
HAL Id: tel-03490620
https://theses.hal.science/tel-03490620

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sequential machine learning for intelligent tutoring
systems

Julien Seznec

To cite this version:
Julien Seznec. Sequential machine learning for intelligent tutoring systems. Machine Learning [cs.LG].
Université de Lille, 2020. English. �NNT : 2020LILUI084�. �tel-03490620�

https://theses.hal.science/tel-03490620
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE L’UNIVERSITÉ DE LILLE
École Doctorale Sciences Pour l’Ingénieur

Spécialité : Informatique

Thèse de Doctorat présentée par

Julien SEZNEC

Apprentissage automatique séquentiel pour les
systèmes éducatifs intelligents

sous la direction de MM. Michal Valko et Alessandro Lazaric,
et l’encadrement de M. Jonathan Banon.

Rapporteurs : M. Aurélien GARIVIER ENS de Lyon
M. Gilles STOLTZ Université Paris Saclay & CNRS

Soutenue le 15 décembre 2020 devant le jury composé de

M. Gilles STOLTZ Univ. Paris Saclay & CNRS Rapporteur
M. Aurélien GARIVIER ENS de Lyon Rapporteur
M. Steffen GRÜNEWÄLDER University of Lancaster Examinateur
M. Manuel LOPES Instituto Superior Tecnico Examinateur
Mme Mathilde MOUGEOT Univ. Paris Saclay & ENSIIE Présidente du jury
M. Michal VALKO INRIA Lille & Deepmind Directeur
M. Alessandro LAZARIC INRIA Lille & FAIR Co-Directeur
M. Jonathan BANON Lelivrescolaire.fr Encadrant

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL),
UMR 9189 Équipe SequeL, 59650, Villeneuve d’Ascq, France

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

3

À mes grands-parents: Denise, Jean et Germaine.

5

Résumé

Proposer des séquences adaptatives d’exercices dans un Environnement informatique pour
l’Apprentissage Humain (EIAH) nécessite de caractériser les lacunes de l’élève et d’utiliser
cette caractérisation dans une stratégie pédagogique adaptée. Puisque les élèves ne font
que quelques dizaines de questions dans une session de révision, ces deux objectifs sont
en compétition. L’apprentissage automatique appelle problème de bandits ces dilemmes
d’exploration-exploitation dans les prises de décisions séquentielles. Dans cette thèse,
nous étudions trois problèmes de bandits pour une application dans les systèmes éducatifs
adaptatifs.

Les bandits décroissants au repos sont un problème de décision séquentiel dans lequel la
récompense associée à une action décroît lorsque celle-ci est sélectionnée. Cela modélise
le cas où un élève progresse quand il travaille et l’EIAH cherche à sélectionner le sujet
le moins maîtrisé pour combler les plus fortes lacunes. Nous présentons de nouveaux
algorithmes et nous montrons que pour un horizon inconnu T et sans aucune connaissance
sur la décroissance des K bras, ces algorithmes atteignent une borne de regret dépendante
du problème O(logT), et une borne indépendante du problème Õ(

√
KT). Nos résultats

améliorent substantiellement l’état de l’art, ou seule une borne minimax Õ(K1/3T 2/3) avait
été atteinte. Ces nouvelles bornes sont à des facteurs polylog des bornes optimales sur le
problème stationnaire, donc nous concluons : les bandits décroissants ne sont pas plus durs
que les bandits stationnaires.

Dans les bandits décroissants sans repos, la récompense peut décroître à chaque tour pour
toutes les actions. Cela modélise des situations différentes telles que le vieillissement
du contenu dans un système de recommandation. On montre que les algorithmes conçus
pour le problème "au repos" atteignent les bornes inférieures agnostiques au problème
et une borne dépendante du problème O(logT). Cette dernière est inatteignable dans le
cas général où la récompense peut croître. Nous concluons : l’hypothèse de décroissance
simplifie l’apprentissage des bandits sans repos.

Viser le sujet le moins connu peut être intéressant avant un examen, mais pendant le
cursus - quand tous les sujets ne sont pas bien compris - cela peut mener à l’échec de
l’apprentissage de l’étudiant. On étudie un Processus de Décision Markovien Partiellement
Observable (POMDP, selon l’acronyme anglais) dans lequel on cherche à maîtriser le plus
de sujets le plus rapidement possible. On montre que sous des hypothèses raisonnables
sur l’apprentissage de l’élève, la meilleure stratégie oracle sélectionne le sujet le plus
connu sous le seuil de maîtrise. Puisque cet oracle optimal n’a pas besoin de connaître
la dynamique de transition du POMDP, nous proposons une stratégie apprenante avec
des outils "bandits" classiques, en évitant ainsi les méthodes gourmandes en données de
l’apprentissage de POMDP.

6

Abstract

Designing an adaptive sequence of exercises in Intelligent Tutoring Systems (ITS) requires
to characterize the gaps of the student and to use this characterization in a relevant
pedagogical strategy. Since a student does no more than a few tens of exercises in a session,
these two objectives compete. Machine learning called these exploration-exploitation
trade-offs in sequential decision making the bandits problems. In this thesis, we study
different bandits setups for intelligent tutoring systems.

The rested rotting bandits are a sequential decision problem in which the reward associated
with an action may decrease when it is selected. It models the situation where the student
improves when he works and the ITS aims the least known subject to fill the most important
gaps. We design new algorithms and we prove that for an unknown horizon T , and without
any knowledge on the decreasing behavior of the K arms, these algorithms achieve problem-
dependent regret bound of O(logT), and a problem-independent one of Õ(

√
KT). Our

result substantially improves over existing algorithms, which suffers minimax regret
Õ(K1/3T 2/3). These bounds are at a polylog factor of the optimal bounds on the classical
stationary bandit; hence our conclusion: rotting bandits are not harder than stationary ones.

In the restless rotting bandits, the reward may decrease at each round for all the actions.
They model different situations such as the obsolescence of content in recommender
systems. We show that the rotting algorithms designed for the rested case match the
problem-independent lower bounds and a O(logT) problem-dependent one. The latter was
shown to be unachievable in the general case where rewards can increase. We conclude:
the rotting assumption makes the restless bandits easier.

Targeting the least known topic may be interesting before an exam but during the curriculum
- when all the subjects are not yet understood - it can lead to failure in the learning of the
student. We study a Partially Observable Markov Decision Process in which we aim at
mastering as many topics as fast as possible. We show that under relevant assumptions on
the learning of the student, the best oracle policy targets the most known topic under the
mastery threshold. Since this optimal oracle does not need to know the transition dynamics
of the POMDP, we design a learning policy with classical bandits tools, hence avoiding
the data-intensive methods of POMDP learning.

7

Acknowledgments

I deeply thank my PhD advisors, Michal and Alessandro, for everything that I have
learned during these four years. They taught me about bandits theory during the numerous
brainstorming sessions on the white board, but I have also learned from them how to carry
on a scientific project; from selecting the most promising research questions to the writing
of the papers.

Je remercie Aurélien Garivier et Gilles Stoltz pour leurs relectures du manuscrit. Je
n’ignore pas la quantité de travail que cela représente, et je suis sincèrement touché qu’ils
aient accepté d’être Rapporteurs. I also would like to thank the examiners - Manuel
Lopes and Steffen Grünewälder - for accepting my invitation. Je remercie aussi Mathilde
Mougeot pour avoir présidé le jury de soutenance.

Un grand merci à Lelivrescolaire.fr dans son ensemble pour m’avoir permis de réaliser
cette thèse sur un sujet qui me portait à coeur, et cela au plus proche des débouchés réels.
Merci en premier lieu à Jonathan ainsi qu’à l’ensemble du pôle produit, pour m’avoir
accompagné et fait monter en compétence sur de nombreuses technologies. Je suis très
reconnaissant envers Raphaël et Emilie pour avoir appuyé le projet. Merci aux différentes
personnes ayant travaillé avec moi sur Afterclasse tout au long de ses quatre années :
Aymeric, Guillaume, Marine, Jef, Anna, Gaelle. Enfin, j’ai une pensée particulière pour
les yeswerunners des origines - Robin et Claire - pour les kilomètres de discussions aux
bords de la Saone.

Les résultats présentés dans ce manuscrit doivent beaucoup aux chercheurs avec qui j’ai
pu collaborer. En particulier, les résultats sur les rested rotting bandits sont issus d’une
fructueuse collaboration avec Andrea et Alexandra, desquels j’ai énormément appris durant
ma première année de thèse. Merci à Pierre, qui a collaboré au second article sur les rotting
bandits. Finalement, je remercie Emilie, Odalric et Lilian de m’avoir permis de collaborer
sur le projet GLR-UCB.

J’ai été très heureux d’intégrer l’équipe SCOOL (anciennement SEQUEL) de l’INRIA, et
je remercie l’ensemble des chercheurs, doctorants et post-doctorants que j’ai pu rencontrer
lors de mes passages à Lille. J’ai une pensée particulière pour les nombreux thés partagés
avec mes cobureaux, Emilie et Sadegh; ainsi que pour le voyage au Japon en compagnie
de Jean. Merci aussi à l’ensemble des organisateurs de la Reinforcement Learning Summer
School; Nicolas, Omar, Yannis, Edouard, Mathieu, Xuedong et Florian. Je remercie
également Yohan et Juliette, la team bandit de la RLSS.

Beaucoup de personnes m’ont soutenu et poussé au cours de ces quatre années étirées
entre Lyon, Lille et Paris. Un grand merci aux lyonnais - Josselin, Paloma, Pierre, John,
Johanna, Romain, Jean-Baptiste - ainsi qu’à François qui m’aura hébergé lors de mes
visites à Lille. Je remercie également mes amis de plus longues dates pour leur soutien:
Edouard et Claire-Marie, Laureen, Hugo, Eugénie, Romain, Thomas, Bastien et tous le
groupe des chaptaliens. Finalement, je souhaiterais remercier mes deux frères - Arthur et
Corentin - ainsi que mes parents pour leur soutien indéfectible.

Contents

I Introduction

1 Afterclasse . 25

1.1 A revision website 25

1.2 Exercises: format and data 25

1.3 Scope of the Ph.D.: how to choose the next exercise? 29

1.4 Users and usages 29

1.5 Appendix: contextual elements on Lelivrescolaire.fr 31

2 Exploration in online learning . 33

2.1 The multi-armed bandits model 33

2.2 Stochastic bandits 34

2.2.1 Regret minimization . 34

2.2.2 Upper confidence bound methods . 36

2.2.3 Bayesian methods . 38

2.3 Adversarial bandits 39

2.3.1 Pseudo-regret . 39

2.3.2 Adversarial methods . 40

2.4 Non-stationary bandits 42

2.5 Contextual bandits 43

2.6 Beyond bandits: Reinforcement Learning 44

3 Applications to Intelligent Tutoring Systems 47

3.1 Shortcomings in the bandits model 47

3.1.1 Observation is reward. 48

3.1.2 Comparing to the best action. 49

3.1.3 Actions do not impact observations . 49

3.1.4 Learning is quite slow. 49

3.2 Exploration methods in Adaptive Intelligent Tutoring Systems 50

3.2.1 Target the largest improvement . 50

3.2.2 Target the least known subject . 53

3.2.3 Target faster learning . 54

II Rotting bandits

4 Rested rotting bandits are not harder than stationary ones
59

4.1 Rested rotting bandit: model and preliminaries 59

4.1.1 The offline problem (Heidari et al. 2016) . 62

4.1.2 The noiseless online problem (Heidari et al. 2016) 63

4.1.3 Levine et al. (2017): wSWA, a first policy for the noisy problem 66

4.1.4 Experimental benchmarks . 72

4.1.5 Open problems . 75

4.2 FEWA and RAW-UCB: Two adaptive window algorithms 76

4.2.1 Towards adaptive windows . 77

4.2.2 FEWA: Filtering on expanding window average . 78

4.2.3 RAW-UCB: Rotting Adaptive Window Upper Confidence Bound 82

4.3 Regret Analysis 83

4.3.1 Problem-independent bound . 84

4.3.2 Problem-dependent bound . 85

4.3.3 Proof . 87

4.4 Experimental benchmarks 93

4.4.1 Simulated benchmark #1 (2 arms). 93

4.4.2 Simulated benchmark #2 (10 arms). 95

4.5 Efficient algorithms 98

4.5.1 The numerical cost of adaptive windows . 98

4.5.2 The efficient update trick . 98

4.5.3 The delay in EFF_UPDATE . 102

4.5.4 EFF-FEWA (πEF) and EFF-RAW-UCB (πER) . 109

4.5.5 Regret analysis . 110

4.5.6 Experimental Results . 115

4.5.7 Conclusion . 118

4.6 How harder are rotting bandits ? 118

4.6.1 RAW-UCB++ . 118

4.6.2 Experiments . 119

4.6.3 Towards a theoretical analysis of RAW-UCB++ . 120

4.7 Linear rotting bandits are impossible to learn 122

4.7.1 Linear bandits . 122

4.7.2 Linear rested rotting bandits . 123

4.7.3 The offline problem . 125

4.7.4 The noise-free online problem . 126

4.7.5 Proofs . 126

5 The rotting assumption makes restless bandits easier 131

5.1 Restless rotting bandits 131

5.1.1 Restless bandits model . 131

5.1.2 Piece-wise stationary bandits . 132

5.1.3 Variation budget bandits . 135

5.1.4 The restless rotting assumption . 136

5.2 Analysis of adaptive window policies on restless rotting bandits. 140

5.2.1 Proofs . 142

5.3 Real-word data experiment on Yahoo! Front Page 152

5.4 Restless and rested rotting bandits 157

5.4.1 The general case . 157

5.4.2 Rested rotting bandits with a restless envelope . 158

5.4.3 Proofs . 158

III Beyond rotting bandits

6 Master topics as soon as possible . 163

6.1 Beyond rotting bandits: some motivations 163

6.2 Setup 164

6.3 Optimal Oracle: Focus on the largest under the threshold 168

6.3.1 The FLUT oracle . 168

6.3.2 Optimality . 169

6.3.3 Proof of Theorem 6.3.1 . 169

6.3.4 Technical Lemmas . 175

6.4 What does random progression mean? 180

6.5 Learning Perspectives 182

6.5.1 Regret . 182

6.5.2 Counter-examples and a new learning assumption 182

6.5.3 Focus on the Largest Under the Threshold with Exploration (FLUT-E) . . 183

6.5.4 Regret upper bound perspectives . 185

6.6 Practical considerations for ITS applications 186

6.6.1 Including prior knowledge . 186

6.6.2 The exercises population is finite . 187

6.6.3 Tuning ∆ with ε . 187

6.6.4 Managing difficulty with a Zone of Proximal Development 187

IV References

References . 191

Chapter header: Giorgio de Chirico, Edipo e la Sfinge, 1968, olio su tela, cm 90x70, ©Fondazione
Giorgio e Isa de Chirico, Roma.

List of items

Figures

1.1 Grades (Red rectangle) and Subjects (Blue rectangle). 26

1.2 "Multiple choice" is a question with several propositions which can be
either true or false. 27

1.3 The "single choice" is a question with several propositions (mostly, 2 or
4) and only one good answer. 27

1.4 "Box" is a type of exercises in which the student should sort several
elements (e.g. 5) between two categories ("boxes"). 27

1.5 "Link" exercises consist in linking each element of two different sets. 28

1.6 A "timeline" consists in ordering different elements. It can be some
dates in history, but it can be used for any kind of ordered sets. 28

1.7 "Input" is a question with one or several blank holes that the learner
should fill. 28

1.8 Active logged-in students and their exercises per month 30

1.9 The churn rate is the proportion of students which do not connect n+1
times among the ones which connect n times. 30

3.1 Clement et al. (2015)’s algorithms . 51

4.1 Top: Regret at the end of the game for different values of L. Bottom:
Regret across time for two values of L. Average over 1000 runs. We highlight
the [10%,90%] confidence region. 73

4.2 Left: Regret at the end of the game for different values of L. Middle,
Right: Regret across time for two values of L. Average over 1000 runs. We
highlight the [10%,90%] confidence region. 75

4.3 Three rotting reward functions (red dash line) and associated reward
samples: Why should we use a single fixed window size to compare these
three arms? . 77

4.4 Top: Regret at the end of the game for different values of L. Bottom:
Regret across time for two values of L. Average over 1000 runs. We highlight
the [10%,90%] confidence region. 94

4.5 Left: Regret at the end of the game for different values of L. Middle,
Right: Regret across time for two values of L. Average over 1000 runs. We
highlight the [10%,90%] confidence region. 96

4.6 Normalized delay d j/h j after Ni pulls for each j-th statistic µ̂
h j
i,eff. We

display in white the rounds at which statistic j is not created yet. 104

4.7 Normalized delay d j/h j after Ni pulls for each j-th statistic µ̂
h j
i,eff. We

display in white the rounds at which statistic j is not created yet. 104

4.8 Impact of m on the minimum, maximum, average and median ratio
among {mω j/(m−1)h j} j. 106

4.9 Regret across time. Average over 1000 runs. We highlight the [10%,90%]
confidence region. 115

4.10 Top: Regret at the end of the game for different values of L. Bottom:
Regret across time for two values of L. Average over 1000 runs. We highlight
the [10%,90%] confidence region. 117

4.11 Left: Regret at the end of the game for different values of L. Middle,
Right: Regret across time for two values of L. Average over 1000 runs. We
highlight the [10%,90%] confidence region. 117

4.12 Stationary experiments . 120

4.13 Top: Regret at the end of the game for different values of L. Bottom:
Regret across time for two values of L. Average over 1000 runs. We highlight
the [10%,90%] confidence region. 121

4.14 Left: Regret at the end of the game for different values of L. Middle,
Right: Regret across time for two values of L. Average over 1000 runs. We
highlight the [10%,90%] confidence region. 122

5.1 The reward functions µ and µ ′. A policy with low regret on µ cannot
achieve low regret on µ ′. 133

5.2 Left: reward functions from the Yahoo! dataset Right: average regret
of policies over 500 runs . 154

Tables

4.1 Average running time for the 10-arms experiment in seconds. 97

4.2 Average running time and comparison with RAW-UCB for the efficient
benchmark. 116

5.1 Average computational time in seconds for each algorithm in each
experiment. 153

Algorithms

1 Greedy Oracle πO (or A0, Heidari et al. (2016)) . 62

2 Greedy Bandit πG (or A2, Heidari et al. (2016)) . 63

3 SWA (Levine et al. 2017) . 67

4 wSWA (Levine et al. 2017) . 71

5 FEWA . 79

6 FILTER . 79

7 RAW-UCB . 82

8 EFF_UPDATE . 100

9 Focus on the Largest Under the Threshold (FLUT or π̃?) 169

10 Focus on the Largest Under the Threshold with Exploration (FLUT-E) 185

Chapter header: Portrait of Luca Pacioli, traditionally attributed to Jacopo de’ Barbari, 1495

19

Plan détaillé

Cette thèse peut s’approcher de deux manières différentes. En version longue, elle traite
de la possibilité d’appliquer des modèles d’apprentissage par renforcement pour améliorer
les séquences d’exercices données à un élève sur une plateforme en ligne. En version
courte, elle peut se lire comme une thèse apportant des contributions fondamentales à des
problèmes de bandits à plusieurs bras non-stationnaires. Commençons par présenter la
version longue.

Cette thèse s’est déroulée dans le cadre du dispositif CIFRE avec l’entreprise Lelivresco-
laire.fr. Cette entreprise a développé Afterclasse, un site de révision en ligne gratuitement
accessible et massivement utilisé. Dans le Chapitre 1, on donne quelques éléments de
contexte concernant Afterclasse et Lelivrescolaire.fr. Le but de la thèse y est précisé :
améliorer la séquence d’exercices en fonction des résultats de chaque élève, avec un focus
sur le court terme. En effet, les élèves "bachotent" sur la plateforme et sont assez peu
engagés dans le temps. Il est donc naturel de chercher à les aider sur le court terme. Pour
cela, il nous faut évaluer rapidement ce qu’ils savent et ce qu’ils ne savent pas et utiliser
cette connaissance pour les réorienter vers les exercices qui leurs seraient les plus utiles.

Le Chapitre 2 présente les modèles les plus classiques d’exploration-exploitation en
machine learning. Cette revue de littérature peu mathématisée (par rapport au standard
du domaine) a pour but de présenter de manière détaillée mais abordable les questions et
les réponses apportées par la communauté du machine learning sur ce dilemme naturel
entre exploration et exploitation. Une emphase particulière est mise sur les problèmes de
bandits à plusieurs bras. Dans ces problèmes, un agent choisit séquentiellement parmi
plusieurs actions et obtient une récompense dépendant de l’action choisit. Le but est de
réussir à repérer les actions qui mènent aux plus fortes récompenses. Pour cela, le joueur
doit accepter d’explorer - et donc de se tromper - les différentes options afin d’améliorer sa
connaissance du problème.

Plusieurs modèles de récompenses sont détaillés. Dans le modèle stochastique stationnaire
(Section 2.2), chaque bras est lié à une distribution aléatoire. Le but est donc d’évaluer la
moyenne de la distribution tout en quantifiant l’information manquante. Dans le modèle
adversarial (Section 2.3), la récompense est choisie par un adversaire et on cherche donc
à repérer les actions les plus prolifiques tout en étant suffisamment imprédictible par
l’adversaire. Dans les modèles stochastiques non-stationnaires (Section 2.4), la distribution
associée à chaque bras peut changer au cours du temps ou en fonction des actions choisies.
Cela mène à un double problème : d’estimation statistique d’une part (Quelle est la
valeur courante ?), et de stratégie d’autre part (Comment puis-je me prémunir contre
la non-stationarité ?). Enfin, les bandits contextuels (Section 2.5) lient les différentes
actions à l’aide d’éléments de contexte. Ces éléments permettent d’envisager un très grand
nombre d’actions qui ne seront pas toutes explorées : l’information sur les unes permettant
d’extrapoler la valeur des autres.

Finalement, on présente en Section 2.6 quelques fondamentaux d’apprentissage par ren-
forcement (reinforcement learning). Ce modèle est beaucoup plus général que les modèles
de bandits car le joueur possède un état qu’il doit contrôler pour rester dans des zones

20

à fortes récompenses. Ce modèle est très riche et permet d’apprendre des taches très
complexes. Pour autant, il est très consommateur de données et ses meilleures réussites
ont souvent lieu dans des dispositifs ou des données peuvent être simulées facilement.

Le Chapitre 3 est consacré aux possibilités d’adaptation du modèle de bandits pour un
usage éducatif. Lorsqu’on donne une question à un élève, on observe la réponse à cette
question, ce qui est très similaire au feedback du modèle de bandit. Cependant, nous
notons quatre écueils fondamentaux (Section 3.1) qui entravent un tel usage. Tout d’abord,
il est difficile d’associer la réponse d’un élève à une récompense pour l’algorithme. Faut-il
privilégier les questions que l’élève réussit ou celles qu’il ne connaît pas ? Une fois la
récompense posée, l’algorithme va tenter de la maximiser "brutalement": il faut donc faire
très attention au proxy utilisé.

Deuxièmement, les modèles de bandits comparent souvent la performance obtenue à la
performance de la "meilleure" action (inconnue). Dans le cas d’une séquence d’exercices,
il est assez naturel qu’un exercice puissent être très intéressant à un instant donné, et
beaucoup moins intéressant à l’avenir (par exemple, une fois que l’élève le maîtrise
parfaitement). Il est donc essentiel de pouvoir se doter de points de comparaison plus
intelligents que celui des bandits stationnaires ou adversariaux.

Troisièmement, le modèle stationnaire suppose que ce qu’on observe ne réagit pas à nos
actions. Dans le cas d’un système d’apprentissage, on souhaite que nos actions améliorent
les performances de l’élève et que in fine cela change les réponses qu’il envoie. Autrement
dit, on souhaiterait pouvoir incorporer une modélisation de l’interaction entre l’élève et la
machine.

Quatrièmement, les élèves font quelques dizaines de questions dans une séquence. C’est
très peu, y compris pour un problème simple comme le problème des bandits stationnaires.
Cet écueil s’oppose aux trois autres : là où ces derniers suggéraient une modélisation
ambitieuse; ici, on doit se contenter de problèmes très simples.

À la Section 3.2, on détaille l’état de l’art de l’usage des modèles de bandits dans les
systèmes d’apprentissage intelligents. Ces études empiriques très poussées s’attaquent
à plusieurs objectifs, et montrent le plus souvent les comportements intéressants des
algorithmes de bandits dans ces systèmes. Cependant, aucun de ces travaux ne s’attaque
directement aux problèmes fondamentaux évoqués précédemment.

Dans le Chapitre 4, on étudie la possibilité de faire travailler un élève sur le sujet le
moins connu alors que celui-ci progresse au cours de ses révisions. Ainsi, on associe une
récompense positive lorsque l’algorithme trouve une question qui n’est pas connue par
l’élève (écueil 1). Au fur et à mesure que l’élève se perfectionne (écueil 3), il y a des moins
en moins de récompenses sur le sujet sélectionné. Ce dispositif est donc nommé "bandits
pourrissant au repos", ce qui traduit la raréfaction des récompenses et l’absence d’évolution
sur les sujets non-sélectionnés. Dans ce dispositif, il est nécessaire de changer de sujet
lorsque l’élève a suffisamment progressé sur un chapitre peu connu initialement (écueil 2).
L’étude statistique du problème permet de conclure que malgré sa très forte richesse, le
problème n’est pas plus dur à apprendre que le problème stationnaire (écueil 4). Ainsi, on

21

montre que le dispositif des bandits au repos apporte une contribution significative aux
quatre problèmes fondamentaux détaillés au Chapitre 3. Le Chapitre 5 étudie un autre
dispositif de bandits où la récompense décroît indépendamment des choix d’actions. Ce
problème est donc nommé "bandits pourrissant sans repos". Ce modèle est fortement lié
au premier, bien qu’il ne soit pas motivé par des applications éducatives.

Dans le Chapitre 6, on considère à nouveau que l’élève progresse lors de ses révisions,
mais l’objectif n’est plus de maximiser la récompense cumulée. On définit un seuil de
maîtrise et on cherche à atteindre ce seuil sur tous les chapitres. Ce problème se place
donc dans le cadre plus large des Problèmes de Décisions Markoviens Partiellement
Observés (POMDP). La récompense est beaucoup plus implicite qu’elle ne l’est dans le
cas des bandits classiques. À l’aide de quelques hypothèses bien choisies, on montre que
la meilleure politique oracle est de choisir le chapitre le mieux connu sous le seuil de
maîtrise. Cela contraste fortement avec les bandits décroissants: on cherche désormais
à viser les chapitres les plus faciles jusqu’à ce qu’ils soient maîtrisés. Fort de notre très
bonne compréhension du problème oracle, on propose une heuristique pour la politique
apprenante.

Les résultats fondamentaux sur les bandits se concentrent dans les Chapitres 4 et 5. Le
Chapitre 4 se décompose de la manière suivante. La Section 4.1 présente le modèle et
les deux principaux travaux préliminaires de manière exhaustive. Heidari et al. (2016)
ont étudié le problème avec une récompense non-bruitée tandis que Levine et al. (2017)
ont étudié le problème bruité. Ils proposent SWA, un algorithme avec une borne de regret
indépendante du problème Õ

(
T 2/3

)
.

Cet algorithme utilise un mécanisme de fenêtre glissante de taille fixe. Nous avons proposé
deux algorithmes (Section 4.2), FEWA et RAW-UCB, qui utilisent pour chaque bras des
statistiques balayant toutes les fenêtres possibles. FEWA utilise ces statistiques pour filtrer
les bras les moins bons en partant des échantillons les plus récents.RAW-UCB calcule de
multiples indices UCB pour chaque bras et utilise le plus petit pour comparer les bras entre
eux. L’étude de ces algorithmes (Section 4.3) a permis de prouver une borne de regret
indépendante du problème Õ

(√
T
)

et une borne dépendante du problème O (logT). Ces
bornes sont comparables avec le problème stationnaire ce qui nous permet de suggérer que
ce problème - bien que plus général - n’est pas plus dur que le problème stationnaire.

La performance empirique des algorithmes est testée sur des données simulées (Section 4.4).
Non seulement RAW-UCB et FEWA obtiennent les meilleurs résultats, mais le détail des
expériences montrent en plus des différence qualitatives notables dans la forme du regret
comparé à SWA. En particulier, nos algorithmes sont agnostiques à tous les paramètres du
problème à l’exception du niveau de bruit σ . C’est une forte amélioration par rapport à
SWA qui doit connaître en plus la décroissance maximum ainsi que l’horizon de temps pour
obtenir ses meilleures performances.

Nos algorithmes utilisent O (T) statistiques par tour et souffrent donc d’une complex-
ité algorithmique prohibitive (en temps et en espace). Cependant, on montre à la Sec-
tion 4.5 qu’il est possible de réduire les statistiques utilisées (et la complexité afférente)
à O (K logT) par tour, tout en retrouvant les mêmes bornes de regret que pour les algo-

22

rithmes originaux. C’est une meilleure complexité que celle de SWA (O
(

T 2/3
)

), bien que,
en pratique, SWA soit beaucoup plus rapide. Nous avons essayé d’étendre nos résultats
aux bandits linéaires. Cependant, nous avons pu montrer que le problème proposé n’était
pas apprenable, même en l’absence de bruit. En effet, la non-stationnarité au repos se
comporte mal avec le contexte vectoriel.

Le Chapitre 5 commence par une revue de la littérature sur les bandits sans repos (Sec-
tion 5.1). Nous reprenons les deux modèles les plus étudiés dans la littérature : les bandits
stationnaires par morceaux (ϒT morceaux) et les bandits avec budgets d’évolution globaux
(VT budget). On rappelle que les bornes minimax sont respectivement Õ

(√
KϒT T

)
et

Õ
(

K1/3V 1/3
T T 2/3

)
. À la Section 5.2, nous montrons que FEWA et RAW-UCB, sans aucune

modification par rapport au chapitre précédent, sont capables d’atteindre ces taux sans
connaître les paramètres T , VT et ϒT . Plus important encore, ces algorithmes sont capables
d’obtenir une borne de regret logarithmique dépendante du problème. Cette borne est
inatteignable dans le cas ou la récompense peut croître. En effet, Garivier and Moulines
(2011) montre que les algorithmes minimax ont une borne inférieure en O

(√
T
)

sur tous
les problèmes stationnaires. On conclut donc que l’hypothèse de décroissance permet de
simplifier les bandits sans repos.

La Section 5.3 propose une évaluation empirique sur des données réelles issues du jour-
nalisme en ligne. C’est un jeu de données très utilisé pour les problèmes de bandits
non-stationnaires. Cette expérience permet de confirmer nos découvertes théoriques : le
regret montre une courbe logarithmique sur les portions stationnaires du problème. Finale-
ment, nous proposons une modélisation avec une non-stationnarité croisée sans repos et
avec repos (Section 5.4). Cependant, comme dans le cas linéaire, les deux problèmes sont
incompatibles puisque l’on peut montrer une borne inférieur O (T).

Le Chapitre 6 propose un problème d’exploration-exploitation assez original, intermédiaire
entre le RL et les bandits. Il ne contient qu’un seul résultat technique : il s’agit de la
preuve de l’optimalité de la politique oracle. Ce résultat est surprenant dans la mesure ou
cette politique oracle n’utilise pas sa connaissance de l’opérateur de transition. Comme
dans le cas des bandits étudiés aux chapitres précédents, seule la connaissance des valeurs
courantes est nécessaire pour se comporter optimalement. Bien que ce chapitre ne contient
pas d’analyse complète d’une politique apprenante, il nous paraît être une perspective
prometteuse de travaux futurs.

I
1 Afterclasse . 25
1.1 A revision website
1.2 Exercises: format and data
1.3 Scope of the Ph.D.: how to choose the next

exercise?
1.4 Users and usages
1.5 Appendix: contextual elements on Lelivresco-

laire.fr

2 Exploration in online learning . . . 33
2.1 The multi-armed bandits model
2.2 Stochastic bandits
2.3 Adversarial bandits
2.4 Non-stationary bandits
2.5 Contextual bandits
2.6 Beyond bandits: Reinforcement Learning

3 Applications to Intelligent Tutoring
Systems . 47

3.1 Shortcomings in the bandits model
3.2 Exploration methods in Adaptive Intelligent Tu-

toring Systems

Introduction

1. Afterclasse

1.1 A revision website

Afterclasse.fr is a revision website released in 2015 by Lelivrescolaire.fr, a French EdTech
company (section 1.5). While most of the educational content on Lelivrescolaire.fr were
thought and designed to be used by teachers with their students (in class or at home),
Afterclasse is a platform which is designed directly for students to work independently
after classroom hours.

The content covers the official program of the French Education Nationale ministry for
middle school - from 11 to 15 years old with the corresponding grades 6ème 5ème 4ème
3ème - and high school- from 15 to 18 years old with the grades 2nde 1ère Terminale.
In each grade, there are several subjects: French, Mathematics, History and Geography,
Physics and Chemistry, Natural Science, Sociology and Economics, English, Spanish, and
Philosophy.

For a given grade, the content of a subject is divided into chapters. Each chapter is
associated with a revision sheet and a self-assessment mode. The revision sheet gathers
the main information about the chapter: a lesson plan, definitions, dates, biography of the
main characters or authors, etc.

1.2 Exercises: format and data

In the self-assessment mode, the exercises are given sequentially to students. For each
chapter, there are roughly one hundred different exercises. An exercise session contains

https://www.afterclasse.fr
https://www.lelivrescolaire.fr

26 Chapter 1. Afterclasse

Figure 1.1: Grades (Red rectangle) and Subjects (Blue rectangle).

few (∼ 8) exercises. At the end of the session, statistics about the session are displayed to
the user, and s/he can choose to restart a new session.

Each exercise is associated with a topic, a difficulty level, and a type. A topic is a
subdivision of a chapter. It usually corresponds to a section of the lesson plan. There are
two to four topics for each chapter. There are three levels of difficulty in the course. The
easy questions are direct applications from the course or involve prerequisite knowledge
from the previous chapters. The medium questions are the core of the course. The difficult
questions are either complex exercises either questions which involve knowledge slightly
beyond the scope of the course. Notice that the difficulty is tagged by a teacher. It does
not necessarily quantify the fraction of students which had succeeded it. Indeed, there are
questions that might be easy to answer but involve complex knowledge. There are 7 types
of exercises: multiple choice (Figure 1.2), single choice (Figure 1.3), box (Figure 1.4), link
(Figure 1.5), timeline (Figure 1.6), and input (Figure 1.7).

1.2 Exercises: format and data 27

Figure 1.2: "Multiple choice" is a question with several propositions which can be either
true or false.

Figure 1.3: The "single choice" is a question with several propositions (mostly, 2 or 4) and
only one good answer.

Figure 1.4: "Box" is a type of exercises in which the student should sort several elements
(e.g. 5) between two categories ("boxes").

28 Chapter 1. Afterclasse

Figure 1.5: "Link" exercises consist in linking each element of two different sets.

Figure 1.6: A "timeline" consists in ordering different elements. It can be some dates in
history, but it can be used for any kind of ordered sets.

Figure 1.7: "Input" is a question with one or several blank holes that the learner should fill.

1.3 Scope of the Ph.D.: how to choose the next exercise? 29

1.3 Scope of the Ph.D.: how to choose the next exercise?

The goal of this Ph.D. is to improve the way we choose the sequence of questions. In
particular, we would like to select the next question in an adaptive way. It means that we
would like to ask different questions to students depending on their respective estimated
proficiency.

There is a two-in-one objective: we would like to (1) accurately estimate the proficiency
in order to (2) recommend more relevant questions. There is a trade-off to find between
asking a question to measure the proficiency and asking a question because we think they
are relevant. This problem is known in machine learning as the exploration-exploitation
trade-off. In Chapter 2, we will present the main questions and answers the machine
learning community brings to the topic of active exploration-exploitation.

In Chapter 3, we present the main gaps and limits of these general methods for application
to educative systems. We also present other attempts to use these methods in adaptive
educational systems.

The next three Chapters (4, 5, and 6) are dedicated to the specific bandits problems we
consider in this thesis.

1.4 Users and usages

Afterclasse content (both exercises and sheets) is free to use. A premium version is
available with convenient tools: a printing option for the sheets, a revision planning to
help the student organizing its exam revision on several days, etc. Because the content is
free, it is very used nationwide: every year, tens of thousands of students complete several
millions of exercises.

In June, there is a peak in the usage before the middle school (brevet des collèges) and
high school (baccalauréat) exams (Figure 1.8). The number of active students in June is
multiplied by three compared to the month of October. The total number of exercises is
also multiplied by more than six, which shows that the average student is also doing twice
more exercises in June than in October.

However, studying is not an addictive behavior and we notice a rather high churn rate
(Figure 1.9). Almost half of the logged-in students do not connect more than once to the
website. After the first connection, we still loose a large fraction of the students between
two connections. This fraction decreases to reach 10% asymptotically. The fact that the
churn rate converges to a positive number means that the number of students connecting at
least n times decreases exponentially with n.

Most of the students revise only one chapter per logged-in day. The repartition changes
significantly just before the exams: half of the students revise 7 chapters per week or more
in June while they are only 10% in January.

30 Chapter 1. Afterclasse

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

0

1

2

3

4

5

Ex
er

cis
es

1e6

0

5000

10000

15000

20000

25000

30000

St
ud

en
ts

Figure 1.8: Active logged-in students and their exercises per month

0 5 10 15 20 25 30
Number of connections

0

5

10

15

20

25

30

35

40

Ch
ur

n
ra

te
(%

)

Figure 1.9: The churn rate is the proportion of students which do not connect n+1 times
among the ones which connect n times.

In brief, the students are cramming on the website: their revisions are short-term, intensive,
and targeted (except during the final exams period in which they are broader). Due to
the lack of long-term usage (and data), we will not address long-term objectives such

1.5 Appendix: contextual elements on Lelivrescolaire.fr 31

as improving memory retention. Our upcoming approaches will focus on pragmatic
short-term objectives: what are the gaps of the student now and how can we fill them.

1.5 Appendix: contextual elements on Lelivrescolaire.fr

Lelivrescolaire.fr1 Editions (or lelivrescolaire.fr) publishes since 2010 educative contents
and technologies for the French market. Within a few years, the company became one of
the main actors of the national education ecosystem by gathering double expertise: strong
publishing know-how and the ability to develop innovative technologies.

Lelivrescolaire.fr brings up three key elements to distinguish themselves from other text-
books publishers. First, they promote free usage of their digital content. Indeed, each
textbook’s content is available for free on the website (www.lelivrescolaire.fr), which is a
unique fact in the French textbook publishing ecosystem. There are more than 2 million
visitors each month on the website, which makes their digital textbooks the most used
educative digital resources in France.

Second, they write their educative content in a collaborative way. Lelivrescolaire.fr
associates more than 100 teachers to the conception of each textbook. In total, it is more
than 3000 teachers who have participated in middle school and high school textbooks
conception for the last 4 years.

Third, the company promotes constant innovation in the contents and digital media. Each
textbook is available on the website and in desktop and tablet Apps. Moreover, the
company released many features to enhance digital textbooks experience such as an
embedded Python console for the programming exercises, an audio recorder for language
learning, or multiple embedded tools for the science curriculum.

More than half of the teachers and one million students in France are using digital content
from Lelivrescolaire.fr. For printed books, Lelivrescolaire.fr represents more than 16%
of the market for many textbooks, which makes the company one of the leading actors in
the French textbook publishing sector. The firm employs 50 workers dispatched in the
technology division (engineers, developers, designers), the publishing division (publishers,
graphic designers, community managers), and the customer support division (instructors,
technical assistant). In January 2020, Lelivrescolaire.fr joined Hachette Livre, the third
publishing company in the world.

1"le livre scolaire" means "the school textbook".

https://www.lelivrescolaire.fr
https://www.lelivrescolaire.fr

2. Exploration in online learning

Il était tard lorsque K. arriva. Une neige épaisse couvrait le village. La colline était cachée
par la brume et par la nuit, nul rayon de lumière n’indiquait le grand Château. K. resta
longtemps sur le pont de bois qui menait de la grand-route au village, les yeux levés vers
ces hauteurs qui semblaient vides.

Franz Kafka, Le Château, Chapitre Premier.

2.1 The multi-armed bandits model

The multi-armed bandits (MAB) model is a sequential decision process in which the
machine learner faces many possible actions. At each round t ∈ {1, . . . ,T}, it selects
one of these actions it ∈K (also called "arms") and receives an observation rit ,t which
measures the benefits of this action (also called "reward"). A common goal is to maximize
the sum of the rewards collected,

JT =
T

∑
t=1

rit ,t .

In order to do so, the learner should try the different options and discover which action
yields the largest rewards. The more the learner try different actions, the more they will
be accurate in the future. Yet, there is an inherent cost of "trying" options. Multi-armed
bandits methods focus on solving this exploration-exploitation dilemma.

The model was first studied in 1933 by Thompson (1933). The denomination "multi-armed
bandits" was coined in the 80’s in reference to the slot machines. Indeed, in a casino,
a gambler may face several machines and wonder which one is the most profitable. Of

Chapter header: Wanderer above the Sea of Fog, Caspar David Friedrich, 1818.

34 Chapter 2. Exploration in online learning

course, the model aims at optimizing more interesting or useful trial and error processes
like clinical trials (Villar et al. 2015), recommender systems (Tracà and Rudin 2015) or
intelligent tutoring systems (Clement et al. 2015; Pike-Burke 2019).

Yet, before going any further in the modelization, we should stress the assumptions that we
already made. First, what we observe is connected to the action we took. In particular, we
don’t observe the reward associated with other actions. This is known as bandits feedback.
Second, the observation is revealed just after the action choice. Third, the observation
measures how good the action is. Last, the sum of the observations is our final objective. It
means that rewards are exchangeable, we can trade-off reward in the present for reward in
the future.

2.2 Stochastic bandits

2.2.1 Regret minimization

Up to this point, we did not precise how the environment generates rewards. A popular
assumption associates each arm i to a stochastic distribution with mean µi. Each time an
action is selected, the environment outputs an independent reward sample from the arm’s
distribution. The mean of the distribution can be seen as the intrinsic value of the action.
This intrinsic value is only accessible to the learner through the noisy reward.

For instance, in clinical trials, consider many patients who are affected by the same disease.
The different actions are the different drugs that could heal the patients. The goal could be
to cure as many patients as possible. The learner observes if a patient heals or not. Each
drug has its own probability of success that we don’t know before testing.

If the learner knew in advance the means, he would select the arm with the largest µi to
maximize the cumulative reward in expectation. How can the learner compare to this
oracle strategy? In order to answer to this question, we define the (expected) regret after
T rounds, which is the expected difference between the cumulative reward of the oracle
strategy and the cumulative reward gathered by the learner,

RT (π), E

[
T

∑
t=1

µ?−µit

]
with µ? = maxi∈K µi. The expected regret is positive, as the oracle policy obtains the best
possible performance in expectation.

How small the regret of the learner can be? In fact, a policy that selects always arm 1 will
have zero regret as soon as arm 1 is optimal. However, this policy suffers a regret which
scales linearly with the number of rounds T when arm 1 is suboptimal. Thus, this kind of
policy is not adaptive at all.

What do we mean by adaptive? In fact, for any arms’ distributions set, we would like
the policy to make fewer and fewer mistakes as it receives feedback. A policy is called

2.2 Stochastic bandits 35

uniformly fast convergent (UFC) when its number of mistakes grows slower than any
power of T for any problem parameters µ: ∀α ∈ [0,1] ,RT (π) = o(T α).

What is the cost of being adaptive? T. L. Lai and Robbins (1985) and Burnetas and
Katehakis (1996) show that the expected regret per suboptimal arm i for uniformly fast
convergent policies is lower bounded asymptotically by Ω

(
logT

(µ?−µi)

)
for gaussian noise

with known variance 1. This is the minimal cost on each bandit game to be quite good
(i.e. consistent) on every one. This is a problem-dependent bound because it depends on
the value of the arms’ means. Later, we will describe famous policies that are proven to
get this logarithmic rate (asymptotically) on each bandit game. These policies are called
asymptotic optimal because one cannot get better asymptotic performance on any bandit
game without suffering very large regret on another problem.

This logarithmic rate is optimal only asymptotically. In fact, when the gap ∆i = µ?−µi
tends to zero, the rate diverges at finite horizon T . Yet, we cannot have infinite regret as
we cannot do more than T mistakes of size ∆i, i.e. at most T ∆i regret for arm i. Hence,
when ∆i tends to zero, the regret at finite-time also tends to zero. When ∆i is large, the
cost of each mistake is large, but a good learner can quickly learn from these mistakes and
reach the logarithmic asymptotic regime. In between, we have difficult problems, where
the learner struggles to detect significant differences between arms and yet suffers a rather
large error at each mistake.

What is the worst possible regret a good learner can get for finite-horizon T ? Auer et
al. (2003) give a quantitative version of the last argument. With K arms, they design a
bandit problem where the best arm’s mean is separated from the others by a distance of
O
(√

K/T
)

. Then, they show that this difference is small enough so the learner does not
see significant differences between arms. Hence, in expectation, the optimal arm cannot be
pulled a lot more than the others, which is T/K times. Thus, we do roughly O (T) mistakes
of size O

(√
K/T
)

in this setting, i.e. a worst-case (or problem-independent) regret rate of

at least O
(√

KT
)
.

We will later present some algorithms which match this rate in the worst-case (with an
increased constant factor compared to the lower bound). These algorithms are called
minimax optimal. The denomination "minimax" comes from game theory, where a player
tries to maximize its performance knowing that its adversary will later try to minimize it.
Here, the adversary is the environment, which chooses the worst possible gaps between
arms.

We presented two types of performance criteria, one which depends on the specific param-
eter of the bandits we are considering and the other which holds in the worst case. Another
point of view is to consider the weighted average performance across multiple bandits
games. The weight used in the average is called the prior probability distribution across
bandit games. This prior represents how likely a bandit game is according to our belief

1The original proof by T. L. Lai and Robbins (1985) considered Bernoulli rewards. We present gaussian
bandits for the sake of simplicity.

36 Chapter 2. Exploration in online learning

before the game has started. One may recognize the language of Bayesian statistics, and
this objective measure is called the Bayesian regret. Bayesian regret is weaker than the
problem-dependent bound in the sense that we can deduce a Bayesian regret bound from
the problem-dependent bound by averaging. Also, the worst-case regret upper bounds the
Bayesian regret.

2.2.2 Upper confidence bound methods

In stochastic bandits, we know that arms have intrinsic values. Each time we pull an arm,
we get an observation which is useful in two different ways: first, it is an instantaneous
reward; second, it brings some information about the intrinsic value of the arm. The
ultimate goal is the cumulative reward the learner gathers, so we would like to estimate
how much the extra information is worth in terms of future reward. With this estimation,
we could estimate the value of pulling an arm by adding the reward with the value of
information.

We call index policies, the policies which compute a value for each arm based on the arm’s
history and select the arm with the largest value. The UCB algorithm uses as index an upper
confidence bound on the value of the arm. For instance, if arms are gaussians with known
variance σ2, UCB computes the following indexes,

ind(i) = µ̂i,t +

√
2σ2 log 1/δ

Ni,t
. (2.1)

with µ̂i,t the average of the Ni,t values of arm i at each round t. The average can be seen
as the estimate of the instantaneous reward we should get, and the Hoeffding confidence
bound term as the value we are willing to pay for the information that the Ni,t +1-th reward
sample should bring.

Yet, this estimated value depends on a parameter δ : how should we tune it? It is possible to
show that UCB with δ = 1/t is asymptotic optimal in the case of gaussian arms with known
variance. However, for other distributions, how should we set σ in Equation 2.1? One
possibility is to upper-bound the variance. For instance, for Bernoulli distribution, we can
use Equation 2.1 with σ2 = 1/4. By doing so, we can get a near-optimal logarithmic regret
rate, i.e. a logarithmic regret rate with a slightly worse problem-dependent factor than the
T. L. Lai and Robbins (1985)’s lower bound.

Indeed, upper-bounding the variance means that we "buy" new information at a higher price
than what it is worth. For instance, for Bernoulli distribution with a small probability p∼ 0,
the variance is p(1− p) ∼ p ∼ 0 which is much smaller than 1/4 when p = 1/2. UCB-V
(Audibert et al. 2009) is an extension of UCB which estimates the variance empirically.
While UCB-V shows improved results over classical UCB in the general case, it is not yet
shown to be asymptotic optimal.

In order to get the asymptotic optimal rate, we need better statistical tools. KL-UCB (Cappé
et al. 2013) uses the Kullback-Leibler divergence which measures how plausible is a

2.2 Stochastic bandits 37

distribution p′ given that data are generated with an other distribution p. More precisely, it
computes as index of an arm,

ind(i) = sup
{

µ ∈ [0,1]
∣∣∣∣ KL(µ̂i,t ,µ)6

log(t)+ c log(log(t))
Ni,t

}
(2.2)

The expression of the KL-divergence depends on the family of distributions which is
considered. KL-UCB uses the KL-divergence of the bernoulli distribution and is shown
to be asymptotic optimal for bounded distributions in [0,1]2. kl-UCB uses a very similar
index but with a KL-divergence which is specific to a parametric distribution. When the
distributions are gaussians with fixed and known variance, kl-UCB is equivalent to UCB.
Yet, in general, the KL-indexes cannot be computed with a closed formula, and we need to
use standard optimization software to approximate the index.

KL-UCB is asymptotic optimal but only near-minimax optimal O
(√

KT logT
)

bounds
were proven (even for the simple gaussian bandits’ case). We can conjecture that the
extra

√
logT factor is not an artefact of the proof. It has a clear interpretation: UCB buys

information at a O
(√

log t
)

price. This cost will be paid off asymptotically, but at finite-
time, when arms are too close to each other to be distinguished, this information is rather
useless. In the early work of T. L. Lai (1987), they suggest to use a refined confidence
level δ = Ni,t/t in the ucb such that we do not buy information for the most pulled arms.
Yet, when the K arms are close to each other Ni,t ∼ t/K, so we still buy information at a
O
(√

logK
)

cost.

The Minimax Optimal Stochastic Strategy MOSS (Audibert and Bubeck 2009; Degenne
and Perchet 2016) suggests to use δ = KNi,t/t. As its name suggests, MOSS is minimax
optimal. It is also asymptotic optimal for the gaussian case (Lattimore and Szepesvári
2020). Ménard and Garivier (2017) suggested KL-UCB++, an algorithm which is minimax
and asymptotic optimal for many famous distributions (the single-parameter exponential
family). This algorithm uses the tuning of the confidence levels of MOSS with the KL
divergence upper-confidence bound of KL-UCB. Garivier et al. (2018) show similar results
for bounded non-parametric distributions. They suggest KL-UCB-switch, an algorithm
which switches between the index of MOSS and the one of KL-UCB depending on the
allocation of the pulls.

Lattimore (2018) suggests that asymptotic and minimax optimality may not be enough.
When there are many arms, but only one suboptimal arm is close to the optimal value (with
a distance ∆), it is effectively a two-arm bandit problem. The other arms weigh very little
in terms of both regret and number of pulls (for a good policy). Yet, MOSS tunes δ with K.
In particular, the exploration bonus is canceled after T/K pulls, which only guarantees (with
high probability) to pull the optimal arm O (T/K) times at the beginning of the game. By
contrast, UCB keeps exploring the two arms such that they are pulled T/2 at the beginning
of the game. During this starting phase, the two arms’ values are not well identified by
the algorithm, and the expected regret is linear. This linear phase ends once each arm has

2It can be understood by noticing that a Bernoulli of parameter p is the bounded distribution with mean p
with the maximal variance. Hence, it can be seen as the worst case from an information theoretic point of
view.

38 Chapter 2. Exploration in online learning

been pulled O (1/∆2), hence it is K times longer for MOSS than for UCB. In fact, at the end of
this phase for MOSS, its expected regret is K times larger than UCB. That is why Lattimore
(2018) suggests the sub-UCB criteria, which ensures that the policy is at a constant factor
of the performance of UCB at any round t. He also suggests the policy ADA-UCB, which
computes for each arm the number of other arms that are "competing" with this arm, and
they plug this number instead of K in the confidence level tuning. ADA-UCB is proven to be
sub-ucb, asymptotic optimal, and minimax optimal.

We have discussed how optimistic strategies based on upper-confidence bound indexes
can achieve multiple optimality criteria. However, the main advantage of UCB could be
its simplicity. Indeed, it is a deterministic algorithm, that is, an algorithm that outputs
always the same action given the same data. Arguably, this is a desirable property for
explainability as well as for an implementation purpose. It is worth noticing that one of the
most quoted paper (Auer et al. 2002) in the bandit literature studies a suboptimal version
of UCB (namely UCB1) with δ = 1/t4. It gives a simple proof that leads to a finite-time and
problem-dependent regret bound which holds with high-probability and from which we
can derive near-optimal minimax and asymptotic bounds. From a research perspective, this
simplicity is desirable as it gives a simple starting point when one studies a more complex
setup than the stochastic stationary multi-armed bandits.

2.2.3 Bayesian methods

In his early work, Thompson (1933) suggests pulling an arm according to its probability of
being the best given the data. It is difficult to compute this probability directly. Hence, we
compute for each arm the probability of the parametric distribution beyond it given the
data and a prior. Then, we sample a model for each arm according to this distribution and
we select the arm with the best mean according to this sampling. This procedure is known
as Thompson Sampling (TS).

Though TS is very old, it was only shown recently (Kaufmann et al. 2012b; Agrawal and
Goyal 2013) that it is asymptotic optimal (when it is fed with an uninformative prior).
Borrowing the idea of canceling the exploration for arms with Ni,t = T/K from MOSS, Jin et
al. (2020) suggested the Minimax Optimal Thompson Sampling (MOTS) which clipped the
posterior distribution at a quantile δ = T/KNi,t . MOTS is minimax and asymptotic optimal.

Bayes-UCB (Kaufmann et al. 2012a) is another asymptotic optimal Bayesian algorithm. It
computes an optimistic index based on an optimistic quantile of the posterior. Bayes-UCB
and TS have empirical performance very similar to KL-UCB.

The posterior distribution can sometimes be computed explicitly, for instance with the
Beta distribution for Bernoulli reward. When it is not possible, one can use Markov-Chain
Monte-Carlo (MCMC, Andrieu et al. (2003)). This technique can sample from a probability
distribution p, if we know the probability ratio p(x)/p(y) for all x and y. Indeed, when we
use the Bayes rules, we often have an unknown normalization factor which can be hard to
compute.

2.3 Adversarial bandits 39

2.3 Adversarial bandits

2.3.1 Pseudo-regret

Another popular assumption is to consider the environment fully adversarial (Auer et al.
2003), which means that rewards are generated by an adversary who wants to maximize
our regret. But how do we define the regret in this setting? In adversarial bandits, it is not
possible to compete with the oracle who would know in advance what reward is beyond
each arm at every step. Indeed, let’s consider an adversary who rewards one arm uniformly
at random at every step, and set the reward of the other arms to zero. An oracle can select
the right arm at every step, but a learning policy can only try to guess what is the right arm.
"Guessing" an independent random variable cannot be improved with past feedback (by
definition of independent), and hence the learner suffers a linear regret rate compared to
the best possible sequence.

