
HAL Id: tel-03466542
https://theses.hal.science/tel-03466542

Submitted on 6 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian neuromorphic computing based on resistive
memory

Thomas Dalgaty

To cite this version:
Thomas Dalgaty. Bayesian neuromorphic computing based on resistive memory. Micro and
nanotechnologies/Microelectronics. Université Grenoble Alpes [2020-..], 2020. English. �NNT :
2020GRALT087�. �tel-03466542�

https://theses.hal.science/tel-03466542
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : NANO ELECTRONIQUE ET NANO TECHNOLOGIES
Arrêté ministériel : 25 mai 2016

Présentée par

Thomas DALGATY

Thèse dirigée par Barbara DE SALVO , Directeur de Recherche
et codirigée par Elisa VIANELLO
et Jérôme CASAS, Enseignant-Chercheur, Université de Tours

préparée au sein du Laboratoire CEA/LETI
dans l'École Doctorale Electronique, Electrotechnique,
Automatique, Traitement du Signal (EEATS)

Calcul neuromorphique Bayésien basé sur la
mémoire résistive

Bayesian neuromorphic computing based on
resistive memory

Thèse soutenue publiquement le 27 novembre 2020,
devant le jury composé de :

Madame BARBARA DE SALVO
INGENIEUR HDR, CEA GRENOBLE, Directrice de thèse
Madame ELISABETTA CHICCA
PROFESSEUR, UNIVERSITE DE GRONINGUE - PAYS-BAS,
Rapporteure
Monsieur LUCA BENINI
PROFESSEUR, ETH ZURICH - SUISSE, Rapporteur
Monsieur JEAN-MICHEL PORTAL
PROFESSEUR DES UNIVERSITES, AIX-MARSEILLE UNIVERSITE,
Président
Monsieur DAMIEN QUERLIOZ
CHARGE DE RECHERCHE HDR, CNRS DELEGATION ILE-DE-
FRANCE SUD, Examinateur
Monsieur GIACOMO INDIVERI
PROFESSEUR, UNIVERSITE DE ZURICH - SUISSE, Examinateur

Abstract

Artificial intelligence is a field that, historically, has benefited from the combination of ideas from across
inter-disciplinary boundaries which have improved models of AI and the algorithms that operate on them.
Biological nervous systems in particular have inspired various model topologies and algorithmic tricks that
have led to leaps in performance. In contrast, as computing power and memory availability have increased
relentlessly since the 1950’s, models of artificial intelligence have largely failed to recognise the constraints
imposed by, or incorporate the opportunities offered by, the underlying computing hardware. While this
is not immediately apparent in the cloud computing setting; the mismatch between model, algorithm and
hardware is the limiting factor that currently curtails the efficient application of locally-adaptive artificially
intelligent systems at the edge. In this thesis, the interdisciplinary boundary between machine learning,
emerging technologies and biological nervous systems will be explored with the objective of proposing a
new, hardware-focussed, approach for the application of energy efficient and locally-adaptive edge neuro-
morphic computing systems. Resistive memories are a leading candidate as an enabling technology for AI
to greatly reduce its energy requirements. This is largely owed to the efficient and parallelised implemen-
tation of the dot-product operation that pervades machine learning as well as its material-level compati-
bility with advanced CMOS processes. However, until now, the application of RRAM has been confined
predominantly to implementations of gradient-based machine learning algorithms, namely backpropaga-
tion, to train RRAM-based multi-layer perceptron models. The fundamental properties of RRAM though,
predominantly their conductance variability, are, on the contrary, not compatible with learning algorithms
based on the descent of error gradients. This thesis recognises that, in contrast, the intrinsic properties of
this technology can be harnessed through Bayesian approaches to machine learning where, like device
conductance states, model parameters are described as random variables. RRAM-based implementa-
tions of Markov Chain Monte Carlo sampling algorithms are implemented and applied to the training of
RRAM-based models. An RRAM-based computing hardware capable of supporting such models is also
proposed. Inspired by the organisational principles of animal nervous systems, whereby memory and
processing are distributed and arguably indistinguishable, this thesis proposes analogue circuit solutions
for biological models of neurons and synapses and for a system-level architecture to interconnect such
elements. Reflecting the role played by ion-channels embedded in biological neuronal membranes, these
circuits co-localise memory and computation by incorporating resistive memory devices directly into the
circuits themselves; determining model parameters and the interconnectivity between these elements lo-
cally. Relative to similar approaches, this obviates the need for volatile on-chip working memory and the
use of analogue-to-digital conversion, both entailing significant energy demands. In recognition of the
efficient solutions animals like insects have uncovered throughout the course of evolution, their nervous
systems are used to guide the development of model architectures. Based on recent neurophysiological
studies, models inspired by the cricket cercal system and the fruit fly motion detection system are pro-
posed. To achieve an equivalent performance to the cercal system model, multi-layer perceptrons require
between one and two orders of magnitude more memory elements; offering a means of scaling the pro-
posed MCMC sampling algorithms to more complex tasks. It is also discussed how the ‘small-worldness’
of networks of neurons found in animal nervous systems can provide a solution to the spatial connectivity
constraints inherent to the proposed RRAM-based computing fabric.

Key words: Bayesian, machine learning, resistive memory, neural networks, electronic circuits, bio-
inspiration.

2

Résumé

L’intelligence artificielle (IA) est un domaine qui, historiquement, a grandement bénéficié de l’association
d’idées interdisciplinaires, pour améliorer ses modèles ainsi que ses algorithmes. Les systèmes nerveux
biologique ont ainsi été une source d’inspiration de valeur pour les topologies des modèles et des tech-
niques algorithmiques, et ont été à l’origine de sauts en performances. Cependant, même si la puissance
du calcul et la quantité de la mémoire ont augmenté sans cesse, les modèles de l’IA ont largement échoué
à s’adapter aux opportunités et aux contraintes apportées par les technologies silicium. Ce constat est
relativement masqué dans le cas du calcul dans le cloud, mais constitue le facteur limitant pour le calcul au
niveau edge à faible puissance. Cette thèse explore la frontière interdisciplinaire entre l’apprentissage au-
tomatique, les technologies émergentes et les systèmes nerveux biologique, avec l’objectif de proposer
une nouvelle approche de l’IA, focalisée sur le hardware, pour réaliser des systèmes calcul neuromor-
phiques à faible consommation et adaptifs localement au niveau edge. Les mémoires résistives jouent
un rôle prometteur pour la réduction de la consommation d’énergie de l’IA. Elles permettent en effet de
réaliser efficacement et de manière parallélisée l’opération de produit scalaire, extrêmement importante
dans l’IA, et elles sont compatibles avec les technologies CMOS avancées. Jusqu’ici, l’utilisation de RRAM
a été majoritairement confinée à des algorithmes basés sur les gradients, notamment la rétro-propagation,
pour l’apprentissage de perceptrons multicouches. Cependant, les caractéristiques des RRAM, notam-
ment la variabilité de leur conductance, ne sont pas compatibles avec les besoins de ces algorithmes
d’apprentissage basé sur la descente de gradients. Ce travail de thèse propose à l’inverse d’utiliser
ces caractéristiques fondamentales des RRAM comme un avantage pour la modélisation Bayésienne,
où des paramètres des modèles sont, comme les états de conductance de RRAM, décrits par des vari-
ables aléatoires. Des implémentations ex-situ et in-situ de méthodes Monte Carlo par chaı̂nes de Markov
(MCMC) basées sur les RRAM sont proposées et appliquées à l’entrainement des modèles. De plus,
un hardware de calcul basé sur les RRAM est aussi proposé, permettant de mettre en application ces
modèles. Inspirées par les systèmes nerveux animaux, où les éléments du calcul et de la mémoire sont
distribués et co-localisés, des solutions en circuit analogiques sont proposées pour modéliser des neu-
rones et des synapses biologiques ainsi qu’une architecture au niveau du système pour les interconnecter.
Reflétant le rôle joué par les canaux ioniques, noyé dans les membranes neuronales, les circuits incor-
porent la RRAM au sein des circuits et déterminent localement leurs paramètres et leur inter-connectivite.
Contrairement aux autres approches, ce système ne nécessite ni mémoires vives statiques (SRAM), ni
convertisseurs analogiques-numériques qui nécessitant une consommation énergétique élevée. Enfin,
en reconnaissant les solutions efficaces qu’ils ont trouvé au cours de l’évolution, les systèmes nerveux
des insectes, nous servent de guider le développement d’architectures de modèles d’IA. En s’appuyant
sur les résultats récents d’études neurophysiologiques sur les insectes, deux modèles sont proposés :
un inspiré par le système cercal du grillon et l’autre par le système de détection de mouvement de la
mouche. Pour obtenir une performance égale au modèle cercal, nous observons que les modèles de
perceptrons multicouches nécessitent entre une et deux fois plus des paramètres synaptiques – ce qui
ouvre la possibilité d’appliquer le MCMC à base de RRAM à des tâches complexes. Les caractéristiques
‘small-world’ des réseaux des neurones biologiques sont également abordées : elles peuvent offrir une
solution pour outrepasser les contraintes de connectivites spatiales liées à l’architecture proposée.

Mots clés: Bayésien, apprentissage automatique, mémoire résistive, réseaux de neurones, circuits
électroniques, bio-inspiration.

3

Acknowledgements

This thesis was carried out in collaboration with various partner Universities and is composed of
adapted versions of the papers and patents written with them in which I was the first author - those
listed in the following page. Reflecting this, the thesis is written using ‘we’ instead of ‘I’ throughout. Specif-
ically, I would like to thank Damien Querlioz at Université Paris-Saclay and his students Clement Turck
and Kamel-Eddine Harabi for their collaboration in chapter 3, Giacomo Indiveri and Melika Payvand from
the Institute of neuroinformatics, a joint laboratory between the University of Zurich and the ETH Zurich,
for their collaboration in chapter 4 and to Jerome Casas, Claudio Lazzari, Teresita Insausti and Thomas
Steinmann at Université de Tours as well as to John P. Miller from Montana state University for their col-
laboration in chapter 2. This is of course in addition to my many colleagues in CEA who have contributed
to this work over the course of my PhD and are far too numerous to be listed here.

4

List of publications and patents

First author publications

• T. Dalgaty et al., In-situ learning using intrinsic memristor variability via Markov chain Monte Carlo
sampling, Nature electronics, 2021

• T. Dalgaty et al., Bio-inspired architectures substantially reduce the memory requirements of neural
networks, Frontiers in neuroscience, 2021

• T. Dalgaty et al., Ex-situ transfer of Bayesian neural networks to resistive memory based inference
hardware, Advanced intelligent systems, 2021

• T. Dalgaty et al., Hybrid neuromorphic circuits exploiting non-conventional properties of RRAM for
massively parallel plasticity mechanisms, APL Materials, 2019

• T. Dalgaty et al., Hybrid CMOS-RRAM Neurons with intrinsic plasticity, ISCAS, Sapporo, Japan,
2019

• T. Dalgaty et al., Insect-inspired neuromorphic computing, Current opinions in insect science,
2018

• T. Dalgaty et al., Insect-inspired elementary motion detection embracing resistive memory and spik-
ing neural networks, Living machines, Paris, France, 2018

• T. Dalgaty et al., A Mosaic of neuromorphic memory for in-memory small-world neural networks, In
redaction, 2021

Subsidiary author publications

• Y. Demirag et al., PCM-trace: Scalable Synaptic Eligibility Traces with Resistivity Drift of Phase-
Change Materials, ISCAS, Daegu, South Korea, 2021

• M. Payvand et al., Analog weight updates with compliance current modulation of binary ReRAMs for
on-chip learning, ISCAS, Seville, Spain, 2020

• E. Esmanhotto et al., High-Density 3D Monolithically Integrated Multiple 1T1R MultiLevel-Cell for
Neural Networks, IEDM, San Francisco, United States, 2020

• F. Pebay-Peyroula et al., Entropy source characterisation in HfO2 RRAM for TRNG applications,
DTIS, Marrakesh, Morocco, 2020

• D.R.B Ly et al. Novel 1T2R1T RRAM-based TCAM for large scale pattern recognition, IEDM, San
Francisco, United States, 2019

• E. Donati et al.Processing ECG signals using reservoir computing on an event-based neuromorphic
system, BioCAS, Cleveland, United States, 2018

• E. Vianello et al. Metal-oxide resistive memory and phase change memory as artificial synapses in
spiking neural networks, ICECS, Bordeaux, France, 2018

• D.R.B Ly et al. Role of synaptic variability in spike-based neuromorphic circuits with unsupervised
learning, ISCAS, Florence, Italy, 2018

5

Book chapters

• Synaptic realizations based on memristive devices, Memristive Devices for Brain-Inspired Comput-
ing, Woodhead Publishing, 2020

Patents

• Odd-even memory array architecture for MCMC sampling 2021

• Temporal difference reinforcement learning algorithm using volatile conductance states 2020

• Phase change memory based spike-time-dependent plasticity algorithm, 2020

• Volatile memory based three-factor learning algorithm, 2020

• Neuromorphic event-based routing architecture based on resistive memory, 2019

• Resistive memory based Markov Chain Monte Carlo sampling 2019

• Resistive memory based Bayesian neural network architecture and model transfer technique 2019

• Hybrid CMOS-RRAM neuron circuit 2018

6

Contents

1 Introduction 11
1.1 A brief history of artificial intelligence . 12

1.1.1 Pre-history . 12

1.1.2 1950’s, 60’s and 70’s . 15

1.1.3 1980’s and 90s . 19

1.1.4 21st Century . 20

1.2 Hardware in artificial intelligence . 23

1.2.1 LISP machines . 23

1.2.2 Field programmable gate arrays . 24

1.2.3 Graphics and tensor processing units . 24

1.2.4 Neuromorphic processors . 24

1.2.5 Memory technologies . 27

1.3 Challenges in applying artificial intelligence . 30

1.3.1 Training energy consumption . 31

1.3.2 Bringing learning to the edge . 31

1.3.3 Ethical application of AI . 32

1.4 Scope of this thesis . 34

2 Bio-inspired neural network architectures 37
2.1 Chapter introduction . 37

2.2 Model of the cricket cercal system escape response . 37

2.2.1 Introduction . 37

2.2.2 Model definition . 39

2.2.3 Model evaluation . 47

2.2.4 Universal approximator benchmarking . 48

2.2.5 Model interpretation . 51

2.3 Model of the Drosophila elementary motion detection system 57

2.3.1 Introduction . 57

2.3.2 Model definition . 59

2.3.3 Model evaluation . 62

2.4 Chapter discussion . 65

7

3 Bayesian machine learning with resistive memory 69
3.1 Chapter introduction . 69
3.2 In-situ resistive memory based Markov Chain Monte Carlo 69

3.2.1 Introduction . 69
3.2.2 In-memory implementation . 71
3.2.3 Application to supervised learning . 80
3.2.4 Application to reinforcement learning . 87
3.2.5 System level energy estimation . 91

3.3 Ex-situ transfer of a Bayesian neural network . 96
3.3.1 Section introduction . 96
3.3.2 Expectation-maximisation based parameter decomposition 97
3.3.3 Ex-situ training of an RRAM-based Bayesian neural network 100
3.3.4 Transfer to resistive memory based inference hardware 102
3.3.5 Allowing a model to say ‘I don’t know’ . 106

3.4 Chapter discussion . 109

4 A non-von Neumann neuromorphic computing fabric 113
4.1 Chapter introduction . 113
4.2 Hybrid neuromorphic circuits . 113

4.2.1 CMOS-RRAM analogue circuit models . 114
4.2.2 An OxRAM based intrinsic plasticity algorithm . 122

4.3 Neuromorphic event routing architecture . 138
4.3.1 Column circuits . 140
4.3.2 Neuron and routing tiles . 144
4.3.3 Application to reservoir computing . 148
4.3.4 Small world graph properties . 149
4.3.5 Heartbeat arrhythmia detection . 151

4.4 Chapter discussion . 154

5 Conclusion 161
5.1 A vision of a Bayesian neuromorphic computing system . 163
5.2 Perspectives and future work . 164

6 Appendices 169
6.1 Appendix - Additional circuits and layouts . 169

6.1.1 Inverter unit cell . 170
6.1.2 Thick oxide inverter unit cell . 171
6.1.3 Starved inverter . 172
6.1.4 Operational amplifier . 173
6.1.5 Pulse extender . 174
6.1.6 Half OR . 175
6.1.7 Multiplexer . 176

8

6.1.8 Level shifter . 177
6.1.9 CMOS neuron . 178
6.1.10 CMOS synapse . 179
6.1.11 Delta modulator layout . 180
6.1.12 1T1R cell . 181
6.1.13 Column circuit layout . 182
6.1.14 Hybrid synapse layout . 183
6.1.15 Hybrid neuron layout . 184

6.2 Appendix - Note on MOS capacitors . 185
6.3 Appendix - Resistive memory experiments . 187
6.4 Appendix - Implementation of RRAM-based MCMC simulator 188
6.5 Appendix - Note on implementation of neural network models 190
6.6 Appendix - Pre-processing of the electrocardiogram dataset 191
6.7 Appendix - Cercal system statistical model response . 192
6.8 Appendix - Observed shift of the OxRAM normal random variable 196
6.9 Appendix - Cercal system model input neuron circuit implementation 197
6.10 Appendix - Robustness of TAG model to random parameter permutations 198
6.11 Appendix - Measurements of fabricated CMOS neuron circuits 202

9

10

Chapter 1

Introduction

The human species, homo-sapiens, emerged an estimated 300,000 years ago. As modern humans
we share, in large part, the same genes as our ancestors and our bodies and brains remain relatively
unchanged. We have little common ground however in terms of how we live our lives and how we see the
world. We can attribute this difference, despite our similarities, to our innate drive and ability to invent tools
and ideas that have incrementally impacted how we are able to interact with the world over these millennia.
This encompasses pre-historic inventions such as stone daggers for hunting and techniques to start fires;
those from antiquity like religion, philosophy and bronze; all along the winding road of inventions through
printing, economics and 5G telecommunications networks that have led us to this modern age. This thesis
is concerned with another invention which, at the time of writing, is anticipated to give rise to a further
incremental step on this path - artificially intelligent systems. Artificial intelligence (AI) is a scientific and
engineering field concerned with the development of computer models that reproduce certain intelligent
behaviours observed in animals such as reasoning, planning or learning. Since AI models and computers
are fundamentally inter-twined, the term ‘computer’ is not only reserved for the computing machines with
which we are today familiar, but importantly extends to any engineerable system that harnesses physical
principles for computation. These computer models, other than developing theories of psychology and
cognition, can also be applied in an engineering sense to solve practical problems. For example, the
replacement or augmentation of human labour in monotonous or dangerous tasks, in complex tasks like
medical diagnosis as well as applications which are otherwise unsuitable for humans such as the ‘mining’
of, or pattern extraction from, large and high-dimensional datasets.

The potential of the current generation of approaches in AI has been recognised both by governments
and large technology corporations, which are jointly driving the rapid growth of its commercial applica-
tion [1, 2]. However, lurking in the shadow of numerous grand success stories, there are fundamental
drawbacks and limitations which, to support the anticipated growth, must be confronted. Principally there
are environmental issues, concerning the spiralling quantities of energy demanded by state of the art AI
models [3, 4] for incremental performance gains [5], the ‘cloud-centric’ application of AI instead of in dis-
tributed and resource constrained ‘edge’ environments [2] and ethical issues regarding the lack of model
interpretability [6] and the absence of model uncertainty quantification in many cases [7, 8]. The progress
in the field can be attributed predominantly to progress in underlying computing hardware, rather than a
revolution from the algorithmic or modelling perspective, applied to ‘connectionist’, or ‘neural network’, AI

11

models. This thesis explores how, in a similar spirit, an emerging technology called resistive memory can
be married together with neural network models. It proposes a new, hardware-focused, approach that re-
quires extremely low quantities of energy with respect to existing solutions. Additionally, in recognising the
important role it has played in the development of the field via the tricks discovered by evolution, biological
nervous systems will be used as a means of inspiration to guide the direction of the work.

Before introducing the content of this thesis in more detail, it will first be instructive to briefly recount
the history of artificial intelligence, the computer hardware that has been used as a substrate in AI and
elaborate upon some of the predominant problems faced by field which this work aims to address, in order
to better understand its place and contribution.

1.1 A brief history of artificial intelligence

Although artificial intelligence would appear to be something new, being formally named in 1956 [9], the
seeds that would go on to become the roots of the field were gradually sewn in the centuries before -
during an AI ‘pre-history’.

1.1.1 Pre-history

The link between artificial intelligence and computer science is unshakeable - if intelligence were to be
implemented artificially, on what other substrate besides a ‘computer’ could it be realised? The first sys-
tem bearing the hallmarks of computer would appear in 1804 in France - the Jacquard loom [10]. The
loom was a fabric weaving machine, programmable via hole punched paper cards which determined rou-
tines to be executed with the apparatus (Fig. 1.1a). Some decades later, in 1832, Charles Babbage who
was an admirer of the Jacquard loom, proposed a mechanical computer he called the Analytical engine
(Fig. 1.1b), featuring an arithmetic logic unit, memory and a means of realising conditional flows and
loops [11] - although it would never be built. George Boole would go on to formalise the mathematics of
the logical manipulation of symbols (which had been evolving from the time of the ancient Greek philoso-
pher Aristotle) in 1854 [12], before Alan Turing would take such concepts of logic and combine them with
Babbage’s ideas and propose the first digital computer system during the second world in 1936 [13]. The
ideas of Turing would then be taken forward by the likes of the Hungarian scientist John von Neumann [14]
who led the effort to manufacture the first binary stored-program Electronic Discrete Variable Automatic
Computer (EDVAC) (Fig. 1.1c) architecture which remains widespread today. Largely it has been the ma-
nipulation of models, residing in the memory of the computer, by mathematical algorithms, which execute
in the computers arithmetic centres, of these ‘von Neumann’ computers that has been the principal means
of implementing and applying AI ever since.

12

(a)

(b)

(c)

(d)

Figure 1.1: Early computer systems. (a) A photo of a Jaquard loom. The hole punch card can be seen
as a vertically running white sheet on the front face of the apparatus. (b) A model of the analytical engine
proposed, but never built, by Charles Babbage. (c) Jon von Neumann stands next to a portion of the
Electronic Discrete Variable Automatic Computer (EDVAC). (d) The beast robot consisting of large metal
drum which, inside, contained a small network of transistors that controlled its movement.

Parallel to the development of the ideas that lead to modern digital computers, several important math-
ematical theories would also be developed during these centuries that would go on to lay the foundations
of AI. In 1805, one year after the invention of the Jacquard loom and also in France, the mathematician

13

Adrien-Marie Legendre published a paper on the least-squares regression method [15] which remains,
two centuries later, one of the central concepts of subsets of approaches to AI based on the minimisa-
tion of an error metric of a model given some data. Later, an iterative method for solving such problems
would be proposed by Augustine-Louis Cauchy in 1847 called gradient-descent [16]. At the time of writing,
gradient-descent is arguably the most important algorithm in modern day artificial intelligence and, in a
broader sense, the field of mathematical optimisation.
Remarkably, some decades even before Adrien-Marie, an English reverend and mathematician named
Thomas Bayes wrote down a novel interpretation on probability theory [17]. What would come to be
known as Bayes’ rule described how, instead of calculating probabilities based on frequency of past
events, a posterior probability could be updated through the product of a prior belief on this probability
and the likelihood of a set of observations. Bayes actually did not publish this work during his lifetime,
and his manuscripts were encountered by chance after his death in 1761 while his family were sorting
through his possessions. Had they not been discovered, the French mathematician Laplace would also
independently arrive at the same set of conclusions as Bayes half a century later in 1820 [18]. These
techniques set the foundations for a statistical approach to artificial intelligence called Bayesian inference
whereby a posterior probability is iteratively updated as new evidence becomes available [17]. A Russian
mathematician Andrei Markov, also working in the field of probability theory one and a half centuries after
Thomas Bayes, published several works describing what have become known as Markov chains [19].
Markov chains describe a random and ‘memoryless’ process whereby new states of an arbitrary system
results from random permutations to its current state, offering a way to model systems with apparently
stochastic characteristics. Markov chains and Bayes’ theorem would eventually be married together in
several works in the follow century, beginning with an article from Nicholas Metropolis and Stanislav Ulam
on the Monte Carlo method [20, 21], and later expanded upon by Wilfried Keith Hastings [22], that set the
groundwork for ‘Markov chain Monte Carlo’ (MCMC) sampling algorithms. Crucially, Markov chain Monte
Carlo would allow for Bayesian inference to applied to problems where, in the majority of cases, conjugate
likelihood and prior distribution pairs did exist and did not permit an analytical solution to the posterior
[23]. At the time of writing, MCMC is considered to be of the most important and influential computer
algorithms ever proposed [24], with a marked impact upon countless scientific and commercial fields -
artificial intelligence among them.
In the early 20th century, prompted by experimental results such as the measurement of action potentials
propagating down the giant axon of the squid to trigger an escape response [25], a group of scientists
who called themselves Cyberneticians, would begin to build ‘bottom-up’ models of animal nervous sys-
tems [26]. An early contribution to the field was made by Americans Warren McCulloch and Walter Pitts
in 1943 when they proposed a model of a neuron that was activated as a function of a weighted sum of
its input [27]. This would be followed with another model proposed by Alan Hodgkin and Andrew Huxley,
based on their own experiments they conducted with the squid giant axon, that expanded on the ideas of
the McCulloch-Pitts model by incorporating dynamical properties of neuronal membranes and the ‘spik-
ing’ activation behaviour observed in the squid axon [28]. They would go onto receive the Nobel prize for
their work in 1963. At the same time, a Canadian scientist named Donald Hebb proposed that neurons,
described by such models, could organise themselves via correlative rules based on their co-activation as
a means of adaptation and learning in the nervous system - an idea that would come to be called Hebbian

14

learning [29]. Successive works on the visual systems of Drosophila [30] and cats [31], would go onto
recognise that networks of these neuronal elements were were capable of computing certain functions
defined by their topology - respectively motion and edge detection. An early Cybernetic system, brought
to life by a hard-wired network of neuronal like transistors, was the ‘beast’ robot - assembled by scientists
at John Hopkins University [32]. The beast, a big metal can on wheels (Fig. 1.1d), was equipped with
ultrasonic sensors on it’s exterior which were connected to a small network of analogue logic circuits -
culminating in no more than some dozens of transistors. The outputs of these gates controlled the wheels
of the robot and, it is said, it would wander aimlessly around the corridors of the University avoiding ob-
stacles and turning corners. When the beast was low on battery it would find, and plug itself into, an
electrical socket. Then, when fully charged and ready to wander anew, it would un-plug itself and once
again be on its way. The behaviour of the system has since drawn comparisons with the feeding and
survival behaviours of simple uni-cellular organisms such as Paramecium [33] as well as multi-cellular
organisms equipped with simple nervous systems such as the C. Elegans worm [34].

Σ
y

X0

X1

X2

w0

w1

w2

(a)

Vext

Vint

Cm

Rn(t,V) Rl

Vn Vl

Ip

Vm

t

(b)

Figure 1.2: Types of neuron models. (a) The McCulloch-Pitts neuron model whereby the sum of the mul-
tiplication of the elements of an input vector X and a synaptic weight vector w is output by the neuron. (b
An electrical circuit model for a neuron proposed by Hodgkin and Huxley that describes how parameters,
such as the neuron membrane voltage Vc, evolves in time.)

1.1.2 1950’s, 60’s and 70’s

The first general purpose model inspired by biological neural networks was the perceptron [35], pro-
posed in 1958 by Frank Rosenblatt. The perceptron is composed of layers (i.e. a multi-layer perceptron)
of McCulloch-Pitts neurons. Each layer is networked by a so-called fully-connected matrix of synaptic
edges, weights or parameters. Perceptrons allowed neurons to be leveraged as single linear units, in
that they define a linear hyper-plane through their input feature space, which, through their combination
in a network permitted non-linear functions to be implemented. An intuitive example of the utility of such
networks is the three neuron, six synapse network which implements the non-linear XOR logic function
[35] - something that cannot be solved with a single linear neuron alone. The parameters of early per-
ceptrons were determined by optimisation techniques such as the Widrow-Hoff delta learning rule [36].
This was a first example of a supervised ‘machine learning’ algorithm whereby the model would learn,
not in biologically-plausible fashion as Hebb had envisaged [29], but rather using iterative mathematical

15

operations implemented in the arithmetic centres of von Neumann computers. In their rule, the difference
between a ‘teacher’ signal and the actual output of the neuron units would be multiplied by the activation
of the input neurons and a learning rate constant to provide the updates that were required to applied
on the intermediate synaptic weight matrix. However, the delta rule could only be used to parameterise
synapses in a two layer perceptron. A technique called automatic differentiation, proposed in 1970 by
a Finnish master student called Seppo Linnainmaa [37], would facilitate, although not until one decade
later, the ‘training’ of multi-layer perceptrons. In the meantime, another type machine learning approach,
inspired by Darwinian theories of evolution, was developed and applied to the optimisation of models, such
as the multi-layer perceptron, called genetic and evolutionary algorithms [38]. Such algorithms operate
by mixing together properties of a previous ‘generation’ of candidate models, selecting the best according
to some fitness metric and then ‘breeding’ together the parameters of the best, or the ‘fittest’, models to
produce a new generation of models, and so on.
As an alternative to the ‘black-box’ optimisation of perceptrons, another prominent early direction of ex-
ploration was into models of symbolic reasoning. A first, extremely famous, example of such a model
was the chess playing program developed by American electrical engineer Claude Shannon - the same
Shannon who would later make even greater contributions to information theory - in the year 1950 [39].
Shannon’s program searched a ‘tree’ of possible moves from a current game state using a search algo-
rithm called minimax. After searching the tree to a certain depth, or a number of moves in the future,
the algorithm ‘backs-up’ possible eventual outcomes to the top of tree and permits a decision to be taken
regarding the optimal move (Fig. 1.3b). Some years later Arthur Samuel would augment Shannon’s ap-
proach with a technique called ‘rote’ learning (this time using the game of draughts) where the algorithm
would back-up and assign to nodes a measure of value based on the time to reward [40]. This concept of
assigning value based on a temporal difference would set a foundation for a great number of algorithms
that would be proposed in later decades. Another tree-based model, the goal-tree, was developed by
James Slagle in 1963 [41], which took an initially complex integration problem and proceeded to use a set
of pre-defined heuristic transformations to expand, therein constructing a tree, and simplify the original
problem into a final form, at the terminal tree leaf nodes, that could be easily solved with another set of
simple mathematical rules. Goal-trees were later applied to a set of problems known as ‘block worlds’,
whereby the computer model was tasked with arranging scattered blocks on a table into a specific, user
defined, arrangement - a non-trivial task requiring the computer model to reason and plan. In this case,
based on a limited set of pre-defined logical rules and block manipulation functions, the computer would
proceed to heuristically build a goal-tree and define a sequence of block manipulations required to obtain
the required arrangement [42]. One feature of goal trees was that, after performing a set of actions, the
computer model could be queried to explain it’s reasoning by backing-up the tree it has just built - offering
an interpretation of its actions. A related AI model, based on logical relations between ‘symbols’, were
semantic networks, often called knowledge graphs, applied by Ross Quillan in 1966 [43] as a knowledge
inference engine. Semantic networks are composed of nodes representing entities, and edges between
the nodes explaining their relation or interaction and set the basis for the ‘knowledge graphs’ that under-
pin search engines like Google. For example, a directed edge in a semantic network ‘is a’ could connect
the node ’cat’ to the node ‘animal’. In 1970, Patrick Winston would propose ‘arch’, or ‘one-shot’, learn-
ing whereby, an algorithm constructs a semantic network by inter-connecting symbols through specific

16

relations consistent with examples presented to the model - building a comprehensive description of an
object based on very few observations, or very few shots. An arch, for example, can be characterised by
a horizontal block that is related to two vertical blocks below in that they support it, and those two vertical
blocks were related to each other in that they do not touch each other (Fig. 1.3c) [44]. Unlike the delta
learning algorithm used to train perceptrons, which required many training examples to produce incremen-
tal changes to model parameters, arch learning is capable of constructing and augmenting a number of
relations between nodes from single examples. Additionally, like goal-trees, the resulting semantic graph
also benefits from a means of interpretability. The culmination of these, and many other related ideas from
this epoch that have not been discussed (such as constraint propagation [45, 46]), would ultimately lead to
what were marketed as expert systems [47] in the 1980’s. These systems incorporated knowledge into a
hand-crafted logical model using control flow statements like if, then and else. Despite their perceived lack
of elegance from AI practitioners, expert systems would ultimately mark the first time that an AI system
was massively commercialised and applied to real-world problems.
Many of these approaches to machine learning, such as the application of the Widrow-Hoff delta rule to
the perceptron, can be labelled as ‘supervised’ algorithms. Modern day machine learning is often split
into three such categories - supervised, unsupervised and reinforcement learning. Ideas pertaining to
the latter two were also proposed during these decades. Unsupervised learning algorithms, those with-
out a teaching signal or labelled data, can trace their roots back to a paper in 1967 by Thomas Cover
proposing the nearest neighbour algorithm [48]. Unsupervised learning algorithms, instead of learning
to produce a desired output, looked for underlying structure in a set of data and use mathematical con-
structs, like euclidean distance from a common centroid or a parametric probability distribution, to group
together similar data-points. (Fig. 1.3d). A few years earlier, in 1964, a Scottish computer scientist called
Donald Michie, described the first reinforcement learning approach with his ‘tabular’ approach to noughts
and crosses (tic-tac-toe) [49]. Perhaps for want of a computer, Michie demonstrated his idea using a set
of 304 drawers, each containing coloured beads, and required a human operator to correctly move the
beads between the drawers based on a small set of rules. Each drawer corresponded to one of the 304
possible game states of noughts and crosses and the colour of beads in each drawer corresponded to
the possible actions taken from that state. For each step of the game, a bead was randomly sampled
from the drawer of the current state by the operator and a nought or cross was placed accordingly. If the
actions that were taken during a round of the game resulted in a loss, Michie’s model would be ‘punished’
whereby the all of the drawn beads that were played in that losing game were removed from their drawers.
In the event of winning a game, the model was ‘rewarded’ by placing three extra beads of the colours that
were drawn in the respective drawers. This had the effect that, with an increasing number of iterations,
the model would have a higher probability of choosing actions in game states it had already visited that
would lead to an eventual victory.

17

W

y = X.W
T

W = W - X(t-y))

Infer

Update

y

X

(a)

(b)

A

B C

A

B
C

su
pp

or
ts

supports

not (touch)

(c)

X

d

d
2

(d)

Figure 1.3: Examples of computer models applied in artificial intelligence. (a) The perceptron model
composed of an input layer of neurons, representing the input data points, and an output layer of neurons
each of which corresponds to a prediction, normally a label, about the input. These outputs, y, are inferred
using the dot product between the data X and the weight matrix W and then the weight vector can be
updated, or trained, through the multiplication of the difference between a teacher signal t and the actual
outputs y with the input data X and a learning rate α. (b) A search tree model whereby each green circle
represents a node, a specific state in a game of chess for example, and each blue branch that extends
downwards a possible decision taken from that node. Blue upward pointing arrows provide a notion of
backing-up the search tree, such that information about future states can inform what decision is taken in
the current state - drawn as the green node at the top of the tree. (c An example of arch learning, using the
task of learning the properties of an arch - drawn as the blue rectangular blocks. Arch learning allows the
construction of a semantic network with relations (blue directed arrows) between nodes (green circles)
that characterise the object to be recognised. (d) An example of a nearest neighbours unsupervised
learning model whereby the distance between the centroid of a data cluster (green and blue crosses) and
a new data point (white circle) can be used to determine to which cluster it belongs.

18

1.1.3 1980’s and 90s

The 1980’s began with a proposal for what would become a hugely important neural network architec-
ture, named the ‘neocognitron’ by Japanese computer scientist Kunihiko Fukushima [50]. The modelling
approach known at the time of writing as convolutional neural networks would descend from this idea.
In his paper, Fukushima draws heavily upon research into the architectural mechanisms uncovered in
the visual cortex of the cat several decades earlier [31]. This ‘bio-inspired’ neural network architecture
employed a combination of fixed and modifiable synapses which, contrary to later approaches with con-
volutional neural networks, would be trained using an unsupervised machine learning algorithm. Later
in 1986, the automatic differentiation technique originally proposed in 1970 [37], was famously applied
to train a multi-layer perceptron model - solving the credit assignment problem between network layers
that had previously limited perceptron models [51]. This technique came to be known as backpropaga-
tion. Three years later, the ‘universal approximation theorem’ was presented by George Cybenko stating
that a finite hidden layer of fully-connected neurons of such a multi-layer perceptron model was capa-
ble of approximating any continuous function [52]. The combination of backpropagation with universal
approximators gave rise to tremendous expectation about the potential of such a modelling approach,
although it would take further decades of innovation, by in large at the hardware level, before that poten-
tial would finally be realised. Backpropagation was extended to the setting of recurrent neural networks
simultaneously by several scientists towards the end of the 1980s using a technique called backpropa-
gation through time [53], whereby recurrent connections between neurons were defined, not with cyclic
loops that were forbidden by backpropgation, but by ‘unrolling’ the network into several timesteps. In
1997 an important recurrent neural network architecture was proposed called the long short term memory
network [54]. Somewhat like the neocognitron, long short term memory networks, incorporated specific
connectivity patterns which permitted, for example, architectural mechanisms enabling functionality such
as ‘forgetting’ which proved useful in the tasks related to time-series data.

In the 1990’s Christopher Watkins would take forward the ideas of Donald Michie, thankfully this time
with a digital computer, and Arthur Samuel and propose the reinforcement learning approach known as
Q-learning [55]. Instead of a set of drawers containing beads, Q-learning uses a state-action ‘Q-table’.
Each cell of a Q-table contains a Q-value corresponding to the expected, temporally discounted, future
reward based on taking optimal actions from that state. The Q-learning algorithm explores these states
through interaction with an environment and uses the Bellman equation from dynamic programming [56]
to populate, or learn, the state-value pairs in each cell. Around the same time, Richard Sutton would
formalise the work of Arthur Samuel into what is now called temporal difference learning [57]. Temporal
difference learning algorithms are characterised by a temporally decaying parameter called an eligibility
trace that tracks the time since, for example, a particular state has been visited. This approach was
applied in the 1994 by engineers working at IBM whereby a temporal-difference model learned, from
self-play, to play the game of backgammon, eventually obtaining a ’master level’ of performance [58]. IBM
would also produce DeepBlue two years later that, despite being unsuccessful the first time around, would
go on to beat the reigning world chess champion in 1997. DeepBlue employed a search-tree algorithm,
largely similar to the minimax algorithm used by Shannon four decades before, called alpha-beta [59].
The success therein was not a substantial modelling innovation but rather the development of a massively

19

parallelised computer architecture that allowed faster and deeper search to be performed. With DeepBlue,
IBM would go on to set two trends in artificial intelligence in the subsequent decades - that of applying
‘brute force’ computing to AI and also the use of public competitions as a marketing strategy of large
corporations.

Similarly to how the neocognitron took architectural inspiration from biology, an American scientist
called John Hopfield would, in 1982, take inspiration from the dynamical properties of biological neu-
ral networks and propose a new idea for how memories could be stored and accessed in a recurrently
connected population of neurons [60]. The neurons of early ‘Hopfield networks’ were McCulloch-Pitts
neurons which output either +1, if it’s weighted input exceeded a threshold, or -1 otherwise. Under the
condition of symmetrical connectivity, it was proven that, upon presentation of a static input pattern, the
state of the network would tend towards a stable attractor of +1 and -1 activations - serving as an activa-
tion ‘barcode’ that represented a memory. New attractors could be formed in Hopfield networks through
the Hebbian modification of synaptic parameters based on the co-activation of the pre- and post-synaptic
neurons pairs. Two years later Hopfield networks would be implemented using neurons implementing a
sigmoid activation function [61] and later with dynamical, Hodgkin-Huxley, neuron models [62] culminating
in a research field dedicated to investigating ‘attractor networks’. In the 1990’s American physicist Carver
Mead would draw analogues between the modulation of conductivity in neuronal ion channels in biological
neuronal membranes and transistors [63] giving rise to a new field called ‘neuromorphic’ computing. Neu-
romorphic computing would concern itself with the bottom-up emulation of biological neural networks and
biological Hebbian learning mechanisms, attractor networks for example, using sub-threshold analogue
transistor circuit models of neurons and synapses.

These two decades also saw the proposal and demonstration of many other important supervised
and unsupervised learning models and algorithms such as the self-organising map proposed in 1990
by Finnish scientist Teuvo Kohonen [64]. Additionally, in 1995, Vladimir Vapnik published a paper that
combined a linear classification approach he had been developing since the 1960’s called support vector
machines [65], with a set of mathematical tricks called kernel methods that were also originally proposed
in the 1960’s [66]. The incorporation of the kernel trick into the support vector machine permitted an
implicit projection of data, which was perhaps not linearly separable in its original space, into new space
where it becomes separable using linear support vector machine classifier [67]. Another important idea,
called boosting, was developed during the 1990’s [68]. Boosting recognised the predictive power of a large
ensemble of individually weak predictive models which, while alone were perhaps only slightly better than
random guessing, together allowed particular subsets of models to specialise in the detection of specific
features of a complex dataset. Boosting was combined with decision trees by Tim Kam Ho in 1995 to
realise the important random decision forest machine learning algorithm [69].

1.1.4 21st Century

In the current epoch it is perhaps not yet clear which new ideas will stick or not. At the time of writing,
it seems like a period with little in the way of fundamentally new or radical ideas in how to build models
of artificial intelligence and instead one where existing ideas have been supercharged by ever increasing
computational resources. The key piece of computing hardware would become the graphics processing

20

units, the first of which was launched by NVIDIA, rather appropriately, at the turn of the century in 1999
[70]. Graphics processing units would ultimately pave the way for ‘deep’ multi-layer perceptron models
to be trained using the backpropagation algorithm to achieve state of the art performance across a wide
range of application domains. The approach was re-branded as ‘deep learning’ in order to distance it
from previous failures regarding the optimisation of multi-layer perceptron models using backpropagation
[71]. If artificial intelligence were a garden, deep learning is a massive Sycamore tree that is blocking
out the light for a lot of the smaller, more fragile, plants. The first great success of deep learning was
the application of a deep convolutional network model, named AlexNet, in the annual ImageNet image
classification competition held in 2012 where it achieved a resounding victory [72]. AlexNet, a somewhat
monstrous evolution of the 1980’s neocognitron counting 60, 000, 000 free synaptic parameters, proposed
a regularisation technique called dropout that prevented the model, which with the large number of pa-
rameters had so many degrees of freedom, from over-fitting. Dropout, another concept loosely inspired
from biology, simply requires that, upon successive forward propagations, synaptic parameter values be
temporarily set to be zero with some probability such that they do not contribute to the models prediction.

The next year, a British artificial intelligence company called DeepMind would demonstrate a deep
reinforcement learning approach, called Deep-Q learning, that learned to play Atari games from experi-
ence [73] where a deep convolutional neural network model was employed as an approximation of the
Q-table proposed in the 1990’s [55]. Again it was a bio-inspired idea, based on theories of the mammalian
hippocampus, called experience replay was the would prove to be the trick that would enable the Deep-Q
model to obtain such an ‘expert-level’ of performance. Echoing the marketing strategy of IBM’s DeepBlue
in the 1990’s, DeepMind famously defeated the European champion of ‘Go’ with their Alpha-Go deep re-
inforcement learning model in 2016 [74]. Similarly to DeepBlue, Alpha-Go was based on a search-tree
algorithm called Monte Carlo tree search [75] combined with of value and policy encoding deep learning
models.
Deep learning models have also had a profound impact in natural language processing. Initially, this
was thanks to deep recurrent neural network models, the long short term memory network for example.
However, in 2014 ‘attention’ models were proposed which would come to dominate natural language pro-
cessing. Attention provided an architectural mechanism allowing models to focus on particular parts of a
data sequence - whether it being an a certain area of an image or particular word in a phrase - similar in
concept to the mammalian fovea. Initially deep attention models were incorporated into an architecture
composed of recurrent neural networks [76]. In 2017 however, engineers working at Google proposed an
attention model called Transformer. Transformer improved on the previous state of the art using an atten-
tion architecture that did not feature any recurrence [77] - leading many in the field to claim that recurrent
neural networks were now redundant in such applications.
Another important deep learning architecture was proposed in 2014 called the generative adversarial neu-
ral network [78]. These models are actually a composite of two competing deep neural networks. The first
neural network, the generator, is fed with noise it then uses to produce a ‘fake’ output data point - a fake
image for example. The second network, the discriminator, is tasked with distinguishing this fake from a
real data point. The two models are optimised simultaneously using backpropagation, whereby the objec-
tive of the discriminator is to minimise the error in the detection of the real data points while the generator
is trained to maximise the error of the discriminator. Interestingly, the generator uses a de-convolutional

21

neural network architecture to generate the fake images [79] - effectively a convolutional network flipped
back-to-front.
Despite the truly seismic success of deep learning, serious concerns about model size, therein the num-
ber of synaptic parameters in the model, as well as the computational resources required to optimise all of
those parameters during training throw its practicality into question [3, 4]. At the time of writing the largest
models make use of a few hundred billion synaptic parameters [80]. This is particularly relevant in the con-
text of memory and energy constrained ‘edge’ computing applications and has led to research into deep
learning architectures and algorithms that allow model size to be significantly reduced. One such model,
proposed in 2016, is SqueezeNet [81]. SqueezeNet offers a 50x reduction in model size with respect to
the sixty million parameter AlexNet while being able to obtain an equivalent performance. The principal
innovation of SqueezeNet was the proposal of the ‘fire’ module. Each fire module in the architecture is
composed of a layer of point-wise convolutional filters followed by an expansions layer containing more
point-wise filters but also larger convolutional kernels.
Another direction of research, resonating more with the ideas of John Hopfield and attractor networks,
called reservoir computing emerged at the beginning of the 21st century. Reservoir computing is based
on the idea that static, randomly recurrently connected neurons could project an input time-series into a
new, possibly higher dimensional, space where temporal information pertaining to different classes of data
points could be integrated into linearly separable neuron activation patterns. The two main approaches in
reservoir computing are echo state networks [82], which employ neurons with continuous activation func-
tions, and liquid-state machines [83], that use spiking neuron models. The two approaches can therefore
be broadly dichotomised into favouring either the McCulloch-Pitts or Hodgkin-Huxley paradigms. Both
approaches have been applied to problems in temporal pattern recognition, although their achievements
have been largely overshadowed by the achievements of deep learning models applied to the same tasks.
Despite being unable to match the performance of deep learning models based on graphics processing
units, ‘non-von Neumann’ reservoir computing models implemented on an emerging class of computer
called a ‘neuromorphic processor’, offers the prospect of a more energy efficient solution. Rooted in the
ideas outlined by Carver Mead in the 1980’s [63], the first system bearing the hallmarks of a neuromorphic
processor was demonstrated in 2006 and consisted of an array of programmable analogue silicon spiking
neuron circuits which could be inter-connected through further circuits models of the synaptic connec-
tions between neurons [84]. A more developed system, supported by an additional digital ‘event routing’
protocol was proposed in 2014 [85] and would be followed by a similar chip in 2015 which incorporated
additional circuit implementations of bio-inspired Hebbian learning algorithms [86]. Fully digital neuromor-
phic processors were then released released by IBM in 2015 [87] and then Intel in 2018 [88] confirming
the interest of large corporations in the development of neuromorphic, event-based, hardware. Such sys-
tems are referred to as non-von Neumann since they offer a means of distributed memory and parallelised
computing, similar to the computation of the animal nervous systems on which the chips are based, in
contrast to the centralised and sequential nature of the computing machines developed by the likes of
Alan Turing and John von Neumann. However, it is important to note that both Turing and particularly von
Neumann [14] also argued in favour of such brain-inspired computing solutions in the 1940’s and 50’s.

