence of integers, the bottleneck convergence implies
that for n large enough, a,(f)(Uc) is equal to 0. Thus, (ag))n is tight.

Let us prove the converse. Consider a € Dg° and a sequence (ay,), that converges
vaguely to a, with (ag)) tight for all » > 0. Fix » > 0 and let x1,...,xx be an
enumeration of the points in a("), the point xj being present with multiplicity my € N.
Denote by B(z,¢) (resp. B(x,€)) the open (resp. closed) ball of radius e centered at z.
By the Portmanteau theorem, for € small enough,

liminf ap, (B(zy,€)) 2 a(B(zy, €)) = my
lim sup an (B(w, €)) < a(B(zy, €)) = my,

n—o0
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so that, for n large enough, there are exactly my points of a, in B(zy,e) (since
(an(B” B(zk,€)))n is a converging sequence of integers). The tightness of (a,(f))n implies
the existence of some compact K C € such that for n large enough, ay)(K ) =0 (as
the measures take their values in N). Applying Portmanteau’s theorem to the closed

set K/ == K\ X, B(x;, ) gives

lim sup a{"(K") < a((K") = 0.
n—oo
This implies that for n large enough, there are no other points in a,, with persistence
larger than r and thus FGoo(a(T), ap) is less than or equal to r + &. Finally,

lim sup FGoo (an, @) < limsup FG oo (an, a™) + 1 < 2r 4 ¢.

n—o0 n—o0

Letting € — 0 then » — 0, the bottleneck convergence holds. O

Remark 6.4.11 (Related work with p = +o0 in standard optimal transport.). Although
it has been less studied than the W), distances for finite p, there exist some stimulating
works on the W, distance. In particular, [CDPJ08| introduces the notion of restrictable
transport plans: these are the transport plans m., which appear as the limit as p — oo
of optimal plans 7, for W,. Such optimal plans appear to have nice restriction
properties and satisfy a form of cyclical monotonicity—an important notion in optimal
transport theory that is not introduced in this work for the sake of concision. We
conjecture that the existence and main properties of restrictable transport plans also
hold in the framework of persistence measures with the FG, distance.

6.5 Fréchet means of persistence measures

In this section, we state the existence of p-Fréchet means for probability distributions
supported on MP. We start with the finite case (i.e. averaging finitely many persistence
measures) and then extend the result to any probability distribution with finite p-th
moment. We then study the specific case of distributions supported on DP (i.e. averaging
persistence diagrams), and show that in the finite setting, the set of p-Fréchet means
is a convex set whose extreme points are in D¢ (i.e. are actual persistence diagrams).
We assume that 1 < p < oo throughout this section.

Remark 6.5.1. Once again, the content of this section also holds in the more general
setting where a general ground space €y and reservoir R are considered. Besides being
a locally compact Polish space, one needs to assume that X = Qg LR is a geodesic
space for Fréchet means to exist. This property ensures that a Fréchet mean of two
Diracs 6, and d,) exists (and is given by the "middle” of a geodesic joining x to y if
both points are sufficiently far away from the reservoir R).

Recall that (MP,FG,) is a Polish space. The space (P} (MP), W, g, ) is the space
of probability measures P supported on MP?, equipped with the W), rq, metric, which
are at a finite distance from dp—the Dirac mass supported on the empty diagram—i.e.

W e (P.do) = / FQ2(v,0)dP(v) = / Pers, (v)dP(v) < oo,
veMP veEMP

We recall the definition of p-Fréchet mean from Chapter 3.

Definition 6.5.2. Let P € PY'(MP). A measure u* € MP is a p-Fréchet mean of P

if it manimizes € 1 pp€ MP — [ FGh(u,v)dP(v).
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6.5.1 p-Fréchet means in the finite case

Let P be of the form ZZJ\L 1 Aidy, with N € N, y; a persistence measure of finite mass
m;, and (\;); non-negative weights that sum to 1. Define myo, := Zf\i , m;. To prove
the existence of p-Fréchet means for such a P, we show that, in this case, p-Fréchet
means correspond to p-Fréchet means for the Wasserstein distance of some distribution
on M%,...(9), the sets of measures on € that all have the same mass M (see Section
6.3), a problem well studied in the literature [AC11; CE10; COO15a].

We start with a lemma which affirms that if a measure p has too much mass (larger
than myet), then it cannot be a p-Fréchet mean of g ... uy.
Lemma 6.5.3. We have inf{E(n) : p€ MP} =inf{E(u): pe ML 1.

<Mtot

Proof. The idea of the proof is to show that if a measure p has some mass that is
mapped to the diagonal in each transport plan between p and p;, then we can build a
measure £’ by “removing” this mass, and then observe that such a measure u’ has a
smaller energy.

Let thus € MP. Let m; € Opt,(p, ) for i =1,..., N. The measure A C Q) —
(02 x A) is absolutely continuous with respect to p. Therefore, it has a density f;
with respect to pu. Define for A C )y a Borel set,

A = () = [ min ),

and, for i = 1,..., N, a measure 7/, equal to m; on  x  and which satisfies for
A C Qg a Borel set,

(00 x A) = i (s(A) x A) :=m;(0Q x A) — /Amjin fi(x)dp(z),

where s is the orthogonal projection on 9. As m;(0Q x A) = [, fi(x)du(x), wi(A) is

)

nonnegative, and as m; (02 x A) < p(A), it follows that p/(A) is nonnegative. To prove
that 7} € Adm(ps, i'), it is enough to check that for A C Qq, 7(Q x A) = p/(A):

(T 4) = 7@ x A)+ (02 4) = [ min f(@)ua)
— ()~ [ min fy(2)du(o) = i (4).
A J

Also,
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and thus ¢/(Q) < mye. To conclude, observe that

) < f;xicpw;) - fjx ( [y
] dwpanten - [ dte00p mn @)

N
< Z)\icp(ﬂ) = E(u).
i=1

O

Recall that W), , denote the Wassierstein distance between measures with same
mass supported on the metric space (€2, p) (see Chapter 3 and Section 6.3).

Proposition 6.5.4. Let ¥ : u € M%mtot — e Mb,  (Q), where i == 1+ (Myor —
1(Q2))daq. The functionals

N
E:pe Mgmwt — Z NEGP(p, 1) and
i=1
) N
‘7: : /1 E Mgltot(Q) = Z)\ngp(l&W \II(IU'Z))7
i=1

have the same infimum values and arg min € = U~ (arg min F).

Proof. Let G be the set of 1 € MP such that, for all i, there exists m; € Opt,,(u;, i)
with 7;(£2,0€) = 0. By point 2 of Lemma 6.3.3, for u € G and 7; € Opt,,(u;, 1) with
i (Q,00) =0, 1(m;) is well defined and satisfies

FGE (s, 1) = Cy(m) = / /Q Pl ) = Cylu(m)) = Wy (i),

so that F(¥(u)) < &(u). As, by Lemma 6.3.4, £ < F o ¥, we therefore have
E(p) = F(¥(p) for p e G.

We now show that if u ¢ G, then there exists p/ € MP with E(u') < E(u). Let
p ¢ G and m; € Opt, (i, p). Assume that for some 4, we have m;(€2,0Q) > 0, and
introduce v € MP defined as v(A) = m;(A4,99Q) for A C Q. Define

T:xzeQw— argmin \d(z,y)’ + Z Ajd(y, 0P 5 € Q. (6.18)
yeN Y
J#i

Note that this function is well defined, with the value of the objective function in 7T'(x)
being strictly smaller than the value in s(z), where s(x) is the projection of z on 9
(in the general case (€, R), a minimizer T'(x) is found on the geodesic between x and
some projection s(x)).

Consider the measure p/ = p + (Tgv), where Tyxv is the push-forward of v by the
application T. Consider the transport plan m, deduced from m; where v is transported
onto Txv instead of being transported to 9 (see Figure 6.3). More precisely, 7} is
the measure on Q x § defined by, for Borel sets A, B C Q:

7i(A x B) = mi(A x B) + v(ANT~Y(B)),
(A x 00) =0, m(0Q x B) =m0 x B).
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FIGURE 6.3: Global picture of the proof. The main idea is to observe
that the cost induced by m; (red) is strictly greater than the sum of
costs induces by the 7}s (blue), which leads to a strictly better energy.

We have 7} € Adm(y;, p1'). Indeed, for Borel sets A, B C

T(AXx Q) =m(Ax Q) =m(AxQ)+v(A) =m(Ax Q) =w(A),
and

(2 x B) = 7}(Q x B) + 7(0Q x B)
= m(Q x B) +v(T7Y(B)) + m; (99 x B)
= W(B) + Tyv(B) = p/(B).

Using =} instead of m; changes the transport cost by the quantity

/Q[d(x,T(x))p —d(z,09Q)P]dv(z) < 0.

In a similar way, we define for j # ¢ the plan 7r§» € Adm(p;, ') by transporting the
mass induced by the newly added (Txv) to the diagonal 0. Using these modified
transport plans increases the total cost by

>N / ), 00)Pdu(z).

J#

One can observe that, as the value of the objective function at T'(x) in (6.18) is
smaller than the value at s(z),

/ A (d(, T(@))? — d(z, 09)) + 3" Ad(T (), 0| dv(x) < 0
Q@ J#i

due to the fact that v(£2) > 0.
Therefore, the total transport cost induced by the (7});=1.. v is strictly less or equal
to £(p), and thus E(u') < E(w). Finally, we have

inf &(p) = inf 8( ) = inf F(\I/(u)) inf  F(U(p)> inf E(u),

eG ge
u€M<mt . iz iz u€M<mwt u€M<mwt
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where the last inequality comes from F o ¥ > £ (Lemma 6.3.4). Therefore, inf & =
inf F o U, which is equal to inf F, as ¥ is a bijection. Also, if u is a minimizer of £
(should it exist), then u € G and E(u) = F(¥(u)). Therefore, as the infimum are equal,
U(p) is a minimizer of F. Reciprocally, if ji is a minimizer of F, then, by Lemma 6.3.4,
F(ji1) > E(U~Y(1)), and, as the infimum are equal, $~1(fi) is a minimizer of £&. O

The existence of minimizers fi of F, that is “Wasserstein barycenter” (i.e. p-Fréchet
means for the Wasserstein distance) of P := SN Ailji;, is well-known (see [LGL16,
Proposition 1]). Proposition 6.5.4 asserts that ¥~'(f) is a minimizer of £ on M%
and thus a p-Fréchet mean of P according to Lemma 6.5.3. We therefore have proved
the existence of p-Fréchet means in the finite case.

6.5.2 Existence and consistency of p-Fréchet means

We now extend the results of the previous section to the p-Fréchet means of general
probability measures supported on MP. First, we show a consistency result, in the
vein of [LGL16, Theorem 3.

Proposition 6.5.5. Let P, P be probability measures in P} (MP). Assume that each
Py, has a p-Fréchet mean i, and that Wy pa, (Pn, P) — 0. Then, the sequence (pin)n
is relatively compact in (MP,FGp), and any limit of a converging subsequence is a
p-Fréchet mean of P.