Thus, we will target a more reasonable objective: we will compare to the best arm in
hindsight, i.e. we take as reference the best policy (for this reward sequence) among the
ones which select always the same arm. Formally, with ri,t the reward of arm i at each
round t, we define the pseudo-regret,

RT (π) = max
i∈K

(
T

∑
t=1

ri,t− rit ,t

)
.

The adversarial multi-armed bandit may look much harder than the stochastic bandits due
to the latitude the adversary has to trick us. However, Auer et al. (2003) have designed Exp3
(Exponential weight for exploration-exploitation), an algorithm with a proven worst-case
regret upper bound of O

(√
KT log(K)

)
. This rate was further refined by INF (Audibert

and Bubeck 2009) to O
(√

KT
)

when the range of rewards is bounded and known by
the learner. It shows that stochastic bandits are not much easier than adversarial bandits
from the minimax perspective. More recently, Zimmert and Seldin (2018) designed a
variant Tsallis-INF which is minimax optimal in both adversarial and stochastic settings
and near-asymptotic optimal in the stochastic setting. They also show relevant results in
intermediate settings. It tends to show that we can have simultaneously the best of both
worlds (without knowing in advance in which world the learner is). Yet, we emphasize
that Tsallis-INF is not completely asymptotic optimal as it does not recover the right
multiplicative constant in the regret rate.

The adversarial bandit framework is a bit odd: on the one hand, the learner tries to compare
to the best arm in hindsight; on the other hand, there is no mechanism behind the reward
generation of each arm which guarantees any coherence in the sequence. Let’s go back to
the casino: if the gambler acknowledges that slot machines are just some black boxes the
casino uses to diminish its performance, why would they care about comparing to the best
machine in hindsight?

There is no fully satisfying answer to this question. An important point is that the learner
has to believe in something (because they will suffer linear regret in the worst-case if they

40 Chapter 2. Exploration in online learning

compare to any possible sequence of actions), and the meaning of this belief is not included
in the model. A popular extension of the adversarial bandits computes the regret against
the best policy in a predefined set of E experts. Auer et al. (2003) suggests Exp4 which
is proven to achieve a regret rate of O

(√
min(K,E)T logE

)
. Notice the logarithmic

dependence with the number of experts: we can have a rather high number of experts, but
if we consider all the possible sequences of choices, i.e. E = KT , the upper bound rate
becomes linear with T .

The learner may believe that there is an inner mechanism beyond each arm, such that it
makes sense to compare to the best arm. In an old-time casino, each machine may have an
independent non-stochastic mechanism such that one is more rewarding than the others.
Yet, the mechanism may be complex to model and the learner may be lazy and assume
the reward adversarial. The aforementioned "best of both worlds" results may encourage
him in that way. However, one should be cautious: low regret compared to bad policies
can mean low reward. For instance, if the arms have periodic and synchronous rewards
(the reward of arm 1 is low when the reward of arm 2 is high) competing against the best
fixed-arm policy may be much less rewarding than competing against experts which are
aware of the periodicity.

2.3.2 Adversarial methods

Adversarial games are very different from stochastic games. In the stochastic setting, when
we observe the reward for all the actions (a.k.a the full information setting), the learner can
follow the actions with the largest current average reward. Indeed, the learner does not
need to explore like in the bandit setting, and Follow the Leader (FTL) is guaranteed to
do less than a constant regret (with respect to T). Yet, in the adversarial full-information
setting, FTL suffers a linear regret. Indeed, the adversary can alternate the reward between
two arms such as the current "leader" is never rewarded.

In fact, in the adversarial setting, every deterministic policy (like UCB) would fail because
a good adversary may know our strategy Hence, it can set to zero the reward of the action
we select. That is why we need to design probabilistic strategies that output a probability
distribution across actions. We already presented TS, a probabilistic policy. Yet, this policy
suffers linear regret in the adversarial setting. Indeed, it is fairly easy to trick optimistic
strategies: during the first quarter of the game, we may reward only one arm such that an
optimistic stationary policy is very confident that it is the best arm. Then, the adversary can
increase the reward of another arm. This arm will be pulled only at a logarithmic pace and
even when it is pulled the high reward will be averaged with older lower rewards such that
it will take a very long time to realize that something has changed. Recently, Zimmert and
Seldin (2018) empirically show that TS suffers near-linear regret even in an intermediate
setup called "stochastically constrained adversarial regime". In this setup, the rewards
are generated stochastically but the probability distributions beyond arms change a few
times during the game without changing the best arm identity. Once again, the key is to
exploit the "inertia" of this stationary bandit policy, which average rewards from different
distributions.

2.3 Adversarial bandits 41

In adversarial games, the output probability distribution needs to take into account the data
while being sufficiently unpredictable for the adversary. This is the spirit of the Follow
the Regularized Leader (FTRL) policy. This full-information policy selects the probability
distribution which maximizes the expected performance (according to the current data)
plus a regularization term that penalized probability distributions that are too concentrated.
More formally, with pt the output probability distribution on arms at each round t, Dt the
sum of the observed reward for each arm at each round t, and L a regularizing function,

pt ∈ argmax
p
{< p|Dt >+L(p)} . (2.3)

In the bandit setting, we do not have access to Dt , the sum of the reward for each arm
from the beginning of the game to round t. We can estimate Dt with importance weighted
estimator, that is, we add r̂i,t = 1 [it = i] ri,t/pi,t to the sum at each round. This quantity is
equal to zero for all the arms which are not selected and for which we don’t know ri,t . For
the arm which is selected, the reward ri,t is normalized by the probability of selecting the
arm. This weighting strategy is unbiased in the sense that E [r̂i,t] = ri,t (the expectation is
taken on the algorithm randomization conditionally on the observed history before round
t).

This estimator is unbiased but has a large variance when pi,t is small and ri,t is large.
Indeed, in this case, r̂i,t will have a very different value depending on whether we pull arm
i at the round t or not. This variance will be transmitted to D̂t,i = ∑

t
s=1 r̂i,s that we want to

use instead of Dt,i in Equation 2.3. It means that when we observe a good reward for an
arm that is pulled with low probability, it can squash all the other probabilities to almost
zero. Then, the algorithm may never recover because it will keep selecting this arm and
adding a positive weighted reward to D̂t,i. Yet, if the algorithm did not pull the arm i at the
round t in the first place, it would have very different behavior for the same data sequences
generated by the adversary.

The solution is to work with losses instead of rewards. We can define the losses li,t = 1−ri,t ,
the importance-weighted estimator of the losses l̂i,t = 1 [it = i] li,t/pi,t and the estimated sum
of reward D̂t,i = ∑

t
s=1 1− l̂i,s. In that case, the variance can also be high but when pi,t is

small and ri,t is small. If we select arm i at a round t, l̂i,t will be very large and it will reduce
D̂t,i = ∑

t
s=1 1− l̂i,s. Hence, according to Equation 2.3, it will squash pi,t+1 to zero. This is

arguably better for the stability of the algorithm than squashing all the other probabilities
to zero. Moreover, arm i may recover after few rounds because D̂t,i is increased by 1 every
time arm i is not pulled.

Up to this point, we did not precise what regularizer L we should use. A good L will penal-
ize probability vectors which are too predictable. In information theory, a classical measure
of how predictable is a probability distribution is its (Shannon) entropy: −∑i∈K pi log(pi).
The larger is the entropy the more unpredictable it is. Hence, we could use the negentropy
as a regularizer.

42 Chapter 2. Exploration in online learning

We now have all the ingredients beyond the aforementioned Exp3 algorithm (Auer et
al. 2003). Exp3 is equivalent to FTRL (see Equation 2.3) where we use the loss-based
importance weighted estimator D̂t,i = ∑

t
s=1 1− l̂i,s and the unormalized negentropy as

regularizer F(p) = ∑i∈K pi log(pi)− pi. Notice that with this regularizer, there exists
a closed-form formula for pt instead of the implicit formulation in Equation 2.3. This
expression is useful for implementation but it hides the main ideas beyond Exp3.

Most of the recent adversarial algorithms use slight (but powerful) modifications of the
aforementioned ideas. For instance, we already advertised Tsallis-INF (Zimmert and
Seldin 2018), which improves over Exp3 from the minimax adversarial perspective and re-
covers logarithmic asymptotic bound for the stochastic stationary bandits’ case. Tsallis-
INF uses Online Mirror Descent (OMD) instead of FTRL. Without going into the details,
the two algorithms share deep similarities. In fact, they are even equivalent for some
regularizers (McMahan 2011). Zimmert and Seldin (2018) also use a different regulariz-
ing function known as Tsallis entropy (Tsallis 1988) and they finally discussed another
unbiased estimation scheme of the losses.

2.4 Non-stationary bandits

Since the early stages of the research in bandits (Thompson 1933; Whittle 1980), one of the
most desirable properties for a learner would be to adapt to actions whose value changes
over time (Whittle 1988), as it happens in non-stationary environments. In fact, from
applications in medical trials (where the patient can become more resistant to antibiotics)
to a modern applications in recommender systems (Chapelle and Li 2011; Tracà and Rudin
2015), assuming that the environment is stationary is very limiting.

In the adversarial bandit setting, rewards do not have to be generated by a stationary
stochastic process. However, the objective is strongly stationary as the pseudo-regret
definition competes against a fixed set of policies (e.g. the stationary policies which select
always the same arm). As in stationary bandits, we would like to define the regret against
the best oracle, or, at least, a good enough one. Indeed, depending on the non-stationarity,
it can be challenging to compute the best oracle (also called the offline policy), especially
when the choice of the learner impacts the non-stationarity.

With bandit feedback, it can be meaningful to assume that the arms evolve only when
they are pulled. In that rested case, the learner observes (often with noise) every value.
Bouneffouf and Féraud (2016) consider the case where all the arms are evolving with a
known trend which depends on the number of pulls. They compare to the greedy oracle
which selects the largest available reward at each round. They design a variant of UCB
which uses as index the product of the classical ucb index by the trend. This algorithm
achieves a logarithmic asymptotic bound similar to UCB’s on stationary bandits. Heidari
et al. (2016) consider the two monotonic rested cases without noise in the observation.
Levine et al. (2017) consider the parametric and non-parametric decreasing (or rotting)
rested case with noise. We give a detailed review of their result on the non-parametric
rotting case in Chapter 4.

2.5 Contextual bandits 43

In the restless setting, the arms can evolve even when they are not pulled. Hence, the
learner does not know the last reward state beyond each arm. Whittle (1988) first consider
a very general restless setting: arms are associated with Markov chains with different
transition probabilities depending on whether an arm is selected. While Whittle (1988)
suggested a heuristic known as the Whittle’s index policy, the restless bandits problem was
later shown to be PSPACE-hard even to approximate (Papadimitriou and Tsitsiklis 1994).

Assuming that the transition probabilities do not depend on the action of the user simplifies
the restless setup. Indeed, in that case, the optimal oracle is straightforward: one should
pull the arm with the current largest expected reward. When the evolution is deterministic,
i.e. the Markov chains are replaced by functions of the round, it is possible to approximate
this optimal oracle with an online bandit policy when the changes are either not too
frequent (Garivier and Moulines 2011) or not too big (Besbes et al. 2014). We give a
detailed literature review of the restless bandits with independent evolution in Chapter 5.

While the general restless bandits are unlearnable, some authors studied some specific
instances of the restless bandits. For instance, Immorlica and Kleinberg (2018), Pike-Burke
and Grunewalder (2019), and Cella and Cesa-Bianchi (2020) studied different models of
recharging bandits, where arms’ rewards decrease when they are selected, and increase
back when the arm has not been pulled for a while. In these problems, the optimal
oracle policy for the full horizon regret is hard to compute and the authors often consider
approximated oracle policies (Immorlica and Kleinberg 2018; Cella and Cesa-Bianchi
2020) or weakened regret definition (Pike-Burke and Grunewalder 2019).

2.5 Contextual bandits

The contextual bandits framework (Tewari and Murphy 2017) assumes that at each round
contextual information is given to the learner. The reward is associated with the action and
context such that an action can be good for a given context and bad in another one. Of
course, if we have to explore from scratch every time we receive a new context, it can be
quite expensive.

A classical assumption is that actions and contexts can be embedded in a vector space such
that the reward is smooth enough in that space - e.g. it is a linear form (Abe and Long
1999; Auer 2002; Abbasi-yadkori et al. 2011; Lattimore and Szepesvari 2017) though more
complex structures were also considered (Filippi et al. 2010; Valko et al. 2013; Valko et al.
2014). It allows for a potentially infinite number of contexts and actions, as long as there
is a finite number of unknown parameters that determine the rewards. Interestingly, while
optimistic strategies were shown to perform quite well in this setting (Abbasi-yadkori
et al. 2011), Lattimore and Szepesvari (2017) recently advocates that they could not reach
asymptotic optimality, unlike in the multi-armed bandits setup.

44 Chapter 2. Exploration in online learning

2.6 Beyond bandits: Reinforcement Learning

Reinforcement learning (Sutton and Barto 2018) extends the former contextual bandits
so that the context (renamed "state") is controlled by the learner through the actions. The
goal is not only to find and exploit the function which relates states and actions to rewards
but also to discover the relation between actions and states.

Formally, the Markov Decision Process (MDP, Howard 1960) models this situation as
a quadruplet {S ,A ,T ,R} where S is the states space, A the actions space, T (s,a)
the transition operator which associates an origin state and an action to a probability
density over the destination states, R(s,a,s′) which associates a probability density over
the reward to a transition from s to s′ after choosing action a. It is often easier and more
meaningful to consider the discounted cumulative reward rather than the cumulative reward
at finite-horizon T . Indeed, in some setups, the termination rule may not be known and the
learner may discount the reward to take into account the probability of termination.

The exact state of the learner may be observed partially. For instance, the knowledge of
students revising on an intelligent tutoring system is not directly observable: each answer
gives only limited information about what they know or do not know. In order to model
this situation, Partially Observable Markov Decision Process (POMDP, Astrom 1965) adds
a set of observation (Ω) and a probability distribution over this observation set for each
states-action transition (O(s,a,s′)).

Unlike in stationary bandits, finding an optimal policy when we know the MDP parameters
is not straightforward. Dynamic programming (Bellman 1966) is a general method which
uses a recursive relation - the Bellman equation - on the state value, which is the cumulative
value that the agent can expect in a given state if s/he follows a given policy.

Reinforcement learning aims at finding the optimal policy when the reward function R
and transition probabilities T are not known. There are several quantitative objectives
associated with the maximization of the reward. As in the bandit case, we can define
the regret for the optimal policy. However, this objective is ambitious in RL as in some
problems a single mistake can send irreversibly the learner in a sub-optimal region of the
state space. A weaker objective is to minimize the sample complexity, which is the number
of rounds after which the policy behaves near optimally with high probability.

The framework of RL models much more complex situations than bandits. However, it
is possible to adapt the UCB strategy and its optimistic paradigm for RL. UCRL2 (Jaksch
et al. 2009) selects the most optimistic model in a confidence region built around the
empirical means and then uses classical dynamic programming method to get the optimal
policy. Then, it runs this policy for a while and restarts the procedure. Being optimistic
about the transition probabilities is not as straightforward as it is for the reward parameters.
Indeed, for the reward, we can simply increase the reward with the confidence bound. For
the transition, we cannot simply increase each transition, because, 1) the probabilities
would not be normalized; and 2) increasing the probability to reach a low reward region
of the state space is a pessimistic choice. Yet, we can find with an optimization software
(with complexity O (|S |)) an optimistic MDP whose transition probabilities lies within a

2.6 Beyond bandits: Reinforcement Learning 45

confidence band around the empirical average and maximize the reward that the learner
can get given the optimistic estimation of the reward function. If the diameter of the MDP
is finite - that is, one can (with the right policy) reach any state from any other state in a
finite expected number of rounds - UCRL2 recovers near-optimal regret bounds.

UCRL2 models the environment by fitting the environment (that is, R and T). This
type of method is called model-based RL. By contrast, model-free reinforcement learning
directly tries to fit the policy without modeling the environment. For instance, Q-Learning
(Watkins 1989) plays a behavior policy and tries to measure the total values that the learner
can get from selecting each action in each state (the q-value function). At the end of the
learning phase, it outputs a target policy that selects in each state the action with the largest
q-value. The fact that the policy which is used in the learning phase differs from the output
one is called off-policy learning. The value of a state-action pair is the sum of the expected
instantaneous reward - for which we get a noisy yet objective sample - and the value of
the destination state when we play the optimal policy. Of course, the optimal policy is
unknown but we can approximate the aforementioned value by considering the maximal
state-action value we have estimated for the destination state. The fact that we reinforce
our estimated values with other estimated values is called bootstrapping. Notice that at
the beginning of the learning, the values are just a random guess, and bootstrapping may
propagate the error to other nodes. Yet, the q-values converge with high probability under
mild conditions on the learning rate (Watkins and Dayan 1992).

There exist many other policies than the two we have quickly described. Yet, none of them
can learn anything but toy models without extra assumptions. Indeed, there are a priori
|A ||S |2 transition parameters and |A ||S | reward parameters. When the state space
is not very small, it is much more than the K = |A | reward parameters in the K-armed
bandit case (|S | = 1). Hence, it will take thousands of rounds to UCRL2 to get a basic
understanding of a fairly small environment with ten states and ten actions. The problem
is even worse for model-free methods like Q-Learning. Indeed, model-based methods
use every sample to estimate the model. In model-free learning, samples are forgotten
either because they were only used to evaluate one policy (on-policy learning) or because
bootstrapping updates by using the (inaccurate) current belief. Hence, they need multiple
visits of each state-action pair to converge.

Deep Reinforcement Learning tries to mitigate this issue by using deep neural networks to
generalize the experience the learner obtains. For instance, Deep Q-network (Mnih et al.
2013) uses deep networks to learn the q-value function. Yet, using supervised predictive
methods in an online active environment is nothing but straightforward. Indeed, in the
supervised learning setting, we learn a function that maps observations X to results Y . The
way X is generated is assumed to be stationary between the training and production phases.
Moreover, Y is assumed to be an objective value that is given to the learner. In the online
setting, the observations X are heavily dependent on the policy which is played. With
off-policy learning methods, if the policy which is used in the learning phase output a
very different X proportion than the optimal policy, then it will bias the neural network.
On the other hand, with bootstrapping, the target values Y do not correspond to purely
objective values. Indeed, they are constructed using the current belief of the model on
the value destination state. The combination of bootstrapping, off-policy learning, and

46 Chapter 2. Exploration in online learning

(supervised) function approximation was called the deadly triad because it can lead to
unstable algorithms that do not converge to the optimal policy.

Surprisingly, using sophisticated deep networks instead of more classical and simple
supervised models leads to more stable algorithms. Indeed, deep networks are trained
with mini-batches: we only use a subset of the data to estimate the network’s parameters
gradient. This is arguably a key feature for online learning applications where incoming
data are natural mini-batches for continuous training. However, this feature alone is not
sufficient to solve the whole deadly triad problem.

We will not review in detail all the ideas (experience replay, double-Q-network ...) which
have improved the stability of DRL methods. Yet, we advertise that this line of work led to
superhuman performances in many complex games such as the board game of Go (Silver
et al. 2016; Silver et al. 2017) or Starcraft II (Vinyals et al. 2019). It shows that given a
potentially infinite source of data - and enough computational power to process it - DRL
methods can learn very complex tasks. However, these methods are still sample-inefficient:
AlphaZero (Silver et al. 2017) played several million games before reaching superhuman
performance in both Chess and Go. For many real-life applications, one may not have a
simulator that can produce a tremendous amount of accurate and cheap data.

Improving the sample efficiency is a hot research topic (Yu 2018; Yarats et al. 2019), and
there exist more efficient methods than the ones which have been designed for applications
with accurate simulators. However, one should notice that the interaction of planning
and exploration makes the methods much more data-intensive than in bandits. In a small
data situation, it is preferable to frame a given problem as a bandit than to rely on the too
general reinforcement learning paradigm. In this thesis, we will mainly focus on bandits
problem in order to take into account this small data constraint.

3. Applications to Intelligent Tutoring Sys-
tems

Là-haut, le Château, déjà étrangement sombre, que K. avait espéré atteindre dans la
journée, recommençait à s’éloigner. Mais, comme pour saluer K., à l’occasion de ce
provisoire adieu, le Château fit retentir un son de cloche, un son ailé, un son joyeux, qui
faisait trembler l’âme un instant : on eût dit – car il avait aussi un accent douloureux – qu’il
vous menaçait de l’accomplissement des choses que votre cœur souhaitait obscurément.

Franz Kafka, Le Château, Chapitre Premier.

3.1 Shortcomings in the bandits model

When we ask a question to a student, we observe their answer to this particular question.
This is a good example of bandits feedback. Facing this partial feedback, the machine
learner has to explore the different options to understand what to do. Handling this
exploration is the main question of the bandits’ literature. This is quite relevant for
adaptive Intelligent Tutoring Systems (ITS): if we think that different students should have
different learning paths, we have to characterize to which extends a student is different.

Of course, a good exploration strategy depends on what we want to achieve. In the
previous section, we have presented the most famous objective, i.e. the cumulative reward
maximization. The main objective is to balance between gathering new information and
using this information to collect rewards. This exploration-exploitation dilemma is relevant
for ITS: characterizing the student is only a tool to improve the learning. A good ITS
should size the effort spent on characterizing the student versus the estimated benefits of
such characterization.

Yet, the cumulative reward maximization makes strong assumptions about the benefits.
These assumptions strongly orientate the answers the bandits’ community gives to this

Chapter header: À la croisée des mondes (Le Miroir d’ambre), John Howe, 2002. (Droits réservés)

48 Chapter 3. Applications to Intelligent Tutoring Systems

exploration-exploitation dilemma. In the following, we will discuss four limits of applying
classical bandits methods to Intelligent Tutoring Systems.

3.1.1 Observation is reward.

In the cumulative reward maximization setup, there is an identification between observation
and reward. For an ITS, it is rather unclear what is the reward that can be associated with
the student answer. One should be careful: the reward measures how well the ITS behaves
and not how well the student answers the question. If we reward the ITS for the success of
the student, the ITS will find very easy questions for the students, which is arguably not
the best pedagogical strategy. In Section 3.2, we will present different rewards that were
used for ITS applications.

We advertise some objectives in the bandits’ literature that are different from cumulative
reward maximization. The Best Arm Identification (BAI) (Audibert and Bubeck 2010;
Gabillon et al. 2012) is a pure exploration objective where the learner should output the best
arm at the end of the game. There are several quantitative objectives associated with the
best arm identification. In the fixed budget setting, one may want to minimize the simple
regret (Audibert and Bubeck 2010), that is, the difference between the true best arm’s and
the identified arm’s values. Another possibility is to target the probability of outputting
the best arm (Carpentier and Locatelli 2016). In the fixed confidence setting (Garivier
and Kaufmann 2016; Kaufmann et al. 2016), the learner outputs as fast as possible with
high-probability 1−δ an arm at a residual distance ε from the best arm. The algorithms
designed for cumulative regret do not work very well in the BAI setting. Indeed, at least
from the asymptotical perspective, these algorithms spend O (logT) in exploration and
most of their budget in exploiting the identified best arm.

The Best Arm Identification still considers observation as "reward", in the sense that the
motivation of targeting the arm with the largest observation is based on the identification
"large observation = good". This is not the case for Thresholding Bandits (Locatelli et al.
2016; Garivier et al. 2017; Mukherjee et al. 2017) where the learner wants to separate the
arms according to their position relative to a threshold. Interestingly, Locatelli et al. (2016)
found a near-optimal algorithm which is fully agnostic. This problem is interesting from
an educational perspective: if we have several topics with corresponding sets of related
questions, we may want to know which topics are mastered by a student. We could define a
threshold above which the topic is considered as mastered and use a Thresholding Bandits
algorithm.

More generally, exploration can be intrinsically interesting for ITS if the goal is to send
information to the teacher. That is why Y.-E. Liu et al. (2014) and Erraqabi et al. (2017)
considered a setup where the objective combines the cumulative reward and the error
the learner do on the estimation of each arm. Erraqabi et al. (2017) show that naive UCB
algorithm fails in this setting. They describe ForcingBalance, an algorithm that directly
targets the optimal allocation of pulls for this problem.

3.1 Shortcomings in the bandits model 49

3.1.2 Comparing to the best action.

In both the stationary and the adversarial setups, the performance is compared with the
policy which selects always the "best" action. For ITS applications, we believe that the
best thing to do is not to recommend always the same type of exercises.

In Sections 2.4 and 2.5, we presented two lines of work where the optimal action is
not always the same during the game. These approaches have some limits. Contextual
bandits need a meaningful representation for the context such that the reward is a simple
function in this space. This representation can be learned using offline data, but it breaks
the online paradigm. Moreover, contextual algorithms often use more sophisticated
techniques. For instance, the simple averages which are used in the classical multi-armed
bandits’ framework (e.g., for computing the ucb) are replaced by regression methods which
are computationally more expensive. Non-stationary bandits also have some important
drawbacks. They often require much more exploration than in the stationary case. This is
especially true in the restless case, when arms which are not pulled can change. Indeed,
this type of non-stationarity is particularly challenging with bandit feedback.

3.1.3 Actions do not impact observations

In the classical adversarial and stochastic setting, the learner has no impact on the observa-
tions (rewards) output by the arms. This is a strong limitation for tutoring systems, as we
expect a teaching strategy to modify the student’s knowledge.

Reinforcement Learning (Section 2.6) models a more general setup where the learner has
a state which is changed by the action. In some non-stationary bandits setups (Section 2.4),
arms reward is changing when the arm is pulled. It could be reformulated as a "state" which
is impacted by the actions of the learner. There is a difference of perspective between
RL and non-stationary bandits: bandits methods often focus on tracking the changing
rewards to target the (often short-sighted) best action while RL methods design policies
that monitor the state’s dynamics to remain in rewarding regions of the state space.

3.1.4 Learning is quite slow.

The last paragraphs suggest increasing the complexity of the classical bandits model with
context, state, or non-stationarity. However, the stationary stochastic bandits are already
quite hard to learn when the horizon is small. Indeed, students often do no more than a few
tens (or hundreds) questions. By contrast, bandits algorithm are often evaluated for longer
horizon T > 104 (e.g., Chapelle and Li (2011)).

From the theoretical perspective, the asymptotic rate O (logT/∆i) is larger than the maximal
regret T ∆i for many gaps ∆i < 0.2 when the horizon is small (T = 100). It means that the
asymptotic analysis is not meant for such small horizons (except when the gap is very
large). Even the minimax rate O

(√
KT
)

is not very different from the worst possible rate
T for small T .

50 Chapter 3. Applications to Intelligent Tutoring Systems

This small data situation is particularly challenging. Special care should be taken to
overcome this issue: The learning problem should not be too ambitious, the setup should
be correctly designed. In particular, the number of arms (or unknown reward parameters
for contextual bandits) should be reduced. Prior information should be included in the
model, algorithms should target finite-time and empirical performance.

3.2 Exploration methods in Adaptive Intelligent Tutoring Systems

In this section, we will review previous work which involves bandits and reinforcement
learning methods in Intelligent Tutoring Systems. We will focus on the work where the
action-observation loop corresponds to the sequence of question-answer of a single student.
In these setups, the goal is to explore the student’s knowledge and exploit this knowledge
to improve educational actions.

Notice that there are also different exploration scenarios where the feedback loop is the
sequence of incoming students. The goal is to refine the instructional policy from one
student to another. The objective can be to choose the courses that maximize the final grade
of the student (Lan and Baraniuk 2016; Xu et al. 2016), or to find the teaching examples
sequence that maximizes the score at the test (Lindsey et al. 2013).

3.2.1 Target the largest improvement

Clement et al. (2015) suggest an ITS which selects sequentially a question linked to a
knowledge component (KC) and receives the answer of the student. They suggest selecting
the action which leads to the largest increase in student’s performance. Besides maximizing
the learning gain, it is also the action that motivates the most the learner (Gottlieb et al.
2013).

They present two similar algorithms which we reproduce in Figure 3.1. Each algorithm
has two components: the first one computes a Zone of Proximal Developement (ZPD,
Luckin (2001)), the second selects one knowledge component in the ZPD. The ZPD aims
to exclude the KCs on which the student is either too good, too bad, or the ones on which
s/he does not progress. These algorithms don’t use any model nor parametric assumption
on the way the student progresses. They compute non-parametric statistics to estimate the
current level or the current progress of the student on a KC.

Once the ZPD is set, a bandit algorithm selects a KC. The reward is a difference between the
last samples and the before last ones. In the first algorithm (Zone of Proximal Development
and Empirical Success - ZPDES), they use the average of the d/2 last samples minus the
average d/2 before last samples. In the second algorithm (Right Activity at the Right Time -
RiARiT), they use the last sample minus a discounted average of the previous ones. These
two statistics measure the recent progress of the students.

They claim to use a variant of Exp4 (Auer et al. 2003). Like Exp4, this algorithm is

3.2 Exploration methods in Adaptive Intelligent Tutoring Systems 51

Figure 3.1: Clement et al. (2015)’s algorithms

probabilistic (see Line 11 in Fig. 3.1). The output probability distribution pulls arm
according to weights, which are a weighted sum of rewards. This probability distribution
also has a uniform component ξu, like the vanilla Exp4. Notice that this component was
later proven to be unnecessary (Bubeck and Cesa-Bianchi 2012), even to recover high
probability guarantees (Neu 2015).

Yet, this bandit algorithm also has major differences with Exp4. First, there are no experts
recommendations which are a necessary input of Exp4. Hence, this algorithm is closer to
Exp3. In Subsection 2.3, we presented the three ideas beyond Exp3: Follow the regularized
leader, a specific regularization, and an unbiased estimation scheme based on importance
weight. The specific regularization is responsible for the exponential weights, which are
absent from the algorithm of Clement et al. (2015). The importance weights of the loss -
the loss is divided by the probability of pulling the arm - are replaced by fixed weights β

and ν on the reward (see Line 24). These fixed weights are closer to discounted statistics
used in non-stationary bandits (like D-UCB, Kocsis and Szepesvári (2006) and Garivier and
Moulines (2011)).

52 Chapter 3. Applications to Intelligent Tutoring Systems

Anyway, the main feature of Exp3 is to guarantee Õ
(√

KT
)

regret compared to the sum
of the reward for the policies which select always the same arm. In this setup, we believe
that the interest of this result is limited for two reasons. First, the policies which selects
always the same KCs are not the most interesting policies from the educational point of
view. Second, the rewards are weighted differences of past observations. Hence, there is a
telescoping effect in the cumulative reward. For some choices of parameters in the reward
definition (e.g. d = 2 for ZPDES), this telescoping can be total such that the sum of the
rewards is simply the last observation minus the first, i.e. a O (1) quantity. In that case, the
Õ
(√

KT
)

guarantee is meaningless. Even for other choices of parameters, the telescoping
reduces the cumulative reward range. The more that range is reduced by construction, the
less interesting is the theoretical guarantee of Exp3.

Hence, we believe that the modifications suggested by Clement et al. (2015) are indeed
more interesting than the classical Exp3. Their algorithm targets a more pragmatic goal:
selecting randomly the KCs (to ensure diversity in the tasks) while favoring smoothly
the KCs which demonstrate recent progress. They provide empirical evidence of the
benefits of their algorithms. In a simulated experiment, they show that their algorithms are
more adaptable than an expert sequence to the profile of some simulated students. In an
in-class experiment on real students, they show that students who were learning with their
algorithms achieve more balanced performance between KCs than a control group that
was using the expert sequence. They also demonstrate qualitative differences between the
behavior of their algorithm and the expert sequence.

As noticed by Pike-Burke (2019), this paper is arguably one of the most advanced works
using bandits in ITS. The objective - targeting the topic on which the student progresses - is
very appealing. The ZPD design allows some timely exploration by unlocking progressively
the most advanced topics. The experiments bring many insightful comparisons between
the studied algorithms and the expert sequence. However, this work only partially address
the aforementioned shortcomings 3.1.2, 3.1.3, and 3.1.4.

In particular, there are statistical issues with respect to shortcomings 3.1.2 and 3.1.3. The
goal of the paper is to aim at the arm with the current largest increase. It is not clear that
this problem fall under the cumulative reward maximisation perspective (see our discussion
on the telescoping effect). Even in the algorithm, it is not clear that taking a discounted
sum of rewards, which are themselves differences of past observations is a statistically
efficient way to measure recent progress. We also notice that these algorithms are quite
difficult to tune. They have 4 parameters: γ , ν , β and an other parameter for the reward
computation.

The work of Clement et al. (2015) was further extended by Mu et al. (2018) to take into
account the forgetting of the student and the learning of the ZPD structure.

We also advertise the works of Rollinson and Brunskill (2015) and Käser et al. (2016),
which also try to track the progress of the student. These works do not aim at choosing the
knowledge component among several possibilities. Instead, they try to decide when one
should stop the work on a given skill. Rollinson and Brunskill (2015) suggest stopping
when there is a sufficient probability that the prospective learning gain associated with

3.2 Exploration methods in Adaptive Intelligent Tutoring Systems 53

the next question is below a threshold. The prospective learning gains are estimated
with a student model. Notice that these models are trained with the data of many other
students such as it reflects the "average" student. The models assume a specific shape
of the progression. Hence, different models with the same input sequence can lead to
different stopping times, even when they have comparable predictive performance. The
issue is that the predictive performance is evaluated on several students, the goal is to
predict correctly on average. However, when they are used in instructional policies, these
models are required to explain and predict quantitatively the learning of a specific student
given a small amount of data. This instructional policy was further extended by Käser
et al. (2016) to be able to stop when a student’s performance diverges from the model (for
instance, for wheel-spinning student) and to include more complex student models such as
deep belief network.

3.2.2 Target the least known subject

Melesko and Novickij (2019) suggest targeting the less known subjects. The idea is that
the student has more to learn from their mistakes than from their successes. Hence, they
suggest rewarding the failed questions and to not reward the succeeded ones.

Rewarding the system for finding the failed exercises has some limits. Some skills are
harder to get, and it could be useful to start with the simplest one. It can also be the
case that there are some prerequisite dependencies between the different skills. From the
motivational point of view, recommending too hard questions may disengage the student.

Yet, consider a student that is learning some geography facts. S/he wants to check if s/he
know their lesson. The different topics in the lesson are as hard to learn a priori. Yet, the
student could have studied a lot the first part of the course and did not spend too much
effort on the other parts. The goal of the ITS could be to try to spot the weaker part of the
course and teach them with some questions.

Another motivation highlighted by Melesko and Novickij (2019) is the pure-exploration
setup, where the goal of the ITS is to find the weakest topic to send the information to the
teacher.

Melesko and Novickij (2019) suggest using the classical UCB algorithm. They carry many
very small data experiments where the number of topics (arms of the bandits) is of the
same order of magnitude as the number of questions (horizon). In this context, they
recommend the usage of smaller confidence intervals than classical UCB. The experiments
show improved performance for UCB compared to the random strategy.

In their work, Melesko and Novickij (2019) neglect the impact of the questions on the
knowledge of the student. The goal is not really to teach through questions, but to find the
least understood topic. However, it is surprising that they use an exploration-exploitation
algorithm instead of a specialized algorithm from the best arm identification literature.

Teng et al. (2018) also target to find the least known questions with multi-armed bandits

54 Chapter 3. Applications to Intelligent Tutoring Systems

methods. They suggest an algorithm adapted from the linear bandits’ literature where the
reward depends linearly on an embedding. The algorithm uses several graphs structuring
questions, users, and concepts. These graphs are used to infer a vector representation of
the users and questions. They bring theoretical and empirical evidence of the performance
of their algorithm.

3.2.3 Target faster learning

Rafferty et al. (2016) suggest minimizing the time the student spends to understand a
concept. Hence, the cost (negative reward) associated with each pedagogical action is
the time the action takes to be completed. They formulate their problem as a Partially
Observable Markov Decision Process. Indeed, the student has a knowledge state which is
only partially observable by the teacher. The teacher has several actions: some examples
which teaches the concept to the student, some quizzes which retrieves information about
the knowledge state of the student, and some questions with feedback which do both at the
same time. The goal of the learner is to track the state of the student (which encodes what
the student does not know) with questions to show some relevant examples.

They test this framework with several student models and several learning scenarios.
The algorithm shows significant time reduction compared to random policies. Some
student models are better than others. In particular, modeling long-term memory improves
performance compared to models that react only to the last seen example.

II
4 Rested rotting bandits are not

harder than stationary ones 59
4.1 Rested rotting bandit: model and preliminaries
4.2 FEWA and RAW-UCB: Two adaptive window algo-

rithms
4.3 Regret Analysis
4.4 Experimental benchmarks
4.5 Efficient algorithms
4.6 How harder are rotting bandits ?
4.7 Linear rotting bandits are impossible to learn

5 The rotting assumption makes rest-
less bandits easier 131

5.1 Restless rotting bandits
5.2 Analysis of adaptive window policies on restless

rotting bandits.
5.3 Real-word data experiment on Yahoo! Front

Page
5.4 Restless and rested rotting bandits

Rotting bandits

57

Decreasing reward

In Subsection 3.2.2, we presented a line of work that aims at asking questions from the
least known subject to a student. In the multi-armed bandits’ formulation, it associates
positive reward to failed questions. Yet, none of these works consider the impact of the
questions on the knowledge of the student. When the answer is given to the student after
her trial, questions are a powerful learning tool. Therefore, the more the student work on a
topic, the better he becomes, and the smaller is the reward for this topic.

Other situations can be modeled with decreasing rewards caused by the repetition of an
action. For instance, the more we recommend an item to a user in a recommender system,
the more he might get bored (Warlop et al. 2018). In medicine, the efficiency of antibiotics
is diminishing with the overall use due to bacteria’s mutation (Ventola 2015a; Ventola
2015b).

In microeconomics, the law of diminishing marginal utility states that the utility associated
with each unit of goods is decreasing with the number of goods a consumer holds. It is an
ad hoc explanation to justify that rational consumers, who maximize their total utility, may
select different goods. In production theory, the law of diminishing returns (Cannan 1892)
states that the increment of production caused by the increment of a factor of production
(labor, capital) by one unit is decreasing. Again, there is the idea that repeating always
the same action - buying one good, investing in a project - may become suboptimal even
though the returns were high at the beginning.

Motivated by these broad applications, Heidari et al. (2016) and Levine et al. (2017) study
this non-stationarity with bandits feedback. Heidari et al. (2016) study the case where
the rewards are directly observed without noise under the name decaying bandits. Levine
et al. (2017) study the problem with noisy rewards under the name rotting bandits. In the
following, we call this problem the rested rotting bandits to emphasize that actions cause
the rewards’ decay. We also mention the works of Immorlica and Kleinberg (2018), Warlop
et al. (2018), and Pike-Burke and Grunewalder (2019) which model boredom effects in
recommender systems as a rested decaying bandit problem but with restless recharging
effects.

In Chapter 4, we synthesized our contributions to the rested rotting bandits problem
(Seznec et al. 2019; Seznec et al. 2020): we present new algorithms and we prove that
for an unknown horizon T , and without any knowledge on the decreasing behavior of
the K arms, these algorithms achieve problem-dependent regret bound of Õ(log(T)),
and a problem-independent one of Õ(

√
KT). Our result substantially improves over the

algorithm of Levine et al. (2017), which suffers regret Õ(K1/3T 2/3). These bounds are at
a polylog factor of the optimal bounds on the stationary problem; hence our conclusion:
rotting bandits are not harder than stationary ones.

Another decaying setup is when the reward decreases no matter what the agent is doing. It
models different situations such as the aging of content in recommender systems. Louëdec
et al. (2016) models obsolescence of appearing arms (e.g. piece of news) with a known
exponential rate. Komiyama and Qin (2014) study a parametric decay in restless bandits

58

where rewards are linear combinations of known decaying functions. However, the
rotting assumption was not studied in the well-studied non-parametric restless bandit
setting(Garivier and Moulines 2011; Besbes et al. 2014; F. Liu et al. 2018; Auer et al. 2019;
Besson and Kaufmann 2019; Cao et al. 2019; Chen et al. 2019; Cheung et al. 2019; Russac
et al. 2019). That is why we consider the restless rotting bandits problem in Chapter 5
which is adapted from Seznec et al. (2020). We show that the rotting algorithms designed
for the rested case match the problem-independent lower bound and a problem-dependent
O(logT). The latter was shown to be unachievable in the general case where rewards can
increase. We conclude: the rotting assumption makes the restless bandits easier.

Since the same algorithms work in both setups, we investigate in Section 5.4 the joint setup
where the reward can decrease with the number of pulls and the rounds. Yet, we show that
the optimal oracle policy cannot be approached at a nontrivial rate by a learning policy.

4. Rested rotting bandits are not harder
than stationary ones

This rested rotting bandit seems quite stationary to me.

4.1 Rested rotting bandit: model and preliminaries

Feedback loop

At each round t, an agent chooses an arm it ∈K , {1, ...,K} and receives a noisy reward
ot . The reward associated to each arm i is a σ2-sub-gaussian random variable with expected
value of µi(n), which depends on the number of times n it was pulled before; µi(0) is the
initial expected value. We use µi(n) for the expected value of arm i after n pulls instead
of when it is pulled for the n-th time. Let Ht , {{is,os} ,∀s < t} be the sequence of arms
pulled and rewards observed until round t, then

ot , µit (Nit ,t−1)+ εt with E [εt |Ht] = 0 and ∀λ ∈ R, E
[
eλεt
]
≤ e

σλ2
2 , (4.1)

where Ni,t ,∑
t
s=1 I{is=i} is the number of times arm i is pulled after round t.

Definition 4.1.1 We introduce LL, the set of non-increasing reward functions with
bounded decay L,

LL ,
{

µ : N→ [−∞,L]
∣∣ 0≤ µ(n)−µ(n+1)≤ L and µ(0) ∈ [0,L]

}
.

R We define the set of constant reward functions in [0,L]:

SL ,
{

µ : N→ [0,L]
∣∣ µ(n) = µi

}
.

Chapter header: Photo of a tag by Nemo, Paris, Rue Le Brun.

60 Chapter 4. Rested rotting bandits are not harder than stationary ones

We have that SL ⊂ LL. Hence, we can conclude that the rotting bandits model
includes all the stationary bandits problems.

Online and offline objectives

In this chapter, we will only consider deterministic agents which output an arm i at each
round t. They are degenerate cases of probabilistic agents, which outputs a probability
distribution over arms at each round. For the sake of simplicity, we present only the
deterministic formalism.

We will distinguish two types of policies. On the one hand, an offline (or oracle) policy π ∈
ΠO is a function which maps the round t and the set of reward functions µ , {µi}i∈K
to arms, i.e. π(t,µ) ∈K . On the other hand, an online (or learning) policy π ∈ΠL is a
function from the history of observations at time t (which includes the knowledge of the
round t) to arms, i.e., π(Ht) ∈K . For both types of policies, we often use the shorter
notation π(t), where the dependencies on µ or Ht is implicit.

For a policy π , let Nπ
i,t , ∑

t
s=1 I{π(s) = i} be the number of pulls of arm i at the end

of round t. The performance of a policy π is measured by the (conditionally expected)
rewards accumulated over time,

JT (π),
T

∑
t=1

µπ(t)
(
Nπ(t),t−1

)
= ∑

i∈K

Nπ
i,T−1

∑
n=0

µi(n). (4.2)

R The cumulative reward depends only on the number of pulls of each arm at the
horizon T : it does not depend on the specific pulling order of the arms. Hence, two
distinct policies with the same pulling allocation at the horizon T , i.e. Nπ1

i,T = Nπ2
i,T for

all i, have the same cumulative reward.

We notice that π ∈ΠL uses the (random) history observed over time, and thus JT (π) is also
random for learning policies. The goal of the learning agent is to maximize the expected
reward E [JT (π)].

On the contrary, oracle policies do not depend on the (random) history. They can be
computed entirely before the start of the game. Hence, finding π? ∈ argmaxπ∈ΠO

JT (π)

is called the offline problem. For a given problem µ , there is a finite number (KT) of
policies, hence the maximum always exists and it could be found by brute-force with
infinite computational power.

We set a policy π? ∈ argmaxπ∈ΠO
JT (π). Calling J?T = JT (π

?) the largest cumulative
reward achievable, one can measure the regret of any policy (learning or oracle) compared
to the optimal one,

RT (π), J?T − JT (π). (4.3)

4.1 Rested rotting bandit: model and preliminaries 61

Let N?
i,T , Nπ?

i,T be the number of times that arm i is pulled by the oracle policy π? up to
time T (excluded). Using Equation 4.2, we can conveniently rewrite the regret as,

RT (π) = ∑
i∈K

N?
i,T−1

∑
n=0

µi(n)−
Nπ

i,T−1

∑
n=0

µi(n)

= ∑

i∈UP

N?
i,T−1

∑
n=Nπ

i,T

µi(n)− ∑
i∈OP

Nπ
i,T−1

∑
n=N?

i,T

µi(n), (4.4)

where we define UP ,
{

i ∈K |N?
i,T > Nπ

i,T

}
and likewise OP ,

{
i ∈K |N?

i,T < Nπ
i,T

}
as

the sets of arms that are respectively under-pulled and over-pulled by π with respect to the
optimal policy. In the following, when there is no possible confusion about the policy π ,
we simply call Nπ

i, t = Ni, t .

R The regret is measured against an optimal allocation over arms rather than a fixed-
arm policy as it is a case in adversarial and stochastic bandits. Therefore, even the
adversarial algorithms that one could think of applying in our setting (e.g., Exp3 of
Auer et al. (2002)) are not known to provide any guarantee for our definition of regret.
Moreover, for constant µi(n)-s, our problem and definition of regret reduce to the
ones of stationary stochastic bandits.

We give an upper bound on the regret that holds for any policy and will be used in the
analysis of all the presented learning policies. First, we upper-bound all the rewards in the
first double sum - the underpulls - by their maximum µ

+
T (π),maxi∈K µi(Ni,T). Indeed,

for any overpulls µi(ni) (with ni ≥ Ni,T), we have that

µi(ni)≤ µi(Ni,T)≤ µ
+
T (π),max

i∈K
µi(Ni,T),

where the first inequality follows by the non-increasing property of µis; and the second
by the definition of the maximum operator. Second, we notice that there are as many
underpulls than overpulls (terms of the second double sum) because both policies π and
π? pull T arms. Notice that this does not mean that for each arm i, the number of overpulls
equals to the number of underpulls, which cannot happen anyway since an arm cannot be
simultaneously underpulled and overpulled. Therefore, we keep only the second double
sum,

RT (π)≤ ∑
i∈OP

Ni,T−1

∑
n=N?

i,T

(
µ
+
T (π)−µi(n)

)
. (4.5)

The online problem is to find a learning policy that maximizes the expected cumulative
reward (or equivalently minimizes the expected regret). In the next sections, we will
present the main results of Heidari et al. (2016), which has solved the offline problem and
the online problem in the absence of noise, and Levine et al. (2017), which has presented
the first learning policy with nontrivial guarantees for rotting bandits with noise.

62 Chapter 4. Rested rotting bandits are not harder than stationary ones

4.1.1 The offline problem (Heidari et al. 2016)

We consider the greedy oracle policy πO (Alg. 1) which selects at each round the arm with
the next best value.

Algorithm 1 Greedy Oracle πO (or A0, Heidari et al. (2016))

Require: {µi}i∈K
1: Initialize Ni← 0 for all i ∈K
2: for t← 1,2, . . . do
3: PULL a it ∈ argmaxi∈K µi(Ni)
4: Nit ← Nit +1
5: end for

aOne can choose the tie break selection rule arbitrarily, e.g. by selecting the arm with the smallest index.

Proposition 4.1.1 — Heidari et al. (2016). For any reward functions µ ∈L K
+∞ and any

horizon T , πO ∈ argmaxπ∈ΠO
JT (π).

Proof. At each round t, πO collects the largest reward that can be available in the future,
i.e.

∀i ∈K , ∀ni ≥ Ni, t , µπO(t)
(
NπO(t), t

)
≥ µi (Ni, t)≥ µi(ni).

The first inequality is due to the selection rule of the policy; the second is due to the
decreasing reward functions.

A direct consequence is that, at the round T , πO has selected the T largest reward samples
among the KT possible ones. Therefore, any other policy which would select other reward
samples can only have a worse cumulative reward. �

For a given horizon T , all the policies with the same number of pulls of each arm than
πO at the round T have the optimal cumulative reward. Yet, we show in the following
Proposition that πO is the only optimal policy at every round.

Proposition 4.1.2 Let π such that π(t) /∈ argmaxi∈K µi(Ni, t).

Then, Jt(π)< Jt(πO) = max
π∈ΠO

Jt(π).

Proof. Let i?t ∈ argmaxi∈K µi(Ni,t). We consider the policy π+ which selects the same
arm than π during the t− 1 first rounds and selects i?t at a round t. Therefore, the two
policies π and π+ collects the same rewards except the last one. Notice that before the last
round t, the two policies have the same pulling allocation Nπ

j, t−1 = Nπ+

j, t−1 for all j ∈K .
Hence, there is only a difference between the two last reward samples,

Jt(π
+)−Jt(π) = µi?t (N

π+

i?t , t−1)−µπ(t)(N
π

π(t), t−1) = µi?t (N
π

i?t , t−1)−µπ(t)(N
π

π(t), t−1)> 0.

The inequality follows from π(t) /∈ argmaxi∈K µi(Ni,t) and i?t ∈ argmaxi∈K µi(Ni,t). �

4.1 Rested rotting bandit: model and preliminaries 63

R Complexity. We have already highlighted that the offline problem is a computational
problem. Indeed, the optimal solution can always be computed by brute force by
iterating all the possible policies, i.e. with exponential time complexity per round
O(KT). By contrast, πO can be computed with space complexity O(K) and time
complexity per round O(logK). Indeed, at each round one should find the maximum
among K values. Yet, from one round to another, there is only one value which
changes: the value of the last selected arm. Thus, one can store a sorted list of the
K arm’s value and change one element at each round which costs O(logK). Then,
accessing the first element of the sorted list is a O(1) operation.

To conclude, πO solves the offline problem in the sense that it provides a cheap way to
compute the optimal policy without any knowledge of the horizon T . Interestingly, πO
takes the optimal decision by being greedy on the current values. It shows that there is no
planning aspect in this problem: the learner never has to sacrifice rewards in the present to
get more rewards in the future.

4.1.2 The noiseless online problem (Heidari et al. 2016)

In the online problem, the learner does not have access to the current value of the arms.
Can they track the best current value using only the observed past values? Heidari et al.
(2016) first studied the simpler noise-free problem (σ = 0), where the learner observes
the true value of an arm after selecting it (instead of a noisy sample). They suggested
the greedy bandit πG (Alg. 2), a policy that selects greedily the arm with the largest last
observed value. Indeed, instead of looking at the (unavailable) current values as πO, πG
looks at the closest past.

Algorithm 2 Greedy Bandit πG (or A2, Heidari et al. (2016))
Require:

1: Initialize µ̂1
i ←+∞ for all i ∈K

2: for t← 1,2, . . . do
3: PULL a it ∈ argmaxi∈K µ̂1

i ; RECEIVE ot
4: µ̂1

it ← ot
5: end for

aOne can choose the tie break selection rule arbitrarily, e.g. by selecting the arm with the smallest index.

Proposition 4.1.3 — Heidari et al. (2016). For any problem µ ∈L K
L and any horizon T ,

RT (πG)≤ (K−1)L.

The worst case regret is upper-bounded by a constant with respect to T . This is surprising
as the reward can change at every round. Yet, it is impossible to trick πG to do more than
one mistake per arm.

Indeed, consider the two arm bandit scenario where µ1(n) =−(n−0.5) and µ2(n) =−2n
(L = 2). After the two first round-robin pulls, πG selects arm 2 and collects µ2(1) =−2

64 Chapter 4. Rested rotting bandits are not harder than stationary ones

reward instead of µ1(1) =−1.5 for arm 1. Hence, it is the first mistake on arm 2. At the
fourth and fifth pulls, it selects arm 1 twice with value µ1(1) =−1.5 and µ1(2) =−2.5
which is better than the current value of arm 2. At the sixth pull, it pulls arm 2 with value
µ2(2) =−4 instead of arm 1 with value µ1(3) =−3.5. This is a second mistake for arm
2. However, the first mistake was canceled by the decay. Indeed, the regret at a round t
compares with the t largest reward value. Hence, pulling µ2(1) is a mistake at the round 3
because it is the fourth largest value among all the possible rewards. Yet, it is not a mistake
anymore at the round 6 when πG pulls the suboptimal value.

R An important consequence of this argument is that the regret at t can decrease with t.
Indeed, for any policy, if an arm i2 becomes optimal after the decay of another arm i1,
any mistake which was potentially done on arm i2 becomes henceforth an optimal
pull, in the sense that it is selected by the optimal policy. It shows the forgiving nature
of the rested rotting setup.

Proof. We start from Equation 4.5 applied to policy πG,

RT (πG)≤ ∑
i∈OP

Ni,T−1

∑
n=N?

i,T

(
µ
+
T (πG)−µi(n)

)
. (4.6)

Let i ∈K an arm which is pulled at least twice at the end of the game Ni,T ≥ 2. We call
ti ,min{t ≤ T | Ni,t = Ni,T} the last round at which i is pulled. For any arm j ∈K pulled
at least once at the end of the game N j,T ≥ 1, and for all ni ≤ Ni,T −2,

µi(ni)≥ µi(Ni,T −2) = µi(Ni, ti−1−1)≥ µ j(N j, ti−1−1). (4.7)

The first inequality follows by the non-increasing hypothesis on the reward function. The
equality follows by definition of ti. The last inequality is by definition of the policy: at
time ti, πG selects i ∈ argmax j∈K µ j(N j, ti−1−1), the largest last observed sample.

We choose j such that µ j(N j,T) = µ
+
T (πG)

(
,max j′∈K µ j′(N j′,T)

)
.

Since ti ≤ T , N j, ti−1−1 < N j,T . By the rotting assumption,

µ j(N j, ti−1−1)≥ µ j(N j,T) = µ
+
T (πG). (4.8)

Gathering Equations 4.7 and 4.8, we have that

∀i ∈
{

i′ ∈K |Ni′,T ≥ 2
}
,∀ni ≤ Ni,T−2, µi(ni)≥ µ

+
T (πG). (4.9)

Therefore, we can upper-bound all the before last terms in each second sum in Equation 4.6
by zero. Hence,

RT (πG)≤ ∑
i∈OP

(
µ
+
T (πG)−µi(Ni,T −1)

)
≤ ∑

i∈OP

(
µ
+
T (πG)− (µi(Ni,T −2)−L)

)
≤ |OP|L
≤ (K−1)L

4.1 Rested rotting bandit: model and preliminaries 65

In the second inequality, we used µi ∈LL (see Definition 4.1.1). The third inequality
follows from Equation 4.9. We can conclude by noticing that they are at most K− 1
overpulled arm. Indeed, there are as many overpulls than underpulls since the two policies
π? and πG both pull T −1 sample. Hence, if there is at least one overpulled arm, there is
necessary at least one underpulled arm. �

In the next proposition, we state that this rate is minimax optimal at the first order in K/T .

