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Abstract

This thesis is focused on the convergence analysis of some popular stochastic approxima-
tion methods in use in the machine learning community with applications to optimization
and reinforcement learning. The first part of the thesis is devoted to a popular algorithm
in deep learning called ADAM used for training neural networks. This variant of stochastic
gradient descent is more generally useful for finding a local minimizer of a function.
Assuming that the objective function is differentiable and non-convex, we establish the
convergence of the iterates in the long run to the set of critical points under a stability
condition in the constant stepsize regime. Then, we introduce a novel decreasing stepsize
version of ADAM. Under mild assumptions, it is shown that the iterates are almost
surely bounded and converge almost surely to critical points of the objective function.
Finally, we analyze the fluctuations of the algorithm by means of a conditional central
limit theorem.

In the second part of the thesis, in the vanishing stepsizes regime, we generalize our
convergence and fluctuations results to a stochastic optimization procedure unifying
several variants of the stochastic gradient descent such as, among others, the stochastic
heavy ball method, the Stochastic Nesterov Accelerated Gradient algorithm (S-NAG),
and the widely used ADAM algorithm. We conclude this second part by an avoidance
of traps result establishing the non-convergence of the general algorithm to undesired
critical points, such as local maxima or saddle points. Here, the main ingredient is a
new avoidance of traps result for non-autonomous settings, which is of independent
interest. A chapter of this thesis is also devoted to some non-asymptotic guarantees
under a clipping of the effective stepsizes. We control here the expected norm of the
gradient along the iterations in the stochastic setting. We also establish convergence
rates in terms of the function value gap using the Kurdyka-Lojasiewicz property.

Finally, the last part of this thesis which is independent from the two previous parts, is
concerned with the analysis of a stochastic approximation algorithm for reinforcement
learning. In this last part, we propose an analysis of an online target-based actor-critic
algorithm with linear function approximation in the discounted reward setting. Our
algorithm uses three different timescales: one for the actor and two for the critic. Instead
of using the standard single timescale temporal difference (TD) learning algorithm as
a critic, we use a two timescales target-based version of TD learning closely inspired
from practical actor-critic algorithms implementing target networks. First, we establish
asymptotic convergence results for both the critic and the actor under Markovian
sampling. Then, we provide a finite-time analysis showing the impact of incorporating a
target network into actor-critic methods.






Résumé

Cette thése est centrée autour de l'analyse de convergence de certains algorithmes
d’approximation stochastiques utilisés en machine learning appliqués a ’optimisation
et & 'apprentissage par renforcement. La premiére partie de la thése est dédiée a un
célébre algorithme en apprentissage profond appelé ADAM, utilisé pour entrainer des
réseaux de neurones. Cette célébre variante de la descente de gradient stochastique est
plus généralement utilisée pour la recherche d’un minimiseur local d’une fonction. En
supposant que la fonction objective est différentiable et non convexe, nous établissons
la convergence des itérées au temps long vers I’ensemble des points critiques sous une
hypothése de stabilité dans le régime des pas constants. Ensuite, nous introduisons
une nouvelle variante de ’algorithme ADAM & pas décroissants. Nous montrons alors
sous certaines hypothéses réalistes que les itérées sont presque slirement bornées et
convergent presque siirement vers des points critiques de la fonction objective. Enfin,
nous analysons les fluctuations de 'algorithme par le truchement d’un théoréme central
limite conditionnel.

Dans la deuxiéme partie de cette thése, dans le régime des pas décroissants, nous général-
isons nos résultats de convergence et de fluctuations & une procédure d’optimisation
stochastique unifiant plusieurs variantes de descente de gradient stochastique comme
la méthode de la boule pesante, I'algorithme stochastique de Nesterov accéléré ou en-
core le célébre algorithme ADAM, parmi d’autres. Nous concluons cette partie par un
résultat d’évitement de piéges qui établit la non convergence de I'algorithme général vers
des points critiques indésirables comme les maxima locaux ou les points-selles. Ici, le
principal ingrédient est un nouveau résultat indépendant d’évitement de piéges pour un
contexte non-autonome. Un chapitre de cette thése est également consacré a des garanties
non-asymptotiques pour une large classe d’algorithmes adaptatifs sous une hypothése de
clipping des pas effectifs. Nous établissons en particulier une vitesse de convergence de la
norme du gradient le long des itérations (ou de son espérance) dans les cas déterministe
et stochastique. Nous montrons également des vitesses de convergence des valeurs de la
fonction objective en utilisant '’hypothése faible de Kurdyka-tojasiewicz.

Enfin, la derniére partie de cette thése qui est indépendante des deux premiéres parties
est dédiée & 'analyse d’un algorithme d’approximation stochastique pour ’apprentissage
par renforcement. Dans cette derniére partie, dans le cadre des processus décisionnels
de Markov avec critére de récompense y-pondéré, nous proposons une analyse d’'un
algorithme acteur-critique en ligne intégrant un réseau cible et avec approximation
de fonction linéraire. Notre algorithme utilise trois échelles de temps distinctes: une
échelle pour I'acteur et deux autres pour la critique. Au lieu d’utiliser I'algorithme
de différence temporelle (TD) standard & une échelle de temps, nous utilisons une
version de I’algorithme TD & deux échelles de temps intégrant un réseau cible inspiré
des algorithmes acteur-critique utilisés en pratique. Tout d’abord, nous établissons
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des résultats de convergence pour la critique et I'acteur sous échantillonage Markovien.
Ensuite, nous menons une analyse & temps fini montrant I'impact de 'utilisation d’un
réseau cible sur les méthodes acteur-critique.
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Notation

= Equal by definition

R Set of real numbers

R4 Set of nonnegative real numbers

R% Set of positive real numbers

N Set of integers: {0,1,2,...}

AUB Set union between the sets A and B
ANB Set intersection between the sets A and B

If u, v are vectors of R? where d € N,

U@V Coordinatewise product vector with coordinates u;v;

u®? Coordinatewise square vector with coordinates u?

% Coordinatewise quotient vector with coordinates u;/v; when
v; # 0 for every i € R?

|ul Vector whose i-th coordinate is given by |u;]|

\/m Vector whose i-th coordinate is given by \/m

-l Standard Euclidean norm

l|lz||? =Y, via? for every z € R%, v € (0, +00)?.

d(z, A) = inf{||z—2/|| : 2/ € A} if 2 € R? and A is a non-empty subset
of R?

I, Identity matrix of size n x n

MT Transpose of matrix M

T4 Characteristic function of a set A, i.e., the function equal to

one on that set and to zero elsewhere









Introduction

1.1 Motivations

1.1.1 Non-convex stochastic optimization

Nowadays, machine learning is becoming more and more pervasive in society through
several applications ranging from machine translation, speech and image recognition
to online advertising and even robotics, to name a few. More advanced applications
such as personalized medicine and autonomous vehicles in critical societal domains
such as healthcare and transportation are also on the horizon. One of the main pillars
supporting machine learning is the mathematical field of optimization. Indeed, typically,
the numerical implementation of machine learning methods requires the minimization of
complex loss functions measuring the inadequacy of a model to available data. Optimal
parameters of the model resulting from this optimization step are then used to make
decisions based on yet unseen data.

During the last decades, the access to a massive amount of data and the increase in the
computing power have revolutionized the field of machine learning. This evolution led to
a renewed interest in deep learning and opened the way for a fast development of deep
neural networks fueling tremendous advances in machine learning. As a consequence,
several new challenges emerged from optimization problems arising in machine learning.
First, the large available volume of data induce challenging large-scale optimization
problems (see for e.g., Bottou et al. (2018) for a review). This challenge stimulated the
design of stochastic algorithms capable of learning online. Second, the success of deep
learning brought to the forefront optimization problems which are typically non-convex
due to the non-convexity inherited from neural networks as functions of their weights.

More formally, in this thesis, we consider the problem of finding a local minimizer of
the expectation F(z) := E(f(z,£)) wrt. = € RY where f(.,&) is a possibly non-
convex function depending on some random variable (r.v.) £. The distribution of £ is
assumed unknown, but revealed online by the observation of independent and identically
distributed (iid) copies (&, : n > 1) of the r.v. £. For instance, this general formulation
encompasses our motivating learning example: the parameter x then refers to the weights
of the neural network at stake whereas the random variable £ models the data and the
function f can be seen as a loss function quantifying the goodness of the prediction
model parameterized by = using the data point & whereas the function F' represents the
training loss of the model. The formulation of this stochastic non-convex optimization
problem goes beyond this motivating learning problem and finds other applications in
diverse sectors such as energy or finance.

1.1.2 From stochastic gradient descent to adaptive gradient methods

In this section, we will gradually introduce the stochastic optimization algorithms at the
heart of this thesis, namely adaptive gradient methods.
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SGD. Historically introduced by Robbins and Monro (1951), Stochastic Gradient
Descent (SGD) is the most classical algorithm to search for a local minimizer of the
function F. Given the formulation of our optimization problem and assuming that the
function f(-,€) is differentiable for every fixed value of &, the iterates of SGD initialized
at some point zg € R? can be written as follows:

In+1 = Tn — ’anf(xnu §n+1) ) (11)

where (7,,) is a sequence of positive stepsizes and V f(z, ) denotes the gradient of the
mapping x — f(x,§) w.r.t. x for every fixed value of . We briefly highlight that neural
networks may involve some activation functions with points where the aforementioned
mapping is nondifferentiable (such as the ReLU function, i.e., the positive part function).
This setting is beyond the scope of this thesis and we refer to the recent works of Davis
et al. (2020); Majewski et al. (2018); Bolte and Pauwels (2021); Bianchi et al. (2020)
for this specific case. Nevertheless, smooth activation functions such as the widely used
sigmoid function or the smooth ReLU still lead to the differentiable setting under study
in this thesis.

Instead of computing the full gradient of the objective function F' (which may not even be
possible), SGD uses a single stochastic gradient at each iteration. As such, this canonical
algorithm is particularly suitable for large-scale machine learning problems involving a
large number of data samples and has become the workhorse for many machine learning
problems and especially for deep learning. In this method, the update rule (1.1) depends
on the parameter ~, called the learning rate, which is generally assumed constant or
vanishing.

Although widely used, this algorithm has at least two limitations. First, the choice of
the learning rate is generally difficult; large learning rates result in large fluctuations of
the estimate, whereas small learning rates induce slow convergence. Second, a common
learning rate is used for every coordinate despite the possible discrepancies in the values
of the gradient vector’s coordinates.

Adaptive stepsizes. To alleviate these limitations, an idea which has made its way into
the machine learning community is that of adjusting the learning rate coordinate-wise,
as a function of the past values of the squared gradient vectors’ coordinates. This
modification can be seen as a diagonal preconditioning of the stochastic gradient in SGD
based on past observed gradients. The independent works of Duchi et al. (2011) and
McMahan and Streeter (2010) in the context of online convex optimization led the way to
a new class of algorithms that are sometimes referred to as “adaptive ' gradient methods”.
As proposed by Duchi et al. (2011), ADAGRAD cousists of dividing the learning rate
by the square root of the sum of previous gradients squared componentwise. The idea
was to give larger learning rates to highly informative but infrequent features instead of
using a fixed predetermined schedule. This is particularly relevant in applications such
as click through rate prediction for online advertising and text classification where many
features only occur rarely with only a few number of non-zero features while few occur
very often. We refer to (Duchi et al., 2011, Section 1.3) and (McMahan and Streeter,
2010, Section 1.2) for examples showing how adaptive methods can outperform standard
methods when gradients are sparse.

13We follow their terminology for the word “adaptive” in this thesis, we bring to the attention of the
reader that this same word has been used in the literature in different contexts for different purposes.
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However, in practice, the division by the cumulative sum of squared gradients may
generate small learning rates, thus freezing the iterates too early. Several works proposed
heuristical ways to set the learning rates using a less aggressive policy. Tieleman
and Hinton (2012) introduced an unpublished, yet popular, algorithm referred to as
RMSPROP where the cumulative sum used in ADAGRAD is replaced by a moving average
of squared gradients.

Momentum. Besides adaptive stepsizes, another popular modification of vanilla SGD
is the use of momentum. Introduced by the seminal work of Polyak (1964) (see Section 2
therein) in the deterministic setting, the heavy ball method augments the standard
gradient descent method with an additive inertial term corresponding to the difference
between two successive iterates of the algorithm. This inertial term which was later
called momentum in the modern machine learning community (see for e.g., Sutskever
et al. (2013)) led to accelerated convergence rates of the heavy ball method in comparison
to deterministic gradient descent for the optimization of twice differentiable strongly
convex functions. Later, Nesterov (1983) proposed the Nesterov accelerated gradient
descent method for convex optimization with an "optimal" convergence rate of O(1/k?)
of the value function gap, outperforming gradient descent. Since the seminal works of
Polyak and Nesterov, momentum methods hold the promise of acceleration and several
recent works shed the light on this acceleration phenomenon (Wibisono et al., 2016;
Wilson et al., 2021). Although the acceleration benefits of momentum methods in the
deterministic optimization setting do not necessarily carry over to the stochastic non-
convex optimization setting  as also recently advocated by Kidambi et al. (2018), the
seminal work of Nesterov together with the renewed interest in first order optimization
algorithms for large-scale machine learning fostered the design of similar methods in
the context of non-convex stochastic optimization (see for e.g. Sutskever et al. (2013);
Gadat et al. (2018)). Apart from possible acceleration, we point out that momentum
has also a smoothing effect on the stochastic gradients used in the algorithm.

ADAM. We are now ready to introduce the most popular algorithm among the family of
adaptive gradient methods we have introduced so far: AbAm (for Adaptive Momentum
estimation). Proposed by Kingma and Ba (2015), ADAM combines the advantages of
both ADAGRAD, RMSPROP and momentum * methods. The notorious algorithm thus
combines the assets of inertial methods with an adaptive per-coordinate learning rate
selection for automatic tuning. Since 2015, the popular ADAM algorithm has become
widely used in deep learning applications and implemented in massively used deep
learning libraries such as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al.,
2019). As originally proposed in Kingma and Ba (2015), at each timestep n € N, ADAM
produces a triplet of iterates (2, My, v,) € R? x R? x R? using the following recursions:

Mpa1 =amy, + (1 — )V f(zn,&t1) (1.2a)
Unt1 = Bun + (1 = B)V f(2n, Ent1)®? (1.2b)
(ADAM) { "1 = mp1 /(1 — ™) (1.2¢)
bt = oer/(1— B (1.24)
Tnt1 = Tp — Y Mnt1/(€ + /Ont1) (1.2¢)

2see though Jain et al. (2018) for an improvement over SGD for least squares regression (in

stochastic convex optimization) with their Accelerated SGD algorithm which differs from the stochastic
counterparts of the heavy ball method and Nesterov’s accelerated gradient method.
3sometimes dubbed inertial
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where «, 5 € [0,1) are exponential decay rates hyperparameters for the moving averages
(typically @« = 0.9 and § = 0.999), v € R% is the stepsize, ¢ € R* is a constant
introduced for numerical stability (typically ¢ = 1078) and the iterates are initialized
with mo = v = 0 and some zy € R4 We bring to the attention of the reader that all
the operations on vectors are coordinatewise throughout this thesis. If z, y are two
vectors on R? we denote by = ® y, 292, z/y, |z|, \/m the vectors on R% whose i-th
coordinates are respectively given by x;y;, ¥2, z;/vyi, |, \/m .

As previously described, the algorithm uses momentum as can be seen in steps (1.2a),(1.2¢),
and computes an adaptive learning rate (7y/(e + 1/0n+1) as can be appreciated in the
recursions (1.2b) and (1.2¢). Finally, as can be observed in steps (1.2¢) and (1.2d) above,
the algorithm includes a so-called bias correction step. Acting on the current estimate
of the gradient vector, this step is especially useful during the early iterations. We
shall provide some comments on this step later on in this introduction when stating our
contributions and a more in-depth explanation of this step can be found in the subsequent
chapters (see Remark 1 in Chapter 2). We highlight that adaptive gradient methods
are still first order optimization algorithms in the sense that they only have access to
stochastic gradients without resorting to more computationally demanding information
such as Hessians. Compared to SGD, adaptive gradient methods have similar computa-
tional complexity while requiring less hyperparameter tuning. One additional interesting
feature of adaptive gradient methods which is also true for Newton-like algorithms, is
that a multiplication of the objective function by a constant automatically impacts the
(adaptive) learning rate which is divided by the same constant (see Eq. (1.2¢)).

A major part of this thesis is dedicated to the analysis of the algorithms belonging to
the class of adaptive gradient methods we have introduced. In particular, ADAGRAD,
RMSPROP and ADAM all belong to this class. As we will expand on it later on, our
analysis will also encompass stochastic momentum methods including stochastic Nesterov
accelerated gradient.

Challenges. As opposed to the vanilla Stochastic Gradient Descent (SGD), the study
of such algorithms is more elaborate, for three reasons. First, the update of the iterates
involves a so-called momentum term, or inertia, which has the effect of “smoothing” the
increment between two consecutive iterates. Second, as far as adaptive algorithms are
concerned, the update also depends on some additional variable (a.k.a. the (adaptive)
learning rate) computed online as a function of the history of the computed gradients.
As a consequence of this special learning rate, the update rule of the algorithms is
not linear as a function of the stochastic gradients. The momentum term and the
learning rate together endow the algorithms with a “memory” induced by the use of past
stochastic gradient information. In contrast, vanilla SGD is memoryless. Third, the
update equation at the time index n is likely to depend on n, making these systems
inherently non-autonomous. Indeed, apart from the stepsizes depending explicitely on n,
the update rules of the algorithms can also feature an additional explicit dependence
on n (see (1.2¢) and (1.2d) above).

1.1.3 Actor-critic methods in Reinforcement Learning

In this section, we introduce the Reinforcement Learning (RL, Sutton and Barto (2018))
problem we deal with in the last part of this manuscript. This part is independent from
the rest of the thesis.
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RL has witnessed a huge success in a wide range of applications such as game playing
(Mnih et al., 2015), robotic manipulation (Gu et al., 2017; Levine et al., 2018), dialogue
generation in natural language processing (Li et al., 2016), data centre cooling regulation
(Lazic et al., 2018), traffic signal control (Prashanth and Bhatnagar, 2010, 2011) even in
large-scale urban networks (Chen et al., 2020), self-driving cars (Kiran et al., 2021) or
clinical decision support in critical care (Liu et al., 2020), to name a few.

In this thesis, we are concerned with sequential decision making problems under un-
certainty formulated as Markov Decision Processes (MDP) (Puterman, 2014). In this
model, an agent learns how to act optimally by interacting with a possibly unknown
environment via trial and error. *

We denote by 8§ = {s1,---,s,} the finite set of states of the environment and A
the finite set of possible actions the agent can execute. We use the notation P(X)
for the set of probability measures on the set X where X can either be 8§, A or § x A.
Let p : 8 x A — P(8) be the state transition probability kernel which gives the probability
of moving to the next state given the current state and action. The immediate reward °
function R : § x A — R provides for every s € 8,a € A the single-stage expected
reward R(s,a) when action a € A is executed in state s € 8. A randomized stationary
policy, which we will simply call a policy, is a mapping 7 : § — P(A) specifying for each
s € 8,a € A the probability m(a|s) of selecting action a in state s. This policy describes
the agent’s behavior strategy in the MDP model. At each time step ¢ € N, the RL agent
in a state Sy € 8 executes an action A; € A with probability 7(A¢|S¢), transitions into a
state Sir1 € 8 with probability p(S;y1|St, A¢) and observes a real random reward Ryi1
(which we will suppose to be bounded). We denote by P, » the probability distribution
of the Markov chain (S, A;) issued from the MDP controlled by the policy 7 with initial
state distribution p. The notation E, r refers to the associated expectation. We will
use E; whenever there is no dependence on p. The sequence (R;) is such that (s.t.)
Er[Ri+1|St, Ai] = R(Sy, Ar) . The objective is then to find an optimal policy maximizing
the expected cumulative future rewards °:

™

max J(7m) :=E, nythH , (1.3)
t=0

where the discount factor v € (0,1) favors immediate rewards over delayed ones. We
consider the setting where the dynamic of the environment is not explicitely known which
renders the computation of the objective function J(7) intractable. This dynamic will
be revealed online over time thanks to the observation of the environment’s successive
states following the executed actions. This is the so-called model free approach.

The first fundamental class of RL methods consists of value-based methods using the
so-called value function (respectively action-state value function) which quantifies how
good is each state (or state-action pair). Given a policy , the value function V; : § - R
and the action-value function (also called Q-function) @, : 8 x A — R are defined for

“Following the standard terminology of Sutton and Barto (2018) and the RL community, we also
use the the terms agent, environment, action instead of controller, controlled system and control signal
as one may encounter in control theory.

"We use reward as in the RL literature instead of cost.

50ther performance criteria such as the average reward and the total reward exist in the literature
(see, for e.g., Puterman (2014)). In this thesis, we focus on the expected discounted return.
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every state s € 8, action a € A by:

Va(s) :==Ex | D V'RipalSo=s| and Qx(s,a):=Ex |> V' Ri|So=s40=a
t=0 t=0

The optimal value function V; : § — R and Q-function @, : XA — R can then be defined
for every s € §, a € A by: Vi(s) := max, Vz(s) and Q«(s,a) := max, Q(s,a).Value-
based methods rely on the fundamental property of the optimal policy 7, stipulating
that 7,(s) = argmax,c4 Q«(s,a). Therefore, in order to compute the optimal policy,
one looks for the optimal Q-value function without requiring the knowledge of the reward
or transition probabilities. Since this function @, satisfies a dynamic programming
(Bellman) equation and can then be seen as the fixed point of the so-called Bellman
equation, the function @), can be estimated using a stochastic algorithm for fixed point
search. This leads to one of the most famous RL algorithms belonging to the class of
value-based methods as proposed by Watkins (1989): Q-learning. We refer for instance
to (Borkar and Chandak, 2021, Section 2.1) or (Avrachenkov et al., 2021, Section 2.1)
for a nice self-contained derivation of the algorithm.

A second class of methods consists of the so-called policy-based methods. In these
methods, one directly searchs the optimal policy m,. The main representant of this
class is the policy gradient method. The idea is to parameterize the policy 7 by a
vector parameter § € R? (i.e. consider a family of policies {mg : # € R?} ) and directly
maximize the objective function J(my) by performing a stochastic gradient ascent. For
this, the gradient of the objective function is then given by the so-called policy gradient
theorem’ (Sutton et al., 1999) as follows:

V() = 1_17 gty o [Any (8. A) Vi (A1) (1.4)
for every # € R%, where the advantage function ® Ay : 8 x A — R is defined for every
policy 7 and every (s,a) € 8 x A by Ax(s,a) := Qr(s,a) — Vr(s), the initial state Sy
follows an initial probability distribution p over states ? and the gradient is w.r.t. the
parameter # (i.e., the gradient of the function # — Inmg). Here, the couple of r.v.s (S, A)

follows the discounted state-action occupancy measure p,9 € P(8 x A) defined for all
(s,a) € 8 x A by:

o0

Hpo(s,a) == dpo(s)mo(als) where dpo(s):=(1=7) Y 7 Bpr,(Se=5)  (15)
t=0

is a probability measure over the state space 8 known as the discounted state-occupancy
measure. We refer the reader to Section 5.3 of the self-contained Chapter 5 for more
precisions and rigorous regularity conditions under which this theorem holds. In policy
gradient methods, the unknown advantage function A, (or Q-function Q) is estimated
via Monte Carlo simulation using trajectories generated by the MDP (Monte Carlo

" An older version of the policy gradient theorem leading to the so-called REINFORCE algorithm
was proposed by Williams (1992). Here, we focus our exposition on this version which is more relevant
for our purposes.

8We use here the notation A, instead of the more common A, to avoid notational collision with
the sequence of actions.

9Note here that in its original form, the theorem uses Q instead of A, in Eq. (1.4). This replacement
can be straightforwardly shown using the identity “V In 7y = Vg /me” and noticing that the function Vi
does not depend on actions.
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rollouts). Denoting by Am)t such an estimate of Ar, at time ¢ € N and given Eq. (1.4)
and a sequence of positive stepsizes (ay), we obtain the following recursion:

Awgt(gt,ﬁt)vmﬂez(f‘lt@t)a (1.6)

1
Opy1 =0 + atl

where the couple (S, A;) is generated following an online procedure (that we do not
explicit here for conciseness, see Section 5.4 for details) guaranteeing that the couple of
r.v.s will “asymptotically” follow the unknown distribution 9. One of the shortcomings
of such methods is the large variance induced by the gradient estimators. Moreover, a
new gradient is estimated regardless of previous estimates as the policy evolves.

Finally, a third class of methods combines value-based and policy-based methods. This
is the class of actor-critic methods (Barto et al., 1983; Konda and Borkar, 1999; Konda
and Tsitsiklis, 2003) consisting of two coupled iterative algorithms. The first one called
the actor updates the current policy using a stochastic gradient ascent strategy with
an increment depending on the advantage function (and actually only on the value
function Vg, see the definition of A;, and details in Section 5.4.1). This last function
being unknown, a second incremental (value-based) algorithm called the critic estimates
its value all along the iterations. The critic evolves on a faster timescale using larger
stepsizes than for the actor, thereby simulating the effect of nested loops where the
estimation of the critic takes place in an inner loop useful for the actor evolving in an
outer loop.

In the case of complex MDPs with a large number of states and/or actions, estimating
the value at each state-action pair to fill the entire table of state-action values becomes
intractable because of the “curse of dimensionality” as computing solutions to dynamic
programming equations (that value functions satisfy) is infeasible. Instead of tabular (or
look-up table) methods, in the RL literature, we modestly approximate the exact value
function by another function belonging to a parameterized family of functions. A simple
linear parameterization consists in looking for the approximate value function as a linear
combination of some predetermined basis (or feature) functions. For every 6 € RY, the
state-value function V7, is then approximated for every state s € 8 by a linear function
of carefully chosen feature vectors as follows:

Virg(5) = Vio(s) = wl(s) = Y widh'(s), (1.7)
i=1
where w = (wy, - ,wm)!T € R™ for some integer m < |8| and ¢(s) = (¢*(s),--- , o™ (s))T

is the feature vector of the state s € 8. We highlight though that the best practical
performances are obtained by using nonlinear parameterizations based on deep neural
networks. Typically, a neural network takes the state-action pair as an input and outputs
the desired approximated value function V,,. In the case of actor-critic methods, the
critic updates the parameters of this neural network whereas a similar neural network
parameterization is used for the actor. The textbooks of Sutton and Barto (2018);
Bertsekas and Tsitsiklis (1996); Szepesvari (2010) provide nice introductions to RL
theory with further details.

Actor-critic methods integrating target networks have exhibited a stupendous empirical
success in deep reinforcement learning (Heess et al., 2015; Lillicrap et al., 2016; Fujimoto
et al., 2018; Haarnoja et al., 2018). However, if standard actor-critic methods have
been well-studied in the literature (see, for e.g., Konda and Borkar (1999); Konda and
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Tsitsiklis (2003); Bhatnagar et al. (2009)), a theoretical understanding of the use of
target networks in actor-critic methods is largely missing in the literature. We will
devote the last part of this thesis to the study of an actor-critic method incorporating a
target network in the linear function approximation setting. We will briefly introduce
our actor-critic algorithm together with our contributions in Section 1.3 below and we
will defer its precise mathematical presentation to Section 5.4 in which the reader can
also find an exposition of the idea of target network from the RL literature.

1.1.4 Theoretical context: Stochastic Approximation

The stochastic algorithms considered in this thesis fall under the umbrella of general
stochastic approximation algorithms of the form:

Tpil = Tp + ’Yn—f—lh(«%'m §n+1> , Xo € Rdy (1'8>

where h is a map from R? x R¥ to R? (&,) 1s a sequence of r.v.s taking their values in RF
and (7,,) is a vanishing sequence of positive reals s.t. > 7, = +00 and say >, 72 < +00.
Here, the sequence of r.v.s (§,) evolves as follows. Given a probability space (€2, A, P)
and considering the o-field &, generated by the r.v.s xg, &1, -+, &,, we assume that there
exist a family of transition probabilities {II, : RF x B(RF) — [0,1],2 € R%}'Y on R s.t.
for all n € N, for all B € B(R¥), almost surely,

P[§n+1 € B“‘Tn] = I, (gna B) 5 (1'9)

where P[§,+1 € B|F,] is the conditional probability of the event {,+1 € B} given F,.
This property means that the sequence (&,) is a Markov chain controlled by the para-
meter x. Suppose now that for every x, the Markov chain given by II, admits a
unique invariant probability g, (this is common in applications) and define the func-
tion h : R® — R? for every z € R? by

h(z) = /h(m,s)ux(ds). (1.10)
We can then rewrite the recursion (1.8) under the following form:

Tnt1 = Tn + Vg1 (@n) + Ynt1 (B(@n, Ens1) — h(2n)) - (1.11)

Under a control of the small perturbation induced by the last term in the equation
above, one can expect the asymptotic behavior of the algorithm to be closely related to
that of the following ordinary differential equation governed by the mean field h:

#(t) = h(z(t)). (1.12)

Considering the discrete stochastic iterates (1.8) as a noisy discretization of the ODE (1.12),
the iterates of the algorithm are shown to asymptotically track the trajectory of the
solution to the ODE. An analysis of this ODE characterizing its equilibrium points
provides the limit points of the algorithm at hand. This is the key idea of the so-called
Ordinary Differential Equation (ODE) method from stochastic approximation theory
which is at the heart of our analysis.

Initiated by the seminal work of Robbins and Monro (1951), stochastic approximation
theory and the ODE method in particular have given rise to a vast literature that
we cannot hope to do justice here. We refer though to the historical works of Ljung

19B(R*) is the Borel o-algebra on R¥.



1.2. Stochastic momentum algorithms for non-convex optimization 9

(1977); Kushner and Clark (1978), the contributions of Métivier and Priouret (1984);
Meétivier and Priouret (1987) studying the general scheme (1.8) presented in this section,
Benaim (1996); Benaim (1999) and the monographs Benveniste et al. (1990); Duflo
(1997); Kushner and Yin (2003); Borkar (2008) for comprehensive treatments of the
subject.

Although this thesis is motivated by optimization and RL applications, we briefly
mention that the powerful theory of stochastic approximation finds applications in
many diverse domains such as adaptive signal processing (see for e.g., Benveniste et al.
(1990)), communication networks and economics (as referred to for instance in (Borkar,
2008, Chap. 1)), to name a few. To list a couple of recent applications, we highlight
that stochastic approximation theory has also been fruitfully exploited for estimating
entropically regularized Wasserstein distances between two probability measures in
(semi-discrete) optimal transport (Bercu and Bigot, 2021; Bercu et al., 2021) and for
solving min-max problems such as for Generative Adversarial Networks (Hsieh et al.,
2021).

Back to the general scheme (1.8), and reusing the notations from Eq. (1.1), we mention
that the canonical example of such algorithm is that of SGD which corresponds to the case
where h(xy, &nt1) = Vf(xn, &r1) and (&) is a sequence of iid r.v.s. In this particular
case, the transition kernel II coincides with the unknown probability distribution of &g.
The corresponding ODE is the so-called gradient flow &(t) = —VF(x(t)).

In the next two sections, we will independently describe our contributions in both non-
convex stochastic optimization and reinforcement learning. With respect to the general
stochastic approximation framework of (1.8)-(1.9), the adaptive gradient algorithms
we will study will involve a more complex structure of the function h than that of
SGD whereas the noise induced by the stochastic algorithms will take the form of a
martingale difference sequence. Then, in the last part of this thesis where we tackle
a RL problem, the theoretical framework relevant to this setting corresponds to the
noise r.v. (&,) being a Markov chain controlled by the sequence of interest (z,). In
this setting, the noise dynamics is more complex than simply iid r.v.s and controlling
the Markov noise requires additional theoretical tools such as a decomposition of the
perturbation based on the Poisson equation as proposed in Métivier and Priouret (1984).
The actor-critic algorithm we will study involves multiple timescales. Accordingly, we
will use the multiple timescales stochastic approximation theory developed by Borkar
(see for e.g., (Borkar, 2008, Chap. 6))

1.2 Stochastic momentum algorithms for non-convex
optimization

If SGD has been well studied in the literature (see for e.g., Benaim (1996); Delyon
(1996); Bertsekas and Tsitsiklis (2000); Moulines and Bach (2011); Bach and Moulines
(2013)) and is still the subject of active research Bottou et al. (2018); Gower et al. (2019);
Mertikopoulos et al. (2020); Sebbouh et al. (2021), adaptive gradient methods were
comparatively much less studied prior to this thesis. Previously known results are either
regret bounds in the online convex optimization framework or bounds on the expected
gradient norm of the objective function for variants of famous algorithms such as ADAM.
In particular, these results do not address the question of the convergence of the iterates
of the algorithms themselves. We refer the reader to Sections 2.6, 3.3.4, 4.3 and 4.7
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in the subsequent chapters for further details on related works and comparison to the
literature.

1.2.1 About ADAM (Chapter 2)

In this subsection, we describe our contributions related to the study of the ADAM
algorithm to solve the non-convex stochastic optimization problem we introduced in
Section 1.1.1 above. Rigorous statements with precise assumptions can be found in
Chapter 2.

Continuous-time system: ODE analysis. We introduce a continuous-time version
of the ADAM algorithm (see (1.2a)-(1.2¢)) under the form of a non-autonomous ODE
which can be written as follows:

(1—e—9) =1
. . _a+1 (1—ezbt>—1v
2(t) = h(z(t),t), with h(z,t) = a(VE(z) —m) (1.13)
b(S(xz) —v)

for every t > 0, z = (z,m,v) in RY x R x RY, where z(t) = (z(t), m(t),v(t)), F(z) ==
E[f(z,€)] and S(z) := E[V f(x,£)?] for every € R? ! and a, b are positive constants
defined in Assumption 2.2.4.

Building on the existence of an explicit Lyapunov function for the ODE, we show the
existence of a unique global solution to the ODE. This first result turns out to be
non-trivial due to the irregularity of the vector field. We then establish the convergence
of the continuous-time ADAM trajectory to the set of critical points of the objective
function F'. The proposed continuous-time version of ADAM provides useful insights on
the effect of the bias correction step. It is shown that, close to the origin, the objective
function F' is non-increasing along the ADAM trajectory, suggesting that early iterations
of ADAM can only improve the initial guess.

Convergence rates in continuous-time. Under a fojasiewicz-type condition, we
prove that the solution to the ODE converges to a single critical point z* of the objective
function F'. In this case, we provide convergence rates in terms of the distance to the
critical point ||x(t) — z*|| as a function of the so-called Lojasiewicz exponent of F' at z*
(see Section 2.3.3 of Chapter 2 for a definition).

Constant stepsize ADAM. In discrete time, we first analyze the ADAM iterates in
the constant stepsize regime as originally introduced in Kingma and Ba (2015). Under a
stability condition, we prove the asymptotic ergodic convergence of the probability of
the discrete-time ADAM iterates to approach the set of critical points of the objective
function in the doubly asymptotic regime where n — oo then v — 0. This long run
convergence result stipulates that for every § > 0,

%nmsuplzp(d(ngF1({0})) > 8) =0, (1.14)

n
n— 00 k=1

where the iterates .CEZ of ADAM are indexed by the constant stepsize v and d is the
euclidean distance to a set. Note here that the iterates with constant stepsize vy cannot
converge in the almost sure sense when only the number of iterations n — oo.

11 Assumptions guaranteeing that these functions are well-defined are presented in Chapter 2.
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A new decreasing stepsizes version of ADAM. Beyond the original constant
stepsize ADAM, we propose a decreasing stepsize version of the algorithm. From
the initial point zy = (z0,0,0) where 2y € RY, the algorithm generates a sequence
Zn = (Tp, My, vy) as follows:

7

Mpr1 = apmp + (1 — )V f(2n, {nt1) (1.15a)
Un+1 = Bpon + (1 = Ba)Vf(2n, §n+1)®2 (1.15b)
Mt = M1/ (1 — T ) (1.15¢)
Up41 = Upt1/(1 - H?;rllﬁi) (1.15d)
Tn41 = Tn — Ynt1 Mng1/ (€ + /Ons1) | (1.15¢)

\

First, compared to the original version of Kingma and Ba (2015) introduced above
in (1.2a), the hyperparameters (v, @y, 8,) now depend on n. Second, the debiasing
steps rescaling the iterates m,, and v, are different due to the use of time-dependent
hyperparameters «.,, 3,. Further details can be found in Chapter 2.

For this decreasing stepsizes version, we provide sufficient conditions ensuring the stability
and the almost sure convergence of the iterates towards the critical points of the objective
function F as predicted by our continuous-time analysis.

Fluctuations. We establish a convergence rate of the stochastic iterates of the decreasing
stepsize algorithm under the form of a conditional central limit theorem. More precisely,
for some decreasing stepsizes 7, we show that the vector \/%*1(1'” — x*) converges in
distribution to a zero mean Gaussian distribution with a covariance matrix 1 that we
explicitely compute thanks to the Lyapunov equation verified by the covariance matrix.

1.2.2 Generalized momentum algorithm (Chapter 3)

After Chapter 2 which is focused on the specific ADAM algorithm, in Chapter 3, we
go one step further to study a general stochastic optimization procedure, unifying
several variants of stochastic gradient descent. Among others, these variants include the
Stochastic Heavy Ball (SHB) method, the stochastic version of Nesterov’s Accelerated
Gradient method (S-NAG), and the large class of adaptive gradient algorithms, among
which ADAM is perhaps the most used in practice. We thereby extend the results of
Chapter 2 and the work of Gadat et al. (2018) focused on SHB to a general setting.

Continuous-time system. The algorithm we consider is seen as a noisy Euler discret-
ization of a non-autonomous ODE extending (1.13) (which is analyzed in Chapter 2)
and concomitantly introduced by Belotto da Silva and Gazeau (2020). This ODE can
be written as follows:

p(t)S(z) —q(t)v
z(t) = g(z(t),t), with g(z,t) = [h(t)VF(z)—r(t)m (1.16)

—m/\/v+e

for every t > 0, z = (v, m,x) in Ri x R? x R%, where F : RY - R is a continuously
differentiable function, S : R? — Ri is a continuous function, h,r,p,q: (0,00) — R, are
four continuous functions, and € > 0. Moreover, the ODE is initialized by z(0) = 29 =
(vo, mo, o) for some vy € RY, mg,mp € RY, and z(t) = (v(t), m(t),x(t)) € R? x R? x R%
for t € Ry . A proper choice of the functions h, r, p, q followed by an Euler discretization
of the ODE leads to numerous algorithms used in Machine Learning (see Chapter 3 for
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details). In view of applying the ODE method to study the corresponding stochastic
algorithm, we analyze this non-autonomous ODE representing the continuous-time
versions of the aforementioned set of algorithms. Under some conditions on the functions
h,r,p,q (satisfied for instance for ADAM) together with some regularity assumptions
on the objective function F' and some mild technical assumptions, we show that there
exist a unique bounded global solution to ODE (1.16) and the x component of the latter
converges towards the set of critical points of the objective function F'.

Almost sure convergence and fluctuations. Then, we introduce the novel general
algorithm of interest as a noisy discretization of ODE (1.16). This algorithm uses a
sequence of decreasing stepsizes (7,) verifying the Robbins Monro conditions. As for
the discretization, we define for every integer n > 1,

Tn = Z’Yk; hn = h<7'n)7 T'n = r(Tn)a Pn = p(Tn)a and ¢, = q(ﬂz)- (1-17>
k=1

Initialized with zo = (vg, Mo, o) € Ri xR¥xR? and hg, 79, po, qo € (0, 00), the algorithm
is written as follows ':

Un41 = (1 = Yn41Gn)Vn + V1PV f (T, Eng1) 2 (1.18a)
Mp+1 - (1 - 7n+1rn)mn + 7n+1hnvf($n, fn—f—l) (1.18b)
Tn — 7n+lmn+1/\/ Unt1 T €, (118C>

Similarly to Chapter 2, the stability and the almost sure convergence of the iterates
of our general algorithm towards the set of critical points are established. Compared
to Chapter 2, the algorithm above offers some freedom in the choice of the functions
h, r, p,q beyond the specific case of ADAM which corresponds to specific functions h = r'?
and p = q provided in Chapter 3 (see also Belotto da Silva and Gazeau (2020)). This
generalization needs some adaptations of the proofs even if they are very similar in spirit.
For instance, the Lyapunov function we consider is different from the one considered in
Chapter 2. Beyond this generalization, we also note two additional improvements. First,
for our almost sure convergence result, we provide noise conditions allowing to choose
larger stepsizes. Second, regarding the stability result, we relax an assumption related
to the sequence of hyperparameters (ay,) and stepsizes (7,) (Assumption 2.5.2-iii))
which is no more needed thanks to a slight modification of the discretized Lyapunov
function used in the proof. A noteworthy special case is the convergence proof of S-NAG
in a non-convex setting which needs a specific proof. Under some assumptions, the
convergence rate is also provided under the form of a Central Limit Theorem for the
general algorithm (1.18a)-(1.18c).

Tn+1

Avoidance of traps. In Chapter 3, we also tackle the important question of the
avoidance of traps. As stated in the previous paragraph, the iterates of the algorithm are
shown to converge almost surely to the set of critical points of the objective function F'.
However, in a non-convex setting, the set of critical points of the function F' is generally
larger than the set of local minimizers. A “trap” stands for a critical point at which the
Hessian matrix of F' has negative eigenvalues, namely, it is a local maximum or saddle

'2Note here the slight difference with the algorithm in (1.15¢) for which € is outside the square
root. This slight simplification considered throughout Chapter 3 allows us to avoid some differenti-
ability issues which we have tackled in Chapter 2. Furthermore, debiasing steps are handled via the
sequences (hy), (Tn), (pn) and (gn).

13this notation means that the functions coincide for every ¢ € R..
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point. We establish that the iterates cannot converge to such an undesired point, if the
noise is exciting in some directions.

Since the contributions of Pemantle (1990) and Brandiere and Duflo (1996), the numerous
so-called avoidance of traps results that can be found in the literature (see also for e.g.,
(Benaim, 1999, Section 9),(Borkar, 2008, Section 4.3)) deal with the case where the
ODE that underlies the stochastic algorithm is an autonomous ODE. Nevertheless, this
is not the case of the non-autonomous ODE (1.16). To address this issue, we first state
a general avoidance of traps result that extends Pemantle (1990); Brandiére and Duflo
(1996) to a non-autonomous setting, and which is of independent interest. We loosely
describe this result in the rest of this paragraph and refer to Section 3.4 for rigorous
statements and Section 3.7 for its proof.

To state our result, consider the stochastic approximation algorithm in R? initialized at
some zg € R%:

Znt1l = Zn + Y1620, Tn) + Yot 1Mns1 + Ynt1Pnt1 (1.19)

where b : R x R, — R? is a continuous function, the sequence (7,) of nonnegative
deterministic stepsizes satisfies the Robbins Monro conditions (i.e., > v, = o0,
Y2 < +o0), and T, = > p_; Yk Given a filtration (F,,), assume that the sequence (1,
is a martingale difference sequence (adapted to F,,) and that the sequence (py,) which is
also supposed to be adapted to F,, has a square summable euclidean norm. Let z, € R%,
and assume that on V x R4 where V is a certain neighborhood of z,, the function b can
be developed as

b(z,t) = D(z — z4) + e(z, 1), (1.20)

where e(z,,-) = 0, and where the matrix D € R%*? is assumed to have at least one
eigenvalue with positive real part. As a consequence, the point z, is an unstable
equilibrium point of the ODE z(t) = b(z(t),t), in the sense that the ODE solution will
only be able to converge to z, along a specific so-called invariant manifold which precise
characterization will be deferred to Chapter 3. In other words, the point z, is a trap
that the algorithm should desirably avoid.

As the reader can observe in Eq. (1.19), the stochastic algorithm is built around the
non-autonomous ODE z(t) = b(z(t),t). The function e can be seen as a non-autonomous
perturbation of the autonomous linear ODE z(t) = D(z(t) — 2z4). Regularity assumptions
made on the function e guarantee the existence of a local (around the unstable equilibrium
z,) non-autonomous invariant manifold of the non-autonomous ODE z(t) = b(z(t), 1)
with enough regularity properties. For proving this result, we use a non-autonomous
version of Poincaré’s invariant manifold theorem (Daleckii and Krein, 1974; Kloeden and
Rasmussen, 2011) instead of its classical autonomous version.

Under regularity conditions on the function e and mild technical assumptions, we show
that the event {z, — z.} is of probability zero if the noise sequence (1,) is sufficiently
exciting in directions of the eigenspace associated with eigenvalues of D with positive
real part. Thanks to this exciting noise, the algorithm trajectories will move away from
the invariant manifold mentioned above.

We apply this result to both our general stochastic algorithm and S-NAG. Our general
avoidance of traps result extends previous works of Gadat et al. (2018) obtained in the
context of SHB. This result not only allows to study a broader class of algorithms but
also significantly weakens the assumptions (see Section 3.4 in Chapter 3).



14 Chapter 1. Introduction

1.2.3 Convergence rates of a momentum algorithm with bounded
adaptive stepsize (Chapter 4)

In this subsection which summarizes our contributions in Chapter 4 of this thesis, we
provide non-asymptotic results complementing our asymptotic analysis in Chapters 2
and 3.

We establish a convergence rate for ADAM in the deterministic case for non-convex
optimization under a bounded learning rate and constant stepsize. This algorithm can
be seen as a deterministic clipped version of ADAM, which guarantees safe theoretical
stepsizes. More precisely, if n is the number of iterations of the algorithm, we show a
O(1/n) convergence rate of the minimum of the squared gradients norms by introducing
a suitable Lyapunov function. Then, we show a similar convergence result for non-convex
stochastic optimization up to the limit of the variance of stochastic gradients under an
almost surely bounded learning rate.

Finally, using the Kurdyka-Lojasiewicz (KL) property, we propose a convergence rate
analysis of the objective function values along the iterates of the algorithm in the
deterministic setting.

1.3 Actor-critic with target network for Reinforcement
Learning (Chapter 5)

In Chapter 5 of this thesis, we deal with the RL problem we have introduced in
subsection 1.1.3 using an algorithm which we will briefly present in what follows using
the notations of the aforementioned subsection. Starting from 6y, wo, @ € R? and given
three different sequences of positive stepsizes (ay), (8:), (&), the following recursions
generate the sequence (0;) of interest (parameterizing the sought policy) online as follows:

"

Ot+1 = Rip1 +76(Se1) wi — ¢(Se) Ty (1.21a)
Sri1 = Ripr + 7 0(Sip1) 0 — ¢(S1) wy (1.21b)
0111 = 0 + atﬁamvm o, (A¢|St) (1.21c)
w1 = wi + Bidir19(Sh) (1.21d)
Wi+1 =@+ §wirr — @) (1.21e)

Here, at each timestep ¢t € N, the state Si;y; is generated following the distribu-
tion p(-|S;, A¢) and the action A; according to mg,(-|S;). In the light of our brief
description of actor-critic methods in Section 1.1.3, Eq. (1.21¢) is used to update the
actor parameter whereas (1.21d) describes the evolution of the so-called critic approx-
imating the unknown value function. Concerning the actor, the temporal difference
error 041 estimates the unknown advantage function involved in the policy gradient
theorem (see Eq. (1.4) and Eq. (1.6)). The sequence (w;) corresponds to the critic:
as previously mentioned in Eq. (1.7), the quantity ¢(S;)"w; is a linear approximation
of Vr,, (S;). Regarding the critic, if the sequences (w;) and (@) coincide (i.e., Eq. (1.21¢)
is modified accordingly), then the algorithm coincides with a standard actor-critic al-
gorithm where the critic uses a standard value-based method called TD-learning (Sutton
(1988)). Instead, the algorithm uses a sequence (w;) defining the target network and
updated using Eq. (1.21e). We refer the reader to Section 5.4 in Chapter 5 for a detailed
presentation of the algorithm together with an explanation of the idea of target network.
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Theoretical contributions investigating the use of a target network are very recent and
limited to temporal difference (TD) learning for policy evaluation (Lee and He, 2019) and
critic-only methods such as Q-learning for control (Zhang et al., 2021b). In particular,
these works are not concerned with actor-critic algorithms and leave the question of the
finite-time analysis open.

We propose the first theoretical analysis of an online target-based actor-critic algorithm
(see Egs. (1.21a) to (1.21e) above) in the discounted reward setting. We consider the
linear function approximation setting where a linear combination of pre-selected feature
(or basis) functions estimates the value function in the critic as can be apppreciated in
Eqgs. (1.21d) and (1.21b). An analysis of this setting is an insightful first step before
tackling the more challenging nonlinear function approximation setting aligned with
the use of neural networks. Our algorithm uses three different timescales: one for the
actor using the stepsizes (o) and two for the critic using the stepsizes (5;) and (&)
s.t. a /& — 0 and &/B; — 0 as t — +o00. Instead of using the standard single timescale
TD learning algorithm as a critic, as can be seen in Eqs. (1.21b), (1.21d) and (1.21e), we
use a two timescales target-based version of TD learning closely inspired from practical
actor-critic algorithms implementing target networks.

First, we establish asymptotic convergence results for both the critic and the actor under
Markovian sampling. More precisely, as the actor parameter changes slowly compared
to the critic one, we show that the critic which uses a target variable tracks a slowly
moving target. Then, we show that the actor parameter visits infinitely often a region
of the parameter space where the norm of the policy gradient is dominated by a bias
induced by linear function approximation.

Second, we conduct a finite-time analysis of our actor-critic algorithm which shows the
impact of using a target variable on the convergence rates and the sample complexity.
This non-asymptotic analysis provides a more quantitative result bounding the average
expected squared gradient norm 7 ST E[[VJ(6,)]]?] for a given positive time hori-
zon T € N. Here, the sequence of interest (6;) is produced by our target-based actor-critic
algorithm to solve Problem (1.3) with a parameterized family of policies {mg : 0 € R?}
up to the linear function approximation error.

1.4 Structure of the thesis and publications

Our contributions in this thesis resulted in the following publications and preprints listed
in chronological order:

e Anas Barakat & Pascal Bianchi (2021). Convergence and Dynamical Behavior
of the ADAM Algorithm for Non-Convex Stochastic Optimization. In: STAM
Journal on Optimization, 31 (1), 244-274.

e Anas Barakat & Pascal Bianchi (2020). Convergence Rates of a Momentum
Algorithm with Bounded Adaptive Stepsize for Non-Convex Optimization. In:
Asian Conference on Machine Learning 2020, Proceedings of Machine Learning
Research, 129, 225-240.

e Anas Barakat, Pascal Bianchi, Walid Hachem & Sholom Schechtman (2021).
Stochastic optimization with momentum: convergence, fluctuations, and traps
avoidance. In: Electronic Journal of Statistics 15 (2), 3892-3947.
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e Anas Barakat, Pascal Bianchi & Julien Lehmann (2021). Analysis of a Target-Based
Actor-Critic Algorithm with Linear Function Approximation. ArXiw Preprint:
arXw:2106.07472.

This manuscript is organized as follows. Each chapter corresponds to one of the
aforementioned publications and preprints. Especially devoted to RL, Chapter 5 is
independent from the rest of the thesis. The last chapter of this thesis (Chapter 6)
contains concluding remarks and some directions of future research.



Convergence and Dynamical Behavior of the ADAM
Algorithm for Non-Convex Stochastic Optimization

Abstract The purpose of this chapter is to study the ADAM algorithm used for
finding a local minimizer of a function. In the constant stepsize regime, assuming that
the objective function is differentiable and non-convex, we establish the convergence in
the long run of the iterates to a stationary point under a stability condition. The key
ingredient is the introduction of a continuous-time version of ADAM, under the form
of a non-autonomous ordinary differential equation. The existence and the uniqueness
of the solution to the ODE are established. We further show the convergence of the
solution towards the critical points of the objective function and quantify its convergence
rate under a Lojasiewicz assumption. Then, we introduce a novel decreasing stepsize
version of ADAM. Under mild assumptions, it is shown that the iterates are almost
surely bounded and converge almost surely to critical points of the objective function.
Finally, we analyze the fluctuations of the algorithm by means of a conditional central
limit theorem.

2.1 Introduction

Consider the problem of finding a local minimizer of the expectation F(x) := E(f(z,£))
wrt. x € RY where f(.,€) is a possibly non-convex function depending on some
random variable £. The distribution of ¢ is assumed unknown, but revealed online by
the observation of iid copies (&, : n > 1) of the r.v. {. Stochastic gradient descent
(SGD) is the most classical algorithm to search for such a minimizer. Variants of
SGD which include an inertial term have also become very popular. In these methods,
the update rule depends on a parameter called the learning rate, which is generally
assumed constant or vanishing. These algorithms, although widely used, have at least
two limitations. First, the choice of the learning rate is generally difficult; large learning
rates result in large fluctuations of the estimate, whereas small learning rates induce
slow convergence. Second, a common learning rate is used for every coordinate despite
the possible discrepancies in the values of the gradient vector’s coordinates.

To alleviate these limitations, the popular ADAM algorithm (Kingma and Ba, 2015)
adjusts the learning rate coordinate-wise, as a function of the past values of the squared
gradient vectors’ coordinates. The algorithm thus combines the assets of inertial methods
with an adaptive per-coordinate learning rate selection. Finally, the algorithm includes
a so-called bias correction step. Acting on the current estimate of the gradient vector,
this step is especially useful during the early iterations.

Despite the growing popularity of the algorithm, only few works investigate its behavior
from a theoretical point of view (see the discussion in Section 2.6). The present chapter
studies the convergence of ADAM from a dynamical system viewpoint.
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Contributions

e We introduce a continuous-time version of the ADAM algorithm under the form of a
non-autonomous ordinary differential equation (ODE). Building on the existence of
an explicit Lyapunov function for the ODE, we show the existence of a unique global
solution to the ODE. This first result turns out to be non-trivial due to the irregularity
of the vector field. We then establish the convergence of the continuous-time ADAM
trajectory to the set of critical points of the objective function F. The proposed
continuous-time version of ADAM provides useful insights on the effect of the bias
correction step. It is shown that, close to the origin, the objective function F is
non-increasing along the ADAM trajectory, suggesting that early iterations of ADAM
can only improve the initial guess.

e Under a Lojasiewicz-type condition, we prove that the solution to the ODE converges
to a single critical point of the objective function F'. We provide convergence rates in
this case.

e In discrete time, we first analyze the ADAM iterates in the constant stepsize regime
as originally introduced in Kingma and Ba (2015). In this work, it is shown that
the discrete-time ADAM iterates shadow the behavior of the non-autonomous ODE
in the asymptotic regime where the stepsize parameter v of ADAM is small. More
precisely, we consider the interpolated process z7(t) which consists of a piecewise
linear interpolation of the ADAM iterates. The random process z7 is indexed by the
parameter -y, which is assumed constant during the whole run of the algorithm. In
the space of continuous functions on [0, +00) equipped with the topology of uniform
convergence on compact sets, we establish that z7 converges in probability to the
solution to the non-autonomous ODE when ~ tends to zero.

e Under a stability condition, we prove the asymptotic ergodic convergence of the
probability of the discrete-time ADAM iterates to approach the set of critical points of
the objective function in the doubly asymptotic regime where n — oo then v — 0.

e Beyond the original constant stepsize ADAM, we propose a decreasing stepsize version
of the algorithm. We provide sufficient conditions ensuring the stability and the almost
sure convergence of the iterates towards the critical points of the objective function.

e We establish a convergence rate of the stochastic iterates of the decreasing stepsize
algorithm under the form of a conditional central limit theorem.

We claim that our analysis can be easily extended to other adaptive algorithms such
as e.g. RMSPROP or ADAGRAD (Tieleman and Hinton, 2012; Duchi et al., 2011) and
AMSGRAD (see Section 2.6).

Chapter organization. In Section 2.2, we present the ADAM algorithm and the main
assumptions. Our main results are stated in Sections 2.3 to 2.5. We provide a review of
related works in Section 2.6. The rest of the chapter addresses the proofs of our results
(Sections 2.7 to 2.9).

Notations. If z, y are two vectors on R? for some d > 1, we denote by = ®y, z©2, x/y,

|z|, /|| the vectors on R? whose i-th coordinates are respectively given by z;y;, 22,

x;i Vi, |zil, v/|zi]. Inequalities of the form x < y are read componentwise. Denote by



2.2. The AbpAM algorithm 19

Algorithm 2.1 ApAM(7,«, 3, ¢).

Initialization: z¢ € R% mg =0, vy = 0.
for n = 1 to njter do
My =amy_1 + (1 —a)Vf(zn_1,&)
U = Bup-1 + (1 - 6)vf(xn—1a€n)®2
My, = my/(1 — a™) {bias correction step}
Op, = vy, /(1 — B™) {Dbias correction step}
Ty = Tp—1 — Y1/ (€ + VOn) -
end for

| || the standard Euclidean norm. For any vector v € (0, +00)?, write ||z]|2 = >, v;22.
Notation AT represents the transpose of a matrix A. If 2 € R? and A is a non-empty
subset of R?, we use the notation d(z, A) := inf{||z — 2| : 2’ € A}. If A is a set, we
denote by 1,4 the function equal to one on that set and to zero elsewhere. We denote by
C([0,400), R%) the space of continuous functions from [0, +00) to R? endowed with the
topology of uniform convergence on compact intervals.

2.2 The ADAM algorithm

2.2.1 Algorithm and Assumptions

Let (92, F,P) be a probability space, and let (2, &) denote another measurable space.
Consider a measurable map f : R? x © — R, where d is an integer. For a fixed value
of &, the mapping = — f(z,€) is supposed to be differentiable, and its gradient w.r.t.
z is denoted by Vf(z,€). Define Z := R x R? x R?, Z, := R? x R? x [0, 400)¢ and
27 :=RIx R? x (0,+00)%. ADAM generates a sequence 2, := (T, My, vy) o0 24 given
by Algorithm 2.1. It satisfies: z, = T o 3(n, 2n—1,&n), for every n > 1, where for every
z=(x,m,v)in Z;, £ € E,

- A
e+(1—-p")~ Bu+(1-B)V f(z,£
Tya,p(n,z,§) = am+ (1 —a)Vf(z, &) : (2.1)

Bu+ (1= B)Vf(z,€)>?

Remark 1. The iterates z, form a non-homogeneous Markov chain, because T 4 (7, 2, §)
depends on n. This is due to the so-called debiasing step, which consists of replacing
My, Un in Algorithm 2.1 by their “debiased” versions 1, 0,. The motivation becomes
clear when expanding the expression:

My, 1-—

n—1
«
={_am E oMV f (2k, §er1) -
k=0

mp

T 1_ar 1-

From this equation, it is observed that, m, forms a convex combination of the past
gradients. This is unlike m,,, which may be small during the first iterations.

Assumption 2.2.1. The mapping f : R? x = — R satisfies the following.

i) For every x € R?, f(x, .) is G-measurable.
ii) For almost every &, the map f(.,¢) is continuously differentiable.
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iii) There exists z, € R? s.t. E(|f(zx,&)]) < oo and E(||V f(x«, &)||?) < o0.
iv) For every compact subset K C R? there exists Lx > 0 such that for every

(z,y) € K2, E(IVf(2,8) = VI(y,OIP) < Lillz — yl*.

Under Assumption 2.2.1, it is an easy exercise to show that the mappings F : R — R
and S : R? — RY, given by:

F(z) :=E(f(z,§)) and S(z) :=E(Vf(z,§)%?) (2.2)

are well defined; F' is continuously differentiable and by Lebesgue’s dominated con-
vergence theorem, VF(x) = E(Vf(z,£)) for all xz. Moreover, VF and S are locally
Lipschitz continuous.

Assumption 2.2.2. F'is coercive.

Assumption 2.2.3. For every z € R? S(z) > 0.

It follows from our assumptions that the set of critical points of F', denoted by
S:=VF'({0}),

is non-empty. Assumption 2.2.3 means that there is no point z € R? satisfying V f(x, £) =
0 with probability one (w.p.1). This is a mild hypothesis in practice.

2.2.2 Asymptotic regime

We address the constant stepsize regime, where v is fixed along the iterations (the
default value recommended in Kingma and Ba (2015) is v = 0.001). As opposed to the
decreasing stepsize context, the sequence 20 = 2z, cannot in general converge as n tends
to infinity, in an almost sure sense. Instead, we investigate the asymptotic behavior
of the family of processes (n +— z;])y>0 indexed by v, in the regime where v — 0. We
use the ODE method (see e.g., Benaim (1999); Benaim and Schreiber (2000)). The
interpolated process z7 is the piecewise linear function defined on [0, +o00) — Z for all
t € [ny, (n+ 1)) by:

/(1) = 2+ (54 — 2)) (t ‘,j”) - (2.3)

We establish the convergence in probability of the family of random processes (z7)~0
as «y tends to zero, towards a deterministic continuous-time system defined by an ODE.
The latter ODE, which we provide below at Eq. (ODE), will be referred to as the
continuous-time version of ADAM.

Before describing the ODE, we need to be more specific about our asymptotic regime. As
opposed to SGD, ADAM depends on two parameters «, (3, in addition to the stepsize ~.
Kingma and Ba (2015) recommend choosing the constants « and § close to one (the
default values v = 0.9 and 8 = 0.999 are suggested). It is thus legitimate to assume that
« and f3 tend to one, as y tends to zero. We set a := a(y) and 3 := B(v), where a(y)
and () converge to one as y — 0.

Assumption 2.2.4. The functions & : R, — [0,1) and 3 : Ry — [0,1) are s.t. the
following limits exist:

a:= liml_idw), = liml_iﬁ(w.

(2.4)
7.0 Y 7.0 Y
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Moreover, a > 0, b > 0, and the following condition holds: b < 4a.

Note that the condition b < 4a is compatible with the default settings recommended by
Kingma and Ba (2015). In our model, we shall now replace the map T, ,, 3 by T, a(v),3(+)
Let zg € R? be fixed. For any fixed v > 0, we define the sequence (z,) generated by
ADAM with a fixed stepsize v > 0:

7 =T 6,500 (7 Zn1,6n) (2.5)

the initialization being chosen as z] = (o, 0, 0).

2.3 Continuous-time system

2.3.1 Ordinary differential equation

In order to gain insight into the behavior of the sequence (z;) defined by (2.5), it is
convenient to rewrite the ADAM iterations under the following equivalent form, for
every n > 1:

Zy = 2y +hy(n, 25 0) +YAT, (2.6)

where we define for every v > 0, z € Z,
hy(n, 2) := W_IE(TW@(A,),B(W) (n,z,8) — 2), (2.7)

and where A} := v~ 1(z) — z?l_l) —hy(n, ZZ-1)~ Note that (A}) is a martingale increment
noise sequence in the sense that E(A}|F,—1) = 0 for all n > 1, where F,, stands for the
o-algebra generated by the r.v. &,...,&,. Define the map h : (0,400) x Z; — Z for

all t >0, all z = (x,m,v) in Z; by:

_M
Wt = | (VR —m) | - (2.9
(S ()~ )

where a,b are the constants defined in Assumption 2.2.4. We prove that, for any
fixed (¢, z), the quantity h(t,z) coincides with the limit of h,(|t/v], 2) as v | 0. This
remark along with Eq. (2.6) suggests that, as v | 0, the interpolated process z7 shadows
the non-autonomous differential equation

2(t) = h(t, 2(t) . (ODE)

2.3.2 Existence, uniqueness, convergence

Since h( ., z) is non-continuous at point zero for a fixed z € Z,, and since h(t, .) is
not locally Lipschitz continuous for a fixed ¢ > 0, the existence and uniqueness of the
solution to (ODE) do not stem directly from off-the-shelf theorems.

Let xo be fixed. A continuous map z : [0,4+00) — Z, is said to be a global solution to
(ODE) with initial condition (xg,0,0) if z is continuously differentiable on (0, +00), if
Eq. (ODE) holds for all ¢ > 0, and if z(0) = (=, 0,0).

Theorem 2.1 (Existence and uniqueness). Let Assumptions 2.2.1 to 2.2.J hold true.
There exists a unique global solution z : [0,+00) — Z1 to (ODE) with initial condi-
tion (x0,0,0). Moreover, z([0,400)) is a bounded subset of Z,.



22 Chapter 2. Convergence of the ADAM Algorithm

On the other hand, we note that a solution may not exist for an initial point(zg, mg, vo)
with arbitrary (non-zero) values of myg, vg.

Theorem 2.2 (Convergence). Let Assumptions 2.2.1 to 2.2.J hold true. Assume
that F(S) has an empty interior. Let z : t — (xz(t),m(t),v(t)) be the global solution
to (ODE) with the initial condition (x¢,0,0). Then, the set S is non-empty and
limy o0 d(z(t),S) = 0, limy_yoo m(t) = 0, limy_,o0 S(x(t)) — v(t) = 0.

Lyapunov function. The proof of Th. 2.1 relies on the existence of a Lyapunov
function for the non-autonomous equation (ODE). Define V' : (0,4+00) x Z1 — R by

1
V(t,2) = F(@) + 5 [mlig - - (2.9)

for every t > 0 and every z = (x,m,v) in Z;, where U : (0, 4+00) x [0, +00)¢ — R? is

the map given by:
- [ v
U(t, U) = a(l — € at) (5 + 1_ebt> . (210)

Then, t — V (¢, 2(t)) is decreasing if z(-) is the global solution to (ODE).