22

1.2 Hardware in artificial intelligence

Artificially intelligent computer models are intrinsically tied to computing hardware. It is no coincidence
that the fathers of computer science, like Alan Turing, Donald Michie and Claude Shannon, were also the
pioneers that developed early concepts in AI that still persist to this day. At the time of writing, the predom-
inant computing architecture is the von Neumann stored-program computer. Von Neumann machines are
coarsely defined as having separate memory and processing centres. Information encoded as strings of
binary bits, describing either variables or arithmetic and logic instructions, are stored as digital words in
the memory centre. The processing unit fetches these variables and instructions from defined addresses
in memory, performs an operation on the variables as defined by the corresponding instruction and then
writes the result back to another pre-defined location in the memory. Relative to the modern computers
available at the time of writing, early systems were almost unimaginably constrained in terms memory
and speed. Around the time that Arthur Samuel wrote his draughts playing program [40] for example, the
state of the art computer was the IBM 1401. It disposed a mere 4kb of 8-bit memory and was clocked at a
frequency of 87kHz. This permitted the equivalent of approximately one thousand operations per second
[89]. You can imagine how aware of the underlying hardware the early AI practitioners had to be. As time
progressed however, von Neumann computers would become faster and leverage more memory as well
as benefit from architectural innovations such as parallelisation, cache memory [90] and multi-threading
[91], such that gradually less and less thought was given to the underlying computation. However, for
memory intensive techniques in AI, such as deep learning, computing hardware has once again become
a limiting factor. This is not due to memory capacity, which continues to increase year on year, nor is it
due to a limit in clock speed. The problem arises from the time and energy incurred in the transportation
information between memory and processing centres. In reference to this, the term ‘von Neumann bot-
tleneck’ was coined in 1978 [92]. This has driven the pursuit of alternative, non-von Neumann, hardware
paradigms wherein the objective has been to reduce as much as possible the physical distance separating
memory and processing - ideally to zero.

1.2.1 LISP machines

In the first decades of AI research and application, the go-to language for the implementation of tree,
logic and knowledge based models was LISP [93]; deriving its name from LISt Processor in reference
to the data structure and syntactic style central to by the language - the linked list. As a result of its
popularity, a special purpose computer called a LISP machine was developed in the 1970’s [94] whereby
dedicated circuits allowed the acceleration of various LIPS specific operations and memory structures.
These machines offered a speed-up of several factors compared to equivalent programs implemented on
general purpose machines. However, as the use of the LISP language, and the approach to AI which it
facilitated, declined during the 1980’s and 90’s, many LISP machine manufacturers would ultimately go
out of business and general purpose von Neumann computers would go on to serve as the predominant
substrate for AI.

23

1.2.2 Field programmable gate arrays

The earliest example of a non-von Neumann computing hardware is the field programmable gate array
(FPGA), proposed in 1985 by the American company Xilinx [95]. FPGAs are effectively a two-dimensional
array of configurable logic blocks (Fig 1.4a). Each block can be configured independently to implement
basic logic operations, typically using a look-up table. The connections between neighbouring blocks can
also be configured offering the possibility of realising large reconfigurable digital circuits. FPGAs distribute
blocks of memory over the periodic 2D array which are responsible for storing the information which
determines the logic and inter-connectivity for a subset of blocks. Naturally a body of work has focused on
the implementation neural network architectures and deep learning algorithms, such as backpropagation
[51], on FPGAs [96]. In particular the parallelisation of the dot(inner)-product operation, which underpins
the forward and backward propagations required in deep learning, has been investigated. However, when
benchmarked against application-specific integrated circuits (ASICs) implementing neural networks [97],
FPGAs are generally acknowledged to incur penalties an order of magnitude greater in silicon area, power
consumption and latency [98].

1.2.3 Graphics and tensor processing units

Graphics and, more recently proposed tensor, processing units (GPU/TPUs) represent an evolution of
central processing units (CPUs) through the incorporation of a parallelised architecture and multi-threading
that allows the acceleration of mathematical operations, namely operations on matrices (Fig. 1.4b). Origi-
nally proposed, as suggested by the name, to accelerate the processing of images and video by NVIDIA
in 1999 [70], the GPU has also been leveraged to accelerate AI models based on the manipulation of
large matrices - principally deep learning [71]. Like CPUs, current GPUs [99], are configured to exe-
cute stored programs through the use of an interface called Compute Unified Device Architecture (CUDA)
which provides access to the arithmetic units of the GPU from a high-level programming language and,
although memory and processing and more distributed with respect to a CPU, they are still considered
as von Neumann computers. Recently Google released the TPU that, unlike the GPU which is intended
to be applied to a broad class of applications, is targeted solely on accelerating inference and learning
algorithms related to deep learning [100]. While GPUs and TPUs achieve extremely high throughput and
accelerate significantly deep learning models, they require a large amount of energy - a typical GPU at
the time of writing will consume on the order of hundreds of Watts of power [101]. Their application is
therefore largely limited to cloud computing and data centre settings. This however restricts the class of
tasks to which such GPU-based AI models can address - in particular applications at the edge where
energy and memory resources are constrained and perhaps intermittent.

1.2.4 Neuromorphic processors

The energy requirements of GPUs and TPUs, when applied to artificial intelligence, are often contrasted
with the estimated energy requirements of animal nervous which are capable of performing the same
task (while of course performing countless other parallel tasks) but requiring many orders of magnitude
less energy. This has driven interest in the field of neuromorphic computing [63], which aims to develop

24

computing systems that imitate the bottom-up computational primitives of animal nervous systems in con-
figurable, often self-configuring, silicon chips. It is believed that such a bottom-up approach, emulating
the massive parallelism and distributed computation of the biological system, will lead to the realisation
of a more energy efficient hardware that could support AI models which can be applied in the energy
constrained setting of the edge. Numerous analogue circuits modelling the dynamical properties of bio-
logical neurons [102, 103] and synapses [104] have been proposed, leading to the first re-configurable
arrays of such models in 2006 [84]. Later systems would be composed of multiple ‘neuromorphic cores’
[86, 85] that make use of content addressable memories [105] and a routing protocol called address event
representation (AER) [106] to send information between neurons on the same core and between cores
(Fig. 1.4c). AER assigns an address to each neuron and, since neuromorphic processors implement spik-
ing neuron models like that proposed by Hodgkin and Huxley [28], transmit events from a source address
neuron to, potentially, multiple target address neurons asynchronously.

Neuromorphic processors have also been realised using digital, instead of analogue, circuit models of
neurons and synapses [87, 88]. The digital approach is appealing since, as technology nodes scale down,
digital circuits become more energy efficient whereas analogue circuits face increasing design challenges
and are not able to extract an equivalent benefit [107]. Furthermore, due to the increased mismatch
between transistor dimensions and properties in more advanced nodes, large behavioural differences
can exist between analogue circuit models that would ideally behave identically. To mitigate this, the
dimensions of the transistors composing analogue circuit models are generally increased well above the
minimum feature size of the node [108] - negating somewhat the benefit of using the more advanced
technology nodes.

Other than providing a silicon substrate for defining dynamical neural network topologies, neuromor-
phic processors also support biologically-plausible learning and adaptation algorithms, such as Hebbian
spike-timing-dependent-plasticity [109] for long-term memory formation as well as circuits implementing
short-term plasticity [110] and also spike frequency adaptation [111]. At the time of writing, the field
of neuromorphic computing, in particular the development of neuromorphic processors, is still emerg-
ing and currently faces a broad spectrum of challenges ranging from conceptual ones, regarding how to
transfer results from computational neuroscience into neuromorphic computing models, to technical ones
such as addressing bandwidth limitations and reducing levels of static power consumption due the AER
based communication protocol [112]. The field would do well however, to appreciate the long timescales
observed throughout the history of AI between the emergence of new ideas and their successful imple-
mentation.

25

(a)

P
ro

c
e

s
s

o
r

P
ro

c
e

s
s

o
r

P
ro

c
e

s
s

o
r

P
ro

c
e

s
s

o
r

Global memory

Threading controller

(b)

Synapse array

Neuron array

Vm

t

Iin

t

C
or

es

(c)

V[0] V[1] V[2] V[3]

i[0]

i[1]

i[2]

i[3]

{
i = V.G

G

(d)

Figure 1.4: Computing hardware supporting AI computer models. (a) A field programmable gate ar-
ray (FPGA) is composed of an array of configurable logic blocks (blue squares) which receive and send
digital signals with their neighbouring blocks. The logic of each block is generally implemented using a
look-up table. The logic of the look-up table and block inter-connectivity is determined using a memory
that is generally shared by a subset of of blocks (b) Graphics processing units are generally composed
of multiple processors, each with their own local memory, that execute in parallel on multiple cores. Their
execution is determined by a global threading controller and a global memory. (c) Neuromorphic proces-
sors are composed of multiple neuron cores, each containing an array of neurons and synapses that, with
either analogue or digital circuits, model their dynamical properties. A content addressable memory is
used to interconnect neurons on the same core as well as neurons on other cores which communicate
through a global address-event representation (AER) interface. (d) A dot(inner)-product operation can
be implemented by applying features (V[0], V[1], V[2] and V[3]) of a voltage vector V of the columns of
a cross-point array of resistive (conductive) elements G. The currents (i[0], i[1], i[2], i[3]) that flow out of
each row correspond to the vector i.

26

1.2.5 Memory technologies

Computing hardware is dominated by memory. This is as true for the distinct memory centres of von
Neumann chips as it is for the distributed memory blocks in FPGAs and neuromorphic processors. Models
of artificial intelligence also hinge on memory which provides structure and brings them to life - whether
it being the giga-bytes of memory required to define the synaptic weights of AlexNet [72] or the transient
memories that are accessed through attractors in Hopfield networks [60, 61]. Memory is a concept that
unifies concepts of learning, behaviour and planning in psychology but at the same time is something
entirely tangible from a technological perspective. The right kind of memory technology could be the
spark that illuminates new opportunities and methods for constructing the next generation of non-von
Neumann machines that can support models of artificial intelligence more efficiently than those that exist
today.
Like AI, memory technologies also have an interesting history, whereby a multitude of physical principles
have been harnessed over time as they have become available or were sufficiently well understood. From
the time of the Jacquard loom [10], up until approximately the mid-twentieth century, the best way to store
information was using a punch card - literally a thick sheet of paper with holes punched into it. The punch
card was eventually replaced by binary patterns written onto, and read off of, ferromagnetic strips on the
outer surface of a rotating drum in 1940’s and 50’s [113]. Early computers would go on to use magnetic
tapes, a sensible descendent of the rotating drum, as well as delay-line memories in which signals, often
a series of rectangular ultrasonic waveforms, would propagate indefinitely in a delay loop medium, liquid
mercury for example, and be restored once per loop using a pulse shaping circuit [114]. A computer
could then read out serial sections of this circling waveform and compute with it. In the 1960’s, both
static random access memory (SRAM) [115] (Fig.1.5a) and dynamic random access memory (DRAM)
(Fig. 1.5b) were developed that were respectively based on a transistor circuit with restorative feedback
and a transistor gated capacitor which was periodically charge-refreshed. These memory cells have since
become favourable as they can be realised using the same technological processes that are also used to
make arithmetic logic units and today remain the dominant solutions for on-chip working memory’. They
are referred to as volatile memory technologies since the electric charge, stored by the respective cells
that represents the bit they encode, leaks away in the absence of a power supply. The major downsides of
such volatility are the static power consumption, required for information to be retained, and the fact that
each time a system is power cycled information has to be reloaded into working memory from a storage
class non-volatile memory. In order to store information in such a non-volatile fashion, magnetic hard-disk
drives are largely used in modern computers. In 1968, an alternative means of realising a non-volatile
memory, the first since the punch card that did not rely on magnetic properties, called the floating-gate
transistor [116] was proposed. The floating gate transistor works on the principle of injecting charge into a
‘floating gate’ by means of electron tunnelling, or hot electron injection, that takes place under application
of a large voltage over the device. The charge injected into the floating gate persists in the absence of a
power supply and, when a read voltage is applied to the standard gate of the transistor, the current that
flows in the transistor channel is determined by the quantity of this stored charge - therefore denoting the
value of the stored bit. The floating gate transistor would later be used by engineers working at Toshiba
in Japan to realise NOR and NAND flash non-volatile memory cells in 1984 and 1987 which respectively

27

use series or parallel combinations of these transistors [117, 118].
Since the turn of the 21st century, resistive memory (RRAM) devices, which use the resistance of a two-
terminal nano-device as a means of non-volatile storage, have been proposed based on a variety of
physical mechanisms (Fig 1.5c). Such mechanisms include the presence of conductive oxygen vacancies
(OxRAM) [119] or a conductive bridge of metal-ions (CBRAM) [120] in an insulating oxide, the extent
of crystallisation of a glass alloy in phase change memories (PCM) [121] and the difference in magnetic
polarisation between two ferromagnetic material layers separated by a thin insulating tunnelling layer [122]
(MRAM). Ferroelectric materials have also been investigated in a similar device topology to the floating
gate transistor whereby a ferroelectric material is used as a transistor gate-dielectric (FeFET) and, through
the non-volatile modification of its polarisation, the read current of the transistor also changes to reflect
the value of the stored bit [123]. RRAM are claimed to be a ‘missing’ fourth circuit element predicted
in 1976 called the memristor: a device whose resistance varies as a function of the history of charge
that has flowed through it [124, 125]. This is hotly disputed however [126], and in this thesis the term
resistive memory, or RRAM, will be used exclusively. In any case, the resistive state (or conductive state)
of RRAM can be programmed by applying voltage and current waveforms over the two device terminals
to store binary bits [127] or multiple bits per cell [128] in a non-volatile fashion. However, the resistive
states assumed after programming operations are subject to a high degree of randomness whereby, upon
identical programming operations, devices assume, often drastically different, resistance states between
successive programming iterations and between devices - respectively termed ‘cycle-to-cycle’ and ‘device-
to-device’ variability [129]. Such variability imposes severe limits on the number of bits that can be reliably
stored in a cell with respect to other memory device approaches.

One of the principal interests in resistive memory devices is to leverage their non-volatile conductance
states as analogue weight elements in non-von Neumann hardware implementations of neural network
models. In particular, much like GPUs, as a means of parallelising the dot(inner)-product operations that
are required in the forward propagation of an input data point to an output inference and also in the back-
propagation operations required during model training. Specifically, a dot-product operation is evaluated
between a matrix of conductances, organised in a cross-point array, and a voltage vector, corresponding
to features of an input data point, that is applied across the array columns. The currents flowing out the
array rows correspond to each element of the vector resulting from the dot-product between the voltage
encoded data and the conductance based model (Fig. 1.4d). The key advantage of such an approach is
that the computation occurs inside of the memory, exploiting nothing more than the physical laws of Ohm
and Kirchoff - potentially circumventing a von Neumann bottleneck in the computing system [130]. To ac-
commodate this analogue-domain parallelisation of the dot-product operation however, serious practical
issues remain regarding the energy and area required due to the repeated digital-to-analog and analog-
to-digital conversion [131, 132] and ‘pitch matching’ the low-area memory cross-points with large area
peripheral circuits [133, 134]. Further problems exist in the high programming voltages, high program-
ming currents and high read currents required [135] that not only entail large quantities of energy but pose
challenges in the integration with advanced technology nodes that use much smaller nominal supply volt-
ages. The first such neural network inference chip, whereby a neural network model was trained ‘ex-situ’,
or ‘off-line’, on a von Neumann computer and then transferred onto the hardware which would perform
only inference with the model, was proposed in 1991 and used the drain-source conductance of transis-

28

tors, whose gates were biased by charged capacitors, as the analogue memory element [136]. This was
shortly followed by further inference chips employing the conductance states of FeFETs [137] and floating
gate transistors [138] as the non-volatile synaptic weight elements. The first inference chips based on ar-
rays of re-configurable two terminal RRAM devices were then proposed in the next decade [139]. Despite
proposals to realise neural networks without overlapping memory cross-points [140], the crossbar struc-
ture has come to dominate proposals for such dot-product (sometimes called multiply and accumulate)
‘engines’ and their design and fabrication remains, at the time of writing, an active research topic. In order
to solve leakage current, or ‘sneak path’, issues in RRAM arrays, multiple device selection solutions have
been proposed whereby diodes [141], transistors [142] or ovionic threshold switching thin-films [143] act
to select specific devices in a memory array for reading and programming. The configurability of resistive
memories, under the application of relatively simple voltage pulses that can be generated locally has also
prompted research into the implementation of machine learning algorithms ‘in-situ’ - also referred to as
‘on-chip’ or ‘on-line’ - for feed-forward [144, 145, 146], long-short-term-memory [147, 148] and spiking
neural networks [149, 150, 151, 152]. When contrasted with ex-situ model training, in-situ training allows
for models to be updated locally and, as such, the approach is therefore a promising avenue for bringing
adaptability and learning to edge systems. Additionally, in-situ trained models have also been observed
to accommodate for local hardware and device specific defects and variability [146].

Despite open questions regarding how to best harness its properties, RRAM is certainly a candidate
for the ‘right’ kind of memory that could well lead to a new generation of low-energy non-von Neumann
computers. Although their application has thus far been largely confined to either ex-situ [153] or in-situ
[145, 146, 147, 148, 152] implementations of backpropagation for training deep learning models, other
examples of non-von Neumann computing based on RRAM properties also exist. This includes their use
in realising logic circuits [154] as well as in true random number generation [155]. Additionally, intrinsic
resistive memory randomness has been leveraged as a means of solving optimisation problems in RRAM-
based Hopfield networks [156]; in a similar fashion to how the spin-spin coupling of superconducting
quantum bits has been used to implement quantum annealing algorithms in conceptually similar Ising
machines [157]. Furthermore, while strictly not acting as a memory, the random switching behaviour of
MRAM when driven by a constant DC bias current has been applied to perform Bayesian inference; using
a tree of C-Muller elements [158] to evaluate the joint probability of input random variables [159], each
represented by an MRAM device, or by interconnecting the devices to realise a Bayesian network [160].

Future memory concepts such as magnetic racetracks [161] which store bits as a sequences of mag-
netic ‘domain walls’ in nanowires, molecular memory cells that use switchable properties of organic molec-
ular structures to store information [162], quantum-dot based flash [163] as well as quantum mechanical
memory [164] promise further properties and opportunities that can also be one day harnessed in com-
puter models of artificial intelligence.

29

BL
BL

WL
vdd

(a)

WL

BL

(b)

OxRAM/

CBRAM
PCM MRAM

Free layer

Pinned layer

Tunnel layer

Conductive
oxygen vacancy/
metal ion chain

Insulating
amorphous

phase

Conductive
crystalline

phase

(c)

Figure 1.5: Common memory bit cells (a) A six transistor static random access memory (SRAM) cell
whereby the cell is selected for programming or reading using the wordline (WL) and the binary bit that
is present within the cell can be readout based on the current flowing out of the bitlines (BL). (b) A
dynamic RAM (DRAM) cell whereby the wordline (WL) is used to read the bit, stored as a voltage on
the capacitor, of the cell. DRAM requires a refresh controller in order to keep the capacitors charged or
discharged appropriately. (c) Three different types of resistive memory (RRAM) cell are shown - (left)
oxide/conductive-bridge RAM (Ox/CBRAM), (centre) phase change memory and (right) magnetic RAM.
Arrows on each two-terminal device indicate the conductance mechanism which is used to store the
bits within the resistive/conductive states of the cell. White arrows in the MRAM cell indicate the spin
polarisation of the magnetic layer.

1.3 Challenges in applying artificial intelligence

There are obvious conceptual challenges in artificial intelligence, namely the question of what intelligence
even is and how to go about building models of it on computers are still very much open questions. The
best black-box and tree-based approaches developed at the time of writing, although arguably not viable

30

models for real intelligence, are certainly capable of reproducing specific intelligent and useful behaviours
in isolation. As such it is now possible to apply AI models, neural networks for example, to solve real-world
problems. However, considerable challenges still need to be confronted such that existing approaches can
be applied in a practical and responsible fashion.

1.3.1 Training energy consumption

Artificial intelligence, deep learning above all, has benefited enormously from the aggressive transistor
scaling that has increased the speed of computers and the availability of on-chip memory. However, to
obtain state of the art performance in a specific task the energy and time required to train a model is often
truly staggering [3, 4]. The AlphaGo model from DeepMind, for example, was trained over the course of
a month using on the order of thousands of CPUs and hundreds of GPUs [74]. Knowing that a single
GPU has a power consumption on the order of hundreds of Watts [101], a back of the napkin calculation
suggests the total energy demanded by the GPUs alone is on the order of millions of kilowatt hours. To put
this number in context, an average French household consumes on the order of a thousand kilowatt hours
of energy in an entire year [165]. Is it reasonable that the same amount of energy to sustain one thousand
households in a year was used to train a deep learning model to play Go in a month? At the time of writing,
the AlphaGo model was produced four years ago. Since then model sizes have increased exponentially in
order to achieve incremental performance gains [5]. To train the Transformer model proposed by Google
in 2017 [77], greenhouse gas emissions equivalent to six hundred plane tickets between New York and
San Francisco or the total fabrication and running costs of five cars during their lifetimes was estimated to
have been required [3]. The worlds largest model at the time of writing uses almost two hundred billion
parameters [80]. It has been estimated that the electricity usage alone to train it cost five million US dollars.
Limited to a single GPU, this training process would take 355 years to conclude [166]. Considering the
rapid growth in the application of these extremely energy intensive AI models, which is projected to be
sustained well into the future [1], serious questions have to be posed about the sustainability of allowing
the field to continue in this fashion and, ultimately, end up as a major contributor to climate change.

1.3.2 Bringing learning to the edge

As a result of these energetic requirements, the majority of applications for AI hinge on centralised cloud
computing infrastructures [167]. This means that models are trained, stored and often queried by edge
computing hardware in the cloud - where massive amounts of energy, memory and computing resources
are readily available. To reduce the latency and the volume of data transferred between the edge and the
cloud, models can also be trained on the cloud and then transferred to dedicated edge hardware that acts
to perform local inference with that trained model [168, 169, 170, 171]. However, no commercially available
hardware exists that can meet energy usage and memory size constraints that would enable intelligent
systems to be trained and adapt themselves locally at the edge [169, 2]. While for many application
domains this cloud-centric approach to AI is perfectly adequate, it does mean that a number of potentially
revolutionary use cases are being overlooked and not subject to investigation. For example, implantable
medical systems such as cardioverter defibrillators [172], which are required to intervene with an electric

31

shock upon detection of dangerous heart arrhythmia, have existed for some decades. Such systems might
benefit tremendously from the local and patient specific application of AI that could allow their operation
to be continuously adapted and optimised. Once implanted however, these medical systems may have
intermittent, or no access at all, to an external power supply. Other than the tremendous heat that would be
generated, a deep learning model based on a GPU within the implantable system would evidently quickly
exhaust any local battery. Further than restricting the areas in which AI can be applied, the cloud-centric
approach also influences the direction of research into new modelling and algorithmic ideas. In recent
years , research interest has been overwhelmingly focused on the brute-force mathematical optimisation,
framed as supervised learning problems, of extremely large models using pre-labelled ‘big data’ datasets
on cloud platforms. Such a learning approach is not suitable in the edge setting. At the edge, by contrast,
data is input to the model in a continuous and unlabelled stream in real-time from the environment and,
due to memory constraints, likely will not be stored. Rather, ideas focusing on how to understand, learn
from and respond to patterns in such a label-less deluge in real-time, on how to deal with previously
unseen types of data and compensate for environmental changes and drift where the edge system exists
would be preferred. At the time of writing however, since they are not required in the cloud-centric context,
such modelling and algorithmic approaches either do not exist or are not being actively pursued at large
by the community.

In spite of this, the market for edge learning is expected to emerge and grow rapidly over the coming
decade [2]. To enable this, the solution can be viewed from two angles: either edge hardware must be
made more efficient or models of AI must be improved such they demand fewer resources. Aspects of
both are undoubtedly true. To bring locally adaptive intelligence and learning to the edge, potentially
opening up new application domains that are not being considered today, simultaneous and cooperative
innovation in hardware and modelling are required.

1.3.3 Ethical application of AI

Unlike the goal-tree based approaches applied in the 1960’s [41] which, after performing an action, could
offer a reason as to why, the outputs of black-box models like neural networks often suffer from a lack of,
or zero, interpretability [6]. While harmless in applications such as product recommendation or in cus-
tomer service chatterboxes, serious ethical questions arise for safety-critical applications. For example,
autonomous driving and medical diagnosis - two of the most potentially transformative emerging markets
for AI. For example, if a deep learning model takes an erroneous action that results in a fatal traffic ac-
cident, how would a justice process proceed without being able to interpret the actions of the model that
lead to it? Or in the medical setting, if a model arrives at a certain diagnosis in a complex problem studied
in a patient, should a doctor continue with, and take responsibility for, that course of treatment if they
themselves are not able to arrive at the same conclusion and not able to interpret why the AI model itself
has arrived to such a conclusion?

Following a similar set of arguments as the case for interpretability, various approaches to AI are not
able to hold-up their hands and say ‘I don’t know’ or ‘I am uncertain about this output’. Examples of
this exist whereby an image of the hand-written digit ‘0’ is presented to a model which has been trained
to recognise cats and dogs leading to a prediction that the input data point was a cat. Reciprocally, for

32

models trained to recognise hand-written digits, given an input of a cat, they might tell you a ‘7’ has
been presented to it. This problem arises by viewing, in the case of neural networks, output layers of
neurons as a discrete probability distribution through, most often, the application of a ‘softmax’ function.
The output softmax ensures all of the output responses, encoding the probability of an input data point
belonging to a pre-determined set of classes, sum to one [72]. Therefore, when presented with classes
of data on which a model has not been trained, or has observed very few examples of, it is obliged to
make a prediction such that the total probability across the output sums up to one in any case without
communicating any level of uncertainty about this predictions. For AI models to communicate uncertainty,
they have to incorporate uncertainty into their constituent parameters. This uncertainty will then in turn
propagate through a model into its output predictions [173, 174].

A class of models which describe and communicate uncertainty in this fashion are ‘Bayesian models’
- named in homage to the Reverend Thomas Bayes. Bayesian models, instead of using deterministic
values to describe something like a synaptic weight in a neural network, make use instead of probability
distributions (i.e., random variables) [7]. In this fashion, uncertainty in the estimation of each parameter
can be incorporated into each of the probability distributions which describe them [175, 173, 174] and
in fact becomes and integral part of their training process. For example a synapse with the value of
2.5 in a deterministic neural network might be described by a normal distribution in a Bayesian neural
network where, if it was quite sure about this value, the normal distribution would be narrow (have low
standard deviation) around a median of 2.5. If it were less sure about this value, the normal distribution
might be very wide and spread its total probability density over a larger range of values. This parameter
uncertainty, as aforementioned, then propagates through Bayesian models and manifests in their output
prediction uncertainty. As a result, a model trained to recognise cats and dogs, when presented with the
digit ‘0’, might tell you, via its output prediction distribution, ‘that looks more like a cat than a dog although,
in all honesty, I have never seen anything like that before and I am very uncertain’. For some applications,
a cloud-based model tasked with selecting car insurance policies for example, the consequence of taking
wrong actions with a low frequency is largely unimportant. If the model achieves a prediction accuracy of
99.99%, the company will certainly lose some money in a small number of large money payouts, but the
money likely saved through incorporation of AI into their process will overall most likely make it worthwhile.
Uncertainty is extremely important however, just like interpretability, in safety-critical applications where a
single wrong decision could cost a human life. Consider an AI model tasked with controlling the actions
taken by a cardioverter-defibrillator: an implantable medical device which applies electrical shocks to the
hearts of patients in the event of detecting dangerous heart arrhythmias in order to restore a normal
heart rhythm [176, 177]. While the detection of a true positive could save a patients life, the erroneous
application of a shock to a properly functioning heart could prove fatal [178]. A model which takes such
heavy decisions, where there exists an imbalance between inaction and incorrect action, should not be
obliged to act when it is unsure. While a deterministic model does not know when it is unsure, it is possible
to look at the output prediction distributions of a Bayesian model to understand, with what level of certainty,
an action should be taken or not.

33

1.4 Scope of this thesis

The objective of the work presented in this thesis is to explore the inter-disciplinary boundary between the
fields of artificial intelligence, emerging technologies and biological nervous systems. Specifically it will
consider how resistive memory technologies can be used to support ultra-low energy approaches to AI
based on neural network, or connectionist, models that can be applied in the resource constrained setting
of the edge. The key will therefore be the exploitation of the non-volatility and in-memory dot-product
capabilities of resistive memory, while finding methods to work with, or leverage, the other non-ideal
characteristics of resisitve memory. For example, the large levels of conductance variability that currently
hold back its practical application.

In order to achieve this, Bayesian machine learning approaches, compatible with the fundamental
device properties of RRAM, are developed and applied experimentally to the training of RRAM-based
models. Additionally, a computing fabric based on distributed resistive memory devices, capable of sup-
porting re-configurable neural network models and inspired by the organisational principles observed ani-
mal nervous systems, is proposed. Circuits, implementing the building blocks of this computing hardware
are designed, fabricated in a hybrid 130nm CMOS-RRAM process and then experimentally verified. Two
neural network models inspired by two different insect sensory systems, the cricket cercal system and
the Drosophila elementary motion detection system, are also developed. These cricket and Drosophila
models respectively show that such bio-inspired architectures permit the memory requirements of neural
network models to be reduced by orders of magnitude with respect to conventional architectures, and
that bio-inspired dynamical neuron and synapse models are important for addressing tasks with temporal
dependencies.

The thesis is organised into three chapters, addressing each of these three aspects independently.
While they are written to stand on their own, each chapter compliments aspects of the others and to-
gether they are intended to paint a picture of a Bayesian neuromorphic computing approach based on re-
sistive memory. The first chapter presents the two bio-inspired models and their advantages, the second
describes RRAM-compatible Bayesian machine learning algorithms that can be applied to train resistive
memory based neural networks and the third chapter presents a circuit and system level description for
a re-configurable RRAM-based computing fabric on which such models can be implemented. The thesis
concludes with a future vision of a full Bayesian neuromorphic computing system. It is discussed how
properties of the bio-inspired neural network model architectures from the first chapter might be important
for addressing potential limitations foreseen in the presented machine learning and hardware approaches.

Ultimately, the work provides a blueprint for a new approach to artificial intelligence by combining ideas
at the interface (Fig.1.6) of machine learning, technology and biology, each of which plays an important,
although normally independent, role in the field. The resulting computing system, by drastically reducing
the energy required to implement machine learning, offers a means of bringing learning to extremely re-
source constrained environments at the edge. Due to certain properties of the bio-inspired and Bayesian
AI models developed, namely their abilities to be interpreted and express uncertainty, their value in ad-
dressing questions regarding the ethical application AI are also discussed. As a result, it opens up the
door on a new set of extremely low-energy safety-critical application domains, which cannot be addressed
with existing approaches – implantable intelligent and adaptive medical systems for example.

34

Figure 1.6: A Venn diagram showing the three predominant research fields, and the emphasis on studying
their intersections, covered in this thesis.

35

36

Chapter 2

Bio-inspired neural network architectures

2.1 Chapter introduction

Intelligence in animal nervous systems, contrary to prevailing notions in AI, is more than just learning. A
great number of animal behaviours such as the detection and appetitive response to blood in sharks [179],
escape responses in mice, flies and crickets [180, 181, 182, 183, 184] as well as complex courtship and
burrowing behaviours observed in a wide variety of species [185, 186] are built-in innately through neural
network architecture and neural dynamics from birth. The genome of an animal, carved out and refined
during many hundreds of millions of years of evolution, contains the full instruction set which details as
to how all of the neural architectures that compose a nervous system are built and interconnected. The
mammalian genome however, composed of some billions of nucleotides, stores the equivalent of a mere
gigabyte of information [187] - and that is to build the entire animal, not just its brain. A single gigabyte
pales in comparison to the memory requirements of even modest neural network models currently being
applied in AI. This alludes to the existence of a smaller set of fundamental, task specific, neural architec-
tures and computational principles which are recycled across multiple neural systems. In fact, even across
wildly different species separated by half a billion years of evolution, common architectures and computing
principles are observed [188]. This chapter will seek to develop bio-inspired model architectures based
on neuro-physiological and neuro-anatomical research currently being conducted into two insect sensory
systems - the cricket cercal system and the Drosophila elementary motion detection system. Overall,
the purpose is to understand as to how connectionist AI approaches might unshackle themselves from
‘pure learning’ [189], and what the advantages may be in doing so, by taking inspiration from the innate
mechanisms uncovered by evolution and stored in the animals constrained genome.

2.2 Model of the cricket cercal system escape response

2.2.1 Introduction

Neurons are the fundamental computational units of connectionist approaches to artificial intelligence
[27, 28]. They can be understood computationally as defining a linear hyper-plane in an input feature
space through application of an activation function to a weighted sum of these features. While alone these

37

neurons can solve only simple ‘linearly separable’ tasks; they can, when networked together in a neural
network architecture, solve more complex non-linear ones [190]. The predominant approach in neural
networks in recent years has been that of deep learning [71], which can attribute its success to the com-
bination of two important ideas. The first is the universal approximation theorem [52] which states that a
fully-connected feed-forward hidden layer of neurons is capable of approximating any continuous function
- given an appropriate combination of synaptic parameters. The second is the use of batch backpropaga-
tion stochastic optimisation [37, 51] as a means of determining these parameter values that link together
successive layers of neurons. However, deep learning models with hidden layers are characterised by
non-convex loss surfaces. As such, backpropagation will converge to a locally-optimal configuration of
parameters - not necessarily the global optimum - as a function of their random initialisation. In order to
improve the quality of these local minima the solution has been to include many, hence deep, wide neural
network layers [191], although this ultimately leads to a unwieldy and memory inefficient model which is
difficult, arguably impossible, to interpret [6].

An important approach within deep learning, first proposed in the 1980’s as the ‘neocognitron’ [50],
has developed into the field of convolutional neural networks (CNNs) which achieve state of the art per-
formance in applications related to image processing. This is in spite of the fact CNNs are composed of a
subset of the parameters of a fully-connected feed-forward network of an equivalent depth [72]. Crucially,
CNNs, originally inspired by research into the cat visual cortex [31], have demonstrated the potential
of applying backpropagation to task-appropriate neural network architectures inspired by biology - as
an alternative to the use of universal approximators. Other deep learning architectures, namely attention
models [76] and generative adversarial networks [78], have lead to respective leaps in machine translation
and novel data-point generation that further reinforce the importance of architecture in neural networks.

In the field of neuromorphic computing, where a more ‘bottom-up’ approach is taken to artificial intel-
ligence, research into biological nervous systems has, as in the case of CNNs, also provided a source of
architectural inspiration. This has led to models which, for example, incorporate dynamical and topological
motifs inspired by the Drosophila visual, the honey-bee olfactory, cricket auditory and the cockroach motor
systems into motion detection [192], contrast enhancement [193], temporal pattern detection [194] and
locomotion [195] models respectively. However, such approaches have been somewhat limited by lack of
an effective means of defining model parameters, whereby manual parameter tuning or correlation-based
Hebbian learning rules [196] are typically employed.

Here, we propose a computational model for the air current evoked jumping escape response studied
in the cricket cercal system. Instead of manual tuning or Hebbian learning, we employ the backpropagation
algorithm, more commonly used in the deep learning setting, as a means of model parameterisation. In
contrast with deep learning, however, backpropagation is not used to find an arbitrary local loss minimum
based on a random parameter initialisation, but instead as a means of steering the parameters towards
optimal values consistent with the logical structure of the bio-inspired architecture that relates neurons to
one another.

We find that, when applied to the detection of a simulated attacking predator, the optimised cercal
system model is able to obtain the same performance as benchmark universal approximators, although
requiring between one and two orders of magnitude fewer parameters. Additionally, we also find that,
because the model contains neurons and synapses with well defined functional roles, it is possible to

38

interpret how the optimised model functions and makes decisions. Ultimately, the results provide a strong
basis for the incorporation of biologically inspired architectures into memory efficient and interpretable
neural network models.

2.2.2 Model definition

The cricket cercal system

The cricket cercal system has been under investigation for several decades, leading to an understanding
of many of its neural and biomechanical components (reviewed extensively in [197, 183]). The nervous
system of the cricket is characterised by a chain of ganglia along a nerve cord which runs from the head
of the animal down to the rear of the body pictured in Fig. 2.3b [198, 199]. Signals from various sensory
and motor systems ascend up or descend down the nerve cord between the ganglia where information
is processed to mediate the animal’s behaviour. The interneurons making up the cercal sensory system
are contained in the Terminal Abdominal Ganglion (TAG) at the very posterior end of the nerve cord
(Figs. 2.1b,2.1c,2.1d). This cercal sensory system mediates the detection and analysis of air currents
which activate sensory receptors on the crickets two rear cercal appendages. These appendages, or
cerci, are long antenna-like structures, each of which is covered by up to a thousand filiform hairs as
pictured in the electron microscopy image of Fig. 2.1a [200, 201, 202]. Below each hair there is a sensory
neuron which, under mechanical displacement of the hair, will fire action potentials that propagate along
an axon into the TAG (see Fig 2.1c). The ensemble of all of the sensory afferents on the two cerci project
to specific locations within the TAG and form a sensory feature map [203, 204, 205, 206]. Different spatial
regions of this map represent information about air-current direction and velocity transduced around the
animals cercal appendages.

Within the TAG, there are approximately twenty large spiking interneurons, in addition to some thou-
sands of smaller local-interneurons, (Fig. 2.1d) which receive direct excitatory synaptic input from the
filiform sensory afferents [207]. These are ‘projecting’ interneurons: they send axons up the nerve cord to
higher ganglia (Fig. 2.3b). There are also an unknown number of small local interneurons within the TAG
which do not send axons up the nerve cord [208, 209]. Many of these are non-spiking ‘graded release’
neurons, that interconnect between themselves and the large spiking interneurons. Each of the large spik-
ing interneurons has a unique anatomical projection of its dendritic trees within the sensory afferent map
[210, 204]. As a result, each of these interneurons has a unique specific responsiveness to the different
properties of the external air current stimuli. The ensemble activity pattern of these interneurons encodes
these stimulus parameters, and sends a compressed representation of this stimulus up the nerve cord
towards higher ganglia, which in turn use this information to initiate the appropriate behaviours in other
areas of the nervous system. For this study, we restrict our terminal abdominal ganglion model to neurons
and stimuli that concern the escape response behaviour.

We have developed a reduced model of the cercal system. It consists of twenty-four neurons: sixteen
neurons that represent an integrative input layer, seven neurons in a hidden layer which represents the
projecting interneurons within the TAG, and a single neuron in the ‘output layer’, supposed to exist in a
higher motor ganglion in the animal, whose response determines whether a jumping escape response
should be initiated or not. The characteristics of the neurons in these three layers, and the rationale

39

(a)

(b)
(c) (d)

Figure 2.1: Optical and scanning electron microscopy images of the cricket and its terminal ab-
dominal ganglion. (a) Three panel image showing different extents of zoom of the cricket cercal hairs.
(right) An image of a wood cricket. A green rectangle highlights the base of its right cercal appendage.
(centre) a scanning electron microsopy image of the base of a crickets cerci. A green circle highlights
one of the sockets in which cercal hairs pivot within. (left) A scanning electron microscopy image of a
cercal hair embedded within a socket. (b) An optical microscopy image of an isolated terminal abdominal
ganglion. The two extensions at the base of the image correspond to the neuropil where the sensory
neurons on the two cerci project their sensory afferent. The two vertical extensions at the top of the image
are the two axon bundles composing the nerve chord that ascends up to higher ganglion. (c) An image of
the TAG where a red cobalt chloride dye, appearing almost black in high concentrations, has been used
to stain a subset of the afferents projecting from the left cerci into the ganglion. (d) An image of the TAG
where cobalt dye, appearing purple in the image, has been used to stain the cell bodies, dendrites and
the axonal projections up the nerve chord, of a subset of giant interneurons. Neuron cell bodies can be
see clearly on the left-most border of the TAG which send projections, both dendritic and axonic, into the
middle of the ganglion.

for their inclusion and inter-connectivty with other neurons, is described in the following sections and
diagrammed in Figs. 2.2. Before that however, it is important to introduce the statistical simulation
method used to generate the spiking activity of the crickets ensemble of cercal hairs that act as the input
for our model.

40

Statistical Model of Filiform Hairs

In the cricket cercal system, neural processing begins at the cercal filiform hairs, which act as extremely
sensitive mechanical filters [211, 201, 212, 213]. There are hairs of many different lengths on each cercus,
and the length of each hair determines the range of frequencies, or speeds, of air currents to which it is
most responsive. Longer hairs are more responsive to slower air currents and short ones to faster air
currents. Each filiform hair has a spiking neuron at its base which is mechanically activated when the hair
is displaced. These sensory neurons have been observed to fire even under extremely low background
air current intensity, at rates of up to hundreds of spikes per second [212]. The base of each hair is
constrained in a complex mechanical socket such that it can pivot freely along only one specific axis.
Characterisation of socket orientation distributions on the cerci have revealed four distinct populations -
hairs that are sensitive to air currents directions coming from 45° , 135° , 225° or 315° relative to the head
of the animal, which by convention points to 0° . Further studies on the distribution of hair lengths revealed
a bi-modal distribution of hairs into two broad but overlapping length categories [200]. In functional terms,
this general distinction can be used to categorise the two groups of hairs as responding more readily to
either slow air currents (long hairs) or fast air currents (short hairs). Given that there are two cerci, each
containing populations of long and short hairs that are sensitive to four directions of air current, there are
sixteen sub-populations of cercal filiform hairs which respond optimally to specific, restricted combinations
of air current direction and speed. A further study noted another response characteristic of a hair as a
function of its length. For an accelerating burst of fast air, shorter filiform hairs respond with a reduced
latency with respect to longer ones [214]. Whether an anatomical adaptation or a happy coincidence this
latency provides a useful signature in the recognition of an attacking predator which would generate such
a high speed burst of air.

Based on these findings we developed a statistical model for the generation of spikes for sixteen sub-
populations of hairs: one for each air current angle (45° , 135° , 225° or 315°) for each of two hair lengths
(long or short) for each of the two cerci (left or right). Each sub-population is composed of N hairs.

This model was used to generate individual simulation runs, each one second in duration, of the en-
semble spiking activity of all 16× N sensory neurons. Each simulation is characterised by five parameters.
Two of these parameters are (1) the background speed and (2) the predominant background direction of
the ambient air currents. These background air currents correspond to the main source of ‘noise’ that
would be expected in a realistic situation that could confound the animal’s ability to detect the presence,
distance and direction of a predator. Essentially the background air current imposes a variable level of
activity in the receptor cells that, in turn, would lead to a background activity in the interneurons of the
TAG. The other three simulation parameters correspond to the simulated predator attack. They specify
(3) the attack angle, (4) the attack speed and (5) the amplitude of the air current that is assumed pro-
portional to the attacker size. For each individual one second simulation, values for these five variables
are random-uniformly sampled between a lower and upper bound. An attack stimulus is presented at
either 350ms or 700ms during this one second. The statistical model generates sixteen sets of N sensory
neuron spike-times: one per sub-population.

The specific protocol for defining the neuron firing timestamps in an attack sequence was is as follows.
For each receptor in a long hair sub-population, a number of spike-times are sampled from a uniform

41

random variable between zero and one second (each sample therefore corresponding to a firing time)
equal to the background speed. For each receptor in a short hair sub-population, samples were drawn
at half of this rate, reflecting their lower baseline firing levels [212]. The receptors in the sub-populations
whose hairs were oriented towards the background direction drew an extra 25% of samples while those
contrary to background direction drew 25% less. At either 350ms or 700ms in the simulation, a simulated
attack was initiated from behind the animal. The attack is represented by long hair sensory receptors
sampling a firing timestamp from a normal random variable centred on the attack time, and the short
hair sensory receptors sampling from a normal random variable shifted forwards from the attack time
by −10ms - reproducing the response latency effect reported in [214]. The standard deviation of the
normal random variable which samples the neuron firing timestamps is equal to the inverse of the attack
speed. The probability, p, of each sensory receptor sampling a firing timestamp from the normal random
variable, therein the probability of the hair responding during an attack, depends on the attack angle and
the attacker size. Hair sub-populations with a preferred direction oriented towards the attack angle and the
sub-populations on the cerci that is on the same side of the animal as the attack originate from respond
with a higher probability. The probability of a single hair sampling a spike-time during an attack is defined
as;

p = pθ × pside × s, (2.1)

pθ = (1− β1)× cos|θp − θ|+ β1, (2.2)

pside = ((1− β2)× exp(
−|π − θ|

α
) + β2, (2.3)

where θ and θp are the attack angle and the preferred orientation in radians of the hair respectively.
The attack angle is bounded to be between 120° and 240° . The attacker size, s, is a number between
0.75 and 1, β1/2 are the minimum response probabilities for pθ and pside, and α defines how the response
intensity decays on the contra-lateral cerci to the attack as a function of the attack angle, θ. See Appendix
6.7 for examples of the raster plots generated by this model for different sets of parameters.

Input layer: Feature map neurons

In the cricket TAG, this information on air-current direction and speed, represented by the ensemble fir-
ing pattern of the sensory neurons, is preserved through sub-population specific projections of sensory
neuron spikes to specific locations of a sensory feature map. In each location of this feature map, the
thousands of sensory neuron spikes that propagate from the cerci merge into continuous analogue sig-
nals which denote the intensity of a particular environmental feature [203, 215, 204, 205, 206]. TAG in-
terneurons are then observed to ‘tap’ into various properties of this feature map through specific dendritic
arborisations in particular spatial locations of the feature map.

We propose to model this feature map using the input layer of sixteen neurons depicted in Fig.2.2a.
Each of these sixteen feature map neurons integrates the spiking input from one of the sixteen sub-
populations of hairs on the left and right cerci. Each of our input layer neurons implements a leaky-

42

integration model, in other words a parallel resistor-capacitor circuit fed by a pulsing current source. They
can be described using the differential equation;

dVc
dt

=
iinR− Vc
RC

, (2.4)

whereby a current pulse iin, is injected onto a parallel combination of a resistor R and capacitor C,
resulting in a capacitor voltage Vc which decays in time to zero in the absence of an input current. This
model allows the neuron to integrate temporal information within a time window defined by the product
of R and C. For an analogue circuit implementation of such a model, see Appendix 6.24a. Based
on observations of interneurons in the TAG, which appear to receive excitation above and below a set-
point due respective increases and decreases from ambient background air-current levels, we apply a
hyperbolic tangent function to the difference between the instantaneous capacitor voltage, Vc, and its
average over D previous instances [212]. In other words, under stimulation by average instantaneous
background air currents the output of the feature map neurons should be around zero;

Vout = tanh(Vc −
D∑
x=0

Vx). (2.5)

This results in an activation Vout for each of the neurons in the input layer that provides the input for
the neurons in the next hidden, layer. Examples of the activations as a function of time for each of these
sixteen feature map neurons are plotted in Appendix 6.7.

Hidden layer: Cercal interneurons

The hidden layer is composed of a seven neuron circuit, based on our interpretation of numerous results
that have been published in past neurophysiological studies. This group of seven interneurons includes
four neurons ‘tuned’ preferentially to four specific air current directions, two interneurons tuned preferen-
tially to different air current speeds, although relatively insensitive to direction of those air currents, and a
final interneuron whose activity indicates the overall ‘global’ background air current intensity in all direc-
tions. These neurons represent these specific quantities through logical connections to specific subsets
neurons in the input layer and, through additional lateral interactions between interneurons, shape their
responses in the optimal manner. This network architecture is depicted in the three panels of Fig. 2.2.
Each of the sixteen feature map neurons in the input layer are identified using a grid which categorises
them by angle, speed and side in Fig. 2.2. The rationale for the connections between the neuron elements
are as follows.

