
HAL Id: tel-03508454
https://theses.hal.science/tel-03508454

Submitted on 3 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint modeling and optimization of caching and
recommendation systems

Theodoros Giannakas

To cite this version:
Theodoros Giannakas. Joint modeling and optimization of caching and recommendation sys-
tems. Networking and Internet Architecture [cs.NI]. Sorbonne Université, 2020. English. �NNT :
2020SORUS317�. �tel-03508454�

https://theses.hal.science/tel-03508454
https://hal.archives-ouvertes.fr

Joint Modeling and Optimization
of Caching and Recommendation

Systems

Dissertation

submitted to

Sorbonne Université

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Author:

Theodoros GIANNAKAS

Scheduled for defense on the 13th March, 2020, before a committee composed of:

Reviewers
Dr. Chadi BARAKAT Inria, France

Prof. György DÁN KTH, Sweden

Examiners
Prof. Gustavo De VECIANA UT Austin, USA
Prof. Petros ELIA EURECOM, France
Prof. Karin Anna HUMMEL JKU, Austria
Prof. George IOSIFIDIS Trinity College, Ireland

Director of Thesis
Prof. Christian BONNET EURECOM, France

Co-Director of Thesis
Prof. Thrasyvoulos SPYROPOULOS EURECOM, France

Modélisation et optimisation
conjointes des systémes
de mise en cache et de

recommandation

Thèse

soumise à

Sorbonne Université

pour l’obtention du Grade de Docteur

Auteur:

Theodoros GIANNAKAS

Soutenance de thèse effectuée le 13 Mars 2020 devant le jury composé de:

Rapporteurs
Dr. Chadi BARAKAT Inria, France

Prof. György DÁN KTH, Sweden

Examinateurs
Prof. Gustavo De VECIANA UT Austin, USA
Prof. Petros ELIA EURECOM, France
Prof. Karin Anna HUMMEL JKU, Austria
Prof. George IOSIFIDIS Trinity College, Ireland

Directeur de Thèse
Prof. Christian BONNET EURECOM, France

Co-Directeur de Thèse
Prof. Thrasyvoulos SPYROPOULOS EURECOM, France

To my parents and Penny

Abstract

Caching content closer to the users with the help of Content Distribution Networks
(CDNs) was a groundbreaking idea that shaped today’s high speed communication
networks. Fast forward to 2020 and the wired setup has reached very high data rates in
practice, however users are becoming increasingly more active in the wireless domain.
Essentially, as the users experience better service in a wired environment, their demands
for the wireless service increase as well.

To this end, it has been recently proposed by the networking research community to
further capitalize on the idea of caching and extend the paradigm (of the well-established
CDN) to the edge of the network. Potentially, this approach could create the much needed
leap and eventually become the means through which the Mobile Network Operators
(MNOs) meet the users needs. Caching presents the users and the MNOs with a clear
“win-win” solution, as the first party will experience a considerably better performance,
while the MNOs will be able to save cost as they will need to use less and less the
backhaul infrastructure.

A crucial point that we are missing in the above thought process is that in order for
the caching to be effective, the contents we store locally must be able to attract a lot of
requests. However, that is not to happen due to (a): the large catalogues, (b): the diverse
user preferences. Despite these two difficulties, we can take advantage of the fact that
the internet is becoming more entertainment oriented and that is why we propose to bind
recommendation systems (RS) and caching in order to boost the network performance.

In a nutshell, the three first works presented in the thesis deal with the challenging
problem of Network Friendly Recommendations (NFR) in Long Viewing Sessions, whereas
in the last section we focus on the Recommendation Aware Caching problem.

More specifically, in the first chapter we present the current literature status of the
caching and recommendation interplay, and highlight the existing gaps. In Chapter 2, we
define the problem of NFR in long sessions assuming a user who requests contents in a
Markovian manner. We then proceed in formulating the NFR as an optimization problem
by enforcing hard constraints on the user satisfaction and show that it is nonconvex. We
conclude the chapter by presenting an ADMM heuristic algorithm to validate that indeed
our approach heavily outperforms existing myopic alternatives.

In the third chapter, we solidify and further strengthen the result of the previous
chapter. We transform the optimization problem of NFR on long viewing sessions to a
Linear Program and explicitly state the necessary conditions needed for the equivalence.
We then proceed to further generalize the problem by incorporating the user preference on

i

Abstract

the recommendations according to how they are positioned on the application/webpage
screen. We prove that a similar equivalent transformation can be applied to this more
general problem, and thus can be treated as an LP as well.

In Chapter 4 we cast the the NFR as a Markov Decision Problem (MDP). The
contribution of this approach is essentially twofold: (a): The MDP framework offers a
fertile ground for more scalable and practical algorithmic solutions than our previous
approaches. Interestingly, we were able to solve our original problem much faster
(maintaining ε-optimality) than using the state-of-the-art CPLEX solver and (b): The
MDP approach on the problem allows for some far more realistic user behavior modeling.
To this end we present two novel models where the users are selecting the content
proportionally to how satisfactory the recommendation policy is.

While the previous chapters focus on the recommendation, in the final chapter, we
take a preliminary look on the caching side of the problem. We depart from the markovian
content access model, and assume a IRM access model, for simplicity, on top of a femto-
caching setup. To this end, we initially formulate the problem of users in a femtocache
network that can accept or reject alternative (than the one requested) contents in much
better streaming quality at their mobile device and the problem of delivering. Then we
formulate a slightly more aggressive use case, where the MNO (due to incentives in the
user’s quota) can deliver other related content (locally stored) given extreme congestion
condition on the network. We then show that both of these problems are NP-Hard and
then rigorously prove they have submodular structure; a property which guarantees a
bounded gap from the optimal for when we apply a greedy allocation of the contents.

ii

Acknowledgements

I would first like to thank my advisor Akis who constantly pushed me towards better
results, for challenging me and for trusting me with such an interesting problem to work
with. Then, my two informal advisors, Drs. Anastasios Giovanidis and Pavlos Sermpezis
whose guidance definitely shaped me throughout these years. In addition, I want to thank
all my friends in Athens and in Nice who tolerated me all these years and for accepting
me in their lives unconditionally. More specifically, the discussions we had in Ketje over
multiple pints of beers with many of you, will always be something I will remember
fondly. Moreover, I was lucky enough to grow up in an environment where academic
excellence was considered something admirable that should be never be enforced (or
obligatory). I would thus like to thank my parents not only for their love, but more
importantly for supporting each and every decision I took in life. Finally, all this would
never be possible if it were not for Penny, my partner in life. I believe her unlimited love
and support throughout these 10 years is the main reason I wanted to make progress in
life academically and more importantly become a better person.

iii

Acknowledgements

iv

Contents

Abstract . i

Acknowledgements . iii

Contents . v

List of Figures . viii

List of Tables . xi

Acronyms . xiii

Notations . 1

1 Introduction 1

1.1 The Interplay of Caching and Recommendation 1

1.1.1 The Role of Caching and Why it is not Enough 1

1.1.2 Recommendation Driven Requests 3

1.1.3 Cache and Recommendation Co-Design 4

1.2 Related Work . 6

1.2.1 Mobile Edge Caching. 6

1.2.2 Caching and Recommendations . 6

1.3 Contributions and Thesis Outline . 8

1.3.1 Limitations of Existing Works . 8

1.3.2 Novelties . 8

1.3.3 Technical Summary . 8

1.3.4 Limitations of Existing Works . 9

1.3.5 Novelties . 9

1.3.6 Technical Summary . 10

1.3.7 Limitations of Existing Works . 10

1.3.8 Novelties . 11

1.3.9 Technical Summary . 11

1.3.10 Limitations of Existing Works . 12

1.3.11 Novelties . 12

1.3.12 Technical Summary . 12

v

Contents

2 The Long Session Problem 15

2.1 Introduction . 15

2.2 Problem Definition . 16

2.3 Optimal vs Myopic: An Example . 19

2.4 Modeling and Problem Formulation . 21

2.5 An Algorithm . 24

2.5.1 Myopic Algorithm . 25

2.5.2 Cache-Aware Recommendations for Sequential content access (CARS) 25

2.6 Inner ADMM Minimizers Implementation 28

2.7 Results . 32

2.7.1 Datasets . 32

2.7.2 Simulation Setup . 33

2.7.3 Results . 35

3 LP Transformation and the Non Uniform Click-through Case 39

3.1 Introduction . 39

3.2 Problem Setup . 40

3.2.1 Recommendation-driven Content Consumption. 40

3.2.2 Baseline Recommendations . 41

3.2.3 Network-friendly Recommendations. 41

3.3 Problem Formulation . 44

3.3.1 Optimization Methodology . 47

3.3.2 The Journey to Optimality . 47

3.3.3 A Myopic Approach . 50

3.4 Results . 51

3.4.1 Warm Up . 51

3.4.2 Schemes we compare with . 52

3.4.3 Datasets . 52

3.4.4 Results . 53

4 The Random Session Case 59

4.1 Introduction . 59

4.2 Problem Setup . 60

4.2.1 User Session and Interaction with the RS 60

4.2.2 Recommender Knowledge about the User 60

4.2.3 Cost-Aware Recommender over Network 61

4.2.4 Policies . 62

4.3 Formulation . 63

4.3.1 Defining the MDP . 63

4.3.2 Optimization Objective . 64

vi

Contents

4.3.3 Optimality Principle . 66

4.3.4 Versatility of look-ahead policies through λ 68

4.4 Quality Driven Users: Some Use Cases . 69

4.4.1 User Behavior: Model 1 . 69

4.4.2 User Behavior: Model 2 . 71

4.4.3 User Behavior: Model 3 . 75

4.5 Results . 76

4.5.1 Metrics of Interest . 76

4.5.2 What we Evaluate . 77

4.5.3 Traces . 77

4.5.4 Results . 77

5 Soft Cache Hits 85

5.1 Introduction . 85

5.1.1 Background and Motivation . 86

5.1.2 Soft Cache Hits: Idea and Implications 86

5.1.3 Contributions . 90

5.2 Problem Setup . 91

5.2.1 Network and Caching Model . 91

5.2.2 Soft Cache Hits . 92

5.3 Single Cache with Soft Cache Hits . 93

5.3.1 Soft Cache Hit Ratio . 93

5.3.2 Optimal SCH for Equal Content Sizes 94

5.3.3 Optimal SCH for Different Content Sizes 95

5.4 Femtocaching with Related Content Recommendation 96

5.5 Femtocaching with Related Content Delivery 99

5.6 Evaluation . 101

5.6.1 Datasets of Content Relations . 101

5.6.2 Simulation Setup . 102

5.6.3 Results . 103

6 Conclusions and Future Work 111

6.1 Conclusions . 111

6.2 Future Work Suggestions . 113

Appendices 115

.1 Appendix A . 117

.2 Appendix B . 118

.3 Proof of Corollary 5.3.1 . 119

.4 Proof of Lemma 17 . 120

.5 Proof of Lemma 18 . 120

vii

Contents

.6 Proof of Theorem 3 . 121

.7 Proof of Lemma 20 . 122

viii

List of Figures

1.1 Depiction of a CDN (Source: https://www.highcharts.com/blog/news/50-
codehighchartscom-moves-to-cdn/) . 2

2.1 Depiction of the wireless setup . 19

2.2 Suboptimality gap for C = 1 . 22

2.3 Convergence of the CHR as measured by (1): πT · cv and (2): (1− α) ·
pT0 · (IK×K − α ·R)−1 · cv . 29

2.4 Residual ||c(π,R)||22. 29

2.5 Cache Hit Ratio vs Quality N = 4, C/K = 5%. (MovieLens, s = 0.7) . . 34

2.6 Cache Hit Ratio vs Quality N = 4, C/K = 5%. (Last.fm, s = 0.4) 34

2.7 Cache Hit Ratio vs Relative Cache size, Q = 80%, N = 4. (MovieLens, s =
0.5) . 36

2.8 Cache Hit Ratio vs Relative Cache size, Q = 80%, N = 4. (Last.fm, s = 0.4) 36

2.9 CHR vs # of Accesses, for N = 3, (synthetic scenario), q = 85%, s =
0.2, C/K = 4% . 37

2.10 CHR vs Probability α, for N = 3, (synthetic scenario), q = 90%, s =
0.6, C/K = 2.5% . 38

3.1 Example of a Related Items List along with the respective click-through
probabilities per position. 42

3.2 Comparison of baseline (left) and network-friendly (right) recommenders.
Gray and white boxes denote cached and non-cached contents, respectively.
Recommending after content 3 a slightly less similar content (i.e., content
4 instead of 6), leads to lower access cost in the long term. 43

3.3 Example of a multi-content session. The instant where the user requests
for some content from the seatch/text bar signifies the absorption of the
Markov Chain. Moreover the color of the contents expresses their network
cost. 45

3.4 Absolute Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - MovieLens. 53

3.5 Absolute Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - Youtube
France. 54

3.6 Relative Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - All Datasets. 54

3.7 Absolute Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - MovieLens. 55

ix

List of Figures

3.8 Absolute Cache Hit Rate Performance Hv (C/K ≈ 1.00%) - YouTube
France. 55

3.9 Relative Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - All Datasets. 56
3.10 Relative Gain vs (N, β), for q = 80%, K = 400, C/K ≈ 1.00%, α = 0.7 . 56
3.11 Cache Hit Rate vs N (C/K ≈ 1.00%, α = 0.7) 57

4.1 Execution Time: MDP (Policy Iteration) vs CPLEX (uij ∈ {0, 1}) 78
4.2 Execution Time: MDP (Policy Iteration) vs CPLEX (uij ∈ [0, 1]) 79
4.3 CHR performance of π1, π2 for increasing QMIN . The optimal point CHR

and qi found by π3 is the point of intersection of the red lines - synthetic 1K 82
4.4 CHR performance of π1, π2 for increasing QMIN . The optimal point CHR

and qi found by π3 is the point of intersection of the red lines - YouTube 82
4.5 Histogram of the variable αi - Synthetic 1K 83

5.1 Mobile app example for Soft Cache Hits with related content recommen-
dation (that the user might not accept) 88

5.2 Mobile app example for Soft Cache Hits with related content delivery . . 89
5.3 Cache hit ratio for all datasets and caching schemes, for the default scenario.104
5.4 Cache hit ratio vs. cache size C. 106
5.5 Cache hit ratio vs. number of SCs M . 106
5.6 Cache hit ratio for the MovieLens dataset for scenarios with different umin

thresholds; default scenario. 108
5.7 Relative increase in the cache hit ratio due to soft cache hits (y-axis).

Amazon scenarios with different variance of number of related contents
(x-axis). 108

x

List of Tables

2.1 Important Notation . 18
2.2 Comparing Customized Projected Gradient and CVX for Inner Minimizers 32

3.1 Important Notation . 44
3.2 Parameters of the simulation . 53

4.1 Summary of Models . 71
4.2 Accuracy in CHR performance of CPLEX and PI 78
4.3 Comparing for π4 and π3 . 81

5.1 Important Notation . 92
5.2 Information contained in datasets. 102
5.3 Dataset analysis. 102
5.4 Parameters used in simulations: default scenario. 104
5.5 Utility matrix density for the MovieLens dataset for different umin thresholds.107

xi

List of Tables

xii

Acronyms and Abbreviations

The acronyms and abbreviations used throughout the manuscript are specified in the
following. They are presented here in their singular form, and their plural forms are
constructed by adding and s, e.g. CDN (Content Delivery Network) and CDNS (Content
Delivery Networks). The meaning of an acronym is also indicated the first time that it is
used.

CDN Content Delivery Network.
ISP Internet Service Provider.
CP Content Provider.
SC Small Cell.
QoS Quality of Service.
QoE Quality of Experience
MB, PB, TB Mega Byte, Peta Byte, Tera Byte.
RS Recommendation System.
OP Optimization Problem.
CHR Cache Hit Ratio.
CMR Cache Miss Ratio.
ADMM Alternating Direction Method of Multipliers.
LP Linear Program.
QP Quadratic Program.
QCQP Quadratically Constrained Quadratic Program.
DP Dynamic Program.
RL Reinforcement Learning.
IRM Independent Reference Model.
MDP Markov Decision Problem.
IHMDPD Infinite Horizon Markov Decision Problem with Discounts.
ViT Value Iteration.
PiT Policy Iteration.
Eq. Equation.
Def. Definition.
i.i.d. independent and identically distributed.
w.p with probability.
NFR Network Friendly Recommendations.
lhs left hand side.

xiii

Acronyms

rhs right hand side.
rv random variable.
pmf probability mass function.
w.l.o.g without loss of generality.

xiv

Chapter 1

Introduction

1.1 The Interplay of Caching and Recommendation

1.1.1 The Role of Caching and Why it is not Enough

The current thesis focuses on laying the ground for the eventual joint coordination
of caching and recommendation policies in wireless networks. Traditionally, Content
Providers (CP) such as YouTube, Netflix have been trusting their content delivery to CDN
operators such as Akamai, Google or Amazon Cloudfront in order to ensure fast, reliable
and secure delivery to the end users (in the wired or wireless case). A CDN in principle
reduces the cost of transferring data as it has the role of the middleman between the
users and the web servers in terms of geographical location. At the start, users could only
receive the requested content from a perhaps very isolated server somewhere across the
globe. However, during “rush hours” or during some important events (elections, natural
disasters or big sports events) loading a webpage would frequently lead to some crashed
server which could no longer respond to user requests. This situation was originally
called the problem of “hot spots” and was eventually resolved after the Internet structure
changed for good and the CDN paradigm was deployed. The network topology supported
by the CDN is depicted in Fig.(1.1).

Fast forward to 2020, and CDNs is an established technology that had a major impact
on the Internet performance. The aforementioned improvements although groundbreaking,
were able to resolve many issues in the Internet of that era. However that was an era before
the emergence of streaming content websites such as YouTube or Netflix. What is more,
users are becoming “hungrier” and harder to please as they can even feel discomforted
when the content is delivered in poor streaming quality, i.e., high latency, start-up delay,
playout interruptions stalls, low resolution etc. CDNs have managed to resolve many of
these issues in the wired setting. However, it is needless to say that today’s users are
requesting for heavy content through their mobile operators which at the moment cannot
perform equally well to the home/office connections. It becomes obvious that at the
dawn of the 5G era, the existing system architecture is deemed as insufficient.

Hence, new architectures for cellular networks, comprising densification of the access
network (small-cells, SCs) and integration of computing and caching capabilities in base

1

Chapter 1. Introduction

Figure 1.1 – Depiction of a CDN (Source: https://www.highcharts.com/blog/news/50-
codehighchartscom-moves-to-cdn/)

stations (mobile edge caching and computing, MEC), have been proposed [1], to cope
with the recent boom in traffic demand [2] and the envisioned increase in devices/traffic
density in the near future (×10k more traffic and × 10 to 100 more devices [3])

Thus, the core idea of the networking community is to shift the CDN paradigm to
the wireless setting and cache content at the edge of the network, i.e., very close to the
user. Although this idea seems very appealing, it is not a one-fits-all solution as there are
several limitations to it. Fresh content such as news, music or TV series is produced on a
daily basis, and user generated content (UGC) is also increasing by leaps and bounds.
An important feature however of such content is that it is ephemeral, in the sense that
it is demanded for some specific duration and eventually it fades over time. Therefore
finding which content should be cached, translates to “predicting” its popularity for the
foreseeable future.

On top of that, a practical constraint that needs to be taken into account is that
caching at the edge is far more constrained by its nature than the CDN. The edge-caches
are supposed to be placed in urban spots such as bus stops, buildings etc or even the
mobile devices themselves and thus their physical size (and memory capacity obviously) is
heavily affected by that. Impressively, it is predicted that the number of required storage
points in future cellular networks will be orders of magnitude larger than in traditional
CDNs [4] (e.g., 100s or 1000s of small cells (SCs) corresponding to an area covered by a
single CDN server today). As a result, the storage space per local edge cache must be
significantly smaller to keep costs reasonable. Note that even if we considered a small
subset of the entire Internet catalogue, e.g., a typical torrent catalogue (1.5 PB) or the
Netflix catalogue (3 PB), edge cache hit ratio would still be low even with a relatively
skewed popularity distribution [5] and more than 1 TB of local storage [6, 7]. Therefore,
a first important conclusion that we will build upon in the sequel of this work is the
following:

2

Chapter 1. Introduction

“Due to the capacity constraints, caching content at the edge has practical limitations.”

Currently, MNOs have to do peak-rate provisioning of their network, which is costly
and often wasteful during non peak hours. Notice though that if most traffic could stay
local, i.e., be satisfied by the local SC, then the MNO wins. That is mainly due to the
fact that if caches manage to satisfy a large fraction of the content demand, the data
center, core servers deeper in the network, etc will be alleviated. However, an important
consequence/side-effect of keeping the traffic local is that the user will probably also win
in terms of QoE, as he will be able to enjoy a much better streaming experience. It is
thus evident that the networking is presented with a clear win-win situation for both
parties, MNOs and users [8].

“Caching is a win-win situation for the ISPs and the users. It must be somehow
exploited.”

The above discussion suggests that caching policy alone is limited in the amount of
performance gain it can bring at at an edge cache. Increasing cache capacity (to improve
hit rates) or backhaul capacity (to allow for more frequent cache updates) seem like
the only way to cope with this problem, but these are “hardware” solutions involving
significant CAPEX/OPEX costs, when considering the very large number of small base
stations envisioned in future heterogeneous and ultra-dense networks. The following
question then arises

“ Are there any practical ‘software-based’ solutions that can improve caching efficiency,
at a low cost?”

1.1.2 Recommendation Driven Requests

Recommendation Systems (RSs) is a well established information filtering system [9] that
nowadays is embedded in almost all entertainment platforms such as Pandora, Spotify,
Netflix, YouTube as well as e-commerce websites such as Amazon or eBay. In its core,
an RS aims to predict the user preferences. More specifically, the RS has at its disposal
a set of items/objects (could be films, songs, goods etc.) and a set of users that have
rated some of these items. Thus one can imagine these ratings as a table (or matrix if
you will) which is incomplete. The RS objective is to fill in these missing ratings and its
effectiveness is usually measured by how close the actual ratings will be compared to the
predicted ones. Most fundamental and widely known techniques include collaborative
filtering [10], matrix factorization, such as the paper that won the Netflix Prize [11] and
more recently Deep Neural Networks [12].

In general, a RS should be able to help the user discover contents that would be of
interest to him. What this suggests, is that if a RS is able to suggest interesting contents
to the user, then a relationship of trust is built between the user and the RS. As today’s
catalogues are massive (irrespectively of the type of content), in a way recommendations

3

Chapter 1. Introduction

manage to shrink a catalogue of size K to an almost infinitely smaller catalogue of size
N (the recommendation batch/list suggested to the user). The recommendation process,
when successful, essentially can win the user several minutes (or more) when he is looking
for a content or a good to purchase.

“The user requests are increasingly driven by the RS suggestions.”

There is a variety of recent measurement studies that confirm the above statement
such as [13], [14], [15]. What is more, in [16], we see that in the case of Netflix, a staggering
80% of its traffic comes from the recommendations, while the corresponding percentage
for YouTube’s related video is 50% [15]. Here we list some examples of everyday situations
where users may feel happy or unhappy depending on the RS decisions.

• A user watching video lectures on YouTube wants to find part i+ 1 of the lecture
on his recommendation list when he is currently viewing part i. (User-RS Trust ↑)

• A user who works while listening to ambient music may have left Autoplay ON in
order to not get distracted by trying to find new pieces of music. That user will
most likely get angry though, if while working all of a sudden listens to some death
metal song. (User-RS Trust ↓)

• A user listening to some band, tries to remember a specific song title by that band,
will feel extremely excited if he discovers that specific song at his recommendation
list. (User-RS Trust ↑)

• The recommender suggesting a song or clip related to what the user is listen-
ing/watching which the user didn’t know at all. The user eager to explore new
content watches it and enjoys his new discovery. (User-RS Trust ↑)

It becomes obvious that there is a silent relationship of trust between the RS and
the User. A trustworthy RS will manage to gain the user’s trust and thus achieve a
very high click-through rate. However, it is important that any algorithm that alters
recommendations (e.g., to favor cached content) maintains this trust relation

1.1.3 Cache and Recommendation Co-Design

In an Internet that is becoming increasingly entertainment-oriented, our proposal is to
connect these two seemingly unrelated entities in order to achieve the win-win event we
mentioned above. Traditionally, the CPs such as Netflix or YouTube trusted their content
delivery to the users on CDN operators (in the wired setup). However recently Netflix
started operating its own CDN, known as Open Connect [17] and has started partnering
with ISPs around the globe in order to use their resources and offer the highest possible
streaming experience to its users. We envision a system such as Open Connect which
extends to the wireless edge. Therefore we expect the CPs (such as Netflix in that case)
to be responsible for this joint (caching and recommendation) system architecture. In
this way we have

4

Chapter 1. Introduction

• No issues of privacy (which would be a problem if the MNO was involved in this)

• No issues of feasibility, i.e., no issues of HTTPS tunneling.

Of course one might ask “What is the incentive for the CP to reduce backhaul traffic?”
and the clear answer to that is “it will be paying for it, as it will probably be renting it’s
own end-to-end network slice”.

This real life example shows that multimedia giants such as Netflix already decide
both what content to cache where and what content to recommend to its subscribers.
Interestingly, measurements from [18] indicate that the user engagement (willingness
to click on recommended items) is strongly correlated with the Quality of Experience
(QoE) the user is receiving. However, this can be interpreted differently. It hints that in
order to develop a relationship of trust between the user and the RS, the RS will need to
consider also the network state when deciding in the recommendation list.

However, we have not specified what we mean by co-design. The cooperation of the
two entities allows freedom for brainstorming and invites the research community to
explore wild ideas. We distinguish the wide Caching and Recommendation Problem into
three distinct categories which we specify below.

• Cache-Aware Recommendations: In that problem, we do not focus on what
contents to place where inside the network. Our attention is on how to increase the
request rate of the already cached contents through the recommendation mechanism.
More generally, given some state of the network (routing costs, location of the
content, delivery, duration etc), the goal is to come up with recommendation policies
that minimize the access cost. An obvious tradeoff of this problem is that the RS
objective is to balance the access cost while maintaining a trustworthy relationship
with the user.

• Recommendation-Aware Caching: In this discipline, the recommendation
aspect of the problem is considered a known and given quantity. The caching
decisions should be cautiously chosen after a thorough investigation of the RS
policy. As an example, if some content i is less popular than some content j, but i
is of the same category with many other popular files, it perhaps should be favored
over j, as it could achieve better hit rate in the long run.

• Joint Design: In this approach, content placement and content recommendation
are decided jointly. It is the final and a very challenging variation of the problem
which is based on the following observation: “recommendations shape the popularity,
Caching tries to exploit popularity, but Recommendations are designed to help
caching”. Abstractly, the two entities form a very interesting circle that can
potentially lead to significant overall performance.

The main goal of the current thesis is to deal mostly with the first problem, i.e.,
the Network Friendly Recommendations (NFR). One of the main challenges found in
this work, is that we do not assume the Independent Reference Model (IRM) for the
user requests. We depart from this assumption and we aim to model and optimize the

5

Chapter 1. Introduction

recommendation policies under the sequential content consumption regime. At the last
part of this thesis, we will present an interesting use case of the Recommendation-Aware
Caching Problem.

1.2 Related Work

1.2.1 Mobile Edge Caching.

Deploying small cells (SCs) over the existing macro-cell networks infrastructure, has
been extensively studied and is considered a promising solution that could handle the
existing and predicted massive data demands [19, 20, 21]. However, this densification
of the cellular network will undoubtedly impose heavier load to the backhaul network.
Taking advantage of the skewness in traffic demand, it has been suggested that caching
popular content at the “edge” of the network, at SCs [22], user devices [23, 24, 25],
or vehicles [26, 27] can significantly relieve the backhaul. The work in [6], focuses on
learning time-varying popularities at wireless access caching and the authors propose an
architecture which combines global learning and local caches with small population in
order to improve the latency of accessing content. In [28], the authors developed a generic
time-varying setup where a caching agent makes sequential fetch-cache decisions based
on dynamic prices and user requests. They cast the problem as a Dynamic Program
(DP), and also solve its online version using Reinforcement Learning (RL) techniques.

Moreover, in [29], the problem of caching is cast in the framework of online optimiza-
tion. Then for the case where the request model is unknown, the authors derive dynamic
minimum regret caching policies, which minimize the losses with respect to the best static
policies in hindsight. Regarding the MNOs and CPs cooperation, an analytical business
model was proposed in [30] where the CPs lease cache memory to MNOs in order to
place their content; importantly the authors after investigating the possible policies that
can be followed, they conclude that the cooperation of the two parties can be rewarding
for both. This study strengthens our case, as CPs, e.g., YouTube, once able to have their
own cache memory at the edge, they would be able to control both what to cache and
what to recommend.

However, our work proposes a complementary approach for increasing the caching
efficiency. We modify the recommendation algorithm to steer the users towards the
cached content, when this is possible and satisfies the quality of user experience. This can
bring further gains in cache hit ratio, on top of existing caching algorithms/architectures.

1.2.2 Caching and Recommendations

The interplay between recommendation systems and caching has been only recently
considered in the literature, e.g., for peer-to-peer networks [31], CDNs [32, 33], or
mobile/cellular networks [34, 35, 36, 37]. The works in [33, 35, 36, 34] consider the
promotion/recommendation of contents towards maximizing the probability of hitting a
local cache.

Leveraging the high influence of YouTube recommendations to users, the authors

6

Chapter 1. Introduction

of [33] propose a reordering method for the related list of videos and despite its simplicity,
this method was shown to improve the efficiency of CDNs. [35] considers the joint problem
of caching and recommendations, and proposes a heuristic algorithm that initially places
contents in a cache (based on content relations) and then recommends contents to users
(based on cached contents). At the selection of the recommendations, [35] considers a
single request per user, whereas our work considers a sequential content consumption
model, which is closer to user behavior in services such as YouTube, Netflix, Spotify, etc.

Similarly to [35], in [36], a single access user is considered. The caching policy in [36]
is based on machine learning techniques, the users’ behavior is estimated through the
users’ interaction with the recommendations and this knowledge is being exploited for
the next SC cache updates.

Moreover, [34] studies the problem of recommendation-aware caching. Assuming
a content provider/service that is able to offer an alternative content (at any given
request), [34] proposes near-optimal approximation algorithms for content placement in
mobile networks with single-cell and multi-cell (e.g., similarly to [22]) for such scenarios.
In [38], the authors consider the joint problem by taking into account the user position
preferences for the recommendation list; they then decompose the problem in the two
main variables (that is caching and recommendations), and develop an algorithm to find
the caching and recommendation policies in an alternating fashion.

In [39], the authors consider the scenario where the users are explicitly informed
by the SC on whether the requested file is currently cached or not. They regard this
interaction as an implicit recommendation but in the sense “high streaming quality
content recommendation”. The content request probabilities are assumed to be unknown,
so the authors resort to Q-Learning techniques in order to learn the request distribution
and after having that, they then optimize the cache policy. Another interesting dimension
of the problem is introduced in [40]: the social network. Most CPs applications have
currently integrated some sort of social network between the users and according to the
proposed model, the content demand is shaped by popularity, recommendations and the
social diffusion.

In addition, according to the work presented in [41], the RS should take into account
that they have to serve the users under certain bandwidth constraints. The authors’
objective is to gain in terms of bandwidth and user satisfaction; to this end they formulated
optimization problems which prove to be hard and thus they opt for lower complexity
greedy algorithms that come with performance guarantees. In [42], the authors present
a first of its kind formulation of recommendations in the wireless setup as a contextual
bandit problem, which they call contextual broadcast bandit. In doing so, they propose
an epoch-based algorithm for its solution and show the regret bound of their algorithm.
Interestingly, they conclude that the user preferences learning speed is proportional to
the square of available bandwidth.

Finally, a very recent work done in [43] resembles to ours in the sense that the authors
design a recommeder which aims to maximize the user engagement, i.e., keep the user in
the system as much as possible, in the regime of long sessions. They start by defining the
RS actions as the recommendation batches and then proceed to a decomposition of the
frequency of the batches to object frequencies, which is very similar to the interpretation

7

Chapter 1. Introduction

we use throughout this thesis.

1.3 Contributions and Thesis Outline

In this section we present an outline of the thesis, along with the list of the main
contributions divided by chapter. Throughout the thesis, we mostly focus on the NFR
problem for long user sessions. To this end, Chapters 2, 3, 4 are dedicated to this topic.
In these chapters, we modeled realistic user request patterns and formulated optimization
problems that ultimately aim to maximize the hit rate of the local cache under specific
system design constraints. Finally in Chapter 5, we depart from the NFR and focus on
the problem of maximizing the SCs’ total expected hit rate on a femto cache network.
There, we assumed that the users are willing to accept the most relevant content in the
case where their requested content is not found in the cache. More specifically and by
chapter we have.

