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Résumé

Nous étudions les flots d’Anosov en dimension 3. Ces flots ont des dy-
namiques chaotiques intéressantes, plus précisément ils ont des comporte-
ments hyperboliques aux voisinages de leurs orbites. Pour comprendre ces
flots, nous utilisons des surfaces transverses aux flots, appelées sections de
Birkhoff. Via l’application dite de premier retour sur une section de Birkhoff,
la dynamique du flot est partiellement encodée par la dynamique d’un homéo-
morphisme d’une surface. Cette dynamique discrète est alors en dimension 2.

Dans une première partie, nous calculons explicitement les applications
de premier retour d’une famille de sections de Birkhoff à bord fixé. Cela
permet de comparer ces applications de premier retour sur plusieurs sections
de Birkhoff. Dans une seconde partie nous étudions le bord des sections
de Birkhoff et leurs orientations. Nous interprétons une section de Birkhoff
comme un cobordisme transverse au flot, de son bord positif vers son bord
négatif. Deux notions naturelles apparaissent alors : les flots vrillés (qui
admettent un cobordisme transverse nul) et les orbites primitives de ces flots
(qui ne sont pas des bords positifs de cobordisme transverse). Ces notions
que nous allons étudier contiennent des informations sur la topologie du flot
et de la variété ambiante.



Abstract

We study the Anosov flows, in dimension 3. These flows have interesting
chaotic behaviors, more precisely they have hyperbolic behaviors on the
neighborhood of there orbits. To understand these flows, we use some sur-
faces transverse to the flows, called Birkhoff sections. Thanks to the so called
first return map on one Birkhoff section, the dynamic of the flow is partially
encoded by the dynamic of a homeomorphism of a surface. This discrete
dynamic being in dimension 2.

In a first part, we explicitly compute the first return maps of a family
of Birkhoff sections with a fixed boundary. It allows one to compare the
first return maps of the flow on several Birkhoff sections. In a second part,
we study the boundaries of the Birkhoff sections and their orientations. A
Birkhoff section is interpreted as a transverse cobordism of the flow, from its
positive boundary to its negative boundary. Two natural notions appear: the
twisted flows (which admit some transverse null-cobordism) and the primi-
tive orbits of these flows (which are the positive boundary of no transverse
cobordism). We study these notions, which contain some information on the
topology of the flow and of the global manifold.
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Introduction

Les flots d’Anosov forment une famille de flots intéressants pour leur pro-
priétés dynamiques et topologiques. Ces flots satisfont une propriété hyper-
bolique : ils laissent invariants deux feuilletages transverses, dits stable et
instable, sur lesquels ils ont un comportement respectivement contractant et
dilatant. D.Anosov a formalisé cette notion dans les années 60, pour com-
prendre les flots géodésiques sur les surfaces hyperboliques (voir [Ano67]).
La classification des flots d’Anosov et des variétés portant de tels flots sont
des problèmes encore largement ouverts. En dimension au moins 4, si la di-
rection stable (ou instable) est de dimension 1 et si le groupe fondamental de
la variété est polycyclique, alors le flot est une suspension d’après J.F.Plante
(voir [Pla81, Bar92]). Les flots géodésiques sont des contre-exemples à ce
théorème en dimension 3, et nous allons nous concentrer sur les variétés ori-
entables de dimension 3. Deux grandes familles de flots d’Anosov, dits flots
algébriques, sont restées quelques années les seuls exemples connus : les sus-
pensions de difféomorphisme Anosov, et les flots géodésiques sur une surface
hyperbolique.

W.Thurston et M.Handel ont construit des flots d’Anosov transitifs non
algébriques [HT80], en utilisant des techniques de chirurgie. D.Fried [Fri83]
et S.Goodman [Goo83] généralisèrent ce résultat grâce à deux classes de
chirurgies le long d’orbites fermées du flot. La question naturelle formulée
indépendamment par E.Ghys et D.Fried est de savoir si tout flot d’Anosov
transitif peut être changé en une suspension via une suite de chirurgies de
Fried ou Goodman. M.Shannon montra récemment que si le flot est transitif,
les chirurgies de Fried et Goodman produisent des flots Anosov orbitalement
équivalents (voir [Sha20]). On sait désormais passer d’un flot géodésique à
une suspension, et d’une suspension à feuilletages orientables à toute suspen-
sion à feuilletages orientables, en utilisant des chirurgies de Fried-Goodman
(voir [Hir] pour les suspensions et [DS19] pour les flots géodésiques). Les
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questions de D.Fried et E.Ghys restent irrésolues à ce jour.
D’autres familles de flots d’Anosov ont été mieux comprises depuis. Un

premier exemple de flot d’Anosov non transitif a été construit par F.Franks et
B.Williams [FW80]. M.Brunella montra que dans une 3-variété orientable, les
pièces basiques des flots d’Anosov non-transitif sont séparées par des tores in-
compressibles transverses aux flots [Bru93]. Bonatti-Langevin construisirent
ensuite un exemple de flot d’Anosov transitif admettant un tore transverse,
mais n’étant pas une suspension [BL94]. C.Bonatti, F.Beguin et B.Yu ont
généralisé cette idée pour décomposer [BBY16] ou construire [BBY17] tout
flot d’Anosov en pièces basiques, collées le long de tores transverses et de
bouteilles de Klein transverses.

La topologie des flots peut aussi être étudiée à travers la théorie des
feuilletages appliquée aux feuilletages stable et instable du flot. S.Fenley et
T.Barbot ont pris cette approche dans les années 90 et ont étudié l’espace des
orbites des flots d’Anosov [Fen94]. Cet espace est un plan topologique, muni
de deux feuilletages transverses. La topologie de ce plan bi-feuilleté contient
beaucoup d’informations sur la dynamique du flot. En particulier l’action
du groupe fondamental de la variété ambiante, sur l’espace des orbites, car-
actérise complètement la variété ambiante et le flot d’origine, à équivalence
orbitale près (voir Théorème 4.6 de [Bar95a]). Quand les feuilletages stable
et instable vérifient la propriété d’être alignable (R-covered en anglais), il
existe deux modèles de plan bi-feuilleté pour l’espace des orbites (voir ref
S.Fenley ou T.Barbot). De ces modèles de plan bi-feuilleté peuvent être ex-
traites certaines propriétés sur les orbites fermées du flot. Par exemple dans
le cas appelé alignable penché, T.Barthelmé et S.R.Fenley ont montré que
deux orbites homotopes sont isotopes [BF13]. Les flots alignables penchés
seront un des objets d’étude important pour la deuxième moitié de cette
thèse.

Un flot dans une variété M peut être étudié via des sections globales ou
des sections de Birkhoff. Une section globale est une sous-variété de codi-
mension 1, transverse au flot et qui intersecte toutes les orbites du flot. Une
telle section permet de définir une application de premier retour, qui est un
homéomorphisme de la section. La dynamique du flot est alors grandement
contenue dans la dynamique de cette application. D’après S.Schwartzman
puis D.Fried, l’existence de sections globales peut être déterminée via une
condition homologique, à coefficients entiers (voir [Sch57, Fri82b]). Plus pré-
cisément les sections globales sont classifiées par leurs classes d’homologie,
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direction dilatante

direction contractante

Figure 1: Illustration locale d’un flot d’Anosov à gauche, et d’une section de
Birkhoff à droite.

qui vivent dans un certain cone convexe de H2(M,Z).
Pour étudier un flot d’Anosov, il est préférable d’étudier des sections de

Birkhoff, qui sont un assouplissement de la notion précédente autorisant les
sous-variétés à bord. La caractérisation des sections de Birkhoff par leurs
homologies relatives se généralise. L’existence de sections de Birkhoff n’est
pas automatique en général, cependant une construction dûe à D.Fried [Fri83]
montre qu’un flot d’Anosov transitif admet toujours des sections de Birkhoff.
On peut noter que pour un flot non transitif il n’y a pas de section de Birkhoff
comme définie dans la Section 1.3 (en effet l’application de premier retour
serait pseudo-Anosov, et tous les difféomorphismes pseudo-Anosov sont tran-
sitifs [FLP12, Corollaire 9.19]).

La dynamique du flot est aussi partiellement contenue dans les applica-
tions de premier retour sur les sections de Birkhoff, ces applications étant
pseudo-Anosov d’après D.Fried. Le facteur d’expansion de ces applications
a été étudié entre autres par D.Fried et C.McMullen. D.Fried montra une
propriété de convexité de ce facteur d’expansion (une fois renormalisé), ainsi
que sa divergence vers +∞ quand l’homologie de la section de Birkhoff se
rapproche du bord du cone convexe dans H2(M,Z). C.McMullen a con-
struit [McM00] un polynôme à exposant dans l’homologie entière, tel qu’une
fois évalué en l’homologie d’une section de Birkhoff, sa plus grande racine
est le facteur d’expansion de l’application de premier retour de cette section.
Cette construction a depuis été beaucoup utilisée pour l’étude des pseudo-
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Anosov.
Tandis que les facteurs d’expansion sont compris de façon uniforme sur

l’ensemble des sections de Birkhoff à bord fixé, leurs applications de premier
retour ne le sont pas. Dans une partie de cette thèse, nous allons étudier les
applications de premier retour pour certaines sections de Birkhoff, et relier
les premiers retour à l’homologie de ces sections.

Trois questions ont été des motivations pendant ma thèse :

• Étant donné un flot d’Anosov et l’ensemble de ses sections de Birkhoff
avec un bord fixé, peut-on calculer et comparer les applications de
premier retour sur ces sections ?

• Étant donné un flot (préférablement d’Anosov), quelles informations
sur la topologie du flot peut on obtenir en connaissant certaines de ces
sections de Birkhoff ?

• Peut-on comprendre l’ensemble des flots d’Anosov à chirurgie de Fried-
Goodman près ? (question de E.Ghys)

Nous allons décrire brièvement le contenu des chapitres, des dépendances
entre les chapitres, et énoncer quelques théorèmes importants qui y sont
démontrés.

Le Chapitre 1 regroupe principalement des notions et résultats classiques,
ainsi que plusieurs constructions de surfaces transverses à un flot. Nous
introduisons les flots géodésiques qui auront un rôle particulier pendant la
suite de la thèse (le second chapitre étudie des sections de Birkhoff pour ces
flots, et ils seront une source d’exemples pour les autres chapitres). L’espace
des orbites d’un flot d’Anosov ainsi que les flots alignables seront ensuite
introduits. Ces notions sont fortement liées à la topologie du flot et de la
variété ambiante. Nous étudierons particulièrement ce lien dans les deux
derniers chapitres.

Le Chapitre 1 introduit aussi plusieurs classes de surfaces transverses in-
téressantes, telles que les sections partielles et les sections de Birkhoff. Nous
sommes particulièrement intéressés par les surfaces appelées sections par-
tielles, dont l’intérieur est transverse au flot et le bord est tangent au flot.
Les sections de Birkhoff sont celles qui de plus intersectent toutes les or-
bites en temps borné, l’application de premier retour étant alors bien définie.
Le second chapitre étudie ces applications de premiers retour, et les deux
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derniers chapitres utilisent les sections partielles pour étudier la topologie
des flots. Il sera donc important de pouvoir construire plusieurs familles de
sections partielles : les sections à bord symétrique, les sections obtenues en
désingularisant une géodésique, les anneaux de Birkhoff, les sections de Fried.
Nous généralisons ensuite deux constructions de T.Barbot et D.Fried, en in-
troduisant les domaines fondamentaux de sections partielles ramifiées. Cette
construction rassemble les constructions de certains anneaux de Birkhoff et
des sections de Fried.

Les chirurgies de Fried-Goodman seront introduites à la fin du chapitre 1
Ces chirurgies transforment une section de Birkhoff en une autre section
de Birkhoff. La question de E.Ghys peut alors être exprimée en terme de
chirurgie et en terme de section Birkhoff. Il y sera étudié l’action des chirur-
gies de Fried-Goodman sur les sections partielles et sur leurs bords. Ce lien
sera important pour les deux derniers chapitres.

Dans le chapitre 2, nous fixons une surface hyperbolique S, et étudions
le flot géodésique sur le fibré unitaire tangent T 1S, ainsi que les applications
de premier retour sur certaines sections de Birkhoff. Une grande famille
de sections de Birkhoff, dites à bord symétrique, a été introduite en 2016
par M.Cossarini et P.Dehornoy. Leur article contient la classification des
sections de Birkhoff avec un certain bord fixé, chaque section correspondant
à un point entier d’un polyèdre compact dans H1(S,Z). Nous calculons
explicitement les applications de premier retour sur ces sections de Birkhoff,
ce qui permet de les comparer. Cette partie est a été initialement pré-publiée
dans l’article [Mar20].

Les sections de Birkhoff qui nous intéressent sont décrites via des données
combinatoires, à savoir une famille finie de géodésiques et une coorientation
dite Eulérienne de ce diagramme géodésique. Cette description nous permet
d’avoir une approche algorithmique des applications de premier retour. Une
idée importante est de définir une famille cyclique de sections de Birkhoff,
telle que le flot induit des applications de retour partiel d’une section de
Birkhoff vers la section suivante. Ces applications de retour partiel sont
décrites combinatoirement, et sont simples à calculer. Après avoir détaillé la
topologie et la combinatoire de ces sections de Birkhoff, nous prouverons le
théorème suivant.

Théorème 1 (correspond au Théorème D). Soit S une surface fermée hy-
perbolique et considérons le flot géodésique sur T 1S. Pour une collection
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finie de géodésiques fermées Γ ⊂ S, notons
↔

Γ ⊂ T 1S la collection des 2|Γ|
orbites du flot qui se projettent sur Γ. Il existe une surface à bord ΣΓ et une
collection de courbes simples γ1, · · · , γn dans ΣΓ qui satisfont la propriété
suivante. Pour toute section de Birkhoff Σ à bord

↔

Γ et de multiplicité -1 le
long de ses composantes de bord, il existe un difféomorphisme f : Σ→ ΣΓ tel
que si rΣ : Σ→ Σ est l’application de premier retour sur Σ, alors f ◦rΣ ◦f−1

est isotope à un produit de twists de Dehn de la forme τ−1
γσ(1)
◦ · · · ◦ τ−1

γσ(n)
,

pour une permutation σ de {1, · · · , n}. De plus, les données ΣΓ, γi et σ sont
construites explicitement.

Comme énoncé plus haut, D.Fried et C.McMullen ont décrit des pro-
priétés uniformes sur le facteur d’expansion des sections de Birkhoff. Ce
théorème permet de comprendre de façon uniforme les applications de pre-
mier retour, dans le cas des sections du flot géodésique.

Dans le Chapitre 3 nous étudions la nature de certains flots sur les 3-
variétés orientées, en utilisant leurs sections partielles. La particularité de
notre approche par rapport à la plupart des travaux antérieurs est de com-
parer les deux orientations sur les bords de ces sections: celles induites par
le flot et celle induite par la coorientation de l’intérieur de la section par
le flot. On parle de composante de bord positive ou négative selon que ces
orientations coïncident ou non. Ce signe dépend de l’orientation de la var-
iété ambiante. En particulier nous considérons les sections dites positives,
c’est-à-dire dont toutes les composantes de bord sont positives, et les sections
dites négatives dont toutes les composantes de bord sont négatives. Cette
notion permet de décrire deux comportements topologiques de certains flots
: plat et vrillé. Un flot sera dit topologiquement plat s’il admet une section
globale, et topologiquement vrillé s’il admet une section de Birkhoff dont
tous les bords ont la même orientation. Ces natures caractérisent quel type
de sections partielles ces flots admettent.

Théorème 2 (correspond au Théoreme E). Soit M une 3-variété fermée et
orientée, et φ un flot positivement topologiquement vrillé surM . Alors (M,φ)
n’admet pas de section partielle négative.

Supposons que φ est de plus Anosov, alors (M,φ) n’admet pas de section
partielle sans bord.

Soit φ un flot topologiquement plat sur M . Alors (M,φ) n’admet pas de
section partielle dont tous les bords ont la même orientation.
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Comme corollaire immédiat, être topologiquement plat, positivement to-
pologiquement vrillé ou négativement topologiquement vrillé sont trois na-
tures mutuellement exclues. Il y a ainsi une trichotomie pour les flots : plat
/ vrillé / autres flots. Nous montrons qu’elle reflète une trichotomie impor-
tante pour les flots d’Anosov : suspension / flot alignable penché / flot non
alignable:

Théorème 3 (correspond au Théoreme G). Soit M une 3-variété fermée
orientée et φ un flot d’Anosov transitif sur M . Les propriétés suivantes sont
équivalentes:

• (M,φ) est alignable et positivement penché.

• (M,φ) est positivement topologiquement vrillé.

• (M,φ) n’admet pas de section partielle négative ni de section partielle
sans bord.

Ce théorème est particulièrement intéressant pour comprendre la nature
d’un flot obtenu par chirurgie de Fried-Goodman. En effet connaître assez
de sections de Birkhoff du flot d’origine, et connaître l’action des chirurgies
de Fried-Goodman sur ces sections peut permettre de déterminer la nature
plate ou vrillée du flot après chirurgie. Cette idée sera explorée à la fin du
dernier chapitre.

Le Chapitre 4 contient l’étude de certaines orbites d’un flot. On interprète
une section partielle ayant un bord positif et un bord négatif comme un
cobordisme transverse du bord positif vers le bord négatif. Deux familles
d’orbites sont alors intéressantes : les orbites qui cobordent l’ensemble vide
(ce qui est liée à la notion de flot vrillé), et les orbites qui ne sont le bord
positif d’aucun cobordisme transverse. On appelle ces dernières orbites les
orbites primitives. Nous étudierons deux variantes de cette notion : les
orbites primitives et les familles d’orbites stablement primitives.

Théorème 4 (correspond au Théoreme I ). Soit M une 3-variété fermée
orientée et φ un flot d’Anosov alignable et positivement penché. Alors pour
toute orbite fermée γ, il existe un cobordisme transverse de γ vers une famille
d’orbites primitives. Si de plus l’espace H1(M,Z) n’est pas réduit à zero, alors
il existe une orbite primitive.
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Dans la suite du chapitre, nous caractérisons les orbites primitives pour
les suspensions et les flots géodésiques. Pour un flot d’Anosov alignable
positivement penché, aucune caractérisation simple des orbites primitives
n’est espérée. Cependant pour ces flots, les familles d’orbites stablement
primitives ont une caractérisation simple, qui utilise l’espace des orbites et
les familles simples de losanges idéaux (définies dans les chapitres 1 puis 4).
De plus, ces familles stablement primitives jouent un rôle important pour les
chirurgies de Fried-Goodman.

Théorème 5 (correspond au Théoreme K). Soit M une 3-variété fermée
orientée, φ un flot d’Anosov alignable et positivement penché sur M dont les
feuilletages stables et instables sont orientables, et Γ un ensemble d’orbites
fermées de φ. On suppose que dans l’espace des orbites, il n’y a pas de
losange idéal dont les deux coins sont des orbites de Γ. Alors il existe alors
une équivalence:

⇔ Γ est une famille stablement primitive,

⇔ {L+,+(γ)|γ ∈ Γ} est une famille simple de losanges idéaux.

⇔ {L−,−(γ)|γ ∈ Γ} est une famille simple de losanges idéaux.

⇒ Toute suite de chirurgies de Fried-Goodman sur Γ produit un flot alignable
positivement penché.

De plus la dernière implication est une équivalence quand |Γ| = 1.

L’étude des orbites primitives est encore en développement. En partic-
ulier leur lien avec la nature d’un flot après chirurgie devrait pouvoir être
approfondie.



Chapter 1

Background and transverse
surfaces

In this chapter, we review some classical notions and results about Anosov
flows and Birkhoff sections. Suspensions flows and geodesic flows on hyper-
bolic surfaces will be introduced in Section 1.1.

We then introduce in Section 1.2 the orbit space of a flow, which is im-
portant to understand the topology of a flow. The connection between the
orbit space and transverse surfaces is explained later in Section 1.7.

Several kinds of transverse surfaces will be used in later chapters, and are
grouped in Section 1.3. We define the notions of partial sections, Birkhoff
sections, global sections and transverse cobordisms. We also start developing
the notions of linking number and of orientation of a boundary of a partial
section, which will be important for the last two chapters. Global sections
and Birkhoff sections satisfy a nice classification up to isotopy through the
flow, using their homology with integer coefficients, it will be recalled in the
same section. In Section 1.4, we study the behavior of the partial sections of
Anosov flows, in a neighborhood of a boundary component.

In Section 1.5.1 we construct some partial sections and Birkhoff sections
for the geodesic flows. Firstly we introduce the partial sections said to have
symmetric boundaries, which are the main focus of the second chapter and
are a source of examples for various phenomenons. Secondly we introduce
some partial sections using multi-1-foliations on the surface, and especially
some partial sections obtained by desingularising geodesics on the surface.
This second kind of sections is a new construction, which will be used in the
last chapter in order to characterize the closed orbits said to be primitive.
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12 CHAPTER 1. BACKGROUND AND TRANSVERSE SURFACES

We introduce the Fried and the Goodman surgeries in Section 1.6. These
surgeries change the flow and the underlying manifold, and they transform
a Birkhoff section into another one, with a slightly different boundary. The
orientation of the boundary of Birkhoff sections being the main focus of the
last two chapters, Fried surgeries allow to construct new Anosov flows with
some control on their topological nature.

Section 1.7 first reviews some properties of the trace of a partial section in
the orbit space of an Anosov flow. Then we use this notion to construct sev-
eral partial sections. We unify two constructions from T.Barbot and D.Fried,
into the fundamental domain of a partial section in the orbit space. Then we
apply it to construct immersed Birkhoff sections (construction of T.Barbot)
and Fried sections.

1.1 Anosov flows
We introduce Anosov flows, some classical notions, and two important fam-
ilies of Anosov flows.

Definition 1.1.1. A flow φ in a closed 3-manifold M is said to be Anosov
if there exists A,B > 0 and a splitting of TM into three line bundles that
are φ-invariant TM = Euu ⊕ X ⊕ Ess, so that X generate the direction of
the flow, and that for any metric on M , its norm |.| satisfies |(Dφt)|Ess| ≤
A exp(−Bt) for all t ≥ 0 and |(Dφt)|Euu | ≤ A exp(−B|t|) for all t ≤ 0. This
the manifold M compact, the choice of the norm |.| does not affect that
asymptotic property.

If φ is Anosov, the splitting is unique. Additionally Ess ⊕X and Euu ⊕
X are integrable into two transverse 2-foliations denoted by F s and Fu,
called the stable foliation and unstable foliation. For x a point or an
orbit in M , we denote by F s(x) and Fu(x) the stable and unstable leaves
containing x. Each stable or unstable leaf is invariant under the flow. If a
stable or unstable leaf admits a closed orbit, then it admits only one closed
orbit and has the topology of either a cylinder or a Möbius strip. Otherwise it
has the topology of a plane. Given an orientable manifold, an Anosov flow is
easier to understand when its stable and unstable foliations are transversely
orientable. When it is not the case, we lift the flow to the double covering
manifold obtained as the orientations covering. Then the lifted flow admits
transversely orientable stable and unstable foliations.
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If (M,φ) and (N,ψ) are two flows, we call orbital equivalence any
homeomorphism f : M → N sending the orbits of φ to the orbits of ψ, with
the same orientations. We are mainly interested in topological information
on Anosov flows which are invariant under orbital equivalence.

We focus on Anosov flows said to be transitive, that is which admit
some dense orbits.

Example 1.1.2 (Suspension flows). Let T = R2/Z2 be a torus and A ∈
GL2(Z) a hyperbolic matrix with | det(A)| = 1. That is either det(A) = 1
and |Tr(A)| ≥ 3, or det(A) = −1 and Tr(A) 6= 0. Then A induces a
diffeomorphism A : T→ T. We define the 3-manifold TA = T×R/(x, s+1) '
(Ax, s) with the Anosov flow φ given by φt(x, s) = (x, t+ s). Because of the
assumptions on det(A) and Tr(A), A has two eigenvalues λ and ±1/λ so
that |λ| > 1. Hence if Eλ and E1/λ are their two eigenspaces in R2, then the
stable and unstable foliations of the suspension flow are made from parallel
copies of the images of E1/λ×R and Eλ×R in TA. If f : T→ T is isotopic
to the diffeomorphism A : T → T for such a hyperbolic matrix A and if the
suspension flow induced by f is Anosov, then that suspension flow is orbitally
equivalent to TA. Other suspensions flows can be defined, but only the ones
presented here are Anosov.

Example 1.1.3 (Geodesic flows). Let S be a closed surface with a fixed
hyperbolic metric, non necessarily orientable. We denote by T 1S = {u ∈
TS, ‖u‖ = 1} the unitary tangent bundle over S, which is a closed ori-
entable 3-manifold. The geodesic flow φt : T 1S → T 1S is defined on a
unitary vector u ∈ T 1S by pushing u along the geodesic induced by u for a
time t. The geodesic flow is Anosov. Up to orbital equivalence, it does not
depend on the particular choice of hyperbolic metric (see the following Theo-
rem). If H2 is a hyperbolic plane given as the universal cover of S, a stable
leaf of φ is given by the projection of the set of vectors in T 1H2 whose induced
oriented geodesic converges at plus infinity to a fixed point in ∂H2. Similarly
an unstable leaf of φ is given by the projection of the set of vectors in T 1H2

whose induced oriented geodesic converges at minus infinity to a fixed point
in ∂H2.

The geodesic flow is also well-defined over T 1S when S is an orbifold (the
quotient of a surface by a discrete group, which is allowed to have some fixed
points). We only mention these flows in some remarks.
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A flow φ is said to be topologically stable if any small enough per-
turbation of φ induces a flow which is orbitally equivalent to φ. D.Anosov
proved [Ano67] that the geodesic flows on hyperbolic manifolds are topolog-
ically stable. M.Gromov proved that the set of hyperbolic metrics of a given
surface is connected (see [Gro00]). Additionally E.Ghys proved [Ghy84] that
on the unitary bundle of a hyperbolic surface, if two metrics (non-necessarily
hyperbolic) induce two Anosov flows, then these flows are orbitally equiva-
lent. Hence on the unitary tangent bundle of a surface of genus at least 2,
there is exactly one Anosov geodesic flow, up to orbital equivalence.

K.Kato, A.Morimoto generalised [KM73] the result of D.Anosov, by prov-
ing that all Anosov flows are topologically stable. Hence on a given manifold,
the set of its Anosov flows is a discrete set, which justifies the focus on their
topological properties.

1.2 Orbit space and R-covered flows

We review the concept of orbit space of an Anosov flow, the R-covered prop-
erty of an Anosov flow, and the ideal lozenges in an orbit space. These no-
tions, as well as their first properties, were first considered by S.Fenley [Fen94]
and T.Barbot [Bar95a].

Orbit space. Let φ be an Anosov flow on a 3-manifold M . We denote
by M̃ the universal covering of M and φ̃ the lift of φ to M̃ . The orbit
space of φ is defined as the set O(M) = M̃/φ̃ of orbits of φ̃. Because the
flow is Anosov, its orbit space is homeomorphic to R2 [Fen94]. We denote
by π : M̃ → O(M) the projection. The natural action of π1(M) on M̃
commutes with the flow. So it induces an action of π1(M) on O(M).

The 2-foliations F s and Fu lift to foliations F̃ s and F̃u in M̃ , which then
project to two transversal 1-dimensional foliations Ls and Lu in O(M). We
also call stable and unstable foliations these 1-foliations. For a point x in
the orbit space O(M), we denote by Ls(x) and Lu(x) the stable and unstable
leaves containing x. Notice that if o ∈ O(M) represents a closed orbit γ, and
if g ∈ π1(M) is the homotopy class of γ (such that g.o = o), then g acts
on O(M) by contracting Lu and expanding Ls near o. The foliations F s
and Fu on M are not necessarily transversely orientable. We only consider
oriented 3-manifolds, so when one of the foliations F s and Fu is transversely
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orientable, the other is also transversely orientable. Plus in this case, the
action of each element of π1(M) preserves the orientations of Lu and Ls.

An Anosov flow is said to be R-covered if the set of leaves of Ls (or Lu)
is homeomorphic to R, or equivalently if this set of leaves is Hausdorff. The
understanding of R-covered Anosov flows is not complete, but some cases are
well-understood. When the orbit space of φ is R2 bi-foliated horizontally and
vertically by the stable and unstable foliations, Solodov proved that the flow
is the suspension flow (see [Bar95a]). The orbit spaces (as bi-foliated planes)
of R-covered flows have been classified by S.Fenley into three types of orbit
spaces, which are described in Figure 1.1.

Theorem 1.2.1 (S.Fenley [Fen94], T.Barbot [Bar95a]). Let φ be an R-
covered Anosov flow on M . Then its orbit space O(M) is homeomorphic
as a bi-foliated plane either to R2 or to {(x, y) ∈ R2, |y− x| ≤ 1}, foliated by
vertical and horizontal segments. The flow is a suspension flow in the first
case, and it is said to be skewed R-covered in the second case.

{(x, y) ∈ R2, |y − x| ≤ 1} {(x, y) ∈ R2, |y + x| ≤ 1}

Ls

Lu

Figure 1.1: The transverse bi-foliation on the orbit space of a R-covered
Anosov flow. From left to right: suspension, positively skewed R-covered and
negatively skewed R-covered. The vertical foliation is the unstable foliation,
the horizontal foliation is the stable one. The difference between the two
skewed cases is the orientation of the orbit space induced by the orientation
of the 3-manifold.

When M is oriented, the orbit space O(M) inherits an orientation. Thus
one can distinguish the positively skewed R-covered flows and the negatively
skewed R-covered flows, depending on whether the orbit space is homeomor-
phic to {(x, y) ∈ R2, |y − x| ≤ 1} or to {(x, y) ∈ R2, |y + x| ≤ 1} with
their canonical orientations. The geodesic flows on hyperbolic surfaces are
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negatively skewed R-covered flows (with the canonical orientation we use in
later chapters). T.Barbot proved [Bar95a] that an R-covered Anosov flow is
transitive. Additionally he proved that an R-covered Anosov flow on a non-
orientable 3-manifold is a suspension. Hence the R-covered Anosov flows
on 3-manifolds that are not yet understood are the skewed R-covered flows.

For X ⊂ M connected, we denote by X̃ one connected component of
the lift of X in M̃ , and by ρ(X) = π(X̃) ⊂ O(Γ). The sets X̃ and ρ(X)
are well-defined up to the action of an element of π1(M), and they usually
correspond to a specific connected component that should be clear from the
context.

Ideal lozenge. In the second half of this thesis, we use the notion of ideal
lozenge to define some transverse surfaces with particular boundaries. We
define the ideal lozenges below, and in Section 1.7.3 the Birkhoff annulus
induced by an ideal lozenge.

An ideal lozenge in O(M) is a subset L of O(M) (represented in Fig-
ure 1.2) delimited by four half leaves of A ⊂ Ls(p), B ⊂ Lu(p), C ⊂ Ls(p′)
and D ⊂ Lu(p′) for some p, p′ ∈ O(M), so that

• for all l ∈ Ls, one has l ∩B 6= ∅ if l ∩D 6= ∅,

• for all l ∈ Lu, one has l ∩ A 6= ∅ if l ∩ C 6= ∅,

• one has A ∩D = ∅ and B ∩ C = ∅.

The points p and p′ are said to be the corners of L.
As explained later in Section 1.7.3, an ideal lozenge corresponds to the

trace in the orbit space of some transverse surface to the flow. The sign of
the boundaries of these surfaces are determined by the quadrant in which the
ideal lozenge lies, which we introduce here. Fix an immersion f : O(M) →
R2, so that the orientation ofM induces on R2 the trigonometric orientation,
and so that f sends the leaves Ls(p) and Lu(p) to the horizontal and vertical
foliations on R2 respectively. Then for every p ∈ O(M), the leaves Ls(p)
and Lu(p) delimit four connected regions in O(M). We refer to these regions
as the quadrants (±,±) of p. The first sign is positive for the two quadrants
lying to the right of p, the second sign is positive for the two quadrants
above p. The pairs of quadrants ((+,+), (−,−)) and ((+,−), (−,+)) do not
depend on the choice of f .
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Figure 1.2: Ideal lozenges in the orbit space: a general ideal lozenge on the
left, an ideal lozenge in a positively skewed R-covered flow in the middle, and
a fundamental domain of an immersed Birkhoff annulus on the right (used
in Section 1.7.3).

For a positively skewed R-Anosov flow, every point in the orbit space
is the corner of two ideal lozenges, in its two quadrants (+,+) and (−,−).
Another family of ideal lozenges for non R-covered flows is given by the
following theorem. Two ideal lozenges are said to be adjacent if they share
a corner and one of their four sides.

Theorem 1.2.2 (S.Fenley [Fen99]). Let l and l′ be two different but not
separated leaves of Ls. Then there is an element g ∈ π1(M) \ {1} such that l
and l′ both contain a point invariant by g. Also there exists a finite sequence
of at least two adjacent ideal lozenges so that l and l′ have half leaves in the
boundary of two ideal lozenges in that sequence, and all these ideal lozenges
are stable by g.

Period of an orbit. Let p be a point in O(M) that lifts to an orbit γ
in M , and take x in γ. Then γ is a closed orbit if and only if there exists g ∈
π1(M,x) so that g.p = p. It is known that Stabπ1(M,x)(γ) is isomorphic to Z
and generated by [γ] ∈ π1(M,x). One may want to work with π1(M) instead
of π1(M,x), so we call [γ] ∈ π1(M) the period of p. We also refer to the first
power of [γ] that preserves the orientations of Ls(p) and Lu(p) as oriented
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period of p. It is [γ]2 if [γ] inverts the orientations and [γ] otherwise. Notice
that the stable and unstable leaves of γ are open annuli when [γ] preserves
the orientation, and open Möbius strips otherwise.

1.3 Zoology of transverse surfaces

We define here all types of transverse surfaces that are used in the thesis.
Take φ a flow on a closed 3-manifold M . An immersed compact surface Σ

is called an immersed partial section of φ if
◦
Σ is transverse to φ and ∂Σ

is a finite union of closed orbits of φ. When Σ is additionally embedded
in its interior, it is called a partial section. A Birkhoff section is a
partial section embedded in its interior that additionally intersects every
orbit of φ in bounded time, that is, one has φ[0, T ](Σ) = M for some T > 0.
Similarly if an immersed partial section satisfies that additional property, it is
called an immersed Birkhoff section. A global section is a Birkhoff section
without boundary. For transverse closed surfaces, intersecting every orbit is
equivalent to intersecting every orbit in bounded time. Several examples of
immersed partial sections are given in the next two sections. Global sections
and Birkhoff sections have particular properties which are detailed at the end
of this section.

For Anosov flows, global sections rarely exist, and the existence of Birkhoff
sections have been understood by D.Fried. When an Anosov flow is transitive
D.Fried constructs a family of immersed partial sections [Fri83] (that we call
Fried sections) and proves that the flow admits a Birkhoff section.

It is more convenient to work with partial sections that are embedded in
their interior. For an Anosov flow, we describe in Section 1.4 a procedure
which transforms an immersed partial section into another partial section
embedded in its interior and relatively homologous to the original section.
The desingularisation procedure is called a Fried desingularisation of Σ,
and first appears in [Fri83]. We state in Proposition 1.4.13 the precise Fried-
desingularisation that we use later.

Transverse surfaces can be used to express some topological properties
transverse to the flow. Notice that the orbit space and the Markov partitions1
also express transverse properties of the flow, and similar theories can be built

1We do not use them in this thesis. However they can be found in [Che02] for example
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upon them.

Orientation of the boundary. In the last two chapters, the orientation of
the boundary of some immersed partial sections plays an important role. We
define the orientation of the boundary and the linking numbers here so they
can be specified for the upcoming constructions of immersed partial sections.
We denote by ·∩ the algebraic intersection between two sub-manifolds.

For orientations and co-orientations, we use the following conventions,
illustrated in Figure 1.3. Fix an orientable closed 3-manifold M , an orien-
tation oM of M , and oφ the orientation induced by the flow φ on its orbits.
For a surface Σ transverse to the flow, we choose the orientation oΣ on Σ so
that (oΣ, oφ) = oM . Then we choose an orientation o∂Σ of its boundary so
that (o∂Σ, Xin) = oΣ, where Xin is a vector field on ∂Σ, going inside Σ.

Let γ ⊂ ∂Σ be a boundary component of an immersed partial section Σ.
We say that γ is a positive boundary of Σ if the orientations of γ given
by the flow and by Σ agree, otherwise γ is a negative boundary of Σ.
We respectively denote by ∂+Σ, ∂−Σ ⊂ ∂Σ the sets of positive and negative
boundary components of Σ (which are not necessarily disjoint). Then we say
that Σ is positive if ∂−Σ = ∅ and ∂+Σ 6= ∅, or that Σ is negative if ∂+Σ = ∅
and ∂−Σ 6= ∅. To compute the algebraic intersections, we orient ∂Σ using
the orientation of Σ, but when we write ∂+Σ and ∂−Σ, we orient them
accordingly to the flow, so that algebraically one has ∂Σ = ∂+Σ− ∂−Σ.

Consider an immersed partial section Σ as an abstract surface, and denote
by i : Σ → M the immersion into the 3-manifold M . A boundary compo-
nent γ′ of Σ is immersed into a closed orbit γ of the flow, the algebraic degree
of the immersion (γ′ ⊂ ∂Σ) → (γ ⊂ M) is called the multiplicity of Σ
along γ′. The sign of the multiplicity is the same sign that γ′ has as bound-
ary component of Σ. Generally the immersed partial section Σ can have
several boundary components sent to the same closed orbit γ, so the mul-
tiplicity can be taken component by component. But we generally consider
the global multiplicity, which is the sum of the multiplicities for all boundary
components of Σ sent to γ. We sometime note ∂+,−Σ = a1γ1 ∪ . . . ∪ anγn to
say that the positive (or negative) boundary of Σ is topologically γ1∪ . . .∪γn
with multiplicity a1, . . . , an ∈ N.

In the last chapter, we will additionally use transverse cobordisms,
which are partial sections Σ embedded in their interiors so that ∂+Σ∩∂−Σ =
∅. Given two transverse cobordisms Σ1 and Σ2 with some common bound-
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lk(Σ1,Σ2) = +1 lk(Σ1,Σ2) = −1

Figure 1.3: Orientation conventions. The flow orients the interior of the
surface, which orient its boundary

ary components Γ, so that Γ ⊂ ∂+Σ1 with only multiplicity one along these
orbits, and Γ ⊂ ∂−Σ2, the Fried-desingularisation Σ of Σ1 ∪Σ2 can be inter-
preted as the concatenation of the two transverse cobordisms along Γ. So we
have ∂+Σ ∩ Γ = ∅.

We often distinguish the boundary of Σ in the manifold M , and the
boundary of Σ as an abstract surface. Indeed two abstract boundary com-
ponents of Σ can be immersed into the same closed orbit, even with different
signs. Hence one closed orbit can be both a positive and a negative bound-
ary of Σ. Examples of this phenomenon are easy to construct with immersed
partial section, and also exist for partial sections embedded in their interiors.

Let Σ1 and Σ2 be two surfaces with a common boundary γ, assumed
to be in general position. For ε > 0 small enough, we denote by Cε

γ the
torus of points at distance ε from γ, and γε1 = Cε

γ ∩ Σ1 and γε2 = Cε
γ ∩ Σ2,

obtained by pushing a multiple of γ into Σ1 and Σ2, at distance ε. We
choose one orientation on γ, and choose coherent orientations on γε1 and γε2.
Then the linking number of Σ1 and Σ2 along γ, denoted by lkγ(Σ1,Σ2),
is the algebraic intersection γε1 ·∩γε2 in Cε

γ. Notice that the linking number
along a common boundary component is anti-symmetric, and corresponds to
the linking number of the two framings induced by the local surfaces. We
consider the co-orientation on Cε

γ going away from γ, so that the sign of
the intersections are given as in Figure 1.3. When γε1 and γε2 are not single
curves, one can consider the linking number for a single abstract boundary
component, or the global linking number given by the sum of the linking
number for all choices of single abstract boundary components.
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Suppose that φ is an Anosov flow, with stable and unstable 2-foliations F s
and Fu. Let Σ be an immersed partial section and γ in ∂Σ. We can compute
the linking number of Σ with F s by using a connected component ls of F s(γ)\
γ in a small neighborhood of γ, which we denote by lkγ(Σ) = lkγ(Σ, l

s). It
does not depend on the choice of the connected component, and it equals the
linking number with the unstable foliation Fu.

Remark 1.3.1. Suppose that φ is Anosov, if lkγ(Σ) > 0 then γ is a neg-
ative boundary of Σ. If lkγ(Σ) < 0, then γ is a positive boundary of Σ.
If lkγ(Σ) = 0, both cases are possible (depending on the relative position
of Σ, F s and Fu).

Classification of global sections and Birkhoff sections. The global
sections and the Birkhoff sections embedded in their interior have an ad-
ditional role in the understanding of a flow. They are classified by their
homology, and they induce a first-return map which contains parts of the
dynamics of the flow. Until the end of this section, every Birkhoff section is
supposed embedded in its interior.

We review the classification of global sections given by S.Schwartzman
and D.Fried (see [Fri82b] for more details), and explain how it extends to
Birkhoff sections. Let Σ a global section and γ be a closed orbit of the
flow. Since Σ intersects every orbit in bounded time, the algebraic inter-
section Σ ·∩γ > 0 is positive. It implies a natural condition [Σ] ∈

⋂
γ{c ∈

H2(M,R), c ·∩γ > 0} where the intersection is taken over of closed orbit γ of
the flow. In general this condition is not sufficient, since some flows have no
closed orbits. For any norm ‖.‖ on H1(M,R), S.Schwartzman defined a set
of asymptotic directions in H1(M,R) obtained by taking long closed almost-
orbits, by re-normalizing their homologies in {x ∈ H1(M,R), ‖x‖ = 1}∪{0},
and by taking the accumulation points when the length of the almost-orbits
grow to +∞. It defines a compact subset of H1(M,R) called asymptotic
directions. Then the classification of global sections is given by the follow-
ing two theorems. Notice that another choice of norm ‖.‖ does not change
the set of positive rays of the asymptotic directions.

Theorem 1.3.2 (S.Schwartzman [Sch57] (see also Fried [Fri82b])). Denote
the set of asymptotic directions of φ by Dφ ⊂ H1(M,R) and take an element u
in H2(M,Z)/torsion. Then φ admits a global section with homology u if and
only if u ·∩d > 0 for all d ∈ Dφ.
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Hence φ admits a global section if and only if Dφ lies in an open half-space
of H1(M,R).

The existence of a global section is given by a homology condition. Fur-
thermore, the global section is completely determined by its homology.

Theorem 1.3.3 (D.Fried [Fri82b]). Let Σ1 and Σ2 be two global sections of
a flow φ. Then there exists an isotopy though the flow between Σ1 and Σ2 if
and only if Σ1 and Σ2 are homologous in H2(M,Z).

Similarly to global sections, Birkhoff sections are classified by their rela-
tive homology, that is, by an element ofH1(M,∂Σ,Z) for a Birkhoff section Σ.
The asymptotic directions are less appealing to use for general Birkhoff sec-
tions, since they depend on the boundary of the section. An example of
classification of some Birkhoff sections is described in the next section, for
the geodesic flows. Also for the partial sections that are not Birkhoff sections,
these results are wrong in general. We discuss some counter-examples of the
second theorem in Section 2.3.3, by using some partial sections constructed
in Section 1.5.1.

Given a Birkhoff section Σ, we have a well-defined first-return map r :
◦
Σ →

◦
Σ, which to a point x ∈

◦
Σ associates the first point of the trajec-

tory φR?+(x) that meets Σ again. The first-return map is a diffeomorphism
of

◦
Σ which can be extended to a homeomorphism of the surface obtain

from Σ by retracting every boundary component into a point. When the
flow is Anosov, the first-return map is Anosov on

◦
Σ and pseudo-Anosov on Σ

(see [Fri83] for the definition of pseudo-Anosov map and for the proof). We
focus on the first-return map in Chapter 2.

1.4 Behavior of a partial section along a bound-
ary component

In this section we consider an Anosov flow on an oriented 3-manifold. We
study the behavior of a partial section along one boundary component. We
prove that that two partial sections with the same data around a common
boundary component can be isotoped one to the other along that boundary,
only on the interior of the sections. Then we prove that a surface similar
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to a partial section but only continuous can be made smooth, under a tame
condition. This is used later to define the Fried desingularisation.