• Directional interneurons: Past studies have documented several projecting interneurons that are
responsive to low velocity air currents from a very restricted range of directions, and suppressed
by air currents from the opposite directions; i.e., they are directionally selective [210, 215]. These
interneurons have been observed to have dendritic arbors in locations of the TAG feature map which
receive sensory excitation from air currents from the direction the interneurons is responsive to
[203, 204]. In our model these neurons are labelled as d45, d135, d225 and d315. Each of these
interneurons receive input from the corresponding slow feature map neurons from both the left and

43

right cerci as in Fig. 2.2a.

• Speed interneurons: Other interneurons have been observed to be responsive to a much broader
range of directions and instead appear predominantly sensitive to different air current speeds from
the rear of the animal [215, 208]. In Fig. 2.2a, these are labelled as slow and fast that respectively
receive input from the feature map neurons encoding air currents coming from behind due to slow
and fast stimuli (originating from long and short receptor sub-populations on the cerci respectively).

• Global regulation interneuron: The seventh interneuron in the model is defined as the ‘global
regulation’ cell, labelled as glob for short in Fig. 2.2c. Extracellular recordings of the ascending
spiking activity from the TAG have shown, somewhat counter-intuitively, that the giant interneurons
are more active in a relatively calm laboratory setting than in the field, where background air current
intensity is considerably greater [180]. That has lead to the proposal of a global regulation, or a
background subtraction mechanism, at play in the cercal system. Furthermore, interneurons have
been reported in the cricket TAG which are responsive to low speed air currents coming from all
directions [209]. Inspired by these two findings we propose to include the interneuron glob in the
cercal escape system model as depicted in Fig. 2.2c which receives input from the slow feature map
neurons in all directions on the left and right cerci and then sends regulatory synapses to the other
six interneurons in the hidden layer.

As well as the specific connection pattern from the feature map neurons in the input layer to the
interneurons in the hidden layer, we also incorporate functional lateral connections between these in-
terneurons. Lateral inhibitory connections have been proposed in the cercal system [210, 215] based
on observations of direction encoding neurons being inhibited under air current stimuli coming from the
opposite direction to which they are sensitive. Detailed neuro-physiological data about the neural basis
for these interconnections is however very sparse, although several non-spiking local interneurons have
been studied [208, 209] which could well implement these connections. In our model, we do not explic-
itly include any extra local interneurons to mediate these lateral interactions. Rather, we define direct
all-to-all synaptic connections between each of the four directionally selective neurons and between the
two speed encoding neurons in addition to uni-directional synaptic connections from the speed encoding
neurons to the four directionally selective ones. These connections are depicted in Fig. 2.2b. Instead of
defining these as inhibitory connections we allow their sign and magnitude to be determined through the
synaptic parameter optimisation process that is described in the following section. Each of these seven
interneurons, like those in the input layer, implement hyperbolic tangent activation functions on a weighted
summation of their inputs and a bias term. The bias terms of each of the neurons determines the acti-
vation of the neuron in the absence of external input, a parallel to the resting membrane potential in the
biological cells.

Output layer: Jump neuron

In the animal, it is supposed that the resulting cercal representation ascends to a higher motor ganglion,
one of those pictured in Fig. 2.3b, which, given a certain activation pattern, triggers a central pattern

44

Le
ft

R
ig

ht

S
lo

w
F

as
t

45°

135°

225°

315°

45°

135°

225°

315°

d45

d135

d225

d315

slow
fast

45°

315°

135°

225°

Left
Right

Attack

(a)

d45

d135

d225

d315

slow
fast

(b)

Le
ft

R
ig

ht

S
lo

w

45°

135°

225°

315°

d45

d135

d225

d315

slow
fast

glob

(c)

Figure 2.2: Architecture of the cercal system escape response model. Colours of synaptic connec-
tions do not correspond to synaptic inhibition or excitation but instead are used to help distinguish between
sets of synapses. (a) The feed-forward connections between each of the feature maps neurons and the
six interneurons each of which encodes a particular property of the input. (b) The lateral connections be-
tween interneurons, including the (green) mutual connectivity between the directionally selective neurons,
(red and blue) the lateral connections from the air speed sensitive neurons onto the directionally selective
interneurons and (black) the mutual lateral connections between the air speed sensitive neurons. (c) The
global regulation network which receives (green) synapses from all of the low frequency air current feature
map neurons and sends regulatory synaptic connections to each of the six interneurons.

generator to coordinate an escape motor response. Therefore we propose that each of these seven
interneurons in the hidden layer of the model synapse onto a final jump neuron as depicited in Fig. 2.3a.

In our model, the jump neuron implements a sigmoid activation function on the weighted sum of the
interneuron activations, and a bias term. In this fashion, the output can be viewed as the probability
that the original ensemble spiking activity pattern of the sensory neurons on the two cerci represents the
signature of an attacking predator.

In order to determine the synaptic parameters that connect the feature map neurons to the interneu-
rons, the interneurons to the jump neuron as well as the lateral connections between the interneurons,
we apply the backpropagation algorithm [51]. To obtain a dataset that can be used to train and then verify

45

d45d135

d225d315

slow

fast

glob

jump
CPG

Motor

A
sc

en
di

ng
re

pr
es

en
ta

tio
n

system

Higher
brain

abdominal
Terminal

ganglion

Motor
ganglion

Jump

(a) (b)

Figure 2.3: (a) The activations of the seven interneurons included in the cercal escape system model
ascending up the nerve cord to a higher ganglia. Such a higher ganglion is proposed to contain a neuron or
group of neurons, here labelled jump, that looks for certain patterns of activation in the seven interneurons
to activate a jump central pattern generator, labelled as jump CPG, to initiate an escape motor routine.
(b) An optical microscopy image of the ganglion chain of the wood cricket, stained using a cobalt chloride
dye. The terminal abdominal ganglion sits at the base of this chain which ascends up to the central brain
contained within the head of the animal. Intermediate ganglion, which for example control one of the
insects motor systems, appear as more densely stained red dots along the chain.

the trained model, the feature map neuron activations, Vout, at 350ms and 700ms of 1000 randomly pa-
rameterised simulation episodes are used. The two resulting Vout vectors, of the sixteen activations per
simulation, are each then labelled as 1 (attack) or 0 (ambient) as well as with the predominant background
direction during that episode. This yields labelled dataset of 2000 points of sixteen features each. A
random subset of half or these points is used to train the model and the remaining half is reserved to test
the model.

A multi-objective cost function was defined as the sum of the binary cross-entropy loss of the jump
neuron, with respect to the attack or ambient label, and the categorical cross-entropy of the four directional
sensitive interneurons, with respect to the one-hot encoded background direction label. Intuitively this
optimises the model to simultaneously detect an attack signature and determine the prevailing direction
of the background air currents. An additional weight decay term [216] was summed with these two losses
in order to penalise the optimisation converging to a solution with large parameters values and, possibly,
over-fitting to the test data set.

In order to implement the lateral connections between the interneurons without introducing cyclic loops

46

into the model, these synaptic connections were ‘unrolled’ by one step. This is required since the gradients
that are backpropagated would otherwise circle indefinitely. This was achieved by applying the activation
function on the weighted sum of the inputs from the feature map neurons and the glob neuron in a first
step and then applying a second activation to the sum of this first activation, the weighted sum of the
lateral connections and the bias term.

The derivative of the mean of this loss over a mini-batch of eight training data points was used to
update model parameters inline with the root mean square propagation stochastic optimisation algorithm
[217] over 50 training epochs. The PyTorch automatic differentiation python framework was used to build
and train the proposed TAG model [218].

2.2.3 Model evaluation

In order to evaluate the proposed terminal abdominal ganglion (TAG) cercal escape system model we use
a receiver operating characteristic (ROC) curve. The ROC curve plots the true (TPR) and false positive
rate (FPR) as the probability threshold, that rectifies the activation of the sigmoidal jump neuron into a
jump (1) or don’t jump (0) output, is increased from zero to one in regular steps. To reflect the imbalance
between the consequences of not detecting true positive (succumbing to a predator) and responding to
false positives (wasting a relatively unimportant amount of energy [219]), in the context of the insect, we
define the metric ‘tolerated’ FPR which is the false positive rate that is be tolerated in order to achieve a
minimum true positive rate. We fix the minimum TPR to 0.95 in this evaluation.

Fig. 2.4a plots the ROC curves resulting from an ‘ablation’ study of the proposed TAG model whereby
combinations of individual components are considered separately. Specifically, the curves correspond
to V1 - only the interneurons, V2 - the interneurons plus their lateral connections, V3 - the interneurons
plus the global regulation network and V4 - the interneurons plus the lateral connections as well as the
global regulation network. For means of comparison, the ROC curve of a logistic regression model, ef-
fectively a single neuron taking input from all sixteen feature map neurons, is plotted in black. In the case
of model V1, it is observed that, despite increasing the number of neurons from one (i.e. the logistic
regression model) to seven, there is a decrease in the tolerated FPR. This indicates that the extraction
and combination of specific features alone does lead to an effective model. In model V2, the addition of
lateral connections between the interneurons is seen to greatly reduce the tolerated FPR and noticeably
increase the area bounded under the ROC curve. This demonstrates the importance of allowing neurons,
each encoding different properties of the total sensory landscape, to communicate and compete, via lat-
eral synapses - increasing the contrast between their responses. In model V3, the lateral connections
are removed and the global regulation network is added. While the tolerated FPR deteriorates with re-
spect to model V2, there is still a slight improvement with respect to the ROC curve of the logistic model
and greatly improved with respect to the neurons acting alone. This suggests a certain importance in
regulating the activations of the interneurons as a function of the background air current intensity which,
intuitively, should make it easier for the jump neuron to detect the activation pattern of an attack in the
presence of fluctuating background conditions. Finally, in model V4, the lateral connections and global
regulation network are included together. The resulting ROC curve, plotted in blue, bounds noticeably
more area than any of the other models and achieves tolerated FPR of 0.07 - well below that of the other

47

models. This demonstrates that, while the lateral and global connections independently provided modest
gains with respect to the logistic model, it is their interplay and the simultaneous application of contrast
enhancement and background subtraction mechanisms that give rise to the most suitable model. While
lateral connections are a commonly observed feature in animal nervous systems, this result provides a
foundation for the proposal in [180] that a global regulatory mechanism was present in the cricket cercal
system. The tolerated FPR of each model version, as well as the number of synaptic parameters required
per model, are summarised in the bar-chart of Fig. 2.4b. Here it is noteworthy that, for a relatively mod-
est two-fold increase in the number of parameters, the tolerated FPR reduces by more than three times.
For a study into the robustness of the performance of the TAG model under random permutations to its
optimised parameter vales, see Appendix 6.10.

(a) (b)

Figure 2.4: Performance of the four ablated versions of the TAG model. (a) Four receiver operating
characteristic (ROC) curves are plotted showing how the true and false positive rates vary as the probabil-
ity threshold on the sigmoidal output jump neuron is increased. Vertical dashed lines show the tolerated
false positive rate (FPR) for a minimum true positive rate of 0.95. (b) Pairs of bar plots for each ablated
version of the TAG model show the tolerated FPR (green bars, left y-axis) and the number of parameters
required by the model version (blue bars, right y-axis).

2.2.4 Universal approximator benchmarking

In order to benchmark the test accuracy and memory requirements of the optimised TAG model, sin-
gle and three fully-connected hidden-layer neural network models are used - characteristic of a generic
deep learning approach based on the universal approximation theorem [51, 71, 52]. These were also
implemented using the PyTorch framework. They were trained using backpropagation with the adaptive
moment estimation optimisation algorithm [220]. The models were trained over one thousand epochs
using the same mini-batches as the TAG model. On average this was observed to be the number of

48

epochs required for the parameters to converge to a minimum loss. It is also informative to note that this
represents over an order of magnitude more training than that required by the TAG model, which required
only fifty epochs.

In Figs. 2.5a and 2.5b we plot the ROC curves obtained by the optimised deep learning models,
with a single hidden layer and three hidden layers respectively, when trained and tested using the same
training data split as the TAG models. Numerous ROC curves are plotted for deep learning models with an
exponentially increasing number of neurons per layer. As the number of neurons is increased the resulting
ROC curves are pushed towards the top left hand-side of the plots, bounding more area and reducing the
tolerated FPR. The ROC curve of the TAG model V4 is re-plotted in blue for comparison. The bar-plots in
Figs. 2.6a and 2.6b show the resulting tolerated FPR and the number of parameters required by each of
these single hidden layer and three hidden layer models respectively. In each bar plot the tolerated FPR
and the number of parameters for the TAG model V4 are plotted as horizontal green and blue dashed lines
for comparison. What is striking is that, for the deep learning models to obtain en equivalent performance
to the TAG model, they are seen to require between one and two orders of magnitude more synaptic
parameters. Specifically, to match the TAG model performance, the single hidden layer neural network is
seen to require between 128 and 256 neurons and, for the three hidden layer model, between 16 and 32
neurons per layer.

(a) (b)

Figure 2.5: (a) ROC curves over a range of layer widths for a single hidden-layer model. The ROC curve
plotted in blue corresponds to that of the TAG model V4. (b) ROC curves over a range of layer widths for
a three hidden-layer model. The ROC curve plotted in blue corresponds to that of the TAG model V4.

However, as the number of hidden layer neurons are further increased the tolerated FPR of these
extremely large models drops below that of the TAG model - in some cases obtaining a tolerated FPR of
0.03. In order to understand whether this large investment in memory is worthwhile, we use the Akaike
information criterion (AIC) [221]. The AIC provides a number proportional to the sum of the model size and
the negative log-likelihood of the model, evaluated on the test data set, and offers a means of comparing

49

(a)
(b)

Figure 2.6: (a) Pairs of bar plots over a range of hidden layer sizes for a single hidden layer universal
approximator. The bars show the tolerated FPR (green bars, left y-axis) and the number of parameters
required by the model version (blue bars, right y-axis). Dashed horizontal lines show (green) the TAG
model tolerated FPR and (blue) the number of parameters required in the TAG model. The minimum
TPR is 0.95. (b) Pairs of bar plots over a range of hidden layer sizes for a three hidden layer universal
approximator. The bars show the tolerated FPR (green bars, left y-axis) and the number of parameters
required by the model version (blue bars, right y-axis). Dashed horizontal lines show (green) the TAG
model tolerated FPR and (blue) the number of parameters required in the TAG model. The minimum TPR
is 0.95.

the efficiency of the solutions. It should be noted that a lower AIC indicates a more efficient model. The
AIC of the single and three hidden layer deep learning models are plotted as a function of the hidden layer
size in Fig 2.7. Additional horizontal dashed lines show the AIC score of the logistic regression (grey) and
the TAG model (blue). It can be clearly seen that the TAG model is comfortably the most efficient solution
to the problem and that, for the extremely large deep learning models which obtain the lowest tolerated
FPRs, the AIC score explodes owing to the complexity of the model. Furthermore, it is indicative to note
that, even for small hidden layer sizes, it is difficult to justify the choice of a deep learning model over the
use of a simpler logistic regression model.

In order to complete this comparison, we extend it to the case of pruned multi-layer perceptrons -
whereby memory requirements can be reduced by deleting synaptic weights with optimised values close
to zero [222]. Specifically we consider a pruned version of the MLPs in Figs.2.6a and 2.6b and an addi-
tional version trained where an L1-norm regularisation term is summed with the loss function in order to
enforce sparsity in the resulting model [223]. The weight distributions of these MLP models are plotted in
Supplementary Fig. 7 where it can be seen that the models trained using the L1-norm loss function have
weights grouped very tightly around zero - appearing almost like a delta function. The tolerated FRP as a
function of the percentage of pruned weights in the single and three hidden layer MLPs containing 256 and
32 neurons in each of their hidden layers respectively is plotted in Figs. 2.8a and 2.8b. These dimensions

50

Figure 2.7: The Akaike information criterion (AIC) is plotted in log-log scale over range of hidden layer
width for (orange) a single hidden layer and (peach) a three hidden layer deep learning models. Horizontal
dashed lines show the AICs of a (grey) logistic regression model and (blue) the TAG model.

were selected in each case since this was the number of neurons per hidden layer, per MLP, that allowed
a lower tolerated false positive rate than the TAG model. In each case, as the extent of pruning increases,
the tolerated FPR, after a varying period of robustness, also increases - the point at which the tolerated
FPR exceeds that of the TAG model is indicated using a labelled dot in Figs. 2.8a and 2.8b. While the
L1-norm regularised models permit a considerable reduction in the number of weights with respect to the
standard MLP before a degradation in the tolerated FPR is observed, the number of parameters required
in order to maintain a performance equivalent to that of the TAG model architecture was still over an order
of magnitude greater than this bio-inspired architecture.

2.2.5 Model interpretation

In addition to their low memory efficiency, universal approximation based deep learning approaches suffer
from another major drawback in their lack of interpretability [6]. Namely, it is difficult to ascertain as to why
certain combinations of input features lead to certain output predictions as a function of the cascading
layers of synaptic weights that have resulting from the application of backpropagation. This poses ethical
and practical problems for many applications of artificial intelligence such as that addressed here which,
certainly from the perspective of the cricket, can be considered as safety-critical - the model output entails
potentially dangerous consequences (i.e., not jumping in the presence of an attacking predator). In con-
trast to the wide fully-connected layers of neurons in universal approximators, the proposed TAG model
contains eight neurons and 63 synapses - each defining a set of logical relationships between the neurons
which each have well defined functional roles. As such, based on its optimised synaptic weights, we make
first-order structural and behavioural interpretations of the TAG model.

51

(a) (b)

Figure 2.8: Relationship between the tolerated false positive rate and the percentage of the weights
closest to zero pruned for the standard (blue) and L1-norm regularised (green) models. The hor-
izontal dashed line shows the tolerated false positive rate achieved by the TAG model. The number as-
sociated to each dot, drawn when the relationship crosses the horizontal dashed line, denote how many
parameters the model required to match the tolerated FRP for the TAG model. (a) For the case of a single
hidden layer MLP with 256 neurons in the hidden layer. (b) For the case of a three hidden layer MLP with
32 neurons per hidden layer.

Structural interpretation

A table of the optimised synaptic weights inter-connecting the input layer neurons with the interneurons is
shown in Fig. 2.9a. Each cell in the table contains the synaptic weight value resulting from the backprop-
agation based training. The majority of these feed-forward connections are excitatory such that, without
consideration of the lateral connections, the interneuron activations would be proportional to the activa-
tions of the input layer neurons that connect to them. Therefore, the activation of each of the directional
neurons for example, encodes the instantaneous intensity of slow air currents coming from each of the
four input air current directions. It is interesting to note the imbalance in the excitation received from the
left and right cerci in the cases of d135, d225 and fast whereby sensory activity coming from 135° is
stronger from the left cerci and activity from 225° is stronger from the right. This in fact appears to model
the dependency on attack direction described in Equations 2.2 and 2.3 whereby attacks coming from the
left-hand side excite the sensory neurons oriented at from 135° more; and those from the right-hand side
excite the 225° sensory neurons more.

Elevated co-activations of d135, d225 and fast will therefore correlate with an attack event - in partic-
ular the activation of fast. Another feature that stands out is the weak negative feed-forward connections
from the input neurons, corresponding to air-flow from attack angles, that seems to help decouple the high
air-currents resulting from an attack and the activation of glob which is intended encode the overall back-
ground air-current intensity. Intriguingly, the inhibition coming from the 135° input neurons on the left and
right cerci is, in this case, elevated with respect to that coming from 225° . This angular asymmetry is also
observed in the weak excitatory inputs from 135° and 225° inputs from the right and left cerci respectively
that are pre-synaptic to the fast neuron. It is unclear what is the purpose of this subtle adaptation.

52

(a)
(b)

Figure 2.9: Tables of synaptic weight parameters between pre- and post-synaptic pairs of neurons.
The number in each cell shows the value of the weight and the colour of the cell denotes the sign and
magnitude of the weight. (a) The table of synaptic weights between each of the sixteen feature map
neurons and the seven interneurons. (b) The table of synaptic weights used for each pre- and post-
synaptic interneuronal connection. The values of the interneuron biases, corresponding to their resting
activations, are shown below the table.

A second pair of tables in Fig. 2.9b shows the sign and weight of the optimised synaptic weights
inter-connecting the hidden layer neurons as well as their optimised biases. An immediately eye-catching
feature is the symmetry observed in the connectivity pattern between the direction encoding interneurons.
The interneurons are all seen to strongly inhibit their opposing counterpart - for example the complimen-
tary negative synaptic connections between d45 and d225. Excitingly this is consistent with predictions
that have been made regarding the biological system whereby the reduction in directional interneuron
activity, when presented with an air-current stimulus contrary to its preferred direction, has been attributed
to the existence of laterally inhibiting interneurons between them [215]. Furthermore, these hidden layer
interneurons send excitatory lateral connections to their ipsa-lateral and contra-lateral direction encod-
ing neurons - notably the excitation towards the contra-lateral neuron is consistently greater. Based on
the presence of the predicted lateral inhibitory interactions, this result hints at the possible existence of
additional lateral excitatory connections in the biological system.

The post-synaptic connection weights of glob onto the six interneurons seen in Fig. 2.2a suggest a
very interesting functional role of this neuron. Since these weights are negative and glob implements a
hyperbolic tangent activation function, therein activating negatively for low background speed and posi-
tively for high background speed, glob acts as an excitor given lower background air current levels but,
intriguingly, as an inhibitor when the background levels are higher. This latter effect results from the posi-

53

tive product of the negative neuronal activation and the negative synaptic weight value. This is once again
an exciting result given the prediction on the presence of a global regulatory or background subtraction
mechanism in the biological system [180].

Finally, it is informative to read off the synaptic weights connecting the hidden layer interneurons to
the output jump neuron as a logical ‘bar-code’ - offering a means of understanding what combinations
of hidden layer activations should result in elevated activations of the jump neuron. The jump neuron
is inhibited due to pre-synaptic connections from d135, d225 and glob. This is likely an adaptation that
allows the model to reduce the false positive rate under high background air current levels or high pre-
vailing air-currents originating from the same directions as an attack. Another noteworthy feature of this
synaptic bar-code is the opposing strong inhibition and strong excitation from the pre-synaptic slow and
fast interneurons. Once again, since the neurons implement hyperbolic tangent functions, the respective
negative and positive co-activation of slow and fast will result in a joint strong positive excitation of jump.
This suggests that a key distinguishing feature of an attack is the divergence between the activations of
fast and slow. The optimised TAG model further enhances this divergence through the lateral connections
betweenslow and fast. In the hidden layer, slow synapses positively onto fast, and fast negatively onto
slow - the more positive the activation of fast therefore, the more negative the resulting activation of slow
and vice versa.

Functional interpretation

Although it arises as a direct consequence of the structural properties of the model, another interpretation
of the model can be made from a functional perspective - therein how the neurons activate when pre-
sented with input data-points. In order to build up this picture, the probability distributions of interneuron
activations over the 1000 test data-points are plotted and discussed.

The activation distributions of the directionally selective interneurons are shown in Fig. 2.10. Result-
ing from the excitatory input from the relevant feature map neurons, and the response shaping due to
the lateral connections, each of these distribution shows a clear bi-modal response. Specifically, for a
background direction in the preferred direction of the interneuron, the activation is strongly positive, and,
for a background direction coming from any other angle, the response is strongly negative. Functionally
these interneurons are seen to implement a ‘one-hot’ encoding of the background direction, reminiscent
of winner-take-all computational mechanisms that are equally achieved through competitive lateral inter-
actions between neurons [224, 225].

The fascinating computation carried out by the slow and fast interneuron pair is depicted in Fig. 2.11.
Specifically the interneurons are drawn in their ‘unrolled’ format and the intermediate and final activation
distributions of the slow and fast neurons are plotted as insets. The intermediate activation distribution
of slow spans predominantly positive values, reflecting its strong excitatory input from the feature map
neurons in the input layer and the comparatively weaker input from the glob neuron. In this intermediate
stage therefore, its activation is proportional to the slow air current intensity coming from behind, given
a low background intensity. Since glob is inhibited by air current stimuli coming from behind the animal
(Fig. 2.2a), slow is seen to, on average, activate most due to input data points that are due to an at-
tack - although the distribution of responses due to ambient conditions has a considerable overlap. The

54

(a) (b)

(c) (d)

Figure 2.10: The activation distributions over the 1000 test-points for each of the directional en-
coding interneurons. The blue distributions show the hyperbolic tangent activations when the prevailing
air-current direction was equivalent to the preferred direction of the sensory neurons that feed into the
feature map neurons that each neuron receives excitation from. The red distributions correspond to when
the prevailing direction of the air-currents was not in the neurons preferred direction. (a) Directional en-
coding neuron for air-currents from 45° . (b) Directional encoding neuron for air-currents from 135° . (c)
Directional encoding neuron for air-currents from 225° . (d) Directional encoding neuron for air-currents
from 315° .

intermediate attack and ambient activation distributions for the fast interneuron also exhibit a significant
overlap. However, due to the particular sensitivity of this neuron to fast air currents coming from 135° and
225° from respective left and right cerci (Fig. 2.9a), one of the hallmarks of an attack modelled by equa-
tions 2.2 and 2.3, fast responds more positively to attack stimuli and more negatively to ambient stimuli
on average. Through repulsive lateral interaction of these intermediate activations, the final activation
distributions of slow and fast due to an attack are seen to respond more negatively and more positively
respectively - reflecting the divergence between their post-synaptic connections to jump seen in Fig. 2.2a.

Finally, to complete the functional picture, the activation distributions of glob under high and low back-
ground air current intensities and of jump when the model is presented with attack and ambient data

55

slow slow

fast fastIn
pu

t l
ay

er
 a

nd
 g

lo
b

Ju
m

p

Figure 2.11: The activation distributions over the 1000 test-points for each of the air current speed
encoding interneurons in their intermediate and final, unrolled, states The blue distributions show
the hyperbolic tangent activations when the data-point pertains to an attacking predator and the red distri-
bution to ambient conditions. (top left) The intermediate hyperbolic tangent activation of the slow neuron
due to the feed-forward excitation from the feature map neurons. (top right) The final, unrolled hyperbolic
tangent activation of the slow interneurons after the lateral inhibition from the intermediate state of the
fast neuron. (bottom left) The intermediate hyperbolic tangent activation of the fast neuron due to the
feed-forward excitation from the feature map neurons. (bottom right) The final, unrolled hyperbolic tan-
gent activation of the fast interneurons after the lateral excitation from the intermediate state of the slow
neuron.

points is shown in Fig. 2.12. Consistent with its proposed dual role as an inhibitor and as an excitor the
glob activation responds with broad, largely negative or positive, activation distributions for low and high
background air current intensities respectively. As reflected by the large area under the ROC curve of the
optimised TAG model in Fig. 2.4a, the eventual attack and ambient jump distributions over all of the test
data-points for the sigmoidal jump neuron are well separated. The response is predominantly a binary

56

one, with the output layer activating very close to zero or one in most cases. Adaptation of the proba-
bility threshold, which is effectively a vertical line drawn through the distribution of Fig. 2.12b, allows the
tolerated false positive rate to be tuned.

(a) (b)

Figure 2.12: (a) The hyperbolic tangent activation of the glob neuron due to the feed-forward connections
from the feature map neurons. The blue distribution shows the hyperbolic tangent activations for the test-
points where the background air-current intensity was low and the red distribution when the background
air-current intensity was high. (b) The sigmoidal activation distributions of the jump neuron for the (blue)
attack test-points and (red) ambient test-points. A decision on whether to initiate a jump escape routine
can be made by comparing the activation with a probability threshold along the x-axis.

2.3 Model of the Drosophila elementary motion detection system

2.3.1 Introduction

In recent years detailed partial connectomes of insect neural networks have been produced. An example
is the elementary motion detection (EMD) network of the Drosophila visual system [226, 227, 228]. The
insect has two large eyes composed of repeating hexagonal columns called ommatidia (Fig. 2.13). Each
ommatidia has an identical structure which processes visual information from a small region of the full
visual field. It is composed of four distinct layers of neuropil - the retina, lamina, medulla and the lobula
as shown in Fig. 2.14(a). The neural pathway for detecting elementary motion within this structure is
depicted schematically in Fig. 2.14(b). It begins at the retina where cells transduce light into electrical
signals. These then synapse onto L1 and L2 cells in the lamina. At this stage the information is rectified
into ON and OFF pathways - ON pathways carry information on luminescence increments and the OFF
pathways luminescence decrements. The L1 and L2 cells in the lamina synapse predominantly onto the
Mi1, Tm3 and Tm2, Tm1 cells in the medulla. These cells are implicated in implementing temporal delays
between adjacent activity in spatial regions in the visual field [229]. The pairs of cells in the medulla
synapse onto T4 and T5 cells in the lobula which are then excited if a spatiotemporal correlation exists
between it’s pre-synaptic cells indicating motion. Subsets of T4 and T5 cells are sensitive to motion in one
of the four cardinal directions up, down, left and right and terminate independently in one of four distinct

57

layers in the lobula plate (LP). Groups of lobula plate tangential cells (LPTC) are excited by activity in
one layer of the LP and fire to indicate motion in a specific direction. Another group of lobula plate/lobula
columnar type two (LPLC2) cells are excited only by diverging motion in each layer of the LP such that
they indicate a looming stimulus on a collision course [182] - like the ’jump neuron in the TAG model
of section 2.2 this neuron triggers an escape response in the animal. Furthermore, it has also been
found that the neuromodulator octopamine tunes dynamics of the EMDs in the Drosophila visual system
as a function of whether the insect is resting or flying [230, 231, 232]. This allows the insect to adapt
its sensitivity to different velocities of stimulus as well as reduce power consumption whilst in a resting
state. In Fig. 2.14(c) the response of an LTPC cell is reported for Drosophila stimulated with a moving
grating when it is in resting and flying states. The area under the curve for the insect in its resting state
is greatly reduced relative to that of its flying state which is thought to be an evolutionary adaptation to
optimise its consumption of energy. The Hassenstein-Reichardt EMD (HR-EMD) is a popular model which
reproduces experimental observations of the Drosophila EMDs [233]. Photo-excitation at adjacent regions
in the visual field propagates signals through crossing low pass filters, performing a delay function in the
temporal domain, before being recombined at a multiplication unit to detect spatiotemporal correlations.
The output of the unit can be either positive or negative indicating motion in one of two directions as
in Fig. 2.14(d). A number of previous works have implemented the HR-EMD in analogue very large
scale integrated (aVLSI) systems for point [234], 1D [235], 2D [236] and rotational motion [237]. Another
perspective on hardware based motion detection are token and feature based EMDs [238, 239, 240, 241].
Here we propose an alternative approach for motion detection based on dynamic exponential synapse
and leaky-integrate and fire neuron models - that are relatively simple to implement in a computer model
as well as with analogue electronic circuits [103, 242]. Furthermore, we use a model of the dynamic vision
sensor (DVS) to provide spiking, or ‘event-based’, input for the resulting spiking neural network model.

Figure 2.13: A scanning electron microscopy image of an the eye of Drosophila. Each ‘dot-like’ ommitada
on the surface extends down through the retina, lamina and medulla of the insect

58

(a)

(b)

(c)
(d)

Figure 2.14: The architectural layout of the Drosophila visual system and its detection of motion. (a) The
four layers of neuropil in the Drosophila visual system [227]. (b) The specific cells identified in the pathway
from the retina to the lobula plate involved in elementary motion detection [229]. (c) Temporal frequency
sensitivity tuning curve of the mean response of LPTC neuron in Drosophila in resting and flying states as
modulated by octopamine. [230]. (d) A schematic of the HR-EMD model often implemented in hardware
motion detectors [237].

2.3.2 Model definition

The final model is realised by a two-dimensional tiled matrix of ‘coincidence detection modules’ whose
outputs are networked in a specific fashion to a small number of readout neurons which provide informa-
tion on global motion in the visual field. The visual field corresponds to the ON and OFF events produced
by a simulation of a grating moving either UP, DOWN, LEFT or RIGHT in front of a DVS camera [243, 244]
at a range of different speeds. The objective of the model is to report the global direction of motion in the
presence of local ‘salt and pepper’ noise.

59

Coincidence detection module

To detect motion in one direction along a single dimension a temporal delay can be implemented between
two spatially adjacent inputs followed by a downstream mechanism for detecting spatiotemporal correla-
tions. In Drosophila this delay is thought to be implemented between pairs of neurons in the medulla [229]
and the correlation performed by the postsynaptic neurons in the lobula. Such a delay can be implemented
by injecting the current of an exponential synapse into a leaky-integrate and fire neuron model;

disyn
dt

=
−isyn
τsyn

, (2.6)

dVneu
dt

=
iinW − Vneu

τneu
, (2.7)

where isyn and Vneu are the synaptic current and neuron input voltage and τsyn and τneu control the
decay in time of these two variables respectively [245]. The input current of each neuron, iin, is defined
as the instantaneous sum of isyn from all pre-synaptic neurons. The value isyn of each synapse can be
masked by +1 or −1 to define it as either excitatory or inhibitory. By adjusting the variables τsyn and
τneu, the delay properties can be modified. The variable W is the synaptic weight that determines how
much Vneu is affected for a non-zero isyn. Although in an electronic circuit implementation of this model
tausyn is often a function of W , the parameters are treated independently in this computational model
for the means of simplicity. If the value of Vneu exceeds a threshold value Vth, the neuron will ‘fire’. At
this point, each of the synapses to connecting the firing neuron to a post-synaptic neuron will have their
value of isyn stepped by ispk. A correlation operation can be performed by parameterising a neuron to
fire only when two pre-synaptic spikes arrive within a short, pre-determined, time window. Chaining delay
and correlation operations in sequence can be achieved using the coincidence detection module shown
in Fig. 2.15(a). Neurons in the input layer fire to denote spatial activity, an event produced by the DVS
camera for example, and synapse with excitatory connections onto a second delay layer. In this layer the
delays implemented by the B1 and B3 neurons are larger than the central B2 neuron. B1 and B2 synapse
with excitatory connections onto the correlator neuron C1 in the output layer. Neuron B3 synapses with an
inhibitory connection that acts to suppress C1 from firing. As depicted in Fig. 2.15(b), if the input layer is
excited in the sequence A1, A2 then A3, therein along its ‘preferred direction’, the firing times of B1 and B2
should be ‘pushed’ together in time, and the input from B3 will arrive at C1 last. If the two excitatory spikes
from B1 and B2 to arrive at C1 within a sufficiently short time window, it will fire before the arrival of the
inhibition from B3. To suppress C1 from firing due to motion contrary to the preferred direction, referred
to as the ‘null’ direction, of the module (i.e. an excitation in the sequence A3, A2 then A1) the firing times
of B3 and B2 will be pushed together in time and that of B1 will be delayed. Due to the inhibition resulting
from B3, C1 will not be sufficiently excited to fire. In a third case where all input elements are excited
simultaneously, due to sensory noise for example, B1, B2 and B3 will fire at approximately the same time
and negate each others contribution. The parameters of the model can be set such that C1 does not
receive sufficient excitation in this scenario to fire.

To allow for the detection of motion in two dimensions, four identical coincidence detection modules,
sharing a common central short delay node, can be arranged orthogonally - such that each module is

60

able to detect local motion in only one of the four cardinal directions of motion (i.e., UP, DOWN, LEFT or
RIGHT). A ‘flattened’ network diagram of this 2D motion detector is depicted in Fig. 2.16.

(a)

(b)

Figure 2.15: The one dimensional delay and correlate spiking neural network and its functional basis. (a)
A 1D delay and correlate SNN. Open blue circles represent LIF CMOS neurons, green arrows excitatory
synapses and red dashed arrows inhibitory synapses. Vertical lines separate the three layers of the
network into the abstracted functions as performed by the different layers of neuropil in the elementary
motion detection system. (b) A time domain plot for the three neurons involved in detection of motion -
B1 and B2 being excited in sequence and their resulting signals meeting at C1. Red spikes correspond to
the activity of a presynaptic neuron, blue spikes to the activity of the neuron associated with the plot and
the green trace is the neuron input voltage resulting from the incoming pre-synaptic spikes.

61

Figure 2.16: The two dimensional equivalent of the delay and correlate network. Blue filled circles rep-
resent LIF CMOS neurons where the fill colour indicates the pathway involved in detecting the directions
UP (green), DOWN (purple), LEFT (yellow), and RIGHT (blue) while the central shared low time constant
pathway is coloured red. Green arrows represent excitatory synapses and red dashed arrows inhibitory
ones. The spatial organisation (left) of the inputs to a 2D delay and correlate SNN (right) is shown.

Readout Network

Inspired by the connectivity pattern observed in Drosophila between the elementary motion detection
circuits in each of the animals ommatidia and the global feature encoding neurons in the lobula plate, we
propose to connect the local 2D motion detection networks presented in this model to the five readout
neurons depicted in Fig. 2.17. To readout the direction of motion, four neurons, modelling the LPTCs in
the lobula plate, each sensitive to one of either UP, DOWN, LEFT and RIGHT motion are excited by the
corresponding directional output of each of the 2D motion detector networks across the visual field.

2.3.3 Model evaluation

A DVS of resolution 10 × 10 is stimulated using a grating (a series of bars, 1 pixel in width, at 2 pixel
intervals) moving UP, DOWN, LEFT or RIGHT in time provides OFF pathway spikes for the inputs of a
matrix of the 2D motion detection networks (Fig. 2.16). Noise is simulated through setting each DVS pixel
to spike in the absence of an OFF pathway event with a probability of 0.025 per timestep. The frequency
of the grating is defined as pixels crossed by the grating per second of simulation time. Twenty 2D motion
detection networks are used to span the visual field - each of which contains thirteen neurons and twenty
one synapses. In total the topology requires 256 neurons and 580 synapses for the 10 × 10 visual field.
The simulation advances in discrete time steps at which the synaptic currents and neuron input and output
voltages are updated with respect to their values at the previous timestep in accordance with equations 2.6
and 2.7. The desired outcome is for the readout layer neuron corresponding to the direction of motion of
the grating to fire at an elevated rate relative to the others upward motion to fire at an elevated rate relative
to the others. The F1 score [246] in the detection of upward motion is used to quantify the performance of

62

Figure 2.17: The connection pattern required between the 2D elementary motion detection SNNs that
span the visual field in an array, and the four readout neurons. The coloured blue circles correspond
to the output layer neurons from Fig. 2.16 with their spatial organisation indicating which direction they
detect. Only one set of connections from one 2D motion detector to the four readout neurons has been
shown for simplicity.

the model;

F1 =
2UP

2UP + (DOWN + LEFT +RIGHT)
, (2.8)

where UP, DOWN, LEFT and RIGHT are the number of times each of the direction encoding readout
neurons fired during the simulation. F1 score ranges from a minimum value of zero to a maximum value
of one. The grating is swept over the input at a range of frequencies and the F1 score is calculated per
frequency. We refer to the plot of F1 score with grating frequency as the sensitivity tuning curve (STC).
As plotted in Fig. 2.14(c), the LPTCs of Drosophila have been measured to be responsive over a broad
range of grating frequencies.

In order to determine the parameters of the model, a genetic algorithm is applied [247, 248]. Specif-
ically the genetic algorithm determines the parameters of one coincidence detection module that are
common to each orthogonal rotation in the 2D motion detection network and to each of twenty modules
that span the visual scene and also determines the parameters of the readout neurons - each of which
also share the same values. The parameters are the synaptic weights of all synapses W the synaptic
and neural time constants τsyn and τneu as well as the threshold voltages of all neurons vth. The model
parameter space therefore has twenty-four dimensions.

Sixty networks are created per generation. First generation parameters are assigned by sampling from
a uniform distribution between a lower and upper bound per parameter. A sensitivity tuning curve (STC)

63

is produced for each of the sixty networks. The ten with the largest area under the STC curve (AUC),
therefore the ten networks with the best F1 score over the grating frequency sweep, in addition to two
randomly selected ones are recombined in pairs to produce the next generation of networks. Parameters
are subject to ‘soft’ and ‘hard’ mutations with a certain probability. Hard mutations occur with a probability
of 0.05 whereby the parameter is randomly assigned a value from a uniform distribution between an upper
and lower bound. A soft mutation occurs with a probability of 0.5 whereby the parameter is reassigned a
value from a normal distribution around the value inherited from the parent with a standard deviation of
1%. The average F1 score of the ten best networks as a function of the generation is shown in Fig. 2.18
where it increases rapidly during the first twenty generations before levelling off an improving in a more
incremental fashion.

Figure 2.18: The average F1 score as a function of the generation during the genetic optimisation of the
model parameters.

The sensitivity tuning curves resulting from the best performing networks after termination of the ge-
netic optimisation after sixty generations are plotted in Fig. 2.19. In total two network configurations were
determined inspired by the adaptation observed in Drosophila whereby the neurotransmitter octopamine
adapts the speed sensitivity of its elementary motion detectors between flying and resting states. Therein,
one configuration is optimised to detect lower frequency gratings and the other to detect higher frequency
gratings - they are referred to as the Slow and Fast network configurations respectively. The Slow config-
uration was optimised first and then, using the resulting optimal values for Vth, the Fast configuration was
determined in a second step. The Slow and Fast configurations are plotted with respective red dashed
and green traces in Fig. 2.19(a). The Slow state accurately detects the direction of motion within a range
of grating frequencies of 0.7-3Hz while the Fast state does so within a range between 2-20Hz. Further, to
strike a greater parallel to experimental measurement of this behaviour, reported in Fig. 2.14(c), firing-rate
tuning curves are plotted in Fig. 2.19(b). This plots the firing rate of the UP neuron, when stimulated with
an upward moving grating, over the same range of grating frequencies for both the Slow and Fast network
configurations. Since the area under the firing-rate tuning curves of Fig. 2.19(b) is greater over the range
of grating frequencies when the network is in the Fast state than the Slow state the energy consumed by

64

firing activity in the readout network in the Slow configuration is reduced by 42% relative to the Fast one.
The result of Fig. 2.19 shows that, like Drosophila, the range of velocities of stimulus to which the system
is most sensitive to can be adapted by switching synaptic weights and time constants between two sets of
values. Additionally, when the network is switched to the Slow state the power consumption of the system
is reduced since it responds less to non-relevant higher speed stimuli.

(a) (b)

Figure 2.19: Results of the spiking neural network simulation demonstrating the performance and power
consumption of the two network configurations over a range of grating frequencies. (a) The sensitivity
tuning curve corresponding to the performance of the topology in detecting the correct direction of motion
over a range of grating frequencies. The red points correspond to the Slow network configuration and the
green points to the Fast network configuration using the parameters from the genetic optimisations. (b)
The firing-rate tuning curve corresponding to the response frequency of the neuron defined as the number
of times the UP neuron fires per second over the same range of grating frequencies. It can be seen that,
resulting from the reduced response in the Slow configuration, the power consumption is reduced in this
state relative to that of the Fast configuration inline with the reduced area under the tuning curve.

2.4 Chapter discussion

Although the two presented models were inspired by different perception systems found in two different
insect species, it is fascinating to note the parallels between them. For instance, just as the filiform hairs
on the cricket cerci sort local air-flow into one of four angles, the elementary motion detection circuits in
the the lamina and medulla of Drosophila sort local motion into one of four cardinal directions [249]. Also,
just as specific regions of the TAG integrate spikes from the sensory neurons of the cerci into distinct
regions corresponding to direction, the array of elementary motion detection circuits integrate their global
activity in specific regions of the Drosophila lobular plate - forming a directional and spatial feature map
of its visual scene. Furthermore, in the same fashion as the seven interneurons in our TAG model form a
compressed representation of the thousands of spikes triggered on the two cerci, Drosophila boils down
the high dimensional space of its original optical input into a representation of 27 interneurons. As in our
model each of these interneurons encodes certain properties of the visual scene [250]. One of the most

65

interesting parallels with the optimised TAG model, although the escape response was not incorporated
into the elementary motion detection model, is the observation that the Drosophilas giant fibre neuron,
that descends towards the animals motor ganglion to initiate a jumping escape response, sums excitatory
and delayed inhibitory input from two of these interneurons - one encoding stimulus speed and the other
stimulus size [184]. This resonates with the excitation and delayed (inline with [214]) inhibition from the
fast and slow neurons in the optimised TAG model. This alludes to a common set of design principles
in, at least, insect sensory systems consistent with the observation that, since the animal genome is
relatively constrained in the information it can store [187], animals should be applied to recycle the sets of
neural architectures and computational mechanisms across different systems. In the these two systems,
information is sorted into fundamental attributes as early-on as possible: the cricket sensory neurons
reporting air current in a specific direction for example, and thereafter using a global set of such attributes
to build a sensory feature map. By tapping into, and combining in a non-linear fashion, various activity in
various spatial locations over this feature map, the ensemble of information is compressed aggressively
into a representation, arguably an abstraction, comprising a much smaller set of neurons - seven in our
model and twenty-seven in the Drosophila visual system. The output of these neurons is then sent only
to where it needs to be , in order to drive appropriate behaviours - escape responses for example.

The objective of this chapter was to develop two neural network model architectures inspired by bi-
ology. While the model architectures were inspired from research into the biological systems, several
trade-offs were made from the standpoint of practicality. For example, in the case of the cercal system
model, the sensory feature map that is realised in the animal through a complex network of sensory
afferents, was simplified into sixteen leaky-integrating hyperbolic tangent neurons. Also, instead of mod-
elling the seven interneurons in the model as spiking neurons, which they are in the biological system,
hyperbolic tangent functions were used instead. Despite deviating from the exact biology, these practical
modelling choices were still able, however, to capture the fundamental underlying computing principles.
This highlights the difference between bio-mimicry and bio-inspiration, at least in the context of neural
networks, whereby the former aims to reproduce biology exactly and the latter to extract and apply its
key principles - although not necessarily in the same fashion. Surprisingly, despite this deviation from the
exact biology, two predictions from electrophysiological studies into the cricket terminal abdominal gan-
glion were validated in our model to be computationally important in the efficient detection of simulated
attacking predators. Specifically the presence of lateral inhibitory connections between the directionally
selective interneurons predicted in [215] and the global regulation, or background subtraction, mechanism
proposed by [180]. These results raise the interesting question as to what else such bio-inspired neural
network models might tell us about the mechanisms at play in the cercal system. For example, could the
lateral excitatory connections between directionally sensitive interneurons or the divergent connections
between air current speed encoding neurons also exist in the biological system?

The two sections of this chapter respectively showed the potential of incorporating bio-inspired ar-
chitectures, for the purposes of memory efficiency and interpretability, and the importance of dynamical
neuron and synapse models in representing time. Therefore an interesting future direction of work is in
understanding how to best marry these two facets together - for example, how to properly leverage dy-
namical neuron and synapse models in the TAG model architecture. Work in this direction has already
explored how backpropagation can be applied to training feed-forward spiking neural networks [251, 252]

66

using gradient approximations to the non-differential spiking neuron activation as well as topologies based
on dynamical sigmoidal neurons [152].

What is clear is that, contrary to the direction of deep learning, intelligence in animal nervous sys-
tems is more than learning. Rather innate architectures, that have been discovered over the course of
evolution, provide built-in solutions for many tasks. Not only looming as discussed here, but also more
complex behaviours concerning courtship and burrowing too [185, 186]. With the advent of recent meth-
ods that permit increasingly detailed study of animal nervous systems, ranging from electron microscopy
based connectome reconstruction [253] to opto-genetic-based electrophysiology [254], subsequent years
promise that such architectures can be more easily discovered and then transferred into neural network
models like those presented here. An important question to address with future work is how to scale
the approach to larger models whereby many such bio-inspired modules can be inter-linked in a larger
network - resemble something more like an ‘artificial nervous system’ as opposed to merely an artificial
neural network.