Cost decrease at the origin. As F itself is not a Lyapunov function for (ODE), there
is no guarantee that F'(x(t)) is decreasing w.r.t. t. Nevertheless, the statement holds at
the origin. Indeed, it can be shown that lim, o V (¢, 2(t)) = F(x¢) (see Prop. 2.12). As a
consequence,

Vt >0, Fa(t)) < F(a). (2.11)

In other words, the (continuous-time) ADAM procedure can only improve the initial
guess xg. This is the consequence of the so-called bias correction steps in ADAM (see
Algorithm 2.1). If these debiasing steps were deleted in the ADAM iterations, the early
stages of the algorithm could degrade the initial estimate xg.

Derivatives at the origin. The proof of Th. 2.1 reveals that the initial derivative is
given by #(0) = =V F(x0)/(e¢ + /S(z0)) (see Lem. 2.9). In the absence of debiasing
steps, the initial derivative ©(0) would be a function of the initial parameters mg, vg, and
the user would be required to tune these hyperparameters. No such tuning is required
thanks to the debiasing step. When ¢ is small and when the variance of V f(zo,&) is
small (i.e., S(xg) ~ VF(x0)9?), the initial derivative #(0) is approximately equal to
—VF(z9)/|VF(x0)|. This suggests that in the early stages of the algorithm, the ADAM
iterations are comparable to the sign variant of the gradient descent, the properties of
which were discussed in previous works, see Balles and Hennig (2018).

2.3.3 Convergence rates

In this paragraph, we establish the convergence to a single critical point of F' and
quantify the convergence rate, using the following assumption (Lojasiewicz, 1963).

Assumption 2.3.1 (Lojasiewicz property). For any z* € S, there exist ¢ > 0,0 > 0
and 0 € (0, 3] s.t.

Ve eRest ||z — ¥ <o, |VF(z)|>clF(z)— Fa)'?. (2.12)
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Assumption 2.3.1 holds for real-analytic functions and semialgebraic functions. We
refer to Haraux and Jendoubi (2015); Attouch and Bolte (2009); Bolte et al. (2014)
for a discussion and a review of applications. We will call any 6 satisfying (2.12) for
some ¢,o > 0, as a Lojasiewicz exponent of F' at x*. The next result establishes the
convergence of the function z(t) generated by the ODE to a single critical point of F,
and provides the convergence rate as a function of the Lojasiewicz exponent of F' at this
critical point. The proof is provided in subsection 2.7.4.

Theorem 2.3. Let Assumptions 2.2.1 to 2.2. and 2.5.1 hold true. Assume that F(S)
has an empty interior. Let xg € RY and let z : t +— (z(t), m(t),v(t)) be the global solution
to (ODE) with initial condition (x0,0,0). Then, there exists x* € S such that z(t)
converges to x* as t — +00.

Moreover, if 8 € (0, %] is a Lojasiewicz exponent of F at x*, there exists a constant
C >0 st forallt>0,

1
lo(t) — 2| < CtTm  f0<f< 5

1
|z(t) — z*|| < Ce™®,  for some d > 0 if § = 7"

2.4 Discrete-time system: convergence of ADAM
Assumption 2.4.1. The sequence (&, : n > 1) is iid, with the same distribution as &.

Assumption 2.4.2. Let p > 0. Assume either one of the following conditions.

i) For every compact set K C R, sup,; E(||Vf(z,&)|P) < co.
ii) For every compact set K C RY, Ipg > p, sup,cx E(|[Vf(z,8)|[PK) < .

The value of p will be specified in the sequel, in the statement of the results. Clearly,
Assumption 2.4.2 ii) is stronger than Assumption 2.4.2 i). We shall use either the latter
or the former in our statements.

Theorem 2.4. Let Assumptions 2.2.1 to 2.2.4 and 2.4.1 hold true. Let Assump-
tion 2.4.2 ii) hold with p = 2. Consider xo € R?. For every v > 0, let (z) : n € N) be
the random sequence defined by the ADAM iterations (2.5) and 2] = (0,0,0). Let 27
be the corresponding interpolated process defined by Eq. (2.3). Finally, let z denote the
unique global solution to (ODE) issued from (x9,0,0). Then,

VT >0, V>0, ilmP | sup ||27(¢) —2()|| > | =0.
740 te[0,T]

Recall that a family of r.v. (X, )aer is called bounded in probability, or tight, if for every
0 > 0, there exists a compact set K s.t. P(X, € K) > 1— 6 for every o € 1.

Assumption 2.4.3. There exists 59 > 0 s.t. the family of r.v. (27 :n € N,0 < v < )
is bounded in probability.

Theorem 2.5. Consider o € RY. For every v > 0, let (2 : n € N) be the random
sequence defined by the ADAM iterations (2.5) and z] = (20,0,0). Let Assumptions 2.2.1
to 2.2./, 2./.1 and 2./.3 hold. Let Assumption 2.4.2 ii) hold with p = 2. Then, for
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Algorithm 2.2 ADAM- decreasing stepsize (((Vn, an, 8n) : 1 € N¥) e).

Initialization: o € R% mg =0, vg =0, 19 = 7o = 0.
for n =1 to njter do

My = QpMp—1 + (1 - an)vf(xn—lagn)

Up = BpUn—1+ (1 - Bn)vf(xn—la 5n)®2

Tn = aprp—1 + (1 — ay)

Tn = ﬁnfn—l + (1 - /Bn)

My, = my /T, {bias correction step}

Up, = vy, /Ty {bias correction step}

LTp = Tp—1 — 'Ynmn/(e + \/ﬁ) .
end for

every 0 > 0,

hmhmsup Z]P’ (z],8) >6)=0. (2.13)

n—oo N

Convergence in the long run. When the stepsize v is constant, the sequence (z7,)
cannot converge in the almost sure sense as n — 0o. Convergence may only hold in the
doubly asymptotic regime where n — oo then v — 0.

Randomization. For every n, consider a r.v. N,, uniformly distributed on {1,...,n}.
Define &, = xN We obtain from Th. 2.5 that for every § > 0,

limsup P(d(z],S) > ) — 0.

n—00 740

Relationship between discrete and continuous time ADAM. Th. 2.4 means that
the family of random processes (z7 : « > 0) converges in probability as v | 0 towards
the unique solution to (ODE) issued from (xo,0,0). This motivates the fact that the
non-autonomous system (ODE) is a relevant approximation to the behavior of the
iterates (z, : n € N) for a small value of the stepsize 7.

Stability. Assumption 2.4.3 ensures that the iterates z, do not explode in the long run.
A sufficient condition is for instance that sup,, . E[|z || < co. In theory, this assumption
can be difficult to verify. Nevertheless, in practice, a projection step on a compact set
can be introduced to ensure the boundedness of the estimates.

2.5 A decreasing stepsize ADAM algorithm

2.5.1 Algorithm

ADAM inherently uses constant stepsizes. Consequently, the iterates (2.5) do not converge
in the almost sure sense. In order to achieve convergence, we introduce in this section a
decreasing stepsize version of ADAM. The iterations are given in Algorithm 2.2. The
algorithm generates a sequence z, = (p, My, v,) with initial point zy = (9, 0,0), where
ro € R% Apart from the fact that the hyperparameters (vy, o, 3,) now depend on
n, the main difference w.r.t Algorithm 2.1 lies in the expression of the debiasing step.
As noted in Remark 1, the aim is to rescale m, (resp. v,) in such a way that the
rescaled version m, (resp. 0,) is a convex combination of past stochastic gradients



2.5. A decreasing stepsize ADAM algorithm 25

(resp. squared gradients). While in the constant step case the rescaling coefficient is
(1 —a™) ™! (resp. (1 —p™)71), the decreasing step case requires dividing m, by the
coefficient r, = 1 — [[}" a; (resp. v, by 7, = 1 —[[;; 8i), which keeps track of the
previous weights:
o ma iy Pk VI (-1, k)
My = —— = n )
Tn Zk:l p’l’l,k‘

where for every n, k, ppr = o - - agp1(l — o). A similar equation holds for vy,.

2.5.2 Almost sure convergence

Assumption 2.5.1 (Stepsizes). The following holds.

i) For all n € N, v, > 0 and v, 41/ — 1,
ii) >, = +oo and Y., v2 < +oo,
iii) Foralln e N, 0 < a, <land 0 < f, <1,
iv) There exist a,b s.t. 0 <b <4a, v, (1 — ) — a and v, (1 — 3,) = b.

Theorem 2.6. Let Assumptions 2.2.1 to 2.2.3, 2.4.1 and 2.5.1 hold. Let Assump-
tion 2.4.2 1) hold with p = 4. Assume that F(S) has an empty interior and that the
random sequence ((Tpn,Mp,vy) : n € N) given by Algorithm 2.2 is bounded, with prob-
ability one. Then, w.p.1, lim, o0 d(2y,S) =0, limp—oomy = 0 and limy,— oo (S(xy) —
vp) = 0. If moreover S is finite or countable, then w.p.1, there exists z* € S s.t.
limy, o0 (T, My, vy) = (2*,0,5(x*)).

Th. 2.6 establishes the almost sure convergence of x,, to the set of critical points of F,
under the assumption that the sequence ((zy, mp,vy)) is a.s. bounded. The next result
provides a sufficient condition under which almost sure boundedness holds.

Assumption 2.5.2. The following holds.

i) VF is Lipschitz continuous.
ii) There exists C > 0 s.t. for all z € RY, E[||V f(z,8)[?] < C(1 + F(z)).

. . 1—ay,
iii) We assume the condition: lim sup,,_, ., 'y% - <13 ﬁ) '71+1> <2(a—1%),

which is satisfied for instance if b < 4a and 1 — ap41 = ayyn.

Theorem 2.7. Let Assumptions 2.2.1, 2.2.2, 2.4.1, 2.5.1 and 2.5.2 hold. Let Assump-
tion 2.4.2 i) hold with p = 4. Then, the sequence ((Tn,mp,vy) @ n € N) given by
Algorithm 2.2 is bounded with probability one.

2.5.3 Central limit theorem
Assumption 2.5.3. Let z* € §. There exists a neighborhood V of z* s.t.

i) F is twice continuously differentiable on V', and the Hessian V2F(z*) of F at x*
is positive definite.
ii) S is continuously differentiable on V.

Define D := diag ((5 +/S1(x*) 7L (e + Sd(x*))_l) . Let P be an orthogonal

matrix s.t. the following spectral decomposition holds:

DY2V2F(2*)DY? = Pdiag(Ay, -+ , A) P,
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where \i, - -+, A\g are the (positive) eigenvalues of D'/2V2F(2*)D'/?. Define

0 -D 0
H:= | aV?F(z*) —al; 0 (2.14)
bWS(x*) 0 —bly

where I; represents the d x d identity matrix and VS(x*) is the Jacobian matrix of S
at x*. The largest real part of the eigenvalues of H coincides with — L, where

AN
L::b/\% 1- <1—1>v0 >0. (2.15)
a

Finally, define the 3d x 3d matrix

=1 o E( vV f(a*, ) )( oV f(a* ) )T . (2.16)

Assumption 2.5.4. The following holds.

i) There exist k € (0, 1], 7o > 0, s.t. the sequence (v,) satisfies v, = vo/(n + 1)* for
all n. If kK = 1, we assume moreover that vy > i

ii) The sequences (%ﬂ(ﬂ - a)) and (7%(% - b)) are bounded.

Tn Tn

For an arbitrary sequence (X,,) of random variables on some Euclidean space, a probab-
ility measure p on that space and an event I' s.t. P(I") > 0, we say that X,, converges in
distribution to p given I' if the measures P(X,, € - |I') converge weakly to pu.

Theorem 2.8. Let Assumptions 2.2.1, 2.2.3, 2.4.1, 2.5.3 and 2.5./ hold true. Let
Assumption 2.4.2 ii) hold with p = 4. Consider the iterates z, = (Tpn, My, V) given
by Algorithm 2.2. Set z* = (z*,0,S(x*)). Set ( :=04if0 < kK <1 and ¢ := ﬁ if
k= 1. Assume P(z, — z*) > 0. Then, given the event {z, — 2z*}, the rescaled vector
\/%71(271 — 2*) converges in distribution to a zero mean Gaussian distribution on R3?

with a covariance matrix ¥ which is solution to the Lyapunov equation: (H + (Igd) >+
X (HT —|—C1'3d) = —Q. In particular, given {z, — 2*}, the vector \/yn (xp — x*)

converges in distribution to a zero mean Gaussian distribution with a covariance matrix
31 given by:

Ch
(1= 2+ e = 20+ 2¢) + 55255 (M — A)?

P—1D1/2

kf=1..d

¥y = D'?p

(2.17)
where C := P~1D/2E (Vf(w*,ﬁ)Vf(a:*,f)T> D/2p.

The following remarks are useful.
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e The variable v,, has an impact on the limiting covariance Y1 through its limit S(z*)
(used to define D), but the fluctuations of v, and the parameter b have no effect on
Y1. As a matter of fact, ¥ coincides with the limiting covariance matrix that would
have been obtained by considering iterates of the form

Tpn+1 = Tn — Ynt+1Pn+1
Pn+l =Pn+ a’}/nJrl(DVf(:Um §n+1) - pn) )

which can be interpreted as a preconditioned version of the stochastic heavy ball
algorithm (Gadat et al., 2018). Of course, the above iterates are not implementable
because the preconditioning matrix D is unknown.

e When « is large, X7 is close to the matrix Ego) obtained when letting a — +o0 in

Eq. (3.10). The matrix Ego) is the solution to the Lyapunov equation
(DV2F () = (L)Y + 2 (V2F (@)D - ¢Iy) = DE (Vf(2*, )V (2", &)7) D.

The matrix Ego) can be interpreted as the asymptotic covariance matrix of the z-
variable in the absence of the inertial term (that is, when one considers RMSPROP
instead of ADAM). The matrix Ego) approximates Y1 in the sense that »; = Ego) +
éA + O(a—g) for some symmetric matrix A which can be explicited. The matrix A is
neither positive nor negative definite in general. This suggests that the question of the

potential benefit of the presence of an inertial term is in general problem dependent.

e In the statement of Th. 2.8, the conditioning event {z, — z*} can be replaced by the
event {x, — *} under the additional assumption that > ~2 < 4oc.

2.6 Related works

Although the idea of adapting the (per-coordinate) learning rates as a function of
past gradient values is not new (see e.g. variable metric methods such as the BFGS
algorithms), ADAGRAD (Duchi et al., 2011) led the way to a new class of algorithms
that are sometimes referred to as adaptive gradient methods. ADAGRAD consists of
dividing the learning rate by the square root of the sum of previous gradients squared
componentwise. The idea was to give larger learning rates to highly informative but
infrequent features instead of using a fixed predetermined schedule. However, in practice,
the division by the cumulative sum of squared gradients may generate small learning
rates, thus freezing the iterates too early. Several works proposed heuristical ways to set
the learning rates using a less aggressive policy. Tieleman and Hinton (2012) introduced
an unpublished, yet popular, algorithm referred to as RMSPROP where the cumulative
sum used in ADAGRAD is replaced by a moving average of squared gradients. ADAM
combines the advantages of both ADAGRAD, RMSPROP and inertial methods.

As opposed to ADAGRAD, for which theoretical convergence guarantees exist (Duchi
et al., 2011; Chen et al., 2019; Zhou et al., 2018; Ward et al., 2019a; Traoré and
Pauwels, 2021), ADAM is comparatively less studied. The initial paper of Kingma and
Ba (2015) suggests a (9(%) average regret bound in the convex setting, but Reddi
et al. (2018) exhibit a counterexample in contradiction with this statement. The latter
counterexample implies that the average regret bound of ADAM does not converge to
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zero. A first way to overcome the problem is to modify the ADAM iterations themselves
in order to obtain a vanishing average regret. This led Reddi et al. (2018) to propose
a variant called AMSGRAD with the aim to recover, at least in the convex case, the
sought guarantees. Balles and Hennig (2018) interpret ADAM as a variance-adapted sign
descent combining an update direction given by the sign and a magnitude controlled
by a variance adaptation principle. A “noiseless” version of ADAM is considered in
Basu et al. (2018). Under quite specific values of the ADAM-hyperparameters, it is
shown that for every § > 0, there exists some time instant for which the norm of the
gradient of the objective at the current iterate is no larger than 6. The recent work
of Chen et al. (2019) provides a similar result for AMSGRAD and ADAGRAD, but the
generalization to ADAM is subject to conditions which are not easily verifiable. Zaheer
et al. (2018) provide a convergence result for RMSPROP using the objective function F
as a Lyapunov function. However, our work suggests that unlike RMSPROP, ADAM does
not admit F' as a Lyapunov function. This makes the approach of Zaheer et al. (2018)
hardly generalizable to ADAM. Moreover, Zaheer et al. (2018) consider biased gradient
estimates instead of the debiased estimates used in ADAM.

In the present work, we study the behavior of an ODE, interpreted as the limit in
probability of the (interpolated) ADAM iterates as the stepsize tends to zero. Closely
related continuous-time dynamical systems are also studied in Attouch et al. (2000);
Cabot et al. (2009). We leverage the idea of approximating a discrete time stochastic
system by a deterministic continuous one, often referred to as the ODE method. The
recent work of Gadat et al. (2018) fruitfully exploits this method to study a stochastic
version of the celebrated heavy ball algorithm. We refer to Davis et al. (2020) for the
reader interested in the non-differentiable setting with an analysis of the stochastic
subgradient algorithm for non-smooth non-convex objective functions.

Concomitant to the paper on which this chapter is based, Belotto da Silva and Gazeau
(31 Oct 2018) (posted only four weeks after the first version of the present work) study
the asymptotic behavior of a similar dynamical system as the one introduced here.
They establish several results in continuous time, such as avoidance of traps as well as
convergence rates in the convex case; such aspects are out of the scope of this chapter.
However, the question of the convergence of the (discrete-time) iterates is left open.
In the current chapter, we also exhibit a Lyapunov function which allows, amongst
others, to draw useful conclusions on the effect of the debiasing step of ADAM. Finally,
Belotto da Silva and Gazeau (31 Oct 2018) study a slightly modified version of ADAM
allowing to recover an ODE with a locally Lipschitz continuous vector field, whereas the
original ADAM algorithm (Kingma and Ba, 2015) leads to an ODE with an irregular
vector field. This technical issue is tackled in the present chapter.

2.7 Proofs for Section 2.3

2.7.1 Preliminaries

The results in this section are not specific to the case where F' and S are defined as in
Eq. (2.2): they are stated for any mappings F', S satisfying the following hypotheses.

Assumption 2.7.1. The function F : R — R is s.t.: F' is continuously differentiable
and VF is locally Lipschitz continuous.

Assumption 2.7.2. The map S : R% — [0, +oo)d is locally Lipschitz continuous.
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In the sequel, we consider the following generalization of Eq. (ODE) for any n > 0:
5(t) = h(t + 7, 2(2)) (ODE,)

When n = 0, Eq. (ODE,) boils down to the equation of interest (ODE). The choice
n € (0,+00) will be revealed useful to prove Th. 2.1. Indeed, for n > 0, a solution to
Eq. (ODE,) can be shown to exist (on some interval) due to the continuity of the map
h(.4+n, .). Considering a family of such solutions indexed by n € (0, 1], the idea is to
prove the existence of a solution to (ODE) as a cluster point of the latter family when
1 J 0. Indeed, as the family is shown to be equicontinuous, such a cluster point does
exist thanks to the Arzela-Ascoli theorem. When 7 = 400, Eq. (ODE,)) rewrites

2(t) = hoo(2(2)) , (ODE)

where hoo(2) 1= limy—00 h(t, 2). Tt is useful to note that for (z,m,v) € Z;,
hoo((x,m,v)) = (—m/(a +vv), a(VF(xz) —m), b(S(z) — v)) : (2.18)

Contrary to Eq. (ODE), Eq. (ODE,) defines an autonomous ODE. The latter admits a
unique global solution for any initial condition in Z,, and defines a dynamical system D.
We shall exhibit a strict Lyapunov function for this dynamical system D, and deduce
that any solution to (ODE.,) converges to the set of equilibria of D as t — co. On the
otherhand, we will prove that the solution to (ODE) with a proper initial condition is
a so-called asymptotic pseudotrajectory (APT) of D. Due to the existence of a strict
Lyapunov function, the APT shall inherit the convergence behavior of the autonomous
system as t — oo, which will prove Th. 2.2.

It is convenient to extend the map h : (0, +00) x 24 — Z on (0, +00) x Z2 — Z by setting
h(t, (x,m,v)) := h(t, (x,m,|v|)) for every t > 0, (z,m,v) € Z. Similarly, we extend
hoo @s hoo((x,m,v)) := hoo((x,m, |v|)). For any T € (0,+o00] and any n € [0, 00|, we
say that a map z: [0,7) — Z is a solution to (ODE,) on [0,7") with initial condition
29 € Z4, if z is continuous on [0, 7"), continuously differentiable on (0,7’), and if (ODE,))
holds for all ¢t € (0,7'). When T = +o00, we say that the solution is global. We denote
by Z].(z0) the subset of C([0,T'), Z) formed by the solutions to (ODE,) on [0,7) with
initial condition zy. For any K C Z4, we define Z(K) := o Z7(2).

Lemma 2.9. Let Assumptions 2.7.1 and 2.7.2 hold. Consider 2y € R?, T € (0, +oc] and
let 2z € Z%((z0,0,0)), which we write 2(t) = (x(t),m(t),v(t)). Then, z is continuously

differentiable on [0,T"), 2(0) = aV F(zq), (0) = bS(z) and 2(0) = 51775((&))
xo

Proof. By definition of z(.), m(t) = fg a(VF(x(s)) —m(s))ds for all t € [0,T) (and
a similar relation holds for v(t)). The integrand being continuous, it holds that m and
v are differentiable at zero and m(0) = aVF(zg), v(0) = bS(xp). Similarly, z(t) =
xo +f(f he(s, 2(s))ds, where hy (s, 2(s)) = —(1 —e~%)"tm(s)/(e + /(1 — e70s)~Lu(s)) .
Note that m(s)/s — m(0) = aVF(xq) as s | 0. Thus, (1 —e~%)"tm(s) — VF(xq)
as s — 0. Similarly, (1 — e ®)7lu(s) — S(zo). It follows that h.(s,2(s)) —
—(e + +/S(x0)) "'V F(x0). Thus, s — h,(s,2(s)) can be extended to a continuous
map on [0,7) — R? and the differentiability of x at zero follows. [ |

Lemma 2.10. Let Assumptions 2.2.3, 2.7.1 and 2.7.2 hold. For every n € [0, +o0],
T € (0,+00], 20 € 24, z € Z}(20), it holds that z((0,T)) C Zx.
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Proof. Set z(t) = (z(t),m(t),v(t)) for all t. Consider i € {1,...,d}. Assume by con-
tradiction that there exists ty € (0,7) s.t. v;(to) < 0. Set 7 := sup{t € [0, to] : v;(t) > 0}.
Clearly, 7 < tg and v;(7) = 0 by the continuity of v;. Since v;(t) < 0 for all ¢ € (7, 0], it
holds that v;(t) = b(S;(xz(t)) — vi(t)) is nonnegative for all ¢t € (7,¢p]. This contradicts
the fact that v;(7) > v;(tp). Thus, v;(t) > 0 for all t € [0,7"). Now assume by contra-
diction that there exists ¢ € (0,7T) s.t. v;(t) = 0. Then, v;(t) = bS;(x(t)) > 0. Thus,
lims g %gé) = bS;(xz(t)) . In particular, there exists § > 0 s.t. v;(t — ) < —%Si(ac(t)) .
This contradicts the first point. |

Recall the definitions of V' and U from Egs. (2.9) and (2.10). Clearly, Ux(v) :=
limy 00 U(t,v) = a(e + 1/v) is well defined for every v € [0, +0c)¢. Hence, we can also
define Voo (2) 1= limy_yo0 V(¢ 2) for every z € Z,.

Lemma 2.11. Let Assumptions 2.7.1 and 2.7.2 hold. Assume that 0 < b < 4a. Consider
(t,2) € (0,400) x Z} and set z = (x,m,v). Then, V and V are differentiable at points

2
(t,z) and z respectively. Moreover, (VVy(2), hoo(2)) < —¢ % and
2
ell am
VV(t 1, h(t < —=
TVt 20, (L (e ) < =5 |5

Proof. @ We only prove the second point, the proof of the first point follows the
same line. Consider (t,z) € (0,+00) x Z}. We decompose (VV(t,2),(1,h(t,2))) =
OV (t,z) + (V.V(t,z2),h(t, 2)). After tedious but straightforward derivations, we get:

_ d a2m22 e_at(-; e—at be_bt(l—e_at) V;
OV (t,2) = =2 im Ul(t,v;)? 5 T 2 da(1—e7?Y) 1—e=bt | 7
(2.19)

where U(t,v;) = a(1 — e~ %) (5 + 1—1:bt> and (V,V(t, z), h(t,z)) is equal to:

d
—a’m?(1 — e~ ) b v bSi(x)
1— —
Z U(t,v;)? et 4) lfebt—’_

i=1 a B dar/v;(1 — e=bt)

Using that S;(xz) > 0, we obtain:

v 1,h < ami (g = 2.2
(VV(t,2),(1,h(t, 2))) < —;W (1- 5 )€ + cap(t) 1_c0t | (2.20)
where cqp(t) i =1 — %at - ﬁi_iibt Using inequality 1 — e~ /2 > 1/2 in (2.20), the

inequality (2.20) proves the lemma, provided that one is able to show that ¢, ;(t) > 0,
for all ¢ > 0 and all a, b satisfying 0 < b < 4a. We prove this last statement. It can be
shown that the function b +— ¢4 (t) is decreasing on [0, +00). Hence, cq4(t) > ¢q4a(t).
Now, ¢q44(t) = q(e™) where ¢ : [0,1) — R is the function defined for all y € [0,1) by

q(y) =y <y4 — 293 + 1) /(2(1 —y%)). Hence ¢ > 0. Thus, cqp(t) > g(e™) > 0. [ |
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2.7.2 Proof of Th. 2.1
2.7.2.1 Boundedness

Define Zy := {(2,0,0) : # € R%}. Let &: (0, +00) x Z, — Z, be defined for every ¢ > 0
and every z = (z,m,v) in Z; by:

é(t,z) == (z,m/(1 —e ), v/(1—e ).

Proposition 2.12. Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold. Assume that
0 < b < 4a. For every zy € Zy, there exists a compact set K C Z; s.t. for all

€ [0,+00), all T € (0,+00] and all z € Z!(z), {é(t—i—n,z(t)) te (o,T)} CK.
Moreover, choosing zy of the form zy = (x9,0,0) and z(¢) = (x(t), m(t),v(t)), it holds
that F(x(t)) < F(xzg) for all t € [0,T).

Proof.  Let n € [0,+00). Consider a solution z,(t) = (x,(t), my(t),vy(t)) as in
the statement, defined on some interval [0, T). Define 1, (t) = my(t)/(1 — e~2t+m),
oy (t) = vy (t) /(1 — e72E). By Lem. 2.10, t + V(¢ + 1, 2(t)) is continuous on [0,7),
and continuously differentiable on (0,7). By Lem. 2.11, V(£ +1, 2,(t)) < 0 for all ¢ > 0.
As a consequence, t — V(t + 1), 2,(t)) is non-increasing on [0,7"). Thus, for all t > 0,
F(xy(t)) < limy o V(t' + 1, 2,(t")). Note that:

1 my(t)?
V(t+mn,2y(t) < F(ay(l)) + Z — (

If n > 0, every term in the sum in the righthand side tends to zero, upon noting that
my(t) — 0 as t — 0. The statement still holds if » = 0. Indeed, by Lem. 2.9, for a
given i € {1,...,d}, there exists § > 0 s.t. for all 0 < ¢ < &, my;(t)? < 2a%(0;F (x0))*t*
and 1 — e~ > (at)/2. As a consequence, each term of the sum is no larger than
4(0;F (w0))?t /e, which tends to zero as t — 0. We conclude that for all ¢t > 0, F(z,(t)) <
F(x0). In particular, {z,(t) :t € [0,T)} C {F < F(x0)}, the latter set being bounded
by Assumption 2.2.2.

We prove that v; ,(t) is (upper)bounded. Define R; := sup S;({F < F(x¢)}), which is
finite by continuity of S. Assume by contradiction that the set {t € [0,T) : v, ;(t) >
R;+1} is non-empty, and denote its infimum by 7. By continuity of v, ;, one has v, ;(7) =
R; 4+ 1. This by the way implies that 7 > 0. Hence, 0y, ;(7) = b(Si(xy(7)) —vy:(7)) < —b.
This means that there exists 7/ < 7 s.t. vy ;(7") > vy;(7), which contradicts the definition
of 7. We have shown that v, ;(t) < R; + 1 for all t € (0,7"). In particular, when ¢t > 1,
Dyi(t) = vyi(t)/(1—e ) < (R;+1)/(1—e~?). Consider ¢ € (0, IAT). By the mean value
theorem, there exists #,, € [0,t] s.t. vy ;(t) = 0y (t;)t. Thus, v, ;(t) < bS;(z(f,))t < bR;t.
Using that the map y — y/(1 — e™¥) is increasing on (0,+00), it holds that for all

€ (0,1 AT), 9y4(t) < bR;/(1 —e~?). We have shown that, for all ¢ € (0,7) and all i €
{1,...,d}, 0 < 9y,,(t) < M, where M := (1—e ?)"1(1+b)(1+max{R,: £ € {1,...,d}).

As V(t+n, z,(t)) < F(zo), we obtain: F(zg) > F(2,(t))+4 Hmn H . Thus,
U(t+777’Un(t))

F(zg) > inf F + m\\mn( )||?. Therefore, my(.) is bounded on [0,T), uniformly

in 7. The same holds for 712, by using the mean value theorem in the same way as for

Uyy. The proof is complete. |

I
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Proposition 2.13. Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold. Assume that
0 < b<4a. Let K be a compact subset of Z,. Then, there exists another compact set
K' C Z; s.t. for every T € (0,+00] and every z € Z¥(K), z([0,T)) C K'.

Proof. The proof follows the same line as Prop. 2.12 and is omitted. |

For any K C Z,, define vy (K) := inf{vg : (z,m,v) € K,i € {1,...,d}}.

Lemma 2.14. Under Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2, the following holds true.

i) For every compact set K C Z,, there exists ¢ > 0, s.t. for every z € ZZ(K), of
the form z(t) = (x(t), m(t),v(t)), vi(t) > cmin (1, U“‘”‘(K) + t) (Vt >0,Vi €
{1,...,d}).

ii) For every zp € 2y, there exists ¢ > 0 s.t. for every n € [0,+00) and every
2 € Z%(20), vi(t) > emin(1,t) (Vt>0,Vie{1,...,d}).

Proof. We prove the first point. Consider a compact set K C Z,. By Prop. 2.13,
one can find a compact set K’ C Z, s.t. for every z € ZZ(K), it holds that {z(t) :
t > 0} € K'. Denote by Lg the Lipschitz constant of S on the compact set {z :
(x,m,v) € K'}. Introduce the constants M; := sup{||m/(¢ + V)|l : (z,m,v) € K'},
My := sup{||S(2)||co : (z,m,v) € K'}. The constants Lg, M;, My are finite. Now
consider a global solution z(t) = (z(t),m(t),v(t)) in ZL(K). Choose i € {1,...,d}
and consider ¢ > 0. By the mean value theorem, there exists t' € [0,{] s.t. v,( )

vi(0) + 0i(t")t. Thus, vi(t) = vi(0) + 0:(0)t + b(Si(x(t')) — vi(t') = Si(x(0)) + vi(0))t,
which in turn implies v;(t) > v;(0) 4+ 0;(0)t — bLg||z(t") — 2(0)||t — blvi(¢') — v;(0)[t.
Using again the mean value theorem, for every ¢ € {1,...,d}, there exists ¢t € [0,¢] s.t
2o (t)) — 20(0)] = '|2¢(t")| < tMy . Therefore, ||z(t') — 2(0)|| < VdM;it. Similarly, there
exists £ s.t.: |v;(t') — v;(0)| = '|95(£)| < t'bS;(x(f)) < tbMs . Putting together the above
inequalities, v;(t) > v;(0)(1 — bt) + bS;(2(0))t — bCt? , where C := (Mo + Lg/dM;). For

every t < 1/(2b), vi(t) > “gi= + tbC (% - t) , where we defined Sy, := inf{S;(x) :
ie{l,...,d}, (x,m,v) € K}. Setting 7 := 0.5min(1/b, Smin/C),
min bSmint
Yt € [0, 7], vilt) > ”2 + (2.21)
Set K1 := 0.5(Vmin + bSminT). Note that v;(7) > k1. Define S/ . := inf{S;(x) : i €

{1,...,d}, (z,m,v) € K'}. Note that S} ,, > 0 by Assumptions 2.7.2 and 2.2.3. Finally,
deﬁne k = 0.5min(k1, 5] ;). By contradiction, assume that the set {t > 7 : v;(t) < K}
is non-empty, and denote by 7’ its infimum. It is clear that 7/ > 7 and v;(7’) = x. Thus,
b~10;(7") = Si(x(7')) — k. We obtain that b~19;(7') > 0.55’ . > 0. As a consequence,

there exists t € (7,7') s.t. v;(¢t) < v;(7'). This contradicts the definition of 7/. We have
shown that for all t > 7, v;(t) > k. Putting this together with Eq. (2.21) and using that

K < Umin + bSminT, we conclude that: V¢t > 0, v;(t) > min (n , i | %) . Setting
¢ := min(k, bSmin/2), the result follows.
We prove the second point. By Prop. 2.12, there exists a compact set K C Z;

s.t. for every n > 0, every z € ZL(x) of the form z2(t) = (z(t), m(t),v(t)) satisfies
{(x(t),m(t),(t)) : t > 0} C K, where m(t) = m(t)/(1 — e=*CFM)) and o(t) = v(t) /(1 —
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e~ b(+h)) Denote by Lg the Lipschitz constant of S on the set {z : (z,m,v) € K}. Intro-
duce the constants M := sup{||m/(e + Vv)|x : (z,m,v) € K}, My := sup{||S(z)]| :
(x,m,v) € K'}. These constants being introduced, the rest of the proof follows the same
line as the proof of the first point. |

2.7.2.2 Existence

Corollary 2.15. Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold. Assume that 0 <
b < 4a. For every zy € Z,,Z2(z20) # 0. For every (20,1) € 2o x (0,400),Z%(20) # 0.

Proof.  We prove the first point (the proof of the second point follows the same
line). Under Assumptions 2.7.1 and 2.7.2, hs is continuous. Therefore, Cauchy-Peano’s
theorem guarantees the existence of a solution to the (ODE) issued from zy, which we
can extend over a maximal interval of existence [0, Tihax). We conclude that the solution
is global (Tihax = +00) using the boundedness of the solution given by Prop. 2.13. MW

Lemma 2.16. Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold. Assume that 0 <
b < 4a. Consider zy € Zy. Denote by (2, : n € (0,+00)) a family of functions on
0, +00) = Z4 s.t. for every n > 0, 2z, € Z&(20). Then, (2,;)y>0 is equicontinuous.

Proof. For every such solution z,, we set z,(t) = (xy(t), my,(t),v,(t)) for all t > 0, and
define 1, and 9, as in Prop. 2.12. By Prop. 2.12, there exists a constant M; s.t. for all
n > 0 and all £ > 0, max({|ay(t)|], [T (t)||ec, [|05(t)]]) < M;. Using the continuity of VF
and S, there exists another finite constant My s.t. My > sup{||VF(z)||e : € R, |J2]| <
M} and Ms > sup{||S(z)||« : © € R?, [|z]| < M1}. For every (s,t) € [0,+00)?, we have
forallie {1,...,d},

t N s M
mwwwMﬂs/7W&OMSW—w
s |E+ Un,i (U) 9

(M i(t) — M i(s)] S/ a
i (1) — vyi(s)] < / b

O (2 (1)) = ()| du < a(My + M)t = 5

Si(ay (1)) — vm(u)‘ du < b(M; + My)|t — s|.

Therefore, there exists a constant Ms, independent from 7, s.t. for all n > 0 and all
(5,) € [0, 4002, |z (t) — 29(s) ]| < Myt — . n

Proposition 2.17. Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold. Assume that
0 < b < 4a. For every zg € 2y, Z%(20) # 0 i.e., (ODE) admits a global solution issued
from z.

Proof. By Cor. 2.15, there exists a family (2,),~0 of functions on [0, +00) — Z s.t. for
every 11> 0, z, € Z%(z0). We set as usual z,(t) = (z,,(t), my(t), vy(¢)). By Lem. 2.16,
and the Arzela-Ascoli theorem, there exists a map z : [0,4+00) — Z and a sequence
Mn 4 0 s.t. 2z, converges to z uniformly on compact sets, as n — oo. Considering some
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fixed scalars t > s > 0, 2(t) = z(s) + limy o0 f; h(u + 1n, 2y, (u))du . By Prop. 2.12,
there exists a compact set K C Z s.t. {z,,(t) : t > 0} C K for all n. Moreover, by
Lem. 2.14, there exists a constant ¢ > 0s.t. for all n and all w > 0, vy, 1(u) > cmin(1, u).
Denote by K := K N (R? x R? x [emin(1,s),+00)?). It is clear that K is a compact
subset of Z%. Since h is continuously differentiable on the set [s,t] x K, it is Lipschitz
continuous on that set. Denote by L; the corresponding Lipschitz constant. We obtain:

/ 1w + 1y 2 (w)) = W, 2(w))[du < L | 10+ sup ||z, (u) = 2z(w)]| | (£ = 5),

u€|s,t]

and the righthand side converges to zero. As a consequence, for all ¢t > s, z(t) =
s) + fst h(u, z(u))du . Moreover, z(0) = 2. This proves that z € ZJ (zo). [ |

2.7.2.3 Uniqueness

Proposition 2.18. Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold. Assume b < 4a.

i) For every zo € 2y, Z% (20) is a singleton i.e., there exists a unique global solution
to (ODE) with initial condition zg.

it) For every compact subset K of Z, there exist nonnegative constants ¢y, ce s.t. for
every (z,2') € ZL(K)?,

V>0, () — 2 (1)]7 < 112(0) — #(0)]? expler + eat)

Proof. i) Consider solutions z and 2’ in Z% (z9). We denote by (z(t), m(t),v(t))
the blocks of z(t), and we define (2/(t), m/(t),v’(t)) similarly. For all ¢ > 0, we define
m(t) == m(t)/(1 — e ™), d(t) := v(t)/(1 — e™), and we define 7/ (t) and () sim-
ilarly. By Prop. 2.12, there exists a compact set K C Z; s.t. (z(t),m(t),v(t)) and
(2'(t),m'(t),v'(t)) are both in K for all ¢ > 0. We denote by Lg and Lyr the Lipschitz
constants of S and VF on the compact set {x : (z,m,v) € K}. These constants are
finite by Assumptions 2.7.1 and 2.7.2. We define M := sup{||m|~ : (x,m,v) € K}.
Define 1, (t) = 2(t) — /(8)|%, wm(t) = |17t) — i (B)| and uy(t) = o(t) — /().
Let § > 0. Define: u®(t) := uy(t) + dum(t) + duy(t). By the chain rule and the
Cauchy-Schwarz inequality,

mt) ()

e+/o(t) e+/(t)
swmw—ﬂqu1me—mww+wh2u¢mw—¢mww.

g () < 2[a(t) — 2/ (t)]]

|94 () =05 (1)] -
|\/7+\//7(t| By Lem 21—1, there

exists ¢ > 0 s.t. for all t > 0, for every ¢ € {1,. ,d}, 0;(t) A 0L(t) > cmin(1,¢). Thus,

il

For every i € {1,...,d},

M

cmin(1,t)

Us(t) < 2l|z(t) =2’ @) [ 7

() — m'(t)H +
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For any § > 0, 2|lz(t) — 2/ (1) | [(t) — ' ()] < 6~/2(ua(t) + Sum(t)) < 6-1/2ul)(2).
Similarly, 2||z(t) — 2/ (t)|| |0(t) — ¢'(2)]] < 6 /2u u(® )(t). Thus, for any 6 > 0,

1 . M
eV 2e2\/dcmin(l,t)

iy (1) < ul(t) . (2.22)

We now study u,,(t). For all ¢ > 0, we obtain after some algebra: %m(t) =a(VF(z(t)—
m(t))/(1 — e~ ). Therefore,

(1) = o () — (), VE(a(1)) — () — VE( (1) + (1)
< 2BV in(e) — i (1) ) — (0.

For any 6 > 0, it holds that 2|[/(t) — /()| ||z (t) — 2'(t)|| < Ouz(t) + 0 up(t). In
particular, letting 6 := 2Ly, we obtain that for all 6 > 0,

it (1) < =y (45L%Fux(t) + (5um(t)) < (g + ) (45LVFU$< ) + 5um(t)) ,

(2.23)
where the last inequality is due to the fact that y/(1 —e™¥) < 1+y for all y > 0. Using
the exact same arguments, we also obtain that

b 1
! < . .
Sit (1) < (2 + 275) (46Lsux( )+6um(t)> (2.24)
We now choose any ¢ s.t. 46 < 1/ max(L%, L% ). Then, Eq. (2.23) and (2.24) respectively
imply that i, (t) < 0.5(a+t~1)u® (t) and 51, (t) < 0.5(b+t~H)ul® )( ) Summing these
inequalities along with Eq. (2.22), we obtain that for every t > 0, u(®(t) < ¥ (t)u®(t),

where: (t) := GTH’ + ﬁ + #mm(m + ; . From Groénwall’s inequality, it holds

that for every t > s > 0, u((t) < ul®(s)exp (fst 1[)(3’)d3’> . We first consider the case
where t < 1. We set ¢; := (a+b)/2+ (¢v/8)"" and ¢p := M/(£2V/dc). With these nota-
tions, f WP(s')ds' < clt+02\f+lnf Therefore, u(® )(t) < %exp (clt + oVt + lnt) .
By Lem. 2.9, recall that 4:(0) and 2’(0) are both well defined (and coincide). Thus,

ua(s) = [|2(s) — &' (s)I|* < 2llx(s) — 2(0) — &(0)s]|* + 2[|2"(s) — 2/(0) — &' (0)s]|*.

It follows that u,(s)/s? converges to zero as s | 0. We now show the same kind of
result for u,,(s) and wu,(s). Consider ¢ € {1,...,d}. By the mean value theorem, there
exists § (resp. §’) in the interval [0,¢] s.t. m;(s) = m;(8)s (resp. mi(s) = mi(3)s).
Thus, m;(s) = =22 <8 F(xz(3)) — mz(§)>, and a similar equality holds for 1/ (s). As
a consequence,

na(s) = rinf(s)] < 1=z (10F (@()) = P (@/ (3)] + mi(5) — ol (3]

< = (Lwrlle(3) = /()] + Imi(3) = mi(3)])

T 1l
2a(Lyp V1)s - ~
S el OEEACH] P

- 1—e0as
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where we used [|z(5) — 2/(5')[| < [[2(5) — /(&) and [m;(5) — mi(F)] < [|2(5) — 2'(5)]]
to obtain the last inequality. Using that 5 < s and § < s, it follows that:

rng(s) = 1hi(s)| _ 2a(Lyp V1)s (Hz(§> —=0)] , 1I7) - z’(O)H> |

s - 1 —e0s S s

By Lem. 2.9, z and 2’ are differentiable at point zero. Then, the above inequality gives
lim sup, o PO < (Lo v 1)]2(0)]]. Thus,

U (S)
52

lim sup < 16d(L& 5 Vv 1)]|2(0)]%.

sJ0
Therefore, u,,(s)/s converges to zero as s | 0. By similar arguments, it can be shown
that lim sup,| o u,(s)/s? < 16d(L% V 1)[|2(0)||?, thus limu,(s)/s = 0. Finally, we obtain
that u(‘s)(s)/s converges to zero as s | 0. Letting s tend to zero, we obtain that for
every t < 1, ul®(t) = 0. Setting s = 1 and ¢ > 1, and noting that 1 is integrable on [1,1],
it follows that u(%)(t) = 0 for all £ > 1. This proves that z = 2’.

ii) Consider the compact set K, and introduce the compact set K’ C Z, as in Prop. 2.13,
and the constant ¢ > 0 defined in Lem. 2.14. Define K| = {z : (z,m,v) € K'}. The
set is compact in R%. Respectively denote by Lg and Ly the Lipschitz constants of S
and VF on K. Introduce the constant M := sup{||m| e : (z,m,v) € K'}. Consider
(20, 2y) € K? and two global solutions z(.) and 2/(.) starting at zo and z{, respectively.
We denote by (z(t),m(t),v(t)) the blocks of z(t), and we define (2'(t), m'(t),v'(t))
similarly. Set u(t) := ||z(t) — 2/(t)||?. Set also u.(t) := ||z (t) — 2/(¢)||* and define u,, ()
and u,(t) similarly, hence, u(t) = ug(t) + wum(t) + uy(t). Using the same derivations as
above, we establish for all ¢ > 0 that: ,,(t) < aLypuy(t) + a(Lvp + 2)un,(t) . Similarly,
y(t) < bLsuy(t) + b(Lg + 2)uy(t). Moreover, 1,(t) < (7! + e 2MC(t))u.(t) +
e M (t) + e 2MC (t)uy(t) where we set C(t) := [|(v/v(t) + /' (t)) oo - Putting all
pieces together, we obtain that there exist nonnegative constants ¢; and co, depending
on K, s.t.
Uu(t) < (e1 + 2C(t))u(t) .

By Lem. 2.14, there exist two other nonnegative constants ¢}, ¢, depending on K, s.t.
for all t > 0, u(t) < (¢} + ¢, max(1,t~/2))u(t) . Using Gronwall’s lemma, we obtain that
for all t > 0,

u(t) < u(0)exp (/0 (¢} + ¢y max(1, 3_1/2))ds> .

It is easy to show that the integral in the exponential is no larger than 2¢, + (¢} + c,)t.
This completes the proof. |

We recall that a semiflow ® on the space (E,d) is a continuous map ® from [0, +00) X E
to E defined by (t,x) — ®(t,z) = ®4(z) such that ®q is the identity and P43 = Py 0 Py
for all (¢, s) € [0, +00)2.

Proposition 2.19. Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold. Assume that
0 < b <4a. The map Z is single-valued on Z; — C([0, +00), Z) i.e., there exists a
unique global solution to (ODE.) starting from any given point in Z,. Moreover, the
following map is a semiflow:

D [0, —|—OO) X Z+ — Z+

(te) = Z2()0) (2.25)
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Proof. The result is a direct consequence of Lem. 2.18. |

2.7.3 Proof of Th. 2.2
2.7.3.1 Convergence of the semiflow

We first recall some useful definitions and results. Let ¥ represent any semiflow on
an arbitrary metric space (F,d). A point z € F is called an equilibrium point of
the semiflow U if WU;(z) = =z for all t > 0. We denote by Ay the set of equilibrium
points of W. A continuous function V : E — R is called a Lyapunov function for
the semiflow U if V(W:(z)) < V(z) for all z € E and all t > 0. It is called a strict
Lyapunov function if, moreover, {z € E : Vt > 0, V(Us(z)) = V(2)} = Ag. If V
is a strict Lyapunov function for ¥ and if z € E is a point s.t. {Us(2) : ¢t > 0} is
relatively compact, then it holds that Ay # 0 and d(¥(z2),Ay) — 0, see (Haraux,
1991, Th. 2.1.7). A continuous function z : [0,400) — E is said to be an asymptotic
pseudotrajectory (APT, Benaim and Hirsch (1996)) for the semiflow W if for every
T € (0,400), lim¢— o0 Supgepo ) d(2(t + ), ¥s(2(2))) = 0.

The following result follows from (Benaim, 1999, Th. 5.7) and (Benaim, 1999, Prop. 6.4).

Proposition 2.20 (Benaim (1999)).
Consider a semiflow ¥ on (F,d) and a map z : [0, +00) — E. Assume the following:

i) ¥ admits a strict Lyapunov function V.
ii) The set Ay of equilibrium points of ¥ is compact.
iii) V(Ay) has an empty interior.
iv) z is an APT of .
v) z([0,00)) is relatively compact.

Then, (1,5 2([t,00)) is a compact connected subset of Ay .

For every 6 > 0 and every z = (z,m,v) € Z,, define:
Wi (@, m, v) = Voo (z,m,0) = §(VF(2),m) + 6||S(2) — v|?, (2.26)

where we recall that Vo (2) := limy V (¢, 2) for every z € Z; and V is defined by
Eq.(2.9). Consider the set £ := h 1({0}) of all equilibrium points of (ODEL,,), namely:
E ={(x,m,v) € Z; : VF(z) = 0,m = 0,v = S(z)}. The set £ is non-empty by
Assumption 2.2.2.

Proposition 2.21. Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold. Assume that
0 <b<d4a. Let K C Z; be a compact set. Define K’ := {®(t,z) : t >0,z € K}. Let
®:[0,4+00) x K’ — K’ be the restriction of the semiflow ® to K’ i.e., ®(¢,z) = ®(¢, 2)
for all t > 0,z € K'. Then,

i) K'is compact.
ii) @ is well defined and is a semiflow on K.
iii) The set of equilibrium points of ® is equal to £ N K’.
iv) There exists § > 0 s.t. Wy is a strict Lyapunov function for the semiflow .

Proof. The first point is a consequence of Prop. 2.13. The second point stems from
Prop. 2.19. The third point is immediate from the definition of £ and the fact that ®
is valued in K’. We now prove the last point. Consider z € K’ and write ®;(z) under
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the form ®;(z) = (z(t),m(t),v(t)). For any map W : Z, — R, define for all ¢ > 0,
Lw(t) := limsup, o8 H(W(®5(2)) — W(P4(2))) . Introduce G(z) := —(VF(z),m)
and H(z) := ||S(x) — v||? for every z = (x,m,v). Consider § > 0 (to be specified later
on). We study Ly, = Ly + 0Lg + 6Ly. Note that P4(2) € K'n Z3 for all t > 0 by
Lem. 2.10. Thus, ¢ — Vi (®4(2)) is differentiable at any point ¢ > 0 and the derivative
coincides with Ly (t) = Voo (®4(2)). Define C; := sup{||v||eo : (x,m,v) € K'}. Then, by
2

Lem. 2.11, Ly (t) < —e(e + /C1) 2 Hm(t)” . Let Lyr be the Lipschitz constant of VF
on {z: (z,m,v) € K'}. For every t > 0,

La(t) < lim sup sTHIVE((t) = VF((t+ s) [ [m(t + s)|| = (VE(x(2)), 1i0(t))

< Lype ™ [m@? = al VE(@@)I* + a{VF(x(t)), m(t))

a a L
< ~SIVF@@)|? + (2 + ZF) Im(®)?.

Denote by Lg the Lipschitz constant of S on {z : (z,m,v) € K'}. For every t > 0,

Ly(t) = limsups™ ([S(z(t+s)) = S(z(t)) + S(a(t)) — v(t + )| = [|S(z(t)) — v(®)|*)

s—0

= —2(S(x(t)) —v(t),v(t)) +limsup 25~ (S(x(t + 5)) — S(x(t)), S(x(t)) — v(t + 5))

s—0

—2b|[S(2()) — v(B)[I* + 2Lse™ [m(t)||[|S(x(t)) — v(®)]] -

IN

Using that 2[m(t)[||[S(z(t)) — v(®)| < F=llm@)|* + Z[S(=(t)) = v(t)]]?, we obtain
Lp(t) < =b||S(x®) —v@®)|* + bLaii,Hm(t)H2 . Hence, for every t > 0,

Ly, (t) < =M (8)[lm(t)]|* - %IVF(fE(t))Hz — 0bl|S (1)) — v(®)II*.

where M(0) :=e(e +/C1)"2 — oy (% + L%) . Choosing ¢ s.t. M(6) >0,

be2
V>0, Lu,(t) < (IIm@)I2 + [VF@@)I? + [S@®) - o®IF) ,  (2:27)

where ¢ := min{ M (J), %‘;, 8b}. Tt can easily be seen that for every z € K', t = Ws(®4(2))
is Lipschitz continuous, hence absolutely continuous. Its derivative almost everywhere
coincides with Lyy,, which is non-positive. Thus, W; is a Lyapunov function for ®. We
prove that the Lyapunov function is strict. Consider z € K’ s.t. Ws(®:(2)) = Ws(2)

for all t > 0. The derivative almost everywhere of t — Ws(®4(2)) is identically zero,
and by Eq. (2.27), this implies that —c <Hth2 FIVE@)? + 1S (a) — th2> is equal

to zero for every t a.e. (hence, for every ¢, by continuity of ®). In particular for ¢ = 0,
m = VF(z) =0 and S(z) — v = 0. Hence, z € h;1({0}). [ |

Corollary 2.22. Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold. Assume that
0 <b<d4a. For every z € Z;, limy_, d(®(2,%),E) =0.

Proof. Use Prop. 3.16 with K := {z}. and (Haraux, 1991, Th. 2.1.7). [ |
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2.7.3.2 Asymptotic behavior of the solution to (ODE)

Proposition 2.23 (APT). Let Assumptions 2.2.2, 2.2.3, 2.7.1 and 2.7.2 hold true.
Assume that 0 < b < 4a. Then, for every zg € 2y, Zgo(zo) is an asymptotic pseudotra-
jectory of the semiflow ® given by (2.25).

Proof. Consider zg € Zp, T € (0,+00) and define z := Z% (z). Consider
t > 1. For every s > 0, define Ay(s) := ||z(t + s) — ®(2(¢))(s)||. The aim is to
prove that supse(o 7] At(s) tends to zero as t — oo. Putting together Prop. 2.12 and
Lem. 2.14, the set K := {z(t):t > 1} is a compact subset of Z7. Define C(t) :=
SUPg>oSUP,ici ||R(t + 8, 2") — hoo(2')]]. It can be shown that lim; o, C(t) = 0. We ob-
tain that for every s € [0, 7], Ay(s) < TC(t) + Jo Thoo(2(t + 5")) = hoo(P(2(2))(s)) ||ds” .
By Lem. 2.14, K/ := Uz ea(r) 7' ([0,00)) is a compact subset of Z. It is immediately
seen from the definition that h is Lipschitz continuous on every compact subset of
Z%, hence on K U K'. Therefore, there exists a constant L, independent from ¢, s, s.t.
Ay(s) S TC(t)+ [y LA(s")ds' (Vt > 1,Vs € 0, T]) . Using Gronwall’s lemma, it holds
that for all s € [0,7], A(s) < TC(t)els . As a consequence, Supgepo,1) Ae(s) < TC(t)etT
and the righthand side converges to zero as t — oo. |

End of the proof of Th. 2.2

By Prop. 2.12, the set K := Z9 (20)(]0,0)) is a compact subset of Z;. Define K’ :=
{®(t,z) :t>0,2€ K}, and let ® : [0, +00) x K’ — K’ be the restriction ® to K. By
Prop. 3.16, there exists § > 0 s.t. Wy is a strict Lyapunov function for the semiflow
®. Moreover, the set of equilibrium points coincides with £ N K’. In particular, the
equilibrium points of ® form a compact set. By Prop. 2.23, Z% (z0) is an APT of ®.
Note that every z € £ can be written under the form z = (2,0, S(z)) for some x € S.
From the definition of Wy in (3.33), Ws(z) = Ws(z,0,S(x)) = Vao(x,0,S(x)) = F(z).
Since F'(S) is assumed to have an empty interior, the same holds for W5(€ N K’). By
Prop. 2.20, ;>0 2% (20)([t,00)) € €N K'. The set in the righthand side coincides
with the set of limits of convergent sequences of the form Z2 (29)(t,) for t,, — co. As

79 (20)(]0,00)) is a bounded set, d(Z2,(20)(t), €) tends to zero.

2.7.4 Proof of Th. 2.3

The proof follows the path of (Haraux and Jendoubi, 2015, Th. 10.1.6, Th. 10.2.3), but
requires specific adaptations to deal with the dynamical system at hand. Define for all
0>0,t>0,and z = (z,m,v),

Wi(t, (z,m,v)) == V(t, (z,m,v)) — 6(VF(z),m) + 6| S(z) — v||*. (2.28)

The function W; is the non-autonomous version of the function (3.33). Consider a fixed
ro € R, and define ws(t) := W;s(t, 2(t)) where z(t) = (z(t),m(t),v(t)) is the solution
to (ODE) with initial condition (z¢,0,0). The proof uses the following steps.

i) Upper-bound on ws(t). From Eq. (2.9), we obtain that for every t > 1, V (¢, 2(t)) <
2 . .
[F(a(t)] + gl O Using (VF(x).m) < (IVE()[2 + [m][?)/2. we obtain that
there exists a constant ¢; (depending on 0) s.t. for every ¢ > 1,

ws(t) < (IF(x(t))\ +m@®) + [VF @) + 1S (2(#)) — v(t)IIQ) - (2:29)
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ii)

i)

iv)
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Upper-bound on %w(g(t}. The function ws is absolutely continuous on [1, 4+00).

Moreover, there exist 6 > 0, co > 0 (both depending on ) s.t. for every t > 1 a.e.,

d
ZWs(t) < —c2 <||m(1t)\|2 +[IVF (@) + 1S(x(t) - v(t)llz) - (2.30)
The proof of Eq. (2.30) uses arguments that are similar to the ones used in the proof of
Prop. 3.16 (just use Lem. 2.11 to bound the derivative of the first term in Eq. (2.28)).
For this reason, it is omitted.

Positivity of ws(t). By Lem. 2.11, the function ¢ — V (¢, 2(t)) is decreasing. As it is
lower bounded, ¢ := lim;_,o V (¢, 2(t)) exists. By Th. 2.2, m(t) tends to zero, hence
this limit coincides with lim;_, F'(2(t)). Replacing F' with F' — £, one can assume
without loss of generality that ¢ = 0. By Eq. (2.30), ws is non-increasing on [1, +00),
hence converging to some limit. Using again Th. 2.2, (VF(z(t)),m(t)) — 0 and
S(z(t)) —v(t) — 0. Thus, lim;_,oo ws(t) = £ = 0. Assume that there exists tg > 1
s.t. ws(to) = 0. Then, ws is constant on [ty, +00). By Eq. (2.30), this implies that
m(t) = 0 on this interval. Hence, dz(t)/dt = 0. This means that x(t) = x (o) for all
t > tg. By Th. 2.2, it follows that x(t9) € S. In that case, the final result is shown.
Therefore, one can assume that w;(t) > 0 for all ¢t > 1.

Putting together (2.29) and (2.50) using the Lojasiewicz condition. By Prop. 2.20
and 2.23, the set L := [J,5o{2(t) : ¢ > s} is a compact connected subset of & =
{(2,0,S(x)) : VF(x) = 0}.

The set U := {x : (x,0,5(z)) € L} is a compact and connected subset of S. Using
Assumption 2.3.1 and (Haraux and Jendoubi, 2015, Lem. 2.1.6), there exist constants
o,c>0and 6 € (0,3], s.t. |[VF(z)|| > c|F(z)]'~? for all z s.t. d(z,U) < 0. As
d(x(t),U) — 0, there exists T > 1 s.t. for all t > T, |[VF(z(t))| > c|F(z(t))]* .
Thus, we may replace the term |V EF(x(t))|? in the righthand side of Eq. (2.30) using
IVF(z(t)]? > |IVE(z®))|? + 3|F(2(2)[**~%. Upon noting that 2(1 — ) > 1, we
thus obtain that there exists a constant ¢z and some 77 > 1 s.t. for ¢t > 7" a.e.,

%wg(t) < —c3 (Il'm(t)H2 +IVE@E)? + [F )]+ [1S(z(t) - U(t)HQ)

2(1-0)

Putting this inequality together with Eq. (2.29), we obtain that for some constant
cs > 0and for all t > T" a.e., %w(;(t) < —cqwg(t)2=0)

End of the proof. Following the arguments of (Haraux and Jendoubi, 2015, Th. 10.1.6),
by integrating the preceding inequality, over [T”,t], we obtain wg(t) < 0575_177129 for ¢ >
T’ in the case where 6 < %, whereas ws(t) decays exponentially if § = % From now on,
we focus on the case 6 < 1. By definition of (ODE), [|l£(¢)[|? < ||m(t) 12/((1—e9T")2e2)
for all + > T’. Since Eq. (2.30) implies ||m(t)||* < —1s(t)/ca, we deduce that there
exists ¢, > 0s.t. forallt > T, t2t |(s)|]2ds < cws(t) < T Applying (Haraux
and Jendoubi, 2015, Lem. 2.1.5), it follows that [ ||&(s)[|?ds < ct™ T for some
other constant ¢. Therefore z* := lim;_, - x(t) exists by Cauchy’s criterion and for
all t > T ||x(t) — z*|| < ot T Finally, since z(t) — a, we remark that, using the
same arguments, the global FLojasiewicz exponent 6 can be replaced by any fLojasiewicz
exponent of f at z*. When 6 = %, the proof follows the same line.
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2.8 Proofs for Section 2.4

2.8.1 Proof of Th. 2.4

Given an initial point 29 € R? and a stepsize v > 0, we consider the iterates z, given
by (2.5) and z§ := (20,0,0). For every n € N* and every z € Z, we define

HW(”? z,§) == 7_1(T’y,o’¢(’y),[§('y) (n7 z,§) — Z) :

Thus, 2 = 2, | +vHy(n, 2)_1,&n) for every n € N*. For every n € N* and every z € Z
of the form z = (z,m,v), we define e,(n, 2) := (z, (1 —a(y)")"'m, (1 — B(y)") " 'v), and
set e4(0,2) := z.

Lemma 2.24. Let Assumptions 2.2.1, 2.2.4 and 2.4.2 hold true. There exists 49 > 0
s.t. for every R > 0, there exists s > 0,

1+s
sup{ E (HHW(n+ 1,z,§)H > v €(0,%],neN,ze Zyst. |ley(n,2)| <R p < o0.
(2.31)

Proof. Let R > 0. We denote by (Hyx, Hym,Hyy) the block components of
H,. There exists a constant Cs depending only on s s.t. |[H|'™* < Cy(||Hyx || +
| Hym| ' + [[Hyy||*T%). Hence, it is sufficient to prove that Eq. (2.31) holds re-
spectively when replacing H, with each of Hyy, Hym,Hy. Consider z = (z,m,v)
in Z;. We write: ||[Hyx(n+1,2,8)| < E_I(H#WH + |V f(z,€)]). Thus, for every
z s.t. |ley(n, z)|| < R, there exists a constant C' depending only on ¢, R and s s.t.
| Hyx(n+ 1,2, < C(1+ ||V f(z,&)|'F*). By Assumption 2.4.2, (2.31) holds for
H, , instead of H,. Similar arguments hold for H,  and H,, upon noting that the
functions v ++ (1—a(v))/y and v — (1—3(7)) /7 are bounded under Assumption 2.2.4. W

For every R > 0, and every arbitrary sequence z = (z, : n € N) on Z,, we define
Tr(z) :=inf{n € N : |le;(n, z,)|| > R} with the convention that 7(z) = 400 when the
set is empty. We define the map Bp : Z_IE — ZE given for any arbitrary sequence z =
(zn :m €N) on Zy by Br(2)(n) = znlncry(z) + Zrp(z) In>rp(z)- We define the random
sequence 27 := Bp(z7). Recall that a family (X; : 4 € I) of random variables on some
Euclidean space is called uniformly integrable if lim 4, oo sup; ey E(|| X[ 1) x,/>4) = 0.

Lemma 2.25. Let Assumptions 2.2.1, 2.2.4, 2.4.2 and 2.4.1 hold true. There exists
o > 0 s.t. for every R > 0, the family of r.v. (fy*l(z;’fl — 2™ ineN,ye (0,%0]) is

uniformly integrable.

Proof. Let R > 0. As the event {n < 7g(z7)} coincides with (,_o{lle5(k, 2})|| < R},
it holds that for every n € N,
zgfl — z%’R - ZZJFI — zg]l

Y Y

n
n<rtr(zY) = H"/(n + 17 Z,?;, £n+1) H HHe,Y(k,zz)HSR :
k=0

Choose 7y > 0 and s > 0 as in Lem. 2.24. For every v < 7,

1, R R 1+s 1+s , B
B[yt -0 ) <sw B |He+ 128 7 ) v € 0A e Nz e 2 e 62 < Ry -
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By Lem. 2.24, the righthand side is finite and does not depend on (n, 7). |

For a fixed v > 0, we define the interpolation map X, : ZN — C([0, +00), Z) as follows
for every sequence z = (2, : n € N) on Z:

Xy(z) 1t ALyt (t/v— Lt/’YJ)(ZLgJH - Ztﬂ)'

For every v, R > 0, we define 20 := X (27f) = X, o Br(z7). Namely, z"¥ is the

interpolated process associated with the sequence (zgﬁ). It is a random variable on

C([0, +00), Z). We recall that F,, is the o-algebra generated by the r.v. (§:1 <k <mn).
For every ~,n, R, we use the notation: Ag’R := 0 and

7R pp— - 7R 7R - 7R ,R
A7L+1 = 1(ZZL+1 —zy") — E(y I(ZZH =z )| Fn) -

Lemma 2.26. Let Assumptions 2.2.1, 2.2.4, 2.4.2 and 2.4.1 hold true. There exists
Ao > 0 s.t. for every R > 0, the family of r.v. (2% :~ € (0,7]) is tight. Moreover, for

Sroarfi| > 5) 2.

every 6 >0, P (maX(anTj ~y
- — =7

Proof. It is an immediate consequence of Lem. 2.25 and (Bianchi et al., 2019, Lem.
6.2). [ |

The proof of the following lemma is omitted.

