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Chapter I

General Introduction

I.1 A brief history of gravitation
Before entering the core subject of this thesis, it appeared essential to briefly review the history

of theories that were built to explain the gravitational phenomena. Indeed, if this work is firmly
anchored in the most up-to-date theory, namely General Relativity, it aims to push it forward, and
thereby, to enter a more general motion of building up new ways to understand gravitation. As this
motion began roughly 25 centuries ago, it seemed important to have a look on the path that has
been taken.

Note that, due to obvious biases from our part, but also to the lack of written records for some
civilizations (notably precolumbian ones), we will focus on the “western” (ie. circum-Mediterranean)
area.

I.1.1 The pre-Aristotelian conceptions
The first compiled observations of stars and planets that reached us were conducted by the

Mesopotamian civilizations around the second millennium. The astonishing precision they attained
(they localized celestial bodies with an arc-minute accuracy) allowed them to predict Moon’s and
Sun’s eclipses [104]. Nevertheless, they were only “bookkeepers” of the astronomical events: they
transcribed observations with great care, but without using them to build up a unified picture of the
sky. The first representation of the cosmos by a théôria (ie. a global vision that explains the world
as a whole) was elalorated by the Greeks thinkers of the “Milesian school” (Thales, Anaximander,...)
around the sixth century BC. If Thales or Anaximenes imagined a flat Earth, floating on water or
air inside a spherical sky, Anaximander argued that the Earth cannot be supported by anything else
than itself, and thus has to be spherical. As remarkably described in the work of J.-P. Vernant (see
notably [343, 344]), this revolution in the representation of the world has been the corollary of the
birth of geometry: the Mesopotamian astronomy was an arithmetic one, when the Greek cosmology
was of geometric nature.

Summarizing [344], it is fascinating to note that this fundamental difference can be linked to a not
less profound discrepancy in the political organizations. The Mesopotamian system was purely pyra-
midal, with the King at the top and a complex system of hierarchical relations in the administration.
Conversely, the Greeks were organized in cities, where important decisions were taken by an agora,
ie. an assembly of citizen1 gathered in a circular place, the speaker standing in the center. Moreover
the Greek world experienced a crisis in the seventh century, due to an increasing commercial expan-
sion and to the beginning of a monetary economics. The two main outcomes of this crisis were that

1Note that this relative equity was also taking place when the city was led by a king. It can be seen explicitly in
the second song of the Odyssey, where Telemachus, that reigns upon Ithaca, summons the assembly of warriors to
discuss important matters [234].
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the administration of the cities became a secular matter, and the rise of a political awareness, the
Greek citizens taking conscience of themselves as political beings, linked to other citizens2 by equity
relationships. This directly echoes the two main achievements of the Milesian school: demystifying
the Nature by throwing away divine attributes, and producing a knowledge accessible to everyone,
notably by the use of simple and common pictures. In a nutshell, the sixth century realized the
transition from a mythical vision of the world to a geometrical and political global conception of the
cosmos. This revolution in the representation of space was a necessary condition, and a prolog to
the astonishing intellectual impetus of the fifth century.

Let us nevertheless note that those global representations are cosmologies, and do not mention
the sector of gravitation, ie. they do not answer the question of why apples fall.

I.1.2 Rise and fall of the Aristotelian models
The first elaborated theory of gravitation per se is given by Aristotle’s works. In his conception,

each object is composed of four elements (earth, water, air and fire), and each of those elements has a
natural location, to which it aims (up for the fire, and down for the earth, for instance). The relative
abundance of those elements within the object will determine its natural location. Moreover, the
natural state of any object is to be at rest, within its natural location, and a motion that is not forced
by an eternal external action has to dissipate and thus stops at some point: Aristotle’s conception of
motion ignores inertia. For example the natural location of a rock is down, as it is mostly composed
of earth. When launched upwards, it experiences a “violent” motion (it is propelled by an external
action) and looses its “strength” till it stops and goes down, following its natural motion, propelled
“by itself” [29].

This behavior is only valid in our common world. Indeed Aristotle differentiated the world under
the Moon, that is composed of the four elements, and the world above the Moon, which is the
location of eternal and harmonious celestial bodies, that follow circular motions (the circle being the
“perfect” trajectory, as it is the only one that can be followed with an eternally constant speed).
This supra-lunar world is filled by a fifth element [30], as Aristotle’s Universe cannot be empty [28].
It is interesting to note that Aristotle’s Universe is finite and composed of spheres, the outermost
one being the one where the stars are fixed, and that the center of the Universe is the center of the
(spherical) Earth.

At this point one can notice two main obstacles that stood in the way towards a “modern” theory
of gravitation [302]. The first one is that the questions of physics were strongly subordinated to the
questions of metaphysics. For instance the discussion on the falling rock takes places in the broader
framework of a debate about the substance (oυσια), and thus about the being. The second obstacle
is the fact that motion was considered as the way an object naturally deploys itself, and therefore
depending of the essence of the object. Due to the discrepancy in essence between the sub- and supra-
lunar worlds, the motion of stars and falling apples were thus thought to be different in nature. No
modern vision of physics could emerge from this discrepancy, that forbids to conceptualize an unified,
global gravitational law.

Aristotle astronomical conceptions took their final shape in the famous Ptolemy’s planetary sys-
tem. If this system has been questioned during the medieval times, notably by Andalusian thinkers
as Averroes [318], it survived until the seminal work of N. Copernicus [128] and the well-known
development of modern astronomy.

I.1.3 The Newtonian theory of gravitation
The modern approach of gravitation was initiated by the conceptualization of inertia by G. Galilei

and R. Descartes, which designates the resistance of a body to a change in its velocity (it requires
2This class of citizens was nevertheless restricted to free men of the city, excluding most of its population.
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less energy to stop a fly than a truck, even if they move at the same speed: the truck’s inertia is
greater than the fly’s one). This conceptualization of inertia led I. Newton to formulate his first law,
also called principle of inertia [293], stating that the “natural” state of an isolated body (ie. without
external forces applied on it) is to propagate in a rectilinear trajectory with a constant speed. A
first consequence is that it always exists a frame of reference in which this body appears to be at
rest (such frames are dubbed inertial or Galilean). This principle is a breakthrough as it implies
the relativity of the observer’s point of view: being “at rest” is meaningless and thus Aristotle’s
conception of the natural state became obsolete. A direct corollary is that the laws of gravitation
should be independent of the inertial frame in which they are written, and thus can only depend on
the acceleration of the body, or on relative quantities with respect to other bodies. This is formalized
in Newton’s second law (also named fundamental principle of dynamics), that states that a body
responds to an external force by a change in its acceleration, the proportionality coefficient being
called “inertial mass”. Newton’s third law, or action–reaction principle, states that if an object exerts
a force on a second one, it will suffer in return a force with the same intensity, but reverse direction.

In addition to those three laws of mechanics, and strongly inspired by J. Kepler’s and R. Hooke’s
works, I. Newton exposed the law of universal gravitation in its Principia [293]. As by the name,
this law reconciliates the motion of falling apples with the motion of celestial bodies, by stating that
they both obey the same underlying physics: the gravitational force exerted by one body on another
one is attractive and proportional to the product of their respective gravitational masses divided
by the square of their relative distance (the proportionality constant being now called Newton’s
constant). Note that, as expected, this law agrees with the principle of inertia, as it only depends
upon relative distances, that are independent from the frame of observation. A major breakthrough,
experimentally due to G. Galilei, has been to identify the inertial and gravitational masses, that
are conceptually different: the inertial mass measures the resistance to a change in speed, whereas
the gravitational mass describes how a body responds to gravitational attraction. This equivalence
principle (that has been at the heart of the construction of General Relativity) is currently tested to
astonishing precision: one part in ten trillions using torsion pendulum on Earth [347], and one part
in a quadrillion using the MICROSCOPE instrument in space [336]. Why this principle holds, and
thus those two conceptually different masses are identical, remains a mystery of Nature.

With the three laws of mechanics and the law of universal gravitation, I. Newton has laid in
1687 the foundations of the modern physics, that survived in this form until the dawn of the XXth

century. The fame of this “Newtonian gravitation” culminated with the outstanding prediction of
the existence of the planet Neptune by U. Le Verrier in 1846 [262]. Applying Newtonian celestial
mechanics, he guessed that the small irregularities detected in the trajectory of Uranus were due to
the presence of a disturbing body, of which he computed the mass and orbital parameters, indicating
to J. Galle where he had to look at to observe the new planet. Newton’s physics was so triumphant
during the XIXth century that it ended with A. Michelson stating that “future truths of physical
science are to be looked for in the sixth place of decimals” [283], implying that the era of constructing
new theoretical frameworks was revolved, and that the only way forward in physics would consist in
increasing the accuracy of the measures. Similarly, the XXth century opened with the famous speech
of W. Thomson, stating in substance that the future of physics was bright, excepted for two “dark
clouds” [334], that turned out to give birth to Quantum Mechanics and General Relativity, drastically
changing our comprehension of Nature. One of the observational problems was the unexplained
precession of Mercury’s orbit (see chapter II for a detailed discussion on the precession of celestial
bodies). Summing up the identified Newtonian causes for such a periastron advance (influence of
Venus and Jupiter, non-sphericity of the Sun, etc), astronomers did not recover the observed value.
Quite naturally, U. Le Verrier tried to reiterate the tour de force of the discovery of Neptune, by
predicting the existence of a small companion to Mercury, that he baptized Vulcain. But this
hypothetical planet has never been found, as the explanation for the abnormal periastron advance
was due to a failure of Newtonian physics.
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In addition to those concrete problems, Newtonian gravitation (as seen by a XXIth century
physicist) also suffers from conceptual ambiguities, as the gravitational interaction is instantaneous:
by moving your hand, you affect each body in the whole Universe, at once. Moreover it lacks a
carrier for the information: to state it roughly, how does the apple “knows” where it has to fall ?

I.2 General Relativity as the current theory of gravitation
The spirit of this section is absolutely not to give a comprehensive view of General Relativity,

as it has already been done (eg. in [285, 348]), and far better done than all what could be tempted
in this dissertation. Actually, this section is devoted to highlight some specific features of General
Relativity, that will be used in the core of the thesis. The notations that are used, and different
technical aspects, are exposed in app. A.

I.2.1 A geometrical description of the gravitational phenomena
General Relativity (GR) depicts the gravitational phenomena as the effects of distortions of the

space-time structure, and is thus a theory of geometrical nature. Given a manifold3 M, with a
(at least locally defined) chart of coordinates {xµ}, the metric gµν , is defined by the square of
the distance between two infinitesimally nearby points: ds2 ≡ gµν dxµdxν , which is nothing but
the generalization of Pythagoras theorem to non-flat manifolds. This metric encodes the whole
local geometrical structure, and can be thought as a tensorial field living on the manifold. General
Relativity is then simply a theory describing the interactions of the metric with itself, and with
the matter fields4 that live in the manifold. The self-interactions of the metric are governed by the
so-called Ricci scalar, which express the curvature of the manifold at each point of it, and involves
second derivatives of the metric, thus playing the role of a kinetic term in the action. As the matter
content of the manifold is directly coupled to the metric, it will source such curvature term: the
matter bends the space-time. Conversely, the matter will “feel” the space-time curvature, and freely
falling particles follow geodesics of the manifold, ie. the shorter paths between two points. Let us
also note that the curvature term is highly non-linear in the metric, which leads to remarkable effects
that will be described in the bulk of this thesis (notably in chapters III and IV). Technical details
together with the derivation of the field equations from the action are presented in app. A.2.

A remarkable feature of GR is that it is a “covariant” theory: under a change of coordinates,
its components vary in such a way that physical (ie. observable) quantities do not depend on the
system of coordinates. To state it roughly, the laws of Nature are independent of the observer and
of its measure apparatus, which appears to be a reasonable attribute for a gravitational theory. This
independence is mathematically translated as an invariance under diffeomorphisms, and is extremely
useful in practical computation, as physical quantities will be the same whatever the coordinate
system used to compute them. Thus one can always choose the most suitable coordinate system for
the derivation, without worrying about the final result. We will make great use of this feature in the
following.

Another fundamental consequence of this geometrical description is the existence of gravitational
waves [177, 179]. As usual in field theory, the metric field can oscillate around a fixed background
value determined by the matter content of the Universe. Those tiny oscillations propagate at the
speed of light, and induce small perturbations in the manifold structure (“ripples in space-time” as
usually stated). When passing through matter, they induce extremely small changes of the physical
distances between two points, but preserve volumes: a rigid circle spanned by such a wave wobbles,
but its area remains constant. The oscillations of objects spanned by gravitational waves can be

3Usually of dimension 4, but we will also use manifolds of arbitrary, complex dimensions for regularization purposes.
4By “matter”, we encompass all non-gravitational forms of energy: baryons, light, neutrinos, etc.
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decomposed in two independent motions, called polarizations: the first one, dubbed + polarization,
corresponds to elongations in the “top-bottom” and “left-right” directions; the second, × polarization,
corresponds to elongations on 45◦ directions. Those oscillations are depicted in fig. I.1.

Those waves are sourced by any motion that is not symmetrical under spatial rotations, as will
be discussed in details in chapter IV. For instance, when raising your elbow to enjoy some wine, you
emit gravitational waves. But such waves are so weak that they cannot have detectable effects (the
preceding example will induce a change of ∼ 10−43 m in the size of your drinking fellows, located
1m away from you) and extreme events (such a supernovae, coalescences of compact binaries or the
beginning of the Universe) are needed to produce gravitational radiations that can be detected by
current human means.

Note that this geometrical conception clarifies the two conceptual ambiguities of Newtonian grav-
itation raised in the previous section: gravitational interaction is not instantaneous, but is carried by
gravitational waves that propagate at the speed of light; bodies fall by following the local curvature
of space-time.

Figure I.1: Extreme magnification of the effects of a gravitational wave going through a rigid circle,
lying in the (xy) plane. The wave is of frequency ω and propagates along the z⃗ direction. The upper
panel shows the effect of the + polarization and the lower one, the × polarization. No deformations
are to be observed in the z⃗ direction.

I.2.2 Lovelock’s theorem and theories “beyond” General Relativity
The next feature of GR to be discussed in this section is a powerful uniqueness theorem due

to D. Lovelock [271]. It states that, under a set of six hypothesis, the only possible equations of
motion in vacuum are those of GR (with a cosmological constant). The hypothesis are that the only
gravitational field is the metric, that the manifold is four-dimensional, that the equations of motion
are at most second-order and that the theory is local, invariant under diffeomorphisms and derives
from a least-action principle. In addition to be a remarkable property of GR per se, this theorem is
extremely useful as it indicates the possible directions to seek for “beyond” GR theory, by breaking
one (or more) of the hypothesis. It would be extremely presumptuous to pretend that we can list
here all the attempts that have been made to construct “beyond” GR theories, and we will hereafter
only present a selection of the major steps that led to the current profusion of models.
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The most explored direction is to break the first hypothesis, ie. adding extra gravitational fields.
The simplest configuration, by adding a single scalar field, has been initiated by the seminal works of
P. Jordan, C. Brans and R. Dicke [110, 244] and has known many developments under the name of
scalar-tensor theories. If the scalar sector of Brans and Dicke theory was quite simple, many efforts
have been made in finding the most general scalar-tensor theory. Allowing second-order derivatives
in the action (but keeping the equations of motion to be second-order), A. Nicolis, R. Rattazzi
and E. Trincherini constructed the theory of “Galileons” (where the scalar field enjoys a Galilean
symmetry) in flat space-time [294]. Those Galileons were then covariantized [163], ie. written in
a generic, dynamical space-time, and finally generalized [164, 166] so to obtain the thought-to-be
most general theory leading to second-order equations of motion. As a matter of fact, this theory
has been shown to be equivalent to the model that G. Horndeski constructed 35 years ago, and that
has been forgotten then [121, 236]. The following development has been to use non-invertible metric
transformations to construct “beyond-Horndeski” theories [208], and even to use higher derivatives
in the action, together with degeneracy conditions, to construct even more general scalar-tensor
theories [46].

This conceptually simple framework of scalar-tensor theories is in fact extremely powerful, as it
encompasses many other models, that are a priori fundamentally different. For example, H. Buchdahl
constructed theories involving an arbitrary function of the Ricci scalar [114], naturally dubbed f(R)
theories. Due to their promising possible cosmological applications, those models have received a
renewed interest starting from the 80’s [331] and are still actively explored [141]. Interestingly, it
can be shown that, under a particular change of variables, they can be rewritten as a special case of
scalar-tensor theories.

Departing from the scalar-tensor framework, one can construct vector-tensor theories [224, 355],
at the cost of creating preferred-frame effects. If less active than the scalar-tensor one, this frame-
work is still explored, as proven by the recent work [159]. One can naturally also built tensor-tensor
(dubbed bi-gravity) models [221], as we will discuss in more details in chapter VI, or combine every-
thing with tensor-vector-scalar proposals [45].

Naturally, all other possible breakings of Lovelock’s hypothesis have been investigated. For ex-
ample a five-dimensional theory has been constructed by G. Dvali, G. Gabadadze and M. Por-
rati [171], where the matter fields live in a four-dimensional “brane” embedded in a five-dimensional
space-time. This model was in fact the inspiration of the original Galileon theory, the scalar field
being the bending of the brane. Other examples are given by non-local theories [274, 352, 359],
diffeomorphism-breaking ones [31, 160, 189, 237] or emergent theories (that do not derive from a
least-action principle) [320, 342].

I.2.3 The brilliant success and darkness of General Relativity
When formulated by A. Einstein in its final form [175], General Relativity differentiated itself

from Newtonian gravity by four phenomenological consequences: a relativistic precession of plane-
tary perihelia, a relativistic deflection of light by massive bodies, a gravitational redshift effect and
the existence of gravitational radiation. Those four phenomena have been observed and tested to
extremely high accuracy level, thus confirming the strong foundations of GR.

The existence of a relativistic precession of the perihelion of Mercury was a prerequisite to any
“beyond” Newtonian theory of gravitation, as discussed in sec. I.1.3. The fact that A. Einstein found
the good value with its theory [174]5 was thus only half a success for GR, as the whole effort in
theory-building at this time was aimed at recovering this precise value. On the contrary, predicting

5To be exact, A. Einstein computed the value using the first formulation of its theory, that turned out to be
incorrect. But, as this initial theory and GR do not differ in vacuum, he found the good value, even if he was using
the wrong theory.

6



a relativistic deflection of light by massive bodies was a new feature of the theory, and thus led to
a genuine prediction, that was confirmed during the 1919’s Solar eclipse by a collaboration led by
A. Eddington [172]. This observation, that rendered GR and thus A. Einstein extremely popular
(notably by the symbol of a British astronomer confirming a German theory, six months after the
end of the war), was a real confirmation for the young theory. Later on, other genuine GR effects
taking place in the Solar system have been computed and tested, for instance the gravitational
redshift effect, stating that a light ray escaping the gravitational field of a body looses energy, and
thus its frequency decreases (it becomes redder). This effect is deeply linked to the fact that clocks
measure different times, depending on their altitude, which is naturally primordial to take into
account for the GPS system. The Earth-induced redshift has been measured in 1959 by R. Pound
and G. Rebka [309], and the GR prediction has been recovered. All Solar system-based tests have
been pushed to an astonishing precision (up to one part in hundred thousand), confirming with high
accuracy the predictions of GR, and putting strong constraints on “beyond” GR theories [182, 354].
For a comprehensive review on those post-Newtonian tests, see [353].

As for gravitational radiation, it has first been indirectly detected by monitoring the motion of a
binary system of compact objects. Such a system looses energy trough the emission of gravitational
waves, and thus its orbital period decreases. The Nobel-winning detection of this effect in a system of
two pulsars [238, 351] was the first of a series of tests of GR in strong-field regimes. The first direct
detection of a gravitational wave event took place in 2015 and was performed by the two LIGO
(Laser Interferometer Gravitational-Wave Observatory) instruments [3]. The delay of a century
between the prediction and observations of gravitational radiation is due to the extreme precision
that is needed to detect it: the relative change of length induced by the first event, provoked by the
coalescence of two black holes roughly 400 Mpc away from us, was of order 10−21 (which corresponds
to detect that the closest star oscillates by the thickness of a human hair). The European detector,
Virgo, joined the observation campaign and gravitational radiation emitted by the coalescence of two
neutron stars was detected in 2017 [4], together with an electromagnetic counterpart [5], allowing
notably to localize precisely the event, and thus to conduct stringent tests on the emission and
propagation of gravitational waves [6]. At the time being, a fourth detector, the Japanese KAGRA
(KAmioka GRAvitational-wave detector), joined the collaboration and 39 gravitational wave events
have been confirmed [7, 9]. This catalog of observations have naturally been used to perform tests
on the emission and propagation of gravitational waves, as well as on the nature of the compact
objects that emit the radiation. Those tests show perfect agreement with the predictions coming
from GR [10]. Note that gravitational radiation is particularly powerful to constraint the presence of
additional gravitational degrees of freedom, as those would induce additional polarization modes. The
monitoring of pulsars has put a severe constraint on the presence of scalar fields, as the energy radiated
through the additional polarization has to be less than 1% of the total energy radiated away [169, 354]
(due to the configuration of the detector network, the direct observation of gravitational waves is not
yet competitive for such tests [10]6, but the LISA (Laser Interferometer Space Antenna) gravitational-
wave detector will be able to perform accurate tests of the presence of additional polarizations [44]).

The gravitational waves that we detect are emitted by binary systems of compact objects and,
among the compact objects that exist in the Universe, black holes are also genuine predictions of GR.
It is true that the idea of “black holes” also exists in Newtonian gravity, as celestial bodies that are
massive enough so that their escape velocity7 exceeds the speed of light. Such objects were conceived
independently in 1783 by J. Michell [282] and in 1796 by P.-S. de Laplace [157], but were rapidly
discarded by the community. But the story is different in GR and K. Schwarzschild noticed as soon

6They can only perform “GR vs only non-GR” polarization tests, but no modern theory contains exclusively
non-GR polarizations.

7We recall that the escape velocity is the minimal velocity needed to escape from the gravitational influence of a
celestial body. If it exceeds the speed of light, even light would be trapped in the vicinity of the body, which would
thus appear black for observers at infinity.
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as 1916 [325] that black holes appear quite naturally as vacuum solutions (contrarily to Newtonian
black holes that are tangible bodies) possessing an horizon, ie. a surface that encloses a trapped re-
gion, from which no information can escape. This horizon can be formed dynamically, notably by the
collapse of a massive star. Thus, and by definition, one cannot access what is “inside” a black hole,
and the only relevant physics is the one that takes place from the horizon up to the spatial infinity.
Note that the definition of this horizon can be non-trivial, as will be discussed in chapter VII. The
static Schwarzchild solution has rapidly been generalized to bear an electric charge, by H. Reissner
and G. Nordström [297, 313], but its generalization to rotating space-time had to wait for 1963 and
the seminal work of R. Kerr [252]. A very powerful theorem, known under the name of the “no-hair
theorem”, states that black holes in GR only depend on three parameters : mass, spin and electric
charge, and are thus entirely described by Kerr-Newman space-times [292]. This theorem is heavily
tested by observing the coalescence of the black hole binaries, as a dependence to another parameter
than the mass and spin would be an indication of some “beyond” GR phenomenology (the electric
charge is irrelevant in an astrophysical context). By definition, black holes cannot be directly ob-
served, but there are currently four ways to indirectly detect them: by the gravitational waves they
emit when two of them coalesce; by observing the powerful electromagnetic emissions of the accret-
ing matter that surrounds them; by directly observing this accreting matter [16]; or by monitoring
the motion of stars in their vicinity [12]. Note that, excepted for the first technique, one can only
detect objects with large masses (at least millions of solar masses), and that the direct observation of
their surroundings (stars and accreting matter) gave excellent agreement with GR predictions [12, 16].

But despite passing all possible tests with flying colors, GR suffers from some “darkness”, ie. yet
ambiguous gravitational phenomena that can be explained either by non-gravitational ingredients,
or by “beyond” GR completions. First of all, the stars living in periphery of the galaxies do not
move accordingly to GR predictions, as observed by A. Bosma, V. Rubin and J. Ford [105, 317].
Instead, they behave as if the total mass of the observed stars was only a small fraction of the
total mass of the galaxy, thus the name of the "missing mass" problem. The usual way to address
this problem is to postulate the existence of a yet unknown form of matter that will account for
the missing mass by forming large clusters encompassing the galaxies. This new particle has to
be insensitive to electromagnetic forces (otherwise we would have already seen it), and be non-
relativistic in order to pass galaxy formation constraints, thus the name “cold dark matter” [58]. If
this paradigm is appealing as it naturally explains the missing mass problem, and is a cornerstone
of current physics, there is still no evidence of this new particle, despite decades of tremendous
theoretical and experimental efforts [2, 18, 27].

One can also imagine a population of small primordial black holes populating the galaxies: they
would naturally explain the phenomena as they are massive, but invisible. Sadly this hypothesis has
difficulties to pass other constraints, such as microlensing or gravitational waves emission [215, 295]:
it seems quite unlikely that such objects account for the whole missing mass (but they still can
account for some fraction of the missing mass).

Another way to address the missing mass problem is to consider that at low energy, the laws of
gravity are not given by GR anymore. For example, in 1983 M. Milgrom found a very simple, but
ad hoc modification of Newton’s law that accounts for the motion of stars in galaxies [284] (at those
energies, GR reduces to Newtonian gravity, up to definitively negligible corrections). This MONDian
(for MOdified Newtonian Dynamics) framework is also successful in explaining the Tully-Fischer re-
lation [338] (a proportionality relationship between the stellar mass of a galaxy and the speed of its
peripheric stars), yet unexplained by the cold dark matter paradigm. Nevertheless, the MONDian
approach is not yet a consistent theory, but rather a phenomenological paradigm, and many attempts
to embed it within a complete theory have all failed till today [78, 113, 167]. For a comprehensive
review on the MONDian approach, see [185].
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The second sector of “darkness” is the accelerated expansion of the Universe, that has been first
observed in 1998 [305, 314] and then monitored by the WMAP [233] and Planck [15] satellites. In-
deed this acceleration cannot be explained by the (dark) matter only, there must be an additional
“dark” energy that sources it. The simplest way to account for this dark energy is to simply add an
ad hoc cosmological constant to GR, as first introduced by A. Einstein on very different motivation
grounds [178]. The usual comprehension of such a cosmological constant is to associate it with the
mean value of the vacuum’s energy (non-vanishing due to natural oscillations of the quantum fields
populating the Universe). But this perspective leads to a complication: the observed value of the
cosmological constant is 120 orders of magnitude smaller than the computed mean energy of the
vacuum [350]. Despite this issue, our current standard model for cosmology consists in a cosmolog-
ical constant together with (dark) matter, and thus is dubbed ΛCDM (Λ denotes the cosmological
constant, and CDM stands for cold dark matter). See [301] for a review on cosmological constant as
the source of dark energy.

As in the case of dark matter, the standard model is not the only one, and there has been great
efforts in explaining this late-time acceleration of the expansion by means of “beyond” GR theories.
A first example is to promote the cosmological constant to a dynamical “dark fluid”, modeled by a
scalar field [33, 312] (thus in the class of scalar-tensor theories). Another path has been explored
by the so-called massive gravities, where the metric acquires a mass term [158, 160, 221]. If such
mass term is of order of 10−30 eV/c2 (which is consistent with all current bounds), then it would be
a natural explanation for the late-time acceleration. Note that some of those theories also contain
a degravitation mechanism [158], ie. a machinery that makes the mean energy of vacuum gravitate
less than (dark) matter, thus reducing its effects (but none have yet reached the Graal of reducing
it by 120 orders of magnitude).

I.3 Motivations for this thesis
Those darkness point out that some sectors of the gravitational phenomenology remain mysterious

to us. Even if those mysteries finally turn out to be of non-gravitational nature8 it is vital to keep
questioning our gravitational theory. This questioning has to be dual: an endogenous one, that seeks
to deepen our knowledge of GR and to better understand its phenomenological implications; and an
external one, that aims at building viable and distinguishable alternatives to GR. It is vital for those
two inquiries to be carried out together, as only simultaneous progresses on those paths will lead to
a better understanding of gravitational phenomena.

This thesis thus aims at following both directions, by deepening our comprehension of the rel-
ativistic two-body problem on the one hand; by investigating non-canonical scalar defects and by
constructing and testing “minimal” theories of gravitation, on the other hand.

I.3.1 Pushing forward our comprehension of General Relativity
The first direction that will be explored in this thesis is to aim at deepening our knowledge of

GR. This approach has two main goals: the first one is of epistemological nature and relies on the
fact that, despite one century of progress, we still imperfectly master GR (note that the situation in
this regard is quite different from what happened with Newtonian theory, that was well mastered one
century after its release). Naturally, aiming at going “beyond” GR cannot be done without better
understanding it. On this regard, the two-body problem is the perfect toy model: even if it is one of
the simplest systems in Nature, and is easily solved in Newtonian theory, it remains unsolved in GR.
Moreover, the main efforts to solve it rely on perturbative expansions, ie. by expanding physical
quantities with respect to a “small” parameter. But this series is probably an asymptotical one,

8For example, a cold dark matter particle, and a dark fluid accounting for the late-time acceleration of the Universe.
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meaning that there is no assurance that it does converge towards a finite result [1], thus questioning
our own ability to access the whole comprehension of the two-body problem by those means.

The second goal is to have stronger tests, as a better knowledge of GR phenomenology allows to
spot more easily deviations from it. In this regard also, the two-body problem offers many advantages.
First of all, it is one of the most common systems in Nature, from the falling apple to the coalescence
of two supermassive black holes, passing by the Earth-Moon system. The corollary of this abundance
is that such systems are widely monitored (either by electromagnetic or gravitational radiations) and
many tests have already been performed, as discussed in the previous section. Another advantage
is that if some new physics shows up, it is quite likely to appear in the strong-field regimes, eg. by
alternatives to black holes (indicating new gravitational physics) or exotic compact stars (indicating
new states of matter). This new physics will leave faint imprints on the gravitational-wave signals
(for example a non-canonical matter in neutron stars will show up at least at the (next)5-to-leading
order in the gravitational waveform), and we should have a perfect knowledge of GR at those orders
in order to discriminate such new phenomenologies.

As stated by the title of this thesis, we will only focus on analytic methods to iteratively solve
the two-body problem, and will not discuss at all the great achievements of the numerical methods
to solve GR (see eg. [66] and references therein). We will work within the Blanchet-Damour-Iyer
formalism that relies on a small-velocity-weak-field expansion: for a binary of speed v ≪ c, total mass
M and separation r, the small parameter is ϵ ∼ v2/c2 ∼ GM/r/c2 (those two quantities being of the
same order of magnitude for virialized bound systems that will be considered). A post-Newtonian
order (PN order) is then an order in this expansion, so that nPN denotes the order ϵn ∼ (v/c)2n.

I.3.2 Seeking for viable alternative
But this endogenous questioning of GR has to be accompanied by an outer one, ie. by seeking

viable and distinguishable alternatives. This is naturally vital to perform educated tests of GR. For
example, instead of looking for generic deviations in the gravitational waveforms, one can construct
viable scalar-tensor theories, and subsequently derive the exact imprint that the scalar field would
yield in the gravitational waveform. In the same spirit, constructing viable “massive” gravities allows
to derive precisely the effect of a mass in the dispersion relation for gravitational waves, and thus
to refine the algorithm that searches such deviations from GR predictions. But the construction of
viable alternatives to GR is also important as it reinforces our knowledge of GR itself, by pointing out
what GR is not. For instance, the first trials to construct a healthy “massive” gravity have revealed
the presence of additional polarization states, one of which is a “ghost”, ie. it interacts wrongly to
matter, and thus renders the theory harmful. Understanding what such dreadful polarization state
really implies, and more importantly, why it does not exist in GR, requires a careful analysis of GR,
and it took roughly 40 years to construct a “massive” viable alternative free of this ghost.

I.3.3 Work done in this thesis
The rest of this dissertation is organized so that each chapter presents at least a new result ob-

tained during this thesis.

The first part is devoted to the study of the relativistic two-body problem, within the post-
Newtonian-multipolar-post-Minkowskian approximation scheme.

In chapter II, the Newtonian and relativistic two-body problems are introduced and the state-of-
the-art methods and results are outlined. Focusing on post-Newtonian treatments, the split between
a conservative and a radiative sector is exposed. To concretely illustrate this rather theoretical
discussion, we investigate the case of a peculiar exoplanetary system, HD 80606b, and propose a
realizable method to detect relativistic effects in the motion of the exoplanet. Such observation, that
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will be feasible around 2025, would be the first Solar system-like test of gravitation, performed in a
distant stellar system, and thus a strong trial for GR.

The conservative sector of the two-body problem is presented in chapter III, and illustrated by
the high precision (next-to-next-to-next-to-leading order) computation of the non-linear “tail” effects
in the conserved energy. Such computation heavily relies on novel synergies between the traditional
post-Newtonian formalism and the Effective Field Theory techniques, synergies that appear to be a
very promising tool for efficient computations of high accuracy quantities.

Finally, chapter IV deals with the radiative sector, and the ongoing computation of the gravi-
tational phase for non-spinning compact binaries, at the 4th post-Newtonian order, which was the
main goal of this thesis. Three steps towards such result are presented in details: the derivation of
the Hadamard regularized source mass quadrupole, its infra-red dimensional regularization and the
d-dimensional derivation of the non-linear interactions entering the radiative mass quadrupole. The
two last ones are presented here for the first time.

Part B is dedicated to the construction and phenomenological study of some alternative theories.
Chapter V focus on scalar theories, and more precisely deals with the existence and stability of

domain-wall solitons. By circumventing the usual topological argument used to prove their stability,
a new class of theories supporting stable solitons is constructed. Moreover, we show that those
non-canonical solitons can perfectly mimic the canonical ones, even at the linear perturbation level.

Chapter VI introduces a recent guideline for building alternative theories of gravitation: the
principle of minimalism, requiring that the theory only contains the observationally required polar-
izations. Following this principle, we present in details the construction of a “minimal theory of
bigravity”, ie. a theory of two interacting metrics, that contains only four polarizations (twice the
polarizations that are present in GR), instead of the usual seven that are present in bigravity the-
ories. The cosmological phenomenology of this new theory is derived and its confrontation against
observations is discussed.

Finally, chapter VII is devoted to another class of tests for alternative theories, by exploring
their strong-field regimes. Black hole space-times are constructed in two minimal theories and their
phenomenologies, as well as their distinguishability from GR ones, are discussed.

The conventions used within this dissertation, as well as the Hamiltonian formulation of Gen-
eral Relativity, are presented in app. A. App. B displays a “post-Minkowskian” toolkit, useful for the
discussions and computations of chapters III and IV. As we will deal with lengthy post-Newtonian ex-
pressions, app. C collects those that are too long to appear in the core of the dissertation. The crucial
derivation of the d-dimensional non-linear interactions appearing in the radiative mass quadrupole,
which is one of the main results obtained during this thesis, is presented in app. D. Finally, app. E
provides a summary in French of this dissertation.
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Part A

The relativistic two-body problem
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Chapter II

Introduction to the relativistic two-body
problem

II.1 From the Newtonian to the relativistic problem

II.1.1 Revisiting the Newtonian two-body problem
As an appetizer, we will show that the Newtonian gravitation and the two-body problem are

closely linked. To this purpose, starting from a system composed of two particles and imposing only
“natural” requirements on the gravitational interaction, we aim at recovering the Newtonian law.

Let us consider two point-like test particles of masses m1 and m2, interacting via a gravitational
field Φ12. Using for the moment a generic Galilean reference frame, we denote the positions of
the masses as yi1 and yi2, their speeds as via ≡ dyia/dt (a = 1, 2), together with r12 = |yi1 − yi2| and
ni12 = (yi1 −yi2)/r12. As for the specific form of Φ12, we only require that it satisfies usual expectations
for a gravitational field: fulfilling Newton’s first law, being static, attractive, and vanish when the
distance between the masses becomes infinite. The two first conditions together imply that Φ12 can
only depend on r12, the attractivity condition, that Φ12 is a monotonically increasing function of
r12, and the last one, that Φ12(r12 → ∞) = 0. In addition we will require that the equivalence
principle holds, ie. that Φ12 is linear in each of the masses. All those conditions impose to use
Φ12 = m1m2 Φ(r12), where Φ does not depend on the masses. The test particles thus obey the
Lagrangian

L = m1

2 v2
1 + m2

2 v2
2 −m1m2 Φ(r12) . (II.1)

Defining the usual variables X i ≡ (m1y
i
1 + m2y

i
2)/(m1 + m2) and xi ≡ yi1 − yi2, together with the

mass parameters M ≡ m1 +m2 and µ ≡ m1m2/M , the Lagrangian is rewritten as

L = M

2 V 2 + µ

2 v
2 −MµΦ(r) , (II.2)

where we have denoted r = |xi| together with ni = xi/r and the new speeds obey vi1 = V i +m2/Mvi

and vi2 = V i − m1/Mvi. We thus see that the motion of the two particles can be decomposed into
the motion of the center-of-mass X i and the motion of an effective body of mass µ, immersed in the
gravitational field created by a mass M . They obey the equations of motion

dV i

dt = 0 , and dvi
dt = −M dΦ(r)

dr ni . (II.3)

The center-of-mass, on which no external forces apply, behaves as an isolated body and is at rest,
which is nothing but the practical translation of the principle of inertia.1 As the motion of the center-
of-mass is trivial, we focus henceforth on the motion of the effective particle of mass µ. Its equation

1As expected this principle is independent of the precise form of the gravitational interaction, Φ, as it embodies a
broader framework than just Newtonian gravitational law.
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of motion indicates that the motion takes place within a plane, spanned by the initial position and
velocity vectors2 and we set zi as a constant unit vector, normal to this plane. Defining as usual
the λi vector so that (ni, λi, zi) forms an orthonormal basis of the Euclidean space, we associate an
angular coordinate θ to the λi vector. In this coordinate system, the equation of motion (II.3) takes
the form

dvi
dt =

(
r̈ − rθ̇2

)
ni + d r2θ̇

dt
λi

r
= −M dΦ

dr n
i , (II.4)

where a dot denotes time derivative. Integrating the projections onto each direction, two conserved
quantities arise, corresponding to the usual energy and angular momentum, explicitly given by

E = µ

2 ṙ
2 + µ j2

2r2 +MµΦ(r) ≡ µ ε , and J = µ r2 θ̇ ≡ µ j . (II.5)

Using a trick due to J. Binet, we introduce u ≡ 1/r and trade the time dependence for an angular
one, so that the energy per unit mass is rewritten as

ε = j2

2

(du
dθ

)2

+ u2 + 2φ(u)
j2

 . (II.6)

where we used the shorthand φ(u) = MΦ(1/r). The first additional requirement that we impose on
the gravitational interaction is that it allows bound orbits to form, as such orbits are to be observed
in Nature. From eq. (II.6), we can see that the presence of closed orbits is linked to the well-definition
and existence of positive roots of the quantity

K(u) ≡
√

2ε
j2 − 2φ(u)

j2 − u2 . (II.7)

To be more precise, we need K to be well-defined between two of its strictly positive roots. Together
with the initial requirements, this translates into the existence of at least one strictly positive number
u0, such that the gravitational field satisfies the set of conditions

φ(0) = 0 , dφ
du < 0 , dφ

du

∣∣∣∣∣
u0

= −j2u0 , and d2φ

du2

∣∣∣∣∣
u0

> −j2 . (II.8)

Taking as an example a simple power-law φ(u) = φ0 u
α, those conditions are met as long as φ0 < 0

and 0 < α < 2: there is thus a large class of theories accommodating bound orbits.
Let us require in addition that those closed orbits do not precess. We could impose such non-

precession condition in a strong manner, by requiring a full periodicity of the orbit, u(θ+2π) = u(θ).
We will rather enforce non-precession in a weak way, by fixing only the periastron and apastron,
allowing the orbits to “breath” between those two points. This amounts to impose that the apastron,
origin and periastron are exactly aligned, thus∫ u+

u−
dθ(u) = π , or equivalently 1

π

∫ u+

u−

(
dθ
du

)
du = 1

π

∫ u+

u−

du
K(u) = 1 , (II.9)

where u− < u+ are two strictly positive roots of K, corresponding respectively to the apastron and
periastron of the orbit. In order to express this integral in a simpler form, we rely on a method
exposed in [19], and define a new variable τ such that 2u = u+ + u− + (u+ − u−) cos τ , which yields

1
π

∫ u+

u−

du
K(u) = 1

π

∫ π

0

dτ√
1 − ∆(τ)

, (II.10)

2Of course, if the initial speed is null or colinear to the initial position, the motion will follow a straight line, which
is of little interest and will not be considered in the following.
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with

∆(τ) = 2
sin2 τ

u+ + u−
u+ − u−

{
cos τ − 4 j−2

u2
+ − u2

−

[
φ (u+)

2 + φ (u−)
2 − φ

(
u+ + u−

2 + u+ − u−
2 cos τ

)]}
.

(II.11)
Inverting this relation yields

φ(u) = −j2

2

{
u2 + u+u− + (u+ − u)(u− u−)

A2(u)

}
, (II.12)

where 1
π

∫ π
0 dτA[u(τ)] = 1 in order to satisfy the condition (II.9). Let us note that, injecting the

function (II.12) in eq. (II.7) evaluated in u+, it comes u+u− = −2ε/j2. As u+ and u− are positive
by definition, this traduces the fact that the energy of a bound system is necessarily negative, as
expected by its conservation and its cancellation at infinity. On the other hand, there is one freedom
left in the u+ and u− coefficients, and we label u+ + u− = 2GM/j2, with G a positive constant.

Note also that the two last conditions of (II.8) are automatically satisfied by the function (II.12)
as long as it is regular, ie. as long as A does not vanish. Moreover, as there is a large freedom in
the choice of the function A, it can be taken so that the two first conditions of eq. (II.8) are met.
Nevertheless, unless A = 1, the potential contains a contribution −j2u+u−/2 = ε, which violates
the equivalence principle. Therefore only the solution with A(u) = 1, ie. φ = −Gu, satisfies our
requirements.

Let us sum up this rather arid discussion. Starting from two gravitationally interacting test
bodies, we have only made a few natural assumptions (that the gravitational field obeys Newton’s
first law and the principle of equivalence, is attractive, static, vanishes at infinity and allows bound
orbits to form) and have added a weak condition of non-precession for the bound orbits. With this
minimal set of requirements we have obtained a unique solution for the gravitational field, namely

Φ12 = −Gm1m2

r12
, (II.13)

with G a positive constant, and we have unsurprisingly rediscovered Newtonian gravitation. More-
over, it is now clear that precession, that plays an important role in the relativistic discussion
of sec. II.2, is not a special attribute of GR, but rather a common feature of mostly all non-Newtonian
theories of gravitation.

When switching from Newtonian gravitation to General Relativity, three major discrepancies
show up, that are to be discussed in the remaining of this section.

II.1.2 The relativistic notion of trajectory
The first and most important discrepancy between Newtonian and Einstein gravitations is of con-

ceptual nature. As discussed in sec. I.2.1, GR is a geometrical description of gravitational phenomena,
and it relies on a unification of space and time into a four-dimensional manifold. Therefore the New-
tonian conception of motion (ie. the time evolution of a particle’s position) looses its significance.
The relativistic description of motion is encoded in the notion of world-line: a one-dimensional,
time-like section of the manifold. There is thus no genuine notion of “time evolution” in GR: what
we (as observers) consider as all the successive positions of a body are to be considered as a whole.

The second consequence of the geometrical nature of GR is the disappearance of the notion of
“gravitational force”. Apples do not fall because they are attracted by Earth via its gravitational field,
but because they follow their “natural” trajectories : freely falling bodies are isolated systems. For
test particles, such “natural” trajectories are the geodesics of the space-time, which are nothing but
the generalizations of the straight lines in the case of curved manifolds. The gravitational attraction
manifests itself via a curvature of the space-time, created by a distribution of energy, which affects
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the form of the geodesics, and thus the trajectories of particles. This directly applies to the two-
body system: the bodies are not interacting via a gravitational force as in Newtonian gravity, but
are simply freely falling in the space-time they create. Nevertheless, the exact geodesics of such
space-times are not yet known exactly, and we have to rely on approximation schemes in order to
acquire knowledge on the relativistic two-body problem, as will be presented in more details in the
next sections.

Taking an affine parameterization of the world-line, with parameter λ, the trajectory is thus a one-
dimensional, connected, future-oriented ensemble of points xµ(λ), and we can define its tangential
vector field, dubbed four-velocity, uµ ≡ dxµ/dλ. For an isolated test particle, the world-line is defined
by the fact that the tangent vector is parallel transported along itself, which reads

uν∇νu
µ = d2xµ

dλ2 + Γµρσ
dxρ
dλ

dxσ
dλ = 0 , (II.14)

where we refer to app. A.1 for the definition of the covariant derivative ∇µ and the Christoffel
symbols Γρµν . The whole effects of gravitation are encrypted in Γµρσ, and naturally, beyond the test
mass approximation, there is a back reaction of the particle on the geometry. In addition to obeying
the geodesic equation (II.14), the four-velocity should have a negative norm gµνu

µuν < 0, as we deal
with matter particles.

It is nevertheless extremely convenient to recover the usual Newtonian conception of motion by
foliating the space-time in three-dimensional, space-like hypersurfaces, cf. app. A.3. In this setup,
the continuous label of the slice can be used as an obvious time parameter, and one can naturally
mimic the time evolution of a particle’s position. Another manner to recover a Newtonian-like
interpretation of the trajectory is by using an approximation scheme that weakly departs from the
Newtonian case. As an example, let us consider the simplest realization of the two-body problem:
a spinless test particle in the space-time created by a mass M , sitting at the origin.3 We naturally
neglect the back-reaction of the particle on the geometry, and use a weak-field approximation, ie.
focus on large enough radial separations r between the two masses, so that our small parameter
is given by ϵ ∼ GM

rc2 ≪ 1. The world-line of the test body {xµ} = (ct, r, θ, ϕ} obeys the geodesic
equation (II.14) with the Cristoffel symbols given by the geometry created by a point-particle of mass
M , namely the Schwarzchild line element [325]. The 0 component of the geodesic equation (II.14)
reads

c
d2t

dλ2 = O(c ϵ2) , (II.15)

so we can identify the affine parameter λ = t, at leading order, thus recovering the Newtonian
interpretation of the coordinate time being a label tracking the evolution of the particles. The
angular sector of the geodesic equation reads

θ̈ − 2 ṙθ̇
r

− cos θ sin θ φ̇2 = O(ϵ2) , and φ̈+ 2
(
ṙ

r
+ θ̇

tan θ

)
φ̇ = O(ϵ2) . (II.16)

At leading order, it is naturally solved by θ = π/2 (ie. restricting the motion to the equatorial plane)
and r2φ̇ = j where j is a constant. This constant is naturally the Newtonian conserved angular
momentum per unit mass (II.5) (where θ corresponds to φ). Last, the radial part is then given by

r̈ − j2

r3 + 2GM
r2 = O(ϵ2) . (II.17)

Multiplying by mṙ and integrating, the conservation of energy (II.5) is recovered. Appropriately,
the weak-field limit of GR is indeed Newtonian gravitation. The whole point of the approximation
schemes that are to be used in this dissertation is to make this analogy persist at higher orders, ie.
treating the relativistic problem in a Newtonian fashion.

3To be accurate, we should rather describe the trajectory of this mass M by a four-velocity uµ = (c, 0⃗).
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II.1.3 The relativistic gravitational radiation
The second difference between Newtonian and Einstein gravitations has deep observational con-

sequences, as it is the existence of gravitational radiation. This radiation can be defined as small
departures from flatness at infinity.

Note however that, strictly speaking, the definition of such radiation does not make sense in GR.
Indeed, as discussed just above, nothing can radiate in GR: the manifold structure is given at once
and the notions of “time evolution” or “wave propagation” are absolutely meaningless. But when
adopting a Newtonian-like approach by singling out a time parameter (for example in the framework
of a weak-field approximation scheme), the notion of radiation recovers some sense.

A direct consequence of the existence of such radiation is that energy and angular momentum
are carried away from two-body systems. If it is complicated to rigorously define a notion of energy
in GR, it is doable when approximation schemes are at play, as will be done in this dissertation. In
such case, the equations of motion, given by the relativistic extensions of eqs. (II.15)–(II.17), can be
separated in two sectors: a conservative one, given by conserved quantities, and a dissipative sector
(also dubbed radiative sector), encoded in fluxes. Both sectors are linked by the so-called flux-balance
equations,

dE
dt = −F , and dJ i

dt = −Gi , (II.18)

where E and J i are the relativistic extensions of the Newtonian conserved energy and angular mo-
mentum, and F and Gi are their associated fluxes. The second equation indicates that, in general,
the relativistic motion is not planar: when J i and Gi are not aligned, the direction of the angular
momentum evolves in time. At the lowest order, the energy and angular momentum fluxes F and
Gi are vanishing, and we recover the usual Newtonian conservation laws. Note that similar flux-
balance equations also exist for the relativistic extensions of the six Newtonian conserved quantities
associated with the center-of-mass: its position X i and its linear momentum MV i.

This separation in conservative and dissipative sectors is vital, as both are to be treated very
differently. The conservative sector is associated with the dynamics of the binary system, as eg.
E is composed of the kinetic energy and gravitational binding of the two bodies. Those quantities
make sense in the so-called near-zone, ie. the surroundings of the binary. On the other hand, the
dissipative sector is linked to the emission of gravitational waves, and the fluxes are computed via
suitable formulas, presented in detail in chapter IV. Such computations are defined in the wave- or
radiative-zone, that is simply defined as the exterior of the binary. Those two zones overlap in the
matching-zone, where interplays between conservative and dissipative effects occur, as discussed in
the next chapters.

II.1.4 The relativistic non-linearities
The last main discrepancy between the two gravitational theories is more technical (but bears

great physical significance): when Newtonian gravitation is a linear theory, GR is a (highly) non-
linear one. The former is clear from the two-body equations of motion written in Binet’s variables:
d2u/dθ2 + u = GM/j2, which is nothing but a driven linear oscillator. The most straightforward
consequence of this linearity is that the two-body problem is fully solvable in Newtonian gravitation.
Regarding Einstein gravitation, the theory is highly non-linear, as clearly indicated by the geodesic
equation (II.14): the world-line of the particle sources the metric, which enters non-linearly in the
Cristoffel symbols (A.4), that affect the world-line of the particle. Those non-linearities are a strong
bridle towards the achievement of non-perturbatively solving the two-body problem.

But in addition to that, those non-linearities yield appealing physical implications, as they en-
tail scattering of the gravitational waves. If a gravitational wave scatters off the static monopolar
structure, the effect is called a tail. Indeed an observer located at infinity will see delayed arrivals of
waves, the signal decaying as a power-law (typically as t−3), thus the name. As for the wave-to-wave
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scatterings, they are usually dubbed memory effects, as they encode the whole history of the evolu-
tion of the binary. Those non-linear interactions in the radiative sector are treated in chapter IV.
Such effects also affect the conservative sector, as the backreaction of gravitational waves changes
the dynamics of the binary system. The tail contribution to the conservative sector is the object
of chapter III.

II.2 The case of the exoplanet HD 80606b as an illustration
Before outlining the state-of-the-art relativistic methods and results in sec. II.3, we present a

simple computation with rewarding observational consequences, that illustrates the strategy of us-
ing Newtonian-looking methods to perturbatively solve the two-body problem. Together with L.
Blanchet and G. Hébrard, we have studied the binary system formed by the star HD 80606 and
the exoplanet HD 80606b, and have shown in [95] that the lowest-order relativistic effects on such
peculiar system are detectable and could thus provide a new channel to test GR.

By their conceptual simplicity and abundance in Nature, binary systems have been widely used
to test the predictions of GR and alternative theories, in a large variety of regimes, from the Earth-
Moon system [108, 346] to the vicinity of the central black hole of our galaxy [12, 21]. Using stellar
binary systems was proposed in [207], but it is quite complicated to discriminate the relativistic
precession from the Newtonian one due to tidal effects (see eg. [357]). To the best of our knowledge,
our proposition is the only one to suggest a complete and realistic test in an exoplanetary system,4
and thus the only one allowing to realize a Solar system-like test of GR at a distant location.

II.2.1 HD 80606b, a remarkable exoplanet
HD 80606b as the perfect candidate

For a stellar binary system of total mass M , the orbit is well described by a Newtonian one, ie.
an ellipse of semi-major axis a and eccentricity e. The relativistic, or “post-Newtonian”, corrections5

to this orbit are of order v2

c2 ∼ GM
ac2 ≪ 1, where v is the typical velocity of the system, and both

quantities are of the same order of magnitude as we suppose that the bound system is virialized.
In such weak-field slow-motion regime, the dominant relativistic effect on the Newtonian orbit is

the precession of the periastron, given by

∆GR = 6π
1 − e2

GM

ac2 . (II.19)

Thus in order to have a substantial effect, one needs either a large compactness6 GM
ac2 or a large eccen-

tricity. In addition, the relativistic precession should be clearly distinguishable from the Newtonian
one, that can be caused by tidal effects, a third body, etc. As they are largely stiffer than stars (and
so less subject to tidal precession), exoplanets are thus particularly recommended for such detection.
In order to detect the effect, one should be able to easily observe the consequences of the precession.
If such orbital variation should leave imprints on the radial velocity of the star,7 its detection would

4In the final stage of our study, we found that similar methods have been suggested by [243, 300] and later by [239].
Nevertheless those works assume a central transit and only consider the effect of the periastron shift, when we take
the full relativistic effects into account, with a non-vanishing impact parameter. Furthermore they are generic studies
while we apply our computations to the remarkable case of HD 80606b and explicitly derive an observable quantity.

5As explained in I.3.1, we count perturbative “post-Newtonian” (PN) orders as powers of c−2. Thus the nPN
correction consists of the c−2n order.

6Obviously if the compactness is too large, ie. if it approaches 1, the system departs from the weak-field regime.
However for Solar system values, this corresponds to an orbital separation of a few km, which is naturally unreachable.

7Due to the presence of one or many exoplanets, the star moves around the center-of-mass of the system and this
radial velocity induces an observable periodic Doppler shift in its spectrum. This technique is widely used to detect
exoplanets and we let the interested reader refers to the reviews [272, 360].
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require tremendous efforts in precisely monitoring the spectrum of the star. It would be much easier
to observe a (anti-)transiting exoplanet, as the detection of precession-induced modifications of the
transits would be much more perceptible. A similar method, called “transit-timing variation”, is
already used to detect exoplanets, via the precession they induce on a known, transiting planetary
companion (see [229] for the proposition and [41] for the first detection using such technique).

Among the more that 4700 exoplanets detected (and confirmed) at the time of writing of this
dissertation, 1847 have known eccentricity values, and only four of those exceed 0.9, according to the
regularly updated catalog exoplanet.eu [323]. Among those four exoplanets, only HD 80606b has been
observed (anti-)transiting, and is the only planet with measured mass, radius and inclination. Its
eccentricity and the compactness of the binary system are respectively e ≃ 0.934 and GM

ac2 ≃ 2.2·10−8,
to be compared eg. to the value for Mercury e ≃ 0.206 and GM

ac2 ≃ 2.6 · 10−8. This leads to the
relativistic precession

∆HD 80606b
GR ≃ 215 arcsec/century , to be compared with ∆Mercury

GR ≃ 43 arcsec/century . (II.20)

In addition, more than 15 years of radial-velocity monitoring did not provide a hint of any additional
planetary companion [190, 223]: the exoplanet HD 80606b is thus the perfect candidate for the
measure of the relativistic effects that we plan to conduct.

Detection and characterization of HD 80606b

As many other exoplanets, HD 80606b has been discovered through radial velocity measurements,
in 2001 [290]. The relatively long orbital period of the planet, P ≃ 111 days, together with its high
eccentricity implied a low probability of the orbital plan to be aligned with the line of sight to
the Earth, and thus less than one chance over a hundred that it would transit. Fortunately, HD
80606b was successively discovered to pass behind its parent star [258] and in front of it [288] (see
also [198, 204, 230, 356]), and the first monitoring of a full twelve-hour long transit has been conducted
in 2010 [223]. Those observations allowed to derive the planetary radius Rp ≃ 0.98RJup, and the
inclination of its orbit i ≃ 89◦. Together with the sky-projected mass (derived with radial velocities),
the inclination provides the mass Mp ≃ 4MJup. The obliquity of the system could also be measured
from the Rossiter-McLaughlin anomaly8 observed during transits, which revealed that the orbit of
HD 80606b is prograde but quite inclined [288, 307, 356]: [223] reported an obliquity of λ ≃ 40◦.

The host star, HD 80606, is a Solar-like star: its radius and mass are similar to the Sun’s one
and it is of the G5 spectral type. In addition, it is part of a binary system, together with HD 80607,
located 1200 AU away. For the precise characterization of the stellar system and the associated
accuracy, we let the interested reader refer to [223].

Other remarkable features of HD 80606b

The favored mechanism for the formation of such a peculiar orbit relies on a “Kozai-Lidov mi-
gration” [361], due to the influence of the stellar companion, HD 80607. Such mechanism was
independently introduced by M. L. Lidov in the case of artificial satellites [266] and Y. Kozai in
the case of asteroids [256], and consists in a specific resonance of the three-body problem. In the
case of HD80606b, the formation of the orbit presumably happened as follows. First, the planet
is formed with a small eccentricity (e ≲ 0.1) and a wide orbit (a ≳ 5 AU), the angle between its
orbital plane and the orbital plane of the stellar companion, α, being slightly less that π/2. Then
Kozai-Lidov cycles take place, meaning that the orbits of the planet and of the stellar companion

8Due to the Doppler effect, the spectrum of a rotating star is not homogeneous on its apparent surface. When
the planet transits, it screens only a part of this surface, which results in a change of the apparent color of the star.
Monitoring this effect, dubbed Rossiter-McLaughlin anomaly, gives access to the angle between the orbital plane of
the planet and the spin orientation of the star. See [337] for more details.
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enter in resonance, the quantity JKL =
√

1 − e2 cosα, being conserved. During those cycles (that
are quite rapid, lasting a few Myrs) eccentricity and relative inclination of the two planes are thus
exchanged. In addition, and during those many cycles, the energy of the system is dissipated through
tidal effects, and therefore the orbit of the planet shrinks. Finally the Kozai-Lidov mechanism stops
when the planet is close enough from its parent star so that the relativistic precession takes over
the influence of the stellar companion. The computation realized in [361] shows that the current
orbital parameters are reached only 1.2 Gyrs after the birth of the planet, and that the Kozai-Lidov
mechanism does not occur anymore today. Note that, in order to reach this state, HD 80606b had
to undergo through a much higher eccentricity, e ≃ 0.99 !

For completeness, let us mention two other, disfavored, formation mechanisms for HD 80606b.
This first consists in a planet-planet scattering, assuming that HD 80606b has been formed together
with a planetary companion, in an unstable configuration. It would then have acquired its high
eccentricity during the ejection process of the companion. Nevertheless, [197] has studied more
than a thousand of such unstable systems, and none resulted in eccentricities larger than 0.90: the
formation of HD 80606b via this channel is thus unlikely. The second discarded possibility relies on
dynamical friction between the planet and the gas disks from which it formed. Such interactions
have been investigated in [212], and were not efficient enough to produce eccentricities above 0.6.

In addition to those fascinating features, HD 80606b is also remarkable by its atmosphere prop-
erties. The transiting nature of the planet allows to study its atmospheric composition and, for
example, traces of potassium were found [125]. But the most impressive aspect of this gas giant is
that it grazes its host star: the periastron is only 0.03 AU away from the star, which corresponds
to less than 8 times the radius of the star ! The surface temperature of the planet thus increases
from ∼ 800 K to ∼ 1500 K within 6 hrs, inducing violent heat shock waves [258]. But this heating
is so prompt that, unlike many “hot Jupiters”, the mass loss of HD 80606b is absolutely negligible:
the relative mass loss was estimated in [257] to be at most 3 · 10−4 during the whole lifetime of the
planet.

II.2.2 Computation of the relativistic effects on the trajectory
Geometry of the orbit and transits

As discussed in sec. II.1.3, the position and impulsion of the center-of-mass are conserved, up
to 3.5PN order [77]. This accuracy is far from our current concern and we can assume that they
are both perfectly conserved: as in the Newtonian case, we will only focus on the relative motion
and thus work in a frame {x, y, z} with origin at the center of the star. By convention, the observer
is in the direction x, while the projected angular momentum of the star lies along the direction z.
Hence the plane {y, z} is the plane of the sky. The orbital plane of the planet {X, Y } is defined by
its inclination I with respect to the plane {x, y}, and by its longitude Ω with respect to the plane
{x, z}, following the conventions described in fig. II.1a.

As depicted in fig. II.1c, the motion of the planet in the orbital plane is parametrized by polar
coordinates (r, φ), where φ denotes the sum of the true anomaly and of ω0, the latter denoting a
constant angle, which can be viewed as defining the initial argument of the periastron at a reference
time. Then the coordinates (x, y, z) of the planet in this frame read (see figs. II.1a and II.1c)

x = r
[
− cosφ cos Ω + sinφ cos I sin Ω

]
, (II.21a)

y = r
[
− cosφ sin Ω − sinφ cos I cos Ω

]
, (II.21b)

z = r sinφ sin I . (II.21c)

We define the positions of the planet {T1, T2, T3, T4} to be respectively the entry in the transit,
the start of the full transit, and the exits from the full and partial transits. Similarly the points
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(a)
(b)

(c)
(d)

Figure II.1: Geometry of the planetary transit: (a) Motion of the planet with respect to the observer,
located at infinity in the x direction. The center of the star is denoted O, P is the periastron at
reference time tP , and J⋆ is the angular momentum of the star projected on the plane of the sky
{y, z}. (b) The transit as seen by the observer and the definition of the points {Ti}; here are only
shown T1 and T3. (c) The trajectory of the planet and the points {Ti} (transit) and {T̄i} (eclipse) as
seen in the orbital plane {X, Y }. Up to an angle Ω, the observer is in the direction of X. (d) View
of the transit from above. The direction (ON) is the line of “nodes”, corresponding to (OX) in (a).

{T̄1, T̄2, T̄3, T̄4} corresponding to the eclipse are shown in fig. II.1c. Since x is the direction of the
observer, the condition for the (partial or complete) transit of the planet is that y2 +z2 ⩽ (R⋆+Rp)2,
where R⋆ and Rp are the radius of the star and planet, hence

sin2 I sin2 φ+
(
cos I cos Ω sinφ+ sin Ω cosφ

)2
⩽
(
R⋆ +Rp

r

)2
. (II.22)

Since R⋆+Rp ≪ r at the transits, it is easy to see that this condition can be satisfied when sin I ≪ 1
or sinφ ≪ 1, and | cos I cos Ω sinφ + sin Ω cosφ| ≪ 1. With the conventions of fig. II.1a we are
interested in a transit for which φ ≃ π and Ω ≃ 0.9 On the other hand, for an eclipse (or anti-
transit), we have φ ≃ 0 and Ω ≃ 0. In an expansion to the first order in R⋆+Rp

r
≪ 1, we find that

9For HD 80606b, [223] gives sin Ω ≃ 0.019.
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the coordinates of the planet during and around the transit are

x ≃ b

sin I

[
cot Ω + cos I sinφ

]
, (II.23a)

y ≃ b

sin I

[
1 − sinφ cos I

sin Ω

]
, (II.23b)

z ≃ b sinφ
sin Ω , (II.23c)

where the impact parameter b of the planet is the distance between the trajectory of the planet
projected on the plane {y, z} and the center of the star. Neglecting the bending of the trajectory
during the transits and eclipses,10 the impact parameter is given by (see fig. II.1b)

b =


r(π) sin Ω sin I (transits Ti) ,

r(0) sin Ω sin I (eclipses T̄i) ,
(II.24)

where r(π) and r(0) are the values of the radial coordinate of the planet at φ = π and φ = 0, when
the transit and eclipse occur. The transit and eclipse conditions for the polar coordinates (r, φ) at
the passage of these points read

r sinφ = Y (b) . (II.25)

Given a model r(φ) for the planetary orbit, this determines the true anomaly φ for each of these
points, where the vertical coordinate Y (b) is given in terms of the impact parameter b by (see
figs. II.1b and II.1c)

Y (b) =



√
(R⋆ +Rp)2 − b2 + b cot I (T1 and T̄4) ,√
(R⋆ −Rp)2 − b2 + b cot I (T2 and T̄3) ,

−
√

(R⋆ −Rp)2 − b2 + b cot I (T3 and T̄2) ,

−
√

(R⋆ +Rp)2 − b2 + b cot I (T4 and T̄1) .