67

68

Chapter 3

Bayesian machine learning with resistive
memory

3.1 Chapter introduction

In the previous chapter it was discussed and demonstrated how principles from animal nervous system
could be used to inspire neural network model architectures. The two models presented were imple-
mented in software on a von Neumann computer and, as such, their parameters could be determined
in an arbitrary fashion - respectively, backpropagation and a genetic algorithm were used. However,
this thesis is concerned with exploiting the non-volatility of resistive memory in order to support non-von
Neumann RRAM-based neural network approaches. In using resistive memory, the determination of an
optimal set of parameters is non-trivial owing to their random properties and the resultant lack of preci-
sion with which parameters can be determined. Therein, this chapter deals with the open question of
what approach to machine learning can be compatible with these non-ideal device properties that cur-
rently impede the practical application of RRAM-based machine learning models. Unlike the genetic and
gradient-based approaches used the previous chapter, this chapter turns instead to the Bayesian machine
learning framework where inherent device randomness can be actively harnessed rather than acting as
the principal roadblock.

3.2 In-situ resistive memory based Markov Chain Monte Carlo

3.2.1 Introduction

A tantalising prospect for the future of computing is the realisation of standalone systems capable of act-
ing, adapting and learning from new experience locally at the edge [169] - independent of the cloud -
while simultaneously observing severe constraints on energy consumption, data availability and memory
size. While there are no commercial systems currently available that can meet these requirements, edge
learning is an application domain that is projected to emerge and grow over the coming decade [2]. Edge
learning faces particular challenges given the noisy and limited raw sensory information encountered in
the complex environments where such systems could be deployed - an implanted medical system re-

69

quired to locally update its operation based on the evolving state of a patient for example. The models
and algorithms within the domain of machine learning offer the enabling tools for such systems. However,
until recently, little attention has been given to the hardware that underpins their inherent computation.
Machine learning models are trained using general purpose hardware which inherits from the von Neu-
mann organisation [255]. This entails spatially separate processing and memory and does not owe itself
to energy-efficient learning. For example, state of the art performance in machine learning is currently
being obtained with neural network models which feature a very high number of parameters [256] that
are determined using the backpropagation algorithm [51] and a massive volume of data. The energy re-
quired to train such models can be staggering due to the transfer of vast quantities of information between
memory and processing centres on the hardware [3, 257]. Although cloud computing platforms offer a
centralised solution for such energy and data intensive training, these demands are not consistent with
the requirements of edge learning [169]. For edge applications therefore, it is required to abandon the
von Neumann paradigm in favour of another, where memory and processing can co-exist at the same
location.

Resistive random access memory (RRAM) technologies, often referred to as memristors [258, 259],
hold fantastic promise for realising such in-memory computing systems, owing to their extremely efficient
implementation of the dot-product (or multiply-and-accumulate) operation that pervades machine learning
- relying simply on Kirchoffs current law [260, 261, 262, 263, 264, 265, 266] (Fig. 3.2). These technologies
come in many flavours [121, 122, 120, 119], and intense effort is currently directed towards their use as
synaptic elements in hardware neural networks for edge computing systems [260, 261, 262, 263, 264,
265]. Currently, approaches for training such systems in-situ revolve around in-memory implementations
of the back-propagation algorithm [261, 267, 263, 264, 265]. However, implementing back-propagation in
such hardware remains a formidable challenge due to multi-fold non-ideal device properties: non-linear
conductance modulation [268], lack of stable multi-level conductance states [269, 270], as well as device
variability [271, 272]. Considering these real device properties, the performance of systems can be lower
than that obtained on conventional computing systems [273, 274, 275]. Several non-ideality mitigation
techniques [261, 267, 276, 264, 265, 277] enhance system accuracy but ultimately curtail the efficiency
of the in-memory computing approach. On the contrary, approaches based on neuroscience-inspired
learning algorithms, such as spike-timing dependent plasticity feature, resilience and, in fact, sometimes
benefit from device non-idealities [278, 279, 280]. However, these brain-inspired models cannot yet match
state of the art machine learning models when applied to practical tasks. Further research has taken a
bolder stance on the issue of resistive memory non-idealities and instead propose that they should be ac-
tively embraced. For example, the cycle-to-cycle conductance state variability, which has been leveraged
as a source of entropy in random number generation [281, 282], has also been exploited in stochastic ar-
tificial intelligence algorithms such as Bayesian reasoning [283, 284], population coding neural networks
[285] and in-memory optimisation [286, 287]. Unfortunately however, these approaches sacrifice the key
property of conductance non-volatility - the basis of resistive memory’s potential for efficient in-memory
computing.

In this work, we present an alternative approach which simultaneously exploits conductance variability
and conductance non-volatility without requiring mitigation of other device non-idealities. From the per-
spective of cycle-to-cycle conductance variability, we propose that resistive memories can be viewed as

70

physical random variables which can be exploited to implement in-memory Markov Chain Monte Carlo
(MCMC) sampling algorithms [288]. We show how a resistive memory based Metropolis-Hastings MCMC
sampling approach can be used to train, in-situ, a Bayesian machine learning model realised in an ar-
ray of resistive memories. Crucially, the devices that perform the critical sampling operations are also
those which store the parameters of the Bayesian model in their non-volatile conductance states. This
eliminates the need to transport information between processing and memory and instead relies on the
physical responses of nanoscale devices under application of voltage pulses inside of the memory circuit
itself.

In order to demonstrate the practicality of RRAM-based MCMC sampling, we have implemented an ex-
perimental system consisting of a computer-in-the-loop with a fabricated array of 16, 384 resistive memory
devices in a one-transistor-one-resistor (1T1R) configuration that are organised by the computer to realise
a Bayesian machine learning model (Fig. 3.1). The computer is responsible for performing calculations
based on the conductances read from the devices in the array and, as a function of the result, configures
the programming voltage waveforms that then are applied over the devices - thereby implementing the
learning algorithm in-situ. For information on the experimental setup, the device arrays and the device
programming conditions used, see Appendix 6.3.

In a first experimental realisation, we train the system to solve an illustrative classification task, in
a second we apply it to the detection of malignant breast tissue samples and, in a third, we address
the detection of arrhythmic heartbeats. Finally, we extend the approach using a behavioural simulation
calibrated on an array level variability characterisation, to the Cartpole reinforcement learning task. In each
of these tasks, we benchmark the resulting performance against software-based neural network models
and find that the resulting Bayesian models are not only able to outperform these software benchmarks
but also that RRAM-based MCMC is able to train the full model with some orders of magnitude fewer
device programming operations relative to existing resistive memory based backpropagation approaches.
Finally, through the design and simulation of a fully-integrated implementation of our proposed approach,
we compare the energy required to train the models presented in here relative to conventional CMOS
solutions and, once again, observe a reduction comprising several orders of magnitude.

3.2.2 In-memory implementation

Arrays of resistive memory devices are capable of implementing extremely efficient in-memory machine
learning models [260, 261, 262, 263, 264, 265]. Considering an RRAM-based logistic regression classifier,
one of the most canonical models in machine learning, the circuit of M parallel devices shown in Fig. 3.2
defines a hyper-plane that can separate two classes of data. Each parameter of the logistic regression
model is defined by the conductance of one of the M devices. The response of this conductance-based
model, g, can be inferred by presenting a voltage vector V, encoding a data point, to the top terminals of
the devices and sensing the current that flows out of the common, bottom node. This current is equivalent
to the dot-product between the two vectors V · g.

The dominant approach in RRAM-based machine learning for training the conductance parameters
of a model is gradient-based optimisation whereby an error, or cost function, is iteratively differentiated
with respect to the current parameters of the model. The resulting derivative provides precise conduc-

71

Program

Read

- Generate Pulses

- Evaluate Calculations

200mm Hybrid

CMOS-OxRAM

(130nm) Wafer

SL BL WL CTRL

25-pin

Probe-card

WL

SL

BL

Figure 3.1: Diagram of the computer-in-the-loop with the resistive memory array. The computer-
in-the-loop experiment using the RIFLE NplusT engineering test system, which incorporates a digital
sequencer, 100 MHz arbitrary waveform generators, 70Msample/sec cell current measurement capability,
as well as a C++ programmable computer. The computer can configure pulses applied by the arbitrary
waveform generator to source (SL), bit (BL), and word lines (WL) signals. The CTRL bus controls pe-
riphery circuitry integrated within the hybrid CMOS-OxRAM wafer and determines to which device in the
array the SL, BL and WL signals will be applied to (here the red coloured 1T1R structure). All these
signals are interfaced to our 200 mm (8-inch) wafer through a 25-pin probe-card, which contacts to 25
metal pads integrated on top of the back-end-of-line of the wafer. Using this setup, the computer is there-
fore able to program the conductance states of devices integrated in the array, read the resulting states,
and then, based on these results, re-program the devices in the array in a continuous program-read loop.
In this fashion, we can implement RRAM-based algorithms, whereby programming operations can be
determined based on the feedback of the result of the previous programming steps. In the case of the
RRAM-based MCMC sampling algorithm implemented here, after reading programmed device conduc-
tance values, the computer is then responsible for calculating the dot-product between the data points
and the conductance model, evaluating the likelihood of the conductance model and finally performing the
acceptance ratio calculation. The ultimate aim of such a system is to experimentally verify RRAM-based
algorithms, before a full system can be designed and integrated on a standalone chip.

tance updates which, after being applied over a sufficient number of iterations, guide the model down the
slope of an error gradient such that it settles into a minimum (Fig. 3.3a). This results in a locally-optimal
model that can then be applied to tasks through inference. However, performing this type of training in-
memory is extremely challenging as resistive memory technologies feature highly non-linear and variable
conductance updates that do not naturally support the high precision updates required by this class of
algorithm [268, 269, 270, 271, 272]. Furthermore, in such a deterministic modelling approach (Fig. 3.2),
each parameter is described by a single value, and it is not possible to account for parameter uncertainty.

72

Figure 3.2: (left) A conductance model g, composed of four resistive memory elements, defines a linear
boundary which (right) separates two classes of data (red circles from blue squares). Through application
of a voltage vector V to the top electrode of the parallel resistive memories, the summed current flowing
out of the common node at the the bottom electrode is equivalent to the dot-product V · g, which can then
be used to determine to what class the data point V belongs.

Capturing the uncertainty in parameters is important when faced with the limited, possibly incomplete,
data and noisy sensory readings encountered at the edge [289, 175]. This uncertainty in parameter es-
timation also allows for a description of uncertainty in the model’s predictions, which would be desired
in a safety-critical edge application - like an implanted medical system. To account for uncertainty, it is
preferable to construct a Bayesian model. In this case, parameters are represented, not by single val-
ues, but by probability distributions. The distribution of all of the parameters of a Bayesian model, given
observed data, is called the posterior distribution, or simply the posterior. As an analogue to deriving an
optimal deterministic model through gradient-based updates, the objective in Bayesian machine learning
is to learn an approximation of the posterior distribution. When the posterior has been approximated
it can be applied to tasks through model inference. To approximate the posterior, sampling algorithms,
most commonly Markov Chain Monte Carlo (MCMC) sampling [288], are often employed. Instead of de-
scending an error gradient, MCMC sampling algorithms make localised random jumps on the posterior
distribution and continuously store models that lie on it (Fig. 3.3b). The algorithm jumps from a current
location in the model space g to a proposed location gp, according to a proposal distribution p(gp|g) which
is usually a normal random variable. By comparing the proposed and current models, a decision is made
on whether to accept or reject the proposed model. If accepted, the next random jump is made from this
newly accepted model. MCMC sampling algorithms are configured to accept more samples from regions
of high probability density on the posterior, that would correspond to a lower error in the gradient-based
case of Fig. 3.3a. After a sufficiently large number of such iterations, the accepted samples can be used
together as an approximation of the posterior distribution.

In this thesis we realise that, in stark contrast to the case of gradient-based learning algorithms, the
properties of resistive memories are incredibly well suited to the requirements of sampling algorithms. This
is because the cycle-to-cycle conductance variability, inherent to device programming, is not a nuisance
to be mitigated, but instead, a computational resource that can be leveraged by viewing resistive memory
devices as physical random variables. More specifically, we exploit the random variable available in a
hafnium dioxide-based filamentary random access memory [119] (OxRAM), co-integrated at array level

73

 E
rr

or

g

 �g = �
�Error

�g

C
on

du
ct

an
ce

, g

Update Number

 E
rr

or

 E
rr

or

g g

Optimal ModelInitial Model Gradient-Based Updates

(a)

p(gn+1|gn)

P
ro

ba
bi

lit
y

D
en

si
ty

g

C
on

du
ct

an
ce

, g

Update Number
g g

P
ro

ba
bi

lit
y

D
en

si
ty

P
ro

ba
bi

lit
y

D
en

si
ty

Initial Model

Localised Random Jumps Posterior Approximation

(b)

Figure 3.3: Strategies for training RRAM-based models. (a) (left) Gradient-based learning algorithms
iteratively compute the derivative of an error metric with respect to a conductance model g, multiplied by
a learning rate α, to determine updates to be applied to the g parameters. The ideal RRAM device should
be capable of high precision and linear conductance updates. (right) The three panels show the gradient-
descent algorithm for an increasing number of model updates (green crosses). From an initial model the
algorithm performs gradient-based updates until it converges to a local minimum in error. (b) (left) Sam-
pling algorithms use a proposal distribution (p(gn+1|gn)) to propose random updates to model conductance
parameters which are then either accepted or rejected. The ideal RRAM device for sampling algorithms
should offer random conductance updates deriving from a known probability distribution. (right) The three
panels illustrate how a sampling algorithm performs local random jumps on the posterior distribution for
an increasing number of sampling operations. From an initial model, a proposal distribution generates a
series of localised random jumps (dashed green lines) which are then either accepted (green cross) or
rejected. The algorithm tends to accept models of a higher probability density on the posterior distribution.
After a sufficient number of iterations the accepted models can be used together as an approximation of
the posterior distribution (blue haze).

into a 130 nm complementary metal oxide semiconductor (CMOS) process [290]. Each memory point
in the array is connected in series to an n-type transistor. The conductivity of an OxRAM device can
be modified by the application of voltage waveforms which, through reduction-oxidation reactions at an
interfacial oxygen reservoir between the oxide and top electrode, create or rupture a conductive oxygen-
vacancy filament between the electrodes. The device can be SET into a high conductive state (HCS), by
applying a positive voltage to the top terminal of the device, while grounding the bottom, and thereafter
RESET into a low conductive state (LCS), by applying a positive voltage to the bottom electrode while
grounding the top.

Each time the device is SET, a unique HCS conductance is achieved - resulting from the random re-
distribution of oxygen-vacancies within the oxide [271, 272] on consecutive programming cycles. If the
HCS conductance is measured over successive cycles, a normally distributed cycle-to-cycle conductance
probability density emerges (Fig. 3.4a). The SET operation is therefore analogous to drawing a random
sample from a normal distribution. In addition, the median conductance of this probability distribution can

74

be controlled by limiting the SET programming current (ISET) via the gate-source voltage of the series
transistor. The relationship between the conductance median and SET programming current follows a
power law [291], and the standard deviation of the distribution also depends on the SET programming
current (Fig. 3.4b). Therefore, manifested in the physical response of these nanoscale devices, we find
the essential computational ingredient required to implement in-memory MCMC sampling algorithms - a
physical normal random variable which can be harnessed to propose new models based on the current
one. In addition to this cycle-to-cycle variability, device-to-device variability is also present in the technol-
ogy. The distribution of the normal physical random variable median and standard deviation of each cell
in a memory array, cycled under identical conditions, are plotted in Fig.3.4c in order to demonstrate the
device-to-device variability that exists in this technology.

(a) (b)

(c)

Figure 3.4: Electrical characterisation of OxRAM cycle-to-cycle and device-to-device variability. (a)
Probability density of the HCS cycle-to-cycle variability for a single OxRAM device, measured over 100
RESET/SET cycles (see Appendix 6.3), and fitted with a normal distribution (dashed line). (b) Cycle-to-
cycle conductance median and standard deviation for a population of 4, 096 devices, for a range of SET
programming current (see Appendix 6.3). Both relationships are fit with a power law. The device-to-
device variability in the quantities over the 4096 devices, extending to the 95th and 5th percentiles (two
standard deviations), is shown with error bars at each point. (c) Joint distribution of the conductance
median and standard deviation of each device in the population. 4, 096 devices have been RESET/SET
cycled 100 times under the same programming conditions, and the resulting median conductance and
standard deviation of each device has been plotted as a single green point - illustrating the device-to-
device variability within a population. Two histograms on opposing axes show the probability densities for
the conductance median and standard deviation independently.

We propose that theN×M resistive memory array depicted in Fig. 3.5a can be trained through MCMC
sampling and then store, in the distribution of its non-volatile conductance states, the resulting posterior
distribution of a Bayesian model. A single deterministic model, gn, is stored in each of the rows where
its parameters are encoded by the conductance difference between positive g+n and negative g-n sets of
devices - allowing for each parameter to be either positive or negative (Fig. 3.5b).

The principle of our in-situ learning approach is to generate at each row a proposed model, based on
the model in the previous row, inline with the Metropolis-Hastings MCMC sampling algorithm [288]. Each
parameter of the proposed model can be generated naturally, using the OxRAM physical random variable.

75

(a)

(b)

Figure 3.5: (a) Memory array architecture where RRAM conductances store the posterior approximation
and calculation used to perform inference with a learned posterior. Each of the N rows store a single
conductance model gn and features a digital counter element, Cn. (b) A single array row is the differential
conductance between conductance vectors g+ and g-. A positive voltage vector, V, is applied over the top
electrodes of g+ and a negative opposite voltage vector −V is applied over the top electrodes of g-. If the
common, bottom node is pinned at a virtual ground, the current flowing into the function block is equal to
the dot-product V · g.

This is achieved through performing a SET operation on each device in the row with a programming
current that samples a new conductance value from a normal distribution, provided by its cycle-to-cycle
variability, centred on that of the corresponding device in the previous row - as depicted in Fig. 3.6.

By computing a quantity called the acceptance ratio, a decision is made on whether this proposed
model should be accepted or rejected. If rejected, the row is reprogrammed under the same conditions -
thereby generating a new proposed model. Additionally, the value of a digital counter, Cn, which is asso-
ciated with the previous row is incremented by one. By tracking the number of rejections in this manner,
the contribution of the model in each row to the overall probability density of the posterior approximation
(Fig. 3.3b) is accounted for. If the proposed model is instead accepted, the process is repeated at the next
row, and so on until the algorithm arrives at the final row of the array. At this point the distribution of pro-
grammed differential conductances in each of the array columns corresponds to the learned distributions
of each of the Bayesian model parameters - the posterior distribution. After training, the learned posterior
distribution in the array can be applied to a task through inference.

Specifically, an MCMC sampling algorithm called Metropolis-Hastings [288] was implemented using
the computer in the loop with the 16k device array pictured in Fig 3.7. The devices in the array, which
physically exist as a 128×128 array of 1T1R structures, are re-mapped into a virtual address space which
realises the structure presented in Fig. 3.5a.

76

V
S
E
T

V
S
E
T

g

gp

gp+[0]

gp-[0]

g+[0]

g-[0]

VGATE+(g+[0])

g+[0]

g-[0]

gp+[0]

gp-[0]

P
ro

p
o

sa
l D

en
si

ty

VGATE-(g-[0])

n+1

ow n

Figure 3.6: Model proposal step between two array rows. Using the known relationship between SET
programming current and the read conductances in row n, devices (pointed to by the arrows) g+[0] and
g-[0] in the n+1th array row are SET. Their SET programming currents are proportional to the conductances
of the corresponding devices in the nth row. The new conductance values of g+[0] and g-[0] in the n + 1th

row are thereby sampled from normal random variables with medians equal to the conductances of the
devices in the nth array row (the green probability distributions, left). The SET programming currents are
fixed by applying the appropriate voltages V GATE+ and V GATE- to the transistor gates of row n+ 1.

This is achieved by allocating pairs of sequential banks of M devices (for an M -parameter model)
corresponding to the g+ and g- conductance vectors to each of the N rows in Fig. 3.5a. A dot-product is
performed by reading the conductances of the devices composing g+ and g- and subtracting them in the
computer-in-the-loop to arrive at g and then performing the dot-product between V and g. Note that in
a future version of the system, by integrating appropriate circuits within the device array the dot-product
can be performed by simply applying the data points as read voltages and reading the output current
consistent with the row design of Fig. 3.5b.

Resistive memory based MCMC sampling begins by performing a RESET operation on each device in
the array, rendering all devices in the LCS. Using the variable n to point to the row containing the current
model, the algorithm begins with n = 0. The devices in row n are SET. Because we do not have strong
a priori belief on the initial model parameters, each device is SET using the lowest available VWL (in this
case 1.4V) which corresponds to the lowest SET programming current (40µA). As a result the standard
deviation of the initial samples will be high (resulting from the relationship measured in Fig. 3.4b). The
devices in the following row, n + 1, are then programmed with SET programming currents proportional
to the conductances read from the corresponding devices in row n. This results in a proposed model,

77

Figure 3.7: OxRAM array used in the experiments. An optical microscopy image of the fabricated array
is shown in the background. Scanning electron microscopy images are superimposed on top. (left) A
focused ion beam a etch reveals the cross-section of a 1T1R structure (centre). In the front-end-of-line
a transistor (1T) acts as a selector for the OxRAM device (1R) integrated in the back-end-of-line. (right)
Imaged before deposition of the top electrode titanium layer, a 10 nm thick, 300 nm wide mesa of HfO2
rests upon a TiN bottom electrode.

gp being generated in row n + 1 inline with the proposal distribution offered by the cycle-to-cycle HCS
conductance variability (Fig. 3.4a):

p (gp|g) = N (ISET(g), σ(g)) . (3.1)

In doing this, a new conductance value is sampled for each device in row n + 1 from a normal ran-
dom variable with a median value corresponding to the same device in row n, offset by device-to-device
variability (Fig. 3.4c) that is introduced when moving between successive rows.

The SET programming current in the proposal step is determined by the value of VWL used to program
each device in row n+1. To achieve this a look-up table is determined during an initial sweep whereby the
entire 16k device array is RESET/SET cycled once per VWL value that will be used in the experiment. For
each of these values of VWL, the median conductance read across the 16k device array is calculated and
inserted in the corresponding entry in the table. Therefore, when programming a device in the row con-
taining the proposed model is required to read the conductance of the corresponding device in row n, and
use the value of VWL with the closest corresponding conductance, as the VWL used in the SET operation.
In the experiments, the look-up table extended from 1.4V to 1.8V in discrete 20mV steps, corresponding
to SET programming currents in the range of 40µA-100µA and permitted median conductances in the
range of 40µS- 80µS to be used. Programming the devices in row n + 1 implements the model proposal
step depicted in Fig. 3.6.

78

In Metropolis-Hastings MCMC sampling, after proposing a new model, it is required to make a decision
on whether to accept and record the proposed model gp or reject and record, once again, the current
model g. This decision is made based on the calculation of a quantity named the acceptance ratio a.
Because the proposal density is normally distributed (Equation 3.1), and therefore symmetrical [292], it
can be written as:

a =
p(gp)

p(g)

p(t|gp,V)

p(t|g,V)
. (3.2)

This acceptance ratio is a number proportional to the product of the likelihood of a proposed model
(p(t|gp,V)) and a prior on the proposed model (p(gp)), divided by the product of the likelihood and prior
of the current model. Intuitively the acceptance ratio indicates how much more likely is the current model,
given a set of observations, than the previous one and how much more does it correspond to prior beliefs
on the parameters than the previous one. Given a dataset of D data points where A data points belong
to the class the model is required to recognise (t = 1) and B other data points that the model should not
recognise (t = 0) the Bernoulli likelihood of a model is given by:

p (t|g,V) =
A∏
a=0

f (Va,t=1 · g)×
B∏
b=0

(1− f (Vb,t=0 · g)) . (3.3)

The function f(V · g) depends on the specific formulation of the model. The prior of a model is given by:

p (g) =
1

σ
√

2π
exp

(
−(g− µ) 2

2σ2

)
, (3.4)

where the constant σ, corresponds to the prior belief that the posterior distribution is a multi-dimensional
normal distribution with a standard deviation of σ in each dimension. In all examples in this thesis, the
value of µ was set to zero. These quantities are calculated on the computer-in-the-loop in logarithmic
scale, constituting a summation over D points. Because Markov Chain Monte Carlo sampling methods
work with small datasets, where overfitting can be avoided through the incorporation of uncertainty into
parameter estimations [175], it would be possible to sub-sample the original D data points if the dataset
was unreasonably large. In order to decide if the proposed model should be accepted or rejected, a is
compared to a uniform random number between 0 and 1, u, generated on the computer using the C++
standard random math package. If a is less than u then gp is rejected. This is achieved by programming
the devices in row n+1 back into the LCS and incrementing the counter at row n, Cn, by one. The counter
is a variable in the C++ on the computer although, as is the case for all functionality of the computer-in-
the-loop, could be integrated as a digital circuit on a future implementation of the system. The devices in
row n+ 1 are then SET once more under the same programming conditions - generating a new proposed
model gp at row n+1. This process repeats until a is found to be greater than u. When this is the case, gp

is accepted whereby the counter at row n+ 1 is incremented by one and the model at row n+ 1 becomes
the new current model (n = n+ 1). This new current model g is then used to propose a model, gp, at the
next row in the array. The model stored at row n− 1 is then left preserved in the non-volatile conductance
states of the resistive memory devices, weighted by the counter value Cn-1 which denotes the probability
density of that accepted model. As this process repeats, and progresses down the rows of the memory

79

array, the algorithm randomly walks around the posterior distribution leaving information on its probability
density imprinted into the non-volatile conductance states of the OxRAM devices and the row counter
values. Upon arriving at the final row of the array, n = N − 1, the training process terminates resulting in
a physical array of resistive memory devices which contains an approximation of the posterior distribution
that can then be used in inference.

Performing inference consists of computing the dot-product between a new, previously unseen data
point (Vnew), and the model recorded in each array row. The response of each row is then multiplied by
the value in each row counter. The summed response of each row in the array is then divided by the sum
of all row counter values. This is also referred to as taking the expectation, and results in a scalar value
which has been inferred from the N weighted samples from the posterior distribution approximation:

P (T new = 1|V, t) =
1

Tot

N−1∑
n=β

Cnf (Vnew · gn) . (3.5)

The summation considers only rows of an index greater than β which determines the number of rows
discarded to account for the burn-in period. The variable Tot is the sum of all row counter values recorded
after the burn-in period.

3.2.3 Application to supervised learning

In this section it will demonstrated experimentally how this approach can be used to address three super-
vised learning tasks.

Illustrative 2D separation

First, as an illustrative example, we train a Bayesian logistic regression model, realised in a 2048×2 array,
to separate two classes of artificially generated data - the red circles from blue squares in Fig. 3.8b To
configure the memory array as a Bayesian logistic regression the logistic function is applied on the current
flowing out of the row:

f(V · g) =
1

1 + e-S(V·g) , (3.6)

where S is a scaling parameter. This logistic function limits the response of the row dot-product into a
probability between 0 and 1. When configured as such, the Bernoulli likelihood of a conductance model is
calculated as:

p (t|g,V) =
A∏
a=0

(
1

1 + e-S(Va,t=1·g)

)
×

B∏
b=0

(
1− 1

1 + e-S(Vb,t=0·g)

)
. (3.7)

After training, inference can performed on a new data-point Vnew whereby it is assigned a probability of
belonging to the class t = 1 by computing:

P (T new = 1|V, t) =
1

Tot

N−1∑
n=β

Cn

1 + e-S(Vnew·gn) . (3.8)

80

After the algorithm terminates, the non-volatile conductance states of the devices in the array give
rise to the multi-modal posterior approximation plotted in Fig. 3.8a. Two distinct peaks emerge, denoting
regions of high probability density where many of the accepted models are tightly packed. A randomly
selected subset of these accepted models are plotted as hyper-planes in the space of the data in Fig. 3.8b,
each defining a unique linear boundary separating the two clouds of data points belonging to each class.
Through combination of all the accepted models, therein using the posterior approximation which now
exists in the array, a probabilistic boundary between the two classes emerges in Fig. 3.8c. Any previously
unseen data point can hereafter be assigned a probability of belonging to the class of red circles as a
function of where it falls on this probability contour.

(a) (b) (c)

Figure 3.8: Experimental results on the illustrative 2-D dataset. (a) Posterior distribution stored within
the memory array after the training experiment. The two conductance parameters of each accepted model
are plotted as points in the conductance plane (or model space). The initial model stored in the zeroth row
is shown by a red dot. The models accepted into the subsequent array rows are plotted as green points
with an opacity proportional to the associated row counter value. The transparent lines between green
points show the jumps on the posterior made between successive array rows. The resulting posterior
distribution is superimposed in a contour plot whereby blue and green contours denote low and high
probability density respectively. (b) The two classes of data (red circles and blue squares) and a subset
of fifteen models stored in randomly selected rows of the memory array. (c) The probabilistic boundary
that is described by the posterior distribution stored within the resistive memory array. Each of the contour
lines is annotated with a probability that corresponds to the probability that any point lying on it belongs to
the class of the red data. The bounded regions between contours are coloured from red to blue whereby
red denotes high confidence that a point within that shaded region belongs to the red class, and blue a
low confidence.

Malignant tissue recognition

For the second supervised learning task, the Wisconsin breast cancer dataset was used which consists of
569 data points with class labels malignant (t = 1) or benign (t = 0) [293]. The dataset was shuffled into a
training split of 369 points and test split of 200 points that were used in each of the 100 train/test iterations.
The Chi2 feature selection algorithm [294] was used to select sixteen features and these features were
then scaled around zero such that the model does not require an additional bias parameter. If this step
were not performed an extra column could be added to the array which would then learn the distribution of
the bias parameter. During training, the algorithm was configured to recognise data points corresponding

81

to malignant tissue samples (t = 1). At inference time the 200 previously unseen data-points from the test
split were assigned a probability of being malignant using Equation 3.8. Output probabilities greater than
or equal to 0.5 corresponded to a prediction of the sample being malignant (t = 1) and probabilities less
than 0.5 corresponded to a prediction of the sample being benign (t = 0). The reported test accuracy
corresponds to the fraction of the 200 test data points which were correctly classified.

A Bayesian logistic model based on a 256 × 16 array was applied to this task. After training has
been completed, the differential conductance parameters programmed into the resistive memory array are
plotted in a heatmap in Fig. 3.9a. Probability distributions of two parameters from the resulting posterior
are shown alongside. In order to visualise the learning process, the classification accuracy of the accepted
conductance model in each array row, in addition to its corresponding counter value, are plotted in green
and blue traces respectively in Fig. 3.9b. From an initial conductance model, which achieves a poor
classification accuracy, the algorithm quickly converges onto the posterior after approximately 32 rows.
After this ‘burn-in’ period, the algorithm tends to accept models into array rows which have a higher
probability density, corresponding to models with higher classification accuracy. Strikingly, the accuracy
does not saturate but rather increases sharply during burn-in and then proceeds to oscillate between high
and medium accuracy conductance models. This is an important property of MCMC sampling algorithms
whereby sub-optimal models are also accepted, although less frequently and with a smaller row counter
value, ensuring that the true form of probability density of the posterior is uncovered. After the algorithm
terminates, the accuracy achieved on the testing set was 97%, indicated by the horizontal dashed black
line in Fig. 3.9b. Notably, the combined accuracy of all of the models in the posterior approximation is
greater than the accuracy of any of the single accepted deterministic models alone.

In order to gather statistics on variability between training iterations, the training process was repeated
over 100 further experiments and the resulting accuracy distribution is reported in Fig. 3.9c - achieving a
median accuracy of 96.3% and, on some iterations, classifying over 98% of test points correctly. It was de-
termined that this median accuracy could be sustained for array sizes down to 96×16 (Fig. 3.9d). In order
to benchmark this result, a software-based perceptron as well as a single hidden-layer neural network, us-
ing a number of synapses equal to the number of RRAM devices used in the experimental demonstration
trained using backpropagation are used. The resulting accuracy distribution of the perceptron and neu-
ral network software benchmarks over the 100 training iterations are largely similar - obtaining a median
accuracy of 95.8% as plotted in Fig. 3.9c.

82

Differential Conductance (S)

(a)

Combined Accuracy

(b)

(c)
(d)

Figure 3.9: Experimental results on the supervised classification of breast tissue samples. (a) (left)
Heatmap of the differential conductance pairs in the 256 × 16 array after a training experiment. Cells
within the heatmap are coloured from blue to red indicating the sign and magnitude of each conductance
parameter. The row counter weighted distributions within columns five and eight, corresponding to two
learned model parameters, are plotted in respective green and blue histograms and fitted with kernel
density estimations. (b) Accuracy, evaluated on the dataset, of the conductance model (green) and the
row counter value (blue) for each of the 256 rows. The first 32 rows, contained within a red rectangle,
have been accepted during the burn-in period. Discarding these rows, the combined accuracy of the
remaining rows on the test dataset is 97%, indicated by the horizontal dashed line. (c) Boxplots showing
the test accuracy distributions over 100 separate train/test iterations for the malignant tissue recognition
task using the same train/test split for (left, light green) the experimental setup, and (center and right)
software-based neural network (labelled as DNN) benchmark models. The coloured boxes span the upper
and lower quartiles of accuracy while the upper and lower whiskers extend to the maximum and minimum
accuracies obtained over the 100 iterations. The median accuracy is indicated with a solid horizontal line.
(d) The effect of the array size on the test accuracy. The test accuracy distribution shown as a boxplot for
an increasing number of rows after the fixed burn-in of 32.

We next compare the total number of programming operations required to train a full model in our
experiment relative to the estimated number required to train RRAM-based implementations of the bench-

83

marks inline with two state of the art RRAM-based backpropagation approaches [261, 266] - labelled as
‘Ambrogio’ and ‘Yao’ in Fig.3.11a. This is a useful metric in understanding the programming efficiency
of the approach. Consistent with the observation that, in our experiments, each device was required on
average to be RESET/SET cycled only 7.5 times (Fig. 3.10a); we found that RRAM-based MCMC re-
quired between two and four orders of magnitude fewer total programming operations than the neural net-
work benchmarks and between one and two orders of magnitude fewer than the perceptron benchmarks
(Fig. 3.11a). The substantially smaller number of programming operations highlights the particular har-
mony between device property and algorithmic requirement achieved through the combination of RRAM
and MCMC sampling when contrasted with RRAM-based learning algorithms based on gradients.

(a)
(b)

Figure 3.10: Probability distribution of row counter values for the supervised learning tasks. Prob-
ability histogram of the values held in the row counters, labelled as counts on the x-axis, over the 100
training iterations for the (a) malignant tissue recognition task and (b) the arrhythmic heartbeat detection
task. The mean row counter value over each set of 100 training iterations is shown with a vertical green
dashed line – 7.47 and 4.56 for (a) and (b) respectively. Because the value in each row counter de-
notes the number of times the devices in the subsequent row were RESET/SET cycled, this mean value
corresponds to the number of times each device in the array is RESET/SET cycled.

Alongside conductance variability, another major drawback of resistive memory technologies is the
rapid degradation of their conductive states when subjected to repeated programming operations - referred
to as endurance cycling. In order to asses the impact of endurance cycling on RRAM-based MCMC
sampling, we RESET/SET cycled an RRAM array 10, 000, 100, 000 and 1, 000, 000 times and, after each
decade of cycling, apply RRAM-based MCMC sampling to the same task. After only 100, 000 RESET/SET
cycles the array is already no longer suitable for use in a standard memory application due to the overlap
of the LCS and HCS cumulative probability distributions plotted in Fig. 3.12a. This situation is further
exacerbated by the emergence of permanent write failures over the next two decades of cycling [295]
(green curves in Fig. 3.12b). In spite of this however, the accuracy of the models trained after each
decade, plotted as dark blue points in Fig. 3.12b, remain comfortably within the bounds observed during
the 100 training iterations using the fresh memory array (Fig. 3.9c). A further light blue point is plotted

84

(a)
(b)

Figure 3.11: Bar plots summarising the total number of programming operations required to train
a full RRAM-based model for the two supervised learning tasks. Each bar shows the total number of
programming operations observed in the (a) malignant tissue recognition task and (b) arrhythmic heart-
beat detection task. The proposed RRAM-based MCMC approach (first column) is compared with state
of the art RRAM-based backpropagation approaches [261, 266] applied to both the hidden-layer neural
network and perceptron benchmark models. Green (bottom) bars show the total number of operations ap-
plied to the resistive memory devices and blue bars, in the case of Ambrogio ’18 which uses the change
in the voltage on a capacitor for the majority of parameter updates [261], show the number programming
operations applied to the capacitors. Each bar is based on the application of the approaches in [261] and
[266] to train RRAM-based implementations of the benchmark perceptron and neural network models
used here.

whereby the error probabilities measured on the same technology for 10, 000, 000 cycles are artificially
imposed during the experiment by masking read conductances with values indicative of the two error
types with a given probability. Here, even when faced with 4% of devices stuck in the HCS and 1.5% of
devices stuck in LCS, the accuracy of the resulting model did not degenerate below that of the fresh array.

Heart arrhythmia detection

Finally, to address a task more representative of learning at the edge, we apply RRAM-based MCMC to
train a multi-layer Bayesian neural network experimentally to detect heart arrhythmias from electrocardio-
gram recordings [296] (see Appendix 6.6). Bayesian neural networks are the probabilistic counterparts of
deterministic neural networks whereby probability distributions are used to represent the synaptic connec-
tions between neurons, allowing the model to incorporate uncertainty into these synaptic parameters and
therefore be robust to over-fitting [175]. Each neuron in the network, like the in the previous two demon-
strations, implements the logistic function and does not use a bias parameter. Like in the previous cases
the output neuron of the network is interpreted as a probability and the Bernoulli likelihood is used to train
the model in the same fashion. As depicted in Fig. 3.13a, ten features obtained from the fast Fourier
transform of each heartbeat (see Appendix 6.6) are used to train the Bayesian neural network. Two ex-
amples of the synaptic distributions learned during the experiment are also plotted. The trained model
was then tasked with the detection of arrhythmic beats in a new, previously unseen, subject. The accu-
racy distribution over 100 training iterations is plotted in Fig. 3.13b, whereby the model obtains a median

85

(a) (b)

Figure 3.12: (a) The experimental accuracy of the model trained on an array after an increasing number of
decades of endurance cycles. The permanent write error probabilities of stuck in LCS and stuck in HCS
devices are also plotted on a secondary axis. Arrows have been annotated to indicate which curves cor-
respond to which axes and grey horizontal dashed lines denote the lower and upper accuracies obtained
over 100 training iterations using a fresh array. (b) The experimental accuracy of the model trained on an
array after an increasing number of decades of endurance cycles. The permanent write error probabili-
ties of stuck in LCS and stuck in HCS devices are also plotted on a secondary axis. Arrows have been
annotated to indicate which curves correspond to which axes and grey horizontal dashed lines denote the
lower and upper accuracies obtained over 100 training iterations using a fresh array.

test accuracy of 91% and, on some iterations, recognises 93% of beats correctly. This result was bench-
marked against software-based perceptron and neural network models which, applied to the same task,
obtained median accuracies of approximately 87.5%. The comparison between the total number of pro-
gramming operations required in our experiment and with the RRAM-based backpropagation approaches
was repeated and, once again, it was observed that RRAM-based MCMC sampling required fewer total
operations than with the RRAM-based backpropagation approaches (Fig.3.11b) - reflecting the observed
average of only 4.5 RESET/SET cycles required per device during the experiment (Fig.3.10b). Consider-
ing that the RRAM-based Bayesian neural network outperformed the deterministic software benchmarks
(Fig. 3.13b), this task highlights that, beyond being RRAM-compatible, Bayesian machine learning offers
an entirely different modelling method that appears well suited to the characteristics of edge learning.

86

FFT

(a)

(b)

Figure 3.13: Experimental results on the supervised detection of arrhythmic heartbeats. (a) De-
piction of the arrhythmic heartbeat experiment. Electrocardiograms (top left) recorded from the heart,
potentially using an implanted cardioverter defibrillator [172] (bottom left), are used to extract ten fea-
tures through a fast Fourier transform (labelled as FFT) which are then used as the input for a multi-layer
Bayesian neural network (top right). The Bayesian neural network is trained to detect arrhythmic beats.
Two of the resulting synaptic weight distributions after training are also plotted (bottom right). (b) Boxplots
showing the test accuracy distributions over 100 separate train/test iterations of the arrhythmic heartbeat
detection task using the same train/test split for (left, light green) the experimental setup, and (center and
right) software-based neural network (labelled as DNN) benchmark models. The coloured boxes span
the upper and lower quartiles of accuracy while the upper and lower whiskers extend to the maximum
and minimum accuracies obtained over the 100 iterations. The median accuracy is indicated with a solid
horizontal line.

Calibrated on an array level variability characterisation, a behavioural simulator was developed that
was determined to correspond well with the experimental results (see Appendix 6.4). It was used to inves-
tigate the impact of cycle-to-cycle and device-to-device variability on RRAM-based MCMC. The algorithm
was seen to be robust to considerable deviations from the measured values of variability although, for un-
naturally small cycle-to-cycle variability (Fig. 3.14a) or unnaturally large values of both cycle-to-cycle and
device-to-device variability (Fig. 3.14b), the test accuracy and the total required number of RESET/SET
cycles respectively were adversely affected.

3.2.4 Application to reinforcement learning

We now demonstrate that the approach can be extended to the reinforcement learning setting using
the behavioural simulator. In contrast to supervised learning, reinforcement learning does not require a
labelled dataset - a potentially appealing prospect for a practical edge learning system. Instead, a model

87

(a)
(b)

Figure 3.14: Simulation of the impact of the cycle-to-cycle and device-to-device variability on the
test accuracy, for the supervised malignant tissue recognition task. (a)/(b) The cycle-to-cycle /
device-to-device variability was multiplied artificially by a constant alpha factor in 10 iterations of simulation
per alpha factor. The mean test accuracy of over the resulting ten iterations was plotted, as well as the
total number of RESET/SET cycles.

is tasked with determining the actions of an agent in a physical or simulated environment in real-time
[297] based on interaction with that environment. The agent observes, at each timestep, input information
pertaining to the current state of the environment (V) and, as a function of the actions taken by the
agent (a), a scalar reward (r) is received. The objective in reinforcement learning is to realise a model
(often referred to as a policy) that allows an agent to take actions in an environment which maximise its
expected reward. Here, we apply RRAM-based MCMC as a policy-search algorithm [298] and learn a
posterior distribution in terms of reward.

Specifically, we address the Cartpole control task [299] that is becoming an important validation task
for RRAM-based reinforcement learning approaches [263, 300]: an agent learns how to control a pole
balanced on top of a cart by accelerating to the left or right as a function of four observed environmental
variables describing the velocity and position of the cart and pole (Fig. 3.15a). To achieve this, we employ
a perceptron model, effectively realised using two 512 × 4 memory arrays. The output neuron with the
largest response, as a function of the input features, dictates the action taken by the agent on each
timestep.

The python library gym was used to simulate the Cartpole environment. The Cartpole environment
provides four features to the behavioural simulator at each timestep of the simulation. The behavioural
simulator then specifies the actions to be taken by the agent in the environment at the next simulation
timestep. Under application of a new observation from the environment V the response

f(V · g) = S V · g, (3.9)

was calculated, where S is a scalar constant. Rows of equivalent index in both arrays share a common
row counter and are programmed and evaluated at the same time. The devices within the zeroth row
of both arrays are initially SET by sampling from a normal random variable with the lowest available
conductance median (in this simulation the conductance range extended from 50µS-200µS). The initial
model is evaluated during a training episode where the cumulative reward received during the episode

88

is recorded. For each timestep that the agent does not allow the pole to rotate 15 degrees outwith of
perpendicular, or does not move outwith the bounds of the environment (both resulting in early termination
of the episode), the agent receives a +1 reward. If the agent maintains the pole balanced for 500 timesteps
the episode terminates resulting in an episode in which the agent has received the maximum possible
score of 500. Respective models are then generated at the first row of each array by sampling new models
from normal random variables with medians equal to the conductances of the corresponding devices in the
zeroth row, offset by device-to-device variability. The two proposed models in the pair of rows determine
the actions of the agent during the following training episode whereby the agent accelerates to either the
left or the right at each timestep of the episode as a function of which array exhibited the greater response
(Equation 3.9). As a function of the cumulative reward achieved during this training episode a decision is
made on whether to accept or reject the proposed model using the acceptance ratio:

a =
p(gp)

p(g)

p(r|gp,V,a)

p(r|g,V,a)
κ-1. (3.10)

Instead of using the ratio of likelihoods of the proposed and current models as in the supervised case,
the ratio of episodic rewards for a model g, episodic observations V and episodic actions a are used:
this is simply the scalar reward value obtained after an episode acting according to a proposed model gp

divided by the reward received when the current model g was accepted. This demonstrates a particular
strength of applying MCMC sampling in a reinforcement learning setting, relative to supervised learning,
since the calculation of the acceptance ratio can be achieved in a single calculation instead of an operation
involving a sum over all data points in the log-domain. The prior calculation is the same as in Equation 3.4.
The acceptance ratio is then multiplied by a constant κ-1 which acts a hyper-parameter that determines
the extent of exploration from higher to lower reward regions on the posterior. If the acceptance ratio is
less than a uniform random number generated between 0 and 1 then the proposed model at the first row
is rejected and the row counter, C0, is incremented by one. A new model is then proposed at the first row.
If this new model achieves a cumulative reward during the next training episode, (p(r|gp,V,a)), such that
the acceptance ratio is now greater than a uniform random number, the two models within the first rows
of both arrays are accepted and then become the current models. The reward which was obtained when
these current models were accepted is recorded and thereafter used as p(r|g,V,a) in the calculation
the acceptance ratio. After training has been completed upon the algorithm reaching the final array row,
actions are determined during 100 testing episodes by calculating:

P (anew = 1|V, r) =
1

Tot

N−1∑
n=β

Cn(Vnew·gn), (3.11)

for each array at each simulation timestep. The summation considers only rows greater than index
β, which determines the number of rows discarded to account for the burn-in period. The variable Tot is
the sum of all row counter values recorded after the burn-in period. The array with the largest response
at each timestep determines the action taken during inference in a winner-take-all fashion. It should be
noted that although we have used the notation p(r|g,V,a), for means of consistency with the rest of this
section, this quantity is not a probability but in fact a reward.

The training process is one again visualised by plotting the reward received by the agent when each

89

θ

ω

ν

x
x

ω

θ

ν

(a)

Combined Test Reward

(b) (c)

Figure 3.15: Behavioural simulation results on the Cartpole reinforcement learning task. (a) Dia-
gram of the Cartpole task: learning how to accelerate left or right in order to maintain a pole balanced on
top of a cart within 15 degrees of normal (the vertical dashed line). The environment is described by four
features; X - x-position of the cart, θ - angle of the pole to vertical, ω - angular velocity at the tip of the pole
and ν - velocity of the cart. These four features serve as input to the perceptron model (upper right) where
the two output neurons determine whether the agent accelerates to the left or right. (b) Reward obtained
during the training episode when each of the conductance models was accepted into each row of the 512
memory array rows (the maximum reward is 500). A burn-in period of 64 rows is denoted with the red rect-
angle. The mean reward obtained over 100 test episodes using the combination of the models accepted
after the burn-in, equal to 484 out of a maximum score of 500, is denoted with a horizontal dashed black
line. (c) Boxplots showing the distribution of the mean test reward obtained during 100 testing episodes
achieved in the Cartpole task over 100 separate train/test iterations. (left, light green) Behavioural simula-
tion considering device-to-device and cycle-to-cycle variability, (centre, dark green) behavioural simulation
considering only cycle-to-cycle variability and (right, blue) a DQN benchmark model. The coloured boxes
span the upper and lower quartiles of mean reward, the upper and lower whiskers extend to the maximum
and minimum mean rewards obtained, and the median mean reward is indicated with a solid horizontal
line.

row was accepted in Fig. 3.15b. The reward is seen to oscillate during training as the algorithm explores
the posterior distribution. After training, the agent then uses the learned posterior approximation to select
actions over 100 testing episodes - achieving a mean test reward of 484 out of 500. To determine the
variability between training iterations, this procedure was repeated 100 times and the distribution of mean
test reward is plotted in Fig. 3.15c. Over the 100 training iterations the median mean test reward obtained
was 475. In order to benchmark this result, a Deep-Q Network [301] (DQN) reinforcement learning model
was applied to the same task. The DQN employed one hidden layer of neurons with a total number of
synapses equal to the number of differential conductance pairs used in the two memory arrays. The
distribution of mean test reward obtained by the DQN is plotted in Fig. 3.15c where it obtained a median
mean test reward of 420 - less than that of the RRAM-based perceptron - while also exhibiting greater
variability between training iterations.

