
HAL Id: tel-03503316
https://theses.hal.science/tel-03503316

Submitted on 27 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine learning algorithms for dynamic Internet of
Things

Dihia Boulegane

To cite this version:
Dihia Boulegane. Machine learning algorithms for dynamic Internet of Things. Machine Learning
[cs.LG]. Institut Polytechnique de Paris, 2021. English. �NNT : 2021IPPAT048�. �tel-03503316�

https://theses.hal.science/tel-03503316
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
1I

P
PA

T0
48 Machine Learning Algorithms for

Dynamic Internet of Things
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626 École doctorale de l’Institut Polytechnique de
Paris (EDIPParis)

Spécialité de doctorat : Informatique

Thèse présentée et soutenue à Palaiseau, le 1 Septembre 2021, par

DIHIA BOULEGANE

Composition du Jury :

Jesse Read
Professeur, Ecole Polytechnique (LIX) Président

Antoine Cornuejols
Professeur, AgroParisTech (MMIP) Rapporteur

Rosanna Verde
Professeur, Università della Campania ”Luigi Vanvitelli” Rapporteur

Geaorges Hebrail
Professeur, Télécom Paris Examinateur

Vincent Lemaire
Docteur, Orange Labs Examinateur

Raja Chiky
Professeur, ISEP Paris (LISITE) Examinateur

Albert Bifet
Professeur, Télécom Paris (LTCI) Directeur de thèse

Giyyarpuram MADHUSUDAN
Ingénieur de Recherche, Orange Labs Encadrant de thèse

Machine Learning Algorithms for Dynamic Internet of Things

Thesis submitted for the Degree of Doctor of Philosophy :

Télécom Paris
Institut Polytechnique de Paris

&

Orange Labs

Dihia BOULEGANE

September 2021

“Ulach win izegrene assif our yebzig” - provèrbe berbère
(Nul ne traverse de rivière sans se mouiller)

Abstract

With the rapid growth of Internet-of-Things (IoT) devices and sensors, sources that are
continuously releasing and curating vast amount of data at high pace in the form of stream
have spread over various domains of application such as healthcare, energy, or infrastructure
monitoring. The ubiquitous data streams are essential for data driven decision-making in
different business sectors and organizations using Artificial Intelligence (AI) and Machine
Learning (ML) techniques in order to extract valuable knowledge and turn it to appropriate
actions. Besides, the data being collected is often associated with a temporal indicator,
referred to as temporal data stream that is a potentially infinite sequence of observations
captured over time at regular intervals, but not necessarily.

Forecasting is one of the most challenging tasks in the field of AI and aims at understand-
ing the process generating the observations over time based on past data in order to accurately
predict future behavior. However, the infinite and evolving nature of data streams raises
new challenges that learning techniques must handle such as concept drift. Stream Learning
is the emerging research field which focuses on learning from infinite and evolving data
streams. In this context of evolving data streams, dynamic model combination has emerged
as a very promising approach and achieves competitive results. The rationale is that different
learning models exhibit different strengths and limitations along the input data stream and
thus selecting the best ones only enhances overall predictive performance. However, despite
their superior performance, ensemble methods suffer from their exorbitant computational
costs in terms of memory and time compared to individual models. This issue is particularly
inconvenient in data streams applications where resources are often limited.

The first part of the thesis surveys the current state-of-the-art of dynamic forecast
combination and ensemble selection for the stream setting, and provides and extensive and
updated review of the research area. The research goal of the thesis can be divided into two
main parts: (i) dynamically selecting and combining models within a heterogeneous ensemble
to forecast future uni-variate numeric observations in streaming data; (ii) compressing highly
complex ensemble into faster and more compact individual model while retaining competitive
predictive performance.

The first research goal is split into two steps. Initially, we study how to estimate
the predictive performance of individual forecasting models according to the data and
contribute by introducing novel windowing and meta-learning based methods to cope with
evolving data streams. Subsequently, we propose different selection methods that aim
to constituting a committee of models that are as accurate and as diverse as possible for
each test instance. The predictions of these models are then weighted and aggregated. We
empirically investigate the advantage of the proposed methods against existing methods,
using both synthetic and real temporal data streams from different domains of application.

The second part addresses model compression in the streaming setting in order to overcome
the computational drawbacks in terms of memory and time of dynamic ensemble methods.
We aim at building single model to mimic the behavior of a highly performing complex
ensemble while drastically reducing its complexity and coping with concept drift. Finally,
we present the first streaming competition "Real-time Machine Learning Competition on
Data Streams", at the IEEE Big Data 2019 conference, using the new SCALAR platform.
The competition data is released in the form of a stream and participants continuously submit
their predictions in real-time.

Keywords: machine learning; data streams; time series; forecasting; dynamic ensemble
selection; model compression

Résumé

La croissance rapide et vertigineuse de l’Internet des Objets (IdO) ainsi que la prolifération
des objets connectés et des capteurs ont donné lieu à diverses sources de données qui
génèrent continuellement de grandes quantités de données et à une grande vitesse. Ces
données touchent différents domaines d’application tels que la santé, les énergies ou encore
la supervision d’infrastructures. Les flux de données sont omniprésents et essentiels dans le
processus de prise de décision dans différents secteurs d’activité et organisations en utilisant
les techniques d’Intelligence Artificielle (IA) et d’apprentissage automatique (ML pour
Machine Learning en anglais) afin d’extraire des connaissances précieuses et les transformer
en actions pertinentes. Par ailleurs, les données collectées sont souvent associées à un
indicateur temporel, appelé flux de données temporel qui est défini comme étant une séquence
d’observations potentiellement infinie capturée au fil du temps à intervalles réguliers, mais
pas nécessairement.

La prévision est l’une des tâches les plus complexes dans le domaine de l’IA et vise à
comprendre le processus générant les observations au fil du temps sur la base d’un historique
de données afin de prédire le comportement futur. Cependant, la nature infinie et changeante
des flux de données soulève de nouveaux défis que les techniques d’apprentissage doivent
relever, notamment la dérive conceptuelle. L’apprentissage incremental et adaptatif est le
domaine de recherche émergeant dédié à l’analyse des flux de données. Dans ce contexte
évolutif de flux de données, les méthodes d’ensemble qui fusionnent de manière dynamique
plusieurs modèles prédictifs accomplissent des résultats très prometteurs et compétitifs.
L’intuition est que différents modèles d’apprentissage manifestent différentes forces et limites
tout au long du flux et ce en fonction des données présentées en entrée. De ce fait, sélectionner
les meilleurs a pour but d’améliorer les performances prédictives globales. Cependant, malgré
des performances supérieures, les méthodes d’ensemble souffrent cruellement de leur coût
exorbitant en matière de mémoire et de temps de calcul par rapport aux modèles individuels.
Cet aspect est particulièrement contraignant dans les applications de flux de données où les
ressources sont souvent limitées.

La première partie de la thèse expose l’état de l’art des techniques de fusion et de sélection
dynamiques de modèles prédictifs sur des flux de données. Les objectifs de recherche de la
thèse peuvent être divisés en deux principaux axes: (i) sélectionner et fusionner de manière
dynamique des modèles au sein d’un ensemble de différents modèles afin de prédire les
valeurs numériques futures d’un flux de données univarié; (ii) compresser un ensemble
hautement complexe en un modèle individuel plus rapide et plus compact tout en conservant
des performances prédictives compétitives.

Le premier objectif de recherche est scindé en deux étapes à son tour. Dans un premier
temps, nous étudions différentes méthodes pour estimer la performance de chaque modèle

de prévision individuel compris dans l’ensemble en fonction des données en introduisant
de nouvelles méthodes basées sur le fenêtrage et le méta-apprentissage pour gérer des flux
de données changeants. Par la suite, nous proposons différentes méthodes de sélection
qui visent à constituer un comité de modèles aussi précis et aussi divers que possible pour
chaque observation. Les prédictions de ces modèles sont ensuite pondérées et agrégées. Nous
étudions de manière empirique l’avantage des méthodes proposées relativement aux méthodes
de l’état de l’art, en utilisant de données temporelles synthétiques et réelles provenant de
différents domaines. La deuxième partie de la thèse traite de la compression des méthodes
d’ensemble dynamiques sur des flux de données afin de surmonter les inconvénients relatifs à
leur complexité. Nous visons à produire un modèle individuel afin d’imiter le comportement
d’un ensemble hautement complexe tout en réduisant de manière drastique leur coût en
termes de mémoire et temps de calcul et en gérant les problèmes liés à la dérive conceptuelle.
Pour finir, nous présentons "Real-Time Machine Learning Compétition on Data Streams",
dans le cadre de BigDataCup Challenge de la conférence IEEE Big Data 2019. L’idée est de
délivrer les données de la competition en temps réel à tous les participants et de les engager
à soumettre leurs prédictions en temps réel via la plate-forme dédiée SCALAR.

Mots clés: apprentissage machine; flux de données, séries temporelles; prévision; selection
dynamic d’ensemble; compression de modèle

Contents

Abstract . iii

Résumé . v

Contents . vii

List of Figures . xi

List of Tables . xv

1 Introduction . 1

1.1 Context and motivation 1

1.2 Contributions 5

1.3 Publications 6

1.4 Outline 7

2 Background and Related Work . 9

2.1 Forecasting in streaming setting 10
2.1.1 Data Streams and Time Series . 10
2.1.2 Forecasting with temporal streaming data . 11
2.1.3 Incremental learning . 12
2.1.4 Concept Drift in evolving data streams . 13
2.1.5 Forecasting methods for evolving data streams . 16
2.1.6 Forecasting with supervised learning regression 18
2.1.7 Evaluating forecasting models . 20

2.2 Dynamic Ensembles of forecasters for streaming data 21

2.2.1 The premise of Ensemble methods . 22

2.2.2 Dynamic Combination of Forecasters . 26

2.2.3 Dynamic ensembles for evolving temporal data streams 27

2.3 Dynamic Ensemble Selection (DES) for temporal streams 31

2.3.1 On Dynamic Ensemble Selection (DES) . 31

2.3.2 DES for temporal data streams . 33

2.4 Summary 37

3 Streaming Dynamic Ensembles Selection 39

3.1 Individual models’ competence estimation for DES 40

3.1.1 Windowing-based DES . 41

3.1.2 Meta-Learning based DES . 43

3.2 Experts selection: Select or not select, that is the question 47

3.2.1 Trimming (TRIM) . 47

3.2.2 Abstaining (ABS) . 47

3.2.3 Randomized Selection . 52

3.2.4 Performance-diversity trade-off . 54

3.3 Empirical Experiments 55

3.3.1 Experimental design . 56

3.3.2 Comparing windowing methods . 58

3.3.3 Comparing Meta-learning based methods . 64

3.3.4 Comparing SW, SLOPE and meta-learning based trimming DES 69

3.3.5 Evaluating experts selection . 72

3.4 Summary 77

4 Dynamic Ensemble using Multi-Target Regression 79

4.1 DES using multi-output learning 80

4.1.1 DES via Multi-Label Classification . 80

4.1.2 DES via Multi-Target Regression . 81

4.2 Streaming Multi-Target Regression 82

4.2.1 Problem Transformation methods . 82

4.2.2 Algorithm Adaptation . 83

4.3 Empirical Experiments 84

4.3.1 Experimental design . 84

4.3.2 Comparing meta-layer . 85

4.3.3 Comparing MTR-based DES methods . 86

4.3.4 Computational cost . 89

4.3.5 Discussion . 90

4.4 Summary 91

5 Model Compression . 93

5.1 Compressing dynamic ensembles for streaming data 94
5.1.1 Model Compression for batch learning . 94
5.1.2 Compression for streaming data . 95

5.2 Adaptive Model compression for data streams forecasting 96
5.2.1 Teaching data . 96
5.2.2 Student model teaching approach . 97
5.2.3 Concept drift adaptation for streaming MC . 98

5.3 Experiments 100
5.3.1 Experimental setup . 102
5.3.2 Adaptive Compression . 109

5.4 Summary 110

6 Real-time Machine Learning Competitions with SCALAR . . . 113

6.1 Real-time Machine Learning Competition on Data Streams 114
6.1.1 Competition Protocol and task . 114
6.1.2 Competition Data . 115
6.1.3 Winning solutions . 117
6.1.4 Competition Results . 119

6.2 SCALAR Platform 119
6.2.1 Stream Server and communication . 121
6.2.2 Web application . 123

6.3 Summary 126

7 Conclusions and Future Work . 127

7.1 Conclusions 127

7.2 Future directions 129
7.2.1 Handling delayed labels in temporally evolving data streams 129
7.2.2 Behavioral data and Exceptional (dis)agreement 129
7.2.3 Change detection for multi-variate data . 130
7.2.4 Model compression for streaming data . 130

Appendices . 131

A Datasets and Forecasters . 131

A.1 Temporal data streams 131

A.2 Forecasters 133

A.3 Blocked Prequential training 134

A.4 Online Ensembles 135

References . 137

List of Figures

1.1 Stream supervised learning scenario. The predictive model toggles between
two states: train and predict then back to ready. Labeled data is used to
update the model whereas unlabeled instances are used to predict their
corresponding target value. 3

2.1 Different types of concept drift . 15

2.2 A common ensemble architecture . 23

2.3 Multiple Classifier Systems (MCS) taxonomy [26] 32

2.4 A generic workflow for Dynamic Ensemble Selection (DES) showing the
selection and combination steps for each instance in the data stream. 33

3.1 General Dynamic Ensemble Selection pipeline for data streams 40

3.2 Meta-learning pipeline for streaming data . 43

3.3 Streaming arbitrated meta learning architecture 46

3.4 Heatmaps illustrating the average rank (3.4a) and respective standard devia-
tion (3.4b) of SW-DES for varying w and α parameter values. Darker tiles
mean higher values . 58

3.5 Heatmaps illustrating the average rank (left) and respective standard devia-
tion (right) of SLOPE for varying w, k and α parameters. Darker tiles mean
higher values . 60

3.6 Boxplot illustrating the distribution of the rank and respective standard
deviation of SW and SLOPE trimming based DES methods in terms of RMSE . 61

3.7 Boxplot illustrating the relative difference expressed in percentage achieved
by SLOPE (w = 900,α = 0.4,k = 15) against other windowing DES meth-
ods. Values below (resp. above) the zero line represent improvement (resp.
loss) in the predictive performance. 62

3.8 Proportion of probability of SLOPE (w = 900,α = 0.4,k = 15) winning/-
drawing/losing against other windowing DES methods according to the
Bayes sign test . 63

3.9 Heatmaps illustrating the average rank (3.9a) and respective standard de-
viation (3.9b) of STADE for varying meta-features set and α parameters.
Darker tiles mean higher values. 65

3.10 Boxplot illustrating the distribution of the percentual difference in terms
of RMSE achieved by ORI_STA_LAG_LAN against other STADE variants
using different meta-features for corresponding selection ratio α 66

3.11 Boxplots illustrating the distribution of the rank and respective standard
deviation of the best performing STADE trimming DES methods 66

3.12 Boxplot illustrating the distribution of the percentual difference in terms of
RMSE achieved by the best STADE. 67

3.13 Proportion of probability of best STADE variant winning/drawing/losing
according to the Bayes sign test . 68

3.14 Boxplot illustrating the distribution of the ratio between the resource spent by
best STADE in terms of memory and time relative to other variants. Values
below (resp. above) the value 1 stand for lower (resp. higher) computational
resource requirement. 68

3.15 Boxplot illustrating the distribution of the rank and respective standard devi-
ation of trimming based windowing and meta-learning based DES methods
in terms of RMSE. 69

3.16 Boxplot illustrating the percentual/relative difference expressed in percentage
achieved by SLOPE (w = 900,α = 0.4,k = 15) compared to other DES methods.70

3.17 Proportion of probability of best trimming DESmethod winning/drawing/los-
ing according to the Bayes sign test. 71

3.18 Boxplot illustrating the distribution of the ratio of the memory (left) and time
(right) required by SLOPE (w = 900,α = 0.4,k = 15) relative to STADE

and state-of-the-art dynamic ensembles. 71
3.19 Boxplots illustrating the distribution of the rank and respective standard

deviation of trimming and abstaining (ABS) based DES methods for SW,
SLOPE and STADE approaches in terms of RMSE. 74

3.20 Boxplots illustrating the distribution of the rank and respective standard
deviation of trimming and randomized based DES methods for SW, SLOPE
and STADE approaches in terms of RMSE. 75

3.21 Boxplots illustrating the distribution of the rank and respective standard
deviation of trimming and MMR based DES methods for SW, SLOPE and
STADE approaches in terms of RMSE. 76

4.1 Regressor Chain . 83

4.2 Boxplot illustrating the distribution of the rank and respective of MTR based
meta-layer in terms of aRMSE. 86

4.3 Boxplot illustrating the distribution of the percentual difference and respec-
tive of of the best performing MTR based meta-layer in average (STADE_STA_LAG_LAN)
in terms of aRMSE. 87

4.4 Boxplot illustrating the distribution of the rank and respective standard
deviation of MTR-based DES methods and state of the art methods in terms
of RMSE . 88

4.5 Boxplot illustrating the distribution of the percentual difference and respec-
tive of of the best performing MTR based (STADE_STA_LAG in terms of
RMSE . 88

4.6 Proportion of probability of STADE_STA_LAG_LAN winning/drawing/los-
ing against other MTR based DES and state of the art methods according to
the Bayes sign test . 89

4.7 Boxplot illustrating the distribution of the ratio of the memory (left) and time
(right) required STADE using ORI_STA_LAG relative to other MTR methods. . 90

5.1 Student-Teacher general framework . 95

5.2 Boxplots illustrating the distribution of the rank and respective standard
deviation of compressed student relative to ARF and RHT in terms of RMSE
grouped by their respective compression scenario (SIMON, SIMON-SMILE,
and SIMON-PELE) . 103

5.3 Boxplots illustrating the distribution of the rank and respective standard de-
viation of compressed student relative to BLAST and RHT in terms of RMSE
grouped by their respective compression scenario (SIMON, SIMON-SMILE,
and SIMON-PELE) . 104

5.4 Boxplots illustrating the distribution of the rank and respective standard
deviation of compressed student relative to STACKING and RHT in terms of
RMSE grouped by their respective compression scenario (SIMON, SIMON-SMILE,
and SIMON-PELE) . 105

5.5 Boxplots illustrating the distribution of the rank and respective standard
deviation of all compressed student relative to all teachers and RHT with the
best performing compression scenario (SIMON-PELE) in terms of RMSE . . . 105

5.6 Boxplots illustrating the distribution of the average percentual improvement
(expressed in percentage) and respective standard deviation of compressed
student relative to teacher (right) and RHT (right) grouped by their respective
compression scenario (SIMON, SIMON-SMILE, SIMON-PELE) in terms
of RMSE. 108

5.7 Boxplots illustrating the distribution of the ratio and respective standard
deviation of compressed student relative to RHT (left) and respective teacher
(right) grouped by compression scenario (SIMON, SIMON-SMILE, SIMON-PELE)
in terms of model size. 109

5.8 Boxplots illustrating the distribution of the ratio and respective standard
deviation in terms of total running rime of compressed student relative to
respective teacher (left) and RHT (right) grouped by compression scenario
(SIMON, SIMON-SMILE, SIMON-PELE). 109

5.9 Boxplots of the distribution of the rank and respective standard deviation in
terms of RMSE of the compressed students relative to teachers and RHT by
scenario. 112

6.1 Competition streaming workflow . 114
6.2 Competition temporal data stream . 116
6.3 Windows with distance equal to stream period 117
6.4 Platform architectures and services . 121
6.5 SCALAR data stream server workflow . 122
6.6 .proto file example . 123
6.7 SCALAR web interface to create a stream . 124
6.8 SCALAR web interface to create a competition 124
6.9 SCALAR web interface with subscription information 124
6.10 Live results on SCALAR web application . 125
6.11 Participants ranking on SCALAR web application 125

A.1 Blocked prequential training workflow . 134

List of Tables

3.1 Meta-Features grouped by category and their respective description 45
3.2 Average ratio and respective standard deviation of the memory and time

required by SLOPE compared to SW counterparts for similar w and α and
varying values of k. 63

4.1 Multi-Target Regression methods . 84

5.1 Terminology (tags) and respective description for compression approaches . . . 102
5.2 Average rank and respective standard deviation of compression variants with

different teachers (ARF, BLAST and STACKING) in terms of RMSE for 30
temporal streams using SIMON-PELE compression scenario. 106

6.1 Real-time Competition top results . 119

A.1 Data streams and respective summary . 132

Introduction

1.1 CONTEXT AND MOTIVATION

Recent years have witnessed a tremendous surge of the Internet of Things (IoT) that can
be defined as a large network of physical devices (sensors) that connect, interact, and
generate data. These devices are continuously creating data at high frequency in the form
of stream. The fields of application for IoT-based technologies are numerous and extend
to all areas of everyday life such as health, transportation to name but a few of a vast
number. In the healthcare area, IoT addresses cases where constant monitoring of health
indicators is required for patients suffering from chronic disease such as diabetes. In the
smart home area, companies like Orange, have started to introduce numerous IoT-based
intelligent systems to help improving the quality of life for the people living in the house as
well as their safety 1. For example, smart energy applications focus on smart and efficient
electricity, gas and water consumption. IoT applications also address industrial issues
under a variety of names including Industry 4.0 or Industrial Internet of Thing (IIoT). The
goal is to improve the way factories and workplaces operate making them safer, more
efficient, and more environmentally friendly. In the smart cities, IoT applications contribute
in reshaping the way people travel and use public transportation by means of on-demand
app-based mobility services. The IoT technology contributes to improving the effectiveness
of public transportation with real-time information and improve the customer experience.
Other applications include parking space search in crowded cities like Paris or vehicle fleet
tracking.

The ubiquitous data is at the core of decision-making in different business sectors and
organizations. In fact, politicians as well as business practitioners increasingly rely on data-
driven decision-making by extracting valuable insights in order to make relevant decisions.
However, as the amount of data and its complexity continues to grow, its analysis becomes
unfeasible for humans. Artificial Intelligence (AI) is the field of study that aims to produce

1https://www.orange.fr/maison

1

https://www.orange.fr/maison

2 Chapter 1. Introduction

machines that can replicate human’s intelligence. Machine Learning (ML) is a sub-field of
AI that is based on the idea that machines can learn from data that represents a phenomenon
to build a mathematical model which learns to automatically identify patterns and make
predictions.

In many cases, the data being collected is in the form of a set of observations captured
over time associated with a temporal indicator, denoted as time-series. Time-series (TS)
are used to model the dynamics of many real-world phenomena (health, stock market,
infrastructure monitoring). More formally, a time-series Y as a temporally ordered sequence
of values Y = {y1, . . . ,yt , . . . ,yn} collected over a specific time interval (e.g., minutes, hours)
but not necessarily, in which yt is the value observed at time t and n is the number of
observations [19]. Instances, are very likely to be temporally dependent that involves the
impact of previous behavior on current and future behavior. One of the most challenging
tasks in the field of AI is to model the process generating the observations over time based
on past behavior in order to accurately predict future behavior. Forecasting denotes the
process of estimating the future values Y , for example predicting at time t the value yt+1.
In fact, meticulously understanding the dynamics of time-series is a key component for
decision-makers as it provides foresight and allows proactive decision-making.

Analyzing time-series has been an active research area over the last decades and con-
siderable literature has accumulated in the field of TS analysis and forecasting [19, 27,
44, 72]. Traditional offline approaches for static datasets rely on massive memory storage
and multiple passes on the same data. Traditionally, a training set, deemed to be the best
representation of the studied phenomenon, is selected in order to train a predictive model.
The model is then tested on unseen data to estimate its competence. Adjustments can be
brought and the process can be repeated offline as many times as needed until a "good"
model is rendered. Henceforth, the final learning model is deployed and used to make new
predictions. However, the described traditional approaches have considerable limitations
when applied on dynamic data streams.

A Data Stream S = {y1,y2, . . . ,yt . . .} (DS) is a potentially infinite sequence of obser-
vations that arrive one by one or in small batches over time and often at high rate. Each
instance is associated with a timestamp and therefore provides a temporal order as defined
for time-series. Besides, data streams are very likely to experience a variety of changes over
time referred to as concept drift. The infinite and evolving nature of data streams raises new
challenges that traditional AI/ML techniques are not designed to handle. In this context,
it is crucial that predictive models are able to keep the pace with newly released data, not
only in terms of volume but also the speed at which it is generated and processed. Stream
Learning is the emerging research field which focuses on learning from infinite and evolving
data streams. Therefore, stream mining algorithms must meet a set of requirements where it
must i) process each instance only once at most and move to the next instance ii) use limited
time and memory iii) cope and adapt to changes with the different sources of non-stationary
variation [14, p. 11].

We present in Figure 1.1 a simplified presentation of everlasting training and prediction
process of stream learning. For each new instance, a stream mining model is ready to do one
of these two actions:

• Receive an unlabeled instance and therefore make a prediction based on the current

1.1 Context and motivation 3

model.

• Receive the true value of the target for a previously seen instance and use it to update
the current model (training)

Figure 1.1: Stream supervised learning scenario. The predictive model toggles between two
states: train and predict then back to ready. Labeled data is used to update the model whereas
unlabeled instances are used to predict their corresponding target value.

Notwithstanding, stream mining methods often assume that instances in the flow are
independently and identically distributed (i.i.d.). The assumption does not hold for time-
series like data as it is the case for IoT applications, where instances are very likely to be
temporally dependent. Read et al. argue that DS and TS fields are complementary since
DS mining could take advantage of the strong theoretical background of TS as well as TS
practitioners could adopt some of the DS techniques such as concept drift detection methods
to enhance TS analysis field. In fact, in the context of our thesis, time series data arrive in the
form of continuous and infinite flow, and consequently be treated as a data stream. Besides,
data streams often exhibit temporal dependence (serial correlation or auto-correlation), where
the previous values of the stream hold valuable information that experts can use to learn and
predict future behavior [174].

Considerable literature, since the seminal work of Bates and Granger [8], reported
that forecast accuracy can be substantially improved through the combination of multiple
individual forecasts. In fact, the No Free Lunch theorem for supervised learning states
that no learning algorithm is the best for all tasks. One of the most natural rationales for
model combination are human experience in everyday life decision-making. Surowiecki in
his famous book “The Wisdom of Crowds ” [146] addressed the problem of information
aggregation in groups, resulting in decisions that, are often better than could have been

4 Chapter 1. Introduction

made by any single member of the group. The premise of wisdom-of-the-crowds was
applied to predictive models in the area of Artificial Intelligence and Machine Learning.
This has introduced the research field of ensemble methods, also called Multiple Classifier
Systems (MCS) or committee. An ensemble is a collection of multiple smaller learners
whose predictions are combined to form a single prediction [14, p. 129]. Ensembles, have
become a major learning paradigm especially for data streams thanks to their ability to handle
stream-specific challenges such as concept drift [94]. A good ensemble is generally believed
to contain models that are as accurate as possible, and as diverse as possible. Diversity refers
to the difference among the individual learners’ behavior [98]. As a matter of fact, if models
in the ensemble make the same predictions there would be no benefit from combining them.

Aiolfi and Timmermann [4] further add that different forecasting methods have varying
levels of predictive performance at different times of the stream and hence the "best" models
changes over time. Dynamic Ensemble Selection (DES) extends ensemble methods and
aims at selecting on the fly for each incoming test instance, a subset of the most competent
models only and combine their predictions. The weights of each individual forecast in
the combination can be computed in such a way that higher weight is granted to better
performing forecasters. The performance of forecasting models can be achieved by tracking
their behavior in the recent past [115], referred to as windowing methods. Other DES
methods are based on meta-learning to learn and predict the performance of individual
forecasting models using characteristics extracted from the data, referred to as meta-features.
DES methods can be categorized into two groups, namely individual-based and group-based
[26]. In individual-based forecasters’ behavior is modeled separately whereas group-based
methods tend to explicitly capture their dependencies.

Despite their superior predictive performance, DES methods lead to exorbitant computa-
tional costs in terms of memory compared to individual models. This issue is particularly
fastidious in IoT, edge computing and embedded systems applications where the model is
deployed on devices with very limited resources. Likewise, data are released at high rate in
the stream which imposes temporal constraints for the sake of real-time responsiveness. How-
ever, DES methods are time-consuming as they have to frequently update models’ weights.
Finally, ensemble methods behave like "black boxes", which creates serious challenges in
interpreting their decision [99]. In fact, understanding predictive models and the mechanism
behind their decisions is becoming a crucial issue addressed by the emerging research field
of Explainable Artificial Intelligence.

The computational complexity and lack of interpretability issues of DES methods moti-
vated Model Compression (MC). Model compression consists in training a single predictive
model (Student) to mimic the behavior of a complex ensemble (Teacher) [31]. The student
model has comparable predictive performance compared to the teacher while reducing the
time and memory complexity. This approach if referred to as the Student-Teacher (ST)
framework and has gained significant attention over the last years. ST was often applied for
neural networks where a more compact single neural network was obtained with comparable
predictive performance relative to the complex ensemble of neural networks [76]. MC meth-
ods were extensively studied for the classification task, whereas a few studies address the
regression tasks that deal with continuous target values. More recently, model compression
was investigated for DES methods on time-series forecasting task [39]. They show that

1.2 Contributions 5

dynamic forecast combination methods can be compressed into an individual model that
has comparable predictive performance while being drastically faster and more compact.
Nevertheless, existing methods are mainly designed for offline learning and comprises two
stages. First, the teacher is trained on a predefined training set and then used to predict
on validation set. The predictions are then used to train the student in order to mimic the
function learned by the teacher and then deployed to predict on all the upcoming instances.
However, this framework is limited when applied to dynamic temporal data streams. In fact,
when concept drift occurs, the collective behavior between the teacher and student is likely to
be altered and thus loose the advantage of compressing a highly performing complex teacher.

1.2 CONTRIBUTIONS

The main research direction of the thesis addresses the aforementioned stakes about fore-
casting for evolving temporal data streams. This thesis contributes to the stream mining
field and ensemble methods by introducing and exploring novel approaches that dynamically
select and combine individual models to boost overall predictive performance and tackle
stream specific challenges such as concept drift. In this section we summarize the main
contributions.

In the context of Dynamic Ensemble Selection (DES) methods for temporal data streams
forecasting (Chapter 3):

• We introduce a novel individual models performance evaluation that falls within
the category of windowing based DES methods. We harness the notion of local
performance computed on a set of the nearest neighbors queried over a sliding window.
The assumption is that the forecaster is very likely to behave the same way on upcoming
instances that fall within the local region.

• We investigate meta-learning based DES methods to predict future error of individual
models in the pool using different categories of meta-features. In fact, we take
advantage of general meta-features to characterize the data at hand as well as the
behavior of other learning models. Besides, we leverage stream-specific meta-features
in order to tackle concept drift that inevitably impacts the performance of forecasting
models in the ensemble.

• We introduce several selection methods that enhance diversity among selected experts
to a certain extent. The goal is to select a committee of models that are as accurate as
possible and as diverse as possible in order to combine their predictions.

In the context of group-based DES (Chapter 4):

• We propose to take advantage of the potential dependencies within base-models’ by
formulating the DES task as a Multi-Target Regression (MTR) problem. We show that
explicitly considering models’ dependencies while learning their behavior improves
overall predictive performance.

• We overview different adaptive MTR methods where the task is to simultaneously
learn and predict several continuous valued targets and explicitly capturing their
dependencies.

6 Chapter 1. Introduction

• To the best of our knowledge, this work is the first to use adaptive MTR methods for
DES to model the behavior of each component in an ensemble of forecasters on data
streams.

In the context of Model Compression (MC) (Chapter 5):

• We show the applicability of model compression for ensembles of forecasters in the
streaming setting. We demonstrate that Student-Teacher (ST) based model compres-
sion can be effectively adapted to the stream setting to address uni-variate temporal
streams forecasting.

• We propose a model compression approach that leverages both teacher’s predictions
as well as true values of the target.

• We introduce an adaptive model compression to cope with concept drift that may alter
models’ predictive performance. We monitor the loss of the student model and replace
it with a new one when it becomes obsolete due to concept drift.

In the context of streaming machine learning competition (Chapter 6):

• We introduce the first streaming competition "Real-time Machine Learning Compe-
tition on Data Streams", at the IEEE Big Data 2019 conference. The competition
falls within the network activity monitoring application using multi-step ahead point
forecasting to predict the upcoming values to be observed in the stream based on
historical data.

• We present SCALAR, the first platform dedicated to host streaming machine learning
competitions where data are released in the form of stream and participants continu-
ously submit their predictions in the form of stream as well.

1.3 PUBLICATIONS

The research work presented in this thesis has been submitted and published on scientific
venues in the corresponding field. In the following we provide a list of the publications:

• Dihia Boulegane, Albert Bifet, and Giyyarpuram Madhusudan, "Arbitrated Dynamic
Ensemble with Abstaining for Time-Series Forecasting on Data Streams." In: 2019
IEEE International Conference on Big Data, BigData 2019, Los Angeles, CA, USA,
December 9-12, 2019. pp.1040-1045

• Dihia Boulegane, Nedeljko Radulovic, Albert Bifet, Ghislain Fievet, Jimin Sohn,
Yeonwoo Nam, Seojeong Yu and Dong-Wan Choi, "Real-Time Machine Learning
Competition on Data Streams at the IEEE Big Data 2019." In: 2019 IEEE International
Conference on Big Data, BigData 2019, Los Angeles, CA, USA, December 9-12, 2019.
pp.3493-3497

• Dihia Boulegane, Albert Bifet, Haytham Elghazel, and Giyyarpuram Madhusudan,
"Streaming Time Series Forecasting using Multi-Target Regression with Dynamic
Ensemble Selection." In: 2020 IEEE International Conference on Big Data, BigData
2020, Virtually, December 10-13, 2020. pp.2170-2179

1.4 Outline 7

• Dihia Boulegane, Vitor Cerqueira Albert Bifet, and Giyyarpuram Madhusudan, "Adap-
tive Model Compression for Evolving Data Streams." In: Submitted to ECML-PKDD
2021.

Finally, another publication related to the work on the data stream competition is the
following:

• Nedeljko Radulovic, Dihia Boulegane, and Albert Bifet, "SCALAR - A Platform for
Real-time Machine Learning Competitions on Data Streams." In: Journal of Open
Source Software, December 2020. 5(56), 2676

1.4 OUTLINE

The structure of this thesis is as follows:

• Chapter 1: We introduce the motivation of the topic of the thesis on dynamic ensem-
bles or forecasters for streaming data. We highlight the main goals and challenges
addressed. Finally, we summarize the contributions of the thesis.

• Chapter 2: We introduce the fundamental concepts related to the streaming setting
and temporal data mining. We detail the commonalities between the fields of data
stream mining and a well-established field that is time series analysis. We highlight
data streams and cover the challenges imposed by their infinite and evolving nature
that learning models must cope with. We define the problem of temporal data streams
forecasting and dynamic selection and combination of predictive models. We survey
existing methods in the literature state-of-the-art for dynamic ensemble selection and
combination to cope with evolving data streams

• Chapter 3: We propose a new streaming Dynamic Ensemble Selection (DES) ap-
proaches. We investigate several methods to evaluate base-models predictive per-
formance that are capable of coping with both concept drift and concept evolution.
Besides, we propose different selection methods that promote both predictive perfor-
mance and diversity while selecting a committee of experts whose predictions will be
aggregated. The proposed DES methods tackle the problem of concept drift and meet
the computational constraints imposed by the streaming setting.

• Chapter 4: We formulate the meta-learning based DES as a Multi-Target Regression
(MTR) problem in order to leverage the dependency information among base-models
in order to improve the predictive performance of the meta-layer. An overview of MTR
approaches is depicted with an emphasis on methods tailored for the streaming setting.

• Chapter 5: We introduce a streaming model compression approach for dynamic
ensembles to tackle the evolving temporal data streams forecasting task.

• Chapter 7: We conclude with a summary of the results achieved in this thesis, and a
discussion on future developments.

Background and Related Work

In this chapter, we provide a general overview of the background related to the topic of our
research in the thesis namely data stream mining, ensemble methods and dynamic ensemble
selection. In Section 2.1, we address the principle of forecasting task in the streaming
setting with temporal dependency under the statistical supervised learning framework. A
particular attention is given to evolving data streams that experience changes and how learning
algorithms handle concept drift. Section 2.2 details ensemble approaches that dynamically
combine several forecasts to improve overall predictive performance and discuss state-of-the-
art methods. Section 2.3 introduces the Dynamic Ensemble Selection (DES) approach that
aims at selecting for each instance in the stream the most competent models in the pool and
combine their predictions. The rationale is that different learning models exhibit different
levels of predictive performance along the input data stream and thus selecting the best ones
only positively impacts ensemble’s performance. Finally, Section 2.4 concludes the chapter
with a summary on dynamic ensemble methods for forecasting on evolving data streams.

2

10 Chapter 2. Background and Related Work

2.1 FORECASTING IN STREAMING SETTING

Recent years have witnessed the spread of a large number of data sources and particularly
sources where the data are continuously collected at high frequency (fast rates) in the form
of stream (flow). With the increasing ubiquity of data streams in applications such as
sensor networks, Internet of Things (IoT), system monitoring, electricity demand, data
stream mining has emerged as a crucial topic in the Machine Learning (ML) and Artificial
Intelligence (IA) fields [2, 14, 95]. However, the emergence of streaming data introduced
new challenges that traditional learning methods could not handle.

In this section, we lay the basis for our work on the thesis. We overview the data stream
mining field and highlight its challenges compared to batch learning. Besides, we focus on
the forecasting task in temporally evolving environments and overview existing methods
throughout the literature especially ensemble methods.

2.1.1 DATA STREAMS AND TIME SERIES

Definition 2.1.1 — Data Stream. A data stream S is a potentially infinite sequence of
observations (instances) that arrive one by one or in small batches over time. Each instance
has a timestamp and therefore provides a temporal order for the stream.

As described in Definition 2.1.1, Data Streams (DS) have the characteristic of being an
infinite flow where observations are continuously generated at high rate [57]. Besides, thanks
to the timestamp associated to each instance, a natural temporal order comes up, which
suggests that there might exist a relationship between the notion of DS and Time Series (TS).
We define below the notion of time-series.

Definition 2.1.2 — Time series. A time-series Y is a temporally ordered sequence of
values Y = {y1, . . . ,yt , . . . ,yn} collected over a specific time interval (but not only), in
which yt is the value of the series at time t and n is the number of observations.

Times series, as the name suggests, are temporally ordered sequences where observations
are generally captured in successive and equal time intervals (e.g., minutes, hours). Yet,
some times series are recorded at irregular time intervals.

Hereafter, we discuss the commonalities and differences of DS and TS. Definitions 2.1.1
and 2.1.2, of DS and TS respectively, suggest that the two notions have much in common
and can potentially be unified. However, conversely to time series, where data points are
likely to be temporally dependent, data streams assume that instances are independently and
identically distributed (i.i.d.). Despite this significant difference, the relationship between TS
and DS has been questioned in several works. One can think about the relationship between
DS and TS in two different ways: time series data may arrive in the form of continuous and
infinite flow, and consequently be treated as a data stream. On the other hand, data streams
can exhibit temporal dependence and thus be considered as time series [70]. Temporal
dependence (serial correlation or auto-correlation) is often encountered in traditional time
series analysis [19], where the previous values of the series are often the only predictive
information that experts can use. Žliobaitė et al. [174] have demonstrated that many of the
benchmark data sets used in data streams mining show temporal dependence. More recently,
Read et al. [128] have drawn in more details the relationship between the two notions and

2.1 Forecasting in streaming setting 11

concluded that DS is a special case from TS. Indeed, DS mining can be presented as a TS
analysis extension where the data are unbound flow continuously captured over time. Read
et al. argue that DS and TS fields are complementary since DS mining could take advantage
of the strong theoretical background of TS as well as TS practitioners could adopt some
of the DS techniques such as concept drift detection methods to enhance TS analysis field.
Nonetheless, DS mining raises new challenges such as single pass and incremental learning.
These challenges will be discussed in more details throughout the thesis.

The evolution of Internet of Things (IoT), has spawned several data sources such as
sensors that are continuously recording measurements in different areas (environment, health
...) or consumption data such as electricity. Temporal dependence is very common in this
kind of data streams and therefore joins the assumption of time series data [174]. One of
the most popular goals behind temporal data analysis is to predict the future behavior of
the data. This is more commonly referred to as forecasting. In fact, forecasting is required
in many application domains for the decision-making process. In this context, it should
be noted that Orange is one of leading providers of a LoRa based network 1 in France
that enables long-range transmissions with low power consumption for connected devices.
Business practitioners at the company pay particular attention to the quality of service
provided to consumers. Real-time analysis and prediction of network traffic behavior is a
proactive approach to ensure secure, reliable and qualitative network communication, and
hence increase customer satisfaction. Analysis is performed on on infinite streams of data
characterizing the activity of the network in order to model and forecast future behavior and
potentially trigger abnormal events and faults. In this context, forecasting is an important
part for data-driven decision-making based on accurate prediction of the control measures
that reflect the reliability and condition of the network infrastructure.

In our work and the remainder of the thesis, we consider a temporal data stream as a
continuous and infinite flow of time series data, this means that samples are not i.i.d sampled
and the flow is supposedly endless. There exists an extensive literature in the field of TS
analysis and forecasting [19, 27, 44, 72] that often rely on memory storage and multiple
passes on the same data. However, the DS mining scenario brings new challenges such as:
(i) the single-pass algorithm by instance; (ii) the incremental update of learning models as
new data arrive; (iii) the reduction in memory requirements since it is impossible to maintain
all data in memory; (iv) the minimization of time complexity so that the algorithm is capable
of updating models before the arrival of new data. Consequently, some of the TS forecasting
tools cannot be directly applied on a streaming data scenarios yet, they provide a fundamental
background for the forecasting approaches in DS field.

In the next section, we will discuss in more details the forecasting tasks and related
challenges in the streaming scenario.

2.1.2 FORECASTING WITH TEMPORAL STREAMING DATA

Temporal data streams as presented in Definition 2.1.1 are a suitable abstraction to support
real-time analytics in order to extract valuable knowledge and train predictive models. One
of the most important tasks of temporally dependent data streams analysis is to predict

1https://pro.orange.fr/actualites/la-technologie-lora-pour-les-pros-CNT000000JCIVP.

html

https://pro.orange.fr/actualites/la-technologie-lora-pour-les-pros-CNT000000JCIVP.html
https://pro.orange.fr/actualites/la-technologie-lora-pour-les-pros-CNT000000JCIVP.html

12 Chapter 2. Background and Related Work

the future evolution of the data based on the past and present behavior. This is commonly
referred to as forecasting. Forecasting is involved in many applications domains such as
weather, health, electricity demand, telecommunication and infrastructure monitoring. The
use of temporal data for understanding the past and predicting future is a fundamental part of
business decisions in every sector mentioned above.

Formally, let S = {y1,y2, . . . ,yt . . .} be the observed temporal stream, we intend to
forecast future values ŷt+h at time t where h is a positive integer that stands for the forecasting
horizon (lead time) and t is the forecast origin. It is important to specify the time t at which the
forecast ŷt+h is made as well as the forecasting horizon h as they determine the information
available for the forecaster. The goal is to learn a model or function to estimate the future
behavior of the stream

ŷt+h = f (It ,h) (2.1)

where It is the historical and predictive information and the function f is the forecasting
method capturing the temporal stream model. We can distinguish between two different
forecasting approaches based on the number of periods for which a forecast is desired, known
as the forecasting horizon h. One-step ahead forecasting methods (h = 1) predict a single
future value at time t. Multi-step ahead forecasting consists in predicting, at time t, the next h
values {ŷt+1, . . . , ŷt+h} where h > 1 [147]. Multi-step ahead forecasting is more challenging
than one-step ahead due to error accumulation and reduced accuracy [151]. In fact, higher
forecasting horizons lead to a more difficult predictive task as uncertainty increases [162].

Likewise, we can distinguish between two types of forecasting tasks depending on the
number of variables that are captured over time univariate and multivariate. Univariate
temporal streams are one-dimensional, i.e, they comprise a single varying target. For
example, data collected from a sensor measuring the temperature of a room every second.
Univariate temporal streams are based on the assumption that the future behavior depends
only on the historical data of the target variable itself and not any other effect. On the
other hand, multivariate temporal streams involve multiple time-dependent variables. Each
variable depends not only on its historical data but also on the other variables. This means
that multivariate temporal streams can be decomposed into several vectors of univariate
streams. Multi-variate processes are of great interest when several related univariate time
series are observed simultaneously over time and may co-vary with each other. For example,
in economics, we may be interested in the joint evolution of interest rates, money supply and
unemployment [131].

Finally, we distinguish between point and interval forecasts [44]. The point forecast aims
at predicting a single numeric value. On the other hand, the forecast interval gives a lower
and upper bound within which we expect the true future value to lie. In our work we focus
on numerical uni-variate temporal data streams only and point forecast, meaning that the
target value yt ∈ R,∀y ∈ S. Everything related to interval-forecast and multi-variate series
will be beyond the scope of the thesis.