1.4.1 Weakly tame local transverse section

In this section we define the notion representing local partial sections around
a boundary. We give some local model for such local section. These mod-
els have good properties that are used later. We additionally prove some
elementary properties of the local partial section.

Let Σ1,Σ2 be two partials sections with a common boundary component γ
and with the same behavior along that boundary component. We want to
find an isotopy from

◦
Σ1 to

◦
Σ1 along the flow inside a small neighborhood of γ.

We will need to use this idea for surfaces that are piecewise smooth, so we
consider the following notion. An open surface Σ ⊂M is said topologically
transverse to the flow if for any x ∈ Σ, there is a small neighborhood in M
around x on which every orbit arc of the flow intersects Σ exactly once. A
transverse surface is topologically transverse, and a topologically transverse
can be made transverse inside any sub-compact by a small isotopy along the
flow. We describe below an isotopy lemma for local topologically transverse
surfaces.

Let γ ⊂ M be a closed orbit of the flow and U ⊂ M be a closed tubular
neighborhood of γ. Consider a closed annulus A whose boundary components
are denoted by a and b. A local transverse section is the image im(f) of
a function f : (A, a)→ (U, γ) such that:

• f−1(γ) = a and f−1(∂U) = b,

• f|A\a is injective and its image is topologically transverse to the flow.

When Σ is a local transverse section in a tubular neighborhood U of a closed
orbit γ of φ, we denote by F s(γ) and Fu(γ) the connected components of the
stable and unstable leaves of γ that remain inside U and which contain γ.
Notice that we do not require fa : a → γ to be locally injective, nor to
be of non-zero degree. We define the linking number of a local transverse
section in the same way as we do for a partial section. Additionally given an
orientation of the manifold M , we orient A using the coorientation f(A \ a)
and the orientation on M . Then the multiplicity of the local transverse
section is the degree of the map fa : a → γ, which can be any integer in Z.
If Σ is a local transverse section, Σ \γ is topologically transverse to the flow,
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and F s and Fu are invariant by the flow, so F s and Fu restrict to 1-foliations
on Σ \ γ.

Weakly tame property We consider a notion of tame local section, which
is inspired by the tame notion appearing in [BG10].

A local transverse section Σ is said to be weakly tame if for any open
curve α in (Σ\γ)∩(F s(γ)∪Fu(γ)), there exists a compact curve β in F s(γ)∪
Fu(γ) and a continuous function T :

◦
β → R bounded such that the func-

tion φT : x ∈
◦
β 7→ φT (x)(x) is a bijection from

◦
β to ◦

α. Informally, when
looking in the universal covering of M , the intersections (Σ \ γ) ∩ F s(γ)
and (Σ \ γ) ∩ Fu(γ) is made of curves and each need to remain bounded
for Σ to be weakly tame.

Example 1.4.1. To understand an Anosov flow around a closed orbit, we
define some local models. Take two real numbers λ and µ, such that |λ| > 1
and 0 < |µ| < 1. We consider the transformation G : R3 → R3 defined
by G(x, y, z) = (λx, µy, z + 1) and the suspension manifold N = Nλ,µ =
R3/G(p) ≡ p, which is orientable when λµ > 0. We consider ψ the flow on N
defined by ψt(x, y, z) = (x, y, z + 1). We also define the two foliations F ′s
and F ′u whose leaves are given respectively by the projections of R×{a}×R
and {b} × R × R for a, b ∈ R, they are both invariant by the flow. Finally
we denote by γN the image of {0} × {0} × R in N , which is the only closed
orbit of the flow ψ.

Lemma 1.4.2. We take r ∈ N≥1 ∪ {+∞} an integer. Let φ be a Cr Anosov
flow on a 3-manifold M and γ be a closed orbit of φ. Denote by t the length
of the orbit γ, that is t = min{t > 0, (φt)|γ = idγ}, by λ and µ the two
eigenvalues of Dφt along γ such that |λ| > 1 and 0 < |µ| < 1, and by (Nλ,µ, ψ)
the flow described in the previous example.

Then there exist two small tubular neighborhoods U ⊂M and V ⊂ Nλ,µ of
the orbits γ and γNλ,µ such that the restrictions of the flows φ|U and ψ|V are
conjugated by a Cr diffeomorphism. Additionally the orbital equivalence sends
the stable and unstable leaves of γ to the stable and unstable leaves of γNλ,µ,
which are the projections of R× {0} × R and {0} × R× R inside Nλ,µ.

Furthermore there exist two small tubular neighborhoods U ⊂M and V ⊂
Nλ,µ of the orbits γ and γNλ,µ such that the restrictions of the flows φ|U
and ψ|V are orbitally equivalent (by only a continuous map), and the orbital
equivalence sends the stable and unstable foliations of φ|U to the foliations F ′s
and F ′u.
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Proof. Take an embedding f : R2 → U transverse to the flow φ, such
that f(0, 0) is in the orbit γ, and consider a neighborhood D ⊂ R2 of (0, 0)
such that the first return map r : f(D) → f(R2) is well defined. Up to
taking another Cr parametrization of the flow φ, we can suppose that the
first return time on f(D) is equal to 1, that is for all t ∈ [0, 1] and x ∈ D we
have φt(f(x)) ∈ f(R2) if and only if t ∈ {0, 1}.

Since the flow is Cr, the first return map r : f(D)→ f(R2) is differential
at f(0, 0), and since φ is Anosov, D(0,0)r has two real eigenvalues λ, µ such
that |λ| > 1 and 0 < |µ| < 1. According to the linearisation Theorem of
Sternberg, there exists a local diffeomorphism h of R2 on a neighborhood
of (0, 0) such that the conjugation h−1 ◦ f−1 ◦ r ◦ f ◦ h is well defined on
a neighborhood of (0, 0), and coincide with a linear map r̃ : R2 → R2 with
the same eigenvalues λ and µ. Hence on a small tubular neighborhood of γ,
the flow φ is orbitally equivalent to the suspension of a linear map with
eigenvalues λ and µ.

To prove the second point, one can use the previous idea together with
a coordinate system on the surface D given by the two foliations F s ∩ D
and Fu ∩ D on D. The first return map on D contracts the stable direc-
tion and expands the unstable one, so it is topologically conjugated to the
function (x, y) ∈ R2 7→ (λx, µy) ∈ R2 restricted to a neighborhood of the
point (0, 0). Hence one can build a C0 orbital equivalence as stated in the
lemma.

Examples 1.4.3. Below we define some local transverse sections with the
weakly tame property on a local model around a closed orbit with orientable
stable and unstable foliations. We consider two real numbers λ > 1 and 0 <
µ < 1. Denote by N the suspension manifold R3/(x, y, t) ' (λx, µy, t +
1), by π the natural projection π : R3 → N , by ψt the flow on N defined
by ψt(x, y, z) = (x, y, z + t) and by γ ⊂ N the closed orbit ψR(0, 0, 0).

• Given ε1, ε2 ∈ {−1, 1}, we define

Σ0 = {(ε1λtr, ε2µtr, t) ∈ R3|t ∈ R, r ∈ R+}

The surface Σ0 is invariant by the transformation (x, y, z) ∈ R3 7→
(λx, µy, z + 1), so its image π(Σ0) ⊂ N is a smooth annulus with a
boundary component at γ (with multiplicity one). A direct computation
shows that Σ0 is transverse to the flow ψ in its interior and that it
satisfies the weakly tame property. Additionally Σ does not intersect
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the stable and unstable leaves 0×R×R and R×0×R, so it has linking
number zero along γ.

By taking the appropriate values of εi, one can make Σ0 be in any
quadrant delimited by the leaves R× 0× R and 0× R× R

• Consider two relatively prime integers p 6= 0 and q ∈ N relatively prime,
which represent respectively the linking number and the multiplicity in
absolute value of a local transverse section. We consider a map f : R→
R such that

– f is a smooth increasing diffeomorphism with f(0) = 0,

– for all t ∈ R, f(t+ 1
2p

) = f(t) + π,

– there exists ε > 0 such that f ′|[ 1
2p
−ε, 1

2p
]
> q ln(λ)−ln(µ)

2
, and f([0, 1

2p
−

ε]) ⊂ [0, π
2
].

Then we define the following map:

h : R+ × R→ R3

(r, t)→ (λqt cos(f(t))r, µqt sin(f(t))r, qt)

We denote by Σf = π(im(h)). The image im(h) is a smooth and em-
bedded surface with a boundary component at π−1(γ). If G : (x, y, z) ∈
R3 → (λx, µy, t + 1) is the diffeomorphism used to construct quotient
manifold N , then h(r, t + 1) = Gq.h(r, t) for all (r, t) ∈ R+ × R. Also
for all n ∈ Z and (r, t), (r′, t′) ∈ R+ × R, one has Gn.h(r, t) = h(r′, t′)
if and only if

– (r′, qt′) = (r, qt+ n),

– if r 6= 0 then n ∈ qZ.

Hence the surface Σf inside N is an immersed annulus embedded in its
interior and whose multiplicity along γ is q in absolute value. When q =
0, the surface Σf can also be extended into a smooth and trasnverse
surface, which intersects γ once in its interior. Because of the pseudo
symmetric property of f , the linking number of Σf is ±p. Additionally
after fixing an orientation on R3, on can change the sign of the linking
number by replacing f by −f .
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To prove that Σf is transverse to the flow in its interior, we compute
the following determinant: det(∂f

∂r
, ∂f
∂t
, ∂ψ
∂t

) =

det

(
∂f

∂r
,
∂f

∂t
,
∂ψ

∂t

)
=

∣∣∣∣∣∣
λqt cos(f(t)) λqtr(ln(λ) cos(f(t))− f ′(t) sin(f(t))) 0
µqt sin(f(t)) µqtr(ln(µ) sin(f(t)) + f ′(t) cos(f(t))) 0

0 1 1

∣∣∣∣∣∣
= r(λµ)qt

∣∣∣∣cos(f(t)) q ln(λ) cos(f(t))− f ′(t) sin(f(t))
sin(f(t)) q ln(µ) sin(f(t)) + f ′(t) cos(f(t))

∣∣∣∣
= r(λµ)qt

(
f ′(t) + q sin(2f(t))

ln(λ)− ln(µ)

2

)
The third hypothesis on f guaranty that f ′(t) + q sin(2f(t)) ln(λ)−ln(µ)

2
is

positive for all t ∈ [0, π], and then for all t ∈ R by pseudo-periodicity
of f . Hence the determinant is always non-zero when r 6= 0, and Σf is
transverse to the flow in its interior. Futhermore ∂h

∂r r=0
is tangent to

the stable or unstable foliation only when f(t) ∈ π
2
Z, so Σf is weakly

tame.

• To find local models for a closed orbit δ with non-orientable stable leaf,
we additionally consider the diffeomorphism of R3 given by I(x, y, z) =
(−
√
λx,−√µ, z+ 1

2
). The diffeomorphism I induces an involution N →

N , whose quotient N/I is a local model of a neighborhood of the or-
bit δ. Denote by Σ ⊂ N a local transverse section given in the first
two examples, and consider Σ′ the image of Σ in N/I. The surface Σ

has good enough symmetries so that
◦
Σ′ is embedded and

◦
Σ →

◦
Σ′ is

a covering of degree 1 or 2. That degree with the double covering
map γ ⊂ N → δ ⊂ N/I allow one to determine the multiplicity and
linking number of Σ′ along δ.

Consider first Σ = Σ0 given in the first example. Then the sur-
face I(Σ0) intersect Σ0 only along its boundary γ, so the image of Σ0

inside N/I is a local transverse section with linking number zero and
multiplicity 2 in absolute value.

Consider Σ = Σf given in the second example, with multiplicity in
absolute value q ∈ N and linking number p 6= 0 such that gcd(p, q) = 1.
A direct computation on Σf shows that there exist x ∈

◦
Σf and k ∈ N

such that I2k+1(x) ∈ Σf if and only if p, q are both odd. When it is the
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case, the image of Σf in N/I is a local transverse section with absolute
multiplicity q and linking number p. When p or q is even, the image
of Σf has absolute multiplicity 2q and linking number 2p.

Notice that two local transverse section given above can be made to inter-
sect in general position one to another, either by slightly pushing one along
the flow or by choosing well the parameter f defining these surfaces. Then
their intersection is a union (potentially empty) of properly embedded curves,
that have an end inside the closed orbit γ.

All local transverse sections are not weakly tame. There are two conve-
nient cases in which they are weakly tame, as we discuss in the two following
lemmas.

Lemma 1.4.4. Let U be a closed tubular neighborhood of a closed orbit γ such
that ∂U intersects transversally and in exactly one closed curve every con-
nected components of the leaves F s(γ)\γ and Fu(γ)\γ. Let Σ ⊂ U be a local
transverse section along the orbit γ with linking number zero. Then (Σ \ γ)
does not intersect the stable and unstable leaves F s(γ) and Fu(γ). Further-
more Σ is weakly tame.

Additionally every arc of orbit inside U intersects Σ \ γ at most once.

Proof. Up to taking a double covering of U , we can suppose that the stable
and unstable leaves of γ are orientable. First we prove that the multiplicity
of Σ along γ is plus or minus one. The curve ∂U ∩Σ is connected and simple,
and has an algebraic intersection zero with F s(γ), so it is either a parallel
copy of one component of F s(γ) or a trivial curve in homotopy. We need to
prove that the second case is impossible, so that the multiplicity of Σ is plus
or minus 1.

Suppose that ∂U ∩Σ is homotopically trivial. Then Σ bound a region D
inside U , which lifts to a compact region in the universal covering Ũ of U . We
take a foliation (Et)t of U with surfaces indexed by t ∈ S1 and all positively
transverse to the flow. Since the region D lifts to a compact region inside Ũ ,
there exists a function f : D → R such that for all point x ∈ D, x ∈
Ef(t). We can isotope Σ along the flow so that f have its maximal and
minimal points along Σ\γ. Then the flow enter D at the minimal point of f
and leaves D at the maximal point of f , both inside Σ \ γ. Since Σ \ γ is
topologically transverse, its is co-oriented by the flow, which contradicts the
previous sentence. Hence this case is not possible and the multiplicity of Σ
is plus or minus one.
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We suppose that Σ \ γ intersects a half stable leaf of γ and we eventually
find a contradiction. Denote by ls that half stable leaf minus the orbit γ, and
by g the generator of π1(ls). Since γ is not homotopically trivial inside U , g
induces an non-zero element inside π1(U). Since Σ has a linking number
zero and a multiplicity ±1, g is also a generator of π1(Σ). We consider
the infinite covering Ṽ of U \ γ obtained by quotient its universal covering
by g. Alternatively we cut U \ γ along the half stable leaves ls, and glue a
countable amount of copies of that along the copies of ls. We denote by ∂Ṽ
the lift of ∂U inside Ṽ . By definition of the homotopy element g and the
covering Ṽ , ls and Σ \ γ lift to two homotopic annulus l̃s and Σ̃ inside the
covering Ṽ . There is a closed subset C ⊂ Ṽ such that ∂C = l̃s∪Σ and ∂Ṽ ∩C
is compact (bounded by l̃s ∩ ∂Ṽ and Σ̃ ∩ ∂Ṽ ). We also lift the Anosov flow
to Ṽ .

Since ls and Σ intersect, we can take the lifts l̃s and Σ̃ so that they also
intersect. Additionally Σ\γ is topologically transverse to the flow, so we can
take a point y ∈ Σ̃ \ l̃s arbitrarily closed to the intersection l̃s ∩ Σ̃, and going
inside C. Then the positive orbit of y does not intersect l̃s (or y would be
inside l̃s) nor Σ̃ (because Σ̃ is co-oriented by the flow so it cannot intersect
twice an orbit with two opposite orientations). Since y is not in the stable leaf
of γ, its positive orbit leaves Ṽ . We denote by z(y) ∈ ∂Ṽ ∩C the intersection
point of the positive orbit of y and of ∂Ṽ .

Because of the condition on the neighborhood U , for any y ∈ U closed
enough to the stable leaf of γ, its positive orbit inside U leaves U by a point
arbitrarily close to the unstable leaf of γ. We consider a continuous curve y :
[0, 1] → Σ̃ such that the only points inside l̃s is y(1), that is y−1(l̃s) = {1}.
Then the point z(y(t)) for t < 1 accumulates along an unstable leaf of γ. More
precisely there exists a curve δ ⊂ ∂V in an unstable leaf of γ and ε ∈ (0, 1]
such that the adherence of z ◦ y([1 − ε, 1)) is z ◦ y([1 − ε, 1)) ∪ δ. Since C
is closed and contain z ◦ y([1 − ε, 1)), it also contains δ. Then inside the
cylindre ∂V , the curve δ lies between the two curves Σ̃∩ ∂S and l̃s, which is
not possible since l̃s intersects the curve Σ̃∩∂V but not the curve δ. Hence ls
and Σ \ γ do not intersect. Similarly Σ \ γ does not intersect the other half
stable and unstable leaves of γ.

Since Σ \ γ is a proper surface of U \ γ, and do not intersect the stable
leaf F s(γ), the local transverse section Σ is weakly tame.

We prove the last sentence. Denote by Q the connected component of U \
(F s(γ)∪Fu(γ)) containing Σ\γ, it has the topology of a cylinder. Since the
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multiplicity of Σ is ±1, the inclusion from the fundamental group of Σ \ γ
to the fundamental group of Q is an isomorphism. Since Σ \ γ is a proper
surface inside Q, and because of the previous isomorphism, Σ bounds in Q
two connected components. Hence since Σ \ γ is co-oriented by the flow, an
arc of orbit inside Q cannot intersect Σ \ γ twice, or the two intersections
would have opposite algebraic signs.

Lemma 1.4.5. Let Σ be a local transverse section along γ. We suppose that
the surface Σ is piecewise of class C1. More precisely we suppose there exist a
finite number of C1 curves δ1, . . . , δn inside Σ, disjoint in their interiors and
such that for all i, δi is transverse to ∂Σ, and Σ is of class C1 inside all the
adherence of the connected components of Σ \ ∪iδi. Then Σ is weakly tame.

Proof. We suppose that the linking number of Σ along γ is not zero, for
otherwise we can apply the previous lemma. Denote by f : Σ→ U the inclu-
sion of Σ, which is C1 inside all of the closure of the connected components
of Σ \ ∪iδi. According to our hypothesis, for all x in the boundary compo-
nent f−1(γ), there exists a tangent vector in TxΣ to Σ base at x, transverse
to ∂Σ and for which f is differentiable in that direction. Since there is only
a finite number of number of such point x on which f is not differential, one
can build a curve of tangent vectors X : S1 → T∂ΣΣ along the curve ∂Σ,
such that X is everywhere transverse to ∂Σ, f is differentiable in the di-
rection given by X, and such that the base points of the curve X induce a
degree 1 curve along the boundary component f−1(γ). We denote by df(X)
the differential of f along the vectors X, inside the tangent space TγU .
Since Σ has a linking number non zero, there exists a point x ∈ ∂Σ such
that df(X)(x) is not tangent to the stable and unstable leaves of γ in U .
So for any curve c : [0, 1] → Σ with an end point c(0) = x tangent to the
vector X(x), f ◦c|(0,ε] remains in Σ\(F s(γ)∪Fuγ) for some ε > 0. Hence the
intersection f−1(F s(γ)∪Fu(γ)) does not contain any curves that accumulates
and spiral along the boundary component f−1(γ).

Let α be a curve in (Σ \ γ) ∩ F s(γ). Since α does not accumulate and
spiral along ∂Σ, if α has an end at infinity on γ, it must remain in a compact
region of Σ. That is there is a compact curve c : [0, 1] → F s(γ) and T :
[0, 1) → R bounded and continuous such that (x ∈ [0, 1) 7→ φT (x)(x)) is a
parametrisation of α restricted to a neighborhood of that infinite end. If α
has two ends at infinity along γ, then we can concatenate two such bounded
parametrisation of the two ends of α. Hence Σ is weakly tame.
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Lemma 1.4.6. Let φ be an Anosov flow on a closed orientable 3-manifoldM ,
and Σ ⊂M a local transverse section along the closed orbit γ of φ. We denote
by p = lkγ(Σ) and q = |multγ(Σ)|. Then:

• If the stable and unstable leaves of γ are orientable, then p and q are
relatively prime integers.

• If the stable and unstable leaves of γ are not orientable, then p and q
have the same parity, and gcd(p, q) is either 1 or 2, depending on the
parity of p and q.

• There exists a smooth and weakly tame local transverse section along γ
with the same linking number and multiplicity than Σ.

Proof. The first two items can be proven by taking coordinates on the ho-
mology group H1(∂U,Z) of the torus ∂U . We detail the computation in the
following three paragraphs.

We denote by δ the curve Σ∩ ∂U . Up to smoothing the boundary of ∂U ,
we suppose that ∂U intersects transversally the stable and unstable leaves
of γ inside U , and we denote by ls a closed curved in the intersection of ∂U
and of the stable leaf of γ.

When the stable and unstable leaves of γ are orientable, there exists a
coordinate system on the homology H1(∂U,Z) ≡ Z2 of ∂U such that (1, 0)
is the homology of a meridian of ∂U and (0, 1) is the homology of ls. We
denote by (u, v) the coordinate in homology of δ, oriented such that v ≥ 0.
Since δ is a simple curve u and v are relatively prime. Also one has p =
lkγ(Σ) = δ ·∩ls = u and q = |multγ(Σ)| = |δ ·∩(1, 0)| = v, so p and q are
relatively prime.

When the stable and unstable leaves of γ are not orientable, there exists
a coordinate system on the homology of ∂U such that (1, 0) is the homology
of a homotopically trivial curve inside U and (1, 2) is the homology of ls.
We denote by (u, v) the homology of δ, with v ≥ 0 and gcd(u, v) = 1
as in the previous case. Then one has p = lkγ(Σ) = δ ·∩ls = 2u − v
and q = |multγ(Σ)| = |δ ·∩(1, 0)| = v. Hence lkγ(Σ)−multγ(Σ) ∈ 2Z. Addi-
tionally gcd(p, q) = gcd(2u, v) = (1 or 2). gcd(u, v) = (1 or 2) depending on
the parity of q.

We prove the last item. Fix p and q ≥ 1 as in the lemma. According to
Lemma 1.4.2, the flow φ is orbitally equivalent on a neighborhood of γ to a
neighborhood of the closed orbit of the local model given in Example 1.4.1.
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In Example 1.4.3, we defined two local transverse sections with multiplicity q
in absolute value, and linking number p and −p. We push back these local
transverse sections to M , and obtain two local transverse sections along γ
with multiplicity q in absolute value, and linking number p and −p (the
sign of the linking number changes if the orbital equivalence reverses the
orientation).

1.4.2 Isotopy along the flow of local transverse sections

In this section, we explain how to find some isotopies along the flow between
two weakly tame local transverse sections. We precise here the notions.
Given two surfaces S1, S2 ⊂ M , a homotopy along the flow between S1

and S2 is a homotopy φT : [0, 1] × S1 → M given by φT (s, x) = φT (s,x)(x)
for a continuous function T : [0, 1] × S1 → R, called time function, such
that the function T (0, .) is the zero function, and (x ∈ S1) 7→ φT (1,x)(x) is a
homeomorphism between S1 and S2. We denote by φT (s, x) = φT (s,x)(x). If
one has a continuous function T : S1 → R, we also denote by φT : S1 → R
the function which sends a point x to φT (x)(x).

We additionally say that a homotopy along the flow φT is an isotopy
along the flow if for all s ∈ [0, 1], the function (x ∈ S1) 7→ φT (s,x)(x) is
injective. We are interested by some homotopy, called linear homotopy
along the flow (or linear isotopy along the flow) which are given by a
continuous function T : [0, 1]×S1 → R which is linear in the first parameter,
that is T (s, x) = sT (1, x). In particular, given an isotopy φT along the
flow, we consider the linearisation of φT , given by the homotopy ((s, x) ∈
[0, 1]× S1) 7→ φsT (1,x)(x).

Lemma 1.4.7 (Isotopy characterisation). Take φT a homotopy along the
flow from S1 to S2, given by a time function T : [0, 1]× S1 → R. Then φT is
an isotopy if and only if for all points x ∈ S1 and all t ∈ R?+ such that φt(x)
is in S1, we have T (s, φt(x)) + t > T (s, x) for all s ∈ [0, 1].

Proof. Suppose that φT is an isotopy. If two different points x and y = φt(x)
of the surface S1 are on the same orbit, then their relative order on that orbit
must remains the same during the isotopy along the flow. Consider the case
in which the orbit of x is not closed, otherwise the argument only need an
adaptation. We endow that orbit with the coordinate system s ∈ R→ φs(x).
Since for all s ∈ [0, 1], the two points φT (s,x)(x) and φT (s,y)(y) are different,
their coordinates which are T (s, x) and T (s, y)+ t are different. Additionally
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when s = 0, we have T (0, φt(x)) + t = t > 0 = T (s, x), which implies the
inequality for all s ∈ [0, 1].

Similarly if the inequality is satisfied for all points x, φt(x) ∈ S1 with t >
0, then φT is an isotopy.

An immediate consequence of this lemma is that the linearisation of iso-
topy along the flow are also isotopy along the flow.

Lemma 1.4.8. Suppose φT is an isotopy along the flow, then the linearisa-
tion (s, x) 7→ φsT (1,x)(x) is an isotopy along the flow.

Proof. It is enough to see for all pair of points x, φt(x) in S1 with t > 0, the
inequality sT (1, φt(x)) + t > sT (1, x) holds for all s ∈ [0, 1] if and only it
holds for s = 1.

Lemma 1.4.9. Let S1, S2 ⊂ U be two closed surfaces inside a subset U ⊂M .
Let φT be an isotopy along the flow from S1 to S2, which remains inside U
at each time. We also suppose that the set Graph(φT ) = {(s, φT (s, x))|s ∈
[0, 1], x ∈ S1} is closed inside [0, 1] × U . Consider two subsets U1, U2 of U
and a real ε > 0 such that the adherence Ū2 is inside the interior

◦
U1 and such

that φ[−ε,ε](U1) ⊂ U . We additionally consider a subset S ′1 ⊂ S1 such that
for all point x ∈ S ′1 the orbit arc φT ([0,1],x)(x) remains inside U2. Then there
exist a surface S ′2 ⊂ U and a global isotopy along the flow inside U , which
sends the surface S1 to S ′2, such that φT (S ′1) ⊂ S ′2, and S ′2 coincide with S1

outside U1.

Proof. Since φT is an isotopy, there exists a continuous function a from
Graph(φT ) to R such that for all s ∈ [0, 1] and x ∈ S1, we have a(s, x) =
T (1, x). Since Graph(φT ) is closed inside [0, 1] × U , we can extend a to a
continuous function a : [0, 1] × U → R. We consider another continuous
function b : U → [0, 1] such that b is equal to one inside U2 and equal to zero
outside U1.

We consider the isotopy ψ on U given by the two equations ∂ψ
∂t

= ab∂φ
∂t

and ψ|s=0 = id. These conditions gives a well defined isotopy which preserve
the orbit of the flow. Indeed we have φ[−ε,ε](U1) ⊂ U and b|U\U1 = 0 so the
solution of ∂ψ

∂t
(s, x) = a(s, x)b(x)∂φ

∂t
(x) remains inside U .

Since U2 contains the orbit arcs φT ([0,1],x)(x) for any point x inside S ′1, and
that for all x in such an orbit arc, a(s, x)b(x) = T (1, x), ψ coincide with φT on
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these orbit arc. Hence the image of S ′1 after the isotopy is contained inside S ′2.
Since b equal zero outside 0, the surface S ′2 coincide with S1 outside U1.

Take two family of local transverse sections (Σ1, . . . ,Σn), (Σ′1, . . . ,Σ
′
n)

along an orbit γ and inside the neighborhood U , such that in each fam-
ily of local transverse sections, the surfaces are disjoint outside γ. We call
semi-isotopy along the flow from ∪i

◦
Σi to ∪i

◦
Σ′i any isotopy along the flow

from the surface ∪i
◦
Σi to the interior of the surface ∪i

◦
Σ′′i , for another family

of local transverse sections (Σ′′1, . . . ,Σ
′′
n), such that for all index i the sec-

tion Σ′′i coincide with Σ′i inside a neighborhood of γ, and with Σi inside a
neighborhood of the other boundary component of Σi, that is Σi ∩ ∂U .

Corollary 1.4.10. Let (Σ1, . . . ,Σn), (Σ′1, . . . ,Σ
′
n) be 2 families of n local

transverse sections along an orbit γ and in a neighborhood U of γ. Suppose
that the surfaces Σi \ γ are disjoint, and that the surface Σ′i \ γ are disjoint.
Suppose additionally that for all i there exist two neighborhoods Vi ⊂ Σi \ γ
and V ′i ⊂ Σ′i \ γ of γ inside Σi \ γ and Σ′i \ γ, such that the union of
the surface Vi is isotopic along the flow inside U to the union of the sur-
face V ′i . Then the family (Σ1, . . . ,Σn) is semi-isotopic along the flow to the
family (Σ′1, . . . ,Σ

′
n).

Proof. We take a closed neighborhood U1 of γ inside U which intersects the
surface Vi and V ′i only on the interiors. Then we take U2 another closed
neighborhood of γ inside the interior of U2.

Denote by φT an isotopy from ∪iVi to ∪iV ′i , that we can consider linear
according to Lemma 1.4.8. We consider the set S ⊂ ∪iVi of points x such
that the isotopy s 7→ φT (s, x) remains inside U2. Since φT (1, .) is a home-
omorphism between the surface ∪iVi and ∪iV ′i , the set S contains a small
neighborhood of γ inside the surface ∪iVi.

We prove that since φT is a linear isotopy along the flow from ∪iVi
to ∪iV ′i , the graph Graph(φT ) = {(s, φT (s, x))|s ∈ [0, 1], x ∈ S1} is closed
inside [0, 1]× U \ γ. First take a point x is in a small enough neighborhood
of γ inside ∪iVi, then φT (x) remains in a small neighborhood of γ inside ∪iV ′i .
Additionally the orbit arc φ[0,T (x)](x) remains in a small neighborhood of γ in-
side U \ γ. Then we consider a sequence (si, φT (si, xi))i converge to (s∞, y∞)
inside U \γ. Up to an extraction, si converge to s∞. Since φT (si, xi) converge
to y∞ inside U \ γ, the sequence xi remains outside a small open neighbor-
hood of γ inside ∪iVi, so by compactness the sequence xi accumulates along
a point x∞. Then y∞ = φT (s∞, x∞), so (s∞, y∞) is inside the graph of φT .
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The previous Lemma 1.4.9 implies that there is an isotopy from ∪iVi to
a surface ∪iV ′′i , such that ∪iV ′′i coincide with ∪iVi outside U1 and contains
the surface φT (S). Since φT (S) is a small neighborhood of γ inside the local
transverse section ∪i(Σi \ γ), the surface ∪iV ′′i \ φT (S) remains out of a
small neighborhood of γ. Hence the surfaces ∪iV ′′i and ∪iV ′i coincide inside
a small neighborhood of γ. Additionally we can extend that isotopy by a
constant isotopy on ∪i(Σi \ (γ ∪ Vi)), which gives a semi-isotopy along the
flow from (Σ1, . . . ,Σn) to (Σ′1, . . . ,Σ

′
n).

We need a last lemma to build the isotopies along the flow between the
sets Vi and V ′i as described in the previous corollary.

Proposition 1.4.11. Let φ be an Anosov flow on a closed orientable 3-
manifold, γ ⊂M be an orbit of φ and (Σ1, . . . ,Σn), (Σ′1, . . . ,Σ

′
n) be 2n weakly

tame local transverse sections along γ, such that for any indexes i 6= j, the
surfaces Σi and Σj are disjoint in their interiors, and surfaces Σ′i and Σ′j
are disjoint in their interiors. We suppose they all have the same multi-
plicities and linking numbers. If the linking number is zero, we additionally
suppose that the interior of the surface Σi and Σ′i remains inside the same
connected component of U \ (F s ∪ Fu). Then there exists a semi-isotopy
from (Σ1, . . . ,Σn) to (Σ′1, . . . ,Σ

′
n).

This proposition allows one to isotope a local transverse section to another
one, but only on their interior. A very similar result have already been proven
in [BG10] but for local transverse section with linking number non-zero and
under a tame condition.

Proof. We explain how to isotope one weakly tame local transverse section
to another one. Then we construct a semi-isotopy between the two families.

According to Lemma 1.4.2, the flow is on a neighborhood of γ orbitally
equivalent to a neighborhood of the closed orbit of the local model given
in Example 1.4.1. Hence we can consider that U is a neighborhood of the
closed orbit γN of the suspension flow ψ on the manifold N . Recall that N is
obtained as the quotient of R3 by the function G : (x, y, z) ∈ R3 7→ (λx, µy, z)
where λ and µ are two real numbers such that |λ| > 1, 0 < |µ| < 1 and λµ >
0. Also N = R3/G and the flow ψ is generated by ∂

∂z
.

We first prove the proposition when the linking number is zero. De-
note by Q the connected component U \ (F s(γ) ∪ F s(γ)) containing the
surfaces Σ1 \ γ. Denote by Σ0 the local transverse section given in the first
item of Example 1.4.3, which we take inside Q ∪ γ.



36 CHAPTER 1. BACKGROUND AND TRANSVERSE SURFACES

We denote by R : N → R the function R(x, y, z) = |λ|−2zx2 + |µ|−2zy2,
which is well defined. Since R ◦ G = R, R induces a function on N , still
denoted by R. We fixe ε > 0 such that R−1([0, ε)) is a small enough
neighborhood of γ. By a direct computation, we notice that for p ∈ Q,
the orbit ψ|R(p) intersects only once Σ0, at the point which minimises the
function R along that orbit. We denote T (p) the unique real number such
that φT (p)(p) is in the surface Σ0 \ γ. By what proceed, R(p) ≤ R ◦ T (p).
So T|Σ1\γ : Σ1 \ γ → R is a continuous function which satisfies that for
all p ∈ Σ1 \ γ, φT (p)(p) is in Σ0 \ γ. Since R(p) ≤ R ◦ T (p) for all p, the
function (x ∈ Σ1 \ γ) 7→ φT (p)(p) converge to γ when p converge to γ. Hence
its image contains a small neighborhood of γ inside Σ0 \ γ. Additionally we
can take a smaller tubular neighborhood U of γ which satisfies the hypothe-
ses of Lemma 1.4.4, and such that the orbit arcs in N between two points
inside U remain inside U . Then (s, x) ∈ [0, 1]× Σ1 \ γ) 7→ φsT (p)(p) is injec-
tive (or there would exist an orbit that intersects Σ1 twice inside U). Hence
according to Lemma 1.4.10, Σ1 and Σ0 are semi-isotopic.

Hence every local transverse sections Σi and Σ′i are semi-isotopic. Since
the surface Σi intersects any orbit at most once, and intersects every orbit in-
sideQ close enough to γ, we can find an orbit δ insideQ which intersects every
surface Σi and Σ′i only once. Up to changing the order of the surface, we can
suppose that the orbit δ intersects Σ1, . . . ,Σn is that order, and Σ′1, . . . ,Σ

′
n

in that order. Then we consider a linear semi-isotopy φTi from Σi to Σ′i.
Because of the discussion on the relative position of the surface, the union of
the linear semi-isotopies gives an isotopy from two neighborhoods of γ inside
of ∪iΣi \ γ two ∪iΣ′i \ γ. Hence according to Lemma 1.4.10, there exists a
semi-isotopy from (Σ1, . . . ,Σn) to (Σ′1, . . . ,Σ

′
n).

We now prove the proposition when the linking number is not zero.
The ideas are the same, but some part of the proof need an adjustment.
Take Σf ⊂ N the second local transverse section defined in Example 1.4.3,
with the same linking number and multiplicity than Σ1. We consider Ñ \ γ
and Ũ \ γ the universal covering spaces of N \ γ and U \ γ, φ̃ the lift of the
flow φ to Ñ \ γ, and we lift the surface Σ1 \ γ to a connected surface Σ̃1 \ γ.
Then Σ̃1 \ γ is a proper surface inside the simply connected 3-manifold Ũ \ γ,
so it bounds two connected components. Hence every orbit inside Ũ \ γ in-
tersects Σ̃1 \ γ at most once (because the flow coorients the topologically
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transverse surfaces). Furthermore, by definition of Σf , the surface Σ̃f \ γ
intersects exactly once every orbit inside Ñ \ γ. Hence as previously, there
exists a time function T̃ : Σ̃1 \ γ → R such that for all point x in Σ̃1 \ γ we
have φ̃T (x)(x) ∈ Σ̃f \ γ. Since Σ1 and Σf have the same linking number and
multiplicity, the function T̃ induces a function on the quotient T : Σ\γ → R
such that the image of φT lies inside Σf \ γ. Additionally since the sur-
face Σ̃1 \ γ intersects at most once every orbit inside Ñ \ γ, the function φT
is injective.

Since Σ1 and Σf are weakly tame, the function T is bounded. Indeed
there exists a compact set K and a surjection u1 : K → Σ1 such that for ev-
ery curve c inside (Σ1 \γ)∩ (F s(γ)∪Fu(γ)), there is a connected component
of u−1

1 (c) on which u1 induces a homeomorphism with c. Denote by D ⊂ N
a compact disc transverse to the flow, such that every orbit intersecting Σ1

also intersects D. Then there exists a continuous function v1 : K → R such
that for all points x ∈ K, φv1(x)(u1(x)) lies inside D. Since K is compact,
the function v1 is bounded. We defined similarly two functions u2 : K → Σf

and v2 : K → R such that for all x ∈ K, φv2(x)(u2(x)) lies inside D, and such
that v2 ◦φT = v1. Since v1 and v2 are bounded and u1 is surjective, T is also
bounded. Hence the function x 7→ φT (x) accumulates along γ when x accu-
mulates along γ, so its image contains a small neighborhood of γ inside Σf .
Hence according to Lemma 1.4.10, Σ1 and Σf are semi-isotopic.

So all local transverse sections Σi and Σ′i are semi-isotopic. Since the
surfaces Σi are relatively homologous and disjoint in there interior, an orbit
arc close enough to γ intersects the surfaces Σi in a cyclic order. Up to
changing the order of the surface, we can suppose that an orbit arc closed
enough to γ intersects all Σi and all Σ′i is the same order. Then one can
chose some semi-isotopy from Σi ato Σ′i such that the union of that isotopy is
injective inside a neighborhood of γ. Then according to Lemma 1.4.10, there
exists a semi-isotopy along the flow from (Σ1, . . . ,Σn) to (Σ′1, . . . ,Σ

′
n).

1.4.3 Smoothing and Fried-desingularisation

In this section, we use the notion studied above to smooth a topological
surface into a partial section.

Lemma 1.4.12. Let M be an oriented closed 3-manifold and φ be an Anosov
flow on M . Let Σ be a compact surface, f : Σ→M be a continuous function



38 CHAPTER 1. BACKGROUND AND TRANSVERSE SURFACES

and Γ be a finite union of closed orbits of the flow φ. We suppose that ∂Σ =
f−1(Γ), and that the restriction f

|
◦
Σ
is topologically transverse to the flow φ

and injective. We also suppose that f(Σ) restricts to a union of weakly tame
local transverse sections on some neighborhoods of each orbits of Γ. Then for
all ε > 0, there exists a smooth partial section Σ′ and a function T :

◦
Σ→ R

such that:

• Σ′ is embedded in its interior and ∂Σ′ ⊂ Γ,

• Σ′ remains in an ε-neighborhood of f(Σ) ∪ Γ,

• There exist a finite union of closed curves α ⊂ Σ′ such that the function
given by (x ∈

◦
Σ)→ φT (x)(f(x)) is a homeomorphism from f(Σ) \ Γ to

the surface Σ′ \ (Γ ∪ α),

• for all s ∈ [0, 1], the function (x ∈
◦
Σ)→ φsT (x)(f(x)) is injective.

• the surfaces f(Σ) and Σ′ are relatively homologous in H2(M,Γ,Z).

Proof. Take a closed orbit γ in Γ, we consider an ε-neighborhood Uγ of γ
such that f(Σ) ∩ Uγ is a finite union of weakly tame local transverse sec-
tions, which we denote by Σ1, . . . ,Σn. Suppose for now that the linking
number is non zero, then these local transverse section are disjoint on there
inside, so they have the same linking number and multiplicity. According to
Lemma 1.4.6 and Proposition 1.4.11, there exists a semi-isotopy along the
flow from (Σ1, . . . ,Σn) to a family of weakly tame and smooth local trans-
verse section (Σ′1, . . . ,Σ

′
n) of γ, inside Uγ, with the same linking numbers and

multiplicities.
If f(Σ) has a linking number zero along a closed orbit γ in Γ, then we

apply the previous argument for each quadrant of the flow around γ.
We apply that procedure on each closed orbit γ ∈ Γ to obtain an isotopy

along the flow from f(
◦
Σ) to

◦
Σ′ for another surface Σ′ which is smooth on a

small boundary of Γ. Additionally Σ′ coincide on a small tubular neighbor-
hood of Γ of a union of the standard topological transverse sections given in
Example 1.4.3.

Out of Γ, the surface Σ′ is topologically transverse to the flow, and is
smooth inside a neighborhood of Γ. So we can find an ε-small isotopy along
the flow from Σ′ to a smooth surface Σ′′. Which coincide with Σ′ around Γ

It remains to see that Σ′′ is a partial section. Along any closed orbit γ in Γ,
there exists a small tubular neighborhood of γ on which Σ′′ is conjugated to
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a union of standard topological transverse sections S given in Example 1.4.3.
For each of these standard model, either γ is a boundary component of S
and S is immersed along γ, or γ intersects geometrically S in only one point,
and S is smooth and transverse to the flow in a neighborhood of that point.
Hence Σ′′ is a smooth partial section embedded in its interior. Each step of
the proof preserve the relative homology of the surface inside (M,Γ),so f(Σ)
and Σ′′ are relatively homologous in H2(M,Γ,Z).

We can now study a precise statement for the Fried-desingularisation that
we will use.

Proposition 1.4.13 (Fried-desingularisating). Let φ be an Anosov flow on
an oriented closed 3-manifold M . Let Σ an immersed partial section, non
necessarily connected. Then for all ε > 0 there exists a partial section Σ′

such that:

• Σ′ is embedded in its interior, and ∂Σ′ ⊂ ∂Σ,

• Σ′ remains in an ε-neighborhood of Σ,

• the surfaces Σ and Σ′ are relatively homologous in H2(M,Γ,Z).

• the boundary components ∂+Σ′ and ∂−Σ′ are disjoint.

Proof. We consider ε > 0 as in the hypothesis, and take ε′ > 0 small relatively
to ε. The idea of the proof is to cut Σ along its self-intersection curves, and to
use the previous lemma. First we use the Proposition 1.4.11 to isotope Σ on
an ε′-small tubular neighborhood U of ∂Σ. After that isotopy, the surface Σ
is given on a neighborhood of its boundary components by some union of
the standard local model given in Example 1.4.3. Up to slightly isotopy
along the flow on these models, we can suppose that the self intersection
curves of Σ inside U are finitely many compact curves, and that

◦
Σ intersects

itself transversally inside U . Then the adherence of Σ \ U inside Σ is a
compact transverse to the flow, so there exists an ε′-small isotopy along the
flow from Σ \ U to a surface that intersects itself only transversally.

Hence after a small isotopy of
◦
Σ, Σ intersects itself along compact curves.

We cut Σ along these curves and glue back the surface into a surface Σ′

topologically transverse to the flow in its interior. We do that surgery oper-
ation such that for each two small open subsets S1, S2 ⊂

◦
Σ′ which intersect

at x, and for all µ > 0, either φµ(S1) ∩ S2 = ∅ or φµ(S2) ∩ S1 = ∅. So
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there exists an ε′-small isotopy of Σ′ such that the Σ′ has no more self in-
tersection outside ∂Σ. We can do this such that Σ′ induces along ∂Σ only
remains weakly tame local transverse sections. Then according to the pre-
vious Lemma 1.4.12, there exists a partial section Σ′′ in an ε′-neighborhood
of Σ′, which is embedded in its interior and is relatively homologous to Σ
in H2(M,∂Σ,Z). Additionally ∂Σ′′ ⊂ ∂Σ.

