
HAL Id: tel-03506284
https://theses.hal.science/tel-03506284

Submitted on 2 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control plane in dynamic software networks
Adrien Wion

To cite this version:
Adrien Wion. Control plane in dynamic software networks. Networking and Internet Architecture
[cs.NI]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAT007�. �tel-03506284�

https://theses.hal.science/tel-03506284
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

T0
07 Control Plane in Dynamic Software

Networks
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 Ecole doctorale de l’Institut Polytechnique de Paris (ED IP
Paris)

Spécialité de doctorat : Informatique

ADRIEN WION

Composition du Jury :

Hind Castel
Professeure, Télécom Sud Paris Présidente

Stefano Secci
Professeur, CNAM Rapporteur

Thierry Turletti
Directeur de Recherche, INRIA Rapporteur

Andrea Araldo
Maitre de Conférence, Télécom Sud Paris Examinateur

Gerard Memmi
Professeur, Télécom Paris Directeur de thèse

Mathieu Bouet
Directeur de Recherche, Thales Co-directeur de thèse

Vania Conan
Directeur de Recherche, Thales Invité

Luigi Iannone
Maitre de Conférence, Télécom Paris Invité

i

Je dédie ce modeste travail à mes grands parents, partis trop tôt.

iii

Remerciements

Au moment de poser les derniers mots sur ce qui fut l’ouvrage de trois an-
nées, un étrange sentiment vous habite. A regarder en arrière, on se rend
compte du chemin parcouru, surpris d’avoir pu marcher jusque-là. A relire
le manuscrit, on réalise qu’une page se tourne, alors qu’on peine à croire être
l’auteur de ces lignes. C’est en se remémorant ce long voyage, lorsque trois
années de souvenirs refont surface, que l’essentiel vous revient, mettant au
jour une erreur fondamentale d’attribution. Ce périple n’a été possible que
grâce à une multitude de mains tendues, qui inlassablement, m’ont soutenu,
donné, transmis. C’est à toutes ces personnes que je tiens à montrer par ces
quelques mots ma plus profonde gratitude. Sans elles, ce travail n’aurait pu
aboutir.

Tout d’abord, je tiens à remercier ceux qui m’ont non seulement donné la
chance de réaliser cette thèse, mais m’ont aussi suivi et épaulé tout au long de
cette aventure: mes encadrants. Vous m’avez transmis le sens de la rigueur
scientifique, du verbe juste, tout en me guidant avec humanité. Je n’aurais
pas pu rêver de meilleurs mentors que vous. Je remercie Mathieu Bouet,
qui en plus de ses conseils scientifiques, a toujours su me redonner un fil
d’Arianne lorsque je me sentais perdu. Je te remercie également de m’avoir
fait comprendre l’importance de savoir transmettre ses idées et de convain-
cre de leur pertinence. Grâce à toi, j’ai réalisé à quel point avoir raison seul
c’était avoir tort. Je remercie Luigi Iannone, qui en plus d’être un modèle
d’intégrité, a toujours su alimenter mes recherches avec de nouvelles idées
intéressantes, novatrices et appliquées. Je te remercie de m’avoir transmis un
sens de la rigueur et du mot juste lors des phases de rédactions, me rappelant
que ce qui se conçoit bien s’énonce clairement. Je remercie Vania Conan non
seulement de m’avoir accueilli chaleureusement au sein de TAI, mais égale-
ment d’avoir suivi avec intérêt mes travaux tout au long de ces trois années.
Tu as, à de nombreuses reprises, su me faire prendre de la hauteur sur les
problèmes, tout en transformant les difficultés que je rencontrais en opportu-
nités. Je remercie également Gérard Memmi qui a rendu cette thèse possible.
Je vous remercie également pour tous les moments de joie passés avec vous
que ce soit en réunion, en conférence ou même au détour d’un café qui ont

iv

égayé ces trois années de thèse.
Je tiens également à remercier les membres du jury qui ont donné leur

temps et leur énergie pour évaluer ce travail. En particulier je remercie Ste-
fano Secci et Thierry Turletti pour avoir relu avec attention ce manuscrit et
pour leurs précieux commentaires qui m’ont permis d’améliorer le contenu
de cette thèse. Je remercie aussi Andrea Araldo et Hind Castel qui ont ac-
cepté de faire partie du jury. Je suis sûr que leur expertise améliorera mes
réflexions sur le domaine.

Je remercie également l’ensemble de mes collègues du laboratoire TAI qui
par leur bonne humeur ont constitué un havre de paix que j’étais heureux
de retrouver tous les matins (en commençant bien sûr par une sacro-sainte
pause café !). Merci pour les nombreux pots, les moments de rire, vos con-
seils tout au long de ces trois années que je n’oublierai pas. Merci à Allan,
Raphaël, Filippo, Erwan, Damien, Dallal, Hicham, Ehsan, Geoffroy, Farid et
Bruno. Je tiens également à remercier Kevin, qui en plus d’être le plus grand
organisateur de pot de TAI, a sur un angle plus professionnel implémenté
une version SRv6 du NFV-Router, donnant un impact plus important à cette
contribution au sein de Thales. Je suis aussi reconnaissant envers Azharia qui
a toujours su m’aider avec gentillesse dans la gestion des différentes procé-
dures au sein de Thales tout au long de ma thèse.

J’ai également une pensée particulière pour mes compagnons de galère
Clément, Agathe et Sadia qui m’ont respectivement précédé, accompagné et
suivi dans ce doctorat. Merci pour votre soutien et ces longues discussions
qui m’ont tant apporté au cours de ces trois ans.

Sur un plan plus personnel, je tiens à remercier mes amis qui parfois mal-
gré la distance continuent, tel le pilier Djed, à être une source de stabilité et de
joie dans ma vie. Merci d’être là, vous êtes comme une deuxième famille pour
moi. Merci à Léo, Augustin, Magda, Célia, Maxime, Basile, Théo, Florine,
Mathilde, Catherine, Paul P., Camille, Victoria, Paul J., Louise et Justin. Je
vous dois énormément. Je suis fier et reconnaissant de vous avoir comme
amis.

Finalement, je tiens à remercier toute ma famille qui est une source de
soutien indéfectible. Plus particulièrement, je tiens à remercier mes parents
Eric et Annick. Merci d’avoir toujours été là pour moi, merci de croire en moi
plus que je ne sais le faire, merci pour toutes les valeurs que vous m’avez
transmises, rien de tout cela n’aurait été possible sans vous. Je tiens égale-
ment à remercier particulièrement mon frère et ma soeur: Maxime et Eloïse.
Depuis la plus tendre enfance vous avez toujours été des compagnons de

v

route et surtout une source de bonheur absolue pour moi. Merci pour tout.

vii

Abstract

English Version

During the last years, network infrastructure has moved from dedicated-
hardware solutions implementing fixed functions to more flexible software
based ones. On one hand, SDN (Software Defined Network) can flexibly
control forwarding operations, while on the other, NFV (Network Function
Virtualization) creates elastic functions that can scale with the user demands.
So far, these solutions have been used to simplify network management and
operations, but they let envision a network that can automatically react to
network events. In this thesis, we explore to what extent these new software
networks can be used to react and adapt finely to the network dynamics.
Our first contribution focuses on service chaining: the ability to steer flows
through a set of waypoints hosting functions before they reach their destina-
tions. We show that a distributed control plane that relies on existing rout-
ing protocols and is constituted by autonomous nodes can dynamically steer
traffic through chains of services. Our solution finely adapts its decision to
the network traffic and automatically balances the induced load on the func-
tions present in the network. Moreover, our proposal, contrary to existing
solutions, can be incrementally deployed in today’s network. In our second
contribution, we compare two types of chaining decisions: a centralized one
with an end-to-end view of the chain and a distributed approach that solely
routes flow from a function to another. We show that the two decisions are
close in realistic topologies. Thus, hop-by-hop chaining could be used with-
out affecting chaining performance. Finally, we explore how software net-
works can react to network dynamics in datacenters. So far, load balancers
use static policies to spread incoming traffic on servers, which leads to imbal-
ance and overprovisioning. We propose to close the loop and dynamically
adapt the policy to the server load variation. Our MPC (Model Predictive
Control) approach proved to be efficient to reduce load imbalance at a slow
pace, thus improving the number of requests a cluster can process.

viii

French Version

Au cours de ces dernières années, les réseaux se sont transformés passant
d’une infrastructure à base de matériel dédié implémentant des fonctions
statiques à des solutions logicielles plus flexibles. D’un côté, le SDN (Soft-
ware Defined Networks) permet de contrôler les opérations de transmis-
sion, alors que de l’autre le NFV (Network Function Virtualization) crée des
fonctions élastiques qui peuvent s’adapter à la demande. Jusqu’à présent,
ces solutions ont été utilisées pour simplifier la gestion et l’exploitation des
réseaux mais elles laissent également envisager un réseau qui peut automa-
tiquement réagir à des événements réseaux. Dans cette thèse, nous explorons
dans quelle mesure ces nouveaux réseaux logiciels peuvent être utilisés pour
s’adapter à la dynamique inhérentes aux réseaux. Notre première contribu-
tion s’intéresse au chaînage de service, c’est à dire la capacité de diriger des
flux de données à travers un ensemble de points intermédiaires, qui héber-
gent des fonctions, avant d’atteindre leur destination. Nous montrons qu’un
plan de control distribué, qui s’appuie sur les protocoles de routage existants
et qui est constitué par des noeuds autonomes, peut dynamiquement diriger
le trafic à travers des chaines de services. Notre solution adapte sa décision
au trafic sur le réseau et équilibre automatiquement la charge induite sur les
fonctions présentes sur le réseau. De plus, notre proposition, au contraire des
solutions existantes, peut être déployée progressivement dans les réseaux
actuels. Dans notre seconde contribution, nous comparons deux types de
décision de chaînage : une approche centralisée avec une vue de bout en
bout de la chaîne et une approche distribuée qui dirige uniquement les flux
d’une fonction à l’autre. Nous montrons que ces deux décisions sont proches
dans des topologies réalistes. Ainsi, un chaînage saut par saut pourrait être
utilisé sans affecter les performances du réseau. Finalement, nous explorons
comment les réseaux logiciels peuvent réagir à la dynamique des réseaux
dans les centres de données. Jusqu’à présent, des équilibreurs de charges
utilisaient des politiques statiques afin de répartir le trafic sur les serveurs,
ce qui amenait du déséquilibre et gâchait des ressources. Nous proposons
d’asservir le système et d’adapter dynamiquement la politique à la variation
de charge des serveurs. Notre approche MPC (Model Predictive Control) est
efficace afin de réduire le déséquilibre de charge à une basse fréquence de
contrôle améliorant ainsi le nombre de requêtes qu’un ensemble de serveur
peut traiter.

ix

Résumé

Nés dans les centres de données il y a un peu plus d’une dizaine d’années
les technologies de virtualisation et d’automatisation ont ouvert la voie à
des services réseaux conçus, implémentés déployés et orchestrés comme un
ensemble de logiciels. Ce changement de paradigme proposait de passer
d’un réseau constitué d’éléments matériel déployés statiquement et pouvant
encaisser les pics de demande à un modèle où les différents éléments con-
stitutifs d’un service pouvaient être déployés et adaptés dynamiquement à
l’ampleur de la demande des utilisateurs. Originaire des centres de données,
ce mouvement s’est propagé et a rapidement conquis les réseaux mobiles [96,
101] et d’infrastructure [38, 55] et révolutionne actuellement les architectures
des réseaux ainsi que leur exploitation. Ce mouvement appelé network soft-
warization a permis de i) avoir un contrôle plus fin sur les chemins empruntés
par les flux de données et ii) d’adapter dynamiquement le dimensionnement
de l’infrastructure. Ces deux innovations donnent une interface de contrôle
pour à la fois allouer au mieux la demande des utilisateurs tout en adap-
tant le dimensionnement de l’offre de services. Ces réseaux programmables
permettent d’imaginer de nouvelles boucles de contrôles pour s’adapter dy-
namiquement à ces changements. Par exemple, des flus de donées utilisa-
teurs pourraient être assignés dynamquement à des ressources réseaux afin
de minimiser leur utilisation tout en délivrant le service requis [2, 45, 59].

La conception de tels systèmes de contrôles qui pourraient optimiser le
réseau sans réduire sa robustesse et sa flexibilité est complexe[66, 89]. En
effet, afin de pouvoir être déployé de manière incrémentale, ces systèmes ad-
ditionnels doivent être compatible avec les réseaux déployés actuellement.
De plus les degrés de liberté supplémentaires introduits par les réseaux logi-
ciels augmentent significativement la complexité des problèmes de contrôle
et nécessitent de i) superviser l’état du réseau et d’extraire des informations
supplémentaires de ce dernier et ii) de prendre rapidement des décisions afin
de s’adapter au mieux à la dynamique de ces changements d’états. Finale-
ment, ces nouveaux systèmes de contrôle devraient être conçus afin de min-
imiser la complexité additionnelle qu’ils introduisent tout en permettant une
augmentation des performances du réseau ou l’introduction de nouveaux

x

services.
Dans cette thèse, nous explorons les possibilités données par les réseaux

logiciels de contrôler dynamiquement le plan de commutation. A la place
d’algorithme statique prenant des décisions à partir d’une description sta-
tique du résau (topologie, bande passante d’un lien ...) nous proposons de
nouveaux réseaux où la charge courante du réseau est utilisée par une boucle
de rétroaction afin de modifier et d’optimiser les décisions de routage. Ici,
nous utilisons le terme routage dans un sens large qui n’est pas limité aux dé-
cisions prises par des routeurs afin de commuter des paquets, mais peuvent
également comprendre des équilibreurs de charge qui routent des requêtes
sur des serveurs applicatifs.

Cette proposition introduit un processus dynamique qui est asservi à la
performance du réseau. Notre travail se distingue des approches classiques
d’ingénierie de trafic qui sont utilisées sur des échelles de temps longues
(de l’ordre de l’heure) et s’appuyant sur des tendances de long terme afin
d’estimer des matrices de trafic. Dans notre travail, nous gérons la volatil-
ité du trafic utilisateur à une granularité plus fine (e.g. des flux TCP). Cette
décision est motivée par deux choses. Premièrement, l’introduction de fonc-
tions additionnelles dans le réseau introduit de l’état dans le réseau (souvent
associés à un flux identifiés par les 5-tuples). Ainsi rerouter de tels flux (et a
fortiori changer l’instance de fonction qui la traite) est difficile et devrait être
évité. Il est alors crucial de choisir un chemin adéquat (i.e., non surchargé)
lors du routage du premier paquet d’un flux. Deuxièmement, gérer le trafic
à une granularité plus fine augmente le gain potentiel de performance, car
nous plaçons des unités atomiques plus petite. Cependant, prendre des dé-
cisions de routage dynamique à une telle fréquence impose alors à la boucle
de contrôle de réagir rapidement à la dynamique du trafic. Ces difficultés
ajoutent des contraintes significatives pour toute architecture ou algorithme
de contrôle envisagé.

Nous proposons d’appliquer cette idée dans deux domaines : le chaînage
de service et l’équilibrage de charge dynamique. Le Chapitre 2 présente le
contexte et les travaux existants liés aux différentes contributions présentées
dans les chapitres ultérieurs.

Dans le Chapitre 3 et le Chapitre 4, nous présentons les contributions rel-
atives au chaînage de service. Le chaînage de service correspond à la capac-
ité de diriger le trafic réseau à travers une séquence ordonnée de fonction
réseaux (appelée chaîne) avant de livrer les paquets à leur destination.

Dans le Chapitre 3, nous proposons une nouvelle solution pour créer des

xi

chaînes de services. La plupart des propositions existantes s’appuient sur
une approche centralisée pour calculer et installer les règles de commuta-
tions sur chaque équipement réseau. Cette flexibilité a un prix : une solution
plus fragile comparée aux protocoles de routages actuels qui requiert le dé-
ploiement d’une toute nouvelle infrastructure réseau. A la place, nous pro-
posons d’étendre la couche de routage à la notion de service. Notre solution
s’appuie sur les protocoles de routages distribués existants, ainsi des noeuds
autonomes sont capables d’annoncer des informations relatives aux services
virtualisés qu’ils peuvent fournir. Cela crée une vue étendue du réseau qui
permet de créer des chaînes de services où la décision de routage est prise
à partir des performances actuelles du réseau. Notre architetcure est modu-
laire, peut être déployée de manière incrémentale et a été implémentée dans
des routeurs modifiés appelés NFV-Router. Nous montrons avec des expéri-
ences à large échelle que ces NFV-Routers peuvent diriger efficacement le
trafic à travers des chaînes de service, qu’ils répartissent finement la charge
sur différentes instances de fonctions, et, que le trafic de contrôle additionnel
induit par notre solution est négligeable.

Dans le Chapitre 4, nous comparons deux approches afin de construire
des chaînes de services : un routage à la source et un routage au saut par saut.
Notre précédente contribution permet de construire une vue distribuée de la
topologie réseau ainsi que des services réseaux instanciés sur ce dernier. A
partir de cette vue, les flux entrants sur le réseau doivent être routés à travers
un ensemble de points intermédiaire qui peuvent soit être choisi au point
d’entrée du réseau ou au fil l’eau: segment par segment (i.e., chaque router
où est instancié un service choisi le chemin jusque au prochain service et ceux
jusqu’à atteindre la fin de la chaîne de service nécessaire). Dans la première
approche, quand la décision de routage est prise, la chaîne dans son entier est
considérée,alors que dans la seconde, la décision est prise à chaque routeur
delivrant un service. Le routage au saut par saut a plusieurs avantages: i) il
augmente la résilience de l’architecture de contrôle, et ii) il permet de séparer
le problème de contrôle en un ensemble de sous problèmes parallélisable sur
les NFV-Routers. Cependant, la décision au saut par saut, à cause de cette
séparation en sous-problème considérant uniquement le prochain service (à
la manière d’un algorithme glouton) peut amener à une décision sous op-
timale qui peut avoir un impact sur les performances du réseau. Dans ce
chapitre, nous montrons les compromis entre ces deux types de décisions.
Nous proposons deux modèle ILP afin de comparer de manière analytique

xii

ces décisions. Nos évaluations montrent que i) la décision de chaînage dis-
tribuée est proche de la solution centralisée et ii) l’approche distribuée grâce
à sa boucle de contrôle locale a une plus grande réactivité pour s’adapter aux
événements réseaux comparativement à la solution centralisée.

Tout comme le routage réseau, l’équilibrage de charge applicatif est prin-
cipalement statique et ne s’adapte pas à la dynamique du trafic ce qui amène
à un déséquilibre de charge significatif dans les centres de données. L’une des
principales raisons est que les équilibreurs de charges sont agnostiques à la
charge des serveurs et ne peuvent donc pas réagir à cette dernière. S’inspirant
de notre travail fait au Chapitre 3, nous proposons d’asservir la politique
d’équilibrage de charge à différentes métriques renvoyées régulièrement par
les serveurs, nous permettant ainsi de créer une politique d’équilibrage dy-
namique.

Dans le Chapitre 5, nous proposons une solution basée sur la théorie du
contrôle afin de créer un équilibrage de charge dynamique dans des centres
de données. L’introduction de plan de commutation programmable a permis
d’implémenter des politiques d’équilibrage sophistiqués même si le nombre
de serveurs dans une grappe change au cours du temps. Cette avancée per-
met de fermer la boucle et de construire un équilibreur de charge asservie
à la performance des serveurs. Cependant, les politiques dynamiques ex-
istantes requièrent une fréquence de mise à jour de l’état des serveurs im-
portante afin de réduire le déséquilibre de charge. Ainsi, ces dernières peu-
vent générer un important trafic de contrôle additionnel, ce qui rend im-
possible leurs utilisations à large échelle. Dans ce chapitre, nous proposons
un plan de contrôle pour l’équilibrage de charge avec une fréquence lente
de mise à jour de l’état des serveurs. Nous proposons de modéliser une
grappe de serveurs comme un système dynamique asservi par la politique
d’équilibrage de charge et d’utiliser une approche de commande prédictive
afin de minimiser le déséquilibre de charge. Notre approche a permis de
réduire le déséquilibre de charge sur une grappe de serveur. Nous avons
comparé avec des simulations notre approche aux politiques d’équilibrage
existantes utilisés par d’importants fournisseurs de services dématérialisés
et avons montré qu’elle améliorait l’équilibrage de 10% avec une fréquence
de contrôle lente. Notre solution permet donc de réduire significativement le
nombre de serveurs nécessaires pour encaisser une charge donnée de trafic
utilisateur.

xiii

Contents

1 Introduction 1
1.1 Controlling Softwarized Networks 2

1.1.1 From Hardware to Software Networking Operation . . 2
1.1.2 Software Networks Provisioning 4

1.2 Challenges . 5
1.3 Contributions and Thesis Outline 6

2 Related Work 11
2.1 Service Chaining . 11

2.1.1 Routing Decision . 12
2.1.2 Traffic Steering . 13
2.1.3 State Management . 14
2.1.4 Resource Allocation . 15

2.2 Load Balancing . 16
2.2.1 Traffic Splitting . 16
2.2.2 Load Balancing Policies 18

3 Let there be Chaining: How to Augment your IGP to Chain your
Services 21
3.1 Background and Motivation . 22
3.2 Distributed Chaining with IGP Service Augmentation 24
3.3 NFV-Router Architecture . 28
3.4 Implementation . 30

3.4.1 System-Level Choices 30
3.4.2 Node-Level Choices . 33

3.5 Functionnal Evaluation . 35
3.5.1 Evaluation Methodology 35
3.5.2 Evaluation . 35

3.6 Large Scale Evaluation . 37
3.6.1 Evaluation Methodology 37
3.6.2 Evaluation . 38

3.7 Discussion and Perspectives . 41

xiv

3.8 Conclusion . 44

4 The cost of distributed decision in Service Function Chaining 47
4.1 Background and Motivation . 47
4.2 Network Modelization . 49
4.3 Problem Formulation . 51
4.4 Evaluation Methodology . 52
4.5 Evaluation . 54

4.5.1 Network Cost and Path Stretch 54
4.5.2 Control Reactivity . 55
4.5.3 Link Load . 56

4.6 Conclusion . 60

5 Using Model Predictive Control to Balance Service Load in Data
Centers 61
5.1 Background and Motivation . 62
5.2 Control Overhead Tradeoff . 64
5.3 Dynamic Load Balancing . 67

5.3.1 Load Balancing Architecture 67
5.3.2 Modelization . 69

5.4 Model Predictive Load Balancer 72
5.4.1 Linear Quadratic Regulator 73
5.4.2 Model Predictive Control Algorithm 76

5.5 Evaluation Methodology . 77
5.5.1 Traffic Traces Generation and Model Estimation 78
5.5.2 Load Balancing Simulation 79

5.6 Evaluation . 80
5.7 Discussion and Perspectives . 84
5.8 Conclusion . 86

6 Conclusion and Perspectives 87
6.1 Summary of Contributions . 87

6.1.1 Service Chaining . 87
6.1.2 Load Balancing . 89

6.2 Perspectives . 89

Bibliography 95

xv

List of Figures

3.1 Network combining classical IP routers and NFV Routers. Both
router types are managed and configured by a remote cen-
tral policy server. IP routers and NFV Routers announce with
the IGP the subnetworks that are directly connected to them.
In addition, NFV Routers advertise with the IGP the vSF in-
stances they are hosting. Based on this augmented network
view, the NFV Routers take distributed chaining decisions. . . 23

3.2 Network topology composed of 6 NFV-Rs, with 3 of them host-
ing a vSF instance (Fig. 3.2a). The IGP views the two FW in-
stances as a single entity, since they announce the same any-
cast IP address (Fig. 3.2b). A first flow (plain red line) is
routed through the IDS and the top FW instance. A second
flow (dashed blue line) is then routed through the IDS and the
bottom FW instance as the top FW instance is already loaded
with the first flow. 24

3.3 Each NFV-R builds its service plane topology (example at Node
A on Fig. (b)) with the Network costs and vSF costs so as to
choose the next hop(s). 27

3.4 NFV-R architecture. Doted arrows illustrate vSF routing con-
trol flow. Solid arrows show how vSFs state is monitored,
transformed in a cost, and then injected in the IGP. 29

3.5 NSH encapsulation header. 31
3.6 Mapping between the NSH fields and the associated vSF type.

This mapping is implemented in the connector and populated
by the D-MANO based on high level policies. 32

3.7 Service aware routing table. Maps vSF type to the next hop(s). 32
3.8 Traffic distribution over time on the vSF instances. During the

first 150s only two vSFs are running. At t = 150s, a third vSF
is instantiated. 36

3.9 Mean traffic distribution on the vSF instances during the two
phases. 36

xvi

3.10 OSPF overhead induced by NFV-Rs with various LSA update
periods. 39

3.11 Traffic distribution over vSF instances with various LSA up-
date periods for 1 vSF chains on the RF1755 topology. 40

3.12 Traffic distribution over vSF instances with various LSA up-
date periods for 2 vSF chains on the RF1755 topology, type 1
vSFs on the left, type 2 vSFs on the right. 41

3.13 Max link loads on topologies for chains of 1 or 2 vSFs with
different LSA update paces. 42

4.1 Comparison between a hop-by-hop and a centralized chaining
decision. The hop-by-hop decision minimizes the cost from
the source to the firewall and then from the firewall to the des-
tination. The centralized decision minimize the cost for the
whole chain. 48

4.2 Cost ratio between centralized and distributed chaining deci-
sions for chains with 1, 2 and 5 vSFs. 54

4.3 Path stretch between centralized and distributed chaining de-
cisions for chains with 1, 2 and 5 vSFs. 54

4.4 Centralized controller reactivity. 56
4.5 Max link loads on topologies for chains of 1, 2 or 5 vSFs. . . . 57
4.6 Top 50 more loaded links with 1 vSF chains on the RF1755

topology. 57
4.7 Max link loads with increasing traffic on the RF1755 topology. 58

5.1 Dynamic Load Balancing. 64
5.2 Static vs Dynamic Load Balancing. 66
5.3 Load Balancing Architecture. 68
5.4 System Identification. 74
5.5 Receiding Horizon. 77
5.6 Simulation Workflow. 78
5.7 Impact of the arrival rate on the Systemic Imbalance. 80
5.8 Impact of the connection duration on the Systemic Imbalance. 82
5.9 Servers’ Imbalance Distribution. 83
5.10 Impact of the horizon length. 83

xvii

List of Tables

3.1 Evaluation dataset. 38
3.2 Traffic distribution (%) over vSF instances with various LSA

update periods for 1 vSF chains. 41
3.3 Traffic distribution (%) over vSF instances with various LSA

update periods for 2 vSF chains. 42

4.1 Notations. 50

5.1 Notations. 73

1

Chapter 1

Introduction

Ne pas railler, ne pas déplorer, ne

pas maudire, mais comprendre.