2.1.3 INCREMENTAL LEARNING

The infinite and evolving nature of data streams raises new challenges that batch traditional
forecasting techniques are not designed to handle. We discuss here the general framework of

2.1 Forecasting in streaming setting 13

stream learning tailored to continuous flows of data. Data stream mining algorithms must
meet the following requirements [14]:

• Process one instance at a time: Inspect each instance only once at most.

• Use a limited amount of memory: Data streams are assumed to be infinite, thus,
storing data for further processing is impractical.

• Work in a limited amount of time: Use a limited amount of time to process each
instance.

• Be ready to predict at any point: Conversely to offline models, stream models are
continuously updated and should be ready to predict at any point in time.

• Adapt to temporal changes: Temporal data streams are likely to evolve over time
which is a major challenge. In this context, learning algorithms should be able to cope
with the different sources of non-stationary variation.

Basically, the goal of stream mining is to build models that are able to learn incrementally
as new data are released in the stream. Besides, time and memory are important constraints
that have to be considered while processing data. In fact, IoT related applications are often
Moreover, data streams may evolve over time and experience considerable changes that
algorithms have to cope with. These changes are referred to as concept drift and will be
discussed in further details here after.

2.1.4 CONCEPT DRIFT IN EVOLVING DATA STREAMS

Temporally-dependent data streams are likely to experience a variety of changes over time
[143, 163]. In practice time-evolving data usually exhibit seasonal patterns [1] and are
consequently said "non-stationary". The notion of time-series stationarity and concept drift
are closely related to one another. In fact, when sources of non-stationary variation are at
play, it is said that a concept drift occurs [41]. We emphasize on the definition of concept
and concept drift for temporal data streams as presented in [128].

Concept

Every temporal data stream is generated by a set of functions called generating process
[7, 88]. A sequence of observations produced by the same generating process over time
constitutes a concept. Following the definition provided in [128], let Pt(.) be the probability
distribution playing at time t and generating observations yt , i.e, yt ∼ Pt(.). The behavior
produced by Pt(.), such as time dependencies and trends is referred to as a concept. Assuming
that Sc = {P−∞, ...,Pt , ...,P0} is a set of probability distributions happening from a distant past
to the present, if Pk = Pt , this means that same data distribution is used and, consequently,
the same concept is generated.

Concept Drift

Any change in the underlying generating process echos through the entire data observations.
This phenomenon is called concept drift. Concept drift is one of the main challenges when
learning from time-dependent and evolving data streams. It complicates the learning process

14 Chapter 2. Background and Related Work

where algorithms must be able to cope with the different sources of change [62]. Particularly,
predictive models should be able to detect and adapt to concept drift while being robust
to noise. Noise can be described as observations that do not fall within typical behavior
determined by the current concept. Noise can be seen as fluctuations that may mislead the
model and make it believe a concept drift occurred.

2.1.4.1 Types of concept drift

Although changes in the temporal stream may be arbitrary and may occur anywhere in the
stream, we can distinguish the main types of concept drift. We name below the four types of
concept drift and illustrate them in Figure 2.1. We must concede that different naming may
exist throughout the literature and that the one we adopt is not exclusive:

• Abrupt: the concept Pt has remained unchanged for a long time and then changes to a
new concept Pt+1 that is completely different from Pt . In this case, transition between
the two concepts is sudden, and thus, adaptation time is vital since the old concept is
no longer valid.

• Gradual: the data observed in the stream is generated from both the old Pt and the
new concept Pt+1 alternately during the transition period. The generating process
alternates between the old and the new concept before settling down to the new concept
exclusively.

• Incremental: the transition from old concept to the new concept happens with a
smooth progression such that, at each step we experience tiny changes. The distance
from the old concept increases whereas the distance to the new concept decreases.

• Recurring: the concepts that have appeared in the past tend to reappear in the future.
This is particularly interesting with temporal streams due to seasonality and periodicity
patterns.

2.1.4.2 Concept drift adaptation

Learning algorithms must include an adaptation strategy to cope with changes in the presence
of concept drift. Adaptation strategies can be divided into two main approaches: blind and
informed [62]. We may find other naming in the literature for the two approaches where
passive (resp. active) stands for the blind (resp. informed) method [52].

• Blind (Passive): blind adaptation strategies do not use any explicit change detection
mechanism. Rather, the model is continuously updated as new data are released in the
stream whether a drift happened or no.

• Informed (Active): informed methods explicitly use a concept drift detection mech-
anism to flag any change in the stream. If a change signal is detected, an adaption
operation is triggered to update the model and consolidate the new concept.

Another strategy for concept drift adaptation is based on ensemble approach. Basically,
one or several models are called at different times or subsets of the data streams [14]. The
ensemble is equipped with a manager that contains rules for creating, pruning, revising and

2.1 Forecasting in streaming setting 15

Figure 2.1: Different types of concept drift

combining individual models. The ensemble approach will be addressed in further details in
Section 2.2. We refer to the work of Gama et al. [62] for a more detailed survey on concept
drift adaptation.

2.1.4.3 Concept drift detection

Informed concept drift adaptation approaches rely on specialized detection methods to
explicitly identify any drift that occurs in the data stream. The goal of a drift detection
method is to reliably report changes in the data characteristics while being robust to noise
and outliers. Efficient drift detection is an important trade-off between reacting quickly to
changes and having few false alarms. Besides, change detectors have to meet the stream
mining requirements addressed in Section 2.1.3. We describe below one of the most popular
and stream-friendly change detection methods, namely ADWIN. We point the reader to
the survey of Gama et al. [62] for more information in drift detectors where a plethora of
techniques have been proposed.

The ADWIN change detector

The ADWIN, for ADaptive WINdowing, is a change detection method that presents theoret-
ical guarantees [12]. ADWIN efficiently keeps a variable-length window of recently seen
items in the stream (bits or real-valued variables). The window has the maximal length such
that the following hypothesis holds: "There has been no change in the data distribution". The
algorithm divides the window into two sub-windows (W0,W1) and runs a test T (W0,W1,δ)

using their respective averages to determine if the two sub-windows are likely to come from
the same distribution or no, i.e, a drift has occurred. The value δ ∈ (0,1) is a user defined
parameter that stands for the confidence value. If a change is triggered, W0 is replaced by W1

16 Chapter 2. Background and Related Work

and W1 is reset to a new window.

2.1.5 FORECASTING METHODS FOR EVOLVING DATA STREAMS

Read et al.[128] and Gomes et al. [70] have presented the data stream (DS) mining as an
extension of the time series (TS) field, characterized by the infinite flow of data where
instances are continuously released over time and potentially at high frequency. As discussed
in Section 2.1.3, the infinite and evolving nature of data streams have introduced a list of
requirements that batch methods are not designed to handle. In fact, the DS mining scenario
brings new challenges such as: (i) the single-pass algorithm (at most) by instance; (ii) the
incremental update of learning models as new data arrive; (iii) the reduction in memory
requirements since it is impossible to maintain all data in memory; (iv) the minimization
of time complexity so that the algorithm is capable of updating models before the arrival
of new data. Consequently, some of the TS forecasting tools cannot be directly applied on
a streaming data scenarios yet, they provide a fundamental background for the forecasting
approaches in DS field.

There exists an extensive literature in the field of TS analysis [19, 27, 44, 72] that often
rely on memory storage and multiple passes on the same data. These methods cannot easily
be used in the streaming scenario, thus we focus on the methods that are tailored to the
streaming setting requirements only. The forecasting methods described here can be updated
when new instances are released. We assume immediate feedback from the environment, i.e.
true values of the series are immediately released at time t. For convenience, we describe
here the uni-variate temporal streams and one-step ahead point forecasts only where we
output at time t a prediction ŷt+1 ∈ R.

2.1.5.1 Simple forecasting methods

Several forecasting models have been proposed in the literature, some of them, although very
simple, have demonstrated effective predictive performance in practice.

• Average: the next value of the series is predicted according to the historical mean:

ŷt+1 = ȳ =
1
t

t

∑
i=1

yi (2.2)

The historical mean can include forgetting mechanism to cope with the evolving data
streams. In fact, it is assumed that recent instances are more important, thus a fading
factor or a sliding window can be used to emphasize on recent behavior.

• Naive: also known as the random walk forecast, predicts the next value as being the
value of the latest observation:

ŷt+1 = yt (2.3)

• Drift: a variation of the Naive method that leaves some room to an increase or decrease
over time. The forecast value is equal to last value plus a drift value that stands for the
average change seen in the historical data.

ŷt+1 = yt +
1

t−1

t

∑
i=1

(yi− yi−1) (2.4)

2.1 Forecasting in streaming setting 17

All of the Average, Naive and Drift forecasting methods are suitable for adaptive incre-
mental learning as they are based on means that are incremental operations.

2.1.5.2 Exponential Smoothing

The exponential smoothing approach is based on the idea that the future values of the series
can be modeled using a linear combination (weighted average) of its past observations. The
Simple Exponential Smoothing (SES) [30] produces a weighted average of past values where
the weight decays exponentially as the observations get older. The one-step-ahead forecast is
defined by:

ŷt+1 = αyt +α(1−α)yt−1 +α(1−α)2yt−2 + . . . (2.5)

where 0≤ α ≤ 1 is the smoothing parameter that controls the rate at which the weights
decrease. We describe an alternative representation of SES that better highlights the incre-
mental implementation of Equation 2.5 for streaming data. Let y1 be the first value observed
in the stream at time t = 1 and st be the output of the SES that can be considered at time t as
the best estimate of the next yt+1. The representation comprises a forecast (Equation 2.6)
and a smoothing equation (Equation 2.7).

Forecast equation: ŷt+1 = st (2.6)

Smoothing equation: st = αyt +(1−α)st−1 (2.7)

The SES method is suitable for forecasting temporal data with no clear trend or seasonal
pattern, i.e. no periodic and repetitive variations at regular intervals (weekly, monthly, or
quarterly). The importance given for past and current observation vary depending on the value
of α . For anyα ∈ (0,1), the weights attached to the observations decrease exponentially as as
observations get older. If α is close to 0, higher weights are attributed to older observations.
If α is close to 1, more weight is given to more recent observations. If α = 1, the forecast is
equivalent to the Naive method as ŷt+1 = yt . There are several methods to achieve exponential
smoothing, we refer the reader to the work of Hyndman and Athanasopoulos [81] for a more
complete survey.

2.1.5.3 ARIMA

The ARMA (Auto-Regressive Moving Average) is one of the most commonly used methods
to model uni-variate time series. ARMA(p,q) combines two components: AR(p), and MA(q)

Auto-Regressive (AR) model aims at forecasting the future values using a linear combi-
nation of past values of the target variable of interest. Therefore, an auto-regressive model of
order p (referred to as AR(p)) can be written a

ŷt = c+
p

∑
i=1

φiyt−i + εt (2.8)

18 Chapter 2. Background and Related Work

where εt is white noise. This can be seen as a multiple regression with lagged values of
yt as features.

Similarly, the MA(q) model uses past errors to model the series:

ŷt = µ +
q

∑
i=1

θiεt−i + εt (2.9)

where µ is the mean of the observations, θi,∀i ∈ {1, . . . ,q} are the parameters of the models
and q stands for the order. The MA(q) methods models the time series according to random
errors that occurred in the previous q lags [44].

The model ARMA(p,q) is defined for stationary time-series and combines the model
AR(p) and the MA(q) models as follows:

ŷt = c+
p

∑
i=1

φiyt−i +
q

∑
i=1

θiεt−i + εt (2.10)

However, real-world time-series often exhibit a non-stationary dynamic including trend
and seasonality. ARIMA(p,q,d) addresses this issue by introducing an integration parameter
of order d. This means that ARIMA first applies d differencing transformations to the
time-series in order to make it stationary and then it applies ARMA(p,q).

2.1.5.4 Forecasting based on regression

The forecasting task can be cast as a regression problem that falls within the supervised
learning framework. The basic idea is that we forecast the future values (ŷi) of temporal
data stream assuming that it has a relationship with other variables comprised in the feature
vector xi such that

ŷi = f (xi)+ εi (2.11)

where f is the unknown regression function and εis are the random errors. Our work focuses
on uni-variate temporal streams only, therefor, the feature vector xt+1 contains information
about past observations of the variable of interest y. Section 2.1.6 will address regression
methods to perform forecasting task on streaming data. More particularly, it focuses on
ensembles methods and will highlight state-of-the-art methods that have proven competitive
predictive performance.

2.1.6 FORECASTING WITH SUPERVISED LEARNING REGRESSION

The forecasting problem can be cast as a regression task that falls within the supervised
learning approach according to the Statistical Learning Theory (SLT) framework designed
by Vapnik [159]. This is motivated by the large quantity of data generated in the context of
IoT applications. It relies on three main components: an input space X , an output space
Y (in our case Y ⊆ R) and a model f : X → Y to represent the relationship between
inputs and their respective outputs. The goal is to learn the function f from labeled data
(X ,Y) sampled according to some Joint Probability Distribution JPD(X ×Y). Each data
sample (Xi,yi) ∈ (X ,Y) is comprised of the feature vector Xi ∈ Rd of dimension d so that
Xi = 〈x1

i ,x
2
i , . . . ,x

d
i 〉 and the corresponding output value yi ∈ R. The function f is then used

on unseen instances X ′ where {X ∪X ′}= /0, to predict their respective target values, that is:

ŷ′k = f (X ′k) (2.12)

2.1 Forecasting in streaming setting 19

The validity of the regression results as described above depends on two main assump-
tions: (i) the distribution of the data JPD(X ×Y) must be stationary, i.e., it cannot change
over time, and (ii) the data observations are sampled following the independent and identi-
cally distributed (i.i.d) approach. Nevertheless, these assumptions are contradictory to the
assumptions made when dealing with streaming data. In fact, the evolving nature of data
streams, where concept drift is likely to happen at any time, contradicts the assumption
made about the stationarity of the distribution. Besides, data streams often exhibit temporal
dependence [128], which negates the second assumption above stating the i.i.d sampling
procedure.

The two issues addressed above make the supervised learning model deficient for stream-
ing data, and therefore needs to encompass mechanism to overcome these challenges. The
stationarity constraint is handled using concept drift detection and adaptation methods de-
tailed in Section 2.1.4. Regarding the controversy of data independence, it can be handled
provided some data transformation process. This can be achieved using the auto-regressive
model based on Takens’ time delay embedding [149].

2.1.6.1 Auto-regressive model

Auto-regressive (AR) approaches are popular in the forecasting problem where the series is
projected into an Euclidean space to unfold data dependency. Suppose that at time t, we need
to make a prediction for the next value yt+1, by then we will have already seen observations
{y1,y2, . . . ,yt−1,yt}. We assume immediate arrival of true target values after each prediction
(no delay in labels)2. Following the supervised learning terminology presented above, each
data instance (Xt ,yt) is modelled based on the past p values, i.e, the vector of features takes
the form of Xt = 〈yt−1,yt−2, . . . ,yt−p〉. The time delay embedding requires the parameter p
that controls the time lag, also referred to as the embedding dimension. This determines
the number of historical observations to be included as explanatory variables, the higher the
value of p the further the AR process looks back in the past.

The AR approach leads to a multiple regression task where the temporal dependency
in the data stream is modelled by incorporating past observations as explanatory variables
and therefore unfold data dependence that constitutes a major obstacle for the application
of supervised regression models in temporally dependent data streams. In other words, in a
multiple regression model, we forecast the variable of interest using a combination of the
different predictors. In an AR model, we forecast the variable of interest using a combination
of a finite set of its past values. This is a common approach to model uni-variate temporal
data and can be found at the core of several state-of-the-art forecasting models such as
ARIMA [19] discussed in Section 2.1.5.3 and time-lagged neural networks [55].

2.1.6.2 Regression methods for streaming data

Having set out the temporal stream forecasting as supervised learning task involving re-
gression algorithms, we can now discuss a set of existing regression algorithms that were
proposed to handle streaming data requirements and challenges. We discuss below the most
renowned ones throughout the literature.

2This assumption is very common in the data stream mining field, yet sometimes it is not realistic

20 Chapter 2. Background and Related Work

K-nearest neighbors

The K-Nearest Neighbor (KNN) is a regression method that keeps track of the last training
samples over a sliding window w and predictions are obtained following a two-stage proce-
dure: (i) find the closest k neighbors to the test sample in the data window, (ii) aggregate the
target values of the neighbors to predict the target value for the test sample at hand.

The streaming KNN method requires 4 parameters (i) k : the number of nearest neighbors
to search for (ii) w the size of the sliding window to be maintained online, (iii) the distance
metric to be used that highly impact the predictive performance of the method. The Euclidean
distance is appropriate for dense instances with numeric features which corresponds to the
regression based forecasting task [14, p. 145] and, (iv) the aggregation method could be the
average, median or a weighted average, the higher the distance the lower the weight.

Decision Trees

Fast Incremental Model Tree with Drift Detection (FIMT-DD) [84] is an any time incre-
mental decision tree model for time-changing data streams with explicit drift detection.
FIMT-DD is able to learn very fast and the only memory it requires is for storing sufficient
statistics at tree leaves where predictions are computed using linear models. It effectively
maintains an up-to-date model to cope with different types of concept drifts. The algorithm
enables local change detection and adaptation (using Page-Hinkley [121]), avoiding the costs
of re-growing the whole tree when only local changes are necessary. When a sub-tree is
under-performing, an alternative tree grows with new incoming instances and replaces the
original tree if it performs better.

Ensemble methods

Ensemble methods are combinations of several small models whose individual predictions
are aggregated to output a final prediction. Ensembles tend to improve overall predictive
performance at the expense of additional time and memory complexity. Ensembles are even
more attractive for the streaming data setting as they allow adaptation to concept drift and
cope with changes that may occur in the temporal stream. There exist a plethora of ensemble
methods tailored to the problem of temporal data streams forecasting that will be discussed
in further details in Section 2.2

2.1.7 EVALUATING FORECASTING MODELS

Mining data streams poses new challenges that have to be considered when evaluating
models. In batch learning, the evaluation procedure determines which examples are used for
training and which are used for testing the model. This is often achieved by splitting the data
into disjoint subsets (training and test data set) 3. However, in the streaming setting, the data
flow is assumed to be infinite and therefore, algorithm evaluation must be adapted in order to
asses learning models’ performance.

2.1.7.1 Prequential evaluation

The prequential (interleaved test-then-train) evaluation is a prevalent performance evaluation
method in the stream learning literature [49]. In the prequential evaluation, each individual
example is first used to test the model before it is used for updating it. The performance

3when data is limited, cross-validation is preferred

2.2 Dynamic Ensembles of forecasters for streaming data 21

measure can be incrementally updated along the stream. Besides, the prequential evaluation
implements the idea that more recent examples are more important using a sliding window
or a decaying factor. The size of the window or the value of the fading factor are user defined
parameters [14, p. 88].

2.1.7.2 Evaluation metrics

To evaluate the performance of the proposed forecasting algorithms, we rely on a set of
evaluation metrics to quantify models’ loss. We measure the difference between the predicted
values by the model and the true values that are observed in the stream. Several evaluation
metrics have been depicted in the literature:

• MSE: Mean Squared Error

MSE =
1
n

n

∑
t=1

(ŷt − yt)
2 (2.13)

• RMSE: Root Mean Squared Error

RMSE =
√

MSE =

√
1
n

n

∑
t=1

(ŷt − yt)2 (2.14)

• MAE: Mean Absolute Error

MAE =
1
n

n

∑
t=1
|ŷt − yt | (2.15)

• SMAPE: Symmetric Mean Absolute Percentage Error

SMAPE =

0, if yt , ŷt = 0.
100
n ∗∑

n
t=1 2× |ŷt−yt |

|ŷt |+|yt | otherwise.
(2.16)

The factor 2 can be removed to make the sMAPE values ∈ [0,100]/[0,1] to ease its
interpretation as a percentage value without loss of generality.

The evaluation metrics help comparing the relative predictive performance of different
forecasting methods on the same data. The goal is make these forecast errors as small as
possible over the stream.

2.2 DYNAMIC ENSEMBLES OF FORECASTERS FOR STREAMING DATA

An ensemble can be described as a collection of multiple smaller learners whose predictions
are combined to form a single final prediction [14]. The goal of ensemble methods is to
improve predictive performance compared to any single learner in the pool. One of the most
natural rationales for ensemble methods are human experience in everyday life decision
making. Surowiecki in his famous book “The Wisdom of Crowds ” [146] addressed the
problem of information aggregation in groups, resulting in decisions that, are often better

22 Chapter 2. Background and Related Work

than could have been made by any single member of the group. Authors have presented a
plethora of examples and, amongst them, point estimation of a continuous quantity. We refer
to the experience conducted by the statistician Francis Galton at the 1906 country fair in
the city of Playmouth where nearly 800 people participated in a contest where the goal is to
guess the weight of a slaughtered and dressed ox. The person who guessed closest to the
real weight of the ox won a prize. He observed that the median guess, 1207 pounds, was
accurate within 1% of the true weight of 1198 pounds. This collective guess was not only
better than the actual winner of the contest but also better than the guesses made by cattle
experts at the fair. In fact, he found that if the same question was asked to enough people,
they might come up with better answers than even experts. Later, the choice between the
median and the mean was discussed and it turned out that the mean would have been a better
approximation for the ox’s weight compared to the median [160]. This early example of the
benefits of forecast combination has opened the doors to new ensemble methods.

2.2.1 THE PREMISE OF ENSEMBLE METHODS

The premise of wisdom-of-the-crowds was applied to predictive models in the area of machine
learning and computational intelligence. This has given rise to the field of ensemble methods.
In both batch and streaming scenarios, ensemble methods tend to improve overall predictive
performance over any of their components at the cost of more time and memory resources.
Ensemble methods have often demonstrated very promising results particularly for the
streaming setting. In fact, if there were an expert model, referred to as an oracle, whose
predictions were always true, there would be no need to any other decision and thus, there
would be no need for ensemble methods. However, no such oracle exists and every model
has some defects.

The original goal for combining several opinions in our daily lives is to improve our
confidence that we are making the right decision [125]. The reason is no different in the
machine-learning field by weighing various predictions, and efficiently combining to obtain
a final decision to boost predictive performance. In this section, we provide a background on
ensemble methods, particularly for streaming data. Next, we discuss the fundamental aspects
of any ensemble approach, that is, diversity, generating and training ensemble members, and
finally combining their predictions. We will then address a new challenge in the field, that is
ensemble or model selection, that aims at selecting the most appropriate components only
before combing their predictions.

Ensemble methods, also called Multiple Classifier Systems (MCS), committee or mixture
of experts, have been at the center of the machine-learning and AI research directions in
recent years especially for data streams [94]. We describe more formally the notion of
ensemble methods in Definition 2.2.1. We will refer to this category of approaches as
ensemble and to individual models comprising the ensemble as experts or base-models
interchangeably in the remainder of the thesis.

Definition 2.2.1 — Ensemble. An ensemble is a set of learners whose individual deci-
sions are combined in some way to predict on new examples [51].

It is not clear when the history of ensemble methods started but we can detail three
domains that can be affiliated to the early stages of the current research area of ensemble

2.2 Dynamic Ensembles of forecasters for streaming data 23

methods. Zhou [172, p. 16] have attributed the early contributions for ensemble methods to
three main fields: combining classifiers, ensembles of weak learners and mixture of experts.
Combining classifiers was mostly studied in the pattern recognition community and aims
at designing powerful rules to combine strong classifiers. Ensembles of weak learners was
mostly studied in the machine learning community where researchers often work on weak
learners and try to design powerful algorithms to boost the performance from weak to strong
learner. Mixture of experts was mostly studied in the neural networks community and adopt
the divide-and-conquer strategy to cover different input space regions using different learners.
Then a function is in charge of switching between experts, i.e. which learner to use according
to the data at hand.

Ensemble methods have become a major learning paradigm and are particularly popular
in the data stream context. They offer many advantages over single-model approaches and
they can be used to handle data-stream-specific challenges such as concept drift. Figure 2.2
details a generic approach for ensemble methods designed for streaming data. Let M be an
ensemble of size m, i.e, there are m individual models in the ensemble. For each incoming
test instance xt in the stream, each individual model Mi ∈M provides its prediction ŷi

t and
all the predictions are then combined according to some aggregation function defined in the
combiner g to output a single final prediction ŷt .

Figure 2.2: A common ensemble architecture

2.2.1.1 Why combination works ?

Building a strong single model is a difficult task whereas a set of "weak" learners is relatively
easy to obtain and can be effectively learned and combined into a single model to boost
overall predictive performance [56]. In fact, according to the "No free lunch theorem"
formulated by Wolpert [165], there is not a single model that is appropriate for all tasks,
rather, each learner has varying level of expertise according to the data at hand. As stated in
the review article published by Ho [78]:

Instead of looking for the best set of features and the best classifier, now we look for the best
set of classifiers and then the best combination method.

24 Chapter 2. Background and Related Work

Dietterich [51] has attributed the benefits of ensemble methods combination to three
main reasons, that is statistical, computational, and representational.

• Statistical: the set of models is too large to explore and there may be several different
algorithms giving the same predictive performance. Choosing a single model includes
a risk that a mistakenly chosen one could perform very poorly on future data. Therefore,
combining several models reduces the risk of choosing a wrong one.

• Computational: learning algorithms often perform local search that may get stuck in
local optima. In cases where there is enough training data, it may still be computa-
tionally difficult for the learning algorithms to find the best hypothesis An ensemble
constructed by running the local search from many different starting points may pro-
vide a better approximation to the true unknown function than any of the individual
model.

• Representational: often, the true unknown hypothesis could not be represented by
any hypothesis in the hypothesis space. Combining the hypotheses may expand the
space of representable functions, and thus the learning algorithm may be able to
approximate more accurately the true unknown hypothesis.

A learning algorithm that suffers from the statistical issue is generally said to have
a high "variance", a learning algorithm that suffers from the computational issue can be
described as having a high "computational variance", and a learning algorithm that suffers
from the representational issue is generally said to have a high "bias". Therefore, through
combination, the variance as well as the bias of learning algorithms may be reduced [172].
This is discussed in more detail in Section 2.2.1.3. That being said, it is important to mention
that combining several models does not necessarily lead to a predictive performance that is
guaranteed to be better than the best component model in the ensemble. However, it reduces
the risk of choosing a model with poor performance [172].

2.2.1.2 Ensemble diversity

One of the key elements required for the success of ensemble methods is “diversity” [28].
Ensemble diversity is the disagreement (difference) among the individual learners outputs
[98]. It is a fundamental notion in ensemble methods as it is closely related to its predictive
performance. Models in the ensemble should not make the same errors otherwise there
would be no benefit from combining them. To get a good ensemble, it is generally believed
that the base learners should be as accurate as possible, and as diverse as possible. In fact,
the individual outputs may compensate for each other’s discrepancies. However, generating
diverse individual learners, is not easy since they are trained for the same task and from the
same data. This, in addition to the fact that individual models must not be too weak, usually
leads to highly correlated models.

Basically, the success of an ensemble lies in achieving a good trade-off between individual
models performance and diversity. Ensembles comprising accurate models only is often
worse than ensembles combining some accurate models together with some relatively weak
ones. In fact, complementarity is more important than pure accuracy [172]. It is crucial to
have individual models that are as unique as possible, particularly with regards to predictions

2.2 Dynamic Ensembles of forecasters for streaming data 25

errors [124]. However, despite the fact that diversity is crucial, there is still a lack of
understanding of how diversity impacts predictive performance throughout the literature.

There exists several methods to enhance the diversity of an ensemble. Some methods
rely on input data manipulation (bagging and boosting [22]), using different parameters for
the base models or even using different algorithms. The rationale behind using different
algorithms to generate ensemble components is that different inductive biases lead to in-
dividual models that cover different regions of the hypothesis space. Diversity enhancing
methods will be addressed in more details in Section 2.2.3. We refer the reader to the book
of Kuncheva [98] and the survey of Brown et al. [28] for further reading about ensemble
diversity and its impact on predictive performance.

2.2.1.3 The Bias-Variance-Covariance decomposition

Error decomposition is an important tool for analyzing the performance of learning algo-
rithms. Geman, Bienenstock, and Doursat [63] have presented the bias-variance quadratic
loss decomposition of a single predictive model that breaks the error into three components
which are intrinsic noise, bias and variance. The intrinsic noise is a lower bound on the
expected error of any learning algorithm on the target; the bias measures how closely the
average estimate of the learning algorithm is able to approximate the target; the variance
measures how much the estimate of the learning approach fluctuates for different training
sets of the same size [172]. The intrinsic noise is difficult to estimate, it is often subsumed
into the bias term. Thus, the generalization error is broken into the bias and the variance
terms only. These two terms are usually inversely related, reducing the bias leads to an
increase in variance, and vice versa. Let y be the target and M the learning model, the Mean
Squared Error (MSE) can be decomposed

MSE(h) = E
[
(M− y)2]

= (E[M]− y)2 +E
[
(M−E[M])2]

= bias2(M)+ variance(M)

(2.17)

where the bias and variance of learner h is respectively

bias(M) = E[M]− y (2.18)

variance(M) = E(M−E[M])2 (2.19)

For an ensemble of m models M1, ...,Mm, the decomposition of Equation 2.17 can be
further expanded, yielding the bias-variance-covariance decomposition [157]. Without loss
of generality, we suppose that the individual learners predictions are combined with equal
weights (uniformly). The average bias, average variance, and average covariance of the m
individual models comprising the ensemble are defined respectively as

bias(M) =
1
m

m

∑
i=1

(E[Mi]− y) (2.20)

26 Chapter 2. Background and Related Work

variance(M) =
1
m

m

∑
i=1

E(Mi−E[Mi])
2 (2.21)

covariance(M) =
1

m(m−1)

m

∑
i=1

m

∑
j=1
j 6=i

E(Mi−E[Mi])E(M j−E[M j]) (2.22)

Therefore, the bias-variance-covariance decomposition of the MSE of an ensemble is

MSE (M) = bias
2
(M)+ 1

m variance(M)+(1− 1
m)covariance(M) (2.23)

Equation 2.23 shows that, in addition to the bias and variance of the individual forecasters,
the generalization error (MSE) of the ensemble is closely related to the covariance term
[29]. The covariance term models the correlation between the individual predictions and
consequently, ensemble’s diversity. The smaller the covariance, the better the ensemble. If
all the learners make similar errors, the covariance will be large, thus it is preferred that
the individual learners make different errors. The covariance term shows that diversity is
important to improve ensemble predictive performance. The optimum diversity is that which
optimally balances the components to reduce the overall MSE.

2.2.2 DYNAMIC COMBINATION OF FORECASTERS

The forecasting task is no exception, in fact, combining several forecasters has emerged
as a very promising approach in the late 1960s since the seminal work of Reid [129, 130]
and Bates and Granger [8]. Following Yang [168], the forecast combination methods can
be classified into two main categories, depending on the goal of the combination. The first
class, denoted combination for improvement aims at finding the best linear combination of a
set of forecasts. The second class, denoted combination for adaptation aims to perform as
well as the best individual procedure. It can be interpreted as a dynamic model selection,
where the combination tends to rant all the weight to the best available forecaster. The idea
of model selection and combination in a non-stationary environment is that the best available
forecaster may change over time.

A plethora of both theoretical and experimental studies have demonstrated that forecast
accuracy can be considerably improved through the combination of multiple individual
forecasts. Many exhaustive surveys and discussions have sketched the contours of forecast
combination’s future developments and applications [3, 4, 6, 46, 50, 73]. Bates and Granger
[8] have encouraged the idea of combination when alternative forecasts are available. Com-
bined forecast should be created, possibly as a weighted average of the individual forecasts.
When past performance can be tracked over time, the weights of each individual forecast in
the combination can be computed in such a way that most weight is given to the approach
that has performed best in the recent past [115]. In fact, simple approaches to forecast
combination have often achieved remarkably high predictive performance [105, 106]. A
large set of combination approaches have been studied in [46] and results have reported that
simple averaging of forecasts performs at least as well as methods where individual weights
are computed on the basis of past performance.

2.2 Dynamic Ensembles of forecasters for streaming data 27

The problem of dynamic forecast combination

We describe more formally the problem of dynamic forecast combination following the
definitions presented in [152]. Suppose that we are interested in forecasting a single variable
y, one or multiple steps ahead. Let t the forecast origin, and h≥ 1 be the forecast horizon.
The goal is to predict yt+h given all the information known up to time t denoted by It .
For example, if the data generation process is assumed to be auto-regressive of order p
as described in Section 2.1.6.1, It may contain the past and present observations, that is,
It{ys|s≤ t}. The information set may also include models’ historical behavior in order to
track their respective performance.

Let M = {M1,M2, . . . ,Mm} be a pool of m forecasters and Ŷt+h = 〈ŷ1
t+h, ŷ

2
t+h, . . . , ŷ

m
t+h〉 be

the vector containing their respective predictions. Let ŷt+h = g(Ŷt+h,wt+h) be the combined
point forecast as a function of the underlying individual forecasts and the parameters of
the combination, wt+h ∈ Wt , where Wt is a compact subset of Rm. In other words, the
combination parameters wt+h = 〈w1

t+h,w
2
t+h, . . . ,w

m
t+h〉 will be considered as the combination

weights for each individual prediction. The combination parameters may be adapted as
It evolves over time. Point forecasts generally provide insufficient information for a
decision maker as one may be interested in the degree of uncertainty surrounding the forecast.
Nevertheless, the vast majority of studies on forecast combination has dealt with point
forecast. Our work will focus on this case only, and everything related to interval-forecast
will be beyond the scope of the thesis.

Forecast combination aims at choosing a time-varying mapping gt from the vector of m
individual forecasts Ŷt+h to a single real valued-target, ŷt+h ∈ R that best approximates the
real value yt+h and consequently minimizes some loss function L such as the Mean Squared
Error (MSE) or any other evaluation metric discussed in Section 2.1.7.2. Timmermann
[152] has provided a set of arguments to explain the advantages of forecast combination in
time-varying data as in the case of data streams:

• Individual forecasts may be very differently affected by non-stationarities such as
concept drift. Some models will adapt more or less slowly. Thus, combination of
several forecasts from models with different degrees of adaptability will outperform
forecasts from individual models [4].

• It is very unlikely that a single model dominates all other models at all points in time
rather, the best performing model will change over time as the individual models have
varying levels of expertise over time. Combining forecasts is a robust way to reduce
predictions errors compared to individual forecasts.

2.2.3 DYNAMIC ENSEMBLES FOR EVOLVING TEMPORAL DATA STREAMS

Model combination has been widely addressed in the batch-learning environment where
the datasets are assumed to be finite, and stationary [98, 167, 172]. Most of the existing
work focuses on classification problems. However, these techniques are often not directly
applicable to the regression task that was substantially less studied [111, 132]. Ensemble
methods are particularly popular in the data stream setting as they can handle challenges
related to evolving streaming data. Streaming ensemble methods can cope with concept

28 Chapter 2. Background and Related Work

drifts and recurrent concepts [68]. Similarly to batch-learning, much research in the en-
semble methods literature for streaming data has focused on the classification task [68],
however, more recently, more attention is given to data stream regression task that deals with
continuous valued outputs, such as the Adaptive Random Forest for regression [69].

Kuncheva [96] presented a broad taxonomy of the main dynamic ensemble methods that
have been proposed throughout the literature to cope with changing environments. Online
and adaptive ensemble methods can be grouped into five categories:

• Dynamically combining: (or horse racing algorithms), the algorithms include en-
sembles where the individual experts are trained in advance (offline) and the changes
in the environment are handled by adapting the combination rule of the individual
predictions.

• Updating training data: the algorithms in this group rely on using fresh data to
introduce updates in the individual models. In this case, the combination rule may or
may not change along the stream.

• Updating the ensemble members: the ensemble members are incrementally updated
or retrained in a batch mode if blocks of data are made available along the stream.

• Changing structure of the ensemble: the ensemble tracks individual models’ perfor-
mance and if a concept drift occurs in the stream, the worst performing component is
replaced by a new one that is trained on more recent data.

• Adding new features: the importance of the features will evolve along the life of the
ensemble and the need for new features may emerge without redesigning the entire
ensemble.

There are three important aspects to be considered when designing an ensemble method
for streaming data [71]:

• Generation: defines how the individual models are created, commonly including
some mechanism to enhance diversity among the base learners. This will be discussed
in more detail in Section 2.2.3.

• Combination: describes how individual predictions are aggregated into the single
ensemble output.

• Update dynamics: defines how and when base models will be reset or updated as
new data are released in the stream. This is fundamental when dealing with evolving
data streams to cope with changes in the underlying data distribution.

There are two main approaches to ensemble (model combinations) methods based on
the learning algorithm they use as base models. Homogeneous ensembles, are composed of
algorithms of the same kind whereas ensembles combining different kinds of algorithms are
so-called heterogeneous. Thus, diversity in the ensembles is induced by different means in
the two approaches.

2.2 Dynamic Ensembles of forecasters for streaming data 29

2.2.3.1 Homogeneous ensembles

In homogeneous ensembles, the base models are generated using the same algorithm. Di-
versity is achieved by varying the information used to construct each model, such as using
different subsets of training data (Bagging[8], Boosting[9]), or using different feature sub-
spaces (Random Subspace Selection [77]). Random Patches (RP) [104] builds each individual
model from a random patch of data where each patch is obtained by drawing random subsets
of both instances and features from the whole data set. We describe below some of the most
popular homogeneous ensemble methods for streaming data.

Bagging

The bagging method was first proposed for the batch setting by Breiman [21] where the
same algorithm is used to infer a set of base models that are potentially different since they
are trained on different bootstrap samples of the data. Each sample is created by drawing a
random sample with replacement from the original training set. However, it is no feasible
to draw a sample following this method in the streaming setting due to the infinite size of
the data. Rather, Oza [119, 120] proposed Online Bagging which instead of sampling with
replacement, gives each incoming instance a weight according to the distribution Poisson(1).
Later, ADWIN Bagging [13] was proposed to improve online bagging and better cope with
changes in the stream. It monitors the error using ADWIN change detector and replaces the
worst performing one by a new model as soon as a change is detected (replace the loser).

Boosting

Boosting algorithms combine several base models trained with different samples of the input
stream. However, conversely to bagging that trains models in parallel, boosting create models
sequentially where each model depends on the performance of the previously constructed
models. Boosting gives more weights to examples misclassified by the current model so
that the next model in the sequence pays more attention to these examples. Oza [119,
120] proposed Online Boosting for streaming data where models are updated with a weight
computed depending on the performance of the previous models.

Random Forest

Breiman [22] proposed Random Forest (RF) as an extension for bagging using tree models
in the ensemble. RF injects more randomness to increase diversity among decision tree
base predictors. In addition to the randomization of input data by sampling, each internal
node of a tree is based on a small subset of the original feature set selected randomly, often
the square root of the total number. Thus, the internal construction of each base tree is
randomized. Adaptive Random Forest (ARF) is a streaming implementation of RF that
includes an effective resampling method and an adaptation strategy to cope with different
types of concept drift [66].

Random Patches

The Random Patches (RP) framework follows a very simple, yet effective, ensemble method
that builds each individual model of the pool from a random patch of data obtained by drawing
random subsets of both instances and features from the whole dataset [104]. Gomes, Read,
and Bifet [67] presented the Streaming Random Patches (SRP) method that is an extension
of Random Patches for classification tasks and meets the streaming setting requirements.

30 Chapter 2. Background and Related Work

2.2.3.2 Heterogeneous ensembles

Conversely to homogeneous ensemble, heterogeneous ensemble include a hybrid pool of
models. The rationale behind heterogeneous methods is that different models may have
different expertise about the input data as they are built on different inductive biases.

Langdon, Barrett, and Buxton [101] proposed a generic method to combine decision trees
and artificial neural networks in the pharmaceutical field related to drug discovery. Caruana et
al. [36] proposed a framework for heterogeneous based on a large library including different
predictors (at the expense of the individual models performances) and efficiently combine
and select them to improve predictive performance. Tsoumakas, Angelis, and Vlahavas
[154] use statistical procedures to select the best subgroup among different classification
algorithms and combine their decisions with simple aggregation methods such as Weighted
Voting. More recently, heterogeneous ensemble were proposed for the streaming setting
[135, 136] addressing classification tasks only. The methods were proposed for classification
in the streaming setting but can be naturally be adapted for continuous valued targets in
the streaming setting. Yet, their performance have to be proven. Cerqueira et al. [38]
address the forecasting task and proposed the Arbitrated Dynamic Ensemble (ADE) based on
meta-learning to adaptively combine models’ predictions in the batch setting.

Stacking

Stacked generalization, more commonly referred to as stacking is the process of learning
an ensemble of heterogeneous (but not necessarily so) models whose outputs will serve as
features to a meta-model. Stacking model involves a two-levels learning architecture. The
first level (base-models) learn on the data stream whereas the second level (meta-model)
learns how to best combine the individual predictions. The original feature vector of the data
stream can optionally be given to the meat-model Wolpert [164]. Stacking has become a
major ensemble method to boost weak learners by naturally taking into account their errors
correlations

2.2.3.3 Combining forecasting models for streaming data

As mentioned before, a large number of ensemble methods can be found in the literature for
solving classification tasks on streams, but only a few exist when dealing with continuous
outputs such as in regression tasks [68]. Recent surveys have indexed some streaming
ensemble methods for the regression task that are tailored to solve the forecast combination
problem [94]. Additive Expert ensemble (AddExp) was proposed for non-stationary data
streams where a weight is associated to each base learner [92]. The weight of a base learner
is always multiplied by β |ŷ−y| and 0 ≤ β < 1, where ŷ is the prediction given by the base
learner and y is the actual value of the target. AddExp includes a pruning stage to remove
unnecessary models from the pool. When a new expert is added and the predefined maximum
size of the pool is reached, the expert with the lowest weight is removed before adding the
new one.

Adaptive Model Rules (AMRules) [53] is an ensemble method that combines a set of
rule-based models to solve regression problem on high-speed data streams. The ensemble
encourages diversity by randomizing both the set of instances and the set of attributes in
order to reduce the error on regression tasks. Besides, a change detector is used Page-Hinkley
(PH) [121] to monitor the evolution of the online error of each rule. When a significant

2.3 Dynamic Ensemble Selection (DES) for temporal streams 31

change is triggered, the correspondent rule is removed from the set of rules.
Ikonomovska, Gama, and Džeroski [85] proposed an Online Random Forest (ORF) and

Online Bagging (OBag) that use the FIMT-DD [84] as a base learner. Adaptive Random
Forest for Regression [69] (ARF-Reg) is an extension of the Adaptive Random Forest (ARF)
that uses the FIMT-DD [84] as base model. ARF-Reg is based on a warning and drift
detection scheme per tree, such that after a warning has been detected for one of them, a
background tree starts learning in parallel and replaces the old one if the warning escalates
to a drift conversely to existing methods that simply reset the base model whenever a drift is
detected. The method is not bounded to a specific drift detection algorithm.

The Streaming Random Patches [67] (SRP) trains each base learner on a different subset
of the features and the instances from the original data, namely a random patch. This
diversity enhancing strategy, is similar to the one used in random forests [69] by combing
random subspaces and online bagging, yet it is not restricted to using decision trees as
base learner. Similarly, Gomes et al. [71] have studied different ensemble techniques while
taking into consideration issues related to the context of regression, such as combination and
reset strategies to cope with concept drift. They have tested different implicit techniques
to enhance diversity within homogeneous ensembles. It relies on manipulating the input
training data used to train each base learner. Their experiments include bagging (BAG)
[22], the Random Space (RS) and the Random Patches (RP) [104] since they are not bound
to a specific algorithm for base learners. On top of that, they proposed different fixed
and random techniques to continuously reset base models, and, thus, keep the ensemble
up-to-date with the latest concepts. They concluded that this has a positive effect on the
predictive performance. Experiments have demonstrated that simpler reset strategies such
as periodically replacing members of the ensemble with new models trained on different
windows can outperform more reactive strategies that are based on drift detector.

2.3 DYNAMIC ENSEMBLE SELECTION (DES) FOR TEMPORAL STREAMS

The rationale behind heterogeneous ensembles is that by having an ensemble composed of
different learning base models, it is expected that these models exhibit different levels of
predictive performance along the input data stream. As described in Section 2.2.2, we can
dynamically combine the available models to manage the strengths and limitations of each
one across the temporal data stream. All the ensemble methods previously discussed involve
all the base models in the pool to compute the final prediction. However, since models
show varying predictive performance at different times (point) of the data sequence, it would
be more interesting to perform a selection stage on the ensemble before aggregating their
predictions [29]. In fact, instead of combining the outputs of all the available models, we
should select the model or subset of models that we trust the most to be accurate on the test
sample at hand.

2.3.1 ON DYNAMIC ENSEMBLE SELECTION (DES)

The selection task can be achieved either by Static or Dynamic approaches [90]. Static
methods select the same subset of individual models and remains constant for all upcoming
test observations. The main limitation of static methods in time-dependent data streams is its

32 Chapter 2. Background and Related Work

inability to capture the evolving dynamics of the temporal and cope with concept drift. It
is more insightful to adopt dynamic selection in which the subset of selected models to be
combined is decided for each incoming test instance and thus varies over time [38].

