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Abstract

The performance of wireless networks can be substantially enhanced by allow-
ing cooperation among geographically distributed transmitters. However, in order
to capitalize on transmitter cooperation in a scalable and cost-effective manner,
future generation networks are expected to decentralize an increasing number of
operations which were originally conceived for centrally controlled systems. On
the physical layer side, decentralizing the transmission opens a Pandora’s box of
research problems dealing with the possibly limited sharing of crucial control in-
formation, e.g., about the channel state. Unfortunately, as of today, very little is
known on how to optimally design decentralized transmission techniques operating
under asymmetry of information. Therefore, for transmitter cooperation to find
its rightful place within future wireless standards, it is imperative to place the
understanding of these techniques on a more solid ground.

Starting from rigorous information theoretical models, the first part of this
thesis extends known coding theorems for centralized systems to decentralized
transmission with distributed CSIT, that is, by assuming that encoding is done
on the basis of transmitter-specific channel state information. With this back-
ground at hand, as a first main contribution, we show that distributed precoding of
Gaussian codewords achieves the capacity of a decentralized MIMO fading channel
towards a single receiver, where the CSI is acquired through asymmetric feedback
links. Surprisingly, we demonstrate that it may be suboptimal to send a number of
data streams bounded by the number of transmit antennas as typically considered
in a centralized setup.

As a second main contribution, we then move to the problem of distributed
precoding design for systems with multiple receivers. Motivated by duality ar-
guments, we introduce a novel scheme, coined team minimum mean-square error
(TMMSE) precoding, which rigorously generalizes classical centralized MMSE pre-
coding to distributed CSIT. Building on the so-called theory of teams, we derive
a set of necessary and sufficient conditions for optimal TMMSE precoding, in the
form of an infinite dimensional linear system of equations. These optimality con-
ditions are further specialized to cell-free massive MIMO networks, and explicitly
solved for two important examples, i.e., the classical case of local CSI and the case
of unidirectional CSI sharing along a serial fronthaul. In both cases, our optimal
distributed design outperforms the available methods heuristically adapted from
centralized transmission theory.
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Résumé

Les performances des réseaux sans fil peuvent être considérablement améliorées en
permettant la coopération entre des émetteurs géographiquement distribués. Toutefois,
afin de profiter de la coopération entre émetteurs de manière évolutive et avec un bon
rapport coût-efficacité, les réseaux de la future génération devraient décentraliser un
nombre croissant d’opérations conçues à l’origine pour des systèmes à contrôle centralisé.
Du côté de la couche physique, la décentralisation de la transmission ouvre une bôıte de
Pandore pleine de problèmes de recherche concernant le partage potentiellement limité
d’informations de contrôle cruciales, par exemple sur l’état du canal. Malheureusement,
à ce jour, on sait très peu sur comment concevoir de manière optimale des techniques
de transmission décentralisées opérant avec asymétrie d’information. Par conséquent,
pour que la coopération entre émetteurs trouve la place qui lui revient dans les futures
spécifications des réseaux sans fil, il est impératif de donner à la compréhension de ces
techniques une base plus solide.

En se servant de modèles rigoureux fondés sur la théorie de l’information, la première
partie de cette thèse étend les théorèmes de codage centralisés dejà existants à la trans-
mission décentralisée avec CSIT distribué, c’est-à-dire, en supposant que le codage est
effectué sur la base d’informations sur l’état du canal spécifiques à chaque émetteur. Fort
de ce cadre, nous montrons, comme première contribution principale, que le précodage
distribué des codes Gaussiens atteint la capacité d’un canal MIMO décentralisé à évanoui-
ssement vers un récepteur unique, où le CSIT est acquis par des liens de rétroaction
asymétriques. Curieusement, nous démontrons qu’il peut être sous-optimal d’envoyer
un nombre de flux de données limité par le nombre d’antennes de transmission, comme
il est généralement envisagé dans une configuration centralisée.

Comme deuxième contribution principale, nous abordons ensuite le problème de la

conception du précodage distribué pour les systèmes à récepteurs multiples. Motivés

par des arguments de dualité, nous introduisons un nouveau schéma, appelé précodage

team minimum mean-square error (TMMSE), qui généralise rigoureusement le précodage

MMSE centralisé classique au CSIT distribué. Sur la base de la théorie des équipes,

nous dérivons un ensemble de conditions nécessaires et suffisantes pour un précodage

TMMSE optimal, sous la forme d’un système d’équations linéaire de dimension infinie.

Ces conditions d’optimalité sont ensuite adaptées aux réseaux MIMO massifs cell-free,

et résolues explicitement pour deux exemples importants, notamment le cas classique

du CSIT local, et le cas du partage unidirectionnel du CSIT le long d’un fronthaul

série. Dans les deux cas, notre conception distribuée optimale surclasse les méthodes

disponibles adaptées heuristiquement de la théorie de la transmission centralisée.
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Mathematical Notation

R set of real numbers
C set of complex numbers
N set of natural numbers
R+ set of non-negative real numbers
Sn set of Hermitian symmetric matrices of dimension n
Sn+ set of Hermitian positive-semidefinite matrices of dimension n

We reserve calligraphic letters (e.g., A) for sets, and italic letters (e.g., a, A) for
scalars and elements of generic sets. An n-sequence (a1, . . . , an) ∈ An is denoted
by an. We use lower case boldface letters (e.g., a) for column vectors, and upper
case boldface letters (e.g., A) for matrices. Random variables are typographically
distinguished from their realizations as follows:

A random variable taking values in a generic set A
a random column vector taking values in Cn×1

A random matrix taking values in Cn×m

a realization of A
a realization of a
A realization of A

Functions of random variables are equivalently denoted using the two notations
for random and deterministic quantities (e.g., F (X) or f(X)), since a function of
a random variable is itself a random variable.
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aH Hermitian transpose of a
aT transpose of a
‖a‖ Euclidean norm of a
‖A‖F Frobenius norm of A
[A]i,j (i, j)-th entry of A

In identity matrix of dimension n; the subscript may be
omitted when no confusion arises

tr(A) trace of A
<(A) real part of A
=(A) imaginary part of A

ei standard column selector, i.e., the i-th column of I
0n×m n ×m matrix of all zeros; the subscript may be omitted

when no confusion arises
�, � generalized inequalities w.r.t. the cone of nonnegative

Hermitian matrices.
≺, � strict generalized inequalities w.r.t. the cone of nonnega-

tive Hermitian matrices.
:=,=: definitions from the right and from the left∏l
i=l′ Ai for integers l ≥ l′ ≥ 1, left product chain , AlAl−1 . . .Al′

of l− l′+1 ordered matrices of compatible dimension. We
adopt the convention

∏l
i=l′ Ai = I for l < l′.

diag(A1, . . . ,An) block-diagonal matrix with the matrices A1, . . . ,An on
its diagonal.

vec(A) column vector obtained by stacking column-wise the ele-
ments of A

E[A] expection of A
Var[A] variance of A
p(a) probability mass (density) function of a discrete (contin-

uous) random variable A
Pr[E ] probability of an event E
H(A) entropy of A
h(A) differential entropy of A

I(A;B) mutual information between A and B
CN (µ,K) Circularly symmetric complex Gaussian distribution with

mean µ and covariance matrix K
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Chapter 1

Introduction

Wireless communications networks have become an essential component of modern
societies. From Guglielmo Marconi’s first commercially successful radio transmis-
sion system, to modern 5G cellular networks, the worldwide mobile data traffic has
been increasing at an exponential pace, reaching 49 exabyte exchanged monthly at
the end of 2020 [1]. This trend shows no sign of slowing down, as we keep advanc-
ing towards fully networked societies where ultra-broadband data services need to
be accessible ubiquitously, reliably, and efficiently. A crucial quest for engineers
and researchers is therefore the identification of technologies able to meet these
increasingly demanding requirements. The goal of this thesis is to improve and
deepen the understanding of one of the candidate technologies, described next.

1.1 Cellular networks and beyond

The cellular paradigm Traditionally, wireless communication systems have
been designed by following a cellular paradigm, i.e., by clustering the users into
disjoint cells, typically corresponding to specific portions of the coverage area, with
every cell being served by a single base station. In order to increase capacity, every
new generation of these systems has been generally characterized by higher power
consumption, denser cell deployment, and higher spectral efficiency due to sensible
software and hardware improvements [2]. From a technological point of view, the
outstanding evolution experienced by radio access networks (RAN) in the last two
decades has been essentially driven by: (i) the revolutions in channel coding the-
ory [3], marked by the discovery of powerful codes finally delivering the data rates
promised by Claude Shannon’s information theory [4]; (ii) significant signal pro-
cessing advances, e.g., in multi-carrier modulation formats and in multiple-input
multiple-output (MIMO) antenna techniques [5], which allow to successfully mit-
igate the detrimental characteristics of the wireless channel. Remarkably, MIMO
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CHAPTER 1. INTRODUCTION 2

technologies are also a key innovation of the current 5G standard, where the new
massive MIMO equipments [6] are finally turning into a commercially attractive
reality the academic concept of multi-user communications [7].

Beyond the cellular paradigm The cellular paradigm presents inherent lim-
itations which makes it unsuitable for meeting the expected traffic demand and
quality of service requirements of future societies [8], and many current urban
deployments are already operating close to their ultimate limits. In fact, relying
on aggressive spectrum reuse and network densification to increase capacity will
inevitably face inter-cell interference as a major limiting factor. Despite the afore-
mentioned technological advances improve the performance within each cell, they
are essentially unable to resolve this limitation, unless a profound rethinking of the
cellular network architecture is performed. In this regard, future generation sys-
tems are expected to implement advanced cooperative communication techniques,
in particular by letting geographically distributed base stations jointly serve their
users. The main benefit of cooperation is to sensibly improve the performance of
cell-edge users, the ones which are most impacted by inter-cell interference, ideally
by completely removing the concept of cell-edge. This idea has been pioneered
by the academia since the early ’90s [9, 10], where cooperation is introduced to
model the uplink (UL) and downlink (DL) of the entire network as a single MIMO
multiple-access channel (MAC) and broadcast channel (BC) [7], respectively. It has
been then extensively explored and enriched over the last decades, under the names
of network MIMO [11, 12], cloud RAN (C-RAN) [13, 14], and, more recently, cell-
free massive MIMO [15, 8]. This nomenclature essentially reflects differences in
the implementation and sophistication of the underlying MIMO technology, and
in the definition of cell or service area.

Decentralized transmission The development of cooperative wireless networks
has been already attempted in the past, but with very little or no commercial
success. Major evidences of this failure are the disappointing adoption of the coor-
dinated multi-point (CoMP) techniques standardized in LTE-Advanced networks,
and the complete dominance of cellular massive MIMO technologies in the 5G
standardization effort. The most important reason for this lack of success is that a
commercially attractive deployment of cooperative wireless networks is currently
prevented by the severe scalability issue arising from network-wide processing [16].
Specifically, the excessive amount of data and channel state information (CSI),
needed to be timely shared for implementing centrally controlled and fully co-
operative networks such as in the original network MIMO or C-RAN concepts,
often becomes the main bottleneck when practical fronthaul capacity constraints
are introduced. Studying decentralized network architectures with more realistic
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cooperation regimes, entailing limited data and CSI sharing, is hence of funda-
mental importance for making network cooperation an attractive technology for
next generation systems [16, 17]. In this context, this thesis explores the problem
of optimal decentralized transmission under asymmetric information, whose main
underlying assumption is depicted in Figure 1.1 and outlined in the next section.

1.2 Distributed CSIT

We consider a DL setup with a set of transmitters (TXs) jointly communicating
with a set of receivers (RXs) through a wireless channel governed by a random
fading state. In most parts of this thesis, we assume a cooperation regime with full
message sharing and general distributed CSI at the transmitters (CSIT) [18, 19, 20],
that is, we let each TX operate on the basis of possibly different estimates of the
global channel state obtained through some arbitrary CSIT acquisition and shar-
ing mechanism. This assumption is relevant, e.g., for all service situations where
the CSIT sharing burden dominates the fronthaul overhead. For instance, it is
suitable in case of rapidly varying channels due to user mobility, or when delay-
tolerant data is proactively made available at the TXs using caching techniques
(see [20] and references therein for a detailed discussion). As an extreme example,
a cooperation regime with full message sharing and no CSIT sharing (a configura-
tion here referred to as local CSIT) is perhaps the leading motivation behind the
early development of the now popular cell-free massive MIMO paradigm [15]. This
paradigm combines the benefits of ultra-dense networks with simple yet effective
TX cooperation schemes, and emerged as a promising evolution of the network
MIMO and C-RAN concepts. The distributed CSIT assumption also covers ex-
tensions of [15] to more complex setups ranging from partial to full CSIT sharing
(see, e.g., [21] [22]).

Clearly, these cooperation regimes are still far from being scalable, since they
all assume network-wide message sharing. Splitting the network into clusters of
cooperating TXs [23, 24, 22], possibly dynamically and with a user-centric ap-
proach [25, 26, 27, 28], and applying similar transmission techniques assuming full
message sharing within each cluster, emerged as a viable solution for implementing
scalable cooperation regimes in practical systems. All the discussed approaches
do not consider complementary service situations where CSIT can be more easily
shared than messages, hence entering the realm of interference coordination or
alignment [16, 29, 30]. This thesis will also discuss partial message sharing, but
only on simplified setups without interference, or by following the aforementioned
network clustering approach. Nevertheless, the results presented in this thesis
can be seen as a first step towards a more general theory jointly covering partial
message and CSIT sharing.
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Central

controller

Wireless

channel

(a) Centralized transmission

Local

controller

Local

controller

Limited

fronthaul

Wireless

channel

(b) Decentralized transmission

Figure 1.1: Pictorial representation of a cooperative wireless communication sys-
tem using (a) centralized transmission, and (b) decentralized transmission. In (a),
each TX is connected through infinite capacity links to the same controller. In
(b), the TXs are connected to local controllers coordinating the transmission on
the basis of locally available information, partially shared through a fronthaul of
limited capacity.
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Although the importance of decentralized transmission has been acknowledged
in the literature, a satisfactory understanding of systems with distributed CSIT
is still missing. Most of the available information theoretical results rely on
asymptotic signal-to-noise ratio (SNR) tools [18, 20]. These results concisely iden-
tify challenges and opportunities behind the design of decentralized transmission
schemes that cater for distributed CSIT, but they are based on ideal CSIT models
and do not typically lead to practical schemes for many network setups. On the
other hand, most of the available practical schemes are essentially based on heuris-
tic adaptations of known centralized precoding designs such as maximum-ratio
transmission (MRT), zero-forcing (ZF), or minimum mean-square error (MMSE)
precoding [15, 21, 28].

1.3 Contributions and thesis outline

Given the setup and assumptions outlined above, this thesis makes considerable
progress in both the theoretical understanding and in the practical design of decen-
tralized transmission techniques. Overall, the findings of this thesis suggest that,
while certain aspects of centralized transmission theory carry over to decentralized
setups, other aspects should be handled with special care. An informal summary
of the main contributions supporting the above conclusion is given in what follows.

Information theoretic foundations We first present in Chapter 2 and Chap-
ter 3 some necessary fundamentals which, starting from practically relevant in-
formation theoretic models, revisits classical centralized channel coding theorems
(see, e.g., [7]) in light of the distributed CSIT assumption. In some cases, we
prove novel channel capacity theorems and identify known design choices which
optimally carry over to decentralized setups. The most important one is perhaps
given by the following capacity formula:

C = max
p(u)

xl=fl(u,sl)

I(U ;Y ), (1.1)

which extends the classical result of Shannon [31] on coding with causal CSIT
to a decentralized memoryless channel with output Y , inputs (X1, . . . , XL), and
where each of the input must be formed on the basis of a shared message W and
the corresponding entry of the distributed CSIT tuple (S1, . . . , SL). Shannon’s
formula (i.e., (1.1) with L = 1) forms the theoretical basis for important tools
in wireless communications such as the concepts of linear precoding and ergodic
capacity. Although simple, its decentralized version (1.1) was not available in the
literature.
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Ergodic capacity under asymmetric feedback As a first main contribution
of this thesis, in Chapter 4 we establish the capacity of a single-RX decentral-
ized MIMO fading channel where each TX acquires its CSIT through asymmetric
feedback links. In particular, we prove that a decentralized version of classical
linear precoding, called distributed precoding [19], is capacity achieving. We here
informally illustrate the result by focusing for simplicity on L = 2 single antenna
TXs communicating over a fading channel

Y = gH

[
X1

X2

]
+ Gaussian noise, (1.2)

on the basis of quantized measurements Sl = ql(g) of the random fading state g,
obtained via explicit feedback from a single antenna RX, and subject to a per-TX
power constraint E[|Xl|2] ≤ Pl. We show that the capacity formula in (1.1) can be
simplified to

C = max
fl(Sl)∈Cd

E[‖fl(Sl)‖2]≤Pl

E
[
log
(
1 + gHΣ(S1, S2)g

)]
, (1.3)

where

Σ(S1, S2) =

[
fH1 (S1)
fH2 (S2)

] [
f1(S1) f2(S2)

]
(1.4)

is the conditional input covariance induced by a linear precoding scheme

Xl = fHl (Sl)u (1.5)

applied at each TX l to a shared data-bearing vector u ∼ CN (0, I) of dimension d.
As a key element for the achievability proof, we let d in (1.3) be an optimization
variable upper bounded by the CSIT cardinalities as

d ≤ D = |S1|+ |S2|. (1.6)

Furthermore, and in surprising contrast to a centralized CSIT setup, we show that
the traditional design choice (see, e.g., [32]) of bounding the number of precoded
data streams by the number of TX antennas (i.e., d ≤ 2) may be strictly subopti-
mal. As as an interesting byproduct, we then show that increasing the number of
data streams up to D allows to transform the otherwise difficult capacity compu-
tation problem into a convex form. This technique is also applied to the related
problem of joint precoding and feedback design under asymmetric feedback rate
constraints. Finally, we consider partial message sharing and similarly derive the
capacity region of a fading multiple-access channel with asymmetric feedback.
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Team theory for distributed precoding design In Chapter 5 we depart from
information theoretical optimality, and consider the difficult problem of optimal
single-stream distributed precoding design for decentralized MIMO fading channels
towards multiple RXs. We propose a novel scheme called team MMSE (TMMSE)
precoding, which rigorously generalizes centralized MMSE precoding to distributed
CSIT. Leveraging UL-DL duality results, the proposed scheme is shown to span the
Pareto boundary of the achievable rate region predicted by the popular hardening
bound [6], assuming a sum power constraint. The second main contribution of
this thesis is the derivation of a useful set of necessary and sufficient conditions
for optimal TMMSE precoding design in the form of an infinite dimensional linear
system of equations. The key novelty lies in the exploitation of selected elements
from the theory of teams, a mathematical framework for multi-agent coordinated
decision making under asymmetry of information [33, 34, 35]. These optimality
conditions are further applied to cell-free massive MIMO networks, where each
TX l forms its CSIT Sl using local measurements of its local state Hl, which
models the fading channel from its N antennas to all RXs, and information about
other channels Hj, j 6= l, obtained via the fronthaul according to an arbitrary
CSIT sharing pattern. For illustration purposes, we here informally present the
results by focusing on an arbitrary Pareto optimal point, and by assuming that
each TX l has perfect knowledge of its local channel Hl. In this case, the optimal
(unnormalized) TMMSE precoder tl,k(Sl), applied at the N antennas of TX l to
the data stream encoding the message for RX k, must satisfy the equations

tl,k(Sl) = Tl

(
ek −

∑
j 6=l

E
[
Hjtj,k(Sj)

∣∣∣Sl]) a.s., l = 1, . . . , L, (1.7)

where Tl =
(
HH
l Hl + P−1I

)−1
HH
l is a local MMSE precoder with nominal SNR

parameter P , and where the term inside the brackets takes into account the effects
of the other TXs on the basis of the available CSIT Sl and statistical information.
By solving (1.7) explicitly, we derive the optimal TMMSE precoders assuming no
CSIT sharing

tl,k(Sl) = TlClek, l = 1, . . . , L, (1.8)

where Cl ∈ CK×K are statistical stages solving Cl +
∑

j 6=l E [HlTl] Cj = I ∀l. We
show that, by optimally exploiting channel statistics, (1.8) considerably improves
upon competing local precoding schemes reviewed in [8]. Furthermore, we derive
the optimal TMMSE precoders by assuming that CSIT is shared unidirectionally
along a serial fronthaul, an architecture also known as a radio stripe [27]. The
proposed scheme takes the following multi-stage form

tl,k(Sl) = TlVlV̄l−1 . . . V̄1ek, l = 1, . . . , L, (1.9)
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where (Vl, V̄l) depends only on the local CSIT Hl unidirectionally shared from
TX l to TX L. Interestingly, the scheme in (1.9) can be efficiently implemented in
a sequential fashion, an idea that has been explored already in [27, 36] for uplink
processing, and in [37] under a different cellular context. Finally, we discuss the
extension to partial message sharing via user-centric network clustering [28], and
the use of more restrictive power constraints.
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Chapter 2

Information Theoretic Models

This chapter details the models and performance metrics adopted throughout this
thesis. Specifically, we introduce formal information theoretical tools for modelling
and evaluating the performance of a communication system based on decentral-
ized transmission with distributed CSIT, and present their application to modern
wireless networks.

2.1 Decentralized transmission with

distributed CSIT

2.1.1 System model

Channel Model We consider the state-dependent channel of Figure 2.1 with
L TXs indexed by L := {1, . . . , L}, K RXs indexed by K := {1, . . . , K}, inputs
(X1, . . . , XL) ∈

∏L
l=1Xl, outputs (Y1, . . . , YK) ∈

∏K
k=1 Yk, state S ∈ S, and dis-

tributed CSIT (S1, . . . , SL) ∈
∏L

l=1 Sl. We let an n-sequence of inputs, outputs,
states, and CSITs be governed by the memoryless law

p(yn1 , . . . , y
n
K |xn1 , . . . , xnL, sn) =

n∏
i=1

p(y1,i, . . . , yK,i|x1,i, . . . , xL,i, si) (2.1)

p(sn, sn1 , . . . , s
n
L) =

n∏
i=1

p(si, s1,i, . . . , sL,i), (2.2)

where p(y1, . . . , yK |x1, . . . , xL, s) is a given state-dependent input-output distribu-
tion and p(s, s1, . . . , sL) is a given state and CSIT distribution. We finally let the
messages (W1, . . . ,WK) be independently and uniformly distributed over the sets
Wk := {1, . . . , 2dnRke}, k ∈ K, where Rk ≥ 0 is the rate of the message Wk intended

9



CHAPTER 2. INFORMATION THEORETIC MODELS 10

p(y1, y2|x1, x2, s)

TX 1

TX 2

Source

RX 1

RX 2

p(s, s1, s2)

W1,W2

W1,W2

X1,i

X2,i

Y1,i

Y2,i

Ŵ1

Ŵ2

S1,i

S2,i

Si

Figure 2.1: State-dependent channel with L = 2 cooperating TXs, K = 2 RXs,
and causal distributed CSIT.

for RX k. Although not explicitly, the above model covers systems with arbitrary
CSI at the RX (CSIR), which can be interpreted as a part of the outputs Yk.