At this point in the proof, we do not necessarily have ∂+Σ′′ ∩ ∂−Σ′′ = ∅.
Fix an orbit γ which is both a positive and a negative boundary of Σ′′.
Then Σ′′ has linking number zero along γ. Otherwise take two neighborhoods
of γ in Σ associated with two boundary components with opposite sign. Then
these two neighborhoods have different linking numbers, so they intersects
in their interior. Since Σ′′ is embedded in its interior, the previous case is
impossible, so the linking number of γ is zero.

Consider a small closed tubular neighborhoods U of γ such that Σ′′ in-
tersects U in a finite number of local transverse sections. By what proceed,
there exist in Σ′′ ∩ U two local transverse sections S1 and S2 with opposite
multiplicity. The flow is Anosov so S1 and S2 are in two adjacents quadrants
of γ. We can push S1 ∪ S2 into a transverse surface in U , inside the union of
these two quadrants, and outside γ.

To be precise, we consider the local model N = R3/(x, y, z) ≡ (λx, µy, z+
1) with λµ > 0, |λ| > 1 and 0 < |mu| < 1 given in Example 1.4.1. We sup-
pose that S1 and S2 are on two quadrant adjacent along half a stable leaf of γ,
the other case is similar. We take two functions s1 : R? → R, s2 : R? → R
which are equal outside a small open interval around zero, we take y0 ∈ R?+
and the two surfaces given by Fi : {(λt−s(x)x, µt−s(x)y0, t)|x ∈ R, t ∈ R}.
For F1 to be well define, we require s(x) −−→

x→0
+∞ and s(x) = ox→0(ln(x))

such that λ−s(x)x −−→
x→0

0. Then F2 is transverse to the flow, F1 is the union
of two topologically local section along γ with two opposite sign along the
boundary, and in two adjacent quadrants. According to Lemma 1.4.2 and
Proposition 1.4.11, the union S1 ∪ S2 is semi-isotopic to the two local trans-
verse sections F1 \ γ along there interiors. Since F1 and and F2 are equal
outside a small neighborhood of γ, we can remove the annulus S1 ∪ S2 in-
side Σ′′ and replace it with a smooth annulus transverse to the flow.

We do the previous procedure a finite amount of time until eventually
obtaining a partial section Σ′′′ with ∂+Σ′′′ and ∂−Σ′′′ disjoint. The procedure
may add some closed self intersection curves of Σ′′′. If it is the case, we
can apply the first part of the proof to remove these intersections curves.
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Furthermore the relative homology in H2(M,∂Σ,Z) of the partial section is
preserved at each step.

Remark 1.4.14. Suppose we are given a surface Σ which is a pseudo-partial
section with some ramification points. Under the condition that the surface
admit a tangent plane at the ramification point and that the surface is trans-
verse to the flow at that ramification point. We can apply the previous proof
and find a partial section Σ′ which satisfies the conclusion of the lemma.

1.5 Partial sections of the geodesic flows
In this section, we fix a hyperbolic surface S, and construct several immersed
partial sections of the geodesic flow on T 1S. The first subsection introduces
the main partial sections and Birkhoff sections studied in Chapter 2. The
second subsection constructs some immersed partial sections, used in the last
chapter to study the primitive orbits of the geodesic flows.

We fix the orientation on T 1M given by ( ∂
∂x
, ∂
∂y
, ∂
∂θ

), for a local map with
coordinates (x, y) and ∂

∂θ
the trigonometric direction in this map, that is that

goes from (1, 0) to (0, 1) through the shortest arc.

1.5.1 Partial section with symmetric boundary

In this subsection, we construct some partial sections said to have symmetric
boundaries, and explain the classification of Birkhoff sections with symmetric
boundaries. This construction comes from [CD16].

Let Γ ⊂ S be a finite set of closed (non-oriented) geodesic that are in
general position, which means that there is no point where three or more
geodesic arcs intersect, as in Figure 1.4. We suppose most of the time that Γ
is filling, that is, S \ Γ is a union of disjoint discs. Given a geodesic γ of Γ
and an orientation of γ, we can lift γ into →γ = (γ, γ′) ⊂ T 1S, which is a closed
orbit of the geodesic flow. We denote by ←

γ the other closed orbit obtained
by inverting the direction of γ. We also denote by

↔

Γ ⊂ T 1S the lift of Γ
with both orientations, whose cardinality is twice the cardinality of Γ. We
later construct partial sections with boundary −

↔

Γ, that is whose boundary
is topologically

↔

Γ, but with multiplicity −1 along each orbit.
We see Γ as a graph (Γ0,Γ1) in S, were Γ0 is the set of double points

of Γ, and Γ1 the set of edges bounded by Γ0. We also denote by Γ2 the
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Figure 1.4: Filling geodesic multi-curve on a hyperbolic surface.

set of faces of S bounded by Γ. We consider a coorientation η of Γ, in the
sense that η is the union of a transverse orientation for every edge in Γ1. We
are interested in Eulerian coorientations (illustrated in Figure 1.5), that
is, around every vertex there are as many edges locally oriented clockwisely
and anticlockwisely. In particular, around a vertex, there are two ways to
coorient Γ up to rotation, that we call the alternating and non-alternating
vertices. We denote by EulCo(Γ) the set of all Eulerian coorientations of Γ.

alternating non-alternating

Figure 1.5: Eulerian coorientation around a vertex.

Examples 1.5.1. • When the surface S is orientable, we can coorient
every geodesic of Γ and combine them into an Eulerian coorientation
of Γ, with only non-alternating vertices.

• If [Γ] ≡ 0 ∈ H1(S, Z/2Z), we can color the faces of Γ ⊂ S in black
and white with the condition that along every edge a black and a white
face meet. This is sometimes also called a checkerboard coloring. Then
we consider the coorientation that goes from white to black along every
edge. It has only alternating vertices.
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We now fix an Eulerian coorientation η and construct the surface Ση ⊂
T 1S. The first step is to define a vertical 2-complex Σ̂η in T 1S. For every
edge e ∈ Γ1, let re = {(x, v) ∈ T 1S|x ∈ Γ, v and ηe are in the same direction}
be a rectangle of the form (geodesic arc)× (half fiber) (see Figure 1.6). Then
define the 2-complex Σ̂η = ∪e∈Γ1re. Apart from the fibers of the non-
alternating vertices, it is a topological surface with boundary

↔

Γ. Additionally
it has multiplicity −1 along all its boundary components.

T 1
v1
S T 1

v2
S

z

−→e

←−e

Figure 1.6: One rectangle re

Let v be an non-alternating vertex of Γ. On the fiber T 1
v S, the complex Σ̂η

admits a degree 4 edge, as a X-shape times [0, 1]. We need to resolve this
singularity. As explained in [CD16], there are two ways to desingularise and
smooth Σ̂η into a surface around T 1

v S, but only one is transverse to φ. We
desingularise Σ̂η into a topological surface topologically transverse to the
flow. According to the following lemma, we can define a partial section Ση as
the smoothing of Σ̂η. A local lift of Ση to R2×R is represented in Figure 1.7.
This surface is unique up to a small isotopy along the flow. To simplify
forthcoming expressions, we denote by Ση the interior of the surface, but we
still consider its boundary ∂Ση = −

↔

Γ.

Lemma 1.5.2. For all ε > 0, there exists an embedded partial section Ση

with boundary −
↔

Γ and a continuous function T :
◦

Σ̂η → [−ε, ε] such that

the function (x ∈
◦

Σ̂) → (φT (x)(x) ∈ T 1S) is a homeomorphism between the
interior of Σ̂η and the interior of Ση. Additionally Ση can be taken such
that T is equal to zero outside a small neighborhoods of the fibers of the
bundle T 1S → S above the intersection points of Γ.

Proof. We explain how to desingularise around one vertex of Γ. We take
two geodesic arcs γ1 and γ2 inside Γ, which intersects in a vertex v. We
consider one of the two orientations of γ1 in order to desingularise Σ̂η on
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a neighborhood of →γ1. We foliate a neighborhood of γ1 with some geodesic
arc (δt)t transverse to the curve γ1 such that γ2 = δ0. We denote by T 1

δt
S the

fibers above the curve δt, and we lift the 1-foliation δt to a 2-foliation (Dt)t
of a neighborhood of →γ1, so that for all t, Dt is a neighborhood of →γ ∩ T 1

δt
S

in the fibers above δt. One can find a small flow box B ⊂ T 1S of the
form D2 × [−1, 1] around →

γ1 where D2 ⊂ C is the unitary disc in C and a ∈
R?+, such that the geodesic flow is given by φt(x, s) = (x, s + t) and for
all t ∈ [−1, 1], D2 × {t} coincide with the leaf Dt.

Additionally that flow box can be chosen such that the surface Σ̂η ∩B is
given by the image of the function H : (r, θ) ∈ [0, 1]× [−θ0, θ0] = (r eiθ, h(θ))
for some θ0 > 0 and for a function h : [−θ0, θ0] → [−1, 1]. Notice that the
disc Dt intersects Σ̂η either along one compact curve, or along a sub-surface
of D0 when t = 0. Hence the function h is monotone and smooth outside two
points. We can suppose that h is non-increasing, the other case is symmetric.
We chose a function h′ : [−θ0, θ0] → [−1, 1] smooth, increasing, ε-close to h
and equal to h on a small tubular neighborhood of D2 × {−θ0, θ0}. Then
the image of the function H ′ : (r, θ) ∈ [0, 1] × [−θ0, θ0]× = (r eiθ, h′(θ)) is
a smooth embedded surface tangent to →γ and transverse to the flow outside
of →γ, and it coincides with im(H) on a neighborhood of D2 × {−θ0, θ0}.
Furthermore the surface

◦
H ′ is the image of

◦
H ′ by the isotopy along the flow

given by the time function (r, θ) 7→ (h′ − h)(θ).
According to what proceed, we can find an ε-small isotopy along the flow

from Σ̂η to a surface Σ′, with a support in a small neighborhoods of its
boundary, such that the surface Σ′ is both embedded and smooth outside a
small neighborhoods of ∂Σ′. Since the interior of Σ′ is topologically transverse
to the flow, we can find an ε-small isotopy of Σ′ along the flow with a partial
section Ση embedded in its interior. Since Σ̂η has multiplicity −1 along all
its boundary component, Σ is embedded.

Remark 1.5.3. We will see that the diffeomorphism class of the surface Ση

does not depend on the type of vertices induced by the coorientation η. Thus
it does not depend on the coorientation η itself. However its isotopy type
inside T 1S depends on η.

Classification of the Birkhoff sections with boundary −
↔

Γ. Given a
coorientation η and a generic oriented closed curve γ in S, we can count the
algebraic intersection between (Γ, η) and a curve γ, which we denote by η(γ).
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Figure 1.7: Local picture of a lift of Ση ⊂ T 1S on S × R. On the left
is represented the lift of a non-alternating vertex, and on the right of an
alternating vertex.

Lemma 1.5.4. [CD16] If η is Eulerian, η(γ) depends only on the homol-
ogy class [γ] ∈ H1(S,Z). Thus the coorientation η induces a cohomology
class [η] ∈ H1(S,Z).

Given an Eulerian coorientation η, its cohomology is used to classify the
Birkhoff surfaces with symmetric boundary −

↔

Γ when Γ is filling [CD16].

Theorem 1.5.5 (Reformulation of Theorems C and D from [CD16]). Let S
be a hyperbolic closed surface with its geodesic flow on T 1S, and Γ ⊂ S be a
finite union of closed geodesics in general position. Then:

• For two Eulerian coorientation η and ν of Γ, the two partial sections Ση

and Σν are relatively homologous in H2(T 1S,
↔

Γ,Z) if and only if η and ν
are cohomologous in H1(S,Z).

• The partial section Ση is a Birkhoff section if and only [η] lies in the
interior of a polyhedra of H1(S,Z) (described as the unitary ball of an
intersection norm).

• The relative homology class of every partial section bounded by −
↔

Γ

in H2(T 1S,
↔

Γ,Z) is obtained as one [Ση] for some Eulerian coorien-
tation η.

• In particular if Γ is filling, every Birkhoff section with boundary −
↔

Γ is
isotopic through the flow to a Birkhoff section [Ση] for some Eulerian
coorientation η.
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• If Γ is not filling, there is no Birkhoff section of the geodesic flow
bounded by −

↔

Γ.

In Section 2.2.1, we explain that the partial section Ση is a Birkhoff section
if and only the coorientation η is acyclic. It is a combinatorial property
which is easy to check in practice. Futhermore we give below an algorithmic
construction of a coorientation with fixed homology, which allows to describe
algorithmically all Birkhoff sections with boundary −

↔

Γ.

Construction of an explicit coorientation with fixed cohomology.
An Eulerian coorientation η of Γ induces a cohomology element in H1(S,Z),
that counts the algebraic intersection of a curve γ with (Γ, η). Notice that
the parity of [η] is fixed, since [η] ≡ [Γ] mod 2. Here [Γ] ∈ H1(S,Z/2Z) is
the cohomology class that counts the geometric intersection between Γ and
an oriented closed curve in generic position, modulo 2. Given ω ∈ H1(S,Z)
with the expected parity, when there exists a coorientation whose cohomology
is ω, we can construct such a corientation. The ideas are already present
in [CD16]. This part is not mandatory for the rest of the thesis.

We denote by (Ŝ, Γ̂) the universal covering of (S,Γ). In order to de-
fine an Eulerian coorientation, we use height functions. A height func-
tion is a function h : {faces of (Ŝ, Γ̂)} → Z so that for any two adjacent
faces f1, f2, |h(f1)− h(f2)| = 1. For any ω ∈ H1(S,Z), we say that a height
function h is ω-stable if for any closed curve γ : [0, 1] → S and any lift γ̂
of γ in Ŝ, we have h(γ̂(1))− h(γ̂(0)) = ω(γ).

Lemma 1.5.6. [CD16] There is a 1 : 1 correspondence between Eulerian
coorientations of Γ with cohomology ω, and ω-stable height functions on the
universal covering (Ŝ, Γ̂) of (S,Γ), up to an additive constant.

The proof consists in viewing an Eulerian coorientation η as the gradient
of a height function, which is [η]-stable.

We fix ω ∈ H1(S,Z) with ω ≡ [Γ] mod 2 in H1(S,Z/2Z). To construct a
coorientation with cohomology ω, we use the notion of partial height func-
tions, defined below. We recursively construct a decreasing finite sequence
of ω-stable partial height function. Then either the last partial height func-
tion is a real height function, or the process gives an obstruction to the
existence to an ω-stable height function.
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Remark 1.5.7. For any closed curve δ ⊂ S and any Eulerian coorientation η
of Γ, one has |η(δ)| ≤ |δ ∩ Γ|. Hence if a cohomology element ω ∈ H1(S,Z)
satisfies |ω(δ)| > |δ∩Γ| for some closed curve δ, then ω is not the cohomology
of any Eulerian coorientation.

Denote by π : Ŝ → S the universal covering map, fix a face f̂ in the
universal cover Ŝ and f = π(f̂). We denote by Γ? the dual graph of Γ,
so that every face of S \ Γ corresponds to a vertex of Γ?. We also denote
by Γ?0 and Γ?1 respectively the set of vertices and edges of Γ?. Let T ⊂ Γ? be
a sub-tree (a connected sub-graph without cycle) of Γ?, which contains all
vertices of Γ?. We use T do define a partial height function h : Γ?0 → Z, that
is a function that satisfies |h(v1) − h(v2)| = 1 for all pair of faces v1 and v2

adjacent in T . We denote by T̂ the connected component containing f̂ of the
lift of T to Γ̂, which is an isomorphic graph to T . We define the function h =
hT,f : Γ?0 → Z as follows. If g ∈ π1(S) and f ′ ∈ T̂ , h(g.f ′) = ω(g) +

d(f̂, f ′)T̂ = ω(g) + d(f, π(f ′))T , where d(f̂, f ′)T̂ is the distance between f̂

and f ′ in the tree T̂ . Since T is a tree inside Γ?, there are no distinct
tuples (f1, g1), (f2, g2) ∈ T̂ × π1(S) such that g1.f1 = g2.f2, so h is well
defined. Also the function h defined above is ω-stable. The function h is
called the ω-stable partial height function supported by T . Notice that
there is only a finite number of trees T ⊂ Γ?, so there is a finite number
of ω-stable partial height functions.

Given a tree T containing all vertices of Γ?, its ω-stable partial height
function hT : Γ̂ → Z is not a height function in general. The following
procedure modify T to decrease h and make h closer to being a height func-
tion, and eventually detects when there is no ω-stable height function. Sup-
pose that h is not a height function. Then there exists an edge ê of Γ̂?

whose ends v̂1, v̂2 ∈ Γ̂?0 satisfy |h(v̂1) − h(v̂2)| 6= 1. Since h is a ω-stable
and ω ≡ [Γ] mod 2, |h(v̂1) − h(v̂2)| is an odd number greater than 2. We
can suppose that h(v̂1) < h(v̂2) and that v̂2 ∈ T (up to exchanging (v̂1, v̂2)
with (g.v̂1, g.v̂2) for some g ∈ π1(S)). For the next few paragraphs, we
denote by g ∈ π1(S) the unique element such that g.v̂1 ∈ T̂ , together
with v1 = π(v̂1), v2 = π(v̂2) and e = π(ê). There are three cases to con-
sider, depending of the relative positions of v1, v2 and f inside T .

Suppose first that v2 = f , we prove that there is no coorientation whose
cohomology is ω. We consider the unique path c in T from v2 to v1, and
complete c into a cycle c′ = c∪e, which is also seen as a closed curve inside S.
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By definition, h(v̂1) = h(g−1.(g.v̂1)) = ω(g−1) + d(v1, f)T = −ω(g) + |c′| −
1 and h(v̂1) ≤ h(v̂2) − 3 = h(f̂) − 3 = −3. Therefore ω(g) ≥ |c′| + 2.
By construction, g and c′ are homotopic so |ω(c′)| > [c′]. According to
Remark 1.5.7, ω is not the cohomology of any Eulerian coorientation.

Suppose now that v2 6= f . Among the edges of T adjacent to v2, only
one is in the connected component of T \ v2 containing f . We denote by e′
that edge. Then either (T \ e′) ∪ e is a connected sub-graph of Γ?, or it is
not. We first consider that (T \ e′) ∪ e is not connected. Then the geodesic
segment [v1, f ]T inside T contains v2, otherwise [v1, f ]T ∪ e would be a path
in (T \e′)∪e from f to v2 and (T \e′)∪e would be connected. We denote by c
the segment [v1, v2]T\e′ , which does not contain f , and c′ = c ∪ e. Then c′

is homotopic to g−1, so one has h(v̂1) = ω(c′) + d(v1, f)T = ω(c′) + |c| +
d(v2, f)T = ω(c′) + |c′|−1 +h(v̂2). Since |h(v̂1)−h(v̂2)| ≥ 3, |ω(c′)| ≥ |c′|+ 2
so ω is not the cohomology of any Eulerian coorientation.

Suppose that v2 6= f and that (T \e′)∪e (as defined in the previous para-
graph) is connected. Then T ′ = (T \ e′)∪ e is a tree, otherwise it would have
too much edges. Denote by h′ the ω-stable partial height function supported
by T ′. We claim that h′ � h. Denote by T1 the connected component of T ′\e′
containing f , and T2 = T ′ \ (T1∪ e′). Since T1 is a sub-tree of both T and T ′,
the functions h and h′ coincide on the vertices of π−1(T1). We have g.v̂2 ∈ T ′,
so by definition one has h′(v̂2) = h′(g−1.(g.v̂2)) = ω(g−1) + d(v2, f)T ′ =
−ω(g)+1+d(v1, f)T ′ = 1+h′(v̂1) = 1+h(v̂1) < h(v̂2) since h(v̂1) ≤ h(v̂2)+3.
Futhermore for any vertex v ∈ T2, the shortest paths from v to f inside T
and T ′ contain the segment [v1, v2]. Since this segment is shorter in T ′, one
has d(v, f)T − d(v, f)T ′ = d(v1, v2)T − d(v1, v2)T ′ = h(v̂2)− h′(v̂2) > 0, so on
the set V of vertices of π−1(T2), one has h′|V < h|V . Hence h′ is a ω-stable
partial height function lower than h.

Since the number of ω-stable partial height functions is finite, one can
apply this procedure a finite number of time until eventually obtaining either
an ω-stable partial height function, or come across one of the first two first
cases in which ω is not the cohomology of any Eulerian coorientation. Notice
that each step of the procedure can easily be translated in an algorithm.

1.5.2 Partial sections given by multi-1-foliations.

In this part, we describe the relation between the immersed partial sections
of the geodesic flow on T 1S and some multi-1-foliation on S. Then we build
specific immersed partial sections obtained by desingularizing a geodesic,
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that will be used in Chapter 4.

Multi-1-foliation. We view an immersed partial section of the geodesic
flow on T 1S as a multi-vector field over S, which can be integrated into a
multi-1-foliation, that is collection of sub-surfaces of S together with 1-
foliations on each sub-surface. This point of view has already been used
multiple time. We denote by π : T 1S → S the bundle projection. We briefly
describe some properties of these multi-1-foliations. Let Σ ⊂ T 1S be an
immersed partial section in general position, so that the projection π|Σ is an
immersion outside a finite number of curves. Notice that since Σ is immersed,
the function π|Σ has no ramification points.

Denote by U a connected sub-surface of Σ on which π|Σ is an embedding.
We view U as the graph of vector field over π(U), which can be integrated into
an oriented 1-foliation F . In general, π|Σ is not an embedding, so one needs to
replace the notions of vector field and 1-foliation with multi-vector field and
multi-1-foliation. We don’t give nor use precise definitions of these notions.
We can relate the foliation F to the topologically transverse property. Recall
that a surface N ⊂ T 1S is said topologically transverse to the flow if
for any x ∈ N , there is a small neighborhood in T 1S of x on which every
orbit arc of the geodesic flow intersects N exactly once. Transverse surfaces
are topologically transverse. Furthermore if N is a topologically transverse
surface but not transverse, there are arbitrarily small isotopies of N that
make it either transverse or not topologically transverse. We use the notion
of topologically transverse surface, since it is more convenient to relate to
the curvature of the leaves of the multi-1-foliation.

Lemma 1.5.8. Let Σ ⊂ T 1S be an embedded surface so that π|Σ : Σ→ S is
an embedding, and denote by F the foliation on im(π|Σ) induced by the vector
filed π−1

|Σ . then

• Σ is topologically transverse to the geodesic flow if and only if the
leaves of F do not contain any geodesic arc nor any inflection point.

• Σ is transverse to the geodesic flow if and only if the leaves of F are
all curved in the same direction, with non-zero curvature everywhere.

Proof. Denote by F the 1-foliation on π(Σ) induced by Σ. First suppose
that the leaves of F contain no geodesic arc nor inflection point. Then any
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small enough geodesic arc intersects any leaf of F at most once, so Σ is
topologically transversal to the flow.

Now suppose that Σ is topologically transverse to the geodesic flow. If a
leaf γ of F contains an oriented geodesic arc δ, then

→

δ ⊂ →
γ ⊂ Σ, so that Σ is

not topologically transverse to the flow, which is impossible.
Suppose that a leaf l of F contains an inflection point π(x) for a point x

in Σ, and denote by l′ ⊂ U the geodesic arc going though π(x) and tangent
to l. There exists a geodesic arc δ ⊂ π(Σ) going through x and arbitrarily
close to l′, such that δ intersects l three times. Then l ∪ δ bounds two
disjoint 2-gons P1, P2 ⊂ π(Σ). Since Pi is foliated by F and one of its two
sides is a leaf of F , its other side is tangent to the foliation F at a point zi ∈ δ.
Futhermore δ can be taken arbitrarily closed to the geodesic tangent of l at x,
so that z1 and z2 are arbitrarily closed to x. Hence δ lifts to an orbit arc
which intersects Σ in two points arbitrarily closed to x, which contradict its
topologically transverse property. Hence all the leaves of F do not contain
any inflection point nor geodesic arc. It finishes the proof of the first item.

Before proving the second item, notice that been a transverse surface
and inducing leaves with non-zero curvatures are two properties which are
stable by C1-small perturbation on a compact subset of Σ. Suppose that Σ
is transverse to the flow but it induces a leaf with a curvature zero at some
point x. An arbitrarily C1-small perturbation of Σ around x is still transverse,
but if well chosen it induces a leaf containing a geodesic arc, which contradict
the first point. Similarly if all curves of F have non-zero curvatures, Σ is
transverse.

When Σ is an immersed partial section, the previous lemma applies to
all open subsets U ⊂ Σ so that π|U is an embedding. Notice that if γ is an
oriented geodesic so that →γ is a boundary component of Σ, then γ∩π(U) is a
leaf of the 1-foliation induced by U ⊂ Σ. Additionally the sign of a boundary
component of Σ can be determined the following way. Let γ be a small
geodesic arc such that →γ ⊂ ∂Σ. There is a small tubular neighborhood U of →γ
in Σ and a homomorphism h : π(U)→ [0, 1]×[0, 1] so that h(γ) = [0, 1]×{0},
and Σ induces on π(U) the foliation whose leaves are h−1([0, 1]×{t}). Then
either h−1([0, 1]×{1}) is a convex boundary component of π(U), or a concave
one. In the first case →γ is an arc of a negative boundary component of Σ, in
the second case, it is an arc of a positive boundary component.
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δ1

δ1

δ2

Figure 1.8: Construction of the transverse cobordism. Red geodesics are the
projection of positive boundary components, blue geodesics are the projection
of negative boundary component. The three surfaces illustrate the different
cases for the region between δi and ĉi in the following proofs (whether the
region is orientable or not).

Desingularisation of a geodesic. Let γ ⊂ S be an oriented closed
geodesics. There is a nice way to create an immersed partial section Σ so
that ∂−Σ = γ. To do so we desingularise a self-intersecting point of γ, as in
Figure 1.8.

Figure 1.8 shows three partial sections of the geodesic flow. We use im-
mersions of these partial sections to define a cobordism for any desingulari-
sation of one oriented geodesic. More details are given in the two following
lemmas. Notice that for the geodesic flow on a hyperbolic orbifold, these
immersed partial sections might not exist, since the desingularised curves (in
red) might separate a cusp from the rest of the orbifold, and be homotopically
trivial (so that they are not isotopic to any geodesic).

Lemma 1.5.9. Let γ ⊂ S be an oriented periodic geodesic with one and only
one self-intersection point x. The two closed curves obtained by desingular-
ising γ on x are isotopic to two geodesics δ1 and δ2. Furthermore there exists
a transverse cobordism from

→

δ1 ∪
→

δ2 to
→
γ given by Figure 1.8.

Proof. Denote by ĉ1 and ĉ2 the two closed curves obtained by desingularis-
ing γ at the double point x, and by c1, c2 the curves obtained by smoothing ĉ1
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and ĉ2. The curves c1 and c2 are not null-homotopic, since γ is a geodesic
which minimizes its length among the set of its homotopic closed curves.
Thus there exist unique closed geodesics δ1 and δ2 isotopic respectively to c1

and c2. We orient δi accordingly to the orientation of γ. First we show that
for i = 1 or 2, ĉi ∪ δi co-bounds either an annulus or a triangle with a double
corner. Then we lift this surface inside T 1S to half a partial section bounding
by

→

ĉi ∪ δi and by an arc of fibre. The sum of the two half partial sections is
the required transverse cobordism.

We can suppose that c1 and c2 have been smoothed so that they intersect γ
at most once, as in Figure 1.8. Then the geodesics δ1 and δ2 also intersect γ at
most once (otherwise they would not minimize their length in the respective
homotopy classes). Thus γ ∪ δ1 ∪ δ2 bounds two immersed surfaces, each of
them being either an annulus with one corner, or a triangle with a double
corner (which is not orientable). We will detail how to construct Σ for the
annulus with one corner, the other case is similar.

Denote by A an annulus with one corner at x, bounded by ĉ1 ∪ δ1. The
annulus A is convex, that is every two points in the universal covering Ã of A
are connected by a unique geodesic inside Ã. Thus one can fill A by oriented
convexe closed curves, which are all curved in the same direction. Then
this 1-foliation lifts inside T 1S to a surface Σ1 whose interior is transverse to
the flow.

By construction, the boundary of Σ1 is the union of
→

δ1 ∪
→

ĉ1 and of an arc
of the fiber Fx := T 1

xS. We can construct similarly Σ2 with boundary
→

δ2 ∪
→

ĉ2

plus the same arc of fiber Fx, with the opposite direction. So after gluing and
smoothing around Fx, the surface Σ = Σ1 ∪ Σ2 is transverse to the geodesic
flow, and as in Figure 1.8. An explicit computation shows that the γ is a
negative boundary of Σ, and δ1 and δ2 are positive boundaries.

Lemma 1.5.10. Let γ ⊂ S be an oriented periodic geodesic which is not
simple, and x be a double point of γ. Then the two closed curves obtained
by desingularising γ on x are isotopic to two geodesics δ1 and δ2, and there
exists a transverse cobordism from

→

δ1 ∪
→

δ2 to
→
γ.

Proof. We consider the two curves ĉ1 and ĉ2 given by desingularising γ at
the point x. Since γ is a geodesic, the curves ĉ1 and ĉ2 are non trivial in
homotopy. So they are homotopic to two closed geodesics on S, which we
denote by δ1 and δ2.
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Let G be the sub-group of the fundamental group π1(S, x) generated by ĉ1

and ĉ2. We denote by S̃G the covering space induced by the group G, that is
the quotient of the universal covering space of S by the group G. Then the
geodesic γ lifts inside S̃G to a closed geodesic γ̃ with only one intersection
point corresponding to x. Similarly the geodesic δi lift to a closed geodesic δ̃i
inside S̃G. The proof of the previous lemma can be applied to this case,
even if S̃G is not closed. So there exists a transverse cobordism Σ̃ ⊂ T 1S̃G

from the lifts of
→

δ1 ∪
→

δ2 to the lift of →γ. Notice that the projections γ̃ →
γ and δ̃i → δi are of degree one, so Σ̃ projects into T 1S to an immersed
partial section Σ with ∂+Σ =

→

δ1 ∪
→

δ2 and ∂−Σ =
→
γ. Then according to

Proposition 1.4.13 the Fried-desingularisation of Σ is a transverse cobordism
satisfying the conclusion of the lemma.

Remark 1.5.11. A similar construction may be done on two intersecting
geodesics, to obtain an immersed partial section with one positive boundary
and two negative boundaries. However this construction is not always pos-
sible, especially when S is not orientable. We do not use this construction
later.

1.6 Blowing-up flows and Fried-Goodman surg-
eries

To understand a flow in a neighborhood of a closed orbit, it is convenient to
blow-up the manifold along that orbit. Then we can study the induced flow
on the boundary component created by the blowing-up operation. In this
section, we study these flows, and give the definition of the Fried surgeries.
The results of this section are already known, but they help understand
some specific point needed for the last two chapters. In particular, we will
see how to change the sign of one boundary of a partial section using a Fried
surgery. We use an elementary approach, our arguments can be simplified
using asymptotic directions, as described in [Fri83].

Fix a closed orbit γ ⊂M of a C1 flow φ. The blowing-up of M along γ
is the manifold Mγ obtained by replacing γ by the set of rays in the normal
bundle ν(γ)→ γ of γ in M . Then Mγ has a boundary component Tγ and a
natural projection πγ : Mγ →M , which restricts to an embeddingMγ \Tγ →
M \γ and to a circle bundle Tγ → γ. When the flow φ is only of class C0, the
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flow φM\γ does not necessarily extend to a flow on the compactification Mγ

of M \γ. Since we only consider orientable 3-manifolds M , the boundary Tγ
is a torus. The flow φ on M lifts to a flow on Mγ that is tangent to Tγ,
denoted by ψ. The flow ψTγ on Tγ contains some topological information on
the flow φ in a neighborhood of γ.

The fibers of the circle bundle πγ |Tγ : Tγ → γ are global sections of ψTγ ,
that is transverse curves which intersect every orbit of ψTγ in bounded time.
A Fried surgery is a Dehn surgery along a closed orbit that uses the setup
previously described. Let δ ⊂ Tγ be a global section of ψTγ . We can push δ
along the flow to define a foliation Fδ of Tγ with parallel copies of δ, all trans-
verse to the flow. We can contract every leaf of Fδ to obtain a manifold M ′

with a projection π′γ : Mγ →M ′. Up to continuous re-parametrization of the
flow ψ, ψ induces a topological flow φ′ on M ′. The couple (M ′, φ′) is said to
be obtained using a Fried surgery on (M,φ).

On Anosov flows, there exists another type of surgery, called Goodman
surgery. That surgery is obtained by cutting the manifold M along a small
annulus transverse to the flow, and in a neighborhood of a closed orbit γ,
and gluing back the two new boundary components using a good Dehn twist
on that annulus (see [Goo83, Sha20] for more details). The manifold and
the flow obtained are smooth. Under some good conditions, the new flow
is additionally Anosov. If the flow φ is transitive and if the orbit γ has
orientable stable and unstable foliations, M.Shannon proved [Sha20] that an
Anosov flow obtain by a Goodman surgery on γ is orbitally equivalent to a
flow obtain by a Fried surgery, along a curve δ which intersects twice the trace
of the stable leaf of γ. Hence we speak about Fried-Goodman surgeries
in this case, which transforms a smooth Anosov flow into another smooth
Anosov flow, well-defined up to some orbital equivalence.

Consider a transitive Anosov flow on an orientable 3-manifold, and a
closed orbit γ in the general case. One can still do a Fried surgery along γ
and hope to construct a smooth Anosov flow, up to an orbital equivalence.
Denote by Mγ the blowing up manifold of M along γ, by Tγ its boundary
component and by π : Tγ → S1 a bundle. Suppose that the fibers π−1(cste)
are all transverse curves inside Tγ, and all intersect the trace of the stable
leaf of γ exactly twice. We do a Fried surgery by contracting the fibers of π
and denote by M ′ and φ′ the induced manifold and flow. By construction,
the flow φ′ is transitive, preserves two regular and transverse 2-foliations and
satisfy an expanding property defined below.
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Denote by M̃ ′ the universal covering space of M ′, and lift the flow φ′

to a flow φ̃′ on M̃ ′. The flow φ′ is said to be orbitally expansive if for
all α > 0, for all pair of points x, y inside M̃ ′, if there exists an increasing
homeomorphism h : R→ R such that the points φ̃′t(x) and φ̃′h(t)(y) remain at
most at a distance α, then x and y are on the same orbit. Since the flow φ̃′

is obtained as the Fried surgery of an Anosov flow, it satisfies the orbitally
expansive property. Under that two conditions: expansive properties and
preserving two regular and transverse 2-foliations, M.Shannon proved [Sha20]
that φ′ is orbitally equivalent to a smooth Anosov flow.

Remark 1.6.1. As explained above, a Fried surgery transform a smooth
transitive Anosov flow into a flow which is orbitally equivalent to another
smooth transitive Anosov flow. We also call Fried-Goodman surgery this
surgery.

Remark 1.6.2. Let Σ be a partial section for a transitive Anosov flow φ
and φ′ be an Anosov flow obtained by a Fried-Goodman surgery along a
closed orbit γ. As explained in Section 1.4, one can isotope the interior
of Σ into the interior of another partial section which given locally around γ
by some local models with good properties (given in Example 1.4.3). In
particular after the Fried-Goodman surgery, the surface induced by Σ is not
necessarily a partial section, but there is an isotopy from its interior to a
partial section Σ′ of the flow φ′ (as detailed in Lemma 1.4.12). We say
that Σ′ is the partial section induced by Σ after the Fried-Goodman surgery.

The surface Σ′ can be chosen to be embedded in its interior if and only
if Σ is embedded in its interior. Additionally Σ′ is a Birkhoff section for φ′ if
and only if Σ is a Birkhoff section for φ.

Question (Ghys question). Is any transitive flow equivalent to an Anosov
suspension up to some Fried-Goodman surgeries ?

As suggested by what follows, the property of being equivalent to an
Anosov suspension up to some Fried-Goodman surgeries is equivalent to ad-
mitting a Birkhoff section with genus 1 (for an Anosov flow). For now, it is
only known that the suspension flows of all hyperbolic matrices that preserve
the orientation, and the geodesic flows of all orientable hyperbolic surfaces
(even orbifolds) are equivalent in this sense. But the Ghys’ question remains
open in general.
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The surface Tγ admits local maps modeled by the trivial bi-foliation
on R2, foliated horizontally by fibers of πγ |Tγ : Tγ → γ, and vertically by
the orbits of ψ|Tγ . These maps can be used to compare the slopes of two
simple curves δ1 and δ2 in Tγ without giving global coordinates on Tγ: We
pull tight δ1 and δ2 along the flow so that they always intersect with the same
algebraic sign, and orient them using the coorientation by ψTγ . Then δ1 has
a higher slope than δ2 in every local maps if and only if δ1 ·∩δ2 < 0. Also
the slope of δ1 is said positive if δ1 has a higher slope than any fiber of πγ |Tγ .

δ

δ1

ψR(δ1)

α+

δ2

ψR(δ2)

ψε(θ ∪ β)

Figure 1.9: Transverse curves in a torus: comparaison of finite slopes on the
left, two curves of infinite slopes on the right.

Thanks to the following lemma, we can interpret a global section of ψ|Tγ
as a curve with finite slope, and a transverse curve not intersecting all orbits
of ψ|Tγ as a curve with infinite slope. When δ has infinite slope, φR(δ)  Tγ
is an annulus invariant by ψ, that can be thought of as the sector of δ. The
behavior of transverse curves with finite and infinite slopes are detailed in
the following statements.

Lemma 1.6.3. Let δ be a transverse curve in Tγ. There exist transverse
curves α± with higher and lower slopes than δ if and only if δ intersects
every orbit of ψ|Tγ . The curves α± can be chosen to be global sections.

When φ is Anosov, then α± can additionally be taken so as to intersect F s
and Fu exactly twice.

Proof. Suppose that δ intersects every orbit of ψ|Tγ . Then by compactness
of Tγ, δ intersects every orbit of ψ|Tγ in bounded time. So there exists an
arc θ of orbit of ψ|Tγ that intersects δ exactly at its two ends. Let β be the
arc of δ \ ∂θ so that ∂β = −∂θ. Then for ε > 0 small enough, ψε(θ ∪ β)
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intersects δ only once, and positively. As in Figure 1.9, ψε(θ ∪ β) ∪ δ can be
smoothed into a curve α+ ⊂ Tγ transverse to ψ|Tγ with higher slope than δ.
Additionally α+ intersects every orbit of ψ|Tγ , since δ does.

Suppose that δ does not intersect all the orbits of ψ|Tγ . Since the merid-
ian m of π : Mγ →M intersects every orbit of ψ|Tγ , δ and m are not isotopic.
Hence we can suppose that the projection π(δ) is a positive multiple of γ, up
to changing all signs. Then suppose that there exists a transverse curve α
with higher slope than δ. We pull α and δ tight so that they only intersect
positively. Since δ does not intersect every orbit of ψ|Tγ , ψR(δ) is an open
subset invariant by ψ|Tγ , and not all Tγ. So ∂ψR(δ) contains a closed orbit δ+

of ψ|Tγ , on which accumulates ψt(δ) for t → +∞. Also δ+ does not inter-
sect δ. Since δ+ is isotopic to δ, δ+ ·∩α = δ ·∩α > 0. It contradicts that δ+ is
an orbit of ψ|Tγ and α is oriented by ψ|Tγ , so that δ+ ·∩α ≤ 0.

Suppose that φ is Anosov. Let ls ∈ F s ∩ Tγ be a closed leaf of ψ|Tγ ,
and f be a fiber of Tγ → γ, which intersects F s exactly twice. Then α±

can be taken as the transverse desingularisation of f + n.ls for n ∈ Z, which
all intersect F s exactly twice and have higher and slower slopes than δ for a
well-chosen n.

Lemma 1.6.4. Let δ1 and δ2 be two simple closed curves transverse to ψ|Tγ ,
so that πγ(δ1) and πγ(δ2) are multiples of γ with opposite signs. Then ei-
ther δ1 ∩ δ2 6= ∅ or ψR(δ1)∩ψR(δ2) = ∅. In the second case, both curves have
infinite slope.

Figure 1.9 shows two isotopic curves in the case ψR(δ1) ∩ ψR(δ2) = ∅.

Proof. Suppose that ψR(δ1)∩ψR(δ2) 6= ∅ and δ1 ∩ δ2) = ∅. Then there exists
an orbit α of ψ that intersects δ1 and δ2. Also δ1 ∩ δ2 = ∅, so δ1 and δ2

are parallel simple curves of Tγ. Hence the orbit α co-orients δ1 and δ2 in
the same way, that is the two curves are isotopic as oriented curves. This
contradicts that πγ(δ1) and πγ(δ2) are multiples of γ with opposite signs.

Boundary of partial sections Let M be an orientable closed 3-manifold
and φ be a smooth flow on M . We denote by Mγ the blowing up manifold
ofM along γ, by πγ : Mγ →M the projection, by Tγ = π−1

γ (γ) the boundary
component of Mγ induced by γ, and denote by ψ the flow induced on M .

Consider an immersed partial section Σ inside M . We can lift the sur-
face Σ to a surface inside the blowing up manifoldMγ. To do that we lift the
interior of Σ \ γ using the projection πγ, and we lift the boundary of Σ on γ
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using the direction tangent to Σ and transverse to γ. The immersed surface
obtained that way is also equal to the adherence of π−1

γ (
◦
Σ) insideMγ. we say

that this surface is induced by Σ inside the blowing up manifoldMγ. Notice
that the surface induced by Σ is transverse to the flow in its interior, but
non necessarily along its boundary components inside the torus Tγ ⊂ ∂Mγ.
We review below how the boundary of an immersed partial section inside Tγ
can be related to some geometric properties of the immersed partial section.

Lemma 1.6.5. Let Σ be an immersed partial section and γ be a boundary
component of Σ. Then there is a smooth homotopy along the flow from Σ to
an immersed partial section Σ′ such that the boundary of π−1

γ (
◦
Σ) inside Tγ

is a union of closed leaf of ψ|Tγ and of closed curves transverse to ψ|Tγ .

Proof. Denote by δ a curve inside ∂π−1
γ (

◦
Σ) ∩ Tγ, which is a smooth curve.

When δ corresponds to an intersection between the orbit γ and the interior
of Σ, δ is a fiber of Tγ → γ, so it is transverse to the flow ψ|Tγ . Now we
suppose that the curve δ corresponds to the boundary of the immersed partial
section Σ. In that case, since the boundary of Σ is immersed, the curve δ is
transverse to the fibers of the bundle (πγ)|Tγ : Tγ → γ.

Since the interior of Σ is transverse to the flow, it is oriented. Hence there
is a natural orientation of δ induced by the orientation of Σ. Consider a local
coordinate system R2 on Tγ such that the orbit arc of the flow are horizontal
in the coordinate system, and the fibers of Tγ → γ are vertical. Since δ
is transverse to the fibers of Tγ → γ, δ corresponds in the local coordinate
system to the graph of a smooth function f : R → R. If δ is not monotone
in the local coordinate system, then there exist two points on which f has
a positive and a negative derivative. Then at these points the flow induces
two opposite coorientations on δ. Consider one orbit arc which intersects δ
negatively. Then arbitrarily close to that orbit arc there exists an other orbit
arc which intersects the interior of Σ negatively, which is impossible. Hence δ
corresponds in local coordinate system to the graph of a monotone smooth
function.

If δ is not a closed leaf, we can find a second curve δ′ inside Tγ, which
remains arbitrarily close to δ, transverse to the fibers of the bundle Tγ → γ, in
a small neighborhood of δ and such that there exists a continuous function T :
δ → R such that the function (x ∈ δ)→ ψT (x)(x) has image δ′ and is of degree
one. Then we extends T to a smooth function on a small neighborhood of δ
inside π−1

γ (
◦
Σ). On a smaller neighborhood of γ inside π−1

γ (
◦
Σ), the image (x ∈
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δ)→ ψT (x)(x) ∈Mγ is a smooth surface transverse to the flow, and its image
in M is an immersed partial section. Hence we can find a homotopy along
the flow from the interior of Σ to the interior of another immersed partial
section whose boundary induces inside Tγ only closed leaf and transverse
curves.

As discuss in Section 1.4, for Anosov flows we can isotope in its interior a
partial section Σ to another partial section, which is given on small neighbor-
hoods of it boundary by local models. In particular for these local models,
their boundary in the blowing up manifold is always transverse to the flow.