Chapter 2:

1.3.1 Limitations of Existing Works

The topic, although quite new, already had a few publications. In the existing works
connecting connecting caching and recommendations, there were no prior studies that
considered the sequential nature of the users request process. Essentially when users
log in to an application such as YouTube or Spotify, they do not just request for one
content, but rather a sequence of contents. Apart from the consideration, there were
also no studies where the cost optimization was formally presented as an optimization
problem under the dependent requests regime.

1.3.2 Novelties

1. We propose a model for stochastic, recommendation-driven sequential user re-
quests, that better fits real users behavior in a number of popular applications (e.g.
YouTube, Vimeo, personalized radio).

2. We then formulate the optimization problem of maximizing the cache hit rate
performance, while explicitly constraining the average quality of recommendations
we offer to the user.

3. We use a customized ADMM algorithm on the nonconvex problem to get a subop-
timal solution.

1.3.3 Technical Summary

More specifically, we model the contents as states in a Markov Chain and assume that
the user transition probabilities can be affected by the recommendation variables. The
recommendation variable in our case is the probability with which a content j appears
on the recommendation screen after viewing content i. Note that the contents are

8

Chapter 1. Introduction

underlyingly connected through a relations graph which expresses which contents are
similar to what contents. According to our model, the user can either click uniformly one
of the contents in his recommendation list, or do a random jump to any of the contents
in the library. Each content is essentially associated with some access cost. Thus the
fundamental tradeoff is caused by the potentially very similar but high access cost (or
vice versa) of two contents. In particular, as we are interested in long user sessions,
we approximate the very long user session by an infinite length (in terms of consumed
contents) session, more specifically we want to maximize the long term percentage of time
the user spends in the subset of cached contents. The optimization problem is shown
to have a nonconvex objective function, while having a feasible set of solutions which is
convex, thus resulting to an overall nonconvex problem. After a variable manipulation, we
remove the nonconvexity from the objective and place it on the constraints set; we do so
by introducing a set of new variables and the equal number of quadratic equalities (which
are of course nonconvex). Importantly, what this buys us is a nice formulation which fits
the widely used Alternating Direction Method of Multipliers (ADMM) framework.

In its standard form (and in ours), ADMM performs two exact minimization steps
before doing a dual ascent step over the Lagrange Multipliers. We give a full algorithm
where the inner minimization steps were implemented through projected gradient methods.
Importantly though, we have to highlight that since the outer ADMM algorithm is
performed over a general noncovex equality constraint and not on a linear one, this
method comes with no theoretical performance guarantees. We perform a thorough data
analysis and use three real life datasets over which the proposed algorithm is tested.
Essentially, in this study our main objective is to measure how well our method fares
against low-complexity but myopic alternatives. The simulation results show that our
proposed method heavily outperforms a myopic approach, which by default is unable to
capture the lengthy nature of the user request pattern. Finally we show some results
regarding the improvement of our algorithms in terms of runtime when we used the
customized first order methods instead of the CVXPY solver, which of course is a generic
convex solver. The results of this chapter can be found in [44] and [45].

Chapter 3:

1.3.4 Limitations of Existing Works

Our previous chapter had two major drawbacks. For one, the algorithm we suggested
was essentially a heuristic solution with no optimality guarantees. Then secondly, we
assumed that our user when presented with a set of N contents, he clicks uniformly to
any one of them. That is obviously an unrealistic assumption as most users essentially
seem express some preferences on recommendations that appear for example in the top
positions of recommendation list etc.

1.3.5 Novelties

1. Most importantly, in that chapter we present a change of variables through which
we managed to transform our initial nonconvex problem to an LP. In doing so, we

9

Chapter 1. Introduction

can now guarantee that the performance of our solution is the globally optimal.

2. We formulated the NFR of long sessions where the user is clicking on the recom-
mendations based on which positions they are placed on the screen. While this is a
generalization of our previous model, the LP transformation works here as well.

1.3.6 Technical Summary

We associate each position i of the recommendation list to some probability vi to be
selected by the user. What is more, we assume again that user requests have the
markovian property (memory of size one). To this end we formulate the objective of
maximizing the hit rate in a long session where the RS has some statistics over the user
preferences as an Absorbing Markov Chain.

Before attempting to solve that newly established problem, we make a small rewind
and go back to the basic nonconvex optimization problem we formulated at the Chapter
2 and show the technical steps needed in order to transform it to an LP and guarantee
the much desired optimality of the solution.

We then proceed in formulating the optimization problem that maximizes the cache
hit rate (by assigning the appropriate cache costs to all contents) for long viewing sessions
in the case where the user is clicking on the recommendation with some preferences
according to their position. We now explicitly constrain not just the average quality
the user is viewing, but the quality per position, i.e., we weigh positions that are more
likely to be clicked as “more responsible” to suggest highly related contents compared to
the less likely ones. Importantly, in that problem we can no longer optimize over some
K ×K matrix, but rather on an N -dimensional K ×K matrix.

Like the previous Chapter, we decided to test our results over some real life datasets.
However, in this work, our main focus departed from the performance gains of the
proposed method compared to greedy/myopic policies, since the result of our LP problem
is guaranteed to be the optimal. As a consequence, our primary goal was to investigate the
gains of the position-preference-aware scheme with the agnostic one when both consider
long sessions. We compared the two in terms of (1): the randomness (Hv) and (2): the
size of the recommendation batch (N). Essentially, when the CP has some statistics
regarding the position preference of the users, placing the contents randomly could prove
to be detrimental in some cases. In practice, the random placement can probably lead to
some good/useful recommendations to “go to waste” as they could be in positions the
user ignores.

Chapter 4:

1.3.7 Limitations of Existing Works

In the literature of caching and recommendation co-design (and in our previous works),
none of the studies attempted to model the user clickthrough probability, i.e., his
willingness to click on recommended content, as a function of how good (to be determined)
the policy is. Secondly, although the LP formulation can be solved using very good

10

Chapter 1. Introduction

optimization toolboxes (such as CPLEX), the variable size is proportional to the square of
the library size. Essentially if we deal with a catalog of 4K contents, we need to compute
1.6M variables, and even these very good solvers start becoming quite slow.

1.3.8 Novelties

1. Casting the NFR of long sessions as an MDP and the use of Dynamic Programming
(DP), essentially breaks down the problem in many easier subproblems. This gave
us the flexibility to explore more realistic versions of the problem where the user
could evaluate if the recommender offered good sequences of contents or not.

2. The algorithmic structure of the DP solution, gave a fertile ground and revealed
some “weaknesses” of the problem that we could capitalize. The DP gave us easier
subproblems, where we could easily spot what tricks would cause a significant
speed-up. In doing so, we were able to decrease the runtime of the same problem
by a dramatic amount and reach practical problem sizes in reasonable runtimes.

1.3.9 Technical Summary

In this third and final pursue of the NFR problem, we investigated the topic under the
perspective of Markov Decision Processes (MDP). To this end, we initiated our study by
formulating the NFR as an Infinite Horizon MDP with discounts (IHMDPD), where in
our setting the role of discount is essentially played by the average length over the user
session (measured in contents). More specifically, the user session length L is modeled as a
Geometric random variable (rv) of mean L̄ = 1

1−λ . In Chapter 2, in order to approximate
the long user session we assumed that the “very long” is “infinitely long”, whereas the
casting of the problem as IHMDPD relaxes that hard “infinite” assumption and allows
us to solve the problem for some generic user statistics λ. We formulate a more general
version of the NFR that aims in the cumulative network cost minimization in sessions of
random length. We view the control variables of the problem using two interpretations;
first one is the actions which is essentially the N -tuples of recommendations the RS
is suggesting the user, and interestingly, the second one is the content frequency of
appearance, which coincides with our formulation of the previous chapters.

Moreover, the MDP offers a framework which allows us to capture a variety of user
behaviors through different stochastic models. In contrast to the convex optimization
approach we took on the previous two chapters, the Bellman Equations of Optimality,
essentially breaks down the initial problem into a series of many but much easier sub-
problems (Dynamic Programming approach). Therefore, this framework allowed us to
experiment with different and importantly more realistic user behaviors. As opposed to
the previous chapters, we removed the hard constraint from the constraint set and instead
of assuming some fixed click-through rate on the recommendations, we modeled this
quantity as a function of how high the quality of the recommendations is. Furthermore,
the MDP formulation offers two important advantages: (1): it is not an off the shelf
commercial optimization solver, thus the programmer has full knowledge of the algorithm
implementation details, be it Value Iteration (ViT) or Policy Iteration (PiT), which means

11

Chapter 1. Introduction

that the data structures used can be customized according to the problem needs in an
easier way, (2): it offers ε-optimality guarantees, which is in theory very important, but in
practice can mean even more, as tuning how optimal you want your solution to be, allows
more flexibility in terms of runtime, and finally (3): the Bellman Equations, reveal the
structural properties of the optimal solution; understanding and using these properties
could ultimately lead to extremely fast heuristic algorithms which are near-optimal.

In the results section of this chapter, we focus on two classes of results. A main
contribution is the incorporation of the quality of the policy to the click-through rate.
Essentially, when removing the recommendation quality constraint, we allow the dataset to
decide how much quality to offer for each content. Importantly, we modeled the same user
behavior as in Chapter 2 and observed that the algorithms of the MDP toolbox heavily
outperform customized ADMM and our generic LP formulation solution implemented
in CPLEX in terms of runtime. Results of this work can be found in the soon to be
submitted work in [46].

Chapter 5:

1.3.10 Limitations of Existing Works

In the literature, the caching decisions (what content to place where) used to be only
an allocation problem that mostly depended on the known (or estimated) statistics for
the content probability masses. However as the user requests are heavily affected by the
recommendation system suggestions (especially in the case of multimedia content), the
existing designs lose the opportunity to take advantage of this fact and further improve
the network performance by increasing the local caches hit rates.

1.3.11 Novelties

1. We introduce the novel concept/metric which we call Soft Cache Hits (SCH).
According to that approach, the user may request a content, but could be equally
happy to receive different contents that are of very similar characteristics. We
propose two use cases that are quite practical and could very well be real life
examples.

2. For the two use cases we model, we analyze the corresponding (discrete) optimization
problem and show that it has submodular objective with matroid constraints
in which case a simple greedy algorithm comes with a maximum guaranteed
suboptimality gap. The latter suggests that we can significantly increase the
problem size to practical ranges and compute our solution in reasonable time while
being controllably suboptimal.

1.3.12 Technical Summary

We introduce the Soft Cache Hits (SCH) and consider a very different perspective from
the previous chapters. Our aim is to model and optimize a recommendation-aware caching
policy. To this end, we base our work on the seminal paper [22] and we further enhance

12

Chapter 1. Introduction

it with extra capabilities. More specifically, we consider the case where the user requests
some content from the library K and if the content is not stored locally, a cache aware
plugin notifies the user about the forthcoming poor quality of the requested video and
suggests the user with a list of alternative but related contents that can be streamed in
High Definition (HD). The user is able to accept some content from the recommendation
batch or reject all of it. The latter use case is modeled in the single cache and the
femtocache framework. Furthermore, we consider a more aggressive case (in a femtocache
network), where the user is asking for a content and the MNO has some agreement with
the user (e.g., a low cost quota) and is able to deliver him the most related content that
is currently locally available without being given a permission by the user.

We model both these problems as a caching allocation problem under the umbrella
of discrete optimization, and to this end we rigorously show that both of them are
NP-Hard. For that reason, it is vital to resort to suboptimal heuristic algorithms. Thus
subsequently, we prove that all the problem objectives are submodular, monotone, and
have a matroid constraint, thus ensuring that a greedy O(K2M2) placement has a
guaranteed suboptimality of (1− 1

e)OPT .

13

Chapter 1. Introduction

14

Chapter 2

The Long Session Problem

2.1 Introduction

The State-of-the-Art in the interplay of caching and recommendations up to that point
only considered the case IRM traffic. That is users simply generated traffic (requests)
based on some fixed pmf over the content library. Studying the problem under this
assumption is essentially like completely ignoring the effects of the sequential content
requests and the dependencies between them. In practice, users typically consume more
than contents in sequence. In the case of YouTube, a user may choose a topic such as
“How to?” which might be related to daily hacks, cooking, music etc and then watch (or
just listen) many more videos from that category. Then it is likely the user feels a bit
bored, and chooses a new topic.

We depart from this unrealistic assumption and consider a Markovian user who
requests multiple items out of a finite library of size. Our objective is to fine-tune the
recommender system in order to balance the tradeoff between the following two objectives
in a multiple items session.

• Nudge the user towards low-cost content.

• Do so while maintaining the user satisfaction in high levels.

More specifically, when a user is currently viewing some content i, that content has
some other files ∈ K which are related to it in some extent or totally irrelevant. In
general,

1. Global feature, contents are either cached or uncached, this has to do with the
network state, and

2. Local feature, conditioned on the content, contents are either related to some
video i or unrelated.

According to our assumptions, if we suggest the user an unrelated content, this cannot
contribute to the user satisfaction. Essentially, when we are at content i and need to come
up with content suggestions, the catalogue K can be roughly split into four categories,
i.e., contents that are

15

Chapter 2. The Long Session Problem

1. Cached AND Related.

2. Cached AND Unrelated.

3. Uncached AND Related.

4. Uncached AND Unrelated.

This is an extreme case which will allow us to demonstrate the necessity of policies
with vision that consider the subsequent content requests and not just the next one. It
becomes evident that for a myopic approach, the last group of contents is totally useless
as it can neither contribute to cost reduction nor to user satisfaction. However, if one
considers the case where the user has some fixed click-through on the recommended items
and she is watching 4, 5 or more videos in sequence, it is quite likely that maybe some
item from Group 4 can lead the user to a content where all its neighbors belong to Group
1. This myopically is a lossy event, but in the long run it is much more profitable (for
the user and the network). In the next section, we will present a concrete example where
recommending contents from Group 4 is indeed optimal for the multi-content case.

2.2 Problem Definition

Content Traffic. We consider a content catalogue K of cardinality K, corresponding to
a specific application (e.g. YouTube). A user can request a content from this catalogue
either by asking directly for the specific content (e.g., in a search bar) or by following a
recommendation of the provider. In practice, users spend on average a long time using
such applications, e.g., viewing several related videos (e.g., 40 min. at YouTube [47]), or
listening to personalized radio while travelling.

Recommendation System. Recommendation systems have been a prolific area of
research in the past years, and often combine content features, user preferences, and
context with one or more sophisticated methods to predict user-item scores, such as
collaborative filtering [10], matrix factorization [11], deep neural networks [12], etc. We
will assume for simplicity that the baseline recommender system (RS) for applications
where the user consumes multiple contents works as follows:

(i) The RS calculates a similarity score uij between every content i, j ∈ K, based on
some state-of-the-art method; this defines a similarity matrix U ∈ RK×K . Without loss
of generality, let uij ∈ [0, 1], where we normalize values so that uij = 0 denotes unrelated
contents and uij → 1 “very related contents”. W.l.o.g. we set uii = 0,∀i ∈ K for all
contents. Note also that this U might differ per user.

(ii) After a user has just watched content i, the RS recommends the N contents
with the highest uij value [15, 12]. N is usually a small number (e.g. values of 3 − 5
are typical for the default YouTube mobile app) or sometimes N = 1, as in the case of
personalized radio (Spotify, last.fm) or “AutoPlay” feature in YouTube where the next
content is simply sent to the user automatically by the recommender.

Caching Cost. We assume that fetching content i is associated with a cost ci ∈ R, which
is known to the content provider. This cost might correspond to the delay experienced

16

Chapter 2. The Long Session Problem

by the user, the added load in the backhaul network, or even monetary cost (e.g. for
an Over-The-Top content provider leasing the infrastructure). It can also be used to
capture different caching topologies. For example, to simply maximize the cache hit
rate, we could set ci = 0 for cached content, and ci = 1 for non-cached. For hierarchical
caching [48, 4], the cost increases if the content is cached deeper inside the network. Since
we work on the static setup, we assume that the cost of the contents remains constant
regardless of recommendation policy.

Finally, as mentioned earlier, the specific wireless setup is relatively orthogonal to our
approach and beyond the scope of this work. However, as a simple example, consider the
well-known femto-caching setup [22]. The proposed algorithm there would first decide
what will be cached at each base station. Then, xi would have a low value for all content
that the user in question can fetch from some BS in range (possibly dependent on the
SINR of the BS, as well [22]), and a high value otherwise.

User Request Model. Based on the above setup, we assume the following content
request model.

Definition 1 (User Request Model). After a user has consumed a content i, then

• (recommended request) with probability α the user picks one of the N recommended
contents with equal probability 1

N .

• (direct request) with probability 1− α it ignores the recommender, and picks any
content j from the catalogue with probability pj, where pj ∈ [0, 1] and

∑K
j=1 pj = 1.

pj above represents an underlying (long-term) popularity of content j, over the entire
content catalogue. For short, we denote the vector p0 = [p1, . . . , pK]T . Note that the
above model can easily generalized to consider different probabilities to follow different
recommended contents (e.g. based on their ranking on the recommended list). Note
also the assumption that a is fixed: for instance, for applications where the user cannot
evaluate the content quality before she actually consumes the content, this assumption is
realistic, at least in the “short term”. In the remainder of the paper, we assume that if the
recommendation quality is above a threshold, then the user’s trust in the recommender
(i.e. the value of α) remains fixed. We plan to explore scenarios where α changes at every
step, as a function of recommendation quality, in future work.

Recommendation Control. Our goal is to modify the user’s choices through the
“recommended request” part above, by appropriately selecting the N recommended
items. Specifically, let an indicator variable rij denote whether content j is in the list
of N recommended contents, after the user has watched content i. If rij ∈ {0, 1}, the
problem would be combinatorial. We can relax this assumption by letting rij ∈ [0, 1],
and

∑
j zij = N, ∀i, rij can be interpreted now as a probability. For example, if r13 = 0.5,

then content 3 will be recommended half the times after the user consumes content 1.
Now, if we assume that the user is Markovian, i.e., she clicks on some content only based
on the item she currently views and further assume that the user clicks uniformly among
the N suggested items the transition probability between contents i→ j can be written
as

17

Chapter 2. The Long Session Problem

Pi→ j = α · rij
N

+ (1− α) · pj , (2.1)

Putting all the transition probabilities together forms a stochastic matrix as

P = α · R
N

+ (1− α) ·P0, (2.2)

where P0 = 1 · pT0 is a rank-1 matrix (P0 ∈ RK×K), equal to the outer product
of a vector with K unit values and the direct request vector p0. The above model of
content requests, and the corresponding Markov Chain, is reminiscent of the well-known
“PageRank model” [49], where a web surfer either visits an arbitrary webpage i (with
a probability pi) or is directed to a webpage j through a link from a webpage i (with
probability pij).

Table 5.1 summarizes some important notation.

Table 2.1 – Important Notation

K Content catalogue (of cardinality K)

uij Similarity score for content pair {i, j}
N Number of recommended contents after a viewing

ci Cost for fetching content i

α Prob. the user requests a recommended content

pj Average a priori popularity of content j

p0 A priori popularity distribution of contents, ∈ RK
rij Prob. the RS recommends content i after viewing j

π Stationary distribution of contents, ∈ RK
C Set of cached content (of cardinality C)

Scenarios Captured by the Setup The above setup can represent the following
wireless use case. The user communicates directly with some local caches where some
popular content is currently stored and a central server which includes everything all the
library K. Let us focus on user 2 for a moment, and let us assume that based on past
statistics he MNO knows that the user 2 during the next day he will be connected to
two local caches (as he might be living for example in a place where both caches have
can transmit data to him). Suppose now we have library of K = 5 files and the MNO
has decided to cache contents #1,#2 at the cache 1, and #1,#3 to the cache 2 for the
forthcoming day. From the user point of view and depending on proximity, the contents
have the following costs c = [min{c11, c21}, c12, c23, cS4 , cS5]; the former reads as: “content #1
has the minimum cost depending on the cache delivery cost, content #2 has the cost of
local cache 1, #3 has the cost of local cache 2, and contents #4,#5 the cost from the
central server”. Thus c encodes the network state for user 2. Having said that, the CP
then modifies its recommendation policy for user 2 (and respectively for the other users)
as

• Massively improve the streaming experience of its users

18

Chapter 2. The Long Session Problem

Figure 2.1 – Depiction of the wireless setup

• Might even be incentivized to this modification after agreements with MNOs.

2.3 Optimal vs Myopic: An Example

To motivate why it is important to look for policies with vision we will introduce a very
simple (and temporary) problem setup which will show the obvious benefits of why it is
important to solve a harder problem than the low-complexity myopic solutions.

Simple Myopic Policies. Here we list some practical and quite intuitive policies. These
policies can either favor low network cost contents and/or contents that are useful for
the user satisfaction only in the next request.

1. Top-N (π1): Suggest the N files that are most related to i. In the case of ties for
the values uij , recommend the lowest cost. Favors: User satisfaction.

2. LowestCost-N (π2): Suggest the N least cost contents. In the case of ties for
the cost cj , recommend the highest uij . Favors: Low cost contents.

3. δ-mixed (π3): Assign δ % of your budget to the least cost items and the remaining
to the most related. If any of the least cost items was in the set of most similar,
then simply assign the remaining budget to least cost. Favors: Both.

Remark 1. Myopic policies that favor both low cost and user satisfaction can be expressed
in terms of δ-mixed. Essentially, δ acts like a knob, for δ → 1, the policy is LowestCost-N ,
while for δ → 0, the policy becomes Top-N .

19

Chapter 2. The Long Session Problem

U =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 (2.3)

For simplicity, assume that the user only clicks on contents from the recommendation
batch. We will infer the policies in terms of the rij values, and then compute the
average quality per content i and the average long term cost they achieve. For that
reason C̄ =

∑4
i=1 πici = (1− π1) · C (due to the cost assignment on the contents) and

Q̄i =
∑4

i=1 rij · uij , where πi expresses the long term percentage of time the user spends
in content i. Suppose the case where the RS is constrained to maintain Q̄i ≥ q for
i = 1, 2, 3, 4.

Evaluate Top-N . We have π1 = U and hence the average cost of policy following π1 is
C̄π1 = 0.75 · C, since π1 = 0.25 and Q̄i = 1.0 ∀ i.
Evaluate LowestCost-N . The policy is as follows

π2 =


0 1− 2ε ε ε
1 0 0 0
1 0 0 0
1 0 0 0

 (2.4)

In order to ensure that the user is not trapped on states #1 and #2, we split an
ε probability to suggest any of the contents #3 and #4 when we are at content #1.
However, the average quality per in the states #3,#4 is zero and in the case where
the specifications of the system dictate Q̄i ≥ q for some q ∈ [0, 1], this policy becomes
infeasible.

It is easy to see that the above two policies are quite rigid; none of them jointly
considers the cost and the user satisfaction.

Evaluate q-Mixed. That policy can combine both dimensions but does so in a short-
sighted way. Thus in our example, it could either recommend cached or related items.
Thus, for content #1, the only gain the RS can get is the user satisfaction as u12 = 1,
while for the rest of the contents the RS can split its budget optimally in the myopic
sense to the user satisfaction or the cached content as follows

π3 =


0 1 0 0

1− q 0 q 0
1− q 0 0 q

1 0 0 0

 (2.5)

For that policy we have an average quality of Q̄ = [1, q, q, 1]T and an average cost
computed as

20

Chapter 2. The Long Session Problem

C̄(q, C) = C · (1

q3 + q2 + 2
− 1)

Evaluate Optimal. This policy is able to lay over paths of contents that are more
rewarding in the long run while preserving Q̄i ≥ q ∀ i. The policy is as follows

π4 =


0 q 0 1− q

1− q 0 q 0
1− q 0 0 q

1 0 0 0

 (2.6)

This policy achieves Q̄i = q ∀ i and the average cost

C̄(q, C) = C · (1

q2 + q + 2
− 1)

Observation. In terms of average cost, if we calculate the difference of the last two
policies.

∆(q, C) = C · (1

q2 + q + 2
− 1

q3 + q2 + 2
) (2.7)

thus it is linear on the cost C, which means that it can grow unbounded. Right below
we can see average cost of the two policies as a function of q for C = 1.

It is really important to notice that the optimal policy does something unintuitive
which is to recommend with some probability a content which neither cached nor related.
Essentially this toy example shows why myopic policies can fail under the long session
regime. We refer the reader to another interesting example that can be found in .1.

2.4 Modeling and Problem Formulation

Given the above setup, our general goal in this paper is to reduce the total cost of serving
user requests by choosing matrix R, while maintaining a required recommendation quality.

Consider a user that starts a session by requesting a content i ∈ K with probability
p0(i) (i.e., we assume her initial choice is not affected by the recommender), and then
proceeds to request a sequence of contents according to the Markov chain P of Eq.(2.2).
Assume that the user requests M contents in sequence. Then the associated access cost
would be given by

1

M

M∑
m=1

p0
T ·Pm · c, (2.8)

21

Chapter 2. The Long Session Problem

0 0.5 1

q

0.5

0.55

0.6

0.65

0.7

0.75

A
v
er
a
g
e
C
o
st

Suboptimality Gap

Mixed

Optimal

Figure 2.2 – Suboptimality gap for C = 1

22

Chapter 2. The Long Session Problem

where c = [c1, ..., cK]T is the vector of the costs per content.

The expected cost of the request #1 is
∑1

m=1 p0
T ·Pm · c = p0

T ·P1 · c, the expected
cost of the request #2 is

∑2
m=1 p0

T ·Pm · c and so on until M . To find the average cost
we would need to normalize with the number of requests M .

However, M is a random variable, and the various powers of transition matrix P,
which contains the control variable Y , would greatly complicate the problem. However,
the above Markov chain is strongly connected and ergodic under very mild assumptions
for p0. It thus has a stationary distribution π = [π1, ..., πK]T , which is also equal to the
long-term percentage of total requests for content i. Consequently, for M large enough
we can approximate the average cost per request with

πT · c (2.9)

where π can be calculated from the following lemma.

Lemma 1. The stationary distribution π is given by

πT = (1− α) · p0
T · (I− α · R

N
)−1 (2.10)

where I the K ×K identity matrix.

Proof. The stationary distribution above can be derived through the standard stationary
equality [50]

πT = α · πT · R
N

+ (1− α) · p0
T , (2.11)

by observing that matrix (I− α · RN) has strictly positive eigenvalues (in measure).
See also [51], for more details.

We are therefore ready to formulate cache-friendly recommendations as an optimization
problem.

OP 1 (Cache-Friendly Recommendations).

minimize
R

p0
T · (I− α · R

N
)−1 · c, (2.12a)

subject to 0 ≤ rij ≤ 1, ∀ i and j ∈ K. (2.12b)

K∑
j=1

rij = N, ∀i ∈ K (2.12c)

rii = 0, ∀ i ∈ K (2.12d)

K∑
j=1

rij · uij ≥ qi, ∀i ∈ K (2.12e)

23

Chapter 2. The Long Session Problem

Objective. The objective is to minimize the expected cost to access any content, and
follows directly from 2.9 and Lemma 1. Note that we have dropped the constant (1− α)
from 2.10, as it does not affect the optimal solution.

Control Variables. The variables rij (K2 in total), deciding what is recommended
after each content i, constitute the control variables.

Constraints. The first two constraints make sure that rij forms a stochastic transition
matrix that can be translated to N recommendations per item i. Specifically, the
“box” constraints of 2.12b ensures that all entries are probabilities. Together with 2.12c
these ensure that exactly N contents are recommended for every i (see also Section 4.2,
“Recommendation Control”). 2.12d simply ensures that the same content cannot be
recommended when it was just consumed.

Quality Constraint. 2.12e ensures that that the “quality” of recommended contents for
each i is above a desired threshold. Observe that, without this constraint, the optimal
solution to the above problem is trivial, namely to always recommend the same N
contents j with the minimum cost cj . However, these contents will probably be unrelated
(i.e. uij → 0) essentially “breaking” the recommender. Hence, this constraint forces
variables rij to select high uij values to ensure the recommender keeps doing its primary
job, namely finding related contents. Note that, if there are at least N strongly related
contents for each i (i.e., uij = 1), then the maximum value for qi is 1. W.l.o.g., in the
remainder we will assume the same quality constraint for all i (qi = q).

The remaining quantities are constants, and inputs to the problem. While some of
them might still vary over time (e.g., uij), we assume this occurs at a larger time scale,
compared to our problem.

Unfortunately, the objective function (2.12a) is non-convex, unless R is positive
semidefinite and symmetric. In that case, the problem could be cast into an SDP (Semi-
Definite Program) using Schur’s complement [52]. However, forcing R to be symmetric
in our problem leads to trivial solutions, as every symmetric Markov chain has a uniform
invariant measure. What is more, the inverse in the objective further complicates solving
this problem, as the gradient of this expression is rather complex.

2.5 An Algorithm

Given that 1 is non-convex, there are no polynomial-time algorithms that can guarantee
to converge to the optimal solution. This leaves us with two options for solving the
problem: to apply (i) an exponential-time “global” optimization algorithm (e.g., Branch-
and-Bound), or (ii) a heuristic algorithm for an approximate solution. The former is
infeasible for all practical scenarios, due to the large problem size (K2 control variables).
Therefore, we will consider two heuristic approaches: in 2.5.1 we consider a “myopic”
algorithm, essentially a greedy approach that solves a simpler objective than 1; this
algorithm will be our baseline, as it resembles some recent state-of-the-art [53]); in 2.5.2,
we propose a more sophisticated algorithm, inspired from ADMM type of schemes [54].

24

Chapter 2. The Long Session Problem

2.5.1 Myopic Algorithm

The non-convexity of 1 is due to the expression of the stationary distribution π that
appears in the objective function. As mentioned, the stationary distribution captures
the long-term behavior of a system where users sequentially consume many contents. To
simplify the objective, one could consider a coarse approximation where the recommen-
dation impact is there, but the algorithm “greedily” optimizes the access cost only for the
next content access. In other words, it is as if a user initially requests a content i, then
requests another content j (recommended or not), and then leaves the system. In this
case, the objective becomes

(p0
T ·P) · c, (2.13)

where the first term of 2.8 is dropped (because it is independent of the control variables),
and we keep only the second term. This gives rise to the following optimization problem.

OP 2 (Myopic/Single-Step Cache-Friendly Recommendations).

minimize
R

p0
T · (α · R

N
+ (1− α) ·P0) · c, (2.14a)

subject to 0 ≤ rij ≤ 1, ∀ i and j ∈ K. (2.14b)

K∑
j=1

rij = N, ∀i ∈ K (2.14c)

rii = 0, ∀ i ∈ K (2.14d)

K∑
j=1

rij · uij ≥ qi, ∀i ∈ K (2.14e)

In the above problem, the constraints remain intact as the OP 1. However, now the
objective is linear in R. This is an Linear Program (LP) with affine and box constraints,
which can be solved efficiently in polynomial time, using e.g. interior-point methods [52].

Remark. The single-step approach can be interpreted as a projection of the recent work
of [53] to our framework. Specifically, the authors solve a similar “single-step” problem,
jointly optimizing the caching and recommendation policy. Their problem consists of
a two stage algorithm, in the case where the contents are of different size, a knapsack
problem is solved for the caching decisions, or else in the case of equisized items they
simply the highest popularity contents and then they deal with the recommendation
problem. Omitting the caching decisions of [53], for the recommendations the authors
solve a similar problem to OP 2. We should note that their take on the recommendation
part refers to a “YouTube Home Page” type of recommendations unlike us, where we
place our focus on the related video recommendations list.

2.5.2 Cache-Aware Recommendations for Sequential content access
(CARS)

The above “myopic” approach does not exploit the full structure of the Markov chain P .
For example, assume there are two contents A and B that are both cached and both have

25

Chapter 2. The Long Session Problem

high similarity with a content currently consumed, but B has slightly higher similarity.
The Myopic scheme will choose to recommend B. However, assume that A is similar to
many contents that happen to be cached, while B does not. This suggests that, if B
is recommended, then in the next step there will be very few good options (hence the
algorithm’s name): the myopic algorithm will either have to recommend cached contents
with low quality or high quality contents which lead to cache misses. To be able to foresee
such situations and take the right decisions, we need to go back to the objective of 1.

To circumvent the problem of having the inverse of the control matrix in the objective,
we formulate an equivalent optimization problem by introducing the stationary vector π
as an explicit (“auxiliary”) control variable.

OP 3 (Cache-Friendly Recommendations: Equivalent Problem).

minimize
π,R

πT · c, (2.15a)

subject to 0 ≤ rij ≤ 1, ∀ i and j ∈ K. (2.15b)

K∑
j=1

rij = 1, ∀i ∈ K (2.15c)

rii = 0, ∀ i ∈ K (2.15d)

K∑
j=1

rij · uij ≥ qi, ∀i ∈ K (2.15e)

πT = πT · (α · R
N

+ (1− α) · p0
T) (2.15f)

K∑
j=1

π(j) = 1 (2.15g)

πj ≥ 0, ∀ j ∈ K. (2.15h)

OP 3 enforces three additional constraints. Eq. 2.15g and Eq. 2.15h simply ensure
that π is a probability distribution. However Eq. 2.15f is an important constraint that
ensures that the two problems are equivalent, by forcing π to be a stationary distribution
related to the transition matrix P = α · RN + (1− α) ·P0. It is easy to see that the two
problems have the same set of optimal solutions.