Encoding and Decoding A (2nR1 , . . . , 2nRK , n) block code of length n with
causal and distributed CSIT is defined by a set of encoding functions

φl,i :
K∏
k=1

Wk × S il → Xl, l ∈ L, i = 1, . . . , n, (2.3)

yielding the transmitted symbols xl,i = φl,i(w1, . . . , wK , s
i
l), as well as a set of

decoding functions
ψk : Ynk →Wk, k ∈ K, (2.4)

yielding the decoded messages ŵk = ψk(y
n
k ). Each encoder l ∈ L is subject to an

average input cost constraint

E [ηnl (Xn
l )] ≤ Pl, ηnl (xnl ) :=

1

n

n∑
i=1

ηl(xl,i), (2.5)

where ηl : Xl → R+ is a single-letter cost function. For a given cost tuple
(P1, . . . , PL), a rate tuple (R1, . . . , RK) is said to be achievable if, for the con-
sidered channel, there exists a family of block codes defined as before such that
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the probability of error P
(n)
e := Pr

[
∪k∈K(Ŵk 6= Wk)

]
satisfies

lim
n→∞

P (n)
e = 0. (2.6)

2.1.2 Problem statement

For a given cost tuple (P1, . . . , PL), the closure of the set of all achievable rates
(R1, . . . , RK) is the capacity-cost region C(P1, . . . , PL) of the considered channel.
We also define the capacity Ck(P1, . . . , PL) of RX k as the supremum of all achiev-
able rates Rk. The optimistic goal of this thesis is to characterize the largest
possible achievable region R(P1, . . . , PL) ⊆ C(P1, . . . , PL) and the corresponding
decentralized transmission schemes. When this implies the use of overly compli-
cated techniques, we consider the alternative goal of characterizing the largest
possible achievable region R(P1, . . . , PL) while restricting ourselves to more prac-
tical decentralized transmission schemes.

2.2 Decentralized MIMO fading channels

The most important application of the general model in Section 2.1 is to wireless
multi-antenna fading channels, described in what follows. We assume that each
TX and RX is equipped with N and M antennas respectively, and let an arbitrary
channel use be governed by the MIMO channel law

yk =
L∑
l=1

Hk,lxl + nk, ∀k ∈ K, (2.7)

where yk ∈ CK is the channel output at RX k, Hk,l ∈ CM×N is a random matrix
modelling the fading between TX l and RX k, xl ∈ CN is the channel input at
TX l, and nk ∼ CN (0, IM) is the independent noise at RX k. Furthermore, given
the n-sequence xnl = (xl,1, . . . ,xl,n) of random inputs at each TX l ∈ L, we assume
an input cost constraint

1

n

n∑
i=1

E
[
‖xl,i‖2

]
≤ Pl, (2.8)

which can be interpreted as a per-TX long-term average power constraint.

Fading State We map the random channel state S ∈ S in Section 2.1 to the
global fading matrix H ∈ CKM×LN , with realizations given by

H :=

H1,1 . . . H1,L
...

. . .
...

HK,1 . . . HK,L

 . (2.9)
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For most parts of this work, we do not specify the distribution of H. However,
we reasonably assume the channel submatrices corresponding to different TX-RX
pairs to be mutually independent, and finite fading power E[‖H‖2F] < ∞. For
convenience, we also define the matrix

Hl :=

H1,l
...

HK,l

 , ∀l ∈ L, (2.10)

collecting the channel coefficients from TX l to all RXs, the dual channel matrices
GH
k,l := Hk,l and GH := H, and the matrix

GH
k :=

[
GH
k,1 . . . GH

k,L

]
, ∀k ∈ K, (2.11)

collecting the channel coefficients from all TXs to RX k. Whenever appropriate,
we use the vector notation in place of the matrix notation, e.g., by replacing Gk,l

with gk,l if RX k is equipped with a single antenna.

Ergodic Rates Together with the assumptions is Section 2.1, the above model
assumes memoryless channels and that the transmission takes place over n � 1
i.i.d. realizations of the fading process Hn. This setup is typically referred to
as the fast-fading regime, and the resulting rates (R1, . . . , RK) are called ergodic
rates [5].

Remark 2.1 (Correlated fading). In modern wireless systems the fading process
Hn is often correlated, i.e., the memoryless assumption (2.2) does not hold. How-
ever, if Hn is stationary and ergodic, this correlation can be neglected through ideal
interleaving while achieving the same rates as in the i.i.d. fading case (see Sec-
tion 3.1.3 for additional details specific to our setup). Although correlation may
be exploited to achieve higher rates, in some cases the above operation incurs no
loss of optimality [38, 39].

Overall, the model and performance metric presented here are relevant, e.g, for
wideband OFDM systems [5] targeting ultra-broadband, spectrally efficient, and
ubiquitous connectivity without stringent latency constraints.

2.3 Extensions to partial message sharing

Although the main focus of this thesis is the study of the effect of partial CSIT
sharing, some of the presented results can be extended to networks with partial
message sharing. Specifically, we will also cover the following extensions of the
model in Section 2.1, focusing on different aspects of the partial message sharing
problem.
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Figure 2.2: State-dependent MAC with common message and causal distributed
CSIT.

2.3.1 Multiple-access channels with common message

We modify the model in Section 2.1 by considering transmission towards a single
arbitrary RX k, L = 2 TXs, and by splitting the message Wk into

Wk = (W0,k,W1,k,W2,k) ∈ W0,k ×W1,k ×W2,k, (2.12)

where W0,k is the portion of Wk available at both TXs, while W1,k is available only
at TX l. We assume that the three messages W0,k,W1,k,W2,k are independently
and uniformly distributed over the sets Wj,k := {1, . . . , 2dnRj,ke}, j = 0, 1, 2, where
Rj,k ≥ 0 is the rate of the message Wj,k. The family of encoding functions are then
modified to

φl,i :W0,k ×Wl,k × S il → Xl, l ∈ L, i = 1, . . . , n. (2.13)

The above model identifies a so-called state-dependent multiple-access channel
(MAC) with common message and distributed CSIT, and it is depicted in Fig-
ure 2.2. For a given pair (P1, P2), the closure of the set of all achievable rates
(R0,k, R1,k, R2,k) is the capacity-cost region CMAC

k (P1, P2) of the considered MAC.

Remark 2.2. The sum capacity

Csum,k(P1, P2) := max{Rsum,k : (R0,k, R1,k, R2,k) ∈ CMAC
k (P1, P2)}, (2.14)
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where Rsum,k := R0,k +R1,k +R2,k is the rate of the aggregate message Wk, is equal
to the capacity Ck(P1, P2) of RX k as defined in Section 2.1.

Remark 2.3. CMAC
k has a very different operational meaning than the region C

given in Section 2.1. Specifically, the former assumes transmission towards a single
RX and describes different message cooperation regimes at the TX side; in contrast,
the latter assumes full message sharing at the TXs and describes different multi-
user multiplexing regimes at the RX side.

Remark 2.4. The considered small scale setup (L = 2 TXs) is enough to cap-
ture the main issues behind partial message and CSIT sharing when transmitting
towards a single RX. For the purposes of this thesis, considering L > 2 TXs with
arbitrary message sets (see, e.g., [40]) is cumbersome and does not provide addi-
tional insight.

2.3.2 User-centric cooperation clusters

We modify the model in Section 2.1 by limiting the message sharing according to
the following user-centric cooperation clustering approach [25, 26, 28]. The name
of this approach comes from allocating network resources such that each RX k is
served only by a subset of the TXs, hence grouping the TXs from a user-centric
perspective. Specifically, we here assume the message Wk to be available only at
a subset Lk ⊆ L of the TXs, and modify the family of encoding functions to

φl,i :
∏
k∈Kl

Wk × S il → Xl, l ∈ L, i = 1, . . . , n, (2.15)

where Kl ⊆ K is the set of RXs served by TX l, i.e.,

Kl := {k ∈ K s.t. l ∈ Lk}, l ∈ L. (2.16)

Remark 2.5. In contrast to the MAC model in Section 2.3.1, the model of this
section does not consider for simplicity an arbitrary TX to have partial knowledge
of a message Wk; here, Wk is either fully available or not available.



Chapter 3

Coding Theorems for
Decentralized Transmission

This chapter revisits known coding theorems for centralized transmission extended
to decentralized transmission with distributed CSIT. In some cases, simple yet
novel results on optimal transmission, in the form of capacity theorems, are pro-
vided. Most importantly, the coding theorems presented here form the theoretical
basis for the main results of this thesis.

3.1 Decentralized transmission towards a single

RX

3.1.1 Capacity and Shannon strategies

In this section, we study the maximum achievable rate towards an arbitrary RX
k ∈ K, i.e., we focus on the capacity Ck of the channel towards RX k.

Remark 3.1. Since the choice of k plays essentially no role for the purposes of
this section, in the following we omit its subscript and consider the transmission
of a message W of rate R over a channel with output Y and capacity C.

The following theorem extends the fundamental result on optimal transmission
over state-dependent point-to-point channels (i.e., L = 1 TX) with causal state
information given by [31, 41] to distributed transmission:

Theorem 3.1. The capacity of the channel at hand is given by

C(P1, . . . , PL) = max
p(u)

xl=fl(u,sl)
E[ηl(Xl)]≤Pl

I(U ;Y ), (3.1)

15
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where the maximum is taken over an auxiliary random variable U ∈ U , independent
of (S, S1, . . . , SL), and L functions fl : U × Sl → Xl for l ∈ L.

Proof. Assume for simplicity that all alphabets have finite cardinality1. The
achievability part can be sketched by a simple modification of Shannon’s phys-
ical device argument, used in [31, 7] for L = 1 TX: an achievable scheme for the
channel at hand can be obtained by attaching a deterministic device fl(u, sl) with
inputs (U, Sl) and output Xl in front of each of the actual channel inputs, inducing
a stateless channel with input U , output Y , and memoryless law

p(y|u) =
∑

s,s1,...,sL

p(y|f1(u, s1), . . . , fL(u, sL), s)p(s, s1, . . . , sL), (3.2)

over which R = I(U, Y ) is achievable [7].
For the converse, we define Ui = (W,Si−11 , . . . , Si−1L ) and assume that past

CSIT realizations (Si−11 , . . . , Si−1L ) are available at all encoders. Hence, we as-
sume that Xl,i is a function of (Ui, Sl,i) ∀l ∈ L. Note that Ui is independent of
(Si, S1,i, . . . , SL,i). We then have:

nR =H(W ) (3.3)

=I(W ;Y n) +H(W |Y n) (3.4)

≤I(W ;Y n) + nεn (3.5)

=
n∑
i=1

I(W ;Yi|Y i−1) + nεn (3.6)

≤
n∑
i=1

I(Ui;Yi|Y i−1) + nεn (3.7)

≤
n∑
i=1

I(Ui, Y
i−1;Yi) + nεn (3.8)

=
n∑
i=1

I(Ui;Yi) + nεn, (3.9)

where (3.5) follows from Fano’s inequality (limn→∞ εn = 0), and (3.9) follows since
the channel is memoryless, which implies the Markov chain Y i−1 → Ui → Yi. The
code must also satisfy the input cost constraints

Pl ≥ E

[
1

n

n∑
i=1

ηl(Xl,i)

]
, ∀l ∈ L. (3.10)

1The extension to infinite dimensional alphabets as in the MIMO fading channel model of
Section 2.2 can be obtained via standard techniques as in [7].
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We combine the bounds in (3.9) and (3.10) by means of a time-sharing variable
Q uniformly distributed in {1, . . . , n} and independent of everything else, and by
letting U := (UQ, Q), Xl := Xl,Q, Y := YQ, S := SQ, Sl := Sl,Q. Note that
the joint pmf of (Y,X1, . . . , XL, S, S1, . . . , SL, U) factors as required. With these
identifications, we finally obtain

R ≤ I(UQ;Y |Q) + εn ≤ I(U ;Y ) + εn, Pl ≥ E[ηl(Xl)]. (3.11)

The finite cardinality of U follows directly by Shannon’s argument [7], which corre-
sponds to coding over an augmented input alphabet of tuples of functions Sl → Xl
of size

∏L
l=1 |Xl||Sl|, indexed by U . Therefore, we can restrict |U| ≤

∏L
l=1 |Xl||Sl|.

The main finding of Theorem 3.1 is that the single RX capacity is achieved
by using so-called Shannon strategies, i.e., by the following simple transmission
scheme:

• Encode message W over a data-bearing signal Un, shared by all TXs.

• At channel use i, each TX l forms its input Xl,i = fl(Ui, Sl,i) as a function
of Ui and the current CSIT Sl,i only. Throughout this work, we refer to
(f1, . . . , fL) as a tuple of distributed precoding functions.

The interesting feature of the above scheme is that optimal transmission can be
performed by neglecting the past CSIT sequence. Even more, the converse proof
also shows that providing the strictly causal sequence (Si−11 , . . . , Si−1L ) to all TXs
does not increase C, meaning that there is no capacity gain in letting the TXs to
retrospectively share their current CSIT.

It is also worth emphasizing the difference with respect to the (virtually) cen-
tralized CSIT case where all TXs share Sl =: ST ∀l ∈ L. In such a case, by
omitting for simplicity the input cost constraints, we recover the result of [31, 41]

C = max
p(u)

(x1,...,xL)=f(u,sT )

I(U ;Y ). (3.12)

Although Shannon strategies are optimal in both the distributed and centralized
CSIT cases, the distributed CSIT assumption generally imposes the design of L
distributed precoding functions (f1, . . . , fL) depending on the local CSIT only
each, rather than a single precoding function f : U × ST →

∏L
l=1Xl as in the

centralized case. This poses considerable optimization issues, as will be better
clarified throughout this thesis.

Remark 3.2 (CSIR). The above result readily generalizes to arbitrary CSIR SR
at RX k by replacing S with an augmented state S̃ := (S, SR), and Y with an



CHAPTER 3. CODING THEOREMS 18

augmented output Ỹ := (Y, SR). With this substitutions, the mutual information
in (3.1) can be rewritten as

I(U ;Y, SR) = I(U ;Y |SR) + I(U ;SR) = I(U ;Y |SR). (3.13)

Remark 3.3 (Feedback). As a particular case of (3.13), we let Sl = ql(SR) for
L deterministic functions ql : SR → Sl. This can be interpreted, e.g., as the CSIT
acquired through feedback links from the RX, as in frequency-division duplex (FDD)
systems. In this case, (3.13) can be rewritten as

I(U ;Y |SR) = I(X1, . . . , XL, U ;Y |SR) = I(X1, . . . , XL;Y |SR), (3.14)

where the first equality follows from Xl being a function of (U, SR), and the second
equality from the Markov chain U → (X1, . . . , XL, SR) → Y . An advantage of
the above rewriting is that optimal codes can be constructed directly on the input
alphabets, since (3.1) becomes equivalent to

C(P1, . . . , PL) = max
p(xl|sl)

E[ηl(Xl)]≤Pl

I(X1, . . . , XL;Y |SR). (3.15)

3.1.2 Example: channel with additive binary inputs and
state

As a simple example, we consider the following channel

Y = X1 +X2 + S, (3.16)

with binary inputs and state, i.e. X1 = X2 = S = {0, 1}, and where Y =
{0, 1, 2, 3}. We do not consider power constraints. We further assume S ∼
Bernoulli(q), and distributed CSIT p(s1, s2|s) = p(s1|s)p(s2|s), where p(sl|s) is
a binary symmetric channel with transition probability εl ∈ [0, 0.5].

A (non-scalable) method for computing the capacity C in (3.1) is to adapt
to the considered distributed setting the interpretation of Shannon strategies as
encoding over an alphabet of functions [31, 7], combined with classical results on
the computation of the capacity of point-to-point channels [4]. More precisely, we
proceed as follows:

1. We build the alphabet of Shannon strategies by enumerating all the functions

tu = (t1,u, t2,u), tl,u : Sl → Xl, (3.17)

where each function is indexed by U . There are |U| = |X1||S1||X2||S2| = 16
such functions.
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2. We set xl = fl(u, sl) = tl,u(sl) and compute the equivalent stateless point-
to-point channel law p(y|u).

3. We run the Blahut-Arimoto algorithm for computing the capacity of the
equivalent channel p(y|u) [4].

Note that the above procedure is similar to the one outlined in [42] for centralized
settings.

In Figure 3.1 we plot the capacity C versus the CSIT quality at TX 2, for
various choices of CSIT quality at TX 1, and for q = 0.5. Note that εl = 0 and
εl = 0.5 model respectively perfect and no CSIT at the l-th TX. Interestingly, the
capacity of the system decreases with ε2 down to a flat regime in which any further
decrease in quality does not matter, and the turning point depends on ε1. This
can be interpreted as a regime in which the quality at one TX is so degraded that,
although some CSIT is available, it does not allow for proper coordination with
the better informed TX. Intuitively, it is important for the less informed TX to
not act as unknown noise for the other TX. In fact, in the aforementioned regime
it turns out that the optimal scheme at the less informed TX is to throw away
completely its CSIT, making its behaviour not adaptive to the channel conditions
but completely predictable by the more informed TX.

3.1.3 Stationary and ergodic state processes

In this section we briefly mention how to adapt the coding technique achieving the
capacity of memoryless channels given by Theorem 3.1 to channels governed by
stationary and ergodic state processes. Specifically, we modify the channel model
by assuming that the process (S, S1, . . . , SL)n is jointly stationary and ergodic, i.e.,
the channel is not memoryless. Using Shannon strategies X = fl(U, Sl), we obtain
a new channel with input U and output Y . Achievable rates can be given by [43]

R = lim
n→∞

1

n
I(Un, Y n), (3.18)
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Figure 3.1: Capacity vs. CSIT distortion ε2 at TX 2, for various choices of CSIT
distortion ε1 at TX 1.

if Un is chosen such that (U, Y )n is stationary and ergodic. Picking an i.i.d. input
distribution Un ∼

∏n
i=1 p(ui) for some p(u), we obtain

I(Un, Y n) = H(Un)−H(Un|Y n) (3.19)

≥ H(Un)−
n∑
i=1

H(Ui|Y n) (3.20)

≥ H(Un)−
n∑
i=1

H(Ui|Yi) (3.21)

=
n∑
i=1

H(Ui)−H(Ui|Yi) (3.22)

= nI(U, Y ), (3.23)

where the last equality comes from (U, Y )n being jointly stationary. Therefore, the
rate R = C is achievable, where C is the capacity of the corresponding memoryless
channel with the same first order distribution.

Remark 3.4. In contrast to memoryless channels, past CSIT can be very use-
ful. A simple and popular way of exploiting the past CSIT sequence is to use
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the past sequence Si−1l and fresh information Sl,i to form an enhanced estimate
S̃l,i of the i-th realization of the state S. Then, if the new state and CSIT se-
quence (S, S̃1, . . . , S̃L)n is also jointly stationary and ergodic, we can achieve pos-
sibly higher rates I(U, Y ) with X = f(U, Sl) replaced by X = f(U, S̃l).

3.1.4 Multiple-access channels

In this section we release the full message sharing assumption and discuss the
application of Shannon strategies to the MAC model in Section 2.3.1, i.e., we
focus on the capacity region CMAC

k (P1, P2) of the MAC towards RX k.

Remark 3.5. As in Section 3.1, the choice of k plays essentially no role for the
purposes of this section, hence its subscript is omitted. However, special care must
be taken not to confuse the components of (R0, R1, R2) ∈ CMAC with the rates
(R1, . . . , RK) ∈ C studied in the multi-RX setups.

Similarly to the achievability part of Theorem 3.1, and focusing again on finite
dimensional alphabets for simplicity, we obtain the following achievable region by
combining Slepian-Wolf coding [44] for the stateless MAC with common message
and Shannon strategies:

Lemma 3.1 (Slepian-Wolf coding). For the channel in Figure 2.2, CMAC(P1, P2)
includes the convex hull of all rate triples (R0, R1, R2) such that

R1 ≤ I(U1;Y |U2, U0), (3.24)

R2 ≤ I(U2;Y |U1, U0), (3.25)

R1 +R2 ≤ I(U1, U2;Y |U0), (3.26)

R0 +R1 +R2 ≤ I(U1, U2;Y ), (3.27)

for some auxiliary variables (U0, U1, U2) ∈ U0×U1×U2 independent of (S, S1, S2),
with pmf factorizing as p(u0)p(u1|u0)p(u2|u0), and L functions fl : Ul × Sl → Xl,
xl = fl(ul, sl), satisfying E[ηl(Xl)] ≤ Pl, ∀l ∈ L.

Proof. Let xl,i = fl(ul,i, sl,i), and apply the scheme in [44] achieving the capacity
region of a stateless MAC with inputs U1, U2 and output Y .

In the above inner bound, U0 and (U1, U2) represent the data bearing signals
over which the shared message W0 and the individual messages (W1,W2) are re-
spectively encoded. It is well known that Shannon strategies, i.e., the scheme of
Lemma 3.1, fail to achieve all the rate tuples in CMAC(P1, P2) for general p(s, s1, s2),
as observed for a special case of a common CSIT S1 = S2 = S in [45]. This is
because block-Markov encoding enables the two TXs to compress past state in-
formation and send it as a common message to provide possibly useful CSIR to
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the RX. Nevertheless, Theorem 3.1 shows that such a scheme based on block-
Markov encoding is not necessary for achieving the sum capacity of the considered
setup. Namely, provided that R0 is large enough (in the worst case, equal to
Csum(P1, P2) = C(P1, P2)), the sum capacity is indeed achievable by the scheme in
Lemma 3.1.

In the following we focus on the particular case where CSIT is a deterministic
function of some CSIR SR available at the RX, as already discussed in Remark 3.3.
As a straightforward extension of [46, Theorem 5] and [47, Theorem 4] restricted
to the MAC with no common message2, we characterize the capacity region as
follows.

Theorem 3.2. Consider the channel in Figure 2.2 with S replaced by S̃ := (S, SR),
and Y by Ỹ := (Y, SR). Assume Sl = ql(SR) for two deterministic functions
ql : SR → Sl. Then, the capacity region CMAC(P1, P2) is given by the convex hull
of all rate triples (R0, R1, R2) satisfying

R1 ≤ I(X1;Y |X2, U, SR), (3.28)

R2 ≤ I(X2;Y |X1, U, SR), (3.29)

R1 +R2 ≤ I(X1, X2;Y |U, SR), (3.30)

R0 +R1 +R2 ≤ I(X1, X2;Y |SR), (3.31)

for some pmf p(x1|s1, u)p(x2|s2, u)p(u), where U ∈ U is an auxiliary variable in-
dependent of (S, S1, S2, SR), satisfying E[ηl(Xl)] ≤ Pl for l ∈ L.

Proof. The proof is given in Appendix B.1.1.

The main difference between Theorem 3.2 and related results lies in its converse
proof, which solves the issue highlighted in [46] through an appropriate identifi-
cation of the auxiliary variable U , and simplifies the less traditional yet insightful
converse proof given by [47]. In contrast to the general case discussed before, The-
orem 3.2 refers to a setup where the RX is fully informed about (S1, S2), hence
there is no need for the TXs to convey (S1, S2) through block-Markov schemes
as in [45, 48]. Furthermore, note that, similarly to Remark 3.3, optimal codes
for the individual messages (W1,W2) can be constructed directly over the input
alphabets.

We conclude this section by providing the following outer bound for a relax-
ation of the setup in Theorem 3.2 covering, e.g., CSIT aquired via over-the-uplink
signalling in time-division duplex (TDD) systems, or via noisy feedback from the
RX.