Baruch Spinoza

Born in datacenters more than a decade ago, virtualization and automa-
tion technologies paved the way to network services designed, implemented,
provisioned, and orchestrated as pieces of software. This paradigm shift en-
visioned to move from a static over-provisioned model to one where services
can be dynamically deployed and scaled to fit users’ demands. From data-
centers, this trend has quickly spread to mobile [96, 101] and infrastructure
networks [38, 55] and is now revolutionizing network architecture and oper-
ation. This movement called network softwarization has enabled to i) have a
finer control on the flow paths and ii) rapidly tune the current infrastructure
provisioning. The first gives a control interface to allocate the demand while
the second allows to finely adapt the supply. These programmable networks
let envision new control loops to accommodate dynamic changes. For in-
stance, user flows could be dynamically assigned to network resources so to
minimize their usage while delivering the required service [2, 45, 59].

Designing new control systems that could optimize the network without
weakening its robustness and scalability is challenging [66, 89]. Indeed, to
be incrementally deployed, these additional systems should be compatible
with the current networking devices. Moreover, the degrees of freedom have
significantly increased the complexity of the control problems while requir-
ing to i) monitor or extract additional information in the network and ii) take
fast decision so to adapt to the network dynamics. Finally, these new control
systems should be carefully designed to minimize their complexity and over-
head while increasing the network performance or delivering new services.

2 Introduction

In this introduction, we first review the flexibility introduced by soft-
warized networks. We then expose the challenges in controlling such sys-
tems. Finally we introduce our different contributions to the field.

1.1 Controlling Softwarized Networks

Network Softwarization has introduced two main changes in networks. First,
it enables to program the behavior of networking functions. Second, it has
modified the network-provisioning model, switching from specialized hard-
ware devices to elastic virtual appliances running on a shared infrastructure.

1.1.1 From Hardware to Software Networking Operation

Once statically defined by slowly standardized protocols, now networks can
more and more be finely controlled by the operators who actually run the
network.

Networking devices are traditionally divided into two main components:
the control plane and the data plane. The data plane achieves the primary
functions of switches or routers: it processes and forward packets at high
speed. In most devices these functions are achieved by fixed hardware prim-
itives controlled by the information stored in the Forwarding Information
Base (FIB). The control plane consists of the algorithms and protocols that
manage the data plane by populating the FIB. This software part can be for
instance distributed routing protocols such as OSPF or BGP. This component
is mostly implemented in software and is often bundled with the device op-
erating system.

In most of networking devices, these two planes were tightly integrated
by the manufacturer who only exposes to the final user an interface to con-
figure the required features making them hard to manage. FoRCES [42] and
Openflow [65] started to open these black boxes by introducing a standard-
ized API between the control and the dataplane. These new APIs gave the
possibility to rethink the control plane architecture and the way it was imple-
mented. For instance, Openflow proposed to move the control plane logic
from forwarding devices to a central control point connected by an out-of-
band network.

This new control interface on networking behavior quickly gained trac-
tion to simplify the Traffic Engineering, which was limited by the logic of
standardized routing protocols (e.g., packets only follow the shortest path).

1.1. Controlling Softwarized Networks 3

Google [55] and Microsoft [38] successfully leveraged on this technology to
improve the bandwidth usage. In their WAN, flows can be dynamically allo-
cated to specific paths so to reduce link usage and meet the required quality
of services. These widescale deployments showed the potential gain for the
industry.

From this technological shift, two main approaches have emerged. The
first proposes to consolidate the control plane state and processes in a logi-
cally centralized component, reducing networking devices to forwarding ele-
ments remotely controlled [65]. Even if this solution simplifies network man-
agement, it raises scalability and resiliency issues since it introduces a single
point of failure, hence fragile. Moreover, this solution introduces new devices
that are not interoperable with already deployed switches and routers. The
second advocates that local distributed control plane is primordial for the
network robustness. They proposed a centralized solution that can achieve
the same level of programmability on top of the existing and already de-
ployed routing protocols [6, 43, 102, 103, 110, 111]. In this vision, a central
control point can optimize the network while distributed protocols conserve
the original robustness of the IP stack as a default behavior.

Even with these new APIs, networking devices behavior was still lim-
ited by the fixed logic available on the switching chips often implemented
as Application Specific Integrated Circuits (ASIC) [11]. It was conventional
wisdom in the networking community that programmable chips were 10 to
100 times slower and consume much more power compared to fixed function
chips [11]. This statement started to collapse in 2013 when a first chip design
was introduced which supported reconfigurable match table [11]. Quickly, a
first language was proposed to program the forwarding plane [10], while in
2016 the first programmable networking chip as fast as ASIC hits the market.

This breakthrough allows a programmer to specify fully how a packet is
processed in the dataplane while benefiting of the performance of the under-
lying hardware target. This flexibility enables to redefine the fundamental
primitives done by the data plane which can for instance more finely moni-
tor packets [18, 40, 51] or accelerate some of the control plane functions [48,
49].

All these advances have made possible to network operators to finely
control packet processing and forwarding in their network giving them i)
a sharper view on the network events and ii) more flexibility in the possible
reactions to these events. This wider span of control opens up perspectives
to rethink network architecture. Yet the proposed improvements still need to

4 Introduction

deal with the same problem inherent to distributed system (e.g., state man-
agement) [31, 80] and cope with the underlying hardware limitations (e.g.,
number of forwarding rules limitations) [46].

1.1.2 Software Networks Provisioning

In 2012, major Internet Service Providers proposed the concept of Network
Functions Virtualization (NFV [45]). This proposal aimed at bringing the
benefits of virtualization technologies into the network. Virtualization en-
ables to run and isolate different software functions on the same underlying
hardware. This technology would allow different tenants to provide isolated
services on the same device and open the way to more elastic networks where
functions can be instantiated, scaled or removed on the fly to meet the de-
mand.

A first target of NFV was middleboxes. Middleboxes are specific hard-
ware appliances that were first introduced by operators to quickly deploy
new features in their networks (e.g., Firewall, NAT...). This poor solution,
already widespread in 2002 [14], represents a significant part of networking
devices in enterprises and datacenters networks while being the source of
the majority of the infrastructure cost and network failures [82, 93]. Mid-
dleboxes virtualization offers to simplify their management and reduce their
cost by moving their function into virtualized software appliances running
on commodity hardware.

The virtualization of these service functions significantly modifies the
way network are managed. First, it requires adding the notion of service in
the forwarding decision. Originally, middleboxes were physically connected
and acted as a bump in the wire that processed packets while being invisible
to the network topology. Now, the packets have to be i) classified and map
to the adequate set of functions and ii) routed through a set of waypoints to
deliver a service before reaching their destination [41]. Second, it requires
finely managing the resource usage in the network [45]. A slice of process-
ing resources is allocated to each functions (e.g., CPU core) and if exceeded
would lead to performance degradation. These lead to two complementary
approaches to optimize the resource use: i) dynamically allocate incoming
flow based on the resource usage and ii) scale the function’s resource slot
based on the current workload.

Many deployment of virtualized network functions have been made on

1.2. Challenges 5

x86 servers due to their cheap cost. Yet, this architecture, despite being op-
timized by kernel bypass techniques [21, 29], performs poorly compared to
specialized hardware. Some envisions using hardware accelerator to opti-
mize the function’s packet processing [26], while interestingly, others try to
add virtualization into programmable networking chips [115, 117]. Although
these different hardware targets promise to improve the performance, it sig-
nificantly increases the resource management problem complexity [26].

NFV allows operators to finely compose the available resources and func-
tions in the network. Even if it promises to optimize the resource use, it
considerably grows the network environment complexity, which have to dy-
namically control additional components.

1.2 Challenges

With network softwarization, operators have now the tools to i) finely allo-
cate the flows that consume the network resources (bandwidth, CPU...) and
ii) modify the current resource provisioning to adapt to the load. Even if
these tools provide the building blocks to optimally allocate resource con-
sumers and providers, performing such a task online in real network is ex-
tremely challenging.

It can be tempting to try to solve these two problems jointly. Several
works propose linear programming models and heuristic algorithms to com-
pute the optimal placement of both the flow and the resource provisioning
(e.g., network functions location and resource allocation [45]). Although
these solutions can work for network planning, they can hardly be ported
when dynamics are considered. Indeed, they assume that a control system
can i) gather the necessary information for their algorithm and ii) apply the
computed decision on the network. Yet, performing both of these tasks on-
line in real networks is arduous. In practice when the first packet of a TCP
flow is routed, little is known about its future resource consumption (link and
CPU usage). Moreover, most of the considered network functions keep state
on the flow they process, meaning that they can only be rerouted at high
cost. Finally, the forwarding and allocation decisions are taken at different
timescale. A packet should be forwarded in few nanoseconds in high-speed
networks, while modification in the network provisioning takes several or-
ders of magnitude longer. These facts have several consequences: i) the for-
warding decision has to be taken solely on the past or current network state
(reactive control process), ii) a change in the forwarding decision should only

6 Introduction

affect new incoming flows and iii) flow routing and resource provisioning
should be split into orthogonal sub-problems.

Even when reduced to resource aware routing (i.e., forward flows based
on the current resource usage), the problem is hard to implement in real net-
works. So far, a routing process considers static and stable network related
metrics to build a routing table that is not modified unless sporadic event
occurs (link failure, policy change...). Finely routing flows based on the cur-
rent performance requires regularly broadcasting additional metrics not only
related to the network state (e.g., link usage) but also information about the
current network function performance (e.g., CPU consumption). These addi-
tional metrics are crucial to know the current state of the network and accu-
rately route new incoming flows. Yet high frequency broadcast of this infor-
mation can lead to a significant control overhead that could reduce network
performance. Based on this accurate network description, new algorithms
should be designed to build resource aware routing table. One of the chal-
lenges raised by these algorithms will be to react quickly to the dynamics of
network and computing metrics without creating network instability.

One of the most daunting task is to propose solutions that not only suc-
ceed to cope with the above-mentioned challenges but also are interoperable
with current network, meaning that any introduced solution could be incre-
mentally deployed in the network. Moreover, when an additional compo-
nent is added into the network, it should try to minimize the added opera-
tional complexity and scale with the network growth. For instance, architec-
tural principles such as fate sharing, or loose coupling, should remain guide-
lines when proposing new ideas that modify the network architecture [66].

1.3 Contributions and Thesis Outline

In this thesis, we explore the possibility given by softwarized network to dy-
namically control its forwarding behavior. Instead of a control algorithm tak-
ing decision only on static network description (topology, link bandwidth),
we envision new networks where the current resource usage is feedback to
modify and optimize the routing decision. Here we use the term routing de-
cision in a broad sense which is not limited to the decision taken by routers
to forward packet from a source to a destination and could also encompass
load balancers which route requests to backend servers.

1.3. Contributions and Thesis Outline 7

This introduces a dynamic control process that is driven by the current
network performance. Our work sets apart from traditional traffic engineer-
ing that occurs at coarse timescales (hours) based on long-term estimates of
traffic matrices. In our work, we aim at handling traffic volatility at a fine-
grained level (e.g., TCP flows). This decision is motivated by two facts. First,
the introduction of in-network function adds state in the network (often re-
lated to 5-tuples). Thus rerouting a flow from a path (and a fortiori changing
of function instance) is hard and should be avoided, making crucial to choose
an adequate path (i.e., not overloaded) in the first place. Second, handling
traffic at a finer granularity increases the potential performance gain, since
we handle smaller unsplittable objects. Nevertheless, handling flow at this
small timescale puts a particular stress on the control loop, which should
then quickly reacts to the dynamics, adding significant constraints on the
considered control algorithm and architecture design.

We propose to apply this idea in two domains: service function chaining
and dynamic load balancing. Chapter 2 presents the background and related
work of the different contributions necessary to a full understanding of our
different pieces of work.

In Chapter 3 and Chapter 4, we present our contributions related to ser-
vice function chaining. Service function chaining refers to the ability to steer
network traffic through a sequence of in-network function called service chain
before delivering packets to their destination.

In Chapter 3, we propose a new solution to perform service function
chaining. Most of the existing proposals rely on a logically centralized ap-
proach to compute and install the correct forwarding behavior on every net-
work devices. This flexibility comes at the cost of increased fragility com-
pared to current Interior Gateway Protocols (IGP) and of a whole new infras-
tructure. Instead, we propose to augment the routing layer with the notion
of services. Our solution leverages on existing distributed routing protocols
where, in addition, autonomous nodes announce information about the vir-
tual services they provide. This creates an augmented network vision that can
drive performance-aware routing through chains of services. Our design is
modular, incrementally deployable and has been implemented in what we
call an NFV Router. We show in our large-scale testbed deployment that
NFV Routers efficiently steer traffic through chains, finely distribute the load
among different function instances and only add a small overhead to control
traffic.

In Chapter 4, we compare two approaches to build service function chains:

8 Introduction

source routing and hop-by-hop routing. Our previous work enables to build
a distributed view of the network topology and related services function.
Based on this view, incoming flows have to be routed through a set of way-
points that can either be chosen at the ingress point or segment by segment
(i.e., each service point chooses the path to the next one until the chain ends).
In the first approach, when the routing decision is taken, the whole chain is
considered, while in the second, the decision is taken at each service point.
Hop-by-hop routing has several advantages: i) it increases the control archi-
tecture resiliency and ii) it allows to split the chaining problem into smaller
pieces that can be parallelized on the NFV-Routers. Nonetheless, hop-by-hop
decision, due to its myopic view, can lead to a sub-optimal chaining decision
that could impact network performance. In this chapter, we show the trade-
off between these two types of decisions. We propose two ILP models to
compare analytically the decisions. Our evaluations show that i) distributed
chaining decisions are close to optimal centrally-computed paths and ii) the
distributed approach, because of its local control loop, has a faster reaction
to network events than centralized solutions.

Similarly to network routing, load balancing policies are mostly static and
do not adapt to traffic dynamics, which lead to a significant imbalance on
datacenters’ server. One of the main reasons is that the load balancers are
agnostic to the servers’ load dynamic and cannot react to them. Inspired by
our work done in Chapter 3, we propose to drive the load balancer’s traf-
fic splitting by additional metrics regularly broadcasted by the servers, thus
creating a dynamic load balancing policy.

In Chapter 5, we propose a control theory based solution to drive dy-
namic load balancing in datacenters. Programmable data planes have al-
lowed implementing sophisticated dynamic load balancing policies even if
the number of active servers and load balancers changes. This breakthrough
enables to close the loop and build a performance aware load balancer’s con-
trol plane. However, existing dynamic policies require a fast control pace to
reduce load imbalance. Thus, they can generate a huge control traffic over-
head, which makes it unfeasible in large-scale deployment. In this chapter,
we propose a dynamic load balancing control plane with a slow control pace.
We propose to model a server pool as a dynamic system controlled by its load
balancing policy and use a model predictive approach to minimize the sys-
tem load imbalance. Our approach proved to be successful to reduce load
imbalance on the servers. We compares in simulations our proposal to cur-
rent load balancing policies used by large cloud providers and showed that

1.3. Contributions and Thesis Outline 9

it improves load imbalance up to 10% with a low-frequency update. Our
solution can significantly reduce overprovisioning in large-scale datacenters
while still fulfilling service level agreements.

11

Chapter 2

Related Work

La différence entre la théorie et la

pratique, c’est qu’en théorie il n’y a

pas de différence entre la théorie et

la pratique, mais qu’en pratique, il

y en a une.

Albert Einstein

This chapter introduces the concepts, background and related work that
are fundamentally related to the work presented in Chapter 3, 4 and 5. This
related work can be split into two main parts: first, works related to Service
Function Chaining, and, second, ones linked to load balancing.

2.1 Service Chaining

In this section, we present the problems, concepts and related work to service
function chaining which are tackled in Chapter 3 and 4. Service Function
Chaining refers to a technique used to steer traffic (often atomically reduced
to UDP/TCP flows) through a set of functions before delivering the packets
to the destination. We call these functions virtual Service Functions (vSF).
This technique allows extracting vSFs from the physical topology (middle-
boxes used to intercept traffic on the wire) at the cost of supplementary con-
straints in the routing process. In addition to forward packets from a source
to a destination, packets should be steered through a set of waypoints where
service functions are instantiated. While some work focus on chain of func-
tions when the instances are located on the same machine [62], we instead
are interested on network functions distributed among a set of hosts in the
network.

With this new paradigm, technical challenges have emerged:

12 Related Work

Routing Decision

A routing process should gather and exchange the location and related met-
rics of vSFs to compute path through service function chains. This decision
can be static or taken online. The control architecture can either rely on a
SDN controller or directly leverage on existing distributed routing protocol.

Traffic Steering

IP packets are forwarded from a source to a destination. Thus to modify the
packets path and deliver them to service functions additional information
should be added. This additional state either can be added to the packets
or populated on the network devices to properly forward packets through
chains of service.

State Management

Most of the vSF are stateful (e.g., NAT, IDS...), which adds a significant con-
straint in the routing process. Along its lifetime, a flow should be steered
through the same set of vSF instances. Otherwise, solutions have to be pro-
posed to share state between multiple instances, either to migrate a flow from
a path to another, or to react to a vSF failure.

Resource Allocation

The delivery of flows through service function chains should use the minimal
set of resources and avoid overloading a link or a function. This task is par-
ticularly challenging since a flow should be allocated when the first packet
of a flow arrives and little is known on its future resource usage.

In the following subsections, we summarize the existing work to high-
light the main techniques used to solve these problems.

2.1.1 Routing Decision

Most existing solutions manage service chains by relying on a central control
point, following the Software Defined Network architecture (SDN). Based
on a holistic network view, they run an offline resource allocation algorithm
to place vSFs and assign static flow paths [37, 45]. Even if these solutions
provide theoretically optimized placement for a batch of requests, they can
hardly be ported in real networks. Indeed, they assume that (i) requests are
known in advance, and (ii) vSFs and flows can be placed at the same time.

2.1. Service Chaining 13

Some works integrate in their orchestration scheme the technical limitations
induced by their chain placements, such as vSF flow affinity [79]. Nonethe-
less, they mainly rely on real-time responses from a remote central controller
to monitor vSFs, network state and enforce per-flow static path. This ap-
proach tightly integrates vSF placement and flow paths, which thus increases
their system fragility (single point of failure, control loop delay). In such an
approach, vSF placement and service chaining decisions are jointly taken.
However, they deal with different timescales. Instead, we argue that these
decisions should be decoupled: service chains are steered in a fast loop so to
enforce traffic-engineering policies on existing vSFs, while a slower control
loop adapts vSF provisioning.

To cope with some of these limitations, recent works [17] propose to dis-
tribute the orchestrator. Yet, distributed SDN controllers such as Openday-
light [77] or ONOS [75] have their own limitation. Indeed, they rely on a
consistent distributed database meaning that when network partition oc-
curs, some service function chains may not be enforced for new incoming
flows [80]. SDN controllers have preferred consistent network update com-
pared to the eventual consistency approach (and thus availability) of classical
routing protocols. This considerably hardens network update and can even
lead to potential deadlock if not handled correctly [13, 31, 56, 72].

To manage the limitations of a centralized architecture, while keeping
its benefits, proposals have been made to design a hybrid SDN architec-
ture [102]. For instance, they propose to rely on a central control node to
configure network devices and use existing distributed network protocol as
a primitive to enforce complex behavior [43, 103]. Our approach, presented
in Chapter 3, follows this line of thought to manage service chains paths, but
differs from it since autonomous nodes instead of a central controller take the
decisions.

2.1.2 Traffic Steering

To enforce service function paths, several traffic steering techniques have
been proposed. Most of the existing works leverage on a central controller to
populate fine-grained forwarding rules on every network appliances along
a flow path [30, 35, 36, 79, 116]. Several limitations of this approach have
been identified. First, these rules grow with the number of flows, policies
and chains’ size, while forwarding state on network appliance is limited by
costly memory [43]. Second, they grow in complexity when a vSF make a

14 Related Work

hard to handle change in network headers (e.g., Network Address Transla-
tion service) [30, 35, 83].

Recent works, instead, propose to (i) encode service chains as a set of
waypoints in the packet header, and (ii) rely on the network routing layer for
waypoint connectivity [1, 43, 114]. This approach is not only interoperable
with regular IP networks but also reduces forwarding state. Indeed, a flow
path is either fully described in packet headers [1, 43] or stored on waypoints
at flow initialization [114]. Several techniques have been proposed to encode
the path of service function chains [1, 84, 114]. In Segment Routing v6 [1]
and Dysco [114], an ingress node is in charge of setting a list of locations to
reach before being delivered using IPv6 and TCP extensions respectively. Re-
cent work at the Internet Engineering Task Force (IETF) proposes Network
Service Header (NSH) as a dedicated encapsulation header for service chain-
ing [84]. We follow this line of thoughts to build service functions chains
and, in addition and differently from previous work, we propose a generic
method to build a distributed control plane based on existing routing proto-
cols for service chaining in Chapter 3.

2.1.3 State Management

The majority of vSFs, stores session state about the flow they process, which
hardens service elasticity. Indeed, vSF instances can be created, scaled or de-
stroyed due to fluctuation in flow volumes, migrated for resource optimiza-
tion, or just recovered due to failure. When these events happen, flow’s paths
can be modified and flow’s session state can be migrated from a vSF to an-
other. Some solutions have been proposed to coordinate forwarding and ses-
sion state. OpenNF [36] and Split/Merge [86] propose to add an open inter-
face on vSFs so to allow a central control point to coordinate flow re-routing
and session state migration with a make-before-break approach. Dysco [114]
argue instead that forwarding and session state should be consolidated in
vSFs and rely on a distributed session protocol to reconfigure a service chain.
Kablan et al. [57] avoid this state coordination problem by making vSFs state-
less. They consolidate session state in a consistent high-speed back-end data
store, which limits this solution to vSFs sharing the same location. Khalid
et al. [60], state that existing solutions lack consistent shared state between
vSF instances. They propose a framework fulfilling a set of requirements to
support correct and efficient service chains composed of stateful functions.
We argue that even if state coordination and consolidation are suitable for

2.1. Service Chaining 15

local changes (happening on the same Point of Presence); they do not scale
to a multi-site environment, which would be better served by a distributed
protocol.

2.1.4 Resource Allocation

Resource allocation problem have been widely covered in the literature [45].
Most of the solutions make the following hypothesis: i) similarly to jobs in
a datacenter, SFC requests are sent to a controller which should place them
ii) these requests are constituted by the set of needed vSFs and the capacity
(CPU, bandwidth) they will use. With this set of data, a model of the network
is proposed and an objective function designed to take into account one or
several metrics (resource use [26], energy consumption [53], cost [73], flow
latency [44], bandwidth requirement [52]...). In these proposals, placement
of the vSFs and the requests is done conjointly. Most of the papers show
that their problem is NP-Hard for arbitrary network topologies and propose
heuristic algorithms to solve the problem in a reasonable amount of time.
Most of the proposals study the offline problem (the set of request is a batch)
but more and more online solutions are proposed [70] (the requests arrive
successfully and should be placed). In this approach, service chains are built
as circuits with a coarse-grained static allocation of resource that cannot cope
with network dynamics (e.g., traffic variation).

The major limitation of the above-mentioned solutions is that they do not
handle traffic dynamics leading to overprovisioning. When a Service Chain
is requested, the amount of required resource to process the expected traffic
has to be estimated. Thus, this solution leads to the same overprovisioning
and rule of thumb used by operator before the virtualization of function. In
our work, we try to handle service function chaining resource allocation at
a finer granularity. In this vision, the routing decision is made at the gran-
ularity of a TCP or UDP flow and takes into account both networking and
computing metrics. The routing decision is taken based on the current per-
formance of the network and the instantiated vSFs. Our approach gives the
possibility to place more finely resource consumers and reduces overprovi-
sioning since more traffic can be processed on the same infrastructure. In that
sense, our work is close to QoS routing where additional metrics are consid-
ered to take a routing decision [39, 97] but also multipath routing where mul-
tiple paths for a same destination are used to maximize the network through-
put [34, 48, 49]. Recent proposals at the IETF follow this line of thought to

16 Related Work

handle both the computing and network related metrics in the routing deci-
sion [113].

2.2 Load Balancing

In this section, we present the concept and related work to load balancing
which is studied in Chapter 5. Load balancing emerges when a single re-
source (server, path...) is not enough to provide a service to all the end users.
To scale, additional resources are provisioned, the goal of load balancing
mechanism is to uniformly spread the incoming flow, connections toward
the backend resources. In the network, this function is often done by router
and rely on ECMP [47] while for application services (e.g., a web service), a
middlebox map incoming connections toward a pool of server.

Some challenges are similar to the resource allocation problem explained
above: incoming connection resource use is not known when its first packet
enters the network and that the load balancing decision should be taken.
These similarities are in fact inherent to IP networks since the induced load
in the network (bandwidth use, CPU consumption ...) are driven by the end
nodes. Therefore, network elements can only react to these changes and can-
not proactively allocate resource consumers to services in an optimal manner
(unless the network and end-users are controlled by the same entity [55]).
Yet, efficient load balancing solutions significantly interest service providers
since the only operational solution to load imbalance is overprovisioning the
backend resources, which represents resource waste and additional cost.

First, we describe the different load balancing systems proposed for dat-
acenters and the problems they tackle. Second, we explain the different load
balancing policies used to spread connections on a set of servers.

2.2.1 Traffic Splitting

Several techniques can be used to dispatch incoming connections toward a
pool of servers delivering the same service. One of the easiest to implement is
DNS round robin. In theory, each client when connecting to a service need to
translate a domain name into an IP address. With this solution, the DNS aims
at a different IP for the same domain name in a round robin fashion each time
a request is received. Yet this solution is limited by the wide use of cache in
the DNS hierarchy meaning that the domain DNS will not be requested each

2.2. Load Balancing 17

time a new connection to a service is happening. This solution can help to
balance load on different site but can be inefficient at finer granularity [94].

