Skip to Main content Skip to Navigation
Theses

Traffic control in large-scale urban networks

Liudmila Tumash 1 
1 DANCE - Dynamics and Control of Networks
Inria Grenoble - Rhône-Alpes, GIPSA-PAD - GIPSA Pôle Automatique et Diagnostic
Abstract : This research is done in the context of European Research Council's Advanced Grant project Scale-FreeBack. The aim of Scale-FreeBack project is to develop a holistic scale-free control approach to complex systems, and to set new foundations for a theory dealing with complex physical networks with arbitrary dimension. One particular case is intelligent transportation systems that are capable to prevent the occurrence of congestions in rush hours. The contributions of the present PhD work are mainly related to traffic boundary control design and modelling on large-scale urban networks. We consider traffic from the macroscopic viewpoint describing it in terms of aggregated variables such as flow and density of vehicles, i.e., traffic is seen as a fluid whose motion is described using the concept of kinematic waves. The corresponding dynamic equation corresponds to a first-order hyperbolic partial differential equation. Within this PhD thesis, we propose control design techniques that completely rely on the intrinsic properties of the model. First of all, we solve one-dimensional (1D) boundary control problems, i.e., one road traffic. Thereby, the traffic state is driven to a space- and time-dependent desired trajectory that admits traffic regimes switching, i.e., both states can be partially congested and partially in the free-flow regime. This introduces non-linearities into the state equation, which we can handle and achieve the target by acting only from road's boundaries. Then, we extend the problem to a urban network of arbitrary size. The large-scale traffic dynamics are described by a two-dimensional (2D) conservation law model. The model parameters are defined everywhere in the continuum plane from its values on physical roads that are further interpolated as a function of distance to these roads. The traffic flow direction is determined by network's geometry (location of roads and intersections) and infrastructure parameters (speed limits, number of lanes, etc). This 2D model assumes that there exists a preferred direction of motion. For this case, we elaborate a unique method that considerably simplifies control design for traffic systems evolving in large-scale networks. In particular, we present a coordinate transformation that translates a 2D continuous traffic model into a continuous set of 1D systems equations. This enables an explicit elaboration of strategies for various control tasks to solve on large-scale networks: we design boundary control for 2D density in a mixed traffic regime, apply variable speed limit control to drive traffic to any space-dependent equilibrium, and calculate steady-states. Finally, we also present a new multi-directional two-dimensional continuous traffic model. This model is formally derived by solely using the demand-supply concept at one intersection (classical Cell Transmission Model). Our new model is called the NSWE-model, since it consists of four partial differential equations that describe the evolution of vehicle density with respect to cardinal directions: North, South, West and East. The traffic flow direction is determined by turning ratios at intersections. For this model, we design a boundary control that drives multi-directional congested traffic to a desired equilibrium vehicle density mitigating the congestion level. The effectiveness of our contributions were tested using simulated and real data. In the first case, the results are verified by using the well-known commercial traffic Aimsun, which produces microsimulations of vehicles' trajectories in a modelled network. In the second case, real data are obtained from sensors measuring traffic flow in the city of Grenoble, and collected using the Grenoble Traffic Lab.
Document type :
Theses
Complete list of metadata

https://tel.archives-ouvertes.fr/tel-03474112
Contributor : ABES STAR :  Contact
Submitted on : Friday, December 10, 2021 - 9:37:31 AM
Last modification on : Saturday, March 26, 2022 - 4:17:06 AM
Long-term archiving on: : Friday, March 11, 2022 - 6:22:12 PM

File

TUMASH_2021_archivage.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-03474112, version 1

Citation

Liudmila Tumash. Traffic control in large-scale urban networks. Automatic. Université Grenoble Alpes [2020-..], 2021. English. ⟨NNT : 2021GRALT057⟩. ⟨tel-03474112⟩

Share

Metrics

Record views

120

Files downloads

9