In order to assess the impact of device-to-device variability (Fig. 3.4c) on this task, the simulation was
repeated without its consideration. The resulting test reward distribution is plotted in Fig. 3.15c where it is
seen to be largely equivalent to that case where device-to-device variability was considered. This result is
consistent with studied impact of device-to-device variability in the supervised learning task, challenging
the longstanding conception that device-to-device variability is a disadvantage in RRAM-based machine

90

learning that requires mitigation. However, this should not necessarily come as a surprise: unlike in
gradient-based optimisation, where device-to-device variations impede the proper descent down an error
gradient, MCMC sampling is rooted in randomness.

3.2.5 System level energy estimation

To understand the overall energy cost of a system based on RRAM-based MCMC sampling, we evaluated
the energy consumption of all the elements of a full system using commercial (Cadence) integrated circuit
design tools. This discussion was made in the case of the reinforcement learning task which features a
straightforward computation of the acceptance ratio and therefore less designer dependent choices than
in the supervised case. Reinforcement learning shows particular promise for eventual edge applications
since the system does not need to store a labelled training dataset. As detailed, the reinforcement learning
process alternates between three types of phase: evaluating a model (Step 1), accepting or rejecting the
model (Step 2), and programming the same row again if the proposal is rejected, or the next row of the
array if accepted (Step 3). We evaluated the energy consumption of the operations necessary in these
three phases. Our evaluation was made in the 130 nm CMOS process of the test chip featured throughout
the chapter, as well as in a more modern technology to evaluate how our approach scales using the
validated physical design kit of a commercial 28 nm technology that targets low-power applications. In
the 28 nm evaluation, RRAM properties are supposed identical to those in the 130 nm measurements:
due to the filamentary nature of RRAM switching, the RRAM electrical properties of the HCS are relatively
independent of the RRAM critical dimension [302]. We used the following methodology. The energy
consumption of the digital circuits were obtained by writing a synthesisable register-transfer level (RTL)
description of the circuit in SystemVerilog, generating Value Change Dumps (VCD) files representative
of the Cartpole task using the Cadence ncsim simulator, and synthesising the systems to standard logic
gates using the Cadence RTL Compiler. Energy estimates are provided by Cadence RTL Compiler using
the appropriate VCD files. For analogue circuits, the circuits were designed using Cadence Virtuoso, and
their power consumption estimated using the Cadence Spectre simulator. We realised specific designs for
all parts of the system, except for Analog-to-Digital conversion and SRAM access, where energy numbers
from a commercial vendor and from the literature [303] were used, respectively.

The three different steps required by the system are as follows;

• 1. Evaluation of a model: In our approach, to evaluate a model, a cartpole episode is run. The
system receives input from each of the four sensors (Fig. 3.15a), which are presented as analogue
voltages to the columns of the two memory arrays of the system using low precision 5-bit digital-to-
analogue converters. Then the decision to move the cartpole left or right is obtained by comparing
the V·g values of both arrays. To calculate these two quantities and compare them, we evaluated
the circuit of Fig. 3.16a, using conservative assumptions. The length of the read operation was
chosen based on a worst case (smallest difference between the V·g values of both memory arrays),
extracted from the Cartpole results. The simulations were performed in the 130 nm process, and
we assumed that the energy consumption would not scale in 28 nm. Then, the system receives a
binary reward from the environment, which is counted by our system. The energy consumption of
this counter and of the state machine of the process were evaluated using a dedicated SystemVerilog

91

description, in 130 nm and in 28 nm.

• 2. Acceptance/rejection of a model: In our proposed design, the process of accepting and re-
jecting the model is performed using digital electronics, using 9-bit fixed point (integer) computation.
A full SystemVerilog description was designed for accurate evaluation. The different aspects of the
computation are summarised in the simplified data path presented in Fig. 3.16b. For increasing
energy efficiency, the prior was not computed according to equation 3.4, but using an approximate
value |g|, which was verified to provide equivalent accuracy by simulation of the cartpole task. This
prior value can be obtained using a read operation of the memory array, and an 8-bit analogue-
to-digital conversion (ADC). We did not design an ADC, but used typical energy values from the
literature on 8-bit low power ADCs [303]. We performed all computation in the log domain, so that
equation 3.10 is transformed into integer sums and subtractions, which consume very low power.
Depending on the value of the resulting log-acceptance ratio, three situations are possible. If the
value is lower than a rejection threshold, the model is definitively rejected. If the value is higher
than an acceptance threshold, the model is definitively accepted. If the value is between these two
values, the actual value of the acceptance ratio (coded in fixed point) needs to be obtained from
its log value. For this purpose, we store in a static memory (SRAM) the values of acceptance ra-
tio corresponding to their log value, in the intermediate range. Energy consumption for the SRAM
access was not simulated, but obtained using data from a commercial solution. Then, to decide
if the model is accepted, an 8-bit pseudo-random number, generated using a linear-feedback shift
register (LFSR), is compared to the acceptance ratio. The choice to use fixed point representation
in logarithmic scale to represent probabilities, the reliance on a LFSR to generate random numbers,
and the use of the SRAM to get acceptance ratio make this step very low power, although it performs
relatively sophisticated operations.

• 3. Programming of the RRAM cells of the next row: For programming the next row, each device
needs to be RESET and then SET with compliance current proportional to the conductance of the
corresponding device of the previous row. To perform this, we evaluated the circuit of Fig. 3.16c,
which can perform this operation precisely: it mirrors a multiplied version of the read current of an
RRAM device while imposing a virtual ground. The operational amplifier is based on a standard
two-stage operational transconductance amplifier design. The current mirror has asymmetrical tran-
sistors, so that the read current is multiplied into the appropriate compliance current. This takes
advantage of the fact that the relationship between conductance median and SET programming
current can be well approximated with a linear relationship in conductance range used in our exper-
imental system. In Fig. 3.16c, the read current from a device in the left memory array is used for
programming a device in the right memory array. This is in contrast with the schematics in Fig. 3.5a
where this operation is done within the same array. Because these operations are performed in the
analogue domain, and in parallel, it would be required to read and write on the same column of the
array presented in the main text – something that is of course impossible. In our design therefore the
rows of the two memory arrays alternate between the two arrays – in other words the odd rows of
the “go left” actions and the even rows of the “go right” action exist on the same array and vice-versa.
This choice has no impact on functionality, simplifies the RRAM write circuitry and, notably, allows

92

Step 1 (Model
evaluation)

Step 2
(Model accep-
tance/rejection)

Step 3 (RRAM
programming)

Total

Number of
repetitions

500× 10× 512 10× 512 10× 512

Total
energy
(130nm)

5.8µJ 120nJ 1.1µJ 6.9µJ

Total
energy
(28nm)

2.5µJ 34nJ 1.1µJ 3.6µJ

Table 3.1: Table showing the number of operations required in each step of the MCMC sampling process
for the Cartpole reinforcement learning task in addition to the energy required in each of these steps for
130nm and 28nm technology nodes. A final column shows the total energy required to train the full model
with each technology.

for analogue-domain parallelisation.

The results plotted in Figs. 3.17a and 3.17b show the programming of RRAM devices (step 3) con-
sumes considerably more energy than steps 1 and 2. However, these steps are repeated a highly non-
uniform number of times, as presented in Table 3.1. This Table also shows that when training the full
model, step 1 consumes the most energy, for both the 130 nm and the 28 nm technology. This suggests
that effort should be spent on optimising step 1, which may be achieved by using comparator designs
optimised for low power consumption. However, the relative importance of the different steps will depend
tremendously on the details of a task: e.g., if the cartpole experiments are shorter than 92 time steps (215
in the 28 nm technology), step 3 becomes the dominant source of energy consumption – at which point it
becomes most important to reduce as much as possible the number of device programming operations.
This resonates well with the results seen in Figs. 3.11a and 3.11b where RRAM-based MCMC sampling
was observed to orders of magnitude fewer total programming operations than RRAM-based backpropa-
gation approaches. The total energy consumption summing all three steps is 6.9 µJ in 130 nm, and 3.6
µJ in 28 nm. These values are highly attractive.

To perform an order of magnitude comparison with a conventional CMOS implementation, we imple-
mented the same algorithm (using the same assumption for the prior) in low-level C code, and simulated
it on an Intel Xeon Gold 5220 processor (using a single core), based on a 14 nm CMOS technology that
notably is more aggressively scaled than the nodes considered in our design. This implementation con-
sumed around 600 mJ. A frequently used metric for evaluating artificial intelligence dedicated hardware is
the number of (giga)teraoperations per second and per Watt ((G)TOPS/W). In our case, considering that
the total energy consumption is dominated by step 1, and counting only model evaluation/inference, we ar-
rive at estimates of 3.5 TOPS/W in 130 nm and 8.2 TOPS/W in 28 nm when our design is used to support
the perceptron model used in the Cartpole task which features four inputs. This TOPS/W metric would
increase proportionally for a model with more inputs (i.e. a memory array with more columns), since the
read operation energy consumption is largely independent from the model size. This metric, which is very

93

(a)

(b)

(c)

Figure 3.16: (a) Circuit to perform the comparison between the linear activation of two rows from the left
and right arrays. The binary output of the comparator determines the action taken at each timestep. (b)
Simplified flow chart of the digital circuits used to implement RRAM-based MCMC. (c) Circuit showing
the simultaneous read of a device the current rows and programming of the corresponding device in the
proposed row.

94

(a)
(b)

Figure 3.17: (a)/(b) Bar plot showing the energy required per operation for each of the aspects of the
designed RRAM-based MCMC system for 130nm/28nm technology nodes.

adapted for deep neural network accelerators, ignores the supplementary operations, such as Gaussian
random number generation, that are required in MCMC learning algorithms. Therefore the most useful
metric of efficiency, that allows it to be compared with approaches based on other fundamental operations,
appears to be the total learning energy for a task.

We now discuss, in a qualitative manner, how these results would project to the supervised learning
tasks. In these tasks, the acceptance process requires the value of V·g, instead of comparison between
two memory arrays. This means that step 1 will require an ADC conversion. This makes this step more
energy hungry, and likely to be more dominant than in the reinforcement learning case. Based on this
assumption, in the case of the Wisconsin malignant tissue recognition task, we find that the training
energy cost is 3.4 µJ in the 130 nm technology, and 1.3 µJ in 28 nm. In the case of the arrhythmic
heartbeat detection task, we find a training energy cost of 12 µJ in the 130 nm technology, and 4.7 µJ in
28 nm. These numbers are once again highly attractive. Finally, to perform another order of magnitude
comparison we estimate the energy required to train the supervised learning benchmark neural networks
using the GOPS/W metrics reported by state of the art GPUs [304]. It should be noted however that the
GOPS/W reported for these systems are normally valid for only very large neural networks (considerably
larger than those considered in our benchmarking) trained under optimal conditions. We used the Profiler
module available in TensorFlow, where the benchmark models were trained, to determine the number
of operations required in each backpropagation update. Multiplying this number by the GOPS/W metric
of the most performant GPUs lead to a required energy of approximately 6mJ – although in reality this
number would be expected to be greater. Once again, however, this estimate is considerably larger
than the energy estimated to experimentally train each of the full models through RRAM-based MCMC.
The considerable differences between traditional CMOS implementations and our approach highlights the
benefits of a dedicated in-memory implementation of machine learning algorithms – particularly if their
fundamental operations can be realised naturally through inherent nano-device physics.

95

3.3 Ex-situ transfer of a Bayesian neural network

3.3.1 Section introduction

In recent years, neural network models [256] have demonstrated human-level competency in multiple
tasks, such as pattern recognition [305], game playing [301], and strategy development [306]. This
progress has led to the promise that a new generation of intelligent computing systems could be ap-
plied to such high complexity tasks at the edge [169]. However, the current generation of edge computing
hardware cannot support the energetic demands nor the data volume required to train and adapt such
neural network models locally at the edge [3, 257]. One solution is ex-situ training: a software model
is trained on a cloud computing platform and then subsequently transferred onto a hardware system
that acts only to perform inference [170, 171]. The engine-room of such inference hardware is the dot-
product (multiply-and-accumulate) operation that is ubiquitous in machine learning. Non-von Neumann
dot-product implementations based on non-volatile resistive memory [121, 122, 120, 119] (RRAM) tech-
nologies, otherwise known as memristors, are a particularly promising path towards reducing the energy
required during inference.

As was the case in the in-situ learning setting, intrinsic cycle-to-cycle and device-to-device conduc-
tance variability once again constitute a considerable challenge. This random variability constrains the
number of separable multi-level conductance states that can be achieved, preventing the high-precision
transfer of the model parameters in a single programming step. To mitigate against this variability, itera-
tive closed-loop programming schemes (also referred to as program-verify schemes) are often employed
whereby devices are repeatedly programmed until their conductance falls within a discretised window of
tolerated error. However, such approaches entail costly circuit overheads as well as energy and time
during model transfer [307, 308, 264]. Other approaches propose to employ multiple 1T1R structures in
parallel at each array cross-point [309, 310, 277] which, although allow for a higher precision in the trans-
ferred weight, entail additional costs in area and transfer energy. Other approaches propose to sidestep
intrinsic randomness altogether through the quantisation of conductance-levels into one of either a low-
conductance or a high-conductance state in binarised neural networks [311]. However, such models
require a significantly higher number of neuron elements and model parameters to approach the perfor-
mance of conventional neural networks [312]. It should be noted that, unlike a separate body of work that
leverages the random switching properties of magnetic RRAM [158, 160] or stochastic electronic circuits
[313, 314] to perform Bayesian inference, this chapter is concerned with performing inference of ex-situ
trained Bayesian neural networks transferred onto an RRAM-based hardware.

The reality is that the programming of resistive memory is an inherently random process and, the
devices therefore, are not well suited to being treated as deterministic quantities. Fortunately however, as
has been seen in the previous chapter, this randomness follows stereotyped probability distributions and
allows resistive memory devices to be instead yielded as physical random variables [280, 315]. This opens
up an alternative direction of exploration whereby RRAM conductance states can be manipulated within
the frameworks of probabilistic programming and Bayesian modelling [289]. In this section, we propose
and demonstrate experimentally an approach for the ex-situ training and subsequent transfer of a Bayesian
neural network on to a resistive memory based inference hardware. Because Bayesian neural networks,

96

like resistive memory conductance states, describe model parameters as probability distributions, and
not single high-precision values, it suggests a more natural pairing of algorithm and technology. In this
setting, the objective is no longer to precisely transfer a single parameter from a software model to the
corresponding device in a resistive memory array but to transfer a probability distribution from the software
model into a distribution of device conductance states.

In this work, we first propose to use an expectation-maximisation algorithm to decompose a probability
distribution into a small number of random variable components; each corresponding to the cycle-to-cycle
conductance distribution of RRAM programmed under a given programming current. We then demon-
strate experimentally, with an array consisting of 16, 384 fabricated hafnium dioxide 1T1R structures, that
these random variable components can be used to transfer the original probability distribution into the
conductance states of a column of RRAM devices. We show that this approach can be leveraged to
achieve the transfer of a full Bayesian neural network in a single programming step. We also describe
an RRAM-based hardware capable of storing, and performing inference with, such a Bayesian neural
network. Finally, a Bayesian neural network model is trained ex-situ and transferred using the proposed
technique to the experimental 16k device array. The transferred model is used for inference in a simple
illustrative classification task where the decision boundaries that were learned ex-situ are seen to be well
preserved in the model transferred into the inference hardware.

3.3.2 Expectation-maximisation based parameter decomposition

As was leveraged in the previous chapter, RRAM devices are normal random variables in their high con-
ductance state. As a further example of this three of the random variables available from a single device
under three programming conditions are plotted in Fig. 3.18a. What is evident from this plot is that, as
the median of the random variable increases, its standard deviation decreases - the two quantities are in-
trinsically tied. This relationship between the cycle-to-cycle conductance standard deviation and median,
over the full population of 16, 384 devices in the 1T1R array, is plotted in Fig. 3.18b where it is seen to be
well approximated by a linear function.

Bayesian neural networks are variants of conventional neural networks whereby parameters are not
single values, but probability distributions [175]. The distribution of each parameter encapsulates the
uncertainty in its estimation which allows for a model to avoid over-fitting given, for example, a small
training dataset or noisy sensory observations [289] - this is in contrast to deterministic neural networks
which often suffer from severe over-fitting under similar conditions.

Therefore, the challenge is to transfer these software-based probability distributions into a plurality of
device conductance states on an RRAM-based inference hardware. The fundamental insight here is that,
because RRAM conductance states are also probability distributions, they owe themselves more naturally
to the transfer of ex-situ trained Bayesian neural network models than deterministic ones.

We propose that the probability distribution of each Bayesian neural network parameter can be ap-
proximated by a linear combination of weighted normal random variable components - determined using
a Gaussian mixture modelling approach [316]. In a Gaussian mixture model, each of the K Gaussian
distributions, also referred to as normal random variable components, are characterised by a median, a
standard deviation and a weighting factor. These three parameters per component are updated itera-

97

(a) (b)

Figure 3.18: (a) Three cycle-to-cycle conductance variability probability distributions for a single device
programmed 100 times under three different SET programming currents. The raw data is plotted as
three histograms which have each been fitted with a normal distribution (dashed line). (b) The median
standard deviation of the cycle-to-cycle and device-to-device conductance variability distribution of all
16, 384 devices is plotted as a function of the median of the medians of all device conductance variability
distributions for a sweep of the SET programming current. The relationship can be approximated with a
linear function (dashed line)

.

tively using an algorithm called expectation-maximisation until a mixture of components is found that best
‘explains’ the target parameter distribution [316]. As seen in the previous section, OxRAM devices are
normal physical random variables in the high conductance state [315] (Fig. 3.18a) and can therefore act
as the random variable components in such a probabilistic mixture.

However, although the median of each RRAM random variable component can be freely determined
by the SET programming current (Fig. 3.18a), the standard deviation is intrinsically tied to this value
(Fig. 3.18b). This requires that, instead of treating the standard deviation of each component as free
parameters during the expectation-maximisation algorithm, its value must be assigned based on the a
known relationship with the median (here the equation in Fig. 3.18b). This may require, for example,
additional circuitry on a practical chip to perform an initial calibration step owing to the die-to-die variability
that exists across chips on a wafer as well as between wafers [317].

We apply this technique to decompose the single target probability distribution plotted in green in
Fig. 3.19 intoK physical random variable components. These components, determined through expectation-
maximisation, can then be used to program experimentally a column of N RRAM memory cells such that
the distribution of conductance states in the column approximates that of the target distribution. This result
is achieved by programming subsets of devices in the column with a SET programming current such that
their conductance states are sampled from the Gaussian corresponding to each component. The number
of devices programmed per component is equal to the nearest integer value resulting from the multiplica-
tion of the total number of available devices by its weighting factor. For this target distribution it was found
that five normal components (K = 5) were required to well approximate the target distribution. This result
was obtained by performing the expectation-maximisation algorithm over a sweep of K and observing
at which value of K the resulting log-likelihood of the mixture saturated - as plotted in Fig. 3.20a. The

98

five resulting RRAM random variable components are superimposed over the original target distribution
in Fig. 3.19. These five components are then used experimentally to program a column of 1024 1T1R
RRAM devices as described - the number of devices programmed per component is specified in the cap-
tion of Fig. 3.19. The resulting probability distribution, plotted as a histogram in Fig. 3.19, is seen to well
approximate that of the original target distribution. This also suggests that the linear approximation of the
relationship between conductance median and standard deviation, which has a non-negligible error at the
conductance extremities, is not detrimental.

g

p

g

p

g

p

+

+

K1

K1

K
2

K
5

K
2

K
5

N
 =

 1
02

4

Figure 3.19: (upper left) A single target distribution (green) is plotted alongside five superimposed normal
distributions (dashed lines), corresponding to the five RRAM random variable components determined
through the adapted expectation-maximisation algorithm. The red, blue and green components use 85,
333 and 107 devices respectively and the leftmost and rightmost unlabelled components use 177 and
322 devices. (right) Diagram of a column of N resistive memory devices connected in a one-transistor-
one-resistor configuration. Three groups of devices down the column are highlighted and correspond to
the weighted number of devices that will be used to generate samples from the corresponding red, green
and blue normal components in the upper left figure. (lower left) Experimentally transferred probability
density histogram of device conductances (blue) to a column of 1, 024 devices, superimposed over the
target distribution (green), obtained using the medians and weighting factors of the normal components
shown in the upper left figure.

In order to quantify the closeness of the approximation transferred to the hardware we evaluate the
Kullback-Leibler (KL) divergence from the transferred to the target distributions over a range of column
sizes. The resulting mean KL divergence, over ten experimental transfers, is plotted in Fig. 3.20b for

99

an increasing number of RRAM cells per column. The KL divergence reduces rapidly as the number of
devices in the RRAM column is increased, consistent with the law of large numbers [318].

(a)

p

0.0

0.02

g (uS)
0.0

125

p

0.0

0.04

g (uS)
0.0

125

(b)

Figure 3.20: (a) Maximum value of log-likelihood obtained for an increasing number of components, K.
For this target distribution, it was determined that five components were required to approximate the
target distribution (dashed red line). (b) Kullback-Leibler divergence from the target to the transferred
distributions calculated for an increasing number of RRAM memory cells per column. For each number
of memory cells, the distribution was transferred ten times. The resulting variability in the KL divergence
is shown using vertical green bars at each point indicating one standard deviation. An example of the
transferred distributions for 32 and 4, 096 devices are plotted as an inset.

3.3.3 Ex-situ training of an RRAM-based Bayesian neural network

Before applying the presented technique to the transfer of a full Bayesian neural network model, we first
describe how to perform the ex-situ training of an RRAM-based Bayesian neural network and how the pa-
rameters from this software model can be represented using an array of resistive memory devices [315]. In
the Bayesian framework, training is typically performed with Markov Chain Monte Carlo (MCMC) sampling
or by variational inference algorithms [319, 320, 321]. We employ the No-U-Turn sampler (NUTS) MCMC
algorithm [322]. In contrast to gradient-based approaches, which result a deterministic locally-optimal
model, NUTS MCMC results in a collection of sampled models, each with their own parameters (synaptic
weights and biases). The distribution of each learned parameter, in other words the distribution of pa-
rameters over all of the sampled models, can then be transferred to a distribution of device conductances
in a column of RRAM cells. In contrast to deterministic models, which generally require a single device
per parameter, the use of a distribution comprising multiple devices per parameter allows uncertainty to
be incorporated into its estimation. The ability to represent uncertainty in this manner is advantageous
for Bayesian models, permitting them to account for factors such as sensory noise, small training dataset
size as well as representing uncertainty in their output predictions. [289, 175].

One neuron in an RRAM-based Bayesian neural network can be realised as depicted in Fig. 3.21b.
The neuron receives input synapses fromM (here three) neurons in the previous network layer (Fig. 3.21a)
- each connecting to one of its three columns. The distribution of the three input synaptic parameters are
each stored in a column of size N and therefore necessitates an N × M array of 1T1R structures per

100

neuron.

By applying a voltage vector V across these M columns, corresponding to the activations of the neu-
rons in the previous network layer or the input data for neurons in the first layer, a current equal to V · gn

flows out of each array row and into a neuron circuit. Since the conductance values of gn are on the order
of microsiemens, the neuron circuit must first multiply this current value by a scaling factor S and then ap-
ply an activation function h() to the scaled quantity, resulting in a neuron output voltage zn = h(S(V · gn)).
This voltage can then in turn be applied to a column of each of the neuron arrays in the next layer. The
distribution of these N neuron activation voltages, z, constitutes the output distribution of the neuron. We
use the hyperbolic tangent activation function for all neurons besides those in the output layer where the
softmax function is used. Use of the softmax function at the output allows the likelihood of the model to
be evaluated as a categorical random variable during training such that it can be applied to multi-class
datasets.

g[0]

p

z

p

M
 =

 3

(a) (b)

Figure 3.21: (a) A feed-forward neural network of three neurons (M = 3) in the first layer and three neurons
in the second layer. For the case of a Bayesian neural network the synapses (for example that highlighted
in green) and neurons (for example that highlighted in blue) are described by probability distributions. The
RRAM-based realisation of the Bayesian neuron and synapses enclosed in the dashed grey triangle is
shown in part (b). (b) A proposed structure for realising a Bayesian neuron (and the synapses fanning into
it) based on an N × M array of resistive memory. The distribution of conductance states of the devices in
a column corresponds to the distribution of a synaptic parameter (for example that highlighted in green).
Each row of the array uses devices that code for positive (g+) and negative (g−) values that enables each
parameter to be positive or negative. The inputs to the columns are the output voltages generated by
the M neurons in the previous network layer. As a result of these input voltages, two currents will flow
out of each row and into a neuron circuit which subtracts them and then evaluates an activation function.
This activation produces an output voltage as a function of this current that can then be applied to the
column of neuron arrays in a subsequent layer. The distribution of the N output voltages (blue probability
distribution) is the output distribution of the neuron.

In practice, as each parameter distribution can assume positive and negative values, each model

101

parameter should be described by the difference between positive and negative distributions: p(g) =

p(g+) − p(g−) (Fig. 3.21b). Therefore, during MCMC sampling, the parameters which are sampled are
p(g+) and p(g−) and not p(g) directly. In addition, each neuron of the Bayesian neural network requires
a bias distribution p(gb), that can be realised with an extra column of devices, identical to the others, to
which a constant voltage Vb is applied.

One further technological constraint must be taken into account. Each RRAM device has a limited con-
ductance range; in the technology applied here, extending approximately from 20µS to 120µS (Fig. 3.18b).
As a result, the sampled distributions of each parameter, p(g+) and p(g−), of the Bayesian neural network
must be bounded within these limits during the ex-situ training. Fortunately, in the Bayesian framework,
such a bounding can be achieved naturally by placing an appropriate prior distribution over each param-
eter. To account for this we therefore place a normal prior over each parameter, with a median of 80µS,
and a standard deviation of 20µS, such that the sampled distributions exist within the limited conductance
range.

3.3.4 Transfer to resistive memory based inference hardware

We now combine the ideas of the two previous sections and present an approach to achieve the transfer
of an ex-situ trained Bayesian neural network onto the RRAM-based hardware depicted in Fig. 3.22.

The No-U-Turn Sampler (NUTS) Markov Chain Monte Carlo (MCMC) algorithm is used to explore the
posterior distribution of the Bayesian model by generating proposed models through random permutations
to the current model parameters – i.e. exploration through construction of a Markov Chain [322]. Models
are accepted or rejected based on a ratio of their likelihoods and priors, and all of the accepted models are
stored in memory. After NUTS MCMC has collected a pre-defined number of samples, S, the algorithm
terminates. All of these stored samples constitute an approximation of the posterior distribution of the
model. Considering a Bayesian neural network model, with Q parameters (synapses and biases) and
where NUTS MCMC has been used to record S samples, this posterior distribution is described in an
S × Q matrix (upper left in Fig.3.22) where each matrix cell is, typically, a floating-point precision number.
Each of the S rows of the matrix is an accepted model and each of the Q columns of the matrix store all
of values of a single parameter over all of these models. Each of the Q columns therefore corresponds to
the distribution of each synaptic parameter in a Bayesian neural network. The objective is to transfer the
posterior approximation in the S × Q matrix into multiple N × Mi resistive memory arrays. This requires
three matrix pre-processing steps before the eventual single step transfer (see Fig. 3.22 for a depiction of
the steps).

• Quantise – The expectation-maximisation is applied independently to each of the Q columns of the
S × Q samples matrix. This allows K component medians to be extracted per synaptic distribution
– where the number of K can be different for each parameter. For each matrix column the values in
the matrix cells are then quantised by setting them to a new value equal to the nearest component
median value.

• Sub-sample – This quantised S × Q samples matrix will likely have many more rows than the
number of rows available on the RRAM-based inference hardware (i.e. S � N). This is because, to

102

allow NUTS MCMC to adequately explore the posterior distribution of the model, it is useful to collect
a large number of samples. Therefore, to reduce it to the same dimensions as the RRAM-based
hardware, the matrix must be sub-sampled to an N × Q matrix – ideally by uniform-random removal
of rows.

• Slice - Because the hardware is not composed of one largeN× Q array of RRAM, but lots of smaller
N × Mi arrays (one array per neuron) the N × Q matrix must be sliced, column-wise. This groups
together all of the pre-synaptic distributions for each neuron into a single array. In this fashion, each
cell of each processed N × Mi software matrix has a one-to-one correspondence with a device on
an RRAM array.

After these processing steps, it is now possible to make a single step transfer by programming each
physical device on the hardware with a SET programming current which samples a conductance value
from a Gaussian distribution with a median equal to the value in the corresponding software matrix cell. It
is important to preserve the order of parameters by transferring in a row-wise fashion: since the sampled
parameters obtained through NUTS MCMC will often co-vary with one another (i.e. certain parameters
will be correlated per sample). For instance, if we were to mix-up parameters between two of the recorded
models from the posterior approximation, the resulting model would not necessarily lie on the posterior dis-
tribution of the Bayesian model. Note that the weighting factor resulting from the expectation-maximisation
algorithm is not used to determine the number of devices programmed in line with each component as in
Fig.3.19, but is instead incorporated implicitly by the samples that have been accepted by NUTS MCMC.

After the model has been transferred, the hardware can then perform inference on previously un-
seen data points whose features are presented as voltages to the columns of the neuron arrays in the
first hidden-layer. These voltages drive the forward propagation of neuron voltage activation distributions
through the subsequent network layers, resulting finally in an activation distribution per output neuron.
These output distributions can then be used to make a prediction regarding as to what output neuron
class the input data point belongs. Additionally, the standard deviation of each prediction distribution can
be calculated and used to quantify the uncertainty in the prediction of each output neuron.

Since the pre-synaptic distributions of each of the neurons in a Bayesian neural network are stored
in multiple rows (i.e. multiple samples), but the physical connections between each neuron consist only
of single metal wires, inference with a Bayesian neural network must be performed one row (sample) at
a time. At the output layer then, a separate memory structure is required to temporarily store each of
the output neuron activations that result from each of the transferred samples - an SRAM memory for
instance. In this fashion, after all of the rows have been read in an inference, the prediction distribution
of each output neuron is readily available. To achieve this we propose, in Fig. 3.22, that each neuron
array contain only a single neuron circuit that is multiplexed between each of the N rows sequentially.
By applying voltage pulses to the gates of the devices in only one row, while grounding the others, this
multiplexing can be achieved cheaply and without a dedicated multiplexing circuit. Additionally, the use
of a shared neuron circuit also reduces the required circuit overhead to implement the activation function
or to perform any required analogue-to-digital conversions by a factor of N . For example, by applying the
red pulses in Fig. 3.22 to row N = 0 of all of the neuron arrays simultaneously at time t0, each neuron in
the output layer will produce a voltage activation, z0. In other words, these output activations result from

103

Figure 3.22: Proposed hardware realisation of feed-forward layers in the RRAM-based Bayesian neural
network shown in part Fig 3.23. The output of three hidden-layer neuron arrays, corresponding to neurons
one, two and eight in part Fig. 3.23, are connected to the inputs of three columns of RRAM of another
neuron array, neuron one in the output layer in Fig. 3.23. As a function of the input data feature voltages
(from the red coloured neurons in the first layer), the hidden layer neurons will produce activation voltages
that are in turn applied over the columns of the output layer neurons causing the output layer neurons
to produce activation voltages. This forward propagation of voltage continues for an arbitrary number of
network layers until reaching the output layer. By sequentially applying gate voltage pulses to each row
of all the arrays - the red pulses at t0, the green pulses at t1 and finally the blue pulses at tN−1 - output
neuron one will sequentially produce voltage activations z0, z1 and zN−1. The distribution of all activations,
p(z), gives rise to an output distribution of neuron one.

the forward propagation of the input through the devices in row N = 0 of each array only. Thereafter,
applying the green pulses at t1 the outputs z1 will result from the forward propagation through the devices
at rows N = 1 and so on. By proceeding in this fashion up until row zN−1 an output distribution p(z) will

104

be available for each output neuron at tN−1. The mean value and standard deviation of this distribution
can be used to respectively make a prediction and quantify prediction uncertainty.

To demonstrate this technique, we perform the ex-situ training of the Bayesian neural network de-
picted in Fig. 3.23. We apply it to an illustrative example in the generative moons classification task [323]:
each of the two output neurons of the network must learn a non-linear decision boundary that separates
its respective class of noisy data points from the other. To evaluate the transfer of the Bayesian neural
network model, we perform a hybrid hardware/software experiment. After termination of NUTS MCMC,
the normal random variable components required for all of the model parameters are identified using
expectation-maximisation. Then, 1, 024 devices in the experimental RRAM array are programmed, us-
ing the corresponding SET programming currents based on the median value of each of these random
variable components. The resulting conductance values are then used to build up a computer model
of the the proposed hardware depicted in Fig. 3.22 in order to perform an inference. Each RRAM cell
of this computer model is randomly assigned one of the 1, 024 transferred conductances which resulted
from the SET programming current that would have been used to program the equivalent device on the
physical array. Examples of the resulting distributions transferred to the synaptic parameter highlighted
in green in Fig. 3.23 are plotted for 1, 024, 128 and 16 rows. On average, based on the measured SET
programming currents, the programming energy required to perform the transfer of the full Bayesian neu-
ral network model to the array was 1.37µJ, 172nJ and 21.5nJ for the models based on 1, 024, 128 and 16

rows respectively.

Upon performing inference with the hybrid hardware/software model, the decision boundaries for each
of the two output neurons for the model transferred to the 1, 024, 128 and 16 row arrays, shown in Fig. 3.23,
arise. The output neurons appear, in all situations, capable of discerning the underlying structural separa-
tion between the two types of data point that was learned in the software model. The probability contours
of the two output neurons are largely similar for the case of 1, 024 and 128 rows, while those for 16 rows
appear more erratic. Despite this appearance however, the boundaries drawn at the interface of the two
moons with N=16 rows still capture the fundamental curvature of their division. Based on the read currents
of the programmed devices, the energy required to read all of the device conductances during inference
was 110nJ, 13.7nJ and 1.72pJ for the models transferred to the 1, 024, 128 and 16 row arrays respectively.
However, that is important to note that, based on the design of the in-situ RRAM-based MCMC system,
the energy required by read circuitry, analogue-to-digital and digital-to-analogue conversions as well as
circuits for implementing the neuron activation functions have not been considered and would lead to a
considerable increase in these values depending on design choices.

105

N
=

1
0
2
4

N
1
2
8

N
=

1
6

Figure 3.23: (centre) A single hidden layer feed-forward Bayesian neural network. Circles and lines in bold
correspond to the neuron arrays and connections shown in part Fig. 3.22. (left) The probability density
histograms and kernel density estimates for a synaptic parameter (green) using 16, 128 and 1, 024 memory
cells per column. (right) The predictive probability contours of neuron one (recognising points from the red
moon) and neuron two (blue moon) for 16, 128 and 1, 024 memory cells per column. Each of the red and
blue moons data points are described by two feature voltages that are applied as inputs to the columns of
the green neuron arrays.

The prediction uncertainty of each of these transferred Bayesian models is plotted in Fig. 3.24. This un-
certainty, captured in the distribution of each synaptic parameter, naturally propagates through a Bayesian
neural network to the output layer where, as might be expected, it is seen to be greatest at the interface
between the red and blue points. While the prediction uncertainty contours are largely similar forN = 1024

and N = 128, they are once again degraded for N = 16. In safety-critical edge inference applications the
ability of a Bayesian neural network to quantity uncertainty, with respect to deterministic models, is poten-
tially invaluable and, perhaps, indispensable from an ethical perspective [324]. For example, in a medical
system, such as the implantable cardioverter-defibrillator [172] like that considered in the in-situ setting,
these prediction uncertainties can be leveraged to avoid the erroneous application of an electric shock to
the heart which can, in some instances, prove fatal [178]. If the system were presented with a data-point
close to a noisy decision boundary (as in Fig. 3.24) or with a data-point from a location in the feature
space that the model had not observed during training, perhaps due to a damaged or drifting sensor, the
prediction uncertainty of the model will be large. By placing a threshold on a tolerated level of prediction
uncertainty, above which the system should not take action, the model is able to express that it dos not
known with certainty what action should be taken and erroneous, potentially dangerous, interventions can
be avoided.

3.3.5 Allowing a model to say ‘I don’t know’

We now present a final example that demonstrates how ex-situ Bayesian model transfer can be per-
formed in the closed-loop (program and verify) fashion [264, 307]. The ex-situ trained model is applied

106

Figure 3.24: The uncertainty contours for the models transferred to the 1024, 128 and 16 row RRAM-based
Bayesian neural network hardware. This uncertainty is determined by calculating the standard deviation
of each output neuron’s prediction distribution. The uncertainty in all cases is seen to be greatest at the
noisy interface between the moons.

to the heart arrhythmia datatset [296] which, crucially, also allows for a practical demonstration of how
Bayesian modelling uncertainty can be applied in a safety-critical application. Specifically, a technique
allowing for a model to say ‘I don’t know’, such that it doesn’t not carry out a potentially harmful action, is
presented. The model is trained to classifying four different types of potentially heart arrhythmia as well
as healthy heartbeats. Considering a futuristic use case whereby an implantable cardioverter defibrillator
is equipped with an ex-situ trained RRAM-based Bayesian neural network model, the model would be
responsible for application of an electric shock to the heart upon detection of certain types of arrhythmia.
As described however, the application of a shock to a normally functioning heart can prove fatal [178].
The model therefore must apply a shock only when sufficiently certain in order to avoid performing poten-
tially dangerous actions, while also taking actions frequently enough to intervene in the event of sustained
arrhythmic beats.

A Bayesian neural network model, with two hidden layers of eight neurons each, is trained ex-situ
by NUTS MCMC [322] using sixty four input features resulting from the fast Fourier transform of each
heartbeat (see Appendix 6.6). The training set is composed of two hundred examples of each of the
five classes of beat. Once trained it is then transferred in a closed-loop fashion to the hybrid hardware-
software experimental 16k device array. Here, instead of exploiting the devices as random variables as
presented in the rest of this section, each device is iteratively programmed until its conductance falls within

107

a pre-defined conductance error range - as depicted in Fig.3.25a. Therefore the high precision weights
of the model in the cloud are discretised into a much smaller number of levels. In Fig. 3.25b it is shown
how each resistive memory in the 16k device array can be programmed into eight separable conductance
levels while being in the HCS, in addition to one further level corresponding to the LCS, using a basic
RESET/SET closed-loop programming technique. In this scheme; a specific SET programming current is
defined for each of the eight HCS levels and a device is iteratively programmed until its conductance falls
within a pre-determined error margin (Fig. 3.25a).

Using the software model of the inference architecture presented in Fig.3.22, each of the simulated
devices is assigned a conductance value from the desired level in the device data presented in Fig. 3.25b.
Considering that subtraction of two devices encodes the positive or negative weight of each parameter,
this allows for seventeen distinct conductance combinations. The combination of conductances levels per
pair of devices is chosen such that, on average, the resulting differential conductance should be as close
as possible to the original high-precision value of the software model.

(a)
(b)

Figure 3.25: (a) Scheme indicating how a row of three resistive memory devices realise three synaptic
connections between input activations V and a post-synaptic neuron. By applying these activations over
the columns of the row of resistive memory the current that flows out of the rows will be equal to the dot
product V · g, where g is the conductance vector of the row. In the inset of device an arrow indicates
the closed-loop programming routine that is used in order to program the device conductance state, g[2],
whereby the memory is iteratively programmed until its conductance falls within a pre-determined range of
error. (b) The multilevel conductance distributions obtained with the 16k device array using a RESET/SET
closed-loop programming technique. Each cumulative distribution is composed of a series of points which
are ordered, per separable level, from lowest to highest conductance.

Using the transferred model, the uncertainty of all of predictions is calculated over the training set. The
uncertainty of each prediction is plotted in Fig. 3.26a whereby correct predictions are shown in green whilst
incorrect ones are shown in red. The lowest uncertainty amongst the misclassified points per class, or the
highest uncertainty of all points if there were no errors as was the for class one in Fig. 3.26a, was then
multiplied by a discounting factor lower than one (here equal to 0.75) to give, for each class, an uncertainty
threshold. Predictions made on the test set, with an uncertainty greater than this uncertainty threshold,
would then result in no action being taken by the model in this application setting. In applying these
uncertainty thresholds, the RRAM-based Bayesian neural network was still sufficiently certain to take

108

actions (applying a shock or doing nothing) over 71% of the test data. Remarkably, even at this relatively
high rate of action, the model makes no errors. In other words, in this realistic safety-critical setting, the
model took zero potentially dangerous action by recognising when it was uncertain and therefore was able
to say ‘I don’t know’.

(a) (b)

Figure 3.26: (a) For each predicted class of heartbeat of the model over the training split of the heart
arrhythmia dataset of the dataset, the prediction uncertainty (the standard deviation of the prediction dis-
tribution) is plotted. Correct predictions are plotted as green points, and wrong ones as red points. Hori-
zontal black lines show the uncertainty thresholds, calculated using the training set, that can be used as a
means of determining whether or not the model takes an action as a function of the prediction uncertainty
over the test set. These thresholds correspond to the lowest uncertainty of an incorrect prediction in the
training set multiplied by a discounting factor less than one. (b) For each predicted class of heartbeat of
the model over the test split of the heart arrhythmia dataset of the dataset, the prediction uncertainty (the
standard deviation of the prediction distribution) is plotted. The uncertainty thresholds calculated on the
test set, the same ones drawn in part (a), are plotted for each class. Without the use of these uncertainty
thresholds, what would have corresponded to correct and incorrect predictions are plotted respectively as
green and red points. Each uncertainty threshold rests below all of the red points of each predicted class
meaning that, by leveraging model uncertainty, no predictions were made on the test set.

3.4 Chapter discussion

In this chapter it has been demonstrated that, contrary to the case of gradient-based algorithms and deter-
ministic modelling techniques, Bayesian modelling and resistive memory devices result in a harmonious
pairing of algorithm and hardware.

In the first section the potential of simultaneously harnessing resistive memories as physical random
variables and as high efficiency dot-product engines in the realisation of in-situ Markov Chain Monte Carlo
sampling algorithms was demonstrated. This in-situ learning method, which actively exploits cycle-to-
cycle conductance variability, was shown to also be resilient to device-to-device variability and extensive
device aging - orders of magnitude beyond the point where devices could be used as traditional memories.
The appeal of RRAM-based MCMC was seen in two key sets of results. First, the dramatic reduction

109

in the total number of programming operations required to train a full model, with respect to RRAM-
based backpropagation approaches, underlined the remarkable compatibility of resistive memory and
Markov Chain Monte Carlo sampling. Additionally, the orders of magnitude reduction in the energy of
a full RRAM-based MCMC system relative to conventional CMOS solutions, compounded the potential
of the approach based on the application of brief voltage pulses, in-memory, to nanoscale devices. In
fact, the energy totals which were on the order of micro Joules, correspond to the energy estimated to be
consumed by a biological neuron spiking tens of times or less [325]. This is particularly eye-catching given
the current intense focus within several research communities of developing spike-based brain-inspired
learning algorithms in order to reduce the energy requirements of machine learning systems. Secondly,
when faced with data representative of the edge, namely the noisy and multi-modal electrocardiograms in
the arrhythmia detection task, the robustness of Bayesian machine learning to over-fitting by incorporating
uncertainty into learned parameters [175, 289], was seen to be crucial in outperforming the software-
based deterministic benchmark neural networks trained through backpropagation. This second result
puts in evidence that, beyond simply being compatible with the fundamental properties of resistive memory
devices, RRAM-based Bayesian models exhibit a particular suitability for the edge setting.

The Metropolis-Hastings MCMC sampling algorithm presented in the first section is known to lose effi-
ciency when the dimensionality of the model it is applied to train becomes very high. While this could pose
a potential issue going forward as we look to scale this approach to higher complexity tasks, a potential
solution was stumbled upon in section 2.2. One of the key results from the neural network model of the
cricket cercal system was that such bio-inspired neural network models could allow for a reduction in the
number of model parameters by some orders of magnitude. The exploration and discovery of bio-inspired
architectures, to which RRAM-based MCMC can be applied to whilst remaining at its most effective, may
therefore be key to scaling the approach to higher complexity tasks. Furthermore, Hamiltonian Monte
Carlo algorithms [326, 327], such as the No-U-Turn sampler used in section 3.3, are able better address
higher dimensional problems and therefore such MCMC sampling algorithms can be incorporated into
evolution of the presented Metropolis-Hastings RRAM-based MCMC system presented here. To apply
MCMC sampling to larger datasets than those considered in this section, where the Metropolis-Hastings
algorithms can also be limited, mini-batch MCMC algorithms should also be investigated [328, 329] that
allow for samples to be accepted based on subsets of the data.

Ultimately section 3.2 demonstrated that, by embracing what have been previously considered as non-
ideal device properties, resistive memory based Markov Chain Monte Carlo sampling hardware can sit
at the core of a new generation of intelligent edge learning systems that promise to open a door to new,
extremely resource constrained, applications. For example, intelligent and adaptive implantable medical
devices which is a currently revolutionary application domain within machine learning that is currently of
out reach through existing commercial approaches [2].

The second section of the chapter approaches the learning problem from the ex-situ perspective.
Because Bayesian models require many samples per parameter, existing ex-situ transfer approaches
could entail a prohibitive energy cost and latency to transfer a full Bayesian neural network. Therefore
the expectation-maximisation based transfer approach was introduced which permitted an ex-situ trained
Bayesian model to be transferred in a single step - i.e, each device was required to be programmed only
once. The importance of describing uncertainty in the parameters of the Bayesian neural network was

110

also discussed in terms of how the resulting output prediction uncertainty could be leveraged in a safety-
critical application. We studied the use case of the application of an electric shock upon the detection of
dangerous heart arrhythmias. It was demonstrated that by putting a threshold on the output uncertainty
(here called uncertainty thresholding), it was possible to make a Bayesian neural network model say ‘I
don’t know’ and take zero potentially dangerous actions. In a variety of emerging, or yet to be discovered,
edge computing applications, where systems will interact with humans and whose actions may compro-
mise their safety, it is difficult to imagine using a modelling approach that does not quantify prediction
uncertainty. Alongside Bayesian models, other techniques based on deterministic neural networks such
as Monte Carlo dropout [330] and deep ensembles [331] have also been recently found to offer good
uncertainty estimates. It will therefore be important to compare the uncertainties available through these
approaches with those naturally incorporated into Bayesian models.

Going forward from this initial proposal and experimental demonstration, future work should aim to
understand how the expectation-maximisation transfer technique can scale to larger network models and
to higher-complexity datasets as well as looking for adaptations to the algorithm that can more naturally
incorporate covariance in the posterior - ideally obviating the ‘row-wise’ transfer protocol used here. In
doing so it will be also be useful to explore the application of training algorithms like variational inference
[319, 320, 321] which, through use of ‘mean-field’ variational approximations, can be used to eliminate
parameter covariance altogether and allows each synapse to be treated independently. Alternatively, it
has also been found that as Bayesian neural networks become deeper, parameter covariance largely
disappears altogether [332]. A solution therefore, could simply be to perform ex-situ training on models
with a greater number of layers.

Finally, it will also be instructive to perform a quantitative comparison between ex-situ trained RRAM-
based Bayesian and deterministic neural network models to understand the advantages and trade-offs
between the two approaches in terms of inference accuracy, the energy and latency incurred in model
transfer and inference as well as memory requirements.