Proof. In order to prove relative compactness of (i )n, we use the characterization
stated in Proposition 3.1.8. Consider a compact set K C 2. We have, because of (6.6),

1 1 1
< —F e —
pin (K) 7 < e 6Q)FGp(/~Ln,0) e 3Q)Wp,pgp(5un,50)
1
< i o) (Vo (G Pa) + Worc, (P b0))

Since p,, is a p-Fréchet mean of P,, it minimizes {W,ra,(0y, Pn) : v € MP}, and
in particular Wy ra,(du,, Prn) < Wpra, (00, Pn). Furthermore, as by assumption
Wy ra,(Pn, P) — 0, we have that sup, Wy ra,(Pn, do) < co. As a consequence
sup,, in(K) < 0o, and Proposition 3.1.8 allows us to conclude that the sequence (up)n
is relatively compact for the vague convergence.

To conclude the proof, we use the following two lemmas, whose proofs are found in
Section 6.6.

Lemma 6.5.6. Under the same hypothesis than Proposition 6.5.5, there exists a
subsequence (fin, )k of (fin)n which vaguely converges towards pv a p-Fréchet mean of P
and there exists v € MP such that FGy(pn,,v) = FG,(u,v) as k — oo.

Lemma 6.5.7. Let p, puq, p2,--- € MP. Then, FGy(un, ) — 0 if and only if (i)

fin — p and (ii) there exists a persistence measure v € MP such that FGy(pun,v) —
FGP(M? V)'

Let p) = pn, be any subsequence of p,. We want to show that there exists a
subsequence of . which converges with respect to the FG, metric towards some
p-Fréchet mean of P. By Lemma 6.5.6 applied to the sequence (u}), there exists a
subsequence ,u?cl which converges vaguely to some p-Fréchet mean p of P, and some
v with FGy(py,,v) = FGp(p,v) as I — oco. By Lemma 6.5.7, this implies that p,
converges to p with respect to the FG, metric, showing the conclusion. O

As the finite case is solved, generalization follows easily using Proposition 6.5.5.
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Theorem 6.5.8. For any probability distribution P supported on MP with finite p-th
moment, the set of p-Fréchet means of P is a non-empty compact convex set of MP.

Proof. We first prove the non-emptiness. Let P = Zf\il Aipt; be a probability measure
on MP with finite support p1,...,unx. According to Proposition 6.3.1, there exists

sequences (,u,gn))n in ./\/lz} with FGP(,u,gn), pi) — 0. As a consequence of the result of
Section 6.5.1, the probability measures P := > )\1-5#@) admit p-Fréchet means.

Furthermore, W;: FGP(P(”), P) <>, )\iFGg(ME"), ;) so that this quantity converges to
0 as n — oo. It follows from Proposition 6.5.5 that P admits a p-Fréchet mean.

If P has infinite support, following [LLGL16], it can be approximated (in W ra,) by
a empirical probability measure P, = % > 0, where the p; are i.i.d. from P. We
know that P, admits a p-Fréchet mean since its support is finite, and thus, applying
Proposition 6.5.5 once again, we obtain that P admits a p-Fréchet mean.

Finally, the compactness of the set of p-Fréchet means follows from Proposition
6.5.5 applied with P, = P: if (uy )y is a sequence of p-Fréchet means, then the sequence
is relatively compact in (MP,FG,), and any converging subsequence is also a p-Fréchet
mean of P. Also, the convexity of the set of p-Fréchet means follows from the convexity
of FGP (see Lemma 8.1.3 in Chapter 8): if i1, yg are two p-Fréchet means with energy
E() =E(u2) = Ep and 0 < X\ < 1, then

E0um + (1= Na) = [ T+ (1= V)P )

< [ PG Y) + (1 - VPG )P ()
veMP
= AE(m) + (1~ NE(a) = B,

so that Aug + (1 — \)psz is also a p-Fréchet mean.

6.5.3 p-Fréchet means in D?

We now prove the existence of p-Fréchet means for distributions of persistence diagrams
(i.e. probability distributions supported on DP), extending the results of [MMHI11],
in which authors prove their existence for specific probability distributions (namely
distributions with compact support or specific rates of decay). Theorem 6.5.10 below
asserts two different things: that argmin{€(a) : a € DP} is non empty, and that
min{&(a) : a € DP} = min{E(p) : p € MP}, i.e a persistence measure cannot perform
strictly better than an optimal persistence diagram when averaging diagrams. As for
p-Fréchet means in MP, we start with the finite case. The following lemma actually
gives a geometric description of the set of p-Fréchet means obtained when averaging a
finite number of finite diagrams.

Lemma 6.5.9. Consider ai,...,an € Dy, weights (\;); that sum to 1, and let P :=
Zi]\il Xibq;. Then, the set of minimizers of p +— Zf\il ANFGE(p, ai) is a mon empty
convex subset of /\/l? whose extreme points belong to Dy. In particular, P admits a
p-Fréchet mean in Dy.

The proof of this lemma is delayed to Section 6.6. Note that, as a straightforward
consequence, if P has a unique minimizer in Dy (which is generically true [Turl3]),
then so it does in ./\/lfc.

Theorem 6.5.10. For any probability distribution P supported on DP with finite p-th
moment, the set of p-Fréchet means of P contains an element of DP.
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Proof. To prove the existence of a p-Fréchet mean which is a persistence diagram, we
argue as in the proof of Theorem 6.5.8, using additionally the fact that DP is closed in
MP (Proposition 3.1.12). O

6.6 Additional proofs

For the sake of completeness, we first present proofs which either require very few
adaptations from corresponding proofs in [FG10]| or which are close to standard proofs
in optimal transport theory.

Proofs of Proposition 6.2.2 and Proposition 6.4.2.

e For m € Adm(u, v) supported on Eg, and for any compact sets K, K’ C 2, one
has m((K x Q) U (Q x K')) < u(K) +v(K') < oo. As any compact subset of Eg
is included in a set of the form (K x Q) U (Q x K'), Proposition 3.1.8 implies
that Adm(u,v) is relatively compact for the vague convergence on Eg. Also,
if a sequence (), in Adm(u,v) converges vaguely to some 7 € M(FEg), then
the marginals of 7 are still g and v. Indeed, if f is a continuous function with
compact support on €2, then

(z)dm(z,y) = li7rln f(z)dm,(z,y) = liyrln/ f(x)dpn(x)
Eq Q

Eq
- / F(@)du(z),
Q

and we show likewise that the second marginal of 7 is v. Hence, Adm(u,v) is
closed and relatively compact in M(Eg): it is therefore sequentially compact.

e To prove the second point of Proposition 6.2.2, consider 7, 71, 7o, ... such that
T, — m, and introduce 7}, : A — [[, d(z,y)Pdm,. The sequence (), still
converges vaguely to ' : A [[ 4 d(z,y)Pdr. the Portmanteau theorem (Propo-
sition 3.1.11) applied with the open set Eg to the measures 7], — 7’ implies
that

Cp(m) = W/(Eﬁ) < liminf F;L(Eﬁ) = lim inf C)p(my,),
n n

i.e. Cp is lower semi-continuous.

e We now prove the lower semi-continuity of Cs. Let (m,), be a sequence
converging vaguely to m on Eg and let » > liminf Co(m,). The set U, =
n—oo

{(z,y) € Eg: d(x,y) > r} is open. By the Portmanteau theorem (Proposition
3.1.11), we have
0 = liminf 7, (U,) > w(U,).

n—oo
Therefore, spt(m) C Uf and Co(m) < 7. As this holds for any r > lirginf Coo(m0),
we have lim inf Coo (7,,) > Coo(m).

n—oo

e We show that for any 1 < p < oo, the lower semi-continuity of C, and the
sequential compactness of Adm(y,v) imply that 1. Opt,(u,v) is a non-empty
compact set for the vague topology on Eg and that 2. FG, is lower semi-
continuous.
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1. Let (m), be a minimizing sequence of (6.2) or (6.15) in Adm(u,v). As
Adm(u,v) is sequentially compact, it has an adherence value 7, and the
lower semi-continuity implies that Cp(7) < liminf,, o Cp(mn) = FGD (1, v),
so that Opt,,(u, ) is non-empty. Using once again the lower semi-continuity
of Oy, if a sequence in Opt,, (11, ) converges to some limit, then the cost
of the limit is less than or equal to (and thus equal to) FGE(y,v), i.e. the
limit is in Opt, (u,v). The set Opt,, (1, ) being closed in the sequentially
compact set Adm(p, v), it is also sequentially compact.

2. Let p, — p and v, = v. One has

lim inf FGp, (ptn, vn) = lilgn FGy(tny, s Vny)

for some subsequence (ny)x. For ease of notation, we will still use the index
n to denote this subsequence. If the limit is infinite, there is nothing to prove.
Otherwise, consider m, € Opt,,(jtn, ). For any compact sets K, K' cQ,
one has 7, (K xQ)U(Qx K")) < sup,, pn(K)+sup,, v, (K') < co. Therefore,
by Proposition 3.1.8, there exists a subsequence (my, ); which converges
vaguely to some measure m € Adm(u, v). Note that the first (resp. second)
marginal of 7 is equal to the limit p (resp. v) of the first (resp. second)
marginal of (m,, ), so that 7 is in Adm(u, v). Therefore,

FGE(p,v) < Cp(m) < liminf Cp(7y,) = Hminf FGP (11, vp)-

n—oo n—o0

e Finally, we prove that FG,, is a metric on MP. Let p,v, A € MP. The symmetry

of FGy, is clear. If FGp(u,v) = 0, then there exists m € Adm(u,v) supported
on {(z,z), * € Q}. Therefore, for a Borel set A C Q, u(A) = (A x Q) =
m(Ax A) = 7(Q x A) = v(A), and p = v. To prove the triangle inequality,
we need a variant on the gluing lemma, stated in [FG10, Lemma 2.1|: for
mi2 € Opt(p,v) and m3 € Opt(v,\) there exists a measure v € M(ﬁg) such
that the marginal corresponding to the first two entries (resp. two last entries),
when restricted to Fg, is equal to w1 (resp. mo3), and induces a zero cost on
00 x 0L). Therefore, by the triangle inequality and the Minkowski inequality,

FGp(p, A) < < /Q , Az, 2)Pdy(z,y, z)) v

g(/g d(, yPd(z,y, = )Up (/Q Ay, 2)Pdy(z,y, ))w
= </92 d(z, y)Pdma(z, y) )Up (/Q d(y, z)Pdmas(y, ))W

=FG,(u,v) + FG,(v, A).

The proof is similar for p = oco.

O

Proof of Proposition 6.2.5. We first show the separability. Consider for £ > 0 a
partition of {2 into squares (C’lk) of side length 27%, centered at points xf Let F be
the set of all measures of the form . ; qi(SQC? for ¢; positive rationals, K > 0 and I a
finite subset of N. Our goal is to show that the countable set F' is dense in MP. Fix
€ >0, and p € MP. The proof is in three steps.
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1. Since Pers,(p) < oo, there exists a compact K C € such that Pers,(p) —
Persy,(po) < P, where pig is the restriction of 1 to K. By considering the transport
plan between p and pg induced by the identity map on K and the projection onto
the diagonal on Q\ K, it follows that FGP(y, po) < Persy(u) — Persp (o) < e?.