Proposition 4.1.4 — Heidari et al. (2016). For any policy π ∈ ΠL and any horizon
T ≥ K−1, there exists a K-arm stationary bandit problem µ ∈SL ⊂LL (see the remark
following Definition 4.1.1),

RT (π)≥
(K−1)L
1+K−1/T

·

This proposition is slightly more precise than the one in Heidari et al. (2016). Indeed,
while they show only a O(K) worst case rate, we show that πG is minimax optimal up to a
second order term in O (K/T). Even for K ∼ T , πG is optimal up to a factor 2. Moreover,
we show that this lower bound holds for the easier stationary problem. Hence, it shows
that, without noise, rotting bandits are not harder than stationary ones.

Proof. We consider a set of K problems where

• the first arm has always a constant value equals to L
(
1−α

K−1
T

)
with α a number

that we will specify later;
• problem p = 1 has all the other arms with a value 0;
• problem p ∈ {2, . . . ,K} has arm p with value L and the other arms i ∈K r{1, p}

with a value 0.

The learner can distinguish between problem p∈ {2, . . . ,K} and problem 1 only by pulling
arm p once. If the learner π ∈ΠL pulls every arm i ∈ {2, . . . ,K} at least once, it suffers on
problem 1,

R1
T (π)≥ (K−1)L

(
1−α

K−1
T

)
.

If there exists an arm i ∈ {2, . . . ,K} which is never pulled, π suffers on problem i,

Ri
T (π)≥ T

(
L−L

(
1−α

K−1
T

))
= αL(K−1) .

We can choose α = 1
1+K−1/T

to balance the two costs. Therefore, we have that for any π ,
there exists a stationary problem µ ∈SL such that,

RT (π)≥
(K−1)L
1+K−1/T

.

�

66 Chapter 4. Rested rotting bandits are not harder than stationary ones

R Heidari et al. (2016) have also studied rested bandits with increasing and concave
reward functions (without noise). The offline analysis shows that the optimal policy
selects always the same arm. This is very different from the rotting case, where the
optimal allocation may pull several arms. They suggest an online policy that plays
Round-robin on an active set of arms. An arm is excluded from this active set if the
optimistic projection of its total available reward until the end of the game (which
can be computed thanks to the concavity assumption) is lower than the pessimistic
projection (when an arm’s reward stays constant) of any other arm. They prove
no better than a o(T) regret bound (even in the noise-less case) for this algorithm.
While they do not provide a lower bound, it suggests that the increasing rested non-
stationarity is harder than the decreasing one, where the minimax rate is only in
O (KL).

4.1.3 Levine et al. (2017): wSWA, a first policy for the noisy problem

Sliding-Window Average (SWA)

When the feedback is noisy (σ > 0), selecting greedily on the last observed reward may be
very risky. Indeed, a sample from an optimal pull could be underestimated by ∼ σ . πG
may not pull this good underestimated arm for a long time, because it only estimates the
value of the arm with the last sample. This behavior may cause a regret of Ω(σT) which
can be much larger than the noise-free rate Θ(KL).

Levine et al. (2017) suggested to use the Sliding-Window Average (SWA) policy, a policy
which selects the arm with the largest average of its h last sample. Averaging in the
presence of noise is a straightforward idea. Yet, it is unclear how the learner should choose
h. Before going through the detailed analysis, we give the high-level idea. First, we notice
that when h = 1, SWA reduces to πG. Indeed, intuitively, the smaller the noise, the less
averaging we need. On the one hand, with a window h, the learner should expect to do O(h)
overpulls for an arm which abruptly decays at N?

i,T with drop size B. Indeed, its estimator
µ̂h

i will be positively biased during the next h pulls. Hence, the learner may suffer up to
O(KBh) due to this bias. On the other hand, the learner takes slightly wrong decisions due
to the variance of their estimators O(σ/

√
h) which can cost up to Õ(σT/

√
h) on the long run.

Choosing h = Õ
(
(σT/KB)

2/3
)

, we get the regret rate of Õ
(

B1/3σ
2/3K1/3T 2/3

)
.

R SWA uses a rested sliding-window mechanism. Indeed, the window of arm i slides
only when arm i is selected. Notice the difference with the restless sliding-window of
SW-UCB (Garivier and Moulines 2011), which slides for all arms at every round.

Analysis

The analysis of Levine et al. (2017) uses the set of bounded decaying functions instead of
LL.

4.1 Rested rotting bandit: model and preliminaries 67

Algorithm 3 SWA (Levine et al. 2017)
Require: h

1: for t← 1,2, . . . ,Kh do
2: PULL ROUND-ROBIN it ← t%h;
3: RECEIVE ot
4: end for
5: for t← Kh+1,Kh+2, . . . do
6: PULL a it ∈ argmaxi∈K µ̂h

i (see Equation 4.10);
7: RECEIVE ot
8: end for

aOne can choose the tie break selection rule arbitrarily, e.g. by selecting the arm with the smallest index.

Definition 4.1.2 Let BB,x, the set of non-increasing reward functions with bounded
amplitude B,

BB,x ,
{

µ : N→ [x,x+B]
∣∣ µ(n)≥ µ(n+1)

}
.

The choice of origin x is not important. Without loss of generality, we will carry the
analysis on BB ,BB,0.

R We have that BL ⊂LL. Hence, any guarantee of any algorithm on LL applies on
BB by setting L := B. We also have that LL ⊂BLT,−L(T−1). Hence, any guarantee
of any algorithm on BB,x applies on LL by setting B := LT .

Estimators For policy π , we define the average of the last h observations of arm i at
time t as

µ̂
h
i (t,π),

1
h

t−1

∑
s=1

1(π (s)= i∧Ni,s>Ni,t−1−h)os (4.10)

and the average of the associated means as

µ
h
i (t,π),

1
h

t−1

∑
s=1

1(π (s)= i∧Ni,s>Ni, t−1−h)µi(Ni,s−1) . (4.11)

We notice that µ
h
i (t,π) =

1
h ∑

h
h′=1 µi(Ni, t−1− h′) is independent of t and π given Ni, t−1.

Hence, we call µ
h
i (Ni, t−1) , µ

h
i (t,π). With a slight abuse of notation, we will also use

µ̂h
i (Ni, t), µ̂h

i (t,π). Indeed, the average of the observations depends on the realization of
the noise {εt}t , hence it is not fully determined by Ni, t . Yet, these h samples of noise are
i.i.d. and thus do not perturb the analysis.

68 Chapter 4. Rested rotting bandits are not harder than stationary ones

A favorable event
Proposition 4.1.5 For a confidence level δT , T−2 , let

ξSWA,
{
∀i∈K , ∀n ∈ {h, . . . ,T −1} ,

∣∣ µ̂
h
i (n)−µ

h
i (n)

∣∣≤ c(h,δT)
}

(4.12)

be the event under which all the possible estimates constructed up to the round T are all
accurate up to c(h,δT),

√
2σ2 log(2/δT)/h. Then, for a policy which pulls every arm h times

at the beginning (like SWA),

P
[
ξSWA

]
≤ K

T
·

Proof. We want to upper bound the probability

P
[
ξSWA

]
= P

[
∃i∈K , ∃n∈{h, . . . ,T−1} ,

∣∣µ̂h
i (n)−µ

h
i (n)

∣∣> c(h,δT)
]
.

For Ni, t−1 = n, we have that,

µ̂
h
i (n)−µ

h
i (n) =

1
h

T

∑
s=1

1(is = i |n−h < Ni,s ≤ n)εs .

By Doob’s optional skipping (e.g. see Chow and Teicher (1997), Section 5.3) there exists
a sequence of random independent variables (ε ′l)l∈N , σ2 sub-gaussian such that

µ̂
h
i (n)−µ

h
i (n) =

1
h

T−1

∑
s=1

1(is = i |Ni,s > n−h)εs =
1
h

n

∑
l=n−h+1

ε
′
l , ε̂

h
n .

Hence,

P
[
∃i ∈K , ∃n ∈ {h, . . . ,T −1} ,

∣∣µ̂h
i (n)−µ

h
i (n)

∣∣> c(h,δT)
]

= P
[
∃i ∈K , ∃n ∈ {h, . . . ,T −1} , |ε̂h

n |> c(h,δT)
]

≤ ∑
i∈K

T−1

∑
n=h

P
[
|ε̂h

n |> c(h,δT)
]

≤ KT δT

≤ K
T
,

where we used the Chernoff inequality at the before last line and δT = T−2 at the last
one. �

Regret upper-bound
Proposition 4.1.6 — Levine et al. (2017). For a problem µ ∈BK

B , the expected regret of
SWA tuned with h is bounded as,

E [RT (πSWA)]≤ 4σT ·

√√√√ log
(√

2T
)

h
+K (h+1)B

4.1 Rested rotting bandit: model and preliminaries 69

Proof. If T ≤ Kh, we can bound the regret by the maximum regret (T errors of magnitude
B)

E [RT (πSWA)]≤ T B≤ KhB≤ 4σT ·

√√√√ log
(√

2T
)

h
+K (h+1)B.

If T > Kh, we notice that any arm i is pulled at least h times, i.e. Ni,T ≥ h. We split the
regret on the events ξSWA and ξSWA,

E [RT (πSWA)]≤ E
[
1

[
ξSWA

]
RT (πSWA)

]
+E

[
1

[
ξSWA

]
RT (πSWA)

]
.

The regret on the unfavorable event 1
[
ξSWA

]
can be bounded by the maximal regret BT

(since µ ∈BK
B),

E [RT (πSWA)]≤ E
[
1

[
ξSWA

]
RT (πSWA)

]
+P

[
ξSWA

]
BT.

Using Proposition 4.1.5, we get,

E [RT (πSWA)]≤ E
[
1

[
ξSWA

]
RT (πSWA)

]
+KB. (4.13)

We will now bound the regret on the favorable event,

RT (πSWA|ξSWA), 1

[
ξSWA

]
RT (πSWA)

We start from Equation 4.5 applied to policy SWA,

RT (πSWA|ξSWA)≤ 1

[
ξSWA

]
∑

i∈OP

Ni,T−1

∑
n=N?

i,T

(
µ
+
T (πSWA)−µi(n)

)
. (4.14)

The remaining of the proof is similar to the proof of Proposition 4.1.3 about algorithm
πG. Instead of showing that the before last terms in the sums are equals to zeros, we
will show that the terms before the h last one cost less than 2c(h,δT). Let i ∈K an
arm which is pulled at least h+ 1 times at the end of the game Ni,T ≥ h+ 1. We call
ti , min{t ≤ T | Ni, t = Ni,T} the last round at which i is pulled. Notice that ti > Kh
because Ni,T > h and the Kh first pulls corresponds to the round-robin period. Hence, for
any arm j ∈K , N j, ti−1 ≥ h. For all ni ≤ Ni,T − (h+1),

µi(ni)≥ µi(Ni,T − (h+1))

≥ µ
h
i (Ni, ti−1)

≥ µ̂
h
i (Ni, ti−1)− c(h,δT)

≥ µ̂
h
j (N j, ti−1)− c(h,δT)

≥ µ
h
j(N j, ti−1)−2c(h,δT). (4.15)

The first inequality follows by the non-increasing hypothesis on the reward function. The
second inequality is because µ

h
i (Ni, ti−1) is the average of h reward sample of arm i after

70 Chapter 4. Rested rotting bandits are not harder than stationary ones

the Ni,T − (h+ 1)-th (according to the definition of ti). The third and fifth one use the
concentration of all the constructed estimates on the event ξSWA. The fourth inequality
follows by definition of the policy: at time ti, πSWA selects i ∈ argmax j∈K µ̂h

j (N j, ti−1).

We choose j such that µ j(N j,T) = µ
+
T (πSWA)

(
,max j′∈K µ j′(N j′,T)

)
.

Since ti ≤ T , by the rotting assumption,

µ
h
j(N j, ti−1)≥ µ j(N j,T) = µ

+
T (πSWA). (4.16)

Gathering Equations 4.15 and 4.16, we have that

∀ni ≤ Ni,T−(h+1) ,
(
µ
+
T (πSWA)−µi(ni)

)
≤ 2c(h,δT). (4.17)

Therefore, in Equation 4.14, we can split the sum on Ni,T−h. Hence,

RT (πSWA|ξSWA)≤1
[
ξSWA

]
∑

i∈OP

Ni,T−1

∑
n=N?

i,T

(
µ
+
T (πSWA)−µi(n)

)
=1
[
ξSWA

]
∑

i∈OP

Ni,T−(h+1)

∑
n=N?

i,T

(
µ
+
T (πSWA)−µi(n)

)
+1

[
ξSWA

]
∑

i∈OP

Ni,T−1

∑
n=Ni,T−h

(
µ
+
T (πSWA)−µi(n)

)
≤2T c(h,δT)+KhB. (4.18)

In the last inequality, we used Equation 4.17 and that there is less than T overpulls in the
first sums. We also use µ ∈BB to bound each term in the second sums by B. Finally, we
can conclude by plugging Equation 4.18 in Equation 4.13 and by using the definition of
c(h,δT) and δT = T−2 in Proposition 4.1.5,

E [RT (πSWA)]≤ 4σT ·

√√√√ log
(√

2T
)

h
+K (h+1)B

�

Corollary 4.1.7 — Levine et al. (2017). Let C such that h :=
⌈
C
(

σT
KB

)2/3log
(√

2T
)1/3
⌉

.

Then, for reward functions in BB,

RT (πSWA)≤
(

4√
C
+C
)(

σ
2BKT 2 log

(√
2T
))1/3

+2KB.

Hence, if the learner knows T and the ratio σ/B, s/he can set h :=
⌈(2σT

KB

)2/3
log
(√

2T
)1/3
⌉

4.1 Rested rotting bandit: model and preliminaries 71

(i.e. C = 22/3) and be guaranteed to perform,

RT (πSWA)≤ 5
(

σ
2BKT 2 log

(√
2T
))1/3

+2KB.

Doubling trick Wrapper for SWA (wSWA): an anytime algorithm.

The theoretical window choice requires the knowledge of the horizon T , the subgaussian
parameter σ , and the reward range B (or at least the ratio σ/B). Levine et al. (2017) suggest
wSWA (Alg. 4), which wraps SWA with the doubling trick. The algorithm is initialized with
a first (small) guess of the horizon. When the horizon is reached, the algorithm is fully
reinitialized and restarted with a doubled horizon. This is a classic trick in the literature:
it is known to recover the problem-independent rate of a given algorithm (with a worse
constant factor), but the empirical performance is often significantly reduced (Besson and
Kaufmann 2018). In the case of wSWA, the doubling trick erases all the history Ht and
increases the window.

Algorithm 4 wSWA (Levine et al. 2017)
Require: α , σ , T ← 1

1: h←
⌈

α
(4σT

K

)2/3
(

log
(√

2T
))1/3

⌉
2: for t← 1,2, . . . ,T do
3: RUN SWA (h)
4: end for
5: CLEAN SWA’s MEMORY

6: wSWA (α , σ , 2T)

Corollary 4.1.8 — Levine et al. (2017). The regret of wSWA tuned with α can be
bounded by,

RT (πwSWA)≤ 8
(

αB+
1√
α

)(
σ

2KT 2 log
(√

2T
))1/3

+3KB(log2 (T)+1) .

The best theoretical tuning corresponds to α := (2B)−2/3 which necessitates the prior
knowledge of B. In their experimental section, Levine et al. (2017) select α := 0.2 by
grid-search on one problem. Yet, the reader should not forget that the tuning of α depends
on the rotting magnitude B.

72 Chapter 4. Rested rotting bandits are not harder than stationary ones

4.1.4 Experimental benchmarks

Simulated benchmark #1: Impact of B (2 arms).

Experiments We consider rotting bandits with two arms defined as,

µ1(n) = 0, ∀n≤ T and µ2(n) =

{
L
2 if n < T

4
,

−L
2 if n≥ T

4 ·

The rewards are then generated by applying a gaussian i.i.d. noise N (0,σ = 1). The
optimal allocation for this two-armed setting is N?

1,T = d3T/4e and N?
2,T = bT/4c. The

reward lies on a bounded interval of size B := L. In this specific case, L also defines the
gap between the arms ∆ = |µ1(n1)−µ2(n2)|= L/2, which is known to heavily impact the
performance in stochastic bandits. We set T = 10000 and we consider 30 different values
of L dispatched on a geometric grid between [0.02,20].

Algorithms We compare wSWA tuned with three different values of parameter α ∈
{0.002,0.02,0.2}, including the recommendation of Levine et al. (2017), α = 0.2. We
remind the reader that α is a multiplicative constant to tune the averaging window. The
window h is increased at each restart, and reaches the values {3,28,272} (for the three
values of α) at the horizon T = 10000. In general, the smaller the α , the smaller the
averaging window and the more reactive the algorithm is to large drops. Nonetheless, a
small α increases the variance of the sliding window indexes. Thus, the regret increases in
stationary regimes where gaps between arms are small compared to the variance of these
indexes. On the other hand, a large value of α may reduce variance but increase the bias in
the case of rapidly rotting arms.

Results In Fig. 4.1, we compare the performance of the three versions of wSWA. The top
plot shows the regret at the last round T = 10000 for 30 different values of L. The bottom
plots show the regret as a function of time for L = 0.233 and L = 4.24.

Each curve of the top plot has three different parts. First, we observe a linear increase for
small values of L (exponential shape on the semi-log plot). Indeed, when ∆ = L/2. σ/

√
h,

the variance of the indexes are greater than the gap between arms. Therefore, the algorithms
are unable to consistently choose the good arm and they do O (T) mistakes of size ∆. Hence,
the regret grows linearly with O (T ∆) and ultimately with L.

Then, the regret stagnates (red curve) or sharply decreases (green and blue curve). When
∆ & σ/

√
h, the variance of the indexes is smaller than the gap between arms. Hence,

the number of mistakes decrease at an exponential rate with L2 (according to Hoeffding
inequality) from O (T) to Õ (h). Notice that there is indeed a factor

√
αblue/αgreen ∼ 3

between the x-coordinate of the green and blue peaks: it matches the order of magnitude
of Lpeak ∼ σ/

√
h.

Yet, in this setup, the concentration of the index can only reduce the number of overpulls
of arm 2 up to ∼ h/2. Indeed, the expected value of the index of arm 2 is larger than the

4.1 Rested rotting bandit: model and preliminaries 73

10−1 100 101

L
0

100

200

300

400

500

600

700

800

900

Av
er

ag
e r

eg
re

t a
t T

=
10

4

wSWA(α = 0.002)
wSWA(α = 0.02)
wSWA(α = 0.2)

0 2000 4000 6000 8000 10000
Round (t)

0

50

100

150

200

250

300

350

Av
er

ag
e r

eg
re

t R
t

L = 0.233
wSWA(α = 0.002)
wSWA(α = 0.02)
wSWA(α = 0.2)

0 2000 4000 6000 8000 10000
Round (t)

0

50

100

150

200

250

300

350

Av
er

ag
e r

eg
re

t R
t

L = 4.24
wSWA(α = 0.002)
wSWA(α = 0.02)
wSWA(α = 0.2)

Figure 4.1: Top: Regret at the end of the game for different values of L. Bottom: Regret
across time for two values of L. Average over 1000 runs. We highlight the [10%,90%]
confidence region.

expected value of the index of arm 1 until we do h/2 overpulls of arm 2 because of the bias
caused by the pulls before the breakpoint. Moreover, at each restart of the algorithm, both
arms are pulled h times. Thus, the regret is lower-bounded by Õ (Lh) for any L due to the
doubling trick restart and the bias of the index. That is why we observe a linear increase
(exponential shape on the semi-log plot) of the regret at the end of the green and red curves.
Notice that there is a factor 10 between the red and green curves for large values of L,
which confirms the O (Lh) regret rate. We highlight that the red curve does not decrease
because this exponential increase takes over the decrease due to the concentration of the
index.

The bottom plots show the evolution of the regret for two different values of L. We notice
that the regret first increases, then decreases at t = dT/4e and increase again. The regret
decreases because at t = dT/4e the arms’ value for the optimal policy are 0 and −L/2 while
any sub-optimal policy can obtain either 0 or +L/2. Therefore, the regret cannot increase
until wSWA has pulled arm 2 for bT/4c times. At this round, the regret is 0 because we are
at the optimal pulling allocation. Notice that we display the expected regret, which might
not be equal to 0 because the different runs do not reach 0 at the same round. After that,

74 Chapter 4. Rested rotting bandits are not harder than stationary ones

the regret increases again as wSWA may select arm 2 with sub-optimal value −L/2.

For L = 0.233, α = 0.2 is the best tuning. Indeed, the difference between arms is only
of ∆ = 0.1 which is small compared to σ = 1. Therefore, we need a reasonably large
averaging window to decrease the variance of the indexes below the gaps between arms, i.e.
h∼ σ2/∆2 ∼ 100 which is the order of magnitude when α = 0.2 (h = 272 at the end of the
game). For L = 4.24, α = 0.002 is the best tuning. Indeed, following the same reasoning,
we need h∼ 1 which is coherent with h = 3 at the end of the game when α = 0.002.

At each full restart due to the doubling trick wrapper, the two arms are pulled h times
which generates hL/2 extra regret. The cost of this operation is particularly prohibitive
when either h or L is large. For instance, when L = 4.24, we see periodic sharp increments
in the regret when t = 2i, especially for the larger values of α .

Simulated benchmark #2: Learning against several drops (10 arms)

Experiments. We also tested a rotting setting with 10 arms. The mean of 1 arm is
constant with value 0 while the means of 9 arms abruptly decrease after 1000 pulls from
+∆i to −∆i. We use nine different values of ∆i which are ranging from 0.001 to 10 in
a geometric sequence. In this setting, the regret can be written as RT (π) = ∑

9
i=1 hi,T ∆i,

with hi,T the number of overpulls of arm i at round T . We define the regret per arm,
Ri

T (π), ∆ihi,T .

Algorithms. We keep the three versions of wSWA with α ∈ {0.002,0.02,0,2}. We add to
our benchmark famous stationary, adversarial and non-stationary algorithms: UCB (T. L.
Lai and Robbins 1985), Exp3, Exp3.S (Auer et al. 2003), D-UCB, SW-UCB (Garivier and
Moulines 2011) and GLR-UCB (Besson and Kaufmann 2019).

For UCB we use the asymptotic optimal tuning of the confidence bounds for stationary
gaussian bandits. For Exp3 and Exp3.S, we use theoretical tuning using the number of
breakpoints and the horizon. For SW-UCB and D-UCB, we select the forgetting parameters
τ = 200 and γ = 0.997 with grid-search for best performance on this problem. For GLR-
UCB, we use the theoretical value δ =

√
T
−1

for the change-point sensitivity and we set the
probability of random exploration to 0. Indeed, the random exploration is used to detect
(restless) increment in the sub-optimal arms value which is irrelevant for our rested rotting
setup.

Results. We display the average regret through the rounds and the regret per arm at the
end of the horizon in Figure 4.2.

We do not display the results for UCB and Exp3 because they obtain very large regret after
the first drop in the reward (20 000 at the end of the game). Indeed, these two algorithms
are designed for the fixed-arm regret and are unable to adapt to change of the best arm
identity.

4.1 Rested rotting bandit: model and preliminaries 75

0 5000 10000 15000 20000 25000
Round (t)

0

1000

2000

3000

4000

5000
Av

er
ag

e r
eg

re
t R

t

0.001 0.01 0.1 1.0 10.0
Arm's Δi

0

100

200

300

400

500

600

700

Av
er

ag
e r

eg
re

t p
er

 ar
m

 R
i T (

T
=

25
00

0)

10
15

34
66

23
05

17
74

11
36

25
95

wSWA(α = 0.002)
wSWA(α = 0.02)
wSWA(α = 0.2)
D-UCB(γ = 0.997)
SW-UCB(τ = 200)
GLR-UCB(no expl.)
Exp3.S

Figure 4.2: Left: Regret at the end of the game for different values of L. Middle, Right:
Regret across time for two values of L. Average over 1000 runs. We highlight the
[10%,90%] confidence region.

SW-UCB, D-UCB, and Exp3.S show large regret even though SW-UCB and D-UCB were
optimally tuned for this problem. These algorithms use random exploration and/or restless
forgetting of the data associated with each arm. This is harmful because it leads to multiple
pulls of a very suboptimal arm. Yet, with the rested rotting non-stationarity, an identified
bad arm has no reason to improve.

SWA shows better performance when it is rightly tuned. In this problem, we have multiple
sizes of drops and one should choose a value α which trades-off between these different
sizes. α = 0.2, which obtains the best value in Levine et al. (2017)’s experiment, has a
very large regret in our benchmark. Indeed, the best tuning depends on the maximal size of
the drops, which is quite large in our setting. We also notice the cost of the doubling trick.

Last, GLR-UCB shows good performance when random exploration is turned off. Indeed,
the change detection mechanism reset the history of the arm when there is significant
evidence of a change. Hence, the number of mistakes after a drop is adaptive to the
difficulty to detect the change.

4.1.5 Open problems

Minimax rate

We report existing regret bounds for two special cases. First, in Proposition 4.1.4, Heidari
et al. (2016) show that in the absence of noise, the regret is lower bounded by O (KL).
Second, we recall the minimax regret lower bound for stochastic stationary bandits.

Proposition 4.1.9 — Auer et al. 2003. [Thm. 5.1] For any learning policy π and any
horizon T , there exists a stochastic stationary problem

{
µi(n), µi

}
i

with K σ -sub-
gaussian arms such that π suffers a regret

E[RT (π)]≥
σ

10
min

(√
KT ,T

)
.

76 Chapter 4. Rested rotting bandits are not harder than stationary ones

where the expectation is w.r.t. both the randomization over rewards and algorithm’s internal
randomization.

Any problem in the two settings above is a rotting problem with parameters (σ , L).
Therefore, the performance of any algorithm on the noisy rotting problem is also bounded
by these two lower bounds. For reward functions in BB, SWA is guaranteed to achieve
O
(

T 2/3
)

regret rate. Yet, Levine et al. (2017) do not provide a lower bound while they
suggest it could be an interesting future work direction.

Problem-dependent rate

SWA starts by pulling every arm h times. It means that even for simple stationary problem
with large difference ∆i > σ between suboptimal and optimal arms, SWA makes at least
h = O

(
T 2/3
)

mistakes per suboptimal arms which is much more than the stationary
asymptotic optimal pulling rate O (σ log(T)/∆2

i).

Agnostic algorithm

SWA requires the knowledge of the horizon T , the subgaussian parameter σ , and the reward
range B to tune the window h. We showed empirically that the doubling trick leads to large
regret increases at each restart. We also show that not knowing the amplitude of the drops
B could lead to very suboptimal tuning.

R Levine et al. (2017) suggest in wSWA to use the classical doubling trick, with a full
restart of the memory of the algorithm. It is an easy way to generalize the Õ

(
T 2/3
)

bound when we do not know T . However, in practice, in this rested setup, there is no
good reason to clean the memory of wSWA (see Line 5). We could simply increase
the window h and keep the current history of the arms in order to diminish the cost
of the restart. The empirical investigation of this algorithm showed improved results
compared to wSWA without completely removing the extra cost of the doubling trick.

Global budget or Budget per round

The analysis of SWA was carried in the global rotting budget setting while the analysis
of the noiseless case was carried in the per round budget setting. We can translate
the Õ

(
B1/3T 2/3

)
bound by setting B = LT which leads to linear regret (see the remark

following Definition 4.1.2). Hence, no algorithm is proved to achieve a o(T) regret bound
in the rotting budget per round setting with noise.

4.2 FEWA and RAW-UCB: Two adaptive window algorithms

4.2 FEWA and RAW-UCB: Two adaptive window algorithms 77

4.2.1 Towards adaptive windows

Since the expected rewards µi change from one pull to another, the main difficulty in the
rested rotting bandits is that we cannot rely on all samples observed until time t to predict
which arm is likely to return the highest reward in the future. In fact, the older a sample, the
less representative it is for future rewards. This suggests constructing estimates using more
recent samples. Nonetheless, discarding older rewards reduces the number of samples used
in the estimates, thus increasing their variance.

In Figure 4.1, we showed different setups in which the regret of wSWA scales either with
O (KLh) (for large L) or with Õ (T σ/

√
h) (for small L). wSWA chooses a window h which

balances between these two costs. Yet, the two situations are quite different. In Figure 4.3,
we show three different reward functions with the associated data. The first one has a large
decay L > σ at the end of the sequence. The second one has a rather small decay in the
middle. The last one is stationary. For these three arms, we should probably not use the
same window to estimate the three values.

0 1000 2000
N1, t

−5

0

5

μ 1

0 1000 2000
N2, t

−5

0

5

μ 2

0 1000 2000
N3, t

−5

0

5

μ 3

Figure 4.3: Three rotting reward functions (red dash line) and associated reward samples:
Why should we use a single fixed window size to compare these three arms?

A favorable event for adaptive windows
Proposition 4.2.1 For any round t and confidence δt , 2t−α , let

ξ
α
t ,

{
∀i∈K , ∀n≤ t−1, ∀h≤n,

∣∣µ̂h
i (t,π)−µ

h
i (t,π)

∣∣≤c(h,δt)
}

(4.19)

be the event under which the estimates at a round t are all accurate up to c(h,δt) ,√
2σ2 log(2/δt)/h. Then, for a policy π which pulls each arms once at the beginning, and

for all t > K,

P
[
ξ α

t

]
≤ Kt2δt

2
= Kt2−α .

Proof. We want to upper bound the probability

P
[
ξ α

t

]
= P

[
∃i ∈ K, ∃n≤ t−1,∃h≤ n,

∣∣µ̂h
i (n)−µ

h
i (n)

∣∣> c(h,δt)
]
.

78 Chapter 4. Rested rotting bandits are not harder than stationary ones

Following the same argument as in Proposition 4.1.5, there exists a sequence of random
independent variable (ε ′l)l∈N , σ2 sub-Gaussian such that for ε̂h

n , (1/h)∑
n
l=n−h+1 ε ′l we

get,

P
[
∃n≤ t−1,∃h≤ n,

∣∣µ̂h
i (t−1,π)−µ

h
i (t−1,π)

∣∣> c(h,δt)
]

= P
[
∃n≤ t−1,∃h≤ n, |ε̂h

n |> c(h,δt)
]

≤
t−1

∑
n=1

n

∑
h=1

P
[
|ε̂h

n |> c(h,δt)
]

≤ t(t−1)
2
·δt ,

where we used the Chernoff inequality in the last line. Thus, a union bound over the arms
allows us to conclude that

P
[
ξ α

t

]
≤ Kδtt2

2
·

�

R Compared to the unique favorable event we used for SWA (see Equation 4.12), we use
a favorable event for each round t. It will be helpful to obtain anytime guarantees
for our algorithms. Moreover, ξ α

t control the deviation of any statistic µ̂h
i (n) for any

possible h, i and n. This is different from ξSWA which uses a fixed h.

4.2.2 FEWA: Filtering on expanding window average

In Alg. 5, we introduce FEWA (or πF) that at each round t, relies on estimates using windows
of increasing length to filter out arms that are sub-optimal with high probability and then
pulls the least pulled arm among the remaining arms.

We first describe the subroutine FILTER in Alg. 6, which receives a set of active arms
Kh, a window h, a confidence bound tuning parameter α and the subgaussian parameter
σ as input and returns an updated set of arms Kh+1. For each arm i ∈Kh (that has all
been pulled n ≥ h times), the algorithm has stored an estimate µ̂h

i that averages the h
most recent rewards observed from i. The subroutine FILTER discards all the arms whose
mean estimate (built with window h) from Kh is lower than the empirically best arm by
more than twice a threshold c(h,δt) constructed by standard Hoeffding’s concentration
inequality (see Prop. 4.2.1).

The FILTER subroutine is used in FEWA to incrementally refine the set of active arms,
starting with a window of size 1, until the condition at Line 13 is met. As a result, Kh+1
only contains arms that passed the filter for all windows from 1 up to h. Notice that it is
important to start filtering arms from a small window and to keep refining the previous set
of active arms. In fact, the estimates constructed using a small window use recent rewards,

4.2 FEWA and RAW-UCB: Two adaptive window algorithms 79

Algorithm 5 FEWA
Require: K , σ , α

1: for t← 1,2, . . . ,K do . Pull each arm once
2: PULL it ← t; RECEIVE ot
3: Nit ← 1
4:

{
µ̂h

it

}
h
← UPDATE(

{
µ̂h

it

}
h
,ot)

5: end for
6: for t← K +1,K +2, . . . do
7: h← 1 . initialize bandwidth
8: K1←K . initialize with all the arms
9: it ← none

10: while it is none do
11: Kh+1← FILTER(Kh,h,α,σ , t)
12: h← h+1
13: if ∃i ∈Kh such that Ni = h then
14: PULLa it ∈ {i ∈Kh|Nit = h}; RECEIVE ot
15: end if
16: end while
17: Nit ← Nit +1
18:

{
µ̂h

it

}
h
← UPDATE(

{
µ̂h

it

}
h
,ot)

19: end for

aOne can choose the tie break selection rule arbitrarily, e.g. by selecting the arm with the smallest index.

Algorithm 6 FILTER
Require: Kh, h, α , σ , t

1: c(h,δt)←
√

2ασ2 log(t)/h
2: µ̂h

max←maxi∈Kh µ̂h
i

3: for i ∈Kh do
4: ∆i← µ̂h

max− µ̂h
i

5: if ∆i ≤ 2c(h,δt) then
6: add i to Kh+1
7: end if
8: end for

Ensure: Kh+1

which are closer to the future value of an arm. As a result, if there is enough evidence
that an arm is suboptimal already at a small window h, it should be directly discarded. On
the other hand, a sub-optimal arm may pass the filter for small windows as the threshold
c(h,δt) is large for small h (i.e., because a few samples are used in constructing µ̂h

i , the
estimation error may be high). Thus, FEWA keeps refining Kh for larger windows in the
attempt of constructing more accurate estimates and discard more sub-optimal arms. This
process stops when we reach a window as large as the number of samples for at least one
arm in the active set Kh (i.e., Line 13). At this point, increasing h would not bring any
additional evidence that could refine Kh further (recall that µ̂h

i is not defined for h > Ni).

80 Chapter 4. Rested rotting bandits are not harder than stationary ones

Finally, FEWA selects the active arm it whose number of samples matches the current
window, i.e., the least pulled arm in Kh. The set of available rewards and the number of
pulls are then updated accordingly.

Core guarantee on the favorable event We derive an important lemma that provides
support for the arm selection process obtained by a series of refinements through the
FILTER subroutine. Recall that at any round t, after pulling arms {Ni, t−1}i the greedy
(oracle) policy would select an arm

i?t
({

Ni, t−1
}

i

)
∈ argmax

i∈K
µi (Ni, t−1) .

We recall that µ
+
t (πF),maxi∈K µi(Ni, t−1) the reward that could be obtained by pulling i?t

at a round t. While FEWA cannot directly match the performance of the oracle arm, the
following lemma guarantees that the past performance of the selected arm is close enough
compared to the current best arm value.

Lemma 4.2.2 For FEWA tuned with α , on the favorable event ξ α
t , if an arm i passes

through a filter of window h at a round t, i.e., i ∈ Kh, then the average of its h last pulls
satisfies

µ
h
i (Ni, t−1)≥ µ

+
t (πF)−4c(h,δt). (4.20)

Therefore, at a round t, on favorable event ξ α
t , if arm i is selected by FEWA (α), for any

h≤Ni, t−1, the average of its h last pulls cannot deviate significantly from the best available
arm at that round, i.e.,

µ
h
it (Ni, t−1)≥ µ

+
t (πF)−4c(h,δt).

Proof. We will prove this property for a more general rotting feedback model than the
rested rotting one presented in Equation 4.1. We will use this more general proof in the
next Chapter 5. If arm i is selected at the round t, the learner π receives,

ot , µi, t + εt with E [εt |Ht] = 0 and ∀λ ∈ R, E
[
eλεt
]
≤ e

σλ2
2 ,

with {µi, t}t≤T a non-increasing sequence. We do not specify how the reward is rotting,
while it was assumed in Equation 4.1 that the reward function was evolving with the
number of pulls Ni, t−1 of arm i at the round t. With this reward model, we cannot use
µ

h
i (N

π
i, t−1) to refer to µ

h
i (t,π), the average of the h last means associated to arm i (see the

definition in Equation 4.11 and the following remark). We also extend the definitions of
i?t ∈ argmaxi∈K µi,t and µ

+
t ,maxi∈K µi(Ni,t−1).

Let i ∈Kh be an arm that passed a filter of window h at the round t. First, we use the
confidence bound for the estimates and we pay the cost of keeping all the arms up to a
distance 2c(h,δt) of µ̂h

max, t ,max j∈Kh µ̂h
i (t,πF),

µ
h
i (t,πF)≥ µ̂

h
i (t,πF)−c(h,δt)≥ µ̂

h
max,t−3c(h,δt)≥ max

j∈Kh
µ

h
j(t,πF)−4c(h,δt), (4.21)

4.2 FEWA and RAW-UCB: Two adaptive window algorithms 81

where in the last inequality, we used that for all j ∈Kh,

µ̂
h
max,t ≥ µ̂

h
j (t,πF)≥ µ

h
j(t,πF)− c(h,δt).

Second, we call ti,t < t the last round at which arm i was selected. Since the means of arms
are decaying, we know that

µ
+
t (πF), µi?t , t

≤ µi?t , ti,t = µ
1
i?t
(t,πF)

≤ max
j∈K

µ
1
j(t,πF) = max

j∈K1
µ

1
j(t,πF). (4.22)

Third, we show that the largest average of the last h′ means of arms in Kh′ is increasing
with h′,

∀h′ ≤ h, max
j∈Kh′+1

µ
h′+1
j (t,πF)≥ max

j∈Kh′
µ

h′
j (t,πF).

To show the above property, we remark that thanks to our selection rule, the arm that
has the largest average of means, always passes the filter. Formally, we show that
argmax j∈Kh′

µ
h′
j (t,πF) ⊆Kh′+1. Let ih

′
max ∈ argmax j∈Kh′

µ
h′
j (t,πF). Then, for such ih

′
max,

we have

µ̂
h′

ih′max
(t,πF)≥ µ

h′

ih′max
(t,πF)− c(h′,δt)≥ µ

h′
max,t− c(h′,δt)≥ µ̂

h′
max,t−2c(h′,δt),

where the first and the third inequality are due to concentration of the estimates on ξ α
t ,

while the second one is due to the definition of ih
′

max.

Since the arms are decaying, the average of the last h′+1 mean values for a given arm is
always greater than the average of the last h′ mean values and therefore,

max
j∈Kh′

µ
h′
j (t,πF) = µ

h′

ih′max
(t,πF)≤ µ

h′+1
ih′max

(t,πF)≤ max
j∈Kh′+1

µ
h′+1
j (t,πF), (4.23)

because ih
′

max ∈Kh′+1. Gathering Equations 4.21, 4.22, and 4.23 leads to the first claim of
the lemma,

µ
h
i (t,πF)

(4.21)
≥ max

j∈Kh
µ

h
j(t,πF)−4c(h,δt)

(4.23)
≥ max

j∈K1
µ

1
j(t,πF)−4c(h,δt)

(4.22)
≥ µ

+
t (πF)−4c(h,δt).

To conclude, we remark that if i is pulled at the round t, then by the condition at Line 13 of
Algorithm 5, it means that i passes through all the filters from h = 1 up to Ni, t−1. Therefore,
for all h≤ Ni, t−1,

µ
h
i (t,πF)≥ µ

+
t (πF)−4c(h,δt). (4.24)

�

82 Chapter 4. Rested rotting bandits are not harder than stationary ones

4.2.3 RAW-UCB: Rotting Adaptive Window Upper Confidence Bound

Algorithm 7 RAW-UCB
Require: K , σ , α

1: for t← 1,2, . . . ,K do . Pull each arm once
2: PULL it ← t; RECEIVE ot
3: Nit ← 1
4:

{
µ̂h

it

}
h
← UPDATE(

{
µ̂h

it

}
h
,ot)

5: end for
6: for t← K +1,K +2, . . . do
7: PULL a it ∈ argmaxi minh≤Ni

(
µ̂h

i + c(h,δt)
)
; RECEIVE ot . cf. (4.25);

8: Nit ← Nit +1
9:

{
µ̂h

it

}
h
← UPDATE(

{
µ̂h

it

}
h
,ot)

10: end for

aOne can choose the tie break selection rule arbitrarily, e.g. by selecting the arm with the smallest index.

We will study a single class of policies which select at each round t the arm with the
maximal index of the form

ind(i, t,δt), min
h≤Ni,t−1

(
µ̂

h
i (Ni, t−1)+ c(h,δt)

)
with δt ,

2
tα

. (4.25)

We set and call this algorithm Rotting Adaptive Window UCB (RAW-UCB). There is a bias-
variance trade-off for the window choice: more variance for smaller sizes of the window h
and more bias for larger h. The goal of RAW-UCB is to adaptively select the right window to
compute the tightest UCB. RAW-UCB uses the indexes of UCB1 computed on all the slices
of each arm’s history which include the last pull. When the rewards are rotting, all these
indexes are upper confidence bounds on the next value. Thus, RAW-UCB simply selects
the tightest (minimum) one as the index of the arm: it is a pure UCB-index algorithm.
By contrast, when the reward can increase, the learner can only derive upper-confidence
bound on past values which are loosely related to the next value. Hence, all the UCB-
index algorithms in the restless non-stationary literature need to add change-detection
sub-routine, active random exploration, or passive forgetting mechanism.

Core guarantee on the favorable event
Lemma 4.2.3 At the round t, on favorable event ξ α

t , if arm it is selected by RAW-UCB (α),
for any h≤ Nit ,t−1, the average of its h last pulls cannot deviate significantly from the best
available arm at that round, i.e.,

µ
h
it (Nit , t−1)≥max

i∈K
µi(Ni, t−1)−2c(h,δt) .

This lemma is comparable with Lemma 4.2.2 about the algorithm FEWA. Yet, RAW-UCB has
tighter guarantees than FEWA (2 versus 4 confidence bands), which is the benefit of upper
confidence bounds index policies over confidence bound filtering policies.

4.3 Regret Analysis 83

Proof. Like for Lemma 4.2.2 (see its proof), our proof is done in a more general rotting
framework that can be used in the next chapter.

We denote by i?t ∈ argmaxi∈K µi,t , a best available arm at time t and

hmin
i,t ∈ argmin

h≤Ni, t−1

µ̂
h
i (t,π)+ c(h,δt),

a window which minimizes RAW-UCB index at time t for arm i. Hence, because the reward
functions are non-increasing, we know that

µi?t ,t ≤ µ
1
i?t
(t,π)≤ ·· · ≤ µ

hmin
i?t ,t

i?t
(t,π)·

On the high-probability event ξt , we know that the true average of the means cannot deviate
significantly from the average of the observed quantity,

µ
hmin

i?t ,t

i?t
(t,π)≤ µ̂

hmin
i?t ,t

i?t
(t,π)+ c(hmin

i?t ,t
,δt) .

We know that the selected arm it at time t has the largest index, hence,

µ̂
hmin

i?t ,t

i?t
(t,π)+ c(hmin

i?t ,t
,δt)≤ µ̂

hmin
it ,t

it (t,π)+ c(hmin
it ,t ,δt).

From hmin
i,t definition, we know that this quantity is below any upper-confidence bound for

any other window h

µ̂
hmin

it ,t
it (t,π)+ c(hmin

it ,t ,δt)≤ µ̂
h
it (t,π)+ c(h,δt).

Finally, using again the concentration of the average on the ξ α
t ,

µ̂
h
it (t,π)+ c(h,δt)≤ µ

h
it (t,π)+2c(h,δt) .

Hence, putting all the equations together, we can write

µ
h
it (t,π)≥max

i∈K
µi(t,Ni,t−1)−2c(h,δt).

�

4.3 Regret Analysis

In the last section, we presented two algorithms which have very different behaviours.
Yet, they show two main similarities. First, for each arm they compute several statistics
µ̂h

i (Ni, t−1) for different windows h≤ Ni, t−1. Second, on the same favorable events ξ α
t (on

which all these aforementioned statistics are well concentrated around their means, see
Prop. 4.2.1), we have shown that both algorithms share a guarantee with similar shape that
we restate in a general form,

84 Chapter 4. Rested rotting bandits are not harder than stationary ones

Corollary 4.3.1 — Lemmas 4.2.2 and 4.2.3. At a round t, on favorable event ξ α
t , if

arm it is selected by π(α) ∈ {πR,πF}, for any h≤ Nit ,t−1, the average of its h last pulls
cannot deviate significantly from the best available arm at that round, i.e.,

µ
h
it (Nit , t−1)≥max

i∈K
µi(Ni, t−1)−

Cπ√
2α

c(h,δt) = max
i∈K

µi(Ni, t−1)−Cπσ

√
log(t)

h
,

with CπR = 2
√

2α and CπF = 4
√

2α.

We will see that this Corollary is the only characterization we need in our analysis. We
first give problem-independent regret bound for FEWA and RAW-UCB and sketch its proof
in Subsection 4.3.1. Then, we discuss problem-dependent guarantees in Subsection 4.3.2.
Finally, we give a detailed analysis in Subsection 4.3.3.

4.3.1 Problem-independent bound

Theorem 4.3.2 For any rotting bandit scenario with means {µi}i ∈L K
L and any time

horizon T , π ∈ {πR,πF} run with α ≥ 5 suffers an expected regret of

E[RT (π)]≤Cπσ
√

log(T)
(√

KT +K
)
+3KL with

{
CπR =2

√
2α

CπF =4
√

2α
·

Comparison to Levine et al. (2017) The regret of SWA is bounded by Õ(B1/3K1/3T 2/3)
for bounded rotting functions in BB. According to Subsection 4.1.5, the regret guarantee
translate in O(T) for rotting functions in LL. Thus, according to its original analysis, SWA
may not be able to learn for our general setting. On the other hand, we could use FEWA or
RAW-UCB with rotting functions in BB and recover the same regret bound with L := B. In
this case, our two algorithms suffer a regret of Õ(

√
KT), thus significantly improving over

SWA.

The improvement is mostly because FEWA and RAW-UCB use adaptive window mechanisms
to smoothly track changes in the value of each arm. Indeed, SWA relies on a fixed exploratory
phase where all arms are pulled in a round-robin way and the tracking is performed using
averages constructed with a fixed window. According to Proposition 4.1.6, this fixed
window trades off between the cost of biased estimates O (KBh) - for scenarios where the
arms abruptly decay and their values are overestimated during at most h rounds - and the
cost of the variance of estimators Õ (σT/

√
h) - for scenarios where the arms keep their value

close to each other for O (T) rounds. In Theorem 4.3.2, the regret of FEWA and RAW-UCB
is also bounded by an additive decomposition between the terms depending on the noise
level σ and the terms depending on the rotting level L. Yet, adaptive window algorithms
do not need to trade-off: their regret is bounded by O (KL)+ Õ

(
σ
√

KT
)
. It evidence that

our algorithms can take decision based on a relevant h ∈
{

1, . . . ,Ni, t−1
}

depending on the
scenarios.

4.3 Regret Analysis 85

Last, our algorithms are anytime and agnostic to L (or B), while the tuning of SWA requires
to know B and T (or to resort to a doubling trick, which performs poorly in practice).

Comparison to stationary stochastic bandits The regret upper bounds of FEWA and
RAW-UCB match the worst-case optimal regret bound of the standard stochastic bandits (i.e.,
µi(n)s are constant) up to a logarithmic factor. Whether an algorithm can achieve O(

√
KT)

regret bound is an open question. On one hand, our analysis needs confidence bounds to
hold for different windows at the same time, which requires an additional union bound
and thus larger confidence intervals w.r.t. UCB1. On the other hand, our worst-case analysis
shows that some of the difficult problems that reach the worst-case bound of Thm. 4.3.2
are realized with constant functions, which is the standard stochastic bandits, for which
MOSS-like (Audibert and Bubeck 2009) algorithms achieve regret guarantees without the√

logT factor. Thus, the necessity of the extra
√

logT factor for the worst-case regret of
rotting bandits remains an open problem.

4.3.2 Problem-dependent bound

Since our setting generalizes the stationary stochastic bandit setting, a natural question
is whether we pay any price for this generalization. While the result of Levine et al.
(2017) suggested that learning in rotting bandits could be more difficult, in Thm. 4.3.2 we
actually proved that FEWA and RAW-UCB nearly match the problem-independent regret rate
Õ(
√

KT). We may wonder whether this is true for the problem-dependent regret as well.

R Consider a stationary stochastic bandit setting with expected rewards {µi}i and
µ? ,maxi µi. For π ∈ {πF,πR}, on the favorable event ξ α

t with δt ≥ 2/T α , we can
apply Corollary 4.3.1 at the last time arm i is pulled (i.e. after Ni,T−1 pulls) for
h = Ni,T−1,

µ?−µi ≤
Cπ√
2α

c(Ni,T −1,δt) =Cπσ

√
log(T)

Ni,T −1
,

or equivalently, Ni,T ≤ 1+
C2

πσ2 log(T)
(µ?−µi)2 · (4.26)

Therefore, for α > 41, our algorithms match the lower bound of T. L. Lai and Robbins
(1985) up to a constant factor C2

π/2.

With a similar argument, we can show a similar bound on the number of overpulls hi,T of
arm i in the general rested rotting bandits case. Indeed, we show in Lemma 4.3.7 that hi,T
is smaller than a problem-dependent quantity h+i,T which is itself smaller by construction

1α should be large enough to control the cost of the unfavorable events, see Lemma 4.3.5.

86 Chapter 4. Rested rotting bandits are not harder than stationary ones

than a function of "gaps" ∆i,h+i,T−1,

h+i,T ,max

{
h ∈ {1, . . .T}|h≤ 1+

C2
πσ2 log(T)

∆2
i,h−1

}
with ∆i,h , min

j∈K
µ j
(
N?

j,T−1
)
−µ

h
i
(
N?

i,T+h
)
. (4.27)

R Notice that for stationary bandits, we have for all h, ∆i,h = ∆i = µ?−µi. In fact, ∆i,h
extends the notion of gap to our non-stationary setting: it is the average gap between
the smallest value pulled by the optimal policy and the average value of the h first
overpulls of arm i. We also highlight that h+i, t is always defined because h = 1 always
verify the self-bounding property.

Moreover, on the favorable event ξ α
t , we can show that the regret of hi,T overpulls of arm i

is bounded by O(
√

hi,T) (see Lemma 4.3.6, in Subsection 4.3.3). Hence, we bound hi,T
by h+i,T and we use the self-bounding property in the definition of h+i,T (Equation 4.27)
to get a O (log(T)) problem-dependent bound for our algorithms on any rotting bandit
scenario.

Theorem 4.3.3 For any rotting bandit scenario with means {µi}i ∈L K
L and any time

horizon T , π ∈ {πR,πF} run with α ≥ 5 suffers an expected regret of

E [RT (π)]≤ ∑
i∈K

(
C2

πσ2 log(T)
∆i,h+i,T−1

+Cπσ
√

log(T)+3L

)
,

with

CπR =2

√
2α

CπF =4
√

2α

∆i,h and h+i,T defined in Equation 4.27.

R The problem-dependent guarantee of RAW-UCB is 4 times smaller than the guarantee
of FEWA: this is the benefits of upper-confidence bound index policies over confidence
bound filtering ones. However, for α = 5, our guarantee for RAW-UCB is still at a
factor C2

πR
/2 = 20 of the lower bound of T. L. Lai and Robbins (1985) for stationary

bandits.

This is mostly due to our proof technique. Indeed, Auer et al. (2002) also use a
similar high-probability proof for UCB1 and also get a large factor compared to the
lower bound and an over-conservative tuning of the confidence bounds2. Yet, even
compared to UCB1, we have to use a more conservative tuning of the confidence
bounds. On the first hand, we use a larger number of estimators at each round: Kt2

instead of Kt for UCB. Hence, after taking the union bound, we need to increase α by

2To make the results comparable to the one of Auer et al. (2002), we need to replace σ2 by 1/4 for
sub-Gaussian noise.

4.3 Regret Analysis 87

one to have the same probability of the unfavorable event as for UCB1 (see Prop. 4.1.5).
On the other hand, for reward functions in LL, the maximal possible regret at a round
t is bounded by Lt which is larger than the constant cost L for the stationary case.
Thus, we have to increase α by one to control the cost of the unfavorable event.
Notice that it is a consequence of our extended setting: we would not need to increase
α for reward functions in BB.

While we presented our Theorems 4.3.2 and 4.3.3 with α ≥ 5, we could have similar
results for α > 4 by replacing the additive term 3KL by (1+ζ (α−3))KL with
ζ (x), ∑n n−x. For bounded reward functions, we can further reduce α > 3. It is still
a larger confidence interval than with δt ∼ 1

t log t2 , which is used in UCB with asymptotic-
optimal tuning for sub-gaussian stationary bandits (Lattimore and Szepesvári 2020).
We further discuss the notion of asymptotic optimality and confidence level tuning in
rotting bandits in Section 4.6.

4.3.3 Proof

Structure of the proof

In Lemma 4.3.4, we split the regret decomposition according to whether the overpulls has
been done on the favorable event ξ α

t or not.

In Lemma 4.3.5, we show that the part of the expected regret due to pulls under ξ α
t is

bounded by a constant with respect to T for α > 4. Indeed, while we have only trivial
bounds on the quality of the pulls on these events, we can control their probabilities thanks
to Proposition 4.2.1.

In Lemma 4.3.6, we show that for hi,T overpulls of arm i, we suffer no more than
Õ
(√

hi,T
)

on the favorable event. Indeed, thanks to Corollary 4.3.1, we know that

the cost of the h before last pulls is bounded by h · c(h,δt) = Õ
(√

h
)

.

The proof of Theorem 4.3.2 follows by noticing that ∑i∈K hi,T ≤ T which leads to the
Õ
(√

KT
)

rate. Indeed, thanks to the concavity of the
√
· and to Jensen’s inequality, we

find that the worst allocation is hi,T = T
K .

In Lemma 4.3.7, we construct a problem-dependent bound of hi,T which extends the notion
of gaps for rotting bandits using Corollary 4.3.1.

The proof of Theorem 4.3.3 follows by plugging this bound in the result of Lemma 4.3.6.

Full proof

Let tπ
i (n) the function such that tπ

i (n) = t when policy π selects arm i at time t for the
n-th time. We call µ

+
T (π),maxi∈K µi (Ni,T), i.e. the largest available reward for π at the

round T+1.

88 Chapter 4. Rested rotting bandits are not harder than stationary ones

Lemma 4.3.4 Let hi,T , |Ni,T −N?
i,T |. For any policy π , the regret at the round T is no

bigger than

RT (π)≤ ∑
i∈OP

hi,T−1

∑
h=0

1

[
ξ

α

tπ
i (N

?
i,T+h)

](
µ
+
T (π)−µi(N?

i,T +h)
)
+

T

∑
t=1

1

[
ξ α

t

]
Lt.

We refer to the the first sum above as to Aπ and to the second sum as to B.