Lemma 1.6.6. Let Σ be an immersed Birkhoff section for φ. Denote by δ ⊂
Tγ one boundary component of the surface induced by Σ in the blowing man-
ifold Mγ. Then δ intersects every orbit of the flow ψ|Tγ .

Proof. Denote by Σγ the surface induced by Σ inside the blowing up mani-
fold Mγ, and let x ∈ Tγ. Take (xn)n∈N be a family of points in Mγ \ Tγ that
converge to x. Since Σ is an immersed Birkhoff section, there exists T > 0
and for every n ∈ N there exists 0 ≤ tn ≤ T so that ψtn(xn) is inside Σγ.
Up to taking a subfamily of (xn)n, we can suppose that (tn)n converges
to 0 ≤ t ≤ T , so that ψt(x) ∈ Σγ ∩ Tγ.

Lemma 1.6.7. Let γ be a closed orbit of φ, Σ be an immersed partial section
for φ and Σγ be the surface induced by Σ inside the blowing up manifold Mγ.
We suppose that Σγ has a boundary component δ immersed inside Tγ, which
is transverse to the flow. We still denote by δ ⊂ Tγ the curve induced by
this boundary component. Then any Fried surgery with slope higher (resp.
lower) than δ makes δ a negative (resp. positive) boundary component of Σ
after surgery. If δ is a global section of ψ|Tγ , then the Fried surgery with
meridian δ erases δ as boundary component of Σ after surgery.

Now we suppose that Σγ has a boundary component δ immersed inside Tγ,
which is either a closed leaf of the flow ψ|Tγ or a transverse curve with infinite
slope. Then for any Fried surgery along the orbit γ, the curve δ induces a
boundary component after surgery which has the same sign than δ as boundary
component of Σ.

Proof. Take δ a fiber of πγ |Tγ , and δ
′ a transverse curve in Tγ of finite slope,

associated respectively to the projection π′γ : Mγ → M ′. Denote by Σ′ =
π′γ ◦ π−1

γ (Σ) the immersed partial section in M ′ induced by Σ. We orient
the curves in Tγ transversally to ψ using the coorientation by ψ and a fix
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orientation of Tγ. The sign of δ as boundary of Σ′ is the sign of the algebraic
intersection δ ·∩δ′. Hence if δ′ has a higher slope than δ, then we have δ ·∩δ′ > 0
and δ is a positive boundary of Σ′.

The same argument can be applied for the other cases.

One last lemma is needed to specify the linking numbers of Birkhoff sec-
tions along their boundary components.

Lemma 1.6.8. Let Σ1,Σ2 be two partial sections embedded in their interiors,
and γ ∈ ∂−Σ1 ∩ ∂+Σ2 a common boundary component with opposite signs.
If Σ1 or Σ2 is a Birkhoff section, then lkγ(Σ1,Σ2) 6= 0.

This lemma is easy to prove for Anosov flows, by using the stable foliation,
and needs the previous tools for general flows.

Proof. We define Mγ, πγ and Tγ as above. As explained in Lemma 1.6.5,
there exists two homotopies along the flow from the interior of Σ1 and Σ2

to the interior of two immersed partial sections Σ′1 and Σ′2, such that the
every boundary component of the induced surfaces Σ′i inside the torus Tγ is
either a closed leaf of the flow ψ|Tγ or is transverse to the flow ψ|Tγ . then we
have lkγ(Σ1,Σ2) = lkγ(Σ

′
1,Σ

′
2).

Up to exchanging all indices, we suppose that Σ1 is an immersed Birkhoff
section. Consider a boundary component δ1 ⊂ Tγ of the lift of Σ′1. Since Σ1

is an immersed Birkhoff section, Σ′1 is also an immersed Birkhoff section.
So according to Lemma 1.6.6, the curve δ1 is a global section of the flow
inside Tγ.

Similarly consider a boundary component δ2 ⊂ Tγ of the lift of Σ′2. If δ2 is
a closed orbit of the flow, since δ1 is a global section of the flow inside Tγ, the
curves δ1 and δ2 intersect, and all there intersections have the same algebraic
sign (which depends only on the orientation of δ2 relatively to the orientation
of the flow). So the linking number between these boundary components is
non-zero. If δ2 is transverse to the flow, we follow the next argument.

Denote by δ+, δ− ⊂ Tγ the non-empty unions of curves induced by the
boundary components in γ of Σ′1 and Σ′2 corresponding to positive and neg-
ative boundary components, and which are transverse to the flow inside the
torus Tγ. If we suppose that ψR(δ+) and ψR(δ−) are disjoint, and are open.
Then, by connectedness of Tγ, Tγ \ (ψR(δ+) ∪ ψR(δ−)) is not empty, which
contradicts Lemma 1.6.6.

Hence ψR(δ+)∩ψR(δ−) 6= ∅. By Lemma 1.6.4, the intersection δ+ ∩ δ− is
not empty. We can isotope δ+∪δ− along the flow such that if they contain two
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homologous curves inside Tγ, then these homologous curves do not intersect.
Then if two curves a ⊂ δ+ and b ⊂ δ− have a geometric intersection, there
algebraic intersections are non-zero.

Hence in both cases, the curves induced by Σ′1 and Σ′2 inside Tγ have a
non-zero algebraic intersection. Since

◦
Σ1 and

◦
Σ2 are embedded, all curves

in ∂π−1
γ (Σ′i) are homologous, for a fixed i. So the linking number lkγ(Σ

′
1,Σ

′
2) is

obtained is a positive multiple of the algebraic intersection of two curves δ1, δ2

in Tγ induced by the boundary of Σ′1 and Σ′2, which is not zero.

1.7 Partial sections of R-covered Anosov flows

In this section, we detail the construction of two types of immersed partial
sections which will be used in the last two chapters: the Birkhoff annuli and
the Fried sections. Before that we introduce the trace of a section in the
orbit space, and give the general construction of a ramified partial section
using its fundamental domain in the orbit space.

1.7.1 Trace of a section in the orbit space

Recall that M denotes a 3-manifold, p : M̃ →M the canonical projection of
its universal cover, φ an Anosov flow on M , and π : M̃ → O(M) the projec-
tion on the orbit space. Let Σ ⊂M be a connected immersed partial section
and Σ̃ be a connected component of the lift of Σ to M̃ . We call ρ(Σ) = π(Σ̃)
the trace of Σ in O(M), also denoted by ΘM(Σ). If Σ is a Birkhoff section,
the trace of Σ is all of O(M). Hence the trace is interesting only for study-
ing non-Birkhoff sections (that is immersed partial sections not intersecting
all orbits). It is often convenient to take the trace of an immersed partial
section Σ in O(M \ ∂Σ) instead, which is explained below. If Γ ⊂ M is a
finite set of closed orbits of the flow, we construct M ′ = M \ Γ, its universal
covering M̃ ′ and its orbit space O(M \ Γ) = M̃ ′/(orbits of the flow), which
is also the universal covering space of O(M)\ (π(pre-image of Γ)). The trace
of Σ in O(M \ Γ), denoted by ΘM\∂Σ(Σ), is obtained by lifting Σ \ (Σ ∩ Γ)

to M̃ ′ and projecting it inside O(M \ Γ).

S.Fenley studied the boundary of the traces of transverse surfaces of a
pseudo-Anosov flow [Fen99]. Given an immersed closed surface Σ ⊂ M
transverse to the flow, S.Fenley’s question is whether Σ lifts to a global



62 CHAPTER 1. BACKGROUND AND TRANSVERSE SURFACES

section inside some finite covering of M . This property is related to the
topology of the foliations Σ ∩ F s and Σ ∩ Fu of Σ, and with the trace of Σ
inside O(M). We are interested in a similar question, but for partial sections
with boundary and which are embedded in their interiors. We state below
three lemmas and theorems from S.Fenley adapted to our hypotheses.

Theorem 1.7.1. Let M be a closed 3-manifold and φ be an Anosov flow
on M , and Σ ⊂ M be a connected partial section embedded in its interior.
Then:

• Consider
◦̃
Σ a connected lift of

◦
Σ in the universal covering of M \ ∂Σ.

Then the map π :
◦̃
Σ→ O(M\∂Σ) is injective, equivalently,

◦̃
Σ intersects

at most once every orbit in the universal covering space of M \ ∂Σ.

• Σ is a Birkhoff section if and only if the trace of Σ on O(M \ ∂Σ) is
all of O(M \ ∂Σ).

• When Σ is not a Birkhoff section then the boundary of the trace of Σ
on O(M \ ∂Σ) is a union of stable and unstable leaves.

In the third point of the theorem, the boundary component of the trace
of Σ inside O(M \ ∂Σ) can correspond to half stable and unstable leaves of
a closed orbit which is a boundary component of Σ. This phenomenon is
precised further in the section.

We prove each point independently, starting with the first point proved
below.

Proof of the first point. We prove first that π :
◦̃
Σ→ O(M \ ∂Σ) is injective.

Suppose that it is not the case, that is there exist x, y ∈
◦̃
Σ such that x 6= y

and π(x) = π(y). Since
◦̃
Σ is connected, there exists a path δ1 ⊂

◦̃
Σ from y

to x. Since π(x) = π(y) and x 6= y, there exists a non-trivial orbit arc δ2

between x and y. Up to inverting x and y, we can suppose that the flow
orients δ2 from x to y. By construction, for ε > 0 small enough, φε(δ2) ∩

◦̃
Σ

contains y so it is not empty. Also φε(δ1) ∩
◦̃
Σ = ∅ since

◦̃
Σ is embedded,

transverse to the flow and δ1 ⊂
◦̃
Σ. Hence δ1 ∪ δ2 is a closed curve and its

algebraic intersection with
◦̃
Σ is (δ1∪δ2) ·∩

◦̃
Σ = φ̃ε(δ1∪δ2) ·∩

◦̃
Σ = |φ̃ε(δ2)∩

◦̃
Σ| 6= 0.

Furthermore δ1 ∪ δ2 is a closed curve in the universal covering of M \ ∂Σ,
so that its image inside M \ ∂Σ, denoted by δ is a null homologous closed
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curve. Hence algebraically δ ·∩
◦
Σ = 0 which is a contradiction. Hence π :

◦̃
Σ→

O(M \ ∂Σ) is injective.

S.Fenley used other arguments for this proof, which work for immersed
transverse surfaces, but with no boundary.

Remark 1.7.2. Consider a stable leaf ls in the boundary of the trace of Σ
inside O(M \ ∂Σ). Suppose that there exist an element g ∈ π1(Σ) which is
not trivial in homotopy inside M , and a point x inside ls which satisfy g.x =
x. S.Fenley proved that the curve ls corresponds to a closed leaf of the
foliation Σ ∩ Fu on Σ. Indeed the unstable leaf lu of x intersects the trace
of Σ in a leaf arc, which is invariant by g by hypothesis. Hence that leaf arc
corresponds inside the surface Σ to a close leaf of the foliation Fu ∩

◦
Σ. We

can erase that close leaf with the following procedure.
Let Σ be an immersed partial section, and let l be a closed stable or un-

stable leaf of F s ∩
◦
Σ. Then S.Fenley prove [Fen99] that the leaf of F s which

contains l also contains a closed orbit γ of the flow. Denote by the F the
compact connected component of the stable leaf F s(γ) minus the curves γ∪l.
Then one can cut Σ along the curve l and isotope it on a small neighborhood
of F to obtain a new immersed partial section Σ′ with two new boundary
components +γ and −γ both with linking number zero. This idea is detailed
at the end of the proof of Proposition 1.4.13. We obtain back Σ by desin-
gularisating Σ′ along these two new boundary components. Since the stable
foliation has non trivial holonomy along a closed leaf of Σ ∩ F s, the closed
leaves of Σ ∩ F s are in finite quantity (and similarly for Σ ∩ Fu). Thus one
can cut along a finite number of closed leaf to obtain an immersed partial
section with no closed leaf of F s and Fu in its interior.

Trace of a partial section with linking number zero. Let Σ be a
connected partial section embedded in its interior. We suppose that Σ has a
boundary component γ with a linking number zero. Denote by U a connected
component of a small closed tubular neighborhood of γ inside Σ. If Σ has
several boundary components immersed into γ, we only consider one of them
in this paragraph. Under some convenient hypothesis on U , we prove below
that the trace of U inside O(M) is a triangle with two ideal points at infinity
and whose edges are a half stable leaf ls, a half unstable leaf lu of ρ(γ) ∈ O(M)
and a third curve, such that the interiors of ls and lu lift inside O(M \∂Σ) to
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two boundary components of the trace of Σ in O(M \Γ). A precise statement
is given in Proposition 1.7.7

We precise below some notations we use until the end of that subsection.
The tubular neighborhood U of γ has the topology of an annulus, so it
has another boundary component that we denote by δ ⊂ M . Denote M̃
and M̃ \ ∂Σ the universal covering ofM andM \∂Σ. We lift the interior of Σ

into a connected surface Σ̃ inside M̃ \ ∂Σ, we lift U into a connected strip Ũ
inside M̃ and we denote by γ̃ and δ̃ the boundary components of Ũ which
respectively project into γ and δ inside M . Since the annulus U is a subset
of Σ, we can suppose that the lifted surface Σ̃ ⊂ M̃ \ ∂Σ projects inside M̃ to
a surface which contain the annulus Ũ \ γ̃. We also denote by π : M̃ → O(M)
the quotient map, so that π(Ũ) is the trace of U inside O(M).

Lemma 1.7.3. We can choose the neighborhood U arbitrarily small and such
that its boundary component δ is transverse to the stable and unstable foli-
ation of the flow, and such that the projection π : M̃ → O(M) is injective
on Ũ \ γ̃.

Proof. We consider the neighborhood U of γ in Σ defined as above, and
we find inside U a smaller annulus with the good property. We consider
the suspension manifold N = R3/(x, y, z) ≡ (λx, µy, z + 1) for two real
numbers λ and µ such that λµ > 0, |λ| > 0 and 0 < |µ| < 1. We also
consider the flow ψ on N given by ψt(x, y, z) = (x, y, z + 1), and its closed
orbit γN = (0, 0)× (R/Z). According to Lemma 1.4.2, the values of λ and µ
can be chosen such that there exist a smooth orbital equivalence between
the flow φ on a small neighborhood of γ in M and the flow ψ on a small
neighborhood of γN in N . We consider the coordinate system around γ
given by a neighborhood of γN in N .

We define the annulus AN = {(ε1|λ|tr, ε2|µ|tr, t) ∈ N |r ∈ R?+, t ∈ R} for
some ε1, ε2 ∈ {−1, 1}. According to Proposition 1.4.11, we can chose ε1, ε2 ∈
{−1, 1} such that there exists an isotopy along the flow from a tubular neigh-
borhood of γ inside Uγ̃ to a neighborhood of γN inside the annulus AN .
For r0 > 0 small enough, the curve (t ∈ R) → (ε1|λ|tr0, ε2|µ|tr0, t) is trans-
verse to the stable and unstable foliation, and bound a smaller annulus
than U . Hence we can consider that small neighborhood of γ, that we denote
by U ′. We also denote by δ′ its boundary component that is not γ.
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The annulus U ′ \ γ is given as a sub-annulus of the surface A, on which
the trace of the stable and the unstable foliation can explicitly be computed.
The foliations U ′ ∩ F s and U ′ ∩ Fu are transverse and both homeomorphic
to the foliation on R+ × S1 whose leaves are the curves R+ × {cste}. Hence
every pair of disjoint points x, y ∈ Ũ \ γ̃ can be connected by an arc in Ũ \ γ̃
transverse either to the foliation U ′ ∩ F s or to U ′ ∩ Fu. Since the map π
is locally injective on Ũ \ γ, the images π(x) and π(y) inside O(M) can
be connected by an arc transverse to one of the two stable and unstable
foliation Ls and Lu. Since the orbit space is simply connected, there is no
closed curve inside O(M) which are transverse to the stable or the unstable
foliation. Hence π(x) and π(y) are disjoint. So π : M̃ → O(M) is injective
on Ũ \ γ̃.

We consider π(δ̃) the trace of δ inside O(M), and π(γ̃) which is a single
point of O(M).

The partial section Σ has a linking number zero along γ, so according
to 1.4.4 the germ of U at γ remains in a quadrant of γ delimited by the
half stable leaf F s(γ) and the half unstable leaf Fu. We lift this quadrant
to M̃ and projects it into O(M), and we denote by ls and lu the stable and
unstable half leaves delimiting this quadrant inside O(M).

Recall that we denote by Ls and Lu the stable and unstable foliations
on O(M). We fix an orientation on the foliations Ls and Lu, and for any x ∈
O(M) we define Ls+(x) and Ls−(x) the half stable leaves respectively at the
left of x and at the right of x, and by Lu+(x) and Lu−(x) the half unstable
leaves respectively above x and below x. We consider the orientation on Ls
and Lu such that ls = Ls+(π(γ̃)) and lu = Lu+(π(γ̃)). Then we consider
the connected component of O(M) \ (ls ∪ lu) containing the quadrant (+,+)
of π(γ̃), that we denoteQ+,+

0 , and the subsetQ+,+
1 = {x ∈ O(M)|Ls−(x)∩lu 6=

∅ and Lu−(x) ∩ ls 6= ∅} ⊂ Q+,+
0 .

We denote by g ∈ π1(M) the homotopy class inside M of δ which satis-
fies g.δ̃ = δ̃. Since δ is homotopic to either γ or 2γ, we have g.γ̃ = γ̃. Then the
element g also preserves the stable and unstable leaves Ls(πγ̃) and Lu(πγ̃),
and it preserves the quadrant along γ̃ which contains δ̃. Hence it preserves
the half leaves ls and lu.

Lemma 1.7.4. The set Q+,+
1 is invariant by the action of g on O(M).

If U is a small enough neighborhood of γ inside Σ, then π(Ũ) ⊂ Q+,+
1 .

Proof. By definition of g, the leaves ls and lu are preserved by the action
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of g. So Q+,+
0 is invariant by the action of g. Then by definition of Q+,+

1 ,
this set is also stabilised by the action of g.

First notice that since Ls,Lu is a foliation locally trivial, for a small
enough neighborhood N of the point π(γ̃) in the orbit space O(M), we
have N ∩ Q+,+

0 ⊂ Q+,+
1 . Denote by Ṽ ⊂ Ũ a compact fundamental domain

of the covering map Ũ → U . The projection π|Ṽ : Ṽ → O(M) is continuous,
so if U is taken small enough, then π(Ṽ ) lies inside the neighborhood N .
Additionally according to Lemma 1.4.4, if U is chosen small enough, π(Ṽ )
remains in the quadrant Q+,+

0 . So π(Ṽ ) ⊂ Q+,+
1 .

The fundamental group of U is generated by g, and Ṽ is a fundamental
domain of the covering map Ũ → V . So Ũ is equal to the union of the images
of Ṽ by gn for all n ∈ Z. That is ∪n∈Zgn.Ṽ = Ũ . Hence

π(Ũ) ⊂ ∪n∈Z(gn.π(Ṽ )) ⊂ ∪n(gn.Q+,+
1 ) ⊂ Q+,+

1

For any point x ∈ O(M) in the quadrant Q+,+
1 , by definition the stable

leaf Ls(x) and the unstable leaf Lu(x) intersect the two half leaves ls and lu.
Since every pair of stable and unstable leaves in the orbit space intersect at
most once, there exist two continuous projections ps : Q+,+

1 → ls and pu :
Q+,+

1 → lu defined by taking the intersection of the stable and unstable leaves
of a point x with the leaves ls and lu. We combine these projections to have
a coordinate system on Q+,+

1 . The two half leaves ls and lu have each an
end at infinity that we denote by +∞s and +∞u. The two sets ls ∪ {+∞s}
and lu ∪ {+∞u} are then homeomorphic to [0, 1]. We pull back the order
on [0, 1] to ls ∪ {+∞s} and lu ∪ {+∞u}, such that π(γ̃) and +∞s,u are
respectively the minimal and maximal points of ls∪{+∞s} and lu∪{+∞u}.

Lemma 1.7.5. Let (xn)n∈N be a sequence in Q+,+
1 such that ps(xn) −−−−→

n→+∞
+∞s and pu(xn) −−−−→

n→+∞
π(γ̃), then (xn)n is out of any compact for n large

enough.

The curve π(δ̃) is embedded in O(M) such that we have ps(x)
x∈δ̃−−−−−−−→

pu(x)→π(γ̃)

+∞s and ps(x)
x∈δ̃−−−−−−−→

pu(x)→+∞u
π(γ̃).

Futhermore π(δ̃) bounds two connected components in the orbit space O(M).
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Proof. Suppose that the sequence (xn)n admits an infinite amount of terms
inside a compactK. Up to an extraction, we can suppose that (xn)n converge
to a point y in K and that (ps(xn))n and (ps(xn))n inside ls and lu are
respectively increasing and decreasing. Then for n large enough, the half
leaf Lu−(xn) intersects the half leaves Ls−(y). Since xn ∈ Q+,+, there is an
open arc of unstable leaf lun whose ends are xn and a point in ls. There
are three cases to consider: Ls−(y) ⊂ Ls(π(γ̃)) or Ls−(y) intersects lun in its
interior or Ls−(y) does not intersect lun. Since ps(xn) grows to +∞s we cannot
have y ∈ ls, so the first case is impossible. If Ls−(y) intersects the unstable
arc lun in its interior, then that intersection point lies inside Q+,+

1 so Ls−(y)
intersect the interior of lu\π(γ̃) in a point yu. This is impossible since pu(xn)
converge to π(γ̃) but must remains above yu.

Since Ls−(y) intersects Lu−(xn) but not lun, the stable leaf ls separates y
and xn inside O(M). Hence y and xn are not in the same connected compo-
nent of O(M)\Ls(π(γ̃)), which contradicts that xn converges to y. Hence xn
leaves any compact in a finite step.

Now we prove the second point. Since δ̃ is invariant by the homotopy g
of δ, there exists a compact curve c ⊂ π(δ̃) such that its image under gZ
recover all π(δ̃). The flow is Anosov and g is the homotopy class of the closed
curve γ (possibly with multiplicity 2), so g contracts ls and expands lu. Hence
for any point x in Q+,+

1 , the sequence (ps(gn.x))n converges to π(γ̃) when n
tends to +∞ and converges to +∞s when n tends to −∞. Since the curve c
is compact, the same convergence happens uniformly for x in c. Similarly
for a point x in x, the sequences (pu(gn.x))n converges to π(γ̃) when n tends
to −∞ and converges to +∞u when n tends to +∞, and these convergence
are uniform on c. These four convergences implies the second point of the
lemma.

To prove the third point, we notice that π(γ̃) is the injective image of
the curve γ̃ so that it is also a curve. According to the two first points, its
intersection with any compact of O(M) is a compact. Also O(M) is a simple
connected plane, these three properties imply that O(M) \ π(γ̃) is made of
two connected components.

We consider Ṽ ⊂ Ũ a closed fundamental domain of the covering map Ũ →
U , such that ∂Ṽ is the union of two orbit arcs and of two open closed curves c̃
and g.c̃.

Lemma 1.7.6. The curves ls ∪ lu ∪ π(δ̃) cut the orbit space O(M) in three
connected components, one of which, denoted by T ⊂ O(M), satisfies ∂T =
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ls∪lu∪π(δ̃). Furthermore π(c̃) is a subset of T and T \π(c̃) has two connected
components.

Proof. We prove that π(δ̃) delimits two connected component in O(M), one
of which contains ls and lu. Since ls ∪ lu is a proper curve (it intersects
any compact in a sub-compact) in a simply connected plane O(M), (ls ∪
lu) also delimits two connected components inside O(M). Since the two
curves (ls ∪ lu) and π(δ̃) are disjoint, their union bounds three connected
components in O(M). We denote by T the unique connected component
lying between (ls ∪ lu) and π(δ̃), so that its boundary is ls ∪ lu ∪ π(δ̃). Since
both boundary components of T are non-compact curves inside the simply
connected plane O(M), T is also simply connected.

Since the curve c̃ is inside the strip Ũ ∪ γ̃, and the projection π : M̃ →
O(M) is injective on Ũ ∪ γ̃, the curve π(c̃) is disjoint from ls ∪ lu and π(δ̃).
But c̃ has an end inside γ̃ and an end inside δ̃, so π(c̃) has exactly two
accumulation points, one in both curves ls∪lu and π(δ̃). Hence one has π(c̃) ⊂
T . Since π(c̃) is properly embedded inside T and T is simply connected, that
curve cut T in two connected components.

Proposition 1.7.7. Let Σ be a partial section embedded in its interior and
with a linking number zero along a boundary component γ. Denote by U ⊂ Σ
an annulus in a small enough neighborhood of γ, such that γ ⊂ ∂U . Then
there exists a closed ideal triangle T inside the orbit space O(M) with an end
at ρ(γ) and with two edges ls and lu which are half stable and unstable leaves
of ρ(γ) such that the trace of U inside O(M) is T minus the interior of ls
and lu. Furthermore there exists a lift s : T \ ρ(γ) → O(M \ ∂Σ) such that
the image of s(T \ (ls ∪ lu)) lies inside a trace of Σ, and s(

◦
ls) and s(

◦
lu) are

boundary components of the trace of Σ inside O(M \ ∂Σ).

Notice that the ideal triangle T in the previous lemma corresponds to the
adherence of the set T used before.

Proof. We consider the notations defined above. We need to prove that π(Ũ)
is equal to T ∪ δ̃ ∪ π(γ̃), and relate this to the trace of Σ inside the orbit
space O(M \ ∂Σ).

Consider the fundamental Ṽ of Ũ → U , whose boundary are given by the
union of two orbit arcs γ̃∂V ⊂ γ̃ and δ̃∂V ⊂ δ̃ with the two curves c̃ and g.c̃.
According to Lemma 1.7.4, the image π(Ṽ ) is included in the quadrant Q+,+

1

of π(γ̃). Additionally if the neighborhood U of γ is taken small enough,
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then U does not intersects the germs of stable and unstable leaves of γ,
so π(Ṽ \ γ̃∂V ) ⊂ Q+,+

1 \(ls∪lu). Furthermore by definition of the fundamental
domain, we have Ũ = ∪n∈Z(gnṼ ) so π(Ũ \ γ̃) ⊂ Q+,+

1 \ (ls ∪ lu).
According to Lemma 1.7.3, the projection π : M̃ → O(M) is injective

on Ũ \ γ̃. Hence the image π(Ũ \ γ̃) \ (ls ∪ lu) is in the same quadrant Q+,+

minus the curves ls ∪ lu ∪ π(δ̃). According to 1.7.6 the curves ls ∪ lu ∪ π(δ̃)
delimit a connected component inside O(M), we denote by T its adherence
inside O(M). Additionally π(c̃) ⊂ π(Ũ \ γ̃) is inside the interior

◦
T and cut

◦
T

in two connected components. Hence Additionally the image π(Ũ \ γ̃) lies
inside T \ (ls ∪ lu).

We can now prove that π(Ũ \ γ̃) = T \ (ls ∪ lu). Let p be a point
inside T \(ls∪ lu). Denote by g ∈ π1(M) the homotopy class of δ, such that g
preserves T , contracts the leaf ls and expands the leaf lu. Then gn.p diverge at
infinity to the end +∞u when n→ +∞, and to the end +∞s when n→ −∞.
Since the curve π(c̃) delimits two connected components in T \ (ls ∪ lu),
and separates the two infinity points +∞u and +∞s, there exists n ∈ N
such that π(c̃) separates the points {+∞s, gn.p} to the points {+∞u, gn+1.p}
inside the set T \ (ls ∪ lu). Then g.π(c̃) separates {+∞s, gn+1.p} to the
points {+∞u, gn+2.p}. So gn+1.p is in a connected component of (T \ (ls ∪
lu)) \ (π(c̃) ∪ g.π(c̃)).

The projection π is injective on Ṽ \ γ̃, and π(∂Ṽ ) = π(γ̃∂V ∪ δ̃∂V ∪ c̃∪g.c̃),
so gn+1.p lies inside π(Ṽ ). Hence the point p is inside g−n−1.π(Ṽ ) ⊂ π(Ũ).
Therefore T \ (ls ∪ lu) ⊂ π(Ũ \ γ̃), and according to what precedes, we have
the equality T \ (ls ∪ lu) = π(Ũ \ γ̃).

We now prove that T \ (ls∪ lu) lifts to a subset of the trace of Σ in O(M \
∂Σ). We denote by M̂ \ ∂Σ the universal covering of M \ ∂Σ. We lift U \ γ
and Σ \ ∂Σ into two connected surfaces Û \ γ and Σ̂ \ ∂Σ inside M̂ \ ∂Σ,
such that Û \ γ ⊂ Σ̂ \ ∂Σ and that Û \ γ projects to Ũ \ γ̃ with the projec-
tion M̂ \ ∂Σ→ M̃\(lifts of ∂Σ). We also denote by π̂ : M̂ \ ∂Σ→ O(M\∂Σ)

the projection. By construction there exists a lift s : π(Ũ \ γ̃) → π̂(Û \ γ).
Since π(Ũ \ γ̃) is simply connected, the lift s is a homeomorphism.

By definition π̂(Û \ γ) is inside the trace π̂(Σ̂ \ ∂Σ) of Σ \ ∂Σ. So the
leaves s(

◦
ls) and s(

◦
lu) are in the adherence of the trace π̂(Σ̂ \ ∂Σ). Suppose

that there exists a point z in Σ̂ \ ∂Σ such that π̂(z) is inside s(
◦
ls). Since s(

◦
ls)

is disjoint from of s(π(Ũ \ γ)), the point z remains out of the annulus Û \ γ.



70 CHAPTER 1. BACKGROUND AND TRANSVERSE SURFACES

And since π̂(z) is inside s(
◦
ls), there exists points in Σ̂ \ ∂Σ arbitrarily closed

to z, which are also in Û \ γ. Then z is in the boundary component of Û \ γ
which is a lift of δ. So one has π̂(z) ∈ s(π(δ̃)), which is impossible since π(δ̃)

and ls are disjoint. Hence s(
◦
ls) and similarly s(

◦
lu) are two boundary compo-

nents of the trace of Σ.

The last proposition is used to prove the second and third points of The-
orem 1.7.1.

Pseudo-Anosov flows To finish the proof of Theorem 1.7.1, we need to
introduce pseudo-Anosov flows. A pseudo-Anosov flow is informally a flow
Anosov outside a finite number of singular orbits, these orbits being given
by local model that we review below. We define the pseudo-Anosov flow as
in [Fen99] and refer to it for more details.

Take an integer n ≥ 2 and consider the quadratic differential zn−2dz2

on C (as defined in [Str84]). That quadratic form induces two singular 1-
foliations f s and fu on C, whose leaves satisfies arg(dz) = −1

2
arg(zn−2)

(mod π) and arg(dz) = −1
2

arg(zn−2) + π
2

(mod π). These foliations admit a
common n-prong singularity at the point zero, and are regular and transverses
outside that singularity. Also f s and fu both admit n singular half leaves
which contain the singular point.

For any λ > 1 and any integer 0 ≤ k < n, there exists homeomor-
phism Gλ,n,k : C → C preserving the foliations fu and f s, differentiable
outside the singular point, expanding the leaves of lu and contracting the
leaves of ls by factors λ and 1/λ, and sending any singular leaf l to the sin-
gular leaves R 2kπ

n
(l). Here Rθ : C→ C is the linear rotation of degree θ. We

define the local model given by Nλ,n,k = C×R/(z, t+1) ≡ (Gλ,n,k(z), t) with
the flow ψs(x, t) = (x, t + s). The suspension of f s and fu are two singu-
lar 2-foliations of Nλ,n,k. We called strong foliations the foliation f s×{cste}
and fu × {cste} on Nλ,n,k.

A pseudo-Anosov flow on a closed 3 manifold M is a C0 flow such that:

• For every point x ∈M , the function t 7→ φt(x) is of class C1.

• There is a finite number of orbits, called singular, out of which the flow
is smooth.
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• For every singular orbit γ, there exists a neighborhood of γ on which
the flow is orbitally equivalent to a neighborhood of the closed orbit on
the local model Nλ,n,k.

• Out of the singular orbits, the orbital equivalence mentioned above is
smooth and its differential has a bounded norm, for some norm given
by two metrics on M and Nλ,n,k.

• Out of the singular orbit, the flow is Anosov. That is for a norm ‖.‖
given by a metric on M , the exists a splitting of the tangent bun-
dle TM \ singular orbits = Es ⊕ Eu ⊕ X and two constant A,B > 0
such that X is the direction of the flow, for every u ∈ Es, ‖Dφt(u)‖ ≤
A e−Bt ‖u‖ for all t ≥ 0, and for every u ∈ Eu, ‖Dφt(u)‖ ≤ A eBt ‖u‖
for all t ≤ 0.

• The orbital equivalences mentioned in the second item send the folia-
tions Es and Eu to the strong stable foliations and the strong unstable
foliations of Nλ,n,k (minus the singular orbit).

Notice that we only allowed n-prong singularities for n ≥ 2. Three
facts are important for now: a Fried surgery on an Anosov flow with ori-
ented foliations induces a pseud-Anosov flow [Fri83], the theory of the orbit
space of pseudo-Anosov flow is similar to the theory for Anosov flow, and
S.Fenley [Fen99] characterizes the trace of a closed transverse surface in the
orbit space of a pseudo-Anosov flow. Given a partial section in an Anosov
flow, we use these facts to create a pseudo-Anosov flow and a partial section
with less boundary components, and whose trace in the orbit space can be
related to the original partial section.

We review the orbit space of a pseudo-Anosov flow. Denote by φ a pseudo-
Anosov on a 3-manifold M . We defined similarly the universal covering M̃
of M , and the orbit space O(M) obtained as the quotient of M̃ by the
orbits of the flow. The orbit space of a pseudo-Anosov flow is a topological
plane [FM01], equipped with two singular 1-foliation Ls and Lu induced by
the singular foliations of the flow. The singular foliations Ls and Lu have
common n-prong singularity for n ≥ 3, and are regular and transverse outside
these prong singularities. Just for Anosov flow, we define the trace of a partial
section Σ inside the orbit space O(M \ ∂Σ), which is the universal covering
of the orbit space O(M) minus the discrete subset induced by the orbits ∂Σ.
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LetM be a 3-oriented manifold, φ be an Anosov flow with orientable sta-
ble and unstable foliations, and Σ ⊂M be a partial section. Consider a finite
number of closed orbits Γ ⊂M and consider a Fried surgeries along each com-
ponents of Γ. These surgeries induces a manifoldM ′, a set of closed orbits Γ′

and a pseudo-Anosov flow φ′ such that φ outside Γ and φ′ outside Γ′ are
orbitally equivalent. Notice that we need the stable and unstable foliations
to be orientable, otherwise the flow obtained by surgery may have 1-prong
singularities around a singular orbit, which is not allowed by our definition of
pseudo-Anosov flow. We now explain why these Fried surgeries also induce
a partial section Σ′ ⊂ M ′ such that Σ \ Γ and Σ \ Γ′ are isotopic along the
flow.

Recall that the Fried surgeries are obtained using the following steps: we
take the blowing up MΓ of M along Γ together with the flow φΓ induced
on MΓ. On each boundary component T of the blowing up we consider a
bundle T → S1 whose fibers are all transverse to the flow φΓ

|T and intersect
every orbit of the flow φΓ

|T. Then we quotient each fibers inside T into one
point. If Σ is a partial section of the flow φ, according to Lemma 1.4.11,
there is an isotopy along the flow of the interior of Σ to the interior of a
partial section Σ0, which is given by local models given in Example 1.4.3. In
particular all these local models lift to compact surfaces insideMΓ, transverse
to the flow. Hence Σ0 lift to a compact surface ΣΓ

0 inside MΓ, transverse to
the flow, which then projects into a compact surface Σ′ inside M ′.

To make Σ′ a partial section of the flow φ′, we need to control how its
boundary components are projected insideM ′. Consider a boundary compo-
nent T of MΓ and T→ S1 the bundle mentioned above. One can isotope ΣΓ

0

such that the boundary component ΣΓ
0 ∩ T of ΣΓ

0 are either all transverse to
the fibers of the bundle T→ S1, or are all tangent to these fibers. Then ΣΓ

0

projects inside M ′ to a compact surface Σ′0 such that for any orbit γ in Γ′, is
either a smooth local transverse section around γ, or intersects γ in a finite
number of points. In the last case, in a small neighborhood of γ, the sur-
face Σ′0 can be isotope along the flow into a surface smooth and transverse
to γ. Hence there exists a partial section Σ′ isotopic to Σ \ Γ outside Γ′.

Remark 1.7.8. We consider the notation of the three previous paragraphs
for Σ a partial section of an Anosov flow φ (embedded in its interior). On
can chose Γ to be the union of boundary components of Σ with linking
number non-zero. Since Σ is embedded in its interior, up to an isotopy
of

◦
Σ, Σ lifts inside MΓ to a compact embedded surface ΣΓ transverse to the
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flow. Additionally since Σ has linking number non-zero along Γ, for every
boundary components T of the blowing up manifold MΓ, ΣΓ intersects every
orbit of the flow inside T. Hence one can chose a bundle T→ S1 whose fibers
are transverse to the flow, intersect all orbits inside T, and such that ΣΓ ∩T
is a union of fiber. Then the Fried surgeries given by these bundles induces
a manifold M ′ with a flow φ′, some closed orbits Γ′ on which were made the
surgeries, and a partial section Σ′ such that:

• the flow φM\∂Σ and φ′M\Γ are canonically orbitally conjugated,

• the surfaces Σ \ Γ and Σ′ \ Γ′ are isotopic along the flow,

• all boundary components of Σ′ have a linking number zero,

• the orbit spaces O(M \ ∂Σ) and O(M \ (Γ′ ∪ ∂Σ′)) are canonically
homeomorphic,

• the trace of Σ inside O(M \∂Σ) and the trace of Σ′ inside O(M ′ \ (Γ′∪
∂Σ′)) are equal.

We use that remark to prove the last two items of Theorem 1.7.1.

Lemma 1.7.9. Let φ be an Anosov flow on a 3-manifold and Σ be a partial
section embedded in its interior. Take f : M ′ →M a finite covering space, φ′
the flow induced on M ′, and Σ′ be a connected component of f−1(Σ). Then Σ
is a Birkhoff section if and only if Σ′ is a Birkhoff section

Lemma 1.7.10. If Σ′ is a Birkhoff section, then Σ intersects every orbit
in bounded time, so it is also a Birkhoff section. We suppose that Σ is a
Birkhoff section and prove that Σ′ is also a Birkhoff section.

The first case is when Σ has no boundary component. Then Σ is a global
section of φ, so φ is the suspension of an Anosov diffeomorphism on Σ. In
that case, φ′ is also a suspension of an Anosov diffeomorphism on Σ′, and Σ′

is a finite covering space of Σ. Hence Σ′ is a Birkhoff section.
In the other case, we can prove that the group morphisme π1(Σ)→ π1(M)

is surjective. Indeed take γ a boundary component of Σ and take a point x
in γ. Take another close curve δ ⊂ M based at x. We first homotope δ
relatively to x such that δ intersects ∂Σ only at x. Since Σ is a Birkhoff
section, we can homotope δ along the flow to a closed curve which is the union
of two curve δ1 ⊂

◦
Σ and δ2 ⊂ γ. That curve is all inside Σ, so π1(Σ) →

π1(M) is surjective. Hence the surface f−1(Σ) is connected, and it is clear
that it intersects every orbit in bounded time. So Σ′ is a Birkhoff section.
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Proof of the second item of Theorem 1.7.1. Let M be a closed 3-manifold
and φ be an Anosov flow on M , and Σ ⊂ M be a connected partial sec-
tion embedded in its interior. We need to prove that Σ is a Birkhoff section
if and only if the trace of Σ in O(M \ ∂Σ) is not all the orbit space.

Suppose that Σ has a boundary component γ with linking number zero.
Then according to Lemma 1.4.4, the section Σ does not intersect the germ of
stable and unstable leaves of the orbit γ. Hence Σ does not intersect some half
orbit inside the germ of the stable leaves at γ, so it is not a Birkhoff section.
Additionally according to Proposition 1.7.7, the trace of Σ in O(M \ ∂Σ) is
not all the orbit space, so the equivalence is satisfied in that case.

Suppose now that Σ has no boundary component with linking num-
ber zero. Because of the previous lemma, we can take a finite covering
space f : N → M which is orientable such that the lifted flow f ?φ on N is
Anosov and has orientable stable and unstable foliations. This covering space
can be defined as a connected component of the bundle given by the local ori-
entations ofM and the local orientations of its stable and unstable foliations.
Then Σ ⊂ M is a Birkhoff section if and only if any connected component
of f−1(Σ) is a Birkhoff section. Additionally the trace of Σ in O(M \ ∂Σ) is
equal to the trace of any connected component of f−1(Σ) in O(N \f−1(∂Σ)),
since the trace is defined using the universal covering space ofM \∂Σ. Hence
up to changing the notation, we suppose that M is orientable and the flow
has orientable stable and unstable foliations.

We consider the manifold M ′, the flow φ′ and the partial section Σ′ given
in 1.7.8, obtained by Fried surgeries along the boundary components of Σ,
such that Σ′ has no boundary. Then S.Fenley proved in [Fen99] that Σ′ is a
global section of the flow φ′ if and only if the trace of Σ′ in O(M ′) is all the
orbit space. We denote Γ = ∂Σ and Γ′ ⊂M ′ the set of closed orbits induced
by Γ after surgery.

The orbit space O(M ′ \ Γ) is the universal covering of the space O(M ′)
minus the points induced by Γ, so the trace of Σ′ inside O(M ′\Γ′) is the lift of
the trace of Σ′ inside O(M ′) \ (lift of Γ′). Hence the trace of Σ inside O(M \
∂Σ) is all the orbit space if and only Σ′ is a Birkhoff section. Since Σ \ ∂Σ
and Σ′ \ Γ′ are isotopic along the flow φM\∂Σ, Σ is a Birkhoff section of φ if
and only Σ′ is a Birkhoff section of φ′. Which conclude the proof.

We finish by proving the third point in Theorem 1.7.1. The proof starts
with the original proof of S.Fenley, and finish by some precise considerations
on the boundary of the partial section.
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Proof of the third item of Theorem 1.7.1. Let M be a closed 3-manifold, φ
be an Anosov flow on M , and Σ ⊂M be a connected partial section embed-
ded in its interior. We will prove that the trace of Σ in O(M \∂Σ) is a union
of stable and unstable leaves. We first consider an orientable finite covering
space f : M1 → M such that the flow φ lift to a flow φ1 which is Anosov
with oriented stable and unstable foliations. Notice that the trace of Σ is
somewhat preserve by this covering, in a sense we are going to precise below.

We consider the sets of orbit Γ = ∂Σ and Γ1 = f−1(Γ), and the partial
section Σ1 obtained as one connected component of f−1(Σ1). We consider
the Fried surgeries described in Remark 1.7.8. More precisely we do the Fried
surgeries on the connected components of Σ1 with linking number non-zero,
such that it induces a manifold M2, pseudo-Anosov flow φ2, a collection of
orbits Γ2 and a partial section Σ2 such that:

• Σ2 has no boundary components of linking number non-zero and ∂Σ2 ⊂
Γ2,

• φ2 \ Γ2 is orbitally equivalent to φ1 \ Γ1,

• we have the two equalities O(M \ Γ) = O(M1 \ Γ1) = O(M2 \ Γ2),

• the trace of Σ2 insideO(M2\Γ2) is equal to the trace of Σ1 insideO(M1\
Γ1) and to the trace of Σ inside O(M \ Γ) = O(M1 \ Γ1).

We rewrite below the proof of S.Fenley and we add some arguments for
the boundary components of linking number. Denote by M̃2 \ Γ2 the uni-
versal covering space of M2 \ Γ2, by φ̃2 the induced flow on M̃2 \ Γ2, and
by ΘM2\Γ2(Σ2) the trace of Σ2 in O(M2 \Γ2). Take a point p ∈ ∂ΘM2\Γ2(Σ2).
We need to prove that inside O(M2\Γ2), either the stable leaf or the unstable
leaf of p is a boundary component of the trace of Σ2.

Since φ2 is pseudo-Anosov, so the orbit space O(M2) may have singular
stable and unstable leaves. However, all the singular orbits of M2 are by
construction inside the set of orbits Γ2, so the manifold M̃2 \ Γ2 and the
orbit space O(M2 \ Γ2) have only regular stable and unstable leaves.