One of the most widely used solution to dispatch incoming connections
is thus L4 load balancer. This middlebox functionality masquerades the IP of
a given service and dispatch new requests toward a pool of server. A server
is chosen when the first packet of a connection arrives, using a hash of the
5-tuples to identify the connection and map the decision. There is two type
of load balancer: stateful and stateless. Stateful load balancers keep a state
related to the ongoing connection that map the 5-tuple to the backend server.
Stateless load balancers on the other side do not track the connection but
instead solely rely on a hashing function to dispatch incoming connections
to the server which can lead to broken connections if the size of the pool
change due to failure or scaling.

With stateful load balancers, this 5-tuple hash is directly mapped to the
chosen backend server. In this scheme, the load balancing policy is decou-
pled from its enforcement at the cost of a high number of states (which rises
with the number of connections). However, these solutions can mitigate per
connection consistency violation [27, 67, 81]. Recently, Barbette et al. [8] have
proposed a load balancing architecture that can enforce any load balancing
policy while ensuring per connection consistency even when scaling events
occur.

With stateless load balancers, the connection identifiers space is parti-
tioned among the set of servers. Thus, any 5-tuple hash serves as a key to
the chosen backend server. In this scheme, the load-balancing decision is
coupled to and limited by the underlying stateless hash data structure. Usu-
ally, the server identifiers are uniformly distributed in the hash table [5, 47,
74] and aim at evenly spread the connections on the servers. Yet, when the
servers’ capacity is different, a weight can be associated with each server
[118] meaning that a server with two times more capacity will appear two
times more frequently in the hash table than a standard server. In their re-
cent work, Hsu et al. [48] propose to use hash space boundary instead of
server occurrence to choose the destination. They show that their data struc-
ture can be modified at line-rate, making dynamic load balancing possible at
short timescales.

These techniques are used to enforce a load balancing policy which is of-
ten static and does not change with time (i.e., the load balancing distribution
is agnostic to the load experienced by the server. Nonetheless, these static
techniques fail to spread uniformly the load among servers [27]. New tools

18 Related Work

relying on programmable dataplane allow modifying at runtime the distri-
bution, thus paving the way to adaptive load balancing. These techniques
can i) enforce a complex policy on high-speed load balancer (distribution
based on server weights) [8] and ii) modify the load balancing policy in short
timescales [48, 49]. This shift allows to rethink load balancing policy once
static and to close the loop: a controller can adapt the load balancing distri-
bution based on the current load experienced by the servers to reduce load
imbalance.

In the work presented in chapter 5 we explicitly limit our scope to L4
load balancers which spread incoming connections towards service frontend
(sometimes themselves L7 load balancers). Nonetheless notice that the same
idea could be applied in lower level (L3 LB) or upper (L7 LB) in the IP stack.

2.2.2 Load Balancing Policies

Most of the existing load balancing policies are static, meaning that they aim
at a mean steady-state load-balancing objective over time. Uniform load
balancing can be enforced in a stateless manner with hashing space [47],
at the cost of a suboptimal load balancing, which rises with the number of
servers [61]. This distribution can also be enforced with a round-robin policy
that sends new connections to servers in a cyclic way. Each of these poli-
cies has its alternative to deal with capacity asymmetry: weighted round-
robin [104] and WCMP [118]. These solutions cannot adapt to the traffic dy-
namics, thus leading to imbalance.

Dynamic load balancing policies such as Power of two [69] or the least
connection policy have shown to reduce the load imbalance [8]. Indeed,
when a single load balancer spread the load on a service, it can use its own
connection table to know the backend servers’ current state instantaneously.
These solutions are not scalable since it makes the ingress load balancer a bot-
tleneck for the service. When multiple load balancers are present, these solu-
tions need to synchronize to know the current server state. Thus, a tradeoff
has to be made between the resource saved on the server and the additional
control overhead that would be added on the network.

The flexibility introduced by programmable dataplane for the policy en-
forcement open the way to the design of more complex policy, which could
forecast the load evolution and adapt the current traffic splitting to reduce
load imbalance. These techniques could be based on control theory or ma-
chine learning techniques. In Chapter 5, we make a first proposition that

2.2. Load Balancing 19

leverages on Model Predictive Control to reduce load imbalance. We believe
that closing the loop of load balancing policy is an interesting way to explore
so to reduce load imbalance in datacenter networks.

21

Chapter 3

Let there be Chaining: How to
Augment your IGP to Chain your
Services

Que la force me soit donnée de

supporter ce qui ne peut être

changé et le courage de changer ce

qui peut l’être mais aussi la sagesse

de distinguer l’un de l’autre.

Marc Aurèle

ISPs have started to replace their dedicated appliances with virtual Ser-
vice Functions (vSF) through which traffic has to be steered. Most of existing
work has proposed to rely on the Software Defined Networking paradigm to
route traffic into the appropriate set of functions. These solutions tend to be
poorly scalable and need to deploy a new architecture to benefit of Network
Function Virtualization. In this chapter, we show that the same goal can be
achieved by relying on IGP and present the first major contribution of this
thesis: the NFV-Router. Our proposal tackles the following challenges to de-
liver service function chaining: i) incremental deployment ii) scalability and
robustness and iii) performance aware routing.

This work have been incrementally designed and evaluated and have
been presented and published in the following conferences and journal: the
ACM Symposium on SDN Research (2019) [108], the IFIP Networking Conference
(2019) [109] and the IEEE Transactions on Network and Service Management Spe-
cial Issue on Softwarized Networks (2019) [107]. This contribution has been pre-
sented in the IRTF Computing in Network research group during the IETF
105 meeting. The technical design and concept presented below have also
been patented. This proposal have received the IEEE INFOCOM 2019 Best

22 Let there be Chaining: How to Augment your IGP to Chain your Services

Poster Paper Award Runner Up.

3.1 Background and Motivation

Network services used to be built as an ordered set of physically wired hard-
ware appliances that processed traffic for security or optimization purpose [85].
With Network Functions Virtualization (NFV), middleboxes are more and
more software-based running on top of virtualization-enabled commodity
equipment, thus allowing cost reduction and network flexibility [45]. Nev-
ertheless, with this new paradigm, new challenges have arisen. Indeed, the
set of service functions, often chained to offer complex services, are com-
pletely separated from the physical topology and virtual Service Functions
(vSF) are more ephemeral and dynamic in nature. Steering traffic through
these sparsely located virtual entities, without compromising end-users’ ses-
sions and Quality of Service (QoS), is, therefore, a complex challenge.

Even though Internet Service Providers (ISPs) critically rely on middle-
boxes for security and policy compliance [93], most existing NFV manage-
ment solutions rely on an omnipotent logically centralized entity, generally
named orchestrator. Such a centralized approach succeeds in controlling the
forwarding behavior to perform service chaining. Nonetheless, such a result
comes at a cost. Indeed, building a logically centralized solution with the
same reactivity and resiliency provided by current distributed routing pro-
tocols is challenging. These remote control points must maintain a holistic
view of the network topology while being able to react quickly to failures
and topology changes. On the contrary, distributed routing protocols nat-
urally parallelize the computation of forwarding behavior and make local
decisions. Moreover, this centralized solution is poorly interoperable with
legacy appliances and is hard to deploy incrementally. Thus, it requires
that the operators completely change their operational model and drastically
modify their network (legacy appliances, management tools...).

In this chapter, we show that service chaining can be performed without
the above-mentioned constraints. We propose an architecture compliant with
current networks, which can also be deployed incrementally. Our distributed
solution takes local decisions providing better reactivity, scalability, and re-
siliency. Following the current philosophy in existing networks, we central-
ize sporadic long-term decisions that can be applied by human operators or
an automated policy server and rely on distributed Interior Gateway Proto-
col (IGP) to compute the forwarding behavior (see Fig. 3.1). To that extent, we

3.1. Background and Motivation 23

Policy
Server

Configurations
& Policies

IGP

NFV-R
vIDS

NFV-R
vFW

FIGURE 3.1: Network combining classical IP routers and NFV Routers. Both router
types are managed and configured by a remote central policy server. IP routers and
NFV Routers announce with the IGP the subnetworks that are directly connected to
them. In addition, NFV Routers advertise with the IGP the vSF instances they are
hosting. Based on this augmented network view, the NFV Routers take distributed

chaining decisions.

propose to augment the network routing layer to make it service-aware. We
propose to leverage on any Interior Gateway Protocol (IGP), anycast addressing, and
any service chaining encapsulation to construct a distributed service-aware control
plane. We design a modular architecture that we name NFV-Router (NFV-R
for short). We show that it does not require complex elements and remains
interoperable with legacy appliances. We also implemented an NFV Router
and emulated real-world ISP topologies. We show how our system success-
fully steers traffic through the intended service chains. We also evaluated the
introduced overhead and the network dynamics in different configurations,
as well as service chaining impact on link load.

The rest of the chapter is organized as follows. First, we introduce in
Sec. 3.2 our modular approach to augment IGP so to allow distributed service
chaining. We detail in Sec. 3.3 the architecture of our augmented node: the
NFV Router. In Sec. 3.5, we describe the methodology we first present the
functional evaluation of our prototype on a small scale testbed. In Sec. 3.6,
we show the results obtained through large-scale emulation. In Sec. 3.7, we
discuss tradeoffs and limitations of our solution. Finally, Sec. 3.8 concludes
the chapter.

24 Let there be Chaining: How to Augment your IGP to Chain your Services

IDS @IPFW

@IPFW

@IPIDS

FW

FW

(A) Network topology.

FWIDS

(B) IGP logical view.

FIGURE 3.2: Network topology composed of 6 NFV-Rs, with 3 of them hosting a
vSF instance (Fig. 3.2a). The IGP views the two FW instances as a single entity, since
they announce the same anycast IP address (Fig. 3.2b). A first flow (plain red line) is
routed through the IDS and the top FW instance. A second flow (dashed blue line)
is then routed through the IDS and the bottom FW instance as the top FW instance

is already loaded with the first flow.

3.2 Distributed Chaining with IGP Service Aug-

mentation

In this section, we present how the network routing layer can be augmented
to enable distributed service function chaining. For shortness and clarity, we
explicitly limit our scope to Interior Gateway Protocol (IGP) and leave the
case of external gateway protocol for future work. Indeed, any network IGP
can be directly leveraged to convey the location, the type, and the necessary in-
formation associated with a virtual appliance and build an augmented net-
work view. Based on this enhanced topology, any routing scheme can be
used to steer traffic through service functions, that is to chain services. Such
an approach enables to fully reap the benefits of the IGP field-proven scal-
ability and robustness. Moreover, we leverage on the existing in-network
intelligence, instead of adding another layer of complexity, to distribute the
above-mentioned information.

3.2. Distributed Chaining with IGP Service Augmentation 25

An IGP enables gateways (in general routers) to exchange routing infor-
mation. This routing information is then used by each gateway to construct
an IGP network view and route network-layer protocols. We propose to aug-
ment such a view with the concept of service. We call it the service plane topol-
ogy. It is composed of two types of nodes: NFV Routers (NFV-R), which are
equivalent to IGP gateway nodes, and virtual Service Functions (vSF), which
is a new type we introduce. NFV-Rs are physical appliances that not only
run the IGP but also host vSFs. NFV-Rs can be classic IP routers with VNF
hosting capabilities, Points of Presence or even datacenters. vSFs correspond
to virtual service functions instances, also named virtual network functions.
They can provide different services depending on their type: Intrusion Detec-
tion System (IDS), Firewalling, NAT, stream encoding, etc. These instances
are hosted by NFV-Rs, which allow them to directly announce on the IGP the
functions they can provide.

We also propose to leverage on anycast addressing to include vSFs in the
service plane topology. All the vSF instances providing the same service are
announced, by the NFV-Rs that host them, with the same IP address but
with their own vSF cost. Thus in the service plane topology, a type of service
is represented by a vSF node while an instance is represented by a link (see
Fig. 3.2). This approach has multiple advantages. First, it reduces the number
of vSF routes announced on the IGP. Second, a service chain can be explicitly
and unambiguously described as an ordered sequence of waypoints to reach
(the anycast addresses) and rely on the network routing layer to choose the
vSF instances and the path to use. Finally, NFV-Rs only have to announce a
vSF to make it immediately available for new incoming flows without any
further configuration. Nonetheless, anycast routing is known to have short-
comings: packet belonging to the same flow can be routed to different vSF
instances if the best path changes, which would break vSF flow affinity. To
prevent this behavior, we enhance vSF announces with a forwarding address:
a dedicated unicast address on the NFV-R acting as a vSF proxy (e.g., a router
loopback interface). We also leverage on flow routing to consistently steer all
the packets belonging to the same flow in the same sequence of vSF instances
and thus provide statefulness at the flow level. To do so, NFV-Rs cache the
initial routing decision they make when the first packet of a flow is sent to
the chosen vSF forwarding address.

Figure 3.2 illustrates with a toy example the approach we propose. Fig-
ure 3.2a represents the network topology constituted of NFV-Rs. Each vSF

26 Let there be Chaining: How to Augment your IGP to Chain your Services

instance of a given type is announced on the network with the same any-
cast address. In particular, the two Firewall (FW) instances announce the
same address: @IPf w. Flows have to be processed here by a unique chain:
IDS + FW. The first flow is thus routed through the IDS instance and then
through the top FW instance. Indeed, in this example, this vSF instance is at
one hop from the NFV-R that hosts the IDS instance. The NFV-Rs that host
the used vSFs advertise their neighbors with the new experienced load or
any other relevant information. When the second flow arrives, the Firewall
instance at the bottom is preferred, resulting in load balancing among the
FW instances (Figure 3.2b). Since the route of the first flow has been cached,
it continues to be driven to the top FW instance even if the best path has
changed. Note that in Figure 3.2b, since the same address is announced but
no adjacency is made between the vSFs (the two Firewall instances in our ex-
ample), the flows that use a link to reach a service function (drawn as boxes)
have to use the same link to go out of it. However, note as well that this link
is only virtual, since it is the representation of the vSF instance in the IGP, but
in reality, is running directly on an NFV-R.

Augmenting the IGP modularly allows to fully benefit from what is al-
ready done at the network layer routing. Anycast addressing leverages IGP
information sharing to build the augmented topology. Based on this topol-
ogy a routing decision maps vSF type to the appropriate next NFV-R(s) based
on network and instances metric. Finally, the IGP gives us robust IP connec-
tivity between NFV-Rs to steer flows through the correct set of instances.
Note that the IGP prevents flow remapping in case of link failure. Indeed,
once the IGP has converged, connectivity to NFV-Rs is restored without any
change in cached routing decisions. Moreover, NFV-Rs can be incremen-
tally deployed in domains where they coexist with classical routers. Classi-
cal routers will only see NFV-Rs as IP routers announcing prefixes. Indeed,
since services are announced as IP addresses, classical routers will advertise
them to their neighbor. Based on this raw IP topology, an NFV-R is able to
reconstitute the service plane topology.

In our approach, a lightweight central management node is responsible
to configure high-level policies on the NFV-R. As for any IGP, these policies
are common to all the nodes. They allow controlling the decision-making
at each NFV-R. Such policies include flow classification rules, to map traffic
to the needed service chain. They also concern routing decisions since all
NFV-Rs must share the same routing objectives. Based on the service plane
topology, the NFV-Rs can use any path computation algorithm (e.g., shortest

3.2. Distributed Chaining with IGP Service Augmentation 27

NFV-R A

NFV-R D

NFV-R C

NFV-R B

NFV-R E

FW FW

IDS

Classifier

10

10

10 1010

10

10

20 5

25

(A) Network topology.

NFV-R
A

NFV-R
C

NFV-R
B

NFV-R
D

FW

IDS

10

20

10

20

5

25

Network Metric vSF Metric
(B) Service plane topology seen at the

NFV-R A.

FIGURE 3.3: Each NFV-R builds its service plane topology (example at Node A on
Fig. (b)) with the Network costs and vSF costs so as to choose the next hop(s).

path first), to choose which instance of the next vSF of the chain the flow
will go through. Additionally, high-level policies can define how to compute
vSFs’ IGP costs, stating which data to use and the function to translate such
data in a cost.

Our approach can rely on network encapsulation to convey the neces-
sary information so to drive flows through the associated service chain. This
information can be used to make routing decision at the source or at every
NFV-R processing the flow (hop-by-hop). This header should include (i) part
or all of the service chain identified at the classification step at the ingress of
the network, (ii) the next service step in this chain, and (iii) a consistent flow
identifier to cache the routing decision. This identifier is a hash computed
on the 5-tuple, when a packet enters the network. For instance, in the exam-
ple in Figure 3.2, the NFV-R that hosts the IDS instance must have a mean
to know that a packet belonging to a specific flow has been assigned to the
service chain IDS + FW, that the next service to apply is FW, and which of
the FW instances it actually has to go through.

In the rest of the chapter, we focus on hop-by-hop routing, although source
routing is applicable too, and take OSPF as an example for the IGP. Fig. 3.3
illustrates how the service plane topology is constructed from the network
topology. In this approach, every NFV-R computes the best path(s) to every
vSF type in terms of network and vSF cost and map each vSF type to the as-
sociated NFV-R forwarding address. The criteria to select the paths as well
as the algorithms to choose them is out of scope of this contribution. Our

28 Let there be Chaining: How to Augment your IGP to Chain your Services

solution can convey any useful metric related to the network or the vSF in-
stances through the IGP. Thus any suitable algorithm could be used to choose
the next vSF instance(s). We give an example with the Shortest Path First
algorithm to illustrate how a routing decision could be taken. With this rout-
ing algorithm, every NFV-R computes the shortest path to every vSF type in
terms of network and vSF cost and map each vSF type to the associated NFV-
R forwarding address. This mapping can be easily computed by running the
Dijkstra algorithm on the topology presented in Fig. 3.3b and by getting the
last hop before the destination in the shortest path to a vSF type. Using OSPF,
NFV-Rs, as classic routers, already compute routing table to get aggregated
network costs to NFV-Rs. Thus, in this case, the algorithm to find the route
to the next vSF instance has to run only on a graph of depth 2 and add very
low computing overhead to the routing system.

3.3 NFV-Router Architecture

In this section, we describe the architecture of an NFV-R and the design of
its main modules. An NFV-R, as illustrated in Figure 3.4, is composed of a
normal IP router providing network connectivity, a connector, which attaches
the router to the different vSF instances, the vSFs themselves, providing the
services, and a Distributed MANagement and Orchestration (D-MANO) compo-
nent, which allows local autonomous management of the node.

Router

The router connects our system to the network and participates in this net-
work’s IGP. It is directly connected to the connector external interface and
announces this interface’s IP address on the IGP, making the connector for-
warding address reachable. The router only conveys packets based on their
destination IP and is unaware of the service chaining encapsulation. It ex-
poses a control interface used by the D-MANO to inject or remove vSF any-
cast addresses, announcing the services available on the node and the associ-
ated costs. This control interface is also used to get the IGP topology to build
the service plane topology.

3.3. NFV-Router Architecture 29

NFV Router

Connector

Network

vSF vSFvSF

Resource
Monitor

Route
Injector

vSF
Routing

Algorithm

High Level
Policies

Router

D-MANO

FIGURE 3.4: NFV-R architecture. Doted arrows illustrate vSF routing control flow.
Solid arrows show how vSFs state is monitored, transformed in a cost, and then

injected in the IGP.

Connector

The connector acts as a proxy for the vSFs and allows dispatching traffic to
them. It exposes an external interface whose IP address is used as a forward-
ing address in anycast announce. It enforces chaining decisions as follows.
It forwards incoming packets to the intended vSF instance, based on the en-
capsulation header. Once the packets have been processed, the vSF forwards
them back to the connector, which enforces a forwarding decision toward the
next vSF instance location (i.e., its connector) according to the service topol-
ogy. These forwarding decisions are cached in the connector, indexed by a
hash computed using flow-related information.

The connector also exposes a control interface, used by the D-MANO, to
populate the service-aware routing table and the mapping between service
function and vSF instance unicast address. This information is used by the
connector to enforce chaining decisions for outgoing traffic, and locally bal-
ance the load among the vSF instances that provide the same service (same
prefix).

30 Let there be Chaining: How to Augment your IGP to Chain your Services

Virtual Service Function

vSF instances process service flow packets according to the service they pro-
vide. Once a packet has been processed, the vSF instance updates the chain-
ing encapsulation header to point to the next service. Each instance is moni-
tored and managed by the D-MANO.

Distributed MANO

The D-MANO controls and manages the other NFV-R’s components. It is
configured with high-level policies, which guide its autonomous orchestra-
tion decisions. It has three essential control functions (illustrated in Figure
3.4). The first one consists in monitoring vSF instances, deriving from them
vSF costs and the second one in injecting such costs in the IGP, via the router.
The third function consists in getting IGP information from the router to
build the service plane topology, computing the service-aware routing ta-
ble and then pushing it in the connector. In our works, we tested two class of
routing decision both distributed and taken hop-by-hop: single path routing
algorithm which maps each vSF type to a unique destination (e.g., Shortest
Path First) and multipath routing algorithm which associates multiple desti-
nation for a single type of vSF (e.g., ECMP, WCMP). With the second class,
each destination is mapped with a metric and the routing decision is made
in the dataplane (i.e., the connector) often using weighted hashing mecha-
nisms. While the first class would be prefered to minimize a given metric
(e.g., latency), the second exhibits better load balancing properties among
vSF instances.

3.4 Implementation

We have implemented our proposed solution, which we describe in the present
section. In this section, we include the technical choices we made for each
component of the architecture described in the previous section.

3.4.1 System-Level Choices

Encapsulation header

Our implementation uses the Network Service Header (NSH) to steering the
traffic through the different services [84]. Figure 3.5 presents the NSH header
encapsulation format. Our choice is motivated by the fact that NSH is an

3.4. Implementation 31

FIGURE 3.5: NSH encapsulation header.

IETF standard explicitly designed for service chaining and is widely used in
many open-source frameworks (e.g., [29, 75–77]). In NSH, the Service Path
Identifier (SPI) field uniquely identifies a set of abstract service functions (i.e.,
the Service Function Chain), while the Service Index (SI) points to the next
function the packet has to be delivered to in the SPI set. NSH also provides
extensible metadata fields that we leverage to convey the hash value used to
consistently identify a flow along its chain. Such hash value is computed at
the classification step with the 5-tuple of the original packet. On the contrary
to the original packet 5-tuples which could be modified by a vSF (e.g. by
a NAT) and would fail to identify a flow along the chain, this field is not
modified since it is not processed by the vSFs.

High level policies define the mapping between the service function chain,
and the SPI as well as the vSF with the SPI, SI tuple. The D-MANO popu-
lates this mapping on the connector to properly identify the next vSF type
for any packets to be forwarded. Figure 3.6 represents this mapping. Notice
that the same vSF type can be identified by multiple SPI,SI tuples. Indeed a
type of function could be mandatory in multiple service chains. For instance,
a firewall could be present in several security related chains. Once the next
function is properly identified, it can be mapped to the next destination cor-
responding to the location of the next vSF. We detail below the structure of
this service-aware routing table and its computation process.

Interior Gateway Protocol

As IGP protocol, we use Open Shortest Path First (OSPF), since it is widely
used and easily extensible, thanks to opaque Link State Advertisements (LSA).
Opaque LSAs are leveraged to share information about vSF instances and
links. Even if flooding opaque LSAs increases control traffic overhead, it

32 Let there be Chaining: How to Augment your IGP to Chain your Services

NSH to vSF Mapping

SPI SI vSF

10 3 Firewall

10 2 IDS

5 2 Firewall

FIGURE 3.6: Mapping between the NSH fields and the associated vSF type. This
mapping is implemented in the connector and populated by the D-MANO based on

high level policies.

vSF to next hop

vSF Next Hop

Firewall 192.168.0.1

IDS 192.168.0.2

(A) Single path routing table.

vSF to next hops

vSF Next Hop(s) Metric

Firewall 192.168.0.1 50

10.0.4.6 50

IDS 192.168.0.1 10

192.168.0.2 40

10.0.3.1 50

(B) Multipath routing table.

FIGURE 3.7: Service aware routing table. Maps vSF type to the next hop(s).

does not affect OSPF stability, since they do not trigger shortest path re-
computation. We use vSF opaque LSAs to convey 3 pieces of data: i) the any-
cast address of a vSF instance, ii) the associated vSF cost, and iii) the NSH
endpoint IP address (i.e., the IP address of the next Connector). In our initial
implementation, we choose to use a simple vSF metric: the remaining pro-
cessing capacity of the vSF instance. The NFV-Rs use the provided informa-
tion to build a graph linking vSFs and NFV-Rs, each link weighted with the
associated cost (Fig. 3.3). In a second implementation, we have announced
with the IGP a metric indexed with the number of packets processed by the
vSF. Thus, each NFV-R is able to build the service plane topology based on
the information shared via OSPF.

Service-Aware Path Computation Algorithm

Based on the information shared through the IGP we compute the service-
aware routing table (see Figure 3.7). This table maps vSF types (that can be

3.4. Implementation 33

identified by NSH SPI and SI fields) with the location of instances of these
vSFs. This location corresponds to the next hop in the chain. A vSF type
can be associated with one or multiple next hops depending if we use single
path or multipath routing. In single path routing, every flows forwarded
by a connector to a vSF type are sent to the same next hop (Figure 3.7a). In
multipath routing, multiple instances can be populated in the connector as
next hops (Figure 3.7b). When multiple paths are considered, incoming flows
are forwarded consistently to different instances based on the routing policy
(often based on a metric). We have implemented two routing scheme in our
NFV-R. The first WCMP is a multipath routing decision while the second is
the widely known Shortest Path First, which enforces single path per vSF
type.

In our first implementation, we choose to use Weighted Cost MultiPath
(WCMP) [118] to compute nodes’ service-aware routing table. It is particu-
larly suited for our anycast-based approach as it allows balancing the traffic
based on the vSF cost. As illustrated on Figure 3.3, we use network link costs
and vSF costs to weight the paths to a vSF anycast address. In this example,
we show the service topology as seen by node A. It is easy to see that the
cost to reach the FW instance on node B is 30 and to reach the one on node
D is 25. WCMP combines network and vSF cost in order to assign weight to
the different vSF instances. This weight corresponds to the probability for a
new flow to be sent to a given vSF instance. Since the vSF cost is regularly
updated, WCMP adapts to the load by distributing the traffic on the lightly
loaded instances (i.e., lower cost, hence, higher WCMP weight).