2[47, Theorem 4] generalized the case of independent states (S1, S2) in [46, Theorem 5] to
arbitrary joint pmfs on (S1, S2).
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Lemma 3.2. Consider the channel in Figure 2.2 with S replaced by S̃ := (S, SR),
and Y by Ỹ := (Y, SR). Assume that S1 → SR → S2 forms a Markov chain.
Then, CMAC(P1, P2) is included in the convex hull of all rate triples (R0, R1, R2)
satisfying

R1 +R2 ≤ I(U1, U2;Y |U0, SR), (3.32)

R0 +R1 +R2 ≤ I(U1, U2;Y |SR), (3.33)

for some auxiliary variables (U0, U1, U2) ∈ U0×U1×U2 independent of (S, S1, S2, SR),
with pmf factorizing as p(u0)p(u1|u0)p(u2|u0), and L functions fl : Ul × Sl → Xl,
xl = fl(ul, sl), satisfying E[ηl(Xl)] ≤ Pl, ∀l ∈ L.

Proof. The proof is given in Appendix B.1.2.

Lemma 3.2 shows that, for (S1, S2) conditionally independent given the CSIR
SR, Shannon strategies may be sub-optimal only in terms of individual rates (in-
deed, [48] proves that higher individual rates are achievable for some channels with
independent (S1, S2) and SR = ∅). This extends [46, Theorem 4], which consid-
ered independent (S1, S2) and no common message. The bound on R1 + R2 was
already reported in [49] and references therein by using the same technique as [47];
similarly to Theorem 3.2, it is here derived using a simplified proof.

3.2 Decentralized transmission towards multiple

RXs

3.2.1 Broadcast channels and Shannon strategies

A complete characterization of C(P1, . . . , PL) is not surprisingly hard to obtain.
One of the main issues is that the characterization of the capacity of the broadcast
channel (BC), which is a particular case of the considered setup, is itself a noto-
rious and long lasting open problem. However, the best known coding schemes
for the BC are known to perform well, or even optimally, in many setups. There-
fore, inspired by the results on decentralized transmission towards a single RX, in
what follows we revisit these schemes transposed to distributed CSIT by means of
Shannon strategies.

Specifically, we readily obtain multi-RX decentralized transmission techniques
by letting Xl = fl(U, Sl) for some auxiliary variable U ∈ U , L distributed precod-
ing functions fl : U ×Sl → Xl, and by applying known coding schemes for the BC
without state, input U , and K outputs Yk. The resulting achievable schemes are
conceptually identical to their centralized counterparts, and relegate the impact of
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the distributed CSIT assumption to the design of the distributed precoding func-
tions fl. Starting from the popular treating interference as noise (TIN) approach,
we obtain the following inner bound:

Lemma 3.3 (TIN). A rate tuple (R1, . . . , RK) is achievable if

Rk ≤ I(Uk;Yk), ∀k ∈ K, (3.34)

for K auxiliary variables (U1, . . . , UK) ∈
∏K

k=1 Uk =: U , with pmf
∏K

k=1 p(uk), inde-
pendent of (S, S1, . . . , SL), and L functions fl : U×Sl → Xl, xl = fl(u1, . . . , uK , sl),
satisfying E[ηl(Xl)] ≤ Pl for l ∈ L.

Proof. The proof follows by the physical device argument used in Theorem 3.1
and from the first part of [7, Section 8.3].

In (3.34), each of the auxiliary variables Uk represents the data-bearing signal
over which Wk is independently encoded. Although generally suboptimal, TIN
offers an excellent performance / complexity compromise in many practical cases;
its main feature is that it keeps both the TX and RX architectures simple, and
mostly relies on a good design of the distributed precoding functions fl for miti-
gating the interference. Therefore, intuitively, TIN performs well whenever these
functions are able to drive the interference down to the noise floor; for example,
it is close-to-optimal for centralized MIMO fading channels with sufficiently high
quality CSIT [50, 2].

A second more complex approach is to let the RXs decode (some of) the in-
terference. Focusing on K = 2 RXs for simplicity, this idea leads to the following
inner bound:

Lemma 3.4 (Superposition coding). A rate pair (R1, R2) is achievable if

R1 ≤ I(U1;Y1|U0) + I(U0;Y1), (3.35)

R2 ≤ I(U2;Y2|U0) + I(U0;Y2), (3.36)

R1 +R2 ≤ I(U1;Y1|U0) + I(U2;Y2|U0) + min{I(U0;Y1), I(U0;Y2)}, (3.37)

for some auxiliary variables (U0, U1, U2) ∈ U0 × U1 × U2 =: U independent of
(S, S1 . . . , SL), with pmf factorizing as p(u0)p(u1|u0)p(u2|u0), and L functions fl :
U × Sl → Xl, xl = fl(u0, u1, u2, sl), satisfying E[ηl(Xl)] ≤ Pl, ∀l ∈ L.

Proof. The proof follows, e.g., from a particular case of [7, Proposition 8.1].

The superposition coding inner bound improves upon TIN by allowing part of
(W1,W2) to be encoded over a data-bearing signal U0 to be decoded by both RXs.
This is known to be capacity achieving for the degraded BC without state [7], and
for the degraded BC with causal CSIT [51]. The following theorem proves that
this holds also for decentralized transmission.
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Theorem 3.3. Consider physically degraded channels, i.e., such that

p(y1, y2|x1, x2, s) = p(y1|x1, x2, s)p(y2|y1), (3.38)

or, more in general, stochastically degraded channels, i.e., such that there is a phys-
ically degraded channel p′(y1, y2|x1, x2, s) = p(y1|x1, x2, s)p′(y2|y1) with the same
marginal p(y2|x1, x2, s). Then, C(P1, . . . , PL) is given by the convex hull of the set
of all rate pairs (R1, R2) satisfying

R1 ≤ I(U1;Y1|U2), (3.39)

R2 ≤ I(U2;Y2), (3.40)

for some auxiliary variables (U1, U2) ∈ U1 ×U2 =: U independent from (S, S1, S2),
and L functions fl : U × Sl → Xl, xl = fl(u1, u2, sl), satisfying E[ηl(Xl)] ≤ Pl,
∀l ∈ L.

Proof. The proof is given in Appendix B.1.3.

The above theorem extends the result in [51] to the considered network with
distributed CSIT. The setup in [51] is recovered for the centralized and perfect
CSIT case S1 = S2 = S. The optimal transmission scheme exploits the degrad-
edness property which ensures that RX 1 can always decode the full message W2

encoded over U0 = U2. Unfortunately, MIMO fading channels are typically not
degraded. However, we remark that superposition coding can still be very useful
for MIMO fading channels (where it is often referred to as rate splitting or non-
orthogonal multiple access), especially when the available CSIT does not allow to
bring the interference down to the noise floor, making TIN highly suboptimal [52].
Remarkably, the scheme in Lemma 3.4 is shown in [20] to achieve the optimal
throughput scaling law (the so-called sum DoF ) for some decentralized MIMO
fading channels with non-trivial distributed CSIT configurations.

A third approach is to interpret the interference to be generated as a known
non-casual state, whose impact can be preventively mitigated at the encoder side.
By focusing again on K = 2 RXs for simplicity, this idea leads to the following
inner bound:

Lemma 3.5 (Marton’s inner bound). A rate pair (R1, R2) is achievable if

R1 ≤ I(U1;Y1), (3.41)

R2 ≤ I(U2;Y2), (3.42)

R1 +R2 ≤ I(U1;Y1) + I(U2;Y2)− I(U1, U2), (3.43)

for some auxiliary variables (U1, U2) ∈ U1×U2 =: U independent from (S, S1 . . . , SL),
and L functions fl : U × Sl → Xl, xl = fl(u1, u2, sl), satisfying E[ηl(Xl)] ≤ Pl,
∀l ∈ L.
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Proof. The proof follows from [7, Theorem 8.3].

The main benefit of Marton’s inner bound w.r.t. the TIN bound is that the
former allows for arbitrary dependence between the data-bearing signals U1 and
U2. This, however, comes at a penality on the achievable sum rate. Remarkably, a
particular case of Lemma 3.5, known as dirty paper coding [53], is known to achieve
the capacity region of MIMO fading channels with perfect CSIT and CSIR [54].
Its main drawbacks are the considerable increase of complexity at the TX end, and
the stringent CSIT quality requirements for the interference precancelation idea to
be effective.

Remark 3.6 (Marton’s inner bound with superposition coding). Marton’s coding
can be readily combined with superposition coding, leading to the largest known
single-letter achievable region for the BC [7, Proposition 8.1]. Therefore, the tech-
niques presented in this section give the largest known single-letter achievable re-
gion R(P1, . . . , PL) ⊆ C(P1, . . . , PL) for the considered decentralized network, if
we restrict the encoders to neglect the past CSIT sequences (i.e., to use Shannon
strategies). As already mentioned, under this restriction the difference between de-
centralized and centralized transmission is confined to the design of good distributed
precoding functions fl.

3.2.2 Distributed linear precoding

As typically done in practical centralized systems, a simple yet effective design
choice is to restrict the distributed precoding functions fl to the class of linear
functions of the data-bearing signals. Under this restriction, we obtain the follow-
ing extension of the classical linear precoding idea to decentralized MIMO fading
channels with distributed CSIT.

Specifically, we consider the channel model in Section 2.2, and focus for sim-
plicity on the TIN bound (3.34) with input distribution restricted as follows. We
take the K auxiliary variables as Uk = uk ∼ CN (0, Idk) for some dk ∈ N, and let
each TX l forms its transmit signal according to the following distributed linear
precoding scheme [19]:

xl =
K∑
k=1

FH
l,k(Sl)uk, (3.44)

where FH
l,k(Sl) ∈ CN×dk is a linear precoder applied at TX l to the shared data-

bearing signal uk based only on the local information Sl. With this choice, the L
power constraints become

∑K
k=1 E[‖Fl,k(Sl)‖2F] ≤ Pl.

The parameter dk can be interpreted as the number of independent data
streams over which the message Wk is encoded. Traditional design choices for



CHAPTER 3. CODING THEOREMS 27

centralized CSIT, as well as the distributed precoding schemes available in the
literature, consider (see, e.g., [32, 19, 15])

dk ≤ LN, (3.45)

i.e., bound the number of data streams by the total number of TX antennas. As
we will review later on, this choice is capacity achieving for centralized channels
with CSIT as a function of perfect CSIR3. However, in Chapter 4, we remove the
constraint (3.45) and show that dk > LN may be beneficial under distributed
CSIT.

Evaluating the rate bounds I(uk;yk|H, S1, . . . , SL) in (3.34) under perfect CSIR
(H, S1, . . . , SL) readily gives the achievable rates (∀k ∈ K)

Rk ≤ RCSIR
k := E

log
det
(
IM +GH

k

∑K
j=1 Σj(S1, . . . , SL)Gk

)
det
(
IM +GH

k

∑
j 6=k Σj(S1, . . . , SL)Gk

)
 , (3.46)

where we define the conditional input covariances

Σk(S1, . . . , SL) :=

F
H
1,k(S1)

...
FH
L,k(SL)

 [F1,k(S1) . . . FL,k(SL)
]
. (3.47)

In fact, for the rate in (3.46) to be achievable, it is sufficient that RX k knows its
local channel after precoding

G̃k :=

F1,1(S1) . . . FL,1(SL)
...

. . .
...

F1,K(S1) . . . FL,K(SL)

Gk ∈ C
∑K
k=1 dk×M . (3.48)

Unfortunately, the evaluation of (3.34) in absence of CSIR I(uk;yk) is not as
straightforward; however, for the case of M = 1 RX antennas and dk = 1 data
stream per RX, we can consider a popular lower bound on I(Uk;yk), known
as the hardening bound [6, 2], which proves the achievability of all rate tuples
(R1, . . . , RK) such that

Rk ≤ Rhard
k := log

(
1 +

pk|E[gH
k tk]|2

pkVar[gH
k tk] +

∑
j 6=k pjE[|gH

k tj|2] + 1

)
, (3.49)

3In fact, motivated by DoF arguments, dk ≤ min(M,LN) is typically assumed; however,
forcing dk ≤M may not be capacity achieving under imperfect CSIT.
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where, for reasons that will be clarified later in the thesis, we define the K power
scaling factors (p1, . . . , pK) ∈ R+, and the K precoding vectors for message Wk

tk :=
[
tH1,k . . . tHL,k

]H
, pktl,k := FH

l,k(Sl) ∈ CN . (3.50)

The bound in (3.49) satisfies

Rhard
k ≤ I(Uk;yk) ≤ I(Uk;yk|H, S1, . . . , SL) = RCSIR

k . (3.51)

In Chapter 5, we consider Rhard
k instead of RCSIR

k because of the less stringent CSIR
requirements and, perhaps most importantly, for treatability reasons. Due to its
name and historical use, it is sometimes believed that the tightness of Rhard

k w.r.t.
RCSIR
k relies on the channel hardening effect arising in massive MIMO systems [2].

Although this is correct for some precoding design such as MRT, we remark that
(3.49) can be tight also in absence of channel hardening. For instance, Rhard

k and
RCSIR
k coincide under a ZF scheme putting gH

k tj = 0 for j 6= k and gH
k tk = µk a.s.,

for some deterministic constants {µk}Kk=1 such that the long term power constraints
are satisfied.

Remark 3.7 (Drawbacks of the hardening bound). On a high level, the inequal-
ities in (3.51) can be quite tight for every scheme exploiting CSIT to make the
resulting channel coefficients after precoding as deterministic as possible. How-
ever, forcing this condition may produce undesirable peak power fluctuations, and
generally reduces the possibility of allocating power over time to, e.g., circumvent
deep fade events. Nevertheless, allowing power allocation over many TX antennas
(as in massive MIMO systems) helps reducing the above detrimental effects.



Chapter 4

Ergodic Capacity under
Asymmetric Feedback

In this chapter, we particularize the capacity theorem of Section 3.1 to decen-
tralized wireless networks operating in FDD mode. Specifically, we establish the
capacity Ck of the channel in Figure 4.1, where quantized measurements of the
fading matrix Gk are fed back from the RX through asymmetric feedback links.
The goal of this chapter is to exploit this relatively simple setup to unveil novel
insights on optimal decentralized transmission.

4.1 Optimality of distributed linear precoding

with an unconventional number of data

streams

We consider an instance of the MIMO fading channel model in Section 2.2, where
we assume perfect CSIR Gk, and let the CSIT be a quantized version of it, i.e.,

Sl = ql(Gk), l ∈ L, (4.1)

ql : CLN×M → Sl := {1, . . . , |Sl|}, |Sl| <∞. (4.2)

In what follows, we establish the capacity Ck of the considered channel, and show
that the distributed linear precoding scheme presented in Section 3.2.2 is optimal.
As we will see, the key novelty lies in splitting the encoding of the message Wk over
an unconventional number of independent data streams. For ease of exposition,
we present the main findings by focusing on L = 2 TXs with N = 1 antenna
each; the extension to general (L,N) is straightforward and will be only briefly
discussed. Furthermore, we follow the lighter notation of Section 3.1 and omit the
RX subscript k everywhere.

29
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Channel
matrix
Gk

TX 1

TX 2

RX k

S1 = q1(Gk)

S2 = q2(Gk)

Figure 4.1: Illustration of a cooperative MIMO channel with fading state matrix
Gk known at the RX and distributed CSIT (S1, S2) obtained from asymmetric
feedback links.

Theorem 4.1. The capacity of the considered decentralized MIMO fading channel
with asymmetric feedback is given by

C(P1, P2) = max
fl(Sl)∈Cd

E[‖fl(Sl)‖2]≤Pl

E
[
log det

(
IM +GHΣ(S1, S2)G

)]
, (4.3)

where

Σ(S1, S2) :=

[
fH1 (S1)
fH2 (S2)

] [
f1(S1) f2(S2)

]
, (4.4)

and where d ∈ N is an optimization variable satisfying

d ≤ D := |S1|+ |S2|. (4.5)

Furthermore C(P1, P2) is achieved by letting

Xl = fHl (Sl)u, u ∼ CN (0, Id), ∀l ∈ L, (4.6)

where u is a shared data-bearing signal over which Wk is encoded.

Proof. We use the capacity formula

C(P1, P2) = max
p(u)

xl=fl(u,sl)
E[ηl(Xl)]≤Pl ∀l∈L

I(x1, . . . ,xL;y|G) (4.7)

given by (3.1) and (3.14), specialized to the consider channel model. We first apply
the well-known maximum differential entropy lemma [7, p. 21] to the mutual in-
formation using the conditional input covariance Σ(S1, S2) = E[xxH|S1, S2], where



CHAPTER 4. CAPACITY UNDER ASYMMETRIC FEEDBACK 31

x :=
[
X1
X2

]
collects all channel inputs, obtaining the upper bound

R ≤ E
[
log det

(
IM +GHΣ(S1, S2)G

)]
. (4.8)

For the achievability part, it suffices to show that every feasible Σ(S1, S2) can be
obtained via distributed linear precoders of dimension D = |S1| + |S2|. To this
end, we first define the random vectors

x̃l :=

 fl(U, 1)
...

fl(U, |Sl|)

 ∈ C|Sl|, l ∈ L, (4.9)

collecting the random inputs Xl conditioned on each of the |Sl| realizations of Sl,
and the covariance matrix

Q := E

[[
x̃1

x̃2

] [
x̃H
1 x̃H

2

]]
∈ SD+ . (4.10)

It is easy to see that Q contains all the realizations of Σ(S1, S2). Note that, due
to the power constraint

∑
sl∈Sl E[|fl(U, sl)|2]p(sl) ≤ Pl < ∞, any feasible input

distribution must satisfy E[|fl(U, sl)|2] < ∞ ∀sl ∈ Sl, hence Q has finite entries.
Since Q is Hermitian positive semi-definite, there exists a matrix F ∈ CD×D such
that FHF = Q. We denote its column vectors by

F =:
[
f1(1) . . . f1(|S1|) f2(1) . . . f2(|S2|)

]
, (4.11)

and define the random vectors fl(Sl) with realizations fl(sl). Finally, simple calcu-
lations show that the scheme in (4.6) with distributed linear precoders designed us-
ing the above procedure, i.e., selected from (4.11), preserves the desired Σ(S1, S2),
and attains the maximum entropy bound.

The main result of Theorem 4.1 is that the distributed linear precoding scheme
presented in Section 3.2.2 achieves the capacity of the considered decentralized
MIMO fading channel with asymmetric feedback. However, as a sufficient con-
dition to prove achievability, Theorem 4.1 considers the transmission of possibly
D = |S1| + |S2| independent data streams. This unconventional design choice
appears to be in sharp contrast with the (virtually) centralized configuration
S1 = S2 =: ST , where the capacity of the 2 × M MIMO channel is achieved
by using d ≤ 2 streams. In this latter case, by considering a per-antenna power
constraint, the capacity takes the well-known expression (see, e.g., [32])

C(P1, P2) = max
Σ(ST )∈S2

+

E[[Σ(ST )]l,l]≤Pl

E
[
log det

(
IM +GHΣ(ST )G

)]
, (4.12)
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where Σ(ST ) := E[xxH|ST ], x :=
[
X1
X2

]
, is the conditional input covariance.

The capacity in (4.12) can be simply achieved by taking the matrix square-root

F(ST ) := Σ
1
2 (ST ) ∈ C2×2 and by letting[

X1

X2

]
= FH(ST )u, u ∼ CN (0, I2), (4.13)

or, in other words, by precoding d = LN data streams only, where LN = 2 is
the total number of TX antennas. Such an approach cannot be used for general
distributed CSIT, as it may lead to unfeasible linear precoders violating the func-
tional dependencies Xl = fl(u, Sl). The proof of Theorem 4.1 addresses this issue
by increasing the size d of the linear precoders up to D � 2, i.e., beyond conven-
tional design choices. A more detailed analysis of the role played by d in terms of
optimal distributed precoding is provided in the following sections.

Remark 4.1 (Extension to arbitrary (L,N)). Theorem 4.1 can be readily extended
to L TXs with N antennas as follows:

C(P1, . . . , PL) = max
Fl(SL)∈Cd×N

E[‖Fl(SL)‖2F]≤Pl

E
[
log det

(
I +GHΣ(S1, . . . , SL)G

)]
, (4.14)

where

Σ(S1, . . . , SL) :=

F
H
1 (S1)

...
FH
L(SL)

 [F1(S1) . . . FL(SL)
]
, (4.15)

and where d ≤ D := N
∑L

l=1 |Sl|. Furthermore, the capacity is achievable by

xl = FH
l (Sl)u, u ∼ CN (0, Id), ∀l ∈ L. (4.16)

The proof follows the same lines of Theorem 4.1, hence it is omitted.

4.2 Capacity computation via convex optimiza-

tion

The distributed precoding design problem (4.3) belongs to the class of static team
decision problems [34, 33, 35, 19], for which efficient optimal solution methods are
not known in general1. However, in contrast to the traditional precoding design
with d ≤ LN = 2, by letting d ≤ D we are able to recast the optimal precoding
design problem (4.3) into a convex form.

1This class of problems will be treated in more details in Chapter 5, which deals with dis-
tributed precoding design for a multi-RX setup.
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Lemma 4.1. Problem (4.3) is equivalent to the following convex problem

maximize
Q∈SD+

E
[
log det

(
IM +GH

eqQGeq

)]
subject to

|S1|∑
i=1

[Q]i,i Pr(S1 = i) ≤ P1,

|S1|+|S2|∑
j=|S1|+1

[Q]j,j Pr(S2 = j − |S1|) ≤ P2,

(4.17)

where we defined Geq := E(S1, S2)G ∈ CD×M , and

E(S1, S2) :=

[
eS1 0
0 eS2

]
∈ CD×2, (4.18)

where eS1 ∈ {0, 1}|S1| and eS2 ∈ {0, 1}|S2| are standard column selectors.

Proof. The proof follows by simply rewriting (4.3) in light of the technique used
for the proof of Theorem 4.1. Specifically, we let d = D and use

GHΣ(S1, S2)G = GHEH(S1, S2)F
HFE(S1, S2)G = GH

eqQGeq, (4.19)

where F is given by (4.11) and Q = FHF. The power constraints correspond to
linear constraints on the diagonal elements of Q.

Problem (4.17) corresponds to the capacity of a centralized D×M MIMO fad-
ing channel with state Geq, perfect CSIR, no CSIT, and fixed transmit covariance
Q. The capacity achieving distributed precoders for the original channel can be
then designed from the optimal Q? in Problem (4.17) as follows:[

f?1(S1) f?2(S2)
]

= (Q?)
1
2 E(S1, S2) ∈ CD×2. (4.20)

Remark 4.2. An important remark here is that if the constraint d ≤ D of Prob-
lem (4.3) is replaced by d < D, the technique of Proposition 4.1 does not lead to a
convex reformulation. This is because the D ×D matrix F is replaced by a d×D
matrix F′, hence introducing a non-convex constraint rank(Q) ≤ d < D to Prob-
lem (4.17). However, note that if the optimal Q? for the unconstrained problem
has rank r < D, then we can reduce with no loss of optimality the dimensionality
of f?l (Sl) in (4.20) down to d = r.