(II.26)

The cases for which (R⋆±Rp)2 = b2 correspond to the planet just grazing tangentially the star, either
from the exterior or from the interior of the stellar disc. In addition to the entry and exit of the
(anti-)transit, {Tn} and {T̄n}, we compute also the points corresponding to the minimal approach
to the center of the star, Tm and T̄m, whose transit conditions are obviously (see fig. II.1b)

Y (b) = b cot I (Tm and T̄m) . (II.27)

Now that we have clearly stated the geometry of the transits, we need to derive the dynamics of
the system, in order to solve (II.25), and to deduce the instants ti and t̄i of passage at each of these
points. Note that, since the eclipse will be seen from behind the star, we have to add to the instants
of eclipse a Roemer time delay accounting for the propagation of light at finite velocity c. Thus
t̄i −→ t̄i + ∆tR where

∆tR = r(0) + r(π)
c

≃ 2.7 min (for HD 80606b) . (II.28)

10The correction induced by taking into account this effect is of the order of δb
b ∼ 1

2
(

R⋆

r

)2, so ∼ 10−4 for the transits
and ∼ 10−2 for the anti-transits, in the case of HD 80606b.

24



Post-Newtonian motion of the planet

We will investigate the first relativistic correction to the dynamics of the two-body problem with
a Lagrangian method. In [95], we have also used two other methods to derive it (relying on the
1PN Hamiltonian in Delaunay-Poincaré variables, and using a quasi-Keplerian representation of the
motion [131]), and they gave excellent agreement. Note that the Hamiltonian and the hereafter
presented Lagrangian computations rely on celestial perturbation computational methods, that were
intensively developed during the XIXth century. The “XXth century” piece of the computation
consists only in the explicit form of the perturbation function R defined hereafter.

The Lagrangian of the relative motion of two point masses at the first post-Newtonian order is
simply an extension of eq. (II.2) and reads

L1PN = M

2 V 2 + m

2 v2 − GMm

r
+mR

(
xi, vi

)
. (II.29)

The 1PN perturbation function reads (see eg. [79])

R
(
xi, vi

)
= 1

2c2

[
1 − 3ν

4 v4 + GM

r

(
ν ṙ2 + (3 + ν) v2

)
− G2M2

r2

]
, (II.30)

where we have defined the “symmetric mass ratio” ν ≡ m/M = m1m2/(m1 + m2)2 and we recall
that ṙ = dr/dt. The post-Newtonian approximation is well suited to the case of HD 80606b, as
|mR/L1PN| ≲ 10−5.

As the non-perturbed orbit is Newtonian, thus elliptic, we are going to use an osculating elliptic
orbit, meaning that at each instant of time, we approximate the relativistic motion by an ellipse.
Thus we use a Newtonian-looking parametrization of the orbit, which orbital elements, given by
{a, e, ω, ℓ, I,Ω}, are naturally allowed to depend on time. Together with the semi-major axis a,
eccentricity e and argument of the periastron ω, we have defined the mean anomaly ℓ = n(t − tP )
where n ≡

√
GM/a3 and tP is the (time-dependent) instant of passage at periastron. The two angles

defining the orbital plane, I and Ω, are still defined as in fig. II.1a. For each successive ellipse, those
orbital elements are linked to the usual {r, φ} coordinates depicted in fig. II.1c by the Keplerian
relations

r = a (1 − e cosψ) , and φ = ω + 2 arctan
√1 + e

1 − e
tanψ

 , (II.31)

where the eccentric anomaly ψ is solution of

ψ − e sinψ = ℓ . (II.32)

We are seeking for secular effects, ie. relativistic effects that accumulate over time. Therefore,
we can directly apply the usual perturbation equations of celestial mechanics with the perturbation
function R in the Lagrangian (see eg. [133]). Those equations are explicitly given by [83, 111]

da
dt = 2

an

∂R
∂ℓ

, (II.33a)

de
dt =

√
1 − e2

ea2n

[√
1 − e2 ∂R

∂ℓ
− ∂R
∂ω

]
, (II.33b)

dω
dt = 1

a2n

[√
1 − e2

e

∂R
∂e

− cot I√
1 − e2

∂R
∂I

]
, (II.33c)

dℓ
dt = n− 1

a2n

[
2a ∂R

∂a
+ 1 − e2

e

∂R
∂e

]
, (II.33d)

dI
dt = 1

a2n
√

1 − e2 sin I

[
cos I ∂R

∂ω
− ∂R
∂Ω

]
, (II.33e)
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dΩ
dt = 1

a2n
√

1 − e2 sin I
∂R
∂I

. (II.33f)

Note that Kepler’s third law does not hold here, as n ≡
√
GM/a3 is not equal to the orbital frequency

2π/P . Instead the orbital frequency will be given by averaging eq. (II.33d) for ℓ.
As the perturbing function R (II.30) only depends on r, ṙ2 and v2, the only orbital elements

entering it are a, e and ℓ (the latter entering via ψ(e, ℓ), solution of eq. (II.32)). As a direct conse-
quence, I and Ω are constant in time: the orbital plane is fixed. This is directly related to the fact
that, for a spinless particle, the angular momentum flux Gi is vanishing at 1PN order, see eq. (II.18).

As for the other quantities, we denote the zeroth order constant orbital elements as a0, e0, and
similarly define n0 =

√
GM/a3

0. To first order the equations for a and e can readily be integrated as

a = a0 + 2
a0n2

0
R , and e = e0 + 1 − e2

0
e0a2

0n
2
0

R , (II.34)

where the perturbation function reduces in this case to

R = G2M2

2a2
0c

2

[
1 − 3ν

4 + ν − 4
X0

+ 6 + ν

X 2
0

− ν
1 − e2

0
X 3

0

]
, (II.35)

with X0 ≡ 1 − e0 cosψ. Next, the equations for ℓ and ω at first order become
dℓ
dt = n0 − 3

a2
0n0

R − 1
a2

0n0

[
2a0

∂R
∂a0

+ 1 − e2
0

e0

∂R
∂e0

]
, (II.36a)

dω
dt =

√
1 − e2

0

e0a2
0n0

∂R
∂e0

. (II.36b)

As we are mainly interested in the secular evolution of the orbit,11 we perform the orbital average
⟨f⟩ ≡ 1

P

∫ P
0 dt f(t) of those equations before integrating them, with P being the orbital period. It is

equivalent to directly average the equations (II.36) or to replace in them the perturbing function R
by its average ⟨R⟩

⟨R⟩ = GMa0n
2
0

8c2

 24√
1 − e2

0

− 15 + ν

 . (II.37)

It finally comes〈
dℓ
dt

〉
= n0 + GMn0 (ν − 15)

8 a0c2 ≡ n0 (1 + ζ) , and
〈

dω
dt

〉
= 3GMn0

a0c2(1 − e2
0)

≡ n0k , (II.38)

where we have introduced the relativistic precession parameter k (corresponding to the periastron
advance) and the relativistic shift in the orbital period, ζ. Note that for HD 80606b,

k

ζ
= −24

(15 − ν)(1 − e2
0)

≃ −12 , (II.39)

the periastron advance is thus dominant over the shift in orbital period.
The relativistic evolution of the impact parameter is simply given by a perturbation of eq. (II.24),

δb = ∓ b0 sinω0

1 ∓ e0 cosω0
δω , (II.40)

where b0 is naturally the constant Newtonian value of the impact parameter, and the minus (resp.
plus) sign corresponds to a transit (resp. eclipse). Injecting δb in eq. (II.26), one can solve the
perturbed conditions for the (anti-)transit (II.25), and thus extract the relativistic modifications of
the time of (anti-)transits.

11In [95], the computation has been done also for the periodic quantities, and the final results showed excellent
agreement with the averaged method that we use here, the two methods differing only by 2% after 33 periods, ie. 10
years.
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Seeking for an observable quantity

When dealing with relativistic corrections, it is of prime importance to study an appropriate
observable quantity. For example, in the case of HD 80606b, despite 15 years of radial velocity data,
[190] reported that the relativistic effects were not detectable. They measured the variation of the
longitude of the periastron to be ω̇ = 9 720 ± 11 160 arcsec/century, thus in a non-significant way.
This inconclusive result is explained by the insufficient accuracy reached on ω: ± 540 arcsec [223].

As briefly explained in the beginning of sec. II.2.1 and clear from the previous computation, our
method does not rely on radial velocities but rather on the variation of the time of transits. We
thus have to construct an appropriate observable quantity with those times and compare it to a
reference one, quite naturally defined at the first complete observation of the transit, realized in
January 2010 [223]. For the N th orbit following the reference one, we defined the post-Newtonian
time corrections

δti(N) ≡ ti(N) − t0,i(N) , and δt̄i(N) ≡ t̄i(N) − t̄0,i(N) , (II.41)

where i ∈ (1, 2,m, 3, 4) and the index 0 denotes the Newtonian prediction: t0,i(N) = t0,i(0) + NP0
and t̄0,i(N) = t̄0,i(0) + NP0, where P0 is the Newtonian period of the orbit, evaluated in January
2010. Note that taking the Newtonian predicted times as reference times is merely a convenient trick,
as Newtonian orbits do not exist: the “real” motion of the system is obviously the fully relativistic
one. But, as P0 is known, it is quite convenient to use those Newtonian orbits as references.

After 10 years (ie. for N = 33), the post-Newtonian time corrections for the transit times are of
order of 170 s. As the measure of Jan. 2020 had an accuracy of 85 s. [223], this indicates that the
effect could be measurable in this way. But such measure relying only on the variation of the entrance
time t1, for instance, would require a extreme precision on the Newtonian period, P0, that is not yet
achieved. In order to have a realistic observable quantity, one should eliminate this uncertainty by
comparing durations instead of absolute times. Unfortunately, the relativistic variation of the transit
time t4 − t1 is only of order 2 s. after 10 years, and thus seems hardly detectable (as for the eclipse,
it is even worse, of the order of 0.2 s). Instead, we propose to monitor the time interval between the
passage at the minimum approach point during an eclipse and the passage at the minimum approach
point during the following transit:

ttr-ec(N) − ttr-ec(0) = tm(N) − t̄m(N) −
[
t0,m(N) − t̄0,m(N)

]
. (II.42)

The important point about this result is that the right-hand side of the equation represents the rela-
tivistic prediction, that we have previously computed, while the left-hand side is directly measurable.
In fact ttr−ec(0) has been measured [223, 258]

ttr−ec(0) = (5.8491 ± 0.003) days , (II.43)

where the precision is 275 seconds. The relativistic effect becomes of the same order than this
precision after 49 orbits (corresponding to the transit of December 2024), the time interval between
the eclipse and transit being shorter by 271.4 seconds (4.5 minutes) than to the one measured in 2010.
Therefore we conclude that, starting from 2025, observational campaigns monitoring the eclipses and
transits of HD 80606b should be able to detect the relativistic effects .

II.2.3 Feasibility of the measure
The observational uncertainty on the ttr−ec(0) measure (± 271 sec) is a combination of the accura-

cies of ± 260 sec [258] and ± 85 sec [223] that were respectively obtained on the mid-points of eclipse
and transit, using the IRAC instruments of the Spitzer Space Telescope.
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Precision of the computation

As for the accuracy of the relativistic computation, one can estimate the effects of the second
post-Newtonian order to be of relative order 5 · 10−6 [95]. Stopping at the first post-Newtonian order
is thus accurate enough.

The main source of error in the relativistic computation comes from the accuracy of the physical
parameters of the system. In order to estimate their repercussions, we have saturated one-by-one
the uncertainties tabulated in [223], and have re-evaluated our observable quantity after 33 cycles.
It appeared clearly that the major uncertainty comes from the measure of the mass of the star: it
is known at the 5% level and induces a 5% error on our prediction. Similarly the value of the semi-
major axis, known up to 1.7% leads to a 1.7% uncertainty in our result. Note that, as expected, the
physical properties of the planet play a marginal role: the mass of HD 80606b is constrained up to
3%, but it impacts our derivation by 10−4 only, as it only enters ν. Note also that using the averaged
method that we presented in this dissertation yields results that differ by 2% only from the exact
methods used in [95], thus largely under the uncertainty due to the mass of the star. Such convenient
averaging procedure can thus be used without problems. Similarly, neglecting the bending of the
trajectory induces a error under the percent level, thus sub-leading.

Other disturbing effects

As presented in sec. II.2.1, HD 80606b has no known planetary companion. To be more precise,
companions with sky-projected masses larger than 0.5MJup and orbital periods shorter than 40 years
are excluded [190, 223]. In addition, the stellar companion HD 80607 is currently too far away (1200
AU) to significantly influence the orbital precession of HD 80606b: we do not expect disturbing
effects from third bodies. To compare with the usual Solar system case, the periastron advance of
Mercury is largely dominated by the Newtonian effect of the other planets, mainly Venus and Jupiter:
∆planets = 532.3 arcsec/century ≃ 12.4 ∆GR. In this regard the HD 80606 system is much cleaner
than the Solar system.

Besides the possibility that there might be some disturbing third bodies, we have to consider the
precession of the orbit caused by the oblateness of the star, the tidal effects, and the Lense-Thirring
effect. The orbital precession rate due to the quadrupolar deformation J2 of the star is

∆J2 = 3πJ2 R
2
⋆

a2(1 − e2)2 . (II.44)

Assuming the Solar value J2 ∼ 10−7 we obtain ∆J2/∆GR ∼ 2·10−3 for HD 80606b, which is definitively
negligible for our purpose. As for the orbital precession induced by the tidal interaction of the planet
with its parent star, it produces a supplementary orbital precession at the rate [183, 243]

∆T = 30π
(
kp
M⋆R

5
p

Mp

+ k⋆
MpR

5
⋆

M⋆

)
1 + 3

2e
2 + 1

8e
4

a5(1 − e2)5 , (II.45)

where kp denotes the Love number of the planet, which is approximately kp ∼ 0.25 for a hot
Jupiter, and k⋆ that of the star, expected to be approximately k⋆ ∼ 0.01 [243]. We find that
the first term, due to the tidal deformation of the planet, gives a rather large contribution of about
32 arcsec/century, while the second term, due to the deformation of the star, is much smaller, ap-
proximately 2 arcsec/century. Hence the tidal interactions represent a non-negligible effect, but
nevertheless six times smaller than the GR relativistic precession:

∆T ∼ 34 arcsec/century ≃ 0.16 ∆GR . (II.46)

Hence we conclude that the tidal interactions should be taken into account in the precise data analysis
of the transit times aimed at measuring the GR effect. Finally the Lense-Thirring effect, due to the
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angular momentum J⋆ of the star, induces a precession of the line of nodes with a rate of

dΩ
dt = 2GJ⋆

c2a3(1 − e2)3/2 , (II.47)

when Mp ≪ M⋆. Considering the extreme case of a spin-orbit alignment and assuming a solar value
J⋆ ∼ 1042 kg.m2/s, it is negligible as expected: ∆LT/∆GR ∼ 3 · 10−4 arcsec/century. To compare with
the Solar system, those three effects are negligible for Mercury, for which they are on the order of
∆J2 ≃ 0.2 arcsec/century, ∆T ≃ 2 · 10−6 arcsec/century, and ∆LT ∼ 2 · 10−3 arcsec/century.

The last possible effect, the modification of the orbit by the mass loss that can happen in hot
Jupiter systems [106, 263], is absolutely marginal here as the mass losses of HD 80606b are negligi-
ble [257], as already advertised.

Practical implementation of the observation

Starting from 2025, an instrument with a perfect accuracy could make the clear detection of the
relativistic precession in the HD 80606 system, thus (a priori) confirming GR in a distant stellar
system.

More realistically, a 12 hour-long observation of the full transit is required to make such detection,
which implies necessarily a space-borne instrument. If the 2010 observations were conducted with the
Spitzer Space Telescope and its IRAC instruments, this spacecraft has been decommissioned at the
end of 2020. Fortunately, at the time of writing of this dissertation, the James Webb Space Telescope
(JWST) is planned to be launched in October 2021. Thanks to its NIRCam and MIRI instruments,
it would provide an accuracy on ttr−ec a few times better than Spitzer, and thus could detect the
effect (if the mission is not delayed eternally). Naturally other current or future telescopes, such
as TESS, CHEOPS or PLATO, could also sample long-duration transits and perform the measure.
However such instruments are smaller and less sensitive than Spitzer or JWST.

Among the telescopes dedicated to the study of exoplanets, the Atmospheric Remote-sensing
Infrared Exoplanet Large-survey (ARIEL) instrument, to be launched around 2030, is devoted to the
study of their atmospheres (see eg. [206]). As HD 80606b has remarkable atmospheric properties, it
is already listed as a potential target for ARIEL [173]. It would thus be clever to use this opportunity
of performing both observations (atmospheric and relativistic effect) at once. The feasibility of the
measure with the ARIEL spacecraft is thus currently discussed with J.-P. Beaulieu, the coPI of the
mission, and A. Bocchieri, in charge of simulating the noise of the instrument. The first results give
good hopes that ARIEL would successfully achieve the detection, and that the relativistic effects will
be measured in the HD 80606 system.

II.3 Different approaches to tackle the relativistic problem

II.3.1 Weak-field, slow-motion approaches
The relativistic computation of the previous section relies on a weak-field, slow-motion approxi-

mation, ie. by expanding the equations of motion in terms of the compactness GM
rc2 and the square of

the dimensionless speed v2

c2 , both being of the same order of magnitude for virialized bound systems.
In addition we have seen that post-Newtonian (PN) effects begin at the formal c−2 order, therefore it
is usual to denote the c−2n correction to the Newtonian motion as a “nPN effect”. Such an approach
has been developed as early as 1917, by H. A. Lorentz and J. Droste, in order to tackle the first
relativistic correction to the N -body problem [270], and rediscovered more than twenty years later
by A. Einstein, L. Infeld and B. Hoffmann [180]. Since those works, it has been extensively applied
to the two-body problem, and has known many developments, to reach extremely high accuracy.
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The weak-field, slow-motion regime is particularly adequate for bound, virialized binary systems,
and is valid during the inspiralling phase (when the two bodies are well enough separated). This
approximation naturally fails during the last cycles of the binary, when the velocities of the bodies
become comparable to the speed of light. To describe this extreme regime, one has to rely on
other frameworks like numerical relativity. Note that resummation methods have been developed to
push forward the validity of the expansions, for example the “effective one-body” framework [115].
In the following, we intend to outline the modern computational methods that rely on weak-field,
slow-motion approximations for spinless point-particles.

Traditional post-Newtonian approaches

Concerning the conservative sector, the state-of-the art is the 4PN approximation.12 This accu-
racy has first been reached by an ADM Hamiltonian method [134], together with an action-angle-
Delaunay averaging [135], both agreeing with previous partial results [136]. But, quoting their own
developers [134], those Hamiltonian-based methods are only «incomplete representations of the two-
body conservative dynamics». Indeed they involve an ambiguity parameter, that has to be fixed by a
careful matching with the radial potential in the circular limit, that is known by effective one-body
techniques [61]. This ambiguity parameter is related to the near-zone non-linear tail effect: the
conservative dynamics becomes non-local in time at 4PN, which is known since long time [74]. The
Hamiltonian methods are unable to properly deal with this time non-locality, and therefore they
cannot achieve the complete conservative dynamics from first principles.

Using the Fokker Lagrangian integration technique, a first computation of the conserved dynamics
was also plagued by an ambiguity coming from the tail effect [54]. If such ambiguity parameter could
also be fixed via a matching to the test mass limit results [55], its genuine derivation has been
achieved [56, 277], yielding the first computation of the conservative sector from first principles. The
physical quantities finally agreed with the Hamiltonian results [57]. The fact that, conversely to
the Hamiltonian method, this method could deal with the time non-locality is highly non-trivial. It
relies on the fact that the radiative sector can be treated by using the same (harmonic) coordinate
system. Thus, computing the tail term with the methods developed for the radiative sector, one can
integrate it in the conservative computation in a natural way.

This method used to compute the radiative sector is the so-called “post-Newtonian-multipolar-
post-Minkowskian” (PN-MPM) scheme, that is currently the only one to reach high accuracy. As
advertised by its name, it combines a post-Newtonian expansion in the near-zone and a post-
Minkowkian one (PM, ie. in powers of Newton’s constant G) in the radiative zone. Those two
expansions have an overlapping region of validity, dubbed matching zone. In this buffer zone, the
two expansions should obviously agree with each other, which is realized if the PN expansion of
the multipolar solution agrees with the multipolar expansion of the PN solution. Using overbars
to denote PN expansions, and M for PM ones, this matching requirement can be restated by the
elegant equation

M (gµν) = M (gµν) . (II.48)

Using this PN-MPM approach, the waveform and flux are known up to 3.5PN accuracy, see [73]
for a review. The 4PN order is currently under investigation, and will be discussed in great details
in chapter IV. Note that the 4.5PN sector of the gravitational flux is already known [276], as it does
not rely on the knowledge of the 4PN one, and has been confirmed by the technique of factorized
waveforms [281].

12Partial 5PN and 6PN results have been obtained [63, 64], but only the 4PN order is fully mastered.
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Effective field theoretical approach

The effective field theoretical (EFT) approach of the two-body problem has been initiated in
2004 [210], and relies on an effective field treatment of the matter sector: the Lagrangian is com-
posed of the most general set of operators that are invariant under diffeomorphisms, with unknown
“Wilsonian” coefficients that are to be determined by matchings, see eg. [193, 308] for reviews. This
approach led to the derivation of the 4PN dynamics in either Lagrangian [194, 196] or Hamilto-
nian [98] formulations. Naturally, both those computations are in perfect agreement with the results
derived by traditional PN methods. As for the radiative sector, the EFT techniques reached the 2PN
accuracy [264], and efforts are currently made to push forward higher precisions.

The EFT community is currently developing “bound-to-boundary” relations [245, 246], as dictio-
naries relating observable quantities of unbound systems (like the deflection angle of two scattering
black holes) to physical quantities of bound systems (like conserved energy or periastron advance),
via some well-chosen analytic continuations. (Note that such dictionaries were first introduced in the
language of traditional PN methods [68]). Therefore, in addition to direct computations of bound
quantities, it is interesting to perform post-Minkowskian expansions for unbound system, ie. releas-
ing the small-velocity approximation [247]. In this vein, the conservative dynamics of a binary system
has been computed at 3PM from an EFT perspective [249], recovering previous results exposed in
the next subsection [48, 49].

In addition, synergies between the traditional PN and EFT communities, such as the one pre-
sented in the next chapter, are exciting paths towards novel and efficient computational methods. If
not common today, those synergies may play a crucial role in the coming years.

II.3.2 Other approaches
Other approaches to tackle the relativistic two-body problem have naturally been developed in

parallel to the weak-field slow motion ones. For instance the non-perturbative, numerical approach
has been initiated during the 70’s [181, 330], at the crossroads between the first efficient computers
and vital theoretical breakthroughs, consisting in recasting Einstein’s field equations as a Cauchy
problem (see notably the work of Y. Choquet-Bruhat, eg. [124]). If the first numerical integrations
of the relativistic field equations were not very reliable, this field has known great breakthroughs
and became competitive in 2005 [40, 117, 310]. It is yet an extremely active field of research and its
results are widely used for the detection of gravitational radiation, see eg. [66] for a review.

Another (perturbative) technique to deal with the relativistic two-body problem is the so-called
“gravitational self-force” approach. Such method considers a particle of mass m evolving in the
space-time created by a mass M ≫ m, and expands the field equations in terms of the small
quantity m/M , see eg. [42] for a review. At zeroth-order, the motion is simply given by the geodesics
of the Schwarzchild (or Kerr, if spin is included) space-time. The first-order corrections are explicitly
known up to extremely high post-Newtonian orders: 21.5PN for analytical computations [251] and
22PN for numerical integration [200]. The first attempts to push the method towards second-order
encountered strong but unphysical divergences on the world-line of the small object, that are currently
being understood and regularized [339]. Note that the future LISA detector is expected to observe
many “extreme mass ratio inspirals” events, ie. gravitational waves that are generated by small
bodies orbiting gigantic black holes. The gravitational self-force approach is obviously particularly
indicated to provide templates for such events.

Inspired by the laws of thermodynamics, the first law of black hole mechanics relates the variations
of the mass, spin and surface area of a black hole [43]. In the case of a binary of compact objects,
on a circular orbit, a similar law has been found to relate the variations of the total ADM mass,
total angular momentum and both individual masses [199, 261]. This “first law of binary point-like
particle mechanics” has been then generalized to include spins [92], eccentricity [259], non-linear tail
effects [82], and finally finite-size effects [311]. Those relations are widely employed when dealing
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with the two-body problem, and we will explicitly use them in chapter III.
The last, but definitively not least, present-day method to address the relativistic two-body

problem is the use of scattering amplitude techniques. Taking a particle-physicist point of view, the
scattering of two black holes is not so different from the scattering of two quarks, as both processes
are made by the interactions of tensorial particles (gravitons or gluons), in a highly non-linear theory.
The similarity is even more striking, as the vertices of the graviton interactions can be extracted from
those of gluonic interactions: this is the famous “double copy” [47]. Therefore, from the quantum
amplitudes involving gluons, one can extract “amplitudes” of the scattering process for two black
holes, and derive observable quantities, such as the conserved energy or angular momentum. The
equivalent of the gluon coupling constant is naturally the strength of the gravitational force, G, and
thus those amplitude techniques are formally post-Minkowskian expansions, valid regardless of the
value of the speed. The last decades saw tremendous efforts to push forward the comprehension
and computations of Quantum Chromodynamics processes, so the computational techniques used
to derive gluonic amplitudes can be mapped to the relativistic problem. This brilliant idea led to
the computation of the dynamics at the third post-Minkowskian order [48, 49], and partial results
(the potential contributions) have been achieved at 4PM accuracy [51]. Those computations are
naturally valid for unbound, scattering black holes, but they can lead to results for bound orbits
when a dictionary such as the one described in the previous section is employed.

In addition to be extremely interesting per se, those methods are vital for the post-Newtonian
computations, as they derive the same observables (conserved energy, gravitational phase,...) but
for different regimes of validity. Agreement of physical results in the overlapping regions is thus a
strong validation of our computations. For instance, we always derive the m1/m2 → 0 limit of a
post-Newtonian observable to compare it with the corresponding gravitational self-force result. Fur-
thermore, those approaches are usually very powerful in different regions. Combining computations
with different approaches, depending of their strengths, allows to derive high-accuracy quantities in
a drastically simpler manner than with a single approach. Such “tutti frutti” method has been used
to derive partial 5 and 6PN results in the conservative sector [63, 64].

II.3.3 Beyond the point-particle approximation
Just as in the case of the study of HD 80606b, the work done during this thesis focuses on spinless,

point-particle modelizations of compact objects. Nevertheless, all the above presented frameworks
are naturally generalizable to include spins and finite-size effects.

We will not review the tremendous efforts that have been put in including spins and finite-size
effects in the two-body problem, but only sample some of the latest results, and let the interested
reader refer to references therein. For the traditional PN computations, the results with spins effects
are gathered in [73], see references therein. A double copy framework including spins has been derived,
and applied up to 2PM to the spin-spin coupling [50]. As for the EFT method, the conservative and
radiative spin-spin effects at next-to-leading order have also been recently computed [123], and were
found to perfectly agree with previous results.

Regarding finite-size effects, which enter at 5PN, they are known up to 2.5PN [225, 226, 227] and
2PM [122, 248] beyond the leading order, those results perfectly agreeing in the overlapping regions,
as proven in [227].
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Chapter III

Conservative sector

The main contributions of this thesis to the post-Newtonian field belong to the radiative sector,
and are exposed in the next chapter. As for the contribution to the conservative sector, it consisted
in the derivation of the logarithmic “tail” effects, ie. the impact of non-linear radiative processes on
the conservative dynamics. Those computations were pushed to high accuracy, using new synergies
between traditional PN and EFT methods. The technical parts of this chapter, presented in sec. III.2
and III.3, are thus extensively based on the work done in collaboration with L. Blanchet, S. Foffa
and R. Sturani, published in [96].

III.1 The tail effects in General Relativity
As advertised in sec. II.1.4, the non-linear nature of GR yields interesting “tail” effects, that are

known since a long time [103, 335] and were formalized in the multipolar post-Minkowskian context1

in [74, 75].
From a phenomenological point of view, the tails can be understood as scatterings of gravita-

tional waves onto the static curvature of the space-time. Those scatterings induce effects in both
conservative and radiative sectors. In the conservative sector, back-reactions of the waves into the
binary modify its motion, and thus naturally change its dynamics. In the radiative sector, waves
that are scattered back into the observers line of sight will induce a typical power-law decay of the
signal, thus the name of “tails”. The tail effects for an instantaneous burst of gravitational radiation
is schematically represented in fig. III.1.

In the multipolar post-Minkowskian language of app. B, the three-dimensional2 linearized metric
can be expressed as
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with ML (SL) the mass (current) type canonical multipole moments, numbers in parenthesis denote
time derivatives and the indices L are shorthands for ℓ indices, eg. ∂L ≡ ∂i1i2...iℓ , see app. A.1.3. The

1As tail effects are radiative by nature, we will make extensive use of the radiative machinery in this chapter. We
thus strongly invite the unfamiliar reader to use the post-Minkowskian toolkit of app. B.

2Here and henceforth, the split between space and time has been performed, and we speak about spatial dimensions.
In the following, we will use d-dimensional quantities (d being arbitrary) for regularization purposes.
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Figure III.1: Schematic effects of the scattering of gravitational waves onto the static curvature.
In this space-time diagram, time flows from bottom to top, whereas the transverse direction is the
radial dimension. In red is the primary propagation of a flash of radiation; some of the tail effects
are represented in blue; in green are the tail-of-tail ones (higher scattering processes are omitted).
The black straight line represents the world-line of an observer located at infinity, eg. the LISA
instrument. Both conservative effects (via the back-reactions of the waves into the dynamics of the
binary) and radiative effects (via the delayed arrivals of gravitational radiation) are to be observed.

ℓ = 0 mass moment, M, is simply identified with the conserved ADM mass M . The tails can thus
be understood as the interplay of multipolar moments in the quadratic (and higher) iterations, that
arise when injecting this linear metric in the non-linear source Λµν , as explained in app. B.2.3. The
interaction M × M is nothing but the PM expansion of the Schwarzschild geometry, and the dipole
moment Mi is naturally vanishing in the center-of-mass. Thus the leading interesting interaction is
M × Mij, ie. the interaction of the quadrupolar radiation and the static mass, which is nothing but
the simple tail process. Similarly, the octupolar tail is the interaction M × Mijk, the quadrupolar
tail-of-tail is given by M × M × Mij, etc, and this is trivially generalized to current type tails. Such
formalism has been developed in the radiative zone, and thus directly applies to the radiative sector.
In the waveform, the simple tails appear at 1.5PN order and each iteration is 1.5PN higher than the
precedent. They have been computed (using three-dimensional techniques) up to 4.5PN [276], ie.
including the tail-of-tail and tail-of-tail-of-tail contributions.

In the conservative sector, the mathematical emergence and proper treatment of tails is more
subtle, as they arise via the crucial matching of the near zone and far zone solutions. This matching
has to be dealt with great care by a well chosen and properly regularized homogeneous solution
of the PN-expanded d’Alembertian operator. Understanding how to treat this term was crucial to
fix the last ambiguity parameter in the 4PN conserved energy from first principles, see [56, 277].
Those simple tails appear thus in the conserved energy starting at the (state-of-the-art) 4PN order
and each iteration is again 1.5PN higher than the precedent. The 1PN corrections to the simple
tail contributions have been derived [91, 132, 261], as well as the 2PN corrections, but only in the
gravitational self-force limit [62]. The leading tail-of-tail effects (thus entering at 5.5PN in the energy)
are also known in the gravitational self-force limit [62].

An extremely interesting feature of those tails is that they are non-local in time. Indeed, at a given
instant, the binary receives scattered waves from all of its previous emissions, and thus its dynamics
is influenced by its whole history. In the simple case of quasi-circular orbits, this non-locality in time
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implies that the conserved energy bears logarithmic dependencies in the orbital frequency. In the
following of this chapter, we will focus on those tail-induced logarithmic contributions in the energy.
As the subtleties linked with the 4PN ambiguity came from the instantaneous sector of the tail
effects [56, 277], we can safely neglect them in the following of the chapter. It thus follows that we
can directly do our computation in a three-dimensional space, as there is no need for d-dimensional
regularization schemes.

III.2 The logarithmic simple tail contributions

III.2.1 An effective action for the simple tail terms
The starting point of this computation is an effective action, that was proposed in [195], for all

the non-local simple tails, involving all multipolar contributions ℓ ⩾ 2. This action only considers
non-local terms and can be recognized as being part of the effective action of EFT or equivalently,
the Fokker action of traditional PN methods (see eg. eq. (3.18) of [277]). Originally written in the
frequency domain, it reads

Snl
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ℓ=2
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2π ln
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0

[
aℓ |ĨL(k0)|2 + bℓ

c2 |J̃L(k0)|2
]
, (III.2)

where M is the ADM mass, IL(t) and JL(t) denote the mass and current type source multipole
moments3 with Fourier integrals

ĨL(k0) =
∫ +∞

−∞
dt IL(t) eik0t and J̃L(k0) =

∫ +∞

−∞
dt JL(t) eik0t . (III.3)

In traditional PN methods the mass and current multipoles are defined in harmonic coordinates by
the metric (III.1). In (III.2) ℓ0 is an arbitrary energy scale coming from dimensional regularization,
defined by the ratio of Newton constants in d and three dimensions, see eq. (A.7). Finally the
coefficients in (III.2) are exactly those which appear in the multipole expansion of the gravitational
wave energy flux [335], namely

aℓ = (ℓ+ 1)(ℓ+ 2)
(ℓ− 1)ℓℓ!(2ℓ+ 1)!! , and bℓ = 4ℓ(ℓ+ 2)

(ℓ− 1)(ℓ+ 1)!(2ℓ+ 1)!! . (III.4)

In the time domain, the non-local action (III.2) becomes
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where we have defined the non-local pieces

IL(t) ≡
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together with the same definition for the functional JL[JL]. Here the scale τ0 is related to ℓ0 by
cτ0 ≡ ℓ0 e

−γE , with γE being the Euler constant.4 The expression (III.6) is equivalent to the following
form, involving the Hadamard finite part prescription in terms of the scale τ0,

IL(t) = Pf
τ0

∫ +∞

−∞

dt′
|t− t′|

IL(t′) , (III.7)

3We recall that they differ from the mass and current type canonical multipole moments ML and SL by 2.5PN
corrections [187].

4For a conservative dynamics, the source moments are time symmetric, IL(−t) = IL(t), and we can check that the
definition (III.6) is also time symmetric, ie. IL(−t) = IL(t).
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in terms of which the time-domain action (III.5) takes the elegant form
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. (III.8)

In the derivation of the 4PN equations of motion, either by Hamiltonian, Lagrangian or EFT meth-
ods, it was proved that the unphysical scale ℓ0 (or equivalently τ0) originally present in the tail
action (III.2) disappears from the final total action, and that the distance between the two bodies
plays the role of the cut-off scale in the logarithmic term. Therefore we fix the unphysical scale τ0
in eq. (III.8) to be τ0 = r/c, where r is the distance in harmonic coordinates. For a more detailed
derivation of the substitution τ0 → r/c, due to the interplay between near and far zone logarithms,
we refer the interested reader to Sec. IV of [194].

A proof that the effective action (III.2) indeed describes the dynamics of the non-local tail effects
has been provided in the EFT language in [96] (see also [195]), and relies on the relation sketched
in fig. III.2. This relation states that the logarithmic, non-local part of the tail contributions to
the self-energy Feynman diagram can be directly extracted from to the imaginary part of the “raw”
self-energy diagram. A proof relying on traditional PN methods has been sketched in the App. A
of [96], and achieved at the 1PN, 1PM level.

∋ −GM k0

c2

[ 1
d− 3 + 2 ln

(
|k0|ℓ0

)
− i π

]
×Im :

Figure III.2: Schematic representation of the relation between the tail self-energy amplitude (which
includes also a real finite, local term) and the purely imaginary self-energy diagram. The black lines
represent the two compact objects; the red curly lines, the graviton propagators; and the blue dashed
line, the potential interaction sourced by the mass M . The logarithmic term fully determines the
non-local tail action (III.2); the imaginary part relates the tail contribution to the energy flux, which
is proportional via a factor GMk0π to the non-tail radiation flux; finally the UV pole 1/(d − 3)
cancels the IR pole coming from near-zone conservative contributions. See [96] and reference therein.

So it is clear that the tail terms yield logarithmic contributions to the energy, but are they the only
ones to contribute ? From the EFT point of view, such logarithmic contributions are associated with
UV divergent diagrams in the far zone, their divergence being exactly compensated by an opposite
IR divergence from the near zone, and the logarithmic terms from near and far zones combine to
give a ln(k0r) term [194]. As explicitly shown in [195], divergent terms do not appear in leading
order memory diagrams (eg. ML × ML interactions), which give instantaneous contributions to the
self energy. Simultaneously, the “failed” tail diagrams (involving an angular momentum instead
of the mass M at the insertion of the blue dashed line onto the source in fig. III.2) yield only
instantaneous contributions. However additional sub-leading logarithmic terms are expected from
mixed tail-memory processes, eg. from M × ML × ML interactions, but those appear beyond the
accuracy we intend to reach.

Similarly, in traditional PN methods, all the logarithms are generated by tails propagating in
the far zone, as well as iterated tail-of-tails and sub-leading tail-memory couplings. In turn, the
logarithms in the far zone give rise to logarithms in the near zone, through the matching procedure.
Notice that in intermediate steps of the calculation there are other logarithms which appear, but
these are pure gauge and cancel out in gauge invariant quantities. This is the case of the logarithms
at the 3PN order in the equations of motion in harmonic coordinates, which disappear from the
invariant circular energy and angular momentum [73]. In the following we assume (rather than
explicitly check) that these gauge logarithms properly cancel up to the required PN order.
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III.2.2 Contributions to the dynamics
In the action (III.8), the multipole moments IL and JL (and also the mass M) are functionals of

the particles’ positions, velocities, accelerations, etc. We know that the action can be order reduced
by means of the equations of motion, and that the variables can be expressed in the center-of-
mass frame, so that the action (III.8) is an ordinary action depending on the relative separation
xi = yi1 − yi2 and velocity vi = dxi/dt of the two particles. And, as we said, the tail term is obtained
with τ0 = r/c where r = |xi| is the separation between particles. We denote by m = m1+m2 the total
mass, ν = m1m2/m

2 the symmetric mass ratio and will omit to write explicitly the contributions
due to current type multipoles, as they are easily restored by (IL, IL, aℓ) → (JL,JL, c

−2bℓ).
We vary the action (III.8) with respect to the particles’ relative variables, taking into account

the non-local structure of the action (see [54] for more details). Considering the multipole moments
as functionals of the independent variables xi and vi we get the direct contribution of tails in the
acceleration ai = dvi/dt as5
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(III.9)

Furthermore, at high PN orders, there will be also other tail contributions (not detailed here) coming
from the replacements of accelerations in lower order terms of the final equations of motion, as well
as coming later from the reduction to quasi circular orbits. From the tail contribution (III.9) in
the acceleration we obtain the corresponding tail contribution in the conserved energy, via the usual
multiplication by mν vi and subsequent integration (see [55] for details)
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(III.10)

Those terms are easily derived, except the last one δHℓ which represents a non trivial correction to be
added in the case of the non-local dynamics, for which the Noetherian conserved energy E actually
differs from the value of the non-local Hamiltonian H computed on shell [55]. This term satisfies

dδHℓ

dt = I
(ℓ+1)
L I(ℓ+2)

L − I
(ℓ+2)
L I(ℓ+1)

L , (III.11)

which is the generalization of eq. (3.8) of [55] in the case of generic multipole moments. In analogy
to similar relations discussed in [69, 195, 209], note that the time average over one period of this
term is related to the energy flux,

⟨δH⟩ = −2GM
c3 F source

GW , (III.12)

where we have naturally denoted δH = ∑ G2Maℓ

c2ℓ+4 δHℓ + identical contribution for the current moments,
and where the total (averaged) energy flux associated with the source moments IL and JL reads
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5We ignore the variation of the scale τ0 = r/c since this gives an instantaneous term, without logarithms.
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This result seems to confirm the soundness of the general action (III.8) with the general coef-
ficients (III.4) and source moments IL and JL. Nevertheless, and as detailed in the discussion
in sec. III.3.3, it appears that we should rectify this formalism at high PN orders.

As presented hereafter, and contrary to the other contributions in (III.10), the term δHℓ will not
contribute to the logarithmic part of the conserved energy when dealing with quasi-circular orbits.

Derivation of the extra contribution in the non-local energy

Let us focus on the extra contribution satisfying eq. (III.11). By recasting the functional (III.7)
as

IL(t) = Pf
τ0

∫ +∞

−∞

dτ
|τ |

IL(t+ τ) , (III.14)

one can perform a formal Taylor expansion when τ → 0. As the kernel 1/|τ | is even, it only suffices to
select even powers of τ in the expansion of IL(t+ τ). This procedure will naturally lead to divergent
integrals (due to the behaviour at τ → ±∞). To cure those divergences, let us modify the kernel by
introducing a regulator e−ϵ|τ |, with an arbitrary parameter ϵ > 0, that will be put to 0 at the end
of the computation. Thanks to this regulator, the Hadamard partie finie is no longer needed (the
integrals are now convergent at τ = 0). With this modified kernel, and after some integrations by
part, it comes as a generalization of eq. (3.11) of [55]:
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L I

(ℓ+2n−s)
L + (−)n

(
I

(ℓ+n+1)
L

)2
]∫ +∞

−∞

dτ e−ϵ|τ |
|τ |

τ 2n

(2n)! .

(III.15)
To resum the Taylor series, we introduce the Fourier decomposition of the multipoles, following [35],

IL(t) =
+∞∑
p=−∞

+ℓ∑
m=−ℓ

Ĩ
(p,m)

L e
i (p+m k)M , with Ĩ

(p,m)
L =

∫ 2π

0

dM
2π IL e

−i (p+m k)M , (III.16)

where M ≡ ω(t − t0) is the mean anomaly of the binary motion, with ω = 2π/P being the orbital
frequency, and t0 an instant of reference. The index p corresponds to the usual orbital motion, and
the “magnetic-type” index m, to the relativistic precession (k being defined by the precession of
the periastron per period, ∆GR = 2πk). The discrete Fourier coefficients (p,m)ĨL naturally satisfy
(−p,−m)ĨL = (p,m)Ĩ

⋆
L, with the star denoting the complex conjugation. In the following, we will denote

p̃ ≡ p+m k and thus p̃ĨL ≡ (p,m)ĨL. Separating the constant part p̃+ q̃ = 0 from the oscillating one,
and resuming with respect to n, the equation (III.15) reads

δHℓ = −
∑
p̃

(p̃ω)2ℓ+2 | Ĩ
p̃
L|2

∫ +∞

−∞

dτ e−ϵ|τ |
|τ |

p̃ωτ sin (p̃ωτ)

− (−)ℓ
2

∑
p̃+q̃ ̸=0

(
p̃q̃ω2

)ℓ+1
Ĩ
p̃
L Ĩ
q̃
L
p̃− q̃

p̃+ q̃
ei(p̃+q̃)M

∫ +∞

−∞

dτ e−ϵ|τ |
|τ |

[
cos (p̃ωτ) − cos (q̃ωτ)

]
.

(III.17)

Using the integration formulas
∫ dτ e−ϵ|τ |

|τ |
p̃ωτ sin (p̃ωτ) = 2 + O(ϵ) , and

∫ dτ e−ϵ|τ |
|τ |

[
cos (p̃ωτ) − cos (q̃ωτ)

]
= −2 ln

∣∣∣∣∣ p̃q̃
∣∣∣∣∣+ O(ϵ) ,

(III.18)
it finally comes, by setting the regulator ϵ to zero,

δHℓ = −2ω2ℓ+2
[∑
p̃

| Ĩ
p̃
L|2p̃2ℓ+2 − (−)ℓ

2
∑

p̃+q̃ ̸=0
Ĩ
p̃
L Ĩ
q̃
L
p̃ℓ+1q̃ℓ+1(p̃− q̃)

p̃+ q̃
ln
∣∣∣∣∣ p̃q̃
∣∣∣∣∣ ei(p̃+q̃)M

]
. (III.19)
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The total contribution in the conserved energy that is due to those extra terms reads

δH =
∞∑
ℓ=2

G2M aℓ
c2ℓ+4 δHℓ + (current moments contribution) . (III.20)

Averaging over one period, only the first term in (III.19) survives, and yields

⟨δH⟩ = −2GM
c3

+∞∑
ℓ=2

G

c2ℓ+1

[
aℓ I

(ℓ+1)
L I

(ℓ+1)
L + bℓ

c2J
(ℓ+1)
L J

(ℓ+1)
L

]
. (III.21)

This confirms the previously stated relation (III.12).

III.2.3 The case of quasi-circular orbits
In order to explicitly compute the tail effects for a binary, we need to specify its whole history,

as the tail integral (III.7) involves an integration on its remote past. From now on, we model the
evolution of the binary as a series of shrinking circular orbits in the adiabatic approximation, the
so-called “quasi-circular orbits”. Taking circular orbits simplifies drastically the computation, as
non-circular parametrizations usually rely on small-eccentricity developments, and the tail sector
becomes quite involving (see eg. [135]). The adiabatic approximation implies that the timescale of
the decrease in radius of those orbits (cause by the energy loss through gravitational radiation) is
very large compared to the orbital period. Therefore in practical computations, one can consider
only one timescale: the orbital period 2π/ω.

When specialized to bound orbits, the tail integrals IL and JL become local (as the time in-
tegration can be explicitly performed) and, in the case of quasi circular orbits, they become (see
eg. [54]):

IL = −2IL
[
ln
(
r ω

c

)
+ γE

]
, and JL = −2JL

[
ln
(
r ω

c

)
+ γE

]
, (III.22)

where γE denotes the Euler constant and we recall that τ0 = r/c. As we focus on logarithmic
contributions, we can naturally ignore the Euler constant. Hence we obtain the purely logarithmic
contributions in the tail acceleration (III.9) for circular orbits as

∆aitail = − 2
mν

+∞∑
ℓ=2

G2aℓ
c2ℓ+4

[
∂M

∂xi

(
I

(ℓ+1)
L

)2
− d

dt

(
∂M

∂vi

(
I

(ℓ+1)
L

)2
)]

ln
(
r ω

c

)

− 4
mν

+∞∑
ℓ=2

G2Maℓ(−)ℓ+1

c2ℓ+4

[
∂IL
∂xi

I
(2ℓ+2)
L − d

dt

(
∂IL
∂vi

I
(2ℓ+2)
L

)]
ln
(
r ω

c

)
+ identical contribution for the current moments .

(III.23)

As for the logarithmic contributions in the conserved energy (III.10), we find for circular orbits

∆Etail = − 2
+∞∑
ℓ=2

G2aℓ
c2ℓ+4 v

i∂M

∂vi

(
I

(ℓ+1)
L

)2
ln
(
r ω

c

)

− 4
+∞∑
ℓ=2

G2Maℓ(−)ℓ+1

c2ℓ+4

 ℓ∑
p=1

(−)pI(p)
L I

(2ℓ+2−p)
L − (−)ℓ

2
(
I

(ℓ+1)
L

)2
+ vi

∂IL
∂vi

I
(2ℓ+2)
L

 ln
(
r ω

c

)
+ identical contribution for the current moments .

(III.24)
We recall that the extra contribution δHℓ in the energy is explicitly given by eq. (III.19) and does
not contain logarithmic terms for circular orbits.
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III.3 Logarithmic contributions in the conserved energy

III.3.1 Simple tail contributions
As an application, we compute logarithmic contributions to the circular energy, as a function

of the orbital frequency, or the equivalent 1PN gauge invariant quantity x ≡ (Gmω/c3)2/3, with
m ≡ m1 + m2. Up to now, such contributions have been computed up to 5PN order [91, 132, 261],
while at 6PN order only the leading term in the symmetric mass ratio ν ≡ m1m2

m2 is known [62]. Using
the material displayed in the previous section, the only limitation to compute all the logarithmic
terms coming from simple tails is the knowledge of the multipole moments. Given that the state-of-
the-art is 3PN for the dominant ℓ = 2 mass quadrupole moment, and that the effect starts at 4PN
precision, we are presently able to provide such terms up to 7PN order.6

As advertised in the previous chapter, the multipole moments have not been computed at that
order by means of EFT methods, so we rely on the source moments computed by PN-MPM tech-
niques. In order to apply the formula of the previous section at 7PN, we have to order-reduce the
derivatives of the multipole moments by means of the equations of motion obtained from the non-
local formulation, so that the acceleration (III.23) and energy (III.24) are expressed only in terms
of r and ω, or equivalently, in terms of x and γ ≡ Gm/(rc2). We then use the expression of the
acceleration in the adiabatic approximation, ai = −rω2ni, and express it in terms of the two PN
variables, as ai = −x3c4/(Gmγ)ni. By plugging the values of the multipolar moments, we express
ai (which is the sum of the usual acceleration at 3PN order and of the tail contribution (III.23))
in terms of γ and x. This yields the relation γ(x) at the required accuracy. The energy (which is
similarly the sum of the usual energy at the 3PN order and of the tail contribution (III.24)) is also
expressed in terms of γ and x and, by plugging the previously found γ(x) and selecting only the
logarithmic contributions, it comes

Eln
simple-tail = −mν2

2 x5 ln x
[448

15 +
(

−4988
35 − 656

5 ν
)
x+

(
−1967284

8505 + 914782
945 ν + 32384

135 ν2
)
x2

+
(16785520373

2338875 − 1424384
1575 ln

(
r

r0

)
+
(2132

45 π2 − 41161601
51030

)
ν

−13476541
5670 ν2 − 289666

1215 ν3
)
x3 + O

(
x4
)]
,

(III.25)
where r0 is the unphysical UV regulator which appears in the expression of the 3PN mass quadrupole
moment, see eg. [73]. Such constant is nevertheless just an artefact and as such should disappear from
final results. As discussed in the following, this is realized by taking into account the tail-of-tail-of-tail
contributions.

The 4PN and 5PN coefficients, as well as the leading order 6PN coefficient in the test mass limit
ν → 0, confirm previous findings in the literature [62, 91, 132, 261], while all the remaining ones are
derived here for the first time.

III.3.2 The relative 3PN logarithmic contributions
As the iterated tails appear at relative 1.5PN orders, the result (III.25) does not encompass the

whole logarithmic sector at 7PN: the tail-of-tails and tail-of-tail-of-tails may also contribute.

The tail-of-tail contributions

The simplest iterated tails are the so-called tail-of-tails (or (tail)2) and correspond to the cubic
interactions M×M×ML and M×M×SL. They arise at 5.5PN in the conserved energy (corresponding

6Note that the source and canonical moments are similar at this accuracy. Indeed the source and canonical mass
quadrupole moments differ by a 3.5PN term, and other moments, by 2.5PN terms, see [187].
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to 3PN in the asymptotic waveform [70, 209]), which is possible because of the non-locality involved7

(half-integer PN orders are usually associated with dissipation effects). By contrast to the simple
tails, or to any (tail)n with n odd, the (tail)2 will not bring any logarithmic dependence in the
conserved energy, at least up to 7.5PN order (see [93, 94] for discussions). The effects of the (tail)2

in the redshift variable have been computed using traditional PN methods at the leading order when
ν → 0, ie. in the gravitational self-force (GSF) limit [168]. From this quantity, it is possible to
extract the contribution of the (tail)2 to the energy function, by using the first law of binary point-
like particle mechanics. At the best of our knowledge, this has not been done yet, and only the
leading PN order is known [62], thus we present the derivation in the present section.

In the non-spinning case, and for circular orbits, the first law of binary point-like particle me-
chanics [199, 261] relates the variation of the total ADM mass M and the total angular momentum
J to the variation of the individual masses m1 and m2 as

δM − ω δJ = z1 δm1 + z2 δm2 , (III.26)

where ω is the circular orbital frequency and z1 and z2 are the gravitational redshift variables.8 In
the GSF limit, the expressions for those variables is known analytically from usual PN methods
up to 3PN order [90] (the logarithmic coefficients at 4PN and 5PN being added in [91, 261]), from
analytical GSF methods up to 21.5PN [251] and from numerical ones up to 22PN [200]. Expressed
in terms of the 1PN variable x, it reads

z1 =
√

1 − 3x+ ν zSF(x) + O(ν2) , (III.27)

where
√

1 − 3x is the Schwarzschild redshift in the test mass limit. The tail-of-tails in the GSF part
of the redshift variable are known analytically up to the 2PN relative order, and read [93, 94]9

z
(tail)2

SF = π x13/2
[13696

525 − 368693
3675 x− 361209292

3274425 x2 + O
(
x3
)]
. (III.28)

Note that these terms represent the full contributions in the redshift variable to these orders, and they
are in agreement with modern analytic SF computations of the redshift up to high PN order [251].

Integrating the first law (III.26), it is possible to express the conserved energy of the test particle
in terms of its redshift variable as [260]

E

mν
= 1 − 2x√

1 − 3x
− 1 + ν ESF(x) + O

(
ν2
)
, (III.29)

where the interesting contribution reads

ESF(x) = 1
2 zSF(x) − x

3 z
′
SF(x) +

√
1 − 3x− 1 + x

6
7 − 24x

(1 − 3x)3/2 . (III.30)

Plugging the redshift (III.28) in this expression, the energy contribution of the tail-of-tails reads

E(tail)2(x) = −mν x

2

{
ν π x11/2

[
27392
315 − 1474772

3675 x− 722418584
1403325 x2 + O

(
x3
)]

+ O
(
ν2
)}

. (III.31)

Starting at the 6.5PN order we also expect couplings between the simple tail and memory effects,
eg. M × ML × ML, to contribute to the conservative dynamics. However such effects do not enter
the formulas (III.28) and (III.31), as they only affect terms of higher-order in ν.

The leading 5.5PN term of (III.31) was already computed in [62], and shows perfect agreement.
Both the 6.5 and 7.5PN sub-leading terms are new contributions.

7The fact that the conservative dynamics contains half-integer PN orders starting at 5.5PN has been discovered in
high-precison numerical gravitational self-force calculations [328].

8Defined as the redshift experienced by a photon emitted by one of the masses and observed at infinity in the
direction of the angular momentum.

9Note that the quantity used in those references is uT
1 = 1/z1 and is expressed in terms of y = x(1 + m1/m2)−2/3,

thus the different numerical coefficients. Here m1 ≪ m2 is the smaller mass orbiting the larger one m2.
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The tail-of-tail-of-tail contributions

The simple tail contributions displayed in eq. (III.25) are the only logarithmic terms contributing
to the observable E(x) up to 6PN order, while at 7PN one should account also for the leading order
tail-of-tail-of-tail or (tail)3 terms, which are expected to cancel out the residual UV regulator r0.

The leading order (tail)3 contribution to the energy, which contains both ln and (ln)2 terms, is
purely quadratic in the mass ratio ν (because the quadrupole is linear in ν at Newtonian order).
This means that while the ν-dependent 7PN terms in the square bracket of eq. (III.25) account for
the total logarithmic contributions, this is not true for ν-independent ones, so that we can write the
7PN logarithmic sector of the total energy as

Eln
7PN(x) = −mν2

2 x8 ln x
[
cln2

7PN ln x+ cln
7PN +

(2132
45 π2 − 41161601

51030

)
ν − 13476541

5670 ν2 − 289666
1215 ν3

]
.

(III.32)

The coefficient cln2

7PN will be computed from first principles in sec. III.3.4. For the moment we just
notice that both cln

7PN and cln2

7PN can be derived from GSF redshift results by proceeding along the
same lines as in the (tail)2 case. Using the results of [235], we find

cln
7PN = 85229654387

16372125 − 1424384
1575

(
γE + ln 4

)
, and cln2

7PN = −356096
1575 . (III.33)

This result allows us to predict the leading order (tail)3 contribution as the difference between eq. (III.32)
and the 7PN part of eq. (III.25), namely

Eln
(tail)3(x) = −mν2

2 x8 ln x
{

−356096
1575 ln x− 108649792

55125 + 1424384
1575

[
ln
(
r

r0

)
− γE − ln 4

]
+ O (x)

}
.

(III.34)

Note that the coefficient of γE in (III.33) is exactly matching the one of ln(r/r0) in eq. (III.25),
thus giving an indication that the cancellation of the UV scale by the tail-of-tail-of-tails will be
straightforward, when performed from first principles.

The total logarithmic contributions at the relative 3PN order

In a nutshell, starting from an effective action for the simple tails (III.2) derived by EFT methods,
and employing source multipoles moments computed by traditional PN-MPM means, we were able
to derive the logarithmic contributions of simple tails in the conserved energy, up to 7PN order.
At this order, the full logarithmic structure receives contributions also from the tail-of-tail-of-tails,
whose direct computation has been reserved for future work. Nevertheless we were able to extract
this contribution from gravitational self-force results, and to derive the whole logarithmic sector of
the conserved energy at 7PN, that can be written as

Eln = −mν2

2 x5 ln x
{

448
15 +

(
−4988

35 − 656
5 ν

)
x+

(
−1967284

8505 + 914782
945 ν + 32384

135 ν2
)
x2

+
[85229654387

16372125 − 1424384
1575
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γE + ln 4
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51030

)
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−13476541
5670 ν2 − 289666
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1575 ln x

]
x3 + O

(
x4
)}

.

(III.35)

Although it does not contain logarithmic terms, we have also derived the contribution of the tail-of-
tails at leading order in the mass ratio, up to 7.5PN order, as presented in eq. (III.31).

42



III.3.3 Discussion on the reliability of the formalism
The fact that our result (III.35) agrees with all the previous computations, that the coefficient

of γE is exactly matching the one of ln(r/r0) in eq. (III.25) and the structure of eq. (III.12) are
strong indications that the framework developed in this section should be accurate. However, after
consequent discussions with L. Blanchet, S. Foffa, Q. Henry and R. Sturani, and long after the
publication of our work, I came to the conclusion that we applied it in an erroneous manner, but
that the result (III.35) is nevertheless correct. In a nutshell, I am convinced that the formalism should
be applied with some kind of radiative moments instead of source ones.10 Note that this would not
spoil agreements with the previous computations reported in the literature, as the difference strikes
only at 3PN beyond the leading order, ie. 7PN in the conserved energy, and that our work was the
first one to reach this accuracy.

When deriving the source quadrupole moment at the 4PN accuracy, we have found out that its
expression was dependent of the IR regularization scheme employed, as presented in details in the next
chapter. To summarize the discussion of sec. IV.3.3, the transition from the traditional Hadamard
regularization to dimensional regularization (imposed by the resolution of the ambiguity) leads to the
emergence of a divergence ∝ 1/(d− 3) starting at 3PN order. This pole is exactly compensated by a
UV pole coming from the instantaneous part of the d-dimensional tail-of-tails, and thus disappears
in the radiative quadrupole, as noticed as early as 2009 in the EFT language [209]. In this section,
we have used IR-Hadamard regularized source moments, and thus did not care about this pole (at
this time, the computation of the IR dimensional regularization of the mass quadrupole was not even
initiated). But this dependence on regularization schemes points out that the source moments are
not the good quantities to use.

In addition, the vertices of fig. III.2 (that is at the root of the proof of the effective action that
we used) are to be dressed. From a diagrammatic point of view, it means that all processes with
two matter and one graviton legs are to be included in the vertices, as schematically represented
in fig. III.3. Those additional contributions are simply given by loops involving source moments, ie.
tail, memory and other non-linear interplays. From a traditional PN point of view, those non-linearly
dressed vertices are simply given by radiative moments.

Figure III.3: Schematic dressing of the vertices of fig. III.2, for the quadrupolar moment. The ellipsis
encompasses all higher non-linear interactions, building up to give the radiative moment Uij.

A last indication that the multipoles entering the effective action (III.2) should not be the source
ones is given by the structure of eq. (III.12). The flux (III.13) is the one associated with source
moments, but the physical gravitational flux has to be expressed in terms of mass and current
radiative moments UL and VL as

FGW =
+∞∑
ℓ=2

G

c2ℓ+1

[
aℓ U

(1)
L U

(1)
L + bℓ

c2V
(1)
L V

(1)
L

]
. (III.36)

Once those three points are taken in consideration, it becomes less clear that the moments entering
the action (III.8) are the source (or canonical) ones. Instead, my conjecture is that, in order to

10The confusion has been caused by a misunderstanding between the traditional PN and EFT sides of the collab-
oration, that definitively use different languages when coming to the radiative sector. This points out the dramatic
necessity of building bridges between the different communities, as synergies can be extremely powerful, but require
a mutual understanding.
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properly treat the logarithmic contributions of the simple tails, we should have used the effective
action

S̃nl
tail =

+∞∑
ℓ=2

G2M

c2ℓ+4 Pf
τ0

∫∫ dtdt′
|t− t′|

[
aℓ Ũ

(1)
L (t)Ũ (1)

L (t′) + bℓ
c2 Ṽ

(1)
L (t)Ṽ (1)

L (t′)
]
, (III.37)

where ŨL and ṼL the instantaneous parts of the radiative moments. Note that ŨL and ṼL are
coordinate dependent, just as IL and JL were, but are independent of the regularization scheme at
3PN (and a priori up to at least 4PN), as discussed in the next chapter.

Even if we have not performed the computation with the effective action (III.37), we can guar-
antee that using it instead of eq. (III.8) would not change our final result (III.35). Indeed at 3PN
accuracy, the differences between IL and ŨL are the instantaneous sectors of the 1.5PN tail (together
with 2.5PN corrections) and 3PN tail-of-tail contributions. Those will induce a 7PN discrepancy
in the energy, involving two ADM masses and two Newtonian quadrupole moments. Therefore the
disagreement will be purely quadratic in the symmetric mass ratio, and will only affect the cln

7PN
coefficient of eq. (III.32). As this coefficient has been computed by means of GSF results, and thus
its value (III.33) is independent of the effective action used, we can conclude that using the effective
action (III.37) would still yield the final result (III.35). Note that using (III.37) would also yield odd
contributions in the energy, starting at the 5.5PN order. Those have also been computed by means
of GSF results (III.31), and thus the same reasoning applies.

Let us conclude this discussion by some words on the possibility of including the non-local in
time parts of UL and VL in the effective action (III.37). This would require to drastically refine the
machinery that led to the generic eqs. (III.9) and (III.10), in order to include infinitely nested non-
localities. Nevertheless, such task seems doable when truncated at some accuracy (eg. the relative
3PN order), and one can naively expect that those nested non-localities are linked to iterated tail
effects and contribute as higher powers of logarithms in the energy. It would thus be extremely
interesting to see if one can recover the whole logarithmic sector (III.35) from first principles by
using the 3PN radiative quadrupole instead of the source ones.

III.3.4 Leading logarithm contributions in the conserved energy
When computing the logarithmic tail contributions in the energy up to 7PN accuracy, it ap-

peared that we could also straightforwardly derive the dominant logn contributions, that enter at
(3n + 1)PN orders. The dominant log and log2 contributions are presented in (III.35) and were
respectively derived by means of the effective action (III.2) and GSF results. As for the higher
dominant logn contributions, we have used EFT techniques, deriving from the renormalization group
(RG) equations [211].

The renormalization group equations

Setting henceforth c = 1, we start from the RG equation for the total mass-energy M , see eq. (19)
of [211] that we copy here:

d lnM(µ)
d lnµ = −2G2

5
[
2I(1)
ij I

(5)
ij − 2I(2)

ij I
(4)
ij + I

(3)
ij I

(3)
ij

]
, (III.38)

where µ is the renormalization scale, and both the (Bondi11) mass M and quadrupole moment Iij
are defined at the scale µ. This equation traduces the leading radiative corrections that are to be
included into the definition of the mass. It agrees with the traditional PN eq. (4.6) of [57], with

11At the required order, and restricting to the conservative dynamics, the Bondi mass can however be traded for
the usual ADM mass. We thus use a similar notation, M , for both.
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the obvious replacement r12 → µ since we are only interested in the running with the scale µ. The
angular momentum J i undergoes a similar renormalization, that reads

dJ i(µ)
d lnµ = −8G2M

5 εijk
[
IjlI

(5)
kl − I

(1)
jl I

(4)
kl + I

(2)
jl I

(3)
kl

]
, (III.39)

and is the consequence of eq. (4.15a) of [57]. The quadrupole moment itself undergoes a logarithmic
renormalization under the RG flow, which is computable from the singularities in the tail-of-tail
effects in the EFT language. The relation between the quadrupole moment Iij at the scale µ and
the same quantity at the scale µ0, is reported by eq. (21) of [211] and reads in the Fourier domain
(with Ω the Fourier frequency)

Ĩij(Ω, µ) = µ̄βI(GMΩ)2
Ĩij(Ω, µ0) , (III.40)

where µ̄ ≡ µ/µ0 and βI = −214
105 is the coefficient associated with the logarithmic renormalization of

the mass quadrupole moment [209]. The latter relation can be recast in the time domain as

Iij(t, µ) =
+∞∑
n=0

1
n!
(
−βIG2M2 ln µ̄

)n
I

(2n)
ij (t, µ0) . (III.41)

Let us emphasize that this renormalization of the mass quadrupole is associated with the 3PN IR
pole that cancels the UV pole coming from the radiative tail-of-tail term, as presented in the next
chapter, where the constant βI plays an important role.