Lemma 2.27. Let Assumptions 2.2.1 and 2.2.4 hold true. Consider ¢ > 0 and z € Z,.
Let (¢n, zn) be a sequence on N* x Z s.t. limy, o0 Ynn = t and lim, o 2, = z. Then,
limy, 00 Ay, (@n, 2n) = h(t, 2) and lim, o0 €4, (Pn, 2n) = €(t, 2).

End of the Proof of Th. 2.4 Consider zg € R? and set z9 = (20,0,0). Define
Ry := sup {Hé(t, Z% (z0) ()] : t > 0} . By Prop. 2.12, Ry < +00. We select an arbitrary
Rst. R>Ry+1. Foreveryn >0, z € Z,,

77R — ’Y,R ’Y,R
Zph1 = %t YHy(n+ 1, 2) ’£n+1)]l||e~,(n,zg’R)||§R'

Define for every n > 1, 2 € Z4, hy r(n,2) := hy(n, 2)Ljje, (n—1,2)|<r- Then,

Ajlf“l = fy_l(zzb’fl — 20 — hy m(n+ 1,20 . Define also for every n > 0,

MR = Sry Az’R =y 1T = ) — S o hyr(k+1, zk’R) . Consider t > 0 and set
n = |t/v]|. For any T" > 0, it holds that :

< max  AIMPF|.

2R(8) — 2 / b r(l5/7) + 1,2°R(3 /7)) ds
0

sup <
t€[0,T] 0<n<|T/v|+1
By Lem. 2.26,
t
P | sup ||27F(t) — 20 —/ hy.r (Ls/’yJ + 1,27’R(7L3/7j)> ds|| > 6 | 2% 0. (2.32)
te(0,7 0

As a second consequence of Lem. 2.26, the family of r.v. (27 :0 < v < 7q) is tight,
where 7p is chosen as in Lem. 2.26 (it does not depend on R). By Prokhorov’s theorem,
there exists a sequence (v : k € N) s.t. v, — 0 and s.t. (2% : k € N) converges
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in distribution to some probability measure v on C([0,+00), Z;). By Skorohod’s
representation theorem, there exists a r.v. z on some probability space (', F',P'), with
distribution v, and a sequence of r.v. (z(;) : K € N) on that same probability space where
for each k € N, the r.v. z() has the same distribution as the r.v. FALDA
every w € ', zy(w) converges to z(w) uniformly on compact sets. Now select a fixed

T > 0. According to Eq. (2.32), the sequence

and s.t. for

sup
te[0,T

Y

29 (0) = 20— [ o (/) + 1oz Ouls/ ) ds

indexed by k € N, converges in probability to zero as k — co. One can therefore extract
a further subsequence z(,, ), s.t. the above sequence converges to zero almost surely. In
particular, since z(;)(t) — z(t) for every ¢, we obtain that

2(t) = 20+ Jim /0 Moot (15/760) + 120 (o s/ 70 ) ) ds (2 € [0.7]) . (2:38)

Consider w € Q' s.t. the r.v. z satisfies (2.33) at point w. From now on, we consider
that w is fixed, and we handle z as an element of C([0,400), Z;), and no longer
as a random variable. Define 7 := inf{t € [0,7] : |e(t,z(t))| > Ro + 1} if the
latter set is non-empty, and 7 := T otherwise. Since z(0) = zp and ||2g| < Ry, it
holds that 7 > 0 using the continuity of z. Choose any (s,t) s.t. 0 < s < t <
7. Note that z(yk[s/v]) — z(s) and v ([s/v] + 1) — s. Thus, by Lem. 2.27,

B (L5/9%) + L 2a (e 5/ 98 )) ) comverges to h(s, 2(s)) and ey, (L) 20 (e L/ %))
converges to &(s,z(z)). Since s < 7, &(s,z(z)) < Ro + 3. As R > Ry + 1, there exists a
certain K (s) s.t. for every k > K(s), Ljie,, (Ls/k 2 (v Ls/ k)
Py, R(LS/ V6] + 1,z (e [8/7%])) converges to h(s,z(s)) as k — oo. Using Lebesgue’s

yl<r = 1. As a consequence,

dominated convergence theorem, we obtain, for all ¢ € [0, 7]: z(¢) = zo—l—fot h (s, z(s))) ds.
Therefore z(t) = Z9 (z0)(t) for every ¢t € [0,7]. In particular, ||z(7)| < Ro and this
means that 7 = T. Thus, z(t) = Z% (z0)(t) for every t € [0,7] (and consequently
for every t > 0). We have shown that for every R > Ry + 1, the sequence of r.v.
(2% : v € (0,7]) is tight and converges in probability to Z2 (z9) as v — 0. Therefore,
for every T > 0,

V6 >0, imP | sup HZ'Y’R(t) - Zgo(xo)(t)H >s|=o. (2.34)
70 te[0,7)

In order to complete the proof, we show that P (supte[O’T} HZ%R(t) — zV(t)H > 5) — 0

as v — 0, for all 6 > 0. where we recall that z¥ = X,(27). Note that

o] <

2R (t) — Zgo(zo)(t)H + Ry by the triangular inequality. Therefore, for every T, > 0,

P| sup HZ%R(t)—zv(t)H S| <P| sup HZ%R(t)H >R
te[0,7) te[0,T]

<P| sup HZ%R(t) - Zgo(zo)(t)H >R - Ry
t€[0,T]

By Eq. (2.34), the RHS of the above inequality tends to zero as v — 0. The proof is
complete.
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2.8.2 Proof of Th. 2.5

We start by stating a general result. Consider a Euclidean space X equipped with its
Borel o-field X'. Let 49 > 0, and consider two families (P,, : 0 < v < 49,n € N¥)
and (P : 0 <y < 79) of Markov transition kernels on X. Denote by P(X) the set of
probability measures on X. Let X = (X, : n € N) be the canonical process on X. Let
(P .0 < v < Fp,v € P(X)) and (P : 0 < v < 70,7 € P(X)) be two families of
measures on the canonical space (XN, XY®N) such that the following holds:

e Under P7¥, X is a non-homogeneous Markov chain with transition kernels (P, :
n € N*) and initial distribution v, that is, for each n € N* P"(X,, € dz|X,,—1) =
P’y,n(Xn—h d(l?) .

e Under P*¥, X is an homogeneous Markov chain with transition kernel 1’1Y and initial
distribution v.

In the sequel, we will use the notation P as a shorthand notation for P7% where 8,
is the Dirac measure at some point x € X. Finally, let ¥ be a semiflow on X. A Markov
kernel P is Feller if Pf is continuous for every bounded continuous f.

Assumption 2.8.1. Let v € P(X).

i) For every v, P, is Feller.
i) P X, t:neN0<vy<79)is a tight family of measures.
iii) For every v € (0,%0) and every bounded Lipschitz continuous function f : X — R,

P, . f converges to P, f as n — oo, uniformly on compact sets.
iv) For every § > 0, for every compact set K C X, for every t > 0,

im0 SUp, ¢ ¢ P71 (HXU = W) > 5) = 0.

Let BC'y be the Birkhof center of ¥ i.e., the closure of the set of recurrent points.

Theorem 2.28. Consider v € P(X) s.t. Assumption 2.8.1 holds true. Then, for every
0 > 0, lim,_,0 limsup,, %H Y opo P <d(Xk, BCy) > 5) =0.

Proof. For every v, n, define ., , :=vP,1--- P, , with the convention that 1,0 = v.
Otherwise stated, p,, = IP’%VX,jl. Define IL,,, = %HZZZO i for every n € N.
Assumption 2.8.1 implies that for any fixed ~, (IL,,, : n € N) is tight. By Prokhorov’s
theorem, it admits a cluster point 7. For such a cluster point, consider a subsequence
©n s.t. 11y 4, = m,, where = stands for the weak convergence of probability measures.
Consider a bounded Lipschitz continuous function f : X — R. It holds that IL, ,,(f) and
IL, (P, f) respectively converge to m(f) and 7 (P, f) along the subsequence, because
PV is Feller. We observe that

2[| floo

_ 1 & _
‘ny,nP'yf_H'y,nf‘ < n_i_lkz_o‘:u%k(P’yf_P%k-i-lfﬂ + n+1 .

Choose § > 0 and a compact set K C X s.t. supy, p,x(K¢) < 4. For every k, |y 1o (Py f —
Py )| <supye |Pyf(x) — Py g1 f(x)| + 2| fllood. By Assumption 2.8.1iii), it holds

that limsup,, ’H%nﬁff — H%nf‘ < 2||flld. As 6 is arbitrary, 1L, Py f — IL, . f — 0,

which shows that m,P,f — m,f = 0. We have shown that every cluster point of
(IL,,, : n € N) is an invariant measure of P;.
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Consider an arbitrary sequence v; | 0 as j — o0, and let 7; be an invariant measure
of ij for every j. It is not difficult to show that the sequence (m;) is also tight, hence
converging to some 7* as j — 00, along some subsequence. We now prove that such a
cluster point 7* is an invariant measure for the semiflow ¥ i.e., 7*W, L — 7* for every
t > 0. Such a proof can be found for instance in Fort and Pages (1999), we reproduce
it here for completeness. Denote by E7¥ the expectation associated with P and by
L the Lipschitz constant of f. For an arbitrary § > 0, consider a compact set K s.t.

_
sup; 7;(K¢) < 4. For every j and every ¢t > 0, using that 7; = TrjP,Y;J , we obtain, by
following the same approach as Fort and Pages (1999),

‘ [ rovin, - [ gim| -

B (£ (X)) — f(XL;jJ))‘
< B <|f (X)) f(XuJ)“lK(XO)> + 2 fllocd
< B 2Hf”oo A L||U(Xo) — XL%J H) 1k (Xo) | + 2/ fllecd

gE 2||f||ooﬂK<Xo>ﬂuwo> m||>5>+L5+2||flloo5
vj

< 2| f]loo sup P+ (H‘I’t(w) - Xl > 5) + L + 2| fllocd -
zeK j

Thus, limsup; ‘ffo\I/tdﬂj — ffdwj’ < (L 4+ 2[|f]|loo)d, and since § is arbitrary, the
limsup is equal to zero. Considering the limit along the converging subsequence, it
follows that [ f o Wudn* — [ fdr* = 0. Hence, 7* is invariant for U. By Poincaré’s
recurrence theorem, 7*(BCy) = 1.

We now conclude the proof of Th. 2.28. For every § > 0, set As := {z : d(z, BCy) > 0}
By contradiction, assume that there exists > 0, a sequence ~y; | 0, and, for every j, a
sequence () : n € N) s.t. for every n, ij,wi;(Aﬁ) > §. For every j, as (H%% :n €N)
is tight, one can extract a subsequence (Hw,@% : n € N) converging weakly to some

measure m; which is invariant for P,,. By the portmanteau theorem, m;(As) > 8. As ()
is tight, it converges weakly along some subsequence to some 7* satisfying 7*(BCy) = 1.
As 7*(Ag) > 9, this leads to a contradiction. [ |

End of the Proof of Th. 2.5. We apply Th. 2.28 in the case where P, , is the kernel
of the non-homogeneous Markov chain (z,) defined by (2.5) and P, is the kernel of
the homogeneous Markov chain (z]) given by zj =z | + vH,(00,2)_,&,) for every
n € N* and zp € Z, where Hy(00,2) ,&,) = hmk_mo ~(k,z) _1,&). The task is
merely to verify Assumption 2.8.1iii), the other assumptions being easily verifiable using
Th. 2.4, Consider v € (0,7p). Let f: Z — R be a bounded M-Lipschitz continuous
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function and K a compact. For all z = (z,m,v) € K:

- (1— ™) trng e
[Py n(f)(2) = Py (f)(2)] < MAE -
! ! e+ (1715 ety
on MAE| |0y
< % s (alnl] + (1= B A o OI) + P (12 )

where we write a = a(v), 8 = B(7), e == am + (1 — )V f(z,£) and ¥ := Bv + (1 —
B)V f(z,€)®2. Thus, condition 2.8.1iii) follows. Finally, Cor. 2.22 implies BCp = £.

2.9 Proofs for Section 2.5

In this section, we denote by E,, = E(:|F,,) the conditional expectation w.r.t. F,. We
also use the notation V f,+1 := Vf(2n,{nt1)-

The following lemma will be useful in the proofs.

Lemma 2.29. Let the sequence (r5,) be defined as in Algorithm 2.2. Assume that
0 < ay <1 for all n and that (1 — ay,)/vn — a > 0 as n — +o0. Then,

i) VneN,r, =1-[["; o,
ii) The sequence (r,) is nondecreasing and converges to 1.
iii) Under Assumption 2.5.4 i), for every e > 0, for sufficiently large n, we have

a’y —K
rm—1<e 2™ if k€ (0,1)and r, — 1< n=a0/(+e) §f o = 1.

A similar lemma holds for the sequence (7).

Proof. i) stems from observing that r,+1 — 1 = ap41(r, — 1) for every n € N and
iterating this relation (ro = 0). As a consequence, the sequence (r;,) is nondecreas-
ing. We can write : 0 < 1—7, <exp(—Y i ;(1 —ag)).iii) As Y ;v = +oo and
(1 — ap) ~ a7y, we deduce that > (1 — ;) ~ Y., ay;. The results follow from the
fact that 7 ;7 ~ 22n'~" when x € (0,1) and Y7 ;% ~ yolnn for k = 1. [ |

K

2.9.1 Proof of Th. 2.6
We define z, = (x5—1,mp, vy) (note the shift in the index of the variable ). We have
Zn+l = Zn + 'YnJrlhoo(Zn) + Yn+1Xn+1 T Ynt1Sntl s

where ho is defined in Eq. (2.18) and where we set

Xn+1 = (0”77;11(1 = an+1) (Vi1 — VF(fn))a%;il(l - BnJrl)(vfr?fl - S(J:n)))

and o1 = (SF1,Sn%1,S041) with the components defined by: ¢, ; = ffﬂfn -

Y _Tin M = (1_0‘"“ — a) (VF(xn) —mp) +a(VF(2,) = VF(2z,_1)) and ¢ | =

Yrn+1 e4+1/On’ Yn+1

IBnsr b) (S(xn) —vpn) + b(S(zn) — S(xn—1)) . Therefore, our algorithm has two

Yn+1
perturbations: the first one is a martingale increment 41, while the second one is a
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negligible perturbation ¢,+1 converging a.s. to zero. We first prove that ¢, — 0 a.s.
Using the triangular inequality,

-1

il < || o= = |+ [ - i
n — —
€+ /0 f}/Qes—i-\/vTL fyn+1fn1/2 F}/26+\/ﬁ
-1
- —— TnT
e [ R el | L B
Yn+1

which converges a.s. to zero because of the boundedness of (z,) combined with As-
sumption 2.5.1 and Lem. 2.29 for (7,). The components ¢ and ¢, converge a.s.
to zero, as products of a bounded term and a term converging to zero. Indeed, note
that VF and S are locally Lipschitz continuous under Assumption 2.2.1. Hence, there
exists a constant C s.t. ||VF(z,) — VF(zp-1)| < Cllzn — zp-1]] < Cnlmall. The
same inequality holds when replacing VF by S. Now consider the martingale increment
sequence (xn), adapted to F,. Estimating the second order moments, it is easy to show
using Assumption 2.4.2 i) that there exists a constant C’ s.t. E,(||xn11]/?) < C’. Using
that >, 72 < oo, it follows that >, E,(||yn+1Xn+1]|?) < oo a.s. By Doob’s convergence
theorem, limy, o0 D 1<, Yk Xk €xists almost surely. Using this result along with the fact
that ¢, converges a.s. to zero, it follows from usual stochastic approximation arguments
(Benaim, 1999, Remark. 4.5) that the interpolated process z : [0, +00) — Z given by

2(t) = Zp + (t — 1) L0 (\m eN,Vte [Tn,Tn+1))

(where 7, = >_3_o ), is almost surely a bounded APT of the semiflow ® defined
by (ODE.,). The proof is concluded by applying Prop. 2.20 and Prop. 3.16.

2.9.2 Proof of Th. 2.7

As inf F' > —o00, one can assume without loss of generality that F' > 0. In the sequel,

C denotes some positive constant which may change from line to line. We define

ap = (1 — apy1)/vn and P, 2airn (m&?, a+\l/ﬁ>' We have a,, — a and r,, — 1. By

Assumption 2.5.2-1),

~

F(an) < Fzn-1) — m(VF(2n), %) + C%%Pn- (2.35)

We set u, :=1— ag—“ and D, := so that P, = T(Dn,m%ﬂ). We can write:

+W’
D —D D
Pn+1 - Pn = unP'n,—l—l + <$,m7?_~2_1> + <i, mgf_l — m%2> (236)
n n

We estimate the vector D1 — D,,. Using that (r,!) is non-increasing,

Dyt — Dy < 7“,:1 VUn — \/Un+l
(e + \/ong1) © (e + Vn)
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Remarking that v,1 > Bh4+1vns, recalling that (7,) is nondecreasing and using the
update rules of v, and 7, we obtain after some algebra

N Vf Tnel — Tn Un
Vi Vi =m0 o) e e e o e

_ 1— B+t 1 1—7,
< ¢pt+1V/ Unt1 where cpqq = + —
" " " VBns1 \ 1+ Brt1 2T
(2.37)

It is easy to see that ¢,/v, — b/2. Thus, for any § > 0, cp41 < (b + 20)y,/2
for all n large enough. Using also that \/Up4+1/(¢ + \/Ont1) < 1, we obtain that
Dypy1— Dy < @VnDn~ Substituting this inequality in Eq. (3.43), we get

b+ 26 2 Dy oo o2

Poi1 — Py < upPpir + %(TDn,mmﬁ + (gﬁnnﬂ —my).
n n

Using mgf_l —m&? = 2my, ® (Mpr1 — my) + (Mpg1 — my)©2, and noting that

En(mn—f—l - mn) = an’Yn(VF(wn) - mn);

Dn @2 ®2\ mn Dn ®2
En( a My — My >—’Vn<VF(xn)a€+m> 2an’YnPn+<2anaEn[(mn+l mn) 7))

b+26 b+6
1 =a-

As a, — a, we have a,, — for all n large enough. Hence,

b+4§ m
E,P, P, < upPpi1 — 2(a — —) P + Y (VE (2,
+1— UnPpi1 —2(a 1 )P+ ¥ (VF(25) +m>
b+ 20 My
2 F n)y A En n - n®2 .
a5V WH\@”%% [(mas1 = ma)®?))

Using the Cauchy—Schwartz inequality and Assumption 2.5.2 ii), it is easy to show the
inequality (VF(x,), pry r) C(1+ F(zy) + P,). Moreover, using the componentwise

inequality (V fri1—my)®% < 2V ff?fl +2m®? along with Assumption 2.5.2 ii), we obtain

<%7En[(mn+1 - mn)®2]> <2(1- O‘ﬂ-H) <2a JEn[V fn+1] + mr?2> < 0'7721(1 + F(wy) + Py) .

Putting all pieces together with Eq. (3.49),

En(F(zn) + Poy1) < F(Tn-1) + Po + unPoy1 — 2(a — b%s)')’npn + C”y%(l + F(xy) + Pp) .
(2.38)
Define V,, := (1 — Cy2_|)F(xp—1) + (1 — up—1) P, where the constant C' is fixed so that
Eq. (2.38) holds. Then,

[
En(vnﬂ)gvn—(za—;—“ 1

Tn

) P+ Crp(14 Po) + Cvi 1 F(zn-1) . (2.39)
By Assumption 2.5.2; imsup,, un—1/7n < 2a — b/2 and for ¢ small enough, we obtain

Ep(Vag1) < Vo + 0'7721(1 + Py) + C'Yn 1Fzn—1) < (1+ C, )Vn + 07721 .

By the Robbins-Siegmund’s theorem (Robbins and Siegmund, 1971), the sequence (V},)
converges almost surely to a finite random variable V,, € R™. In turn, the coercivity
of F implies that (x,) is almost surely bounded. The Robbins-Siegmund’s theorem
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is sometimes used to prove at the same time the stability of an algorithm and its
convergence. Here, we only use it to establish our stability result. In particular,
we do not exploit the "repelling" term in Eq. (2.39) which we upperbound by zero.
We now establish the almost sure boundedness of (m,). Consider the martingale
difference sequence A, 41 := Vfr11 — VF(x,). We decompose m,, = m,, + m,, where
Mgl = Q1M + (1 — 1) VF(2,) and mp41 = app1min + (1 — apy1) A1, setting
mo = mo = 0. We prove that both terms m,, and m,, are bounded. Consider the first
term: [[Mp41|| < anti|mn| + (1 — apg1) supy, [|[VF(xg)|| . By continuity of VF', the
supremum in the above inequality is almost surely finite. Thus, for every n, the ratio
|||/ supy, || VE (xr)]| is upperbounded by the bounded sequence r,. Hence, (m,,) is
bounded w.p.1. Consider now the term m,,:

En(HmrleQ) = 04721+1Hmn“2 + (1 - O‘n+1)2En(HAn+1H2) <(IT+(1- an+1)2)||mn||2 + (1 - Ozn+1)2C,

where C' is a finite random variable (independent of n) s.t. E,(||Vf.i1]/?) < C by
Assumption 2.4.2 i). Here, we used a2 ; < (1 + (1 — ap41)?) and the inequality
En(|Ant1]?) < En(|V fas1ll?). By Assumption 2.5.1, 3 (1 — apq1)? < 00. By the
Robbins-Siegmund theorem, it follows that sup,, ||, ||? < co w.p.1. Finally, it can be
shown that (v,,) is almost surely bounded using the same arguments.

2.9.3 Proof of Th. 2.8

We use (Pelletier, 1998, Th. 1). All the assumptions in the latter can be verified in our
case, at the exception of a positive definiteness condition on the limiting covariance
matrix, which corresponds, in our case, to the matrix @ given by Eq. (2.16). As @ is not
positive definite, it is strictly speaking not possible to just cite and apply (Pelletier, 1998,
Th. 1). Nevertheless, a detailed inspection of the proofs of Pelletier (1998) shows that
only a minor adaptation is needed in order to cover the present case. Therefore, proving
the convergence result of Pelletier (1998) from scratch is worthless. It is sufficient to
verify the assumptions of (Pelletier, 1998, Th. 1) (except the definiteness of @)) and
then to point out the specific part of the proof of Pelletier (1998) which requires some
adaptation.

Let z, = (zpn, My, vy) be the output of Algorithm 2.2. Define z* = (z*,0, S(x*)). Define
Mn+1 = (0,a(V frny1 — VF(zy)), b(Vj’@f1 — S(zy))). We have

n
Zn4+1 = 2Zn + ’YnJrlhoo(Zn) + Vnt1Mn+1 + Ynt1€nt1, (2'40)

where €,1 := (e} 11 €2 115 € +1), whose components are given by

1 _ o myp Mpt1 . 2 _ l—apy1 o ) _ 1—PBn+1 _ ©2
€nt+1 = e++y/Un er/Ont1 €nt+1 = ( Yn41 a) <an+1 m”) » En1 = ( Yrnt1 b vfn+1 Un ) -

Here, 7,41 is a martingale increment noise and €,41 = (€ 11 €2 115 € +1) is a remainder
term. The aim is to check the assumptions (A1l.1) to (A1.3) of Pelletier (1998), where
the role of the quantities (h, e,, rn, on, @, p, ) in Pelletier (1998) is respectively played
by the quantities (hoo, Mn, €n, Yn, K, 1, 1) of the present chapter.

Let us first consider Assumption (Al.1) for ho. By construction, hoo(2*) = 0. By
Assumptions 2.5.3 and 2.2.3, hs is continuously differentiable in the neighborhood
of z* and its Jacobian at z* coincides with the matrix H given by Eq. (2.14). As
already discussed, after some algebra, it can be shown that the largest real part of
the eigenvalues of H coincides with —L where L > 0 is given by Eq. (3.9). Hence,
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Assumption (Al.1) of Pelletier (1998) is satisfied for hoo. Assumption (A1.3) is trivially
satisfied using Assumption 2.5.4. The crux is therefore to verify Assumption (A1.2).
Clearly, E(n,+1|F») = 0. Using Assumption 2.4.2ii), it follows from straightforward
manipulations based on Jensen’s inequality that for any M > 0, there exists § > 0 s.t.

sup,>o En (||77n+1||2+5> Lyjjz, 2+ <M} < 00 . Next, we verify the condition

lim E (’VrjilH6n+1||21{||znfz*H§M}) =0. (2.41)

It is sufficient to verify the latter for ¢!, (i = 1,2,3) in place of ¢,. The map (m,v) >
m/(e + /v) is Lipschitz continuous in a neighborhood of (0, S(z*)) by Assumption 2.2.3.
Thus, for M small enough, there exists a constant C' s.t. if ||z, — 2*|| < M, then

. Using the triangular inequality

+C Hf;ilvn_i_l — Uy,
and the fact that r,11, 7,41 are bounded sequences away from zero, there exists another
constant C s.t.

lebiall < € |[rtimnss = ma

+C

”671’L+1H <C Hmn-‘rl — Mnp Unt1 — Unl|| + Clrps1 — 1]+ C|rp+1 — 1.

Using Lem. 2.29 under Assumption 2.5.4 (note that 79 > 1/2L > 1/a when k = 1), we
obtain that the sequence |, — 1|/7, is bounded, thus |r,+1 — 1| < Cypyr.

The sequence (1 — a,,) /v, being also bounded, it holds that

111 = MLz —zoy<ary < CYingt (U4 IV frt 12) Dz —2o <y -

By Assumption 2.4.2 ii), E,(||Vfnt1]?|) is bounded by a deterministic constant on
{llzn — 2% < M}. Thus, Ey([[mny1 — mn|* L)z, - <ary) < Cypyq- A similar result

holds for ||vn41 — vs|/?. We have thus shown that E,, (H6711+1Hzﬂ{nzn—Z*HSM}) < Cy2,.

Hence, Eq. (2.41) is proved for 61114—1 in place of €,11. Under Assumption 2.5.4, the proof
uses the same kind of arguments for €2, €, ., and is omitted. Finally, Eq. (2.41) is
proved. Continuing the verification of Assumption (A1.2), we establish that

En(Mnt1m241) = Q as. on {z, — 2*}. (2.42)

Denote by Q(z) the matrix given by the righthand side of Eq. (2.16) when z* is replaced
by an arbitrary o € V. It is easily checked that E,, (1,177 41) = Q(x,,) and by continuity,
Q(zy) — Q a.s. on {z, — z*}, which proves (2.42). Therefore, Assumption (A1.2) is
fulfilled, except for the point mentioned at the beginning of this section : Pelletier (1998)
puts the additional condition that the limit matrix in Eq. (2.42) is positive definite. This
condition is not satisfied in our case, but the proof can still be adapted. The specific
part of the proof where the positive definiteness comes into play is Th. 7 in Pelletier
(1998). The proof of (Pelletier, 1998, Th. 1) can therefore be adapted to the case of a
positive semidefinite matrix. In the proof of (Pelletier, 1998, Th. 7), we only substitute
the inverse of the square root of () by the Moore-Penrose inverse. Finally, the uniqueness
of the stationary distribution p and its expression follow from (Karatzas and Shreve,

1991, Th. 6.7, p. 357).
Proof of Eq. (3.10). We introduce the d x d blocks of the 3d x 3d matrix ¥ =

(zi). ., Where T is dxd. We denote by 5 the 2dx2d submatrix ¥ := (zis)
1,)=1,2,
By Th. 2.8, we have the subsystem:

Y (0 I - CIy -D
HY + SHT = (0 —a2Q> where H := <aV2F(:c*) (C—G)Id> (2.43)

ij=1,2
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and where Q := Cov (V flx*, ¢ )) The next step is to triangularize the matrix H in order

to decouple the blocks of . For every k=1,...,d, set Uff = —§ ++/a?/4 — a\, with

the convention that v—1 =1 (inspecting the characteristic polynomial of H, these are
the eigenvalues of H). Set M* := diag (yfc, e ,zxj) and R* := D-1/2pp+pPTD-1/2,

Using the identities M + M~ = —aly and M T M~ = aA where A := diag (A1, -+, \g),
it can be checked that
~ [DRYt+(ly -D (1 O
RH( 0 R-D+cly R, where R := R I,)

Set ¥ := RERT. Denote by (Zv]i,j)iyjzlyg the blocks of ¥. Note that 2171 =Y. By
left /right multiplication of Eq. (3.55) respectively with R and R’ we obtain

(DR +(1)S11 + S11(RTD + (1) = ¥12D + DY, (2.44)
(DR + (Ig)¥12 + $12(DR™ + Cly) = D9 (2.45)
(R™D + CIg)S99 + Y29(DR™ + Cly) = —a?Q (2.46)

Set $p9 = P7IDY2355,DY2P. Define C := P~'DY2QDY?P. Eq. (3.58) yields

(M~ +(Ig) 890+ Soo(M™ 4 Cly) = —a®C. Set 19 = P~'D~Y/2%, ,DV2P. Eq. (3.57)

rewrites (MT + (Ig)E12 + S12(M™ + ¢I;) = $32. We obtain that ilfﬁ = I/]j +
3.5

- ekl —a?C = 1 _ ,
Vg +20) 715y = (V,j+yg+22)(;,;+y,;+2<;) - Set Zyq = PTIDTVEE DTVEP. Ba. (3.50)

becomes <M+ + CId)il,l + 2171(M+ + CId) = 2172 + 2{2 Thus,

Skt | bk
S D AR _ —a?Cl ¢ 1 + 1
L1 V,:r—i—uzr—i—QC (u?+u?+2()(u;+u[+2§) I/;r—f—VZ—i—QC 1/,;+VZF+QC
Chrye
2 )
(1= 2) Ak 4+ Ar = 2+ 2¢%) + 5t (e — A)?

and the result is proved.






Stochastic Optimization with Momentum: Convergence,
Fluctuations, and Traps Avoidance

Abstract In this chapter, a general stochastic optimization procedure is studied,
unifying several variants of the stochastic gradient descent such as, among others, the
stochastic heavy ball method, the Stochastic Nesterov Accelerated Gradient algorithm
(S-NAG), and the widely used ADAM algorithm. The algorithm is seen as a noisy Euler
discretization of a non-autonomous ordinary differential equation, recently introduced by
Belotto da Silva and Gazeau, which is analyzed in depth. Assuming that the objective
function is non-convex and differentiable, the stability and the almost sure convergence
of the iterates to the set of critical points are established. A noteworthy special case
is the convergence proof of S-NAG in a non-convex setting. Under some assumptions,
the convergence rate is provided under the form of a Central Limit Theorem. Finally,
the non-convergence of the algorithm to undesired critical points, such as local maxima
or saddle points, is established. Here, the main ingredient is a new avoidance of traps
result for non-autonomous settings, which is of independent interest.

3.1 Introduction

Given a probability space =, an integer d > 0, and a function f : R? x Z — R, consider
the problem of finding a local minimum of the function F(x) := E¢[f(z,€)] wr.t. z € RY,
where [E¢ represents the expectation w.r.t. the random variable £ on Z. The chapter
focuses on the case where F' is possibly non-convex. It is assumed that the function F' is
unknown to the observer, either because the distribution of £ is unknown, or because
the expectaction cannot be evaluated. Instead, a sequence (&, : » > 1) of i.i.d. copies of
the random variable £ is revealed online.

While the Stochastic Gradient Descent is the most classical algorithm that is used to solve
such a problem, recently, several other algorithms became very popular. These include the
Stochastic Heavy Ball (SHB), the stochastic version of Nesterov’s Accelerated Gradient
method (S-NAG) and the large class of the so-called adaptive gradient algorithms,
among which ADAM (Kingma and Ba, 2015) is perhaps the most used in practice. As
opposed to the vanilla Stochastic Gradient Descent, the study of such algorithms is
more elaborate, for three reasons. First, the update of the iterates involves a so-called
momentum term, or inertia, which has the effect of “smoothing” the increment between
two consecutive iterates. Second, the update equation at the time index n is likely
to depend on n, making these systems inherently non-autonomous. Third, as far as
adaptive algorithms are concerned, the update also depends on some additional variable
(a.k.a. the learning rate) computed online as a function of the history of the computed
gradients.

In this work, we study in a unified way the asymptotic behavior of these algorithms in
the situation where F' is a differentiable function which is not necessarily convex, and
where the stepsize of the algorithm is decreasing.
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Our starting point is a generic non-autonomous Ordinary Differential Equation (ODE)
introduced by Belotto da Silva and Gazeau (2020) (see also Chapter 2 for ADAM ),
depicting the continuous-time versions of the aforementioned florilegium of algorithms.
The solutions to the ODE are shown to converge to the set of critical points of F. This
suggests that a general provably convergent algorithm can be obtained by means of an
Euler discretization of the ODE, including possible stochastic perturbations. Special
cases of our general algorithm include SHB, ADAM and S-NAG. We establish the almost
sure boundedness and the convergence to critical points. Under additional assumptions,
we obtain convergence rates, under the form of a central limit theorem. These results are
new. They extend the work of Gadat et al. (2018) and Chapter 2 to a general setting. In
particular, we highlight the almost sure convergence result of S-NAG in a non-convex
setting, which is new to the best of our knowledge.

Next, we address the question of the avoidance of “traps”. In a non-convex setting, the
set of critical points of a function F' is generally larger than the set of local minimizers.
A “trap” stands for a critical point at which the Hessian matrix of F' has negative
eigenvalues, namely, it is a local maximum or saddle point. We establish that the iterates
cannot converge to such a point, if the noise is exciting in some directions. The result
extends the previous work of Gadat et al. (2018) obtained in the context of SHB. This
result not only allows to study a broader class of algorithms but also significantly weakens
the assumptions. In particular, Gadat et al. (2018) use a sub-Gaussian assumption on
the noise and a rather stringent assumption on the stepsizes. The main difficulty in
the approach of Gadat et al. (2018) lies in the use of the classical autonomous version
of Poincaré’s invariant manifold theorem. The key ingredient of our proof is a general
avoidance of traps result, adapted to non-autonomous settings, which we believe to be
of independent interest. It extends usual avoidance of traps results to a non-autonomous
setting, by making use of a non-autonomous version of Poincaré’s theorem (Daleckii and
Krein, 1974; Kloeden and Rasmussen, 2011).

Chapter organization. In Section 3.2, we introduce and study the ODE’s governing
our general stochastic algorithm. We establish the existence and uniqueness of the
solutions, as well as the convergence to the set of critical points. In Section 3.3, we
introduce the main algorithm. We provide sufficient conditions under which the iterates
are bounded and converge to the set of critical points. A central limit theorem is stated.
Section 3.4 introduces a general avoidance of traps result for non-autonomous settings.
Next, this result is applied to the proposed algorithm. Sections 3.5, 3.6 and 3.7 are
devoted to the proofs of the results of Sections 3.2, 3.3 and 3.4, respectively.

Notations. Given an integer d > 1, two vectors z,y € R%, and a real «, we denote by
r Oy, 29 x/y, |z|, and \/m the vectors in R? whose i-th coordinates are respectively
given by z;y;, =, z;/vyi, |z, m Inequalities of the form = < gy are to be read
componentwise. The standard Euclidean norm is denoted || - ||. Notation M7 represents
the transpose of a matrix M. For x € R? and p > 0, the notation B(z, p) stands for
the open ball of R? with center 2 and radius p. We also write Ry = [0,00). If z € R?
and A C R?, we write dist(z, A) := inf{||z — 2/|| : 2/ € A}. By 1a(x), we refer to the
function that is equal to one if x € A and to zero elsewhere. The set of zeros of a
function h : R? — R? is zerh = {z : h(x) = 0}. Let D be a domain in R% Given an
integer k > 0, the class C*(D, R) is the class of D — R maps such that all their partial
derivatives up to the order k exist and are continuous. For a function h € C*(D,R) and
for every i € {1,...,d}, we denote as OFh(z1,...,24) the k*® partial derivative of the
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function h with respect to z;. When k = 1, we just write 9;h(z1,...,x4). The gradient
of a function I : RY — R at a point # € R? is denoted as VF(z), and its Hessian matrix
at z is V2F(z) as usual. For a function S : R? — R?, the notation VS(z) stands for the
jacobian matrix of S at point x. In this chapter, we bring to the attention of the reader
that few notations may slightly differ from Chapter 2: the variables (v, m,x) to be used
below were treated as (x, m,v) in Chapter 2, the vector fields are also impacted by this
permutation. Moreover, the time variable ¢ occurs as a second variable of the vector
field in the non-autonomous ODE of this chapter, whereas it was first in Chapter 2.

3.2 Ordinary differential equations

3.2.1 A general ODE

Our starting point will be a non-autonomous ODE slightly extending the one in Chapter 2
and which is almost identical to the one introduced in Belotto da Silva and Gazeau
(2020). Let F be a function in €}(R4, R), let S be a continuous RY — R? function, let
h,r,p,q: (0,00) — R4 be four continuous functions, and let ¢ > 0. Let vy € ]Ri and
xg,mp € R Starting at v(0) = vg, m(0) = mg, and x(0) = xg, our ODE on R, with
trajectories in Z = ]Ri x R? x RY reads

v(t) = p)Sx(t) —a(t)v(t)
m(t) = hEVEX(®) - r(t)m(t) (ODE-1)

x(t) =-m(t)/\/v(t)+e

This ODE can be rewritten compactly as follows. Write zg = (vg, mo,xo), and let
z(t) = (v(t),m(t),x(t)) € Zy4 for t € Ry. Let Z := R? x RY x RY, and define the map
g: 24 x(0,00) = Z as

p(t)S(x) —q(t)v
g(z,t) = [h(t)VF(x) —r(t)m (3.1)
—m/\v+e

for z = (v, m,x) € Z;. With these notations, we can rewrite (ODE-1) as
2(0) = 20, z(t) = g(z(t),t) for t > 0.

By setting S(x) = VIF(2)®? when necessary and by properly choosing the functions h, r,
p, and g, a large number of iterative algorithms used in Machine Learning can be obtained
by an Euler’s discretization of this ODE. For instance, choosing h(t) = r(t) = a(t, A\, a1)
and p(t) = q(t) = a(t, A\, ae) with a(t, A\, a) = A71(1 — exp(—Aa)) /(1 — exp(—at)) and
A, a1, a9 > 0, one obtains a version of the ADAM algorithm (Kingma and Ba, 2015)
(see (Belotto da Silva and Gazeau, 2020, Sections 2.4-4.2) for details). To give another
less specific example, if we set p = q = 0, then the resulting ODE covers a family of
algorithms to which the well-known HEAvY BALL with friction algorithm (Attouch
et al., 2000) belongs. For a comprehensive and more precise view of the deterministic
algorithms that can be deduced from (ODE-1) by an Euler’s discretization, the reader
is referred to (Belotto da Silva and Gazeau, 2020, Table 1).

In this chapter, since we are rather interested in stochastic versions of these algorithms,
Eq. (ODE-1) will be the basic building block of the classical “ODE method” which is
widely used in the field of stochastic approximation (Benaim, 1999). In order to analyze
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the behavior of this equation in preparation of the stochastic analysis, we need the
following assumptions.

Assumption 3.2.1. The function F belongs to €'(R%,R) and VF is locally Lipschitz
continuous.

Assumption 3.2.2. F is coercive, i.e., F(x) — 400 as ||z|| — +o0.

Note that this assumption implies that the infimum Fj of F' is finite, and the set zer VF
of zeros of VF is nonempty.

Assumption 3.2.3. The map S : R% — R‘i is locally Lipschitz continuous.

Assumption 3.2.4. The continuous functions h,r,p,q: (0, 4+00) — R, satisfy:

i) h € €((0,400),Ry), h(t) < 0 on (0,4+00) and the limit hyo 1= limy ;o0 h(t) is
positive.
ii) r and q are non-increasing and 7o, := limy_,o0 r(t) , goo := limy_, o0 q(t) are positive.
iii) p converges towards po as t — 0.
iv) For all t € (0,+00), r(t) > q(t)/4 and reo > ¢oo/4.

These assumptions are sufficient to prove the existence and the uniqueness of the solution
to (ODE-1) starting at a time tp > 0. The following additional assumption extends the
solution to tg = 0.

Assumption 3.2.5. Either h,r,p,q € C*([0, +0), R, ), or the following holds:

i) For every x € R? we have S(z) > VF(z)2.
ii) The functions %, ﬁ, t— th(t), t — tr(t), t — tp(t), t — tq(t) are bounded near
Z€rTo.
iii) There exists ¢ty > 0 such that for all ¢t < tg, 2r(t) — q(t) > 0.
iv) There exists § > 0 such that 2 ,g € C([0,6),R,).
v) The initial condition zg = (vg, mo, o) € Z satisfies

~—

. ) . p(t
mo = VF(xg)lim——= and vg= 5(xg)lim —=.
0 (wo) Ui r(t) 0 = S(a0) lir q(t)
Remark 2. The functions h,r, p,q corresponding to ADAM satisfy these conditions.
We leave the straightforward verifications to the reader. We just observe here that the
function S that will correspond to our stochastic algorithm in Section 3.3 below will
satisfy Assumption 3.2.5—i) by an immediate application of Jensen’s inequality.

The following theorem slightly generalizes the results of (Belotto da Silva and Gazeau,
2020, Th. 3 and Th. 5).

Theorem 3.1. Let Assumptions 3.2.1 to 3.2.4 hold true. Consider zg € Z4 and tg > 0.
Then, there exists a unique global solution z : [ty,+00) — Z4 to (ODE-1) with initial
condition z(ty) = z9. Moreover, z([ty, +00)) is a bounded subset of Z;. Ast — 400, z(t)
converges towards the set

T = {2z = (PooS(%4) /o0, 0,2%) : T € zer VF} . (3.2)

If, additionally, Assumption 3.2.5 holds, then we can take ty = 0.
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Remark 3. Th. 3.1 only shows the convergence of the trajectory z(t) towards a set.
Convergence of the trajectory towards a single point is not guaranteed when the set T
is not countable.

Remark 4. A simpler version of (ODE-1) is obtained when omitting the momentum
term. It reads:

v(t) =p)S(x(t)) —alt)v(t)
x(t) = —VEx(t))/\/N{E) te.

This ODE encompasses the algorithms of the family of RMSPROP (Tieleman and Hinton,
2012), as shown in Belotto da Silva and Gazeau (2020). The approach for proving the
previous theorem can be adapted to (ODE-1") with only minor modifications. In the
proofs below, we will point out the particularities of (ODE-1") when necessary.

(ODE-1')

The following paragraph is devoted to a particular case of (ODE-1), which does not
satisfy Assumption 3.2.4, and which requires a more involved treatment than (ODE-1").

3.2.2 The Nesterov case
Cabot et al. (2009), Su et al. (2016) and others studied the ODE

%(t) + %k(t) FVF(x(t) =0, a>0, FecC(R,R),

which Euler’s discretization generates the well-known Nesterov’s accelerated gradient
algorithm, see also Attouch et al. (2018); Aujol et al. (2019). This ODE can be rewritten
as

m(t) = VEx(t) — 2m(t)

&) = —mid), t (ODE-N)

which is formally the particular case of (ODE-1) that is taken for p(t) = q(t) = 0,
h(t) = 1, and r(t) = «/t. Obviously, this case is not covered by Assumption 3.2.4.
Moreover, it turns out that, contrary to the situation described in Remark 4 above, this
case cannot be dealt with by a straightforward adaptation of the proof of Th. 3.1. The
reason for this is as follows. Heuristically, the proof of Th. 3.1 is built around the fact
that the solution of (ODE-1) “shadows” for large ¢ the solution of the autonomous ODE

V(t) = PpooS(X(t) = ooV (1)
m(t) = heoVF(x(t)) — reom(t)
X(t) = - m(t) )

\v(t)+e

and the latter can be shown to converge to the set T defined in Eq. (3.2), either under
Assumption 3.2.4 or for the algorithms covered by Remark 4. This idea does not work
anymore for (ODE-N), for its large—t autonomous counterpart

can have solutions that do not converge to the critical points of F'. As an example of
such solutions, take d = 1 and F(z) = 22/2. Then, t — (cos(t),sin(t)) is an oscillating
solution of the latter ODE.
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Yet, we have the following result. Up to our knowledge, the proof of the convergence
below as ¢t — +00 is new.

Theorem 3.2. Let Assumptions 3.2.1 and 3.2.2 hold true. Then, for each xo € RY,
there exists a unique bounded global solution (m,x) : Ry — R? x R? to (ODE-N) with
the initial condition (m(0),x(0)) = (0,z¢). Ast — 400, (m(t),x(t)) converges towards
the set

T :={(0,z4) : x, € zer VF}. (3.3)

3.2.3 Related works

The continuous-time dynamical system (ODE-1) we consider was first introduced in
(Belotto da Silva and Gazeau, 2020, Eq. (2.1)) with S = VF®2. Th. 3.1 above is
roughly the same as (Belotto da Silva and Gazeau, 2020, Ths. 3 and 5), with some
slight differences regarding the assumptions on the function F', or Assumption 3.2.4-iv).
We point out that the main focus of Belotto da Silva and Gazeau (2020) is to study
the properties of the deterministic continous-time dynamical system (ODE-1). In the
present work, we highlight that the purpose of Th. 3.1 is to pave the way to our analysis
of the corresponding stochastic algorithms in Section 3.3.

Concerning Th. 3.2, the existence and the uniqueness of a global solution to (ODE-N)
has been previously shown in the literature, for instance in (Cabot et al., 2009, Prop. 2.1)
or in (Su et al., 2016, Th. 1). The convergence statement in Th. 3.2 is new to the best of
our knowledge. In particular, we stress that we do not make any convexity assumption
on F. The closest result we are aware of is the one of Cabot et al. (2009). In (Cabot
et al., 2009, Prop. 2.5), it is shown that if x(¢) converges towards some point Z, then
necessarily T is a critical point of F. Our result in Th. 3.2 strengthens this statement,
by establishing that x(¢) actually converges to the set of critical points.

3.3 Stochastic algorithms

In this section, we discuss the asymptotic behavior of stochastic algorithms that consist
in noisy Euler’s discretizations of (ODE-1) and (ODE-N) studied in the previous section.

We first set the stage. Let (2,7, u) be a probability space. Denoting as B(R?) the
Borel o-algebra on R%, consider a B(R?) ® T-measurable function f : R x Z — R that
satisfies the following assumption.

Assumption 3.3.1. The following conditions hold:

i) For every x € R, f(x,-) is u-integrable.
ii) For every s € =, the map f(-, s) is differentiable. Denoting as V f(x, s) its gradient
w.r.t. x, the function Vf(z,-) is integrable.
iii) There exists a measurable map x : R x £ — R s.t. for every z € R? :
a) The map k(z,-) is p—integrable,
b) There exists € > 0 s.t. for every s € =,

Vu,v € B(z,e), |IVf(u,s) = VF(v,5)|| < i, s)l|u— vl

Under Assumption 3.3.1, we can define the mapping F : R — R as

F(z) = Ee[f(2,€)] (3.4)
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for all z € R?, where we write Eep(§) = [ p(&)p(d€). Tt is easy to see that the mapping
F is differentiable,
VF(z) = E[Vf(z,¢)]

for all z € R, and VF is locally Lipschitz.

Let (yn)n>1 be a sequence of positive real numbers satisfying

Assumption 3.3.2. v, 41/, — 1 and >, v, = +o0.

Define for every integer n > 1
n
Tn = Z V& -
k=1

Let (2, F,P) be a probability space, and let (&, : n > 1) be a sequence of iid random
variables defined from (2, F,P) into (Z, T, u) with the distribution u.

3.3.1 General algorithm

Our first algorithm is a discrete and noisy version of (ODE-1).
Let 29 = (v, mo, o) € Z4+ and hg, 79, po, qo € (0,00). Define for every n > 1

hn =h(mn), ™n = r(1h), Pn = p(m), and ¢, = q(73). (3.5)

The algorithm is written as follows.

Algorithm 3.1 (general algorithm)

Initialization: 2z € Z..

for n = 1 to njter do
Un+1 = (1 - ’Yn—&—IQn)vn + "Yn-i—lpnvf(wmgn-‘rl
Mn+1 = (1 = Yn170)Mn + Yot 12nV f (20, §ng1)

Tp+1 = Tn — 7n+lmn+1/\/ Up+1+E€ .

end for

)@2

We suppose throughout the chapter that 1 — vy,4+19, > 0 for all n € N. This will
guarantee that the quantity /v, + € is always well-defined (see Algorithm 3.1). This
mild assumption is satisfied as soon as gy < 7—11 since the sequence (g,,) is non-increasing
and the sequence of stepsizes (,) can also be supposed to be non-increasing.

Since this algorithm makes use of the function V f(x,£)®?, a strengthening of Assump-
tion 3.3.1 is required:

Assumption 3.3.3. In Assumption 3.3.1, Conditions ii) and iii) are respectively replaced
with the stronger conditions

ii’) For each z € R?, the function Vf(z,)®? is u -integrable.

iii") There exists a measurable map  : R? x £ — R, s.t. for every o € R%:

a) The map k(z,-) is p—integrable.
b) There exists € > 0 s.t. for every u,v € B(x,¢),

IV £ (. s) = V@, )| VIV (87 = V (0, 8)%] < nle,s)lu - o]
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Under Assumption 3.3.3, we can also define the mapping S : R* — R? as:
S(x) = Ee[V f(z, )]
for all z € R?. Notice that Assumptions 3.2.1 and 3.2.3 are satisfied for F and S.
Assumption 3.3.4. Assume either of the following conditions.
i) There exists ¢ > 2 s.t. for every compact set K C R,

sup Ee |V f(2,€)[* < oo and D 4492 < o0,
zeX

n

ii) For every compact set X C R, there exists a real oy # 0 s.t.
Eg exp(u, Vf(2,€) = VF(@)) Leex < exp (ok[Jul?/2) and

Eg exp(u, Vf(7,€)° = $(2) Lyex < exp (of]jul?/2) ,
for every x,u € RY. Moreover, for every a > 0, >, exp(—a/y,) < 0.

Remark 5. We make the following comments regarding Assumption 3.3.4.

e Assumption 3.3.4-i) allows to use larger stepsizes in comparison to the classical
condition ) 72 < oo which corresponds to the particular case ¢ = 2.

e Recall that a random vector X is said to be subgaussian if there exists a real o # 0
s.t. EewX) < e’ Ilull*/2 for every constant vector u € R%. In Assumption 3.3.4-ii),
the subgaussian noise offers the possibility to use a sequence of stepsizes with an
even slower decay rate than in Assumption 3.3.4-).

Assumption 3.3.5. The set F({z : VF(z) = 0}) has an empty interior.

Remark 6. Assumption 3.3.5 excludes a pathological behavior of the objective function
F at critical points. It is satisfied when F € C*(R? R) for k > d. Indeed, in this case,
Sard’s theorem stipulates that the Lebesgue measure of F'({z : VF(z) = 0}) is zero
in R.

Theorem 3.3. Let Assumptions 3.2.2, 3.2.4, and 3.5.2-3.5.5 hold true. Assume that
the random sequence (z, = (v, My, Ty) : n € N) given by Algorithm 3.1 is bounded with
probability one. Then, w.p.1, the sequence (zy) converges towards the set Y defined in
Eq. (3.2). If, in addition, the set of critical points of the objective function F' is finite or
countable, then w.p.1, the sequence (z,) converges to a single point of T.

We now deal with the boundedness problem of the sequence (z,). We introduce an
additional assumption for this purpose.

Assumption 3.3.6. The following conditions hold.

i) VF is (globally) Lipschitz continuous.
ii) There exists C > 0 s.t. for all z € R, E¢[||Vf(z,8)|?] < C(1 + F(x)),

iii) >, 2 < 0.
Theorem 3.4. Let Assumptions 3.2.2, 5.2.4, 3.3.2, 3.5.3, 3.5./-1) (with ¢ = 2) and
3.3.60 hold. Then, the sequence (Up, My, xy) given by Algorithm 5.1 is bounded with
probability one.
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Remark 7. The above stability result requires square summable stepsizes. Showing
the same boundedness result under the Assumption 3.3.4 that allows for larger stepsizes
is a challenging problem in the general case. In these situations, the boundedness of the
iterates can be sometimes ensured by ad hoc means.

Remark 8. We can also consider the noisy discretization of (ODE-1") introduced in
Remark 4 above. This algorithm reads

Un+1 = (1 - 'Yn-i—l%w)vn + ’Yn-‘rlpnvf(xm §n+1)®2 (36&)
Tnyl = Tn — Y1 VI (@0, §nt1)/ Va1 T € (3.6b)

for (vo,xg) € R‘i x RY. With only minor adaptations, Th. 3.3 and Th. 3.4 can be shown
to hold as well for this algorithm. We refer to the concomitant paper (Gadat and Gavra,
2020, Sec. 2.2) for the link between this algorithm and the seminal algorithms ADAGRAD
(Duchi et al., 2011) and RMSPROP (Tieleman and Hinton, 2012).

3.3.2 Stochastic Nesterov’s Accelerated Gradient (S-NAG)

S-NAG is the noisy Euler’s discretization of (ODE-N). Given a > 0, it generates the
sequence (1, z,) on R? x R? given by Algorithm 3.2.

Algorithm 3.2 (S-NAG with decreasing steps)

Initialization: mg = 0, zo € R

for n = 1 to njter do
Mn1 = (1 = aVnt1/Tn)Mn + Y1V (@0, §nt1)
Tn+l = Tn — Yn+1Mnt1 -

end for

Assumption 3.3.7. Assume either of the following conditions.

i) There exists ¢ > 2 s.t. for every compact set X C R,

sup Ee |V f(2,€)[9 < oo and Y 44" < oo.
zeX

n

ii) For every compact set X C R?, there exists a real oy # 0 s.t.
Eg exp(u, V f(2,€) = VF(@)) Leex < exp (okJul?/2) .

for every x,u € R% Moreover, for every o > 0, Y, exp(—a/v,) < 0o.

Theorem 3.5. Let Assumptions 3.2.2, 3.5.1, 3.3.2, 3.3.5 and 3.3.7 hold true. Assume
that the random sequence (yn, = (M, xy) : n € N) given by Algorithm 3.2 is bounded
with probability one. Then, w.p.1, the sequence (yy,) converges towards the set T defined
in Eq. (3.3). If, in addition, the set of critical points of the objective function F' is finite
or countable, then w.p.1, the sequence (y,) converges to a single point of Y.

The almost sure boundedness of the sequence (yy,) is handled in what follows.

Theorem 3.6. Let Assumptions 3.2.2, 3.5.1, 3.3.2 and 3.3.0 hold. Then, the sequence
(yn = (Mmp,xy) : n € N) given by Algorithm 3.2 is bounded with probability one.

Remark 9. Assumption 3.3.4-i) in Th. 3.4 is not needed for Th. 3.6.
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3.3.3 Central limit theorem
In this section, we establish a conditional central limit theorem for Algorithm 3.1.

Assumption 3.3.8. Let z, € zer VF'. The following holds.

i) F is twice continuously differentiable on a neighborhood of z, and the Hessian
V2F(z,) is positive definite.
ii) S is continuously differentiable on a neighborhood of z,.
iii) There exists M > 0 and by > 4 s.t.

sup  Ee[|[V£(z,8)]™] < . (3.7)
x€B(xw,M

Under Assumptions 3.2.4-1) to iii), it follows from Eq. (3.5) that the sequences (hy,), (), (pn)

and (g,) of nonnegative reals converge respectively t0 hoo, T'oos Poo and ¢oo Where hoo,
Too and goo are supposed positive. Define v, := ¢3! pooS(2,). Consider the matrix

V = diag ((5 + v*)@—é> . (3.8)

Let P be an orthogonal matrix s.t. the following spectral decomposition holds:

NI

V2V2F(z,)V? = Pdiag(m, - ,ma)P",

where m; < .- < w4 are the (positive) eigenvalues of V%V2F(x*)V%. Define

~Tooly hooV2F(zy)

=1y 0

where I is the d x d identity matrix. Then the matrix H is Hurwitz. Indeed, it can be
shown that the largest real part of the eigenvalues of H coincides with —L, where

Too 4hoomy
L=—1]1- 1-— . .
5 ( -~ ) vOol| >0 (3.9)

Assumption 3.3.9. The sequence (7y,) is given by v, = 1§ for some a € (0, 1], 40 > 0.

Moreover, if a = 1, we assume that vy > W-

Theorem 3.7. Let Assumptions 3.2./-1) to iii), 3.5.5, 3.5.8 and 3.3.9 hold. Consider the
iterates z, = (Vp, My, xy) given by Algorithm 3.1. Set 6 :=0 if « <1 and 6§ := 1/(27)
if « = 1. Assume that the event {z, — 2.}, where z, = (v\,0,24), has a positive
probability. Then, given that event,

I
e [xn”i x] = N(0.1).

where = stands for the convergence in distribution and N'(0,T) is a centered Gaussian
distribution on R*? with a covariance matriz T given by the unique solution to the
Lyapunov equation

COV(hoovf(x*a é)) 0

(H + 0Ip)T + T(H + 0l59) T = — [ 0 0
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In particular, given {z, — 2.}, the vector /v, ‘(x, — x,) converges in distribution to a
centered Gaussian distribution with a covariance matriz given by:

Iy=VzP ’ Py (3.10)

where C' := P~V 3, [Vf(x*,f)Vf(x*,g) T} ViP.
A few remarks are in order.

e The matrix I'y coincides with the limiting covariance matrix associated to the iterates

Mpt1 = My + 7n+1(hoovvf(xna €n+1) - Toomn)

Tn+1 =Tn — Yn+1Mn41 -

This procedure can be seen as a preconditioned version of the stochastic heavy ball
algorithm (Gadat et al., 2018) although the iterates are not implementable because of
the unknown matrix V. Notice also that the limiting covariance I'y depends on v,
but does not depend on the fluctuations of the sequence (vy,).

e When ho, = 7o (which is the case for ADAM ), we recover the expression of the
asymptotic covariance matrix previously provided in Chapter 2 Section 2.5.3 and the
remarks formulated therein.

e The assumption ro, > 0 is crucial to establish Th. 3.7. For this reason, Th. 3.7
does not generalize immediately to Algorithm 3.2. The study of the fluctuations of
Algorithm 3.2 is left for future works.

3.3.4 Related works

Gadat et al. (2018) study the SHB algorithm, which is a noisy Euler’s discretization of
(ODE-1) in the situation where h =r and p = q = 0 (i.e., there is no v variable). In this
framework, if we set h =r =7 > 0 in Algorithm 3.1 above, then Th. 3.3 above recovers
the analogous case in (Gadat et al., 2018, Th. 2.1), which is termed as the exponential
memory case. The other important case treated in Gadat et al. (2018) is the case where
h(t) = r(t) = r/t for some r > 0, referred to as the polynomially memory case. Actually,
it is known that the ODE obtained for h(t) = r(t) = r/t and p = q = 0 boils down
to (ODE-N) after a time variable change (see, e.g., Lem. 3.14 below). Nevertheless, we
highlight that the stochastic algorithm that stems from this ODE and that is studied
in Gadat et al. (2018) is different from the S-NAG algorithm introduced above which
stems from a different ODE (ODE-N). Hence, the convergence result of Th. 3.5 for the
S-NAG algorithm we consider is not covered by the analysis of Gadat et al. (2018).

The specific case of the ADAM algorithm is analyzed in Chapter 2 in both the con-
stant and vanishing stepsize settings (see Ths. 2.6-2.7 which are the analogues of our
Ths. 3.3-3.4). Note that we deal with a more general algorithm in the present chapter.
Indeed, Algorithm 3.1 offers some freedom in the choice of the functions h,r,p, g sat-
isfying Assumption 3.2.4 beyond the specific case of the ADAM algorithm studied in
Chapter 2. Apart from this generalization, we also emphasize some small improvements.
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Regarding Th. 3.3, we provide noise conditions allowing to choose larger stepsizes (see
Assumption 3.3.4 compared to Assumption 2.4.2 with p = 2 in Chapter 2). Concerning
the stability result (Th.3.4), we relax Assumption 2.5.2-7i3) of Chapter 2 which is no
more needed in the present chapter (see Assumption 3.3.6) thanks to a modification
of the discretized Lyapunov function used in the proof (see the proof in Section 3.6.4
compared to Section 2.9.2 in Chapter 2).

In most generality, the almost sure convergence result of the iterates of Algorithm 3.1
using vanishing stepsizes (Ths. 3.3-3.4) is new to the best of our knowledge. Moreover,
while some recent results exist for S-NAG in the constant stepsize and for convex
objective functions (see for e.g., Assran and Rabbat (2020)), Ths. 3.5 and 3.6 which
tackle the possibly non-convex setting are also new to the best of our knowledge.

In the work of Gadat and Gavra (2020) that was posted on the arXiv repository a few
days after our submission, Gadat and Gavra study the specific case of the algorithm
described in Eq. (3.6) encompassing both ADAGRAD and RMSPROP, with the possibility
to use mini-batches. For this specific algorithm, the authors establish a similar almost
sure convergence result to ours (Gadat and Gavra, 2020, Th. 1) for decreasing stepsizes
and derive some quantitative results bounding in expectation the gradient of the objective
function along the iterations for constant stepsizes (Gadat and Gavra, 2020, Th. 2). We
highlight though that they do not consider the presence of momentum in the algorithm.
Therefore, their analysis does not cover neither Algorithm 3.1 nor Algorithm 3.2.

In contrast to our analysis, some works in the literature explore the constant stepsize
regime for some stochastic momentum methods either for smooth (Yan et al., 2018) or
weakly convex objective functions (Mai and Johansson, 2020). Furthermore, concerning
ADAM-like algorithms, several recent works control the minimum of the norms of the
gradients of the objective function evaluated at the iterates of the algorithm over N
iterations in expectation or with high probability (Basu et al., 2018; Zhou et al., 2018;
Chen et al., 2018; Zou et al., 2019a; Chen et al., 2019; Zaheer et al., 2018; Alacaoglu
et al., 2020a; Défossez et al., 2020; Alacaoglu et al., 2020b) and establish regret bounds
in the convex setting (Alacaoglu et al., 2020D).

Similar central limit theorems to Th. 3.7 are established in the cases of the stochastic
heavy ball algorithm with exponential memory (Gadat et al., 2018, Th. 2.4) and ADAM
(see Th. 2.8 in Chapter 2). In comparison to Gadat et al. (2018), we precise that our
theorem recovers their result and provides a closed formula for the asymptotic covariance
matrix I's. Our proof of Th. 3.7 differs from the strategies adopted in Gadat et al. (2018)
and Chapter 2.

3.4 Avoidance of traps

In Th. 3.3 and Th. 3.5 above, we established the almost sure convergence of the iterates
2y, towards the set of critical points of the objective function F' for both Algorithms 3.1
and 3.2. However, the landscape of F' can contain what is known as “traps” for the
algorithm, namely, critical points where the Hessian matrix of F' has negative eigenvalues,
making these critical points local maxima or saddle points. In this section, we show that
the convergence of the iterates to these traps does not take place if the noise is exciting
in some directions.
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Starting with the contributions of Pemantle (1990) and Brandiére and Duflo (1996), the
numerous so-called avoidance of traps results that can be found in the literature deal
with the case where the ODE that underlies the stochastic algorithm is an autonomous
ODE. Obviously, this is neither the case of (ODE-1), nor of (ODE-N). To deal with this
issue, we first state a general avoidance of traps result that extends Pemantle (1990);
Brandiére and Duflo (1996) to a non-autonomous setting, and that has an interest of its
own. We then apply this result to Algorithms 3.1 and 3.2.

3.4.1 A general avoidance-of-traps result in a non-autonomous
setting

The notations in this subsection and in Sections 3.7.1-3.7.2 are independent from the rest
of the chapter. We recall that for a function h : R4 — RY | we denote by 6fh(x1, R )
the k™ partial derivative of the function h with respect to z;.

The setting of our problem is as follows. Given an integer d > 0 and a continuous function
b: R4 x Ry — R?, we consider a stochastic algorithm built around the non-autonomous
ODE z(t) = b(z(t),t). Let z, € R? and assume that on V x R, where V is a certain
neighborhood of z,, the function b can be developed as

b(z,t) = D(z — z) + e(z,t), (3.11)

where e(z,-) = 0, and where the matrix D € R?*? is assumed to admit the following
spectral factorization: Given 0 < d~ < d and 0 < d™ < d with d~ +d" = d, we can
write

A-

D=QAQ™!, A= , (3.12)

A+

where the Jordan blocks that constitute A~ € R %4 (respectively AT € R >4 are
those that contain the eigenvalues \; of D for which R\; < 0 (respectively R\; > 0).
Since d* > 0, the point z, is an unstable equilibrium point of the ODE z(t) = b(z(t), t),
in the sense that the ODE solution will only be able to converge to z, along a specific
so-called invariant manifold which precise characterization will be given in Section 3.7.1
below.