Take (pn)n∈N a sequence of point of ΘM2\Γ2(Σ2) so that pn −−−−→
n→+∞

p. Let z

in M̃2 \ Γ2 be such that π(z) = p ∈ O(M2 \ Γ2) and yi in
◦̃

2Σ ⊂ M̃2 \ Γ2 for
all i such that π(yi) = pi ∈ O(M2 \Γ2). We take a small compact embedded
disc D ⊂ M̃2 \ Γ2 such that z ∈

◦
D and π|D → O(M2 \ Γ2) is injective.
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Up to taking a subsequence of (pn)n∈N, we can suppose that for all i, there

exists ti ∈ R such that φ̃ti(yi) ∈
◦̃

2Σ. If there exists a subsequence of (ti)i∈N

which tends to t ∈ R, then φ̃t(z) ∈
◦̃

2Σ, which contradict that π(φ̃t(z)) = p ∈
∂ΘM2\Γ2(Σ2). Hence |tn| −−−−→

n→+∞
+∞.

Assume that tn −−−−→
n→+∞

+∞ (or that a subsequence of tn tends to +∞)

and consider ls the stable leaf of p inside O(M2 \ Γ2). We will prove that
the stable leaf ls is inside ∂ΘM2\Γ2(Σ2). Take v ∈ π−1(ls) ⊂ M̃2 \ Γ2. For a

point x ∈ M̃2 \ Γ2, we denote by F̃ s(x), F̃ u(x) the stable and unstable leaves
of a point x, and F̃ ss(x), F̃ uu(x) the strongly stable and strongly unstable
leaves of x. For i big enough, the point vi = F̃uu(v) ∩ F̃ s(yi) is well de-
fined. For i big enough, there exists si ∈ R such that φ̃si(vi) ∈ F ss(yi).
Since tn −−−−→

n→+∞
+∞ one has si −−−−→

i→+∞
+∞. Also d(φ̃si(vi), yi) −−−−→

i→+∞
+∞.

Here we need to add some considerations on the boundary of Σ2. We
take U a the union of small tubular neighborhoods of all boundary compo-
nents of Σ2. Out of U , the partial section Σ2 has an angle with the direction
of φ which is bounded by below by a non zero angle. Hence for all ε > 0
there exists µ > 0 such that if a point x in M is at a distance at most µ
from Σ2\U , then x is in an arc of orbit φ[−ε,ε](y) of one point y ∈ Σ2. Suppose
first that the projection of yi inside Σ2 \ ∂Σ2 is always out of U . Then there

exists a sequence εi ∈ R such that φ̃si+εi(vi) ∈
◦̃
Σ2 for all i. Additionally the

sequence (εi)i converge to zero since the distance d(φ̃si(vi), yi) converge to
zero. So the image π(vi) inside O(M2 \ Γ2) is inside the trace of Σ2. Since
the sequence (vi)i converge to v, the point π(v) is in the adherence of the
trace ΘM2\Γ2(Σ2). Since the sequence (si+εi)i diverge to +∞, the point π(v)

is not in the adherence of the trace ΘM2\Γ2(Σ2). Indeed if φ̃t(v) were in

the interior of ˜Σ2 \ ∂Σ2, then since the projection π| ˜Σ2\∂Σ2
is injective, the

points φ̃t+si+εi(vi) converge to φ̃t(v), which contradicts the fact that (si+ εi)i
diverge to +∞.

It remains to consider the following case: the projection of yi inside Σ2 \
∂Σ2 has a sub-sequence inside the neighborhood U of ∂Σ2. Up to an ex-
traction, we can consider that the projection of yi inside Σ2 \ ∂Σ2 remains
in a small tubular neighborhood Uγ of one boundary component γ of ∂Σ2.
We consider the trace of Uγ to prove that the stable leaf ls is a boundary
component of the trace ΘM2\Γ2(Σ2). According to Proposition 1.7.7, if the
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annulus Uγ is chosen closed enough to γ the trace of the annulus Uγ in the
orbit space O(M2 \ Γ2) is an ideal annulus bounded by a half stable leaf lsi
of γ, a half unstable leaves lui of γ and by a third curve denoted by δi. The
Proposition 1.7.7 cannot be applied yet on Σ2, but one can apply it to a small
annulus U ′γ inside Σ, then recover the trace of Uγ from the trace of U ′γ by
using the definition of M1 and M2, and the equality O(M \Γ) = O(M2 \Γ2).

Additionally the leaves lsi and lui are boundary component of the trace
of Σ2. We want to prove that the point p lies inside one of the leaves lsi ∪ lui .
To do so, we suppose that it is not the case.

For every point yi, we denote by Ti the subset of ΘM2\Γ2(Σ2) which cor-
respond to the copy of the trace of Uγ containing pi = π(yi). Also one of the
ideal vertices of Ti projects inside O(M) to a lift ρi(γ) of the orbit γ. Up to
an extraction on pi, we can suppose that Ti is always in a quadrant (+,+)
of its ideal points ρi(γ).

We consider the relative position of the triangle Ti around the point p.
Since the point p is in the boundary of the trace of Σ2, it is not in the interior
of Ti nor in δi for any i. Hence one of the edges inside ∂Ti separate the points p
and pi inside O(M2 \ Γ2). Additionally we have supposed that the point p
is not in lsi and lui . The trace of Σ2 is connected, the leaves lsi and lui are
boundary components of the trace of Σ2 and they both separate the orbit
space O(M2 \ Γ2) in two connected component. So it must be the curve δi
which separates p and pi inside O(M2 \ Γ2). Since the sequence pi converges
to p, there exist two indexes i, j ∈ N such that Ti 6= Tj and the curve δj
separates pi and p. The projection π| ˜Σ2\∂Σ2

is injective, so the triangle Ti
and Tj are disjoint. It implies that lsj∪luj separate pi and pj inside O(M2\Γ2),
which contradicts the connectivity of the trace of Σ2. Hence the point p lies
inside one of the leaves lsi ∪ lui . It finishes the proof.

1.7.2 Fundamental domain of a ramified partial section

We can define and study immersed partial sections using some fundamental
domains in the orbit space. We describe a general construction that pro-
duces ramified partial sections, that we only use to define the Birkhoff annuli
and the Fried sections. We mainly need Lemma 1.7.12 to characterize the
boundary of these sections.

Definition 1.7.11. A fundamental domain in the orbit space is the data
of (P, F, f), so that:
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1. P : (P ′ ⊂ R2) → O(M) is an immersion, where P ′ is a n-gon with n
even and n ≥ 2. We confuse the immersion P and the polygon P ′. The
edges of P do not need to be arcs of stable and unstable leaves.

2. F : Edge(P )→ Edge(P ) is an involution with no fixed point,

3. f : Edge(P )→ π1(M) is so that for every edge e of P , f(e).e = F (e).

4. for every edge e of P , f(e) sends the coorientation on e going outside P
to the coorientation on F (e) going inside P .

Notice that these conditions imply that f(F (e)) = f(e)−1 for every edge e
of P . Also the data F is not necessary to define a fundamental domain,
since it can be deduced from f . Let SP be the quotient of P by F , which
is a differential surface away from corners of P , and let j : P → SP be
the projection. The bi-foliation of O(M) by Ls,Lu induces on SP a trans-
verse bi-foliation, possibly with p-prong singularities at the corners of P .
The points of the form j(corner of P ) ∈ SP that are singularities of in-
dex +1 (of the stable foliation) are considered as 0-prong singularities, and
the points j(corner of P ) ∈ SP where the bi-foliations could extend smoothly
at that point are considered as 2-prong singularities. We will lift P into M
and construct a ramified partial section whose interior has the topology of

◦
SP .

Using a fundamental domain, we construct a ramified partial section,
that is a surface which is immersed outside a finite number of points in its
interior, which still admits a tangent plane at these points, and which is
transverse in its interior and tangent to the flow along its boundary compo-
nents.

The procedure is detailed below, and partially illustrated in Figure 1.10.
Denote by a1, . . . , an the edges of P , ordered anti-clockwise. We define the
2n-gon Q, whose edges are b1, a1, . . . , bn, an, so that P is obtained from Q
by contracting every edge bk into a corner of P . Denote by i : Q → P the
projection, and ck = i(bk) the corner of P corresponding to ck.

We recall the notation π : M̃ → O(M). We will construct a lift s :
Q → M̃ of Q, so that π ◦ s = i and that π1(M).s(Q) projects to a ramified
partial section inside M , possibly with ramified points at the corners of P .
In particular an edge bk will be mapped by s into an orbit arc inside M̃ .

We first choose an arbitrary lift r : P → M̃ that we use to construct
another lift s : Q → M̃ which behaves well with respect to F . For every
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pair of edges {ai, aj} of P so that F (ai) = aj (or equivalently F (aj) = ai),
we fix e one of these two edges and define the lift s|e = r|e. Then we define
the lift s|F (e) by s|F (e)(x) = f(e).s|e(f(e)−1.x). Since π ◦ r and π ◦ s coincide
on F (e), r|F (e) and s|F (e) are isotopic along the flow. We can lift bk as an arc
of orbit, in the orbit of r(ck), so that s|bk is either an embedding or reduced to
a point. Since the lift s : ∂Q→ M̃ is isotopic along the flow to the lift i◦r|∂Q,
it extends to a lift s : Q→ M̃ .

By construction of s : Q → M̃ , we have s|F (e) = f(e).s|e(f(e)−1. id) for
all edges e of P . We can additionally choose s so that s and f(e).s are glued
smoothly along the interior of F (e), and then π1(M).s(Q) is a surface smooth
and transverse to the flow outside its boundary. Denote Σ̃ = π1(M).s(Q)
and Σ = p(Σ̃) ⊂M , the latter being a surface whose interior is immersed and
transverse to the flow. We also denote by Σ the abstract surface, obtained
as the quotient of Σ̃ by the action of the elements f(e) ∈ π1(M) for all
edges e of P . The boundary of Σ is the union of the arcs p ◦ s(bk) for
all 1 ≤ k ≤ n. Notice that Σ is the blow-up of SP along the images of the
corners of P . Note that by construction (P, F, f) is a fundamental domain
of Σ. One can choose the lift r : P → M̃ so that every boundary component
of Σ (as an abstract surface) is either immersed in M , or sent to a single
point of M . In the second case, the image Σ ⊂M has a ramification at this
point. However these ramifications are transverse to the flow, and a Fried-
desingularisation erases these ramifications. Hence the surface Σ is only a
ramified partial section. The following lemma will help to understand the
boundary components of Σ.

polygon P ⊂ O(M) SP ⊂ O(M)

Σ
f

a1

a2

a3

a4

c1

c2

c3

c4
u1

u2

u3

u4

V

δ

Figure 1.10: Fundamental domain of a ramified partial section.

Let ck be a corner of P , γ ⊂ M be the orbit induced by ck and γk ⊂ ∂Σ
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the abstract boundary component of Σ corresponding to ck, that is p ◦ s ◦
i−1({ck}). We denote by V ⊂ SP a small tubular neighborhood of j(ck) ∈ SP .
Take Σ′ ⊂ Σ as the closure of p◦s◦i−1◦j−1(V ) ⊂ Σ, which is a small tubular
neighborhood in Σ of γk. Let δ = ∂V be a small circle around j(ck) ∈ SP ,
oriented clockwise and let u′1, . . . , u′m be the images of the edges of P in sP
which intersect δ, ordered according to δ and possibly with two repetitions
if δ intersects a given edge near its two ends. We can determine the behavior
of Σ′ along γk using the elements f(j−1(uk)) ∈ π1(M) that are used to
glued P into SP . For every 1 ≤ k ≤ m there are two edges of P whose image
by j : P → SP is u′k. We take uk to be the edge of P such that j(uk) = u′k
and j−1(δ) is going inside P along uk (or along the intersection of j−1(δ)∩uk
that is closed to ck (mod f)).

Lemma 1.7.12. Keep the notations as above and take x0 ∈ γ. The homotopy
class of γk in M is f(u1)−1 . . . f(um)−1 ∈ π1(M,x0). Also:

• Suppose that f(u1)−1 . . . f(um)−1 = 1. Then Σ can be isotoped along
the flow so that the boundary component of Σ corresponding to ck is
sent to only one point. Then Σ is ramified along this point, denote by d
its degree. Then ck projects to a 2d-prong singularity of SP . When the
degree d is 1, Σ can be made immersed in a neighborhood of this point.

• Suppose that f(u1)−1 . . . f(um)−1 6= 1. Then Σ can be isotoped along
the flow, so that Σ′ is a partial section in a neighborhood of γ, with
a boundary component at γ. Also γ is periodic, and if g ∈ π1(M,x0)
corresponds to the homotopy class of γ (so that g.ck = ck in O(M)),
then one has f(u1)−1 . . . f(um)−1 = gmultγ(Σ′).

• Suppose that f(u1)−1 . . . f(um)−1 6= 1 as above, and denote by d the
linking number of Σ along this boundary component. If γ has an ori-
entable neighborhood, then ck projects in a 2d-prong singularity of SP .
Otherwise ck projects in a d-prong singularity of SP .

Remark 1.7.13. By applying the previous argument on all boundary com-
ponents of Σ, we can change it into an immersed partial section with ram-
ification transverse to the flow. Then we can desingularise it into a partial
section embedded in its interior.

Proof. Since Σ is the blow-up of SP along the corners of P , δ induces in Σ
a curve δ′, freely homotopic in Σ to γk. So in π1(M,x0), one has [γk] = [δ′].
We will lift δ into Σ̃ and compute its homotopy class.
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Let y′0 ∈
◦
δ be a point between u′m and u′1. We define y0 = s ◦ i−1(y′0) in-

side s(Q) ⊂ M̃ , and we lift δ into a compact path δ̃ in Σ̃ from y0 to [δ′].y0. By
construction, j ◦ p(δ̃) = δ intersects successively u′1, . . . , u′n. So the curve δ̃
intersects successively several images of s(Q) under π1(M). The curve δ̃
starts in s(Q), then intersects the edge s(u1) = f(u1)−1s(F (u1)) and en-
ters the polygon f(u1)−1s(Q). Then it intersects the edge f(u1)−1s(u1) =
f(u1)−1f(u1)−1s(F (u1)) and enters the polygon f(u1)−1f(u1)−1s(Q). By in-
duction, δ̃ ends in f(u1)−1 . . . f(um)−1s(Q). Hence the two points [δ′].y0

and f(u1)−1 . . . f(um)−1.y0 are equal, and [γk] = [δ′] = f(u1)−1 . . . f(um)−1.
Notice that the edges F (uk) and uk+1 are two edges of Q separated

by an edge bσ(k) (where F (uk) = aσ(k)). Since F has no fixed point, we
can successively choose the lift s|uk of every 0 ≤ k < n, so that s|F (uk)

and s|uk+1
have the same value on their common ends with bσ(k). Then

for 0 ≤ k < n, the lift s|bσ(k) is constant, and the only edge that con-
tributes of Σ to the boundary γk is s|bσ(n) . Hence π(s|bσ(n)) ⊂M is homotopic
to f(u1)−1 . . . f(um)−1 = 1.

Suppose that f(u1)−1 . . . f(um)−1 = 1. Then s|bσ(n) is constant, so Σ has
a boundary whose image is reduced to one point, that we suppose to be x0.
We quotient this boundary component into one point, and still denote by Σ
the new surface. We also denote by U a small neighborhood of x0 in Σ. By
construction, Σ is immersed and transverse to the flow inside U \ {x0}. One
can isotope Σ inside U \{x0} such that the image of Σ admits a tangent plane
at x0, transverse to the flow. Hence Σ has a ramification at x0, denote by d the
degree of ramification of Σ at x0. Then in a neighborhood of x0, Σ intersects
the germ of F s(x0) in 2d curves, each having an end at x0. Hence the
foliation Σ∩F s on Σ has a 2d-pong singularity. But the interiors of SP and Σ
are homeomorphic as bi-foliated surfaces, so SP has a 2d-prong singularity
on the point corresponding to x0, which is the image of ck.

The same argument can be used to prove that last statement on the
linking number. The rest of the lemma is clear.

1.7.3 Birkhoff annuli and Fried section.

We construct here some Birkhoff annuli and Fried sections using the funda-
mental domain.
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Birkhoff annulus. An immersed Birkhoff annulus is an immersed partial
section with the topology of an annulus. Thanks to a construction from
T.Barbot, some Birkhoff annuli are easy to construct using the orbit space,
which is mandatory for the last two chapters. We often distinguish immersed
and embedded Birkhoff annuli.

Example 1.7.14. Let S be an oriented hyperbolic surface, γ ⊂ S be a simple
geodesic, and η a coorientation of γ in S. Consider the geodesic flow on T 1S
and the partial section Ση defined in Section 1.5.1 as the set of unitary vector
based on γ in the half plane determined by η. We have a fibration Ση → γ
whose fiber is half a circle, so Σ is an embedded Birkhoff annulus.

When γ is not simple, one can similarly define an immersed Birkhoff
annulus with a self intersection arcs in the fiber of each double point of γ.

When S is non-orientable and γ has a non-orientable tubular neighbor-
hood, there is no coorientation of γ in S, but the set of fibers T 1

γS above γ
is an immersed Birkhoff annulus whose boundary components both have mul-
tiplicity 2. If γ is simple, then T 1

γS is a Birkhoff annulus embedded in its
interior.

Let L ⊂ O(M) be an ideal lozenge. We say that L is simple if there is
no element g ∈ π1(M) such that g send a corner of the lozenge L inside the
interior of L.

Theorem 1.7.15 (T.Barbot [Bar95b]). Let L be an ideal lozenge in the
orbit space O(M) whose corners induce closed orbits of the flow. There
exists an immersed Birkhoff annulus A whose trace in O(M) is ΘM(A) = L.
Furthermore, if there is no embedded Klein bottle in M and if L is simple,
then A can be taken embedded.

All Birkhoff annuli are not produced by this theorem, only the ones whose
traces are ideal lozenges. The proof consists in giving a fundamental domain
of the Birkhoff annuli in the orbit space, as in Figure 1.2, and lift it into M .
Take c a curve in L between its two corners p and p′, transverse to Ls and Lu,
and gp ∈ π1(M) \ {1}, so that gp.p = p and gp.p

′ = p′. Then c ∩ gp.c =
{p, p′} and c ∪ gp.c bounds a fundamental domain of the immersed Birkhoff
annulus A, bounded by p and p′. When M is oriented, we can additionally
recover the sign of ∂A. If L is in the quadrants (+,+) and (−,−) of its
corners then the boundary components of A are positive, if L is in the other
quadrants then the boundary components of A are negative.
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Fried section. A Fried section is defined by a fundamental domain on a
small 4-gon P as in Figure 1.11. Let R be a compact rectangle in the orbit
space O(M) whose edges are arcs of two stable and two unstable leaves.
Let P ⊂ R be a 4-gon with corners a, b, c, d so that a and c are periodic
and opposite corners of R. Denote by g, h ∈ π1(M) \ {1}, the periods of a
and c and take two positive integers n,m so that gn and hm preserve the
orientations of Ls and Lu. We suppose that the edges of P satisfy gn.[a, b] =
[a, d] and hm.[c, d] = [c, b]. Then there is a fundamental domain (P, F, f)
given by f([a, b]) = gn, f([a, d]) = g−n, f([c, d]) = hm and f([c, a]) = h−m,
and F is defined using f . The immersed partial section it induces is called
a Fried section. It corresponds to the construction of a transverse pair of
pants proposed by Fried [Fri83].

P

R R

R

a

b

c

d

ρ(γ1)

ρ(γ2)

ρ(δ)

ρ(γ)

g.ρ(γ)

ρ(δ1)

ρ(δ2)

g

gn

hm

Ls(a)

Lu(a)

R′

Figure 1.11: Fundamental domain of a Fried section. Its definition on the
left and two existence Lemmas illustrated in the middle and right.

Lemma 1.7.16. The surface induced by (P, F, f) is an immersed partial
section Σ, so that Σ is an immersed pair of pants whose boundaries are the
orbits induced by a, c and b ' d. The linking numbers of Σ along a and c are
zero, and the linking number along b is one.

If P is in the quadrants (+,+) and (−,−) of a and c, then a and c are
positive boundary of Σ, and b is a negative boundary of Σ. Otherwise, all
signs are reversed.

Proof. We suppose that a anb c are the corners of R given in Figure 1.11,
the other case being similar with opposite signs. The surface SP = P/F is a



84 CHAPTER 1. BACKGROUND AND TRANSVERSE SURFACES

sphere with three marked points a, c and b ' d, so Σ is an immersed sphere
with at most three holes. According to Lemma 1.7.12, Σ has two boundary
components on the orbits induced by a and c, with non-zero multiplicity n
and m, and linking number zero.

According to the same Lemma, Σ has a potential boundary component
on b ' d, whose homotopy class is given by g−nh−m. Since g and h cannot
have other fixed points in R than a and c, g and h contract the unstable
foliation inside R. Thus hmgn also contracts the unstable foliation inside R.
Thus g−nh−m 6= 0, and expands the unstable foliation inside R. So Σ has a
negative boundary component on b.

As discussed in Section 3.1, the partial sections of a flow contain infor-
mation on the nature of this flow. The following Lemmas generate some
Fried sections illustrated in Figure 1.11, that we use later to study the stably
primitive orbits of skewed R-covered Anosov flows.

Lemma 1.7.17. Let γ1 and γ2 be two closed orbits, and suppose that their
stable and unstable leaves Ls,u(ρ(γi)) together bound a compact rectangle R ⊂
O(M). Then there exists an immersed Fried section Σ, bounded by γ1, γ2

and a third orbit δ. The boundaries of Σ in γ1, γ2 have linking numbers
zero, and their signs are positive if and only if R lies in the quadrants (+,+)
and (−,−) of ρ(γi). The orbit δ is a boundary component with the opposite
sign and with linking number one.

If the leaf F s(γ) is oriented, then Σ has multiplicity 1 along γi, otherwise
it has multiplicity 2.

Proof. Denote by o = ρ(γ1) and o′ = ρ(γ2) the two opposite corners of R.
Denote by g and g′ in π1(M) the first positive multiples of the periods of γ1

and γ2, so that g.o = o and g′.o′ = o′. Notice that g 6= g′, otherwise the
leaves Ls(o) and Lu(o′) would be fixed by g, so would be Ls(o)∩Lu(o′) 6= o.
But there is at most one closed orbit in each stable leaf. The same argument
proves that there is no element in R that is fixed by g. The flow is Anosov,
so g and g′ expand Ls and contract Lu inside R.

Hence the set LuR of those stable leaves intersecting R is a compact seg-
ment stable by g′g. By the Brouwer fixed-point Theorem, there exists a
stable leaf intersecting R and fixed by g′g. With the same argument, there
exists an unstable leaf intersecting R and fixed by g′g. Using the intersection
of these stable and unstable leaves, there exists p ∈ R so that (g′g).p = p.
We denote p′ = g.p, so that p = g′.p′. Notice that p and p′ are in the interior
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of R. Take c1 ⊂
◦
R an arc from o to p, and c2 ⊂

◦
R an arc from o′ to p′,

together with arcs c′1 = g.c1 (from o to p′) and c′2 = g′.c2 (from o′ to p). We
can take these four arcs transverse to Lu and Ls.

We claim that these four arcs are disjoints. Indeed suppose that there
exists x ∈ c1∩c′1, and suppose that R is in the quadrant (+,+) of o. Since c1

is transverse to the bi-foliation, every point y ∈ c1 must be in the quad-
rant (+,+) or (−,−) of x. But g contracts Lu and expands Ls inside R,
so g.x ∈ c1 is in the quadrant (+,−) of x, contradiction. The other cases of
intersection between c1, c′1, c2 and c′2 are impossible for similar reasons.

Hence P ⊂ R delimited by c1∪c′1∪c2∪c′2 is the desried 4-gon, and together
with g and g′ they form the fundamental domain of a Fried section.

Lemma 1.7.18. Let γ be a closed orbit, and suppose that there exists g ∈
π1(M) such that the stable and unstable leaves Ls,u(ρ(γ)) and Ls,u(g.ρ(γ))
bound a compact rectangle R ⊂ O(M). We also suppose that the action of g
on O(M) preserves the orientations of the foliations Ls and Lu. Then for
all n ∈ 2N large enough, there exists an immersed Fried section Σ, bounded
by nγ and two other orbits δ1 and δ2. The boundaries of Σ in γ have linking
number 1 and its sign is positive if and only if R is in the quadrants (+,+)
or (−,−) of ρ(γ). The signs of δ1 and δ2 as boundary components of Σ are
opposite to the sign of γ.

Proof. Denote by o = ρ(γ) and by h ∈ π1(M) the oriented period of γ, so
that h.o = o. We will construct points pn, qm ∈ O(M), so that ghn.pn = pn
and hmg−1.qm = qm for all n,m ∈ N large enough. Let U ⊂ O(M) be a small
open neighborhood of R, also bounded by arcs of stable and unstable leaves.
We denote by LsU ⊂ Ls and LuU ⊂ Lu the sets of leaves that intersect U (and
similarly for Ls,uR ). If U is close enough to R, then that h contracts LuU and
expands LsU .

Let l ∈ LuU \ LuR so that Lu(g.o) is between Lu(o) and l. Since the flow
is Anosov and h contracts Lu, we have hn(l) −−−−→

n→+∞
Lu(o). Thus g.hn(l) is

between Lu(g.o) and l for n > 0 large enough. Also when it is the case, the
set of unstable leaves in Lu between Lu(o) and l is a segment stable by ghn, so
by the Brouwer fixed point theorem, there exists a leaf lun ∈ LuU fixed by ghn.
We can use the same argument on LsU and h−ng−1 to produce a leaf lsn ∈ LsU
fixed by ghn. Hence there exists pn = lun ∩ lsn ∈ U fixed by ghn. Similarly, for
all m large enough, the exists qm ∈ U so that hmg−1.qm = qm, and Lu(o) is
between Lu(qm) and Lu(g.o).
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The points pn and qm in U are two opposite corners of a rectangle R′ so
that R ⊂ R′ ⊂ U . According to Lemma 1.7.17 and to its proof, there exists a
Fried section whose fundamental is a 4-gon in R′ that admits pn, o, qm and g.o
as corners. We conclude with Lemmas 1.7.16 and 1.7.17.

We give a last lemma that decomposes a Birkhoff annulus as the sum of
two Fried sections. It is however not used later.

Lemma 1.7.19. Let A be an immersed Birkhoff annulus whose trace is an
ideal lozenge, and suppose that its interior intersects a closed orbit. Then
there exist two Fried sections Σ1,Σ2, so that A is some Fried desingularisation
of Σ1 ∪ Σ2.

When we say “some Fried desingularisation”, it means that we desingu-
larise only some self-intersection curves of Σ1 ∪ Σ2.

Proof. We fix an orientation of M so that A has two positive boundaries.
Let L = ΘM(A) be the trace of A in O(M), which is an ideal lozenge with
corners o and o′, and p ∈

◦
L be the lift of a closed orbit intersecting

◦
A.

Denote by γ, γ′ and δ the orbits in M represented by o, o′ and p, and by n
the multiplicities of A along γ and γ′ (which are equal).

We take γA ⊂ A a simple curve staying at a small and constant distance
from γ, γA is homotopic to nγ inside a small neighborhood. Then we denote
by g ∈ π1(M) the homotopy class of γA, which is the homotopy class of γ
to the power n. We notice that g.o = o, g.o′ = o′, and that g preserves
the orientation of the stable and unstable foliations in O(M) (since A has
linking number zero along γ, the curve γA stays in the same quadrant (+,+)
or (−,−) around γ, and its homotopy class preserves the orientations of Ls
and Lu). Similarly we consider h ∈ π1(M) the double of the homotopy classes
of o and p, such that h.p = p and that h preserves the orientations of the
stable and unstable foliations in O(M).

We consider the rectangle R ⊂ L bounded by arcs of stable and unstable
leaves, with two opposite corners o and p. By Lemma 1.7.17, there is an
immersed Fried section Σ1, whose fundamental domain is a 4-gon in L with
corners o, q, p and q′, where q, q′ ⊂ R. Also g.q = q′ and h.q′ = q. We
denote by α the orbit represented by q and q′. Then by construction we
have ∂+Σ1 = nγ ∪ 2δ and ∂−Σ1 = mα, where m is the positive integer so
that hg is homotopic to mα.
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o

o′

p

p′

q

q′

Σ1

Σ2

L

We define p′ = g−1.p, so that by construction we have g.o′ = o′, hg.q =
q, g.p = p′ and hg.p′ = h.p = p. We can apply the same lemma to build an
immersed Fried section Σ2, whose fundamental domain is a 4-gon in L with
corners o′, p, q and p′. We can choose Σ1 and Σ2 so that their fundamental
domains share the common segment [p, q′]. By construction, ∂+Σ2 = nγ′ ∪
mα, and ∂−Σ = 2δ is induced by p.

Let Σ be the Fried desingularisation of Σ1 ∪ Σ2 along the orbits of p
and q, and along the segment [p, q]. Then ∂+Σ is the union of the orbits o
and o′, and ∂−Σ = ∅. Also the union of the two fundamental domains
of Σ1 and Σ2 can be described as a 2-gon bounded the curves [o, q, p′, o′]
and [o, q′, p, o′] = g.[o, q, p′, o′]. Hence Σ is an immersed Birkhoff annulus,
whose trace satisfies ΘM(Σ) = L = ΘM(A). Futhermore, Σ has the same
multiplicity than A along its boundary components, so A and Σ have the
same fundamental domain in O(M), and they are isotopic along the flow.
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Chapter 2

Explicit first-return maps

In the whole chapter, we fix an orientable hyperbolic surface S and one metric
with negative curvature on S. We denote by φ the associated geodesic flow
on T 1S and consider Γ ⊂ S a filling union of finitely many closed geodesics,
assumed to be in general position. We consider the Birkhoff sections Ση

for some Eulerian coorientations η ∈ EulCo(Γ) defined in Section 1.5.1. Our
main goal is to compute the associated first-return maps as products of Dehn
twists. First, we give some background about this question.

Given a 3-manifold M , W.Thurston defined a semi-norm on H2(M,R)
which is a norm when the manifold is atoroidal [Thu86]. For an integral
element ω ∈ H2(M,R), the norm measures the minimal absolute value of the
Euler characteristic of a surface without sphere components inside M whose
homology class is ω. The unit ball of the Thurston norm is a polyhedron
in H2(M,R), whose faces are dual of integer points in H2(M,Z). To a fi-
bration M → S1 by compact surfaces homotopic to F corresponds a unique
rational point in the unit sphere given by the homology ray containing the
homology of F . W.Thurston and D.Fried have proved that to a flow ad-
mitting global sections in M corresponds a so-called fibered face in the unit
sphere, given by all fibrations whose fibers are global sections for this flow.
The flow also induces first-return maps on these global sections. The unit
ball of the Thurston norm, its fibered faces, and the first-return map of its
fibrations are not completely understood yet. The goal of this chapter is to
understand how these first-return maps are all connected, in a specific case.

When the flow is of pseudo-Anosov type (Anosov outside finitely many
closed orbits, these orbits being of prong type), the first-return map on a sec-

89



90 CHAPTER 2. EXPLICIT FIRST-RETURN MAPS

tion S is pseudo-Anosov. In particular it has an expansion factorK > 1. One
could desire to compare the expansion factors of the first-return maps given
by several global sections on the same fibered face. Fried studied [Fri82a]
the function (S 7→ χ(S) ln(K(S))), which is convex and tends to infinity
on the boundary of the fibered face. McMullen defined [McM00] the Teich-
müller polynomial in Z[H1(M,Z)/torsion], whose specialization at an inte-
gral point ω gives as largest root the expansion K of a global section with
homology [ω]. Hence the expansion factor satisfies two uniform descriptions.
This chapter goes in the same direction by giving, for one explicit family of
fibered faces, a computation and a comparison of the first-return maps.

Since S is hyperbolic, the geodesic flow on T 1S is Anosov. Once one
removes finitely many closed orbits, we obtain a pseudo-Anosov flow on a 3-
manifold with toric boundary. For such flows, the fibered faces correspond
to Birkhoff sections of the original flow, whose boundary components are in
the set of removed closed orbits. Under a certain symmetry assumption, the
fibered faces for these are rather well-understood.

Birkhoff sections with symmetric boundary. Given an Eulerian coori-
entation η ∈ EulCo(Γ), recall that we defined Σ̂η as the set of vectors based
on Γ and in the same direction that η, which we desingularise and smooth
to obtain the surface Ση. Under a combinatorial condition on η, Ση is a
Birkhoff section with boundary −

↔

Γ. Furthermore every Birkhoff section with
boundary −

↔

Γ is isotopic through the flow to one surface Ση for some coori-
entation η ∈ EulCo(Γ).

The surface Ση stays mainly in some specific fibers of π : T 1S → S,
and π|Ση is not an immersion. In order to make Ση easier to use, we deform
it into a surface on which π is an immersion.

Theorem A. Given a closed orientable hyperbolic surface S, a geodesic
multi-curve Γ ⊂ S supposed to be filling and in general position, and an
Eulerian coorientation η of Γ, there exist a small smoothing of the associ-
ated surface Ση ⊂ T 1S and a small isotopy (ft)t∈[0,1] of the surface Ση such
that f0 = ι|Ση↪−→T 1S and π ◦ f1 : Ση → S is an immersion.

Figure 2.1 illustrates how the immersed surface in S looks like. We will
study several representations of Ση in Section 2.1. We are primarily interested
in the immersion of Theorem A, and in the ribbon graph representation it
induces.
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Figure 2.1: A small perturbation of Ση into a horizontal surface.

Partial return maps. The main idea for computing the first-return map
on Ση is to define intermediate disjoint and homologous Birkhoff sections (Σi)i,
so that the first-return map rΣη is the composition of some isotopies along
the flow:

Ση = Σ0 → Σ1 → . . .→ Σn−1 → Σn = Ση

We define the surfaces Σi by induction using elementary transformations,
so that ri : Σi−1 → Σi is quite simple to compute. These elementary trans-
formations have a combinatorial and a geometric version. The combinatorial
version consists in taking an Eulerian coorientation η and modifying it around
one specific face, thus obtaining a new coorientation η′. The surfaces Ση

and Ση′ are isotopic and easy to compare. If we do this transformation
around every face in the right order, we describe a cyclic family of Birkhoff
sections (Σi)0≤i≤n, pairwise easily comparable.

The geometric version of this transformation consists in taking η and η′
that differ around a face f , and following the flow only in T 1

f S. It describes
a map Ση → Ση′ that we call partial return map. The partial return maps
together with the family of Birkhoff sections (Σi)i allow us to reconstruct the
first-return map.

Theorem (properly stated in Theorem B). Let Γ ⊂ S be a filling geodesic
multi-curve of a hyperbolic oriented surface S and η an Eulerian coorientation
of Γ. Suppose that the dual graph Γ? does not admit any cycle oriented
by η, and denote by f1, . . . , fn the faces of S \ Γ, ordered by η. Then the
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first-return map along the geodesic flow on the Birkhoff section Ση is given
by rΣη = rn ◦ . . . ◦ r1, where ri is the partial return map along the face fi.

In this theorem, we order the faces so that if η goes from the face fi to fj
around an edge, then j < i. We study this elementary transformation in
Section 2.2, together with the combinatorial tools needed to express precisely
Theorems B and C.

Given two homologous Birkhoff sections Ση and Σν , we explain in Sec-
tion 2.2.3 how to find a sequence of partial return maps from Ση to Σν .
Additionally, when Ση and Σν are only partial sections, we study when they
are isotopic through the flow using a combinatorial condition on η and ν.

Explicit first-return map. To compute the first-return map, we need to
compute explicitly the partial return maps. Fix ri : Σi−1 → Σi a partial
return map. We would like to compose ri with a nice correction function ci
so that the composition Σi−1

ri−→ Σi
ci−→ Σi−1 is a Dehn twist. We will use

the ribbon representation of Σi−1 and Σi to compare them, especially around
the vertices at which they differ. After defining ci, the composition ci ◦ ri is
isotopic to a negative Dehn twist along a curve γf .

We will define two families of curves γv and γf in Section 2.3, which are il-
lustrated in Figure 2.2. The previous computation together with Theorem B,
allows to compute the first-return map as a product of negative Dehn twists.

f
γv γv

γf

Figure 2.2: Curves γv for a vertex v and γf for a face f .

Theorem (properly stated in Theorem C). Let η be an acyclic Eulerian
coorientation and Ση its corresponding Birkhoff section. Then the first-return
map r : Ση → Ση is the product of explicit negative Dehn twists along the
explicit curves γv and γf for all v ∈ Γ0 and f ∈ Γ?0. The order of the Dehn
twists is given by η.
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A precise statement and a proof of this theorem are given in Section 2.3.
This result is reminiscent of N.A’Campo’s divide construction [A’C98], and
of M.Ishikawa’s generalization [Ish04]. They decompose a monodromy as an
explicit product of three Dehn multi-twists. N.A’Campo’s result was also
recently generalized by P.Dehornoy and L.Liechti [DL19] who expressed the
monodromy for divide links in the unit tangent bundle of arbitrary surfaces
as products of two antitwists. Our results deal more generally with all in-
tegral points in the fibered face that corresponds to Birkhoff section with
boundary −

↔

Γ, instead of just the center point.

Theorem (properly stated in Theorem D). Let S be a hyperbolic surface, Γ
a finite collection of closed geodesics on S, and consider the geodesic flow
on T 1S. There exists a common combinatorial model ΣΓ for all Birkhoff
sections with boundary −

↔

Γ, and an explicit family γ1, · · · , γn of simple closed
curves in ΣΓ such that the first-return maps for these Birkhoff sections are
products of negative Dehn twists of the form τ−1

γσ(1)
◦ · · · ◦ τ−1

γσ(n)
for some

permutation σ of {1, · · · , n}.

In Theorem C, the Birkhoff sections and the curves supporting the Dehn
twists are explicit, and only depend on the choice of one coorientation. Also
the ordering of the Dehn twists is almost canonical. In Theorem D, there
are only one abstract Birkhoff surface and collection of curves, that are also
explicit. But the ordering of the negative Dehn twists and the first-return
map are less explicit, and need more work to be constructed by hand.

Example on a flat torus. On a flat torus, the classification of Birkhoff
sections is different, and can be found in [Deh15]. However the surfaces Ση

can be defined similarly and they are Birkhoff sections. Also Theorem A, B
and C are still true for these surfaces. It is simpler to illustrate them on the
torus.

In Figure 2.3, we briefly illustrate the theorems on the flat torus, given by
a square whose opposite sides are identified. Let Γ and η be the multi-curve
and the coorientation given on the picture. Theorem A gives an immersion
of the Birkhoff section Ση into the torus, which is represented on the right.
Four examples of the curves γf (in red) and γv (in blue and green) are also
represented.

We order, from 1 to 12, the vertices of Γ and the faces it delimitates.
For this, we complete the natural order given by the coorientation η of the
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faces, using additional rules explained in Section 2.2. Theorem C then states
that the first-return map r on Ση is a product of negative Dehn twists, with
the order previously chosen. So that if Tγ denotes the negative Dehn twist
along γ, then:

rΣη = Tγf12◦Tγf11◦Tγv10◦Tγv9◦Tγv8◦Tγv7◦Tγf6◦Tγf5◦Tγv4◦Tγv3◦Tγf2◦Tγf1

12 6 2

1 11 5

9 7 3

10 8 4

12 6 2 12

12

1

Figure 2.3: Example on a flat torus R2/Z2. A collection of geodesic and an
Eulerian coorientation η are represented in the top left part. A corresponding
ordering between the faces and the vertices is represented in the bottom left
part. The gray indexes correspond to the faces which are not represented
connected in the figure. The right part of the figure illustrates the surface Ση

immersed inside the torus, and four of the curves γv and γf lying inside the
surface Ση.
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2.1 Representations of the Birkhoff sections Ση
In this section, we study the partial section Ση defined in Section 1.5.1. We
find good representations of that partial section, including an immersion
into S and a ribbon graph representation. It will later help us to do explicit
computations. Our two goals are to prove Theorem A and to study some
elementary properties of the ribbon representation.

2.1.1 Skeleton of Ση

We briefly describe a skeleton of Ση. Figure 2.4 shows a skeleton X̂ of Σ̂η, that
will be pushed into a skeletonX of Ση. Take an edge e ∈ Γ1, it corresponds to
a flat rectangle re in Σ̂η, that is isometric to e×[0, π]. Denote by {v1, v2} = ∂e
and a1, a2 ∈ (0, π) the angles between e and the intersecting geodesics on v1

and v2. The rectangle re is attached to four other rectangles (counting with
multiplicity) on the four segments given by vi× [0, ai] and vi× [ai, π]. So we
put a vertex in the middle of each of these segments, and we connect them
as in Figure 2.4. The union for every e ∈ Γ1 defines a skeleton X̂ of Σ̂η, that
we push into Ση to define the skeleton X.

T 1
v1
S T 1

v2
S

X̂

−→e

←−e

Figure 2.4: A rectangle re and a part of a skeleton X̂ of Σ̂η

Notice that locally around every vertex v ∈ Γ0, the skeleton X is homeo-
morphic to a circle glued once to four edges leaving the circle, independently
of the nature of v. To be more precise, we describe π(X) the projection of X
into S. If the smoothing of Ση is well-chosen, π(X) can be obtained from Γ
by replacing each alternating vertex by a square, and each non-alternating
vertex by an immersed 4-gon shaped as a twisted square, as in Figure 2.5.b.

Lemma 2.1.1. There exists a deformation retract (dt)t∈[0,1] of Ση onto the 1-
skeleton X which satisfies that dt is an immersion for all t ∈ [0, 1).
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a)

b)

c)

d)

e)

f)

Figure 2.5: Local representations of Ση: a) a multi-geodesic Γ and a coori-
entation η of Γ, b) the projection π(X) ⊂ S of the skeleton X, c) a local
picture of the surface Ση ⊂ T 1S locally identified with R2×R, d) the isotope
immersion Ση → S provided by Theorem A, e) the ribbon representation
of the skeleton of Ση (see Section 2.1.3), and f) the twisted representation
of Ση.
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Proof. We consider a first deformation retract from Ση to Ση minus an ε-
tubular neighborhood of its boundary. Inside a rectangle re, the image of
that retract is the re minus an ε-tubular neighborhood of →e and ←e and minus
an ε-tubular neighborhood of the two points (v1, a1), (v2, a2) ∈ T 1S. Here →e
and ←e are the orbit arc of the geodesic flow which are lifts of e with the two
possible orientations. One can find a deformation retract of each rectangle re
minus these ε neighborhoods to the 1-skeleton re∩X, such that the retract is
given on ∂re by four homothéties centered at the four points of intersection
in ∂re ∩ X. For two edges e and e′, these retracts are equal on re ∩ re′ , so
we can glue all these retracts to a deformation retracts onto X. Further-
more each deformation retract given above can be chosen such that the final
deformation (dt)t∈[0,1] retract is an immersion for all t ∈ [0, 1).

2.1.2 Isotopies and immersion of Ση

The definition of Ση makes it a bit hard to compute algebraic and geometric
intersections between explicit curves. We will give two other descriptions,
obtained by isotopy, of Ση that will help us.

Isotopy with an immersion. Recall that the surface S is orientable, so
that we can identify its tangent plans to C. The isotopy of T 1S that interests
us is the parallel transport that pushes (x, u) in the direction iu:(

ft : (x, u) ∈ T 1S 7→ exp(x,u)(tiu)
)
t≥0

A first case is easy to understand. Considering one injective geodesic
arc e, a coorientation η of e, and re ⊂ T 1S the set of half fibers above e in
the direction of η (which is used in Section 1.5.1 to construct the surface Ση).
For t > 0 small enough, the function π ◦ ft send half a fiber above a point x
to half a circle with center x. Additionally π ◦ ft is injective on re and its
image has the shape of a thin rectangle, whose two opposites short sides are
half circles.

Unfortunately the function π◦ft has a more complicated behavior around
the fiber of a vertex of Γ, and it does not induce an immersion on all of Ση.
We will modify this isotopy to make it computable and prove Theorem A.
First we study ft in local flat models, then we will glue these local models.
Let S ′ = C be the flat plane, γ1 = R×{0} and let γ2 = {0}×R represent two
interesting geodesics. Let Γ′1 = {γ1} and Γ′2 = {γ1, γ2} represent respectively
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an edge and a crossing. We define the function gt : T 1S ′ → T 1S ′ given
by (z, u) 7→ (z+ tiu, u) similarly to ft. It is enough to study gt in this model.
Let η be an Eulerian coorientation of Γ′i and construct Σ′ ⊂ T 1S ′ in the same
way as we construct Ση, for both alternating and non-alternating vertices.