In a second implementation, we choose to use a shortest path algorithm to
take into account the network and vSF metric conjointly. Based on a service
view illustrated on Figure 3.3, a shortest path algorithm is used to build the
service-aware routing table. In Sec. 3.7 we discuss more about the metrics.

3.4.2 Node-Level Choices

We build our NFV-R using Linux and use network namespaces to isolate the
components. We first propose an implementation using Mininet. Mininet
was used to orchestrate the different namespace and build the network topol-
ogy. While this solution was sufficient to test the functionality of our solu-
tion on small topologies (e.g., 4 nodes), it was poorly scalable. Indeed, with
Mininet, the NFVRs were sharing the same CPU and memory resources on a
single machine creating a bottleneck for our emulation experiments. To face

34 Let there be Chaining: How to Augment your IGP to Chain your Services

these limitations, we choose to package the NFVRs in LXC container to de-
ploy them on separate machines and build the topology with virtual links
between the physical machines (see 3.6). In the containers, logical compo-
nents were still isolated by network namespaces as described below.

Router

In our implementation, we use FRRouting [99], an open source IP routing
protocol suite, to implement our OSPF router. In particular, we use the OSPF
API offered by FRRouting to mirror the Link-State Database (LSDB) in the
D-MANO and to inject vSF opaque LSAs.

Connector

We implemented the connector logic in P4, a language for programming the
dataplane [10]. P4 has been chosen for several reasons: it can support any
header (e.g., NSH) and it is stateful (registers), allowing us to cache routing
decision so to handle flow affinity. Our P4 code is run on the simple_switch
target [78]. Its runtime CLI is exposed to the D-MANO to configure the
switch and populate the service-aware routing table at runtime.

Virtual Service Function

vSFs are implemented as simple processes (using scapy [90]) parsing incom-
ing packets, decrement their NSH SI field, and forward them back to the
connector. The focus of the initial implementation being on the different com-
ponents of the proposed approach, we purposely choose simplistic vSFs for
the time being. The Python psutil library enables us to monitor the resources
used by the vSF processes.

D-MANO

The D-MANO has been implemented in Python. Its main loop runs as fol-
lows. First, it polls the resource use of the local vSF instances to build the
related costs. The costs are then announced on the network with vSF opaque
LSAs. Second, the D-MANO gets the vSF announces from its mirrored LSDB.
With these data, it builds a service view (see Fig. 3.3b). Based on this topol-
ogy, it computes the service-aware routing table.

3.5. Functionnal Evaluation 35

3.5 Functionnal Evaluation

In this section, we first demonstrate that our solution succeed in steering
traffic through service function chain. We show on a small topology that
NFV-R can efficiently balance traffic among multiple vSF and that it easily
supports the addition of new vSF instance on the network. When a vSF is
added in the network, part of the traffic is forwarded towards it without any
modification of the nodes made by an operator or a centralized orchestrator.

3.5.1 Evaluation Methodology

In this section, we evaluate a simple scenario to show how we can achieve
load balancing on different vSF instances of the same type by using the pro-
posed solution. We selected the parameters in order to assess that our system
successfully steers traffic through the target service chain.

We consider a network topology that looks like Figure 3.3b, except that
we use one single generic service. The link cost between NFV-R A and NFV-
R B and the link cost between NFV-R A and NFV-R C are set to the same
value. Link cost between NFVR-R A and NFV-R C is set to a different value
so to be less preferred than the previous ones. All the vSF instances have the
same initial capacity (i.e., vSF cost). It is the maximum number of packets
per second a vSF instance can process, normalized so to have the same range
of values as the link costs. We use Mininet to emulate this topology [63].

Traffic has to go through one of the vSF instances and then toward the
egress. We generate constant bit-rate flows on a source connected to Node A.
Each flow lasts 50 seconds and consumes 2 of processing units at the vSFs.
The arrival rate is of two flows per second. Our scenario evolves in 2 phases.
Phase 1: only the vSFs on NFV-R B and NFV-R C are running. Phase 2: After
150 seconds, a third vSF is instantiated on NFV-R D, leading to traffic redis-
tribution.

3.5.2 Evaluation

Figure 3.8 presents the traffic distribution over time on the vSF instances.
Since each flow lasts 50s, during the first 50s of the experiment, the system
load rises until it reaches its steady state. Note that, in this example, a mea-
sure of each vSF load is measured and advertised every 2s. We can see that,
during the first phase, each vSF instance receives in average the same amount
of traffic. Indeed, they do have the same network cost from the ingress point

36 Let there be Chaining: How to Augment your IGP to Chain your Services

0 50 100 150 200 250 300
Time (s)

0

20

40

60

80

100

Tr
af

fic
 d

ist
rib

. o
n

vS
Fs

 (%
)

Node B
Node C

Node D

FIGURE 3.8: Traffic distribution over time on the vSF instances. During the first 150s
only two vSFs are running. At t = 150s, a third vSF is instantiated.

Node B Node C0

20

40

60

80

100

Tr
af

fic
 d

ist
rib

. o
n

vS
Fs

 (%
)

(A) Phase 1 (50-150s).

Node B Node C Node D0

20

40

60

80

100
Tr

af
fic

 d
ist

rib
. o

n
vS

Fs
 (%

)

(B) Phase 2 (200-300s).

FIGURE 3.9: Mean traffic distribution on the vSF instances during the two phases.

of view and the same initial vSF cost. Once Phase 2 starts, after the 50 sec-
onds of transition, which lasts between t = 150s and t = 200s, a new steady
state is reached. Now the vSFs on Node B and C, each process 40% of the
traffic, while the vSF on Node D roughly processes 20%. This distribution of
traffic corresponds to the WCMP weights that consider links’ cost and vSFs’
cost.

Figure 3.9 presents the mean traffic distribution on the instances for the
steady state of the two phases of the scenario. They result from 20 runs of
the experiment. We can observe that our solution is able to balance the load
among the available vSFs. The mean and median loads are centered on the
values we can compute from WCMP: 50/50% in Phase 1 and 40/40/20% in
Phase 2. In addition, 50% of the loads are less than 3 points from the median
value, while the max and min values are at most 10 points from it. Such
limited variation shows that the system remains quite stable.

3.6. Large Scale Evaluation 37

3.6 Large Scale Evaluation

In a second time, we tried to evaluate our NFV-R on a more realistic setting.
To make our prototype deployment scalable and build large scale emulation,
we leveraged on the Grid’5000 platform presented below. We consider a sce-
nario where service function chains are deployed on the WAN of an Internet
Service Provider. When a flow is routed from a source to a destination, it
has to be analyzed by a chain of security functions (e.g., a firewall, an IDS...).
NFV-Rs are deployed on this topology and hosts vSFs. Flows are then routed
through the adequate chain of service as explained in the previous sections.
Our experiments, in addition to show the scalability of our proposal aims
at evaluating the introduced overhead in the IGP signaling as well as the
induced traffic distribution on realistic topologies.

3.6.1 Evaluation Methodology

Dataset

We use three ISP topologies that were previously used in [43] and made pub-
licly available [22]. They are summarized in Table 3.1. The first one was
synthetically generated, while the two others were inferred in the Rocketfuel
project,which has provably build realistic and accurate map of ISP topolo-
gies [95]. They include path delays. We use the weights provided with the
dataset to configure the IGP link costs. We consider all the nodes as NFV-Rs
able to host vSF instances. The dataset also contains demand matrices that
we use for service demands.

We randomly select 5% of the overall demands to build our service re-
quests (ingress, egress, bitrate), as in [43], which represents our baseline traf-
fic intensity. We run two types of scenarios. In scenario 1, all the requests have
to be steered through one vSF. Only one vSF type is present on the network.
There are 10 instances of it. In scenario 2, all the requests have to be steered
through a vSF of type 1 and then a vSF of type 2. There are 5 instances of each
type. In all the scenarios, the vSF instances are placed on the nodes that have
the highest betweenness centrality, i.e., the nodes traversed by the highest
number of IGP shortest paths. Such selection criteria has been shown to be
efficient for vSF chaining in centralized approaches [98].

38 Let there be Chaining: How to Augment your IGP to Chain your Services

TABLE 3.1: Evaluation dataset.

Names Nodes Edges Demands Type
RF1755 87 322 7527 Rocketfuel inferred
RF3967 79 294 6160 Rocketfuel inferred
SYNTH50 50 276 2449 Synthetic

Grid’5000 environment

We deployed emulated topologies of NFV-Rs on the Grid’5000 testbed [7].
Grid’5000 is a large scale and versatile testbed, which provides access to a
large number of resources (12000 CPU cores) distributed on different sites
and interconnected by a 10Gb/s WAN. This testbed is highly reconfigurable,
which makes it a great tool for experiment-driven research. In our experi-
ments, we use Distem [24], a network emulation tool, to deploy NFV-R LXC
on bare-metal servers. For each NFV-R, Distem uses Linux cgroups to allo-
cate 4 vCPUs (i.e., 4 CPU cores) to each NFV-R. Distem connects NFV-R with
VXLAN tunnels to emulate the topology links. We run our experiments on
a cluster of 48-nodes with the following host main characteristics: Intel Xeon
E5-2630L v4 (Broadwell, 1.80GHz, 2 CPUs/node, 10 cores/CPU), 10Gb Eth-
ernet interface. We deployed the topologies and scenarios with these tools.

Traffic is generated at the granularity of a UDP flow. We fix flows arrival
rate, duration, and packet size. The packet rate of each flow is then accom-
modated to correspond to the demand’s bandwidth in bits per second. Once
a first flow duration period has elapsed a steady-state is reached. At this
point, each demand in the dataset is constituted of k UDP flows. This value
corresponds to the flow duration divided by the arrival rate, which we set
to 50 seconds and 2 new flows per second respectively. Thus in our exper-
iments, each request is constituted of 100 different UDP flows. Even if this
uniform traffic distribution is simplistic, it gives a first assessment on our
system behavior.

3.6.2 Evaluation

We now present the results of our large-scale experiments. We compare dif-
ferent update periods for vSF LSAs and discuss the tradeoff between the net-
work traffic control overhead induced by these LSAs and the network dy-
namics.

Fig. 3.10a and Fig. 3.10b show the additional overhead generated by NFV-
Rs with one and two types of vSFs respectively. In both cases, there are at

3.6. Large Scale Evaluation 39

1 5 10
LSA update period (s)

0

500

1000

1500

2000

OS
PF

 a
dd

iti
on

al
 c

on
tro

l t
ra

ffi
c

 (b
yt

es
/s

/li
nk

)

rf1755
rf3967
synth50

(A) 1 vSF chains.

1 5 10
LSA update period (s)

0

500

1000

1500

2000

OS
PF

 a
dd

iti
on

al
 c

on
tro

l t
ra

ffi
c

 (b
yt

es
/s

/li
nk

)

rf1755
rf3967
synth50

(B) 2 vSF chains.

FIGURE 3.10: OSPF overhead induced by NFV-Rs with various LSA update periods.

all 10 instances in the network. Logically, when the frequency is low, the
overhead is low. We can also observe that it is slightly higher with two vSF
types than with one. Indeed, the routers have to propagate distinctive LSAs.

The control overhead has to be discussed with the dynamics of traffic
steering. Indeed, a low LSA period results in a less accurate view of the net-
work at routers. Fig. 3.11 shows the traffic distribution when there is one
vSF type on the largest topology. We can see that the load is well distributed
on the instances, considering also OSPF weights. When the LSA period in-
creases, the traffic distribution tends to be less stable but remains quite fair.
Fig. 3.12 presents the results when there are two vSF types. The load dou-
bles on the instances as there are five of each type. We can also observe that
the spread slightly increases with the increase of the LSA period. Finally, we
summarize in Table 3.2 and Table 3.3 the experiment results for the two other
topologies with one and two vSF types respectively. They conform to the

40 Let there be Chaining: How to Augment your IGP to Chain your Services

NFV
R8

NFV
R3

NFV
R42

NFV
R40

NFV
R52

NFV
R39

NFV
R12

NFV
R28

NFV
R19

NFV
R35

0

5

10

15

20

Tr
af

fic
 d

ist
rib

. o
n

vS
Fs

 (%
)

LSA 1s LSA 5s LSA 10s

FIGURE 3.11: Traffic distribution over vSF instances with various LSA update peri-
ods for 1 vSF chains on the RF1755 topology.

above observations.
We also study the impact of the LSA period on link use. Indeed, com-

pared to the analytical model, the Grid5000 emulation introduces: (i) the up-
date time (measurement and propagation) of vSF metrics and (ii) the traffic
variation over time. Fig. 3.13 shows the max link load on the three emulated
topologies. We can see that the deviation is extremely small on rocketfuel
topologies especially with chains of 1 vSF. It increases lightly with the LSA
update period and the number of vSF in the chain, meaning that the paths
to NFV-R tend to go through the same core links. On the contrary, the link
load values tend to be less stable on SYNTH50 topology. Indeed, this topol-
ogy is closer to a mesh one, meaning that shortest paths are more likely to
go through different links. In the scenario with chains composed of 2 vSF,
the links experience congestion. In this paper we study the normal behavior
of our system, as a consequence, no bandwidth limit has been set on the in-
terface (explaining the load superior to 100%). We leave for future work the
study of the congestion impact on our system and how to tackle this chal-
lenge (which could impact the LSA flooding process). We can also observe
that the link use values are higher compared to the analytical ones. This is
due both to the network dynamics and to the fact that OSPF does not take
into account the link load on its link metric.

3.7. Discussion and Perspectives 41

NFV
R3

NFV
R12

NFV
R28

NFV
R35

NFV
R40

NFV
R19

NFV
R8

NFV
R39

NFV
R42

NFV
R52

0

10

20

30

40

Tr
af

fic
 d

ist
rib

. o
n

vS
Fs

 (%
)

LSA 1s LSA 5s LSA 10s

FIGURE 3.12: Traffic distribution over vSF instances with various LSA update peri-
ods for 2 vSF chains on the RF1755 topology, type 1 vSFs on the left, type 2 vSFs on

the right.

TABLE 3.2: Traffic distribution (%) over vSF instances with various LSA update pe-
riods for 1 vSF chains.

Topology RF3967 SYNTH50
LSA Period 1s 5s 10s 1s 5s 10s

Worst NFV-R Mean 11.80 12.19 11.92 10.68 11.08 14.52
Std 0.13 2.38 3.49 2.12 3.62 7.13

Best NFV-R Mean 7.34 7.78 7.79 9.54 9.05 4.25
Std 0.24 1.23 2.61 1.80 1.81 2.78

3.7 Discussion and Perspectives

Our results illustrate that service chaining can be achieved in a distributed
manner by augmenting the network layer routing and configuring autonomous
nodes with high-level policies. However, while opening interesting perspec-
tives, it opens as well a number of questions. How our solution could handle
failures compared to centralize one? What metric should be used to take
chaining decision and how to design it? What would be the memory over-
head of such a distributed solution? We discuss these questions in this sec-
tion.

Augmented Network Layer Routing

We have shown that we can steer traffic through a service function chain by
augmenting the network routing layer. Nonetheless, finding feasible path
with or without constraint is a hard problem [4]. Precomputed hop-by-hop

42 Let there be Chaining: How to Augment your IGP to Chain your Services

RF1755
 1vSF

RF3967
 1vSF

SYNTH50
 1vSF

RF1755
 2vSF

RF3967
 2vSF

SYNTH50
 2vSF

0

50

100

150

200

M
ax

 li
nk

 lo
ad

 (%
)

LSA 1s LSA 5s LSA 10s

FIGURE 3.13: Max link loads on topologies for chains of 1 or 2 vSFs with different
LSA update paces.

TABLE 3.3: Traffic distribution (%) over vSF instances with various LSA update pe-
riods for 2 vSF chains.

Topology RF3967 SYNTH50
LSA Period 1s 5s 10s 1s 5s 10s

Worst NFV-R
(Type 1 vSF)

Mean 22.00 21.55 21.49 20.55 26.70 22.93
Std 5.50 6.04 5.71 3.93 6.18 6.65

Worst NFV-R
(Type 2 vSF)

Mean 24.08 24.15 23.27 20.22 20.88 21.11
Std 0.28 1.48 0.23 2.20 5.42 8.97

Best NFV-R
(Type 1 vSF)

Mean 18.31 18.16 18.70 19.57 17.91 18.18
Std 1.50 4.36 4.42 1.50 3.52 5.52

Best NFV-R
(Type 2 vSF)

Mean 18.31 18.16 18.71 19.57 17.91 18.18
Std 0.90 2.06 1.14 1.91 4.75 6.08

routing decisions could follow simple and fast heuristic (shortest path to the
next vSF) to steer best effort traffic. Yet, we believe that flows, which re-
quire QoS guarantees (e.g., VoIP), would be best served using the source
routing paradigm (e.g., with segment routing) so to enforce on-demand op-
timized path. Even if our service plane topology provides support for both
approaches, such hybrid scenarios and related tradeoff need further investi-
gation.

Multi-domain SFC

In this paper, we define an augmented IGP routing logic to provide dis-
tributed SFC decisions. This is a first step towards the design of multi-
domain services. Indeed, our proposal can be extended to inter-domain
routing with BGP [88]. With the use of communities [64], operators could

3.7. Discussion and Perspectives 43

choose the information to share to build multi-domain SFC thus opening
new business opportunities. Work at the IETF also propose to leverage on
BGP Address Family Identifier and Subsequent Address Family Identifier to
announce service function reachability [28].

Reaction to Failure

Our proposal can leverage on existing work to support vSF maintenance, fail-
ure or even chain modification. Indeed, with our approach, maintenance can
be easily handled through any existing loop-free graceful shutdown mecha-
nism [32]. In case of vSF failure, the NFV-Router locally detects it and does
not announce anymore the associated anycast prefix. Since our system re-
lies on IGP, it can converge in a few hundred milliseconds [33], making the
failed vSF instance unavailable for new flows. In comparison, a centralized
solution would add a non negligible delay because of the need to send a
failure notification to the central controller and receive the recovery action
to be performed. Furthermore, some vSF state migration use-cases can be
locally dealt with on NFV-Rs ([57, 86, 112]). However, service management
operation involving several NFV-Rs is more challenging, since the state (vSF
session state, routing cache entries...) has to be coordinated. Such operations
are needed when a service is modified (e.g., suspicious flows redirected to
an IDS), or when a vSF is migrated to a distinct NFV-R. Existing work [114],
which can be used in our case, identified challenges and possible solutions
to keep end-user sessions alive during reconfiguration.

Virtual Service Function Cost/Metric

To take service-aware routing decisions, two different types of entities are
involved: network links and vSF instances. While assigning a cost to a link is
straightforward (based on bandwidth, latency, etc.), the cost of a vSF instance
is an open research area. This cost may be based on a plethora of vSF state
parameters [16, 71], but should also be in the same order of magnitude of the
links’ metric. More importantly, it has also to be additive, so to guarantee
loop-free even when considering multiple constraints [54, 106]. Such a cost
could either be statically defined at network configuration, or dynamically
updated based on vSF state (e.g., CPU use, incoming packets per second ...).
The first, even if fine-tuned with traffic engineering algorithms, leads to static
chain instances, prone to congestion in case of bursty traffic. The second
builds service paths based on regularly updated vSF metric, and can better

44 Let there be Chaining: How to Augment your IGP to Chain your Services

adapt to quick traffic variations, at the risk of route flapping. Nonetheless,
this instability can be mitigated by making routing decisions at the flow level
and fine-tuning metric update rate [92]. The evaluation of our flow routing
solution confirms these results by comparing the vSF load distribution with
different LSA update frequencies.

Service Path State

In our approach, we do not keep flow state on every switch [30, 35, 36, 79,
116], neither encode the whole flow path in the header [1, 114]. Instead, we
only define in the header the set of service functions in the chain, then each
NFV-R along the path will choose and store the next service hop for a flow
it processes. This solution offers a trade-off between the flow state stored
in the network infrastructure and the packet header overhead introduced by
segment routing. Even if this memory overhead is limited to NFV-R, this
may raise scalability issues in case of a large number of flows. Our route
caching system can be assimilated as a flow table: a set of matched packet
field is mapped to a destination. Research has shown how to cope with a
large amount of flow state [35, 50, 83]. It is possible to apply such techniques
to our solution, so to minimize the memory usage.

Distributed Orchestration Decisions

NFV-R decouples traffic steering from orchestration. However, it hardens
vSF resource allocation problem, which is already difficult when decisions
are taken by a centralized orchestrator [45]. Even if distributed approaches
like ours improve the architecture resiliency and scalability, how autonomous
nodes could take orchestration decisions (e.g., instantiating a new vSF in-
stance to balance the global load) using on our augmented topology is an-
other problem to be tackled.

3.8 Conclusion

In this chapter, we have made the case for orchestrating service chaining in a
distributed manner. We proposed to augment the network layer routing by
using anycast addressing for vSF so to build what we call the service topol-
ogy, allowing embedding service chaining into routing. By doing so, our
solution can rely on the robustness and scalability of IGPs to steer traffic into
service chains. We designed our NFV Router whose architecture is based

3.8. Conclusion 45

on this concept and we implemented a first prototype. A first evaluation per-
formed with our implementation shows that flows can be successfully driven
through the chain of services according to available resources. A second im-
plementation on Grid’5000 testbed emulates large scale ISP topologies, thus
proving the scalability of our solution. The evaluation shows that our solu-
tion introduce a small control traffic overhead and efficiently distributes traf-
fic on multiples service function. We have also shown that service function
chaining tends to have a significant impact on link use compared to classical
destination based shortest path. Our approach sets itself apart from previous
work, and as such, it still needs to be thoroughly investigated. To this end,
we provide a research agenda highlighting the different aspects that need to
be tackled. However, what comes out as well is quite promising and opens
interesting perspectives.

One interesting problem to tackle is to compare the quality of the chain-
ing decision. Indeed, the chains can either be built by autonomous nodes
taking hop-by-hop decision to the next vSF in the chain or by a central con-
troller which could optimize the path for the whole chain. Even if the first
solution is more resilient, since it does not add a new single point of failure,
it may introduce worst performance. In this chapter, we have focused on a
chaining decision taken hop-by hop. Autonomous nodes, to build their own
service-aware routing table, used our augmented service view. Yet this view
could also be leveraged by a central controller to compute end to end service
function chains. This controller could enforce these paths either by populat-
ing the NFV-R routing table or by leveraging on the source routing paradigm
to steer the flows through the adequate sequence of vSF. In the next chapter,
we will analytically compare these two chaining decisions.

47

Chapter 4

The cost of distributed decision in
Service Function Chaining

Combien de fois

abandonnons-nous notre chemin,

attirés par l’éclat trompeur du

chemin d’à côté ?

Paulo Coelho

Service Function Chaining decision used to be centrally taken by a con-
troller who would compute the path for the whole chain. The NFV-Router
presented in the previous chapter open the way to a different path computa-
tion approach: the path can be computed segment by segment in a hop-by-
hop manner. In this chapter, we present the second contribution of this thesis,
which directly arise from the introduction of the NFV-Router. In the follow-
ing sections, we evaluate the fundamental performance differences between
a centrally taken chaining decision and a hop-by-hop one. We propose an an-
alytical formulation of this problem to explore the different tradeoff between
these two types of decisions.

This work have been incrementally presented and published in the fol-
lowing conference and journal: the IFIP Networking Conference (2019) [109]
and the IEEE Transactions on Network and Service Management Special Issue on
Softwarized Networks [107] (2019).

4.1 Background and Motivation

In Chapter 3, we have presented a solution, which can rely on a distributed
decision taken hop-by-hop to build service function chains. Even if this ar-
chitecture is more resilient and robust, it may introduce worse performance

48 The cost of distributed decision in Service Function Chaining

Firewall

10

100

50

50

10

70

10

10

Hop-by-Hop total cost: 180

Centralized total cost: 130

FIGURE 4.1: Comparison between a hop-by-hop and a centralized chaining decision.
The hop-by-hop decision minimizes the cost from the source to the firewall and then
from the firewall to the destination. The centralized decision minimize the cost for

the whole chain.

compared to centrally taken decision. Indeed, for any metric considered, a
hop-by-hop decision only routes the packet segment by segment. Thus, it
only considers the metrics to reach the next vSF in the chain and does not
take into account the next hops and the destination to reach. Therefore, hop-
by-hop routing can suffer detour.

An example of this behavior is presented in Figure 4.1, which represents
the service aware topology. Two incoming flows are routed from a source
(on the left) to a destination (on the right) and have to be processed by a
Firewall. Two instances of the Firewall are present, one on the upper path
with a vSF metric of 70 and one on the bottom path with a cost of 10. Two
policies are compared: a shortest path taken hop by hop (from the source to
the firewall and then from the firewall to the destination) and an end-to-end
shortest path, which can be centrally computed. In this situation, the hop by
hop decision route the incoming flow through the upper path since the first
segment is cheaper. Indeed the cost from the source to the Firewall is 80 for
the upper one compared to 120 in the second. The centralized decision takes
the bottom path since the overall cost is cheaper (130 vs 180). This simple
example shows that a hop-by-hop decision due to its myopic view can route
traffic through non optimal path. This decision could then introduce higher
latency or even congestion.

Then should the centralized decision be preferred? While convincing, this
example only shows that hop-by-hop decision may take different paths com-
pared to a centrally computed one. Yet, this difference seems to be highly
topology dependent, and may only be a corner case unusual enough to be
neglected. In this chapter, we compare the inherent differences of service

4.2. Network Modelization 49

function chaining when tackled centrally or in a distributed manner. We first
propose two Integer Linear Problems to model central and hop-by-hop de-
cisions. We then leverage on realistic topologies to compare these decisions
in term of cost, path length and link usage. We also quickly compare the
reactivity to an event (such as a link or vSF failure) for a centralized or dis-
tributed decision. We show that (i) distributed chaining decisions are close to
optimal centrally-computed paths, and (ii) a distributed system, because of
its local control loop, has a faster reaction to network events than centralized
solutions.

The rest of the chapter is organized as follows. First we describe in Sec. 4.2
the modelization we use. We detail in Sec. 4.3 the centralized optimization
problem we considered and its distributed counterpart. We then describe
the evaluation methodology we used in Sec. 4.4 and expose our results in
Sec. 4.5.