2. Consider k such that 2% < ¢/(v/2u(K)Y/?) and denote by I the indices cor-
responding to squares CF intersecting K. Let p3 = Yool 110(CF)5 k. One can
create a transport map between po and p; by mapping each square C’f to its
center z¥, so that

1/p
FGp(po, 1) < (Zuock (V227 )) < u(K)VPv2-27F <e

3. Consider, for i € I, ¢; a rational number satisfying ¢; < 10(CF) and |uo(CF) —
gi| <P/ (X ;erd(al, 00)P). Let po =3¢, Qi5x§~ Consider the transport plan
between o and py that fully transports ps onto 1, and transport the remaining
mass in 1 onto the diagonal. Then,

1/p
FGp(p1, p2) (Z |10(CF) — qild(x}, 8Q)p> <e.

el

As pp € F and FG(p, p2) < 3¢, the separability is proven.

To prove that the space is complete, consider a Cauchy sequence (pi,)n. As the
sequence (Persy(pin))n = (FGH(pn,0))n is a Cauchy sequence, it is bounded. Therefore,
for K C Q a compact set, (6.6) implies that sup,, pu,(K) < oo. Proposition 3.1.8
implies that (uy)n is relatively compact for the vague topology on €. Consider (fin, )k
a subsequence converging vaguely on {2 to some measure y. By the lower semi-continuity
of FG,,

Persy, (1) = FGP(p,0) < hmlanG D (tiny,, 0) < oo,

so that u € MP. Using once again the lower semi-continuity of FG,,

FGp(pin, p) < lign inf FGyp (pn, fin,, )
—00

nlggo FGyp(pin, i) < nlglgo h,gg}fFGPWm“"k) =0,

ensuring that FGp(pn, 1) — 0, that is the space is complete. O

Proof of the direct implication of Theorem 6.2.6. Let u, p1, po, ... be elements of MP
and assume that the sequence (FGp(pn, 1t))n converges to 0. The triangle inequality
implies that Pers,(u,) = FGD(un,0) converges to Persy(u) = FGh(u,0). Let f €
C.(92), whose support is included in some compact set K. For any £ > 0, there exists
a Lipschitz function f., with Lipschitz constant L and whose support is included in
K, with the oco-norm || f — fz||oc less than or equal to . The convergence of Pers, ()
and (6.6) imply that supy, pux(K) < oo. Let m, € Opt,(pn, 1), we have

n(F) = (D] < pn(f = Jl + [0(F = Il + |pnlfe) = p(fo)]

) —
)+ u(K))e + |pn(fe) — n(fe)

<|u
< (un(K |
< (s p,U«k( )+ u(K))e + |unlfe) — n(fe)l-
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Also,

inl 1) = w8 < [ [ 10:0) = Sew)ldma(o9)  where 7, € Opt(as )

<L // d(z,y)dmn(z, y)

(KxQ)U(OQxK)
1
< L, ((K x Q) U (9 x K))lf% // d(z,y)Pdmy,(z,y)
(KxQU(QxK)
by Holder’s inequality.
1-1
<L (s%puk(K) + M(K)> " FCy (i 1) —— 0.

n—oo

Therefore, taking the limsup in n and then letting € goes to 0, we obtain that

pn(f) = p(f)- O

The following proof is already found in [LGL16]. We reproduce it here for the sake
of completeness.

Proof of Lemma 6.5.6. Recall that P, is a sequence in PY(MP) such that each P, has
a p-Fréchet mean ju, and that W, pq, (Pn, P) — 0 for some P € P}(MP). According
to the beginning of the proof of Proposition 6.5.5, the sequence (uy), is relatively
compact for the vague convergence. Let v € MP and let p be the vague limit of some
subsequence, which, for ease of notations, will be denoted as the initial sequence. By
Skorokhod’s representation theorem [Bill3, Theorem 6.7], as P, converges weakly to
P, there exists a probabilistic space on which are defined random variables g ~ P and
Mn ~ P, for n > 0, such that p, converges almost surely with respect to the FG,
metric towards p. Using those random variables, we have

E(v) = EFG)(v, p) = Wypg, (0v, P)
= liTan WIZFG;;((S”’ P,) since Wy ra, (Pn, P) = 0
= liin EFGE(v, tn)
> liin EFGg(un, Wy since p, is a barycenter of P,
> ]Elirnninf FGP(pin, pin) by Fatou’s lemma

> EFGE (i, p) = E(p) by lower semi-continuity of FG,, (Proposition 6.2.2).
(6.19)

This implies that u is a barycenter of P. We are now going to show that, almost
surely, lim inf, FG,(pn, ) = FGp(p, p). This concludes the proof by letting nj, be the
subsequence attaining the liminf for some fixed realization of pu. By plugging in v = p
in (6.19), all the inequalities become equalities, and in particular,

lim Weg, O, Pn) = T BRG] (pin, pn) = BFG(1, ) = W', (64, P)-
This yields

0< Wp,FGp(‘sum P) - Wp,FGp (5;“ P)
< Wp,FGp((suna Pn) + Wp,FGp(Pm P) - Wp,FGp (6;u P) -0
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as n goes to +oo, i.e. lim, Wy, ra,(dy,, P) = Wy ra, (6., P). Therefore,
EFG)(p, 1) = Wypq, (64, P) = lim Wy ra, (O, P) = hmEFG D ttn, i)
> Elim inf FG(pn, p) by Fatou’s lemma

> EFGE (1, ) by lower semi-continuity of FG,,.

As liminf, FGD(pn, p) > FGP(p, p) and Eliminf, FGD(un, p) = EFGH(1, ),
actually have lim inf,, FGD(pn, ) = FGP(u, p) almost surely, concluding the proof. [J

FIGURE 6.4: Partition of € used in the proof of Lemma 6.5.7.

We end this section by giving the proof of two technical lemmas of Section 6.5.

Proof of Lemma 6.5.7. For the direct implication, take v = 0 and apply Theorem
6.2.6.

Let us prove the converse implication. Assume that p, — p and FG,(pn,v) —
FG,(u,v) for some v € DP. The vague convergence of (i), implies that p(®) i

the only possible accumulation point for weak convergence of the sequence (,u,(f ))n.

(p)

Therefore, it is sufficient to show that the sequence (), is relatively compact for
weak convergence (i.e. tight and bounded in total variation, see Proposition 3.1.9).
Indeed, this would mean that (HS{’ )) converges weakly to u(), or equivalently by
Proposition 3.1.10 that u, — u and Pers,(u,) — Pers,(u). The conclusion is then
obtained thanks to Theorem 6.2.6.

Thus, let (pn,)n be any subsequence and (7,), be corresponding optimal transport
plans between p, and v. The vague convergence of (i), implies that (m,), is
relatively compact with respect to the vague convergence on Eq. Let m be a limit
of any converging subsequence of (m,),, which indexes are still denoted by n. One
can prove that m € Opt(p,v) (see [FG10, Proposition 2.3]). For r > 0, recall that
Q- ={z € Q: d(z,00) > r} and define A, := {z € Q: d(z,00) < r}, so that
Q0 =Q, UA,. Write also A, for A, U 0. Consider n > 1. We can write

/ d(z, 0P djin (x / / 2, 0P dmn (2, 1)

ArxQ

// (2, 0P dm (2, ) + // (2, 0P dm (2, )

ArXQyr ArxApyr

< _1 // (z,y)Pdm,(z,y) + // (x, 0Q)Pdm, (z,y)

X Anr
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é(n_ll)pFGi(un, ) + 2P~ 1( // z,y)Pdmn(z, y) // (y, 0Q)Pdy (x, y))

AT><A,77» A, ><Am

1
< P p—1 P( P
- 1)pFGp(Nn> v)+2 (FG i, V / d(z,y)Pdm,(z,y) + | d(y,00Q) dy(y))

Anpr
EQ\ r XAnr

where (x) holds because d(z,y) > (n — 1)r > (n — 1)d(z,09) for (z,y) € A, x Aj,
Therefore,

lim sup d(x, 0)Pdu,(x) <
msup [ (z, 0Q)Pdpn () =1

—1
SFGY(p,v) + 2 (FG,’?(N, V)

// d(z, y)Pdr(z,y) + d(yﬁﬂ)pdV(y)>

Anr
EQ\ A XAn'r

Note that at the last line, we used the Portmanteau theorem (see Proposition 3.1.11) on

the sequence of measures (d(z, y)Pdm,(z,y)), for the open set Eq\ (A, x 4,,). Letting
r goes to 0, then 1 goes to infinity, one obtains

r—=0 nooco

lim limsup/ d(xz,0Q)Pdpn(z) = 0.
Ap

The second part consists in showing that there can not be mass escaping “at infinity”

in the subsequence (u (p)) . Fix r, M > 0. For x € Q, denote s(x) the projection of z
on 0f2. Pose

Ky i={x € Q1 d(z,00) < M,d(s(x),0) < M}
and Ly, the closure of Q\(A, U Kar,) (see Figure 6.4). For 7’ > 0,

/ d(x,0Q)Pdpn (z // x, 0Q)Pdm, (z,y)
LM T

L]M’TXQ

— // d(z, 0Q)Pdm, (z, y) // d(x,0Q)Pdmy (2, y)

Lt X (Lo, UA, 1) Lt xKapry2,00

S A

Lt X (Lpg o, UA)

4 9p—1 // d(0Q, y)Pdm,(x,y)

LI\/ITX(LI\[/Q T/UZ I)

v ] dwoerdn.y.

L rXKM/Q !

We treat the three parts of the sum separately. As before, taking the lim sup in n and
letting M goes to oo, the first part of the sum converges to 0 (apply the Portmanteau

theorem on the open set Eq\(Lasr X (Lpg/2,+ U Aw)). The second part is less than or
equal to

g1 / d(y, 0P du(y),
LM/2 r! UA /
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which converges to 0 as M — oo and ' — 0. For the third part, notice that if
(v,y) € Ly % KM/Q’TI, then

A(r,09) < d(z,5(y)) < () + dly,5(y)) < () + 5 < 2d(z,y).

Therefore,
// d(z,0Q)Pdmy, (z,y) < 2P // d(x,y)Pdm,(z,y)
L XK pp)9,,0 Lt XEpgya,0
<2 [[ dwyrin .
L xS

As before, it is shown that limsup, [f; ~ gd(z,y)Pdm,(2,y) converges to 0 when M

goes to infinity by applying the Portmanteau theorem on the open set Eq\(Lps, x Q).