Problem (4.17) can be solved numerically via known convex optimization tools.
A comprehensive discussion on the efficiency of various competing approaches is
out of the scope of this thesis. Here, we point out two critical issues that should be
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taken into account in a practical system design. First, advanced stochastic opti-
mization techniques may be required if the fading distribution p(G) is continuous2.
Second, classical second-order methods as interior-point methods for semi-definite
optimization typically scale badly with the dimension D of Q. Hence, first-order
methods may be more suitable whenever the cardinality of the CSIT alphabets
|Sl| is large. As a result of the algorithmic complexity stemming out of the above
considerations (which are still very active research topics), we envision that feasi-
ble implementations of the proposed distributed precoding design should operate
in an offline fashion. Specifically, Problem (4.17) could be solved in a prelimi-
nary codebook design phase, while in the data transmission phase TX l selects the
precoder from the pre-designed codebook based on the received CSIT index Sl.

4.2.1 Example: asymmetric feedback rates

In this section we simulate a decentralized MIMO fading channel with CSIT feed-
back links of asymmetric rate. For simplicity, we let each entry of G to be i.i.d.
CN (0, 1), and we set P1 = P2 := SNR. The distributed CSIT configuration
p(G, s1, s2) is given by two random quantizers with different rates β1 and β2 bits.
More precisely, we let Sl = {1, . . . , 2βl} be the index set of a codebook {Ĝl,i}2

βl

i=1 of
randomly and independently generated codewords distributed as p(G). We then
let ql(G) to be a simple nearest neighbour vector quantizers in the Frobenius norm,
i.e., ql(G) ∈ arg mini∈Sl ‖G − Ĝl,i‖F. This scenario corresponds to a zero-delay
and error-free feedback link from the RX to the l-th TX with a limited rate of βl
bits per channel use. We set β1 = 4 and β2 = 3, which implies d = |S1|+ |S2| = 24.
We recall that the RX is assumed to have perfect CSIR.

We approximately solve Problem (4.17) through an off-the-shelf numerical
solver for convex problems, by substituting p(G, s1, s2) with its empirical dis-
tribution p̂(G, s1, s2) := 1

Nsim

∑Nsim

n=1 1[(G, s1, s2) = (Gn, q1(Gn), q2(Gn))] obtained

from Nsim = 1000 i.i.d. samples {Gn}Nsim
n=1 . This allows us to replace the expecta-

tion in (4.17) with a finite sum of Nsim convex functions. The capacity obtained
is exact for a channel with state distribution equal to the empirical distribution
p̂(G, s1, s2), and approximates the capacity for p(G, s1, s2) as Nsim grows large.
We repeat the above experiment for M = 2 and M = 1 RX antennas, two settings
called, respectively, 2× 2 decentralized MIMO and 2× 1 decentralized MISO.

In Figure 4.2 we plot the resulting capacity versus the SNR. For comparison,

2Note that all the results presented in this section do not require the fading alphabet S to be
a discrete set, but only |Sl| <∞ for l ∈ L.
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Figure 4.2: Capacity vs the SNR of the considered decentralized multi-antenna
fading channel with asymmetric CSI feedback rates, L = 2 single-antenna TXs,
and (a) M = 2 or (b) M = 1 RX antennas.
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we also plot the capacity for perfect CSIT at both TXs

C(perf. CSIT) = max
Σ(G)∈S2

+:

E[[Σ(G)]l,l]≤Pl

E
[
logdet

(
I +GHΣ(G)G

)]
, (4.21)

and for no CSIT

C(no CSIT) = max
Σ∈S2

+: [Σ]l,l≤Pl
E
[
logdet

(
I +GHΣG

)]
. (4.22)

We recall that these CSIT configurations are equivalent to a centralized MIMO
system. For a fair comparison, these capacities are computed over the same em-
pirical marginal distribution p̂(G). As expected, for the MIMO case, the capacity
gain given by distributed CSIT w.r.t no CSIT follows the well-known beamform-
ing gain trend of the perfect CSIT case, i.e., it vanishes in the high SNR regime.
Similarly, for the MISO case, this gain converges to a constant power offset.

4.3 Further comments on the optimal number of

data streams

In this section we further elaborate on the optimal number of data streams d by
addressing two important questions left open by Section 4.1. Theorem 4.1 shows
that using a number of precoded data streams d = D is a sufficient condition for
achieving the capacity C(P1, P2). However, we know that for some CSIT configu-
rations (e.g., for centralized CSIT, as already discussed), d > 2 is not necessary. A
first crucial question is whether there exists some distributed CSIT configuration
for which such a condition is indeed necessary. In the next proposition we answer
positively to this question.

Lemma 4.2. For some p(G, s2, s2) and power constraints (P1, P2), restricting d ≤
LT in Problem (4.3), where LT = 2 is the total number of TX antennas, leads to
strictly suboptimal rates.

Proof. The proof is given in Appendix B.2.1, by showing the existence of a CSI
distribution p(G, s2, s2) with binary CSIT |S1| = |S2| = 2 such that d ≥ 3 is
necessary for achieving C(P1, P2).

A second natural question is whether the developed upper bound d ≤ D =
|S1| + |S2| is tight, for some p(G, s1, s2). In the following we answer negatively
to this question, by showing that indeed we can consider a slightly tighter upper
bound. However, we firstly remark that obtaining tighter bounds is not trivial and
is in fact related to the well-known low-rank matrix completion problem [55]. Let
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us consider the matrix Q ∈ SD+ defined in the proof of Theorem 4.1, or equivalently
in Lemma 4.1, and its partition into blocks

Q =

[
Q1 Q12

QH
12 Q2

]
, Ql ∈ S|Sl|+ . (4.23)

Informally, we recall that Q collects the elements of the conditional input covari-
ances Σ(S1, S2) for all realizations of (S1, S2). By direct inspection of the capacity
expression (4.3), or equivalently of the objective in Problem (4.17), we observe
that the off-diagonal elements of the sub-matrices Ql do not contribute to the
achievable rate, since they do not correspond to any element of any realization of
Σ(S1, S2). Hence, by letting Q̃ be any optimal solution of (4.17), the solution Q?

of the (non-convex) problem

minimize
Q∈SD+

rank(Q)

subject to Q12 = Q̃12

[Q]i,i = ˜[Q]i,i, i = 1, . . . , D

(4.24)

is also an optimal solution of (4.17), but where the off-diagonal elements of Ql

have been optimized such that the rank is minimized. Since we have seen that
the rank r ≤ D of Q? corresponds to the dimension d of optimal distributed
precoders (see Section 4.2), establishing a tighter upper-bound on d can be cast
into finding an upper-bound on the solution of (4.24), which is an instance of a
low-rank (semi-definite) matrix completion problem (see, e.g., [55]).

To the best of the authors knowledge, non-trivial upper-bounds to problems
of the type (4.24) remain elusive. Nevertheless, in the following proposition we
provide a simple result showing the existence of a tighter upper-bound than D =
|S1|+ |S2|.

Lemma 4.3. The capacity C(P1, P2) given by Theorem 4.1 is also achievable by
letting

d ≤ |S1|+ |S2| − 1.

Proof. The proof follows by manipulating an off-diagonal entry of the sub-matrices
Q1,Q2 given by (4.23) until Q becomes rank-deficient while still maintaining its
positive semi-definiteness. Consider the symmetric matrix

Q̃(t) := Q + t
[

0 1
1 0 0

0 0

]
, t ∈ R, Q ∈ SD+ . (4.25)

Let λmin : SD → R be the minimum eigenvalue of a Hermitian symmetric matrix
(not necessarily positive semi-definite). By definition, λmin(Q̃(0)) ≥ 0. In addition,
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∃t1 > 0 such that λmin(Q̃(t1)) < 0. Furthermore, by the continuity of the map λmin

in the matrix entries [56, Theorem 5.2], λmin(Q̃(t)) is a continuous function of t.
Hence, by the intermediate value theorem, ∃t0 ∈ [0, t1] such that λmin(Q̃(t0)) = 0,
i.e. such that Q̃(t0) is positive semi-definite, low rank, and achieves the same rates
as Q.

The above result is by no means satisfactory, since the dimensionality reduction
is marginal for large CSIT alphabets. Informally, the main limitation of the above
bound is that the proof optimizes only one of the (coupled) variables in (4.24).
However, note that the above bound is tight for the toy example considered in the
proof of Proposition 4.2.

4.3.1 Example: asymmetric feedback rates (cont.)

We continue the example of Section 4.2.1, and compare the obtained capacities
with the rates achieved by a simple distributed precoding scheme entailing the
transmission of d = 2 data streams only, hence satisfying the classical design
choice d ≤ LN . Specifically, we use the (robutst) näıve precoding scheme given in
[19], which consists in optimizing the precoder of each TX by assuming that the
other TX shares the same CSIT. More precisely, we let each TX l solve

max
Σ(Sl)∈S2

+

E[[Σ(Sl)]j,j]≤Pj

E
[
log det

(
IM +GHΣ(Sl)G

)]
, (4.26)

and take fl(Sl) = Σ
1
2 (Sl)el, i.e., each TX l computes both precoders based on

Sl, but only keeps its own relevant vector. Figure 4.3 plots the ergodic rates
(3.46) achieved by näıve precoding over the considered decentralized MIMO and
decentralized MISO channels, as well as their respective capacities. The simulation
results show that the benefits of transmitting d > 2 data streams may be in fact
rather marginal, since a much simpler scheme entailing the transmission of d = 2
data streams performs very close to capacity.

4.4 Extension to multiple-access channels

In this section we show that the unconventional achievability proof presented in
Section 4.1 can be applied to extend Theorem 4.1 to the capacity region CMAC

k of
the MAC towards an arbitrary RX k. Specifically, we consider the same MIMO
fading model with asymmetric feedback of Section 4.1, together with the coding
theorems of Section 3.1.4, and omit as usual the RX subscript k everywhere. We
then obtain:
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Figure 4.3: Comparison between the capacity of the considered channel and the
rate achieved by a suboptimal distributed precoding scheme entailing the trans-
mission of only d = 2� D data streams.
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Theorem 4.2. The capacity region CMAC of the considered channel is given by the
union of all rate triples (R0, R1, R2) such that

R1 ≤ E
[
log
(
1 + γ1(S1)‖g1‖2

)]
(4.27)

R2 ≤ E
[
log
(
1 + γ2(S2)‖g2‖2

)]
(4.28)

R1 +R2 ≤ E
[
log det

(
I +GHdiag(γ1(S1), γ2(S2))G

)]
(4.29)

R0 +R1 +R2 ≤ E
[
log det

(
I +GHΣ(S1, S2)G

)]
(4.30)

where

Σ(S1, S2) =

[
fH1 (S1)
fH2 (S2)

]
[f1(S1) f2(S2)] +

[
γ1(S1) 0

0 γ2(S2)

]
, (4.31)

for some fl : Sl → Cd and γl : Sl → R+ such that

d ≤ D := |S1|+ |S2|, (4.32)

and E [‖fl(Sl)‖2] + E [γl(Sl)] ≤ Pl for l = 1, 2. Furthermore any rate triple in
CMAC(P1, P2) can be achieved by letting

Xl = fHl (Sl)u+
√
γl(Sl)Vl, (4.33)

where (u, V1, V2) ∼ CN (0, ID+2) carry the common and individual messages.

Proof. The proof is given in Appendix B.2.2.

Theorem 4.2 shows that superposition of jointly and independently encoded
Gaussian codewords achieves the capacity region. However, while encoding of the
individual messages W1,W2 follows traditional approaches (one power-controlled
stream per TX), the joint encoding of W0 may require a larger number of precoded
data streams (beyond two streams in our case) as already seen for Theorem 4.1.

4.5 Joint precoding and feedback design

In this section we exploit the main results of this chapter to address the related
problem of optimal CSIT feedback design given asymmetric constraints on the
feedback rates. Ideally, we are interested in solving the following optimization
problem:

max
ql(G)∈Sl,
|Sl|=2βl

C(P1, P2), (4.34)

where the channel capacity is maximized by optimizing the quantizers ql(G) under
feedback rate constraints (β1, β2). Inspired by the method developed in [57] for
centralized channels, we propose a suboptimal approach based on the generalized
Lloyd algorithm [58] for vector quantization, which alternates between precoding
design and feedback design as follows:
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1. Quantizers update step:

(q?1(G), q?2(G)) ∈ arg max
(s1,s2)∈S1×S2

r(G,Q), (4.35)

2. Precoders update step:

Q? = arg max
Q∈SD+

[Q]i,i≤P1, i=1,...,|S1|
[Q]j,j≤P2, j=(|S1|+1),...,D

E [r(G,Q)] , (4.36)

where we defined
r(G,Q) := log det

(
I +GH

eqQGeq

)
,

with Geq = EH(S1, S2)G given by Lemma 4.1. Note that the precoders update
step is a convex problem and corresponds to Problem (4.17) slightly modified such
that the average power constraint is replaced by an instantaneous power constraint
for each realization of Sl. This modification avoids the quantizers update step to
produce unfeasible solutions.

The two above steps are respectively similar to the Voronoi regions update step
and the centroid update step of the Lloyd algorithm, under a modified distortion
measure −r(G,Q). However, there is a non-trivial difference between the proposed
algorithm and the ones in [57, 58]. In particular, because of the distributed CSIT
assumption, the centroids must be jointly optimized in a unique step, and not
disjointly as in the classical Lloyd algorithm.

4.5.1 Example: asymmetric feedback rates (cont.)

We continue the example of Section 4.2.1, by replacing the random vector quan-
tizers in the Frobenius norm with (4.35), where Q is designed according to the
proposed Lloyd-type alternating optimization algorithm. Note that, for an arbi-
trary initialization, this method converges to a local optimum of (4.34). Classi-
cal multi-start methods may be applied to avoid bad local optima, but this step
is here omitted. The distributed precoders Q are optimized using Nsim = 100
training samples, and the performance are evaluated over a different test set of
Ntest = 10000 samples.

For comparison, we consider the capacity assuming no CSIT (4.22), a central-
ized method similar to [57] assuming symmetric feedback of rate min(β1, β2) or
max(β1, β2), and the following suboptimal scheme adapting [57] to asymmetric
feedback following again the näıve precoding idea of Section 4.3.1. More precisely,
for the last of the aforementioned schemes, we run an alternating optimization
procedure composed by the following two steps:



CHAPTER 4. CAPACITY UNDER ASYMMETRIC FEEDBACK 42

-10 -8 -6 -4 -2 0 2 4 6 8 10

100

optimal asymmetric
naive asymmetric
low-rate symmetric
high-rate symmetric
no CSIT

Figure 4.4: Performance comparison between the proposed joint precoding and
feedback design and other suboptimal or unfeasible methods, for a 2 × 1 decen-
tralized MISO channel with feedback rates (β1, β2) = (2, 1) bits.

1. ql(G) ∈ arg max
sl∈Sl

log det
(
I +GHΣ(Sl)G

)
,

2. Σ(Sl) ∈ arg max
Σ∈S2

+

[Σ]l,l≤Pl

E
[
log det

(
I +GHΣG

)
|Sl
]
,

and finally let fl(Sl) = Σ
1
2 (Sl)el. This method is termed näıve asymmetric. For

a fair comparison, its performance is evaluated using the rate optimal feedback
strategy (4.35). We remark that the aforementioned centralized methods, termed
low-rate symmetric and high-rate symmetric, correspond to the above näıve pro-
cedure when both TXs have the same feedback rate min(β1, β2) or max(β1, β2),
respectively.

Figure 4.4 plots the performance of the considered schemes for the 2 × 1 de-
centralized MISO setup, demonstrating the gains of distributed precoding and
feedback design, especially in the high SNR regime. In particular, the low-rate
symmetric scheme exploits only min(β1, β2) = 1 bit of feedback and its rate con-
verges to the no CSIT cases in the high SNR regime. In contrast, the näıve asym-



CHAPTER 4. CAPACITY UNDER ASYMMETRIC FEEDBACK 43

metric and the proposed (locally) optimal scheme show that performance gains can
be obtained by allocating additional feedback bits to only one TX. Interestingly,
we also observe that the high-rate symmetric scheme, which is unfeasible since it
assumes symmetric feedback rate constraints of 2 bits, performs worse than the
proposed scheme. This can be explained by the fact that the optimal asymmetric
feedback scheme conveys β1 + β2 = 3 bits of information, which, although dis-
tributed across the TXs, is more than the max(β1, β2) = 2 bits conveyed by the
high-rate symmetric scheme. This also suggests that, to fully exploit the available
feedback opportunities, symmetric feedback schemes should be avoided even if the
feedback rate constraints are symmetric.



Chapter 5

Team Theory for Distributed
Precoding Design

It is well-known that linear precoding and TIN offer an excellent compromise
between performance and complexity in many wireless communication systems,
such as in massive MIMO networks [2]. However, for this to hold, the linear
precoders must be properly designed. The main goal of this chapter is to develop
guidelines for optimal precoding design in decentralized networks, for which no
practical method is currently available.

5.1 Distributed precoding design

5.1.1 A challenging problem

Ideally, in this chapter we aim at designing distributed linear precoders spanning
the largest possible subset of C(P1, . . . , PL). However, in many setups, one quickly
realizes that the already challenging issues behind centralized precoding design
are greatly exacerbated by the information constraints induced by the distributed
CSIT assumption. For example, let us consider the following distributed variation
of the classical sum-rate maximization problem

maximize
Fl,k(Sl)∈Cdk×N∑K

k=1 E[‖Fl,k(Sl)‖2F]≤Pl

K∑
k=1

RCSIR
k , (5.1)

where RCSIR
k is the achievable rate bound under perfect CSIR given by (3.46), and

where the optimization is over the space of distributed linear precoders as defined
in Section 3.2.2.

44
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Centralized CSIT Mostly because of the non-convexity of the utility function,
Problem (5.1) is known to be challenging even by assuming centralized CSIT,
and hence requires simplifications and/or suboptimal methods. The best known
approach for solving (5.1) under centralized CSIT not requiring prohibitively
complex global optimization techniques is perhaps the so-called weighted-MMSE
(WMMSE) method introduced in [59] for the MIMO BC with perfect CSIT, and
subsequently adapted to other setups including imperfect (yet centralized) CSIT
[60, 52]. Another popular approach is to exploit the so-called UL-DL duality prin-
ciple to cast the precoding design problem as an equivalent linear combining de-
sign problem in a virtual dual UL channel [61, 25]. Remarkably, both approaches
reveal a MMSE-type structure of the optimal centralized precoders. The latter
approach is slightly more complex than the former, but it shows the optimality of
MMSE-type precoders for a more general class of network utilities than (5.1) or
its weighted variation.

Distributed CSIT Moving to the distributed CSIT assumption, we observe
that Problem (5.1) is also an instance of a team decision problem [34, 35], a class
of multi-agent optimization problems dealing with decision making under asym-
metry of information. This class of problems is exposed to an additional layer
of considerable difficulty stemming from the (non-trivial) information constraint.
Unfortunately, the available team theoretical results provide little help in dealing
with complicated cost functions as in Problem (5.1). The early attempts on dis-
tributed precoding design, surveyed in [19], mostly rely on the suboptimal notion
of person-by-person optimality (see Appendix A) to directly tackle Problem 5.1 via
an alternating sequence of subproblems for each TX l, with centralized information
Sl. However, each subproblem is still very challenging due to the non-convexity
of the utility, but also for the difficulties in being robust against the generally un-
known effect of the other TXs. Therefore, most of the available methods resort to
rather poor or impractical finite dimensional representations of the state and/or
the optimization space (e.g., using neural networks).

Instead of (directly) addressing difficult problems as Problem 5.1, in this chap-
ter we follow the UL-DL duality approach and rigorously motivate a novel dis-
tributed version of the MMSE precoding design criterion. As we will show, the
major advantage of this approach is that it leads to one of the few team theoretical
formulations for which solid solution approaches are available.

5.1.2 Definitions and assumptions

We specialize the distributed linear precoding scheme defined in Section 3.2.2 by
taking the following assumptions. We assume M = 1 antennas at each RX, and
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adopt the traditional design choice dk = 1 data stream per RX. Furthermore, we
focus on N < K antennas per TX, that is, on the regime where TX cooperation is
particularly important for effective spatial interference management [16]. Overall,
the above assumptions fit the typical architecture of current wireless networks,
which lets the RXs perform simple single-stream decoding in Gaussian noise, and
leaves most of the interference management burden to the TXs.

To allow for a rigorous treatment of the information constraint, we use a more
formal measure theoretical definition of the random linear precoder tl,k (see Ap-
pendix A). Specifically, we let (Ω,Σ0,P) be the underlying probability space over
which all random quantities are defined, and let

tl,k = tl,k(Sl) (5.2)

be an element of the vector space Tl of square-integrable Σl-measurable functions1

Ω → CN , where Σl ⊆ Σ0 denotes the sub-σ-algebra generated by Sl on Ω, called
the information subfield of TX l [34, 35]. This assumption2 rigorously describes the
functional dependency of tl,k on the portion Sl of the overall system randomness,
and includes a reasonable finiteness constraint E[‖tl,k‖2] <∞ on precoders power.

Then, the full precoding vector tTk =
[
tT1,k . . . tTL,k

]T
for message Wk must satisfy

tk ∈ T :=
∏L

l=1 Tl.
Because of the less stringent CSIR requirements, and, most importantly, for

treatability reason, we consider achievable rates measured by the hardening bound
(3.49)

Rhard
k = log

(
1 +

pk|E[gH
k tk]|2

pkVar[gH
k tk] +

∑
j 6=k pjE[|gH

k tj|2] + 1

)
, ∀k ∈ K, (5.3)

where E[‖xl‖2] =
∑K

k=1 pkE[‖tl,k‖2] is the power used by TX l. We then let Rhard

be the union of all rate tuples (R1, . . . , RK) ∈ RK such that Rk ≤ Rhard
k ∀k ∈ K

for some set of distributed precoders {tk}Kk=1 and power allocation policy {pk}Kk=1

satisfying
L∑
l=1

E[‖xl‖2] ≤
L∑
l=1

Pl =: Psum <∞. (5.4)

The set Rhard is an inner bound for the capacity region of the considered network
with distributed CSIT, no CSIR, and subject to a long-term sum power constraint

1Differently than Appendix A, we here use Tl to denote the function set, and not the alphabet
CN of tl,k.

2The measure theoretical formulation presented above is necessary for establishing Theorem
5.3. However, the rest of this thesis does not require any particular measure theoretical back-
ground.
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Psum, that is

Rhard ⊆
⋃

∑L
l=1 Pl≤Psum

C(P1, . . . , PL). (5.5)

The long-term sum power constraint is chosen because it allows for strong analyt-
ical results and simplifies system design. This constraint may be directly relevant
for systems such as the radio stripes, treated in Section 5.3.2, where all the TXs
share the same power supply [27]. However, note that many simple heuristic meth-
ods, such as power scaling factors, can be applied to adapt systems designed under
a long-term sum power constraint to more restrictive cases (see Section 5.5.2 for
additional details). Finally, due to its importance in system design and resource
allocation, we consider the notion of (weak) Pareto optimality on Rhard and we
mostly focus on the (weak) Pareto boundary of Rhard, denoted by ∂Rhard [25]. As
a final remark, note that, by the Cauchy–Schwarz inequality and the assumption
on finite fading power, we always have pk|E[gH

k tk]|2 <∞, hence ∂Rhard is finite.