4.2 Network Modelization

In this section, we detail how we model the network and the SFC routing
problem. We consider a network where NFV-Routers are present and host
vSFs. These vSFs are already placed. Each of these vSF is associated with a
metrics that is function of its current load. The link are also associated to a
metric that represent the network part. As explained in the previous chap-
ter, we consider that these metrics are additive and load sensitive. You can
refer to Section 3.7 for more discussion on the metrics that could be consid-
ered. We choose to limit our model to simple linearly dependant metrics to
more accurately represent the scenarios presented in Chapter 3 and compare
centralized and distributed decisions.

SFC Routing Model Parameters

We formulate as an Integer Linear Program (ILP) model the SFC routing
problem. The notations for the variables and parameters are summarized
in Table 4.1. The network is represented by a directed graph G = (N , E),
where N is the set of nodes (classic routers and NFV-Rs) and E is the set of
edges. P represents the subset of nodes that are actually NFV-Rs. R repre-
sents the set of service requests. The set of different vSF types is depicted
by V . On our topology, vSF instances placement is represented by the input
lv,p. We describe a SFC request with the following parameters: ir the ingress

50 The cost of distributed decision in Service Function Chaining

TABLE 4.1: Notations.

Parameters
G Graph representing the network
N Set of routers and NFV-Rs
P Subset of N representing the NFV-Rs
E Set of links
R Set of service requests to serve
V Set of available vSF types
lv,p Boolean. An instance of vSF v is located on NFV-R p
cn1,n2 IGP link cost between node n1 and node n2
qn1,n2 Link capacity between node n1 and node n2
ur Number of vSFs in the service chain of the request r
ir Ingress node for the request r
er Egress node for the request r
br Bandwidth used by the request r
vi

r ith vSF asked by the request r
Decision variables

xi,v
r Boolean representing where vi

r is placed
yl,n1,n2

r Float representing flow from vSF vl−1
r to vSF vl

r between node n1 and n2

node, er the egress node, br the bitrate, Vr = (v1
r , v2

r , ..., vlr
r) the set of requested

vSF types.

Cost Function

We consider two types of costs in our system: the vSF cost and the network
link cost. We model these costs as follows.

vSF Cost Cp: The vSF cost represents the cost to use vSF instances. It is
proportional to the requests’ bandwidth, which may be expressed in packet
or Bytes per second.

Cp = ∑
p∈P

∑
r∈R

ur

∑
i=1

brxi,p
r (4.1)

This cost could be extended by taking into account other vSF state parame-
ters.

Link Cost Cl: The link cost corresponds to the network cost defined on
the IGP. cn1,n2 is the IGP static link cost of the link n1, n2.

Cl = ∑
(n1,n2)∈E

∑
r∈R

ur+1

∑
l=1

yl,n1,n2
r cn1,n2 (4.2)

Note that in our model the link cost is proportional to the used bandwidth to
take into account shortest paths.

4.3. Problem Formulation 51

4.3 Problem Formulation

In this subsection, we describe the models for centralized and distributed
chaining schemes.

The goal of a centralized orchestrator is to find a path for each request,
which minimizes both network and processing costs while steering traffic
through the correct sequence of vSFs. The problem is formulated as follows:

Objective:
min Cp + Cl (4.3)

Subject to:

∀p ∈ P , ∀r ∈ R, ∀i ∈ [1 : ur], xi,p
r ≤ lvi

r,p (4.4)

∀r ∈ R, ∀i ∈ [1 : ur], ∑
p∈P

xi,p
r = 1 (4.5)

∀r ∈ R, ∀(n1, n2) ∈ E , ∀i ∈ [1 : ur + 1],

yi,n1,n2
r >= 0

(4.6)

∀(n1, n2) ∈ E , ∑
r∈R

ur+1

∑
i=1

yi,n1,n2
r <= qn1,n2 (4.7)

∀r ∈ R, ∀n1 ∈ N ,

∑
n2/(n1,n2)∈E

yi,n1,n2
r − ∑

n2/(n1,n2)∈E
yi,n2,n1

r =

(xi−1,n1
r − xi,n1

r) · br, 2 ≤ i ≤ ur

(1− xi,n1
r) · br, f or n1 = ir, i = 1

(xi,n1
r) · br, f or n1 6= ir, i = 1

(xi−1,n1
r − 1) · br, f or n1 = er, i = ur + 1

(xi−1,n1
r) · br f or n1 6= er, i = ur + 1

(4.8)

The objective function aims at minimizing both the vSF cost and the link
cost. Equation 4.4 ensures that the vSF instances used by the service requests
are actually instantiated on the specific NFV-Rs. Equation 4.5 ensures that
each request uses only 1 vSF instance to process their flow at each step of
the chain. Equation 4.6 ensures that the amount of resource unit on a link
is not negative. Equation 4.7 ensures that the requests routed through the
link between nodes n1 and n2 do not exceed its capacity qn1,n2 . Equation 4.8
ensures network flow conservation.

52 The cost of distributed decision in Service Function Chaining

This formulation models the decision of a central orchestrator to find the
overall best paths for each request. We adapt it to also model the distributed
hop-by-hop decision taken by NFV-Rs. Thus we split the centralized problem
in different subproblems that we call segments. Each subproblem aims at
finding the next destination for each request (each vSF in the chain and finally
the egress).

This model introduces some light modifications in the centralized formu-
lation presented above. Instead of solving the entire problem with the pre-
sented input so to get the final optimization for the whole chain, we split it
into smaller steps, one for each vSF in the chain (∀i ∈ [1 : ur]). By solving
each of these steps we obtain the placement of a segment of the chain (from
the ingress to the first vSF, from the first vSF to the second, etc.). At each
step the output of the previous step is used as an input (i.e., the chosen vSF
becomes the new ingress point), considering that the step in the chain i is
fixed in the constraints. Finally, at each step, we minimize the cost to reach
the next vSF, defined by:

C = ∑
p∈P

∑
r∈R

brxi,p
r + ∑

(n1,n2)∈E
∑

r∈R
yi,n1,n2

r cn1,n2 (4.9)

In the first step, we initialize the ingress point with the same input used in
the central problem. At each following optimization step, we use the vSF
instance placement (where xi−1,p

r = 1) to initialize the ingress point. At the
last step of the chain (ur + 1), there is no more vSF to reach, thus we only
minimize the cost between the last vSF and the egress point (er).

We implemented these ILP formulations with CPLEX Optimization Stu-
dio. In Section 4.5, we compare these two routing schemes.

4.4 Evaluation Methodology

We have run experiment that are closed to the setup described in Section 3.6
but with different goals. In our evaluation we aim to compare the chaining
decisions (centralized and distributed) in terms of i) cost (as define in Sec-
tion 4.3) ii) path length and iii) link usage.

For each scenario, we select a topology with 10 NFV-R hosting vSF and
generate a batch of requests which represents the incoming flow on the net-
work. Each request should be forwarded through a set of service functions

4.4. Evaluation Methodology 53

before reaching its destination. The two ILPs solutions give us a mean be-
havior of the placement that would occur on NFV-R. We use the following
parameters to define the ILP problems and build our scenarios.

Topology

We use the two Rocketfuel topologies and a synthetic one that are publicly
available [22]. The dataset provide weights that we use to configure the link
cost and traffic matrix that will be suse to generate the requests.

Request Generation

We randomly select 5% of the overall demands to build our service requests
(ingress, egress, bitrate), which represents our baseline traffic intensity and
is used to populate the bandwidth requirements parameters. We run exper-
iments with higher traffic intensity. In this case, we multiply the percentage
of overall demands randomly selected.

Service Chain

We consider three scenario, one for each chain length. In the first, there is
only one type of vSF present and the chain is of length 1. In the second, there
is two type of vSFs and a chain is composed of the succession of these two
types. In the third, there is five types of vSF and the chain is of length five.

Virtual Service Function Placement

vSF are placed on the node with the higher betweeness centrality. There are
ten instances of vSFs. Depending on the scenario, there exist multiple type
of vSF present.

These different scenarios are used to fill the ILP parameters. Notice that
we run each scenario 10 times and that the same input are given to both the
centralized and distributed problem. Based on the results of these optimiza-
tion problems, we then compare the two decisions request per request.

In addition to these ILP comparisons, we use the path delay included with
the topology to compare the reaction time to a failure of a centralized and a
distributed decision.

54 The cost of distributed decision in Service Function Chaining

1 vSF 2 vSF 5 vSF 1 vSF 2 vSF 5 vSF 1 vSF 2 vSF 5 vSF
Chain length

1.0

1.2

1.4

1.6

1.8

Co
st

 ra
tio

rf1755 rf3967 synth50

FIGURE 4.2: Cost ratio between centralized and distributed chaining decisions for
chains with 1, 2 and 5 vSFs.

1 vSF 2 vSF 5 vSF 1 vSF 2 vSF 5 vSF 1 vSF 2 vSF 5 vSF
Chain length

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Pa
th

 st
re

tc
h

rf1755 rf3967 synth50

FIGURE 4.3: Path stretch between centralized and distributed chaining decisions for
chains with 1, 2 and 5 vSFs.

4.5 Evaluation

In this section, we present the results of the experiments described in the
previous section. We show that the distributed decision is close to the cen-
tralized one while the centralized architecture induce a stretch in the control
loop reaction.

4.5.1 Network Cost and Path Stretch

First, we compare the overall cost addition and path stretch induced by our
distributed hop-by-hop chaining decision scheme. For each combination of

4.5. Evaluation 55

topology and scenario, we run 100 experiments with different traffic matri-
ces (computed as explained in Section 4.4). In each experiment, we compute
with our ILP the cost of each demand and the path length in both the cen-
tralized and distributed cases. We then make the ratio of the distributed cost
and centralized cost for each demand. We apply the same methodology to
compute the path stretch distribution.

Fig. 4.2 presents the cost ratios. We can observe on the two largest topolo-
gies (RF1755 and RF3967) that the median costs are the same for any chain
length. On these topologies, the cost ratio variability tends to grow, reaching
a maximum for 2 vSFs (75% of the requests have a difference below 20%) and
decreasing for 5 vSFs. This is due to two main reasons. First, the longer the
chains, the more likely the distributed decisions will deviate from the cen-
trally computed solutions (growth from 1 to 2 vSFs). Second, the lower the
number of possible vSF instances per type, the lower the number of possi-
ble chain paths (decrease from 2 to 5 vSFs). We run this experiment with 20
vSF instances and chains up to 10 vSF types and observed the same behav-
ior. Overall, the distributed decision scheme still well performs on the two
largest topologies. SYNTH50 performs slightly differently. The cost ratio dif-
ference and the variability increase with the number of vSFs in the chains but
remains overall below 20% for 75% of the requests. Indeed, this topology is
very dense, thus there is still the deviation due to the myopic view of our
distributed decisions. Nonetheless, there exist more different paths from one
node to another thus reducing the path constraints for longer chains.

Fig. 4.3 presents the path stretch. We can observe similar results in the
path stretch compared to the cost ratio. With chains of 1 vSF, the median path
stretch is equal to 1 in every topology meaning that at least 50% of the request
paths have the same length in the distributed and centralized models. Notice
that the path stretch can even be less than 1 (e.g., for the RF3967 topology)
since the centralized model might prefer a less costly but longer path. The
stretch follows the same bell shape for the two largest topologies and the
same increase tendency for SYNTH50.

4.5.2 Control Reactivity

This limited cost increase of the distributed chaining scheme is counter-balanced
by the control reactivity. Indeed, while NFV-Rs take routing and chaining de-
cision almost instantaneously since they use the augmented IGP, that is the

56 The cost of distributed decision in Service Function Chaining

rf1755 rf3967 synth50
Topology

2.5

5.0

7.5

10.0

12.5

15.0

RT
T

to
 c

on
tro

lle
r (

m
s)

FIGURE 4.4: Centralized controller reactivity.

service plane topology, a centralized system will rely on a control node to
monitor and take decisions.

On each topology, we place the central network orchestrator on the node
with the highest betweenness centrality and compute the Round Time Trip
(RTT) to every node on the network. This RTT corresponds to the control
loop of a central orchestrator node, it first gets the data from the network
nodes and then enforces a decision on it. Fig 4.4 shows the control loop la-
tency induced by a centralized orchestration. This overhead can reach 14ms
in the worst-case scenario for inferred topologies and 16ms for the synthetic
one. Even if these values can seem small, they are significant for an orches-
trator, which applies chaining decisions on network appliances forwarding
traffic at line rate. In addition, they have to be compared to the reactivity of
the NFV-Rs that is almost instantaneous.

4.5.3 Link Load

Chaining decisions also impact network resources like bandwidth use. In-
deed, service chaining imposes more constraints on flows’ path, since they
have to reach a sequence of waypoints before being delivered to their final
destination. This paradigm shift modifies network traffic engineering in two
ways. First, it reduces the number of authorized paths reducing the load bal-
ancing possibilities. Second, there may not exist a loop-free path in such a
situation [4]. Thus, this additional path constraints may stress the network
and lead to congestion. We now analytically compare centralized and dis-
tributed decision impact on network load. We use our LP models to assess
the impact of service chaining on a network resource in both centralized and

4.5. Evaluation 57

1vSF 2vSF 5vSF 1vSF 2vSF 5vSF 1vSF 2vSF 5vSF

Chain length

0

25

50

75

100

125

150

M
ax

 l
in

k
lo

ad
 (%

) rf1755 rf3967 synth50

Centralized Distributed

FIGURE 4.5: Max link loads on topologies for chains of 1, 2 or 5 vSFs.

0 10 20 30 40 50
Link id

0

2

4

6

8

10

12

14

Lin
k

lo
ad

 (%
)

Centralized
Distributed

FIGURE 4.6: Top 50 more loaded links with 1 vSF chains on the RF1755 topology.

distributed schemes. Notice that link costs are inversely proportional to link
capacities, thus the objective function will prefer the path with higher capac-
ity.

First, we compare centralized and hop-by-hop service chaining models
for each combination of topology and scenario. We run 20 experiments, as
described in Sec. 4.4, and measure in each of these experiments the link load.
We then take the maximum of these values, since traffic engineering algo-
rithms aim at minimizing this value. We represent in Fig. 4.5 and Fig. 4.7 the
mean of these maxima, as well as the standard deviation. A high standard
deviation means that the maximum value varies depending on the traffic ma-
trix while a low one means that this value is rather independent of the traffic
matrix.

58 The cost of distributed decision in Service Function Chaining

1 2 3 4
Traffic intensity

0

20

40

60

80

100

M
ax

 li
nk

 lo
ad

 (%
)

Centralized Distributed

(A) 1 vSF chains.

1 2 3 4
Traffic intensity

0

20

40

60

80

100

M
ax

 li
nk

 lo
ad

 (%
)

Centralized Distributed

(B) 2 vSF chains.

FIGURE 4.7: Max link loads with increasing traffic on the RF1755 topology.

We can observe in Fig. 4.5 that for chains composed of 1 vSF, the max-
imum link load is between 10% and 20% for the rocketfuel topologies and
around 30% for the SYNTH50 topology. In the 2 vSFs scenario, the max link
use is around 20% for the inferred topologies and around 50% for the syn-
thetic one. With 5 vSFs, the max link load comes close to 100% utilization
and reaches it in the SYNTH50 topology. Still for the RF3967 topology the
max link load stays close to 60% in both centralized and distributed models.
We can notice that the centralized and distributed schemes perform similarly
on almost all scenarios. The only exception is SYNTH50 with chains of 2 vSFs
and RF1755 with chains of 5 vSFs. In the first scenario, the max link load is
significantly higher with the hop-by-hop decisions (difference of 20%). In the
second one the distributed scheme performs better. Indeed, the two schemes
can lead to different link utilization if the paths are different. Both mod-
els tend to choose links with the highest capacity. However, the distributed

4.5. Evaluation 59

model prefers vSF instances closer to the source (either to the initial source
or the previous vSF in the chain). This difference in vSF choice lead to a dif-
ferent link usage. The max link load in our model is lower for the centralized
model for all the scenarii except for RF1755 with 5 vSFs and RF3967 with 1
vSF. For the first, the two nodes providing the first vSF instance have simi-
lar centrality values overall, leading the distributed model to fairly balance
the demands between these two instances. Nonetheless, among these two
nodes, one is closer to the following vSF instances in the chain, leading the
centralized model to choose paths involving this node. For the second, the
mean difference is very small and is caused by close centrality values for the
10 vSF instances. Thus the load is well balanced between the vSFs, but leads
to suboptimal path for the distributed model. The centralized one instead
prefers to slightly increase the load on one link to find overall shortest path
to the destination. Overall, the network load seems to increase with the chain
length. Indeed, with these longer chains, the number of possible paths is re-
duced. More particularly the segment between the 2 types of vSF instances
might be a bottleneck since the whole traffic has to go through a relatively
small subset of paths. For instance, in the 2 vSF scenario, there exist only 25
possible shortest paths (which may not be disjoint) from one vSF type to the
other, depending on the choice of the instance in a pool of 5 instances of each
vSF type. Moreover, this additional waypoint increases the path length for
each request in both models. Thus each path involves an higher number of
links leading to an heavier traffic load on the network, stressing especially
links connected to vSF nodes. This trend is confirmed with chains of 5 vSFs,
where path constraints are even stronger and where the max link load in-
creases significantly. Indeed, on the SYNTH50 topology, there is even a link
which has reached its maximum capacity in both the centralized and dis-
tributed scenarios. We can also observe that the max link load values are
more stable on the rocketfuel topologies compared to the synthetic one. This
means that request paths tend to use different links in the latter, depending
on the set of source-destination pairs in each experiment. Thus, some ran-
domly chosen set might significantly increases the load on a particular link,
while another may fairly balances the flows among the links. Indeed, this
topology is more densely connected compared to the rocketfuel ones, thus
requests are more likely to use different links depending on the selected re-
quests. Notice that overall SYNTH50 has a higher max link load compared
to the rocketfuel topologies since all the links have the same capacity in this
dataset, which is not the case in the rocketfuel topologies where core links

60 The cost of distributed decision in Service Function Chaining

have more capacity. Thus in this topology, links tend to be more loaded since
a significant part of the traffic goes through the links directly connected to the
vSF instances. Moreover, the increase in chain length leads to a diminution
of vSF instances per vSF type, which thus receive a much more significant
part of the traffic; leading to a higher link usage.

We show in Fig. 4.6 the 50 more loaded link on RF1755 for chains of 1 vSF.
We can see that the centralized and distributed uses are close for most of the
links. As seen in Fig. 4.5, the max link load is higher in the distributed model
(14%) than in the centralized one (8%). Nonetheless, the distributed link load
quickly drops to become close to the centralized (less than 1% of difference).
The results on other topologies are similar: the gap between centralized and
distributed model quickly reduces after the first links with the highest load.

Fig. 4.7 shows the max link load of RF1755 topology under different traffic
intensity (heavier traffic matrix generation process is explained in Sec. 4.4).
The scenario with 5 vSFs had no solutions for higher traffic matrix because
of the link capacity constraint. We can observe on Fig 4.7a that the central-
ized model still outperforms the hop-by-hop one. The max link load remains
under 40% even when the network load is multiplied by 4 in this scenario,
while the distributed model reaches 60% of link load. On the contrary, the
two schemes perform similarly with chains of 2 vSFs even when the total
traffic increases.

4.6 Conclusion

In this chapter, we tried to answer the following question: what is the cost
to compute the service function chain path hop-by-hop in real network ? We
proposed an analytical formulation of this problem and compared a centrally
taken decision to a distributed one. What we have shown is that ISP topolo-
gies constrain the centralized decision and thus tend to induce the same
paths for the centralized or distributed decision. On the contrary, more ex-
otic topologies tend to exhibit more differences in the routing decision but in
general remains close to each other. The two problems show similar path cost
and length as well as close max link load. Moreover, we show that a central-
ized solution would tend to react slower than a distributed routing process
to a link or vSF failure. This work completes the one presented in Chapter 3
and makes a strong case to distribute the chaining decision since the gain of
a centralized decision appears to be small.

61

Chapter 5

Using Model Predictive Control to
Balance Service Load in Data
Centers

Qui dit équilibre dit menace qu’il

se rompe. Aucune stabilité n’est

jamais qu’équilibre.

Maurice Druon

In datacenters, some services can receive millions of queries per second.
Thus, to cope with demands, service providers require techniques to spread
the incoming connections on large clusters of servers at high speed. So far,
L4 load balancers have fulfilled this role. They masquerade the service IP ad-
dress and spread incoming connections to the backend. Even if this solution
succeeds to scale with the growth of user traffic, it fails to do it efficiently.
Due to their static uniform policy (e.g. Round Robin), the servers’ load is
imbalanced and the infrastructure requires overprovisioning to avoid con-
gestion.

In this chapter, we propose to leverage network softwarization to close
the loop and adapt to the traffic dynamics. Inspired by our work in Chapter 3,
we envision that the servers’ load is feedback to a controller that will modify
the load balancing decision for the next incoming connections. We focus our
contribution to the control part of this system and present a Model Predictive
Control approach to reduce load imbalance in datacenters.

This work has been submitted to the IEEE Transaction on Network and Ser-
vice Management journal and is currently under revision.

62 Using Model Predictive Control to Balance Service Load in Data Centers

5.1 Background and Motivation

Layer-4 load balancers are used to scale-out services hosted in cloud data-
centers. They are capital to meet the high demand for services hosted on a
pool of servers distributed among multiple clusters. A previous study has
shown that an average of 44% of cloud traffic needs load balancing function,
making it critical to provide clients with a good quality of experience with
the least amount of resources [81]. An L4 load balancer maps connections
(TCP or UDP flows) destined to a service with a virtual IP address (VIP) to a
pool of servers with multiple direct IP addresses (DIPs or DIP pool).

Google [27] and Facebook [67] have recently focused on the efficiency of
L4 load balancers, proposing architectures delivering services to millions of
clients. While these systems succeed in keeping up with demands, they still
fail to distribute the connections efficiently among the servers. Even Google’s
Maglev [27] (load balancing used by Google in their datacenters) was held
responsible for up to 30% load imbalance on their servers. Unfortunately,
this poor performance forces operators to overprovision their infrastructure
leading to resource waste.

So far, these load balancers implement static and uniform load balancing
policies such as Round Robin or Equal Cost Multipath (ECMP). We make the
point that a significant part of servers’ load imbalance is not due to these load
balancers’ accuracy but instead to an elephant in the room: requests’ charac-
teristics are generally not normally distributed nor follow a symmetric distri-
bution. Instead, a small group of elephant flows/heavy hitters contributes to
a significant part of the resource use [9, 20, 91]. Thus, uniformly distributing
the incoming connections does not lead to uniform load distribution.

With the rise of programmable dataplanes, more sophisticated load bal-
ancing solutions have been proposed to adapt to traffic conditions [8, 48, 49].
In these solutions, the load balancing policies become dynamic: the resource
state is fed back to the load balancer, which modifies its traffic splitting ac-
cordingly. Yet, these solutions rely on simple decision heuristics such as the
least loaded policy, which requires a frequent state update to reduce the load
imbalance. This additional control overhead cannot be neglected as it rises
with the number of servers in a pool and with the control frequency, making
it unfeasible in deployment with hundreds of load balancers and thousands
of servers.

In this chapter, we propose a control-theoretic method to design dynamic

5.1. Background and Motivation 63

load balancing policies. We begin by formulating the load imbalance mini-
mization problem as an optimal control problem. We formally define the key
dynamics variables involved, as well as a concrete objective to minimize im-
balance. We identify a crucial shortcoming in existing approaches: they rely
solely on the servers’ last state. They do not consider the current network dy-
namics nor their previous load balancing decisions. Yet, this knowledge can
significantly reduce the load balancers’ control update rate. Thus, we pro-
pose a Linear Time-Invariant (LTI) model, which links the next server load to
the previous state and load balancing decision. We use this model to solve
the optimal control problem and find the optimal load balancing inputs to
minimize load imbalance on a finite horizon. This model can be easily esti-
mated online with only a set of 3 counters on the servers.

Building on insights from our control-theoretic formulation, we argue
that Model Predictive Control (MPC) [15] is a suitable class of algorithms to
adapt the load balancing policy to the load dynamics. At a high level, with
the servers’ current state, MPC aims to predict their future state as a function
of its load-balancing decision. It solves an exact optimization problem on a
finite time horizon based on this prediction. It then applies the next control
decision to the system. MPC is widely used in real-world problems [15]. This
modular approach can support complex objectives as well as control or state
constraints. Moreover, it is not bound to a model, and the same process could
be used with another estimator, which may give a better prediction. Finally,
it has been experimentally shown that the repeated feedback inside MPC can
correct for many modeling errors [87].

We evaluate our solution by simulating a load balancer dispatching re-
quests towards a server pool. We generate a realistic workload and compare
our MPC solution with the round-robin policy under different traffic dynam-
ics and control periods. We show that our solution outperforms the round-
robin solution if the control period is smaller than the mean connection dura-
tion and can provide a systemic load imbalance reduction of 10%. Moreover,
we reduce the overall imbalance with MPC, meaning that the load is more
stable on the servers. Finally, we show that our solution seems to work well
on short horizons, meaning that a simple heuristic could be found to solve
the optimal load balancing problem based on our LTI model’s parameters
and the current server state. Finally, we show that our solution can perform
better than the static policy even with a large control period (e.g., 1s). In con-
trast, comparatively, the least loaded policy exhibits disastrous performance
at this control pace. Our work shows that knowing the connection duration

64 Using Model Predictive Control to Balance Service Load in Data Centers

Controller

LB Server Pool

Get Servers' State

Update Server
Weight Distribution

 (D)

Split Traffic
according to D

Control
Plane

Data
Plane

FIGURE 5.1: Dynamic Load Balancing.

distribution, one could adapt its control period to minimize the control traffic
overhead.

The rest of the chapter is organized as follows. First, we begin by dis-
cussing the tradeoff introduce by dynamic load balancing and properly mo-
tivate our approach in Section 5.2. Then we formally describe a realistic load
balancing architecture to build a generic optimal control problem to mini-
mize load imbalance in Section 5.3. We leverage on this analysis to propose a
Model Predictive Load Balancer, which is a control plane interoperable with
real load balancers, in Section 5.4. We detail in Section 5.5 the methodology
used to simulate our solution that we evaluate in Section 5.6. Finally, we
conclude the paper by discussing possible extensions and limitations of our
work in Section 5.7.