111

112

Chapter 4

A non-von Neumann neuromorphic
computing fabric

4.1 Chapter introduction

The first two chapters have addressed the potential of bio-inspired neural network architectures and a
method for training such models, in the ex-situ or in-situ setting, if its parameters were implemented using
resistive memory devices. This final chapter completes the picture by proposing how resistive memory
based bio-inspired models can be realised in a full non-von Neumann computing system. The two sec-
tions of this chapter show respectively how RRAM can be incorporated into neuromorphic circuit models
and into a neuromorphic architecture that can interconnects these models in a configurable architecture.
Crucially, in both cases, the non-volatility of RRAM is used a means of distributing memory continuously
through the computing fabric and, as observed in biological nervous systems, co-localising the config-
urable memory elements with the computational units in a fashion that makes them almost indistinguish-
able.

4.2 Hybrid neuromorphic circuits

Proteins exist within the membranes of biological neurons (such as that pictured in Fig. 4.1(a)) which
transport ionic charge into and out of the cell [333]. Under excitatory stimulation positive charge accu-
mulates inside whilst leaking out at a constant rate. In the case of spiking neurons, if the rate of charge
accumulation sufficiently exceeds the leak, a chain reaction triggers the generation of an action poten-
tial (spike) and a wave of ionic charge propagates down the neuron’s axon. As the axon branches, this
spike proceeds and divides along parallel bifurcating channels until it reaches synapses composed of
pre-synaptic processes and post-synaptic sites belonging to the afferent neuron. At these synapses,
electrical excitation elicits release of neurotransmitter that diffuses across a nanoscale cleft from the pre-
to the post-synaptic site and subsequently modulates ion uptake at the destination cell. Properties of
neurons (like those depicted in Fig.4.1(b)), such as the time constant of the input charge integration, the
synaptic weight that governs how much charge is injected upon the arrival of neurotransmitter and the

113

length of the refractory period during which the neuron cannot spike are determined by the conductance
of these membrane proteins. Neurons continuously adapt these conductances inline with different neural
plasticity mechanisms for the purposes of maintaining homeostasis [334, 335] and to form memories and
learn [336, 337].

Neuromorphic synapse and neuron models, which aim to mimic the dynamic behaviours of the biolog-
ical cells using electronic circuit components [63, 102], use the drain-source conductance of a transistor
under a ‘current-mode’ gate bias, mimicking neuronal ion channels, as a means of implementing these
conductance parameters [84, 86, 85, 103, 338]. Essentially, these biased transistors act as the conduc-
tances (resistances) used in Hodgkin-Huxley style neuron models [28], which regulate at what rate charge
flows onto and off of capacitors.

In the class of non-von Neumann computer chips referred to as neuromorphic processors, these bi-
ases are programmed and generated in a centralised unit on the chip [85, 86, 339, 340]. These bias
generators generally store parameter values using a volatile SRAM memory. Such an approach, however,
has many drawbacks. To limit the size, and therefore the static power consumption of the volatile memory
of the current source generator, as well as the metallic area required to physically deliver biases to indi-
vidual neurons; groups of thousands of neurons and synapses in neuromorphic processors are generally
obliged to share the same set of parameters. In addition, this volatile memory is typically programmed
once, via an external computer, either when the neuromorphic processor is power cycled or re-purposed
for a new application. However, for networks more closely emulating the computational principles of bio-
logical systems where neuron and synapse parameters are updated continuously, such as the Drosophila
elementary motion detection model presented in section 2.3, the von Neumann bottleneck that persists
between processing and memory in neuromorphic processors becomes a limiting factor. At this point, the
separation of memory and the computational elements becomes critically expensive in the implementa-
tion of parameter adaptation algorithms due to the large volume of data which is required to be ferried
between the neurons and this central memory centre. It should be noted that in some neuromorphic pro-
cessors that support ‘on-line’ plasticity this is not necessarily the case for the parameters that encode the
synaptic weight. In these cases, whereby synaptic weights are modified inline with spike-timing depen-
dent rules, the synaptic weight parameters are stored and updated locally at each synaptic array using an
additional volatile memory. Solutions exploiting certain properties of resistive memory devices, such as
the volatile resistance state of metal-insulator-transition Mott devices [341] and the gradual crystallisation
of phase change memories [342] also been demonstrated. These solutions use the physics of the device
to store the information locally, without a static power draw, and therefore allow parameter memory to
be distributed throughout a computing substrate instead of centralised in a bias generator. However, the
properties of these RRAM-based neurons based on single devices are fixed and cannot be configured.

4.2.1 CMOS-RRAM analogue circuit models

In this section, hybrid CMOS-RRAM electronic circuits models which model biological neurons and synapses
like those used in section 2.3 are proposed, designed and fabricated. These analogue circuits incorpo-
rate resistive memory elements in order to store parameters that define the behaviour of these models
in a non-volatile fashion whilst also playing an role in the physical operation of the circuit. Crucially, this

114

(a)

(b)

Figure 4.1: (a) SEM image of a neuron. The spherical structure is the soma where ions are integrated.
Further linear structures are the dendrites and axon [343]. (b) The neuron time constant (blue) is defined
by the rate of change of input voltage upon a stimulus. The neuron spikes (green) above a threshold
followed by a refractory period (red) during which input signals cannot be integrated.

allows configurable memory to be distributed in space throughout a neuromorphic computing system in a
truly non-von Neumann fashion - corresponding more closely with the underlying organisational principles
observed in animal nervous systems.

The basis of these hybrid neuromorphic circuits is the 1T1R structure [344, 290] depicted in Fig. 4.2a.
A resistive memory (R1 or R2) is connected in series with either a PMOS or NMOS selector transistor
(T1 or T2). The transistor has two roles; (1) to determine the share of total programming voltage Vtop-
Vbot (Vprog) that is seen over the resistive memory and (2) to limit the current flowing through the device
during a programming operation. Both objectives are achieved by modulating Vgate when a non-zero Vprog

exists. As seen in the previous chapter there are two standard RRAM programming operations called
SET and RESET which render the device in a low (LRS) or high (HRS) resistive state. In the case of
oxide-based RRAM (OxRAM) the resistance of a thin layer (tens of nanometres) of a transition metal
oxide (TMO) material is sandwiched between two metal electrodes and can have its resistance modified
through application of electrical pulses which redistributes the conductive oxygen vacancies in the device
oxide (Fig. 4.2b).

115

Vgate1

R1

T1

T2

R2

Vgate2

Vtop Vtop

Vbot Vbot

(a)

Oxygen Vacancy

Oxygen Ion HRSLRS

SET

RESET
(b)

Figure 4.2: (a)The one-transistor-one-resistor (1T1R) structure whereby a resistive memory device is
connected in series with either a (left) PMOS or (right) an NMOS. (b) The mechanism of resistance
modulation in an oxide based resistive memory. Oxygen vacancies, which form a conductive filament
between electrodes, are removed and instantiated due to reduction-oxidation reactions with oxygen ions
through the application of RESET and SET pulses. Oxygen ions exists in an ‘oxygen reservoir’ between
the top electrode of the device and the oxide layer.

As previously noted, ion channels within neuronal membranes regulate the flow of ionic current into
and out of the cell’s somatic body which acts as a capacitor. Essentially they represent transient or fixed
resistances which regulate flow of charge between an extra-cellular battery and this capacitor and serve
as a fundamental building block of animal nervous systems. In the same fashion we propose to use the
programmed resistance state of resistive memory devices as a direct means of realising the resistance
(or conductance) of biological ion channels in neuromorphic circuit models.

In chapter 3, the devices were used in their low resistance state (LRS) (high conductive state). The
resistance extremes of devices in the LRS span from 5kΩ to 50kΩ. However, in order to achieve neural
and synaptic dynamics which evolve over ‘biological timescales’, therein the rate at which relevant en-
vironmental variables themselves change, much larger values of resistance than this are required. For
example, given a capacitor of 1pF and a desired resistor-capacitor (RC) time constant, τRC , of some
hundreds of micro seconds, a resistance on the order of hundreds of MΩ would be required. Therefore
it is required to operate the resistive memory in its high resistive state (HRS). In the case of OxRAM,
the HRS resistance is not determined by the properties of a conductive oxygen vacancy filament but, on
the contrary, the absence of such a filament. Specifically the read resistance across the two terminals is
dominated by the distance of the tunnelling gap between the bottom electrode and the remnants of the
disrupted conductive filament [272]. Since the tunnelling current decays exponentially as a function of the
tunnelling gap size, and the magnitude of the voltage applied in a RESET operation is proposed to be
linearly proportional to the size of the gap, the relationship between the HRS resistance and the applied
RESET voltage follows the exponential relationship as plotted in Fig. 4.3a. Two examples of the cycle-to-
cycle probability distribution of the HRS are shown in Fig. 4.3b, whereby a single device has been cycled

116

1000 times under two different RESET voltages. Similarly to how the HCS variability (LRS) was seen to
follow a normal distribution, the HRS cycle-to-cycle variability is well modelled using a log-normal distri-
bution. OxRAM devices are therefore log-normal random variables in the HRS, where the mean value of
the distribution can be determined by varying the RESET voltage.

(a)
(b)

Figure 4.3: The high resistive state of oxide-based resistive memory devices (a) The relationship
between the high resistive state resistance and the absolute RESET voltage applied over the device
terminals for a single device. The mean (blue) as well as one (black) and two (brown) standard deviations
are shown that correspond to the cycle-to-cycle variability distribution of the device. (b) Two cycle-to-
cycle variability distributions, comprising 1000 SET/RESET cycles, are shown for a single device due to
two different absolute RESET voltages - blue: Vreset=1.5V, Vreset=4V and red: Vreset=2V, Vreset=4V.
The selector transistors had a gate length of 6.7µm. Each histogram of read resistances over these
cycles has been fit with a log-normal probability distribution function which here appears as a normal in
log-resistance.

Hybrid neuron circuit

The most straightforward, yet still computationally useful, neuron models are the leaky-integrate and fire
(LIF) models [345]. They capture the essence of a neuron’s ability to integrate charge on its somatic
membrane upon synaptic excitation while simultaneously leaking away this charge in time. Further, upon
reaching a threshold of accumulated charge the neuron fires and emits an output pulse which can be
propagated to the synaptic inputs of other LIF model neurons. The hybrid differential pair integrator [338]
neuron circuit model in Fig. 4.4a captures these behavioural features in an hybrid CMOS-RRAM circuit.
Importantly, the device incorporates three 1T1R structures that influence its dynamical properties. Upon
the injection of input current, charge is integrated onto capacitor C1. The amount of integrated charge
depends on the ratio of the resistance values 1T1R2 (green) to 1T1R1 (blue) and therefore allows for gain
tuning. The charge which is integrated onto C1 leaks to ground at a rate defined by the resistance of
1T1R2 (green). If the rate of integration sufficiently exceeds the rate of the leak then a threshold voltage
is reached (Vth1) (here defined using an OPAMP comparator) and an output inverter sets Vout to a logic
high. During this firing event, capacitor C2 is charged via the current source M4. As soon as the capacitor

117

exceeds Vth2 transistor M5 opens and shunts Vin to ground - bringing to an end the pulse. Transistor M5
remains shunted to ground for the period the voltage on capacitor C2 remains in excess of Vth2, defined by
the rate the charge leaks to ground through 1T1R3. In summary, the 1T1R1 and 1T1R2 affect the neuron
input time constant and input gain while 1T1R3 defines the neuronal refractory period. Two example
waveforms obtained with different resistance configurations, obtained through SPICE simulation, of Vin

and Vout under a periodic input current pulse train (1µs pulse-width of 100nA every 250µs) are shown in
Fig. 4.4b. For the layout of a hybrid CMOS-RRAM neuron circuit see Appendix 6.15a.

118

+
-

-
+

M1 M2

M5

M4

C2

Iin
Vth1

Vth2

Vout

Vin

C1

Vg1

Vg2 Vg3

M3

T1

R1

(a)

0.0

0.5

1.0

V
o

lt
a

g
e

(V
) Input Voltage

Ouput Voltage

0.00 2.00 m 4.00 m
Time (s)

0.0

0.5

1.0

V
o

lt
a

g
e

(V
)

Vthr1

(b)

Figure 4.4: The hybrid differential pair integrator neuron circuit and its behaviour. (a) Hybrid dif-
ferential pair integrator neuron circuit where 1T1R structures are used to set input gain, time constant
and the refractory period. All NMOS transistors have a width/length of 650nm/250nm while the PMOS
transistors are 1.2µm/250nm. Capacitors C1 and C2 are both 1pF. (b) The circuit is stimulated with a train
of square current pulses (1µs pulse-width of 100nA every 250µs) where the input voltage, output voltage
and neuron firing threshold are shown. The supply voltage is 1.2V consistent with the voltage rating for
the 130nm CMOS technology used to design the circuits. Two resistance configurations are presented
which are (top) R1=1GΩ,R2=1GΩ,R3=1GΩ and (bottom) R1=40MΩ,R2=1GΩ,R3=40MΩ.

Further SPICE simulations explore the relationship between the RRAM resistances and the neurons
behavioural properties. In Fig. 4.5(a), an increasing value of R2 is seen to increase the RC time constant
governing how quickly an initial capacitor voltage of 0.5V decays of 0V. In addition, increasing the ratio
between R2 and R1 is seen to reduce the voltage increment resulting from a single input pulse starting
from an initial C1 voltage of 0V as well as limiting the maximum steady state value of Vin when charged

119

with a constant DC current source in Fig. 4.5(b) and (c) respectively. This ratio should be on the order of
the product of R2 and Iin for the gain to be significantly affected (Fig. 4.5(b)). Finally, the effect of R3 in
tandem with the capacitance of C2 on the refractory period is plotted in Fig. 4.5(d). It is seen that, for a
fixed capacitance, the refractory period increases following a power-law with the resistance value.

(a) (b)

(c) (d)

Figure 4.5: (a) Vin plotted in log time for R2 swept from 10kΩ to 10GΩ for a fixed R1. As R2 increases so
does the input time constant and the rate of change of voltage decay following an input spike decreases.
(b) For a spike atIin and Vin at 0V the instantaneous increment of Vin is plotted with the ratio of R2 and
R1 (fixed R2). Only when the ratio is on the order of magnitude as R2 multiplied by Iin (red box) is the
gain affected. (c) For a DC Iin, Vin is plotted in time for a range of ratios of R2 over R1 from 2000 (red)
to 0.1 (violet). The steady state value indicates the maximum Vin obtainable for a given ratio. As the
ratio reduces the maximum obtainable Vin increases (for a given Iin). (d) The effect of R3 and C2 on
the refractory period (during which the neuron cannot integrate incoming signals). The refractory period
increases with both quantities.

Hybrid synapse circuit

While the input currents injected into the neuron circuit of Fig. 4.4a were simple rectangular pulses, the
synaptic currents injected into biological neurons exhibit temporal properties, reflecting the rate of release
and uptake of neurotransmitter in the synaptic cleft. Such temporal behaviours are believed to be impor-

120

tant for neural computation [346]. Circuit models exist for mimicking biological synaptic dynamics for use
in neuromorphic processors [103]. The simplest model is that of the exponential synapse whereby, during
an input voltage pulse (modelling a pre-synaptic action potential), the output current is stepped up and
then decays exponentially in time [104]. This is the behaviour of the hybrid differential pair synapse circuit
in Fig. 4.6a. Upon an input voltage pulse, Vin, a current proportional to the value of 1T1R2 (green) flows
from C1 to ground for as long the voltage drop over the diode-connected transistor M1 is turned on. As
this current flows, during an active high Vin pulse, the voltage at C1 reduces and turns on transistor M3
allowing an output current to flow (which can be injected into a neuron circuit model). This voltage over
C1 continues to reduce for as long as the voltage difference between C1 and the potential divider node
formed between 1T1R1 and 1T1R2 is sufficient for the diode M1 to remain turned on. Therefore, 1T1R1

imposes a limit on the magnitude of the output current that flows in M3 as a function of the capacitor volt-
age at node C1. After the input pulse comes to an end, current stops flowing from C1 to ground. Instead
the capacitor charges up again linearly via a leakage current from 1T1R3 (red). Due to the sub-threshold
relationship between gate voltage and drain-source current, this results in an exponential reduction in the
output current. A SPICE simulation shown in Fig. 4.6b gives two examples of output current waveforms af-
ter the arrival of an input voltage pulse for two configurations of the three 1T1R structures which augment
the hybrid circuit. It should be noted that, although in Fig. 4.6a one synapse circuit contains one capacitor,
inside neuromorphic processors [86, 339], multiple synapse circuits share (along a row or column of a
synaptic array) a single capacitor and superimpose their currents onto it. This helps to reconcile the small
footprint of a synapse circuit with the large footprint of a 1pF capacitor without compromising on large
(biological) time constants. For the layout of a hybrid CMOS-RRAM synapse circuit see Appendix 6.14a.

121

Iout

Vin

Vg1

Vg2

Vg3

M2

(a)

0

200 n

400 n

O
u

tp
u

t
C

u
rr

en
t

(A
)

Current 1
Current 2

0 200 µ 400 µ

Time (s)

0

0.5

1

In
p

u
t

V
o
lt

a
g

e
(V

)

(b)

Figure 4.6: The hybrid differential pair integrator synapse circuit and its behaviour (a) Hybrid dif-
ferential pair integrator synapse circuit where 1T1R structures are used to set a weight per synapse and
current gain and the time constant of the exponential current decay per column in a synaptic array. All
NMOS transistors have a width/length of 650nm/250nm while the PMOS transistors are 1.2µm/250nm.
Capacitor C1 is 1pF. (b) During an input voltage pulse (red pulse of 1.2V with a 1µs pulse-width) the
output current is incremented. After the pulse the current exponentially decays to zero. The current wave-
form for two different configurations are shown - Current 1 (R1=10MΩ,R2=500kΩ,R3=1GΩ) and Current
2 (R1=10MΩ,R2=375kΩ,R3=500MΩ). The supply voltage is 1.2V consistent with the voltage rating for the
130nm CMOS technology used in simulation.

4.2.2 An OxRAM based intrinsic plasticity algorithm

One of the main motivations for the incorporation of resistive memory devices into neuromorphic circuit
models is the opportunity of non-volatile memory elements to reduce, or eliminate altogether, static power

122

consumption - since energy is not required in order to maintain information once programmed. Another is
that, contrary to the case of neuromorphic processors based on a centralised volatile memory, it can permit
the realisation of massively parallelised local adaptive plasticity mechanisms. One such local mechanism,
desirable in the context of neuromorphic spiking neural network models, is neuronal intrinsic plasticity (IP)
[334]. Intrinsic plasticity is a homeostatic mechanism which, along with synaptic scaling [335], has proven
important in order to maintain healthy neural dynamics in recurrently connected networks [347]. The basis
of IP is to modify the properties that govern the excitability of a neuron such that it is simultaneously able
to minimise the energy it consumes due firing while maximising the amount of information its spike train
can encode. For example, if the firing rate of a neuron is bounded between zero and a maximum value
determined by its refractory period, then, to transmit the maximum volume of information, its firing rate
probability density function (PDF) should be a uniform distribution such that information is transmitted
equally over the available bandwidth. However, if the neuron should simultaneously minimise its power
consumption while firing around a target rate, its firing rate PDF should assume an exponential distribution
[348]. This exponential PDF is observed in neural recordings across multiple organisms such as that from
the macaque inferior temporal cortex plotted in Fig. 4.7. In this experiment, the animal was habituated to
a set of natural scenes, to which the neurons in its visual cortex had adapted to and thereby assumed
an exponential firing rate PDF. The animal was then presented with unfamiliar noisy, unnatural, images -
resulting in the non-optimal firing rate PDF plotted using a red dashed line in Fig. 4.7.

Figure 4.7: Two probability density functions (PDFs) of the firing rate activity recorded from the temporal
inferior cortex of a macaque monkey. The PDF recorded from neurons when the animal was presented
with natural scenes to which it has been habituated is plotted in blue while the response of the neurons to
an unnatural and noisy scene is plotted in red (dashed). Adapted from [348].

To implement a naive ‘technologically-plausible’ intrinsic plasticity algorithm based on OxRAM device
properties, we propose that the log-normal random variable, available in the HRS of OxRAM, can be
combined with another random property of OxRAM to implement an in-memory Markov Chain [349] that
searches for a stable configuration of the neuron. This additional stochastic property we call the SET
Bernoulli random variable.

123

The SET Bernoulli random variable

Traditionally a SET programming pulse is applied which ensures deterministically that a functioning de-
vice transitions from the HRS to the LRS. However, for the case of sub-threshold SET pulses (here below
VSET=1.4V) the HfO2 based RRAM considered in this thesis exhibits a non-deterministic switching mech-
anism whereby the probability of a device being SET has a dependence on the SET voltage applied over
the device [350]. In order to characterise this probability-voltage relationship, devices in a 4k device array
(see Appendix 6.3) were subject to a sweep of sub-threshold SET pulses. Devices were re-initialised
to an initial HRS state between VSET steps. A resistance threshold of 20kΩ defines a SET device from
one which remains in the HRS. The fraction of SET devices after the sub-threshold SET pulse had been
applied defines the SET probability per voltage across the array. The cumulative distributions (CDFs) of
the 4096 devices in the array for a sweep of VSET are plotted in Fig. 4.8. As VSET increases, devices are
more likely to transition from the HRS distribution (right) to the LRS distribution (left). Furthermore, it’s
interesting to note that even for deep sub-threshold pulses the resulting LRS resistance values fall under
the 20kΩ threshold and into the LRS distribution in spite of a small (relative to standard SET conditions)
applied programming voltage.

10 k 100 k 1 M 10 M
Resistance (Ω)

0

0.2

0.4

0.6

0.8

1

C
u

m
u

li
ti

v
e
 D

is
tr

ib
it

io
n

In
c

re
a

s
in

g
 V

s
e

t

HRSLRS

Figure 4.8: Cumulative distributions of device states after sub-threshold 100ns wide programming pulses
for a sweep of SET voltages. Those assuming a resistance below a 20kΩ threshold (vertical red dashed
line) are defined as SET in the low resistive state. An arrow indicates the CDFs resulting from larger SET
voltages.

A SET probability is extracted for each value of VSET by calculating the fraction of devices in the array
which assume a resistance below the 20kΩ threshold after programming. The resulting relationship is
plotted Fig. 4.9a which is seen to be well fit by a sigmoid function. In a further experiment, where each
of the devices were RESET/SET cycled 100 times over a range of VSET, a probability-voltage relationship
was determined for each device by calculating the fraction of times (out of one hundred) the device was
SET per voltage. The relationship for three devices is shown in Fig. 4.9b, whereby a significant device-
to-device variability is observed in their sigmoidal characteristics. The device-to-device variability in this
relationship over the full device population is summarised in Fig. 4.9c by plotting the SET probability in a
series of boxplots over a range of SET voltages. Strikingly, for a VSET = 0.95V , corresponding to a SET

124

probability of 0.42, the box spans the entire SET probability range and there exists a 10% chance that an
arbitrary device will SET every time or not at all under the same programming condition. The variability in
the sigmoidal slope and shift, the two parameters that determine the shape of the function, is plotted for the
full device population in Fig. 4.9d as a scatter plot with the probability density of each independent sigmoid
parameter superimposed onto opposing axes. Both parameters are seen to be normally distributed and
largely uncorrelated.

125

Shift

Slope

(a) (b)

(c)

(d)

Figure 4.9: The stochastic SET operation measured in oxide-based resistive memory (a) The aver-
age relationship over an array of 4096 OxRAM devices between the probability of a device being SET into
its low resistive state as a function of the SET voltage applied over the device. The relationship can be
well approximated as a sigmoidal function. Two free parameters of the sigmoid function are the shift (in
SET voltage for p=0.5) and the slope (the rate at which the probability changes with SET voltage) which
are annotated in the plot. (b) Three single device relationships between SET probability and the applied
SET voltage. Each device was cycled 100 times over a range of SET voltages and the fraction of times
the device switched corresponds to the SET probability at that SET voltage for that device. (c) Boxplots
showing the SET probability distribution over an array of 4096 devices for a range of SET voltages. A blue
horizontal bar shows the SET probability median, limits of the box show a 25% deviation from the median,
whiskers show a 45% deviation and blue points correspond to outlying devices. (d) A scatter plot where
each point corresponds to the sigmoidal slope and shift fitted to a single device. In total 4096 devices are
plotted. The resulting probability density function of the slope and shift are plotted on opposing axes. The
device-to-device variability in slope and shift are both seen to be normally distributed and uncorrelated.

The deviation between the probability of a single device and the median probability (the median of all

126

D
if
fe

re
n
c
e

 t
o
 m

e
a
n
 [
#
]

Figure 4.10: Switching probability for each device in a 16x256 cell 4k device array coloured based on its
deviation from a the mean switching probability over a 4k 1T1R array. Strong reds and blues indicate a
significant deviation while softer shades show cells close to the mean probability.

devices over 100 cycles) is plotted for three median probabilities in a heatmap in Fig. 4.10. The heatmaps
respect the shape of the RRAM array composed of 16 wordlines and 256 source/bit lines. Soft reds and
blues correspond to devices with switching probabilities equal to or close to the mean per applied SET
voltage. Stronger reds and blues indicate, by contrast, devices which have a switching probability signifi-
cantly less (blue) or greater (red) than the median value for the SET voltage. Consistent with Figs. 4.9b,
4.9c and 4.9d, its also clear from visual inspection that a substantial device-to-device variability in the
switching probability is present. The dispersion is most pronounced at voltages corresponding to proba-
bilities between 21.5% and 80.5% whereby the top and bottom heatmaps of Fig. 4.10 are peppered with
divergent coloured cells. The spatial distribution of this device-to-device variability would also appear to
be random-uniform. However, to properly assess the absence of spatial correlations, the SET probability
variability distribution was evaluated according to the NIST test suite SP800-22 [351]. This test suite is
commonly used to validate random number generators by running fifteen tests on the generator output
- in particular searching for spatial correlations. The number walk, composed of the complete 4k device
over the array and the 100 cycles for each SET voltage, passes the full suite of tests. According to these
tests, the device-to-device spatial correlation can be confidently considered as non significant.

Specification of algorithm

The OxRAM based Markovian IP algorithm, which exploits both the HRS log-normal random variable and
the Bernoulli SET random variable, is depicted in Fig. 4.11 which operates as follows. A neuron measures
its own firing rate by leaky-integrating (low-pass filtering) its output spike train. Then, at fixed intervals
(here 400ms), it compares this integrated rate with a target rate. Based on this firing-rate difference error, a
SET/RESET cycle is performed on 1T1R1 and 1T1R2 of the hybrid neuron of Fig. 4.4a. These parameters
control the input gain and input time constant and thus determine the neurons excitability. By performing
a RESET operation on the devices, new parameter values for the neuron circuit model are effectively
sampled from a log-normal random variable - changing it’s excitability accordingly. However, continually
re-sampling these parameter values in this fashion will not allow the neuron to converge towards a stable

127

state. Therefore we propose to modulate the re-sampling using the SET Bernoulli random variable. By
generating a voltage over each of the RRAM devices incorporated into the neuron circuit proportional
to the firing-rate difference error (between the measured and target rates) the device will transition to
the LRS with some probability that is a function of this error. If the device remains in the HRS (i.e.,
the device did not SET after application of the voltage), then the parameter is not re-sampled. If the
device switches, however, the device is immediately RESET and therefore samples a new resistance
value from its high resistive state cycle-to-cycle variability distribution. Crucially, in a similar vein to the
ideas presented in section 3, this implements an in-memory Markov Chain locally within each neuron
by leveraging the random variables within the OxRAM nano-devices that can be harnessed through the
application of simple electrical pulses.

To regulate how sensitive the parameter re-sampling is to the measured firing-rate difference error,
we introduce a ‘tolerance’. This tolerance sets a minimum error that is tolerated before the re-sampling
probability for a neuron becomes non-zero. The tolerance is an important quantity in the algorithm since a
tolerance which is too small prevents convergence to a stable state since the neuron’s configuration is too
sensitive to small fluctuations in its input activity. At the other extreme, a tolerance which is excessively
large prevents a neuron from self-organising at all. Furthermore, we propose that 1T1R1, since it impacts
only the gain, should re-sample from an HRS PDF with a median equal to its current resistance value
while 1T1R2 should re-sample from an HRS PDF with a median shifted by a constant learning rate from
its previous value. The learning rate multiplied by the current resistance value can then be added to or
subtracted from this value give the value of the new median. Since 1T1R2 has a positive correlation with
the firing rate (as it governs the input time constant) this mean shift should be positive for under-firing and
negative for over-firing.

Accompanying circuits

Such an algorithm should be implemented locally, inside or near to the neuron circuit, with further analogue
or digital CMOS circuits - thereby avoiding a von Neumann bottleneck. Here we provide examples of two
CMOS circuits, which respectively detect the sign and magnitude of the error difference between the
measured an target firing rates (Fig. 4.12), and then use these quantities to generate an appropriate SET
programming voltage pulse over a given 1T1R structure (Fig. 4.13).

The circuit in Fig. 4.12 compares the constant bias voltage Vtarget with the voltage signal corresponding
to the integrated output firing rate iVout. We assume that this integration can be performed using a
differential-pair integrator circuit [338]. Currents equal to the positive and negative difference between
iVout and Vtarget are copied into transistors M6 and M7. If iVout is greater than Vtarget, M7 pulls the node at
the input of the inverter down to ground and results in a high output signal. In the contrary case, M6 pulls
the node up to VDD, and the output of the inverter is low. The output signal UP/DN therefore provides
a logical signal corresponding to the sign of the firing-rate difference error. The voltages V 1 and V 2 vary
with the logarithm of this error for negative and positive differences respectively. If the error is large and
positive, for example, V 2 would reflect this in assuming a large voltage relative to V 1. Additionally, in the
case where iVout and Vtarget are very close, the ‘bump’ circuit [352] in the centre of the schematic results
in a large stop voltage.

128

∫

Hybrid Neuron

Integrator

Δ
SET Pulse

Generator

Output

Spikes

400ms

Firing Rate

Target

if (R < 20k) then

 RESET

Log-normal CDF

Vset

Rate - Target

Figure 4.11: Diagram of the proposed OxRAM-based intrinsic plasticity algorithm. The hybrid neuron
circuit has two 1T1R that set the properties of the neuron model (green circle). The neuron propagates
a spike/pulse train to an integrator circuit (light blue block) which transforms the discrete voltage pulses
into a continuous analogue voltage encoding it’s activity. This signal (blue waveform) is compared with
a target (black dashed line) and periodically (black pulse train) the error to this target is evaluated (red
pulses). Based on these differences, SET voltage pulses are generated (red block) over the incorporated
1T1R structures in their high resistive states. This intrinsically makes use of the SET Bernoulli random
variable to make a decision on whether the resistance value should be re-sampled. If the device is SET,
such that the resistance after the SET operations is below 20kΩ, then it is immediately RESET at which
point the resistance values of the neurons incorporated RRAM are re-sampled (green vertical bar) using
a log-normal random variable (navy blue block). This random variable is accessed through the intrinsic
probability density of a the HRS cycle-to-cycle variability.

129

iVoutiVout Vtarget

V1

stop

V2

UP/DN

M1

 M2/3 M4/5

M6

M7

Figure 4.12: Schematic of the circuit responsible for computing the sign and magnitude of the firing-rate
difference error. Text labels correspond to important node voltages besides labels beginning in M which
name certain transistors.

130

+
-

V1

Vr1

V2

UP DN

prog

VSET

M8 M9

prog M10

C1

M15

M16

R1

Vr2

UP DN

stop

 M11/12

 M13/14

Figure 4.13: Schematic of the circuit responsible for applying a SET programming pulse to a 1T1R struc-
ture as a function of the outputs of the circuit in Fig. 4.12 and the biases Vrl and Vr2. Text labels correspond
to important node voltages besides labels beginning in M which name certain transistors. The OP-AMP
drawn at the right-hand side is a standard operational transconductance amplifier circuit.

These five signals are then input to the circuit in Fig. 4.13 along with one control signal prog and two
further bias parameters Vr1 and Vr2. Each time that the active-low control signal prog is pulsed, a current
flows onto capacitor C1. The resulting voltage ramp is then buffered onto the eventual 1T1R structure
- appearing as a ramped voltage pulse over the device. The peak of the voltage ramp corresponds to
the applied VSET voltage, and therefore determines the probability of the device being SET into its low
resistance state. If the voltage stop is greater than V 1 or V 2, then the current that flows onto the capacitor
is negligible and the peak VSET voltage will be zero. When this is not the case, a current proportional to V 1

if UP/DN is low or V 2 if UP/DN is high flows onto C1. This current is also modulated as a function of the
sign of UP/DN and the bias voltages Vr1 and Vr2. Vr1 is used to influence the rate of change of the peak
VSET with a negative firing range difference, and Vr2 for a positive firing rate difference. This effectively
allows for an asymmetrical relationship between firing rate difference and SET probability (Fig. 4.11) which
may be favourable, for example, in the situation where positive deviations from the target firing rate are
punished more (i.e, there is a greater chance to re-sample parameters) than a negative one since elevated
firing rates result in a higher power consumption of the circuit. The peak value of VSET is plotted with the
firing rate difference in Fig. 4.14 for three pairs of Vr1 and Vr2 - demonstrating how their values can be
altered to obtain different symmetrical or asymmetrical relationships.

Spiking neural network simulation

We now assess the effectiveness of the algorithm through a set of spiking neural network simulations
calibrated on the measured characteristics of the OxRAM devices. First, the case of a single neuron
under stimulation from a Gaussian current source, whereby the DC current injected into the neuron re-
samples from a Gaussian distribution every 20ms, is considered. As described, the difference between

131

Figure 4.14: Effect of the biases Vrl and Vr2 on the SET pulse peak voltage value. For three bias
configurations, which are labelled in the legend with the currents which are mirrored into the circuit instead
of the actual voltage applied to the transistor gates, the peak value of the VSET ramp as a function of the
firing rate difference is plotted. It should be noted that for uneven biases, an asymmetrical relationship
can be obtained.

the measured and target rates is used to re-sample R1 and R2 from a log-normal HRS random variable
(Fig. 4.3) with a sigmoidal probability as a function of the firing rate difference, computed by the SET
Bernoulli random variable (Fig. 4.9a). In this case, the sigmoid for excessive firing is steeper than for the
contrary - facilitated by the circuit of Fig. 4.13 - with the intuition that this should encourage a configura-
tion favouring an exponential firing rate PDF. Resistances of the resistive memory devices are randomly
initialised and the firing rate is initially in excess of the target in Fig. 4.15(a). However, in time the neuron
adapts R1 and R2 to fire around the target rate. The properties of the input Gaussian current source are
modified at around 50s and the neuron is able to once again find a new stable configuration. In addi-
tion, the neuron assumes a firing rate distribution similar to that of the ideal case of the exponential PDF,
plotted in Fig. 4.15(b). This indicates that the neuron has minimised its power consumption around this
target while maintaining its information capacity. To evaluate this adaptation in time, the Kullback-Leibler
divergence (which computes the similarity between sets of distributions) between the evolving firing-rate
of the hybrid neuron PDF and the ideal distribution is plotted in Fig. 4.15(c) - a value of zero corresponds
to the optimum configuration. After an initial period of ten seconds which exhibit significant oscillations,
the Kullback-Leibler divergence decreases from a maximum value of 10 to a value around 0.1

Next, we consider the application of OxRAM based IP in the case of a recurrently connected spiking
neural network. The simulated topology consists of an input layer (blue) of 12 Poisson neurons [353] which
feed-forward into a recurrently connected excitatory population of 35 neurons (green) with a connection
probability of 0.75. Poisson neurons are neurons which fire at random intervals such their inter-spike time
PDF is a decaying exponential function. The excitatory neurons have a 0.2 chance to connect recurrently
amongst themselves and there is no spatial connectivity kernel as is the case of liquid-state machines [83].
In addition, the excitatory population excites an inhibitory population (red). The neurons in this population
recurrently connect amongst themselves and also project inhibitory synapses to the excitatory population
- putting on the brakes via negative feedback when the positive population is excessively excited. The

132

(a)

(b) (c)

Figure 4.15: (a) The neuron adapts R1 and R2 such that it fires (blue) around a target rate (purple
dashed) with a Gaussian current source (red). After a change in the properties of the current (50s) the
neuron re-adapts R1 and R2 to fire around the target rate once again. The rate has been normalised to
the target. (b) Target (purple dashed) normalised firing rate probability densities (PDF). The PDF after
organisation (green) is closer to the ideal (blue) than that of a randomly initialised neuron (red). (c) The
evolving Kullback-Leibler divergence plotted as the neuron organises R1 and R2. A value of zero indicates
the neuron has found the ideal configuration that maximises information and minimises power.

133

neurons in the excitatory population are equipped with the proposed intrinsic plasticity algorithm. The
tolerance is set to 70Hz for both over- and under-firing. All synapses are the hybrid synapses of Fig. 4.6a
and the neurons in the excitatory population are the hybrid neuron models of (Fig. 4.4a). The inhibitory
population are simply LIF neuron models whose parameters are not subject to IP. The resistance values
of the hybrid neurons are bounded within the order of measured values in Fig. 4.3.

Figure 4.16: The recurrent spiking neural network topology used in simulation. An input Poisson group
(blue) feeds forward to an excitatory neuron population which are hybrid DPI neurons with intrinsic plastic-
ity (green). A population of inhibitory neurons (red) is excited by the excitatory population and feeds back
with inhibiting synapses that impose an upper limit for the mean firing rate in the excitatory population.

First, for illustrative purposes, the mean firing rate and standard deviation in the firing rate for the 35
excitatory neurons are plotted in the absence of an IP algorithm in Fig. 4.17a. The mean rate oscillates
around a natural frequency of 200Hz while the standard deviation amongst firing rates within the popula-
tion is 50Hz. By contrast, Fig. 4.17b plots the same metrics where the neurons in the excitatory population
employ the proposed IP algorithm - given a target firing-rate of 120Hz. After an initial transient period of
excessive over-firing the network quickly self-organises in 5.5 seconds and then settles in a configuration
where the mean firing rate respects the stipulated target. Notably this, despite the increase in the num-
ber of neurons, this is faster than in the case of the single neurons in Fig.4.15a. The standard deviation
amongst the firing rates is 38Hz. Lastly, in Fig. 4.17c, the number of SET/RESET programming cycles,
per each each 400ms periodic refresh, drops from an initial count of 34 cycles to 2.1 cycles. Low RRAM
switching activity is an equally important indication of convergence since not only should the network
mean tend to the target, while maintaining an acceptable standard deviation amongst the individual rates
in the population, but the switching activity should also cease (or become negligible).

134

(a) (b)

(c)

Figure 4.17: Spiking neural network simulations employing intrinsic plasticity allows the recurrent
network to self-organise to fire at a target rate. Firing rates are plotted in red, standard deviations in
firing rates amongst the population in green and the number of SET/RESET cycles per periodic update
is plotted in blue. (a) A plot of the average firing rate and the standard deviation between firing rates
of the excitatory population plotted without the application of IP. (b) A plot of the average firing rate and
the standard deviation between firing rates of the excitatory population plotted in the presence of the
proposed IP algorithm. The variable T denotes the time after initialisation for the network to converge and
B the standard deviation amongst firing rates after convergence. (c) Plot of the reduction in the number
of RESET/SET operations as a function of time per 400ms re-sampling period. The annotated variable C
denotes the number of RESET/SET cycles per re-sample after convergence.

135

Impact of device variability

The properties of two OxRAM random variables, like any property of resistive memory devices, comes
with of course an inherent variability. In this section, we investigate the contribution of two variability
sources - the cycle-to-cycle variability of the HRS log-normal random variable and the device-to-device
variability in the SET Bernoulli random variable. As plotted in Fig. 4.3b, cycle-to-cycle variability in the HRS
after a RESET operation follows a log-normal distribution. One way of quantifying this variability is through
the standard deviation of the ‘underlying’ normal distribution of the log-normal. The underlying normal
is simply obtained by applying a logarithm function to the log-normal distribution. Across the devices
measured in this study the underlying normal standard deviation of HRS log-normal random variable was
approximately between 0.4 and 0.5. The device-to-device variation in the SET Bernoulli random variable
is modelled by sampling the sigmoidal shift parameter from the measured normal distribution plotted in
Fig. 4.9d. The sigmoidal slope was considered to be constant. We quantify the effects of these two
variability sources using the defined performance metrics annotated in Figs. 4.17b and 4.17c as; time to
convergence (T), standard deviation amongst firing rates after convergence (B) and count of SET/RESET
cycles after convergence (C)) averaged over three independent runs from randomly initialised parameters.
We first examine the impact of the cycle-to-cycle HRS variability on the network in Figs. 4.18a and 4.18b.

In Fig. 4.18a, it is seen for low values of standard deviation of the cycle-to-cycle HRS PDF the network
struggles to settle to a mean precisely equal to the target - although there is a low standard deviation
amongst firing rates and a low count of SET/RESET cycles after converging. This is likely linked to the fact
that the unnaturally narrow log-normal distribution does not allow for a sufficient search of the parameter
space. This is supported by the result in Fig. 4.18b, whereby the convergence time drops for a higher
cycle-to-cycle HRS standard deviation up to 0.5. Due to the more progressive convergence, the neuron
likely stops re-sampling parameters when it enters the fringes of its tolerated firing-rate difference error. In
contrast however, for values larger than 0.5, the convergence time is then seen to increase again. By the
same logic, this should be due to the fact that consecutive states of the Markov Chain are too distal and
not sufficiently correlated. Within the range of experimentally measured cycle-to-cycle variability therefore
the hyper-parameters of the algorithm have allowed it to find a sweet spot and converge faster than values
higher or lower cycle-to-cycle variability. This leads to the conclusion that the intrinsic cycle-to-cycle HRS
variability has a positive impact on performance. In Figs. 4.18c and 4.18d the same metrics are plotted
but for the case of device-to-device SET variability. Here we sample undesired horizontal shifts in the
probability-error sigmoid from a normal distribution for each device. Therefore each has a permanent
offset from the desired value which impacts the effective tolerance. The time to convergence in Fig. 4.18d
increases with greater standard deviation of the normally distributed shifts in the probability-error sigmoid.
However, the standard deviation amongst the neurons firing rates, the mean distance from the target firing
rate and count of SET/RESET cycles appear to be largely unaffected. This result is encouraging since it
appears that, even in the presence of significant device-to-device variability, the IP algorithm allows the
network to self-organise and find a configuration which can compensate for the non-ideal devices and fire
around the target rate - at the expense of a longer period of self-organisation.

136

(a) (b)

(c) (d)

Figure 4.18: The impact of cycle-to-cycle variability in the RESET and device-to-device variability
in the sub-threshold SET on performance metrics of the intrinsic plasticity algorithm. (a) Impact
of the standard deviation (of the underlying normal) in the cycle-to-cycle high resistive state resistances
log-normal probability density function (following a RESET) on mean firing rate and standard deviation
in the firing. (b) Impact of the standard deviation (of the underlying normal) in the cycle-to-cycle high
resistive state resistances log-normal probability density function (following a RESET) on convergence
time and the number of SET/RESET cycles after convergence. (c) Impact of normally distributed device-
to-device SET probability standard deviation on firing rate and standard deviation in firing rate. (d) Impact
of normally distributed device-to-device SET probability standard deviation on convergence time and the
number of SET/RESET cycles.

Power Consumption

A SET/RESET cycle, required to re-sample a parameter, incurs a fixed penalty in energy and therefore
such an algorithm will consume an amount of energy proportional to the update rate (here 400ms) and the
number of devices in a network which have undergone a SET/RESET cycle during this periodic update.
Under standard programming operations (see Appendix 6.3) the 1T1R structures studied in this paper
consume approximately 50pJ per SET/RESET cycle. Neurons also pay an energy penalty every time they
spike (for the DPI neuron in 180nm CMOS this is 800pJ). This is therefore an order of magnitude more
expensive than a SET/RESET cycle as well as being approximately two orders of magnitude more fre-
quent. Clearly, as is the case in biology, it becomes advantageous to expend a small amount of energy to
reduce the (comparatively) much greater energy consumed via excessive neural activity. As an illustrative

137

example we plot the cumulative energy consumption of the two networks in Fig. 4.17b (one employing IP
and the other firing at its natural rate) in Fig. 4.19. Since the target firing rate (120Hz) is significantly lower
than the natural rate (200Hz) the energy consumed, in spite of the cost of initial organisation considering
the SET/RESET cycling, is reduced by half. This demonstrates the opportunities in energy management
of the algorithm in applications in which the system is not connected to a reliable source of power.

Figure 4.19: The cumulative energy consumed by a recurrent neural network firing at its natural frequency
(red) and the same network implementing the described intrinsic plasticity algorithm (green).

4.3 Neuromorphic event routing architecture

Due to the recent success of connectionist approaches to artificial intelligence [35], namely various feats
in deep learning [72, 74, 77] whereby large general purpose models are parameterised through backprop-
agation [37, 51], the capabilities of graphical models - a collection of nodes (neurons) networked together
by edges (synapses) - has been well recognised. The fact that animal nervous systems, given hundreds
of millions of years of evolution to figure out an effective strategy, have also opted to compute using graphs
provides a strong argument for the potential of the approach. Aspects of this were seen in chapter 2 which
concerned itself with the development of bio-inspired neural network models. A variety of hardware sys-
tems have been proposed in order to run and parameterise different types of neural networks. Graphical
[70, 99] and tensor [100] processing units (GPU/TPUs), which are application-specific-integrated-circuits
(ASICs) that are optimised to perform large-scale matrix operations, act as the predominant substrate
for various types of large-scale deep learning models. Neuromorphic processors, based on analogue
[85, 86, 339] or digital [87, 88] circuit models of biologically-plausible neurons and synapses, facilitate
the implementation of neural networks with bio-inspired dynamics and topologies: reservoir computing
[82, 83] and winner-take-all [224, 225, 346] models for example. Neuromorphic processors are composed
of multiple neuron ‘cores’, that feature arrays of synapse and neuron circuit models like those considered
in the first section of this chapter. Various implementations of an ‘event routing’ protocol called address
event representation (AER) are used as means of realising specific neural network topologies on neu-
romorphic processors [354]. In AER, each neuron is assigned an address and also has some form of
memory that stores the address the neurons which pre-synaptic to it. Whenever a neuron spikes, its ad-

138

dress is broadcast on some form of global bus. Each of the neurons which contain this address in their
pre-synaptic neuron memory generate, locally, a pre-synaptic spike. So-called ‘flat’ AER uses a global
look-up table that sequentially reads and broadcasts address events from several neuromorphic cores,
one at a time, onto a global AER bus [355, 354]. Two similar approaches, called broadcast-mesh and
hierarchical-fractal AER, extend flat AER by allowing events to ‘hop’ between neighbouring AER nodes
[356] and to ‘climb’ up and down a hierarchy of routing nodes [357] respectively. Such a hierarchical
approach gains efficiency by exploiting the observation that, in the biological neural networks that neu-
romorphic processors aim to emulate, neurons connect most heavily amongst their neighbours and very
sparsely with distal cells [358, 359]. Router-mesh [360] and multicasting-mesh [106] AER, instead of
using a global look-up table, incorporate distributed routers with local memory and digital control circuits
which, based on the address of the event input to the router, steer it between neighbour neighbouring
routers until it arrives at its intended destination.

As an alternative to such ‘virtual’ AER-based implementations of neural networks whereby digital cir-
cuits link up nodes on the fly using volatile memories, hardware exploiting the non-volatility of resistive
memory arrays have also been proposed to realise physically connected silicon-based neural network
models. Further to storing information on parameters in their non-volatile conductive states, RRAM de-
vices are able serve as a physical, analogue, link between nodes and execute neural network mod-
els in-memory as discussed in chapter 3. Arrays of RRAM have been used to implement feed-forward
[145, 146] and long-short-term-memory [147, 148] neural network models as well as spiking neural net-
works [151, 152]. The technology has also been used to realise Hopfield networks [156] and to perform
in-memory inference on Bayesian networks [158, 160].