Proof. We consider the regret at the round T . We start from the upper bound in Eq. 4.5,

RT (π)≤ ∑
i∈OP

hi,T−1

∑
h=0

(
µ
+
T (π)−µi(N?

i,T +h)
)
. (4.28)

Then, we need to separate overpulls that are done under ξ α
t and under ξ α

t . We introduce
tπ
i (n), the round at which π pulls arm i for the n-th time. We now make the round at which

each overpull occurs explicit,

RT (π)≤ ∑
i∈OP

hi,T−1

∑
h=0

T

∑
t=1

1
[
tπ
i
(
N?

i,T +h
)
= t
](

µ
+
T (π)−µi(N?

i,T +h)
)

≤ ∑
i∈OP

hi,T−1

∑
h=0

T

∑
t=1

1
[
tπ
i
(
N?

i,T +h
)
= t ∧ξ

α
t
](

µ
+
T (π)−µi(N?

i,T +h)
)

︸ ︷︷ ︸
Aπ

+ ∑
i∈OP

hi,T−1

∑
h=0

T

∑
t=1

1

[
tπ
i
(
N?

i,T +h
)
= t ∧ξ α

t

](
µ
+
T (π)−µi(N?

i,T +h)
)

︸ ︷︷ ︸
B

.

For the analysis of the pulls done under ξ α
t we do not need to know at which round it was

done. Therefore,

Aπ ≤ ∑
i∈OP

hi,T−1

∑
h=0

1

[
ξ

α

tπ
i (N

?
i, t+h)

](
µ
+
T (π)−µi(N?

i,T +h)
)
.

For FEWA or RAW-UCB, it is not easy to directly guarantee the low probability of overpulls
(the second sum). Thus, we upper-bound the regret of each overpull at a round t under
ξ α

t by its maximum value Lt. While this is done to ease FEWA analysis, this is valid
for any policy π . Then, noticing that we can have at most 1 overpull per round t, i.e.,

∑i∈OP ∑
hi,T−1
h=0 1

[
tπ
i

(
N?

i,T +h
)
= t
]
≤ 1, we get

B≤
T

∑
t=1

[
ξ α

t

]
Lt

(
∑

i∈OP

hi,T−1

∑
h=0

1
[
tπ
i
(
N?

i,T +h
)
= t
])
≤

T

∑
t=1

[
ξ α

t

]
Lt.

Therefore, we conclude that

RT (π)≤ ∑
i∈OP

hi,T−1

∑
h=0

1

[
ξ

α

tπ
i (N

?
i, t+h)

](
µ
+
T (π)−µi(N?

i,T +h)
)

︸ ︷︷ ︸
Aπ

+
T

∑
t=1

[
ξ α

t

]
Lt︸ ︷︷ ︸

B

.

�

4.3 Regret Analysis 89

Lemma 4.3.5 Let ζ (x) = ∑n n−x. Thus, with δt = 2t−α and α > 4, we can use Proposi-
tion 4.2.1 and get

E [B],
T

∑
t=1

p
(

ξ α
t

)
Lt ≤

T

∑
t=1

KLt3−α ≤ KLζ (α−3) .

In particular, for α ≥ 5, we have:

E [B]≤ KLζ (2)≤ 2KL .

Lemma 4.3.6 We define hξ

i,T , max
{

h≤ hi,T s.t. ξ α

tπ
i (N

?
i, t+h)holds

}
, the largest number

of overpulls of arm i pulled under ξ α
t at the round t = tπ

i (N
?
i, t + hξ

i,T) ≤ T . We also

define OPξ ,
{

i ∈ OP| hξ

i,T ≥ 1
}
. For policy π ∈ {πR,πF} with parameter α , Aπ defined

in Lemma 4.3.4 is upper-bounded by

Aπ , ∑
i∈OP

hi,T−1

∑
h=0

1

[
ξ

α

tπ
i (N

?
i,T+h)

](
µ
+
T (π)−µi(N?

i,T +h)
)

≤ ∑
i∈OPξ

(
Cπσ

√(
hξ

i,T −1
)

log(T)+Cπσ
√

log(T)+L

)
.

Proof. We upper-bound Aπ by including all the overpulls of arm i until the hξ

i,T -th overpull,
even the ones under ξ α

t ,

Aπ , ∑
i∈OP

hi,T−1

∑
h=0

1

[
ξ

α

tπ
i (N

?
i, t+h)

](
µ
+
T (π)−µi(N?

i,T +h)
)

≤ ∑
i∈OPξ

hξ

i,T−1

∑
h=0

(
µ
+
T (π)−µi(N?

i,T +h)
)
,

where OPξ ,
{

i ∈ OP| hξ

i,T ≥ 1
}
. We can split the second sum of hξ

i,T terms above into

two parts: on the one hand, the first hξ

i,T −1 (possibly zero) terms (overpulling differences);

and on the other hand, the last (hξ

i,T −1)-th one. Recalling that at the round ti, arm i was

selected under ξ α
ti , we apply Corollary 4.3.1 to bound the regret caused by the first hξ

i,T −1
overpulls of i (possibly none),

Aπ ≤ ∑
i∈OPξ

µ
+
T (π)−µi

(
N?

i,T +hξ

i,T −1
)
+

Cπ√
2α

(
hξ

i,T −1
)

c
(

hξ

i,T −1,δti

)
(4.29)

≤ ∑
i∈OPξ

µ
+
T (π)−µi

(
N?

i,T +hξ

i,T −1
)
+

Cπ√
2α

(
hξ

i,T −1
)

c
(

hξ

i,T −1,δT

)
(4.30)

≤ ∑
i∈OPξ

µ
+
T (π)−µi

(
N?

i,T +hξ

i,T −1
)
+Cπσ

√(
hξ

i,T −1
)

log(T). (4.31)

90 Chapter 4. Rested rotting bandits are not harder than stationary ones

The second inequality is obtained because δt is decreasing and c(·,δ) is decreasing as
well. The last inequality is the definition of confidence interval in Proposition 4.2.1 with
δT = 2T−α . If N?

i,T = 0 and hξ

i,T = 1, then,

µ
+
T (π)−µi(N?

i,T +hξ

i,T −1) = µ
+
T (π)−µi(0)≤ L,

since µ
+
T (π) ≤ max j∈K µ j(0) and max j∈K µ j(0)− µi(0) ≤ L because {µi}i∈K ∈L K

L
(Def. 4.1.1).

We do not have direct guarantees on the value of the last pull because it may have decay.
However, we know that it has decay by less than L since the before last pull (term A2 in
the next equation). We also have a guarantee on the value of this before last pull thanks to
our adaptive window mechanism (term A1). That is why, we decompose,

µ
+
T (π)−µi(N?

i,T +hξ

i,T −1) =µ
+
T (π)−µi(N?

i,T +hξ

i,T −2)︸ ︷︷ ︸
A1

+µi(N?
i,T +hξ

i,T −2)−µi(N?
i,T +hξ

i,T −1)︸ ︷︷ ︸
A2

.

For term A1, since this hξ

i,T -th overpull is done under ξ α
ti , by Corollary 4.3.1 we have that

A1 = µ
+
T (π)−µ

1
i (N

?
i,T +hξ

i,T −1)≤ 1c(1,δti)≤ 2c(1,δT)≤Cπσ
√

log(T).

The second difference, A2 = µi(N?
i,T + hξ

i,T − 2)− µi(N?
i,T + hξ

i,T − 1) cannot exceed L,
since by the assumptions of our setting (Def. 4.1.1), the maximum decay in one round is
bounded. Therefore, we further upper-bound Equation 4.31 as

Aπ ≤ ∑
i∈OPξ

(
Cπσ

√(
hξ

i,T −1
)

log(T)+Cπσ
√

log(T)+L

)
. (4.32)

�

Proof of Theorem 4.3.2. In Lemma 4.3.4, we split the regret in two parts. The first one B
corresponds to the regret due to unfavorable events ξ α

t . We do not derive any guarantee of
our algorithms on these events but their probabilities can be controlled thanks to parameter
α . Hence, for α > 4, we show in Lemma 4.3.5 that the part of the expected regret due to
unfavorable events can be bounded by a constant w.r.t. T . Yet, we choose α ≥ 5 to have a
small constant.

The second one Aπ corresponds to the regret due to favorable events ξ α
t which can be

bounded for our two algorithms (FEWA and RAW-UCB) thanks to Lemma 4.3.6. In order to
get a problem-independent upper bound, we need to replace hξ

i,T by a problem-independent
quantity. Starting from Lemma 4.3.6,

4.3 Regret Analysis 91

Aπ ≤ ∑
i∈OPξ

(
Cπσ

√(
hξ

i,T −1
)

log(T)+Cπσ
√

log(T)+L

)
.

We can upper-bound the number of terms in the above sum by K. Moreover, we recall
that hξ

i,T ≤ hi,T and that the total number of overpulls ∑i∈OP hi,T cannot exceed T . As
square-root function is concave we can use Jensen’s inequality. Moreover, we can deduce
that the worst allocation of overpulls is the uniform one, i.e., hi,T = T/K,

Aπ ≤ K(Cπσ
√

log(T)+L)+Cπσ
√

log(T) ∑
i∈OP

√
(hi,T −1)

≤ K(Cπσ
√

log(T)+L)+Cπσ
√

KT log(T). (4.33)

Therefore, using Lemma 4.3.4 together with Equations 4.33 and Lemma 4.3.5, we bound
the total expected regret as

E[RT (π)]≤Cπσ
√

log(T)
(√

KT +K
)
+3KL· (4.34)

�

Lemma 4.3.7 We define the smallest reward gathered by the optimal policy µ
−
T and the

gap of the h first overpulls of arm i with respect to that value ∆i,h.

µ
−
T , min

i∈K ?
µi
(
N?

i,T −1
)

with K ? ,
{

i ∈K |N?
i,T ≥ 1

}
,

∆i,h , µ
−
T −µ

h
i
(
N?

i, t +h
)
.

hξ

i,T defined in Lemma 4.3.4 is upper-bounded by a problem-dependent quantity,

hξ

i,T ≤ h+i,T ,max

{
h≤ T

∣∣ h≤ 1+
C2

πσ2 log(T)
∆2

i,h−1

}
≤ 1+

C2
πσ2 log(T)
∆2

i,h+i,T−1

·

Proof. We want to bound hξ

i,T with a problem dependent quantity h+i,T . We remind the

reader that for arm i, the hξ

i,T -th overpull is pulled under ξ α
ti at the round ti. Therefore,

Corollary 4.3.1 applies and we have

µ
hξ

i,T−1
i

(
N?

i,T +hξ

i,T −1
)
≥ µ

+
T (π)− Cπ√

2α
c
(

hξ

i,T −1,δti

)
≥ µ

+
T (π)− Cπ√

2α
c
(

hξ

i,T −1,δT

)
≥ µ

+
T (π)−Cπσ

√√√√ log(T)

hξ

i,T −1
,

92 Chapter 4. Rested rotting bandits are not harder than stationary ones

Hence, we have that

hξ

i,T ≤ 1+
C2

πσ2 log(T)(
µ
+
T (π)−µ

hξ

i,T−1
i

(
N?

i,T +hξ

i,T −1
))2 · (4.35)

We will justify in few lines that µ
+
T ≥ µ

hξ

i,T−1
i

(
N?

i,T +hξ

i,T −1
)

when the regret is not null.

Yet, this upper bound still depends on random quantities such as µ
+
T (π) or hξ

i,T on the
denominator. Consider the smallest value collected by the optimal policy,

µ
−
T , min

i∈K ?
µi
(
N?

i,T −1
)

with K ? ,
{

i ∈K |N?
i,T ≥ 1

}
.

We recall that the greedy oracle πO selects the rewards in the decreasing order (see the
proof of Proposition 4.1.1). Therefore, µ

−
T (the smallest value selected at the round T) is

the T -th largest value among the KT possible ones. Moreover, the overpulls - which are
the values that are not among the T largest ones selected by πO - are all smaller than µ

−
T .

Since µ
hξ

i,T−1
i

(
N?

i,T +hξ

i,T −1
)

is an average of overpulls’ values, we have,

µ
−
T ≥ µ

hξ

i,T−1
i

(
N?

i,T +hξ

i,T −1
)
.

Moreover, µ
−
T > µ

+
T (π) implies that the regret is 0. Indeed, in that case µ

+
T (π) - the

pull with the largest value among the remaining values at the end of the game for π - is
strictly smaller than µ

−
T - the T -th largest reward sample. Therefore, π has collected the T

largest values and has zero regret. Hence, we focus on the case µ
−
T ≤ µ

+
T (π), for which

the regret may not be zero. In that case, we can upperbound the RHS term Equation 4.35
by replacing the random quantity µ

+
T (π) by the smaller quantity µ

−
T . We do have that

µ
hξ

i,T−1
i

(
N?

i,T +hξ

i,T −1
)
≤ µ

−
t ≤ µ

+
T when the regret is not null. Hence,

hξ

i,T ≤ 1+
C2

πσ2 log(T)(
µ
+
T (π)−µ

hξ

i,T−1
i

(
N?

i,T +hξ

i,T −1
))2 ≤ 1+

C2
πσ2 log(T)
∆2

i,hξ

i,T−1

,

with ∆i,h , µ
−
T −µ

h
i

(
N?

i, t +h
)

, the difference between the lowest mean value of the arm
pulled by π? and the average of the h first overpulls of arm i. Yet, this self-bounding
property of hξ

i,T is not a proper problem-dependent upper bound. We will consider the
largest h which satisfies this self-bounding property,

h+i,T ,max

{
h≤ T

∣∣ h≤ 1+
C2

πσ2 log(T)
∆2

i,h−1

}
·

We have that,

hξ

i,T ≤ h+i,T ≤ 1+
C2

πσ2 log(T)
∆2

i,h+i,T−1

·

�

4.4 Experimental benchmarks 93

Proof of Theorem 4.3.3. We use Lemmas 4.3.6 and Lemma 4.3.7 to bound Aπ (see Lemma
4.3.4). Indeed, since the square-root function is increasing, we can upper-bound the result
in Lemma 4.3.6 by replacing hξ

i,T by its upper bound in Lemma 4.3.7

Aπ ≤ ∑
i∈OPξ

(
Cπσ

√
log(T)

(
1+
√

h+i,T −1
)
+L
)

≤ ∑
i∈OPξ

(
Cπσ

√
log(T)

(
1+

Cπσ
√

log(T)
∆i,h+i,T−1

)
+L

)
.

Notice that the quantity OPξ ⊂K . Therefore, we have

Aπ ≤ ∑
i∈K

(
C2

πσ2 log(T)
∆i,h+i,T−1

+Cπσ
√

log(T)+L

)
. (4.36)

Using Lemmas 4.3.4, 4.3.5, and Equation 4.36 we get

E [RT (π)] = E [Aπ]+E [B]

≤ ∑
i∈K

(
C2

πσ2 log(T)
∆i,h+i,T−1

+Cπσ
√

log(T)+L

)
+2KL

≤ ∑
i∈K

(
C2

πσ2 log(T)
∆i,h+i,T−1

+Cπσ
√

log(T)+3L

)
·

�

4.4 Experimental benchmarks

We use the two benchmarks described in Subsection 4.1.4.

4.4.1 Simulated benchmark #1 (2 arms).

Algorithms. We display the performance of RAW-UCB and FEWA for two versions of each
algorithm: with the theoretical tuning α = 4; and with the empirical tuning αR = 1.4 and
αF = 0.06. These two values are selected by grid-search. Though there are 30 different
problems (for different L), the best tuning of α is the same for all the considered problem.
We also include the three versions of wSWA that we displayed in Subsection 4.1.4.

Results - RAW-UCB versus FEWA. We compare RAW-UCB and FEWA both for theoretical
and empirical tuning. For theoretical tuning, we see in Figure 4.4 (top), that RAW-UCB
outperforms FEWA on all sizes of decays by a factor ∼ 4 which is predicted by our the-
ory. Indeed, there is also a factor 4 between the two problem-dependent upper-bounds
(Theorem 4.3.3).

94 Chapter 4. Rested rotting bandits are not harder than stationary ones

10−1 100 101

L
0

100

200

300

400

500

600

700

800

900

Av
er

ag
e r

eg
re

t a
t T

=
10

4

RAW-UCB(α = 1.4)
RAW-UCB(α = 4)
FEWA(α = 0.06, δ = 1)
FEWA(α = 4)
wSWA(α = 0.002)
wSWA(α = 0.02)
wSWA(α = 0.2)

0 2000 4000 6000 8000 10000
Round (t)

0

50

100

150

200

250

300

350

Av
er

ag
e r

eg
re

t R
t

L = 0.233
RAW-UCB(α = 1.4)
RAW-UCB(α = 4)
FEWA(α = 0.06, δ = 1)
FEWA(α = 4)
wSWA(α = 0.002)
wSWA(α = 0.02)
wSWA(α = 0.2)

0 2000 4000 6000 8000 10000
Round (t)

0

50

100

150

200

250

300

350

Av
er

ag
e r

eg
re

t R
t

L = 4.24
RAW-UCB(α = 1.4)
RAW-UCB(α = 4)
FEWA(α = 0.06, δ = 1)
FEWA(α = 4)
wSWA(α = 0.002)
wSWA(α = 0.02)
wSWA(α = 0.2)

Figure 4.4: Top: Regret at the end of the game for different values of L. Bottom: Regret
across time for two values of L. Average over 1000 runs. We highlight the [10%,90%]
confidence region.

Surprisingly, for empirical tuning, the average performances of the two algorithms are
much closer. We also notice that there is a larger variance in FEWA’s result compared to
RAW-UCB. This is not surprising because we had to drastically reduce the confidence bounds
to make FEWA practical. It means that empirical FEWA filters arms based only on a handful
of samples. This bet leads to both very good and very bad runs. Last, Figure 4.4 (bottom)
shows that RAW-UCB outperforms FEWA at almost any time t, both on easy (L = 4.24) and
difficult (L = 0.233) problems. The only round at which FEWA shows better performance
than RAW-UCB is after the regret decay. It is because FEWA was less good at identifying the
best arm in the first part of the game. Hence, just after the decay, it pulls more the other
arm - which has become optimal.

In the following, we will compare RAW-UCB with wSWA. Notice that a similar comparison
can hold for FEWA (α = 0.06).

Results - Problem dependent performance and the impact of L. RAW-UCB with the
best empirical tuning improves over wSWA on each problem (Figure 4.4 (top)). RAW-UCB

4.4 Experimental benchmarks 95

with the theoretical tuning recovers quite good performance as well.

In this setting, L has two different meanings. It is the maximum decay per round (noted as
L in the theoretical section) and the gap between arms ∆2,h = L/2 (for any h). According to
our problem-dependent bound in Theorem 4.3.3, the regret bound converges to O (KL)
when L and ∆2,h are large with respect to σ . It tends to show that setup where arms are well
separated from each other are easy problems for FEWA and RAW-UCB. It is indeed confirmed
in Figure 4.4 (top), where the regret of FEWA and RAW-UCB converges to L/2 when L is large.

Results - Worst-case improvement. In Figure 4.4 (top), the worst regret for any of the
two versions of RAW-UCB is smaller than the worst regret of any of the three versions wSWA.
Moreover, we remark that the regret at the round T has one maximum for the variation
of L for RAW-UCB. This is not the case for wSWA where the regret increases again for large
values of L.

It confirms our analysis. Indeed, Theorem 4.3.2 shows a larger regret rate than Propo-
sition 4.1.6. Moreover, the analysis shows that the worst cases for RAW-UCB correspond
to cases where the learner does O (T) mistakes of intermediate size O

(√
K/T
)

which
corresponds to the single maximum in Figure 4.4 (top).

Results - Tuning and agnostic algorithms. Figure 4.4 (top) confirms that FEWA and
RAW-UCB do not rely on the knowledge of L. Indeed, the optimal tuning is the same for
all the 30 problems. By contrast, the performance of wSWA depends critically on the prior
knowledge of L: each of the three displayed tunings is the best for a specific range of L.

Figure 4.4 (bottom) shows the advantage of anytime algorithms compared to the doubling
trick. Indeed, the periodic restarts are quite expensive for wSWA.

Results - High-probability. We see that the variance of wSWA is quite large for interme-
diate values of L. It confirms the analysis of wSWA which shows two sources of the regret:
the variance and the bias of the index. The regrets caused by variance has itself a large
variance. Indeed, the sub-optimal arms are often correctly estimated, and hence not pulled
by the index policy. It leads to many good runs of wSWA. However, there are still many runs
on which there is a sufficient deviation in the indexes which leads to very large regret.

By contrast, the variance in the results is much more controlled by RAW-UCB and FEWA.
Indeed, when the statistics of these algorithms are not significant enough they tend to
explore which leads to less large deviation of the regret.

4.4.2 Simulated benchmark #2 (10 arms).

Algorithms. We display the same two versions of FEWA and RAW-UCB. We also show
the three best algorithms presented in Subsection 4.1.4: two versions of wSWA with α ∈

96 Chapter 4. Rested rotting bandits are not harder than stationary ones

0 5000 10000 15000 20000 25000
Round (t)

0

200

400

600

800

1000

1200

1400
Av

er
ag

e r
eg

re
t R

t

0.001 0.01 0.1 1.0 10.0
Arm's Δi

0

100

200

300

400

500

600

700

Av
er

ag
e r

eg
re

t p
er

 ar
m

 R
i T (

T
=

25
00

0)

RAW-UCB(α = 1.4)
RAW-UCB(α = 4)
FEWA(α = 0.06)
FEWA(α = 4)
wSWA(α = 0.002)
wSWA(α = 0.02)
GLR-UCB(no expl.)

Figure 4.5: Left: Regret at the end of the game for different values of L. Middle, Right:
Regret across time for two values of L. Average over 1000 runs. We highlight the
[10%,90%] confidence region.

{0.002,0.02} and GLR-UCB with no exploration.

Results. The comparison between RAW-UCB, FEWA, and wSWA leads to a similar conclusion
than for the two-arm bandit experiment. RAW-UCB and FEWA show superior performance,
except for the theoretical tuning of FEWA which is too conservative.

In particular, these algorithms show a better adaptation to each arm’s gap. Indeed, the
regret per arm is more controlled, especially for large values of the gaps, on which wSWA
suffers a large regret. There is also less deviation in the regret and we see the benefits of
avoiding the doubling trick.

In the two-arm setup with a single decay, it is possible to find a value of α for which wSWA
is correctly tuned for the specific decay. For instance, for L ∈ [1,3], wSWA with α = 0.02
has almost the same performance than RAW-UCB (Fig. 4.4). In the ten-arm setup with
multiple decays, this is not possible anymore. Indeed, since there are several dropping
values for each arm, there exists at least one arm on which the fixed window of wSWA is not
correctly tuned. For instance, for α = 0.002 , wSWA suffers a large regret on the arm with
∆i = 0.3. For wSWA with α = 0.02, the regret is large when ∆i = 10.

RAW-UCB and FEWA also improve over GLR-UCB when their confidence bounds are tuned.
We recall that GLR-UCB is an algorithm that uses a classical UCB index with a change
detection procedure. When the change-detection procedure triggers, it erases the history of
the changing arm. Notice that the confidence bounds of the index of GLR-UCB are already
well-tuned, as they use the same confidence bounds as the asymptotic optimal tuning
of UCB. GLR-UCB shows sub-optimal performance on two arms ∆i ∈ {0.1,10}. GLR-UCB
suffers from the late restart for ∆i = 0.1. Indeed, the change-point is hard to detect, and the
index of the sub-optimal value is positively biased while it has not restarted. For ∆i = 10,
the large regret of GLR-UCB is due to an implementation artefact. Indeed, we used the fast
implementation for the change detector (by default in (Besson 2018)). It speeds up the
algorithm but it can delay the change-detection scheme (by 10 pulls in this case). This
delay leads to large regret when the mistake associated with each arm is large (as it is the

4.4 Experimental benchmarks 97

case for ∆i = 10).

Policy Running time (s)
FEWA (α = 0.06) 91

FEWA (α = 4) 780
RAW-UCB (α = 1.4) 27
RAW-UCB (α = 4) 25
wSWA (α = 0.002) 1
wSWA (α = 0.02) 1

GLR-UCB 46

Table 4.1: Average running time for the 10-arms experiment in seconds.

Running time. In Table 4.1, we display the running time for this experiment. The
computational experiments were conducted using the Grid’5000 experimental testbed
(Balouek et al. 2013). For meaningful comparison, all the algorithms run on the same
"Grenoble/dahu" cluster (2 CPUs Intel Xeon Gold 6130, 16 cores/CPU, 192GB RAM,
223GB SSD, 447GB SSD, 3726GB HDD, 1 x 10Gb Ethernet, 1 x 100Gb Omni-Path).

RAW-UCB runs 25 times slower than wSWA. We will provide a computational analysis in the
next section but we can already relate this increased running time with the higher number
of statistics RAW-UCB update and compare at each round.

The α parameter of FEWA has a large impact on the running time. Indeed, the larger the
α , the less aggressive are the filters, the longer it takes to reach the end of the filtering
process. Yet, even when α is small, FEWA is slower than RAW-UCB. This is a consequence
of the simplicity of the index policy over the filtering procedure. Indeed, in Python, we can
use the fast C++ implementation of the scientific computing library Numpy to perform the
most classical operations. Hence, for RAW-UCB, we only use the NumPy functions argmax
and min to choose the next arm. For FEWA, the comparison part is more custom: we had
to implement the while-loop at Line 10 with a Python loop, which is known to be quite
slow. Notice that since the two algorithms use the same statistics we use the same function
UPDATE in both algorithms.

GLR-UCB is slower than RAW-UCB. Notice that it is already a fast version of GLR-UCB which
runs the change-detection subroutine sparsely (approximately 10 to 100 times faster than
the original GLR-UCB).

R We emphasize the better characteristics of RAW-UCB over FEWA: better bounds, better
empirical performances, easier and faster implementation, a better agreement between
theory and practice, closer to the classical UCB. For these reasons, we will focus our
future empirical investigation on RAW-UCB.

98 Chapter 4. Rested rotting bandits are not harder than stationary ones

4.5 Efficient algorithms

4.5.1 The numerical cost of adaptive windows

In the three last sections, we presented two adaptive windows algorithms that significantly
improved over state-of-the-art algorithms, both theoretically and experimentally. Yet, our
numerical experiments indicate that these improvements are computationally expensive.
Indeed, at each round t, we store, update and compare O (t) statistics.

The full update of the statistics can be done at a worst case cost of O (t). Indeed, each
statistics µ̂h

i can be refreshed with a O (1) operation:

µ̂
h+1
i (n+1) =

h
h+1

µ̂
h
i (n)+

1
h+1

ot .

The comparison part in both FEWA and RAW-UCB is also a O (t) operations. In FEWA, we do
a scan based on µ̂h

i for all i ∈Kh with increasing h. Hence, the total number of unitary
operations is in O (t) in the worst case, as it scales with the number of statistics. RAW-UCB
computes one UCB for each of the O (t) statistics. For each arm, it selects the minimum
UCB as the index, which can be done with complexity O (t). Finally, finding the largest
index is a O (K) operation. Therefore, we can conclude,

Proposition 4.5.1 At any round t, FEWA and RAW-UCB have a O (t) worst-case complexity
in time and memory.

R SWA (h) has a O (h) worst-case complexity in time and memory because the sliding-
window mechanism needs to store and update O (h) statistics to always have the
average of the h last sample ready. Hence, when it is optimally tuned for the minimax
bound, SWA has a O

(
T 2/3

)
per round complexity. As often in non-stationary bandits,

it may be possible to replace sliding window statistics with discounted statistics. Such
modification often leads to a slightly worse theoretical regret rate with a much better
O (K) complexity.

Hence, handling a large number of windows, which is the main strength of our algorithms
to achieve a lower regret, is a significant drawback when it comes to design fast algorithms.
Therefore, it is an open question whether one can enjoy the benefits of adaptive windows
without suffering large time and space complexity.

4.5.2 The efficient update trick

We detail EFF_UPDATE, an update scheme to handle efficiently statistics of different
windows. A similar yet different approach has appeared independently in the context
of streaming mining (Bifet and Gavaldà 2007). EFF_UPDATE is built on two main ideas:
geometrically sparse and delayed statistics.

4.5 Efficient algorithms 99

First, at any time t we can avoid using
{

µ̂h
i
}

h for all possible windows h starting from 1
with an increment of 1. In fact, both statistics µ̂h

i and constructed confidence levels c(h,δt)
have very close value for successive h as h becomes large:

µ̂
h+1
i (n) = µ̂

h
i (n)+O

(
σ +L

h

)
,

c(h+1,δt) = c(h,δt)+O

(
σ

h3/2

)
.

Hence, in both FEWA and RAW-UCB, we compute a lot of very similar quantities. Instead,
we could use fewer statistics which are significantly different:

{
µ̂h

i (N
π
i, t−1)

}
h∈Hi,m

, where

the window h is dispatched on a geometric grid,

Hi,m
(
Nπ

i, t−1
)
,
{

h j ∈
{

1, . . . ,Nπ
i, t−1

}
| h j+1 =

⌈
m ·h j

⌉
and h1 = 1

}
with m > 1.

When there is no confusion, we drop the dependency on Nπ
i, t−1. This modification alone is

not enough to reduce both the time and space complexity. Indeed, updating µ̂h
i requires

to replace the h-th last sample by the new one ot . Hence, we need to store the t collected
samples to be able to update any µ̂h

i with O (1) complexity. Therefore, in EFF_UPDATE,
we will use O (K log(t)) delayed statistics that we can update with O (K log(t)) space and
time complexity.

EFF_UPDATE (Alg. 8) takes as input the new observation ot that the learner gets at the
Ni-th pull of arm i; the geometric window grid Hi,m tuned with an hyperparameter m > 1,

and for each window h j in this grid, three different numbers µ̂
h j
i,eff, ph j

i , nh j
i .
{

µ̂
h j
i,eff

}
i,h j

represents the set of current statistics of window size h j that will be used instead of
{

µ̂h
i
}

i,h

in our efficient algorithms. We also store a pending statistic ph j
i and a count nh j

i which
are used in the sparse update procedure of µ̂

h j
i,eff. EFF_UPDATE outputs an updated set of

statistics. The core of EFF_UPDATE is divided in four parts: 1) From Lines 1 to 6, we create
new window’s statistics at a logarithmic rate with respect to the growth of Ni; 2) From
Lines 7 to 9, we update the statistics of window h1 = 1; 3) From Lines 10 to 13, we update
the other pending statistics and count; 4) From Lines 14 to 20, we eventually update µ̂

h j
i,eff

and refresh the corresponding pending statistic and count. The remaining details are quite
technical. Thus, we first give the high-level properties that are ensured by the recursive
usage of EFF_UPDATE. Then, we prove them by going through the algorithm line by line.

100 Chapter 4. Rested rotting bandits are not harder than stationary ones

Algorithm 8 EFF_UPDATE

Require: ot , Hi,m←
{

h j <dm ·Nie | h j+1=
⌈
m ·h j

⌉
with h0=1

}
,
{
{µ̂h j

i,eff, ph j
i , nh j

i }
}

h j∈Hi,m

1: if Ni = max(Hi,m) then . Create a new triplet with window h j = dm ·Nie
2: Hi,m← Hi,m∪{dm ·Nie}
3: pdm·Nie

i = pNi
i

4: ndm·Nie
i ← nNi

i

5: µ̂
dm·Nie
i,eff ← None

6: end if
7: p1

i ← ot . Update the first triplet with ot
8: n1

i ← 1
9: µ̂1

i,eff← ot

10: for h j ∈ Hi,m r{1} do . Update the other pending statistics ph j
i and nh j

i

11: ph j
i ← ph j

i +ot

12: nh j
i ← nh j

i +1
13: end for
14: for h j ∈ SORT_DESC(Hi,m r{1}) do
15: if nh j

i = h j then
16: µ̂

h j
i,eff← ph j

i /h j . Replace the current statistic µ̂
h j
i,eff

17: ph j
i = p

h j−1
i . Refresh the pending statistics

18: nh j
i ← n

h j−1
i

19: end if
20: end for
Ensure:

{{
µ̂

h j
i,eff, ph j

i , nh j
i

}}
h j∈Hi,m

Proposition 4.5.2
{{

µ̂
h j
i,eff, ph j

i , nh j
i

}}
h j∈Hi,m

, constructed recursively with EFF_UPDATE

with initial value
{{

µ̂1
i,eff : None, p1

i : 0, n1
i : 0

}}
have the following properties:

1. µ̂
h j
i,eff is the average of exactly h j consecutive samples among the 2h j−1 last ones.

2. The delay between two updates of µ̂
h j
i,eff is in

{⌈m−1
m h j

⌉
, . . . ,h j−1

}
.

3. ph j
i is the sum of the nh j

i last samples.
4. nh j

i < h j for j ≥ 1. Also, n1
i ≤ 1.

5.
{

nh j
i

}
h j

is an non-decreasing sequence with respect to h j (or j).

Proof. The three last properties are trivially true at the initialization. Thus, we show by
induction that they remain true after updates.

4.5 Efficient algorithms 101

Proof of 3. At Lines 3 and 4, we create a new pending statistics and count by initializing
them with other statistics and counts. Hence, because of the recursion hypothesis, all the
pending statistics ph j

i (including the created one) contains the sum of the nh j
i before last

pulls. At Lines 7 and 8, we update p1
i with the last sample and set n1

i to 1. At Lines 11
and 12, we add the last sample to ph j

i (which was containing the before last samples) and
increase the count by 1. Hence, at the end of Line 12, all the ph j

i contains the sum of the

last nh j
i samples. Thus, refreshing ph j

i and nh j
i with p

h j−1
i and n

h j−1
i keeps this property true

(Lines 17 and 18).

Proof of 4. For j = 0, n1
i , which is equal to 0 at the initialization, is set at 1 at every

update (Line 8). Hence, we have nh0
i ≤ h0 = 1. For j ≥ 1, ndm·Nie

i is initialized at Line 4
with the value nNi

i < Ni < dm ·Nie by the induction hypothesis and because m > 1. Then,
nh j

i < h j (j ≥ 1) is increased by one at each update at Line 12. Hence, we now have
nh j

i ≤ h j for all j ∈ Hi,m. However, for j ≥ 1, if nh j
i = h j (Line 15), it is replaced by the

precedent count n
h j−1
i ≤ h j−1 < h j (Line 12). Thus, at the end of the update, we do have

nh j
i < h j for j ≥ 1.

Proof of 5. At Line 4, we create a new pending count corresponding to the largest h j
and we initialize it with the precedent largest count. At Lines 8 and 12, we set n1

i = 1 and
increase all the other nh j

i by one. This operation preserves the non-decreasing property of

the ordered set. Last, at Line 18, we set few counts nh j
i to the precedent value n

h j−1
i - which

also preserves the non-decreasing property of the ordered set.

Proof of 1 and 2. Thanks to Property 3, we know that ph j
i is the sum of the nh j

i last
sample. It is still true at the end of Line 12 (see the proof). Then, at Line 16, and given the
condition in Line 15, we set µ̂

h j
i,eff with the average of the last h j sample. Then, µ̂

h j
i,eff is

not updated untill the condition at Line 15 is fulfilled again.

nh j
i is refreshed with a quantity larger or equal to 1 and smaller or equal to h j−1 at Line 18.

Then, it is increased by one at each update. we know that µ̂
h j
i,eff will be updated at least

every h j−1, and at most every h j−h j−1 round. Hence, considering the worst possible
delay we can conclude: µ̂

h j
i,eff is the average of exactly h j consecutive samples among the

2h j−1 last ones. Last, considering that h j−1 ≤ h j/m, we conclude that the minimal delay
is larger or equal to m−1

m h j. �

In Proposition 4.5.3, we show that EFF_UPDATE succeeds to drastically reduce the time
and space complexity of the updates as soon as m is not too close to 1.

Proposition 4.5.3 After Ni updates, the time and space complexity of EFF_UPDATE scales
with O (min(logm Ni,Ni)).

102 Chapter 4. Rested rotting bandits are not harder than stationary ones

Proof. The time and space complexity scales with |Hi,m|. Indeed, there are 3|Hi,m|+ 2

variables store in memory :
{
{µ̂h j

i,eff, ph j
i , nh j

i }
}

h j∈Hi,m
, ot and Ni. Moreover, EFF_UPDATE

does two FOR loops on Hi,m.

The size of Hi,m is upper-bounded by O (logm Ni). Indeed, when the condition at Line 1 is
fulfilled, max(Hi,m) is replaced by dm ·Nie. When it is not fulfilled, the maximum is not
changed but Ni increases by one unit. Hence, we always have,

max(Hi,m)≤ dm ·Nie .

Moreover, when the condition is fulfilled, the maximum is replaced by,

max(Hi,m)← dm ·max(Hi,m)e .

Hence, when Hi,m is initialized with {1}, we show recursively that,

max(Hi,m)≥ m|Hi,m|−1.

Combining the above equations, we have,

m|Hi,m|−1 ≤ m ·Ni +1.

Therefore,

|Hi,m| ≤ logm (2Ni)+2.

This upper-bound diverges at finite Ni when m→ 1. However, the size of Hi,m is increased
one by one at Line 2. Hence, even if the condition at Line 1 is fulfilled at every round,
|Hi,m| ≤ Ni +1 (Hi,m is initialized with {1}). �

R When m≤ 1+ 1
Ni

,
{

µ̂
h j

i,eff

}
h j∈Hi,m

(the outcome of EFF_UPDATE) is the same than

the outcome of the classical update
{

µ̂h
i
}

h≤Ni
for the Ni first rounds. Yet, there is no

free lunch, the complexity is O (Ni) in this regime (according to Proposition 4.5.3).

4.5.3 The delay in EFF_UPDATE

We have already emphasized that EFF_UPDATE is built on two ideas: geometrically sparse
and delayed statistics. The geometrically sparse aspect is straightforward to understand
and quantify: h j+1 ∼ m ·h j up to the rounding.

In this Subsection, we provide a tight analysis of the delay between the updates. In fact,
the important quantity is the normalized delay, that is, the delay divided by the window
size. Indeed, each statistic of window h j should represent the h j last sample. A delay of
10 for h j = 106 is very good as it succeeds to take into account most of the h j last sample.

4.5 Efficient algorithms 103

However, the same delay of 10 is a failure when h j = 1, as the algorithm fails to give a
good representation of the very last sample.

In Property 2, we show that the normalized delay cannot be larger than 100%. We also
show that it is lower bounded by m−1

m . For small values of m, this amplitude can be large.

We use two tricks in the algorithm to reduce the delay. First, at Line 18, we refresh ph j
i

with p
h j−1
i which contains n

h j−1
i ∈

{
1, . . . ,h j−1

}
samples. We could refresh ph j

i and nh j
i at

0 which would lead to 100% normalized delay. Instead, we use the variable available in
the memory which contains the sum of h last sample, with the largest h < h j. According
to Properties 3, 4 and 5, this quantity is p

h j−1
i .

Indeed, according to Property 3, p
h j′
i contains the n

h j′
i last samples. At the round of the

update of µ̂
h j
i,eff, p

h j′
i contains h j samples before Line 17. According to Property 5, all the

j′ > j have n
h j′
i > nh j

i = h j. According to Property 4, n
h j−1
i ≤ h j−1 < h j. Moreover, for all

j′ ≤ j−1, n
h j−1
i ≥ n

h j′
i (Property 5).

The second trick is to sort Hi,m in the decreasing order at Line 14. If there are two
synchronous consecutive updates of µ̂

h j
i,eff and µ̂

h j+1
i,eff at the same run of EFF_UPDATE,

doing a backward loop guarantees to refresh n
h j+1
i with nh j

i = h j instead of a smaller value
if we would do a forward loop.

In this Subsection, we show that these two tricks succeed to upper-bound the normalized
delay by O

(m−1
m

)
when m is an integer and when m < 2.

The integer case.

Proposition 4.5.4 When m ∈N\{0,1}, h j = m j. Moreover, µ̂
h j
i,eff is updated periodically

with period ω j =
m−1

m h j for j ≥ 1 (ω0 = 1).

The main idea is simple: since any window h j is a multiple of the lower order h j−k, µ̂
h j
i,eff

is initialized and updated synchronously with all the lower order statistics. Hence, the
pending statistic ph j

i is refreshed with h j−1 sample, the largest possible number of sample

in p
h j−1
i . Hence, choosing integer values minimizes the delay (compared to the delay

bounds we identify in Property 2). The proof is quite technical, and we delay it at the end
of the Subsection.

We call d j(Ni) ∈
{

0, . . . ,ω j−1
}

, the number of pulls since the last update of statistic

µ̂
h j
i,eff after Ni pulls. We display in Figure 4.6 the normalized delay d j/h j after Ni pulls of

each statistic. The updates are indeed periodic. We notice the strong synchronization in
the updates: not only each period ω j is at a m factor of the previous one, but the update of
statistic j are at the same round as the updates of statistics j′ < j.

104 Chapter 4. Rested rotting bandits are not harder than stationary ones

1000 2000 3000 4000 5000
Ni

0

2

4

6

8

10

12

j

m = 2

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
Ni

0

2

4

6

j

m = 3

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
Ni

0

1

2

3

j

m = 10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.6: Normalized delay d j/h j after Ni pulls for each j-th statistic µ̂
h j
i,eff. We display in

white the rounds at which statistic j is not created yet.

However, for large values of m, the delay improvement is marginal. For m = 10, each
statistic can be delayed by 90% their window size. Even, for m = 2 the normalized delay
ω j/h j is 50%. The m−1/m ratio would be very interesting for m→ 1.

The non integer case

1000 2000 3000 4000 5000
Ni

0

100

200

300

400

j

m = 1.01

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
Ni

0

20

40

60

j

m = 1.1

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
Ni

0

5

10

15

20

25

j

m = 1.3

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
Ni

0

5

10

15

j

m = 1.5

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
Ni

0

2

4

6

8

10

12

j

m = 1.9

0.0

0.2

0.4

0.6

0.8

1.0

1000 2000 3000 4000 5000
Ni

0

2

4

6

8

10

j

m = 2.1

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.7: Normalized delay d j/h j after Ni pulls for each j-th statistic µ̂
h j
i,eff. We display

in white the rounds at which statistic j is not created yet.

In Figure 4.7, we display the delay for several non integer values. Compared to the integer
case, the update of statistic j does not happen at the same round as the update of statistic
j′ < j. However, we notice that the updates are still periodic and the updating period ω j is

4.5 Efficient algorithms 105

a multiple of ω j−1. We formalized this properties in Propositions 4.5.5 and 4.5.6 which
we show at the end of the Subsection.

Proposition 4.5.5 For each statistic, the updates are periodic. Moreover, the update period
ω j+1 is a multiple of period ω j,

ω j+1 = ω j

(
1+
⌊

h j+1−h j−1
ω j

⌋)
.

Proposition 4.5.6 For m < 2, ω j+1 is either equal to ω j or to 2 ·ω j.

We notice that this weaker synchronization can lead to a larger normalized delay. Indeed,
for m = 2 the normalized delay is bounded by 50% (Fig. 4.6 and Proposition 4.5.4) while
for m = 1.9 and m = 2.1 some statistics are delayed by more than 70% (Fig 4.7). Yet, for
m→ 1, the normalized delay seems to converge to 0. Indeed, we prove in Proposition 4.5.7
that the normalized period cannot exceed twice its minimal value m−1/m.

Proposition 4.5.7 For m < 2, either ω j = 1 or ω j <
2(m−1)

m h j.

Notice that when ω j = 1, there is zero delay in the updates (statistics are updated at
every round). We investigate empirically whether this upper-bound is tight. We select ten
thousand values of m uniformly at random between 1 and 2 and we add the value m = 2.
For each value of m, we compute recursively all the h j and ω j (with Proposition 4.5.5)
until h j > 1015. Then, we compute the ratio,

r j ,
mω j

(m−1)h j
,

for any j such that ω j 6= 1. According to Proposition 4.5.7 and Property 2, this ratio always
lies between 1 and 2.

In Figure 4.8, we display for each value of m the maximum, minimum, median and average
of the sequence

{
r j
}

j. Notice that h j = 1015 is much larger than the horizon usually
considered in bandits experiments, even to characterize asymptotic performance (Chapelle
and Li 2011; Kaufmann et al. 2012a; Lattimore 2018). Hence, the displayed minimum and
maximum are valid empirical bounds for real application.

For more than 90% of the values of m, the minimum is below 1.02, the maximum is larger
than 1.95, and the median and mean are between 1.35 and 1.45. It shows that our theory is
tight in general to characterize the best and worst possible normalized period.

There are deviations to this general case. First, when m→ 2, the ratio tends to 1 for
all j. This is indeed the value when m = 2. When we compare m = 1.9 and m = 2 on
Figures 4.6 and 4.7, we see that the normalized delay is drifting for m = 1.9: the updates
are synchronous and the normalized delay is ∼ 50% for the first statistics, but it becomes
larger when j is increasing. We conjecture that the closer m is to 2, the slower is the drift.

106 Chapter 4. Rested rotting bandits are not harder than stationary ones

1.0 1.2 1.4 1.6 1.8 2.0
m

1.0

1.2

1.4

1.6

1.8

2.0

mωj

(m − 1)hj

max
average
median
min

Figure 4.8: Impact of m on the minimum, maximum, average and median ratio among
{mω j/(m−1)h j} j.

Second, there are also local deviations (e.g near m∼ 1.42). They correspond to values of
m such that mk (with k a small integer) is a power of two. In that case, the ratios

{
r j
}

j are
cycling in the regime h j >> 1 (i.e. when the rounding effect is negligible and h j+1∼m ·h j)
and take only k values up to small rounding perturbations. These values can either be quite
good or quite bad. In fact, due to the rounding, these values are slowly drifting. We can try
to control the drift by increasing or decreasing m very slightly to improve the median or
the average delay for a given horizon.

As we can see on Figure 4.8, it is very sensitive to the exact value of m. For instance, with
ε = 1e−5, m = (1− ε)×21/3 has an average ratio of 1.29 while m = (1+ ε)×21/3 has an
average ratio of 1.55. Indeed, the normalized delay is not the same for a statistic which
is updated just before the precedent one (r j ∼ 1) or for one which is updated just after
(r j ∼ 2) . When the update of ph j

i is just before, it is refreshed with almost h j−1 samples,
which is the best possible value. When it is just after, it is refreshed with ∼ h j−2 which is
close to the worse one. Due to this discontinuity, it is hard to take advantage of these local
deviation.

To conclude, non-integer values for m leads to a larger ratio r j than integer values (twice
larger in the worst case, ∼ 1.4 in average). However, the interesting quantity is the
normalized period, which is equal to (m−1)r j/m. For m = 2, the normalized period is 50%
for all the statistics j ≥ 1. In order to achieve a lower value in the worst case, one should
choose m≤ 4

3 . If we target a lower value in average, one should choose m≤ 1.56. It shows
that non-integer values are especially interesting when m→ 1. Yet, there is no free lunch:

4.5 Efficient algorithms 107

the complexity of EFF_UPDATE scales with O (logm T) which diverges with 1/m−1 when
m→ 1.

Proofs

Proof of Proposition 4.5.4. When m has an integer value, we have,

h j =
⌈
m ·h j−1

⌉
= m ·h j−1 = · · ·= m j ·h0 = m j.

For j = 0, µ̂1
i,eff is updated at every update at Line 9. Hence, ω0 = 1. For j = 1, h1 = m is

initialized after m pulls. At this round, we set nh1
i to the value in nh0

i which is equal to 1.
Indeed, the first statistic is always up to date. Hence, the next update is after m−1 pulls.
At this round, the pending statistics is again refreshed with p0 which contains 1 sample
and, recursively, we can conclude that µ̂

h1
i,eff is updated every ω1 = m−1 = m−1

m h1.

By induction, let j such that the statistic j− 1 is updated periodically every ω j−1 =

(m−1)m j−2 pulls from pull m j−1. µ̂
h j
i,eff is initialized after m j pulls (Line 16) . It is

synchronized with the m-th update of statistic µ̂
h j−1
i,eff. Indeed,

m j = m ·m j−1 = m j−1 +mω j−1.

Notice that we sort Hi,m in the decreasing order at Line 14, hence nh j
i is updated with

n
h j−1
i = m j−1 before it is itself refreshed with n

h j−2
i (Line 18). Hence, µ̂

h j
i,eff is updated

for the first time after ω j = h j−nh j
i = m j−m j−1 = (m−1)m j−1 = mω j−1 pulls, i.e. after

m j +(m−1)m j−1 pulls of arm i. Again, this update is synchronized with the update of the
lower order statistic:

m j +ω j = m j +(m−1)m j−1 = m j−1 +2mω j−1.

Hence, the pending statistic ph j
i is again refreshed with n

h j−1
i = m j−1 sample. Recur-

sively, we can repeat the very same argument and show that µ̂
h j
i,eff is updated every

ω j = (m−1)m j−1 pulls from pull m j. �

Proof of Proposition 4.5.5. We will prove this property by induction on j. When j = 0,
the updates happen at every round. Hence, ω0 = 1. Let j such that µ̂

h j−1
i,eff is refreshed

periodically with period ω j−1. µ̂
h j
i,eff is initialized after h j pulls. At that round ph j

i is

initialized with the current value of p
h j−1
i which contains n

h j−1
i samples. Since statistic

j−1 is updated with period ω j−1, n
h j−1
i takes its value between h j−1−ω j−1 +1 and h j−1.

At pull h j−1, it was initialized with value h j−1−ω j−1 +1. Then, it is increased by one at
every pull and refresh at h j−1−ω j−1 +1 when it reaches value h j. Therefore, at pull h j,
we have,

n
h j−1
i
(
h j
)
= h j−1−ω j−1 +1+

(
h j−h j−1−1 mod ω j−1

)
. (4.37)

108 Chapter 4. Rested rotting bandits are not harder than stationary ones

with n
h j−1
i (h), the value of n

h j−1
i at the end of the h-th pulls of arm i. The −1 is caused

by the backward loop (Line 14: when h j−h j−1 mod ω j−1, the updates are synchronized
such that it minimizes the delay (like in the integer case). The next update of µ̂

h j
i,eff will

happen in

ω j , h j−n
h j−1
i
(
h j
)

= h j−
(
h j−1−ω j−1 +1+

(
h j−h j−1−1 mod ω j−1

))
= ω j−1 +h j−h j−1−1−

(
h j−h j−1−1 mod ω j−1

)
= ω j−1

(
1+
⌊

h j−h j−1−1
ω j−1

⌋)
The second line is justified by Equation 4.37. The last line uses a−a mod b = bba/bc.
Hence, the first delay ω j is a multiple of ω j−1. Therefore, n

h j−1
i
(
h j +ω j

)
= n

h j−1
i
(
h j
)

and

µ̂
h j
i,eff is refreshed with the same number of sample than its initialization, and the delay

until the second update is h j−n
h j−1
i
(
h j +ω j

)
= n

h j−1
i
(
h j
)
= ω j. Recursively, we show

that µ̂
h j
i,eff is updated periodically with period ω j. �

Proof of Proposition 4.5.6. By reductio ad absurdum, we consider the smallest j≥ 1 such
that ω j+1 > 2 ·ω j. A necessary and sufficient condition according to Proposition 4.5.5 is
that

h j+1−h j−1≥ 2ω j. (4.38)

When 1 < m < 2, h0 = 1, ω0 = 1 (as for any m), h1 = dm ·h0e= 2, and ω1 = 1 (according
to Prop 4.5.5). Hence, j ≥ 1. Since j ≥ 1 is the smallest value such that ω j+1 > 2 ·ω j,
we have that either ω j = ω j−1 or ω j = 2 ·ω j−1. If ω j = ω j−1, we have according to
Proposition 4.5.5,

h j−h j−1−1 < ω j−1 = ω j.

If ω j = 2 ·ω j−1, we have with the same argument,

h j−h j−1−1 < 2 ·ω j−1 = ω j.

Since h j, h j−1 and ω j are integers, we have

h j−h j−1−1 < ω j =⇒ h j−h j−1 ≤ ω j. (4.39)

Using h j+1 =
⌈
m ·h j

⌉
,

h j+1−h j−1 =
⌈
m ·h j

⌉
−
⌈
m ·h j−1

⌉
−1≤ m

(
h j−h j−1

)
(4.40)

4.5 Efficient algorithms 109

Plugging Equations 4.38, 4.39 and 4.40,

m
(
h j−h j−1

)
≥ 2

(
h j−h j−1

)
.

This is impossible for m < 2 and h j > h j−1 (which is the case when m > 1). Hence, we
conclude that there exists no integer j such that ω j+1 > 2 ·ω j.

�

Proof of Proposition 4.5.7. We want to upper bound the ratio ω j/h j for all j such that
ω j > 1. When m < 2 we have either ω j = ω j−1 or ω j = 2 ·ω j−1 (Prop. 4.5.6). We first
study the case where ω j = 2 ·ω j−1, i.e. (Prop; 4.5.5),

h j−h j−1−1≥ ω j−1 = ω j/2.

Using h j =
⌈
m ·h j−1

⌉
=⇒ h j−1 = bh j/mc,

h j−h j−1−1 = h j−bh j/mc−1≤ m−1
m

h j.

Plugging the two last equations leads to,

ω j

h j
≤ 2(m−1)

m
·

We notice that
{

h j
}

j∈N is an increasing sequence. When ω j = ω j−1, we have ω j/h j <
ω j−1/h j−1. Therefore, for any j such that d j > 1 we can find the largest j′ ≤ j such that
ω j′ = 2 ·ω j′−1 and compare,

ω j

h j
≤

ω j

h′j
=

ω ′j
h′j
≤ 2(m−1)

m
·

�

4.5.4 EFF-FEWA (πEF) and EFF-RAW-UCB (πER)

EFF-FEWA (πEF) and EFF-RAW-UCB (πER) are the two efficient versions of our initial algo-
rithms. With an hyperparameter m > 1, they use EFF_UPDATE instead of UPDATE (Lines 4
and 18 in FEWA and Lines 4 and 9 in RAW-UCB). Therefore, they use

{
µ̂

h j
i,eff

}
i,h j∈Hi,m

instead of
{

µ̂h
i
}

i,h≤Ni, t−1
.

More precisely, in FEWA, we replace the increment h← h+1 by h← dm ·he at Line 12.
Hence, the next set is not called Kh+1 but Kdm·he (Line 11 in FEWA and Line 6 in FILTER).
Finally, at Lines 13 and 14, the condition is not Nit = h but Nit ≤ h. In the FILTER
procedure, we also change µ̂h

i by µ̂h
i,eff at Lines 2 and 4. In RAW-UCB, we only change the

h≤ Ni by h j ∈ Hi,m and µ̂h
i by µ̂

h j
i,eff in the index computation at Line 7.

110 Chapter 4. Rested rotting bandits are not harder than stationary ones

Proposition 4.5.8 At any round t, EFF-FEWA and EFF-RAW-UCB tuned with hyperparame-
ter m have a O (K logm (t)) worst-case time and space complexity.

Proof. For each arm, the algorithms use the statistics created and maintained by EFF_-
UPDATE plus a handful of variables (such as t). Hence, the space complexity is the sum of
the complexities of EFF_UPDATE (see Prop. 4.5.3) for each arm, i.e.

∑
i∈K

O (logm (Ni,T))≤O (K logm (T)) .

At every round t, the algorithms do one call of EFF_UPDATE, which costs at most O (log t).
For each of the O (K logm t), EFF-RAW-UCB computes one ucb with unit cost O (1). For
each of the K arms, we find the minimum ucb among the O (logm t) ones. It costs
O (K logm t) in total. Finally, we select the arm with the largest index, which costs O (K).
Hence, the worst-case time complexity at any round t is O (K logm t).