5.2 Team MMSE precoding

We study the following novel team MMSE precoding design criterion: given a
vector of nonnegative weights w := [w1, . . . , wK ]T belonging to the simplex R4 :=

{w ∈ RK+ |
∑K

k=1wk = K}, we consider for each k ∈ K the problem

minimize
tk∈T

MSEk(tk) := E

[∥∥∥W 1
2Htk − ek

∥∥∥2 +
‖tk‖2

P

]
, (5.6)

where W := diag(w1, . . . , wK), ek is the k-th column of IK , and P := Psum/K. A
solution to the above problem can be recognized as a distributed version of the
classical centralized MMSE precoding design [2]. For P →∞, it can be interpreted
as the ‘closest’ distributed approximation of the ZF solution. By means of team
theoretical arguments, this section provides fundamental properties of the optimal
solution to Problem (5.6). Before providing the main results of this section, we
also revisit the effectiveness of the MSE criterion in terms of network performance,
which is well-known for centralized precoding.

Remark 5.1. Hereafter, with the exception of Section 5.2.1, we consider w.l.o.g.
W = I. The general case will readily follow by replacing Hl with W

1
2Hl every-

where.

5.2.1 Achievable rates via uplink-downlink duality

This section discusses the formal connection between the objective of Problem (5.6)
and Rhard by revisiting UL-DL duality under the distributed CSIT assumption.
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Theorem 5.1. Consider an arbitrary set of distributed precoders {tk}Kk=1 and
weights w ∈ R4. Then, any rate tuple (R1, . . . , RK) ∈ RK such that

Rk ≤ log(MSEk(tk))
−1 (5.7)

belongs to Rhard. The power allocation policy {pk}Kk=1 achieving the above inner
bound is given in Appendix B.3.1, and satisfies

∑L
l=1 E[‖xl‖2] = Psum. Fur-

thermore, if tk solves Problem (5.6) ∀k ∈ K, then (R1, . . . , RK) with Rk =
log(MSEk(tk))

−1 is Pareto optimal, and every rate tuple in ∂Rhard is obtained
for some w ∈ R4.

Proof. The proof is based on connecting the solution to Problem (5.6) and the
solution to the problem of ergodic rate maximization in a dual UL channel, where
w is a dual UL power allocation vector, and where achievable rates are measured
by using the so-called use-and-then-forget (UatF) bound [2, Theorem 4.4]. The
details are given in Appendix B.3.1.

Theorem 5.1 states that the Pareto boundary of Rhard can be parametrized
by K − 1 nonnegative real parameters, i.e., by the weights w ∈ R4. A similar
parametrization was already known for deterministic channels (see, e.g., [25]), or,
equivalently, for fading channels with perfect CSIT and CSIR. This work extends
the aforementioned results to imperfect and possibly distributed CSIT, and no
CSIR. In theory, w should be selected according to some network utility (e.g., the
sum rate or the max-min rate). In practice, w is often fixed heuristically (e.g.,
from the real UL powers), while the network utility is optimized a posteriori by
varying the DL power allocation policy {pk}Kk=1.

From a precoding design point of view, Theorem 5.1 generalizes the duality-
based argument behind classical MMSE precoding given by [2]. While [2] motivates
the MMSE solution as the optimal combiner maximizing a dual UL ergodic rate
bound based on coherent decoding, the proof of Theorem 5.1 directly relates the
MSE criterion to the more conservative UatF bound. This last point is particu-
larly relevant under distributed CSIT, where an optimal solution to the coherent
ergodic rate maximization problem is not known in general. We recall that, in
turn, [2] generalizes classical duality-based arguments for deterministic channels
to fading channels. As a concluding remark, we stress that the inner bound (5.7)
should not be confused with the well-known inner bound based on the notion of
expected WMSE given in [60], which does not rely on UL-DL duality and hence
the precoders for all messages contribute to each rate bound.
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5.2.2 Quadratic teams for distributed precoding design

Problem (5.6) is an instance of a team decision problem, as defined in Appendix A.
In particular, by rewriting the objective as

MSEk(tk) = E[ck(H, t1,k, . . . , tL,k)], (5.8)

ck(H, t1,k, . . . , tL,k) := tHkOtk − 2<
(
gH
k tk
)

+ 1, (5.9)

where

O := HHH+
1

P
I, gk = HHek, (5.10)

and by noticing that O � 0 a.s., we recognize that Problem (5.6) belongs to
the class of quadratic teams as defined in [34, Sect. 4]. This class exhibits strong
structural properties, in particular related to the stationary solution concept given
by Definition A.3 in Appendix A. By applying standard results on differentiation
of real-valued quadratic forms over a complex domain, the stationary conditions
(A.5) can be here expressed as

Definition 5.1 (Stationary TMMSE solution). A tuple t?k := (t?1,k, . . . , t
?
L,k) ∈ T

is a stationary solution for Problem (5.6) if MSEk(t
?
k) < ∞ and if the following

set of equalities hold

E[Ol,l|Sl]t?l,k(Sl) +
∑
j 6=l

E[Ol,jt
?
j,k|Sl]− E[gk,l|Sl] = 0N a.s., ∀l ∈ L, (5.11)

where Ol,l := HH
l Hl + 1

P
I, Ol,j := HH

l Hj for j 6= l, and gk,l = HH
l ek, provided that

all expectations are finite.

As explained in Appendix A, each of the stationary conditions (5.11) can be
interpreted as a first order optimality condition for optimizing tl,k while keeping
the others t?j,k fixed ∀j 6= l. This is reminiscent of the game theoretical notion
of Nash equilibrium, with the difference that here all the TXs share the same
objective, and hence they act as a team. Similarly to Nash equilibria, stationary
solutions may be in general inefficient, i.e., lead to a local optimum. However, a
stronger result holds for quadratic teams:

Theorem 5.2. If O is uniformly bounded above, i.e., there exists a positive scalar
B < ∞ such that O ≺ BI a.s., then Problem (5.6) admits a unique optimal
solution, which is also the unique stationary solution satisfying (5.11).

Proof. Theorem 2.6.6 of [35].
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The assumption of the above theorem is essentially used to ensure the exis-
tence of all the expectations in the steps of the proof, and is satisfied for any
fading distribution with bounded support. However, it is not satisfied for the
classical Gaussian fading model vec(H) ∼ CN (µ,K). Despite being unrealistic,
since physically consistent fading distributions cannot have unbounded support,
Gaussian fading is a very common model due to its analytical treatability, for ex-
ample in deriving effective channel estimation error models. Furthermore, except
for the tails of the distribution, it usually fits measurements well. Therefore, in
the following we derive optimality results covering this case.

Theorem 5.3. If E[‖O‖2F] < ∞, then Problem (5.6) admits a unique optimal
solution, which is also the unique stationary solution satisfying (5.11).

Proof. The proof is given in Appendix B.3.2.

The condition E[‖O‖2F] < ∞ is stronger than the assumption E[‖H‖2F] < ∞
given in Section 2.2. However, it is satisfied for Gaussian fading and any realistic
distribution with bounded support. To summarize, we have seen that, under mild
regularity requirements, solving Problem (5.6) is equivalent to finding the unique
t?k ∈ T satisfying (5.11), which can be compactly rewritten as the following infinite
dimensional linear feasibility problem [35]:

find tk ∈ T s.t. A[tk] = ĝk a.s., (5.12)

where

ĝk ∈ T , ĝk(S1, . . . , SL) :=

E[gk,1|S1]
...

E[gk,L|SL]

 , (5.13)

and where A : T → T is a linear operator given by

A :=

A1
...

AL

 , Al[tk](Sl) := E

[
L∑
j=1

Ol,jtj,k

∣∣∣∣∣Sl
]
. (5.14)

It is generally difficult to solve (5.12) in closed form. However, the optimal TMMSE
precoders may be approached via one of the many approximation methods avail-
able in the literature, for example the methods surveyed in [35] based on inter-
preting the solution to (5.12) as the unique fixed point of a linear map. Other
promising methods may also include finite dimensional approximations of (5.12)
obtained, e.g., by sampling the CSIT process (S1, . . . , SL) and by interpreting the
sampled version of (5.12) as a classical function interpolation problem from a fi-
nite set of linear measurements [62]. Further discussions on approximate solution
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methods are left for future work, and most of the parts of this chapter will focus
on special cases where (5.12) can be solved explicitly.

Nevertheless, it turns out that the optimality conditions (5.11) are not only
useful to characterize the optimal TMMSE solution, but also to evaluate the sub-
optimality of its approximations. This can be done via an appropriate measure of
violation of the optimality conditions. Specifically, we have the following result:

Lemma 5.1. Suppose that the assumption of Theorem 5.3 holds, and let t?k be the
unique TMMSE solution to Problem (5.6). Furthermore, let zk := [zT1,k, . . . , z

T
L,k]

T

where zl,k = zl,k(Sl) is given by the left-hand side of (5.11) with t? replaced by an
arbitrary tk ∈ T . If zk ∈ T , i.e., if E[‖zl,k(Sl)‖2] < ∞, the following optimality
bounds hold:

MSEk(tk)−MSEk(t
?
k) ≤ E

[
‖O−

1
2zk‖2

]
(5.15)

≤ PE
[
‖zk‖2

]
, (5.16)

Proof. The proof is given in Appendix B.3.3.

Clearly, zk = 0 a.s. gives the optimality conditions (5.11) or (5.12), and in fact
it corresponds to a zero optimality gap in (5.15) and (5.16). Intuitively, the bounds
in (5.15) and (5.16) can be quite tight if zk ≈ 0 with high probability. However,
if this is not satisfied, we remark that both bounds can be looser than other
trivial bounds obtained, e.g., by assuming a centralized information structure, or
even output negative estimates of MSEk(t

?
k). As already mentioned, we leave

further studies on suboptimal solutions for future work, and we use (5.16) only in
Section 5.3.3 for getting analytical insights into a particular setup.

5.3 Applications to cell-free massive MIMO

In this section we specialize the theory of Section 5.2 to cell-free massive MIMO
networks, and explicitly derive optimal TMMSE precoders for two practical ex-
amples. In the scope of this study, the important feature of the cell-free massive
MIMO paradigm is the exploitation of time division duplex operations and channel
reciprocity to efficiently acquire measurements Ĥl of the local channel Hl at each
TX l via over-the-uplink training [15]. These measurements may be subsequently
shared through the fronthaul according to some predefined CSIT sharing mecha-
nism, forming at each TX l a side information about the global channel H of the
type

Sl :=
(
Ĥl, S̄l

)
(5.17)

where S̄l denotes the side information about the other channels {Hj}j 6=l collected
at TX l. Depending on the CSIT sharing mechanism, S̄l may be a function of the
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other local channel estimates {Ĥj}j 6=l (e.g., in case of error-free digital signalling),
or include additional noise (e.g., in case of random events such as protocol delays).
Consistently with the above discussion, we consider the following assumptions:

Assumption 5.1 (Local channel estimation). For every l ∈ L, let El := Hl − Ĥl

be the local channel estimation error for the local channel. Assume that Ĥl and
El are independent. Furthermore, assume E[El] = 0, and that E[EH

l El] =: Σl has
finite elements. Finally, assume that (Ĥl,El) and (Ĥj,Ej) are independent for
l 6= j.

Assumption 5.2 (CSIT sharing mechanism). For every (l, j) ∈ L2 s.t. l 6= j,
assume the following Markov chain: Hl → Ĥl → Sl → Sj → Ĥj → Hj.

Assumption 5.1 is widely used in the wireless communication literature and it
holds, e.g., for pilot-based MMSE estimates of Gaussian channels [15, 28]. As-
sumption 5.2 essentially states that all the available information about Hl is fully
contained in Ĥl at TX l, and that TX j can only obtain a degraded version of it.
We now rewrite the optimality conditions (5.11) or (5.12) in light of the considered
model:

Lemma 5.2. Suppose that Assumption 5.1, Assumption 5.2, and the assumption
of Theorem 5.3 hold. Then, the unique TMMSE solution to Problem (5.6) is given
by the unique t?k ∈ T satisfying

t?l,k(Sl) = Tl

(
ek −

∑
j 6=l

E
[
Ĥjt

?
j,k

∣∣∣Sl]) a.s., ∀l ∈ L, (5.18)

where Tl :=
(
ĤH
l Ĥl + Ψl + P−1I

)−1
ĤH
l .

Proof. The first term of the stationarity conditions (5.11) is evaluated by letting

E[Ol,l|Sl] = E[HH
l Hl|Sl] + P−1I

= E[(Ĥl +El)
H(Ĥl +El)|Ĥl] + P−1I

= ĤH
l Ĥl + Ψl + P−1I,

(5.19)

where we used the Markov chain Hl → Ĥl → Ĥl and Assumption 5.1.
Then, for j 6= l:

E[Ol,jt
?
j(Sj)|Ĥl] = E[HH

l Hjt
?
j,k|Sl] (5.20)

= E
[
E[HH

l Hj|Sl, Sj]t?j,k
∣∣Sl] (5.21)

= E
[
E[HH

l |Sl, Sj]E[Hj|Ĥl, Ĥj]t
?
j,k

∣∣∣Sl] (5.22)

= E
[
E[HH

l |Ĥl]E[Hj|Ĥj]t
?
j,k

∣∣∣Sl] (5.23)

= ĤH
l E[Ĥjt

?
j,k|Sl], (5.24)
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where (5.21) follows from the law of total expectation, (5.22) from the Markov
chain Hl → (Sl, Sj) → Hj, (5.23) from the Markov chain Hl → Ĥl → (Sl, Sj),
and (5.24) from Assumption 5.1. Note that all the aforementioned Markov chains
are implied by Assumption 5.2. The proof is concluded by letting E[gl,k|Sl] =

E[Hl|Ĥl]
Hek = ĤH

l ek and by rearranging the terms.

The above lemma reveals the following interpretation of the optimal TMMSE
solution: the matrix Tl can be recognized as a local MMSE precoding stage (stud-
ied, e.g., in [28]), that is, a centralized MMSE solution [2] assuming that there
are no other TXs than TX l; the remaining part can be then interpreted as a
‘corrective’ stage which takes into account the effect of the other TXs based on
the available CSIT and long-term statistical information.

5.3.1 No CSIT sharing

As an important example, we assume that no local channel measurement is shared
along the fronthaul. This corresponds to the original cell-free massive MIMO
setup studied in [15], which is relevant for any fronthaul architecture. Specifically,
∀l ∈ L, we let Ĥl as in Assumption 5.1 and

Sl = Ĥl, ∀l ∈ L. (5.25)

Theorem 5.4. The TMMSE precoders solving (5.18) under no CSIT sharing
(5.25) are given by

t?l,k(Sl) = TlClek, ∀l ∈ L, (5.26)

for some matrices of coefficients Cl ∈ CK×K. Furthermore, the optimal Cl are
given by the unique solution of the linear system Cl +

∑
j 6=l ΠjCj = I, ∀l ∈ L,

where Πl := E
[
ĤlTl

]
.

Proof. Substituting (5.26) into the optimality conditions (5.18), we need to show
that

ĤH
l

(
Cl +

∑
j 6=l

E
[
ĤjTjCj

∣∣∣Sl]− I

)
ek = 0N a.s., ∀l ∈ L. (5.27)

By the independence between Ĥl and Ĥj, we can drop the conditioning on Sl and

obtain ĤH
l

(
Cl +

∑
j 6=l ΠjCj − I

)
ek = 0 a.s., ∀l ∈ L. The proof is concluded by

observing that Cl +
∑

j 6=l ΠjCj = I, ∀l ∈ L, always has a unique solution, as
shown in Appendix B.3.4.



CHAPTER 5. TEAM THEORY FOR DISTRIBUTED PRECODING 54

The optimal solution (5.26) corresponds to a two-stage precoding scheme com-
posed by a local MMSE precoding stage Tl preceded by a statistical precoding
stage Cl. By letting the rows ĝH

l,k of Ĥl to be independent and distributed as
CN (0,Kl,k), corresponding for instance to a non-line-of-sight (NLoS) scenario with
no pilot contamination [28], it can be shown that the matrices Πl are diagonal.
Hence, (5.26) takes the simpler form

t?l,k(Sl) = cl,kTlek, (5.28)

which, by mapping the optimal cl,k to the optimal large-scale fading decoding
coefficients in a dual UL channel, was already studied in [63]. However, if the
channels have non-zero mean, such as in line-of-sight (LoS) models, (5.26) may
provide significantly higher rates than (5.28). To see this, let Ĥl ≈ H̄l for some
fixed matrix H̄l, ∀l ∈ L. Then, since H̄l is statistical information known to all
TXs, the TMMSE precoders should take a form similar to a ‘long-term’ central-
ized MMSE solution, which cannot be implemented using (5.28). Finally, we point
out that a suboptimal variation of (5.26) called optimal bilinear equalizer (OBE),
with Tl replaced by ĤH

l , was already proposed in [64] as a low-complexity alter-
native to centralized MMSE precoding which maintains robustness against pilot
contamination.

5.3.2 Unidirectional CSIT sharing

We now consider a more involved example and let the local channel measurements
be shared unidirectionally along a serial fronthaul. This setup is relevant, e.g.,
for the cell-free massive MIMO network in Figure 5.1, where CSIT, messages, and
power are distributed along a serial fronthaul from and/or towards a CPU located
at one edge, an architecture also known as a radio stripe [27, 36].

TX 1 TX 2 TXL CPU

(a) Ĥ1 Ĥ2 ĤL

(b) Ĥ1 −→ Ĥ1, Ĥ2 −→ Ĥ1, Ĥ2, . . . , ĤL

Figure 5.1: Pictorial representation of a radio stripe with (a) no CSIT sharing,
and (b) unidirectional CSIT sharing.

Specifically, ∀l ∈ L, we let Ĥl as in Assumption 5.1 and

Sl = (Ĥ1, . . . , Ĥl), ∀l ∈ L. (5.29)
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This particular information structure can be interpreted as the CSIT which is
accumulated at every TX during the first phase of a centralized precoding scheme
for radio stripes, where the CPU collects the K × LN channel matrix H through
the serial fronthaul.

Theorem 5.5. The TMMSE precoders solving (5.18) under unidirectional CSIT
sharing (5.29) are given by

t?l,k(Sl) = TlVl

[
l−1∏
i=1

V̄i

]
ek, ∀l ∈ L, (5.30)

where we use the following short-hands:

• Vl := (I−ΠlPl)
−1 (I−Πl);

• V̄l := I−PlVl;

• Pl := ĤlTl;

• Πl := E[Pl+1Vl+1] + Πl+1E[V̄l+1], ΠL := 0K×K.

Proof. We first assume that all the matrix inverses involved in the following steps
exist. Substituting (5.30) into (5.18), we need to show that

ĤH
l

(
Vl

l−1∏
i=1

V̄i +
∑
j 6=l

E

[
PjVj

j−1∏
i=1

V̄i

∣∣∣∣∣Sl
]
− I

)
ek = 0 a.s., ∀l ∈ L. (5.31)

To verify the above statement, we rewrite the first two terms inside the outer
brackets as:(

Vl +
∑
j>l

E

[
PjVj

j−1∏
i=l+1

V̄i

]
V̄l

)
l−1∏
i=1

V̄i +
∑
j<l

PjVj

j−1∏
i=1

V̄i, (5.32)

where we use the fact that Pj, Vj, and V̄j are deterministic functions of Ĥj only,
hence they are independent from Sl for j > l, while they are deterministic functions
of Sl otherwise. Furthermore, since Pj, Vj, and V̄j are independent from Pi, Vi,
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and V̄i ∀i 6= j, we have

∑
j>l

E

[
PjVj

j−1∏
i=l+1

V̄i

]
=
∑
j>l

E [PjVj]

j−1∏
i=l+1

E
[
V̄i

]
= E [Pl+1Vl+1] +

∑
j>l+1

E [PjVj]

j−1∏
i=l+1

E
[
V̄i

]
= E [Pl+1Vl+1] +

(∑
j>l+1

E [PjVj]

j−1∏
i=l+2

E
[
V̄i

])
E
[
V̄l+1

]
.

(5.33)

The second and last term of the above chain of equalities define a recursion
terminating with E [PLVL] + 0E

[
V̄L

]
= ΠL−1. This recursion gives precisely∑

j>l E
[
PjVj

∏j−1
i=1 V̄i

]
= Πl. Together with the property Vl + ΠlV̄l = I, (5.32)

simplifies to

l−1∏
i=1

V̄i +
∑
j<l

PjVj

j−1∏
i=1

V̄i =
(
V̄l−1 +Pl−1Vl−1

) l−2∏
i=1

V̄i +
∑
j<l−1

PjVj

j−1∏
i=1

V̄i

=
l−2∏
i=1

V̄i +
∑
j<l−1

PjVj

j−1∏
i=1

V̄i,

(5.34)

where the last equation follows from the definition of V̄l, and where we identify
another recursive structure among the remaining terms. By continuing until ter-
mination, we finally obtain

∏l−1
i=1 V̄i +

∑
j<lPjVj

∏j−1
i=1 V̄i = I, which proves the

main statement under the assumption that all the matrix inverses involved exist.
This assumption is indeed always satisfied, as shown in Appendix B.3.5.

By locally computing precoders based on Sl only, and at the expense of some
performance loss, the scheme in (5.30) eliminates the additional overhead required
by centralized precoding to share back the computed K × LN precoding matrix
from the CPU to the TXs. Furthermore, inspired by the schemes proposed in
[27, 63, 36] for UL processing exploiting the peculiarity of a serial fronthaul, the
CSIT sharing overhead can be further reduced as follows:

Remark 5.2. The scheme in (5.30) can be alternatively implemented via a recur-
sive algorithm involving a K ×K aggregate information matrix

∏l−1
i=1 V̄i which is

sequentially processed and forwarded in the direction from TX 1 to TX L. There-
fore, the capacity of the serial fronthaul can be made independent from L, which
is typically larger than K.
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Furthermore, if message sharing is implemented through the sequential for-
warding of a vector u := [U1, . . . , UK ]T ∈ CK of coded and modulated I/Q symbols
originating from a CPU placed next to TX 1, then this can be replaced by the
forwarding of a sequentially precoded K-dimensional vector

∏l−1
i=1 V̄iu, thus elimi-

nating the CSIT sharing overhead.

We conclude this section by providing the following corollary to Theorem 5.5.

Corollary 5.1. An alternative expression for centralized MMSE precoding [2, 28],
or equivalently, for the TMMSE solution under full CSIT sharing Sl = (Ĥ1, . . . , ĤL)
∀l ∈ L, is given by (5.30) with Πl replaced by P̄l := Pl+1Vl+1+P̄l+1V̄l+1, P̄L := 0.

Proof. Since all random quantities become deterministic after conditioning on Sl,
the proof of Theorem 5.5 can be repeated by removing E[·] everywhere.

Without getting into details, we remark that the expression in Corollary 5.1
can be alternatively derived by applying recursively known block-matrix inversion
lemmas to the original centralized MMSE precoding expression [2]

tMMSE
k :=

(
ĤHĤ+ Ψ + P−1I

)−1
ĤHek, (5.35)

where Ĥ := [H1, . . . ,HL] and Ψ = diag(Ψ1, . . . ,ΨL). Similarly to the implemen-
tation of (5.30) described in Remark 5.2, Corollary 5.1 provides a novel distributed
and recursive implementation of centralized MMSE precoding (5.35). The main
difference is that, in contrast to Πl which can be computed offline, the computation
of P̄l entails another sequential procedure in the reverse direction, thus doubling
the overhead.