5.2 Control Overhead Tradeoff

Large-scale services are deployed on multiple clusters of servers located within
one or more datacenters. They rely on a load balancing mechanism to (i) dis-
patch new incoming requests toward a service instance; (ii) guarantee that
instance selection remains consistent for all packets; (iii) uniformly distribute
the load on the backend servers.

In a datacenter, each service is associated with a Virtual IP (VIP), which
identifies a set of instances of the service running on different servers. The
server of each instance of the service is associated with a unique identifier:
the Direct IP (DIP). A load balancer receives the connections towards a VIP
and selects an instance of the service running on a particular server. It then

5.2. Control Overhead Tradeoff 65

forwards every packet of this connection, in general identified by its 5-tuples,
to the selected server’s DIP. A large scale datacenter can be constituted of
tens of thousands of servers and hundreds of load balancers. Incoming con-
nections are demultiplexed at different stages. First, L3 load balancers (e.g.,
BGP routers using ECMP) dispatch incoming connections toward the same
VIP onto a first set of L4 load balancers. These load balancers then select the
destination server.

In such architecture, services are designed to scale with demand. Indeed
each service instance has a load threshold that, when exceeded, triggers the
instantiation of a new instance. Therefore, if the load is not uniformly dis-
tributed among instances, a threshold can be exceeded even if there are still
enough resources on the server pool to process the workload, leading to re-
source waste. Similarly to other works [8, 27], we define the imbalance of a
server as the ratio between the number of active connections on that server
and the mean number of connections on the server pool. We call systemic im-
balance the maximum value of load imbalance in a server pool. The higher
this metric, the higher the resource waste.

Most of L3 and L4 load balancers use a static set of rules to spread the
load on a server pool. They associate each server in a pool with a weight,
the weight distribution D representing the expected distribution of incom-
ing requests on the servers. This distribution can be uniform (ECMP [47],
round-robin) or non-uniform (WCMP [118], Weighted Round Robin [104])
depending on whether the targeted resources have the same capacity or not.
This static strategy uses the following heuristic: if the incoming connections
follow the D distribution onto the servers, their load will also follow the
D distribution. Thus, this policy assumes that the requests’ characteristics
(connection time, connection traffic, etc.) are normally distributed or at least
close to their average value. Nonetheless, requests’ characteristics have been
shown to exhibit a fat tail behavior, meaning that a minority, yet a significant
number of requests can account for the majority of network traffic [9, 91] or
last several orders of magnitude longer than the majority of the requests [20,
91]. A static distribution of these requests can only lead to load imbalance.

Several works have recently proposed leveraging on a dynamic load bal-
ancing policy to cope with transient load burst, thus reducing imbalance and
resource waste. In such architecture, the load balancer gets feedback from
the targeted resources so to adapt the server weight distribution (see Fig-
ure 5.1). They leverage on the softwarization of the network control plane, as

66 Using Model Predictive Control to Balance Service Load in Data Centers

10 1 100 101 102 103

Control frequency (Hertz)

101

102

103

104

Sy
st

em
ic

im
ba

la
nc

e
(%

)

Round Robin
Least Loaded

FIGURE 5.2: Static vs Dynamic Load Balancing.

well as programmable data plane to dynamically adapt load balancing poli-
cies to network dynamics [3, 48, 49, 58, 68]. While promising, these dynamic
policies can only exhibit better performance if adapted to the load dynamics.
Indeed, the performance of these policies is a function of (i) the server weight
computation, (ii) the load dynamics, and (iii) the control frequency (i.e., the
control period between two policy updates). For instance, the most straight-
forward implementation of this mechanism is the least loaded policy (used by
HAProxy, Kubernetes...). This policy gets direct feedback from the server
load, selects the least loaded server in the pool, and forwards the new con-
nections toward this server solely during the next control period. In theory,
this policy could optimally balance the load if it had instantaneous feedback
on the server state. Instantaneous feedback can be obtained when there is a
unique load balancer, but in large scale deployments, a unique load balancer
would become a bottleneck for the service. Thus, multiple load balancers dis-
patch traffic for the same VIP and need to synchronize to enforce this policy.
Furthermore, this policy can provide disastrous performance if the control
loop frequency is not adapted to traffic dynamics.

We show with a toy example in Figure 5.2 that a simple uniform static
load balancing policy outperforms the least loaded policy if the control fre-
quency is too low. We consider an L4 load balancer distributing connections
on a cluster of 468 servers. The load balancer receives 6,000 new requests
per second, each of which has a mean duration of 10s. In Figure 5.2, we
can see that even if the least loaded policy is dynamic, it is outperformed by

5.3. Dynamic Load Balancing 67

the simple round-robin policy in terms of systemic imbalance when the con-
trol period is higher than a few milliseconds. Such a result can be explained
by two main reasons, both linked to traffic dynamics. First, since the least
loaded policy directs the traffic to a unique server during a period, the pe-
riod needs to be close to the inter-arrival period to route every connection
optimally. Second, it requires that the load dynamics are slow, meaning that
the request duration is long compared to its update period, so to deal with
a stable load. Nonetheless, even if these conditions were fulfilled, this per-
formance improvement has a cost: the communication between the servers
and a load balancer controller at a high frequency leads to a significant con-
trol traffic overhead. In our setup, for a control frequency of 1,000 Hz (1ms
period), the servers would send 468,000 new messages per second to the con-
troller! Similarly, in [48], the probe period lasts a few milliseconds leading to
a huge control traffic overhead.

From the limitations of both static and dynamic load balancing policies,
we conclude this section by asking the following question: "Is it possible to
design a dynamic load balancing policy that outperforms static policies with a low
control traffic overhead?"

5.3 Dynamic Load Balancing

In our approach, we propose to consider the load dynamics, instead of get-
ting high-frequency feedback from the servers, to reduce the load imbalance
in a dynamic load balancing approach. In this section, we first describe the
load balancing architecture that we consider. Then, we formally analyze such
a system to finally propose a load imbalance minimization problem.

5.3.1 Load Balancing Architecture

We consider a web service deployed in a cloud environment. A VIP identifies
this service in the datacenter. Incoming HTTP sessions first reach a set of load
balancers (with the same VIP address) that dispatch them on a set of frontend
instances (e.g., Apache, HHVM, Nginx). Once a session is established, the
client sends HTTP requests to the server to get or modify data. The server
then callbacks the backend servers to fetch the data and deliver them to the
client. Each session has a different processing time that depends on the client
transactions (e.g., data size, backend processing time...) and corresponds to
the time from the establishment to the termination of the underlying TCP

68 Using Model Predictive Control to Balance Service Load in Data Centers

connection. A server processes the received sessions in parallel. Its load can
be estimated by its number of open connections.

We consider an architecture where the L4 load balancing policy can be
modified to reduce the load imbalance between servers. In this architecture,
the servers regularly feedback their number of open connections to a con-
troller, which computes the best policy to apply in the next control period
to reduce load imbalance between the servers and enforces it on the L4 load
balancers.

We distinguish three main parts in this system depicted in Figure 5.3:

Server
Pool

Local Control
Plane

Server Weight

Forwarding
RulesLocal Data

Plane

Model
(Offline)

System
State

Model Predictive
Control

Controller

Load
Balancer Server

k

Server
1

Server
N

Control

Data

FIGURE 5.3: Load Balancing Architecture.

Server Pool

Constituted of S servers (physical or virtual machines), it processes the in-
coming connections and delivers service to clients. Each server may have dif-
ferent capacities due to different resource allocations (e.g., CPU). The servers
monitor their open connections, which represent the objective to optimize.
Each server’s capacity weights the number of connections it has to process.
For instance, if a subset of servers can process two times more connections
than another subset, it should receive two times more connections. They
send these data to a controller at a given pace that we call the control period
(or frequency).

5.3. Dynamic Load Balancing 69

Load Balancer(s)

This element receives incoming connections and dispatches them on the server
pool. When new connections arrive, it selects a server, stores its decision, and
replaces the destination of every packet of this connection towards the asso-
ciated DIP to forward them. We consider that the server selection is based
on a server weight distribution D stored in the load balancer and updated by
the controller. These weights represent the expected ratio of incoming con-
nections to be forwarded to a server. A single or a pool of load balancers
enforces the same distribution for every control period. This connection dis-
tribution can either be implemented with a weighted round-robin [104], a
hashing space [48, 118], or a pseudo-random generator. How the server se-
lection process is done in the dataplane is out of the scope of this work. No-
tice that even if the server weights are modified, the existing connections are
still sent to the same server (connection consistency).

Controller

This part is in charge of computing the load balancing policy based on the
current system state and then sending the computed server weight distribu-
tion (D) to the load balancer(s). This decision is devised based on two main
inputs: the model, which represents the dynamics of the load, and the sys-
tem state, which is the current load on the servers. Notice that the model can
either be learned offline or updated online. In this work, we detail how such
a controller can be built.

5.3.2 Modelization

We consider a time horizon divided into a set of consecutive control periods
with duration ∆t ∈ R+ that is denoted as τ = {1, 2, ..., T}. We use t = 0
to denote the initial instant of the time horizon. We consider C the set of
connections requests to the service during the time horizon τ. A connection
c is characterized by three attributes: its arrival time t, its duration d, and
the assigned server s. In practice, the connection duration can span from a
few seconds to several minutes [91]. We call Ct the connections present at the
instant t. At each instant t ∈ τ, there is a set of new connections arriving on
the service called rt = Ct \ (Ct ∩ Ct−1) that the load balancer has to assign to
the server instances in the server pool.

Let S be the set of servers in the server pool. We consider that the server
pool is static in the time horizon τ. Each server has a capacity of κ, which is

70 Using Model Predictive Control to Balance Service Load in Data Centers

the number of connections it can process in parallel before suffering conges-
tion. A service provider can tune this value based on a server benchmark.
At each control period the server sends to the controller its current load xs,t

formally described in Equation 5.1, where 1(c, s) equals 1 if c is assigned to s
and 0 otherwise. We call Xt the vector of the server states at time t.

∀t ∈ τ ∀s ∈ S xs,t =
∑c∈Ct 1(c, s)

κs
(5.1)

We consider that a load balancing decision at the instant t ∈ τ is repre-
sented by a vector ut of normalized server weights. Each weight ws,t repre-
sents the probability for a new connection to be forwarded toward the server
s during the control period t. The main challenge of connection load balanc-
ing is that neither the number of new connections nor their duration is known
ahead of time. Thus, a load balancer can only decide based on the previous
state of the system and the previous load balancing decision it has taken. The
goal of our work is then to find the load balancing function Πt that will min-
imize the load imbalance such that ut = Πt(X0, . . . Xt, u0, . . . ut−1) for every
control period t. Notice that Πt is a constant function when the load balanc-
ing policy is static.

We now formalize a general control problem to minimize load imbalance
with the Equations 5.2, 5.3, 5.4, 5.5. Equation 5.3 corresponds to a constraint
that expresses the dynamics of the system over time and maps the future
state of the system Xt+1 with the previous state Xt and the load balancing
decision ut, i.e., the server weights. This state function is usually not known
since it depends on the incoming traffic characteristics (rt), i.e., the different
arrival times and durations of the connections arriving at time t. Nonethe-
less, an accurate enough model can estimate this state function. Equation 5.3
also enforces that all the connections present during a control period (Ct) are
allocated on the servers, meaning that ∑s∈S κs × xs,t = Card(Ct). Due to this
constraint, we choose to minimize the norm of the vector Xt in our objective
function (Equation 5.2). In fact, minimizing the norm of the vector ‖Xt‖p (if
2 ≤ p) penalizes the distance from the mean, as well as the congestion of a
server, since a higher load on a server will be more penalized. Indeed, min-
imizing ‖Xt‖1 could lead to sending the whole load on a single server (they
are more likely to propose sparse solutions [12]). Notice that to have a strict
minimization of the systemic imbalance, there should be p = ∞; however, it
will be a more complex problem to solve. In this work, we choose p = 2
to simplify the formulation into a quadratic problem. Equation 5.4 shows

5.3. Dynamic Load Balancing 71

that the control decisions ut can only depend on the previous system trajec-
tory (i.e., the previous state and previous load balancing decision). Finally,
Equation 5.5 gives the initial conditions of the considered system.

72 Using Model Predictive Control to Balance Service Load in Data Centers

Objective:

min
T

∑
t=0
‖Xt‖2 (5.2)

Subject to:

∀t ∈ [0, T − 1], Xt+1 = ft(Xt, ut) (5.3)

∀t ∈ [0, T − 1], ut = Πt(X0, . . . Xt, u0, . . . ut−1) (5.4)

X0 = Xinit (5.5)

This optimization problem aims to find the optimal set of control deci-
sions to minimize the objective function. Two methods can be applied: 1) find
the optimal set of control decision ut supposing the dynamics of the system
known (the approach we use) or 2) try to directly learn the policy function Πt

without considering the dynamics (see discussion in Section 5.7). Moreover,
additional constraints could be added in the search of ut or Πt, such as the
horizon size of the policy function to reduce the storage of numerous state
or that the function is static to avoid having feedback (and the control traffic
overhead). We let for future work the exploration of the whole load balanc-
ing policy design space and propose in the next section a model predictive
controller approach to solving an instance of this general problem.

5.4 Model Predictive Load Balancer

In this section, we propose to solve this optimal control problem by using a
Model Predictive Controller. We choose this approach since a perfect knowl-
edge of network dynamics is hard to obtain for the entire future. Neverthe-
less, a reasonably accurate prediction can be obtained for a short horizon.
Thus, we propose to use a Linear Time-Invariant Model to characterize the
load dynamics (i.e., estimate the dynamics function ft in Equation 5.3). We
then reformulate the systemic imbalance minimization problem into a lin-
ear quadratic regulator problem. Finally, we solve this problem in a model
predictive approach to minimize the model’s prediction error.

We call Service System the system composed of the load balancer(s) and the
server pool. This system has two inputs: the new connections in the system
rt and the load balancing policy ut. The Service System can be represented as

5.4. Model Predictive Load Balancer 73

TABLE 5.1: Notations.

Parameters
S Set of servers in the server pool
∆t Control period
T Number of control periods in the time horizon
Ct Number of active connections during a control period
α Request decay of allocated connections during a control period
β arrival of new incoming connections during a control period
κs Capacity of the server s

Control and state variables
xs,t Load of server s at instant t
Xt State of the server pool at instant t. Vector of xs,t for s in S
ws,t Server weight of server s at instant t.
ut Load balancing policy at instant t. Vector of ws,t for s in S
U Set of load balancing policy (u0, ..., uT) in a time horizon

a function such that Xt+1 = f (rt, ut, Xt). This function f represents the open-
loop behavior of the system. The static load balancing policy (Figure 5.4a)
is an open-loop system: the control input ut is independent of the output
Xt and has a fixed value u. In the dynamic policy scenario (Figure 5.4b),
the system becomes more complex. In this case, a controller is added, the
service load Xt is fed back to the controller, which returns the load balancing
decision ut. As stated in the previous section, the connection duration and
arrival rate are unknown ahead of time. We will thus embed an estimation
of these parameters in the model such that Xt+1 = f̂ (ut, Xt) (see Fig. 5.4c).
We detail how we build such a function in the next paragraphs.

5.4.1 Linear Quadratic Regulator

We propose a Linear Quadratic Regulator problem to solve an instance of the
problem described in Section 5.3.2. We first propose a linear time-invariant
model to model the load dynamics and then formally define the dynamic
load balancing problem based on this model.

Linear Time-Invariant Model

In this subsection, we propose a linear time-invariant model that describes
the server load evolution over time. This model aims at finding a discrete
linear expression linking the server load between two control periods. We
will refer to this expression as server load dynamics.

74 Using Model Predictive Control to Balance Service Load in Data Centers

Service

Incoming
requests

r(t)

Service
Load
x(t)LB Policy

u

(A) Static Policy System.

Service

Load Balancing
Controller

Incoming
requests

r(t)

LB Policy
u(t)

Service
Load
x(t)

(B) Dynamic Policy System.

Service Model
(Linear Time

Invariant)

Load Balancing
Controller

LB Policy
u(t)

Service
Load
x(t)

(C) Linear Time Invariant Model.

FIGURE 5.4: System Identification.

We distinguish two kinds of connections processed by the load balancer
during a time sample t: the allocated connections and the incoming connec-
tions. The allocated connections are the ones that have arrived before sample
t and are already allocated to a server (connection consistency). The incom-
ing connections are the new ones arriving during the control period t, which
will be allocated to the servers following the current load balancing decision.

During each control period t, new connections are allocated to the servers
according to the server weight distribution. We call β the number of new
connections arriving at the load balancer during sample t. The vector ut

is composed of the S weights and represents the load balancer policy dur-
ing the period t. Besides, during a period t, some of the already allocated
connections to the servers during the previous period [0, t − 1] expire. The
parameter α represents the ratio between the number of connections being
processed during sample t − 1 and the number of those still present at pe-
riod t. We call the parameter α connection decay.

5.4. Model Predictive Load Balancer 75

From this model, we express the dynamics of a server load, that is ex-
pressing xs,t+1 in function of xs,t, and ws,t in Equation 5.6:

xs,t+1 = α× xs,t + β× ws,t (5.6)

We present a vectorize expression of the dynamics in Equation 5.7, where
A and B are diagonal matrices of dimension S× S and can be expressed as
α× IS and β× IS respectively, IS representing the identity matrix:

Xt+1 = A× Xt + B× ut (5.7)

Notice that parameters α and β can be computed by analyzing the net-
work traffic at the load balancers or at the servers (using the linux conntrack
for instance [19]. We estimate α and β for each control period with the fol-

lowing formula: αk =
Card(Ct∩Ct−1)

Card(Ct−1)
and βk = Card(Ct) − Card(Ct ∩ Ct−1).

We have then two series of α and β estimates. We can easily implement this
estimation mechanism online with a system of 3 counters. Indeed during a
control period, the servers can easily count the current number of connection
during this period (Card(Ct)), the number of connection of the previous pe-
riod (Card(Ct−1)) and the connections arrived during the current period (βt).
By subtracting βt to Card(Ct), we get Card(Ct ∩ Ct−1) and can deduce αt.

Dynamic Load Balancing Problem

Now, we adapt the systemic imbalance minimization problem into a linear quadratic
regulator problem.

Equation 5.8 represents the objective function we aim to minimize. This
function is quadratic and is subject to linear constraints described in Equa-
tion 5.9, 5.10, and 5.11. The whole problem is a quadratically constrained quadratic
program [12] and this formulation is more commonly known as a constrained
linear quadratic regulator.

Objective:

min J(U) =
T

∑
t=0

X>t ×Q× Xt + u>t × R× ut (5.8)

Subject to:

∀t ∈ [0, T − 1] Xt+1 = A× Xt + B× ut (5.9)

76 Using Model Predictive Control to Balance Service Load in Data Centers

∀t ∈ [0, T]
N

∑
n=1

wn,k = 1 (5.10)

X0 = Xinit (5.11)

The objective function in Equation 5.8 is composed of two parts repre-
senting two concurrent metrics. The first part, X>k ×Q×Xk, is the imbalance
cost (see Section 5.3.2). It penalizes quadratically the load imbalance between
servers. The second part, u>k × R× uk, is the control cost. It penalizes an "ag-
gressive" control, i.e., the control values that vary strongly. The Q and R ma-
trices are two diagonal matrices of dimension S× S. The Q matrix represents
the load deviation weights. It could be tuned if some servers need to have
a more stable load than others. This paper considers that each server load
has the same importance and that the Q matrix is the identity matrix. The R
matrix represents the cost of control. This matrix ensures that the sequence of
inputs (u0, ... uT) converges to a stable policy and avoids flip-flop behaviors.
In practice, this matrix’s weights are small compared to the Q matrix since
the main objective is to reduce load imbalance. Equation 5.9 ensures that the
servers’ load dynamics are applied to link the load state with the load balanc-
ing policy. Equation 5.10 ensures that all the new connections are dispatched
on the servers. It also ensures that the servers’ weights are normalized. Fi-
nally, Equation 5.11 gives the initial state of the system. With the constraints
expressed in Equations 5.9 and 5.11, the objective function J only depends on
the load balancing policy U = (u0, ..., uT).

5.4.2 Model Predictive Control Algorithm

The previous section described how to find the optimal policy on a given
time horizon with our LTI model. This section describes how we can use the
solution computed by the dynamic load balancing problem on a real system.
So far, we can find the optimal load balancing policy by solving the previous
problem, assuming that our LTI model prediction is accurate. In real systems,
errors in measurements or approximations in the model can lead to a wrong
decision. In this subsection, we propose leveraging a model predictive con-
trol approach to correct the prediction error.

In Figure 5.5, we explain how the model predictive control approach works.
In this scheme, the controller gets feedback from the Service System at every
control period. At t = 0, a first system state is received. This state is used

5.5. Evaluation Methodology 77

Optimization
Problem 1

Optimization
Problem 2

Optimization
Problem 3

etc...

Decision
1

Decision
2

Decision
3

Decisions derived from the problems and applied to the system

Time Horizon of Optimal Control Problems

FIGURE 5.5: Receiding Horizon.

as the initial load of our dynamic load balancing problem, which is solved
on a given time horizon of length T. The solution to this problem gives a
set of servers’ weights for the next T control periods in the time horizon. The
controller takes the server weights for the next control period ([0, ∆t]) and en-
forces it on the load balancer.At t = ∆t, the controller gets again the system’s
current state, which can be more or less close to the previously predicted
value in the first problem. This new state is used as the initial state of a new
optimization problem, thus correcting the prediction. The problem is solved
again, and the server weights are enforced. The same process is done at the
end of each control period.

5.5 Evaluation Methodology

In this section, we explain the methodology used to evaluate our dynamic
load balancer. Our goal is to evaluate our MPC solution in terms of load
imbalance against various realistic network dynamics. We first describe the
process used to generate synthetic traffic traces played in our simulation.
Then we describe how we estimate the parameters of our LTI model from a
traffic trace. Finally, we detail how a load balancing simulation is run. The
experiment process is summarized in Figure 5.6. Each of these parts is im-
plemented as a Python program (Python 3.7) and executed on a server with
the following main characteristics: Intel Xeon Gold 6130 (Skylake, 2.10GHz,
4 CPUs/node, 16 cores/CPU), 768 GiB of memory.

78 Using Model Predictive Control to Balance Service Load in Data Centers

Request/Flow Trace

Test
Request/Flow Trace

Test

Experiment
Parameters

Traffic
Generation

Connection
Trace Training

Model
Generation

Matrices
A and B

Connection
Trace

Simulation
Load

Balancing
Simulation

Simulation
Results

Input

Data
Processing

Data

FIGURE 5.6: Simulation Workflow.

5.5.1 Traffic Traces Generation and Model Estimation

We generate traffic traces by using the Poisson Pareto Burst Process [119]. In
this model, connections arrive following a Poison process with an arrival rate
λ. Each of the generated connections has a duration that follows a Pareto dis-
tribution parameterized by two values: the mean duration (θ) and the Hurst
parameter. We choose this model since web traffic is self-similar [20] and
recent reports have shown that the connection duration follows a fat-tailed
distribution [91]. We fix the Hurst parameter to 0.75. This parameter rep-
resents the long-range persistence of the traffic generation model. Since its
value is comprised between 0.5 and 1, the traffic time series follows a trend.
We choose a value of 0.75 so that the connections timeserie follows a long
term trend but keeps a range of variability. We generate traffic traces with
different dynamics patterns by varying λ and θ. The higher λ, the higher the
load intensity since the server pool receives more connections during a con-
trol period. The higher θ, the higher the load stability. Following the results
presented in [91], we consider that the mean web connections’ duration is of
the order of several seconds or tens of seconds. We generate traffic traces of
5 minutes.

We then use a traffic trace to estimate the parameters α and β of our
model. We sample the traffic trace duration in control periods of size ∆t.
At the beginning of each control period, we enumerate the connections. Let
us call this group Ct. We then compare two successive control periods, as
explained in Section 5.4.1, to deduce series of α and β. We take the mean of

5.5. Evaluation Methodology 79

these series to build our model.

5.5.2 Load Balancing Simulation

Finally, we present how we run the load balancing simulation. First, we de-
scribe our MPC solver’s implementation, which will be called a routine in
the simulation. Then we detail the discrete event simulator we have imple-
mented to simulate the dispatching of connections on a server pool.

Solving Dynamic Load Balancing Problem

In our MPC controller’s implementation, we used CVXPY [23], a modeling
language for convex optimization problems, to formally describe our dy-
namic load balancing problem. We have fixed the load deviation weights
to 1 and the control weight to 0.001. We consider in these simulations that
the server pool is uniform, meaning that every server has the same capac-
ity κ. The routine’s inputs are the parameters α and β as well as the cur-
rent server load X0. It solves the problem on a finite horizon with CPLEX.
From a quick benchmark of our solution, we see that even for a considerable
time horizon (30 control periods) and medium server pool (512 servers), our
solver was able to give a solution in hundreds of milliseconds. These results
could even be improved by using warm-start techniques or online optimiza-
tion [105]. Still, for real systems implementation, off-the-shelf solvers might
not be available due to licensing issues. In future work, we plan to find a
heuristic solution to this problem.

Discrete Event Simulator

We use the parameters’ estimation and a traffic trace to simulate a load bal-
ancing scenario. We fix the server pool size to 468 servers, similarly to recent
works [8, 27]. We have implemented a simple discrete event simulator to do
so. We consider three types of events: i) a connection arrival, ii) a connection
end, iii) and a control update. When a connection arrives, the load balancer
randomly picks a server in the pool based on the current servers’ weights.
The connection is then assigned to the chosen server. When a connection
expires, it is removed from the server that was processing it. Finally, when
a control event occurs, the load balancer gets the current state of the servers
(number of current connections), solves the dynamic load balancing problem
using CPLEX, and modifies the server weights following the MPC approach.

80 Using Model Predictive Control to Balance Service Load in Data Centers

25 50 75 100 125 150 175 200
of requests x1000

(steady state)

0

10

20

30

40

50

60

Sy
st

em
ic

im
ba

la
nc

e
(%

)

Round Robin
MPC 0.75s
MPC 1s
MPC 5s
MPC 10s

FIGURE 5.7: Impact of the arrival rate on the Systemic Imbalance.

Notice that in our implementation, we neglect the feedback loop delay (trans-
mission time, server weight enforcement, and server weight computation),
since we consider control periods significantly larger (in the order of a sec-
ond) than the cumulated delay. Indeed, data transmission in a datacenter can
be done in a few milliseconds, and it has been shown that servers’ weight can
be modified at line rate [48]. Even with our off-the-shelf solving approach, a
solution can be found in a few hundreds of milliseconds.