EFF-FEWA uses the procedure FILTER at most for each existing window, i.e. O (logm (t)).
The inner time complexity of FILTER scales with |Kh| ≤ K. Therefore, in the worst case,
the time complexity of EFF-FEWA at any round t is also bounded by O (K logm (t)). �

4.5.5 Regret analysis

In our analysis, the particularities of RAW-UCB and FEWA only appear in Proposition 4.2.1
and Corollary 4.3.1. We will derive analogous results for EFF-RAW-UCB and EFF-FEWA
when m = 2. The upper-bounds will directly follow with no additional effort. We discuss
the case m 6= 2 at the end of this Subsection.

A favorable event for efficiently updated adaptive windows
Proposition 4.5.9 For any round t and confidence δt , 2t−α , let

ξ
α
t,m,

{
∀i∈K , ∀n≤ t−1, ∀h j ∈ Hi,m(n),

∣∣µ̂h j
i,eff(t,π)−µ

h j
i,eff(t,π)

∣∣≤c(h j,δt)
}

be the event under which the estimates at a round t are all accurate up to c(h,δt) ,√
2σ2 log(2/δt)/h. Then, for a policy π which pulls each arms once at the beginning, and

for all t > K,

P
[
ξ α

t,2

]
≤ 3Ktδt = 6Kt1−α ·

R The probability of the unfavorable event ξ α
t,2 scales with O

(
t1−α

)
compared to

O
(
t2−α

)
for ξ α

t because the efficient algorithms construct less statistics. It means

4.5 Efficient algorithms 111

that our theory will hold for a wider range of α . Yet, this benefits is only theoretical.
The union bound in Proposition 4.2.1 is not tight because the different events share
the same data. In practice, it leads to conservative tuning of the confidence bounds
and one can decrease α to get better performance.

Proof. As in Propositions 4.1.5 and 4.2.1, we have to count the number of statistics that
are required to hold in the confidence region. We call u j(n) the number of different values
taken by variable µ̂

h j
i,eff after t. According to Proposition 4.5.4, u0(n) = n ≤ t because

statistic 0 is created at the first round and updated at every round (ω0 = 1). For m = 2 and
j ≥ 1, µ̂

h j
i,eff is created after h j = 2 j pulls and then updated every ω j = 2 j−1. Hence,

∀ j ≥ 1 and h j ≤ n,u j(n) = 1+
⌊

n−h j

ω j

⌋
≤ n

2 j−1 −1≤ n
2 j−1 ·

We do the union bound,

P
[
ξ α

t,2

]
≤ ∑

i∈K

|Hi,m(Ni, t)|

∑
j=0

u j(t)δt

≤ ∑
i∈K

(
t +
|Hi,m(Ni, t)|

∑
j=1

t
2 j−1

)
δt

≤ 3Ktδt .

�

Lemma 4.5.10 At any round t on favorable event ξ α
t,2, if arm it is selected by π ∈

{πEF,πER} tuned with m = 2, for any h ≤ Ni, t−1, the average of its h last pulls cannot
deviate significantly from the best available arm at that round, i.e.,

µ
h
it (t−1,π)≥max

i∈K
µi(t,Ni, t−1)−

Cπ√
2α

c(h,δt) with

CπER = 4
√

α√
2−1

CπEF =
8
√

α√
2−1

·

Proof. Like for Lemma 4.2.2 (see its proof), our proof is done in a more general rotting
framework that can be used in the next chapter. We denote by µ

hh′
i (t−1,π) and µ̂hh′

i (t−
1,π) the true mean and empirical average associated to the h′− h samples between the
h-th last one (included) and the h′-th last one (excluded). Let jh ∈ N? such that: 2 jh−1≤
h < 2 jh+1.

µ
h
it (t−1,π)≥ µ

2 jh−1
it (t,π) =

jh−1

∑
j=0

2 j

2 jh−1
µ

2 j2 j+1

it (t,π). (4.41)

The inequality follows because the reward is decreasing and h ≥ 2 jh − 1. Then, we
decompose the average in a weighted sum of averages of geometrically expanding windows.
Since the reward is decreasing we have that,

∀k ≤ 2 j, µ
2 j2 j+1

it (t,π)≥ µ
k:k+2 j

it (t,π).

112 Chapter 4. Rested rotting bandits are not harder than stationary ones

µ̂
h j
it ,eff contains 2 j samples among the 2 j+1−1 last ones (see Proposition 4.5.2). Setting

k ≤ 2 j to the current delay of the statistics µ̂
h j
it ,eff (see Point 2 in Proposition 4.5.2), we

can write,

µ
2 j2 j+1

it (t,π)≥ µ
k:k+2 j

it (t,π) = µ
h j
it ,eff ≥ µ̂

h j
it ,eff− c(2 j,δt), (4.42)

where we use that we are on ξ α
t,2 for the last inequality. Therefore, gathering Equations 4.41

and 4.42,

µ
h
it (t,π)≥

jh−1

∑
j=0

2 j

2 jh−1

(
µ̂

h j
it ,eff− c(2 j,δt)

)
. (4.43)

Now, we will use the mechanics of the two algorithms. On the first hand, for EFF-RAW-UCB,
we make the index appear in the inequality,

µ
h
it (t,πER)≥

jh−1

∑
j=0

2 j

2 jh−1

(
µ̂

h j
it ,eff− c(2 j,δt)

)
=

jh−1

∑
j=0

2 j

2 jh−1

(
µ̂

h j
it ,eff+ c(2 j,δt)−2c(2 j,δt)

)
≥ min

j∈Hit ,2

(
µ̂

h j
it ,eff+ c(2 j,δt)

)
−2

jh−1

∑
j=0

2 j

2 jh−1
c(2 j,δt). (4.44)

Then, we can relate the left part of the sum to the best current value µi?t (t,Ni?t , t−1),

min
j∈Hit ,2

(
µ̂

h j
it ,eff+ c(2 j,δt)

)
≥ min

j∈Hi?t ,2

(
µ̂

h j
i?t ,eff + c(2 j,δt)

)
≥ µ

hmin
i?t ,eff ≥ µi?t (t,Ni?t , t−1).

(4.45)

where hmin ∈ argminh j∈Hi?t ,2

(
µ̂

h j
i?t ,eff + c(h j,δt)

)
.The first inequality follows because EFF-

RAW-UCB selects the arm it with the largest index. In particular, the index of it is larger or
equal to the index of i?t ∈ argmaxi∈K µi(t,Ni?t , t). The second inequality holds on ξ α

t,2. The
third inequality uses the decreasing of the reward. Putting Equations 4.44 and 4.45, we get,

µ
h
it (t,πER)≥ µi?t (t,Ni?t , t−1)−2

jh−1

∑
j=0

2 j

2 jh−1
c(2 j,δt). (4.46)

On the other hand, for EFF-FEWA, we know that the selected arm passes any filter of
window 2 j ∈ Hit ,2. Therefore, with imax ∈ argmaxi∈Kh j

µ
h j
i,eff, we can write,

µ̂
h j
it ,eff ≥ max

i∈Kh j

µ̂
h j
i,eff−2c

(
h j,δt

)
Filtering rule

≥ µ̂
h j
imax,eff−2c

(
h j,δt

)
imax ∈Kh j

≥ µ
h j
imax,eff−3c(h j,δt) on ξ

α
t,2

= max
i∈Kh j

µ
h j
i,eff−3c

(
h j,δt

)
. (4.47)

4.5 Efficient algorithms 113

We relate µ
h j
i,eff to the largest available value at the round t,

max
i∈Kh j

µ
h j
i,eff ≥max

i∈K1
µ

1
i,eff = max

i∈K
µ

1
i,eff ≥ µ

1
i?t ,eff ≥ µi?t (t,Ni?t , t−1). (4.48)

The last inequality follows from the decreasing of the reward and the before last from
the definition of the maximum operator. The first one uses a similar argument than in
Lemma 4.2.2: maxi∈Kh j

µ
h j
i,eff increases with h j. Indeed, on ξ α

t,2,

i j ∈ argmax
i∈Kh j

µ
h j
i,eff ⊂Kh j+1 ,

because it cannot be at more than two confidence bounds from the best empirical value
during the filter h j. Thus, we get,

max
i∈Kh j

µ
h j
i,eff = µ

h j
i j,eff ≤ µ

h j+1
i j,eff ≤ max

i∈Kh j+1

µ
h j+1
i,eff.

The first inequality follows because µ
h j+1
i j,eff contains reward sample which are either in

µ
h j
i j,eff or are older than the ones in µ

h j
i j,eff. Indeed, when m = 2, µ̂

h j+1
i,eff is updated

synchronously with µ̂
h j
i,eff (see Figure 4.6 and its section on delay). Hence, at each update

of µ̂
h j+1
i,eff, it contains all the samples of µ̂

h j
i,eff and the 2 j precedent ones. Thus, because the

reward is decreasing, we have µ
h j+1
i j,eff ≥ µ

h j
i j,eff. The second inequality uses that i j ∈Kh j+1 .

Gathering Equations 4.43, 4.47 and 4.48, we get

µ
h
it (t,πEF)≥ µi?t (t,Ni?t , t−1)−4

jh−1

∑
j=0

2 j

2 jh−1
c(2 j,δt). (4.49)

With few lines of algebra, we reduce the sum,

jh−1

∑
j=0

2 j

2 jh−1
c(2 j,δt) =

jh−1

∑
j=0

√
2

j

2 jh−1
c(1,δt) c(2 j,δt) =

c(1,δt)√
2 j

=

√
2

jh−1(√
2−1

)
(2 jh−1)

c(1,δt)
N

∑
n=0

qn =
qN+1−1

q−1

=
1(√

2−1
)(√

2
jh +1

)c(1,δt) a2−1=(a−1)(a+1)

≤
√

2(√
2−1

)√
2 jh+1

c(1,δt)
√

2 jh +1≥
√

2 jh+1
√

2

≤
√

2(√
2−1

)√
h

c(1,δt) h≤ 2 jh+1

=

√
2√

2−1
c(h,δt).

c(1,δt)√
h

= c(h,δt)

114 Chapter 4. Rested rotting bandits are not harder than stationary ones

Plugging this last equation in Equations 4.46 and 4.49 leads to the final result,

µ
h
it (t,π)≥max

i∈K
µi(t,Ni, t−1)−

Cπ√
2α

c(h,δt) with

CπER = 4
√

α√
2−1

CπEF =
8
√

α√
2−1

·

�

Using Proposition 4.5.9 and Lemma 4.5.10 instead of Prop. 4.2.1 and Corollary 4.3.1, we
can obtain similar problem dependent and independent bounds than for FEWA and RAW-UCB.
The proof directly follows from the precedent analysis.

Theorem 4.5.11 For any rotting bandit scenario with means {µi}i ∈L K
L and any time

horizon T , π ∈ {πER,πEF} run with α ≥ 4 and m = 2 suffers an expected regret of

E[RT (π)]≤Cπσ
√

log(T)
(√

KT +K
)
+6KL with

CπER = 4
√

α√
2−1

CπEF =
8
√

α√
2−1

·

Theorem 4.5.12 For any rotting bandit scenario with means {µi}i ∈L K
L and any time

horizon T , π ∈ {πER,πEF} run with α ≥ 4 and m = 2 suffers an expected regret of

E [RT (π)]≤ ∑
i∈K

(
C2

πσ2 log(T)
∆i,h+i,T−1

+Cπσ
√

log(T)+6L

)

with

CπER = 4

√
α√

2−1

CπEF =
8
√

α√
2−1

∆i,h and h+i,T defined in Equation 4.27.

Among the differences, we notice that our theory holds for a larger range of α ≥ 4 but
the constant Cπ is

√
2√

2−1
∼ 3.4 times larger than their original counter part. We will show

empirically in the next Subsection that it is mostly a theoretical artifact due to the more
complex analysis. For instance, to derive Lemma 4.5.10, we consider for simplicity
that the statistics could be delayed up to 100% their window size while we show in
Proposition 4.5.4 that the normalized period is at most 50%.

R Can we adapt our theory for m 6= 2? The case m = 2 is less technical. First, 2 is an
integer, which avoids the messier analysis due to the ceil operator in h j+1 =

⌈
m ·h j

⌉
.

Moreover, in the proof of EFF-FEWA (Equation 4.48), we use the strong synchronicity
in the update which is the case when m is an integer. Last the decomposition of
µ̂h

i (Equations 4.41 to 4.43) is simpler on the geometric grid of parameter 2. Yet,
we believe that the proof could be adapted without major difficulties at least for
EFF-RAW-UCB when m < 2 (which is the most interesting case).

4.5 Efficient algorithms 115

4.5.6 Experimental Results

Simulated efficient benchmark

Setup. We study a two-arm rotting bandit similar to the one presented in Subsection 4.1.4
but with a longer horizon T = 106. Like in the previous setups, the noise is Gaussian.
There are one constant arm with value 0 and one rotting arm which switches from 0.1 to
−0.1 after T/4 pulls.

Algorithms. In Figure 4.9, we compare the performance of RAW-UCB with EFF-RAW-UCB
for different values of m. We use the value α = 1.4 which is the best empirical value we
found in the previous setups. We also display the best of the 3 versions of wSWA that we
already studied. We add the running time in Table 4.2.

0.0 0.2 0.4 0.6 0.8 1.0
Round (t) 1e6

0

200

400

600

800

1000

1200

Av
er

ag
e r

eg
re

t R
t

RAW-UCB(α = 1.4)
wSWA(α = 0.2)
EFF_RAW-UCB(α = 1.4, m = 1.01)
EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 1.5)
EFF_RAW-UCB(α = 1.4, m = 1.9)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 1.4, m = 2.1)

Figure 4.9: Regret across time. Average over 1000 runs. We highlight the [10%,90%]
confidence region.

Results. Overall, the regret performance of EFF-RAW-UCB is up to 50% worse than the
performance of RAW-UCB. The worst versions correspond to larger values of m. Yet, there
are few counter-examples: m = 2 performs similarly to m = 1.9 and m = 1.1 performs
similarly than m = 1.5 at the end of the game. We remark that there are discontinuities in
the regret of the efficient algorithms. It is because the statistics are not updated at every
round. Hence, when one statistic is updated, it can change the behavior of the algorithm
for many rounds.

116 Chapter 4. Rested rotting bandits are not harder than stationary ones

Policy Running time (s) comparison w/ RAW-UCB
RAW-UCB (α = 1.4) 38837 100%

EFF-RAW-UCB (α = 1.4, m = 1.01) 169 0.4 %
EFF-RAW-UCB (α = 1.4, m = 1.1) 121 0.3 %
EFF-RAW-UCB (α = 1.4, m = 1.5) 115 0.3 %
EFF-RAW-UCB (α = 1.4, m = 1.9) 112 0.3 %
EFF-RAW-UCB (α = 1.4, m = 2) 119 0.3 %

EFF-RAW-UCB (α = 1.4, m = 2.1) 114 0.3 %
wSWA (α = 0.002) 41 0.1 %
wSWA (α = 0.02) 43 0.1 %
wSWA (α = 0.2) 49 0.1 %

Table 4.2: Average running time and comparison with RAW-UCB for the efficient benchmark.

In terms of running time, the efficient trick drastically reduces the running time of EFF-
RAW-UCB. While the theory suggests that there is no free lunch, we remark that setting
a value very close to 1 does reduce the running time and recover very similar regret
performance. Surprisingly, the running time are quite similar for m ∈ [1.1,2.1]. The
running time when m = 1.01 is only 48 seconds (+ 40%) larger than for m = 1.1 while
there are 10 times more confidence intervals to compute. Hence, we believe that the UCBs
computation time for m ∈ [1.1,2.1] is quite small compared to other fixed costs in the
implementation (the reward generation, the log(t) computation, etc.). However, wSWA is
still faster than EFF-RAW-UCB. It is surprising because its complexity is O

(
T 2/3
)

, which is

much larger than EFF-RAW-UCB’s O (K logm T). Yet, in practice, wSWA computes T 2/3 sums
while EFF-RAW-UCB computes O (K logm T) ucb indexes (with a

√
· and a log function).

We believe that we could speed up EFF-RAW-UCB with low-level implementation tricks.
For instance, the profiling of the code indicates that the log function is very expensive. One
could compute faster the log(t +1) from the previous value log(t). Yet, these low-level
implementation tricks are not in the scope of this thesis.

Simulated benchmark #1 (2 arms) and #2 (10 arms).

Setup and Algorithms. We study the two benchmarks described in Subsection 4.1.4 and
Section 4.4. In Figures 4.10 and 4.11, we compare RAW-UCB with EFF-RAW-UCB for two
values of m {1.1,2}.

Results. For the two values, we remark that EFF-RAW-UCB have a slightly worse perfor-
mance than RAW-UCB (up to 50% for m = 2). It confirms our theoretical analysis which
suggests that the performance of EFF-RAW-UCB is only at a constant factor of the per-
formance of RAW-UCB. It also confirms that the smaller the m, the less regret we suffer.

4.5 Efficient algorithms 117

10−1 100 101

L
0

50

100

150

200

250

Av
er

ag
e r

eg
re

t a
t T

=
10

4

RAW-UCB(α = 1.4)
EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)

0 2000 4000 6000 8000 10000
Round (t)

0

25

50

75

100

125

150

175

200

Av
er

ag
e r

eg
re

t R
t

L = 0.233
RAW-UCB(α = 1.4)
EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)

0 2000 4000 6000 8000 10000
Round (t)

0

5

10

15

20

25

30

Av
er

ag
e r

eg
re

t R
t

L = 4.24
RAW-UCB(α = 1.4)
EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)

Figure 4.10: Top: Regret at the end of the game for different values of L. Bottom: Regret
across time for two values of L. Average over 1000 runs. We highlight the [10%,90%]
confidence region.

0 5000 10000 15000 20000 25000
Round (t)

0

50

100

150

200

250

300

350

400

Av
er

ag
e r

eg
re

t R
t

0.001 0.01 0.1 1.0 10.0
Arm's Δi

0

20

40

60

80

100

120

140

Av
er

ag
e r

eg
re

t p
er

 ar
m

 R
i T (

T
=

25
00

0)

RAW-UCB(α = 1.4)
EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)

Figure 4.11: Left: Regret at the end of the game for different values of L. Middle,
Right: Regret across time for two values of L. Average over 1000 runs. We highlight the
[10%,90%] confidence region.

Notice that the two algorithms run in 3 seconds in average3 versus 25 seconds for RAW-UCB

33.0 s for m = 2, 3.3 s for m = 1.1

118 Chapter 4. Rested rotting bandits are not harder than stationary ones

and 1 second for wSWA. It shows that EFF-RAW-UCB effectively reduces the computation
cost of RAW-UCB, even for a shorter horizon.

4.5.7 Conclusion

In this section, we provide a new update scheme which keeps O (logm t) averages with
geometrical windows sequence of parameter m. These averages are updated with a delay
which is proportional to the window size times m−1/m. We show that when we plug this
efficient update scheme in our algorithms, we recover the same upper bounds as the original
algorithms with a larger multiplicative constant. However, the computational complexity
is considerably reduced from O(T) to O(K logm T). We also show that in practice we can
recover almost the same performance as the classical algorithms but with a computational
cost that is comparable with wSWA.

4.6 How harder are rotting bandits ?

In the last sections, we presented RAW-UCB, an algorithm which extends the results of UCB1
(Auer et al. 2002) on stationary bandits to the more general rotting bandits setup. Hence,
we conclude that rotting bandits are not much harder than stationary ones.

Yet, UCB1 is only near asymptotic and minimax optimal. In Section 2.2, we explain that
a better tuning of the confidence levels allows UCB variant to match the asymptotic and
minimax rates for gaussian bandits.

This section investigates the impact of confidence levels tuning on RAW-UCB. How does it
compare with UCB on stationary bandits? Does it improve the performance of RAW-UCB on
our rotting benchmarks?

4.6.1 RAW-UCB++

We introduce RAW-UCB++, an algorithm which uses the RAW-UCB procedure (Alg.7) with a
new index,

ind(i, t,δt,h), min
h≤Ni,t−1

(
µ̂

h
i (Ni, t−1)+

√
2σ2 log+ (2/δt,h)

h

)

with δt,h ,
2(Kh/t)α(

1+ log+ (t/Kh)
)β

, (4.50)

with log+ (·),max(log(·) ,0). The main difference with the index of RAW-UCB in Equa-
tion 4.25 is the more complex confidence level. First, we multiply our confidence level by
Kh and replace log by log+. This is similar to the δ = KNi,t/t of MOSS-anytime (Degenne

4.6 How harder are rotting bandits ? 119

and Perchet 2016). We replace Ni,t - the number of pulls of arm i at the round t- by h,
the number of sample in the associated average. Indeed, let us consider a two-arm bandit
problem where the first arm has a much larger value µ2 +100σ than the second one (with
value µ2) at the beginning of the game. Hence, at the beginning of the game, N1,t ∼ t
because RAW-UCB++ can quickly identify arm 1 as the current best arm. After T

2 pulls, arm
1 abruptly decay to a value µ2 +σ . If we do not replace Ni,t by h in the confidence levels
in Equation 4.50, the exploration bonus would be canceled until the end of the game for
all the UCB of arm 1 because KNi,t

t > 1. Without the exploration bonus, there is a large
enough probability that the index of arm 1 takes a value below µ2. Indeed, since we take
the minimum across indexes, if the first reward sample after the decay is below µ2, then
the meta-index will be below µ2. In this case, RAW-UCB may pull arm 2 until the end of the
game and suffer at least O (σT) regret. Replacing Ni,t by h restore the exploration bonus
for arms which have recently decay.

Second, we add a logarithmic exploration inflation factor. Notice that we also divide t
by Kh in the inner logarithm, as it is done for KL-UCB++ (Ménard and Garivier 2017).
When the noise is not gaussian, the concentration results are slightly less tight and the
asymptotic optimality proof often needs this factor. For instance, Cappé et al. (2013) use a
factor log(t)−3 in their theory, but they recommend to not use it in practice. However, for
RAW-UCB, we believe that extra-exploration is needed in practice. Indeed, we find our best
experimental performance for α = 1.4 which is larger than the asymptotic optimal tuning
for UCB α = 1 (Lattimore and Szepesvári 2020). In our theory in Section 4.3, we increase
α by one compared to UCB1 to ensure that the t (instead of K) constructed statistics were
into the confidence levels.

4.6.2 Experiments

Stationary Experiment

Setup. We consider a stationary bandits with two arms with µ1 = 0 and µ2 = ∆. We
consider two different values of ∆ ∈ {0.01,1}. The rewards are then generated by applying
a Gaussian i.i.d. noise N (0,σ = 1). We run the experiment with the horizon T = 106.

Algorithms. We consider UCB and MOSS-anytime (Degenne and Perchet 2016). We
tune UCB with asymptotic optimal confidence level

√
2log(t)/Ni, t (Lattimore and Szepesvári

2020). For MOSS-anytime, we use
√

2log(t/KNi, t)/Ni, t , which corresponds to a tuning of
its parameter α = 3. We test RAW-UCB++ with many different values, but we display two
different sets of values α = 1 and β = 3.5 or α = 2 and β = 0. These two sets of values
give the most consistent performance on the two problems. We add RAW-UCB with α = 1.4
for comparison. For RAW-UCB and RAW-UCB++, we use the efficient version with m = 1.01
which performs similarly than the classical algorithm Subsection 4.5.6.

Results. RAW-UCB++ seems to improve slightly the results compare to RAW-UCB. Yet, the
improvement is not as significant than between MOSS-anytime and UCB. On the ∆ = 1

120 Chapter 4. Rested rotting bandits are not harder than stationary ones

100 101 102 103 104 105 106

Round (t)
0

500

1000

1500

2000

2500

Av
er

ag
e r

eg
re

t R
t

Δ = 0.01
MOSS-Anytime(α = 3)
UCB
EFF_RAW-UCB(α = 1.4, m = 1.01)
EFF-RAW-UCB++(β = 3.5, m = 1.01)
EFF-RAW-UCB++(α = 2, m = 1.01)
Lai and Robbins' lower bound

100 101 102 103 104 105 106

Round (t)
0

10

20

30

40

50

60

Av
er

ag
e r

eg
re

t R
t

Δ = 1
MOSS-Anytime(α = 3)
UCB
EFF_RAW-UCB(α = 1.4, m = 1.01)
EFF-RAW-UCB++(β = 3.5, m = 1.01)
EFF-RAW-UCB++(α = 2, m = 1.01)
Lai and Robbins' lower bound

Figure 4.12: Stationary experiments

experiment, we see that the tuning with the logarithm (β = 3.5) seems to enjoy better
asymptotic guarantee than the tuning with α = 2. Yet, it is not clear if RAW-UCB++ (β = 3.5)
is asymptotic optimal with respect to the Lai and Robbin’s lower bound. However, at finite
horizon, the different parameters are quite close to each other.

Rotting Experiments #1 (2 arms) and #2 (10 arms).

Setup and Algorithms. We study the two benchmarks described in Subsection 4.1.4 and
Section 4.4. In Figures 4.10 and 4.11, we compare EFF-RAW-UCB++ (α = 2, m = 1.01)
with EFF-RAW-UCB (α = 1.4, m = 1.01). The parameters α were selected according to
previous experiments.

Results. EFF-RAW-UCB++ performs slightly better than EFF-RAW-UCB for almost any
experiments and at almost any rounds. A noticeable exception is when L is large in the two-
arms experiment: the result of EFF-RAW-UCB++ is slightly worse than for EFF-RAW-UCB.
Overall, the results suggest that the aggressive confidence tuning technique of stationary
bandits also improves the rotting adaptivity. Yet, we notice that the confidence levels with
α = 2 are less tight than the tuning of MOSS-anytime (which would correspond to α = 1).

4.6.3 Towards a theoretical analysis of RAW-UCB++

Analyzing UCB with tight confidence levels in stationary bandits is already a challenging
task (Degenne and Perchet 2016; Ménard and Garivier 2017; Lattimore 2018). The analysis
of RAW-UCB++ faces two additional difficulties: on the one hand, RAW-UCB’s meta-index is
more complex than UCB’s; on the other hand, rotting bandits are more difficult to analyze
than stationary ones.

First, we can ignore the second part of the problem and try to analyze RAW-UCB++ on
stationary problems. Tight analysis of UCB usually bound the number of pulls of the

4.6 How harder are rotting bandits ? 121

10−1 100 101

L
0

50

100

150

200

250

Av
er

ag
e r

eg
re

t a
t T

=
10

4

EFF_RAW-UCB(α = 1.4, m = 1.01)
EFF-RAW-UCB++(α = 2, m = 1.01)

0 2000 4000 6000 8000 10000
Round (t)

0

25

50

75

100

125

150

175

200

Av
er

ag
e r

eg
re

t R
t

L = 0.233
EFF_RAW-UCB(α = 1.4, m = 1.01)
EFF-RAW-UCB++(α = 2, m = 1.01)

0 2000 4000 6000 8000 10000
Round (t)

0

5

10

15

20

25

30

Av
er

ag
e r

eg
re

t R
t

L = 4.24
EFF_RAW-UCB(α = 1.4, m = 1.01)
EFF-RAW-UCB++(α = 2, m = 1.01)

Figure 4.13: Top: Regret at the end of the game for different values of L. Bottom: Regret
across time for two values of L. Average over 1000 runs. We highlight the [10%,90%]
confidence region.

suboptimal arms. A classical trick is to set a threshold µ?− εi and notice that a necessary
condition to pull a suboptimal arm i is that either the index of the optimal arm is below the
threshold, or the index of the suboptimal arm is above the threshold,

Ni,T ≤
T

∑
t=1

1
[
ind

(
i?, t,δt,h

)
< µ?− εi

]
+1

[
ind

(
i, t,δt,h

)
> µ?− εi

]
.

The upper deviation of suboptimal arms’ indexes is not more difficult to control for RAW-
UCB than for UCB. Indeed, since we take the minimum across confidence bounds, the
indexes of RAW-UCB are smaller than the indexes of UCB (when the confidence levels are
the same).

Controlling the lower deviation of the optimal arm’s index is more challenging. Indeed,
at each round t, we have to control the probability that any ucb associated with any h
last pulls after any Ni,t pulls is below the threshold. Compared to UCB where there is

122 Chapter 4. Rested rotting bandits are not harder than stationary ones

0 5000 10000 15000 20000 25000
Round (t)

0

50

100

150

200

250

300

350

400
Av

er
ag

e r
eg

re
t R

t

0.001 0.01 0.1 1.0 10.0
Arm's Δi

0

20

40

60

80

100

120

140

Av
er

ag
e r

eg
re

t p
er

 ar
m

 R
i T (

T
=

25
00

0)

EFF_RAW-UCB(α = 1.4, m = 1.01)
EFF-RAW-UCB++(α = 2, m = 1.01)

Figure 4.14: Left: Regret at the end of the game for different values of L. Middle,
Right: Regret across time for two values of L. Average over 1000 runs. We highlight the
[10%,90%] confidence region.

only a scan on the possible values of Ni,t , we have to handle a double scan on Ni,t and h.
In Section 4.3, we handle the multiple windows with a crude union bound which leads
to a fairly large decrease of the confidence levels. A tighter analysis would probably
require better statistical engineering than a union bound or a simple peeling argument. For
instance, Maillard (2019) develop new concentration results for similar scan statistics for
sequential change-point detectors (with some applications to bandits). The difficulty is that
the quantity to be bounded is not a sub/super-martingale. Yet, it is quite uncertain that a
tighter analysis is actually possible in our case. Indeed, the empirical tuning of RAW-UCB
(resp. RAW-UCB++) increases α by 0.4 (resp. 1) compared to the confidence levels of UCB
(resp. MOSS-anytime). This is comparable with the theoretical increase of 1 due to the
union bound over all the possible windows.

4.7 Linear rotting bandits are impossible to learn

4.7.1 Linear bandits

In Section 2.5, we presented the contextual bandit, a line of work in which the learner is
given a context on which depends the action’s reward. The linear bandit is a special case
where the reward is a noisy linear form of a context-action vector.

Unlike the classical multi-armed bandits, the feedback associated with one action can be
used to learn the other actions’ efficiency. In fact, the number of actions can be very large
or even potentially infinite, as soon as the representation has a finite dimension.

This shared knowledge is interesting in the context of education. Indeed, a popular model
to predict a student’s answer is the Item Response Theory (Hambleton and Swaminathan
2013). It models the answer with a logistic function filled with a student and question-
related parameters. In its most simple form, it can be seen as logistic regression, a
generalized linear model. Generalized linear bandits were studied by (Filippi et al. 2010)
as an extension of the linear bandit.

4.7 Linear rotting bandits are impossible to learn 123

In the following, we will introduce formally the linear bandit. We will then discuss the
possibility of extending our multi-armed rested rotting bandits result in the linear case.

Model

At each round, the learner chooses an action At in a fixed set of embedded actions A ⊂Rd

and receives,

ot , 〈µ|At〉+ εt with E [εt |Ht] = 0 and ∀λ ∈ R, E
[
eλεt
]
≤ e

σλ2
2 ,

with µ ∈ Rd a reward vector unknown to the learner. In this model, the learner might face
a huge number of actions (or even infinite), but they only has d independent parameters
to estimate to take the right decision. The goal of the learner is still to maximize the
cumulative reward,

JT (π) =
T

∑
t=1
〈µ|π(t)〉.

The optimal oracle strategy selects π?(t) = A? , argmaxAt∈A 〈µ|At〉. Thus, we can define
the regret,

RT (π) = JT (π
?)− JT (π) = 〈µ|

T

∑
t=1

A?−π(t)〉.

4.7.2 Linear rested rotting bandits

We want to extend the rested rotting bandit to actions with a linear embedding. We
introduce d non-increasing and L-Lipschitz functions µi : R+→ R. While there were K
reward functions defined on N in the rotting MAB model, we now have d functions defined
on R+. Indeed, we now have d (and not K) reward parameters. Moreover, for the rested
rotting MAB, the reward is evolving according to the number (in N) of pulls of arm i. In
the linear model, we cannot simply count the number of pulls along each direction because
At has possibly components along all the directions. We will need to find a quantifier of
the pulling intensity along direction i. This is not surprising that this quantifier will have
value in R+ because we select direction i with intensity At,i ∈ R. We suggest using,

Nt,i ,
t

∑
t ′=1

At ′,i.

Hence, we define the feedback as,

ot = ∑
i≤d

∫ Nt,i

Nt−1,i

µi(x)dx+ εt =
∫ Nt

Nt−1

〈µ(n)|dn〉+ εt ,

124 Chapter 4. Rested rotting bandits are not harder than stationary ones

with {εt} a sequence of independent σ -subgaussian random variables. We also define the
cumulative reward,

JT (π) =
∫ NT

0
〈µ(n)|dn〉.

Like in the rotting MAB model, the total reward depends only on the cumulative pulling
intensity NT . This property is very useful, as it allows to compare the performance of two
policies only with their pulling differences (the overpulled/underpulled arms) and not with
the specific order of the pulls, i.e.,

JT (π2)− JT (π1) =
∫ Nπ2

T

Nπ1
T

〈µ(n)|dn〉.

Last, we restrain the action vector to be in the positive quadrant, i.e. A ⊂R+d . Indeed, we
want the pulling intensity to be non-decreasing with time t such that the reward associated
to a vector A ∈ R+d is non-increasing,

t1 < t2 =⇒ Nt1−1 ≤ Nt2−1 =⇒
∫ Nt1−1+A

Nt1−1

〈µ(n)|dn〉 ≥
∫ Nt2−1+A

Nt2−1

〈µ(n)|dn〉.

This model correctly extends linear bandits and rested rotting bandits. On the first hand,
when reward functions are constant, we recover the linear bandit model of Subsection 4.7.1.
Indeed, we have,

ot =
∫ Nt

Nt−1

〈µ|dn〉+ εt = 〈µ|Nt−Nt−1〉+ εt = 〈µ|At〉+ εt ,

JT (π) =
∫ NT

0
〈µ|dn〉= 〈µ|NT 〉=

T

∑
t=1
〈µ|At〉.

On the other hand, when the actions sets A are the d canonical basis vectors at every
round, we recover the rested rotting bandits setting of Section 4.1. Indeed, if we call
µMAB

i (n),
∫ n+1

n µi(n)dn, we have,

Nt,i =
T

∑
t=1

1(π(t) = i),

ot =
∫ Nt

Nt−1

〈µ(n)|dn〉+ εt = µ
MAB
it (Nt−1,it)+ εt ,

JT (π) =
∫ NT

0
〈µ(n)|dn〉= ∑

i≤d

NT,i−1

∑
n=0

µ
MAB
i (n).

4.7 Linear rotting bandits are impossible to learn 125

To conclude the argument, we notice that the constructed functions µMAB
i are in LL (see

Definition 4.1.1). Indeed,

µ
MAB
i (n)−µ

MAB
i (n+1) =

∫ n+1

n
(µi(x)−µi(x+1))dx≥ 0,

µ
MAB
i (n)−µ

MAB
i (n+1) =

∫ n+1

n
(µi(x)−µi(x+1))dx≤ L.

The first line follows by the non-increasing property of µi. The second line is justified
because µi is L-lipschitz.

R We choose to measure the pulling intensity as Nt,i , ∑
t
t ′=1 At ′,i. In the (stationary)

linear bandit problem, the number of pulls is replaced by the matrix ∑
t
t ′=1 At ′A

ᵀ
t ′ which

is used in the least-square regression and in the confidence ellipsoid computation.
Hence, from an information-theoretic point of view, the natural identification is
Nt,i , ∑

t
t ′=1 A2

t ′,i (which follows when the actions embeddings are the canonical basis
vectors). Yet, our choice is motivated because we want a linear dependence between
Nt,i and the collected reward along direction i in the stationary case.

4.7.3 The offline problem

In the rested rotting bandits model, Heidari et al. (2016) show that the greedy oracle policy
which selects the arm with the highest upcoming reward is anytime optimal. Unfortunately,
this result does not hold in the linear rotting bandit model.

Proposition 4.7.1 Let’s consider the simple d = 2 case. For any horizon T ≥ 2, there
exists an L-lipschitz reward vector function µ bounded in [0,L], a fixed vector arms set A ,
and a strategy π such that the greedy oracle πO suffers,

JT (π)− JT (πO)≥
L(T −2)

8
·

We notice that the worst regret for reward values in [0,L] and arms in [0,1]d is LT . Hence,
Proposition 4.7.1 shows that πO is unable to learn as its problem-independent performance
is at a constant ratio of the worst possible rate. We will prove precisely this statement
in Subsection 4.7.5 but we give here the main intuition. Let’s consider a vector reward
function such that the first direction decays from L to 0 in the middle of the game and the
second one has a constant reward value L/2. In the MAB case - when arms are orthogonal -
the greedy oracle πO stops pulling the first direction when the associated reward decreases.
However, when arms are not orthogonal (e.g. (1,0) and (1/2,1/2)), the greedy policy will
collect quickly all the reward associated with the first direction by selecting the first arm.
Then, it selects arm 2 which still pulls a fraction of the first direction, even though the
reward has decayed. A better oracle strategy would be to notice that the good reward
associated with the first direction will be gathered at the end of the game anyway, and
focus on maximizing the reward associated with the other direction.

126 Chapter 4. Rested rotting bandits are not harder than stationary ones

Notice that this better strategy needs to see at least up to the middle of the game to see
that the reward will decay. Otherwise, it will not behave consistently on the problems on
which the reward does not decay. Refining this argument, we can show in Proposition 4.7.2
that any short-sighted oracle - i.e. a policy that can only see the next TO rewards for any
combination of TO arms - suffers a regret which scales at least with T −TO. It means that
the offline problem is a planning problem where we need full knowledge of the reward
function and the horizon T .

Proposition 4.7.2 Let π a short-sighted policy which sees the future rewards associated to
any combination of TO arms. For T ≥ TO +23, there exists a problem µ and a policy π ′

such that,

JT (π
′)− JT (π)≥

L(T −TO)

20
·

4.7.4 The noise-free online problem

A direct consequence of Proposition 4.7.2 is that any learning policy - a special case of
short-sighted policies with TO = 0 - suffers a worst-case linear regret, even in the absence
of noise. Hence, we conclude that the rotting linear setup is not learnable.

Corollary 4.7.3 For any learning policy π and T ≥ 23, there exists a problem µ and a
policy π ′

JT (π
′)− JT (π)≥

LT
20
·

Again, we highlight the deep contrast with the MAB setting, where a simple greedy policy
is guaranteed to make at most K−1 mistakes. The key argument is that when a direction
decreases we need to be able to stop pulling that direction and focus on other directions.

4.7.5 Proofs

Proof of Proposition 4.7.1. For d=2, A ={A1,A2} with A1=(1,0)ᵀ and A2=(1/2,1/2)ᵀ.
For any horizon T ≥ 2, we consider the following L-lipschitz reward functions,

µ1(x) =

L if x < T−1

2
L(1− x+ T−1

2) if T−1
2 ≤ x≤ T+1

2
0 else

and µ2(x) =
L
2
·

The greedy oracle strategy first selects A1 for
⌊T

2

⌋
rounds and then A2 for the remaining

4.7 Linear rotting bandits are impossible to learn 127⌈T
2

⌉
. Hence,

NT,1 =

⌊
T
2

⌋
+

1
2

⌈
T
2

⌉
,

NT,2 =
1
2

⌈
T
2

⌉
≥ T +1

2
·

For T ≥ 2, NT,1 ≥ T+1
2 , which means that the greedy policy collects all the LT/2 reward

along the first direction. We also notice that NT,2 ≤ T+1
4 , which means that the total reward

is bounded by,

JT (πO) =
∫ NT,1

0
µ1(x)dx+

∫ NT,2

0
µ2(x)dx≤ LT

2
+

L(T +1)
8

·

We now consider the policy π2 which always selects arm 2. At the end of the game, it
gathers the reward,

JT (π2) =
∫ T

2

0
µ1(x)dx+

∫ T
2

0
µ2(x)dx =

L(T − 1/4)

2
+

LT
4
·

Hence, we have that,

JT (π2)− JT (πO)≥
L(T −2)

8
·

�

Proof of Proposition 4.7.2. We still consider d = 2, A = {A1,A2} with A1 = (1,0)ᵀ and
A2 = (1/2,1/2)ᵀ. For any horizon T , we consider the (L-lipschitz) two reward vector
functions µ1 and µ2,

µ
1
1 (x) = L and µ

1
2 (x) =

L
2

,

µ
2
1 (x) =

L if x < T+TO−1

2
L(1− x+ T+TO−1

2) if T+TO−1
2 ≤ x≤ T+TO+1

2
0 else

and µ
2
2 (x) =

L
2
·

Notice that it is not possible to tell the difference between the two setups for the short-
sighted oracle π before round t such that Nt,1 ≥ T−TO−1

2 . Notice that this round always
exists because NT,1 ≥ T

2 for any policy because the pulling intensity of the first direction is
always greater than 1/2 .

On problem µ1, we will compare π to π1 which selects always arm 1. On problem µ2, we
will compare π to π2 which selects always arm 2. We give the cumulative reward of the

128 Chapter 4. Rested rotting bandits are not harder than stationary ones

different policies on the two problems,

J1
T (π1) = LT, (4.51)

J2
T (π2) =

L(T − 1/4)

2
+

LT
4

, (4.52)

J1
T (π) = L

(
T −N1

T,2
)
, (4.53)

J2
T (π)≤

L
(

T +N2
T,2

)
2

, (4.54)

with Nk
T,2 the pulling intensity in direction 2 of π on problem k. The inequality upper-

bounds the reward collected in direction 1 by its maximum LT/2. Since we cannot distin-
guish between the two problems until Nt,1 ≥ T−TO−1

2 , we will show that N1
T,2 and N2

T,2 are
loosely related.

We call tu the last round such that the two problems are indistinguishable. Therefore, we
have that,

N1
tu,1 = N2

tu,1 , Ntu,1 and N1
tu,2 = N2

tu,2 , Ntu,2.

Problems are indistinguishable until,

Ntu,1 <
T −TO−1

2
·

We also know that the problems can be distinguished at the round tu +1, i.e.

T −TO−1
2

≤ Ntu+1,1 ≤ Ntu,1 +1.

The second inequality is because Ntu+1,1−Ntu,1 ≤maxi≤2 Ai,1 = 1. We have bounded Ntu,1
but we use Nk

T,2 in Equations 4.53 and 4.54. We will start by relating Ntu,2 to Ntu,1, and
then we will relate Nk

T,2 to Ntu,2. We call nt,i, the number of pulls of arm i at the round t.
We have that

Nt,1 = nt,1 +
nt,2

2
,

Nt,2 =
nt,2

2
,

nt,1 +nt,2 = t.

We can rewrite Nt,1 = t−Nt,2. Hence, the above inequations on Ntu,1 can be translated for
Ntu,2.

Ntu,2 >
2tu−T +TO +1

2
,

Ntu,2 ≤
2tu−T +TO +3

2
· (4.55)

4.7 Linear rotting bandits are impossible to learn 129

We can now bound Nk
tu,2 for all k,

2tu−T +TO +1
2

< Ntu,2 ≤ Nk
T,2 ≤

T − tu
2

+Ntu,2 ≤
tu +TO +3

2
.

The first and fourth inequality use Equation 4.55. The second uses that tu ≤ T and that
the pulling intensity can only grow through the rounds. The third inequality uses that
with Ntu,2 pulling intensity at the round tu, the learner cannot reach more than Ntu,2 +

(T − tu)max j A j,2 = Ntu,2 +
T−tu

2 (by selecting arm 2 until the end of the game).

We can use Equations 4.51 and 4.53 (respectively 4.52 and 4.54) to lower-bound the differ-
ence of performance with respect to policy π1 (respectively π2) on problem 1 (respectively
2).

J1
T (π1)− J1

T (π) = LN1
T,2 ≥

L
2
(2tu− (T −TO)+1)

J2
T (π2)− J2

T (π)≥
L
4
(
T −2N2

T,2− 1/2
)
≥ L

4
(T − tu−TO−3.5) .

The only quantity which depends on the algorithm π is tu ∈ {1, . . . ,T}. In a minimax
perspective, we lower bound the maximum of these two bounds,

max
(
J1

T (π1)− J1
T (π),J

2
T (π2)− J2

T (π)
)
≥ L(T −TO)

10
−1.15L.

We conclude the proof by noticing that when T −TO ≥ 23,

L(T −TO)

10
−1.15L≥ L(T −TO)

20
·

�

5. The rotting assumption makes restless
bandits easier

A non-rotting restless bandit. Who would say he is not tough?

5.1 Restless rotting bandits

5.1.1 Restless bandits model

Feedback loop

At each round t, an agent chooses an arm it ∈K , {1, ...,K} and receives a noisy reward ot .
The reward associated to each arm i is a σ2-sub-Gaussian random variable with expected
value of µi(t), which depends on the number of rounds t. Let Ht , {{is,os} ,∀s < t} be
the sequence of arms pulled and rewards observed until round t, then

ot , µit (t)+ εt with E [εt |Ht] = 0 and ∀λ ∈ R, E
[
eλεt
]
≤ e

σλ2
2 . (5.1)

Objective

We will only consider deterministic agents which output an arm i at each round t. Like
in the previous chapter, we distinguish offline (or oracle) policies π ∈ ΠO - which are
functions which map the round t and the set of reward functions to arms - from online (or
learning) policies π ∈ΠL - which are functions from the history of observations Ht at a
round t to arms. For both types of policies, we often use the shorter notation π(t), where

Chapter header: Fourth cover of le Petit Journal, 12th of july 1914.

132 Chapter 5. The rotting assumption makes restless bandits easier

the dependency on µ or Ht is implicit. The performance of a policy π is measured by the
(conditionally expected) rewards accumulated over time,

JT (π),
T

∑
t=1

µπ(t) (t) . (5.2)

Proposition 5.1.1 The characterization of the optimal oracle policies is straightforward,

π
? ∈ argmax

π∈ΠO

JT (π) ⇐⇒ ∀t ≤ T,π?(t) ∈ argmax
i∈K

µi (t) .

In the following, we call i?t ∈ argmaxi∈K µi (t) one of the best arm at the round t, and
µ?(t),maxi∈K µi (t) the corresponding best value.

Notice that there may be several optimal policies if, at a given round t, there are several
arms with maximal value. However, all these policies get the same cumulative reward
at every round; thus, the tie-break rule can be chosen arbitrary without impacting the
performance. We set a policy π? ∈ argmaxπ∈ΠO

JT (π). Calling J?T = JT (π
?) the largest

cumulative reward achievable, one can measure the regret of any policy (learning or oracle)
compared to the optimal one,

RT (π), J?T − JT (π). (5.3)

R Like in the rested setup, the regret is measured against the optimal oracle policy
rather than a fixed-arm policy as it is a case in adversarial bandits. Moreover, for
constant µi(t)-s, the problem, and definition of regret reduce to the ones of stationary
stochastic bandits (where the regret is measured against the best fixed-arm policy
which is also the optimal oracle policy).

5.1.2 Piece-wise stationary bandits

Garivier and Moulines (2011) study the restless bandits case, where rewards are piece-wise
stationary.

Assumption 5.1.2 Let V be a positive constant and ϒT a positive integer. µi : N? →
[−V,0]1 are piecewise stationary non-increasing functions of the time t with at most ϒT −1
breakpoints. Formally,

T−1

∑
t=1

1(∃i∈K ,µi(t) 6=µi(t+1))≤ ϒT−1.

We call {tk}k≤ϒ−1 the set of breakpoints with t0 = 0, µk
i the value of µi(t) for t ∈

{tk +1, . . . , tk+1}. We call i?k ∈ argmaxi∈K µk
i (one of) the best arm in batch k, µk

? ∈
maxi∈K µk

i the corresponding best value, and ∆i,k , µk
? −µk

i the gap to the best arm for
arm i during batch k.

1We could choose any interval [x,x+V]. Yet, with the upcoming decreasing assumption, choosing
[−V,0] instead of [0,V] emphasizes that the learner cannot infer parameter V from the first pulls. Notice that
we will never use that our rewards are negative in our analysis.

5.1 Restless rotting bandits 133

Lower Bounds

Proposition 5.1.3 — Auer et al. (2003). For any strategy π , there exists a K-armed
piece-wise stationary bandit scenario with means {µi(t)}i,t satisfying Assumption 5.1.2
such that,

E [RT (π)]≥
σ

32

√
ϒT KT .

This bound is not surprising as it shows that piece-wise stationary bandits with ϒT change-
points are at least as hard as ϒT stationary problems with horizon T

ϒT
(Auer et al. 2003).

We will show a slightly stronger result in Subsection 5.1.4.

Garivier and Moulines (2011) shows a self-bonding property of the regret. They build a
problem µ ′ on which the reward function equals the reward on a stationary problem µ

except on a period τ (see Figure 5.1). During this time span, the best arm of µ keeps its
value while the worst arm increases to become optimal. The size of τ is chosen inversely
proportional to the average pulling rate of the bad arm in µ . Indeed, the lower the pulling
rate of the bad arm, the longer the adversary can increase its value in µ ′ without being
noticeable by the learner (which can be quantified thanks to Lemma 5.1, Auer et al. (2003)).
Since the pulling rate of the bad arm in µ is proportional to RT (µ), we get a lower bound
proportional to τ ∼ T

RT (µ)
. We reproduce the version of the theorem in Lattimore and

Szepesvári (2020).

Figure 5.1: The reward functions µ and µ ′. A policy with low regret on µ cannot achieve
low regret on µ ′.

Proposition 5.1.4 — Theorem 31.2, Lattimore and Szepesvári (2020). If a policy π

performs (in expectation) a regret E [RT (π,µ)] on a 2-arm stationary instance µ , one
can find a piece-wise stationary instance µ ′ with only two breakpoints such that, for a
sufficiently long horizon T , the regret is lower bounded by

E
[
RT (π,µ

′)
]
≥ T

22E [RT (π,µ)]
·

134 Chapter 5. The rotting assumption makes restless bandits easier

Corollary 5.1.5 Let π a minimax optimal policy on the piece-wise stationary setups.
Then, for a sufficiently large horizon T , there exists a universal constant C such that for
all the 2-arm stationary problems µ ,

E [RT (π,µ)]≥C
√

T .

These results state that one cannot have simultaneously a near-optimal problem-dependent
regret rate O (logT) on stationary instances and the minimax optimal piece-wise stationary
rate O

(√
T
)
. It is very different from the stationary case (or even with the rested rotting

bandits presented in the last section) where some algorithms are shown to perform optimally
both problem-dependent and problem-independent wise (Ménard and Garivier 2017;
Lattimore 2018).

Policies for piece-wise stationary bandits.

Softmax policies. For any sequence generated by an oblivious adversary, Exp3.S (Auer
et al. 2003) - an extension of Exp3- is guaranteed to achieve O

(√
KϒT T log(KT)

)
regret

against the best policy among the ones which change arms at most ϒT − 1 times. The
bound holds in the special case where the adversary generates the reward with noisy
piece-wise stationary functions. In that case, the pseudo-regret definition is equivalent
to the piece-wise stochastic regret defined in Equation 5.3. Indeed, the optimal policy is
included in the set of O

(
(KT)ϒT

)
policies with at most ϒT −1 change of arms.

Passive forgetting policies. D-UCB (Kocsis and Szepesvári 2006) and SW-UCB (Garivier
and Moulines 2011) are two ucb index policies which forget the older sample either by
a discount factor or by a sliding window mechanism. The confidence interval increases
when an arm has not been pulled for many rounds. When they are adequately tuned, these
policies achieve respectively O

(√
KϒT T logT

)
and O

(√
KϒT T logT

)
minimax regret

rate. While these policies do not improve the rate of Exp3.S, they are deterministic and
more explainable.

Change-detection policies. Instead of throwing away old samples at a fixed pace, one
could remove samples from the index only when they notice a change in the arm’s mean.
This is the spirit of the Change-Detection ucb algorithms. These algorithms have three
components: an ucb index, a change-detection subroutine, and a fixed active exploration
rate (either deterministic or random pulls). The active exploration rate is meant to detect
the arms which change from suboptimal value to optimal ones (like in Figure 5.1). The
optimal budget dedicated to active exploration scales with O

(√
KϒT T

)
.

M-UCB (Cao et al. 2019) uses a simple change detector which compares the average of
the last w/2 samples with the average of the before last w/2 ones and check whether the
difference is significant or not. The optimal tuning of the parameter w depends on the

5.1 Restless rotting bandits 135

value of ϒT : if changes are large and frequent, one should choose a small value of w; if
changes are small and sparse, one should choose a large value of w.

CUSUM-UCB (F. Liu et al. 2018) uses a change detector which constructs two random walks
based on the upper and lower deviation of the new samples compared to the mean of the
M first ones. If one of the random walks reaches a threshold h, then the change detector
triggers. The random walks are negatively biased with a small value ε to prevent the
natural deviation to trigger the change detector. Again, the optimal value of the parameters
M, ε and h depends on the number of changes ϒT .

GLR-UCB (Besson and Kaufmann 2019) uses the Gaussian Likelihood Ratio change detector.
This change detector scans all the samples to detect any size of change on any period with
high probability. The probability parameter only needs the knowledge of the horizon T
to achieve near-optimal minimax bound. Mukherjee and Maillard (2019) introduces a
very similar algorithm but study the assumption where all the arms change their value
significantly at each breakpoint. With this assumption, they do not need active exploration
and recover problem-dependent bound O (logT).

On the theoretical side, the analysis often assumes that each change is large enough to be
detected before the next change. Indeed, after the detection of the breakpoint, they use the
analysis of UCB on each stationary batch. Before the change detection, they do not provide
any non-trivial bound on the quality of the selected arm.

Agnostic policies. Auer et al. (2019) consider the problem with no assumption on the
change-point detectability. They propose AdSwitch, which also uses a parameter-free
change-detection subroutine but with an elimination policy: it pulls arms in a round-robin
way in a refined set of good arms. Arms are excluded from this set when they demonstrate
with high probability that they underperform. The bad arms are also actively explored with
consecutive sampling: the algorithm selects at random an arm and a deviation size ∆ and
pulls the arm the right number of rounds to detect if there is a change of size ∆ in the arm’s
value. Chen et al. (2019) extend this technique to the contextual bandits problem.

A previous attempt (Cheung et al. 2019) to solve this problem uses an expert aggregation
bandit algorithm (e.g. Exp4) to select between different tuning of SW-UCB. Yet expert
aggregation of bandit algorithm is problematic (Agarwal et al. 2017; Besson et al. 2018),
and Cheung et al. (2019) has to run each copy by batch with full restart. This technique

leads to a suboptimal rate Õ

(√
K max

(
ϒT ,
√

T
)

T
)

.

5.1.3 Variation budget bandits

Besbes et al. (2014) introduce the limited variation budget bandits, a restless setting where
at each round Nature can modify the reward value of any arm but with a limited total
variation budget VT at the round T .

136 Chapter 5. The rotting assumption makes restless bandits easier

Assumption 5.1.6 µi : N? → [−VT ,0] are functions of the time t with VT a positive
constant. Moreover, we have that

T−1

∑
t=1

sup
i∈K
|µi(t +1)−µi(t)| ≤VT . (5.4)

Lower Bound
Proposition 5.1.7 — Besbes et al. (2014). For any strategy π , there exists a variation
budget bandit scenario with means {µi(t)}i,t satisfying Assumption 5.1.6 with a budget

VT ≥ σ

√
K
8T such that

E [RT (π)]≥
1

16
√

2

(
σ

2VT KT 2)1/3
.