We now consider a stochastic algorithm that is built around this ODE. The condition
d™ > 0 makes that z, is a trap that the algorithm should desirably avoid. The
following theorem states that this will be the case if the noise term of the algorithm
is omnidirectional enough. The idea is to show that the case being, the algorithm
trajectories will move away from the invariant manifold mentioned above.

Theorem 3.8. Given a sequence (vy,) of nonnegative deterministic stepsizes such that
> =00, 3. 2 < 400, and a filtration (F,), consider the stochastic approzimation
algorithm in R?

Zn+l = 2n + '7n+1b(zna Tn) + Yn+1Mn+1 + Yn4+1Pn+1

where 7, =Y 1, Yi. Assume that the sequences () and (pp) are adapted to F,,, and
that zy is Fo-measurable. Assume that there exists z, € R% such that Eq. (3.11) holds true
on ¥V x Ry, where V is a neighborhood of z.. Consider the spectral factorization (3.12),
and assume that d™ > 0. Assume moreover that the function e at the right hand side of
Eq. (3.11) satisfies the conditions:
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i) e(zy,-) = 0.
ii) On'V x Ry, the functions O30%e(z,t) exist and are continuous for 0 <n < 2 and
0<k+n<2.
iii) The following convergence holds :

ln [re(=0)] = 0. (3.13)

(z,6) = (zx,00
iv) There exist to > 0 and a neighborhood VW C R¢ of z4 s.t.

sup
ZEW,t>t

826(z,t)H < 4+ 00 and sup
ZEW,t>t0

8%6(2’,75)” < + o0.

Moreover, suppose that :

v) S lons1l?La,ew < 0o almost surely.
vi) Himsup E[||nas1||* | Fnlls, e < oo, and E[nn+i1 | Fn]l,ew = 0.
vii) Writing i, = Q ', = (7, ;) with ff € RY | for some ¢? > 0, it holds that

limianE’,[||ﬁn+1||2 | Fallzpew = Ls e -
Then, P([zn, — z]) = 0.

Remark 10. Assumptions i) to iv) of Th. 3.8 are related to the function e defined in
Eq. (3.11), which can be seen as a non-autonomous perturbation of the autonomous linear
ODE z(t) = D(z(t) — z4). These assumptions guarantee the existence of a local (around
the unstable equilibrium z,) non-autonomous invariant manifold of the non-autonomous
ODE z(t) = b(z(t), t) with enough regularity properties, as provided by Prop. 3.18 and
Prop. 3.20 below.

3.4.2 Application to the stochastic algorithms
3.4.2.1 Trap avoidance of the general algorithm 3.1

In Th. 3.3 above, we showed that the sequence (z,,) generated by Algorithm 3.1 converges
almost surely towards the set T defined in Eq. (3.2). Our purpose now is to show that
the traps in Y (to be characterized below) are avoided by the stochastic algorithm 3.1
under a proper omnidirectionality assumption on the noise.

Our first task is to write Algorithm 3.1 in a manner compatible with the statement of
Th. 3.8. The following decomposition holds for the sequence (z, = (vn, mp, zy),n € N)
generated by this algorithm:

Zn41 = 2p + 7n+19(zn7 Tn) + Ynt1Mn+1 + Ynt1Pn+1,

Mn _ Mn41
’ \fvn+e VUn+1+€

with respect to the filtration (F,) which is defined by Eq. (3.28).

where ppy1 = (0,0 , and where 7,41 is the martingale increment

Observe from Eq. (3.2) that each z, € Y is written as z, = (vy, 0, x,) where z, € zer VF,
and vy, = ¢} pooS(wy) (in particular, z, and z, are in a one-to-one correspondence).
We need to linearize the function g(-,¢) around z,. The following assumptions will be
required.

Assumption 3.4.1. The functions F and S belong respectively to C3(R%, R) and C?(R%,R%).
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Assumption 3.4.2. The functions h,r, p, q belong to €*((0,c0), Ry ) and have bounded
derivatives on [tg, +00) for some ¢y > 0.

Lemma 3.9. Let Assumptions 3.2.4-i) to iii), 3.4.1 and 3.4.2 hold. Let z, = (v4, 0, zy)
€ Y. Then, for every z € Z, and every t > 0, the following decomposition holds true:

9(2,t) = D(z = 2:) + (2, 1) + ¢(b),

—Goola 0 peoVS(24) p(t)S(z) — a(t)vs
where D = 0 —Tooly hooV2F ()|, c(t) = 0 ,
0 -V 0 0

and the function e(z,t) (defined in Section 3.7.3.1 below for conciseness) has the same
properties as its analogue in the statement of Th. 3.8.

Using this lemma, the algorithm iterate 2,11 can be rewritten as an instance of the
algorithm in the statement of Th. 3.8, namely,

Zp4+1 = 2Zn t+ ’7n+1b(zna Tn) + Yn+1Mn+1 + Ynt1Pnt1, (3'14)

where in our present setting, b(z,t) = g(z,t) — c(t) = D(z — z,) + e(z,t) and p, =
¢(Tn—1) + pn. In the following assumption, we use the well-known fact that a symmetric
matrix H has the same inertia as AHAT for an arbitrary invertible matrix A.

Assumption 3.4.3. Let x, € zer VF, let v, = q!pooS(2,), and define the diagonal
matrix V' = diag((v« + 5)@_%) as in (3.8). Assume the following conditions:

. 2
i) 3, (¢ooPn — Pootn)” < 00,
ii) The Hessian matrix V2F(x,) has a negative eigenvalue.

iii) There exists d > 0 such that sup,cp(,, 5 Ee[l|V.f (2, €)[®] < 00

iv) Defining II,, as the orthogonal projector on the eigenspace of ViV2EF (l‘*)V% that
is associated with the negative eigenvalues of this matrix, it holds that

T,V EE(V f (24, €) = VF(@,))(V f(2,,€) — VF(2,))"V 2L, £0.

Theorem 3.10. Let Assumptions 3.2.4, 3.3.3, and 3.4.1, 3.4.2 hold true. Let z, € T be
such that Assumption 3./.3 holds true for this z,. Then, the eigenspace associated with
the eigenvalues of D with positive real parts has the same dimension as the eigenspace of
V2F(x,) associated with the negative eigenvalues of this matriz. Let (zn, = (Vn, M, Tn)
n € N) be the random sequence generated by Algorithm 5.1 with stepsizes satisfying
>, =400 and Y, 42 < +00. Then, P([z, — 2.]) = 0.

The assumptions and the result call for some comments.

Remark 11. The definition of a trap as regards the general algorithm in the statement of
Th. 3.8 is that the matrix D in Eq. (3.11) has eigenvalues with positive real parts. Th. 3.10
states that this condition is equivalent to V2F(z,) having negative eigenvalues. What'’s
more, the dimension of the invariant subspace of D corresponding to the eigenvalues
with positive real parts is equal to the dimension of the negative eigenvalue subspace of
V2F(x,). Thus, Assumption 3.4.3-iv) provides the “largest” subspace where the noise
energy must be non zero for the purpose of avoiding the trap.
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Remark 12. Assumptions 3.4.2 and 3.4.3-i) are satisfied by many widely studied
algorithms, among which RMSPROP and ADAM.

Remark 13. The results of Th. 3.10 can be straightforwardly adapted to the case
of (ODE-1"). Assumption 3.4.3-iv) on the noise is unchanged.

In the case of the S-NAG algorithm, the assumptions become particularly simple. We
state the afferent result separately.

3.4.2.2 Trap avoidance for S-NAG

Assumption 3.4.4. Let x, € zer VF and let the following conditions hold.

i) The Hessian matrix V2F(z,) has a negative eigenvalue.
ii) There exists § > 0 such that sup,ep(,, 5 Ee[l|Vf(z,&)[*] < 00
iii) TWEe(Vf(24,8) — VF(24))(Vf(24,8) — VF(2,)) T, # 0, where II, is the or-
thogonal projector on the eigenspace of V2F(x,) associated with its negative
eigenvalues.

Theorem 3.11. Let Assumptions 5.2./, 5.3.1, 3./.1 and 3././ hold. Define y, = (0, zy).
Let (yn, = (mp,xy) : n € N) be the random sequence given by Algorithm 3.2 with stepsizes
satisfying ., Yn = +00 and Y., v2 < 4+00. Then, P([y, — y4]) =0.

3.4.3 Related works

Up to our knowledge, all the avoidance of traps results that can be found in the literature,
starting from Pemantle (1990); Brandiére and Duflo (1996), refer to stochastic algorithms
that are discretizations of autonomous ODE’s (see for e.g., (Benaim, 1999, Sec. 9) for
general Robbins Monro algorithms and (Mertikopoulos et al., 2020, Sec. 4.3) for SGD). In
this line of research, a powerful class of techniques relies on Poincaré’s invariant manifold
theorem for an autonomous ODE in a neighborhood of some unstable equilibrium point.
In our work, we extend the avoidance of traps results to a non-autonomous setting, by
borrowing a non-autonomous version of Poincaré’s theorem from the rich literature that
exists on the subject (Daleckii and Krein, 1974; Kloeden and Rasmussen, 2011).

In Gadat et al. (2018), the authors succeeded in establishing an avoidance of traps
result for their non-autonomous stochastic algorithm which is close to our S-NAG
algorithm (see the discussion at the end of Section 3.3.4 above), at the expense of a
sub-Gaussian assumption on the noise and a rather stringent assumption on the stepsizes.
The main difficulty in the approach of Gadat et al. (2018) lies in the use of the classical
autonomous version of Poincaré’s theorem (see (Gadat et al., 2018, Remark 2.1)). This
kind of difficulty is avoided by our approach, which allows to obtain avoidance of traps
results with close to minimal assumptions. More recently, in the contribution of Gadat
and Gavra (2020) discussed in Sec. 3.3.4, the authors establish an avoidance of traps
result ((Gadat and Gavra, 2020, Th. 3)) for the algorithm described in Eq. (3.6) using
techniques inspired from Pemantle (1990); Benaim (1999). As previously mentioned,
this recent work does not handle momentum and hence neither Algorithm 3.1 nor
Algorithm 3.2. Moreover, as indicated in our discussion of Gadat et al. (2018), our
strategy of proof is different.

Taking another point of view as concerns the trap avoidance, some recent works (Lee
et al., 2019; Du et al., 2017; Jin et al., 2017; Panageas and Piliouras, 2017; Panageas et al.,
2019) address the problem of escaping saddle points when the algorithm is deterministic
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but when the initialization point is random. In contrast to this line of research, our work
considers a stochastic algorithm for which randomness enters into play at each iteration
of the algorithm via noisy gradients.

3.5 Proofs for Section 3.2

3.5.1 Proof of Th. 3.1

The arguments of the proof of this theorem that we provide here follow the approach of
Belotto da Silva and Gazeau (2020) with some small differences. Close arguments can
be found in Chapter 2. We provide the proof here for completeness and in preparation
of the proofs that will be related with the stochastic algorithms.

3.5.1.1 Existence and uniqueness

The following lemma guarantees that the term y/v(t) + ¢ in (ODE-1) is well-defined.

Lemma 3.12. Let tp € Ry and T € (fp,00]. Assume that there exists a solution
z(t) = (v(t), m() x(t)) to (ODE-1) on [ty,T) for which v(t9) > 0. Then, for all
t € [to,T), v(t) >0

Proof. Assume that v := inf{t € [tg,T), v( ) < 0} satlsﬁes v <T. If v(tg) > 0,
Gronwall’s lemma implies that v(t) > v(tp) exp(— ft ) on [tp, v] which is in contra-
diction with the fact that v(r) = 0. If v(¢y) = 0, since v < T, there exists t; € (to,v)
s.t. v(t1) < 0. Hence, using the first equation from (ODE-1), we obtain v(t;) > 0. This
brings us back to the first case, replacing ty by ¢1. |

Recall that F, = inf F' is finite by Assumption 3.2.2. Of prime importance in the proof
will be the energy (Lyapunov) function € : Ry x Z; — R, defined as

2

, (3.15)

amazhw@y4@+;w:;ﬁ

for every h > 0 and every z = (v,m,z) € Z,. This function is slightly different from
its analogues that were used in Chapter 2 or in Alvarez (2000); Belotto da Silva and
Gazeau (2020).

Consider (t,z) € (0,400) x Z4 and set z = (v,m,z). Then, using Assumption 3.2.1, we
can write

8t8(h(t)v z) + <V28(h(t)> Z)?Q(Zv t)>

h(t)(F Fy - Lm? s
= B ) = (T o5 —ae)
+ <(v o %7h(t)VF(3«") —r(t)m) — <(U RS h(t)VF(z))
2
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With the help of this function, we can now establish the existence, the uniqueness and
the boundedness of the solution of (ODE-1) on [tg,c0) for an arbitrary ¢y > 0.

Lemma 3.13. For each tp > 0 and 29 € Z4, (ODE-1) has a unique solution on [¢g, 00)
starting at z(tg) = z9. Moreover, the orbit {z(t) : ¢t > to} is bounded.

Proof. Let ty > 0, and fix 29 € Z,. On each set of the type [to, to+ A] x B(20, R) where
A,R > 0 and B(zg, R) C (—¢,00)? x R? x R?, we easily obtain from our assumptions
that the function g defined in (3.1) is continuous, and that g(-,t) is uniformly Lipschitz
ont € [tg,to + A]. In these conditions, Picard’s theorem asserts that (ODE-1) starting
from z(tg) = z¢ has a unique solution on a certain maximal interval [to, 7). Lem. 3.12
shows that v(¢) > 0 on this interval.

Let us show that T' = co. Applying Ineq. (3.16) with (v, m,z) = (v(£), m(t),x(t)) and
using Assumption 3.2.4, we obtain that the function ¢ — E(h(¢),z(t)) is decreasing on
[to,T). By the coercivity of F' (Assumption 3.2.2) and Assumption 3.2.4-i), we get that
the trajectory {x(¢)} is bounded. Recall the equation m(t) = h(t)VF (x(t)) — r(t)m(t).
Using the continuity of the functions VF, h and r along with Gronwall’s lemma, we
get that {m(¢)} is bounded if T < co. We can show a similar result for {v(¢)}. Thus,
{z(t)} is bounded on [to,T') if T' < oo which is a contradiction, see, e.g., (Hartman, 2002,
Cor.3.2).

It remains to show that the trajectory {z(¢)} is bounded. To that end, let us apply the
variation of constants method to the equation m(t) = h(¢)VEF (x(¢)) — r(t)m(t). Writing
R(t) = ft'; r(u) du, we get that

d

£ (@R(t)m(t)> = OOV E(x(1)).

Therefore, for every t > tg,

m(t) = e FOm(ty) + / t eFW=ROh(4)VF (x(u))du .

to

Using the continuity of VF' together with the boundedness of x, Assumption 3.2.4 and
the triangle inequality, we obtain the existence of a constant C' > 0 independent of ¢ s.t.

[m(®) = mto)| = | m(to)| < Chito) / LSl isg,

to

t
h
< Ch(to) / e=reelt=) gy, < E0)

to Too

The same reasoning applies to v(t) using the continuity of S and Assumption 3.2.4. This
completes the proof. |

We can now extend this solution to fy = 0 along the approach of Belotto da Silva and
Gazeau (2020), where the detailed derivations can be found. The idea is to replace h(t)
with h(max(n,t)) for some n > 0 and to do the same for p, q, and r. It is then easy
to see that the ODE that is obtained by doing these replacements has a unique global
solution on Ry. By making n — 0 and by using the Arzela-Ascoli theorem along with
Assumption 3.2.5, we obtain that (ODE-1) has a unique solution on R;.
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3.5.1.2 Convergence

The first step in this part consists in transforming (ODE-1) into an autonomous ODE
by including the time variable into the state vector. More specifically, we start with the

following ODE:
z(t) | _ [9(z(t), u(t)) - 2(0) | _ |#0
][] e 6] 2]

then, we perform the following change of variable in time

=l

allowing the solution to lie in a compact set.

We initialize the above ODE at a time instant ¢ty > 0. Define the functions H,R, P, Q :
Ry — Ry by setting H(s) = h(1/s), R(s) = r(1/s), P(s) = p(1/s); Q(s) = q(1/s) for
s> 0; H(0) = heo, R(0) = 70, P(0) = poo and Q(0) = goo. Our autonomous dynamical
system can then be described by the following system of equations:

v(t)  =P(s(t)S(x(t)) — Q(s(t))v(t)

m(t) = H(s(t))VF(x(t)) — R(s(t))m(t

X(i)) - _( (mzt)) )) — R(s(t))m(t) (3.17)
v(t)+e

§(t) = —s(t)?

Since the solution of the ODE §(t) = —s(¢)? for which s(tg) = 1/to is s(t) = 1/t,
the trajectory {s(t)} is bounded. The three remaining equations are a reformulation
of (ODE-1) for which the trajectories have already been shown to exist and to be
bounded in Lem. 3.13. In the sequel, we denote by ® : Z; xRy — Z; xR the semiflow
induced by the autonomous ODE (3.17), i.e., for every u = (z,s) € Zy x Ry, ®(u,-)
is the unique global solution to the autonomous ODE (3.17) initialized at u. Observe
that the orbits of this semiflow are precompact. Moreover, the function ®((z,0),-) is
perfectly defined for each z € Z since the associated solution satisfies the ODE (3.19)
defined below, which three first equations satisfy the hypotheses of Lem. 3.13.

Consider now a continuous function V' : Z; x Ry — R defined by:
Viu) =& (H(s),z) . u=(z5) € Zs x (0,00).

As for Ineq. (3.16) above, we have here that

2
q(t) m(¢)
v (<1><u,t)) < (r(t) -4 ) O
: p(t) m(#)~*
+h(®)(F(x(t) — F) — T<S(X(t))> W)

if s > 0, and the same inequality with (h(¢), p(¢), r(¢), q(t)) being replaced with (0, pso, 700, Goo)
otherwise.
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Since Vo®(u, -) is non-increasing and nonnegative, we can define Voo 1= limy_00 V(P (u, t)).
Let w(u) == Nyo Usss (u,t) be the w-limit set of the semiflow @ issued from u. Recall
that w(u) is an invariant set for the flow ®(u,-), and that

dist(®(u,t),w(u)) — 0,
t—o0
see, e.g., (Haraux, 1991, Th. 1.1.8)). In order to finish the proof of Th. 3.1, we need to

make explicit the structure of w(u).

We know from La Salle’s invariance principle that w(u) C V~1(Vy). In particular,
Vy € w(u), Vi >0, V(2(y,t)) =V(y) = Voo (3.18)

by the invariance of w(u).
From ODE (3.17), we have that any y € w(u) is of the form y = (z,0) since s(t) — 0.
As a consequence, ®(y, -) is a solution to the autonomous ODE

(4(1) = pocS(x(1)) — qoov(?)
h(t) = hoo VE(X(E)) — reom(t)

W) = m(t) (3.19)
v(t)+e

s(t) =0.

The three first equations can be written in a more compact form :
2(t) = goo(2(1)) (3.20)
where z(t) = (v(t), m(t),x(t)), and
PooS(2) = Goov
Joo(2) = tlim 9(z,t) = |ho VF () — Toom
o —m/\/v+e

for each z € Z,. Consider y = (v,m,z,0) € w(u). Using Eq. (3.18), we obtain that
dV (®(y,t))/dt = 0, which implies that

2

(roo - q°°) ((t”‘“) P (s x(t)), —m

for all (v(t),m(t),x(t),0) = ®(y,t). As a consequence, Assumption 3.2.4-iv) gives
m(t) = m = 0, and then, x(¢) = x for some z s.t. VF(z) = 0 using ODE (3.19). We now
turn to showing that v(t) = v = pscS(2)/¢oc. We have proved so far that any element
y € w(u) is written y = (v,0,x,0) where VF(z) = 0. The component v(-) of ®(y,-) is a
solution to the ODE V(t) = pooS(x) — gooV(t) and is thus written

v(t) = poqu(a;) + e et (v — poqu(a:)) (3.21)

Fixing x, let 8, be the section of w(u) defined by:

Srw(u) = {y cwlu) :y=(0,0,2,0), 0 € R‘i}.
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As w(u) is invariant, we have S;w(u) = 8,P(w(u),t) for all ¢ > 0. Since the set
{t € RY s.t.(9,0,2,0) € S;w(u)} lies in a compact, we deduce from Eq. (3.21) that
this set is reduced to the singleton {pscS(7)/gs0} and in particular v = pPeoS(x)/gso-
Therefore, the union of w-limit sets of the semiflow ® induced by ODE (3.17) coincides
with the set of equilibrium points of this semiflow. The latter set itself corresponds to
the set of points (z,0) s.t. z € zer goo. It remains to notice that T = zer g, to finish
the proof.

Remark 14. Commenting on Remark 4, the same proof works for (ODE-1") by using
the function F' — F, as a Lyapunov function. The corresponding limit set (as t — +00)
is then of the form

{Zo0 = (B0, Too) € RE X R & VF (&) = 0, G0 = PooS (Zoo) /G0 }-

Similarly, if we set p =q = 0 in (ODE-1) and we keep what remains in Assumption 3.2.4,
the function h(¢)(F(z) — F.) + 3|lm||? works as a Lyapunov function, and the limit set
has the form {(0,z) : VF(z) = 0}.

3.5.2 Proof of Th. 3.2

The existence and the uniqueness of the solution to (ODE-N) have been shown in the
literature. We refer to (Cabot et al., 2009, Prop. 2.1-2.2.c)) for an identical statement
of this result and (Su et al., 2016, Th. 1, Appendix A) for a complete proof. The
boundedness of the solution follows immediately from the coercivity of F' together with
the fact that the function ¢ — F(x(t)) 4+ %||m(t)||? is nonincreasing.

Concerning the convergence statement, our proof is based on comparing the solutions
of (ODE-N) to the solutions of the ODE in (Gadat et al., 2018, Eq. (2.3)). We first note
that under a change of variable, a solution to (ODE-N) gives a solution to (Gadat et al.,
2018, Eq. (2.3)).

rm( rVeE
Lemma 3.14. Let (m,x) be a solution to (ODE-N). Define y(t) = 2<\ft)’ u(t) =

X <,m/f) , with kK = v/2a+ 2 and 8 = ’1—2. Then, (y,u) verifies

y(t) = EZ(VF(u(t) —y(t)

ot) = (). (322

Proof. By simple differentiation, we get:

="

|

. . - (VR@®) - y().

VF (x(xvD)) - —m (m/i)] - i%m (wv?) =

a(t) = —2i\/im (svE) = —y(0).
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Consider a solution (m,x) of (ODE-N) starting at (mg,z¢) € R? x R%. As in Sec-
tion 3.5.1.2, for every ty > 0, on [tg, +00), we have that (m,x,s) is a solution to the
autonomous ODE

m(t) = VF(x(t)) — as(t)m()
x(t)  =-m(?) (3.23)
() = —s(1)2,

starting at (mo,zo,1/tp). Denote by @y = (@, %, P%) the semiflow induced by
ODE (3.23) and wy((mo, zo, 1/tp)) its limit set.

Define (y,u) as in Lem. 3.14. Starting at (y(to), u(to), 1/to), we also have that (y,u,s) is
a solution on [tg, +00) to the “autonomized” Heavy-Ball ODE

y(t) = Bs)(VF(u(t)) —y(t))
i(t) = —y(t) (3.24)
$(t) = —s(t)?.

Denote by &g = (94, @}, ®3;) the semiflow induced by ODE (3.24) and its limit set
wr ((y(to), u(to), 1/to)).

Lemma 3.15. For any compact set K C R2T! and any T > 0, the family of functions
{q)(z, ) :[0,T] — ]R2d+1} K where @ is either @y or @y, is relatively compact in
zE

([0, 7], R*H), - [|oo)-

Proof. The map ® : R?¥+! x R, — R2¥*1 is continuous, hence uniformly continuous
on K x [0, T]. The result follows from the application of the Arzela-Ascoli theorem to

the family {@(z, 9 :0,T] — R2d+1} . =
zeK

Let (m,x,0) € wn((mo,xo,1/to)). There exists a sequence (t;) of nonnegative reals
such that (m,z,0) = limg_,oo (M (tx), x(tx), 1/tx). For any T > 0, using Lem. 3.15, up to
an extraction, we can say that the sequence of functions {®n((m(tg),x(tx), 1/tk), )
converges towards (m,X,0) in C°([0, T], R%), where (i, %) is a solution to

M(t) = VF((1)

S i), (3.25)
with (m(0),%(0)) = (m,z). Moreover, by Lem. 3.14, we also have that:
sup |[x(sv/) - <<<><m1ﬁwmfﬂ
hel0,72 /k2]
= sup  |[R(kVA) — B (), x(ty), 1/ty), h H (3.26)
he(0,7? /K2

Using Lem. 3.15, up to an additional extraction, we get on C°([0, T?/x?], R?¥+1) that
{®u((x(tx), m(tx),1/tx), )} converges to (u,y,0), where (u,y) is a solution to

(3.27)
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Therefore, u(t) = A+ Bt for some A and B in R?. Imagine that B # 0. We previously
proved that x (and therefore u) is bounded by some constant C' > 0. Let 7" > Cﬂ%“f?”
Up to an extraction, we obtain that {® g ((x(tx), m(tx),1/tk), ) }x converges to u’ on

CO([0,T'], R*¥*1) | with u'(t) = A’ + B't for some A’ and B’ in R*. We then have
u'(T")

by uniqueness of the limit that A’ = A and B’ = B. As a consequence,
|a+ BT

> (' and we obtain a contradiction. Hence B = 0.

This implies that u is constant. Then, if we go back to Egs. (3.26) and (3.25), we get
that X is constant, hence m = 0 and then VF(X) = 0. In particular, this means that
m =m(0) =0 and VF(z) = VF(x(0)) = 0.

3.6 Proofs for Section 3.3

3.6.1 Preliminaries

We first recall some useful definitions and results. Let W represent any semiflow on
an arbitrary metric space (E,d). As in the previous section, a point z € E is called
an equilibrium point of the semiflow ¥ if W(z,¢) = z for all ¢ > 0. We denote by
Ay the set of equilibrium points of ¥. A continuous function V : E — R is called a
Lyapunov function for the semiflow W if V(¥(z,t)) < V(z) for all z € E and all t > 0.
It is called a strict Lyapunov function if, moreover, {z € E : Vt > 0, V(¥(z,t)) =
V(z)} = Ag. If V is a strict Lyapunov function for ¥ and if z € E is a point s.t.
{U(z,t) : t > 0} is relatively compact, then it holds that Ay # @ and d(¥(z,t), Ay) — 0,
see (Haraux, 1991, Th. 2.1.7). A continuous function z : [0, +0c0) — E is said to be an
asymptotic pseudotrajectory (APT, Benaim and Hirsch (1996)) for the semiflow W if
limy—s oo SUPgepo, ) d(2(t + 8), W(2(¢),8)) = 0 for every T € (0, +00).

3.6.2 Proof of Th. 3.3

Recall that ® is the semiflow induced by the autonomous ODE (3.17) which is an
“autonomized” version of our initial (ODE-1). In the remainder of this section, the proof
will be divided into two main steps : (a) we show that a certain continuous-time linearly
interpolated process constructed from the iterates of our algorithm 3.1 is an APT of &;
(b) we exhibit a strict Lyapunov function for a restriction to a carefully chosen compact
set of a well chosen semiflow related to ®. Then, we characterize the limit set of the
APT using (Benaim, 1999, Th. 5.7) and (Benaim, 1999, Prop. 6.4). The sequence (z,)
converges almost surely to this same limit set.

(a) APT. For every n > 1, define z,, = (vn, My, Tp—1) (note the shift in the index of
the variable ). We have the decomposition

Zn41 = Zp + 'Yn-l-lg(ém Tn) + Yn+1Mn+1 + Yn+1Sn+1

where ¢ is defined in Eq. (3.1),

Th+1 = <pn(vf(xn7€n+1)®2 - S('TTL))7 hn(vf($n7§n+l) - VF(l'n)), 0> ) (3'28)
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is a martingale increment and where we set ¢, 11 = (gﬁ 115 g,T_H, S +1) with the components

defined by:
Sn+l1 = pu(S(zn) — S(wp-1))
(

St = ho(VF(z,) = VF(zp-1))
G = (- Ut

We first prove that ¢, — 0 a.s. by considering the components separately. The
components ¢ and ¢, converge a.s. to zero by using Assumptions 3.2.1, 3.2.3,
together with the boundedness of the sequences (p;,) and (h,,) (which are both convergent).
Indeed, since VF is locally Lipschitz continuous and the sequence (z,) is supposed to
be almost surely bounded, there exists a constant C' s.t. ||VF(z,) — VF(zp-1)]] <
Cllan — xp-1]] < gVnHmnH The same inequality holds when replacing VF by S which
is also locally Lipschitz continuous. The component ¢, also converges a.s. to zero
by observing that |7, [ < |1 — 7311 |.llmn||/+/c and using Assumption 3.3.2 together
with the a.s. boundedness of (z,). Now consider the martingale increment sequence
(nn), adapted to F,,. Take § > 0. Since (z,) is a.s bounded, there is a constant
C’ > 0 such that P(sup Han > (") < 6. Denoting 7, := nn]l”an<C, and combining

Assumptions 3.2.4 with 3.3.4-i) we can show using convexity inequalities that

sup E|[7j, 1] < oc.
n

Then, we deduce from this result together with the corresponding stepsize assumption
from 3.3.4-i) and (Benaim, 1999, Prop. 4.2) (see also (Métivier and Priouret, 1987,
Prop. 8)) the key property:

n—0o0

VT >0, max{

L-1
> Vepaiiki
k=n

: L:n—i—l,...,J(Tn—l—T)} 2250 (3.29)

where J(t) = max{n >0 : 7, < t}. Hence, for all T" > 0, with probability at least 1 — ¢

max{

Since ¢ can be chosen arbitrary small, Eq. (3.30) remains true with probability 1. This
result also holds under Assumption 3.3.4-ii) (instead of 3.3.4-1)) by applying (Benaim,
1999, Prop. 4.4).

L-1

Z Ve+17k+1

k=n

: L:n+1,...,J(Tn+T)}—>O. (3.30)

n—o0

Let z : [0,+00) — Z; be the continous-time linearly interpolated process given by
z — Z
2(t) = Zn + (t — ) L0 (vn eN,Vte [Tn,Tn_H))

(where 7, = > 1 7). Let to > 0. Define w : [tg, 00) — Z x (0,1/to] by

u(t) = [zl(/tt)] , for t>1ty>0.

Using Eq. (3.30) and the almost sure boundedness of the sequence (z,) along with the
fact that ¢, converges a.s. to zero, it follows from (Benaim, 1999, Prop. 4.1, Remark 4.5)
that w(t) is an APT of the already defined semiflow ® induced by (3.17). Remark that it
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also holds that z(t) is an APT of the semiflow ®*° induced by (3.20). As the trajectory
of u(t) is precompact, the limit set

t>to
is compact. Moreover, it has the form
S -
L(u)= | | . where §:= ) z(t.>)). (3.31)
t>to
Our objective now is to prove that
S C Agp . (3.32)

In order to establish this inclusion, we study the behavior of the restriction ®|L of the
semiflow ® to the set L (which is well-defined since L is ®-invariant). Remark that

|S

SL=|"

i

where ®*° is the semiflow associated to (3.20). In the second part of the proof, we
establish Eq. (3.32) combining item (a) we just proved with (Benaim, 1999, Th. 5.7)
and (Benaim, 1999, Prop. 6.4). In order to use the latter proposition, we prove a useful
proposition in item (b).

(b) Strict Lyapunov function and convergence. For every § > 0 and every
z=(v,m,z) € Z,, define:

Ws(v,m, x) := Exo(2) — 6(VF(z),m) + 8||goct — pocS(x)]?, (3.33)

where, under Assumption 3.2.4-i), the function € is defined by

2

. 1 m
€oo(2) == tkgloog(t’z) = hoo(F(z) — ) + B m

(3.34)
Proposition 3.16. Let {5 > 0 and let Assumptions 3.2.1 to 3.2.4 and 3.3.5 hold true.
Let S be the limit set defined in Eq. (3.31). Let D™ : 8 x[tg, +00) — S be the restriction
of the semiflow ®> to S i.e., @ (z,t) = ®®(z,t) for all z € S,t > to.Then,

i) S is compact.
i) 7 is a well-defined semiflow on S.
iii) The set of equilibrium points of 3% is equal to Age N S.
iv) There exists 6 > 0 s.t. Wy is a strict Lyapunov function for the semiflow .

Proof. The first point is a consequence of the definition of S and the boundedness of
z. The second point stems from the definition of . Observing that ®° is valued in S,
the third point is immediate from the definition of Agec. We now prove the last point.
Consider z € S and write @ (z,t) under the form ® (z,t) = (v(t),m(t),x(t)). Notice
that this quantity is bounded as a function of the variable ¢. For any map W : Z, — R,
define for all t > tq, Lw(t) := limsup, s {(W(®"(z,t45)) —W(®(z,1))) . Introduce
G(z) := —(VF(z),m) and H(2) := ||goov — pooS(x)|? for every z = (v,m,z) € Z,.
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Consider § > 0 (to be specified later on). We study Ly, = L¢_ + 0Lg + dLp. Note
that > (z,t) € SN Z, for all t > ty by an analogous result to Lem. 3.12 for ®>. Thus,
t = Exo(®(2,1)) is differentiable at any point t > to and Le__(t) = %800(500(2,@).
Using similar derivations to Ineq. (3.16), we obtain that

2

Lo (1) < — <roo - ‘IZ’) (V@)mg)@ (3.35)
We now study L. For every ¢ > to,
La(t) = 111?3(1)1;) s (—(VF(X(t+8)),m(t + s)) + (VF(x(t)), m(t)))
< limsup sTHIVE(x(t)) = VF(x(t + ) [[m(t + s)|| = (VF(x(t)), m(t)) -

Let Lyr be the Lipschitz constant of VF on the bounded set {z : (v,m,z) € S}. Define

Cy = supy ||\/v(t) + ¢||. Then,

La(t) < Lyr fim sup s7H[x(t) = x(t + ) [Im(t + 5)[| = (VF(x(t)), m(t))

< Lyr[Ix@[Im@)] = (VEx(#)), m(#))
< Lorl*ONIm@) = hoo [VEXO)I? + o (VE(x(2)), m(2))
2

TOOUQ
- (hoo - 1) IVEx()]* (3.36)

1
LyrC?  recCh
1
c1 2“%

where we used the classical inequality |(a,b)| < ||a||?/(2u?) + u?||b||?/2 for any non-zero
real u to derive the last above inequality. We now study Lg. For every t > tg,

L (t) = limsup s~ ([lgeev(t + 5) = pocS(x(t + 5))[” = [lgecv(t) — pooS(x(1))]%)

s—0

= limsup s~ (p2||S(x(t)) — S(x(t + 8))||?

s—0
+ 2poo(S(X(2)) = S(x(t 4 5)), qooV(t + 5) = PooS(X(£))))
+1im 57 (|lgooV (£ + 5) = PooS(X(£))[* = l200v() = PooS(x(£))]*)

The second term in the righthand side coincides with
~2o0 (Poo S (X(1)) = qooV (1), V(1)) = —2qoolPooS(X()) — goov(t)]|? -

Denote by Lg the Lipschitz constant of S on the set {z : (v,m,z) € S}. Note that
sTHIS(x(t + s)) — S(x(t)]?) < LEs||s™ (x(t + s) — x(t))||* which converges to zero as
s — 0. Thus,

L (t) = =24o0[PooS(X(t)) = goov (D)
+ limsup 2poos ™ (S(x(t)) — S(x(t + 5)), gooV(t + ) — PooS (x(t)))
< =200 [[Poc S (X(£)) = GoaV(E)I* + 2poo [X(1)| Ls || gooV (£) — pooS ((t))]]

2
m(t)

(v(t) + )¢

= pwz — (2400 — Poct3LE) [P S(X(t)) — guov(t)|[*.  (3.37)

1
£2u3

N
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Recalling that Ly, = L¢_ + dLg + 0Ly and combining Eqgs. (3.35), (3.36) and (3.37),
we obtain for every t > g,

2

B _om@® | B
Ly, (t) < —M(5) O+ 5(%

N

6 (2000 — PoctLE ) I S(X(1) — aev(8)]2. (3.38)

1
2
where M(0) := 1o — L= — 6 "3021 + LVFlcl + Beo . Now select u1, us small enough
uy el €§u§
st. hoo — Tooti2/2 > 0 and 2¢s — poou%L% > 0. Then, choose § in such a way that
M(9) > 0. Thus, there exists a constant ¢ depending on ¢ s.t. for every t > t,

2

Lw;(t) < —c HIVEX@)I + lpscS(x(t) — asv@)I* | - (3.39)

It can easily be seen that for every z € 8, t — Ws(® " (z,t)) is Lipschitz continuous,
hence absolutely continuous. Its derivative almost everywhere coincides with Ly,
which is nonpositive. Thus, Wy is a Lyapunov function for 3. We prove that the
Lyapunov function is strict. Consider z = (v,m,z) € 8§ s.t. W5(®" (z,t)) = W;(2) for
all t > tg. The derivative almost everywhere of ¢t — Ws(® (z,t)) is identically zero,
and by Eq. (3.39), this implies that

2

+IVEXO)? + [lpseS (x(1)) — goov(®)]®

is equal to zero for every t > ty a.e. (hence, for every t > ¢y, by continuity of 600). In
particular for ¢t = tg, m = VF(x) = 0 and psS(z) — ¢oov = 0. Hence, z € zer goo N S.
This concludes the proof since Agoo = zer goo. |

End of the Proof of Th. 3.3. Finally, Assumption 3.3.5 implies that the set Ws(AgooN
S) is of empty interior. Recall that Assumptions 3.2.1 and 3.2.3 both follow from
Assumption 3.3.3 made in Th. 3.3. Given Prop. 3.16, the proof is concluded by applying
(Benaim, 1999, Prop. 6.4) to the restricted semiflow ®> (with (M,A) = (S, Agx)).
Note that a Lyapunov function for Ag. is what is called a strict Lyapunov function.
Such a function is provided by Prop. 3.16. We obtain as a conclusion of (Benaim, 1999,
Prop. 6.4) that S C Age. This gives the desired result (Eq. (3.32)) given Prop. 3.16-iii).

The last assertion of Th. 3.3 is a consequence of (Benaim, 1999, Cor. 6.6).

3.6.3 Proof of Th. 3.5

We can rewrite the iterates from Algorithm 3.2 as follows:

Mpt1 = My + "Yn+1(VF($n) — % mn) + 'Yn—i—l(vf(xm §n+1) - VF(xn))

Tn41 =Tn — Yn+1Mn+1 -

(3.40)
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We prove that the sequence (y, = (my,z,) : n € N) of iterates of this algorithm
converges almost surely towards the set T defined in Eq. (3.3) if it is supposed to
be bounded with probability one. The proof follows a similar path to the proof in
Section 3.5.2.

Indeed, denote by X and M the linearly interpolated processes constructed respectively
from the sequences (x,,) and (m,) and let s(t) = 1/t. Recall that ®x = (P, X, PX)
is the semiflow induced by (3.23). As in Section 3.6.2, we have that Z := (M, X,s) is an
APT of (3.23). In particular, this means that

VI >0, sup HX(t +h) — B2 (Z(1), h)) — 0. (3.41)
hel0,T) t—o0

By Lem. 3.14, we also have that

sup  ||X(t + kVh) — ®%(Z(1), n\/ﬁ)H
he[0,T2/x2]
= sup  |[X(t+sVR) — 9U(Z(1), h)H 0. (3.42)
he[0,T2 /k2] t—o0

Let (m,z) be a limit point of the sequence (y,,) and let 7' > 0. Using Lem. 3.15, we can
proceed in the same manner as in Section 3.5.2 and get a sequence (tx) such that

(M(tr + ), X(tk + ) = (m,x) and (P (Z(tr), ), D (Z(te), ) = (v, u),

where (m(0),x(0)) = (m,z), and (m,x) and (x,u) are respectively solutions to (3.25)
and (3.27). As in the end of Section 3.5.2, we obtain that u and x are constant, therefore
m = 0 and VF(x) = 0, which finishes the proof.

3.6.4 Proof of Th. 3.4

The idea of the proof is to apply Robbins-Siegmund’s theorem (Robbins and Siegmund,
1971) to

)

1 1
Vio = hp_1F(2n) + = (m%?, ——
n n—1 ( n) 2< n o m
(note the similarity of V;, with the energy function (3.15)). Since inf F' > —o0, we assume
without loss of generality that F' > 0. In this subsection, we use the notation V f,, 41
as a shorthand notation for V f(x,,&,+1) and C denotes some positive constant which
may change from line to line. We write E,, = E[- | F,] for the conditional expectation

w.r.t the o-algebra F,. Define P, := 3(D,,m3?), with D,, := \/ﬁ We have the
decomposition:
1 ©2 1 2 2
Py — P, = §<Dn+1 — Dpymyyy) + §<Dn,mn_~_1 —my). (3.43)

We estimate the vector

VUn +€—\/uny1 +¢€
Dn—l—l_Dn: .
\/Un+1 +5®\/Un+5
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Remarking that v,4+1 > (1 — Y44+1¢n) vy, and using the update rule of v, we obtain for a
sufficiently large n that

~ dnUn — pnvfﬁ?fl
" Son t e+ fon1 T €

\/Un+5_\/vn+1+5:

Un
e (Y e TN R
_ Tn+14n MQ \/m
TV o e
< Cuta VT (3.44)

— In+19n
wher =
CLE Cnt1 \/177n+lqn(1+\/1*7n+1(b®)

for any 0 > 0, cpy1 < (oo + 20)7,/2 for all n large enough. Using also that

V/Un+1/v/VUn+1 + € < 1, we obtain

. It is easy to see that ¢,+1/vn — @oo/2. Thus,

+26
Dyt — Dy < q"‘%%Dn. (3.45)

Substituting the above inequality in Eq. (3.43), we obtain

Joo + 20 1
Pn+1 - Pn < <002> 7?”<Dn7m7?3—1> + §<Dn7m’r?—&2—l - m22>
(oo + 26 (oo + 20 1

Using mg_%l —m&? = 2m,, © (Mpy1 —Mp) + (Mpa1 —my)2, and noting that E, (my,1 —

mn) = '7n+1thF($n) — Yn+1TnMn,

1 m
En (Dusm3y = mi?) = Yusahn{VF (), <=

s ﬁ) - 27n+17’nPn
n
+ 5 (D En (M1 — mn)®2]> .

N

There exists 6 > 0 such that 7o, — 43 —% > 0 by Assumption 3.2.4-iv). As Vz—zlrn — e

Too — 452, for all n large enough, 7;:1 Ty — 452 > g — 42 — % > 0. Hence, for all n large
enough,
1) m
EnPo1 — Py < -2 (Too - q% - 2) Yo P, + '7n+1hn<VF($n)a \/T%>
m.
+ CY2(VF(2), ﬁ) + C(Dy, Bp[(mns1 — my)®?]) . (3.46)
n

Using the inequality (u,v) < (||lul® + [|v]|?)/2 and Assumption 3.3.6-ii), it is easy

to show the inequality (VF(zy,), \/vmi”?) < C(1+ F(zp) + P,). Moreover, using the

componentwise inequality (h,V fni1 — rnm,)©? < 2h2V fgﬁl + 2r2m9? along with
Assumption 3.3.6-ii) and the boundedness of the sequences (hy,), (r,) and (Yn41/7n), we
obtain

(D, B [(mig1 — mp)®?)) < CY2(1 + F(z,) + P,). (3.47)
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Combining Eq. (3.46) and Eq. (3.47), we get
En(Pot1 — Po) < Ani1hn(VF(2n),mn © Dy) + Cy2(1 + F(z,) + Py). (3.48)

Denoting by M the Lipschitz coefficient of VF', we also have

Va1 M 2
F(n+1) < F(2n) = 3+1(VF(20), mas1 © Daga) + = mpsy © Do |
(3.49)
Using (3.45) and the update rule of m,,, we have
2
Hmn+1 ® Dpy1—my © Dy,
2 2
<C H(mn—l-l - mn) ©Dy,|| +C Hmn—l-l © (Dn+1 - Dn)
2 9 2
< C'v%H(HanHH + [[mn © Du”) + Criy Hmn+1 © D, (3.50)

< 2 sl © Dl + [T o[-

Finally, recalling that V;, = hyp—1F(2y,)+ Py, (hy) is decreasing, combining Eq. (3.48),(3.49),(3.50),
and using Assumption 3.3.6, we have

En[vn—i—l} <V,+ 7n+1hn<vF(xn)7 E, [mn oD, — Mp4+1 © Dn+1:|>
+CY2 (1 + F(2n) + P+ ||ma © DnH2>

2
+ C%%HEn[ My © Dy — My © Dn+1H ]

< Vo + Cy2 | 1+ F(xn) + Py + ||mn © Dy ||* + B,

[oseal

< Vp+Cy2(1 + F(zn) + Py)
<(1+C2)V,+Cr2,

where we used Cauchy-Schwarz’s inequality and the fact that Hmn ® DnH2 < CP,. By
the Robbins-Siegmund’s theorem, the sequence (V},) converges almost surely to a finite
random variable V,, € RT. Then, the coercivity of F' implies that (x,,) is almost surely
bounded.

We now establish the almost sure boundedness of (m,). Assume in the sequel that n
is large enough to have (1 — v,4+17,) > 0. Consider the martingale difference sequence
Api1 = Vfps1 — VF(z,). We decompose m,, = m, + m, where my+1 = (1 —
’Yn—i—lrn)mn ""_’Yn—l—lthF(xn) and mn—H = (1_'7n+17’n)mn+7n+1hnAn+1; Setting mo = 0
and mg = mg. We prove that both terms m,, and m,, are bounded. Consider the first
term: |41l < (1 — Yng17n) [|[Mn || + Ynt1 supy | VEF (z1)]| , where the supremum in
the above inequality is almost surely finite by continuity of VF. We immediately get
that if HmnH > %ZF(“)H, then annHH < ||y ||. Thus

supy ||V F ()|

T'oo

Hmn+1H < +sup Vet 1l VF (z)]
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which implies that m,, is bounded. Consider now the term m,,:
En[|[7itn41]%] = (1 = Ans1rn)[0nl® + i1 PR En | Anta 1)
< lmnll® + a1 PAEA | Ansa 1]

Then, the inequality E,[||[Any1]|?] < En[||V fri1l|?] combined with Assumption 3.3.4-i)
and the a.s. boundedness of the sequence (x,) imply that there exists a finite random
variable C (independent of n) s.t. E,[|Vfui1|?] < Cx. As a consequence, since
> w721 < oo and the sequence (hy) is bounded, we obtain that a.s.:

27721+1h721En[|’An+1H2] < CCk Z%%H < +oo.
n>0 n>0

Hence, we can apply the Robbins-Siegmund theorem to obtain that sup,, [|7.,]/?< oo
w.p.1l. Finally, it can be shown that (v,) is almost surely bounded using the same
arguments, decomposing v, into v, + 0, as above. Indeed, first, we have:

Enll|Tn+1[1”] < 150]1 + 2 10 BnlllV 221 = S(a) 1) -
Second, it also holds that:
EalIVF25 = S@a)l*) S EalIVAZEN < EallV fara ]

Then, using Assumption 3.3.4-i) and the a.s. boundedness of the sequence (x,,), there
exists a finite random variable C- (independent of n) s.t. E,[||V fn41*] < Cf. Moreover,
the sequence (p;,) is bounded and >, 72 41 < 00. As a consequence, it holds that a.s:

Z’Y?HlpiEnwvfgfl — S(zn)|”] < CCk Z%%H < +00.

n>0 n>0

It follows that the Robbins-Siegmund theorem can be applied to the sequence ||7,]|? as
for the sequence ||7,]|? to obtain that sup,, |7, ||*> < co w.p.1.

3.6.5 Proof of Th. 3.6
The proof of Th. 3.4 easily adapts to Algorithm 3.2 by replacing V;, by

1 2
Vo = F(mn)+§Hm”H :
The boundedness of (m,,) is an immediate consequence of the convergence of Vi

3.6.6 Proof of Th. 3.7
We shall use the following result.

Theorem 3.17 (adapted from Pelletier (1998), Th. 7). Let k > 1. On some probability
space equipped with a filtration F = (Fy,)nen, consider a sequence of r.v. on R* given by

Zn+1 = (I + ’Vn—i—lﬁ)Zn + ’Yn—l—lbn-‘,-l + vV Yn+1Tn+1

and E[|| Zo||?] < oo, where H is a k x k Hurwitz matriz, (b,) and (n,) are random
sequences, and v, = yon~* for some y9 > 0 and o € (0,1]. Let Qo € Foo have a positive
probability. Assume that the following holds almost surely on Qq:
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i) E[nn41]Fn] = 0. _
ii) There exists a constant b > 2 s.t. sup,>o E[[|[nn41]|°|Fn] < 0.
iii) E[nian,q|Fn) = £ + Ay where E[|AnllLla,] — 0 and X is a positive semidefinite
matric.
iv) The sequence (by) is the sum of two sequences (bn,1) and (by2), adapted to F, s.t.
sup,, >0 E[[|bn,1[1?] < 00, E[[|bn.1]|1a,] = 0 and by 2 — 0 a.s. on Q.

Then, given Qqo, (Zy) converges in distribution to the unique stationary distribution fi,
of the generalized Ornstein- Uhlenbeck process

dX; = HX,dt +VXdB,

where (By) is the standard Brownian motion and /X is the unique positive semidefinite
square root of . The distribution p,. is the zero mean Gaussian distribution with

covariance matriz I given as the solution to (H + ]12"7:01 I)T +T(H + %a—;()lfk)T =-3.

Proof.

The proof is identical to the proof of (Pelletier, 1998, Th. 7), only substituting the
inverse of the square root of 3 by the Moore-Penrose inverse. Finally, the uniqueness

of the stationary distribution p., and its expression follow from (Karatzas and Shreve,
1991, Th. 6.7, p. 357). |

We define v,, = v,, + 6, where dp = 0, vg = vg and

i1 = (1= Ynt14n)0n + Ynt1(Pn — Gnds Poo)S(Tn) ,
Up41 = (1 - 7n+1Qn)@n + 7n+1QRnglpmS($n)
+ '7n+1pn(vf(xm §n+1)®2 - S(.%'n)) :

For every z = (v,m,x) € Z; and § > 0, we define

ano_olpoo(s(aj - 'Vn\/ﬁ) - S(ﬂ?))
rn(2,0) i= | M(VF (2 — v 7f5s) — VE(2))

Yn+1 ( \Vu+te \/1)-‘1-6-‘1-5) @ m

Moreover, for every z = (v,m,z) € Z; and every n € N, we set

ano_olpoos(f) — qnv

gn(2) = | hVF(x) —rym
__On m
IYn+1 \/U+e€

Defining (,, = (Un, Mn, n—1) and recalling the definition of (n,) from Eq. (3.28), we
have the decomposition

Cat1 = G+ Y190 (Cn) + Ynt1Mnt1 + Ynr17n(Cns 571) .

Define z, := (4, 0,v4). Note that g,(zx) = 0. Evaluating the Jacobian matrix Gy, of g,
at z,, we obtain that there exist constants C' > 0, M > 0 and ng € N s.t. for all n > ny,

lgn(2) = Gu(z = 2l < Cllz = 2l (V2 € B(z, M), (3.51)
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where G,, is given by

—qnly 0 4000 Poo VS (24)

Gp = 0 —rnlg hnV2F () )
0 —Jn Y 0
Yn+1

where V.S is the Jacobian of S and the matrix V is defined in Eq. (3.8). We define

_QOoId 0 poovs(x*)
Go = limG,, = 0 —Tooly hooV2F(z4)
" 0 —V 0

One can verify that G, is Hurwitz, and that the largest real part of its eigenvalues is
—L', where L' := L A g and L is defined in Eq. (3.9).

We define Q©) := {2, = z,}. We assume P(Q)) > 0. Using for instance (Delyon
et al., 1999, Lem. 4 and Lem. 5), it holds that &,(w) — 0 for every w € Q) and since
Zn(w) — T_1(w) — 0 on that set, we obtain that Q) = {¢, — 2z,}. Let M € (0, M)
be a constant, whose value will be specified later on. For every Ny € N, define Qg\?g =
{Cn = 2 and sup,sn, [[Gn — ]| < M}. We seek to show that /4 ' ((n — 24) = v

given Q) for some Gaussian measure v, using Th. 3.17. As QE\(;C)J 1+ QO it is sufficient

to show that the latter convergence holds given QS\%, for every Ny large enough. From

now on, we consider that Ny is fixed. We define the sequence (En)nz N, s ¢ No = (v,
and for every n > Ny,

Q:n—i-l = én + 'Yn—i—lgn(gn) + '7n+1(77n+1 + ""n(éna 5n))]lAn

where A,, is the event defined by

An = () {llze — 2l < MY {160 — 2| < M}
k=Ny

and
Gn(2) = gn(2)Ljo—zyj<r — K (2 = 2) Loz >

where K > 0 is a large constant which will be specified later on. The sequences (CNn)nZ No

and ((n)n>N, coincide on QS\%. Thus, it is sufficient to study the weak convergence of

(5n)nZN0'

An estimate of ||r,,(Ca, 0,)||14,. We start by studying the sequence (||d, 14, ). Un-
folding the update rule defining §,, and using the fact that (g,) is a sequence of positive
reals converging to go > 0, we obtain that

n

n
10nllTa, <> 1 TT 1t = vig5-al| lpe—1 — @e-105 Poo 1S (wk-1) || L 4,
k=1 |j=k+1

n n
<C> exp| =B > v | Wlpk—1 — G105 Doo| 1= wn,
k=1 j=k+1
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for some 8 > 0. The sequence (wy,) is deterministic and converges to zero by (Delyon

et al., 1999, Lem. 4). There exists ny > ng s.t. w, < M. As v+ \/vl? is Lipschitz and

VF and S are locally Lipschitz, for every z = (v,m,x) and § s.t. ||z — z|| < M and
|0]] < M, we have

_1
7 (2, 8) | < Cnpa [l (v + 6+ £)°72 |[|m]]
+C|(v 464277 — (v+2)°2|m]
< Capillz = 2l + Cl16]]12 = 2l

This implies that for every n > nq,

172(Gas )11, < C et +wn) G = 24l - (3.52)
Tightness of /7, *(C, — 2x). We decompose

5n+1 — Zx = (I3d + ’Yn+1Gn)(<~n - Z*) + Yn+1 (gn(gn) - Gn(én - Z*)) ]l||§:n—Z*HSM
— Ynt1(K + Gn)(fn - Z*)]l||§nfz*||>M + Ynt1 (141 + Tn(CNna 0n))la, - (3.53)

For a given t > 0, we write G = B, 'G,B; the Jordan-like decomposition of Guo,
where the ones of the second diagonal of the usual Jordan decomposition are replaced
by t, and where By is some invertible matrix. We define S,, := B;((, — 24). Setting

GS) = BthBt_l, we obtain

Snt1 = (Isg + Yn1G) S + yn i1 By (g”@”) = CnlGa z*)) L —z<m
— Yn+1 (K + Gg))sn]l||§n—z*”>M + 7n+lBt(77n+1 + Tn(gna 671))]1./471 .

Choose A € (0,2L') and A’ € (A,2L'). There exists 4 and ¢t > 0 s.t. for every
v <7, I +~Gella < 1 —~(A" + 2L")/2, where || - ||2 is the spectral norm. As
Gg) — Gt there exists ny > ny, such that for all n > ng, ||/ +7G§5)H2 <1-
vA’. Recall the notation E,, = E[-|F,]. We expand ||S,+1/|> and use the inequality

gn(én) - Gn(gn — 24) i

Lig < < C||Sn|? to obtain after straightforward algebra

EnllSnt1l* < (1 =1 A)1Sa]? + i1 190
+ Crp1 Bl |1 + 70 (s 60) ) L,
+ 29,415, By (%(fn) - Gn@n — Z*)) :H‘Hgn—z*HSM
— 29155 (K + GD)Sulyz . snr + 20155 Birn(Gus 60) 1, -

Choose ¢ := (A" — A)/2. If M is chosen small enough,
~ ~ C _ _ ~
191 (Cn) — Gn(Gn — z*)H]l”fnfz*”gM < iuBtH 1HBt IHHCn — 2|
Moreover, choosing K > sup,, HGq(f)Hg, it holds that S} (K + Gﬁf))sn > 0. Then,

En||Sns1l” < (1 = Anr1(A" = )[ISull? + 1]l Sl
+ Cv 1 Enllmnst |2+ 170(Gas 3)1P) L, + 291 1Bel Sl 70 (s 6n) | L, -
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Using Eq. (3.52),
En[|Sn41]* < (1= yns1(A" = ¢ = w)) | Snl® + Crya (1 + wi)[|Sn 12
n|[Pn+1]l" > Tn+1 C— Wp n Tn+1 Wp )|1Pn
+ Cyp1 Bl 14, -

Therefore, there exists ng > no s.t. for all n > ng,

E||Sns1l* < (1 = 1 ESall + Cvn aE(0041 1L, —a, < r)

The second expectation in the righthand side is bounded uniformly in n by the con-
dition (3.7). Using (Delyon et al., 1999, Lem. 4 and Lem. 5), we conclude that
sup,, v; 'E[| S, ||?< co. Therefore, sup,, v, 'E||(, — z]|?> < oo, which in turn implies
supy 1 B — 2 [PLogn) < oc.

Strongly perturbed iterations. We define g, = \/’Yn_l(én — 24). Define

~ — Tn Tn
G =1 — 1] Isg + Gn.
n 'Yn+1 ( Yt 1 ) 3 Y1 n

The sequence G, converges to Goo := Goo + 12“;01 I34. Recalling Eq. (3.53), we can write

gn+1 = (I3d + '7n+léoo)gn + Yn+1Tn + V Yrn+1Tn+1
where 7,41 = Npy114, and 7, = 7y 1 + T2 + Ty 3, Where
Tp,l = 4/ 'Yn-l—l_lrn(gnv 5n)1lAn + (Gn - Goo)gn

Pz = At (90(G) = GnlGo = 20) Vg, oo jcnr
Tp3 = — 'Yn+1_1(K + Gn)(gn - Z*)]]_llén—Z*H>M'

We now check that the assumptions of Th. 3.17 are fulfilled. On the event Q(Og, we recall

that ¢, = ¢, hence Tn,3 is identically zero. Moreover, using Eq. (3.52), it holds that for
all n large enough,

n+1

_ Tn = = -
[Pl < C ( 5 (Y41 + wp) + [|Gr — Goo!) [[n

and therefore, E[||7,1?] — 0. Now consider the term 7, 2. By Eq. (3.51),

_ -1 *
IFn2ll < CvAmet MIGn = 2Py, .y -

Thus, [7n2l|*> < C||gal/* which implies that sup,spy, E[|rnz2|?] < oo. Moreover,
E[||7n2ll] < C\/Ant1E|7n? tends to zero. Finally, consider 7j,41. Using condition (3.7),
there exist M > 0 and by; > 4 s.t.

En |41 1147 < En [l 001 |21 0, < s
< CEn[|Vf(Zn, &ns )L gy o)< < C
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Moreover, E,[77,+1] = 0 and finally, almost surely on Qg\?), Ep [fn+17r41] converges to

o | [pe (V7@ 0°2 = $@))] [V 82— s@))] | 0
So=| ¢ hooV f (@4, €) hooV f (4, €) 0
0 0 0

(3.54)

Therefore, the assumptions of Th. 3.17 are fulfilled for the sequence ¢,. We obtain the
desired result for the sequence (my, x,—1). We now show that the same result also holds
for the sequence (my,, z,,). For this purpose, observe that

1 my, 1 My, n 0
VIn | ZTn — Tx VIn [ Tn—-1 — Tk \/%(xn - xn—l) ’
Then, notice that HL\/%”H = w/”YnH\/%H </ Z[ma|| — 0 as n — oo since it is

assumed that z, — 2, (which implies in particular that m,, — 0). Hence, it holds that
\ /fyn_l(xn — x,—1) converges a.s. to 0. We conclude by invoking Slutsky’s lemma.

Proof of Eq. (3.10). We have the subsystem:

~h2Q 0
0 0

(0 — 100) Iy hooV2F(x,)

o o1, (3.55)

ﬁF—}—FﬁT: [ ] where H :=

and where Q := Cov (V f(zy, & )> The next step is to triangularize the matrix H in order
to decouple the blocks of I'. For every k =1,...,d, set l/ff = 12 /4 — hooTg
with the convention that v/—1 = 1 (inspecting the characteristic polynomial of H, these
are the eigenvalues of H). Set M+ := diag (v, - - - ,I/j) and R* := V-2 PM*PTV 2,
Using the identities M+ + M~ = —roIy and MT M~ = hy diag (1, -+, 7q), it can be
checked that

RV +01, 0
-V VRY + 01,

I; RT

RH = 0 I

R, where R :=

Set T' := RI'RT. Denote by (fi7j)i7j:172 the blocks of T'. Note that fg’g =I'99. By
left /right multiplication of Eq. (3.55) respectively by R and RT, we obtain

(RTV 4+ 0I)T 11 +T11(VR™ +6014) = —h2.Q (3.56)
(RTV 4 0I)T 15+ T12(RTV +01;) =T,V (3.57)
(VR+ + Qld)f‘gg + f‘272(R+V + Qld) = Vf‘l,Q + f’£2v . (3.58)

Set Tyq = PVl V2P, Define C := P~1V2QV2P. Eq. (3.56) yields
(Mf + Qfd)le + fl,l(Mf + Qfd) = —hgoC.

Set ['p = P~V 2T 2V~ 3 P. Eq. (3.57) is rewritten (M~ +6I5)T'y 5+ Ty o(M* +601,) =
I'1 1. The component (k,¢) is given by

2
skl — ) —h5Ch
'y = (v, +v,” +20) ' T'77 = .
12 = W+ )T vy +vf +20) (v, + v, +20)
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Set finally Ty 9 = P_lV_%I‘g’gV_%P. Eq. (3.58) becomes

(M +0I)To9 +Tao(MT +0I,;) =T12+ l;lT,g .

—h2 Cry 1 1
+ + 0 — — 0 — + 9+ + — 0/
(v +v +20)(v, +v, +20) \v, +v, +2 vy tuv, +2

After tedious but straightforward computations, we obtain

hgoCM

(roo — 20) (hoo (. +¢) +20(6 — 150)) + "=

Pkl
Loy =
and the result is proved.

3.7 Proofs for Section 3.4

3.7.1 Preliminaries

Most of the avoidance of traps results in the stochastic approximation literature deal
with the case where the ODE that underlies the stochastic algorithm under study is an
autonomous ODE z = h(z). In this setting, a point z, € zer h is called a trap if h(z)
admits an expansion around z, of the type h(z) = D(z — z4) + o(||z — 24||), where the
matrix D has at least one eigenvalue which real part is (strictly) positive. Initiated
by Pemantle (1990) and by Brandiére and Duflo (1996), the most powerful class of
techniques for establishing avoidance of traps results makes use of Poincaré’s invariant
manifold theorem for the ODE z = h(z) in a neighborhood of some point z, € zer h. The
idea is to show that with probability 1, the stochastic algorithm strays away from the
maximal invariant manifold of the ODE where the convergence to z, of the ODE flow
can take place. As previously mentioned, since we are dealing with algorithms derived
from non-autonomous ODEs, we extend the results of Pemantle (1990); Brandiere and
Duflo (1996) to this setting. The proof of Th. 3.8 relies on a non-autonomous version of
Poincaré’s theorem. We borrow this result from the rich literature that exists on the
subject (Daleckii and Krein, 1974; Kloeden and Rasmussen, 2011).

Let us start by setting the context for the non-autonomous version that we shall need
for the invariant manifold theorem. Given an integer d > 0 and a matrix D € R4,
consider the linear autonomous differential equation

3(t) = Dz(t), (3.59)

which solution is obviously z(t) = eP'z(0) for t € R. Let us factorize D as in (3.12),

and write D = QAQ ™! with A = A~ where we recall that the Jordan blocks

A+

that constitute A= € R? *4" (respectively AT € RY" %) are those that contain the
eigenvalues A; of D such that \; < 0 (respectively RA; > 0). Let us assume here that
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both d~ and d* are positive. It will be convenient to work in the basis of the columns
of @ by making the variable change

Z = y = y+] = Qilza
Yy
where y= € R?". In this new basis, the ODE (3.59) is written as
LSS
L= , 3.60
. v y+] (3.60)

which solution is y*(¢) = exp(tA*)y*(0). One can readily check that for each couple of
real numbers ot and o~ that satisfy

0<a <at <min{R)\; : R\; > 0}, (3.61)

there exists a so-called exponential dichotomy of the ODE solutions, which amounts in
our case to the existence of two constants K, K™ > 1 such that

|exp(tA7)|| < K~e* ' fort >0,
|exp(tAt)|| < KTe®'t fort <0,
see, e.g., Horn and Johnson (1994).