5.3.3 Asymptotic results and competing unidirectional re-
cursive schemes

The idea of designing recursive precoding schemes exploiting the opportunities
of a serial connection between antenna elements has been also explored by [37].
Motivated by the need of reducing hardware complexity of a massive MIMO cel-
lular base station, and by focusing on N = 1 and no channel estimation error, the
authors of [37] propose the following so-called SGD precoding scheme:

Tl,k(Sl) = µl,kh
H
l

(
ek −

l−1∑
j=1

hjTj,k(Sj)

)
, ∀l ∈ L, (5.36)

where Sl is given by (5.29) assuming unidirectional CSIT sharing, and µl,k ∈
R are tunable step-sizes of a stochastic gradient descent algorithm. The choice
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µl,k = ‖hl‖−2 is motivated by [37] as a good solution for i.i.d. Rayleigh fading
and high SNR. Furthermore, to cope with finite SNR, [37] suggests to take µl,k =
µk‖hl‖−2 for a single scalar µk ∈ R per RX to be optimized, e.g., using line
search. Interestingly, the SGD scheme with µl,k = ‖hl‖−2 can be also derived from
team theoretical arguments, as a particular case of the following asymptotic result
considering N ≥ 1:

Lemma 5.3. Assume vec(H) ∼ CN (0, I), no measurement noise Ĥl = Hl ∀l ∈ L,
unidirectional CSIT sharing (5.29), and let t?k be the optimal TMMSE solution of
Problem (5.6). Then,

Rk = log(MSEk(t
?
k))
−1 ≤ L log

(
K

K −N

)
, (5.37)

with equality attained as P →∞ by

tl,k(Sl) = (HH
l Hl)

−1HH
l

(
ek −

l−1∑
j=1

Hjtj,k(Sj)

)
, ∀l ∈ L. (5.38)

Proof. The proof is given in Appendix B.3.6.

5.4 Performance evaluation

5.4.1 Simulation setup

Inspired by the “football arena” [36] or “outdoor piazza” [27] scenarios, we simulate
the network in Figure 5.2, composed by a radio stripe of L = 30 equally spaced TXs
with N = 2 antennas each wrapped around a circular area of radius r1 = 60 m,
and K = 7 RXs independently and uniformly drawn within a concentric circular
area of radius r2 = 50 m. We let the channel coefficient Hl,k,n between the n-th
antenna of TX l and RX k be independently distributed as Hl,k,n ∼ CN (0, ρ2l,k),
where ρ2l,k denotes the channel gain between TX l and RX k. We follow the 3GPP
NLoS Urban Microcell path-loss model [65, Table B.1.2.1-1]

PLl,k = 36.7 log10

(
distl,k
1 m

)
+ 22.7 + 26 log10

(
fc

1 GHz

)
[dB], (5.39)

where fc = 2 GHz is the carrier frequency, and distl,k is the distance between TX l
and RX k including a difference in height of 10 m. We let the noise power at all
RXs be given by

Pnoise = −174 + 10 log10(Bw/1 Hz) + Fnoise [dBm], (5.40)

where Bw = 20 MHz is the system bandwidth, and Fnoise = 7 dB is the noise figure.

Finally, we let ρ2l,k := 10−
PLl,k+Pnoise

10 mW−1, and, leveraging the short distances, we
assume a relatively low total radiated power Psum = 100 mW.
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Figure 5.2: Pictorial representation of the simulation setup, with K = 7 RXs
uniformly distributed within a circular service area, and a radio stripe of L = 30
TXs wrapped around.

5.4.2 Comparison among different CSIT configurations

We numerically evaluate the Pareto optimal rates Rk = − log(MSEk(t
?
k)), where

t?k denotes the optimal solution of Problem (5.6), under the following CSIT con-
figurations: (i) no CSIT sharing (5.25), (ii) unidrectional CSIT sharing (5.29),
and (iii) full CSIT sharing as in Corollary 5.1. The resulting optimal precoding
schemes are respectively termed as (i) local TMMSE, (ii) unidirectional TMMSE,
and (iii) centralized MMSE. We assume for simplicity Ĥl = Hl to study the impact
of the different CSIT configurations in absence of measurement noise, and focus
on the Pareto optimal point parametrized by wk = 1 ∀k ∈ K.

Figure 5.4.2 reports the empirical cumulative distribution function (CDF) of
Rk for multiple i.i.d. realizations of the RX locations. As expected, adding infor-
mation constraints on the CSIT configuration leads to performance degradation.
However, the degradation is less pronounced from centralized to unidirectional
MMSE precoding, showing that unidirectional CSIT sharing does not prevent
effective forms of network-wide interference management. Therefore, the unidirec-
tional team MMSE scheme appears as a promising intermediate solution whenever
centralized MMSE precoding becomes too costly, e.g., when the CSIT sharing over-
head becomes problematic due to high RXs mobility. Quantifying the savings in
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Figure 5.3: Comparison among different CSIT configuration: Empirical CDF of
the optimal per-RX achievable rates. Unidirectional TMMSE is a promising in-
termediate solution for supporting network-wide interference management when
centralized precoding becomes too costly.

terms of CSIT sharing overhead is an interesting open problem which depends on
many implementation details. For instance, if computational complexity is not
an issue and the message sharing is implemented through the forwarding of high-
precision I/Q symbols, unidirectional TMMSE precoding may have the same over-
head as local TMMSE precoding, owing to the sequential implementation outlined
in Remark 5.2. If this is not possible, then the savings may become less prominent,
e.g., down to a factor 2.

5.4.3 Comparison among local precoding schemes

In this section, we compare the optimal local TMMSE solution against classical
MRT, the OBE method [64], and local MMSE precoding (5.28) with optimal large-
scale fading coefficients cl,k computed using the method in [63]. Since the bound
in (5.7) may be overly pessimistic for suboptimal schemes, for a fair comparison
we compute the DL rates Rk = Rhard

k by means of their dual UL rates RUatF
k as

defined in the proof of Theorem 5.1, using the same dual UL power allocation
wk = 1 ∀k ∈ K. One of the major weaknesses of MRT and local MMSE precoding
is that they do not exploit channel mean information, typically arising from LoS
components. To study this effect, we modify our simulation setup by letting N = 1



CHAPTER 5. TEAM THEORY FOR DISTRIBUTED PRECODING 61

0 1 2 3 4 5 6
Rate [b/s/Hz]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MRT
OBE
Local MMSE
Local Team MMSE

(a)

0 1 2 3 4 5 6
Rate [b/s/Hz]

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

MRT
OBE
Local MMSE
Local Team MMSE

(b)

Figure 5.4: Empirical CDF of the per-RX achievable rates for different local pre-
coding schemes, under Ricean factor (a) κ = 0, and (b) κ = 1. In contrast to pre-
viously known heuristics, the team MMSE approach optimally exploits statistical
information such as the channel mean and always exhibits superior performance.
Furthermore, consistently with our theoretical results, local MMSE precoding [63]
is optimal in case (a). However, as expected, and in contrast to the team MMSE
approach and the OBE method [64], it may not handle well the interference orig-
inating from the channel mean, as shown by the poor perfomance of the weaker
RXs in case (b).
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and by considering a simple Ricean fading model Hl,k,1 ∼ CN
(√

κ
κ+1

ρ2l,k,
1

κ+1
ρ2l,k

)
for some κ ≥ 0, and consider again no measurement noise Ĥl = Hl. Figure
5.4 confirms the above observation: while, as expected, local MMSE precoding is
optimal for a NLoS setup (κ = 0), it may incur significant performance loss w.r.t.
local TMMSE precoding and the OBE method even in case of relatively weak LoS
components (κ = 1).

5.4.4 Comparison among unidirectional recursive schemes

In this section, we compare the unidirectional TMMSE solution (5.29) for N = 1
against the suboptimal SGD scheme (5.36) proposed in [37] for µk = 1 and its
robust version obtained by optimizing µk via line search. Figure 5.5 plots the rate
R1 = Rhard

1 of the first RX (measured via its dual UL rate as in Section 5.4.3)
versus the SNR := P

∑
l ρ

2
l,1 for a single realization of the simulation setup, and

by focusing on the following aspects:

(a) Equal path-loss, i.e., r2 = 0 (all RXs colocated at the center of the circular
service area), and no measurement noise, i.e., Ĥl = Hl;

(b) Equal path-loss, and measurement noise, i.e., we let El ∼ CN (0, εRl) and
Ĥl ∼ CN (0, (1− ε)Rl), where Rl := diag(ρl,1, . . . , ρl,K) and ε = 0.2;

(c) Realistic path-loss, i.e., r2 = 50 m (single realization), and no measurement
noise.

Although the SGD scheme assumes no measurement noise, in the above experi-
ments we adapt (5.36) to case (b) by replacing hl with Ĥl everywhere. As expected,
from Figure 5.5a we observe that the SGD scheme is asymptotically optimal in
case (a), but its performance degrades for low SNR, or in the presence of channel
estimation error noise and/or realistic path-loss as shown in Figure 5.5b and 5.5c.
In contrast, its robust version seems sufficient to recover most of the loss due to
finite SNR and channel estimation errors. However, Figure 5.5c shows that the
(robust) SGD scheme may not handle more realistic path-loss configurations.

The main advantage of the (robust) SGD scheme over optimal unidirectional
TMMSE precoding is that the former does not perform anyK×K matrix inversion.
Furthermore, as described in [37], it can be similarly implemented by sequentially
updating and forwarding a K ×K matrix. Therefore, it may be considered as a
low-complexity alternative to unidirectional TMMSE precoding. However, further
research is needed in particular regarding the choice of the parameters µl,k and the
support for N > 1 TX antennas.
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Figure 5.5: Rate vs SNR for RX 1 under: (a) equal path-loss and no channel
estimation errors; (b) equal path-loss and channel estimation errors; (c) realistic
path-loss and no channel estimation errors. In contrast to the (robust) SGD scheme
[37], the team MMSE approach optimally exploits the path loss information and
hence exhibits superior performance in case (c).
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Figure 5.5: Rate vs SNR for RX 1 under: (a) equal path-loss and no channel
estimation errors; (b) equal path-loss and channel estimation errors; (c) realistic
path-loss and no channel estimation errors. In contrast to the (robust) SGD scheme
[37], the team MMSE approach optimally exploits the path loss information and
hence exhibits superior performance in case (c).

5.5 Extensions

5.5.1 Partial message sharing

In this section we discuss how TMMSE precoding, illustrated by assuming for sim-
plicity full message sharing, can be readily applied to networks where the messages
are partially shared following a user-centric clustering approach. Let Lk ⊆ L be
the subset of TXs serving a given RX k as defined in Section 2.3.2, and consider
the sets of functions

T (k)
l :=

{
Tl if l ∈ Lk
{tl,k(Sl) = 0 a.s.} otherwise

. (5.41)

The set of admissible distributed precoders T (k) :=
∏

l=1 T
(k)
l ⊆ T is then modified

by forcing to zero the precoder tl,k if TX l does not know the message for RX k.
It can be easily shown that the following user-centric variation of the TMMSE
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precoding design problem

minimize
tk∈T (k)

MSEk(tk) := E

[∥∥∥W 1
2Htk − ek

∥∥∥2 +
‖tk‖2

P

]
(5.42)

maintains all the properties of the original formulation (5.6). In particular, the
optimality conditions (5.11) and their specialization to cell-free massive MIMO
networks (5.18) hold exactly by replacing T with T (k), hence reducing to, respec-
tively,

E[Ol,l|Sl]t?l,k(Sl) +
∑
j∈Lk\l

E[Ol,jt
?
j,k|Sl]− E[gk,l|Sl] = 0N a.s., ∀l ∈ Lk, (5.43)

and

t?l,k(Sl) = Tl

ek −
∑
j∈Lk\l

E
[
Ĥjt

?
j,k

∣∣∣Sl]
 a.s., ∀l ∈ Lk. (5.44)

This can be easily seen by observing that (5.42) can be rewritten in the same
form as the original problem (5.6) by replacing H with a reduced channel matrix
H(k) containing only the columns of the TXs in Lk, and tk with a corresponding
reduced distributed precoding vector t

(k)
k ∈

∏
l∈Lk Tl. Furthermore, Theorem 5.1

relating TMMSE precoding with the Pareto optimal rates

Rk = log(MSEk(t
?
k))
−1, (5.45)

is also readily extended by replacing tk ∈ T with tk ∈ T (k) ∀k ∈ K, and by
modifying the definition of Rhard accordingly. This is because no part of the proof
of Theorem 5.1 (and in particular, the UL-DL duality principle) is impacted by
the above change.

The optimal local TMMSE precoders (5.28) and unidrectional TMMSE pre-
coders (5.29) for an arbitrary RX k can be finally extended to user-centric partial
message sharing by removing in their equations all the TXs not partecipating to
the transmission towards RX k. For instance, the local TMMSE solution takes
the form

t?l,k(Sl) = Tlcl,k, ∀l ∈ Lk, (5.46)

for some vectors of coefficients cl,k ∈ CK solving cl,k+
∑

j∈Lk\l Πjcj,k = ek, ∀l ∈ Lk,
where Πl is defined as in Theorem 5.4.

Remark 5.3. Following the user-centric clustering approach in [28] which also
encompass the allocation of pilot sequences for channel estimation, it is reasonable
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to assume that each TX l knows only the channels of the RXs it is actually serving,
i.e.,

Ĥl =:

 ĝ
H
1,l
...
ĝH
K,l

 , ĝk,l = E[gk,l] ∀k /∈ Kl. (5.47)

However, the theory of this section is not restricted to this assumption.

5.5.2 Per-TX power constraint

The main drawback of the proposed TMMSE precoding method is that its op-
timality in terms of achievable rates have been proven only under a long-term
sum-power constraint. The key ingredient of the proof is the UL-DL duality prin-
ciple for fading channels given by [2], which holds only under a long-term sum
power constraint.

However, for deterministic channels, a weaker form of the UL-DL duality prin-
ciple and of the Pareto boundary parametrization exists also under a per-TX power
constraint (see, e.g., [66, 25]). Although a formal attempt of establishing a simi-
lar result for fading channels is left for future work, inspired by [66, 25], we here
postulate that an optimal distributed precoding design under a long-term per-TX
power constraint E[‖xl‖2] ≤ Pl ∀l ∈ L may be given by the solution of

minimize
tk∈T

MSEk(tk) := E

[∥∥∥W 1
2Htk − ek

∥∥∥2 +
L∑
l=1

λl‖tl,k‖2
]
, (5.48)

for a set of L non-negative coefficients {λl}Ll=1 properly penalizing the individual
TX powers. If λl > 0 ∀l ∈ L, the TMMSE optimality conditions and closed form
solutions can be readily adapted by replacing 1

P
I with positive diagonal matrices

λlI. If one or more λl is set to zero, additional care must be taken since the
quadratic form in (5.48) may not be positive definite as required by the proofs
of Theorem 5.2 and Theorem 5.3; however, we note that, due to the assumption
N < K, the obtained closed form TMMSE expressions keep on existing if we
take some λl → 0, hence at least stationarity is preserved. In this case, since the
quadratic form is positive semidefinite, we can use weaker optimality results such
as [35, Theorem 2.6.5] to conclude that stationarity implies optimality, although
the converse statement and the uniqueness property do not necessarily hold.

As a much simpler yet clearly suboptimal approach, suppose x?l is the l-th TX
signal obtained using optimal TMMSE precoding under a long-term sum power
constraint

∑L
l=1 Pl = Psum, and consider the following trivial adaptation

xl =
1

ν
x?l ∀l ∈ L, ν2 = max

(
1,

E[‖x?1‖2]
P1

, . . . ,
E[‖x?L‖2]
PL

)
, (5.49)



CHAPTER 5. TEAM THEORY FOR DISTRIBUTED PRECODING 67

which scales everything down until the per-TX power constraint is satisfied. In
terms of performance, if {t?k}Kk=1 is the set of TMMSE precoders with corresponding
power allocation {p?k}Kk=1 generating x?l , the rates achieved by using the above
simple method are

Rhard
k = log

(
1 +

p?k|E[gH
k t

?
k]|2

p?kVar[g
H
k t

?
k] +

∑
j 6=k p

?
jE[|gH

k t
?
j |2] + ν2

)
, ∀k ∈ K, (5.50)

that is, compared to the optimal solution assuming a sum power constraint, there
is a SNR loss proportional to the largest violation of the TX power constraints.
Nevertheless, this loss may be marginal if the interference terms are still dominat-
ing the denominator in the rate expressions. Therefore, we argue that the simple
power scaling factor described above may be particularly suitable for the setup of
this thesis, where partial CSIT sharing indeed often prevents the interference to
be driven down to the noise floor.

Other variations may be also considered, for example we can repeat the TMMSE
precoders computation for decreasing values of Psum until the per-TX power con-
straint is satisfied. Furthermore, power scaling factors coupled with clipping tech-
niques can be also used to adapt long-term power constraints to short-term power
constraints of the type ‖xl‖2 ≤ Pl almost surely. We leave further discussions on
power constraints for future work.

5.5.3 Performance evaluation (cont.)

In this section we illustrate the discussed extensions of TMMSE precoding to par-
tial message sharing and per-TX power constraints on a modified version of the
simulation setup used in Section 5.4. Specifically we modify the topology and con-
sider the network in Figure 5.6, where L = 50 TXs with N = 2 antennas each are
placed on a grid covering a 100 × 100 m2 squared service area with K = 20 uni-
formly distributed RXs. Following a simple user-centric clustering rule, we let RX
k being served only by the set Lk of its Lc = 10 closest TXs. Furthermore, in the
same spirit of Remark 5.3, we assume that each TX l acquires only (yet perfectly)
the channels of the RXs it is serving. We then focus on the optimal user-centric
local TMMSE precoders (UC-LTMMSE) in (5.46) under a sum power constraint
Psum, and its simple adaptation to a per-TX power constraint Pl = Psum/L ∀l ∈ L
using the scaling factor in (5.49). For comparison, we also consider the case with
clusters size Lc = L, that is, by using the original LTMMSE precoders with full
message sharing. The empirical CDFs of the achievable rates are reported in Fig-
ure 5.7 for two different values of Psum. Not surprisingly, we observe that the use of
UC-LTMMSE for limiting the message sharing burden incurs some performance
loss w.r.t. to the full message sharing case. Furthermore, we observe that the
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Figure 5.6: Pictorial representation of the simulation setup, with K = 20 RXs
uniformly distributed within a squared service area, and a grid of L = 50 TXs.
The red crosses identify the user-centric cluster of an arbitrary RX obtained from
its Lc = 10 closest TXs.

simple suboptimal scheme satisfying the per-TX power constraint performs quite
close to the sum power constraint upper bound, since the system is operating close
to the interference limited regime. In the considered setup, this effect is particu-
larly visible when using Psum = 100 mW, but also when the interference mitigation
capabilities are reduced by the partial message sharing.

Remark 5.4. The produced plots are only for illustration purposes, since practical
systems should not waste power operating in the interference limited regime as in
(b). Once the interference limited regime is reached, more advanced interference
management schemes such as superposition coding and/or Marton’s coding (see
Section 3.2.1) should be included to resolve the saturating behaviour of TIN as
Psum grows, but we leave further discussions on this point for future work.
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Figure 5.7: Empirical CDF of the per-RX rates achieved by optimal LTMMSE
precoding, optimal UC-LTMMSE precoding, and their suboptimal adaptations to
a per-TX power constraint, by assuming (a) Psum = 10 mW, and (b) Psum =
100 mW. As expected, the suboptimal adaptations to a per-TX power constraint
become close-to-optimal in interference limited regimes such as in (b) or for the
UC-LTMMSE case in (a).



Chapter 6

Conclusion

6.1 Lessons learned

The main take-away message of this thesis is that, despite being challenging, the
accurate design of decentralized transmission techniques natively taking into ac-
count the distributed nature of the problem can be quite rewarding, as showcased
by the remarkable performance of the TMMSE precoding method developed in
Chapter 5. We believe that the results given by this thesis should motivate more
researchers to further investigate this exciting topic.

From an information theoretical point of view, we have seen in Chapter 3 that
when the messages are fully shared among the TXs, the major difference between
decentralized and centralized transmission lies indeed in the accurate design of
precoding functions mapping the codewords into channel inputs, which in the
former case must act on the basis of distributed CSIT.

The results of Chapter 4 are of some theoretical importance, since they show
that distributed linear precoding and Gaussian codes are information theoretically
optimal at least for single-RX decentralized MIMO fading channels with CSIT
taken as a quantized version of the CSIR, mirroring similar results for centralized
point-to-point fading channels. However, we have observed the surprising phe-
nomenon that, in some cases, and in contrast to centralized systems, the number
of precoded data streams should not be restricted by the usual bound given by the
number of antennas.

6.2 Lessons yet to be learned

How many data streams do we need? The main question left open by this
thesis is whether the use of additional data streams as in Chapter 4 can signifi-
cantly enhance the performance of distributed linear precoding. Essentially, the
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advantage of using additional data streams is that, under distributed CSIT, the
set of feasible conditional input covariances

Σ(S1, . . . , SL) = E[xxH|S1, . . . , SL] (6.1)

can be larger than what can be implemented using a classical number of data
streams. Although allowing to achieve its capacity, the benefits for the single-RX
channel of Chapter 4 seem rather marginal, making the use of complex multi-
stream decoders not worthwhile in practice. Moving to multi-RX systems, it is not
clear to what extent this larger set of conditional input covariances can be exploited
for interference mitigation. Preliminary negative results are reported in [C3], where
the use of additional data streams is shown to provide little help in mitigating the
interference over a simple L = 2 TXs, K = 2 RXs channel with asymmetric
feedback. However, on top of its perhaps overly simplified setup, [C3] is based on
a heuristic precoding design, and does not cover the more recent team theoretical
results given by [C4, J2]. Therefore, we think that further research is needed in this
direction, as the available preliminary results might lead to misleading conclusions.

Evolving the TMMSE precoding framework Without going into the diffi-
cult discussion on multi-stream transmission, the TMMSE precoding framework
alone seems to have a fairly big potential for evolution. We here list only a subset
of the many possible future research directions:

• Find closed form solutions for more involved CSIT sharing patterns as, e.g.,
tree patterns, or mixtures of the available patterns.

• Explore good approximation methods, possibly data-driven, for solving the
TMMSE optimality conditions in general cases.

• Revisit the performance of local precoding for ultra-dense deployments, typ-
ically characterized by more frequent LoS components which can be now
better exploited. Similarly, revisit the impact of pilot contamination.

• Revisit power allocation algorithms for network utility optimization in light
of the TMMSE precoding framework.

• Explore the impact of limited CSIT/message sharing in practical networks
by explicitly modelling the fronthaul constraint.

• Extend to superposition coding and/or Marton’s coding.

As a final important remark, note that, although developed by focusing on the
DL, the proposed framework is also immediately applicable to derive optimal dis-
tributed combining schemes in the UL (in fact, it is derived using the UL-DL
duality principle).



Appendix A

Team Decision Theory

This appendix recalls some basic definitions and properties from team decision
theory, which is at the core of Chapter 5. Team decision theory essentially extends
classical decision theory, dealing with decision making under uncertainty on the
system state, to a multi-agent setup where coordinated decisions must be taken
on the basis of distributed state information.

The following definitions follow the modern subject review given by [35], and
can be traced back to the seminal work of Radner [34]. Among other contributions,
one of the key points of [34] is the rigorous formalization of the distributed state
information constraint, at the core of team decision problems, using sub-σ-algebras
and measure theoretical arguments. This level of rigour enables the derivation of
important structural results, such as the ones exploited and extended in Chapter 5.

A static team of L decision makers (DMs), where each DM is indexed by
l ∈ L := {1, . . . , L}, is here rigorously defined by the following components:

• A probability space (Ω,Σ0,P) over which all random quantities are defined.