In the next section, we prove a stronger statement, using only non-increasing reward
functions. Yet, there is no additional difficulty. While the two Assumptions 5.1.2 and 5.1.6
leads to different regret rate (see Proposition 5.1.3), the proof (see e.g. Lemma 5.1.11 in
the next subsection) shows that there is a strong similarity between the two problems, at
least from a minimax perspective.

Policies for variation budget bandits. Most of the algorithms presented for the piece-
wise stationary case are also near-optimal for the variation budget case. Indeed, Besbes
et al. (2014) show that Exp3.S also learns in the variation budget setup. They also present
Rexp3, an algorithm based on Exp3 with periodic restart which recovers a similar guarantee
than Exp3.S. Cheung et al. (2019) and Russac et al. (2019) extend SW-UCB and D-UCB to
the linear bandit setting with variation budget. Chen et al. (2019) proves that AdSwitch is
also optimal in the variation budget setting. However, change-detection ucb algorithms
are not proved to perform well in the variation budget setting. Indeed, their proofs use the
proof of UCB on each stationary batch. In the variation budget setup, there is no stationary
batch, which makes these algorithms harder to analyze.

5.1.4 The restless rotting assumption

Assumption 5.1.8 Reward functions {µi}i are non-increasing with t.

We use this Assumption in conjunction with Assumption 5.1.2 or 5.1.6.

R With the rotting assumption, the variation budget assumption is very similar to the
bounded assumption. Indeed, any set of decreasing functions µi : N? → [−V,0]
satisfies Equation 5.4 with VT = KV . Reciprocally, any set of functions satisfying
Equation 5.4 with µi(1) ∈ [−VT ,0] are bounded in [−2VT ,0].

5.1 Restless rotting bandits 137

Lower bounds. We show that our additional decreasing assumption does not change the
minimax rates of the two settings. This is an adaptation of the proof of Besbes et al. (2014)
where we only use rotting functions.

Proposition 5.1.9 For any strategy π , there exists a rotting piece-wise stationary bandit

scenario with means {µi(t)}i,t satisfying Assumptions 5.1.2 and 5.1.8 with ϒT≤
(

32V 2T
Kσ2

)1/3

such that,

E [RT (π)]≥
σ

32

√
ϒT KT .

Proposition 5.1.10 For any strategy π , there exists a rotting variation budget bandit
scenario with means {µi(t)}i,t satisfying Assumptions 5.1.6 and 5.1.8 with a budget VT ≥

σ

√
K
8T such that,

E [RT (π)]≥
1

16
√

2

(
σ

2VT KT 2)1/3
.

The condition on ϒT in Proposition 5.1.9 follows from the previous remark: if V is too
small compared to ϒT , then we have a budget constraint - with associated lower bound in
Proposition 5.1.10 - rather than a breakpoint constraint.

Proof Our proof builds a set of rotting piece-wise stationary problems with an evenly
spaced set of ϒ− 1 breakpoints. The adversary can choose the distance between arms

∆ = 1
4

√
σ2Kϒ

2T at the maximum such that the best arm is barely identifiable between
two breakpoints (see Lemma 5.1, Auer et al. (2003)). At each breakpoint, each arm’s
value decreases by ∆ or 2∆. Even if the set of breakpoints would be known, the learner
does not know which arm is the best on each stationary part. Hence, in the worst case,
she suffers at least the sum of the minimax regret of ϒ stationary bandits problems
with horizon T

ϒ
, i.e. O

(√
KϒT

)
. In the piece-wise stationary setting, we can simply

identify ϒ = ϒT . In the variation budget setting, the adversary has a constraint over

ϒ∆ = 1
4

√
σ2Kϒ3

2T = O (VT). Hence, when the budget is limited, the adversary can choose

up to ϒ = O
(

T 1/3
)

breakpoints such that the suboptimal arms are "sufficiently" far from

the best one (i.e at ∆). This dependence on T leads to the increased regret rate of O
(

T 2/3
)

.

Lemma 5.1.11 Let ϒ ∈ {1, . . . ,T} and
{

τk ,
⌈T

ϒ

⌉
if k ≤ T mod ϒ else

⌊T
ϒ

⌋}
k≤ϒ

. We

call tk = ∑
k
k′=1 τk′ and t0 = 0. Consider a family of piece-wise stationary bandits indexed

by a vector i? ∈ ({0}∪K)ϒ as follows: arm i is a Gaussian distribution N (µi(t),σ) such
that

∀k ∈ {0, . . . ,ϒ−1} , ∀t ∈ {tk−1 +1, . . . , tk} , µi(t) =

{
−k∆ if i = i?k
−(k+1)∆ else.

138 Chapter 5. The rotting assumption makes restless bandits easier

We denote by Ei? the expectation under the problem indexed by i?. Then, if ∆ = 1
4

√
σ2Kϒ

2T ,
for any policy π :

∃i? ∈ ({0}∪K)ϒ, Ei?
[
RT (π)

]
≥
√

σ2KT ϒ

32
·

Proof. Note that when i?k = 0 then all the arms share the same means. We also define the
vector i?−k equals to i? with the coordinate k empty and for i ∈K the vector (i?−k, i) as
the vector where we fill the empty coordinate with i. We fix a policy π and we will lower
bound its average regret on the bandits problem indexed by i? ∈K ϒ

1
Kϒ ∑

i?∈K ϒ

Ei?
[
RT (π)

]
=

1
Kϒ ∑

i?∈K ϒ

ϒ

∑
k=1

∆Ei?[τk−Nk
i?k
]

= ∆

(
T − 1

Kϒ ∑
i?∈K ϒ

ϒ

∑
k=1

Ei?[Nk
i?k
]

)
,

where Nk
i is the number of pulls of arm i during epoch k. Thus we need to upper bound the

following quantity

1
Kϒ ∑

i?∈K ϒ

ϒ

∑
k=1

Ei?[Nk
i?k
] =

ϒ

∑
k=1

1
Kϒ−1 ∑

i?−k∈K ϒ−1

1
K

K

∑
i=1

E(i?−k,i)
[Nk

i] .

Using the contraction of the entropy for the bounded random variable Nk
i /τk then the

Pinsker inequality (see Garivier et al. (2019)) we get

2

(
1

τkK

K

∑
i=1

E(i?−k,i)
[Nk

i]−
1

τkK

K

∑
i=1

E(i?−k,0)
[Nk

i]

)2

≤ 1
K

K

∑
i=1

E(i?−k,0)
[Nk

i]
∆2

2σ2
,

since problems (i?−k, i) and (i?−k,0) differ only by a gap ∆ on the arm i during epoch k.
Thanks to the fact that ∑i Nk

i ≤ τk we get

1
K

K

∑
i=1

E(i?−k,i)
[Nk

i]≤
τk

K
+

∆

2σ
√

K
τ

3/2
k .

Putting all together we have for K ≥ 2

1
Kϒ ∑

i?∈K ϒ

Ei?
[
RT (π)

]
≥

(
T
2
−

ϒ

∑
k=1

τ
3/2
k ∆

2σ
√

K

)
∆ .

We have τk =
⌊T

ϒ

⌋
or τk =

⌈T
ϒ

⌉
such that ∑

ϒ
k=1 τk = T . Hence, we have that τk ≤ 2T/ϒ

which leads to

1
Kϒ ∑

i?∈K ϒ

Ei?
[
RT (π)

]
≥

(
1
2

T −
√

2T 3/2∆

σ
√

Kϒ

)
∆ .

5.1 Restless rotting bandits 139

Choosing ∆ = 1
4

√
σ2Kϒ

2T , we get

1
Kϒ ∑

i?∈K ϒ

Ei?
[
RT (π)

]
≥ 1

4

√
σ2Kϒ

2T

(
1
4

T
)
≥
√

σ2KT ϒ

32
·

We can conclude by noticing that the average expected regret across the problem set is
lesser or equal to the maximum across the same problem set. �

Proof of Proposition 5.1.9. This result directly follows from Lemma 5.1.11 by choosing
ϒ = ϒT . Indeed, the set of problems

{
i? ∈ ({0}∪K)ϒT

}
satisfy Assumptions 5.1.2

and 5.1.8 as soon as ϒT ∆≤V , i.e. ϒT ≤
(

32V 2T
Kσ2

)1/3
. �

Proof of Proposition 5.1.10. We want to use Lemma 5.1.11 but we need to make the set
of problems

{
i? ∈ ({0}∪K)ϒT

}
comply with Assumption 5.1.6. First, the function are

bounded by −VT . Hence, we need :

ϒ∆≤VT . (5.5)

Second, the total variation is bounded according to Equation 5.4. When t is not a breakpoint,
the variation is null. At each breakpoint, the maximal variation across the arm is 2∆. For
ϒ−1 breakpoint, we have that

2∆(ϒ−1)≤VT . (5.6)

Since 2∆(ϒ−1)≤ σ

2

√
K
2T ϒ

3/2, we choose

ϒ = min

(
max

(⌊
2
(

V 2
T T

Kσ2

)1/3
⌋
,1

)
,T

)
. (5.7)

By construction, 5.7 satisfies 5.6. Moreover, when ϒ > 1, 5.6 is more restrictive than 5.5.

For ϒ = 1, we simply assume ∆≤VT , i.e. VT ≥ σ

√
K
8T .

Plugging 5.7 in Lemma 5.1.11 allows us to conclude

E [RT (π)]≥
1

16
√

2
V

1/3
T σ

2/3K1/3T 2/3.

�

140 Chapter 5. The rotting assumption makes restless bandits easier

5.2 Analysis of adaptive window policies on restless rotting bandits.

In Chapter 4, we presented four adaptive window policies (FEWA, RAW-UCB, EFF-FEWA,
EFF-RAW-UCB). In this section, we will show that the exact same policies are able to match
interesting upper bounds on the restless problems. The proof of the regret upper bounds in
the rested case uses three main steps. First, we design one favorable event per round on
which all the constructed statistics concentrate on a well-chosen confidence region, such
that it holds with sufficiently high probability. This part does not use that we faced a rested
non-stationary environment; it only uses the concentration of independent subgaussian
variables which remains true in our restless problem due to Doob’s optional skipping.
Hence, we restate Propositions 4.2.1 and 4.5.9,

Proposition 5.2.1 We recall that, for any round t and confidence δt , 2t−α , we define

ξ
α
t ,

{
∀i∈K , ∀n≤ t−1, ∀h≤n,

∣∣µ̂h
i (t,π)−µ

h
i (t,π)

∣∣≤c(h,δt)
}

ξ
α
t,m,

{
∀i∈K ,∀n≤ t−1,∀h j∈Hi,m(n),

∣∣µ̂h j
i,eff(t,π)−µ

h j
i,eff(t,π)

∣∣≤c(h j,δt)
}

with c(h,δt),
√

2σ2 log(2/δt)/h. Then, for a policy π which pulls each arms once at the
beginning, and for all t > K,

P
[
ξ α

t

]
≤ Kt2δt

2
= Kt2−α and P

[
ξ α

t,m

]
≤ 3Ktδt = 6Kt1−α .

Then, we use the mechanics of the algorithms to relate the average past performance of the
selected arm with the current best value of the arms. As we noticed in the proofs (see e.g.
the proof of Lemma 4.2.2), we do not use the rested aspect of the problem. In fact, these
results hold for a more general reward function µi(t,n) which is non-increasing with both
t and n. Therefore, we also restate Lemmas 4.2.2, 4.2.3 and 4.5.10,

Lemma 5.2.2 At any round t on favorable event ξ α
t (respectively, ξ α

t,2), if arm it is selected
by π ∈ {πF,πR} (respectively, π ∈ {πEF,πER} tuned with m = 2), for any h≤ Ni, t−1, the
average of its h last pulls cannot deviate significantly from the best available arm at that
round, i.e.,

µ
h
it (t,π)≥max

i∈K
µi(t)−

Cπ√
2α

c(h,δt) with

CπR = 2
√

2α and CπER = 4
√

α√
2−1

CπF = 4
√

2α and CπEF =
8
√

α√
2−1

·

Last, we use a specific rested regret decomposition to show that our algorithms are near-
optimal both problem-dependent and problem-independent wise on rested rotting bandits.
Unfortunately, this part cannot be used for the restless analysis. However, with a specific
restless regret decomposition (see the proof in Subsection 5.2.1), we can show that our
policies matches the two aforementioned lower bounds up to poly-logarithmic terms
without any knowledge of the horizon T nor ϒT or VT .

5.2 Analysis of adaptive window policies on restless rotting bandits. 141

Theorem 5.2.3 Let π ∈ {πF,πR} tuned with α ≥ 4 or π ∈ {πEF,πER} tuned with α ≥ 3
and m= 2. For any piece-wise stationary bandit scenario with means {µi(t)}i,t satisfying
Assumptions 5.1.2 and 5.1.8 with ϒT −1 change-points, π suffers an expected regret

E [RT (π)]≤Cπσ
√

logT
(√

ϒT KT +ϒT K
)
+6KV.

Theorem 5.2.4 Let π ∈ {πF,πR} tuned with α ≥ 4 or π ∈ {πEF,πER} tuned with α ≥ 3
and m = 2. For any variation budget bandit scenario with means {µi(t)}i,t satisfying
Assumptions 5.1.6 and 5.1.8 with variation budget VT , π suffers an expected regret

E [RT (π)]≤ 4
(
C2

πσ
2VT KT 2 logT

)1/3
+2
(

CπσV 2
T K2T

√
logT

)1/3
+6VT K.

The remaining terms are of second-order when KVT ≤O(T), which is a necessary condi-
tion for the problem to be learnable (see Proposition 5.1.10).

Are rotting restless bandits easier? Learning at the minimax rate without knowing ϒT
or VT was achieved in the non-rotting setup by significantly more complex algorithms.
For instance, Auer et al. (2019) use a combination of filtering on the set of potentially
good arms, forced exploration planning on identified bad arms, and full restart of the
algorithm when a change is detected. This algorithmic complexity has a performance
cost, as AdSwitch is guaranteed to achieve 56 times the leading term in Theorem 5.2.3.
Moreover, these algorithms rely on doubling trick when the horizon is unknown, which
also has a regret cost compared to intrinsically anytime algorithms (Besson and Kaufmann
2018).

Yet, Proposition 5.1.9 and 5.1.10 show that the rotting assumption do not improve the
minimax rate for the two considered setups. Interestingly both these lower bounds are
matched by (tuned) Exp3.S (Auer et al. 2003), an algorithm originally designed for
switching best arm in adversarial sequences of rewards. This is comparable to the fixed
best arm world: adversarial and stochastic bandits share the same minimax rate which
is matched in both setups by Exp3. The main interest of the stochastic assumption is to
allow for problem dependent analysis. For the stochastic stationary bandits, it leads to a
stronger O(log(T)) bounds. In the (non-rotting) piece-wise stationary setting, we argued
in Subsection 5.1.2 that the learner has to maintain O

(√
T
)

exploratory pulls to shield
against increase of currently suboptimal arm (see Proposition 5.1.4 and Corollary 5.1.5).

The decreasing Assumption 5.1.8 excludes the problems where suboptimal arms increases
to become optimal from the set of possible problems. Theorem 5.2.5 shows that not only
RAW-UCB is able to recover the O (log(T)) on stationary problems but also recovers the
same rate on each batch of a rotting piece-wise stationary problem.

142 Chapter 5. The rotting assumption makes restless bandits easier

Theorem 5.2.5 Let π ∈ {πF,πR} tuned with α ≥ 4 or π ∈ {πEF,πER} tuned with α ≥ 3
and m= 2. For any piece-wise stationary bandit scenario with means {µi(t)}i,t satisfying
Assumptions 5.1.2 and 5.1.8 with ϒT −1 change-points, π suffers an expected regret

E [RT (π)]≤
ϒT−1

∑
k=0

∑
i∈K

C2
πσ2 logT

∆i,k
+CπσϒT K

√
logT +6KV.

Notice that Mukherjee and Maillard (2019) use a different assumption to recover a similar
problem-dependent bound. Indeed, they assume that all the arms change at the same time.
In the counter-example displayed on Figure 5.1, it is important that the arm 1 changes its
value while arm 2 is stationary. Indeed, in that case, the learner cannot infer the increase
on arm 2 by sampling arm 1. Hence, the assumption of Mukherjee and Maillard (2019)
excludes this counter-example of the set of possible problems. That is why they were able
to provide a logarithmic problem-dependent bound.

5.2.1 Proofs

Sketch.

We start by separating the regret on the bad events ξ α
t from the good events ξ α

t . According
to Proposition 4.2.1, the bad events ξ t have low probability for appropriate α . For α = 4,
they weigh at most O(KV) in the expected regret. On the good events, we write:

RT (π) =
T

∑
t=1

µi?t (t)−µ
ht
it (t,π)+µ

ht
it (t,π)−µit (t). (5.8)

Notice that Lemma 5.2.2 can bound the first difference for any ht . When the reward is
piece-wise stationary, we can select ht such that we include all the pulls of arm it from the
current stationary batch. If there is none, then it is the first pull of arm it in this batch. We
handle these O(KϒT) rounds separately (see Lemma 5.2.6). In the other cases, we note that
the second difference is null because µ

ht
it (t,π) = µit (t) = µk

i by the piece-wise stationary
assumption. The remaining of the proofs of Theorem 5.2.3 and 5.2.5 are then very similar
to the analysis of Auer et al. 2002 on each stationary batch. Indeed, Lemma 5.2.2 is similar
to the two confidence bounds guarantee of UCB1’s guarantee.

In the variation budget setting, there is no stationary batches. Hence, we cannot choose an
ht which cancels the second difference in Equation 5.8. Yet, we still decompose the rounds
in ϒ batches of equal length for the analysis. We choose ht such that we include all the
pulls of arm it from the current batch. For the sum of the first differences in Equation 5.8,
there is no difference with the piece-wise stationary case and we can bound

T

∑
t=1

µi?t (t)−µ
ht
it (t,π)≤ Õ

(√
KϒT

)
. (5.9)

5.2 Analysis of adaptive window policies on restless rotting bandits. 143

We call ∆k
i , µi(tk)−µi(tk+1), the total variation of arm i in batch k. The sum of second

differences in Equation 5.8 can be bounded as follows: on each batch of T ϒ−1 rounds,
each second difference is bounded by maxi∈K ∆k

i . When we sum over the batches, we get

T

∑
t=1

µ
ht
it (t,π)−µit (t)≤

T
ϒ

ϒ−1

∑
k=0

max
i∈K

∆
k
i ≤

TVT

ϒ
. (5.10)

Indeed, in the middle term, we have a maximum on the summed variation of arm i in
batch k. On the right-hand side, we have VT which bounds the sum over the rounds of
maximal variation of the arms (see Equation 5.4). Thus, the right-hand side is larger
because the maximum of sums is smaller than the sum of maximums. We can then choose
ϒ = Õ

(
T 1/3V

2/3
T K−1/3

)
to minimise the sum of Equations 5.9 and 5.10. It leads to the

leading term of our Theorem 5.2.4. Notice that we still have to handle the first pull
of each arm in each batch. If we bound roughly each first pull by VT , we would get
KϒVT ∼ Õ

(
V

5/3
T

)
which would be the leading term for large VT . Our Lemma 5.2.6 is more

careful such that it leads to a second order term when KVT ≤ o(T).

Full proof

Lemma 5.2.6 — Bound on unfavorable events. Decomposition in unspecified
batches. Bound on the first pull of each arm in each batch. Let an integer ϒ ∈
{1, . . . ,T}.
Let µi : N?→ [0,−V], the K decreasing reward functions.
Let {tk ∈ {1, . . . ,T} | tk > tk−1}k∈{1,...,ϒ−1} a set of ϒ− 1 distinct rounds delimiting ϒ

batches. We set t0 = 0 and tϒ = T .
We call hk

i , ∑
tk+1
t=tk+11(it = i) the number of pulls of arm i in batch k and tk

i (h) the time at
which arm i is pulled for the h-th time since tk +1. We also call Kk ,

{
i ∈K |hk

i ≥ 1
}

the set of pulled arms in batch k.

Then, π ∈ {πR,πF} run with α ≥ 4, or π ∈ {πER,πEF} run with m = 2 and α ≥ 3, suffers
an expected regret of

E [RT (π)]≤E

ϒ−1

∑
k=0

∑
i∈Kk

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
+CπσϒK

√
logT +6KV.

Proof. We start by separating the favorable events from the unfavorable events:

RT (π) =
T

∑
t=1

1(ξ α
t)(µ?(t)−µit (t))︸ ︷︷ ︸

RT (π|ξ α
t)

+
T

∑
t=1

1
(
ξ α

t
)
(µ?(t)−µit (t))︸ ︷︷ ︸

RT (π|ξ α
t)

, (5.11)

with µ?(t),maxi∈K µi(t). For α ≥ 4, we can bound the cost of the unfavorable events

144 Chapter 5. The rotting assumption makes restless bandits easier

thanks to Proposition 5.2.1,

E
[
RT (π|ξ α

t)
]
≤

T

∑
t=1

P
[
ξ α

t

]
V ≤

T

∑
t=1

KV
t2 =

KV π2

6
≤ 2KV. (5.12)

On the favorable events, given any ordered set of ϒ−1 breakpoints {tk}, we divide the
horizon in ϒ batches {tk +1, . . . , tk+1}k≤ϒ−1,

RT (π|ξ α
t)≤

ϒ−1

∑
k=0

tk+1

∑
t=tk+1

1(ξ α
t)
(
µ?(t)−µit (t)

)
.

We define hk
i the number of pulls of arm i in batch k, i.e. hk

i = ∑
tk+1
t=tk+11(it = i). We use

tk
i (h) to designate the time at which arm i is pulled for the h-th time since tk.

RT (π|ξ α
t)≤

ϒ−1

∑
k=0

tk+1

∑
t=tk+1

∑
i∈Kk

hk
i

∑
h=1

1

(
tk
i (h) = t ∧ξ

α
t

)(
µ?(t)−µi(t)

)
.

We split the regret on the first pulls of each batch,

RT (π|ξ α
t) =

ϒ−1

∑
k=0

tk+1

∑
t=tk+1

∑
i∈Kk

1

(
t = tk

i (1)∧ξ
α
t

)(
µ?(t)−µi(t)

)
︸ ︷︷ ︸

FP

+
ϒ−1

∑
k=0

tk+1

∑
t=tk+1

∑
i∈Kk

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
︸ ︷︷ ︸

OP

.

(5.13)

Analysis of the first pulls. We call k1
i , the index of the batch at which arm i is pulled

for the first time (we assume that T ≥ K). We call K 2
k ,

{
i ∈Kk|k > k1

i
}

, the set of arms
pulled at least once during batch k and at least once in a batch before k. We split the regret
due to the very first pull each arm from the other first pulls in each batch,

FP =
ϒ−1

∑
k=0

∑
i∈Kk

tk+1

∑
t=tk+1

1

(
t = tk

i (1)∧ξ
α
t

)(
µ?(t)−µi(t)

)
≤ ∑

i∈K

(
0−µi(t

k1
i

i (1))
)
+

ϒ−1

∑
k=1

∑
i∈K 2

k

tk+1

∑
t=tk+1

1

(
t = tk

i (1)∧ξ
α
t

)(
µ?(t)−µi(t)

)
= ∑

i∈K

(
0−µi(t

k1
i

i (1))
)

+
ϒ−1

∑
k=1

∑
i∈K 2

k

tk+1

∑
t=tk+1

1

(
t = tk

i (1)∧ξ
α
t

)(
µ?(t)−µ

1
i (t,π)+µ

1
i (t,π)−µi(t)

)
.

5.2 Analysis of adaptive window policies on restless rotting bandits. 145

The inequality is justified because µi(t) ≤ 0 for all t. In the last equation, we simply
introduce µ

1
i (t,π), the last pulled sample of arm i, which is well defined after the first

pull of each arm. According to Lemma 5.2.2, the first difference is bounded on the
high-probability event ξ α

t ,
tk+1

∑
t=tk+1

1

(
t = tk

i (1)∧ξ
α
t

)(
µ?(t)−µ

1
i (t,π)

)
≤ Cπ√

2α
c(1,2T−α) =Cπσ

√
logT . (5.14)

We will show that we can telescope the second sum. First, we notice that we can collapse
the sum on t using 1

(
t = tk

i (1)
)
. Moreover, ξ α

t will not be needed: hence we can drop
1(ξ α

t)≤ 1.
tk+1

∑
t=tk+1

1

(
t = tk

i (1)∧ξ
α
t

)(
µ

1
i (t,π)−µi(t)

)
≤ µ

1
i (t

k
i (1),π)−µi(tk

i (1)). (5.15)

For a given batch k on which arm i is pulled, the precedent reward sample has a mean
µ

1
i
(
tk
i (1) ,π

)
. This sample is the last pull of the last batch k′ before k on which arm i is

pulled. Hence, its mean is smaller than the mean of the first pull on this same batch k′

because the reward is decreasing. Hence, the sum can telescope

∑
i∈K

(
0−µi(t

k1
i

i (1))
)
+

ϒ−1

∑
k=1

∑
i∈K 2

k

tk+1

∑
t=tk+1

1

(
t = tk

i (1)∧ξ
α
t

)(
µ

1
i (t,π)−µi(t)

)

≤ ∑
i∈K

0−µi(t
k1

i
i (1))+

ϒ−1

∑
k=k1

i +1

1

(
hk

i ≥ 1
)(

µ
1
i (t

k
i (1),π)−µi(tk

i (1))
)

≤ ∑
i∈K

(
0−µi(T)

)
≤ KV . (5.16)

The first inequality uses the definition of K 2
k along with Equation 5.15. The second

inequality follows from the telescoping argument presented above. The third inequality
uses that µi(T) ≥ −V . Gathering Equation 5.14 and 5.16, we can bound the term FP
(defined in Equation 5.13)

FP≤ KV +
ϒ−1

∑
k=1

∑
i∈K 2

k

Cπσ
√

logT ≤ KV +CπσϒK
√

logT . (5.17)

Conclusion. From Equation 5.11, we can bound the expected regret on the unfavorable
events thanks to Equation 5.12. On the favorable events, we can split the rounds in batches
on which we isolate the first pull of each arm on each batch thanks to Equation 5.13.
Finally, we bound the regret due to these first pulls thanks to Equation 5.17, and for α ≥ 4,

E [RT (π)]≤E

ϒ−1

∑
k=0

∑
i∈Kk

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
+CπσϒK

√
logT +3KV.

146 Chapter 5. The rotting assumption makes restless bandits easier

For the efficient algorithms, we can use the same proof with ξ α
t,2 and get for α ≥ 3,

E [RT (π)]≤E

ϒ−1

∑
k=0

∑
i∈Kk

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
+CπσϒK

√
logT +6KV.

�

Lemma 5.2.7 — Analysis of the second pulls in each batch under the favorable
events.. Let ∆k

i , µi(tk +1)−µi(tk+1), the decrement of arm i in batch k. For any arm i
and any consecutive rounds {tk +1, . . . , tk+1} such that i is pulled hk

i ≥ 1 times, the regret
due to the pulls after the first one can be bounded under the favorable events,

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)

≤
(

hk
i −1

)
∆

k
i +

hk
i

∑
h=2

1

(
ξ

α

tk
i (h)

)(
µ?(tk

i (h))−µ
h−1
i (tk

i (h),π)
)
.

Proof. We call ∆i(t, t ′), µi(t)−µi(t ′) the variation of arm i between times t and t ′. As a
short notation, we refer to ∆k

i , ∆i(tk +1, tk+1) for the variation of arm i in batch k.

∀h≤ hk
i , µi(tk

i (h))≥ µi(tk+1) = µi(tk +1)−∆
k
i ≥ µ

h−1
i (tk

i (h),π)−∆
k
i . (5.18)

The two inequalities are justified by the rewards decay. Indeed, any pull in batch k has a
higher reward than the value of arm i at the end of the batch tk+1. Moreover, the value at
the beginning of the batch is higher that any average of h value in this batch. The middle
equality follows from the definition of ∆k

i .

Then, we plug Equation 5.18 in the left hand side of our claim,

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)

=
hk

i

∑
h=2

1

(
ξ

α

tk
i (h)

)(
µ?(tk

i (h))−µi(tk
i (h))

)
≤

hk
i

∑
h=2

1

(
ξ

α

tk
i (h)

)(
µ?(tk

i (h))−µ
h−1
i (tk

i (h),π)+∆
k
i

)
≤
(

hk
i −1

)
∆

k
i +

hk
i

∑
h=2

1

(
ξ

α

tk
i (h)

)(
µ?(tk

i (h))−µ
h−1
i (tk

i (h),π)
)
.

The last inequality is justified by 1
(

ξ α

tk
i (h)

)
≤ 1. �

5.2 Analysis of adaptive window policies on restless rotting bandits. 147

Piecewise stationary rotting bandits.

Let {tk}{k≤ϒT } be the set of breakpoints with t0 = 0 and tϒT = T . For all t ∈{tk+1, . . . , tk+1},
µi(t) = µk

i . We denote i?k ∈ argmaxi∈K µk
i (one of) the best arm(s) in batch k, and

µk
? , maxi∈K µk

i , the corresponding best value. We also call ∆i,k , µk
? − µk

i the gap
between arm i and optimal arm in batch k.

Lemma 5.2.8 For an arm i and a stationary batch k, we call hk
i,ξ ,

max
(

h≤ hk
i s.t. ξ α

tk
i (h)

holds
)

the last pull of arm i in batch k under the favorable

events (possibly 0). If hk
i,ξ ≥ 1, the regret due to the second pulls on the favorable events is

bounded by,

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
≤
(
hk

i,ξ−1
)

∆i,k ≤Cπσ

√(
hk

i,ξ−1
)

logT .

Proof. We apply Lemma 5.2.7 on each stationary batch. Hence, ∆k
i = 0 and we can write,

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
≤

hk
i

∑
h=2

1

(
ξ

α

tk
i (h)

)(
µ?(tk

i (h))−µ
h−1
i (tk

i (h),π)
)
.

We notice that µ?(tk
i (h)) = µk

? . We call hk
i,ξ ,max

(
h≤ hk

i s.t. ξ α

tk
i (h)

holds
)

. Hence,

hk
i

∑
h=2

1

(
ξ

α

tk
i (h)

)(
µ?(tk

i (h))−µ
h−1
i (tk

i (h),π)
)
=

hk
i,ξ

∑
h=2

1

(
ξ

α

tk
i (h)

)(
µ

k
?−µ

h−1
i (tk

i (h),π)
)

≤
hk

i,ξ

∑
h=2

µ
k
? −µ

h−1
i (tk

i (h),π)

=

hk
i,ξ

∑
h=2

µ
k
? −µ

k
i

=
(

hk
i,ξ −1

)
∆i,k .

The first equality follows from ∀h > hk
i,ξ , 1

(
ξ α

tk
i (h)

)
= 0 by definition of hk

i,ξ . The first

inequality follows by dropping 1
(

ξ α

tk
i (h)

)
≤ 1. The second equality uses that the function

is stationary in batch k : ∀h ≤ hk
i,ξ ,µ

h−1
i (tk

i (h),π) = µk
i . The last equality follows by

definition of ∆i,k (which does not depend on the summand index h).

Then, we apply Lemma 5.2.2 at time tk
i

(
hk

i,ξ

)
. By definition of hk

i,ξ , 1
(

ξ α

tk
i (h

k
i,ξ)

)
= 1.

(
hk

i,ξ −1
)

∆i,k ≤
Cπ√
2α

(
hk

i,ξ −1
)

c(hk
i,ξ−1,2T−α) =Cπσ

√(
hk

i,ξ −1
)

logT . �

148 Chapter 5. The rotting assumption makes restless bandits easier

Theorem 5.2.3 Let π ∈ {πF,πR} tuned with α ≥ 4 or π ∈ {πEF,πER} tuned with α ≥ 3
and m= 2. For any piece-wise stationary bandit scenario with means {µi(t)}i,t satisfying
Assumptions 5.1.2 and 5.1.8 with ϒT −1 change-points, π suffers an expected regret

E [RT (π)]≤Cπσ
√

logT
(√

ϒT KT +ϒT K
)
+6KV.

Proof. We apply Lemma 5.2.8,

ϒT−1

∑
k=0

∑
i∈Kk

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t= tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
≤

ϒT−1

∑
k=0

∑
i∈Kk

Cπσ

√
hk

i,ξ logT .

We notice that ∑
ϒT−1
k=0 ∑i∈Kk

hk
i,ξ ≤ T . Hence, thanks to Jensen’s inequality,

ϒT−1

∑
k=0

∑
i∈Kk

Cπσ

√
hk

i,ξ logT ≤Cπσ
√

ϒT KT logT .

We use Lemma 5.2.6 with the last equation and conclude,

E [RT (π)]≤Cπσ
√

logT
(√

ϒT KT +ϒT K
)
+6KV.

�

Theorem 5.2.5 Let π ∈ {πF,πR} tuned with α ≥ 4 or π ∈ {πEF,πER} tuned with α ≥ 3
and m= 2. For any piece-wise stationary bandit scenario with means {µi(t)}i,t satisfying
Assumptions 5.1.2 and 5.1.8 with ϒT −1 change-points, π suffers an expected regret

E [RT (π)]≤
ϒT−1

∑
k=0

∑
i∈K

C2
πσ2 logT

∆i,k
+CπσϒT K

√
logT +6KV.

Proof. Let Kk ,
{

i ∈K |∆i,k > 0
}

, the set of sub-optimal arms in batch k. We apply
Lemma 5.2.8 to bound the number of wrong pull (under the favorable events) of arm
i ∈Kk during batch k,

∆i,k

(
hk

i,ξ −1
)
≤Cπσ

√(
hk

i,ξ −1
)

logT =⇒ hk
i,ξ ≤ 1+

C2
πσ2 logT

∆2
i,k

·

5.2 Analysis of adaptive window policies on restless rotting bandits. 149

Then, we apply Lemma 5.2.8 again to bound the regret due to second pulls of any sub-
optimal arm i /∈ argmaxi∈K µk

i in any batch k,

OP(i,k),
tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t= tk

i (h)∧ξ
α
t

)
(µ?(t)−µi(t))

≤Cπσ

√(
hk

i,ξ−1
)

logT

≤ C2
πσ2 logT

∆i,k
·

We apply Lemma 5.2.6 on the set of ϒT −1 breakpoints and we conclude thanks to the
precedent equation,

E [RT (π)]≤ E

[
ϒT−1

∑
k=0

∑
i∈Kk

OP(i,k)

]
+CπσϒT K

√
logT +6KV

≤
ϒT−1

∑
k=0

∑
i∈K

C2
πσ2 logT

∆i,k
+CπσϒT K

√
logT +6KV .

�

Variation budget rotting bandits.
Theorem 5.2.4 Let π ∈ {πF,πR} tuned with α ≥ 4 or π ∈ {πEF,πER} tuned with α ≥ 3
and m = 2. For any variation budget bandit scenario with means {µi(t)}i,t satisfying
Assumptions 5.1.6 and 5.1.8 with variation budget VT , π suffers an expected regret

E [RT (π)]≤ 4
(
C2

πσ
2VT KT 2 logT

)1/3
+2
(

CπσV 2
T K2T

√
logT

)1/3
+6VT K.

Proof. Let ϒ ∈ {1, . . . ,T} a number of evenly spaced batches that we will specify later.
We define the length of these batches

{
τk ,

⌈T
ϒ

⌉
if k ≤ T mod ϒ else

⌊T
ϒ

⌋}
k≤ϒ

. Note that

∑
ϒ
k=1 τk = T . Let tk = ∑

k
k′=0 τk′ the last round of each batch and t0 = 0. On each of these

batches, we apply Lemma 5.2.7 for the set of arms which have been pulled in this batch,

ϒT−1

∑
k=0

∑
i∈Kk

tk+1

∑
t=tk+1

hk
t

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
≤

ϒ−1

∑
k=0

∑
i∈Kk

(
hk

i −1
)

∆
k
i

+
ϒ−1

∑
k=0

∑
i∈Kk

hk
i

∑
h=2

1

(
ξ

α

tk
i (h)

)(
µ?(tk

i (h))−µ
h−1
i (tk

i (h),π)
)
. (5.19)

The first sums can be handled using Assumption 5.1.6 and the evenly spaced property of
τk,

ϒ−1

∑
k=0

∑
i∈K

(
hk

i −1
)

∆
k
i ≤

ϒ−1

∑
k=0

max
j∈K

∆
k
j ∑

i∈K

(
hk

i −1
)
=

ϒ−1

∑
k=0

max
j∈K

∆
k
j (τk−K)≤ T

ϒ

ϒ−1

∑
k=0

max
j∈K

∆
k
j.

150 Chapter 5. The rotting assumption makes restless bandits easier

(5.20)

The first inequality is justified by definition of the maximum. The second equality states
that the total number of pulls in batch k is τk. The third inequality uses that τk−K ≤⌈T

ϒ

⌉
−K ≤

⌈T
ϒ

⌉
−K ≤ T

ϒ
. Now, we need to relate max j∈K ∆k

j and VT ,

ϒ−1

∑
k=0

max
j∈K

∆
k
j=

ϒ−1

∑
k=0

max
j∈K

tk+1−1

∑
t=tk+1

∆ j(t, t+1)≤
ϒ−1

∑
k=0

tk+1−1

∑
t=tk+1

max
j∈K

∆ j(t, t+1)≤
T

∑
t=1

max
j∈K

∆ j(t, t+1)≤VT .

(5.21)

The first inequality is justified because the maximum of a sum is smaller than the sum of
the maximums. In the second inequality, we add positive terms which are the maximum of
the decay among the arms at the boundary between batches. The last inequality is justified
by Assumption 5.1.6. Therefore, we can bound the first sums using Equation 5.20 and
5.21,

ϒ−1

∑
k=0

∑
i∈K

(
hk

i −1
)

∆
k
i ≤

VT T
ϒ
· (5.22)

The second sums can be bounded using Lemma 5.2.2 on the high probability event ξ α

tk
i (h)

and Jensen’s inequality,

ϒ−1

∑
k=0

∑
i∈Kk

hk
i

∑
h=2

1

(
ξ

α

tk
i (h)

)(
µ?(tk

i (h))−µ
h−1
i (tk

i (h),π)
)
≤

ϒ−1

∑
k=0

∑
i∈Kk

hk
i

∑
h=2

Cπc(h−1,2T−α)√
2α

=
ϒ−1

∑
k=0

∑
i∈Kk

hk
i

∑
h=2

Cπσ

√
logT
h−1

≤
ϒ−1

∑
k=0

∑
i∈Kk

2Cπσ

√
hk

i logT

≤ 2Cπσ
√

ϒKT logT . (5.23)

We remark that the bound in Eq. 5.22 is decreasing with ϒ and the bound in Eq. 5.23 is
increasing with ϒ. We will choose ϒ in order to minimize the sum of these two bounds
(which will be our leading term). Therefore, we set,

ϒ,

⌈(
V 2

T T
C2

πσ2K logT

)1/3
⌉
. (5.24)

We have that ϒ ≤ T when VT ≤ CπσT
√

K logT . Moreover, we will use that ϒ ≤

2
(

V 2
T T

C2
π σ2K logT

)1/3

which is true when VT ≥
√

C2
π σ2K logT

8T .

5.2 Analysis of adaptive window policies on restless rotting bandits. 151

Finally, we use Lemma 5.2.6 where we replace the inner sums thanks to Equations 5.19,
5.22 and 5.23. Then, we plug ϒ set in 5.24 and conclude,

E [RT (π)]≤
VT T

ϒ
+2Cπσ

√
ϒKT logT +CπσϒK

√
logT +6VT K

≤ 4
(
C2

πσ
2VT KT 2 logT

)1/3
+2
(

CπσV 2
T K2T

√
logT

)1/3
+6VT K.

When VT ≤
√

C2
π σ2K logT

8T , the regret of any policy can be bounded ,

E [RT (π)]≤ TVT =V
1/3
T T 2/3V

2/3
T T 1/3

≤V
1/3
T T 2/3

(
C2

πσ2K logT
8T

)1/3

T 1/3

=
1
2
(
C2

πσ
2VT KT 2 logT

)1/3

≤ 4
(
C2

πσ
2VT KT 2 logT

)1/3
.

For completion, we also consider VT ≥CπσT
√

K logT . Yet, notice that in that case the
leading term is O (KVT). We start back from Lemma 5.2.6,

E [RT (π)]≤E

ϒ−1

∑
k=0

∑
i∈Kk

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
+CπσϒK

√
logT +6KVT .

In fact, this result can be slightly improved at no cost,

E [RT (π)]≤E

ϒ−1

∑
k=0

∑
i∈Kk

tk+1

∑
t=tk+1

hk
i

∑
h=2

1

(
t = tk

i (h)∧ξ
α
t

)(
µ?(t)−µi(t)

)
+Cπσ min(ϒK,T)

√
logT +6KVT ,

because there are at most min(ϒK,T) first pulls (see the proof of Lemma 5.2.6). Now, we
choose ϒ = T . Hence, there is no second pulls and we have,

E [RT (π)]≤CπσT
√

logT +6KVT ,

Now, we use that CπσT
√

logT ≤ VT√
K
≤ KVT ,

E [RT (π)]≤
(

CπσT
√

logT
)2/3(

CπσT
√

logT
)1/3

+6KVT

≤
(
C2

πσ
2VT KT 2 logT

)1/3
+6KVT

≤ 4
(
C2

πσ
2VT KT 2 logT

)1/3
+2
(

CπσV 2
T K2T

√
logT

)1/3
+6KVT .

�

152 Chapter 5. The rotting assumption makes restless bandits easier

5.3 Real-word data experiment on Yahoo! Front Page

R6A - Yahoo! Front page today module user click log dataset. This dataset was
used for the Exploration and Exploitation Challenge2 at ICML 2012 and inspired new
algorithms. Among them, we mention the work of Tracà and Rudin (2015) who noticed
the non-stationary trend and took advantage of it. Since then the dataset continues to be
a benchmark3 for non-stationary bandits (F. Liu et al. 2018; Cao et al. 2019). It contains
the history of clicks on news articles of 45 million users in the first ten days of May 2009.
We use three features in this dataset: timestamp (rounded every 5 minutes), article_id, and
click.

A real decaying scenario. Every day, between 6 pm and 6 am EST (12 hours), we notice
a decreasing trend in click probability. It suggests that people in the US read less and
less news during the evening and night. For each day, we keep all the articles that have
been recommended at every timestamp during the 12 hours. For these articles, we use
a rolling average window of 30000 in order to estimate the probability of click for each
article at each timestamp 4. We use the real total traffic for each timestamp. We highlight
that we do not enforce any of our assumptions to create reward functions to be aligned
with our setup. In particular, we do not enforce them to be piecewise constant nor to be
decreasing. At each round, the learner receives 10 reward samples in order to reduce the
cost of computation.

Algorithms and Parameters. We include two versions of FEWA and RAW-UCB: with the
theoretical tuning α = 4; and with the empirical tuning αR = 1.4 and αF = 0.06. These
two values were selected on the rested benchmark (c.f. Section 4.4). This benchmark
has 30 different problems (for different L) but the best tuning of α is the same for all the
considered problems. We replace RAW-UCB and FEWA with their efficient versions because
of the longer horizon.

We also include Exp3.S (Auer et al. 2003) and GLR-UCB (Besson and Kaufmann 2019).
For Exp3.S, we use the theoretical tuning which requires the knowledge of T and VT .
GLR-UCB has two parameters: a confidence level δ for its change-point detector and an
active exploration rate α . We set α to zero. Indeed, the active exploration of change-
detection algorithms is only useful in the increasing case (as argued by Cao et al. (2019)).
We tune δ by its theoretical value, which requires the knowledge of T . Last, we only
restart the history of the changed arm as our setup does not assume that all the rewards
change simultaneously. For a fair comparison, we only use the subgaussian version of
the algorithm. Indeed, KL-UCB indexes are expensive to compute. Instead, for all the
confidence bound algorithms, we rather tune σ2 = 1 in the rested benchmark and σ2 = 0.29
in the restless benchmark (the variance of a binomial B (10,0.03)).

2http://explochallenge.inria.fr/
3As it allows for offline evaluations as the actions were samples uniformly.
4For each timestamp, we average the values given by rolling average. These values are close to each other

because the number of click opportunities per article in the same timestamp is small compared to 30000.

http://explochallenge.inria.fr/

5.3 Real-word data experiment on Yahoo! Front Page 153

We do not include SWA (Levine et al. 2017) which was shown to be less consistent than
FEWA and RAW-UCB on rested rotting bandits. We do not include SW-UCB and D-UCB as they
were shown to be unable to learn in the rested setting (Levine et al. 2017; Seznec et al.
2019). We also do not include CUSUM-UCB (F. Liu et al. 2018) and M-UCB (Cao et al. 2019),
as 1) they were shown to under-perform against GLR-UCB (Besson and Kaufmann 2019);
and 2) their change-detector is harder to tune.

Note that our goal is to compare algorithms with the same tuning in the rested and restless
benchmark.

Results. We display the results for eight different days in Figure 5.2.We will comment
day 2 and day 7. On day 2, there are several switches of optimal arms with many near-
optimal ones: tracking the best arm is a "hard" problem. On day 7, one arm consistently
dominates the others by far. Hence, it is an "easy" case where good algorithms should have
a logarithmic regret rate. We also display the running time of each algorithm in Table 5.1.

Day 2 3 4 5 6 7 8 9 10
EFF-RAW-UCB (α =1.4,m=1.1) 67 66 90 86 91 74 88 64 48
EFF-RAW-UCB (α =1.4,m=2) 35 33 43 47 46 41 44 34 45
EFF-RAW-UCB(α =4,m=1.1) 65 65 90 88 91 74 89 63 48

EFF-FEWA (α =0.06) 143 175 223 159 183 115 193 116 165
EFF-FEWA (α =4) 337 308 391 473 487 380 428 341 388

Exp3.S 56 53 67 77 75 69 71 55 78
GLR-UCB 560 613 683 2421 707 1529 957 971 4017

Table 5.1: Average computational time in seconds for each algorithm in each experiment.

RAW-UCB vs FEWA. The two algorithms compute the same statistics and share most of
their analysis. Yet, RAW-UCB consistently outperforms FEWA as it was the case on the rested
benchmark. The difference between the two is even more significant in the restless case.
Its theoretical tuning α = 4 gets reasonable results, while theoretical FEWA is impractical.
Finally, its empirical tuning αR = 1.4 is similar to the asymptotic optimal tuning of UCB
and shows good performance on both rested and restless problems. By contrast, FEWA with
αF = 0.06 shows worse performance with larger deviation on the restless benchmark.

RAW-UCB vs Exp3.S. Exp3.S has good performances on the restless benchmark, on
which it has theoretical guarantees. Yet, it is consistently outperformed by RAW-UCB when
we tune the confidence bounds. It is particularly true in easy instances, e.g. on day 7.
Indeed, in these cases, we expect a logarithmic regret rate for RAW-UCB.

RAW-UCB vs GLR-UCB (no active exploration). On the restless benchmark, GLR-UCB
shows similar results than RAW-UCB. Yet, we highlight that 1) GLR-UCB needs the knowledge

154 Chapter 5. The rotting assumption makes restless bandits easier

Figure 5.2: Left: reward functions from the Yahoo! dataset
Right: average regret of policies over 500 runs

0 25000 50000 75000 100000 125000 150000 175000
Round (t)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ar
m

s A
ve

ra
ge

 R
ew

ar
d

Day 2 - K = 11

0 25000 50000 75000 100000 125000 150000 175000
Round (t)

0

2000

4000

6000

8000

10000

12000

Av
er

ag
e r

eg
re

t R
t

EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 4, m = 1.1)
EFF_FEWA(α = 0.06, m = 1.1)
EFF_FEWA(α = 4, m = 1.1)
GLR-UCB(no expl.)
Exp3.S

0 25000 50000 75000 100000 125000 150000
Round (t)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ar
m

s A
ve

ra
ge

 R
ew

ar
d

Day 3 - K = 12

0 25000 50000 75000 100000 125000 150000
Round (t)

0

2000

4000

6000

8000

10000

Av
er

ag
e r

eg
re

t R
t

EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 4, m = 1.1)
EFF_FEWA(α = 0.06, m = 1.1)
EFF_FEWA(α = 4, m = 1.1)
GLR-UCB(no expl.)
Exp3.S

0 50000 100000 150000 200000
Round (t)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ar
m

s A
ve

ra
ge

 R
ew

ar
d

Day 4 - K = 13

0 25000 50000 75000 100000 125000 150000 175000
Round (t)

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e r

eg
re

t R
t

EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 4, m = 1.1)
EFF_FEWA(α = 0.06, m = 1.1)
EFF_FEWA(α = 4, m = 1.1)
GLR-UCB(no expl.)
Exp3.S

5.3 Real-word data experiment on Yahoo! Front Page 155

0 50000 100000 150000 200000
Round (t)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ar
m

s A
ve

ra
ge

 R
ew

ar
d

Day 5 - K = 10

0 50000 100000 150000 200000
Round (t)

0

2500

5000

7500

10000

12500

15000

17500

20000

Av
er

ag
e r

eg
re

t R
t

EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 4, m = 1.1)
EFF_FEWA(α = 0.06, m = 1.1)
EFF_FEWA(α = 4, m = 1.1)
GLR-UCB(no expl.)
Exp3.S

0 50000 100000 150000 200000
Round (t)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ar
m

s A
ve

ra
ge

 R
ew

ar
d

Day 6 - K = 10

0 50000 100000 150000 200000
Round (t)

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e r

eg
re

t R
t

EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 4, m = 1.1)
EFF_FEWA(α = 0.06, m = 1.1)
EFF_FEWA(α = 4, m = 1.1)
GLR-UCB(no expl.)
Exp3.S

0 50000 100000 150000 200000
Round (t)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ar
m

s A
ve

ra
ge

 R
ew

ar
d

Day 7 - K = 12

0 50000 100000 150000 200000
Round (t)

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e r

eg
re

t R
t

EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 4, m = 1.1)
EFF_FEWA(α = 0.06, m = 1.1)
EFF_FEWA(α = 4, m = 1.1)
GLR-UCB(no expl.)
Exp3.S

156 Chapter 5. The rotting assumption makes restless bandits easier

0 50000 100000 150000 200000
Round (t)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ar
m

s A
ve

ra
ge

 R
ew

ar
d

Day 8 - K = 13

0 50000 100000 150000 200000
Round (t)

0

2500

5000

7500

10000

12500

15000

17500

20000

Av
er

ag
e r

eg
re

t R
t

EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 4, m = 1.1)
EFF_FEWA(α = 0.06, m = 1.1)
EFF_FEWA(α = 4, m = 1.1)
GLR-UCB(no expl.)
Exp3.S

0 25000 50000 75000 100000 125000 150000 175000
Round (t)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ar
m

s A
ve

ra
ge

 R
ew

ar
d

Day 9 - K = 10

0 25000 50000 75000 100000 125000 150000 175000
Round (t)

0

2000

4000

6000

8000

10000

12000

14000

Av
er

ag
e r

eg
re

t R
t

EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 4, m = 1.1)
EFF_FEWA(α = 0.06, m = 1.1)
EFF_FEWA(α = 4, m = 1.1)
GLR-UCB(no expl.)
Exp3.S

0 25000 50000 75000 100000 125000 150000
Round (t)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Ar
m

s A
ve

ra
ge

 R
ew

ar
d

Day 10 - K = 13

0 20000 40000 60000 80000 100000 120000 140000
Round (t)

0

2000

4000

6000

8000

10000

12000

14000

16000

Av
er

ag
e r

eg
re

t R
t

EFF_RAW-UCB(α = 1.4, m = 1.1)
EFF_RAW-UCB(α = 1.4, m = 2)
EFF_RAW-UCB(α = 4, m = 1.1)
EFF_FEWA(α = 0.06, m = 1.1)
EFF_FEWA(α = 4, m = 1.1)
GLR-UCB(no expl.)
Exp3.S

5.4 Restless and rested rotting bandits 157

of the horizon to tune its change-detector; 2) we use an efficient version of RAW-UCB which
runs ∼ 10 times faster than GLR-UCB. In fact, the two algorithms are similar: they are
UCB index policies, they recover logarithmic rate on easy restless rotting bandits problems
and hence they would both suffer near-linear worst-case regret rate in the general restless
setting (when active exploration is turned off for GLR-UCB). The main difference is that
RAW-UCB scans its history to select its rotting UCB’s window, while GLR-UCB scans its
history to detect significant changes and restart.

5.4 Restless and rested rotting bandits

5.4.1 The general case

Assumption 5.4.1 For each arm i, any number of pulls n, and time t, the functions µi(t, ·)
and µi(·,n) are non-increasing.

In Section 5.2, we highlight that the main guarantee of our algorithms - Lemma 5.2.2 -
holds in the general case of Assumption 5.4.1. Is it enough to show that our algorithms are
near-optimal in this extended setup?

Like in Chapter 4 and 5, we define the regret with respect to the best oracle.

RT (π,µ), argmax
π?

T∈ΠO

JT (π
?
T ,µ)− JT (π).

Like in the linear rested rotting bandits (Section 4.7), we can show that not only the greedy
oracle suffers linear regret but no learning policy can get a sublinear regret rate in the
worst-case.

Proposition 5.4.2 In the no noise setting (σ = 0), there exists a rotting 2-arms bandits
problem (satisfying Assumption 5.4.1) with reward value in [0,1], with one rested arm and
one restless arm, and with at most one change-point before T each, such that the greedy
oracle strategy πO suffers a regret

RT (πO)≥
⌊

T
4

⌋
.

Moreover, for any learning strategy πS, there exists a rotting 2-arms bandits problem
(satisfying Assumption 5.4.1) with reward value in [0,1], with one rested arm and one
restless arm, and with at most one change-point before T each, such that

RT (πS)≥
⌊

T
8

⌋
.

Notice that the two reward functions of the constructed difficult problems are simple: either
rested or restless, bounded, and with at most one break-point. If we consider a 2-arm setup
with one rested arm and one restless arm, a good strategy may be to select the restless arm

158 Chapter 5. The rotting assumption makes restless bandits easier

even when its current value is the worst. Indeed, this value is only available now, while
the good value of the rested arm will still be available in the future. Whether the restless
rewards are interesting to the learner depends on the future behavior of the (currently best)
rested arm. On the first hand, if it decays below the current value of the restless arm before
T pulls, then the learner should profit from the restless reward available right now. On the
other hand, if the rested arm stays optimal until the end of the game then the learner should
ignore the restless arm and follows the greedy oracle strategy. However, the learner does
not know in advance if (and how much) an arm will decay and any anticipation she makes
will turn to be bad in the worst case. We formalize these ideas in the proof at the end of
the section.

5.4.2 Rested rotting bandits with a restless envelope

Assumption 5.4.3 We consider the following reward functions,

µi(t,n) = P(t) fi(n)+S(t),

where P : N∗→ R+, { fi : N→ R}i∈K and S : N∗→ R are non-increasing functions.

Notice that all the arms have the same product P and sum S functions, the only difference
is the rested evolution fi. That is why we call this setup the rested rotting bandits with a
restless envelope.

With this assumption, we can show that the greedy oracle is optimal.

Proposition 5.4.4 For any reward functions {µi}i∈K verifying Assumption 5.4.3 and any
horizon T , πO ∈ argmaxπ∈ΠO

JT (π).