Short-circuiting eqs. (III.38) and (III.41), one can derive the mass renormalization group flow
equation, which reads

d lnM(µ)
d ln µ̄ = −2G2

5
∑
k,p⩾0
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(2p+3)
ij

]
(t, µ0) ,

(III.42)
and by integrating it, we obtain

ln M(µ)
M(µ0)

= −2G2
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ij I

(2p+5)
ij − 2I(2k+2)

ij I
(2p+4)
ij + I

(2k+3)
ij I

(2p+3)
ij

]
,

(III.43)
in which the quadrupole moment Iij in the right-hand side is defined at the scale µ0. Finally,
and for general orbits, we can average the previous result over an orbital period and approximate
ln M(µ)

M(µ0) ≃ M(µ)
M(µ0) − 1 (ie. discarding all terms higher than quadratic in the quadrupole moment), to

obtain [211] 〈
M(µ)
M

〉
= 1 −G2

+∞∑
n=1

(2 ln µ̄)n
n!

(
βIG

2M2
)n−1

⟨I(n+2)
ij I

(n+2)
ij ⟩ , (III.44)

where the brackets denote the time-average and M = M(µ0). Exactly the same procedure applied
to the angular momentum, ie. starting from eq. (III.39) gives similarly

⟨J i(µ)⟩ = ⟨J i(µ0)⟩ − 12G2M

5 εijk
+∞∑
n=1

(2 ln µ̄)n
n!

(
βIG

2M2
)n−1

⟨I(n+1)
jl I

(n+2)
kl ⟩ . (III.45)

Explicit leading lnn contributions

Let us work out the consequences of the two results (III.44) and (III.45) in the case of quasi-
circular orbits. In this case, there is no need of averaging and we no longer mention the time-average
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process. In the case of circular orbits, the combinations appearing in eqs. (III.44) and (III.45) are
given at leading order by

I
(n+2)
ij I

(n+2)
ij = 22n+3m2ν2 (Gm)n+2

r3n+2 , and εijkI
(n+1)
jl I

(n+2)
kl = 22n+2m2ν2 (Gm)n+1

r3n−1 ω Ĵ i , (III.46)

with Ĵ i the constant unit vector normal to the orbital plane such that εijkxjvk = r2ω Ĵ i, where we
recall that j = r2ω is the Newtonian value of the angular momentum per unit mass (II.5). At leading
order, the relations (III.44) and (III.45) yield

E ≡ M −m = 1
2mν r

2ω2 − Gm2ν

r
− 8mν2γ

2

βI

+∞∑
n=1

1
n!
(
8βIγ3 ln v

)n
, (III.47a)

J ≡ |J i| = mν r2ω − 48
5 G

2m3ν2 ω

βIγ

+∞∑
n=1

1
n!
(
8βIγ3 ln v

)n
. (III.47b)

In eq. (III.47) we have fixed the scale ratio µ̄ to be the relevant one for our purpose, that is the
ratio between the radiation zone scale µ ≃ λ−1

GW, where the observer is located, and the orbital scale
µ0 ≃ r−1 at which the eqs. (III.46) hold. Hence we can take µ̄ ≃ rω = v, where v is the orbital
velocity.

Furthermore, we also know that for circular orbits the two invariants E(ω) and J(ω) are not
independent but are linked by the “thermodynamic” relation

dE
dω = ω

dJ
dω , (III.48)

which is the consequence of the first law of binary black hole mechanics (III.26) when the individual
masses do not vary. The three relations (III.47) and (III.48) then permit to determine the orbital
separation r or equivalently γ, which is defined here in harmonic coordinates, as a function of the
orbital frequency:12

γ(x) = x

[
1 + 32ν

15

+∞∑
n=1

3n− 7
n! (4βI)n−1x3n+1(ln x)n

]
, (III.49)

together with the two invariants E(x) and J(x), that are related to each other by eq. (III.48):

E(x) = −mν x

2

[
1 + 64ν

15

+∞∑
n=1

6n+ 1
n! (4βI)n−1x3n+1(ln x)n

]
, (III.50a)

J(x) = m2ν√
x

[
1 − 64ν

15

+∞∑
n=1

3n+ 2
n! (4βI)n−1x3n+1(ln x)n

]
. (III.50b)

Summarizing, we have obtained the leading powers of the logarithms (ln)n in the conserved energy
for circular orbits, which can quite remarkably be explicitly resumed as

Eleading-(ln)n = −8mν2x2

15βI

[(
1 + 24βIx3 ln x

)
x4βIx

3 − 1
]
, (III.51)

where we recall that βI = −214
105 . Similarly, the leading powers of the logarithms (ln)n in the angular

momentum are
Jleading-(ln)n = −32m2ν2√x

15βI

[(
1 + 6βIx3 ln x

)
x4βIx

3 − 1
]
. (III.52)

12This crucial relation γ(x), as well as the angular momentum RG equation, are not discussed in [211]. We find
that working simply with the RG equation (III.44) for the mass-energy does not allow to get the correct result for the
invariant circular energy E(x), eq. (III.50a), for every n.
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For the linear and quadratic terms, one recovers the coefficients cln
4PN = 448

15 and cln2

7PN = −356096
1575

displayed in eqs. (III.25) and (III.33). Further comparisons with [251] (see App. B and the electronic
archive Ref. [19] there) show perfect agreement, via the first law of binary dynamics, between the
first terms of the infinite series (III.50a) and the high accurate self-force results, that is up to n ⩽ 7,
ie. up to the 21PN accuracy. This stresses the great consistency between EFT methods predicting
the RG equations (III.44)–(III.45) [209, 211], the traditional PN approach deriving the first law of
binary mechanics [261], and the state-of-the-art 21.5PN accurate SF calculations [251].
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Chapter IV

Radiative sector

We conclude the part devoted to the study of the two-body system by presenting the contribution
of this thesis to the developments of the radiative sector. As advertised in sec. II.3, only the PN-MPM
techniques are currently able to deal with high PN accuracy, and we are relying on such approach to
compute the gravitational waveform up to the 4thPN accuracy. To reach such precision, one crucially
needs the knowledge of the properly regularized mass-type radiative quadrupole at the 4PN order,
which is the subject of this chapter.

If the procedure and results of sec. IV.2 have been published in [278] (up to a small correction
to the final result, implemented in this dissertation), the computations of secs. IV.3 and IV.4 are
presented here for the first time.

IV.1 Towards the gravitational phase at the 4PN accuracy
The gravitational waveform at infinity, as felt by observers, is given by the radiative metric (B.29).

HTT
ij = 4G

c2R
PTT
ijab

∑
ℓ≥2

1
cℓℓ!

{
NL−2UabL−2

(
T − R

c

)
− 2ℓ
c(ℓ+ 1)NcL−2εcd(aVb)dL−2

(
T − R

c

)}

+ O
( 1
R2

)
,

(IV.1)

where PTT
ijab is the transverse and traceless projector. Due to the interferometric technology they rely

on, the current and planned gravitational wave detectors are more sensible to the phase than to the
amplitude of the waves. If the latter can be directly extracted from the radiative moments {UL, VL},
the former requires the knowledge of their explicit time dependence, which directly follows from the
motion of the two bodies. It is thus linked to the conservative sector and cannot be accessed from
the radiative sector only.

Instead, one has to rely on the flux-balance equations (II.18) to derive the gravitational phase.
We define the orbital phase ϕ as usual by dϕ

dt = ω, where ω is the orbital pulsation1 satisfying eg.
|vi| = rω. As presented in the previous chapter, the energy for circular orbits is usually expressed in
terms of the 1PN parameter x ≡ (Gmω/c3)2/3, with m ≡ m1 + m2. Similarly, the flux emitted by
binaries on circular orbits is also to be expressed in terms of x. Therefore the flux-balance equation
can be recast as dE(x)

dt = dE
dx

dx
dt = −F(x). Taking the reference time t0 as the merger time (or more

realistically, as the time at which the PN approximation breaks down), it comes

ϕ− ϕ0 =
∫ t

t0
dt ω = − c3

Gm

∫ x

x0
dx x3/2

F(x)
dE(x)

dx . (IV.2)

1Note that, due to their tensorial nature, gravitational waves have a fundamental pulsation ωGW = 2ω.
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In the case of Newtonian circular orbits, the energy and flux read [73] E = −mνc2x
2 and F = 32c5ν2x5

5G ,
with ν ≡ m1m2

m2 . Applying the former integral, it comes ϕ(x) = ϕ0 − x−5/2

32ν . This parametrization in
terms of x (or equivalently, in terms of ω) is quite convenient for the data analysis of the gravitational
observations, that monitor the time evolution of the frequency of the signal. At the Newtonian
level, the flux-balance equation can be expressed in terms of the fundamental frequency of the wave
f = ωGW

2π = ω
π

= πc3

Gm
x3/2 as

df
dt = 96

5
π8/3(Gm)5/3

c5 ν f 11/3 = 96
5 π

8/3
(
GMc

c3

)5/3
f 11/3 , (IV.3)

where we have defined the “chirp mass” Mc = mν3/5. By using the lower order approximation for the
gravitational radiation, only this special combination of the masses is thus measurable. In order to
access individual masses, and naturally to refine the measure of the parameters of the binary system,
one needs to break the degeneracy by including higher orders in eq. (IV.3). The state-of-the-art is
the 3.5PN accuracy [73], and thus the aim is to push the computation of ϕ up to the 4PN order.
Obviously in order to reach such precision, we need the expressions of the energy and flux up to
4PN. The former is known and has been confirmed by independent methods (cf. sec. II.3.1), so we
need to compute the latter. In terms of radiative moments, the flux is expressed as [335]

F =
∑
ℓ≥2

G

c2ℓ+1

[
aℓ U

(1)
L U

(1)
L + bℓ

c2 V
(1)
L V

(1)
L

]
, (IV.4)

where the coefficients are the same as in eq. (III.4), namely

aℓ = (ℓ+ 1)(ℓ+ 2)
(ℓ− 1)ℓℓ!(2ℓ+ 1)!! , and bℓ =

(
2ℓ
ℓ+ 1

)2

aℓ . (IV.5)

At this point let us emphasize a direct consequence of this formula for high PN orders: the prac-
tical computation of the flux is highly dependent on the equations of motion. Indeed the radiative
multipoles involve accelerations and derivatives of the acceleration (either in the expressions of the
source (B.12) and gauge moments (B.20), or in the relation between the radiative and canonical
moments, as in eq. (B.30)). Therefore, one should lead the investigation of the radiative sector in
a manner that is consistent with the conservative one. This can be realized notably by using the
same coordinate system, as done when computing the flux in the PN-MPM procedure: the radiative
coordinates are the same than those used in the Fokker Lagrangian method. This is why this par-
ticular method was able to deal with the ambiguities, as both radiative and conservative sectors can
be treated within a common formalism.

Thus the regularization scheme used in the conservative sector should also be used for the deriva-
tion of the flux. If the historical regularization scheme was the Hadamard one, UV divergences
appearing at 3PN were too strong to be cured this way. Those are related to the point-particle
approximation, and thus a UV dimensional regularization scheme had to be implemented to yield
the consistent dynamics at 3PN order [87]. The final results contained a UV pole ∝ 1/(d − 3) that
has been removed by an unphysical coordinate shift. When computing the flux at 3PN, the used ac-
celeration was the d-dimensional one, and similarly the residual pole was removed by the exact same
coordinate shift [88]. This was a strong confirmation of the accuracy of the PN-MPM framework.

At the 4PN order, an additional IR dimensional regularization had to be implemented in the
equations of motion, to deal with divergences coming from the PN expansion formally extending
to infinity. This IR regularization was part of the resolution of the ambiguities, and similarly a
residual IR pole was removed by means of a coordinate shift. Therefore, we need to perform this IR
dimensional regularization when computing the flux, and applying the subsequent coordinate shift.
If this succeeds in compensating the remaining poles, it will be a powerful consistency check of the
method used.
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The dominant contribution to the flux (IV.4) is given by the radiative mass quadrupole Uij.
Therefore, in order to compute the flux at 4PN, one needs Uij at the same order, and thus one has
to implement UV and IR regularization schemes when computing it. In practice, this computation
(that is currently reaching its completion) has been split in three major steps, corresponding to the
three next sections. First, the source mass quadrupole Iij is computed with the historical Hadamard
regularization and a UV regularization scheme is implemented. Second, the IR dimensional regu-
larization scheme is applied on Iij. Finally the non-linear interactions are computed and properly
regularized, to yield Uij. Starting by computing Iij with a Hadamard regularization scheme rather
than directly in d dimensions may seem a loss of time. It is in fact a powerful gain of energy. Indeed
the Hadamard computations are largely simpler to perform than the d-dimensional ones, and the
sectors in which both regularization schemes differ are well identified. Therefore, we rarely compute
quantities in d dimensions, but rather derive and apply formulas to compute the difference between
the two regularization schemes, that we add to the Hadamard regularized quantities.

As for the other radiative moments, the difficult computation of the current quadrupole Vij at
3PN order, and its proper UV dimensional regularization2 were tackled by Q. Henry, L. Blanchet
and G. Faye [228]. The (UV regularized) 3PN mass octupole Uijk has been derived in [188], and
checked (ie. recomputed) by Q. Henry. The other moments are at most 2PN, and thus do not require
dimensional regularization. They are all known at the required PN order, see eg. [73, 89].

IV.2 The Hadamard regularized mass quadrupole
The first step towards the computation of the 4PN radiative mass quadrupole is the derivation

of the source mass quadrupole, using a UV regularization scheme on top of the Hadamard one. Such
project was initiated during the PhD thesis of T. Marchand (under the direction of L. Blanchet and
in collaboration with G. Faye), and was nearly finished at the end of the thesis. Nevertheless, such
computation is extremely involving and errors are quite difficult to track down, so it is customary
to perform a “double-blind” computation: two different persons compute independently the same
quantity, and compare their final results. As T. Marchand’s computation of Iij lacked a “double-
blind” confirmation, Q. Henry and myself recomputed it at the beginning of our PhD thesis. While
Q. Henry carried the major part of this unglamorous task, I recomputed the “quadratic potentials”,
as presented in sec. IV.2.2, and reapplied the UV shift, as described in sec. IV.2.4. But my main
contribution to this project was to derive the surface terms (see sec. IV.2.3), in a “double-blind”
configuration, together with S. Marsat. If the next section presents an overview of the various
methods used for the 4PN computation of Iij, we will only detail the computations in which I
effectively took part, and let the interested reader refer to [278] for a more detailed outline of the
whole derivation. Note that we have recently noticed that the Hadamard regularized published mass
quadrupole misses a small piece. The expressions displayed in eq. (IV.65) are thus more accurate
than the ones published in [278].

IV.2.1 The mass quadrupole in d dimensions
As we intend to apply a UV dimensional regularization scheme, a d-dimensional generalization

of eq. (B.12a) is required, and reads [88]

IL(t) = d− 1
2(d− 2)PF

B

∫ ddx
ℓε0

(
r

r0

)B{
x̂L Σ[ℓ]−

α
(d)
ℓ

c2 x̂iL Σ(1)
i[ℓ+1]+

β
(d)
ℓ

c4 x̂ijL Σ(2)
ij[ℓ+2]−

(d− 3)B α
(d)
ℓ

(d− 1)c2r2 x̂iLxj Σij[ℓ+1]

}
,

(IV.6)
2Interestingly the Levi-Civita tensors used to define JL in three dimensions, see eq. (B.12b), do not exist in generic

d dimensions. They had to rely on Young tableaux to perform the UV dimensional regularization of Jij .
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with ℓ0 the d-dimensional length scale (defined by the ratio of gravitational strengths, see (A.7)) and
the parenthesis in exponent indicate time derivatives. The coefficients are given by

α
(d)
ℓ = 4(d+ 2ℓ− 2)

(d+ ℓ− 2)(d+ 2ℓ) , and β
(d)
ℓ = 2(d+ 2ℓ− 2)

(d+ ℓ− 1)(d+ ℓ− 2)(d+ 2ℓ+ 2) . (IV.7)

Note the appearance of a fourth term, which is proportional to (d − 3)B and thus plays no role in
this section. Indeed in the UV regime (say for r < R with R some constant scale) the integral is
convergent and thus does not develop poles in 1/B: the finite part kills this contribution. In the IR
regime (for r > R), the regularization scheme is three-dimensional, and thus no pole 1/(d − 3) can
appear: this contribution vanishes by virtue of the (d− 3) factor.

The source terms are defined by a formal PN expansion of the Landau-Lifschitz pseudo ten-
sor (B.5) as They explicitly read

Σ = 2
d− 1

(d− 2)τ 00 + τ ii

c2 , Σi = τ 0i

c
, and Σij = τ ij , (IV.8)

and thus the overall d-dependent factor in front of IL (IV.6) is such that the source quadrupole
reduces to the usual Newtonian-looking expression IL =

∫
d3x ρ x̂L + O(c−2). From those source

densities, we define
Σℓ(x, t) =

∫ 1

−1
dz δ(ε)

ℓ (z) Σ(x, t+ zr/c) , (IV.9)

where δ(ε)
ℓ (z) is the d-dimensional generalization of δℓ(z) and reads

δ
(ε)
ℓ (z) ≡

Γ
(
ℓ+ 3

2 + ε
2

)
Γ
(

1
2

)
Γ
(
ℓ+ 1 + ε

2

) (1 − z2)ℓ+ ε
2 , such that

∫ 1

−1
dz δ(ε)

ℓ (z) = 1 . (IV.10)

This allows to use the formal PN expansion

Σ[ℓ](x, t) =
∑
k≥0

1
22kk!

Γ(ℓ+ d
2)

Γ(ℓ+ d
2 + k)

(
r

c

∂

∂t

)2k

Σ(x, t) , (IV.11)

which is the one entering the expression of the moments (IV.6).
Those source moments involve the stress-energy tensor of the matter distribution T µν through the

Landau-Lifschitz pseudo tensor (B.5), which we now have to specify in the case of a binary system of
compact objects. For celestial bodies composed of matter (neutron star, white dwarf, etc), we neglect
finite-size effects that arise at 5PN and thus it is quite natural to use a point-particle approximation,
ie. modeling the objects by a Dirac distribution with a constant mass ma. As for black holes, the
modeling is more subtle as those celestial bodies are vacuum solutions by definition (the “mass” of a
black hole space-time is very different conceptually from the mass of a star). Nevertheless, as we will
not directly probe the vicinity of those objects (in which the PN approximation breaks down), one
can model them as point-“particle” of “mass” given by the Schwarzchild parameter. Therefore we will
not discriminate between the different possible natures of the compact objects, but model them all
by Dirac distributions of mass ma localized in ya, ie. an coordinate energy density3 ρ = maδ(x−ya).
This non-discrimination can be related to the fact that the space-time generated by a spherical non-
rotating star is given by the Schwarzschild metric [65, 242]: far from it, one cannot distinguish a static
black hole from a perfectly spherical and spinless matter distribution via gravitational interaction
only. The stress-energy tensor associated with two of such objects is given by

T µν = µ1 v
µ
1 v

ν
1 δ

(d)(x − y1) + µ2 v
µ
2 v

ν
2 δ

(d)(x − y2) , (IV.12)
3This quantity represents the energy contained in a box of coordinates, and is thus not covariantly conserved.
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where vµ1 = dyµ1 /dt = (c, vi1) is the coordinate velocity of the particle 1, and δ(d) is the d-dimensional
Dirac distribution, see fig. A.1 for our geometrical conventions. In order to account for all PN
corrections, the effective masses entering T µν are given by

µ1(t) = 1√
−(g)1

m1√
−(gµν)1

vµ
1 v

ν
1

c2

, (IV.13)

where the index 1 indicates that the metric has to be evaluated at the location x = y1. The
self-gravitating divergences are removed by means of Hadamard regularization up to 2PN, and by
dimensional regularization from 3PN order on. It is very useful to define matter currents in a similar
guise than the source terms (IV.8)

σ ≡ 2
d− 1

(d− 2)T 00 + T ii

c2 , σi ≡ T 0i

c
, and σij ≡ T ij . (IV.14)

In the case of compact binary systems they read

σ = µ̃1 δ
(d)(x − y1) + 1 ↔ 2 , (IV.15a)

σi = µ1v
i
1 δ

(d)(x − y1) + 1 ↔ 2 , (IV.15b)
σij = µ1v

i
1v
j
1 δ

(d)(x − y1) + 1 ↔ 2 , (IV.15c)

with the novel effective parameter

µ̃1 = 2
d− 1

(
d− 2 + v2

1
c2

)
µ1 . (IV.16)

Metric parametrization in terms of potentials

As the source moments {IL, JL} encode the whole physical information of the binary system,
the metric to inject in (IV.6) is the PN-expanded metric h̄µν , valid in the near-zone. This metric
has been naturally computed in order to solve the conservative sector, but we cannot use directly
those results. Indeed in the Fokker Lagrangian method, the computation of the nPN equations of
motion requires the knowledge of the metric at O(c−n−2), this is the so-called “n+2” method [54].
The metric was therefore computed up to the 3PN order. Nevertheless no equivalent of such “n+2”
method exists for the computation of the source moments, and thus we need to compute the metric
at 4PN order (more precisely we require the knowledge of h̄00, h̄0i and h̄ij at respectively 4PN, 3.5PN
and 4PN accuracies).

It is convenient to parametrize the metric in terms of potentials [69]. As h̄00, h̄0i and h̄ij start
respectively at 1PN, 1.5PN and 2PN orders, we need a relative 3PN knowledge for h̄00 and relative
2PN knowledges for h̄0i and h̄ij. Parametrizing each order with a new potential, we thus need
four scalar {V,K, X̂, T̂}, three vector {Vi, R̂i, Ŷi} and three tensor {Ŵij, Ẑij, M̂ij} potentials.4 The
structure of the metric at the required order is then given by

h̄00 = − 2
c2

(d− 1)V
d− 2 + 4

c4

[
(d− 3)(d− 1)K

(d− 2)2 + . . .

]
− 8
c6

[
(d− 1)X̂
d− 2 + . . .

]
− 32
c8

[
(d− 1)T̂
d− 2 + . . .

]
,

(IV.17a)

h̄0i = − 4
c3Vi − 8

c5

[
R̂i + . . .

]
− 16
c7

[
Ŷi + . . .

]
, (IV.17b)

h̄ij = − 4
c4

[
Ŵij − Ŵ

2 δij

]
− 16
c6

[
Ẑij − Ẑ

2 δij

]
− 32
c8

[
M̂ij + . . .

]
, (IV.17c)

4The hats were introduced to distinguish those potentials from older definitions, that were not involving traces in
the h̄ij component of the metric (IV.17c). For historical reasons, we will retain this notation with hats.
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where ellipses denote combinations of other potentials, and we have used shorthands for the trace,
eg. Ŵ ≡ Ŵii. Note that the potential K is a pure feature of the d-dimensional space and does not
enter the three-dimensional metric (but it plays a crucial role in regularization processes). The full
metric at the required order is presented in app. C.1. The potentials are defined by Einstein’s field
equations (B.4) in the near zone, and thus obey flat wave equations with sources given by compact
support terms coming from the matter sector, and products of other potentials, coming from the
Λµν source term. The simplest potentials have compact support sources (ie. proportional to Dirac
distributions)

□V = −4πGσ , □Vi = −4πGσi , and □K = −4πGV σ . (IV.18)

The other potentials involve non-linear terms, such as the Ŵij potential obeying

□Ŵij = −4πG
(
σij − σkk

d− 2 δij
)

− 1
2

(
d− 1
d− 2

)
∂iV ∂jV . (IV.19)

The wave equations governing the ten potentials that we need are presented in app. C.2.

The different types of terms involved in the Hadamard computation

Injecting the metric (IV.17) in the expression (IV.6) for ℓ = 2, and truncating at 4PN order, one
gets the expression of the source quadrupole in terms of potentials and matter densities (IV.14). In
theory, a simple integration and regularization process would then allow to get its explicit expression
in terms of the masses, positions and speeds of the two compact objects.

But in practice we do not known the expression of the complicated potentials (such as M̂ij), as
solving the associated wave equations is, to the best of our computational techniques, not feasible.
In order to avoid using them, we employ integrations by parts. For example, let us consider a term∫
ddxrBx̂LϕP involving a complicated potential P (with source S, so that □P = S) and a simple

one, ϕ (where we have set r0 = 1 as it will play no role here). Defining the superpotentials associated
to ϕ as obeying

∆Ψϕ
L = x̂L ϕ , (IV.20)

(note that superpotentials are defined with a Laplacian and not a d’Alembertian), one can integrate
the complicated term by parts as∫

ddx rB x̂LϕP =
∫

ddx rB
{
Ψϕ
L∆P + ∂i

(
P∂iΨϕ

L − Ψϕ
L∂iP

)}
=
∫

ddx rB
{

Ψϕ
LS + 1

c2 Ψϕ
L∂

2
t P
}

+
∫

d3x rB∂i
(
P∂iΨϕ

L − Ψϕ
L∂iP

)
,

(IV.21)

where we have substituted □P by S in the last line. This integration by parts pushes the unknown
potential to a higher PN order, which would usually contribute beyond the aimed accuracy. The
potential P also enters surface terms (the second integral in the last line of (IV.21)), that only involve
an expansion of P at spatial infinity, always computable as detailed in sec. IV.2.3. If such integrations
by parts are very convenient to deal with unknown potentials, they involve the sources of those
potentials and thus induce extremely long expressions (see eg. eq. (C.5a)). Note that all the required
superpotentials are straightforward to compute, see [94, 278] for the detailed procedure. The (eleven
pages long) integrated by parts source quadrupole, given in terms of potentials, superpotentials and
matter densities, is presented in the app. C of [278].

Let us first focus on the Hadamard computation of the source quadrupole, thus taking d = 3.
This computation involves three different types of terms: compact support, volume and surface ones.
The first type appears when a matter density enters, as eg. in

∫
d3x(r/r0)Bx̂LViR̂iσ. Indeed matter

densities involve Dirac distributions, as clear from eq. (IV.15), and thus one simply needs to evaluate
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the associated product of potentials (ViR̂i in our example) in x = y1 and y2. The second, and
most common, type of terms are volume terms, ie. usual Hadamard regularized volume integrals
of products of known potentials. The last class of terms, surface integrals, that appear eg. via the
described integrations by parts are dealt with in sec. IV.2.3.

Performing the accurate dimensional regularization requires five supplementary types of compu-
tations. First, one has to compute the difference between Hadamard and dimensional regularizations
for compact support and volume terms (as the dimensional regularizations is of UV type, it does
not affect surface terms). Convenient formulas have been derived and are extensively used. Note
that, in practice, the compact support terms are directly computed in d dimensions. Next, as we use
distributions when defining the potential, we should use distributional derivatives instead of ordinary
ones. To remedy this problem, a generalization of the Gel’fand-Shilov formula [205] in d dimensions
is applied. Note that this problem is not specific to the d-dimensional case, and a similar procedure
should be applied in the pure three-dimensional case. Nevertheless, it is easier to apply it directly
in d dimensions, which is why we have not implemented it in three dimensions. The fourth type
of contributions comes from the time derivatives entering eq. (IV.6) and eq. (IV.11): indeed the
non-shifted 3PN acceleration bears a pole 1/ε that combines with the O(ε) order of 1PN terms, to
give a non-vanishing 4PN contribution in the d → 3 limit. Finally, the UV shift coming from the
equations of motion has to be applied, and should (and did) remove the remaining poles.

IV.2.2 Computation of the potentials
It appears clearly that the core of the computation of the source moment is the knowledge of the

potentials parametrizing the metric (and some superpotentials). In full generality, those potentials
are derived at the required PN order by applying the Hadamard regularized retarded propagator □̃−1

R .
But the odd PN terms are already known and begin at 2.5PN order [86]: their first contributions via
odd-odd couplings are 5PN. Therefore we can focus on even PN terms only, and trade the retarded
propagator for the PN-expanded symmetric one

□̃−1
sym =

∑
n∈N

(
1
c

∂

∂t

)2n

∆̃−n−1 . (IV.22)

The inverse Laplacian operator is given by the usual Hadamard regularized Poisson integral in
d dimensions (

∆̃−1S
)

(x) ≡ PF
B

− k̃

4π

∫
ddx′

(
r′

r0

)B
S (x′)

|x − x′|d−2

 , (IV.23)

which naturally reduces to the canonical three dimensional Poisson integral for d = 3. The constant
k̃ = Γ(d−2

2 )/π d−2
2 has been defined in app. A.1.2. Note that this prescription for the propagator is

the one compatible with the matching procedure: it automatically selects the accurate homogeneous
function to satisfy the matching equation (II.48). When applying other propagators, we will have to
correct the procedure by adding an accurate homogeneous solution, so that the matching equation
is fulfilled.

Computation of the linear and cubic potentials

The compact support sources are easily integrated, as the Green function of the Laplace operator
is simply given by

∆̃−1δ(d)(x − y1) = − k̃

4π r
2−d
1 . (IV.24)

The “linear” potentials V , Vi and K are thus easily computed in all space, at any PN order, and
automatically fulfill the matching equation.
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The only “cubic” potential whose knowledge is required in all space is X̂, at Newtonian order.
It is cubic in the sense that its source (C.4a) involves a non-linearity between a quadratic and a
linear potential, via a term Ŵij∂ijV . How to compute and match such difficult interaction in three
dimensions has been understood in [84, 85].

Computation of the quadratic potentials

The remaining of this section deals with the computation of the quadratic potentials Ŵij at 2PN,
R̂i and Ẑij at 1PN, in three dimensions. The previous knowledge of those potentials was respectively
1PN and Newtonian orders. We focus on the most involving case, namely the computation of the
non-linear part of Ŵij at 2PN, that involves all the ingredients required to compute the two others
potentials. So we seek for the 2PN solution of

□Ŵ (NL)
ij = −∂iV ∂jV , with □V = −4πGµ̃1δ1 + 1 ↔ 2 , (IV.25)

where δ1 ≡ δ(3)(x−y1) and we recall that µ̃1 is a time-dependent effective mass defined by eq. (IV.16).
The iteration of the Poisson integrals straightforwardly yields the 2PN expression for the potential
V as

V = Gµ̃1

r1
+ G

c2 ∂
2
t

(
µ̃1
r1

2

)
+ G

c4 ∂
4
t

(
µ̃1
r3

1
24

)
+ 1 ↔ 2 + O(c−6) . (IV.26)

When plugging this expression into the source term of Ŵ (NL)
ij up to 2PN order, it is convenient to

split it into “self” terms, which are essentially proportional to µ̃2
1 or µ̃2

2, and “interaction” terms
proportional to µ̃1µ̃2, as

Ŵ
(NL)
ij = Ŵ self

ij + Ŵ inter
ij + O(c−6) . (IV.27)

Introducing the partial derivatives with respect to the source points a∂i ≡ ∂/∂yia, and using the fact
that µ̃1 and µ̃2 are just functions of time, the interaction part is expressed in terms of elementary
kernel functions {g, f, f 12, f 21, h, h12, h21, k} as

Ŵ
1

inter
ij = −G2µ̃1µ̃2 ∂1 (i∂2 j)

g − G2

c2

{
∂2
t

[
µ̃1µ̃2 ∂1 (i∂2 j)

f
]

+ 2¨̃µ1µ̃2 ∂1 (i∂2 j)
f 12 + 4 ˙̃µ1µ̃2v

k
1 ∂1k(i∂2 j)

f 12

+2µ̃1µ̃2a
k
1 ∂1k(i∂2 j)

f 12 + 2µ̃1µ̃2v
k
1v

l
1 ∂1kl(i

∂
2 j)
f 12

}
− G2

c4

{
∂4
t

[
µ̃1µ̃2 ∂1 (i∂2 j)

h
]

+ ∂2
t

[
2¨̃µ1µ̃2 ∂1 (i∂2 j)

k21 + 4 ˙̃µ1µ̃2v
k
1 ∂1k(i∂2 j)

k21

+ 2µ̃1µ̃2a
k
1 ∂1k(i∂2 j)

k21 + 2µ̃1µ̃2v
k
1v

l
1 ∂1kl(i

∂
2 j)
k21
]

+ µ̃1µ̃2a
m
1 a

k
2 ∂1m(i∂2 j)k

k + µ̃1µ̃2a
m
1 v

k
2v

l
2 ∂1m(i∂2 j)kl

k + µ̃1µ̃2v
m
1 v

n
1a

k
2 ∂1mn(i∂2 j)k

k

+ µ̃1µ̃2v
m
1 v

n
1 v

k
2v

l
2 ∂1mn(i∂2 j)kl

k + 2µ̃1µ̃2ä
k
1 ∂1k(i∂2 j)

h12 + 8µ̃1µ̃2ȧ
k
1v

l
1 ∂1kl(i

∂
2 j)
h12

+6µ̃1µ̃2a
k
1a

l
1 ∂1kl(i

∂
2 j)
h12 + 12µ̃1µ̃2a

k
1v

l
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m
1 ∂

1klm(i∂2 j)
h12 + 2µ̃1µ̃2v

k
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l
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n
1 ∂1klmn(i∂2 j)

h12
}
,

(IV.28)
where dots denote time derivatives, v1,2 are the velocities and a1,2 the accelerations. The kernel
functions introduced in this term are defined by the Poisson equations they obey:

∆g = 1
r1r2

, (IV.29a)

∆f = g , ∆f 12 = r1

2r2
, ∆f 21 = r2

2r1
, (IV.29b)

∆h = f , ∆h12 = r3
1

24r2
, ∆h21 = r3

2
24r1

, (IV.29c)
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∆k = r1r2

4 , ∆k12 = f 21 , ∆k21 = f 12 , (IV.29d)

where the numerical coefficients have been introduced for later convenience, and differ eg. from those
employed in the definition of f , f 12 and f 21 in [76].

To the “interaction” term given in eq. (IV.28), one must add the corresponding “self” term,
obtained from Ŵ inter

ij by performing the limit of source points yi2 → yi1 and replacing µ̃2 by µ̃1.
However this term becomes divergent when performing the limit yi2 → yi1 and we have to carefully
use the self-field regularization. With this caveat in mind we have

Ŵ
1

self
ij = lim

y2→y1
µ̃2→µ̃1

[
Ŵ
1

inter
ij

]
. (IV.30)

Naturally, we have to add to (IV.28) and (IV.30) the terms corresponding to 1 ↔ 2.
The aim is thus to compute the kernels defined by eq. (IV.29). If g is well-known as the Fock

function [192]
g = ln

(
r1 + r2 + r12

rc

)
, (IV.31)

where r12 ≡ |y1 − y2|, and rc is an arbitrary constant, the others are not as famous. As presented
hereafter, we will select the particular solution of the kernels by adapting previous findings in the
literature. Such procedure will yield potentials that do not satisfy the matching condition, and thus
we have to add the accurate homogeneous solution by a matching to the far-zone. A subtle point
is that it is equivalent to match the potentials, or directly the kernels. Choosing the second way of
proceeding, we will have to select the accurate homogeneous functions so that the matching equation
is fulfilled (in the case of g, this is equivalent to choosing the accurate constant rc).

Computing the particular solutions

Particular solutions for the Poisson equations (IV.29) have been already used within the Hamil-
tonian approach of PN, see eg. the app. A of [241]. The general structure of these solutions is
constituted of two parts: a homogeneous regular solution of the Laplace or iterated Laplace oper-
ator, multiplied by the Fock function, and a specific polynomial of r1, r2 and r12. As we seek for
particular solutions, we are free to add a global homogeneous solution, for example by adding a
numerical constant to the Fock function. This will not affect the true final solution as the proper
homogeneous function will be selected later by the matching procedure. Thus we have chosen to start
with the following particular solutions, that differ from those in app. A of [241] by homogeneous
solutions, and will be denoted with a hat:

ĝ = lnS + 197
810 , (IV.32a)

f̂ = 1
12

[(
r2

1 + r2
2 − r2

12

)(
lnS − 73

810

)
+ r1r12 + r2r12 − r1r2

]
, (IV.32b)

ĥ = 1
320

[(
r4

1 + r4
2 − r4

12 − 2r2
12(r2

1 + r2
2) + 2

3r
2
1r

2
2

)(
lnS − 37

81

)

+ r1r2(r2
12 − r2

1 − r2
2) + r12(r1 + r2)(r1r2 − r12) + 4

9r
2
1r

2
2 + 5

3r12(r3
1 + r3

2)
]
, (IV.32c)

k̂ = 1
120

[(
r4

12 − 3r4
1 − 3r4

2 + 6r2
1r

2
2 + 2r2

12(r2
1 + r2

2)
)

lnS

+ 21
10(r4

1 + r4
2) − r4

12
30 + 3r12(r3

1 + r3
2) + (r2

1 + r2
2)
(

3r1r2 − 31
15r

2
12

)
+ r1r2r

2
12 − 21

5 r
2
1r

2
2 − r12(r1 + r2)

(
r2

12 − 3r1r2
)]
, (IV.32d)
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with the shorthand S ≡ r1 + r2 + r12. The functions f̂ 12, ĥ12 and k̂12 are naturally obtained by
exchanging the field point x with the source point y1:

f̂ 12 = f̂

∣∣∣∣
x←→y1

, ĥ12 = ĥ
∣∣∣∣
x←→y1

, k̂12 = k̂
∣∣∣∣
x←→y1

, (IV.33)

and similarly f̂ 21, ĥ21 and k̂21 are obtained by exchanging x and y2.
It is straightforward to check that the kernel functions (IV.32) and (IV.33) satisfy the constitutive

relations (IV.29) and also, in addition, the relations

∆1f̂
12 = ĝ , ∆1ĥ

12 = f̂ 12 , ∆1k̂ = f̂ 21 , and ∆1k̂
21 = f̂ , (IV.34)

together with the relations obtained from 1 ↔ 2, where ∆1 = ∂
1 i
∂
1 i

. Those extra relations are
specifically true for the homogeneous solutions chosen in eq. (IV.32). All those relations suggest that
there is an underlying algebra relating those particular kernel functions to higher orders, and thus
that we should be able to compute a particular solution to the general Poisson equation ∆φnm =
r2n−1

1 r2m−1
2 , with (n,m) ∈ N2. This would lead to the knowledge at all even PN orders of the

quadratic potentials Ŵij, Ẑij and R̂i, up to the possible odd-odd couplings.

Matching procedure

As the particular solutions (IV.32) and (IV.33) have not been derived by using the accurate
propagator (IV.23), they have to be matched to the far-zone by adding the accurate homogeneous
solution. To this purpose, it is more convenient to work with d’Alembertian rather than Poisson
equations, hence we resum the kernels into the functions

G ≡ g + 1
c2 ∂

2
t f + 1

c4 ∂
4
t h+ O(c−6) , (IV.35a)

F12 ≡ f 12 + 1
c2 ∂

2
t k

21 + O(c−4) , (IV.35b)

H12 ≡ h12 + O(c−2) , (IV.35c)
K ≡ k + O(c−2) , (IV.35d)

that obey

□G = 1
r1r2

, □F12 = r1

2r2
, □K = r1r2

4 , and □H12 = r3
1

24r2
. (IV.36)

Let □Ψ = S(x, t) be one of those wave equations, with some non-compact support source S. The
matching equation (II.48) can be worked out to state that the multipolar expansion of the solution
Ψ, denoted M(Ψ), should satisfy [73]

M(Ψ) = □̃−1
R M(S) − 1

4π

+∞∑
ℓ=0

(−)ℓ
ℓ! ∂L

[1
r

SL
(
t− r

c

)]
, (IV.37)

where the first term is a solution of the multipole expanded wave equation □M(Ψ) = M(S), defined
by means of the Hadamard regularized retarded propagator, and the second term is a homogeneous
solution constructed out of the multipole moments:

SL(u) = FP
B=0

∫
d3x

(
r

r0

)B
xL S(x, u) , (IV.38)

which themselves integrate over the source S. Suppose now that we know a particular solution of
the wave equation, say Ψ̂ such that □Ψ̂ = S. We look for a homogeneous solution Ψhom such that
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Ψ = Ψ̂ + Ψhom satisfies eqs. (IV.37)–(IV.38). Since the homogeneous solution is directly in the form
of a multipole expansion, we obtain the following relation:

Ψhom = M(Ψhom) = □̃−1
R M (S) − M

(
Ψ̂
)

− 1
4π

+∞∑
ℓ=0

(−)ℓ
ℓ! ∂L

[1
r

SL
(
t− r

c

)]
. (IV.39)

The previous recipe (IV.39) completely determines the homogeneous solution, since all the terms in
the right-hand side are computable. In practical computations, we trade the Hadamard regularized
retarded propagators □̃−1

R for symmetric ones (IV.22), as only even PN terms are relevant to our
purpose.

We have applied this method to determine all the relevant homogeneous solutions in the kernel
functions g, f , etc. For example, expanding the last term of eq. (IV.39), and identifying the relevant
PN orders, it comes

ghom = ∆̃−1M
( 1
r1r2

)
− M

(
ĝ
)
, (IV.40a)

fhom = ∆̃−2M
( 1
r1r2

)
− M

(
f̂
)

+ 1
4
(
r Y − niYi

)
, (IV.40b)

where we have denoted (notice the STF multipole factor x̂L)

YL ≡ − 1
2π FP

B=0

∫
d3x

(
r

r0

)B x̂L
r1r2

= r12

ℓ+ 1

ℓ∑
m=0

y
⟨M
1 y

L−M⟩
2 . (IV.41)

We emphasize that, although we introduced the “Poisson” kernels g, f , f 12, etc. for convenience,
it is better to consider the “d’Alembertian” kernels (G, F12, etc.) as the fundamental quantities.
Indeed, when working with the Poisson kernels, we have to take into account the fact that the
Hadamard regularization and the inverse Laplacian do not commute, thus for instance

∆̃−1M (f) ̸= ∆̃−3M
( 1
r1r2

)
, (IV.42)

and the matching procedure in more complicated. Nonetheless, after adding some correction terms
accounting for this non-commutativity, the previous results are recovered. Note however that the
non-commutativity emerges at 2PN order, and only affects the computation of h.

Having matched the particular solutions, one has selected the good prescription for the elementary
kernels. The results for g and f are for example

g = ln
(
r1 + r2 + r12

2r0

)
− 1 , (IV.43a)

f =r1r2 n1 · n2

6

[
ln
(
r1 + r2 + r12

2r0

)
+ 1

6

]
+ r12r1 + r12r2 − r1r2 + 2r n · (y1 + y2) − 3r2

12 , (IV.43b)

where r0 is the usual scale associated with Hadamard regularization. We do not display the other
kernels since their homogeneous solutions are not very enlightening, and we have described the
general procedure to obtain them.

In the end, by means of this technique, we have obtained in the whole space (and 3 dimensions) the
potential Ŵij at 2PN order, as well as the potentials Ẑij and R̂i at 1PN order. Those computations
had two main applications. First it gave the correct value for the 2PN trace value of Ŵij evaluated
in y1 (such quantity was previously computed by another method, plagued by a subtle issue of non-
commutativity of the d’Alembertian and Hadamard regularized retarded propagator). Second, it
allowed to avoid the lengthy matching procedure at infinity required for surface terms, as exposed
in the next section.
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IV.2.3 Computation of the surface terms
The surface terms entering the mass quadrupole are classified in two types: the divergence ones,

coming from the integrations by parts (IV.21) and the Laplacian ones. The latter arise from the
double gradient of a linear potential ϕ (ie. V , Vi or K) and an involving one, P (with source S), as∫

ddx rB x̂L∂iϕ ∂iP = 1
2

∫
ddx rB

{
∆(ϕP ) − ϕ∆P − P∆ϕ

}

= −1
2

∫
ddx rB

{
ϕS + P∆ϕ

}
+
∫

d3x rB∆ (ϕP ) + O
( 1
c2

)
.

(IV.44)

The first term is easy to evaluate as ∆ϕ has a compact support, and thus only the knowledge of P at
y1 is required. The so-created surface term involves a Laplacian operator, thus the name. Obviously
the UV regularization scheme does not apply to such terms, and as such we can restrict ourselves to
a three-dimensional computation. The list and expressions of surface terms we had to deal with are
presented in app. C.3.

Integration of the divergence terms

Let us consider a generic divergence term

D = PF
B

∫
d3x

(
r

r0

)B
∂iAi , (IV.45)

where Ai is typically a product of potentials, superpotentials and their derivatives. Performing an
integration by parts, it comes

D = PF
B

∫
d3x ∂i

[(
r

r0

)B
Ai

]
− PF

B

∫
d3xB

(
r

r0

)B ni
r

Ai . (IV.46)

Using Ostrogradski theorem, the first term reduces to the angular integral of (r/r0)BAini, evaluated
at infinity. Such term vanishes by virtue of Hadamard regularization: B can be chosen so that
(r/r0)BAini is asymptotically null, and by analytic continuation in B, the integral vanishes. As for
the second integral, let us split it in two pieces, separated by an arbitrary constant scale R. For
r < R, the smoothness of the metric in the near zone implies that the integrand is regular and thus
the B prefactor kills the integral. On the other hand, for r > R, we multipolarly expand Ai as

M (Ai) =
∑
p≥p0

1
rp

[
αi,p (n) + αlog

i,p (n) ln
(
r

r0

)]
, (IV.47)

where p0 is a (possibly negative) integer, and we have not included higher powers of logarithms as we
have not encountered them in practical computations, nor the time dependence as it plays no role.
Then

D = −PF
B

∫ ∞
R

d3xB
(
r

r0

)B ni
r

M (Ai)

= −PF
B

∑
p≥p0

B
∫

dΩ2

∫ ∞
R

drr
B+1−p

rB0
ni

[
αi,p (n) + αlog

i,p (n) ln
(
r

r0

)]

= PF
B

∑
p≥p0

B

B + 2 − p

RB+2−p

rB0

∫
dΩ2 ni

αi,p (n) + αlog
i,p (n) ln

(R
r0

)
−

αlog
i,p (n)

B + 2 − p

 ,
(IV.48)

where the upper boundary does not contribute by analytic continuation in B and dΩ2 is the volume
element of the two-sphere. It is clear that only the p = 2 terms survive the Hadamard regularization:

D =
∫

dΩ2 ni αi,2(n) . (IV.49)
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This divergence term thus reduces to a simple angular integral, that does not depend on R nor on r0.
In order to practically compute it, one has to extract the r−2 coefficient of the product of potentials
and superpotentials Ai.

Integration of the Laplacian terms

The Laplacian terms are treated in a similar fashion. Let us consider a generic Laplacian term

LL = PF
B

∫
d3x

(
r

r0

)B
x̂L ∆B , (IV.50)

where B is typically a product of potentials and their derivatives, and ℓ is either 2 or 3 in practical
implementations. Performing two integrations by parts, it comes

LL = PF
B

∫
d3x

{(
r

r0

)B
x̂L ∂iB − B ∂i

[(
r

r0

)B
x̂L

]}
+ PF

B

∫
d3xB(B + 2ℓ+ 1)

(
r

r0

)B x̂L
r2 B , (IV.51)

where we have notably used ∆x̂L = 0. Using the same argument than for the divergence terms, the
first integral is vanishing, and the second one can be restricted to r > R. Expanding B as

M (B) =
∑
p≥p0

1
rp

[
βp (n) + βlog

p (n) ln
(
r

r0

)]
, (IV.52)

where we have dropped the time dependence, it comes

LL = PF
B

∫ ∞
R

d3xB(B + 2ℓ+ 1)
(
r

r0

)B x̂L
r2 M (B)

= PF
B

∑
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B(B + 2ℓ+ 1)
∫

dΩ2

∫ ∞
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drr
B+ℓ−p

rB0
n̂L

[
βp (n) + βlog

p (n) ln
(
r

r0
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= −PF
B

∑
p≥p0

B(B + 2ℓ+ 1)
B + 1 + ℓ− p

RB+1+ℓ−p

rB0

∫
dΩ2 n̂L

[
βp (n) + βlog

p (n) ln
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r0

)
−

βlog
p (n)

B + 1 + ℓ− p

]
,

(IV.53)
where the upper boundary still does not contribute by analytic continuation in B. Only the p = ℓ+1
terms contribute, to yield

LL =
∫

dΩ2 n̂L
[
−(2ℓ+ 1)βℓ+1 (n) + βlog

ℓ+1 (n)
]
. (IV.54)

As for the divergence terms, the Laplacian ones reduce to simple angular integrals, that do not depend
on R nor on r0, and require the knowledge of the r−ℓ−1 coefficients of the product of potentials B.

Development of the potentials at spatial infinity

Once the functions αi,2(n), βℓ+1(n) and βlog
ℓ+1(n) are known, performing the angular integrals of

eqs. (IV.49) and (IV.54) is direct (all the needed formulas are encoded in the PNComBin library
of xAct). Therefore, the crucial part of the computation of the surface terms is the knowledge
of the asymptotic value of the potentials (and superpotentials). Most of those are already known
in all space at the required PN order (notably thanks to the machinery developed in sec. IV.2.2),
namely V at 3PN, Vi, Ŵij and Ψ∂abV

ij at 2PN, and Ẑij, R̂i, Ψ∂t∂aV
ij , Ψ∂aVb

ij and Ψ∂aV
ijk at 1PN. We thus

straightforwardly5 expand them and their required derivatives up to the proper order in 1/r.
5Note that, if this expansion is conceptually simple, it may become cumbersome in practice. For instance, the

expansion of Ŵij at 2PN at the required O(r−2) order involves ∼ 34 000 terms, and its first derivative, ∼ 100 000.
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But the main interest of creating surface terms is to deal with unknown potentials, in our case X̂
at 1PN and T̂ , Ŷi and M̂ij at Newtonian order. Obviously the compact support parts of their sources
can be integrated in whole space, and expanded subsequently. Similarly, the contributions of the
distributional derivatives are to be treated in the same way, as those yield Dirac distributions. For
example, the source of the X̂ potential (C.4a) contains a contribution of the distributional derivative
arising in ∂ijV as

Ŵij∂ijV = 1
2Ŵij∂

ord
ij V − 4πGµ̃1

3 Ŵ δ1 − 4πGµ̃1

15c2

(
2vi1v

j
1 + v2

1δij
)
Ŵij δ1 + 1 ↔ 2 + O

( 1
c2

)
, (IV.55)

where ∂ord
i is the ordinary derivation in the sense of functions.

The unknown pieces come from the non-linear source terms, and we construct their accurate
expansions at infinity by iterating the propagator on the expanded non-compact sources. Let us
consider a potential P obeying □P = S, where the source term S is known in all space.6 The
asymptotic value of the source M(S) is easily derived, and we seek for the multipolar expansion
M(P ). This is exactly the situation that we have encountered when dealing with the matching of
the kernels in the previous section. Indeed, eq. (IV.37) tells us that the multipolar expansion of P is
given by

M(P ) = □̃−1
R M(S) − 1

4π

+∞∑
ℓ=0

(−)ℓ
ℓ! ∂L

[1
r

SL
(
t− r

c

)]
, (IV.56)

where we recall that the particular solution is iterated with the Hadamard regularized retarded
propagator □̃−1

R , and that the homogeneous solution is constructed out of the quantity

SL (u) ≡ PF
B

∫
d3x

(
r

r0

)B
xL S(x, u) . (IV.57)

For the potentials required at the Newtonian order, eq. (IV.56) reduces to

M(P ) = ∆̃−1M(S) − 1
4π

+∞∑
ℓ=0

(−)ℓ
ℓ! SL(t) ∂L

(1
r

)
, (IV.58)

and the first term is computed by use of the so-called Matthieu formulas7 (see app. C of [87])

∆−1
[
rαn̂L

]
= rα+2n̂L

(α + 3 + ℓ)(α + 2 − ℓ) , for α ∈ C \
{
ℓ− 2,−ℓ− 3

}
, (IV.59a)

∆−1
[
rℓ−2n̂L

]
= 1

2ℓ+ 1

[
ln
(
r

r0

)
− 1

2ℓ+ 1

]
rℓn̂L , (IV.59b)

∆−1
[
n̂L
rℓ+3

]
= − 1

2ℓ+ 1

[
ln
(
r

r0

)
+ 1

2ℓ+ 1

]
n̂L
rℓ+1 . (IV.59c)

For the particular solution of X̂ at 1PN, we naturally truncate □̃−1
R = ∆̃−1 + 1

c2∂
2
t ∆̃−2. As the source

term involves also some logarithms ln(r/r0), we use (in the generic case α ∈ C \ {ℓ− 2,−ℓ− 3}),

∆̃−1

[
ln
(
r

r0

)
rαn̂L

]
= rα+2n̂L

(α + 3 + ℓ)(α + 2 − ℓ)

[
ln
(
r

r0

)
− 2α + 5

(α + 3 + ℓ)(α + 2 − ℓ)

]
. (IV.60)

Thanks to the formulas encoded in the PNComBin library, the integration of the three-dimensional
source terms (IV.57) develops no conceptual problems.

The surface terms presented in app. C.3 have consequently been computed in a “double-blind”
fashion, together with S. Marsat, and added to the source quadrupole.

6As the Newtonian value of X̂ is known, this is always the case in our computations.
7Note that the name of those useful formulas do not come from a bad spelling of the name of the physicist

É. Mathieu, but from the evangelist [1]: the (α + 3 + ℓ)(α + 2 − ℓ) structure directly echos the verse «for to everyone
who has will be given more, and he will have more than enough; but from the man who has not, even what he has
will be taken away.» [280].
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IV.2.4 Application of the UV shift and final sum
Application of the shifts

In fact not one, but two UV shifts were applied in the equations of motions: the first was
constructed to remove the remaining UV poles [55, 56] and the second, merely for convenience [57].
The complete expressions of those UV shifts are given in app. C.4.1.

It is of prime importance for the computation of the source quadrupole to use the same coordinate
system as for the equations of motion. Therefore those two shifts have to be applied to the raw source
quadrupole and should (and do) remove the remaining poles. Therefore, starting from the computed
quadrupole, we have to perform the coordinate change

yi1 → yi1 + δyi1 , and yi2 → yi2 + δyi2 , (IV.61)

where δyi1 is the sum of the two shifts, and can be decomposed as

δyi1 = 1
c6

(1
ε

Ψi
(3,−1) + Ψi

(3,0)

)
+ 1
c8

(1
ε

Ψi
(4,−1) + Ψi

(4,0)

)
. (IV.62)

As δyi1 starts at 3PN, is has to be applied to the d-dimensional 1PN source quadrupole, that
reads

Iij = m1ŷ
ij
1 + m1

c2

{
d

2(d− 2) v
2
1 ŷ

ij
1 − 2(d− 2)

d− 1
k̃ Gm2

rd−2
12

ŷij1 − 2(d− 1)(d+ 2)
d(d+ 4)(d− 2)

d
dt
[
va1 ŷ

aij
1

]
+ 1

2(d+ 4)
d2

dt2
[
ŷij1
]}

+ 1 ↔ 2 + O
( 1
c2

)
.

(IV.63)

Note that in this expression the accelerations can be replaced by their on-shell values and thus Iij
only depends on positions and speeds. Obviously we shift the speeds as vi1 → vi1 + dδyi

1
dt and similarly

for vi2.
Enforcing the UV shifts given in app. C.4.1, the residual UV poles disappear, which is a strong

confirmation of the soundness of the PN-MPM framework.

The Hadamard regularized mass quadrupole at 4PN

Adding all the different contributions yields an expression for the mass quadrupole that is far
too long to be presented in this dissertation (well simplified, it involves roughly 50 000 terms).
Fortunately, reducing Iij to the center-of-mass and expressing it on circular orbits only require the
knowledge of the center-of-mass coordinates at 3PN, and the 3PN equations of motion for circular
orbits. Those 3PN quantities are naturally insensitive to the 4PN IR dimensional regularization
scheme and thus, even if we have not yet performed the accurate IR regularization, we can present
this temporary result for circular orbits in the center-of-mass frame. It takes the compact form

IHad
ij = mν

(
Ax⟨ixj⟩ +B

r2

c2 v⟨ivj⟩ + G2m2ν

c5r
C x⟨ivj⟩

)
+ O

( 1
c9

)
. (IV.64)

For completeness, we have added the time-odd 2.5PN and 3.5PN contributions computed in [187].
We have denoted here r = |y1 − y2| the radial separation in harmonic coordinates, and similarly,
x = y1 − y2 the relative distance and v = v1 − v2 the relative velocity. The coefficients entering this
expression are explicitly given by

A = 1 + γ

(
− 1

42 − 13
14ν

)
+ γ2

(
− 461

1512 − 18395
1512 ν − 241

1512ν
2
)
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+ γ3
(

395899
13200 − 428

105 ln
(
r

r0

)
+
[

3304319
166320 − 44

3 ln
(
r

r′0

)]
ν + 162539

16632 ν
2 + 2351

33264ν
3
)

+ γ4
(

−1023844001989
12713500800 + 31886

2205 ln
(
r

r0

)
+
[
−18862022737

470870400 − 2783
1792π

2

− 24326
735 ln

(
r

r0

)
+ 8495

63 ln
(
r

r′0

)]
ν +

[
171906563
4484480 + 44909

2688 π
2 − 4897

21 ln
(
r

r′0

)]
ν2

− 22063949
5189184 ν

3 + 71131
314496ν

4
)
, (IV.65a)

B = 11
21 − 11

7 ν + γ

(
1607
378 − 1681

378 ν + 229
378ν

2
)

+ γ2
(

−357761
19800 + 428

105 ln
(
r

r0

)
− 92339

5544 ν + 35759
924 ν2 + 457

5544ν
3
)

+ γ3
(

17607264287
1589187600 − 4922

2205 ln
(
r

r0

)
+
[

5456382809
529729200 + 143

192π
2 − 1714

49 ln
(
r

r0

)
− 968

63 ln
(
r

r′0

)]
ν

+
[

351838141
5045040 − 41

24π
2 + 968

21 ln
(
r

r′0

)]
ν2 − 1774615

81081 ν3 − 3053
432432ν

4
)
, (IV.65b)

C = 48
7 + γ

(
−4096

315 − 24512
945 ν

)
, (IV.65c)

where we recall that the 1PN parameter γ is defined as

γ = Gm

rc2 . (IV.66)

The two constants r0 and r′0 entering the coefficients (IV.65) are associated respectively with Hadamard
and dimensional UV regularization schemes. As they are unphysical scales, they are expected to be
exactly compensated in the radiative moment, by virtue of non-linear effects and application of the
time derivatives. Such compensation is perfectly mastered at the 3PN level [73].

The intrepid reader would have noticed that the presented coefficients are slightly different from
those published in [278]. Indeed they read

A = Apubl − 4
63 γ

4ν2 , and B = Bpubl + 4
63 γ

3ν2 . (IV.67)

This 4PN discrepancy comes from an error in the d-dimensional computation of the value of R̂i at
1PN order, when evaluated in y1. If this mistake has been corrected in the value of µ̃1, we forgot to
include it in the computation of the compact support terms.

Note that this preliminary result perfectly agrees with the 3.5PN mass quadrupole [187]. There-
fore we can naively expect the contributions of the IR dimensional regularization to enter at the 4PN
order only.

IV.3 IR dimensional regularization of the mass quadrupole
When deriving the equations of motion at the 4PN order by means of the Fokker Lagrangian, it

was crucial to perform an IR dimensional regularization. This is due to the fact that the Hadamard
regularization is not strong enough to deal with the divergences related to the extension at infinity
of the formal PN expansion. Indeed, in the expression of the source densities (IV.11), higher PN
orders come with higher powers of r, that naturally yield strongly divergent integrals, when plugged
into (IV.6). If the Hadamard regularization scheme was sufficient to cure them up to 3PN, it cannot
handle those appearing at the 4PN level.
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In order to be consistent, and to use the accurate coordinate system, an IR dimensional regular-
ization of the source quadrupole is thus required. In practice, we will only compute the differences
between the dimensionally regularized IDR

ij and Hadamard regularized IHad
ij source quadrupoles, and

add it to our previous result for IHad
ij . This difference of regularization schemes can be decomposed

in five different contributions

DIij ≡ IDR
ij − IHad

ij = DIVol
ij + DIComp

ij + DISurf
ij + Iextra

ij + δχIij , (IV.68)

where DIVol
ij , DIComp

ij and DISurf
ij are the differences in the volume, compact support8 and surface

terms, respectively. Iextra
ij denotes the value of the last piece of eq. (IV.6) (indeed the previous

argument relying on the (d − 3)B factor to discard such contribution does not apply anymore).
Finally, δχIij is the contribution of the IR shift χi that has been applied in the equations of motion.

As the Hadamard regularization scheme is crucial to the matching procedure, we do not use a
pure dimensional regularization scheme, but rather a “mixed” Hadamard-dimensional regularization
scheme. We defined thus the “dimensional regularization” of the integral

∫
ddxA(x, t) to be

DR
[∫

ddxA(x, t)
]

≡ lim
d→3

{
PF
η

[∫
ddx

(
r

r0

)η
A(x, t)

]}
, (IV.69)

where r0 is the same IR scale as in the three-dimensional Hadamard regularization, but we have
changed the name of the regulator from B to η to emphasize that the procedure in now taking place
in d dimensions. The difference between the two regularization schemes is thus formally given by the
commutator of the finite part and d → 3 limit as

D
{∫

ddxA(x, t)
}

≡
[
lim
d→3

,PF
η

] (∫
ddxA(x, t)

)
= lim

d→3

{
PF
η

[∫
ddx

(
r

r0

)η
A(x, t)

]}
− PF

η

[
lim
d→3

{∫
ddx

(
r

r0

)η
A(x, t)

}]
.

(IV.70)

IV.3.1 Computation of the different contributions
Regularization of the volume terms

Let us consider a volume term of the type

V =
∫ ddx

ℓε0

(
r

r0

)η
F (x, t) . (IV.71)

The function F (x, t) is a product of (super)-potentials and x̂L, and we will drop the time dependence
as it will play no role. As we investigate IR regularization schemes, we can restrict the integral to
r > R, where R is an arbitrary constant scale, significantly larger than r1 and r2. We will thus
expand F (x) in multipolar series

F (x) =
∑
p≥p0

q1∑
q=q0

ℓqε0
rp+qε φp,q(n) =

∑
p≥p0

q1∑
q=q0

ℓqε0
rp+qε

[
φ̂p,q(n)
ε

+ φ(ε)
p,q(n)

]
, (IV.72)

where p0, q0 and q1 are (possibly negative) integers and we will drop the angular dependencies for
convenience. We have allowed the function F to bear a simple pole 1/ε (as we have checked that no
double poles appear in volume terms), and thus φ̂p,q does not depend on ε. All higher order in ε are
thus contained in φ(ε)

p,q. The three-dimensional limit of F is given by

F 3D(x) =
∑
p≥p0

r−p
[
φ3D
p + φlog

p ln
(
r

ℓ0

)]
, (IV.73)

8Note that, due to the Dirac distribution they involve, we include the contributions of distributional derivatives in
the class of compact support terms.
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where the coefficients are related to those entering eq. (IV.72) by

φ3D
p ≡

( q1∑
q=q0

φ(ε)
p,q

)
ε=0

, φlog
p ≡ −

q1∑
q=q0

q φ̂p,q , and
q1∑
q=q0

φ̂p,q ≡ 0 . (IV.74)

The last equality can be understood as a condition on F so that its three-dimensional limit is non-
pathological.

With dΩd−1 the volume element of the d− 1 sphere, the dimensional regularization of the volume
intergral (IV.71) reads

VDR = lim
d→3

{
PF
η

∫
r>R

dr r
2+ε+η

ℓε0r
η
0

∑
p,q

ℓqε0
rp+qε

∫
dΩd−1 φp,q

}

= − lim
d→3

PF
η

∑
p,q

R3−p+η+(1−q)ε

3 − p+ η + (1 − q)ε
ℓ

(q−1)ε
0
rη0

∫
dΩd−1 φp,q


= − lim

d→3

∑
p

∑
q ̸=1

R3−p+(1−q)ε

3 − p+ (1 − q)ε ℓ
(q−1)ε
0

∫
dΩd−1 φp,q +

∑
p ̸=3

R3−p

3 − p

∫
dΩd−1 φp,1 + ln

(R
r0

) ∫
dΩd−1 φ3,1

 .

(IV.75)
Performing the ε → 0 limit and using the relations (IV.74), it comes

VDR = −
∑
p̸=3

R3−p

3 − p

∫
dΩ2

[
φ3D
p + φlog

p ln
(R
ℓ0

)
−

φlog
p

3 − p

]
− ln

(R
r0

) ∫
dΩ2φ

3D
3

− 1
2 ln2

(R
ℓ0

) ∫
dΩ2φ

log
3 +

∑
q ̸=1

[
1

(q − 1)ε − ln
(
r0

ℓ0

)] ∫
dΩd−1 φ3,q .