We now consider a non-autonomous perturbation of this ODE, which is represented in
the basis of the columns of () as

y+e(y,t), (3.62)

J(6) = hiy(®).1) with h(y,w:[A At

and £ : R? x R — R? is a continuous function. In the sequel, we shall be interested in
the asymptotic behavior of this equation for the large values of ¢, and therefore, restrict
our study to the interval I = [tp, c0) for some given ¢y > 0 that we shall fix later. We
assume that £(0,-) = 0 on I. We denote as ¢ : I x I x R? — R? the so-called general
solution of (3.62), which is defined by the fact that ¢(-,¢,x) is the unique noncontinuable
solution of (3.62) such that ¢(t,t,2) = x for t € I and z € R?, assuming this solution
exists and is unique for each (z,t) € R% x I.

In the linear autonomous case provided by the ODE (3.60), the subspace

g=1 1t [y()] eRxRY : y~ e R
is trivially invariant in the sense that if (¢,y) € G, then, (s, ¢(s,t,y)) € G for each s € R.
This concept can be generalized to the non-linear and non-autonomous case. We say
that the C! function w : RY x I — R%" defines a global non-autonomous invariant
manifold for the ODE (3.62) if w(0,¢) = 0 for all ¢t € I, and, furthermore, if for each
t € I and each 3y~ € R?", writing y = (y~,w(y~,t)), the general solution ¢(s,t,y) =
(¢~ (s, t,y), 6" (s,t,y)) with ¢E(s, t,y) € RT verifies ¢T (s, t,y) = w(p~(s,t,y),s) for
each s € I. The non-autonomous invariant manifold is the set

_ Y d . - d-
G = t’[w(y‘,t)] elxR® : y~ eR ,
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which obviously satisfies (t,y) € G = (s,¢(s,t,y)) € G for each s € L.

These invariant manifolds are described by the following proposition, which is a straight-
forward application of (Potzsche and Rasmussen, 2006, Th. A.1) (see also (Kloeden and
Rasmussen, 2011, Th. 6.3 p. 106, Rem. 6.6 p. 111)). It is useful to note that under the
conditions provided in the statement of this proposition, the existence of the general
solution ¢ of the ODE (3.62) is ensured by Picard’s theorem.

Proposition 3.18. Let I = [¢p, 00) for some ¢y > 0. Assume that the function e(y,t) is
such that £(0,-) = 0 on I, the function ¢(-, ) is continuously differentiable for each ¢ € I,
and furthermore, the Jacobian matrix d1e(y, t) satisfies

+ _ o

o
leli:= sup [|Ore(y, 1) <

3.63
(y,) EREXI 4K (3.63)

with K =K~ + K"+ K KT(K~VKT) and o ,a" chosen as in Eq. (3.61). Then,
for each § € (2K|e|1, (o™ —a™)/2) and each v € (™ + d,a™ — §), the set

g= {(my) €eIxR? : sup [[¢(s, £, y)l exp(y(t = 5)) < OO}

is nonempty, and does not depend on . Moreover, this set is a global invariant
manifold for the ODE (3.62) that is defined by a continuously differentiable mapping
w:RY xT— R In addition, if the partial derivatives 8{“5 : R x T exist and are
continuous for k € {1,...,m} with globally bounded partial derivatives

lelg == sup ||OFe(y,t)|| < oo, (3.64)
(y,t)EREXT
under the gap condition
ma~ < at, me N, (3.65)

the partial derivatives 8{“11) : R4 x I exist and are continuous with

sup |0Fw(y~,t)|| < oo forall ke {1,...,m}. (3.66)
(y=—,t)eRI™ xI

Finally, if 838{“5 exist and are continuous for 0 <n <m and 0 < k +n < m, then w is
m-times continuously differentiable.

Let us partition the function h(y,t) as

h(y,t) =

ht(y,t) Ayt +et(y,t)

h~(y, t)] _

Ay +e (v, t)] , (3.67)

where h* : R? x T — Rdi, yt e R and e* : RY x T — R¥" . With these notations, the
previous proposition leads to the following lemma.

Lemma 3.19. In the setting of Prop. 3.18, for each ¢ in the interior of I and each vector
y = (y~,yT) such that y* € R% and y*+ = w(y~,t), it holds that

R (y,t) = Orw(y,t)h~ (y,t) + Bow(y~,t). (3.68)
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Assume that a~ is small enough so that Ineq. (3.65) and Eq. (3.64) hold true with
m = 2. Assume in addition that OFd¥e exists and is continuous for 0 < n < 2 and
0 < k+n < 2, and furthermore, that there exists a bounded neighborhood V ¢ R? of
zero such that
sup
(y,t)eVxI

(azs(y,t)H < too. (3.69)

Then, there exists a neighborhood V= C R?" of zero such that

sup ‘818210 H < 400, (3.70)
(y—,t)ev—xI

sup lagw(y_,t)H < +00. (3.71)
(y—,t)ev—xI

Proof. By Prop. 3.18, the general solution ¢(s,t,y) of the ODE (3.62) can be written

as 65,1, y) = (6 (5,1, ), 6" (s,1,y)) with ¢* (s, 4, y) = w(é~ (s, ,y),5) for cach s € L.
Equating the derivatives with respect to s of the two members of this equation and
taking s = t, we get the first equation.

Writing g : R4~ x I — R%, (y,t) — (y~,w(y~,t)), Eq. (3.68) can be rewritten as
daw(y—,t) = h*(g(y~,1),t) — drw(y ™, A~ (g(y~,1),1). (3.72)
By Prop. 3.18, the function w is twice differentiable, and we can write
Osw(y~,t) = D1h*Oag + Oh™ — (0100w)h™ — (Dyw)(D1h™ Dag + Bah ™), (3.73)

where, e.g., h" is a shorthand notation for h™(g(y~,%),t). It holds from Eq. (3.67) and
the assumptions of Prop. 3.18 that for each (y,t) € R% x I,

101y, DI < A+ [[01e(y, )| < C, (3.74)

where the constant C' > 0 is independent of (y,t) and can change from an inequality to
another in the remainder of the proof. By the mean value inequality and Prop. 3.18, we
also get that

lw(y™, Dl = lw(y™, 1) — w0, )] < sup [[Brw(u, s)|| [ly~ [ < Clly~ |,

(u,s)

thus, ||lg(y~,t)|| < C|ly~||. By the mean value inequality again,
[tato™0).0)]| = [[rtotw™0.0) = 100.0)] < sup et ot 1
< Cllgw. 0 = Cly:
By Eq. (3.72) and Prop. 3.18, this implies that

frat ] = st = - | <

), and (3.75)
H8182w H—Halwalg—(alw)h (alw)(alh_ﬁlg)H§C’(Hy‘H~I—1). (3.76)

Let V= C RY be a small enough neighborhood of zero so that g(y~,t) € V for each
y~ € V7, which is possible by the inequality ||g(y~,%)|| < C||ly~||. By the assumption
on ||02e(y, t)|| in the statement of Lem. 3.19, we have

Yy~ eV, H@zh(g(y_,t),t)H - H@ge(g(y_,t),t)H <C. (3.77)
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The bound (3.70) is an immediate consequence of Eq. (3.76). Getting back to Eq. (3.73),
the bound (3.71) follows from the inequalities (3.74)—(3.77). [ |

Prop. 3.18 deals with the case where the function ¢ is globally Lipschitz continuous.
In practical cases, such a strong assumption is not necessarily verified. In particular,
for the ODEs we consider for our application, it is not satisfied (see the function e
defined in Subsec. 3.7.3.1 below). Nonetheless, recall that we only need the existence of
a local non-autonomous invariant manifold, i.e. defined in the vicinity of an arbitrary
solution such as the trivial zero solution (since we suppose here (0, -) = 0) whereas the
aforementioned strong assumption provides a global non-autonomous invariant manifold.
Indeed, as for the avoidance of traps result we intend to show, we will only need to look
at the behavior of our ODE in the neighborhood of a trap z,. Therefore, in prevision of
the proof of Th. 3.8, we localize the ODE (3.62) in the neighborhood of zero. This is
the purpose of the next proposition.

Proposition 3.20. Let I = [ty, +00) for some to > 0 and let h : R x T — R? be defined
as in Eq. (3.62). Assume that £(0,-) = 0 on I, that the function e(-,¢) is continuously
differentiable for every ¢ € I and that

» )111)0a+OO)H816 Yot H_o (3.78)

Then, there exist o > 0,t; > 0, a function & : R? x I; — R? where I} := [t{, +00) and a
function h : R x I; — Rd defined for every y € R4t € I; by h(y,t) = Ay + &(y,t) s.

h and £ verify the assumptions of Prop. 3.18 and for every (y,t) € B(0,0) x I}, we have
that h(y,t) = h(y,t) and £(y,t) = e(y,t). Moreover, for any 6 > 0, we can choose o, t;
respectively small and large enough s.t. the mapping w : R% x I; — R?" obtained from
Prop. 3.18 (applied to A and &) satisfies

lwly = sup |O1w(y,t)|| <. (3.79)
(y,t)ERI™ xI;

Furthermore, Eq. (3.68) holds for & and w for all (y,t) € B(0,0) x I;. If, additionally,
Eq. (3.69) holds for €, then there exists o; < o such that

sup 010w (y H < 400, (3.80)
(yf,t)EB(O,(J'l)X]h
sup 3w (y H < 400. (3.81)

(y_7t)EB(OvUI) xIy

Proof. The idea of the proof is to localize the function h(y,t) to a neighborhood of
zero in the variable y for the purpose of applying Prop. 3.18. This cut-off technique is
known in the non-autonomous ODE literature, see, e.g., (Kloeden and Rasmussen, 2011,
Th. 6.10). Let 1 : RY — [0,1] be a smooth function such that ¥(y) = 1 if |ly|| < 1, and
YP(y) = 0if ||y]| > 2. Let C' = max, ||V (y)|| where V4 is the Jacobian matrix of 1.
Thanks to the convergence (3.78), we can choose t; > 0 large enough and o > 0 small

enough so that
+ _ o
sup |01e(y, t)|| < —o——rs
(t,y)€Elt1,00)x B(0,20) 4K(1+20)
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and we set I} = [t1,00). Writing &(y,t) = ¥(y/o)e(y,t), it holds that for each (¢,y) €
I x Rd,

1018(y, )| < o7 CLyy<aollew, I + Ly <2001y, 1)

< <max ||815(y,t)H) (a‘lCHyH + 1) Lyjy) <20

lyll<20

< a’—a
g 4K )

where we used the mean value inequality along with £(0,¢) = 0 to obtain the second
inequality. Thus, the function h(y,t) = Ay + &(y,t) satisfies all the assumptions of
Prop. 3.18. In addition, the function € coincides with the function € on B(0,07) x I,
and so it is for the functions k and h. Finally, it follows from (Kloeden and Rasmussen,
2011, Th. 6.3) that

2K?

ay —a_ —4K|Eh

(note that L in (Kloeden and Rasmussen, 2011, Th. 6.3) corresponds to |£]; with our
notations). Using Eq. (3.78), we can make |£|; as small as needed by choosing o, t;
respectively small and large enough, which gives us Eq. (3.79). The proof of the last two
equations follows from the application of Lem. 3.19 to h and w. The result is immediate

after noticing that for (y,t) € R? x I}, we have H@gé(y,t)H < H@gs(y, t)H |

lw|; < €)1

3.7.2 Proof of Th. 3.8

We shall rely on the following result of Brandiére and Duflo. Recall that (2, F,P) is a
probability space equipped with a filtration (F,),en.

Proposition 3.21. ((Brandiére and Duflo, 1996, Prop. 4)) Given a sequence (7;,) of
deterministic nonnegative stepsizes such that ), v = 400 and ), ’y,? < +00, consider
the R%valued stochastic process (z,)nen given by

Zn4+1 = (I + ’7n+1Hn)Zn + Yn+1Mn+1 + Yn+1Pn+1-

Assume that zg is Fyp-measurable and that the sequences (1), (pn) together with the
sequence of random matrices (H,) are (5,)—-adapted. Moreover, on a given event A € F,
assume the following facts:

i) 3 llonll* < co.
i) imsup E[||n,1|21 | Fn] < oo for some a > 0, and E[n,1 | Fn] = 0.

iii) liminf E[||n,11]/? | Fn] > 0.

Let H € R%? be a deterministic matrix such that the real parts of its eigenvalues are
all positive. Then,

P(Aﬂ[znﬁO]ﬂ[HnﬁHD:O.

We now enter the proof of Th. 3.8. Recall the development (3.11) of b(z,t) near z, and
the spectral factorization (3.12) of the matrix D. To begin with, it will be convenient to
make the variable change y = Q~!(z — 2,), and set

hy,t) = Q '0(Qy + 24, t) = Ay + &(y, 1),
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with é(y,t) = Q 'e(Qy + 2, t), in such a way that our stochastic algorithm is rewritten
as

Ynt+1 = Yn + '7n+1h(ym Tn) + Yn+17n+1 + Yn+1Pn+1

where 7, is as in the statement of the theorem and p, = Q !p,. Observe that the
assumptions on the function e in the statement of the theorem remain true for € with z,
replaced by zero.

If the matrix A has only eigenvalues with (strictly) positive real parts, i.e., d= = 0,
then we can apply Prop. 3.21 to the sequence (z,). Henceforth, we deal with the more
complicated case where d~ > 0.

Apply Prop. 3.20 to h to obtain h and o,#; respectively small and large enough and
w:RY xT; — RY where [ := [t1,+00). By Assumption iv) of Th. 3.8 and Prop. 3.20
we can choose 01 < o such that Eq. (3.80) and Eq. (3.81) hold. Now, given p € N, let
us define the event

By = [ 2p, |lyall < 01,7 € 1] -

On E,, it holds that h(yn, 7) = h(yn, ) and

Vn>p,  Ynt1 = Yn + Ynt1h(Yns Tn) + Ynt1nt1 + Yat1Pn+1

Yn h™ (YnsTn) M1 Pr+1
— + 1 + o + 1|~ 3.82
y;l- TYn+ [h+ (yn’ Tn) Tn+1 77:{+1 Tn+ IO:Jrl ( )

where h is partitioned as in (3.67), and where 7,5, 5 € R Note that, by Prop. 3.20
and Assumptions vi) and vii) on the sequence (7,), we can choose o,t; respectively

small and large enough s.t.

2
nminfE[( ﬁ,J{HH 1F ol 15, (yn)

[

. _ 2 c
—211msup]E[H31w(yn,Tn)nn+1H Falle, (ya) > 5 - (3.83)

This inequality will be important in the end of our proof. Let t be in the interior
of I, and let ¥y = (y~,y") be in a neighborhood of 0. Make the variable change
(y~,y") = (u,u’) with

U+ = y+ - w(y77t)7
=Yy,

where w is the function defined in the statement of Prop. 3.20, and let

W(u™,ut,t) =ht(y,t) — Orw(y,t)h ™ (y,t) — Oow(y ,t)
=hT((u",ut +w(u,t)),t)
—orw(u ) ((u,ut +w(u,t)),t) — dw(u,t).
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By Prop. 3.20 and Lem. 3.19, it holds that W (u~,0,t) = 0. Moreover, W (u~,-,t) € C!
by the assumptions on h. Therefore, writing y(r) = (v, ru™ +w(u~,t)) for r € [0,1],
and using the decomposition (3.67), we get that

1
W(u_,u+,t):/ OoW (u™,ru™ t)ut dr
0

— A+u+

1
[ astemn || - o noe @ |||t
0 Id+ Id""
We can also write y(r) = (y~,ry™ + (1 — r)w(y~,t)). Recalling that w(0,t) = 0 and
that ||0yw(y~,t)| is bounded on R x I, we get by the mean value inequality that
Hw(y_,t)H <C Hy‘H where C' > 0 is a constant. Thus, y(r)” < (14C) ||y||- Moreover,

e(y,t) = Q7 te(Qy,t) for ||y| < o. Thus, we get by (3.13) that Hﬁls(y(r),t)H — 0 as
(y,t) — (0,00) uniformly in r € [0, 1]. Using again the boundedness of ||01w(-,-)||, we
eventually obtain that

W=, ut,t) = (A* + Ay, 1)) u™, with lim — A(y,t) =0.
(u™,u™,t) ( + Ay, )>u wi (y,t)g](%,oo) (w7)

On the event E,, assume that n > p, and write
Uy =Yy ~ WY Ta)y Uy = Yy,

(see Eq. (3.82)). Choosing a— > 0 small enough so that the gap condition (3.65) is
satisfied with m = 2, we have by Taylor’s expansion

w(y;_;'_l, Tnt1) — W(Yp  Tn)
= W(Ypi1>Tnt1) — WYp s Tat1) + WYy, Tng1) — (Y > Tn)

= 01w (Y s Tnt 1) Wng1 — Yn ) + 12wy o) + €n1 + €)1

2
with H€n+1H < sup Hafw(y_,TnH)H‘ygﬂ—yﬁH ;
Y~ EWn Wnial
and 671“” < sup 822w(y,;, 7')‘ ’772L+1 .

TE[Tn,Tn+1]
Using this equation, we obtain

u:—&-l - ujz_ = '7n+1W(u7:7 ur-iz_v Tn) + Yn+1 (ﬁ;-&-l - alw(y;a Tn+1)ﬁ1;+1>

+ nt1 (ﬁ:{ﬂ — 01w (yy, , Tn+1)l3;+1) — Entl — 67L+1
+ ot (D7) = (s Tue) ) B (s )

which leads to

u:zrﬂ = U} + Yt <A+ + A(Yn, Tn)) Ut + Yo 1741 + V1 Pnt1, (3.84)
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with f11 = 75, — O1w(yy, , o)y and

ol
€ +e€
_ 4 — ~— n+1 n+1
Pn+1 = Ppy1 — alw(yn 7Tn)pn+1 - ﬂ'y7l+1>0 -
n+

+ <81w(y5, Tn) - aﬂﬂ(yﬁ, Tn—‘rl)) h~ (yny Tn) . (3'85)

To finish the proof, it remains to check that the noise sequence satisfies the assumptions
of Prop. 3.21 on the event A, = E, N [y, — 0]. In the remainder, C’ will indicate some
positive constant which can change from an inequality to another one.

First, we verify that > ||pn]|> < oo on A, by controlling each one of the terms
of pp. Combining the boundedness of djw(-,-) with the summability assumption
S 1pns1 Pz, ew < 400 a.s., we immediately obtain on A, that, given our choice

2
of o, 3, 15541 — 01wy , T) i ||? < 400. Moreover, it holds that (”6Z+1H/’yn+1> <

C’~2,, by invoking Prop. 3.20. In addition, using the boundedness of 9fw(-,-), we can
write

/ 4

Yn+1 — Yn

n+1>0"73 ‘
fyn—i—l

B 4
pn-l—lH )-

4 B 4
+ ‘ 77n+1” +‘

< Cl’)’g-rl(Hh(yan)

A coupling argument (see (Brandiere and Duflo, 1996, p. 401)) shows that we can
simplify the condition limsup E[||n,1||* | Fnlls, e < 00 to E[[|nps1l[*| Fnlls, e < C'.
4

The latter condition implies that E[14, >, 724 ‘
Zn Py?%-i-l ’

of (h(yn, 7)) and (pn) on Ay, we deduce that > 1., . 50 ||=

77n+1H ] <>, C'v2. 1, and therefore

4
%HH 14, < +00 as. As a consequence, noticing also the boundedness
2

n+1
S H < 400 on A,. We

now briefly control the last term of p,. By the mean value inequality, we obtain that

H (81w(y,;, Tn) - 31w(y;, Tn—H)) h_(yn, Tn)

< Ynt1 sup Hazr%w H 1A~ Wns 7o)l < C'ya

where the last inequality stems from Prop. 3.20-Eq. (3.80) together with the boundedness
of the sequence (h(yn,Tn)). In view of Eq. (3.85) and the above estimates, we deduce
that Y, [|pnt1]I*1a, < +00 a.s. on A,

We verify the remaining conditions on the noise sequence (7). We can easily remark that
Effj11/F] = 0 and ||fas ]| < €|

00. The last condition, meaning that the noise is exciting enough, stems from noting
that

77"““ on Ap. Hence, lim sup E[||7,11]|* | Fulls,ew <

2
2liminf E[ HnnHH n]1a, > liminf E[ Hn HH |Fn]la,

— 2limsupIE[Ha1w(yn7 77n+1H

C2

>7
27
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where we used our choice of o,t; and Eq. (3.83).

Noticing that [y, — 0] C [A(yn,Tn) — 0], we can now apply Prop. 3.21 to the
sequence (u,h) (see Eq. (3.84)) with A = A4, to obtain

P (Ap At — 01) —P (Ap At = 01N [A Y, ) — 0]) ~0.

We now show that [y, — 0] C [u; — 0], which amounts to prove that w(y,, ,7,) — 0
given y, — 0. To that end, upon noting that w(0,-) = 0 and that djw(-,-) is bounded,
it suffices to apply the mean value inequality, writing:

lw (Y s o) | = lw(yy s 7) — w(0, 7)) < Sup, 11wy, Ol v 1| < Ky |-
y_7t

We have shown so far that P(A4,) = 0. Since y, = Q 'z, and [y, — 0] C U
finally obtain that

beN E,, we

Plzn = 0] =Plyn = 0] =P [ [ J(lzn > 0] NE,) | =P [ [ 4, | =0.
peEN peEN

Th. 3.8 is proven.

3.7.3 Proofs for Section 3.4.2.1
3.7.3.1 Proof of Lem. 3.9
The matrix D coincides with Vgoo(zx), where the function g is defined in (3.20). As

such, its expression is immediate. Recalling that poS(74) — ¢oots = 0, we get

9(z,t) = D(z — 2)

P(t)S(x) = a(t)v — Poo VS (24) (2 — T4) + Goo (v — )
h(t)VE(z) — r(t)m — hoo V2F (24) (2 — 24) + oo

—m (| (v+ 6)_% — (v + 5)_%

—q(t) + g0 0 (P(t) = Poo)VS(24) | |0 — v,
- 0 oo = 1(t)  (h(t) = hoo) VZF () m
- 3 0 0 r—x
i 2(vete)2 *
) (S(x) = S(zs) — VS(2:)(x — 24))
" h(t)(VE(z) — V2F (2)(z — 24)) p(t)S(xx) — alt)vs
+ + 0
MmO | o T v T 0

= e(z,t) + c(t).

Under the assumptions made, it is easy to see that the function e(z,t) has the properties
required in the statement of Th. 3.8.
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3.7.3.2 Proof of Th. 3.10

Consider the matrix D defined in the statement of Lem. 3.9. A spectral analysis of this
matrix as regards its eigenvalues with positive real parts is done in the following lemma.

Lemma 3.22. Let D be the matrix provided in the statement of Lem. 3.9. Each
eigenvalue ¢ of the matrix D such that R¢ > 0 is real, and its algebraic and geometric
multiplicities are equal. Moreover, there is a olne—to—one colrrespondence  between these
eigenvalues and the negative eigenvalues of V2V2F (z,)V 2. Let d* be the dimension of
the eigenspace of VIV2E (x*)V% that is associated with its negative eigenvalues, let

w1
W — : c RdJer

W q+

be a matrix which rows are independent eigenvectors of ViViF (ZL‘*)V% that generate
this eigenspace, and denote as G, < 0 the eigenvalue associated with wy. Then, the rows
of the rank d™-matrix

AT = |0gixa: WVE, —ding(roo + o~ () WV 3] € RITH

generate the left eigenspace of D, the row k being an eigenvector for the eigenvalue

0 (Br)-

Proof. [t is obvious that the block lower-triangular matrix D has d eigenvalues equal
to —@so and 2d eigenvalues which are those of the sub-matrix

b | el hoo V2F ()

-V 0

Given A € C, we obtain by standard manipulations involving determinants that
det(D — A) = det(A(roo + A) + hoo VV2F ()
= det(M(roo + A) + hoo VEV2F(2,)V 2).

Denoting as {8 }¢_, the eigenvalues of hooV%VQF(x*)V% counting the multiplicities,

we obtain from the last equation that the eigenvalues of D are the solutions of the second
order equations

N roA+8,=0 k=1,...,d

The product of the roots of such an equation is B, and their sum is —r,, < 0. Thus,
denoting as (1 and (i 2 these roots, it is easy to see that if 5, > 0, then Ry 1, R¢; 2 <0,
while if 8; < 0, then both ¢ ; are real, and only one of them is positive. Thus, we have
so far shown that the eigenvalues of D which real parts are positive are themselves real,
and there is a one-to-one map ¢ from t%le set of positive eigenvalues of D to the set
of negative eigenvalues of V2V2F(x,)V 2. Moreover, the algebraic multiplicity of the
eigenvalue ¢ > 0 of D is equal to the multiplicity of ¢(().

Let us now turn to the left (row) eigenvectors of D that correspond to these eigenvalues.
To that end, we shall solve the equation

uD = Cu  with u = [0,u1,us], wupe € R (3.86)



100 Chapter 3. Stochastic Optimization with Momentum

for a given eigenvalue { > 0 of D. Developing this equation, we get
—Too1 — U2V = Cuyq, hOOU1V2F(SL'*) = Cus.
If we now write @] = ulvfé and o = UQV%, this system becomes

¢

[NIE

ooy — Gy = Citt, ooy VEV2F(2,)V

N

25

or, equivalently,

N

- ~ ~ 2 12

Uz = _(Too + C)ula U1 (C + TooC + hoo V2V F(QZ*)V > =0,

which shows that @ is a left eigenvector of ViV2F (:c*)V% associated with the eigenvalue
©(¢). What’s more, assume that r is the multiplicity of ¢((), and, without generality

loss, that the submatrix W,.. made of the first r rows of W generates the left eigenspace
of ¢(¢). Then, the matrix

[orxd W,.V2 —(roo—kC)Wr.V’ﬂ

is a r-rank matrix which rows are independent left eigenvectors that generate the left
eigenspace of D for the eigenvalue (. In particular, the algebraic and geometric multi-
plicities of this eigenvalue are equal. The same argument can be applied to the other
positive eigenvalues of D. |

We now have all the elements to prove Th. 3.10. Recall Eq. (3.14):

Zn+l = 2Zn + ’7n+1b(zn7 Tn) + Yn+1Mn+1 + Ynt1Pnt1,

where b(z,t) = g(z,t) — c(t) = D(z — z4) + e(z,t) and p, = c(Tp—1) + pn. With these
same notations, we check that Assumptions i)-vi) in the statement of Th. 3.8 are
satisfied. The function e(z,t) satisfies Assumptions i)-iv) by Lem. 3.9. We now verify
that the sequence (py,) fulfills Assumption v). First, observe that >, [lc(7,)[|* < oo
under Assumption 3.4.3-i). Then, we control the second term (5y,,). After straightforward
derivations, one can show the existence of a positive constant C' (depending only on
and a neighborhood W of z,) such that

1n+11*1zew < Clmn = mpga[I* + [ont1 = val*) Loy - (3.87)

Using the boundedness of the sequences (h,) and (r,) together with the update rule
of m,, and Assumption 3.4.3-iii), there exists a positive constant C’ independent of n
(which may change from an inequality to another) such that

E [llmn = s 21, ew] < 1241 CE [(1 +E [V (n 6)I?] )MGW}

<O (388)

A similar result holds for E {an — vpy1|?1 znew} following the same arguments. In view

of Egs. (3.87)-(3.88), it holds that E [Zn ||ﬁn+1”21anW} < 400 given the assumption

>on ’y,%ﬂ < +o0. Therefore, Y, ||pn+1/|*1z,ew < 400 a.s., which completes our verific-
ation of condition v) of Th. 3.8. Assumption vi) follows from condition 3.4.3-iii). Finally,
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let us make Assumption vii) of Th. 3.8 more explicit. Partitioning the matrix Q! as

Q! = g+ where B* has d* rows, Lem. 3.22 shows that the row spaces of BT and

AT are the same, which implies that Assumption vii) can be rewritten equivalently

as E[‘)A+nn+1H2 | Foll. ew > 1., cw. By inspecting the form of 7, provided by
Eq. (3.28) (written as a column vector), one can readily check that Assumption 3.4.3-iv)
implies Assumption vii) of Th. 3.8 for a small enough neighborhood W, using the
continuity of the covariance matrix V%]ES(Vf(m, §) —VF (@) (Vf(x,§) — VF(ZL’))TV%

when z is near x,.

3.7.4 Proof of Th. 3.11

As mentioned in Section 3.4.2.2) the proof of Th. 3.11 is almost identical to the one
of Th. 3.10. We point out the main differences here. In Lem. 3.9, replace D by

0 hooV2F(z4)
-1y 0

V12V2F (2,)V/? by the Hessian V2F(z,).

D = and set ¢(t) = 0. Then, in Lem. 3.22, replace the matrix







Convergence Rates of a Momentum Algorithm with
Bounded Adaptive Stepsize for Non-convex Optimization

Abstract In this chapter, we study the ADAM algorithm for smooth non-convex
optimization under a boundedness assumption on the adaptive learning rate. The
bound on the adaptive stepsize depends on the Lipschitz constant of the gradient of
the objective function and provides safe theoretical adaptive stepsizes. Under this
boundedness assumption, we show a novel first order convergence rate result in both
deterministic and stochastic contexts. Compared to the previous chapters, the results
are of a different flavour. Instead of asymptotic results, we focus on “convergence rates”
which are more common in the machine learning community. Furthermore, we establish
convergence rates of the function value sequence using the Kurdyka-f.ojasiewicz property,
borrowing results for gradient-like sequences from the optimization community.

4.1 Contributions

Consider the unconstrained optimization problem min,cgpa f(x), where f : R? 5 Risa
differentiable map and d is an integer. In this chapter, we focus on the class of adaptive
algorithms among which ADAM (Kingma and Ba, 2015) is probably the most popular
algorithm for optimizing the weights of neural networks. Recently, Reddi et al. (2018)
exhibited a simple convex stochastic optimization problem over a compact set where
ADAM fails to converge because of its short-term gradient memory for specific values of its
hyperparameters. Moreover, they proposed an algorithm called AMSGRAD to fix this issue.
This work opened the way to the emergence of other variants of ADAM (see Section 4.3
for a detailed review). In this chapter, under a bounded stepsize assumption, we propose
a convergence rate analysis of ADAM-like algorithms for non-convex optimization.

Our contributions are as follows.

e We establish a convergence rate for ADAM in the deterministic case for non-
convex optimization under a bounded stepsize. This algorithm can be seen as a
deterministic clipped version of ADAM which guarantees safe theoretical stepsizes.
More precisely, if n is the number of iterations of the algorithm, we show a O(1/n)
convergence rate of the minimum of the squared gradients norms by introducing a
suitable Lyapunov function.

o We show a similar convergence result for non-convex stochastic optimization up to
the limit of the variance of stochastic gradients under an almost surely bounded
stepsize. In comparison to the literature, the hypothesis of the boundedness of the
gradients is relaxed and the convergence result is independent of the dimension d
of the parameters.

e We propose a convergence rate analysis of the objective function of the algorithm
using the Kurdyka-F.ojasiewicz (KL) property. To the best of our knowledge, this
is the first time such a result is established for an adaptive optimization algorithm.
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Table 4.1 — Some famous algorithms.

Algorithm Effective stepsize a,41 Momentum
SGD _ b=1
(Robbins and Monro, 1951) Gntl =4 (no momentum)
ADAGRAD B no o\ 12 _
(Duchi et al., 2011) nt1 =4 (Zi:o gi) b=1
- = =T
RMSPROP _ n n—i 2)1/2 —
(Tieleman and Hinton, 2012) Ont1 =0 €+ (c izl =)™, b=1
= —T
ADAM _ n nei 2\ 1/2 0<b<1
(Kingma and Ba, 2015) Ontl = @€+ (czizo(l —0) g,) (close to 0)

Chapter organization. Section 5.4 introduces the algorithm we analyze. Section 4.3
considers some related works. Section 4.4 establishes first order convergence rates in
terms of the minimum of the gradients norms in both deterministic and stochastic
settings. Finally, Section 4.5 derives function value convergence rates under the K&
property. All the proofs are deferred to the last sections of this chapter.

4.2 A momentum algorithm with adaptive stepsize

Notations. All operations between vectors of R? are to read coordinatewise. In partic-
ular, for two vectors z, y in R% and « € Z, we denote by zy, = /y, x® the vectors on R?
whose k-th coordinates are respectively given by xpyk, zi/yk, . The vector of ones
of R? is denoted by 1. When a scalar is added to a vector, it is added to each one of
its coordinates. Inequalities are also to be read coordinatewise. If z € R 2z < A € R
means that each coordinate of x is smaller than A.

We investigate the following algorithm defined by two sequences (x,) and (p,) in R%:

Tp4+1 = Tn — An+1Pn+1

(4.1)
Pntl = Pn + b (Vf(l’n) - pn)

where V f(x) is the gradient of f at point z, (a,) is a sequence of vectors in R? with
positive coordinates, b is a positive real constant and zg, py € R

Algorithm 5.1 includes the classical Heavy-ball method as a special case, but is much
more general. Indeed, we allow the sequence of stepsizes (a,) to be adaptive: a, € R4
may depend on the past gradients g := V f(zx) and the iterates xy for £ < n. We
stress that the stepsize a, is a vector of R? and that the product An+1Pn+1 in (5.1)
is read componentwise (this is equivalent to the formulation with a diagonal matrix
preconditioner applied to the gradient (McMahan and Streeter, 2010; Gupta et al., 2017;
Agarwal et al., 2019; Staib et al., 2019)).

We present in Table 4.1 how to recover some of the famous algorithms with a vector
stepsize formulation. In particular, ADAM (Kingma and Ba, 2015) defined by the iterates:

In+l = Tn — e_h/#ﬁpnﬂ
Pn+1 = Pn +b(Vf(2n) — pn) (4.2)
Unt1 = Uy + (V. f(20)? —vn)
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for constants ! @ € Ry, b,c € [0,1], can be seen as an instance of this algorithm by
setting a, = ﬁ where the vector v, as defined above, is an exponential moving
average of the gradient squared. For simplification, we omit bias correction steps for
Pn+1 and v,41. Their effect vanishes quickly along the iterations.

We introduce the main assumption on the objective function which is standard in
gradient-based algorithms analysis.

Assumption 4.2.1. The mapping f : R — R is:

(i) continuously differentiable and its gradient V f is L—Lipschitz continuous,
(ii) bounded from below, i.e., inf, cpa f(z) > —00.

4.3 Related works

Adaptive algorithms as Heavy Ball. Thanks to its small per-iteration cost and its
acceleration properties (at least in the strongly convex case), the Heavy-ball method,
also called gradient descent with momentum, recently regained popularity in large-scale
optimization (Sutskever et al., 2013). This speeding up idea dates back to the sixties with
the seminal work of Polyak (1964). In order to tackle non-convex optimization problems,
Ochs et al. (2014) proposed iPiano, a generalization of the well known heavy-ball in
the form of a forward-backward splitting algorithm with an inertial force for the sum
of a smooth possibly non-convex and a convex function. In the particular case of the
Heavy-ball method, this algorithm writes for two sequences of reals (a,) and (5,):

Tnt1 = Tn — oy Vf(zn) + Bn(Tn — Tn-1). (4.3)

We remark that Algorithm 5.1 can be written in a similar fashion by choosing stepsizes
apn = bap41 and inertial parameters £, = (1 — b)an4i1/a,. Ochs et al. (2014) only
consider the case where «,, and [, are real-valued. Moreover, the latter does not
consider adaptive stepsizes, i.e stepsizes depending on past gradient information. We
can show some improvement with respect to Ochs et al. (2014) with weaker convergence
conditions in terms of the stepsize of the algorithm (see Section 4.8.5) while allowing
adaptive vector-valued stepsizes a,, (see Prop. 4.9).

It is shown in Ochs et al. (2014) that the sequence of function values converges and
that every limit point is a critical point of the objective function. Moreover, supposing
that the Lyapunov function has the Kt property at a cluster point, they show the finite
length of the sequence of iterates and its global convergence to a critical point of the
objective function. Similar results are shown in Wu and Li (2019) for a more general
version than iPiano (Ochs et al., 2014) computing gradients at an extrapolated iterate
like in Nesterov’s acceleration.

Convergence rate. Ochs et al. (2014) determines a O(1/n) convergence rate (where
n is the number of iterations of the algorithm) with respect to the proximal residual
which boils down to the gradient for noncomposite optimization. Furthermore, a recent
work introduces a generalization of the Heavy-ball method (and Nesterov’s acceleration)
to constrained convex optimization in Banach spaces and provides a non-asymptotic
hamiltonian based analysis with O(1/n) convergence rate (Diakonikolas and Jordan,
2019). In the same vein, in Section 4.4, we establish a similar convergence result for an

1 Please note here that these constants a, b in this chapter do not coincide with the constants a, b of
Assumption 2.2.4 in Chapter 2.
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adaptive stepsize instead of a fixed predetermined stepsize policy like in the Heavy-ball
algorithm (see Th. 4.2).

Convergence rates under the K¥. property. The Kt. property is a powerful tool to
analyze gradient-like methods. We elaborate on this property in Section 4.5. Assuming
that the objective function satisfies this geometric property, it is possible to derive
convergence rates. Indeed, some recent progress has been made to study convergence
rates of the Heavy-ball algorithm in the non-convex setting. Ochs (2018) establishes
local convergence rates for the iterates and the function values sequences under the
KL property. The convergence proof follows a general method that is often used in
non-convex optimization convergence theory. This framework was used for gradient
descent (Absil et al., 2005), for proximal gradient descent (see Attouch and Bolte (2009)
for an analysis with the Lojasiewicz inequality) and further generalized to a class of
descent methods called gradient-like descent algorithms.

KYt.-based asymptotic convergence rates were established for constant Heavy-ball para-
meters (Ochs, 2018). Asymptotic convergence rates based on the KL property were
also shown (Johnstone and Moulin, 2017) for a general algorithm solving non-convex
nonsmooth optimization problems called Multi-step Inertial Forward-Backward splitting
(Liang et al., 2016) which has iPiano and Heavy-ball methods as special cases. In this
work, stepsizes and momentum parameter vary along the algorithm run and are not
supposed constant. However, specific values are chosen and consequently, their analysis
does not encompass adaptive stepsizes i.e. stepsizes that can possibly depend on past
gradient information. In the present work, we establish similar convergence rates for
methods such as ADAM under a bounded stepsize assumption (see Th. 4.6). We also
mention Li et al. (2017) which analyzes the accelerated proximal gradient method for
non-convex programming (APGnc) and establishes convergence rates of the function
value sequence by exploiting the KL property. This algorithm is a descent method i.e.
the function value sequence is shown to decrease over time. In the present work, we
analyze adaptive algorithms which are not descent methods. Note that even Heavy-ball
is not a descent method. Hence, our analysis requires additional treatments to exploit
the K¥. property: we introduce a suitable Lyapunov function which is not the object-
ive function. We also point out the recent work of Xie et al. (2019) which analyzes
the ADAGRAD-NORM algorithm under the global Polyak-t.ojasiewicz condition. This
condition is a particular case of the KL property (see Section 4.5).

Theoretical guarantees for ADAM-like algorithms. The recent literature on ad-
aptive optimization algorithms is vast. For instance, for ADAGRAD-like algorithms,
several works cover the non-convex setting (Wu et al., 2018; Ward et al., 2019b; Xie et al.,
2019; Li and Orabona, 2019). In the following, we almost exclusively focus on ADAM-like
algorithms which are different because of the momentum. The first type of convergence
results uses the online optimization framework which controls the convergence rate of
the average regret. This framework was adopted for AMSGRAD, ADAMNC (Reddi et al.,
2018), ADABOUND and AMSBOUND (Luo et al., 2019). In this setting, it is assumed
that the feasible set containing the iterates is bounded by adding a projection step to
the algorithm if needed. We do not make such an assumption in our analysis. (Reddi
et al., 2018) establishes a regret bound in the convex setting.

The second type of theoretical results is based on the control of the norm of the
(stochastic) gradients. We remark that some of these results depend on the dimension
of the parameters. Zhou et al. (2018) improve this dependency in comparison to Chen
et al. (2019). The convergence result in Basu et al. (2018) is established under quite
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specific values of ap41,b, and €. Zaheer et al. (2018) show a O(1/n) convergence rate
for an increasing mini-batch size. However, the proof is provided for RMSPROP and
seems difficult to adapt to ADAM which involves a momentum term. Indeed, unlike
RMSPRroOP, ADAM does not admit the objective function as a Lyapunov function.

We also remark that all the available theoretical results assume boundedness of the
(stochastic) gradients. We do not make such an assumption. Furthermore, we do not
add any decreasing 1/4/n factor in front of the adaptive stepsize as it is considered
in Reddi et al. (2018); Luo et al. (2019) and Chen et al. (2019). Although constant
hyperparameters b and ¢ are used in practice, theoretical results are often established
for non constant b,, and ¢, (Reddi et al., 2018; Luo et al., 2019). We also mention that
most of the theoretical bounds depend on the dimension of the parameter (Reddi et al.,
2018; Zhou et al., 2018; Chen et al., 2018; Zou et al., 2019a; Chen et al., 2019; Luo et al.,
2019).

Other variants of ADAM. Recently, several other algorithms were proposed in the
literature to enhance ADAM. Although these algorithms lack theoretical guarantees,
they present interesting ideas and show good practical performance. For instance,
ADASHIFT (Zhou et al., 2019) argues that the convergence issue of ADAM is due to
its unbalanced stepsizes. To solve this issue, they propose to use temporally shifted
gradients to compute the second moment estimate in order to decorrelate it from the
first moment estimate. NADAM (Dozat, 2016) incorporates Nesterov’s acceleration into
ADAM, in order to improve its speed of convergence. Moreover, originally motivated by
variance reduction, QHADAM (Ma and Yarats, 2019) replaces both ADAM’s moment
estimates by quasi-hyperbolic terms and recovers ADAM, RMSPROP and NADAM as
particular cases (modulo the bias correction). Guided by the same variance reduction
principle, RADAM (Liu et al., 2019) estimates the variance of the effective stepsize of the
algorithm and proposes a multiplicative variance correction to the update rule.

Stepsize bound. Perhaps, the closest idea to our algorithm is the recent ADABOUND
(Luo et al., 2019) which considers a dynamic learning rate bound. Luo et al. (2019) show
that extremely small and large learning rates can cause convergence issues to ADAM
and exhibit empirical situations where such an issue shows up. Inspired by the gradient
clipping strategy proposed in Pascanu et al. (2013) to tackle the problem of vanishing
and exploding gradients in training recurrent neural networks (see Zhang et al. (2019)
for recent progress), Luo et al. (2019) apply clipping to the effective stepsize of the
algorithm in order to circumvent stepsize instability. More precisely, authors propose
dynamic bounds on the learning rate of adaptive methods such as ADAM or AMSGRAD
to solve the problem of extreme learning rates which can lead to poor performance.
Initialized respectively at 0 and oo, lower and upper bounds both converge smoothly
to a constant final stepsize following a predetermined formula defined by the user.
Consequently, the algorithm resembles an adaptive algorithm in the first iterations and
becomes progressively similar to a standard SGD algorithm. Our approach is different:
we propose a static bound on the adaptive learning rate which depends on the Lipschitz
constant of the objective function. This bound stems naturally from our theoretical
derivations.
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4.4 First order convergence rate

4.4.1 Deterministic setting
Let (Hy)n>0 be a sequence defined for all n € N by Hy, := f(25) + 5 (an, p2) .

We further assume the following stepsize growth condition.

Assumption 4.4.1. There exists a > 0 s.t. a,y1 < %2,

Note that this assumption is satisfied for ADAM with o = v/1 — ¢ where c is the parameter

n (4.2). Unlike in AMSGRAD (Reddi et al., 2018), the stepsize a,, is not necessarily
nonincreasing. Indeed, a can be strictly smaller than 1 in Assumption 4.4.1 as it is the
case for ADAM.

We provide a proof of the following key lemma in Section 4.8.1.
Lemma 4.1. Let Assumptions 4.2.1 and 4.4.1 hold true. Then, for all n € N, for all
u € R+,

b
Hyp < Hy — <an+1p721+17 Any1) — §<an+1(vf(xn) - pn)2> B1), (4.4)

il _Pp-(-a) 1-a o p-(-a)u_
2 2u 2b ’ b

where A1 :=1— (1-a).

We now state one of the principal convergence results about Algorithm 5.1. In particular,
we establish a sublinear convergence rate for the minimum of the gradients norms until
time n.

Theorem 4.2. Let Assumptions /.2.1 and 4.4.1 hold true. Suppose that 1 —a < b <1.
Lete >0 s.t. agyp =7 |1 — 55— — loa _ o) is nonnegative. Let § >0 s.t. for

alln €N,
0 < apy1 < min (asup, a") i (4.5)
«
Then, the sequence (Hy,) is nonincreasing and Y., ||pn||? < co. In particular, lim z,4+1 —
Tn — 0 and im V f(z,) — 0 as n — +oo. Moreover, for alln > 1,

4 (Hy—inff
i 2 = (0= 2|
omin [[VF)lI” < s ( s+ llpol )

Sketch of the proof. The key element of the proof is Lem. 4.1 which is a descent
lemma on the function H. Indeed, the assumptions of the theorem guarantee that
Apt+1 > € and B > 0. Then, the result stems from summing the inequalities of Lem. 4.1.
The proof can be found in Section 4.8.3.

We provide some comments on this result.

Dimension dependence. Unlike most of the theoretical results for variants of ADAM
as gathered in Section 4.7, we remark that the bound does not depend on the dimension
d of the parameter xy.
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Comparison to gradient descent. A similar result holds for deterministic gradient
descent (see Nesterov (2004, p.28)). If ~ is a fix stepsize for gradient descent and there
exist 6 > 0,e >0s.t. y>dand 1 — % > ¢, then (see Section 4.8.6) for all n > 1:

f(xo) —inf f < f(zo) — inff'

my(l-3) — née

: 2
<
omin_ IV f(@e)]” <

When pg = 0 (this is the case for ADAM), the bound in Th. 4.2 coincides with the gradient
descent bound, up to the constant 4/b%. We mention however that ¢ for Algorithm 5.1
is defined by a slightly more restrictive condition than for gradient descent: when b =1,
there is no momentum and ag,p, = %(1 — 2¢) < 2/L. Hence, under the boundedness
of the effective stepsize, the algorithm has a similar convergence guarantee to gradient
descent. Remark that the stepsize bound almost matches the classical 2/L upperbound
on the stepsize of gradient descent (see for example Nesterov (2004, Th. 2.1.14)).

Stepsize bound. Condition 4.5 should be seen as a clipping step of the algorithm.
Indeed, the lower bound on the effective stepsize has not to be verified a posteriori after
running the algorithm. Instead, a clipping of the learning rate would ensure that this
boundedness assumption holds. Furthermore, if we drop the lower bound assumption on
the effective stepsize a,, from Th. 4.2, we still get the following result (see Prop. 4.9), for

alln > 1,
n—1 .
1 9y _ 2(14«) ( Hy—inf f 9
E kZ:O«Ik’-i-la Vf(xk) > < nh2a ( c + <a0,p0> .

Influence of ¢ and 4. In the specific case of ADAM, we obtain Lag,p/2+¢ = 0.93 with
the recommended default parameters b = 0.1 and ¢ = 0.001. Hence, we can choose ¢ of
the order of 0.1 without exceeding 0.93. In view of Equation (4.6), the smaller is ¢ and
the larger will be the stepsizes. However, a small ¢ deteriorates the bounds of Ths. 4.2
and 4.3. Once b, ¢ (and then «) are fixed, € can be seen as a constant. The clipping
parameter & can also be seen as constant once it is chosen.

4.4.2 Stochastic setting

We establish a similar bound in the stochastic setting. Note that the control of the
minimum of the gradients norms is also standard in non-convex stochastic optimization
literature (see for e.g., Ghadimi and Lan (2013)). Let (E,&) denote a measurable
space and d € N. Consider the problem of finding a local minimizer of the expectation
F(z) := E(f(z,&)) wrt. 2 € R? where f : R? x Z — R is a measurable map and
f(.,€) is a possibly non-convex function depending on some random variable . The
distribution of £ is assumed to be unknown, but revealed online by the observation of
iid copies (&, : n > 1) of the r.v. £. For a fixed value of £, the mapping = — f(z,§) is
supposed to be differentiable, and its gradient w.r.t. x is denoted by V f(x,§). We study
a stochastic version of Algorithm 5.1 by replacing the deterministic gradient V f(zy,)

by Vf(2n,&nt1)-

Theorem 4.3. Let Assumption /.2.1 (for F') and Assumption 4.4.1 hold true. Assume
the following bound on the variance in stochastic gradients: E||V f(z,£) — VF(z)|]* < o2
for all x € R Suppose moreover that 1 —a < b < 1. Lete > 0 s.t. Osup =
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2 (3 _ =) 1-a 5) is nonnegative. Let & > 0 s.t. for all n > 1, almost

4 2bar 2b
surely,
0 < apy1 < min <asup, an) . (4.6)
o
Then,
4 H() — inf f 46_Lsu

E[lIVE 2 < 2 p_2

IVF@IP < (58 + lpol ) i g

where x is an iterate uniformly randomly chosen from {xg, -+ ,Zpn—1}.

Remark 15. We recover the deterministic bound of Th. 4.2 when the gradients are
noiseless (¢ = 0). The complete proof is deferred to Section 4.8.4.

Before proceeding, a few remarks are in order.

SGD as a particular case. By setting b = 1 (no momentum) and a,,+1 = a,, for all n
which implies @ = 1, we recover a known rate for non-convex SGD (Ghadimi and Lan,
2013) with a maximal stepsize here of Gy = 57 (1 — 2¢) and note that the proof can be
slightly modified to make gy}, as close as possible to 1/L. We highlight though that the
Lyapunov function H was especially tailored to handle a momentum algorithm and an
analysis with f as a Lyapunov function is largely satisfying for SGD.

RMSPROP. In the particular case where there is no momentum in the algorithm (i.e.
RMSPROP) and assuming that the gradients are bounded, a similar convergence rate is
obtained in Zaheer et al. (2018, Thm. 1) (see Section 4.7). Furthermore, although we
assume boundedness of the stepsize by Condition (4.6), we do not suppose that a; < 57
(see table in Section 4.7). The latter assumption imposes a very small stepsize (¢ = 1073
in Kingma and Ba (2015)) which may result in a slow convergence.

Stepsize lower bound. In the case of ADAM (a,, = ﬁ), the uniform lower bound
an+1 > 0 prevents the exponential moving average v, of the squared gradients from
exploding. This can be guaranteed on the fly by a clipping of a,. If we drop the uniform
lower bound on the effective stepsize, we still obtain the following result (see Remark 17)

n—1 . _
21+ «) ( Hy—inf f NAsupT>
E kzo<ak+1, Vi (@e &r1)?) | < o ( . + (a0, pg) + % .

Influence of the momentum parameter. Note that € depends on the momentum
parameter b and consequently the bound does not decrease with b. The influence of this
parameter is more complex.

4.5 Convergence analysis under the KL property

Historically introduced by the fundamental works of Lojasiewicz (1963) and Kurdyka
(1998), the KL inequality is the key tool of our analysis. We refer to Bolte et al. (2010)
for an in-depth presentation of this property. The Kt inequality is satisfied by a broad
class of functions including most nonsmooth deep neural networks. More precisely, as
exposed in Davis et al. (2020, Section 5.2, Corollary 5.11) and Castera et al. (2019,
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Section 2.2), feedforward neural networks with arbitrary number of layers of arbitrary
dimensions, with activations such as sigmoid, ReLU, leaky ReLU, tanh, softplus (and
many others), with a loss function such as [, norm, hinge loss, logistic loss or cross
entropy (and many others), belong to this class of so-called definable functions in an
o-minimal structure (Kurdyka, 1998; Attouch et al., 2010; Davis et al., 2020). We refer
the interested reader to Zeng et al. (2019, Section 3, Section C) for general conditions
for which KL inequality holds in the context of deep neural networks training models.
The class of definable functions is stable under all the typical functional operations
in optimization (e.g. sums, compositions, inf-projections) and generalizes the class of
semialgebraic functions including objective functions such as || - ||, for p rational, real
polynomials, rank, etc. (see Bolte et al. (2014, Appendix)).

The KL inequality has been used to show the convergence of several first-order optimiz-
ation methods towards critical points (Attouch and Bolte, 2009; Attouch et al., 2010;
Bolte et al., 2014; Li et al., 2017). In this section, we use a methodology exposed in
Bolte et al. (2018, Appendix) to show convergence rates based on the KL property.
Recently developed in Bolte et al. (2014), this abstract convergence mechanism can be
used for any descent type algorithm. We modify it to encompass momentum methods.
Note that although this modification was initiated in Ochs et al. (2014); Ochs (2018),
we use a different separable Lyapunov function. The first part of the proof follows these
approaches and the second part follows the proof of Johnstone and Moulin (2017, Th. 2).

Consider the function H : R? x R? — R defined for all z = (z,y) € R? x R? by

H(=) = H(z,y) = f(2) + 55 Iyl (4.7)

Notice that Hy, = f(zn) + 35 (an, p2) = H(2y, yn) Where (yn)nen is defined for all n € N
by yn = Vv anPn-
Notations and definitions. If (E,d) is a metric space, z € F and A is a non-empty

subset of F, we use the notation d(z, A) := inf{d(z,2’) : 2/ € A}. The set of critical
points of the function H is defined by crit H := {2z € R*s.t. VH(2) = 0}.

Assumption 4.5.1. f is coercive, that is f(z) — +ooas ||z] — +oo.

Assumption 4.5.1 will be particularly useful to ensure that the sequence of the iterates
(2k)k>0 of Algorithm 5.1 is bounded. Indeed, a coercive function has compact level sets
and Lem. 4.1 will guarantee that the iterates lie in a level set of the function H.

We now introduce the limit point set of the sequence (zj)x>0 and exhibit some of its
properties.

Definition 4.5.1. (Limit point set) The set of all limit points of (z)ren initialized
at zg is defined by

w(z) := {Z € R*® : Jan increasing sequence of integers (k;);jen s.t Zg;, — Zasj — oo} .

Lemma 4.4. (Properties of the limit point set) Let (zx)ren be the sequence
defined for all k € N by 2z, = (xy, yx) where y,, = \/arpr and (xy,py) is generated by
Algorithm 5.1 from a starting point zg. Let Assumptions 4.2.1, 4.4.1, and 4.5.1 hold
true. Assume that Condition (4.5) holds. Then,

(i) w(zp) is a nonempty compact set.
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(ii) w(zp) C critH = critf x {0}.
(iii) kll)ril d(zk,w(z0)) = 0.

(iv) H is finite and constant on w(zp).

We introduce the KL inequality in the following. Define [o < H < 8] := {z € R?? : a <
H(z) < B}. Let n > 0 and define ®,, as the set of continuous functions ¢ on [0,7) which
are also continuously differentiable on (0,7), concave and satisfy ¢(0) = 0 and ¢’ > 0.

Definition 4.5.2. (KL property, Bolte et al. (2018, Appendix)) A proper and
lower semicontinuous (l.s.c) function H : R?*¢ — (—oo, +00] has the KL property locally
at Z € dom H if there exist n > 0, ¢ € ®, and a neighborhood U(Z) s.t. for all
2eU@EZ)N[H(Z) < H<HZZ)+n):

¢ (H(z) - H(2)) [VH(2)|| = 1. (4.8)

When H(z) = 0, we can rewrite Eq. (4.8) as: ||V(¢ o H)(2)|| > 1 for suitable z points.
This means that H becomes sharp under a reparameterization of its values through the
so-called desingularizing function .

The function H is said to be a KL function if it has the K. property at each point
of the domain of its gradient. Note that this property can be defined for nonsmooth
functions using the Clarke subdifferential in order to encompass nonsmooth neural
networks. We limit ourserlves to the simpler differentiable setting. KL inequality holds
at any non critical point (see Attouch et al. (2010, Remark 3.2 (b))). We introduce now
a uniformized version of the K¥. property which will be useful for our analysis.

Lemma 4.5. (Uniformized K¥ property, Bolte et al. (2014, Lemma 6, p 478))
Let Q be a compact set and let H : R?? — (—oc0, +00] be a proper Ls.c function. Assume
that H is constant on €2 and satisfies the KE property at each point of 2. Then, there
exist € > 0,7 > 0 and ¢ € ®,, such that for all z € Q, for all z € {z € R?: d(2,0Q) <
e}N[H(Z) < H < H(Z) + 1), one has

¢ (H(z) = H(Z)IIVH(2)|| = 1 (4.9)

Definition 4.5.3. (KL exponent) If ¢ can be chosen as ¢(s) = gse for some ¢ > 0
and 6 € (0,1] in Def. 4.5.2, then we say that H has the KL property at z with an
exponent of § 2. We say that H is a KL function with an exponent 6 if it has the same
exponent 6 at any Z.

In the particular case when § = 1/2, we recover the Polyak-Lojasiewicz condition (see
for e.g., Karimi et al. (2016)) satisfied for strongly convex functions. Furthermore, if
H is a proper closed semialgebraic function, then H is a KL function with a suitable
exponent 6 € (0,1]. The slope of ¢ around the origin informs about the "flatness" of a
function around a point. Hence, the K¥. exponent allows to obtain convergence rates. In
the light of this remark, we state one of the main results of this work.

Theorem 4.6. (Convergence rates) Let (zi)ien be the sequence defined for all k € N
by zx = (Tk,yr) where yr, = \/arpr and (vy,py) is generated by Algorithm 5.1 from
a starting point zy. Let Assumptions 4.2.1, 4.4.1 and 4.5.1 hold true. Assume that
Condition (4.5) holds. Suppose moreover that H is a KL function with KL exponent 6.
Then, the sequence (H(zy))ken converges to f(x.) where x, is a critical point of f and
the following convergence rates hold:

200 :=1— 0 is also defined as the KL exponent in other papers (Li and Pong, 2018).
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Figure 4.1 — Illustration of KL rates for a simple objective function f(z) = aP. From
left to right: (¢) curves of f(z) = aP, (i7) clipped version of ADAM (see Algorithm 5.1),
(131) ADAM ,(iv) Gradient Descent. Best seen in color.

(i) If 6 =1, then f(xy) converges in a finite number of iterations.
(1)) If 1/2 < 6 < 1, then f(xy) converges to f(x) linearly i.e. there exist ¢ €
(0,1),C >0 s.t. flag) — f(ze) < Cq~.
(iii) If0 < 0 < 1/2, then f(zx) — f(zy) = O(k=T).

The exact same rates hold for gradient descent by supposing that f (instead of H) is
KL with exponent 6. Assumption 4.4.1 and condition (4.5) are not needed in this case.

Sketch of the proof. The proof consists of two main steps. The first one is to show
that the iterates enter and stay in a region where the Kt inequality holds. This is
achieved using the properties of the limit set (Lem. 4.4) and the uniformized KL property
(Lem. 4.5). Then, the second step is to exploit this inequality to derive the sought
convergence results. We defer the complete proof to Section 4.9.3.

We introduce a lemma in order to make the K¥, assumption on the objective function f
instead of the function H.

Lemma 4.7. Let f be a continuously differentiable function satisfying the KL property
at £ with an exponent of § € (0,1/2]. Then the function H defined in Eq. (4.7) has also
the KL property at (z,0) with an exponent of .

The following result derives a convergence rate on the objective function values under
a Kt assumption on this same function instead of an assumption on the Lyapunov
function H. The result is an immediate consequence of Lem. 4.7 and Th. 4.6.

Corollary 4.8. Let (zx)ren be the sequence defined for all k € N by 2z = (zx, yk)
where y, = \/appr and (zy,py) is generated by Algorithm 5.1 from a starting point
20. Let Assumptions 4.2.1, 4.4.1, 4.5.1 hold true. Assume that Condition (4.5) holds.
Suppose moreover that f is a KL function with KL exponent 6 € (0,1/2). Then,
the sequence (H(zg))reny converges to f(z,) where z, is a critical point of f and

F(ax) — f(w.) = Ok 1)

Toy problem: K¥ rates for f(z) = zP.

KL rates are asymptotic rates in the sense that the constants cannot be explicited in
the convergence rates. As a consequence, the rates can be hardly observable in practice
from experiments. However, we can still illustrate these convergence results (Th. 4.6)
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in a simple toy example to give more insight. Consider the problem of minimizing the
function f(x) = aP for a real p € [1,7]. One can easily show that f is a KL function
with KE exponent § = 1. Note that the KL exponent is difficult to compute in general.
This justifies the choice of this toy problem. Moreover, even if the function f is indeed
convex, we recall the reader that the K¥. property is a local geometric property of the
function that is only interesting at its critical points (since it is automatically verified at
any non critical point). Notice that the KL analysis is valid in the general non-convex
case. The present toy example remains relevant if we modify the objective function f to
be non-convex and still keep a zP shape in a neighborhood of the point zero which is
the unique critical point in this example.

The Kt exponent as shown in the first plot in Figure 4.1 encodes information about
the flatness of the function f. Indeed, as p increases, the function f gets flatter around
the origin x = 0. We run the clipped version of ADAM (see Algorithm 5.1), the ADAM
algorithm and gradient descent on the functions f corresponding to different values of
the exponent 6, from the same initialization point x = 1. As expected from Th. 4.6
for the clipped ADAM, we observe in Figure 4.1 that f(zy) converges linearly or even
in a finite number of iterations for p € {1,1.3,1.5,2}. Notice that the linear rate is
clearly observable for p = 2 corresponding to 6 = % Even if we did not establish K&
rates for original ADAM, Figure 4.1 shows that it presents a very similar behavior to
the clipped version of ADAM in terms of Kt convergence rates in this simple problem.
We also represent gradient descent iterates for comparison. Note that KL rates are
known to hold for gradient descent. Moreover, for p > 2, we also observe a slower rate
corresponding to the sublinear rate of the function values.

4.6 Conclusion

In this chapter, we provided convergence rates for a clipped version of ADAM which
stems from a boundedness assumption on the effective stepsize of the original ADAM.
More precisely, similarly to gradient descent, we established a O(1/n) convergence rate
of the minimum of the squared gradient norms in the deterministic case. Furthermore,
we showed a similar convergence result in the stochastic setting up to the variance of
the noisy gradients. Finally, we established function value convergence rates under the
same boundedness assumption on the effective stepsizes together with the Kt geometric
property. This property is a powerful tool allowing to address non-convex nonsmooth
optimization and covers most deep neural networks.

4.7 About theoretical guarantees of variants of ADAM.

We list most of the existing variants of the ADAM algorithm together with their theoretical
convergence guarantees in Table 4.2.

Remark 16. The average regret bound result in the last line of Table 4.2 figures in
Luo et al. (2019). Actually, according to Savarese (2019), slightly different assumptions
on the bound functions should be considered to guarantee this regret rate.
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4.7. About theoretical guarantees of variants of ADAM.

Table 4.2 — Theoretical guarantees of variants of ADAM. The gradient is supposed
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4.8 Proofs for Section 4.4

4.8.1 Proof of Lem. 4.1

Supposing that V f is L—Lipschitz, using Taylor’s expansion and the expression of p,, in
the algorithm, we obtain the following inequality:

L
f(@ng1) < fan) = (Vf(@n), anp1pns1) + §Han+1pn+1ll2 (4.10)
Moreover,
1 1 1 1
%<an+17pi+1> - %WmP?) = %<an+1,1%21+1 —po) + %<an+1 — ap,P2). (4.11)

Observing that p2 | — p2 = —b*(Vf(zn) — pn)? + 2bpn41(V f(zn) — pn), We obtain after
simplification:

L b 1
HnJrl < Hn+§”an+1pn+1H2*§<an+l7 (vf(xn)*pn)2>*<an+1pn+lapn>+27b<an+1*anvp%>-
(4.12)

Using again p, = pny1 — b(Vf(x,) — ppn), we replace py, :

L b
Hyp1 < Hp + §||an+lpn+l||2 - §<an+la (Vf(zn) — pn)2>

1
- <an+17pi+1> + b<an+1pn+1u vf(xn) _pn> + %<an+1 - an;p%>'
Under Assumption 4.4.1, we write: (an41 — an,p3) < (1 — a){ani1,p2) and using
P2 =p2 4 + 2 (Vf(2) — pn)? = 20pn+1(Vf(zn) — pn), it holds that:

b
Hpy1 < Hy — (ans1,0001) — §<an+1, (Vf(zn) = pn)?)

L
+ §||an+1pn+1||2 + (b - (1 - a))<an+1pn+1a vf(xn) - pn>

b(l —a)

P i, (V) — ).

11—« 9
+ Tb<an+1apn+l> +

Using the classical inequality xy < % + “Tyz, we have:

b=O=alu T ) —p)?).