We leave as an open problem to analyze the aforementioned algorithms in this setup. A first
step would be to characterize the performance of the greedy bandit policy in the absence
of noise (as we did for the rested problem, see Subsection 4.1.2). We may not recover the
O (K) bound as in the rested setup. Indeed, the adversary can use the variation of P and S
to trick the greedy bandit policy several times for each arm. Moreover, the order of the pull
do matter in this problem: the cumulative reward is not a function of {Ni,T}i∈K anymore.

5.4.3 Proofs

Proof of Proposition 5.4.2. Let µ0 and µ1, two decreasing 2-arms bandits problems such
that:

µ
0
1 (t,n) = µ1(n) = 1 if n <

T
2

else 0 ,

µ
1
1 (t,n) = 1 ,

µ
0
2 (t,n) = µ

1
2 (t,n) = µ2(t) = 1/2 if t <

T
2

else 0.

5.4 Restless and rested rotting bandits 159

Problem µ1 only evolves according to time. Hence, the oracle greedy policy πO is optimal
for this problem and collects

JT
(
πO,µ

1)= T. (5.25)

On µ0, πO selects arm 1 during
⌊T

2

⌋
rounds and then both arms yield 0 reward. Thus, πO

collects

JT
(
πO,µ

0)= ⌊T
2

⌋
.

However, let π0 the policy which selects arm 2 for
⌊T

2

⌋
rounds and arm 1 afterwards. Thus,

π0 collects

JT
(
π0,µ

0)= (3/2)
⌊

T
2

⌋
. (5.26)

Hence, we conclude the first part of our proposition,

RT
(
πO,µ

0)= JT
(
π
?
T ,µ

0)− JT
(
πO,µ

0)≥ JT
(
π0,µ

0)− JT
(
πO,µ

0)≥ ⌊T
4

⌋
.

Now, we consider any learning policy πS and we call E j
[
Ni,t(πS)

]
the (expected, if the

policy is random) number of pulls of arm i at any round t by πS on problem j. Note that
the leaner will receive the same rewards for both problems until at least

⌊T
2

⌋
. Therefore,

we have that

∀t ≤
⌊

T
2

⌋
,π
(
Ht
(
µ

0))= π
(
Ht
(
µ

1)) =⇒ E0

[
N2,b T

2 c(πS)
]
=E1

[
N2,b T

2 c(πS)
]
, n2.

On problem µ1, πS collects a reward of at most,

JT
(
πS,µ

1)= E1[N1,T (πS)]+
n2

2
= T −E1[N2,T (πS)]+

n2

2
≤ T − n2

2
, (5.27)

because n2 = E1

[
N2,b T

2 c(πS)
]
≤ E1[N2,T (πS)]. Using Equations 5.25 and 5.27, we can

lower bound the regret of πS,

RT
(
πS,µ

1)= JT
(
πO,µ

1)− JT
(
πS,µ

1)≥ n2

2
·

On problem µ0, πS collects a reward of at most,

JT
(
πS,µ

0)= min
(
E1[N1,T (πS)],

⌊
T
2

⌋)
+

n2

2
≤
⌊

T
2

⌋
+

n2

2
· (5.28)

Using Equations 5.26 and 5.28, we can lower bound the regret of πS,

RT
(
πS,µ

0)= JT
(
πO,µ

0)− JT
(
πS,µ

0)≥ bT/2c−n2

2
·

160 Chapter 5. The rotting assumption makes restless bandits easier

Hence, the worst case regret on the two setups is bounded by

RT (πS)≥max

(
n2

2
,

⌊T
2

⌋
−n2

2

)
≥
⌊

T
8

⌋
·

�

Proof of Proposition 5.4.4. At any round t, we have,

πO(t) ∈ argmax
i∈K

(P(t) fi(Ni, t)+S(t)) = argmax
i∈K

fi (Ni, t) .

Therefore, at round t, collects the t largest values of { fi(n)}i∈K ,n≤T , i.e.

∀i ∈K , ∀ni ≥ Ni, t , µπO(t)
(
NπO(t), t

)
≥ µi (Ni, t)≥ µi(ni).

The first inequality is due to the selection rule of the policy; the second is due to the
decreasing reward functions.

A direct consequence is that, at the round t, πO selects the t-th largest value of
{ fi(n)}i∈K ,n≤T . Hence, at the round T , it has selected the T largest value in the de-
creasing order. Since P(t) is non-increasing and positive, an other policy which selects
smaller values of { fi(n)}i∈K ,n≤T , or the same values but in an other order, have a smaller
or equal cumulative reward than πO. �

III

6 Master topics as soon as possible
163

6.1 Beyond rotting bandits: some motivations
6.2 Setup
6.3 Optimal Oracle: Focus on the largest under

the threshold
6.4 What does random progression mean?
6.5 Learning Perspectives
6.6 Practical considerations for ITS applications

Beyond rotting bandits

6. Master topics as soon as possible

Turn your head left and blink twice. You’ll see a bandit in a POMDP.

6.1 Beyond rotting bandits: some motivations

Our motivation for studying the rested rotting bandits was the ability to target the least
known topic. This educational strategy can be interesting before an exam, when we assume
that all the topics should be at least understandable by the student. However, during the
curriculum, targeting the most difficult subject can demotivate the student and could result
in no learning (the wheel-spinning effect, Beck and Gong 2013).

RAW-UCB (or FEWA) keeps switching between topics either because the confidence intervals
are reduced through the pulls or because the student gains proficiency on the topics. On
Afterclasse, a student before the exam needs to study∼ 10 chapters divided into∼ 3 topics.
It makes up to 30 potential arms. If the student answers two hundreds of exercises (which
is a lot compared to the average student), RAW-UCB is barely different than round-robin.

Moreover, rotting bandits do not take into account the difficulty levels. If we consider
that each difficulty level is a different arm, then RAW-UCB will focus on difficult questions
before focusing on the easiest questions. Arguably, this is not a good educational strategy.
If we consider that different difficulty levels are in the same arm, then we should select the
difficulty uniformly at random to not bias the averages that RAW-UCB constructs. Another
possibility is to choose the difficulty with a subroutine and correct the bias with specific
computations (e.g. importance sampling).

Chapter header: Fiat 500 - Reveal your darkside, ©Marc da Cunha Lopes, Agence Leo Burnett.

164 Chapter 6. Master topics as soon as possible

For all these reasons, RAW-UCB is hard to test on students in a relevant educational scenario.
However, RAW-UCB does not have only disadvantages: it is quite interesting to take educa-
tional decisions based on pessimistic estimates of the student’s proficiencies. Indeed, if we
stop learning a topic because its estimate is high enough, it is important to be sure that this
estimate is not high just by chance.

In this chapter, we describe a setup where the goal is to validate topics as soon as possible.
We show that, under relevant assumptions, the best thing to do is to first focus on the
simplest topic and then switch to the more difficult ones promptly. In an online setting, we
don’t know which topic is the simplest, so we design an exploration strategy that outputs
a topic among the easiest and then we focus on this arm until we are sure the topic is
validated. This algorithm makes good use of the aforementioned pessimistic estimates to
both select a simple topic and to be sure that the topic is validated at the end of the session.
Finally, we discuss design improvements to switch our theoretical algorithm in a practical
Intelligent Tutoring System (ITS).

6.2 Setup

We model the student-ITS interaction as a formal Partially Observable Markov Decision
Process (POMDP).

State, actions and feedback The agent faces a set of K tasks. Each task i has a state
µi,t ∈ R at the round t with initial value µi,1. At each round t, the agent selects a task it to
allocate resource (e.g. time). He receives a noisy observation of its current state,

ot , µi,t + εt ,

where {εt}t≤T is an independent sequence of σ -subgaussian variables, i.e.

E [εt |Ht] = 0 and ∀λ ∈ R, E
[
eλεt
]
≤ e

σλ2
2 ,

with Ht , {{is,os}}s<t , the history of the agent at the beginning of the round t. We call
µµµ ttt , {µi,t}i∈K .

In the context of Intelligent Tutoring Systems, a task is to learn a topic. The state is the
average level of the student on that topic. The action is to give a student a question related
to that topic, and the observation is the grade associated with the answer to that question.

Transition. Between consecutive rounds, the state µµµ ttt is randomly modified following
transition probabilities which depend on the selected arm and the current state. It contrasts
with the rotting bandits we studied so far where the evolution was deterministic. We

6.2 Setup 165

discuss the meaning of this random evolution concerning our ITS application at the end of
the section. We use two assumptions that we already studied in the rested rotting bandits
framework (Chapter 4): the rested and monotone evolution of the arms’ states.

Assumption 6.2.1 The transitions are rested, which means that selecting a task only
modifies the state of this particular task. Hence, we have that,

µi,t = µi(Ni,t−1),

with {µi(n)}n∈N a Markov Chain with transition operator Ti and Ni,t , ∑
t
s=1 I{is= i}.

Assumption 6.2.2 The state of a task can only increase with pulls. Hence, the transition
operators {Ti}i∈K are triangular inferior.

Rotting bandits were considering non-increasing sequences of rewards while we consider
now non-decreasing sequences of states. Yet, it can correspond to the same situation where
the reward is the opposite of the state. This is not only a formal remark. It is indeed the case
for Intelligent Tutoring System motivation: the student is progressing so the associated
need to learn the topic is decreasing.

We now make two Assumptions on the transition operators {Ti}i∈K .

Assumption 6.2.3 The transition operator is the same for all the tasks,

∀i ∈K ,Ti = T .

For a random variable X with density p, we call Fp(z), P [X ≤ z] the cumulative distribu-
tion function. We define the first-order stochastic dominance of a variable X (drawn with
probability px) over a random variable Y (drawn with probability py),

X � Y ⇐⇒ px � py ⇐⇒ ∀z ∈ R, Fpx(z)≤ Fpy(z). (6.1)

Assumption 6.2.4 The transition operator T is stochastically monotone, i.e. with
(T δx)(y),T (x,y),

∀(x1,x2) ∈ R2,x1 ≤ x2 =⇒ T δx1 �T δx2.

In other words, the larger the starting point, the larger the probability to reach any threshold
at the next step. This assumption was first studied by Daley (1968). We restate their two
main results,

Lemma 6.2.5 — Daley (1968). Assumption 6.2.4 is equivalent with

∀(p,q), p� q =⇒ T p�T q.

166 Chapter 6. Master topics as soon as possible

Corollary 6.2.6 — Daley (1968). The larger the starting state, the larger the probability
of reaching any threshold after a given number of steps n ∈ N, i.e.,

∀(x1,x2) ∈ R2,x1 ≤ x2 =⇒ T n
δx1 �T n

δx2.

For Intelligent Tutoring Systems, Assumption 6.2.3 means that the student progresses in the
same way for all the topics. It may not be true if the topics are completely different subjects
(e.g. maths and history) but if it is two topics in the same chapter (e.g. Pythagore and Thales
theorems), it is likely that the progression of the student will be similar. Assumption 6.2.4
assumes that the progression on the different topics is monotonic. If a student is quite good
on a first topic and quite bad on another one, it is unlikely (yet possible) that after a single
question on each topic, s/he masters the second one and not the first one.

Objective We consider a task as being completed when µi,t ≥ µ for a given threshold
µ . We will consider two related objectives. First, the simple objective is to maximize the
number of completed tasks after the horizon T ,

rT (π), ∑
i∈K

1 [µi,T+1 ≥ µ] .

With respect to this objective, we can define a reward for our POMDP associated to the
transition from state x to y,

ρ(x,y), 1 [x < µ ∧ y≥ µ] .

rT (π) is the sum of the reward,

rT (π) =
T

∑
t=1

ρ(µπ(t),t ,µπ(t),t+1)+ ∑
i∈K

1 [µi,1 ≥ µ] . (6.2)

Notice that the second sum is the sum of the arms which are initially above the threshold:
it does not depend on the agent’s action. Second, the cumulative objective is to optimize,

JT (π) =
T

∑
t=1

rt(π).

The reward at each round is rt(π). Thus, a validated task at the round t yields cumulatively
a reward equal to the remaining number of rounds T − t. For Intelligent Tutoring Systems,
a completed topic may trigger new teaching actions such as starting new topics. The sooner
we can trigger these actions, the better it is. It suggests that it is not only important to
master topics at the end of the studying session, but also to master them as fast as possible.

R For both objectives, the reward at any round t is a function of the state (current or
previous) which is itself partially observable. One can hardly reconstruct the reward

6.2 Setup 167

at the round t from the unique observation sample at this same round. Indeed, if a
student answers correctly to a question, we may have chosen a topic which is already
mastered by the student (no reward for the action) or we may have chosen a topic
which will be mastered very soon (good reward for the action). It contrasts with
the cumulative reward in the multi-armed bandits paradigm, where the relationship
between observation and reward is more straightforward.

R Our objectives rT and JT are random quantities. In the following, we will aim at
maximizing their expected values, where the expectation is on the random evolution
of the Markov Chains, the random noise in the observation, and the potential random-
ization of the agent’s strategy. In particular, we highlighted that Assumption 6.2.4 is
a "smooth in probability" assumption. Hence, even if abrupt progression is possible,
these paths will weigh little in the expected regret compared to smooth ones.

We give a consequence of Assumption 6.2.4 in terms of the number of rounds to reach the
threshold µ ,

Definition 6.2.1 Let (µi (n))n∈N a Markov chain with transition probabilities T . We
define the stopping time,

τi ,min{τ ∈ N |µi (τ)≥ µ} ,

the number of pulls to reach the threshold µ . We also define,

τi,t ,max(τi−Ni, t−1,0) .

the remaining number of pulls at a round t after Ni, t pulls. We notice that τi = τi,0.

Let (Xn)n∈N a Markov Chain with X0 = x a transition probabilities T . We call,

τ(x),min{τ ∈ N |Xτ ≥ µ} .

Lemma 6.2.7 For any arm i, k ∈ N and t ∈ {1, . . . ,T},

P [τi,t = k|Ft] = P [τ (µi,t) = k|µi,t] .

Proof. It is equivalent to show that for all k,

P [τi,t ≥ k|Ft] = P [τ (µi,t)≥ k|µi,t] .

Notice that 1 [τi,t ≥ k] ⇐⇒ µi(Ni, t−1 + k)< µ . Hence,

P [τi,t ≥ k|Ft] = P [µi(Ni, t−1 + k)< µ|Ft] = FT kδµi,t
(µ).

We also have,

P [τ (µi,t)≥ k|µi,t] = P [Xk < µ|X0 = µi,t] = FT kδµi,t
(µ).

�

168 Chapter 6. Master topics as soon as possible

Lemma 6.2.8 If x≤ y, τ(x)� τ(y).

It further implies E [τ (x)]≥ E [τ (y)].

Proof. For any x ∈ R,

P [τ(x)≥ n] = P [Xn−1 < µ|X0 = x] = FT n−1δx
(µ) (6.3)

where the first equality is justified by the definition of τ(x) and Assumption 6.2.2. Using
Corollary 6.2.6, we show the stochastic dominance,

x≤ y =⇒ T n−1
δx �T n−1

δy =⇒ τ(x)� τ(y).

The last implication uses that P [τ(x)≥ n] = 1−Fτ(x)(n) ≥ P [τ(y)≥ n] = 1−Fτ(y)(n),
where the inequality comes from Equation 6.3. It implies that Fτ(x)(n)≤ Fτ(xy(n) which is
the definition of stochastic dominance.

For the expectation, we use the layer-cake representation together with Equation 6.3,

E [τ(x)] =
+∞

∑
n=1

P [τ(x)≥ n] =
+∞

∑
n=0

FT nδx(µ).

Hence, if x≤ y, then ∀n ∈ N, FT nδx(µ)≥ FT nδy(µ). Therefore,

E [τ(x)]≥ E [τ(y)]

where we used Corollary 6.2.6. �

6.3 Optimal Oracle: Focus on the largest under the threshold

6.3.1 The FLUT oracle

An oracle policy π̃ is a policy which has access to the current and past values of all arms
{µi,s}i∈K ,s≤t and to the transition matrix T . More precisely, we define the set of states at
any round t µµµ ttt = {µi,t}i∈K and the random variables known by an oracle at t,

Ft =
{
{µµµsss}1≤s≤t ,{is}1≤s≤t−1

}
.

Notice that the oracle does not have access to the future of the Markov Chain, and can only
make projections based on T and Ft .

We define the sets of arms under and above the threshold before the round t:

K −
t , {i ∈K |µi,t < µ}

K +
t , {i ∈K |µi,t ≥ µ} .

6.3 Optimal Oracle: Focus on the largest under the threshold 169

We describe Focus on the Largest Under the Threshold (FLUT) in Algorithm 9, an oracle
policy π̃? which selects at each round the arm with the largest state below the threshold µ .

Algorithm 9 Focus on the Largest Under the Threshold (FLUT or π̃?)
Require: µ

1: for t← 1,2, . . . do
2: RECEIVE µµµ ttt ←{µi,t}i∈K
3: K −

t ←{i ∈K |µi,t < µ}
4: if K −

t 6= {} then PULLa it ∈ argmaxi∈K −
t

µi,t ;
5: else PULL AT RANDOM it ∈K
6: end if
7: end for

aOne can choose the tie break selection rule arbitrarily, e.g. by selecting the arm with the smallest index.

R We note that π̃? is an oracle policy which does not use the knowledge of T . It is
similar to the optimal oracle for rotting bandits. It is an interesting feature as one can
hope to approximate T by simply estimating the state of the arms like in bandits, and
without caring about the transitions.

6.3.2 Optimality
Theorem 6.3.1 For any oracle policy π̃ and any round t,

rt(π̃
?)� rt(π̃).

Corollary 6.3.2 π̃? maximizes E [rt(π)] without the knowledge of the round t. There-
fore, it maximizes E [JT (π)] for any horizon T .

6.3.3 Proof of Theorem 6.3.1

Sketch

The proof is quite technical. We give here a sketch highlighting the main difficulties. In
the spirit of the Bellman Equation (Bellman 1966), our proof shows recursively from the
end that selecting the largest arm under the threshold is the best thing to do concerning
rt:T , the future reward collected from the round t. More precisely, "the best thing to do"
means that π̃? maximizes P [rt:T (π̃)≥ r|Ft] for any reward objective r.

The initialization at the last round is rather straightforward given our assumptions. Indeed,
according to Assumption 6.2.3, all the arms have the same transition operator. Moreover,
according to Assumption 6.2.4, the probability to reach any threshold in one step increases
with the value of the starting point. Hence, following FLUT maximizes the probability to

170 Chapter 6. Master topics as soon as possible

reach the threshold for the selected arm. Because the transitions are rested, we cannot bring
more than r = 1 arm above the threshold. Hence, FLUT maximizes P [rT :T (·)≥ 1|FT] =
P [rT :T (·) = 1|FT].

Then, we consider a round t such that FLUT is the best thing to do from t +1. Hence, we
compare FLUT which policies which follow any rule at t and then FLUT from t +1. We
split the possibilities in three: (1) either it ∈K +

t , or (2) it is in the r largest value below
the threshold at the round t, or (3) it is below this r-th value.

(1) Arguably, selecting an arm it ∈K +
t is totally useless because this arm is already above

the threshold and the transitions are rested (Assumption 6.2.1).

(2) In order to pass r arms above the threshold until the end of the game, π̃? first selects
repetitively the largest arm in K −

t until it reaches the threshold, then the second largest, etc.,

until the r-th. Hence, P [rt:T (π̃
?)≥ r|Ft] is equal to P

[
∑x∈Or(µµµttt)

τ(x)≤ T − t +1

∣∣∣∣∣Ft

]
,

that is, the probability that the sum of the remaining pulls to reach the threshold for the
r largest arms below the threshold1 is smaller than the remaining rounds (Lemma 6.3.4).
Since the transitions are rested and Markov, the order of the pulls does not matter: it is
necessary to advance the r Markov chains to get at least r rewards. Hence, selecting any
arm among the r largest values below the threshold and then follow π̃? from t +1 achieves
the same P [rt:T (·)≥ r|Ft] than π̃?.

(3) Comparing FLUT with the case where we pull an arm below the r-th value of K −
t is the

most difficult part of the proof. However, it seems quite intuitive with our Assumption 6.2.4
that pulling an arm that is among the furthest to the threshold is not optimal.

According to Lemma 6.3.4 and Corollary 6.3.5, if we follow FLUT after t + 1, the only
thing that matter with respect to P [rt:T (·)≥ r|Ft] is the r largest states of K −

t+1 (or the
r−1 largest states of K −

t+1 if the arm that we select at the round t reaches the threshold).
The larger are those states, the higher is P [rt+1:T (·)≥ r|Ft+1]. After the t-th round, we
move two different values below the threshold if we follow FLUT or if we take an other
arm. It is hard to compare these two states in terms of potential reward. The trick is to use
the last result: π̃? performs the same than the policy which selects the r-th value of K −

t
(with respect to P [rt:T (·)≥ r|Ft]).

If we compare to this policy instead of FLUT, the r largest states of K −
t+1 are the r− 1

largest states of K −
t and an other value. If we pull an arm ir with the r-th value below the

threshold at the round t, then this other value is µir,t+1. If we pull an arm it below µir,t ,
then the other value is max(µir,t ,µit ,t+1). We can compare the distributions associated to
these two random variables, and see that the first one stochastically dominates the other
one (thanks to Assumption 6.2.4).

In the two cases, P [rt:T (·)≥ r|Ft] is the expectation of P [rt+1:T (π̃
?)≥ r|Ft+1] over these

random variables. Since P [rt+1:T (π̃
?)≥ r|Ft+1] is non-decreasing with the r largest values

1Or(µµµ ttt) is the set of r largest values below the threshold at any round t.

6.3 Optimal Oracle: Focus on the largest under the threshold 171

in K −
t , we can show that P [rt:T (π̃

?)≥ r|Ft]≥ P [rt:T (π̃)≥ r|Ft] thanks to Lemma 6.3.6.

It concludes the induction as it shows that for any arm choice at the round t, π̃? maximizes
P [rt:T (·)≥ r|Ft] for any r.

Proof. Introduction

According to the definition of the first order stochastic dominance (Equation 6.1), we want
to show that for all r ∈ N and for any oracle policy π̃ ,

P [rT (π̃
?)≥ r|F1]≥ P [rT (π̃)≥ r|F1] .

F1 represents indeed the information available to the oracle at the beginning of the game.
We recall the definition of ρ(x,y), 1 [x < µ ∧ y≥ µ]. We define,

rs:t(π) =
t

∑
t ′=s

ρ(µπ(t ′),t ′,µπ(t ′),t ′+1).

Using Equation 6.2, we can write,

rT (π̃) = r1:T (π̃)+ ∑
i∈K

1 [µi,1 ≥ µ] .

Since the above sum does not depend on the policy π̃ , we will show recursively from the
end t = T that for all r ∈ N that,

P [rt:T (π̃
?)≥ r|Ft]≥ P [rt:T (π̃)≥ r|Ft] .

Last round

At the last round t = T , the rT :T is equal to 1 if the selected arm is above the threshold and
else to 0. For r > 1 and r = 0, we have the trivial equalities,

P [rT :T (π̃)≥ 0|FT] = 1,
P [rT :T (π̃)≥ 2|FT] = 0.

For r = 1, if π̃(T) = iT ∈ K +
T , the probability of reaching µ with a new arm is null

because the arm is already above the threshold. Hence,

P
[
rT :T (π̃)≥ 1|FT ∧ iT ∈K +

T
]
= 0≤ P [rT :T (π̃

?)≥ 1|FT] .

If π̃(T) = iT ∈K −
T , we can use Assumption 6.2.4,

P
[
rT :T (π̃)≥ 1|FT ∧ iT ∈K −

T
]
= P

[
µiT ,T+1 ≥ µ|FT ∧ iT ∈K −

T
]

≤ P
[
µi?T ,T+1 ≥ µ|FT ∧ iT = i?T

]
= P [rT :T (π̃

?)≥ 1|FT] .

Indeed, by definition of i?T , µi?T ,T ≥ µiT ,T if iT ∈K −
T . Therefore, we do have for all r and

any oracle policy π̃ ,

P [rT :T (π̃
?)≥ r|FT]≥ P [rT :T (π̃)≥ r|FT] .

172 Chapter 6. Master topics as soon as possible

Backward induction

Now, we consider a round t such that, for any π̃ and r,

P [rt+1:T (π̃
?)≥ r|Ft+1]≥ P [rt+1:T (π̃)≥ r|Ft+1] . (6.4)

We want to show that this relation is still true at the round t,

P [rt:T (π̃
?)≥ r|Ft]≥ P [rt:T (π̃)≥ r|Ft] .

We consider the policy π̃t which follows π̃? except at the round t where it follows π̃ . Thus,
for any r ∈ N,

P [rt+1:T (π̃t)≥ r|Ft+1] = P [rt+1:T (π̃
?)≥ r|Ft+1]≥ P [rt+1:T (π̃)≥ r|Ft+1] . (6.5)

The first equality is justified by the fact that the two policies behave the same from t +1,
hence they collect the same reward. The inequality follows from Equation 6.4.

P [rt:T (π̃)≥ r|Ft] =E [1 [µit ,t+1 ≥ µ]P [rt+1:T (π̃)≥ r−1|Ft+1] |Ft ∧ it ∼ π̃(t)]
+E [1 [µit ,t+1 < µ]P [rt+1:T (π̃)≥ r|Ft+1] |Ft ∧ it ∼ π̃(t)]
≤E [1 [µit ,t+1 ≥ µ]P [rt+1:T (π̃t)≥ r−1|Ft+1] |Ft ∧ it ∼ π̃(t)]
+E [1 [µit ,t+1 < µ]P [rt+1:T (π̃t)≥ r|Ft+1] |Ft ∧ it ∼ π̃(t)]

=P [rt:T (π̃t)≥ r|Ft] . (6.6)

The inequality follows from Equation 6.5: following the π̃? (or equivalently π̃t) is optimal
after round t. The equalities mean that either arm it reaches the threshold at the round t
and we still need r−1 arms to reach the threshold after the round t, or arm it do not reach
the threshold and we need r arms to reach the threshold after t. To conclude the proof, we
need to show that,

P [rt:T (π̃t)≥ r|Ft]≤ P [rt:T (π̃
?)≥ r|Ft] .

We call Or(µµµ ttt) the r largest states below the threshold at the round t (for r ≤ |K −
t |). We

call µr
t , minOr(µµµ ttt), the r-th largest value below the threshold. We call µµµ iii

ttt , the set of
states at t excluding the state of i. Hence, Or

(
µµµ iii

ttt
)

is the set of the r largest states below
the threshold excluding the state of i. We distinguish three cases: when µit ,t ∈]−∞,µr

t [,
µit ,t ∈ [µr

t ,µ[and µit ,t ∈ [µ,+∞[. We call K r
t , {i ∈K |µi,t ∈ Or(µµµ ttt)} ⊂K −

t such that
the three aforementioned cases corresponds to respectively it ∈K −

t \K r
t , it ∈K r

t and
it ∈K +

t .

Backward induction: the selected arm is in the r largest values below the threshold

We will start by considering the case it ∈ K r
t . It is equivalent to µit ,t−1 ∈ Or(µµµ ttt).

Lemma 6.3.4 becomes,

P [rt:T (π̃t)≥ r|Ft ∧ it ∈K r
t] = P

[
∑

x∈Or(µµµttt)

τ(x)≤ T − t +1

∣∣∣∣∣Ft

]
.

6.3 Optimal Oracle: Focus on the largest under the threshold 173

Notice that this expression is independent of it ∈K r
t . Therefore, since i?t ∈K r

t for any r,
we have that,

P [rt:T (π̃t)≥ r|Ft ∧ it ∈K r
t] = P [rt:T (π̃

?)≥ r|Ft] . (6.7)

Backward induction: the selected arm is below the r-th largest value below the
threshold

We consider the case it ∈K −
t \K r

t . Hence, µit ,t /∈Or−1(µµµ ttt), which implies Or−1(µµµ
iiittt
ttt) =

Or−1(µµµ ttt). Moreover, since the setup is rested, Or−1(µµµ
iiittt
ttt+++111) = Or−1(µµµ

iiittt
ttt) if it is selected at

the round t. Hence, Or−1(µµµ
iiittt
ttt+++111) = Or−1(µµµ ttt). Thus, we can rewrite Lemma 6.3.4,

P
[
rt:T (π̃t)≥ r|Ft ∧ it ∈K −

t \K r
t
]

= P

[
τ(max(µr

t ,µit ,t+1))+ ∑
x∈Or−1(µµµttt)

τ(x)≤ T − t

∣∣∣∣∣Ft ∧ it ∈K −
t \K r

t

]
. (6.8)

Let ir ∈K , an arm with value µr
t−1 at the beginning of the round t. We have that,

P [rt:T (π̃
?)≥ r|Ft] = P [rt:T (π̃t)≥ r|Ft ∧ it = ir]

= P

[
τ(µir,t+1)+ ∑

x∈Or−1(µµµttt)

τ(x)≤ T − t

∣∣∣∣∣Ft ∧ it = ir

]
. (6.9)

The first equation follows from Equation 6.7. The second uses Lemma 6.3.4 with µir,t+1 ≥
µir,t = µr

t . We also use that with the same argument Or−1(µµµ
iiirrr
ttt) = Or−1(µµµ ttt) because ir

corresponds to the r-th value below the threshold. Hence, both P [rt:T (π̃
?)≥ r|Ft] and

P [rt:T (π̃t)≥ r|Ft] can be written as the mean of the function,

f (y) = P

[
τ(y)+ ∑

x∈Or−1(µµµttt)

τ(x)≤ T − t

∣∣∣∣∣Ft

]
,

according to different probability densities. Because f is non-decreasing (Corollary 6.3.5),
we only have to show that the probability density associated to π̃? stochastically dominates
the probability density associated π̃t (Lemma 6.3.6). The probability density associated to
π̃? in Equation 6.9 is,

p?(y) = P [µir,t+1 = y|Ft ∧ it = ir] = T δµir ,t
.

The probability density associated to arm it in Equation 6.8 is,

pit (y) = P
[
max(µit ,t+1,µ

r
t) = y|Ft ∧ it ∈K −

t \K r
t
]
.

174 Chapter 6. Master topics as soon as possible

In order to prove the stochastic dominance, we want to show that Fp? ≤ Fpit
. Notice that

pit is the rectified probability density of µit ,t+1, where the mass below µr
t is transferred at

µr
t . Hence, we can write its CDF as,

Fpit
(x) =

{
0, if x < µr

t

FT δµit ,t
(x), otherwise.

(6.10)

For x < µr
t ,

Fp?(x) = 0 = Fpit
(x). (6.11)

The first equality comes from Assumption 6.2.2: since the reward is non-decreasing we
have P [µir,t+1 < µir,t |Ft ∧ it = ir] = 0. The second equality comes from Equation 6.10.
For x≥ µr

t ,

∀x≥ µ
r
t ,Fp?(x) = FT δµir ,t

(x)≤ FT δµit ,t
(x) = Fpit

(x). (6.12)

where we use Assumption 6.2.4 and the fact that µit ,t ≤ µr
t . According to Equations 6.11

and 6.12, we do have Fp?(x) ≤ Fpit
(x) for all x which is the definition of stochastic

dominance: p? � pit . Therefore, because f is non decreasing (see Corollary 6.3.5 and
Lemma 6.3.6), we conclude,

P [rt:T (π̃
?)≥ r|Ft] =Ep? [f]≥Epit

[f] = P
[
rt:T (π̃t)≥ r|Ft ∧ it ∈K −

t \K r
t
]
. (6.13)

Backward induction: the selected arm is above the threshold

We consider the case µit ,1 > µ . Intuitively, selecting such arm is useless, because it does
not bring any new arm above or closer to the threshold. We write formally this argument,

P
[
rt:T (π̃t)≥ r|Ft ∧ it ∈K +

t
]
= P [P [rt+1:T (π̃t)≥ r|Ft+1] |Ft]

= P

P
 ∑

x∈Or(µµµttt+++111)

τ(x)≤ T − t|Ft+1

 |Ft

= P

[
∑

x∈Or(µµµttt)

τ(x)≤ T − t|Ft

]

≤ P

[
∑

x∈Or(µµµttt)

τ(x)≤ T − t +1|Ft

]
= P [rt:T (π̃

?)≥ r|Ft] . (6.14)

The first equation means that no arm goes above the threshold at the round t. The
second equation follows from Lemma 6.3.4. The third equation follows because by the
rested assumption all the arm i ∈ K −

t keep their value between t and t + 1. Hence,
Or(µµµ ttt) = Or(µµµ ttt+++111) for all r. The inequation follows because the event in the RHS
probability include the event in the LHS probability. Finally, we use again Lemma 6.3.4.

6.3 Optimal Oracle: Focus on the largest under the threshold 175

Conclusion

Putting together Equations 6.7, 6.13 and 6.14, we can write,

P [rt:T (π̃
?)≥ r|Ft]≥ P [rt:T (π̃t)≥ r|Ft ∧ it] .

Hence, if we average the RHS on it ∼ π̃t(t) (notice that π̃t(t) is a Ft-measurable distribution
by definition of Ft , we have,

P [rt:T (π̃
?)≥ r|Ft]≥ P [rt:T (π̃t)≥ r|Ft] .

Now, we can use Equation 6.6 to conclude the induction,

P [r1:T (π̃
?)≥ r|Ft]≥ P [rt:T (π̃)≥ r|Ft] .

Hence, using the induction,

P [r1:T (π̃
?)≥ r|F1]≥ P [r1:T (π̃)≥ r|F1] .

This statement concludes the proof, as we noticed in the Introduction. �

6.3.4 Technical Lemmas

Lemma 6.3.3 Let A a random variable (Ft ∧ it)-measurable. Let it the selected arm by π̃

at a round t. Then,

P [τ (µit ,t+1)≤ A|Ft ∧ it] = P [τ (µit ,t)≤ A+1|Ft ∧ it] .

Proof. According to Lemma 6.2.7,

P [τ (µit ,t+1)≤ A|Ft ∧ it] = P [τit ,t+1 ≤ A|Ft ∧ it] .

If arm it is selected at a round t,

τit ,t+1 , τit −Nit ,t+1 = τit − (Nit ,t +1) = τit ,t−1.

Hence, we can write,

P [τit ,t+1 ≤ A|Ft ∧ it] = P [τit ,t ≤ A+1|Ft ∧ it]
= P [τ (µit ,t)≤ A+1|Ft ∧ it] .

�

Lemma 6.3.4 We define the number of arms which passes the threshold between rounds t
and T (included) when we follow policy π ,

rt:T (π), ∑
i∈K

1 [µi,T+1 ≥ µ ∧µi,t < µ] . (6.15)

176 Chapter 6. Master topics as soon as possible

Let π̃t the policy which follows π̃? except at the round t where it uses any decision rule
such that it ∈K −

t . We call Or(µµµ ttt), the set of the r ∈
{

1, . . . , |K −
t |
}

largest arm below
the threshold at the round t. We call µr

t = minOr(µµµ ttt), the r-th value below the threshold.
We call Or−1(µµµ

iiittt
ttt), the set of the r−1 largest values below µ at the round t excluding µit ,t .

Then,

P
[
rt:T (π̃t)≥ r|Ft ∧ it ∈K −

t
]

= P

τ(max(µit ,t+1,µ
r
t))+ ∑

x∈Or−1(µµµ
iiittt
ttt)

τ(x)≤ T − t

∣∣∣∣∣Ft ∧ it ∈K −
t

 .
Let K r

t ,
{

i ∈K |µi,t−1 ∈ Or(µµµ ttt)
}
⊂K −

t , the set of arms below the threshold with a
state larger or equal than µr

t−1. In the special case where it ∈K r
t (e.g. π̃?), we have,

P [rt:T (π̃t)≥ r|Ft ∧ it ∈K r
t] = P

[
∑

x∈Or(µµµttt)

τ(x)≤ T − t +1

∣∣∣∣∣Ft

]
.

Proof. We will prove this claim by induction from t = T . For r = 1, we have,

P
[
rT :T (π̃T)≥ 1|FT ∧ iT ∈K −

T
]

= P
[
rT :T (π̃T) = 1|FT ∧ iT ∈K −

T
]

= P
[
µiT ,T+1 ≥ µ|FT ∧ iT ∈K −

T
]

= P
[
τ
(
max

(
µiT ,T+1,µ

1
T
))

= 0|FT ∧ iT ∈K −
T
]

= P

τ
(
max

(
µiT ,T+1,µ

1
T
))

+ ∑
x∈O0

(
µµµ

iiiTTT
TTT

)τ(x)≤ 0

∣∣∣∣∣FT ∧ iT ∈K −
T

 .
The first equality is justified because, by the rested Assumption 6.2.1, at most one arm
can pass above the threshold during a single round. The only arm which can go above
the threshold is the selected one, that is iT , which leads to the second equation. The
third equation uses that τ

(
max

(
µiT ,T+1,µ

1
T
))

= 0 ⇐⇒ max
(
µiT ,T+1,µ

1
T
)
≥ µ ⇐⇒

µiT ,T+1 ≥ µ because µ1
T < µ by definition of µr

t . Last, we use that O0

(
µµµ

iiiTTT
TTT

)
= {} and

that τ(·)≥ 0 by definition of τ .

For π̃?, which is the special case where iT = i?T ∈K 1
T , we can write,

P [rT :T (π̃
?)≥ 1|FT] = P [rT :T (π̃T)≥ 1|FT ∧ iT = i?T]

= P

 ∑
x∈O1(µµµTTT+++111)

τ(x)≤ 0

∣∣∣∣∣FT ∧ iT = i?T

= P

[
∑

x∈O1(µµµTTT)

τ(x)≤ 1

∣∣∣∣∣FT

]
.

6.3 Optimal Oracle: Focus on the largest under the threshold 177

The second equation follows from O1
(
µµµTTT+++111

)
=
{

µi?T ,T

}
. The third equation uses

Lemma 6.3.3 since there is only one element in the sum.

Last, we notice that for r > 1,

P
[
rT :T (π̃T)> 1|FT ∧ iT ∈K −

T
]
= 0,

P

τ
(
max

(
µiT ,T+1,µ

1
T
))

+ ∑
x∈Or−1

(
µµµ

iiiTTT
TTT

)τ(x)≤ 0

∣∣∣∣∣FT ∧ iT ∈K −
T

= 0,

P

[
∑

x∈Or(µµµTTT)

τ(x)≤ 1

∣∣∣∣∣FT

]
= 0.

First, because π̃T cannot bring more than one arm above the threshold in one round. The
second and third equations follows because r > 1 and, for any r′ and X,

∑
x∈Or′(X)

τ(x)≥ |Or′ (X) |= r′.

Indeed, notice that τ(x)≥ 1 when x< µ , which is the case by definition of Or(·). Therefore,
we have the desired equations for all r ≤ |K −

T | at the round T .

By induction, we assume a round t such that π̃? verifies for all r ≤ |K −
t+1|,

P [rt+1:T (π̃
?)≥ r|Ft+1] = P

 ∑
x∈Or(µµµttt+++111)

τ(x)≤ T − t

∣∣∣∣∣Ft+1

 .

Since π̃t follows the oracle after the round t, we have,

P [rt+1:T (π̃t)≥ r|Ft+1] = P

 ∑
x∈Or(µµµttt+++111)

τ(x)≤ T − t

∣∣∣∣∣Ft+1

 . (6.16)

We decompose the probability at the round t on either arm it reaches the threshold at the
round t or not,

P
[
rt:T (π̃t)≥ r|Ft ∧ it ∈K −

t
]

= E
[
1 [µit ,t+1 ≥ µ]P [rt+1:T (π̃t)≥ r−1|Ft+1] |Ft ∧ it ∈K −

t
]

+E
[
1 [µit ,t+1 < µ]P [rt+1:T (π̃t)≥ r|Ft+1] |Ft ∧ it ∈K −

t
]
. (6.17)

178 Chapter 6. Master topics as soon as possible

We start with the first term in the sum. When µit ,t+1 ≥ µ , we can write,

P [rt+1:T (π̃t)≥ r−1|Ft+1] (6.18)

= P

 ∑
x∈Or−1(µµµttt+++111)

τ(x)≤ T − t

∣∣∣∣∣Ft+1

= P

τ(max(µit ,t+1,µ
r
t))+ ∑

x∈Or−1(µµµttt+++111)

τ(x)≤ T − t

∣∣∣∣∣Ft+1

= P

τ(max(µit ,t+1,µ
r
t))+ ∑

x∈Or−1(µµµ
iiittt
ttt)

τ(x)≤ T − t

∣∣∣∣∣Ft+1

 . (6.19)

The first equality follows from Equation 6.16. The second equality follows because
τ(max µit ,t+1,µ

r
t) = τ(µit ,t+1) = 0 when µit ,t+1 ≥ µ > µr

t . The last equality follows
because since µit ,t+1 ≥ µ =⇒ µit ,t+1 /∈Or−1(µµµ ttt+++111). Hence, Or−1(µµµ ttt+++111) = Or−1(µµµ

iiittt
ttt+++111).

Moreover, because the transitions are rested, Or−1(µµµ
iiittt
ttt+++111) = Or−1(µµµ

iiittt
ttt).

For the second term in the sum - when µit ,t+1 < µ - we can write,

P [rt+1:T (π̃t)≥ r|Ft+1]

= P

 ∑
x∈Or(µµµttt+++111)

τ(x)≤ T − t

∣∣∣∣∣Ft+1

= P

τ(max(µit ,t+1,µ
r
t))+ ∑

x∈Or−1(µµµ
iiittt
ttt)

τ(x)≤ T − t

∣∣∣∣∣Ft+1

 . (6.20)

Again, we use Equation 6.16. Then, we cut Or(µµµ ttt+++111) in two: On the one hand, the
r−1 largest values below the threshold excepted µit ,t , that is Or−1(µµµ

iiittt
ttt+++111). It is equal to

Or−1(µµµ
iiittt
ttt) by the rested assumption. On the other hand, the remaining value which is

µit ,t+1 if µit ,t+1≥ µr
t+1, or else µr

t+1. In that second case, we have that µr
t+1 > µit ,t+1≥ µit ,t .

Therefore, by the rested assumption, the r largest values below the threshold remain the
same between t and t +1. Hence, we have that µr

t+1 = µr
t .

Notice that Equations 6.19 and 6.20 leads to the same result, independently on whether
µit ,t+1 ≥ µ or not. Hence, we can rewrite Equation 6.17 to conclude the first part of the
Lemma,

P
[
rt:T (π̃t)≥ r|Ft ∧ it ∈K −

t
]

= P

τ(max(µit ,t+1,µ
r
t))+ ∑

x∈Or−1(µµµ
iiittt
ttt)

τ(x)≤ T − t

∣∣∣∣∣Ft ∧ it ∈K −
t

 . (6.21)

Now, we look at the special case where π̃t selects an arm in K r
t . This is for instance the

6.3 Optimal Oracle: Focus on the largest under the threshold 179

case of π̃?. We can rewrite Equation 6.21,

P [rt:T (π̃t)≥ r|Ft ∧ it ∈K r
t]

= P

τ(µit ,t+1)+ ∑
x∈Or−1(µµµ

iiittt
ttt)

τ(x)≤ T − t

∣∣∣∣∣Ft ∧ it ∈K r
t

= P

τ(µit ,t)+ ∑
x∈Or−1(µµµ

iiittt
ttt)

τ(x)≤ T − t +1

∣∣∣∣∣Ft ∧ it ∈K r
t

= P

[
∑

x∈Or(µµµttt)

τ(x)≤ T − t +1

∣∣∣∣∣Ft

]
.

The first equation follows from Equation 6.21 with it ∈ K r
t =⇒ µit ,t+1 ≥ µit ,t > µr

t .
The second equation follows by Lemma 6.3.3. Indeed, T − (t +1)−∑x∈Or−1(µµµ

iiittt
ttt)

τ(x) is a
(Ft ∧ it)-measurable random variable. The last equation is justified by µit ,t ∈ Or(µµµ ttt) =⇒
Or(µµµ ttt) = Or−1(µµµ

iiittt
ttt)∪{µit ,t}. Last, we notice that ∑x∈Or(µµµttt)

τ(x) is Ft-measurable and
does not depend on which it ∈K r

t , thus we drop the it dependency. �

Corollary 6.3.5 P [rt:T (π̃
?)≥ r|Ft] = f (Or(µµµ ttt)), with

f (x), P
[
∑

r
j=1τ(x j)≤ T − t +1

]
a non-decreasing function of its r variables.

Proof. According to Lemma 6.3.4,

P [rt:T (π̃
?)≥ r|Ft] = P

[
∑

x∈Or(µµµttt)

τ(x)≤ T − t +1

∣∣∣∣∣Ft

]

= P

[
∑

x∈Or(µµµttt)

τ(x)≤ T − t +1

∣∣∣∣∣Or(µµµ ttt)

]
.

Indeed 1

[
∑x∈Or(µµµttt)

τ(x)≤ T − t +1
]

is independent of Ft given Or(µµµ ttt). Hence,

P [rt:T (π̃
?)≥ r|Ft] is a function of the r largest states below µ . We study the CDF

of the random variable ∑x∈Or(µµµttt)
τ(x) given Or(µµµ ttt) that is,

fm(x1, . . . ,xr) = P

[
r

∑
j=1

τ(x j)≤ m

]
.

Notice that P [rt:T (π̃
?)≥ r|Ft] = fT−t+1(Or(µµµ ttt)). We want to show that fm is non-

decreasing with each variable. Let’s consider the i-th variable. We use that the probability
of the sum of independent variables is the convolution of probabilities,

fm(x1, . . . ,xr) =
m

∑
k=0

P

[
r

∑
j 6=i

τ(x j) = k

]
∗P [τ(xi)≤ m− k] .

180 Chapter 6. Master topics as soon as possible

Hence, fm is the sum of non-decreasing functions of xi. Hence, P [rt:T (π̃
?)≥ r|Ft] is non

decreasing with respect to any variable µ i
t ∈ Or(µµµ ttt) (the others being fixed). �

Lemma 6.3.6 Let f a non-decreasing function. Let X and Y two random variables with
probability densities

{
px, py

}
such that px � py. Then,

E [f (X)]≥ E [f (Y)] .

Proof. This is a standard result for stochastic dominance that we show for completion.
The key argument is that stochastic dominance implies a monotone coupling between
the two distributions. Indeed, let X(z) = F−1

px
(z) and Y (z) = F−1

py
(z) with z a random

variable uniformly drawn in [0,1]. We do have that X and Y are drawn with respective
probability px and py. Moreover, since Fpx ≤ Fpy (stochastic dominance), we can write
that X(z)≥ Y (z).

Now we consider the expectation of a non decreasing function f ,

E [f (X)− f (Y)] =
∫ 1

0
f (X(z))− f (Y (z))dz≥ 0.

�

6.4 What does random progression mean?

One of the main differences with rotting bandits is that evolution is not deterministic
anymore. From the formal point of view, it is an extension of the setup, as deterministic
evolution is a special case of stochastic evolution. Yet, it is not clear what is the meaning
of a random progression of the student. In this section, we give different interpretations of
the transition operator T and we discuss the possibility to measure it and test our different
assumptions.

Uncertainty is often modeled with classical tools from the probability theory. As noticed by
Lavenant and Aït-Kaci (2019), this theory does not provide a meaning to what probabilities
mean. In fact, it does not even provide a procedure to assign probabilities in practice.
It is merely a theory of how we can compute together probabilities to determine other
probabilities. Lavenant and Aït-Kaci (2019) review three ways to assign a probability: the
classical one, the frequentist one, and the subjectivist one.

The classical conception uses the indifference principle, which assumes that there exist
some base events - the issues - which are equiprobable, and hence, one should count the
number of issues that realize an event and divide by the total number of issues to get
its probability. A classical example is the throw of a dice where we assume that each
outcome has a probability 1/6. Notice that the characterization of what are the equiprobable
issues does not come from the probability theory. For instance, we can assume that the 11
outcomes of the sum of two dices are equiprobable and accurately use the probability theory.
Yet, such theory will lead to wrong predictions when we compare to what happens in the

6.4 What does random progression mean? 181

real world 2. The fact that the correct equiprobable issues for two dices are the product
ensemble of the ensembles of issues of each dice comes from external considerations:
the symmetry in the geometry of one dice, the chaotic movement of rolling dices which
"compensates" the fact that the dices are thrown together, etc. Can we use this classical
conception to assign our probabilities T ? The example of the sum of two dices tells us
that it is not because we don’t know that we should assume uniform probability. The
power of the classical method comes from the potential power of the indifference principle
for the specific setup. It is not because physicists have no idea about how atoms in a gas
are dispatched that they can make accurate predictions. It is in fact because they have a
very accurate idea - all the micro configurations of atoms in a gas are equally likely - that
statistical physics can make accurate predictions.

The frequentist conception - arguably the most well known in the bandits’ community -
defines the probability empirically as the limit of the observed frequency of the outcome of
a given protocol. Notice that this is a definition, not a Theorem (we refer to the discussion
about the status of the law of large numbers with respect to the frequentist interpretation
by Lavenant and Aït-Kaci (2019)). It is only the repetition of the protocol which gives a
sense - and value - to a probability.

In our context, we do have a protocol: each incoming student on the website is a new
realization of the protocol. In the frequentist interpretation, the transition probabilities
T (x,x′) should be interpreted as the fraction of students that reach level x′ after one
question on the topic where there were at level x. Hence, maximizing our objectives in
expectation means that we maximize the objective on average across the population of
students.

The frequentist interpretation is often believed to be the most scientific due to the elegant
way it arranges facts, experimental setup, and theory. However, relating probabilistic
models to objective reality is not always straightforward. Assuming that the states x and x′

is observable (they are not) and that we do have many students at each level x (we don’t,
since there is an infinite number of x), we would be able to estimate T (x,x′) by simply
measuring the fraction of incoming students. If we want to actually test our assumptions
on T for the frequentist interpretation, one should be able to evaluate the transition
model under partial observability and continuous state space. This is not a straightforward
operation (Shani et al. 2005). In fact, before the listed Assumptions 6.2.1 to 6.2.4, we
assume that the future is independent of the past given the present (the Markov property).
While this assumption is popular, it is rarely tested (Bickenbach and Bode 2001), and,
again, partial observability and continuous state space make tests more challenging.

There also exist subjective interpretations of probabilities. For instance, Lavenant and
Aït-Kaci (2019) advertise the interpretation of De Finetti (1972): probabilities are the
amount an individual is ready to bet on an event if they are rewarded by one if the event
occurs. This interpretation is antirealistic as a probability does not have to match the facts

2It is not clear what is a "wrong prediction" in an uncertain world. Indeed, when we try to relate
probabilities to facts, the probability theory always says that facts are possible. Hence, to make a probabilistic
theory testable (or refutable), it is philosophically necessary to interpret very likely / unlikely events as
certain / uncertain. This is what Emile Borel calls the "loi unique du hasard" (unique law of chance).

182 Chapter 6. Master topics as soon as possible

in any way: there is no need for the gambler to be good. The interest of this interpretation
is that we can recover the rules of probability calculus by assuming rational gambler. For
instance, the fact that probabilities are normalized to one is a consequence that no one
wants to accept a bet where he or she is sure to lose (for a well-chosen weighting scheme on
the different bets). In this interpretation, probability theory is a way to enforce coherence
in one’s system of belief. For instance, our Theorem 6.3.1 states that if the bets we are
ready to accept on the student progression satisfies our different assumptions then we
should accept a better odds for the bet "policy π̃? will achieve at least r rewards" than for
"any other policy π̃ will achieve at least r rewards".

6.5 Learning Perspectives

6.5.1 Regret

Like in the previous chapters, we define the cumulative regret with respect to the optimal
policy,

Rc
T (π), E [JT (π̃

?)]− JT (π).

We also define the simple regret,

Rs
T (π), E [rT (π̃

?)]− rT (π).

6.5.2 Counter-examples and a new learning assumption

We present two counter-examples which shows that the regret can scale linearly with T
when the arms are allowed to stagnate.

Counter-example 1: Stagnating arms near the threshold

We consider a two-arm game with deterministic transitions: each pull add a quantity ε > 0
to the arm’s state,

∀i ∈K , ∀n ∈ {1, . . . ,T} , µi(n+1) = µi(n)+ ε.

It verifies all our Assumptions 6.2.1 to 6.2.4. We consider two sets of initial conditions,

µ
1
1 (0) = µ, µ

1
2 (0) = µ− 2T ε

3
, (6.22)

µ
2
1 (0) = µ− (T +1)ε

3
, µ

2
2 (0) = µ− 2T ε

3
· (6.23)

On the problem 1 (Eq. 6.22), π̃? pulls arm 2 d2T/3e times. Then, all the arms are above
the threshold and π̃? plays randomly. Hence, rT (π̃

?) = 2 and JT (π̃
?) = T + bT/3c. On the

problem 2 (Eq. 6.23), π̃? pulls arm 1 dT+1/3e times and then arm 2 until the end of the
game. Hence, rT (π̃

?) = 1 and JT (π̃
?) = T −bT+1/3c.

6.5 Learning Perspectives 183

We consider the case ε→ 0. If N1,T ≥dT+1/3e on problem 1, Rc
T (π)= bT/3c and Rs

T (π)= 1.
Moreover, if N1,T < dT+1/3e on problem 2, Rc

T (π)≥ d2T/3e−dT+1/3e (Rs
T (π) can take the

value 0 or 1). For ε small enough, the two problems cannot be distinguished in the presence
of noise (σ > 0) and hence, any algorithm would suffer linear regret in the worst-case.

Counter-example 2: Infinitely close arms with diverging behaviors

We consider a two-arm game with deterministic transitions:

∀i ∈K , ∀n ∈ {1, . . . ,T} , µi(n+1) = f (µi(n)) with f (x) =

0 if x = 0
x+ ε if x≤ 3T ε

4
µ otherwise

·

We consider the following initial states,

µ1(0) = 0, µ2(0) = ε.

Hence, arm 1 is stationary and arm 2 will need
⌈3T

4

⌉
− 1 pulls to reach the threshold.

Hence, JT (π̃
?)∼ T/4 and rT (π̃

?) = 1.

For ε small enough, the two arms cannot be distinguished with reasonable confidence
before arm 2 reaches the threshold. Since we cannot pull both arms ∼ 3T/4, we cannot do
much better than betting on one of the arms, and suffering RT (π)∼ T/4 in half of the cases.

A new assumption

The two counter-examples show that stagnation is a problem for learning. We make a new
assumption to limit this kind of behavior,

Assumption 6.5.1 Let ε > 0. Let y≤ x+ ε . Then, T (x,y) = 0.

Notice that this assumption is quite strong as it assumes that the selected state is always
progressing by at least ε . Instead, we could assume that the state progresses by at least ε

in expectation.

We hope to derive an ε-dependent lower bound by adapting the previous counter-examples.
However, we can already state that small values of ε correspond to the hardest cases. For
ε ∼ T−3/2, the worst-case regret is linear.

6.5.3 Focus on the Largest Under the Threshold with Exploration (FLUT-E)

Upper and lower confidence bounds on an increasing sequence

In Subsection 4.2.3, we use the fact that the rewards were decreasing in rotting bandits
to compute an upper-confidence bound on the value of the next pull. Following the same
idea, we use the increasing Assumption 6.2.2 to derive a lower-confidence bound on the
value of the last pull at a round t, and an upper-confidence bound on the value of the first
pull of each arm.