(IV.76)

On the other hand, the three-dimensional Hadamard regularized volume integral (IV.71) reads

VHad = PF
B

∫
r>R

dr r
2+B

rB0

∑
p

1
rp

∫
dΩ2

[
φ3D
p + φlog

p ln
(
r

ℓ0
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= −PF
B
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(3 − p+B)rB0

∫
dΩ2
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φ3D
p + φlog
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ℓ0

)
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φlog
p

3 − p+B

]
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∑
p ̸=3

R3−p

3 − p

∫
dΩ2

[
φ3D
p + φlog

p ln
(R
ℓ0

)
−

φlog
p

3 − p

]
− ln

(R
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) ∫
dΩ2

[
φ3D

3 + φlog
3
2 ln

(
Rr0

ℓ2
0
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.

(IV.77)
Using the relations (IV.74), the difference between the two regularization schemes is then

DV ≡ VDR − VHad =
∑
q ̸=1

[
1

(q − 1)ε − ln
(
r0

ℓ0

)
+ (q − 1)ε

2 ln2
(
r0

ℓ0

)] ∫
dΩd−1

(
φ̂3,q

ε
+ φ

(ε)
3,q

)
, (IV.78)

where the ε → 0 limit is implicitly understood. There are a few comments to be made on this formula.
Firstly, the scale R has disappeared, which was expected as the difference of IR regularization schemes
should not depend on the integration scale. Secondly, the value of the difference is sensitive to very
peculiar multipolar orders: only the O(r−3−qε) orders, with q ̸= 1, contribute. Note that this q ̸= 1
condition is not imposed by hand to make the formula well-defined, but is really selected by the
computation: when they exist, terms with q = 1 do not contribute. Then, this difference between
regularization schemes naturally yields poles 1/ε, and can even yield double poles 1/ε2. Fortunately,
those double poles do not show up in the computations as they all are vanishing in the three-
dimensional limit. Finally, let us note that this formula for the difference of volume terms (IV.78)
can be compacted in the elegant formulation

DV =
∑
q ̸=1

1
(q − 1)ε

(
ℓ0

r0

)(q−1)ε ∫
dΩd−1 φ3,q + O(ε) . (IV.79)
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Regularization of the compact support terms

An interesting and non-trivial feature of the IR dimensional regularization scheme is that it affects
the evaluation of the potentials in the location of the particles. This feature is due to the fact that
most of the potentials have a non-compact source: the non-linear terms extend towards infinity and
thus the value of the potential in say y1 is sensitive to the IR regularization process. Naturally this
effect does not affect the linear potentials, whose sources are proportional to Dirac distributions,
and thus sensitive to UV regularization processes only. The IR regularization scheme could therefore
affect the compact support terms, the contributions of distributional derivatives and the values of
µ1 (IV.13) and µ̃1 (IV.16), that all involve some potentials evaluated in y1 or y2.

Let us consider a potential P with d-dimensional source S. As in the previous section, we
are interested in the IR behaviour of S and hence we will expand it in a multipolar manner. In
practice, none of the sources we are interested in develop poles (or equivalently, logarithms in three
dimensions), so we can safely take

S(x) =
∑
p≥p0

q1∑
q=q0

ℓqε0
rp+qε φp,q(n) , (IV.80)

where φp,q has no pole, and we will drop the angular dependencies. The source has a (non-
pathological) three-dimensional limit

S3D(x) =
∑
p≥p0

φ3D
p

rp
, with φ3D

p ≡
( q1∑
q=q0

φp,q

)
ε=0

. (IV.81)

Let us first deal with the Newtonian case, ie. compute the difference induced by the change of
IR regularization scheme in the Poisson integral (IV.23) evaluated in y1

PNewt
1 =

(
∆̃−1S

)
(y1) ≡ PF

η

[
− k̃

4π

∫
r′>R

ddx′
(
r′

r0

)η
S (x′)

|y1 − x′|d−2

]
, (IV.82)

where we have safely replaced x by y1 in the kernel, as we integrate for r′ > R > r1, and thus are
free from UV divergences. Taylor-expanding the kernel

1
|y1 − x′|d−2 =

∑
ℓ∈N

2ℓ
ℓ!

Γ
(
d−2

2 + ℓ
)

Γ
(
d−2

2

) yL1 n̂L
rd−2+ℓ , (IV.83)

the Poisson integral becomes

PNewt
1 = PF

η

 k̃
4π

∑
p,q,ℓ

2ℓ
ℓ!

Γ
(
d−2

2 + ℓ
)

Γ
(
d−2

2

) R2−p−ℓ+η−qε

2 − p− ℓ+ η − qε

ℓqε0
rη0
yL1

∫
dΩd−1n̂Lφp,q

 . (IV.84)

Using the machinery developed for the treatment of volume terms, the difference between both
regularizations turns out to be

DPNewt
1 = −

∑
ℓ∈N

(2ℓ− 1)!!
4πℓ! yL1

∑
q ̸=0

[
1
qε

− ln
(
r0

ℓ0

)
− ln (4πeγE )

2q + 1
q

ℓ∑
k=1

1
2k − 1

] ∫
dΩd−1n̂L φ2−ℓ,q ,

(IV.85)
where γE is the Euler constant, and naturally DPNewt

2 is obtained under the replacement yL1 → yL2 .
Once again, the q ̸= 0 criterion is not an artificial requirement to ensure that the formula is well-
defined, but it comes naturally out of the derivation. The main difference with the formula for the
volume terms (IV.79) is the sum over ℓ. Nevertheless, this sum is finite by virtue of the structure of
the source (IV.80): ℓ is bounded by 2 − p0.
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But if the potentials T̂ , Ŷi or M̂ij enter at Newtonian order in the source quadrupole, all the
other potentials enter at higher orders. For those, the accurate propagator is the one in d dimen-
sions (IV.125), that will be investigated in great details in sec. IV.4. For our purpose, we can restrict
ourselves to an integration region r′ > R > r1 and thus safely replace x by y1, so that

P1 =
(
□̃−1

R S
)

(y1) ≡ PF
η

[
− k̃

4π

∫
r′>R

ddx′
|y1 − x′|d−2

(
r′

r0

)η ∫ +∞

1
dz γ 1−d

2
(z)S

(
x′, t− z

|y1 − x′|
c

)]
,

(IV.86)
where the time-dependence of the source is now crucial, and the z-integration translates the fact that
this propagator is not localized on the light cone, and involves the kernel

γ 1−d
2

(z) ≡ 2
√
π

Γ
(
− ε

2

)
Γ
(

1+ε
2

) (z2 − 1
)−1− ε

2 . (IV.87)

PN-expanding this propagator in the same fashion than what is presented in sec. IV.4.2, it comes

P1 =
(
∆̃−1S̄even

)
(y1) +

(
∆̃−1S̄odd

)
(y1) , (IV.88)

where
(
∆̃−1A

)
(y1) is the Poisson integral (IV.82) and the PN expansion of the source term reads

S̄even =
∑
j∈N

√
π

(2j)!
Γ
(

1+ε
2 − j

)
Γ
(

1+ε
2

)
Γ
(

1
2 − j

) (r1

c

)2j
S(2j)(x, t) , (IV.89a)

S̄odd =
∑
j∈N

(−)j
j!

2
√
π Γ (ε)

Γ
(

1+ε
2

)
Γ
(
−j − ε

2

)
Γ (2j + 2 + ε)

(
r1

c

)1+2j+ε ∫ +∞

0
dτ τ−εS(2j+2)(x, t− τ) .

(IV.89b)

As expected, the j = 0 term of S̄even is exactly given by S. Note that the odd piece, which we will
not consider, appears to be non-local.

Hence for potentials entering at post-Newtonian orders, we can simply apply the Newtonian
formula (IV.85), but using the even PN-expanded source (IV.89a), truncated at the accurate order.
It turns out that all the non-vanishing corrections are strongly connected. Indeed they obey the
relations (naturally valid up to the O(ε0) order only, as the O(ε) corrections do not play any role in
the IR dimensional regularization of the compact support terms)

DŴ 2PN
1 = 4

c2 DẐ1PN
1 = −2ε

c2 DX̂1PN
1 = 8

3c4 DT̂Newt
1 = −16ε

3c4 DM̂Newt
1 . (IV.90)

Note that only the trace of the Newtonian M̂ij and the 1PN X̂ develop poles. Note also that only
the “scalar” sector of the potentials is affected: neither R̂i nor Ŷi receive corrections, and regarding
the tensor potentials Ẑij and M̂ij, only their traces are impacted. In addition to those nice relations,
the difference itself can be compactly written in terms of the moment of inertia I ≡ m1y

2
1 +m2y

2
2, as

DM̂0PN
1 =

(3
8 − ε

)
c2 DX̂1PN

1 = −G2(m1 +m2)
8

[
1
ε

− 1 − 2 ln
(
r0

√
q̄

ℓ0

)]
I(4) , (IV.91)

where we have defined q̄ ≡ 4πeγE .
The regularization induced differences (IV.90) yield corrections in the µ̃1 and in a few compact

terms, that all enter at 4PN in the source quadrupole, but not in the contributions of the distributional
derivatives.
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Regularization of the surface terms

Turning now to the surface terms, we will not compute the difference between the two regu-
larization schemes, but rather directly compute them in d dimensions and show that they vanish.
Therefore their contributions to the difference in regularization schemes will simply be given by

DISurf
ij = −ISurf,Had

ij . (IV.92)

Considering a surface term of the divergence type

D = PF
η

∫ ddx
ℓε0

(
r

r0

)η
∂iAi , (IV.93)

we naturally perform the multipolar expansion

Ai(x, t) =
∑
p≥p0

q1∑
q=q0

ℓqε0
rp+qε α

i
p,q(n, t) , (IV.94)

where the αip,q can develop poles, and we drop the time and angular dependencies. Integrating (IV.93)
by parts and dropping the surface integrals that are vanishing by analytic continuation in η, we have

D = PF
η

∑
p,q

η

2 − p+ η + (1 − q)ε
R2−p+η+(1−q)ε

rη0 ℓ
(1−q)ε
0

∫
dΩd−1niα

i
p,q =

∫
dΩd−1ni α

i
2,1 . (IV.95)

Similarly, let us consider a surface term of the Laplacian type

LL = PF
η

∫ ddx
ℓε0

(
r

r0

)η
x̂L ∆B . (IV.96)

Once again, we perform the multipolar expansion

B(x, t) =
∑
p≥p0

q1∑
q=q0

ℓqε0
rp+qε β

i
p,q(n, t) , (IV.97)

allowing the βp,q to develop poles. Integrating (IV.96) by parts and dropping the surface integrals
that are vanishing by analytic continuation in η, we have

LL = −PF
η

∑
p,q

η(η + 2ℓ+ 1 + ε)
ℓ+ 1 − p+ η + (1 − q)ε

Rℓ+1−p+η+(1−q)ε

rη0 ℓ
(1−q)ε
0

∫
dΩd−1n̂L βp,q

= − (2ℓ+ 1 + ε)
∫

dΩd−1n̂L βℓ+1,1 .

(IV.98)

So the values of the d-dimensional surface terms are extremely simple and only involve terms
with q = 1. But all of them have q ≥ 2. Indeed, as can be intuited from their three-dimensional
expressions (C.7) and (C.8) and confirmed by their d-dimensional expressions displayed in app. C
of [278], all surface terms are products of potentials, superpotentials and their derivatives. It is easy
to understand from the Green function (IV.24) that compact support potentials have q = 1. As
non-compact support potentials are made of products of compact support ones, and as the iteration
of Poisson integral does not produces q < 1,9 all potentials have q ≥ 1. A similar argument applies
to the case of superpotentials, and thus the surface terms, composed of products of potentials,
superpotentials and their derivatives, cannot contributes to the d-dimensional source quadrupole.

9This can be understood from the Matthieu formula (IV.110), the homogeneous solution to add bearing q = 1, as
explicit by (IV.108).
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Contribution of the extra term

The argument developed in sec. IV.2.1 to discard the contribution of the extra piece of Iij is
obsolete in d-dimensional IR regularization: we have to compute it. Nevertheless, the argument
preventing contributions for r < R still holds, and thus we can restrict ourselves to an integration
zone r > R, and recast

Iextra
ij = − 2

c2 PF
η

∑
k∈N

γ
(d)
k

(
1
c

d
dt

)2k ∫
r>R

ddx
ℓε0

(
r

r0

)η
η
r2k x̂aijxb

r2 Σab , (IV.99)

where we have shortened

γ
(d)
k ≡ 1

2k k!
Γ
(
d
2 + 3

)
Γ
(
d
2 + 3 + k

) (d− 3)(d+ 2)
d(d− 2)(d+ 4) . (IV.100)

As usual now, we expand the source density Σab as

Σab(x, t) =
∑
p≥p0

q1∑
q=q0

ℓqε0
rp+qε σ

ab
p,q(n, t) , (IV.101)

where the σabp,q contain many orders in c and can develop poles. We will drop the angular and time
dependencies, and perform the integration

Iextra
ij = 2

c2 PF
η

∑
k,p,q

γ
(d)
k

(
1
c

d
dt

)2k
η R5+2k−p+η+(1−q)ε

5 + 2k − p+ η + (1 − q)ε
ℓ

(q−1)ε
0
rη0

∫
dΩd−1 n̂aijnb σ

ab
p,q


= 2
c2

∑
k

γ
(d)
k

(
1
c

d
dt

)2k [∫
dΩd−1 n̂aijnb σ

ab
5+2k,1

]
,

(IV.102)

where the fact that the γ(d)
k do not depend on η was crucial. Exactly as in the case of the surface

terms, we see that the finite part procedure selects only the terms with q = 1. But, recalling that
Σij = τ̄ij and the definition of the Landau-Lifschitz pseudo tensor (B.5), one can see that the σabp,q
are made of two pieces. The first one, coming from the stress-energy tensor T µν , involves Dirac
distributions and thus does not enter our computation as we are restricted to r > R. The second
entails the non-linear source term Λµν and thus is composed of products of potentials. As already
discussed, it can not involve q = 1 terms. Therefore, we can conclude that, even in the IR dimensional
regularization scheme, the extra piece does not contribute

Iextra
ij = 0 . (IV.103)

Contribution of the IR shift

The IR shift χi1,2 used to compensate the remaining poles in the equations of motion [56] is given
in app. C.4.2.10 It starts at the 4PN order, and thus its contribution to the source quadrupole is
simply given by

δχIij = 2m1 y
⟨i
1 χ

j⟩
1 + 2m2 y

⟨i
2 χ

j⟩
2 . (IV.104)

10We thank L. Bernard for providing us the file containing this shift.
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IV.3.2 Computation of the required potentials in d dimensions
Just as in the case of the three-dimensional Hadamard regularized surface terms, the differ-

ence between Hadamard and dimensional regularizations only involves specific multipolar orders, see
eqs. (IV.79) and (IV.85). Therefore the asymptotic expansions of the d-dimensional potentials are
required.

The linear potentials V , Vi and K and the superpotentials are known in the whole d-dimensional
space, thus one has just to expand them in r → ∞.

But the volume terms and the source of the potential involved in compact support terms also
include the quadratic potentials Ŵij at 1PN, R̂i and Ẑij at Newtonian order, and the cubic potential
X̂ at Newtonian order. If the compact support parts of their sources (and contributions of the
distributional derivatives in the X̂) can be treated easily,11 none of those potentials are known in all
d-dimensional space. We thus have to compute their asymptotic behaviors by iterating the propagator
at infinity, and we will construct such multipolar expansions by adding the accurate homogeneous
solution to a particular one. For a potential P with source S, the generalization of the matching
procedure (IV.56) in the case of a d-dimensional potential reads [56]

M(P ) = □̃−1
R M(S) − 1

4π
∑
ℓ∈N

(−)ℓ
ℓ! ∂LSL⋆ , (IV.105)

where we will trade □̃−1
R for the d-dimensional symmetric propagator, as we are only interested in

even orders. The homogeneous solution is constructed out of the PN expansion of

SL⋆ (t, r) ≡ k̃

rd−2

∫ +∞

1
dz γ 1−d

2
(z)

[
SL
(
t− zr

c

)
+ SL

(
t+ zr

c

)]
, (IV.106)

with
SL(u) ≡ PF

η

∫
ddx

(
r

r0

)η
xL S(x, u) , (IV.107)

and the γ 1−d
2

kernel is defined by eq. (IV.87). Note that SL(u) is the PN-even d-dimensional gen-
eralization of eq. (IV.57), but with the main difference of the presence of the z integration, due to
the fact that the propagator does not lie anymore on the light-cone. Performing explicitly the PN
expansion, eq. (IV.105) becomes

M(P ) =
∑
k∈N

(
1
c

∂

∂t

)2k

∆̃−k−1M(S) − 1
4π d−1

2

∑
k,ℓ

(−)ℓ
ℓ!(2k)!

Γ
(
d
2 − 1 − k

)
Γ
(

1
2 − k

) 1
c2k S(2k)

L (t) ∂Lr2k−1−ε .

(IV.108)

Computing the particular solutions

There is no particular issues with the multipolar development of the sources,12 so computing the
particular solutions

M(P )part ≡
∑
k∈N

(
1
c

∂

∂t

)2k

∆̃−k−1M(S) =
∑
k∈N

(
1
c

∂

∂t

)2k

PF
η

[
∆−k−1

(
r

r0

)η
M(S)

]
, (IV.109)

is easily done by means of iterations of the d-dimensional Matthieu formula [87]

∆−1
[
rα+η n̂L

]
= rα+2+η n̂L

(α + d+ η + ℓ)(α + 2 + η − ℓ) . (IV.110)
11To the only difficult point that we need to know the value of the Newtonian Ŵ evaluated at y1, required to

compute X̂, see eq. (IV.55).
12The source of the X̂ potential involves Ŵij , which has thus to be computed and matched before deriving X̂.
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Homogeneous solutions for the quadratic potentials

Computing the homogeneous solutions is more involving. Indeed, it relies on the source integral
SL(u) (IV.107), and thus on the integration of the source in the whole space. For the quadratic
potentials Ŵij, R̂i and Ẑij, the source is a product of (derivatives) of the linear potentials and thus
known in all space. Therefore, in full generality, we need to integrate products like∫

ddx xLrα1 r
β
2 r

γ
12 n

K
1 n

P
2 n

Q
12 . (IV.111)

First, by substituting xi = yi1 + r1n
i
1 and ni2 = (r12n

i
12 + r1n

i
1)/r2 (cf. fig. A.1), and noticing that

neither yi1, r12 nor ni12 depend on x, we only need to compute integrals such as∫
ddx rα1 r

β
2 n

L
1 . (IV.112)

There are two approaches to compute such integrals. The first one is to express rα1nL1 in terms of
derivatives with respect to yi1, for instance

rα1n
i
1 = − 1

α + 1 ∂1 i r
α+1
1 , or rα1n

ij
1 = 1

α(α + 2) ∂1 ij r
α+2
1 − rα1

α
δij . (IV.113)

Those derivatives can be brought outside of the integral and it only remains to use the d-dimensional
Riesz formula [87, 315]

∫
ddx rα1 r

β
2 = πd/2 Γ

(
α+d

2

)
Γ
(
β+d

2

)
Γ
(
−α+β+d

2

)
Γ
(
−α
2

)
Γ
(
−β

2

)
Γ
(
α+β+2d

2

) rα+β+d
12 . (IV.114)

If this procedure is very convenient for small values of ℓ, it becomes extremely cumbersome when ℓ is
larger than 3, as practically implementing the generalizations of eq. (IV.113) is then quite laborious.
In addition, this method yields spurious divergences, eg. for α = −d, that have to be dealt with by the
introduction of a new regulator. Therefore, we would like to directly compute integrals as (IV.112),
with a “generalized Riesz” procedure. Such computation has been performed by using a method
exposed in app. A.6 of [220], which relies on a projection of n1 onto n12, given by

ni1 = r2
2 − r2

1 − r2
12

2r1r12
ni12 + ni⊥ , (IV.115)

where ni⊥ is the component of n1 orthogonal to n12. The interest of such projection is that, by using
prolate spheroidal coordinates, one can single the integration of products of ni⊥ out from the total
integration. As the averages of products of ni⊥ are directly expressed in terms of r1, r2, r12, n12
and δij, the complicated integral (IV.112) reduces to a sum of Riesz ones (IV.114), and thus can be
computed. By means of this technique, we were able to match all the required quadratic potentials.13

Homogeneous solution of the X̂ cubic potential

The non-linear part of the source of the cubic X̂ potential (C.4a) can be decomposed into
quadratic and cubic sectors as

□X̂(NL) = Sq + Sc , (IV.116)
with

Sq = 2Vi ∂t∂iV + 1
2

(
d− 1
d− 2

)
V ∂2

t V + d(d− 1)
4(d− 2)2 (∂tV )2 − 2∂iVj ∂jVi (IV.117a)

13G. Faye provided an explicit formula to express integrals such as (IV.111). Unfortunately, it was after the practical
computations were achieved, so we have not used it.
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Sc = Ŵij ∂ijV . (IV.117b)

The integration of the quadratic part is naturally performed by using the “generalized Riesz”
procedure described previously. The major difficulty comes from the cubic part, as it involves the
potential Ŵij in all space in d dimensions. As we need it only at Newtonian level, we could rely
on a d-dimensional generalization of the Fock function (IV.43a). The latter has been derived, but
only in an integral form [87], which is of little practical use. Instead, we will employ the method of
superpotentials in order to replace Ŵij by the expression of its source. As superpotentials are defined
in a STF guise, cf. eq. (IV.20), we will compute

Ŝc
L ≡ PF

η

∫
ddx

(
r

r0

)η
x̂L Ŵij∂ijV , (IV.118)

instead of eq. (IV.107), and un-STFize it at the end of the computation (as it is clear that eq. (IV.107)
is symmetrical under its ℓ indices, this simply accounts to putting the traces back). Two integrations
by parts and the use of eq. (C.3a) give

Ŝc
L = −4πGPF

η

∫
ddx

(
r

r0

)η (
σij − δij σkk

d− 2

)
Ψ∂ijV
L − 1

2
d− 1
d− 2 PF

η

∫
ddx

(
r

r0

)η
Ψ∂ijV
L ∂iV ∂jV , (IV.119)

where we have introduced the superpotentials Ψ∂ijV
L obeying

∆Ψ∂ijV
L = x̂L ∂ijV . (IV.120)

We have discarded the surface terms coming from the integration by parts, as they bear q > 1 and
thus are vanishing. The first integral of (IV.119) has a compact support and is straightforwardly
computed as we know the value of Ψ∂ijV

L in y1. The second integral can be evaluated by means of
the “generalized Riesz” procedure, and thus the matching of the X̂ is doable, and has been done.

Consistency checks performed on the potentials

With all those techniques, we can compute and match all the required potentials, and extract
their asymptotic behaviors. Nevertheless, these computations are heavy14 and some verifications
are thus required. The first and most stringent one is that those computations were performed in
a “double-blind” fashion, together with Q. Henry. In addition to that, we investigated the three-
dimensional limits of our potentials, and confirmed that they agree with the matched asymptotic
expressions that were used to compute the three-dimensional surface terms. We have also verified
that the harmonicity relations ∂µh̄µν = 0 hold, up to 1PN and to the achievable order in 1/r. At
1PN order, those conditions read [278]

∂µh̄
µ0 = d− 1

2(d− 2)∂tV + ∂iVi

+ 1
c2

[
∂t

(
−(d− 1)(d− 3)

(d− 2)2 K̂ + Ŵ

2 + (d− 1)2

2(d− 2)2 V
2
)

+ ∂i

(
2R̂i + d− 1

d− 2 V Vi
)]

, (IV.121a)

∂µh̄
µi =∂tVi + ∂j

(
Ŵij − Ŵ

2 δij

)
+ 1
c2

[
∂t

(
2R̂i + d− 1

d− 2 V Vi
)

+ 4 ∂j
(
Ẑij − Ẑ

2 δij

)]
. (IV.121b)

The cancellation of ∂µh̄µ0 has been checked exactly at Newtonian order, and up to O(r−6) at 1PN
order. The fact that ∂µh̄µi vanishes, up to O(r−7) at Newtonian order, and up to O(r−5) at 1PN
order.

14For instance, it took more than 160 CPU hours to match the 1PN Ŵij up to O(r−4). At this order, it has more
than 10 000 terms, of which ∼ 8 000 come from the homogeneous part.
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IV.3.3 The IR regularized mass quadrupole
Once the asymptotic expansions of the potentials are derived, the computation of the difference

of regularization schemes for volume and compact support terms can be implemented by means of
eqs. (IV.79) and (IV.85). This has been done in a “double-blind” fashion, together with Q. Henry.
Adding the contribution of the IR shift (IV.104) and removing the Hadamard regularized surface
terms, the difference of regularization schemes for the source quadrupole reads

DIij = DIVol
ij + DIComp

ij − ISurf,Had
ij + δχIij

= −βI
G2M2Q

(2)
ij

2c6

[
1
ε

− 2 ln
(
r0

√
q̄

ℓ0

)
− 246 299

22 470

]
+ βI

G2MP⟨iPj⟩
c6

[
1
ε

− 2 ln
(
r0

√
q̄

ℓ0

)
− 252 599

22 470

]

+ 1
c8

[1
ε

DI4PN,p
ij + DI4PN

ij

]
,

(IV.122)
where Qij = m1ŷ

ij
1 + m2ŷ

ij
2 is the Newtonian mass quadrupole, Pi = m1v

i
1 + m2v

i
2 is the Newtonian

linear momentum (that vanishes in the center-of-mass) and βI = −214
105 is the coefficient associated

with the logarithmic renormalization of the mass quadrupole moment [209].
Recalling that the Hadamard regularized mass quadrupole (IV.64) agrees with previous results

at the 3PN accuracy [187], this 3PN contribution due to dimensional regularization indicates that
there is an effect that we have not taken into account. Note that this 3PN pole cannot result from
a failure of the application of the IR shift, as χi is a 4PN quantity, and thus cannot generate nor
remove poles entering at 3PN.

The number associated with this 3PN pole, βI , indicates that the missing effect is given by the
tail-of-tails. Indeed those enter at 3PN, and it is known by EFT methods that they bear a UV
pole that should cancel the IR pole appearing in the mass quadrupole [209]. Therefore the physical
quantity to regularize is the radiative moment Uij rather than the source one Iij. In addition, it
means that the IR shift χi should remove the remaining poles in Uij and not in Iij.

IV.4 Dimensional regularization of the radiative quadrupole
In order to check if our computation of the source quadrupole Iij is correct, and notably if the

crucial IR shift compensates accurately the remaining poles, we should thus compute and regularize
the radiative quadrupole Uij. This dimensional regularization of the radiative quadrupole is currently,
and for the first time, under investigation.

IV.4.1 Dimensional regularization of the non-linear interactions
We first focus on the transition between the canonical and radiative moments. Most of the

pieces required to perform this transition are already known in three dimensions. For instance, the
iterated tail contributions have been computed up to 4.5PN order [276]. Therefore, we do not intend
to perform a full computation in d dimensions, but rather only to derive and apply formulas that
give the difference between Hadamard and dimensional regularizations, leaving the computation of
the three-dimensional missing pieces for future works. Let us also note that we only need to iterate
twice the propagator, as the dominant contribution of the third iteration, the tail-of-tail-of-tail effect,
enters at 4.5PN order when we aim to 4PN accuracy. Therefore we only seek for cubic interactions.

Last but not least, the effect to be compensated is local, as clear from eq. (IV.122), whereas
the non-linear interactions reveal non-local features by nature. Fortunately, and as explicitly shown
hereafter, those non-local effects will play no role in the change of regularization scheme. From an
EFT point of view, this can be related to the relation displayed in fig. III.2: we seek for the local pole
that is associated to the non-local piece of the tails (represented by the logarithmic dependence).
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The computation of the dimensional regularization of those non-linear interactions, and the dif-
ference with the usual Hadamard regularized ones, is one of the main achievements of this thesis.
The detailed derivation is thus presented in app. D, we only sketch it rapidly hereafter.

Dimensional regularization of the post-Minkowskian metric

The aim is to study the d-dimensional solution of the vacuum Einstein equations
□hµν = Λµν(x, t) . (IV.123)

As they will play no role, we will henceforth drop space-time indices, and focus on multipolar ones.
Therefore our object of study is the wave equation

□hL = NL(x, t) , (IV.124)
where NL is some source function that will be specified later on. The accurate prescription for the
d-dimensional propagator is

hL(x, t) = −k̃
4π

∫
ddx′

(
r′

r0

)η ∫ +∞

1
dzγ 1−d

2
(z) NL (x′, t− z|x′ − x|/)

|x′ − x|d−2 , (IV.125)

where the kernel of the z-integration is given by the function

γ 1−d
2 −ℓ

(z) = 2
√
π

Γ
(
d−2

2 + ℓ
)

Γ
(

3−d
2 − ℓ

) (z2 − 1
) 1−d

2 −ℓ , (IV.126)

which is properly normalized for any ℓ ∈ C by analytic continuation as∫ +∞

1
dz γ 1−d

2 −ℓ
(z) = 1 . (IV.127)

The presence of this kernel accounts for the fact that the propagator is not localized on the light
cone. In fact such a localization only happens in even-dimensional space-times, as can be seen by
the distributional limit of γ 1−d

2 −ℓ
(z), see app. C of [56],

γ−1−ℓ(z) =
ℓ∑

k=0

2k−ℓ
(2ℓ− 1)!!

(2ℓ− k)!
(ℓ− k)! δ

(k)(z − 1) , for ℓ ∈ N , (IV.128)

where δ(k) is the kth derivative of the Dirac distribution. Note also the similarities between this kernel
γ 1−d

2
and the δ(ε)

ℓ functions entering the source terms (IV.10).
As we will see in the next section, the source can be recast as

NL(x, t) =
∑
p≥p0

q1∑
q=q0

ℓqε0
rp+qε

[
ψ̃p,q(t)
ε

+ ψp,q(t)
]
n̂L , (IV.129)

where the ψ̃p,q coefficients do not depend on ε. As shown in app. D, the only contributions to the
difference of regularization schemes come from the terms with p− ℓ− 3 ∈ 2N and read

DhL = −4(−)ℓ
ℓ! ∂̂L

{
k̃

rd−2

∫ ∞
1

dz γ 1−d
2

(z)DH
(
t− zr

c
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, (IV.130)

with

DH(t) = −
∑
q ̸=1

2ℓ−2

q − 1
ℓ! (ℓ+ j)!

j! (p+ ℓ− 2)!

1
ε

+ ln
(
ℓq−1

0
√
q̄

rq−1
0

)
−

ℓ+j∑
k=0

1
2k + 1

 ψ(2j)
p,q (t)
c2j , (IV.131)

where we have denoted j ≡ (p − ℓ − 3)/2 ∈ N, and we recall our definition q̄ = 4πeγE . Note that
this contribution is local, as expected. Conversely, contributions coming from the pole terms ψ̃p,q
reveal non-local pieces, as displayed in eq. (D.35). Fortunately, none of the poles entering in the
sources we deal with satisfies the condition p− ℓ− 3 ∈ 2N and as such, contributes to the difference
of regularization schemes. Therefore this effect is purely local.
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From the corrections in the metric to the corrections in the moments

Once the contribution of the dimensional regularization scheme in the metric has been established,
one should translate it into a contribution in the radiative quadrupole. This is to be done by
identifying it as a non-linear correction to the linear canonical moment, just as the canonical moments
were identified as non-linear completions of the source ones. In d dimensions, the mass canonical
moments enter the linear metric as

k00
(1) = − 4

c2

∑
ℓ≥0

(−)ℓ
ℓ! ∂L M̃L , k0i

(1) = 4
c3

∑
ℓ≥1

(−)ℓ
ℓ! ∂L−1 M̃(1)

iL−1 , kij(1) = − 4
c4

∑
ℓ≥2

(−)ℓ
ℓ! ∂L−2 M̃(2)

ijL−2 ,

(IV.132)
where we have defined the “tilded” versions of the moments as

M̃L ≡ k̃

rd−2

∫ ∞
1

dzγ 1−d
2

(z) ML

(
t− zr

c

)
, (IV.133)

which reduce to the usual moments in the d → 3 limit.
The interest of writing the dimensional contribution under the form (IV.130) is now manifest: it

mimics the linearized metric (IV.132), and thus is directly formatted in the appropriate fashion to
be recognized as a non-linear completion of the source moments.

But before any recognition, one has first to remove the divergence, as DhL is divergenceful. This
is done following a very similar procedure as the three-dimensional one, presented in app. B.2.3
(by roughly replacing potentials by their “tilded” versions). Once the metric obeys the de Donder
gauge condition, two techniques are possible to recognize the difference in regularization schemes as
corrections to the moments. The brute force one consists in recasting the metric into source and
gauge moments, as in the d-dimensional generalization of eq. (B.18)

h00
(1) = − 4

c2

∑
ℓ≥0

(−)ℓ
ℓ! ∂L

ĨL + W̃(1)
L

c2 + X̃ (2)
L

c4 + ỸL

c2

 ,

h0i
(1) = 4

c3

∑
ℓ≥1

(−)ℓ
ℓ!

∂L−1

Ĩ(1)
iL−1 + Ỹ(1)

iL−1
c2

+ ∂iL

W̃L + X̃ (1)
L

c2

 ,

hij(1) = − 4
c4

∑
ℓ≥2

(−)ℓ
ℓ!

∂L−2Ĩ(2)
ijL−2 + 2∂ijLX̃L + 2∂L−1(iỸj)L−1 + δij ∂L

W̃(1)
L − X̃ (2)

L

c2 − ỸL

 ,

(IV.134)
where, for the sake of clarity, we have not included the current-type moments, nor the third type
of moments that appears in d-dimensional space-times (see [228]). Identifying the contribution that
behaves as Ĩij yields the correction to the source quadrupole.

The second possible way to proceed is to compute the 0i0j components of the linearized Riemann
tensor (A.3)

R0i0j = G

2

(
∂ijh

00 + 2
c
∂t∂

(ihj)0 + 1
c2 ∂

2
t h

ij + ∂ijh

d− 1 − 1
c2

δij
d− 1 ∂

2
t h

)
+ O

(
h2
)
, (IV.135)

with h = ηµνh
µν the four-dimensional trace of the metric perturbation. Indeed, those components are

gauge independent, ie. plugging the metric (IV.134) in eq. (IV.135), the gauge moments disappear

R0i0j = −2G
c2

∑
ℓ≥0

(−)ℓ
ℓ!

(
d− 2
d− 1 ∂ijLĨL − 2

c2 ∂L−1(iĨ(2)
j)L−1 + 1

c4 ∂L−2Ĩ(4)
ijL−2 + 1

c2
δij
d− 1 ∂LĨ(2)

L

)
,

(IV.136)
and one can more easily identify the contributions to the ĨL moments.
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IV.4.2 Computation of the d-dimensional quadratic interactions
As we have advertised, the 3PN and 4PN corrections are due to cubic interactions, or 3PM

corrections. Therefore one needs to known the 3PM source of (IV.123), ie. compute the d-dimensional
2PM effect, or quadratic interactions. We will present hereafter the computation of the tail effect
M × Mij, as it is the most representative quadratic interaction.

The source of the d-dimensional tails is given by the interplay of the ℓ = 0 and ℓ = 2 modes of
the canonical metric (IV.132). As M̃ = k̃Mr2−d, we have to solve equations of the generic form

□hL = NL(x, t) = n̂L

∫ ∞
1

dz γ 1−d
2

(z) zk ℓqε0
rp+qε F

(
t− zr

c

)
. (IV.137)

If we know the exact prescription to apply, namely the propagator (IV.125), we do not need to use
it here. Instead, following [56],15 we can rely on a formal PN expansion as

h̄L = □̃−1
R N̄L − PF

η

∑
p∈N

(−)p
p!

∑
j∈N

∆−jx̂P
∫

ddx′
(
r′

r0

)η
∂̂′P

Ñ (2j)
L (y, t− zr′/c)

r′d−2


y=x′

, (IV.138)

with

∆−jx̂L ≡
Γ
(
d
2 + ℓ

)
Γ
(
d
2 + ℓ+ j

) r2jx̂L
22jj! . (IV.139)

As now usual, we can recognize a particular and a homogeneous solution, the latter being constructed
so that the metric satisfies the matching condition (II.48).

The particular solution involves the PN expansion of the source N̄L. Introducing τ = zr/c and
using the asymptotic development of the γ 1−d

2
kernel

γ 1−d
2

(z) =
z→∞

∑
j∈N

(−)j
j!

2
√
π z−2−2j−ε

Γ
(
−j − ε

2

)
Γ
(

1+ε
2

) , (IV.140)

we can decompose N̄L into “even” and “odd” sectors, generalizing the results of [56] in the case of a
non-vanishing k, as

N̄ even
L =

∑
j∈N

Akj
r2j+βk−p−qε

c2j+βk
F (2j+βk)(t) n̂L , (IV.141a)

N̄odd
L =
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j
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c1+2j−k+ε

∫ ∞
0

dτ−ε F (2j+2−k)(t− τ) n̂L , (IV.141b)

where βk = 0 if k is even and 1 if k is odd. The coefficients that enter those expressions are

Akj ≡ (−)j
22j+βkj!

Γ
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1
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Γ
(
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) , (IV.142a)
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) . (IV.142b)

The expressions (IV.141), once integrated with the PN-expanded propagator, can (and will) yield
poles. Fortunately, those poles disappear in the three-dimensional limit by giving logarithmic terms,
and thus this limit is non-pathological. Moreover, such poles will not contribute to the difference in
regularization schemes in the iterated cubic solution, as already advertised.

15Note that the following computations are generalizations of the results exposed in [56].
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As for the homogeneous sector, ie. the second part of eq. (IV.138), once well massaged, it comes

h̄hom
L = −1

d+ 2ℓ− 2
Γ (qε− η)

Γ (p+ ℓ− 1 + qε− η) C
k,p,q
ℓ

∑
j∈N

∆−jx̂L
∫ ∞

0
dττ η−qεF (2j+ℓ+p−1)(t− τ) , (IV.143)

with the coefficients

Ck,p,q
ℓ ≡

∫ ∞
1

dy γ 1−d
2 −ℓ

(y)
∫ ∞

1
dz γ 1−d

2
(z) zk(y + z)ℓ−2+p+qε−η , (IV.144)

which are generalizations of the ones introduced in [56] for q ̸= 2, and are derivable by similar
methods to those developed in the app. D of this work.16

Therefore we have access to the knowledge of the PN-expanded d-dimensional quadratic interac-
tions (IV.138), which consist in series in powers of 1/r. As we know that only certain contributions
(namely those satisfying p − ℓ − 3 ∈ 2N) will contribute to the cubic result (IV.130), we can thus
restrict our computations to the necessary orders only. Injecting those in the cubic source (IV.124),
we see in addition that we were allowed to decompose it as in eq. (IV.129).

The only quadratic interaction that does not fall within the presented computation is the memory
Mij × Mij that is needed for 4PN corrections. For this interaction, the source term (IV.137) has to
be generalized into

□hL = NL(x, t) = n̂L

∫ ∞
1

dy γ 1−d
2

(y) ys
∫ ∞

1
dz γ 1−d

2
(z) zk ℓqε0

rp+qε F
(
t− yr

c

)
G
(
t− zr

c

)
. (IV.145)

In this case the PN expansions of the sources are naturally given by four terms: “even-even”, “even-
odd”, etc. and the homogeneous solution keeps the same structure.

Note that in the case of the sought cubic interactions, performing such PN expansion instead
of the machinery developed in app. D would not have helped. Indeed, putting the result in the
crucial linear metric-looking form (IV.130) would have been definitively more involving. Moreover
we would have had a potentially extremely large number of terms to study, coming from the iterated
PN-expanded propagator acting on N̄L.

IV.4.3 The 3PN dimensional corrections to the radiative quadrupole
A dimensional analysis indicates that the only possible interactions entering at 3PN in the ra-

diative quadrupole are the tail-of-tail M × M × Mij and tail-of-“linear memory” M × Mi × Mi. The
difference between dimensional and Hadamard regularizations of those interactions were thus com-
puted by using the machinery developed in this section.

The extraction of the correction to the mass quadrupole from the metric has been performed in
both direct recognition (IV.134) and through the gauge independent components of the linearized
Riemann tensor (IV.136), and they agreed to yield

δMij = βI
G2M2M(2)

ij

2c6

[
1
ε

− 2 ln
(
r0

√
q̄

ℓ0

)
− 246 299

22 470

]
−βI

G2MM(1)
<iM

(1)
j>

c6

[
1
ε

− 2 ln
(
r0

√
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ℓ0

)
− 252 599

22 470

]
.

(IV.146)
At the Newtonian order, we naturally have Mij = Qij + O(c−2) and M(1)

i = Pi + O(c−2), so that
this contribution exactly compensates the 3PN sector of DIij (IV.122). This result, and the fact
that we recover the tail-of-tail EFT results of [209], are strong confirmations of the soundness of
the d-dimensional computations we conducted. But it is also a confirmation of the previously led
3PN computation, using only an IR Hadamard regularization [88] . Indeed, if the two regularization
schemes yield different results for the source quadrupole, they converge when dealing with the physical
radiative quadrupole. Therefore, both regularization schemes are suitable at 3PN order, as long as
they are consistently implemented.

16Note that our notations differ from those of [56] by the exchange p ↔ k.
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IV.4.4 Towards the 4PN dimensional corrections
At the 4PN order, using dimensional arguments, the only possible interactions that can yield

corrections to the radiative quadrupole are the tail-of-memory effects M × Mij × Mij, M × Mi × Mijk,
M × Si × Mij and M × Mi × Sij together with the “memory-of-memory” Mi × Mi × Mij. Note that
the only interactions to exist in the center-of-mass are M × Mij × Mij and M × Si × Mij. The
dimensional regularizations of those contributions are currently under investigation, by using the
whole machinery presented above. One of the main differences with the 3PN case is that the 3PN
tail-of-tail M×M×Mij and tail-of-“linear memory” M×Mi×Mi could only contribute as corrections
to the mass quadrupole. The identification was thus quite easy to perform. On the contrary, in the
4PN case, the tail-of-memory M × Mij × Mij can eg. contribute to the monopole, quadrupole and
ℓ = 4 moments, depending on contractions of its indices. In addition, the interactions involving Si
and Sij can naturally also contribute as corrections to the current moments. The identification of
the accurate dimensional regularization effects in the mass moment will thus be more involving.

But in addition to those tail and memory contributions to the radiative quadrupole, the canonical
quadrupole can also receive corrections from dimensional regularization. Indeed at 4PN, the following
interactions are dimensionally authorized to enter Mij: M ×M ×Gij, M × Iij ×G, M × Ii ×Gi and
Ii × Ii ×G, where GL stands for one of both gauge moments WL or YL. Note that only the first two
types of interactions remain when expressed in the center-of-mass, andW is vanishing at leading order
for circular orbits [187]. If such corrections are too high orders to affect the computation of the tail
and memory interactions, they may play a crucial role in the final radiative moments. Fortunately,
the machinery developed to deal with the transition from Mij to Uij is directly adaptable to the
transition from Iij to Mij, so we won’t have to develop a novel procedure to deal with such gauge
interactions in d dimensions.

Nevertheless, it is to note that, once expressed in the center-of-mass, the pole in the 4PN contri-
bution of DIij (IV.122) can be expressed in terms of tail-of-memory effects only, as

DI4PN,p,CoM
ij = G2M

c8

(10
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3 εab⟨iQ
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)
, (IV.147)

with Qij = m1ŷ
ij
1 + m2ŷ

ij
2 the Newtonian mass quadrupole and Ji = ϵijk(m1y

j
1v
k
1 + m2y

j
2v
k
2) the

conserved Newtonian angular momentum. This feature seems to indicate that the pole can be
compensated by implementing dimensional regularization only in the transition from canonical to
radiative moment, and thus that the gauge moments may not play a significant role. But this is just
an intuition and obviously, concrete computations are to be done, and will be performed in a near
future.
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Part B

Alternative theories of gravitation
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Chapter V

Non-canonical domain walls

To begin with the second part of this dissertation, devoted to the study of alternatives to the
canonical gravitational theory, we first discuss a novel proposition for the construction of stable
solitonic defects.

The discussion on the stability of those solitonic defects usually invokes a topological argument,
reviewed in sec. V.1.4, based on the vacuum structure of the potential energy of the field. Together
with C. Deffayet, we have shown that viable alternatives exist beyond this usual construction, which
are to be presented in this chapter, extensively based on [165]. Note that we do not seek for exhaus-
tivity, nor for a classification of those theories: after presenting the general framework we focus on a
few examples of such non-canonical defects.

V.1 The canonical domain walls

V.1.1 Solitonic defects
Solitonic defects are static and self-sustained non-trivial configurations of a given field, with

localized energy (ie. their energy must decay “fast enough” in at least one spatial direction), see eg.
the textbooks [275, 329, 340, 349].

The first of such defects that was studied is of hydrodynamical origin, and results from the
propagation of self-sustained front waves in rectangular narrow channels. This effect was scientifically
described as soon as 1845 by J. Scott-Russell [326], and an accurate theoretical modeling was derived
in 1871 by J. Boussinesq [109]. By solving the hydrodynamical equations, he recovered the relation
between the speed of the front wave, v, the depth of water ahead of the soliton, H, and the height
of the wave, h:

v2 = g

(
H + 3h

2

)
, (V.1)

that had been observed by J. Scott-Russell and M. Bazin (in this formula g ≃ 9.81 m.s−2 is the
standard gravity). Note that similar (but widely more impressive) effects can happen at river mouths:
the tidal bores (mascarets in French). Such front waves are extremely powerful, as the Seine tidal
bores could easily reach Rouen, for instance.1

Beyond those hydrodynamical examples, solitons exist and are used in a large variety of domains,
ranging from liquid crystals to communications. Focusing on the scope of this thesis, ie. gravita-
tional theories, such defects are present in cosmological contexts. Indeed, implementing GR (or an
alternative theory of gravitation) with non-linear matter fields can lead to self-sustained non-trivial
configurations. The simplest examples of such scenarios lie within the scalar-tensor framework, briefly
reviewed in sec. I.2.2, and thus we will restrict ourselves to this class of theories.

1As such front waves can be extremely devastating, the rives were adapted to break them. Those events are thus
extremely rare nowadays.
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An interesting formation mechanism for those cosmological defects is through phase transitions
in the early stages of the evolution of our Universe [345]. Let us consider a field whose vacuum
configuration is unique at high energy, but degenerate at low energy (such as the Higgs field). In the
very early times such field is thus perfectly homogeneous but, when the temperature of the Universe
has decreased enough, it has to settle down to one of the possible vacuum configurations. During
this phase transition, causally disconnected patches of the Universe have no reason to settle down
to the same configuration. Therefore, localized and self-sustained non-vacuum configurations of the
field have to appear at some point: cosmological defects are hence formed.

From an observational point of view, those cosmological solitons are localized sources of en-
ergy, and thus should leave detectable imprints on the cosmic microwave background. Those effects
have been investigated by the Planck collaboration, that was able to put bounds on the parameter
space [13]. Moreover, string-shaped cosmological defects would induce polarizations in the cosmic
microwave background [59, 306, 327]. Current experiments (such as the BICEP3 instrument [250]),
or planned ones (eg. the LiteBIRD satellite [222]) are conducted to detect this polarization. In
addition to those cosmological impacts, defects also emit gravitational radiation. Considering a cos-
mological network of solitons, the individual contributions add up to be observed as an unresolved
stochastic background of gravitational radiation [36, 60, 191, 232], which is currently searched for,
either by using the pulsar timing array techniques [97, 265] or directly by the LIGO-Virgo-KAGRA
collaboration [11].

V.1.2 Some generalities about canonical domain walls
The simplest realizations of solitonic defects are the domain walls, that are invariant under

translations in two directions: the energy is localized on a two-dimensional (thick) brane, thus the
name. For the sake of simplicity, we will restrict ourselves to those domain wall geometry, and, apart
in the last section, turn off the gravitational interaction, working on a Minkowskian space-time. The
generalization to gravitating solutions, and to string or monopole configurations, is left for future
studies.

Before investigating alternatives, let us review the usual domain walls in flat space-time. The
canonical Lagrangian density for a scalar field ϕ is simply given by

Lcan = X − V (ϕ) , (V.2)

where the Lorentz-invariant kinetic term reads

X ≡ −1
2 η

µν ∂µϕ ∂νϕ , (V.3)

with ηµν the inverse Minkowskian metric with mostly plus signature.
As we seek for domain wall configurations, that are invariant under translations in two spatial

directions, we will restrict ourselves to the study of one-dimensional defects, usually called kinks.
Using a 1+1 dimensional space-time instead of a 3+1 dimensional one does not spoil any of our
results (as long as we work in flat space-time). We denote z the spatial coordinate that remains,
write derivatives with respect to z with primes, and time derivatives with dots.

The specific form of the potential V (ϕ) that appears in the Lagrangian (V.2) determines the
existence and shape of possible domain wall configurations. In the canonical case, V must have
degenerate minima, ie. two or more distinct values ϕkmin for which V is minimal. In topological
terms, the vacuum structure of V has to be non-connected. A kink configuration is then a static
solution that interpolates between one of those minima at z = −∞, and a distinct one at z = +∞.
As the field tends towards a state of minimal energy at both infinities, the energy of the kink is well
localized. Moreover the decay of such configuration is forbidden as the two extremities of the kink
are “trapped” in their vacuum states: exiting one of those states would require an infinite amount
of energy (this rather vague assertion will be formalized in sec. V.1.4).
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For a profile ϕ(z), the Euler-Lagrange equation for the theory (V.2) can be recast in the form of
a total derivative, yielding the first integral2

ϕ′2

2 − V (ϕ) ≈ J0 , (V.4)

where J0 is a constant. This leads to the very simple differential equation

ϕ′ ≈ ±
√

2 (V (ϕ) + J0) . (V.5)

As we seek for kinks, we require that ϕ settles down to some ϕkmin at spatial infinities, and that
ϕ′(z = ±∞) = 0. Thus evaluating eq. (V.4) at z = +∞, we see that J0 is nothing but minus
the minimal value of V (which renders eq. (V.5) well-defined for all ϕ). As we have the freedom
of shifting the potential, we will only consider potentials that have vanishing minima, ie. we take
J0 = 0 in the following.

Using a trick originally due to Bogomolny [99], let us write the energy carried by the kink as

Hkin =
∫

dz
[
ϕ′2

2 + V (ϕ)
]

=
∫

dz
[1
2
(
ϕ′ ∓

√
2V
)2

± ϕ′
√

2V
]
. (V.6)

Choosing the sign inside the parenthesis so that the perfect square vanishes by virtue of (V.5), it
only remains

Hkink = ±
∫

dzϕ′
√

2V = ±
∫ ϕ(+∞)

ϕ(−∞)
dϕ

√
2V . (V.7)

As the energy density vanishes at infinity, it is natural to require that the total energy (V.7) is finite.
Two of the usual potentials that accommodate domain walls are the “mexican hat” and “sine-

Gordon” ones, given respectively by3

Vmh = (1 − ϕ2)2

2 , and VsG = 1 − cosϕ . (V.8)

Those two potentials are quite different: the mexican hat potential posses only two vacuum configu-
rations, at ϕ = ±1, when the sine-Gordon one has an infinite number of minima, for ϕ = 2πk, k ∈ Z.
Integrating (V.5) with J0 = 0, the resulting configurations are given by

ϕmh(z) = ± tanh z , and ϕsG(z) = 2πk ± 4 arctan ez . (V.9)

Those configurations have finite energies, explicitly given by

Hmh = 4
3 , and HsG = 8 . (V.10)

V.1.3 An interesting change of variables
Eq. (V.5) points out a very convenient change of variable: defining ψ as

dψ ≡ dϕ√
2V (ϕ)

, (V.11)

2In this chapter, we denote with curly symbols “≈” relations that hold on-shell, ie. when the field and its derivatives
are replaced by the configuration that satisfies the equation of motion.

3As we do not seek for exhaustivity, we only consider the most “natural” form of those potentials. Parameters could
naturally be added, eg. by Vmh = V0 − µ2ϕ2 + λϕ4, but taking such parameters into account changes the discussion
in a quantitative rather than a qualitative manner. Similarly, we consider that our domain walls “sit” in the origin
(which amounts to integrating out the translationnal zero mode), and we will treat the + and − solutions of (V.5) as
being the same configuration.
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the Lagrangian density is factorized as

Lcan = 2
(
Xψ − 1

2

)
V [ϕ(ψ)] , (V.12)

with Xψ being naturally given by replacing ϕ by ψ in eq. (V.3). This form is interesting as it is easy
to see that ψ = ±z generates solutions, whatever the shape of the potential V is.

More noteworthy, the quite different mexican hat and sine-Gordon theories (V.8) appear very
similar when written in the ψ variable

Lmh =
(
Xψ − 1

2

)
cosh−4 ψ , and LsG = 4

(
Xψ − 1

2

)
cosh−2 ψ . (V.13)

Note that those two Lagrangians appear singular at the ψ = ±∞ points, which is to be expected
as the transformation (V.11) is ill-defined when V vanishes. Note also that the inverse change of
variable ϕ[ψ] induced by this transformation maps the real line (domain of variation of ψ) to a finite
interval (bounded by the two vacuum states between which the kink interpolates) which does not
represent the full range of variation of the ϕ field of the original model, eg. it does not cover the
large values of ϕ in the mexican hat potential.

Given the similarity between the Lagrangians (V.13), we can easily generalize these canonical
models to a larger family

Lk,can = K
cosh2k(ψ)

(
Xψ − 1

2

)
, (V.14)

where K is some positive constant and k a half integer. As discussed, is easy to see that ψ′ = ±1
provides a solution of the field equations of the kink type. The energy of such a solution is finite and
given by

Hk,can = K
∫ +∞

−∞

dz
cosh2k z

= K Ik , (V.15)

where we have defined Ik as

Ik ≡
∫ +∞

−∞

dz
cosh2k(z)

=
√
π Γ(k)

Γ(k + 1/2) for k ≥ 1
2 . (V.16)

In order to express those theories in the original ϕ variable, let us perform a change of variable of
the form

ϕ[ψ] =
√

K
∫ ψ

0

du
coshk u

. (V.17)

When ψ varies over the whole real line, the interval of variation of ϕ is just given by
]
−
√
K
2 I k

2
,
√
K
2 I k

2

[
and because the hyperbolic cosine is a positive function, we see that the above defined ϕ[ψ] is
invertible into a ψ[ϕ] on this interval. This change of variable puts the Lagrangian (V.14) in the
standard form (V.2) with the specific potential

V (ϕ) = K
2 cosh−2k (ψ[ϕ]) , (V.18)

where, at this stage, V is defined for ϕ ∈
]
−
√
K
2 I k

2
,
√
K
2 I k

2

[
. However, it is easy to see that dV/dϕ

vanishes at the ends of this interval (where ψ diverges) allowing to extend the domain of variation
of ϕ to the entire real line, either by making V periodic (which is always possible, with period then
given by

√
K I k

2
) or by using an analytic extension, possibly non periodic. This later possibility

arises for instance in the case of the canonical mexican hat model, which corresponds to k = 2. The
k = 6 or k = 10 also yield analytical expressions for ψ[ϕ] (however not very enlightening) which in
turn result in potentials having similar shapes to the mexican hat one. In turn, the sine-Gordon
(k = 1) and the k = 1/2 cases have potentials which are periodic by analytic extension. We show
these potentials in the fig. V.1.
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Figure V.1: Analytic extensions of the potential V (ϕ) (V.18). The left panel displays the cases k = 2,
k = 6 and k = 10, yielding a mexican hat-like profile; the right one, k = 1 and k = 1/2, yielding a
periodic profile.

V.1.4 The usual argument sustaining stability
The Hamiltonian of a generic configuration ϕ(t, z) is easily derived from the Lagrangian den-

sity (V.2) and, using the Bogomolny trick, it reads

H(t) =
∫

dz
[
ϕ̇2

2 + ϕ′2

2 + V (ϕ)
]

=
∫

dz
[
ϕ̇2

2 + 1
2
(
ϕ′ ∓

√
2V
)2

± ϕ′
√

2V
]
. (V.19)

This energy can be decomposed as H(t) = Hkin(t) + Htopo(t) with

Hkin(t) ≡ 1
2

∫
dz
[
ϕ̇2 +

(
ϕ′ ∓

√
2V
)2
]
, (V.20a)

Htopo(t) ≡ ±
∫

dzϕ′
√

2V = ±
∫ ϕ(+∞)

ϕ(−∞)
dϕ

√
2V . (V.20b)

The first term is obviously always positive, thus the energy is always greater than Htopo. The last
term, which is nothing but Hkink, depends only on the value of ϕ at spatial boundaries, thus it has
been dubbed topological. Once again, for a kink configuration, one can choose the sign within the
parenthesis accordingly to (V.5) so that Hkin = 0 (we recall that such a solution is static). Thus we
recover the result (V.7), namely that all the energy of a kink is contained in a topological contribution.
In addition, this provides an elegant proof of the perturbative stability of the kinks: the addition of
a localized perturbation to a kink configuration will not change the topological term, but only add
a contribution δHkin. The energy of the perturbed configuration is thus inevitably greater than the
energy of the background one: the kink is stable against perturbations.

The usual argument invoked to prove the non-perturbative stability of the kink relies on the
existence of a “topological charge”. Using the fully antisymmetric Levi-Civita tensor εµν and a
generic smooth function f(ϕ), one can construct a “conserved” current εµν∂νf(ϕ) as, by symmetry
considerations, ∂µ (εµν∂νf(ϕ)) is trivially vanishing. A convenient choice of f leads to the current

Jµ ≡ εµν∂ν

(∫ ϕ

ϕ(−∞)
dφ
√

2V (φ)
)
, (V.21)

with associated “charge”
Q =

∫
dzJ0 = ± Htopo , (V.22)

where the sign directly corresponds to the sign of ϕ′. One can then argue that among the class of
solutions sharing the same value of the “topological charge” Q, the kink one minimizes the energy.
Thus, as long as the charge is conserved, the kink is stable in a non-perturbative way.
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In order to change the value of its charge, a kink has to be deformed to a configuration with
different boundaries. If one considers that this deformation has to be smooth, there exist intermediate
configurations in which the field at infinities is not in a vacuum state, as the vacuum structure of the
potential is not connected, and thus the total energy of those configurations diverges. Therefore the
usual argument supporting the conservation of the charge Q is that it requires an infinite amount
of energy to smoothly deform a configuration with a given charge into a configuration with another
charge.

But one can be reticent to the idea of considering Q as a physical charge, and thus its conservation
as a fundamental principle. Indeed the notion of a conserved current usually implies an underlying
symmetry, as discussed in the work of E. Noether [296]. If the present system enjoys a symmetry
under time redefinition, the associated conserved quantity is already given by the first integral (V.4).
Thus the conservation of the current (V.21) is nothing more that a mathematical artifact, and the
“conservation of the charge Q” must be dealt with great care.

V.2 Domain walls in potential-free scalar theories

V.2.1 Bypassing the usual argument
The ambiguity of this concept of “charge”, on which the usual argument to prove the stability

of kinks relies, is a sufficient motivation to seek for alternatives. As this concept is based on the
vacuum structure of the potential, a straightforward way to go beyond the argument is to seek for
theories without potentials. But a canonical Lagrangian with no potential simply describes a free
field L = X, and is of no interest as it cannot sustain kink configurations. We thus have to use non-
canonical kinetic terms, ie. seeking for theories belonging to the class of Horndeski models [164, 236].
For simplicity, we will only consider Lagrangian containing at most first derivatives

L = P (ϕ,X) , (V.23)

leaving the extension to second and higher derivatives for future works. We define a potential-free
theory by requiring that the Lagrangian density is trivially vanishing when the kinetic term is set to
zero

P (ϕ, 0) ≡ 0 . (V.24)

Solitonic solutions in theories involving non-canonical kinetic terms have been already studied and
are usually dubbed k-defects (see eg. [37, 38, 322, 364] and other references displayed in [165]). But
to our knowledge, none of those works investigate theories that satisfy the condition (V.24): they
either involve an explicit potential (as in the original paper [37]), or a “hidden” one, as for example
in the DBI-like Lagrangian of [20], L = −[1 +U(ϕ)]

√
1 − 2X, that does not vanish when X is set to

vanish.

V.2.2 General stability requirements
For a static profile ϕ(z), the theory (V.23) admits the first integral4

J ≡ 2XPX − P ≈ −J0 , (V.25)

which is the generalization of eq. (V.4). The conservation of this quantity is equivalent to the
cancellation of the equation of motion E ≡ δL/δϕ, as

J ′ = −E ϕ′ . (V.26)
4As from now, we denote partial derivatives with a subscript, eg. PX ≡ ∂P (ϕ, X)/∂X.
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Similarly to what was done in the canonical case, we will only study the solutions with J0 = 0
for simplicity. It comes as a natural requirement to impose that the energy of the background is
finite and strictly positive. For a static configuration, the energy density being simply minus the
Lagrangian one, we require that

H = −
∫

dzP = −2
∫

dzXPX ∈ ]0,+∞[ , (V.27)

where we have used eq. (V.25) with J0 = 0.
Assuming that a background profile has been found, we study its stability by adding a small

perturbation φ(t, z) on top of it. The quadratic Lagrangian for this perturbation reads

δ(2)L = −1
2
[
Zµν∂µφ∂νφ+ M2φ2

]
, (V.28)

where the kinetic matrix and mass terms read

Z00 = −PX , (V.29a)
Zzz = JX = 2XPXX + PX , (V.29b)
M2 = −Eϕ = Jϕϕ − JϕXϕ

′′ . (V.29c)

In the canonical case (V.2), those quantities are given by Zµν = ηµν and M2 = Vϕϕ. In order to
avoid tachyonic instabilities, we require that the determinant of the kinetic matrix is strictly negative
everywhere5

− Z00 Zzz > 0 . (V.30)
As the background is time-independent, one can perform a Fourier decomposition of the pertur-

bation φ(t, z) = ∑
k φk(z)eiωkt, where the index k can be discrete or continuous. Each mode then

obeys
(Zzzφ′k)

′ −
(
Z00ω2

k + M2
)
φk = 0 . (V.31)

This equation is in a Sturm-Liouville form, the modes obey orthogonality relations with the measure
−Z00dz [129] ∫

dz
(
−Z00

)
φkφℓ = 0 when k ̸= ℓ . (V.32)

Note that there is always a zero-mode, given by φ0 ∝ ϕ′, which explicitly appears when taking the
derivative of the equation of motion

E ′ = (JXϕ
′′)′ − (JϕXϕ

′′ − Jϕϕ)ϕ′ = (Zzzϕ′′)′ − M2 ϕ′ ≈ 0 . (V.33)

The condition (V.27) can now be understood also as a normalizability condition for this zero-mode,
under the measure −Z00dz, as we recall that for a kink, X = −ϕ′2/2 ∝ −φ2

0. Naturally we have to
require that this massless mode is the lowest lying one, otherwise instabilities would appear. Note
that when the background configuration is proportional to ϕmh or to ϕsG (V.9), this zero mode has
no node, and thus is indeed the lowest lying one.

Moreover, by combining the conditions (V.27) and (V.30) we recover the usual conditions for the
theory to be consistent for arbitrary configurations (see eg. [32, 39, 113] and other references listed
in [165]), namely

PX > 0 and 2XPXX + PX > 0 . (V.34)
The first condition is necessary to have a bounded by below Hamiltonian, and, together with the
second, leads to a hyperbolic equation of motion for ϕ.

5We could have weakened this requirement by allowing the determinant to vanish, as long as Z00 < 0, but for
simplicity we will not consider such case.
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In a nutshell, given a particular theory accommodating a kink configuration (ie. satisfying J ≈ 0),
we require that

− Z00 Zzz > 0 , (V.35a)

0 < 2
∫

dzZ00X < +∞ , (V.35b)

φ0 ∝ ϕ′ is the lowest lying mode. (V.35c)
Note that in the case of the canonical theory (V.2), the kinetic matrix reads Zµν = ηµν , and thus

the condition (V.35a) is satisfied.

V.2.3 Explicit stability requirements
In order to construct viable alternatives to the usual framework, we will follow a reverse procedure:

we start by choosing a convenient kink configuration ϕ, and aim at constructing a theory admitting
it as a solution. The advantages of this procedure are that we are trivially confident that our final
theory admits a kink solution, and that we can enforce the zero-mode condition (V.35c) from the
beginning, by selecting a kink profile which derivative has no node.