We run simulations for varying several parameters: connection duration,
connection arrival, control period, and control horizon. We run ten simula-
tions for each combination of parameters with different traffic traces. The
traces used for the model estimation have been generated with the traffic
parameters (connection duration and arrival), but are never played in the
simulations.

5.6 Evaluation

In this section, we evaluate the gain of using our model predictive control
approach in terms of load imbalance. We exhibit how the traffic dynamics
and control parameters impact the performance to find a tradeoff between
load imbalance and control traffic. We compare our solution to a static and
uniform load balancing baseline: the widely used round-robin policy.

5.6. Evaluation 81

We first analyze the effects of connections arrival rate on load balancing
policies. We compare the round-robin policy with our MPC policy with sev-
eral control periods. On Figure 5.7, the mean connection duration is fixed
to 10s and the arrival rate varies from 2,000 to 20,000 connections per sec-
ond. Thus, there is a mean number of connections distributed on the server
spanning from 20,000 to 200,000. Notice that a front-end cluster in a Face-
book datacenter can process several tens of thousands of active connections
concurrently [67]. We can see that for each policy, the systemic imbalance
decrease with the arrival rate. Indeed, when the arrival rate increases, each
server receives a larger sample of new connections. With a larger sample, the
active connections’ duration distribution on the server is more likely to be
similar to the duration distribution of the generated traffic. Thus, the more
requests are distributed on the servers; the less imbalance is exhibited due to
the big numbers law. Yet, increasing the number of connections per server
to reduce imbalance is not an efficient solution since the servers need to be
dimensioned to handle such a large number of connections. We can notice in
Figure 5.7 that our model predictive approach outperforms the round-robin
baseline for a control period of 0.75s and 1s while it exhibits worse perfor-
mance for a period of 5 and 10s. Indeed, when the control period is close to
the request mean duration, the controllable load becomes less stable (α tends
to 0) since more and more requests last less than a control period. Thus the
load prediction becomes less accurate. Still, we can see a 35% gain compared
to the baseline with a control period of 750ms. Even in the worst scenario
(20,000 requests in the system), one can expect a 10% reduction of the sys-
temic imbalance.

Now we focus on the effect of the request duration on our load balancing
policies. In this scenario, we vary the mean duration of the requests from 1s
to 60s. We fix the mean number of requests to 60,000 and adjust the request
arrival accordingly. We can see that the round-robin policy is not affected by
this parameter since it dispatches the requests independently of the current
server load. In this case, the systemic imbalance is 20% and slightly decreases
due to the mean request number adjustment. As above, we can see that when
the control period is too long compared to the mean request duration, our
MPC exhibits worse performance compared to the static load balancing pol-
icy. For a control period of 10s and a mean duration of 1s, the MPC exhibits a
9% increase in load imbalance compared to the round-robin policy. Nonethe-
less, we observe that for a control period of 750ms and 1s the MPC performs
better than the static policy from 5s request mean duration. The performance

82 Using Model Predictive Control to Balance Service Load in Data Centers

0 10 20 30 40 50 60
Mean request duration (s)

0
5

10
15
20
25
30
35
40
45

Sy
st

em
ic

im
ba

la
nc

e
(%

)

Round Robin
MPC 0.75s
MPC 1s
MPC 5s
MPC 10s

FIGURE 5.8: Impact of the connection duration on the Systemic Imbalance.

gain increases and finally reaches an asymptote around 10% of systemic im-
balance. It seems that as soon as the mean duration is 10 times higher than
the control period, the asymptote is reached. This might be a good rule of
thumb to design the minimal control update period knowing the pattern of
traffic for a performance gain. One could decide to reduce the control period.
But, we see that the systemic imbalance gain slows down (the gain between
750ms and 1s is small), while the control traffic overhead still grows linearly.
Knowing the traffic dynamics, one can choose a tradeoff in terms of systemic
imbalance and traffic overhead.

In Figure 5.9 we compare the load imbalance distribution between the
round-robin policy and the model predictive control (we fix the control pe-
riod to 1s). We can see the same trend for both the MPC and the round-robin
policy: the higher the number of requests, the lower the imbalance. Nonethe-
less, we can see that the imbalance distribution spread is lower for the model
predictive approach, meaning that the load is more stable on every server.
For instance, we see that 75% of the imbalance distribution is below 9% for
the MPC approach with 20,000 requests in the system, while the round-robin
policy is 3% higher for the same quartile. Logically we see that the extreme
imbalance values are higher for the round-robin policy with 5% of the distri-
bution higher than 21% of imbalance, while the MPC has 95% of its distribu-
tion below 15% of imbalance. Overall the mean imbalance is lower for the
MPC compared to the round-robin policy for every request considered in the
system.

5.6. Evaluation 83

20 40 60 80 100 120 140 160 180 200
of requests x1000

(steady state)

0

5

10

15

20

25

30

Se
rv

er
 Im

ba
la

nc
e

(%
)

(A) Static Policy System (round-robin).

20 40 60 80 100 120 140 160 180 200
of requests x1000

(steady state)

0

5

10

15

20

25

30

Se
rv

er
 Im

ba
la

nc
e

(%
)

(B) Dynamic Policy System (MPC).

FIGURE 5.9: Servers’ Imbalance Distribution.

20
.0

40
.0

60
.0

80
.0

10
0.

0

12
0.

0

14
0.

0

16
0.

0

18
0.

0

20
0.

0

of requests x1000
(steady state)

0

5

10

15

20

25

30

Sy
st

em
ic

im
ba

la
nc

e
(%

) MPC Horizon
1.0
5.0
10.0
15.0
20.0
25.0
30.0

FIGURE 5.10: Impact of the horizon length.

84 Using Model Predictive Control to Balance Service Load in Data Centers

Finally, in Figure 5.10, we look at the impact of the control horizon on the
systemic imbalance. We see that our MPC approach performs the same with
a control horizon spanning from 1s to 30s. It means that the short horizon
solution is approximately the same in terms of systemic load imbalance com-
pared to the long horizon. This may be due to the control cost being small
compared to the imbalance cost, thus the control policy can be aggressive,
and most of the imbalance is corrected in the first moves. Since an efficient
strategy can be found with just a few moves, these results emphasize that a
simple heuristic could solve the dynamic load balancing problem.

5.7 Discussion and Perspectives

Our results illustrate the potential gain that control theory can achieve if ap-
plied to networking problems. In this section, we discuss how our solution
can adapt to operational constraints to bring these gains into the real world.
We also emphasize the potential perspectives our work opens. Indeed the
performance could be further improved by finding a more accurate dynam-
ics estimator or integrating modeling errors into the control problem.

Does MPC support service scaling?

In this work, we have considered a fixed server pool size. Nonetheless, with
the traffic fluctuations, servers’ capacity can be modified to cope with de-
mands. If a scaling event happens (e.g., adding more servers to the pool), the
problem’s parameters can be adapted to fit the new current situation for the
next considered control period.

Is this solution limited to L4 load balancers?

In this paper, we have investigated the distribution of connections among
servers. However, load balancing occurs in many other areas to mitigate con-
gestion at the network or application level. The formulation of Section 5.3.2
could be adapted to fit the dynamics of the considered system, the main lim-
itations being: What are the dynamics of the considered system? How fast
can a good enough solution to the problem be found?

5.7. Discussion and Perspectives 85

Is it possible to use another model?

Yes. In our work, we used a first principle approach to build a model, but
other techniques could be used to predict the system’s load dynamics. Nonethe-
less, using a linear time-invariant model simplifies the optimization problem
in a quadratically constrained quadratic program that can be exactly solved
in polynomial time. Machine learning could be used to estimate the sys-
tem dynamics and solve the optimization problem [100]. Recht et al. discuss
these solutions compared to the classical control approaches in [87] and show
that they may perform poorly even on simple problem compared to classical
solutions.

What if the load prediction is inaccurate?

Even if the MPC approach reduces prediction error as it takes feedback from
the real system, it may still lead to short scale bursts or unstable control policy
if the traffic is too bursty. Nevertheless, the optimization problem can be ex-
tended to a finite-horizon stochastic optimal control problem to take into account
the load estimation error due to the traffic fluctuation. This problem aims to
minimize the load imbalance, assuming that some states can take any value
in a given range. We let the formulation of this robust MPC problem [15] for
future work.

Is this solution scalable?

Yes, with some improvements. Our work shows that our optimization prob-
lem can be exactly solved in a few hundreds of milliseconds for a medium-
size cluster (512 servers). Nonetheless, the problem-solving complexity is
polynomial, making it unfeasible for large scale problems on short timescales
if the dynamics are fast. Still, the optimal solution is not required here, and
a good enough solution to the problem using a heuristic could be devised
to reduce the time to found the next load balancing move. Moreover, cen-
tralizing the load balancing decision might not be an optimal architectural
choice. Using a framework, such as the System Level Synthesis [25], enables
the design of a distributed architecture of controllers. In this architecture,
the problem is split into subproblems, which can be solved in parallel, thus
reducing its complexity. This framework can be the right perspective for geo-
distributed load balancing among multiple datacenters where load balancing
decisions are taken in different sites in a hierarchical manner (e.g., Facebook
load balancing [94]).

86 Using Model Predictive Control to Balance Service Load in Data Centers

5.8 Conclusion

In this chapter, we have proposed an L4 load balancer control plane to reduce
servers’ load imbalance. We made the case that an efficient control plane for
dynamic load balancing should focus on the load dynamics instead of the
last state. We proposed to model a service cluster as a dynamical system
whose load is controlled by its load balancing policy. This optimal control
problem is, in general, hard to solve, since it needs an accurate prediction of
the load dynamics. To solve this problem, we proposed a Model Predictive
Controller, which finds optimal solutions on receding short horizons. We
have detailed how this solution could manage load balancers and showed
that a simple model could be estimated with only three counters. The evalu-
ation of our solutions with realistic simulations shows that our approach can
significantly reduce load imbalance even with a large control period (given
that the control period is adapted to the dynamics). We show that the control
loop should be adapted to the traffic dynamics more precisely, the control
period should be shorter than the mean duration of the flow otherwise, it
would lead to performance degradation compared to stateless uniform load
balancing policy. In future work, we plan to find a good enough heuristic
to solve the problem on a shorter timescale, thus improving the approach’s
efficiency and making it feasible for workload with fast dynamics. Moreover,
other prediction and control solutions could be contemplated and compared
to ours to further reduce the load imbalance.

87

Chapter 6

Conclusion and Perspectives

Le vrai voyageur n’a pas de plan

établi et n’a pas l’intention

d’arriver.

Lao Tseu

This thesis presented our three contributions that tackle dynamics in soft-
ware networks. We covered two main topics: Service Function Chaining and
Load Balancing. We conclude this thesis by providing a summary of our
contributions (Sec. 6.1), and putting our thesis into perspective (Sec. 6.2).

6.1 Summary of Contributions

Today’s network are mostly static as adapting them to new requirements
is complex, requires human intervention and is error-prone. Network soft-
warization has been seen as the holy grail that would end this era and lead to
network that can automatically adapt to the traffic dynamics. SDN, NFV as
well as programmable dataplane let envision a network that can more finely
monitor its state and adapt to a change. In this thesis, we have explored to
what extent these new systems could react to the network dynamics in two
domains: Service Function Chaining and Load Balancing.

6.1.1 Service Chaining

In our first contribution, we questioned some of the assumptions made by
the state of the art concerning service chaining. First, we proposed to aug-
ment the network routing layer with the notion of service. Instead of rely-
ing on a centralized orchestrator, which would monitor both service func-
tions and forwarding devices to build a map of the network, we instead en-
vision autonomous NFV-Routers that would host functions and announce

88 Conclusion and Perspectives

them through their routing protocol. Our approach allows to build a dis-
tributed map of both the network topology and service functions with their
related metrics. Our proposal can rely on the robustness and scalability of
routing protocols and can be deployed incrementally in existing networks.
Our evaluation shows that our approach due to its anycast addressing in-
duced almost no overhead on the routing system. Second, we proposed to
distribute the chaining decision. Orchestrators used to centralize the chain-
ing decision and push static rules on forwarding elements. Instead, we ar-
gue that this decision can be taken segment by segment autonomously by
NFV-Rs. This distributed chaining decision allows to share the path com-
puting and increase the robustness of service chains. Third, our approach
can support any path computation algorithm for service chain. Based on
the announced metrics, service aware routing tables are built and updated
autonomously by NFV-Rs. We showed two types of scenario: a multipath
routing approach (WCMP) and the classical shortest path algorithm. Even
if we focused on hop-by-hop routing algorithms, the augmented network
view can also be leveraged to drive a source routing decision. Our large
emulations have demonstrated that NFV-Routers can efficiently steer traffic
through service chains at the granularity of UDP flows to more finely adapt
to the network dynamics. Moreover, our solution succeeds in finely balanc-
ing the load among the service function instances.

The design of the NFV-R let envision new possibilities regarding the way
the service paths are computed. In our second contribution, we tried to
answer the following question: should a centralized decision be preferred
compared to a hop-by-hop one? Indeed, due to its myopic view, a hop-by-
hop decision may take longer path and increase the load on links or service
functions. Yet a distributed decision significantly increases the control archi-
tecture robustness and reactivity. We proposed an analytical evaluation of
these two approaches to assess what was the cost of a distributed control.
We introduced two Integer Linear Programs to compare these two control
architectures in terms of overall cost, path length and link use. We show that
the distributed decision is close to the centralized one on realistic topologies,
while the distributed architecture due to its local control loop can react more
quickly to network events (e.g., link failure). This makes a strong case to
prefer a distributed hop-by-hop chaining decisions compared to centralized
ones.

6.2. Perspectives 89

6.1.2 Load Balancing

In our third contribution, we have explored to what extent network soft-
warization can improve load balancing in datacenters by adapting its de-
cision to the load dynamics. So far, load balancers apply static and uniform
policies to spread incoming connections. Nonetheless, this approach induces
a non uniform load distribution. To cope with this issue and reduce overpro-
visioning, we made the case for a dynamic load balancing policy that would
adapt to the current load on backend servers. We detailed how such a solu-
tion can be technically achieved due to recent innovations in programmable
data planes. We then proposed a control theory based approach to reduce the
server load imbalance: Model Predictive Control. In this vision, the servers’
load is modeled as a dynamic system driven by the load balancing policy
(i.e., traffic splitting ratio). We proposed a Linear Quadratic Regulator model
to predict the load evolution and compute the optimal set of traffic splitting
input to reduce imbalance. This model is then applied on a receding horizon
so to directly get feedback of the current server load. We showed with our
large scale simulations that MPC can significantly reduce load imbalance if
the control period is adapted to the load dynamics. We have also demon-
strated that this solution induces a small control overhead and could be ap-
plied as is in datacenters. We believe that this proposal is a first step to close
the loop in load balancing systems so to better adapt to the traffic dynamics.

6.2 Perspectives

Along the way, several research directions have been opened in this thesis.
We summarize below the possible research opportunities that we have iden-
tified, which cover Service Chaining and Dynamic Load Balancing.

Service Chaining

The NFV-R demonstrates that service chaining can be achieved by relying on
distributed routing protocols. One interesting future work would be to port
this approach to BGP so to build multi-domain service chains. We identi-
fied two ways to do so: rely on BGP community to stamp vSF anycast routes
or extend the existing work at the IETF, which leverages on BGP Address
Family Identifier to directly announce vSF without piggybacking classical
IP routes. This opens interesting business perspectives as well as a num-
ber of questions on how a vSF could be chosen to deliver a service in a

90 Conclusion and Perspectives

multi-domain environment (e.g., vSF providers could provide pay as you
go offers). One other interesting perspective would be to design metrics re-
lated on both network links and vSF state as well as composition rules to
drive a routing decision. In our work, we focused on finely steering traffic
through already instantiated vSFs to balance the load and deliver a service.
The NFV-Router could also leverage on its distributed view to take vSF in-
stantiation, scaling or deletion decisions to cope with traffic variation on a
larger timescale (e.g., diurnal pattern). Taking this decision in a distributed
manner with a limited amount of information is challenging but would also
significantly improve service chains resiliency and elasticity. For instance,
if a network partition occurs and that vSFs are no longer present to deliver
a service, based on an updated view of the network, NFV-Rs could decide
autonomously to instantiate the missing vSFs and restore the service. This
opens many questions regarding how such a system could be designed: clas-
sical control theory and hysteresis mechanisms could be leveraged as well as
more trendy Machine Learning approaches.

Dynamic Load Balancing

Our MPC proposal showed that dynamic load balancing policies could re-
duce servers’ load imbalance in datacenters. Our solution is modular and
could be improved. Innovation could be made in the model design as well
as the objective function to more finely forecast the load evolution and take
more insightful decisions. To handle the stochastic variation of the load one
could reformulate the problem into a finite-horizon stochastic optimal con-
trol problem to increase the system stability. Moreover, interesting works in
the control community propose System Level Synthesis approach to split a
large problem into a hierarchy of sub problems. This approach could be ex-
tremely interesting for geo-distributed services, the control plane could be
divided in a hierarchical manner and distributed among the different sites
to better optimize the resource use at a global scale. In addition to these ap-
proaches, one could use Machine Learning methods to i) forecast the load
evolution and ii) take traffic splitting decision to reduce load imbalance. A
reinforcement learning approach could also avoid model estimation and di-
rectly try to solve the optimization problem by getting direct feedback of the
infrastructure, when it applies a decision. Yet, all these new methods are not
well understood. Their main issue is that they replace well defined hypothe-
sis that can be verified or tested by data biases that are hard to detect. Even

6.2. Perspectives 91

if they can perform well in the lab, due to their black box nature it is difficult
to guarantee their potential performance on real problems.

93

Publications

International journals with peer review

• A. Wion, M. Bouet, L. Iannone and V. Conan, "Change in Continuity:
Chaining Services with an Augmented IGP", IEEE Transactions on Net-
work and Service Management, Volume 16, Number 4, Pages 1332-1344,
2019

International conferences with peer review

• A. Wion, M. Bouet, L. Iannone and V. Conan "Distributed Function
Chaining with Anycast Routing", Proc. of the 2019 ACM Symposium on
SDN Research (SOSR)

• A. Wion, M. Bouet, L. Iannone and V. Conan "Let there be chaining:
How to augment your IGP to chainyour services", Proc. of the IFIP Net-
working conference, 2019

Posters in international conferences with peer review:

• A. Wion, M. Bouet, L. Iannone and V. Conan "Finding Next Service Hop
with NFV-Routers", 38th Annual IEEE International Conference on Com-
puter Communications (INFOCOM), 2019, Best Poster Paper Runner-up

Under review

• A. Wion, M. Bouet, L. Iannone and V. Conan, "Using Model Predictive
Control to balance Service Load in Data Centers", IEEE Transactions on
Network and Service Management

Patent

• A. Wion, M. Bouet, L. Iannone and V. Conan, "Système de Gestion dis-
tribuée pour un réseau de communication comportant une pluralité de
fonctions réseau virtualisées", Reference: EP3474492.

95

Bibliography

[1] A. Abdelsalam, F. Clad, C. Filsfils, et al. “Implementation of virtual
network function chaining through segment routing in a linux-based
NFV infrastructure”. In: Proc. of the IEEE Conference on Network Soft-
warization (NetSoft). 2017, pp. 1–5.

[2] Ibrahim Afolabi et al. “Network slicing and softwarization: A survey
on principles, enabling technologies, and solutions”. In: IEEE Commu-
nications Surveys & Tutorials 20.3 (2018), pp. 2429–2453.

[3] Mohammad Alizadeh et al. “CONGA: Distributed congestion-aware
load balancing for datacenters”. In: Proceedings of the 2014 ACM con-
ference on SIGCOMM. 2014, pp. 503–514.

[4] Saeed Akhoondian Amiri et al. “Charting the Algorithmic Complex-
ity of Waypoint Routing”. In: ACM SIGCOMM Computer Communica-
tion Review 48.1 (2018), pp. 42–48.

[5] Joao Taveira Araujo et al. “Balancing on the edge: Transport affinity
without network state”. In: 15th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 18). 2018, pp. 111–124.

[6] Alia Atlas et al. An Architecture for the Interface to the Routing System.
RFC 7921. June 2016. DOI: 10.17487/RFC7921. URL: https://rfc-
editor.org/rfc/rfc7921.txt.

[7] Daniel Balouek, Carpen Amarie, et al. “Adding Virtualization Capa-
bilities to the Grid’5000 Testbed”. In: Cloud Computing and Services Sci-
ence. Vol. 367. Communications in Computer and Information Science.
Springer International Publishing, 2013, pp. 3–20.

[8] Tom Barbette et al. “A High-Speed Load-Balancer Design with Guar-
anteed Per-Connection-Consistency”. In: 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 20). Santa Clara,
CA: USENIX Association, Feb. 2020, pp. 667–683. ISBN: 978-1-939133-
13-7. URL: https://www.usenix.org/conference/nsdi20/presentation/
barbette.

https://doi.org/10.17487/RFC7921
https://rfc-editor.org/rfc/rfc7921.txt
https://rfc-editor.org/rfc/rfc7921.txt
https://www.usenix.org/conference/nsdi20/presentation/barbette
https://www.usenix.org/conference/nsdi20/presentation/barbette

96 Bibliography

[9] Theophilus Benson, Aditya Akella, and David A Maltz. “Network
traffic characteristics of data centers in the wild”. In: Proceedings of the
10th ACM SIGCOMM conference on Internet measurement. 2010, pp. 267–
280.

[10] Pat Bosshart, Dan Daly, Glen Gibb, et al. “P4: Programming protocol-
independent packet processors”. In: ACM SIGCOMM Computer Com-
munication Review 44.3 (2014), pp. 87–95.

[11] Pat Bosshart et al. “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN”. In: ACM SIGCOMM
Computer Communication Review 43.4 (2013), pp. 99–110.

[12] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex op-
timization. Cambridge university press, 2004.

[13] Sebastian Brandt, Klaus-Tycho Förster, and Roger Wattenhofer. “On
consistent migration of flows in SDNs”. In: IEEE INFOCOM 2016-The
35th Annual IEEE International Conference on Computer Communications.
IEEE. 2016, pp. 1–9.

[14] Scott W. Brim and Brian E. Carpenter. Middleboxes: Taxonomy and Is-
sues. RFC 3234. Feb. 2002. DOI: 10.17487/RFC3234. URL: https://rfc-
editor.org/rfc/rfc3234.txt.

[15] Eduardo F Camacho and Carlos Bordons Alba. Model predictive control.
Springer Science & Business Media, 2013.

[16] Lianjie Cao et al. “Nfv-vital: A framework for characterizing the per-
formance of virtual network functions”. In: Proc. of the IEEE Conference
on Network Function Virtualization and Software Defined Network (NFV-
SDN). 2015, pp. 93–99.

[17] Subhrendu Chattopadhyay et al. “Amalgam: Distributed Network Con-
trol With Scalable Service Chaining”. In: 2020 IFIP Networking Confer-
ence (Networking). IEEE. 2020, pp. 519–523.

[18] Xiaoqi Chen et al. “Fine-grained queue measurement in the data plane”.
In: Proceedings of the 15th International Conference on Emerging Network-
ing Experiments And Technologies. 2019, pp. 15–29.

[19] Conntrack website. https://conntrack-tools.netfilter.org/manual.
html. Accessed: 2020-29-09.

[20] Mark E Crovella and Azer Bestavros. “Self-similarity in World Wide
Web traffic: evidence and possible causes”. In: IEEE/ACM Transactions
on networking 5.6 (1997), pp. 835–846.

https://doi.org/10.17487/RFC3234
https://rfc-editor.org/rfc/rfc3234.txt
https://rfc-editor.org/rfc/rfc3234.txt
https://conntrack-tools.netfilter.org/manual.html
https://conntrack-tools.netfilter.org/manual.html

Bibliography 97

[21] Data Plane Developement Kit. https://www.dpdk.org/. Accessed: 2019-
07-12.

[22] DEFO website. https://sites.uclouvain.be/defo/. Accessed: 2019-
07-12.

[23] Steven Diamond and Stephen Boyd. “CVXPY: A Python-embedded
modeling language for convex optimization”. In: The Journal of Ma-
chine Learning Research 17.1 (2016), pp. 2909–2913.

[24] DISTributed systems EMulator (DISTEM). https://distem.gforge.
inria.fr/. Accessed: 2019-07-12.

[25] John C Doyle et al. “System level synthesis: A tutorial”. In: 2017 IEEE
56th Annual Conference on Decision and Control (CDC). IEEE. 2017, pp. 2856–
2867.

[26] Sevil Dräxler and Holger Karl. “SPRING: scaling, placement, and rout-
ing of heterogeneous services with flexible structures”. In: 2019 IEEE
Conference on Network Softwarization (NetSoft). IEEE. 2019, pp. 115–123.

[27] Daniel E Eisenbud et al. “Maglev: A fast and reliable software net-
work load balancer”. In: 13th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 16). 2016, pp. 523–535.

[28] Adrian Farrel et al. BGP Control Plane for the Network Service Header in
Service Function Chaining. Internet-Draft draft-ietf-bess-nsh-bgp-control-
plane-18. Work in Progress. Internet Engineering Task Force, Aug.
2020. 71 pp. URL: https://datatracker.ietf.org/doc/html/draft-
ietf-bess-nsh-bgp-control-plane-18.

[29] Fast data – Input/Output (fd.io). https://fd.io/. Accessed: 2019-07-12.

[30] Seyed Kaveh Fayazbakhsh et al. “Flowtags: Enforcing network-wide
policies in the presence of dynamic middlebox actions”. In: Proc. of the
ACM SIGCOMM Workshop on Hot Topics in Software Defined Network-
ing. 2013, pp. 19–24.

[31] Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio. “Survey
of consistent software-defined network updates”. In: IEEE Communi-
cations Surveys & Tutorials 21.2 (2018), pp. 1435–1461.