The objective function is now linear in the control variables π. However, constraint
2.15f is a quadratic equality constraint, and thus the problem remains non-convex.
Nevertheless, observe that the problem is now bi-convex in the variables R and π.
Bi-convex problems can often be efficiently tackled with Alternating Convex Search
(ACS) methods, that iteratively solve the convex sub-problems for each set of control
variables. Unfortunately, such approaches fail here, as the Y subproblem is simply a
feasibility problem (R does not appear in the objective), and ACS would not converge
(our implementation confirms this observation). What is more, having the quadratic
equality constraint as a hard constraint does not facilitate such an iterative solution.

26

Chapter 2. The Long Session Problem

Instead, we propose to use a Lagrangian relaxation for that constraint, moving it
to the objective. To ensure the strong convexity of the new objective, we form the
Augmented Lagrangian [54]. Let us first define the function g(π,R) as

g(π,R) = πT − πT · (α · R
N
− (1− α) ·P0) (2.16)

so that the constraints of 2.15f can be written as

g(π,R) = 0 (2.17)

The augmented Lagrangian is then given by:

Lρ(π,R) = πT · c + g(π,R) · λ+
ρ

2
· (||g(π,R)||2)2 (2.18)

where λ is the column vector of length K of the Lagrangian multipliers (one multiplier
per quadratic equality), ρ a positive constant scalar, and || · ||2 the euclidean norm. This
objective is still subject to the remaining constraints of OP 3, all of which are now affine.
What is more, the problem remains bi-convex in the control variables R and π. We can
thus apply an ADMM-like method, where we iteratively solve the convex subproblems
with respect to R and π, but now with the above augmented objective, so that when
g(π,R) diverges a lot from 0, the subproblem solutions in the inner loop are penalized.
We also update the Lagrangian multipliers λi at each iteration. Our detailed algorithm
is described in Algorithm 1.

Algorithm 1 CARS (Cache-Aware Recommendations for Sequential content access)

Input : Acc1, Acc2,maxIter,N,U, q, c, α,p0, ρ, λ0,R0

1: i← 1
2: COST0 ←∞
3: V ← True
4: while V do
5: πi = argmin

π∈C
{Lρ(π,Ri−1)}

6: Ri = argmin
R∈D

{Lρ(πi,Y)}

7: λ← λ+ (ρ2) · c(πi,Ri)

8: COSTi ← (1− α) · pT
0 · (IK×K − α ·

Ri
N)−1 · c

9: ε1 ← (|g(πi,Ri)|2)2
10: ε2 ← |COSTi − COSTi−1|
11: V = ((ε1 > Acc1) ∧ (ε2 > Acc2)) ∨ (i ≤ maxIter)
12: i← i+ 1
13: end while
14: j ← argmax

`=1,...,i−1
{COST`}

15: return Rj

Algorithm 1 receives as input the system parameters N,U, q, c, α,p0, and the desired
accuracy levels and initialization parameters Acc1, Acc2,maxIter, ρ, λ0, R0. It initializes

27

Chapter 2. The Long Session Problem

the objective (COST0) to infinity and starts an iteration for solving the convex subprob-
lems (lines 4–13). In the first leg of the loop (line 5), the augmented Lagrangian Lρ(π,R)
is minimized over π, considering as constant the variables Y (equal to their prior value).
Then, considers the returned value of π from line 5 as constant and minimizes the
Lagrangian over the variables R. Both minimization sub-problems are convex and can
be efficiently solved. The solution space of the sub-problems CR and Cπ is given by
Eqs. (2.15b)–(2.15e) and Eqs.(2.15g)–(2.15h), respectively. After calculating in line 8
the long term COST we get from Ri, the status of the current iteration is computed in
the (a) primal residual of the problem (line 9) and (b) the difference of returned COST
compared to the previous step (line 10). The algorithm exits the while loop, when the
value of the primal residual and improvement in the COST are smaller than the required
accuracy, or when the maximum allowable iterations are reached (as described in line 11).

As a final note, the above problem can also be cast into a non-convex QCQP (quadrat-
ically constrained quadratic program). State-of-the-art heuristic methods for approximate
solving generic QCQP problems [55] are unfortunately of too high computational complex-
ity for problems of this size. It is worth mentioning that we transformed the problem to
a standard QCQP formulation and we applied methods based on [55] but the algorithms
were only capable of solving small instances of the problem (a few 10s of contents).

Convergence of CARS. Finally, we investigate the performance of CARS (Algorithm 1)
as a function of its computational cost, i.e., the maximum number of iterations needed.
Fig. 2.3 shows the achieved actual objective (red line, circle markers) as measured using R
in Eq. 2.12a at each iteration, and the virtual cost (gray line, triangle markers) calculated
from the current value of the auxiliary variable π as π · c, in a simulation scenario (see
details in Section 5.6). It can be seen that within 5 iterations, CARS converges to its
maximum achieved cache hit ratio. This is particularly important for cases with large
content catalogue sizes that require an online implementation of CARS. With cv we
simply denote the hot vector of size K × 1 which has 1’s in indexes of cached contents
and zero otherwise. We do so in order to show how the metric of interest converges as a
result of the equality constraint Eq.(2.15f) approaching feasibility, that is equality.

2.6 Inner ADMM Minimizers Implementation

This short section is dedicated into how the inner minimizations of the π and Y variables
carried out during the ADMM algorithm runtime. An important bottleneck of the ADMM
implementation we present in the previous section is how fast are the inner minimizers
solved. Essentially, if one finds himself against a convex optimization problem (as we do),
he can simply use a solver such as CVX [56] and solve it optimally. However, CVX is a
generic solver whose purpose is to serve as a benchmark for other solvers because of its
accuracy. Obviously, due to its generality, CVX does not scale well when the problem
dimensions become very large as it is not designed to solve specific problems, but rather
to solve any convex problem that might appear. To this end, here we attempt to dissect
these inner minimizers and come up with a customized solution for each one of them,
that are (1): accurate and (2): fast.

28

Chapter 2. The Long Session Problem

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations(k)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h
it
 r

a
ti
o

as measured from pi opt

as measured from Y opt

Figure 2.3 – Convergence of the CHR as measured by
(1): πT · cv and (2): (1− α) · pT0 · (IK×K − α ·R)−1 · cv

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Iterations(k)

0

0.05

0.1

0.15

0.2

0.25

0.3

d
is

ta
n

c
e

Figure 2.4 – Residual ||c(π,R)||22.

29

Chapter 2. The Long Session Problem

Minimizer over π

Observe that the objective of Line 2 consists of a smooth strongly convex part (this is
due to the ADMM penalty term, a key ingredient for the convergence of the algorithm),
that is

Lρ(π) = πT · c + g(π,R) +
ρ

2
||g(π,R)||22 (2.19)

and a non-smooth but convex part, the indicator IS(z). Such problems can be
efficiently tackled with proximal methods [57], with updates

πk+1 = proxt(π
k − t · ∇L(πk)) (2.20)

However, the proximal function for an indicator variable simply reduces to the pro-
jection of the variable π to the constraint set S. Projected gradient methods have
good convergence properties for strongly convex problems [57]. Nevertheless, the pro-
jection operation itself corresponds, in the general case, to solving a Least Squares (LS)
optimization problem

π? = argmin
π∈S

||π − v||22 (2.21)

Solving this LS problem explicitly (e.g., with interior-point methods) at every iteration
could end up being the bottleneck of our algorithm.

Algorithm 2 Projected Gradient Descent (over π)

Input: α, ρ, t1, c,p0,λ
i−1,Yi−1,πi−1

repeat
πk+1 = πk − t1 · ∇Lρ(πk)
πk+1 = PS(πk+1)

until Lρ(πk+1)− Lρ(πk) ≤ ε
return πk+1

Lemma 2. The Subroutine 1 finds the optimal solution for the problem in Line 2 of
ALGO-Main in O(K log(K)) steps.

Proof. The constraint set S constitutes a simplex, and the projection π∗ = PS(v) can be
done fast using the algorithm described in [58].

Minimizer over R

The minimization of Line 3 is similar to the one of Line 2 (strongly convex objective).
However the constraint set now consists of the intersection of multiple convex sets, we
call this set D. Although we do not know how to efficiently project onto an intersection

30

Chapter 2. The Long Session Problem

of sets, we do know how to project on each of these sets individually. Each of these
constraints are affine sets and halfspaces, whose projections are known operations [57].
Implementing projected gradient for this problem is harder as we are now constrained
not onto a single set, but onto an intersection of sets. The constrained minimization
of (R) is a far more challenging problem due to the additional constraints (set D). A
common practice for such problems is to employ off-the-Shelf commercial interior-point
method solvers. However, in large scale problems (≥ 1M variables and 1M constraints),
second order methods can be slow.

We could thus perform alternating projections, iteratively projecting to each constraint
till convergence. Nevertheless, this method guarantees to return a point inside the
intersection but not necessarily the projection. Instead, for our type of constraints, we
need to employ “Dykstra’s projection algorithm” [59], to obtain the projection to D.

Algorithm 3 Projected Gradient Descent (over Y)

Input: α, ρ, t2, c,p0,λ
i−1,Ri−1,πi

d← 2 ·K + 2 . (The # of sets we will project onto)
repeat

Rk+1 = Rk − t2 · ∇Lρ(Rk)
for j = 1,...,K do . (Each row independently)

p = w = z = 0
xtemp = 0
k ← 1
repeat . (Dykstra’s Projections)

x1 = PC1(xtemp + p)
p← xtemp + p + x1

x2 = PC2(x1 + w)
w← x1 + w + x2

x3 = PC3(x2 + z)
z← x2 + z + x3

x(i) = 0
Compute dev1 and dev2
xtemp = x3

until dev1 and dev2 < ε
R(i)k+1 = x3

end for
until Lρ(Rk+1)− Lρ(Rk) ≤ ε
return Rk+1

Lemma 3. The Subroutine 2 finds the optimal solution for the problem in Line 3 of
ALGO-Main efficiently.

Proof. The constraint set D constitutes an intersection of box, affine and halfspace
constraints. Dykstra’s algorithm guarantees to return the projection after the gradient
step [59]. Furthermore, our constrained set consists of convex sets whose projection

31

Chapter 2. The Long Session Problem

Table 2.2 – Comparing Customized Projected Gradient and CVX for Inner Minimizers

Cache Hit Rate (%) Execution Time (s)

Library Size Customized CVX Customized CVX

K = 20 0.8152 81.29 0.9224 6.1482

K = 50 0.8067 0.8070 5.4988 18.0016

K = 80 0.8059 0.8061 18.2915 181.0224

operations have analytical formulas, therefore can be done fast [60, 57], avoiding to solve
explicitly the LS minimization problem.

For completeness we will give here a small table of objective values and execution
times we observed. These experiments were carried out using a portable MacBook Air
with (1) RAM: 8 GB 1600 MHz DDR3 and (2) Processor: 1,6 GHz Dual-Core Intel Core
i5.

The results presented at Table 2.2 were carried out assuming the following parameters:
K varying, C = 3 (we cache the most popular contents according to p0 (zipf distribution
with parameter s = 0.2), N = 2, α = 0.8 and qi = 0.7 for all contents. As an observation
we can say that as expected, the customized inner minimizers helped as to execute the
whole ADMM loop faster than cvx, and that is mainly due to the fact that CVX runs
second order methods in the background which are inherently slower than the first order
ones.

2.7 Results

In this section, we investigate the improvements in caching performance by the proposed
cache-aware recommendation algorithm on top of a preselected caching allocation. We
perform simulations using real datasets of related contents (movies and songs), collected
from online databases. We first briefly present the datasets (5.6.1) and the simulation
setup (5.6.2), and then present simulation results in a wide range of scenarios and
parameters and discuss the main findings and implications (5.6.3)

2.7.1 Datasets

We collect two datasets that contain ratings about multimedia content. We use this
information to build similarity matrices U , which are later used in the selection of
recommendations, e.g., to satisfy a minimum recommendation quality q (as defined in
2.4).

MovieLens. We use the 100k subset from the latest Movielens movies-rating dataset
from the MovieLens website [61], containing 69162 ratings (from 0.5 to 5 stars) of 671
users for 9066 movies. To generate the matrix U of movie similarities from the raw
information of user ratings, we apply a standard collaborative filtering method [62].
Specifically, we first apply an item-to-item collaborative filtering (using 10 most similar

32

Chapter 2. The Long Session Problem

items) to predict the missing user ratings, and then use the cosine-distance (∈ [−1, 1]) of
each pair of contents based on their common ratings

sim(i, j) =

∑#users
n=1 rn(i) · rn(j)√∑#users

n=1 r2n(i) ·
√∑#users

n=1 r2n(j)

where we normalized the ratings ri, by subtracting from each rating the average rating
of that item. We build the matrix U by saturating to values above 0.6 to 1, and zero
otherwise, so that unk ∈ {0, 1}.
Last.fm. We use the subset of The Million Song Dataset from the Last.fm database [63],
containing 10k song IDs. The dataset was built based on the method “getSimilar”, and
thus it contains a K ×K matrix with the similarity scores (in [0,1]) between each pair
of songs in the dataset, which we use as the matrix U . As the Last.fm dataset is quite
sparse and we set the non zero values uij to one to make a binary U in that dataset as
well.

To facilitate simulations, we process both datasets, by removing rows and columns of
the respective U matrices with

∑
j∈K uij ≤ N (where number N = 4 is the number of

total recommendations). After the preprocessing, we ended up with a content catalogue
of size K = 1060 and K = 757 for MovieLens and Last.fm traces respectively.

2.7.2 Simulation Setup

Content Demand. The users generate 40000 requests for contents in a catalogue K;
requests are either direct with probability p0 ∼ Zipf(s) (s the exponent of the Zipf
law) for any content, or recommended with probability 1

N for each of the recommended
contents. We consider scenarios with exponent s ∈ [0.4, 0.8] and N = 4. Unless otherwise
stated, we set the default value α = 0.8, similarly to the statistics in [16].

Caching Policy. We consider a popularity based caching policy, where the C most
popular (w.r.t. p0) contents are locally cached in the base station. This policy is optimal
in a single cache network, when no recommendation system is employed.

Recommendation policy. We simulate scenarios under the following three recommen-
dation policies:

• No Recommendation: This is is also a baseline scenario, where users request contents
only based on p0 (or, equivalently a = 0).

• Myopic policy : Cache-aware recommendations using the algorithm of 2.5.1, which
optimizes recommendations assuming single-step content requests. This policy
relates to the previous works of [34, 53].

• Proposed Policy - CARS : Cache-Aware Recommendations using CARS, which
optimizes recommendations for sequential content consumption.

33

Chapter 2. The Long Session Problem

40 50 60 70 80

Quality (%)

40

60

80
C
ac
h
e
H
it
R
at
io

(%
)

CARS
Myopic
NoRec

Figure 2.5 – Cache Hit Ratio vs Quality N = 4, C/K = 5%. (MovieLens, s = 0.7)

40 50 60 70 80

Quality (%)

20

40

60

80

C
ac
h
e
H
it
R
at
io

(%
)

CARS
Myopic
NoRec

Figure 2.6 – Cache Hit Ratio vs Quality N = 4, C/K = 5%. (Last.fm, s = 0.4)

34

Chapter 2. The Long Session Problem

2.7.3 Results

We compare the three recommendation policies in scenarios with varying q (minimum
quality of recommendations - see 2.4), cache size C, probability to request a recommended
content a, and N recommended contents. For simplicity, we assume costs c = 0 for
cached contents and c = 1 for non-cached. Hence, the cost becomes equivalent to the
cache hit ratio (CHR = (1− α) · p0

T · (I− α ·Y)−1 · (1− c)), which we use as metric to
measure the achieved performance in our simulations.

Impact of Quality of Recommendations. Recommending cached contents becomes
trivial, if no quality in recommendations is required. However, the primary goal of a
content provider is to satisfy its users, which translates to high quality recommendations.
In the following, we present results that show that the proposed CARS can always achieve
a good trade-off between cache hit ratio and quality of recommendation, significantly
outperforming baseline approaches.

In Figures 2.5 and 2.6 we present the achieved cache hit ratio (y-axis) of the four rec-
ommendation policies for the MovieLens and Last.fm, datasets, respectively, in scenarios
where the recommender quality is imposed to be above a predefined threshold q (x-axis).
The first observation is that Myopic and CARS achieve their goal to increase the CHR
compared to the baseline case of NoRec. The absolute gains for both policies increases
for lower values of q, because for lower q there is more flexibility in recommendations.
For high values of q, close to 100%, less recommendations that “show the cache” are
allowed, and this leads to lower gains. However, even when the quality reaches almost
100%, the gains of CARS remain significant. In fact, the relative performance of CARS
over the Myopic increases with q, which indicates that non-Myopic policies are more
efficient when high recommendation quality is required.

Moreover, comparing Figures 2.5 and 2.6 reveals that the achievable gains depend also
on the similarity matrix U . While in Fig. 2.6 both cache-aware recommendation policies
follow a similar trend (for varying q), in Fig. 2.5 for the larger dataset of MovieLens, the
performance of CARS decreases much less compared to Myopic with q.

Impact of Caching Capacity. In Figures 2.7 and 2.8 we investigate the performance
of the recommendation policies with respect to the cache size, for a fixed value of the
recommender quality q. The proposed algorithm, outperforms significantly the other two
policies. For example, in Fig. 2.8, for C/K = 8% it achieves a 25% improvement over
the Myopic algorithm. Even in the case of the MovieLens dataset (Fig. 2.7), where the
Myopic algorithm can only marginally improve the cache hit ratio, CARS still achieves
significant gains. In total, in all scenarios we considered, the relative caching gains from
the proposed cache-aware recommendation policy (over the no-recommendation case) are
consistent and even increase with the caching size.

Impact of Sequential Content Consumption. CARS takes into account the fact
that users consume more than one content sequentially, and optimizes recommendations
based on this. On the contrary the Myopic algorithm (similarly to previous works [34], [53])
considers single content requests. Therefore, Algorithm 1 is expected to perform better
as the average number of consecutive requests by a user increases. The simulation
results in Fig. 2.9 validate this argument. We simulate a scenario of a small catalogue

35

Chapter 2. The Long Session Problem

2 2.5 3 3.5 4 4.5

C/K (%)

0

20

40

60
C
ac
h
e
H
it
R
at
io

(%
)

CARS
Myopic
NoRec

Figure 2.7 – Cache Hit Ratio vs Relative Cache size, Q = 80%, N = 4. (MovieLens, s =
0.5)

6 8 10 12

C/K (%)

20

40

60

C
ac
h
e
H
it
R
at
io

(%
)

CARS
Myopic
NoRec

Figure 2.8 – Cache Hit Ratio vs Relative Cache size, Q = 80%, N = 4. (Last.fm, s = 0.4)

36

Chapter 2. The Long Session Problem

5 10 15 20

of Accesses (n)

0

10

20

30

C
ac
h
e
H
it
R
at
io

(%
)

CARS
Myopic

Figure 2.9 – CHR vs # of Accesses, for N = 3, (synthetic scenario), q = 85%, s =
0.2, C/K = 4%

K = 100, C = 4, N = 3, s = 0.6, q = 90% and a U matrix with an R = 4 related contents
per content on average, where we vary the number of consecutive requests by each user.
It can be seen that the Myopic algorithm increases the cache hit ratio when the users
do a few consecutive requests (e.g., 3 or 4); after this point the cache hit ratio remains
constant. However, under CARS, not only the increase in the cache hit ratio is higher,
but it increases as the number of consecutive requests increase. This is a promising
message for real content services (such as YouTube, Netflix, Spotify, etc.) where users
tend to consume sequentially many contents.

Impact of Probability α. The probability α represents the frequency that a user follows
a recommendation rather than requesting for an arbitrary content (restart probability,
e.g., through the search bar in YouTube). The value of a indicates the influence of the
recommendation system to users; in the cases of YouTube and Netflix it is approximately
0.5 and 0.8 respectively [15], [16]. In Fig. 2.10 we present the performance of the two
cache-aware recommendation policies for varying values of α. The higher the value
of α, the more frequently a user follows a recommendation, and thus the higher the
gains from the cache-aware recommendation policies. However, while the gain from the
Myopic algorithm increases linearly with α, the gains from the proposed CARS increase
superlinearly. This is due to the fact that Algorithm 1 takes into account the effect of
probability α when selecting the recommendations (e.g., see the objective function of 3).

37

Chapter 2. The Long Session Problem

0.2 0.4 0.6 0.8

Probability (a)

0

10

20

30

C
ac
h
e
H
it
R
at
io

(%
)

CARS
Myopic

Figure 2.10 – CHR vs Probability α, for N = 3, (synthetic scenario), q = 90%, s =
0.6, C/K = 2.5%

38

Chapter 3

LP Transformation and the Non
Uniform Click-through Case

3.1 Introduction

In the previous Chapter we approximated the very long session with an infinite one
and showed that significant gains are possible. However we have left two key questions
unanswered.

Firstly, in our analysis we formulated a nonconvex, in fact biconvex, problem and we
applied a variant of ADMM upon it. Although that attempt seems reasonable due to the
problem structure, i.e., a set of K challenging biconvex equality constraints, and performs
very well in practice, there are some serious pitfalls in this approach. The ADMM
algorithm and its convergence for nonconvex problems remains an open question [64, 65]
and importantly when it comes to optimality guarantees even less is known. Moreover,
algorithms such as the ADMM we designed in Chapter 2, need a fine tuning in order to
work properly. Especially in our case where the inner minimizers are implemented using a
gradient descent method, extra care is needed as there are even more parameters to tune
such as step sizes etc. In this Chapter, we bypass all the aforementioned problematic
aspects of our solution, as we perform a transformation on the problem we presented
previously and establish the conditions under which the two problems are absolutely
equivalent.

Secondly, it has been shown that the users have the tendency to click on recommended
contents (or products in the case of e-commerce) according to the position they find them,
e.g., contents higher up in the recommendation list [32, 15]. However, several of the
aforementioned studies tend to ignore this aspect [44, 66, 31] in their analysis, assuming
that an equally good recommendation will be clicked equally frequently, regardless of
the position in the application GUI that it appears. The work in [35], while taking
into account the ranking of the recommendations in the modeling and their proposed
algorithm, in the simulation section they assume that the boosting of the items is equal.
So an interesting question arising then is: Does the performance of network-friendly
recommendation schemes improve, deteriorate, or remains unaffected by such position

39

Chapter 3. LP Transformation and the Non Uniform Click-through Case

preference?

3.2 Problem Setup

3.2.1 Recommendation-driven Content Consumption.

We consider a user that consumes one or more contents during a session, drawn from a
catalogue K of cardinality K. It is reported that YouTube users spend on average around
40 minutes at the service, viewing several related videos [47]. After each viewing, a user
is offered some recommended items that she might follow or not, according to the model
below.

Definition 2 (Recommendation-Driven Requests). After a user consumes a content, N
contents are recommended to her (these might differ between users).

• with probability 1−α (α ∈ [0, 1]) she ignores the recommendations, and picks a con-
tent j (e.g., through a search bar) with probability pj ∈ (0, 1), p0 = [p1, p2, ..., pK]T .

• with probability α she follows one of the N recommendations.

• each of the N recommended contents is placed in one of N possible slots/positions in
the application GUI; if she does follow recommendation, the conditional probability
to pick the item in position i is vi, where

∑
i vi = 1.

We assume the probabilities p0(j) capture long-term user behavior (beyond one
session), and possibly the impact of the baseline recommender. W.l.o.g. we also assume
p0 governs the first content accessed, when a user starts a session. This model captures a
number of everyday scenarios (e.g., watching clips on YouTube, personalized radio, etc).

The last point in the definition is a key differentiator of this work, compared to
some previous ones on the topic [44], [35], [31]. A variety of recent studies [32, 15] has
shown that the web-users have the tendency to click on contents (or products in the
case of e-commerce) according to the position they find them. For example, in the PC
interface of YouTube, they show a preference for the contents that are higher in the list
of the recommended items. Hence, the probability of picking content in position 1 (v1),
might be quite higher than the probability to pick the content in position N (vN)1. In
contrast, [44, 35, 31] explicitly or implicitly assume that vi = 1

N ,∀i.
Remark - Position Entropy : A key goal of this paper is to understand the additional

impact of position preference on the achievable gains of network-friendly recommendations.
A natural way to capture position preference is with the entropy of the probability mass
function v = [v1, v2, ..., vN], namely

Hv = H(v1, .., vN) = −
N∑
n=1

vn · log(vn). (3.1)

1In fact, a Zipf-like relation has been observed [15].

40

Chapter 3. LP Transformation and the Non Uniform Click-through Case

The original case of no position preference, corresponds to a uniformly distributed v,
which is well known to have maximum entropy. Any position preference will lead to lower
entropy, with the extreme case of a “1-hot vector” (i.e., only one vi = 1) having zero
entropy.

Content Retrieval Cost. We assume that fetching content i is associated with a
generic cost ci ∈ R, c = [c1, c2, ..., cK]T , which is known to the content provider, and
might depend on access latency, congestion overhead, or even monetary cost.

Maximizing cache hits: Can be captured by setting ci = 1 for all cached content and to
ci = 0, for non-cached content.

Hierachical caching: Can be captured by letting ci take values out of n possible ones,
corresponding to n cache layers: higher values correspond to layers farther from the
user [48, 4].

3.2.2 Baseline Recommendations

For simplicity, we assume that the baseline RS works as follows:

Definition 3 (Baseline Recommendations and Matrix U). (i) For every pair of contents
i, j ∈ K a score uij ∈ [0, 1] is calculated, using a state-of-the-art method. Note that these
scores can be personalized, and differ between users.2

(ii) After a user has just consumed content i, the RS recommends contents according to
these uij values (e.g., the N contents j with the highest uij value [15, 12].3

3.2.3 Network-friendly Recommendations.

Our goal is to depart from the baseline recommendations (Def. 3) that are based only on
U, and let them consider the access costs c as well. We define recommendation decisions
as follows.

Definition 4 (Control Variables R1, ..,RN). Let rnij ∈ [0, 1] denote the probability that
content j is recommended after a user watches content i in the position n of the list. For
the n-th position in the recommendation list, these probabilities define a matrix K ×K
recommendation matrix, which we call Rn.

Defining recommendations as probabilities provides us more flexibility, as it allows
to not always show a user the same contents (after consuming some content i). For
example, assume K = 4 total files, a user just watched item 1, and N = 2 items must
be recommended. Let the first row of the matrix R1 be r11 = [0, 1, 0, 0] and that of R2

be r21 = [0, 0, 0.5, 0.5]. In practice, this means that in position 1 the user will always see
content 2 being recommended (after consuming content 1), and the recommendation

2uij could correspond to the cosine similarity between content i and j, in a collaborative filterting
system [10], or simply take values either 1 (for a small number of related files) and 0 (for unrelated ones).
These scores might also depend on user preferences and past history of that user, as is often the case
when users are logged into the app.

3N depends on the scenario. E.g., in YouTube N = 2, .., 5 in its mobile app, and N = 20 in its website
version.

41

Chapter 3. LP Transformation and the Non Uniform Click-through Case

Figure 3.1 – Example of a Related Items List along with the respective click-through
probabilities per position.

for position 2 will half the time be for content 3 and half for content 4. In Fig.3.1, a
related video list of some video i is depicted along with the click-through probabilities
per position.

Our objective is to choose what to recommend in which position, i.e., choose R1, ..RN ,
to minimize the average content access cost. However, we still need to ensure that the
user remains generally happy with the quality of recommendations and does not abandon
the streaming session.

Recommendation Quality Constraint.

Let r
n(B)
ij denote the baseline recommendations of Def .3. We can define the recom-

mendation quality of this baseline recommender for content i, qmaxi as follows

qmaxi =

K∑
j=1

N∑
n=1

vn · r(n)(B)
ij · uij . (3.2)

This quantity will act as another figure of merit for other (network-friendly) RS.

Definition 5 (Quality of Network-Friendly Recommendations). Any other (network-
friendly) RS that differs from the baseline recommendations rBij can be assessed in terms

42

Chapter 3. LP Transformation and the Non Uniform Click-through Case

Figure 3.2 – Comparison of baseline (left) and network-friendly (right) recommenders.
Gray and white boxes denote cached and non-cached contents, respectively. Recommend-
ing after content 3 a slightly less similar content (i.e., content 4 instead of 6), leads to
lower access cost in the long term.

of its recommendation quality q ∈ [0, 1] with the constraint:

K∑
j=1

N∑
n=1

vn · rnij · uij ≥ q · qmaxi , ∀i ∈ K. (3.3)

where qmaxi is the quantity defined in Eq.(3.2).

This equation weighs each recommendation with: (a) its quality uij , and (b) the
importance of the position n it appears at, vn. Note however that this constraint is not
a restrictive choice. One could conceive a more “aggresive” recommender that removes
the weight vn from the left-hand side. In fact, our framework can handle any quality
constraint(s) that are convex in rnij .

Based on the above discussion, a network-friendly recommendation could favor at
each step contents j (i.e., give high rnij values) that have low access cost cj but also are
interesting to the user (i.e., have high uij value). However, as we show in later sections,
such a greedy approach is suboptimal, as the impact of rnij goes beyond the content j
accessed next, affecting the entire sample path of subsequent contents in that session.
The example in Fig. 3.2 depicts such a scenario: after content 3, instead of recommending
content 6 (related value u36 = 1) content 4 is recommended (u34 = 0.8), because 4 is
more related to cached contents (9 and 7) that can be recommended later (whereas 6 is
related to the non-cached contents 5 and 4).4

Remark on Recommendation Personalization. As hinted at earlier, content utili-
ties uij and recommendations rnij can be user-specific (e.g. uuij for user u), since different
users might have different access patterns that can be leveraged. Nevertheless, to avoid
notation clutter we do not use superscript u in the remainder of the paper, and will
assume that these quantities and the respective optimization algorithm is done per user.

Remark on Recommendation Quality. Cache-friendly recommendations might also
improve user QoE, in addition to network cost, a “win-win” situation. Today’s RS,
measure their performance (QoR) without taking into account where the recommended
content is stored. Assuming two contents equally interesting to the user where the one is

4The reason is that many contents j will have high enough relevance uij to the original content i, and
are thus interchangeable [15]

43

Chapter 3. LP Transformation and the Non Uniform Click-through Case

Table 3.1 – Important Notation

α Prob. the user follows recommendations

rnij Prob. to recommend j after i at position n

qmaxi Maximum baseline quality of content i

q Percentage of original quality

p0 Baseline popularity of contents

uij Similarity scores content pairs {i, j}, included in U

vn Click prob. of recommendation at the position n

ci Access cost for content i

K Content catalogue (of cardinality K)

N Number of recommendations

stored locally while the other is not ; it is obvious that the cached one could be streamed
in much better quality (e.g., HD, so higher QoS), thus leading to q > 1. Hence, more
sophisticated QoE (= QoR + QoS) metrics could combine these effects: e.g., a content’s
effective utility ûij = f(uij , cj) that increases if j is highly related to i but also if it is
locally cached (i.e., cj is low). Such a metric could be immediately integrated into our
framework, simply be replacing u with û.

Table 5.1 summarizes important notation. Vectors and matrices are denoted with
bold symbols.

3.3 Problem Formulation

Having defined the content access model, our first step towards “optimizing” the (network-
friendly) recommendations, is to better understand what we are trying to optimize. To
this end, in this section we derive the expected content access cost for a typical user
session, as a function of recommendation variables rnij . This will serve as the objective of
our problem.

Definition 6. Let S = {i1, i2, . . . , is}, in ∈ K be a sequence of contents accessed by a
user according to Def. 2 during a viewing session. Then S is a discrete-time Markov
process with transition matrix

P = α ·
N∑
n=1

vn ·Rn + (1− α) · 1 · pT0 , (3.4)

where 1 = [1, 1, ..., 1]T is a column vector of all 1s.

When the user has just consumed content i, then she might next consume content j if
all the following occur: she decides to follow a recommendation (probability α according
to Def. 2), j appears in the position n (probability rnij), and she picks the content at the
n-th position (probability vn). These probabilities are by definition independent, hence
the probability of these three events is their product, α · vn · rnij . Note that the user might

44

Chapter 3. LP Transformation and the Non Uniform Click-through Case

Figure 3.3 – Example of a multi-content session. The instant where the user requests
for some content from the seatch/text bar signifies the absorption of the Markov Chain.
Moreover the color of the contents expresses their network cost.

consume j, if she finds it in positions other than n (for example in position m) and will
then click it with vm. Moreover, the user might also consume j after i, if she ignores the
recommendations (with probability 1− α according to Def. 2) and picks content j from
the entire catalog (with probability pj). Putting all these together gives the transition

probability from i to j, Pr{i → j} = α ·
∑N

n=1 vn · rnij + (1 − α) · pj , which written in
matrix notation gives 3.4.