DES methods can further be divided into two sub-categories, namely individual-based
and group-based [26]. In individual-based methods, the selection of a subset of models for
each test instance is done by estimating the competence level of the base models individually
without taking their dependencies into account. On the other hand, group-based methods tend
to modeling models dependencies when selecting the subset of experts. A comprehensive
and detailed survey on ensemble methods (also referred to as MCS) and ensemble selection
was provided by Britto Jr, Sabourin, and Oliveira [26] where they detailed a taxonomy on
the different methods of ensemble generation and selection discussed so far. The taxonomy
is depicted in Figure 2.3.

Multiple Classifier Systems

Generation

Homogeneous

Feature Data Set Parameters

Heterogeneous

Selection

Static Dynamic

Individual Group

Figure 2.3: Multiple Classifier Systems (MCS) taxonomy [26]

We describe in Figure 2.4 the general workflow to perform Dynamic Ensemble Selection
(DES) on data streams. For each incoming test instance x, DES selects the most appropriate
subset of base models and combines their respective predictions to output the final predic-
tion. To construct a Dynamic Ensemble Selection (DES) approach, we have to address the
following questions:

• How to build the individual models following the ensemble generation methods
detailed in Section 2.2.3 and what would be the best method to constitute the pool of
base models to be as accurate and as diverse as possible

• How to evaluate the performance of each base model for a given instance x before
proceeding to its selection ?

• How to select the set of base models to be involved in the aggregation stage for the
final prediction once the competence of each base model is computed?

In DES, the "competence" of each base model in the ensemble is estimated in the vicinity
of the test instance x and the most competent members are selected to predict. Kuncheva
[98] grouped the competence estimate methods into two main approaches according to [65]:

• Decision-independent ("a priori"): the competence is determined based on the test
instance x, prior to finding out the predictions of each base model.

2.3 Dynamic Ensemble Selection (DES) for temporal streams 33

Figure 2.4: A generic workflow for Dynamic Ensemble Selection (DES) showing the selec-
tion and combination steps for each instance in the data stream.

• Decision-dependent ("a posteriori"): the competence of each base model is computed
knowing the prediction of the latter.

In the remainder of the work, we will be focusing on DESmethods to solve the forecasting
task on streaming data. There exist a large number of DES methods for other tasks such as
classification or other settings such as batch learning, but they are beyond the scope of the
thesis.

2.3.2 DES FOR TEMPORAL DATA STREAMS

There have been several forecast aggregation methods proposed throughout the ensemble
methods literature. Simply averaging all the available experts’ predictions (Simple) in the
pool has demonstrated a good level of predictive performance despite the simplicity of the
combination approach [47]. Marcellino [107] proposed to use the median value of all the
experts’ predictions instead of their average as the ensemble’s forecast in order to reduce the
negative impact of extreme values.

However, as stated before, experts have varying levels of expertise along the temporal
stream. Thus, it is more promising to adapt the weight assigned to each expert according
to its expected performance, the higher the expertise, the higher the weight. Nonetheless,
estimating models’ performance and accordingly computing their weights for each test
instance is not trivial. In fact, simple methods such as the simple average (Simple) provide
competitive results and are sometimes hard to beat. This has led to a challenge named the
"forecasting combination puzzle" [64].

We detail below state-of-the-art DES methods in time dependent data streams that can be
grouped into three categories, namely: windowing, regret minimization and meta-learning
methods. Several regret-minimization based strategies have been proposed for aggregating
the predictions of forecasting models. Regret is the average error suffered with respect to the
best we could have obtained (Oracle). The thesis focuses on windowing and meta-learning

34 Chapter 2. Background and Related Work

based DES methods. We point the reader to the work of Cesa-Bianchi and Lugosi [42] for
further reading on regret minimization based methods.

2.3.2.1 Windowing

Windowing DES methods are based on the assumption that the region of competence of base
models is temporal. The performance of experts is determined on a window of recent data or
using a forgetting mechanism that accentuates the importance of recent data. The rationale
is that recent observations are more likely to be similar to the ones we intend to predict in
the near future. Thus, good-performing experts on recent observations are more likely to be
better on next instances. This is even more valid in the streaming setting where the stream
is supposedly infinite and evolving (concept drift). Simple forecasts averages [47] can be
improved by computing weighted average of all the available forecasts.

Jose and Winkler [86] point out the important fact that the simple mean aggregation
method is sensitive to extreme values and suggest that excluding such values or reducing
their extremity might be beneficial. Authors studied the performance of simple yet robust
aggregation methods, that is trimmed means. Empirical results suggest that moderate
symmetric trimming of 10˘30% of the forecasts can provide improved combined predictions.
The authors argue that trimmed means can be more robust than the mean, yet not as limited
as the median, which ignores valuable information contained in the set of forecasts.

AEC(Adaptive Ensemble Combination) is a method for adaptively combining a set of
forecasters [141]. It uses an exponential weighting strategy to combine forecasters according
to their past performance, including a forgetting factor to give more importance to recent
values AEC tends to select the best predictor (weights tend to 0 or 1). It is a time-varying
version of (Aggregated Forecast Through Exponent Re-weighting) [175]. Weights depend
only on the past forecasts and the past realizations of the temporal series. The weights are
sequentially updated after each additional observation.

Moreira-Matias et al. [113] introduced a novel methodology to predict the number of
services that will emerge at a given taxi stand in a short-term time horizon using streaming
data. They propose three distinct short-term prediction models and a data stream ensemble
framework to combine them. Each model is weighted according to its error on the data
contained in the sliding time window [t−w, t] where w is a user defined parameter standing
for the window size. They have used the Symmetric Mean Percentage Error (sMAPE)
described in Section 2.1.7.2 to quantify models error.

BLAST (Best LAST) [135] was initially proposed for classification tasks based on Online
Performance Estimation that selects the best performing base model on a window of recent
data to be the only active model for the next instances where w is a user defined parameter.
BLAST can easily be extended to the forecasting task of continuous values by adapting the
loss function in the performance evaluation.

DEMSC (Drift-based Ensemble Member Selection using Clustering [140] is a two-stage
DES framework that promotes both accuracy and diversity. DEMSC performs an informed
selection of base learners for each test instance based on models’ performance drift detection
mechanism that excludes poorly performing base models and selects the top performing ones.
The performance is computed over a sliding window. The clustering stage groups similar
models based on their predictions and then selects clusters’ representatives only to achieve a

2.3 Dynamic Ensemble Selection (DES) for temporal streams 35

highly accurate and diverse ensemble.

2.3.2.2 Meta-Learning

Brazdil et al. [20] describe that meta-learning is a way of modelling the learning process of
one or several learning algorithms. The field of meta-learning studies how learning systems
can become more effective through experience. The goal is not simply to find a good solution,
but to do it with increasing efficiency through time. field of meta-learning addresses the
question what machine learning algorithms work well on what data.

Definition 2.3.1 — Meta Learning. Meta-learning, or learning to learn, is the science of
systematically observing how different machine learning approaches perform on a wide
range of learning tasks, and then learning from this experience, or meta-data, to learn new
tasks much faster than otherwise possible [158].

The algorithm selection problem AS defined by Rice [133] falls within the field of meta-
learning. It comprises four main components. The problem space P that represents the data
used in the study. The feature space, F , that stands for the range of measures that characterize
the problem space P. The algorithm space, M, that consists in the list of candidate algorithms
which can be used to find solutions to the problems in P. The performance metric, L , is a
measure of algorithm performance such as the Mean Squared Error (MSE). The goal is to
select, for a given x ∈ P, the algorithm Mi ∈M that maximizes (minimizes) the performance
metric. This problem can be cast a classification, ranking or regression task.

Following the same problem formulation, Talagala, Hyndman, Athanasopoulos, et al.
[150] have introduced the meta-learning based model selection for the time series forecasting
task as described below.

Problem formulation

For a given instance x ∈ P, with features in F , find the selection mapping S into the algorithm
space M, such that the selected algorithm M j ∈M minimizes forecast error metric L (M j).

• P: the problem space stands for each instance in the stream

• F : the feature space that forms the meta-knowledge for selection and comprises data
characteristics or meta-features that provide valuable information to differentiate the
performance of a set of given learning algorithms [20, p. 6]. The idea is to gather
descriptors about the data that correlate well with the performance of learning models.

• Algorithm space M is the pool of base models trained to forecast future values in the
temporal stream.

• Loss function L is the evaluation metric to differentiate between the predictive
performance of base models in order to select a subset from the pool of models

Brazdil et al. [20] argue that ensemble methods and model selection and combination
may be regarded as a form of meta-learning as it uses results at the base level to construct a
classifier at the meta level. Consider the problem of DES where the goal is to select a subset
of predictive models from a pool of models for a given test instance. The problem can be
cast as a meta-learning problem and the aim is to identify the set of learning algorithms with

36 Chapter 2. Background and Related Work

best expected performance for the test instance xt . Besides, meta-Learning can be used to
cope with stream specific challenges such as re-occurring concepts. Thus, one should involve
remembering patterns from past data to be reused in future situations. If a recurring concept
is detected, reusing a model previously trained o that concept can perform more efficient in
terms of predictive performance and time [5, 59, 163].

Rijn et al. [134] have investigated the use of meta-learning for algorithm selection
on data streams where meta-knowledge can improve the predictive performance of data
stream algorithms. They consider an ensemble of algorithms and for each window of
size w, an abstract meta-algorithm determines which algorithm will be used to predict
the next window of instances. The decision is based on data characteristics computed
in the previous window and the meta-knowledge. The Algorithm selection problem was
treated as a classification task using meta-learning. Similarly, MetaStream [137] is a
meta-learning based dynamic models selection and combination framework for regression
task in time-evolving stream environment. MetaStream works by periodically choosing
between single learning algorithms or their combination to be used on a window of incoming
observations. It maps the characteristics extracted from the past and incoming data to the
expected performance of regression models in the ensemble.

The Arbitrated Dynamic Ensemble (ADE) [38] is based on arbitration [117] to achieve
DES for time-series one-step-ahead point forecasting. ADE comprises a pool of heteroge-
neous base forecasters trained off-line and a set of meta-learners where each meta-learner is
trained to predict for each test instance the expected error of its base counterpart. The α%
best base-model (with the lowest predicted errors) are then selected in a committee and their
predictions weighted and combined using the softmax. Talagala, Hyndman, Athanasopoulos,
et al. [150] introduce a general framework for forecast-model selection using meta-learning
designed for traditional learning. They train a random forest to identify the best forecasting
method based on time-series features such as seasonality, trend and auto-correlation.

Candela et al. [33] use meta-learning to automatically perform model selection. Based
on the assumption that forecasting performance decays in time, they introduced a framework
that constantly monitors and compares the performance of deployed forecasting models
to guarantee accurate forecasts of travel products’ prices. A meta-model is in charge of
predicting the forecasting error (sMAPE) of each forecasting model in the pool and then
ranked, where the model with the lowest error is ranked #1. The estimated forecasting error
is also used to detect accuracy deterioration over time and send alert signals. In fact, if
the estimated performance is too poor, this means that the model has become obsolete and
consequently be replaced.

FFORMA (Feature-based FORecast Model Averaging) [112] is an automated method
for obtaining weighted forecast combinations using time-series features. First, a collection
of time series is used to extract features that are then used to train a meta-model to assign
weights to various possible forecasting methods while minimizing the average forecasting
loss obtained from a weighted forecast combination. The meta-model predicts the weight of
each forecast for new and unseen series. FFORMA outperforms a simple forecast combination,
and all of the most popular individual methods in the time-series forecasting literature.

2.4 Summary 37

2.4 SUMMARY

Predicting future values of data streams is a challenging task due to the evolving nature of
data subject to concept drift. Besides, data streams often exhibit a temporal dependency
where past data impacts both current and future behavior. Data Stream (DS) mining methods
rely on the vast research work achieved in the field of Time-Series (TS) analysis to perform
forecasting. On the other hand, TS analysis takes advantage of DS related methods such
as concept drift detection and adaptation in order to improve predictive performance. We
revised several dynamic forecast combination and ensemble methods that have demonstrated
highly competitive results in the streaming setting. More particularly, we focus on Dynamic
Ensemble Selection (DES) that aims at selecting the most competent models only according
to the data at hand in order to combine their predictions. We overviewed both windowing and
meta-learning based DES methods that can meet the requirements of the streaming setting.
In the next chapter, we will explore these topics in more detail and propose several novel
methods for temporal data streams forecasting using DES approaches to tackle the main
limitations of the current state-of-the-art approaches.

Streaming Dynamic Ensembles
Selection

In this chapter, we will overview several approaches to estimate models performance such
as windowing and meta-learning that were applied in the context of evolving data streams.
Besides, as mentioned in the previous chapter, diversity among experts is a key aspect
in ensemble methods. However, the diversity-accuracy dilemma is a challenging issue,
particularly in the streaming setting since all the models are trained and updated on the
same data. Finally, predictions fusion approach describes how individual predictions of
selected experts are aggregated into the single ensemble output. In the context of temporal
stream forecasting, we will pay special attention to changes and drifts that may occur in the
characteristics of the data and may alter overall predictive performance.

The remainder of the Chapter is organized as follows, Section 3.1 addresses the first
task of DES methods that is the estimation of base-models performance. We discuss several
windowing and meta-learning based methods tailored to the streaming setting. Section 3.2
details different selection methods that aim at enhancing both accuracy and diversity among
selected experts. Section 3.3 illustrates an extensive experimental study to compare the
proposed DES methods against state-of-the-art methods in terms of predictive performance
as well as computational cost (time and memory). Finally, Section 3.4 concludes the chapter
by discussing the results achieved by the proposed DES methods and presents potential
research directions for future work.

3

40 Chapter 3. Streaming Dynamic Ensembles Selection

Every Dynamic Ensemble Selection (DES) approach is based on three main steps:
models’ performance evaluation, committee selection and finally predictions aggregation.
Let M = {M1,M2, . . . ,Mm} be the ensemble of fixed size m and xt+1 be the test instance
provided at time t and serves as a feature vector to predict ŷt+1. First, we need to estimate
the predictive performance of each individual model Mi ∈M according to a function P(.).
Second, we select a subset of the most competent base-models according to xt+1 in a
committee Mc following some selection approach S(.). Finally, the predictions of the
selected experts are combined using some predefined fusion function g(.) which is often a
weighted average of experts’ individual predictions. Figure 3.1 details a general framework
for DES on data streams. For each incoming test instance, the DES framework, estimates
base-models’ predictive performance, selects experts and combines their respective outputs.
When the true value of the target is released, all base-models are updated and performance
evaluation refreshed.

Figure 3.1: General Dynamic Ensemble Selection pipeline for data streams

3.1 INDIVIDUAL MODELS’ COMPETENCE ESTIMATION FOR DES

Dynamic environments such as in temporal streaming data are subject to changes and concept
drift. A common strategy to deal with these changes is to continuously monitor the predictive
performance of the learning models and select, on the fly, the most suitable model or subset of
models for the current data at hand. In a heterogeneous ensemble, where the pool comprises
different learning algorithms, it is expected that these models exhibit different levels of
predictive performance along the temporal stream. The goal of Dynamic Ensemble Selection
(DES) is to dynamically select the most effective individual models only and combine their
predictions to compute the final ensemble prediction.

Hence, estimating the performance of base-models is of crucial importance in any DES
approach. In fact, model competence defines the extent of the reliability of the model itself
to perform well on a given unseen test instance. We discussed in Section 2.3.2 two main
approaches to dynamically estimate base-models’ performance, namely windowing and
meta-learning. Nevertheless, estimating the competence of each base model Mi for a future
test sample xt+1 is a challenging task in the field of DES. Besides, data streams are very likely

3.1 Individual models’ competence estimation for DES 41

to evolve over time, thus it is very important to capture the underlying dynamics and cope
with concept drift by discarding old and outdated data. We discuss here several competence
evaluation methods tailored to streaming data following both windowing and meta-learning
based approaches.

3.1.1 WINDOWING-BASED DES

Windowing DES methods are based on the assumption that the region of competence of
base-models is solely temporal. The performance of experts is determined on a window of
recent data or by using a forgetting mechanism that accentuates the importance of the most
recent instances. The rationale is that recent observations are more likely to be similar to
the ones we intend to predict in the near future. Thus, good-performing experts on recent
observations are more likely to be better on the upcoming instances. This is even more valid
in the streaming setting where the stream is supposedly infinite and evolving due to concept
drift. Let êi

t be the estimated error that reflects the predictive performance of base model Mi

at time t using some loss function l, the lower the error the better the base-model. In our
context, l can be any loss measure described in Section 2.1.7.2.

Fixed-size sliding window

One way to estimate the predictive performance of each base model is using a sliding
windows (SW) such that only the last w samples are taken into account while computing the
loss function l. As time goes on, the sliding window moves over the stream while keeping
the same size w. Let yw and ŷi

w be the true values and the predicted values of model Mi

respectively in the recent window w, then the error êi
t of base-model Mi at time t is:

êi
t(w) = l(yw, ŷi

w) (3.1)

Older samples are drastically excluded as new samples are released in the stream. Conse-
quently, the computed error measurements can considerably vary between two consecutive
windows, which translates in faster transitions over the temporal stream and thus faster
adaptation yet very sensitive to outliers. However, choosing the right size of the window is
not trivial. In practice, varying the value of the window size w follows the stability-plasticity
dilemma [35]. In fact, small values of w lead to faster reactivity, but makes the model
sensitive to outliers and noise. On the other hand, higher values (larger windows) lead to
greater stability at the cost of some responsiveness and possibly including outdated data.

Fading Factor

An alternative to sliding windows are fading factors (FF) [60], which are faster and memory-
less. This method decreases the influence of older samples on the performance measurement
as the stream progresses. Computing the loss êi

t for t ≥ 1 using a fading factor is estimated
by:

êi
t = Si

t/Bt

Si
t = l(yt , ŷi

t)+λ ×Si
t−1

Bi
t = 1+λ ×Bt−1

42 Chapter 3. Streaming Dynamic Ensembles Selection

Where λ ∈ R : 0� λ ≤ 1 is the forgetting factor that controls the speed at which older
data are discarded. Si

t stands for the faded sum of loss incurred by model Mi along the stream
whereas Bt represents the faded total number of instances seen so far. The initial values of Si

0

and B0 are set to zero at time t = 0.
In the fading factor variant, each data object is assigned a different weight according to

its arrival time so that new observations receive higher weights than old ones. It allows to
smoothly reduce the effect (importance) of old and possibly outdated instances on perfor-
mance computation. A decreasing exponential function is usually used in the fading model
such as in AEC [141] to dynamically weight forecasters and aggregate their predictions.

3.1.1.1 Feature and temporal based performance region

We present SLOPE for Sliding LOcal PerformancE that adapts the concept of local perfor-
mance to the streaming setting. The idea of "Local Accuracy" was used for classification
on batch learning tasks where the goal is to estimate each individual classifier’s accuracy in
local regions of the feature space surrounding a test instance [166]. The decision of the most
locally accurate classifier is then used as the ensemble’s prediction. It was later extended to
DES called KNORA (K-Nearest-ORAcles) [90] where the most suitable subset of classifiers
is selected instead of a single one. For each incoming test instance, KNORA finds its k nearest
neighbors in a predefined validation set, and selects the classifiers that correctly classify
those neighbors to aggregate their predictions.

The proposed SLOPE approach is based on a dual-locality assumption for temporal data
streams that considers the recency of the data using a sliding window and the feature space
using the k nearest neighbors. Similarly to fixed size sliding window, SLOPE considers the
w latest observed instances in the stream up to time t. However, instead of evaluating base
models on all the instances comprised in the sliding window, we evaluate the base models
on a smaller "local region" surrounding the given test instance xt+1 called the region of
competence defined by the k nearest neighbors. In fact, the proposed approach is twofold:

• The sliding window emphasizes on the recency of the data and discards outdated
instances;

• The feature-based local performance region defines a small region in the feature space
using the k nearest neighbors surrounding a given test instance xt+1 among all instances
comprised in the sliding window.

The idea is to measure the performance on the most recent and the most similar instances
only. Besides, each sample belonging to the region of competence can be weighted by its
distance to the test instance. Thus, instances that are closer to the test sample have a higher
influence when computing the performance [145]. SLOPE is particularly well-suited as we
are using the prequential evaluation approach for streaming data. In fact individual models’
performance are continuously updated using the newly released true values and assume no
delay. However, the forgetting method is drastic since the oldest examples in the window are
completely excluded as soon as a new instances are released. Naturally, the performance of
SLOPE is closely related to the choice of the parameters values w as described in fixed-size
sliding window (paragraph 3.1.1) as well as the number of nearest neighbors k.

3.1 Individual models’ competence estimation for DES 43

3.1.2 META-LEARNING BASED DES

Meta-learning is one of the most promising approaches employed for dynamic ensemble
selection [20]. It focuses on understanding the behavior of learning algorithms by exploiting
the knowledge acquired from previous experience on similar data in order to predict the
behavior of the algorithms on future unseen instances. As discussed in Section 2.3.2.2, the
DES problem can be cast as a meta-learning task where the goal is to predict the performance
of each base model in the pool and accordingly select and weight their predictions. Every
meta-learning approach is based on two main components: meta-features and the meta-model.
Meta-features represent a set of characteristics extracted from the data and used to train
the meta model [20]. The meta-model investigates the relation between data characteristics
and the performance of learning algorithms. Figure 3.2 illustrates a general pipeline to
achieve meta-learning based DES on data streams. We can distinguish two separate layers of
learning. The first one involves the pool of base models M that learn on the data released in
the stream to predict future observations. The second layer, referred to as meta-layer, extracts
meta-features from the data stream and trains a meta-model Z to predict future behavior of
the base-models.

Figure 3.2: Meta-learning pipeline for streaming data

The performance of meta-learning approaches is closely related to the quality and useful-
ness of the meta-features. In fact, for the ensemble selection task, important characteristics
are the ones that represent properties of the data that influence model predictive performance.

In the next section, we discuss a set of meta-features that are deemed to be the best
descriptors of the data characteristics that relate to models predictive performance and are
tailored to the streaming setting.

3.1.2.1 Meta-features for data stream characterization

The first challenge to be addressed in any meta-learning based DES approaches, is the
definition of a set of meta-features. In traditional batch learning, the goal of meta-learning is
to determine a set of meta-features that can be common to several data sets that have different
morphologies (different attributes, number of instances . . .). The extracted characteristics are
then used to train a meta-model to link to the performance of different learning algorithms
from one data set to another. However, the goal of meta-learning in DES for data streams
is to designate the best model or subset of models for each test instance. The stream is
described by the same set of attributes (same morphology) while the process generating the

44 Chapter 3. Streaming Dynamic Ensembles Selection

data may evolve over time. We discuss here a set of meta-features used in the experiments to
implement meta-learning based DES approaches.

Meta-features for temporal data stream

Data stream characterization approaches can be divided into three categories: general
(simple), landmarkers, and model-based meta-features. Model-based meta-features exploit
properties of some induced model to build a set of meta-features. The properties are related to
the morphology of the model itself such as the number of leaf nodes or the maximum depth in
a decision tree [9, 122]. In our work, we will focus on general and landmarkers meta-features
only assumed to be the most appropriate ones for temporal data stream. Besides, we describe
a set of stream-specific information that can be integrated in the set of meta-features.

• General (Simple): Simple meta-features include statistical and information-theoretic
characteristics estimated from the data stream. Meta-feature related to the morphology
of the data (number of instances, features, . . .) are not addressed since we assume that
the stream at hand has the same morphology despite the evolving process generating
the instances. In fact, in data streams, the set of attributes typically does not change
over time while the number of instances is supposedly infinite. In this case, meta-
learning approaches are usually used for ensemble selection at different time points of
the same stream, rather than many different data sets. Therefore, the characteristics
extracted from the data stream (each attribute or its relations) at a time point can
be used directly as meta-features. Besides, due to the phenomenon of concept drift,
meta-features extraction must be a regular process [137].

In temporal data streams, the observations are not i.i.d and, hence, temporal depen-
dence between successive examples is very important. Therefore, measures that
consider this temporal dependence can be useful for meta-learning based DES meth-
ods. Particularly, measures such as serial correlation that are often investigated for
feature extraction of time-series data. We recall that, the original feature vector xt+1

includes the previous p values observed up to time t (embedding vector). We compute
the following statistics for each embedding vector in order to characterize the recent
dynamics of the stream: mean, standard deviation, skewness, kurtosis, recent trend and
serial correlation. Following the definition in [41], recent trend is defined as the ratio
between the standard deviation of the embedding vector and the standard deviation
of the differenced embedding vector. The serial correlation is estimated using the
Ljung-Box test statistic.

The confidence that the extracted characteristics correctly represent the data is related
to the number of examples used such that the larger the number of examples, the
higher the reliability.

• Landmarkers: Landmarking is a strategy to describe tasks through the performance
of simple and efficient learners. Landmarking based meta-features exploit information
obtained from the performance of one or several simple and fast learners that exhibit
significant differences in their learning mechanism [123]. We use the predictive
performance of two landmarkers to characterize the data stream namely, KNN and

3.1 Individual models’ competence estimation for DES 45

Hoeffding Tree (RHT) regression models and compute their respective loss for each
instance along the stream.

• Stream-specific: Rijn et al.[134] investigated the algorithm selection problem on
data streams using meta-learning. They introduced a set of stream-specific meta-
features, based on a change detector. They run both Hoeffding Trees and Naive Bayes
algorithms with both the ADWIN [12] and DDM [61] change detectors over a set of data
streams. They recorded the number of warnings and changes triggered and include
this information to train a meta-model. Following this approach, we propose to use a
warning and a drift detector based on ADWIN to trigger changes in the performance
of the two landmarkers discussed above. In fact, we use two ADWIN detectors where
the first one is more indulgent and detects warnings whereas the second one is more
rigorous and detects drifts. Warning and drift flags for each landmarker are then
included in the set of meta-features along with statistical information on the data and
landmarkers performance.

Moreover, in temporally dependent data streams, past values hold valuable information
on current and future values as described in the auto-regressive model (Section 2.1.6.1).
The behavior, and consequently the errors incurred by base-models, are very likely to
exhibit temporal dependency as well. We propose to include a set of lagged errors for each
base-model in order to enhance the meta-features set. We summarize in Table 3.1 all the
meta-features and their respective description. These meta-features are used along with the
original set of features xt , namely the auto-regressive vector, and referred to with the tag
ORI.

Table 3.1: Meta-Features grouped by category and their respective description

Category Description

General
(STA)

Mean, standard deviation, skewness, kurtosis, recent trend and
serial correlation.

Landmark
(LAN)

sMAPE loss of KNN and RHT as landmarkers

Stream
specific

Warning (resp. Drift) detection feature is set to True if a warning
(resp. drift) was detected in the performance of the KNN and RHT
landmarkers. These features are used along with the landmarking
features (LAN) described above

Lagged errors
(LAG)

A number q of the past base-errors incurred by each base-model
is included in the set of meta-features

Now that we have determined the set of meta-features that best describe the data stream
at hand with different characteristics, we determine the best approach for the meta-model
to link between the predictive performance of individual models in the pool and the set of
meta-features that are continuously extracted from the data stream.

46 Chapter 3. Streaming Dynamic Ensembles Selection

3.1.2.2 Meta learner

The role of the meta-layer is to determine at time t which models are good given a test
instance xt+1 by predicting their respective predictive performance (loss) based on a set of
meta-features. The goal is to learn the relationship between a stream’s meta-features and
candidate models’ performance. For example, Guerra, Prudêncio, and Ludermir [74] used an
SVM meta-regressor per classification algorithm to predict its accuracy. In our case, we use
the meta-model to predict and quantify the loss (using any of the evaluation metrics detailed
in Section 2.1.7.2) that each individual model Mi ∈M is likely to incur with regards to the
test instance at hand xt+1. Once the performance is estimated, we can then proceed to the
selection stage where only the most competent ones are included in the committee of experts
Mc ⊂M whose predictions are aggregated to output the one-step-ahead forecast ŷt+1.

Arbitration

Ortega, Koppel, and Argamon[117] introduced the arbitrated architecture that assigns to
each base model Mi ∈M, a meta-model Zi , also called referee or arbiter, that is in charge
of learning the behavior and predictive performance of its base-counterpart. We propose
to use STreaming Arbitrated Dynamic Ensemble (STADE), that is a streaming arbitration
meta-learning based DES approach. The work follows the ADE [38] framework that uses
arbitration for time series forecasting using dynamic ensemble selection. The system uses a
two-layered learning schema where each layer trains its own models and receives its own
data [58]. The base-learner Mi learns to predict the future values of the target yt+1 of the
stream, whereas the meta-model Zi learns the behavior of its base counterpart Mi and predicts
its future errors êi

t+1 using a set of meta-features. The rationale is that each meta-model
holds meta-information on the area of expertise of its base-counterpart, and thus can infer
its predictive performance given a test instance xt+1. The meta-model (arbiter), is often a
decision tree but not constrained to and can be any regression model. The features used in
training the meta-models consist of the original attributes that define the base-level dataset,
namely the vector of features xt+1, augmented by other computed meta-features discussed in
Section 3.1.2.1.

Figure 3.3: Streaming arbitrated meta learning architecture

Figure 3.3 highlights the general approach for arbitration on data streams. Conversely to
windowing approaches that track the error on past instances, the meta-learning arbitrated
approach is more proactive as it is based on predicting future loss of base-models. This

3.2 Experts selection: Select or not select, that is the question 47

can lead to faster adaptation and better anticipation to changes in the case of evolving data
streams where concept drift is very likely to happen.

"Arbitration" is often related to Stacking [164] that can also be considered as a meta-
learning approach. Stacking runs the pool of base-models on the same data as well and
builds a new meta-dataset, using the predictions of all base-models. The meta-dataset is
then used to train a meta-model to link the predictions of base-models to the true value
of the target. On the other hand, arbitration separately learns the individual expertise of
each forecasting base-model and accordingly selects the ones that are expected to be the
best. META-STREAM [137] is another example of meta-learning based DES where a set of
meta-features are periodically extracted to train a meta classifier to predict the base-model
that is expected to perform best, otherwise combines all the available base-models.

In this section, we discussed windowing and meta-learning based approaches to estimate
the predictive performance of base models in the pool. The goal is to quantify the extent at
which each base model will perform well on a given test instance. The estimated performance
serves as a basis for the expert’s committee selection that will be discussed next.

3.2 EXPERTS SELECTION: SELECT OR NOT SELECT, THAT IS THE QUESTION

Once the performance of each individual model in the pool has been estimated, it is important
to proceed to the selection stage in order to prune the models that are likely to fail in predicting
the upcoming instance (i.e incur a high loss). We recall that up to now, we have the vector
of estimated loss of each base-model ~et+1 = 〈ê1

t+1, ê
2
t+1, . . . , ê

m
t+1〉 based on the information

seen up to time t and the set of individual predictions~yt+1 = 〈ŷ1
t+1, ŷ

2
t+1, . . . , ŷ

m
t+1〉 . The goal

is to select a committee Mc ⊂M of base-models that are expected to perform best in order to
combine their predictions.

In this section, we investigate several selection methods in order to pick the best commit-
tee of experts Mc ⊂M. The number of base-models included in Mc can either be fixed or
variable from one instance to another according to each approach.

3.2.1 TRIMMING (TRIM)

A plethora of DES methods are based on trimming, where a fixed ratio α of the best
performing base-models are included in the committee Mc. Trimmed means [86] suggest that
moderate trimming of 10 to 30% of the forecasts can provide improved combined predictions.
ADE [38] uses a meta-learning approach that selects the 50% best base models. Authors have
conducted an extensive study of the impact of varying selection ratio values on the overall
predictive performance and have concluded that the best performing values are the ones in
the middle of the searched distribution. In principle, the parameter depends to a great extent
on the number of experts and their predictive performance. Finally BLAST [135] can be
considered as a trimming-based approach as it selects the single best base-model over past
instances.

3.2.2 ABSTAINING (ABS)

Trimming-based DES approaches select a fixed-size committee of experts containing the α%
best base-models regardless of the actual value of the performance score. However, following

48 Chapter 3. Streaming Dynamic Ensembles Selection

this "blind" approach, the committee may include base models that are poorly performing
despite their "good" rank. In fact, this may happen if all base models are expected to perform
poorly. Hence, there is no clear evidence that better ranked base-models are going to perform
better. Besides, considering the scenario where all base-models are expected to achieve very
good predictive performance, selecting the α% best ranked ones only may exclude valuable
information from other non-selected experts despite their high predictive performance.

We present an abstaining-based DES that allows base-models to abstain from contributing
to the committee of experts Mc if their respective predictive performance is low. In fact,
the overall loss achieved by the ensemble can be significantly improved by allowing base
models to abstain in case of low confidence. The abstaining strategy is based on the actual
values of the performance that reflects the confidence of the base-models. If a base-model’s
confidence does not meet a certain requirement, it is allowed to abstain. Loeffel et al. [102]
have considered a similar problem in the regression task on evolving data streams that are
subject to concept drifts. They addressed the issue on the precision of each prediction made
from a single model using a predefined set of constraints. They assume that if the costs
associated with a "good" and "bad" prediction are known, the overall prediction cost can be
improved by allowing the regressor to abstain. The abstaining approach uses a single or a set
of several Reliability Estimator Score (RES) and a competence threshold θ to estimate the
extent at which the model meets the required competence constraints.

The abstaining approach requires a continuous monitoring of the set of RES for each
Mi ∈ M. We explore several reliability estimators used to assess the confidence of base-
models for a given test instance.

3.2.2.1 Reliability estimation score

Abstaining relies on a set of reliability estimators to determine whether the constraints
for the required precision can be met by a given model Mi ∈ M for a given test instance
xt+1. When the reliability requirements are not met, the forecaster is allowed to abstain in
order to avoid misleading the committee of experts with a highly erroneous predictions. A
reliability estimator is used to refer to the prediction error that will be incurred on instance
xt+1. We can attach a different threshold value θ for each reliability estimator in RES.
At time t, when test instance xt+1 is released in the stream, a set of r reliability estimators
RESi

t = {R1
t ,R

2
t , . . . ,R

r
t } ∈ ([0,1])r is associated with each base model Mi ∈M and computed

based on the information observed up to time t. Small values of Ri
t indicate that the reliability

estimator is confident that the forecaster Mi will output an accurate prediction ŷi
t+1 according

to the criterion. Inversely, a large value of Ri
t indicates a lack of confidence on Mi’s predictive

performance, consequently, it is allowed to abstain (excluded from Mc). A threshold θ i is
set for each reliability estimator, and if Ri

t ≤ θ i, the base-model is assumed to be reliable.
The final decision about Mi abstaining or no, is computed by aggregating the decision of
each R j

t ∈ RESi
t , j ∈ {1, . . . ,r}. The aggregation strategy is the majority vote among all RESi.

This means that if more than half of the reliability scores assume that the model Mi should
abstain, then it is excluded from the committee Mc.

We detail here the set of reliability scores investigated for abstaining and are not bound
to any forecasting algorithm. Nonetheless, reliability estimators must fulfill a set of compu-
tational requirements to cope with the constraints imposed in the streaming setting [102].

3.2 Experts selection: Select or not select, that is the question 49

The requirements are basically the ones mentioned for incremental and adaptive learning
algorithms discussed in Section 2.1.3. Therefore, each RES must i) operate on-line as
new instances are released, ii) use limited memory, iii) process in low time, iv) cope with
non-stationary distribution. Previous studies demonstrated that the best reliability estimators
depend on both the model and the dataset [25]. Hence, it is commonly assumed that using an
ensemble of different estimators to assess the reliability of individual models has a consider-
able advantage. In the same way as for ensembles of predictive models, relying on several
reliability estimators reduces the risk of making the wrong decision about abstaining. This is
particularly interesting in the data stream setting where both the data characteristics and the
models’ performance can evolve over time due to concept drift.

Toplak et al. [153] provided a taxonomy to categorize reliability estimators based on the
information used for computation and can be classified into three main categories:

• Feature range-based: use feature values to place higher confidence in predictions of
examples whose features values fall within the range of values encountered during the
training phase.

• Nearest neighbor-based: use the distance to the most similar examples in the training
set to infer reliability scores from the real error incurred in the neighbors.

• Sensitivity-based: use sensitivity analysis that samples or perturbs the composition of
the training set to estimate a distribution of predictions error.

In our work, we focus on the nearest-neighbors based reliability estimators only as they
are best suited for the streaming setting. In fact, sensitivity-based RES often require different
copies of the model at time t and make several rounds to perturb the data in order to estimate
the confidence. This is particularly fastidious for ensemble methods comprising several
base-models as the complexity increases.

The estimated error êi
t+1 of each base-models Mi computed using windowing or meta-

learning approaches (Section 3.1) can be used as the first intuitive reliability estimator. The
lower the error the higher the confidence placed in Mi to make an accurate one-step-ahead
forecast ŷi

t+1. We discuss below other reliability estimators to be included in the abstaining
decision.

Nearest neighbors confidence

Briesemeister, Rahnenführer, and Kohlbacher [25] introduced the CONFINE (CONFidence
estimation based on the Neighbors’ Errors) measure for traditional batch learning. It mea-
sures the error in the local environment of the test instance xt+1 using the training dataset.
CONFINE simply analyzes how good the model is in the neighborhood of the test instance.
If the observed error of the nearest neighbors is high, the model is not expected to be very
good on novel instances falling in this neighborhood either. If xt+1 lies within a densely
populated subspace, CONFINE is able to interpolate the error based on very similar instances.
On the other hand, if xt+1 lies within a sparsely populated subspace, the errors of instances
within this subspace are likely to be high.

We propose S-CONFINE, for Streaming-CONFINE, that is a reliability estimator tai-
lored for the streaming setting and emphasizes on the recency of the data in addition to

50 Chapter 3. Streaming Dynamic Ensembles Selection

the test instance neighborhood as described for SLOPE in Section 3.1.1.1. Given a sliding
window Wt , let N = {(x,y)1, . . . ,(x,y)k} be the set of the k nearest neighbors for test instance
xt+1 computed over Wt . The S-CONFINE of model Mi is defined in Equation 3.2 below as:

S-CONFINEw(xt+1, i) =
1
k

k

∑
j=1

ei
j (3.2)

where k in the number of neighbors and ei
j is the actual error incurred by model Mi on

neighbor instance at position j.

CNeighbors-K

Similarly, Bosnić and Kononenko [17] proposed CNK as another approach to local estimation
of prediction reliability score using the nearest neighbors’ true target values. The value of
the reliability estimator CNKi for model Mi is the difference between the average targets
values of the k nearest neighbors and the prediction of the model Mi on example xt+1.

CNK(xt+1, i) =
1
k

k

∑
j=1

y j− ŷi
t+1 (3.3)

where k stands for the number of neighbors, y j denotes the j-th neighbors’ true target
value and ŷi

t+1 denotes the example’s prediction of model Mi. Similarly to S-CONFINE,
we adapt CNK’s computation to the streaming setting by using a sliding window of the w
most recent labeled instances to query the k nearest neighbors. The assumption is that the
prediction of the model should be as close as possible to the average value of the k nearest
neighbors since instances laying in a close neighborhood are expected to share similar target
values.

3.2.2.2 Abstaining with evolving data streams

Due to the evolving nature of data streams, one can experience a considerable loss in the
predictive performance of forecasting models. The deterioration in the overall performance
is related to the fact that poorly performing base models were included in the committee
of experts Mc. This happens when the required competence threshold θ was too wide and
allowed base models with low confidence to be included. Conversely, if the threshold value
θ is too restrictive, highly performing base-models might be excluded from the committee
and consequently diminish the overall predictive performance.

Abstaining was used in the context of online classifier ensembles where an adaptive
abstaining strategy was proposed to deal with drifting and noisy data streams [93]. To
cope with changes that are likely to occur in the stream and alter the confidence of base-
models, authors have introduced a flexible and self-adaptive threshold value θt . In fact,
concept drift can alter the reliability of models’ predictions over time and consequently affect
overall predictive performance. Moreover, the forecasting models are expected to experience
considerable loss and relatively different levels of confidence due to the evolving nature of
data streams and concept drift. Therefore, using a static threshold will lead to poor predictive
performance on drifting data. In this section, we propose and investigate two different update
strategies to achieve adaptive abstaining based on competence threshold θt .

3.2 Experts selection: Select or not select, that is the question 51

Adjustment update

Following [93], the value of the threshold θt at time t is modified based on the feedback on the
error incurred by the ensemble prediction. If the committee of selected base-models was able
to make an accurate prediction, this means that we have selected competent base-models and
we can afford easing the reliability constraints to look for similarly performing base-models
and include them in the committee for upcoming instances. On the other hand, a highly
incorrect prediction can translate into a concept drift. The threshold θt must be tightened
in order to exclude poorly performing base-models and keep the most competent ones only.
Besides, base-models have different abilities and speed for change adaptation, hence, it is
important to keep the most competent ones only in case of concept drift.

Algorithm 1 details the adaptive abstaining ensemble based on adjustment factor. The
adjustment factor is a user defined parameter s ∈ [0,1] to update the threshold θt . We explore
two update strategies: iterative where θ ← ±s and multiplicative where θ ← θ(1± s).
The Ma jorityVote(RESi

t ,θt) outputs the majority vote on abstaining (or not) regarding base-

Algorithm 1: Adaptive abstaining using adjustment

Input: S = {y1,y2, . . . ,yt . . .} , M = {M1,M2, . . . ,Mm} ,
RES = {RES1,RES2, . . . ,RESm} ,~yt+1 = 〈ŷ1

t+1, ŷ
2
t+1, . . . , ŷ

m
t+1〉 ,

~et+1 = 〈ê1
t+1, ê

2
t+1, . . . , ê

m
t+1〉 , Initial competence threshold: θ , Adjustment

factor s
Output: ŷt+1 one-step-ahead forecast

1 θ0← θ

2 while EndOfStream = False do
3 Get new test instance xt+1

4 Mc← /0 // Committee of experts

5 foreach Mi ∈M do
6 abstain←Ma jorityVote(RESi

t ,θt)

7 if abstain = False then
8 Mc←Mc∪{Mi}
9 end

10 end
11 ŷt+1← Aggregate(Mc) // Aggregate expert’s predictions

12 Get true label yt+1

13 et+1← error(yt+1, ŷt+1)

14 if et+1 ≤ θ then
15 Increase(θt ,s) // Less restrictive for next step

16 end
17 else
18 Decrease(θt ,s) // More restrictive for next step

19 end
20 U pdate(M,xt+1,yt+1)

21 U pdate(RESt ,xt+1,yt+1)

22 end

52 Chapter 3. Streaming Dynamic Ensembles Selection

model Mi according to the value of the threshold θt . We use the same threshold value
θ ∈]0,1] for all the reliability estimators in RES. A base-model Mi is considered as an expert
to predict yt+1, and therefore be included in the committee Mc, if and only if the majority
voting among all its associated reliability estimates in RESi

t agree according to the current
value of the threshold θt . When the training instance is released, if the committee’s incurred
error et+1 meets the initial competence threshold θ , we assume that the committee has made
a "good" prediction, if not, the prediction is inaccurate. The Increase(.) (resp. Decrease(.))
function are used to update the current value of the competence threshold θt that will be
used for next step. The error(.) function computes the sMAPE of the aggregated expert’s
predictions. Finally (xt+1,yt+1) are used to update all the base models in M as well as their
respective reliability scores RES.

Drift-based update

The second approach for self-adaptive competence threshold θt is based on warning and
drift detection methods to trigger drops in the overall predictive performance. If a warning
is triggered, this translates to a deterioration in the overall predictive performance of the
selected committee. Consequently, we must adjust θt to be more restrictive and downward
its value in order to force the worst performing base-models to abstain. On the other hand, if
no warning was triggered, we can afford some room and increase the value of θt in order
to encompass base-models that abstained on the previous instances but whose reliability
estimators lay in a very close proximity to the threshold value θt . If a drift is detected, this
means that there was a significant loss in the overall predictive performance and that the
current value of θt has completely deviated from the original tenet of selecting expert base
models’ only. Consequently, the original setting is reestablished. The drift-based adaptive
abstaining approach is depicted in Algorithm 2.

3.2.3 RANDOMIZED SELECTION

The performance of both trimming and abstaining based DES methods are closely related to
the choice of their respective parameters, namely the selection ratio α and the competence
threshold θ . It is not trivial to set the value of these parameters without any prior human
expert knowledge. Many dynamic ensemble methods are based on some random process
in order to promote diversity among base-models such as bagging. Following this idea, we
investigate randomization of the expert selection process without losing sight of the original
objective that is to select the most accurate base models. The rationale is that the higher
the error, the less likely is the base model to be selected among experts. However, concept
drift may happen anywhere in the stream [173]. Thus, it might be interesting, from time to
time, to select other base-models with higher predicted errors and inversely, prune the ones
with low predicted errors. Besides, randomizing the selection process leaves more room to
inject diversity among committee members. We investigate different scenarios where the
parameters of the random selection are deduced from the predicted error of each base-model.