Lemma 2.1.2. Let N ⊂ Σ′ be a neighborhood of ∂Σ′. Then, for every T > 0,
there is a small smoothing of Σ′ such that for all t > T , (π ◦ gt)|(Σ′\N ) is an
immersion.

Proof. We first prove the result for T arbitrary large and for a fixed smooth-
ing of Σ′. We want to prove that π ◦ g is an immersion, so we compute the
kernel of d(π◦g). Then we prove that that kernel is transverse to Ση on a good
subset of Ση. We first consider Γ′1. In this case we have Σ′ = {(x, eiθ), x ∈
R, εθ ∈ [0, π]}, where ε = ±1 depends on the coorientation η. The differential
of π ◦ g is given by a complex 1-form d(π ◦ gt)(x, eiθ) = dx− εt eiθ dθ, which
is injective if θ ∈ (0, π). Thus π ◦ gt is an immersion on the interior of Σ′.

Consider now Γ′2. Fix t > 0 and take (x, u) ∈ T 1S. Then ker(d(π ◦
gt)(x, u)) is spanned by Ut = (u, 1

t
∂
∂θ

). But lim
t→+∞

Ut = (u, 0) which generates

the geodesic flow. Let K ⊂ Σ′ \ ∂Σ′ be a compact sub-manifold. Then
for t > 0 large enough, Ut is transverse to K, so (π ◦ gt)|K is an immersion.
We can suppose that outside a compact K ′ ⊂ S ′, Σ′ has been smoothed so
that the surface Σ′ \ π−1(K ′) is contained in the set of fibers π−1(Γ′ \ K ′).
Then Σ′ \ (π−1(K ′)∪∂Σ′) is transverse to Ut for all t > 0, as in the first case.

We consider the surface Σ′′ ⊂ Σ′\∂Σ such that Σ′′∩π−1(K ′) = K and such
that Σ′′ and Σ′ \∂Σ′ coincide outside π−1(K ′). We can chose the compact K
such that Σ′ \Σ′′ remains in any neighborhood N of ∂Σ′. Then according to
what precedes, for all t > T the function π ◦ gt induces an immersion on Σ′′.

To prove that T can be made arbitrary small if we change the smooth-
ing of Σ′, it is enough to conjugate the previous isotopy with the diffeo-
morphism hs : (z, u) ∈ T 1C 7→ (sz, u) for s > 0 a fixed parameter small
enough. This diffeomorphism makes the smoothing of Σ′ smaller and satis-
fies gt ◦ hs(z, u) = hs ◦ gts(z, u). It finishes the proof.

Proof of Theorem A. Let N ⊂ Ση be a small tubular neighborhood of ∂Ση

that does not intersect the skeleton X of Ση. Consider a flat metric g̃ on a
small neighborhood of Γ ⊂ S, such that Γ stays geodesic for g̃. We consider
a finite open cover U of a small neighborhood of Γ ⊂ S, such that each
open U ∈ U intersects Γ in either on compact curve, or in two intersecting
compact curves. Then each open U ∈ U is isometric to an open subset V
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of the standard model S ′ containing 0. Then by using Lemma 2.1.2, we can
chose a small smoothing of Ση and find an isotopy of (Ση \ N ) ∩ T 1U to an
immersion that stays in any small thickening of V . Since the isotopies are
parallel transports of the form (x, u) 7→ (x + λiu, u), with the metric g̃, we
can glue these isotopies for all U ∈ U .

Therefore there exists an isotopy of Ση \ N whose composition with π :
T 1S → S ends with an immersion. According to Lemma 2.1.1 we can com-
pose this isotopy with a deformation retract from the surface Ση into Ση \N .
Additionally that isotopy can be suppose small enough if the choice of the
neighborhood N was initially made closed enough to ∂Ση. Then the image
of the neighborhood of both kinds of vertices are obtained explicitly with the
local model S ′.

The image of the immersion Ση → S is illustrated in Figure 2.5. It is
obtained by taking a good smoothing of Ση such that the function π ◦ gt
(defined in the local models) is immersed for all t > 0 on a small enough
neighborhood of the skeleton of Ση. Then the image represented is given
by the image of a small tubular neighborhood of the skeleton. If one take
a time t > 0 large enough such that π ◦ gt is an immersion outside a small
neighborhood of ∂Σ, the immersed surface obtained that way is isotopic
though immersed surface to the surface illustrated in Figure 2.5. So up to an
isotopy, we can work using the immersed surface illustrated in that figure.

Remarks 2.1.3. We could have chosen to take t < 0. The image of the
immersion would be similar. Also the order of the self-intersections of the
immersion does not matter since it comes from the projection of a S1 fiber.

Definition 2.1.4. The immersion Ση → S thus constructed does not depend
on the choices made (for t > 0) up to isotopy through immersion. It will be
called the isotope immersion, and denoted by ψim.

The isotopy by twisted immersion. There exists another representation
of Ση that might be interesting. Take X the skeleton of Ση as in Figure 2.5.b.
Replace every vertex ofX (which has degree 3) by a triangle and replace every
edge by a twisted rectangle. Glue them along the triangle corresponding to
the ends of the edges. We obtain the image of a twisted immersion of Ση

as in Figure 2.5.f. There exists a small isotopy of Ση in T 1S that gives this
representation when composed with π. One can prove this by using either
the isotope immersion, or by understanding geometrically how to twist a
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rectangle re around a vertex v depending on the orientation of η around v.
However we will not use this representation later.

2.1.3 The ribbon graph representation of Ση

In this subsection, we adapt and use the notion of ribbon graph to describe Ση

and its skeleton X as combinatorial objects. We start by defining the com-
binatorial tools that interest us. Then we connect them with the isotope
immersion of Ση. Eventually, this will make the study of isotopies and dif-
feomorphisms easier.

Definition 2.1.5. Let S be a surface, X = (X0, X1) a graph and φ : X → S
a continuous map. We say that (X,φ) is a ribbon graph if

• φ|X0 is injective,

• for all e ∈ X1 (as closed segment), φ|e is immersed,

• for all v ∈ X0, the tangents to φ|e, for all e ∈ X1 bounding v, are
pairwise not positively collinear (and not zero).

Let (X,φ) be a ribbon graph on a surface S. We call induced surface
of (X,φ) the thickened immersed surface obtained from the blackboard fram-
ing. More precisely, it corresponds to (ΣX,φ, ι, π), where ΣX,φ is a smooth
surface, ι : X #

◦
ΣX,φ is an embedding and π : ΣX,φ ↪→ S is an immersion,

such that ΣX,φ deformation retracts to ι(X), and π ◦ ι = φ.

Example 2.1.6. The isotope immersion defined in Section 2.1.2 naturally
yields a ribbon graph and its induced surface, as in Figure 2.5.

Two ribbon graphs are said to be weakly isotopic if there exists a suc-
cession of isotopies of ribbon graphs, of twists, fusions and contractions that
goes from one to the other. The twist, fusion and contraction moves are
represented in Figure 2.6.

Notice that during such an isotopy, the order of the edges around a vertex
do not change. Also a weak isotopy (X,φ) → (Y, ψ) induces a canonical
homotopy equivalence X → Y . Examples of weak isotopies are given in
Figure 2.7.
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twist

contraction

fusion

Figure 2.6: Weak isotopy of ribbon graph.

Proposition 2.1.7. Let F be a weak isotopy between two ribbon graphs (X,φ)
and (Y, ψ), f : X → Y the homotopy equivalence induced by F , and ΣX ,ΣY

be the surfaces induced by (X,φ) and (Y, ψ). Then there exists a diffeomor-
phism g : ΣX → ΣY so that the two maps πY ◦ g, f ◦ πX : ΣX → Y are
homotopic.

Proof. We gives some ideas of the proof. First notice that the twists, con-
traction and fusion moves induces a diffeomorphism g as in the proposition.
Also a regular isotopy of ribbon graphs is locally induced by an ambiante iso-
topy, which induces an isotopy on the induced surface. So a regular isotopy
of ribbon graphs also satisfies the property. Hence a finite concatenation
of regular isotopies and of twists, contraction and fusion moves satisfies the
conclusion of the property.

Because of the twist move, this diffeomorphism does not always come
from an isotopy of their immersed image in S.

The combinatorial representation of Ση . Theorem A gives a represen-
tation of Ση as a ribbon graph. In this paragraph, we use this representation
to compare the alternating and non-alternating vertices, examples of which
can be found in Figure 2.5.e. This will be useful in Section 2.2 for identifying
the surface Ση one with another.

We will detail here how to compare two Birkhoff sections associated to
two coorientations that differ around a specific vertex v of Γ. Figure 2.7
describes two weak isotopies of ribbon graphs that interest us. The idea of
the isotopies is the following. Use the image π(X) ⊂ S of the skeleton X.
There is in π(X) a 4-gon � associated to the vertex v. The shape of � is
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illustrated in Figure 2.5.b), as either a square or a twisted square. Fix e
an edge of � which remains in the same quadrant around the vertex v. In
the 4-gone �, the edge e has two adjacent neighboring edges, that we move
along e.

Definition 2.1.8. The isotopies described above and shown in Figure 2.7
are called slide along e, or slide along the quadrant containing e.

e
twist move

e

twist move

Figure 2.7: Isotopy of ribbon graphs (slide along e)

For more precision, for a vertex v one can do a slide in a quadrant around v
if that quadrant is either a minimal or a maximal quadrant, for the coori-
entation η. In Figure 2.7 are represented respectively a slide along the top
right edge of an alternating vertex and along the bottom left edge of a non-
alternating vertex. All possible slides are obtained by doing rotation or sym-
metry of these two slides. Notice that these slides are pseudo involutions,
in the sense that sliding along the same quadrant twice is isotopic to the
identity. We are interested in compositions of slides.

Let v in Γ0 and denote by c1, c2, c3, c4 the four quadrants around v, ordered
according to an Eulerian coorientation, for example as in Figure 2.8. More
precisely we require that the coorientation η is decreasing relatively to the
chosen order on the four quadrant. Denote by sli the slide along ci, which is
well-defined when the skeleton X admits an edge ei along ci.

Lemma 2.1.9. In the above context, the diffeomorphism of Ση induced by sl4◦
sl3 ◦ sl2 ◦ sl1 is well-defined and isotopic to a negative Dehn twist along the
curve γv, represented in Figure 2.9.
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alternating non-alternating

v v

13

42

12

34

Figure 2.8: Ordering the slides around a vertex v.

Proof. Let U ⊂ T 1S be a small tubular neighborhood of the fiber T 1
v S, so

that U ∩Ση is homeomorphic to an annulus, and let γv ⊂ Ση be the skeleton
of Ση ∩ U . We prove the lemma when v is an alternating vertex. The other
case only needs an adaptation of the diagram we will use. Let δ ⊂ Σ be a
curve intersecting γv once, and with ends outside U , as in Figure 2.9. Denote
by f : Ση → Ση the diffeomorphism induced by the isotopy sl4 ◦ sl3 ◦ sl2 ◦ sl1.

In Figure 2.9, we give the diagrams of four isotopies of ribbon graphs, and
we keep track of δ along these isotopies. It proves that the concatenation is
well-defined, and that, in homology, f?([δ]) = [δ]± [γv]. Also the isotopy fixes
the ribbon graph outside U . So the support of f is included in an annulus,
and f acts in homology like a Dehn twist. Figure 2.9 gives the sign of the
Dehn twist. Thus it is isotopic to the negative Dehn twist along γv.

2.2 Elementary flips and partial return maps

The main idea for computing the first-return map is to see it as a composition
of partial return maps Ση = Σ0 → Σ1 → . . . → Σn = Ση. In this section,
we study the combinatorics and the geometry of the partial return maps,
in order to prove Theorem B. We also introduce tools needed to formulate
Theorem C precisely.
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slide move
1

2

3

4

δ

γv

γv

τ−1
γv (δ)

Figure 2.9: Action of four slides around an alternating vertex v and their
traces on δ.

2.2.1 Combinatorial flip transformation

We introduce in this subsection the main combinatorial tool: the flip. We
start by studying Γ? the dual graph of Γ ⊂ S. In Γ?, every face f of S \ Γ
(diffeomorphic to B2) is replaced by a vertex f ? inside the face. Every edge
of e ∈ Γ1 between two faces f1 and f2 (not necessarily different) is replaced
by a transverse edge e? from f ?1 to f ?2 . And every vertex v ∈ Γ0 is replaced
by a face v?.

Let η be a coorientation of Γ. It naturally induces an orientation on Γ?,
which will also be denoted by η. We are interested in geodesics in S that
induce on (Γ?, η) an oriented cycle. For a geodesic γ ⊂ Γ, pushing slightly γ,
to its left or its right, induces two different cycles in Γ?, but they are simul-
taneously oriented or not-oriented for η (for homology reasons). We consider
these curves for telling whether γ induces an oriented cycle in (Γ, η).

Lemma 2.2.1. Let S be an orientable hyperbolic closed surface, Γ be a finite
collection of closed geodesics which is filling, and take η in EulCo(Γ), then:

• For any curve γ ⊂ S inducing an oriented cycle in (Γ?, η), the geodesic
homotopic to γ also induces an oriented cycle in (Γ?, η).

• The surface Ση is a Birkhoff section if and only if the graph (Γ?, η) has
no oriented cycle. In this case, we say that η is an acyclic coorienta-
tion.
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• If Γ admits an acyclic coorientation, then every edge in Γ1 bounds two
different faces of Γ.

Proof. Let γ ⊂ S be a curve inducing an oriented cycle in Γ?. Denote by γ̃ the
unique geodesic of S homotopic to γ. We will prove that γ̃ induces an oriented
cycle in Γ?. The curve γ induces an oriented cycle, so η(γ) = ±|Γ∩γ|. Since γ̃
is homotopic to γ, we have |η(γ)| = |η(γ̃)| ≤ |Γ ∩ γ̃|, so γ minimises |Γ ∩ γ|
in its homotopy class. Suppose that γ̃ is not inside Γ. Then since it is a
geodesic, it also minimises the geometric intersection with Γ. Hence we have
the equality |η(γ̃)| = |Γ ∩ γ̃|, so η induces an orientation on γ̃. Hence γ̃
induces an oriented cycle inside the oriented graph (Γ?, η).

If γ̃ is a component of Γ, we can adapt the same argument. We push γ̃
slightly to its left and denote by γ̃ε the curve obtained that way. The curve γ̃ε
is homotopic to γ and minimises the geometric intersection with Γ, so simi-
larly η induces an orientation on γ̃γ. Hence γ̃ induces an oriented cycle inside
the oriented graph (Γ?, η) as defined above.

We now prove the equivalence in the second point. Suppose that Ση is not
a Birkhoff section. Then for arbitrarily large T > 0, there exists (x, u) ∈ T 1S
such that for ∀0 ≤ t ≤ T , φt(x, u) 6∈ Ση. Take T > nd where n = |Γ?| and d is
the largest diameter of a face f ∈ Γ?. Then the geodesic arc φ[0,T ](x, u) must
travel through at least n+1 faces (counted with multiplicity). Thus it induces
in Γ? a path γ? that admits self-intersections. Note that the orientation of γ?
in Γ? is the opposite to the one provided by η. Hence a restriction of γ?
between two self-intersections, with the opposite orientation, is an oriented
cycle in (Γ?, η).

Suppose that there is an oriented cycle in (Γ?, η). By the first point,
there exists a closed geodesic γ inducing an oriented cycle. If γ 6⊂ Γ, then
the orbit ←γ of the geodesic flow given by the geodesic γ lifted with the opposite
direction, satisfies ←γ ∩ Ση = ∅. Then Ση is not a Birkhoff section. Suppose
that γ ⊂ Γ, and ←

γ ⊂ ∂Ση. Then every orbit in the stable leaf of ←γ stops
intersecting Ση after a large enough time, since any slight push of γ in the
appropriate direction induces an oriented cycle of η. Hence in both cases Ση

is not a Birkhoff section.
For the last statement, it is enough to notice that an edge in Γ bounded

twice by the same face is dual to a loop in Γ?.

When Ση is a Birkhoff section, (Γ?, η) is acyclic and η induces an order
on the finite set Γ?0. Thus η must have at least one sink face, that is, η is
going inward f as in Figure 2.10.
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Definition 2.2.2. Let η in EulCo(Γ) and f be a sink face. We define If (η) ∈
EulCo(Γ) the coorientation obtained by flipping η along ∂f . We call If
an elementary flip along f . We also define recursively I(f1,...,fk)(η) =
Ifk(I(f1,...,fk−1)(η)), when recursively fi is a sink face of I(f1,...,fi−1)(η) for all 1 ≤
i ≤ k.

f f
flip

Figure 2.10: A sink face on the left, and a flip.

If η is Eulerian, If (η) remains Eulerian and is cohomologous to η.

Representations. Around a vertex v, an Eulerian coorientation of Γ gives
a partial ordering on the 4 adjacent faces (so that the coorientation is de-
creasing). We extend the ordering, by ordering v relatively to these faces
using Figure 2.11. That is, if v is alternating, we set v bigger than the sink
faces and smaller than the source faces. If v is not alternating, we set v
smaller than the source face and bigger than the three other faces. We call
this ordering on Γ2 ∪Γ0 the coherent order. These orderings represent the
order of the Dehn twists in the product in Theorem C.

Remark 2.2.3. Suppose that Ση is a Birkhoff section. If one face f covers
two quadrants around a vertex v, then by Lemma 2.2.1 it must be two oppo-
site quadrants. Also Lemma 2.2.1 prevents f to be the sink and the source
quadrants of a non-alternating vertex v. In the remaining cases, the coherent
ordering is still well-defined on Γ2 ∪ Γ0.

If there exist two faces such that both of them cover two opposite quad-
rants around v, the coherent ordering is still well-defined on Γ2 ∪ Γ0 for the
same reasons.
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alternating non-alternating

v v

Figure 2.11: Coherent ordering of a vertex relatively to its adjacent faces.

Definition 2.2.4. Let η be an acyclic Eulerian coorientation of Γ. We call
a partial representation of η a total order on Γ2, which extends the coori-
entation η. We call a representation of η a total order on Γ0 ∪ Γ2 which
extends the coorientation η and the coherent order.

Thanks to acyclicity, representations always exist. There is no uniqueness
in the representation, we will compare several choices of representation in
Section 2.3.3.

Example 2.2.5. If Γ ≡ 0 ∈ H1(S, Z/2Z) as in Example 1.5.1, the faces of Γ
can be colored in black and white, and consider the Eulerian coorientation η
that goes from black to white. Then a representation can look like: white
faces totally ordered < vertices totally ordered < black faces totally ordered.
This choice of representation corresponds to the composition of three Dehn
multi-twists studied by N.A’Campo and M.Ishikawa.

The point is to use and deform a representation and its coorientation in
order to represent the first-return map as a product of elementary diffeomor-
phisms. We have defined an elementary operation on coorientations, that we
extend to representations.

Definition 2.2.6. Let (η,≤) be an acyclic Eulerian coorientation with a
partial representation. We define I(η,≤) to be (If (η), If (≤)), where f is
the minimal face of ≤ and If (≤) is obtained from ≤ by setting f to be the
maximum. It is called the elementary flip of (η,≤).
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2.2.2 Algorithm for the first-return map

In order to describe the first-return map, we will first describe how it acts
on the representations of acyclic Eulerian coorientations. Let η be such
a coorientation and ≤ one partial representation. By iterating the flip I,
we create a family of #Γ2 coorientations and partial representations, before
looping to (η,≤). We will translate this geometrically later. For now let us
detail a bit more how the coorientations obtained in this process look.

Lemma 2.2.7. Let (η,≤) be a partial representation. Let 1 ≤ k ≤ n, f be
the kth face for ≤ and (ν,�) = I(f1,...,fk)(η,≤). For every e ∈ Γ1 bounded
by two faces f1 and f2, we have ν(e) = η(e) if and only if f1 and f2 are
simultaneously greater or simultaneously smaller than f for ≤, that is, either
(f1 > f and f2 > f) or (f1 ≤ f and f2 ≤ f).

In particular I(f1,...,fn)(η,≤) = (η,≤).

Proof. The partial representation � differs from ≤ by moving the k lower
faces on top. So we have ν(e) 6= η(e) if and only if one of the fi is in this
subset, and the other is not.

The algorithm that consists in applying elementary flips If for successive
minimal faces f will be called by the flip algorithm. This algorithm gives
a way to compute the first-return map by computing the n elementary flips
that correspond to the iteration of I.

2.2.3 Equivalence of cohomologous coorientations

We discuss a way to transform an acyclic Eulerian coorientation into its co-
homologous coorientations by elementary flips If . The flip transformation
and its combinatorics have already been studied by O.Pretzel [Pre86] and
J.Propp [Pro20]. The following proposition is mainly a geometric reformu-
lation. Only the first part of the proposition is mandatory for the following
sections.

Proposition 2.2.8. Let η, ν be in EulCo(Γ) be two cohomologous acyclic
coorientations (so that Ση is a Birkhoff section). Then there exists a sequence
of elementary flips that change η into ν.

Let η, ν in EulCo(Γ) be two cohomologous coorientations that are not
acyclic (so that Ση is not a Birkhoff section). Suppose that the union of
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oriented cycles in (Γ?, η) is connected. Then there exists a sequence of ele-
mentary flips that change η into ν.

Let η in EulCo(Γ) be not acyclic. Suppose that the union of oriented cycles
in (Γ?, η) is not connected. Then there exists ν ∈ EulCo(Γ) cohomologous
to η, so that Ση and Σν are not isotopic through the flow. In particular no
sequence of flips can change η into ν.

Notice that we are never allow to flip a face included in an oriented cycle,
and oriented cycles remain oriented the same way after any sequence of flips.

Remark 2.2.9. O.Pretzel [Pre86] and J.Propp [Pro20] studied the set of
orientations of a finite graph G. In our case, it corresponds to the Eulerian
coorientations and the dual graph Γ?. They fix an orientation G and consider
the strongly connected components of G, that is a set of vertices which are all
pairwise connected by some oriented path. A strongly connected component
corresponds either to one vertex which is not in any oriented cycle, or to a
connected component of the union of oriented cycles. Then they study the flip
transformation which transform a sink strongly connected component into a
source strongly connected component, which only change the orientation of
the edges in the boundary of that strongly connected component. The flip
transformation preserves a function called circulation, which corresponds to
the cohomology element in H1(G,Z) induced by an orientation of G.

O.Pretzel proved that given a strongly connected component H of G, the
set of orientations of G with a fixed circulation is a distributive lattice, for
the order given for two orientation o, o′ by o ≤ o′ if there exists a sequence
of flips on the vertices of G \H which transforms o into o′. In particular the
two first items of the previous proposition are direct consequences of that
result.

Proof. We start with the case of η acyclic. Define E = {e ∈ Γ1, η(e) 6= ν(e)}
and notice that E is an embedded graph in S with degree 2 and 4 vertices.
Also η and ν induce on E two opposite Eulerian coorientations.

The dual graph E? is an acyclic oriented graph. Indeed take c a cy-
cle in E?. The two coorientations are cohomologous, so [η](c) = [ν](c).
Hence 2[E](c) = ([η] − [ν])(c) = 0 and c cannot be an oriented cycle in E?.
Also every edge of E bounds two different connected components in S \ E,
otherwise we would have a closed curve c intersecting E only once and
with η(c) 6= ν(c).
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Hence η restricted to E induces a partial ordering on E?
0 . We will use this

partial ordering to solve the problem by beginning with the local minimal
elements. Let F ? ∈ E?

0 be a local minimal vertex of η. On the boundary ∂F , η
is going inward. Since η is acyclic, the faces f ∈ Γ?0 with f ⊂ F are partially
ordered by η, and we can apply the flip algorithm to every sub-face of F ,
flipping once every sub-face of F . After this procedure, we obtain an acyclic
Eulerian coorientation η′ cohomologous to η, that differs only on ∂F . Indeed
all edges in the interior of F have been reversed twice, and all edges in the
boundary of F have been reversed only once. So the difference between η′

and ν bounds less connected components. By applying this procedure at
most a finite number of time, we describe a finite number of elementary flips
that transform η into ν.

Suppose now that η is not acyclic. Denote by U the union of oriented
cycles in (Γ?, η), and suppose that U is connected, as a subgraph of Γ?. Notice
that U does not admit any sink face. Since η and ν are cohomologous,
an oriented cycle for η is also oriented for ν. So U is also the union of
oriented cycles in (Γ?, ν). We also denote by U ⊂ S the union of faces it
induces. In (Γ?, η), there is no oriented path outside U , starting and ending
in U , otherwise this path would be a subset of an oriented cycle (since U is
connected) and thus in U . So every oriented path starting at U and leaving U
must be finite and end outside U .

Hence if η is not always going inside U along ∂U , then η admits a local
minimal face outside U , and we flip η along any local minimal face. We
can repeat this procedure a finite number of times until the coorientation is
always going inside U along ∂U . Denote by η′ the coorientation induced by
the procedure, and ν ′ the coorientation induced by this procedure applied
on ν. Then we compare η′ and ν ′ on the connected components of S \ U .
We will adapt the previous procedure to find a sequence of flips from η to ν.
Define E = {e ∈ Γ1, η(e) 6= ν(e)} the same way, then E delimitates connected
regions. For every such region F , either U is outside F and we apply the
flip algorithm on the sub-faces of F , or U is inside F , and we apply the flip
algorithm on S \ F . Hence we can apply a sequence of elementary flips to
eliminate ∂F from E, and successively transform η′ into ν ′.

Finally suppose that η is not acyclic and that U is not connected. We
will construct ν cohomologous to η, and a non-closed geodesic that intersects
finitely Ση and Σν but with the same amount. Denote U1, · · · , Un the con-
nected components of U . Notice that η partially orders (Ui)i. Indeed suppose
there is a finite sequence of oriented paths connecting Ui1 to Ui1 , · · ·Uik and
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back to Ui1 , then it is included in an oriented cycle intersecting Uk, that must
remain included in Uk.

We successively do every possible flip on sink faces in S \ U (which ter-
minates in a finite number of steps), to obtain η′. Let F be a connected
component of Γ? \ U . Then every increasing path in (F ?, η′) is finite, and
ends at the boundary of F . Since the Ui are partially ordered, there is a max-
imal Uk. And since there is no path inside F starting and ending at Uk, η′
is going inward Uk along its boundary. Let ν be the coorientation obtained
from η′ by changing the coorientation of Uk. Then ν is Eulerian and coho-
mologous to η′ and η.

S

Γ

η
Ui Uk

δ ν

Figure 2.12: Non closed geodesic δ intersecting Ση and Σν a different amount
of times, but satisfying [η] = [ν].

By Lemma 2.2.1, for every 1 ≤ i ≤ n, there exists a geodesic δi inside Ui
(or on its boundary). Let 1 ≤ i ≤ n be different from k, and define a
non-closed geodesic δ as in Figure 2.12, so that δ accumulates in the infinite
past along δ̄i (δi with the opposite direction), and accumulates in the infinite
future along δ̄k. Since i 6= k, the algebraic intersection δ ∩ ∂Uk is odd. We
can do this so that δ remains inside the interior of Uk ∪Ui outside a compact
arc. But if δi 6⊂ ∂Ui then

←

δi ∩ Ση = ∅, and if δi ⊂ ∂Ui then
←

βi ∩ Ση = ∅
where βi is any slight push of δi inside Ui. Thus δ∩Ση′ and δ∩Σν are finite,
and differ by an odd integer that is not 0. Thus Ση and Σν are not isotopic
through the flow.
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2.2.4 Partial return maps

The partial return maps are the geometric realisation of the combinatorial
flip. We define the partial return maps and prove Theorem B in this subsec-
tion.

Let η be in EulCo(Γ) and f in Γ?0 be a sink face for η. Write Σ1 = Ση

and Σ2 = ΣIf (η). The elementary flip If acts geometrically by pushing Σ1

along the geodesic flow only around the face f , as schematically depicted in
Figure 2.13. Define h : Σ1 → R+ such that h(x) is the smallest t ≥ 0 such
that φt(x, u) lies in Σ2, and rf : Σ1 → Σ2 by rf (x, u) = φh(x)(x, u).

Proposition 2.2.10. There exist two smoothings of Σ1 and Σ2, ε > 0 arbi-
trary small and U the complement of a small neighborhood of T 1

f S such that
:

• Σ1 and Σ2 are disjoint and rf : Σ1 → Σ2 is well-defined and smooth,

• φ−ε(Σ2) ∩ U = Σ1 ∩ U and (φ−ε ◦ rf )|Σ1∩U = id.

We call rf a partial return map. If Σ′1,Σ
′
2 are obtained using other

smoothings and r′f : Σ′1 → Σ′2 is the corresponding partial return map
corresponding, there exists two unique small isotopies si along the flow
for i ∈ {1, 2}, from Σi to Σ′i. Then rf and r′f are conjugated one to an-
other by the two isotopies si. Hence rf can be defined without precision on
the choices of smoothing.

rf Trf

f
Σ1

Σ2

φ

Figure 2.13: Relative positions of Σ1 = Ση and Σ2 = ΣIf (η) inside T 1S.

Proof. We write Σ̂i for the 2-complex that we smooth for constructing Σi

(without its boundary). First define ĥ : Σ̂1 → R and r̂ : Σ̂1 → Σ̂2 in the
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following way. Let (x, u) in Σ̂1 and not in T 1
v ∩ Σ̂1 for any non-alternating

vertex v. If x is in f and u goes inside f , define r̂(x, u) to be the first
intersection of Σ̂2 and of the geodesic starting at (x, u), and ĥ(x, u) to be the
length of this geodesic arc. Elsewhere set r̂(x, u) = (x, u) and ĥ(x, u) = 0.

Let v be a non-alternating vertex and take (x, u) ∈ T 1
v ∩ Σ̂1. After the

desingularisation of Σ̂1, two points of Σ̂1 correspond to (x, u) and we must
define r̂ and ĥ for both points. One of them is adjacent to the two rectan-
gles re1 , re2 for two edges e1, e2 bounding f , and we define ĥ and r̂ on it as if it
was going inside f . The other point is adjacent to the two rectangles re3 , re4
for two edges e3, e4 not adjacent to f , and we define ĥ and r̂ on that point
as it was outside of f .

Both functions ĥ and r̂ are well-defined and continuous. We smooth
together Σ̂1, Σ̂2, ĥ and r̂ into Σ1, Σ2, h and r. We use smoothings smaller
that ε/3.

On a small neighborhood of each corner of f , h may be negative. To
make h positive, take g a negative smoothing of −max(0,−h) and push Σ1

with φ−g. We suppose that |g+ max(0,−h)| < ε and that g = −max(0,−h)
outside the tubular neighborhood B(f, ε) of f . Now h− g ≥ 0.

Let U = T 1S \ T 1
B(f,ε)S be the complement of f in T 1S. By construc-

tion Σ1 ∩ U = Σ2 ∩ U and (rf )|Σ1∩U = id. We finish by replacing Σ2

by φε(Σ2).

Fix a representation of η. The flip algorithm generates a family of coho-
mologous Birkhoff sections, consecutively disjoint. The partial return maps
describe how the flow moves one to the next one.

Theorem B. Let Γ ⊂ S be a filling geodesic multi-curve of a hyperbolic
orientable surface, η ∈ EulCo(Γ) acyclic, ≤ a partial representation of η and
denote the faces by f1 ≤ · · · ≤ fn. Denote by Σ0 = Ση and successively by the
partial return map ri : Σi−1 → Σi the partial return map along the face fi.
Then Σn = Ση and the first-return map on Ση is the product of the partial
return maps rΣη = rn ◦ · · · ◦ r1.

The theorem is equivalent to having Birkhoff sections Σi pairwise disjoint,
and ordered by the flow. So that the first-return map on Σ0 is obtained by
following the flow from Σ0 to itself, crossing exactly once every other Birkhoff
section Σi, in the order i = 1 to i = n− 1.

Proof. We will prove that r = rΣη = rn ◦ · · · ◦ r1 on a dense subset of Σ0.
Let x be in

◦
Ση such that the geodesic starting at x intersects Ση again before
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intersecting T 1
Γ0
S. This represents a dense subset of Ση. We can suppose that

the smoothing have been done away from the short geodesic starting at x
and ending on Ση when it first intersects it. So for U a small neighborhood
of the geodesic from x to r(x), we have Σi ∩ U = Σ̂i ∩ U .

We denote by x0 = x, x1, . . . , xk the first k points in the intersection of
the orbits φR+(x) and of the fibers T 1

ΓS above Γ. We chose the integer k ∈ N
such that for all 1 ≤ i < k, the point xi is not in Ση, and xk is inside Ση,
that is xk = rΣη(x). We also denote by ei ⊂ Γ the edge on which is base the
vector xi, and by fi the face in which is pointing the vector xi. Since for 1 ≤
i < k, the point xi is not in Ση, the vector xi induce the coorientation of ei
which is opposite to η. Hence by definition of the partial representation ≤ we
have fi−1 < fi. Similarly one has fk−1 > fk. Since the partial return maps
are obtain by flipping the faces from the minimal face to the maximal face,
the composition of the partial return maps sends inductively the point xi
to the point xi+1 for all 0 ≤ i < k, and then remains constant equal to xk
since fk−1 > fk. Hence rn ◦ · · · ◦ r1(x) = xk = rΣη(x), and by density rn ◦
· · · ◦ r1 = rΣη .

2.3 Explicit first-return maps

Let r : Ση → Ση be the first-return map along the geodesic flow. In Sec-
tion 2.2 we have decomposed the first-return map as a product of partial
return maps. In this section, we first compare these partial return maps
to negative Dehn twists, along prescribed curves. Then we state and prove
Theorem C. We finish by comparing several decompositions of first-return
maps in Dehn twists, and prove Theorem D.

2.3.1 Explicit computation of partial return maps

Let f be a sink face of a coorientation η ∈ EulCo(Γ) and denote Σ1 = Ση

and Σ2 = ΣIf (η). We will compare the partial return map r : Σ1 → Σ2 to a
negative Dehn twist, but r is not an endomorphism. We need to correct it
with a simple diffeomorphism c : Σ2 → Σ1 so that Σ1

r−→ Σ2
c−→ Σ1 can be

expressed as a Dehn twist. In order to find c, we use the ribbon representation
of Σi and the slides from Definition 2.1.8.
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To simplify the computation of c ◦ r, we need to precise which slides we
use. Let {c1, . . . , ck} be the set of corners of f . If f has double corners, we
consider them twice. For 1 ≤ i ≤ k, the ribbon graph of Σ2 around ci as an
edge corresponding to the vector based on ci and going inside f . We denote
by ei this edge, as in Figure 2.14.

e1
e2

e3

f

Figure 2.14: Edges used for the slide correction.

Definition 2.3.1. Let r : Σ1 → Σ2 be a partial return map around f . We
define c : Σ2 → Σ1 the composition of slides along every ei for 1 ≤ i ≤ k. We
call it the slide correction of r.

The diffeomorphism c is well-defined up to isotopy. Indeed f is a sink
face so the slides are well-defined, and the slides on different corners can be
done independently in a commutative way. The diffeomorphism c ◦ r will
be compared to the Dehn twist along γf , for the curve γf represented in
Figure 2.2. This curve does one turn around f , and follows the edge ei for
each corner ci of f .

Proposition 2.3.2. Let η and ν be two Eulerian coorientations that differ
only by an elementary flip along a sink face f . Let r : Ση → Σν be the partial
return map and cr : Σν → Ση the corresponding slide correction. Then cr ◦ r
is isotopic to the negative Dehn twist along γf .

Proof. We write Σ1 = Ση and Σ2 = Σν . We start with an additional assump-
tion on f : we suppose that f does not admit double corners as an immersed



116 CHAPTER 2. EXPLICIT FIRST-RETURN MAPS

polygon. That is, we suppose that f is an embedded polygon. First we see
that there is an annulus containing the support of cr ◦ r. Denote by U the
union of the complement of a small neighborhood of f and of the opposite
sides of ei for every corner ci of f (the opposite side in the ribbon graph of Σ1

around a corner ci). Denote V = Σ1 \ U . We can do this choice so that V is
homeomorphic to an annulus that retracts on γf , as in Figure 2.15.

f

δT ◦ r(δ)

x

y

V

U

Figure 2.15: Action of the partial return map around an alternating vertex.

The fact that the support of cr ◦ r is inside an annulus comes from the
fact that both immersions π ◦ψim and π ◦ψim ◦cr ◦r act as the identity on U .
Thus they lift to the equality (cr ◦ r)|U = idU and supp(cr ◦ r) ⊂ V . So cr ◦ r
is isotopic to a multiple of the negative Dehn twist along γf .

In order to understand which multiple it is, we use an arc δ transversal
to V , and we compare δ to cr ◦ r ◦ δ. Let x, y ∈ ∂f be two points that are
not corners of f , and on different edges of f . Suppose that the smoothings
of Σ1 and Σ2 have been done away from x and y, so that δx = T 1

xS ∩ Σi

and δy = T 1
y S ∩ Σi are two arcs that do not depend on i. Once δ will be

defined, since δy intersects the core of V only once, the multiplicity of the
Dehn twist is equal to the algebraic intersection of [cr ◦ r(δ)− δ].[δy].

Take two arcs δ+
x and δ−x in ∂Σ1, that start from the ends of δx and end

in U . Then define δ to be an arbitrary closed smoothing of δ−x ∪ δx ∪ δ+
x that
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remains in Σ1, as in Figure 2.15. For p ∈ δ arbitrary close to ∂Σ1, r(p) is not
in δy since x and y are on different sides of f . Indeed if the vector p ∈ δ is close
enough to ∂Σ1, then r(p) is also close to the same boundary component of Σ,
and remains in a small neighborhood of the fibers T 1

f S above F . Hence r(p)
is in a small neighborhood of the fibers of the edge of f on which x lies.
Since y is not on the same edge, r(p) is not on the fiber T 1

y S for p ∈ δ close
enough to ∂Σ.

Thus r(δ) intersects δy only once, corresponding to the geodesic in f
between x and y. Also by construction, δ ∩ δy = ∅. Since cr restricts to the
identity outside a small neighborhood of Γ0 ∩S, we have [cr ◦ r(δ)− δ].[δy] =
±1, the multiplicity is ±1. Figure 2.15 shows in blue cr ◦ r(δ), which helps
finding the sign. To know more precisely the sign, one could detail how the
orientation of ∂Σ1 imposes to cr ◦ r(δ) to intersect Σ ∩ T 1y with this sign.
So cr ◦ r is isotopic to a negative Dehn twist along γf .

To prove the property in the general case, we could either use a covering
of S such that f lifts to an embedded polygon, or adapt the last argument
around the double corners (and see why V is still an annulus).

2.3.2 Reconstruction of the first-return map

We now understand the first-return map as product of simple maps. We
first define the curves appearing in Theorem C. Then we restate and prove
Theorem C.

Definition 2.3.3. For every vertex v ∈ Γ0, define the curve γv as the skeleton
of the annulus Σ ∩ T 1

BS for B ⊂ S a small ball around v, as in Figure 2.16.
For each face f ∈ Γ2, define the curve γf in Ση that does one turn

around f , such that the behavior of γf around a corner of f is as in Fig-
ure 2.16. If needed, we denote by γηx the curve along x ∈ Γ0 ∪ Γ2 for the
coorientation η.

An example of a full γf is presented in Figure 2.2. It is clear that a slide
correction map send the curve γηv to the curve γνv for any vertex v ∈ Γ0 and
for two Eulerian coorientation η and ν which differ by a flip. It is convenient
to detail now how slide correction maps change the curve γf for a face f ∈ Γ2.
For the rest of the chapter, we will denote by Tγ or Tγ the negative Dehn
twist along γ.
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Figure 2.16: Curves γv for a vertex v (in the middle), and γf for a face f (in
the right).

Lemma 2.3.4. Let η ∈ EulCo(Γ) be a coorientation with a sink face f , ν =
If (η) the coorientation obtained by flipping η along f , and cf : Σν → Ση be
the correction map. Denote by ≺η and ≺ν the coherent orderings for η and ν.
Then for all faces g ∈ Γ2, up to an isotopy in Σν, c−1

f (γηg ) =
(∏

v∈Cg Tγνv

)
(γνg )

where the product is taken over the set Cg of all corners v common to f and g
so that g �η v and g ≺ν v. In particular c−1

f (γηf ) = γνf .

Proof. The curves c−1
f (γηg ) and γνg coincide outside a small neighborhood of

the corners of f . To compare them, we compute the image c−1
f (γηg ) using

some diagrams of the ribbon representation. Figure 2.18 represents these
curves on a neighborhoods of a corner v of f , which is non-alternating for η.
It proves that on a neighborhood of v, c−1

f (γηg ) coincides with γνg .
For v an alternating vertex which is a simple or a double corner of f ,

the curves are represented Figure 2.17. When v is a double corner of f , one
need to do two slides along the two quadrants corresponding to f , so there
is an additional line in the figure, for that second slide. It proves that on a
neighborhood of v, c−1

f (γηg ) coincides either with γνg , or with Tγνv (γνg ) if g �η v
and g ≺ν v.
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η

If1(η)

If1,f2(η)

f1

f2

f3

f4

v

i = 1 i = 2 i = 3 i = 4

γηfi

c−1
f1

(γηfi)

c−1
f2
◦ c−1

f1
(γηfi)

c−1
f1

(when f1 6= f2)

c−1
f2

(when f1 = f2)

Figure 2.17: Action of a slide correction on the curves γf around one al-
ternating vertex v of the face f1. The thick curve in red correspond to the
curve γηfi together with its image by the slide correction c−1

f . The four curves
are indexed by the element i = 1, . . . , 4 given below the diagrams. Since the
faces f1 and f2 can be equal, we need to do two slides in the two correspond-
ing quadrants to compute the image of γηfi under the slide correction c−1

f .

Theorem C. Let η be an acyclic Eulerian coorientation and Ση its corre-
sponding Birkhoff section. Then the first-return map r : Ση → Ση is the
product of negative Dehn twists along γv for all v ∈ Γ0 and γf for all f ∈ Γ?0.
The product is ordered by any representation of η.

Proof of Theorem C. Take a representation �η of η and order the faces of Γ
by f1 �η . . . �η fn. Denote by η0 = η, successively ηi = Ifi(ηi−1) the
flip of ηi−1 along fi, so that ηn = η, and denote by Σi = Σηi . According to
Theorem B, the first-return map is a product of partial return maps rn◦. . .◦r1

for the partial return map ri : Σi−1 → Σi along the face fi. Denote by ci :
Σi → Σi−1 the slide correction of ri, and for 1 ≤ i ≤ n define gi = c1 ◦ . . .◦ ci.
According to Proposition 2.3.2, ci ◦ ri is isotopic to a negative Dehn twist
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η

If1(η)

f1

f4

f2

f3

v

i = 1 i = 2 i = 3 i = 4

c−1
f1

γηfi

c−1
f1

(γηfi)

Figure 2.18: Action of a slide correction on the curves γf around one non
alternating vertex v of the face f1. The thick curve in light blue correspond
to the curve γηfi together with its image by the slide correction c−1

f . The four
curves are indexed by the element i = 1, . . . , 4 given below the diagrams.

along γηi−1

fi
, so that

r = rn ◦ . . . ◦ r1

=
1∏
i=n

ri

=
1∏
i=n

g−1
i ◦ gi−1 ◦ ci ◦ ri

= g−1
n ◦

1∏
i=n

gi−1 ◦ ci ◦ ri ◦ g−1
i−1

r = g−1
n ◦

1∏
i=n

gi−1 ◦ Tγηi−1

fi
◦ g−1

i−1.

We will see that g−1
n : Ση → Ση is a commutative product of Dehn twists,

and then we will characterize the curve that support the Dehn twist gi−1 ◦
Tγ

ηi−1

fi
◦g−1

i−1. We will also change the order in which the Dehn twists appear.
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We claim that we have

g−1
n =

∏
v∈Γ0

Tγηv .

The diffeomorphism g−1
n is a concatenation of slides. Since all faces appear

in the product gn = c1 ◦ . . .◦cn, the slide for every corner of Γ appears in g−1
n .