Finally, we have shown, that by taking r small enough and M large enough, one can
find a compact set Kpr,, such that fmm d(xz,0Q)Pdu, = ,u;p)(Q\KM,r) is uniformly
small: (,ung))n is tight. As we have

§P)(Q) = Persy(j1n) = FGB(j1,0)
< (FGp(pn, v) + FGy(v,0))? — (FGp(p,v) + FGy(v,0))?,

it is also bounded in total variation. Hence, (,u,(f ))n is relatively compact for the weak
convergence: this concludes the proof. O

Proof of Lemma 6.5.9. Let P = Zz 1 Aidq; a probability distribution with a; € Dy of
mass m; € N, and define myy = va 1My By Proposition 6.5.4, every p-Fréchet mean
a of P is in correspondence with a p-Fréchet mean for the Wasserstein distance a of
P = Ef\;l Aida;, where a; = a; + (Mot — m;)dsq, with a being the restriction of a to
Q.

Let thus fix m € N, and let aq,...,ay be point measures of mass m in Q. Write
a; = Z;"Zl 0z, ;, so that z;; € Qfor1 <i<N,1<j<m, with the Z; jS non-
necessarily distinct. Define

N
T:(x1,...,25) € QY argmin{z Xip(zi,y)P - y € Q} € Q. (6.20)
i=1

Since we assume p > 1, T is well-defined and is continuous, while in the general case
the existence of a measurable minimizer follows from standard arguments [CRO3|.
Using the localization property stated in [COO15a, Section 2.2|, we know that the
support of a p-Fréchet mean of P is included in the finite set

S ={T(x14, - xNjy): 1< J1,..., 08 <m}.

Let K = m®™ and let z1,. .., zx be an enumeration of the points of S (with potential
repetitions). Denote by Gr(zy) the N elements x1, ..., xy, with z; € spt(a;), such that
zp = T(x1,...,2N). It is explained in [COO15a, Section 2.3], that finding a p-Fréchet
mean of P is equivalent to finding a minimizer of the problem

inf Z)\ // p(xi, y)Pd; (x4, ), (6.21)

(715N )ETT 4
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where II is the set of plans (v;)i=1,..~, with 7; having for first marginal a;, and such
that all ;s share the same (non-fixed) second marginal. Furthermore, we can assume
without loss of generality that (y;...vn) is supported on (Gr(zy), 2k ), i.e. a point zj
in the p-Fréchet mean is necessary transported to its corresponding grouping Gr(zy)
by (optimal) 71,...vny [COO15a, Section 2.3]. For such a minimizer, the common
second marginal is a p-Fréchet mean of P.
A potential minimizer of (6.21) is described by a vector v = (v;;%) € RY™E such
that:
{for 1<i<N, 1<j5<m, Zle Yijk = 1 and (6.22)

for2<i <N, 1<k<K, 37 Yijk= 2101 Vijk-

Let ¢ € RN™K be the vector defined by cijr = Wiy € Gr(zk) tNip(xij, 21)P. Then,
the problem (6.21) is equivalent to

mlmmlzefy ¢ under the constraints (6.22). (6.23)
'yE]R mK

The set of p-Fréchet means of P are in bijection with the set of minimizers of this
Linear Programming problem (see [Sch03, Section 5.15]), which is given by a face of the
polyhedron described by the equations (6.22). Hence, if we show that this polyhedron
is integer (i.e. its vertices have integer values), then it would imply that the extreme
points of the set of p-Fréchet means of P are point measures, concluding the proof.
The constraints (6.22) are described by a matrix A of size (Nm + (N — 1)K) x NmK
and a vector b = [1nym, O(v_1)k], such that v € RV satisfies (6.22) if and only if
A~ =b. A sufficient condition for the polyhedron {Axz < b} to be integer is to satisfy
the following property (see [Sch03, Section 5.17]): for all u € ZVN™ | the dual problem

max{y’b, y >0 and yT A = u} (6.24)

has either no solution (i.e. there is no y > 0 satisfying y” A = u), or it has an integer
optimal solution y.

For y satisfying yT A = u, write y = [°, y'] with y° € RNV™ and y' € RIW-DK 5o
that 40 isindexedon1 <i < N, 1 < j < mand y'isindexedon2 <i < N, 1 <k < K.
One can check that, for 2<i< N, 1<j<m, 1<k <K:

N
Ul,jk = y?,j + Z Z/ilf,k and  u;jp = y yz k> (6.25)

so that,

m m
22 vl = ) i >3
=5

22j1

N

ul,jk Zyzk "‘ZZ“%M‘Fym
=2 j=1

m

Z Wi gk

Therefore, the function y”b is constant on the set P := {y > 0, yT A = u}, and
any point of the set is an argmax. We need to check that if the set P is non-empty,
then it contains a vector with integer coordinates: this would conclude the proof. A
solution of the homogeneous equation y” A = 0 satisfies yg = y}k = )\; for i > 2 and

Il
||M2 ||MS ||Mz
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y? i=— Zf\iQ yl, = — Zf\iz A; and reciprocally, any choice of A; € R gives rise to a
solution of the homogeneous equation. For a given u, one can verify that the set of
solutions of yT A = u is given, for \; € R, by

0 _ N N
Yi; = Dim1 Uik = Djma A
ygj = \; fori > 2,
yllk = —u;jk + A for i > 2.

Such a solution exists if and only if for all j, U, := sz\il u; j, does not depend on k
and for 7 > 2, U; , := u; jx does not depend on j. For such a vector u, P corresponds to
the A; > 0 with A\; > maxy, U; ,, and U; > Zfil ;. If this set is non empty, it contains
as least the point corresponding to A; = max{0, maxy, U; 1}, which is an integer: this
point is integer valued, concluding the proof. O
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Chapter 7

On the choice of weight functions
for linear representations of
persistence diagrams

A wide class of representations of persistence diagrams, including the persistence
surface [Ada-+17] (variants of this object have been also introduced [Che-+15; KHF16;
Rei+15]), the accumulated persistence function [BM19] or the persistence silhouette
[Cha-+15a] are conveniently expressed as a linear expression of the points of the
diagram.

Definition 7.0.1 (Linear representations). Let f : 2 — B be a map, where B is some
Banach space. The map Wy : DP — B defined by V(a) = a(f) = > ,cq f(u) is called
the linear representation associated with f.

In this chapter, we explore the behavior of linear representations in two different
ways. First, in Section 7.1, using the characterization of convergence with respect to
the Figalli-Gigli metric FG,, given in Chapter 6, we give a description of all continuous
linear representations. In particular, we highlight the importance of weighting the
representation by the distance to the diagonal to the power p: the representations
of the form Wy so)p.y with f continuous bounded are the only continuous ones
with respect to FG,. In applications, Lipschitz continuity is often more desirable
than continuity. For p = 1, we therefore show a general stability result for linear
representations, which is based on a version of the Kantorovitch-Rubinstein duality
formula for persistence diagrams. Although obtaining a stability result for p > 1 is
somewhat less straightforward, we also give an inequality for bounding the distance
between linear representations by the FG,, distance for general p. In this case, the
importance of weighting the underlying map f by the distance to the diagonal is once
again shown.

Our second approach consists in taking an asymptotic point of view, by studying
the behavior of Cech and Rips persistence diagrams built on top of large random point
clouds. Assume for instance that a point cloud X is located on some Riemannian
manifold M. Under this assumption, the Cech persistence diagram a = dgmg(/l’ ) of
the data set is made of two different types of points: points aye far away from the
diagonal, which estimate the diagram of the manifold M, and points apeise close to
the diagonal, which are generally considered to be "topological noise” (see Figure 7.1).
This interpretation is a consequence of the stability theorem for persistence diagrams;
see Chapter 3. If the relevant information lies in the structure of the manifold, then
the topological noise indeed represents true noise, and linear representations of the
form W¢(a) are bound to fail if W¢(anoise) is dominating W ¢(aque). Once again, we
showcase the advantage of using a weight function w :  — R. If w is chosen properly,
i.e. small enough when close to the diagonal, then one can hope that W, ¢(darue) can be
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Qn true

Qn noise,

death

birth

FIGURE 7.1: The persistence diagram for homology of degree 1 of the
Rips filtration of n = 700 i.i.d. points uniformly sampled on a torus.

separated from W, s (anoise)- We address this question from an asymptotic perspective:
for which weight functions does Wy, ¢(anoise) converge to 07

Of course, for this question to make sense, a model for the dataset has to be
specified. A simple model is given by a Poisson (or binomial) process X, of intensity n
in a cube of dimension d. We then denote by dgmf (X,) the persistence diagram of X,
built with either the Cech (K = C) or the Rips (K = R) filtration for ¢g-dimensional
homology. In this setting, there are no "true” topological features (other than the
trivial topological feature of [0, 1]% being connected), and thus the diagram based on
the sampled data is uniquely made of topological noise. A first promising result is the
vague convergence of the persistence measure py = nildgmé{ (nl/ 4%,), which was
proven in [HST18] for homogeneous Poisson processes in the cube and in [GTT19]
for binomial processes on manifolds. However, vague convergence is not enough for
our purpose, as neither f nor w have good reasons to have compact support. Our
main result, Theorem 7.2.4 extends results of [GTT19], for processes on the cube, to a
stronger convergence, allowing test functions to have both non-compact support (but
to converge to 0 near the diagonal) and to have polynomial growth. As a corollary of
this general result, the convergence of the p-th total persistence is shown, as well as
convergence of jy for the Figalli-Gigli metric.

Theorem 7.0.2. Let p > 0 and let k be a density on [0,1]¢ such that 0 < infk <
sup k < 0o. Let X, be either a binomial process with parameters n and k or a Poisson
process of intensity nk in the cube [0, 1]d. Then, with probability one, as n — oo

na'Pers,(dgm’ (X)) — pi(pers?) < oo (7.1)

for some non-zero persistence measure ju;.
Furthermore, if py = n~tdgmy (n'/X,) and p > 1, we have

FGy (g 1g) = 0. (7:2)

Remark that (7.2) is a consequence of (7.1) and of the vague convergence of yg
proven in [HST18|, by using the characterization of convergence for the Figalli-Gigli
metric (Theorem 6.2.6). If a,, := dgm’ (&}) is built on a point cloud X}, of size n
on a d-dimensional manifold, one can expect a, noise to behave similarly to that of
dgmf (X,) for X, a n-sample on a d-dimensional cube (a manifold looking locally
like a cube). Therefore, for p > 0, the quantity Persy(an noise) should be close to
Persp(dgmf (X)), and it can be expected to converge to 0 if and only if the weight
function persP is such that p > d. As such, we obtain the following heuristic: a weight
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function of the form persP with p > d is sensible if the data lies near a d-dimensional
object.

Further properties of the process (dgmf (X,))n are also shown, namely non-
asymptotic rates of decays for the number of points in said diagrams, and the absolute
continuity of the marginals of uj with respect to the Lebesgue measure on R.