These existing approaches to graphical hardware, however, are each subject to various sets of prob-
lems. GPUs suffer from a von Neumann bottleneck between on-chip memory centres and processing
units, and therefore expend large sums of energy in the repeated transportation and storage of data. To
train and perform inference with deep learning models, a substantial power consumption on the order of
hundreds of watts is required [101]. That makes GPUs unsuitable for certain applications, such as those
at the edge. Neuromorphic processors consume many orders of magnitude less power, on the order of
hundreds of milliwatts [339, 87], but require digital circuitry and volatile memory to manage the routing of
address events in an asynchronous manner and are subject to deadlock issues as well as upper-limits on
fan-out and event bandwidth [112, 361]. Both GPUs and neuromorphic processors entail a static power
draw required by, potentially, large blocks of volatile memory and digital circuits. The use non-volatile
resistive memory arrays partly solve these issues but, based on current approaches, come at a heavy
price. To implement the dot-product operation which describes how nodes inter-connect with each other
through edges, analogue voltages are required to be generated using a digital-to-analog converter (DAC).
Then, since the result of this dot-product operation is a current, it must be converted back into a voltage
using a current sense amplifier. Then, it must once again be digitised using an analog-to-digital converter
(ADC) to provide input for the DACs of the next layer of neurons. The energy penalties incurred due to the
DAC, sense amplifier and, in particular, the ADC are generally prohibitive [131]. In RRAM-based neural
network inference chips, even those opting for very low-precision conversions, ADCs have been observed
to consume up to 80% to the total system energy budget and require 70% of the silicon area [132].

This section proposes an alternative RRAM-based non-von Neumann computing fabric for the im-

139

plementation of neural networks based on distributed systolic matrix of analogue-domain circuits, called
‘tiles’, which, in a similar fashion to section 4.2, incorporate local resistive memory arrays. The proposed
hardware does not require volatile memory, digital routing circuits nor ADCs. One class of tile, the neuron
tile, contains analogue neuron and synapse circuit models. Each of these tiles contains a local resistive
memory array which determines the pre-synaptic connection weights to each neuron. Neuron tiles prop-
agate output voltage pulses to neighbouring ‘routing tiles’ which use a further resistive memory array and
analogue circuits to determine how these pulses are then propagated to its own neighbouring routing and
neuron tiles, and so on. The resulting mosaic of computational and routing tiles not only succeeds in con-
tinuously distributing memory and computing homogeneously throughout the hardware, eliminating any
von Neumann bottleneck, but it also avoids the use of volatile memories which necessitate a static power
draw as well as costly analog-to-digital signal conversion. This is because all computation is performed in
the analogue-domain, leveraging the local non-volatile conductance states of RRAM devices.

We first present the circuit elements and system level composition of what we call the ‘neuromorphic
memory mosaic’, or simply ‘the mosaic’ for short. We then demonstrate how this substrate can be applied
to create small-world neural network, or graphical, models [362, 358]. Finally, we demonstrate through
spiking neural network simulation how a small-world neural network, based on the neuromorphic memory
mosaic, can be applied as reservoir computing model [82, 83] to engineer a static feature space from a
input time-series for a simple linear classification model in the heartbeat arrhythmia detection task.

4.3.1 Column circuits

The neuromorphic memory mosaic is based on a fundamental building block referred to here as a ‘column
circuit’. The purpose of these circuits is to transform input voltage pulses into read currents that depend
on the non-volatile conductance states programmed into a plurality of resistive memory devices. These
currents can then be used for asynchronous, analogue-domain computation. In the mosaic architecture,
these currents are used to update the membrane voltages of neuron circuit models in ‘neuron columns’
and also to determine if incoming voltage pulses should be blocked or passed through ‘routing columns’.

Neuron column

The neuron column, depicted in Fig. 4.20, has at its input N parallel one-transistor-one-resistor (1T1R)
structures. Pre-synaptic rectangular voltage pulses, here with a pulse-width of one microsecond, arrive
at the selector transistor gate of the 1T1Rs in an asynchronous fashion. The common bottom electrode
has a constant DC voltage Vbot applied to it and the common top electrode is driven to the voltage Vx

by an operational amplifier (OPAMP) circuit. The OPAMP output is connected in negative feedback to its
non-inverting input (due to the 90°phase-shift between the gate and drain of transistor M1 in Fig. 4.20)
and has the constant DC bias voltage Vtop applied to its inverting input. As a result, the output of the
OPAMP will modulate the gate voltage of transistor M1 such that the current it sources onto the node Vx
will maintain its voltage as close as possible to the DC bias Vtop. Whenever an input pulse Vin < n >

arrives, a current iin equal to (Vx − Vbot)Gn will flow out of the bottom electrode. The negative feedback
of the OPAMP will then act to ensure that Vx = Vtop, by sourcing an equal current from transistor M1. By

140

connecting the OPAMP output to the gate of transistor M2, a current equal to iin, will therefore also be
buffered, as ibuff , into the branch composed of transistors M2 and M3 in series. A transformation is then
be applied to ibuff by a synaptic circuit model (here, the circuit in Appendix 6.10a). In this case, like the
synapse circuit of Fig. 4.6a, it generates an exponentially decaying current that is in turn in injected onto
the membrane capacitor of a leaky-integrate and fire neuron model (here, the circuit in Appendix 6.9a).
In Fig. 4.20, the results of a SPICE simulation accompany the circuit schematic as three insets where all
three devices have a conductance of 250µS - representative of an OxRAM device in the HCS. It can be
seen that, resulting from the three input pulses, the membrane voltage, Vmem, of the neuron circuit then
increases twice after two synaptic current injections before firing upon the arrival of a final third pulse.
Note that inhibitory pre-synaptic weights are possible by using an additional column structure feeding into
a synapse circuit which, instead of injecting a current via PMOS current mirror into the neuron circuit,
sinks current from the neuron by connecting the output of the synapse circuit to an NMOS current mirror.
Such ‘differential’ column structures have been designed and laid out for fabrication.

Vtop

Vbot

G0 G1 GN

Vx
iin ibuff

M1

Figure 4.20: The neuron column circuit with example waveforms. Input (red, left) voltage pulses, Vin,
draw a current iin proportional to the conductance state, Gn, of the read 1T1R structures. This current
is buffered (green, centre), ibuff , into a synapse circuit model which applies a transform on it and in turn
injects it into a neuron circuit model. The neuron circuit integrates this current into a membrane voltage
(blue, right), Vmem which causes the neuron to fire at the output after exceeding a threshold Vth.

The configurable conductance state of the resistive memory devices, G, in the column determines
magnitude of ibuff that is mirrored into the synapse circuit model. As discussed throughout chapter
3, the conductance of OxRAM devices in the high conductive state (HCS) is determined by the SET
programming current. As another example of this, the cumulative probability distribution of all of the
devices in the 4k device array (see Appendix 6.3) shown due to a single SET operation under five sets
of programming conditions is plotted in Fig. 4.21a. The largest values of the high conductance state in
this array are larger than those of the 16k device array, used throughout chapter 3, reflecting the larger

141

selector transistor of the devices in the 4k device array which allow larger SET programming currents to
be obtained. The spread of these CDFs indicate the single cycle device-to-device conductance variability
that exists within a population.

In a fabricated circuit implementation of the neuron column in Fig.4.20, the deviceG0 in the column was
programmed over a sweep of compliance currents that resulted in a series of conductances. After each
device had been programmed, this conductance value was recorded and then an input pulse was applied
to Vin < 0 > resulting in a current waveform with a peak proportional to the programmed conductance
state being injected onto the neuron membrane capacitor. The resulting voltage waveform was measured
(using the OPAMP shown in Fig.6.4a in a voltage buffer configuration that had been integrated with the
circuit). Each of these voltage waveforms, due to six respective conductances, are superimposed and
plotted in Fig.4.21b. It can be clearly seen as the value of conductance increases, so too does the size of
the integrated voltage waveform - serving well as a programmable synaptic weight parameter. The layout
of a column circuit can be seen in Appendix 6.13a.

1 100

Conductance (S)
10

C
u
m

u
la

ti
v
e
 D

e
n
s
it
y

0

0.2

0.4

0.6

0.8

1

60 µA
90 µA
160 µA
200 µA
400 µA

Increasing ISET

(a) (b)

Figure 4.21: (a) Five cumulative distributions resulting from the application of a single SET programming
pulse on each device in an array of 4096 OxRAM devices over a range of SET programming currents, ISET .
(b) Measured voltage traces from a fabricated neuron column circuit due to an input voltage pulse to the
column. From an initial resting membrane voltage of 0.05V, the membrane voltage waveform obtained
due to increasing series of conductance values in the neuron column circuit is shown.

Routing column

The routing column, depicted in Fig. 4.22, works largely on the same set of principles as the neuron
column. An OPAMP connected in the same negative feedback configuration mirrors the current ibuff into
the circuit drawn at the right-hand side of Fig. 4.22 upon the arrival on an input pulse to one of the 1T1R
structure gates. This circuit compares ibuff with a DC bias current iref using a pair of ‘back-to-back’
current mirrors. Intuitively the two current mirrors compete to either pull the common node, that at the
input of the inverter, up to vdd (due to the two PMOS) or down to gnd (due to the two NMOS). If iref is
greater than ibuff , the inverter will output a low voltage and, on the contrary, a high voltage. A set of
graphs in the inset of Fig.4.22 plot the results of a SPICE simulation of the routing column. The devices

142

read by the first and final input voltage pulses are assigned an HCS conductance of 250µS while the
remaining device, that is read upon the arrival of the second pulse, has an LCS conductance of 2µS. The
magnitude of the corresponding buffered current due to each pulse, the green pulses in the central figure
inset, changes accordingly whereby the buffered current due to the second pulse is negligible relative to
the first and final ones. This results in only the first and final input pulses passing through the routing
column, therein generating a voltage pulse at its output, while the second pulse is blocked.

Vtop

Vbot

G0 G1 GN

Vx
iin iref

ibuff
Vout

HCSLCS

Figure 4.22: The routing column circuit with example waveforms. Input (red, left) voltage pulses, Vin,
draw a current iin proportional to the conductance state, Gn, of the read 1T1R structures. Two devices
are labelled with HCS, indicating that they have been programmed with a conductance corresponding
to the high conductance state, and one is labelled LCS in reference to the low conductance state. This
resulting currents are buffered (green, centre), ibuff , into a current comparator circuit where it is compared
with a reference current iref . When the buffered current exceeds the reference current a voltage pulse is
generated at the column output (blue, right).

Since the conductance state of a device that is read upon the arrival of an input pulse determines
ibuff , it can then be used to store in a non-volatile fashion information on what pre-synaptic voltage
pulses should propagate through a routing column, and which should not. The HCS and LCS bit count
distributions from the 4k device array (see Appendix 6.3), resulting from single SET and RESET operations
on each device in the array are plotted in the histogram in Fig. 4.23a. Each distribution is discretised in
one hundred conductance bins and the number of bits in each bin is plotted on the y-axis. This allows
both the HCS and LCS distributions to viewed on the same scale which would not be possible if the
distributions were plotted in terms of probability density. Vertical dashed lines in Fig. 4.23a show the large
‘memory window’ between the LCS and HCS distributions at two and three standard deviations. This
thereby demonstrates that by programming all devices under the same programming conditions, devices
in the HCS and LCS can be well distinguished within a population with a negligible bit error rate. An
additional vertical dashed line shows a conductance approximately half-way between the LCS and HCS

143

distributions - a value that could be used as a conductance threshold to separate HCS and LCS bits which
define whether a pulse should be respectively passed or blocked. In Fig. 4.23b, a SPICE simulation of a
DC sweep of the conductance state of an RRAM device at the input of a routing column which is subject
to an input pulse, is swept from 1µS to 100µS. This conductance range spans the upper and lower tails
of the LCS and HCS distributions plotted in Fig. 4.23a. The threshold bias current, iref , is set equal to
600nA - corresponding to the half-way conductance denoted by the vertical line in Fig. 4.23a. It can be
seen that as the conductance approaches this threshold, the output voltage of the comparator abruptly
swings up from gnd to vdd and therefore the non-volatile LCS and HCS conductance states, even in the
presence of measured device-to-device variability, can be used to reliably block or pass incoming voltage
pulses.

(a) (b)

Figure 4.23: (a) The bit count histograms of the low (green) and high (blue) resistive states of 4096
devices. Vertical dashed lines show the memory window at two (darker green and blue) and three (lighter
green and blue) standard deviations (labelled in the figure legend as 2/3σ). A black vertical dashed line
shows the conductance approximately half-way between the two distributions. (b) The results of a DC
SPICE simulation whereby the conductance of a resistive memory device at the input of a routing column
circuit was swept between 1µS to 100µS. A black dashed vertical shows the threshold at which the output
of routing column switches from low to high due to a threshold reference current, iref = 600nA. This
reference current is set equal to the current that flows due column device conductance equal to that of the
vertical black line drawn in part (a).

4.3.2 Neuron and routing tiles

The presented neuron column realises a bio-inspired spiking neuron model and the routing column offers
a means of blocking or passing the voltage pulses generated at the output of this neuron model. These
columns can be respectively agglomerated into neuron and routing ‘tiles’ by stacking consecutive columns
side-by-side and connecting their gates, row-wise, to common input lines. A simple neuron tile, composed
of only two neuron columns and receiving two inputs, is shown for means of illustration in Fig. 4.24a.
This neuron tile includes two additional rows of RRAM which receive input from the output of each of

144

the neurons in the tile - thereby permitting local recurrent synaptic connections within the tile. Effectively
the conductive states of the devices define the synaptic weights of a feed-forward layer of synapses from
Vin < 0 > and Vin < 1 > while the extra two rows define the weights of recurrent connections within
the tile as well as the weights of any self-loops that neurons make with themselves. Echoing ideas from
FPGAs [95] and mesh AER schemes [360, 106], each of these input and output voltage pulses can enter
from, and exit towards, the neighbouring north (N), south (S), east (E) and west (W).

Experimental results measured from a fabricated implementation of the neuron tile circuit are plotted
in Fig.4.24b. In the experiment the two devices coloured in black in Fig.4.24a were SET into the high
conductive state whilst the grey shaded devices were programmed in the low conductive state - resulting
in the simple network depicted in the top right panel of Fig.4.24a. A train of input voltage pulses were
applied to Vin < 0 > which is observed to periodically increase the membrane voltage. After six input
pulses this membrane voltage exceeds the threshold, Vth, and subsequently fires an output pulse. Since a
recurrent feedback connection exists in the programmed topology (from neuron 0 to neuron 1) the neuron
in the other column also integrates a voltage on its membrane - despite having received no external input
signal.

(a) (b)

Figure 4.24: (a) Diagrams of the neuron tile. (left) Two stacked neuron columns realise a neuron tile.
Four of the devices (top of the array) define the synaptic connections from inputs Vin < 0 > and Vin < 1 >
to the two neurons and an additional four devices (bottom of the array) define the recurrent connections
between neurons and neuron self-loops. Devices are coloured in black or grey to indicate respectively
whether they were in the high or low conductive state respectively during the experimental results plotted
in part (b). Vbot corresponds to the voltage of the same name in Fig. 4.20 and ibuff shows the direction of
the buffered current that is mirrored into the synapse and neuron circuits which are represented by open
circles (top right). This tile circuit permits the configuration of the two neuron, two input network shown
here. (bottom right) These input and output voltage pulses can come from and be propagated to four
neighbouring tiles to the north (N), south (S), east (E) and west (W). (b) Voltage traces measured from
a fabricated neuron tile circuit. Due to an input pulse train (grey pulses) at Vin < 0 > the membrane of
the zeroth neuron column in the tile integrates an increasing amount of voltage (purple trace) until, after
six pulses, the neuron fires (light blue trace). As a result of the feedback connection to the other neuron
column, it then also exhibits an increase in membrane voltage.

145

In order to route these pulses generated by the neurons to their neighbouring neuron tiles we require
a further tile, based on the routing column circuit, whose constituent devices will direct the flow of the
pulses. Such a routing tile, capable of passing and blocking pulses coming from two neurons to and from
the N, S, W and E neighbours is shown in Fig. 4.25a. An experiment was performed using a fabricated
version of this routing tile where two devices (coloured in green and red in Fig.4.25a) were programmed
in respective high and low conductive states. The other devices were left in the pristine state. This has
the effect of allowing incoming pulses from the North to propagate out to the East, while blocking pulses
coming from the South. Pairs of pulses were applied to the North and South tile inputs and, as plotted in
Fig.4.25b, an output pulse of observed at the East when input pulses arrive to the North while it remains
clamped at gnd for the equivalent pulses arriving from the South. Note that the output pulse does not
appear as rectangular due the fact that the output of the circuit is required to charge a pad on the probing
station, through which the experiment is conducted, that has a capacitance of some tens of pico Farads.
If this output were connected to the gate of another 1T1R structure on a subsequent routing or neuron tile
the rising and falling edges of the pulse would be sharper.

LCS

HCS

Vin<N>

Vin<S>

Vin<W>

Vin<E>

Vout<
S
>

Vout<
N

>

Vout<
E
>

Vout<
W

>

(a) (b)

Figure 4.25: (a) Circuit schematic of a routing tile. Two devices coloured green and red denote respectively
the devices programmed in the high and low conductance states in the experiment of part (b). Rectangular
pulse waveforms depicted the left-hand side indicate where the input voltage pulses were applied during
this experiment. (b) Experimental results from a fabricated version of the routing tile shown in part (a).
Continuous and dashed blue traces show the waveforms applied to the North and South inputs while the
orange trace shows the response of the output towards the East. The Eastern output follows the Northern
input resulting from the device programmed into the high conductance state in part (a).

The routing tile shown in Fig.4.25a can pass only one pulse per direction. However, in order to enable
greater configurability it is desirable to propagate different pulses that originate from difference sources
but travel in the same direction differently. This can be achieved by adding additional ‘routing channels’
per direction. An example of a routing tile with two channels per direction is shown in Fig. 4.26. It is based
on eight stacked routing columns, culminating in an 8× 8 array of RRAM-devices. Whether input pulses
propagate or not between all possible combinations of neighbouring tiles is determined by the conductive
state of a corresponding device in the array. An example of how it can be configured is shown in Fig. 4.26,

146

whereby a voltage pulse originating from the tile’s southerly neighbour, Vin < 1, S >, is blocked by devices
in the LCS in six of the routing columns and passed in two columns which have their devices in the
HCS - generating output voltage pulses Vout < 1, N > and Vout < 1,W > that propagate pulses to the
respective north and westerly neighbours through the additional channel. Evidently, it is possible to use
any number of routing channels per direction to increase configurability as desired; although the memory
requirements double for each additional routing column that is used per direction (requiring a 12× 12 array
for three columns per direction and a 16× 16 array for four). The number of neuron and routing columns
per tile determines the trade-off between configurability and efficiency as well as the prevalence of two
potential issues of the mosaic approach - ‘path sharing’ and ‘lost pulses’. The former results when too
few routing columns are used per direction and neurons on the same tile are obliged to share the same
set of post-synaptic weights and connections. The latter results when pulses originating from two different
pre-synaptic sources overlap at the inputs of routing or neuron columns and effectively merge into a single
pulse instead of arriving to the destination neuron as two pulses.

These two tile types can be pieced together in the pattern depicted in Fig. 4.27a which gives rise to a
continuous mosaic of neuromorphic computation and memory. Each of the green squares correspond to a
neuron tile and each of the blue ones to a routing tile. The neuron tiles receive input from their neighbour-
ing four routing tiles, update their membrane voltages using the synaptic currents that are generated as
a function of the conductive states of the devices in their columns and then, upon exceeding their spiking
threshold voltages, emit voltage pulses at their outputs. These pulses are then picked up by their neigh-
bouring routing tiles, those that delivered their input, and then steered onward to their destinations as a
function of the non-volatile conductance states of the devices in the blue sea of routing tiles that link up
neurons in the graph. An example neural network topology, obtained by randomly programming devices
in a computer model of the mosaic to be in the HCS with probabilities pr = 0.075 and pn = 0.4, in the rout-
ing and neuron tiles respectively, is shown in Fig. 4.27b. The resulting graph exhibits an intriguing set of
connection patterns that strike resemblances to many of the graphical motifs observed in animal nervous
systems such as central ‘hub-like’ neurons that send and receive synapses from numerous nodes, recip-
rocal connections between pairs of nodes reminiscent of winner-take-all mechanisms, as well a number
of heavily connected local neural clusters [363]. The sixteen (green) neuron tiles in this mosaic model
contain four neuron columns each and the forty-eight (blue) routing tiles each comport sixteen routing
columns.

The mosaic is evidently better suited for neural network architectures where neurons connect most
frequently with physically nearby neurons and sparsely with distal ones. Models such as feed-forward
neural networks for example would be impossible or require a large extent of router path sharing. Rather,
since the hardware shares the same set of spatial constraints as biological nervous systems, it is much
more amenable to implement bio-inspired topologies like those considered in chapter 2 - those that nat-
urally exhibit ‘small-world’ properties [362, 363]. The use of locally-connected and modular small world
networks is frequently employed by biological nervous systems as an adaptation in light of the similar
spatial constraints faced by this silicon-based hardware [358, 359].

147

LCS

HCS

Vin<1,N>

Vin<0,S>

Vin<1,S>

Vin<0,W>

Vin<1,W>

Vin<0,E>

Vin<1,E>

Vin<0,N>

Vout<
1,N

Vout<
0,N

Vout<
1,S

Vout<
0,S

Vout<
1,W

Vout<
0,W

Vout<
1,E

>

Vout<
0,E

Figure 4.26: Schematic for a routing tile composed of eight routing columns. The routing tile receives eight
inputs, comprising two pulse channels per direction, labelled as < 0 > or < 1 >, from the neighbouring
tiles to the north (N), south (S), east (E) and west (W), and provides complimentary outputs. An example
is shown of an input pulse arriving to the common gate of the fourth row of memory. Devices are coloured
green or red to denote whether they are in the HCS or LCS. It it shown that, due to this input pulse, output
pulses are produced by the routing columns containing the (green) devices programmed in the HCS. Vbot
denotes the DC bias of the same name in Fig. 4.22 and open rectangles are used to denote the current
comparator circuit at the end of the routing column.

4.3.3 Application to reservoir computing

The field of reservoir computing [82, 83] is an appealing use case for neuromorphic processors since
it requires ‘static’ randomly connected small-world neural networks whose synapses are not required to
be modified by on-chip adaptation circuits which can be costly in terms of memory, silicon area and en-
ergy [86, 339, 361]. Reservoir computing models are characterised by the random connection of neurons
amongst their neighbours with an exponentially decaying spatial connectivity probability kernel - meaning
that neighbouring neurons have a higher probability of synapsing onto each other than neurons which
are further apart [83]. Reservoir computing models are understood to perform a temporal projection that
integrates information of an input time-series into the collective instantaneous activations of the reservoirs
neurons. At the end of an input time-series, the collective low-pass filtered spike-trains of the neurons,
corresponding to the calcium concentration that encodes instantaneous firing-rate in biological neurons

148

(a) (b)

Figure 4.27: (a) The neuromorphic memory mosaic. Green squares correspond to neuron tiles and blue
squares to routing tiles. The bridges drawn between tiles correspond to the north, south, east, west
signal buses carrying the Vin and Vout voltage pulses. (b) An example graph resulting from the random
programming of devices in each of the tiles in the mosaic pictured in part (a). The green circles correspond
to neurons which exist in the neuron tiles and the blue edges are defined by the resulting paths that are
formed between neuron tiles through the routing tiles. The arrows on the end of each of the edges denote
their direction.

[364, 365], can be used as input features for a machine learning classification model. In neuromorphic
processors, limitations in the fan-in/out and configurability of the reservoir computing model often impose
certain constraints on the small-world graph properties that can be achieved [112, 361]. Here we demon-
strate an application of the mosaic to reservoir computing by (as in Fig. 4.27b), randomly programming
the devices in routing tiles and neuron tiles with probabilities pr and pn.

4.3.4 Small world graph properties

Small-world neural networks are characterised by two graphical properties; the clustering coefficient and
the average path length that respectively describe the tendency for nodes to inter-connect in localised
clusters and how few intermediate nodes must be traversed on average to exchange information between
a pair of nodes [363]. Typically, a high clustering coefficient and a short average path length are required
for a graph to be considered as small-world. The so-called ‘sigma’ [366, 367] coefficient is often to used
a means of determining whether a graph is a small-world or not. The sigma coefficient is a number
proportional to the ratio of the clustering coefficient of the graph and the clustering coefficient of a random
network or equivalent size divided by the ratio of the average shortest path length of the graph and of
the same random network. The greater the value of sigma above one, the more the graph resembles a
small-world.

149

To investigate the impact of the conductance states (i.e., LCS or HCS) of devices in the neuron and
routing tiles on these small-world properties, we randomly program devices in a mosaic model of sixteen
neuron tiles, of four neuron columns each, and thirty-eight routing tiles, of sixteen columns each, over a
sweep of pn and pr. In Fig. 4.28a a heatmap is plotted that shows how the sigma coefficient varies as
these two probabilities are varied. What is apparent is that the most important parameter to obtain a graph
that exhibits strong small-world characteristics is the probability of routing tile devices being in the HCS,
pr. It is seen that for any value above 0.12 the resulting mosaic-based neural network is not a small-world.
This should not be wholly surprising however, given the large number of possible paths that can exist
between neurons through a multitude of different routing tile combinations. Therefore, given a moderate
fraction of routing tile devices in the HCS, here between 3% and 12%, a variety of complex networks with
rich graphical properties can be realised. The number of edges, or synapses between neurons, over the
same range of probabilities is plotted in Fig. 4.28b where the probability of the routing tile devices being
in the HCS is seen to have a similar effect. For a pr greater than 0.12, the number of edges in the graph
rapidly explodes and tends towards a maximum value of 1296 edges.

(a) (b)

Figure 4.28: Heatmaps of a two-dimensional sweep of pn and pr White sections of the heatmaps cor-
respond to graphs where there existed isolated, unconnected neurons and therefore it was not possible to
calculate a small-world coefficient. (a) Heatmap of a sigma coefficient that describes the small-worldness
of the resulting network. A vertical blue line shows the point at which point (pr = 0.12) the graph stops
being small-world. (b) Heatmap showing the number of edges that exist in a graph.

In Fig. 4.29, four example neural networks over a range of HCS probabilities for the devices in the
neuron and routing tiles being in the HCS are shown. The network in Fig. 4.29a is formed in the mosaic
with a high value of pr and, even with a low value of pn, the resulting graph resembles an all-to-all recurrent
neural network topology. The other three neural networks shown in Figs. 4.29b, 4.29c and 4.29d all use a
value of pr below the small-world threshold of 0.12 and all therefore exhibit different visual characteristics
of small-world graphs.

150

pn = 0.05
pr = 0.5

(a)

pn = 0.25
pr = 0.05

(b)

pn = 0.75
pr = 0.05

(c)

pn `= 0.5
pr = 0.075

(d)

Figure 4.29: Four examples of graphs resulting from different combinations of pr and pn. (a) Graph
resulting from pr = 0.5 and pn = 0.05. (b) Graph resulting from pr = 0.05 and pn = 0.25. (c) Graph
resulting from pr = 0.05 and pn = 0.75. (d) Graph resulting from pr = 0.075 and pn = 0.5.

4.3.5 Heartbeat arrhythmia detection

We now apply a mosaic-based small-world spiking neural network (similar to that in Fig. 4.29d), therein
a reservoir computing model, to engineer an input feature space for a perceptron that is trained to detect
arrhythmic heartbeats. Since the neuron columns require voltage pulses as inputs, we propose to ‘delta-
modulate’ the two-channel electrocardiogram recordings of recorded heartbeats (see Appendix 6.6) into
a series of ‘UP’ and ‘DN’ voltage pulses using a delta-modulator circuit [368, 369]. The delta-modulation

151

circuit designed in this work is that shown in Fig. 4.30. For an input voltage waveform, Vin, which in
Fig. 4.30 is a sinusoid, capacitor C1 acts as a high-pass filter and removes the DC component of the
waveform. The AC component of the waveform is superimposed upon a bias voltage Vref that charges
the non-inverting terminal of the OPAMPA1, whenever transistorM1 is switched on. SinceA1 is connected
in a negative feedback configuration, the OPAMP acts to buffer the voltage waveform at the non-inverting
terminal to its output Vx while unloading the input. Two OPAMPS, A2 and A3, configured as open-loop
voltage comparators compare this buffered voltage with the DC thresholds Vhi and Vlo. Whenever Vx is
greater than Vhi an ‘UP’ event voltage pulse is generated at Vup and the contrary for Vdn. These UP and
DN pulses feed back, on the left-hand side of the schematic in Fig. 4.30, to the input of a logical OR gate
that, whenever an event is generated, discharges capacitor C2 and thereby switches the inverter that turns
on transistor M1 and resets the voltage at the non-inverting terminal of the OPAMP to Vref . This brings
to an end the output event pulse. The non-inverting terminal of A1 remains pinned to Vref for as long as
it takes capacitor C2 to charge beyond the switching voltage of the inverter through the transistor that is
biased with the DC voltage Vfreq at its gate. The voltage Vfreq therefore controls the maximum rate of
event generation - somewhat similar to the refractory period in a neuron circuit model. The layout of this
delta-modulator circuit can be seen in Appendix 6.11a.

The results of a SPICE simulation accompany the circuit schematic as insets in Fig. 4.30. At the input it
can be seen how, as Vin varies, the voltage Vx follows it on the same trajectory although being repeatedly,
and abruptly, reset to Vref upon exceeding the threshold biases Vhi or Vlo - resulting in the ‘chopped’ dark
red waveform in the left-most inset in Fig. 4.30. This results in successive waves of UP and DN events
at Vin and Vout whose inter-pulse timing describes the rate at which the envelope of the input sinusoid
changes. In this SPICE simulation, these event pulses are input to the gates of two selector transistors in
a neuron column. The RRAM device that is read upon UP events has a conductance of 100µS and that on
DN events, 67µS. In Fig 4.30 it can be seen that as the synapse circuit model injects proportional synaptic
currents onto the membrane capacitor of the neuron circuit model, Vmem increases until it reaches the
threshold voltage of the neuron and triggers an output spike.

This demonstrates how such an interfacing scheme can be used to feed a mosaic based reservoir
computing model with electrocardiogram waveforms of heartbeats. In this fashion, heartbeats, such
that shown in Fig. 4.31, are converted into trains of voltage pulses that describe upward and downward
changes of the signal that can then be fed to neurons within the mosaic-based model.

A simulation of a reservoir computing model realised using the mosaic architecture is then used to
generate 2700 static data-points for each of 2700 ECG recordings from a single patient (patient 200) from
the MIT-BIH heart arrhythmia database [296]. The patient exhibits approximately half normal and half
arrhythmic beats and therefore offers a balanced dataset. The mosaic (as in Fig. 4.27a) is realised using
sixteen neuron tiles with four neuron columns and forty-eight routing tiles with sixteen columns. Devices in
neuron tiles are programmed in the HCS with pn = 0.35 and in the routing tiles with pr = 0.07. Assuming a
differential neuron column is used, the device in the excitatory column has a 0.4 probability of being in the
LCS and the corresponding device in the inhibitory column a 0.6 probability of being in the LCS - therefore
40% of synapses in the model are inhibitory and 60% are excitatory. Each of the neurons is equipped with
a low-pass filter circuit [338] which gives rise to thirty-six continuously evolving variables which, together,
integrate information during each 700ms long ECG recording. The thirty-six instantaneous low-pass filter

152

Vref

Vlo

Vhi

Vin

Vup

VdnVup
Vdn

Vfreq

Vtop

100�S

67�S
C2

M1

A2

A3

Figure 4.30: Schematic and corresponding SPICE waveforms of a delta-modulator circuit interfaced to
a neuron column. Insets show (red) the input sinusoidal waveform and the resulting ‘chopped’ waveform
at node Vx, (green) the resulting UP and DN events at nodes Vup and Vdn and (blue) the membrane and
spiking output voltage resulting from the events generated by the input sinusoid.

output voltages at the end of the simulation are taken as a static data-point describing each heartbeat.
The full dataset is therefore composed of 2700 data-points of thirty-six features.

The first two principal components [370] for each data-point in the resulting data-set are plotted in
Fig. 4.32a. Normal heartbeats are labelled as green points and arrhythmic ones as orange points. It
is encouraging that normal and arrhythmic heartbeats form distinct green and orange clouds of points
indicating that, at the end of the simulation, the integrated representation of the time-series manifests in
two distinctive types of activation patterns that could potentially be well distinguished by a linear classifier.
We train a perceptron model, effectively linking up each up each of the thirty-six input features with two
output class encoding neurons (i.e., normal or arrhythmic), with a categorical cross-entropy loss and
a training split of 67% of the full dataset. The resulting model is then tested on the remaining 33%. As
plotted in the green boxplot in Fig. 4.32b, on average, over 100 train/test iterations where the train and test
sets are randomly shuffled on each iteration, the perceptron classifies 94.1% of the test points correctly
using the mosaic engineered features as inputs on average. To understand if these integrated, mosaic
engineered features, are more useful than using simply the count of pulses in each event channel alone,
thereby discarding temporal information in the original signal, we train a perceptron model using the same

153

U
P

 C
ha

nn
el

 (
V

)
D

N
 C

ha
nn

el
 (

V
) Time (s)

Time (s)

Figure 4.31: (left) A delta-modulated electrocardiogram of a heartbeat. (left) The black waveform shows
the original ECG waveform from a single channel of a healthy heartbeat. Superimposed green and orange
vertical lines show the UP and DN that have been extracted by the delta-modulator circuit. (right) The
resulting timestamped UP and DN events are transduced as voltage pulses in UP and DN channels in the
circuit of Fig. 4.30.

train-test splits over 100 iterations. With these features, labelled as ‘Counts’ in Fig. 4.32b, a reduced
average test accuracy of 84.2% results. Based on this drop in performance, of approximately 10%, it is fair
to conclude that the mosaic-based reservoir computing model is able to apply a useful transformation on
the delta-modulated pulse trains and that the resulting features are more linearly separable. To compare
with a more traditional approach to time-series processing, a fast-Fourier transform (FFT) is applied to
each 700ms ECG waveform - resulting in 125 frequency components in each of the two ECG channels.
From these 250 frequency components, a feature selection algorithm was used to extract the 36 best
[294], which were then used to train the same perceptron model with the same train-test split once more.
Labelled as ‘FFT’ in Fig. 4.32b, these features allow the resulting perceptron model to obtain an average
accuracy of 95.2%, ultimately 1% better than was possible using the same number of mosaic engineered
features. However, perhaps the features generated by the mosaic could be improved through better hyper-
parameter tuning or through the use different neuron and synapse circuit models. The incorporation of
spike frequency adaptation into neuron models, for example, is known to improve the performance of
reservoir computing models [371]. Furthermore, beyond random programming of the memory devices,
surrogate gradient-based learning algorithms [372, 252] could be used to learn small-world architectures
and weight matrices through backpropagation in an automatic and deterministic fashion that could be
transferred into the conductance states of the devices in the mosaic.

4.4 Chapter discussion

During the course of the thesis all of the circuits presented in this chapter were designed and laid out for
fabrication in a hybrid CMOS-RRAM process - in which resistive memory devices are integrated between
metal layers four and five [290] of a standard 130nm CMOS process. This includes the hybrid neuron

154

(a) (b)

Figure 4.32: (a) The first two principal components resulting from the application of the principal compo-
nents analysis [370] algorithm on the original thirty-six low-pass filtered spike trains of each neuron into
a two dimensional representation allowing the two classes to be visualised. Green dots correspond to
each electrocardiogram labelled as a healthy heartbeat and orange dots as heartbeats which have been
labelled as arrhythmic. (b) The accuracy distribution of a perceptron classifier using (left, green) the thirty-
six neuron firing rates, (centre, light-blue) the sum of UP and DN events in the two ECG channels and
(right, dark-blue) the thirty-six best features resulting from the fast Fourier transform of the signals.

and synapse circuits (Figs. 4.4a and 4.6a), neuron and routing column circuits (Figs. 4.20 and 4.22),
neuron and routing tile circuits (Figs. 4.24a and 4.25a) as well as the column interfaced delta-modulator
circuits (Fig. 4.30). At the time of writing, the wafers containing the circuits have only just completed
fabrication and so only a subset have undergone basic verification that could could be presented in this
thesis . However, the test of the rest of these structures will be an important step on the path to realising
a fully-integrated neuromorphic memory mosaic.

Something that became apparent during the layout of these circuits was the large area consumed by
the transistors used to realise the circuits in programming path of the RRAM devices relative to the area
consumed by the rest of the analogue circuits. Resistive memory technologies, including the OxRAM
technology considered in this thesis, require large programming voltages - well in excess of the voltages
tolerated by standard transistors in most scaled CMOS nodes. The 130nm CMOS node used to design
the circuits in this work has a nominal supply voltage of 1.2V for example. However, the voltages required
in the SET, RESET and, in particular, the forming programming operations exceed this limit. As a result of
this two types of transistors are required to in order to arrive at a reliable design. One standard ‘thin’ gate
oxide transistor and another high-voltage transistor with a ‘thick’ gate oxide. The thick gate oxide transistor
exhibits less ideal characteristics and also requires larger dimensions to satisfy a more constrained set
of layout design rules. The thin oxide transistor, which tolerates a nominal supply voltage of 1.2V, was
used to design all of the analogue circuits such as the neurons, synapses, OPAMPS and logic blocks (see
Appendix 6.1). The thick-oxide transistor, with a nominal supply voltage of 4.8V, was used to design all of
the circuits in the programming path of the devices such as the the 1T1R structures themselves and the
multiplexers, transmission gates and level-shifters which were used to deliver programming signals to the
devices (see Appendix 6.1).

155

Two circuits showing such additional multiplexing and level-shifter circuits, required in each of the
columns and around each of the 1T1R structures in the hybrid neurons and synapses, are shown respec-
tively in Figs. 4.33a and 4.33b. A column requires a multiplexer at each end of the parallel set of 1T1R
structures in order to switch the common top and bottom nodes between programming waveforms and
the functional nodes of the analogue circuit. To select devices for programming, a digital control signal,
S, is used to multiplex the nodes between these two types of signal. Furthermore, in order to interface
the output 1.2V voltage pulses, originating from the output of the neuron and routing columns, additional
level-shift circuits are required in the column circuit such that a 4.8V pulse can fully turn on the thick oxide
selector transistors as in Fig. 4.33a (see Appendix 6.1).

For example in Fig. 4.33a, the devices see Vx = Vtop and Vbot on their respective top and bottom
electrodes and receive 4.8V pulses at their gates as a function of the their pre-synaptic activity. However,
when S is high, each device sees Vsrc and Vbit at these same terminals (in reference to the names
‘source’ and ‘bit’ lines that are normally given to these lines in a standard RRAM array) and V word < n >

at the gate of the nth device. Similarly, for the 1T1R structures incorporated into the hybrid neuron and
synapse circuits (Fig. 4.33b), a multiplexer is required at each node. These multiplexers share a common
selection signal S and each RRAM device requires an independent select signal. Each of the selector
transistor gates are connected to the 4.8V supply voltage such that, when not selected for programming,
the resistance of the 1T1R is determined predominantly by conductance state of the RRAM device.

From inspection of the layout of the column circuits, pictured in Appendix 6.13a, while the resistive
memory devices and the analogue circuit models respectively consume 0.05% and 15% of the silicon
area per column (Fig. 4.33a), the selector transistors, level-shifters and multiplexers consume 4%, 36%

and 45% of the total area respectively. Similarly, in the case of the hybrid neuron and synapse circuit
layouts (see Appendices 6.15a and 6.14a), where three multiplexers are required per 1T1R structure as
in Fig. 4.33b, 80% and 4% of the total circuit area is consumed by the multiplexers and selector transistors.

While there is likely room for considerable reduction in these ratios through transistor sizing and layout
optimisation, what is clear is that high device density, normally listed as one of the principal benefits of
RRAM technologies, is not possible due to two practical issues. First, the large minimum dimensions
imposed by the layout design rules pertaining to the thick oxide transistors that are required, in this tech-
nology, to be used in the RRAM programming path. Second, due to the degraded properties of these thick
oxide transistors, they are required to sized with large width over length ratios (or be composed of multiple
fingers) to allow for the series voltage drop over the multiplexers, relative to the minimum resistance of the
RRAM devices in the HCS (on the order of a few kΩ) to be minimal. Therefore, the most straightforward
path to reducing the ratio between the area of the circuit consumed by the functional and programming
elements, would be through device level engineering in two respects. First a reduction in the programming
voltages to allow the use of thin-oxide transistors in the programming path and, secondly, for the minimum
resistance (conductance) of devices to be increased (decreased) which would ease the constraints on the
series resistance in the design of the multiplexing circuits.

In spite of the poor device density resulting from these practical considerations, this chapter presented
two key ideas as to how a truly non-von Neumann neuromorphic computing fabric could be realised by
leveraging the overarching advantage of resistive memory devices - conductance non-volatility.

Firstly, it was demonstrated and discussed how resistive memory devices can be integrated within

156

Vtop

Vbot

G0 G1 GN

S S S

S

S

4.8V

1.2V

4.8V

1.2V

4.8V

1.2V

Vin<0> Vin<1> Vin<N>

Vword<0> Vword<1> Vword<N>

Vbit

Vsrc

(a)

S

S

S

VbotVbit

VtopVsrc

4.8V

Vword

(b)

Figure 4.33: (a) Schematic of the column circuit with the additional multiplexers, level-shifters (the rectan-
gle containing the text 1.2V - 4.8V) and programming and control signals required to program the conduc-
tance states of the resistive memory devices. The control signal S, selects the column for programming
whereby the voltages Vbit, Vsrc and the vector Vword are applied to the common top, bottom and selector
gates respectively. (b) Schematic of the 1T1R structure required in the hybrid neuron and synapse cir-
cuits. The control signal, S, switches the incorporated 1T1Rs between existing inside the analogue circuit
or having its terminals connected to programming voltages.

neuron and synapse circuit models such that their parameters could be, instead of stored in a centralised
volatile memory centre, distributed throughout the substrate and exist physically within the computational
elements themselves. This avoids burning energy to maintain information in volatile memory circuits and
in the generation and distribution of a potentially large number of DC biases. Furthermore it allows for
each neuron and synapse to have their own independent set of parameters and the ability to determine
these parameters locally using local analogue or digital circuits - an example of this was presented in
the implementation of a local intrinsic plasticity Markov chain algorithm. Normally on a neuromorphic
processor, groups of some thousands of neurons and synapses that exist on each core are forced to
share the same sets of parameters stored in the central bias generator. This is largely imposed due to
energy considerations and metal area constraints imposed by the number of metal levels and available
silicon area. Considering a state of the art analogue-domain neuromorphic processor [339], each bias
parameter on average consumes about 4µW of power. If the chip were to have unique parameters for each
neuron, assuming only three parameters were required per neuron (time constant, gain and refractory
period like in Fig.4.4a), each circuit would burn 12µW of power. This power consumption means, with only
1000 individually parameterised neurons, an undesirable 12mW of static power is required. Moreover,
perhaps the least practical aspect of this would be the physical metal area required to route the three
biases from the bias generator to each neuron. Assuming a four metal layer 180 nm technology [339],
1.5µm2 of area would required per neuron. For one thousand neurons, this number grows to 1.5mm2 -
the equivalent of half a standard silicon chip.

In the second section of this chapter, a system-level means of interconnecting neuron circuits together

157

through a continuous mosaic of resistive memory augmented tiles, what we called the neuromorphic
memory mosaic, was proposed. Just as the hybrid neuron and synapse circuits distributed memory
regarding the dynamical properties of neuron and synapse circuits, the mosaic distributes information
regarding the neural network topology that interconnects such neuron models. This architecture was
seen to be particularly well suited for bio-inspired small-world neural network architectures and a use
case of a mosaic-based small-world neural network applied as a reservoir computing feature extractor
was demonstrated in the context of a heart arrhythmia detection task.

Unlike the alternative hardware means of realising neural networks, GPUs, neuromorphic processors
or other RRAM array based graphical hardware, the mosaic does not require volatile memory, digital
control circuitry nor digital-to-analog and analog-to-digital converters. Therefore it succeeds in realising
a non-von Neumann computer on which custom neural network topologies can be implemented and
configured using non-volatile RRAM devices, but without the drawbacks that normally curtail the efficiency
of other RRAM-based approaches - principally the use of ADCs.

Although they were considered and presented separately, ultimately these two ideas can be combined
by placing hybrid CMOS-RRAM neuromorphic circuit models at the end of the neuron columns (instead of
CMOS circuit models). In this fashion, a full silicon full non-von Neumann hardware will be possible where
all computation is performed locally, using the memory elements themselves, and information is trans-
ported through brief asynchronous voltage pulses. Overall the mosaic architecture arrives at something
that resonates strongly with the organisational and communicative principles observed in animal nervous
systems. This is perhaps due to the fact they both arise from the consideration of similar sets of spatial
connectivity and energy constraints.

In reflecting on the parallels between this silicon architecture and biology, an interesting question arises
concerning the spike-based nature of computation and communicating information. On one hand, biolog-
ical neurons have been proposed to spike because they use inter-spike timing as a means of encoding
information [373, 374, 375] and to learn [336, 337]. On the other, it could be supposed that the spiking
behaviour of neurons is an adaptation permitting the fast transfer of information via action potentials over
large distances [376, 377] - despite the fact that this conversion from analogue (voltage integration on a
neuronal membrane) to digital (spiking) is understood to result in a significant loss of information [378].
This second idea is supported by the observation that nervous systems often opt to use non-spiking,
graded-potential, neurons [379, 380, 209], that transmit information in an analogue, diffusive, fashion
when neurons can be inter-connected over short distances. From this perspective then, in a neuromor-
phic computing system, should silicon neurons spike, given the fact that pulses propagate equally as fast
as continuous analogue signals when sent through a metal wire?

The question of whether or not spiking is computationally important is an open one. However, from
the stand-point of practicality and energy-efficiency in electronic circuits the answer is yes, absolutely!
In neuromorphic processors for example [85, 86, 88], neurons communicate via brief address events
[112, 361]. If it were required to transmit continuous analogue signals between neurons, the bandwidth of
an AER-style approach to routing would most likely plummet and necessitate a rethink of how neuromor-
phic processors might realise neural networks. Equally in the mosaic, not only would it require a re-design
in the columns circuits such that they could transmit continuous signals but, most crucially, would mean
that RRAM devices must be read continuously. Due to the large conductance values in the HCS (low

158

resistances of the LRS) of most RRAM technologies, this would entail a significant undesirable power
consumption. By implementing spiking neuron models in the mosaic, regardless if they are of compu-
tational advantage or not, it allows information to be transmitted in brief pulses, obviating the need for
DACs and ADCs. In addition, due to their asynchronous nature, energy expensive RRAM device reading
operations occur only when the information they store is needed. Overall this underlines the importance
of event-based computation in the development of energy efficient neuromorphic computing hardware - in
particular for those which leverage resistive memory devices.

159

160

Chapter 5

Conclusion

While the three chapters of this thesis were presented largely independently of one another, they are to-
gether intended to paint overlapping regions of a larger picture of a full Bayesian neuromorphic computing
system. Chapter 2 showed how biological nervous systems could be used as a source of inspiration in
the development of memory efficient model architectures in the proposal of a model for the air-current
evoked escape response of the cricket cercal system. When compared to a universal approximator (i.e,
a generic deep learning approach), the bio-inspired architecture was found to allow for a reduction of up
to two orders of magnitude in the required number of synaptic parameters when applied to the detection
of simulated attacking predators. Additionally, the specific directed topology consisting of neurons with
well defined roles and logical relationships was seen to permit interpretation of the model. It was also
shown that neurons and synapses with dynamical properties were important in addressing tasks based
on temporal information in a model inspired by the elementary motion detection circuits in the early visual
system of Drosophila.