Lemma 4 (Content Access as Renewal-Reward). A content access sequence S =
{S1

R, S
2
R, . . .} defines a renewal process, with subsequences SR, where the user follows

recommended content, each ending with a jump outside of the recommender. The cost ci
incurred at each state is the reward.

It is easy to see that whenever a user makes a jump outside of the recommendations
(w.p. 1− α), the process renews to state p0. An example can be found in Fig. 3.3.

To derive the mean access cost, we employ Lemma 4 and the framework of Absorbing
Markov Chains (AMC) [67]: a user is in transient states while she is following recom-
mendations; and she gets absorbed as soon as a jump outside of recommendations occurs,
as shown in Fig. 3.3. Hence, during a content access sequence, recommendations affect
the user’s choices (and related costs) only during the transient states.

Lemma 5 (Recommendation-Driven Cost). The content access cost C(SR) during a
renewal cycle SR is given by

E[C(SR)] = pT0 ·G · c, (3.5)

and the expected length of such a cycle is

|SR| = pT0 ·G · 1 =
1

1− α
, (3.6)

where G =
(
I− α ·

∑N
n=1 ·Rn

)−1
is the Fundamental Matrix of an AMC with K transient

states and 1 absorbing state, corresponding to a jump outside recommendations.

Proof. Let a user start a sub-sequence by retrieving content i. The expected number
of retrievals of content j (or, number of times visiting state j) until the end of the

45

Chapter 3. LP Transformation and the Non Uniform Click-through Case

sub-sequence is given by gij , where gij is the (i-row,j-column) element of the fundamental
matrix G of the AMC [67].

The fundamental matrix is defined as follows

G =
∑∞

n=0 Qn = (I−Q)−1 (3.7)

where Q the matrix with the transition probabilities qij between the transient states
of the AMC (i, j ∈ K). Following the same arguments as in Def. 6, we get that
qij = α ·

∑N
n=1 vn · rnij , or, in a matrix format Q = α ·

∑N
n=1 vn ·Rn. Substituting this into

3.7 gives the expression for G that appears in Lemma 5. Now, the cost of retrieving a
content j is cj . Since each content j is retrieved on average gij times during a sub-sequence
that starts from i, the total cost is given by

E[C(SR) | i] =
∑

j∈K gij · cj (3.8)

The probability that a sub-sequence starts at content i is equal for all sub-sessions
and is given by pi. Thus, taking the expectation over all the possible initial states i, gives

E[C(SR)] =
∑
i∈K

E[C(SR) | i] · p0(i) =
∑
i∈K

∑
j∈K

gij · cj · p0(i) (3.9)

Expressing the above summation as the product of the vectors p0 and c, and the
matrix G, gives 3.5.

Similarly, if gij is the amount of time spent on state j before absorption, starting from
state i, then

∑
j gij must be equal to the total time spent at any state before absorption.

Weighing this with the probability p0(i) of starting at each state i, gives the expected time
to absorption, which is the expected duration of a sub-sequence E[|SR|] =

∑
i p0(i)·

∑
j gij .

Writing this in matrix notation, gives the first part of Eq.(3.6).

However, observe that the probability of absorption at any state i is equal to 1− α,
independent of i. Hence, the number of steps till absorption is a geometric random
variable with parameter 1−α, and thus the mean time (i.e., number of steps) to absorption
is 1

1−α .

The following Theorem, which gives the expected retrieval cost for a user session,
follows immediately from Lemmas 4, 5, and the Renewal-Reward theorem [50]

Theorem 1. The expected retrieval cost per content, for a user session S, given a
recommendation matrix R is

E[C(S) | R1, . . . ,RN] =
pT0 ·

(
I− α ·

∑N
n=1 vn ·Rn

)−1
· c

1
1−α

(3.10)

Note: It is important to stress again that Rn denotes the K×K recommendation matrix
of the n-th position of the position of the website/application screen, it simply serves as
a superscript and is not an exponent.

46

Chapter 3. LP Transformation and the Non Uniform Click-through Case

3.3.1 Optimization Methodology

In this part, we use the results of the previous section to formulate the problem of
minimizing the expected access cost until absorption under a set of modeling constraints.

OP 4 (Nonconvex formulation).

minimize
R1,...,RN

pT0 · (I− α ·
N∑
n=1

vn ·Rn)−1 · c (3.11a)

subject to
K∑
j=1

N∑
n=1

vn · rnij · uij ≥ q · qmaxi , ∀ i ∈ K (3.11b)

K∑
j=1

rnij = 1, ∀ i ∈ K and n = 1, ..., N (3.11c)

N∑
n=1

rnij ≤ 1, ∀ {i, j} ∈ K (3.11d)

0 ≤ rnij ≤ 1 (i 6= j), rnii = 0 ∀ i, n. (3.11e)

The constraint in Eq.(3.11b), is responsible for keeping the quality of the recom-
mendations above a pre-specified (and given) threshold. The pair of constraints in
Eqs.(3.11c,3.11e), defines a probability simplex for every row of all the Rn matrices.
Note that we also prohibit self-recommendations (rnii = 0 ∀ i and n) (see Eq.(3.11e)).
Importantly, Eq.(3.11d) is necessary in the position-aware setup, to ensure that the same
content will not be recommended in two different positions. As an example assume
that r11 = [0, 1, 0, 0] and r21 = [0, 0.2, 0.3, 0.5], in that case we clearly see that content
2 would always be shown in position 1 (after watching content 1), but 20% of those
times it would be shown in position 2 as well. Hence, Eq.(3.11d) ensures that such
decision vectors would be infeasible. Therefore, constraint Eq.(3.11d), makes sure that
each recommendation appears at most once even in the probabilistic setup. Evidently,
our feasible space consists of either linear (equalities or inequalities) or box constraints
with respect to the decision variables rnij . However, the objective is non-convex in general.

Lemma 6. The problem described in OP 4 is nonconvex.

Proof. The problem OP 4 comprises N ·K2 variables rnij , and a set of K2 · (N + 2) +K
linear (equality and inequality) constraints, thus the feasible solution space is convex.
However, assume w.l.o.g that p0 = c = w, N = 1, and v1 = 1; the objective now becomes
f(R) = wT · (I − α · R)−1 · w. Unless R is symmetric positive semi-definite (PSD),
f(R) is non-convex [52]. Forcing R to be symmetric would require additional constraints
that lead to suboptimal solutions of this problem [68]. Therefore, our objective as is, is
nonconvex and there are no exact methods that can solve it in polynomial time.

3.3.2 The Journey to Optimality

In the previous subsection we showed that OP 4 is nonconvex. However, notice that OP 4
is informally a linear combination of OP 5 (weighted by v) and thus the nonconvexity

47

Chapter 3. LP Transformation and the Non Uniform Click-through Case

result makes absolute sense. Our ultimate goal is to solve OP 4, however for the sake
of clarity of presentation, we will use a simpler version of it by assuming vi = 1

N . Then
if the position does not matter, i.e., the user selects contents randomly, it is no longer
necessary to have N recommendation matrices, and thus R1 = · · · = RN = R. We
remind the reader that essentially if we set Y = 1

N ·R we end up with our initial problem
of the previous chapter,OP 5. Along these lines the problem reduces to

OP 5 (Cache-Friendly Recommendations).

minimize
R

pT0 ·
(
I− α

N ·R
)−1 · c

1
1−α

, (3.12a)

subject to

K∑
j=1

rij · uij ≥ q · qmaxi , ∀i ∈ K, (3.12b)

K∑
j=1

rij = N, ∀i ∈ K (3.12c)

0 ≤ rij ≤ 1 (i 6= j), rii = 0. (3.12d)

We proceed by introducing K auxiliary variables zT = pT0 · (I− α
N ·R)−1, which leads

to the following equivalent problem.5

Intermediate Step (Equivalent formulation).

minimize
R∈D, z∈S

zT · c, (3.13)

subject to zT − α

N
· zT ·R = pT0 (3.14)

where D is the convex set formed by the intersection of Eqs.(3.12b)-(3.12d), and

S = {z ∈ RK : z ≥ 0,
∑
i

zi =
1

1− α
}.

The constraints S for z follow from Eq.(3.6) (Lemma 5).We have omitted the constant
(1− α) in Eq.(5).

The new objective is now convex (in fact linear) in the new variables (z,F). However,
as the set of constraints Eq.(3.14) are all quadratic equalities, the problem remains
nonconvex. The above formulation falls under the umbrella of non-convex QCQP
(Quadratically Constrained Quadratic Program), where it is common to perform a convex
relaxation of the quadratic constraints, and then solve an approximate convex problem
(e.g., SDP or Spectral relaxation, see [55] for more details). The problem can also be
seen as bi-convex in variables R and z, respectively. Alternating Direction Method

5Two problems are equivalent if the solution of the one, can be uniquely obtained through the solution
of the other [52]; introducing auxiliary variables preserves the property.

48

Chapter 3. LP Transformation and the Non Uniform Click-through Case

of Multipliers (ADMM) can be applied to such problems, iteratively solving convex
subproblems [54, 44]. Nevertheless, none of these methods provides any optimality
guarantees, and even convergence for non-convex ADMM is an open research topic [69].

Therefore, we introduce a set of new variables fij , defined as fij = zi · rij . Since
the j-th element of the vector zT · R can be written as

∑
i zi · rij , we can write now

zT ·R = 1T · F, and the new variables are z (K × 1 vector) and F (K ×K matrix).

Intermediate Step (LP formulation).

minimize
z∈S, F

zT · c, (3.15a)

subject to
K∑
j=1

fij · uij − zi · q · qmaxi ≥ 0, ∀ i ∈ K, (3.15b)

K∑
j=1

fij − zi = 0, ∀ i ∈ K (3.15c)

fij − zi ≤ 0 ∀ i, j ∈ K (3.15d)

fij ≥ 0 (i 6= j), fii = 0 (3.15e)

zj −
α

N

∑
i

fij = p0(j), ∀j ∈ K (3.15f)

Lemma 7. The change of variables fij = zi · rij, is a bijection (one-to-one mapping)
between (zi, rij) and (zi, fij) iff we have pi > 0,∀i.

Proof. This follows immediately, as we can readily obtain rij =
fij
zi

from {zi, rij}. Note
that, since zj =

∑
i fij + pj , and pi > 0,∀i (see Def. 2), this forces z > 0 and thus rij are

always uniquely defined.

Remark 2. The condition we need to establish in our case, that is pi > 0,∀ i essentially
translates to “all considered contents inside the library have a nonzero probability to be
requested by the user”.

Combining Lemma 9, along with the definition of problem in Intermediate Step
1, yields the formulation of Intermediate Step 2. The Intermediate Step 2 problem
corresponds to a Linear Program (LP), as it consists of 2K2 + 4K + 1 linear constraints.
LPs can be solved efficiently with well-established methods like simplex or interior-point,
implemented by popular solvers (e.g., CPLEX, GUROBI, etc.).

Lemma 8. Similarly to OP 5, OP 4 is also convex as it can be cast into an LP.

Proof. Can be found in Appendix .2.

This transformation leads to the following problem.

OP 6 (LP formulation).

minimize
z, F1,...,FN

cT · z, (3.16a)

49

Chapter 3. LP Transformation and the Non Uniform Click-through Case

subject to

K∑
j=1

N∑
n=1

vn · fnij · uij − zi · q · qmaxi ≥ 0, ∀ i ∈ K (3.16b)

K∑
j=1

fnij − zi = 0, ∀ i ∈ K and n = 1, .., N (3.16c)

N∑
n=1

fnij − zi ≤ 0, ∀ {i, j} ∈ K (3.16d)

fnij ≥ 0 (i 6= j), fnii = 0,∀ i, j ∈ K (3.16e)

zj − α ·
N∑
n=1

vn ·
K∑
i

fnij = p0(j), ∀j ∈ K (3.16f)

Lemma 9. The change of variables fnij = zi · rnij, is a bijection (one-to-one mapping)
between (zi, r

n
ij) and (zi, f

n
ij).

Proof. This follows immediately, as we can readily obtain rnij =
fnij
zi

from {zi, rnij}. Note
that, since zj =

∑
i f

n
ij + p0(j), and p0(i) ∈ (0, 1) ∀ i, i.e. nonzero (see Def. 2), this

forces z > 0 and thus rnij are always uniquely defined.

Corollary. OP 4 can be solved efficiently as an LP.

Proof. Equivalency due to Lemma 9.

We have therefore transformed the nonconvex OP 4 to a convex (LP) one OP 6,
and can now solve it optimally.

3.3.3 A Myopic Approach

A natural way to tackle the OP 4 is to try minimizing the cost of content retrieval in a
single-content session (i.e., only one transition in the Markov chain). This is equivalent
to minimizing the scalar quantity

pT0 · (α ·
N∑
n=1

vn ·Rn + (1− α) · 1T · p0) · c (3.17)

Ignoring the terms that do not depend on the control variables Rn, yields the following.

OP 7 (Greedy Aware Recommendations).

minimize
R1,..,RN

pT0 ·
(N∑
n=1

vn ·Rn
)
· c, (3.18)

subject to Eqs.(3.11b, 3.11c, 3.11d, 3.11e) (3.19)

50

Chapter 3. LP Transformation and the Non Uniform Click-through Case

Unlike the multi-step problem, this is already an LP, and can be solved directly without
the earlier transformation steps. This solution of OP 7 will serve in the upcoming results
section as a baseline approach, to solving the hard basis problem OP 4. Interestingly,
we consider as the baseline approach the solution of OP 7 (we will call Greedy from
now), resembles the policies proposed in [35, 33]. Although the algorithm of [35] targets
a different context, i.e., the joint caching and single access content recommendation, the
Greedy algorithm could be interpreted as applying the recommendation part of [35] for
each user, along with a continuous relaxation of the control (recommendation) variables.
In doing so, the recommendation problem is simply an LP of the type of Eq.(3.18), when
the recommendations are allowed to be probabilistic. Due to this relaxation, the greedy
algorithm is an upper bound for [35], looking at the recommendation problem only.

3.4 Results

3.4.1 Warm Up

In this section we evaluate the performance of the proposed algorithm and provide insights
regarding the behavior of the network-friendly recommendations schemes. For a realistic
evaluation, we use three collected datasets from video/audio services. Before diving into
the details, we need to state the following

• Performance metric: Cache Hit Rate (CHR), as computed by the objective of
Eq.(3.10), here we will minimize the cache miss.

• Relative Gain: Computed as
CHR(proposed)−CHR(baseline)

CHR(baseline)
· 100%.

• p0: Drawn from Zipf [5] of parameter s.

• v: Drawn from Zipf [15] of parameter β.

• α: Will vary from 0.7 to 0.8.

• c: ci = 0 for the C (cache capacity) most popular contents according to p0, and 1
to the rest.

• Solving OP 6, OP 7: carried out using IBM ILOG CPLEX in Python. We note
that since CPLEX is designed to receive LPs in the standard form, we had to
vectorize our matrices in order to bring the problem in the format min

x≥0,A·x≤b
{cT ·x}

with linear and bound constraints over the variables. Regarding OP 7, it is easy
to see that the problem’s objective Eq.(3.18) decomposes into K independent
minimization problems, of size NK each, as the variables per content i are not
coupled.

Finally note that for the simulations in all Figures, we will quote the cache-hit rate
without recommendations for reference, (i.e. storing the most popular contents that fit
in the cache C, based on p0) and, which we denote as MPH (Most Popular Hit - No

51

Chapter 3. LP Transformation and the Non Uniform Click-through Case

Recommendations). This information along with the simulation parameters are included
in Table 3.2.

3.4.2 Schemes we compare with

We refer to the proposed solution of OP 6 as Optimal.

• Greedy Aware: We consider as baseline algorithm for network-friendly recommenda-
tions Moreover and as stated in the end of 3.3.1, an important baseline for us will be
(OP 7 [35]), which is a position-aware scheme, and takes into account known statis-
tics about the user click rate with respect to the position that the recommendations
appear, but does not take into account that requests are sequential.

• CARS: algorithm [44], a position-unaware scheme for sequential content requests
proposed in, will serve as our second baseline. The CARS algorithm optimizes
(with no guarantees) the recommendations for a user performing multiple sequential
requests, but assumes that the user selects uniformly one of the recommendations
regardless of the position they appear. Note that the objective of Eq.(4.11) assumes
knowledge of v, while the algorithm of [44],

Note on CARS. In our framework, this translates to solving OP 4 for uniform v. The
algorithm will then return N identical stochastic recommendation matrices. Importantly,
whichever v we choose, the parenthesis of the Eq.(4.11) will be (I−α·(v1 ·R+..+vN ·R)) =
(I−α·R). This explains why the hit rate of CARS in the plots, remains constant regardless
of the click distribution v. this force the algorithm to return the same recommendation
matrix N times; this will then be normalized by the click probability 1

N . As it is oblivious
to v, the performance of CARS remains constant regardless of the click distribution.

3.4.3 Datasets

Here is a list of the used datasets and a brief explanation on how we collected them.

YouTube FR. (K = 1054) We used the crawling methodology of [70] and collected a
dataset from YouTube in France. We considered 11 of the most popular videos on a
given day, and did a breadth-first-search (up to depth 2) on the lists of related videos
(max 50 per video) offered by the YouTube API. We built the matrix U ∈ {0, 1} from
the collected video relations.

last.fm. (K = 757) We considered a dataset from the last.fm database [71]. We applied
the “getSimilar” method to the content IDs’ to fill the entries of the matrix U with
similarity scores in [0,1]. We then set scores above 0.1 to uij = 1 to obtain a dense U
matrix.

MovieLens. (K = 1066) We consider the Movielens movies-rating dataset [72], contain-
ing 69162 ratings (0 to 5 stars) of 671 users for 9066 movies. We apply an item-to-item
collaborative filtering (using 10 most similar items) to extract the missing user ratings,
and then use the cosine distance (∈ [−1, 1]) of each pair of contents based on their
common ratings. We set uij = 1 for contents with cosine distance larger than 0.6.

52

Chapter 3. LP Transformation and the Non Uniform Click-through Case

Table 3.2 – Parameters of the simulation

q % zipf(s) α N MPH %

MovieLens 80 0.8 0.7 2 23.26

YouTube FR 95 0.6 0.8 2 12.17

last.fm 80 0.6 0.7 3 11.74

0.75 0.8 0.85 0.9 0.95

Entropy

35

40

45

50

C
H
R

(%
)

MovieLens

Optimal-Aware
CARS

Figure 3.4 – Absolute Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - MovieLens.

3.4.4 Results

Optimal vs CARS. We initially focus on answering a basic question: Is the non-
uniformity of users’ preferences to some positions helpful or harmful for a network
friendly recommender? In Figs. 3.4, 3.5, 3.6 (see Table 3.2 for simulation parameters), we
assume behaviors of increasing entropy; starting from users that show preference on the
higher positions of the list (low entropy), to users that select uniformly recommendations
(maximum entropy). In our simulations, we have used a zipf distribution [15] over the
N positions and by decreasing its exponent, the entropy on the x-axis is increased. As
an example, in Fig. 3.4, lowest Hv corresponds to a vector of probabilities v = [0.8, 0.2]
(recall that N = 2), while the highest one on the same plot to v = [0.58, 0.42].

Observation 1. Our first observation is that the lower the entropy, the higher the
optimal result. In the extreme case where the Hv → 0 (virtually this would mean N = 1,
the user clicks deterministically), the optimal hit rate becomes maximum. This can be
validated in Fig. 3.11, where for increasing entropy the the hit rate decreases and its max
is attained for N = 1.

53

Chapter 3. LP Transformation and the Non Uniform Click-through Case

0.75 0.8 0.85 0.9 0.95

Entropy

24

26

28

30

32

34

C
H
R

(%
)

YouTube FR

Optimal-Aware
CARS

Figure 3.5 – Absolute Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - Youtube
France.

0.75 0.8 0.85 0.9 0.95

Entropy

0

5

10

15

20

25

R
el
at
iv
e
G
ai
n
(%

)

vs CARS

last.fm
YouTube FR
MovieLens

Figure 3.6 – Relative Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - All Datasets.

54

Chapter 3. LP Transformation and the Non Uniform Click-through Case

0.75 0.8 0.85 0.9 0.95

Entropy

30

35

40

45

50

55
C
H
R

(%
)

MovieLens

Optimal-Aware
Greedy-Aware

Figure 3.7 – Absolute Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - MovieLens.

0.75 0.8 0.85 0.9 0.95

Entropy

15

20

25

30

35

C
H
R

(%
)

YouTube FR

Optimal-Aware
Greedy-Aware

Figure 3.8 – Absolute Cache Hit Rate Performance Hv (C/K ≈ 1.00%) - YouTube
France.

55

Chapter 3. LP Transformation and the Non Uniform Click-through Case

0.75 0.8 0.85 0.9 0.95

Entropy

10

20

30

40

50

60

70

R
el
at
iv
e
G
ai
n
(%

)

vs Greedy-Aware

last.fm
YouTube FR
MovieLens

Figure 3.9 – Relative Cache Hit Rate Performance vs Hv (C/K ≈ 1.00%) - All Datasets.

Relative Gain Optimal vs CARS

0

0

0

0

0

0.04

0.07

0.11

0.15

0.18

0.05

0.1

0.16

0.21

0.26

0.04

0.09

0.15

0.22

0.29

0.03

0.08

0.14

0.22

0.31

1 2 3 4 5

N

0.3

0.6

0.9

1.2

1.5

β

Figure 3.10 – Relative Gain vs (N, β), for q = 80%, K = 400, C/K ≈ 1.00%, α = 0.7

56

Chapter 3. LP Transformation and the Non Uniform Click-through Case

1 2 3 4

N (# of recom/s)

15

20

25

30

35

C
H
R

(%
)

Optimal-Aware
CARS
Greedy-Aware

Figure 3.11 – Cache Hit Rate vs N (C/K ≈ 1.00%, α = 0.7)

Optimal vs Greedy. The second question we study is: How would a simpler greedy/myopic,
yet position-aware, algorithm fare against our proposed method? Fundamentally, the
Greedy algorithm solves a less constrained problem than OP 4, and is therefore a more
lightweight option in terms of execution time. However, the merits of using the proposed
optimal method are noticeable in Figs. 3.7, 3.8, 3.9 (parameters in Table 3.2). In all
three datasets, we see an impressive improvement, between 20− 60%.

Observation 2. The constant relative gain of the two aware algorithms hints that both,
as the entropy increases, seem to do the right placement in the positions. However, as
Greedy decides with a small horizon, it cannot build the correct long paths that lead to
higher gains in the following requests (clicks) of the user.

Lastly, we investigate the sensitivity of the three methods against the number of
recommendations (N).In Fig. 3.11, we present the CHR curves of all three schemes for
increasing N , where we keep constant the distribution v ∼ zipf(0.9). As expected, for
N = 1 (e.g., YouTube autoplay scenario) CARS and the proposed scheme coincide, as
there is no flexibility in having only one recommendation. However, as N increases,
CARS and Greedy decay at a much faster pace than the proposed scheme, which is more
resilient to the increase of N . This leads to the following observation.

Observation 3. For large N , CARS may offer the “correct” recommendations (cached or
related or both), but it cannot place them in the right positions, as there are now too many
available spots. In contrast, our algorithm Optimal recommends the “correct” contents,
and places the recommendations in the “correct” positions. Fig. 3.10, strengthens even
more the Observation 3; its key conclusion is that with high enough enough β (i.e. low
Hv) and more than 2 or 3 recommendations, while CARS aims to solve the multiple

57

Chapter 3. LP Transformation and the Non Uniform Click-through Case

access problem, its position preference unawareness leads to suboptimal recommendation
placement, and thus severe drop of its CHR performance compared to the Optimal.

58

Chapter 4

The Random Session Case

4.1 Introduction

In this Chapter we dive even deeper to the NFR problem. In the previous two chapters,
we formulated the problem borrowing tools from convex optimization and were able to

• Present a heuristic ADMM solution which performed quite well in practice.

• Transform the long session NFR problem to an LP with hard constraints on the
user satisfaction.

• Incorporate the position preferences of the users using a basic stochastic model and
solve this optimally as well through the LP.

As we have stressed in the beginning of this manuscript, the solution under investiga-
tion in the current thesis is essentially a software solution and as one it must be able to
run in reasonable computational time with good performance guarantees. Although LP
solvers such as ILOG CPLEX are extremely efficient and perform very well, they can
still suffer when the number of variables and constraints becomes very large. We remind
the reader that in the previous two chapters, the long session was approximated by an
asymptotically infinite length session. In the MDP formulation we resolve this issue as
we now optimize the cost for some session of average length L̄ (measured in contents). In
terms of computational efficiency, the MDP has two clear advantages, (a): by assuming
some average session length, it avoids unecessary computations and (b): through the DP
approach, it breaks down the problem in easier subproblems and thus we managed to

• Achieve improved runtimes while having ε-optimality guarantees.

More importantly, a major weakness of our previous works is that we considered
users whose clickthrough probability is fixed and independent on the quality of the
recommendation policy. However, using MDP as our main workhorse allows for some
very interesting modeling extensions along this dimension. Thus, a major result of this
work/chapter is that we could finally

59

Chapter 4. The Random Session Case

• Explore the tradeoffs of the long session NFR under users who can be reactive to the
quality they receive from the recommender. We did so by maintaining optimality
guarantees of our policies.

4.2 Problem Setup

4.2.1 User Session and Interaction with the RS

A user launches some multimedia application (such as YouTube) and requests sequentially
a random number of contents from its library K. Importantly, such applications are now
equipped with a RS which is responsible for helping the users discover new content. The
user starts off by choosing a content out of p0, which expresses the pmf of his personal
preferences over the library, and once he clicks on it, the RS proposes him N new contents
which appear on the side of the screen (YouTube). This exact suggestion process happens
every time he clicks on some content. Depending on his behavior and how he assesses
the offered contents, the user might find the recommendation batch interesting and click
on one of its contents or else use the text bar to look for a new one. He does so until
eventually he quits the application which signifies the end of the session.

Session Length. The length of each session is equal to some random integer X which
we model as a Geometric r.v parameterized by λ. This r.v is assumed to be independent
from the RS actions. During the consumption of content i, the user has three possible
actions. He might take one of the following actions

• Recommendations: Click on a content from the recommendation batch Ni, that
is related to content i.

• Search/Text Bar: Ignore the recommendations and choose some content out of
his personal preferences, i.e., from p0.

• Exit: Quit the session with prob. 1− λ.

4.2.2 Recommender Knowledge about the User

Entertainment oriented applications are becoming increasingly effective due to the massive
amount of data that is collected by interacting with users. Contents are requested,
rated/liked and accepted or rejected as part of a recommendation batch; all these
feedback measurements can only be an added to RS and its objectives.

According to the RS literature [73], user ratings can be used to infer the level
of similarity between contents, e.g. item-item similarity. To formalize the notion of
“related/similar” content for our framework, we use the following definition.

Definition 7 (Content Relations). We consider a fixed library of files K = {1, 2, . . . , K}.
For every content i there is a set of similar contents Si, along with their similarity values
uij ∈ [0, 1], which populates the set Ui. The values of Ui are not normalized per content.

60

Chapter 4. The Random Session Case

We can essentially imagine this structure as a graph of nodes/contents where the
content i has outgoing edges for the contents in Si with corresponding weights Ui. What
is more, the RS has at its disposal the aggregate measurements of user requests. This is
another valuable piece of data which gives the system a global view of content popularity
among all the users.

Definition 8 (User Preferences). We assume that the normalized popularity (requests)
of content i represents the probability of the user to request i independently of the RS
actions, e.g. through the text bar for YouTube. We encode these measurements in the
normalized vector p0(i) > 0 ∀i ∈ K. Thus p0 represents the randomized choice rule (pmf)
of the user over the library K.

Due to the sequential nature of user’s request, we assume that the user satisfaction is
measured per content. In other words, when the content ends, the recommendation list
of content i collectively amasses some content relevance.

Definition 9 (User Satisfaction). For some set of recommended items Ni that is related
to i, the user satisfaction at content i is perceived by the RS as

qi =

∑
l∈Ni

uil∑
l∈Ui(N)

uil
(4.1)

We call qmaxi the denominator of Eq.(4.1) (it is per content). Therefore, qi ∈
[qmini /qmaxi , 1] where qmini is the sum of the N lowest uij entries. The above quantities
solely depend on the entries of Ui and N .

4.2.3 Cost-Aware Recommender over Network

We assume a generic network setup, where the average user interacts with one content
provider by requesting contents in sequence.

Definition 10 (Content Cost). From the network’s point of view, each content i ∈ K
has a nonnegative network cost ci, c = [c1, . . . , cK]T associated to its delivery to the user.

The cost of delivering some content might depend on several factors such as its size
(in MB), its routing expenses, its location on the network etc. Thus when a user has a
session of M requests, his session incurs some cost on the network. Due to the impact of
RS on user request, this sequence of costs {c(t)}Mt=0 will also depend on the RS policy,
where c(t) takes values in c. Thus, our main objective is to come up with recommendation
policies π which promote low-cost contents and ultimately minimize the session’s cost.
With the letter π we denote the policy of the RS, more specifically π = [rT1 ; . . . ; rTK].
in other words π is the K ×K matrix that has the policies of all contents/states in a
concatenated way (r1 is the first row, and so on).

minimize
π

{ M∑
t=1

c(t)

}
(4.2)

61

Chapter 4. The Random Session Case

Cost Examples. Allowing ci to be a generic number, allows us to capture different
scenarios such as

1. Caching: set ci = 0/1 to cached/uncached contents respectively→ maximizes cache
hit.

2. CDN: set ci ∈ R can capture the CDN case → minimizes delivery cost.

4.2.4 Policies

Our primary focus on this work is to come up with recommendation policies for long
sessions. However, as pointed out in the previous two subsections, while our main
objective is to minimize the cost of the user’s session, the user satisfaction remains
fundamentally an important dimension of the RS. Before going any further, we must first
precisely define what we mean by policy. When the user visits file i, the RS can propose
any N -tuple of unique contents (not including i). The set of all N -tuples w form the
feasible set of actions related to content i, that is Ai. Thus for every content i, the RS
can select an action from a combinatorial space, i.e., the set Ai which consists of

(
K−1
N

)
different possible recommendation batches of size N . As an example, for K = 1000 and
N = 3 the RS has more than 165M batches at its disposal for each content.

Classes of Policies. In principle, there are two classes of policies, more specifically we
have

• Deterministic: Only one N -tuple of contents can appear. For every i, there is
one action a for which µ(a, i) = 1.

• Randomized: At least two actions have µ(a, i) > 0. This means that at every
appearance of i, we might see a different N -tuple of contents.

Definition 11 (Batches Frequencies). Each recommendation batch ω ∈ Ai is associated
with some frequency of appearance µi(w). The sum of frequencies of all the batches related
to i should sum up to 1.

Therefore, for some content i, if all w have µi(w) = 0 except for one which has
µi(w) > 0, the policy is deterministic and the RS always “plays” the same action.
Whereas if at least two µi(w) > 0 are nonzero, then the RS will propose the batches
associated to the µi(w) > 0 as frequently as dictated by µi(w). More importantly, Def.
11 prepares the ground for a different interpretation we can give to the RS actions.

Definition 12 (Object Frequencies). For every content/object j, we define its frequency
of appearance in the recommendation batches related to i as

rij =
∑
w∈Ai

µi(w) · 1{j∈w} =
∑

w∈Ai:j∈w
µi(w) (4.3)

62

Chapter 4. The Random Session Case

Where the above reads as “for all possible actions, sum how many time j is found in
the batch w of the action set Ai”. Therefore, rij represents the probability of object j to
appear in a recommendation batch of i. Naturally, it follows that for the vector ri we
have

K∑
j=1

rij =
K∑
j=1

∑
w∈Ai:j∈w

µi(w) =

∑
w∈Ai:j∈w

K∑
j=1

µi(w) = N ∀i ∈ K. (4.4)

In the deterministic case, for every content i, there are exactly N rij = 1, and the other
entries are zero. On the contrary, suppose a randomized policy for i, and the allowable
actions are Ai = {1, 2}, {1, 3} associated with frequencies [0.5, 0.5]. This translates to
ri1 = 1.0, ri2 = 0.50, ri3 = 0.50 and the remaining rij are zero.

To ease the notation for the later part of this chapter, for every content i, we have
a vector ri which includes all the content frequency for all the other contents. We also
concatenate these vectors as π = [rT1 ; ...; rTK] ∈ RK×K and refer to it as the RS policy.