(4.13)

(b0 (V1 ) =pn) < P00 g2t

Hence, after using this inequality and rearranging the terms, we derive the following
inequality:

ant1L  b-(1-a)] 1-a

< H, — 2 - _
Hn+1 — Hn (an+1pn+l7]‘ 2 2u 2b >
b b—(1—oa)lu
Y (V) — ) (1 N a)) 1),

This concludes the proof.
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4.8.2 A first result under an upperbound of the stepsize

Proposition 4.9. Let Assumption 4.2.1 hold true. Suppose moreover that 1 —a < b < 1.
Let € > 0 s.t. agyp = % (1 — (b_(lbi_a)ﬁ — l_—ba — 5) is nonnegative. Assume for all

n €N,

Then, for all n > 1,

n—1 .
Z<ak+17vf(xk)2> < 2(162—;a) (HO _;nff + <a0,pg>>
k=0

Proof. This is a consequence of Lem. 4.1. Conditions A,+1 > ¢ and B > 0 write as
follow:

We get the assumption made in the proposition by injecting the second condition into
the first one and adding the assumption ag—:l < é made in the lemma. Under this
assumption, we sum over 0 < k < n —1 Eq. (4.4), rearrange it and use A,+1 > ¢, B >0
to obtain:

i
L

P
e{ary1,Phy1) < Ho — Hp,
0

e
Il

Then, observe that H,, > f(x,) > inf f. Therefore, we derive:

n—1 .
Hy —inf f
> laks1,pi) € ———

=0

; (4.14)

e

Moreover, from the Algorithm 5.1 second update rule, we get V f(zy) = %plﬁ_l — IT_bpk.
Hence, we have for all £ > 0 :

1 (1 —b)? 2
Vf(ap)? <2 <b2pi+1 + bzpi> < 5 (PR + 1) -

S
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We deduce that:

n—1 9 n—1
Z<ak+1a Vf(xk)2> < P2 <ak+1,pi+1 +pi)
k=0 k=0
9 n—1 9 _
2 Z<ak+17pi+1 2 Z akz—i—lapk
k=0
9 n—I1 ) 9 n—1 )
< 5] (kt1,Phr1) + o (ak, i)
k=0 k=0
2 1. <
< b7(1 + a) > lak,p7)
k=0
21+ «) ( Hy—inf f 9
S b2a < c + <a07p0> .

4.8.3 Proof of Th. 4.2

This is a consequence of Lem. 4.1. Conditions A,,+1 > € and B > 0 write as follow:

a <E 1_b—(1—a)_1—a_€ and u<a7b
=T 2u 2b “b—(1-a)

We get the assumption made in the proposition by injecting the second condition into
the first one and adding the assumption "—*1 < «a made in the lemma. Under this
assumption, we sum over 0 < k <n —1 Eq. (4 4), rearrange it and use A, 41 >, B >0
and ag.q > 6 to obtain:

n—1

> deliprsall* < Ho — Hy,
k=0

Then, observe that H, > f(x,) > inf f. Therefore, we derive:

1nf
Z g2 < Ho— T (4.15)

Moreover, from the algorithm 5.1 second update rule, we get V f(z3) = 3 Lori1 — IT_bpk.

Hence, we have for all k > 0 :

1 (1 —b)? 2
IV f(zn)lI” < 2 (bQ\pka + s HpkH2> < 35 (s l® + llpxll®) -
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We deduce that:

n—1 - n—1

2 2
DIV IR < 02 Z prsall” + llpel*) = 02 2> " |lpell® + llpall® + lIpol®
k=0 k=0 k=1

4 n
<=3 Il (4.16)
k=0

Finally, using Eqs. (4.15)-(4.16), we have:

0<k<n—

. inf
min |V f(z)[* < ZHW )|l < (58f+ ||poH2> :

4.8.4 Proof of Th. 4.3

The proof of this proposition mainly follows the same path as its deterministic counterpart.
However, due to stochasticity, a residual term (the last term in Eq. (4.17)) quantifying
the difference between the stochastic gradient estimate and the true gradient of the
objective function (compare Eq. (4.17) to Lem. 4.1) remains. Following the exact same
steps of Section 4.8.1, we obtain by replacing the deterministic gradient V f(x,) by its
stochastic estimate V f(xy, &nt1) -

ant1l b—(1—-a) 11—«

Hn+1 S Hn - <an+1p%+17 1- 2 - 2 - 2 >
b b—(1—
o (V) — ) (1 -l - a)) 1
+ <Vf(£l?n, gn—i-l) - VF(xn)v an+1pn+1> . (4.17)

Using the classical inequality xy < 52%2]—%"73’2 with 7 = 1/2 and the almost sure boundedness
of the stepsize a,41, we get:

(VF(@n, 1) — VF(2n), ans1pn+1) < (Vf (@0, &nr1) — VF(20))? + ipgz-i—la an+1)

B 1
< supl|V f (@n, €nt1) — VE(2) > + 1<an+1,pfb+1) :

Therefore, taking the expectation and using the boundedness of the variance, we obtain
from Eq. (4.17):

3 appil Ppb-(1-a) 1-«a

E[Hp41] — E[Hp] < —E <an+1p721+171— 5 o - 2b>

Then, the proof follows the lines of Section 4.8.2. Hence, we have

E[Hy] - E[H,] < -E <an+1p121+1a51> + C_LSUPUQ'
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We sum these inequalities for £ = 0,--- ,n — 1, inject the assumption a,11 > § and
rearrange the terms to obtain

S 2 = ) Ho—inf f  nigupo?
K kZ_OHkarIH SE ;<ak+l7pk+1> < 5 + . . (418)

Then, using V f(xk, {gr1) = %pkﬂ — IT_bpk and a similar upperbound to Eq. (4.16) we
show that

n—1 n

4
> IV £ &) < 0 > llpl®- (4.19)
k=0 k=0

Therefore, combining Eqs. (4.19)-(4.18), we establish the following inequality

n—1 ) -
4 ( Hyp—inf f AGgupn
E Z HVf(xk,ng)HZ < = ( + HPOHQ> 4 s 2

- b2 de deb?
k=0

Finally, we apply Jensen’s inequality to || - || and divide the previous inequality by n to

obtain the sought result

n—1 . _
1 4 Hy —inf f 4dagy
—E E F 2l < 2 ZPsup 2
n [HV el } ~ nob? ( oc + llpoll ) + seb2 ¢

Remark 17. Following the derivations in Section 4.8.2, note that we also obtain the
following result

n—1 . _
21+ «) ( Hy—inf f Nasyp 0>
E kzo<ak+1, V(e 1)) | < 2o < . + (a0, pg) + % .

4.8.5 Comparison to Ochs et al. (2014)

We recall the conditions satisfied by ay, and (3, in Ochs et al. (2014) in order to traduce
them in terms of the algorithm (5.1) at stake. Define:

Conditions of Ochs et al. (2014) write: a, > ¢1 By, > 0 0, > v, > co where ¢, ¢ are
positive constants and (d,,) is monotonically decreasing.

One can remark that Algorithm 5.1 can be written as (4.3) with stepsizes o, = ba,+1
and inertial parameters (3, = (1 — b)aZ—:l Conditions on these parameters can be
expressed in terms of a,. Supposing cs = 0, the condition ~,, > co is equivalent to

An+1 < 2

w =2 b2—arl) (420)
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Note that the classical condition a, < 2/L shows up consequently. Moreover, the
condition on (d,,) is equivalent to

1 3—0b1 1-0
< — - for n > 1. (4.21)
Ap41 2 ay 2ap-1
Note that we get rid of condition (4.21) while allowing adaptive stepsizes a, (see
Prop. 4.9).

4.8.6 Performance of gradient descent in the non-convex setting.

In the non-convex setting, for a smooth function f, we cannot say anything about
the convergence rate of the sequences (f(xx)) and (zj). Nevertheless, as exposed in
(Nesterov, 2004, p.28), we can control the minimum of the gradients norms. We prove
this result in the following for completeness.

Consider the gradient descent algorithm defined by: xp11 = xx — YV f(zr). Assume
that’y>0and1—%>0.

Supposing that V f is L—Lipschitz, using Taylor’s expansion and regrouping the terms,
we obtain the following inequality:

Flann) < Fox) = ( - 7;) 195 ) 3

Then, we sum the inequalities for 0 < k < n — 1, lower bound the gradients norms in
the sum by their minimum and we obtain for n > 1 :

. f(xo) —inf f
oy VI <5 gy

4.9 Proofs for Section 4.5

4.9.1 Three abstract conditions

Inspired from the abstract convergence mechanism of Bolte et al. (2018, Appendix), we
show that similar conditions hold in our case. We highlight that these conditions are
slightly different here, since we do not deal with gradient-like descent sequences (for
which the objective function is nonincreasing over the iterations). Conditions below
are closer to those of Ochs et al. (2014) which studies a non-descent algorithm. Note
however that the Lyapunov function H and the sequence (zx) we consider are different.

Lemma 4.10. Let (z)ken be the sequence defined for all k € N by 2z = (z, yx) where
Yk = Jarpr and (zy,pg) is generated by Algorithm 5.1 from a starting point zp. Let
Assumptions 4.2.1 and 4.4.1 hold true. Assume moreover that condition (4.5) holds.
Then,

(i) (sufficient decrease property) There exists a positive scalar p; s.t.:

H(zp41) — H(z) < —p1||wgsn — apl|” Yk €N
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(ii) There exists a positive scalar ps s.t.:
IVH (i) < pa lzass — ol + o — 2l VE > 1.

(iii) (continuity condition) If z is a limit point of a subsequence (zj;)jen, then
lim H(z;) = H(Z).
—+00

J

Remark 18. Note that the conditions in Lem. 4.10 can be generalized to a nonsmooth
objective function. Indeed, in Bolte et al. (2018, Appendix), the Fréchet subdifferential
replaces the gradient.

Proof.

(i) From Lem. 4.1 and Th. 4.2, we get for all k£ € N:

2
Tht1 — Tk 3
H(zp11)—H(21) < —e{agt1,Dhsr) < —€lags, (+> ) < ——— llepra—z]*.
—Qk41 Asup

13
Asup :

We set p; :=

(ii) First, observe that for all k € N
1
IVH G )| < IV F (@)l + 3 [ymall - (4.22)

Now, let us upperbound each one of these two terms. Recall that we can rewrite
our algorithm under a "Heavy-ball"-like form as follows:

Thtl = Tk — Oéka(.Z‘k) + Bk(xk — xkfl) Vk > 1.

where ay, := bag11 and B = (1 —b) a’;zl are vectors.

On the one hand, using the L-Lipschitz continuity of the gradient, we obtain

IV F @)l <2 (19 (@) = V)2 + 195 @0)]12)

<2 (L2 llonsr — el + V@)1

Moreover,
5 2
Tp — Tk k
IV f@p)l? = ||[=—5 + == (a — 251)
(677 Qe
? 1-b61 2
L — Thk41 -
<2||——— 2||—— — Xp_
- bak_H + b ag (xk Tk 1)

2 2(1 — b)?
< 1252 | 2pe1 — 2kl + 5 g — xp—1])?

2
< h262 (”karl - wk”Z + ”HZ'k — $k,1”2).
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Hence,
IV flpsn) |2 < 2 (L2 orsn — 2l + 1V £ o) )

2 4
<2 <L2 + 1)252) @1 — ail|* + 1252 2 — zp—1 |

2
<2 <L2 * 19252) (g — 2ll® + ok — ze—1 ) -

Therefore, the following inequality holds:

2
IVFf(@rs1)ll < 4|2 <L2 + b?62> ([ekg1 — zell + 2k — op-1l]) -

On the otherhand,

Th+1 — Tk

Yk+1|| = Qk+1Pk+1|| =
Ykl = [[Vark+1pe+ |l V@

1
< — || Thg1 — Tk -
\/gll + |

Finally, combining the inequalities for both terms in Eq. (4.22), we obtain

IVH (ze 1)l < p2(l|zrgr — oxll + |l — 2al]) VB> 1.

with pg := ( 2(L2+172252>+b\1/5>.

(iii) This is a consequence of the continuity of H.

4.9.2 Proof of Lem. 4.4

123

(i) By Th. 4.2, the sequence (H (zy))nen is nonincreasing. Therefore, for all n € N,
H(z,) < H(zo) and hence z, € {z: H(z) < H(zp)}. Since f is coercive, H is also
coercive and its level sets are bounded. As a consequence, (zy,)nen is bounded and
there exist z, € R? and a subsequence (zkj )jen s.t. Zk; = Zx 88 J — 00. Hence,

w(z0) # 0. Furthermore, w(zo) = (e Up>, {2} is compact as an intersection of

compact sets.

First, critH = critf x {0} because VH(z) = (Vf(x),y/b)T. Let z. € w(zo).
Recall that xx11 — 2 — 0 as k — oo by Th. 4.2. We deduce from the second
assertion of Lem. 4.10 that VH(z) — 0 as k — 00. As z, € w(zp), there exists a
subsequence (zj,)jen converging to z.. Then, by Lipschitz continuity of VH, we
get that VH (z,) — VH(z2:) as j — co. Finally, VH(z2.) = 0 since VH (2;) — 0

and (VH (2x;))jen is a subsequence of (VH (2,))nen -
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(iii) This point stems from the definition of limit points. Every subsequence of the
sequence (d(zg,w(20)))ken converges to zero as a consequence of the definition of
w(zo).

(iv) The sequence (H(z,))nen is nonincreasing by Th. 4.2. It is also bounded from
below because H(zx) > f(xy) > inf f for all £ € N. Hence we can denote by [ its
limit. Let Z € w(zp). There there exists a subsequence (2;)jen converging to Z as
j — oo. By the third assertion of Lem. 4.10, jl&gloo H(zy;) = H(Z). Hence this

limit equals [ since (H (zy,))nen converges towards [. Therefore, the restriction of
H to w(zp) equals [ .

4.9.3 Proof of Th. 4.6

The first step of this proof follows the same path as Bolte et al. (2018, Proof of
Th. 6.2, Appendix). Since f is coercive, H is also coercive. The sequence (H (zx))ken
is nonincreasing. Hence, (2z) is bounded and there exists a subsequence (zz,)qen
and z € R* sit. 2, — z as ¢ — oo. Then, since (H(zj))ken is nonincreasing and
lowerbounded by inf f it is convergent and we obtain by continuity of H,

lim H(zx) = H(Z). (4.23)

k——+o0

Using Th. 4.2, observe that the sequence (yy) converges to zero since (ay) is bounded
and pj, — 0. If there exists k € N s.t. H(z;) = H(Z), then H(z,,) = H(z) and by the
first point of Lem. 4.10, 3, = z and then (x})recy is stationary and for all k > k,
H(zp) = H(2) and the results of the theorem hold in this case (note that z € critH by
Lem. 4.4). Therefore, we can assume now that H(z) < H(z,)Vk > 0 since (H (2x))ken
is nonincreasing and Eq. (4.23) holds. One more time, from Eq. (4.23), we have that
for all n > 0, there exists kg € N s.t. H(z,) < H(Z) +n for all kK > kg. From Lem. 4.4,
we get d(zp,w(z0)) — 0 as k — +oo. Hence, for all € > 0, there exists k1 € N s.t.
d(zk,w(20)) < € for all k > ki . Moreover, w(zp) is a nonempty compact set and H is
finite and constant on it. Therefore, we can apply the uniformization Lem. 4.5 with
Q = w(zp). Hence, for any k > [ := max(ko, k1), we get

@' (H (2) = H(2))? |[VH ()| > 1. (4.24)

This completes the first step of the proof which is illustrated in Figure 4.2.

In the second step, we follow the proof of Johnstone and Moulin (2017, Th. 2). Using
Lem. 4.10 .(i)-(ii), we can write for all & > 1,

2 2
IV )| < 263 (i = anl® + llow = 2uca ) € 22(H (5100) = Hlonr).

Injecting the last inequality in Eq. (4.24), we obtain for all k > ko := max(l,2),

%’(H( — H(2)*(H - H > 1
P zk) — H(Z))" (H(zp—2) — H(z)) 2 1.

Now, use ¢/(s) = s~! to derive the following for all k& > ky:

[H(oh2) = H)) = [H(z) ~ HE) 2 555G - HEPO . (429)
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Figure 4.2 — Illustration of the first step of the proof of Th. 4.6

Let 1y := H(z) — H(2) and Cy = 2,%152' Then, we can rewrite Eq. (4.25) as
rhog =1 > 1 " k> k. (4.26)

We distinguish three different cases to obtain the sought results.

(i) 0=1:
Suppose r; > 0 for all k > ko . Then, since we know that r, — 0 by Eq. (4.23),
C'1 must be equal to 0. This is a contradiction. Therefore, there exist k3 € N s.t.
rp = 0 for all k > k3 (recall that (74)gen is nonincreasing).

(i) 6 > 3:
As rp — 0, there exists k4 € N s.t. for all & > k4, 7, < 1. Observe that
2(1 —6) <1 and hence rg_9 — 1, > Cy71, for all k > ko and then

T < (1 + Cl)flrk,g <(1+ Cl)iplnu . (4.27)

where p; 1= L%j . Notice that p; > W. Thus, the linear convergence result
follows. Note also that if 6 = 1/2, 2(1 —60) = 1 and Eq. (4.27) holds for all k > ko .

(i) 6 < 1:
Define the function h by h(t) = 1_—]329t29_1 where D > 0 is a constant. Then,

Tk Tp—2
h(r) = h(re—2) = / K (t)dt = D/ 20724t > D (rg_g — rg) 12057
Tk

Tk—2
We disentangle now two cases:

(a) Suppose 27“,%9:22 > r,ﬁ‘”. Then, by Eq. (4.26), we get

2 _CiD
h(rg) — h(rg—2) = D (rg—2 — %) TZ€22 > 17

> = (4.28)
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(b) Suppose now the opposite inequation 27“,%‘9:22 < 7“,%972. We can suppose

without loss of generality that r; are all positive. Otherwise, if there exists p
such that r, = 0, the sequence (r)ren will be stationary at 0 for all k£ > p.
Observe that 20 — 2 < 20 — 1 < 0, thus 22=L > 0. As a consequence, we can

260—2
20—1 .
ie_l > qr,%e_gl where g := 220-2 > 1. Therefore, using

moreover that the sequence (7)ken is nonincreasing and 20 — 1 < 0, we
derive the following

write in this case r

_ D _
=Dy > g (=Dl = Co. (429)

Combining Eq. (4.28) and Eq. (4.29) yields h(rg) > h(rg—2) + C3 where C3 :=
min(Cy, S . Consequently, h(rg) > h(ry—2p,) +p2 Cs where py == [55E2| . We

deduce from this inequality that

h(rk) > h(rk) - h(rk72p2) >p2Cs.

Therefore, rearranging this inequality using the definition of A, we obtain r,i_% <

D — : k—ko—2
555 (C5p2)~t . Then, since py > *=2==2

1

- k—ky—2\7"
re < Capy’™' < Cy (;) .

1
Where 04 = <C’3(]_D29)> 20—1 '

We conclude the proof by observing that f(zx) < H(zx) and recalling that z € critH .

4.9.4 Proof of Lem. 4.7

Since f has the KL property at  with an exponent 6 € (0,1/2], there exist ¢, and
v>0s.t.

IVS@)|T7 > e(f(x) — f(2)) (4.30)

for all x € R? s.t. ||z — 7| < e and f(x) < f(Z) + v where condition f(z) — f(z)
is dropped because Eq. (4.30) holds trivially otherwise. Let z = (x,y) € R?? be s.t.
|z —z| <e, |yl <eand H(z,0) < H(z,y) < H(z,0) +v. We assume that ¢ <b (e
can be shrunk if needed). We have f(z) < H(x,y) < H(z,0) + v = f(z) + v. Hence
Eq. (4.30) holds for these z.

1 .
By concavity of u — u20-9 _ we obtain

1
-6

1 1
VAT = o | I95@IT |

1
L1
where Cy := 220-0) |
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Hence, using Eq. (4.30), we get

IVH@.y)| ™ = Co (c<f<x> - 1@+

)

1
Observe now that ﬁ > 2 and H%H < % < 1. Therefore, H%Hl_g > Hy/b||2.

Finally,

= Cp min (c, 2) <H(:L‘,y) - H(:E,O)) :

This completes the proof.
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Analysis of a Target-Based Actor-Critic Algorithm with
Linear Function Approximation

Abstract Actor-critic methods integrating target networks have exhibited a stu-
pendous empirical success in deep reinforcement learning. However, a theoretical
understanding of the use of target networks in actor-critic methods is largely missing
in the literature. In this chapter, we bridge this gap between theory and practice by
proposing the first theoretical analysis of an online target-based actor-critic algorithm
with linear function approximation in the discounted reward setting. Our algorithm uses
three different timescales: one for the actor and two for the critic. Instead of using the
standard single timescale temporal difference (TD) learning algorithm as a critic, we
use a two timescales target-based version of TD learning closely inspired from practical
actor-critic algorithms implementing target networks. First, we establish asymptotic
convergence results for both the critic and the actor under Markovian sampling. Then,
we provide a finite-time analysis showing the impact of incorporating a target network
into actor-critic methods.

5.1 Introduction

Actor-critic algorithms (Barto et al., 1983; Konda and Borkar, 1999; Konda and Tsitsiklis,
2003; Peters and Schaal, 2008; Bhatnagar et al., 2009) are a class of reinforcement learning
(RL) (Sutton and Barto, 2018; Bertsekas and Tsitsiklis, 1996) methods to find an optimal
policy maximizing the total expected reward in a stochastic environment modelled by a
Markov Decision Process (MDP) (Puterman, 2014). In this type of algorithms, two main
processes interplay: the actor and the critic. The actor updates a parameterized policy in
a direction of performance improvement whereas the critic estimates the current policy of
the actor by estimating the unknown state-value function. In turn, the critic estimation
is used to produce the update rule of the actor. Combined with deep neural networks
as function approximators of the value function, actor-critic algorithms witnessed a
tremendous success in a range of challenging tasks (Heess et al., 2015; Lillicrap et al.,
2016; Mnih et al., 2016; Fujimoto et al., 2018; Haarnoja et al., 2018). Apart from using
neural networks for function approximation (FA), one of the main features underlying
their remarkable empirical achievements is the use of target networks for the critic
estimation of the value function. Introduced by the seminal work of Mnih et al. (2015)
to stabilize the training process, this target innovation consists in using two neural
networks maintaining two copies of the estimated value function: A so-called target
network tracking a main network with some delay computes the target values for the
value function update.

Despite their resounding empirical success in deep RL, a theoretical understanding of
the use of target networks in actor-critic methods is largely missing in the literature.
Theoretical contributions investigating the use of a target network are very recent and
limited to temporal difference (TD) learning for policy evaluation (Lee and He, 2019) and
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critic-only methods such as Q-learning for control (Zhang et al., 2021b). In particular,
these works are not concerned with actor-critic algorithms and leave the question of the
finite-time analysis open.

In the present work, we bridge this gap between theory and practice by proposing the
first theoretical analysis of an online target-based actor-critic algorithm in the discounted
reward setting. We consider the linear FA setting where a linear combination of pre-
selected feature (or basis) functions estimates the value function in the critic. An analysis
of this setting is an insightful first step before tackling the more challenging nonlinear FA
setting aligned with the use of neural networks. We conduct our study in the multiple
timescales framework. In the standard two timescales actor-critic algorithms (Konda and
Tsitsiklis, 2003; Bhatnagar et al., 2009), at each iteration, the actor and the critic are
updated simultaneously but the actor evolves more slowly than the critic, using smaller
stepsizes than the latter. We face two main challenges due to the integration of the target
variable mechanism. First, in contrast to standard two timescales actor-critic algorithms,
our algorithm uses three different timescales: one for the actor and two for the critic.
Instead of using the single timescale TD learning algorithm as a critic, we use a two
timescales target-based version of TD learning closely inspired from practical actor-critic
algorithms implementing target networks. Second, incorporating a target variable into
the critic results in the intricate interplay between three processes evolving on three
different timescales. In particular, the use of a target variable significantly modifies the
dynamics of the actor-critic algorithm and deserves a careful analysis accordingly.

Our main contributions are summarized as follows. First, we prove asymptotic conver-
gence results for both the critic and the actor. More precisely, as the actor parameter
changes slowly compared to the critic one, we show that the critic which uses a target
variable tracks a slowly moving target corresponding to the well-known TD solution
(Tsitsiklis and Van Roy, 1997). Our development is based on the classical ordinary
differential equation (ODE) method of stochastic approximation (see, for e.g., Benveniste
et al. (1990); Borkar (2008)). Then, we show that the actor parameter visits infinitely
often a region of the parameter space where the norm of the policy gradient is dominated
by a bias due to linear FA. Second, we conduct a finite-time analysis of our actor-critic
algorithm which shows the impact of using a target variable on the convergence rates
and the sample complexity. Loosely speaking, up to a FA error, we show that our
target-based algorithm converges in expectation to an e-approximate stationary point
of the non-concave performance function using at most O(e~3log> %) samples com-
pared with O(e~?log(2)) for the best known complexity for two timescales actor-critic
algorithms without a target network. All the proofs are deferred to Sections 5.7 and 5.8.

5.2 Related works

In this section, we briefly discuss the most relevant related works to ours. Existing
theoretical results in the literature can be divided into two classes.

Asymptotic results. Almost sure convergence results are referred to as asymptotic.
Konda & Tsitsiklis (Konda and Tsitsiklis, 2003; Konda, 2002) provided almost sure (with
probability one) convergence results for a two timescales actor-critic algorithm in which
the critic estimates the action-value function via linear FA. Our algorithm is closer to
an actor-critic algorithm introduced by Bhatnagar et al. (2009) in the average reward
setting. However, unlike Bhatnagar et al. (2009), we consider the discounted reward
setting and integrate a target variable mechanism into our critic. Moreover, as previously
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mentioned, the target variable for the critic adds an additional timescale in comparison
to Konda and Tsitsiklis (2003); Bhatnagar et al. (2009) which only involve two different
timescales. Regarding theoretical results considering target networks, Lee and He (2019)
proposed a family of single timescale target-based TD learning algorithms for policy
evaluation. Our critic corresponds to a two timescales version of the single timescale
target-based TD learning algorithm of (Lee and He, 2019, Algorithm 2) called Averaging
TD. In (Lee and He, 2019, Th. 1), this single timescale algorithm is shown to converge
with probability one (w.p.1) towards the standard TD solution solving the projected
Bellman equation (see Tsitsiklis and Van Roy (1997) for a precise statement). Besides
the timescales difference with Lee and He (2019), in this article, we are concerned with a
control setting in which the policy changes at each timestep via the actor update. Yang
et al. (2019) proposed a bilevel optimization perspective to analyze Q-learning with a
target network and an actor-critic algorithm without any target network. More recently,
Zhang et al. (2021b) investigated the use of target networks in Q-learning with linear FA
and a target variable with Ridge regularization. Their analysis covers both the average
and discounted reward settings and establishes asymptotic convergence results for both
policy evaluation and control. This recent work of Zhang et al. (2021b) focuses on the
critic-only Q-learning method with a target network update rule, showing the role of
the target network in the off-policy setting. In particular, this work is not concerned
with actor-critic algorithms.

Finite-time analysis. The second type of results consists in establishing time-
dependent bounds on some error or performance quantities such as the average expected
norm of the gradient of the performance function. These are referred to as finite-time
analysis. In the last few years, several works proposed finite-time analysis for TD learning
(Bhandari et al., 2018; Srikant and Ying, 2019) for two timescales TD methods (Xu
et al., 2019) and even more generally for two timescales linear stochastic approximation
algorithms (Gupta et al., 2019; Dalal et al., 2018; Kaledin et al., 2020). These works
opened the way to the recent development of a flurry of nonasymptotic results for
actor-critic algorithms (Yang et al., 2018; Qiu et al., 2019; Kumar et al., 2019; Hong
et al., 2020; Xu et al., 2020; Wang et al., 2020; Wu et al., 2020; Shen et al., 2020).
Regarding online one-step actor-critic algorithms, Wu et al. (2020) provided a finite-time
analysis of the standard two timescales actor-critic algorithm (Bhatnagar et al., 2009,
Algorithm 1) in the average reward setting with linear FA. Shen et al. (2020) conducted
a similar study for a revisited version of the asynchronous advantage actor-critic (A3C)
algorithm in the discounted setting. None of the mentioned works uses a target network.
In this work, we conduct a finite-time analysis of our target-based actor-critic algorithm.
Such new results are missing in all theoretical results investigating the use of a target
network (Lee and He, 2019; Zhang et al., 2021b).

The summary table 5.1 compiles some key features of our work to situate it in the
literature and highlights our contributions with respect to (w.r.t.) the closest related
works.

5.3 Preliminaries

Notation. For every finite set X, we use the notation P(X) for the set of probability
measures on X. The cardinality of a finite set Y is denoted by |Y|. For two sequences
of nonnegative reals (z,) and (y,), the notation x,, = O(y,) means that there exists a
constant C' independent of n such that z,, < Cy, for all n € N. For any integer p, the
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Table 5.1 — Comparison to closest related works.

Discounted Actor Markovian Target Asymptotic Finite-time Timescales

reward critic ~ sampling! variable results analysis
Lillicrap et al. (2016) v v X v X X 1
Lee and He (2019) v X X v v e 1
Wu et al. (2020) X v/ v X X v 3
Shen et al. (2020) v v v X X v 2
Zhang et al. (2021b) v X v v v X 2
Ours v/ v v 4 v v/ 3

! refers to the use of samples generated from the MDP and the acting policy, this excludes experience replay as in Lillicrap et al.

(2016) and identically independently distributed (i.i.d.) samples used in theoretical analysis.

2 Lee & and He Lee and He (2019) provide a finite-time analysis for a target-based TD-learning algorithm (for policy evaluation)
based on the periodic update style of the target variable used in Mnih et al. (2015) involving two loops. They highlight that a
finite-time analysis of the Polyak-averaging style update rule Lillicrap et al. (2016) is an open question. Here, we address this
question in the control setting.

euclidean space RP is equipped with its usual inner product (-,-) and its corresponding
2-norm | - ||. For any integer d and any matrix A € R¥P_ we use the notation || A| for
the operator norm induced by the euclidean vector norm. For a symmetric positive
semidefinite matrix B € RP*P and a vector € RP, the notation ||z|% refers to the
quantity (x, Bz). The transpose of the vector x is denoted by z7 and I, is the identity
matrix.

5.3.1 Markov decision process and problem formulation

Consider the RL setting (Sutton and Barto, 2018; Bertsekas and Tsitsiklis, 1996; Szepes-
vari, 2010) where a learning agent interacts with an environment modeled as an infinite ho-
rizon discrete-time discounted MDP. We denote by 8 = {s1,- - , s,,} the finite set of states
and A the finite set of actions. Let p: 8§ x A — P(8) be the state transition probability
kernel and R : §xA — R the immediate reward function. A randomized stationary policy,
which we will simply call a policy in the rest of the chapter, is a mapping 7 : 8 — P(A)
specifying for each s € §,a € A the probability 7(a|s) of selecting action a in state s.
At each time step t € N, the RL agent in a state Sy € S executes an action A; € A with
probability 7(A|S;), transitions into a state S;11 € § with probability p(Siy1|St, Ar)
and observes a random reward R;y1 € [~Ug, Ur| where Up is a positive real. We denote
by P, » the probability distribution of the Markov chain (S, A;) issued from the MDP
controlled by the policy 7 with initial state distribution p. The notation E, . refers
to the associated expectation. We will use E; whenever there is no dependence on p.
The sequence (Ry) is such that (s.t.) Ex[Ret1|St, Al = R(St, At). Let v € (0,1) be
a discount factor. Given a policy m, the long-term expected cumulative discounted
reward is quantified by the state-value function V; : 8 — R and the action-value function
Qr : 8 x A — R defined for all s € 8,a € A by Vi(s) := Ex[> 7oy Re41|S0 = sland
Qr(s,a) == Ex[> 7207 Rev1]So = s, Ay = a] .We also define the advantage function
Ar: 8 XA — R by Az(s,a) == Qx(s,a) — Vz(s). Given an initial probability distri-
bution p over states for the initial state Sy, the goal of the agent is to find a policy 7
maximizing the expected long-term return J(7) := > s p(s)Vx(s). For this purpose,
the agent has only access to realizations of the random variables S, A; and R; whereas
the state transition kernel p and the reward function R are unknown.
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5.3.2 Policy Gradient framework

From now on, we restrict the policy search to the set of policies m parameterized by
a vector 6 € R? for some integer d > 0 and optimize the performance criterion J over
this family of parameterized policies {7y : § € R?}. The policy dependent function .J
can also be seen as a function of the parameter §. We use the notation J(0) for J(mp)
by abuse of notation. The problem that we are concerned with can be written as:
maxpega J(0) .Whenever it exists, define for every § € R? the function vy : 8§ x A — R?
for all (s,a) € 8§ x A by:
Yo(s,a) == Vinmg(als),

where V denotes the gradient w.r.t. . We introduce an assumption on the regularity
of the parameterized family of policies which is a standard requirement in policy
gradients (see, for eg., (Zhang et al., 2020a, Assumption 3.1)(Konda and Tsitsiklis,
2003, Assumption 2.1)). In particular, it ensures that 1)y is well defined .

Assumption 5.3.1. The following conditions hold true for every (s,a) € 8§ x A.

(a) For every 6 € R?, mpy(als) > 0.
(b) The function 6 — my(als) is continuously differentiable and L,-Lipschitz continuous.

(c) The function 6 — 1)y (s, a) is bounded and L,;-Lipschitz.

Assumption 5.3.1 is satisfied for instance by the Gibbs (or softmax) policy and the
Gaussian policy (see (Zhang et al., 2020a, Section 3) and the references therein for details).
Under Assumption 5.3.1, the policy gradient theorem (Sutton et al., 1999)(Konda, 2002,
Th. 2.13) with the state-value function as a baseline provides an expression for the
gradient of the performance metric J w.r.t. the policy parameter 6 given by:

1 . .
VJ(0) = T E 8,4y~ p, o [Brg (55 A) 1ho(S, A)] - (5.1)
Here, the couple of random variables (5’ , fl) follows the discounted state-action occupancy
measure (i, 9 € P(8 x A) defined for all (s,a) € § x A by:

Lpo(s,a) :=d,g(s)mg(als) where d,g(s):=(1—7) Z’ytppm (St =s) (5.2)
=0

is a probability measure over the state space 8§ known as the discounted state-occupancy
measure. Note that under Assumption 5.3.1, the policy gradient VJ is Lipschitz
continuous (see (Zhang et al., 2020a, Lem. 4.2)).

5.4 Target-based actor-critic algorithm

In this section, we gradually present our actor-critic algorithm.

5.4.1 Actor update

First, we need an estimate of the policy gradient V.J(0) of Eq. (5.1) in view of using
stochastic gradient ascent to solve the maximization problem. Given Eq. (5.1) and
following previous works, we recall how to sample according to the distribution f, 9. As
described in (Konda, 2002, Section 2.4), the distribution s, ¢ is the stationary distribution
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of a Markov chain (S, A);en issued from the artificial MDP whose transition kernel
p:8x A — P(8) is defined for every (s,a) € 8 x A by

p(|s;a) :=yp(ls,a) + (1 =7)p(-), (5:3)

and which is controlled by the policy 7y generating the action sequence (A;). We will
later state conditions to ensure its existence and uniqueness. Therefore, under suitable
conditions, the distribution of the Markov chain (S, A;);en will converge geometrically
towards its stationary distribution p,¢. This justifies the following sampling procedure.
Given a state S’t and an action flt, we sample a state St—f—l according to this artificial
MDP by sampling from p(-|S;, A;) with probability v and from p otherwise. For this
purpose, at each time step ¢, we draw a Bernoulli random variable B; € {0,1} with
parameter v which is independent of all the past random variables generated until time ¢.

Then, using the definition of the advantage function, Eq. (5.1) becomes:

1 - . - -

VJ(H) = ﬁ ) E(S‘,A)NMP,Q,SNPHS,A) [(R(Sv A) + 7V7F9 (S) - V7r9 (S)) %(5, A)] : (5'4>
From this equation, it is natural to define for every V' € R™ the temporal difference (TD)
error

8fi1 = Res1 +7V(Si11) = V(S), (5.5)

where Siy1 is drawn from the distribution p(-|§t, /L) and (S’t, At)teN is the Markov chain
induced by the artificial MDP described in Eq. (5.3) and controlled by the policy my.
Notice here from Eq. (5.4) that we need two different sequences (S;) and (Sy) respectively
sampled from the kernels p and p. In our discounted reward setting, using only the
sequence (S;) issued from the artificial kernel  would result in a bias with a sampling
error of the order 1 — v (see (Shen et al., 2020, Eq. (14) and Lem. 7)).

Supposing for now that the value function V;, is known, it stems from Eq. (5.4) that
a natural estimator of the gradient V.J() is (52{:‘{ Y(St, A;)/(1 — ). This estimator is
only biased because the distribution of our sampled Markov chain (S’t, /Nlt)t is not exactly
Ipe but converges geometrically to this one. However, the state-value function Vg, is
unknown. Given an estimate V,,, € R"™ of Vﬂet and a positive stepsize oy, the actor
updates its parameter as follows:

1 -
O = b0+ v dicivn(Si A (5.6)

5.4.2 Critic update

The state-value function Vi, is approximated for every state s € 8 by a linear func-
tion of carefully chosen feature vectors as follows: Vi, (s) =~ V,(s) = wle(s) =
S wigt(s) ,where w = (w1, ,wp,)T € R™ for some integer m < n = [§| and
é(s) = (¢'(s), - ,¢™(s))T is the feature vector of the state s € §. We compactly
represent the feature vectors as a matrix of features ® of size n x m whose ith row
corresponds to the row vector ¢(s)? for some s € §.

Now, before completing the presentation of our algorithm, we motivate the use of a
target variable for the critic. As previously mentioned, instead of a standard TD learning
algorithm (Sutton, 1988) for the critic, we use a target-based TD learning algorithm. We
follow a similar exposition to (Lee and He, 2019, Secs. 2.3, 2.4 and 3) to introduce the
target variable for the critic. Let us introduce some additional notations for this purpose.
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Fix § € R?. Let Py be the transition matrix over the finite state space associated
to the Markov chain (S;), i.e., the matrix of size n x n defined for every s,s’ € 8§ by
Py(s'|s) := 3 ,cap(s'|s,a)mg(als) .Consider the vector Ry = (Rg(s1),- - - Rg(sn)) whose
ith coordinate is provided by Rg(s;) = > ., ma(a|s;)R(s;,a). Let D, g be the diagonal
matrix with elements d,g(s;), i = 1,---n along its diagonal. Define also the Bellman
operator Ty : R"™ — R" for every V € R™ by TyV := Ry + 7FyV . The true value
function Vy, satisfies the celebrated Bellman equation Vi, = TpVy,. This naturally
leads to minimize the mean-square Bellman error (MSBE) (Sutton et al., 2009b, Sec-
tion 3) defined for every w € R™ by &p(w) = %[ TpVL, — VWH%M where V,, = Qw.

The gradient of the MSBE w.r.t. w can be written as V,Ep(w) = E§~dp9[(T9VW(S) —

Vw(g))(ESNPg(-|S) YV Vi (S)] — VuViu(S))]. As explained in (Bertsekas and Thsitsik-

lis, 1996, p. 369), omitting the gradient term V,TpV,,(S) = Eg p,(3) YV Ve(9)] in
Vwés(w) yields the standard TD learning update rule wy11 = wy + 6t+1¢(§t). The TD
learning update does not coincide with a stochastic gradient descent on the MSBE
or even any other objective function (see (Barnard, 1993, Appendix 1) for a proof).
The idea of target-based TD learning is to consider a modified version of the MSBE
Eo(w,w) = $|TyVe — VW||2Dpe . Observe that the term TyV,, depending on w in the
MSBE is now freezed in ég(w,@) thanks to the target variable w. We now need to
introduce a new sequence w; to define a sample-based version of TyV; — V,, which will
be a modified version of the standard TD-error

St1 = Re1 + 70 (Sep1) @ — d(Sp) wy (5.7)
Then, a stochastic gradient descent on & wrt. w yields the critic update
w1 = wi + Bedrr10(St) - (5.8)

The target variable sequence w; needs to be a slowed down version of the critic para-
meter wy. For this purpose, instead of using a periodical synchronization of the target
variable @w; with w; through a copy as in DQN, we use the Polyak-averaging update rule
proposed by Lillicrap et al. (2016)

Wiy1 = Wt + &(wip1 — @), (5.9)

where & is a positive stepsize chosen s.t. the sequence (w;) evolves on a slower timescale
than the sequence (w¢) to track it. The update rules of the actor and the critic collected
together from Egs. (5.5) to (5.8) give rise to Algorithm 5.1. We will use the shorthand

] -— wt
notation ¢4 := d,, ] from now on.

5.5 Convergence analysis

In this section, we provide asymptotic convergence guarantees for the critic and the
actor of Algorithm 5.1 successively. For every 6 € R?, let Ky € RIIMIXISIAI he the
transition matrix over the state-action pairs defined for every (s,a), (s’,a’) € 8 x A by
Ko(s',d|s,a) = p(s'|s,a)ma(d’|s') . Let K := {Kg : 6 € R*} and let K be its closure.
Every element of K defines a Markov chain on the state-action space. We make the
following assumption (see also Zhang et al. (2021b); Marbach and Tsitsiklis (2001)).

Assumption 5.5.1. For every K € K, the Markov chain induced by K is ergodic.
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Algorithm 5.1 Actor-critic algorithm (7, (a¢), (Bt), (&) -

Initialization: 6y, wy € R%.
f0r~t:0,1,2,~~~- , 7 —1do o
Ap ~ o, (+[St); Stv1 ~ p(|St, At)
St41 = Riv1 + 7 d(Sii1)Twr — ¢(S¢)Twy {classical TD error}
Si41 = Ryp1 + ’y¢(5’t+1)TcD~t —~¢(§t)th {target-based TD error}
Orr1 = 0 + Oétﬁ(gt_,_llﬁgt(st, At) {actor update}
wir1 = wi + Bidi110(S;) {critic update}
W1 = W + & (wip1 — @) {target variable update}
St~ pi B~ B(7)
Stt1 = Bi11Ses1 + (1= Biy1)SYy
end for
Output: Policy and value function parameters 87 and wr.

In particular, it ensures the existence of a unique invariant distribution g, for the
kernel Ky for every 6 € R%. Note that we can replace p by p in Assumption 5.5.1.

Algorithm 5.1 involves three different timescales. The actor parameter 6; is updated on
a slower timescale (i.e., with smaller stepsizes) than the target variable iw; which itself
uses smaller stepsizes than the main critic parameter w;. This is guaranteed by a specific
choice of the three stepsize schedules. The following assumption is a three timescales
version of the standard assumption used for two timescales stochastic approximation
(Borkar, 2008, Chap. 6) and plays a pivotal role in our analysis.

Assumption 5.5.2 (stepsizes). The sequences of positive stepsizes (ay), (5¢) and (&)
satisfy:

(a) Ypar =3B =2 & =00, >, (af+ 6 +&) <o,
(b) limy o0 at/ft = limy 00 ft/ﬁt =0.

We also need the following stability assumption.

Assumption 5.5.3. sup, ||w|| < +00 and sup, ||6:]] < +o00 w.p.1.

The almost sure boundedness assumption is classical (Konda and Borkar, 1999; Borkar,
2008; Bhatnagar et al., 2009; Karmakar and Bhatnagar, 2018). The stability question
could be addressed in a look-up table representation setting (for e.g., m = n). Neverthe-
less, this question seems out of reach in the FA setting without any modification of the
algorithm. Indeed, as discussed in (Bhatnagar et al., 2009, p. 2478-2479), FA makes it
hard to find a Lyapunov function to apply the stochastic Lyapunov function method
(Kushner and Yin, 2003) whereas the function J can be readily used in the tabular
case. We highlight however that Assumption 5.5.3 is indeed strong. The almost sure
boundedness of the sequence (w;) could be probably relaxed by using a generalization
to three timescales of the rescaling technique of Borkar and Meyn (2000) which was
extended by Lakshminarayanan and Bhatnagar (2017) to two timescales stochastic
approximation in the case of i.i.d. samples. Relaxing this assumption via using the latter
result would also require to handle the Markov noise. We leave this technical question
to future work. Concerning the sequence (6;), as previously mentioned, it seems out of
reach without modifying the algorithm, Lakshminarayanan and Bhatnagar (2017) (see
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their Section 6) propose for example to regularize the objective function J by adding a
quadratic penalty e ||f]|? leading to an additional term e6; (for any positive €) in the
actor update of the actor-critic algorithm 1 of Bhatnagar et al. (2009). It is also worth
mentioning that several works enforce the boundedness via a projection of the iterates
on some compact set (Bhandari et al., 2018; Wu et al., 2020; Shen et al., 2020). The
drawback of this procedure is that it modifies the dynamics of the iterates and could
possibly introduce spurious equilibria.

First, we will analyze the critic before investigating the convergence properties of the
actor.

5.5.1 Critic analysis

The following assumption regarding the family of basis functions is a standard requirement
(Bhatnagar et al., 2009; Konda and Tsitsiklis, 2003; Tsitsiklis and Van Roy, 1997).

Assumption 5.5.4 (critic features). The matrix ® has full column rank.

We follow the strategy of (Borkar, 2008, Chap. 6, Lem. 1) for the analysis of multi-
timescale stochastic approximation schemes based on the ODE method. We start by
analyzing the sequence (w;) evolving on the fastest timescale, i.e., with the slowly
vanishing stepsizes (; (see Assumption 5.5.2). The main idea behind the proofs is
that 6;,w; can be considered as quasi-static in this timescale. Then, loosely speaking
(see Section 5.7.1.1 for a rigorous statement and proof), we can show from its update
rule Eq. (5.8) that (w;) is associated to the ODE

d _ . _ d d
—w(s) = h(8(s),0(s)) — G(B(s)) w(s), —-0(s) =0, —-&(s)=0, (ODEw)

where b : R x R™ — R™ and G : RY — R™*™ are defined for every § € R? @ € R™ by
h(0,@) :=®TD,o(Rg +vPp®w) and G(0):=d'D, . (5.10)
Recall that the matrices D, g, Py and the vector Ry are defined in Section 5.4.2.

Remark 19. Under Assumptions 5.5.1 and 5.5.4 , the matrix —G(6) is Hurwitz for every
6 € R?, i.e., all its eigenvalues have negative real parts. In particular, it is invertible.

The matrix —G(#) being Hurwitz, it follows from (ODE-w) that w; tracks a slowly
moving target wy(6¢, ;) governed by the slower iterates 6; and ;. The detailed proof
in Section 5.7.1.1 makes use of a result from Karmakar and Bhatnagar (2018) to handle
the Markovian noise.

Proposition 5.1. Under Assumptions 5.3.1 and 5.5.1 to 5.5.4, the linear equation

G(0)w = h(6,®) has a unique solution w,(#,) for every § € R% @ € R™ and it holds
that limy ||Jwr — w (0, 0| = 0 w.p.1.

In a second step, we analyze the target variable sequence (@w;) which is evolving on
a faster timescale than the sequence (6;) and slower than the sequence (w¢). At the
timescale &, everything happens as if the quantity w; in Eq. (5.9) could be replaced by
ws (0, @) thanks to Prop. 5.1. Thus, in a sense that is made precise in Section 5.7.1.2,
we can show from Eq. (5.9) that (w;) is related to the ODE

L i(s) = G0(s) 7 ((0(s)) — GO(s)(s)) . =

7% %9(8) =0, (ODE-w)
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where h : R — R™ and G : R? — R™*™ are defined for every § € R? by

h(0) :=®'D, Ry and G(0):=®"D,4(I, —vPy)®. (5.11)

We show in Section 5.7.1.2 that the matrix —G(6) is Hurwitz. This result differs from
(Bertsekas and Tsitsiklis, 1996, Lem. 6.6. p.300) or (Tsitsiklis and Van Roy, 1997, Lem. 9)
because the matrix D, corresponds to the stationary distribution associated to the
artificial kernel p and the policy my in lieu of the original transition kernel p. Then, we
prove that —G()~1G(0) is also stable, which suggests from (ODE-w) that @, tracks an
other slowly moving target @, (). This is established in the next proposition.

Proposition 5.2. Under Assumptions 5.3.1 and 5.5.1 to 5.5.4, for every § € R?, the
linear equation G(6)w = h(f) has a unique solution @.(#) and limy ||, — w.(0;)| =
0 w.p.1. Moreover, for every 6 € R%, ® @, (f) is a fixed point of the projected Bellman
operator, i.e., HpTp(Pw.(0)) = ®w. (), where Iy = ®(®TD,y®) 17D,y is the
projection matrix on the space {®Pw : w € R™} of all vectors of the form ¢ w for w € R™
w.r.t. the norm || - [[p,,-

Combining the results from Props. 5.1 and 5.2, we prove that w; tracks the same
target w.(60;).

Theorem 5.3. Let Assumptions 5.3.1,and 5.5.1 to 5.5./ hold true. Then, we have

li%n llwe — @ (0¢)]] = 0 w.p.1.

Moreover, this limit implies the following: limy |11y, Ty, (Pw;) — Puwy|| =0 w.p.1.

Remark 20. When the actor parameter 6, is fixed (i.e., we are back to a policy
evaluation problem), the second part of the above convergence result coincides with
the widely known interpretation of the limit of the TD learning algorithm provided in
Tsitsiklis and Van Roy (1997) (see also (Bertsekas and Tsitsiklis, 1996, p. 303-304)).

5.5.2 Actor analysis

Theorem 5.4. Let Assumptions 5.5.1 and 5.5.1 to 5.5./ hold true. Then, w.p.1
timinf (V70 - [b(8)]) <0,

where for every 0 € R, (s,a) € 8 x A, b(f) = ﬁEupﬂe[wg(S’, A)(Qy(S, A) — Qr,y(S, A))]
CL’I’Ld Q@(Sa CL) = R(Sa a) + Y ZS/ES p(8/|5, a)¢(5/)Tw*(9) .

Th. 5.4 is analog to (Konda, 2002, Th. 5.5) which is established for the standard
on-policy actor-critic in the average reward setting and (Zhang et al., 2020b, Th. 3)
for an off-policy actor-critic without any target network. The result states that the
sequence (6;) generated by our actor-critic algorithm visits any neighborhood of the
set {6 € RY: |[VJ(O)| < ||b(0)|} infinitely often. The bias b(f) corresponds to the
difference between the gradient V.J(6) and the steady state expectation of the actor’s
update direction. The estimate used to update the actor in Eq. (5.6) is only a biased
estimate of V.J(#) because of linear FA.
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Remark 21. The bias b(#) disappears in the tabular setting (m = [8| and the features
spanning }Rls‘) when we do not use FA and in the linear FA setting when the value
function belongs to the class of linear functions spanned by the pre-selected feature (or
basis) functions. Beyond these particular settings, considering compatible features as
introduced in Sutton et al. (1999); Konda and Tsitsiklis (2003) can be a solution to
cancel the bias b(f) incurred by Algorithm 5.1. We do not investigate this direction in
this work.

5.6 Finite-time analysis

Our analysis in this section should be valid for a continuous state space 8 (and still
finite action space) upon supposing that the feature map ¢ defined in Section 5.4.2 has
bounded norm (i.e., [|¢()|| < 1) and slightly adapting our notations and definitions
to this more general setting (see also for e.g., Wu et al. (2020)). To stay concise and
consistent with the first part of our analysis in Section 5.5, we restrict ourselves to the
finite state space setting.

5.6.1 Critic analysis

For every § € R?, we suppose that the Markov chain (S’t) induced by the policy mg and
the transition kernel p mixes at a geometric rate.

Assumption 5.6.1. There exist constants ¢ > 0 and o € (0, 1) s.t.

sup dry (P(Sy € -|So = 5,79),d, ) < co', YVt €N,V0 € RY,
seS

where dpy (-, ) denotes the total-variation distance between two probability measures.

This assumption is used to control the Markovian noise induced by sampling transitions
from the MDP under a dynamically changing policy'. It was considered first in Bhandari
et al. (2018) in a policy evaluation setting for the finite-time analysis of TD learning. It
was later used for instance in Zou et al. (2019b); Wu et al. (2020); Shen et al. (2020).

We have seen in Section 5.5.1 that the dynamics of the critic is driven by two key
matrices —G(0) and —G(0) 1G(#). While we only need these matrices to be stable for
our asymptotic results, we actually show in Section 5.7.1.1 that —G() is even negative
definite uniformly in #. We suppose that the second matrix —G'(6) ~1G(6) is also negative
definite uniformly in 6.

Assumption 5.6.2. There exists ¢ > 0 s.t. for every § € R, w € R™,

W G(O) G (O)w 2 Clwl.

We are now ready to state our critic convergence rate.

Theorem 5.5. Let Assumptions 5.5.1, 5.5.1 and 5.5.3 to 5.6.2 hold. Let c1,co,c3,, &, B

be positive constants s.t. 0 < < & < a < 1. Set ar = (1Ji71t)a7 & = (1%)5 and
By = (1_3)5 . Then, the sequences (w) and (0;) generated by Algorithm 5.1 satisfy for

'Note that the sup in the assumption is useful for more general (nondiscrete or infinite countable)
state spaces.
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every integer T > 1,

logT 1 1
—ZEHwt—w*9t)H] (Tl g>+O<Tﬁ>+O<T2(a—E)>+O<T?(E—5)>’

The bound of Th. 5.5 shows the impact of using a target variable. First, the last two
terms impose the conditions v > £ and & > 3. At least with linear FA, this may provide
a theoretical justification to the common practice of updating the target network at a
slower rate compared to the main network for the critic. Second, compared to (Wu et al.,
2020, Th. 4.7) which is concerned with the standard actor-critic in the average reward
setting, we have the slower O(T¢~!) instead of O(T”~1) and our bound comprises four
error terms. These are also consequences of the use of a target variable.

5.6.2 Actor analysis

Assumption 5.6.3. There exists epa s.t. for every § € R?, ||[Vy, — D@, (0)lp,, < €Fa -

Theorem 5.6. Let Assumptions 5.5.1, 5.5.1, 5.5.3 to 5.6.1 and 5.6.3 hold. Let
c1,C2,c3,0,&, B be positive constants s.t. 0 < B < &< a<1. Setay = (l_‘f_ﬁ, & =

(1i2t)5 and By = (13)[3 . Then, for every integer T > 1,

d 1 log? T 1 &
—~ 2
}Z: 19700)1P) <T1a>+o( g >+o 7 2 Ellen = @017 |0 (cns) -

’ﬂ \

Combining Th. 5.5 and Th. 5.6, we obtain the following result.

Corollary 5.7. Under the setting and the assumptions of Ths. 5.5 and 5.6, we have
for every T > 1,

d 1 log T 1 1
Z 1177612 (Tl_a>+o< = >+o (Tz(a_£)>+(‘) (T2(£_5)>+o (era) -

Moreover, if we set o« = %, £= % and 8 = % to define the stepsizes (oy), (&) and (5;),
the actor parameter sequence (6;) generated by Algorithm 5.1 within 7' = O(e~3 log?’(%))
steps, satisfies

H \

. 2 <
min E[|V.(0)]%) < 0lem) +¢

As a consequence, since Algorithm 5.1 uses a single sample from the MDP per iteration,
its sample complexity is O(e~3 log?’(%)) . This is to compare with the best O(e~2 log(%))
sample complexity known in the literature (to the best of our knowledge) for actor-critic
algorithms up to the linear FA error (Xu et al., 2020, Th. 2). Although the use of a
target variable seems to deteriorate the sample complexity w.r.t. the best known result
for target-free actor-critic methods, note that it is still aligned with the complexity
reported in Qiu et al. (2019) (up to logarithmic factors), better than the O(e~*) sample
complexity obtained in Kumar et al. (2019) with i.i.d. sampling and that we do not
make use of mini-batching of samples (even from a single sample path) or nested loops
as in Xu et al. (2020). We refer to (Wu et al., 2020, Section 4.4) and (Xu et al., 2020,
Table 1) for further discussion. We briefly comment on the origin of this deteriorated
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sample complexity stemming from our finite-time bounds. Due to the use of a target
variable, instead of the O(T*@~#)) error term of the standard actor-critic (see (Wu et al.,
2020, Cor. 4.9) or (Shen et al., 2020, Ths.3-4)), we have two error terms O(T2(@%))
and O(T2(5*5)) slowing down the convergence because of the condition 5 < £ < «a.
Interestingly, at least in the linear FA setting, this corroborates the practical intuition
that the use of a target network may slow learning as formulated for instance in (Lillicrap
et al., 2016, Section 3) (even if constant stepsizes are used in practice).

Remark 22. Remark 21 also applies to the function approximation error epa.

5.7 Proofs for Section 5.5

5.7.1 Proof of Th. 5.3

The objective of this section is to prove Th. 5.3. First, we recall the outline of the
proof. Our actor-critic algorithm features three different timescales associated to three
different stepsizes converging to zero with different rates, each one associated to one
of the sequences (6;), (@) and (w;). In spirit, we follow the strategy of (Borkar, 2008,
Chap. 6, Lem. 1) for the analysis of two timescales stochastic approximation schemes.
We make use of the results of Karmakar and Bhatnagar (2018) which handles controlled
Markov noise. The proof is divided into three main steps:

(i) We start by analyzing the sequence (w;) evolving on the fastest timescale, i.e., with
the stepsizes §; which are converging the slowest to zero (see Assumption 5.5.2).
We rewrite the slower sequences (6;), () with the stepsizes ;. In this timescale,
(0¢), () are quasi-static from the point of view of the evolution of the sequence
(wt). We deduce from this first step that w; tracks a slowly moving target w, (6, w)
governed by the slower iterates 0; and w;. This is the purpose of Prop. 5.1 which
is proved in Section 5.7.1.1 below.

(ii) In a second step, we analyze the sequence (i) which is evolving in a faster timescale
than the sequence (6;) and slower than the sequence (w;). Similarly, we show that
w; tracks an other slowly moving target w.(6;). This is established in the proof of
Prop. 5.2 in Section 5.7.1.2.

(iii) We conclude in Section5.7.1.3 by combining the results from the first two steps,
proving that the sequence w; tracks the same target w.(6;).

5.7.1.1 Proof of Prop. 5.1

Let F; be the o-field generated by the random variables Sj, Sy, Ay, 6, @, w; for 1 < t.
For each time step ¢, let Z; = (5}, /Nlt) Our objective here is to show that the critic
sequence (wy) tracks the slowly moving target ws(6;,w;) defined in Prop. 5.1. From the
update rule of the sequence (wy), we have

Wir1 = wi + Bidi116(Sk)
= wi + Bi(Reg1 + 70(Ser1) @ — d(Se) wr) $(Sh)
= wi + Brw(@y, wy, Zt) + ,Bmt(i)l : (5.12)
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where for every w,w € R™, 2z = (s,a) € § x A,

w(@,w,2) = | R(s,a) +7 ) p(s'ls,a)p(s) @ | d(s) = ¢(s)g(s) (5.13)

s'e8

and 77&)1 is a martingale difference sequence defined as

1 = (Rip1 — R(Se, A)$(Sh) + 167 (6(Sir1) — E[d(Ser1)|F]) 6(Se) . (5.14)

As can be seen in Eq. (5.12), the sequence (w¢) can be written as a linear stochastic
approximation scheme controlled by the slowly varying Markov chains (6;) and (w;).
In view of characterizing its asymptotic behavior, we compute for fixed w,w € R™ the
expectation of the quantity w(w,w, Z) (see Eq. (5.13)) where Z = (5’, 121) is a random
variable (on 8 x A) following the stationary distribution p,e (see Eq. (5.2)) of the
Markov chain (Z;). Recall the definitions of h : R? x R™ — R™ and G : R? — R™*™
from Eq. (5.10), for every § € R% @ € R™

h0,0) :=®'D,g(Ryg +yPy®w) and G(0):=d'D,y®.
Lemma 5.8. Under Assumption 5.5.1, for every w,w € R™, we have

Ezep, o lw(@,w, Z)] = h(8,0) — G()w.

Proof. We obtain from the definitions of w in Eq. (5.13) and p,6 in Eq. (5.2) that

EZnpiy o [0(@0,0, 2)] = Bz, | | RIS, A) + 7Y p(s'1S, A)gl(s) @ | 6(S) = ¢(S)p(S)"

where the penultimate equation stems from recalling that Ry(s) = > .4 R(s,a)mg(als)
and pg(s'[s) = > ,cap(s'|s,a)mg(als) for every s € 8. [ |

Defining x¢ = (04, @), we obtain from the update rules of (6;) and (iw;) that
Xt+1 = Xt + Bier, (5.15)

where g; = (%ﬁ(gt_i_lwgt(Zt), %(wtﬂ — Qt)> . Notice that ¢ — 0 as ¢ — oco. This is

because 3t — 0, % — 0 by Assumption 5.5.2, (w;) and (hence) (@w;) are a.s. bounded by
Assumption 5.5.3, (Ry) is bounded by Ug, 6 — 1y(s,a) is bounded by Assumption 5.3.1
and 8, A are finite.
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Let ¢ = (x¢,wt), ¢ = (0,0,w) € RIF2M W((, 2) = (0,w(@,w, 2)), € = (4,0) and 77&)1 =
(0,771&)1). Then, we can write Egs. (5.15) and (5.12) in the framework of (Karmakar
and Bhatnagar, 2018, Section 3, Eq.(14), Lem. 9), i.e., as a single timescale controlled
Markov noise stochastic approximation scheme:

G = G+ BW (G, Z0) + &5 + i), (5.16)

with €, — 0. Under the assumptions of Karmakar and Bhatnagar (2018) that we will
verify at the end of the proof, we obtain that the sequence ((;) converges to an internally
chain transitive set (i.e., a compact invariant set which has no proper attractor, see
definition in (Karmakar and Bhatnagar, 2018, Section 2.1) or (Benaim, 1996, Section 1
p. 439)) of the ODE

) =T Cls)) where () = (0,5(0) ~ G(6)e)

ie.,

dx(s) =0,
Lw(s) = h(x(s)) — GO(s))w(s).

As we will show that the second ODE governing w has a unique asymptotically stable
equilibrium w,(f,w) for every constant function x(t) = x = (0,©), it follows that
(xt,wi) converges a.s. towards the set {(x,w«(X)) : x € R¥™}. In other words,
limy ||ws — wi (0, @¢)|| = 0, which is the desired result.

(5.17)

We now conclude the proof by verifying among (A1) to (A7) of Karmakar and Bhatnagar
(2018) the assumptions under which (Karmakar and Bhatnagar, 2018, Lems. 9 and 10)
hold.

(i) (Al): (Z;) takes values in a compact metric space. Note that it is a finite state-
action Markov chain controlled by the sequence (6;).

(ii)) (A2): It is easy to see from Eq. (5.13) that the drift function w is Lipschitz
continuous w.r.t. the variables w,w uniformly w.r.t. the last variable z because p
is a probability kernel and the set of states § is finite.

(iii) (A3): (f]t(}r)l) is a martingale difference sequence w.r.t. the filtration (F;). Moreover,
since (R;) is bounded, there exists K > 0 s.t. IE[Hf]glleHQ\ft] < K(1+||wt]|?+|eoe] ).

(iv) (A4): The stepsizes (3;) satisfy >, Bt = +oo and Y, 7 < oo as formulated in
Assumption 5.5.2.

(v) (A5): The transition kernel associated to the controlled Markov process (Z;) is
continuous w.r.t. the variables z € § x A, x € R™ w € R™. Continuity (w.r.t.
to the metric of the weak convergence of probability measures) is a consequence of
the fact that we have a finite-state MDP.

(vi) (A6’): We first note that the inverse of the matrix G(#) exists thanks to Assump-
tions 5.5.1 and 5.5.4. For all y = (f,&@) € R™™ we now show that the ODE
d%w(s) = h(x) — G(#)w(s) has a unique globally asymptotically stable equilibrium
wx(x) = G(0)"'h(x). The aforementioned ODE is stable if and only if the matrix
G(0) is Hurwitz. We actually show that we have a stronger result in Lem. 5.9 under
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Assumptions 5.5.1 and 5.5.4. We briefly explicit why the assumption as formulated

in the rest of (A6’) holds. Define the function L(x,w) = 3[G(8)w — h(x)|?.
For every x = (0,0) € R“™, the function L(y,-) is a Lyapunov function for

ODE (5.17). Indeed, using Lem. 5.9 below, we can write

d B _ o _ _ _

—-L0Gw(s) = =(h(0) =G (0)w(s), G(0) (h(x) =G (0)w(s))) < —el|G(O)w(s) =R ()|

(vii) (AT): The stability Assumption 5.5.3 ensures that sup,(||wt|| + ||6¢]]) < +o0 w.p.1.
As a consequence, it also follows from the update rule of (iw;) that sup, ||| < +00.

Lemma 5.9. Under Assumptions 5.5.1 and 5.5.4, there exists ¢ > 0 s.t. for all
6 R weR™,
Wwl'GO)w > e||w|?.

In particular, it holds that supgepa |G(0) 7| < oo

Proof. Recall that K := {Ky : § € R?} where for every 6 € R?, K, € RISIMIXISIAI jg
the transition matrix over the state-action pairs defined for every (s,a), (s',a’) € § x A
by Ky(s',d'|s,a) = p(s'|s,a)mg(a’|s") . We also denoted by K the closure of K. Under
Assumption 5.5.1, there exists a unique stationary distribution pux € R8*4 for every
Kek.