If two slides appear on different vertices of Γ, they have disjoint supports.
So we can rearrange the slides so that they appear by groups of four, one
group for every vertex of Γ. The way we have constructed g−1

n ensures that
the slides in each group appear in the same order as in Lemma 2.1.9. Then
this lemma implies that g−1

n is a product of negative Dehn twists along the
curves γv.

We proved that r is the product of negative Dehn twists given by the
following product, where gi−1 ◦ Tγηi−1

fi
◦ g−1

i−1 is a pullback of a negative Dehn
twist into Ση:

r =
∏
v∈Γ0

Tγηv ◦
1∏
i=n

(gi−1 ◦ Tγηi−1

fi
◦ g−1

i−1)

Also gi−1 ◦ Tγηi−1

fi
◦ g−1

i−1 = T (gi−1(γ
ηi−1

f )) (see Remark 2.3.5). Here, f is
the i-th face given by the representation, and γf is the curve of Σi along f .

Remark 2.3.5. Recall that for g an orientation-preserving diffeomorphism
of S and γ a simple closed curve on S, we have g ◦ Tγ ◦ g−1 = Tg(γ) (Fact
3.7 of [FM12]). So if γ and δ are two simple closed curves on S, we have

Tδ ◦ Tγ = T (Tδ(γ)) ◦ Tδ
= Tγ ◦ T (T−1γ(δ))

Instead of computing gi−1(γ
ηi−1

f ), we first change the order of Dehn twists
in the product, so that they appear in the order prescribed by the represen-
tation. In order not to increase the notations, we will do an informal proof.
We already know that r is a product of Dehn twists in curves corresponding
to all vertices and all faces of Γ. Also the Dehn twists corresponding to the
faces are already in order prescribed by the induced partial representation.
We first change the order in the product to match the representation, then
we compute the curves that support the Dehn twists.

A curve γηv can only intersect gi−1(γ
ηi−1

fi
) if fi admits v as corner. So we can

move γηv to the right from the product defining g−1
n , until Tγηv ◦T (gi−1(γ

ηi−1

fi
))

appears in the product. According to Remark 2.3.5, we have:
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Tγηv ◦ T (gi−1(γ
ηi−1

fi
)) = T (Tγηv (gi−1(γ

ηi−1

fi
))) ◦ Tγηv

We use this equation for changing the position of the two curves in
the product. We repeat this step until Tγηv is at the place prescribed by
the representation. Then we do the same procedure for all v ∈ Γ0. The
decomposition obtained is a product of Dehn twists, ordered accordingly
to the representation �η, and along the curves γηv for v ∈ Γ0 and the
curves (

∏
v∈Ci Tγ

η
v )(gi−1(γ

ηi−1

fi
)) for every 1 ≤ i ≤ n, where Ci = {v ∈

Γ0|fi �η v}. But gi−1 is a sequence of slides which sends the curve γηi−1
v

in Σηi−1
to the curve we have γηv in Ση. Hence (

∏
v∈Ci Tγ

η
v )(gi−1(γ

ηi−1

fi
)) =

gi−1((
∏

v∈Ci Tγ
ηi−1
v )(γ

ηi−1

fi
)).

Claim. The curve gi−1((
∏

v∈Ci Tγ
ηi−1
v )(γ

ηi−1

fi
)) is equal to γfηi .

The theorem follows from the claim. To prove the claim, we use several
times the Lemma 2.3.4 which details how a curve γηf is transformed by a slide
correction. We compute the curve g−1

i−1(γfηi ) which is equal to the curve c−1
i−1 ◦

. . . ◦ c−1
1 (γfηi ). By applying that lemma several times, we have:

g−1
i−1(γfηi ) = (

∏
v∈Γ0 and 1≤k≤i−1
fi�ηk−1

v and fi≺ηkv

Tγηi−1
v )(γfηi−1

i
)

We need to determine which index (v, i) ∈ Γ0 × J1, kK satisfies the hy-
pothesis in the index of the product. To do so, first we notice that the order
between fi and v for the orders ≺η0 , . . . ,�ηn changes exactly twice. It can be
verified by considering one vertex together with the four different coherent
orders around v that appears for the coorientations η0, . . . , ηn. In particular
it changes at most twice when we only do the first i− 1 slide corrections.

By definition of the flip operation along the ith faces, the face fi is mini-
mal for the order ≺ηi−1

and maximal for the order ≺ηi . So one has fi ≺ηi−1
v

and fi �ηi v. So the order between f and v changes at most once for
the orders ≺η0 , . . . ,�ηi . Since we have fi ≺ηi−1

v, one has the two rela-
tions fi �ηk−1

v and fi ≺ηk v for one index 1 ≤ k ≤ i − 1 if and only
if fi �η0 v. Hence we have following equation, which concludes the proof:

g−1
i−1(γfηi ) = (

∏
v∈Γ0
fi�η0v

Tγηi−1
v )(γfηi−1

i
)



2.3. EXPLICIT FIRST-RETURN MAPS 123

Remark 2.3.6. According to Remark 2.3.5, we could have taken other curves
and make them appear in a different order. We took a convention that
depends mainly on the choice of the Eulerian coorientation.

2.3.3 Comparison of different Eulerian coorientations

In this subsection, we compare the explicit products of negative Dehn twists
for different representations or different acyclic Eulerian coorientations. We
will in particular prove Theorem D.

Assume that η is an acyclic Eulerian coorientation, so that the surface Ση

is a Birkhoff section. Given two representations, the curves γv and γf depend
on η only.

Lemma 2.3.7. Let �1 and �2 be two representations of η. The two products
of negative Dehn twists in Theorem C can be changed one into another one by
successively swapping the positions of consecutive commutating Dehn twists.

Proof. Denote by�0 the coherent ordering, which is a partial ordering on Γ0∪
Γ2. By definition, �1 and �2 agree with �0. Let x, y in Γ0 ∪Γ2 and suppose
that γx and γy do not commute. Then by definition of the curves γx and γy, x
and y must be either two adjacent faces or one face and an adjacent vertex,
thus they are comparable under �0. So x and y have the same ordering
under �1 and �2.

Now suppose that �1 and �2 are not equal, and let x and y be in Γ0 ∪
Γ2 not ordered in the same way by �1 and �2. There is a pair of such
elements (x, y) which are consecutive in �2, otherwise �1 and �2 would be
equal. By what precedes, x and y are not adjacent, and the negative Dehn
twists along γx and γy commute. So we can define �3 by only swapping in �2

the ordering of x and y, and �3 is a representation of η. This procedure can
be recursively repeated to �1 and �3, and terminates in a finite number of
steps.

Given two isotopic Birkhoff sections Σ1, Σ2 and two decompositions of
the two first-return maps in Dehn twists, we can use an isotopy along the
flow Σ2 → Σ1 to compare the two decompositions. These decompositions can
be compared using Hurwitz equivalences. Given a group G, two n-tuples of
elements of G are said to be Hurwitz equivalent if we can change the first
tuple to the second one by a sequence of transformations that changes a n-
tuple (g1, . . . , gn) into the n-tuple (g1, . . . , gi−1, gi+1, g

−1
i+1◦gi◦gi+1, gi+2, . . . , gn)
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or (g1, . . . , gi−1, gi ◦ gi+1 ◦ g−1
i , gi, gi+2, . . . , gn) for some i ∈ {0, . . . , n− 1}. In

our case, G is the mapping class group MCG(Σ1) of Σ1, that is the set of
homeomorphisms of Σ1 that preserve ∂Σ1 component by component, up to
isotopy. We denote by ' the Hurwitz equivalence relation.

Lemma 2.3.8. Let η and ν be two cohomologous acyclic Eulerian coori-
entations. Theorem C decompose the first-return map on Ση and Σν into
two products of elements from n-tuples gη and gν of element of MCG(Ση)
and MCG(Σν). Denote by i : Ση → Σν a diffeomorphism given by an isotopy
along the flow. Then gη and i−1 ◦ gν ◦ i = (i−1 ◦ gν1 ◦ i, . . . , i−1 ◦ gνn ◦ i) are
Hurwitz equivalent in MCG(Ση).

Proof. We first consider the case for η an acyclic coorientation, f a sink
face of η and ν = If (η) the cohomologous coorientation obtained from η
by flipping f . We also consider rf , c−1

f : Ση → Σν the partial return map
along f and the inverse of the correction map defined in Section 2.3. By
Lemma 2.3.2 rf = c−1

f ◦ Tγηf = Tc−1
f (γηf ) ◦ c

−1
f = Tγνf ◦ c

−1
f . We will deter-

mine rf (γηx) for all x ∈ Γ1 ∪ Γ2, then we detail the Hurwitz equivalence
between gν and rf ◦ gη ◦ r−1

f .
According to the previous Lemma, the Hurwitz classes of gη and gν do

not depend on the choices of representations for η and ν. We take two
representations �η and �ν of η and ν that differ only for f and for the
alternating corners of f , and we take gη and gν accordingly. For a vertex v
of Γ, we have c−1

f (γηv ) = γνv . Let g be a face of Γ, according to Lemma 2.3.4,
we have c−1

f (γηg ) = (
∏

v∈Cg Tγνv )(γνg ), where the product is taken over the
set Cg of all vertices v common to f and g, so that g �η v and g �ν v.

We denote the element of Γ0 ∪ Γ2 by f = xn ≺η . . . ≺η x1 so that gη =
(Tγηx1 , . . . , Tγ

η
xn

). We have rf ◦ gη ◦ r−1
f = (rf ◦ Tγηx1 ◦ r

−1
f , . . . , rf ◦ Tγηxn ◦

r−1
f ) = (Trf (γηx1 ), . . . , Trf (γηxn )) = (TTγν

f
◦cf (γηx1 ), . . . , TTγν

f
◦cf (γηxn )). Additionally

for all 1 ≤ i ≤ n we have

Tγνf ◦ cf (γ
η
i ) =

∏
j∈Di

Tγνj (γνi )

where Di = {1 ≤ j ≤ n|xi �η xj and xi �ν xj} ordered by �η. The first step
of the Hurwitz equivalence, from rf ◦ gη ◦ r−1

f to gν , consists in moving Tγνn =

Tγνf to the left and using
(
T(

∏
j∈Di

Tγν
j

)(γνi ), Tγνf

)
'
(
Tγνf , T(

∏
j∈Di\{f}

Tγν
j

)(γνi )

)
.

Then we proceed the same way for the vertices of f to move them from their
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positions in≺η to their positions in≺ν , eventually changing T(
∏
j∈Di\{f}

Tγν
j

)(γνi )

into Tγνi for all i. The n-tuple thus obtained is gν .
Now consider η and ν any two cohomologous acyclic Eulerian coorienta-

tions. We will prove that r ◦ gη ◦ r−1 and gν are Hurwitz equivalent for one
choice of r : Ση → Σν , then for all choices. Thanks to Proposition 2.2.8 in
Appendix 2.2.3, there exists a finite sequence of flips that change η into ν.
If r1 : Ση → Σν is the composition of the partial return maps for these
flips, according to what proceed, r1 ◦ gη ◦ r−1

1 and gν are Hurwitz equivalent.
Let r2 : Ση → Σν be a diffeomorphism obtained by an isotopy along the flow,
then there exists p ∈ Z such that r2 ◦ r−1

1 = rpΣν , where rΣν is the first-return
map on Σν . Hence it is enough to prove that gν and rΣν ◦ gν ◦ r−1

Σν
are Hur-

witz equivalent. In general, since (a, b) ' (aba−1, a), we have the sequence of
Hurwitz equivalences:

(h1, . . . , hn) ' (h1h2h
−1
1 , . . . , h1hnh

−1
1 , h1)

' h1(h2, . . . , hn, h1)h−1
1

' h1h2(h3, . . . , hn, h1, h1)h−1
2 h−1

1

...

' (
∏
i

hi)(h1, . . . , hn)(
∏
i

hi)
−1

But rf =
∏

h∈gν h so rΣν ◦ gν ◦ r−1
Σν
' gν , which finishes the proof.

Theorem D, proved below, proposes an alternative comparison, for coho-
mologous and non-cohomologous coorientations.

Theorem D. Let S be a hyperbolic surface, Γ a finite collection of closed
geodesics on S, and consider the geodesic flow on T 1S. There exists a com-
mon combinatorial model ΣΓ for all Birkhoff sections with boundary −

↔

Γ, and
an explicit family of simple closed curves γ1, · · · , γn in ΣΓ such that the first-
return maps for these Birkhoff sections are products of negative Dehn twists
of the form Tγσ(1) ◦ · · · ◦ Tγσ(n) for some permutation σ of {1, · · · , n}.

Remark 2.3.9. We have χ(S) = |Γ0|− |Γ1|+ |Γ2| and χ(Σ) = −|Γ1|. Hence
the number of Dehn twists appearing in the corollary is χ(S) − χ(Σ) =
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1 2

3 4

Figure 2.19: Action of a slide on the curves γf . The slide is done in the
quadrant 1.

2.genus(Σ) + |∂Σ| − 2 + χ(S). It is smaller but relatively closed to the
minimal number 2.genus(Σ̃) + |∂Σ| of Dehn twists generating the mapping
class group of homeomorphisms of the surface Σ preserving every component
of ∂Σ one by one, up to isotopy (see in [FM12, Section 4.4.4]).

Proof. Let η be any acyclic Eulerian coorientation of Γ. Define ΣΓ = Ση,
and {γi} = {γf , f ∈ Γ2} ∪ {γv, v ∈ Γ0}. As proven in [CD16], every
Birkhoff section with boundary −

↔

Γ is isotopic to a Birkhoff section Σν for ν ∈
EulCo(Γ) acyclic. We will do a finite sequence of slides to compare Σν to ΣΓ,
together with the curves they contain.

Let v be a vertex in Γ0. Up to symmetry and rotation, there are nine con-
figurations for (η, ν) around v. For each configuration, we can do one or two
slides to isotope Ση to Σν around v. Denote sl : Ση → Σν the diffeomorphism
induced by the sequence of slides. We can compare γνf and sl(γηf ). In each
case γνv = sl(γηv ), and for any face f adjacent to v, either γνf and sl(γηf ) are
equal, or they differ by a Dehn twist along the curve γv (positive of negative).
And in every case, we can apply Theorem C to ν, and obtain a product of
negative Dehn twists along the curves γνv and γνf . We can swap positions of
consecutive Dehn twists, including γνv and γνf , to obtain a product of Dehn
twists along the curves sl(γηv ) and sl(γηf ). We will detail one case, the others
being similar.
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Consider the coorientation η (left) and ν (right) presented in Figure 2.19.
In the figure, we represent γηf on the left and sl(γηf ) on the right, for the four
faces f adjacent to v. We have sl(γηfi) = γνfi for i ∈ {1, 4}, and sl(γηfj) =

Tγv(γ
ν
fj

) for j ∈ {2, 3}, where Tγv is the negative Dehn twist along γv. Let �
be a representation of ν, so that up to changing 2 and 3, we have f4 � f3 �
f2 � v � f1. The first-return map of Σν given by Theorem C contains a sub-
product of the form Tγνf1 ◦· · ·◦Tγ

ν
v ◦· · ·◦Tγνf2 ◦· · ·◦Tγ

ν
f3
◦· · ·◦Tγνf4 . But Tγ

ν
v

commutes with any Dehn twist that is not a Tγfi for 1 ≤ i ≤ 4. According
to remark 2.3.5, for i = 2, 3 we have Tγνv ◦ Tγνfi = T (Tγv(γ

ν
fi

)) ◦ Tγνv =
Tsl(γηfi) ◦ Tγ

ν
v .

So together with Remark 2.3.5, we can change the position of Tγνv so
that the Dehn twists appear in the order f1, f2, f3, v, f4, and are along the
curve sl(γηfi) and sl(γηv ). We can do this procedure for all vertices v ∈ Γ0,
which prove that there exists a diffeomorphism sl : ΣΓ → Σν so that the first-
return map on Σν is a product of negative Dehn twist along the curve sl(γηf )
and sl(γηv ), whose ordering depends on ν.
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Chapter 3

Topologically twisted flows

For transitive Anosov flows, there exists a trichotomy suspension flows /
skewed R-covered flows / non R-covered flows. These classes of flows behave
differently, and have different topological properties. In this chapter, we
relate this trichotomy to the existence of some Birkhoff sections with certain
sign on their boundaries, and extend it to non Anosov flows.

For a general flow φ in an oriented 3-manifold, we say that φ is topo-
logically flat if it admits a global section, that is a Birkhoff section without
boundary. We also say that φ is topologically twisted if it admits an
oriented Birkhoff section, that is a Birkhoff section all of whose boundary
components have the same sign (as defined in Section 1.3). Depending on
the orientation of these boundary components, we additionally speak about
positively topologically twisted flow and negatively topologically twisted flow.
These properties are called the nature of the flow, and restrict the exis-
tence of some specific partial sections. Notice that the flow needs not to be
smooth for defining these notions.

Theorem E. Let M be an oriented closed 3-manifold, and φ be a positively
(resp. negatively) topologically twisted flow on M . Then φ does not admit
any negative partial section (resp. positive partial section).

Suppose that φ is a topologically twisted Anosov flow on M , then φ does
not admit any transverse section without boundary.

Suppose that φ is a topologically flat flow on M . Then φ does not admit
any positive partial section, nor negative partial section.

The second point of this theorem is in fact already proven by T.Barbot,
once Theorem G is understood. The third point can be summarized by a
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simple homological restriction. However it is the main idea to generalize this
obstruction to twisted flows. To prove this theorem, we use a linking-number-
like equality for two partial sections intersecting in their interior and along
their boundaries. As a direct corollary, the nature of a flow is a well-defined
notion.

Corollary F. For a flow φ on an oriented 3-manifold M , being topolog-
ically flat, positively topologically twisted or negatively topologically twisted
are mutually excluded.

In Section 3.2, we relate this nature to the R-covered notion for Anosov
flows. Anosov flows that are not suspensions always admit some Birkhoff
annulus (see Theorems 1.2.2 and 1.7.15). Using the orbit space and some
Birkhoff annuli, we can build some partial sections and Birkhoff section with
good boundaries. Hence we understand enough partial sections of Anosov
flows to relate the topologically twisted property of general flows to the
skewed R-covered property of Anosov flows.

Theorem G. Let M be an oriented closed 3-manifold and φ be a transitive
Anosov flow on M . The following properties are equivalent:

• (M,φ) is positively skewed R-covered.

• (M,φ) is positively topologically twisted.

• (M,φ) does not admit any partial section without boundary, or with
only negative boundaries.

The result holds when inverting all orientations.

The Birkhoff sections behave well under Fried-Goodman surgeries, name-
ly one can compute the sign of a Birkhoff section after a surgery only by
comparing the slope of the surgery to the slope of the Birkhoff section along
this orbit. Hence the last theorem can be used to determine the nature of a
flow after some Fried-Goodman surgeries.

Corollary H. Let φ be a transitive Anosov flow on an oriented closed 3-
manifold. There exists a sequence of Fried-Goodman surgeries on φ that
induces a positive skewed R-covered flow.
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Independently to my research, C.Bonatti found some results similar to
Corollary H, using a different approach. For an Anosov flow, the nature
of the orbit space of the flow is strongly related to the set of complete
and incomplete quadrants. A quadrant on p is one of the four regions of
the orbit space delimited by the stable and unstable leaf of p. A quad-
rant on p is said complete if every stable and unstable leaves ls, lu, enter-
ing the quadrant from its two boundaries, ls and lu intersect. By studying
how a Fried-Goodman surgery changes the complete property of a quadrant,
C.Bonatti proves [Bon21] two interesting results, about obtaining or losing
the skewed R-covered property by Fried-Goodman surgeries on one or two
orbits only.

One can compare the topologically twisted property studied in this chap-
ter with Reeb flows. A Reeb flow leaves invariant a contact structure, which
by definition has a somehow twisted nature. Furthermore every contact struc-
ture admits an open book decomposition, that is a notion similar to Birkhoff
sections with positive boundary. T.Barbot proved [Bar01] that all Anosov
flows that leave invariant a topological contact structure are skewed R-
covered. The complete relation between Reeb flows and topologically twisted
flows is not yet understood, even for Anosov flows.

3.1 Partial sections and topologically twisted
flows

In this section, we study a linking-number-like equality for two intersecting
partial sections. It is used to understand how the existence of one specific
Birkhoff section restricts the existence of other partial sections. Then we
prove Theorem E and Corollary F. We fix an oriented closed 3-manifold M
and a flow φ of class C1 on M .

Let Σ1 and Σ1 be two immersed partial sections in M . We denote
by M∂Σ1∪∂Σ2 the blowing up of M along ∂Σ1 ∪ ∂Σ2. We still denote by Σ1

and Σ2 the induced partial sections in M∂Σ1∪∂Σ2 . Generically, the intersec-
tion between Σ1 and Σ2 is represented in Figure 3.1. We orient ∂Σ1 and ∂Σ2

according to the orientations of Σ1 and Σ2. Recall that the linking num-
bers lk+(Σ1,Σ2) and lk−(Σ1,Σ2), defined in Section 1.3, refer to the linking
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numbers of Σ1 and Σ2 along their common boundary components whose
orientations agree for lk+ and disagree for lk− (see Section 1.3).

−∂Σ2 ·∩
◦
Σ1 ∂Σ1 ·∩

◦
Σ2 − lk−(Σ1,Σ2) lk+(Σ1,Σ2)

−

+

Figure 3.1: Generic intersection of immersed partial sections along a closed
orbit of the flow, in the blowing-up manifold M∂Σ1∪∂Σ2 (Σ1 in light green, Σ2

in dark red, and the flow direction in blue).

Lemma 3.1.1. Let φ be a flow of an oriented 3-manifold M , and Σ1 and Σ2

be two immersed partial sections of φ. Then we have:

(∂Σ2 ·∩
◦
Σ1)− (∂Σ1 ·∩

◦
Σ2) = lk+(Σ1,Σ2)− lk−(Σ1,Σ2)

The lemma remains true for non transverse surfaces, as long as two bound-
ary components are either disjoint or equal.

Proof. Recall that the flow induces two coorientations on the interior of the
surfaces Σ1 and Σ2, which induces two orientations on

◦
Σ1 and

◦
Σ2. We first
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do a small isotopy of Σ1 and Σ2 outside ∂Σ1 ∪ ∂Σ2, so that Σ1 ∩ Σ2 is a
finite union of compact curves. We do not require the isotopic surfaces to
remains immersed partial sections. We will orient them using the orientations
of Σ1, Σ2 and M as in Figure 3.1. Let x be in

◦
Σ1 ∩

◦
Σ2. We choose a

non-zero vector u1 ∈ TxΣ1 such that u1 coorients positively the surface Σ2.
Similarly we choose a non-zero vector u2 ∈ TxΣ2 which coorients positively
the surface Σ1 the same coorientation that the flow. We finally choose a
non-zero vector v ∈ Tx(Σ1 ∩Σ2) so that the family (u1, u2, v) is a direct base
on TxM . Then v induces an orientation on Tx(Σ1∩Σ2) that does not depend
on the choices of u1, u2 and v, and is continuous on x.

Every non-closed curve of Σ1 ∩ Σ2 has a positive and a negative end.
Each end corresponds to an intersection of ∂Σ1 and ∂Σ2 in ∂M∂Σ1∪∂Σ2 ,
and the sign of an end is the algebraic intersection of ∂Σ1 and ∂Σ2 at this
point. We obtain the equation by adding the contributions of all ends to the
terms ∂Σ2 ·∩

◦
Σ1, ∂Σ1 ·∩

◦
Σ2, lk+(Σ1,Σ2) and lk−(Σ1,Σ2).

Corollary 3.1.2. Let φ be a flow of an oriented 3-manifoldM and Σ1 and Σ2

be a two partial sections of φ so that ∂−Σ1 = ∅ and ∂+Σ1 ∩ ∂+Σ2 = ∅. Then
we have ∂Σ2 ·∩

◦
Σ1 ≥ 0, ∂Σ1 ·∩

◦
Σ2 ≥ 0, lk+(Σ1,Σ2) = 0, lk−(Σ1,Σ2) ≤ 0,

and (∂Σ2 ·∩
◦
Σ1)− (∂Σ1 ·∩

◦
Σ2) = − lk−(Σ1,Σ2).

Hence ∂+Σ1 ·∩
◦
Σ2 ≥ ∂−Σ1 ·∩

◦
Σ2 ≥ 0.

When φ admits a positive Birkhoff section Σ, the intersection between a
closed orbit γ 6∈ ∂Σ and Σ is a good measure of the length of γ. One can
extend this measure for γ ∈ ∂Σ by the linking number lkγ(Σ).

Proof. Since ∂−Σ1 = ∅ we have ∂Σ1 ·∩
◦
Σ2 ≥ 0. Any common boundary com-

ponent of Σ1 and Σ2 is a positive boundary component of Σ1 and a negative
boundary component of Σ2. Hence lk+(Σ1,Σ2) = 0 and lk−(Σ1,Σ2) ≤ 0.
According to Lemma 3.1.1 we have (∂Σ2 ·∩

◦
Σ1) − (∂Σ1 ·∩

◦
Σ2) = − lk−(Σ1,Σ2),

so ∂Σ2 ·∩
◦
Σ1 = ∂Σ1 ·∩

◦
Σ2 − lk−(Σ1,Σ2) ≥ 0.

The second point can be deduced from ∂+Σ1 ·∩
◦
Σ2−∂−Σ1 ·∩

◦
Σ2∂Σ1 ·∩

◦
Σ2 ≥ 0,

and ∂−Σ1 ·∩
◦
Σ2 ≥ 0 since ∂−Σ1 and

◦
Σ2 are oriented accordingly to the flow.

The previous lemma is enough to prevent two positive and negative partial
sections to intersect on their boundaries.
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Proof of Theorem E. Denote by S a positive Birkhoff section. Suppose there
exists a negative partial section Σ. Then by Lemma 3.1.1, we have (∂Σ ·∩

◦
S)−

(∂S ·∩
◦
Σ) = lk+(S,Σ)− lk−(S,Σ).

Since ∂+Σ = ∅ = ∂−S, we have ∂Σ ·∩
◦
S ≤ 0, ∂S ·∩

◦
Σ ≥ 0, lk+(S,Σ) = 0,

and lk−(S,Σ) = lk∂+S∩∂−Σ(S,Σ) ≤ 0. Hence 0 ≥ (∂Σ ·∩
◦
S) − (∂S ·∩

◦
Σ) =

− lk−(S,Σ) ≥ 0. So all four terms are zero, and ∂Σ ∩ S = ∅. But S is a
Birkhoff section which intersects every orbit, so ∅ 6= ∂−Σ ⊂ ∂+S. Then the
linking number of S with Σ on a common boundary component must be zero,
which contradicts Lemma 1.6.8. Hence such a partial section Σ cannot exist.

The third statement is proved the same way.

We now deal with the second point of the theorem. Suppose that the flow
is Anosov, and admits a positive Birkhoff section S and a partial section Σ

without boundary. For the same reason we have ∂S ∩
◦
Σ = ∅. The surface Σ

is transverse to the stable foliation F s, so it is foliated by the trace of F s.
Also Σ is co-oriented in an oriented 3-manifold, so Σ is orientable and admits
a 1-foliation. Hence Σ is a torus. We isotope Σ through the flow so that it
intersects transversally S. We will isotope Σ along the flow, so that it is in
minimal position relatively to S.

First suppose that S ∩ Σ = ∅. We define the first-return time from Σ
to S, T : Σ → R that sends x ∈ Σ to min{t ≥ 0, φt(x) ∈ S}. Since S
is a Birkhoff section and ∂S ∩

◦
Σ = ∅, T is well-defined and continuous.

But φT : Σ → S is an immersion of Σ to S, which is not possible since Σ is
closed and S has a non-empty boundary.

Secondly suppose that S∩Σ 6= ∅. Then S∩Σ is a union of disjoint simple
curves, that are closed since ∂S ∩

◦
Σ = ∅. Let U be a connected component

of Σ \ (S ∩Σ), so that the closure Ū intersects S only from below. We define
similarly the first-return time that sends x ∈ Ū into min{t ≥ 0, φt(x) ∈ S}.
Then T is well-defined, continuous, zero on ∂U , and we can extend it by zero
on Σ \ U . Then for ε > 0 small enough, t ∈ [0, 1] 7→ φt(T+ε)(id) isotopes Σ
along the flow, and erases ∂U from Σ∩S. If Ū intersects S only from above,
we can also erase ∂U from Σ ∩ S.

We can do this procedure until every connected component of Σ\ (S∩Σ)
has its adherence that intersects S both from below and from above. Then
there is no curve in S ∩ Σ that bounds a disc in Σ. Hence S ∩ Σ is a union
of n ≥ 0 parallel simple curves in Σ. We can suppose that n 6= 0 or the first
case would apply. Denote by c1, . . . , cn the curves in S∩Σ, with a cyclic order
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relatively to the torus Σ, and by U1, . . . , Un ⊂ Σ the annuli they delimit. We
can also suppose that Ūi intersects S along ci from above, and intersects S
along ci+1 from below.

Denote by r :
◦
S →

◦
S the first-return map, which is pseudo-Anosov since

the flow is Anosov (see [Fri83]). We push Ui along the flow, using the first-
return time from Ui to S. Then the image of Ui in S is an annulus bounded
by r(ci) and ci+1. Thus for all i, r(ci) is isotopic to ci+1, so rn(ci) is isotopic
to ci. Since n > 0 and r is pseudo-Anosov, it is impossible.

The nature of a flow being well-defined, one can wonder how this nature
changes when we do some Fried surgeries on a flow. It is hard to determine
in general, but two specific cases are interesting.

Proposition 3.1.3. Let φ be a topologically flat or positively topologically
twisted flow on an oriented closed 3-manifold M . Any sequence of Fried
surgeries with negative slopes induces a positively topologically twisted flow.

Proof. By hypothesis, there exists a Birkhoff section Σ of φ such that ∂−Σ =
∅. By Lemma 1.6.7, any Fried surgery with negative slope along a periodic
orbit γ changes Σ into a Birkhoff section Σ′, whose boundary is ∂Σ ∪ γ 6=
∅, and with positive sign along all its boundary components. Hence after
surgery, the flow is positively topologically twisted.

Proposition 3.1.4. Let M be an oriented 3-manifold. Any flow on M that
admits a Birkhoff section can be made topologically flat, positively or nega-
tively topologically twisted by a finite sequence of Fried surgeries.

Proof. Let Σ be a Birkhoff section of φ, embedded in its interior. Denote
by M∂Σ the blowing-up of M along all boundary components of Σ, to-
gether with π : M∂Σ → M and ψ the induced flow on ∂M∂Σ. Then by
Lemma 1.6.6, ∂π−1(Σ) ⊂ ∂M∂Σ is a union of global sections of ψ. Hence on
each boundary component T of M∂Σ, one can choose a global section of ψ|T
with equal slope, higher slope or lower slope than ∂Σ. Then the Fried surg-
eries on ∂Σ with these slopes induces a flow with a Birkhoff section whose
boundaries and signs are given by Lemma 1.6.7.

3.2 Topologically twisted Anosov flows
In this section, we prove Theorem G, which relates the topologically twisted
property of a general flow to the skewed R-covered property of an Anosov
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flow. Then we briefly see two consequences of this theorem.

Proof of Theorem G. Theorem E proves that the second point implies the
third point. We will prove the two remaining implications.

Suppose that (M,φ) is positively skewed R-covered, and take K ⊂ O(M)
a compact containing a lift of every orbit of φ. Since (M,φ) is positively
skewed R-covered, for every p in K there exists an ideal lozenge Lp ⊂ O(M)
containing p in it interior. Since φ is R-covered, it is transitive, as proven
by T.Barbot [Bar95b]. Then by transitivity of φ, the closed orbits of the
flow are dense in M , so we can suppose that the corners of Lp ⊂ O(M)
are ρ(γ1

p) and ρ(γ2
p) for two closed orbits γ1,2

p . Then T.Barbot proves that
there exists an immersed transverse annulus whose trace in O(M) is Lp (see
Theorem 1.7.15). So, up to a Fried desingularisation as presented in Proposi-
tion 1.4.13, there exists a partial section Σp to the flow, bounded by γ1

p and γ2
p .

Since (M,φ) is positively skewed R-covered, Lp is in the quadrant (+,+)
or (−,−) of ρ(γ1

p) and ρ(γ2
p), so that ∂+Σp = {γ1

p , γ
2
p} and ∂−Σp = ∅.

For every p ∈ K, we have a positive partial section Σp intersecting ev-
ery orbit that is close enough to p. So by compactness of K, there ex-
ist p1, · · · , pn ∈ K so that K ⊂ ∪i

◦
Lpi . We define Σ to be the Fried desin-

gularisation of ∪iΣpi , which is a positive partial section thanks to Proposi-
tion 1.4.13. Then every orbit not in ∂Σ intersects Σ. Also for every orbit γ ⊂
∂Σ, γ intersects the interior of one of the Σpi , so lkγ(Σ,F s) 6= 0. By a classical
argument, Σ is a Birkhoff section, which then has only positive boundaries.
Indeed suppose that for all T > 0, there is qT ∈M so that φ[0,2T ](qT )∩Σ = ∅.
By compactness of M , φT (qT ) accumulates on some q∞ ∈ M when T tends
to +∞. If q∞ 6∈ ∂Σ then there exists q′ ∈ φR(q∞) ∩

◦
Σ and

◦
Σ is transverse

to φ, which contradicts φ[−T,T ](φT (qT )) ∩ Σ = ∅ for all T > 0. If q∞ ∈ ∂Σ,
the same argument holds. Indeed lkγ(Σ,F s) 6= 0 so there is a small neigh-
borhood of q∞ whose orbits all intersect Σ. Hence Σ is a positive Birkhoff
section, and φ is positively topologically twisted.

Suppose that (M,φ) does not admit any partial section without bound-
ary nor any negative partial section. Since φ has no partial section with
empty boundary, it is not a suspension. Suppose that φ is not positively
skewed R-covered. Then it is either negatively skewed R-covered, or not R-
covered. In the first case, there exists an ideal lozenge L ⊂ O(M) bounded
by closed orbits. According to Theorem 1.7.15, there exists an immersed
Birkhoff annulus A whose trace in O(M) is L. But the flow is negatively
skewed R-covered so A has only negative boundaries, which contradicts The-
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orem E. In the second case, φ is not R-covered, so according to Theorem 1.2.2
there exists an ideal lozenge L bounded by two closed orbits, in the quad-
rant (+,−) and (−,+) of the two orbits. Then the same argument on L
induces a contradiction. Hence φ is positively skewed R-covered.

The last step of the proof does not only give the existence of a positive
Birkhoff section, but also gives a method to construct a large family of them
with different boundaries. Given a Birkhoff section of an Anosov flow, one
can produce a skewed R-covered flow with Fried-Goodman surgeries along
the boundary components of the Birkhoff section. Additionally the slopes of
the surgeries needed are given by the multiplicities and the linking numbers
of the Birkhoff section along each of its boundary components.

Proof of Corollary H. Let φ be a transitive Anosov flow on an oriented closed
3-manifold. D.Fried proved [Fri83] that φ admits a Birkhoff section. Then
Corollary 3.1.4 adapted for Fried-Goodman surgeries implies that some Fried-
Goodman surgeries on φ induce a positively topologically twisted Anosov
flow, which is a positively skewed R-covered flow according to Theorem G.

Theorem G also gives a new way to construct some skewed R-covered
Anosov flows.

Corollary 3.2.1. Let M be an oriented closed 3-manifold, and φ be an
Anosov suspension or a positively skewed R-covered transitive Anosov flow.
Then any Fried-Goodman surgery with negative slope induces a positively
skewed R-covered transitive Anosov.

The proof follows from Theorem G and Corollary 3.1.3. The corollary
is a generalization of a Theorem from S.Fenley [Fen94, Theorem D], which
states the result for the suspension flows and the geodesic flows.
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Chapter 4

Primitive orbits of twisted flows

This chapter studies the notion of primitive orbits of twisted flows. A partial
section Σ is viewed as a transverse cobordism from ∂−Σ to ∂+Σ. In the
previous chapter, we proved that a positively twisted flow does not admit
a negative partial section, that is a transverse cobordism from ∅ to a non
empty set of closed orbits.

Question. Given a set of closed orbits, is it the positive boundary of a trans-
verse cobordism? If so, is it the positive boundary of a transverse cobordism
with some restrictions on the multiplicities of the boundary components?

Orbits and sets of orbits that are not positive boundaries of some trans-
verse cobordism are called primitive. In Section 4.1, we introduce two varia-
tions of this notion: primitive orbits and stably primitive orbits. One goal is
to understand how the orbits of a flow can be decomposed using transverse
cobordisms into some specific orbits, preferentially primitive. For that pur-
pose, a family Γ of closed orbits is called spanning if every orbit γ not in Γ
admits a transverse cobordism from γ to a subset of Γ.

Theorem I. Let M be an oriented closed 3-manifold and φ be an Anosov
flow on M which is supposed to be positively skewed R-covered. Then the
set Prime(φ) of primitive orbits is spanning.

If there exists a closed orbit which does not bound any partial section, or
if H1(M,Z) 6= {0}, then there exists a primitive orbit.

In Sections 4.2 and 4.3, we study the primitive orbits for the algebraic
flows, that is the suspension flows and the geodesic flows. For topologically
flat flows, being a primitive orbit is mainly a homological property, but the

139
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primitive orbits of the geodesic flows are more interesting. We will see that for
any transverse cobordism of a geodesic flow, its boundary components must
project on the underlying surface into curves that admit some intersection
points. Given a geodesic γ, we relate the self-intersection points of γ with
the topology of the partial sections bounded by the lift →γ.

Theorem J. Let S be a hyperbolic surface and consider the geodesic flow
on T 1S and γ ⊂ S an oriented closed geodesic. Then

→
γ is a primitive orbit

if and only if
→
γ is a stably primitive orbit, if and only if γ is simple.

Also the set of primitive orbits is spanning.

The stably primitive orbits play an important role in understanding the
nature of a flow after some Fried surgeries. In Section 4.4, we study this role
for the skewed R-covered Anosov flows. The constructions of Birkhoff annuli
and Fried sections, explained in the first Chapter, can be used to create
interesting transverse cobordisms for these Anosov flows. Knowing enough
partial sections allows us to relate the stably primitive orbits with some ideal
lozenges in the orbit space. It is also useful for understanding the nature of
the flow after surgeries.

Theorem (later properly stated as Theorem K). Let φ be a positively
skewed R-covered Anosov flow with orientable stable and unstable foliations,
on an oriented closed 3-manifold. Let Γ be a set of closed orbits of φ, such
that there are no ideal lozenges inside the orbit space O(M) whose two cor-
ners are induced by two orbits inside Γ. Then the following implications
hold:

⇔ Γ is a stably primitive set of orbits,

⇔ Γ bounds in the orbit space O(M) a set of ideal lozenges that will be
called simple,

⇒ any finite sequence of Fried-Goodman surgery along orbits of Γ produces
a positive skewed R-covered flow.

Furthermore, the last implication is an equivalence when |Γ| = 1.
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4.1 Zoology of primitive orbits
In this section, we define all variations of primitive orbits for flows, and
prove Theorem I concerning the existence of some kind of primitive orbits
for twisted flows.

We fix a 3-manifold endowed with an orientation and a flow φ.

Definition 4.1.1. Let γ be a closed orbit of the flow. We say that γ is a
primitive orbit if there is no cobordism Σ so that ∂+Σ = γ with multiplicity
one.

We say that γ is a stably primitive orbit if for all n ∈ N, nγ is primitive.
By extension, we say that a family of orbits {γ1, . . . , γn} is stably primitive if
there is no cobordism Σ so that ∂+Σ = γ1 ∪ . . .∪ γn with multiplicities in N.

We can be more precise and call the previously defined orbits positively
primitive, and define similarly negatively primitive orbits by reversing
all signs in the previous definition (or by changing the orientation of the
manifold). For any hyperbolic surface S, T 1S has a natural orientation which
make negatively primitive orbits more interested. But for other flows, we only
consider the positively primitive orbits.

Primitive orbits are mostly interesting for skewed R-covered Anosov flows,
as explained below. For a flow that admits a global section S, being primitive
is a homological condition (see Section 4.2), and has few to do with the
topology of the flow.

We denote by Prime(φ) the set of primitive orbits of the flow φ.

Proposition 4.1.2. The sets of primitive orbits and stably primitive orbits
are invariant under orbital equivalence.

Proof. Let f : (M1, φ) → (M2, φ2) be an orbital equivalence, and Σ ⊂ M1 a
transverse cobordism for φ1. Then f(Σ) can be smoothed into a transverse
cobordism with boundary f(∂Σ), with the same multiplicities.

A set of closed orbits Γ is said to be spanning if for every closed orbit δ
not in Γ there is a transverse cobordism from γ, with multiplicity one, to a
finite subset (possibly empty) of Γ, with any multiplicities. Such a transverse
cobordism from δ is called a decomposition of δ into Γ.

Proof of Theorem I. We uses several times an argument that we want to
clarify here. If one is given a finite number of transverse cobordisms, their
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union may have self intersection. One can use Proposition 1.4.13 to desingu-
larise and smooth the union into a new transverse cobordism. In that case
we say that we concatenate the transverse cobordisms. Then the boundary
of the new transverse cobordism is obtained algebraically as the sum of the
boundary of the initial transverse cobordisms.

Thanks to Theorem G, the flow φ admits a Birkhoff section with only
positive boundary components. Let S be such a section. To prove that the
set Prime(φ) of primitive orbits is spanning, we prove first that the set ∂S ∪
Prime(φ) is a spanning family. Let γ be an orbit not in ∂S ∪ Prime(φ). By
definition, there exists a transverse cobordism Σ so that ∂+Σ = γ. If |∂−Σ| =
0, then Σ is a transverse cobordism from γ to ∂S ∪ Prime(φ).

Suppose that |∂−Σ| ≥ 1. We construct a transverse cobordism from the
orbit γ to some other orbits, which either are inside ∂S∪Prime(φ) or intersect
the surface

◦
S less than the orbit γ. Then the proof follows by induction on

the integer γ ∩
◦
S. We first consider the case |∂−Σ| ≥ 2. By Corollary 3.1.2,

we have ∂Σ ·∩
◦
S = (∂S ·∩

◦
Σ) + lk−(Σ, S) and the three terms are non negative.

So

0 ≤ ∂−Σ ·∩
◦
S = (∂+Σ ·∩

◦
S)− (∂S ·∩

◦
Σ)− lk−(Σ, S) ≤ ∂+Σ ·∩

◦
S

We will prove that for all δ ∈ ∂−Σ \ ∂S, we have δ ·∩
◦
S < γ ·∩

◦
S, so that

the algebraic intersection with
◦
S is a function that decreases under trans-

verse cobordisms. If we have ∂−Σ ∩ ∂S 6= ∅, then S is a Birkhoff sec-
tion with non-zero linking number along its boundary (see Lemma 1.6.8)
and lk−∂−Σ∩∂S(Σ, S) > 0, so ∂−Σ ·∩

◦
S < ∂+Σ ·∩

◦
S.

Otherwise we denote the negative boundary components of Σ by δ1, . . . , δn,
and by a1, . . . , an the multiplicities of the curves δi as boundary components
of Σ. Then we have δi 6∈ ∂S, and ∂−Σ ·∩

◦
S =

∑
i ai(δi ·∩

◦
S). Since S is a

Birkhoff section, we have δi ·∩
◦
S ≥ 1 for every i. By hypothesis, we have ei-

ther n ≥ 2 or a1 ≥ 2, so in both cases we have δi ·∩
◦
S < ∂−Σ ·∩

◦
S for every i.

Thus in any case we have δ ·∩
◦
S < γ ·∩

◦
S for every orbit δ ∈ ∂−Σ \ ∂S.