Related work Techniques used to derive the large sample results indicated above
are closely related to the field of geometric probability, which is the study of geometric
quantities arising naturally from point processes in R%. A classical result in this field,
see [Ste88|, proves the convergence of the total length of the minimum spanning tree
built on n i.i.d. points in the cube. This pioneering work can be seen as a 0-dimensional
special case of our general results about persistence diagrams built for homology of
dimension ¢. This type of result has been extended to a large class of functionals in
the works of J. E. Yukich and M. Penrose (see for instance [MY99; Yuk00; PY03] and
[Pen03] or [Yuk06] for monographs on the subject).

The study of higher dimensional properties of such processes is much more recent.
Known results include convergence of Betti numbers for various models and under
various asymptotics (see [Kahll; KM13; YSA17; BO17]). The paper [BKS17| finds
bounds on the persistence of cycles in random complexes, and [HST18] proves limit
theorems for persistence diagrams built on homogeneous point processes. The latter
is extended to non-homogeneous processes in |Tril7], and to processes on manifolds
in [GTT19]. Note that our results constitute a natural extension of [Tril7]. In
[STY17], higher dimensional analogs of minimum spanning trees, called minimal
spanning acycles, were introduced. Minimal spanning acycles exhibits strong links
with persistence diagrams and our main theorem can be seen as a convergence result
for weighted minimal spanning acycle on geometric random complexes. [STY17]
also proves the convergence of the total 1-persistence for Linial-Meshulam random
complexes, which are models of random simplicial complexes of a combinatorial nature
rather than a geometric nature.

7.1 Continuity and stability of linear representations

As mentioned in the introduction, a linear representation of persistence measures (in
particular persistence diagrams) is a mapping ®; : M? — B for some Banach space
B of the form p — p(f), where f : Q@ — B is some chosen function. Using such a
representation, one can turn a sample of diagrams into a sample of vectors, making
the use of machine learning tools easier. Of course, a minimal expectation is that ®
should be continuous. In practice, building a linear representation generally follows
the same pattern: first consider a "nice” function g, e.g. a gaussian distribution, then
introduce a weight with respect to the distance to the diagonal d(-, 02)P, and prove
that p — p(g(-)d(-,002)?) has some regularity properties (continuity, stability, etc.).
Applying Theorem 6.2.6, we show that this approach always gives a continuous linear
representation, and that it is the only way to do so.

For B a Banach space (typically R?), define the class of functions:

c) = {f : Q — B: f is continuous and x — @) is bounded } ) (7.3)

P d(x,00Q)P

Proposition 7.1.1. Let B be a Banach space and f : Q0 — B a function. The linear
representation Wy : MP — B is continuous with respect to FGy, if and only if f € Cg’p.
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Proof. Consider first the case B =R. Let f € Cl()),p and p, p1, po - - - € MP be such that

FGyp(ptn, 1) — 0. Recall the definition (6.10) of ). Using Corollary 6.2.9, having

FGy(ttn, ) — 0 means that M%p) 2 1P and thus that

f(CL‘) D f(l‘) p
/Q T @) = /Q T @),
that is

(1) = /Q £ (@) dpim(z) /Q F@)dp(z) = (),

i.e. ¥y is continuous with respect to FGy,.

Now, let B be any Banach space. [Niell, Theorem 2| states that if a sequence of
measures (f, ), weakly converges to p, then u,(f) — p(f) for any continuous bounded
function g : Q — B. Applying this result to the sequence (u%’ ) with g=f/d(-,00Q)P
yields the desired result.

Conversely, let f : Q — B. Assume first that f is not continuous in some z € €.
There exist a sequence (z,,), € QY such that x, — x but f(x,) » f(z). Let pu, = 6z,
and g = ;. We have FGp(pun, ) — 0, but p,(f) = f(an) » f(zo) = p(f), so that
the linear representation p — u(f) cannot be continuous.

Then, assume that f is continuous but that x — % is not bounded. Let

thus (z,), € QY be a sequence such that H% — 400. Define the measure
JTRES m&””' Observe that FGy(un,0) = W — 0 by hypothesis. However,
lln(f)]] = 1 for all n, allowing us to conclude once again that p +— p(f) cannot be
continuous. 0l

Examples of such linear representations commonly used in applications of TDA
include for instance the persistence surface, persistence silhouettes and (weighted)
Betti curves, all introduced in Section 3.9.

Stability in the case p = 1. Continuity is a basic expectation when embedding a
set of diagrams in some Banach space B. One could however ask for more, e.g. some
Lipschitz regularity: given a representation ¥ : MP — B, one may want to have
| () —V(v)|| < C-FGp(u,v) for some constant C. This property is generally referred
to as “stability” in the TDA community and is generally obtained with p = 1, see for
example [Ada+17, Theorem 5|, [CCO17, Theorem 3.3 & 3.4], [Som+18, Section4],
[Rei+15, Theorem 2|, etc.

Here, we still consider the case of linear representations, and show that stability
always holds with respect to the distance FGi. Informally, this is explained by the
fact that when p = 1, the cost function (z,y) — d(x,y)P is actually a distance.

Proposition 7.1.2. Define L the set of Lipschitz continuous functions f : Q — R
with Lipschitz constant less than or equal to 1 and that satisfy f(02) = 0. Let T be
any set, and consider a family (fi)ier with fi € L. Then the linear representation
U= (u(fi))eer is 1-Lipschitz continuous in the following sense:

[ (1) = ¥(V)lloo = sup (= v)(fe)| < FGi(p,v), (7.4)

for any measures p,v € M.
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Proof. Consider y,v € M, and © € Opt(u,v) an optimal transport plan. Let t € 7.
We have:

(11— v)(fi) = /ft e /ft ) (y //Mf fy)dn(z,y)

<[]t = PGy
and thus, [|[U(u) — U(v)]eo < FGi(u,v). O

In particular, if f : @ — B, where B is some Banach space, is 1-Lipschitz
with f(0Q2) = 0, then one can let 7' = Bj (the unit ball of the dual of B) and
fi(z) == t(f(x)) for t € T. We then obtain that ||¥¢(n) — Vs(v)|| < FGi(p,v), ie.
that ¥ : (MY, FG1) — (B, || - ||) is 1-Lipschitz.

Remark 7.1.3. One actually has a converse of such an inequality, i.e. it can be shown
that

FGi(p,v) = max{(p—v)(f): feL} (7.5)

This equation is an adapted version of the well-known Kantorovich-Rubinstein formula,
which is itself a particular version in the case p = 1 of the duality formula in optimal
transport, see for example [Vil08, Theorem 5.10] and [San15, Theorem 1.39]. A proof
of (7.5) would require to introduce several optimal transport notions. The interested
reader can consult Proposition 2.3 in [FG10] for details.

Stability for general weight functions Instead of weighting a representation by
the distance to the diagonal d(-,0Q)P for some p > 1, one could use other schemes.
For instance, in [KFH17, Corollary 12|, representations of diagrams are shown to
be Lipschitz with respect to the FG distance for weight functions of the form w :
u € Q = arctan(B - pers(u)®) with > m + 1, B > 0, provided the diagrams are
built with the sublevels of functions defined on a space X having bounded m-th total
persistence. The stability result is proved for a particular function f :  — B defined
by u € Q— f(u) = K(u,-), with K a bounded Lipschitz kernel and B the associated
RKHS (short for Reproducing Kernel Hilbert Space, see [Aro50] for a monograph on
the subject). We present a generalization of the stability result to (i) general weight
functions w, (ii) any bounded Lipschitz function f, and (iii) we only require ac > m.
Consider weight functions w : Q2 — R, of the form w(u) = w(pers(u)) for u € Q,
for a differentiable function @ : Ry — R4 satisfying w(0) = 0, and, for some A > 0,
a>1,
Vr >0, @' (r)| < AreTt, (7.6)

Examples of such functions include w : u +— arctan(B - pers(u)®) for B > 0 and
w : u — pers(u)®. We denote the class of such weight functions by W(a, 4). In
contrast to [KFH17]|, the function f does not necessarily take its values in a RKHS, but
simply in a Banach space. Given R > 0, we let D’é be the set of persistence diagrams
a with Pers,(a) < R (i.e. D}, is the ball of radius RP centered at 0 in DP).

Theorem 7.1.4. Let (B, | - ||) be a Banach space, let f : Q@ — B be a Lipschitz
continuous function and let w € W(a,A) with A > 0, « > 1. Fizt € [0,1] and
let p1 = = Ppo1 5 and py = p t. Given Ri,Re > 0 and two diagrams a and b in
DpﬂDpl ng; we have

A 1-1 _t
[Wwr(a) = ur(b)]| < Lip(f);Ri PFGp(a,b) + || fllocA (2R2)" "7 FGyp(a,b)'. (7.7)
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Proof. We only treat the case p < oo, the proof being easily adapted to the case
p = 00.

Fix two persistence diagrams a and b. Denote u = w - a (resp. v = w - b) the
measure having density w with respect to a (resp. b). Fix € > 0 and let y be a matching
between a and b such that the cost of the matching is smaller than FG,(a,b) + ¢.

Define
= Y w)b,

u€EalUoN)

Note that as the cost of « is finite, there is a finite numbers on points v € 92 with
v(u) # u, so that w(y(u)) # 0 only for a finite number of elements in the definition of
f. Remark also that i is of finite mass, with || = |v|. We have

Wur(a) = Wur ) = n(f) = (DI < () = 2O+ 12 = v
< I flloclpe =l + Lip(F)Wa (2, v). (7.8)

We bound the two terms in the sum separately. Let us first bound W (fi, v). Consider
an optimal transport plan between i and v, which is built by mapping every point
u € aU 0N towards y(u) € bU Q. We have

W) < 3wl —(u)l.

u€EaUON

Let p’ be the conjugate exponent of p, defined by I%—i— 1% = 1. As condition (7.6) implies
that [w(u)| < 2pers(u)®, the distance Wi (ji,v) is bounded by

1/p 1/p
> w(v(U))luv(U)IS< > w(v(U))p/) ( > Iuv(U)lp>
uEalo) uEalo) uEalJof)
A /v
< a( > pers(’y(r))p/a> FG,(a,b)
u€alUof)
< gR}/p'FGp(a,b), (7.9)

where R; is a bound on Pers,,,(b). We now treat the first part of the sum in
(7.8). For uq,ug, in  with pers(u;) < pers(ug), define the path with unit speed
h : [pers(uy), pers(ug)] — Q by

t — pers(uy) pers(ug) — t
2 1 )
pers(ug) — pers(uy) pers(ug) — pers(uy)

h(t) =u
so that it satisfies pers(h(t)) = t. The quantity |w(u;) — w(uz)| is bounded by

pers(u2) pers(uz)
/ IV (h(1).H (1)|dt < / A pers(h(1))*Ldt
p

ers(u1) pers(u1)

pers(uz2)
< / Attt
p

N ers(uy)

= g(pers(UQ)a — pers(u1)®).