Binary randomized

We model the selection of each Mi ∈M as a separate Bernoulli trial with a variable parameter
pi

t+1 = 1− êi
t+1. This means that a base-model is selected with probability pi

t+1 and not
selected with a probability qi

t+1 = 1− pi
t+1. The smaller the expected error is, the greater is

3.2 Experts selection: Select or not select, that is the question 53

Algorithm 2: Drift-based adaptive abstaining

Input: S = {y1,y2, . . . ,yt . . .} , M = {M1,M2, . . . ,Mm} ,
RES = {RES1,RES2, . . . ,RESm} , Initial competence threshold: θ ,
Adjustment factor s, δw: warning threshold, δd drift threshold

Output: ŷt+1 one-step-ahead forecast
1 θ0← θ

2 while EndOfStream = False do
3 Get new test instance xt+1

4 Mc← /0 // Committee of experts

5 foreach Mi ∈M do
6 abstain←Ma jorityVote(RESi

t ,θt)

7 if abstain = False then
8 Mc←Mc∪{Mi}
9 end

10 end
11 ŷt+1← Aggregate(Mc) // Aggregate expert’s predictions

12 Get true label yt+1

13 et+1← error(yt+1, ŷt+1)

14 if C(δw,et+1) then
15 Decrese(θt ,s) // Warning detected, decrease θt

16 end
17 else
18 Increse(θt ,s) // Increase θt

19 end
20 if C(δd ,et+1) then
21 Reset(θt) // Reset θt to θ

22 end
23 U pdate(M,xt+1,yt+1)

24 U pdate(RESt ,xt+1,yt+1)

25 end

the probability of Mi to be selected among the committee of experts.

Beta randomized

The beta distribution was used in the Thompson sampling method which is an algorithm for
online decision problems where actions are taken sequentially in a manner that must balance
between exploiting what is known to maximize immediate performance and investing to
accumulate new information (exploring) that may improve future performance [139].

The beta distribution requires two parameters Beta(a,b) and we associate to each indi-
vidual model Mi ∈M a pair of parameters (ai,bi). A beta distribution with parameters (ai,bi)

has mean ai/(ai +bi), and the distribution becomes more concentrated as ai +bi grows. For
each test instance xt+1, the algorithm generates an estimate θ i for each base model in the
pool, that represents the current expectation of the success probability. The α% models with

54 Chapter 3. Streaming Dynamic Ensembles Selection

the largest estimate θ i are then selected and their predictions aggregated. Initial values of ai

and bi are set to 1.

Algorithm 3: Beta-Randomized selection
Input: S = {y1,y2, . . . ,yt . . .} , M = {M1,M2, . . . ,Mm} , Selection ratio α

Output: Mc ⊂M
1 while EndOfStream = False do
2 Mc← /0 // Committee of experts

3 Get new test instance xt+1

4 ~et+1 = 〈ê1
t+1, ê

2
t+1, . . . , ê

m
t+1〉

5 foreach Mi ∈M do
6 ri← 1− êi

t

7 (ai,bi)← (ai + ri,bi +1− ri)

8 Sample θ̂ i ∼ Beta(ai,bi)

9 end
10 Mc← Topα(θ̂

i) // Select α% with highest success probability

11 ŷt+1← Aggregate(Mc) // Aggregate expert’s predictions

12

13 end

3.2.4 PERFORMANCE-DIVERSITY TRADE-OFF

The accuracy-diversity dilemma is a crucial aspect when selecting a committee of experts.
The goal is to select the most accurate base-models with the highest diversity among their
predictions. In fact, if base-models make the same predictions, there would be no benefit
from combining their outputs. This issue was previously addressed in the Information
Retrieval (IR) field where the Maximal Marginal Relevance (MMR) [34] was introduced as a
document re-ranking method to promote novelty. The purpose is to return a set of documents
deemed to be relevant for a given query Q. MMR selection is based on a combined criterion
of query relevance and novelty of information. MMR strives to reduce redundancy while
maintaining query relevance in re-ranking retrieved documents.

The MMR criterion is defined as:

MMR
def
= argmax

Di∈R\S

[
λ × (Sim1(Di,Q)− (1−λ)×max

D j∈S
Sim2(Di,D j))

]
(3.4)

• Q denotes the query,

• R denotes the ranked list of documents according to query relevance

• S denotes the subset of documents in R that are already selected

• Sim1 stands for the measure of relevancy

• Sim2 stands for the measure of redundancy between documents

• λ is the trade-off factor of the combined MMR criterion between relevance and novelty.

3.3 Empirical Experiments 55

A document Di is said to have a high MMR score if it is relevant to the query Q and
contains minimal similarity, i.e maximal novelty, with the documents that were previously
selected.

MMR for streaming DES

We discuss the use of MMR combined criterion selection for DES in the case uni-variate
temporal data streams forecasting. We draw an analogy with the previous definition in the IR
field. First, the query Q at time t stands for the test instance xt+1 to be used to predict yt+1.
The documents Di is equivalent to base-model Mi ∈M. The goal of MMR in our case is to
select a subset of highly accurate models with high novelty (low redundancy).

• The notion of relevancy to the query is related to the expected performance of
model Mi on instance xt+1, the lower the error, the higher the relevancy. Therefore,
Sim1(Mi,xt+1) is inversely related to êi

t+1 and defined as Sim1(Mi,xt+1) = 1− êi
t+1.

• The redundancy measure Sim2 can be assimilated to a diversity measure in the context
of ensemble methods. We choose the redundancy measure to be the correlation
between models’ predictions collected over a sliding window. Pearson’s correlation
factor ρ ∈ [−1,1] is used to measure the strength of the linear relationship between
two model’s predictions. In fact, a correlation value greater (resp. lower) than 0 means
a positive (resp. negative) relationship while a value zero indicates no relationship
between the two variables being compared. We set Sim2 =

1+corrw(Mi,M j)
2 ∈ [0,1]. A

value of 0 (resp. 1) stand for inversely (resp. positively) correlated base models. Low
correlation values stand for higher "novelty" among base models predictions.

Concretely, for DES approach using MMR, we start Mc with the best ranked model
according to ~et+1 = 〈ê1

t+1, ê
2
t+1, . . . , ê

m
t+1〉 , the lower the error, the better the rank. Before

adding any model to Mc, we compute its MMR score using its correlation to all the previously
selected models in Mc. Similar to trimming selection, the trade-off approaches requires a
selection ratio parameter r to determine the size of the subset committee Mc and a trade-off
factor λ . If λ = 1, this leads to a standard performance based ranking. If = 0, it computes
a maximal diversity ranking among base models. Finally, for intermediate values ∈]0,1[it
leverages a linear combination of both performance and diversity criteria. The MMR-based
DES approach is detailed in Algorithm 4 where MMR function computes the MMR score of
model Mi relative to the previously selected models in Mc.

3.3 EMPIRICAL EXPERIMENTS

In this section, we present the empirical experiments carried out to compare the performance
of the proposed streaming DES methods relative to state-of-the-art approaches for dynami-
cally selecting and combining expert models within an ensemble. More particularly, we focus
on the proposed SLOPE (windowing) and STADE (meta-learning) to estimate the predictive
performance of individual models in the pool. Besides we study different approaches to
select individual models that are as accurate as possible and as diverse as possible following
the discussion in Section 3.2.

56 Chapter 3. Streaming Dynamic Ensembles Selection

Algorithm 4: Trade-off MMR selection
Input: M = {M1,M2, . . . ,Mm} , ~et+1 = 〈ê1

t+1, ê
2
t+1, . . . , ê

m
t+1〉 , Selection ratio

r ∈]0,1], Trade-off factor λ ∈ [0,1]
Output: Mc a set of expert base models

1 Mr← Rank(M) // Rank models by ascending error

2 Mc← Best(Mr) // Select best model

3 Mr←Mr \Mc

4 sizec← r× len(M)

5 while |Mc|< sizec do
6 foreach Mi ∈Mr do
7 mmr_scorei

t ←MMR(λ , êi
t ,M

i,Mc)

8 end
9 Mk← argmaxmmr_score // Include model with highest MMR score

10 Mc←Mc∪{Mk}
11 Mr←Mr \{Mk} // Remove Mk from remaining models Mr

12 end
Return: Mc ⊂M

3.3.1 EXPERIMENTAL DESIGN

The thesis falls within the one-step-ahead uni-variate temporal data streams point forecasting
task as described in Section 2.1.2. We intend to forecast at time t future values ŷt+1 of the
stream S based on the historical information It available up to time t where yt ∈ R,∀y ∈ S.
Our work focuses on dynamic ensemble selection (DES) using a heterogeneous pool of
models as described in Section 2.2.3.2. This means that the ensemble comprises different
incremental algorithms tailored to the forecasting task.

Experiments were conducted on 30 temporal streams including both real and synthetic
data that are detailed in Appendix A (TableA.1). Each data stream comprises at least
10000 temporally dependent instances with varying sampling frequencies. The data streams
are derived from different application domains such as IoT sensors monitoring air quality
and traffic data. The heterogeneous ensemble of size m = 30 comprises different base
models using incremental regression models such as k-nearest neighbors (KNN) and adaptive
regression trees (RHT). Besides, we use simple forecasting methods discussed in Section
2.1.5.1. The algorithms were designed using different parameters settings to promote
diversity. For a detailed summary on the set of base forecasters that were used to generate
the ensemble, we refer to Section A.2. The methods were evaluated and ranked using the
Root Mean Square Error (RMSE) as described in Section 2.1.7.2 in a prequential setting
detailed in Section 2.1.7.1. This means that each instance in the stream is first used to test
the model before it is used to train it. The prequential evaluation promotes the idea that more
recent examples are more important. We assume that instances are released one by one in
the stream without any delay. In addition to the rank, we analyze the percentual difference
(relative change) in terms of predictive performance according to Equation 3.5 where pivot

3.3 Empirical Experiments 57

often stands for the best performing method on average.

Impr.= 100×
Pivotper f −Modelper f

Modelper f
(3.5)

A negative (resp. positive) value r means that the pivot model scores an improvement (resp.
deterioration) of |r|% compared to the other model.

Likewise, we discuss the computational cost where a ratio ρ as described in Equation
3.6 means that the pivot method requires as much as ρ times the resources required by the
other model. We address the computational cost related to memory, that is the space required
to store the learning model measured in kilobytes (kB) as well as the time (measured in
seconds) required to predict and update each model on all instances of the stream.

ρ =
Pivotcost

Modelcost
(3.6)

Both windowing and meta-learning based DES methods use the sMAPE loss function to
assess the predictive performance of base-models according to each instance xt . However,
the factor 2 is removed in order to bound the values of sMAPE to be [0,1] and meet the
requirements for the abstaining policy using a threshold. We recall that, experiments are
based on auto-regressive model (AR) with p = 10. The optimal embedding dimension (p) can
be optimized using the method of False Nearest Neighbours [89] that looks at the behavior
of the nearest neighbours as the value of p increases. However, this is beyond the scope of
the thesis as the goal is to compare different DES methods on the same data in a streaming
setting. Besides, data streams are subject to concept drift where the generating process
changes and impacts the optimal embedding dimension.

In order to avoid performance issues related to the cold start, a first batch of labeled
instances is dedicated to enforce a "warm" start using the blocked prequential procedure
described in A.3. The initial batch of 1000 instances is divided into β equally sized and
sequential blocks of contiguous observations. Blocks containing 10 observations are se-
quentially used to train then test to retrieve base-models predictions on the next batch and
compute their respective predictive performance. The first part of the experiments addresses
windowing and meta-learning DES methods using the trimming selection approach. The α%
best base-model with the lowest predicted errors are selected in a committee Mc and their
outputs weighted using the softmax function given in Equation 3.7.

wi
t+1 =

exp(−êi
t+1)

∑i∈Mc exp(−êi
t+1)

(3.7)

where êi
t+1 is the predicted error that model Mi will incur in yi

t+1 and wi
t+1 its weight where

exp denotes the exponential function. In the function so f tmax, the weight of a given model
decays exponentially as its loss increases and aims at increasing the influence of the best
performing models. The final prediction is a weighted average of experts committee Mc

members’ predictions as described in Equation 3.8.

yt+1 = ∑
j∈Mc

w j
t+1× ŷi

t+1 (3.8)

Subsequently, we address different selection and abstaining approaches discussed in
Section 3.3.5 and compare their predictive performance relative to trimming.

58 Chapter 3. Streaming Dynamic Ensembles Selection

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

40

50

60

70

80

(a) Average Rank

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

15

20

25

30

35

(b) Standard Deviation Rank

Figure 3.4: Heatmaps illustrating the average rank (3.4a) and respective standard deviation
(3.4b) of SW-DES for varying w and α parameter values. Darker tiles mean higher values

3.3.2 COMPARING WINDOWING METHODS

In this section, we analyze windowing-based DES methods discussed in Section 3.1.1 using
trimming (TRIM) that selects a fixed ratio α of the best performing base-models.

3.3.2.1 Sliding-Window (SW) DES analysis

First, we address the fixed-size sliding window (SW) method that estimates the perfor-
mance of individual models in the ensemble M based on their respective predictions on
instances comprised in a recent window of data. SW based trimming DES performance
is related to α values, which denotes the ratio of selected experts in the committee and
w, which represents the maximum size of the sliding window comprising the most recent
instances. We analyze how the performance of SW-DES varies as the values of the two pa-
rameters α and w change. We considered α ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1} and
w ∈ {100,200,300,400,500,600,700,800,900,1000}. This renders a total of 100 variants.
This analysis was carried out using the 30 temporal data streams and models were ranked
according to their respective RMSE in each problem.

The results are shown in Figure 3.4 that illustrates two heatmaps for the average rank
(Subfigure 3.4a) and respective standard deviation (Subfigure 3.4b) of each (w,α) combina-
tion. Higher average rank (i.e. worse performance) and higher rank standard deviation are
denoted by darker tiles. Varying the value of w follows the stability-plasticity dilemma. Small
values of w lead to better reactiveness, but also make the model more susceptible to outliers.
Conversely, higher values of w lead to better stability while losing some responsiveness and
possibly including outdated information. This is particularly fastidious for evolving data
streams where concept drifts are likely to occur and alter the overall predictive performance.

Subfigure 3.4a shows that the best performing methods (lowest average rank) lay in the
lower-left corner that translates to smaller w and α values whereas the worst performing
ones (higher average rank) lay in the upper-right corner (high w and high α). We can notice
a smooth diagonal increase of the average rank values. On the other hand, Subfigure 3.4b
suggests that the (w,α) combinations with the lowest rank standard deviation are in the
middle of the searched distribution. In fact, despite relatively good average rank for smaller
values of w and α , their combination results in very high standard deviation which indicates

3.3 Empirical Experiments 59

greater reactivity, but higher susceptibility to noise and outliers.

3.3.2.2 Sliding local performance (SLOPE) analysis

We validate the predictive performance of the proposed SLOPE method that combines both
a temporal criteria to emphasize on the most recent instances and a feature-based similarity
to select the most similar training instances (using KNN) comprised in the sliding windowing
to estimate the respective performance of Mi ∈M (Section 3.1.1.1). Similarly to SW, we
conduct an empirical study on TRIM-based SLOPE-DES method and its sensitivity to the
variation of its parameters values. Performance are related to the size of the sliding window
w and the selection ratio α along with k that stands for the number of nearest neighbors We
recall that we are using the time delay embedding that comprises the past p observed values
in the stream and the euclidean distance to achieve the KNN search.

Figure 3.5 illustrates the heatmaps of the average rank and respective standard deviation
for varying values of w, α and k of the SLOPE method. The values of w and α are similar to
the experiments conducted for SW. Each row stands for a different value of k ∈ {5,10,15,20}.
Results are illustrated for each value of k for the sake of better readability, however the
ranking was carried using all the variants over the 30 temporal data streams. Fixing the value
of k shows the sensitivity of SLOPE to the combination of parameters (w,α) as discussed
for SW methods. On the other hand, fixing w and α allows analyzing the effect of varying
nearest neighbors parameter k on the predictive performance. Results show that, for fixed
(w,α) (reading by column), lower values of k lead to worse (higher) average rank where
the darkest zones are recorded for k = 5 whereas, higher values k ∈ {15,20} lead to better
average rank overall. In fact, the brightest zone for average rank recorded overall Figure
3.5 tends to the right side lower corner for k ∈ {15,20}. However, analyzing the standard
deviation for k = 20, higher values are recorded despite lower average rank compared to
SLOPE when k = 15. Selecting a number k of nearest neighbors that is too low or too high
alters the estimation of the predictive performance of base-models.

3.3.2.3 Comparing all widowing DES methods

We compare here the proposed SLOPE based DES methods to their SW counterparts. We
select the best performing SW and SLOPE methods, namely the methods with the lowest
average rank and respective standard deviation. We investigate the predictive performance as
well as the computational cost in terms of time and memory. Figure 3.6 highlight the the
distribution of the rank and respective standard deviation of different SW and SLOPE based
DES methods with varying window size w ∈ {200,300,400,500,800,900}, selection ratio
α ∈ {0.3,0.4,0.5} and nearest-neighbors k = 15 values. Results show that the proposed
SLOPE variants achieve promising results and outperform their SW counterparts for similar
sliding window size and selection ratio. Additionally, higher w in SW methods lead to
lower performance whereas the inverse tendency is noted for SLOPE where larger sliding
window in addition to KNN based selection lead to better average rank. In fact, computing
individual models’ loss on more similar instances according to the test instance xt selected
from more distant past gives valuable information on the behavior of base-models in the
near future. SW using w = 200 and α = 0.3 is the best ranked fixed size sliding window
DES method and the only one that could outperform its SLOPE counterpart. Besides, using
α ∈ {0.3,0.5} lead to higher average rank compared to α = 0.4 which indicates lower

60 Chapter 3. Streaming Dynamic Ensembles Selection

KNN= 5

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 150 200 250 300 350

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

40 60 80 100 120 140

KNN= 10

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 150 200 250 300 350

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

40 60 80 100 120 140

KNN= 15

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 150 200 250 300 350

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

40 60 80 100 120 140

KNN= 20

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

100 150 200 250 300 350

(a) Average rank

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

w

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

40 60 80 100 120 140

(b) Standard deviation rank

Figure 3.5: Heatmaps illustrating the average rank (left) and respective standard deviation
(right) of SLOPE for varying w, k and α parameters. Darker tiles mean higher values

3.3 Empirical Experiments 61

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_5

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_4

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_5

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_5

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_3

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_4

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_4

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_3

00
_T

RI
M

_0
.3

SW
_2

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_2

00
_T

RI
M

_0
.4

SW
_2

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_3

00
_T

RI
M

_0
.5

SW
_4

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_2

00
_T

RI
M

_0
.3

SW
_5

00
_T

RI
M

_0
.3

SW
_4

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_2

00
_T

RI
M

_0
.5

SW
_3

00
_T

RI
M

_0
.3

SW
_2

00
_T

RI
M

_0
.5

SW
_3

00
_T

RI
M

_0
.4

SW
_5

00
_T

RI
M

_0
.4

SW
_9

00
_T

RI
M

_0
.3

SW
_8

00
_T

RI
M

_0
.3

SW
_4

00
_T

RI
M

_0
.5

SW
_3

00
_T

RI
M

_0
.5

SW
_5

00
_T

RI
M

_0
.5

SW
_8

00
_T

RI
M

_0
.4

SW
_9

00
_T

RI
M

_0
.4

SW
_8

00
_T

RI
M

_0
.5

SW
_9

00
_T

RI
M

_0
.5

Method

0

5

10

15

20

25

30

35

Ra
nk

Figure 3.6: Boxplot illustrating the distribution of the rank and respective standard deviation
of SW and SLOPE trimming based DES methods in terms of RMSE

62 Chapter 3. Streaming Dynamic Ensembles Selection

SW
_9

00
_T

RI
M

_0
.5

SW
_8

00
_T

RI
M

_0
.5

SW
_5

00
_T

RI
M

_0
.5

SW
_3

00
_T

RI
M

_0
.5

SW
_4

00
_T

RI
M

_0
.5

SW
_2

00
_T

RI
M

_0
.5

SW
_8

00
_T

RI
M

_0
.4

SW
_9

00
_T

RI
M

_0
.4

SW
_5

00
_T

RI
M

_0
.4

SW
_3

00
_T

RI
M

_0
.4

SW
_4

00
_T

RI
M

_0
.4

SW
_2

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_2

00
_T

RI
M

_0
.5

SW
_8

00
_T

RI
M

_0
.3

SW
_9

00
_T

RI
M

_0
.3

SW
_3

00
_T

RI
M

_0
.3

SW
_5

00
_T

RI
M

_0
.3

SW
_4

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_3

00
_T

RI
M

_0
.5

SW
_2

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_4

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_5

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_2

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_3

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_4

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_2

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_5

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_3

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_4

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_5

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.3

Method

20

15

10

5

0

5

10
Im

pr
ov

.

Figure 3.7: Boxplot illustrating the relative difference expressed in percentage achieved by
SLOPE (w = 900,α = 0.4,k = 15) against other windowing DES methods. Values below
(resp. above) the zero line represent improvement (resp. loss) in the predictive performance.

certainty on their superiority. Next, we measure the pairwise relative percentual difference in
terms of predictive performance compared to the best performing approach that is SLOPE
(w = 900,α = 0.4,k = 15). This analysis is presented in Figure 3.7 that illustrates the
distribution of the percentual difference and respective standard deviation to visualize the
magnitude of the difference in the predictive performance. Values below (resp. above) the
zero line represent improvement (resp. loss) in the predictive performance. Results show
that for all SW methods, the best SLOPE variant leads to a better predictive performance
in average. Overall, the distribution of the percentual difference shows that SLOPE (w =

900,α = 0.4,k = 15) performs relatively better with varying average improvement compared
to other windowing DES methods. Moderate improvement (less than 5%) is scored against
SW methods whereas SLOPE variants have very close performance. In order to analyze
the significance of the previous study, we carried a Bayesian analysis of the results to test
for consistent differences between pairs of methods following the approach presented in
[41]. Particularly, we employed the Bayes sign test to compare all the methods across the
30 temporal data streams against the best performing one on average rank. We define the
Region of Practical Equivalence (ROPE) to be the interval [−0.01,0.01]. This means that
two methods show indistinguishable performance if the relative difference in performance
between them falls within this interval. Otherwise, the respective pair of methods are
considered practically equivalent. In order to perform the Bayesian analysis of the results,
we normalize the results of the RMSE loss metric relative to the RMSE of Simple method
that aggregates the all predictions with equal weights. This aims at avoiding issues related to
the scale since RMSE loss function varies according to the scale of the temporal data stream.

Figure 3.8 illustrates the application of the Bayes sign test to analyze the significance
of the superiority of SLOPE (w = 900,α = 0.4,k = 15) compared to the other windowing
based DES methods. Each bar stands for a method and describes the probability of each
outcome as follows: SLOPE (w= 900,α = 0.4,k = 15) winning, drawing (within the ROPE),

3.3 Empirical Experiments 63

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_5

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_5

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_5

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_4

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_4

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_4

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_2

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_2

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_2

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_3

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_3

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_3

00
_T

RI
M

_0
.5

SW
_5

00
_T

RI
M

_0
.3

SW
_5

00
_T

RI
M

_0
.4

SW
_5

00
_T

RI
M

_0
.5

SW
_2

00
_T

RI
M

_0
.3

SW
_2

00
_T

RI
M

_0
.4

SW
_2

00
_T

RI
M

_0
.5

SW
_8

00
_T

RI
M

_0
.3

SW
_8

00
_T

RI
M

_0
.4

SW
_8

00
_T

RI
M

_0
.5

SW
_4

00
_T

RI
M

_0
.3

SW
_4

00
_T

RI
M

_0
.4

SW
_4

00
_T

RI
M

_0
.5

SW
_3

00
_T

RI
M

_0
.3

SW
_3

00
_T

RI
M

_0
.4

SW
_3

00
_T

RI
M

_0
.5

SW
_9

00
_T

RI
M

_0
.3

SW
_9

00
_T

RI
M

_0
.4

SW
_9

00
_T

RI
M

_0
.5

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 p
ro

ba
bi

lit
y

SLOPE_15_W_900_TRIM_0.4 loses SLOPE_15_W_900_TRIM_0.4 draws SLOPE_15_W_900_TRIM_0.4 wins

Figure 3.8: Proportion of probability of SLOPE (w = 900,α = 0.4,k = 15) winning/draw-
ing/losing against other windowing DES methods according to the Bayes sign test

Table 3.2: Average ratio and respective standard deviation of the memory and time required
by SLOPE compared to SW counterparts for similar w and α and varying values of k.

k Memory Time
5 1.000584±0.018463 1.023422±0.076779
10 1.000654±0.018498 1.019095±0.075788
15 1.000732±0.018537 1.021346±0.076499
20 1.000796±0.018562 1.019072±0.075785

or losing. In general, SLOPE variants have high probability to be practically equivalent
(probability of the event draw is higher) except for α = 0.3 that scores small probability
of winning. More particularly, SLOPE has higher probability to win against all other SW
variants. The rank analysis combined with the percentual difference and the Bayesian test
results corroborate the advantage of the proposed SLOPE as a windowing DES method and
the benefit of leveraging both temporal and feature based criteria to estimate the predictive
performance of each individual model Mi ∈M according to the test instance at hand xt .

Computational cost

In this section, we analyze the computational cost in terms of memory (model size) and time
resources of SLOPE relative to SW counterparts. In fact, SW and SLOPE DES methods are
both based on a sliding window w however, SLOPE introduces an additional stage to search
for the k nearest neighbors to the test instance xt comprised in the sliding window w. Table
3.2 details the average computational cost ratio and respective standard deviation (model
size and total running time) of SLOPE-DES methods compared to SW counterparts (similar
sliding window size w and selection ratio α).

Results show that SLOPE has slightly higher computational cost in average compared to
SW (ratio above 1). In fact, SLOPE methods are marginally larger due to the data structure

64 Chapter 3. Streaming Dynamic Ensembles Selection

KDTree [10] maintained online to partition the p-dimensional data space and perform
the nearest-neighbors search 1. Besides, SLOPE takes lightly more time in average due
to KNN search in the feature space despite lower number of instances involved in the loss
computation. The experimental results have demonstrated very promising results in terms
of predictive performance as well as computational cost of the proposed SLOPE approach
relative to SW DES methods. In fact, considering the feature-based similarity to the test
instance xt using the k-nearest neighbors along with the recency of the data using a sliding
window leads to promising improvements in terms of predictive performance. Besides,
SLOPE implies moderate and lightweight additional computational cost in terms of time and
memory resource requirements.

3.3.3 COMPARING META-LEARNING BASED METHODS

In this section, we address the STreaming-ADE (STADE) meta-learning based DES method
and compare the predictive performance using several meta-features discussed in Section
3.1.2.1 to characterize the temporal data stream and the behavior of base models. Arbiters
were implemented using incremental regression trees (FIMT-DD) [84] that can cope with the
evolving nature of temporal data streams and meet the computational requirements. Similarly
to the empirical study conducted in Section 3.3.2, we first compare STADE using the
trimming selection approach against other meta-learning based methods such as STACKING
and META-STREAM.

First, we analyze several variants of STADE using the set of meta-features discussed
in Table 3.1 for varying selection ratio values α . Figure 3.9 illustrates the heatmaps of
the average rank (Sub-Figure 3.9a) and respective standard deviation (Sub-Figure 3.9b) for
varying meta-features and selection ratio values α . We recall that STADE uses arbitration and
assigns to each base-model Mi ∈M a dedicated meta-model Zi that learns to predict future
errors according to the test instance at hand xt . The ORI label stands for the original feature
vector of the test instances using time delay embedding to train the base-models. Similarly
to the sensitivity analysis conducted for SW and SLOPE, the best selection ratio values α on
average lie in the middle when fixing the set of meta-features α ∈ {0.3,0.4,0.5} whereas
values that are too small (resp. too high) on the far left (resp. right) achieve higher average
rank. Besides, Sub-Figure 3.9b supports the relevant findings above where the lightest zone
that stands for smaller standard deviation values lies in the middle of the research distribution
as well. Results also show the superiority of using the proposed meta-features related to the
performance of landmarkers including warning and drift flags (LAN) as well as the lagged
base errors (LAG) for each meta-model in addition to the statistical information extracted
from the data referred to with STA. Figure 3.10 is here to visualize the magnitude in the
improvement (percentual difference) in the predictive performance when using the set of
meta-features that led to the best average rank according to the results illustrated in Figures
3.9a and 3.9b namely ORI_STA_LAG_LAN, against other variants of STADE (using other
meta-features) for similar selection ratio values α . Results show very similar performance
compared to ORI_STA_LAG where most of the values are clustered around the value 0. On

1We have used the Scikit-Multiflow Python package implementation available at https://github.com/
scikit-multiflow/scikit-multiflow/blob/master/src/skmultiflow/lazy/base_

neighbors.py

https://github.com/scikit-multiflow/scikit-multiflow/blob/master/src/skmultiflow/lazy/base_neighbors.py
https://github.com/scikit-multiflow/scikit-multiflow/blob/master/src/skmultiflow/lazy/base_neighbors.py
https://github.com/scikit-multiflow/scikit-multiflow/blob/master/src/skmultiflow/lazy/base_neighbors.py

3.3 Empirical Experiments 65

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ORI

ORI_STA

ORI_STA_LAN

ORI_STA_LAG

ORI_STA_LAG_LAN
AD

E

20 25 30 35 40

(a) Average rank

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ORI

ORI_STA

ORI_STA_LAN

ORI_STA_LAG

ORI_STA_LAG_LAN

AD
E

8 10 12 14 16 18

(b) Standard deviation rank

Figure 3.9: Heatmaps illustrating the average rank (3.9a) and respective standard deviation
(3.9b) of STADE for varying meta-features set and α parameters. Darker tiles mean higher
values.

the other hand, higher percentual difference values (in absolute value) are scored for the
other variants which highlights the positive impact of using landmarking and stream-specific
meta-features along with the original feature set and statistical information extracted from
the stream.

Figure 3.11 depicts the distribution of the rank and respective standard deviation of
STADE variants using the best performing selection ratio values α ∈ {0.3,0.4,0.5} according
to the results highlighted in Figures 3.9 and 3.10. Results show that including additional meta-
features discussed in Table 3.1 improves overall predictive performance and leads to lower
average rank. Besides, using α = 0.4 achieves lower standard deviation which reflects higher
certainty. We analyze in Figure 3.12 the percentual difference in the predictive performance
achieved by the best performing STADE that is the variant using ORI_STA_LAG meta-
features along with α = 0.3.

Overall, STADE variant using ORI_STA_LAG performs better on average (relative
average difference below 0) compared to other variants for similar selection ratio α =

0.3 despite moderate percentual difference values recorded. On the other hand, better

66 Chapter 3. Streaming Dynamic Ensembles Selection

ORI_STA_LAG ORI_STA_LAN ORI_STA ORI
Method

10

8

6

4

2

0

2

Im
pr

ov
.

Figure 3.10: Boxplot illustrating the distribution of the percentual difference in terms of
RMSE achieved by ORI_STA_LAG_LAN against other STADE variants using different
meta-features for corresponding selection ratio α .

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.3
ST

AD
E_

OR
I_S

TA
_L

AG
_T

RI
M

_0
.4

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.3
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_T

RI
M

_0
.4

ST
AD

E_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.3
ST

AD
E_

OR
I_S

TA
_L

AN
_T

RI
M

_0
.4

ST
AD

E_
OR

I_S
TA

_T
RI

M
_0

.3
ST

AD
E_

OR
I_S

TA
_T

RI
M

_0
.4

ST
AD

E_
OR

I_T
RI

M
_0

.4
ST

AD
E_

OR
I_T

RI
M

_0
.3

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.5
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_T

RI
M

_0
.5

ST
AD

E_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.5
ST

AD
E_

OR
I_S

TA
_T

RI
M

_0
.5

ST
AD

E_
OR

I_T
RI

M
_0

.5

Method

0

2

4

6

8

10

12

14

16

Ra
nk

Figure 3.11: Boxplots illustrating the distribution of the rank and respective standard devia-
tion of the best performing STADE trimming DES methods

3.3 Empirical Experiments 67

ST
AD

E_
OR

I_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.5

ST
AD

E_
OR

I_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.4

ST
AD

E_
OR

I_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.3

Method

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

2.5

Im
pr

ov
.

Figure 3.12: Boxplot illustrating the distribution of the percentual difference in terms of
RMSE achieved by the best STADE.

improvement is scored compared to other STADE variants particularly for higher selection
ratio α . In the same way as discussed is Section 3.3.2 for windowing DES methods, we
analyze the significance of the results stemming from the rank and relative difference in terms
of predictive performance using the Bayes sign test. Figure 3.13 illustrates the proportion of
probability that the best performing STADE variant loses, draws or wins against each method
represented by a separate bar. In general, the probability that STADE using statistical and
lagged errors with α = 0.3 wins against other STADE variants that use the original feature
space and statistical information only with α ∈ {0.4,0.5} is higher. However, the probability
to achieve a draw is higher for other variants despite better average rank (Figure 3.11 and
negative average values of percentual difference (Figure 3.12.

Finally, we compare STADE-DES methods in terms of computational cost including
model size and total time required to test and train on all the instances of the stream. We
analyze the distribution of the ratio between the resources (memory and time) required by the
best STADE variant (ORI_STA_LAG) relative to the resources required by other methods.
Results are depicted in Figure 3.14 where methods were compared for similar selection
ratio values and grouped by their respective set of meta-features. As expected, including
landmarking, lagged and statistical meta-features leads to an increase in the memory required
by the meta-layer relative to the use of the original feature vector only. In fact, STADE with
ORI_STA_LAG is almost 4 times more memory consuming and twice more time consuming
compared to methods using the original set of features only (STADE-ORI). Using the q = 5
previous errors (LAG) of each individual in the set of meta-features of each arbiter prompts
moderate additional complexity compared to other variants. Lastly, including landmarking
(LAN) meta-features that are computed by monitoring the performance of landmark models

68 Chapter 3. Streaming Dynamic Ensembles Selection

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.5

ST
AD

E_
OR

I_T
RI

M
_0

.3

ST
AD

E_
OR

I_T
RI

M
_0

.4

ST
AD

E_
OR

I_T
RI

M
_0

.5

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

of
 p

ro
ba

bi
lit

y
STADE_ORI_STA_LAG_TRIM_0.3 loses STADE_ORI_STA_LAG_TRIM_0.3 draws STADE_ORI_STA_LAG_TRIM_0.3 wins

Figure 3.13: Proportion of probability of best STADE variant winning/drawing/losing ac-
cording to the Bayes sign test

ST
AD

E_
OR

I

ST
AD

E_
OR

I_S
TA

ST
AD

E_
OR

I_S
TA

_L
AN

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

Method

1

2

3

4

5

6

7

Ra
tio

Memory Time

Figure 3.14: Boxplot illustrating the distribution of the ratio between the resource spent by
best STADE in terms of memory and time relative to other variants. Values below (resp.
above) the value 1 stand for lower (resp. higher) computational resource requirement.

3.3 Empirical Experiments 69

(KNN and RHT) has mild impact on the overall computation cost.
The proposed Streaming Arbitrated Dynamic Ensemble (STADE) using different meta-

features that describe the characteristics of the temporal data stream using statistical infor-
mation in addition to landmarking models and stream specific information achieves very
promising results compared to the use of the original feature vector only. On the other hand,
this leads to reasonably higher computational cost in terms of model size and running time.

3.3.4 COMPARING SW, SLOPE AND META-LEARNING BASED TRIMMING DES

Finally, we conclude the section by putting all the experiments together to compare the
best performing SW, SLOPE and STADE based DES methods against other state-of-the-art
dynamic ensembles. Similarly, we compare the methods in terms of average rank according
to RMSE and compute the relative difference to the best performing approach. Besides,
we perform the Bayes sign test to assess the significance of the results by comparing
the proportion of probability of winning, drawing and losing. Figure 3.15 illustrates the
distribution of the rank and respective standard deviation of the compared methods.

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.4

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_9

00
_T

RI
M

_0
.5

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.3

SL
OP

E_
15

_W
_8

00
_T

RI
M

_0
.5

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.4
ST

AD
E_

OR
I_S

TA
_L

AG
_T

RI
M

_0
.3

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.5
SW

_2
00

_T
RI

M
_0

.3
SW

_2
00

_T
RI

M
_0

.4
SW

_4
00

_T
RI

M
_0

.3
SW

_5
00

_T
RI

M
_0

.3
SW

_3
00

_T
RI

M
_0

.3
SW

_2
00

_T
RI

M
_0

.5
SW

_4
00

_T
RI

M
_0

.4
SW

_3
00

_T
RI

M
_0

.4
SW

_5
00

_T
RI

M
_0

.4
SW

_4
00

_T
RI

M
_0

.5
SW

_3
00

_T
RI

M
_0

.5
BL

AS
T

AR
F

SW
_5

00
_T

RI
M

_0
.5

ST
AC

KI
NG

AD
D_

EX
P

M
ET

A_
ST

RE
AM

SI
M

PL
E

AE
C

Method

0

5

10

15

20

25

Ra
nk

Figure 3.15: Boxplot illustrating the distribution of the rank and respective standard deviation
of trimming based windowing and meta-learning based DES methods in terms of RMSE.

The results show that the proposed SLOPE-DES methods outperform in average rank
the best performing SW and STADE trimming variants as well as state-of-the-art methods. In
fact, SLOPE variants exhibit competitive results compared to STADE as they occupy the first
positions in terms of average ranking. On the other hand, STADE meta-learning methods
surpass the SW trimming DES methods and other state-of-the-art dynamic ensemble methods
such as BLAST that selects the single best individual model according to past performance.
Other state-of-the-art dynamic ensemble methods including ARF, STACKING, AddExp,
META-STREAM, BLAST and AEC perform relatively worse compared to SLOPE. In the

70 Chapter 3. Streaming Dynamic Ensembles Selection

following experiments, we do not include the SW and SLOPE variants other than the best
performing ones (SLOPE (w = 900,α = 0.4,k = 15)) as this has already been discussed in
Section 3.3.2. Figure 3.16 depicts the distribution of the relative difference expressed in
percentage achieved relative to STADE and state-of-the-art dynamic ensembles.

AE
C

SI
M

PL
E

M
ET

A_
ST

RE
AM

AD
D_

EX
P

ST
AC

KI
NG AR

F

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.3

BL
AS

T

Method

40

30

20

10

0

10

20

30

40

Im
pr

ov
.

Figure 3.16: Boxplot illustrating the percentual/relative difference expressed in percentage
achieved by SLOPE (w = 900,α = 0.4,k = 15) compared to other DES methods.

SLOPE achieves very promising improvement compared to state-of-the-art dynamic
ensemble methods, particularly for AEC and META-STREAM. Mild improvement is reached
in average relative to STADE variants while higher values are scored for other ensemble
methods particularly for STACKING and ARF. Finally, we conduct the Bayes sign test to
compare the proportion of probability of the events that SLOPE (w = 900,α = 0.4,k = 15)
winning, drawing or losing. Figure, 3.17 illustrates the proportion of the probabilities of each
event. BLAST and ARF have non-negligibly small probability of winning against SLOPE
whereas other state-of-the-art methods always lose across all the 30 temporal data streams.
Besides, SLOPE has very high probability to achieve a draw relative to STADE variants with
α ∈ {0.3,0.4} whereas it scores higher probability to win when α = 0.5.

Finally, we compare the methods enumerated above in terms of computational cost
(memory and time). Again, the comparison does not include the SW methods as this was
previously discussed in Table 3.2. We discuss the distribution of the ratio of the resource
required by SLOPE (w = 900,α = 0.4,k = 15) relative to STADE and other state-of-the-art
dynamic ensemble methods. The results are presented in Figure 3.18 over all the 30 temporal
data streams and show that the proposed SLOPE-DES methods require substantially less
memory and time compared to STADE. Arbitration in general is more resource demanding
compared to other meta-learning based methods such as STACKING and META-STREAM
that use a single model at the meta layer that is an adaptive random forest and a tree classifier

3.3 Empirical Experiments 71

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.5

SI
M

PL
E

M
ET

A_
ST

RE
AM

BL
AS

T

AE
C

AD
D_

EX
P

ST
AC

KI
NG AR

F

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 p
ro

ba
bi

lit
y

SLOPE_15_W_900_TRIM_0.4 loses SLOPE_15_W_900_TRIM_0.4 draws SLOPE_15_W_900_TRIM_0.4 wins

Figure 3.17: Proportion of probability of best trimming DES method winning/drawing/losing
according to the Bayes sign test.

ST
AD

E_
OR

I_S
TA

_L
AG

M
ET

A_
ST

RE
AM

ST
AC

KI
NG AR

F

AD
D_

EX
P

BL
AS

T

AE
C

SI
M

PL
E

Method

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ra
tio

Memory Time

Figure 3.18: Boxplot illustrating the distribution of the ratio of the memory (left) and time
(right) required by SLOPE (w = 900,α = 0.4,k = 15) relative to STADE and state-of-the-art
dynamic ensembles.

respectively. In fact, STADE requires more memory to maintain the models online as well as
more time to process all the instances released in the stream including additional training
and testing time of meta-models (arbiters). Particularly, the highest average memory ratio

72 Chapter 3. Streaming Dynamic Ensembles Selection

is recorded for ARF and AddExp. Principally, ARF is based on an informed adaptation
strategy that keeps replacing low performing trees and replaces them with background tress
trained on more recent instances which leads to lower memory requirements. On the other
hand, AddExp maintains a variable size ensemble using the additive strategy to include new
models and discard the worst performing one. Besides, SLOPE requires less time in average
compared to ARF that combines all the available base trees and monitors their respective
predictive performance. SLOPE scales better in average (time and memory) compared to
other meta-learning based ensembles namely META-STREAM and STACKING that include
an additional single meta-model to predict the best single or forecast combination. The
meta-model meets the streaming setting computation requirements and leads to a lightweight
increase in resources requirements. Likewise, BLAST and AEC, that are windowing DES
approaches, exhibit the same pattern and have similar memory cost.

Overall the proposed SLOPE based DES methods that leverage both temporal criterion
as well as feature based similarity to the test instance to compute the local predictive
performance of each individual model in the pool reveal very promising results in terms of
predictive performance as well as computational cost relative to other windowing and meta-
learning based DES methods along with other state-of-the-art dynamic ensembles. SLOPE
performance can be further improved by using additional meta-features as described in
Section 3.1.2.1 and other distance metrics that are more appropriate to temporally dependent
data such as DTW to determine the local region of competence.

3.3.5 EVALUATING EXPERTS SELECTION

The second part of the experimental study addresses different experts’ selection approaches
described in Section 3.2 and compares to the best TRIM-based DES methods that select a
fixed ratio α of the best preforming base models within the pool M. Similarly, we conduct
an empirical experimental study and compare methods in terms of average rank according
to the RMSE loss for each of the SW, SLOPE and meta-learning based DES. The goal is
to determine if any of the proposed selection approaches is able to outperform the simple
trimming approach.

3.3.5.1 Abstaining Vs. Trimming

In this section, we compare TRIM based DES methods (using SW, SLOPE and STADE)
against the proposed abstaining policy (ABS) that forces non-confident base-models to abstain
from contributing to the aggregation of the final prediction. We study the effect of different
Reliability Estimation Scores (RES) discussed in Section 3.2.2.1 namely S-CONFINE and
CNK as well as the adaptive abstaining strategies described in Section 3.2.2.2. The SUM
and PRO labels stand for the additive and multiplicative adjustment factor based abstaining
policy respectively whereas AUT stands for the drift based approach described in Section
3.2.2.2. We set the performance threshold θ = 0.2 and an update step s = 0.01 to be used
in the adaptive abstaining approaches (Algorithm 1). The drift-based abstaining uses the
ADWIN detector with δw = 0.01 (resp. δd = 0.001) to trigger warnings (resp. drifts) in the
overall predictive performance.

Results depicted in Figures 3.21a, 3.21b, and 3.21c show the distribution of the rank
and respective standard deviation of the SW, SLOPE and STADE trimming and abstaining

3.3 Empirical Experiments 73

variants respectively. Overall, the outcome shows that abstaining-based (ABS) DES methods
perform worse in average relative to their trimming counterparts for SW, SLOPE and STADE
methods and other state-of-the-art dynamic ensembles such as BLAST. Besides, using the
CONFINE and CNK (Section 3.2.2.1) along with the predicted error as reliability estimators
did not lead to the desired results that is enhancing overall predictive performance except
for SW with w = 200. Besides, the proposed adaptive abstaining did not help improving
the predictive performance. The same pattern repeats itself for SW, SLOPE and STADE

approaches. Some abstaining-based DES methods could surpass in average existing dynamic
ensemble methods such as META-STREAM, AddExp and AEC. The performance of the
abstaining policy is closely related to the value of the threshold parameter θ that highly
depends on the data and task at hand and often requires human expertise to set the adequate
value.

3.3.5.2 Randomized Vs. Trimming

We compare the predictive performance of randomized DES discussed in Section 3.2.3
relative to trimming approaches. Similarly, we compare the different methods in terms
of average rank according to the loss incurred for each of the 30 temporal data streams.
Experiments include the Bernoulli (BERN) as well as the BETA based DES using varying
selection ratios. Similarly, randomized selection methods perform worse relative to their
trimming counterparts for SW, SLOPE and STADE approaches. Overall, the BETA-based
randomized selection shows promising performance compared to BERN particularly for selec-
tion ratio values that are in the middle of the search distribution. Promoting diversity through
randomized selection did not achieve the expected results on the predictive performance.