Now consider the last case: |∂−Σ| = 1. Here Σ is a transverse cobordism
from the orbit γ to another closed orbit δ. We claim that there is no infi-
nite sequence of orbits γi and of transverse cobordisms Σi with ∂+Σi = γi
and ∂−Σi = γi+1. Assuming this claim and following the previous proof,
if |∂−Σ| = 1, then we concatenate together transverse cobordisms satisfy-
ing ∂+Σ ·∩

◦
S = ∂−Σ ·∩

◦
S, until eventually obtaining a cobordism of γ with
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either ∂+Σ ·∩
◦
S > ∂−Σ ·∩

◦
S or |∂−Σ| = 0 or |∂−Σ| ≥ 2. Then we can apply the

previous cases.
To prove the claim, suppose that there exists such a sequence of trans-

verse cobordisms, starting at γ0 and Σ0. Then, for every i ≥ 0, either one
has

◦
Σi ∩ ∂S 6= ∅, or γi and γi+1 are homologous in M \ ∂S and |γi ·∩

◦
S| =

|γi+1 ·∩
◦
S|. In the first case, by what precedes, the intersection with S de-

creases |γi ·∩
◦
S| < |γi+1 ·∩

◦
S|, so it can only occur a finite number of time in

the sequence. Therefore for all i ∈ N large enough we must be in the second
case. Since the flow is Anosov, and S is a Birkhoff section, the first-return
map is pseudo-Anosov (see [Fri83]). Hence there is only a finite number of
orbits δ so that |δ ·∩

◦
S| have a fixed value. Thus there exist i1 < i2 such

that γi1 = γi2 . Then these transverse cobordisms Σi for all i ∈ Ji1, i2J can
be concatenate into a partial section without boundary. Since S is a positive
Birkhoff section, it contradicts Theorem E. This proves the claim.

We proved that we can find a transverse cobordism from the orbit γ to
some other orbits, which either are inside ∂S ∪ Prime(φ) or intersect the
surface

◦
S less than the orbit γ. We proceed by induction on γ ·∩

◦
S. For every

orbit δ ∈ ∂−Σ \ (∂S ∪ Prime(φ)) we construct a transverse cobordism Σδ

from δ to some orbits of ∂S ∪ Prime(Γ). Then we concatenate Σ to the
transverse cobordisms Σδ for all δ ∈ ∂−Σ \ ∂S, which produces a transverse
cobordism from γ to some orbits of ∂S ∪ Prime(Γ).

Now we prove that any orbit of ∂S \ Prime(φ) co-bounds a transverse
cobordism with some orbits in Prime(φ). Denote by D = {δ1, . . . , δk} the
set of orbits in ∂S \ Prime(φ) that do not co-bound a transverse cobordism
with Prime(φ), and suppose that D 6= ∅. For 1 ≤ i ≤ k, δi is not primitive,
so there exists a transverse cobordism Σi so that ∂+Σi = δi with multiplicity
one. We can use the above construction and suppose that ∂−Σi is in ∂S ∪
Prime(φ), and even in D ∪ Prime(φ) since the curves in ∂S \ D co-bound
transverse cobordisms with Prime(φ). For any i, since δi does not co-bound
a transverse cobordism with Prime(φ), we have ∂−Σi 6⊂ Prime(φ). So there
exists an index f(i) so that δf(i) ∈ ∂−Σi. Since D is finite, we can find
a sequence i1, . . . ip so that f(ik) = ik+1 and f(ip) = i1. We concatenate
all Σi into one transverse cobordism Σ. Since δik is a positive boundary
of only Σik , with multiplicity 1, and is a negative boundary of Σik+1

with
multiplicity at least 1, Σ has no positive boundary. This is impossible by
Theorem E. Thus D is empty and every non-primitive orbit co-bounds a
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transverse cobordism with Prime(φ).
To prove that the set of primitive orbits is not empty, we suppose that

there exists a closed orbit γ which does not bound any partial section with
multiplicity 1 along γ. Then the previous procedure applied on γ produces
a transverse cobordism from γ to a subset Γ of primitive orbits. But γ
does not bound any partial section, so Γ 6= ∅, and there exists a primitive
orbit. Notice that since φ is Anosov, T.Adachi proved [Ada87] that the set of
closed orbits of φ spans the homology H1(M,Z). Hence, if additionally one
has H1(M,Z) 6= {0}, then there exists a non-null-homologous closed orbit
of φ, which cannot bound a partial section on its own.

4.2 Primitive orbits of a topologically flat flow
We briefly study primitive orbits on topologically flat flows. Recall that a
flow is said topologically flat if it admits a global section.

Proposition 4.2.1. Let M be an oriented 3-manifold, φ a topologically
flat flow on M , γ1, . . . , γp and δ1, . . . , δq two families of closed orbits of φ,
and a1, . . . , ap, b1, . . . , bq positive integers. Then there exists a transverse
cobordism from a1γ1 ∪ . . .∪ apγp to b1δ1 ∪ . . .∪ bqδq if and only if

∑
i ai[γi] =∑

j bj[δj] in H1(M,Z).

A corollary stated below is that for a closed orbit of a topologically flat
flow, being primitive is mainly a homological condition. Also when the condi-
tion

∑
i ai[γi] =

∑
j bj[δj] inH1(M,Z) is satisfied, then there exists transverse

cobordisms in both directions, that is from a1γ1∪ . . .∪apγp to b1δ1∪ . . .∪bqδq,
and from b1δ1 ∪ . . . ∪ bqδq to a1γ1 ∪ . . . ∪ apγp.

Proof. The direct implication is clear.
We suppose

∑
1≤i≤p ai[γi] =

∑
1≤j≤q bj[δj] and we construct a trans-

verse cobordism as stated in the proposition. We take a 2-cell Σ bound-
ing

∑
1≤i≤p ai[γi]−

∑
1≤j≤q bj[δj]. We can smooth Σ and use the non-empty

boundary of Σ to erase its Whitney umbrellas. Hence we can suppose Σ
to be a surface embedded in its interior. Denote by S ⊂ M a global sec-
tion for φ. We now prove that for n a large enough integer, the singular
surface Σ ∪ nS is relatively homologous in H1(M,∂Σ,Z) to a transverse
cobordism from a1γ1 ∪ . . . ∪ apγp to b1δ1 ∪ . . . ∪ bqδq.

Since S is a global section, S is the fiber of a fibration M → S1 so there
exists a foliation F of M made of parallel copies of S. We call horizontal a
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surface lying inside a leaf of F , and vertical a surface foliated by orbit arcs of
the flow. We can approximate Σ by a surface Σ′, which is piecewise vertical
and horizontal. That is there is a finite family of disjoint simple curves in Σ′ so
that every connected component of the complement of these curves is either
vertical, or horizontal. If the approximation is good enough, Σ′ does not
self-intersect itself, and a small perturbation makes it smooth and embedded
in its interior again. Every horizontal connected component in Σ′ is either
positively oriented by the flow, or negatively oriented. For every horizontal
connected component c in Σ′ which is negatively oriented, we take Sc ∈ F the
leaf containing c, and replace in Σ the component c by Sc\c. It corresponds to
adding [Sc] to [Σ′] in H2(M,Z), then erasing the component c that appears
both in Σ′ and in Sc with opposite orientations. We thus obtain a new
surface with one less component negatively transverse to the flow, possibly
with self-intersection. By doing this procedure a finite number of time, one
obtains a self-intersecting surface homologous to Σ ∪ nS which is piecewise
vertical and horizontal, with only positively transverse horizontal pieces. The
latter can be smoothed into an immersed transverse cobordism, which can
then be desingularised to obtain a transverse cobordism. It has the same
boundary than Σ, so it is a transverse cobordism from a1γ1 ∪ . . . ∪ apγp
to b1δ1 ∪ . . . ∪ bqδq.

To express the set of primitive orbits of a topologically flat flow φ, we de-
fine the set of homology classes Cφ = {[γ] ∈ H1(M,Z)|γ a closed orbit of φ}.
Recall that for a global section S of φ and a closed orbit γ of φ, the algebraic
intersection γ ·∩[S] is positive. Hence 0 6∈ Cφ.

Proposition 4.2.2. LetM be an oriented 3-manifold and φ be a topologically
flat flow on M . A closed orbit γ is primitive if and only if its homology class
in H1(M,Z) is not the sum of at least two elements of Cφ, and if γ is the
only closed orbit in its homology class.

A closed orbit γ is stably primitive if and only there is no n ≥ 1 such
that the homology class of nγ in H1(M,Z) is not the sum of at least two
elements of Cφ, and if γ is the only closed orbit in the positive ray R?+[γ] of
its homology class.

This property makes the notion of primitive orbits not very interesting
for topologically flat flows.

Proof. Let γ be a closed orbit of φ. Notice that since φ is topologically
flat, there is no cobordism from γ to the empty set. Hence, by definition, γ
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is primitive if and only there is no transverse cobordism from γ to some
orbits δ1, . . . δq with multiplicity b1, . . . bq ∈ N>0, so that either q ≥ 1. By
Proposition 4.2.1, the existence of such a cobordism is equivalent to the
equality [γ] =

∑
i bi[δi] in H1(M,Z). So γ is primitive if and only if [γ] is not

the sum of at least two elements of Cφ and if γ is alone in its homology class.
The second statement is proven with the same arguments, by replacing γ

by nγ for any n ≥ 1.

Suspension of an Anosov diffeomorphism. The case of the suspension
of an Anosov map is even simpler. Let A ∈ GL2(Z) be a hyperbolic matrix
as in Section 1.1, TA = T2 × R/(p, t + 1) ≡ (Ap, t) the suspension of T2 for
the diffeomorphism induced by A, with its suspension flow φ.

Proposition 4.2.3. Let (TA, φ) be the suspension flow of an Anosov dif-
feomorphism given by a matrix A ∈ GL2(Z). The suspension flow ad-
mits a primitive orbit in and only if either det(A) = 1 and Tr(A) = 3,
or det(A) = −1 and |Tr(A)| = 1. In these cases, the primitive orbit is the
orbit of the point (0T2 , 0) ∈ TA. There is no stably primitive orbit.

Any primitive orbit of length one is on its own a spanning set.

Proof. First notice that H1(TA,Z) = Z, that Cφ ⊂ Z>0 and 1 ∈ Cφ since
the orbit of (0R2 , 0) has homology 1. So to be primitive, a closed orbit γ
need to have length one, that is its homology must be given by a generator
ofH1(TA,Z). Hence to prove the first point, we need to determine when there
is another orbit of length one, that is when there exists a point p ∈ R2 \ Z2

such that (A − I2)p ∈ Z2. It is the case if and only if | det(A − I2)| 6= 1.
But det(A− I2) = χA(1) = 1−Tr(A) + det(A), which is enough to prove the
point.

The second statement is a direct consequence of Lemma 4.2.1.

4.3 Primitive orbits of the geodesic flows
We fix a closed hyperbolic surface S, not necessarily orientable, and T 1S the
unitary tangent bundle on S. In this section, we will study the primitive
orbits of the geodesic flow, and prove Theorem J.

We fix the orientation on T 1M given by ( ∂
∂x
, ∂
∂y
, ∂
∂θ

), for any local map
on S with coordinates (x, y), and where ∂

∂θ
is the trigonometric direction.

This local orientation does not depend on the choice of coordinate on S, so it
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induces an orientation on T 1M . Recall that for this orientation, the geodesic
flow is negatively skewed R-covered. Hence we will study the negatively
primitive orbits, which are the orbits that are not the negative boundary of
some transverse cobordism.

Any immersion γ : S1 → S lifts to a unique immersion →
γ : S1 → T 1S,

obtained by adding the renormalization of ∂γ
∂θ
. We also denote by ←γ ⊂ T 1S

the curve obtained by adding −∂γ
∂θ

(or by composing γ with a symmetry
on S1). It induces a 1 : 1-correspondance between oriented geodesics and
orbits of the geodesic flow.

4.3.1 Immersed tubular neighborhood

To understand the transverse cobordisms of the geodesic flow, we use so-
called immersed tubular neighborhoods. They relate the topology of the
curves in S to the transverse cobordisms in T 1S. They will be used to prove
that the primitive orbits of the geodesic flow are lifts of simple geodesics.

Definition 4.3.1. Let γ be a geodesic of S. We call immersed tubular
neighborhood of γ a strip N (not necessarily oriented) with an embed-
ding i : S1 → N and an immersion p : N → S, so that p ◦ i : S1 → S is a
parametrization of γ, and the image im(p) is a tubular neighborhood of γ as
subspace of S. It induces an immersion T 1p : T 1N → T 1S. To simplify the
notations, we also denote by γ the image i(S1).

If Σ is a surface in T 1S whose boundary contains γ, we write ΣN for the
pre-image (T 1p)−1(Σ).

Depending on whether N is orientable or not, the boundary ∂(T 1N ) =

T 1
∂NN is one or two torus. Also ∂N lifts to two or four curves

→

∂N ∪
←

∂N .
If δ is a boundary component of N and T = T 1

δN , we denote by →
γT =

→

δ

and ←
γT =

←

δ , as in Figure 4.1. Then T is transverse to the geodesic flow
outside →

γT ∪
←
γT. Notice that δ is not a geodesic, so ←

γT and →
γT are not orbits

of the flow.

Lemma 4.3.2. Let Σ be a partial section with a boundary component at
the orbit

→
γ, N be an immersed tubular neighborhood of γ such that ΣN is

transverse to ∂(T 1N ), T be a connected component of ∂(T 1N ), and δ be a
component of ΣN ∩ T. Then δ intersects at most once

→
γT ∪

←
γT. Also, if it

does, δ has two distinct ends.
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u

∂−ΣN

→
γT
→
γT

T TN

ΣN

γ

→
γ

Figure 4.1: Immersed tubular neighborhood N of a geodesic γ. Is repre-
sented N on the left, T 1N on the middle, and the intersection of another
surface with T ⊂ ∂(T 1N ) on the right.

Proof. Since
◦
Σ is transverse to the geodesic flow, an intersection of

◦
ΣN and →γT

determines the coorientation of
◦
Σ by the geodesic flow. As shown in Fig-

ure 4.1, a second intersection would impose the opposite coorientation of
◦
Σ,

which is impossible since
◦
Σ is transverse to the flow. Also →

γT ∪
←
γT cuts T

in two connected components, corresponding to vectors going inward and
outward T 1N along T. Thus if such an intersection exists, it cuts δ in two
connected components. Since Σ is compact, δ has an end in each connected
component of T \ (

→
γT ∪

←
γT ).

Essential and alternating intersections We study the primitive orbits,
that is orbits that are not the negative boundary of some transverse cobor-
dism. So we are interested in the negative boundaries of the transverse
cobordisms of the geodesic flow. Specifically we want to prove these can-
not be lifts of simple closed geodesics. Thus it is necessary to relate the
self-intersections of some geodesic with the cobordisms its lifts bound.

Definition 4.3.3. Let Σ be a partial section and γ an oriented closed
geodesic, N be an immersed tubular neighborhood of γ such that ΣN is
transverse to ∂(T 1N ), and T be a connected component of ∂(T 1N ). Let δ
be a component of ΣN ∩ T that is a segment. We say that δ is an essen-
tial intersection on N if it intersects once →

γT ∪
←
γT and an alternating

intersection if it does not intersect →
γT ∪

←
γT .
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Let Γ be a finite set of closed geodesics, and N an immersed tubular
neighborhood of γ that is small enough, in the sense that no orbit arc of Γ
enters N and leaves it from the same side without intersecting γ. Then any
essential or alternating intersection has two ends whose orbits inside T 1N
intersect T 1

γN exactly once. Also notice that for a transverse cobordism Σ,
any intersection of two boundary arcs of Σ induces two essential or two
alternating intersections.

Lemma 4.3.4. Let Σ be a partial section, γ be an oriented closed geodesic
and N be an immersed tubular neighborhood of γ. Let δ be an essential
intersection of Σ on N , and denote by e1 and e2 its ends. Then the orbits of
the geodesic flow going through the points e1 and e2 are negative boundaries
of Σ.

Let δ be an alternating intersection of Σ on N , and denote by e1 and e2

its ends. Then one of the orbits of e1 and e2 is a positive boundary of Σ, the
other is a negative boundary of Σ.

Proof. The proof is illustrated in Figure 4.1. Denote by U an immersed
tubular neighborhood of δ in ΣN . The intersection δ ∩ (

→
γT ∪

→
γT) determines

the coorientation of U by the geodesic flow. Thus it determines the signs
of the orbits of e1 and e2 as boundary components of Σ. Also the direction
of the flow on e1 and e2 is given by their relative position with respect to
the curves →

γT (that delimit where the flow goes inward and outward N ). As
shown in the figure, the two orientations on these orbits disagree. The second
statement is proved in a similar way.

We have shown how essential and alternating intersections are connected
to the boundary of Σ. The next statement gives an existence criterion.

Lemma 4.3.5. Let Σ be a partial section of the geodesic flow,
→
γ be a boundary

component of Σ, and N be an immersed tubular neighborhood of γ that we
suppose small enough. Then there are at least | lk→

γ
(Σ)| essential intersections

of Σ on N .

Proof. Denote ΣN the boundary component of (T 1p)−1(Σ) containing →γ. IfN
is small enough then ∂Σ intersects T 1N into orbit arcs, each of them inter-
secting exactly once T 1

γN . The boundary of ΣN is made of curves in ∂(T 1N )
and of curves in the interior of T 1N that project into boundaries of Σ. By
what precedes, each curve of the second type intersects T 1

γN .
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Let T be a connected component of ∂(T 1N ) and denote by ls the con-
nected component of F s(γ)∩T 1N containing →γ. Up to taking a smaller and
closed tubular neighborhood than N , we can suppose that →

γT is closed to
the curve T ∩ ls, but disjoint from it. Then we denote by V ⊂ T the small
region between →

γT and T ∩ ls. For every x ∈ V , the arc of orbit through x
enters and leaves T 1N without intersecting T 1

γN . Thus no boundary of ΣN
intersects V .

By definition of the linking number we have | lk(Σ)| = |(T ∩ ls) ·∩ΣN |
and we can isotope Σ so that every intersection in (T ∩ ls) ∩ ΣN has the
same algebraic sign. So there are at least | lk(Σ)| curves in ΣN ∩ T that
intersect T∩ ls only once. But these curves cannot have an end in V , so they
must intersect →

γT, hence they are essential intersections.

4.3.2 Characterization of primitive orbits

In this subsection, we use the results of the previous subsection for proving
Theorem J.

Lemma 4.3.6. Let γ ⊂ S be an oriented closed geodesic and Σ ⊂ T 1S
be a transverse cobordism of the geodesic flow, so that ∂−Σ =

→
γ with any

multiplicity in N>0. Then γ is not simple.

Proof. Suppose first that Σ is an annulus. Then Σ has two abstract boundary
components n→γ and m

→

δ , with δ an oriented closed geodesic and n,m ≥ 1.
Then the image π(Σ) ⊂ S describe a free homotopy between nγ and mδ.
Since S is a hyperbolic surface, each non-trivial class of freely homotopic
curve admits a unique oriented closed geodesic. So γ and δ induce the same
non-oriented closed geodesic. Since Σ is a cobordism, ∂−Σ ∩ ∂+Σ = ∅.
Additionally ∂−Σ =

→
γ, so either →γ =

→

δ and Σ has two negative boundary
components immersed in →γ, or γ and δ have opposite orientations and ∂+Σ =

m
→

δ = m
←
γ.

In the first case, Σ is a free homotopy between n→γ and −m→γ. Then nγ
and mγ traveled backward are homotopic inside S, and (n + m)γ is homo-
topically trivial. It is impossible since S is a hyperbolic surface. The second
case is impossible for the same reason. Hence Σ is not an annulus.

Since Σ is orientable, is not an annulus, and has a non-empty boundary,
one has χ(Σ) 6= 0. But

◦
Σ is transverse to the geodesic flow, so Σ ∩ F s is

regular on
◦
Σ. Thus by Poincaré-Hopf Theorem, the foliation Σ∩F s on Σ has
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a singularity on at least one of its boundary components, and Σ has non-zero
linking number along this orbit.

Denote by N an immersed tubular neighborhood of γ, supposed to be
close enough to γ. Suppose that Σ has a non-zero linking number along →γ.
By Lemma 4.3.5, there exists an essential intersection of Σ on N . Let e
be one end of this essential intersection, and denote by

→

δ the orbit of e,
where γ is an oriented closed geodesic. Then δ intersects transversely γ and,
by Lemma 4.3.4,

→

δ is a negative boundary of Σ. But ∂−Σ = n
→
γ, so δ = γ

and γ admits self-intersection points.
Suppose that Σ has non zero linking number along a positive boundary δ.

According to Lemma 4.3.5, there exists an essential intersection of Σ on an
immersed tubular neighborhood of δ. By Lemma 4.3.4 and since Σ has only
one negative boundary, γ intersects δ. Then the curve δ induces on γ either an
alternating or an essential intersection. Using Lemma 4.3.4 and the previous
argument, γ intersects itself.

Thus, in both cases, γ is not simple.

Proof of Theorem J. Let γ be an oriented closed geodesic of S so that →γ
is primitive. If γ was not simple, by Lemma 1.5.10, there would exist a
transverse cobordism from →

γ to two other orbits. But →γ is primitive, so γ is
simple.

Let γ be an oriented simple closed geodesic. By the previous lemma, →γ
is stably primitive. Furthermore by definition, stably primitive orbits are
primitive, which finishes to prove the equivalence.

To prove that the set of primitive orbit is spanning, one can take an ori-
ented closed geodesic γ, and use the transverse cobordism from Lemma 1.5.10
to successively desingularise γ, and construct a transverse cobordism from →

γ
to some primitive orbits. The process terminates since every desingularisa-
tion of a geodesic decreases the number of self-intersection points.

Remark 4.3.7. On a non-orientable hyperbolic surface and on a hyperbolic
orbifold, some desingularisations of oriented geodesics do not induce a partial
sections as discuss in Section 1.5.2. In particular, Theorem J is not true for
hyperbolic orbifolds.
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4.4 Stably primitive orbits of skewed R-covered
Anosov flow.

In this section, we are interested in stably primitive set of orbits of a skewed R-
covered Anosov flow. We see that these orbits play an important role for
changing the nature of a flow using Fried-Goodman surgeries, as stated in the
following theorem. The main idea is to use the Birkhoff annuli whose trace
in the orbit space are ideal lozenges. We are particularly interested in the
simple sets of ideal lozenges, which are sets of ideal lozenges {Li|i ∈ I}
so that there are no indices i, j ∈ I, and g ∈ π1(M) such that g sends one
corner o of Li to a point g.o lying inside the interior

◦
Lj. Recall that for a

positively twisted flow, any point in the orbit space is the corner of exactly
two ideal lozenges, in its (+,+)- and (−,−)-quadrants.

Theorem K. Let (M,φ) be a positively skewed R-covered Anosov flow with
orientable stable and unstable foliations, and et Γ be a set of closed orbits of φ,
such that there are no ideal lozenges inside the orbit space O(M) whose two
corners are induced by two orbits inside Γ. Then the following implications
hold:

⇔ Γ is a stably primitive set of orbits,

⇔ {L+,+(γ)|γ ∈ Γ} is a simple set of ideal lozenges,

⇔ {L−,−(γ)|γ ∈ Γ} is a simple set of ideal lozenges.

⇒ Any finite sequence of Fried-Goodman surgeries along orbits of Γ pro-
duces a positive skewed R-covered flow.

Furthermore, the last implication is an equivalence when |Γ| = 1.

The equivalence between the second and third point is in fact elementary.
Indeed suppose that g.ρ(γ) lies in the interior of L+,+(ρ(δ)) for some g ∈
π(M). Since the stable and unstable foliations are orientable, one has ρ(γ) ∈
g−1.L+,+(ρ(δ)) = L+,+(g−1.ρ(δ)), so g−1.ρ(δ) lies in the interior of L−,−(ρ(γ)).

The proof of Theorem K is split in Proposition 4.4.2 and in Lemmas 4.4.4,
4.4.5 and 4.4.6 – one for each implication.
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4.4.1 Nature of a flow after Fried-Goodman surgeries

If an Anosov flow is positively skewed R-covered, we want to know whether
we can remove this property by doing Fried-Goodman surgeries on some
specific orbit. We give a partial answer to this question, a complete answer
being yet to find. We recall that Theorem G gives a way to express the
nature of the flow using oriented Birkhoff sections. Also in Section 1.6, we
have detailed how a Fried-Goodman surgery affects a Birkhoff section and
its boundary.

Lemma 4.4.1. Suppose that (M,φ) is a positive skewed R-covered transitive
Anosov flow. Let Γ be a set of closed orbits. There exists a sequence of
Fried surgeries along orbits of Γ that change the nature of the flow if and
only if there is a transverse cobordism Σ with ∂+Σ ⊂ Γ, and non-zero linking
numbers along all orbits in ∂+Σ.

The condition on Γ in this lemma is similar to being stably primitive, but
with an additional linking number condition. To work around this condition,
we use several partial sections defined in Section 1.7.3 whose linking numbers
are known.

Proof. Denote by γ1, · · · , γn some elements of Γ and by φ′ the flow obtained
by some Fried-Goodman surgeries along γ1, · · · , γn. According to Corol-
lary 3.1.3, we can suppose all slopes to be positive. Denote by γ′ the orbit
of φ′ corresponding to an orbit γ.

Suppose that φ′ is not positively twisted. According to Theorem G, φ′
admits a partial section Σ′ which is negative or without boundary. Then
the corresponding partial section Σ in M is obtained by Fried surgeries with
negative slopes along the orbits γi. Since φ is positively skewed R-covered, Σ
must have at least one positive boundary component. If a Fried surgery
along γi changes the orientation of an orbit δ in ∂Σ′, then δ = γi and lkδ(Σ) 6=
0. Thus ∂+Σ is a union of some γi, with non-zero linking numbers.

Conversely assume that such a partial section Σ exists. According to
Lemma 1.6.7, any surgery with large enough positive slope along an orbit δ
in ∂+Σ changes the sign of δ in ∂Σ′. So there is a sequence of Fried surgeries
along some orbits of Γ that changes the nature of φ.

This lemma is general, but not convenient unless we have a good under-
standing of the set of transverse cobordisms. In the remaining of the section,
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we will restrict our study to some sets of orbits Γ which we know to bound
good partial sections.

Proposition 4.4.2. Suppose that (M,φ) is a skewed R-covered Anosov flow.
Let {Li|i ∈ I} be a simple set of ideal lozenges bounded by closed orbits.
Then any Fried-Goodman surgeries along the corners of the ideal lozenges Li
produces a skewed R-covered Anosov flow with the same orientation.

This proposition is a small generalization of a theorem [BI20, Corollary
4.1] of C.Bonatti and I.Iakovoglou, which requires the simplicity of more
lozenges. Then in Theorem 1, C.Bonatti and I.Iakovoglou apply this re-
sult for the geodesic flow on a closed hyperbolic surfaces S (which is neg-
atively skewed R-covered for the orientation we chose). Take some closed
geodesics γ1, . . . γn that are simple and pairwise disjoint, and Li an ideal
lozenges with corner ρ(

→
γi) ∪ ρ(

←
γi). The set of {L1, . . . Ln} is simple so any

sequence of Fried-Goodman surgeries along the orbits ρ(
→
γi), ρ(

←
γi) induces a

negatively skewed R-covered Anosov flow.
Additionally suppose that S is not orientable. We take an oriented

closed geodesic γ with an orientable tubular neighborhood and a coorien-
tation η. Suppose that at each self-intersection point of γ, the transverse
orientation given by γ disagree with the coorientation η. Then the immersed
Birkhoff annulus Ση (given in Section 1.5.1) has two negative boundary com-
ponents →γ ∪ ←γ, is embedded in a neighborhood of →γ, and has linking number
zero along →

γ. Then, by using the technique developed in the proof below,
any Fried-Goodman surgery along →γ induces a negatively skewed R-covered
Anosov flow.

In Proposition 4.4.7, we give an example of two orbits of the geodesic flow
for which all Fried-Goodman surgeries induce negatively skewed R-covered
Anosov flow.

Proof of Proposition 4.4.2. Suppose that φ is a positive skewed R-covered
flow, and denote by Γ the set of orbits that bound an ideal lozenge Li for
some i ∈ I. For X ⊂ M , we denote by X ′ the induced set after any Fried
surgery. Take Σ a Birkhoff section embedded in its interior, and δ ⊂ ∂Σ.
According to Lemma 1.6.7 we can control the orientation of δ′ as boundary
of Σ′ after the surgery, using the slope of the surgery and with the behavior
of Σ on a small neighborhood of δ. We fix γ1, . . . , γn ⊂ Γ and some finite
slopes on the curves γi, and consider the Fried-Goodman surgeries with these
slopes. We will find a positive Birkhoff section whose slopes along γ1, . . . , γn



4.4. STABLY PRIMITIVE ORBITS OF TWISTED ANOSOV FLOW 155

are higher than the slopes of the surgeries, so that after the surgeries it
induces another positive Birkhoff section. By Theorem G the induced flow
will be positively skewed R-covered.

Also, by Theorem G there exists Σ a positive Birkhoff section. We fix a
family of ideal lozenges L1, . . . , Lp ⊂ {Li|i ∈ I} so that every orbit γi is the
boundary of one of these ideal lozenges. According to Theorem 1.7.15, for
every 1 ≤ i ≤ p, there exists an immersed Birkhoff annulus Ai in M whose
trace in the orbit space O(M) is Li. Since the flow is positively skewed, Ai
has two positive boundary components and ∂−A = ∅. Since Li is simple, Ai
is embedded on a neighborhood of its boundary. So we can desingularise Ai
into a partial transverse section Bi with two positive boundary components
and with linking number zero along these components. Also by hypothesis,
for every i 6= j, we have ∂Bi ∩

◦
Bj = ∅. Hence, for large k1, . . . , kp ∈ N, the

Fried-desingularisation of Σ ∪ k1B1 ∪ . . . ∪ kpBp is positive, and it has large
multiplicities and fixed linking numbers along the orbits γi. Hence its slopes
along the orbits γi can be taken higher that the slopes of the surgeries. Then
after these Fried-Goodman surgeries, there exists a positive Birkhoff section
and the flow is positively skewed R-covered.

For proving the converse implication, we need more work. We state a
converse for the case where |Γ| = 1 in the next section (Lemma 4.4.6) and
give a counter-example in the general case.

4.4.2 Stably primitive orbits and simple ideal lozenges

In this section, we detail the equivalence between stably primitive sets of
orbits and simple sets of ideal lozenges.

Lemma 4.4.3. Let (M,φ) be a positively skewed R-covered Anosov flow with
orientable stable and unstable foliations, and let Γ be a stably primitive set
of closed orbits. Then {L+,+(γ)|γ ∈ Γ} and {L−,−(γ)|γ ∈ Γ} are simple sets
of ideal lozenges.

Proof. We prove the contraposition. Suppose that {L+,+(γ)|γ ∈ Γ} is not
simple. Then there exists two closed orbits γ, δ ∈ Γ, a corner o of the
ideal lozenge L+,+(γ) and g ∈ π1(M) such that g.o lies inside the interior
of L+,+(δ). One has L+,+(g.γ) = g.L+,+(γ) since the stable and unstable
foliations of φ are orientable. We can suppose o = ρ(γ), for otherwise ρ(δ) lies
in the interior of L+,+(g.γ) = g.L+,+(γ), so that g−1.ρ(δ) lies in the interior
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of L+,+(γ), and we can exchange γ and δ. According to Lemma 1.7.17 there
exists a transverse cobordism Σ with boundary ∂+Σ = γ ∪ δ, so Γ is not a
stably primitive set.

The converse implication needs more development. First we prove that
under some hypothesis on a partial section Σ, we can substrat an immersed
Birkhoff annulus to Σ.

Lemma 4.4.4. Let (M,φ) be a positive skewed R-covered Anosov flow. Let Σ
be a transverse cobordism in M , γ ⊂ ∂+Σ be a closed orbit, and L ⊂ O(M)

be an ideal lozenge with one corner at ρ(γ), so that
◦
L∩∂+Σ = ∅. We suppose

that lkγ(Σ) = 0, and locally around ρ(γ), L is in the same quadrant than the
trace ΘM\∂Σ(Σ). Then either Σ is a Birkhoff annulus with trace L or there
is an Birkhoff annulus A with trace L and an immersed partial section Σ′ so
that Σ is the Fried desingularisation of A ∪ Σ′.

When lkγ(Σ) = 0, in a neighborhood of ρ(γ), ΘM\∂Σ(Σ) covers one of the
two quadrants corresponding to L+,+(γ) and L−,−(γ). In this case we take L
to be the corresponding ideal lozenge.

Proof. According to Theorem 1.7.15, there exists an immersed Birkhoff an-
nulus A whose trace in O(M) is L. We define Γ = ∂Σ ∪ ∂A. The general
idea of the proof is to show that ∂A ∩

◦
Σ = ∅ = ∂Σ ∩

◦
A, so that L lifts to an

ideal lozenge in O(M \ Γ) (that we also denote by L). Then we prove that
the trace of Σ in O(M \Γ) contains L. Finally we use this trace to construct
a copy of A inside Σ.

Denote the orbits bounding A by γ and δ, which may be equal. According
to Lemma 3.1.1, we have (∂A ·∩

◦
Σ) − (∂Σ ·∩

◦
A) = lk+(Σ, A) − lk−(Σ, A). We

need to control each term to prove that ∂Σ ∩
◦
A = ∅.

We have ∂A ·∩
◦
Σ ≥ 0 since A has only positive boundaries, and ∂Σ ·∩

◦
A ≤ 0

since ∂+Σ does not intersect
◦
L. Hence (∂A ·∩

◦
Σ)− (∂Σ ·∩

◦
A) ≥ 0.

The common boundary between Σ and A is γ plus possibly δ. By
construction of the immersed Birkhoff annulus A (see Section 1.7.3), we
have lkγ(A) = 0. By hypothesis, we have lkγ(Σ) = 0, and so lkγ(Σ, A) = 0.
Also if δ ∈ ∂+Σ, then lkδ(Σ) − lkδ(A) ≤ 0 so lkδ(Σ, A) ≤ 0. Since A
and Σ have the same oriented boundary only on γ and potentially on δ, we
have lk+(Σ, A) ≤ 0. If δ ∈ ∂−Σ, then lkδ(Σ) − lkδ(A) ≥ 0 so lkδ(Σ, A) ≥ 0.
Hence in all cases we have lk−(Σ, A) ≥ 0 and lk+(Σ, A) − lk−(Σ, A) ≤ 0,
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but the latter is non negative by what precedes. Hence we have ∂A ·∩
◦
Σ =

∂Σ ·∩
◦
A = 0 = lk+(Σ, A) = lk−(Σ, A), and ∂A ∩

◦
Σ = ∅ = ∂Σ ∩

◦
A.

Since
◦
L ∩ ∂+Σ = ∅, γ belongs to ∂+Σ and ρ(γ) is a corner of L, the

orbit π1(M).ρ(δ) does not intersect the interior L. So Γ ∩
◦
L = ∅, and L lifts

to an ideal lozenge in O(M \ Γ), still denoted by L. We will prove that the
trace of Σ in O(M\Γ) contains

◦
L. Notice that since γ ⊂ ∂+Σ and lkγ(Σ) = 0,

the trace of Σ in O(M \ Γ) contains the two half stable and unstable leaves
that bound L and contains ρ(γ). Denote by ls, lu ⊂ ∂L these two half leaves.

If the trace of Σ does not contain L, then this trace must have a boundary
component intersecting

◦
L. Either it is a stable leaf, an unstable leaf, or two

half leaves based on a closed orbit. In the first two cases, the stable or
unstable leaf would intersect either ls or lu. This is impossible, since the
boundary of the trace of Σ contains the whole half leaves. In the third case,
there exist two half leaves based on a point ρ(ν) for a closed orbit ν, which
for the same reason must leave the ideal lozenge L by the two half leaves
in ∂L \ (ls ∪ lu). Then ν is be a boundary of Σ inside

◦
L, which is impossible

by hypothesis. Hence only the last case is possible: the trace of Σ in O(M \Γ)
contains L.

We can use the two previous results to construct a copy of A in Σ. Let γs
be a copy of γ slightly pushed (or 2γ if the leaf F s(γ) is not orientable)
inside M \ Γ along the stable foliation. We denote by g̃ its homotopy class
in π1(M \ Γ), by a connected lift of Σ in M̃ and by π(Σ̃) its projection
inside O(M \ Γ). Then we have g̃.L = L inside O(M \ Γ).

Let a ⊂
◦
L be an open curve connecting the two corners of L and transverse

to Ls and Lu. By construction, g̃ respectively contracts and expands the
unstable and stable leaves inside L, so for all n ∈ Z we have g̃n.a ∩ a = ∅.

We lift a ⊂ ΘM\∂Σ(Σ) to a curve α̃ ⊂ Σ̃ ⊂ M̃ , and project it to the
curve α ⊂ Σ. We claim that a → α is injective, so that α is an open
simple curve in Σ. Indeed suppose that a→ α is not injective, so that there
exists h ∈ ι(π1(

◦
Σ)) ⊂ π1(M \ ∂Σ) such that h 6= 1 and h.a ∩ a 6= ∅. We

take x ∈ h.a ∩ a as in Figure 4.2. Then there is in h.a an arc c bounded
by x and h.ρ(γ). But L is a simple ideal lozenge, so either h.ρ(γ) = ρ(γ),
or c intersects lu ∪ ls. The first case is impossible since it would implies
that h = g̃n for some n 6= 0, and g̃n.a ∩ a = ∅. But lu ∪ ls ⊂ ∂(ΘM\Γ(Σ)),
and c must lift to a curve in Σ̃, which is impossible. Hence α is a simple
curve in Σ.

Since γ ⊂ ∂Σ, we can choose a so that α admits an end in γ. Also Σ
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h.ρ(γ)
ρ(γ)ρ(γ)

ρ(δ)

x

Σ

L
a

g.a

a

h.a

Figure 4.2: Trace of Σ and A in O(M), with a fundamental domain of A in
green.

has linking number zero along γ, so γs is homotopic inside M \Γ to a closed
curve lying inside Σ. Hence g̃.Σ̃ = Σ̃ and g̃.α̃ is another curve in Σ̃ with one
end in a lift of γ.

We need to consider the other end of a. There are two cases: δ ⊂ ∂Σ
or δ 6⊂ ∂Σ. In the second case, we have ρ(δ) ⊂ ∂ΘM\Γ(Σ) since ∂A ∩

◦
Σ = ∅.

Then Ls(ρ(δ)) or Lu(ρ(δ)) is a boundary component of ΘM\Γ(Σ). Thus
according to Remark 1.7.2, we can cut Σ along a closed leaf of F s ∩ Σ
or Fu∩Σ and isotope the surface to obtain a new immersed partial section Σ′

embedded in its interior, and with δ as negative boundary. Also the Fried-
desingularisation of Σ′ is Σ. Thus in all cases, we can consider an immersed
partial section Σ′ that either is equal to Σ or that we can desingularise into Σ,
and with δ ⊂ ∂Σ′. Then we can take a and α on Σ′ so that α admits a second
end in δ.

Thus a ∪ g̃.a bounds in L a 2-gon b, which lifts to a 4-gon β̃ ⊂ Σ̃. Two
opposite edges of β̃ embed in a and g̃.a, and the two other edges are orbit
arcs which project to the ends of a. Furthermore β̃ projects to an immersed
scare β ⊂ Σ̃, embedded in its interior, so that ρ(β) = b. The two opposite
sides of β that correspond to a and g̃.a are glued along α. Thus β is a
connected component of Σ′, and β is a Birkhoff annulus with trace L. If β is
not all the surface Σ′, then its complement is an immersed partial section Σ′′.
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And by construction Σ is the Fried desingularisation of β ∪ Σ′′.

Lemma 4.4.5. Let (M,φ) be a positively skewed R-covered Anosov flow
and Γ be a set of closed orbits such that there are no ideal lozenges inside
the orbit space O(M) whose two corners are induced by two orbits inside Γ.
If {L+,+(γ)|γ ∈ Γ} and {L−,−(γ)|γ ∈ Γ} are simple sets of ideal lozenges,
then Γ is a stably primitive set of orbits.

Proof. Suppose that Γ is not a stably primitive set of orbits. Then there
exists a cobordism Σ with ∂+Σ ⊂ Γ. We would like to have non-zero linking
numbers along all the negative boundary components of Σ. By Lemma 4.4.1,
some Fried-Goodman surgeries on Γ would produce an Anosov flow which is
not negatively skewed R-covered. Since {L+,+(γ)|γ ∈ Γ} is a simple set of
ideal lozenges, it would contradict Lemma 4.4.2.

To obtain non-zero linking numbers along all the negative boundary com-
ponents of Σ, we suppose that there is such a boundary component, and we
erase this boundary component from Σ. Let γ be a negative boundary of Σ
with linking number zero. Let L be the ideal lozenge L+,+ or L−,− which is in
the same quadrant than the trace ΘM\Γ(Σ) along ρ(γ). Since {L+,+(γ)|γ ∈
Γ} and {L−,−(γ)|γ ∈ Γ} are simple sets of ideal lozenges, ∂+Σ ⊂ Γ does not
intersect the interior of L. According to the hypothesis, Σ is not a Birkhoff
annulus with trace L. So, according to Lemma 4.4.4, there is another im-
mersed partial section Σ′ so that Σ is a Fried desingularisation of Σ′ plus an
immersed Birkhoff annulus A with trace L. Hence ∂+Σ′ = ∂+Σ− ∂+A ⊂ Γ,
and the multiplicity of ∂+Σ′ is less than the multiplicity of ∂+Σ. The same
property is satisfied by the Fried-desingularisation of Σ′. We can successively
apply this claim a finite number of times to eventually erase all negative
boundary components with zero linking number from Σ. Then the remark
made above finishes the proof.

The previous theorem shows a key difference between primitive orbits
and stably primitive orbits. By Theorem I, there exist primitive orbits on a
skewed R-covered Anosov flow, but they are hard do determine. The previous
theorem shows that stably primitive orbits are easier to determine, but they
may not exist. For example, take a hyperbolic orbifold S with 3 cusps and the
topology of a sphere. There is no simple geodesic on S, so there is no stably
primitive orbits of its geodesic flow (see Section 4.3 for this implication).

We finally prove the last equivalence in Theorem K, stated in a special
case.
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Lemma 4.4.6. Let (M,φ) be a positively skewed R-covered Anosov flow with
transversely orientable stable and unstable foliations, and take a closed orbit γ
which is not stably primitive. Then any Fried-Goodman along γ with high
enough slope (which exists) induces an Anosov flow which is not positively
skewed R-covered.

Proof of Lemma 4.4.6. According to Lemma 4.4.5, L+,+(ρ(γ)) is not simple.
So there exists g in π1(M) such that g.ρ(γ) is in the interior of L+,+(ρ(γ)).
Also the stable and unstable foliations are transversely orientable, so g pre-
serves the orientations of Ls and Lu. According to Lemma 1.7.18 there is
an immersed Fried section Σ with ∂+Σ = γ (not counted with multiplicity)
and with non-zero linking number. Lemma 4.4.1 then implies that there ex-
ists a Fried-Goodman surgery on γ that induces an Anosov flow that is not
positively skewed R-covered.

Counter-example for more that one orbit Let S be an oriented hy-
perbolic surface and take γ1 and γ2 two simple geodesics that intersect only
once, as in Figure 4.3. We consider the geodesic flow on T 1S and its periodic
orbits →γ1 and →

γ2. The geodesic flow on T 1S is negatively skewed R-covered,
so we use the variant of previous results that reverses the orientations. We
refer to Section 1.5.2 for the construction of partial sections on T 1S, and to
Section 4.3 for the definition of immersed tubular neighborhoods.

Proposition 4.4.7. For any transverse cobordism Σ so that ∂−Σ ⊂ γ1 ∪ γ2

(with any multiplicity), we have lkγi(Σ) = 0 for i = 1 and 2. Hence no
Fried-Goodman surgery on

→
γ1 and

→
γ2 changes the nature of the flow.

Proof. We give a proof using an immersed tubular neighborhood. Alterna-
tively one can prove the claim with the technique developed in the proof of
Proposition 4.4.2.

Let Σ be a transverse cobordism with ∂−Σ ⊂ γ1 ∪ γ2. If lkγ1(Σ) 6=
0, by Lemma 4.3.5, there is an essential intersection of Σ along γ1. By
Lemma 4.3.4, the ends of the essential intersection are on some negative
boundary components of Σ, that is γ2 since γ1 is simple. Additionally these
boundary components project to oriented geodesic arcs of S, that intersect γ1

with opposite signs. This contradicts the fact that γ1 is simple and that
there is only one intersection of γ1 and γ2. Hence, by Lemma 4.4.1, no
Fried-Goodman surgery on →

γ1 and →
γ2 changes the nature of the flow.



4.4. STABLY PRIMITIVE ORBITS OF TWISTED ANOSOV FLOW 161

γ1

γ2

Figure 4.3: Transverse cobordism with linking number zero along its negative
boundary.
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