Assuming a well-behaving kink profile ϕ, we denote as f(ϕ) the on-shell value of |ϕ′|, so that
X ≈ −f 2(ϕ)/2. The relation |ϕ′| ≈ f(ϕ) is in some sense the generalization of eq. (V.5). In
addition, we restrict ourselves to Lagrangians that are analytical in

√
−X, ie. theories that can be

power-expanded as
P (ϕ,X) =

∑
n≥2

αn(ϕ)(−2X)n/2 , (V.36)

where we have set α0(ϕ) = 0 to fulfill the no-potential condition (V.24) and α1(ϕ) = 0 as such term
would not contribute in the equation of motion for static profiles.

No domain walls for P (X) theories

Beginning with the simplest P (X) case, the first integral (V.25) vanishes off-shell and is easily
integrated as

P (X) = P0
√

−2X with P0 ∈ R , (V.37)
which does not fall in the class (V.36), and thus will not be considered hereafter.

Separable theories

We then focus on separable theories, i.e. consider
P (ϕ,X) = α(ϕ)

∑
n≥2

βn (−2X)n/2 , (V.38)

where {βn}n≥2 is a collection of constant coefficients. In this case, it simply comes
J ≈ α(ϕ)

∑
n≥2

βn(n− 1)fn ≈ 0 . (V.39)

Leaving aside the case of a vanishing α which would make the theory trivial, f must be a constant root
of the polynomial equation (V.39), say f0. The conditions (V.35a) and (V.35b) become respectively∑

n≥2
nβnf

n
0

∑
m≥2

m(m− 1)βmfm0

 > 0 , (V.40a)

0 < −

∑
n≥2

nβnf
n
0

∫ dz α[ϕ(z)] < +∞ , (V.40b)

imposing that α is regular everywhere and has a finite integral.
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Non-separable theories

Let finally focus on the most general case (V.36) and define n0 ≥ 2 as the smallest integer n for
which αn is non-vanishing. We can extract αn0 from the first integral as

αn0 = −
∑
n>n0

n− 1
n0 − 1αn f

n−n0 . (V.41)

Plugging this value in the conditions (V.35a) and (V.35b), they read(
−
∑
n>n0

n− n0

n0 − 1 αnf
n

)( ∑
m>n0

(m− n0)(m− 1)αmfm
)
> 0 . (V.42a)

0 <
∫

dz
(∑
n>n0

n− n0

n0 − 1αnf
n

)
< +∞ . (V.42b)

V.3 Mimicking canonical domain wall profile
In this section we apply the general conditions (V.40) and (V.42) to derive theories accommo-

dating kinks that mimic the canonical ones (V.9).

V.3.1 The case of mexican hat-like profiles
Let us start by seeking a mexican hat-like profile ϕmh = ± tanh z. As previously discussed, the

zero mode φ0 ∝ ϕ′ = cosh−2 z has no node, and thus the condition (V.35c) is satisfied. The absolute
value of ϕ′ is non-constant, and we can express f(ϕ) = 1 − ϕ2. Therefore no separable theory (when
written in terms of the ϕ variable) can sustain such profiles and we have to seek a non separable
theory satisfying the conditions (V.42). When decomposing P as in (V.36), we can choose to restrict
ourselves to even functions αn

αn =
∑
p∈Z

βn,p
2(n− 1)

(
1 − ϕ2

)p
, (V.43)

where βn,p are some constants (and the factor 2(n− 1) is introduced to simplify the computations).
We could have added an odd part as well, however it would drop out of the crucial normalization
condition (V.42b) and thus we do not need it. Let us further simplify the setting by only considering
a deviation from the canonical Lagrangian, ie. by imposing P = X + O(X3/2), which amounts to
take n0 = 2 and α2 = −1/2. Considering only two non-vanishing coefficients βn,p, our ansatz reads

P (ϕ,X) = X + βn,p
2(n− 1)

(
1 − ϕ2

)p
(−2X)n/2 + βm,q

2(m− 1)
(
1 − ϕ2

)q
(−2X)m/2 . (V.44)

In order to get a finite energy, we must have n+ p > 0 and m+ p > 0 so that the integrals
∫
dzfn+p

and
∫
dzfm+p converge in equation (V.42b). Next, eq. (V.41) with α2 = −1/2 imposes

βn,p = f 2−n−p − βm,q f
m+q−n−p . (V.45)

As f is not a constant, we get

p = 2 − n q = 2 −m and βn,2−n = 1 − βm,2−m , (V.46)

so that we are left with a family of theories parametrized by a single parameter κ ≡ βm,2−m, with
Lagrangians

Pn,m(ϕ,X) = X + 1 − κ

2(n− 1)
(−2X)n/2

(1 − ϕ2)n−2 + κ

2(m− 1)
(−2X)m/2

(1 − ϕ2)m−2 . (V.47)
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The total energy of a kink in such a theory is

H = 2
3

(
n− 2
n− 1 + (m− n)κ

(n− 1)(m− 1)

)
. (V.48)

Hence we get a strictly positive energy provided that

n−m

n− 2 κ < m− 1 . (V.49)

Let us finally check the constraint (V.42a). The coefficients of the kinetic matrix are independent of
z and given by

Z00 = −1
2

(
n− 2
n− 1 + (m− n)κ

(n− 1)(m− 1)

)
= −3

4H , Zzz = 2 − n+ (n−m)κ
2 . (V.50)

As in the canonical case, the mass term depends on z, and reads

M2(z) = (2 − n+ (n−m)κ) (3ϕ(z) − 1) . (V.51)

The positivity of the energy implies that Z00 is strictly negative, so we just have to check that Zzz

is strictly positive, which amounts to
1 < n−m

n− 2 κ . (V.52)

Hence, at this point, we have shown that the family of Lagrangians (V.47) does accommodate a
hyperbolic tangent configuration ϕ = ± tanh(z) with stable perturbations as long as n and m are
two distinct integers and together with κ verify the bounds

n > 2 , m > 2 , and 1 < n−m

n− 2 κ < m− 1 . (V.53)

Note in particular that these bounds cannot be satisfied if κ = 0, hence we need at least two non
trivial terms of the form (1 − ϕ2)2−n(−2X)n/2 in the Lagrangian P (ϕ,X). However, more terms are
allowed and we could have considered a larger family with Lagrangians of the form

P (ϕ,X) =
∑
n≥2

κn(1 − ϕ2)2−n(−2X)n/2 , (V.54)

where {κn} are more than two non vanishing and properly chosen constants (we will later derive
the conditions they must obey). If this family is quite simple, it is not the only one to exhibit such
features, and another one, inspired by the DBI action, is presented in the App. A of [165].

In the following of this section, we will study in more details the family (V.47), before discussing
the generalization of the method to mimic other canonical profiles in sec. V.3.6.

V.3.2 Apparent singularities
A possible concern with the class of theories (V.47) is its singularity in ϕ = ±1. Let us first

note that this is not a problem for the kink configuration as ϕ = tanh z takes values on ] − 1; 1[
and the fact that X decays as (1 − ϕ2)2 allows the energy density and the quadratic Lagrangian
for perturbations (V.28) to remain bounded. Nevertheless if one wants to consider such theories for
more generic applications, this singularity may become a real problem.

A simple way to circumvent this singularity is to push it towards infinity, for instance by a change
of variables, using the variable ψ introduced in eq. (V.11) where V is taken to be the mexican hat
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potential (1 − ϕ2)2/2. Concretely we set ψ = tanh−1 ϕ so that the wall solution reads ψ ≈ z and the
Lagrangian (V.47) becomes

Pn,m (ψ,Xψ) = 1
cosh4 ψ

(
Xψ + 1 − κ

2(n− 1) (−2Xψ)n/2 + κ

2(m− 1) (−2Xψ)m/2
)
, (V.55)

Comparing this form with eq. (V.13) we see that the above family of theories and the canonical scalar
with a mexican hat potential belong to the same family of theories, with Lagrangians of the form

L =
∑
n∈N

κn(−2Xψ)n/2

 cosh−4 ψ, (V.56)

where κn are constants. Note that this family also includes the more general class (V.54) when
written in terms of ψ variable. One difference between our theories (V.54) and the canonical ones is
of course the presence in eq. (V.12) of a pure potential encoded in a non vanishing κ0 above.

But those Lagrangians are still singular, at infinity. If one wishes to extend elegantly the the-
ory (V.47) “beyond” the ϕ = ±1 singularity with an everywhere regular theory, a possible change of
variable to consider is given by

dξ ≡ dϕ
(1 − ϕ2)1− 2

m

, (V.57)

where we have considered that m > n (if the converse holds, the argument is similar, under a trivial
change of coefficients). This can be explicitly integrated to yield

ξ(ϕ) = 2F1

[1
2 , 1 − 2

m
; 3
2;ϕ2

]
ϕ , (V.58)

where 2F1(a, b; c;u) is the Gauss hypergeometric function (which is well defined on the unit interval
for its fourth argument u, and whenever c > a + b, see e.g. [214]). The minima ϕ = ±1 of the
mexican hat potential are mapped to finite values of the ξ field

ξ± ≡ ξ (ϕ = ±1) = ±
√
π Γ

(
2
m

)
2 Γ

(
1
2 + 2

m

) . (V.59)

As the mapping (V.57) is (monotonic and hence) one to one between ϕ ∈ [−1, 1] and ξ ∈ [ξ−, ξ+],
and that dξ/dϕ diverges in ϕ = ±1, the inverse mapping ϕ(ξ) can be naturally extended to a
periodic everywhere smooth, non singular function, defined on the entire real line and of period 4ξ+.
In general, this inverse mapping, even though it exists, does not correspond to a simple function,
however, this is not true for m = 4 and m = 8, for which we have respectively

ϕ = sin ξ and ϕ = sin [2am(ξ/2)] , (V.60)

where am is the so-called amplitude of the elliptic integral of the first kind6. Obviously the period
of the first function above is 2π = 2

√
πΓ(1/2)/Γ(1), while the period of the second function is

2
√
πΓ(1/4)/Γ(3/4) ∼ 10.5. Of course this is not the only possibility to extend the inverse function

beyond the points ξ±, however, choosing this way offers an elegant extension of the family of models
(which strictly speaking differ from (V.47) where the function (1 −ϕ2)2 is not periodic). It would be
interesting to investigate if this “periodic” extension would allow to find solutions with a non trivial
time dependence interpolating between non adjacent minima, similarly to what is known to exist in
the sine-Gordon model (as discussed briefly at the end of sec. V.3.6).

6We use here the definition of [214] for the elliptic integral of the first kind, ie. F (φ, k) =
∫ φ

0
dα√

1−k2 sin α
.
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The interest of the change of variable (V.58) appears when writing the Lagrangians (V.47) in
terms of ξ and Xξ (defined by replacing ϕ by ξ in eq. (V.3))

P (ξ,Xξ) = κ (−2Xξ)m/2

2(m− 1) + 1 − κ

2(n− 1)f [ϕ(ξ)]2(1− n
m) (−2Xξ)n/2 + f [ϕ(ξ)]2(1− 2

m)Xξ , (V.61)

where we recall that f(ϕ) = 1 − ϕ2. In this form the Lagrangian is no longer singular at the finite
values ξ± (corresponding to ϕ = ±1), even though the purely “kinetic” term of ξ has the non standard
form ∝ (−Xξ)m/2. The domain wall profile is found to be

ξ(z) = 2F1

[1
2 , 1 − 2

m
,
3
2 , tanh2(z)

]
tanh(z) . (V.62)

Those profiles are shown in fig. V.2 for the cases m = 2 (the usual hyperbolic tangent), m = 6 and
m = 8.

Figure V.2: Behavior of the domain wall profile ξ(z) (V.62) normalized to its value at infinity for
different values of m (m = 2 corresponds to the usual hyperbolic tangent).

V.3.3 Non-perturbative stability considerations
In this section, we will see what happens to the arguments developed in sec. V.1.4, when applied

to our non-canonical theories. To that end we consider the theory written in the ψ variable, and start
with the general form (V.56) which also encompasses the canonical mexican hat model by allowing
n = 0, and restrict it to integer powers of Xψ for simplicity. The energy density H(t, z) of a given
(arbitrary) field configuration is easily found to be

H(t, z) = −

∑
n∈N

κ2n(ψ′2 − ψ̇2)n + 2nκ2nψ̇
2(ψ′2 − ψ̇2)n−1

 cosh−4 ψ . (V.63)

In the case of the canonical mexican hat model (recalling that we just have then κ0 = κ2 = −1/2)
we find an energy density H(t, z) = (1 + ψ′2 + ψ̇2)/(2 cosh4 ψ). Using the shorthands

x ≡ ψ′ , and y ≡ ψ̇ , (V.64)

we see that the Bogomolny decomposition (V.19) amounts here to just rewrite the energy density
H = (1+x2+y2)/(2 cosh4 ψ) = [y2 + (x∓ 1)2 ± 2x] /(2 cosh4 ψ) where the two first terms on the right
hand side yield the kinetic energy (V.20a) and the last one gives the equivalent of the “topological”
charge (V.20b). A nice feature of our non-canonical theories is that a similar decomposition exists
in general. Indeed, the Hamiltonian density (V.63) is just Π0(x, y)/(2 cosh4 ψ), with the polynomial

Π0(x, y) ≡ −2
∑
n∈N

κ2n(x2 − y2)n + 2nκ2ny
2(x2 − y2)n−1

 . (V.65)
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In order to have a domain wall with profile ψ = ±z, the coefficient κn must obey the algebraic
relation

Σκ,0 = 2Σκ,1 , with Σκ,k ≡
∑
n∈N

κ2nn
k , (V.66)

where we imply in particular that Σκ,0 = ∑
n∈N κ2n (using the convention that 00 = 1). At this stage,

considering the form of Π0, we can notice that the Hamiltonian cannot be bounded by below if the
largest integer n for which κ2n does not vanish, call it nmax, is even. In contrast, if nmax is odd we see
that at large x and y the dominant terms in Π0(x, y) read −2κ2nmax(x2 +(2nmax −1)y2)(x2 −y2)nmax−1

which shows that the Hamiltonian is bounded by below for negative κ2nmax (and finite ψ). In fact
it can further be shown (see below) that it is possible to find, for specific odd nmax and κ2n, an
everywhere positive Hamiltonian (the Hamitonian vanishing only at (x = 0, y = 0)). Let us now
expand Π0 around x = ±1 and y = 0 corresponding to the domain wall solution. We find after some
simple manipulations, and taking eq. (V.66) into consideration

Π0(x, y) = ∓2xΣκ,0 + Π
(
(x∓ 1), y2

)
, (V.67)

where Π(a, b) is a polynomial in a and b which vanishes in (a = 0, b = 0) and starts only at order a2

and b around this point. Thus, and exactly as in the case of the canonical kink, we can decompose
H(t) = Hkin(t) + Htopo(t) with

Hkin(t) =
∫

dz
Π
(
(ψ′ ∓ 1), ψ̇2

)
2 cosh4 ψ

, (V.68a)

Htopo(t) = ∓Σκ,0

∫
dz ψ′

cosh4 ψ
, (V.68b)

where one sees that the last term is a “topological conserved charge” just identical (up to a constant
factor) to the one of the canonical model (V.22). The above decomposition generalizes the one of
Bogomolny in our context, and one can check that with the choice of non vanishing κ2n given by
κ0 = κ2 = −1/2 we find back exactly the form V.20. As Π vanishes for the kink configuration, we
see that the whole energy of the kink is stored in the topological term only, just as for the canonical
case. Note however that in contrast to the canonical mexican hat domain wall, no non-canonical kink
(ie. whenever κ0 vanishes) can be a global minimum of the energy within the class of configurations
with the same Htopo. Indeed a look at the the behavior of Π0 around (±1, 0), taking into account
the constraint (V.66), gives

Π0(x, y) = ∓2xΣκ,0 − (x∓ 1)2 (4Σκ,2 − Σκ,0) − y2Σκ,0 + . . . (V.69)

where the ellipsis encapsulates terms that are at least cubic in (x ∓ 1) and y. Thus we see that
Π = Π0 ± 2xΣκ,0, but Π0 vanishes in (x = 0, y = 0) with first corrections quadratic in x and y.
This means that Π has to change sign across (x = 0, y = 0) and must be somewhere negative,
preventing the local minimum of Π at x = ±1, y = 0 (where Π vanishes) to be a global minimum.
The existence of such a global minimum and of its possible meaning for field configurations is of
course an interesting, but difficult, question. In fact the total energy (say in field configurations with
fixed Htopo) does not only depends on x and y through Π but also on the value of the field ψ via the
denominator cosh−4 ψ. Hence, even if in some cases a global minimum of Π can be found (eg. for some
models in the class to be discussed later where the Hamiltonian is bounded by below), the discussion
above shows that Π is strictly negative there. It is not enough to conclude for what concerns the
energy, after the taking into account of the coshψ−4 factor (in contrast, the local minimum of Π
found for the wall configuration is a local minimum of the energy because Π vanishes there). Those
interesting issues, which are of course related to the non perturbative decay of our walls, are left for
a future work.
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Nevertheless, the expansion (V.69) shows that the domain wall solutions represent a local mini-
mum of the energy in the class of all field configurations having the same Htopo, provided that the
quantities Σκ,0 and Σκ,2 verify

4Σκ,2 < Σκ,0 < 0 . (V.70)
Setting κ2, κn and κm as in (V.55) for some specific even n and m, we can check that above conditions
are equivalent to the conditions (V.53). Similarly the conditions that the {κn} coefficients of the
family (V.54) must obey are nothing but (V.66) and (V.70).

To discuss a more explicit case, let us consider the simplest model in the class (V.55), taking
n = 4 and m = 6. Explicitly the Lagrangian of this model reads

P4,6 (ψ,Xψ) = 1
cosh4 ψ

(
Xψ + 1 − κ

6 (−2Xψ)2 + κ

10 (−2Xψ)3
)
. (V.71)

The bounds (V.53) are satisfied provided that −5 < κ < −1, which corresponds also to the allowed
range for κ given in eq. (V.70). Moreover, in the line of the previous discussion on non-perturbative
stability, one can show that restricting further κ to be larger than −(17 + 3

√
21)/10 ∼ −3.07 we

get an everywhere positive Hamiltonian density. As further expected, we find in that case that Π
vanishes at (x = ±1, y = 0) which is a local minimum of Π, but Π is negative somewhere on the
y = 0 line in the (x, y) plane and hence (x = ±1, y = 0) is not a global minimum of Π.

V.3.4 The case of mimickers
Let us note that the kinetic matrix (V.50) and mass term (V.51) of the perturbations of our kinks

are very similar to the ones of the canonical mexican hat configuration. More precisely, we see that,
as Zzz is constant and M2 = Zzz M2

can (the subscript “can” denoting naturally a quantity related
to the perturbations of the canonical mexican hat kink), a perturbation of our wall obeys the same
equation as a perturbation of the canonical wall

(Zzz
can φ

′
k)
′ −

(
Z00

can ω̃
2
k + M2

can

)
φk = 0 , (V.72)

where the frequency of each mode is simply given by the canonical one, multiplied by a constant
factor

ω̃2
k ≡ (n− 2)(m− 1) + (m− n)κ

(2 − n+ (n−m)κ) (n− 1)(m− 1) ω
2
k,can . (V.73)

Thus, by setting
κ = n(m− 1)(n− 2)

(n−m)(2 − n+m(n− 1)) , (V.74)

which lies within the bounds (V.53), we get ω̃2
k = ω2

k,can and so the theory has exactly the same
spectrum as the canonical one. This corresponds explicitly to the family of Lagrangians

Pmim(ϕ,X) = X + 1
2(m− n)(2 − n+m(n− 1)

m(m− 2) (−2X)n/2

(1 − ϕ2)n−2 − n(n− 2) (−2X)m/2

(1 − ϕ2)m−2

 ,
(V.75)

which have stable domain walls with profiles identical to the one of the canonical mexican hat, energy
densities and kinetic matrices just rescaled by a common factor given by

(n− 2)(m− 2)
2(2 − n+m(n− 1)) = 1 − mn

2(mn− (m+ n) + 2) . (V.76)

In this class of models, that we will call here and henceforth mimickers, the simplest ones are obtained
by choosing (n,m) = (4, 6) and κ = −5/4 yielding the Lagrangian

L = X + 3X2

2 (1 − ϕ2)2 + X3

(1 − ϕ2)4 , (V.77)
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which has a domain wall solution ϕ = ± tanh(z), a Hamiltonian everywhere positive (as seen in the
previous section), and energy density and kinetic matrix just rescaled by a global factor 1/4 with
respect to the canonical ones.

If we can perfectly mimic the phenomenology of the canonical kinks at the quadratic order, can
we push such imitation at higher orders ? The answer is necessarily negative as, within the class
of field configurations with fixed boundary conditions, the non-canonical walls are local minima of
the energy, whereas the canonical ones are global minima. As a consequence, one should be able to
distinguish the two by looking at higher order perturbations, as we now show. Up to surface terms,
for a generic theory (V.23), the third-order perturbed Lagrangian reads

δ(3)L = − 1
3!
[
Yµνρ ∂µφ∂νφ∂ρφ− 3Yµνφ∂µφ∂νφ+ Y φ3

]
, (V.78)

where the different coefficients appearing above are given by

Yµνρ = PXXX ∂
µϕ ∂νϕ ∂ρϕ− 3PXX ηµν ∂ρϕ , (V.79a)

Yµν = PXXϕ ∂
µϕ ∂νϕ− PXϕ η

µν , (V.79b)
Y = −Pϕϕϕ − ∂µ (PXϕϕ ∂µϕ) . (V.79c)

For the canonical model (V.2), only Y = Vϕϕϕ = 12ϕ is non-vanishing. For the Pn,m models, as well
as their subset mimickers, we present some relevant coefficients in the table V.1, with background
given as usual by ϕ = ± tanh(z). One can notice that for all Pn,m models, Y00 = −2ϕ/3 Y00z

Generic Pn,m Mimicker Pn,m Mimicker P4,6

Y00z −3
2

(
n(n−2)(κ−1)

n−1 − m(m−2)κ
m−1

)
1

1−ϕ2 0 0
Yzzz n(n−2)(κ−1)−m(m−2)κ

2
1

1−ϕ2
mn(n−2)(m−2)
2(2−n+m(n−1))

1
1−ϕ2

6
1−ϕ2

Y00
(
n(n−2)(κ−1)

n−1 − m(m−2)κ
m−1

)
ϕ

1−ϕ2 0 0
Yzz − (n(n− 2)(κ− 1) −m(m− 2)κ) ϕ

1−ϕ2 −mn(n−2)(m−2)
(2−n+m(n−1))

ϕ
1−ϕ2 − 12ϕ

1−ϕ2

Table V.1: Some relevant coefficients of the cubic vertices for the generic Pn,m Lagrangians
of eq. (V.47), for the subset of mimicker models (V.75), and for the specific choice (n,m) = (4, 6).

and Yzz = −2ϕYzzz. Moreover, for the mimickers, all contributions containing time derivatives of
the perturbations vanish at cubic order. However, the cubic interactions are found to diverge at
large z, for which, for the domain wall profile, 1/(1 − ϕ2) as well as ϕ/(1 − ϕ2) diverge. Hence the
perturbation theory in the ϕ variable diverges at large z off the wall. Note however, that as we have
shown that the wall is a local minimum of the energy in the class of field configurations with fixed
boundary conditions, one expects that there is a range of localized perturbations of the wall which are
absolutely stable. To conclude, we also notice that one cannot mimic our models with a Lagrangian
of the form f(X) − V (ϕ) as Yµν would be vanishing. Note also that the generic properties of the
perturbations found in this section using the ϕ variable (sound quadratic perturbations, off-the-wall
strong coupling at cubic order) persist when written in terms of the variable ξ (once the quadratic
perturbations are properly normalized).

V.3.5 An extended family of kinks
In addition to the hyperbolic tangential kink ϕ = ± tanh z (or ψ = ±z) that has been discussed

until now, our non-canonical theories (V.56) allow for other kink configurations. Indeed a generic
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theory described by (V.56) falls in the class of separable theories discussed and the expression of it
first integral is given by (V.39)

J =
∑
n∈N

κn(n− 1)(−2Xψ)n/2

 cosh−4 ψ . (V.80)

Hence we see that we can get a domain wall solution ψ = λz provided that J vanishes and that λ
verifies (using −2Xψ ≈ λ2) ∑

k∈N
κk(k − 1)|λ|k = 0 . (V.81)

For the canonical theory which has κ0 = κ2 = −1/2, the only roots of such polynomial are given
by λ = ±1, and thus the usual kink is the only possible solution. However, considering non-
canonical theories, it is possible that eq. (V.81) has other roots than ±1. Such solutions are extremely
appealing as, if they can coexist with the usual λ = ±1 one, and have a different total energy, non-
perturbative decay can happen. For instance, taking the theory (V.71), a second set of roots are
given by λ = ±1/

√
−κ. Nevertheless, for the case of the Lagrangians (V.55) with generic (n,m), it

has been shown in the App. B of [165] that the two sets of solutions cannot be stable simultaneously:
the solutions with λ ̸= ±1 can be made stable only at the price of violating the bounds (V.53) on κ
(which are in turn necessary for the stability of the solutions with λ = ±1). However, having more
than three terms in the Lagrangian leads to the possibility to have more roots of the equation (V.81)
and hence possibly more than one stable kink configuration.

Another possibility to extend the solutions discussed above is to let the walls move. In particular,
using the ψ variable and considering for simplicity the models (V.55), it is easy to see that the part
of the field equations that do not contain any second derivatives is in full generality proportional
(and as a consequence of Lorentz invariance) to

Xψ + 1 − κ

2 (−2Xψ)n/2 + κ

2 (−2Xψ)m/2 , (V.82)

which for a static wall is in turn proportional to the expression of the first integral J . This means
that any static wall profile extends (including the case λ ̸= ±1) to a boosted solution of the form

ϕβ(t, x) = ± tanh
(
λ
z ± βt√
1 − β2

)
, (V.83)

where β < 1 is the dimensionless speed, and where one has −2Xψ = ψ′2 − ψ̇2 ≈ λ2.

V.3.6 Mimicking other canonical domain wall profiles
The above discussion and construction can easily be extended to other kinds of kink profiles

such as the one of sine-Gordon or more generally the family of models (V.14). Indeed, considering
Lagrangians of the form

L =
∑
n∈N

κn(−2Xψ)n/2

 cosh−2k ψ. (V.84)

ψ = λz is a solution as long as λ obeys (V.81) and moreover, the solution with λ = ±1 is stable pro-
vided conditions (V.66) and (V.70) hold. Turning back to the original ϕ variable, the corresponding
Lagrangians are simply given by eq. (V.54), where the powers of (1 − ϕ2) are replaced by powers of
|ϕ′|, considered and expressed in terms of ϕ. It is then easy to get the corresponding domain wall
profiles for the ϕ variable. In particular, for k = 1, the Lagrangians

L =
∑
n≥2

κ2n sin(ϕ/2 − pπ)2−2n(−2X)n with p ∈ Z . (V.85)
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sustain stable domain wall profiles identical to the one of sine-Gordon model ϕ = 2pπ ± 4 arctan ez,
as long as the {κ2n} obey accurate relations. One feature of the sine-Gordon model is its integrability
leading in particular to non trivial solutions such as breathers or kink-antikink (see eg. [329]). It
would be interesting to investigate if remnants of such solutions still exist in the kind of models
considered here.

V.4 Towards gravitating non-canonical domain walls
Before closing this chapter on non-canonical domain walls, we wish to discuss their possible

gravitating configurations. In this section we will show that unfortunately, one cannot just “turn on”
the gravitational interaction in the models considered previously. Further studies are thus required
to construct gravitating domain walls that are not supported by potentials.

Note that we will not rely on approximations (such as the usual Israel’s thin wall formalism [240]
that treats the wall as an infinitesimally thin veil, characterized only by junction conditions at its
surface, or the expansion in curvature performed in [120]), but rather analytically solve the exact set
of equations of motion for the scalar field and metric.

V.4.1 Generalities about gravitating domain walls
By “turning on the gravitational interaction”, we mean promoting the Minkowski metric ηµν to

a dynamical one, gµν , with compatible covariant derivative ∇µ. As two-dimensional metrics are all
conformally flat, and thus of no interest for our purpose, we are forced to restore the transverse
spatial directions (x, y). We thus consider the four-dimensional Lagrangian density

L =
√

−g
{
M2

Pl
2 R [g] + P (ϕ,X)

}
, with X ≡ −1

2 g
µν∂µϕ ∂νϕ . (V.86)

By a trivial dilatation of P , we set MPl = 1 in the following.
A well-known fact is that, for generic configurations, the scalar field can be treated as a perfect

fluid with stress-energy tensor

T µν ≡ −1√
−g

(
∂L

∂ (∂µϕ) ∂
νϕ− L gµν

)
= PX ∂

µϕ ∂νϕ+ P gµν . (V.87)

We will notably use such ansatz when dealing with the cosmology of the minimal theory of bigravity
in sec. VI.3.2. The equations of motion for the metric and scalar field take the usual form of Einstein’s
and continuity equations

Eµν = Rµν − Tµν + gµν
2 gαβ Tαβ ≈ 0 , and Eϕ = ∇µT

µν ≈ 0 . (V.88)

Specifying to the case of one-dimensional configurations for the scalar field ϕ(z), we follow [102]
to implement an accurate ansatz for the metric. As usual the scalar field settles down to constant
values at spatial infinities z → ±∞, so, as long as gzz and PX are regular at spatial infinities,
Rµν = −P (ϕ±∞, 0) gµν at the boundaries. Note that we cannot arbitrarily set P (ϕ±∞, 0) = 0, as we
have done in the previous sections, as the introduction of a dynamical metric has spoiled the freedom
of shifting P . Therefore the metric has in general an asymptotical (anti)-de Sitter behavior, which
induces the requirement of time dependencies in gµν . As for the invariance of ϕ under translations
along x and y, they are encoded in the metric by a planar (x, y) symmetry. As all configurations that
we have considered in the previous section have energy densities that are invariant under z → −z,
it seems natural to impose the reflexivity of the metric along the z axis, thus killing gtz. Finally,
choosing z to be the proper distance from the wall, we can take

ds2 = −A2(z)dt2 +B2(t, z)
(
d2x+ d2y

)
+ dz2 , (V.89)
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where A and B are yet arbitrary functions (the would-be time dependence of A can be reabsorbed
in a redefinition t → t′(t) that does not spoil any other property of the metric). Note that by taking
z to be the proper distance, we recover X = −ϕ′2/2.

But the metric (V.89) can be further simplified by considering combinations of the Einstein’s
equations that do not involve the scalar field. Injecting it in the cross term tz of Einstein’s equa-
tions (V.88), it comes

Etz = 2
(
A′

A

Ḃ

B
− Ḃ′

B

)
= 0 . (V.90)

As A only depends on z, this imposes B(t, z) = A(z)b(t), with b an arbitrary function of time. Next,
the combination

B2

A2 Ett + Ezz = ḃ2 − b b̈ = 0 , (V.91)

leads to b = b2
0 e

ωt, where b0 and ω are constant. By rescaling (x, y) → b−1
0 (x, y), the constant b0 can

be set to unity. This gives the final form of the metric

ds2 = A2(z)
[
−dt2 + eωt

(
dx2 + dy2

)]
+ dz2 . (V.92)

V.4.2 Practical implementation for the models previously investigated
Injecting the metric (V.92) in the Einstein’s and continuity equations (V.88), they can be com-

bined to yield only two independent combinations: an evolution equation and a constraint one, that
respectively read

Eevol ≡ A′′

A
− ρ+ 3P

6 ≈ 0 , (V.93a)

Econstr ≡
(
A′

A

)2

− ω2

A2 + ρ ≈ 0 , (V.93b)

where we have introduced the equivalent of the energy density ρ ≡ 2XPX −P , which is nothing but
the covariant version of the first integral (V.25). As the kinetic term simply reduces to X = −ϕ′2/2,
we even have the equality ρ = J .

All the models investigated in the previous sections were constructed to satisfy J ≈ 0. Plugging
ρ = 0 in eqs. (V.93b) simply yields A(z) = A0 ±ωz, with A0 a constant, and thus eq. (V.93a) implies
P ≈ 0, ie. the metric has a Minkowskian asymptotical behavior. In order to be a solution of the
gravitating equations of motion, the domain wall has thus to violate the condition (V.35b). Therefore
none of the models considered in the flat space-time case can be implemented as a gravitating domain
wall configuration.
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Chapter VI

Minimalism as a guideline to construct
alternative theories of gravitation

As briefly presented in sec. I.2.2, the landscape of alternative theories of gravitation is quite vast,
and the possibilities of constructing frameworks “beyond” General Relativity are multiple. Classifying
all possible alternatives would be a tremendously difficult (if not impossible) task. Therefore when
aiming at constructing new theories, it may help to impose supplementary theoretical requirements,
in addition to the breaking of one of Lovelock’s hypothesis.

This chapter introduces one of those additional “aesthetic” guidelines, namely the framework of
minimalism, and presents the construction of one of its explicit realizations, the “minimal theory
of bigravity”, which is one of the main achievements of this thesis. The next chapter discusses the
strong-field regimes of two other minimal theories, by constructing and testing black hole solutions.

VI.1 The principle of minimalism
As discussed in sec. I.2.2, the most explored path to break Lovelock’s hypothesis is by imple-

menting additional degrees of freedom (dofs). Even when starting by breaking another hypothesis,
additional dofs can enter the game (eg. in the case of f(R) theories). Those additional modes
usually have appealing phenomenological implications (eg. a natural explanation for the late-time
acceleration of the expansion of the Universe, in the case of some scalar-tensor theories and massive
gravities). Nevertheless, the gravitational radiation that should betray their presence is still unde-
tected (cf. sec. I.2.3). Such additional dofs are therefore convenient ways to address some of our
current problems, but they are not necessary from an observational point of view.

The basis of the minimalistic approach is thus to seek theories that retain the interesting phe-
nomenological implications of those additional dofs, but propagate only the minimal number of dofs
that are required by observations. Such approach can be related to the philosophical notion of
Occam’s razor [298], stating1 that «entities should not be multiplied without necessity».

This approach has been initiated in 2015 by the work of A. De Felice and S. Mukohyama [137],
who constructed the “minimal theory of massive gravity”, by “minimalizing” the canonical ghost-free
massive gravity [160]. By adding appropriate constraints at the Hamiltonian level, they killed the
scalar and vector modes, but retained the interesting cosmological implication of massive gravity,
namely a natural explanation of the accelerated expansion of our Universe [137, 138]. Nevertheless,
in order to contain a viable cosmology, this theory needs an ad hoc and non-trivial time dependence
of the fiducial metric. In order to bypass this unaesthetic and non-dynamical time evolution, the
“minimal theory of massive gravity” has been extended to a “minimal theory of quasidilaton massive
gravity” [146, 147, 152], where the time dependence is realized by an additional scalar field.

1In its ontological version, Pluralitas non est ponenda sine necessitate.
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In addition to this original procedure of “minimalization” of previously existing theories, minimal
theories can also be generated per se, by imposing the sole requirement that they propagate two
healthy tensorial dofs, and are not GR. This approach was initiated in [269] and extended in [119,
267, 268, 289], and it became clear that those theories are separable in two classes. The type-I
minimal theories are those that posses an Einstein frame, meaning that they are (at least locally)
equivalent to GR in vaccum. Thus a type-I minimal theory only differs from GR by a non canonical
matter coupling, and all of them can be generated by following the prescription of [23]. On the other
hand, type-II theories are those that lack Einstein frames, and no systematic construction method
is yet known, but some particular examples have been built [25, 140, 153, 289, 363]. Note that the
original minimal theory of massive gravity belongs to this second type. In the the following of this
dissertation, we will only study type-II theories.

If all those theories share the interesting feature of a natural explanation for the accelerated
expansion of our Universe (and some can even mimic the dark matter phenomenology [140]), they
cannot be different from GR while propagating only two tensorial dofs, without breaking at least
one of the hypothesis of Lovelock’s theorem (cf. sec. I.2.2). In fact all minimal theories implement
a breaking of the invariance under full diffeomorphisms, down to a restricted subset of them. Note
however that this breaking only happens in the gravitational sector, the induced Lorentz violations
in the matter sector are exclusively due to graviton loops, thus heavily suppressed. Moreover, and for
many of the minimal theories (notably all those that are presented in this dissertation), this breaking
can be made extremely weak and only effective at cosmological scales: such theories pass all current
local experimental constraints.

The phenomenological tests and successes of the minimal theories are reviewed in the beginning
of the next chapter.

VI.2 Construction of a minimal theory of bigravity
In this section we will present the “minimalization” of Hassan-Rosen bigravity (HRBG) [221],

and seek for a “minimal theory of bigravity” (MTBG) propagating only four tensorial dofs (ie. two
for each metric). This task has been achieved in collaboration with A. De Felice, S. Mukohyama and
M. Oliosi, and published in [155]. The advantages of minimalizing HRBG are twofold: firstly we will
seek to retain its extremely appealing phenomenological features that are to be discussed hereafter
(namely a natural dark energy paradigm and oscillations of the gravitons); secondly, by promoting
the fiducial metric to be dynamical, we avoid the ad hoc and unaesthetical time evolution of the
fiducial metric, that was necessary in the original minimal theory of massive gravity.

VI.2.1 A brief review of Hassan-Rosen bigravity
Construction of the theory

Hassan-Rosen bigravity [221] is a theory of two interacting dynamical metrics, gµν and fµν . The
kinetic sector of each metric is given by an usual Einstein-Hilbert term, thus the theory in vacuum
reads

SHRBG = M2
Pl

2

∫
d4x

√
−gR [g] + α2M2

Pl
2

∫
d4x

√
−fR [f ] − m2M2

Pl
2

∫
d4xV [g, f ] , (VI.1)

where α is the ratio of Planck masses in both sectors and m is a coupling constant. If not carefully
crafted, the interaction term V will give rise to a ghost scalar dof. In fact, as presented in app. A.3,
the Einstein-Hilbert term contains four first-class constraints, with associated Lagrange multipliers
given by lapse and shifts. Adding a generic potential V [g, f ] does not change the number of dynamical
variables (that are still given by the spatial metrics and their conjugate momenta) but removes the
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constraint structure of the Hamiltonian, as there is no reason that the lapses and shifts still enter
linearly. Therefore the metric gµν propagates in general six dofs, among which one has a wrong
sign kinetic term2 thus being a ghost, usually called the “Boulware-Deser” (BD) ghost [107]. In
order to kill this sick dof, one has to choose V so that the Hamiltonian contains either one first-class
constraint, or two second-class constraints.

Seeking for a healthy theory of massive gravity,3 C. de Rham, G. Gabadadze and A. Tolley have
derived the accurate structure of the interaction term [160]. This potential only depends on five
coupling constants {βn}n=0..4, and the two metrics enter it via the so-called square-root matrix Xµ

ν

defined by
Xµ

ρXρ
ν ≡ gµλfλν . (VI.2)

Introducing the elementary symmetric polynomials4 en (where the brackets denote the trace opera-
tion)

e0 (X) = 1 , (VI.3a)
e1 (X) = [X] , (VI.3b)

e2 (X) = 1
2
(
[X]2 −

[
X2
])
, (VI.3c)

e3 (X) = 1
3!
(
[X]3 − 3 [X]

[
X2
]

+ 2
[
X3
])
, (VI.3d)

e4 (X) = 1
4!

(
[X]4 − 6

[
X2
]

[X]2 + 3
[
X2
]2

+ 8
[
X3
]

[X] − 6
[
X4
])

, (VI.3e)

the ghost-free, or “dRGT”, interaction term5 reads

VdRGT [g, f ] =
√

−g
4∑

n=0
βn en (X) . (VI.4)

Using the relation
√

−f en (X−1) = √
−g e4−n (X), we see that VdRGT is symmetrical under the

exchange {g ↔ f, βn ↔ β4−n}, and thus the whole theory (VI.1) is symmetrical under the exchange
of both metrics together with a relabeling of the constants: the theory has no “preferred metric”,
as expected for a bigravity theory in vacuum. Naturally, one of the coupling constants is redundant
as it can be reabsorbed in the mass parameter m appearing in (VI.1). For clarity, and to make the
f ↔ g symmetry explicit, we will keep it as such (a similar redundancy appears in our minimal theory
and, for the same reason, we will not fix it). The specificity of this interaction term is to contain a
particular combination of lapses and shifts that enters linearly in the Hamiltonian, thus giving birth
to a second-class constraint. The time conservation of this constraint induces a secondary constraint
and together, they kill the BD ghost.

This bimetric theory contains seven dofs, distributed into a massless graviton (two dofs) and a
massive one (five dofs). Note that the mass eigenstates and the kinetic ones are different, leading to
an oscillating behavior of the graviton, similar to the usual oscillation of neutrinos [202].

When adding matter to HRBG, the story becomes more involving. The simplest and most natural
implementation of two matter species, each one being minimally coupled to a metric, is healthy [221].
But when coupling a matter field to both metrics, the BD ghost usually reappears, excepted for some

2This can be related to the usual result of field theory stating that a massive spin-2 field has only five polarizations.
3In a theory of “massive gravity” only one metric propagates. But in order to build up a mass term, as gµνgµν = 4

cannot yield any mass effects, a second, frozen, metric is required. The action of massive gravity is thus given
by eq. (VI.1) with α = 0, see [158] for more details.

4For a diagonizable matrix A, en(A) is simply given by the sum of n-by-n products of the eigenvalues of A, and
they obey det [Id + λA] =

∑
n λnen (A).

5Here and henceforth, we dub “ghost-free” a theory that is free of the BD ghost, but can contain other types of
instabilities.
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very specific forms of the couplings [362]. Nevertheless, for a large class of couplings to a composite
metric (that is, a combination of both metrics), the BD ghost appears only out of the range of
validity of the theory (ie. beyond the strong-coupling scale) [145, 161, 162, 184, 218], and thus such
couplings can be considered as relatively healthy.

Note that, once matter is considered, the bimetric theory (VI.1) implemented with the ghost-free
potential (VI.4) has preferred frame effects. Indeed observers couple to only one metric (or to a
combination of both metrics), and so the value of the other metric (or the orthogonal combination
of the metrics) plays the role of a “reference metric”, inducing preferred frame effects. This is deeply
related to the fact that HRBG is not invariant under the two copies of full diffeomorphisms, but only
under joint diffeomorphisms (ie. diffeormorphisms that affect both metrics in the exact same way).
In order to restore this invariance, the usual trick is to introduce a set of four scalars, σa, called
Stückelberg fields [333], and to replace one of the metrics, say fµν , by

fab → fµν ∂µσ
a ∂νσ

b . (VI.5)

Under a change of coordinates, the Stückelberg fields behave in such a way that they absorb the
variation of the metric fµν . Therefore the theory becomes invariant under the two copies of diffeo-
morphisms, at the cost of introducing new fields.

The cosmology of HRBG

Contrarily to the dRGT massive gravity that lacks stable homogeneous and isotropic cosmolo-
gies [130, 142], HRBG contains the usual cosmological configuration. Taking two Friedmann-Lemaître-
Robertson-Walker (FLRW) line elements, with respective lapses N and M and scale factors a and
b,

ds2
g = gµν dxµdxν = −N2(t)dt2 + a2(t)γijdxidxj ,

ds2
f = fµν dxµdxν = −M2(t)dt2 + b2(t)γijdxidxj ,

(VI.6)

the Bianchi identity is factorizable as (
∂ta

N
− ∂tb

M

)
B = 0 , (VI.7)

where B is a complicated function of the scale factors and coefficients βn. This factorization indicates
the presence of two branches of solution [17, 126, 144, 273]. The first one, corresponding to B = 0,
gives rise to a natural cosmological constant, proportional to m2. Nevertheless, it is the equivalent
of the cosmological solution of the ghost-free massive gravity and, as such, is unstable. As for the
second branch, defined by ∂ta/N = ∂tb/M , it contains two “dark fluids”, that come as natural
explanations for the late-time acceleration of the expansion of the Universe. By dark fluid, we mean
that the contribution of the mass sector can be put in the form of a canonical stress-energy tensor
for a perfect fluid. It is thus an unobservable cosmological contribution mimicking a fluid, hence
the name. Such dark fluid can naturally source an accelerated expansion of the Universe. But this
branch also suffers from a gradient-type instability [127, 255].

A possible way to cure the gradient instabilities is by adequately tune the ratio of Planck masses
in such a way that they occur at unobservably early times [17]. Similarly, under a careful choice
of the coefficients βn, the instability of the normal branch can be pushed away from the range of
validity of the theory (beyond the strong coupling scale) [143]. Those methods are nevertheless quite
harsh, and we would prefer to have a theory that contains stable cosmological solutions without too
much tuning of the coupling constants.

Possible extensions of HRBG

A another way to cure those instabilities is by adding a chameleonic scalar field χ [149, 150]. This
approach is inspired by the Vainhstein screening mechanism, and considers matter fields minimally
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coupled to the conformal metric A2(χ)gµν , instead of gµν , in addition to promoting the βn to functions
of χ. The function A(χ) is chosen so that the effective mass of the graviton scales as the energy
density of the medium, and so the behavior of the field depends on its environment, hence the
name [253].

Another possible extension of HRBG is given by the “Dipolar Dark Matter” framework, that
attempts to unify the descriptions of dark matter and dark energy phenomenologies within a single
theory [52, 53, 78]. As expected, the modeling of the late-time acceleration of the expansion of the
Universe relies on the cosmology of HRBG, as discussed above (the instability being pushed beyond
the decoupling limit [78]). The dark matter sector is implemented via the MONDian dielectric
analogy [72, 81]. For a non-relativistic body of mass m0 experiencing an acceleration a⃗, the MONDian
phenomenological law states that Newton’s law F⃗ = m0 a⃗ should be modified to

F⃗ = m0 µ

(
|⃗a|
a0

)
a⃗ , where µ(x ≫ 1) = 1 and µ(x ≪ 1) = x . (VI.8)

The a0 constant is observationally fixed to ∼ 10−10m.s−2 Note that the interpolating function µ has
the same behavior as the permittivity of a dielectric medium, and thus Newtonian gravity is recovered
for accelerations greater than a0. Therefore, if one can mimic the gravitational interaction as being
immersed in a dielectric-like medium, the MONDian phenomenology can be inherently recovered.
The point of using a bimetric theory is that it naturally provides a polarization-like mechanism:
identifying the particles living in the g-sector as “positive” charges and those coupled to f -sector
as “negative” ones,6 and linking them via a “graviphoton”,7 we have a consistent dielectric analogy.
This Dipolar Dark Matter framework thus offers an elegant extension of HRBG that implements also
dark matter phenomenology. But, if this theory and its achievements seem really appealing, a typo
in the field equations of its most recent version [78] spoils the whole polarization mechanism [80].

VI.2.2 The precursor theory
The procedure to “minimalize” a given theory proceeds by two steps: firstly, one builds a pre-

cursor theory that explicitly breaks the full diffeomorphisms invariance. Next, one adds appropriate
constraints to the precursor theory to kill the adequate dofs.

We will build MTBG in vacuum, and discuss the issues related to inclusion of matter at the very
end of sec. VI.2.3.

Building blocks

In order to explicitly break the diffeomorphisms invariance, we write the two metrics in their
ADM forms, cf. app. A.3

ds2
g = gµν dxµdxν = −N2dt2 + γij

(
dxi +N idt

) (
dxj +N jdt

)
,

ds2
f = fµν dxµdxν = −M2dt2 + ϕij

(
dxi +M idt

) (
dxj +M jdt

)
.

(VI.9)

Note that we could have covariantized our theory by the introduction of four Stückelberg fields σa in
the f -sector. This would be done by promoting the corresponding lapse, shifts and spatial metric to

M = 1√
−fµν∂µσ0∂νσ0

, Mi = M2 fµν∂µσ
0∂νσ

i , and ϕij = fµν∂µσ
i∂νσ

j + MiMj

M2 , (VI.10)

6Note that we do not introduce negative masses, but rather a new charge.
7Ie. a massless vector field that couples adequately to the two metrics so that the instability lies beyond the

decoupling limit [78].
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so that eq. (VI.5) holds. Nevertheless, for the sake of simplicity, we will work in the so-called “unitary
gauge”, ie. setting the Stückelberg fields as σa ≡ xa, which is sufficient for our purpose: constructing
the theory and deriving its cosmological phenomenology.

Let us introduce the spatial covariant derivatives compatible with γij and ϕij as respectively Di

and Di, and the two extrinsic curvatures

Kij ≡ 1
2N

(
∂tγij − 2D(iNj)

)
, and Φij ≡ 1

2M
(
∂tϕij − 2D(iMj)

)
. (VI.11)

Here and henceforth, we operate the g-related quantities (N i, Kij,...) with γij, and the f -related ones
with ϕij without more precision, the two sectors being well enough separated so that no confusion
can arise.

We will use two usual Einstein-Hilbert terms for the kinetic sector of our theory. As for the
interaction term, we mimic the construction that led to HRBG by defining two square-root matrices,
Kpq and Kp

q, inverse to each other, as

KpsK
s
q = γprϕrq , K s

q K p
s = γqrϕ

rp , and KpsK s
q = K s

q K p
s = δpq . (VI.12)

The non-vanishing elementary symmetric polynomials of the square-root matrix Kpq are given by

e0 (K) = 1 , e1 (K) = [K] , e2 (K) = 1
2
(
[K]2 −

[
K2
])
, e3 (K) = det [K] , (VI.13)

and similarly for en (K). From those building blocks, we define the action of the precursor theory

Spre = M2
Pl

2

∫
d4x

{
√

−gR [g] + α2
√

−fR [f ] −m2
3∑

n=0

[
N

√
γ c4−nen (K) +M

√
ϕ cnen (K)

]}
,

(VI.14)
where α is still the ratio between the Planck masses of the two sectors, m and the set {cn}n=0..4 are
coupling constants. Naturally there is a redundancy as one of the cn can be absorbed in m2, but we
will keep it as it is for simplicity.

This theory is naturally symmetrical under the exchange of both metrics, together with a rela-
beling of the constants.

Another construction of the precursor theory

If the construction of the precursor theory (VI.14) by mimicking HRBG could seem somehow
arbitrary, there exists another path leading to it. Let us introduce two sets of four-dimensional
vielbeins eAµ and EA

µ (A = {0..3}) so that

gµν = ηAB e
A
µe
B
ν , and fµν = ηAB E

A
µE

B
ν , (VI.15)

together with their dual basis e µ
A and E µ

A obeying

e µ
A e

B
µ = δBA , e µ

A e
A
ν = δµν , E µ

A E
B
µ = δBA , and E µ

A E
A
ν = δµν . (VI.16)

In such language, the ghost-free interaction term (VI.4) reads [158]

VdRGT [e, E] = εABCD ε
µνρσ(β̄0 e

A
µe
B
νe
C
ρe
D
σ + β̄1 e

A
µe
B
νe
C
ρE

D
σ + β̄2 e

A
µe
B
νE

C
ρE

D
σ

+β̄3 e
A
µE

B
νE

C
ρE

D
σ + β̄4 E

A
µE

B
νE

C
ρE

D
σ

)
,

(VI.17)

where εµνρσ is the four-dimentional totally antisymetric Levi-Civita tensor and the {β̄n} coefficients
are linked to the {βn} of eq. (VI.4) by simple rescalings. Imposing the so-called ADM gauge for the
vielbein [137]

eAµ =
(

N 0j
eIiN

i eIj

)
, and EA

µ =
(

M 0j
EI

iM
i EI

j

)
, (VI.18)
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with the two sets of spatial vielbeins eIi and EI
i (I = {1..3}), the two metrics take the form (VI.9).

The potential (VI.17) becomes

VdRGT [e, E] = − 2N det
[
eIj
] (

12β̄0 + 3β̄1 X
I
I + β̄2

(
X I
I X

J
J −X J

I X
I
J

)
+ 3β̄3 det

[
X J
I

])
− 2M det

[
EI

j

] (
12β̄4 + 3β̄3 Y

I
I + β̄2

(
Y I
I Y J

J − Y J
I Y I

J

)
+ 3β̄1 det

[
Y J
I

])
,

(VI.19)

where we have introduced the quantities

X J
I = e i

I E
J
i , and Y J

I = E i
I e

J
i . (VI.20)

The symmetry of the extrinsic curvature Kij induces the relation δACX B
C = δBCX A

C , as shown
in [138], and naturally a similar relation holds for Y A

B . Thus the spatial square-root matrices (VI.12)
are expressed in terms of the spatial vielbeins as

Kpq = e p
I E

I
q , and Kp

q = E p
I e

I
q . (VI.21)

It is then easy to see that the matrices X J
I and Y J

I play a similar role as the square-root matrices,
namely that en(X) = en(K) and similarly en(Y ) = en(K). Defining

(
4
n

)
cn = −24β̄4−n, we recover the

precusor Lagrangian (VI.14). Therefore the precusor theory is nothing but the usual HRBG gauged
in a specific manner.

Counting the number of dofs propagating in the precursor theory

Once the precursor theory (VI.14) is constructed, one has to investigate how many dofs it propa-
gates in order to add the accurate number of constraints. To perform such a counting, we will follow
the usual Dirac procedure [170] (presented for GR in app. A.3).

As clear from eq. (VI.14), the lapses enter linearly the mass term, and the shifts do not enter it:
the Hamiltonian is thus linear in lapses and shifts. Therefore they can be simply treated as Lagrange
multipliers, and we will not associate conjugate momenta to them. We thus start with a twenty-four
dimensional phase space spanned by the spatial metrics and their conjugate momenta, defined as
usual:

πij ≡ δSpre

δ∂tγij
= M2

Pl
2

√
γ
(
Kij −Kγij

)
, and σij ≡ δSpre

δ∂tϕij
= α2M2

Pl
2

√
ϕ
(
Φij − Φϕij

)
. (VI.22)

A Legendre transformation yields the primary Hamiltonian of the precursor theory

H(1)
pre = −

∫
d3x

(
NR0 +N iRi +MR̃0 +M iR̃i

)
. (VI.23)

Note the striking similarity with the Hamiltonian of GR (A.22): both are linear combinations of
constraints. In the case of the precursor theory, those constraints read

R0 = RGR
0 − m2M2

Pl
2

√
γH0 , R̃0 = R̃GR

0 − m2M2
Pl

2
√
ϕ H̃0 , (VI.24a)

Ri = 2√
γγijDk

(
πjk
√
γ

)
, R̃i = 2

√
ϕϕijDk

(
σjk√
ϕ

)
, (VI.24b)

H0 =
3∑

n=0
c4−nen (K) , H̃0 =

3∑
n=0

cnen (K) , (VI.24c)

where RGR
0 is directly given by eq. (A.23a) and R̃GR

0 is given by eq. (A.23a) under the expected
replacements {γij, πij,MPl} → {ϕij, σij, αMPl}. Note that the momentum constraints Ri and R̃i are
exactly the same as in GR, eq. (A.23b).
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At this stage, we need to discriminate first-class constraints from second-class ones, by computing
the algebra of Poisson brackets (as explained in app. A.3, we use distributional forms for the con-
straints). In order to greatly simplify the algebra, we eliminate R̃i in favor of the three combinations
Ri ≡ Ri + R̃i, that are first-class constraints, as proven in the app. B of [155] (as the detailed com-
putation is quite arid and not really enlightening, we will not detail it in this dissertation). These
three first-class constraints are generators of the joint spatial diffeomorphisms, under which both the
precursor theory and MTBG are invariant. This point is worth emphasizing, as understanding that
those constraints are first-class in the precursor theory, and remain first-class when the precursor the-
ory is promoted to MTBG (as presented in the next section), was a crucial step towards an accurate
construction of MTBG. As it is not very enlightening, we will not present the detailed computation
of the Poisson brackets in this dissertation, but let the interested reader refer to the app. A of [155].
The only non-vanishing Poisson brackets are

{R0,Ri} ≈ Ai ,
{
R0, R̃0

}
≈ B0 ,

{
R̃0,Ri

}
≈ Bi , (VI.25)

where we have introduced (with the shorthands π ≡ γijπ
ij and σ ≡ ϕijσ

ij)

Ai

[
ξi
]

= m2M2
Pl

4

∫
d3y

√
γ

3∑
n=1

c5−n
(
U i

(n) j + γiqγjp U
p
(n) q

)
Diξ

j − m2M2
Pl

2

∫
d3y

√
γDi

(
H0ξ

i
)
,

(VI.26a)

B0 = −m2
4∑

n=1

[
c4−n

(
πij − π

2 δ
i
j

)
U j

(n) i − cn
α2

(
σij − σ

2 δ
i
j

)
V j

(n) i

]
, (VI.26b)

Bi

[
ξi
]

= m2M2
Pl

4

∫
d3y

√
γ

3∑
n=1

c4−n
(
U i

(n) j + γiqγjp U
p
(n) q

)
Diξ

j , (VI.26c)

where the derivatives of the elementary symmetric polynomials are given by

Up
(n) q ≡ ∂en(K)

∂Kqp
=

n−1∑
ℓ=0

(−)ℓen−1−ℓ(K)
(
Kℓ
)p
q
, (VI.27)

and similarly for V p
(n) q ≡ ∂en(K)

∂Kq
p

. The time evolution of the constraints is thus given by

Ṙ0 ≡
{
R0, H

(1)
pre

}
≈ −MB0 −

(
N i −M i

)
Ai , (VI.28a)

˙̃R0 ≡
{
R̃0, H

(1)
pre

}
≈ NB0 −

(
N i −M i

)
Bi , (VI.28b)

Ṙi ≡
{
Ri, H

(1)
pre

}
≈ NAi +MBi , (VI.28c)

Ṙi ≡
{
Ri, H

(1)
pre

}
≈ 0 . (VI.28d)

The conservation in time of the constraints imposes that each of the above equations has to vanish.
It is easy to see that this system of eight equations is of rank four, as the non-trivial combination
NṘ0 + M ˙̃R0 + (N i −M i) Ṙi trivially vanishes, thus the presence of a fourth first-class constraint,
that allows to discard one of the Ṙi ≈ 0 constraints. As Ṙ0 ≈ 0 and ˙̃R0 ≈ 0 can be used to fix M
and N in terms of N i − M i, the remaining constraints are Ṙi ∝ (N j − M j)(AiBj − AjBi). This
gives thus rise to two secondary constraints, that we will denote Cτ=1,2. Note that, as neither Ai nor
Bi depend on the conjugate momenta, the secondary constraints Cτ do not involve πij nor σij. The
secondary Hamiltonian of the precursor theory is thus given by

H(2)
pre = −

∫
d3x

[
NR0 +MR̃0 +

(
N i −M i

)
Ri +M iRi + λτCτ

]
, (VI.29)

and its constraint algebra is displayed in table VI.1. As it is straightforward to prove by use of Jacobi
identities that the Ri weakly commute with {R0,Ri} and {R̃0,Ri}, the Poisson brackets {Ri, Cτ} are
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also vanishing (meaning that the Ri remain first-class). In addition, as Cτ do not contain conjugate
momenta, the Poisson brackets {Cτ , Cτ ′} strongly vanish. The time evolution of the secondary set of
constraints is thus given by

Ṙ0 ≡
{
R0, H

(2)
pre

}
≈ −MB0 −

(
N i −M i

)
Ai − λτ {R0, Cτ} , (VI.30a)

˙̃R0 ≡
{
R̃0, H

(2)
pre

}
≈ NB0 −

(
N i −M i

)
Bi − λτ

{
R̃0, Cτ

}
, (VI.30b)

Ṙi ≡
{
Ri, H

(2)
pre

}
≈ NAi +MBi − λτ {Ri, Cτ} , (VI.30c)

Ṙi ≡
{
Ri, H

(2)
pre

}
≈ 0 , (VI.30d)

Ċτ ≡
{
Cτ , H(2)

pre

}
≈ N {R0, Cτ} +M

{
R̃0, Cτ

}
+
(
N i −M i

)
{Ri, Cτ} , (VI.30e)

where we do not give explicit expressions for the complicated Poisson brackets involving Cτ . Again,
all those equations shall weakly vanish, and the combination NṘ0 +M ˙̃R0 +(N i −M i) Ṙi+λτ Ċτ ≈ 0
indicates the presence of an additional first-class constraint, which allows to discard ˙̃R0. The three
conditions Ṙi ≈ 0 can be solved for N and the two λτ . Then Ṙ0 ≈ 0 can be solved for M , and the
remaining two Ċτ ≈ 0, for two of the N i. Thus the system can be solved by itself, there is no need
for tertiary constraints. Note that the freedom in the choice of the remaining N i and the three M i

is naturally related to the four first-class constraints.
To sum up, we have four first-class and six second-class constraints, removing a total of fourteen

phase space dofs at each point. As the secondary Hamiltonian contains twenty-six variables (twenty-
four from the metrics and their conjugate momenta, and the two Lagrange multipliers λτ ), it contains
twelve phase space dofs left at each point. In order to built a minimal theory containing only eight
phase space dofs, we still have to eliminate four of them, by introducing appropriate constraints.

{↓,→} R0 R̃0 Ri Ri Cτ

R0 ≈ 0 B0 Ai ≈ 0 ̸≈ 0

R̃0 ≈ 0 Bi ≈ 0 ̸≈ 0

Rj ≈ 0 ≈ 0 ̸≈ 0

Rj ≈ 0 ≈ 0

Cτ 0

Table VI.1: Final constraint algebra of the precursor theory, including the secondary constraints.
The omitted entries are due to the antisymmetric nature of the Poisson brackets.

VI.2.3 A minimal theory of bigravity
Hamiltonian construction

As advertised, we construct our minimal theory of bigravity at the Hamiltonian level, adding
constraints to the precursor Hamiltonian (VI.23). As the precursor theory propagates twelve phase
space dofs, a natural guess would be that we need to add four constraints to recover eight phase
space propagating dofs

In order to choose the appropriate form for the constraints, we require in addition that MTBG
has the same background equations of motion than HRBG on generic FLRW manifolds. In this
case, MTBG naturally becomes a stable (its stability will be proven later on) nonlinear completion
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of HRBG. It turns out that this is achieved by adding a constraint C0 − C̃0, where the two pieces are
defined as

C0 [ζ] =
{

RGR
0 [ζ] ,−m2M2

Pl
2

∫
d3x

√
ϕH̃0

}
, C̃0 [ζ] =

{
R̃GR

0 [ζ] ,−m2M2
Pl

2

∫
d3x

√
γH0

}
,

(VI.31)
and read explicitly

C0 = −m2
(
πprγrq − π

2 δ
p
q

)
U q

p , and C̃0 = −m2

α2

(
σprϕrq − σ

2 δ
p
q

)
Ũ q

p , (VI.32)

with the shorthands

Up
q ≡ 1

2

3∑
n=1

c4−n
(
Up

(n) q + γprγqsU
s
(n) r

)
, and Ũp

q ≡ 1
2

3∑
n=1

cn
(
V p

(n) q + ϕprϕqsV
s

(n) r

)
. (VI.33)

Having now stable FLRW backgrounds makes the cosmology of the HRBG-backgrounds appealing
once again. In order to prevent a spoiling of such nice property, any additional constraint shall vanish
on homogeneous and isotropic backgrounds.

As we have a priori three more constraints to add, and as the three-dimensional invariance is not
broken in any way in MTBG, we can mimic the pieces (VI.31) and define

Ci
[
ξi
]

=
{

RGR
i

[
ξi
]
,−m2M2

Pl
2

∫
d3x

√
ϕH̃0

}
, C̃i

[
ξi
]

=
{

R̃GR
i

[
ξi
]
,−m2M2

Pl
2

∫
d3x

√
γH0

}
.

(VI.34)
Those quantities read

Ci = m2M2
Pl

2
√
γDjU j

i , and C̃i = m2M2
Pl

2
√
ϕDjŨ j

i . (VI.35)

The associated constraint is taken as ∝ Ci − βC̃i, which vanishes on cosmological background by
isotropy. We have made an attempt to treat a rather general case, by introducing the parameter
β as an extra possible free parameter of the theory. However, this β-constant will play no role in
the cosmological study of MTBG, and thus its numerical value is not relevant for the present study.
Although we were tempted to fix it to unity by symmetry with the C0 − C̃0 constraint, we have
chosen to let it be free, as it may play a role (and so be constrained) in the study of strong gravity
regime (eg. for black-hole type solutions). Note also that, just by fixing to three the number of these
vector-like constraints, several other possibilities could have been taken into account, but we had to
make a choice.

At this point we could hope that we have added the accurate number of constraints. Nevertheless,
a Hamiltonian analysis shows that the fourth first-class constraint of the precursor theory is degraded
to second-class in this theory, removing only one phase space dof. Thus we need a fifth additional
constraint, that vanishes on cosmological background. By symmetry with the C0 − C̃0 constraint, we
want to add a constraint looking as C0 + C̃0. In order to preserve the cosmological background, we
plug spatial derivatives on this quantity, finally achieving the Hamiltonian construction of a minimal
theory of bigravity

H = −
∫

d3x

NR0 +N iRi +MR̃0 +M iR̃i + λ
(
C0 − C̃0

)
+ λi

(
Ci − β C̃i

)

+λ̄
[
√
γγijDij

(
C0√
γ

)
+
√
ϕϕijDij

(
C̃0√
ϕ

)]}
,

(VI.36)
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where {λ, λi, λ̄} is a set of five Lagrange multipliers, β is a free constant and the eight first constraints
{R0,Ri, R̃0, R̃i} are the same as in eq. (VI.24). Note that the fifth additional constraint is the one
associated with λ̄.