Future work can take advantage of the theoretical background and guarantees of the
Thompson sampling approach and the multi armed bandit in non stationary environments in
order to improve the BETA randomized selection. Thompson sampling is a very well known
algorithm for online decision problems to study the exploration/exploitation trade-off in
sequential decision making. The goal is to find a balance between exploiting what is known
to maximize immediate performance and investing to accumulate new information that may
improve future performance [139]. In fact, model or ensemble selection for streaming data
can be cast as a regret-minimization problem in non-stationary environments using fading
factor or windowing to update the parameters of prior distribution to systematically reduce
the effect of outdated observations.

3.3.5.3 Trade-off MMR Vs. Trimming

We presented in Algorithm 4 a trade-off selection approach that leverages both predictive
performance and pairwise diversity using correlation in order to select a subset of experts
that is as accurate and as diverse as possible. The goal is to increase diversity among selected
models while maintaining a reasonable individual error. The method is inspired from the
Maximal Marginal Relevance (MMR) in the Information Retrieval field for documents re-
ranking. Figure 3.21 depicts the distribution of the rank and respective standard deviation
of MMR-DES relative to their trimming counterparts using SW, SLOPE and STADE based
DES methods and state-of-the-art methods. different values of the trade-off parameter
∈ {0.9,0.8,0.5} and selection ratio values {0.2,0.5,0.8}.

MMR approach using λ = 0.5 that is a balanced trade-off between diversity and per-

74 Chapter 3. Streaming Dynamic Ensembles Selection

(a) SW

SW
_2

00
_T

RI
M

_0
.4

SW
_2

00
_T

RI
M

_0
.3

SW
_4

00
_T

RI
M

_0
.3

SW
_2

00
_T

RI
M

_0
.5

SW
_5

00
_T

RI
M

_0
.3

SW
_3

00
_T

RI
M

_0
.3

SW
_4

00
_T

RI
M

_0
.4

SW
_3

00
_T

RI
M

_0
.4

SW
_4

00
_T

RI
M

_0
.5

SW
_3

00
_T

RI
M

_0
.5

SW
_5

00
_T

RI
M

_0
.4

SW
_5

00
_T

RI
M

_0
.5

BL
AS

T
SW

_2
00

_A
BS

_R
ES

SW
_2

00
_A

BS AR
F

SW
_2

00
_A

BS
_A

UT
SW

_2
00

_A
BS

_R
ES

_A
UT

SW
_3

00
_A

BS
_R

ES
ST

AC
KI

NG
SW

_4
00

_A
BS

_R
ES

SW
_3

00
_A

BS
SW

_2
00

_A
BS

_R
ES

_P
RO

SW
_4

00
_A

BS
SW

_2
00

_A
BS

_R
ES

_S
UM

SW
_2

00
_A

BS
_P

RO
SW

_2
00

_A
BS

_S
UM

SW
_5

00
_A

BS
_R

ES
SW

_3
00

_A
BS

_R
ES

_A
UT

SW
_5

00
_A

BS
SW

_3
00

_A
BS

_A
UT

SW
_4

00
_A

BS
_R

ES
_A

UT
SW

_4
00

_A
BS

_A
UT

SW
_3

00
_A

BS
_R

ES
_P

RO
M

ET
A_

ST
RE

AM
AD

D_
EX

P
SW

_3
00

_A
BS

_P
RO

SW
_4

00
_A

BS
_R

ES
_P

RO
SW

_3
00

_A
BS

_R
ES

_S
UM

SW
_4

00
_A

BS
_P

RO
SW

_3
00

_A
BS

_S
UM

SW
_4

00
_A

BS
_R

ES
_S

UM
SW

_4
00

_A
BS

_S
UM AE

C
SW

_5
00

_A
BS

_A
UT

SW
_5

00
_A

BS
_R

ES
_A

UT
SW

_5
00

_A
BS

_R
ES

_P
RO

SW
_5

00
_A

BS
_P

RO
SW

_5
00

_A
BS

_R
ES

_S
UM

SW
_5

00
_A

BS
_S

UM
SI

M
PL

E

Method

0

10

20

30

40

50

Ra
nk

(b) SLOPE

SL
OP

E_
15

W
_9

00
_T

RI
M

_0
.3

SL
OP

E_
15

W
_9

00
_T

RI
M

_0
.4

SL
OP

E_
15

W
_8

00
_T

RI
M

_0
.3

SL
OP

E_
15

W
_8

00
_T

RI
M

_0
.4

SL
OP

E_
15

W
_9

00
_T

RI
M

_0
.5

SL
OP

E_
15

W
_8

00
_T

RI
M

_0
.5

BL
AS

T

SL
OP

E_
15

W
_9

00
_A

BS

SL
OP

E_
15

W
_8

00
_A

BS AR
F

SL
OP

E_
15

W
_9

00
_A

BS
_R

ES

SL
OP

E_
15

W
_9

00
_A

BS
_A

UT

ST
AC

KI
NG

SL
OP

E_
15

W
_8

00
_A

BS
_R

ES

SL
OP

E_
15

W
_9

00
_A

BS
_P

RO

SL
OP

E_
15

W
_9

00
_A

BS
_R

ES
_A

UT

SL
OP

E_
15

W
_9

00
_A

BS
_S

UM

SL
OP

E_
15

W
_9

00
_A

BS
_R

ES
_P

RO

SL
OP

E_
15

W
_9

00
_A

BS
_R

ES
_S

UM

SL
OP

E_
15

W
_8

00
_A

BS
_A

UT

M
ET

A_
ST

RE
AM

AD
D_

EX
P

SL
OP

E_
15

W
_8

00
_A

BS
_P

RO

SL
OP

E_
15

W
_8

00
_A

BS
_S

UM

SL
OP

E_
15

W
_8

00
_A

BS
_R

ES
_A

UT

SL
OP

E_
15

W
_8

00
_A

BS
_R

ES
_P

RO AE
C

SL
OP

E_
15

W
_8

00
_A

BS
_R

ES
_S

UM

SI
M

PL
E

Method

0

5

10

15

20

25

30

Ra
nk

(c) STADE

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.5

BL
AS

T

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_A
BS AR

F

ST
AD

E_
OR

I_S
TA

_L
AG

_A
BS

ST
AC

KI
NG

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_A
BS

_R
ES

ST
AD

E_
OR

I_S
TA

_L
AG

_A
BS

_R
ES

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_A
BS

_A
UT

ST
AD

E_
OR

I_S
TA

_L
AG

_A
BS

_A
UT

ST
AD

E_
OR

I_S
TA

_L
AG

_A
BS

_P
RO

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_A
BS

_R
ES

_A
UT

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_A
BS

_P
RO

ST
AD

E_
OR

I_S
TA

_L
AG

_A
BS

_R
ES

_A
UT

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_A
BS

_R
ES

_P
RO

ST
AD

E_
OR

I_S
TA

_L
AG

_A
BS

_R
ES

_P
RO

ST
AD

E_
OR

I_S
TA

_L
AG

_A
BS

_S
UM

M
ET

A_
ST

RE
AM

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_A
BS

_S
UM

AD
D_

EX
P

ST
AD

E_
OR

I_S
TA

_L
AG

_A
BS

_R
ES

_S
UM

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_A
BS

_R
ES

_S
UM AE

C

SI
M

PL
E

Method

0

5

10

15

20

25

30

Ra
nk

Figure 3.19: Boxplots illustrating the distribution of the rank and respective standard de-
viation of trimming and abstaining (ABS) based DES methods for SW, SLOPE and STADE
approaches in terms of RMSE.

3.3 Empirical Experiments 75

(a) SW

SW
_2

00
_T

RI
M

_0
.3

SW
_2

00
_T

RI
M

_0
.4

SW
_4

00
_T

RI
M

_0
.3

SW
_2

00
_T

RI
M

_0
.5

SW
_4

00
_T

RI
M

_0
.4

SW
_3

00
_T

RI
M

_0
.4

SW
_4

00
_T

RI
M

_0
.5

SW
_5

00
_T

RI
M

_0
.3

SW
_5

00
_T

RI
M

_0
.4

SW
_3

00
_T

RI
M

_0
.5

SW
_3

00
_T

RI
M

_0
.3

SW
_5

00
_T

RI
M

_0
.5

BL
AS

T
SW

_2
00

_B
ET

A_
P_

0.
3

SW
_2

00
_B

ET
A_

P_
0.

2
SW

_2
00

_B
ET

A_
P_

0.
5

SW
_3

00
_B

ET
A_

P_
0.

6
SW

_3
00

_B
ET

A_
P_

0.
3

SW
_3

00
_B

ET
A_

P_
0.

2
SW

_2
00

_B
ET

A_
P_

0.
6

SW
_4

00
_B

ET
A_

P_
0.

5
SW

_2
00

_B
ET

A_
P_

0.
4

SW
_4

00
_B

ET
A_

P_
0.

3
SW

_3
00

_B
ET

A_
P_

0.
5

AR
F

SW
_3

00
_B

ET
A_

P_
0.

4
SW

_4
00

_B
ET

A_
P_

0.
4

SW
_5

00
_B

ET
A_

P_
0.

2
SW

_2
00

_B
ET

A_
P_

0.
7

SW
_5

00
_B

ET
A_

P_
0.

3
SW

_3
00

_B
ET

A_
P_

0.
7

SW
_4

00
_B

ET
A_

P_
0.

2
SW

_5
00

_B
ET

A_
P_

0.
5

SW
_4

00
_B

ET
A_

P_
0.

6
SW

_5
00

_B
ET

A_
P_

0.
6

SW
_5

00
_B

ET
A_

P_
0.

4
SW

_4
00

_B
ET

A_
P_

0.
7

ST
AC

KI
NG

SW
_4

00
_B

ET
A_

P_
0.

1
SW

_5
00

_B
ET

A_
P_

0.
7

SW
_2

00
_B

ET
A_

P_
0.

8
SW

_5
00

_B
ET

A_
P_

0.
1

SW
_3

00
_B

ET
A_

P_
0.

1
SW

_2
00

_B
ET

A_
P_

0.
1

SW
_3

00
_B

ET
A_

P_
0.

8
SW

_4
00

_B
ET

A_
P_

0.
8

SW
_5

00
_B

ET
A_

P_
0.

8
SW

_2
00

_B
ET

A_
P_

0.
9

SW
_3

00
_B

ET
A_

P_
0.

9
SW

_4
00

_B
ET

A_
P_

0.
9

SW
_5

00
_B

ET
A_

P_
0.

9
AD

D_
EX

P
M

ET
A_

ST
RE

AM
SW

_2
00

_B
ER

N
SW

_3
00

_B
ER

N
SW

_4
00

_B
ER

N
SW

_5
00

_B
ER

N
SI

M
PL

E
AE

C

Method

0

10

20

30

40

50

60

Ra
nk

(b) SLOPE

SL
OP

E_
15

W
_9

00
_T

RI
M

_0
.3

SL
OP

E_
15

W
_9

00
_T

RI
M

_0
.4

SL
OP

E_
15

W
_8

00
_T

RI
M

_0
.3

SL
OP

E_
15

W
_8

00
_T

RI
M

_0
.4

SL
OP

E_
15

W
_9

00
_T

RI
M

_0
.5

SL
OP

E_
15

W
_8

00
_T

RI
M

_0
.5

BL
AS

T
SL

OP
E_

15
W

_8
00

_B
ET

A_
P_

0.
3

SL
OP

E_
15

W
_8

00
_B

ET
A_

P_
0.

6
SL

OP
E_

15
W

_9
00

_B
ET

A_
P_

0.
6

SL
OP

E_
15

W
_9

00
_B

ET
A_

P_
0.

7
SL

OP
E_

15
W

_8
00

_B
ET

A_
P_

0.
5

SL
OP

E_
15

W
_9

00
_B

ET
A_

P_
0.

5
SL

OP
E_

15
W

_8
00

_B
ET

A_
P_

0.
7

SL
OP

E_
15

W
_8

00
_B

ET
A_

P_
0.

4
AR

F
SL

OP
E_

15
W

_9
00

_B
ET

A_
P_

0.
4

SL
OP

E_
15

W
_9

00
_B

ET
A_

P_
0.

2
SL

OP
E_

15
W

_9
00

_B
ET

A_
P_

0.
3

SL
OP

E_
15

W
_8

00
_B

ET
A_

P_
0.

2
SL

OP
E_

15
W

_9
00

_B
ET

A_
P_

0.
8

SL
OP

E_
15

W
_8

00
_B

ET
A_

P_
0.

8
ST

AC
KI

NG
SL

OP
E_

15
W

_9
00

_B
ET

A_
P_

0.
1

SL
OP

E_
15

W
_8

00
_B

ET
A_

P_
0.

1
SL

OP
E_

15
W

_8
00

_B
ET

A_
P_

0.
9

SL
OP

E_
15

W
_9

00
_B

ET
A_

P_
0.

9
SL

OP
E_

15
W

_9
00

_B
ER

N
SL

OP
E_

15
W

_8
00

_B
ER

N
AD

D_
EX

P
M

ET
A_

ST
RE

AM
SI

M
PL

E
AE

C

Method

0

5

10

15

20

25

30

Ra
nk

(c) STADE

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.3
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_T

RI
M

_0
.3

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.4
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_T

RI
M

_0
.4

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.5
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_T

RI
M

_0
.5

BL
AS

T
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_B

ET
A_

P_
0.

3
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ET
A_

P_
0.

4
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ET
A_

P_
0.

3
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ET
A_

P_
0.

2
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_B

ET
A_

P_
0.

4
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_B

ET
A_

P_
0.

2
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_B

ET
A_

P_
0.

5
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ET
A_

P_
0.

5
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_B

ET
A_

P_
0.

6
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ET
A_

P_
0.

6
AR

F
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_B

ET
A_

P_
0.

7
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ET
A_

P_
0.

1
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ET
A_

P_
0.

7
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_B

ET
A_

P_
0.

1
ST

AC
KI

NG
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ET
A_

P_
0.

8
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_B

ET
A_

P_
0.

8
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ET
A_

P_
0.

9
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_B

ET
A_

P_
0.

9
ST

AD
E_

OR
I_S

TA
_L

AG
_B

ER
N

AD
D_

EX
P

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_B
ER

N
M

ET
A_

ST
RE

AM
SI

M
PL

E
AE

C

Method

0

5

10

15

20

25

30

Ra
nk

Figure 3.20: Boxplots illustrating the distribution of the rank and respective standard devia-
tion of trimming and randomized based DESmethods for SW, SLOPE and STADE approaches
in terms of RMSE.

76 Chapter 3. Streaming Dynamic Ensembles Selection

(a) SW

SW
_2

00
_T

RI
M

_0
.4

SW
_2

00
_T

RI
M

_0
.3

SW
_4

00
_T

RI
M

_0
.4

SW
_4

00
_T

RI
M

_0
.3

SW
_3

00
_T

RI
M

_0
.4

SW
_5

00
_T

RI
M

_0
.3

SW
_5

00
_T

RI
M

_0
.4

SW
_3

00
_T

RI
M

_0
.3

SW
_2

00
_T

RI
M

_0
.5

SW
_4

00
_T

RI
M

_0
.5

SW
_3

00
_T

RI
M

_0
.5

SW
_5

00
_T

RI
M

_0
.5

BL
AS

T
SW

_2
00

_M
M

R_
0.

9_
R_

0.
5

AR
F

SW
_4

00
_M

M
R_

0.
9_

R_
0.

5
SW

_3
00

_M
M

R_
0.

9_
R_

0.
5

SW
_2

00
_M

M
R_

0.
8_

R_
0.

5
SW

_2
00

_M
M

R_
0.

9_
R_

0.
2

SW
_5

00
_M

M
R_

0.
9_

R_
0.

5
SW

_4
00

_M
M

R_
0.

8_
R_

0.
5

SW
_5

00
_M

M
R_

0.
9_

R_
0.

2
SW

_2
00

_M
M

R_
0.

9_
R_

0.
8

SW
_4

00
_M

M
R_

0.
9_

R_
0.

8
SW

_4
00

_M
M

R_
0.

9_
R_

0.
2

SW
_3

00
_M

M
R_

0.
8_

R_
0.

5
SW

_5
00

_M
M

R_
0.

8_
R_

0.
5

ST
AC

KI
NG

SW
_3

00
_M

M
R_

0.
9_

R_
0.

8
SW

_3
00

_M
M

R_
0.

9_
R_

0.
2

SW
_5

00
_M

M
R_

0.
9_

R_
0.

8
SW

_2
00

_M
M

R_
0.

8_
R_

0.
8

SW
_4

00
_M

M
R_

0.
8_

R_
0.

8
SW

_5
00

_M
M

R_
0.

8_
R_

0.
8

SW
_3

00
_M

M
R_

0.
8_

R_
0.

8
SW

_2
00

_M
M

R_
0.

8_
R_

0.
2

SW
_4

00
_M

M
R_

0.
8_

R_
0.

2
SW

_5
00

_M
M

R_
0.

8_
R_

0.
2

SW
_3

00
_M

M
R_

0.
8_

R_
0.

2
SW

_2
00

_M
M

R_
0.

5_
R_

0.
8

SW
_4

00
_M

M
R_

0.
5_

R_
0.

8
SW

_3
00

_M
M

R_
0.

5_
R_

0.
8

SW
_5

00
_M

M
R_

0.
5_

R_
0.

8
AD

D_
EX

P
SW

_2
00

_M
M

R_
0.

5_
R_

0.
5

SW
_4

00
_M

M
R_

0.
5_

R_
0.

5
SW

_3
00

_M
M

R_
0.

5_
R_

0.
5

SW
_5

00
_M

M
R_

0.
5_

R_
0.

5
M

ET
A_

ST
RE

AM
SI

M
PL

E
AE

C
SW

_2
00

_M
M

R_
0.

5_
R_

0.
2

SW
_3

00
_M

M
R_

0.
5_

R_
0.

2
SW

_4
00

_M
M

R_
0.

5_
R_

0.
2

SW
_5

00
_M

M
R_

0.
5_

R_
0.

2

Method

0

10

20

30

40

50
Ra

nk

(b) SLOPE

SL
OP

E_
15

_S
W

_9
00

_T
RI

M
_0

.3

SL
OP

E_
15

_S
W

_9
00

_T
RI

M
_0

.4

SL
OP

E_
15

_S
W

_8
00

_T
RI

M
_0

.3

SL
OP

E_
15

_S
W

_8
00

_T
RI

M
_0

.4

SL
OP

E_
15

_S
W

_9
00

_T
RI

M
_0

.5

SL
OP

E_
15

_S
W

_8
00

_T
RI

M
_0

.5

SL
OP

E_
15

_S
W

_9
00

_M
M

R_
0.

9_
R_

0.
5

SL
OP

E_
15

_S
W

_9
00

_M
M

R_
0.

9_
R_

0.
2

BL
AS

T

SL
OP

E_
15

_S
W

_9
00

_M
M

R_
0.

8_
R_

0.
5

SL
OP

E_
15

_S
W

_8
00

_M
M

R_
0.

9_
R_

0.
5

SL
OP

E_
15

_S
W

_8
00

_M
M

R_
0.

9_
R_

0.
2

SL
OP

E_
15

_S
W

_8
00

_M
M

R_
0.

8_
R_

0.
5

SL
OP

E_
15

_S
W

_9
00

_M
M

R_
0.

9_
R_

0.
8

SL
OP

E_
15

_S
W

_9
00

_M
M

R_
0.

8_
R_

0.
8

SL
OP

E_
15

_S
W

_9
00

_M
M

R_
0.

8_
R_

0.
2

AR
F

SL
OP

E_
15

_S
W

_8
00

_M
M

R_
0.

9_
R_

0.
8

SL
OP

E_
15

_S
W

_8
00

_M
M

R_
0.

8_
R_

0.
2

SL
OP

E_
15

_S
W

_8
00

_M
M

R_
0.

8_
R_

0.
8

ST
AC

KI
NG

SL
OP

E_
15

_S
W

_9
00

_M
M

R_
0.

5_
R_

0.
5

SL
OP

E_
15

_S
W

_9
00

_M
M

R_
0.

5_
R_

0.
8

SL
OP

E_
15

_S
W

_8
00

_M
M

R_
0.

5_
R_

0.
5

SL
OP

E_
15

_S
W

_8
00

_M
M

R_
0.

5_
R_

0.
8

M
ET

A_
ST

RE
AM

AD
D_

EX
P

SL
OP

E_
15

_S
W

_9
00

_M
M

R_
0.

5_
R_

0.
2

SI
M

PL
E

SL
OP

E_
15

_S
W

_8
00

_M
M

R_
0.

5_
R_

0.
2

AE
C

Method

0

5

10

15

20

25

30

Ra
nk

(c) STADE

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.4

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.3

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_T
RI

M
_0

.5

ST
AD

E_
OR

I_S
TA

_L
AG

_M
M

R_
0.

9_
R_

0.
5

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_M
M

R_
0.

9_
R_

0.
5

BL
AS

T

ST
AD

E_
OR

I_S
TA

_L
AG

_M
M

R_
0.

9_
R_

0.
2

ST
AD

E_
OR

I_S
TA

_L
AG

_M
M

R_
0.

8_
R_

0.
5

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_M
M

R_
0.

9_
R_

0.
2

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_M
M

R_
0.

8_
R_

0.
5

AR
F

ST
AD

E_
OR

I_S
TA

_L
AG

_M
M

R_
0.

9_
R_

0.
8

ST
AD

E_
OR

I_S
TA

_L
AG

_M
M

R_
0.

8_
R_

0.
8

ST
AD

E_
OR

I_S
TA

_L
AG

_M
M

R_
0.

8_
R_

0.
2

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_M
M

R_
0.

9_
R_

0.
8

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_M
M

R_
0.

8_
R_

0.
8

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_M
M

R_
0.

8_
R_

0.
2

ST
AC

KI
NG

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_M
M

R_
0.

5_
R_

0.
5

ST
AD

E_
OR

I_S
TA

_L
AG

_M
M

R_
0.

5_
R_

0.
5

ST
AD

E_
OR

I_S
TA

_L
AG

_M
M

R_
0.

5_
R_

0.
8

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_M
M

R_
0.

5_
R_

0.
8

M
ET

A_
ST

RE
AM

AD
D_

EX
P

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

_M
M

R_
0.

5_
R_

0.
2

ST
AD

E_
OR

I_S
TA

_L
AG

_M
M

R_
0.

5_
R_

0.
2

SI
M

PL
E

AE
C

Method

0

5

10

15

20

25

30

Ra
nk

Figure 3.21: Boxplots illustrating the distribution of the rank and respective standard devia-
tion of trimming and MMR based DES methods for SW, SLOPE and STADE approaches in
terms of RMSE.

3.4 Summary 77

formance performs worse relative to higher λ values {0.8,0.9} that tend to grant more
importance to the predictive performance. Controlling the performance-diversity trade-off
using the λ factor did not achieve the expected results, that is surpassing simpler trimming
methods (TRIM). On the other hand, some MMR methods could outperform in average rank
existing methods such as BLAST and ARF. Despite the evidence of the benefits of diversity
within ensemble methods, MMR-based selection using correlation did not render a positive
effect on overall predictive performance. In fact, incremental models that are trained on the
same instances of the stream and for the same task are highly correlated and using Pearson’s
correlation as a measure of similarity can be limited in this case. Future work includes
information theoretic based diversity measures to quantify the mutual information between
two base-models or more (multivariate analysis) [110].

3.4 SUMMARY

DES methods are based on the assumption that heterogeneous forecasting models have
varying expertise along a temporal data stream. Their goal is to accurately select on the
fly for each incoming test instance a committee of experts deemed to be the best, and
aggregate their predictions provided some weighting mechanism to emphasize on the most
competent ones. Dynamically selecting and combing forecasters lead to better overall
predictive performance, particularly in the streaming setting where the characteristics of the
data are very likely to evolve due to concept drift.

In this chapter we introduced several DES methods for streaming data. We presented
SLOPE a novel performance estimation approach based on local predictive performance
using a combined criterion. In fact SLOPE brings together the temporal criteria to emphasize
on the most recent instances using a sliding window and a feature-based similarity using the
k nearest neighbors to the test instance. SLOPE has proved to be more effective compared to
traditional SW based methods using trimming selection approach at the cost of lightweight
additional computational cost in terms of memory and time. Subsequently, we introduced
STADE, a streaming meta-learning based DES approach following the arbitration framework
[38]. We focused on a set of meta-features including statistical, landmarking and stream-
specific information to train the meta-models to link between the characteristics of the data
and the predictive performance of individual base-models. SLOPE method demonstrated
encouraging results in terms of predictive performance compared to other meta-learning
based DES methods as well as state-of-the-art dynamic ensembles. Besides, SLOPE scales
better in terms of computational cost (memory and time) compared to STADE meta-learning
DES.

The second part of the chapter focused on novel methods to select a committee of
experts and compare to trimming that selects a fixed ratio α . We introduced an adaptive
abstaining policy that forces less confident forecasters to decline from contributing to the
final output. Subsequently, we presented randomized selection approach where base-models
with lower expected error are more likely to be selected in the committee. Selecting the best
models leads to the best predictive performance overall. However, concept drift may happen
anywhere in the stream. Thus, it might be interesting, from time to time, to select other base-
models with higher errors and inversely, prune the ones with low predicted errors. Finally,

78 Chapter 3. Streaming Dynamic Ensembles Selection

we presented an MMR-based selection using a combined criterion as a trade-off between
individual models’ performance and ensemble diversity. The empirical results demonstrated
that simple selection methods such as trimming often perform better on average relative to
more sophisticated selection methods.

Dynamic Ensemble using Multi-Target
Regression

Meta-learning based dynamic ensemble selection and combination methods have demon-
strated highly competitive predictive performance for temporal data streams forecasting.
Meta-Learning based DES methods work by learning the behavior of individual models in
the pool in order to predict their future performance and accordingly select and combine the
best performing ones. As mentioned in the previous chapters of the thesis, DES methods can
be divided into two categories: individual-based and group-based [26]. The first category
estimates the competence and selects each model in the pool separately whereas the second
one explicitly captures dependencies among individual models. This chapter presents our
second contribution that is a group-based DES approach using meta-learning that exploits the
dependency information among base-models when learning and predicting their respective
behavior. We formulate the DES task as a Multi-Target Regression (MTR) problem where the
goal is to simultaneously predict individual models expected performance according to the
test data.

The remainder of the chapter is organized as follows, Section 4.1 introduces the DES
problem formulation using multi-output learning and details the MTR based DES methods for
temporal data streams forecasting. Section 4.2 describes different MTR approaches to tackle
the DES task for evolving temporal data streams. Section 4.3 highlights the experimental
setup used to compare the proposed MTR-based DES against other state-if-the-art DES
methods. Lastly, Section 4.4 concludes the chapter with a summary of our contributions and
discuss encountered challenges and future directions.

4

80 Chapter 4. Dynamic Ensemble using Multi-Target Regression

4.1 DES USING MULTI-OUTPUT LEARNING

Meta-learning based Dynamic Ensemble Selection (DES) methods have demonstrated highly
competitive results in terms of predictive performance. The meta-layer is in charge of
learning the behavior of each base-model in the pool according to the data at hand and
subsequently predict future behavior. The goal being to select the most competent ones
for each incoming test instance and combine their predictions in order to boost overall
predictive performance. DES methods can be divided into two categories: individual-based
and group-based [26]. In individual-based methods, the selection of models is achieved
by estimating the competence of each model in the pool individually without considering
its dependencies with other models. On the other hand, group-based methods explicitly
consider models’ dependencies while learning and predicting their behavior.

Arbitrated Dynamic Ensemble (ADE) is a meta-learning based DES that addresses time-
series forecasting and falls within the individual-based DES methods. ADE is based on arbi-
tration where the behavior of each base-model is learned separately by its meta-counterpart.
Thus, the correlations among the base-models behavior are ignored at the risk of losing
valuable information and competitive advantage. ADE was later enhanced with an additional
stage where experts weights are recomputed using their pairwise correlation [41]. The
idea of meta-learning approach using Multi-Output Learning [155] has emerged in order to
overcome the aforementioned drawbacks and to learn and predict base-models’ behavior all
at once.

4.1.1 DES VIA MULTI-LABEL CLASSIFICATION

Markatopoulou, Tsoumakas, and Vlahavas [108] first suggested that the meta-learning based
DES can be cast as a Multi-Label Classification (MLC) task. It addresses classification
task, where the goal is to learn to predict the subset of classifiers, among the pool of base
classifiers, that are likely to correctly classify a given test instance. The proposed framework
comprises a meta-layer where the feature space training set is the same as the original feature
space, whereas the label space contains one label for each classifier. The multi-label training
examples are computed based on the ability of each classifier to correctly classify each of
the original examples. The meta-model assigns a positive label (1) if the given classifier is
expected to predict the right class for the given instance otherwise the label is negative (0).
Conversely to arbitration that learns the behavior of each base model separately, the MLC
based DES takes advantage of the essence of multi-output-learning to explicitly take into
account the correlation among individual models. In fact, the problem of predicting whether
a base-model will correctly predict a given unlabeled instance can be addressed collectively
instead of separately. All base-models are trained on the same data and predict on the same
test instances, thus, the behavior of one model is likely to provide valuable information on
the behavior of other models. Following this approach, Narassiguin, Elghazel, and Aussem
[114] showed that the dependencies of the errors made by each model in the ensemble have
to be exploited. They used Probabilistic Classifier Chains to cast the DES classification task
for batch learning.

However, MLC approaches remain very challenging when it comes to ensembles of
forecasters. In fact, it is not clear how to determine if a forecaster has made a correct or
wrong predictions. Nevertheless, as an alternative, we can quantify the loss incurred using

4.1 DES using multi-output learning 81

one of the evaluation metrics discussed in Section 2.1.7.2. In this chapter we propose a novel
meta-learning based DES approach using Multi-Target Regression (MTR). MTR is a multi-
output-learning framework that deals with real valued targets. The goal is to simultaneously
predict the error of each ensemble component and accordingly select and combine the best
performing ones and combine their predictions. The MTR-DES approach has the advantage
of explicitly capturing models’ dependency information at an early stage in order to learn
and predict their respective behavior. In fact, ADE [41] and DEMSC [140] addressed the
dependency issue among models’ predictions by introducing an additional stage that aims at
involving model’s pairwise correlation in their performance estimation. This additional step
increases the computational complexity and scales with the number of models in the pool.

4.1.2 DES VIA MULTI-TARGET REGRESSION

Let’s reconsider the described temporal one-step-ahead forecasting problem using dynamic
ensembles. S is a stream of instances S = {y1,y2, . . . ,yt . . .} where yt is the observed value
at time t and xt it’s p dimensional associated feature vector. We recall that our approach
is based on auto-regressive modelling approach. This means that the xt comprises the p
previous observed values xt = 〈yt−1,yt−2, . . . ,yt−p〉 used as a feature vector to model the
temporal dependency that characterizes temporal data streams. We use a meta-learning
based DES with a pool M = {M1,M2, . . . ,Mm} of heterogeneous base-models and the goal
is to learn their respective behavior and predict future error values. In fact, at time t, the
meta-layer is in charge of predicting ~et+1 = 〈ê1

t+1, ê
2
t+1, . . . , ê

m
t+1〉 where êi

t+1 is the loss
that the base-model Mi is expected to incur when predicting next value to be observed in
the stream ŷi

t+1 compared to the true value yt+1. The most competent base-models are then
selected in a committee Mc and their predictions combined to act as the ensemble’s prediction
ŷt+1. Base models’ error in DES are very likely to exhibit compound dependencies and must
be considered at the meta-level.

That said, the meta-layer error prediction task can be cast as a multi-target regression
(MTR) problem. The learning task is to simultaneously predict multiple continuous targets
that are assumed to be related. The assumption holds in the context ensemble methods for
streaming data since base-models learn on the same data to predict the same one-step-ahead
forecast. More formally, Borchani et al. [16] define the task as learning a multi-target
regression model consisting of finding a function h that assigns to each instance, given by the
vector xt and comprising p features, a vector ~et+1 = 〈ê1

t+1, ê
2
t+1, . . . , ê

m
t+1〉 of m continuous

valued targets.

h : ΩX1× . . .×ΩX p →ΩE1× . . .×ΩEm

x = (x1, . . . ,xp)→ e = (e1, . . . ,em),
(4.1)

where ΩX i and ΩE j stand for the sample spaces of each predictive variable for i ∈
{1,2, . . . , p} and each target variable j ∈ {1,2, . . . ,m}, respectively. The learned model will
be used to simultaneously predict the value et+1 of the new incoming unlabeled instance
xt+1.

Models’ dependencies have been considered in previous works [41, 140] by introducing
an additional stage prior to aggregation where selected models’ weights are recomputed to

82 Chapter 4. Dynamic Ensemble using Multi-Target Regression

involve their respective correlations. Conversely, we consider models’ dependencies at an
early stage while predicting their performance for a given test instance xt+1 without any addi-
tional stage. In fact, multi-target regression methods have proven to yield a better predictive
performance, in general, when compared against the single-output methods. MTR methods
provide as well the means to effectively capture base-models relationship by considering
not only the underlying relationships between the features and the corresponding targets but
also the relationships between the targets, guaranteeing thereby a better representation and
interpretability. A further advantage of the multi-target approaches is that they often produce
simpler models and computationally efficient.

We provide throughout next section a survey on state-of-the-art MTR learning methods
that meet the streaming requirements discussed in Section 2.1.3.

4.2 STREAMING MULTI-TARGET REGRESSION

MTR methods can be categorized into two main approaches: problem transformation and
algorithm adaptation methods [16].

4.2.1 PROBLEM TRANSFORMATION METHODS

These methods are based on transforming the MTR problem into several single-target prob-
lems, and building a separate model for each target. Finally all the individual predictions are
concatenated.

4.2.1.1 Binary Relevance

Binary Relevance (BR) or Single-Target [170], is a simple approach that decomposes the MTR
problem into m independent single-target models. Each model is trained on a transformed
data stream: Si = {(x1

1,e
i
1), . . . ,(x

1
t ,e

i
t)}, i ∈ {1, . . . ,m} to predict at time t the value of a

single target êi
t+1. All the individual predictions are then concatenated to produce a final

m dimensional prediction vector ~et+1 = 〈ê1
t+1, ê

2
t+1, . . . , ê

m
t+1〉 . Clearly, ADE [38] that uses

arbitration at the meta-level falls within this category of MTR methods. The main drawback
of these methods is that the relationships among the targets are ignored, and the targets are
predicted independently, which may affect the overall quality of the predictions.

4.2.1.2 MTR-Stacking

Multi-Target Regressor Stacking (MTRS) takes advantage of the stacked generalization [164]
approach involving a two-layered learning process. In addition to the first layer of single-
target models (BR), a second set of m meta-models are learned over the first layer models
predictions, one for each target ei, i ∈ {1, . . . ,m}. MTRS is based on the idea that a second-
stage model is able to correct the predictions of a first-stage model by using information about
the predictions of other first-stage models. Each meta-model is learned on a transformed
stream where S?i = {(x?i

1 ,e
i
1), . . . ,(x

?i
t ,e

i
t)}, where x?i

t = (x1
t , . . . ,x

p
t , ê1

t , . . . , ê
m
t) is an input

instance consisting of the original input instance x augmented with the predictions of their
target variables yielded by the first-stage single-target models.

4.2.1.3 Regressor Chains

Regressor Chains (RC) is inspired by the Multi-Label Classifiers Chain [127] based on the
idea of chaining single-target models. The training of RC consists of selecting a random

4.2 Streaming Multi-Target Regression 83

chain (order) of m regression models, one for each target. The features of each link in the
chain are augmented with the predictions of all previous links. Unlike BR method, the RC
method models targets dependency, however, it might be sensitive to the selected order.
This issue can be mitigated using an ensemble with different random chain ordering and
aggregating their outputs, this is referred to as Ensemble Regressor Chains (ERC).

Figure 4.1: Regressor Chain

Problem transformation methods are very simple to implement and their adaptation for
the streaming setting is straightforward. In fact, one can use any incremental and adaptive
regression model such as FIMT-DD [84] as a base estimator.

4.2.2 ALGORITHM ADAPTATION

Algorithm adaptation methods are based on the idea of simultaneously predicting all the
targets using a single model that can capture the underlying dependencies and internal
relationships between them. These methods have the advantage of being much smaller in
size compared to the total size of the individual single-target models for all variables. Second,
they better identify the dependencies between the different targets to achieve better predictive
performance especially when the targets are correlated [24, 91, 144]. In this section we focus
on multi-target regression trees given that they were extensively studied for the streaming
setting. However, algorithm adaptation methods are not limited to trees, we point the reader
to the survey of Borchani et al. [16] for further details on other methods that were proposed
to tradition batch learning.

4.2.2.1 Multi-Target Regression Trees

Multi-Target Regression Trees (MTRT) are regression trees that can simultaneously predict
multiple real-valued target variables [23]. MTRT trees have the advantage of being much
smaller than the total size of BR regression tree. Besides, they better identify the dependencies
between the target variables. MTRT approaches were widely studied for the tradition batch
setting, we refer to the detailed survey [16]. In our work we focus on MTRT for streaming
data only.

FIMT-MT is an incremental [83] MTRT that addresses multi-target time-changing data
streams . The algorithm extends the incremental single-target model tree proposed in [82] by
adopting the principles of Predictive Clustering Tree (PCT) [15] in the split selection criterion
and works under the assumption that grouping similar examples together, can improve the
predictive performance of the model. FIMT-MT maintains incremental perceptrons at the

84 Chapter 4. Dynamic Ensemble using Multi-Target Regression

leaves of the tree, one for each target. The Hoeffding bound [79] is used to perform a split
only when enough statistical evidence has been accumulated in favor of a particular splitting
test.

Incremental Structured Output Prediction Tree

The iSOUP [118], for incremental Structured Output Prediction Tree, is an extension of the
FIMT-MT that uses an adaptive multi-target model at each leaf instead of a single linear
perceptron. The iSOUP maintains in one hand, a multi-target perceptron and on the other
hand the multi-target mean predictor that computes the prediction as the mean value of each
of the targets observed at a given leaf. The fading Mean Absolute Errors f MAE i

Perceptron and
f MAE i

Mean are monitored for each target. The decision about which local model to use is
made for each target variable separately. The fading mean absolute error is computed as:

f MAE i
learner(n) =

∑
n
j=1 0.95(n− j)|êi

j− ei
j|

∑
n
j=1 0.95(n− j)

(4.2)

where n is the number of instances observed in a leaf, êi
j and ei

j are the predicted and the
true value for the j-th example, respectively, and learner ∈ {Perceptron, Mean}. The fading
error emphasizes on more recent examples to cope with concept drift. The model with the
lowest error is used for each target. Therefore, the m dimensional output vector can contain
predictions from both the Perceptron and the Mean predictors.

Single Stacked Target Hoeffding Tree

The Single Stacked Target Hoeffding Tree (SST-HT) [109] takes advantage of all previ-
ously mentioned MTRT approaches but better exploits targets’ inter-correlation by using an
additional stacked model at the leaves. Previously studied MTRT methods used as many
linear models as the number of targets and the predictions êt are computed separately, only
considering the original features dependencies. SST-HT, in turn, adds a stacked perceptron
to combine and enhance the predictions and adopts the same fading error approach to select
the best performing local model for each target.

Table 4.1: Multi-Target Regression methods

Category Method

Problem Transformation

BR Binary Relevance [170]

MTRS Stacked Multi-Target

RC Regressor Chain [127]

Algorithm adaptation
iSOUP [118]

SST-HT [109]

4.3 EMPIRICAL EXPERIMENTS

4.3.1 EXPERIMENTAL DESIGN

In this chapter, we follow the experimental design described in 3.3.1, where the DES approach
is based on heterogeneous ensembles and individual models’ predictive performance is

4.3 Empirical Experiments 85

assessed using the sMAPE loss metric. This means that the meta-layer is in charge of
predicting the sMAPE loss that each model Mi ∈ M will incur for predicting ŷi

t+1 based
on the feature vector of the instance at hand xt+1. Similarly, all methods were evaluated
in the prequential setting and ranked according to their respective RMSE loss, the lower
the loss the better the rank. In fact, we analyze the distribution of the rank and respective
standard deviation as well as the distribution of the percentual difference relative to the best
performing method in order to quantify the gain or loss in the overall predictive performance.
We conduct the Bayesian analysis as described in Section 3.3.2.3 in order to assess the
significance of the results above. Besides, we discuss the computational cost in terms of time
and memory of all the MTR approaches.

According to the empirical study conducted in Chapter 3, present experiments include
trimming (TRIM) selection only with α ∈ {0.3,0.4} due to the superior predictive per-
formance relative to other selection methods. We focus on problem-transformation and
algorithm adaptation MTR methods as discussed in Section 4.2. We note that, STADE method
presented in Chapter 3 that uses arbitration is considered as a Binary-Relevance (BR) MTR
approach.

4.3.2 COMPARING META-LAYER

First we analyze the predictive performance of the meta-layer as a multi-target regression
problem using the Average Root Mean Squared Error (aRMSE) [16] as described in Equation
4.3. In fact the output of the meta-layer for each test instance xt is a vector of size m and hence
can be evaluated as a multi-target task. The goal is to evaluate how good is the meta-layer
in learning and predicting the actual base-models’ errors for each incoming instance in the
stream using Equation 4.3

aRMSE =
1
m

m

∑
i=1

√
∑

n
t=1(e

i
t − êi

t)
2

n
(4.3)

where m is the size of the ensemble that translates to an m dimensional vector of errors,
and ei

t (resp. êi
t) is the actual (resp. predicted) error of model Mi at time t.

Similarly to STADE that is considered as a Binary Relevance (BR) MTR task, all other
problem transformation methods such as the (MTRS and RC) are implemented using Hoeffd-
ing regression trees as base estimators. Experiments do not include ERC due to the excessive
computational cost that scales with the number of random chains included in the ensemble.
Besides, we evaluate the use of additional meta-features (statistical and landmarking dis-
cussed in Section 3.1.2.1) along with the original feature vector xt with MTR meta-learning
methods.

Figure 4.2 illustrates the distribution of the rank and respective standard deviation of
the MTR meta-layers methods according to their aRMSE on the 30 temporal data streams.
A method ranked #1 stands for the method with the lowest aRMSE. Results show that MTR
methods that explicitly consider individual models’ dependencies do not outperform binary
relevance approaches that learn the behavior of each model individually. In fact, STADE
that uses arbitration (separate meta-model for each base-model) along with the proposed
meta-features (statistical, lagged errors and landmarking) surpass all the other methods in

86 Chapter 4. Dynamic Ensemble using Multi-Target Regression

ST
AD

E_
OR

I_S
TA

_L
AG

_L
AN

ST
AD

E_
OR

I_S
TA

_L
AG

ST
AD

E_
OR

I_S
TA

_L
AN

ST
AD

E_
OR

I

ST
AD

E_
OR

I_S
TA

M
TR

S_
OR

I

M
TR

S_
OR

I_S
TA

M
TR

S_
OR

I_S
TA

_L
AN

SS
T_

HT
_O

RI

RC
_O

RI
_S

TA
_L

AN

SS
T_

HT
_O

RI
_S

TA
_L

AN

RC
_O

RI

SS
T_

HT
_O

RI
_S

TA

IS
OU

P_
OR

I

RC
_O

RI
_S

TA

IS
OU

P_
OR

I_S
TA

_L
AN

IS
OU

P_
OR

I_S
TA

Method

2

4

6

8

10

12

14

16
Ra

nk

Figure 4.2: Boxplot illustrating the distribution of the rank and respective of MTR based
meta-layer in terms of aRMSE.

estimating the actual loss of individual models. Besides, the problem transformation methods
MTRS approach performs better in average compared to other methods (except STADE).
Also, including statistical and landmarking meta-features along with problem transforma-
tion (MTRS and RC) and algorithm adaptation (iSOUP and SST-HT) MTR methods often
deteriorate overall meta-layer predictive performance conversely to STADE.

We measure the magnitude of change in the predictive performance that translates
to the improvement or deterioration achieved by the best performing method in average
in terms of aRMSE relative to other methods. Figure 4.3 depicts the distribution of the
percentual difference where a value p below (resp. above) 0 stands for an improvement
(resp. deterioration) of |p|%. In general, STADE_STA_LAG_LAN tends to improve in
average all the other methods in terms of aRMSE that reflects the ability of the meta-
layer in predicting the actual error of individual base-models. Significant improvement is
achieved against the MTR methods that explicitly consider base-models dependencies and
more particularly iSOUP that is an algorithm adaptation method using tree models. On the
other hand, moderate improvement is highlighted against other STADE variants. Experiments
demonstrate that STADE meta-learning using additional meta-features described in Table 3.1
achieve competitive results and are able to learn and predict the behavior of base models in
the pool M.