We first show that the map K + ux is continuous over the set K. The proof of this
fact is similar to the proofs of (Zhang et al., 2021b, Lem. 9) and (Marbach and Tsitsiklis,
2001, Lem. 1). We reproduce a similar argument here for completeness. Observe first
that px satisfies:

T _
M(K)ug = [2] where M(K) := [K 1 d

As a consequence, since M (K) has full column rank thanks to Assumption 5.5.1, the
matrix M (K)T M (K) is invertible and we obtain a closed form expression for uf given
by:

_ 0| com(M(K)TM(K))T 0
= (ME)"MEK)'ME)" || = M(K)"
where com(A) stands for the comatrix of the matrix A. Then, it can be seen from this
expression that the map K — ug is continuous. Note for this that the entries of the
comatrix are polynomial functions of the entries of M (K)? M (K), and the determinant
operator is continuous.

It follows from Assumption 5.5.1 that for every K € K and every (s,a) € 8§ x A,
pr(s,a) > 0. We deduce from the continuity of the map K — ux over the compact
set K that infcp pux(s,a) > 0.Since Ky € K for every § € R?, we obtain that
infg p1p0(s,a) > Owhere we recall that p, ¢ is the unique stationary distribution of the
Markov chain induced by Kp. As a consequence, since dpo(5) = D aca Hpo(s,a), it also
holds that

i%f dpﬂ(s) > 0.

Therefore, for every 6 € R, w € R™:

Ww'GO)w = (Pw)'D,p(Pw) > migl ilgf dpo(s)|Pw|* > migl i%f dp 6 (8) Amin (DT @) [|w|?,
s€ s€



5.7. Proofs for Section 5.5 145

where Apin (®7®) > 0 corresponds to the smallest eigenvalue of the symmetric posit-
ive definite matrix ®7® which is invertible thanks to Assumption 5.5.4. The proof is
concluded by setting & := Apin (27 ®)-mingeg infy d, g(s) > 0 which is independent of 6. W

5.7.1.2 Proof of Prop. 5.2

Recall the definitions of the vector h(f) and the matrix G(0) from Eq. (5.11):

h(9) == ®'D,gRy and G(0):=®'D,y(I, —vPy)®. (5.18)
We begin the proof by showing the existence of a unique solution w,(#) to the linear
system G(0)w = h(f). The following lemma establishes the uniform positive definiteness
of the matrix G(#) Note that we do not include symmetry in our definition of positive

definiteness as in Bertsekas and Tsitsiklis (1996). As a matter of fact, the matrix G(6)
is not symmetric in general.

Lemma 5.10. If Assumptions 5.5.1 and 5.5.4 hold, there exists £ > 0 s.t. for all § € R?
and w € R™,
wl'G(O)w > kljw|?.

In particular, the matrix G(#) is invertible.

Proof. First, we have for every 6 € R%, w € R™,
wl' G(0)w = (Pw)T' D, o(I,, — YPp)Pw = (dw)' D, p(Pw) — v(Pw)" D, g Pp(Pw) . (5.19)
Then, the Cauchy-Schwarz inequality yields
11
(®w)" Dy Pp(Pw) = (Pw)" D2 D2, Py(Pw) < ||Dw| p, |1 PPl p, , - (5.20)

Notice now that we cannot use the classical result (Tsitsiklis and Van Roy, 1997, Lem. 1)
to obtain that |PpV||p,, <[|V|p,, for any V € R" because D, is not the stationary
distribution of the kernel Py but it is instead associated to the artificial kernel Pj.
Nevertheless, the following lemma provides an analogous result with a similar proof.

Lemma 5.11. For every § € R?, V € R”, we have

1 11—~ 1
IPVI,, < S IVID,, ~ —IVIE < ZIVID,,

Proof. It follows from Jensen’s inequality that

n n 2 n n
VI, =3 dpals) (z Pe<sj|si>vj) <3 (o) S PalsslsV
=1 7=1 1=1 7j=1

Then, observe that Py = Py + (1 —~)1p" as a consequence of Eq. (5.3). By plugging
this formula and then using the fact that dT Pg dr .00 We obtain

de, (s4) Z (8]’51 [(szp, 5;) P49 5]|S) ) - (1_7)Zp(5]')v2
=1

=1 j=11=1

[de, s]V —(1—~ Zps]

1-—
_ = 2 T 2
- ,}/HVHDPﬂ ~ HV||p7
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which concludes the proof of Lem. 5.11. |

We now complete the proof of Lem. 5.10. From Eq. (5.20), Lem. 5.11 with V' = ®w
yields
1

val

1
()7 Dy Py() < = [0l , = (@) Do)

Whence, we obtain from Eq. (5.19) that

Wl G(0)w = (1= ) (@w)T Dyp(Pw) > (1 = ) w?,

where the last inequality stems from Lem. 5.9. |

We now prove the remaining convergence results. We start with the first result showing
that the sequence (w;) tracks w,(6;) . From the update rules of the sequences (iw;) and (wy)
(Egs. (5.8)-(5.9)), we can introduce the quantity w,(6;,@;) as defined in Prop. 5.1 to
obtain

W1 = Wi + & (w1 — wr)
= wy + & (wi + Brw(@g, we, Zy) + 5t7]t(41r)1 — W)

= Wy + & (ws (0, @p) — wp) + & (wip — wa (O, @) + Brw (g, we, Zt)) + &ﬁtﬁgﬂ :
(5.21)

Then, using the expressions of h, G in Eq. (5.10) and h, G in Eq. (5.11), we can write
we (01, @1) — @ = G(0r) " (h(Br, @) — G(0r)wr) = G(0:) " (h(6:) — G(6r)r) -

As a consequence,

Wiyl = W+ ft@(et)_l(h(et) — G(0)wr) + & (wi — wa (0, @) + Brw(wy, wy, Zy)) + Etﬁmﬁ)l .

(5.22)
Therefore, the sequence (iv;) satisfies a linear stochastic approximation scheme driven
by the slowly varying Markov chain (6;) evolving on a slower timescale than the iterates
(tw¢). We proceed similarly to the proof of Prop. 5.1.

Recall the notation x; = (6;,&;). Let x = (6,@) € RF™ U(x) = (0,G(0) "1 (h(0) —
G(0)w)). Then,
Xt+1 = Xt + &[U(xe) + &, (5.23)

where &; = (%ﬁfgtﬂﬂ)et(gt, Ap),wi — wi (0, @0) + Brw(@r, we, Z) + 51&77831) :

It can be shown that & — 0 as t — +o00. Note for this that a; /& — 0 and 8y — 0 by As-
sumption 5.5.2 , wy—wy (0, w¢) — 0 as proved in Prop. 5.1 and 041, (St, Ar), w(@y, wi, Z)
are bounded by Assumptions 5.3.1-(¢), 5.5.3, the boundedness of the reward function R

and the fact that the sets 8, A are finite. Moreover, Assumption 5.5.2 ensures that
S & =+ocand >, & < +oo.

Furthermore, one can show that the function U is Lipschitz continuous. For this, remark
that:

(a) The function U is affine in @.
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(b) The functions # — Ry and 6§ — Py are Lipschitz continuous as Py(s'|s) =
p(s'|s,a)mg(als) , Rg(s) = > ,cq R(s,a)mg(als) and Assumption 5.3.1-(b) guaran-
tees that 6 — mp(als) is Lipschitz continuous for every (s,a) € 8§ X A.

(c) The function 6 — D, g is Lipschitz continuous. We refer to (Zhang et al., 2021b,
Lem. 9) for a proof.

(d) The function 6 +— G(#)~! is Lipschitz continuous. Observe for this that for
every 0,0 € RY,G(O)™ — GOt = GO)"HG(H) — G(0))G(¢)~" and that
supy ||G(8) 7| < co using Lem. 5.9.

(e) The reward function R is bounded and the entries of the matrices D,y and Py are
bounded by one.

Using classical stochastic approximation results (see, for e.g., (Benaim, 1996, Th.1.2)),
we obtain that the sequence (x;) converges a.s. towards an internally chain transitive
set of the ODE %X(s) =U(x(9)), ie.,

46(s) =0,
La(s) = G(0(s)7H(h(B(s)) — G(B(s))@(s)) .

We conclude by showing that for every § € R, the ODE d%d)(s) = G(0)"Y(h(0) —
G(0)w(s)) has a globally asymptotically stable equilibrium @, (6). This result holds if
the matrix —G(0)"*G(0) is Hurwitz, i.e., all its eigenvalues have negative real parts. We

show this result in Lem. 5.12 below. Then, it follows that x; = (6¢,@;) converges a.s.
towards the set {(,@.(0)) : @ € R?}. This yields the desired result lim, ||@; —@.(6;)|| = 0.

(5.24)

Lemma 5.12. For every 6 € R, the matrix —G(0)71G(0) is Hurwitz .

Proof. We first recall Lyapunov’s theorem which characterizes Hurwitz matrices (see,
for e.g., (Horn and Johnson, 1994, Th.2.2.1 p. 96)). A complex matrix A is Hurwitz if
and only if there exists a positive definite matrix M = M™* s.t. A*M + M A is negative
definite, where M* and A* are the complex conjugate transposes of M and A. We use
this theorem with A = —G(0)7'G(0) and M = G(0) which is symmetric by definition
and positive definite thanks to Lem. 5.9. Then, we obtain that

A*M 4+ MA=—-GO)TGO)IGH) — GO)GO)'G0) = —(GO)T + G(9)).

We conclude the proof by showing that G(6)T + G(6) is a (symmetric) positive def-
inite matrix. For that, observe that for every nonzero vector w € R™, it holds that
wl(GO)T + G())w = 2wTG()w > 0 where the positivity stems from Lem. 5.10. W

The last result states that for every 6 € R? ®w,(f) is a fixed point of the projected
Bellman operator IIyTy. This is a consequence of the following derivations:

yTp(Pw.(0)) = G(0) ' ®T D, g Ty(Pw.(0))
= ®G(0) ' D, o(Ry + PP, ()
= ®G(0)'h(0) + DG(H) " (G(0) — G(9))G(H) " h(H)
= ®G(0) " h(8) + ®G(H) " h(h) — ®G(6) Lh(6)
= ®G(0) " h(9)
= 0w, (0), (5.25)
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where the first equality uses the expression of the projection Iy, the second one uses the
definition of the Bellman operator Ty and the third one stems from the definitions of
the matrices G(0) and G(6) (see Egs. (5.10) and (5.11)).

5.7.1.3 Proof of Th. 5.3

The proof of Th. 5.3 uses both Prop. 5.1 and Prop. 5.2

In order to show that limy ||ws — @« (6;)|| = 0 w.p.1,we prove the two following results:

(a) limy [jwr — wi (0, 04 (60¢))]] = 0 w.p.1.
(b) wy(0,@.(0)) = @.(0) for all § € R?.

(a) We have the decomposition

Wi — wy (0, @04 (04)) = [wy (0, 1) — wa (0, 04(01))],
G(0) " (R(0r, @) — h(0, 04 (0:)))
G(6,) '@ Do, Po, @ (0 — @:(61))
G(0:) "1 (G(0:) — G(6r)) (@ — 0 (6r))

(I — G(0,) " G (6)) (@ — @4(61)) . (5.26)

§|

Wt — Wk 015,

= Wt — Wx et,@t

= wp — w (0, ¢

+++++

[ (0, )]
[ (0, )]
= [wp — wy (O, )]
[ (67, @t)]
= [wr — w0y, @0r)]
It follows from Prop. 5.1 that the first term in the above decomposition goes to zero.
Then, observe that supy |[|G(0) || < oo given Lem. 5.9 and sup, ||G()|| < oo thanks

to the boundedness of the matrices Py and D, uniformly in 6. As a consequence, the
second term also converges to zero using Prop. 5.2.

(b) Using the definitions of the functions w, and @, we can write for every 6 € Rd,

1B(H @.(0))

Il
Q)
B

|
AR
—~

h(0) +~v®T D, g Py®G(0) " h(0))
I, +v®T D, gy Py®G(0) )R ()
G(0) +~®TD, g Py®)G(0) " h(0)
0)"1G(0)G(9) " h(8)

Il
Q)
< <
SN— S— S— S— \/ \/
Lol
—~

For the last result, we write

1000, T, (%10r) = @ur| = || (G(6) ™ @7 Dy, Ty, (@) — ) |

= @ (G(6) ™ (h(6r) — G(B)wn)) |
= |[oG(8,) th)(wt—w*(emu
< @G0 GO e — @ (B (5.27)

U
= ll@ (G, 1<1>TDp 00 (T, (Bu) — Bu) ) |
(1o

Then, as previously mentioned in the proof, observe that supy|/G(0)~!| < oo and
supg |G(0)|| < oo. Since @y — Wi (6;) — 0 as t — oo, the result follows.
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5.7.2 Proof of Th. 5.4

In this subsection, we present a proof of Th. 5.4 which is similar in spirit to the proof in
(Konda and Tsitsiklis, 2003, Section 6). Recall the notation Z; = (S, A;). Note that
(Z;) is a Markov chain. The actor parameter 6; iterates as follows:

1 ~ o~
— 75t+1,¢9t (St7 At)

Orr1 = 04 + a7

=0+ o (Res1 + (v0(Sex1) — (S0) "we )b, (Se, Ay)

1—7

(R(St, Ay, (S, Ar) + Hy, (Zi)wr) + o

=0
t+at1—'y 1~

ﬁt+1 5

where for every § € R%, z = (s,a) € 8 x A,
T
Hy(z) = (s, a) [ 7Y p(s/]s,a)(s") — d(s) |
s'es
and (74 1) is an R%valued Fy-martingale difference sequence defined by

a1 = (Regr — B[R | Fi))e, (Se. Ae) + o, (Sp, Ag) ($(Sia1) — E[¢(St+1)!ft])fwt- )
5.28

We now introduce the steady-state expectation of the main term Hg(Zt)wt—i—R(S't, At)iﬁet (S’t, flt).
Recall that fi,¢ is the stationary distribution of the Markov chain (Z;). Define the
functions H : R — R™ and u : R* — R? for every 6 € R? by

H(0) =Ezmp,,[Ho(Z)], (5.29)
u(0) = Ezop, o[R(S; Ao (S, A)] (5.30)
where Z = (S, A) is a random variable following the distribution 4.

Then, we introduce the quantity w,(6;) which approximates well w; for large ¢ (in the
sense of Th. 5.3) and only depends on the actor parameter ;. We obtain the following
decomposition

Ory1 = 0r + o f(Or) + v (1 + e +ef?), (5.31)

-7
(1) (2)

where the function f : R? — R? and the error terms e, ’ and e,” are defined as follows

(0) = T ((0)2.(0) + u(0)) (532
e = (R(Sy, Ay)vo, (Si, Ar) + Ho,(Z0)@.(0,)) — (H(6;) @.(6:) + u(6y)),  (5.33)
e? = Hy, (7)) (wi — a,(61)) . (5.34)

The bias induced by the approximation of V.J(6) by our actor-critic algorithm is defined
for every 6 € R? by
b(0) := f(0) —VJ(). (5.35)

This bias is due to the linear FA of the true state-value function. It is defined as
the difference between the steady-state expectation of the actor update given by the
function f defined in Eq. (5.32) and the gradient V.J () we are interested in. The
following lemma provides a more explicit and interpretable expression for the bias b(6).
The state-value function V;, will be seen as a vector of RISI,
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Lemma 5.13. For every 6 € RY,

bO) = —— 3 ppals.a)bo(s,a) S p(sls, a)((s)T@(6) — Vi ()

s€8,acA s'e8

Proof. The expression follows from using the definition of b(#) and computing both
the function H defined in Eq. (5.29) and the gradient of the function J.

First, we explicit the function H, writing

T
H(0) = Ezep, o [Ho(2)] = Ezmp,, |o(S,A) | 7D (5|9, A)p(s) — 6(S5)
s'e8
= Z Mp,(50¢95a fyZp !SCL (S)T
sE€S,acA s'e8
=7 > ppe(s,a)ve(s,a) Y p(s]s,a)(s) (5.36)
se8,acA s'e8

where the last equality stems from remarking that 4 11,0(s,a)v(s,a) = 0.

Then, the policy gradient theorem as formulated in Eq. (5.1) and the definition of the
advantage function provide

(1= 7)VI(0) = Ezmp, o [Dr,y (S, A)hp(S, A)]

= B, o [(R(S, A) + 7> p(s'S1, At)Viy (5') = Viry (9))00(S, A)]

s'es

= Z/‘Pﬁ(sa CL)(R(S,(Z) + Zp(5,|s’a)v7f0(sl) - Vﬂ'e (5))1[)6’(5’ a)

s'e8

=u(f) +~ Z .o, a)e(s,a) Zp(s’]s, a)Vp, (). (5.37)

se8,acA s'e8

The result stems from using the definition of b(6) together with Egs. (5.36) and (5.37).
]

Using a second-order Taylor expansion of the L-Lipschitz function V.J (again see (Zhang
et al., 2020a, Lem. 4.2)) together with Eq. (5.31), we can derive the following inequalities

J(Or41) = J(0r) + (VI (01), 011 — Or) — L]|0r1 — 041,
> J(0r) + (VI (0r), f(61))

_l’_

(VI(0,), i1 + et + ey — L 18:1%06, (St A2, (5.38)

t
1—x (1—7)?

The above inequality consists of a main term involving the function f and noise terms.
The following lemma controls these noise terms which are shown to be negligible.

Lemma 5.14. (a) > .2, at<VJ(9t),e§1)> < oow.p.1,

(b) Zio at<VJ(9t)7 ﬁt+1> < ocow.p.l,
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(c)
(d)

lim o0 e§2) =0, w.p.1l,

S22 0 a7 |10e+1%0, (Si, Ap)||> < 00 w.p.1.

Proof.

(a)

(b)

The proof is based on the classical decomposition of the Markov noise term eil)

using the Poisson equation (Benveniste et al., 1990, p. 222-229). We refer to
(Zhang et al., 2020b, Lem. 7 and Section A.8.3) for a detailed proof using this
technique. The proof of our result here follows the same line. For conciseness, we
only describe the necessary tools, pointing out the differences with (Zhang et al.,
2020b, Lem. 7 and Section A.8.3) which is concerned with a different algorithm.

Let Z := 8 x A. First, define the functions g; : Z — R? and g : R? — RY by:

R(2)Ye(2) + Ho(2)wx(0) , (5.39)
w(6) + H(0)a (), (5.40)

96(2)
9(0)

for every z = (s,a) € Z,0 € R%. Observe in particular that egl) = g;t(gt,flt) —

G(0;) . Recall that for every § € R?, the kernel transition Ky is defined for every
(s5,a),(s',a') € 8 x A by Ky(s',d') = p(s'|s,a)mg(a’|s") (see Assumption 5.5.1).
The idea of the proof is to introduce for each integer ¢ = 1,--- ,d a Markov
Reward Process (MRP) (Puterman, 2014, Section 8.2) on the space Z induced
by the transition kernel Ky and the reward function gp,; (ith coordinate of the
function gj). As a consequence, the corresponding averagé reward is given by g;(0)
(7th coordinate of g(6)). Then, the differential value function of the MRP is provided
by vg; = (I — Ko + ﬂuﬁe)’l(l — ]l,uze)g;ﬂ- as shown for instance in (Puterman,
2014, Section 8.2). The functions vg; for ¢ = 1,--- ,d define together a vector
valued function vp : Z — R%. Under Assumption 5.5.1, using similar arguments to
the proof of Lem. 5.9 (see also (Zhang et al., 2021b, Proof of Lem. 4, p. 26)), we can
show that the function K € K+ (I — K + 1pL)~1(I — 1p%) is continuous on the
compact set K. It follows that supy  [lva(z)| < oo because Ky € K for every § € R?
and gy, is uniformly bounded w.r.t. § under our assumptions. Moreover, the
differential value function satisfies the crucial Bellman equation:

vg(2) = gj(2) = 9(0) + Y Ko(='|z)ve(2).

Z'eZ

for every z € Z. We use the above Poisson equation to express egl) = g;t(gt, At) —
g(0:) using vg. The rest of the proof follows the same line as (Zhang et al., 2020b,
Lem. 7 and Section A.8.3).

First, recall that (7;) is a martingale difference sequence adapted to F; and
so is ((VJ(0:),m+1)). Using the boundedness of the function 6 — (s, a)
guaranteed by Assumption 5.3.1-(¢) with the boundedness of the rewards se-
quence (Ry), the sequence (wy) (Assumption 5.5.3) and the gradient V.J, one
can show by Cauchy-Schwarz inequality that there exists a constant C' > 0 s.t.
E[[(VJ(0:), fits1)|?|F:] < C a.s. Then, using that Y, a? < co (Assumption 5.5.2),
it follows that >, E[|a(VJ(0r), fit1)|*|Ft] < oo a.s. We deduce from Doob’s
convergence theorem that item (b) holds.
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(c) As for item (c), we first observe that H(6;) is bounded since 0 +— y(s,a) is
bounded for every (s,a) € 8§ x A thanks again to Assumption 5.3.1-(¢). Then,
item (c) stems from the fact that w; — w.(6;) — 0 as shown in Th. 5.3.

(d) Similarly to H(6;), upon noticing that the reward sequence (R;) is bounded by
Ugr and the sequence (wy) is a.s. bounded by Assumption 5.5.3, the quantity
5t+11/19t(5’t, flt) is also a.s. bounded. Then, item (d) is a consequence of the square
summability of the stepsizes oy (3, a7 < 00) as guaranteed by Assumption 5.5.2.

The end of the proof follows the same line as (Konda and Tsitsiklis, 2003, p. 1163) (see
also (Konda, 2002, p. 86)). We reproduce the argument here for completeness. Let T > 0.
Define a sequence k; by

k
ko =0, kty1 = min kzkt:ZaiZT fort>0.

i=ky
Using Eq. (5.38) together with the Cauchy-Schwartz inequality and Eq. (5.35), we can
write

k’H_lfl

T(Osn) 2 JOk) + Y ar(IVIO)I7 = 16600 - 1V I O)]) + vr,
k=ki

where v, is defined by

k:t+1—1
O ~ 1 2 = 67
U = Z ( <VJ(9k)777k+1+€;(€)+€§€)>—Lﬁ

T 2H5k+1¢0k(5k7Ak)H2> :
k=k;

It stems from Lem. 5.14 that v; — 0 as t — 400 . By contradiction, if the result does not
hold, the sequence J(0)) would increase indefinitely. This contradicts the boundedness
of the function J (note that § — V;, is bounded since the rewards are bounded).

5.8 Proofs for Section 5.6

Throughout our finite-time analysis, we will not track the constants although these
can be precisely determined. The universal constant C' may change from line to line
and from inequality to inequality. It may depend on constants of the problem s.t. the
Lipschitz constants of the functions J, 0 — g, 8 — 7y, upperbounds of the rewards and
the score function 1y or the cardinal |A| of the action space.

5.8.1 Proof of Th. 5.5

The proof is inspired from the recent works Wu et al. (2020); Shen et al. (2020). However,
it significantly deviates from these works because of the use of a target variable w in
Algorithm 5.1. In particular, as previously mentioned, Algorithm 5.1 involves three
different timescales whereas the actor-critic algorithms considered in Wu et al. (2020);
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Shen et al. (2020) only use two different timescales respectively associated to the critic
and the actor.

We follow a similar strategy to our asymptotic analysis of the critic. Indeed, our non-
asymptotic analysis consists of two main steps based on the following decomposition:

t) — @« (6r)
= wi — Wi (0, @¢) + Wi (O, @0p) — wa(0r,04(07))
= wi — wa(0r, @) + G(0:) " (0, 0r) — h(0r, 04 (6:))) - (5.41)

wp — (I)*((gt) = Wy — w*(ﬁt,wt) + w*(ﬁt w.

Hence, it is sufficient to obtain a control of the convergence rates of the quantities
wp — wy (0, 0p) and @, — (I)*(Qt) We already know that these quantities converge a.s.
to zero thanks to Props. 5.1 and 5.2. We conduct a finite-time analysis of each of the
terms separately in the subsections below and combine the obtained results to conclude
the proof.

We start by introducing a few useful shorthand notations. Let Z; := (gt,flt,StH).
Define for every Z = (5,a,s) € 8 x A x 8§ and every w,w € R™:

,w) = R(3,a) +v¢(s) @ — ¢(5)"w, (5.42)
Jw) = 6(Z,@,w)¢(3). (5.43)

o,
(

Finally, define for every 6 € R¢ the steady-state expectation:

&
€| El
E E

<
e

9

9(07 w, w) = Eswdp 0,a~mg,s~p(:|3, )[g(l‘ w w)] . (544)
5.8.1.1 Control of the first error term w; — w, (6, @)
We introduce an additional shorthand notation for brevity:

Vg i = Wy — w*(ﬂt,@t) .

Decomposition of the error. Using the update rule of the critic gives

[ves1]]? = llwe + Brg(Ft, @, wir) — wi (Bpp1, @412

= |lvs + Beg(Fs, @p, wi) + we(Bs, @) — wWa(Bpg1, @11

Then, we develop the squared norm and use the classical inequality ||a+b||? < 2||al|+2]|b]|?
to obtain

v |l? < lwell® + 28 (v, (&0, @, wr)) + 2(v1, ws (O, @) — ws(Og41, Dp41))
+ 2w (07, ©1) — Wi (Or41, @e41) > + 2087 . (5.45)

Now, we decompose the first inner product into a main term generating a repelling effect
and a second Markov noise term as follows

(U, 9(&y, 0, wi)) = (v, (O, wr,wi)) + A(Or, wp, wi, Tt) (5.46)
where we used the shorthand notation

ANO,w,w,T) == (w—wi(0,0),9(T,0,w) — g(0,w0,w)) . (5.47)
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We control the first term in Eq. (5.46) as follows
<Vt7g(9t7 (Dta wt)> = <Vt7g(9t7a)t7 wt) - g(gtaa)tu w*(eta (I)t))) = _<Vt7 G(0t>yt> S _/iHVtHQ .
(5.48)

We used the fact that g(6;, o, ws (0, @) = 0 for the first equality and Lem. 5.9 for the
inequality. Then, it can be shown that

lws (O, @1) — Wi (Or11, 0e11) || < CU|OF — Oppa |l + l|lor — @pral]) < Clag +&) . (5.49)

Combining Egs. (5.45) to (5.49) leads to
lvig1l|? < (1—=2680)||vel|+28:A (05, @, wi, B ) +C oy +E) ||| +C (@2 +E2+82) . (5.50)

Control of the Markov noise term A(0;, w0, we, ). We decompose the noise term
using a similar technique to Zou et al. (2019b) which was then used in Wu et al. (2020);
Shen et al. (2020). Let T' > 0. Define the mixing time

7 :=min{t € N,t > 1: co'™! < min{ar, &7, )} (5.51)

In the remainder of the proof, we will use the notation 7 for 77 (interchangeably). In
order to control the difference between the update rule of the critic and its steady-state
expectation, we introduce an auxiliary chain which coincides with ¥; except for the
7 last steps where the policy is fixed to my, .. The auxiliary chain will be denoted
by & := (St, A, Si1) where Sip1 ~ p(-|Si, Ap) and (S, A;) is generated as follows:

o~ 01577' e ﬁ ~ Otf‘r X ﬁ s eth X Z; ﬁ ~ 01577' X ]3 5
Str —— A s = S ri1 —— A r1 = St —— Ay o = = S —— Ay = Sy

Compared to this chain, the original chain has a drifting policy, i.e., at each time step,
the actor parameter 6; is updated and so is the policy mp, and we recall that it is given
by:

~ Oi_r ~ P Or—741 = P& Or—ri2 7 P bog O 5 PG
Ster — A7 = St—rp1 —— Apri1 = Sprqp2 —— Ap_ryo = - = S — Ay = Sppr .

Using the shorthand notation z; := (@, w;), the Markov noise term can be decomposed
as follows:

AN(Op, 0, wi, &) = (MO, 20, T) —N(Op—r, 207, 1) ) H(A(Op—r, 20—7, Tt) —N(Or—7, 20—7, Tt))
+ A(Qt_T, Zt—r, .’ft) . (552)

We control each one of the terms successively.

(a) Control of A(0, 2z, %) — A(0y—+, 2¢—r, %¢): Using that w, and g are Lipschitz in
all their arguments, g is Lipschitz in its two last arguments and wy, ws, g and g are
all bounded, one can show after tedious decompositions that

(MO, 28, B4) = A(Or—r, 20—, Bt)| < C10: =01 ||+ |0 =@ |+ wi —wi—~ 1) - (5.53)

Then, recalling that the sequence (o) is nonincreasing, remark that

t—1 t—1
16: = 6:—r | <D 165401 = 65| <CY_a; < Cray,.

t—1 t—1

Similarly, we have ||y — wi—r|| < CT&—r, |l — wi—r|] < CTBi—r and we can
therefore deduce from Eq. (5.53) that

|A(Or, 2, %) — A(Os—r, 207, T¢)| < CT(t—7 + Bt—7 +&t—7) - (5.54)
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(b) Control of A(0;—+,zt—7,%¢) — A(Or—r, 2t—r, @): following similar arguments to Wu
et al. (2020); Shen et al. (2020), we upperbound the conditional expectation of
this error term w.r.t. gt,.rﬂ, Wi+, wi—r and @,_,. Note that our definition of Z; is
slightly different from the ones used in the two aforementioned references because
of the third component of #; (and also #;) which is generated according to the
original kernel p instead of the artificial kernel p. We have

EAOi—7, 2t—7, 1) — MOr—r, 2¢—r, Tt) 1St —r 11, 0] (5.55)
=E[(Vi—r, 9(Ft, 2t—1) — 9(Zt, 2t—r))|St—r 41, O]
< Cdry (P(3t € |Si—r1,01—r), P(&1 € |St—rt1,01—r))
C ! N
< SMAILx Y B0 = Or || St-rr1, 0], (5.56)

t=t—T

where the first equality stems from the definition of A, the first inequality uses the
definition of the total variation distance dry between two probability measures and
the last inequality is a consequence of (Wu et al., 2020, Lem. B.2, p.17) (see also
(Shen et al., 2020, Lem. 2 p.12)).

Then, we have

t t i—1
S E0: — O St 0r) < S0 S El01 — 0,151, 6]
i=t—T i=t—T j=t—T7
t i—1 T
<C Z a; < C’at_TZi < Cay_,(1+1)%.
i=t—T j=t—T7 =0

As a consequence of these derivations, Eq. (5.55) yields
E(A(Or—r, 2t—r, Bt) — AOr—r 2ty 3¢)|St—rt1, 01—r] < Cayr (T +1)%,  (5.57)
(c) Control of A(0;_,,z_,,4;) : Define Z; := (S;, Ay, Sp41) where Sy ~ dp6,_. A ~
O and St+1 ~ p(|‘§ta At) ObSGI‘ViDg that E[A(@t_T, Zt—1, Lf‘t)|§t_7—+1, Qt_T] = 0,

we obtain

E[A(Or—r, 2t—r, 84)|St—rt1, Or—r) = E[AOr—r, 20—7, B1) — AMOr—r, 2t—r, T4)| St—rt1, 01—
=E[(v1—r, 9(Zt, 2—r) — 9(Z4, Zt—7)>’§t—r+1, 6]
< Cdry (P(dy € |Si—r41,0t—7), P(Z4 € -|St—ri1,01—7))
= Cdrv(P(S; € |Si—r+1,00—7), dpp,_.)
< Co™!
<ar, (5.58)
where the first inequality stems again from the definition of the total variation

norm and the last two ones follow from Assumption 5.6.1 and the definition of the
mixing time 7 = 77 (see Eq. (5.51)).

Given the decomposition of Eq. (5.52), collecting Eqgs.(5.54), (5.57), (5.58) and taking
total expectation leads to the conclusion of this subsection

E[A(0, 21, 34)] < C(T(t—r + Bier + &—r) + u—r (T + 1) + ar). (5.59)
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Derivation of the convergence rate of the mean error term 7 Z? Llel?. We
obtain from taking the total expectation in Eq. (5.50) together with Eq. (5.59) that

Ellvi1)?] < (1 — 26B)E[|wel|?] + 2CBu(m(u—r + Bi—r + &1—r) + ct—r (T + 1)% + )
+Claw + &)E[|we]]] + Claf + & + 57) . (5.60)

Rearranging the inequality and summing for ¢t between 7 and T, we get

2k Z [[vell?] < (T) + I(T) + I3(T) + 1u(T) (5.61)
where
N
0(T) =Y E(E[IMHQ] —E[|lve+11%), (5.62)
T
L(T) := Z 2C(T(ur + Bi—r + &—r) + (T + 1) + a7) (5.63)
=C Z <‘” ) E[]|wl] (5.64)
CZ—+—+Bt (5.65)

We derive estimates of each one of the terms I;(T) for i = 1,2, 3, 4.

(1) Since (14) is a bounded sequence,

(1 1 ) 1 1 )
L(T)="Y" 5~ By ) B+ g Bl ] — g Ellvr ]

T
<C Z(l— ! >+ ! S _ o). (560

S \Pt Bi-1)  Brr ~ br
Then, since 77 = O(log T'), it follows that
1 1 C 1 C

I(T) < =0(17).

1+T —7p 1+T -7 fr T(:A+1-)Br

(2) Using the inequality Zzza k8 < % for 1 < g < b and the fact that 7 =
O(log T'), we have

T—7 T—1
L) <C ) (u+B+&)+T+1)>> o+ (1+T—7)ar | (5.67)
t=0 t=0
<O+ P+ (r+1)2Q+ 1)) (5.68)
= O((log T)T*?) 4+ O(log®(T)T*~%) = O((log T)T* 7, (5.69)

where we recall for the second inequality that 0 < f < € < a < 1. As a

consequence,
1

T o 2(0) = 0((leg T)T7).
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(3) Using the Cauchy-Schwartz inequality, we can write:

T o €
=30 (5 &)
t:TT

T T
< c?J 3 ( e g) J S Eln2). (5.70)

t=1r t=1p

Then, observing that the sequences (3) and (%) are nonincreasing, we have:

1 a &t 2< 2 d o ’ &t :
1+T_TTZ ﬁt+5t 1+T—TT§;T Bt * (E

t

T—1r 2 2
_ 2 Z Qtirr | Sttrp
1+T —7p 4 Bttrr Bttrr

2 T*TT 2 5 2
Qq t
< -+
(T — 70+ 1)"20=B) (T — 7p +1)72EP)

- 1—2(a—p) 1-2(§—p)
— O(T_2(a_’8) + T—Q(f—ﬂ)) ] (5.71)

(4) Similarly to item (3), to control the fourth term, we write:

1—|—T—TT 515 Bt t_1+T_TT Bt Btt

t=0
- (14T —7p)"2a=h) N (14T —7p)" (2658
- 1-(2a-p) 1-(2-5)

(1 + T — TT)_ﬁ

1-8

= O(T~2e=h) L p=(26=6) L 7=F) (5.72)
Hence, .
mhm = O(T~2e=h) L 7= (=8 L 75, (5.73)
Define:

_ 1 ¢ 2

N(T) := M_TTt:ZTTE[HVtH ]y (5.74)
_ 1 d (e % ’ &t ’
(7) 1+T_7Tt§;[ ((&) +<Bt : (5.75)
1

G(T) 1= [ (BT + B(T) + 1(T)). (5.76)
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Using items (1) to (4), we have:

F(T) = O(T~2@=8) 4 =20y (5.77)
O(T%") + 0((log T)T ) + 0T~ 4 T 1 170) . (5.78)

Q
3
I

From Eq. (5.61) and items (1) to (4) above, we have:
26N(T) < C\/F(T)\/N(T) + G(T)
Solving this inequality yields:
N(T)=0(F(T)+ G(T)).
Remarking that 0 < 2(a — ) < 2a— f and 0 < 2(§ — 3) < 2 — 3, we obtain:

N(T) = O(T7") + O((log T)T~?) + O(T 2Py + (1727 |
Then, we conclude that:

1

T
= 2 Elll*] = 0((log T)T ™) + O(N(T)) = O(N(T)).
t=1

5.8.1.2 Control of the second error term w; — w,(6;)

Consider the shorthand notation 7 := twy — @, (6;) .

Using the update rules of (&), (w;) and developing the squared norm gives:
17e][? = [0 + &x(wisr — @r) = @uBp) I
= |7 + & (we + Beg(Fe, wp, wi) — @r) + @u(6r) — @4 (Op31) 17
= |7 + (ﬁt(Vt + Bg(Zt, 0, wt) + wi (0, @r) — @) + @i (0r) — @*(9t+1)> I?
= [|2l|” + 2(0r, & (ve + Beg(Fe, @p, wr) + we (0, 0p) — @) + 04 (02) — Du (Br11))
+ (1€ (vt + Beg(@t, e, wr) + w(Br, 0) — @) + 0u(8) — Du(Br41) 1. (5.79)

Since (1), (@¢), g, ws are bounded and the function w, is Lipschitz continuous, the last
squared norm term can be bounded by: C(£287 + &2 + a?).

We now control the scalar product in Eq. (5.79). We decompose this term into four
different terms:

(a) Using Assumption 5.6.2, it holds that:
26D, wa (01, 1) — 1) = —264(7y, G(0:) ' G(0r)7e) < —2CE4|7]|” -
(b) The boundedness of the function g implies that:
280 Be(Dr, 9(Ze, Or, wi)) < 28 Becl|i] -

(c) Applying the Cauchy-Schwarz inequality gives:

28¢ (e, ve) <28 ]|o| - |vell -
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(d) Since w, is Lipschitz continuous, we can write:

20, @i (0r) — Wk (Or41)) < Caul|i]] -

Collecting the bounds from items (a) to (d) and incorporating them into Eq. (5.79), we
obtain:

Zesal* < (1=2¢) |72]1° + C(&Be+ o) | mall+ 2612l v | + C(&257 + &7 +af) . (5.80)

Rearranging Ineq. (5.80) leads to:

1 o 3 B o?
20|71 < (7l = 170 |?)+C | B+ 2 ) Nzl + 20zl - [l +C | &8 + &+ - ) -
&t &t &t
(5.81)
Summing this inequality for ¢ between 1 and T and taking total expectation yield:
2 —
T D E[7]?) < S1(T) + Za(T) + S3(T) + Sa(T) (5.82)
t=1
where
11
(T = TZE(E[H%HZ] — E[[Ze1]1%) (5.83)
t=1
o Q
2(T) = 75 o8+ t) Efl|z]]] , (5.84)
pt &
5 I
Ss(T) = 7 Y Ellwll - [l (5.85)
t=1
T
C a?
y(T) = T Z (Et@? + &+ 5) : (5.86)
t=1

Similarly to Section 5.8.1.1, we control each one of the terms X;,i = 1, 2, 3,4 successively.

(i) First, using the boundedness of (), we estimate ¥; as follows:
T

20 =7 |2 (; - 51) Elll) + 2Bl - o Ellral?]| <

(ii)) Cauchy-Schwarz inequality implies:

C T « 2|z B 1 T « ?
%(T) < & Z(ﬁﬂré) ;E[HWHZ]SC TZ 5152+<§:>

t=1 t=1

Moreover,

T

N[~
(]~
2
+
—
o2
~
IN

1-28 1-2(a—¢)

1 ((T + 1)1_2'8 + (T + 1)1_2(a—§)> _ O(T—Q,B)+O(T—2(a—§)> ]
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(iii) Invoking the Cauchy-Schwarz inequality again yields:

QJ ;;E[VH]J ;;Ewmm

(iv) Similarly to item (ii), we obtain

Y4 (T) = O(T~72P) 4 O(T~%) + O(T¢ %) .

Define for every T > 0 the following quantities:

1 T
= > Bl (5.87)
t=1
1 T
X(T) := TZE [17¢]|%] (5.88)
t=1
1 T
TZ , (5.89)
t=1
= 3 (T) 4 Zy(T (5.90)

It follows from items (i) to (iv) and Section 5.8.1.1 (for the last estimate) that

Y(T) = O(T~28) + (7729 , (5.91)
Z(T) =0T + O(T5728) + O(T%) 4+ O(T572%), (5.92)
W(T) = O(T? 1) + O((log T)T ") + O(T?P~)) 4 O(T>P-9) . (5.93)

Eq. (5.82) can be written:

2X(T) < C (\/Y(T) + \/W(T)> VX(T) + Z(T
Solving this inequality implies:
X(T) = O(Y(T) + W(T) + Z(T)). (5.94)
Since 0 < f < € < a < 1, we obtain:

X(T) = O(TY) + O((log T)T~8) + O(T 28y 4 o(T~2Eh)y (5.95)



5.8. Proofs for Section 5.6 161

5.8.1.3 End of Proof of Th. 5.5

We conclude our finite-time analysis of the critic by combining both previous sections
(5.8.1.1 and 5.8.1.2):

1 & 1 «
7 2 Bl =@ (00|17 = 7 >l + (61, 0) — 1 (00) )
t=1 1 t;l
= o DB+ wa (81, 0) — (61,5 (60) )
t=1
< 2W(T) + CX(T)
= OX (@)
= O(T*™") + 0((log T)T %) + O(T 279 + O(T 767,

(5.96)

where the second equality follows from using the identity w.(0,w.(0)) = w.(6) for
every 6 € R? the inequality stems from using the classical inequality |la 4 b||? <
2(||al|® + ||b]|?) together with the fact that w, is Lipschitz continuous, the penultimate
equality is a consequence of Eq. (5.94) and the last equality is the result of the previous
section (see Eq. (5.95)).

5.8.2 Proof of Th. 5.6

Recall the notation Z; := (5}, A, Si+1). In this section, we overload this notation with
the reward sequence (Ry), i.e., Ty := (S’t, A, Stt1, Re1) - Let us fix some additional
convenient notations. Define for every & = (5,a,s,7) € 8§ x A x 8§ x [-Ug, Ug|, and
every w € R™, 9 € R%:

5(&,w) =1 +v¢(s) w — ¢(3) w (5.97)
0Z,0) =1+ YV, (5) — Vr,(5) . (5.98)

Note that the TD error d;41 used in Algorithm 5.1 coincides with & (Z¢,wi).

Since the function VJ is L j-Lipschitz continuous, a classical Taylor inequality combined
with the update rule of (6;) yields:

T(Ors1) = T (0:) + e (VI (0:), (&, wie) g, (Si, Ar)) — %aﬂ’(s(@tawt)%t(st,At)HQ-
(5.99)
Recalling that 6 — y(s,a) is bounded by Assumption 5.3.1-(c¢), (R;) and (w;) are
bounded (see Assumption 5.5.3) and 8, A are finite, we obtain from Eq. (5.99) that there
exists a constant C s.t.:

J(Op41) = J(0) + (VT (0;),6(F¢, we )by, (Si, Ay)) — CLya? . (5.100)

Now, we decompose the TD error by introducing both the moving target w(6;) and the
TD error §(Zy,0;) associated to the true value function Virg, !

A

6(Zp,wr) = [6(Fe,wi) — 0(Ze, @ (00))] + [0(Zs, 04 (0;)) — 0(Es, 00)] + 6(Z4,0;) . (5.101)
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Incorporating this decomposition (5.101) into Eq. (5.100) gives:

J(0r41) > J(0) + aa(V I (0:), (8(Ee, wi) — 0(Fr, @4 (0r))) 000, (St Ar))

(
+ (VI (6r), (8(F, @4 (61)) — 8(i+, 00)) o, (Si, Ar))
+ (VI (), 0(4, 00)e, (St, Ar) — VJ(0y)) + || VI (8,)]|? — CLya2 . (5.102)

In Eq. (5.102), the first inner product corresponds to the bias introduced by the critic.
The second one represents the linear FA error and the third translates the Markovian
noise. Our task now is to control each one of these error terms in Eq. (5.102).

For the first term, observing that §(Z,w:) — 0(Zs, @x(0¢)) = (Y¢(Sra1) — ¢(Se)) 7 (wr —
w4 (0¢)), the Cauchy-Schwarz inequality leads to:

E[(V.J(64), (&4, wi)—0 (&, @4 (0))bo, (St, Ap))] < —CVE[V T (01) 2] v/E|wr — w*((et)HQ)] :
5.103

Then, we control each one of the second and third terms in Eq. (5.102) in the following
sections successively.

5.8.2.1 Control of the Markovian bias term
We introduce a specific convenient notation for the second term:
F(j}tv 075) = <v‘](0t>7 5(1'% et)wet(gtv At) - vj(et)> .
Recall from Section 5.8.1.1 the auxiliary Markov chain (%), the Markov chain (z;)
induced by the stationary distribution and the mixing time 7 defined in Eq. (5.51).

Similarly to Section 5.8.1.1, we introduce the following decomposition:

E[L(Z4,0:)] = E[L(Z4, 0) — T(Z4, 0i—7)] + E[T (&4, 04—7) — T(Z¢, 0r—r)]
+ E[[(24, 01—r) — T'(@, 01—7 )] + E[T(2¢, 6,—)] . (5.104)

We address each term of this decomposition successively.

(a) For this first term, we write:

T(%¢,0;) — T(3¢, 0—r) = (VI (01) — VI (0r—r), 6(Z4, 0:)0e, (Si, Ar) — VI (6))
VI (07, (6(i1,00) — 6(Fe, 0r—r)) o, (St Ar))

+ (VJ(
+ (VI (01—r), 6(Fe, 0—r) (Y0, (St Ar) — o, (St, Ay)))
+ <VJ(‘9t T) VJ (thﬂ') - VJ(et» .

Moreover, note that:

(2, 0r) — 6(Zt, 0r—r) = (Vg (Stq1) = Vg, _(St41)) 4 Vg, (St) — Vi, (St) -

Remark that VJ,0 — 1 and 6 — V;, are bounded functions under Assump-
tion 5.3.1. Since VJ, V,, 1y are in addition Lipschitz continuous as functions of 6
(see, for e.g., (Shen et al., 2020, Lem. 3) for a proof for V,) under Assumption 5.3.1,
one can show after tedious inequalities that:

ID(iy, 01) — D@, 00-r)| < Cl0s — 0y (5.105)
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(b) For the second term, we have:

|E[C(Z¢, 0;—r) — T(&¢, 0;—7)]|
= |]E[<V‘](9t77') 6( )¢0t -r(gtafzit) - 5(@791577)7#9#7 (St,fit»”
= |E[(VJ(0r—r), (%915 o, (St Ag) = (&4, 00— )o, . (St, Ar))|St—ri1, Or—r]|

< CEldry (P(3¢ € *|Si—rs1,0t—r),P(dt € |St—ri1, 01—r))]
t

<C 3 El6 - 6. (5.106)

i=t—T

Here, the first inequality is a consequence of the definition of the total variation
distance whereas the second inequality follows from applying (Wu et al., 2020,
Lem. B.2). Indeed, using this last lemma, to show the last inequality, it is sufficient
to write:

drv (P(z; € "S’t—f—i—h 0i—7),P(2y € "S’t—T—l-ly 0i—r))
= dTV(P((StaAt) S '\S't77+1,9t77),P((St,At) € '|§t77+179t77))
- - g ~ 1
<drv(P(St € -|St—r41,0t—7), P(St € -|St—r41,0t—7)) + §|‘A’L7FE[H0t — 0]

Iterating this inequality gives the desired result of Eq. (5.106). We conclude from
this item that:

E[D(Z,0;—r) — T(dt,0;—1)] > — Z [116; — 60— 1]] -

(c) Regarding the third term, similarly to item (b), we can write:

E[L (&, 0p—r) — T(&4, 04—r)] > —CE[dpy (P(24 € “[St—rt1,0t—r), P(Zt € -|Si—rs1,01—7))]
1v(P(Z € | Si—rs1,0—r),dpo,_, ® T, D p)]

= —CE[drv (P(St € “[Si—r41,0t—1),dpg, )]

> -Co™ 1, (5.107)

I
|
Q
=88
S

where the equalities follow from the definitions of Z;, Z; and the last inequality
stems from Assumption 5.6.1.

(d) Since the Markov chain Z; is built s.t. S; ~ dpjgt_T,At ~ T, . Ser1 ~ p(:|St, Ay),
one can see that E[['(Z,0;—,)] = 0.
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We conlude this section from Eq. (5.104) by collecting Eqgs. (5.105) to (5.107) (items (a)
to (d)) to obtain:

t

E[T (i, 6:)) > —CE[||6; = 6: ] —=C Y E[|: =] — Co™

i=t—7+1
t
>-C S E[ b)) -C Z Z [16; = 6;-1]] = Co™
i=t—7+1 i=t— T—i—lj t—71+1
t
>-C Y E[¢;—bia]] - C Z Z E[[|6; = 6;-1]] = Co™!
i=t—7+1 i=t—7+1 j=t—7+1

>—C(r+1) Y E[|f; — 04[] - Co™

i=t—71+1
> -C(1 4+ 124, — Car, (5.108)

where the last inequality uses the definition of the mixing time 7 and the fact that the

sequence (o) is nonincreasing.

5.8.2.2 Control of the linear FA error term

Recall thz}t 0 — 1y is Lipschitz continuous, VJ is bounded and remark that the
quantity 0(Z¢,w.(0:)) — 6(Z¢,0;) is bounded. Therefore, using the Cauchy-Schwarz
inequality, we have:

E[(V.J(0:), (0(Fs,@4(61)) — 6(F1,01)) o, (St, Ap))]

=E[(VJ(6h), (0(&1, @ (0:)) — 8(i4, 00)) (tbo, (St Ar) — v, _ (i, Ap)))]

+E[(VT(0), (0(F1, @x(6r)) — 6(F1,00)) s, _, (Si, Ar))]

> —CE[||6; — 0, |]] + E[(VJ (6 ><< ,@x(64)) — 6(¢,0¢)) g, (Se. Ap))] . (5.109)

Let us introduce the shorthand notation:
A(%,0) = (VJ(0), (0(%,w.(0)) — 5(%,0))vs,_, (S, A))

Note here that 6;_; is fixed for 1)y, _ in the above notation. The following decomposition
holds:

AT, 0t) = (AT, 0) — A(Zt, 01—7)) + (A(T¢, Or—r) — AT, 01—1))
(A(Zﬁt, 0;_ 7—) — A(.ft, Qt—r)) + A(.’Z’t, Gt_T) . (5110)

Similar derivations to the previous section allow us to control each one of the error
terms.

(i) Using that 6 — VJ,0 — V,, and 6 — @, (6) are Lipschitz continuous, we obtain:

A(F,0;) — A(Fp,0e_r) > —Cl0 — 0r_r | - (5.111)

Using similar manipulations to the previous section, we get:
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(i)
BIAG 01r) = Al -] = ~C > B0 — 6o} (5.112)

(iii)
E[A(it, 915,7-) - A(i‘t, 91/77-)] Z —CO'T_I . (5113)

(iv) For the last term, we can write:

E[A(Zs, 01|01+ > —C|IVT(O—7)|| - B[I0(Ze, @4 (01—7)) — 6(Z1, 00 —7)][01—] -
(5.114)
Then, recall that #; = (S, Ay, Spr1) where Sii1 ~ p(-|Si, A;) and observe that:

0(Z4, @4 (01—r)) = 8(Zt, 01—7) = V(B(Se11) @ (Or—7) — Vi, (St41))
+ (Ve (81) = 6(5) @u(6:—+)) - (5.115)

Recalling that p = yp + (1 — v)p and using Assumption 5.6.3 , one can then easily
show that:

E[|0(2¢, @4 (01—r)) — 6(Zt, 0p—r)||0—7] < Clepa .

As a consequence, noticing again that VJ is Lipschitz continuous, we obtain
from Eq. (5.114):

E[A(Z1,01—7)] 2 —CepaB[[[VI(0:-r)[l] = —Cerak[[|0:=0; || -CeraE[[[V I (6,)]]] -

Combining items (i) to (iv) with the boundedness of the function V.J, we conclude from
this section that:

E[(VJ(0), (0(F¢,@x(0¢)) — (F¢, 0¢)) o, (St, Ay))]

t

> —CE[||6; — 6:—~|] - C > E[|6i — 6;—-|] — Co™ ' — Cepa
i=t—T1
> —-C((t+ 1)2at_T + a7 + €pa), (5.116)

where the last inequality has already been established in Section 5.8.1 with the choice of
the mixing time 7 = 7p.

5.8.2.3 End of the proof of Th. 5.6
Combining Eq. (5.102) with Egs. (5.103), (5.108) and (5.116) yields:

E[J(0¢11)] > B[J(0:)] + B[V (0:)|%] = Car/E[[V I (0:) |1V E[|wr — @ (0)[|?]
— Cay((T +1)%y—r + ar + epa) — Cai . (5.117)

Rearranging and summing this inequality for ¢ = 7p to T lead to:

T
ST E(IVI(6:)]%] < Us(T) + Ua(T) + Us(T) + Cepa (5.118)

t=71

_
T—71mr+1
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where
a L
UN(T) = 7 +1 > o B (Br)] ~EL(B)]) (5.119)
C _TTT
Us(T) := i—— d (T + 1D’ +ar +ay), (5.120)
T
Us(T) := T——— Z VE[IVI(0) PV E[|wr — @ (0[] - (5.121)

Let us now provide estimates of each one of the quantities U;(T") for i = 1,2,3.

1. Noticing that the function J is bounded and the sequence (o) is nonincreasing,
the first term can be controlled as follows:

T
1 1 1 1 1
TY)=—— | —E - E[J(0- — — — |E
D) = ey | g B el = B+ 3 (a at) 17(60)
C 1 1 1 1
<o —+ + — -
T—tmr+1\ar anp1 ar Qo
_c 2
“T—m+1ar
= O(T*). (5.122)

2. Recalling that the sequence of stepsizes () is nonincreasing and that 7p =
O(logT), the second term can be estimated by the following derivations:

T T
C
U(T)=——— [ (r+ 1> armp + (T —mr+ Doar+ > o
T—1m+1 e P
C T— TT T—TT
<—— | (rr+1)2 ar+ (T —7mr+1)ar+ o
T i1 |7 Z ¢ T+ 1)ar ; ¢
C (T —mp+ 1)t
P 1)2+1 T - 1
T_TT+1<((TT+ ) +1) a + (T —1r +1)ar
= O(log®(T)T™). (5.123)

3. Using the Cauchy-Schwarz inequality, we have:

T T

Y ENVI6)12,| Y Ellwr —@u(8:)l17].  (5.124)

t=1r t=11

C
Us(T) < ————
3<)—T—TT+1
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Define the quantities:

T
F(D)i= 3 SO EIIVI6)I), (5.125)
1 .
E(T) = T——— Z E[l|w: — @.(60)117], (5.126)
K(T) := Uy(T) + Us(T) + Cepa . (5.127)

Using these definitions, we can rewrite Eq. (5.118) as follows:

T) < C\/F(T)\/E(T) + K(T)

Solving this inequality yields:

F(T) = O(E(T)) + O(K(T)). (5.128)

We conclude the proof by remarking that items (1) to (3) above imply:

K(T) = (T + 0(log*(T)T™) 4 O(epa) - (5.129)

Egs. (5.128) and (5.129) combined can be explicitely written as follows:

T
# 21 a—1 2 —«
T_TT+1§TEHIVJ(@)H ] =0(T"") + 0(log™(T)T™) + O(epa)
1 T
- E — Wy 1. 1
0 T_TTH;;T [l =@ (B)IP] | - (5.130)
Then, we can write
T Tr—1
Z 177001 = 7 | X BV @) +ZEHW )11
t=1 t=71r
ClogT 1 L
< - - 2
< F 0| Foay 2 EIS60N]

This completes the proof given Eq. (5.130).

5.8.2.4 Proof of Cor. 5.7

The result is a consequence of combining Ths. 5.5 and 5.6 and simplifying the obtained
rate using the fact that 0 < S <& <a < 1.






Conclusion and Perspectives

6.1 About non-convex stochastic optimization

The major part of this thesis was devoted to the study of momentum and adaptive
gradient methods for non-convex stochastic optimization. Our analysis started with
the popular ADAM algorithm for which we considered two different stepsizes regimes.
In the constant stepsize regime, we established a long run convergence result under a
stability assumption. In the vanishing stepsizes regime, we proposed a novel variant of
ADAM for which we showed the almost sure convergence of the iterates towards the set
of critical points of the objective function and a central limit theorem characterizing the
fluctuations. In our study, the ODE method was pivotal to understand the dynamical
behavior of ADAM and derive convergence results in discrete time. In the second part of
this thesis, beyond ADAM and starting from a more general continuous-time dynamical
system, we analyzed a general stochastic optimization algorithm in the decreasing
stepsizes regime. This algorithm offers degrees of freedom and thereby encompasses
several adaptive gradient methods including ADAM and momentum methods such as
S-NAG. In this part, similarly to our previous ADAM analysis, we established stability,
almost sure convergence and convergence rates results. A major issue we tackled in
this thesis is that of avoidance of traps, showing that the stochastic algorithms we
considered in this thesis cannot converge towards undesirable critical points such as local
maxima and saddle points. The linchpin of our proof is a general avoidance of traps
result extending the seminal works of Pemantle (1990); Brandiére and Duflo (1996) to a
non-autonomous setting, and which we believe is of independent interest. Finally, we
proved some quantitative results complementing our asymptotic analysis. These results
consists of bounds controlling the expected gradient norm of the objective function along
the iterations in the same stochastic setting and function value gap convergence rates in
the deterministic setting.

Concerning these last contributions, we bring to the attention of the reader that the
literature has witnessed many developments after the publication on which Chapter 4 is
based. In particular, the recent works of Défossez et al. (2020) and (Gadat and Gavra,
2020, Th. 2) provide some interesting quantitative results in the flavor of the results we
have presented about bounding the expected gradient of the objective function along
the iterates of the algorithm. We also mention that it would be interesting to extend our
convergence rates based on the Kurdyka-Y.ojasiewicz property to the stochastic setting.
Benaim (2016) provides some results in this flavor for stochastic gradient algorithms.

Our analysis in the main part of this thesis opens the way for several directions of future
research.

Constrained optimization. First, it can be interesting to explore constrained stochastic
optimization problems and design proximal variants of momentum and adaptive gradient
methods such as ADAM.
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Nonsmooth optimization. Second, this thesis was focused on the case where the
objective function is differentiable. However, neural networks may involve points of
non-differentiability because of the use of some popular activation functions such as
ReLU (Rectified Linear Unit which is the positive part function). Recent results (Davis
et al., 2020; Majewski et al., 2018) study the stochastic subgradient method for a class of
nonsmooth non-convex functions via the differential inclusion approach (Benaim et al.,
2005). The mathematical artillery to tackle this nonsmoothness problem was recently
set up in the literature. Bolte and Pauwels (2021) introduced a notion of generalized
derivatives leading to a class of locally Lipschitz functions called path differentiable
functions encompassing convex, Clarke regular and Whitney stratifiable functions (and
many others). Authors then developed a generalized differential calculus which allows to
analyze modern algorithms based on automatic differentiation in a nonsmooth context.
In particular, following the differential inclusion approach of Benaim et al. (2005),
discrete stochastic algorithms used for training nonsmooth deep neural networks were
analyzed within this framework to obtain almost sure subsequential convergence to
steady states. This framework can be applied to the popular algorithms we have studied
in this thesis. Another approach based on the use of closed measures from the calculus
of variations and dynamical systems was proposed by Bolte et al. (2020) to study the
subgradient method for Lipschitz path differentiable functions and could prove useful
for more complex dynamics such as the ones induced by the algorithms considered in
the present thesis.

Regarding avoidance of traps, more challenging problems arise in the nonsmooth setting.
Very recent research efforts have been undertaken to address the case of the stochastic
subgradient descent method in nonsmooth stochastic optimization (Bianchi et al., 2021;
Davis et al., 2021; Schechtman, 2021). The question remains open for more complex
algorithms.

Other applications. The success of ADAM in deep learning and stochastic optimization
inspired novel algorithms for other problems such as min-max optimization (see for
instance EXTRA-ADAM in Gidel et al. (2019) mixing ADAM with the extragradient
method of Korpelevich (1976)) for which no theoretical guarantees exist to the best of
our knowledge. Algorithms based on ADAM could also prove useful in estimating optimal
transport distances as this problem was cast as a stochastic optimization problem by
Genevay et al. (2016) and further explored by Bercu and Bigot (2021); Bercu et al.
(2021).

6.2 About actor-critic methods with target networks

In the RL part of this thesis, we studied an actor-critic algorithm incorporating a target
network inspired from several state of the art algorithms used in deep RL. Our algorithm
uses three different timescales: one for the actor and two for the critic. Instead of
using the single timescale TD learning algorithm as a critic, we use a two timescales
target-based version of TD learning closely inspired from practical actor-critic algorithms
implementing target networks. More precisely, we proved both asymptotic and non-
asymptotic convergence results. First, we showed that the critic which uses a target
variable tracks a slowly moving target corresponding to the well-known TD solution.
Then, we proved that the actor parameter visits infinitely often a region of the parameter
space where the norm of the policy gradient is dominated by a bias induced by linear
function approximation. Second, we established a bound controlling the average expected
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gradient (of the performance function) norm evaluated at the actor iterates generated by
our target-based algorithm showing the quantitative impact of using a target network.

There are several interesting directions for future research regarding our actor-critic
method.

Nonlinear function approximation. Our analysis addresses the linear function
approximation setting. Many state of the art actor-critic algorithms in deep RL make
use of target networks to stabilize the training (Lillicrap et al., 2016; Haarnoja et al.,
2018; Fujimoto et al., 2018). A theoretical justification of the use of a target network
in the nonlinear function approximation setting beyond linear function approximation
is a challenging problem that merit further investigation. In particular, as practical
algorithms in deep RL seem to indicate, it would be interesting to see if such a mechanism
can be a theoretically grounded alternative to the failure of temporal difference learning
with nonlinear function approximation as was noticed in (Tsitsiklis and Van Roy, 1997,
Section 10). A significant gap still persists between theory and practice. Actor-critic
methods are usually analyzed in the two timescales stochastic approximation framework
where two different stepsizes decreasing at different rates are used for the actor and
the critic. However, recent general two timescales stochastic approximation results
established by (Karmakar and Bhatnagar, 2018) do not permit to show the convergence of
actor-critic methods with target networks in the nonlinear function approximation setting
as the assumptions made almost amount to consider linear function approximation and
lead to suspect the existence of undesirable accumulation points (see Assumption (A6’),
p. 7 and Remark 8, p. 12 in Karmakar and Bhatnagar (2018)). This challenging problem
would probably need an approach tailored to actor-critic methods with target networks.
Besides, we recall that the target network idea was originally proposed in Mnih et al.
(2013, 2015) which introduced the DQN algorithm. Recently, some theoretical issues
were pointed out in Avrachenkov et al. (2021) for DQN (with single timescale) and
authors proposed a modification to fix these issues with some additional computation.
This work gives interesting insights on this target network mechanism and prompts us
to be cautious about using such an appealing scheme, at least when considering a single
timescale (see also Wang and Ueda (2021)).

Experience replay. This consists in storing past transitions (i.e., (state, action, reward,
next state) tuples) in memory and reusing them throughout learning instead of only using
transitions as they occur during simulation or actual experience. This feature has proven
useful in RL thanks to its numerous advantages such as variance reduction, robustness to
anomalous transitions, preventing overfitting, allowing data re-use and handling delayed
rewards as this had been reported and discussed for instance in (Avrachenkov et al.,
2021, Section 2.3) which deals with the specific case of DQN. The insights provided in
the aforementioned work may prove useful for the analysis of actor-critic algorithms
with experience replay.

Nonsmoothness. As previously discussed, some nonsmoothness issues related to the
use of nonsmooth activation functions (such as ReLU) also arise and need further
investigation.

Off-policy learning. Another possible avenue of future work is to extend our proposed
actor-critic algorithm to the off-policy setting which is pervasive in several successful
deep RL actor-critic algorithms (Lillicrap et al., 2016; Haarnoja et al., 2018; Fujimoto
et al., 2018).. In this setting, the policy followed to generate samples called the behavior
policy differs from the so-called target policy which is the policy of interest to be
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evaluated for example in policy evaluation. Off-policy learning is paramount to manage
the celebrated exploration-exploitation trade-off and to learn efficiently in large-scale
problems in general. An algorithm combining off-policy learning, function approximation
and bootstrapping simultaneously is usually not guaranteed to be well behaved, leading
to the famous deadly triad (Sutton and Barto, 2018, Chapter 11, Section 3). If the
discounted reward setting has been solved more than ten years ago (Sutton et al.,
2009b,a), provably convergent value-based algorithms for the average-reward case have
only been recently introduced by Zhang et al. (2021a). Breaking the deadly triad is still
a current research question (Zhang et al., 2021b) and designing off-policy RL algorithms
remains a notoriously challenging task which is the subject of active research (Xu
et al., 2021). Furthermore, very recent finite-time analysis of off-policy actor-critic RL
algorithms with linear function approximation (Chen et al., 2021) can be an additional
starting point to investigate the case of off-policy actor-critic algorithms with target
networks.

6.3 Importing momentum and adaptive methods into RL

We would like to end this thesis by discussing some future directions we actively began
to explore. These opportunities of future work would allow us to bridge together the
seemingly independent parts of this thesis which we summarized in the previous sections
of this conclusive chapter.