As discussed in the previous section, it has been proven in app. B of [155] that the combinations
Ri ≡ Ri + R̃i , (VI.37)

are still first-class constraints, and this statement holds independently of the value of the constant
β. This is similar to what is happening in usual bigravity [362]. Therefore, starting from twenty-four
phase space variables, the three first-class and the ten second-class constraints remove sixteen phase
space variables: our theory propagates at most four physical degrees of freedom. For readers that
are more familiar with formulations in terms of vielbeins, app. C of [155] presents the construction
of MTBG in this language.

The fact that MTBG only contains the three first-class constraints (VI.37) indicates that it
breaks both temporal copies of the diffeomorphisms, as well as one copy of the spatial ones, retaining
only the invariance under joint spatial diffeomorphisms. Introducing Stückelberg fields as in (VI.10)
would restore one copy of the full diffeomorphisms. As such reintroduction was of no interest for our
purpose, we have not explicitly performed it.

In order to demonstrate that the theory (VI.36) propagates exactly four physical dofs at each
point, we should in principle properly check that the algebra of the Poisson brackets is closed, ie.
that no secondary constraints are generated by the time conservation of the primary ones. As this
seems quite involving, we do a little detour and investigate the cosmology of MTBG. Indeed, by
studying the linear perturbations that propagate on FLRW backgrounds, we will prove that the
theory propagates at least four dofs, and thus we will conclude that it propagates exactly four dofs.

Lagrangian formulation

From the Hamiltonian (VI.36), it follows that

∂tγij = ∂H

∂πij
= 4N
M2

Pl
√
γ

(
πij − π

2 γij
)

+ 2γk(iDj)N
k +m2

(
Up

(iγj)p − 1
2 Up

pγij

) (
λ+ γklDklλ̄

)
,

(VI.38a)

∂tϕij = ∂H

∂σij
= 4M
α2M2

Pl
√
ϕ

(
σij − σ

2 ϕij
)

+ 2ϕk(iDj)M
k − m2

α2

(
Ũp

(iϕj)p − 1
2 Ũp

pϕij

) (
λ− ϕklDklλ̄

)
,

(VI.38b)
which can be inverted to give

πij = M2
Pl

2
√
γ

Kij −K γij −
m2

(
λ+ γklDklλ̄

)
2N U (i

pγ
j)p

 , (VI.39a)

σij = α2M2
Pl

2
√
ϕ

Φij − Φϕij +
m2

(
λ− ϕklDklλ̄

)
2Mα2 Ũ (i

pϕ
j)p

 . (VI.39b)

Legendre-transforming the Hamiltonian, the Lagrangian density of MTBG finally reads

L = M2
Pl

2
√

−gR [g] + α2M2
Pl

2
√

−f R [f ] − m2M2
Pl

2

(
N

√
γH0 +M

√
ϕ H̃0

)
− m2M2

Pl
2

{
√
γ Up

qDpλ
q − β

√
ϕ Ũp

qDpλ
q +

(
λ+ γijDijλ̄

)√
γ Up

qK
p
q −

(
λ− ϕijDijλ̄

)√
ϕ Ũp

qΦp
q

+
m2

(
λ+ γijDijλ̄

)2

4N
√
γ

(
Up

q − Uk
k

2 δpq

)
U q

p +
m2

(
λ− γijDijλ̄

)2

4Mα2

√
ϕ

(
Ũp

q − Ũk
k

2 δpq

)
Ũ q

p

 .

(VI.40)
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We find important at this point to recall that the principle of minimalism is a guideline towards
phenomenological simplicity, which can be very different from computational simplicity, as obviously
proven by our theory (VI.40).

Some remarks on MTBG

Before discussing the cosmology of MTBG, let us conclude this section by three remarks.
Firstly, the choice of the additional constraints in (VI.36) is totally arbitrary, and naturally other

possibilities are allowed: we do not claim to have derived the minimal theory of bigravity, but rather
one minimal theory of bigravity. For example, if the λ̄ and λi constraints have no influence on the
FLRW background dynamics, they will affect in general the dynamics of other background solutions
and, at least, the linear perturbations around FLRW space-times. Choices had to be done, and we
have chosen the constraints so that our theory has the same cosmological background as HRBG,
and stable linear cosmological perturbations. Needless to say, each inequivalent choice of constraints
would lead to a different minimal theory.

Secondly, as clear from the Lagrangian density (VI.40), the breaking of the invariance under
diffeomorphisms is only due to the interaction term, and thus of order m2. This parameter is
naturally related to the acceleration of the expansion of the Universe (see sec. VI.3.1) and to the
mass of the graviton (see sec. VI.3.2), so it can be taken of order of the current Hubble parameter.
In such a natural setup, the breaking of the temporal diffeomorphism is extremely weak and only
occurs at cosmological scales, as advertised at the end of sec. VI.1.

Last but not least, the construction has been performed in vacuum. As discussed in sec. VI.2.1,
coupling matter to a bimetric theory can be dangerous if not carefully done, as it can reintroduce
the BD ghost. We will not tackle in detail this subtle issue here, but let us emphasize two important
points. The first one is that in order to study cosmology, it is enough to implement the simplest
setup consisting of two perfect fluids (or dust components), each one minimally coupled to one
metric. This setup is viable in HRBG and, as proven in the next section, also in MTMG. The second
point is that, in HRBG, dubious matter couplings are not linear in the specific combination of lapses
and shifts that removes the BD ghost: the redeeming constraint is no longer present and the BD
ghost is thus reintroduced. In our theory, the situation is quite different as we do not rely on this
specific combination, but we introduce constraints by hand. Therefore we expect that, unless being
very exotic, no matter coupling can spoil any of our constraints, the only danger being a dubious
coupling that degrades our first-class constraints Ri to second-class. As Ri is associated with the
three-dimensional rotational invariance, this should not happen as long as the matter coupling is
covariant. Therefore we have good clues to guess that no covariant matter couplings can introduce
ghosts in MTBG, whatever the combination of metrics enters it. Naturally this assertion should be
carefully probed by a detailed analysis.

If verified, a direct consequence of this claim is that the Dipolar Dark Matter framework (discussed
at the end of sec. VI.2.1) could revive if implemented in MTBG rather than in HRBG. Firstly, the
“graviphoton” that couples to the two metrics should be perfectly healthy. Secondly, the failure of the
polarization mechanism in the current version [78] is due to the so-called van Dam–Veltman–Zakharov
discontinuity [341] (roughly stated, the phenomenology of GR is not recovered in the m → 0 limit
of the phenomenology of HRBG). This discontinuity is due to a coupling between the healthy scalar
mode and the trace of the stress-energy tensor of matter, coupling that survives in the m → 0
limit. As there is no scalar modes in MTBG, the trace of the stress-energy tensor of matter cannot
couple to any dynamical dof, and thus we expect to be free from van Dam–Veltman–Zakharov-like
discontinuities in MTBG. Therefore a Dipolar Dark Matter framework may work if implemented in
MTBG, which is currently under investigation.
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VI.3 Cosmology of our minimal theory of bigravity
In order to check that only four dofs propagate in MTBG, but also to derive its interesting

phenomenological implications, let us study the cosmology of the theory (VI.40), at the background
and linear perturbation levels. In this section, we assume that we live in the g-sector and thus, we
will favor g-related observable quantities in the final expressions.

VI.3.1 Cosmological background
Let us first consider homogeneous and isotropic background solutions, ie. let us begin with two

flat Friedman-Lemaître-Robertson-Walker (FLRW) line elements

ds2
g = −N2(t) dt2 + a2(t) δij dxidxj ,

ds2
f = −M2(t) dt2 + b2(t) δij dxidxj ,

(VI.41)

with δij the flat Euclidean three-dimensional metric. We define the two Hubble-Lemaître expansion
rates H = ȧ/Na and L = ḃ/Mb, where a dot denotes time derivative. We will also introduce the
ratios of the scale factors and the ratio of speeds of light in each sector as

X ≡ b

a
, and r ≡ M

NX
= cf
cg
. (VI.42)

By virtue of homogeneity of the background, we will consider only time-dependent auxiliary fields
λ(t), λ̄(t) and λi(t), so that λ̄ and λi disappear from the action.8 As for the matter, we will
consider two general perfect fluids with barotropic equations of state p(ρ) and p̃ (ρ̃), minimally
coupled respectively to gµν and fµν . For later convenience, we introduce the combination

Γ1 = c1X 2 + 2c2X + c3 . (VI.43)

The equations of motion E⋆ = 0 for the components of the metric can be put in the usual form

EN = 3H2 − ρ+ ρm + ρaux

M2
Pl

, (VI.44a)

EM = 3L2 − ρ̃+ ρ̃m + ρ̃aux

α2M2
Pl

, (VI.44b)

Ea = 2Ḣ
N

+ 3H2 + p+ pm + paux

M2
Pl

, (VI.44c)

Eb = 2L̇
M

+ 3L2 + p̃+ p̃m + p̃aux

α2M2
Pl

, (VI.44d)

where we have introduced the usual matter energy densities and pressures ρ, ρ̃, p and p̃, together
with the effective energy densities

ρm = M2
Plm

2

2
(
c1X 3 + 3c2X 2 + 3c3X + c4

)
, ρ̃m = M2

Plm
2

2X 3

(
c0X 3 + 3c1X 2 + 3c2X + c3

)
, (VI.45a)

ρaux = −3m2M2
Plλ

2N

(
H + m2Γ1λ

8N

)
Γ1 , ρ̃aux = 3m2M2

Plλ

2MX 2

(
L− m2Γ1λ

8Mα2X 2

)
Γ1 , (VI.45b)

and pressures (which detailed expressions are given in eq. (25) of [155]). The two perfect fluids obey
their respective continuity equations

Egc = ρ̇+ 3NH (ρ+ p) , and Efc = ˙̃ρ+ 3ML (ρ̃+ p̃) . (VI.46)
8The fact that λi disappears from the action is also naturally enforced by the joint requirement of isotropy.
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All those equations take the same form as in the usual HRBG [143]. For latter convenience, we
construct two “Bianchi” identities, one for each sector, as

EgB = ĖN + 3NH (EN − Ea) + Egc
M2

Pl
, and EfB = ĖM + 3ML (EM − Eb) + Efc

α2M2
Pl
. (VI.47)

The equation of motion of the only non-vanishing auxiliary field reads

Eλ =
(

Γ1λ

N
+ Γ1λ

α2MX
+ 4(H − XL)

m2

)
Γ1 . (VI.48)

Note the similar structure as the Bianchi identity of HRBG (VI.7), revealing that there exist also
two branches of cosmological solutions in MTBG. As we will prove hereafter, those two branches
are the same as the two branches of HRBG cosmology. The “self-accelerating” branch, defined by
Γ1 = 0 (and thus a constant X ) is the analogue of the strongly-coupled branch of HRBG (defined
by B = 0 in eq. (VI.7)), up to the only important difference that it is now perfectly healthy. The
second, “normal”, branch corresponds to the healthy9 branch of HRBG, defined by H = XL.

Self-accelerating branch

In the self-accelerating branch, Γ1 = 0 and thus X is constant, which implies in turn ML = NH.
Closing the set of equations of motion (VI.44) and (VI.46) is equivalent to verify that the two
identities (VI.47) hold. They are proportional to each other and give the condition

3m2H2 (c1X + c2)
1 − X 2 r

X r
λ = 0 . (VI.49)

As we will see later, in addition to be a severe tuning, strong coupling issues appear when the quantity
c1X + c2 is vanishing, so we will keep it non-zero. On the other hand, imposing X 2 r = 1 would
yield H = L/X which, as X is constant, totally fixes the dynamics of the g-sector with respect to
the f -sector. This would naturally yield an ill-defined cosmology, thus we discard this possibility.
Therefore the only possible way to satisfy the Bianchi’s identities is to fix λ = 0.

Defining the two constants

Λ0 = m2

2
(
c2X 2 + 2c3X + c4

)
and Λ̃0 = m2

2α2
c0X 2 + 2c1X + c2

X 2 , (VI.50)

the energies and pressures coming from the mass sector are then

ρm = M2
Pl Λ0 , pm = −ρm , ρ̃m = α2M2

Pl Λ̃0 , p̃m = −ρ̃m , (VI.51)

so that the mass sector yields a set of two effective cosmological constants, thus the name “self-
accelerating” branch. As we will show later on, since MTBG propagates only tensor modes, this
branch is not strongly coupled any longer, and one can then study its phenomenology.

Normal branch

In the normal branch, recalling that by definition Γ1 ̸= 0, eq. (VI.48) is solved by

λ = 4α2NX 2 r (XL−H)
m2Γ1 (1 + α2X 2 r) . (VI.52)

9The self-accelerating and normal branches have also been called “algebraic” and “dynamical”, respectively (for
example in [17]).
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Injecting this result in the identities (VI.47) and forming the linear combination EgB + X 4 EfB yields

EgB + X 4 EfB = (H − XL) Q = 0 , (VI.53)

where Q is a complicated quantity that has no reason to vanish (or it will be equivalent to add more
constraints). This relation thus imposes that H − XL, and thus λ, vanish. So in the normal branch,
we have

λ = 0 and H = XL . (VI.54)
Note here that the previous argument against proportionality between H and L does not hold here
as neither X nor r are constant. The normal sector is thus filled with two effective dark fluids (ρm,
pm) and (ρ̃m, p̃m) that satisfy their respective conservation equations. The equations of state of those
effective dark fluids are given by

wm ≡ pm
ρm

= −1 + c1X 3 + 2c2X 2 + c3X
c1X 3 + 3c2X 2 + 3c3X + c4

(1 − r) , (VI.55a)

w̃m ≡ p̃m
ρ̃m

= −1 + c1X 3 + 2c2X 2 + c3X
c0X 3 + 3c1X 2 + 3c2X + c3

r − 1
r

. (VI.55b)

This branch is analogous to the healthy branch of HRBG, defined by H = XL [143]. Moreover,
as in HRBG, the evolution of the ratios X and r (and thus of the dark fluids) is totally fixed by the
matter content, as

Ẋ
NX

= (r − 1) H , and 2
(
m2Γ1

4X
1 + α2X 2

α2 −H2
)

(r − 1) = ρ+ p

M2
Pl

− ρ̃+ p̃

α2M2
Pl

X 2 r . (VI.56)

VI.3.2 Cosmological perturbations
Let us now study linear cosmological perturbations, on both branches. This study has two aims:

on the one hand, by showing that four gravitational dofs propagate at the linear level, we can
conclude that the theory contains exactly 4 gravitational dofs since the Hamiltonian analysis has
already shown that the number of propagating dofs is at most four at the fully nonlinear level. On
the other hand, it allows us to investigate the cosmological phenomenology, and possible deviations
from canonical GR results.

Let us perturb the gravitational sector as

N = N(t) (1 + η) , M = M(t) (1 + ω) , (VI.57a)
Ni = N(t) a2(t) (βi + ∂iβ) , Mi = M(t) b2(t) (θi + ∂iθ) , (VI.57b)
γij = a2(t)

[
(1 + 2ζ) δij + 2∂ijχ+ 2∂(iχj) + πij

]
, ϕij = b2(t)

[
(1 + 2ξ) δij + 2∂ijτ + 2∂(iτj) + ψij

]
,

(VI.57c)
λ = δλ , λ̄ = δλ̄ , (VI.57d)

λi = δℓi + δij

a2(t) ∂jδℓ , (VI.57e)

where all the perturbation variables are of the same order in perturbation and depend on space and
time, the vector quantities {βi, θi, χi, τi, δℓi} are divergenceless and the tensor quantities {πij, ψij}
are divergenceless, symmetric and trace-free. We operate indices in both sectors with the flat δij
metric.

As for the matter, we will present the computation with two pure dust components, à la Schutz-
Sorkin [112, 324], one in each sector

Sdust = −
∫

d4x
{√

−g [ρ(n) + Jα∂αφ] +
√

−f
[
ρ̃(ñ) + J̃α∂αφ̃

]}
, (VI.58)
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where Jα and J̃α are two four-vectors. The dusts are made of particles of individual masses µ0 and
µ̃0 so that the coordinate densities read

ρ = µ0 n , n =
√

−gαβJαJβ , (VI.59a)

ρ̃ = µ̃0 ñ , ñ =
√

−fαβJ̃αJ̃β , (VI.59b)

and the four-velocities uα = Jα/n and ũα = J̃α/ñ are properly normalized uαuα = ũαũα = −1.
Varying Sdust with respect to Jα and J̃α, it follows that

uα = ∂αφ

µ0
, and ũα = ∂αφ̃

µ̃0
. (VI.60)

The dust quantities are perturbed as

J0 = 1
Na3 (N0 + j0) , J̃0 = 1

Mb3

(
Ñ0 + j̃0

)
, (VI.61a)

J i = 1
a3(t)

(
ji + δik

a2(t) ∂kj
)
, J̃ i = 1

b3(t)

(
j̃i + δik

b2(t) ∂kj̃
)
, (VI.61b)

φ = −µ0

∫ t

dτN(τ) − µ0vm , φ̃ = −µ̃0

∫ t

dτM(τ) − µ̃0ṽm , (VI.61c)

where N0 and Ñ0 are constants of integration of the background equations for φ and φ̃, that represent
the comoving number density of particles, as they satisfy n = N0/a

3 and ñ = Ñ0/b
3. We will also

introduce the gauge invariant density contrasts

δm ≡ δρ

ρ
+ 3Hvm , and δ̃m ≡ δρ̃

ρ̃
+ 3Lṽm . (VI.62)

Using (VI.59) and (VI.61a), it follows that

δm ≡ j0

N0
+ η + 3Hvm , and δ̃m ≡ j̃0

Ñ0
+ ω + 3Lṽm . (VI.63)

For a cross-check and as a complementary calculation, we have also made the computation with
two minimally coupled k-essences

Sk−ess =
∫

d4x
{√

−g P (X) +
√

−f Q(Y )
}
, (VI.64)

where

X ≡ −gµν∂µϕ ∂νϕ

2 , and Y ≡ −fµν∂µϕ̃ ∂νϕ̃

2 . (VI.65)

For this system of matter, the background pressures and energy densities are p = P (X), p̃ = Q(Y ),
ρ = 2XPX−P and ρ̃ = 2Y QY −Q. As for the perturbations, the GR no-ghost condition and squared
sound speed are given in the g-sector by

2XPXX + PX > 0 , and c2
s = PX

2XPXX + PX
, (VI.66)

with similar relations holding in the f -sector.
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Tensor sector

In both branches, the quadratic action of the tensor sector reads

δ(2) ST = M2
Pl

8

∫
dtd3xNa3


(
π̇ij
N

)2
−
(
∂kπij
a

)2

+ α2X 3M

N

( ψ̇ij
M

)2

−
(
∂kψij
Xa

)2
− µ2

T (πij − ψij)2

 ,

(VI.67)
the only difference being the expression of the effective mass

µ2
T = m2X 2

2 (c1X + c2) (r − 1) in the self-accelerating branch , (VI.68a)

µ2
T = m2X 2

2

[
(c1X + c2) r + c2X + c3

X

]
in the normal branch . (VI.68b)

As the kinetic terms are the canonical ones, we are automatically free from ghost and gradient
instabilities. In order to avoid tachyonic instabilities, one needs to ensure the positivity of the
squared mass, which does not drastically restrict the parameter space of MTBG. It is clear that the
tensor sector propagates four dofs at the linear level. On the phenomenological point of view, we
recover the usual bigravity features: the mass eigenstates are different from either g-perturbation or
f -perturbation, with the massive eigenstate being hij ∝ πij − ψij. This leads to oscillations of the
gravitons during their propagation, and would naturally have observable consequences [144].

Vector sector

In the vector sector, defining Di = χi − τi, Bi = βi − χ̇i/N and similarly B̃i = θi − τ̇i/M , the
quadratic action can be represented in both branches as

δ(2) SV = M2
Pl

4

∫
dtd3xNa3

(∂iBj)2 + α2X 3M

N

(
∂iB̃j

)2
+ 2a2ρ

M2
Pl

(
βi + ji

N0

)2
+ 2a2X 2ρ̃

M2
Pl r

(
θi + j̃i

Ñ0

)2

−µ2
T (∂iDj)2 −m2 (c1X + c2) (1 − βX ) − βΓ1

N
∂iDj ∂

iδℓj
}
,

(VI.69)
where µ2

T is the squared tensor mass (VI.68). The auxiliary field imposes the constraint Di = 0,
which eliminates the whole massive sector, so the action simply reduces to two linked copies of the
usual GR vector sector. The phenomenology of the vector sector of MTBG is thus the same as the
one of GR, separately in each metric. Moreover this clearly shows that no vector gravitational degree
of freedom is dynamical, as in GR.

Scalar sector in the self-accelerating branch

In the scalar sector of the self-accelerating branch, all auxiliary fields enter linearly in the quadratic
action. As variations with respect to δλ and δλ̄ yield redundant constraints, one has only the two
relations

ζ = ξ , and χ = τ . (VI.70)

Those two conditions suffice to eliminate the whole mass sector, leaving only two copies of the usual
GR scalar sector.

In the following, we eliminate the quantities j0 and j̃0 in favor of the gauge invariant density
contrasts (VI.63). Moreover, we still have one freedom to fully fix the gauge, and thus we will take
ζ = 0. One can then integrate out j and j̃ as

j = −N0
(
vm + a2β

)
, and j̃ = −Ñ0

(
ṽm + X 2a2θ

)
, (VI.71)
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so that the shift perturbations β and θ enter linearly and allow to express η = ρvm/(2M2
PlH) and

ω = ρ̃ṽm/(2α2M2
PlL). At this point χ vanishes by virtues of its own equation of motion and vm and

ṽm can be integrated out so to give

δ(2)SS
sa =

∫
dtd3x

Na5ρ

2k2

(
δ̇2
m

N2 + 4πGN ρ δ
2
m

)
+ Mb5ρ̃

2k2

 ˙̃δ2
m

M2 + 4π G̃N ρ̃ δ̃
2
m

 , (VI.72)

where we have naturally defined GN = (8πM2
Pl)−1 and G̃N = (8πα2M2

Pl)−1 the Newton constants
in both sectors. So the no-ghost conditions (ρ > 0 and ρ̃ > 0) and the equations of motion for the
density contrasts

1
N

d
dt

(
δ̇m
N

)
+ 2H δ̇m

N
− 4πGNρ δm = 0 and 1

M

d
dt

 ˙̃δm
M

+ 2L
˙̃δm
M

− 4πG̃N ρ̃ δ̃m = 0 , (VI.73)

are strictly the same as in GR. It is thus clear that only two dofs propagate in the scalar sector, and
that they can be identified as two matter dofs. Each of the equations (VI.73) reproduces exactly the
phenomenology of a dust component in GR.

When using the k-essence ansatz (VI.64), we also recover exactly two copies of the usual GR
quadratic action, notably the no-ghost conditions and squared sound speeds are given exactly
by (VI.66). Therefore we can conclude that the phenomenology of the scalar sector of the self-
accelerating branch is exactly given by two unrelated copies of GR. Note that, contrary to the fate
of the self-accelerating branch of HRBG, the self-accelerating branch of MTBG is perfectly healthy,
at least at the level of linear perturbations.

Scalar sector in the normal branch

In the scalar sector of the normal branch, the auxiliary field δℓ enters linearly in the quadratic
action, leading to the constraint

ζ = ξ . (VI.74)
As in the self-accelerating branch, we eliminate j0 and j̃0 in favor of the gauge invariant density

contrasts (VI.63), and still have a remaining gauge freedom, that we use to fix χ = 0. One can then
integrate out j and j̃ via the same relations as in the self-accelerating branch (VI.71), so that the shift
perturbations β and θ still enter linearly and allow to express η(vm, ζ̇, δλ, δλ̄) and ω(ṽm, ζ̇, δλ, δλ̄). At
this point δλ and δλ̄ enter linearly and can be used to express ζ(δm, δ̃m, vm, ṽm) and τ(δm, δ̃m, vm, ṽm).
Finally, the fields vm and ṽm are not dynamical and can be integrated out to give a complicated action
for δm and δ̃m, that are both dynamical. Thus we can conclude that, also in the normal branch, the
scalar sector of the theory propagates only two dofs, which can be identified as two matter dofs.

From a phenomenological point of view, let us take the sub-horizon (large k) limit. At leading k
order, the action reads

δ(2)SS
norm =

∫
dtd3x

Na5ρ

2k2

(
δ̇2
m

N2 + 4πG11 ρ δ
2
m

)
+ Mb5ρ̃

2k2

 ˙̃δ2
m

M2 + 4π G22 ρ̃ δ̃
2
m

+ Na3b2ρ ρ̃

k2 π G12 δm δ̃m

 ,

(VI.75)
as the kinetic coupling term ∝ δ̇m

˙̃δm and the friction term ∝ δ̇m δ̃m − δm
˙̃δm appear at subleading

O(k−4) order. The no-ghost conditions (ρ > 0 and ρ̃ > 0) are the same as in GR. Nevertheless,
the phenomenology of the scalar sector is different from the GR one, due to the non-standard mass
terms. Indeed, the components of the G matrix are given by

G11

GN

= 1 + 8m2 (c1X + c2) X 4H2 (1 − r) + 4m2X 3H2Γ1 +m4 (X 2 + α−2) (r − 2) X 2Γ2
1 − 6m2H2X 3Γ1 Ωm

[4H2X −m2 (X 2 + α−2) Γ1]2
,

(VI.76a)
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G12

GN

= 16m2H2X 3 (c1X 2 − c3) r − 32m2H2X 4 (c1X + c2) + 4m4X 2 (X 2 + α−2) Γ2
1 + 24m2H2X 3Γ1 Ωm

α2 [4H2X −m2 (X 2 + α−2) Γ1]2
,

(VI.76b)
G22

G̃N

= 1 + 8m2H2X (c2X + c3) r + 4m2H2X (c1X 2 − c3) −m4 (X 2 + α−2) r Γ2
1 − 6m2H2X Γ1 Ωm

α2 r [4H2X −m2 (X 2 + α−2) Γ1]2
,

(VI.76c)

with the g-sector matter density Ωm ≡ ρ/(3M2
PlH

2). The relations (VI.56) were used to eliminate ρ̃
in favor of the g-observable Ωm.

When using the k-essence ansatz (VI.64), we also recover, at the leading sub-horizon approx-
imation, the usual no-ghost conditions and squared sound speeds (VI.66), and a non-standard,
non-diagonal mass matrix. It should be noticed that if the dynamics of the background leads to
4H2X → m2 (X 2 + α−2) Γ1, then linear perturbation theory would break down, and in this case the
system needs to be further studied. This possibility was present also in MTMG [138].

When the Hubble constant is notably larger than the mass of the massive graviton, as it is the
case in the early Universe, one can expand the previous relations as

G11

GN

= 1 + m2X
2H2

[
3c1X 2 + 4c2X + c3

2 −
(
c1X 2 + c2X

)
r − 3Γ1

4 Ωm

]
+ O

(
m4

H4

)
, (VI.77a)

G12

GN

= m2X
H2α2

[(
c1X 2 − c3

)
r − 2 X (c1X + c2) + 3Γ1

2 Ωm

]
+ O

(
m4

H4

)
, (VI.77b)

G22

G̃N

= 1 + m2

2H2α2 rX

[
c1X 2 − c3

2 + (c2X + c3) r − 3Γ1

4 Ωm

]
+ O

(
m4

H4

)
. (VI.77c)

Deviations from the usual phenomenology are thus strongly suppressed. Nevertheless, if one seeks
to mimic the late-time acceleration of the Universe by means of the effective dark fluid (VI.55a), it
requires m ∼ H0, so the deviations can be large at the present epoch.

Considering only one dust component, minimally coupled in the g-sector, the action reads

δ(2)SS
norm =

∫
dtd3x

Na5ρ

2k2

(
δ̇2
m

N2 + 4πGeff ρ δ
2
m

)
+ O

(
k−4

)
. (VI.78)

Once again, the no-ghost condition (ρ > 0) is the same as in GR, and the dust experiences the
effective Newton constant

Geff

GN

= 1 + m2Γ1X 2

4H2X −m2 (X 2 + α−2) Γ1
+ 24m2H4X 4 (c1X 2 − c3) Ωm

[4H2X −m2 (X 2 + α−2) Γ1]3

= 1 + m2

4H2

[
Γ1X + 3 (c1X 2 − c3) X

2 Ωm

]
+ O

(
m4

H4

)
.

(VI.79)

Therefore we find that Geff/GN = 1 + O(1) ×m2M2
Pl/ρm. The situation is similar to what happens

in MTMG [138]. The only gravity modes introduced by the theory are tensorial, no extra scalar dof
is present, and m is related to the mass of the massive graviton. Then, whenever the mass-energy
of the environment, ρm, becomes much larger than m2M2

Pl, we would naturally expect the graviton
(sourced by matter fields) to be ultra-relativistic, that Geff/GN → 1, and that dust matter fields in
the dark sector coupled to the f -metric would decouple from the dark matter/baryonic components
belonging to our physical sector coupled to the g-metric, at least, as long as linear perturbation
theory is concerned.

Cosmological perturbations in a nutshell

Let us sum up the cosmological phenomenology of MTBG (VI.40). At the background level,
we found two branches of solutions that are equivalent to the ones present in HRBG, the only
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difference being that, in MTBG, they are both perfectly healthy and do not suffer from either
strong-coupling issues or the Higuchi ghost.10 In the first (self-accelerating) branch, the mass term
produces two pure cosmological constants, one for each metric, and the phenomenology of the scalar
and vector perturbations is the same as in GR. The tensor perturbations acquire an effective mass
and oscillate, as usual in bigravity theories. It is thus interesting to note that this branch provides
the simplest testing ground for those oscillations [144], massive graviton dark matter [22] as well
as the enhancement mechanism of stochastic gravitational waves [201]. Indeed it perfectly mimics
the ΛCDM model at the background, scalar and vector perturbative levels, but has a non-canonical
tensor sector.

In the background of the second (normal) branch, the mass term behaves as two dark fluids,
with equations of state given by (VI.55). While the vector sector is the same as in GR, the ten-
sor perturbations acquire an effective mass and oscillate as in the self-accelerating branch. More
interestingly, the scalar perturbations have a non-trivial phenomenology, with an effective Newton
constant depending on the graviton mass, the background energy density and the scale of perturba-
tions. It would be interesting to investigate this branch more deeply, to see how well this modified
gravitational strength can accommodate the most recent cosmological data.

VI.3.3 Gravitational Cherenkov radiation in MTBG
We finish this chapter by discussing the possible gravitational Cherenkov effect in MTBG. In

fact, as it is clear from the action of tensor perturbations (VI.67), gravitational waves propagate
along light cones, despite the (weak) breaking of temporal diffeomorphism invariance. Therefore,
and if r is less than unity, the f -sector gravitational perturbations travel slower than the g-sector
electromagnetic waves. This would yield a gravitational Cherenkov effect, meaning that ultra-high-
energy cosmic rays in the g-sector propagating at speeds greater than cf would loose their energy
by emission of coherent f -gravitons. As ultra-high-energy cosmic rays are observed on Earth, this
mechanism could be used to put a lower bound on r [287]. However, such an effect has been
investigated in detail in HRBG and the bounds on (r,m2) were found to be extremely weak [254].
An essential reason for this is that in HRBG, cosmic rays in the g-sector do not couple directly to
the f -metric. Although we have not performed the detailed computation, we expect that a similar
(if not the same) conclusion should hold in MTBG. Indeed the enforcement of the ADM vielbeins
and the additional constraints that we use are not tensorial in nature, so it is expected that they
would not significantly impact the computation of the Cherenkov effect. Moreover the quadratic
action of the tensor perturbations (VI.67) takes exactly the same form as the one in [254], and the
matter couplings are the same in both works. Therefore we expect that the gravitational Cherenkov
radiation would not put stringent bounds on the parameter space of MTBG.

10This Higuchi ghost usually appears in de Sitter space-times when the mass of the graviton is positive and smaller
than

√
2H. In such regimes (than are easily reached in the early Universe), the scalar mode acquires a negative norm,

and thus becomes a spurious degree of freedom [231]. As we have no dynamical scalar dof, we are automatically free
from this instability.
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Chapter VII

Testing the strong field regimes of
minimal theories

The cosmological phenomenology of minimal theories is usually derived when they are con-
structed, as we did in the previous chapter when constructing a minimal theory of bigravity (MTBG).
Indeed, deriving the linear cosmological perturbations is an essentially part of the proof that those
theories propagate the accurate number of dofs. In addition, more specific cosmological predictions
have been investigated for the original minimal theory of massive gravity (MTMG), such as redshift
space distortions [139], integrated Sachs-Wolfe effects [100] or non-linear dynamics via N -body sim-
ulations [219]. Those computations gave noteworthy results as MTMG can achieve better fits with
the current cosmological data than the canonical ΛCDM framework. In addition, the cosmologi-
cal phenomenology of type-I models has been investigated and constrained in [23], and some other
type-II theories have been confronted against the Planck data: they also gave better results than the
canonical ΛCDM model [24, 140, 156]. The dispersion relation of gravitational radiation as well as
the dynamics of Bianchi-I types of Universe were also investigated in a specific model [26]. In addi-
tion, an inflationary scenario has been implemented in a type-II model, with interesting deviations
from the usual paradigm [321].

If very interesting per se, we have to point out that all those results belong to the same type
of tests, namely cosmological ones. In order to have better phenomenological knowledge and obser-
vational constraints on minimal theories, it is thus necessary to exit the cosmological realm and to
study them in others regimes. In this spirit, this chapter is devoted to the short-distance, strong-field
regimes of two minimal theories: the original MTMG [137] and a type-II theory dubbed V CDM [153].
This will be realized by constructing black hole and star space-times in both those specific theories.
We emphasize that the presented tests are currently the only ones that have been performed out of
the cosmological realm for minimal theories.

VII.1 Strong field regime of the minimal theory of massive
gravity

VII.1.1 The minimal theory of massive gravity
As discussed in the previous chapter, the minimal theory of massive gravity is the first minimal

theory that has been constructed [137, 138]. The method that has been used to construct it is very
similar to what we have presented for MTBG in sec. VI.2, but was first achieved in the vielbein
language. This theory is the minimalization of the ghost-free massive gravity, that is given by the
action (VI.1) with α = 0 and the potential (VI.17), and thus contains a dynamical metric gµν and
a fiducial (ie. non-dynamical) one, fµν . In contrast to MTBG, the metric fµν is here part of the
definition of theory and, as such, frozen. Imposing the ADM gauge (VI.18) for the two sets of vielbein

121



gives a precursor theory, propagating three dofs instead of the five present in the original theory. The
unwanted scalar dof is then removed by the addition of appropriate constraints. As expected by the
use of ADM decomposition, the resulting theory breaks the temporal sector of the diffeomorphisms
invariance. Note that, contrary to MTBG, MTMG bears a uniqueness feature: it is the unique
minimal theory of massive gravity that is invariant under three-dimensional diffeomorphisms.

The building blocks of MTMG are thus two metrics, written in their usual ADM decomposi-
tions (VI.9) and a set of four Lagrange multipliers {λ, λi}. In this section, we use the notations
introduced in sec. VI.2, to the only exception that the lapse of the fiducial metric is denoted as Nf ,
to avoid confusion with the symbol M that will be used as a mass. The fiducial metric fµν only
enters the theory via its lapse Nf , the square-root matrix Kpq and the matrix ζpq that obey

KprK
r
q ≡ γpsϕsq , and ζpq ≡ 1

2Nf

ϕps ∂tϕsq . (VII.1)

The action of MTMG is then given by

SMTMG = SEH [gµν ] + Smat [ψmat; gµν ] − M2
Plm

2

2

∫
d4x

√
−gW , (VII.2)

where SEH and Smat are respectively the canonical Einstein-Hilbert kinetic term and the usual action
for matter fields minimally coupled to the metric gµν . The potential term W is the diffeomorphisms
breaking part of the action1 and explicitly reads

W ≡ Nf

N
E + Ẽ + Nfλ

N

(
F̂ i

jζ
j
i − Ẽζpp + F̃ i

jK
jkγik

)
+ Nf

N
F̃ i

j Djλ
i −

m2N2
fλ

2

4N2

(
F̃ i

j −
F̃p

p

2 δij

)
F̃ j

i ,

(VII.3)
where we recall that Kij is the extrinsic curvature (VI.11) and Di the covariant derivative compatible
with γij. The quantities entering W are given by

E ≡
3∑

n=0
cne3−n (K) , Ẽ ≡

4∑
n=1

cne4−n (K) , Ê ≡
4∑

n=2
cne5−n (K) , (VII.4a)

F̃p
q ≡ δẼ

δKqp
, F̂p

q ≡ δÊ
δKqp

, (VII.4b)

the elementary polynomials being expressed in eq. (VI.13). Note here the striking similarities with
the action of MTBG (VI.40).

Cosmological phenomenology of MTMG

Just as in MTBG, the cosmology of MTMG contains two branches. Taking two FLRW line
elements (VI.6) and homogeneous Lagrange multipliers, the equation of motion (eom) for λ reads(

c3 + 2c2X + c1X 2
)

Q̃ = 0 , (VII.5)

where X is again the ratio of the two scale factors, and Q̃ is some complicated expression (the
interested reader will refer to eq. (83) of [138]). Note that the combination c3 + 2c2X + c1X 2 is
simply the quantity Γ1 introduced in eq. (VI.43). The “self-accelerating” branch is still given by
Γ1 = 0 and has a phenomenology similar to the one of MTBG (excepted for the graviton oscillations
of course): it contains a natural cosmological constant, a tensor sector with a non-vanishing mass
and the scalar and vector sectors are the same as in GR. On the other hand, in the “normal” branch
(given by Q̃ = 0), the mass terms give rise to a dark fluid, the tensor sector is massive and the scalar
sector has a different phenomenology than GR, leading to a modified growth of perturbations.

1Thus, if the mass parameter m is chosen to provide a late-time acceleration of the expansion of the Universe, this
breaking is weak and only occurs at cosmological scales, just as in the case of MTBG.
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A valuable lemma

Leaving the phenomenology of the strong field regime in the normal branch for future studies, we
focus on the self-accelerating branch only. In this branch the search is heavily simplified by the use
of the following lemma, that we derived and exploited together with A. De Felice, S. Mukohyama
and M. Oliosi in [148].

Lemma : Any GR solution that can be written with flat constant-time surfaces is a solution of
the self-accelerating branch of MTMG, with the additional feature of a bare cosmological constant.

The proof of this lemma is given as follows. A metric with flat constant-time surfaces is written
as

ds2 = −N2dt2 + a2(t) δFij
(
dxi +N idt

) (
dxj +N jdt

)
, (VII.6)

where the laspe and shifts are free functions of the four-dimensional coordinates xµ, a(t) is a function
of t corresponding to a scale factor and δFij is a flat three-dimensional metric. Similarly, we use the
fiducial metric

fµνdxµdxν = −N2
f (t)dt2 + b2(t) δFijdxidxj , (VII.7)

and the Lagrange multipliers are kept in their most general form λ(xµ) and λi(xµ).
The eom for λ reveals the same splitting in two branches as in cosmology, and we will work in the

self-accelerating one, where X ≡ b(t)/a(t) is constant. In this branch, the eom for λi are automatically
satisfied, so one can safely choose the Lagrange multipliers to be equal to their cosmological values,
λ = λi = 0. With this choice, the Einstein equations for the metric (VII.6) are

M2
Pl

[
Gµν + m2

2
(
c4 + 2c3X + c2X 2

)
gµν

]
= Tµν , (VII.8)

where Tµν is the usual stress-energy tensor of matter. Thus the Einstein equations are indeed the
same as in GR with an effective cosmological constant

Λeff ≡ m2

2
(
c4 + 2c3X + c2X 2

)
. (VII.9)

QED

This lemma uncovers a large class of solutions of MTMG, given by all solutions of GR (with
a cosmological constant) of the form (VII.6). Deriving and classifying all those metrics appears
as an unmanageable task, therefore we will adopt a less ambitious approach and, starting from
a chosen interesting space-time, we will seek for the appropriate diffeomorphism that puts it in
the form (VII.6). Note that while the chosen examples are all spherically symmetric systems, this
assumption was not made in the lemma.

VII.1.2 Non-rotating black holes and stars
Let us first apply this approach to non-rotating black holes, by seeking for the diffeomorphism

that foliates GR black hole space-times in flat constant-time surfaces.
The metric of a generic spherically symmetric system can be written as

ds2 = −f(t, r) dt2 + dr2

1 − 2µ(t,r)
r

+ r2d2Ω , (VII.10)

where d2Ω is the usual line element on the two-sphere. By a simple change of the time coordinate
t → τ + T (τ, r) satisfying (

∂T (τ, r)
∂r

)2

= 1
f(τ, r)

2µ(τ, r)
r − 2µ(τ, r) , (VII.11)
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the metric (VII.10) can be put in a spatially flat form

ds2 = −N2dτ 2 +
[
(dr + β dτ)2 + r2d2Ω

]
, (VII.12)

with
N2 = (1 + ∂τT )2 f

(
1 + (∂rT )2f

)
, and β = −∂rT (1 + ∂τT ) f . (VII.13)

Simplest non-rotating black holes

The simplest representation of a non-rotating black hole in GR is given by the Schwarzschild-
de Sitter solution in Schwarzschild coordinates, ie. by (VII.10) with µ(t, r) = M − Λr2/6 and
f(t, r) = 1 − 2µ(r)/r, with both M and Λ constant. Applying the transformation as in eq. (VII.11)
and (VII.13), it simply comes

ds2 = −dτ 2 +
dr ±

√
2M
r

− Λr2

3 dτ
2

+ r2d2Ω . (VII.14)

Going to the pure Schwarzschild solution (ie. taking Λ = 0), this particular form of the metric has
been long known and was firstly independently proposed by P. Painlevé [299] and A. Gullstrand
[216].

By the lemma, the metric (VII.14) is a solution of MTMG for a flat fiducial metric ϕij = X 2δFij
with X constant and λ = λi = 0, provided that Λ = Λeff. This demonstrates the existence of static
black holes in MTMG, identical to those in GR.2

Inclusion of matter

Let us now turn to the study of time-dependent non-rotating stars in MTMG, filled with a fluid
of density ρ obeying a general barotropic equation of state P (ρ). If such objects are absolutely not
likely to exist, their construction is a first step towards realistic star solutions. More importantly,
such solutions allow to test if the addition of matter is harmless or if it introduces instabilities. As
exposed previously, in MTMG two solutions that differ from a temporal diffeomorphism are physically
distinct, and thus including matter may lead to a coordinate singularity at the center of solutions.
As a condition for the regularity of solutions with matter, we require that in the r → 0 limit, the
extrinsic curvature remains regular and becomes isotropic. This translates into requesting that the
anisotropic part of the extrinsic curvature, Krr −K/3 (where K is the trace of Kij), vanishes at the
center. For the metric ansatz (VII.12) it is sufficient to show that

lim
r→0

(
∂rβ − β

r

)
= 0 . (VII.15)

For this purpose we expand all quantities around r = 0, as

N(τ, r) =
∞∑
n=0

Nn(τ)rn , β(τ, r) =
∞∑
n=0

βn(τ)rn , and ρ(τ, r) =
∞∑
n=0

ρn(τ)rn . (VII.16)

In the lowest order in r, the ττ component of the Einstein equations becomes M2
Plβ

2
0/r

2 = 0, imposing
β0 = 0. Then, taking the next relevant order in r, one finds that the ττ and rr components of the

2More generally, ie. beyond the lemma, λ(r) = λ0 and λi∂i = ±λ0
√

2M/r − Λr2/3 ∂r are also allowed, where λ0 is
a constant. However, if we require a matching with the cosmological boundary conditions, one has to impose λ0 = 0
so that λ = λi = 0.
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Einstein equations are N2
0ρ0 = 3M2

Plβ
2
1/2 and N1/N0 = 0, leaving N0 ̸= 0 and N1 = 0. Iterating this

procedure yields β2 = 0 and thus

β(τ, r) = ±N0 r

MPl

√
2
3ρ0 + O(r3) , (VII.17)

in which we have omitted the negligible contribution from the effective cosmological constant term. It
is thus obvious that the condition (VII.15) is satisfied, ie. that the inclusion of matter is harmless and
that we can have healthy time-dependent non-rotating stars in MTMG. Note that our argument does
not depend on the effective equation of state, and applies to both dynamical and static configurations.

Regular solutions found here include static solutions with matter as a special case. As a concrete
and simple example, let us consider the interior Schwarzschild solution, as described for instance in
[332]. The solution, after matching to the Schwarzschild solution of mass M at the stellar radius r0,
is described by (VII.10) with

µ = M
(
r

r0

)3
, and f =

3
2

√
1 − 2M

r0
− 1

2

√
1 − 2µ(r)

r

2

, (VII.18)

where we have once again omitted the contribution of the effective cosmological constant as physically
negligible at scales of order of the stellar radius. After a transformation of the form of eqs. (VII.11)
and (VII.13), we recover a spatially flat space-time with

N2 = rf

r − 2µ , and β = ±
√

2µf
r − 2µ . (VII.19)

Thanks to the lemma, we can claim that this is a solution of MTMG with λ = λi = 0.
As for the outer part of the non-rotating stars, just as in GR, they are described by the black

hole solutions (VII.14). This important result allows us to extract the PPN parameters βPPN and
γPPN, that are unity, as in GR. Therefore the self-accelerating branch of MTMG passes the most
usual Solar-system tests as successfully as GR does. Nevertheless, a more detailed study would
be necessary to obtain all other parameters, and thus to put constraints using the whole range of
Solar-system tests.

Matching black holes to cosmology

The presence of time-dependent solutions with matter allows to construct non-homogeneous
cosmological solutions, as discussed in [130] for dRGT massive gravity. Those solutions are good
approximations of the canonical FLRW Universe for patches larger than the Vainshtein radius. For-
tunately, we can go beyond this approximation in MTMG and embed black holes into homogeneous
and isotropic cosmological setups, as presented in the following.

Indeed the first result (VII.14) can be extended by noticing that the special form of the metric
used in the lemma (VII.6) allows for a non-trivial scale factor a(t). To include non-trivial a(t),
one has also to implement a non-trivial scale factor in the fiducial sector as ϕij = b2(t)δFij , so that
the ratio X ≡ b(t)/a(t) remains constant for an expanding universe (∂ta > 0), as required in the
self-accelerating branch. Note that in MTMG this class of solutions is distinct from the generic
solution (VII.12). Indeed, in MTMG in the unitary gauge, due to the breaking of the invariance
under diffeormorphisms, two solutions related by a temporal diffeomorphism are physically different
and thus the Schwarzschild-de Sitter black hole solution of the form (VII.14) is not equivalent to a
black hole embedded in a de Sitter Universe.

Starting in GR with the Schwarzschild-de Sitter black hole written in Schwarzchild coordinates,
the aim is thus to write it in “generalized Painlevé-Gullstrand” coordinates

ds2 = −N(t, r)2dt2 + a2(t)
[
(dr + β(t, r) dt)2 + r2d2Ω

]
. (VII.20)
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This can be done with a time redefinition of the form of eq. (VII.11) and (VII.13) together with
r → a(t)r (the function a(t) being unspecified), to have

N(t, r) = 1, and β(t, r) = ∂ta

a
r ±

√
2M
a3r

− Λ r2

3 . (VII.21)

Turning to MTMG, we inject the metric (VII.20) in the eoms, taking spherically symmetric
ansätze for the auxiliary fields as λ = λ(t, r) and λi∂i = λr(t, r) ∂r. This yields

N(t, r) = 1, and β(t, r) = ∂ta

a
r ±

√
2M̃(t)
a3r

− Λeff r2

3 , (VII.22)

with the time-dependent modified mass function

M̃(t) = M0 ± m2 (c1X + c2) X
2
√

3

∫ t

−∞
dτ a3(τ)Nf (τ)λ̃(τ) , (VII.23)

where M0 is a constant and λ̃(t) an arbitrary function of t. The Lagrange multipliers λ and λr are

λ(t, r) = 0, and λr(t, r) = λ̃(t)√
r
(√

3M̃(t) − Λeff r3
) . (VII.24)

Considering a BH or an exterior solution of a star formed from smooth and asymptotically FLRW
initial data with matter, both λ and λr should vanish at spatial infinity to recover their cosmological
values. Also, λr(t, r) should vanish at r = 0 for regularity, at least until a physical singularity forms
there. Thus, considering black holes formed by gravitational collapse, it comes λ̃(t) = 0 due to
regular initial data, meaning that M̃(t) = M0. In this case the solution (VII.22) in MTMG recovers
the solution (VII.20) in GR, with M0 = M and Λeff = Λ.

Contrary to the solutions found in [130] and [217] for dRGT massive gravity, this solution (with
λ̃ = 0) in the M0 → 0 limit is strictly homogeneous and isotropic and is free from strong coupling
issues, which seems to be a unique and significant feature of MTMG among massive gravity theories.
Indeed, it has been shown that in the canonical massive gravity, no static solution is healthy, although
there exist time-dependent non-GR solutions [316].

VII.1.3 Towards rotating solutions
Until now, we have presented a collection of corollaries to the lemma: (i) spherically symmetric

static solutions in vacuum, (ii) spherically symmetric solutions with matter which are either time
dependent or time independent, and (iii) a Schwarzschild-de Sitter solution matched with a de Sitter
background in the FLRW form. As it appears that most of the detected black holes do spin, the next
step would naturally be to construct a rotating vacuum solution of MTMG. The most straightforward
way to proceed in MTMG would be by repeating the preceding strategy and finding a change of
coordinates that puts the Kerr-de Sitter metric in the form (VII.6). Using the lemma we could thus
claim that we have obtained a rotating black hole, solution of MTMG.

Unfortunately a study performed by A. Garat and R. H. Price [203]3 seems to indicate that
such change of coordinates does not exist. Starting from a Kerr space-time with spin parameter a,
written in Boyer-Lindquist coordinates (t, r, θ, ϕ), they performed a slicing t = F (r, θ, a), required
conformally flatness for the induced spatial metric, and demonstrated that such requirement was
not possible to achieve. As our target metric (VII.6) is only a specific case of metrics that have
conformally flat spatial sections, it seems that this is a no-go theorem for the simplest implementation

3Kindly brought to our attention by E. Gourgoulhon.
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of rotating black holes in MTMG. However their work cannot be directly applied to our case for two
reasons. First they started from the Kerr metric, with vanishing cosmological constant, whereas
the lemma would in general involve a Kerr-de Sitter-like geometry. More importantly they required
the spinless limit of the foliation to be given by a constant, thus the foliated Kerr space-time boils
down to the Schwarzschild metric, written in Schwarzschild coordinates. This restriction reduces
drastically the number of possibilities, and notably forbids to consider spinning completions of the
Painlevé-Gullstrand coordinates. As we know that we should seek for a space-time that reduces to
the metric (VII.14) in the spinless limit, we have to extend the work done in [203] to apply it to
MTMG.

In a collaboration with A. De Felice, S. Mukohyama and M. Oliosi, we have thus extended [203] for
a Kerr geometry, taking the spinless limit F (r, θ, 0) = f0(r) [151]. We had to expand the foliation up
to the fifth power in a to prove that conformally flat slicings were indeed not achievable. Nevertheless,
due to the fact that we worked with a Kerr geometry, this result does not strictly forbid to use the
lemma for constructing Kerr-de Sitter-like solutions of MTMG.

In the following, we will reproduce the computation performed in app. A of [151] that implements
a general coordinate change in the Kerr-de Sitter metric, thus directly answering to the question of
the usefulness of the lemma for rotating solutions. This method is less subtle than the slicing
t = F (r, θ, a), but it has the merit of encompassing all possible options. As we will find out that
no coordinate change can satisfy our requirements, we will finally conclude that the lemma can
definitively not be applied to construct rotating vacuum solutions of MTMG.

The Kerr-de Sitter line element written in Boyer-Lindquist-like coordinates xµ = (t, r, θ, ϕ) reads

ḡµνdxµdxν = − ∆̃ − a2ζ sin2 θ

Ξ dt2 + Σ
∆̃

dr2 + Σ
ζ

dθ2 + (r2 + a2)2
ζ − a2∆̃ sin2 θ

Ξ sin2 θdϕ2

− 2a [6Mr − Λ(r2 + a2)Σ]
3 Ξ dtdϕ ,

(VII.25)

where Λ is a cosmological constant and

∆̃ ≡
(
r2 + a2

)(
1 + Λr2

3

)
− 2Mr , Σ ≡ r2 + a2 cos2 θ ,

Ξ ≡ Σ
(

1 − Λa2

3

)2

, ζ ≡ 1 − Λa2 cos2 θ

3 .

(VII.26)

As expected, in the Λ → 0 limit, eq. (VII.25) reduces to the usual Kerr metric in Boyer-Lindquist
coordinates.

As in the case of non-rotating black holes, we will first aim to achieve purely flat spatial sections.4
This is not contradictory with the Kerr-de Sitter geometry, as the metric (VII.25) is static. We will
perform a general coordinate change xµ → χµ(a, xν) = (τ, ρ, ϑ, φ) and require that the spatially
induced metric is flat

γij ≡ ḡµν
dxµ
dχi

dxν
dχj = δ̂ij , (VII.27)

where δ̂ij is the usual three-dimensional Euclidean metric in spherical coordinates

δ̂ijdχidχj = dρ2 + ρ2 dϑ2 + ρ2 sin2 ϑ dφ2 . (VII.28)

We also require the change of coordinates to be invertible, ie. that the Jacobian of the transformation
is non-vanishing

J ≡ det
[
∂χα

∂xµ

]
̸= 0 . (VII.29)

4Note that the “rotating” Minkowskian metric, ie. written in Born coordinates, has purely flat spatial sections.
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In the spinless limit a → 0, we naturally already know the result: the Boyer-Lindquist-like coordi-
nates reduce to the Schwarzschild-de Sitter ones and thus the transformation to apply is the extended
Painlevé-Gullstrand one that was applied in the previous section to obtain the metric (VII.14)

t = τ +
∫ ρ

du

√
2uµ(u)

u− 2µ(u) , xi = χi , (VII.30)

where the effective mass is given by µ(r) = M − Λr3/6. Starting from this zeroth-order solution, we
expand the coordinate change in a as

t = τ +
∫ ρ

du
√

2uµ
u− 2µ +

∑
n≥1

an T (n)(ρ, ϑ, φ) , (VII.31a)

r = ρ+
∑
n≥1

anR(n)(ρ, ϑ, φ) , (VII.31b)

θ = ϑ+
∑
n≥1

an Θ(n)(ρ, ϑ, φ) , (VII.31c)

ϕ = φ+
∑
n≥1

an Φ(n)(ρ, ϑ, φ) . (VII.31d)

Note the absence of temporal dependencies in the functions (T (n), R(n),Θ(n),Φ(n)), as we start from a
static metric and aim for flat constant-time surfaces. We will then solve order by order the equations

Eij ≡ γij − δ̂ij =
∑
n≥1

anE (n)
ij = 0 . (VII.32)

Denoting F (n)
µ the collection {T (n), R(n),Θ(n),Φ(n)}, one can decompose E (n)

ij = Oij

[
F (n)
µ

]
+ S(n)

ij ,
where S(n)

ij is a source term (depending only on F (m)
µ with 1 ≤ m ≤ n − 1) and the linear operator

Oij is given by

Oij

[
F (n)
µ

]
=
gSdS

µν

∂F (0)
ν

∂χi
∂

∂χj
+ gSdS

µν

∂F (0)
ν

∂χj
∂

∂χi
+ ∂gSdS

νλ

∂xµ
∂F (0)

ν

∂χi
∂F

(0)
λ

∂χj

F (n)
µ , (VII.33)

where gSdS
µν is the usual Schwarzschild-de Sitter metric. Explicitly, it reads

Oρρ = 2
(
∂ρA+ 3M + Λρ3

6M − Λρ3
A−R

ρ

)
, (VII.34a)

Oρϑ = ∂ϑA+ ρ2 ∂ρΘ , (VII.34b)
Oρφ = ∂φA+ ρ2 sin2 ϑ ∂ρΦ , (VII.34c)

Oϑϑ = 2ρ2
(
∂ϑΘ + R

ρ

)
, (VII.34d)

Oϑφ = ρ2
(
∂φΘ + sin2 ϑ ∂ϑΦ

)
, (VII.34e)

Oφφ = 2ρ2
(
∂φΦ + R

ρ
+ Θ cotϑ

)
sin2 ϑ , (VII.34f)

where we have introduced the ancillary function A(ρ, ϑ, φ) ≡ −
√

2µ(ρ)
ρ

T (ρ, ϑ, φ) + ρ
ρ−2µ(ρ)R(ρ, ϑ, φ).

At a given order, we have thus to solve a system of coupled linear differential equations: the most
general solution will be given by the sum of a homogeneous solution of the operator Oij and a
particular solution.
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Homogeneous solution

We first seek a general solution of the operator Oij, defined in (VII.34). Eliminating all but
Θ-dependencies in the angular sector gives

1
2ρ2∂ϑ

(
Oϑϑ − Oφφ

sin2 ϑ

)
+ ∂φ

(
Oϑφ

ρ2 sin2 ϑ

)
= ∂ϑ

[
sinϑ ∂ϑ

(
Θ

sinϑ

)]
+ 1

sin2 ϑ
∂2
φΘ = 0 . (VII.35)

Imposing periodicity in φ and regularity in ϑ, the solution reads

Θ = Θs(ρ) sinϑ+ Θc(ρ) cosϑ sin [φ− φ0(ρ)] , (VII.36)

where Θs, Θc and φ0 are constants (in angular variables) of integration. Plugging this solution back
in eqs. (VII.34d), (VII.34e) and (VII.34f) and solving them, it comes

R = −ρΘs(ρ) cosϑ+ ρΘc(ρ) sinϑ sin [φ− φ0(ρ)] , (VII.37a)

Φ = Φ0(ρ) + Θc(ρ)
cos [φ− φ0(ρ)]

sinϑ , (VII.37b)

with Φ0 a constant of integration. Then ∂ϑOρφ − ∂φOρϑ = ρ2 sin(2ϑ)∂ρΦ0 = 0 forces Φ0 to be
constant. Injecting those solutions in eqs. (VII.34b) and (VII.34c) yields

A = A0(ρ) + ρ2 cosϑ ∂ρ
(

Θs − Θc sin [φ− φ0(ρ)] tanϑ
)
. (VII.38)

with A0 a last constant of integration. Finally eq. (VII.34a) gives

A′0 + ℵ A0

ρ
+
(
ρ2Θ′′s + (2 + ℵ)ρΘ′s + ℵΘs

)
cosϑ−

(
ρ2Θ̃′′c + (2 + ℵ)ρΘ̃′c + ℵ Θ̃c

)
sinϑ = 0 , (VII.39)

where we have shortened ℵ = (3M + Λρ3)/(6M − Λρ3) and Θ̃c = Θc(ρ) sin [φ− φ0(ρ)] and denoted
with primes derivatives with respect to ρ. This imposesA0 = −T0

√
2µ/ρ, Θs =

(
κ1 + κ2

∫
du
√

2µ/u
)
/ρ

and Θc = 0, where T0, κ1 and κ2 are constants of integration. Let us point out that in the Λ = 0
limit, it simply comes Θs = κ1/ρ+2κ2

√
2M/ρ. Turning back to the original variables (ie. expressing

T in terms of A and R), it finally comes

Th = T0 +
κ1

√
2ρµ

ρ− 2µ + κ2

ρ+
√

2ρµ
ρ− 2µ

∫
du
√

2µ
u

 cosϑ , (VII.40a)

Rh =
κ1 + κ2

∫
du
√

2µ
u

 cosϑ , (VII.40b)

Θh = −1
ρ

κ1 + κ2

∫
du
√

2µ
u

 sinϑ , (VII.40c)

Φh = Φ0 . (VII.40d)

We can easily recognize that T0 and Φ0 are respectively linked to the staticity and axisymmetry of
the Schwarzschild-de Sitter metric. The two other constants are certainly associated with the two
remaining generators of the group of isometries of the Schwarzschild-de Sitter space-time.

Particular solution at linear order

At the linear order in a, the only non-vanishing source term is S(1)
ρφ , leading to

A(1)
φ +

ρ2 Φ(1)
ρ −

(
2µ
ρ

)3/2
ρ

ρ− 2µ

 sin2 ϑ = 0 , (VII.41)
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which is easily solved by imposing Φ(1)
p =

∫ ρ du
u

(
2µ
u

)3/2 1
u−2µ . Together with the previously found

homogeneous solution (VII.40), it comes

t = τ + aT0 +
∫ ρ

du
√

2Mu

u− 2M + a

κ1

√
2ρµ

ρ− 2µ + κ2

ρ+
√

2ρµ
ρ− 2µ

∫
du
√

2µ
u

 cosϑ+ O(a2) ,

(VII.42a)

r = ρ+ a

κ1 + κ2

∫
du
√

2µ
u

 cosϑ+ O(a2) , (VII.42b)

θ = ϑ− a

ρ

κ1 + κ2

∫
du
√

2µ
u

 sinϑ+ O(a2) , (VII.42c)

ϕ = φ+ aφ0 + a
∫ ρdu

u

(2µ
u

)3/2 1
u− 2µ + O(a2) . (VII.42d)

Note that the Jacobian J = 1 + a
(
κ1 − κ2

√
2µρ+ κ2

∫
du
√

2µ
u

)
cosϑ
ρ

+ O(a2) cannot vanish but
in localized points.

Particular solution at quadratic order

At the second order in a, introducing K = κ1 + κ2
∫ ρdu√2µ

u
, the source term is slightly more

involving

S(2)
ρρ = (ρ+ 2µ) cos(2ϑ)

2ρ3 − ρ2 − 20µ2

2ρ3 (ρ− 2µ) − 2M
ρ3

ρ2 + 6ρµ− 8µ2

(ρ− 2µ)2 (VII.43a)

−
[(

(3M − 2µ)2 (ρ2 − 12ρµ− 12µ2)
2µρ (ρ− 2µ) + ρ− 6µ

)
ρ cos2 ϑ

(ρ+ 2µ)2 − 1
]

K2

ρ2

+ 2
√

2µ
ρ3/2

(
4µ2 (ρ+ 2µ) + 3Mρ (ρ− 6µ)

2µ (ρ− 2µ)2 cos2 ϑ− 1
)
κ2K + 2µ− (ρ− 2µ) cos2 ϑ

ρ
κ2

2 ,

S(2)
ρϑ =

[
ρ (ρ− 6µ) + 3M (ρ+ 2µ)

ρ (ρ− 2µ)2 K2 − 3M√
2ρµ κ2K + κ2

2ρ

]
cosϑ sinϑ , (VII.43b)

S(2)
ρφ = 2µ

[
2µ (ρ+ 2µ) − 3M (3ρ− 2µ)√

2µ ρ3/2 K + (ρ− 2µ)κ2

]
cosϑ sin2 ϑ , (VII.43c)

S(2)
ϑϑ =

[
1 + Λρ2

3 − 2K2
]

cos2 ϑ+


κ1 + κ2

∫
du
√

2µ
u

− κ2
√

2ρµ
2

− κ2
2 ρ

2

 sin2 ϑ , (VII.43d)

S(2)
ϑφ = 2µ

ρ− 2µ

[√
2µ
ρ

K + (ρ+ 2µ)κ2

]
sin3 ϑ , (VII.43e)

S(2)
φφ =

[
1 + Λρ2

3 + 2M
ρ

sin2 ϑ−
(
1 + cos2 ϑ

)
K2
]

sin2 ϑ . (VII.43f)

We first focus on the angular part. The combination ∂ϑ

(
E (2)
ϑϑ − E(2)

φφ

sin2 ϑ

)
+ 2 ∂φ

(
E(2)

ϑφ

sin2 ϑ

)
yields

∂ϑ

[
sinϑ ∂ϑ

(
Θ(2)
p

sinϑ

)]
+
∂2
φΘ(2)

p

sin2 ϑ
=
[
1 + 2M

ρ
+ Λρ2

3 − 2K2 + 2
√

2ρµ κ2K + κ2
2 ρ (ρ− 2µ)

]
sin(2ϑ)

2ρ2 .