For 0 <y < x and 0 < a <1, using the convexity of ¢ — ¢, it is easy to see that ® —
y* < a(x —y)*a®% Define =2, ¢ = q/qfl and M (u) := max(pers(u), pers(y(u))).
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We have,

w—=pl= Y fww) —wi(w)
u€alJos)

<A 3 fperstu) - persy () M)

1/q 1/q'
SA( 2 ‘pers(“)—PefS(v(u))\tq> ( > M(u)q'<a—”>

u€alof) u€alJo)

1/q
< AFGig(a, )" ( Z (pers(u)q/(a_t) + pers(V(u))q/(a_t))>

uEalo)
< AFGyy(a, b)'2Y/7 RY? (7.10)

where Ry is a bound on Persy () (a) and Persy 44 (b). Combining equations (7.8),
(7.9) and (7.10) concludes the proof. O

The total persistence Persy(a) of a diagram a can often be controlled. This is
for instance the case if the diagrams are built with Lipschitz continuous functions
¢: X — R, and X is a space having bounded m-th total persistence (see Chapter 3).
In that case, we are able to give a simpler stability result than Theorem 7.1.4.

Corollary 7.1.5. Let ¢ > 0 an integer, A > 0, o > 1 and consider a space X
having bounded m-th total persistence for some m > 1 and constant Cx ,,. Suppose
that ¢1,¢2 : X — R are two tame Lipschitz continuous functions, w € W(a, A),

and t € [0,1]. Let m < p < oo be such thataEm—Ft(l—%) > 0. Let Cy =

Cx m max{Lip(¢1)™, Lip(¢2)™} and £ be the mazimum persistence in the two diagrams
dgm,(¢1),dgm,(¢2). Then, we have

Wy r(dgmy (1)) — Wup(dgmy(d2))|| < C1FG,(dgmy (1), dgm,(d2))

7.11
+ C2FGy(dgmy(¢1), dgm,(42))', 71y

— 1 1-1 —m—t(1—-m
where Cy = Lip(f)4¢° m(1 p)co P and Cy = || f]lscAl®™™ (1 p)(zco)lfi,
Proof. Corollary 7.1.5 follows by using the definition of a space implying bounded
m-th total persistence along with the inequality Pers, ¢,(a) < Persy(a)! Persy, (a)
for any persistence diagram a. O

If « >m+ 1 and p = oo, then the result is similar to Theorem 3.3 in [KFH17].
However, Corollary 7.1.5 implies that the representations are still continuous (actually
Holder continuous) when « € (m, m + 1], and this is the novelty of the result. Indeed,
for such an «, one can always choose ¢ small enough so that the stability result (7.11)
holds. The proofs of Theorem 7.1.4 and Corollary 7.1.5 consist of adaptations of
similar proofs in [KFH17].

Remark 7.1.6. (a) One cannot expect to obtain an inequality of the form (7.7) without
quantities Ry and Rs related to the total persistence of the diagrams appearing on the
right-hand side. For instance, in the case p = 00, it is clear that adding an arbitrary
number of points near the diagonal will not change the bottleneck distance between
the diagrams, whereas the distance between representations can become arbitrarily
large.

(b) Laws of large numbers stated in the next section (see Theorem 8.2.5), show that
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Corollary 7.1.5 is optimal. Indeed, take w = pers® and f = 1. Let X = [0,1]¢ be the
d-dimensional cube, which has bounded m-th total persistence for m > d. Let X,
be a sample of n i.i.d. points on X. Letting ¢; be the distance function to &,,, we
obtain that dgm,(¢1) = dgch(/'\f'n), the Cech persistence diagram of the set X,,. We
let ¢ = 0, so that dgm (¢2) = 0. Therefore,

1@y (dgmy(61)) — W p(dgmy(¢2))]| = Persa(dgmg (X))

We will see in the next section that this quantity does not converge to 0 for a < d (it
even diverges if o < d), whereas the bottleneck distance between dgmg(Xn) and the
empty diagram does converge to 0. As such, it is impossible to obtain an inequality of
the form (7.11) for a < m.

We end this section by giving a foretaste of the asymptotic study of persistence
diagrams developed in the next section. The following corollary presents rates of con-
vergence of representations in a random setting. Let X, = {X1,..., X,,} be a n-sample
of i.i.d. points from a distribution on some manifold M. We are interested in the con-
vergence of the representation ¥, f(dgqu(Xn)) to the representation ¥, f(dgmg(M ).
We obtain the following corollary.

Corollary 7.1.7. Consider a d-dimensional compact Riemannian manifold M, and let
X ={X1,..., Xpn} be an-sample of i.i.d. points from a distribution having a density
K with respect to the volume measure on M. Assume that 0 < infxk < supk < co. Let
w € W(a, A) for some A > 0, > d, and let f : Q@ — B be a Lipschitz continuous
function. Then, for n large enough,

o
Inn !

E (19 (6) — s OO < Ol (B0) L (ra2)

n
where C' is a constant depending on M, A and the density k.

The study of the next section will show that this rate of convergence is tight up to
logarithmic factors. Once again, this indicates that Corollary 7.1.5 is close to being
tight.

Proof. As already discussed, Theorem 7.1.4 can be applied with ¢, = d(-, X)) and ¢
the null function on the manifold M. Take p = 00, d < aw and 0 < ¢t < min(1, @ — d):

W (g, (90) — Was (e, (9)) |
< Lip( ) Persq (dgm, (61))) - doe(dgm, (90), dgm, (9) (7.13)
+ 2] floc APersao(dgm, (6,)doc(dgm, (90), dgm, (9))

We mentioned in Chapter 3 that, for m > d, we have the inequality Pers,,(dgm,(¢,)) <
mCMHGf)nHm—d /(m — d) for some constant C'y; depending only on M. Moreover, the
stability theorem for the bottleneck distance ensures that doo(dgm,(¢n), dgm,(¢)) <
||pnlloo- Therefore,

W (dgmy(dn)) — oy (dgmg ()]

. aACy o 2AC (o —t ot
< Lip(£) 2% g, 21 4| o 22X D g st
. OéACM a— QACMOA a—
< Lip(f)— 7 lenllsc ™ + 1 lloe=— I nllS, (7.14)
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where, in the last line, the second term was minimized over ¢ € [0, 1]. The quantity
l|pnlloo is the Hausdorff distance between X, and M. Elementary techniques of
geometric probability (see for instance [Cue09]) show that if M is a compact d-

dimensional manifold, then E[||q5n||’go] <c (lnTn)ﬁ/ ? for B > 0, where ¢ is some constant
depending on 3, M, inf k and sup . Therefore, the first term of the sum (7.14) being
negligible,

E [[[ @ (dgmy(¢n)) — Puy(dgmy(¢))ll] <

24Cya (Inn)\ @ D/d Inn\ @9/
11250 () o () .
a—d n n

In particular, the conclusion holds for any C' > 2AC)c¢, for n large enough. O

7.2 Limit laws on large persistence diagrams

As a gentle introduction to the formalism used later, we first recall some known results
from geometric probability on the study of Betti numbers, and we also detail relevant
results of [HST18; Tril7; GTT19].

7.2.1 Prior work

In the following, K refers to either the Cech or the Rips filtration. Let x be a density
on [0, 1]¢ such that:
0 <infrx <supk < co. (7.15)

Note that the cube [0,1]¢ could be replaced by any compact convex body (i.e. the
boundary of an open bounded convex set). However, the proofs (especially geometric
arguments of Section 7.4.1) become much more involved in this greater generality. To
keep the main ideas clear, we therefore restrict ourselves to the case of the cube. We
indicate, however, when challenges arise in the more general setting.

Let (X;)i>1 be a sequence of i.i.d. random variables sampled from density » and
let (N;)i>1 be an independent sequence of Poisson variables with parameter i. In the
following A, denotes either {X7,..., X, }, a binomial process of intensity x and of size
n, or {X1,...,Xn,}, a Poisson process of intensity nx. The fact that the binomial
and Poisson processes are built in this fashion is not important for weak laws of large
numbers (only the law of the variables is of interest), but it is crucial for strong laws
of large numbers to make sense.

Recall the definition of the persistent Betti numbers

Brs(dgmy (&) == dgmy (X,)(Jrs), (7.16)
where 1, o = {u = (u1,u2) € Q: uy <r<s<wg}for0<r<s.

Theorem 7.2.1 (Theorem 1.4 in [Tril7]). Let r > 0 and g > 0. Then, with probability
one, n_lﬂm(dgmf(nl/d?{n)) converges to some constant. The convergence also holds
i expectation.

The theorem is originally stated with the Cech filtration but its generalization
to the Rips filtration (or even to more general filtrations considered in [HST18]) is
straightforward. The proof of this theorem is based on a simple, yet useful geometric
lemma, which still holds for the persistent Betti numbers, as proven in [HST18|. Recall
that for j > 0, S;(K) denote the j-skeleton of the simplicial complex K.
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Lemma 7.2.2 (Lemma 2.11 in [HST18|). Let X C Y be two subsets of RY. Then

q+1

|Br.s (dgm (X)) = Brs(dgmy (V)] < D 18;(K*(P)\S; (K5(X))]. (7.17)
Jj=q

In [HST18], this lemma was used to prove the convergence of expectations of
diagrams of stationary point processes. As indicated in [GTT19, Remark 2.4|, this
lemma can also be used to prove the convergence of the expectations of diagrams
for non-homogeneous binomial processes on manifold. Set gy = nildgmf (nt/ ,).
Remark 2.4 in [GTT19] implies the following theorem.

Theorem 7.2.3 (Remark 2.4 in [GTT19] and Theorem 1.5 in [HST18|). Let k be a
probability density function on a d-dimensional compact C' manifold M (or the cube),
with fM k' (2)dz < oo for j € N. Then, for ¢ > 0, there exists a unique Radon measure
pg on S such that

v
Elug] —— 1q (7.18)
and
[ —— fy @.5.. (7.19)
n—oo

The measure pg s called the persistence diagram of intensity r for the filtration K.

The measure E[yy] is by definition the unique measure defined by E[uy](A) :=
E[pg (A)] for every Borel set A. We will investigate in detail the behavior or such
measures, that we call expected persistence diagrams, in Chapter 8.

7.2.2 Main results
A function ¢ : 2 — R is said to vanish on the diagonal if

lim sup |¢(r)| =0. (7.20)

e=0 pers(r)<e

Denote by Cy(£2) the set of all such functions. The weight functions of Section 7.1 all
lie in Cp(€2). We say that a function ¢ : Q@ — R has polynomial growth if there exist
two constants A, a > 0, such that

lp(r)| < A(1+ pers(r)®). (7.21)

The class Cpoly (£2) of functions in Co(€2) with polynomial growth constitutes a
reasonable class of functions w - ¢ one may want to build a representation with.
Our goal is to extend the convergence of Theorem 7.2.3 to this larger class of func-
tions. Convergence of measures ju,, to p with respect to Cpoly(§2), i.e. Vo € Cpoly (2),

tn () — (o), is denoted by 22, Note that this class of functions is standard: it is
n—oo

for instance known to characterize p-th Wasserstein convergence in optimal transport
(see Chapter 3).