4.3 Formulation

As we saw earlier, there can be many cases where a myopic policy fails to act in the
optimal way. An appropriate mathematical tool that fits our framework and fills exactly
this gap between look-ahead and myopic policies is the one of Markov Decision Problems
(MDP). In this section we will focus on formulating the minimization of long user sessions
in the expected cost sense. Along these lines, we mathematically formalize the physical
entities mentioned in 4.2 using tools from the MDP toolbox.

4.3.1 Defining the MDP

Before going into detail on what we aim to optimize, we have to establish the state space,
a basic transition model for our user and the costs of state transitions.

Markovian State Transitions. Importantly, as the recommendation policy is state
dependent and the random jump statistics remain the same independently of the content,
the next state the user visits is fully determined by the state he currently resides. Therefore
the sequence of contents viewed by the user (st)t∈N is a discrete time Markov process
with state space K. The following equation describes the state evolution in a probabilistic
manner.

P{i→ j} = αij · rij + (1−
K∑
l=1

ail · ril) · p0(j) (4.5)

Importantly, Eq.(4.5) expresses the average movement of the user as perceived by the
RS. Following our discussion from Section 4.2, it becomes clear that with each state we
associate the content costs of Def. 10.

63

Chapter 4. The Random Session Case

Lemma 10. The MDP defined by the (K,A, P, c), (state/action space, dynamics, costs) is
unichain, i.e., has only one class of states, for any policy if all αij < 1 and pi0 > 0 ∀ i ∈ K.

Proof. Under some policy π, we have a fixed state transition matrix Pπ. Note however
that since αij < 1, the random jump transition part of Eq.(4.5) is always active. In
addition, as all entries of p0 are strictly positive, the user starting from any state, may
end up in any state infinitely many times since there is a path from any state to all the
states. This concludes the statement.

4.3.2 Optimization Objective

Here we focus on formulating the optimization objective. As stated earlier, we consider
some user that consumes a random number of contents before leaving the session. We
denote the cost of requesting item s at time instant t as c(st). Thus, the total cost
induced by the requests of the user (in a randomly selected session) is

∑L
t=1 c(st). The

objective we wish to minimize is the average total cost.

Lemma 11. The average total cost starting from state s can be cast an infinite horizon
problem with discounts.

Es

(L∑
t=1

c(st)

)
= Es

(∞∑
t=1

λt−1 · c(st)
)

(4.6)

where the subscript in the expectation stands for s as the starting state.

Proof. As stated in earlier, the probability that the session length L is equal to l is
P(L = l) = (1−λ)λl−1 for values of l ∈ N+. We essentially need to find the expectation
of the sum of costs of random length. Therefore, we need to use the total expectation
law as follows.

Es

(L∑
t=1

c(st)

)
=
∞∑
l=1

P(L = l) ·Es

(l∑
t=1

c(st)

)
(4.7)

To ease the notation, we denote Es

(∑l
t=1 c(st)

)
= El. Then the RHS of Eq.(4.7)

becomes.

(1− λ)E1 + (1− λ)λE2 + (1− λ)λ2E3 + ...

= E1 − λE1 + λE2 − λ2E2 + λE3 + ...

= E1 + λ(E2 − E1) + λ2(E3 − E2) + ... (4.8)

For the difference of El+1 − El we can use linearity as the length is not random
anymore.

El+1 − El = Es

(l+1∑
t=0

c(st)

)
−Es

(l∑
t=0

c(st)

)

64

Chapter 4. The Random Session Case

= Es

(l+1∑
t=0

c(st)−
l∑

t=0

c(st)

)
= Es

(
c(st+1)

)
(4.9)

Therefore, we started from the LHS of Eq.(4.7) and were able to describe it as in Eq.(4.8).
Given these, and using the relation of Eq.(4.9), we have the LHS of Eq.(4.7) written as

Es

(L∑
t=1

c(st)

)
= Es

(
c(s1)

)
+ λEs

(
c(s2)

)
+ . . . (4.10)

Using linearity for the constant λ (to plug it back in the expectation), the last relation
coincides with the relation of Lemma 11.

Constraints. The feasible space will be shaped by the set of constraints we impose on
the policy. The policy of the RS has to obey four specifications.

• Fixed budget, suggest exactly N items.

• Guarantee a level of recommendation quality.

• rij is a probability.

• Do not recommend yourself.

Our objective is to have the minimum expected total cost from every state s possible
under the following constraints.

OP 8.

minimize
r1,..,rK

{
Es

(∞∑
t=1

λt−1c(st)

)}
(4.11)

subject to
K∑
j=1

rij = N ∀i ∈ K, (4.12)

K∑
j=1

rij · uij ≥ QMIN · qmaxi ∀i ∈ K, (4.13)

0 ≤ rij ≤ 1, ∀i 6= j ∈ K (4.14)

rii = 0, ∀i ∈ K. (4.15)

To keep a compact notation, we will denote the feasible set of policies of content i as
Ri = {rij : (4.12), (4.13), (4.14), (4.15)}.

65

Chapter 4. The Random Session Case

4.3.3 Optimality Principle

In the MDP framework, the cost of starting from a given state s is simply called v(s), the
value of the state. Our aim is to find the optimal value function v∗ = [v(1)∗, ..., v(K)∗].
Essentially OP 8 has optimal substructure and therefore the Bellman Principle is a
necessary condition that has to hold.

In general, given an MDP and a specific policy, we get in return a unique Markov
Chain whose dynamics are governed by the transition matrix Pπ. To this end, we bring
into the picture a vital quantity in the MDP framework, the value function (a vector
∈ RK) which is defined as follows

Definition 13 (Value Function). The expected total cost of starting from state s ∈ K,
with a given λ and when a specific policy π is applied, is defined as

vπλ (s) = lim
L→∞

Eπ

(L∑
t=1

λt−1c(st) | s0 = s

)
(4.16)

where the superscript π stands for some fixed policy and the s is the starting state. The
above limit exists for values of λ ∈ [0, 1) and if the costs are bounded from below. In
our case all costs are nonnegative real numbers, thus the limit exists. For the remainder
of this work we will denote this limit as vπ(s).

For a stationary policy π, the value of a certain state S is recursively related to the
values of all the states s

′ ∈ K with the following relation [74].

vπ(s) = cs + λ
∑
s′∈K

P{s→ s
′} · vπ(s

′
) (4.17)

where P{s→ s
′} is a function of the policy π and is taken directly from Eq.(4.5).

Definition 14 (Optimal Policy). A policy π∗ is called optimal if it achieves the minimum
value function, i.e. the the vector v∗ = [v∗(1), ..., v∗(K)]T . For this we have

v∗(s) ≤ vr′(s) ∀ s ∈ K and ∀ π′ ∈ R. (4.18)

Bellman Optimality Equations. It becomes evident that the quest to optimal policies
coincides with the quest of finding the optimal value function v∗. For optimality, v∗ has
to obey the following set of K equations, one per state.

v∗(i) = ci + λ min
ri∈Ri

{ K∑
j=1

Pij(ri) · v∗(j)
}
∀i ∈ K. (4.19)

where Pij(ri) is the probability defined in Eq.(4.5). Note that we use i or s to denote the
state/content interchangeably.

66

Chapter 4. The Random Session Case

In the remainder of this section we discuss two known alternatives from the rich MDP
literature [74, 75] to compute the NFR policy.

Value Iteration (VI). The VI is based on iteratively applying the Bellman optimality
operator onto an initial arbitrary v0 until some convergence criterion has been satisfied.
The algorithmic steps are described in Algorithm 4.

Algorithm 4 Gauss-Seidel VI

1: v(i) = vold(i) = 0 ∀ i ∈ K
2: repeat
3: for i ∈ K do
4: v(i)← vold(i)

5: v(i) = ci + λmin
ri∈Ri

{∑K
j=1 Pij(ri) · v(j)

}
6: end for
7: until ||v − vold||∞ < ε
8: return ri = argmin{vi} ∀i ∈ K

Lemma 12. The Gauss-Seidel VI returns the ε-value function of the NFR problem. In
fact it does so with convergence that is linear to some γ ≤ λ.

The proof of that statement can be found in [74].

Remark 3. Notice that the probability αij could be defined as any function of the policy,
i.e., αij = f(ri, uij).

The second alternative that can be used is the Policy Iteration (PI) algorithm [74].
PI consists of two basic steps

1. Policy evaluation: Given a policy π find the vπ.

2. Policy improvement: Given a vπ, sweep over the states and greedily optimize.

There is a fundamental tradeoff between the two approaches. As we saw, VI performs
value improvements until the error between consecutive state sweeps becomes arbitrarily
small. On the bright side, the inner loops do not cost much. However this means that
during the last state sweeps, the value may not have converged but the policy could
remain unchanged. On the other hand, one full iteration of PI is way more costly, as
it consists of a policy evaluation (worst case O(K3), matrix inversion) and a greedy
improvement. Yet interestingly, PI terminates when policy remains unchanged, which in
practice happens rapidly in most cases. The basic VI enjoys a number of complexity and
optimality guarantees, however there are splitting methods such as Gauss-Seidel (which
is the one we implemented) that perform much better in practice (while enjoying the
same performance guarantees).

The second approach to solving the same problem is the algorithm known as policy
iteration (PI). It is essentially a two-stage algorithm that consists of

67

Chapter 4. The Random Session Case

1. Policy evaluation: Given a policy r find the vr.

2. Policy improvement: Given a vr, sweep over the states and optimize.

The steps of the algorithm are described as follows.

Algorithm 5 PI

Input: α, λ, ε,Q%
MIN , c,U,p0 . (system parameters)

1: Converged ← False
2: Assign v0(S) = 0 ∀ S ∈ K
3: Assign r0 an arbitrary policy
4: t← 0
5: repeat
6: k ← 0
7: repeat . Policy Evaluation
8: k ← k + 1
9: for i ∈ K do

10: vk+1(i) = ci + λ

{∑K
j=1 Pij(ri) · v(j)

}
11: end for
12: until ||vk − vk−1||22 < ε
13: t← t+ 1
14: for i ∈ K do

15: rti = argminri∈Ri

{∑K
j=1 Pij(ri) · v(j)

}
16: end for
17: until Converged == (rt == rt−1)
18: R = concatenate(rt1, ...r

t
K)

19: return R

4.3.4 Versatility of look-ahead policies through λ

Interestingly, the MDP has the upside of being quite flexible on the range of problems it
can tackle. Observe that λ plays essentially the role of “predicted average length of user
session”. Existing works that focus on longer user sessions such as [44, 76], implicitly
assume an infinitely long session, which is of course unrealistic, whereas in our framework
λ can simply act as some tuning parameter that comes from measured user data. We
will investigate three cases.

Case: λ→ 0. This coincides with v(s) = Es(0
0cs1 + 01cs1 + . . .) = Es(cs1) (assuming

that 00 = 1) i.e., the user is already at some some file s0 and does exactly one more
request and the system incurs the losses cs1 . Substituting at the Bellman Equations
λ = 0 yields

v∗(i) = c(i) +��7
0

λmin
ri∈Ri

{ K∑
j=1

Pij(ri) · v∗(j)
}

(4.20)

68

Chapter 4. The Random Session Case

Essentially v∗(i) = c(i) ∀ i ∈ K. Therefore, solving the above problem using ViT,
translates to solving K independent optimization problems using v∗(i) = c(i), exactly
once (only one iteration will be needed).

Case: λ→ 1/m (m = 2, 3, . . .). This case captures a user who from past statistics, has
been measured to have m sequential requests on average after his first request.

Case: λ→ 1. For the Infinite Horizon model, the value v(s) diverges for λ = 1 as this
value of λ means we are adding infinitely many costs. However, using [Puterman Cor
8.2.5], we can find the average long term cost to be limλ→1(1− λ)vλ(s) (where λ is an
index). The latter limit exists for unichain MDPs (as in our case) and it expresses the
time-average long term cost.

In practice, since the Geo(λ) mean length is 1/(1− λ), one could use the empirical
average of the user session to find an estimate λ̂ and then the RS should solve the MDP
with this parameter value, to derive appropriate recommendations.

4.4 Quality Driven Users: Some Use Cases

Fundamentally, solving the NFR can be seen as the generalized task of recommending
batches of objects that are associated with some network cost and some user utility. The
goal is to optimally balance two competing interests, which are

1. Miss rate minimization (from the operators viewpoint)

2. User’s satisfaction (by default the goal of RS)

From the modeling/optimization’s perspective, all existing works have approached the
problem by considering cost minimization as the criterion while encompassing the user
satisfaction as an explicit constraint [44], or by controlling some distortion metric [35],
which are basically modeling approaches along the same direction.

4.4.1 User Behavior: Model 1

Given that the RS explicitly constrains its average recommendation quality to exceed some
QMIN , the user will click on any of the contents in the recommendation batch with some
fixed click-through rate α

N . Such a user can be captured by setting αij = α
N ∀i, j ∈ K.

The model implies that the user does not assess his qi (received recommendation
quality) since his click-through rate for any item j is fixed and independent of the policy
or the content similarity. The user transition is depicted below as

P{i→ j} =
α

N
· rij + (1− α) · p0(j) (4.21)

where notice that
∑K

l=1
α
N · rij = α. Thus the total average rejection rate with which

the user ignores the recommendations is some α ∈ [0, 1]. Using Eq.(4.21), the Bellman
equations become

69

Chapter 4. The Random Session Case

v∗(i) = ci + v̄ + λ
α

N
min
ri∈Ri

{ K∑
j=1

rij · v(j)∗
}
∀i ∈ K. (4.22)

where v̄ = λ(1− α)
∑K

j=1 p0(j) · v∗(j).

Lemma 13. The minimization step of Algorithm 4, has been reduced to solving an LP.

Proof. Observe in Eq.(4.22) that the objective in the minimization is linear in the variable
rij . Moreover, the solution space is convex as it is an intersection of a linear inequality, a
linear equality and bound constraints (see Eqs.(4.12 - 4.15).

Notice that solving the MDP for Model 1, returns a policy in the class of MR.

Moreover, the Bellman equations reveal some structural characteristics of the optimal
policy.

Property 1. When uij ∈ [0, 1], and QMIN = 1, the optimal policy for content i is unique
and is ri = {rij : rij = 1 if j ∈ Ui(N), rij = 0 if j /∈ Ui(N)}

Proof. For QMIN , the rhs of Eq.(4.13) becomes
∑

l∈Ui(N) uil. Assume that the optimal
policy for content i is to assign rij = 1 to contents in Ui(N − 1), rij = x > 0 to some
content j /∈ Ui(N) and rim = 1 − x to the least related item m ∈ Ui(N). Then the
constraint Eq.(4.13) reads

∑
uil

l∈Ui(N−1)

+ (1− x)uim + xuij ≥
∑

uil
l∈Ui(N−1)

+ uim

(uij − uim) · x ≥ 0 (4.23)

By definition, uim > uij and thus the inequality cannot hold if we assign a positive
budget to any j /∈ Ui(N).

Property 2. In the case where QMIN = 0, the optimal policy is to assign rij = 1 to the
N lowest cost contents excluding of course one self due to (4.15). Otherwise rij = 0.

Proof. Assume for a moment that we order the values v∗(i) in increasing order such that

v∗(1) < · · · < v∗(K). To find v∗(i) we need to solve minri∈Ri

{∑K
j=1 rij · v∗(j)

}
. We

can analytically compute v∗(i). That is because the optimal decision is to assign rij = 1
to the lowest v∗(j) (excluding v∗(i)), and there will be two cases. Case (a): If 1 ≤ i ≤ N
then the expression will be

v∗(i) = c(i) + v̄ + λ
(N∑
j=1:j 6=i

v∗(j) + v∗(N + 1)
)

(4.24)

70

Chapter 4. The Random Session Case

Table 4.1 – Summary of Models

Model 1 Model 2 Model 3

user follows recommender constant f(ri,ui) f(ri,ui)

user content selection 1/N 1/N f(ri,ui)

user leaves session λ λ λ

user satisfaction constraint α α + content selection

where in the above expression we need to make sure we exclude the self recommendation
from the evaluation. Or else case (b): i > N , the expression becomes

v∗(i) = c(i) + v̄ + λ
N∑
j=1

v∗(j) (4.25)

For the pairs though, there are three cases (1): 1 ≤ i, j ≤ N and i < j, from the sorting
we have

v∗(i)− v∗(j) < 0⇒ (c(i)− c(j)) + λ(v∗(j)− v∗(i)) < 0 (4.26)

where for the second term above, there are N − 1 terms that have cancelled out. Notice
that due to the ordering, λ(v∗(j)−v∗(i)) > 0, so it must hold that c(i)− c(j) < 0 in order
that the above expression to have a negative sign. Observe that for case (2): 1 ≤ i ≤ N
and N < j, the exact same as above will hold. Then for case (3): N < i < j we have

v∗(i)− v∗(j) < 0⇔ (4.27)

(c(i) + λ
N∑
j=1

v∗(j))−(c(j) + λ
N∑
j=1

v∗(j)) < 0 (4.28)

which immediately states that if v∗(i)− v∗(j) < 0 then c(i)− c(j) < 0. Therefore, the
optimal costs-to-go v∗(i) are ordered exactly as the immediate costs c(i), which concludes
that for content i, choosing the N lowest costs excluding content i is optimal.

4.4.2 User Behavior: Model 2

The major difference of this approach is that we incorporate the quality of the rec-
ommendations in the probability of transition. Hence, it is no longer necessary to
explicitly constrain the recommendation quality (like in Model 1), thus QMIN = 0. Two
observations on the modeling side of things can be made as a result.

1. If we fail to deliver good recommendations, the user click-through rate will be
reduced, and the network cost will go up. Thus there is no incentive to make low
cost and bad recommendations.

2. Instead of assuming an arbitrary QMIN , we allow the dataset (U , p0) to decide
how much quality is indeed the best you have to offer.

71

Chapter 4. The Random Session Case

We use αij = f(ui,ri)
N =

uT
i ·ri

qmax
i ·N ; this implies that the click-through probability depends

on the policy and how good it is, and that the contents in the recommendation batch are
clicked uniformly by the user.

Observation. The quantity
uT
i ·ri
qmax
i

depends on the object appearance frequencies rij .

Consider the case where the policy ri is randomized. Then, for consecutive realizations
of the policy, the user may view different recommendation batches, which could have a
different aggregate similarity. Hence, when in content i, the user will see in t = 1 the
batch w1 and so on, which in the limit will be equal to

lim
T→∞

1

T

T∑
t=1

∑
m∈wt

uim =
∑
w∈Ai

µi(w)
∑
m∈w

uim =

K∑
j=1

uijrij (4.29)

Therefore, the scalar quantity uTi · ri normalized by qmaxi , i.e., the average recom-
mendation quality is user’s click-through rate. Consequently, using Eq.(4.5) and αij as
defined above, the transition probability from content i to j is written as

P{i→ j} =
uTi · ri
qmaxi ·N

· rij + (1− uTi · ri
qmaxi

) · pj0 (4.30)

Remark 4. In the case of MD policies, the transition of Eq.(4.30) describes some user
who reacts to the instantaneous recommendation quality he receives. For MD policies, the
user can observe only one batch w, which is of course associated with a fixed

∑
m∈w uim.

In every iteration of VI or PI algorithm, we have to minimize the following function
g(ri).

g(ri) =
K∑
j=1

(
uTi · ri
qmaxi ·N

· rij + (1− uTi · ri
qmaxi

) · p0(j)
)
· v(j) (4.31)

Since we aim on minimizing g, we can remove additive and multiplicative constants.

g(ri) = (uTi · ri) · (
vT · ri
N

)− (uTi · ri) · (pT0 · v) =

rTi ·
1

N
ui · vT · ri − (pT0 · v) · uTi · ri (4.32)

Our optimization problem can be then cast as a QP

OP 9.

minimize
ri

{
rTi ·

1

N
ui · vT · ri − (pT0 · v) · uTi · ri

}
(4.33)

subject to ri ∈ Ri (4.34)

Lemma 14. OP 9 is a nonconvex optimization problem.

72

Chapter 4. The Random Session Case

Proof. To show convexity of a generic Quadratic Program (QP), we investigate whether
the ui · vT is positive semidefinite (PSD). Clearly as an outer product of two arbitrary
vectors ui and v, there is no guarantee about the PSD property of the matrix ui · vT
and thus the convexity of OP 9. Note that v changes in every iteration. Just to be
symmetric, we would need Q to be an outer product of a vector with itself. In our case
ui · vT is an outer product of two different nonnegative vectors, therefore ui · vT cannot
even be symmetric, and therefore the function is nonconvex.

The above lemma stands as an obstacle towards finding an optimal MR policy
(rij ∈ [0, 1]). However, if we restrict our attention to MD policies, i.e. rij ∈ {0, 1}, we
know that we can always find an optimal policy. Using standard VI algorithm, we can
enumerate all possible actions and pick the best one, i.e., the one with the minimum
objective.

A Speed-Up for the Caching Problem

We discuss a practical heuristic algorithm that solves the NFR problem for a user who
behaves according to Model 2. We propose that in each minimization step of the VI
algorithm, it is only sufficient to search for either the cached or the Ui contents and
nowhere else. This direction comes quite natural as our goal is to achieve many hits of
the cache by increasing the user’s probability to click on the content we suggest. Thus,
we only search for contents that can contribute on one of the two dimensions or both.
Along these lines we propose an approximate VI algorithm; “Approximate” in the sense
that each minimization of the VI is not carried out exactly as we do not look over all the
possible actions.

The difference in the implementation is the preprocessing we need to do before running
the VI algorithm. Earlier, if we looked for an MD policy related to content i, we would
simply enumerate all possible N -tuples that do not include i and pick the best one,
whereas now we narrow down the solution space and look only for the union of the related
and cached items.

1. (Initialization): For each i, we find the set of items SRi, the set of the strongly
related items, i.e. the ones for which we have uij > thresh. Then form the union
Fi = C ∪ SRi

2. (Line 5 of VI): To minimize, iterate over all
(|Fi|
N

)
combinations and pick the best.

Discussion on the Heuristic. Essentially, the set of cached contents C has a cardinality
which is orders of magnitude smaller than K. In addition, our focus is on contents that
are closely related to i (ones with a significant uij value, which are usually not too many).
Therefore thresh. filters out these entries (the “not very” related items) and then we

end up with a search/solution space of cardinality
(|Fi|
N

)
, which boosts dramatically the

runtime of our algorithm without loosing in performance in most cases.

Finally, note that the suboptimality of picking contents only out of the set Fi heavily
depends on the parameter λ and on the graph properties of U . To be suboptimal under

73

Chapter 4. The Random Session Case

the approximate version of VI for the caching problem, we would need a user with high
value of λ (actually λ→ 1), then it is possible that optimal actions involve contents /∈ Fi.

What should we expect? An example

Here we will try to give some intuition on how the RS policy will look like for model
2 and how much user satisfaction it will achieve for some very short session. For the
sake of discussion suppose uij ∈ {0, 1}, ci ∈ {0, 1} and p0 ∼ Uni(1,K), where Uni(1,K)
denotes the uniform distribution over the events 1, . . . ,K and K is large; the latter
implies p0(i) ≈ 0 ∀ i.

For a user who consumes always two contents in sequence; first is the one he finds
from the search bar and the second one which will come either from the recommendations
if the user satisfaction is quite large or from the search bar if the user satisfaction is quite
low. We remind the reader at this point, that for model 2 the user satisfaction is directly
the clickthrough probability (α). Suppose also that the RS suggests N = 2 contents as
an example and let us say that the user currently views content i. Then for content i, we
investigate two extreme cases:

1. There are N = 2 items that are both cached AND related.

2. There is no item that is cached AND related.

The hit probability of the next step (the one that can be influenced by the RS) is
computed as

Phit(L,M) =
L

N
· M
N

+ (1− L

N
) ·
�
�
�
��>
≈ 0∑

i∈C
p0(i) (4.35)

where L is the number of related recommended and M of the cached and recommended
contents in the recommendation batch. In the case (1): it is obvious that we should
simply recommend the two cached and related items, then we would have L = M = N ,
in which case the hit probability in the next step would be 1. In this case, the quality
satisfaction is also 1.

However in case (2), it is no longer obvious what is the best action. What should we
recommend? (a): two cached items (b): one related and one cached or (c): two related
items. Interestingly, when there is no overlap of the two categories we have N = L+M ,
which means that we can substitute in Eq.(4.35) L = N −M , and for some fixed N the
hit probability is

Phit(M) =
N −M
N

· M
N

(4.36)

which is a function of one variable and we can easily find its maximum value. In
the example we described, it is easy to see that we need to find the M that maximizes

74

Chapter 4. The Random Session Case

Phit = f(M) = M(1− 0.5M). It is easy to see that max
M

f(M) = 0.25 for M = 1. Hence

an unexpected and nontrivial conclusion is that in the extreme case where the RS has no
overlap in the cached and related items and the user is likely to go everywhere equally
likely from the text bar, it is myopically optimal to give 50-50 items, that is N

2 should
be cached (to have cache hits), and the rest should be related (in order to increase his
click-through).

4.4.3 User Behavior: Model 3

We consider a third model of a user which has a clear distinction from the previous two.
His click-through on the recommended items is no longer uniform. We assume that the
user can asses and is driven by the relevance of the objects that appear on his suggestions’
list relatively to the best possible action, i.e., the higher the uij of the content, the more

likely the user will click on the item. Using αij =
∑K

j=1 rijuij
qmax
i

· uij∑K
j=1 rijuij

=
uij
qmax
i

, the

probability of transition from content i to j is written as

P{i→ j} =
uij
qmaxi

· rij + (1−
K∑
m=1

uim
qmaxi

· rim) · p0(j) (4.37)

Essentially, the user decides to click on recommended content with
∑K

j=1 rijuij
qmax
i

and then

given the fact he decides to click on one of them, he chooses the content j with probability
uij∑K

j=1 rijuij
. However as we can see these terms cross out (for nonzero

∑K
j=1 rijuij) and

finally we arrive at Eq.(4.37). As in Model 2, the quantity 1− uT
i ·ri
qmax
i

expresses the recom-

mendation average rejection rate; whereas for ri discrete, it reduces to 1−
∑

m∈w uim∑
m∈Ui(N) uim

,

thus it expresses the actual dislike of the user towards irrelevant recommendations.

Our aim is to come up with optimal policies for the NFR problem for some user
such as the one of Model 3. In doing so, we need to better understand the optimization
problem that arises during the runtime of VI (or PI). Substituting the expression for Pij ,
Eq.(4.37) in the Bellman Equations gives rise to the following

g(ri) =

K∑
j=1

(
uij
qmaxi

rij + (1−
K∑
m=1

uim
qmaxi

rim)p0(j)

)
vj =

K∑
j=1

rijuijvj −
K∑
j=1

K∑
m=1

(
rimuim

)
pj0vj =

rTi · (ui � v)− rTi · ui · pT0 · v =

rTi · (ui � v − ui · pT0 · v) (4.38)

Thus, the optimization problem we have at hand is the following

75

Chapter 4. The Random Session Case

OP 10.

minimize
ri

{
(ui � v − ui · pT0 · v)T · ri

}
(4.39)

subject to ri ∈ Ri (4.40)

Lemma 15. OP 10 is an LP which can be solved optimally in O(K log(K))

Proof. The calculations to Eq.(4.38) reveal a linear objective. Moreover, the feasible
solution set has one linear equality Eq.(4.12), bound constraints of Eq.(4.14) and since
QMIN = 0, the constraint of Eq.(4.13) is inactive. However observe that all the weights
on the linear equality are equal to one. Hence the optimal solution is to assign the
maximum possible budget, i.e. rij = 1 to the j associated with the lowest weight at the
objective. Generalizing that, we assign rij = 1 to the N lowest weights of the constant
vector (ui � v − ui · pT0 · v). Thus OP 10 can be reduced into a sorting problem which
is known to need O(K log(K)) steps.

Corollary. The optimal MR policy is a MD policy.

4.5 Results

In this section, we primarily aim in assessing the performance of the proposed algorithms,
and in doing so, we will try to highlight key conclusions in order to gain a better
understanding of the NFR problem.

4.5.1 Metrics of Interest

Execution Time. An important aspect of the algorithms we propose is their complexity.
For that reason, we perform an experiment with which we investigate the fundamental
tradeoff between objective accuracy and execution time. These experiments were carried
out using a portable MacBook Air with (1) RAM: 8 GB 1600 MHz DDR3 and (2)
Processor: 1,6 GHz Dual-Core Intel Core i5.

Cache Hit Rate (CHR). Although our formulation allows us to quantify any generic
cost metric, in our simulations we focus on the caching case. Therefore, we assume a
library of size K and a set of contents C that are locally stored. Our framework captures
this scenario if we set the cost of content i as ci = 1− IC(i), where IC is the unit index
function of set C. In the plots however, we depict the hit ratio.

How we evaluate the CHR. Therefore, after having computed the recommendation
policy, we simulate our user (depending on his model of behavior) by generating 5000
requests (large session), and averaging the results over 5 realizations. As we have assumed
that there are different user behaviors, in each plot we will specify under which behavior
(model 1, model 2, model 3) the simulation is carried out.

Parameters and Input. In our simulations, we set C = 0.01 · K or less (C is the
number of cached items) and as a caching decision, we place in the cache the C most

76

Chapter 4. The Random Session Case

popular items according to p0. In addition, content requests from the search bar are
distributed according to a zipf distribution p0 = zipf(K, s) (K is the library size and
s the zipf exponent) which is considered as constant and known [5]. Finally, when we
evaluate the user of Model 1, we assume that the user click-through α (in Model 1 α is
the same for all contents) is equal to the QMIN we guarantee to the user.

4.5.2 What we Evaluate

For the results part, we will take into consideration four distinct approaches.

• π1: A Randomized Myopic Policy assuming the user behavior of Model 1.

• π2: A Randomized Look-Ahead Policy assuming the user behavior of Model 1.

• π3: A Deterministic Look-Ahead Policy assuming the user behavior of Model 2.

• π4: A Deterministic Look-Ahead Policy assuming the user behavior of Model 3.

Note that due to the exploding complexity of computing the optimal policy of the
Model 2 case, we approximate it by employing the sub-optimal policy π3 which searches
over the reduced solution space of only the related or cached items.

4.5.3 Traces

last.fm. (K = 757) We consider a dataset from the last.fm database [71]. We applied
the “getSimilar” method to the content IDs’ to fill the entries of the matrix U with
similarity scores in [0,1]. Then, we (a): find the largest component of the graph, then
(b): set scores above 0.1 to uij = 1 to obtain a dense binary U matrix and finally (c):
remove rows and columns with less than three related items.

YouTube (K = 2098) We also consider the YouTube dataset found in [77]. We are
mainly interested in acquiring the list of related items (i.e., the true recommendation list
as YouTube would present it) of each item. To this end, we (a): get the largest component
of the corpus and build a graph of 2098 nodes (contents) and (b): set uij = rand(0.5, 1)
if there is a link from i→ j. Note that since uij represents the prob. the user will click
to a content if offered, (b) helps to achieve a more realistic structure of graph U .

Synthetic We build binary (uij ∈ {0, 1}) and continuous (uij ∈ {0, 1}) synthetic content
relation graphs U as follows. We decide the size of the corpus K, and then choose randomly
for each content, how many related items it will have, to be a number drawn uniformly
from {0, ..., 0.1 ·K}. Then if we want uij to be continuous we set uij = rand(0.5, 1).

4.5.4 Results

Runtime-Accuracy tradeoff for π2. Initially, we investigate the tradeoff of optimality
accuracy and runtime when considering different algorithmic approaches policies for
the Model 1. Essentially, for λ → 1, that is exactly the model of Chapter 2, i.e.,
clickthrough prob. is fixed (and equal to some α) and the user clicks uniformly among

77

Chapter 4. The Random Session Case

1000 2000 3000 4000

Library Size (K)

0

500

1000

1500

2000

E
x
ec
u
ti
on

T
im

e
(s
)

uij ∈ {0, 1}

CPLEX
MDP

Figure 4.1 – Execution Time: MDP (Policy Iteration) vs CPLEX (uij ∈ {0, 1})

the N recommendations. Thus the State-of-the-Art solution for that problem would be
to solve OP 5 using the LP solver of IBM ILOG CPLEX. We then use the MDP solver
for some value of λ close to 1 and compare the actual hit rate result and the execution
times for increasing library size. When (a) uij ∈ {0, 1}, where we use the PI algorithm
with the O(·) inner minimization loops complexity and (b): uij ∈ [0, 1], where the inner
minimization loops (which are much smaller LPs) are solved through CPLEX.