(VII.44)
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This is notably solved by

Θ(2)
p = −

[
1 + 2M

ρ
+ Λρ2

3 − 2K2 + 2
√

2ρµ κ2K + κ2
2 ρ (ρ− 2µ)

]
sin(2ϑ)

4ρ2 , (VII.45)

and thus, when injected back in E (2)
ϑϑ − E(2)

φφ

sin2 ϑ
and E (2)

ϑφ , one obtains

Φ(2)
p =

[
κ2 +

√
2µ
ρ

K
ρ− 2µ

]
2µ cosϑ
ρ2 . (VII.46)

Then E (2)
ϑϑ gives

R(2)
p =

(
M

ρ2 + ρ− 2µ
2 κ2

2 +
√

2µ
ρ
κ2K

)
cos2 ϑ+

(
µ− 2M
ρ2 + K2 − 1

2ρ

)
sin2 ϑ . (VII.47)

Turning to the radial part of the system, E (2)
ρφ gives

A(2)
p = 6M κ2 cosϑ sin2 ϑ

2ρ φ+ f2(ρ, ϑ) , (VII.48)

where f2 is the yet unconstrained φ-independent part of A(2)
p . Plugged into ∂φE (2)

ρϑ , it imposes that
κ2 = 0. E (2)

ρϑ then yields

f2 =
[

3M + ρ

ρ
− ρ2 − 2ρµ+ 8µ2 − 3M (ρ+ 2µ)

(ρ+ 2µ)2

]
cos(2ϑ)

4ρ . (VII.49)

But then
∂ϑE (2)

ρρ = 9M2 sin(2ϑ)
2ρ3µ

, (VII.50)

cannot vanish. Thus we conclude that it is impossible to achieve a spatially flat slicing of the Kerr-de
Sitter space-time beyond linear order in a.

Other attempts to construct rotating black holes in MTMG

If the previous result prevents us to use the lemma for constructing rotating black hole solutions
in MTMG, it naturally does not preclude the existence of such solutions.

A usual trick to generate rotating solutions from static ones is the Newman–Janis algorithm [291].
This method relies on a complexification of the non-rotating metric (and hence a doubling of the
number of coordinates), and then a careful slicing of this higher-dimensional line element to recover
a rotating metric. But this algorithm is usually performed in theories that are invariant under the
full set of diffeomorphisms (eg. such as f(R) [118]), and we have failed to implement it in MTMG.

Unfortunately, all other attempts that have been undertaken until now have also miserably failed,5
either by trying to build up such a rotating solution from scratch (imposing only that it satisfies the
vacuum equations of MTMG and bears a non-vanishing Komar momentum [213]), or by attempting
to find some extension of Painlevé-Gullstrand coordinates (allowing for a small departure from spatial
flatness) in which the Kerr-de Sitter metric becomes solution of MTMG.

5To the only exception of taking a ficudical metric whose spatial sector is given by the Kerr-de Sitter one, up to
a proportionality constant. The ugliness of such a construction is definitively too repellent for us to consider it as a
serious candidate.
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VII.2 Strong field regime of the VCDM model

VII.2.1 The model under consideration
Let us now turn to another minimal theory, belonging to the type-II (ie. it does not admit an

Einstein frame), dubbed V CDM for reasons that will be clear in the following. This theory was
proposed in [153], and albeit it formally contains a metric field gµν , an ancillary scalar field ϕ, a
Lagrange multiplier λ and a gauge-fixing field λi, it only propagates two tensor dofs, as expected.
ADM-decomposing the metric gµν as usual and introducing the extrinsic curvature Kij, the action
that will be considered is

SV CDM = SEH [gµν ] −M2
Pl

∫
d4xN

√
γ

{
λ (K + ϕ) + 3λ2

4 + λi∂iϕ

N
+ V (ϕ)

}
+ Smat [ψmat, gµν ] ,

(VII.51)
with V (ϕ) a free function and Smat the usual action for matter fields minimally coupled to gµν . The
not so obvious fact that this theory has no Einstein frame was recently proven [26]. In addition it
was shown in the same study that this theory is equivalent to the cuscuton model, introduced in [14].
It is clear that the diffeomorphisms invariance is only broken by the second term. In fact the theory
happens to be invariant under the so-called foliation-preserving diffeomorphisms

t → τ(t) , xi → χi(t, xi) . (VII.52)

In the next sections, following the work done in collaboration with A. De Felice, A. Doll and
S. Mukohyama [154], we will study the strong-field regime of the theory (VII.51), in non-rotating6

configurations. The resulting spherical symmetry allows us to use the ansatz

N = N(t, r) , Nidxi = B(t, r)F (t, r)dr , and γijdxidxj = F (t, r)2dr2 + r2d2Ω , (VII.53)

so that B is the tetrad component of the shift vector and the four-dimensional metric reads

ds2
g = −N(t, r)2dt2 + [F (t, r)dr +B(t, r)dt]2 + r2d2Ω , (VII.54)

As for the auxiliary fields, spherical symmetry fixes the ansatz

ϕ = ϕ(t, r) , λ = λ(t, r) , and λi ∂i = λr(t, r) ∂r
F (t, r) . (VII.55)

Sketch of the construction of the theory

For completeness, we will sketch the procedure that led to the theory (VII.51), as it is quite
elegant. Starting from GR in vacuum, a cosmological constant is added in a new frame; the theory
is then pulled back to the original frame, where matter is finally included. For a detailed description
of the construction, we let the reader refer to [153].

In practice, and as usual when dealing with minimal theories, the construction is performed at
the Hamiltonian level. The starting point is the Hamiltonian of GR in vacuum (A.22)

HEH = −
∫

dtd3x
(
NR0 +N iRi + κπ + κi πi

)
, (VII.56)

where the four constraints {R0,Ri} are given in eq. (A.23), and we have included the momenta
{π, πi} that are conjugated to {N,N i}, toghether with associated Lagrange multipliers {κ, κi}. The

6Contrarily to the case of MTMG, we have not yet tried to implement rotation in V CDM.
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change of frame is realized by a canonical transformation of the variables {N,N i, γij} to {N,Ni,Γij}
via the generating functional (where f is an arbitrary function)

F = −
∫

d3x

[
M2

Pl
√

Γ f
(
πijΓij
M2

Pl
√

Γ
,

πN

M2
Pl

√
Γ

)
+ Niπi

]
, (VII.57)

ie. the new momenta {Π,Πi,Πij} and old variables obey

Π = −δF
δN

, Πi = − δF
δNi

= πi , Πij = − δF
δΓij

, (VII.58a)

N = −δF
δπ

, N i = −δF
δπi

= Ni , γij = − δF
δπij

. (VII.58b)

Only the combination ϕ ≡ πijΓij/(M2
Pl

√
Γ) will play a role at the end of the process. In this new

frame, a cosmological constant term M2
PlN

√
Γ Λ as well as a gauge-fixing term

√
Γλigf ∂iϕ are added.

The former is vital to have a theory that differs from GR, and the latter to ensure that the final
theory propagates only two dofs. Reversing the transformation, relabeling the Lagrange multipliers
and performing a Legendre transformation, it comes

SV CDM,vac = M2
Pl

2

∫
d4xN

√
γ

{
R [γ] +KijK

ij −K2 − 2λ (K + ϕ) − 3λ2

2 − 2λ
i∂iϕ

N
− 2V (ϕ)

}
,

(VII.59)
where we have defined

V (ϕ) ≡ Λ
f1 f

3/2
0

, with f0(ϕ) ≡ ∂f(ϕ, 0)
∂ϕ

, and f1(ϕ) ≡ ∂f(ϕ, y)
∂y

∣∣∣∣∣
y=0

. (VII.60)

Introducing minimally coupled matter in this old frame, we obtain the theory (VII.51).

Cosmological phenomenology

As usual when constructing minimal theories, the cosmological phenomenology of V CDM has
been investigated as soon as it was constructed [153]. On a flat FLRW background with Hubble
factor H, the Lagrange multipliers obey

λ = −2
3 ϕ− 2H , and λi = 0 . (VII.61)

As for the auxiliary field ϕ, it gives rise to a dark fluid entering the usual Friedman equations. The
equation of state of this fluid is determined by the shape of V as

ρϕ ≡ M2
Pl

V (ϕ) − ϕ
dV
dϕ + 3

4

(
dV
dϕ

)2
 , and Pϕ ≡ −3

2 (ρ+ P ) d2V

dϕ2 − ρϕ , (VII.62)

where ρ and P are the density and pressure of the usual matter sector. As expected, ϕ is not
dynamical but is fixed by the relation

3
2

dV
dϕ − ϕ = 3H . (VII.63)

Instead of determining the evolution of the Universe from the behavior of V (ϕ), one can reverse
the problem and, given a background dynamic for the Universe, reconstruct the shape of V (ϕ) that
sources it. The only assumptions that are to be made are that the total stress energy tensor obeys
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the null energy condition ρ + P > 0, and that the Universe is expanding, ie. H > 0. This ensures
that ϕ is a steadily increasing function of the number of e-folds N ∝ ln a

dϕ
dN

= 3
2
ρ+ P

M2
PlH

. (VII.64)

In such a case, ϕ(N ) is invertible, and the metric equations allow to express ρ in term of ϕ. So, given
a specific background dynamic for the Universe, one can reconstruct the potential V (ϕ) as

V (ϕ) = ϕ2

3 − ρ [N (ϕ)]
M2

Pl
. (VII.65)

This feature has naturally been applied to the evolution of our Universe, using Planck data, and the
reconstructed V (ϕ) gave excellent results [156]. In conclusion, adding a cold dark matter component
in the matter sector, the theory (VII.51) could challenge the current ΛCDM paradigm, thus the
name “V CDM”.

A last nice feature of V CDM at cosmological scales is that the gravitational waves propagate
at the speed of light, and obey the canonical dispersion relations [26], thus the theory is in perfect
agreement with the most up-to-date tests on the propagation of gravitational radiation.

VII.2.2 Static solutions
We first focus on static configurations in vacuum, ie. implementing the ansatz (VII.53)-(VII.55)

with time-independent quantities. Here and henceforth we denote by E⋆ the equation of motion of the
variable ⋆, and, in this section, we do not write explicitly the radial dependencies, as all quantities
can depend only on r. With this ansatz, only one gauge-fixing constraint remains, namely

Eλr = −M2
Plr

2F ∂rϕ , (VII.66)

thus ϕ = ϕ0 is constant. The non-dynamical fields λ and ϕ obey the equations of motion

Eλ = −3M2
Plr

2NF

2

[
λ+ 2ϕ0

3 − 2
3r2NF

∂r
(
r2B

)]
, (VII.67a)

Eϕ = M2
Pl

[
∂r

(
r2λr − 2r2B

3

)
+ r2NF

(
2ϕ0

3 − V ′0

)]
, (VII.67b)

where we naturally shortened V ′0 = (dV (ϕ)/dϕ)ϕ=ϕ0 . Those equations allow to write λ and λr in
terms of N , B and F . The equation of motion for the shift B is of the form

EB = −2M2
Pl

3rF ∂r

[
r4

NF
∂r

(
B

r

)]
, (VII.68)

so we can express B = 3κ0r
∫ r
r0

duNFu−4, where r0 and κ0 are constants of integration. Finally the
equations of motion for N and F are solved by

F (r) = N0

N(r) =
(

1 − 2µ0

r
− Λ0r

2

3 + κ2
0
r4

)−1/2

, (VII.69)

where µ0 is a constant of integration and we have defined Λ0 = V0 − ϕ2
0/3. The constant N0 can be

set to any positive value by the space-independent time reparametrization, which is a part of the
foliation-preserving diffeomorphisms (VII.52), and it is convenient to set it to unity.
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So finally, the static and spherically symmetric solutions of our theory are parameterized by five
constants {µ0, b0, κ0, ϕ0, ℓ0} as

ds2 = − dt2
F 2(r) +

[
F (r) dr +

(
b0r − κ0

r2

)
dt
]2

+ r2d2Ω , (VII.70a)

ϕ = ϕ0 , λ = 2b0 − 2ϕ0

3 , λi ∂i =
[
ℓ0

r2 +
(
V ′0 + 2b0 − 2ϕ0

3

)
r

3

]
∂r
F (r) , (VII.70b)

where F is defined in (VII.69). We have also defined b0 = κ0/r
3
0 and ℓ0 is the constant of integration

associated with the equation of motion for ϕ (VII.67b). When setting b0 and κ0 to zero, this family
of metrics reduces to the usual Schwarzschild-de Sitter ones with mass µ0 and cosmological constant
Λ0.

The function F (VII.69) differs from the usual Schwarzschild solution and is obviously divergent.
It is thus vital to seek if those apparent divergences are only coordinate ones (as in GR), or point
out physical singularities. In other words, we have to investigate the regularity of the family of
metrics (VII.70a). Scalars made of the intrinsic and extrinsic curvatures for those metrics are given
by

RijklRijkl = 4Λ2
0

3 + 24µ2
0

r6 + 8κ2
0

r6

(
Λ0 − 6µ0

r3 + 9κ2
0

2r6

)
, (VII.71a)

RijRij = 4Λ2
0

3 + 6µ2
0

r6 + 8κ2
0

r6

(
Λ0 − 3µ0

2r3 + 9κ2
0

4r6

)
, (VII.71b)

R = 2Λ0 + 6κ2
0

r6 , (VII.71c)

KijK
ij = 3b2

0 + 6κ2
0

r6 and K = −3b0 . (VII.71d)

They are well-behaved in all space but the origin r = 0: there is no geometrical singularity at the
horizons.

Black hole mass and effective cosmological constant

The family of metrics (VII.70a) describes a set of Einstein space-times, as their associated four-
dimensional Ricci tensors read

Rµν =
(
Λ0 + 3b2

0

)
gµν . (VII.72)

This indicates that those space-times bear an effective cosmological constant Λeff = Λ0 + 3b2
0. More-

over, Birkhoff theorem [65, 242] implies that the four-dimensional metric is locally Schwarzschild-de
Sitter (Λeff > 0), Schwarzschild (Λeff = 0), or Schwarzschild-AdS (Λeff < 0). In order to determine
the mass of the black hole, let us compute the (generalized) Misner-Sharp mass [116, 286]. For a
block-diagonal, spherically symmetric metric of the form

ds2 = habdxadxb + r2d2Ω , (VII.73)

where habdxadxb is the metric of a two-dimensional space-time spanned by the coordinates {xc}c=0..1,
often called the orbit space, and r is a non-negative function of the coordinates of the orbit space,
the (generalized) Misner-Sharp mass M is defined by

hab∂ar∂br = 1 − 2M
r

− Λeff

3 r2 . (VII.74)

Here, hab is the inverse of hab. For the family (VII.70a), a straightforward calculation results in

M = µ0 − κ0b0 . (VII.75)
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Therefore, the mass and cosmological constant of our Schwarzschild-de Sitter black holes are different
from their naive expectation values µ0 and Λ0, respectively.

The fact that κ0 does not enter Λeff can be understood from the fact that this parameter is linked
to a coordinate change. Starting with an usual Schwarzschild-de Sitter space-time with mass µ0

and cosmological constant Λ0, and performing the time redefinition t → t − κ0
∫ F 3(r)r2 dr
κ2

0F
2(r)−r4 , the line

element reads

ds2
SdS = −

(
1 − 2µ0

r
− Λ0r

2

3

)
dt2 + dr2

1 − 2µ0
r

− Λ0r2

3 + κ2
0
r4

− 2κ0

r2
dt dr√

1 − 2µ0
r

− Λ0r2

3 + κ2
0
r4

+ r2d2Ω ,

(VII.76)
which is nothing but the line element (VII.70a) with b0 = 0. As κ0 is only associated to a boost, it is
natural that it does not enter the effective cosmological constant. We nevertheless recall that while
such a parameter would be unphysical in GR, this is not the case in the framework of this study: due
to the breaking of temporal diffeomorphisms, two solutions with different κ0 are physically distinct,
as the applied time redefinition is space-dependent, and as such does not enter the class (VII.52).

The b0 parameter represents the leftover freedom in space-time slicing. Indeed, as shown in (VII.71),
it does not enter Rijkl, but only the extrinsic curvature, when κ0 only enters Rijkl.

Matching to cosmology

In the empty cosmological setup, in general a de Sitter solution in the flat FLRW form is present,
as H2 = H2

0 = ρϕ(ϕ0)/(3M2
Pl) ≡ Λeff/3 = b2

0 + Λ0/3, which sets the value of b2
0 [153]. The four-

dimensional metric of the de Sitter solution in the flat slicing is

ds2 = −dt2 + e2H0t(dρ2 + ρ2d2Ω) . (VII.77)

Since the theory enjoys the spatial diffeomorphisms invariance, the metric is physically equivalent to

ds2 = −dt2 + (dr −H0r dt)2 + r2d2Ω , (VII.78)

which is spatially flat and manifestly static. Here, r = eH0tρ.
If one requires that the Schwarzschild-de Sitter black holes asymptotically match with this de

Sitter solution, then the intrinsic curvature should vanish at infinity. By means of (VII.71c) it implies
that Λ0 = 0, and thus V (ϕ0) = ϕ2

0/3. In this case, it is convenient to set limr→∞N = 1 (ie. setting
N0 = 1 in eq. (VII.69), as F → 1) by the space-independent time reparametrization, which is a part of
the foliation-preserving diffeomorphisms (VII.52), so that one can match the metric (VII.70a) to the
metric (VII.78) at infinity not only up to the foliation-preserving diffeomorphisms but also explicitly.
The matching between the two metrics then requires b0 = −H0 as well. In this same case, the
auxiliary fields ϕ and λ are also well matching their cosmological values: ϕ is constant, which agrees
with its homogeneous behavior in cosmology and λ = −2(ϕ + K)/3 (as expected from (VII.61)).
Last, but not least, the fields λi should vanish at spatial infinity. As clear from eq. (VII.70b), this is
realized if 2b0 + V ′0 − 2ϕ0/3 = 0, which agrees with (VII.63).

In the above we have imposed the exact matching to the de Sitter solution with the flat FLRW
slicing. In a more realistic situation, the boundary condition within the spherically symmetric ansatz
should be modified one way or another to the extent that the would-be mismatch between the cos-
mological solution and the black hole solution can be absorbed by physical effects in the intermediate
region (such as deviations from spherical symmetry, the existence of interstellar matter, etc.) or by
non-trivial cosmology (eg. the existence of cold dark matter, baryons, radiation, etc.). Nonetheless,
the properties of the black hole solution at astrophysical scales are expected to be insensitive to
such modifications of the boundary condition as far as there is a large enough hierarchy between
the size of the black hole and the scales associated with the physical effects in the intermediate and
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cosmological scales. For this reason we have considered the idealized situation where the spheri-
cally symmetric solution asymptotically matches with the de Sitter (or Minkowski) space-time in the
spatially homogeneous and isotropic slicing.

Let us finally note that if one takes the limit b0 → 0 (after matching to the flat FLRW de Sitter
solution), then the Schwarzschild-de Sitter solution reduces to the asymptotically flat Schwarzschild
solution.

Summary of static black hole solutions

In a nutshell, the static and spherically symmetric solutions of our theory are given by Schwarzschild-
de Sitter space-times (VII.70a)–(VII.69), parameterized by four parameters: the mass M , the effec-
tive cosmological constant Λeff, and the two slicing parameters b0 and κ0, linked to the way the
space-time is foliated by constant time hypersurfaces. The two other parameters entering (VII.70a),
Λ0 and µ0, are not independent of the parameters mentioned above, and are defined by

µ0 = M + κ0b0 , and Λ0 = Λeff − 3b2
0 . (VII.79)

Let us emphasize that the effective cosmological constant depends not only on the gravity action
but also on the way the space-time is foliated by constant-time hypersurfaces, which is a natural
consequence of the breaking of temporal diffeomorphism. As for the auxiliary sector (VII.70b), it
is parameterized by two additional constants: the value of the auxiliary field ϕ, and an integration
constant entering the gauge-fixing field.

Those solutions are perfectly asymptotically matching the de Sitter solutions found in [153] as
long as V (ϕ0) = ϕ2

0/3 (ie. Λ0 = 0) and b0 = −H0 = ϕ0/3 − V ′0/2. This completely eliminates the
mismatch between the effective cosmological constant deduced from the solution and that from the
action: the effective cosmological constant agrees with the cosmological value that is determined by
the gravitational action.

Let us conclude the static case with a word on the parameter κ0. Since it is independent from
Λeff and M , it does not affect the covariant properties of the four-dimensional metric. Therefore,
as long as the matter action is covariant, no astrophysical processes involving matter can probe the
value of κ0. The only way to probe it is through gravity, eg. gravitational radiation.

VII.2.3 Time dependent, non-rotating solutions
Let us consider now vacuum time-dependent solutions of V CDM. The gauge-fixing constraint

imposes that ϕ(t, r) = ϕ(t). One can then solve EN for B, and then EB for F to find

F =
(

1 − 2µ(t)
r

− 1
3 Λ(t) r2 + κ2(t)

r4

)−1/2

, (VII.80)

where we have fixed F > 0. Here µ(t) and κ(t) are two constants (in r) of integration and we have
defined Λ(t) = V [ϕ(t)] −ϕ2(t)/3. Note the similarity with the static case (VII.69). Then on fixing F
to such a solution, one finds that, on reconsidering EN , one can solve it for N , finding the following
equation7

N = r2 (rB,r −B − rF,t)
3κF . (VII.81)

This solution for N is valid unless κ = 0. The case for which κ = 0 turns out to reproduce the
static case with κ0 = 0, as demonstrated in the appendix of [154], and thus will be discarded here.
Appropriate boundary conditions need to be set for the solution so that, for instance, N remains

7In order to avoid confusion with other underscripts, we denote henceforth partial or total derivatives with a
comma, as B,r ≡ ∂B/∂r or Λ,ϕ ≡ dΛ/dϕ. A dot denotes a total derivative with respect to time.
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finite in the wanted coordinate patch (in particular at infinity). These same boundary conditions
will take care of the case 0 < |κ| ≪ 1. At this point, both the equations EN and EB are satisfied, and
Err can be used to find

B = b1(t)
r2 + r b2(t) + r

6

∫ r

du Ω(t, u)
u5 − 1

6r2

∫ r

du Ω(t, u)
u2 , (VII.82a)

Ω = −2κϕ̇F 3r3 + F 3 (r6Λ,ϕϕ̇+ 12κκ̇) + 3F 2F,t (r6Λ − r4 + 3κ2) + 7r4F,t , (VII.82b)

where the functions b1,2 are free functions which come as constants (in r) of integration for the two
integrals defining the solution for B.

We will now proceed to understand the properties of such a solution. First of all, we get the
following relations

R = 2
r2 − 2

r2F 2 + 4F,r
rF 3 = 2Λ(t) + 6κ2

r6 , (VII.83a)

K = −3
r

(
B

NF
+ κ

r2

)
, (VII.83b)

KijKij = 3
r2

(
B

NF
+ κ

r2

)2
+ 6κ2

r6 (VII.83c)

λ = 2
r

(
B

NF
+ κ

r2

)
− 2

3 ϕ , (VII.83d)

λr = ℓ(t)
r2 + 1

r2

∫ r

duNFu2
[
Λ,ϕ + 2

u

(
B

NF
+ κ

u2

)]
. (VII.83e)

Here ℓ(t) is a constant (in r) of integration. As κ ̸= 0, the 3D Ricci scalar only blows up at the origin
r = 0. In this case we see that a singularity is present at the origin in general, and thus we need a
horizon to make sure that it is not naked.

Coordinate singularity

We first investigate the apparent singularity at r = r0(t), defined by the property

1
F (r0)2 = 0 , (VII.84)

which can be formally solved for µ(t) as

µ(t) = r0

2 + κ2

2r3
0

− 1
6 Λr3

0 . (VII.85)

Then if we expand F around r0(t), by taking r = r0(t) + ρ with 0 < ρ ≪ r0, it comes

1
F 2 = r4

0 − 3κ2 − r6
0Λ

r5
0

ρ+ O(ρ2) , (VII.86)

which leads to the condition r4
0 − 3κ2 − r6

0Λ ≥ 0. It is easy to show that in this case the proper
distance,

∫
dr F , remains finite around this point. On calculating the limit of several expressions

around the critical point r = r0(t), we find that all the scalars remain finite. We can thus conclude
that this point corresponds only to a coordinate singularity and focus henceforth on the presence of
horizons for this metric. Note the difference with the usual Schwarzschild-de Sitter case in GR, in
which the critical points that cancel F−2 correspond to the horizons.
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Trapping horizons and null surfaces

In order to study the presence of horizons for an effective metric defined as in eq. (VII.54)

ds2 = −(N2 −B2) dt2 + 2BF dtdr + F 2dr2 + r2d2Ω , (VII.87)

it is convenient to introduce two future-oriented four-vectors

lµ = 1
F

(F,N −B, 0, 0) , and nµ = 1
F

(F,−N −B, 0, 0) , (VII.88)

lµ being “outgoing” and nµ, “ingoing.” Those vectors are null and conveniently normalized, namely

nµnµ = 0 , lµlµ = 0 , and nµlµ = −2N2 . (VII.89)

Out of these two light-like vectors, on following eg. [186], we can then build up a projector

πµν = gµν + lµnν + lνnµ

(−nαlα) , (VII.90)

and we can introduce the corresponding expansion scalars, that roughly express the dilatation un-
dergone by a box made of photon, in the directions of respectively nµ and lµ,

θin = πµν ∇µnν = − 2
rF

(N +B) , and θout = πµν ∇µlν = 2
rF

(N −B) . (VII.91)

In terms of the expansion scalars, grr reads

grr = N2 −B2

N2F 2 = −θin θout

4N2 . (VII.92)

We now define rH(t) by
B
(
t, r = rH(t)

)
= N

(
t, r = rH(t)

)
, (VII.93)

and SH by
SH ≡ r − rH(t) = 0 . (VII.94)

Then the surface SH = 0 with B > 0 and 0 < F < ∞ represents a Marginally Outgoing Trapped
Surface (MOTS), as θout = 0 and θin < 0 there, ie. null geodesics pointing towards the center converge
and those pointing outward are at the edge of converging: light rays are marginally trapped. This
surface represents an apparent horizon as (VII.92) implies grr = 0 on the MOTS.

Instead the surface representing the coordinate singularity S0 ≡ r − r0(t) = 0, with r0 satisfying
F
(
r = r0(t)

)
→ ∞, is then trapped (since both θin and θout are negative). In fact, for this S0 surface,

we find that both N and B/F get the following values

lim
r→r+

0

N = 2r3
0

3
r3

0 ϕ̇− 3κ̇
r4

0 − r6
0Λ − 3κ2 , (VII.95a)

lim
r→r+

0

B

F
= −r0

3
r6

0 Λ,ϕϕ̇+ 6r3
0 µ̇− 6κ κ̇

r4
0 − r6

0Λ − 3κ2 , (VII.95b)

which sets r3
0ϕ̇− 3κ̇ ≥ 0, as the denominator is positive by virtue of (VII.86).

The two surfaces S0 = 0 and SH = 0 coincide only if B = N and 1/F → 0. The condi-
tions (VII.95b) then impose that r6

0 Λ,ϕϕ̇ + 6r3
0 µ̇ − 6κ κ̇ = 0, which in turn imposes that r0 (and

thus rH) is constant in time, as can be seen with the help of eq. (VII.85). In this case the expansion
scalars are vanishing at the surface, thus the MOTS condition degrades to a marginally trapped
surface (MTS) one. Note that this property is strongly linked to the static case, where N = F−1,
thus θin and θout vanish on S0, which is then a MTS.

Otherwise, when the two surfaces are distinct, the continuity of θout implies that r0(t) < rH(t),
ie. that the coordinate singularity lies inside the MOTS and is thus hidden for observers living at
infinity.
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Type of horizons

Let us consider the MOTS, SH = 0, and study whether it is spacelike or not. Since grr vanishes
on this surface, we find

gµν∂µSH∂νSH = − ṙ2
H

N2 − 2ṙH
NF

, (VII.96)

so that this surface is spacelike if 0 < −ṙH < 2N/F [t, rH(t)]. Taking the time derivative of eq. (VII.93),
we can express ṙH , and find that SH is spacelike if

0 < B,t −N,t

B,r −N,r

∣∣∣∣∣
r=rH

<
2N
F

∣∣∣∣
r=rH

, (VII.97)

and lightlike if one of the inequalities is saturated.
As for the coordinate singularity surface S0 = r−r0(t) = 0 (with r0(t) > 0 and F [r = r0(t)] → ∞),

we have
gµν∂µS0∂νS0 = − 1

N2

(
ṙ0 + B

F

)2
+ 1
F 2 = 0 . (VII.98)

To obtain the last equality, we need to take the time derivative of eq. (VII.85), and use eq. (VII.95b),
which leads to ṙ0 = − limr→r0 B/F , so that S0 = 0 is always a null surface.

A possible violation of the null convergence condition

In GR, the null energy condition for the stress energy tensor of matter and the null convergence
condition for the geometry are equivalent. The latter states that for any future directed null vector
ℓµ, Rµνℓ

µℓν ≥ 0. In non-GR gravitational theories, the null energy condition does not necessarily
implies the null convergence condition. In our theory, we will see below that the null convergence
condition can in principle be violated, even in the absence of matter. For simplicity we study the
possible violation of the null convergence condition on the MOTS (SH = 0) and on the S0 = 0
surface.

In our theory, using the “outgoing” null vector (VII.88), we have

Rµνl
µlν = 2 (N −B)2

F 2r

(
F,r
F

+ N,r

N

)
+ 4 (N −B)F,t

F 2r
+ 2B
Fr

(
B,t

B
− N,t

N

)
. (VII.99)

On the MOTS, on imposing the condition B = N , we simply find

Rµνl
µlν = 2

rHF
(B,t −N,t)|r=rH

= 2
F

ṙH
rH

(N,r −B,r)|r=rH
. (VII.100)

Solving the eq. (VII.93) in terms of b2(t) and inserting the solution in eq. (VII.100), we find a
complicated relation which does not need to be non-negative, in principle. Thus the null convergence
condition can be violated in our theory in the absence of matter.

Matching to cosmology

From what we have said in the case of static solution, we match the vacuum time-dependent
solutions with a vacuum FLRW cosmology solution at infinity. In other words, we impose

lim
r→∞

R = 0 , lim
r→∞

K = 3H0 , lim
r→∞

KijKij = 3H2
0 , lim

r→∞
λr = 0 , ϕ̇ = 0 , (VII.101)

where H0 is a positive constant. The last condition comes from the fact that, in vacuum FLRW
cosmology, ρϕ has to be constant, see eq. (VII.62). We also demand that the mass of the compact
object be finite. A well-known definition of the mass in an asymptotically de Sitter space-time is the
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Abbott-Deser mass [8], which is known to be conserved. In spherically symmetric configurations,
the Abbott-Deser mass reduces to the r → ∞ limit of the generalized Misner-Sharp mass M defined
in eq. (VII.74) with Λeff = 3H2

0 . Therefore, we require that

hab∂ar ∂br = 1 −H2
0r

2 + O(r−1) . (VII.102)

On demanding the first conditions of (VII.101), we need to impose Λ = 0 (cf. eq. (VII.83a)) so that
we can set

F =
(

1 − 2µ(t)
r

+ κ2(t)
r4

)−1/2

. (VII.103)

We then demand the second condition of (VII.101) to find b2 = H0(5µ2µ̇+ 2b1)/(2κ), which ensures
the third condition as well. So far the free function b1 is left unspecified. In order to simplify the
expressions, we can trade it for n(t), as

b1 ≡ −n(t)κ− 5
2 µ̇ µ

2 , so that lim
r→∞

N = n(t) > 0 , (VII.104)

to match a yet undetermined and free behavior at infinity8. In this case b2 = −H0 n(t). The forth
condition then leads to

(2H0 − Λ,ϕ)n = 0 . (VII.105)
As n cannot vanish, this reduces to the same condition we have found in the static case, namely
2H0 − V,ϕ + 2ϕ/3 = 0. Finally, demanding the finite mass condition (VII.102), one obtains

µ̇+H0κ̇ = 0 . (VII.106)

After imposing all the above mentioned boundary conditions, the four-dimensional Ricci tensor
is shown to be

Rµν = 3H2
0 gµν . (VII.107)

Therefore, from a GR point of view, the effective four-dimensional metric is locally Schwarzschild
(H0 = 0) or Schwarzschild-AdS (H0 ̸= 0), again thanks to the Birkhoff theorem. By using the
definition (VII.74), we find that the generalized Misner-Sharp mass is

M = µ+H0κ , (VII.108)

which is constant due to the condition (VII.106). Note again the similarity with the static case
(VII.75), where H0 = −b0. This is consistent with the fact that the four-dimensional metric is either
the Schwarzschild (H0 = 0) or Schwarzschild-AdS (H0 ̸= 0) metric. Therefore, the Abbott-Deser
mass limr→∞M is constant and finite.

Summary of time-dependent black hole solutions

In the time-dependent case, despite the absence of extra local physical degrees of freedom, the
theory admits non-trivial solutions that are not Einstein spaces in general and that possess regular
trapping and event horizons. Those generic solutions are given by eqs. (VII.80)–(VII.82) and are
parametrized by several functions of time. They are in general different from Schwarzschild or
Schwarzschild-(A)dS solutions even locally, and can break the null convergence condition despite the
fact that they are written in vacuum.

Those exotic solutions become simpler if we require that they should asymptotically approach
the corresponding cosmological solution, (a de Sitter (or Minkowski) space-time in the spatially

8We can eg. choose n = 1 by means of the freedom of the space-independent time reparametrization, which is a
part of the foliation-preserving diffeomorphisms (VII.52).
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homogeneous and isotropic slicing), but in general they still deviate from those in GR, ie. they
are not Einstein spaces in general. Thus, despite the absence of extra physical degrees of freedom,
the Birkhoff theorem does not hold in the model under consideration and a spherically symmetric
vacuum solution depends not only on the cosmological constant and the mass but also on several
free functions of the globally defined time coordinate. Those free functions are specified by suitable
asymptotic conditions at the spatial infinity or boundary conditions at a finite distance.

However, for those non-GR solutions, the Abbott-Deser mass diverges and thus they do not
represent compact objects. Such solutions may be interesting as possible large-scale structures in
the Universe but our main focus in the present study is compact objects at astrophysical scales.
Requiring that the Abbott-Deser mass be finite eliminates the non-GR time-dependent solutions
and thus only possible solutions in the setup turned out to be Schwarzschild or Schwarzschild-(A)dS
ones even in the time-dependent case.

VII.2.4 Inclusion of matter
As what was done in MTMG, let us have a word on the inclusion of matter, ie. study non-rotating

stars. So far, we have dealt with solutions which represent black holes in vacuum and we were able to
fix some of the free parameters (or functions) of the solutions by their asymptotic behavior at infinity,
but some of those remain unconstrained. For example, while the combination (VII.108) is constant,
each of µ(t) and κ(t) may depend on time and one of them can be thought as being a free function of
the solution, still unrestricted. Nonetheless, the theory is free from extra local degrees of freedom and
the functions µ(t) and κ(t) shall be unambiguously determined by matching the boundary condition
and the initial condition of dynamical degrees of freedom. Obviously, if for a black hole solution one
cannot impose a boundary condition at r = 0, the situation is different for stars, and we can expect
that by building star solutions and matching them with exterior configurations, we will be able to
fix more parameters (or functions).

To model such a non-rotating star, we include a perfect fluid with density ρ and a barotropic
equation of state P (ρ).

Exterior solution of static stars

Let us first focus on the static case with B = 0. In this case, the interior metric radial function
F takes the form

F (r) =
(

1 + Φ0

r
−
∫ r dRR2 ρ(R)

rM2
Pl

− Λ0 r
2

3

)−1/2

, (VII.109)

and we need to set the constant Φ0 = 0 for regularity at the origin. It should be noted that in
this solution no term proportional to r−4 is present,9 so that matter does not source r−4 terms in
the function F (r). Then for this interior solution, we can set at its border, ie. at the radius of
the star, r = r⋆ defined as ρ(r⋆) = 0, the matching condition with the exterior vacuum metric. On
doing this, we find that also in the exterior metric, we need to set B = 0, and in particular κ0 = 0.
On the other hand, the exterior solution fixes Λ0 = 0 also for the interior solution. Since B = 0
also for the exterior solution, this solution represents a static asymptotically flat solution. In other
words, we reach the conclusion that, on choosing B = 0 for the interior matter static solution, the
four-dimensional metric solution surrounding a spherically symmetric star reduces to the standard
Schwarzschild metric of GR.

For the general case B ̸= 0, on the other hand, we were unable to derive an analytic interior
solution in general. Therefore we cannot use the matching conditions between the interior and

9This is not highly surprising as, in the vacuum case, the r−4 term is proportional to κ0, that arises as an integration
constant of the equation of motion of B (VII.68). So if one imposes B = 0 from the beginning, there will be no r−4

term in vacuum also.
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exterior solutions to determine the value of κ0 analytically. Instead, one should set the value of κ0
by looking for the numerical interior solution of the star for a given equation of state, after setting
appropriate boundary conditions at the origin, and then matching the interior solution to the exterior
solution. On the other hand, if the solution is to represent a static black hole formed by gravitational
collapse then κ0 should be obtained by the dynamics of gravitational collapse starting from a regular
initial condition.

The case of time-dependent stars

In the time dependent case, we completely failed to derive an analytic general interior solution,
and we will have to rely on a numerical integration of the equations of motion. When doing so, we
will need to impose the boundary conditions which are compatible with the absence of a singularity
at the origin. Through the matching conditions at the border of the compact object, these boundary
conditions will in turn affect the exterior solution. On the other hand, the boundary conditions
imposed by cosmology will also affect the interior solution by fixing the free functions which cannot
be set by the boundary conditions at the origin. For example, around the origin, we expect to have
in general B = ζ1(t) r+O(r2), where ζ1(t) will be determined by the interplay between the dynamics
of matter and the matching conditions with the exterior solution.
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Conclusion

This PhD thesis was devoted to the study of the gravitational interaction. As exposed in chap-
ter I, our current cosmological model, the ΛCDM framework relying on General Relativity, faces two
observational challenges. Those challenges, the missing mass problem and the current acceleration
of the expansion of our Universe, could be explained by non-gravitational physics (eg. a cold dark
matter particle and a dark cosmological fluid), but also by purely gravitational effects. In order to
discriminate between those possible origins, the path to undertake is threefold: we should acquire
a better observational knowledge of our Universe; we should deepen our theoretical comprehension
of the current gravitational theory and of its phenomenological implications; and we should con-
struct and investigate viable alternatives to the canonical gravitational theory. This thesis aimed at
following the two last directions.

In the first part, we have focused on the two-body problem within General Relativity, and the
emission of gravitational waves. The study of this problem can yield rewarding observational conse-
quences, such as providing the first realistic test of GR in a distant exoplanetary system, as presented
in chapter II. Nevertheless, the main interest of such study is to push forward our theoretical knowl-
edge of GR, deep within the realm of high precision computations. In this vein, using synergies
between the traditional post-Newtonian methods, Effective Field Theoretical approaches and other
computational techniques, we have derived in chapter III high accuracy predictions for the logarith-
mic contributions of “tail” effects in the conserved energy. Those tail effects are genuine consequences
of the non-linear nature of GR, and their proper treatment is always a subtle issue. The ansatz we
have used is questionable, and its validity for high precision computations is not obvious to me. Nev-
ertheless, this shortcoming appears as an exciting opportunity, as it merely indicates that there is a
great deal of discussion and mutual understanding between the two communities, which will certainly
lead to promising breakthroughs. The main contribution of this thesis to the two-body problem is
the IR regularizations of the source mass quadrupole and of the non-linear interactions, at the fourth
post-Newtonian order, presented in chapter IV. The investigation of the iterated non-linearities in
a d-dimensional space is a premiere, and the preliminary results at the third post-Newtonian ap-
proximation, a strong confirmation of the soundness of the methods we employed. Moreover, by
recovering EFT results and translating them in the traditional post-Newtonian language, we have
opened a new space for discussions between the two communities.

The second part of this dissertation has been dedicated to the construction and study of theories
beyond the canonical ones. First, a new construction of domain wall configurations has been pre-
sented in chapter V. By breaking the hypothesis on which usual arguments sustaining the stability
of such defects rely, we have built stable kink configurations, that can mimic the canonical ones, at
background and first order levels. Moreover those configurations are distinguishable from the canon-
ical ones (and thus testable) at second order. Turning back to gravitational theories, we have then
presented the idea of “minimalism”, that can be used as a guideline when constructing alternatives
to GR. This concept relies on the observational fact that only tensorial modes are observationally
necessary, and thus proposes to build gravitational theories that contain only those tensorial modes.
This idea has been applied by constructing a minimal theory of bigravity in chapter VI, which is one
of the main results of this thesis. The study of its cosmological phenomenology revealed that it is
a viable completion of the canonical Hasasn-Rosen bigravity theory at cosmological scales. Finally
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we have investigated the strong-field regimes of two of those minimal theories in chapter VII, by
constructing non-rotating black hole solutions. We have found out interesting black hole space-times
with non-trivial time dependences and possible violations of the null convergence condition. This
second part thus offered an overview of the different steps that are to be followed when investi-
gating alternative frameworks: studying the canonical hypothesis and breaking them, constructing
novel theories, and then deriving and testing their phenomenological implications, notably in the
cosmological and strong-field regimes.

Perspectives

If this PhD thesis left many exciting doors wide open, three major directions of future studies
are worth being emphasized.

• The most natural one is inevitably to finish the computation of the radiative sector at the
fourth post-Newtonian approximation. All the necessary ingredients are available, apart from
the radiative quadrupole moment, which is currently under investigation. The proper treatment
of the dimensional regularization of the tail and memory effects is now fully understood, and
will be implemented in a very near future. The last remaining conceptual difficulty is the
derivation of the second-order non-linear interplay between gauge and source moments, that
will be treated for the first time (in either three of d dimensions).

• The second stimulating direction is to deepen synergies with the EFT community, notably
by fully understanding and completing the proper treatment of the high orders tail effects in
the conservative sector. This would naturally open many other doors, as current and future
challenges of the two-body problem, notably in the radiative sector, would crucially benefit
from a common understanding.

• A third exciting open door is the derivation of the phenomenological implications of our minimal
theory of bigravity, and the possible deviations from the canonical ones. If we have seen that
the cosmological phenomenology is appealing, and calls for a deeper analysis, it would also
be extremely interesting to build rotating black hole and star solutions. The exploration of
this strong-field regime by the construction and investigation of (yet non-rotating) black hole
space-times is currently undertaken, and will be pursued in a near future.
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Appendix A

Conventions and some technical aspects
of General Relativity

A.1 Conventions
In this thesis, we use natural units (where ℏ = c = 1), unless otherwise specified and define the

Planck mass as

MPl ≡
√

ℏc
8πG , (A.1)

where G ≃ 6.67 · 10−11 m3.k−1.s−2 is the Newton constant. Greek letters denote space-time indices,
latin ones denote spatial indices and we naturally use the Einstein summation convention. We
denote with “≡” a definition relation and with curly symbols (eg. “≈” or “≲”) relations that hold
only on-shell.

A.1.1 Geometrical conventions
We choose a mostly plus signature for the metric, defining the Minkowki metric as

ηµνdxµdxν ≡ −c2dt2 + δijdxidxj , (A.2)

with δij the Euclidean metric. Subsequently, the Riemann tensor is defined as

R σ
µνρ = ∂νΓσµρ − ∂µΓσνρ + ΓλµρΓσνλ − ΓλνρΓσµλ , (A.3)

with ∂µ ≡ ∂/∂xµ the partial derivatives and the Christoffel symbols

Γσµν = gσλ

2

(
∂µgνλ + ∂νgµλ − ∂λgµν

)
. (A.4)

The covariant derivative associated with gµν is denoted as ∇µ, and we recall that for a vector V µ

and a one-form Wµ,

∇µV
α = ∂µV

α + ΓαµβV β , ∇µWα = ∂µWα − ΓβµαWβ . (A.5)

Symmetrizors and antisymmetrizors are weighted by the usual factorial terms. For example,

A(µν) ≡ 1
2

(
Aµν + Aνµ

)
, A[µν] ≡ 1

2

(
Aµν − Aνµ

)
,

B(µνρ) ≡ 1
3!

(
Bµνρ +Bµρν +Bνµρ +Bνρµ +Bρµν +Bρνµ

)
.

(A.6)

149



A.1.2 Dimensional conventions
Most of this dissertation deals with four-dimensional space-times. Nevertheless, in chapter IV we

will also work in a d+1 dimensional manifold, ie. bearing a single time dimension and d spatial ones,
d being an arbitrary complex number. For simplicity, we will focus on spatial dimensions, and thus
dub “d-dimensional” this d+1-dimensional analysis (and similarly “three-dimensional” the usual four-
dimensional space-time). In this d-dimensional copy of General Relativity, the gravitational strength
G is related to the usual Newton constant GN by a new length scale ℓ0 as

G = ℓd−3
0 GN . (A.7)

We will also extensively use the notations ε ≡ d− 3 and

k̃ ≡
Γ
(
d−2

2

)
π

d−2
2

= 1
d− 2

4π
Ωd−1

, (A.8)

with Γ the usual Euler function and Ωd−1 the volume of the d− 1 Euclidean sphere. The definition
of k̃ was chosen so that it goes to unity in the three-dimensional limit:

k̃ = 1 − ln(4π) + γE
2 ε+ O

(
ε2
)
, (A.9)

with γE the Euler constant.

A.1.3 Conventions specific to post-Newtonian computations
In the post-Newtonian and post-Minkowskian analysis led in chapters chapter III and IV, we

focus on two point-particles of mass m1 and m2, located in y1 and y2, respectively. Taking a point
x ≡ r n in the d-dimensional Euclidean space, it is useful to define the vectors r1 ≡ x − y1 = r1 n1
and r2 ≡ x − y2 = r2 n2 together with the relative separation of the bodies r12 ≡ y1 − y2 = r12 n12,
as presented in fig. A.1. Naturally the n vectors are unit vectors.

Figure A.1: Geometric conventions used in the analysis led in chapter III and chapter IV.

In addition to those geometric conventions, we will use a particular set of shorthands, presented
hereafter. As we employ a flat spatial metric δij, we do not discriminate between covariant and
contravariant spatial indices. Similarly, repeated indices denote trace operation, irrespectively of
their position : Aii = Aii = Aii ≡ δijAij.

We write multi-index with uppercase shorthands: L ≡ i1i2 . . . iℓ. This allows to stack repeated
vectors or derivatives as for example nK ≡ ni1ni2 . . . nik or ∂L ≡ ∂i1∂i2 . . . ∂iℓ . This notation is
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straightforwardly extended in many situations, as eg. ∂aL−2 ≡ ∂a∂i1∂i2 . . . ∂iℓ−2 and accounts also for
implicit summation conventions as in ∂LAL.

We make extensive use of symmetric and trace-free (STF) projections, denoted either explicitly
by the shorthands

STF
L

[AL] ≡ A⟨L⟩ ≡ ÂL , (A.10)

or implicitly by directly defining tensors in a STF fashion (eg. all the multipoles of app. B). As stated
by the name, a STF quantity is totally symmetric under the exchange of any two of its indices, and
vanishing under any contraction of its indices. For example in d-dimensional space-times, the STF
projections of quantities with two and three indices are easily worked out

A⟨ij⟩ = A(ij) − Aaa
δij
d
, and A⟨ijk⟩ = A(ijk) − Aaai δjk

d+ 2 − Aaaj δik
d+ 2 − Aaak δij

d+ 2 . (A.11)

A.2 General Relativity: Lagrangian formulation
From the Riemann tensor (A.3), one can construct the Ricci tensor and scalar by contracting

appropriate indices
Rµν = R λ

µλν , R = gµνRµν . (A.12)

The Einstein-Hilbert action is then simply given by [176]

SEH = M2
Pl

2

∫
d4x

√
−gR , (A.13)

the square-root of (minus) the determinant of the metric, √
−g, being the canonical measure for

generic manifolds. In addition to this Einstein-Hilbert sector, GR can also contain a cosmological
constant, denoted as Λ, and a matter sector, described by a Lagrangian density Lmat [gµν ;ψmat],
where ψmat denotes the collection of matter fields (ie. all non-gravitational forms of energy) living
in the manifold. The action for GR finally reads

SGR = M2
Pl

2

∫
d4x

√
−g (R − 2Λ) +

∫
d4x

√
−gLmat [gµν ;ψmat] . (A.14)

The equations of motion for the metric and matter fields result from the usual least-action prin-
ciple

Eµν ≡ 2√
−g

δ

δgµν

[
M2

Pl
2

√
−g gαβRαβ −M2

PlΛ
√

−g +
√

−gLmat

]
, Emat ≡ δLmat

δψmat
. (A.15)

The variation of the measure is given by δ(√−g) = −1
2
√

−g gαβ δgαβ, and the variation of the Ricci
tensor is obtained by using the Palatini formula

δΓρµν = −gρλ

2

(
∇µδgνλ + ∇νδgµλ − ∇λδgµν

)
, gαβδRαβ = ∇µν

[
δgµν − gµνgρλ δg

ρλ
]
, (A.16)

with the perturbation δgµν = −gµαgνβ δgαβ. Injecting it in the action, we see that it gives rise to a
surface term, that will not contribute to the equations of motion. Defining the stress-energy tensor
as Tµν ≡ − 2√

−g
δ(
√
−gLmat)
δgµν , we finally obtain the famous Einstein’s field equations

Eµν = M2
Pl

(
Rµν − R

2 gµν + Λ gµν
)

− Tµν ≈ 0 . (A.17)
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A.3 Arnowitt-Deser-Misner formalism and Hamiltonian anal-
ysis of General Relativity

Any metric gµν can be reshaped in the so-called Arnowitt-Deser-Misner (ADM) form by intro-
ducing a lapse function N , a shift vector N i and a spatial metric γij as [34]

gµν dxµdxν = −N2dt2 + γij
(
N idt+ dxi

) (
N jdt+ dxj

)
. (A.18)

If this decomposition explicitly breaks the temporal diffeomorphism, it retains the spatial ones.
Indeed the lapse is a spatial scalar, the shifts constitute a spatial vector, and the spatial metric is
naturally a spatial tensor.

The physical meaning of this “3 + 1” decomposition can be easily understood when the manifold
is foliated by a (infinite) family of space-like hypersurfaces (which is always possible for space-times
that are considered within this thesis). In this framework, the spatial metric is simply the induced
metric on the hypersurface, the shift vector is the projection of the coordinate time vector on the
hypersurface and the lapse is the normal component of the coordinate time vector. For a compre-
hensive review on this decomposition (and its powerful applications in numerical relativity), see [213].

This ADM decomposition is convenient as it singles out the time sector of the metric, which is
required1 when performing a Hamiltonian analysis. Denoting Di the covariant derivative compatible
with γij, and introducing the extrinsic curvature

Kij ≡ 1
2N

(
∂tγij − 2D(iNj)

)
, (A.19)

and its trace K ≡ γijKij, the Gauss-Codazzi relations [213] allow to express the Einstein-Hilbert
action as

SEH = M2
Pl

2

∫
dtd3xN

√
γ
(
R [γ] +KijK

ij −K2
)

=
∫

dtd3xLEH . (A.20)

Where R [γ] is obviously the Ricci scalar constructed out of the spatial metric. The lapse and shifts
enter non-dynamically, thus we will not associate conjugate momenta to them, but treat them as
ancillary variables. As for the spatial metric, its time derivative only enters the extrinsic curvature,
thus its conjugate momentum is easily computed as

πij ≡ δLEH

δ(∂tγij)
= M2

Pl
2

√
γ
(
Kij −K γij

)
. (A.21)

At this point, we have twelve dynamical phase-space degrees of freedom {γij, πĳ}. Constructing the
primary Hamiltonian in the usual way, and discarding surface terms, it comes∫

dtd3xH
(1)
EH ≡

∫
dtd3x

(
πij∂tγij − LEH

)
= −

∫
dtd3x

(
NR0 +N iRi

)
. (A.22)

The primary Hamiltonian is thus a pure constraint, with Lagrange multipliers given by the lapse and
shifts. Denoting π ≡ γijπ

ij, the so-called Hamiltonian and momentum constraints are given by

R0 = M2
Pl

2
√
γR [γ] − 2

M2
Pl

√
γ

(
πijπ

ij − π2

2

)
, (A.23a)

Ri = 2√
γ γijDk

(
πjk
√
γ

)
. (A.23b)

1To be exact, one needs to single out one of the coordinates to perform the Legendre transformation, and we could
have chosen one of the spatial coordinates. But retaining the invariance under spatial diffeomorphisms is extremely
useful, and thus we have chosen to single out time.
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Following the usual Dirac procedure [170], we investigate the nature of those constraints. For
simplicity, we use “distributional forms” , ie. using well-behaved test functions ζ and ξi that vanish
at spatial boundaries, we define

R0 [ζ] ≡
∫

d3zR0 ζ(z) , Ri

[
ξi
]

≡
∫

d3zRi ξ
i(z) . (A.24)

Using Hamilton’s equations of motion, one can show that the time evolution of a constraint C, that
does not explicitly depend on time, is given by its Poisson bracket with the Hamiltonian, as

dC [ζ]
dt = ∂C [ζ]

∂γij

dγij
dt + ∂C [ζ]

∂πij
dπij
dt =

∫
d3y

 ∂C [ζ]
∂γij(y)

∂H
(1)
EH [χ]

∂πij(y) − ∂C [ζ]
∂πij(y)

∂H
(1)
EH [χ]

∂γij(y)


=
{
C [ζ] , H(1)

EH [χ]
}
.

(A.25)

Therefore the constraints can be split in two classes: the first-class constraints have vanishing Poisson
brackets with all other constraints (and thus are automatically conserved in time), and the second-
class constraints have non-vanishing Poisson brackets with at least one other constraint.

A first-class constraint removes two phase-space degrees of freedom. Firstly, the algebraic re-
lation C = 0 is to be solved for one dynamical variable. Secondly, as its time conservation is
automatically ensured, its associated Lagrange multiplier is not determined, but remains free. As
such non-dynamical variable enters the equations of motion of the dynamical variables, it can be used
to fix one of them (this behavior is very similar to a gauge choice, and indeed, primary first-class
constraints are associated with gauge freedom [170]). Regarding the second-class constraints, the
algebraic relation C = 0 is still to be solved for one dynamical variable. But enforcing the conserva-
tion in time of such constraint dC/dt ≡ 0 can either be solved by fixing one Lagrange multiplier, or
yield a secondary constraint. Thus second-class constraints remove only one phase-space degree of
freedom each.

For the Hamiltonian (A.22), the Dirac algebra is given by

{R0 [ζ] ,R0 [χ]} =
∫

d3zRi

[
ζ∂iχ− χ∂iζ

]
, (A.26a){

R0 [ζ] ,Ri

[
ξi
]}

= −
∫

d3z
√
γDi

[
R0ζξ

i
]
, (A.26b){

Ri

[
ξi
]
,Rj

[
χj
]}

=
∫

d3zRi

[
χjDjξ

i − ξjDjχ
i
]
, (A.26c)

and thus vanishes on-shell, which means that all constraints are first-class. Therefore there is no need
of secondary constraints: the primary Hamiltonian is also the final one. As each first-class constraint
fixes two phase-space variables, the number of independent phase-space variables is 12 − 2 × 4 = 4,
thus two physical degrees of freedom propagates, corresponding to the usual two gravitational wave
polarizations.

As advertised, primary first-class constraints are usually associated with gauge symmetries. In
the case of the Einstein-Hilbert Hamiltonian (A.22), the Hamiltonian constraint is associated with
the invariance under boosts, and the momentum constraints with the spatial rotational invariance.
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Appendix B

Toolkit for post-Minkowskian expansions

B.1 Recasting Einstein’s field equations
We ultimately seek a metric gµν solution of the GR field equations (A.17) with vanishing cosmo-

logical constant, and matter sector given by Lmat. Instead of studying directly gµν , we define the
perturbation of the so-called “gothic” metric

hµν ≡
√

−g gµν − ηµν , (B.1)

where ηµν is the inverse Minkowskian metric with mostly plus signature, and the results of this section
are valid also in d-dimensional space. As advertised in the previous appendix, there remains some
gauge freedom, so we can impose the de Donder conditions (sometimes also called Henry gauge)

∂µh
µν ≡ 0 . (B.2)

The associated coordinate system is usually dubbed “harmonic”. Indeed, considering the coordinates
{xµ} as a set of scalar functions, it comes

∂νh
µν = ∂ν

(√
−ggµν − ηµν

)
= −

√
−ggρσΓµρσ = −

√
−ggρσΓνρσ∂νxµ =

√
−g□gx

µ , (B.3)

where □g ≡ gµν∇µ∇ν is the curved space d’Alembertian operator. Therefore in this gauge □gx
µ = 0:

the coordinates enjoy being homogeneous solutions of the d’Alembertian operator, thus the name
“harmonic” coordinate system. The interest of the particular definition (B.1), together with this
coordinate system, is that the metric field equations are simply recast as

□hµν = 16πG
c4 τµν , (B.4)

ie. a wave equation with propagator given by the usual flat space d’Alembertian operator □ ≡ ηµν∂µν
and source term involving the Landau-Lifschitz pseudo tensor

τµν ≡ |g|T µν + c4

16πG Λµν , (B.5)

where T µν is the usual stress-energy tensor for matter. The second piece, given by Λµν , is constructed
out of the metric only and reads in d dimensions

Λµν = − hαβ∂αβh
µν + ∂αh

µβ∂βh
να + 1

2 g
µνgαβ∂ρh

ασ∂σh
βρ − 2gα(µgρβ∂σh

ν)β∂αh
ρσ

+ gαβgρσ∂αh
µρ∂βh

νσ + 1
4
(
2gµαgνβ − gµνgαβ

) (
gρσgλτ − 1

d− 1 gρλgστ
)
∂αh

ρλ∂βh
στ .

(B.6)

Note that Λµν is highly non-linear, as expected for GR, but begins at the quadratic order in hµν only.
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B.2 The multipolar-post-Minkowskian iteration scheme
As advertised by the name, the spirit of post-Minkowskian (PM) computations is to expand

quantities around their Minkowskian vacuum configurations, outside of the distribution of matter.
Naturally this expansion performed in the radiation zone has to be carefully matched with the
post-Newtonian expansion performed in the near zone, inside the matter distribution.1 We formally
expand the perturbation in powers of Newton constant as

hµν ≡
∑
n≥1

Gn hµν(n) . (B.7)

In addition to this PM expansion, we also decompose each quantity in a multipolar way, ie. we
project them on spherical harmonics. It can be shown (see eg. the formulas displayed in [187]) that
spin-2 weighted spherical harmonics and symmetric trace-free (STF) products of unit vectors n̂L are
equivalent. Therefore we will work for example with

h00
(n) =

∑
ℓ∈N

AL(n)(r, t) n̂L , or h0i
(n) =

∑
ℓ∈N

{
BiL

(n)(r, t) n̂L + CL
(n)(r, t) n̂iL

}
. (B.8)

This MPM double formal expansion is to be injected in the vacuum field equations (ie. eq. (B.4)
with T µν = 0), that reduce to

□hµν = Λµν . (B.9)

The aim of MPM computations is thus to solve such equations, order by order in G and for each
mulitpolarity ℓ, together with the gauge-fixing condition (B.2).

In the rest of this section, we briefly outline the most striking features of this method in three-
dimensional spaces, and the generalization to d dimensions is to be worked out in chapter IV. We let
interested readers refer to [73] for a more comprehensive presentation of the MPM framework.

B.2.1 At linear order
Injecting the formal expansion (B.7) in the non-linear source term (B.6), it straightforwardly

appears that Λµν begins at order G2. Therefore the linear piece of the metric, hµν(1), is simply given
by a homogeneous solution of the flat d’Alembertian operator.

Source moments

A homogeneous solution of the flat d’Alembertian operator can be parametrized by a series of
STF multipolar advanced and retarded waves

Hµν =
∑
ℓ∈N

∂L

(
Aµν
L (t+ r/c) + Rµν

L (t− r/c)
r

)
, (B.10)

as easily verified by applying the d’Alembertian operator (that obviously commutes with the partial
derivatives) on Hµν . Note that the multipolarity is here encoded in the ℓ derivatives (as long as AL
is STF, ∂LAL(t± r/c) ∝ A

(ℓ)
L (t± r/c) n̂L). If both advanced and retarded waves are mathematically

allowed, the advanced ones physically correspond to radiation coming from infinity towards the
matter system. Therefore it is usual to impose in addition a “no-incoming radiation” condition that,
as stated by its name, accounts for discarding the moments Aµν

L .
1We will naturally apply this formalism to the two-body problem, but note that the formulas presented in this

appendix hold for any compact support matter distribution.
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Requiring in addition that the homogeneous solution Hµν obeys the gauge condition (B.2), the
ten components of Rµν

L can be naturally parametrized by two sets of STF moments {IL, JL}, as

k00
(1) = − 4

c2

∑
ℓ≥0

(−)ℓ
ℓ! ∂L

[1
r
IL

(
t− r

c

)]
,

k0i
(1) = 4

c3

∑
ℓ≥1

(−)ℓ
ℓ!

{
∂L−1

[1
r
I

(1)
iL

(
t− r

c

)]
+ ℓ

ℓ+ 1 ∂aL−1

[1
r
εabiJbL−1

(
t− r

c

)]}
,

kij(1) = − 4
c4

∑
ℓ≥2

(−)ℓ
ℓ!

{
∂L−2

[1
r
I

(2)
ijL

(
t− r

c

)]
+ 2ℓ
ℓ+ 1 ∂aL−2

[1
r
εab(iJ

(1)
j)bL−2

(
t− r

c

)]}
,

(B.11)

where εijk is the flat Levi-Civita symbol and parenthesis in exponent denote time derivation. Due
to their apparent parity, IL are called mass moments, and JL are called current moments (they are
respectively analogous to the electric and magnetic moments of electromagnetism).

This expansion has to be matched to the post-Newtonian expansion performed within the source.
This matching is the most delicate part of the process and formally reads [71]

IL(u) = PF
B

∫
d3x

(
r

r0

)B ∫ 1

−1
dz
{
δℓ(z) x̂L Σ − 4(2ℓ+ 1)δℓ+1(z)

c2(ℓ+ 1)(2ℓ+ 3) x̂iLΣ(1)
i + 2(2ℓ+ 1)δℓ+2(z) x̂ijL

c4(ℓ+ 1)(ℓ+ 2)(2ℓ+ 5)Σ(2)
ij

}
,

(B.12a)

JL(u) = PF
B

∫
d3x

(
r

r0

)B ∫ 1

−1
dz εab⟨iℓ

{
δℓ(z) x̂L−1⟩a Σb − (2ℓ+ 1)δℓ+1(z)

c2(ℓ+ 2)(2ℓ+ 3) x̂L−1⟩acΣ
(1)
bc

}
, (B.12b)

where the source densities are evaluated in (x, u+ zr/c) and defined from the PN-expanded compo-
nents of the Landau-Lifschitz pseudo tensor (B.5) (an overbar denoting a formal PN expansion)

Σ ≡ τ 00 + δijτ
ij

c2 , Σi ≡ τ 0i

c
, and Σij ≡ τ ij . (B.13)

Note the particularity of GR, that is encoded in the definition of those source densities: the moments
depend naturally on the matter content of the source, but also on the energy contained in the metric
field, via the Λµν piece of the Landau-Lifschitz pseudo tensor. The z-integration involving the kernels

δℓ(z) ≡ (2ℓ+ 1)!!
2ℓ+1 ℓ!

(
1 − z2

)ℓ
, (B.14)

allows to formally define the PN expansion of the moments, as∫ 1

−1
dz δℓ(z)A

(
x, u+ zr

c

)
=
∑
k∈N

(2ℓ+ 1)!!
2k k!(2ℓ+ 2k + 1)!!

(
r

c

∂

∂u

)2k

A (x, u) . (B.15)

Note that this expansion is even in c. Last, but definitively not least, the definitions of the multi-
poles (B.12) involve the crucial Hadamard partie finie regularization scheme. This is due to the fact,
that, plugging the formal expansions (B.15) in eq. (B.12), the integrals are fiercely IR divergent.
Those integrals are thus to be computed with a regulator (r/r0)B and evaluated by analytic continu-
ation in B ∈ C. At the end of the computation, only the zeroth order of the Laurent series on B is to
be considered (this notably implies that all the poles 1/B are to be discarded). The final expression
of the moments will then inevitably depend on the IR scale r0, but such scale is not physical, and in
fact r0 has to disappear in the observables (flux, gravitational phase,...).