• A collection of Borel measurable spaces {(S,Σ), (Sl,Σl), (Tl,Tl), l ∈ L}. The
pair (S,Σ) is called the state space. The pairs (Sl,Σl) and (Tl,Tl) are called
respectively the observation and action spaces for DM l.

• A system state S, where S : (Ω,Σ0) → (S,Σ) is a measurable function
mapping an element ω ∈ Ω into a state realization s := S(ω).

• An information structure (S1, . . . , SL), where Sl : (Ω,Σ0) → (Sl,Σl) is a
measurable function mapping an element ω ∈ Ω into an information signal
sl := Sl(ω) available at DM l.

• A team policy T := (T1, . . . , TL), where Tl : (Sl,Σl)→ (Tl,Tl) is a measurable
function mapping the information signal sl ∈ Sl into an action tl := Tl(sl)
performed by DM l. Let Hl be the set of measurable functions (Sl,Σl) →
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(Tl,Tl) optionally satisfying some feasibility constraint, and denote by H :=∏L
l=1Hl the set of feasible team policies.

• A Borel measurable function c : S ×
∏L

l=1 Tl → R+, mapping a state s ∈ S
and a tuple of actions t = (t1, . . . , tL) ∈

∏L
l=1 Tl into a cost c(s, t).

Note that Hl can be equivalently interpreted as the set of Σl-measurable functions
(Ω,Σ0) → (Tl,Tl) mapping an element ω ∈ Ω into tl = Tl(Sl(ω)), where Σl ⊆ Σ0

is the sub-σ-algebra generated by Sl on Ω, known as the information subfield of
DM l.

We now define the following team decision problem:

minimize
T=(T1,...,TL)∈H

J(T ) := E[c(S, T1, . . . , TL)], (A.1)

which can be interpreted as the DMs collectively optimizing a common objective
J(T ), hence acting as a team. The most desirable solutions obviously satisfy the
following definition:

Definition A.1 (Team optimal solution [35]). A team policy T ? ∈ H is team
optimal for Problem (A.1) if

J(T ?) = inf
T∈T

J(T ) <∞. (A.2)

Unfortunately, for non-trivial information constraints, team optimal solutions
are typically not easy to find. When this is indeed the case, another approach is
to use the following weaker notion of optimality:

Definition A.2 (Person-by-person optimal solution [35]). A team policy T ? :=
(T ?1 , . . . , T

?
L) ∈ H is person-by-person optimal for Problem (A.1) if the following

set of inequalities hold

J(T ?) ≤ J(T ?−l, Tl), ∀Tl ∈ Hl, ∀l ∈ L, (A.3)

where we use the shorthand (T−l, Tl) := (T1, . . . , Tl−1, Tl, Tl+1, . . . , TL).

The conditions in (A.3) are reminiscent of the game theoretical notion of Nash
equilibrium, with the difference that here all the DMs share the same objective.
Person-by-person optimality is a weaker notion of optimality than team optimal-
ity, because the conditions in (A.3) are necessary but in general not sufficient
conditions for a tuple T ? to be team optimal [34, 35].

Suppose now that no additional feasibility constraint is imposed on H. By
definition, if T ? is person by person optimal, then it also given by

T ?l (Sl) ∈ arg min
tl∈Tl

E[c(S, T−l, tl)|Sl] a.s., ∀l ∈ L, (A.4)
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corresponding to a set of optimization problems in the action spaces Tl, which are
generally easier to handle that optimization problems over the spaces of functions
Hl. This last point often motivates the development of iterative methods alternat-
ing between problems of the type in (A.4), until convergence to a person-by-person
optimal solution (i.e., a local optimum).

Intuitively, a special class of problems for which (A.4) is easy to handle is the
one where the cost c is convex and differentiable in each of the tl. Following this
intuition, we can define the following solution concept:

Definition A.3 (Stationary solution [35]). A team policy T ? := (T ?1 , . . . , T
?
L) ∈ H

is a stationary solution to Problem (A.1) if J(T ?) <∞ and if the following set of
equalities hold

∇tlE
[
c(S, T ?−l, tl)

∣∣Sl] ∣∣∣∣
tl=T

?
l (Sl)

= 0 a.s., ∀l ∈ L, (A.5)

where ∇tl denotes the gradient operator (note: tl may be multidimensional).

Under some technical conditions (convexity and differentiability are not enough),
a stationary solution is also person-by-person optimal. Furthermore, under some
stronger technical conditions, these two notions also lead to team optimality. Two
relevant classes of problems for which the stationarity conditions (A.5) produce
team optimal solutions are the class of quadratic teams [34], and the class of ex-
ponentiated teams [67].

This thesis mostly exploits selected elements from the theory of quadratic
teams, which will be recalled in the main body. We refer to [35] for more de-
tails on the content of this appendix.



Appendix B

Collection of Proofs

B.1 Proofs for Chapter 3

B.1.1 Proof of Theorem 3.2

Achievability builds on Lemma 3.1, where we rewrite the mutual information terms
similarly to Remark 3.2 and Remark 3.3. By focusing on the bound on the indi-
vidual rate R1, we have

I(U1; Ỹ |U2, U0) = I(U1;Y |U2, U0, SR) (B.1)

= I(X1, U1;Y |X2, U2, U0, SR) (B.2)

= H(Y |X2, U2, U0, SR)−H(Y |X1, X2, U1, U2, U0, SR) (B.3)

= I(X1;Y |X2, U0, SR), (B.4)

where (B.1) follows from I(SR;U1|U2, U0) = 0 and the chain rule for the mu-
tual information, (B.2) from Xl being a function of (Ul, SR), and (B.4) from the
Markov chains U2 → (X2, U0, SR)→ Y and (U1, U2)→ (X1, X2, U0, SR)→ Y . The
other rate bounds are obtained similarly. Then, by the functional representation
lemma [7, Appendix B] and since U1 and U2 do not appear in the mutual infor-
mation terms rewritten as above, designing the functions fl(ul, sl) and the pmf
p(u0)p(u1|u0)p(u2|u0) is equivalent to designing p(u)p(x1|s1, u)p(x2|s2, u), where
U0 is replaced by U .

For the converse, we define Ui = (W0, S
i−1
1 , Si−12 ) and construct an outer bound

by assuming that past CSIT realizations (Si−11 , Si−12 ) are available at both encoders.
Hence, we assume that X1,i and X2,i are functions of (W1, Ui, S1,i) and (W2, Ui, S2,i)
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respectively. We then bound

nR1 ≤ I(W1;Y
n, SnR|W0,W2) + nεn (B.5)

= I(W1;Y
n|W0,W2, S

n
R) + nεn (B.6)

=
n∑
i=1

I(W1;Yi|Y i−1,W0,W2, S
n
R) + nεn (B.7)

=
n∑
i=1

H(Yi|W2, X2,i, Ui, Y
i−1, SnR)

−H(Yi|W1,W2, X1,i, X2,i, Ui, Y
i−1, SnR) + nεn

(B.8)

=
n∑
i=1

H(Yi|X2,i, Ui, Y
i−1, SnR)−H(Yi|X1,i, X2,i, Ui, SR,i) + nεn (B.9)

≤
n∑
i=1

H(Yi|X2,i, SR,i)−H(Yi, SR,i|X1,i, X2,i, Uu, SR,i) + nεn (B.10)

=
n∑
i=1

I(X1,i;Yi|X2,i, Ui, SR,i) + nεn, (B.11)

where (B.5) follows from Fano’s inequality (limn→∞ εn = 0), (B.6) from the inde-
pendence of W1 and SnR, (B.8) from (Si,1, S2,i) being a function of SnR, and (B.9)
from the Markov chain (W1,W2, Y

i−1, {SR,j}j 6=i)→ (X1,i, X2,i, Ui, SR,i)→ Yi. Sim-
ilarly, we have

nR2 ≤
n∑
i=1

I(X2,i;Yi|X1,i, Ui, SR,i) + nεn, (B.12)

n(R1 +R2) ≤
n∑
i=1

I(X1,i, X2,i;Yi|Ui, SR,i) + nεn, (B.13)

n(R0 +R1 +R2) ≤
n∑
i=1

I(X1,i, X2,i;Yi|SR,i) + nεn. (B.14)

The code must also satisfy the input cost constraints

P1 ≥ E

[
1

n

n∑
i=1

η1(X1,i)

]
, P2 ≥ E

[
1

n

n∑
i=1

η2(X2,i)

]
. (B.15)

We combine all the bounds by means of a time-sharing variable Q uniformly dis-
tributed in {1, . . . , n} and independent of everything else, and by letting U :=
(UQ, Q), X1 := X1,Q, X2 := X2,Q Y := YQ, S := SQ, S1 := S1,Q, S2 := S2,Q,
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SR = SR,Q. Note that the joint pmf on (Y,X1, X2, S, S1, S2, SR, U) factors as
required. With these identifications, we readily obtain

R1 ≤ I(X1;Y |X2, U0, SR) + εn, (B.16)

R2 ≤ I(X2;Y |X1, U0, SR) + εn, (B.17)

R1 +R2 ≤ I(X1, X2;Y |U0, SR) + εn (B.18)

R0 +R1 +R2 ≤ I(X1, X2;Y |SR, Q) + εn ≤ I(X1, X2;Y |SR) + εn, (B.19)

and P1 ≥ E[η1(X1)], P2 ≥ E[η2(X2)].

B.1.2 Proof of Lemma 3.2

Let us define U0,i := (W0, S
i−1
R ), and Ul,i := (Wl, S

i−1
l , U0,i) for l = 1, 2. Note that

X1,i and X2,i are functions of (U1,i, S1,i) and (U2,i, S2,i) respectively, and, due to the
Markov chain S1,i → SR,i → S2,i, we also have U1,i → U0,i → U2,i as required. By
Fano’s inequality (limn→∞ εn = 0), and by following similar steps as in Appendix
B.1.1, we obtain

n(R1 +R2) ≤ I(W1,W2;Y
n, SnR|W0) + nεn (B.20)

= I(W1,W2;Y
n|W0, S

n
R) + nεn (B.21)

=
n∑
i=1

I(W1,W2;Yi|Y i−1,W0, S
n
R) + nεn (B.22)

≤
n∑
i=1

I(U1,i, U2,i;Yi|Y i−1,W0, S
n
R) + nεn (B.23)

=
n∑
i=1

I(U1,i, U2,i;Yi|Y i−1, U0,i, S
n
R) + nεn (B.24)

≤
n∑
i=1

I(U1,i, U2,i;Yi|U0,i, SR,i) + nεn, (B.25)

where the last inequality comes from the memoryless property of the channel.
Following similar lines one can prove

n(R0 +R1 +R2) ≤
n∑
i=1

I(U1,i, U2,i;Yi|SR,i) + nεn, (B.26)

which can be combined with the bound on R1 +R2 and the power constraints by
means of a final time-sharing step.



APPENDIX B. COLLECTION OF PROOFS 78

B.1.3 Proof of Theorem 3.3

Achievability follows from Lemma 3.4 with U0 = U2, and by eliminating the redun-
dant rate bounds exploiting the property I(U0;Y2) ≤ I(U0;Y1) implied by the de-
gradedness assumption. For the converse, we define U1,i = (W1, S

i−1
1 , Si−12 ), U2,i =

(W2, Y
i−1
1 ), and construct an upper-bound by assuming that output feedback

Y i−1
1 as well as past CSIT realizations (Si−11 , Si−12 ) are available at both encoders.

Hence, we assume that X1,i and X2,i are functions of (W1,W2, S
i
1, Y

i−1
1 , Si−12 ) =

(U1,i, U2,i, S1,i) and (W1,W2, S
i
2, Y

i−1
1 , Si−11 ) = (U1,i, U2,i, S2,i) respectively. Note

that U1,i and U2,i are independent from (S1,i, S2,i).
By Fano’s inequality (limn→∞ εn = 0), we have

nR1 ≤ I(W1;Y
n
1 |W2) + nεn (B.27)

=
n∑
i=1

I(W1;Y1,i|Y i−1
1 ,W2) + nεn (B.28)

≤
n∑
i=1

I(W1, S
i−1
1 , Si−12 ;Y1,i|Y i−1

1 ,W2) + nεn (B.29)

=
n∑
i=1

I(U1,i;Y1,i|U2,i) + nεn. (B.30)

For the second rate bound, we have

nR2 ≤ I(W2;Y
n
2 ) + nεn (B.31)

=
n∑
i=1

I(W2;Y2,i|Y i−1
2 ) + nεn (B.32)

≤
n∑
i=1

I(W2, Y
i−1
2 ;Y2,i) + nεn (B.33)

≤
n∑
i=1

I(W2, Y
i−1
2 , Y i−1

1 ;Y2,i) + nεn (B.34)

≤
n∑
i=1

I(U2,i, Y
i−1
2 ;Y2,i) + nεn. (B.35)

≤
n∑
i=1

I(U2,i;Y2,i) + nεn, (B.36)

where the last inequality comes from the Markov chain Y i−1
2 → (W2, Y

i−1
1 )→ Y2,i,

which is a direct consequence of the degradedness assumption. A standard final
time sharing step concludes the proof.
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B.2 Proofs for Chapter 4

B.2.1 Proof of Lemma 4.2

The proof is split in the following three steps:

1. We fix a specific conditional input covariance matrix Σ?(S1, S2), and we show
that it is achievable via distributed linear precoding if and only if d > 2.

2. We construct a specific p(G, s1, s2) such that Σ?(S1, S2) is the unique optimal
solution to Problem (4.3).

3. We combine the above steps to show that there exists a channel for which
d ≤ 2 leads to strictly suboptimal rates.

Step 1: Consider binary CSIT alphabets, i.e., S1 = S2 = {0, 1}, and let Σ?(S1, S2)
be given by

Σ?(0, 0) = I, Σ?(1, 0) = I,

Σ?(0, 1) =
[

1 0.6
0.6 1

]
, Σ?(1, 1) =

[
1 0.8
0.8 1

]
.

(B.37)

Define the set F(D′) of conditional input covariance matrices Σ(S1, S2) which are
achievable via distributed linear precoders of maximal dimension D′, i.e.,

F(D′) :=


Σ(S1, S2) ∈ S2

+ s.t.

Σ(S1, S2) =

[
fH1 (S1)

fH2 (S2)

] [
f1(S1) f2(S2)

]
,

for some fl : Sl → Cd, d ≤ D′.

(B.38)

Clearly, F(D′) ⊆ F(D′′), for D′ ≤ D′′. The following lemma holds:

Lemma B.1. Σ?(S1, S2) ∈ F(3), and Σ?(S1, S2) /∈ F(2).

Proof. For Σ?(S1, S2) to be achievable, we need to find precoders fl(Sl) s.t.
fH1 (0)f2(0) = 0, fH1 (0)f2(1) = 0.6,

fH1 (1)f2(0) = 0, fH1 (1)f2(1) = 0.8,

‖f1(0)‖ = ‖f1(1)‖ = ‖f2(0)‖ = ‖f2(1)‖ = 1.

(B.39)

For fl(Sl) of dimension d = 2, the above system has no solution. In fact, we need
to simultaneously satisfy 

f1(0) ⊥ f2(0),

f1(1) ⊥ f2(0),

‖f1(0)‖ = ‖f1(1)‖ = 1,

(B.40)
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which, for d = 2, implies f1(0) = ±f1(1), and hence leads to the following con-
tradiction 0.6 = fH1 (0)f2(1) = ±fH1 (1)f2(1) = ±0.8. Instead, one can check that
Σ?(S1, S2) is readily obtained by letting d = 3 and

f1(0) =
[
1 0 0

]
, f1(1) =

[
0 1 0

]
,

f2(0) =
[
0 0 1

]
, f2(1) =

[
0.6 0.8 0

]
.

(B.41)

Step 2: Consider the following rewriting of Problem (4.3), by letting again S1 =
S2 = {0, 1} (hence D = 4), and unitary power constraint P1 = P2 = 1:

C = max
Σ(S1,S2)∈P∩F(4)

E
[
log det

(
I +GHΣ(S1, S2)G

)]
, (B.42)

where F(4) is given by (B.38), and where

P :=
{

Σ(S1, S2) ∈ S2
+ s.t. E

[
[Σ(S1, S2)]l,l

]
≤ 1, l = 1, 2

}
(B.43)

is the per-TX power constraint. Note that Σ?(S1, S2) belongs to the feasible set,
i.e. Σ?(S1, S2) ∈ P ∩ F(4).

Lemma B.2. There exist some p(S, s1, s2) such that Σ?(S1, S2) given by (B.37)
is the unique optimal solution for problem (B.42).

Proof. The main idea is to build such CSI distribution by “reversing” a spatio-
temporal water-filling algorithm which gives as unique optimal solution the con-
ditional input covariance Σ?(S1, S2). We now provide the details.

Define a uniformly distributed random state G taking values in the finite al-
phabet S = {G1,G2,G3,G4}, and the CSIT be given by the functions

s1 = q1(G) =

{
0 for G ∈ {G1,G2}
1 otherwise

(B.44)

s2 = q2(G) =

{
0 for G ∈ {G1,G3}
1 otherwise

(B.45)

The capacity of such a channel can be upper bounded by

C = max
Σ(S1,S2)∈P∩F(4)

E
[
log det

(
I +GHΣ(S1, S2)G

)]
, (B.46)

≤ max
Σ(S1,S2)∈P

E
[
log det

(
I +GHΣ(S1, S2)G

)]
, (B.47)

≤ max
Σ(S1,S2)∈P ′

E
[
log det

(
I +GHΣ(S1, S2)G

)]
, (B.48)
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where
P ′ := {Σ(S1, S2) ∈ S2

+ | tr{E[Σ(S1, S2)]} ≤ 2}, (B.49)

is the set obtained by relaxing the per-TX power constraint P to a total power
constraint (P ⊆ P ′). Inequalities (B.47) and (B.48) are obtained respectively by
relaxing the achievability via distributed linear precoding and the power constraint.

Problem (B.48) turns out to be an instance of a classical (centralized) MIMO
capacity problem, where the optimal solution is given by the well-known spatio-
temporal water-filling algorithm. More precisely, let us rewrite (B.48) as

max
Σ(S1,S2)∈P ′

4∑
i=1

p(Gi) log det
(
I + GH

i Σ(q1(Gi), q2(Gi))Gi

)
= max
{Σi}∈P̃ ′

1

4

4∑
i=1

log det
(
I + GH

i ΣiGi

)
,

(B.50)

where we defined Σi := Σ(q1(Gi), q2(Gi)), and where

P̃ ′ =
{

Σi ∈ S2
+ |

1

4

4∑
i=1

tr{Σi} ≤ 2
}
. (B.51)

A well-known application of the Hadamard’s inequality gives the following upper
bound in terms of the channel eigen-decompositions GiG

H
i = ViΛiV

H
i , Λi =

diag(λi,1, λi,2)

max
{Σi}∈P̃ ′

1

4

4∑
i=1

log det
(
I + GH

i ΣiGi

)
≤ max

ξi,l≥0
1
4

∑
i,l ξi,l≤2

1

4

4∑
i=1

2∑
l=1

log(1 + λi,lξi,l), (B.52)

where the optimal ξi,l are given by the water-filling conditions

ξi,l = max
{
ν − 1

λi,l
, 0
}
, i = 1, . . . , 4, l = 1, 2, (B.53)

∑
i,l

max
{
ν − 1

λi,l
, 0
}

= 8, (B.54)

and where equality is achieved for

Σi = ViΞiV
H
i , Ξi = diag(ξi,1, ξi,2), i = 1, . . . , 4. (B.55)

Consider the conditional covariance Σ?(S1, S2) given by (B.37). Note that
Σ?(S1, S2) ∈ P ′, i.e., it satisfies the total power constraint. We wish to construct
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S = {Gi} such that Σ?(S1, S2) is the unique optimal solution for (B.48). This can
be done by “reversing” the MIMO water-filling algorithm described above. More
precisely, let us consider Σ?

i := Σ?(q1(Gi), q2(Gi)) and their eigen-decompositions

Σ?
i = V?

iΞ
?
iV

?H
i , Ξ?

i = diag(ξ?i,1, ξ
?
i,2). (B.56)

We construct now S by letting

Gi = (V?
iΛ

?
iV

?H
i )

1
2 , i = 1, . . . , 4 (B.57)

where the eigenvalues Λ?
i = diag(λ?i,1, λ

?
i,2) are given by

λ?i,l =
1

ν? − ξ?i,l
, i = 1, . . . , 4, l = 1, 2, (B.58)

and any choice of ∞ > ν? > maxi,l ξ
?
i,l = 1.8.

By construction, Σ?(S1, S2) is an optimal solution for (B.48). Uniqueness of
the solution can be proven by contradiction as in [68, Section III.A], or directly by
the strict concavity of

∑4
i=1 log det

(
I + GH

i ΣiGi

)
in {Σi � 0}, which is a direct

consequence of the strict concavity of log det(A) in A � 0 and of the positive
definiteness of Gi by construction. Finally, since Σ?(S1, S2) ∈ P ∩ F(4), (B.48)
and (B.47) are satisfied with equality.

Step 3: The proof is now concluded by combining Lemma B.1 and Lemma B.2,
yielding ∃ p(G, s1, s2) such that

arg max
Σ(S1,S2)∈P∩F(4)

E
[
log det

(
I +GHΣ(S1, S2)G

)] (a)
= {Σ?(S1, S2)}

(b)

/∈ F(2),

(B.59)
where (a) follows from Lemma B.2, and (b) from Lemma B.1, which implies that
∃ p(G, s1, s2) such that

max
Σ(S1,S2)∈P∩F(4)

E
[
log det

(
I +GHΣ(S1, S2)G

)]
> max

Σ(S1,S2)∈P∩F(2)
E
[
log det

(
I +GHΣ(S1, S2)G

)]
.

(B.60)

B.2.2 Proof of Theorem 4.2

We construct an outer bound CMAC
o (P1, P2) by following similar steps as in [69], but

starting from the single-letter formulation of CMAC(P1, P2) given by Theorem 3.2
extended to continuous alphabets similarly to [7, 41, 32]. We consider the following
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applications of the maximum differential entropy lemma [7, p. 21], adapted to the
complex field. From the rightmost bound in [7, Eq. 2.6], we have

h(y|G = G) ≤ log
(
(πe)2det

(
E
[
yyH|G = G

]))
(B.61)

= log
(
(πe)2det

(
GHΣ (q1(G), q2(G)) G + I

))
, (B.62)

where Σ(S1, S2) = E
[
xxH|S1, S2

]
, x :=

[
X1
X2

]
. Then, from the bound in [7, Eq.

2.7], we have

h(y|U,G = G) ≤ log
(

(πe)2det
(
E
[
(y − E[y|U,G = G])

× (y − E[y|U,G = G])H|G = G
])) (B.63)

= log(πe)2det
(
GHΓ (q1(G), q2(G)) G + I

)
, (B.64)

where

Γ(S1, S2) = Σ(S1, S2)− E
[
E[x|U, S1, S2]E[xH|U, S1, S2]|S1, S2

]
. (B.65)

By the structure of the input distribution, we now observe that Γ(S1, S2) =
diag(γ1(S1), γ2(S2)) and that, ∀(s1, s2) ∈ S1 × S2,

Σ(s1, s2) =

[
γ1(s1) 0

0 γ2(s2)

]
+

[
E[|µ1(U, s1)|2] E[µ1(U, s1)µ

?
2(U, s2)]

E[µ2(U, s2)µ
?
1(U, s1)] E[|µ2(U, s2)|2]

]
,

(B.66)

where we define the functions

µl(U, Sl) := E[Xl|U, Sl]
γl(Sl) := E

[
|Xl|2|Sl

]
− E

[
|µl(U, Sl)|2|Sl

]
≥ 0.