Observation #1 In this simulation we are not interested in presenting the absolute
CHR values of the policies produced by CPLEX and π2. It is a given that CPLEX returns
the optimal policy for the Model 1 user, however we need to highlight the dramatic
savings in execution time of π2 in both cases (see Fig(4.1, 4.2)) which is accompanied

Table 4.2 – Accuracy in CHR performance of CPLEX and PI

CHRCPLEX − CHRPI

K ↓ Fig. 4.1 Fig. 4.2

250 0.62e-4 0.0031

500 0.49e-4 0.0027

1000 0.12e-4 0.0047

2000 0.58e-4 0.0031

4000 CPLEX crashed

78

Chapter 4. The Random Session Case

1000 2000 3000 4000

Library Size (K)

0

500

1000

1500

2000

2500
E
x
ec
u
ti
on

T
im

e
(s
)

uij ∈ [0, 1]

CPLEX
MDP

Figure 4.2 – Execution Time: MDP (Policy Iteration) vs CPLEX (uij ∈ [0, 1])

by really high accuracy of the performance. Observe that in Table 4.2, we report the
performance difference, i.e., CHRLP −CHRMDP and as we can see in both columns the
difference is negligible. This suggests that the ε-optimal π1 is in reality really close to
the absolute optimal one. Moreover, as π2 can run in reasonable time for large scenarios,
this suggests that the algorithm could be of practical use even for real time scenarios.
It is very important to highlight here, that when we execute the VI algorithm, it is not
necessary to use λ→ 1, as this can slow down the runtime of the algorithm. However
even for lower values of λ ≈ 0.8, the algorithm performs almost equally well with LP
which essentially optimizes over an actual infinitely long request session.

Observation #2 One can easily see that the runtime saving in the uij ∈ {0, 1} case
is even more impressive. That is due to the fact that the LP problem created in the
minimization step of the VI (or PI) algorithm is a “degenerate” LP, which can be solved
by direct assignment. More specifically, in the minimization step one needs to assign
full budget, that is rij = 1 to the contents with lowest v that also have uij = 1 until
the quality (user satisfaction constraint) is satisfied. Then assign the remaining budget
(recommendations) to the lowest contents (irrespectively of their uij value). This is
considerably faster than solving an LP in every iteration (even if it is a small LP).

π3 vs π2 vs π1 (Tested under Model 2 User Behavior). A question we wish to
address in this paragraph is “What quality should we offer the user at each content in
order to minimize the network cost?”, which is a highly non-trivial question. In other

79

Chapter 4. The Random Session Case

words, we ask how much quality should we give the user in order that (1): he clicks
frequently on recommended contents (the ones we have control over) and (b): he clicks
on low-cost items at the same time as frequently as possible. One could say that in a
way, we attempt to find the best operating point of QMIN (and therefore α).

Thus, for comparison purposes we increase QMIN (see Eq.(4.13)) and as a result the
user α ↑, remember we have assumed that QMIN = α, and we measure the performance in
CHR. Therefore, for π1 (myopic) and π2 (look-ahead), we find many different operating
points, and we see usually the best value is achieve close to QMIN = 1/2, which hints
that probably when at content i, the recommender does not have many related and
cached items to suggest. On the other hand, π3 finds exactly one point (see where the
red lines intersect in Fig. 4.3, 4.4), which obviously coincides with the max hit rate
(y-axis). That is somethig we should have expected as π3 is designed to solve exactly
that problem. In addition, in the x-axis we show ᾱ = 1

K

∑K
i=1

∑K
j=1

rij ·uij
qimax

which is a bit

more than 0.5 in both cases. That is the average of all the α values (one for each content)
the recommender decided. Observe that the hit rate achieved by π3 is essentially a bit
higher than the other two policies, and this due to the freedom we gave to the optimizer
to decide different values of α for every content; in contrast, for the other two policies,
the α was the same for every content and was equal to the value of QMIN .

Observation #3. What we need to understand regarding policy π3 is that by jointly
deciding the quality (for each content), along with which contents j to offer when in i,
in a way it is able to use the inherent structure of the dataset, that being the content
relation graph U and the p0. Essentially, this policy is allowed to balance the “usefulness”
of a content (how many related items it has) in combination with its popularity through
the search bar (pj0). We see that on average, from the N = 2, we have to give one good
and one low cost recommendation. This hints that for most contents i, the relevant ones,
are also not cached. As a result, the RS resorts to recommending one good content as to
keep αi high and then offers one cached content because as assumed for Model 2, the
user will click on any of the N recommended contents equally likely. Thus roughly, when
following such a policy, in half the times the RS receives a hit.

π4 vs π3 (Tested under Model 3 Behavior). We aim to present the merits of policy
π4 when applied to the most realistic user scenario, i.e., Model 3. As π4 is an ε-optimal
policy for the Model 3 behavior, we expect that it performs better than π3, however we
want to see “how much better and how much faster it actually is”. To quantify these
metrics, we present Table 4.3 where for different datasets, we see the performance and
runtime improvement offered against π3. There, it is evident that π4 can outperform
policy π3 in terms of hit rate, as π3 does not take into account that our user selects
contents according to how relevant they are individually (proportionally to uij). Then,
in terms of runtime there is an obvious gap, which is explained by the complexity of
the minimization loops of π4 and π3. In the minimization step, for π3, we need to
enumerate the objective of many actions whereas for π3 the minimization is simply a
sorting operation.

In addition, an interesting plot is the one depicted at Fig 4.5. On the x-axis we see the
possible values of αi =

∑K
j=1

rij ·uij
qimax

∈ [0, 1] for all K contents, and on the y-axis we see

80

Chapter 4. The Random Session Case

Table 4.3 – Comparing for π4 and π3

Cache Hit Rate (%) Execution Time (s)

dataset π4 π3 π4 π3

Synthetic (1K) 51.86 34.43 30.0 5464.5

lastfm 40.17 20.00 14 1136

the frequency that these α values appear (after the optimization, when they are actually
decided). For a dense dataset (with many nonzero uij entries), policy π4 indeed decides
quite high value of α (it invests a lot on related contents as to increase user satisfaction);
as we can see that 700 contents out of 1000 have an α value of ≈ 0.8 which is quite high.
However, observe that since the user model π4 has a more demanding content selection
process (user select proportionally to uij) the RS, which explains why π4 assigns more
contents with higher α value.

A Comment. As we have allowed both policies π3 and π4 to schedule/decide how much
quality should be given per content, it is useful to understand whether those policies
indeed decide high or low user satisfaction. The latter is of great interest since how these
policies behave heavily depends on the dataset (inputs). To get a better grasp on that,
suppose a very extreme scenario where the cached items have no items as related. Then
even the policies with the long vision would fail to find paths with high recommendation
quality contents that will eventually lead to high hit rates. Hence, as the policies ultimate
goal is to achieve high hit rates, the only way to achieve that would be through the search
bar. What we mean by that? If the pmf p0 is very skewed, the cached content have very
high probability to be requested by the users if they ignore the recommendations. Thus
the RS may choose to recommend irrelevant content, so the user decides to ignore it, and
finally click on contents with high p0 (which are the cached ones). However, this is a
an extreme case and we explain it in order to gain a better understanding on how this
policy behaves.

81

Chapter 4. The Random Session Case

0.2 0.4 0.6 0.8 1

QMIN

0

10

20

30

40

C
ac
h
e
H
it
R
at
e
(%

)

Synthetic (K = 1000)

π1

π2

π3

Figure 4.3 – CHR performance of π1, π2 for increasing QMIN . The optimal point CHR
and qi found by π3 is the point of intersection of the red lines - synthetic 1K

0.2 0.4 0.6 0.8 1

QMIN

0

10

20

30

40

50

C
ac
h
e
H
it
R
at
e
(%

)

YouTube (K = 2098)

π1

π2

π3

Figure 4.4 – CHR performance of π1, π2 for increasing QMIN . The optimal point CHR
and qi found by π3 is the point of intersection of the red lines - YouTube

82

Chapter 4. The Random Session Case

0 0.2 0.4 0.6 0.8 1

α

0

200

400

600

800

F
re
q
u
en
cy

Synthetic (K = 1000)

π3

π4

Figure 4.5 – Histogram of the variable αi - Synthetic 1K

83

Chapter 4. The Random Session Case

84

Chapter 5

Soft Cache Hits

5.1 Introduction

This chapter constitutes a standalone part of the thesis, in the sense that it does not add
new results on the basic long session NFR (like the previous chapters) but rather deals
with a whole different problem in the caching and recommendations interplay. One may
reasonably wonder that since the recommender has such “nudging” capabilities to favor
cached/low-cost content, the question becomes whether the caching algorithm should
also change to come up with a different/better allocation.

In this chapter, we only tackle a preliminary version of this question, in a somewhat
standalone manner. This is both due to timing (we started looking first at the caching
side of the problem) and the high complexity of the caching problem if one assumes
dynamic caching and sequential content access. Hence, this chapter is meant to serve as
a first step towards treating the joint problem of both caching and recommendation, a
topic which goes beyond the scope of this thesis. Some initial investigations into the joint
problem suggest that this problem is rather hard, with no obvious way of optimality or
approximation guarantees yet, for the more complex, markovian content access setup.
However, we managed to face some versions of the joint problem (more specifically two
use cases described in the sequel of this chapter) where the caching allocation no longer
considers only the probability mass of the contents (in the IRM sense), but also takes into
account the power of every content in the recommendation sense. In other words, the
caching decision is heavily affected by whether a content is useful when recommending
contents, i.e., if many contents have it as “a related content” then its chances of being
requested are increased, and thus a caching decision that includes it has better hit rate
performance.

IMPORTANT: Dr. Pavlos Sermpezis and Prof. Spyropoulos started working on this
problem when Pavlos was with FORTH (Greece) as a PostDoc. When I started the PhD,
they already had some preliminary results and thought enough over the problem. The
JSAC paper, after which this chapter has been structured, was led by Pavlos and not
myself. My contribution on that paper/chapter was twofold. The paper essentially has
two main optimization problems. I came up with model and proved the properties for

85

Chapter 5. Soft Cache Hits

the optimization problem described in section 5.5, and additionally I was also responsible
for part of the code that produced the results of the simulations. We include the full
work here for completeness, as in the case where I included only my theoretical part, it
would not make much sense as a reading material.

5.1.1 Background and Motivation

Mobile edge caching has been identified as one of the five most disruptive enablers for 5G
networks [78], both to reduce content access latency and to alleviate backhaul congestion.
However, the number of required storage points in future cellular networks will be orders
of magnitude more than in traditional CDNs [4] (e.g., 100s or 1000s of small cells (SCs)
corresponding to an area covered by a single CDN server today). As a result, the storage
space per local edge cache must be significantly smaller to keep costs reasonable. Even
if we considered a small subset of the entire Internet catalogue, e.g., a typical torrent
catalogue (1.5 PB) or the Netflix catalogue (3 PB), edge cache hit ratio would still be
low even with a relatively skewed popularity distribution and more than 1 TB of local
storage [6, 7].

Additional caching gains have been sought by researchers, increasing the “effective”
cache size visible to each user. This could be achieved by: (a) Coverage overlaps,
where each user is in the range of multiple cells, thus having access to the aggregate
storage capacity of these cells, as in the femto-caching framework [22, 48]. (b) Coded
caching, where collocated users overhearing the same broadcast channel may benefit
from cached content in other users’ caches [79]. (c) Delayed content access, where a
user might wait up to a TTL for her request, during which time more than one cache
(fixed [23] or mobile [24, 26, 27, 25]) can be encountered. While each of these ideas can
theoretically increase the cache hit ratio (sometimes significantly), the actual practical
gains might not suffice by themselves, e.g., due to high enough cell density required for
(a), sub-packetization complexity in (b), and imposed delays in (c).

To get around this seeming impasse, we propose to move away from trying to satisfy
every possible user request, and instead try to satisfy the user. In an Internet which is
becoming increasingly entertainment-oriented, one can make the following observations:
(a) a user’s content requests are increasingly influenced by various recommendation
systems (YouTube, Netflix, Spotify, or even Social Networks) [15]; (b) some related
contents (e.g. two recent NBA games, two funny cat clips) might have similar utility for
a user; in micro-economic terms, these are often called substitute goods; we will use the
terms alternative, related, and substitute content inter-changeably.

5.1.2 Soft Cache Hits: Idea and Implications

Based on these observations, we envision a system where “soft cache hits” can be leveraged
to improve caching performance. As one example, consider the following, for the case
of YouTube (or, any similar service). If a user requests a content, e.g., by typing on
the YouTube search bar, and the content is not available in the local cache(s), then a
local app proxy located near the cache and having knowledge of the cached contents
(e.g. a YouTube recommender code running at a Multi-access Edge Computing (MEC)

86

Chapter 5. Soft Cache Hits

server [80]), could recommend a set of related contents that are also locally available.
If the user prefers or accepts (under some incentives; see below) one of these contents,
instead of the one she initially typed/requested, a soft cache hit (SCH) occurs, and an
expensive remote access is avoided. We will use the term soft cache hit to describe such
scenarios.

Of course, appropriate incentives would be needed to nudge a user towards substitute
content. While perhaps a somewhat radical concept in today’s ecosystem, we believe there
are a number of scenarios where soft cache hits are worth considering, as they could benefit
both the user and the operator. (i) A cache-aware recommendation plugin to an existing
application could, for example, let a user know that accessing the original content X is
only possible at low quality and might be choppy, freeze, etc., due to congestion, while
related contents A,B,C, ... could be streamed at high resolution, as shown in Fig. 5.1. (ii)
Alternatively, the operator could activate this system only during predicted congestion
periods, while giving some incentives to users to accept the alternative contents during
that time (e.g., zero-rating services [81, 82]). (iii) In some cases, the operator might even
“enforce” an alternative (but related) content (see Fig. 5.2), e.g., offering low rate plans
with higher data quotas with the agreement that, during congestion, only locally cached
content can be served.

While, in the above cases, a potential unwillingness or utility loss needs to be counter-
balanced with appropriate incentives, this is not always the case. Sometimes soft cache
hits could be leveraged in a relatively seamless manner without the potential psychological
impact on user quality of experience (QoE) due to conscient content replacement1. For
example, after a user watches a video X, the recommendation system could re-order
its list of recommendations (among related contents of roughly equal similarity to X)
to favor a cache hit in the next request, without the user being aware of this change
or liking the recommended contents less. Such systems have already been considered,
and would be complementary to our proposal [33, 53]. A similar case could be made for
online radio type of apps (like lastFM, Pandora, Spotify, etc.). While a lot more can
be said about each of the above preliminary incentive ideas, and plenty more thinking
might be needed to go from these to concrete business cases, we believe these suffice to
motivate an investigation of the potential impact of soft cache hits.

While soft cache hits could provide some benefits on top of an existing caching policy,
a first key observation is that the optimal caching policy might differ, sometimes radically,
when soft cache hits are allowed. As a simple example, consider a single cache with
a tiny content catalog with contents A, B, C of popularities 3, 2, 2, respectively (e.g.
number of requests per minute). If the cache could fit only a single content, traditional
caching will choose to store the most popular content (A), leading to a cache hit ratio of
3/(3 + 2 + 2), approx. 43%. However, assume we knew that 1 out of 2 users requesting A,
would be willing to watch content C instead (e.g. because C is highly related to A, and
available locally at HD). Same for users requesting content B. Then, caching content C
would satisfy all requests for C (2), half the requests for B (0.5 · 2), and half the requests

1A user that has already chosen a content might over-value her original choice and feel unhappy to
swap it to an objectively equally interesting content. This effect is somewhat akin to the well-known
endowment effect from Behavioral Economics [83].

87

Chapter 5. Soft Cache Hits

Figure 5.1 – Mobile app example for Soft Cache Hits with related content recommendation
(that the user might not accept)

88

Chapter 5. Soft Cache Hits

Figure 5.2 – Mobile app example for Soft Cache Hits with related content delivery

89

Chapter 5. Soft Cache Hits

for A (0.5 · 3), leading to a cache hit ratio of 4.5/7, approximately 64% (an almost 50%
improvement over the standard policy). This simple example motivates the significant
potential of the approach, but also the need for a fundamental reconsideration of caching
policies, even in relatively simple networking setups. Finally, while this simple example
might tempt the reader to think that the new optimal policy is simply to (re-)rank
contents based on total hit rate each can achieve (including SCHs), and then apply
standard policies (e.g. picking the highest ranked ones), in fact we will show that the
optimal policy is a hard combinatorial (cover) problem.

5.1.3 Contributions

The main contributions of the paper are summarized as follows.

• Soft Cache Hits (SCH) concept: We introduce the novel concept of soft cache hits.
To our best knowledge, this is the first time that this idea has been applied to edge
caching for cellular networks (besides our own preliminary work [34]).

• Soft Cache Hits (SCH) model: We propose a generic model for mobile edge caching
with soft cache hits that can capture a number of interesting content substitution
scenarios (e.g. both Fig. 5.1 and Fig. 5.2) and is versatile enough to apply on top
of both non-cooperative (i.e. single cache) and cooperative caching frameworks [22],
as well as various networking assumptions.

• Analytical Investigation: We prove that the problem of optimal edge caching with
SCH is NP-hard even when considering a single cache only. This is in stark contrast
to the standard case without SCH. We then prove that, despite the increased
complexity, the generic problem of femto-caching with SCH still exhibits properties
that can be taken advantage of to derive efficient approximation algorithms with
provable performance.

• Trace-based Validation: We corroborate our SCH proposal and analytical findings
through an extended evaluation on 5 real datasets containing information about
related content, demonstrating that promising additional caching gains could be
achieved in practice.

As a final remark, it is important to stress that we do not propose to modify the
recommendation systems themselves (unlike [33, 53], for example). Instead, our focus
is on the caching policy side, using the output of a state-of-art recommendation system
for the respective content type as input to our problem (this will be further clarified in
Section 5.2). Of course, a content provider with a recommendation system can benefit
from our approach to optimize its caching policies, or even modify its recommendations
to incorporate soft cache hits. For example, upon peak hours, a content provider
can carefully “steer” recommendations to optimize the network performance and user
experience (e.g., from lower latency). Moreover, jointly optimizing both the caching and
the recommendation sides of the problem could offer additional benefits. We defer this
to future work. Overall, we believe that such a convergence between recommendation

90

Chapter 5. Soft Cache Hits

and caching systems is quite timely, given that dividing lines between Mobile Network
Operators (MNO) and content providers are becoming more blurry, due to architectural
developments like Multi-access Edge Computing (MEC) [80] and RAN Sharing [84].

In the following section we introduce the problem setup and our soft cache hits model
corresponding to the example application of Fig. 5.1. In Section 5.3 we formulate and
analyze the problem of edge caching with SCH for a single cache, and propose efficient
caching algorithms. Then, in Section 5.4, we generalize the problem, analysis, and
algorithms to the femto-caching case. In Section 5.5 we extend our model to capture
scenarios as in the example application of Fig. 5.2, and show that our analytic findings
are applicable to these scenarios as well. The performance evaluation is presented in
Section 5.6.

5.2 Problem Setup

5.2.1 Network and Caching Model

Network Model: Our network consists of a set of users N (|N | = N) and a set of SCs
(or, helpers) M (|M| = M). Users are mobile and the SCs with which they associate
might change over time. Since the caching decisions are taken in advance (e.g., the night
before, as in [22, 48], or once per few hours or several minutes), it is hard to know the
exact SC(s) each user will be associated at the time she requests a content. To capture
user mobility, we propose a more generic model than the fixed bipartite graph of [22]:

qij
.
= Prob{user i in range of SC j},

or, equivalently, qij is the percentage of time a user i spends in the coverage of SC j.
Hence, deterministic qij (∈ {0, 1}) captures the static setup of [22], while uniform qij
(qij = q,∀i, j) represents the other extreme (no advance knowledge).

Content Model: We assume each user requests a content from a catalogue K with
|K| = K contents. A user i ∈ N requests content k ∈ K with probability pik.

2 We will
initially assume that all contents have the same size, and relax the assumption later.

Cache Model (Baseline): We assume that each SC/helper is equipped with storage
capacity of C contents (all our proofs hold also for different cache sizes). We use the
integer variable xkj ∈ {0, 1} to denote if content k is stored in SC j. In the traditional
caching model (baseline model), if a user i requests a content k which is stored in some
nearby SC, then the content can be accessed directly from the local cache and a cache
hit occurs. This type of access is considered “cheap”, while a cache miss leads to an
“expensive” access (e.g., over the SC backhaul and core network).

For ease of reference, the notation is summarized in Table 5.1.

2This generalizes the standard femto-caching model [22] which assumes same popularity per user. We
can easily derive such a popularity pk from pik.

91

Chapter 5. Soft Cache Hits

Table 5.1 – Important Notation

N set of users (|N | = N)

M set of SCs / helpers (|M| = M)

C storage capacity of a SC

qij probability user i in range of SC j

K set of contents (|K| = K)

pik probability user i to request content k

xkj k is stored in SC j (xkj = 1) or not (xkj = 0)

ui
kn utility of content n for a user i requesting content k

Fkn(x) distribution of utilities ui
kn, Fkn(x) = P{ui

kn ≤ x}
ukn avg. utility for content pair {k, n} (over all users)

sk size of content k

5.2.2 Soft Cache Hits

Up to this point the above model describes a baseline setup similar to the popular
femto-caching framework [22]. The main departure of our setup is the following.

Related Content Recommendation: When a user consumes a content (or initially
requests a content) that is not found in the local cache, we assume that an app proxy (e.g.
YouTube, Netflix, Spotify), collocated or near this cache, looks at the list of contents its
recommendation system deems related to the currently consumed content (or the initial
request), checks which of them are available in the local cache, and recommends them to
the user (see the example in Fig. 5.1). If a user selects to consume next (or instead of
the initial) one of them, a (soft) cache hit occurs, otherwise there is a cache miss and the
network must fetch and deliver the original content.

Below, we first propose a soft cache hit model that captures the scenario of Fig. 5.1.
We will use this model throughout Sections 5.3 and 5.4, to develop most of our theory.
However, in Section 5.5, we will modify our model to also analyze the scenario of Fig. 5.2,
which we will refer to as Related Content Delivery.

Definition 15. A user i that requests a content k that is not available, accepts a
recommended content n with probability uikn, where 0 ≤ uikn ≤ 1, and uikk = 1,∀i, k.

These utilities/probabilities (in the remainder we use these terms interchangeably)
define a content relation matrix Ui = {uikn} for each user. They could be estimated
from past statistics and/or user profiles, and are closely related to the output of the
recommender for that user and that content app. For example, if a collaborative filtering
algorithm suggested that the cosine distance [62] between files k and n for user i is 0.5,
we could set uikn = 0.53.

In some cases, the system might have a coarser view of these utilities (e.g., item-item
recommendation [85]). We develop our theory and results for the most generic case of

3Going from a content relation value to a value for the willingness of a user to accept that related
content arguably entails some degree of subjectivity, given that this also depends on the amount and
type of incentives offered to the user. Nevertheless, it is clear that whatever the actual value of ui

kn, it
will be some function of and positively correlated to underlying content relevance, which can be readily
available from the respective recommendation system.

92

Chapter 5. Soft Cache Hits

Definition 15, but we occasionally refer to the following two subcases, which might appear
in practice:

Sub-case 1: The system does not know the exact utility uikn for each node i, but only how
they are distributed among all nodes, i.e., the distributions Fkn(x) ≡ P{uikn ≤ x}.

Sub-case 2: The system knows only the average utility ukn per content pair {k, n}.

5.3 Single Cache with Soft Cache Hits

In order to better understand the impact of the related content matrices Ui on caching
performance, we first consider a scenario where a user i is served by a single small cell,
i.e., each user is associated to exactly one SC, but we might still not know in advance
which. Such a scenario is in fact relevant in today’s networks, where the cellular network
first chooses a single SC to associate a user to (e.g., based on signal strength), and then
the user makes its request [86]. In that case, we can optimize each cache independently.
We can also drop the second index for both the storage variables xkj and connectivity
variables qij , to simplify notation.

In the remainder, we select the cache hit ratio (CHR) as the basic performance
metric, similarly to the majority of the related work. However, the analysis for CHR
maximization can be generalized to utility maximization [87], where “utility” can be the
content access cost or delay, energy consumption, etc.

5.3.1 Soft Cache Hit Ratio

A request (from a user to a SC/helper) for a content k ∈ K would result in a (standard)
cache hit only if the SC/helper stores the content k in its cache, i.e., if xk = 1. Hence,
the (baseline) cache hit ratio for this request is simply

CHR(k) = xk

If we further allow for soft cache hits, the user might be also satisfied by receiving a
different content n ∈ K. The probability of this event is, by Definition 15, equal to uikn.
The following Lemma derives the total cache hit ratio in that case.

Lemma 16 (Soft Cache Hit Ratio (SCHR)). Let SCHR denote the expected cache hit
ratio for a single cache (including regular and soft cache hits), among all users. Then,

SCHR =

N∑
i=1

K∑
k=1

pik · qi ·

(
1−

K∏
n=1

(
1− uikn · xn

))
. (5.1)

Proof. The probability of satisfying a request for content k by user i with related content
n is P{n|k, i} = uikn · xn, since uikn gives the probability of acceptance (by definition),
and xn denotes if content n is stored in the cache (if the content is not stored, then
P{n|k, i} = 0). Hence, it follows easily that the probability of a cache miss, when content

93

Chapter 5. Soft Cache Hits

k is requested by user i, is given by4
∏K
n=1(1− uikn · xn). The complementary probability,

defined as the soft cache hit ratio (SCHR), is then

SCHR(i, k,U) = 1−
K∏
n=1

(1− uikn · xn). (5.2)

Summing up over all users that might be associated with that BS (with probability qi)
and all contents that might be requested (pik) gives us Eq.(5.1).

Lemma 16 can be easily modified for the sub-cases 1 and 2 of Definition 15 presented
in Section 5.2.2. We state the needed changes in Corollary 5.3.1.

Corollary. Lemma 16 holds for the the sub-cases 1 and 2 of Definition 15, by substituting
in the expression of Eq. (5.1) the term uikn with

uikn → E[uikn] ≡
∫

(1− Fkn(x)) dx (for sub-case 1) (5.3)

uikn → ukn (for sub-case 2) (5.4)

Proof. The proof is given in Appendix .3.

5.3.2 Optimal SCH for Equal Content Sizes

The (soft) cache hit ratio depends on the contents that are stored in a SC/helper. The
network operator can choose the storage variables xk to maximize SCHR by solving the
following optimization problem.

OP 11. The optimal cache placement problem for a single cache with soft cache hits and
content relations described by the matrix Ui = {uikn}, ∀i ∈ N , is

maximize
X={x1,...,xK}

f(X) =

N∑
i=1

K∑
k=1

pik · qi ·

(
1−

K∏
n=1

(
1− uikn · xn

))
(5.5)

s.t.
K∑
k=1

xk ≤ C. (5.6)

In the following, we prove that the above optimization problem is NP-hard (Lemma 17),
and study the properties of the objective function Eq.(5.5) (Lemma 18) that allow us
to design an efficient approximate algorithm (Algorithm 6) with provable performance
guarantees (Theorem 2).

Lemma 17. The Optimization Problem 11 is NP-hard.

4To simplify our analysis, throughout our proofs we will assume that the user is informed about
all cached contents n with non-zero relevance ui

kn to the original content k. In practice, only a limited
number of them would be recommended (e.g. the N most related among the cached ones, as in [53])).
Our analysis also holds for this case, with limited modifications.

94

Chapter 5. Soft Cache Hits

Algorithm 6
(
1− 1

e

)
-approximation Greedy Algorithm for Optimization Problem 11.

computation complexity: O (C ·K)

Input: utility {uikn}, content demand {pik}, mobility {qi}, ∀k, n ∈ K, i ∈ N
1: S0 ← ∅; t← 0
2: while t < C do
3: t← t+ 1
4: n← argmax

`∈K\St−1

f(St−1 ∪ {`})

5: St ← St−1 ∪ {n},
6: end while
7: S∗ ← St
8: return S∗

Lemma 18. The objective function of Eq.(5.5) is submodular and monotone (non-
decreasing).

The proofs for the previous two Lemmas can be found in Appendices .4 and .5,
respectively.

We propose Algorithm 6 as a greedy algorithm for Optimization Problem 11: to select
the contents to be stored in the cache, we start from an empty cache (line 1), and start
filling it (one by one) with the content that increases the most the value of the objective
function (line 4), till the cache is full. The computation complexity of the algorithm
is O (C ·K), since the loop (lines 2-6) denotes C repetitions, and in each repetition
the objective function is evaluated y times, where K ≥ y ≥ K − C + 1. An efficient
implementation of the step in line 4 can be based on the method of lazy evaluations of
the objective function; due to space limitations, we refer the interested reader to [88].

The following theorem gives the performance bound for Algorithm 6.

Theorem 2. Let OPT be the optimal solution of the Optimization Problem 11, and S∗

the output of Algorithm 6. Then, it holds that

f(S∗) ≥
(

1− 1

e

)
·OPT (5.7)

Proof. Lemma 18 shows that the Optimization Problem 11 belongs to the generic category
of maximization of submodular and monotone functions (Eq. 5.5) with a cardinality
constraint (Eq. 5.6). For such problems, it is known that the greedy algorithm achieves
(in the worst case) a

(
1− 1

e

)
-approximation solution [89, 88].

While the above is a strict worst case bound, it is known that greedy algorithms
perform quite close to the optimal in most scenarios. In Sec. 5.6 we show that this simple
greedy algorithm can already provide interesting performance gains.

5.3.3 Optimal SCH for Different Content Sizes

Till now we have assumed that all contents have equal size. In practice, each content
has a different size sk and the capacity C of each cache must be expressed in Bytes.

95

Chapter 5. Soft Cache Hits

Additionally, if a user requests a video of duration X and she should be recommended an
alternative one of similar duration Y (note that similar duration does not always mean
similar size). While the latter could still be taken care of by the recommendation system
(our study of a real dataset in Sec. 5.6 suggests that contents of different sizes might still
be tagged as related), we need to revisit the optimal allocation problem: the capacity
constraint of Eq.(5.6) is no longer valid, and Algorithm 6 can perform arbitrarily bad [88].

OP 12. The optimal cache placement problem for a single cache with soft cache hits and
variable content sizes, and content relations described by the matrix Ui = {uikn}, ∀i ∈ N ,
is

maximize
X={x1,...,xK}

f(X) =
N∑
i=1

K∑
k=1

pik · qi ·

1−
K∏
j=1

(
1− uikn · xn

) (5.8)

s.t.

K∑
k=1

skxk ≤ C. (5.9)

Remark: Note that the objective is still in terms of cache hit ratio, and does not
depend on content size. This could be relevant, e.g., when the operator is doing edge
caching to reduce access latency to contents (latency is becoming a core requirement in
5G).

The problem is a set cover problem variant with a knapsack type constraint. We
propose the approximation Algorithm 7 for this problem, which is a“fast greedy”algorithm
(based on a modified version of the greedy Algorithm 6) and has complexity O

(
K2
)
.

Theorem 3.
(1) The Optimization Problem 12 is NP-hard.
(2) Let OPT be the optimal solution of the Optimization Problem 12, and S∗ the output
of Algorithm 7. Then, it holds that

f(S∗) ≥ 1

2

(
1− 1

e

)
·OPT (5.10)

Proof. A sketch of the proof can be found in Appendix .6.

In fact, a polynomial algorithm with better performance
(
1− 1

e

)
-approximation could

be described, based on [90]. However, the improved performance guarantees come with a
significant increase in the required computations, O

(
K5
)
, which might not be feasible in

a practical scenario when the catalog size K is large. We therefore just state its existence,
and do not consider the algorithm further in this paper (the algorithm can be found
in [91]).

5.4 Femtocaching with Related Content Recommendation

Building on the results and analytical methodology of the previous section for the
optimization of a single cache with soft cache hits, we now extend our setup to consider

96

Chapter 5. Soft Cache Hits

Algorithm 7 1
2 ·
(
1− 1

e

)
-approximation Algorithm for Optimization Problem 12.

computation complexity: O
(
K2
)

Input: utility {uikn}, content demand {pik}, content size {sk}, mobility {qi}, ∀k, n ∈
K, i ∈ N

1: S(1) ←ModifiedGreedy(∅,[s1, s2,...,sk])
2: S(2) ←ModifiedGreedy(∅,[1, 1,...,1])
3: if f(S(1)) > f(S(2)) then
4: S∗ ← S(1)

5: else
6: S∗ ← S(2)

7: end if
8: return S∗

9: function ModifiedGreedy(S0,[w1, w2,...,wk])
10: K(1) ← K; c← 0; t← 0
11: while K(1) 6= ∅ do
12: t← t+ 1
13: n← argmax

`∈K\St−1

f(St−1∪{`})
w`

14: if c+ wn ≤ C then
15: St ← St−1 ∪ {n}
16: c← c+ wn
17: else
18: St ← St−1
19: end if
20: K(1) ← K(1)\{n}
21: end while
22: return ← St
23: end function

the complete problem with cache overlaps (referred to as “femtocaching” [22]). Note,
however, that we do consider user mobility, through variables qij , unlike previous works
in this framework that often assume static users. Here, we focus on the case of fixed
content sizes.

In this scenario, a user i ∈ N might be covered by more than one SCs/helpers j ∈M,
i.e.