If the expressions (B.12) are quite massive, they fortunately give back the usual source moments
in the Newtonian limit. In such limit, T 00 = ρ c2 + O(1), T 0i = ρ c vi + O(c−1) and T ij ∼ O(1), with
ρ the matter density, and vi the speed of the system. Therefore, only Σ = ρ+ O(c−2) will contribute
to the dominant order in IL, and Σi = ρvi + O(c−2), to JL. Injecting those expressions in (B.12) , it
comes
IL(u) =

∫
d3x ρ(x, u)x̂L+O(c−2) , and JL(u) =

∫
d3x ρ(x, u) εab(ix̂L−1)avb+O(c−2) , (B.16)

which are the usual Newtonian source moments for an arbitrary distribution of matter.
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Gauge moments

If the linear perturbation (B.11) is indeed a homogeneous solution of the d’Alembertian operator,
satisfying the gauge condition (B.2), it is not the most general one. In fact, there remains a freedom in
the coordinate choice, which can be linked to the fact that two physical degrees of freedom propagate
in GR, whereas eq. (B.2) only fixes four of the ten components of hµν . Performing the coordinate
change xµ → χµ = xµ +Gξµ, and perturbing eq. (B.1) at 1PM order, it comes

hµν → h̃µν = hµν + 2∂(µξν) − ηµν ∂αξ
α , (B.17)

where we naturally raise indices with ηµν . In order not to spoil the de Donder gauge condition, we
have to impose in addition that □ξµ = 0. Let us point out that the coordinate transformation ξµ

fixes four additional components of hµν , which is now totally gauged: there is no residual freedom.
Therefore the most general solution at linear order is given by

hµν(1) = kµν(1) + ∂µφν(1) + ∂νφµ(1) − ηµν ∂αφ
α
(1) , (B.18)

where the tensorial piece, kµν(1), is naturally given by eq. (B.11), and the linear gauge vector is
parametrized by four sets of STF moments {WL, XL, YL, ZL} as

φ0
(1) = 4

c3

∑
ℓ≥0

(−)ℓ
ℓ! ∂L

[1
r
WL

(
t− r

c

)]
, (B.19a)

φi(1) = − 4
c4

∑
ℓ≥0

(−)ℓ
ℓ! ∂iL

[1
r
XL

(
t− r

c

)]

− 4
c4

∑
ℓ≥1

(−)ℓ
ℓ!

{
∂L−1

[1
r
YiL−1

(
t− r

c

)]
+ ℓ

ℓ+ 1 ∂aL−1

[1
r
εabiZbL−1

(
t− r

c

)]}
, (B.19b)

where the no-incoming radiation condition accounts for selecting the minus sign in the argument
of the moments. Those moments are naturally dubbed gauge moments, as they only account for a
gauge transformation. They have also to be carefully matched to the PN expansion of the near zone,
and formally read [73]

WL(u) = PF
B

∫
d3x

(
r

r0

)B ∫ 1

−1
dz 2ℓ+ 1

(ℓ+ 1)(2ℓ+ 3)

{
δℓ+1(z) x̂iL Σi − (2ℓ+ 3) δℓ+2(z)

2c2(ℓ+ 2)(2ℓ+ 5) x̂ijLΣ(1)
ij

}
,

(B.20a)

XL(u) = PF
B

∫
d3x

(
r

r0

)B ∫ 1

−1
dz 2ℓ+ 1

2(ℓ+ 1)(ℓ+ 2)(2ℓ+ 5) δℓ+2(z) x̂ijL Σij , (B.20b)

YL(u) = PF
B

∫
d3x

(
r

r0

)B ∫ 1

−1
dz

{
−δℓ(z) x̂L Σii + 3(2ℓ+ 1) δℓ+1(z)

(ℓ+ 1)(2ℓ+ 3) x̂iLΣ(1)
i

− 2(2ℓ+ 1) δℓ+2(z)
c2(ℓ+ 1)(ℓ+ 2)(2ℓ+ 5) x̂ijLΣ(2)

ij

}
, (B.20c)

ZL(u) = −PF
B

∫
d3x

(
r

r0

)B ∫ 1

−1
dz εab⟨ix̂L−1⟩bc

2ℓ+ 1
(ℓ+ 2)(2ℓ+ 3) δℓ+1(z) Σac , (B.20d)

where δℓ(z) is still given by (B.14); the source densities, by (B.13) and are evaluated in (x, u+ zr/c).

B.2.2 Canonical moments
The linear post-Minkowskian solution is thus parametrized by six sets of moments, given by (B.12)

and (B.20). All those moments naturally enter the source term of eq. (B.9), and thus contribute to
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higher order iterations, which induces involving computations. Fortunately, it has been shown that,
to any order in G, the non-linear metric parametrized by those six sets of moments is equivalent up
to a coordinate change to a simpler metric, parametrized only by two sets of moments [73].

At linear order, this simpler metric is given by kµν(1) under the replacement {IL, JL} → {ML, SL},
where those new moments are called mass and current canonical moments. As the four gauge
moments parametrize an unphysical linear coordinate transformation, they are absolutely irrelevant
at linear order. Therefore the discrepancy between {ML, SL} and {IL, JL} starts only at relative
1PM (and 2.5PN) order. For example, it comes [187]

Mij = Iij + 4G
c5

[
W (2)Iij −W (1)I

(1)
ij

]
+ O

(
G

c7 ; G
2

c8

)
, (B.21a)

Mijk = Iijk + 4G
c5

[
W (2)Iijk −W (1)I

(1)
ijk + 3I⟨ijY (1)

k⟩

]
+ O

(
G

c7 ; G
2

c8

)
, (B.21b)

Sij = Jij + 2G
c5

[
3J⟨iY (1)

j⟩ − 2J (1)
ij W

(1) + εab⟨i
(
I

(1)
j⟩bY

(1)
a − I

(3)
j⟩bWa − 2Ij⟩bY (2)

a

)]
+ O

(
G

c7 ; G
2

c8

)
.

(B.21c)

Let us emphasize that those sets of canonical moments are merely mathematical conveniences,
and contain exactly the same amount of physical information than the six sets of moments entering
the linear metric (B.18). It is thus physically equivalent to iterate the linear metric (B.18) or the
linear canonical metric

h00
(1),can = − 4

c2

∑
ℓ≥0

(−)ℓ
ℓ! ∂L

[1
r

ML

(
t− r

c

)]
,

h0i
(1),can = 4

c3

∑
ℓ≥1

(−)ℓ
ℓ!

{
∂L−1

[1
r

M(1)
iL

(
t− r

c

)]
+ ℓ

ℓ+ 1 ∂aL−1

[1
r
εabiSbL−1

(
t− r

c

)]}
,

hij(1),can = − 4
c4

∑
ℓ≥2

(−)ℓ
ℓ!

{
∂L−2

[1
r

M(2)
ijL

(
t− r

c

)]
+ 2ℓ
ℓ+ 1 ∂aL−2

[1
r
εab(iS(1)

j)bL−2

(
t− r

c

)]}
,

(B.22)

where the canonical moments {ML, SL} are non-linear completions of the source moments {IL, JL}.

B.2.3 Iteration scheme
From the linear solution (B.22), the higher PM orders of the metric (B.7) are derived by iteratively

solving eq. (B.9). Indeed it is easy to see that the source term Λµν (B.6) expanded up to (n > 1)PM
order only involves the metric perturbations of order m < n, and therefore eq. (B.9) reduces to a flat
wave equation with a non-trivial source term.

As the linear order has been expanded in multipolarities, those higher orders can be split between
the different interactions they traduce. To illustrate such representation, let us consider only the
mass monopole M and quadrupole Mij, and so unambiguously separate the linear perturbation as
hµν(1) ≡ hµνM + hµνMij

. When plugged into the source term (B.6), it is clear that the 2PM order can be
separated in three contributions: a static one, realized by the quadratic interaction hµνM ×hµνM , a “tail”
one, given by the coupling hµνM × hµνMij

and finally a “memory” one, hµνMij
× hµνMij

. Naturally, the 2PM
solution will then be easily split into the corresponding static hµνM×M, “tail” hµνM×Mij

and “memory”
hµνMij×Mij

interactions. In a similar way, any PM order can be arranged into the different interactions it
represents. For instance the so-called “tail-of-memory” hµνM×Mij×Mij

will be sourced by the quadratic
interaction of the monopole and memory sectors hµνM × hµνMij×Mij

, the quadratic interplay between
quadrupole and tail hµνMij

× hµνM×Mij
and the cubic interaction of a monopole and two quadrupoles

hµνM × hµνMij
× hµνMij

. From a particle-physicist point of view, those interplays are simply represented
by scatterings of gravitons with different multipolarities, as sketched in chapter III.
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Let us consider that we have enough knowledge of the metric perturbations to build up an explicit
expression of the nth PM order source term Λµν

(n)(x, t) for a given interaction. The solution hµν(n) is
thus composed of two pieces: a particular solution of (B.9) and a homogeneous solution of the
flat d’Alembertian operator. The particular solution is given by the three-dimensional Hadamard
regularized retarded propagator

uµν(n)(x, t) ≡ PF
B

□−1
ret

[(
r

r0

)B
Λµν

(n)

]
≡ PF

B

−1
4π

∫ d3x′

|x − x′|

(
r′

r0

)B
Λµν

(n)

(
x′, t− |x − x′|

c

) . (B.23)

But, if this solution satisfies (B.9) by construction, does it obey the gauge relation (B.2)? If the source
is divergenceless ∂µΛµν

(n) = 0 (as can be explicitely checked by applying the divergence operator on
its expression (B.6)), the presence of the regulator (r/r0)B contributes to the divergence of uµν(n) as

wµ(n) ≡ ∂νu
µν
(n) = PF

B
□−1

ret

[
B
(
r

r0

)B ni
r

Λiµ
(n)

]
. (B.24)

This term is vanishing only when rB−1niΛiµ
(n) does not develop poles ∝ 1/B. In general such poles

appear, and thus the particular solution uµν(n) is not the accurate solution to our problem: we need to
add a homogeneous solution to compensate the divergence. Nevertheless, it is easy to see that the
divergence satisfies □wµ(n) = 0 and, as it is a vector, it can be recast2 in terms of four sets of STF
moments

w0
(n) =

∑
ℓ≥0

∂L

[1
r
NL

(
t− r

c

)]
, (B.25a)

wi(n) =
∑
ℓ≥0

∂iL

[1
r
PL

(
t− r

c

)]
+
∑
ℓ≥1

{
∂L−1

[1
r
QiL−1

(
t− r

c

)]
+ ∂aL−1

[1
r
εabiRbL−1

(
t− r

c

)]}
.

(B.25b)

Note the expected similarity with the gauge vector φµ(1) (B.19). So, in order to complete uµν(n) into
an accurate solution hµν(n), one should find a quantity vµν(n) such that □vµν(n) = 0 and ∂νv

µν
(n) = −wµ(n).

Of course, such quantity will not be unique, as it remains the freedom of an unphysical non-linear
coordinate change, and a convenient choice is

v00
(n) = − N (−1)

r
− ∂i

N (−1)
i −Q

(−2)
i + 3Pi
r

 , (B.26a)

v0i
(n) = 3P (1)

i −Q
(−1)
i

r
− ∂a

εabiR(−1)
b

r

−
∑
ℓ≥2

∂L−1

(
NiL−1

r

)
, (B.26b)

vij(n) = − δij
P

r
+
∑
ℓ≥2

2δij ∂L−1

(
PL−1

r

)
− 6∂L−2(i

(
Pj)L−2

r

)
+ ∂L−2

N (1)
ijL−2 + 3P (2)

ijL−2 −QijL−2

r


−2∂aL−2

(
εab(iRj)bL−2

r

)}
, (B.26c)

where all the moments are naturally evaluated in t − r/c and we have denoted anti-derivatives
with minus signs: A(−1)(u) ≡

∫ u
−∞ dτA(τ), which are well-defined as we consider sources that are

stationary in the remote past. The PM solution satisfying the vacuum Einstein equations (B.9) at
the nth PM order while obeying the de Donder gauge condition (B.2) is thus given by

hµν(n) ≡ uµν(n) + vµν(n) . (B.27)
2Naturally, in practical computation this divergence is not computed by means of eq. (B.24), but rather by directly

applying partial derivatives on uµν
(n).
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B.3 Radiative moments
The whole iteration procedure relies on the crucial Hadamard regularization, that inherently

yields logarithmic dependencies in hµν . Indeed such logarithms appear as soon as the quantity to be
regularized develops poles in B, as PF

B

[
rn+B/Bq

]
= rn(ln r)q/q!. Nevertheless, such logarithms are

only artifacts of the harmonic coordinates, as it is known that there exists a coordinate system in
which the metric is written only in terms of inverse powers of the radial distance, without logarithmic
dependencies. Such radiative coordinates are deeply linked with the study of the structure at future
null infinity, performed in the Bondi-Sachs-Penrose approach [101, 303, 304, 319].

It has been shown in [67] that the MPM procedure can be performed in such radiative coordinates
instead of the harmonic ones, by defining the coordinate change iteratively. For example the linear
piece of this coordinate change is given by eq. (B.17) with

ξ0 = −2M
c2 ln

(
r

rh

)
, and ξi = 0 , (B.28)

where rh is a new (unphysical) scale associated with this change of coordinates. If the harmonic
coordinates are extremely useful to deal with the processes that generate gravitational radiation, those
radiative coordinates are particularly indicated for dealing with the observation of this radiation, as
they are defined to be well-behaved at infinity, where observers are located. We will denote those
radiative coordinates as (T,X), and naturally define the radial distance R ≡ |X| together with the
unit vector N = X/R. For the current and planned configurations of the detectors, it is particularly
convenient to use the traceless and transverse (TT) gauge. The corresponding projector is given by
PTT
ijab ≡ PiaPjb − 1

2PijPab with Pab = δab −NaNb is the projector onto the plane orthogonal to N i. In
the radiative coordinate systems, one can formally resum the post-Minkowskian expansion and thus
define the mass and current radiative moments UL and VL as parametrizing the leading 1/R order
of the TT metric [335]

HTT
ij = 4G

c2R
PTT
ijab

∑
ℓ≥2

1
cℓℓ!

{
NL−2UabL−2

(
T − R

c

)
− 2ℓ
c(ℓ+ 1)NcL−2εcd(aVb)dL−2

(
T − R

c

)}

+ O
( 1
R2

)
,

(B.29)

As HTT
ij directly produces the observed gravitational wave signal, the two sets of radiative moments

are thus the only physically relevant ones. The relation between the radiative moments and the
source (or canonical) ones is obtained by performing the iterative coordinate change that led to
HTT
ij . For instance, at the relative 1PM (and 1.5PN) order, it comes

UL(T ) = M(ℓ)
L (T ) + 2GM

c3

∫ +∞

0
dτM(ℓ)

L (T − τ)
[
ln
(
cτ

2rh

)
+ 2ℓ2 + 5ℓ+ 4
ℓ(ℓ+ 1)(ℓ+ 2) + Hℓ−2

]
+ O

(
G

c5 ,
G2

c6

)
,

(B.30a)

VL(T ) = S(ℓ)
L (T ) + 2GM

c3

∫ +∞

0
dτS(ℓ)

L (T − τ)
[
ln
(
cτ

2rh

)
+ ℓ− 1
ℓ(ℓ+ 1) + Hℓ−1

]
+ O

(
G

c5 ,
G2

c6

)
, (B.30b)

where Hp ≡ ∑p
k=1

1
k

is the harmonic number. Those 1PM corrections are “tail” contributions, that
can be separated between a non-local in time sector (the logarithmic one), and an instantaneous one.
Similarly the “memory” contributions, starting at 2.5PN, are split into hereditary and instantaneous
sectors. Note the presence of the scale associated with the change of coordinates (B.28), rh. This
unphysical dependency is naturally compensated when expressing the radiative moments in terms of
harmonic coordinates, in order to derive the gravitational phase.

161



162



Appendix C

Lengthy post-Newtonian expressions

C.1 The 4PN metric in the near zone
As explained in sec. IV.2.1 the knowledge of the near zone, PN-expanded metric hµν is required

at the 4PN order to compute the source mass quadrupole. As h00, h0i and h
ij start respectively at

1PN, 1.5PN and 2PN orders, we need a relative 3PN knowledge for h00 and relative 2PN knowledge
for h0i and hij. We reproduce here the expression of the near zone metric in terms of potentials, that
has been used [278]

h
00 = − 1

c2
2(d− 1)V
d− 2 + 1

c4

[
4(d− 3)(d− 1)K

(d− 2)2 − 2(d− 1)2V 2

(d− 2)2 − 2Ŵ
]

+ 1
c6

[
−4(d− 1)3V 3

3(d− 2)3 + 8(d− 3)VaVa
d− 2 + 8(d− 3)(d− 1)2V K

(d− 2)3 − 4(d− 1)V Ŵ
d− 2 − 8(d− 1)X̂

d− 2 − 8Ẑ
]

+ 1
c8

[
2dŴabŴab

d− 2 − 2(d− 3)2(d− 1)(−4 + 3d)K2

(d− 2)4 + 32M̂
d− 2 − 32(d− 1)T̂

d− 2 − 2(d− 1)4V 4

3(d− 2)4 − 2Ŵ 2

+ 16(d− 4)R̂aVa
d− 2 + 8(d− 3)(d− 1)KŴ

(d− 2)2 + 8(d− 3)(d− 1)3KV 2

(d− 2)4 − 4(d− 1)2ŴV 2

(d− 2)2

+16(d− 3)(d− 1)V VaVa
(d− 2)2 − 4(d− 1)(−4 + 3d)X̂V

(d− 2)2 − 16(d− 1)ẐV
d− 2

]
+ O

( 1
c10

)
,

(C.1a)

h
0i = − 4

c3Vi + 1
c5

[
−8R̂i − 4(d− 1)ViV

d− 2

]

+ 1
c7

[
−16Ŷi + 8(d− 3)(d− 1)ViK

(d− 2)2 − 8(d− 1)R̂iV

d− 2 − 4(d− 1)2ViV
2

(d− 2)2 + 8ŴiaVa − 8ViŴ
]

+ O
( 1
c9

)
,

(C.1b)

h
ij = 1

c4

[
− 4Ŵij + 2δijŴ

]
+ 1
c6

[
− 16Ẑij + 8δijẐ

]

+ 1
c8

[
− 32M̂ij − 16ViR̂j − 16R̂iVj − 8ŴijŴ + 8ŴiaŴja

+ δij

{
− 2(d− 3)2(d− 1)K2

(d− 2)3 + 16R̂aVa + 2Ŵ 2 − 2ŴabŴab − 4(d− 1)V X̂
d− 2

}]
+ O

( 1
c10

)
,

(C.1c)

where we have used unambiguous shorthands for the trace, eg. Ŵ ≡ Ŵii.
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C.2 The potentials entering the 4PN metric
The ten potentials entering the near zone metric are governed by flat wave equations, that can

be classified depending on the degree of non-linearity they involve. The three linear potentials (ie.
with compact support sources) are defined as

□V = −4πGσ , (C.2a)
□Vi = −4πGσi , (C.2b)
□K = −4πGV σ , (C.2c)

where the matter currents are given in eq. (IV.15). The “quadratic” potentials are

□Ŵij = − 4πG
(
σij − δij

σkk
d− 2

)
− 1

2

(
d− 1
d− 2

)
∂iV ∂jV , (C.3a)

□R̂i = − 4πG
d− 2

(
5 − d

2 V σi − d− 1
2 Vi σ

)
− d− 1
d− 2 ∂kV ∂iVk − d(d− 1)

4(d− 2)2 ∂tV ∂iV , (C.3b)

□Ẑij = − 4πG
d− 2 V

(
σij − δij

σkk
d− 2

)
− d− 1
d− 2 ∂tV(i ∂j)V + ∂iVk ∂jVk + ∂kVi ∂kVj − 2∂kV(i ∂j)Vk

− δij
d− 2 ∂kVm (∂kVm − ∂mVk) − d(d− 1)

8(d− 2)3 δij (∂tV )2 + (d− 1)(d− 3)
2(d− 2)2 ∂(iV ∂j)K . (C.3c)

The “cubic” potentials read

□X̂ = − 4πG
 V σii
d− 2 + 2

(
d− 3
d− 1

)
σiVi +

(
d− 3
d− 2

)2

σ

(
V 2

2 +K

)
+ Ŵij ∂ijV + 2Vi ∂t∂iV + 1

2

(
d− 1
d− 2

)
V ∂2

t V + d(d− 1)
4(d− 2)2 (∂tV )2 − 2∂iVj ∂jVi , (C.4a)

□Ŷi = − 4πG
[
−1

2

(
d− 1
d− 2

)
σR̂i − (5 − d)(d− 1)

4(d− 2)2 σV Vi + 1
2 σkŴik + 1

2σikVk + 1
2(d− 2) σkkVi

− d− 3
(d− 2)2 σi

(
V 2 + 5 − d

2 K

)]

+ Ŵkl ∂klVi − 1
2

(
d− 1
d− 2

)
∂tŴik ∂kV + ∂iŴkl ∂kVl − ∂kŴil ∂lVk − d− 1

d− 2 ∂kV ∂iR̂k

− d(d− 1)
4(d− 2)2 Vk ∂iV ∂kV − d(d− 1)2

8(d− 2)3 V ∂tV ∂iV − 1
2

(
d− 1
d− 2

)2

V ∂kV ∂kVi + 1
2

(
d− 1
d− 2

)
V ∂2

t Vi

+ 2Vk ∂k∂tVi + (d− 1)(d− 3)
(d− 2)2 ∂kK∂iVk + d(d− 1)(d− 3)

4(d− 2)3 (∂tV ∂iK + ∂iV ∂tK) , (C.4b)

□T̂ = − 4πG
[

1
2(d− 1) σijŴij + 5 − d
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2(d− 2)2 σiiK

]

+ Ẑij ∂ijV + R̂i ∂t∂iV − 2∂iVj ∂jR̂i − ∂iVj ∂tŴij + 1
2
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− d− 3
d− 2 Vi ∂t∂iK − 1

2

(
d− 3
d− 2

)
Ŵij ∂ijK . (C.4c)

Finally the only “quartic” potential required is governed by

□M̂ij = 4πG
δij[−1

2R̂
a + (d− 4)V V a
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]
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C.3 The surface terms entering the source quadrupole

The mass quadrupole, once written in terms of potentials and superpotentials as in App. C
of [278], contains the following surface terms

Iij ∋ PF
B

∫
d3x

(
r

r0

)B {
∂a

(
D2,0
aij

c4 +
D3,0
aij

c6 +
D4,0
aij

c8

)
+ x̂ij∆

(
L1,0

c2 + L2,0

c4 + L3,0

c6 + L4,0

c8

)}

+ d
dt

[
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B

∫
d3x

(
r

r0

)B {
∂a

(
D3,1
aij

c6 +
D4,1
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c8

)
+ x̂aij∆

(
L2,1
a
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a
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a
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)}]
,

(C.6)

with the divergence terms
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)
, (C.7a)
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ai ∂jẐbk − Ẑbk∂aΨ∂bkV

ij

)
− 8
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ai ∂jŶb − Ŷb∂aΨ∂tbV

ij

)
+ 8
πG

(
Ψ∂bkV
ai ∂jM̂bk − M̂bk∂aΨ∂bkV

ij

)
− 16
πG

(
Ψ∂bVk
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and the Laplacian ones

L1,0 = − 1
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21πG R̂aV , (C.8f)
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21πG V Ŷa . (C.8g)
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C.4 The coordinate shifts applied in the equations of motion

C.4.1 The UV shifts
We present here the two UV shifts that have to be applied in the quadrupole. The first, denoted

ξi1,2, was constructed to remove the UV poles in the equations of motion [54]. The second, ηi1,2, was
mainly used for convenience [57]. The shift ξi1 is composed of 3PN and 4PN contributions and is
given by

ξi1 = 11
3
G2 m2

1
c6

[
1
ε

− 2 ln
(
q1/2r′0
ℓ0

)
− 327

1540

]
ai1 + 1

c8 ξ
i
1, 4PN . (C.9)

The first term represents the 3PN contribution determined in [87]. Here q = 4πeγE where γE is the
Euler constant, r′0 is the (unphysical) length scale associated with the UV dimensional regularization
and a1 is the Newtonian acceleration of the particle 1 in d dimensions. The 4PN term in the shift is
conveniently decomposed as

ξi1, 4PN = 1
ε
ξ
i (−1)
1, 4PN + ξ

(0,y1)
1, 4PNy

i
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i
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i
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(0,v12)
1, 4PN v

i
12 , (C.10)

with 1/ε being the UV pole and vi12 = vi1 − vi2. We have
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3 m
2
1m

2
2 + 4m1m

3
2

)

+ G3m2
1m2

r2
12

(11
2 (n12v12)2 − 11(n12v12)(n12v1) + 11
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The shift ηi1 is more compact. It starts at the 4PN order and is made only of G3 and G4 terms,
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Obviously, the shifts ξi2 and ηi2 are obtained from ξi1 and ηi1 by the exchange of the two particles.
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C.4.2 The IR shift
The shift used to remove the remaining IR poles in the equations of motion [56] was provided to

us by L. Bernard. It can be decomposed as
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Obviously, the shift χi2 is obtained from χi1 by the exchange of the two particles.
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Appendix D

Explicit dimensional regularization of the
radiative quadrupole

In this appendix, we present the derivation of the dimensional regularization for the non-linear
interactions in Uij. In order to lighten the expressions that will be displayed, we set c = r0 = ℓ0 = 1.

D.1 Iteration of the d-dimensional propagator
We aim at solving the d-dimensional wave equation

□hL = NL(x, t) = N(r, t) n̂L . (D.1)

We recall that the accurate prescription for the d-dimensional propagator is given by eq. (IV.125)

hL(x, t) = −k̃
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The strategy to compute the integral (D.2) relies on a split into two integration zones, depending
on whether r′ is larger than r or not. In the first integration zone, for r′ > r, we expand the integrand
as
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and in the second integration zone, defined by r′ < r, we expand it as
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(D.5)
Next, injecting those expansions in eq. (D.2), and massaging it notably by using the relations
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it comes out
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2
∑
j∈N

n̂L
22jj!

Γ
(
d−2

2 + ℓ
)

Γ
(
d
2 + ℓ+ j

) ∫ +∞

1
dzγ 1−d

2 −ℓ
(z)

{
r2−d−ℓ

∫ r

0
dλλd−1+2j+ℓ+ηN (2j)(λ, t− zr)

+r2j+ℓ
∫ +∞

r
dλλ1−ℓ+ηN (2j)(λ, t− zλ)

}
,

(D.7)

where the separation into two integration zones appears clearly. If already complicated, this expres-
sion is not yet satisfactory. Indeed its brute force three-dimensional limit does not directly reduce to
the usual Hadamard non-linear interactions. Therefore we need some more massaging of the integrals
before studying the differences between regularization schemes.

Using the formal asymptotic expansion

γ 1−d
2 −ℓ

(z) =
z→∞

∑
j∈N

(−)j
j!

2
√
π z−2−2j−2ℓ−ε

Γ
(
−ℓ− j − ε

2

)
Γ
(

1+ε
2 + ℓ

) , (D.8)

one obtains the expression for the “retarded minus advanced” propagator

∫ ∞
1

dz γ 1−d
2 −ℓ

(z)
[
A(t− zr) − A(t+ zr)

]
=

2
√
πΓ

(
d
2 + ℓ

)
Γ (2 − 2ℓ− d)

Γ
(
d−2

2 + ℓ
)

Γ (1 − ε) Γ
(
− ε

2 − ℓ
) ∑
j∈N

1
22jj!

r2j+2ℓ+1+ε

Γ
(
d
2 + ℓ+ j

)
×
∫ ∞

0
dττ−ε

[
A(2+2ℓ+2j)(t− τ) − A(2+2ℓ+2j)(t+ τ)

]
,

(D.9)
where r is here a dummy variable. We have used this “retarded minus advanced” form in order to
discard the even sector, irrelevant for our purpose. But we now have to recognize the right-hand side
of eq. (D.9) within the integral (D.7). It is straightforward (in Fourier space) to show that

A(t) =
∫ ∞

0
dττ−ε [A(t− τ) − A(t+ τ)] ⇒ A(t) = 1

π
tan

(
πε

2

) ∫ ∞
0

dττ ε
[
A(2)(t− τ) − A(2)(t+ τ)

]
.

(D.10)
Let us now concentrate on only one given multipolar order, ie. write N(r, t) = r−p−qεF (t). Plugging
it, together with the relations (D.9) and (D.10), in the integral (D.7), it finally comes

hL = Γεℓ n̂L
rℓ+1+ε

∫ ∞
1

dy γ−1− ε
2−ℓ(y)

∫ ∞
1

dz γ−1− ε
2−ℓ(z)

∫ +∞

−∞
dτ ε |τ |ε−1

×
{∫ r

0
dλλ1−ℓ−p−qε+η

[
F (−2ℓ−1) (t− yr − zλ+ τ) − F (−2ℓ−1) (t− yr + zλ+ τ)

]
+
∫ ∞
r

dλλ1−ℓ−p−qε+η
[
F (−2ℓ−1) (t− yr − zλ+ τ) − F (−2ℓ−1) (t+ yr − zλ+ τ)

] }
,

(D.11)

where we have compacted the prefactor

Γεℓ ≡ (−)ℓ 22(ℓ−1)

π3/2

Γ
(

1−ε
2

)
Γ
(
1 + ε

2

) [Γ(ℓ+ 1 + ε

2

)]2
, (D.12)

whose three-dimensional limit is simply given by Γ0
ℓ = (−)ℓ [(2ℓ− 1)!!]2 /4. Even if not obvious per

se, the three-dimensional limit of the integral (D.11) is naturally defined, and agrees with the usual
three-dimensional propagator. Therefore it is the formulation we will use henceforth.
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D.2 Dimensional regularization of the metric
We know that the pole compensating the IR pole of the source moment is of UV nature, and thus

should come from the 0 boundary of the integral (D.11). Therefore, the difference between the two
regularization schemes comes only from the sector

h̃L ≡ Γεℓ n̂L
rℓ+1+ε

∫ ∞
1

dy γ−1− ε
2−ℓ(y)

∫ ∞
1

dz γ−1− ε
2−ℓ(z)

∫ +∞

−∞
dτ ε |τ |ε−1

×
∫ Λ

0
dλλ1−ℓ−p−qε+η

[
F (−2ℓ−1) (t− yr − zλ+ τ) − F (−2ℓ−1) (t− yr + zλ+ τ)

]
,

(D.13)

where Λ is an irrelevant cut-off scale that can be safely set to +∞. The aim is then to put this
integral in a nicer looking form. This is realized by setting

φ(t) ≡ Γεℓ n̂L
rℓ+1+ε

∫ ∞
1

dyγ−1− ε
2−ℓ(y)

∫ +∞

−∞
dτ ε|τ |ε−1F (−2ℓ−1)(t− yr + τ)

= (−)ℓ
2ℓ Γεℓ

Γ
(

1+ε
2

)
Γ
(
ℓ+ 1+ε

2

) ∫ ∞
1

dyγ−1− ε
2
(y)

∫ +∞

−∞
dτ ε|τ |ε−1∂̂L

[
F (−2ℓ−1)(t− yr + τ)

rd−2

]
,

(D.14)

where we have used the relation (D.6b). Defining ρ ≡ λz, it comes

h̃L =
(∫ ∞

1
dz zℓ−2+p+qε−η γ−1− ε

2−ℓ(z)
) ∫ ∞

0
dρ ρ1−ℓ−p−qε+η [φ(t− ρ) − φ(t+ ρ)]

=
√
π Γ

(
3+ℓ−p−qε+ε+η

2

)
Γ
(
ℓ+ 1+ε

2

)
Γ
(

3−ℓ−p−qε+η
2

) (−)ℓ+p+1Γ(qε− η)
Γ(p+ ℓ− 1 + qε− η)

×
∫ ∞

0
dρ ρη−qε

[
φ(ℓ+p−1)(t− ρ) + (−)ℓ+pφ(ℓ+p−1)(t+ ρ)

]
.

(D.15)

The interest of this definition is that the metric perturbation is now written so that it looks like the
linear d-dimensional metric, namely

h̃L = −4 (−)ℓ
ℓ! ∂̂L

{
k̃

rd−2

∫ ∞
1

dzγ−1− ε
2
(z)H (t− zr)

}
, (D.16)

where the role of the multipolar moments is played by H, that reads

H(t) ≡ (−)p ℓ!
24−ℓπ

1−ε
2

Γ
(

1−ε
2

)
Γ
(
1 + ε

2

) Γ
(

3+ℓ−p−qε+ε+η
2

)
Γ
(

3−ℓ−p−qε+η
2

) Γ (qε− η)
Γ (p+ ℓ− 1 + qε− η)

×
∫ +∞

−∞
dτ ε|τ |ε−1

∫ +∞

0
dρ ρη−qε

[
F (p−ℓ−2)(t+ τ − ρ) + (−)ℓ+pF (p−ℓ−2)(t+ τ + ρ)

]
.

(D.17)

We are thus interested in the difference of regularization schemes of H more than of h̃L. Therefore
we aim at computing

DH ≡ lim
ε→0

[
PF
η
H
]

− PF
η

[
lim
ε→0

H
]
. (D.18)

For simplicity, the previous formulas have been obtained by considering only one multipolar order
in (p, q), but naturally the source consists in a summation over many of them. Formally, we can
decompose

N(r, t) =
∑
p,q

r−p−qε φp,q(t) =
∑
p,q

r−p−qε
[
ψ̃p,q(t)
ε

+ ψp,q(t)
]
, (D.19)
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where the ψ̃p,q coefficients do not depend on ε. The F (t) function corresponds to one particular
φp,q(t). As we have explicitly checked in practical computations, all the considered sources have a
non-pathological three-dimensional limit, meaning that

N3D(r, t) = lim
ε→0

N(r, t) =
∑
p

r−p [φp(t) + φ̃p(t) ln r] = PF
ϵ

∑
p

r−p
[
φp(t) + φ̃p(t)

rϵ

ϵ

]
, (D.20)

with ∑
q

ψ̃p,q = 0 ,
∑
q

q ψ̃p,q = −φ̃p and
∑
q

ψp,q = φp + O(ε) . (D.21)

Note that the rewriting of the logarithms by means of a finite part has been made for practical
computational purposes.

D.2.1 Three-dimensional computation
In order to perform the three-dimensional computation with a natural implementation of loga-

rithms, let us identify ϵ with ε in (D.20). The three-dimensional limit thus becomes a finite part
operation on ε, where only the ε associated with a q are to be considered, and one takes q ≡ −1.
Therefore the three-dimensional limit is formally given by

lim
ε→0

H = (−)p ℓ!
23−ℓ

Γ
(

3+ℓ−p+η
2

)
Γ
(

3−ℓ−p+η
2

) Γ (−η)
Γ (p+ ℓ− 1 − η)

∫ +∞

0
dτ τ η

φ(p−ℓ−2)
p (t− τ) + (−)ℓ+pφ(p−ℓ−2)

p (t+ τ)

+
ln τ + ψ (p+ ℓ− 1 − η) − ψ(−η) +

ψ
(

3+ℓ−p+η
2

)
− ψ

(
3−ℓ−p+η

2

)
2


×
[
φ̃(p−ℓ−2)
p (t− τ) + (−)ℓ+pφ̃(p−ℓ−2)

p (t+ τ)
] }

,

(D.22)
with ψ the digamma function.

To accurately perform the finite part operation on η, we have to distinguish cases following the
values of p and ℓ. First, for p+ ℓ ≤ 1, it comes

Pf
η

(
lim
ε→0

H
)

=(−)ℓ+1 ℓ!
23−ℓ

Γ
(

3+ℓ−p
2

)
Γ
(

3−ℓ−p
2

) Γ (2 − p− ℓ)

×

[1 − (−)ℓ+p
] φ(p−ℓ−3)

p (t) +
H1−p−ℓ +

ψ
(

3+ℓ−p
2

)
− ψ

(
3−ℓ−p

2

)
2

 φ̃(p−ℓ−3)
p (t)


+
∫ ∞

0
dτ ln τ

[
φ̃(p−ℓ−2)
p (t− τ) + (−)ℓ+pφ̃(p−ℓ−2)

p (t+ τ)
] }

.

(D.23)
Then in the case p+ ℓ− 2 ∈ 2N, it reads

Pf
η

(
lim
ε→0

H
)

= (−)p+1 ℓ!
23−ℓ

Γ
(

3+ℓ−p
2

)
Γ
(

3−ℓ−p
2

) 1
Γ (p+ ℓ− 1)

∫ ∞
0

dτ ln τ
φ(p−ℓ−2)

p (t− τ) + φ(p−ℓ−2)
p (t+ τ)

+
Hp+ℓ−2 +

ψ
(

3+ℓ−p
2

)
− ψ

(
3−ℓ−p

2

)
2 + ln τ

2

[φ̃(p−ℓ−2)
p (t− τ) + φ̃(p−ℓ−2)

p (t+ τ)
] .

(D.24)
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In the p+ ℓ = 2j + 3 case, with j < ℓ, the finite part reduces to

Pf
η

(
lim
ε→0

H
)

= (−) 1+p−ℓ
2 ℓ!

23−ℓ

Γ
(

3+ℓ−p
2

)
Γ
(
ℓ+p−1

2

)
Γ (p+ ℓ− 1)

φ(p−ℓ−3)
p (t) +

(
Hp+ℓ−2 +

H 1−p+ℓ
2

2 −
H p+ℓ−3

2

2

)
φ̃(p−ℓ−3)
p (t)

+
∫ ∞

0
dτ ln τ

φ̃(p−ℓ−2)
p (t− τ) − φ̃(p−ℓ−2)

p (t+ τ)
2

}
.

(D.25)
Finally, for p− ℓ− 3 = 2j with j ∈ N, it comes

Pf
η

(
lim
ε→0

H
)

= ℓ!
23−ℓ

Γ (ℓ+ j + 1)
Γ (j + 1) Γ (2j + 2ℓ+ 2)

{
2H̃φ(2j)

p (t) +
∫ ∞

0
dτ ln τ

[
φ(2j+1)
p (t− τ) − φ(2j+1)

p (t+ τ)
]

+
(

H̃2 + ψ1(j + ℓ+ 1) − ψ1(j + 1) − 4ψ1(2j + 2ℓ+ 2)
4 + π2

6

)
φ̃(2j)
p (t)

+
∫ ∞

0
dτ
(

H̃ ln τ + ln2 τ

2

) [
φ̃(2j+1)
p (t− τ) − φ̃(2j+1)

p (t+ τ)
]}

,

(D.26)
where we have shortened the combination of harmonic numbers H̃ ≡ H2j+2ℓ+1 + Hj

2 − Hj+ℓ

2 , and ψ1
denotes the trigamma function.

D.2.2 d-dimensional computation
For clarity purposes, we will omit here the summation over the values of q. In this vein, we note

eg. F = ∑
q(ψ̃p,q/ε + ψp,q) or qF = ∑

q q(ψ̃p,q/ε + ψp,q). It was verified that no source terms with
q = 0 appear in our computation (this fact can be related to the fact that all considered d-dimensional
quantities have at least q = 1). Therefore, as long as p− ℓ− 3 ̸∈ N, we are protected by a ε and thus
the finite part on η is trivially realized by taking η = 0. Discriminating again on the values of p and
ℓ, for p+ ℓ ≤ 1, it comes

lim
ε→0

(
Pf
η
H
)

=(−)ℓ+1 ℓ!
23−ℓ

Γ
(

3+ℓ−p
2

)
Γ
(

3−ℓ−p
2

) Γ (2 − p− ℓ)

×

σ
1 + ε

 ln q̄ + γE
2 − qH1−p−ℓ +

(1 − q)ψ
(

3+ℓ−p
2

)
+ qψ

(
3−ℓ−p

2

)
2

F (p−ℓ−3)(t)

+ε
∫ ∞

0
dτ ln τ

[(
σ

2 − q
)
F (p−ℓ−2)(t− τ) −

(
σ

2 + (−)ℓ+pq
)
F (p−ℓ−2)(t+ τ)

]}
,

(D.27)
where we have shortened σ ≡ 1 − (−)ℓ+p. By virtue of the relations (D.21), eq. (D.23) is recovered:
the two regularization schemes agree.

For p+ ℓ− 2 ∈ 2N, the d-dimensional computation yields

lim
ε→0

(
Pf
η
H
)

=(−)p+1 ℓ!
23−ℓ

Γ
(

3+ℓ−p
2

)
Γ
(

3−ℓ−p
2

) 1
Γ (p+ ℓ− 1)

×
∫ ∞

0
dτ ln τ


1 + ε

 ln q̄ + γE
2 − qHp+ℓ−2 +

(1 − q)ψ
(

3+ℓ−p
2

)
+ qψ

(
3−ℓ−p

2

)
2 − q ln τ

2


×
[
F (p−ℓ−2)(t− τ) + F (p−ℓ−2)(t+ τ)

]
+ε

2

∫ ∞
0

dλ ln λ
[
F (p−ℓ−1)(t− τ − λ) − F (p−ℓ−1)(t− τ − λ)

]}
,

(D.28)
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so that the three-dimensional result (D.24) is recovered.
As for p+ ℓ = 2j + 3, with j < ℓ, it reads

lim
ε→0

(
Pf
η
H
)

= (−) 1+p−ℓ
2 ℓ!

23−ℓ

Γ
(

3+ℓ−p
2

)
Γ
(
ℓ+p−1

2

)
Γ (p+ ℓ− 1)

F (p−ℓ−3)(t)

+ ε

 ln q̄
2 − qHp+ℓ−2 +

(1 − q)H 1−p+ℓ
2

+ qH p+ℓ−3
2

2

F (p−ℓ−3)(t)

+ε(1 − q)
2

∫ ∞
0

dτ ln τ
[
F (p−ℓ−2)(t− τ) − F (p−ℓ−2)(t+ τ)

]}
.

(D.29)

Once again, the d-dimensional and three-dimensional (D.25) computations yield the same result.
Finally for p − ℓ − 3 = 2j with j ∈ N, we separate the d-dimensional result into two pieces: the

first one sums over all q

Pf
η

(
lim
ε→0

H
)

1
= ℓ!

23−ℓ
Γ (ℓ+ j + 1)

Γ (j + 1) Γ (2j + 2ℓ+ 2)

{
2H̃F (2j)(t) +

∫ ∞
0

dτ ln τ
[
F (2j+1)(t− τ) − F (2j+1)(t+ τ)

]
+ 2ε

[
Hj + ln q̄

2 H̃ − q + 1
2

(
H̃2 − ψ1(2j + 2ℓ+ 2) + ψ1(1 + ℓ+ j)

4

)

+q − 1
8 ψ1(1 + j) − q

12π
2
]
F (2j)(t)

− ε
∫ ∞

0
dτ ln τ

(
qH̃ − Hj + ln q̄

2 + q + 1
2 ln τ

) [
F (2j+1)(t− τ) − F (2j+1)(t+ τ)

]
+ε

2

∫∫ ∞
0

dτdλ ln τ ln λ
[
F (2j+2)(t− τ − λ) − 2F (2j+2)(t− τ + λ) + F (2j+2)(t+ τ + λ)

]}
,

(D.30)
and, thanks to the conditions (D.21), exactly agrees with the three-dimensional limit (D.26). There-
fore the difference in regularization schemes is exactly given by the second contribution, that sums
over q ̸= 1, namely

Pf
η

(
lim
ε→0

H
)

2
= ℓ!

23−ℓ
Γ (ℓ+ j + 1)

Γ (j + 1) Γ (2j + 2ℓ+ 2)
∑
q ̸=1

1
q − 1

 2
(

−1
ε

+ H2j+2ℓ+1 − Hj+ℓ

2 − ln q̄
2

)
F (2j)(t)

− ε

H̃2 +
(

H̃2 − Hj + ln q̄
2

)2

− 2ψ1(2j + 2ℓ+ 2) + ψ1(1 + ℓ+ j)
2 + π2

6

F (2j)(t) −ε
∫ ∞

0
dτ ln2 τ

[
F (2j+1)(t− τ) − F (2j+1)(t+ τ)

]
+ε

2

∫∫ ∞
0

dτdλ ln τ ln λ
[
F (2j+2)(t− τ − λ) − 2F (2j+2)(t− τ + λ) + F (2j+2)(t+ τ + λ)

]}
.

(D.31)

D.2.3 Difference in regularization schemes for the non-linear interac-
tions

The main result of this technical appendix is that for a source

N(r, t) =
∑
p,q

r−p−qε
[
ψ̃p,q(t)
ε

+ ψp,q(t)
]
, (D.32)

the difference in regularization schemes only comes from the terms that have p = ℓ+3+2j, for j ∈ N.
One can separate the contribution coming from the pole from the one coming from the regular sector
as

DH = (DH)reg + (DH)p , (D.33)
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with

(DH)reg = −
∑
q ̸=1

2ℓ−2

q − 1
ℓ! (ℓ+ j)!

j! (p+ ℓ− 2)!

1
ε

+ ln
√
q̄ −

ℓ+j∑
k=0

1
2k + 1

 ψ(2j)
p,q (t) , (D.34)

and

(DH)p = −
∑
q ̸=1

2ℓ−2

q − 1
ℓ! (ℓ+ j)!

j! (p+ ℓ− 2)!


 1
ε2 + ln

√
q̄

ε
− 1
ε

ℓ+j∑
k=0

1
2k + 1 − Aj,ℓ

 ψ̃(2j)
p,q (t)

−
∫∫ ∞

0
dτdλ ln τ ln λ

ψ̃(2j+2)
p,q (t− τ − λ) − 2ψ̃(2j+2)

p,q (t− τ + λ) + ψ̃(2j+2)
p,q (t+ τ + λ)

4

}
,

(D.35)
where

Aj,ℓ ≡ H̃2

2 + 1
2

(
H̃2 − Hj + ln q̄

2

)2

− ψ1(2j + 2ℓ+ 2) + ψ1(1 + ℓ+ j)
4 + π2

12 . (D.36)

ψ1 is the trigamma function and we recall the shorthand H̃ ≡ H2j+2ℓ+1 + Hj

2 − Hj+ℓ

2 .
It is to note that the regular contribution is local, whereas the one coming from the pole bears a

non-local part. Fortunately, in our practical case, there is no poles when p− ℓ− 3 ∈ 2N !
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Appendix E

Résumé en français

La théorie actuellement la plus à même de rendre compte des phénomènes gravitationnels, la
Relativité Générale (RG), a été testée dans une variété de régimes sans précédent : depuis les
accélérations très faibles ressenties par les sondes Pioneer 10 et 11 aux confins du système Solaire,
aux voisinages des trous noirs, en passant naturellement par notre mouvement autour du Soleil. Ces
tests ont tous été concluants, et ont confirmé la fermeté des assises de la RG. Cependant, il reste
aujourd’hui au moins deux phénomènes qui n’ont pas d’explication convaincante : la phénoménologie
de la matière noire et l’accélération de la dilatation de notre univers. La phénoménologie de la matière
noire a été postulée pour rendre compte d’anomalies dans le comportement des étoiles en périphérie
des galaxies, et se retrouve aujourd’hui à toutes les échelles : depuis les expériences sondant la
structure fondamentale de la matière au CERN jusqu’aux observations des reliques du début de
l’univers. Cette “matière noire” pourrait être composée d’une (ou de plusieurs) nouvelle particule,
qui résiste encore et toujours à l’observateur, ou alors elle pourrait être dûe à une insuffisance de la
RG pour décrire la phénoménologie des accélérations extrêmement ténues. De même, l’accélération
de la dilatation de notre univers peut être décrite par une simple “constante cosmologique” ajoutée
aux équations de la RG, par une “énergie sombre” de nature matérielle, ou encore par une complétion
de la RG dans le régime des énergies très faibles.

Pour avancer vers une explication convaincante de ces phénomènes, trois voies semblent primor-
diales à suivre. La première, que nous ne suivrons pas, consiste naturellement à tendre vers une
meilleure connaissance empirique de notre univers, en raffinant les observations actuelles et en in-
ventant de nouveaux modes d’observation. Un effort conséquent est actuellement porté en ce sens
et de nombreux instruments sont développés et exploités, sur terre, sous terre, dans les profondeurs
marines et dans l’espace. Les deux autres voies, plus théoriques, sont celles que nous avons choisies
d’explorer lors de cette thèse. Tout d’abord, et en parallèle de cette nécessité d’affiner notre connais-
sance empirique de l’univers, il y a un vrai besoin d’affuter nos prédictions théoriques pour la RG.
Ce n’est qu’en comparant les observations à des prédictions robustes que nous serons capables de
discerner de possibles déviations à la RG, qui pourront indiquer dans quelle direction celle-ci a besoin
d’être dépassée. La troisième et dernière voie consiste à construire et tester des scénarios alternatifs
à la RG. Même si les théories exotiques développées ne sont pas forcément de meilleures descriptions
de la nature que la RG, il est toujours intéressant de les explorer pour au moins deux raisons. La
première tient à ce que de telles constructions nous renseignent sur la nature même de la RG : en
la déconstruisant pour construire une autre théorie, on en expose au grand jour les mécaniques in-
ternes. La seconde raison est d’ordre plus pratique: en sachant quelles alternatives sont viables, on
peut réaliser des tests plus affutés en cherchant à isoler un effet particulier, inexistant en RG.

Naturellement ces deux dernières voies (une meilleure connaissance théorique de la RG, et la
recherche d’alternatives viables) se doivent d’être suivies en parallèle, et d’être mises en regard l’une
de l’autre. C’est dans cet esprit que nous avons abordé cette thèse, dédiée d’une part à l’étude du
problème à deux corps, et de l’autre, à la construction et au test de théories alternatives.
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Étude du problème à deux corps

Le problème à deux corps est un cadre idéal pour l’étude de la RG. Conceptuellement c’est l’un
des systèmes les plus simples que l’on puisse imaginer, puisqu’il n’est composé que de deux corps,
liés uniquement par l’interaction gravitationnelle. Empiriquement, on trouve de telles configurations
en abondance dans l’univers, de la pomme qui tombe aux binaires de trous noirs, en passant par le
système Terre-Lune, ce qui permet de multiplier les régimes d’observation. Mais d’un point de vue
théorique, si le problème à deux corps Newtonien est très simple car linéaire, le problème relativiste
exhibe toutes les non-linéarités de la RG, et est donc bien plus ardu. Bien que centenaire, c’est ainsi
un champ toujours très actif et dynamique, et de nombreux pans restent à défricher.

Pour simplifier la configuration étudiée, nous allons considérer les deux corps comme des partic-
ules ponctuelles, négligeant les effets de rotation et de taille finie. Traiter le problème relativiste à
deux corps tel quel semble une tache impossible avec les techniques actuelles de calcul, nous allons
donc devoir recourir à des méthodes d’approximation, dites “post-Newtonienne” (PN, qui consiste à
considérer des corps de faible vitesse) et “post-Minkowskienne” (PM, qui traite des champs faibles).
La première approximation traite des caractéristiques des corps (en l’occurrence, leur vitesse), elle
est donc valable en zone proche, c’est-à-dire à proximité des-dits corps. Elle sera donc utilisée pour
déduire la structure de l’espace-temps dans cette zone uniquement. La seconde approximation con-
sidère des déviations à un espace vide, elle est donc particulièrement adaptée à l’étude de la radiation
gravitationnelle, et est valide à l’extérieur de la distribution de matière. Ces deux approches engen-
drent deux solutions, chacune dans une zone différente : nous allons donc devoir les associer pour
obtenir une unique solution, valable dans tout l’espace-temps. Cette association se fait dans la zone
de recouvrement où les deux approximations sont valides, au moyen d’une puissante équation de
raccord. Ce formalisme “post-Newtonien-post-Minkowskien-multipolaire” (PN-MPM, de l’anglais),
qui consiste à raccorder ces deux approches, est celui que nous utiliserons dans cette thèse. Comme
la première correction à la dynamique Newtonienne est quadratique en l’inverse de la vitesse de la
lumière, il est d’usage de nommer nPN l’ordre c−2n. En revanche le nième ordre PM est tradition-
nellement donné par la correction en Gn.

Une première contribution de cette thèse au domaine du problème à deux corps fut le calcul des
contributions logarithmiques dues aux effets de sillage (tail effects en anglais) dans l’énergie. Ces
effets sont dûs à la diffusion d’ondes gravitationnelles sur la courbure statique de l’espace-temps créée
par la binaire, et sont donc des phénomènes non-linéaires par essence. En “ricochant” sur la structure
statique du fond, les ondes vont se disperser et certaines vont revenir interagir avec la binaire, ce
qui va naturellement affecter son mouvement. Ces effets sont par essence non-instantanés puisqu’à
un instant donné, les ondes qui interagissent avec la binaire sont celles qui ont été émises dans le
passé de la source. Cette non-localité en temps se traduit par l’apparition de logarithmes en vitesse
dans l’énergie d’une binaire évoluant sur une orbite circulaire. En exploitant de nouvelles synergies
entre les méthodes PN-MPM, les techniques provenant des théories effectives des champs et celle
dite “première loi de la dynamique des binaires de trous noirs”, et en collaboration avec L. Blanchet,
S. Foffa et R. Sturani, nous avons calculé cette dépendance logarithmique à une précision qui n’avait
pas encore été atteinte (3PN en sus de l’ordre dominant, soit 7PN dans l’énergie). En outre, nous
avons tiré profit de l’équation de renormalisation pour extraire une formule analytique donnant, pour
chaque puissance du logarithme, la valeur du coefficient dominant. Nous avons naturellement vérifié
que, pour les ordres les plus bas (ie. jusqu’à 21PN), notre formule concorde bien avec les résultats
préexistants.

Si cette première étude fut importante car révélatrice du potentiel encore largement inexploré
des synergies entre ces différentes approches du problème à deux corps, la contribution principale de
cette thèse réside dans le travail relatif à la génération d’onde. Les générations actuelles et futures de
détecteurs sont bien plus sensibles à l’évolution de la fréquence des ondes qu’à celle de leur amplitude.
Il est donc essentiel de connaitre la phase gravitationnelle (ie. la dépendance temporelle de ces
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ondes) à de très grandes précisions, notamment pour le futur détecteur LISA (Laser Interferometer
Space Antenna). Si l’état de l’art est la précision 3.5PN, le programme visant à déterminer le
comportement à 4PN a été initié il y a plusieurs années et touche à sa fin. Il est important de souligner
qu’actuellement seule la méthode PN-MPM est capable d’atteindre de telles précisions, c’est donc
celle que nous implémenterons. Parmi les multiples étapes qui conduisent à l’établissement de la phase
à 4PN, nous nous sommes attachés lors de cette thèse à la détermination du moment quadrupolaire
de masse. Ce calcul peut se décomposer en trois étapes : le quadrupole source est d’abord évalué
avec une régularisation dimensionnelle1 dans l’UV et une régularisation de Hadamard dans l’IR;
ensuite la régularisation dimensionnelle est appliquée dans l’IR; enfin le quadrupole radiatif, c’est-à-
dire observable, est déterminé à partir du quadrupole source et de la prise en compte des nombreuses
interactions non-linéaires, qui doivent être évaluées en dimension arbitraire. L’établissement du
quadrupole source Hadamard a été achevé par T. Marchand avant le début de cette thèse, mais
nous en avons recalculé quelques secteurs avec L. Blanchet et S. Marsat dans l’optique de réaliser
des vérifications en double aveugle, rendues nécessaires par la longueur et la technicité des calculs.
Néanmoins l’apport majeur de cette thèse fut l’implémentation de la régularisation dimensionnelle
dans l’IR pour les quadrupoles source et radiatif, réalisée en collaboration avec Q. Henry, L. Blanchet
et G. Faye. Ce procédé de régularisation est vital pour obtenir un quadrupole radiatif physique, c’est-
à-dire sans divergences fallacieuses provenant de l’approximation PN étendue hors de son régime de
validité. La régularisation dimensionnelle du quadrupole source a été achevée et satisfait tous les
critères de validité, nous sommes actuellement en train de mettre au point celle du quadrupole
radiatif, en calculant les effets de sillage, de mémoire et leurs itérations.

Un troisième projet fut entrepris lors de cette thèse, et concerne l’établissement d’un test de
la RG dans un système exoplanétaire bien particulier, HD 80606b. En effet cette exoplanète a une
excentricité très élevée et a été observée lors de transits et d’éclipses. Avec L. Blanchet et G. Hébrard,
nous avons calculé la prédiction relativiste de la variation du temps écoulé entre une éclipse et le
transit suivant, et avons montré qu’elle pourrait être détectable à partir de 2025. Les lancements
prévus des télescopes spatiaux James–Webb et Ariel, à même d’observer précisément les éclipses et
transits d’HD 80606b, nous donnent bon espoir que le test soit effectué (des discussions en ce sens
avec J.-P. Beaulieu, coPI d’Ariel sont en cours). À notre connaissance, il s’agit là du premier test
réaliste de la RG dans un système stellaire qui ne soit pas le système Solaire.

Étude de théories alternatives

En parallèle de l’étude du problème à deux corps en RG, nous avons aussi considéré des théories
alternatives. Avec C. Deffayet nous nous sommes intéressés aux défauts topologiques (ou solitons),
c’est-à-dire des configurations d’énergie localisées et auto-entretenues, les exemples les plus sensa-
tionnels étant les mascarets, remontant l’embouchure des fleuves. Nous nous sommes concentrés sur
de tels défauts réalisés par des champs scalaires, une configuration qui a notamment d’importantes
implications cosmologiques. L’argument habituel justifiant leur stabilité est topologique, et repose
sur la dégénérescence de la structure du vide d’un potentiel. Pour dépasser un tel argument et
évaluer sa nécessité, nous avons cherché à construire des défauts non-topologiques, sans potentiel
mais néanmoins stables, et nous nous sommes restreints à des géométries planaires non-gravitantes
par simplicité. Après avoir obtenu des formules générales permettant de construire de tels soli-
tons, nous nous sommes concentrés sur une réalisation particulière et avons démontré qu’un certain
choix de paramètres permettait d’imiter exactement les solitons canoniques, aussi bien au niveau
du profil de la solution, qu’au niveau de ses perturbations linéaires. Malheureusement, de tels
défauts non-topologiques ne peuvent pas être directement solutions de théories cosmologiques car
l’implémentation de la gravitation altère trop gravement leurs conditions d’existence.

1Un tel procédé consiste à effectuer les calculs en dimension arbitraire, puis à prendre la limite tridimensionnelle.
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Conjointement à l’étude de ces défauts non-topologiques, cette thèse s’est attachée à l’étude de
théories alternatives de gravitation dites minimales. La philosophie du minimalisme repose sur le
constat que si l’ajout de degrés de liberté est un moyen pratique de rendre compte de phénomènes
tels que l’accélération de la dilatation de notre univers, de tels supplétifs ne sont pas nécessaires
d’un point de vue empirique. De fait, ni le suivi de binaires de pulsars, ni la détection directe de
radiation gravitationnelle ne laisse transparaître de traces de degrés de liberté autres que les deux
polarisations tensorielles présentes en RG. Une théorie minimale est donc une théorie qui ne propage
que des polarisations tensorielles, tout en offrant une phénoménologie sensiblement plus riche que
celle de la RG. Naturellement une telle construction a un coût, et les théories minimales brisent
faiblement l’invariance sous les difféomorphismes temporels, présente en RG. Une telle brisure est
néanmoins peu contraignante car elle n’est effective qu’aux échelles cosmologiques et dans le secteur
purement gravitationnel : ces théories satisfont donc tous les tests habituels, réalisés à des échelles
terrestres. La première de ces théories, construite en 2015 par A. De Felice et S. Mukohyama est une
minimalisation de la gravité massive canonique, qui offre une explication naturelle à l’accélération de
la dilatation de notre univers. Mais pour pouvoir donner lieu à une cosmologie attrayante, l’un des
champs non-dynamiques de cette théorie minimale de gravité massive doit être muni d’une artificielle
dépendance en temps.

Un tel artefact étant peu convaincant et encore moins esthétique, nous nous sommes efforcés de
le dépasser, en collaboration avec A. De Felice, S. Mukohyama et M. Oliosi. Cela nous a conduit à
chercher une théorie minimale de bigravité, c’est-à-dire une théorie faisant apparaître deux métriques
dynamiques, mais seulement quatre polarisations (contrairement aux sept habituellement présentes
dans de telles théories de bigravité). En jaugeant la théorie canonique de bigravité, due à S. Hassan
et R. Rosen, et en introduisant des contraintes supplémentaires au niveau du Hamiltonien, nous
avons réalisé une telle théorie. Une étude de sa phénoménologie cosmologique a révélé qu’elle donne
lieu à deux branches de solutions, toutes deux stables (contrairement à la bigravité canonique, dont
la cosmologie est instable) et conduisant à des mécanismes naturels d’accélération de la dilatation de
l’univers. En outre cette théorie conduit à des oscillations et une relation de dispersion non triviale
pour les gravitons et, dans l’une des deux branches, la croissance des structures à grande échelle est
différente de celle de la RG. Toutes ces disparités avec la cosmologie orthodoxe sont naturellement
observables, et pourraient permettre de tester notre théorie.

Outre de tels tests cosmologiques, il est important de sonder la phénoménologie à petite échelle,
notamment en explorant les régimes forts par la construction de solutions de trous noirs. C’est ce
que nous avons réalisé, en collaboration avec A. De Felice, A. Doll, S. Mukohyama et M. Oliosi,
dans deux théories minimales, la théorie initiale de gravité massive et le modèle dit V CDM. Dans
la première de ces théories, nous avons démontré un lemme qui relie les solutions de RG ayant des
sections spatiales plates à des solutions de la théorie alternative. Ce lemme technique est en fait
extrêmement puissant puisque les espaces-temps de la RG représentant des étoiles et des trous noirs
statiques admettent de telles sections spatiales plates, et sont donc directement solutions de la théorie
minimale. Le corollaire direct de ce résultat est que cette théorie alternative satisfait la majorité des
tests réalisés dans le système Solaire aussi bien que la RG, c’est-à-dire avec brio. Nous avons essayé
d’implémenter des trous noirs en rotation par un processus similaire, mais avons montré que les trous
noirs en rotation de la RG n’admettent pas de sections spatiales plates, et nous n’avons donc pas
pu appliquer notre lemme. L’étude du régime de champ fort du modèle V CDM s’est révélée bien
différente. En effet nous avons pu construire des espaces-temps de trou noirs distincts de ceux de
la RG, notamment par des phénomènes de non-staticité et une possible violation de la condition de
convergence nulle. De telles disparités avec les trous noirs usuels sont évidemment observables, que
ce soit lors des effondrements gravitationnels dont ils émergent, par le suivi du mouvement des corps
dans leur voisinage ou par l’émission de radiation gravitationnelle.
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Méthodes analytiques pour l’étude du problème à deux
corps, et des théories alternatives de gravitation

Résumé : Le travail effectué durant cette thèse visait à parfaire notre connaissance des
phénomènes gravitationnels, en poursuivant deux buts: (i) améliorer notre compréhension
du problème relativiste à deux corps, (ii) construire et tester des modèles alternatifs.
Dans un premier temps, nous avons utilisé une approximation post-Newtonienne (champs
et vitesses faibles) pour chercher une expression analytique et très précise de la phase
des ondes gravitationnelles. Pour ce faire, nous avons dû implémenter une régularisation
dimensionnelle pour le quadrupole de masse, et pour les effets non-linéaires dits de “sillage”
et de “mémoire”. En exploitant des synergies communes avec d’autres méthodes, nous
avons aussi calculé les contributions logarithmiques qui entrent dans l’énergie conservée,
jusqu’à une haute précision. Enfin, nous avons proposé le premier test réaliste de la RG
dans un système exoplanétaire.
Quant au second but, nous avons étudié des murs de domaine originaux, en proposant une
nouvelle classe de défauts non-topologiques. Nous avons prouvé leur stabilité, et montré
qu’ils peuvent imiter les défauts canoniques. De plus, nous avons construit et étudié la
cosmologie d’une “théorie minimale de bigravité”, basée sur le principe du rasoir d’Occam.
Pour finir, nous avons étudié le régime de champs forts de deux théories “minimales” en
construisant leurs solutions de trous noirs.
Mots clés : Problème à deux corps, défauts non-topologiques, théories alternatives

Analytical methods for the study of the two-body
problem, and alternative theories of gravitation

Abstract: The work completed during this thesis aimed at pushing forward our knowledge
of gravitational phenomena, by following two directions: (i) deepening our comprehension
of the relativistic two-body problem, (ii) building and testing alternative models.
First, we used a post-Newtonian (weak-field and slow motion) approximation to seek an-
alytic expressions for the phase of gravitational waves at high accuracy. Two of the main
results of this thesis are thus the proper dimensional regularization of the mass quadrupole,
and of the non-linear “tail” and “memory” effects, appearing in the radiative quadrupole.
Using synergies with other approaches, we have also derived the logarithmic tail contri-
butions in the conserved energy at high accuracies. Finally, and as a side result, we have
also proposed the first realistic test of GR in an exoplanetary system.
As for the second direction, we have investigated non-canonical domain walls by building a
new class of non-topological kinks. We have shown that those were stable, and could mimic
the canonical ones. A “minimal theory of bigravity” was also constructed by requiring
to avoid observationally unnecessary gravitational polarizations, and its cosmology was
proven stable. Finally, we have investigated the strong-field regime of two of such minimal
theories by deriving their (non-trivial) black hole solutions.
Keywords : Two-body problem, non-topological defects, alternatives theories
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