184 Chapter 6. Master topics as soon as possible

Estimators As in Subsection 4.1.3, we define the average of the last h observations of
arm i at time t for learning policy π as

µ̂
h
i (t,π),

1
h

t−1

∑
s=1

1(π (s)= i∧Ni,s>Ni,t−1−h)os,

and the average of the associated means as

µ
h
i (t,π),

1
h

t−1

∑
s=1

1(π (s)= i∧Ni,s>Ni, t−1−h)µi(Ni,s−1) .

Similarly, we also define the average of the first h observations of arm i at time t for policy
π as,

µ̂
1:h
i (t,π),

1
h

t−1

∑
s=1

1(π (s)= i∧Ni,s≤h)os,

and the average of the associated means as

µ
1:h
i (t,π),

1
h

t−1

∑
s=1

1(π (s)= i∧Ni,s≤h)µi(Ni,s−1) .

We recall that c(h,δ) =
√

2σ2 log(2/δ)/h. We define the ucb and lcb statistics,

ucb(i,δ) = min
h≤Ni,t−1

µ̂
1:h
i (t,π)+ c(h,δ),

lcb(i,δ) = max
h≤Ni,t−1

µ̂
h
i (t,π)− c(h,δ). (6.24)

FLUT-E algorithm

We present the Focus on the Largest Under the Threshold with Exploration (FLUT-E) in
Algorithm 10. During each phase p, FLUT-E (1) explore to find a good (hopefully, the
best) arm below the threshold; and (2) focus on this arm until we are sure enough that its
value is above the threshold.

At Line 9, the algorithm estimates K −
t . More precisely, it returns all the arms whose lcb

on their last value is above µ . It corresponds to the arms for which we are not sufficiently
sure that they are in K +

t . Since we want to stop pulling the arms in K +
t , it is important

to be confident that they indeed reach the threshold. That is why we discard ip if it is not

in K̂ −
t (Line 11). We also increase the phase counter p by the number of arms which are

detected above the threshold between t−1 and t (Line 10).

At Line 15, we select (if it exists) ip, an arm whose lcb on the last value is at most at a

distance ∆ from the best ucb among arms in K̂ −
t . By doing so, we guarantee that the

selected arm is not too far from the best arm under the threshold selected by FLUT.

6.5 Learning Perspectives 185

When this arm does not exist, we continue our round-robin exploration (Line 18). In
practice (or maybe in theory), it may be interesting to filter out the arms for which we are
sure that they are not among the best ones. For instance, we suggest restricting the round-
robin exploration to the arms in

{
i ∈ K̂ −

t |ucb(i,δT)≥max
j∈K̂ −

t
lcb(j,δT)

}
. Notice that

when there are no arms in this set, then there is at least one candidate for arm ip (Line 15).

Algorithm 10 Focus on the Largest Under the Threshold with Exploration (FLUT-E)

Require: µ , ∆, δT
1: p← 1
2: ip← Null

3: K̂ −
0 ←K

4: for t← 1,2, . . . ,K do . Pull each arm once
5: PULL it ← t; RECEIVE ot
6: end for
7: for t← K +1,K +2, . . . do
8: COMPUTE {lcb(i,δT),ucb(i,δT)}i,∈K . Equation 6.24

9: K̂ −
t ←{i ∈K | lcb(i,δT)≤ µ}

10: p← p+ |K̂ −
t−1 \ K̂

−
t |

11: if ip is not Null and ip /∈K −
t then

12: ip← Null
13: end if
14: if ip is Null then
15: ip ∈

{
i ∈ K̂ −

t |max
j∈K̂ −

t
ucb(j,δT)− lcb(i,δT)≤ ∆

}
a;

16: end if
17: if ip is Null then
18: it ∈ argmin

i∈K̂ −
t

Ni,t

19: else
20: it ← ip
21: end if
22: PULL it RECEIVE ot
23: end for

aOne can choose the tie break selection rule arbitrarily, e.g. by selecting the arm with the smallest index.

6.5.4 Regret upper bound perspectives

For simplicity, we consider the case where all the arms are below the threshold at the
beginning. Without loss of generality, we assume that arms are ordered by their starting
value.

Like in the previous chapters, we can design a high probability event such that our
estimators are well concentrated. On this high probability event, we know that arms which

186 Chapter 6. Master topics as soon as possible

are not in K̂ −
t are above the threshold. It can be interesting to upper-bound the expected

duration of the phases of FLUT-E compared to the ones of FLUT. The phase p of FLUT is
simply the number of rounds it takes to reach the threshold from µp(0). There are three
sources of overhead for the duration of the phase p of FLUT-E.

First, FLUT-E spends pulls in its exploration phase. The exploration stops when an arm
ip is found. Even in the case where the arms are near-stationary, the condition at Line 15
will be fulfilled when the confidence bound c(Nexpl,δT) becomes comparable with ∆. (We
conjecture : 4c(Nexpl,δT) ≤ ∆). It gives an upper-bound on the number of exploration
pulls Nexpl and finally on the delay KNexpl .

Second, the arm ip which is selected is not the best below the threshold as in FLUT. Yet,
we conjecture that µip(Ni, t)≥ µp(0)−∆. With the Assumption 6.5.1, an imprecision of
size ∆ costs ∆/ε in number of pulls. Notice that ∆ is a parameter of our algorithm, and we
should tune its value to balance the two aforementioned costs.

Third, in the learning setup, there is a delay to detect when an arm is above the threshold.
Thanks to our Assumption 6.5.1, the state cannot stay near µ for too long. After Ndetect
pulls, we conjecture that µ + Ndetectε/2− 2c(Ndetect ,δT) ≤ lcb(i,δT) due to this minimal
increase. Hence, the condition at Line 11 will be necessary fulfilled when Ndetectε has the
same order of magnitude than c(Ndetect ,δT).

We are still quite far to get an upper bound on Rc
T (or Rs

T). Indeed, we need to characterize
precisely how these overheads add together when we evaluate the total reward at round T .

6.6 Practical considerations for ITS applications

The fact that FLUT-E focuses on a given topic after the exploration phase is an interesting
feature for ITS applications. Yet, the initial exploration phase may be very long if we try
to learn from scratch for each student.

6.6.1 Including prior knowledge

If one topic is often easier than the others for students, we would like to use this prior
information to speed up the exploration. Using Bayesian statistics instead of frequentist
tools is a natural way to work with prior information (see Subsection 2.2.3 for the stationary
bandits case).

How can we learn the prior? Knowledge Tracing (Desmarais and Baker 2012) is the
application of (often online) supervised learning to the prediction of the student’s answer
given the question and past interactions. Wilson et al. (2016) design shallow models which
outperform deep networks (Piech et al. 2015; Khajah et al. 2016; Xiong et al. 2016) in their
experiments. These models use some variations of a classical student model - the item
response theory - with a Bayesian learning method. In its simplest form, Item Response

6.6 Practical considerations for ITS applications 187

Theory (Hambleton and Swaminathan 2013) associates to each student a proficiency θs
and to each exercise a difficulty di such that the difference θs−di is fed in a logistic model
to output the probability of success. Wilson et al. (2016) add a hierarchical Bayesian
structure: each item difficulty have a prior which depends on the topic difficulty which is a
parameter drawn from an uninformative Gaussian prior.

We could replace the frequentist confidence levels in FLUT-E by Bayesian credible intervals
on the parameters of a similar model. Indeed, we can estimate credible intervals with
MCMC sampling, which is often used in Bayesian learning (Andrieu et al. 2003). This
approach would incorporate prior knowledge (learned from the other students’ data) and
enable shared knowledge between arms.

6.6.2 The exercises population is finite

On Afterclasse, there are roughly 20 questions per couple topic-difficulty. Notice that our
confidence band is quite large for this number of samples: c(h = 20,δt = 10%) ∼ 0.16.
Hence, even if a student answers the 20 questions correctly, its lcb on the topic will be
smaller than 0.85. It is a problem if the targeted µ is above 0.85. We suggest using the
ratio of answered questions as a multiplicative factor in front of the confidence band in the
lcb / ucb definition (Equation 6.24). Hence, when a window h includes all the questions,
the associated confidence level becomes the empirical average (no uncertainty).

6.6.3 Tuning ∆ with ε

We have already noticed that ∆ should be tuned theoretically according to ε: the smaller
the ε , the more accurate we need to be in the exploration phase. However, in practice,
we do not know ε . We can estimate from data the average progression of students per
question, but (1) it is not the minimum progression, and (2) it is not student-specific.

We suggest to overestimate ε (and, hence, ∆) at the beginning of the game. It would reduce
the exploration phase and with the usage of prior information, it is even possible that the
algorithm directly starts to exploit an arm. We can decrease the value of ∆ if the student
starts to wheel-spin, that is when a phase lasts for too long. We believe that for an ITS
application it is indeed better to take a guess and start focusing on a topic, and explore only
if the student shows unexpected difficulties.

6.6.4 Managing difficulty with a Zone of Proximal Development

In Section 6.1, we mention that the Rotting Bandits framework can hardly take different
difficulties into account. In the current framework, we can use FLUT-E together with
the Zone of Proximal Development paradigm (Luckin 2001; Clement et al. 2015). The
arms are the different topic-difficulty pairs, but we locked the advanced difficulties at the
beginning. We unlock them when the student validates the easier difficulty associated with
that topic, that is when the easier arm is not in K̂ −

t .

IV

References . 191

References

References

– Tu n’as même pas appris le métier de tailleur ? dit-elle.
– Jamais, répondit K.
– Quelle est ta profession ?
– Arpenteur.
– Qu’est-ce là ?
K. le lui expliqua, l’explication la fit bâiller.

Franz Kafka, Le Château, Dernier Chapitre.

Abbasi-yadkori, Yasin, Dávid Pál, and Csaba Szepesvári (2011). “Improved Algorithms
for Linear Stochastic Bandits”. In: Advances in Neural Information Processing Systems
24. Edited by J Shawe-Taylor, R S Zemel, P L Bartlett, F Pereira, and K Q Weinberger.
Curran Associates, Inc., pages 2312–2320. URL: http://papers.nips.cc/paper/
4417-improved-algorithms-for-linear-stochastic-bandits.pdf (cited on
page 43).

Abe, Naoki and Philip M Long (1999). “Associative Reinforcement Learning Using Linear
Probabilistic Concepts”. In: Proceedings of the Sixteenth International Conference on
Machine Learning. ICML ’99. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., pages 3–11. ISBN: 1558606122 (cited on page 43).

Agarwal, Alekh, Haipeng Luo, Behnam Neyshabur, and Robert E Schapire (2017). “Cor-
ralling a band of bandit algorithms”. In: Conference on Learning Theory. PMLR,
pages 12–38 (cited on page 135).

Agrawal, Shipra and Navin Goyal (2013). “Further Optimal Regret Bounds for Thompson
Sampling”. In: Proceedings of the Sixteenth International Conference on Artificial
Intelligence and Statistics. Edited by Carlos M Carvalho and Pradeep Ravikumar.
Volume 31. Proceedings of Machine Learning Research. Scottsdale, Arizona, USA:
PMLR, pages 99–107. URL: http://proceedings.mlr.press/v31/agrawal13a.
html (cited on page 38).

Andrieu, Christophe, Nando De Freitas, Arnaud Doucet, and Michael I Jordan (2003). “An
introduction to MCMC for machine learning”. In: Machine learning 50.1-2, pages 5–43
(cited on pages 38, 187).

http://papers.nips.cc/paper/4417-improved-algorithms-for-linear-stochastic-bandits.pdf
http://papers.nips.cc/paper/4417-improved-algorithms-for-linear-stochastic-bandits.pdf
http://proceedings.mlr.press/v31/agrawal13a.html
http://proceedings.mlr.press/v31/agrawal13a.html

192 References

Astrom, Karl J (1965). “Optimal control of Markov processes with incomplete state
information”. In: Journal of mathematical analysis and applications 10.1, pages 174–
205 (cited on page 44).

Audibert, Jean-Yves and Sébastien Bubeck (2009). “Minimax policies for adversarial and
stochastic bandits”. In: Proceedings of the Conference on Learning Theory (COLT),
2009, pages 217–226. URL: https://hal-enpc.archives-ouvertes.fr/hal-
00834882 (cited on pages 37, 39, 85).

— (June 2010). “Best Arm Identification in Multi-Armed Bandits”. In: COLT - 23th
Conference on Learning Theory - 2010. Haifa, Israel, 13 p. URL: https://hal-
enpc.archives-ouvertes.fr/hal-00654404 (cited on page 48).

Audibert, Jean-Yves, Rémi Munos, and Csaba Szepesvári (Apr. 2009). “Exploration-
exploitation tradeoff using variance estimates in multi-armed bandits”. In: Theoretical
Computer Science 410.19, pages 1876–1902. ISSN: 03043975. DOI: 10.1016/j.tcs.
2009.01.016 (cited on page 36).

Auer, Peter (2002). “Using Confidence Bounds for Exploitation-Exploration Trade-offs”.
In: Journal of Machine Learning Research 3.Nov, pages 397–422. ISSN: ISSN 1533-
7928 (cited on page 43).

Auer, Peter, Nicolò Cesa-Bianchi, and Paul Fischer (May 2002). “Finite-time analysis of
the multiarmed bandit problem”. In: Machine Learning 47.2-3, pages 235–256. ISSN:
08856125. DOI: 10.1023/A:1013689704352 (cited on pages 38, 61, 86, 118, 142).

Auer, Peter, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire (Jan. 2003).
“The nonstochastic multiarmed bandit problem”. In: SIAM Journal on Computing
32.1, pages 48–77. ISSN: 00975397. DOI: 10.1137/S0097539701398375 (cited on
pages 35, 39, 40, 42, 50, 74, 75, 133, 134, 137, 141, 152).

Auer, Peter, Pratik Gajane, and Ronald Ortner (2019). “Adaptively Tracking the Best Bandit
Arm with an Unknown Number of Distribution Changes”. In: Proceedings of the Thirty-
Second Conference on Learning Theory. Edited by Alina Beygelzimer and Daniel
Hsu. Volume 99. Proceedings of Machine Learning Research. Phoenix, USA: PMLR,
pages 138–158. URL: http://proceedings.mlr.press/v99/auer19a.html
(cited on pages 58, 135, 141).

Balouek, Daniel, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez, Em-
manuel Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas
Niclausse, Lucas Nussbaum, Olivier Richard, Christian Perez, Flavien Quesnel, Cyril
Rohr, and Luc Sarzyniec (2013). “Adding Virtualization Capabilities to the Grid’5000
Testbed”. In: Communications in Computer and Information Science. Volume 367
CCIS. Springer Verlag, pages 3–20. ISBN: 9783319045184. DOI: 10.1007/978-3-
319-04519-1_1 (cited on page 97).

Beck, Joseph E and Yue Gong (2013). “Wheel-spinning: Students who fail to master a
skill”. In: International conference on artificial intelligence in education. Springer,
pages 431–440 (cited on page 163).

Bellman, Richard (1966). “Dynamic programming”. In: Science 153.3731, pages 34–37
(cited on pages 44, 169).

Besbes, Omar, Yonatan Gur, and Assaf Zeevi (2014). “Stochastic Multi-Armed-Bandit
Problem with Non-stationary Rewards”. In: Advances in Neural Information Processing
Systems 27. Edited by Z Ghahramani, M Welling, C Cortes, N D Lawrence, and K
Q Weinberger. Curran Associates, Inc., pages 199–207. arXiv: 1405.3316. URL:

https://hal-enpc.archives-ouvertes.fr/hal-00834882
https://hal-enpc.archives-ouvertes.fr/hal-00834882
https://hal-enpc.archives-ouvertes.fr/hal-00654404
https://hal-enpc.archives-ouvertes.fr/hal-00654404
https://doi.org/10.1016/j.tcs.2009.01.016
https://doi.org/10.1016/j.tcs.2009.01.016
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1137/S0097539701398375
http://proceedings.mlr.press/v99/auer19a.html
https://doi.org/10.1007/978-3-319-04519-1_1
https://doi.org/10.1007/978-3-319-04519-1_1
https://arxiv.org/abs/1405.3316

193

http://papers.nips.cc/paper/5378-stochastic-multi-armed-bandit-
problem-with-non-stationary-rewards.pdf (cited on pages 43, 58, 135–137).

Besson, Lilian (2018). SMPyBandits: an Open-Source Research Framework for Sin-
gle and Multi-Players Multi-Arms Bandits (MAB) Algorithms in Python. Online
at: \url{GitHub.com/SMPyBandits/SMPyBandits}. URL: https://github.com/
SMPyBandits/SMPyBandits/ (cited on page 96).

Besson, Lilian and Emilie Kaufmann (Mar. 2018). “What Doubling Tricks Can and Can’t
Do for Multi-Armed Bandits”. In: arXiv: 1803.06971. URL: http://arxiv.org/
abs/1803.06971 (cited on pages 71, 141).

— (Feb. 2019). “The Generalized Likelihood Ratio Test meets klUCB: an Improved
Algorithm for Piece-Wise Non-Stationary Bandits”. In: arXiv: 1902.01575. URL:
http://arxiv.org/abs/1902.01575 (cited on pages 58, 74, 135, 152, 153).

Besson, Lilian, Emilie Kaufmann, and Christophe Moy (2018). “Aggregation of multi-
armed bandits learning algorithms for opportunistic spectrum access”. In: 2018 IEEE
Wireless Communications and Networking Conference (WCNC). IEEE, pages 1–6
(cited on page 135).

Bickenbach, Frank and Eckhardt Bode (2001). “Markov or Not Markov? This Should Be
a Question”. In: Regional Science and Urban Economics. ISSN: 0166-0462 (cited on
page 181).

Bifet, Albert and Ricard Gavaldà (2007). “Learning from time-changing data with adaptive
windowing”. In: Proceedings of the 7th SIAM International Conference on Data Mining,
pages 443–448. ISBN: 9780898716306. DOI: 10.1137/1.9781611972771.42 (cited
on page 98).

Bouneffouf, Djallel and Raphael Féraud (Sept. 2016). “Multi-armed bandit problem with
known trend”. In: Neurocomputing 205, pages 16–21. ISSN: 0925-2312. DOI: 10.1016/
J.NEUCOM.2016.02.052. URL: https://www.sciencedirect.com/science/
article/pii/S092523121600299X (cited on page 42).

Bubeck, Sébastien and Nicolo Cesa-Bianchi (2012). “Regret analysis of stochastic and
nonstochastic multi-armed bandit problems”. In: arXiv preprint arXiv:1204.5721 (cited
on page 51).

Burnetas, Apostolos N. and Michael N. Katehakis (June 1996). “Optimal adaptive poli-
cies for sequential allocation problems”. In: Advances in Applied Mathematics 17.2,
pages 122–142. ISSN: 01968858. DOI: 10.1006/aama.1996.0007 (cited on page 35).

Cannan, Edwin (Mar. 1892). “The Origin of the Law of Diminishing Returns, 1813-15”.
In: The Economic Journal 2.5, page 53. ISSN: 00130133. DOI: 10.2307/2955940.
URL: https://www.jstor.org/stable/2955940 (cited on page 57).

Cao, Yang, Zheng Wen, Branislav Kveton, and Yao Xie (2019). “Nearly Optimal Adaptive
Procedure with Change Detection for Piecewise-Stationary Bandit”. In: Proceedings of
Machine Learning Research. Edited by Kamalika Chaudhuri and Masashi Sugiyama.
Volume 89. Proceedings of Machine Learning Research. PMLR, pages 418–427. URL:
http://proceedings.mlr.press/v89/cao19a.html (cited on pages 58, 134, 152,
153).

Cappé, Olivier, Aurélien Garivier, Odalric Ambrym Maillard, Rémi Munos, and Gilles
Stoltz (2013). “Kullback–leibler upper confidence bounds for optimal sequential
allocation”. In: Annals of Statistics 41.3, pages 1516–1541. ISSN: 00905364. DOI:
10.1214/13-AOS1119. arXiv: 1210.1136 (cited on pages 36, 119).

http://papers.nips.cc/paper/5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf
http://papers.nips.cc/paper/5378-stochastic-multi-armed-bandit-problem-with-non-stationary-rewards.pdf
https://github.com/SMPyBandits/SMPyBandits/
https://github.com/SMPyBandits/SMPyBandits/
https://arxiv.org/abs/1803.06971
http://arxiv.org/abs/1803.06971
http://arxiv.org/abs/1803.06971
https://arxiv.org/abs/1902.01575
http://arxiv.org/abs/1902.01575
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1016/J.NEUCOM.2016.02.052
https://doi.org/10.1016/J.NEUCOM.2016.02.052
https://www.sciencedirect.com/science/article/pii/S092523121600299X
https://www.sciencedirect.com/science/article/pii/S092523121600299X
https://doi.org/10.1006/aama.1996.0007
https://doi.org/10.2307/2955940
https://www.jstor.org/stable/2955940
http://proceedings.mlr.press/v89/cao19a.html
https://doi.org/10.1214/13-AOS1119
https://arxiv.org/abs/1210.1136

194 References

Carpentier, Alexandra and Andrea Locatelli (2016). “Tight (Lower) Bounds for the Fixed
Budget Best Arm Identification Bandit Problem”. In: 29th Annual Conference on
Learning Theory. Edited by Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir.
Volume 49. Proceedings of Machine Learning Research. Columbia University, New
York, New York, USA: PMLR, pages 590–604. URL: http://proceedings.mlr.
press/v49/carpentier16.html (cited on page 48).

Cella, Leonardo and Nicolo Cesa-Bianchi (2020). “Stochastic Bandits with Delay-
Dependent Payoffs”. In: edited by Silvia Chiappa and Roberto Calandra. Volume 108.
Proceedings of Machine Learning Research. Online: PMLR, pages 1168–1177. URL:
http://proceedings.mlr.press/v108/cella20a.html (cited on page 43).

Chapelle, Olivier and Lihong Li (2011). “An Empirical Evaluation of Thompson Sampling”.
In: Advances in Neural Information Processing Systems 24 (NIPS 2011), pages 2249–
2257 (cited on pages 42, 49, 105).

Chen, Yifang, Chung-Wei Lee, Haipeng Luo, and Chen-Yu Wei (2019). “A New Algorithm
for Non-stationary Contextual Bandits: Efficient, Optimal and Parameter-free”. In:
Proceedings of the Thirty-Second Conference on Learning Theory. Edited by Alina
Beygelzimer and Daniel Hsu. Volume 99. Proceedings of Machine Learning Research.
Phoenix, USA: PMLR, pages 696–726. URL: http://proceedings.mlr.press/
v99/chen19b.html (cited on pages 58, 135, 136).

Cheung, Wang Chi, David Simchi-Levi, and Ruihao Zhu (2019). “Learning to Optimize
under Non-Stationarity”. In: Proceedings of Machine Learning Research. Edited by
Kamalika Chaudhuri and Masashi Sugiyama. Volume 89. Proceedings of Machine
Learning Research. PMLR, pages 1079–1087. URL: http://proceedings.mlr.
press/v89/cheung19b.html (cited on pages 58, 135, 136).

Chow, Yuan Shih and Henry. Teicher (1997). Probability theory : independence, inter-
changeability, martingales. Springer, page 488. ISBN: 9780387982281. URL: https:
//www.springer.com/gp/book/9780387982281 (cited on page 68).

Clement, Benjamin, Didier Roy, Pierre-Yves Oudeyer, and Manuel Lopes (2015). “Multi-
Armed Bandits for Intelligent Tutoring Systems”. In: Journal of Educational Data
Mining 7.2 (cited on pages 34, 50–52, 187).

Daley, Daryl J (1968). “Stochastically monotone Markov chains”. In: Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete 10.4, pages 305–317 (cited on
pages 165, 166).

De Finetti, B (1972). Probability, Induction and Statistics: The Art of Guessing. WILEY
SERIES in PROBABILITY and STATISTICS: PROBABILITY and STATISTICS
SECTION Series. J. Wiley. ISBN: 9780471201403. URL: https://books.google.
fr/books?id=hENg7qRPOPYC (cited on page 181).

Degenne, Rémy and Vianney Perchet (2016). “Anytime optimal algorithms in stochastic
multi-armed bandits”. In: Proceedings of The 33rd International Conference on Ma-
chine Learning. Edited by Maria Florina Balcan and Kilian Q Weinberger. Volume 48.
Proceedings of Machine Learning Research. New York, New York, USA: PMLR,
pages 1587–1595. URL: http://proceedings.mlr.press/v48/degenne16.html
(cited on pages 37, 118–120).

Desmarais, Michel C and Baker (2012). “A review of recent advances in learner and skill
modeling in intelligent learning environments”. In: User Modeling and User-Adapted
Interaction 22.1-2, pages 9–38 (cited on page 186).

http://proceedings.mlr.press/v49/carpentier16.html
http://proceedings.mlr.press/v49/carpentier16.html
http://proceedings.mlr.press/v108/cella20a.html
http://proceedings.mlr.press/v99/chen19b.html
http://proceedings.mlr.press/v99/chen19b.html
http://proceedings.mlr.press/v89/cheung19b.html
http://proceedings.mlr.press/v89/cheung19b.html
https://www.springer.com/gp/book/9780387982281
https://www.springer.com/gp/book/9780387982281
https://books.google.fr/books?id=hENg7qRPOPYC
https://books.google.fr/books?id=hENg7qRPOPYC
http://proceedings.mlr.press/v48/degenne16.html

195

Erraqabi, Akram, Alessandro Lazaric, Michal Valko, Emma Brunskill, and Yun-En Liu
(2017). “Trading off Rewards and Errors in Multi-Armed Bandits”. In: Proceedings of
the 20th International Conference on Artificial Intelligence and Statistics. Edited by
Aarti Singh and Jerry Zhu. Volume 54. Proceedings of Machine Learning Research.
Fort Lauderdale, FL, USA: PMLR, pages 709–717. URL: http://proceedings.mlr.
press/v54/erraqabi17a.html (cited on page 48).

Filippi, Sarah, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári (2010). “Parametric
Bandits: The Generalized Linear Case”. In: Advances in Neural Information Processing
Systems 23. Edited by J D Lafferty, C K I Williams, J Shawe-Taylor, R S Zemel, and
A Culotta. Curran Associates, Inc., pages 586–594. URL: http://papers.nips.cc/
paper/4166-parametric-bandits-the-generalized-linear-case.pdf (cited
on pages 43, 122).

Gabillon, Victor, Mohammad Ghavamzadeh, and Alessandro Lazaric (2012). “Best arm
identification: A unified approach to fixed budget and fixed confidence”. In: Ad-
vances in Neural Information Processing Systems. Volume 4, pages 3212–3220. ISBN:
9781627480031 (cited on page 48).

Garivier, Aurélien, Hédi Hadiji, Pierre Ménard, and Gilles Stoltz (2018). KL-UCB-switch:
Optimal regret bounds for stochastic bandits from both a distribution-dependent and a
distribution-free viewpoints. arXiv: 1805.05071 (cited on page 37).

Garivier, Aurélien and Emilie Kaufmann (2016). “Optimal Best Arm Identification with
Fixed Confidence”. In: 29th Annual Conference on Learning Theory. Edited by Vitaly
Feldman, Alexander Rakhlin, and Ohad Shamir. Volume 49. Proceedings of Ma-
chine Learning Research. Columbia University, New York, New York, USA: PMLR,
pages 998–1027. URL: http://proceedings.mlr.press/v49/garivier16a.
html (cited on page 48).

Garivier, Aurélien, Pierre Ménard, Laurent Rossi, and Pierre Menard (Nov. 2017). “Thresh-
olding Bandit for Dose-ranging: The Impact of Monotonicity”. In: arXiv: 1711.04454.
URL: http://arxiv.org/abs/1711.04454 (cited on page 48).

Garivier, Aurélien, Pierre Ménard, and Gilles Stoltz (2019). “Explore first, exploit next:
The true shape of regret in bandit problems”. In: Mathematics of Operations Research
44.2, pages 377–399. ISSN: 15265471. DOI: 10.1287/moor.2017.0928. arXiv:
1602.07182 (cited on page 138).

Garivier, Aurélien and Eric Moulines (2011). “On upper-confidence bound policies for
switching bandit problems”. In: Proceedings of the 22nd International Conference
on Algorithmic Learning Theory (ALT), 2011, Espoo, Finland. Volume 6925 LNAI.
Springer, Berlin, Heidelberg, pages 174–188. ISBN: 9783642244117. DOI: 10.1007/
978-3-642-24412-4_16 (cited on pages 22, 43, 51, 58, 66, 74, 132–134).

Gottlieb, Jacqueline, Pierre-Yves Oudeyer, Manuel Lopes, and Adrien Baranes (2013).
“Information-seeking, curiosity, and attention: computational and neural mechanisms”.
In: Trends in Cognitive Sciences 20, pages 1–9 (cited on page 50).

Hambleton, Ronald K and Hariharan Swaminathan (2013). Item response theory: Prin-
ciples and applications. Springer Science & Business Media (cited on pages 122,
187).

Heidari, Hoda, Michael Kearns, and Aaron Roth (2016). “Tight Policy Regret Bounds
for Improving and Decaying Bandits”. In: Proceedings of the International Joint

http://proceedings.mlr.press/v54/erraqabi17a.html
http://proceedings.mlr.press/v54/erraqabi17a.html
http://papers.nips.cc/paper/4166-parametric-bandits-the-generalized-linear-case.pdf
http://papers.nips.cc/paper/4166-parametric-bandits-the-generalized-linear-case.pdf
https://arxiv.org/abs/1805.05071
http://proceedings.mlr.press/v49/garivier16a.html
http://proceedings.mlr.press/v49/garivier16a.html
https://arxiv.org/abs/1711.04454
http://arxiv.org/abs/1711.04454
https://doi.org/10.1287/moor.2017.0928
https://arxiv.org/abs/1602.07182
https://doi.org/10.1007/978-3-642-24412-4_16
https://doi.org/10.1007/978-3-642-24412-4_16

196 References

Conference on Artificial Intelligence (IJCAI), pages 1562–1570 (cited on pages 17, 21,
42, 57, 61–63, 65, 66, 75, 125).

Howard, Ronald A (1960). “Dynamic programming and markov processes.” In: (cited on
page 44).

Immorlica, Nicole and Robert Kleinberg (Nov. 2018). “Recharging bandits”. In: Pro-
ceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS.
Volume 2018-Octob. IEEE Computer Society, pages 309–319. ISBN: 9781538642306.
DOI: 10.1109/FOCS.2018.00037 (cited on pages 43, 57).

Jaksch, Thomas, Peter Auer, and Ronald Ortner (2009). “Near-optimal regret bounds
for reinforcement learning”. In: Advances in neural information processing systems,
pages 89–96 (cited on page 44).

Jin, Tianyuan, Pan Xu, Jieming Shi, Xiaokui Xiao, and Quanquan Gu (Mar. 2020). “MOTS:
Minimax Optimal Thompson Sampling”. In: arXiv: 2003.01803. URL: http://
arxiv.org/abs/2003.01803 (cited on page 38).

Käser, Tanja, Severin Klingler, and Markus Gross (2016). “When to stop? Towards uni-
versal instructional policies”. In: Proceedings of the sixth international conference on
learning analytics & knowledge, pages 289–298 (cited on pages 52, 53).

Kaufmann, Emilie, Olivier Cappe, and Aurelien Garivier (2012a). “On Bayesian Upper
Confidence Bounds for Bandit Problems”. In: Proceedings of the Fifteenth International
Conference on Artificial Intelligence and Statistics. Edited by Neil D Lawrence and
Mark Girolami. Volume 22. Proceedings of Machine Learning Research. La Palma,
Canary Islands: PMLR, pages 592–600. URL: http://proceedings.mlr.press/
v22/kaufmann12.html (cited on pages 38, 105).

Kaufmann, Emilie, Olivier Cappé, and Aurélien Garivier (2016). “On the Complexity
of Best-Arm Identification in Multi-Armed Bandit Models”. In: Journal of Machine
Learning Research 17.1, pages 1–42. ISSN: 1533-7928. URL: http://jmlr.org/
papers/v17/kaufman16a.html (cited on page 48).

Kaufmann, Emilie, Nathaniel Korda, and Rémi Munos (Oct. 2012b). “Thompson sampling:
An asymptotically optimal finite-time analysis”. In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Volume 7568 LNAI. Springer, Berlin, Heidelberg, pages 199–213.
ISBN: 9783642341052. DOI: 10.1007/978-3-642-34106-9_18 (cited on page 38).

Khajah, Mohammad, Robert V. Lindsey, and Michael C. Mozer (2016). “How deep is
knowledge tracing?” In: Proceedings of the 9th International Conference on Educa-
tional Data Mining, EDM 2016. arXiv: 1604.02416 (cited on page 186).

Kocsis, Levente and Csaba Szepesvári (2006). “Discounted ucb”. In: 2nd PASCAL Chal-
lenges Workshop. Volume 2 (cited on pages 51, 134).

Komiyama, Junpei and Tao Qin (2014). “Time-Decaying Bandits for Non-stationary
Systems”. In: Web and Internet Economics (WINE). Edited by Tie-Yan Liu, Qi Qi, and
Yinyu Ye. Cham: Springer International Publishing, pages 460–466. ISBN: 978-3-319-
13129-0 (cited on page 57).

Lai, Tze Leung (1987). “Adaptive Treatment Allocation and the Multi-Armed Bandit
Problem”. In: Annals of Statistics 15.3, pages 1091–1114. ISSN: 0090-5364. DOI:
10.1214/AOS/1176350495. URL: https://projecteuclid.org/euclid.aos/
1176350495 (cited on page 37).

https://doi.org/10.1109/FOCS.2018.00037
https://arxiv.org/abs/2003.01803
http://arxiv.org/abs/2003.01803
http://arxiv.org/abs/2003.01803
http://proceedings.mlr.press/v22/kaufmann12.html
http://proceedings.mlr.press/v22/kaufmann12.html
http://jmlr.org/papers/v17/kaufman16a.html
http://jmlr.org/papers/v17/kaufman16a.html
https://doi.org/10.1007/978-3-642-34106-9_18
https://arxiv.org/abs/1604.02416
https://doi.org/10.1214/AOS/1176350495
https://projecteuclid.org/euclid.aos/1176350495
https://projecteuclid.org/euclid.aos/1176350495

197

Lai, Tze Leung and Herbert Robbins (Mar. 1985). “Asymptotically efficient adaptive allo-
cation rules”. In: Advances in Applied Mathematics 6.1, pages 4–22. ISSN: 10902074.
DOI: 10.1016/0196-8858(85)90002-8. URL: https://www.sciencedirect.
com/science/article/pii/0196885885900028 (cited on pages 35, 36, 74, 85,
86).

Lan, Andrew S and Richard G Baraniuk (2016). “A contextual bandits framework for
personalized learning action selection”. In: Proceedings of the 9th International Confer-
ence on Educational Data Mining, EDM 2016, pages 424–429. URL: https://pdfs.
semanticscholar.org/a19e/4e14c424597df1d11f2cf99d09452b3da25b.pdf
(cited on page 50).

Lattimore, Tor (Jan. 2018). “Refining the Confidence Level for Optimistic Bandit Strate-
gies”. In: J. Mach. Learn. Res. 19.1, pages 765–796. ISSN: 1532-4435 (cited on
pages 37, 38, 105, 120, 134).

Lattimore, Tor and Csaba Szepesvari (2017). “The End of Optimism? An Asymptotic
Analysis of Finite-Armed Linear Bandits”. In: Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics. Edited by Aarti Singh and Jerry
Zhu. Volume 54. Proceedings of Machine Learning Research. Fort Lauderdale, FL,
USA: PMLR, pages 728–737. URL: http : / / proceedings . mlr . press / v54 /
lattimore17a.html (cited on page 43).

Lattimore, Tor and Csaba Szepesvári (June 2020). Bandit Algorithms. Cambridge Uni-
versity Press UK. ISBN: 1108486827. URL: https : / / tor - lattimore . com /
downloads/book/book.pdf (cited on pages 37, 87, 119, 133).

Lavenant, Hugo and Hassan Aït-Kaci (2019). How can we assign a probability to an event?
(Cited on pages 180, 181).

Levine, Nir, Koby Crammer, and Shie Mannor (2017). “Rotting Bandits”. In: Advances
in Neural Information Processing Systems 30 (NIPS 2017), pages 3074–3083. arXiv:
1702.07274 (cited on pages 17, 21, 42, 57, 61, 66–68, 70–72, 75, 76, 84, 85, 153).

Lindsey, Robert V, Michael C Mozer, William J Huggins, and Harold Pashler (2013).
“Optimizing instructional policies”. In: Advances in neural information processing
systems, pages 2778–2786 (cited on page 50).

Liu, Fang, Joohyun Lee, and Ness Shroff (2018). “A Change-Detection Based Framework
for Piecewise-Stationary Multi-Armed Bandit Problem”. In: URL: https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16939 (cited on pages 58,
135, 152, 153).

Liu, Yun-En, Travis Mandel, Emma Brunskill, and Zoran Popovic (2014). “Trading Off
Scientific Knowledge and User Learning with Multi-Armed Bandits”. In: EDM (cited
on page 48).

Locatelli, Andrea, Maurilio Gutzeit, and Alexandra Carpentier (2016). “An optimal algo-
rithm for the Thresholding Bandit Problem”. In: Proceedings of The 33rd International
Conference on Machine Learning. Edited by Maria Florina Balcan and Kilian Q Wein-
berger. Volume 48. Proceedings of Machine Learning Research. New York, New York,
USA: PMLR, pages 1690–1698. URL: http://proceedings.mlr.press/v48/
locatelli16.html (cited on page 48).

Louëdec, Jonathan, Laurent Rossi, Max Chevalier, Aurélien Garivier, and Josiane Mothe
(2016). “Algorithme de bandit et obsolescence : un modèle pour la recommandation
(regular paper)”. In: Conférence francophone sur l’Apprentissage Automatique, Mar-

https://doi.org/10.1016/0196-8858(85)90002-8
https://www.sciencedirect.com/science/article/pii/0196885885900028
https://www.sciencedirect.com/science/article/pii/0196885885900028
https://pdfs.semanticscholar.org/a19e/4e14c424597df1d11f2cf99d09452b3da25b.pdf
https://pdfs.semanticscholar.org/a19e/4e14c424597df1d11f2cf99d09452b3da25b.pdf
http://proceedings.mlr.press/v54/lattimore17a.html
http://proceedings.mlr.press/v54/lattimore17a.html
https://tor-lattimore.com/downloads/book/book.pdf
https://tor-lattimore.com/downloads/book/book.pdf
https://arxiv.org/abs/1702.07274
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16939
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16939
http://proceedings.mlr.press/v48/locatelli16.html
http://proceedings.mlr.press/v48/locatelli16.html

198 References

seille, 05/07/2016-07/07/2016. http://www.lif.univ-mrs.fr: Laboratoire d’Informatique
Fondamentale de Marseille, (en ligne). URL: http://www.irit.fr/publis/SIG/
2016%7B%5C_%7DCAP%7B%5C_%7DLRCGM.pdf%20- %20http://oatao.univ-
toulouse.fr/17130/ (cited on page 57).

Luckin, Rosemary (2001). “Designing children’s software to ensure productive interactivity
through collaboration in the Zone of Proximal Development (ZPD)”. In: Information
Technology in Childhood Education Annual 2001.1, pages 57–85 (cited on pages 50,
187).

Maillard, Odalric-Ambrym (2019). “Sequential change-point detection: Laplace concen-
tration of scan statistics and non-asymptotic delay bounds”. In: (cited on page 122).

McMahan, H. Brendan (2011). “Follow-the-regularized-leader and mirror descent: Equiv-
alence theorems and L1 regularization”. In: Journal of Machine Learning Research.
Volume 15, pages 525–533 (cited on page 42).

Melesko, Jaroslav and Vitalij Novickij (2019). “Computer Adaptive Testing Using Upper-
Confidence Bound Algorithm for Formative Assessment”. In: Applied Sciences 9.20,
page 4303 (cited on page 53).

Ménard, Pierre and Aurélien Garivier (2017). “A minimax and asymptotically optimal
algorithm for stochastic bandits”. In: Proceedings of the 28th International Conference
on Algorithmic Learning Theory. Edited by Steve Hanneke and Lev Reyzin. Volume 76.
Proceedings of Machine Learning Research. Kyoto University, Kyoto, Japan: PMLR,
pages 223–237. URL: http://proceedings.mlr.press/v76/m%7B%5C’%7Be%7D%
7Dnard17a.html (cited on pages 37, 119, 120, 134).

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller (2013). “Playing atari with deep reinforcement
learning”. In: arXiv preprint arXiv:1312.5602 (cited on page 45).

Mu, Tong, Shuhan Wang, Erik Andersen, and Emma Brunskill (2018). “Combining adap-
tivity with progression ordering for intelligent tutoring systems”. In: Proceedings of
the Fifth Annual ACM Conference on Learning at Scale, pages 1–4 (cited on page 52).

Mukherjee, Subhojyoti and Odalric-Ambrym Maillard (May 2019). “Distribution-
dependent and Time-uniform Bounds for Piecewise i.i.d Bandits”. In: arXiv: 1905.
13159. URL: http://arxiv.org/abs/1905.13159 (cited on pages 135, 142).

Mukherjee, Subhojyoti, Naveen Kolar Purushothama, Nandan Sudarsanam, and Balaraman
Ravindran (2017). “Thresholding Bandits with Augmented UCB”. In: Proceedings of
the 26th International Joint Conference on Artificial Intelligence. IJCAI’17. AAAI
Press, pages 2515–2521. ISBN: 9780999241103 (cited on page 48).

Neu, Gergely (2015). “Explore no more: Improved high-probability regret bounds for
non-stochastic bandits”. In: Advances in Neural Information Processing Systems,
pages 3168–3176 (cited on page 51).

Papadimitriou, Christos H and John N Tsitsiklis (1994). “The complexity of optimal queue-
ing network control”. In: Proceedings of IEEE 9th Annual Conference on Structure in
Complexity Theory. IEEE, pages 318–322 (cited on page 43).

Piech, Chris, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami, Leonidas
Guibas, and Jascha Sohl-Dickstein (2015). “Deep knowledge tracing”. In: Advances in
Neural Information Processing Systems. arXiv: 1506.05908 (cited on page 186).

http://www.irit.fr/publis/SIG/2016%7B%5C_%7DCAP%7B%5C_%7DLRCGM.pdf%20-%20http://oatao.univ-toulouse.fr/17130/
http://www.irit.fr/publis/SIG/2016%7B%5C_%7DCAP%7B%5C_%7DLRCGM.pdf%20-%20http://oatao.univ-toulouse.fr/17130/
http://www.irit.fr/publis/SIG/2016%7B%5C_%7DCAP%7B%5C_%7DLRCGM.pdf%20-%20http://oatao.univ-toulouse.fr/17130/
http://proceedings.mlr.press/v76/m%7B%5C'%7Be%7D%7Dnard17a.html
http://proceedings.mlr.press/v76/m%7B%5C'%7Be%7D%7Dnard17a.html
https://arxiv.org/abs/1905.13159
https://arxiv.org/abs/1905.13159
http://arxiv.org/abs/1905.13159
https://arxiv.org/abs/1506.05908

199

Pike-Burke, Ciara (2019). “Sequential decision problems in online education”. PhD thesis.
Lancaster University. DOI: 10.17635/lancaster/thesis/604 (cited on pages 34,
52).

Pike-Burke, Ciara and Steffen Grunewalder (2019). “Recovering Bandits”. In: Advances in
Neural Information Processing Systems 32. Edited by H. Wallach and H. Larochelle and
A. Beygelzimer and F. d’Alché-Buc and E. Fox and R. Garnett. Curran Associates, Inc.,
pages 14122–14131. URL: http://papers.nips.cc/paper/9561-recovering-
bandits.pdf (cited on pages 43, 57).

Rafferty, Anna N, Emma Brunskill, Thomas L Griffiths, and Patrick Shafto (2016). “Faster
teaching via pomdp planning”. In: Cognitive science 40.6, pages 1290–1332 (cited on
page 54).

Rollinson, Joseph and Emma Brunskill (2015). “From Predictive Models to Instructional
Policies.” In: International Educational Data Mining Society (cited on page 52).

Russac, Yoan, Claire Vernade, and Olivier Cappé (2019). “Weighted Linear Bandits
for Non-Stationary Environments”. In: Advances in Neural Information Processing
Systems 32. Edited by H Wallach, H Larochelle, A Beygelzimer, F d\textquotesingle
Alché-Buc, E Fox, and R Garnett. Curran Associates, Inc., pages 12040–12049. URL:
http://papers.nips.cc/paper/9372-weighted-linear-bandits-for-non-
stationary-environments.pdf (cited on pages 58, 136).

Seznec, Julien, Andrea Locatelli, Alexandra Carpentier, Alessandro Lazaric, and Michal
Valko (2019). “Rotting bandits are no harder than stochastic ones”. In: Proceedings
of Machine Learning Research, The 22nd International Conference on Artificial
Intelligence and Statistics, 16-18 April 2019. Edited by Kamalika Chaudhuri and
Masashi Sugiyama. Volume 89. Proceedings of Machine Learning Research. PMLR,
pages 2564–2572. URL: http://proceedings.mlr.press/v89/seznec19a.html
(cited on pages 57, 153).

Seznec, Julien, Pierre Menard, Alessandro Lazaric, and Michal Valko (2020). “A single
algorithm for both restless and rested rotting bandits”. In: International Conference on
Artificial Intelligence and Statistics, pages 3784–3794 (cited on pages 57, 58).

Shani, Guy, Ronen I Brafman, and Solomon E Shimony (2005). “Model-Based Online
Learning of POMDPs”. In: Machine Learning: ECML 2005. Edited by João Gama,
Rui Camacho, Pavel B Brazdil, Alípio Mário Jorge, and Luís Torgo. Berlin, Heidel-
berg: Springer Berlin Heidelberg, pages 353–364. ISBN: 978-3-540-31692-3 (cited on
page 181).

Silver, David, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. (2016). “Mastering the game of Go with deep neural networks and tree
search”. In: nature 529.7587, pages 484–489 (cited on page 46).

Silver, David, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. (2017).
“Mastering the game of go without human knowledge”. In: nature 550.7676, pages 354–
359 (cited on page 46).

Sutton, Richard S and Andrew G Barto (2018). Reinforcement Learning: An Introduction.
Second. The MIT Press. URL: http://incompleteideas.net/book/the-book-
2nd.html (cited on page 44).

https://doi.org/10.17635/lancaster/thesis/604
http://papers.nips.cc/paper/9561-recovering-bandits.pdf
http://papers.nips.cc/paper/9561-recovering-bandits.pdf
http://papers.nips.cc/paper/9372-weighted-linear-bandits-for-non-stationary-environments.pdf
http://papers.nips.cc/paper/9372-weighted-linear-bandits-for-non-stationary-environments.pdf
http://proceedings.mlr.press/v89/seznec19a.html
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html

200 References

Teng, S, J Li, L P Ting, K Chuang, and H Liu (Nov. 2018). “Interactive Unknowns
Recommendation in E-Learning Systems”. In: 2018 IEEE International Conference on
Data Mining (ICDM), pages 497–506. DOI: 10.1109/ICDM.2018.00065 (cited on
page 53).

Tewari, Ambuj and Susan A Murphy (2017). “From Ads to Interventions: Contextual
Bandits in Mobile Health”. In: Mobile Health: Sensors, Analytic Methods, and Ap-
plications. Edited by James M Rehg, Susan A Murphy, and Santosh Kumar. Cham:
Springer International Publishing, pages 495–517. ISBN: 978-3-319-51394-2. DOI:
10.1007/978-3-319-51394-2_25. URL: https://doi.org/10.1007/978-3-
319-51394-2%7B%5C_%7D25 (cited on page 43).

Thompson, William R (1933). “On the Likelihood that One Unknown Probability Exceeds
Another in View of the Evidence of Two Samples”. In: Biometrika 25.3/4, pages 285–
294. ISSN: 00063444. DOI: 10.1093/biomet/25.3-4.285. URL: http://www.
jstor.org/stable/2332286 (cited on pages 33, 38, 42).

Tracà, Stefano and Cynthia Rudin (May 2015). “Regulating Greed Over Time”. In: arXiv:
1505.05629. URL: http://arxiv.org/abs/1505.05629 (cited on pages 34, 42,
152).

Tsallis, Constantino (July 1988). “Possible generalization of Boltzmann-Gibbs statistics”.
In: Journal of Statistical Physics 52.1-2, pages 479–487. ISSN: 00224715. DOI: 10.
1007/BF01016429 (cited on page 42).

Valko, Michal, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini
(2013). “Finite-time analysis of kernelised contextual bandits”. In: arXiv preprint
arXiv:1309.6869 (cited on page 43).

Valko, Michal, Rémi Munos, Branislav Kveton, and Tomáš Kocák (2014). “Spectral bandits
for smooth graph functions”. In: International Conference on Machine Learning,
pages 46–54 (cited on page 43).

Ventola, C Lee (2015a). “The antibiotic resistance crisis: part 1: causes and threats”. In:
Pharmacy and therapeutics 40.4, page 277 (cited on page 57).

— (2015b). “The antibiotic resistance crisis: part 2: management strategies and new
agents”. In: Pharmacy and Therapeutics 40.5, page 344 (cited on page 57).

Villar, Sofía S., Jack Bowden, and James Wason (2015). “Multi-armed bandit models for
the optimal design of clinical trials: Benefits and challenges”. In: Statistical Science
30.2, pages 199–215. ISSN: 08834237. DOI: 10.1214/14-STS504 (cited on page 34).

Vinyals, Oriol, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jaderberg, Woj-
ciech M Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev, Richard Powell, et al.
(2019). “Alphastar: Mastering the real-time strategy game starcraft II”. In: DeepMind
blog, page 2 (cited on page 46).

Warlop, Romain, Alessandro Lazaric, and Jérémie Mary (2018). “Fighting Boredom in
Recommender Systems with Linear Reinforcement Learning”. In: Advances in Neural
Information Processing Systems 31. Edited by S Bengio, H Wallach, H Larochelle,
K Grauman, N Cesa-Bianchi, and R Garnett. Curran Associates, Inc., pages 1757–
1768. URL: http://papers.nips.cc/paper/7447-fighting-boredom-in-
recommender-systems-with-linear-reinforcement-learning.pdf (cited on
page 57).

Watkins, Christopher J. C. H. (1989). “Learning from delayed rewards”. In: (cited on
page 45).

https://doi.org/10.1109/ICDM.2018.00065
https://doi.org/10.1007/978-3-319-51394-2_25
https://doi.org/10.1007/978-3-319-51394-2%7B%5C_%7D25
https://doi.org/10.1007/978-3-319-51394-2%7B%5C_%7D25
https://doi.org/10.1093/biomet/25.3-4.285
http://www.jstor.org/stable/2332286
http://www.jstor.org/stable/2332286
https://arxiv.org/abs/1505.05629
http://arxiv.org/abs/1505.05629
https://doi.org/10.1007/BF01016429
https://doi.org/10.1007/BF01016429
https://doi.org/10.1214/14-STS504
http://papers.nips.cc/paper/7447-fighting-boredom-in-recommender-systems-with-linear-reinforcement-learning.pdf
http://papers.nips.cc/paper/7447-fighting-boredom-in-recommender-systems-with-linear-reinforcement-learning.pdf

201

Watkins, Christopher J. C. H. and Peter Dayan (1992). “Q-learning”. In: Machine learning
8.3-4, pages 279–292 (cited on page 45).

Whittle, P. (1980). “Multi-Armed Bandits and the Gittins Index”. In: Journal of the Royal
Statistical Society. Series B (Methodological) 42, pages 143–149. DOI: 10.2307/
2984953. URL: https://www.jstor.org/stable/2984953 (cited on page 42).

— (1988). “Restless bandits: activity allocation in a changing world”. In: Journal of
Applied Probability 25.A, pages 287–298. ISSN: 0021-9002. DOI: 10.2307/3214163.
URL: https://www.jstor.org/stable/3214163 (cited on pages 42, 43).

Wilson, Kevin H., Yan Karklin, Bojian Han, and Chaitanya Ekanadham (Apr. 2016). “Back
to the Basics: Bayesian extensions of IRT outperform neural networks for proficiency
estimation”. In: arXiv: 1604.02336. URL: http://arxiv.org/abs/1604.02336
(cited on pages 186, 187).

Xiong, Xiaolu, Siyuan Zhao, Eric G. Van Inwegen, and Joseph E. Beck (2016). “Go-
ing deeper with deep knowledge tracing”. In: Proceedings of the 9th International
Conference on Educational Data Mining, EDM 2016 (cited on page 186).

Xu, Jie, Tianwei Xing, and Mihaela Van Der Schaar (2016). “Personalized course sequence
recommendations”. In: IEEE Transactions on Signal Processing 64.20, pages 5340–
5352 (cited on page 50).

Yarats, Denis, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and Rob Fer-
gus (2019). “Improving sample efficiency in model-free reinforcement learning from
images”. In: arXiv preprint arXiv:1910.01741 (cited on page 46).

Yu, Yang (2018). “Towards Sample Efficient Reinforcement Learning.” In: IJCAI,
pages 5739–5743 (cited on page 46).

Zimmert, Julian and Yevgeny Seldin (July 2018). “Tsallis-INF: An Optimal Algorithm for
Stochastic and Adversarial Bandits”. In: arXiv: 1807.07623. URL: http://arxiv.
org/abs/1807.07623 (cited on pages 39, 40, 42).

https://doi.org/10.2307/2984953
https://doi.org/10.2307/2984953
https://www.jstor.org/stable/2984953
https://doi.org/10.2307/3214163
https://www.jstor.org/stable/3214163
https://arxiv.org/abs/1604.02336
http://arxiv.org/abs/1604.02336
https://arxiv.org/abs/1807.07623
http://arxiv.org/abs/1807.07623
http://arxiv.org/abs/1807.07623

	Part I — Introduction
	1 Afterclasse
	1.1 A revision website
	1.2 Exercises: format and data
	1.3 Scope of the Ph.D.: how to choose the next exercise?
	1.4 Users and usages
	1.5 Appendix: contextual elements on Lelivrescolaire.fr

	2 Exploration in online learning
	2.1 The multi-armed bandits model
	2.2 Stochastic bandits
	2.3 Adversarial bandits
	2.4 Non-stationary bandits
	2.5 Contextual bandits
	2.6 Beyond bandits: Reinforcement Learning

	3 Applications to Intelligent Tutoring Systems
	3.1 Shortcomings in the bandits model
	3.2 Exploration methods in Adaptive Intelligent Tutoring Systems

	Part II — Rotting bandits
	4 Rested rotting bandits are not harder than stationary ones
	4.1 Rested rotting bandit: model and preliminaries
	4.2 FEWA and RAW-UCB: Two adaptive window algorithms
	4.3 Regret Analysis
	4.4 Experimental benchmarks
	4.5 Efficient algorithms
	4.6 How harder are rotting bandits ?
	4.7 Linear rotting bandits are impossible to learn

	5 The rotting assumption makes restless bandits easier
	5.1 Restless rotting bandits
	5.2 Analysis of adaptive window policies on restless rotting bandits.
	5.3 Real-word data experiment on Yahoo! Front Page
	5.4 Restless and rested rotting bandits

	Part III — Beyond rotting bandits
	6 Master topics as soon as possible
	6.1 Beyond rotting bandits: some motivations
	6.2 Setup
	6.3 Optimal Oracle: Focus on the largest under the threshold
	6.4 What does random progression mean?
	6.5 Learning Perspectives
	6.6 Practical considerations for ITS applications

	Part IV — References
	References