4.3.3 COMPARING MTR-BASED DES METHODS

In this section we compare the MTR-based DES methods to other windowing and meta-
learning based DES methods as well as state-of-the-art dynamic ensembles. According to
the results depicted in Chapter 3, experiments will cover trimming methods only where
a fixed ratio of the best performing base-model are included in the committee. In fact,

4.3 Empirical Experiments 87

IS
OU

P_
ST

A

IS
OU

P_
ST

A_
LA

N

IS
OU

P

SS
T_

HT
_S

TA

RC
_S

TA RC

SS
T_

HT
_S

TA
_L

AN

RC
_S

TA
_L

AN

SS
T_

HT

M
TR

S_
ST

A

M
TR

S_
ST

A_
LA

N

M
TR

S

ST
AD

E_
ST

A

ST
AD

E_
ST

A_
LA

N

ST
AD

E

ST
AD

E_
ST

A_
LA

G

Method

100

50

0

50

100
Im

pr
ov

.

Figure 4.3: Boxplot illustrating the distribution of the percentual difference and respective of
of the best performing MTR based meta-layer in average (STADE_STA_LAG_LAN) in terms
of aRMSE.

simply pruning a percentage of the worst performing base-models leads to the best results on
average in terms of predictive performance overall. Similarly, we compare methods on the
30 temporal data streams using the RMSE loss function in a prequential evaluation setting.
Figure 4.4 details the distribution of the rank and respective standard deviation of MTR-based
DES methods against other state of the art dynamic ensembles.

Results attest to their superiority of STADE when selection is applied relative to other
MTR approaches. The best performing MTR methods, except the BR approaches, is MTRS
that is also based on a two-layers learning framework where the second layer leverages the
predictions of the first one and the original feature vector in order to output the final m-
dimensional vector of errors. Besides, algorithm adaptation methods (iSOUP and SST-HT)
perform worse in average relative to problem transformation ones. Figure 4.5 depicts the
distribution of the percentual difference of the different MTR-DES methods using trimming
(TRIM) relative to the best performing one on average that is STADE_STA_LAG with
α = 0.3 according to the results of Figure 4.4. This comparison does not include other
STADE variants as this was discussed in Chapter 3.

The STADE method achieves mild improvement compared to MTRS while values are
higher for iSOUP and SST-HT variants yet under 5% in average. In order to analyze the
significance of the results stemming from the rank analysis, we use the Bayes sign test to

88 Chapter 4. Dynamic Ensemble using Multi-Target Regression

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.3
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_T

RI
M

_0
.3

ST
AD

E_
OR

I_S
TA

_L
AG

_T
RI

M
_0

.4
ST

AD
E_

OR
I_S

TA
_L

AG
_L

AN
_T

RI
M

_0
.4

M
TR

S_
OR

I_T
RI

M
_0

.3
M

TR
S_

OR
I_S

TA
_T

RI
M

_0
.3

M
TR

S_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.3
M

TR
S_

OR
I_T

RI
M

_0
.4

M
TR

S_
OR

I_S
TA

_T
RI

M
_0

.4
M

TR
S_

OR
I_S

TA
_L

AN
_T

RI
M

_0
.4

RC
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.4

RC
_O

RI
_S

TA
_T

RI
M

_0
.4

RC
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.3

RC
_O

RI
_S

TA
_T

RI
M

_0
.3

BL
AS

T
SS

T_
HT

_O
RI

_T
RI

M
_0

.3
SS

T_
HT

_O
RI

_T
RI

M
_0

.4
RC

_O
RI

_T
RI

M
_0

.4
SS

T_
HT

_O
RI

_S
TA

_L
AN

_T
RI

M
_0

.3
AR

F
SS

T_
HT

_O
RI

_S
TA

_L
AN

_T
RI

M
_0

.4
SS

T_
HT

_O
RI

_S
TA

_T
RI

M
_0

.3
SS

T_
HT

_O
RI

_S
TA

_T
RI

M
_0

.4
RC

_O
RI

_T
RI

M
_0

.3
IS

OU
P_

OR
I_S

TA
_L

AN
_T

RI
M

_0
.3

IS
OU

P_
OR

I_T
RI

M
_0

.3
ST

AC
KI

NG
IS

OU
P_

OR
I_S

TA
_L

AN
_T

RI
M

_0
.4

IS
OU

P_
OR

I_T
RI

M
_0

.4
IS

OU
P_

OR
I_S

TA
_T

RI
M

_0
.3

IS
OU

P_
OR

I_S
TA

_T
RI

M
_0

.4
M

ET
A_

ST
RE

AM
AD

D_
EX

P
SI

M
PL

E
AE

C

Method

0

5

10

15

20

25

30

35
Ra

nk

Figure 4.4: Boxplot illustrating the distribution of the rank and respective standard deviation
of MTR-based DES methods and state of the art methods in terms of RMSE

IS
OU

P_
OR

I_S
TA

_T
RI

M
_0

.4

RC
_O

RI
_S

TA
_T

RI
M

_0
.4

IS
OU

P_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.4

RC
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.4

IS
OU

P_
OR

I_T
RI

M
_0

.4

RC
_O

RI
_T

RI
M

_0
.4

SS
T_

HT
_O

RI
_S

TA
_T

RI
M

_0
.4

IS
OU

P_
OR

I_S
TA

_T
RI

M
_0

.3

RC
_O

RI
_S

TA
_T

RI
M

_0
.3

SS
T_

HT
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.4

SS
T_

HT
_O

RI
_T

RI
M

_0
.4

RC
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.3

IS
OU

P_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.3

RC
_O

RI
_T

RI
M

_0
.3

IS
OU

P_
OR

I_T
RI

M
_0

.3

SS
T_

HT
_O

RI
_S

TA
_T

RI
M

_0
.3

SS
T_

HT
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.3

SS
T_

HT
_O

RI
_T

RI
M

_0
.3

M
TR

S_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.4

M
TR

S_
OR

I_S
TA

_T
RI

M
_0

.4

M
TR

S_
OR

I_T
RI

M
_0

.4

M
TR

S_
OR

I_S
TA

_T
RI

M
_0

.3

M
TR

S_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.3

M
TR

S_
OR

I_T
RI

M
_0

.3

Method

30

25

20

15

10

5

0

Im
pr

ov
.

Figure 4.5: Boxplot illustrating the distribution of the percentual difference and respective of
of the best performing MTR based (STADE_STA_LAG in terms of RMSE

compare all the methods across the 30 temporal data streams against the best performing
one on average rank that is STADE_ORI_STA_LAG along with a Region of Practical

4.3 Empirical Experiments 89

Equivalence (ROPE) set to [−0.01,0.01]. We refer the reader to Chapter 3 for more details
on the Bayesian analysis. Figure 4.6 illustrates the proportion of probability that the best
performing STADE variant looses, draws or wins against each method represented by a
separate bar. MTRS variants with similar selection ratio α = 0.3 have high probability to

IS
OU

P_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.3

IS
OU

P_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.4

IS
OU

P_
OR

I_S
TA

_T
RI

M
_0

.3

IS
OU

P_
OR

I_S
TA

_T
RI

M
_0

.4

IS
OU

P_
OR

I_T
RI

M
_0

.3

IS
OU

P_
OR

I_T
RI

M
_0

.4

M
TR

S_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.3

M
TR

S_
OR

I_S
TA

_L
AN

_T
RI

M
_0

.4

M
TR

S_
OR

I_S
TA

_T
RI

M
_0

.3

M
TR

S_
OR

I_S
TA

_T
RI

M
_0

.4

M
TR

S_
OR

I_T
RI

M
_0

.3

M
TR

S_
OR

I_T
RI

M
_0

.4

RC
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.3

RC
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.4

RC
_O

RI
_S

TA
_T

RI
M

_0
.3

RC
_O

RI
_S

TA
_T

RI
M

_0
.4

RC
_O

RI
_T

RI
M

_0
.3

RC
_O

RI
_T

RI
M

_0
.4

SS
T_

HT
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.3

SS
T_

HT
_O

RI
_S

TA
_L

AN
_T

RI
M

_0
.4

SS
T_

HT
_O

RI
_S

TA
_T

RI
M

_0
.3

SS
T_

HT
_O

RI
_S

TA
_T

RI
M

_0
.4

SS
T_

HT
_O

RI
_T

RI
M

_0
.3

SS
T_

HT
_O

RI
_T

RI
M

_0
.4

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
of

 p
ro

ba
bi

lit
y

STADE_ORI_STA_LAG_TRIM_0.3 loses STADE_ORI_STA_LAG_TRIM_0.3 draws STADE_ORI_STA_LAG_TRIM_0.3 wins

Figure 4.6: Proportion of probability of STADE_STA_LAG_LAN winning/drawing/losing
against other MTR based DES and state of the art methods according to the Bayes sign test

draw with the best performing STADE approach whereas algorithm adaptation methods
have very little probability to achieve a draw. Using additional statistical and landmarking
meta-features along with RC enhances predictive performance.

4.3.4 COMPUTATIONAL COST

Finally, we compare the MTR meta-learning approaches in terms of computational cost
including memory that stands for the model size and total time required to test and train on
all the instances of the stream. We analyze the distribution of the ratio between the resources
required by the STADE binary relevance method to the resources required by other problem
transformation and algorithm adaptation MTR methods. Figure 4.7 depicts the distribution
of the ratio of the memory (left) and time (right) required by STADE using ORI_STA_LAG
relative to other MTR methods and respective standard deviation where values below (rep.
above) 1 translate to lower (rep. higher) computational cost. STADE variants are grouped by
their respective set of meta-features regardless of the selection ratio as this step has negligible
impact on the computational cost.

MTRS variants have similar computational requirements relative to STADE while RC
variants are lightweight less demanding. On the other hand, algorithm adaptation methods
namely, iSOUP and SST-HT are significantly smaller and faster relative to STADE. Indeed,

90 Chapter 4. Dynamic Ensemble using Multi-Target Regression

IS
OU

P_
OR

I

IS
OU

P_
OR

I_S
TA

IS
OU

P_
OR

I_S
TA

_L
AN

SS
T_

HT
_O

RI

SS
T_

HT
_O

RI
_S

TA

SS
T_

HT
_O

RI
_S

TA
_L

AN

RC
_O

RI

RC
_O

RI
_S

TA

RC
_O

RI
_S

TA
_L

AN

M
TR

S_
OR

I

M
TR

S_
OR

I_S
TA

M
TR

S_
OR

I_S
TA

_L
AN

Method

0

2

4

6

8

10

12

14
Ra

tio
Memory Time

Figure 4.7: Boxplot illustrating the distribution of the ratio of the memory (left) and time
(right) required STADE using ORI_STA_LAG relative to other MTR methods.

iSOUP and SST-HT using the original set of features only, are approximately 10 time less
memory consuming in average and 4 times faster whereas the same models using additional
meta-features (STA and LAN) lead to a reasonable additional computational cost.

In fact, despite their superiority in terms of predictive performance, problem transforma-
tion methods (STADE, MTRS and RS) are considerably more memory and time demanding
relative to algorithm adaptation methods that is iSOUP and SST-HT. In fact, computational
resource usage is a crucial aspect in the streaming setting and various application domains
where both memory and time are limited. Thus, one may wish to favor lower computational
cost at the expense of predictive performance in some application domains according to the
sensitivity of the data and the impact of decisions.

4.3.5 DISCUSSION

This chapter served as an introduction to formulate the streaming meta-learning DES problem
as a multi-target regression task. The idea has emerged due to the encouraging results
of Multi-Label Classification (MLC) problem that was successfully used to address DES
problems on the classification task. The results raise interesting discussion on several aspects
that can considerably improve the proposed approach.

On multi-variate concept drift

The predictive performance of the meta-layer can be highly altered by concept drift in
evolving data streams. There is a large collection of change detection methods for single
target variables. However, the application of these methods on streaming multi-dimensional
data is not straightforward. One can use a separate change detector for each target and trigger
drifts separately following the problem transformation approach for MTR. Nonetheless, this
approach is unable to detect changes in the pairwise behavior, particularly when targets are

4.4 Summary 91

correlated. In fact, incrementally training heterogeneous ensembles on the same data and
for the same task renders highly correlated models. Nonetheless, when a drift occurs, the
collective behavior is very likely to be altered.

Multi-variate change detectors were studied and can be used to enhance the predictive
performance of MTR methods. Kuncheva [97] presented SPLL (Semi-Parametric Log-
Liklihood) as its name indicates is a log-likelihood based change detection method that is
able to detect changes in the variance and covariance between the variables if the means are
the same. Using multi-variate change detectors for streaming data can help improving meta-
layer performance at modelling individual model’s behavior in non-stationary environments.

On the dimensionality problem

For a large number of base-models, problem transformation methods such as MTRS and
RC face the challenging task of solving a large number of single-target problems and their
complexity scales with the number of base-models. In this case, it is computationally
more interesting to consider the algorithm adaptation approaches such as Multi-Target
Regression Trees (MTRT). Besides, algorithm adaptation methods, are assumed to provide
better interpretability according to the number of targets. In fact, it becomes bulky to analyze
each model and retrieve information about its relationships to other models if the number of
targets is too large.

4.4 SUMMARY

In this Chapter, we reformulated the dynamic ensemble selection (DES) problem for the
forecasting task in temporal data streams task as a multi-target regression (MTR) problem.
Conversely to the STADEmethod presented in Chapter 3 that uses arbitration where a separate
meta-model is in charge of each base model, we have studied several MTR approaches
for streaming data that explicitly consider base-models dependencies while learning their
respective behavior. We conducted an extensive empirical study on 30 temporal data streams
to compare both problem transformation and algorithm adaptation methods at the meta-level.
More particularly, we have compared the ability of the meta-layer to learn and predict the
actual errors of each base-model in the pool using MTR-specific loss measure such as aRMSE.

Results were unconvincing to what was expected from explicitly considering dependen-
cies of the errors made by each model in the ensemble. In fact, STADE, that is considered
as a binary relevance (BR) MTR algorithm outperforms all the other methods notably when
additional meta-feature reflecting statistical information extracted from the data stream as
well as information on the performance of other simple and fast models are used. Besides,
including a number of the k previous real-error values of each base-model highly contributes
to enhancing overall predictive performance of STADE.

Model Compression

Ensemble methods that dynamically combine several models have shown superior predic-
tive performance in data streams forecasting compared to individual models. However,
ensembles are renowned for their complexity and computational costs which makes them
unsuitable in cases where both resources and time are limited such as IoT applications. We
investigate model compression in the streaming setting in order to overcome the aforemen-
tioned drawbacks. We train a single model to mimic the behavior of a highly performing
complex ensemble while drastically reducing its complexity in terms of time and memory
consumption.

The rest of the chapter is organized as follows: Section 5.1 introduces Model Com-
pression (MC) for Dynamic Ensemble Methods (DES) to address the forecasting task in the
streaming setting. Section 5.2 details our contribution for adaptive model compression on
DES methods to cope with evolving temporal data streams. Experiments on both real and
synthetic data streams using relevant state-of-the-art DES methods are presented in Section
5.3 to measure the impact of compression in terms of predictive performance as well as
computational cost. Finally, Section 5.4 concludes with a summary of our contributions and
raises issues and directions for future work.

5

94 Chapter 5. Model Compression

5.1 COMPRESSING DYNAMIC ENSEMBLES FOR STREAMING DATA

Dynamic ensemble methods have demonstrated highly competitive results in terms of pre-
dictive performance for temporal data streams forecasting. We have over-viewed different
state-of-the-art and novel dynamic ensemble methods that are able to cope with the evolving
nature of temporally dependent data. Nonetheless, despite their superior predictive per-
formance, DES methods lead to high computational costs in terms of time and memory
compared to individual models. The overhead issue is particularly restraining in stream
setting applications where predictive models are deployed on devices with very limited
resources such as IoT and embedded systems. Besides, instances are released at high fre-
quency in the stream which requires much faster predictive models for the sake of real-time
reactivity. In fact, dynamic ensembles are time consuming as they have to frequently update
models’ weights. Last but not least, DES methods behave like "black boxes" and lack of
interpretability which leads to serious challenges in understanding model’s decision [99]. In
fact, understanding and explaining predictive models decisions has become a major task in
the research field of AI and ML over the last years. This is a particularly important aspect in
sensitive application domains including ML driven decision-making which require accurate
yet transparent models.

The computational complexity as well as the lack of interpretability have motivated the
emergence of new research fields to solve the aforementioned drawbacks. In fact, Model
Compression (MC) is a promising approach to create smaller and faster models while maintain-
ing highly competitive predictive performance. We investigate the use of model compression
for the forecasting task in the streaming setting using dynamic ensemble methods to cope
with the evolving nature of temporal data. We show that compressing a highly performing
dynamic ensembles into an individual model leads to better predictive performance when
compared to an individual learner while significantly reducing computational costs. We
conduct an extensive experimental study on both real and synthetic temporal data streams to
measure the impact of compression on predictive performance as well as the computational
cost.

5.1.1 MODEL COMPRESSION FOR BATCH LEARNING

Model Compression (MC) has emerged as a very promising solution to overcome the com-
putational shortcomings of dynamic ensemble methods. The main idea is to use a fast and
compact model to approximate the function learned by a slower, larger, but highly performing
model [31]. MC consists in training a single predictive model (Student) to mimic the behavior
of a highly performing yet complex model (Teacher). The teacher model is often an ensemble
combining several individual models. We will refer to this approach as the Student-Teacher
(ST) framework. The goal of a predictive model on streaming data is to generalize well
to unseen observations. MC promotes this by training a learning algorithm to mimic the
function of a dynamic ensemble that proved to generalize well [76]. The Student-Teacher
(ST) approach consists of a two-stage learning process described in the following steps:

• Train the teacher T using a training set Dtr(x,y);

• Retrieve the predictions of the teacher ŷT on unseen observations Dts(x,y);

5.1 Compressing dynamic ensembles for streaming data 95

• Train the Student s using a newly constructed set of observations Dts(x, ŷT), where the
explanatory variables are the original ones, but the target variables are replaced with
the predictions of the teacher;

• Deploy the student and use it predict on all the upcoming test instances.

Most of the existing MC methods are tailored for batch learning and focus on the problem
of classification [31, 76, 87, 103, 161, 169]. The ST approach was often applied in order
to reduce the complexity for neural networks. Hinton, Vinyals, and Dean [76] used ST and
obtained a more compact single neural network that has comparable predictive performance
relative to the complex ensemble of neural networks. Handful studies tackle MC for regression
tasks [45, 142, 148] and more particularly for the forecasting problem using dynamic
ensemble methods. Cerqueira et al. [39] applied model compression to address uni-variate
time series forecasting using DES methods such as ADE and AEC, to name only a few. Figure
5.1 describes the proposed ST-based model compression approach for DES as described in
[39].

Figure 5.1: Student-Teacher general framework

5.1.2 COMPRESSION FOR STREAMING DATA

Model Compression has proved to be particularly effective when applied to dynamic ensem-
bles of forecasters in traditional batch learning [39]. Nonetheless, the two-stage scenario
described so far is likely to be limited when dealing with evolving data streams. In fact, if a
concept drift occurs, the predictive performance of the deployed student is expected to be
affected and decrease when novel concepts emerge and consequently lose the advantage of
compressing a highly performing teacher [40].

In this chapter, we propose an adaptive Student-Teacher (ST) based model compression
approach for temporal data streams where both the teacher and the student keep learning
as new data are released. The teacher learns from new data instances while the student
learns from new predictions retrieved from the teacher. The complex teacher model can

96 Chapter 5. Model Compression

be deployed on a remote machine with high computational capacity whereas the student
is deployed on a low capacity device such as IoT applications. The proposed method uses
an adaptive ST approach for uni-variate temporal stream forecasting to cope with changes
in the characteristics of the data. The proposed approach allows taking advantage of the
predictive performance of dynamic ensembles along the stream while drastically reducing
their computational costs.

5.2 ADAPTIVE MODEL COMPRESSION FOR DATA STREAMS FORECASTING

Following the uni-variate temporal data streams forecasting task described in Section 2.1.2,
dynamic ensemble methods have demonstrated highly competitive predictive performance
for temporal data streams forecasting compared to single models. In the streaming setting, it
is important for learning models to meet tough time and memory requirements. However,
ensemble methods are too complex whereas simple individual models are fast and compact
to the detriment of prediction quality. We propose a novel approach for model compression
tailored to evolving data streams to maintain a fast and compact but yet highly performing
predictive model.

Similarly, we describe the proposed approach in three main steps: i) create the dynamic
ensemble to serve as the Teacher (T); ii) train the student model(s) using teacher’s predictions;
iii) handle concept drifts when they occur in the stream. We have over-viewed in Section 2.2
several dynamic ensemble methods tailored to the streaming data forecasting task that can
serve as a teacher. We will discuss in more details steps ii) and iii) in the next sections.

5.2.1 TEACHING DATA

Model compression methods for classification often rely on the predictions of the teacher only,
without considering the error made regarding the true value of the target. However, the real-
valued predictions are unbounded in uni-variate numeric temporal stream forecasting task.
Thus, the teacher can give highly erroneous guidance to the student, hence the importance of
emphasizing on the real value of the target. On the other hand, ensemble methods are known
for their generalization ability and robustness to noise and concept drift in the data stream
mining field. We leverage both teacher’s predictions and the true values of the target in
training the student model. Therefore, instead of using the teacher’s prediction directly as a
target, we exploit the true value in order to lessen the impact of highly inaccurate predictions
provided by the teacher that are likely to alter the predictive performance of the student.
Besides, instead of training the student on the true values of the stream directly, smoothing
the true values of the target using teachers’ predictions aims at taking advantage of the
robustness of ensemble methods against noise and concept drift that can occur in the stream.

We achieve this by controlling the contribution of the teacher according to its error
relative to the ground truth, the higher the error, the lower the weight granted to the teacher.
This will allow us to take advantage of the generalization ability and the predictive power of
the teacher while mitigating the risk related to highly inaccurate predictions. Equation 5.1
describes the regularization function using a smoothing factor αt applied to harness teacher’s
predictions and the ground truth. We refer to teacher’s prediction by ŷT

t , the true values by yt

5.2 Adaptive Model compression for data streams forecasting 97

and y′t is the input value used to train the student.

ŷ′t = αt × ŷT
t +(1−αt)× yt (5.1)

The weight αt is dynamic and defined as αt = 1− eT
t where eT

t is the sMAPE error
incurred by the teacher while predicting yt .

5.2.2 STUDENT MODEL TEACHING APPROACH

The proposed ST-based adaptive MC leverages both teacher’s predictions as well as the
true target values to train the student model. In this section, we describe different teaching
scenarios based on the way the student model "invokes" the teacher to retrieve its predictions.
As a matter of fact, the teacher model is often deployed on remote high-powered/resources
machines scaled to maintain highly complex dynamic ensemble models whereas the student
model is deployed on low-energy and capacity devices such as IoT and embedded systems.
Hence, teacher’s predictions are costly to obtain and the student model must be judicious/-
cautious to determine when to invoke the teacher in order to meet with the resource-wise
environment.

The first compression scenario is strongly supervised where we assume that the student
has the benefit to afford teacher’s predictions for each instance in the stream. The two
remaining scenarios are weakly supervised and invoke the teacher at specific times or
instances based on the predictive performance of the student. The first weakly supervised
strategy invokes the teacher for a given instance xt if it was apparently hard to predict.
The second weakly supervised compression approach uses a warning detector and invokes
the teacher when a deviation is triggered in the predictive performance of the student
model. The goal of the weakly supervised methods is to minimize resource consumption
while maintaining high performance. We note that the term supervised is used for teacher
predictions availability only to perform compression and not for the true values of the target
that are assumed to be available for each instance for both the teacher and the student with
no delay.

5.2.2.1 Strongly supervised compression

We present SIMON for StreamIng MOdel compressionN which is strongly supervised using
teacher’s predictions. The predictions of the teacher are available for each instance in the
stream in order to update the student model w.r.t. the true value of the target. This implies
permanent communication between the teacher and the student which is often unfeasible
particularly in IoT devices with limited resources. Algorithm 5 describes the fully supervised
ST-based streaming model compression. The function predict(.) is used to retrieve model’s
prediction given the test instance xt . The function update(.) is used to update the predictive
model with the newly released labeled instances in the stream. The Regularization(.)
function computes a smoothed target value that leverages both the teacher’s prediction and
the true value according to one of the methods detailed in Section 5.2.1.

5.2.2.2 Semi-supervised compression

The SIMON-SMILE, for SIMON-SeMI-supervised LEarning, is a weakly supervised com-
pression approach that assumes limited access to the predictions of the teacher. The student

98 Chapter 5. Model Compression

Algorithm 5: SIMON
Input : S: stream, P(): performance estimation function, T : Teacher, s: Student
Output : ŷt for each instance in the stream

1 while HasNext(S) do
2 (xt ,yt)← next(s) // Get next instance

3 ŷt ← predict(S,xt) // Return Student’s prediction

4 ŷT
t ← predict(T,xt) // Get Teacher’s prediction

5 ŷ′← Regularization(yt , ŷT
t) // Regularized target

6 update(T,xt , ŷt)

7 update(s,xt , ŷ′t)
8 end

model "invokes" the teacher if it considers necessary due to instance prediction hardness
(difficulty). The semi-supervised approach is a desirable property in the case of model
compression due to the cost associated with the teacher’s expertise query.

A test instance xt is said "hard" to predict if the incurred error by the student is greater
than the average error computed on very similar and past instances. In fact, since the model
is deployed in a prequential setting, the predictive performance of the student model is
expected to get better as it is updated using newly released training instances. However, the
predictive performance might be altered by noise or change (concept drift). Thus, the student
can request teacher’s advice since the teacher is assumed to be better than individual models
to handle noise and adapt to concept drift. Similarly to SLOPE defined in Section3.1.1.1, we
compute the average loss incurred in a local region defined using the k nearest neighbors
queried over a sliding window w. Algorithm 6 describes in more details the steps of the
SIMON-SMILE approach.

5.2.2.3 Performance based compression

SIMON-PELE (SIMON- PErformance based LEarning) is a weakly supervised ST based
MC where the student model invokes the teacher when a warning is triggered in its predictive
performance. Technically, the student keeps learning from the real values of the target
released in the stream, however, when a change occurs in the characteristics of the data,
the predictive performance of the student is very likely to be altered or damaged. When a
warning is flagged, we refer to the teacher and invoke its predictions in order to update the
student model. In fact, complex dynamic ensemble methods are deemed to be better for their
robustness to noise and recovery from concept drift. Algorithm 7 depicts the drift based
adaptive model compression where any state-of-the-art change detection method can be used
to monitor student’s loss and trigger warnings.

5.2.3 CONCEPT DRIFT ADAPTATION FOR STREAMING MC

Temporal data streams are expected to evolve over time and therefore be subject to concept
drift that translates into changes in the characteristics of the data generation process [156].
Concept drift may alter the predictive performance or completely invalidate the current
learned model. One of the best assets of dynamic ensembles methods is their ability to

5.2 Adaptive Model compression for data streams forecasting 99

Algorithm 6: SIMON-SMILE
Input : S: stream, T : Teacher, s: Student, P(): performance estimation function,

k: number of neighbors, w: sliding window size
Output : ŷt for each instance in the stream

1 while HasNext(S) do
2 (xt ,yt)← next(s) // Get next instance

3 ŷt ← predict(S,xt) // Return Student’s prediction

4 eT ← P(ŷt ,yt) // Student’s error on current instance

5 eT
k,w← Pk,w,S // Student’s error suing SLOPE

6 if eT
k,w ≤ eT then
// Student performs worse, invoke teacher

7 ŷT
t ← predict(T,xt) // Get Teacher’s prediction

8 ŷ′← Regularization(yt , ŷT
t) // Regularized target

9 end
10 else

// Student performs better, no need for teacher’s prediction

11 ŷ′← yt

12 end
13 update(T,xt , ŷt)

14 update(s,xt , ŷ′t)
15 update(w,xt ,yt , ŷt)

16 end

Algorithm 7: SIMON-PELE
Input : S: stream, T : Teacher, s: Student, P(): performance estimation function,

δw: warning threshold, C(.): change detection method
Output : ŷt for each instance in the stream

1 while HasNext(S) do
2 (xt ,yt)← next(s) // Get next instance

3 ŷt ← predict(S,xt) // Return Student’s prediction

4 errT = P(ŷt ,yt)

5 if C(δw,errT) then
// Warning Detected, call teacher for help

6 ŷT
t ← predict(T,xt) // Get Teacher’s prediction

7 ŷ′← Regularization(yt , ŷT
t) // Regularized target

8 end
9 update(T,xt ,yt)

10 update(s,xt , ŷ′t)
11 end

handle concept drift. However, single models do not share the same strength and speed of
adaptation and recovery when drifts occur compared to dynamic ensemble methods. In this
context, STUDD [37] (Student–Teacher approach for Unsupervised Drift Detection) is a

100 Chapter 5. Model Compression

novel unsupervised drift detection approach based on an ST learning paradigm. A teacher
is used for predicting new instances and monitoring the mimicking loss of the student for
concept drift detection. The student’s imitation loss that stands for the discrepancy between
the teacher’s prediction and student’s prediction on the same instance is monitored using any
state-of-the-art drift detector. When concept drift occurs, the collective behavior between the
teacher and student models is likely to be altered.

That said, it is crucial that the student keeps learning from the teacher as new data
arrive in order to carry on the advantage of the teacher’s adaption, robustness and predictive
capacities. To cope with evolving data streams, the informed adaptation approach explicitly
uses a concept drift detection mechanism to trigger any decline in the overall predictive
performance. If a drift is flagged, the default behavior is to replace the current model with
a new one in order to consolidate the new concept. However, this may decrease overall
performance since the new model has not been trained on any instance. We have followed
tho twofold adaptation strategy presented in [66] to implement Adaptive Random Forest
(ARF). Instead of resetting the model as soon as a drift is detected, we use two different
drift detection levels. The first one is more indulgent and detects warnings whereas the
second one is more rigorous and detects drifts. After a warning has been detected, another
background student (sb) starts learning in parallel without impacting the predictions. The
background student replaces the old student (s), if and only if the warning flag amplifies to a
drift. Most of the concept drift detection methods focus on detecting changes by tracking
significant deviation in the loss of the model, we have used the sMAPE error measure to
monitor the predictive performance of the student model. If a warning or drift is reported,
this means that the student model is under-performing in predicting the actual values of the
stream and hence should be replaced. The proposed streaming model compression method is
not bounded to a specific drift detector method. We have used the ADWIN change detector
[11] with confidence level δw and δd for warning and drift detector respectively.

The Adaptive Model Compression is depicted in Algorithm 8. To cope with stationary
data streams any incremental forecasting algorithm can be used as the student model and be
updated as new instances are released in the stream. We monitor the predictive performance
of the student model pt along the stream. When a warning is detected (Line 13), a background
student sb starts learning on new data and replaces the current/old student s if the warning
escalates to a drift (Line 16).

5.3 EXPERIMENTS

In this section, we investigate and analyze each compression scenario discussed above
(SIMON, SIMON-SMILE, and SIMON-PELE) to build a compressed student and leverage
both teacher predictions and true values of the target. We provide an extensive empirical
study to measure the impact of the proposed adaptive model compression for temporal
data streams forecasting. We will answer the following questions throughout the set of
experiments.

Q1 How does an individual model trained to mimic the behavior of a dynamic ensemble
performs relative to the dynamic ensemble itself?

5.3 Experiments 101

Algorithm 8: Adaptive Model compression
Input : s: stream, P(): performance estimation function, T : Teacher, s: Student,

sb: Background Student, δw: warning threshold, δd : drift threshold, C(.):
change detection method

Output : ŷt for each instance in the stream
1 sb← NULL;
2 while HasNext(S) do
3 (xt ,yt)← next(s) // Get next instance

4 ŷT
t ← predict(T,xt) // Get Teacher’s prediction

5 ŷt ← predict(S,xt) // Return Student’s prediction

6 pt ← P(ŷt ,yt) // Student’s error

7 ŷ′t ← Regularization(yt , ŷT
t)

8 update(T,xt , ŷt)

9 update(s,xt , ŷ′t)
10 if sb then

// Background student exists

11 update(sb,xt , ŷ′t)
12 end
13 if C(δw, pt) then

// Warning Detected

14 sb←CreateStudent()
15 end
16 if C(δd , pt) then

// Change Detected

17 S← sb

18 sb← NULL // Reset background student

19 end
20 end

Q2 How does a compressed model perform relative to the same model trained directly on
the real values of the target ?

Q3 What is the advantage of leveraging both teacher’s predictions and true values of the
target when training the student model?

Q4 What is the relative gain in terms of predictive performance of compressed students
relative to the same model trained directly on the data ?

Q5 What is the loss in terms of predictive performance of the compressed models relative
to their teachers ?

Q6 What is the relative computational gain by compressing a dynamic ensemble into a
single individual model?

Q7 What is the advantage of using an explicit adaptation approach to maintain the student
model ?

102 Chapter 5. Model Compression

First we analyze each compression scenario (SIMON, SIMON-SMILE, SIMON-PELE)
using different teacher ensembles and compare compressed models (students) against their
respective teachers as well s the same individual model trained directly on the data stream
(RHT). We examine three different methods to leverage both teacher’s predictions and true
values of the target as described in Section 5.2.1. We conduct a comparison in terms of
predictive performance and computational cost.

Table 5.1 describes the abbreviations used throughout the experimental study. The first
three rows address the the regularization/smoothing to leverage both teacher’s predictions
and true values (ground truth) described in Equation 5.1 where M_PERF (resp. M_0.5)
stands for dynamic (resp. equal) weighting. Finally, ADAPT points to the adaptive model
compression described in Section 5.2 that monitors the loss incurred by the student and
replaces it with a newer where a drift is triggered.

Table 5.1: Terminology (tags) and respective description for compression approaches

Tag Description

None
The student learns from the predictions of the teacher only without any
smoothing/regularization that translates to α = 1.

M_PERF
Adaptive target regularization using αt based on the performance of the
teacher 5.1.

M_0.5
Static target regularization using α = 0.5 that grants the same weight to
both teacher prediction and true value of the target

ADAPT Adaptive model compression described in Algorithm 8

5.3.1 EXPERIMENTAL SETUP

For dynamic forecast combination methods, we focus on the following approaches: ARF,
BLAST, and STACKING described in Chapter 2. Our study includes real-world ans synthetic
uni-variate temporal data streams described in Chapter A. In summary, our analysis is based
on 30 temporal data streams using an embedding size p = 10. We use the root mean squared
error (RMSE) as evaluation metric in a prequential setting, where each instances is first used
to test the model that to update it. Similarly to Chapter 3, a large batch is used to ensure
a warm start for the dynamic ensemble methods using the blocked prequential approach
described in Section A.3. Notwithstanding, in most of our analysis we will compare different
forecasting approaches according to their average rank in the 30 temporal data streams. A
rank #1 means that the method was the best performing one (lowest RMSE) on a given data
stream.

For the weakly supervised SIMON-SMILE, we used the SLOPE (Section 3.1.1.1) evalu-
ation method based on a sliding window of w = 200 and k = 5 nearest-neighbors to compute
the confidence of the compressed model by computing the loss in the local region sur-
rounding the test instance. In addition to the rank, we analyze the percentual difference
(relative change) in terms of predictive performance between the the compressed student
and both teachers and RHT. This allows us to quantify the improvement or deterioration in

5.3 Experiments 103

SIMON SIMON_S SIMON_P Other
supervision

2

4

6

8

10

Ra
nk

None M_0.5 M_PERF ARF RHT

Figure 5.2: Boxplots illustrating the distribution of the rank and respective standard deviation
of compressed student relative to ARF and RHT in terms of RMSE grouped by their respective
compression scenario (SIMON, SIMON-SMILE, and SIMON-PELE)

the predictive performance achieved using compression. The gain (resp.loss) in predictive
performance is computed as described in Equation 3.5 and expressed in percentage.

Ranking Student vs Teacher vs RHT

Figures 5.2, 5.3, and 5.4 show the results that address the research questions Q1 and Q2 and
analyze how the predictive performance of a compressed student compares with ensemble
methods (teachers) and individual model trained directly on the data RHT. We detail the
results for each teacher enumerated above (ARF, BLAST and STACKING). First, Figure 5.2
addresses model compression using ARF as a teacher and illustrates the distribution of the
rank and respective standard deviation of student models relative to their teacher and RHT
grouped by compression scenario (SIMON, SIMON-SMILE, SIMON-PELE). Models were
ranked according to the RMSE scored for each temporal data stream. Besides, we display for
each compression scenario the three approaches to regularize the target value used to train
the student model and weight teacher’s predictions and trues values of the target observed in
the stream. The category Other groups both the dynamic ensemble method that served as
teacher as well as RHT trained directly on the data.

Results, show, as expected, that ARF outperforms all its compressed counterparts variants
using different compression scenarios (SIMON, SIMON-SMILE and SIMON-PELE) as
well as the individual RHT. Compressed students in a strongly supervised scenario (SIMON)
and weakly supervised one using student’s confidence (SIMON-SMILE) perform worse
in average compared to RHT (rightmost box). In more details, training the student model
using teacher predictions only noted with None scores the highest average rank compared
the two other variants that leverage both teacher predictions and trues values of the target.
Compression using equal weights (M_0.5) accomplish the best average rank in the SIMON
and SIMON-SMILE and outperform the use of the dynamic smoothing factor αt based on

104 Chapter 5. Model Compression

SIMON SIMON_S SIMON_P Other
supervision

2

4

6

8

10

Ra
nk

None M_0.5 M_PERF BLAST RHT

Figure 5.3: Boxplots illustrating the distribution of the rank and respective standard deviation
of compressed student relative to BLAST and RHT in terms of RMSE grouped by their
respective compression scenario (SIMON, SIMON-SMILE, and SIMON-PELE)

the performance of the teacher (M_PERF).

The proposed weakly supervised SIMON-PELE scenario performs better on average
compared to SIMON and SIMON-SMILE. We can notice that the M_PERF variant shows
the best average rank and outperforms RHT. SIMON-PELE is based on monitoring the
loss of the student and "invoking" the teacher when a warning is triggered. Notwithstand-
ing, SIMON-PELE-based compression of ARF ensemble using the three different teaching
approaches, despite their competitive average rank, shows high standard deviation which
reflects the uncertainty about its predictive performance compared to RHT.

Similarly, we conduct in Figure 5.3 and 5.4, the same analysis addressing BLAST and
STACKING as teachers respectively. Overall, we can notice the same behavior where
compressing using SIMON and SIMON-SMILE do not manage to compete the average
rank of RHT. Besides, compressing BLAST and STACKING in SIMON-PELE scenario
demonstrates the best average rank among all other compression scenarios and achieves
competitive results compared to RHT despite higher standard deviation as well.

The SIMON-PELE demonstrates promising results for the application of model com-
pression on evolving temporal data streams forecasting. In fact, experiments using ARF,
BLAST and STACKING show that compressed students combining teacher’s predictions
and true values of the target perform slightly better on average compared to RHT. We bring
together all the results for the best performing scenario SIMON-PELE and analyze how
the predictive performance of compressed student compares to all the teachers and RHT.
Figure 5.5 depicts the distribution of the rank of all compressed variants in SIMON-PELE
grouped by the target smoothing value approach (None, M_0.5, and M_PERF) as well as
the teachers and RHT. Table 5.2 supports the results and details the average rank and standard
deviation of the compared methods. The rank column presents the average rank achieved by
each variant of compression and its respective standard deviation. A rank of #1 means the

5.3 Experiments 105

SIMON SIMON_S SIMON_P Other
supervision

2

4

6

8

10

Ra
nk

None M_0.5 M_PERF STACKING RHT

Figure 5.4: Boxplots illustrating the distribution of the rank and respective standard deviation
of compressed student relative to STACKING and RHT in terms of RMSE grouped by their
respective compression scenario (SIMON, SIMON-SMILE, and SIMON-PELE)

method was the best performing (lowest RMSE). Compressed students show better average
rank compared to RHT, particularly ST_ARF _M_PERF and ST_BLAST _None. However,
high standard deviation is scored, that shows that the results are widely spread and less
reliable.

None M_0.5 M_PERF ARF BLAST STACKING RHT

Method

2

4

6

8

10

12

Ra
nk

ARF BLAST STACKING Other

Figure 5.5: Boxplots illustrating the distribution of the rank and respective standard devi-
ation of all compressed student relative to all teachers and RHT with the best performing
compression scenario (SIMON-PELE) in terms of RMSE

106 Chapter 5. Model Compression

Table 5.2: Average rank and respective standard deviation of compression variants with
different teachers (ARF, BLAST and STACKING) in terms of RMSE for 30 temporal streams
using SIMON-PELE compression scenario.

Method Avg. Rank

ARF

None 8.957±3.126

M_0.5 9.261±2.115

M_PERF 7.130±3.123

BLAST

None 7.130±2.959

M_0.5 8.174±3.499

M_PERF 7.696±3.066

STACKING

None 8.609±3.354

M_0.5 8.435±2.873

M_PERF 8.043±2.836

Single RHT 9.652±2.080

Teacher

STACKING 3.087±3.190

ARF 2.739±2.072

BLAST 2.087±2.151

Quantifying the gain (loss) in the predictive performance to RHT and teacher:

We address both Q5 and Q4 to quantify the gain or loss in terms of predictive performance
of compressed models relative to their respective teachers and RHT per scenario. Figure 5.6
shows the distribution of the percentual difference in terms of RMSE scored by the compressed
students using a smoothing factor α (M_0.5 and M_PERF) or training the student model on
the prediction of the teacher only (None). Students are grouped by compression scenario
and each row stands for a different teacher (ARF, BLAST and STACKING). Figures on the
left (resp. right) side depict the distribution of the relative predictive performance loss/gain
in RMSE of the student compared to teacher (resp. RHT). We refer the reader to Equation 3.5
for detailed explanation on the significance of the values.

Not surprisingly, compressed students score high loss in RMSE compared to their re-
spective teachers particularly for BLAST and ARF where the average loss lays around/close
to 100% in average. In fact, compressing the best performing teachers causes high loss in
the predictive performance compared to STACKING where the average loss value gravi-
tates around 60%. Besides, student learning from the predictions of the teacher only show
lightweight higher average loss compared to M_0.5 and M_PERF that combine teacher
predictions and true values of the target. This pattern runs through all the compression
scenarios and teachers. Results also show a small advantage for smoothing that leverages
both real value of the target and the predictions of the teacher with equal weights. On the
other hand, compression does not achieve high improvements compared to RHT as one
would have expected/hoped. In fact, all variants of compressed student in the SIMON and
SIMON-SMILE scenarios for all teachers score positive average relative change which
means that the students do not improve RHT predictive performance. The best performing

5.3 Experiments 107

compression scenario SIMON-PELE achieves little performance gain with lower standard
deviation and have comparable behavior across all teachers..

Q6 Computational costs:

We discuss in this section the relative difference in the computational costs of the compressed
student relative to both dynamic ensemble teachers and single model RHT. We analyze the
distribution of the computational cost ratio between the teacher (resp. RHT) and all variants
of compressed students across all scenarios. We recall that a ratio ρ means that teacher (resp.
RHT) requires as much as ρ times the resources required by the compressed student. First,
we address in Figure 5.7 the computational cost related to memory, that is the space required
to store the learning model.

Figure 5.7a shows the distribution of the model size ratio between all variants of com-
pressed students grouped by compression scenario and their respective teachers across 30
temporal data streams. On average, compressed students are almost 20 times smaller which
means that the student model requires less than 5% the memory required by the ensemble
to be stored. SIMON-PELE and SIMON-SMILE are slightly larger (smaller average ratio)
compared to SIMON due to the additional complexity related to the proposed enhancement.
In fact, SIMON-SMILE confidence evaluation is based on SLOPE that stores a sliding win-
dow of size w = 200. The SIMON-PELE on its side, uses two ADWIN drift detectors that
are designed to meet the streaming settings requirements in terms of memory usage and do
not cause substantial additional cost.

Similarly, Figure 5.7b details the distribution of the model size ratio between all variants
of compressed students grouped by their respective compression scenario and the single
model RHT that is trained directly on the data stream. As the results suggest, students
have comparable model size to RHT with an average ratio gravitating around ρ = 1 with
small variation. SIMON and SIMON-SMILE compressed variants using None, M_0.5 and
M_PERF exhibit higher standard deviation compared to SIMON-PELE due to the difference
in the tree induction related to the modified values of the target value used to train the student.
In fact, SIMON and SIMON-SMILE make more use of the teacher predictions and thus the
tree is build differently compared to RHT that uses the true values of the target only. On the
other hand, SIMON-PELE induces a tree that is close to the one induced by RHT since it
invokes the teacher less frequently (only in the case of warnings).

Next, we address in Figure 5.8 the computational cost in terms of time (measured in
seconds) required to predict and update each model on all instances of the stream. In fact,
our experimental setup is based on prequential evaluation which means that each instance in
the stream is first used to test the model (predict) and then to update it as the true value of the
target is released. We emphasize that the total running time does not include communication
cost with the teacher and assume perfect communication with no delays. Figure 5.8a reports
the distribution of the time ratio between teacher and all variants of compressed student
counterparts grouped by their respective compression scenario. All the teacher methods are
relatively more time consuming compared to compressed students with a factor mean around
ρ = 10. The variants None, M_0.5, and M_PERF from the same compression scenario have
comparable running time. In fact the only difference lies in the computation of the teaching
data that include basic operations for M_0.5 and M_PERF. Finally, SIMON-SMILE is

108 Chapter 5. Model Compression

ARF

SIMON SIMON_S SIMON_P
supervision

0

50

100

150

200

Im
pr

ov
.