By following similar steps for h(y|X1, U,G = G) and h(y|X2, U,G = G), and by
applying the resulting bounds to the mutual information terms in Theorem 3.2,
we obtain

R1 ≤ E
[
log
(
1 + γ1(S1)‖g1‖2

)]
, (B.67)

R2 ≤ E
[
log
(
1 + γ2(S2)‖g2‖2

)]
, (B.68)

R1 +R2 ≤ E
[
log det

(
I +GHdiag(γ1(S1), γ2(S2))G

)]
, (B.69)

R0 +R1 +R2 ≤ E
[
log det

(
I +GHΣ(S1, S2)G

)]
. (B.70)

The outer bound CMAC
o (P1, P2) is then established by taking the convex hull of the

union of all rate triples (R0, R1, R2) satisfying (B.67), (B.68),(B.69), and (B.70)
for some p(x1|s1, u)p(x2|s2, u)p(u) such that E[|Xl|2] ≤ Pl.
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Similarly to the proof of Theorem 4.1, it can be now shown that every Σ(S1, S2)
as in (B.66) induced by any p(x1|s1, u)p(x2|s2, u)p(u) can also be obtained by
the scheme in (4.33), i.e., via superposition of linearly precoded Gaussian codes.
The key point is showing that the second term in the right-hand side of (B.66)
can be obtained via distributed linear precoders of dimension D. This follows
by the same technique used in the proof of Theorem 4.1, by simply replacing
the functions fl(u, sl) with µl(u, sl). Finally, since the inputs are conditionally
Gaussian, standard arguments [7] show that (4.33) attains CMAC

o (P1, P2), without
time sharing (i.e., we can omit the convex hull).

B.3 Proofs for Chapter 5

B.3.1 Proof of Theorem 5.1

Consider a dual UL network with K single-antenna TXs and L cooperating RXs
equipped with N antennas each, governed by the MIMO fading channel law y =∑K

k=1 gkXk+n, where y ∈ CLN is the received signal at all RXs,
[
g1, . . . ,gK

]
= HH

is the dual channel matrix, Xk ∈ C is the k-th TX signal, and n ∼ CN (0, I). We
let Xk =

√
PwkUk, where Uk ∼ CN (0, 1) is the independently encoded message of

TX k transmitted with power Pwk. Then, we consider the processed channel Ûk =
1√
P
tHky, where tk =

[
tT1,k . . . tTL,k

]T
is a distributed linear combiner satisfying

the information constraint tk ∈ T . Let RUL
k := I(Uk; Ûk) be achievable ergodic

rates on this channel. By standard information inequalities [7], we obtain

I(Uk; Ûk) = h(Uk)− h(Uk|Ûk)
≥ log(πe)− h(Uk − αÛk)
≥ log(πe)− log(πeE[|Uk − αÛk|2]).

(B.71)

Optimizing α according to channel statistics, i.e., choosing α = α? with α? :=
E[UkÛ

∗
k ]/E[|Ûk|2] being the solution of minα E[|Uk−αÛk|2], leads to the well-known

UatF bound [2]
RUL
k ≥ RUatF

k := log(1 + SINRk), (B.72)

SINRk :=
wk|E[tHkgk]|2

wkVar[tHkgk] +
∑

j 6=k wjE[|tHkgj|2] + E[‖tk‖2]
P

. (B.73)

Alternatively, we can keep α ∈ C unoptimized and obtain the bound RUL
k ≥

RUatF
k ≥ log(E[|Uk − αÛk|2])−1, where after simple manipulations we recognize

E[|Uk − αÛk|2] = E

[∥∥∥αW
1
2Htk − ek

∥∥∥2]+
α2

P
E[‖tk‖2] = MSEk(αtk). (B.74)
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The above steps also shows that solving minα∈C,tk∈T MSEk(αtk) is equivalent to
solving

maximize
tk∈T

RUatF
k . (B.75)

Furthermore, we observe that minα∈C,tk∈T MSEk(αtk) = mintk∈T MSEk(tk). This
is because α is a deterministic scalar, hence αtk ∈ T . Therefore, Problem (B.75)
and Problem (5.6) have the same optimal solution t?k, and the optima are related
by RUatF

k = log(MSEk(t
?
k))
−1.

LetR?
k(w) be the optimum of problem (B.75) for some dual UL power allocation

policy w := (w1, . . . , wK) ∈ RK+ . Let then RUatF be the union of all rate tuples
(R1, . . . , RK) ∈ RK

+ satisfying Rk ≤ R?
k(w) ∀k ∈ K, where the union is taken over

all w satisfying
∑K

k=1 Pwk ≤ Psum. By definition of RUatF, its Pareto boundary
∂RUatF is composed by rate tuples of the type (R1, . . . , RK), Rk = R?

k(w), achieved
by some w satisfying

∑
k wk ≤ K and by the optimal combiners {tk}Kk=1 solving

Problem (5.6) ∀k ∈ K. It turns out that it is possible to fully characterize ∂RUatF

by restricting w ∈ R4, i.e., by using all the available power KP = Psum. This
is because RUatF

k is a continuous monotonic increasing functions of P , and so
is its (finite) supremum over tk ∈ T . Furthermore, it can be shown that all
w ∈ R4 induce Pareto optimal rate tuples. This last statement can be proven by
contradiction as follows.

Let w ∈ R4 and suppose that (R?
1(w), . . . , R?

K(w)) /∈ ∂RUatF, i.e., ∃w′ ∈ R4,
w′ 6= w, s.t. R?

k(w
′) > R?

k(w) ∀k ∈ K. We now build an iterative procedure
which moves from w to w′ and contradicts the previous supposition. Consider the
following sequence of updates w(i) := (w

(i)
1 , . . . , w

(i)
K ) for i = 0, . . . , K − 1, where

w(0) := w and

w
(i)
k :=

w
′
k if k ≤ i∑
j>i w

′
j∑

j>i w
(i−1)
j

w
(i−1)
k if k > i

. (B.76)

The i-th step of the above procedure changes wi into the target w′i and scales
all weights wk with k > i by a common factor s.t. the constraint w(i) ∈ R4 is
not violated. Note that this constraint also implies that w(K−1) = w′ without
the need of a K-th update. In the following, we use properties of R?

k inferred by

the fact that log
(

1 + ax
bx+cy+d

)
is continuous monotonic increasing in x ∈ R+ and

continuous monotonic decreasing in y ∈ R+ for any a ≥ 0, b ≥ 0, c ≥ 0, and d > 0,
and so is its supremum over some family of parameters (a, b, c, d). At step i = 1,

assume w.l.o.g. that w
(1)
1 = w′1 ≥ w1, which also implies w

(1)
k =

∑
j>i w

′
j∑

j>i w
(0)
j

wk ≤ wk

for k > 1. In fact, we can always reindex the RXs such that this assumption holds.

When going from x = 1 to x =
∑
j>i w

′
j∑

j>i w
(0)
j

≤ 1, and then subsequently from y = 1
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to y =
w′1
w1
≥ 1, the function

log

(
1 +

wk|E[tHkgk]|2x
(
∑

j>1wjE[|tHkgj|2]− wk|E[tHkgk]|2)x+ w1E[|tHkg1|2]y + E[‖tk‖2]
P

)
(B.77)

for k > 1 is continuous monotonically decreasing, and so is its supremum over
tk ∈ T . Hence, we have R?

k(w
(1)) ≤ R?

k(w
(0)) ∀k > 1. At step i = 2, we

assume w.l.o.g. that w′2 ≥ w
(1)
2 (otherwise we can just properly reindex all RXs

k > 2), and similarly obtain R?
k(w

(2)) ≤ R?
k(w

(1)) ∀k > 2. By continuing until
step K − 1, we finally obtain R?

K(w(K−1)) ≤ R?
K(w(K−2)), which can be combined

with the previous steps leading to the desired contradiction R?
K(w′) ≤ R?

K(w) up
to a possible reindexing, i.e., at least one rate cannot be strictly increased when
moving from w to w′.

The proof is concluded by invoking the duality principle between the UatF
bound and the hardening bound [2, Theorem 4.8], which shows thatRUatF = Rhard

and that for every rate tuple (RUatF
1 , . . . , RUatF

K ) achieved by some {tk}Kk=1 and w,
there is a rate tuple (Rhard

1 , . . . , Rhard
K ) = (RUatF

1 , . . . , RUatF
K ) achievable by using

the same combiners as precoders {tk}Kk=1, and by choosing pk =
p̃kP

E[‖tk‖2]
∀k ∈ K

with p̃ := [p̃1, . . . , p̃K ]T being the solution of

(D−1 −B)p̃ = (D−1 −BT)w, (B.78)

where D := diag(d1, . . . , dK), dk := SINRk
E[‖tk‖2]
|E[tHkgk]|2

, and where the (k′, k)-th

element of B ∈ CK×K is given by

[B]k′,k =


E[|tHkgk′|2]
E[‖tk‖2]

if k′ 6= k

Var[tHkgk]

E[‖tk‖2]
otherwise.

(B.79)

The above linear system is guaranteed to have a unique solution satisfying∑K
k=1 p̃k =

∑K
k=1wk, which implies

∑L
l=1 E[‖xl‖2] =

∑K
k=1wkP = Psum.

B.3.2 Proof of Theorem 5.3

To avoid cumbersome notation, we omit the subscript k everywhere. The proof is
split into three separate lemmas. We start with a minor extension of [34, Theo-
rem 3] obtained by introducing the constraint E[‖tl(Sl)‖2] < ∞ and specializing
to the cost function considered in here.
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Lemma B.3 (Existence and uniqueness). Problem (5.6) admits a unique team
optimal solution.

Proof. LetH be the space of Σ-measurable functions a : Ω→ CLN s.t. E
[
aHOa

]
<

∞. We define the inner product 〈a,b〉 := E[bHOa], ∀(a,b) ∈ H2, and its induced
norm ‖a‖H :=

√
〈a,a〉, ∀a ∈ H. Then, the tuple (H, 〈·, ·〉) is a Hilbert space1

[34]. Let us further define t0 := O−1g, which is the unique minimizer of c(H, t)
for any realization H. Firstly, we observe that t0 ∈ H, since

‖t0‖2H = E
[
eHH

(
HHH+ P−1I

)−1
HHe

]
(B.80)

≤ E
[
tr
(
H
(
HHH+ P−1I

)−1
HH
)]

(B.81)

= E
[
tr
(
HHH

(
HHH+ P−1I

)−1)]
(B.82)

≤ E
[
tr
((
HHH+ P−1I

) (
HHH+ P−1I

)−1)]
= NL. (B.83)

Secondly, we observe that T is a closed linear subspace of H [35, Theorem 2.6.6].
Finally, simple algebraic manipulations show that the objective of Problem (5.6)
can be equivalently rewritten as MSE(t) = ‖t − t0‖2H − ‖t0‖2H + 1. Therefore,
by following [34, 35], we consider the infinite dimensional orthogonal projection
problem:

minimize
t∈T

‖t− t0‖2H. (B.84)

The solution to Problem (5.6) corresponds to the projection of t0 ∈ H onto the
closed linear subspace T ⊆ H. By the Hilbert projection theorem, this projection
is unique and always exists [70].

The following result extends Lemma B.3 by following similar lines as [35, The-
orem 2.6.6].

Lemma B.4 (Sufficiency of stationarity). Suppose that E[‖O‖2F] < ∞. Then, if
t? ∈ T is stationary, it is also the unique team optimal solution to Problem (5.6).

Proof. Let us consider again the equivalent problem (B.84). Since T is a closed
linear subspace, the Hilbert projection theorem also states that a solution t? ∈ T
is the unique optimal solution if and only if the following orthogonality conditions

1In fact, the positive matrix square root O
1
2 induces an isometry between (H, 〈·, ·〉) and the

perhaps more familiar Hilbert space of measurable functions such that E
[
‖a‖2

]
<∞, equipped

with the standard inner product 〈a,b〉 := E[bHa].
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[70] hold: (∀t ∈ T )

〈t? − t0, t〉 = 0,

⇐⇒ E
[
tHO

(
t? −O−1g

)]
= 0,

⇐⇒ E

[
L∑
l=1

tHl

(
E[Ol,l|Sl]t?l +

∑
j 6=l

E[Ol,jt
?
j |Sl]− E[gl|Sl]

)]
= 0,

(B.85)

where the last equality follows by the law of total expectation, provided that the
inner expectations are finite. Finiteness of E[gl|Sl] and E[Ol,l|Sl] follows by the as-
sumption E[‖H‖2F] <∞. Finiteness of E[Ol,jt

?
j |Sl] follows by applying the Cauchy-

Schwarz inequality elementwise, and by using E[‖tj‖2] < ∞ and E[‖O‖2F] < ∞.
The proof is concluded by observing that if the stationary conditions in (5.11) are
satisfied for some t?, then the orthogonality conditions are satisfied and t? is the
unique optimal solution.

To conclude the proof, it remains to show the converse statement of Lemma
B.4. In the following, we depart from [35, Theorem 2.6.6] and use a different
argument tailored to the cost function considered in here.

Lemma B.5 (Necessity of stationarity). Suppose that E[‖O‖2F] < ∞. Then, if
t? ∈ T is the unique team optimal solution to Problem (5.6), it is also stationary.

Proof. We start by using the notion of person-by-person optimality given by Def-
inition A.2 in Appendix A, which states that a necessary condition for a tuple t?

to be globally optimal is that it must satisfy

MSE(t?) = min
tl∈Tl

MSE(t?−l, tl), ∀l ∈ L. (B.86)

We relax the the above conditions by letting Tl,unc be the unconstrained version of
Tl, i.e., where we remove the constraint E[‖tl‖2] <∞. We then have

∞ > MSE(t?) = min
tl∈Tl

MSE(t?−l, tl)

≥ min
tl∈Tl,unc

MSE(t?−l, tl)

= min
tl∈Tl,unc

E
[
E
[
c
(
H, t?−l, tl

)∣∣Sl]]
≥ E

[
min

tl∈Tl,unc
E
[
c
(
H, t?−l, tl

)∣∣Sl]]
= E

[
E
[
c
(
H, t?−l, t

??
l

)∣∣Sl]]
= MSE(t?−l, t

??
l )

(B.87)
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where t??l is given by the first-order optimality condition ∇tlξl(Sl, tl) = 0 applied
to the convex function ξl(Sl, tl) := E

[
c(H, t?−l, tl)

∣∣Sl]. Note that

t??l (Sl) := (E[Ol,l|Sl])−1
(
E[gl|Sl]−

∑
j 6=l

E[Ol,jt
?
j |Sl]

)
∈ Tl,unc, (B.88)

because it is given by sums and products of measurable functions (we recall that
Ol,l � 0), and that all the expectations are finite as discussed in the proof of
Lemma B.4. Finally, we observe that t??l ∈ Tl, i.e., E[‖t??l ‖2] <∞, because from the
original problem formulation (5.6) we notice that MSE(t?−l, t

??
l ) is given by a sum

of non-negative terms, one of which is precisely 1
P
E[‖t??l ‖2], and MSE(t?−l, t

??
l ) ≤

MSE(t?) <∞. Therefore, the inequalities in (B.87) are in fact equalities, and the
optimal solution must satisfy MSE(t?) = MSE(t?−l, t

??
l ), ∀l ∈ L. This proves that

an optimal solution must satisfy the stationarity conditions given by (5.11).

B.3.3 Proof of Lemma 5.1

We use the same notation and definitions as in the proof of Theorem 5.3 given in
Appendix B.3.2. The optimality gap can be expressed as follows:

MSE(t)−MSE(t?) (B.89)

= ‖t− t0‖2H − ‖t? − t0‖2H (B.90)

= ‖t− t?‖2H (B.91)

= 〈t− t?, t− t?〉+ 〈t? − t0, t− t?〉 (B.92)

= 〈t− t0, t− t?〉 (B.93)

= E

[
L∑
l=1

(tl − t?l )H
(
E[Ol,l|Sl]tl +

∑
j 6=l

E[Ol,jtj|Sl]− E[gl|Sl]

)]
, (B.94)

where (B.91) follows from Pythagoras’ theorem, (B.92) from the orthogonality
condition 〈t?− t0,a〉 = 0, ∀a ∈ T and t− t? ∈ T , and (B.94) by applying the law
of total expectation as in (B.85). Then, the proof follows from

‖t− t?‖2H = E[(t− t?)Hz]

= 〈O−1z, t− t?〉
≤ ‖O−1z‖H‖t− t?‖H,

(B.95)

where the last step is the Cauchy–Schwarz inequality, and where we use O−1 � P I
which ensures ‖O−1z‖2H = E[zHO−1z] ≤ PE[zHz] <∞.
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B.3.4 Proof of Theorem 5.4 (additional details)

We rearrange the system at hand as (D+UΠT)C = U, where C :=
[
C1 . . . CL

]T
,

Π :=
[
Π1 . . . ΠL

]T
, U :=

[
IK . . . IK

]T
, D := diag(I − Π1, . . . , I − ΠL).

The proof follows if D + UΠT is invertible, giving the optimal coefficients C =
(D+UΠT)−1U. By Lemma B.6 given in Appendix B.3.7, D+UΠT is invertible if
both D and D−1 + ΠTU = D−1 +

∑
l Πl are invertible. Standard arguments show

that 0 � Πl ≺ I. Therefore, D is Hermitian positive definite (hence invertible),
and so is D−1 +

∑
l Πl, concluding the proof.

B.3.5 Proof of Theorem 5.5 (additional details)

Assume 0 � Πl ≺ I for a fixed l ∈ L. Then, let Ôl := ĤH
l Ĥl + Σl + P−1I and

observe that this implies Ôl−ĤH
l ΠlĤl = ĤH

l (I−Πl)Ĥl+Σl+P
−1I � 0. Therefore,

we obtain

Ĥl

(
Ôl − ĤH

l ΠlĤl

)−1
ĤH
l = Ĥl

[
Ôl

(
I−TlΠlĤl

)]−1
ĤH
l

= Ĥl

(
I−TlΠlĤl

)−1
Tl

= Pl (I−ΠlPl)
−1

(B.96)

where the last two equalities follow from Lemma B.7 and Lemma B.8 given in
Appendix B.3.7, respectively. These lemmas ensure that all the above inverses
exist, and in particular (I −ΠlPl)

−1. Furthermore, the above chain of equalities
also show that

Πl−1 = E[PlVl] + ΠlE[V̄l]

= Πl + (I−Πl)E[Pl (I−ΠlPl)
−1](I−Πl)

= Πl + (I−Πl)
1
2E[P̃l](I−Πl)

1
2 ,

(B.97)

where P̃l := H̃l

(
H̃H
l H̃l + Σl + P−1I

)−1
H̃H
l , and H̃l := (I−Πl)

1
2 Ĥl. By standard

argument, it can be shown that 0 � P̃l ≺ I holds, and hence 0 � Πl−1 ≺ I.
Overall, the above discussion proves that 0 � Πl ≺ I implies the existence of
(I−ΠlPl)

−1 and that 0 � Πl−1 ≺ I. By finally observing that 0 � PL−1 ≺ I and
hence 0 � ΠL−1 = E[PL−1] ≺ I, the proof is concluded by repeating the previous
argument recursively.

B.3.6 Proof of Lemma 5.3

We recall the following results from random matrix theory, provided without proof:
for vec(Hl) ∼ CN (0, I), we have E[Hl(H

H
l Hl)

−1HH
l ] = N

K
I and E[Hl(H

H
l Hl)

−2HH
l ] =



APPENDIX B. COLLECTION OF PROOFS 91

N
K(K−N)

I. We define the projection matrix Pl := Hl(H
H
l Hl)

−1HH
l onto span(Hl),

the projection matrix P⊥l := I − Pl onto its orthogonal complement, and let
tk = (t1,k, . . . , tL,k) as in (5.38). A simple recursive calculation shows the identity

ek −
∑l

j=1Hjtj,k = P⊥l P
⊥
l−1 . . .P

⊥
1 ek. The first part of the objective in (5.6) is

then given by

E

∥∥∥∥∥ek −
L∑
j=1

Hjtj,k

∥∥∥∥∥
2
 = E

[
‖P⊥LP⊥L−1 . . .P⊥1 ek‖2

]
(B.98)

= eHE
[
P⊥1 , . . . ,P

⊥
L−1P

⊥
LP
⊥
LP
⊥
L−1 . . .P

⊥
1

]
e (B.99)

=

(
1− N

K

)
eH
kE
[
P⊥1 , . . . ,P

⊥
L−1P

⊥
L−1 . . .P

⊥
1

]
ek (B.100)

=

(
1− N

K

)L
, (B.101)

where we used the Hermitian symmetry and idempotency of projection matrices,
and the independence betweenHl and {Hj}j 6=l. We now measure the suboptimality
of tk by using Lemma 5.1, specialized to the current setting similarly to Lemma
5.2. We have:

zl,k(Sl) =
(
HH
l Hl + P−1I

)
tl,k(Sl) +HH

l

(∑
j 6=l

E
[
Hjtj,k

∣∣∣Sl]− ek

)
(B.102)

= P−1tl,k(Sl)−HH
l E
[
P⊥LP

⊥
L−1 . . .P

⊥
1 ek

∣∣∣Sl] (B.103)

= P−1tl,k(Sl)−
(

1− N

K

)L−l+1

HH
l P
⊥
l . . .P

⊥
1 ek (B.104)

= P−1tl,k(Sl), (B.105)

where the last step follows from the definition of projection matrices, which gives
HH
l P
⊥
l u = 0 for any u ∈ CK . Furthermore, we have

E
[
‖tl,k‖2

]
= E

(ek −
l−1∑
j=1

Hjtj,k

)H

Hl(H
H
l Hl)

−2HH
l

(
ek −

l−1∑
j=1

Hjtj,k

)
(B.106)

=
N

K(N −K)

(
1− N

K

)l−1
<∞. (B.107)
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Therefore, Lemma 5.1 applies and, by using the looser bound in (5.16), we readily
obtain

MSEk(tk)−MSEk(t
?
k) ≤

1

P

L∑
l=1

E
[
‖tl,k‖2

]
−→
P→∞

0, (B.108)

and MSEk(t
?
k) ≥ MSEk(tk)− P−1

∑L
l=1 E

[
‖tl,k‖2

]
=
(
1− N

K

)L
.

B.3.7 Linear algebra background

Lemma B.6 (Woodbury matrix identity). Let A ∈ Cn×n, B ∈ Cn×m, C ∈ Cm×n,
and D ∈ Cm×m. If A, C, and D−1 + CA−1B are invertible, then A + BDC is
invertible and

(A + BDC)−1 = A−1 −A−1B
(
D−1 + CA−1B

)−1
CA−1. (B.109)

Lemma B.7 (Inverse of product). Let A and B be two square matrices of the same
dimension. If AB is invertible, then A and B are also invertible, and (AB)−1 =
B−1A−1.

Lemma B.8 (Push-through identity). Let A ∈ Cn×m and B ∈ Cm×n be two
matrices such that I + AB is invertible. Then, I + BA is also invertible, and
B (I + AB)−1 = (I + BA)−1 B.
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