Momentum and adaptive gradient methods such as RMSPROP and ADAM are widely
used (if not ubiquitous) as optimizers to train neural networks approximators in deep
reinforcement learning (see Mnih et al. (2015); Lillicrap et al. (2016); Mnih et al. (2016);
Schulman et al. (2017); Haarnoja et al. (2018) to name a few famous examples). During
the last couple of years, a flurry of non-asymptotic theoretical analysis has been conducted
around standard policy gradient, value-based and actor-critic methods to determine
their sample complexity. However, in this recent growing line of research, only few
works touch upon momentum and adaptive methods in RL and they are almost all
restricted to the linear function approximation case excluding deep neural networks. We
also highlight that theoretical guarantees for (two-layer) neural network approximators
are very recent even for standard algorithms such as TD learning (see for e.g., Cayci
et al. (2021)) and Q-learning (see for instance Xu and Gu (2020)). Overall, despite the
popularity of momentum and adaptive methods in deep RL, theoretical understanding of
their convergence behavior is still in its infancy. Moreover, it can be interesting to design
novel algorithms by incorporating momentum and adaptive gradient methods ideas from
optimization into the landmark principled classes of RL algorithms, namely, policy-based
methods, value-based methods and actor-critic algorithms. Few recent preliminary
works have followed this direction (Vieillard et al., 2020; Sun et al., 2020; Xiong et al.,
2021; Romoff et al., 2021; Weng et al., 2021). To the best of our knowledge, all the
works incorporating momentum or adaptive methods into RL have no guarantees in the
nonlinear function approximation case. As a first step, a better theoretical understanding
of adaptive optimizers in TD learning is still needed to discover optimizers achieving a
significant improvement over vanilla TD learning in practice.

Momentum and eligibility traces. Although different, the concept of momentum
incorporated to TD learning shares some similarity with the eligibility traces mechanism
which is widely known in the RL research community. As explained in (Sutton and
Barto, 2018, Chapter 12), eligibility traces can be seen as a tool to remedy the problem
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of long-delayed rewards and can be suitable for the non-Markov setting, i.e., when
the environment is not modeled as an MDP. Interestingly, the concept of momentum
from optimization captures the idea of a memory of the gradients used all over the
iterations. Therefore, transferring momentum to RL has the potential to address the
issue of long-delayed rewards and could also be beneficial in non- Markov settings. The
comparison of momentum to eligibility traces has not been conducted in the literature
and the analysis of a momentum variant of TD learning is missing. The recent work of
Bengio et al. (2021) is concerned with momentum in TD learning but does not address
the questions we have raised here.

Policy gradient methods with momentum and adaptive stepsizes. To reduce
the large variance of vanilla policy gradient estimates and improve the sample complexity,
Huang et al. (2020) and Yuan et al. (2020) proposed to augment the update rules with
an exponential moving average. Nevertheless, the proposed algorithms are not truly
adaptive because the learning rates are forced to be decreasing unlike in ADAM. Moreover,
global convergence rates for policy gradient methods incorporating adaptive stepsizes are
still missing. Since adaptive gradient methods are “geometry-aware” algorithms, these
methods should have interesting connections with the recently introduced geometry-
aware normalized policy gradient (GNPG) and its analysis combining the concept of
non-uniform smoothness and the non-uniform Lojasiewicz inequality (Mei et al., 2020,
2021). It would also be interesting to compare the convergence rates of our method to
the linear convergence of GNPG in the deterministic setting where exact gradients are
supposed to be available.

Beyond the RL problem we tackle in this thesis, we can consider several other RL
problems such as risk-sensitive RL or multi-agent RL.

Risk-sensitive RL setting. Beyond risk-neutral RL where the performance metric
to be maximized by the agent is for instance the expectation of the expected total
(possibly discounted) reward, the agent may also aim at minimizing at the same time
a risk measure (e.g., variance or value at risk). Although risk-sensitive control dates
back to the previous century (see for e.g., Whittle (1990)) and have witnessed many
developments (see for e.g., Borkar (2001, 2005); Bhatnagar (2010) actor-critic algorithms
in this setting, Borkar (2002) for Q-learning, and Borkar (2010); Garcia and Fernandez
(2015) for surveys, and the references therein), risk-sensitive RL algorithms are less
advanced in comparison to the empirical success of risk-neutral RL that we discussed
so far. This gap calls for the need to design new algorithms for this setting which is
motivated by real-world applications requirements. Some of the most recent efforts in
this direction include the works of Bisi et al. (2020) and Whiteson et al. (2021) (see
also Karmakar and Bhatnagar (2021) for error bounds). We could leverage our ideas in
risk-neutral RL with advanced optimization methods for risk-sensitive RL.

Multi-agent RL setting. Finally, using momentum and adaptive gradient methods
could also prove useful in the multi-agent RL setting. In the distributed RL problem, a
network of agents seeks to maximize a global return cooperatively via communication
with local neighbors. Consider for instance the setting where rewards are decentralized
and each agent has access to the full state and action information. In the last few
years, distributed versions of TD learning, Q-learning and actor-critic algorithms have
been proposed in the literature (see Lee et al. (2020) for a recent survey). If the ADAM
algorithm has been recently extended to a distributed learning context by Chen et al.
(2021) for supervised learning, an adaptation of the algorithm to the multi-agent RL
setting is yet to be proposed.






Bibliography

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In
12th { USENIX} symposium on operating systems design and implementation ({OSDI}
16), pages 265-283, 2016. page 3

P.-A. Absil, R. Mahony, and B. Andrews. Convergence of the iterates of descent methods
for analytic cost functions. SIAM Journal on Optimization, 16(2):531-547, 2005.
page 106

N. Agarwal, B. Bullins, X. Chen, E. Hazan, K. Singh, C. Zhang, and Y. Zhang. Efficient
full-matrix adaptive regularization. In Proceedings of the 36th International Conference
on Machine Learning, volume 97, pages 102-110, Long Beach, California, USA, 09—
15 Jun 2019. PMLR. URL http://proceedings.mlr.press/v97/agarwall9b.html.
page 104

A. Alacaoglu, Y. Malitsky, and V. Cevher. Convergence of adaptive algorithms for
weakly convex constrained optimization. arXiv preprint arXiw:2006.06650, 2020a.
page 64

A. Alacaoglu, Y. Malitsky, P. Mertikopoulos, and V. Cevher. A new regret analysis for
Adam-type algorithms. In H. D. III and A. Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 202-210, 13-18 Jul 2020b. URL http://proceedings.mlr.
press/v119/alacaoglu20b.html. page 64

F. Alvarez. On the minimizing property of a second order dissipative system in Hilbert
spaces. SIAM Journal on Control and Optimization, 38(4):1102-1119, 2000. page 69

M. Assran and M. Rabbat. On the convergence of Nesterov’s accelerated gradient method
in stochastic settings. In H. D. III and A. Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 410-420, 13-18 Jul 2020. URL http://proceedings.mlr.
press/v119/assran20a.html. page 64

H. Attouch and J. Bolte. On the convergence of the proximal algorithm for nonsmooth
functions involving analytic features. Mathematical Programming, 116(1-2):5-16, 2009.
pages 23, 106, 111

H. Attouch, X. Goudou, and P. Redont. The heavy ball with friction method, i. the
continuous dynamical system: global exploration of the local minima of a real-valued
function by asymptotic analysis of a dissipative dynamical system. Communications
in Contemporary Mathematics, 2(01):1-34, 2000. pages 28, 55

H. Attouch, J. Bolte, P. Redont, and A. Soubeyran. Proximal alternating minimization
and projection methods for nonconvex problems: An approach based on the kurdyka-
lojasiewicz inequality. Mathematics of Operations Research, 35(2):438-457, 2010.
pages 111, 112


http://proceedings.mlr.press/v97/agarwal19b.html
http://proceedings.mlr.press/v119/alacaoglu20b.html
http://proceedings.mlr.press/v119/alacaoglu20b.html
http://proceedings.mlr.press/v119/assran20a.html
http://proceedings.mlr.press/v119/assran20a.html

176 Bibliography

H. Attouch, Z. Chbani, J. Peypouquet, and P. Redont. Fast convergence of inertial
dynamics and algorithms with asymptotic vanishing viscosity. Mathematical Program-
ming, 168(1-2):123-175, 2018. page 57

J.-F. Aujol, C. Dossal, and A. Rondepierre. Optimal convergence rates for nesterov
acceleration. STAM Journal on Optimization, 29(4):3131-3153, 2019. doi: 10.1137/
18M1186757. URL https://doi.org/10.1137/18M1186757. page 57

K. E. Avrachenkov, V. S. Borkar, H. P. Dolhare, and K. Patil. Full gradient dqgn
reinforcement learning: a provably convergent scheme. In Modern Trends in Controlled
Stochastic Processes:, pages 192-220. Springer, 2021. pages 6, 171

F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with
convergence rate o(1/n). In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani,
and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 26. Curran Associates, Inc., 2013. URL https://proceedings.neurips.cc/
paper/2013/file/7felf8abaad094e0b5cb1b01d712f708-Paper.pdf. page 9

L. Balles and P. Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In Proceedings of the 35th International Conference on Machine Learning,
volume 80, pages 404-413, 2018. pages 22, 28

E. Barnard. Temporal-difference methods and markov models. IEEE Transactions
on Systems, Man, and Cybernetics, 23(2):357-365, 1993. doi: 10.1109/21.229449.
page 135

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics, SMC-13(5):834-846, 1983. doi: 10.1109/TSMC.1983.6313077. pages 7, 129

A. Basu, S. De, A. Mukherjee, and E. Ullah. Convergence guarantees for rmsprop and
adam in non-convex optimization and their comparison to nesterov acceleration on
autoencoders. arXiv preprint arXiv:1807.06766, 2018. pages 28, 64, 106, 115

A. Belotto da Silva and M. Gazeau. A general system of differential equa-
tions to model first-order adaptive algorithms. Journal of Machine Learning
Research, 21(129):1-42, 2020. URL http://jmlr.org/papers/v21/18-808.html.
pages 11, 12, 54, 55, 56, 57, 58, 69, 70

A. Belotto da Silva and M. Gazeau. A general system of differential equations to model
first order adaptive algorithms. arXiv preprint arXiv:1810.13108, 31 Oct 2018. page 28

M. Benaim. A dynamical system approach to stochastic approximations. SIAM J. Control
Optim., 34(2):437-472, 1996. ISSN 0363-0129. doi: 10.1137/50363012993253534. URL
https://doi.org/10.1137/50363012993253534. pages 9, 143, 147

M. Benaim. Dynamics of stochastic approximation algorithms. In Séminaire de Probab-
ilités, XXXIII, volume 1709 of Lecture Notes in Math., pages 1-68. Springer, Berlin,
1999. pages 9, 13, 20, 37, 47, 55, 68, 75, 76, 77, 79

M. Benaim. On strict convergence of stochastic gradients. arXiv preprint
arXiw:1610.03278, 2016. page 169


https://doi.org/10.1137/18M1186757
https://proceedings.neurips.cc/paper/2013/file/7fe1f8abaad094e0b5cb1b01d712f708-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/7fe1f8abaad094e0b5cb1b01d712f708-Paper.pdf
http://jmlr.org/papers/v21/18-808.html
https://doi.org/10.1137/S0363012993253534

Bibliography 177

M. Benaim and M. W. Hirsch. Asymptotic pseudotrajectories and chain recurrent flows,
with applications. J. Dynam. Differential Equations, 8(1):141-176, 1996. ISSN 1040-
7294. doi: 10.1007/BF02218617. URL http://dx.doi.org/10.1007/BF02218617.
pages 37, 75

M. Benaim and S. J. Schreiber. Ergodic properties of weak asymptotic pseudotrajectories
for semiflows. J. Dynam. Differential Equations, 12(3):579-598, 2000. ISSN 1040-7294.
page 20

M. Benaim, J. Hofbauer, and S. Sorin. Stochastic approximations and differential
inclusions. SIAM Journal on Control and Optimization, 44(1):328-348, 2005. page 170

E. Bengio, J. Pineau, and D. Precup. Correcting momentum in temporal difference
learning. arXww preprint arXiv:2106.03955, 2021. page 173

A. Benveniste, M. Métivier, and P. Priouret. Adaptive algorithms and stochastic ap-
prozimations, volume 22 of Applications of Mathematics (New York). Springer-
Verlag, Berlin, 1990. ISBN 3-540-52894-6. doi: 10.1007/978-3-642-75894-2. URL
https://doi.org/10.1007/978-3-642-75894-2. Translated from the French by
Stephen S. Wilson. pages 9, 130, 151

B. Bercu and J. Bigot. Asymptotic distribution and convergence rates of stochastic
algorithms for entropic optimal transportation between probability measures. The
Annals of Statistics, 49(2):968 — 987, 2021. doi: 10.1214/20-A0S1987. URL https:
//doi.org/10.1214/20-A0S1987. pages 9, 170

B. Bercu, J. Bigot, S. Gadat, and E. Siviero. A stochastic gauss-newton algorithm for
regularized semi-discrete optimal transport. arXiv preprint arXiv:2107.05291, 2021.
pages 9, 170

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
1st edition, 1996. ISBN 1886529108. pages 7, 129, 132, 135, 138, 145

D. P. Bertsekas and J. N. Tsitsiklis. Gradient convergence in gradient methods with
errors. SIAM Journal on Optimization, 10(3):627-642, 2000. page 9

J. Bhandari, D. Russo, and R. Singal. A finite time analysis of temporal difference learning
with linear function approximation. In S. Bubeck, V. Perchet, and P. Rigollet, editors,
Proceedings of the 31st Conference On Learning Theory, volume 75 of Proceedings
of Machine Learning Research, pages 1691-1692. PMLR, 06-09 Jul 2018. URL
http://proceedings.mlr.press/v75/bhandaril8a.html. pages 131, 137, 139

S. Bhatnagar. An actor—critic algorithm with function approximation for discounted
cost constrained markov decision processes. Systems & Control Letters, 59(12):760
— 766, 2010. ISSN 0167-6911. doi: https://doi.org/10.1016/j.sysconle.2010.08.013.
URL http://www.sciencedirect.com/science/article/pii/S0167691110001246.
page 173

S. Bhatnagar, R. S. Sutton, M. Ghavamzadeh, and M. Lee. Natural actor-critic algorithms.
Automatica, 45(11):2471-2482, 2009. pages 8, 129, 130, 131, 136, 137

P. Bianchi, W. Hachem, and A. Salim. Constant step stochastic approximations involving
differential inclusions: Stability, long-run convergence and applications. Stochastics,
91(2):288-320, 2019. page 42


http://dx.doi.org/10.1007/BF02218617
https://doi.org/10.1007/978-3-642-75894-2
https://doi.org/10.1214/20-AOS1987
https://doi.org/10.1214/20-AOS1987
http://proceedings.mlr.press/v75/bhandari18a.html
http://www.sciencedirect.com/science/article/pii/S0167691110001246

178 Bibliography

P. Bianchi, W. Hachem, and S. Schechtman. Convergence of constant step
stochastic gradient descent for non-smooth non-convex functions. arXiv preprint
arXw:2005.08513, 2020. page 2

P. Bianchi, W. Hachem, and S. Schechtman. Stochastic subgradient descent escapes
active strict saddles. arXiv preprint arXiw:2108.02072, 2021. page 170

L. Bisi, L. Sabbioni, E. Vittori, M. Papini, and M. Restelli. Risk-averse trust region
optimization for reward-volatility reduction. In C. Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, I1JCAI-20,
pages 4583-4589. International Joint Conferences on Artificial Intelligence Organiza-
tion, 7 2020. Special Track on Al in FinTech. page 173

J. Bolte and E. Pauwels. Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Mathematical Programming, 188(1):
19-51, 2021. pages 2, 170

J. Bolte, A. Daniilidis, O. Ley, and L. Mazet. Characterizations of lojasiewicz inequalities:
subgradient flows, talweg, convexity. Transactions of the American Mathematical
Society, 362(6):3319-3363, 2010. page 110

J. Bolte, S. Sabach, and M. Teboulle. Proximal alternating linearized minimization for
nonconvex and nonsmooth problems. Mathematical Programming, 146(1-2):459-494,
2014. pages 23, 111, 112

J. Bolte, S. Sabach, M. Teboulle, and Y. Vaisbourd. First order methods beyond convexity
and lipschitz gradient continuity with applications to quadratic inverse problems. SIA M
Journal on Optimization, 28(3):2131-2151, 2018. pages 111, 112, 121, 122, 124

J. Bolte, E. Pauwels, and R. Rios-Zertuche. Long term dynamics of the subgradient
method for lipschitz path differentiable functions. arXiv preprint arXiv:2006.00098,
2020. page 170

V. S. Borkar. A sensitivity formula for risk-sensitive cost and the actor—critic algorithm.
Systems & Control Letters, 44(5):339-346, 2001. ISSN 0167-6911. doi: https://doi.org/
10.1016/S0167-6911(01)00152-9. URL https://www.sciencedirect.com/science/
article/pii/S0167691101001529. page 173

V. S. Borkar. Q-learning for risk-sensitive control. Mathematics of operations research,
27(2):294-311, 2002. page 173

V. S. Borkar. An actor-critic algorithm for constrained markov decision processes.
Systems €& Control Letters, 54(3):207-213, 2005. ISSN 0167-6911. doi: https://doi.org/
10.1016/j.sysconle.2004.08.007. URL https://www.sciencedirect.com/science/
article/pii/S0167691104001276. page 173

V. S. Borkar. Stochastic approximation. A dynamical systems viewpoint. Cambridge
University Press, Cambridge; Hindustan Book Agency, New Delhi, 2008. ISBN
978-0-521-51592-4. pages 9, 13, 130, 136, 137, 141

V. S. Borkar. Learning algorithms for risk-sensitive control. In Proceedings of the 19th
International Symposium on Mathematical Theory of Networks and Systems—MTNS,
volume 5, 2010. page 173


https://www.sciencedirect.com/science/article/pii/S0167691101001529
https://www.sciencedirect.com/science/article/pii/S0167691101001529
https://www.sciencedirect.com/science/article/pii/S0167691104001276
https://www.sciencedirect.com/science/article/pii/S0167691104001276

Bibliography 179

V. S. Borkar and S. Chandak. Prospect-theoretic g-learning. arXiwv preprint
arXw:2104.05311, 2021. page 6

V. S. Borkar and S. P. Meyn. The ode method for convergence of stochastic approximation
and reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447-469,
2000. page 136

L. Bottou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223-311, 2018. pages 1, 9

O. Brandiére and M. Duflo. Les algorithmes stochastiques contournent-ils les piéges? Ann.
Inst. H. Poincaré Probab. Statist., 32(3):395-427, 1996. ISSN 0246-0203. URL http://
www.numdam. org/item?id=ATHPB_1996__32_3_395_0. pages 13, 65, 68, 89, 94, 97, 169

A. Cabot, H. Engler, and S. Gadat. On the long time behavior of second order
differential equations with asymptotically small dissipation. Transactions of the
American Mathematical Society, 361(11):5983-6017, 2009. pages 28, 57, 58, 73

C. Castera, J. Bolte, C. Févotte, and E. Pauwels. An inertial newton algorithm for deep
learning. arXww preprint arXiv:1905.12278, 2019. page 110

S. Cayci, S. Satpathi, N. He, and R. Srikant. Sample complexity and overparameterization
bounds for projection-free neural td learning. arXiv preprint arXiv:2103.01391, 2021.
page 172

C. Chen, H. Wei, N. Xu, G. Zheng, M. Yang, Y. Xiong, K. Xu, and Z. Li. Toward
a thousand lights: Decentralized deep reinforcement learning for large-scale traffic
signal control. Proceedings of the AAAI Conference on Artificial Intelligence, 34(04):
3414-3421, Apr. 2020. doi: 10.1609/aaai.v34i04.5744. URL https://ojs.aaai.org/
index.php/AAAI/article/view/5744. page 5

J. Chen, D. Zhou, Y. Tang, Z. Yang, and Q. Gu. Closing the generalization gap of adaptive
gradient methods in training deep neural networks. arXiv preprint arXiv:1806.06763,
2018. pages 64, 107

T. Chen, Z. Guo, Y. Sun, and W. Yin. Cada: Communication-adaptive distributed
adam. In International Conference on Artificial Intelligence and Statistics, pages
613-621. PMLR, 2021. pages 172, 173

X. Chen, S. Liu, R. Sun, and M. Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In International Conference on Learning
Representations, 2019. pages 27, 28, 64, 106, 107, 115

G. Dalal, G. Thoppe, B. Szorényi, and S. Mannor. Finite sample analysis of two-timescale
stochastic approximation with applications to reinforcement learning. In S. Bubeck,
V. Perchet, and P. Rigollet, editors, Proceedings of the 31st Conference On Learning
Theory, volume 75 of Proceedings of Machine Learning Research, pages 1199-1233.
PMLR, 06-09 Jul 2018. URL http://proceedings.mlr.press/v75/dalall8a.html.
page 131

J. L. Daleckii and M. G. Krein. Stability of solutions of differential equations in
Banach space. American Mathematical Society, Providence, R.I., 1974. Translated
from the Russian by S. Smith, Translations of Mathematical Monographs, Vol. 43.
pages 13, 54, 68, 89


http://www.numdam.org/item?id=AIHPB_1996__32_3_395_0
http://www.numdam.org/item?id=AIHPB_1996__32_3_395_0
https://ojs.aaai.org/index.php/AAAI/article/view/5744
https://ojs.aaai.org/index.php/AAAI/article/view/5744
http://proceedings.mlr.press/v75/dalal18a.html

180 Bibliography

D. Davis, D. Drusvyatskiy, S. Kakade, and J. Lee. Stochastic subgradient method
converges on tame functions. Foundations of Computational Mathematics, 20(1):
119-154, 2020. pages 2, 28, 110, 111, 170

D. Davis, D. Drusvyatskiy, and L. Jiang. Subgradient methods near active manifolds:
saddle point avoidance, local convergence, and asymptotic normality. arXiv preprint
arXiw:2108.11832, 2021. page 170

A. Défossez, L. Bottou, F. Bach, and N. Usunier. A simple convergence proof of adam
and adagrad. arXiw preprint arXiw:2003.02595, 2020. pages 64, 169

B. Delyon. General results on the convergence of stochastic algorithms. IEEE Transac-
tions on Automatic Control, 41(9):1245-1255, 1996. page 9

B. Delyon, M. Lavielle, and E. Moulines. Convergence of a stochastic approximation
version of the em algorithm. Annals of statistics, pages 94-128, 1999. pages 85, 86, 87

J. Diakonikolas and M. I. Jordan. Generalized momentum-based methods: A hamiltonian
perspective. arXiw preprint arXiw:1906.00436, 2019. page 105

T. Dozat. Incorporating nesterov momentum into adam. 2016. page 107

S. S. Du, C. Jin, J. D. Lee, M. I. Jordan, A. Singh, and B. Poczos. Gradient
descent can take exponential time to escape saddle points. In I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 30, pages
1067-1077. Curran Associates, Inc., 2017. URL http://papers.nips.cc/paper/
6707-gradient-descent-can-take-exponential-time-to-escape-saddle-points.
pdf. page 68

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121-2159,
2011. pages 2, 18, 27, 61, 104

M. Duflo. Random iterative models, volume 34 of Applications of Mathematics (New
York). Springer-Verlag, Berlin, 1997. ISBN 3-540-57100-0. page 9

J.-C. Fort and G. Pagés. Asymptotic behavior of a Markovian stochastic algorithm with
constant step. SIAM J. Control Optim., 37(5):1456-1482 (electronic), 1999. ISSN
0363-0129. page 45

S. Fujimoto, H. van Hoof, and D. Meger. Addressing function approximation error in actor-
critic methods. In J. Dy and A. Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1587-1596. PMLR, 10-15 Jul 2018. URL http://proceedings.mlr.
press/v80/fujimotol8a.html. pages 7, 129, 171

S. Gadat and I. Gavra. Asymptotic study of stochastic adaptive algorithm in non-convex
landscape. arXiv preprint arXiv:2012.05640, 2020. pages 61, 64, 68, 169

S. Gadat, F. Panloup, and S. Saadane. Stochastic heavy ball. Electron. J. Stat., 12(1):461—
529, 2018. doi: 10.1214/18-EJS1395. URL https://doi.org/10.1214/18-EJS1395.
pages 3, 11, 13, 27, 28, 54, 63, 64, 68, 73


http://papers.nips.cc/paper/6707-gradient-descent-can-take-exponential-time-to-escape-saddle-points.pdf
http://papers.nips.cc/paper/6707-gradient-descent-can-take-exponential-time-to-escape-saddle-points.pdf
http://papers.nips.cc/paper/6707-gradient-descent-can-take-exponential-time-to-escape-saddle-points.pdf
http://proceedings.mlr.press/v80/fujimoto18a.html
http://proceedings.mlr.press/v80/fujimoto18a.html
https://doi.org/10.1214/18-EJS1395

Bibliography 181

J. Garcia and F. Ferndndez. A comprehensive survey on safe reinforcement learning.
Journal of Machine Learning Research, 16(1):1437-1480, 2015. page 173

A. Genevay, M. Cuturi, G. Peyré, and F. Bach. Stochastic optimization for large-scale
optimal transport. In D. Lee, M. Sugiyama, U. Luxburg, [. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
2a27b8144ac02f67687£76782a3b5d8f -Paper.pdf. page 170

S. Ghadimi and G. Lan. Stochastic first-and zeroth-order methods for nonconvex
stochastic programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013.
pages 109, 110

G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien. A variational
inequality perspective on generative adversarial networks. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
r1laEnA5Ym. page 170

R. M. Gower, N. Loizou, X. Qian, A. Sailanbayev, E. Shulgin, and P. Richtarik. Sgd:
General analysis and improved rates. In International Conference on Machine Learning,
pages 5200-5209. PMLR, 2019. page 9

S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep reinforcement learning for robotic
manipulation with asynchronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 3389-3396. IEEE, 2017. page 5

H. Gupta, R. Srikant, and L. Ying. Finite-time performance bounds and adaptive
learning rate selection for two time-scale reinforcement learning. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett, edit-
ors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
e354£d90b2d5c777bfec87a352a18976-Paper.pdf. page 131

V. Gupta, T. Koren, and Y. Singer. A unified approach to adaptive regularization in
online and stochastic optimization. arXiv preprint arXiv:1706.06569, 2017. page 104

T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy max-
imum entropy deep reinforcement learning with a stochastic actor. In J. Dy and
A. Krause, editors, Proceedings of the 35th International Conference on Machine Learn-
ing, volume 80 of Proceedings of Machine Learning Research, pages 1861-1870. PMLR,
10-15 Jul 2018. URL http://proceedings.mlr.press/v80/haarnojal8b.html.
pages 7, 129, 171, 172

A. Haraux. Systémes dynamiques dissipatifs et applications, volume 17. Masson, 1991.
pages 37, 38, 72, 75

A. Haraux and M. Jendoubi. The convergence problem for dissipative autonomous
systems. Springer Briefs in Mathematics. Springer International Publishing, 2015.
pages 23, 39, 40

P. Hartman. Ordinary Differential Equations. Society for Industrial and Applied
Mathematics, second edition, 2002. doi: 10.1137/1.9780898719222. URL https:
//epubs.siam.org/doi/abs/10.1137/1.9780898719222. page 70


https://proceedings.neurips.cc/paper/2016/file/2a27b8144ac02f67687f76782a3b5d8f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/2a27b8144ac02f67687f76782a3b5d8f-Paper.pdf
https://openreview.net/forum?id=r1laEnA5Ym
https://openreview.net/forum?id=r1laEnA5Ym
https://proceedings.neurips.cc/paper/2019/file/e354fd90b2d5c777bfec87a352a18976-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/e354fd90b2d5c777bfec87a352a18976-Paper.pdf
http://proceedings.mlr.press/v80/haarnoja18b.html
https://epubs.siam.org/doi/abs/10.1137/1.9780898719222
https://epubs.siam.org/doi/abs/10.1137/1.9780898719222

182 Bibliography

N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver. Memory-based control with recurrent
neural networks. arXiv preprint arXiw:1512.04455, 2015. pages 7, 129

M. Hong, H.-T. Wai, Z. Wang, and Z. Yang. A two-timescale framework for bilevel
optimization: Complexity analysis and application to actor-critic. arXiv preprint
arXiw:2007.05170, 2020. page 131

R. A. Horn and C. R. Johnson. Topics in matriz analysis. Cambridge University
Press, Cambridge, 1994. ISBN 0-521-46713-6. Corrected reprint of the 1991 original.
pages 90, 147

Y.-P. Hsieh, P. Mertikopoulos, and V. Cevher. The limits of min-max optimization
algorithms: Convergence to spurious non-critical sets. In M. Meila and T. Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 4337-4348. PMLR, 18-24 Jul
2021. URL https://proceedings.mlr.press/v139/hsieh2la.html. page 9

F. Huang, S. Gao, J. Pei, and H. Huang. Momentum-based policy gradient methods.
In International Conference on Machine Learning, pages 4422-4433. PMLR, 2020.
page 173

P. Jain, S. M. Kakade, R. Kidambi, P. Netrapalli, and A. Sidford. Accelerating stochastic
gradient descent for least squares regression. In Conference On Learning Theory, pages
545-604. PMLR, 2018. page 3

C. Jin, R. Ge, P. Netrapalli, S. M. Kakade, and M. I. Jordan. How to escape saddle
points efficiently. volume 70 of Proceedings of Machine Learning Research, pages
1724-1732. PMLR, 2017. URL http://proceedings.mlr.press/v70/jinl7a. html.
page 68

P. R. Johnstone and P. Moulin. Convergence rates of inertial splitting schemes for
nonconvex composite optimization. In 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 4716-4720. IEEE, 2017.
pages 106, 111, 124

M. Kaledin, E. Moulines, A. Naumov, V. Tadic, and H. Wai. Finite time analysis of linear
two-timescale stochastic approximation with markovian noise. In J. D. Abernethy
and S. Agarwal, editors, Conference on Learning Theory, COLT 2020, 9-12 July
2020, Virtual Event [Graz, Austria/, volume 125 of Proceedings of Machine Learning
Research, pages 2144-2203. PMLR, 2020. URL http://proceedings.mlr.press/
v125/kaledin20a.html. page 131

I. Karatzas and S. Shreve. Brownian motion and stochastic calculus. Springer-Verlag,
New York, second edition, 1991. pages 50, 84

H. Karimi, J. Nutini, and M. Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-tojasiewicz condition. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 795-811. Springer,
2016. page 112

P. Karmakar and S. Bhatnagar. Two time-scale stochastic approximation with controlled
Markov noise and off-policy temporal-difference learning. Math. Oper. Res., 43
(1):130-151, 2018. ISSN 0364-765X. doi: 10.1287/moor.2017.0855. URL https:
//doi.org/10.1287/moor.2017.0855. pages 136, 137, 141, 143, 171


https://proceedings.mlr.press/v139/hsieh21a.html
http://proceedings.mlr.press/v70/jin17a.html
http://proceedings.mlr.press/v125/kaledin20a.html
http://proceedings.mlr.press/v125/kaledin20a.html
https://doi.org/10.1287/moor.2017.0855
https://doi.org/10.1287/moor.2017.0855

Bibliography 183

P. Karmakar and S. Bhatnagar. On tight bounds for function approximation error in
risk-sensitive reinforcement learning. Systems & Control Letters, 150:104899, 2021.
ISSN 0167-6911. doi: https://doi.org/10.1016/j.sysconle.2021.104899. URL https:
//www.sciencedirect.com/science/article/pii/S0167691121000293. page 173

R. Kidambi, P. Netrapalli, P. Jain, and S. M. Kakade. On the insufficiency of existing mo-
mentum schemes for stochastic optimization. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rJTutzbA-. page 3

D. P. Kingma and J. Ba. Adam: A method for stochastic optim-
ization. In International Conference on Learning Representations, 2015.
pages 3, 10, 11, 17, 18, 20, 21, 27, 28, 53, 55, 103, 104, 110

B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani, and
P. Pérez. Deep reinforcement learning for autonomous driving: A survey. [EFE
Transactions on Intelligent Transportation Systems, 2021. page 5

P. E. Kloeden and M. Rasmussen. Nonautonomous dynamical systems, volume 176 of
Mathematical Surveys and Monographs. American Mathematical Society, Providence,
RI, 2011. ISBN 978-0-8218-6871-3. doi: 10.1090/surv/176. URL https://doi.org/
10.1090/surv/176. pages 13, 54, 68, 89, 91, 93, 94

V. R. Konda. Actor-Critic Algorithms. PhD thesis, USA, 2002. AAI0804543.
pages 130, 133, 138, 152

V. R. Konda and V. S. Borkar. Actor-critic-type learning algorithms for markov
decision processes. SIAM Journal on control and Optimization, 38(1):94-123, 1999.
pages 7, 129, 136

V. R. Konda and J. N. Tsitsiklis. On actor-critic algorithms. STAM journal on Control
and Optimization, 42(4):1143-1166, 2003. pages 7, 129, 130, 131, 133, 137, 139, 149, 152

G. M. Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 12:747-756, 1976. page 170

H. Kumar, A. Koppel, and A. Ribeiro. On the sample complexity of actor-critic
method for reinforcement learning with function approximation. arXiv preprint
arXiv:1910.08412, 2019. pages 131, 140

K. Kurdyka. On gradients of functions definable in o-minimal structures. In Annales de
linstitut Fourier, volume 48, pages 769-783, 1998. pages 110, 111

H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Constrained and
Unconstrained Systems. Springer-Verlag, Berlin, Heidelberg, New York., 1978. page 9

H. J. Kushner and G. G. Yin. Stochastic approximation and recursive algorithms and
applications, volume 35 of Applications of Mathematics (New York). Springer-Verlag,
New York, second edition, 2003. ISBN 0-387-00894-2. Stochastic Modelling and
Applied Probability. pages 9, 136

C. Lakshminarayanan and S. Bhatnagar. A stability criterion for two timescale stochastic
approximation schemes. Automatica, 79:108-114, 2017. page 136


https://www.sciencedirect.com/science/article/pii/S0167691121000293
https://www.sciencedirect.com/science/article/pii/S0167691121000293
https://openreview.net/forum?id=rJTutzbA-
https://doi.org/10.1090/surv/176
https://doi.org/10.1090/surv/176

184 Bibliography

N. Lazic, T. Lu, C. Boutilier, M. Ryu, E. J. Wong, B. Roy, and G. Im-
walle. Data center cooling using model-predictive control. In Proceedings of the
Thirty-second Conference on Neural Information Processing Systems (NeurIPS-18),
pages 3818-3827, Montreal, QC, 2018. URL https://papers.nips.cc/paper/
7638-data-center-cooling-using-model-predictive-control. page 5

D. Lee and N. He. Target-based temporal-difference learning. In K. Chaudhuri and
R. Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 3713-3722.
PMLR, 09-15 Jun 2019. URL http://proceedings.mlr.press/v97/leel9a.html.
pages 15, 129, 131, 132, 134

D. Lee, N. He, P. Kamalaruban, and V. Cevher. Optimization for reinforcement learning:
From a single agent to cooperative agents. IEEFE Signal Processing Magazine, 37(3):
123-135, 2020. page 173

J. D. Lee, I. Panageas, G. Piliouras, M. Simchowitz, M. I. Jordan, and B. Recht. First-
order methods almost always avoid strict saddle points. Math. Program., 176(1-2,
Ser. B):311-337, 2019. ISSN 0025-5610. doi: 10.1007/s10107-019-01374-3. URL
https://doi.org/10.1007/s10107-019-01374-3. page 68

S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen. Learning hand-eye
coordination for robotic grasping with deep learning and large-scale data collection.
The International Journal of Robotics Research, 37(4-5):421-436, 2018. page 5

G. Li and T. K. Pong. Calculus of the exponent of kurdyka—tojasiewicz inequality
and its applications to linear convergence of first-order methods. Foundations of
computational mathematics, 18(5):1199-1232, 2018. page 112

J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and J. Gao. Deep reinforcement
learning for dialogue generation. In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1192-1202, Austin, Texas, Nov. 2016.
Association for Computational Linguistics. doi: 10.18653/v1/D16-1127. URL https:
//aclanthology.org/D16-1127. page 5

Q. Li, Y. Zhou, Y. Liang, and P. K. Varshney. Convergence analysis of proximal gradient
with momentum for nonconvex optimization. In Proceedings of the 3/th International
Conference on Machine Learning-Volume 70, pages 2111-2119. JMLR. org, 2017.
pages 106, 111

X. Li and F. Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In Proceedings of Machine Learning Research, volume 89, pages 983-992.
PMLR, 16-18 Apr 2019. URL http://proceedings.mlr.press/v89/1i19c.html.
page 106

J. Liang, J. Fadili, and G. Peyré. A multi-step inertial forward-backward splitting
method for non-convex optimization. In Advances in Neural Information Processing
Systems, pages 4035-4043, 2016. page 106

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. In ICLR 2016,
2016. URL http://arxiv.org/abs/1509.02971. pages 7, 129, 132, 135, 141, 171, 172


https://papers.nips.cc/paper/7638-data-center-cooling-using-model-predictive-control
https://papers.nips.cc/paper/7638-data-center-cooling-using-model-predictive-control
http://proceedings.mlr.press/v97/lee19a.html
https://doi.org/10.1007/s10107-019-01374-3
https://aclanthology.org/D16-1127
https://aclanthology.org/D16-1127
http://proceedings.mlr.press/v89/li19c.html
http://arxiv.org/abs/1509.02971

Bibliography 185

L. Liu, H. Jiang, P. He, W. Chen, X. Liu, J. Gao, and J. Han. On the variance of the
adaptive learning rate and beyond. arXiv preprint arXiv:1908.05265, 2019. page 107

S. Liu, K. C. See, K. Y. Ngiam, L. A. Celi, X. Sun, and M. Feng. Reinforcement learning
for clinical decision support in critical care: comprehensive review. Journal of medical
Internet research, 22(7):e18477, 2020. page 5

L. Ljung. Analysis of recursive stochastic algorithms. IEEFE transactions on automatic
control, 22(4):551-575, 1977. page 8

S. Lojasiewicz. Une propriété topologique des sous-ensembles analytiques réels. Les
équations aux dérivées partielles, 117:87-89, 1963. pages 22, 110

L. Luo, Y. Xiong, and Y. Liu. Adaptive gradient methods with dynamic bound of
learning rate. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=Bkg3g2RIFX. pages 106, 107, 114, 115

J. Ma and D. Yarats. Quasi-hyperbolic momentum and adam for deep learning. In Inter-
national Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1fUpoR5FQ. page 107

V. V. Mai and M. Johansson. Convergence of a stochastic gradient method with
momentum for nonsmooth nonconvex optimization. Proceedings of Machine Learning
Research. PMLR, 2020. page 64

S. Majewski, B. Miasojedow, and E. Moulines. Analysis of nonsmooth stochastic
approximation: the differential inclusion approach. arXiv preprint arXiv:1805.01916,
2018. pages 2, 170

P. Marbach and J. Tsitsiklis. Simulation-based optimization of markov reward processes.
IEEFE Transactions on Automatic Control, 46(2):191-209, 2001. doi: 10.1109/9.905687.
pages 135, 144

H. B. McMahan and M. Streeter. Adaptive bound optimization for online convex
optimization. pages 244-256, 2010. pages 2, 104

J. Mei, C. Xiao, C. Szepesvari, and D. Schuurmans. On the global convergence rates of
softmax policy gradient methods. In H. D. III and A. Singh, editors, Proceedings of
the 37th International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 6820-6829. PMLR, 13-18 Jul 2020. URL
https://proceedings.mlr.press/v119/mei20b.html. page 173

J. Mei, Y. Gao, B. Dai, C. Szepesvari, and D. Schuurmans. Leveraging non-uniformity
in first-order non-convex optimization. In M. Meila and T. Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 7555-7564. PMLR, 18-24 Jul 2021. URL
https://proceedings.mlr.press/v139/mei2la.html. page 173

P. Mertikopoulos, N. Hallak, A. Kavis, and V. Cevher. On the almost sure con-
vergence of stochastic gradient descent in non-convex problems. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in
Neural Information Processing Systems, volume 33, pages 1117-1128. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
Ocbbebblb34ec343dfel35db691e4a85-Paper.pdf. pages 9, 68


https://openreview.net/forum?id=Bkg3g2R9FX
https://openreview.net/forum?id=S1fUpoR5FQ
https://openreview.net/forum?id=S1fUpoR5FQ
https://proceedings.mlr.press/v119/mei20b.html
https://proceedings.mlr.press/v139/mei21a.html
https://proceedings.neurips.cc/paper/2020/file/0cb5ebb1b34ec343dfe135db691e4a85-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/0cb5ebb1b34ec343dfe135db691e4a85-Paper.pdf

186 Bibliography

M. Métivier and P. Priouret. Applications of a kushner and clark lemma to general
classes of stochastic algorithms. IEEE Transactions on Information Theory, 30(2):
140-151, 1984. page 9

M. Métivier and P. Priouret. Théorémes de convergence presque siire pour une classe
d’algorithmes stochastiques & pas décroissant. Probability Theory and Related Fields,
74(3):403-428, Sep 1987. ISSN 1432-2064. doi: 10.1007/BF00699098. URL https:
//doi.org/10.1007/BF00699098. pages 9, 76

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXw:1812.5602, 2013. page 171

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529-533, 2015. pages 5, 129, 132, 171, 172

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In M. F.
Balcan and K. Q. Weinberger, editors, Proceedings of The 33rd International Con-
ference on Machine Learning, volume 48 of Proceedings of Machine Learning Re-
search, pages 1928—-1937, New York, New York, USA, 20-22 Jun 2016. PMLR. URL
http://proceedings.mlr.press/v48/mnihal6.html. pages 129, 172

E. Moulines and F. Bach. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems, volume 24,
pages 451-459. Curran Associates, Inc., 2011. URL https://proceedings.neurips.
cc/paper/2011/£i1e/40008b9a5380f caccel3976bf7c08af5b-Paper.pdf. page 9

Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k?). In Soviet Mathematics Doklady, volume 27, pages 372-376, 1983. page 3

Y. Nesterov. Introductory lectures on convex optimization: a basic course. Springer:
New York, NY, USA, 2004. pages 109, 121

P. Ochs. Local convergence of the heavy-ball method and ipiano for non-convex op-
timization. Journal of Optimization Theory and Applications, 177(1):153-180, 2018.
pages 106, 111

P. Ochs, Y. Chen, T. Brox, and T. Pock. ipiano: Inertial proximal algorithm for nonconvex
optimization. SIAM Journal on Imaging Sciences, 7(2):1388-1419, 2014. doi: 10.1137/
130942954. URL https://doi.org/10.1137/130942954. pages 13, 105, 111, 120, 121

I. Panageas and G. Piliouras. Gradient descent only converges to minimizers: Non-
isolated critical points and invariant regions. In ITCS, 2017. page 68

. Panageas, G. Piliouras, and X. Wang. First-order methods almost always avoid saddle
points: The case of vanishing step-sizes. In Advances in Neural Information Processing
Systems 32, pages 6474—6483, 2019. page 68

R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent neural
networks. In International conference on machine learning, pages 1310-1318, 2013.
page 107


https://doi.org/10.1007/BF00699098
https://doi.org/10.1007/BF00699098
http://proceedings.mlr.press/v48/mniha16.html
https://proceedings.neurips.cc/paper/2011/file/40008b9a5380fcacce3976bf7c08af5b-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/40008b9a5380fcacce3976bf7c08af5b-Paper.pdf
https://doi.org/10.1137/130942954

Bibliography 187

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch:
An imperative style, high-performance deep learning library. Advances in neural
information processing systems, 32:8026-8037, 2019. page 3

M. Pelletier. Weak convergence rates for stochastic approximation with application to
multiple targets and simulated annealing. Annals of Applied Probability, pages 1044,
1998. pages 49, 50, 83, 84

R. Pemantle. Nonconvergence to unstable points in urn models and stochastic
approximations. Ann. Probab., 18(2):698-712, 1990. ISSN 0091-1798.
URL http://links.jstor.org/sici?sici=0091-1798(199004)18:2<698:NTUPIU>
2.0.C0;2-R&origin=MSN. pages 13, 65, 68, 89, 169

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180-1190, 2008.
page 129

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1-17, 1964. pages 3, 105

C. Potzsche and M. Rasmussen. Taylor approximation of integral manifolds. J. Dy-
nam. Differential Equations, 18(2):427-460, 2006. ISSN 1040-7294. doi: 10.1007/
$10884-006-9011-8. URL https://doi.org/10.1007/s10884-006-9011-8. page 91

L. A. Prashanth and S. Bhatnagar. Reinforcement learning with function approximation
for traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 12
(2):412-421, 2010. page 5

L. A. Prashanth and S. Bhatnagar. Reinforcement learning with average cost for
adaptive control of traffic lights at intersections. In 2011 14th International IEEE
Conference on Intelligent Transportation Systems (ITSC), pages 1640-1645, 2011. doi:
10.1109/ITSC.2011.6082823. page 5

M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014. pages 5, 129, 151

S. Qiu, Z. Yang, J. Ye, and Z. Wang. On the finite-time convergence of actor-critic
algorithm. In Optimization Foundations for Reinforcement Learning Workshop at
Advances in Neural Information Processing Systems (NeurIPS), 2019. pages 131, 140

S. J. Reddi, S. Kale, and S. Kumar. On the convergence of adam and
beyond. In International Conference on Learning Representations, 2018.
pages 27, 28, 103, 106, 107, 108, 115

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathem-
atical statistics, pages 400-407, 1951. pages 2, 8, 104

H. Robbins and D. Siegmund. A convergence theorem for non negative almost super-
martingales and some applications. In Optimizing Methods in Statistics, pages 233-257.
Academic Press, New York, 1971. pages 48, 80


http://links.jstor.org/sici?sici=0091-1798(199004)18:2<698:NTUPIU>2.0.CO;2-R&origin=MSN
http://links.jstor.org/sici?sici=0091-1798(199004)18:2<698:NTUPIU>2.0.CO;2-R&origin=MSN
https://doi.org/10.1007/s10884-006-9011-8

188 Bibliography

J. Romoff, P. Henderson, D. Kanaa, E. Bengio, A. Touati, P.-L.. Bacon, and J. Pineau.
Tdprop: Does adaptive optimization with jacobi preconditioning help temporal differ-
ence learning? In Proceedings of the 20th International Conference on Autonomous
Agents and MultiAgent Systems, pages 1082-1090, 2021. page 172

P. Savarese. On the convergence of adabound and its connection to sgd. arXiv preprint
arXiv:1908.04457, 2019. page 114

S. Schechtman. Stochastic subgradient descent on a generic definable function converges
to a minimizer. arXiv preprint arXiv:2109.02455, 2021. page 170

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiw:1707.06347, 2017. page 172

O. Sebbouh, R. M. Gower, and A. Defazio. Almost sure convergence rates for stochastic
gradient descent and stochastic heavy ball. In M. Belkin and S. Kpotufe, editors,
Proceedings of Thirty Fourth Conference on Learning Theory, volume 134 of Proceedings
of Machine Learning Research, pages 3935-3971. PMLR, 15-19 Aug 2021. URL
https://proceedings.mlr.press/v134/sebbouh2la.html. page 9

H. Shen, K. Zhang, M. Hong, and T. Chen. Asynchronous advantage actor critic:
Non-asymptotic analysis and linear speedup. arXiv preprint arXiv:2012.15511, 2020.
pages 131, 132, 134, 137, 139, 141, 152, 153, 154, 155, 162

R. Srikant and L. Ying. Finite-time error bounds for linear stochastic approximation
and td learning. In A. Beygelzimer and D. Hsu, editors, Proceedings of the Thirty-
Second Conference on Learning Theory, volume 99 of Proceedings of Machine Learning

Research, pages 2803-2830, Phoenix, USA, 25-28 Jun 2019. PMLR. URL http:
//proceedings.mlr.press/v99/srikant19a.html. page 131

M. Staib, S. Reddi, S. Kale, S. Kumar, and S. Sra. Escaping saddle points with adaptive
gradient methods. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pages 5956-5965, Long Beach, California, USA, 09-15 Jun 2019.
PMLR. URL http://proceedings.mlr.press/v97/staibl9a.html. page 104

W. Su, S. Boyd, and E. J. Candés. A differential equation for modeling Nesterov’s
accelerated gradient method: theory and insights. J. Mach. Learn. Res., 17:Paper No.
153, 43, 2016. ISSN 1532-4435. pages 57, 58, 73

T. Sun, H. Shen, T. Chen, and D. Li. Adaptive temporal difference learning with linear
function approximation. arXiv preprint arXiv:2002.08537, 2020. page 172

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning,
pages 1139-1147, 2013. pages 3, 105

R. S. Sutton. Learning to predict by the methods of temporal differences. Machine
learning, 3(1):9-44, 1988. pages 14, 134

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press,
2018. pages 4, 5, 7, 129, 132, 172


https://proceedings.mlr.press/v134/sebbouh21a.html
http://proceedings.mlr.press/v99/srikant19a.html
http://proceedings.mlr.press/v99/srikant19a.html
http://proceedings.mlr.press/v97/staib19a.html

Bibliography 189

R. S. Sutton, D. Mcallester, S. Singh, and Y. Mansour. Policy gradient methods
for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems 12, volume 99, pages 1057-1063. MIT Press, 1999.
pages 6, 133, 139

R. S. Sutton, H. Maei, and C. Szepesvari. A convergent o(n) temporal-difference algorithm
for off-policy learning with linear function approximation. In D. Koller, D. Schuurmans,
Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems,
volume 21. Curran Associates, Inc., 2009a. URL https://proceedings.neurips.cc/
paper/2008/file/e0c641195b27425bb056ac56£8953d24-Paper.pdf. page 172

R. S. Sutton, H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvéri, and
E. Wiewiora. Fast gradient-descent methods for temporal-difference learning with linear
function approximation. In Proceedings of the 26th Annual International Conference on
Machine Learning, ICML 09, page 993-1000, New York, NY, USA, 2009b. Association
for Computing Machinery. ISBN 9781605585161. doi: 10.1145/1553374.1553501. URL
https://doi.org/10.1145/1553374.1553501. pages 135, 172

C. Szepesvéri. Algorithms for reinforcement learning. Synthesis lectures on artificial
intelligence and machine learning, 4(1):1-103, 2010. pages 7, 132

T. Tieleman and G. Hinton. Lecture 6.e-rmsprop: Divide the gradient by a running
average of its recent magnitude. Coursera: Neural networks for machine learning,
pages 26-31, 2012. pages 3, 18, 27, 57, 61, 104

C. Traoré and E. Pauwels. Sequential convergence of adagrad algorithm for smooth convex
optimization. Operations Research Letters, 49(4):452-458, 2021. ISSN 0167-6377. doi:
https://doi.org/10.1016/j.0r1.2021.04.011. URL https://www.sciencedirect.com/
science/article/pii/S0167637721000651. page 27

J. N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with
function approximation. IEEE transactions on automatic control, 42(5):674-690, 1997.
pages 130, 131, 137, 138, 145, 171

N. Vieillard, B. Scherrer, O. Pietquin, and M. Geist. Momentum in reinforcement
learning. In International Conference on Artificial Intelligence and Statistics, pages
2529-2538. PMLR, 2020. page 172

L. Wang, Q. Cai, Z. Yang, and Z. Wang. Neural policy gradient methods: Global optimal-
ity and rates of convergence. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=BJgQfkSYDS. page 131

Z.'T. Wang and M. Ueda. A convergent and efficient deep q network algorithm. arXiv
preprint arXiw:2106.15419, 2021. page 171

R. Ward, X. Wu, and L. Bottou. AdaGrad stepsizes: Sharp convergence over nonconvex
landscapes. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pages 66776686, 2019a. page 27

R. Ward, X. Wu, and L. Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. In International Conference on Machine Learning, pages 6677-6686, 2019b.
page 106

C. J. C. H. Watkins. Learning from delayed rewards. 1989. page 6


https://proceedings.neurips.cc/paper/2008/file/e0c641195b27425bb056ac56f8953d24-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/e0c641195b27425bb056ac56f8953d24-Paper.pdf
https://doi.org/10.1145/1553374.1553501
https://www.sciencedirect.com/science/article/pii/S0167637721000651
https://www.sciencedirect.com/science/article/pii/S0167637721000651
https://openreview.net/forum?id=BJgQfkSYDS

190 Bibliography

B. Weng, H. Xiong, L. Zhao, Y. Liang, and W. Zhang. Finite-time theory for momentum
g-learning. In Proceedings of the Conference on Uncertainty in Artificial Intelligence
(UAI), 2021. page 172

S. Whiteson, S. Zhang, and B. Liu. Mean- variance policy iteration for risk- averse rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence.
Association for the Advancement of Artificial Intelligence, 2021. page 173

P. Whittle. Risk-sensitive optimal control, volume 2. Wiley, 1990. page 173

A. Wibisono, A. C. Wilson, and M. I. Jordan. A variational perspective on accelerated
methods in optimization. proceedings of the National Academy of Sciences, 113(47):
E7351-E7358, 2016. page 3

R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3):229-256, 1992. page 6

A. C. Wilson, B. Recht, and M. I. Jordan. A lyapunov analysis of accelerated methods
in optimization. Journal of Machine Learning Research, 22(113):1-34, 2021. page 3

X. Wu, R. Ward, and L. Bottou. Wngrad: Learn the learning rate in gradient descent.
arXiw preprint arXiw:1803.02865, 2018. page 106

Y. F. Wu, W. Zhang, P. Xu, and Q. Gu. A finite-time analysis of two time-scale
actor-critic methods. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33,
pages 17617-17628. Curran Associates, Inc., 2020. URL https://proceedings.
neurips.cc/paper/2020/file/cc9b3c69b56df284846bf2432f1cba90-Paper. pdf.
pages 131, 132, 137, 139, 140, 141, 152, 154, 155, 163

Z. Wu and M. Li. General inertial proximal gradient method for a class of nonconvex
nonsmooth optimization problems. Computational Optimization and Applications, 73
(1):129-158, 2019. page 105

Y. Xie, X. Wu, and R. Ward. Linear convergence of adaptive stochastic gradient descent.
arXiw preprint arXiw:1908.10525, 2019. page 106

H. Xiong, T. Xu, Y. Liang, and W. Zhang. Non-asymptotic convergence of adam-type
reinforcement learning algorithms under markovian sampling. Proceedings of the
AAAI Conference on Artificial Intelligence, 35(12):10460-10468, May 2021. URL
https://ojs.aaai.org/index.php/AAAl/article/view/17252. page 172

P. Xu and Q. Gu. A finite-time analysis of g-learning with neural network function
approximation. In International Conference on Machine Learning, pages 10555-10565.
PMLR, 2020. page 172

T. Xu, S. Zou, and Y. Liang. Two time-scale off-policy td learning: Non-asymptotic
analysis over markovian samples. In Advances in Neural Information Processing
Systems, pages 10634-10644, 2019. page 131

T. Xu, Z. Wang, and Y. Liang. Improving sample complexity bounds for (natural)
actor-critic algorithms. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages
4358-4369. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/2e1b24a664f5e9c18f407b2f9c73e821-Paper.pdf. pages 131, 140


https://proceedings.neurips.cc/paper/2020/file/cc9b3c69b56df284846bf2432f1cba90-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/cc9b3c69b56df284846bf2432f1cba90-Paper.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/17252
https://proceedings.neurips.cc/paper/2020/file/2e1b24a664f5e9c18f407b2f9c73e821-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/2e1b24a664f5e9c18f407b2f9c73e821-Paper.pdf

Bibliography 191

T. Xu, Z. Yang, Z. Wang, and Y. Liang. Doubly robust off-policy actor-critic: Con-
vergence and optimality. In M. Meila and T. Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 11581-11591. PMLR, 18-24 Jul 2021. URL

https://proceedings.mlr.press/v139/xu21j.html. page 172

Y. Yan, T. Yang, Z. Li, Q. Lin, and Y. Yang. A unified analysis of stochastic momentum
methods for deep learning. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence, pages 2955-2961, 2018. page 64

Z. Yang, K. Zhang, M. Hong, and T. Bagar. A finite sample analysis of the actor-
critic algorithm. In 2018 IEEE Conference on Decision and Control (CDC), pages
27592764, 2018. doi: 10.1109/CDC.2018.8619440. page 131

Z. Yang, Z. Fu, K. Zhang, and Z. Wang. Convergent reinforcement learning with
function approximation: A bilevel optimization perspective. 2019. URL https:
//openreview.net/forum?id=ryfcCoOctQ. page 131

H. Yuan, X. Lian, J. Liu, and Y. Zhou. Stochastic recursive momentum for policy
gradient methods. arXiv preprint arXiw:2003.04302, 2020. page 173

M. Zaheer, S. J. Reddi, D. Sachan, S. Kale, and S. Kumar. Adaptive methods for
nonconvex optimization. In Advances in Neural Information Processing Systems,
pages 9793-9803, 2018. pages 28, 64, 107, 110, 115

J. Zeng, T. T. Lau, S. Lin, and Y. Yao. Global convergence of block coordinate descent
in deep learning. In Proceedings of the 36th International Conference on Machine
Learning, volume 97, pages 7313-7323, Long Beach, California, USA, 09-15 Jun 2019.
PMLR. URL http://proceedings.mlr.press/v97/zengl9a.html. page 111

J. Zhang, T. He, S. Sra, and A. Jadbabaie. Why gradient clipping accelerates training:
A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2019. page 107

K. Zhang, A. Koppel, H. Zhu, and T. Basar. Global convergence of policy gradient
methods to (almost) locally optimal policies. SIAM J. Control Optim., 58(6):3586—
3612, 2020a. ISSN 0363-0129. doi: 10.1137/19M1288012. URL https://doi.org/10.
1137/19M1288012. pages 133, 150

S. Zhang, B. Liu, H. Yao, and S. Whiteson. Provably convergent two-timescale off-
policy actor-critic with function approximation. In H. D. IIT and A. Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pages 11204-11213, Virtual, 1318 Jul
2020b. PMLR. pages 138, 151

S. Zhang, Y. Wan, R. S. Sutton, and S. Whiteson. Average-reward off-policy policy
evaluation with function approximation. arXiv preprint arXiv:2101.02808, 2021a.
page 172

S. Zhang, H. Yao, and S. Whiteson. Breaking the deadly triad with
a target network. ICML 2021, arXiv preprint arXiv:2101.08862, 2021b.
pages 15, 130, 131, 132, 135, 144, 147, 151, 172


https://proceedings.mlr.press/v139/xu21j.html
https://openreview.net/forum?id=ryfcCo0ctQ
https://openreview.net/forum?id=ryfcCo0ctQ
http://proceedings.mlr.press/v97/zeng19a.html
https://doi.org/10.1137/19M1288012
https://doi.org/10.1137/19M1288012

192 Bibliography

D. Zhou, Y. Tang, Z. Yang, Y. Cao, and Q. Gu. On the convergence of adaptive
gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671, 2018.
pages 27, 64, 106, 107, 115

Z. Zhou, Q. Zhang, G. Lu, H. Wang, W. Zhang, and Y. Yu. Adashift: Decorrelation and
convergence of adaptive learning rate methods. In International Conference on Learn-
ing Representations, 2019. URL https://openreview.net/forum?id=HkgTkhRcKQ.
page 107

F. Zou, L. Shen, Z. Jie, W. Zhang, and W. Liu. A sufficient condition for convergences
of adam and rmsprop. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 11127-11135, 2019a. pages 64, 107, 115

S. Zou, T. Xu, and Y. Liang. Finite-sample analysis for sarsa with linear function
approximation. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019b. URL https://proceedings.neurips.cc/
paper/2019/file/9f9e8cbal3700df6a947a8cf91035ab84-Paper . pdf. pages 139, 154


https://openreview.net/forum?id=HkgTkhRcKQ
https://proceedings.neurips.cc/paper/2019/file/9f9e8cba3700df6a947a8cf91035ab84-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/9f9e8cba3700df6a947a8cf91035ab84-Paper.pdf

<\TUr

LYT
<© EC&

1
‘.‘ 2 | ECOLE
J4p/- | DOCTORALE
4 ~

S

@
' bg o

Résumé : Cette thése est centrée autour de 'analyse de
convergence de certains algorithmes d’approximation sto-
chastiques utilisés en machine learning appliqués a I'opti-
misation et a 'apprentissage par renforcement. La premiére
partie de la thése est dédiée a un célébre algorithme en
apprentissage profond appelé ADAM, utilisé pour entrainer
des réseaux de neurones. Cette célébre variante de la des-
cente de gradient stochastique est plus généralement uti-
lisée pour la recherche d’un minimiseur local d’'une fonction.
En supposant que la fonction objective est différentiable et
non convexe, nous établissons la convergence des itérées
au temps long vers I'ensemble des points critiques sous une
hypothése de stabilité dans le régime des pas constants.
Ensuite, nous introduisons une nouvelle variante de l'algo-
rithme ADAM a pas décroissants. Nous montrons alors sous
certaines hypothéses réalistes que les itérées sont presque
sirement bornées et convergent presque slrement vers
des points critiques de la fonction objective. Enfin, nous
analysons les fluctuations de I'algorithme par le truchement
d’un théoréme central limite conditionnel. Dans la deuxiéme
partie de cette thése, dans le régime des pas décroissants,
nous généralisons nos résultats de convergence et de fluc-
tuations a une procédure d’optimisation stochastique uni-
fiant plusieurs variantes de descente de gradient stochas-
tique comme la méthode de la boule pesante, I'algorithme
stochastique de Nesterov accéléré ou encore le célébre al-

Titre : Contributions a I'optimisation stochastique non convexe et a I'apprentissage par renforcement

Mots clés : Optimisation, méthodes a gradient adaptatives avec momentum, évitement de pieges, approxi-
mation stochastique, systemes dynamiques, apprentissage par renforcement, méthodes acteur-critique

gorithme ADAM, parmi d’autres. Nous concluons cette par-
tie par un résultat d’évitement de pieéges qui établit la non
convergence de l'algorithme général vers des points cri-
tiques indésirables comme les maxima locaux ou les points-
selles. Ici, le principal ingrédient est un nouveau résultat
indépendant d’évitement de piéges pour un contexte non-
autonome. Enfin, la derniére partie de cette these qui est
indépendante des deux premiéres parties est dédiée a
I'analyse d’un algorithme d’approximation stochastique pour
I'apprentissage par renforcement. Dans cette derniere par-
tie, dans le cadre des processus décisionnels de Mar-
kov avec critere de récompense -pondéré, nous propo-
sons une analyse d’'un algorithme acteur-critique en ligne
intégrant un réseau cible et avec approximation de fonction
linéraire. Notre algorithme utilise trois échelles de temps
distinctes: une échelle pour I'acteur et deux autres pour la
critique. Au lieu d'utiliser I'algorithme de différence tempo-
relle (TD) standard a une échelle de temps, nous utilisons
une version de l'algorithme TD a deux échelles de temps
intégrant un réseau cible inspiré des algorithmes acteur-
critique utilisés en pratique. Tout d’abord, nous établissons
des résultats de convergence pour la critique et I'acteur
sous échantillonage Markovien. Ensuite, nous menons une
analyse a temps fini montrant 'impact de I'utilisation d’un
réseau cible sur les méthodes acteur-critique.

Abstract : This thesis is focused on the convergence ana-
lysis of some popular stochastic approximation methods in
use in the machine learning community with applications to
optimization and reinforcement learning. The first part of the
thesis is devoted to a popular algorithm in deep learning
called ADAM used for training neural networks. This variant
of stochastic gradient descent is more generally useful for
finding a local minimizer of a function. Assuming that the
objective function is differentiable and non-convex, we es-
tablish the convergence of the iterates in the long run to
the set of critical points under a stability condition in the
constant stepsize regime. Then, we introduce a novel de-
creasing stepsize version of ADAM. Under mild assumptions,
it is shown that the iterates are almost surely bounded and
converge almost surely to critical points of the objective
function. Finally, we analyze the fluctuations of the algorithm
by means of a conditional central limit theorem. In the se-
cond part of the thesis, in the vanishing stepsizes regime,
we generalize our convergence and fluctuations results to a
stochastic optimization procedure unifying several variants
of the stochastic gradient descent such as, among others,
the stochastic heavy ball method, the Stochastic Nesterov

Title : Contributions to non-convex stochastic optimization and reinforcement learning

Keywords : Optimization, adaptive gradient methods with momentum, avoidance of traps, stochastic approxi-
mation, dynamical systems, reinforcement learning, actor-critic methods

Accelerated Gradient algorithm, and the widely used ADAM
algorithm. We conclude this second part by an avoidance of
traps result establishing the non-convergence of the general
algorithm to undesired critical points, such as local maxima
or saddle points. Here, the main ingredient is a new avoi-
dance of traps result for non-autonomous settings, which
is of independent interest. Finally, the last part of this thesis
which is independent from the two previous parts, is concer-
ned with the analysis of a stochastic approximation algo-
rithm for reinforcement learning. In this last part, we propose
an analysis of an online target-based actor-critic algorithm
with linear function approximation in the discounted reward
setting. Our algorithm uses three different timescales: one
for the actor and two for the critic. Instead of using the stan-
dard single timescale temporal difference (TD) learning al-
gorithm as a critic, we use a two timescales target-based
version of TD learning closely inspired from practical actor-
critic algorithms implementing target networks. First, we es-
tablish asymptotic convergence results for both the critic
and the actor under Markovian sampling. Then, we provide
a finite-time analysis showing the impact of incorporating a
target network into actor-critic methods.
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