∑
j qij ≥ 1,∀i. A user is satisfied, if she receives the requested content k or any other

related content (that she will accept), from any of the SCs/helpers within range. Hence,
similarly to Eq.(5.2), the total cache hit ratio SCHR (that includes regular and soft cache
hits) is written as

SCHR(i, k,U) = 1−
M∏
j=1

K∏
n=1

(
1− uikn · xnj · qij

)
(5.11)

since for a cache hit a user i needs to be in the range of a SC j (term qij) that stores the

97

Chapter 5. Soft Cache Hits

content n (term xnj), and accept the recommended content (term uikn).
Considering (i) the request probabilities pik, (ii) every user in the system, and (iii)

the capacity constraint, gives us the following optimization problem.

OP 13. The optimal cache placement problem for the femtocaching scenario with soft
cache hits and content relations described by Ui = {uikn}, ∀i ∈ N , is

maximize
X={x11,...,xKM}

f(X) =

=

N∑
i=1

K∑
k=1

pik ·

1−
M∏
j=1

K∏
n=1

(
1− uikn · xnj · qij

) , (5.12)

s.t.

K∑
k=1

xkj ≤ C, ∀j ∈M. (5.13)

The following lemma states the complexity of the above optimization problem, as
well as its characteristics that allow us to design an efficient approximation algorithm.

Lemma 19.
(1) The Optimization Problem 13 is NP-hard,
(2) with submodular and monotone (non-decreasing) objective function (Eq. 5.12) and a
matroid constraint (Eq. 5.13).

Proof. We prove Lemma 19 by extending the basic ideas of the single-cache case, and
following a similar methodology as in the proofs of Lemmas 17 and 18; the detailed proof
is given in [91].

Lemma 19 states that the Optimization Problem 13 is a maximization problem with
a submodular function and a matroid constraint. For this type of problems, a greedy
algorithm can guarantee an 1

2 -approximation of the optimal solution [88]. The greedy
algorithm is similar to Algorithm 6 and is of computational complexity O

(
K2M2

)
; i.e.,

instead of considering only contents in the allocation, now tuples {content, helper} need
to be greedily allocated until the caches of helpers are full (for a detailed pseudocode of
the algorithm, we refer the reader to [91]).

Theorem 4. Let OPT be the optimal solution of the Optimization Problem 13, and S∗

the output of the greedy algorithm. Then, it holds that

f(S∗) ≥ 1

2
·OPT (5.14)

Submodular optimization problems have received considerable attention recently, and
a number of sophisticated approximation algorithms have been considered (see, e.g., [88]
for a survey). For example, a better

(
1− 1

e

)
-approximation (with increased computation

complexity though) can be found following the “multilinear extension” approach [92],
based on a continuous relaxation and pipage rounding. A similar approach has also been

98

Chapter 5. Soft Cache Hits

followed in the original femto-caching paper [22]. Other methods also exist that can
give an

(
1− 1

e

)
-approximation [93]. Nevertheless, minimizing algorithmic complexity or

optimal approximation algorithms are beyond the scope of this paper. Our goal instead
is to derive fast and efficient algorithms (like greedy) that can handle the large content
catalogues and content related graphs U, and compare the performance improvement
offered by soft cache hits. The worst-case performance guarantees offered by these
algorithms are added value.

5.5 Femtocaching with Related Content Delivery

We have so far considered a system corresponding to the example of Fig. 5.1, where a
cache-aware system recommends alternative contents to users (in case of a cache miss),
but users might not accept them. In this section, we consider a system closer to our
second example of Fig. 5.2, where the system delivers some related content that is
locally available instead of the original content, in case of a cache miss. While a more
extreme scenario, we believe this might still have application in a number of scenarios,
as explained in Section 5.1 (e.g., for low rate plan users under congestion, or in limited
access scenarios [94, 95]).

In the following, we model the related content delivery system, formulate the respective
optimization problem, and show that it has the same properties with the problems in the
previous sections, which means that our results and algorithms apply to this context as
well. We present only the more generic femto-cache case of Sec. 5.4; the analysis and
results for the single cache cases of Sec. 5.3 follow similarly.

Since now original requests might not be served, the (soft) cache hit ratio metric
does not describe sufficiently the performance of this system. To this end, we modify the
definition of content utility:

Definition 16. When a user i requests a content k that is not locally available and
the content provider delivers an alternative content n then the user satisfaction is given
by the utility uikn. uikn ∈ R is a real number, and does not denote a probability of
acceptance, but rather the happiness of user i when she receives n instead of k. Furthermore
uikk = Umax,∀i.

Note: we stress that the utilities uikn in Definition 16 do not represent the probability
a user i to accept a content n (as in Definition 15), but the satisfaction of user i given
that she accepted content n. User satisfaction can be estimated by past statistics, or user
feedback, e.g., by asking user to rate the received alternative content.

Let us denote as Gi(t) ⊆M the set of SCs with which the user i is associated at time
t. Given Definition 16, when a user i requests at time t a content k that is not locally
available, we assume a system (as in Fig. 5.2) that delivers to the user the cached content
with the highest utility5, i.e., the content n where

n ≡ arg max`∈K,j∈Gi(t)

{
uik` · x`j

}
(5.15)

5Equivalently, the system can recommend all the stored contents to the user and then allow the user
to select the content that satisfies her more.

99

Chapter 5. Soft Cache Hits

Hence, the satisfaction of a user i upon a request for content k is

max
n∈K,j∈Gi(t)

{
uikn · xnj

}
(5.16)

Using the above expression and proceeding similarly to Section 5.4, we formulate
the optimization problem that the network needs to solve to optimize the total user
satisfaction (among all users and all content requests), which we call soft cache hit user
satisfaction (SCH-US).

OP 14 (SCH-US). The optimal cache placement problem for the femtocaching scenario
with related content delivery and content relations described by the matrix U = {uikn} is

maximize
X={x1,...,xK}

f(X) =

=

N∑
i=1

K∑
k=1

pik · EGi

[
max

n∈K,j∈M

(
uikn · xnj ·Qij

)]
, (5.17)

s.t.
K∑
k=1

xkj ≤ C, ∀j ∈M. (5.18)

where Qij=

{
1 , if j ∈ Gi
0 , otherwise

, and the expectation EGi [·] is taken over the probabil-

ities P{Gi} =
∏
j∈Gi

qij ·
∏
j /∈Gi

(1− qij).

For the sub-cases 1 and 2 of Definition 15 presented in Sec. 5.2.2, the following
corollary holds.

The expression of Eq. (5.17) needs to be modified as

EGi

[
max

n∈K,j∈M

(
uikn · xnj ·Qij

)]
→ EGi

[
max
n∈S

(
uikn
)]

=

= EGi

[∫ (
1−

∏
n∈S

Fkn(x)

)
dx

]
(5.19)

uikn → ukn (5.20)

where S = {` : ` ∈ K, m ∈M, x`m ·Qim = 1}, for the sub-cases 1 and 2 of Defini-
tion 15, respectively.

We now prove the following Lemma, which shows that Theorem 4 applies also to
the Optimization Problem 14, and thus it can be efficiently solved by the same greedy
algorithm (where the objective function of Eq. 5.17 is now used)).

Lemma 20.
(1) The Optimization Problem 14 is NP-hard,
(2) with submodular and monotone objective function (Eq. 5.17).

Proof. The proof is given in Appendix .7.

100

Chapter 5. Soft Cache Hits

5.6 Evaluation

In this section, we investigate the gains of employing soft cache hits and the performance
of the proposed algorithms. We first analyze 5 real datasets collected from different
content-centric applications/sources, such as YouTube and Amazon-TV, as well as other
types of contents (e.g. Android applications) or data sources (like MovieLens) (Sec. 5.6.1).
We have also tested our schemes with some data related to personalized radio (lastFM)
with similar conclusions. The datasets contain information about content relations, based
on which we build the utility matrices U. We use these realistic utility matrices U in
our simulations to study the performance of caching with or without soft cache hits.
In Sec. 5.6.2 we describe the simulation setup, and present and discuss the results in
Sec. 5.6.3.

5.6.1 Datasets of Content Relations

YouTube dataset. We consider a dataset of YouTube videos from [77]6. The dataset
contains several information about the videos, such as their popularity, size, and a list of
related videos (as recommended by YouTube). We build the utility matrix U = {unk},
where unk = 1 if video n is in the list of related videos of k (or vice-versa), and otherwise
unk = 0.

Amazon datasets. We also analyze 3 datasets of product reviews from Amazon [96]
for Android applications (Amazon-App), Movies and TV (Amazon-TV), and Videogames
(Amazon-VG). The datasets include for each item a list of contents that are “also bought”.
7 We consider for each dataset 10000 of its items, and build a utility matrix U = {unk},
where unk = 1 if item n is also bought with item k (or vice-versa), and otherwise unk = 0.

MovieLens dataset. We finally consider a movies-rating dataset from the MovieLens
website [61], containing 69162 ratings (from 0.5 stars to 5) of 671 users for 9066 movies.
As these datasets contain only raw user ratings and not movie relations per se, to obtain
content relation matrix U , in this case, we do an intermediate step and apply a standard
concept from collaborative filtering [62]. Specifically, we calculate the similarity of each
pair of contents based on their common ratings as their cosine-distance metric:

sim(n, k) =

∑#users
i=1 ri(n) · ri(k)√∑#users

i=1 r2i (n) ·
√∑#users

i=1 r2i (k)

where we normalized the ratings ri, by subtracting from each rating the average rating of
that item, so that we obtain similarity values ∈ [−1, 1]. Due to the sparsity of the dataset
(few common ratings), we also apply an item-to-item collaborative filtering (using 10
similar items) in order to predict the missing user ratings per item, and thus the missing
similarity values. We build the utility matrix U = {unk} with unk = max {0, sim(n, k)},

6Data from 27-07-2008, and depth of search up to 3; see details in [77]
7Our main motivation to use the game and app datasets was to also validate the robustness of our

approach to other types of data. Soft cache hits though might be more relevant for free apps or games,
rather than paid products.

101

Chapter 5. Soft Cache Hits

Table 5.2 – Information contained in datasets.

content content content relations ukn
popularity size ∈ {0, 1} ∈ [0, 1]

Amazon-* × × X ×
MovieLens X × × X
YouTube X X X ×

Table 5.3 – Dataset analysis.

#contents content relations popularity

E[R]
(
std[R]
E[R]

)
E[p]

(
std[p]
E[p]

)
Amazon-App 8229 16.0 (2.2) -
Amazon-TV 2789 7.8 (1.0) -
Amazon-VG 5614 22.0 (1.1) -
MovieLens 4622 125.8 (0.5) 15 (1.6)
YouTube 2098 5.3 (0.7) 500 (3.1)

i.e, unk ∈ [0, 1]. Finally, we assign to each item a popularity value equal to the number
of ratings for this item.

For ease of reference, Table 5.2 presents the information contained in each dataset.

Due to the sparsity of the YouTube dataset, we only consider contents belonging
to the largest connected component (defining as adjacencies, the positive entries of the
utility matrix). For consistency, we consider only the contents in the largest connected
component for the other datasets as well. Moreover, since the Amazon and YouTube
datasets do not contain per-user information, and the per-user data in the MovieLens
dataset is sparse, we consider the sub-case-2 of Definition 15, i.e., uikn = ukn for all users
i.

The number of remaining contents for each dataset are given in Table 5.3. We also
calculate for each content the number of its related contents Rn =

∑
k unk (or the sum of

its utilities for the MovieLens dataset where ukn ∈ [0, 1]), and present the corresponding
statistics in Table 5.3 along with the statistics for the content popularity.

5.6.2 Simulation Setup

Cellular network. We consider an area of 1 km2 that contains M SCs. SCs are
randomly placed in the area (following a Poisson point process), which is a common
assumption in related work [22, 97]. An SC can serve a request from a user, when the
user is inside its communication range, which we set to 200 meters. We also consider N
mobile users.

We select as default parameters: N = 50 users, and M = 20 SCs with caching
capacity C = 5 (contents). This creates a relatively dense network, where a random user
is connected to 3 SCs on average.

Content demand. We consider a scenario of content demand for each dataset of

102

Chapter 5. Soft Cache Hits

Sec. 5.6.1, with the corresponding set of contents, content popularities and relations
(utility matrix). For datasets without information on content popularity (see Table 5.2),
we generate a random sample of popularity values drawn from a Zipf distribution in
[1, 400]8 with exponent α = 2. For each scenario we generate a set of 20 000 requests
according to the content popularity, over which we average our results. When soft cache
hits are allowed, we assume the related content recommendation model of Definition 15
(see also Fig. 5.1).

Unless otherwise stated, the simulations use the default parameters summarized in
Table 5.4.

Caching schemes / algorithms. We consider and compare the following schemes
for single-SC (single) and multi-SC (femto) to user association.

• Single: A single cache accessible per user (e.g., the closest one). Only normal cache
hits allowed, and the most popular contents are stored in each cache, which is the
optimal policy in this simple setup. It will serve as the baseline for single cache
scenarios.

• SingleSCH : Here soft cache hits are allowed. However, the caching policy is still
based on popularity as before (i.e., is not explicitly optimized to exploit SCHs).

• SingleSCH* : This is our proposed policy. Here soft cache hits are allowed, and
the caching policy is optimized to fully exploit this (according to Algorithm 6 or
Algorithm 7).

• Femto: Femto-caching without soft cache hits. This is the baseline scheme for this
class of scenarios, where the proposed algorithm from [22] is applied.

• FemtoSCH : Femto-caching based content placement (same as in Femto), but
allowing soft cache hits on user requests (a posteriori).

• FemtoSCH* : Our proposed policy. Femto-caching is explicitly optimized for soft
cache hits, according the greedy algorithm (Sec. 5.4).

5.6.3 Results

1. Overall performance
We simulate scenarios for all datasets / utility matrices with the default parameters

(Table 5.4), both under single and multi user-SC association. Fig. 5.3 shows the achieved
cache hit ratio CHR (or soft cache hit ratio, SCHR) under the baseline caching (Sin-
gle/SingleSCH/Femto/FemtoSCH) and the SCHR under a content placement using our
algorithms (SingleSCH*/FemtoSCH*).

Key Message: Allowing soft cache hits can lead to a dramatic increase in
the cache hit ratio.

Comparing the cache hit ratio (CHR) under the popularity-based caching (Sin-
gle/Femto - red/pink bars) and the schemes we propose (SingleSCH*/FemtoSCH* -

8The max value is selected equal to the max number of requests per user, i.e., #requests
#contents

.

103

Chapter 5. Soft Cache Hits

AmazonApp AmazonTV AmazonVG MovieLens YouTube
0

10

20

30

40

50
C
a
ch
e
H
it

R
a
ti
o
(%

)
Single

SingleSCH

SingleSCH*
Femto
FemtoSCH
FemtoSCH*

Figure 5.3 – Cache hit ratio for all datasets and caching schemes, for the default scenario.

Table 5.4 – Parameters used in simulations: default scenario.

Parameter Value Parameter Value

Area 1 x 1 km Cache size, C 5

nb. of SCs, M 20 nb. of users N 50

SC comm. range 200 m Zipf distr. ∈ [1, 400], α = 2

black/grey bars), shows that allowing soft cache hits brings a significant increase in the
CHR for all datasets. The relative gain ranges from 60% in the Amazon-TV case, up to
around 780% in the Amazon-App case, for the Single scenarios; the relative gains in the
Femto scenarios are similarly impressing (from 70% up to 530%, respectively). These
initial results indicate that soft cache hits can be a promising solution for future mobile
networks, by increasing the virtual capacity of mobile edge caching.

Key Message: While gains can sometimes already be achieved just by allow-
ing soft cache hits, to fully take advantage of soft cache hits, the caching
policy should be redesigned to explicitly take these into account (through the
utility matrix).

Fig. 5.3 demonstrates that gains could already be achieved by simply introducing soft
cache hits on top of existing (state-of-the-art) caching policy (SingleSCH/FemtoSCH -
dark/light green bars), but these are scenario-dependent. For example, in the Amazon
scenarios the increase in CHR by allowing soft cache hits is marginal (red vs. green
bars), while in the YouTube scenario it is 1.5× higher. In contrast, explicitly designing
the caching policy to exploit soft cache hits allows for important gains in all scenarios

104

Chapter 5. Soft Cache Hits

(black/grey bars). Specifically, in the Amazon scenarios the performance gains are almost
entirely due to the caching algorithm (just allowing soft cache hits, does not improve
performance), while in the YouTube scenario our utility-aware algorithms outperform by
around 40% popularity-based caching. These results show clearly that existing caching
policies are not capable to exploit the full potential of soft cache hits.

2. Impact of network parameters

We proceed to study the effect of network parameters, on the performance of soft
cache hits schemes. We consider the YouTube dataset, for which the soft cache hits
schemes (SingleSCH*/FemtoSCH*) have a moderate gain (around 1.5− 3×) over the
baseline schemes. We simulate scenarios where we vary the cache size C and the number
of SCs M ; the remaining parameters are set as in the default scenario (Table 5.4).

Key Message: (a) Soft cache hits improve performance irrespectively of the
underlying network parameters (even for a few SCs with small capacity); (b)
Combining femto-caching and soft cache hits achieves significantly higher
CHR that today’s solutions.

Cache size impact: We first investigate the impact of cache size, assuming fixed
content sizes. Fig. 5.4 depicts the total cache hit ratio, for different cache sizes C: we
consider a cache size per SC between 2 and 15 contents. The simulations suggest that
the SingleSCH*/FemtoSCH* scenarios consistently achieve more than 2.5× (single) and
1.2× (femto) higher CHR than Single/Femto. What is more, these gains are applicable
to both single- and femto- caching. The two methods (femto-caching and soft cache
hits) together offer a total of 3.3× to 7× improvement compared to the baseline scenario
Single. Finally, even with a cache size per SC of about 0.1% of the total catalog (C = 2),
introducing soft cache hits offers 29% CHR (SingleSCH*), whereas today’s practices
(popularity-based caching without SCH) would achieve only 4% CHR.

SC density impact: In Fig. 5.5 we consider the impact of SC density. In sparse
scenarios (e.g., M = 5), a user usually is in the range of at most one SC. For this reason,
Femto and Single perform similarly. As the SC density increases, the basic Femto is
able to improve performance, as expected, by exploiting cache cooperation. However,
every 2× increase in density, which requires the operator doubling the infrastructure cost,
offers roughly a relative improvement of 30− 50%. Simply introducing soft cache hits
instead, suffices to provide a 2× improvement.

Key Message: The extra cost to incentivize soft cache hits might be quite
smaller than the CAPEX/OPEX costs in infrastructure investment to achieve
comparable performance gains.

3. Impact of utility matrix

We further investigate the impact of the content relations as captured by the matrix
U (and its structure). To quantify the content relations, we use as a metric the sum of
the utilities per content Rn =

∑
k unk (see also Sec. 5.6.1 and Table 5.3).

Key Message: The CHR increases with the density (E[R]) of the utility ma-

105

Chapter 5. Soft Cache Hits

2 4 6 8 10 12 14
0

20

40

60

80

Cache Size (in #contents)

C
a
ch
e
H
it

R
a
ti
o
(%

) FemtoSCH*
SingleSCH*
Femto
Single

Figure 5.4 – Cache hit ratio vs. cache size C.

5 10 15 20 25 30
0

20

40

60

80

Number of SCs

C
a
ch
e
H
it

R
a
ti
o
(%

) FemtoSCH*
SingleSCH*
Femto
Single

Figure 5.5 – Cache hit ratio vs. number of SCs M .

106

Chapter 5. Soft Cache Hits

trix. Even low utility values ukn can significantly contribute towards a higher
CHR.

The first important parameter to consider is the average value of Rn, i.e., the density
of the utility matrix U. We consider the MovieLens dataset, where the utilities ukn
are real numbers in the range [0, 1]. To investigate the impact of the density of U, we
consider scenarios where we vary the matrix U: for each scenario we set a threshold umin
and take into account only the relations between contents with utility higher than umin,
i.e.,

U
′

= {u′kn} =

{
ukn if ukn ≥ umin
0 if ukn < umin

Table 5.5 gives the density of the utility matrix for the different values of the threshold
umin, and Fig. 5.6 shows the cache hit ratio for these scenarios. When umin is set to a
large value (i.e., only few relations are taken into account and the matrix U is sparse),
there is no (umin = 0.75) or negligible (umin = 0.5) improvement from soft cache
hits. However, as the density of U increases (lower thresholds umin), the gains in CHR
significantly increase; note that these gains are from content relations with low utility
values (i.e., less than 0.5 or 0.25 for the two rightmost scenarios, respectively). Moreover,
it is interesting that in the scenario with umin = 0.25, the gains are almost entirely due
to the more efficient caching from our algorithms, i.e., popularity-based caching would
not be efficient even if soft cache hits were allowed (green bars).

Table 5.5 – Utility matrix density for the MovieLens dataset for different umin thresholds.

threshold umin 0.75 0.5 0.25 0

E[R] 0.9 10.8 49.0 125.8

Key Message: Highly skewed distributions of #relations, Rn, can lead to
more efficient caching (in analogy to heavy tailed popularity distributions).

Our simulation study demonstrates the effect of the variance of the number of related
contents, i.e., std[R]

E[R] . We consider the three Amazon scenarios of Fig. 5.3 that have the

same content popularity distribution and similar E[R] values (see Sec. 5.6.2). Fig. 5.7
shows the relative gain (of soft cache schemes over baseline schemes) in these scenarios
where the distribution of Rn has different variance (see Table 5.3). When the variance is

very high (Amazon-App, std[R]
E[R] = 2.2) the CHR under soft cache hit schemes is almost an

order of magnitude larger than the baseline scenarios. Large variance means that a few
contents have very high Rn; thus storing these contents allows to serve requests for a
large number of other (non-cached) contents as well. Finally, an interesting observation
is that the variance of the distribution plays a more important role than the density of
the utility matrix: although the utility matrix in the Amazon-VG scenario (E[R] = 22,
std[R]
E[R] = 1.1) is denser than in the Amazon-App scenario (E[R] = 16, std[R]

E[R] = 2.2), the
gain of the latter is higher due to the higher variance.

4. Performance of scheme extensions

107

Chapter 5. Soft Cache Hits

0.75 0.5 0.25 0
0

10

20

30

40

50

threshold (umin)

C
a
ch
e
H
it

R
a
ti
o
(%

) single
singleSCH
singleSCH*
femto
femtoSCH
femtoSCH*

Figure 5.6 – Cache hit ratio for the MovieLens dataset for scenarios with different umin
thresholds; default scenario.

1 1.1 2.2
0

200

400

600

800

std[R]
E[R]

R
el
a
ti
ve

g
a
in

in
C
H
R

(%
)

Single
Femto

Figure 5.7 – Relative increase in the cache hit ratio due to soft cache hits (y-axis). Amazon
scenarios with different variance of number of related contents (x-axis).

108

Chapter 5. Soft Cache Hits

Key Message: The gain of our algorithms is consistent for all the considered
variations of soft cache hits scenarios.

Finally, we evaluated scenarios with (a) contents of different size and (b) related
content delivery model (Def. 16), and observed the following. In the former scenarios
(from the YouTube dataset), the performance improves considerably for all cache size
values (e.g., similarly to the equal content sizes case). In the latter scenarios (from the
MovieLens dataset; similar to scenarios of Fig. 5.6), the user satisfaction singificantly
increases with related content delivery (i.e., soft cache hits), and denser matrices (i.e.,
higher willingness of users to accept related contents) lead to better performance.

109

Chapter 5. Soft Cache Hits

110

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The current thesis is an analytical approach to lay bridges between two already well
studied areas: namely recommender systems and caching in wireless networks. The
research of this work was primarily focused on freezing one variable of the problem, that
being caching or more generally network state and dealing with ways to optimize the
other one, i.e., recommendation policy. Along these lines, we initially started by posing a
very challenging problem, that is

“How to favor low cost content in the sequential access regime by maintaining some
lower bounded user satisfaction?”

We opted to model a user traversing the catalogue as a Markov Process which resem-
bled a “recommendation driven PageRank” random walk. Subsequently, we formulated
a continuous optimization problem over the content/object recommendation frequen-
cies with lower bounded recommendation quality and specific recommendation budget
constraints.

Having said that, we showed that our optimization problem is nonconvex and applied
an ADMM algorithm on that. Interestingly, despite the lack of optimality guarantees, our
proposed ADMM which aimed to optimize the cost over a very long horizon significantly
outperformed existing myopic solutions and interesting gains were observed. In this work
however, our main objective was to formalize a clear target (come up with a model), find
ways to reach it (provide some solution) and eventually understand whether this whole
approach is actually meaningful in practice (results). Importantly, this work lacked solid
theoretical guarantees about our algorithm but definitely managed to draw our attention
in order to further work on our preliminary results.

In Chapter 3, the goal was twofold. First it was really important to

“Establish performance guarantees for the long session NFR.”

We started off from the original nonconvex problem as modeled in Chapter 2; through a
series of variable manipulations and some intermediate steps the problem was transformed

111

Chapter 6. Conclusions and Future Work

into an LP. We consequently had to establish the necessary conditions on the problem data
such that the transformation from one optimization problem to the other be a bijection.
A problem baring some resemblances to our and dealt with PageRank optimization was
also convexified in [98]. Turning this seemingly quite challenging problem into an LP
gave us two important returns

1. Optimal solution for the long session NFR problem.

2. LP solution meant faster solution than the previously proposed ADMM.

The second goal of this work was to dive deeper into a practical aspect of a recommendation
system, that is

“Can the user biasing to some positions (e.g. the higher ones) further enhance the
system performance?”

And by that we mean that the ultimate goal is to understand whether a user with such
position preferences can further decrease the access costs. Essentially, the two presented
models have a fundamental difference, that is in Chapter 2 we assumed that users are
presented with N suggestions and may choose any of those N equally likely, whereas
now, by incorporating the click-through of the specific positions, we have to consider this
as well in our optimization process. In an extreme scenario where some user has very
skewed pmf over the positions, this knowledge can prove to be critical, as essentially it is
like decreasing our budget, virtually the system has to decide N = 1 recommendation.
In our problem, ideally we need low cost and related items, which obviously cannot be
too many for ever item. Thus, exploiting which positions the user clicks, we can place
our top candidate and most valuable contents (i.e., low cost and related) in the correct
positions of the screen.

The long session NFR problem with position preferences proved to be some general-
ization of the the formulation of Chapter 2 which needed an expansion of the K ×K
matrix to a K ×K ×N structure (or tensor). Thus, the LP transformation gave us the
optimal solution of the problem described in Chapter 2, and using this result we also got
the optimal solution of the problem with position preferences for free.

In Chapter 4, which is the final chapter dealing with the long session NFR, our main
goal can again be summarized in two set of goals.

“Scale up the problem sizes and solve for more realistic use cases.”

To this end, we decided to pick up from the arsenal of sequential decision making
methods probably the most celebrated one, that is the Markov Decision Process. A very
clear motivation we had in the start was that in the previous two chapters, the problem
was formulated by assuming an infinitely long horizon of user requests. This caused two
issues

1. Unrealistic infinite horizon.

112

Chapter 6. Conclusions and Future Work

2. Unnecessary computations because of the infinite length session.

The interesting thing about our problem is that it can be cast as an infinite horizon
problem with discounts, but through the road of random length session that is distributed
as Geo(λ). This formulation resolves for us the two problematic aspects of our previous
approach; we can now solve the problem by using the statistics of user session length (λ)
and more importantly avoid the extra computations that are needed in order to “reach
the infinite session”.

What is more, the MDP formulation reveals some easier problems that have clear
structure and that is something that we had to capitalize. In return we got significantly
improved execution times of all of our previous solutions, i.e., the customized ADMM
and CPLEX solution of the LP by being ε-optimal at the same time.

The MDP framework, because of its natural decomposition over the problem files (each
optimization is over some specific file always) further allowed us to relax our assumptions.
We removed the quality constraints and assumed user click-through probabilities that
are incorporated in our problem’s objective. This intuitively allowed us to solve more
general use cases without many unrealistic modeling assumptions.

Finally in Chapter 5, we took a completely different approach on the problem and
considered a more “network” type of application. We modeled a network where each user
is associated with some SCs, which are equipped with some storage space, in probabilistic
(and thus deterministic if we want) rules. Moreover, there is an underlying graph between
the contents, one can associate that with the utilities uij that are described throughout
this manuscript, which show the level happiness a user would get when asking for content
i and instead he received item j.

To this end, we were interested in finding

“Optimal caching policy in scenarios where the contents can be assumed as inter-
changeable.”

We formalize two maximization problems of the cache hit rate by assuming an IRM
type of request pattern for the wireless users. Importantly the problems that arise in this
setup will be computationally very intensive if one is interested in realistic problem sizes.
Along these lines, we prove that our problems are NP-hard, but are also submodular and
monotonic with matroid constraints. The fomer was the red light which forced us to
resort to greedy methods, while the latter provides a theoretical performance guarantee
for a well defined and low complexity greedy cache allocation.

6.2 Future Work Suggestions

The PhD for an engineering student usually starts with some quite general question
regarding some interesting application. Then, depending on (a): the knowledge of the
student, (b): the natural difficulty of the problem and (c): the depth that the supervisor-
student pair wants to reach in terms of understanding and results, the corresponding
work will be produced. In a three years course however, you are entitled to answer only

113

Chapter 6. Conclusions and Future Work

some of the questions that others or you posed to yourself. The problem we dealt for the
last three years has still many open theoretical and practical questions. We have already
worked on some of them and have some results, while others are simply interesting ideas
we did not really manage to have progress. For clarity I will enumerate them as follows

1. Joint Caching and Recommendation: This problem can indeed be attacked
by many different directions. Initially, one can use the MDP framework in order
to jointly consider the policy design of caching and recommendations. However
this problem in its brute version is computationally pointless to attack for practical
scenarios. However, if one systematically and controllably constrains this exploding
state and action space could find the global optimal of the joint problem.

2. Model-Free User Behavior: This is a direction for which we already have some
preliminary results. In essence, it would be interesting to formalize an optimization
problem for which the user behavior is not mathematically modeled, but it is rather
learnt by some agent who is trying to learn the user behavior and also exploit it at
the same time.

3. Dynamic Behavior: Throughout this work, we have discussed about users whose
behaviors and preferences stay static during the course “of the day” (the day is
assumed to be the long time scale). However this leaves space in order to ask:
“What if the recommender system actually affects the user preferences?” If so, how
could a network friendly recommender drive the user preferences?

4. Joint QoE and QoR Modeling: Up to now, a recommender’s performance is
assessed as effective if it manages to predict accurately the user ratings for some
content. However, an interesting implication of the “Recommender Over Wireless”
(that we did not explicitly model or used throughout this thesis), is that essentially
in the wireless setup there is a second dimension to take into account. When
suggesting a content that will be very interesting to the user, but a content (s)he
will not be able to stream in good quality it is evident that his feedback ratings might
significantly differ. All in all, we claim that recommender over wireless is an area
on its own which has not been investigated theoretically (modeling/optimization
etc.). Interestingly some system works that collect measurements in order to jointly
measure the QoE = QoS + QoR have peen performed recently in [70] and we firmly
believe, that results from there could be an inspiration for new theoretical works
on the topic.

114

Appendices

115

.1 Appendix A

Example. Assume for a moment a very simple scenario where uij ∈ {0, 1} and that
ci ∈ [0, 1]. The recommender is obliged to offer N = 2 contents and 1 of them has to be
related. The user randomly clicks one of the two contents always. Then a policy with no
vision would give you always one related and the least cost item. We have K = 8 and
c7 = min{c1, ..., c8}. When we are at content #5, we suggest file #4, as it is a related file
to #5 and obviously #7. More importantly, u81 = u82 = 1, and #1, #2 are of very low
cost. Interestingly, suggesting #8 instead of #7 leads to decreased expected cost for a
walk starting from #5 (for appropriately selected values of the costs) assuming that the
user requests only two contents. Hence, myopic strategies might (and most likely will)
fail to explore the smarter actions, and potentially lead the user to “no man’s land”, i.e.,
a costly neighborhood of contents. For more details see the Appendix.

Proof. Assume that K = 8 and the nonzero u values are u12 = u28 = u43 = u32 = u56 =
u58 = u64 = u76 = 1. We only check the expected cost of starting from #5 and doing
exactly two steps under the model we gave. The fixed policies are the following, 6: {4, 7},
7: {1, 6}, 8: {1, 7}.

Then we evaluate the expected cost for two different policies for content #5. A myopic
approach NMYO

5 = {6, 7} and a policy with some vision N V IS
5 = {6, 8}. Thus, starting

from #5 and following NMYO
5 returns the following average cost.