Theorem 7.2.4. (i) For ¢ > 0, there exists a unique Radon measure pg such that
E[u!] LN ur and, with probability one, u? LN ur. The measure pl is called the
7 posoo M4 9 pooo 9 q

q-th persistence diagram of intensity k for either the Cech or Rips filtration. It does
not depend on whether X, is a Poisson or a binomial process, and is of positive finite
mass.

(ii) The convergence also holds pointwise for the L, distance: for all ¢ € Cpoly(Q2), and
L .
forallp > 1, ug(¢) Tpoo> g (). In particular, |pg(¢)| < oo.

n
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Remark 7.2.5. (a) Remark 2.4 together with Theorem 1.1 in [GTT19| imply that the
measure j; has the following expression:

13() = | [ sw(0) 1 )da(r)] v € C.(0), (722

where py = u; is the g-th persistence diagram of uniform density on |0, l]d, appearing
in Theorem 7.2.3, and the expectation is taken with respect to a random variable X
having a density k.

(b) Assume g = 0 and d = 1. Then, the persistence diagram dgmZ (X,,) is simply
the collection of the intervals (X(11) — X(;)) where X(;) < --- < X, is the order
statistics of A,. The measure E[uj] can be explicitly computed: it converges to
a measure having density u — Elexp(—ux(X))x(X)] with respect to the Lebesgue
measure on Ry, where X has density x. Take x the uniform density on [0, 1]: one sees
that this is coherent with the basic fact that the spacings of a homogeneous Poisson
process on R are distributed according to an exponential distribution. Moreover, the
expression (7.22) is found again in this special case.

c eorem 1.9 In ‘ states that the support of p; 1s {). Using Equation (7.22),
Th 1.9 in [HST18 hat th f pg is . Using Equation (7.22
the same holds for pg.

(d) Theorem 7.0.2 is a direct corollary of Theorem 7.2.4. Indeed, we have

n%*lPersa(dgmé((Xn)) =na! Z pers®(r)
ergmf(Xn)

=n! Z persa(n_ér)

ergmf(Xn)
— i (pers®),

a quantity which converges to ,ug(persa). The relevance of Theorem 7.0.2 is

illustrated in Figure 7.2, where Cech complexes are computed on random samples on
the torus.

The core of the proof of Theorem 7.2.4 consists in a control of the number of
points appearing in diagrams. This bound is obtained thanks to geometric properties
satisfied by the Cech and Rips filtrations. Finding good requirements to impose on a
filtration K for this control to hold is an interesting question. The following states
some non-asymptotic controls of the number of points in diagrams which are interesting
by themselves.

Proposition 7.2.6. Let M > 0 and define Uyy = R x [M,00). Then, there exist
constants c1,co > 0 (which can be made explicit) depending on k and q, such that, for
any t > 0,

P(ul(Upr) > t) < ey exp(—ca(M® + ¢1/(a)y), (7.23)

As an immediate corollary, the moments of the total mass |uy| are uniformly
bounded. However, the proof of the almost sure finiteness of sup,, [y is much more
intricate. Indeed, we are unable to control directly this quantity, and we prove that a
majorant of |ug| satisfies concentration inequalities. The majorant arises as the number
of simplicial complexes of a simpler process, whose expectation is also controlled.

It is natural to wonder whether pg has some density with respect to the Lebesgue
measure on : it is the case for the for d = 1, and it is shown in Chapter 8 that E[ug]
also has a density. Even if those elements are promising, it is not clear whether the
limit pg has a density in a general setting. However, we are able to prove that the
marginals of uy have densities.
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Weight function n = 500 n = 2000

pers

‘‘‘‘‘‘‘‘‘‘

pers!
pers?
p orsl00

‘‘‘‘‘‘‘‘‘‘‘‘

F1GURE 7.2: For n = 500 or 2000 points uniformly sampled on the
torus, persistence images [Ada-+17] for different weight functions are
displayed. For o < 2, the mass of the topological noise is far larger
than the mass of the true signal, the latter being comprised by the
two points with high-persistence. For o = 2, the two points with
high-persistence are clearly distinguishable. For o = 100, the noise has
also disappeared, but so has one of the point with high-persistence.
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Proposition 7.2.7. Let m (resp. m2) be the projection on the x-axis (resp. y-azis).
Then, for ¢ > 0, the pushforwards ()4 (pg) and (m2)4(pg) have densities with respect
to the Lebesgue measure on R. For ¢ =0, (m2)x(uy) has a density.

7.3 Discussion

The tuning of the weight functions in representations of persistence diagrams is a
critical issue in practice. When the statistician has good reasons to believe that the
data lies near a d-dimensional structure, we give, through two different approaches
(stability and limit theorems), a heuristic to tune this weight function: a weight of the
form pers® with a > d is sensible. The study carried out in this paper allowed us to
show new results on the asymptotic structure of random persistence diagrams. While
the existence of a limiting measure in a weak sense was already known, we strengthen
the convergence, by showing that the convergence holds for the Figalli-Gigli metrics
FG,. Some results about the properties of the limit are also shown, namely that it
has a finite mass, finite moments, and that its marginals have densities with respect
to the Lebesgue measure. The fact that the limit behavior of the random persistence
diagram is sensitive to the dimension d can also be used to define a notion of fractal
dimension for measures via persistent homology, see [Ada+20)].
Challenging open questions on this asymptotic behavior include:

e Existence of a density for the limiting measure: An approach for obtaining such
results would be to control the numbers of points of a diagram in some square

[Tl,’l“g] X [81,52].

e Convergence of the number of points in the diagrams: The number of points
in the diagrams is a quantity known to be not stable (motivating the use of
bottleneck distances, which is blind to them). However, experiments show that
this number, conveniently rescaled, converges in this setting. An analog of
Lemma 7.2.2 for the number of points in the diagrams with small persistence
would be crucial to attack this problem.

e Generalization to manifolds: While the vague convergence of the rescaled dia-
grams is already proven in [GTT19], allowing test functions without compact
support appears to be a challenge. Once again, the crucial issue consists in
controlling the total number of points in the diagrams.

7.4 Proofs of Section 7.2

7.4.1 Proof of Proposition 7.2.6

First, as the right hand side of the inequality (7.23) does not depend on n, one may
safely assume that py is built with the binomial process. The proof is based on two
observations.

(i) Denote by ¢(o) the filtration time of some simplex o, given by (o) for the Cech
filtration and diam(o) for the Rips filtration. Recall the definition of a negative and
positive simplexes from Chapter 3. A simplex o is said to be negative in the filtration
K(X,) if o is not included in any cycle of K(¢(0),X,). A basic result of persistent
homology states that points in dgmé( (X,) are in bijection with pair of simplexes,
one negative and one positive (i.e. non-negative). Moreover, the death time 7o of a
point r = (r1,r2) of the diagram is exactly ¢(o) for some negative (¢ + 1)-simplex o.
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outside the cube outside the cube

inside the cube

x ) x % *| inside|the cube x TN *
s (2, X) O\ nRs (2, X) | BN
. x ) Ryp(2,X) < . - x| | Rsy(z,X)
-— x —
no : no

x x

FIGURE 7.3: Illustration of the definition of R := Rs,(x, X) for some
two point clouds X. The dashed line indicates the boundary of [0,1]%.
On the left display, the radius R is such that there is a point (indicated
in red) on Cj‘s(x,R). On the right display, there is a cone Ag(a:,R),
indicated in red, for which C’;-S(glc7 R) is on some face of the cube [0,1]¢.

Therefore, npy (Unr) is equal to Ny(X,, M), the number of negative (g + 1)-simplexes
in the filtration K (X, ) appearing after M, :=n~/4M.

(ii) The number of negative simplexes in the Cech and Rips filtration can be efficiently
bounded thanks to elementary geometric arguments.

Geometric arguments for the Rips filtration
We have .
1 -
Ny(Xn, M) = mz#:(XivXn% (7.24)
i=1

where, for x € X', with X" a finite set, Z(x, X') is the set of negative (¢ + 1)-simplexes
(and therefore of size ¢ + 2) in Rips(X) that are containing z, and have a filtration
time larger than M,,. The following construction is inspired by the proof of Lemma
2.4 in [MY99].

The angle (with respect to 0) of two vectors x,y € R? is defined as

Zxy = arccos <<$’ y)) .

|z[|y]

The angular section of a cone A is defined as sup, ,c4 Zzy. Denote by C(xz,r) the
cube centered at x of side length 2r. For 0 < § < 1, and for each face of the cube
C(z,7), consider a regular grid with spacing dr, so that the center of each face is one
of the grid points. This results in a partition of the boundary of the cube C(x,r) into
(d — 1)-dimensional cubes (C?(w, r))j:L_.Q of side length dr. Using this partition of
the boundary of C(z,7), we construct a partition of C(x, ) into closed convex cones

(A‘;» (x,7))j=1..Q, where each cone A?(a:, r) is defined as a d-simplex spanned by x and

one of the (d — 1)-dimensional cubes C?(m, r) of side length dr on a face of C'(z,7). In

other words, the point z is the apex of each A?(ZL‘, r), and Cf(:v, r) is its base. We call
two such cones A?-(l‘, r) and A?,(a:, r) adjacent, if A?(l‘, )N Aj., (x,r) # {z}.

Fix 0 < n < 1, and define Rs,(x, ;) to be the smallest radius r so that each cone
A?(x, nr) in C(x,nr) either contains a point of A, other than z, or is not a subset of
(0,1)¢ (see Figure 7.3 for an illustration).
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27
of C(z,r) whose base Cf(x,r) intersects [0,1]%. Then, either A?(ac,r) is a subset of
[0,1]¢, or there exists a cone A?, (x,r) of C(x,r) adjacent to A?(a:,r) that is a subset
of [0,1]%.

Lemma 7.4.1. Let x € [0,1]4. Fiz § >0, and 0 < r < %, and let A?(a:,’r’) be a cone

Proof. A necessary and sufficient condition for a cone A?(l‘,’l“) to be a subset
of [0,1]¢ is that Cf(m,r) C [0,1]¢. Suppose that this is not the case, i.e. we have
C?(l‘, )\ [0, 1]% # (). For each coordinate i = 1, ..., d for which C?(x, r) extends beyond
a face of [0, 1]d, move one step in the ‘opposite’ direction, and find the corresponding
adjacent cone. The fact that » < 1/2 ensures that these (at most d) steps, each of
size rd, do not make the exterior boundary of the corresponding adjacent cone extend
beyond any of the opposite faces of the cube corresponding to the directions of the
steps. Il

Note that the angular section (with respect to z) of the union of a cone Ag(:r, r)
and its adjacent cones is bounded by ¢d for some constant c.

Lemma 7.4.2. Let n = min{1/V/d, 1/2}. There exists a 6 = 6(d) > 0, such that each
simplex o of Z(x, X,) is included in C(x, Rsy(x, Xy)). Furthermore, Z(x, Xy,) is empty
if Rs.(x,X,) > M,.