[32] P. Francois, M. Shand, and O. Bonaventure. “Disruption Free Topol-
ogy Reconfiguration in OSPF Networks”. In: Proc. of the IEEE Interna-
tional Conference on Computer Communications (INFOCOM). 2007, pp. 89–
97.

https://www.dpdk.org/
https://sites.uclouvain.be/defo/
https://distem.gforge.inria.fr/
https://distem.gforge.inria.fr/
https://datatracker.ietf.org/doc/html/draft-ietf-bess-nsh-bgp-control-plane-18
https://datatracker.ietf.org/doc/html/draft-ietf-bess-nsh-bgp-control-plane-18
https://fd.io/

98 Bibliography

[33] Pierre Francois et al. “Achieving sub-second IGP convergence in large
IP networks”. In: ACM SIGCOMM Computer Communication Review
35.3 (2005), pp. 35–44.

[34] Ruomei Gao, Constantinos Dovrolis, and Ellen W Zegura. “Avoid-
ing Oscillations Due to Intelligent Route Control Systems.” In: INFO-
COM. 2006.

[35] Aaron Gember et al. “Stratos: A Network-Aware Orchestration Layer
for Middleboxes in the Cloud”. In: CoRR abs/1305.0209 (2013). arXiv:
1305.0209. URL: http://arxiv.org/abs/1305.0209.

[36] Aaron Gember-Jacobson et al. “OpenNF: Enabling innovation in net-
work function control”. In: ACM SIGCOMM Computer Communication
Review. Vol. 44. 4. 2014, pp. 163–174.

[37] Milad Ghaznavi et al. “Distributed service function chaining”. In: IEEE
Journal on Selected Areas in Communications 35.11 (2017), pp. 2479–2489.

[38] Vijay Gill et al. SWAN: achieving high utilization in networks. US Patent
8,977,756. 2015.

[39] Jochen W Guck et al. “Unicast QoS routing algorithms for SDN: A
comprehensive survey and performance evaluation”. In: IEEE Com-
munications Surveys & Tutorials 20.1 (2017), pp. 388–415.

[40] Arpit Gupta et al. “Sonata: Query-driven streaming network teleme-
try”. In: Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication. 2018, pp. 357–371.

[41] Joel M. Halpern and Carlos Pignataro. Service Function Chaining (SFC)
Architecture. RFC 7665. 2015. DOI: 10.17487/RFC7665. URL: https:
//rfc-editor.org/rfc/rfc7665.txt.

[42] Joel M. Halpern et al. Forwarding and Control Element Separation (ForCES)
Protocol Specification. RFC 5810. Mar. 2010. DOI: 10.17487/RFC5810.
URL: https://rfc-editor.org/rfc/rfc5810.txt.

[43] Renaud Hartert et al. “A declarative and expressive approach to con-
trol forwarding paths in carrier-grade networks”. In: ACM SIGCOMM
computer communication review. Vol. 45. 4. ACM. 2015, pp. 15–28.

[44] Davit Harutyunyan et al. “Latency-aware service function chain place-
ment in 5G mobile networks”. In: 2019 IEEE Conference on Network
Softwarization (NetSoft). IEEE. 2019, pp. 133–141.

https://arxiv.org/abs/1305.0209
http://arxiv.org/abs/1305.0209
https://doi.org/10.17487/RFC7665
https://rfc-editor.org/rfc/rfc7665.txt
https://rfc-editor.org/rfc/rfc7665.txt
https://doi.org/10.17487/RFC5810
https://rfc-editor.org/rfc/rfc5810.txt

Bibliography 99

[45] Juliver Gil Herrera and Juan Felipe Botero. “Resource allocation in
NFV: A comprehensive survey”. In: IEEE Transactions on Network and
Service Management 13.3 (2016), pp. 518–532.

[46] Chi-Yao Hong et al. “B4 and after: managing hierarchy, partitioning,
and asymmetry for availability and scale in google’s software-defined
WAN”. In: Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication. 2018, pp. 74–87.

[47] Christian Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992. Nov. 2000. DOI: 10.17487/RFC2992. URL: https://rfc-editor.
org/rfc/rfc2992.txt.

[48] Kuo-Feng Hsu et al. “Adaptive Weighted Traffic Splitting in Programmable
Data Planes”. In: Proceedings of the Symposium on SDN Research. 2020,
pp. 103–109.

[49] Kuo-Feng Hsu et al. “Contra: A programmable system for performance-
aware routing”. In: 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20). 2020, pp. 701–721.

[50] Nanyang Huang et al. “Software-Defined Label Switching: Scalable
Per-Flow Control in SDN”. In: 2018 IEEE/ACM 26th International Sym-
posium on Quality of Service (IWQoS). IEEE. 2018, pp. 1–10.

[51] Qun Huang, Patrick PC Lee, and Yungang Bao. “Sketchlearn: Reliev-
ing user burdens in approximate measurement with automated statis-
tical inference”. In: Proceedings of the 2018 Conference of the ACM Special
Interest Group on Data Communication. 2018, pp. 576–590.

[52] Nicolas Huin, Brigitte Jaumard, and Frédéric Giroire. “Optimal net-
work service chain provisioning”. In: IEEE/ACM Transactions on Net-
working 26.3 (2018), pp. 1320–1333.

[53] Nicolas Huin et al. “Energy-efficient service function chain provision-
ing”. In: Journal of Optical Communications and Networking 10.3 (2018),
pp. 114–124.

[54] J. M. Jaffe. “Algorithms for finding paths with multiple constraints”.
In: Networks 14.1 (1984), pp. 95–116.

[55] Sushant Jain et al. “B4: Experience with a globally-deployed software
defined WAN”. In: ACM SIGCOMM Computer Communication Review
43.4 (2013), pp. 3–14.

[56] Xin Jin et al. “Dynamic scheduling of network updates”. In: ACM SIG-
COMM Computer Communication Review 44.4 (2014), pp. 539–550.

https://doi.org/10.17487/RFC2992
https://rfc-editor.org/rfc/rfc2992.txt
https://rfc-editor.org/rfc/rfc2992.txt

100 Bibliography

[57] Murad Kablan et al. “Stateless Network Functions: Breaking the Tight
Coupling of State and Processing”. In: Proc. of the USENIX Conference
on Networked Systems Design and Implementation (NSDI). 2017, pp. 97–
112. ISBN: 978-1-931971-37-9.

[58] Naga Katta et al. “Hula: Scalable load balancing using programmable
data planes”. In: Proceedings of the Symposium on SDN Research. 2016,
pp. 1–12.

[59] Wolfgang Kellerer et al. “Adaptable and data-driven softwarized net-
works: Review, opportunities, and challenges”. In: Proceedings of the
IEEE 107.4 (2019), pp. 711–731.

[60] Junaid Khalid and Aditya Akella. “Correctness and Performance for
Stateful Chained Network Functions”. In: Proc. of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, 2019, pp. 501–516. ISBN: 978-1-931971-49-2. URL:
https : / / www . usenix . org / conference / nsdi19 / presentation /

khalid.

[61] V. F. Kolchin, B. A. Sevastianov, and V. P. Chistiakov. Random alloca-
tions / Valentin F. Kolchin, Boris A. Sevastyanov, Vladimir P. Chistyakov ;
translation ed., A. V. Balakrishnan. English. V. H. Winston ; distributed
solely by Halsted Press Washington : New York, 1978, xi, 262 p. ; ISBN:
0470993944.

[62] Sameer G Kulkarni et al. “Nfvnice: Dynamic backpressure and schedul-
ing for nfv service chains”. In: Proceedings of the Conference of the ACM
Special Interest Group on Data Communication. 2017, pp. 71–84.

[63] Bob Lantz, Brandon Heller, and Nick McKeown. “A network in a lap-
top: rapid prototyping for software-defined networks”. In: Proc. of the
ACM SIGCOMM Workshop on Hot Topics in Networks. 2010, p. 19.

[64] Tony Li, Ravi Chandra, and Paul S. Traina. BGP Communities Attribute.
RFC 1997. 1996. DOI: 10.17487/RFC1997. URL: https://rfc-editor.
org/rfc/rfc1997.txt.

[65] Nick McKeown et al. “OpenFlow: enabling innovation in campus net-
works”. In: ACM SIGCOMM Computer Communication Review 38.2 (2008),
pp. 69–74.

[66] David Meyer and Randy Bush. Some Internet Architectural Guidelines
and Philosophy. RFC 3439. Dec. 2002. DOI: 10.17487/RFC3439. URL:
https://rfc-editor.org/rfc/rfc3439.txt.

https://www.usenix.org/conference/nsdi19/presentation/khalid
https://www.usenix.org/conference/nsdi19/presentation/khalid
https://doi.org/10.17487/RFC1997
https://rfc-editor.org/rfc/rfc1997.txt
https://rfc-editor.org/rfc/rfc1997.txt
https://doi.org/10.17487/RFC3439
https://rfc-editor.org/rfc/rfc3439.txt

Bibliography 101

[67] Rui Miao et al. “Silkroad: Making stateful layer-4 load balancing fast
and cheap using switching asics”. In: Proceedings of the Conference of
the ACM Special Interest Group on Data Communication. 2017, pp. 15–28.

[68] Nithin Michael and Ao Tang. “Halo: Hop-by-hop adaptive link-state
optimal routing”. In: IEEE/ACM Transactions on Networking 23.6 (2014),
pp. 1862–1875.

[69] Michael Mitzenmacher. “The power of two choices in randomized
load balancing”. In: IEEE Transactions on Parallel and Distributed Sys-
tems 12.10 (2001), pp. 1094–1104.

[70] Ghada Moualla, Thierry Turletti, and Damien Saucez. “An availability-
aware SFC placement algorithm for fat-tree data centers”. In: 2018
IEEE 7th International Conference on Cloud Networking (CloudNet). IEEE.
2018, pp. 1–4.

[71] Priyanka Naik, Dilip Kumar Shaw, and Mythili Vutukuru. “NFVPerf:
Online performance monitoring and bottleneck detection for NFV”.
In: Proc. of the IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). 2016, pp. 154–160.

[72] Thanh Dang Nguyen, Marco Chiesa, and Marco Canini. “Decentral-
ized consistent updates in SDN”. In: Proceedings of the Symposium on
SDN Research. 2017, pp. 21–33.

[73] M. Obadia et al. “Revisiting NFV orchestration with routing games”.
In: Proc. of the IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN). 2016, pp. 107–113.

[74] Vladimir Olteanu et al. “Stateless Datacenter Load-balancing with Beamer”.
In: 15th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 18). Renton, WA: USENIX Association, Apr. 2018,
pp. 125–139. ISBN: 978-1-939133-01-4. URL: https : / / www . usenix .
org/conference/nsdi18/presentation/olteanu.

[75] ONOS SDN Controller. https://onosproject.org/. Accessed: 2019-
07-12.

[76] Open Platform for NFV (OPNFV). https://opnfv.org. Accessed: 2019-
07-12.

[77] Opendaylight SDN Controller. https://www.opendaylight.org/. Ac-
cessed: 2019-07-12.

[78] P4 software switch. https://github.com/p4lang/behavioral-model.
Accessed: 2019-07-12.

https://www.usenix.org/conference/nsdi18/presentation/olteanu
https://www.usenix.org/conference/nsdi18/presentation/olteanu
https://onosproject.org/
https://opnfv.org
https://www.opendaylight.org/
https://github.com/p4lang/behavioral-model

102 Bibliography

[79] Shoumik Palkar, Chang Lan, Sangjin Han, et al. “E2: A Framework
for NFV Applications”. In: Proc. of the Symposium on Operating Systems
Principles (SOSP). 2015, pp. 121–136. ISBN: 978-1-4503-3834-9.

[80] Aurojit Panda et al. “Cap for networks”. In: Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking.
2013, pp. 91–96.

[81] Parveen Patel et al. “Ananta: Cloud scale load balancing”. In: ACM
SIGCOMM Computer Communication Review 43.4 (2013), pp. 207–218.

[82] Rahul Potharaju and Navendu Jain. “Demystifying the dark side of
the middle: a field study of middlebox failures in datacenters”. In: Pro-
ceedings of the 2013 conference on Internet measurement conference. 2013,
pp. 9–22.

[83] Zafar Ayyub Qazi, Cheng-Chun Tu, Luis Chiang, et al. “SIMPLE-fying
Middlebox Policy Enforcement Using SDN”. In: Proc. of the ACM SIG-
COMM. 2013, pp. 27–38. ISBN: 978-1-4503-2056-6.

[84] P. Quinn, U. Elzur, and C. Pignataro. Network Service Header (NSH).
RFC 8300. IETF, 2018.

[85] Paul Quinn and Thomas Nadeau. Problem Statement for Service Func-
tion Chaining. RFC 7498. IETF, 2015.

[86] Shriram Rajagopalan et al. “Split/Merge: System Support for Elastic
Execution in Virtual Middleboxes”. In: Proc. of the USENIX Conference
on Networked Systems Design and Implementation (NSDI). 2013, pp. 227–
240.

[87] Benjamin Recht. “A tour of reinforcement learning: The view from
continuous control”. In: Annual Review of Control, Robotics, and Au-
tonomous Systems 2 (2019), pp. 253–279.

[88] Yakov Rekhter, Susan Hares, and Tony Li. A Border Gateway Protocol 4
(BGP-4). RFC 4271. 2006. DOI: 10.17487/RFC4271. URL: https://rfc-
editor.org/rfc/rfc4271.txt.

[89] Jerome H Saltzer, David P Reed, and David D Clark. “End-to-end ar-
guments in system design”. In: ACM Transactions on Computer Systems
(TOCS) 2.4 (1984), pp. 277–288.

[90] Scapy, packet manipulation python library. https://github.com/secdev/
scapy. Accessed: 2019-07-12.

https://doi.org/10.17487/RFC4271
https://rfc-editor.org/rfc/rfc4271.txt
https://rfc-editor.org/rfc/rfc4271.txt
https://github.com/secdev/scapy
https://github.com/secdev/scapy

Bibliography 103

[91] Brandon Schlinker et al. “Internet Performance from Facebook’s Edge”.
In: Proceedings of the Internet Measurement Conference. IMC ’19. Am-
sterdam, Netherlands: Association for Computing Machinery, 2019,
179–194. ISBN: 9781450369480. URL: https : / / doi . org / 10 . 1145 /
3355369.3355567.

[92] Anees Shaikh, Jennifer Rexford, and Kang G. Shin. “Load-sensitive
Routing of Long-lived IP Flows”. In: Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munication. ACM, 1999, pp. 215–226.

[93] Justine Sherry et al. “Making Middleboxes Someone else’s Problem:
Network Processing As a Cloud Service”. In: Proc. of the ACM SIG-
COMM Conference. 2012, pp. 13–24. ISBN: 978-1-4503-1419-0.

[94] Patrick Shuff. “Building A Billion User Load Balancer”. In: Dublin:
USENIX Association, May 2015.

[95] Neil Spring, Ratul Mahajan, and David Wetherall. “Measuring ISP
topologies with Rocketfuel”. In: ACM SIGCOMM Computer Commu-
nication Review 32.4 (2002), pp. 133–145.

[96] T. Taleb et al. “On Multi-Access Edge Computing: A Survey of the
Emerging 5G Network Edge Cloud Architecture and Orchestration”.
In: IEEE Communications Surveys Tutorials 19.3 (2017), pp. 1657–1681.

[97] Shu Tao et al. “Exploring the performance benefits of end-to-end path
switching”. In: Proceedings of the 12th IEEE International Conference on
Network Protocols, 2004. ICNP 2004. IEEE. 2004, pp. 304–315.

[98] Nicolas Tastevin, Mathis Obadia, and Mathieu Bouet. “A graph ap-
proach to placement of Service Functions Chains”. In: Proc. of the IFIP/IEEE
Symposium on Integrated Network and Service Management (IM). 2017,
pp. 134–141.

[99] The FRRouting Protocol Suite. https:/ /frrouting.org/. Accessed:
2019-07-12.

[100] Mathukumalli Vidyasagar and Rajeeva L Karandikar. “A learning the-
ory approach to system identification and stochastic adaptive con-
trol”. In: Probabilistic and randomized methods for design under uncer-
tainty. Springer, 2006, pp. 265–302.

[101] View on 5G Architecture. Tech. rep. 5G PPP Architecture Working Group,
June 2019.

https://doi.org/10.1145/3355369.3355567
https://doi.org/10.1145/3355369.3355567
https://frrouting.org/

104 Bibliography

[102] Stefano Vissicchio, Laurent Vanbever, and Olivier Bonaventure. “Op-
portunities and research challenges of hybrid software defined net-
works”. In: ACM SIGCOMM Computer Communication Review 44.2 (2014),
pp. 70–75.

[103] Stefano Vissicchio et al. “Central control over distributed routing”. In:
ACM SIGCOMM Computer Communication Review. Vol. 45. 4. ACM.
2015, pp. 43–56.

[104] Weikun Wang and Giuliano Casale. “Evaluating weighted round robin
load balancing for cloud web services”. In: 2014 16th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing.
IEEE. 2014, pp. 393–400.

[105] Yang Wang and Stephen Boyd. “Fast model predictive control using
online optimization”. In: IEEE Transactions on control systems technol-
ogy 18.2 (2009), pp. 267–278.

[106] Zheng Wang and Jon Crowcroft. “Bandwidth-delay based routing al-
gorithms”. In: Proc. of the IEEE Global Telecommunications Conference
(GLOBECOM). Vol. 3. 1995, pp. 2129–2133.

[107] A. Wion et al. “Change in Continuity: Chaining Services With an Aug-
mented IGP”. In: IEEE Transactions on Network and Service Management
16.4 (2019), pp. 1332–1344.

[108] A. Wion et al. “Distributed Function Chaining with Anycast Routing”.
In: Proc. of the Symposium on SDN Research. ACM. 2019.

[109] A. Wion et al. “Let there be Chaining: How to Augment your IGP to
Chain your Services”. In: Proc. of the IFIP Networking conference (2019).

[110] Thomas Wirtgen et al. “The Case for Pluginized Routing Protocols”.
In: 2019 IEEE 27th International Conference on Network Protocols (ICNP).
IEEE. 2019, pp. 1–12.

[111] Thomas Wirtgen et al. “xBGP: When You Can’t Wait for the IETF and
Vendors”. In: Proceedings of the 19th ACM Workshop on Hot Topics in
Networks. 2020, pp. 1–7.

[112] Shinae Woo et al. “Elastic Scaling of Stateful Network Functions”. In:
Proc. of the USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI). 2018.

Bibliography 105

[113] Li Yizhou et al. Architecture of Dynamic-Anycast in Compute First Net-
working (CFN- Dyncast). Internet-Draft draft-li-rtgwg-cfn-dyncast-architecture-
00. Work in Progress. Internet Engineering Task Force, Oct. 2020. 15 pp.
URL: https://datatracker.ietf.org/doc/html/draft-li-rtgwg-
cfn-dyncast-architecture-00.

[114] Pamela Zave et al. “Dynamic service chaining with dysco”. In: Proc. of
the Conference of the ACM Special Interest Group on Data Communication.
2017, pp. 57–70.

[115] Cheng Zhang et al. “HyperV: A high performance hypervisor for vir-
tualization of the programmable data plane”. In: 2017 26th Interna-
tional Conference on Computer Communication and Networks (ICCCN).
IEEE. 2017, pp. 1–9.

[116] Ying Zhang, Neda Beheshti, Ludovic Beliveau, et al. “Steering: A software-
defined networking for inline service chaining”. In: Proc. of IEEE Net-
work Protocols (ICNP). 2013, pp. 1–10.

[117] Peng Zheng, Theophilus Benson, and Chengchen Hu. “P4visor: Lightweight
virtualization and composition primitives for building and testing
modular programs”. In: Proceedings of the 14th International Conference
on emerging Networking EXperiments and Technologies. 2018, pp. 98–111.

[118] Junlan Zhou et al. “WCMP: Weighted cost multipathing for improved
fairness in data centers”. In: Proc. of the European Conference on Com-
puter Systems. 2014, p. 5.

[119] Moshe Zukerman, Timothy D Neame, and Ronald G Addie. “Internet
traffic modeling and future technology implications”. In: IEEE INFO-
COM 2003. Twenty-second Annual Joint Conference of the IEEE Computer
and Communications Societies (IEEE Cat. No. 03CH37428). Vol. 1. IEEE.
2003, pp. 587–596.

https://datatracker.ietf.org/doc/html/draft-li-rtgwg-cfn-dyncast-architecture-00
https://datatracker.ietf.org/doc/html/draft-li-rtgwg-cfn-dyncast-architecture-00

Titre : Plan de contrôle dans les réseaux logiciels dynamiques

Mots clés : Réseaux IP, Chaı̂nage de service, Équilibrage de Charge, Théorie du contrôle, Routage

Résumé : Au cours de ces dernières années, les
réseaux se sont transformés passant d’une infra-
structure à base de matériel Au cours de ces
dernières années, les réseaux se sont transformés
passant d’une infrastructure à base de matériel dédié
implémentant des fonctions statiques à des solutions
logicielles plus flexibles. D’un côté, le SDN (Software
Defined Networks) permet de contrôler les opérations
de transmission, alors que de l’autre le NFV (Network
Function Virtualization) crée des fonctions élastiques
qui peuvent s’adapter à la demande. Jusqu’à présent,
ces solutions ont été utilisées pour simplifier la ges-
tion et l’exploitation des réseaux mais elles laissent
également envisager un réseau qui peut automati-
quement réagir à des événements réseaux. Dans
cette thèse, nous explorons dans quelle mesure ces
nouveaux réseaux logiciels peuvent être utilisés pour
s’adapter à la dynamique inhérentes aux réseaux.
Notre première contribution s’intéresse au chaı̂nage
de service, c’est à dire la capacité de diriger des
flux de données à travers un ensemble de points in-
termédiaires, qui hébergent des fonctions, avant d’at-
teindre leur destination. Nous montrons qu’un plan
de control distribué, qui s’appuie sur les protocoles
de routage existants et qui est constitué par des
noeuds autonomes, peut dynamiquement diriger le
trafic à travers des chaines de services. Notre solution

adapte sa décision au trafic sur le réseau et équilibre
automatiquement la charge induite sur les fonctions
présentes sur le réseau. De plus, notre proposi-
tion, au contraire des solutions existantes, peut être
déployée progressivement dans les réseaux actuels.
Dans notre seconde contribution, nous comparons
deux types de décision de chaı̂nage : une approche
centralisée avec une vue de bout en bout de la chaı̂ne
et une approche distribuée qui dirige uniquement les
flux d’une fonction à l’autre. Nous montrons que ces
deux décisions sont proches dans des topologies
réalistes. Ainsi, un chaı̂nage saut par saut pourrait
être utilisé sans affecter les performances du réseau.
Finalement, nous explorons comment les réseaux lo-
giciels peuvent réagir à la dynamique des réseaux
dans les centres de données. Jusqu’à présent, des
équilibreurs de charges utilisaient des politiques sta-
tiques afin de répartir le trafic sur les serveurs, ce qui
amenait du déséquilibre et gâchait des ressources.
Nous proposons d’asservir le système et d’adapter
dynamiquement la politique à la variation de charge
des serveurs. Notre approche MPC (Model Predictive
Control) est efficace afin de réduire le déséquilibre de
charge à une basse fréquence de contrôle améliorant
ainsi le nombre de requêtes qu’un ensemble de ser-
veur peut traiter.

Title : Control Plane in Dynamic Software Network

Keywords : IP Networks, Service Function Chaining, Load Balancing, Control Theory, Routing

Abstract : During the last years, network infrastruc-
ture has moved from dedicated-hardware solutions
implementing fixed functions to more flexible software
based ones. On one hand, SDN (Software Defined
Network) can flexibly control forwarding operations,
while on the other, NFV (Network Function Virtuali-
zation) creates elastic functions that can scale with
the user demands. So far, these solutions have been
used to simplify network management and operations,
but they let envision a network that can automatically
react to network events. In this thesis, we explore to
what extent these new software networks can be used
to react and adapt finely to the network dynamics.
Our first contribution focuses on service chaining :
the ability to steer flows through a set of waypoints
hosting functions before they reach their destinations.
We show that a distributed control plane that relies on
existing routing protocols and is constituted by auto-
nomous nodes can dynamically steer traffic through
chains of services. Our solution finely adapts its deci-

sion to the network traffic and automatically balances
the induced load on the functions present in the net-
work. Moreover, our proposal, contrary to existing so-
lutions, can be incrementally deployed in today’s net-
work. In our second contribution, we compare two
types of chaining decisions : a centralized one with
an end-to-end view of the chain and a distributed ap-
proach that solely routes flow from a function to ano-
ther. We show that the two decisions are close in rea-
listic topologies. Thus, hop-by-hop chaining could be
used without affecting chaining performance. Finally,
we explore how software networks can react to net-
work dynamics in datacenters. So far, load balancers
use static policies to spread incoming traffic on ser-
vers, which leads to imbalance and overprovisioning.
We propose to close the loop and dynamically adapt
the policy to the server load variation. Our MPC (Mo-
del Predictive Control) approach proved to be efficient
to reduce load imbalance at a slow pace, thus impro-
ving the number of requests a cluster can process.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Controlling Softwarized Networks
	From Hardware to Software Networking Operation
	Software Networks Provisioning

	Challenges
	Contributions and Thesis Outline

	Related Work
	Service Chaining
	Routing Decision
	Traffic Steering
	State Management
	Resource Allocation

	Load Balancing
	Traffic Splitting
	Load Balancing Policies

	Let there be Chaining: How to Augment your IGP to Chain your Services
	Background and Motivation
	Distributed Chaining with IGP Service Augmentation
	NFV-Router Architecture
	Implementation
	System-Level Choices
	Node-Level Choices

	Functionnal Evaluation
	Evaluation Methodology
	Evaluation

	Large Scale Evaluation
	Evaluation Methodology
	Evaluation

	Discussion and Perspectives
	Conclusion

	The cost of distributed decision in Service Function Chaining
	Background and Motivation
	Network Modelization
	Problem Formulation
	Evaluation Methodology
	Evaluation
	Network Cost and Path Stretch
	Control Reactivity
	Link Load

	Conclusion

	Using Model Predictive Control to Balance Service Load in Data Centers
	Background and Motivation
	Control Overhead Tradeoff
	Dynamic Load Balancing
	Load Balancing Architecture
	Modelization

	Model Predictive Load Balancer
	Linear Quadratic Regulator
	Model Predictive Control Algorithm

	Evaluation Methodology
	Traffic Traces Generation and Model Estimation
	Load Balancing Simulation

	Evaluation
	Discussion and Perspectives
	Conclusion

	Conclusion and Perspectives
	Summary of Contributions
	Service Chaining
	Load Balancing

	Perspectives

	Bibliography