EMYO
5 =

1

2
(c6 +

1

2
(c7 + c4)) +

1

2
(c7 +

1

2
(c1 + c6)) (1)

and following N V IS
5 = {6, 8}

EV IS5 =
1

2
(c6 +

1

2
(c7 + c4)) +

1

2
(c8 +

1

2
(c1 + c7)) (2)

The first parts of the cost are the same, for the rest and if we set c8 = c7 + ε, we
begin by EMYO

5 ≥ EV IS5

c7 +
1

2
(c1 + c6) ≥ c7 + ε+

1

2
(c1 + c7)⇒ (3)

1

2
c6 ≥ ε+

1

2
c7 (4)

which in words translates to “if c6 is larger than c7 plus some constant, the acting
myopically incurs a larger cost.”

117

.2 Appendix B

We introduce K auxiliary variables zT , for which we will demand zT = pT0 · (I − α ·∑N
n=1 vnR

n)−1. This introduces K new equality constraints, leading to the following
equivalent problem.

Intermediate Step (Equivalent formulation).

minimize
z, R1,...,RN

cT · z, (5)

subject to
K∑
j=1

N∑
n=1

vn · rnij · uij ≥ q · qmaxi , ∀ i ∈ K (6)

K∑
j=1

rnij = 1, ∀ i ∈ K and n = 1, ..., N (7)

N∑
n=1

rnij ≤ 1, ∀ {i, j} ∈ K (8)

0 ≤ rnij ≤ 1 (i 6= j), rnii = 0 ∀ i, n. (9)

The new objective is now convex (in fact, linear) in the new variable (z). However, as
the set of constraints Eq.(3.14) are all quadratic equalities, the problem remains nonconvex.
To further deal with this additional complication, we define another set of variables as
fnij = zi · rnij . Since the j-th element of the n-th vector zT ·Rn can be written as

∑
i zi · rnij ,

we can write now zT ·Rn = 1T · Fn, and the new variables are z and F1, . . . ,FN , which
are a K × 1 vector, and N K ×K matrices respectively.
In OP .2, we have a set of constraints which we should take care of for the new problem
formulation. Eq.(6) becomes

K∑
j=1

N∑
n=1

vn · rnij · uij ≥ q · qmaxi ⇒
K∑
j=1

N∑
n=1

vn · fnij · uij − zi · q · qmaxi ≥ 0 (10)

Eq.(7) becomes

N∑
n=1

rnij ≤ 1⇒
K∑
j=1

fnij − zi = 0 (11)

Eq.(8) becomes

K∑
j=1

rnij ≤ 1⇒
K∑
j=1

fnij − zi ≤ 0 (12)

Therefore the final problem yields

118

OP 15 (LP formulation).

minimize
z, F1,..,FN

cT · z, (13)

subject to
K∑
j=1

N∑
n=1

vn · fnij · uij ≥ zi · q · qmaxi , ∀ i ∈ K (14)

K∑
j=1

fnij = zi, ∀ i ∈ K and n = 1, .., N (15)

N∑
n=1

fnij ≤ zi, ∀ {i, j} ∈ K (16)

fnij ≥ 0 (i 6= j), fnii = 0,∀ i, j ∈ K (17)

zj − α ·
N∑
n=1

vn ·
K∑
i

fnij = pj , ∀j ∈ K (18)

.3 Proof of Corollary 5.3.1

Sub-case 1. Since the exact per-user utilities are not known, we calculate the SCHR
given in Eq. (5.1) by taking the conditional expectations on Fkn(x). Denoting the
corresponding pdf as fkn(x), we proceed as follows:

SCHR =

N∑
i=1

K∑
k=1

pik · qi · E

[(
1−

K∏
n=1

(
1− ui

kn · xn

))]

=

N∑
i=1

K∑
k=1

pik · qi ·

(
1− E

[
K∏

n=1

(
1− ui

kn · xn

)])

=

N∑
i=1

K∑
k=1

pik · qi ·

(
1−

K∏
n=1

E
[(

1− ui
kn · xn

]))

=

N∑
i=1

K∑
k=1

pik · qi ·

(
1−

K∏
n=1

∫
(1− t · xn) · fkn(t)dt

)

=

N∑
i=1

K∑
k=1

pik · qi ·

(
1−

K∏
n=1

(
1−

(∫
t · fkn(t)dt

)
· xn

))

=

N∑
i=1

K∑
k=1

pik · qi ·

(
1−

K∏
n=1

(
1− E[ui

kn] · xn

))

where (i) the third equation holds since the utilities for different content pairs {k,n} are
independent, and thus the expectation of their product is equal to the product of their
expectations, and (ii) we denoted

E[uikn] ≡
∫
t · fkn(t)dt =

∫
(1− Fkn(t))dt

119

and the above equation holds since uikn is a positive random variable.

Sub-case 2 follows straightforwardly.

.4 Proof of Lemma 17

We prove here the NP-hardness of the optimal cache allocation for a single cache with
soft cache hits. Let us consider an instance of Optimization Problem 11, where the
utilities are equal among all users and can be either 1 or 0, i.e., uikn = ukn, ∀i ∈ N and
ukn ∈ {0, 1}, ∀k, n ∈ K. We denote as Rk the set of contents related to content k, i.e.

Rk = {n ∈ K : n 6= k, ukn > 0} (related content set) (19)

Consider the content subsets Sk = {k} ∪Rk. Assume that only content k is stored in
the cache (xk = 1 and xn = 0,∀n 6= k). All requests for contents in Sk will be satisfied
(i.e. “covered” by content k), and thus SCHR will be equal to

∑
i∈N

∑
n∈Sk

pin · qi. When

more than one contents are stored in the cache, let S ′ denote the union of all contents
covered by the stored ones, i.e., S ′ =

⋃
{k:xk=1} Sk. Then, the SCHR will be equal to∑

i∈N
∑

n∈S′ p
i
n · qi. Hence, the Optimization Problem 11 becomes equivalent to

max
S‘

∑
n∈S′

pin · qi s.t. |{k : xk = 1}| ≤ C.

This corresponds to the the maximum coverage problem with weighted elements, where
“elements” (to be “covered”) correspond to the contents i ∈ K, weights correspond to the
probability values pin · qi, the number of selected subsets {k : xk = 1} must be less than
C, and their union of covered elements is S ′ . This problem is known to be a NP-hard
problem [99], and thus the more generic problem (with different uikn and 0 ≤ ukn ≤ 1) is
also NP-hard.

.5 Proof of Lemma 18

The objective function of Eq.(5.5) f(X) : {0, 1}K → R is equivalent to a set function
f(S) : 2K → R, where K is the finite ground set of contents, and S = {k ∈ K : xk = 1}.
In other words,

f(S) ≡
N∑
i=1

K∑
k=1

pik · qi ·

(
1−

∏
n∈S

(
1− uikn

))
. (20)

A set function is characterised as submodular if and only if for every A ⊆ B ⊂ V and
` ∈ V \B it holds that

[f (A ∪ {`})− f (A)]− [f (B ∪ {`})− f (B)] ≥ 0 (21)

From Eq.(5.5), we first calculate

120

f (A ∪ {`})− f (A) =

N∑
i=1

K∑
k=1

pikqi

1−
∏

n∈A∪{`}

(
1− ui

kn

)
−

N∑
i=1

K∑
k=1

pikqi

(
1−

∏
n∈A

(
1− ui

kn

))

=

N∑
i=1

K∑
k=1

pik · qi ·

∏
n∈A

(
1− ui

kn

)
−

∏
n∈A∪{`}

(
1− ui

kn

)
=

N∑
i=1

K∑
k=1

pik · qi ·

(
ui
k` ·

∏
n∈A

(
1− ui

kn

))
.

Then,

[f (A ∪ {`})− f (A)]− [f (B ∪ {`})− f (B)] =

=

N∑
i=1

K∑
k=1

pikqi

(
ui
k`

∏
n∈A

(
1− ui

kn

))

−
N∑
i=1

K∑
k=1

pikqi

(
ui
k`

∏
n∈B

(
1− ui

kn

))

=

N∑
i=1

K∑
k=1

pikqi · ui
k` ·

(∏
n∈A

(
1− ui

kn

)
−
∏
n∈B

(
1− ui

kn

))

=

N∑
i=1

K∑
k=1

pikqi · ui
k` ·

∏
n∈A

(
1− ui

kn

)
·

1−
∏

n∈B\A

(
1− ui

kn

)
The above expression is always ≥ 0, which proves the submodularity for function f .
Furthermore, the function f is characterised as monotone if and only if f(B) ≥ f(A)

for every A ⊆ B ⊂ V . In our case, this property is shown as

f(B)− f(A) =

N∑
i=1

K∑
k=1

pikqi ·

(
1−

∏
n∈B

(
1− ui

kn

))

−
N∑
i=1

K∑
k=1

pikqi ·

(
1−

∏
n∈A

(
1− ui

kn

))

=

N∑
i=1

K∑
k=1

pikqi ·

(∏
n∈A

(
1− ui

kn

)
−
∏
n∈B

(
1− ui

kn

))

=

N∑
i=1

K∑
k=1

pikqi ·
∏
n∈A

(
1− ui

kn

)
·

1−
∏

n∈B\A

(
1− ui

kn

) ≥ 0

.6 Proof of Theorem 3

Following similar arguments as in the proof of Lemma 17, the Optimization Problem 12
can be shown to be equivalent to the budgeted maximum coverage problem with weighted

121

elements, which is an NP-hard problem [99].
In Algorithm 7, we first calculate a solution S(1) returned by a modified version

(ModifiedGreedy) of the greedy algorithm (line 1). The differences between the greedy
algorithm (e.g., Algorithm 6) and ModifiedGreedy, are that the latter: (a) each time
selects to add in the cache the content that increases the most the fraction of the objective
function over its own size (line 13), and (b) considers every content, until there is no
content that can fit in the cache (lines 14-20). Then, Algorithm 7 calculates the solution
S(2) that the greedy algorithm would return if all contents were of equal size (line 2).
The returned solution, is the one between S(1) and S(2) that achieves a higher value of
the objective function (lines 3-7).

Hence, Algorithm 7 is a “fast-greedy” type of approximation algorithm. Since, the
objective function was shown to be submodular and monotone in Lemma 18, our fast
greedy approximation algorithm can achieve a 1

2 ·
(
1− 1

e

)
-approximation solution (in the

worst case), when there is a Knapsack constraint, using similar arguments as in [100].

.7 Proof of Lemma 20

Item (1): Optimization Problem 14 is of the exact same nature as Optimization Prob-
lem 13, so it follows that it is NP-hard.
Item (2): We proceed similarly to the proof of Lemma 18. The objective function of

Eq. (5.17) f(X) : {0, 1}K×M → R is equivalent to a set function f(S) : 2K×M → R,
where K and M are the finite ground sets of contents and SCs, respectively, and
S = {k ∈ K, j ∈M : xkj = 1}:

f(S) ≡
N∑
i=1

K∑
k=1

pik · EGi

[
max

(n,j)∈S

(
uikn ·Qij

)]
(22)

For all sets A ⊆ B ⊂ V and {content, SC} tuples (`,m) ∈ V \B, we get

f (A ∪ {(`,m)})− f (A) =

=

N∑
i=1

K∑
k=1

pik · EGi

[
max

(n,j)∈A∪{(`,m)}

(
ui
knQij

)]

−
N∑
i=1

K∑
k=1

pik · EGi

[
max

(n,j)∈A

(
ui
knQij

)]

=

N∑
i=1

K∑
k=1

pik · EGi

[
R

(
ui
k` ·Qim − max

(n,j)∈A

(
ui
knQij

))]
where in the last equation we use the ramp function defined as R(x) = x for x ≥ 0

and R(x) = 0 for x < 0. Subsequently,

[f (A ∪ {(`,m)})− f (A)]− [f (B ∪ {(`,m)})− f (B)] =

=

N∑
i=1

K∑
k=1

pik · EGi

[
R

(
ui
k`Qim − max

(n,j)∈A

(
ui
knQij

))

122

−R
(
ui
k`Qim − max

(n,j)∈B

(
ui
knQij

))]
The above equation is always ≥ 0 (which proves that the objective function Eq.(5.17)

is submodular), since the ramp function is monotonically increasing and comparing the
two arguments of the function R(x) in the above equation, gives

uik`Qim − max
(n,j)∈A

(
uiknQij

)
−
(
uik`Qim − max

(n,j)∈B

(
uiknQij

))
= max

(n,j)∈B

(
uiknQij

)
− max

(n,j)∈A

(
uiknQij

)
≥ 0

since B is a superset of A and therefore its maximum will be at least equal or greater
than the maximum value in set A.

Similarly, since A ⊆ B it holds

f(B)− f(A) =

=
N∑
i=1

K∑
k=1

pik · EGi

[(
max

(n,j)∈B

(
ui
knQij

)
− max

(n,j)∈A

(
ui
knQij

))]
≥ 0

which proves that the Eq.(5.17) is monotone.

123

124

Bibliography

[1] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role of proactive
caching in 5g wireless networks,” IEEE Communications Magazine, vol. 52, no. 8,
pp. 82–89, 2014.

[2] C. V. networking Index, “Forecast and methodology, 2016-2021, white paper,” San
Jose, CA, USA, vol. 1, 2016.

[3] “What is 5g and why should lawmakers care?” https://www.washingtonpost.com/
news/innovations/wp/2015/10/26/what-is-5g-and-why-should-lawmakers-care/
?utm term=.b66c4efb89b6.

[4] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content
distribution networks,” in Proc. IEEE INFOCOM, 2010.

[5] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet.” Glottometrics,
vol. 3, no. 1, pp. 143–150, 2002.

[6] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and S. Chouvardas,
“Placing dynamic content in caches with small population,” in Proc. IEEE Infocom,
2016.

[7] S. Elayoubi and J. Roberts, “Performance and cost effectiveness of caching in mobile
access networks,” in Proc. ACM ICN, 2015.

[8] T. V. Doan, L. Pajevic, V. Bajpai, and J. Ott, “Tracing the path to youtube:
A quantification of path lengths and latencies toward content caches,” IEEE
Communications Magazine, vol. 57, no. 1, pp. 80–86, 2018.

[9] F. Ricci, L. Rokach, and B. Shapira, “Introduction to recommender systems hand-
book,” in Recommender systems handbook. Springer, 2011, pp. 1–35.

[10] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering
recommendation algorithms,” in Proceedings of the WWW, 2001.

[11] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recom-
mender systems,” Computer, no. 8, pp. 30–37, 2009.

[12] P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube recom-
mendations,” in Proc. ACM RecSys, 2016, pp. 191–198.

125

https://www.washingtonpost.com/news/innovations/wp/2015/10/26/what-is-5g-and-why-should-lawmakers-care/?utm_term=.b66c4efb89b6
https://www.washingtonpost.com/news/innovations/wp/2015/10/26/what-is-5g-and-why-should-lawmakers-care/?utm_term=.b66c4efb89b6
https://www.washingtonpost.com/news/innovations/wp/2015/10/26/what-is-5g-and-why-should-lawmakers-care/?utm_term=.b66c4efb89b6

Bibliography

[13] X. Cheng and J. Liu, “Nettube: Exploring social networks for peer-to-peer short
video sharing,” in Infocom 2009, Ieee. IEEE, 2009, pp. 1152–1160.

[14] S. Gupta and S. Moharir, “Modeling request patterns in vod services with recom-
mendation systems,” in International Conference on Communication Systems and
Networks. Springer, 2017, pp. 307–334.

[15] R. Zhou, S. Khemmarat, and L. Gao, “The impact of youtube recommendation
system on video views,” in In Proc. of ACM Internet Measurement Conference,
2010.

[16] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender system: Algorithms,
business value, and innovation,” ACM Transactions on Management Information
Systems (TMIS), vol. 6, no. 4, p. 13, 2016.

[17] “Netflix Open Connect,” https://openconnect.netflix.com/en gb/.

[18] “Quality of the Viewer Experience is Most Significant Factor in Viewer En-
gagement, Conviva Report Finds,” https://www.conviva.com/press-releases/
quality-viewer-experience-most-significant-factor-in-viewer-engagement-conviva-report-finds/.

[19] A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondal, M. Cudak, E. Visotsky,
T. A. Thomas, J. G. Andrews, P. Xia, H. S. Jo, H. S. Dhillon, and T. D. Novlan,
“Heterogeneous cellular networks: From theory to practice,” IEEE Comm. Magazine,
vol. 50, no. 6, pp. 54–64, 2012.

[20] J. G. Andrews, H. Claussen, M. Dohler, S. Rangan, and M. C. Reed, “Femtocells:
Past, present, and future,” IEEE Journal on Selected Areas in Communications,
vol. 30, no. 3, pp. 497–508, 2012.

[21] J. G. Andrews, “Seven ways that hetnets are a cellular paradigm shift,” IEEE
Communications Magazine, vol. 51, no. 3, pp. 136–144, 2013.

[22] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and G. Caire, “Femto-
caching: Wireless video content delivery through distributed caching helpers,” in
Proc. IEEE INFOCOM, 2012.

[23] P. Sermpezis and T. Spyropoulos, “Effects of content popularity on the performance
of content-centric opportunistic networking: An analytical approach and appli-
cations,” IEEE/ACM Transactions on Networking, vol. 24, no. 6, pp. 3354–3368,
2016.

[24] B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe, J. Shao, and A. Srinivasan, “Mobile
data offloading through opportunistic communications and social participation,”
IEEE Trans. on Mobile Computing, 2012.

[25] P. Sermpezis and T. Spyropoulos, “Offloading on the edge: Performance and cost
analysis of local data storage and offloading in HetNets,” in Proc. IEEE WONS,
2017, pp. 49–56.

126

https://openconnect.netflix.com/en_gb/
https://www.conviva.com/press-releases/quality-viewer-experience-most-significant-factor-in-viewer-engagement-conviva-report-finds/
https://www.conviva.com/press-releases/quality-viewer-experience-most-significant-factor-in-viewer-engagement-conviva-report-finds/

Bibliography

[26] J. Whitbeck, M. Amorim, Y. Lopez, J. Leguay, and V. Conan, “Relieving the
wireless infrastructure: When opportunistic networks meet guaranteed delays,” in
Proc. IEEE WoWMoM, 2011.

[27] L. Vigneri, T. Spyropoulos, and C. Barakat, “Storage on Wheels: Offloading
Popular Contents Through a Vehicular Cloud,” in Proc. IEEE WoWMoM, 2016.
[Online]. Available: https://hal.inria.fr/hal-01315370

[28] A. Sadeghi, G. Wang, and G. B. Giannakis, “Deep reinforcement learning for
adaptive caching in hierarchical content delivery networks,” IEEE Transactions on
Cognitive Communications and Networking, 2019.

[29] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning to cache with no
regrets,” in IEEE INFOCOM 2019-IEEE Conference on Computer Communications.
IEEE, 2019, pp. 235–243.

[30] J. Krolikowski, A. Giovanidis, and M. Di Renzo, “Optimal cache leasing from a
mobile network operator to a content provider,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp. 2744–2752.

[31] D. Munaro, C. Delgado, and D. S. Menasché, “Content recommendation and service
costs in swarming systems,” in Proc. IEEE ICC, 2015.

[32] D. K. Krishnappa, M. Zink, and C. Griwodz, “What should you cache?: a global
analysis on youtube related video caching,” in Proc. ACM NOSSDAV Workshop,
2013, pp. 31–36.

[33] D. K. Krishnappa, M. Zink, C. Griwodz, and P. Halvorsen, “Cache-centric video
recommendation: an approach to improve the efficiency of youtube caches,” ACM
TOMM, vol. 11, no. 4, p. 48, 2015.

[34] P. Sermpezis, T. Spyropoulos, L. Vigneri, and T. Giannakas, “Femto-caching with
soft cache hits: Improving performance with related content recommendation,” in
Proc. IEEE GLOBECOM, 2017.

[35] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos, “Jointly optimizing
content caching and recommendations in small cell networks,” IEEE Trans. on
Mobile Computing, vol. 18, no. 1, pp. 125–138, 2019.

[36] D. Liu and C. Yang, “A learning-based approach to joint content caching and
recommendation at base stations,” arXiv preprint arXiv:1802.01414, 2018.

[37] T. Spyropoulos and P. Sermpezis, “Soft cache hits and the impact of alternative con-
tent recommendations on mobile edge caching,” in Proc. ACM CHANTS workshop,
2016, pp. 51–56.

[38] K. Qi, B. Chen, C. Yang, and S. Han, “Optimizing caching and recommendation
towards user satisfaction,” in 10th International Conference on Wireless Communi-
cations and Signal Processing (WCSP). IEEE, 2018, pp. 1–7.

127

https://hal.inria.fr/hal-01315370

Bibliography

[39] K. Guo, C. Yang, and T. Liu, “Caching in base station with recommendation via
q-learning,” in 2017 IEEE Wireless Communications and Networking Conference
(WCNC). IEEE, 2017, pp. 1–6.

[40] M. Karaliopoulos and I. Koutsopoulos, “Poster: Infrastructure and service provider
games in crowdsourced networks,” 2019.

[41] L. Song and C. Fragouli, “Making recommendations bandwidth aware,” IEEE Trans.
on Inform. Theory, vol. 64, no. 11, pp. 7031–7050, 2018.

[42] L. Song, C. Fragouli, and D. Shah, “Interactions between learning and broadcasting
in wireless recommendation systems,” in 2019 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2019, pp. 2549–2553.

[43] E. Ie, V. Jain, J. Wang, S. Narvekar, R. Agarwal, R. Wu, H.-T. Cheng, T. Chandra,
and C. Boutilier, “Slateq: A tractable decomposition for reinforcement learning
with recommendation sets,” 2019.

[44] T. Giannakas, P. Sermpezis, and T. Spyropoulos, “Show me the cache: Optimizing
cache-friendly recommendations for sequential content access,” IEEE WoWMoM,
2018, 2018.

[45] ——, “Optimal network-friendly recommendations for sequential access,” submitted
to IEEE Transactions on Wireless Communications.

[46] T. Giannakas, A. Giovanidis, and T. Spyropoulos, “Mdprecommend: Optimally
reducing network cost via recommendations for random sessions,” somewhere, 2019.

[47] “Google spells out how YouTube is coming after TV,” http://www.businessinsider.
fr/us/google-q2-earnings-call-youtube-vs-tv-2015-7/.

[48] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms for mobile
data caching in small cell networks,” IEEE Trans. on Communications, vol. 62,
no. 10, pp. 3665–3677, 2014.

[49] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation ranking:
Bringing order to the web.” Stanford InfoLab, Tech. Rep., 1999.

[50] M. Harchol-Balter, Performance Modeling and Design of Computer Systems: Queue-
ing Theory in Action. Cambridge Univ. Press, 2013.

[51] K. Avrachenkov and D. Lebedev,“Pagerank of scale-free growing networks,” Internet
Mathematics, vol. 3, no. 2, pp. 207–231, 2006.

[52] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[53] L. E. Chatzieleftheriou, M. Karaliopoulos, and I. Koutsopoulos, “Caching-aware
recommendations: Nudging user preferences towards better caching performance,”
in Proc. IEEE INFOCOM, 2017.

128

http://www.businessinsider.fr/us/google-q2-earnings-call-youtube-vs-tv-2015-7/
http://www.businessinsider.fr/us/google-q2-earnings-call-youtube-vs-tv-2015-7/

Bibliography

[54] S. Boyd et al., “Distributed optimization and statistical learning via the alternating
direction method of multipliers,” Foundations and Trends R© in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[55] J. Park and S. Boyd, “General heuristics for nonconvex quadratically constrained
quadratic programming,” preprint arXiv:1703.07870, 2017.

[56] M. Grant and S. Boyd, “Cvx: Matlab software for disciplined convex programming.”

[57] N. Parikh, S. Boyd et al., “Proximal algorithms,” Foundations and Trends R© in
Optimization, vol. 1, no. 3, pp. 127–239, 2014.

[58] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient projections onto
the l1-ball for learning in high dimensions,” in in Proc. ICML, 2008.

[59] R. L. Dykstra, “An algorithm for restricted least squares regression,” Journal of
the American Statistical Association, vol. 78, no. 384, pp. 837–842, 1983.

[60] S. Boyd and J. Dattorro, “Alternating projections,” EE392o, Stanford University,
2003.

[61] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,”
ACM Transactions on Interactive Intelligent Systems (TiiS), vol. 5, no. 4, p. 19,
2016.

[62] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,”
Adv. in Artif. Intell., pp. 4:2–4:2, 2009.

[63] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million song
dataset,” in Proceedings of the 12th International Conference on Music Information
Retrieval (ISMIR 2011), 2011.

[64] W. Gao, D. Goldfarb, and F. E. Curtis, “Admm for multiaffine constrained opti-
mization,” Optimization Methods and Software, pp. 1–47, 2019.

[65] Y. Wang, W. Yin, and J. Zeng, “Global convergence of admm in nonconvex
nonsmooth optimization,” Journal of Scientific Computing, vol. 78, no. 1, pp. 29–63,
2019.

[66] P. Sermpezis, T. Giannakas, T. Spyropoulos, and L. Vigneri, “Soft cache hits:
Improving performance through recommendation and delivery of related content,”
IEEE Journal of Selected Areas in Communications, 2018.

[67] C. M. Grinstead and J. L. Snell, Introduction to probability. American Mathematical
Soc., 2012.

[68] S. Ermon, C. P. Gomes, A. Sabharwal, and B. Selman, “Designing fast absorbing
markov chains.” in Proc. AAAI, 2014, pp. 849–855.

129

Bibliography

[69] Y. Wang, W. Yin, and J. Zeng, “Global convergence of admm in nonconvex
nonsmooth optimization,” Journal of Scientific Computing, pp. 1–35, 2015.

[70] S. Kastanakis, P. Sermpezis, V. Kotronis, and X. Dimitropoulos, “CABaRet:
Leveraging recommendation systems for mobile edge caching,” in Proc. ACM
SIGCOMM Workshops, 2018.

[71] “https://labrosa.ee.columbia.edu/millionsong/lastfm.”

[72] “https://grouplens.org/datasets/movielens.”

[73] J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl, “An algorithmic framework
for performing collaborative filtering,” in 22nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 1999.
Association for Computing Machinery, Inc, 1999, pp. 230–237.

[74] M. L. Puterman, Markov Decision Processes.: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, 2014.

[75] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming. Athena Scientific
Belmont, MA, 1996, vol. 5.

[76] T. Giannakas, T. Spyropoulos, and P. Sermpezis, “The order of things: Position-
aware network-friendly recommendations in long viewing sessions,” in IEEE/IFIP
WiOpt, 2019.

[77] http://netsg.cs.sfu.ca/youtubedata/, 2007.

[78] F. Boccardi, R. Heath, A. Lozano, T. Marzetta, and P. Popovski, “Five Disrup-
tive Technology Directions for 5G,” IEEE Comm. Mag. SI on 5G Prospects and
Challenges, 2014.

[79] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans.
on Information Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[80] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing
a key technology towards 5g,” ETSI White Paper No. 11, 2016.

[81] “T-Mobile Music Freedom,” https://www.t-mobile.com/offer/free-music-streaming.
html, 2017.

[82] Y. Yiakoumis, S. Katti, and N. McKeown, “Neutral net neutrality,” in Proc. ACM
SIGCOMM, 2016, pp. 483–496.

[83] D. Kahneman. New York: Farrar, Straus and Giroux, 2011.

[84] C. Liang and F. R. Yu, “Wireless network virtualization: A survey, some research
issues and challenges,” IEEE Communications Surveys & Tutorials, vol. 17, no. 1,
pp. 358–380, 2015.

130

http://netsg.cs.sfu.ca/youtubedata/
https://www.t-mobile.com/offer/free-music-streaming.html
https://www.t-mobile.com/offer/free-music-streaming.html

Bibliography

[85] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-to-item
collaborative filtering,” IEEE Internet computing, vol. 7, no. 1, pp. 76–80, 2003.

[86] S. Sesia, I. Toufik, and M. Baker, LTE, The UMTS Long Term Evolution: From
Theory to Practice. Wiley Publishing, 2009.

[87] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. Tay, “A utility
optimization approach to network cache design,” in Proc. IEEE INFOCOM, 2016.

[88] A. Krause and D. Golovin, “Submodular function maximization,” Tractability:
Practical Approaches to Hard Problems, vol. 3, no. 19, p. 8, 2012.

[89] G. L. Nemhauser and L. A. Wolsey, “Best algorithms for approximating the max-
imum of a submodular set function,” Mathematics of operations research, vol. 3,
no. 3, pp. 177–188, 1978.

[90] M. Sviridenko, “A note on maximizing a submodular set function subject to a
knapsack constraint,” Operations Research Letters, vol. 32, no. 1, pp. 41–43, 2004.

[91] P. Sermpezis, T. Spyropoulos, L. Vigneri, and T. Giannakas, “Femto-caching with
soft cache hits: Improving performance through recommendation and delivery of
related content,” available at https:// arxiv.org/ abs/ 1702.04943 , 2017.

[92] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a monotone
submodular function subject to a matroid constraint,” SIAM Journal on Computing,
vol. 40, no. 6, pp. 1740–1766, 2011.

[93] Y. Filmus and J. Ward, “Monotone submodular maximization over a matroid
via non-oblivious local search,” SIAM Journal on Computing, vol. 43, no. 2, pp.
514–542, 2014.

[94] “Internet.org by Facebook,” https://info.internet.org/, 2017.

[95] “free basics by Facebook,” https://0.freebasics.com/desktop, 2017.

[96] J. McAuley, C. Targett, Q. Shi, and A. Van Den Hengel, “Image-based recommen-
dations on styles and substitutes,” in Proc. ACM SIGIR, 2015, pp. 43–52.

[97] K. Poularakis, G. Iosifidis, A. Argyriou, and L. Tassiulas, “Video delivery over
heterogeneous cellular networks: Optimizing cost and performance,” in Proc. IEEE
INFOCOM, 2014, pp. 1078–1086.

[98] O. Fercoq, M. Akian, M. Bouhtou, and S. Gaubert, “Ergodic control and polyhedral
approaches to pagerank optimization,” IEEE Trans. on Automatic Control, vol. 58,
no. 1, pp. 134–148, 2013.

[99] S. Khuller, A. Moss, and J. S. Naor, “The budgeted maximum coverage problem,”
Information Processing Letters, vol. 70, no. 1, pp. 39–45, 1999.

131

https://arxiv.org/abs/1702.04943
https://info.internet.org/
https://0.freebasics.com/desktop

Bibliography

[100] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance,
“Cost-effective outbreak detection in networks,” in Proc. ACM SIGKDD, 2007, pp.
420–429.

132

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Notations
	Introduction
	The Interplay of Caching and Recommendation
	The Role of Caching and Why it is not Enough
	Recommendation Driven Requests
	Cache and Recommendation Co-Design

	Related Work
	Mobile Edge Caching.
	Caching and Recommendations

	Contributions and Thesis Outline
	Limitations of Existing Works
	Novelties
	Technical Summary
	Limitations of Existing Works
	Novelties
	Technical Summary
	Limitations of Existing Works
	Novelties
	Technical Summary
	Limitations of Existing Works
	Novelties
	Technical Summary

	The Long Session Problem
	Introduction
	Problem Definition
	Optimal vs Myopic: An Example
	Modeling and Problem Formulation
	An Algorithm
	Myopic Algorithm
	Cache-Aware Recommendations for Sequential content access (CARS)

	Inner ADMM Minimizers Implementation
	Results
	Datasets
	Simulation Setup
	Results

	LP Transformation and the Non Uniform Click-through Case
	Introduction
	Problem Setup
	Recommendation-driven Content Consumption.
	Baseline Recommendations
	Network-friendly Recommendations.

	Problem Formulation
	Optimization Methodology
	The Journey to Optimality
	A Myopic Approach

	Results
	Warm Up
	Schemes we compare with
	Datasets
	Results

	The Random Session Case
	Introduction
	Problem Setup
	User Session and Interaction with the RS
	Recommender Knowledge about the User
	Cost-Aware Recommender over Network
	Policies

	Formulation
	Defining the MDP
	Optimization Objective
	Optimality Principle
	Versatility of look-ahead policies through

	Quality Driven Users: Some Use Cases
	User Behavior: Model 1
	User Behavior: Model 2
	User Behavior: Model 3

	Results
	Metrics of Interest
	What we Evaluate
	Traces
	Results

	Soft Cache Hits
	Introduction
	Background and Motivation
	Soft Cache Hits: Idea and Implications
	Contributions

	Problem Setup
	Network and Caching Model
	Soft Cache Hits

	Single Cache with Soft Cache Hits
	Soft Cache Hit Ratio
	Optimal SCH for Equal Content Sizes
	Optimal SCH for Different Content Sizes

	Femtocaching with Related Content Recommendation
	Femtocaching with Related Content Delivery
	Evaluation
	Datasets of Content Relations
	Simulation Setup
	Results

	Conclusions and Future Work
	Conclusions
	Future Work Suggestions

	Appendices
	Appendix A
	Appendix B
	Proof of Corollary 5.3.1
	Proof of Lemma 17
	Proof of Lemma 18
	Proof of Theorem 3
	Proof of Lemma 20