None M_0.5 M_PERF

(a) ARF Student teacher

SIMON SIMON_S SIMON_P
supervision

10

0

10

20

30

Im
pr

ov
.

None M_0.5 M_PERF

(b) ARF Student to RHT

BLAST

SIMON SIMON_S SIMON_P
supervision

0

50

100

150

200

250

300

Im
pr

ov
.

None M_0.5 M_PERF

(c) BLAST Student teacher

SIMON SIMON_S SIMON_P
supervision

10

5

0

5

10

15

20

Im
pr

ov
.

None M_0.5 M_PERF

(d) BLAST Student to RHT

STACKING

SIMON SIMON_S SIMON_P
supervision

0

20

40

60

80

100

120

140

Im
pr

ov
.

None M_0.5 M_PERF

(e) STACKING Student teacher

SIMON SIMON_S SIMON_P
supervision

10

5

0

5

10

15

20

25

Im
pr

ov
.

None M_0.5 M_PERF

(f) STACKING Student to RHT

Figure 5.6: Boxplots illustrating the distribution of the average percentual improvement
(expressed in percentage) and respective standard deviation of compressed student relative to
teacher (right) and RHT (right) grouped by their respective compression scenario (SIMON,
SIMON-SMILE, SIMON-PELE) in terms of RMSE.

5.3 Experiments 109

None M_0.5 M_PERF
Method

0

10

20

30

40
Ra

tio

SIMON SIMON_S SIMON_P

(a) Student to teacher

None M_0.5 M_PERF
Method

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Ra
tio

SIMON SIMON_S SIMON_P

(b) Student to RHT

Figure 5.7: Boxplots illustrating the distribution of the ratio and respective standard deviation
of compressed student relative to RHT (left) and respective teacher (right) grouped by
compression scenario (SIMON, SIMON-SMILE, SIMON-PELE) in terms of model size.

slower (smaller ratio) on average compared to SIMON and SIMON-PELE due to the SLOPE
component that computes for each incoming instance the local predictive performance of
the student on the k nearest-neighbors over a sliding window. Likewise, Figure 5.8b depicts
the distribution of the time ratio of compressed students relative to RHT. On average, RHT is
faster and the same comments arise regrading SIMON-PELE. Modifying the target value
used to train the student model compared to RHT impacts tree induction. In fact, RHT uses
the Hoeffding bound to control its split decisions and relies on calculating the reduction of
variance in the target space to decide among the split candidates. The smallest the variance
at its leaf nodes, the more homogeneous the partitions are.

None M_0.5 M_PERF
Method

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ra
tio

SIMON SIMON_S SIMON_P

(a) Student to teacher

None M_0.5 M_PERF
Method

0.2

0.4

0.6

0.8

1.0

1.2

Ra
tio

SIMON SIMON_S SIMON_P

(b) Student to RHT

Figure 5.8: Boxplots illustrating the distribution of the ratio and respective standard deviation
in terms of total running rime of compressed student relative to respective teacher (left) and
RHT (right) grouped by compression scenario (SIMON, SIMON-SMILE, SIMON-PELE).

5.3.2 ADAPTIVE COMPRESSION

In this section we address Q7 and analyze the proposed adaptive model compression that
uses an informed adaptation strategy. We have proposed to monitor the sMAPE loss in

110 Chapter 5. Model Compression

the performance of the compressed student and trigger warnings and drifts. We have used
the ADWIN drift detector with δw = 0.01 (resp. δ = 0.01) being the confidence parameter
of the warning (resp. drift) detector. As described in Algorithm 8, when a warning is
triggered a background students starts learning from new upcoming instances and replaces
the old one if the warning escalates to a drift. We analyze the predictive performance of
adaptive compressed students compared to their non-adaptive counterparts, the teachers and
RHT. We investigate adaptation for all the proposed scenarios (SIMON, SIMON-SMILE and
SIMON-PELE) with or without using a smoothing factor (None, M_0.5, and M_PERF).

Figure 5.9 shows the average rank and respective standard deviation of adaptive com-
pressed students and their non-adaptive counterparts in addition to teachers and RHT.
Each sub-figure illustrates a different compression scenario (SIMON, SIMON-SMILE,
SIMON-PELE) where student models are grouped by their respective teachers (ARF, BLAST,
STACKING). Likewise, the group Other includes both the dynamic ensembles and RHT.
Adaptive students are referred with the tag ADAPT whereas non-adaptive ones use the same
terminology as described in Table 5.1. Results depicted in sub-figures 5.9a and 5.9b for
SIMON and SIMON-SMILE scenarios respectively using adaptive compression are incon-
clusive. In fact, adaptive compressed students do no manage to outperform RHT on average
and show high uncertainty (standard deviation is high). Besides, adaptive students perform
worse on average compared to their non-adaptive counterparts for all the teachers and cause
significant loss in terms of predictive performance. This means that using an informed
adaptation strategy using ADWIN could not help improving the predictive performance of
student models in the strongly supervised scenario (SIMON) and weakly supervised one
SIMON-SMILE. Indeed, as illustrated before, the two scenarios with or without using the
smoothing factor α did not succeed compared to RHT. Finally, adaptive compression re-
sults on the SIMON-PELE scenario illustrated in sub-figure 5.9c show the same pattern
where adaptation worsens the average rank compared to non-adaptive counterparts with
high disruptive distribution of the ranks scored. However, some of the adaptive compres-
sion methods have comparable average rank compared to RHT even slightly better such as
ADAPT_M_PERF using ARF as teacher. By proposing a more proactive adaptive compres-
sion that relies on explicitly triggering warnings and drifts in the predictive performance
of the student, one would have expected better results overall when dealing with evolving
temporal data streams. However, results are closely related to the drift detector as well as
the loss criteria. Besides, data could include noise and outliers that can mislead the active
adaptation strategy.

5.4 SUMMARY

In this chapter we have investigated Model Compression (MC) for evolving temporal data
stream forecasting. Model compression using the Student-Teacher (ST) framework was
widely studied for classification and has demonstrated promising results for traditional
learning. Compressing dynamic ensembles for time series in the batch-learning [39] has
enabled the transfer of the capacity of large ensembles into compact predictive models. In
this chapter we investigated the applicability of model compression for dynamic forecast
combination approaches in the streaming setting. In fact, temporal data streams are expected

5.4 Summary 111

to experience concept drift that has negative impact on the predictive performance. We aim
at building an individual model to mimic the behavior of an ensemble to retain a competitive
predictive performance while being faster and more compact.

Conversely to existing methods that rely on the prediction of the teacher only to train the
student model, we proposed to leverage both teacher’s predictions and true value of the target
using a smoothing function that allows taking advantage from both. Besides, we introduced
three different compression scenarios based on the communication schema between the
teacher and the student. The first scenario SIMON, is strongly supervised where the student
model requires permanent communication with the teacher. However, communication is
costly in resource wise environments such as embedded systems related to the internet-of-
things where devices must save energy. We proposed two other compression scenarios where
the student has limited access to teacher’s predictions based on its predictive performance.
The SIMON-SMILE scenario is weakly supervised where the student is trained on the
true values of the target and requests teacher’s predictions in case of low confidence. The
confidence is computed on a local region defined by the nearest and most recent instances
observed in the stream. The last scenario SIMON-PELE is based on monitoring the loss
incurred by the student and updating it with the predictions of the teacher in case of warning.

Finally, we presented an adaptive model compression approach to cope with evolving
data streams. In fact, when a concept drift occurs, the collective behavior between the teacher
and the student model is expected to be altered. Hence, it is crucial to have an informed
adaptation strategy to discard the old student and train a new student model with recent
instances to consolidate the new concept.

The Experimental results presented in this chapter have demonstrated limited success
of the proposed compression methods across the different scenarios in terms of predictive
performance. Nevertheless, this work will establish a basis for model compression on
temporal data streams and discuss several leads to improve the results. In particular, it
offers some promising developments for the analysis of various compression and adaptation
methods to cope with concept drift.

112 Chapter 5. Model Compression

(a) SIMON

None
ADAPT

M_0.5

ADAPT_M_0.5
M_PERF

ADAPT_M_PERF ARF
BLAST

STACKING RHT

Method

0

5

10

15

20

Ra
nk

ARF BLAST STACKING Other

(b) SIMON-SMILE

None
ADAPT

M_0.5

ADAPT_M_0.5
M_PERF

ADAPT_M_PERF ARF
BLAST

STACKING RHT

Method

0

5

10

15

20

Ra
nk

ARF BLAST STACKING Other

(c) SIMON-PELE

None
ADAPT

M_0.5

ADAPT_M_0.5
M_PERF

ADAPT_M_PERF ARF
BLAST

STACKING RHT

Method

0

5

10

15

20

Ra
nk

ARF BLAST STACKING Other

Figure 5.9: Boxplots of the distribution of the rank and respective standard deviation in terms
of RMSE of the compressed students relative to teachers and RHT by scenario.

Real-time Machine Learning
Competitions with SCALAR

In this chapter, we present the competition "Real-time Machine Learning Competition on
Data Streams", a BigDataCup Challenge of the IEEE Big Data 2019 conference. This track
in the IEEE Big Data 2019 Big Data Cup represents Machine Learning competition on
data streams. There already exists a great community organizing various competitions on
machine learning tasks for batch learners. We introduce a similar approach to engage the
whole community in solving essential problems in the data stream mining field involving
fast incremental learners. The main idea is to release competition data in the form of stream
of small batches to build incremental learning models and participants continuously submit
their predictions in the form of stream as well. We run a data science competition based
on a real-time prediction setting, using a novel platform that meets the streaming setting
requirements. Besides, participants are urged to submit the predictions rapidly in the form of
stream as well to cope with newly released data. To the best of our knowledge, this is the
first data science competition conducted in real-time.

The chapter is organized as follows: Section 6.1 details the competition and describes
the winning solutions, Section 6.2 describes the SCALAR platform designed to meet the
requirement of online and streaming machine learning competition and contributes to the
Free and Open Source Software (FOSS) in the research community. Finally, Section 6.3
concludes this chapters and addresses potential future improvement directions.

6

114 Chapter 6. Real-time Machine Learning Competitions with SCALAR

6.1 REAL-TIME MACHINE LEARNING COMPETITION ON DATA STREAMS

The real-time machine learning competition was organized as a track in the IEEE Big Data
2019 Big Data Cup1 [18]. We have conducted a challenge on real-world case study with data
streams. The competition involved several participants from all over the world to adhere to
this novel challenge. The competition scenario falls within the network activity monitoring
application. Following the multi-step ahead point forecasting task described in Chapter 2,
the goal is to predict at time t the h upcoming values to be observed in the stream based on
historical data.

6.1.1 COMPETITION PROTOCOL AND TASK

The competition is run continuously for a specified duration where the test and training data
are issued in the stream with regards to the batch size as well as the time intervals defined
in the competition settings. The flow is made available to all the participants at the same
time and can be consumed independently. The competition was held in two phases. In the
first phase, which is not be taken into account for the final ranking, participants could build
and train their models and setup their environment based on one part of the data stream.
They will have enough time to tune their models and evaluate them against the baselines.
In the second phase is online where participants continuously receive batches coming from
the rest of the data stream to test their models and submit their predictions. Predictions are
submitted online as well and evaluation is performed in a prequential setting. Since the data
are released in a streaming fashion including small batches, participants have to submit their
predictions for the current batch before the next batch is released. Otherwise, they are be
penalized with a worst-case value (a value is defined for each evaluation metric).

Figure 6.1 illustrates the general workflow of the real-time competition.

Figure 6.1: Competition streaming workflow

• Registration/Subscription: all participants are asked to register to the competition
platform. Thereafter, each user can subscribe to the competition and get a secret key
to be used subsequently to secure the bi-directional stream communication. Data is
released within a specified schedule and following a predefined format detailed in a
Protobuf file. All participants must respect the predefined format when submitting
predictions.

1https://bigmine.github.io/real-time-ML-competition/index.html

https://bigmine.github.io/real-time-ML-competition/index.html

6.1 Real-time Machine Learning Competition on Data Streams 115

• Submission: users must meet the technical requirements in order to create an appro-
priate machine-learning environment for supporting the streaming setting. The gRPC
and Protobuf are required and support several programming languages such as Python
and Java to provide more freedom to participants in setting up their environment. Test
and learning instances are released in batches in regular time interval. When a test
batch is released, participants must submit their predictions before a specified due date,
otherwise, they will be penalized with a worst-case value. Participants are allowed to
use any additional libraries and resources for this competition, that includes: hardware
setup, software setup, programming language, and additional data.

• Evaluation and Results: submitted predictions are evaluated online and results are
updated live and displayed in the web application. Evaluation metrics comprise
common loss functions used for forecasting as discussed in Section 2.1.7.2.

Participants must build models able to predict the future values of the series with high
accuracy while taking into account the evolutionary nature of the data stream. These models
must be able to learn incrementally and detect changes in order to adapt to them as soon as
they occur following the requirements enumerated in Section 2.1.3. When the competition
starts, data are released as a continuous stream of training and test batches as defined in the
competition settings.

6.1.2 COMPETITION DATA

Telecommunication companies and network providers like Orange are very concerned about
the behavior of their network to ensure high-quality customer services. They collect data in
real-time about network traffic and need to extract valuable knowledge to learn and predict
future behavior for capacity planning or anomaly detection in case of malicious attacks or
malfunctioning devices. It is of great importance to process the data online and make fast
decisions when required. The temporal data stream used in the competition consists of many
recorded parameters related to quality of the signal, loss in packet transmission or traffic
intensity. Our competition proposal addresses the network activity analysis application that
can be used for the following scenarios:

• Capacity planning and activity prediction: Predicting metrics about the network
such as the number of devices and number of messages that passed through the network
will allow companies to predict future behavior and deploy necessary resources when
needed such as network expansion with new devices.

• Anomaly detection: Monitoring certain metrics may reflect malfunctioning devices
among the network such as signal strength, noise ratio, and packet loss. The goal is to
predict the future value of these metrics and spot abnormal values and triger alarms.

The data collected from the network activity is recorded at regular time intervals (every
second for example) summarizing the density of communications in terms of the number of
messages conveyed. The dataset used in the competition is synthetic, yet realistic. In fact,
the characteristic of the data such as serial correlation and seasonality were simulated from
real-word time-series and several transformations were applied to inject noise, anomalies and

116 Chapter 6. Real-time Machine Learning Competitions with SCALAR

Figure 6.2: Competition temporal data stream

concept drift. In fact, the temporal stream was deliberately designed to meet the challenges
of stream mining, including:

• Concept drift: stands for a change in the statistical properties of the target variable
that we are trying to predict. The change can be Abrupt or Gradual or Incremental as
detailed in Section 2.1.4.

• Anomalies: stand for patterns in data that do not conform to a well defined notion of
normal behavior [43]. We address two types of anomalies: Point and Group anomalies.
If an individual data instance can be considered as anomalous to the rest of the data,
then the instance is referred to as a point anomaly. On the other hand, group anomaly
is a continuous set of data points that are collectively anomalous even though the
individual points may or may not be point anomalies.

Figure 6.2 illustrates a part of the data stream used to run the competition including concept
drift an anomalous data.

Competition stream setting

In order to set-up the competition, we provide the following settings that describe the way
data are released in the stream:

• Initial batch: a first batch was provided a comprising data collected over 2 days with
a record every second summarizing the number of messages conveyed in the network.
A period of time was granted to competitors to tune their models at first, before the
stream of test instances is released to ensure a warm start.

• Regular batch: a batch of fixed size β = 5 is released in the stream at regular time
intervals (5 seconds). The latter contains β new test instances to be predicted before
a predefined submission deadline. This translates to a multi-step ahead forecasting
task with a horizon h = 5. The deadline stands for the expected time of arrival of

6.1 Real-time Machine Learning Competition on Data Streams 117

the next batch. Each batch contains the true target values corresponding to the test
instances released in the batch before. If predictions are submitted after the due date,
the competitor is penalized. There is no delay in the arrival of the true target values for
updating.

6.1.3 WINNING SOLUTIONS

In this section, we present the solutions which achieved the best scores. Three solutions that
yielded the best results are:

6.1.3.1 Adaptive moving average on n previous equally distant windows method (AMA) -
proposed by Ghislain Fievet:

This model takes advantage of the periodicity of the released data stream. It takes into account
the current window and previous k windows where the distance between all the windows is
the period of the stream computed using Partial Auto-correlation Function (PACF) using the
initial batch. The size of the window is updated during the stream and the average value of

Figure 6.3: Windows with distance equal to stream period

the target is computed for each window.

window_meank =
1

win_size

t−k∗period+win_size

∑
i=t−k∗period

yi (6.1)

The model keeps only n windows whose mean is the closest to the mean value of the
current window. This avoids considering the mean of the windows during anomalies periods.
The prediction for next h values is made by computing the distance between the mean of
each window and every one of next m points following the window.

prediction_meanl =
1
n

n

∑
i=1
|Yl−window_meani| (6.2)

where l in [1,h]. The prediction is then computed as the sum of the mean value of current
window and average distance for every of m points.

predictionl = (current_window_mean+ prediction_meanl) (6.3)

118 Chapter 6. Real-time Machine Learning Competitions with SCALAR

Additionally, the model adapts its prediction methods to deal with anomalies. Anomalies
are assumed to be the values whose distance to the window mean value is greater than the
threshold θ . If the prediction is to be made inside, what is detected as, anomaly period, the
prediction is made by simple moving average algorithm. The method requires 9 parameters
such as the windows size, the threshold to detect anomalies, the number of windows to
consider. During the competition a custom genetic algorithm makes these parameters evolve
to fit as best as possible the past 30 minutes of released data.

6.1.3.2 Moving average method with Robust Random Cut Forest for anomaly detection
(MA-RRCF) - proposed by Sohn Jimin:

The second solution uses moving average method and Robust Random Cut Forest (RRCF)[75]
to predict the next values. The prediction model, is based on the assumption that the temporal
data stream has increasing, monotonous pattern and thus using moving average method
seems adequate. The training phase consists of keeping the last m values, where m is the size
of the batch in the stream, and computing the average value:

predictiont =
1
m

t−1

∑
i=t−m

yi (6.4)

The average value of last m points is then used for the whole next batch and then updated
in the same way. To deal with anomalies the solution uses RRCF. RRCF provides anomaly
detection on streaming data. It uses the ensemble of independent Robust Random Cut Trees
as a sketch of the input stream and constructs a tree of 10−1000 vertices from a random
sampling of the pool and creates more trees of the same size 1-1000 times which creates the
forest. It decides whether the new data point is an anomaly or not by injecting it into the
trees and analyzing the extent of changes experienced in the complexity of the forest(e.g.
depth). Previous values in the stream are used to build the trees and new values are inserted
and the average displacement degree is computed to decide if the point is an anomalous or
no. If the degree is larger than a given threshold, that point is assumed to be an anomaly and
replaced by the average computed on the whole stream of data released so far.

6.1.3.3 Mondrian Forest with Robust Random Cut Forest for anomaly detection (MF-RRCF) -
proposed by Yeonwoo Nam:

The third solution uses regression Mondrian Forest[100] for prediction and RRCF for
anomaly detection. Mondrian Forests are fast incremental random forests that use Mondrian
Processes[138] to build the ensembles of random decision trees. For this specific use case,
since the data stream represents the univariate time series, to use Mondrian Forest to make
predictions the data had to be transformed. They used auto-regressive representation to built
feature vector including the p previous values as described in Section 2.1.6.1. The second
part of the solution addresses anomaly detection on data streams. Similarly to the previous,
RRCF is used to detect anomalous data points. However, instead of replacing the target
value of the anomalous point with the average observed on the whole stream. they propose
to average value the last received batch. This is based on a crucial assumption in temporal
data streams that recent instances are more important than old ones.

6.2 SCALAR Platform 119

6.1.4 COMPETITION RESULTS

In this part, we present the results achieved by the mentioned solutions. We present the
results achieved during the competition and following all the rules of the competition which
include penalties for late predictions or not sent predictions at all. After we present the results
that have been achieved during independent testing of provided solutions, on a wider test
set and without any disturbance where prediction has been sent for all records in the stream
on time. We evaluate models using Mean Absolute Percentage Error(MAPE), described in
Section 2.1.7.2. Also, we note the time latency, to measure how fast were models in sending
predictions.

We compare proposed methods against the baseline model MEAN, which predicts at time
t the next values as the average value on whole data stream released up to time t.

Table 6.1 shows the competition results in terms of predictive performance measure in
Mean Absolute Percentage Error MAPE and latency that stands for the time required to the
participant to submit the predictions for next batch. Baseline model MEAN is deployed on
the competition platform and does not suffer from delays related to network communication
which explain the large difference compared to other competitors latency. The results show
that Adaptive Moving Average AMA proposed by Ghislain Fievet performs best by scoring
the lowest MAPE error and the minimum latency among all other participants.

Team Method MAPE Latency[s]
Ghislain Fievet AMA 12.71261 0.68632

Sohn Jimin MA−RRCF 13.10381 0.91592
Yeonwoo Nam MF−RRCF 13.73831 1.04440

Baseline MEAN 16.50072 0.0055

Table 6.1: Real-time Competition top results

6.2 SCALAR PLATFORM

There exists a wide range of platforms to promote and organize challenges related to data
science and artificial intelligence and machine learning. Platforms such as Kaggle 2 and
Ali baba Tianchi3 to name only a few. These platforms provide public datasets and
code to perform different data analysis tasks such as classification or regression. Besides,
one can organize data science related competitions designed to provide challenges for
competitors of varying expertise in the field of machine learning. Featured competitions are
full-scale machine learning challenges which pose difficult, generally commercially-purposed
prediction problems. They attract the best experts, and offer prize pools.

Similarly, OpenMl 4 for Open Machine Learning, is an inclusive movement to build
an open, organized, online ecosystem for machine learning. The platform is an open
source tools to discover and share interesting open datasets from different application

2https://www.kaggle.com/
3https://tianchi.aliyun.com/
4https://www.openml.org/

https://www.kaggle.com/
https://tianchi.aliyun.com/
https://www.openml.org/

120 Chapter 6. Real-time Machine Learning Competitions with SCALAR

domains, and quickly build models in collaboration with thousands of other data scientists and
practitioners. Besides, one can create learning problems (e.g., classification) by creating tasks
to describe the goals. OpenMl allows collaboration, benchmarking or different methods,
and comparison to the state-of-the-art approaches. OpenMl tasks are machine-readable,
and support to automatic data extraction to train and evaluate models. The platform easily
integrates into the most popular machine learning tools and provides a wide range of APIs to
download and upload datasets, tasks, run algorithms, and share the results.

Machine learning competitions are widely used in a batch setting to compare prediction
models. Being able to compare incremental prediction models would be of great importance
for increasing accuracy and efficiency while analyzing data in real-time. However, existing
platforms such as Kaggle and OpenMl meet nearly the same model for challenges where
participants download the whole training and test data sets to build models and submit their
predictions before a predefined deadline. The platform then proceeds to the evaluation based
on all the submissions and select the best approach based on a set of measures.

To be able to organize the real-time competitions, there was a need to have a novel plat-
form dedicated to handle online machine learning contests on data streams. To the best of our
knowledge, there is no such platform for organizing competitions that meet these criteria. Out
of all platforms already available, none of them meets the streaming setting requirements. We
present SCALAR [126], a new platform for running real-time machine learning competitions
on data streams. Following the intent of Kaggle, which serves as a platform for organizing
machine learning competitions adapted for batch learning, SCALAR is a novel platform
explicitly designed for stream learning in real-time and support both classification and re-
gression problems. It was developed in Python, using state of the art open-source solutions
such as Apache Kafka, Apache Spark, gRPC, Protobuf, and Docker.

SCALAR allows creating competition by providing specific data in the form of CSV file
that will be used to recreate a continuous stream using specific settings such as the time
interval between two releases and the number of instances to be included in the batch. It
supports a wide range of evaluation metrics depending on the problem under study (classifi-
cation, regression . . .). Submitted predictions are evaluated online, and results are updated
continuously and displayed on the dedicated competition web page. SCALAR platform
allows participants full independence and freedom in choosing appropriate hardware and
software to take part in the competition and enhance predictive performance as well as time
latency. Figure 6.4 5 details the architecture of the platform that includes a web application
and a streaming engine following the fundamentals of Information Flow Processing (IFP)
[48].

The SCALAR platform supports multiple bi-directional streams for several users at a time.
A user first creates an account and signs in to the platform before subscribing to a specific
competition. Every subscriber gets a unique secret credential to connect to a secure channel
dedicated to the competition and ensure safe and continuous data communication. Every
competitor can use his environment to perform machine learning models using either Python,
Java or R languages. Competition data is first read from the respective CSV file and then
pushed to the competition stream. Training and test instances are issued in the right order and
at the right moment according to the competition settings. A bi-directional streaming flow

5All icons are open and come from https://www.flaticon.com/

6.2 SCALAR Platform 121

Figure 6.4: Platform architectures and services

is dedicated to each user to consume training and test instances and submit the respective
predictions according to the competition indications. Predictions are then processed and
evaluated online to allow real-time updates on the competition results and rankings. The web
application is here to allow users to browse through competition description and live results
and rankings.

The platform was designed to provide users as much freedom as possible in choosing
their own resources for building models. They can use any setup they desire as long as
they are able to connect to the secure channel and send the predictions on time and in the
right format. Users are also allowed to use external data sources if they think that can help
improve their models.

SCALAR architecture comprises two principal components: streaming engine and web
application. Participants will be prompted to interact with the both during the competition.
The streaming engine is responsible for ensuring bi-directional streams to provide test and
training data and receive predictions from every participant. This component will mainly
inter-operate with the developing environment (Python, Java or R). The web application
offers a plethora of options allowing users to browse through competitions’ information and
real-time results and rankings. The two components communicate with each other in order
to update users’ performance based on the predictions received.

6.2.1 STREAM SERVER AND COMMUNICATION

The data stream server is the module that is responsible for pulling data from different
sources and recreating a stream for every competition based on the settings in terms of batch
size and time interval. The streamer releases data to separate streams that can be read by
multiple users at the same time. A user may subscribe to many competitions at a time. Figure
6.5 illustrates the multiple bi-directional streaming setting.

122 Chapter 6. Real-time Machine Learning Competitions with SCALAR

Figure 6.5: SCALAR data stream server workflow

The Streaming engine and client communication are based on gRPC6 framework and
Protobuf7. They provide secure communication, full-duplex bidirectional streaming and an
easy way to describe services. Besides, the framework is language- and platform-neutral
and supports several programming languages (Java, Python, Go, C#, Ruby). Users must
install gRPC package and compiler for .proto file in order to be able to communicate with
the streaming engine. gRPC is an open Remote Procedure Call(RPC) framework that
can run on different platforms(more than 10 supported languages). It enables client and
server applications to communication and and exchange data. It is used to build highly
scalable, low latency and distributed systems that connect services, mobile applications, real
time communication and IoT while at the same time ensuring efficiency in CPU use and
bandwidth.

Second requirement for successful communication is Protobuf that stands for Protocol
buffers and is a language-neutral, platform-neutral, extensible way of serializing structured
data for use in communications protocols or data storage. Protobuf is thought in the same
way as XML but smaller, faster and simpler. SCALAR uses Protobuf file for each competition
to describe the structure of messages conveyed in the bi-directional stream including test and
training batches as well as expected predictions. The user needs to download the .proto file
from competition page and compile it to generate new files containing data structures and
classes to be used for future communication. An example of the .proto file is shown in figure
6.6.

The .proto file the following parts:

1. We define the syntax and some parameters that are related to the languages that we
will be used on the user side environment.

6https://grpc.io/
7https://developers.google.com/protocol-buffers/docs/overview

https://grpc.io/
https://developers.google.com/protocol-buffers/docs/overview

6.2 SCALAR Platform 123

← 1 - Syntax

← 2 - Service definition

← 3 - Data format definition

Figure 6.6: .proto file example

2. We define the service to be called, which in this case is DataStreamer. It is defined
as bi-directional streaming service where the user sends stream of Predictions
and receives stream of Messages.

3. We define the data formats used for communication Message and Prediction.
The structure depend on the competition and dataset used and define the format of
message the client receives from the server (vector of features and target) and the
expected format of the predictions. The messages that do not correspond to one of the
formats will not be conveyed.

6.2.2 WEB APPLICATION

SCALAR provides a user-friendly web application where users can register and connect in
order to create or participate to real-time competitions. There are two type of user profiles,
organizers and competitors. Organizers can create competitions and provide data to run a
challenge in real-time according to the provided settings. Creating a stream requires a CSV
file in order to be added to the platform as described in Figure 6.7. Figure 6.8 shows the
interface to add a competition to the system and requires an existing data stream as well
other settings to determine the flow of the challenge. Once the competition is added, it can
be accessed in the global list of competitions and users can participate.

A competitor must first subscribe to a competition in order to connect to the stream
server, read data stream and submit predictions. A secret key is allocated to each user as
described in Figure 6.9 and users must provide this secret key as a part of the credentials
needed to authenticate to the stream server.

Once the user has registered, subscribed and prepared the environment, he should be
ready to participate in the competition. Start the competition on time is important, so that the
competitor can benefit from all the training time to prepare the model. When the competition

124 Chapter 6. Real-time Machine Learning Competitions with SCALAR

Figure 6.7: SCALAR web interface to create a stream

Figure 6.8: SCALAR web interface to create a competition

Figure 6.9: SCALAR web interface with subscription information

starts, users connect and receive the first training batch containing several instances to ensure
a warm start and tweak the predictive model. Following this step, each participant to the

6.2 SCALAR Platform 125

competition receives regular batches and submits their respective predictions. Online results
can be tracked on the competition page including

• Leaderboard - graphical representation of contestants scores (Figure 6.10),

• Ranking - ranking list of the contestants on selected evaluation metrics (Figure 6.11).

Figure 6.10: Live results on SCALAR web application

Figure 6.11: Participants ranking on SCALAR web application

126 Chapter 6. Real-time Machine Learning Competitions with SCALAR

6.3 SUMMARY

We have organized the first-ever real-time machine learning competition on data streams.
We have conducted an online machine learning challenge on a real-life use case dealing
with temporal data streams forecasting. Our contribution in this chapter was twofold: (i) We
have conducted a real competition involving several competitors to solve a pending industry
challenge on network activity monitoring. (ii) We have developed a novel platform for data
science challenges on data streams.

The goal of the competition was to predict the future behavior of the temporal steam
that falls within the task of forecasting. We have presented the three best solutions proposed
by the competitors that were evaluated using the MAPE measure to asses the quality of
submitted predictions while penalizing late ones. The time latency is of crucial importance
for online learners. In order to run the competition, we have developed a dedicated platform
SCALAR, designed to meet the real-time requirements of the streaming competition. The
SCALAR platform handles secure and independent bidirectional streams to serve test and
training data to all competitors and receive their predictions in a streaming fashion. It
implements real-time evaluation and provides a user-friendly web application to browse
through the competitions and the leaderbord results. We strongly believe that having such
dedicated platform machine learning competitions on data streams could provide a strong
contribution to the field of data stream mining.

Conclusions and Future Work

Temporal data streams are essential to represent real-world phenomena from different
application domains including infrastructure monitoring and planning. Forecasting future
behavior in the context of streaming data is a very challenging task due to the non-stationary
and evolving nature of the data as well as the computational constraints. Stream mining
paradigm aims at extracting valuable knowledge from data flows to support decision-making
in different applications fields such as health, infrastructure monitoring, to name only a few.

In the present work, we investigated the problem of evolving temporal data stream fore-
casting using dynamic ensemble methods while addressing the aforementioned challenges.
In particular, we focused on dynamic ensemble selection methods as a promising approach
to improve predictive performance. Besides, we addressed the computational limitations
using model compression in order to train a smaller model with comparable performance
while reducing their complexity. This chapter concludes the thesis with a discussion on the
work achieved and future research directions.

7.1 CONCLUSIONS

The first part of the thesis deals with the one-step-ahead point forecasting task in the context
of evolving data streams using ensemble methods. We addressed the following question:

How can we dynamically select and combine a set of forecasting models and cope with the
changing dynamics of temporal data streams?

We focused on Dynamic Ensemble Selection (DES) methods that aim at selecting, on the
fly, the most accurate models only from a pool of diverse models in order to combine their
predictions. First, we proposed different methods to assess the predictive performance of
each individual model in the pool in order to select the most accurate ones according to the
data at hand. Evaluating models’ performance in the context of temporal data streams can be

7

128 Chapter 7. Conclusions and Future Work

divided into two main categories: windowing and meta-learning. Windowing approaches
are based on the assumption that future values are very likely to behave like instances
from the recent past. We proposed SLOPE that estimates the performance of models using
the notion of "locality" or "vicinity". A local region is computed using a dual criterion:
temporal locality using a sliding window as well as a "feature" based proximity using the
nearest neighbors. On the other hand, meta-learning based methods are more proactive
and comprise two key components, namely meta-features and meta-model. Meta-features
stand for the set of characteristics extracted from the data that best describe the underlying
generating process. Meta-features are then used to train a meta-model in order to predict
the performance of individual models on unseen instances. We investigated different meta-
features including statistical, landmark and stream specific characteristics that are deemed to
be the best characteristics to relate to the predictive performance to the data.

Subsequently, we have considered several methods to select expert base models in a
committee based on their estimated expertise stemming from the previous step. Experts’
predictions are then combined through a weighted average where more weight is granted
to the best performing models. Existing selection methods are mainly based on trimming,
i.e a fixed percentage of the best performing forecasters are selected in the committee
regardless of the relative value. We have proposed a self-adaptive abstaining method where
the less confident models are allowed to abstain based on a set of reliability estimators
and required competence threshold. Besides, we have presented a randomized selection
method that aims at enhancing diversity with less human intervention knowledge. The higher
the predictive performance, the more likely is the forecaster to be selected. Finally, we
have introduced a selection approach based on a combined criterion as a trade-off between
predictive performance and diversity. In fact, diversity is an important aspect in the success
of ensemble methods.

We have proposed in Chapter 4 to cast the meta-learning based DES method as a Multi-
Target Regression (MTR) task where the goal is to simultaneously predict all predictive
performance of the forecasters in the pool in order to explicitly capture models’ dependency
and improve overall predictive performance.

The second part of the thesis tackles the complexity drawbacks of dynamic ensemble
methods. In fact, despite their high predictive performance, DESmethods are greedy resource
consuming in terms of time and space. This makes the use of ensemble methods unpractical
in applications where resources are limited such as IoT and embedded systems. In this
second part, we addressed the following question:

How can we train a single model that has comparable performance compared to a complex
dynamic ensemble while considerably reducing its computational cost ?

We have investigated Model Compression (MC) for dynamic ensembles of forecasters in
the streaming setting using the Student-Teacher framework that consists in training a single
predictive model (Student) to mimic the behaviour of an ensemble (Teacher) [31]. Different
teaching scenarios to induce the student model to leverage both teacher’s predictions as well
as the true value of the target were proposed. The first scenario is strongly supervised where
the student model has access to all teacher’s predictions. However, this scenario is impractical
for streaming data applications as it requires permanent communication between the Student

7.2 Future directions 129

and the Teacher whilst resources are limited and communications costly. The second and
third scenarios are weakly supervised and more suitable in the streaming context. In fact,
the student invokes the teacher at specific times only based on the student performance in
order to learn from teacher’s predictions. Besides, we have proposed an adaptive model
compression approach to better cope with concept drift and changes that may damage the
predictive performance of student models. We used an informed adaptation strategy that
trains a background student when a warning is triggered and replaces the student model
when a warning escalates to a drift.

We presented in Chapter 6 the "Real-time Machine Learning Competition on Data
Streams", organized in the scope of the BigDataCup Challenge of the IEEE Big Data 2019
conference. Competition data are released in the form of stream of small batches to build
incremental learning models and participants continuously submit their predictions in the
form of stream as well. A dedicated platform SCALAR was used to host the competition and
released as an open source framework.

7.2 FUTURE DIRECTIONS

We highlight some promising research directions and provide recommendations on potentially
future studies.

7.2.1 HANDLING DELAYED LABELS IN TEMPORALLY EVOLVING DATA STREAMS

In the thesis, we formalized Forecasting task in streaming setting assuming that all labels
are available immediately (no delay). However, the assumption is unrealistic. Indeed, in
real-world applications labels for previously observed feature vectors may only arrive after
considerable lag meaning that the labels are delayed. Delayed labels are an important aspect
of streaming analysis and particularly for the forecasting task as the uncertainty increases.
Appropriately handling delayed labels in the context of a temporally evolving data streams
can improve the predictive performance

7.2.2 BEHAVIORAL DATA AND EXCEPTIONAL (DIS)AGREEMENT

The behavioral data consist of a set of individuals (models) who express outcomes (predic-
tions) on entities (instances). The main objective of behavioral data analysis is to "breakdown
individuals (users) into groups to gain a more focused understanding of their behavior" [116].
This offers a great opportunity to study the behavior of individual models and the interactions
between them. In particular, such data can be leveraged to investigate and search for excep-
tionally consensual/controversial data. In fact, identifying contexts where individual models
exhibit an exceptional (dis)agreement pattern compared to what is usually observed can
translate to a drift in the data. One possibility is to study how groups of individual models
sharing the same data and the same task behave with regards to specific data over time. This
can also contribute to the transparency and interpretability of DES methods that often behave
like black boxes. In fact, developing forecasting methods which are able to provide some
sort of explanation for the predictions could improve the decision-making process.

130 Chapter 7. Conclusions and Future Work

7.2.3 CHANGE DETECTION FOR MULTI-VARIATE DATA

Concept drift detection is a key aspect in streaming data analysis and has been widely
investigated for uni-variate data but much fewer works address the problem of detecting
changes in multi-variate data streams. We presented in Chapter 4 the Multi-Target Regression
(MTR) based meta-learning DES approach that explicitly considers model’s dependencies
while learning their respective behavior.

A straightforward extension to the multi-variate is to independently inspect each compo-
nent of the data stream with a single uni-variate change detector. Nonetheless, this approach
does not provide a true multi-variate solution, and is unable to detect changes affecting the
correlation among different targets. One multi-variate change detection approach consists
in computing the log-likelihood of the data stream and compare the distribution of the
log-likelihood over different time windows as proposed by Kuncheva [97]. As a matter of
fact, using multi-variate change detection with the MTR regression models to monitor the
loss can help improving the predictive performance as described for the adaptive random
forest ARF [66].

7.2.4 MODEL COMPRESSION FOR STREAMING DATA

Hinton, Vinyals, and Dean [76] introduced the concept of distilling knowledge from a larger
teacher model onto compact and faster compressed student model by training the student on
softened teacher output distribution in this case of classification task. Softened outputs reveal
the dark knowledge in the ensemble and provide much richer information about the data
compared to hard targets. This helps the student learn more generalized features compared
to single labels. However, the dark knowledge is unavailable in the case of uni-variate point
forecast. As discussed in Section 2.1.2, a prediction interval gives an interval within which
we expect yt to lie with a specified probability. This offer an unparalleled opportunity to
extract dark knowledge on the forecasting task and improve the Student-Teacher model
compression described in Chapter 5.

Datasets and Forecasters

A.1 TEMPORAL DATA STREAMS

In this section, we describe the temporal data streams used in the experiments conducted in
Chapters 3, 4 and 5. The data comprises 30 temporal data streams from several domains of
application such as IoT where each stream is a univariate sequence of continuous/numeric
observations captured at regular intervals. Besides, each stream contains at least 10000
observations. Table A.1 summarizes the set of temporal data streams and details their
respective characteristics and sources.

We describe in more details each temporal data stream as follows:

1–3 Streams with ID 1–3 falls within the field of smart cities and represent traffic data at
different junctions. Instances were collected every hour from November, 1, 2015 to
June, 3, 2017 and serve to understand traffic patterns of the city.

4–5 In this temporal data stream, instances are sampled every minute from April 1, 2018 to
August 31, 2018 and represent water pump sensor data deployed in cities in order to
detect and predict failures 1. Detecting failures is crucial as it directly impacts several
families daily life.

6–11 These temporal data streams are collected from different sensors deployed in several
rooms of 4 different floors of the Sutardja Dai Hall(SDH) at UC Berkeley [80]. Each
sensor captures several measurements and among them CO2 concentration over a
period of one week from Friday, August 23, 2013 to Saturday, August 31, 2013 at a
frequency of an observation every 5 seconds.

12 The data is provided by and industrial company Schneider-Electric2 providing energy
and automation digital solutions for efficiency and sustainability. Industry automatisms

1Available at https://www.kaggle.com/nphantawee/pump-sensor-data/discussion/
131429

2https://www.se.com/ww/en/

A

https://www.kaggle.com/nphantawee/pump-sensor-data/discussion/131429
https://www.kaggle.com/nphantawee/pump-sensor-data/discussion/131429
https://www.se.com/ww/en/

132 Chapter A. Datasets and Forecasters

Table A.1: Data streams and respective summary

ID Stream Data source Data characteristics Size

1 Junction 1

Analytics Vidhya Hourly values from Nov. 1, 2015 to Jun. 3, 2017 145822 Junction 2

3 Junction 3

4 Sensor 2
Pump sensor data Observation every minute from Apr. 1, 2018 to Aug. 31, 2018 220320

5 Sensor 27

6 Room 413

Smart building [80] Observation every 5 seconds from Aug. 23, 2013 to Aug. 31, 2013 130912

7 Room 415

8 Room 417

9 Room 419

10 Room 422

11 Room 423

12 Sensor fault Sensor fault Observation every minute from Mar. 1, 2017 to May 7, 2017 62629

13 Metro Traffic Volume Metro traffic Observation every minute from Oct. 2, 2012 to Sep. 30, 2018 48204

14 T1

Energy Data Observation every 10 minutes from Jan. 11, 2016 to May 27, 2016 19735
15 RH1

16 T9

17 RH9

18 Humidity

Bike sharing Hourly observations from Jan. 1, 2011 to Dec. 31, 2012 17372

19 Windspeed

20 Total

21 Total registered

22 Total casual

23 Synth1

Synthetic data

17280

24 Synth2 21600

25 Synth3 28800

26 Synth4 21600

27 CO_AQI Pakistan air quality 24384

28 DEWP

Beijing air quality [171] Hourly observation from Mar. 1, 2013 to Feb 28, 2017 3506429 O3

30 Pressure

systems are becoming more and more complex and working in evolutionary environ-
ment. It is vital to develop efficient fault detection methods in order to predict and
locate malfunctioning operations in order to improve the performance and productivity
and lessen the dramatic consequences of failures 3.

13 The data contains Hourly sampled instances of the westbound traffic volume Min-
neapolis interstate traffic 4.

14–17 The data falls within the appliances energy use in a low energy buildings field [32]
where observations are recorded every 10 minutes from January, 11, 2014 to May 27,
2014 (about four months and a half). Measures about the temperature and humidity
conditions were monitored in different rooms using wireless sensors 5.

18–22 Data are collected from a bike-sharing and rental system and contains instances
recorded on an hourly basis between January, 1, 2011 and December, 31 2012 in
Capital bikeshare system in Washington, DC with the corresponding weather and
seasonal information such as average levels of humidity and average windspeed along
with the total number of rentals [54].

3Available at https://www.kaggle.com/arashnic/sensor-fault-detection-data
4Available at https://www.kaggle.com/mikedev/metro-traffic-volume
5Available at https://www.kaggle.com/loveall/appliances-energy-prediction

https://www.kaggle.com/arashnic/sensor-fault-detection-data
https://www.kaggle.com/mikedev/metro-traffic-volume
https://www.kaggle.com/loveall/appliances-energy-prediction

A.2 Forecasters 133

23–26 Synthetic temporally dependent data were generated using TSimulus 6 designed to
generate random, yet realistic, time series data. TSimulus provides tools for specifying
the shape of a time series including general patterns, cycles, noise, etc 7.

27 The dataset contains monoxide carbon (CO) measures where instances were collected
every five seconds for a week from August,9 2018 to August,17 2018. All the values
have been converted to the Air Quality Index (AQI) format provided by the World
Health Organization(WHO) standards 8.

28–30 The data stream includes hourly air pollutants data from the nationally-controlled
air-quality monitoring site Aotizhongxin provided by the Beijing Municipal Environ-
mental Monitoring Center [171]. Air quality measures include dew point temperature
(DEWP), O3 concentration, and pressure level recorded on an hourly basis from March
1, 2013 to February 28, 2017.

A.2 FORECASTERS

Experiments were conducted using a heterogeneous ensemble M of size 30 comprising
different forecasting algorithms with different parameters values to promote diversity within
individual models. The base-models are described as follows:

• Hoeffding Tree Regressor and :

– Model at the leaves in {mean, perceptron}

– grace period: is the number of instances a leaf should observe between split
attempts and values are in {100,300,500,1000}

• Hoeffding Adaptive Tree Regressor: in addition to previous parameters, the adaptive
tree uses ADWIN detector to detect drift and monitor sub-trees.

• Streaming K-Nearest Neighbors:

– the number k of the nearest neighbors to search for in {5,20,30,50};

– the max window size in to store the last observed samples in {200,500,2000};

– the distance metric to use for the KDTree (euclidean).