Proof. To ease notation, denote Rj,(z,X,) by R. We are going to prove that
all negative simplexes containing x are included in C(z, R), a fact that proves the
two assertions of the lemma. First, if nR > 1/2, then C(z, R) contains [0,1]¢ and
the result is trivial. So, assume that nR < 1/2, and consider a (¢ + 1)-simplex
o = {x,x1,...,2441} that is not contained in C(z,R). Assume without loss of
generality that x; is the point in ¢ maximizing the distance to x, which in particular
means that z; is not in C'(z, R). The line [z, z;] hits C(z,nR) at some cone Ag(:z, nR).
By Lemma 7.4.1 and the definition of R, if A% denotes the union of Ag(x,nR) and
its adjacent cones in C(z,nR), then there exists a point z of &, in A° C C(z,nR)
and the angle Zxzx) formed by [z, x| and [z, 1] is in smaller than ¢d. Let us prove
that all the (¢ + 1)-simplexes o of the form (o\{t}) U{z}, for t € o, have a filtration
time smaller than r(o). If this is the case, then the cycle formed by the o;’s and o is
contained in the complex at time 7 (o), meaning that o is not negative, concluding the
proof. Therefore, it suffices to prove that |z — z| < r(0) and that |z — x;| < r(o) for
all

o |z — x| <VdnR < |z — 1]
o If Laxzay < cd <m/3,

|Z—.CI}1|2 = |z—x\2+\x1—:p|2—2(z—:p,x1 — )

<|z-— $\2 + |z — :U|2 — |z —z|lr; — x| < |xg — x|2 < T(O‘)Q.

For i > 2, we have |z — x;| < |z — z1| by assumption. Let I(z) denote the set of all
t € R% with |z —t| > |z —t| and |z —t| > |21 —¢t|, i.e. I(2) is the intersection of two half
spaces (see Figure 7.4). Let Fy(z) = d(I(2),z). If we find a 6 with F(z) > |z — =]
for all z € A%, then no z; is in I(z), whatever the position of z € A% is, meaning that
all z;’s satisfy |z — x;| < max{|x — z;|, |x1 — 4|} < r(0), concluding the proof. The
method of Lagrange multipliers shows that Fj,(2)? is a continuous function of z, with
a known (but complicated) expression. A straightforward study of this expression
shows that for § small enough, the minimum of F, on A% can be made arbitrarily
large: therefore, there exists § such that Fy.(z) > Vd > |z — 21|, for all z € A°. O
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x1

FIGURE 7.4: The geometric construction used in the proof of Lemma

7.4.2. The red region represents A° whereas the blue region represents

I(2) for some point z in A°. If§ is made sufficiently small, the distance
F.(2) between x and I(z) can be made arbitrarily large.

Construction for the Cech filtration

A similar construction works for the Cech filtration, but the arguments are slightly
different. First, note that each negative simplex ¢ in the Cech filtration is such that
there exists a subsimplex o’ of o that enters in the filtration at the same time r(o) as
o, and so that r(o) is the circumradius of ¢/. Then

Ny(Xn, M) = Z 1{o negative, r(c) > M}
o€Cechgy1(Xn)
1 n
= Z Tl Z 1{o negative, r(oc) > M, X, € o'}
o€Cechgi1 (Xn) =1
n
< Z #E/(Xl7 Xn)a
i=1

where Z'(z, X,,) the set of negative (¢ + 1)-simplexes o in the Cech filtration Cech(;,)
with r(c) > M and z € ¢’.

Lemma 7.4.3. For n = min{1/Vd,1/2} and some § = §(d) > 0, each simplex
o of Z(x,X,) is included in C(z, Rsy(x,Xy,)). Furthermore, Z'(x, X,) is empty if
R&,n(l’; Xn) > M,.

Proof. Recall the definition of C'(z,r) and the partition of C(x,r) into the cones
(A?(x, 7)) j=1..Q With corresponding bases (Cf(w, 7))j=1..Q- Asabove, denote Rs,(x, X))
by R. Let 0 = {x,x1,...,24+1} denote a (¢ + 1)-simplex not included in C(z, R),
with 7(o) > M. As in the Rips case, the result is trivial if nR > 1/2. By definition
of the Cech filtration, the intersection ﬂfigl B(z;,r(0)) consists of a singleton {y}. If
there is a point z of A}, in B(y,r(0)), then, by the nerve theorem applied to o U {z},
we can conclude with similar arguments as in Lemma 7.4.2 that o is positive in the
filtration, meaning that every negative o € Z(z, A},) has to be included in C(z, R).
Let us prove the existence of such a z. As z € ¢/, the distance between z and y
is equal to r(o) > R. Therefore, the line [z, y] hits C(z,nR) in some cone Ag(x, nR),
whose base C’;-S(:z:, r) intersects [0, 1], as it intersects [zg,%]. As in the Rips case, there
exists a point z of &,, in C(x,nR) such that the angle made by z, z and y is smaller
than ¢d. As before, it can then be argued that |y — z| < r(o), concluding the proof. [
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Remark 7.4.4. Note that the fact that the support of x is the cube only enters the
picture through the geometric arguments used here and in the above proof. Some
more refined work is needed to show that a similar construction holds when the cube
is replaced by a convex body.

In the following, fix 7 = min{1/v/d,1/2}, choose § sufficiently small, and let
Rs(x, Xn),Ag(m,r) and C;S(x,r) be denoted by R(z,X,), A;j(z,r) and Cj(x,r) re-
spectively. Both Z(z, A},) and Z'(x, X},) are included in the set of (¢ + 1)-tuples of
X, N C(z, R(x,X,)), so that the following inequality holds for either the Rips or the
Cech filtration:

Ny (X, M) < zn: H{R(X:, X)) > My} (#(X, N O(Xi, R(Xi, X)) (7.25)
=1

Denote R(X1,X,) by R,. As we will see, an estimate of the tail of R, is sufficient to
get a control of Ny(AX),, M). The probability P(R,, > t) is bounded by the probability
that one of the cones pointing at X1, of radius ¢/2, wholly included in the cube [0, 1]%, is
empty. Conditionally on X7, this probability is exactly the probability that a binomial
process with parameters n — 1 and x does not intersect this cone. Therefore,

P(R, > t) < cexp(—cnt?), (7.26)

and we obtain, for A > 0,

B[] - / P(ARY > In(t))dt
1
<

&0 In(¢
/ cexp (—c n}(\ )> dt < oo if A < ¢/2. (7.27)
1

Lemma 7.4.5. The random variable #(X,, N C(X1, Ry,)) has exponential tail bounds:
fort >0,
P(#(Xn N C(Xh Rn)) > t) < ceXp(—Ct).

Proof. Conditionally on X; and R,,, two possibilities may occur. In the first one,
the cube centered at X; of radius nR,, contains a point on its boundary, in the cone
A, (X1,mRy). Denote this event E and let Qg be the number of cones wholly included
in the support. The configuration of X, is a binomial process conditioned to have
at least one point in the cones A;(X1,nR,) wholly included in the cube, except for
J = jo, and a point on Cj,(X1,nR,). In this case, #(X, N C(X1,Ry)) is equal to
Qo + Z, where Z is a binomial variable of parameters n — @)y and

/ k(z)dr < CRZ.
C(leRn)\Ajo (lenR")

Therefore, for 5 > 0, using a Chernoff bound and a classical bound on the moment
generating function of a binomial variable:

P(#(X, N C (X1, Ry)) > t|Ry, Qo, E) < P(Qo + Z > t| Ry, Qo)
< ePDRE[eP?|R,)
= G’Bt
eﬁQecnR;jL(eﬁ—l)

ST
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where @ is the number of elements in the partition of C(z, R). Take /8 sufficiently
small so that E[efn(¢”~D] < oo (such a f exists by equation (7.27)). We have the
conclusion in this first case.

The other possibility is that there exists a cone not wholly included in the cube
containing no point of AX,,. In this case, the configuration of X, is a binomial process
conditioned on having at least one point in the cones A;(X1, R,) wholly included in
cube and no point in a certain cone not wholly included in the cube. Likewise, a
similar bound is shown. O

We are now able to finish the proof of Proposition 7.2.6: for p > 1,

Nq(é\.’n,M)>p]

Bl ] = |

< g <Z?:1 L{R(X, X) > Mo} (#(X 1 C(Xi, RO, zcn>>>>q+1>p]
T (g+2)p n
1
(¢ +2)7
1
~(g+2)p

IN

E {1{Rn > My # (X, N C (X, Rn))p(q+1)} by Jensen’s inequality

1/2

N

(P(Rn > M)E[#(X, N C(X1, Rn))QP@“)])

Lemma 7.4.5 implies that, for p’ > 0,

/

B [#(X, 00 R < [ e @ = T [T e vau =
1 cr i

Therefore, for ¢ > 1,

1 _
E[H?(UM)p/(qH)] < CW exp(—cM?) ((2p)'C 2P) 1/2 < exp(—cM%)cPp!.

To finish the proof, we use a simple lemma relating the moments of a random variable
to its tail.

Lemma 7.4.6. Let X be a positive random variable such that there exists constants
A, C > 0 with
E[X*] < AC*E!. (7.28)

Then, there exists a constant ¢ > 0 such that Vx > 0,P(X > z) < Aexp(—cz).
Proof. Fix A = % The moment generating function of X in A is bounded by:
B[] _ZM < AN NCh =4
= — < = A.

k!
k>0 k>0

Therefore, using a Chernoff bound, P(X > x) < Aexp(—Az). O

Apply Lemma 7.4.6 to X = ,u;‘(UM)l/(qH) to obtain the assertion of Proposi-
tion 7.2.6.
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7.4.2 Proof of Theorem 7.2.4
Step 1: Convergence for functions vanishing on the diagonal

The first step of the proof is to show that the convergence holds Cy(2), the set of
continuous bounded functions vanishing of the diagonal. The crucial part of the proof
comnsists in using Proposition 7.2.6, which bounds the total number of points in the
diagrams. An elementary lemma from measure theory is then used to show that
it implies the a.s. convergence for vanishing functions. We say that a sequence of
measures (jy)n>0 converges Co-vaguely to p if ug(¢) — p(¢) for all functions ¢ in
Co ().

Lemma 7.4.7. Let E be a locally compact Hausdorff space. Let (fin)n>0 be a sequence
of Radon measure on E which converges vaguely to some measure p. If sup,, |un| < oo,
then (pin)n>0 converges Co-vaguely to p.

Proof. Let (hq) be a sequence of functions with compact support converging to 1 and
let ¢ € Cy(E). Fix € > 0. By definition of Cy(E), there exists a compact set K. such
that f is smaller than e outside of K. For ¢ large enough, the support of h, includes
K.. Let ¢4 = ¢ - hy. Then,

1n (@) — 1(@)] < (@) — kn(Pg)| + n(Bg) — ()| + |1(Pg) — p(9)]
< (s%p tn| + p])e + [1n(Pq) — 11(9g)]-

As (un)n converges vaguely to p, the last term of the sum converges to 0 when ¢ is
fixed. Hence, we have limsup,,_, . |in(9¢) — u(@)| < (sup,, |pn| + |p|) €. As this holds
for all € > 0, pn(¢) conve