– the aggregation method using the median or mean of the k nearest neighbors true
target values.

• Simple forecasting methods:

– Simple exponential smoothing with fading {0.3,0.35,0.4,0.6,0.7,0.8}

– Naive drift: {0.3,0.35,0.45,0.5,0.65,0.8}

– Mean regressor {0.3,0.35,0.4,0.45,0.5,0.9}
6https://github.com/cetic/TSimulus
7Available at https://github.com/dihiaboulegane/tsimulus_data
8Available at https://www.kaggle.com/mahmedphdcs17seecs/

air-quality-monitoring-dataset-pakistan

https://github.com/cetic/TSimulus
https://github.com/dihiaboulegane/tsimulus_data
https://www.kaggle.com/mahmedphdcs17seecs/air-quality-monitoring-dataset-pakistan
https://www.kaggle.com/mahmedphdcs17seecs/air-quality-monitoring-dataset-pakistan

134 Chapter A. Datasets and Forecasters

We have used different parameters combination for each individual model in the pool in
order to enhance diversity.

A.3 BLOCKED PREQUENTIAL TRAINING

To avoid performance issues related to the cold start, a first batch of labeled instances is
dedicated to retrieve base-models predictions to enforce a "warm" start to the evaluation
method (windowing or meta-learning). In the original arbitrating strategy, the meta-learning
layer only starts at run-time, using only information from test observations [117] which may
lead to poor predictive performance. A blocked Preqeuntial procedure was introduced in
[38] to retrieve Out-of-Bag base-models’ predictions in order to increase the amount of data
available to train the meta-layer. Base-models’ predictions are then used to estimate their
respective loss/error. The blocked prequential procedure [49] splits the first available batch
into β equally sized and sequential blocks of contiguous observations. In the first iteration,
the first block is used to train all the base learners Mi ∈M and the second/next block is used
to test them in order to retrieve their predictions. Then, the second block is merged with the
first one for training and the third block is used for testing. This procedure continues until all
blocks are used for testing.

When the online phase starts, each new instance xt+1 in the stream is first used to retrieve
base-predictions~yt+1 = 〈ŷ1

t+1, ŷ
2
t+1, . . . , ŷ

m
t+1〉 involved in computing ~et+1 = 〈ê1

t+1, ê
2
t+1, . . . , ê

m
t+1〉

w.r.t. to the true value of the target yt+1. The computed incurred base errors ~et+1 =

〈e1
t+1,e

2
t+1, . . . ,e

m
t+1〉 are used to update the meta-layer whereas the true value of the target

yt+1 is used to update all base models in the pool M.

Figure A.1 illustrates the blocked prequential procedure to retrieve base models’ predic-
tions to ensure warm start.

Figure A.1: Blocked prequential training workflow

A.4 Online Ensembles 135

A.4 ONLINE ENSEMBLES

• BLAST [135]: Best LAST was first proposed for classification tasks. It monitors the
performance of base-models overs a sliding window of recent data and selects the
best one to be the only active model on the upcoming instances, when w = 1, BLAST
translates to a DES.

• AEC: Adaptive Exponential Combination [141] is a method for adaptively combining
a set of forecasters that uses an exponential weighting strategy to combine forecast-
ers according to their past performance, including a forgetting factor to give more
importance to recent values.

• AddExp: The Additive Expert Ensemble [92] is a general method for using any online
learner for drifting concepts. It implements two pruning strategies, the ’oldest’ and the
’weakest’ that is often better performing one.

• ARF: Adaptive Random Forest for regression [69] is a streaming implementation of
random forest that includes an effective resampling method and an adaptation strategy
to cope with different types of concept drift.

• STACKING: Stacked generalization [164] is the process of learning an ensemble of
heterogeneous models whose outputs will serve as features to a meta-model. Stacking
model involves a two-levels learning architecture. The first level (base-models) learn
on the data stream whereas the second level (meta-model) learns how to best combine
the individual predictions.

• SRP: Streaming Random Patches [67] is based on patches that are combination of
random sub-spaces of both data instances and features.

• META-STREAM: Meta-stream [137] is a meta-learning based DES methods that peri-
odically builds a meta-model to predict the best (or combination of all the base-models)
to be used as regressor on the upcoming instances based on data characteristics.

• STADE: Streaming arbitrated dynamic ensemble uses arbitration meta-learning fol-
lowing the ADE [38] for time series forecasting using dynamic ensembles in the batch
learning.

• SLOPE: Sliding local performance is based the idea of "Local Performance" to estimate
each individual model’s performance in a local regions of the feature space surrounding
a test instance. The proposed SLOPE approach is based on a dual-locality assumption
for temporal data streams that considers the recency of the data using a sliding window
and the feature space using the k nearest neighbors.

References

[1] Ratnadip Adhikari and Ramesh K Agrawal. “An introductory study on time series
modeling and forecasting”. In: arXiv preprint arXiv:1302.6613 () (cited on page 13).

[2] Charu C Aggarwal. A Survey of Stream Classification Algorithms. 2014 (cited on
page 10).

[3] Marco Aiolfi, Carlos Capistran, and Allan Timmermann. “Forecast combinations”.
In: CREATES research paper 2010-21 (2010) (cited on page 26).

[4] Marco Aiolfi and Allan Timmermann. “Persistence in forecasting performance and
conditional combination strategies”. In: Journal of Econometrics 135.1-2 (2006),
pages 31–53 (cited on pages 4, 26, 27).

[5] Robert Anderson et al. “Recurring concept meta-learning for evolving data streams”.
In: Expert Systems with Applications 138 (2019), page 112832 (cited on page 36).

[6] J Scott Armstrong. “Combining forecasts: The end of the beginning or the beginning
of the end?” In: International Journal of Forecasting 5.4 (1989), pages 585–588
(cited on page 26).

[7] David K Arrowsmith, Colin M Place, CH Place, et al. An introduction to dynamical
systems. Cambridge university press, 1990 (cited on page 13).

[8] John M Bates and Clive WJ Granger. “The combination of forecasts”. In: Journal of
the Operational Research Society 20.4 (1969), pages 451–468 (cited on pages 3, 26).

[9] Hilan Bensusan, Christophe G Giraud-Carrier, and Claire Julia Kennedy. “A Higher-
order Approach to Meta-learning.” In: ILP Work-in-progress reports 35 (2000) (cited
on page 44).

[10] Jon Louis Bentley. “Multidimensional binary search trees used for associative search-
ing”. In: Communications of the ACM 18.9 (1975), pages 509–517 (cited on page 64).

[11] Albert Bifet. Adaptive stream mining: Pattern learning and mining from evolving
data streams. Volume 207. Ios Press, 2010 (cited on page 100).

[12] Albert Bifet and Ricard Gavalda. “Learning from time-changing data with adaptive
windowing”. In: Proceedings of the 2007 SIAM international conference on data
mining. SIAM. 2007, pages 443–448 (cited on pages 15, 45).

[13] Albert Bifet et al. “New ensemble methods for evolving data streams”. In: Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. 2009, pages 139–148 (cited on page 29).

[14] Albert Bifet et al. Machine learning for data streams: with practical examples in
MOA. MIT press, 2018 (cited on pages 2, 4, 10, 13, 14, 20, 21).

[15] Hendrik Blockeel, Luc De Raedt, and Jan Ramon. “Top-down induction of clustering
trees”. In: arXiv preprint cs/0011032 (2000) (cited on page 83).

[16] Hanen Borchani et al. “A survey on multi-output regression”. In: Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery 5.5 (2015), pages 216–233
(cited on pages 81–83, 85).

[17] Zoran Bosnić and Igor Kononenko. “Comparison of approaches for estimating
reliability of individual regression predictions”. In: Data & Knowledge Engineering
67.3 (2008), pages 504–516 (cited on page 50).

[18] Dihia Boulegane et al. “Real-time machine learning competition on data streams at
the IEEE big data 2019”. In: 2019 IEEE International Conference on Big Data (Big
Data). IEEE. 2019, pages 3493–3497 (cited on page 114).

[19] George EP Box et al. Time series analysis: forecasting and control. John Wiley &
Sons, 2015 (cited on pages 2, 10, 11, 16, 19).

[20] Pavel Brazdil et al. Metalearning: Applications to data mining. Springer Science &
Business Media, 2008 (cited on pages 35, 43).

[21] Leo Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pages 123–
140 (cited on page 29).

[22] Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pages 5–32
(cited on pages 25, 29, 31).

[23] Leo Breiman. Classification and regression trees. Routledge, 2017 (cited on page 83).

[24] Leo Breiman and Jerome H Friedman. “Predicting multivariate responses in multiple
linear regression”. In: Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 59.1 (1997), pages 3–54 (cited on page 83).

[25] Sebastian Briesemeister, Jörg Rahnenführer, and Oliver Kohlbacher. “No longer
confidential: estimating the confidence of individual regression predictions”. In: PloS
one 7.11 (2012), e48723 (cited on page 49).

[26] Alceu S Britto Jr, Robert Sabourin, and Luiz ES Oliveira. “Dynamic selection of clas-
sifiers—a comprehensive review”. In: Pattern recognition 47.11 (2014), pages 3665–
3680 (cited on pages 4, 32, 79, 80).

[27] Peter J Brockwell et al. Introduction to time series and forecasting. Springer, 2016
(cited on pages 2, 11, 16).

[28] Gavin Brown et al. “Diversity creation methods: a survey and categorisation”. In:
Information fusion 6.1 (2005), pages 5–20 (cited on pages 24, 25).

[29] Gavin Brown et al. “Managing diversity in regression ensembles.” In: Journal of
machine learning research 6.9 (2005) (cited on pages 26, 31).

[30] Robert G Brown. “Exponential smoothing for predicting demand”. In: Operations
Research. Volume 5. 1. INST OPERATIONS RESEARCH MANAGEMENT SCI-
ENCES 901 ELKRIDGE LANDING RD, STE . . . 1957, pages 145–145 (cited on
page 17).

[31] Cristian Buciluǎ, Rich Caruana, and Alexandru Niculescu-Mizil. “Model compres-
sion”. In: Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. 2006, pages 535–541 (cited on pages 4, 94, 95,
128).

[32] Luis M Candanedo, Véronique Feldheim, and Dominique Deramaix. “Data driven
prediction models of energy use of appliances in a low-energy house”. In: Energy
and buildings 140 (2017), pages 81–97 (cited on page 132).

[33] Rosa Candela et al. “Model Monitoring and Dynamic Model Selection in Travel
Time-series Forecasting”. In: arXiv preprint arXiv:2003.07268 (2020) (cited on
page 36).

[34] Jaime Carbonell and Jade Goldstein. “The use of MMR, diversity-based reranking for
reordering documents and producing summaries”. In: Proceedings of the 21st annual
international ACM SIGIR conference on Research and development in information
retrieval. 1998, pages 335–336 (cited on page 54).

[35] Gail A Carpenter and Stephen Grossberg. Pattern recognition by self-organizing
neural networks. MIT Press, 1991 (cited on page 41).

[36] Rich Caruana et al. “Ensemble selection from libraries of models”. In: Proceedings
of the twenty-first international conference on Machine learning. 2004, page 18
(cited on page 30).

[37] Vitor Cerqueira, Heitor Murilo Gomes, and Albert Bifet. “Unsupervised Concept
Drift Detection Using a Student–Teacher Approach”. In: International Conference
on Discovery Science. Springer. 2020, pages 190–204 (cited on page 99).

[38] Vítor Cerqueira et al. “Arbitrated ensemble for time series forecasting”. In: Joint
European conference on machine learning and knowledge discovery in databases.
Springer. 2017, pages 478–494 (cited on pages 30, 32, 36, 46, 47, 77, 82, 134, 135).

[39] Vitor Cerqueira et al. “Model Compression for Dynamic Forecast Combination”. In:
arXiv preprint arXiv:2104.01830 (2021) (cited on pages 4, 95, 110).

[40] Vitor Cerqueira et al. “STUDD: A Student-Teacher Method for Unsupervised Con-
cept Drift Detection”. In: arXiv preprint arXiv:2103.00903 (2021) (cited on page 95).

[41] Vítor Manuel Araújo Cerqueira. “Ensembles for Time Series Forecasting”. In: (2019)
(cited on pages 13, 44, 62, 80, 81).

[42] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge
university press, 2006 (cited on page 34).

[43] Varun Chandola, Arindam Banerjee, and Vipin Kumar. “Anomaly detection: A
survey”. In: ACM computing surveys (CSUR) 41.3 (2009), pages 1–58 (cited on
page 116).

[44] Chris Chatfield. Time-series forecasting. CRC press, 2000 (cited on pages 2, 11, 12,
16, 18).

[45] Guobin Chen et al. “Learning efficient object detection models with knowledge dis-
tillation”. In: Advances in Neural Information Processing Systems. 2017, pages 742–
751 (cited on page 95).

[46] Robert T Clemen. “Combining forecasts: A review and annotated bibliography”. In:
International journal of forecasting 5.4 (1989), pages 559–583 (cited on page 26).

[47] Robert T Clemen and Robert L Winkler. “Combining economic forecasts”. In:
Journal of Business & Economic Statistics 4.1 (1986), pages 39–46 (cited on pages 33,
34).

[48] Gianpaolo Cugola and Alessandro Margara. “Processing flows of information: From
data stream to complex event processing”. In: ACM Computing Surveys (CSUR) 44.3
(2012), pages 1–62 (cited on page 120).

[49] A Philip Dawid. “Present position and potential developments: Some personal views
statistical theory the prequential approach”. In: Journal of the Royal Statistical
Society: Series A (General) 147.2 (1984), pages 278–290 (cited on pages 20, 134).

[50] Francis X Diebold and Jose A Lopez. “8 Forecast evaluation and combination”. In:
Handbook of statistics 14 (1996), pages 241–268 (cited on page 26).

[51] Thomas G Dietterich. “Ensemble methods in machine learning”. In: International
workshop on multiple classifier systems. Springer. 2000, pages 1–15 (cited on
pages 22, 24).

[52] Gregory Ditzler et al. “Learning in nonstationary environments: A survey”. In: IEEE
Computational Intelligence Magazine 10.4 (2015), pages 12–25 (cited on page 14).

[53] Joao Duarte and Joao Gama. “Ensembles of adaptive model rules from high-speed
data streams”. In: Proceedings of the 3rd International Workshop on Big Data,
Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming
Models and Applications. PMLR. 2014, pages 198–213 (cited on page 30).

[54] Hadi Fanaee-T and Joao Gama. “Event labeling combining ensemble detectors and
background knowledge”. In: Progress in Artificial Intelligence 2.2 (2014), pages 113–
127 (cited on page 132).

[55] Julian Faraway and Chris Chatfield. “Time series forecasting with neural networks: a
comparative study using the air line data”. In: Journal of the Royal Statistical Society:
Series C (Applied Statistics) 47.2 (1998), pages 231–250 (cited on page 19).

[56] Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of on-line
learning and an application to boosting”. In: Journal of computer and system sciences
55.1 (1997), pages 119–139 (cited on page 23).

[57] Joao Gama. Knowledge discovery from data streams. CRC Press, 2010 (cited on
page 10).

[58] João Gama and Petr Kosina. “Tracking recurring concepts with meta-learners”. In:
Portuguese Conference on Artificial Intelligence. Springer. 2009, pages 423–434
(cited on page 46).

[59] Joao Gama and Petr Kosina. “Recurrent concepts in data streams classification”. In:
Knowledge and Information Systems 40.3 (2014), pages 489–507 (cited on page 36).

[60] Joao Gama, Raquel Sebastiao, and Pedro Pereira Rodrigues. “On evaluating stream
learning algorithms”. In: Machine learning 90.3 (2013), pages 317–346 (cited on
page 41).

[61] Joao Gama et al. “Learning with drift detection”. In: Brazilian symposium on artificial
intelligence. Springer. 2004, pages 286–295 (cited on page 45).

[62] João Gama et al. “A survey on concept drift adaptation”. In: ACM computing surveys
(CSUR) 46.4 (2014), pages 1–37 (cited on pages 14, 15).

[63] Stuart Geman, Elie Bienenstock, and René Doursat. “Neural networks and the
bias/variance dilemma”. In: Neural computation 4.1 (1992), pages 1–58 (cited on
page 25).

[64] Véronique Genre et al. “Combining expert forecasts: Can anything beat the simple
average?” In: International Journal of Forecasting 29.1 (2013), pages 108–121 (cited
on page 33).

[65] Giorgio Giacinto and Fabio Roli. “Dynamic classifier selection”. In: International
Workshop on Multiple Classifier Systems. Springer. 2000, pages 177–189 (cited on
page 32).

[66] Heitor M Gomes et al. “Adaptive random forests for evolving data stream classifica-
tion”. In: Machine Learning 106.9 (2017), pages 1469–1495 (cited on pages 29, 100,
130).

[67] Heitor Murilo Gomes, Jesse Read, and Albert Bifet. “Streaming random patches
for evolving data stream classification”. In: 2019 IEEE International Conference on
Data Mining (ICDM). IEEE. 2019, pages 240–249 (cited on pages 29, 31, 135).

[68] Heitor Murilo Gomes et al. “A survey on ensemble learning for data stream classi-
fication”. In: ACM Computing Surveys (CSUR) 50.2 (2017), pages 1–36 (cited on
pages 28, 30).

[69] Heitor Murilo Gomes et al. “Adaptive random forests for data stream regression.” In:
ESANN. 2018 (cited on pages 28, 31, 135).

[70] Heitor Murilo Gomes et al. “Machine learning for streaming data: state of the art,
challenges, and opportunities”. In: ACM SIGKDD Explorations Newsletter 21.2
(2019), pages 6–22 (cited on pages 10, 16).

[71] Heitor Murilo Gomes et al. “On Ensemble Techniques for Data Stream Regression”.
In: 2020 International Joint Conference on Neural Networks (IJCNN). IEEE. 2020,
pages 1–8 (cited on pages 28, 31).

[72] Clive William John Granger and Paul Newbold. Forecasting economic time series.
Academic Press, 2014 (cited on pages 2, 11, 16).

[73] CWJ Granger. “Combining Forecasts—Twenty Years Later”. In: Essays in Econo-
metrics: Collected Papers of Clive WJ Granger 32 (2001), page 411 (cited on
page 26).

[74] Silvio B Guerra, Ricardo BC Prudêncio, and Teresa B Ludermir. “Predicting the per-
formance of learning algorithms using support vector machines as meta-regressors”.
In: International Conference on Artificial Neural Networks. Springer. 2008, pages 523–
532 (cited on page 46).

[75] Sudipto Guha et al. “Robust random cut forest based anomaly detection on streams”.
In: International conference on machine learning. 2016, pages 2712–2721 (cited on
page 118).

[76] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a neural
network”. In: arXiv preprint arXiv:1503.02531 (2015) (cited on pages 4, 94, 95,
130).

[77] Tin Kam Ho. “The random subspace method for constructing decision forests”.
In: IEEE transactions on pattern analysis and machine intelligence 20.8 (1998),
pages 832–844 (cited on page 29).

[78] Tin Kam Ho. “Multiple classifier combination: Lessons and next steps”. In: Hybrid
methods in pattern recognition. World Scientific, 2002, pages 171–198 (cited on
page 23).

[79] Wassily Hoeffding. “Probability inequalities for sums of bounded random variables”.
In: The Collected Works of Wassily Hoeffding. Springer, 1994, pages 409–426 (cited
on page 84).

[80] Dezhi Hong, Quanquan Gu, and Kamin Whitehouse. “High-dimensional time series
clustering via cross-predictability”. In: Artificial Intelligence and Statistics. PMLR.
2017, pages 642–651 (cited on pages 131, 132).

[81] Rob J Hyndman and George Athanasopoulos. Forecasting: principles and practice.
OTexts, 2018 (cited on page 17).

[82] Elena Ikonomovska and Joao Gama. “Learning model trees from data streams”. In:
International Conference on Discovery Science. Springer. 2008, pages 52–63 (cited
on page 83).

[83] Elena Ikonomovska, João Gama, and Sašo Džeroski. “Incremental multi-target model
trees for data streams”. In: Proceedings of the 2011 ACM symposium on applied
computing. 2011, pages 988–993 (cited on page 83).

[84] Elena Ikonomovska, Joao Gama, and Sašo Džeroski. “Learning model trees from
evolving data streams”. In: Data mining and knowledge discovery 23.1 (2011),
pages 128–168 (cited on pages 20, 31, 64, 83).

[85] Elena Ikonomovska, João Gama, and Sašo Džeroski. “Online tree-based ensembles
and option trees for regression on evolving data streams”. In: Neurocomputing 150
(2015), pages 458–470 (cited on page 31).

[86] Victor Richmond R Jose and Robert L Winkler. “Simple robust averages of fore-
casts: Some empirical results”. In: International journal of forecasting 24.1 (2008),
pages 163–169 (cited on pages 34, 47).

[87] Jee-Weon Jung et al. “Knowledge Distillation in Acoustic Scene Classification”. In:
IEEE Access 8 (2020), pages 166870–166879 (cited on page 95).

[88] Holger Kantz and Thomas Schreiber. Nonlinear time series analysis. Volume 7.
Cambridge university press, 2004 (cited on page 13).

[89] Matthew B Kennel, Reggie Brown, and Henry DI Abarbanel. “Determining embed-
ding dimension for phase-space reconstruction using a geometrical construction”. In:
Physical review A 45.6 (1992), page 3403 (cited on page 57).

[90] Albert HR Ko, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classi-
fier selection to dynamic ensemble selection”. In: Pattern recognition 41.5 (2008),
pages 1718–1731 (cited on pages 31, 42).

[91] Dragi Kocev et al. “Using single-and multi-target regression trees and ensembles to
model a compound index of vegetation condition”. In: Ecological Modelling 220.8
(2009), pages 1159–1168 (cited on page 83).

[92] Jeremy Z Kolter and Marcus A Maloof. “Using additive expert ensembles to cope
with concept drift”. In: Proceedings of the 22nd international conference on Machine
learning. 2005, pages 449–456 (cited on pages 30, 135).

[93] Bartosz Krawczyk and Alberto Cano. “Online ensemble learning with abstaining
classifiers for drifting and noisy data streams”. In: Applied Soft Computing 68 (2018),
pages 677–692 (cited on pages 50, 51).

[94] Bartosz Krawczyk et al. “Ensemble learning for data stream analysis: A survey”. In:
Information Fusion 37 (2017), pages 132–156 (cited on pages 4, 22, 30).

[95] Georg Krempl et al. “Open challenges for data stream mining research”. In: ACM
SIGKDD explorations newsletter 16.1 (2014), pages 1–10 (cited on page 10).

[96] Ludmila I Kuncheva. “Classifier ensembles for changing environments”. In: Interna-
tional Workshop on Multiple Classifier Systems. Springer. 2004, pages 1–15 (cited
on page 28).

[97] Ludmila I Kuncheva. “Change detection in streaming multivariate data using like-
lihood detectors”. In: IEEE transactions on knowledge and data engineering 25.5
(2011), pages 1175–1180 (cited on pages 91, 130).

[98] Ludmila I Kuncheva. Combining pattern classifiers: methods and algorithms. John
Wiley & Sons, 2014 (cited on pages 4, 24, 25, 27, 32).

[99] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. “Interpretable decision
sets: A joint framework for description and prediction”. In: Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
2016, pages 1675–1684 (cited on pages 4, 94).

[100] Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. “Mondrian forests:
Efficient online random forests”. In: Advances in neural information processing
systems. 2014, pages 3140–3148 (cited on page 118).

[101] William B Langdon, SJ Barrett, and Bernard F Buxton. “Combining decision trees
and neural networks for drug discovery”. In: European Conference on Genetic
Programming. Springer. 2002, pages 60–70 (cited on page 30).

[102] Pierre-Xavier Loeffel et al. “Improving the Prediction Cost of Drift Handling Al-
gorithms by Abstaining”. In: 2016 IEEE 16th International Conference on Data
Mining Workshops (ICDMW). IEEE. 2016, pages 1213–1222 (cited on page 48).

[103] David Lopez-Paz et al. “Unifying distillation and privileged information”. In: arXiv
preprint arXiv:1511.03643 (2015) (cited on page 95).

[104] Gilles Louppe and Pierre Geurts. “Ensembles on random patches”. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer.
2012, pages 346–361 (cited on pages 29, 31).

[105] Spyros Makridakis and Robert L Winkler. “Averages of forecasts: Some empirical
results”. In: Management science 29.9 (1983), pages 987–996 (cited on page 26).

[106] Spyros Makridakis et al. “The accuracy of extrapolation (time series) methods: Re-
sults of a forecasting competition”. In: Journal of forecasting 1.2 (1982), pages 111–
153 (cited on page 26).

[107] Massimiliano Marcellino. “Forecast pooling for European macroeconomic variables”.
In: Oxford Bulletin of Economics and Statistics 66.1 (2004), pages 91–112 (cited on
page 33).

[108] Fotini Markatopoulou, Grigorios Tsoumakas, and Ioannis Vlahavas. “Instance-based
ensemble pruning via multi-label classification”. In: 2010 22nd IEEE International
Conference on Tools with Artificial Intelligence. Volume 1. IEEE. 2010, pages 401–
408 (cited on page 80).

[109] Saulo Martiello Mastelini et al. “Online Multi-target regression trees with stacked
leaf models”. In: arXiv preprint arXiv:1903.12483 (2019) (cited on page 84).

[110] William McGill. “Multivariate information transmission”. In: Transactions of the
IRE Professional Group on Information Theory 4.4 (1954), pages 93–111 (cited on
page 77).

[111] Joao Mendes-Moreira et al. “Ensemble approaches for regression: A survey”. In:
Acm computing surveys (csur) 45.1 (2012), pages 1–40 (cited on page 27).

[112] Pablo Montero-Manso et al. “FFORMA: Feature-based forecast model averaging”.
In: International Journal of Forecasting 36.1 (2020), pages 86–92 (cited on page 36).

[113] Luis Moreira-Matias et al. “Predicting taxi–passenger demand using streaming
data”. In: IEEE Transactions on Intelligent Transportation Systems 14.3 (2013),
pages 1393–1402 (cited on page 34).

[114] Anil Narassiguin, Haytham Elghazel, and Alex Aussem. “Dynamic ensemble selec-
tion with probabilistic classifier chains”. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer. 2017, pages 169–186
(cited on page 80).

[115] Paul Newbold and David I Harvey. “Forecast combination and encompassing”. In: A
companion to economic forecasting 1 (2002), page 620 (cited on pages 4, 26).

[116] Behrooz Omidvar-Tehrani, Sihem Amer-Yahia, and Ria Mae Borromeo. “User group
analytics: hypothesis generation and exploratory analysis of user data”. In: The VLDB
Journal 28.2 (2019), pages 243–266 (cited on page 129).

[117] Julio Ortega, Moshe Koppel, and Shlomo Argamon. “Arbitrating among competing
classifiers using learned referees”. In: Knowledge and Information Systems 3.4
(2001), pages 470–490 (cited on pages 36, 46, 134).

[118] Aljaž Osojnik, Panče Panov, and Sašo Džeroski. “Tree-based methods for online
multi-target regression”. In: Journal of Intelligent Information Systems 50.2 (2018),
pages 315–339 (cited on page 84).

[119] Nikunj C Oza. “Online bagging and boosting”. In: 2005 IEEE international con-
ference on systems, man and cybernetics. Volume 3. Ieee. 2005, pages 2340–2345
(cited on page 29).

[120] Nikunj C Oza and Stuart Russell. “Experimental comparisons of online and batch
versions of bagging and boosting”. In: Proceedings of the seventh ACM SIGKDD
international conference on Knowledge discovery and data mining. 2001, pages 359–
364 (cited on page 29).

[121] Ewan S Page. “Continuous inspection schemes”. In: Biometrika 41.1/2 (1954),
pages 100–115 (cited on pages 20, 30).

[122] Yonghong Peng1 Peter A Flach Pavel and Brazdil2 Carlos Soares. “Decision tree-
based data characterization for meta-learning”. In: IDDM-2002 (2002), page 111
(cited on page 44).

[123] Bernhard Pfahringer, Hilan Bensusan, and Christophe G Giraud-Carrier. “Meta-
Learning by Landmarking Various Learning Algorithms.” In: ICML. 2000, pages 743–
750 (cited on page 44).

[124] Robi Polikar. “Ensemble based systems in decision making”. In: IEEE Circuits and
systems magazine 6.3 (2006), pages 21–45 (cited on page 25).

[125] Robi Polikar. “Ensemble learning”. In: Ensemble machine learning. Springer, 2012,
pages 1–34 (cited on page 22).

[126] Nedeljko Radulovic, Dihia Boulegane, and Albert Bifet. “SCALAR-A Platform for
Real-time Machine Learning Competitions on Data Streams”. In: Journal of Open
Source Software 5.56 (2020), page 2676 (cited on page 120).

[127] Jesse Read et al. “Classifier chains for multi-label classification”. In: Machine
learning 85.3 (2011), page 333 (cited on pages 82, 84).

[128] Jesse Read et al. “Data Streams Are Time Series: Challenging Assumptions”. In:
Brazilian Conference on Intelligent Systems. Springer. 2020, pages 529–543 (cited
on pages 3, 10, 11, 13, 16, 19).

[129] David J Reid. “Combining three estimates of gross domestic product”. In: Economica
35.140 (1968), pages 431–444 (cited on page 26).

[130] David J Reid. A comparative study of time series prediction techniques on economic
data. University of Nottingham, Library Photographic Unit, 1969 (cited on page 26).

[131] Gregory C Reinsel. Elements of multivariate time series analysis. Springer Science
& Business Media, 2003 (cited on page 12).

[132] Ye Ren, Le Zhang, and Ponnuthurai N Suganthan. “Ensemble classification and
regression-recent developments, applications and future directions”. In: IEEE Com-
putational intelligence magazine 11.1 (2016), pages 41–53 (cited on page 27).

[133] John R Rice. “The algorithm selection problem”. In: Advances in computers. Vol-
ume 15. Elsevier, 1976, pages 65–118 (cited on page 35).

[134] Jan N van Rijn et al. “Algorithm selection on data streams”. In: International
Conference on Discovery Science. Springer. 2014, pages 325–336 (cited on pages 36,
45).

[135] Jan N van Rijn et al. “Having a blast: Meta-learning and heterogeneous ensembles
for data streams”. In: 2015 ieee international conference on data mining. IEEE. 2015,
pages 1003–1008 (cited on pages 30, 34, 47, 135).

[136] Jan N van Rijn et al. “The online performance estimation framework: heterogeneous
ensemble learning for data streams”. In: Machine Learning 107.1 (2018), pages 149–
176 (cited on page 30).

[137] André Luis Debiaso Rossi et al. “MetaStream: A meta-learning based method for
periodic algorithm selection in time-changing data”. In: Neurocomputing 127 (2014),
pages 52–64 (cited on pages 36, 44, 47, 135).

[138] Daniel M Roy, Yee Whye Teh, et al. “The Mondrian Process.” In: NIPS. 2008,
pages 1377–1384 (cited on page 118).

[139] Daniel Russo et al. “A tutorial on thompson sampling”. In: arXiv preprint arXiv:1707.02038
(2017) (cited on pages 53, 73).

[140] Amal Saadallah, Florian Priebe, and Katharina Morik. “A drift-based dynamic
ensemble members selection using clustering for time series forecasting”. In: Joint
European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer. 2019, pages 678–694 (cited on pages 34, 81).

[141] Ismael Sánchez. “Adaptive combination of forecasts with application to wind energy”.
In: International Journal of Forecasting 24.4 (2008), pages 679–693 (cited on
pages 34, 42, 135).

[142] Muhamad Risqi U Saputra et al. “Distilling knowledge from a deep pose regressor
network”. In: Proceedings of the IEEE International Conference on Computer Vision.
2019, pages 263–272 (cited on page 95).

[143] Jeffrey C Schlimmer and Richard H Granger. “Incremental learning from noisy data”.
In: Machine learning 1.3 (1986), pages 317–354 (cited on page 13).

[144] Timo Similä and Jarkko Tikka. “Input selection and shrinkage in multiresponse linear
regression”. In: Computational Statistics & Data Analysis 52.1 (2007), pages 406–
422 (cited on page 83).

[145] Paul C Smits. “Multiple classifier systems for supervised remote sensing image
classification based on dynamic classifier selection”. In: IEEE Transactions on
Geoscience and Remote Sensing 40.4 (2002), pages 801–813 (cited on page 42).

[146] James Surowiecki. The wisdom of crowds. Anchor, 2005 (cited on pages 3, 21).

[147] Souhaib Ben Taieb et al. “A review and comparison of strategies for multi-step
ahead time series forecasting based on the NN5 forecasting competition”. In: Expert
systems with applications 39.8 (2012), pages 7067–7083 (cited on page 12).

[148] Makoto Takamoto, Yusuke Morishita, and Hitoshi Imaoka. “An Efficient Method of
Training Small Models for Regression Problems with Knowledge Distillation”. In:
arXiv preprint arXiv:2002.12597 (2020) (cited on page 95).

[149] Floris Takens. “Detecting strange attractors in turbulence”. In: Dynamical systems
and turbulence, Warwick 1980. Springer, 1981, pages 366–381 (cited on page 19).

[150] Thiyanga S Talagala, Rob J Hyndman, George Athanasopoulos, et al. “Meta-learning
how to forecast time series”. In: Monash Econometrics and Business Statistics
Working Papers 6 (2018), page 18 (cited on pages 35, 36).

[151] George C Tiao and Ruey S Tsay. “Some advances in non-linear and adaptive mod-
elling in time-series”. In: Journal of forecasting 13.2 (1994), pages 109–131 (cited
on page 12).

[152] Allan Timmermann. “Forecast combinations”. In: Handbook of economic forecasting
1 (2006), pages 135–196 (cited on page 27).

[153] Marko Toplak et al. “Assessment of machine learning reliability methods for quanti-
fying the applicability domain of QSAR regression models”. In: Journal of chemical
information and modeling 54.2 (2014), pages 431–441 (cited on page 49).

[154] Grigorios Tsoumakas, Lefteris Angelis, and Ioannis Vlahavas. “Selective fusion of
heterogeneous classifiers”. In: Intelligent Data Analysis 9.6 (2005), pages 511–525
(cited on page 30).

[155] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. “Mining multi-label
data”. In: Data mining and knowledge discovery handbook. Springer, 2009, pages 667–
685 (cited on page 80).

[156] Alexey Tsymbal. “The problem of concept drift: definitions and related work”. In:
Computer Science Department, Trinity College Dublin 106.2 (2004), page 58 (cited
on page 98).

[157] Naonori Ueda and Ryohei Nakano. “Generalization error of ensemble estimators”. In:
Proceedings of International Conference on Neural Networks (ICNN’96). Volume 1.
IEEE. 1996, pages 90–95 (cited on page 25).

[158] Joaquin Vanschoren. “Meta-learning: A survey”. In: arXiv preprint arXiv:1810.03548
(2018) (cited on page 35).

[159] Vladimir Vapnik. The nature of statistical learning theory. Springer science &
business media, 2013 (cited on page 18).

[160] Kenneth F Wallis. “Revisiting Francis Galton’s forecasting competition”. In: Statisti-
cal Science (2014), pages 420–424 (cited on page 22).

[161] Hui Wang et al. “Progressive Blockwise Knowledge Distillation for Neural Network
Acceleration.” In: IJCAI. 2018, pages 2769–2775 (cited on page 95).

[162] Andreas S Weigend. Time series prediction: forecasting the future and understanding
the past. Routledge, 2018 (cited on page 12).

[163] Gerhard Widmer and Miroslav Kubat. “Learning in the presence of concept drift
and hidden contexts”. In: Machine learning 23.1 (1996), pages 69–101 (cited on
pages 13, 36).

[164] David H Wolpert. “Stacked generalization”. In: Neural networks 5.2 (1992), pages 241–
259 (cited on pages 30, 47, 82, 135).

[165] David H Wolpert. “The supervised learning no-free-lunch theorems”. In: Soft com-
puting and industry (2002), pages 25–42 (cited on page 23).

[166] Kevin Woods, W. Philip Kegelmeyer, and Kevin Bowyer. “Combination of multiple
classifiers using local accuracy estimates”. In: IEEE transactions on pattern analysis
and machine intelligence 19.4 (1997), pages 405–410 (cited on page 42).

[167] Michał Woźniak, Manuel Grana, and Emilio Corchado. “A survey of multiple
classifier systems as hybrid systems”. In: Information Fusion 16 (2014), pages 3–17
(cited on page 27).

[168] Yuhong Yang. “Combining forecasting procedures: some theoretical results”. In:
Econometric Theory (2004), pages 176–222 (cited on page 26).

[169] Junho Yim et al. “A gift from knowledge distillation: Fast optimization, network
minimization and transfer learning”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2017, pages 4133–4141 (cited on page 95).

[170] Min-Ling Zhang and Zhi-Hua Zhou. “A review on multi-label learning algorithms”.
In: IEEE transactions on knowledge and data engineering 26.8 (2013), pages 1819–
1837 (cited on pages 82, 84).

[171] Shuyi Zhang et al. “Cautionary tales on air-quality improvement in Beijing”. In: Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
473.2205 (2017), page 20170457 (cited on pages 132, 133).

[172] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012
(cited on pages 23–25, 27).

[173] Indrė Žliobaitė et al. “Active learning with drifting streaming data”. In: IEEE trans-
actions on neural networks and learning systems 25.1 (2014), pages 27–39 (cited on
page 52).

[174] Indrė Žliobaitė et al. “Evaluation methods and decision theory for classification
of streaming data with temporal dependence”. In: Machine Learning 98.3 (2015),
pages 455–482 (cited on pages 3, 10, 11).

[175] Hui Zou and Yuhong Yang. “Combining time series models for forecasting”. In:
International journal of Forecasting 20.1 (2004), pages 69–84 (cited on page 34).

Titre : Algorithmes d’apprentissage machine appliqués au contexte dynamique de l’internet des objets

Mots clés : apprentissage machine, flux de données, séries temporelles, prévision, selection dynamic d’en-
semble, compression de modèle

Résumé :
La croissance rapide de l’Internet des Objets (IdO)
ainsi que la prolifération des capteurs ont donné
lieu à diverses sources de données qui génèrent
continuellement de grandes quantités de données et
à une grande vitesse sous la forme de flux. Ces
flux sont essentiels dans le processus de prise de
décision dans différents secteurs d’activité et ce grâce
aux techniques d’intelligence artificielle et d’apprentis-
sage automatique afin d’extraire des connaissances
précieuses et les transformer en actions pertinentes.
Par ailleurs, les données sont souvent associées à un
indicateur temporel, appelé flux de données temporel
qui est défini comme étant une séquence infinie d’ob-
servations capturées à intervalles réguliers, mais pas
nécessairement.
La prévision est une tâche complexe dans le domaine
de l’IA et vise à comprendre le processus générant
les observations au fil du temps sur la base d’un his-
torique de données afin de prédire le comportement
futur. L’apprentissage incremental et adaptatif est le
domaine de recherche émergeant dédié à l’analyse
des flux de données.

La thèse se penche sur les méthodes d’ensemble
qui fusionnent de manière dynamique plusieurs
modèles prédictifs accomplissant ainsi des résultats
compétitifs malgré leur coût élevé en termes de
mémoire et de temps de calcul.
Nous étudions différentes approches pour estimer
la performance de chaque modèle de prévision in-
dividuel compris dans l’ensemble en fonction des
données en introduisant de nouvelles méthodes
basées sur le fenêtrage et le méta-apprentissage.
Nous proposons différentes méthodes de sélection
qui visent à constituer un comité de modèles précis
et divers. Les prédictions de ces modèles sont en-
suite pondérées et agrégées. La deuxième partie de
la thèse traite de la compression des méthodes d’en-
semble qui vise à produire un modèle individuel afin
d’imiter le comportement d’un ensemble complexe
tout en réduisant son coût. Pour finir, nous présentons
”Real-Time Machine Learning Compétition on Data
Streams”, dans le cadre de BigDataCup Challenge de
la conférence IEEE Big Data 2019 ainsi que la plate-
forme dédiée SCALAR.

Title : Machine Learning Algorithms for dynamic Internet of Things

Keywords : machine learning, data streams, time series, forecasting, dynamic ensemble selection, model
compression

Abstract : With the rapid growth of Internet-of-Things
(IoT) devices and sensors, sources that are conti-
nuously releasing and curating vast amount of data
at high pace in the form of stream. The ubiquitous
data streams are essential for data driven decision-
making in different business sectors using Artificial In-
telligence (AI) and Machine Learning (ML) techniques
in order to extract valuable knowledge and turn it to
appropriate actions. Besides, the data being collected
is often associated with a temporal indicator, referred
to as temporal data stream that is a potentially infinite
sequence of observations captured over time at regu-
lar intervals, but not necessarily.
Forecasting is a challenging tasks in the field of AI and
aims at understanding the process generating the ob-
servations over time based on past data in order to
accurately predict future behavior. Stream Learning is
the emerging research field which focuses on learning
from infinite and evolving data streams. The thesis ta-

ckles dynamic model combination that achieves com-
petitive results despite their high computational costs
in terms of memory and time.
We study several approaches to estimate the predic-
tive performance of individual forecasting models ac-
cording to the data and contribute by introducing no-
vel windowing and meta-learning based methods to
cope with evolving data streams. Subsequently, we
propose different selection methods that aim at consti-
tuting a committee of accurate and diverse models.
The predictions of these models are then weighted
and aggregated. The second part addresses model
compression that aims at building a single model to
mimic the behavior of a highly performing and com-
plex ensemble while reducing its complexity. Finally,
we present the first streaming competition ”Real-time
Machine Learning Competition on Data Streams”, at
the IEEE Big Data 2019 conference, using the new
SCALAR platform.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and motivation
	1.2 Contributions
	1.3 Publications
	1.4 Outline

	2 Background and Related Work
	2.1 Forecasting in streaming setting
	2.1.1 Data Streams and Time Series
	2.1.2 Forecasting with temporal streaming data
	2.1.3 Incremental learning
	2.1.4 Concept Drift in evolving data streams
	2.1.5 Forecasting methods for evolving data streams
	2.1.6 Forecasting with supervised learning regression
	2.1.7 Evaluating forecasting models

	2.2 Dynamic Ensembles of forecasters for streaming data
	2.2.1 The premise of Ensemble methods
	2.2.2 Dynamic Combination of Forecasters
	2.2.3 Dynamic ensembles for evolving temporal data streams

	2.3 Dynamic Ensemble Selection (DES) for temporal streams
	2.3.1 On Dynamic Ensemble Selection (DES)
	2.3.2 DES for temporal data streams

	2.4 Summary

	3 Streaming Dynamic Ensembles Selection
	3.1 Individual models' competence estimation for DES
	3.1.1 Windowing-based DES
	3.1.2 Meta-Learning based DES

	3.2 Experts selection: Select or not select, that is the question
	3.2.1 Trimming (TRIM)
	3.2.2 Abstaining (ABS)
	3.2.3 Randomized Selection
	3.2.4 Performance-diversity trade-off

	3.3 Empirical Experiments
	3.3.1 Experimental design
	3.3.2 Comparing windowing methods
	3.3.3 Comparing Meta-learning based methods
	3.3.4 Comparing SW, SLOPE and meta-learning based trimming DES
	3.3.5 Evaluating experts selection

	3.4 Summary

	4 Dynamic Ensemble using Multi-Target Regression
	4.1 DES using multi-output learning
	4.1.1 DES via Multi-Label Classification
	4.1.2 DES via Multi-Target Regression

	4.2 Streaming Multi-Target Regression
	4.2.1 Problem Transformation methods
	4.2.2 Algorithm Adaptation

	4.3 Empirical Experiments
	4.3.1 Experimental design
	4.3.2 Comparing meta-layer
	4.3.3 Comparing MTR-based DES methods
	4.3.4 Computational cost
	4.3.5 Discussion

	4.4 Summary

	5 Model Compression
	5.1 Compressing dynamic ensembles for streaming data
	5.1.1 Model Compression for batch learning
	5.1.2 Compression for streaming data

	5.2 Adaptive Model compression for data streams forecasting
	5.2.1 Teaching data
	5.2.2 Student model teaching approach
	5.2.3 Concept drift adaptation for streaming MC

	5.3 Experiments
	5.3.1 Experimental setup
	5.3.2 Adaptive Compression

	5.4 Summary

	6 Real-time Machine Learning Competitions with SCALAR
	6.1 Real-time Machine Learning Competition on Data Streams
	6.1.1 Competition Protocol and task
	6.1.2 Competition Data
	6.1.3 Winning solutions
	6.1.4 Competition Results

	6.2 SCALAR Platform
	6.2.1 Stream Server and communication
	6.2.2 Web application

	6.3 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future directions
	7.2.1 Handling delayed labels in temporally evolving data streams
	7.2.2 Behavioral data and Exceptional (dis)agreement
	7.2.3 Change detection for multi-variate data
	7.2.4 Model compression for streaming data

	Appendices
	A Datasets and Forecasters
	A.1 Temporal data streams
	A.2 Forecasters
	A.3 Blocked Prequential training
	A.4 Online Ensembles

	References