Chapter 3 addressed the question of how the parameters of such neural network models could be
determined if they were based on oxide-based resistive memory devices which, if it were possible to over-
come their myriad of non-ideal properties, could greatly reduce the energy required in connectionist AI
approaches. A solution was presented leveraging the framework of Bayesian machine learning. Bayesian
machine learning provides the tools that allow certain non-ideal properties of RRAM, namely their vari-
ability, to be harnessed - turning the crippling drawback of the technology into an indispensable, core
computational primitive. In-situ and ex-situ realisations of Markov chain Monte Carlo sampling, leveraging
RRAM as random variables from the perspective of their variability, were proposed to train RRAM-based
Bayesian models. In the in-situ setting (section 3.2) it was observed in experimental implementations
of the algorithm that RRAM-based MCMC sampling was capable of training models with five orders of
magnitude less energy than a state of the art CMOS alternatives. This result reflected the potential of
this approach in bringing adaptive learning capabilities to the edge where they cannot currently be im-
plemented due to energy constraints. Another key result was observed in the ex-situ setting whereby a
Bayesian neural network model, transferred onto an RRAM-based hardware, was able to leverage the
uncertainty in its output predictions in order to say ‘I don’t know’ in a safety-critical application. By gat-
ing decisions using uncertainty thresholding the RRAM-based Bayesian neural network was able to take
zero erroneous, potentially harmful, actions. Despite its widespread use across countless domains, one

161

hurdle faced by Metropolis-Hastings MCMC sampling algorithms applied to the training of neural network
models is their drop in efficiency as the number of model parameters and the size of datasets increase.
This makes it challenging to apply the algorithm to extremely large models and big data datasets like
those used in the deep learning setting. A potential solution for this limitation was discovered in section
2.2, where the proposed cricket terminal abdominal ganglion escape response model was able to achieve
an equivalent accuracy to model with two orders of magnitude more parameters. Such memory efficient
bio-inspired directed neural network architectures offer a means of maintaining model sizes at a reason-
able level where Metropolis-Hastings MCMC sampling can be at its most effective, while tackling higher
complexity tasks. Approaches using MCMC with mini-batches were also discussed as a means of scaling
to bigger datasets.

Chapter 4 completes the picture by detailing a non-von Neumann computing fabric on which RRAM-
based bio-inspired models can be realised. By incorporating resistive memory into neuron and synapse
circuit models in section 4.2, inspired by the organisation of animal nervous systems, centralised volatile
memory centres were avoided - alleviating the von Neumann bottleneck and eliminating static power con-
sumption for parameter storage. This was seen to be of benefit in the implementation of local, massively
parallelised, plasticity mechanisms which would be impossible through existing approaches based on
centralised volatile memories. An example was presented whereby the high resistive state of an oxide-
based RRAM was used to implement a Markov chain mimicking a homeostatic intrinsic plasticity algorithm
observed in animal nervous systems. Then in section 4.3, by introducing the spiking neuron column cir-
cuit and the routing column circuit, a non-von Neumann means of inter-connecting neurons in a custom
topology was proposed, a neuromorphic memory mosaic; based on a continuous array of tiles of such
column circuits using RRAM to store information. Crucially, the prohibitive cost of analogue to digital
conversion, which dominated the energy budget in the simulation of the RRAM-based MCMC sampling
system designed in section 3.2, could be avoided since all computation and routing is performed in the
analogue-domain. It was also discussed in section 4.4 that the asynchronous spiking, or event-based,
nature of computation employed by the mosaic was also key in avoiding energy expensive continuous
reading of RRAM devices. While this mosaic of neuromorphic memory is not amenable to models such
as feed-forward networks, it was discussed how biological nervous systems, which face similar spatial
connectivity constraints to the silicon-based mosaic, could once again provide a solution to this potential
limitation by taking inspiration from the small-world organisation of their neural network architectures. An
example of a small-world reservoir computing model, with random local dense inter-connectivity, was im-
plemented in a simulation of the neuromorphic memory mosaic and applied as a means of engineering a
feature space for a linear machine learning classifier.

The motivation of carrying out this work was that, by exploring the interface between machine learn-
ing, biology and technology and understanding the constraints imposed and the opportunities offered by
each, a new hardware-focused approach to AI which could reduce the energy requirements of intelligent,
locally-adaptive, edge systems could be proposed. The three chapters of this thesis put forward ideas
for how this could be achieved and, along the way, solutions for problems in the ethical application of AI,
namely enabling model interpretability through the use of bio-inspired architectures and the quantification
of prediction uncertainty through the Bayesian modelling approach, were encountered. Given then that
various issues faced by AI can be solved independently through the ideas developed in each of the thesis

162

chapters; what can a full Bayesian neuromorphic computing system, integrating the presented elements,
look like?

5.1 A vision of a Bayesian neuromorphic computing system

A future vision of a Bayesian neuromorphic computing system based on resistive memory is depicted
in Fig. 5.1. It is based on an evolution of the mosaic architecture of chapter 4, where four neuron tiles,
labelled as A, B, C and D, are shown. While in the third chapter the neurons in each mosaic tile were
considered as single entities, here we go Bayesian, and, in the same fashion as the hardware proposed
section 3.3, each of the neuron tiles in the mosaic becomes a single ‘Bayesian spiking neuron’. Each
of the neuron columns in a tile correspond then to different samples of that neuron. An example of a
directed Bayesian neural network is shown in the middle of Fig.5.1. Such a topology could be realised by
programming the appropriate set of interconnections in the intermediate routing tiles - which, in addition
to routing events, sends information pertaining to the sample from which the event originated. Since this
example contains only four neurons, the network that is drawn is largely arbitrary. However, as discussed
previously, one could imagine a larger bio-inspired, small-world, neural network architecture amenable to
a mosaic-based implementation featuring a greater number of Bayesian spiking neurons. The inset on
the right-hand side of Fig. 5.1 shows how the Bayesian spiking neuron D is realised using a neuron tile.
Flipped with respect to the arrays presented in chapter 3, each row of the tile corresponds to one pre-
synaptic distribution. The synapse g0 is labelled in a blue rectangle as an example. Each of the columns
is one sample of the spiking neuron D. The joint activation of all of the spiking neurons in the tile is the
output distribution of each tile - indicated by the green rectangular box in Fig. 5.1. The output distribution of
each tile-based Bayesian spiking neuron, p(D), could correspond to a distribution of spike-times, average
rates or some other collective property of the circuit models in that neuron tile. By using the mosaic here
as a substrate for a spiking Bayesian neural network, the sequential row-wise reading strategy required
to perform inference using the mutli-layer Bayesian neural network hardware presented in section 3.3 can
be avoided. Instead the stored samples will be read in an asynchronous, parallelised, fashion - potentially
reducing inference latency and energy. This proposed Bayesian neuromorphic computing system can be
equipped with circuits, like those designed in section 3.2, to train the conductance parameters of each
column through in-situ RRAM-based MCMC sampling. This would therefore enable it to adapt and learn
locally, on-chip. The interpretability of the bio-inspired architecture and the uncertainty encapsulated in
its output prediction distributions, that of neuron D in Fig. 5.1 for example, also facilitates the responsible
and ethical application of such a system to safety-critical edge learning applications.

The interactions and co-dependencies our these four key elements - resistive memory, Bayesian ma-
chine learning, bio-inspiration and spiking neurons - are summarised in the directed graph depicted in
Fig.5.2. Each arrow denotes how one aspect relies on the other. At the point of entry to this graph, there
is the core principle that runs thought this thesis that RRAM arrays could allow dot-product operations to
be implemented with a high efficiency, owing to device non-volatility. Secondly, if we then want to use an
RRAM-based hardware to learn at the edge, then to do so we must resort to Bayesian machine learn-
ing; because it is the only framework based on the manipulation of random variables that can be used

163

g0

C

D

VA

VC

g0

VD,0 VD,1 VD,N
VD

Vbot Vbot

D0 D1

Vbot

DN

g0

p

D

p

Figure 5.1: (left) A neuromorphic memory mosaic architecture composed of four (green) neuron tiles and
twenty five (blue) routing tiles. Each of the neuron tiles is labelled as A, B, C and D. (centre) A generic
directed graph topology with neurons (open green circles) A, B, C and D interconnected by directed
synapses (blue arrows). (right) Each neuron in this network corresponds to a single mosaic neuron tile.
The tile has a number of rows equal to the number of pre-synaptic connections and a column for each
of the sampled spiking neuron models. The blue dashed box drawn along the top row of the tile shows
the synaptic distribution for the synapse labelled as g0 and the green box around the individual neuron
models, the activation distribution of neuron D.

to describe resistive memory characteristics. Third, if we use resistive memory devices then we want to
minimise as much as possible how often they are read. One means to do this is to construct a neural
network with a spiking activation function - since memory devices will be read sparsely and in an asyn-
chronous fashion. Finally, looking towards biological nervous systems is important for two reasons. One is
that bio-inspired architectures are compatible with the proposed mosaic architecture due their small-world
connectivity patterns. The other is that, as shown in the first chapter, bio-inspired neural architectures
allow model sizes to be reduced substantially. Given that Metropolis-Hastings MCMC sampling performs
better in lower dimensional model spaces, bio-inspiration also offers a means of scaling up the algorithm
to more complex tasks.

5.2 Perspectives and future work

In addition to the chapter specific perspectives, detailed in each of the chapter discussions, there are
some final and more general perspectives for future work listed briefly here;

• Develop the hardware: Starting with the circuits designed, laid out and fabricated during this the-
sis, it will be important to fully test and validate each of the structures - in particular those which
could not be tested in time for the conclusion of this thesis. These circuits can serve as a basis
on which to realise a full memory mosaic, as proposed in section 4.3, in silicon that also incorpo-
rates the hybrid neuromorphic circuits presented in section 4.2. Secondly, the peripheral control and

164

Figure 5.2: (left) Four labels, corresponding to the four axes of the envisaged Bayesian neuromorphic
computing approach, and the dependencies between them (red arrows). (right) A written list summarising
the reasoning behind each red arrow. The number in the list corresponds to the number denoted alongside
each arrow.

programming circuits developed in chapter 3, required to implement RRAM-based MCMC on a self-
contained chip, should also designed, laid out, fabricated and validated. A long term view would see
such RRAM-based MCMC sampling circuits incorporated into the memory mosaic architecture as a
step towards the Bayesian neuromorphic computing system depicted in Fig. 5.1. Hardware devel-
opment also extends to engineering of the properties of the resistive memory technology. Besides
the importance of reducing the programming voltages and reducing the maximum conductivity in
the high conductive state, as discussed in section 4.4, the ideal device properties for RRAM-based
Bayesian machine learning methods are not yet known. Devices could be engineered, for example,
to have more variability or a flatter conductance vs. standard deviation relationship in the HCS if
these characteristics were deemed desirable.

• Further bio-inspired architectures: Bio-inspired neural network models, because of their memory
efficiency and small-world graphical properties, were understood to be key in addressing the scal-
ing issue of the MCMC sampling algorithm as well as easing the spatial connectivity constraint of
the neuromorphic memory mosaic architecture. While, admittedly, the models presented in chapter
2 are small and application specific, future work should understand how bio-inspired modules like
these can be interconnected and what other mechanisms might be required to glue everything to-
gether and realise an artificial nervous system model. Close attention should be paid to research
dedicated to the mapping of full brain connectomes in insects like Drosophila [381, 382, 383, 253],
that can inspire further architectural motifs, as well as to brain structures which are becoming in-
creasingly well understood such as insect mushroom bodies [381, 382, 253, 384] and central com-
plexes [385, 383] that seem important in linking up sensory processing with memory and output
motor responses. Further to this, bio-inspired neural networks may help to further justify the cause
for the use of RRAM as a memory element in computer systems. Von Neumann implementations of
neural networks, despite their poor memory efficiency, are extremely flexible - owing to the endless
possibilities in how the instructions that execute in their central processing units can be recursively
organised. On the other hand, RRAM-based neural networks, although potentially requiring less
energy in their execution, may be much more restricted. For example one would have to work

165

within the architectural possibilities of routing and neuron tile dimensions had been fabricated onto
a neuromorphic memory mosaic chip. Furthermore, RRAM is also not amenable to models and ap-
plications where the memory might have to be re-configured a large number of times - since RRAM
technologies are often very limited in terms endurance as was seen in section 3.2. This could be
problematic, for example, in the case of dynamic neural networks where the graphical structure of
the model changes continuously during its execution [386]. By contrast, the volatile memory cir-
cuit used in the memory hierarchy of von Neumann computers can exchange bits almost endlessly.
Foregoing notions of biological synaptic structural plasticity [387], RRAM-based bio-inspired neu-
ral networks may simply be more compatible with RRAM-based computers because, just as each
synapse is hardwired in biology, physical RRAM devices can have a one-to-one correspondence
with each memory element in the neural network that is being modelled.

• Dynamical Bayesian SNNs: The spiking neuron activation was observed to be key to the potential
efficiency of the mosaic architecture since it offered a means of leveraging resistive memory with-
out conversions between analogue and digital domains and permitted asynchronous event-based
computation which avoids continuous device reading. In the context of a Bayesian neural network
model, it was also discussed how event-based computation could having to read each sample of
each Bayesian neuron in a sequential manner. Furthermore, the models to which Markov chain
Monte Carlo sampling was applied in chapter 3 were ‘static’; in that training and inference were
performed in sequential and discrete steps and the neuron models did not incorporate dynamical
properties. However, neural networks that incorporate dynamical synapse and spiking neuron mod-
els, such as those considered in section 2.3 and chapter 4, were seen to be advantageous in tasks
containing temporal information. Exploration is required in order to understand what properties of
Bayesian spiking neural networks that would be based on such models, such as inter-spike time
or average spike rate distributions, can be leveraged for inference and for MCMC sampling based
training. Some recent works have started to address questions of how networks of spiking neurons
can be viewed as Bayesian models - particularly in how their collective dynamics might perform
sampling-based inference [388, 389, 390, 391]. Although this offers a starting point for such an in-
vestigation, further work is required to understand how these two disciplines can merged effectively.

• Useful edge learning: Throughout the thesis, an overwhelming focus was directed towards super-
vised learning approaches - with a brief flutter into the reinforcement learning domain in section
3.2. Repeated emphasis was also put on the potential for, and the importance of facilitating, edge
learning. However, it is important to pose the question of whether or not local supervised learning
at the edge makes sense. While large supervised labelled datasets can be used to train neural
network models in an ex-situ fashion at the cloud, edge learning systems will likely have no means
of acquiring such a pre-labelled never mind store it in what will likely be a constrained memory.
An end user, or a kind citizen, could perhaps take time to label data locally for the system, some-
thing like a teacher, but that seems rather impractical. Reinforcement learning in many applications
could be a viable solution, but that also entails considerable trial and error and so would be limited
to applications that are not safety-critical. Humans could not learn to cross a busy road by rein-
forcement learning for example, and autonomous vehicles, except in situations where a few million

166

spare cars are at your disposal, could not realistically learn how to drive through a reinforcement
learning approach at the edge. The third domain of machine learning, unsupervised learning, would
certainly be the most appropriate. An edge system could observe sensory information and learn
representations and latent variables related to the environment in which it has been placed. How-
ever, for many applications at the edge, such a passive system may not be useful. For example,
considering once again the use case of the implantable cardioverter defibrillator, an unsupervised
learning algorithm might learn the underlying characteristics that distinguish a normal heartbeat
from an arrhythmic one, but may not have a concept that an arrhythmic heartbeat was dangerous
and requires intervention. A solution to this problem might be what is broadly referred to as ‘self-
supervised’ learning - a sub-domain of unsupervised learning where representations can be given
significance using ideas borrowed from the supervised and reinforcement domains [392, 393, 394].
Self-supervised learning is characterised by the local generation of labels and teacher signals which
can be provided to a model that has formed useful representations of its environment through local
unsupervised learning. In many respects animals are also obliged to learn in this self-supervised
fashion too. Take as an example the olfactory learning process that occurs in the mushroom body
of insects [381, 253, 384, 395]. The mushroom body receives input from olfactory sensory neurons
and, in a similar fashion to a reservoir computing model, generates a higher dimensional represen-
tation of these inputs in the Kenyon cells of the mushroom body calyx. Based on feedback from the
environment, or the gastric system within its own body, dopaminergic and octopaminergic neurons
modulate the strength of synaptic connections from the Kenyon cells to mushroom body output neu-
rons that encode the learned valence of certain olfactory stimuli [384, 395]. Similar principles, using
the mathematical toolbox that is under development in the self-supervised learning field should be
explored and adapted to the RRAM-based MCMC sampling approach to understand if this is a more
viable approach to learning at the edge. Similarly ideas from continuous learning and active learning
could also be explored. Alternatively, perhaps edge learning needs to propose a new set of mod-
elling and algorithmic tools and become a domain in its own right that takes a fresh look at what a
learning artificially intelligent isolated from external labels and biases can be.

167

168

Chapter 6

Appendices

6.1 Appendix - Additional circuits and layouts

The circuit schematics and layouts for the other circuits and layouts not discussed or presented in the
main text. The thin-oxide transistors have the dimensions: PMOS width=1.2µm, length=250nm. NMOS
width=650nm, length=250nm unless otherwise stated. The thick-oxide transistors have the dimensions:
PMOS width=3.3µm, length=500nm. NMOS width=2.07µm, length=500nm unless otherwise stated. All
transistor bulks connect to vdd is they are a PMOS and gnd if they are an NMOS through taps at the top
and bottom of each structure. A bar symbol and ground symbol are used to refer to vdd and gnd which
are connected to 1.2V and 0V supply voltages respectively unless otherwise specified for the thin-oxide
transistors and 4.8V and 0V for the thick-oxide transistors. Each layout figure is the layout image as it
exists in the Cadence Layout XL that was used to perform the layout. Layers pertaining to polysilicon,
metal, transistor active regions, nwells, and n+ and p+ doped regions are shown with different colours.

169

6.1.1 Inverter unit cell

M1

M2

Vin Vout

(a)
(b)

Figure 6.1: (a) The inverter unit cell used throughout the design and layout. PMOS (M1) width=1.2µm,
length=250nm. NMOS (M2) width=650nm, length=250nm. These transistor sizes are assumed to be
constant for each of the circuits unless otherwise specified. b) The inverter unit cell layout. The cell
rectangular 5.05µm in height and 1.82µm across.

170

6.1.2 Thick oxide inverter unit cell

(a)

Figure 6.2: (a) The layout of unit cell of the inverter, which has the same circuit as in Fig. 6.1a but
using the thick-oxide transistor. PMOS (M1) width=3.3µm, length=50nm. NMOS (M2) width=2.07µm,
length=500nm The cell rectangular 10.1µm in height and 3.26µm across - consuming three and half
times more area than the thin-oxide unit cell. It requires a nominal vdd of 4.8V.

171

6.1.3 Starved inverter

M1

M2

Vin Vout

M3

M4

(a)
(b)

Figure 6.3: (a) The starved inverter circuit schematic which is used to induce small delays in the pulse
propagation paths. b) The layout of the starved inverter circuit.

172

6.1.4 Operational amplifier

ibias

Vbn

Vbp

V-V+ V+V-

Vbn

Vbp

M9

Vpush

Vpull

Vpush

VpullM1 M2

M3 M4

M5 M7

M8

M6

M11 M14

M10

M12 M13

M15

M17

M16

Vout

(a)

(b)

Figure 6.4: (a) The rail-to-rail operational transconductance amplifier circuit used throughout the design
and layout. The OPAMP is based on two differential-pairs - one which conducts in the upper cycle of
an input waveform (M4− > M8) and another which conducts in the lower cycle (M10− > M14). The
output stage of the OPAMP (M16andM17) is a push-pull amplifier that acts to drive a load. Transistors the
transistors in the push-pull output stage are composed each of ten fingers each. The current mirror circuit
(M1− > M3) receives a DC bias current ibias and generates voltages Vbn and Vbp which mirror this bias into
the tails of the respective differential-pairs. Transistor M3 has a gate length of 500nm. MOS capacitors
M9 and M15 are placed at each of the differential-pair single ended outputs in order to compensate the
circuit. b) The layout of the OPAMP circuit. The MOS capacitors M9 and M15 are not shown.

173

6.1.5 Pulse extender

Vpw

Vin

M1

M2 M4

M3
Vout

(a)

(b)

Figure 6.5: (a) The pulse extender circuit schematic that is used to turn an input spike (Vin) into a rectan-
gular pulse of a desired width at the output (Vout) - determined by the bias Vpw. (b) The pulse extender
layout. The structure at the left-hand side of the layout is the MOS capacitor M4 of the schematic in part
(a).

174

6.1.6 Half OR

Vout

Vin<1> Vin<N>Vin<0>

M2 M3

M1

MN

(a)

(b)

Figure 6.6: (a) The circuit for the half OR circuit that is used at the input of the DPI-synapse circuit as
well as in the delta-modulator circuit. It is called ‘half’ OR since there is no PMOS complement to the
logic of the NMOS transistors. This is because, for an OR gate of N inputs, it would be required to stack
N PMOS in series - and they would therefore not be saturated for a large number of devices. Instead a
single PMOS (M1) is placed between the inverter input noe and vdd and has its gate tied to gnd - such
that it is always conducting. Each of the NMOS transistors is designed with fingers each such that, when
an input signal arrives, they are able to sink more current than the PMOS can source (even though they
are both turned on) and pull the input node of the inverter down to 0V. (b) The layout of the half OR circuit.

175

6.1.7 Multiplexer

M1

M2

M3

M4

A

ZS

B

(a)

(b) (c)

Figure 6.7: (a) The circuit used to multiplex analogue signals A or B onto Z as a function of the control
signal S. The circuit is bidirectional and can pass voltages and currents. The vdd of the circuit is 4.8V.
(b) One version of the layout of the circuit of part (a) that is used to drive high impedance loads - namely
transistor gates. As a result each transistor has only a single finger. (c) Another version of the layout of
the circuit of part (a) that is used to drive low impedance loads - namely programming the 1T1R. As a
result each transistor has three fingers.

176

6.1.8 Level shifter

Vout

Vin

vdd2 vdd2

vdd1

vdd1

vdd2

M1

M2 M3

M4

(a)

(b)

Figure 6.8: (a) The level shift circuit used to boost 1.2V pulses up to 4.8V pulses. It requires two thin-
oxide inverters operating at vdd1=1.2V and then two thick-oxide transistor branches and a final thick=oxide
inverter with vdd2=4.8V. (b) The layout of the level shift circuit. The 1.2V circuits are stacked on top of the
4.8V circuits and their ground are connected together using a vertical running metal4 (green) layer. This
layout is a good example of the difference in area consumed by simple thin-oxide (top) and thick-oxide
(bottom) circuits.

177

6.1.9 CMOS neuron

Vout

Vin

Vlk Vrp

Vmem

M1

M2 M3

M4 M5 M6

M7

(a)

(b)

Figure 6.9: (a) The schematic of the CMOS neuron circuit used throughout the design and layout. The
inverter symbols with the horizontal dashed lines correspond to the starved inverter circuits depicted in
Fig. 6.3a. These starved inverter add a small delay between the rising edge of Vout and the shunting
feedback to transistor M3 such that is has time to rise to vdd. MOS capacitors M4 and M6 are used as the
membrane and refractory period capacitors. (b) The layout of the CMOS neuron circuit where the MOS
capacitors shown in part (a) are not shown.

178

6.1.10 CMOS synapse

Vw M1

Vin<0>

Vin<1>

Vin<N>

Vthr Vtau

Vout

M2

M3

M4 M5

M6

(a) (b)

Figure 6.10: (a) Schematic of the CMOS synapse circuit used throughout the design and layout. The pre-
synaptic input of the synapse (transistor M2) is driven by the output of the half OR gate circuit depicted in
Fig. 6.6a. In the column circuit, Fig. 6.13a, used throughout the design, the buffered current is mirrored
in through M1 and gated by the same pulse that reads the 1T1R that caused the current by connecting
the same signals (Vin) as inputs to the half OR gate (see Appendix 6.6a). (b) The layout of the CMOS
synapse circuit. MOS capacitor M6 in part (a) is not shown.

179

6.1.11 Delta modulator layout

(a)

Figure 6.11: The layout of the delta-modulator circuit discussed in the paper. This image shows the MOS
capacitors, characterised by large red rectangular polysilicon gates, that are used to de-couple the input
from its DC bias, compensate the voltage follower and determine the maximum event generation rate.

180

6.1.12 1T1R cell

(a)
(b)

Figure 6.12: (a) Layout of the series one-transistor-one-resistor structure where the selector transistor
is an NMOS that is used for all resistive memory points in the paper. The resistive memory device
corresponds to the small red, open rectangle on the upper right of the layout. The structure uses a thick-
oxide transistor with dimensions: width=2.72µm, length=500nm. The transistor bulk tap is connected
to the common gnd. (b) Layout of the series one-transistor-one-resistor structure where the selector
transistor is an PMOS. Although initially design to be used as RRAM devices incorporated into the leak
bias of the hybrid synapse circuit it was eventually not used due to issues with biasing its bulk at vdd=4.8V
while existing in a vdd=1.2V circuit. The resistive memory device corresponds to the small red, open
rectangle on the upper right of the layout. The structure uses a thick-oxide transistor with dimensions:
width=2.05µm, length=500nm. The transistor bulk tap is connected to vdd=4.8V.

181

6.1.13 Column circuit layout

(a)

Figure 6.13: The layout of the column circuit used throughout the design and layout that was presented
and discussed in the thesis. The top row of circuits operate off the 1.2V supply and the bottom, much
larger row, operate of the 4.8V supply. The circuit contains two NMOS 1T1R structures in its top right
corner and requires two gate driving multiplexers for each gate and one larger multiplexer that switches
the connections of the top electrode.

182

6.1.14 Hybrid synapse layout

(a)

Figure 6.14: The hybrid synapse layout containing three NMOS 1T1R structures in the top right corner of
the images and three rows of gate, top and bottom electrode multiplexers. The transistors of the synapse
circuit itself are found in the centre of the top 1.2V row of the circuit and constitutes a relatively tiny area
compared with the area consumed by the multiplexing and level shifting circuits. The MOS capacitor
circuits are not shown.

183

6.1.15 Hybrid neuron layout

(a)

Figure 6.15: The hybrid neuron circuit containing two NMOS 1T1R devices and two rows of multiplexing
circuits to switch these structures in and out of the neuron circuit which is found in the top left corner of
the layout. The MOS capacitor circuits are not shown.)

184

6.2 Appendix - Note on MOS capacitors

The hybrid CMOS-RRAM process used to design and layout the circuits of this thesis consists of a stan-
dard 130nm CMOS layer which is processed as normal up to metal3, finished off by depositing resistive
memory device stacks between metal4 and metal5. Normally the process should have capacitors avail-
able between metal5a and metal6 but in this case they are not added. Therefore, in order to obtain
capacitors it is required to use either metal-insulator-metal capacitors, realised with large overlapping
metal layers, or MOS capacitors. MOS capacitors are more practical since they can be realised by short-
ing the source, drain and bulk of a MOS transistors. The transistor can then be sized to give a desired
capacitance. However, MOS capacitance is highly non-linear as a function of the applied bias, Vgs. For
a Vgs lower than the threshold voltage of the transistor, the top and bottom capacitor plates are the gate
electrode and the bulk of the transistor. However, when Vgs exceeds this threshold, the channel of the
transistor begins to conduct and acts as the new dominant capacitor plate - reducing the effective plate
separation distance considerably. Therefore as Vgs is increased, and channel conduction becomes more
dominant, the capacitor increases non-linearly as seen in the green curve Fig. 6.16a obtained through
SPICE simulation of an NMOS capacitor. As Vgs is made increasingly negative a similar effect is also
seen in the orange curve of Fig. 6.16a, most likely due to the accumulation of minority carriers in the
channel. A number of curves are shown as the MOS area is increased. The effect of MOS capacitor area
on the capacitance value is summarised in Fig. 6.16b under two Vgs biases.

(a) (b)

Figure 6.16: (a) Five curves showing the relationship between simulated NMOS capacitance and the gate-
source bias (Vgs). Green curves show the relationship for positive bias and orange ones for negative bias.
The MOS cap areas are increased in the following range: 1µm2, 5µm2, 25µm2, 56µm2 and 100µm2. (b)
The relationship between MOSCAP area and the resulting capacitance value under two bias conditions
(green Vgs = 0.25V and blue Vgs = 1.2V) for an NMOS device.

The SPICE simulations consisted of applying a DC bias (Vgs) over a NMOS transistor with a shorted
drain, source and bulk and then injected a current pulse of known magnitude onto the capacitor. Using
the equation;

185

i = C
dV

dt
, (6.1)

where i is the magnitude of the current pulse, C is the capacitance of the MOS capacitor and dV/dt
is the rate of change of voltage over the capacitor. By measuring the slope dV/dt, resulting from an input
current pulse, the capacitance is given by the ratio of the two quantities.

186

6.3 Appendix - Resistive memory experiments

Two versions of fabricated OxRAM memory arrays are used in the presentation of this thesis. The first is
a 4, 096 (4k) device array (16×256 devices) of 1T1R structures. The second chip is a 16, 384 (16k) device
array (128×128 devices) of 1T1R structures. In each array, the OxRAM cell consists of a HfO2 thin-film
sandwiched in a TiN/HfO2/Ti/TiN stack. The HfO2 and Ti layers are 5 nm tick and have a mesa structure
300 nm in diameter. The OxRAM stack is integrated into the back-end-of-line of a commercial 130 nm
CMOS process. In the 4k device array the n-type selector transistors are 6.7µm wide. In the 16k array
the n-type selector transistors are 650nm wide. Voltage pulses, generated off chip, can be applied across
specific source (SL), bit (BL) and word lines (WL) which contact the OxRAM top electrodes, transistor
sources and transistor gates respectively. External control signals determine to what compliment of SL,
BL and WL the voltage pulses are applied over by interfacing with CMOS circuits integrated with the
arrays. Signals for the 4k device array are generated using the Keysight B1530 module and those for the
16k device array are generated by the RIFLE NplusT engineering test system. The RIFLE NplusT system
can also run C++ programs that allow the system to act as a computer-in-the-loop with the 16k device
array as depicted in Fig. 6.17a.

Before either chip can be used, it is required to form all the devices in the array. In the forming process
oxygen vacancies are introduced into the HfO2 thin-film through a voltage-induced dielectric breakdown.
This is achieved by selecting devices in the array one at a time, in raster scan fashion, and applying
a voltage between the source and bit lines. At the same time, the current is limited to the order of
µAs by simultaneously applying an appropriate VWL (transistor gate) voltage. A form operation consists
of the following conditions; 4k device array - VSL=4V, VBL=0V, VWL=0.85V, 16k device array - VSL=4V,
VBL=0V, VWL=1.3V. After the devices have been formed, they are conditioned by cycling each device in
the array between the LCS and the HCS one hundred times. Unless otherwise specified, the standard
RESET conditions throughout the paper were; 4k device array - VSL=0V, VBL=2.5V, VWL=3V, 16k device
array - VSL= 0V, VBL= 2.6V, VWL=4.0V. Unless otherwise specified, the standard SET conditions used
were; 4k device array - VSL=2V, VBL=0V, VWL=1.2V, 16k device array - VSL=2.0V, VBL=0V, VWL=1.6V.
The device conductances are determined by measuring the voltage drop over a known low-side shunt
resistance connected in series with the selected SL in a read operation. Devices are read according to
the following conditions; 4k device array - VSL=0.1V, VBL=0V, VWL=4.8V, 16k device array - VSL=0.4V,
VBL=0V, VWL=4.0V. All off-chip generated voltage pulses for programming and reading have a pulse-width
of 1µs.

187

Program

Read

- Generate Pulses

- Evaluate Calculations

200mm Hybrid

CMOS-OxRAM

(130nm) Wafer

SL BL WL CTRL

25-pin

Probe-card

WL

SL

BL

(a)

Figure 6.17: Diagram of the computer-in-the-loop with the resistive memory array. The computer-
in-the-loop experiment using the RIFLE NplusT engineering test system, which incorporates a digital
sequencer, 100 MHz arbitrary waveform generators, 70Msample/sec cell current measurement capability,
as well as a C++ programmable computer. The computer can configure pulses applied by the arbitrary
waveform generator to source (SL), bit (BL), and word lines (WL) signals. The CTRL bus controls pe-
riphery circuitry integrated within the hybrid CMOS-OxRAM wafer and determines to which device in the
array the SL, BL and WL signals will be applied to (here the red coloured 1T1R structure). All these
signals are interfaced to our 200 mm (8-inch) wafer through a 25-pin probe-card, which contacts to 25
metal pads integrated on top of the back-end-of-line of the wafer. Using this setup, the computer is there-
fore able to program the conductance states of devices integrated in the array, read the resulting states,
and then, based on these results, re-program the devices in the array in a continuous program-read loop.
In this fashion, we can implement RRAM-based algorithms, whereby programming operations can be
determined based on the feedback of the result of the previous programming steps. In the case of the
RRAM-based MCMC sampling algorithm implemented in the paper, after reading programmed device
conductance values, the computer is then responsible for calculating the dot-product between the data
points and the conductance model, evaluating the likelihood of the conductance model and finally per-
forming the acceptance ratio calculation. The ultimate aim of such a system is to experimentally verify
RRAM-based algorithms, before a full system can be designed and integrated on a standalone chip.

6.4 Appendix - Implementation of RRAM-based MCMC simulator

To characterise properties of the HfO2 physical random variable, as plotted in the second chapter, the 4k
device array chip was used. This allows use of a larger selector transistor which offers a greater range of
the SET programming currents. A 4k device array was formed, conditioned and then RESET/SET cycled

188

one hundred times over a range of nine word line voltages (VWL), corresponding to the range of SET
programming currents. Each device was read after each SET operation. Between each step in VWL, the
devices were additionally RESET/SET cycled 100 times under standard programming conditions ensuring
that, for each of the hundred cycles at different VWL, the initial conditions were the same. The conductance
was read after each SET operation and recorded. This conductance data was then processed using the
python library NumPy and then using the curve fit tool from SciPy giving rise to the relationships between
cycle-to-cycle and device-to-device variability plotted in Fig. 6.18a. The relationships between the cycle-
to-cycle and device-to-device variability, σ, and the conductance median of the respective distributions
were fit using a power law - the equation in Fig. 6.18a, giving parameters a and b.

(a)

Figure 6.18: The relationship between the standard deviation, σ, and the conductance median for the
cycle-to-cycle (blue crosses) and device-to-device (green plus symbols) variability distributions. Each can
be fit with a power law, σ = aGb, where a and b can be used to model this physical relationship in a
simulation.

A custom behavioural simulation of the computer-in-the-loop experiment was developed in python
implementing the presented Metropolis-Hastings Markov Chain Monte Carlo sampling algorithm using
these two power law fits. The proposal distributions were assumed to be normal distributions with a
standard deviation equal to that of the cycle-to-cycle variability fit. Each time the simulator moves between
array rows it assigns a mean to each of the proposal distributions of each of the devices in the new row
using the device-to-device variability power law. Upon each new proposal each device samples from a
normal distribution around this mean. The sampling was performed using the random function suite from
the NumPy library. The likelihood and acceptance ratio calculations were performed in the log-domain as
described in chapter 2 of the thesis.

189

6.5 Appendix - Note on implementation of neural network models

A variety of tools were used to realise the different types of neural network models applied across the
chapters. The PyTorch [218] deep learning framework was used in chapter 1 to implement the TAG
model and the benchmark models. In chapter 2, TensorFlow [396] was used to implement the benchmark
neural networks that the RRAM-based MCMC experimental models were compared to. In chapter 2, the
PyMC3 framework was used to train and implement the Bayesian neural network models [397]. In the first
section of chapter 3, the spiking neural network simulation library Brian2 [398] was used to implement the
intrinsic plasticity models while a custom spiking neural network simulator was developed based on the
odeint library, available from the SciPy python package, to perform the simulations in the second section
of chapter 1 and the second section of chapter 3.

190

6.6 Appendix - Pre-processing of the electrocardiogram dataset

For certain demonstrations in the second and third chapter addressing arrhythmic heartbeat detection,
the MIT-BIH heart arrhythmia database [296], composed of half hour dual-channel electrocardiogram
recordings from 48 subjects, was downloaded. Single heartbeats were isolated in each recording into
a 700 ms time-series and centred on the R-wave peak of the beat. The fast Fourier transform function
from NumPy was then used to generate a frequency spectrum of each time-series. In the first section of
chapter two, the ten lowest frequency components were used as the input features for the RRAM-based
Bayesian neural network that was trained experimentally using RRAM-based MCMC sampling. Each
heartbeat data-point was then either labelled as either a normal, healthy, heartbeat or as a heartbeat
exhibiting signs of arrhythmia. The dataset contains observations of tens of arrhythmia types. A subset of
250 data-points were taken randomly from 47 of the subjects and then used to train the models. Then, to
test the models, all of the data-points from one, previously unseen, subject were used - subject 200.

In the second section of chapter two, the dataset was used again to demonstrate that an ex-situ trained
RRAM-based Bayesian neural network could say ‘I don’t know’. In this case, normal heartbeats and the
four most classes of arrhythmia were used - left and right blocked branches, atrial premature beats and
premature ventricular contractions [296]. The sixty-four ‘best’ frequency components over the full dataset
were selected using the Chi2 best-K feature selection algorithm [294]. Four hundred examples of each
heartbeat were randomly sampled from all forty-eight patients allowing a test and training set of one
thousand data points each.

In the final section of chapter three, delta-modulated time-series were generated using all of the heart-
beats of subject 200 - the same patient used as the test case for the RRAM-based Bayesian neural net-
work trained using RRAM-based MCMC sampling. Each of the 700ms time-series was delta-modulated
by measuring, at what timestamps, the signal deviated up or down by a threshold value. When a new
UP or DN event was registered, the magnitude of the signal is recorded and the each new subsequent
magnitude value is compared with this.

191

6.7 Appendix - Cercal system statistical model response

(a)

(b)

Figure 6.19: The raster plots of all of the sensory neurons, corresponding to those nested below the hairs,
due an ‘easy’ to detect simulated attack with low background air intensity and a large fast attacker. From
left to right the columns show the activity of the hairs oriented to 45°, 135°, 225°and 315°. The top row
correspond to the hairs on the left cerci and the bottom row to the hairs on the right cerci. (a) As blue
points, the spike-times of all of the slow (low frequency) hair sensory neurons are plotted. (b) As orange
points, the spike-times of all of the fast (high frequency) hair sensory neurons are plotted.

192

(a)

(b)

Figure 6.20: The membrane voltage plots of all of the sensory neurons, corresponding to those nested
below the hairs, due the same ‘easy’ to detect simulated attack, with low background air intensity and
a large fast attacker, that generated the raster plot in Appendix 6.19a. From left to right the columns
show output voltages of the input layer neurons being excited by the hair populations oriented to 45°,
135°, 225°and 315°. The top row correspond to the input layer neurons receiving input from the hair
populations on the left cerci and the bottom row to the populations on the right cerci. The vertical line
drawn at 700ms denotes the attack time. The output voltages at this time, of all sixteen neurons, are used
as the features that describe each data point in the training and testing of the TAG model in chapter 2.2.
(a) As a continuous blue signal, the output voltages, denoted as feature voltage in the plot to denote the
fact they are used as input features to the TAG model, of all of the slow (low frequency) input neurons are
plotted. (b) As a continuous orange signal, the output voltages, denoted as feature voltage in the plot to
denote the fact they are used as input features to the TAG model, of all of the fast (high frequency) input
neurons are plotted.

193

(a)

(b)

Figure 6.21: The raster plots of all of the sensory neurons, corresponding to those nested below the hairs,
due an ‘hard’ to detect simulated attack with high background air intensity and a smaller slow attacker.
From left to right the columns show the activity of the hairs oriented to 45°, 135°, 225°and 315°. The top
row correspond to the hairs on the left cerci and the bottom row to the hairs on the right cerci. (a) As blue
points, the spike-times of all of the slow (low frequency) hair sensory neurons are plotted. (b) As orange
points, the spike-times of all of the fast (high frequency) hair sensory neurons are plotted.

194

(a)

(b)

Figure 6.22: The membrane voltage plots of all of the sensory neurons, corresponding to those nested
below the hairs, due the same ‘hard’ to detect simulated attack, with low background air intensity and
a large fast attacker, that generated the raster plot in Appendix 6.21b. From left to right the columns
show output voltages of the input layer neurons being excited by the hair populations oriented to 45°,
135°, 225°and 315°. The top row correspond to the input layer neurons receiving input from the hair
populations on the left cerci and the bottom row to the populations on the right cerci. The vertical line
drawn at 700ms denotes the attack time. The output voltages at this time, of all sixteen neurons, are used
as the features that describe each data point in the training and testing of the TAG model in chapter 2.2.
(a) As a continuous blue signal, the output voltages, denoted as feature voltage in the plot to denote the
fact they are used as input features to the TAG model, of all of the slow (low frequency) input neurons are
plotted. (b) As a continuous orange signal, the output voltages, denoted as feature voltage in the plot to
denote the fact they are used as input features to the TAG model, of all of the fast (high frequency) input
neurons are plotted.

195

6.8 Appendix - Observed shift of the OxRAM normal random variable

An interesting device behaviour not previously documented in the literature was observed under continual
RESET/SET cycling whereby the OxRAM normal random variable, leveraged in chapter two, was seen to
shift, expand shift and contract. Each subsequent set of one hundred reads in the high conductance states
were fit with a normal distribution. In the plots of Fig. 6.23 ten sets of one hundred cycles, coloured from
red (first one hundred cycles) to violet (last one hundred cycles), from two separate devices in an array are
plotted in order to show how the OxRAM random variable changes in time. While in Fig. 6.23a this shift
is minimal, the properties of the random variable of the device plotted in Fig.6.23b exhibit considerable,
although gradual, change: the median shifts towards a lower conductance and the standard deviation of
the distribution becomes larger. While not discussed in the thesis, this ‘random walk’ behaviour of the
OxRAM random variable could well be exploited within the context of Markov Chain Monte Carlo sampling
where, if characterised properly, could also harnessed as a computational resource.

(a) (b)

Figure 6.23: The change in the random variable of a single OxRAM device as it undergoes RE-
SET/SET cycling. Examples of two devices are shown whereby the conductance in the HCS, for sets
of one hundred sequential cycles are fit with a normal distribution. The colour of the normal distribution
progresses through the colours in the order of the visible spectrum - from red to violet. Therefore the
random variable of the first one hundred cycles is red and that of the last one hundred cycles is violet.
(a) An example of a device which does not change significantly as it is cycled and all of the fitted normal
distributions more or less overlap. (b) An example of a device where the physical normal random variable
is seen to shift significantly as it is cycled. The normal distribution fitted from the first one hundred cycles
(red) is centred around 260µS and has a low standard deviation. However, as the device is cycled, the
median of the fitted normal moves, progressively, towards a lower conductance and its standard deviation
increases.

196

6.9 Appendix - Cercal system model input neuron circuit implementation

Vdd Vdd

tanh(Vc-V)

�mod
�mod

Ispike
R C

Vout

Vin

Vc

v iin

N hairs

(a)

Figure 6.24: Circuit implementation of an input neuron. In order to integrate numerous events into a single
continuous voltage, a chain of OR gates can be used to drive a single current mirror that injects the current
pulse, iin on the parallel resistor-capacitor circuit. An OPAMP connected as a voltage follower can then
buffer this voltage into a hyperbolic tangent function circuit whose output can be used as an input feature.
This voltage contains information on the recent spiking activity from a population of event-based sensors.

197

6.10 Appendix - Robustness of TAG model to random parameter permu-
tations

Neuromorphic implementations of neural network models also necessitate that the models take into ac-
count technological constraints such that they can be implemented in an efficient manner on a silicon
substrate. This is at odds with deep learning whereby graphic processing units are typically employed but
without a great deal of consideration of the underlying hardware. In contrast to the von Neumann archi-
tecture of GPUs which separate processing and memory centres on the chip, neuromorphic computing
models are increasingly turning to resistive memory. The pre-synaptic weights to a neuron are defined
using a row or RRAM as shown in Fig.6.25a. However, resistive memory devices are intrinsically random
and, as such, it is extremely challenging to program a device conductance state with high-precision [129].
Therefore, when programming RRAM, a closed-loop program and verify scheme is typically employed. In
such schemes, a device is iteratively programmed and read until the resulting conductance value obtained
after programming falls within a tolerated error margin [264, 307].

(a)

Figure 6.25: Scheme indicating how a row of three resistive memory devices realise three synaptic con-
nections between input activations V and a post-synaptic neuron. By applying these activations over the
columns of the row of resistive memory the current that flows out of the rows will be equal to the dot
product V · g, where g is the conductance vector of the row. In the inset of device an arrow indicates
the closed-loop programming routine that is used in order to program the device conductance state, g[2],
whereby the memory is iteratively programmed until its conductance falls within a pre-determined range
of error.

Therefore it is instructive to understand the robustness of the TAG model to random fluctuations to the
synaptic parameters that correspond to different sizes of tolerated error margins. We do this by means of
re-sampling each parameter from a normal distribution, centred on the optimised value, over a range of
distribution standard deviations. The ROC curves resulting from this sweep are plotted in Fig. 6.26a. The
ROC curves are observed to be minimally degraded up to a standard deviation of 10% and, thereafter,

198

somewhat collapse.

(a)

Figure 6.26: he receiver operating characteristics (ROC) curves resulting from the model where the pa-
rameter values have been re-sampled from a normal distribution centred on the optimal value over a range
of percentage standard deviations.

Like resistive memory devices, the neural components of biological systems are also observed to
be very noisy and random. In order to cope with this, nervous systems have been widely understood
to employ signal averaging strategies, for example sending multiple synaptic connections between pairs
of neurons and averaging out the error [399]. This averaging strategy can be easily mimicked in the
neuromorphic model by simply adding more rows of resistive memory per post-synaptic neuron and then
dividing the current that flows out of the row by the number of rows used, using for example a simple
current divider circuit [400] (depicted in Fig 6.27a).

199

(a)

Figure 6.27: A scheme for performing row averaging, whereby multiple rows of resistive memory are used
together. The current corresponding to the dot-product between the input voltage vector and each of the
conductance vectors sums at the common output node. This summed current is then divided by N to
compute the average, where N is equal to the number of rows being averaged over.

In Fig. 6.28a, we evaluate ROC curves over the same range of normal distribution standard deviations
but this time employing the proposed averaging technique over sixteen rows per post-synaptic neuron. In
this case, the ROC curves appear not to be degraded even up to 30% standard deviation demonstrating
the effectiveness of this strategy - albeit increasing the memory requirements as a linear function of the
number of rows used for averaging. The trade-off between the number of rows averaged over and the stan-
dard deviation of the normal distribution that re-samples the optimal parameter values are summarised in
the plot of Fig. 6.28b.

200

(a) (b)

Figure 6.28: (a) The receiver operating characteristics (ROC) curves resulting from the model where the
parameter values have been re-sampled from a normal distribution centred on the optimal value over a
range of percentage standard deviations but averaging over N = 16 rows. (b) The tolerated false positive
rate as a function of the standard deviation of the normal distributions that are used to re-sample the
parameter values. Each point has been averaged over 10 re-sampling iterations.

201

6.11 Appendix - Measurements of fabricated CMOS neuron circuits

(a) (b)

Figure 6.29: Experimental measurements of fabricated CMOS neuron circuits using two different
sets of bias conditions. (a) A neuron integrates rectangular current pulses and eventually spikes. After
it spikes it enters a refractory period during which incoming current pulses are no longer integrated. Note
that when the membrane voltage approaches the spiking threshold the output almost switches twice. This
is an issue present in this circuit since it does not incorporate a positive feedback connection onto the
membrane capacitor which helps the device switch as it approaches the threshold. In addition it can be
seen that the resting potential of the membrane is not zero but some tens of micro volts. (b) The same
circuit as in part (a) but with a different bias configuration. Namely, the bias current governing the input
time constant has been reduced resulting a greater input time constant and therefore more output spikes.

202

Bibliography

[1] Deep Learning Market Size Worth 10.2 Billion By 2025. https :
//www.grandviewresearch.com/press− release/global − deep− learning −market, 2017.

[2] Edge AI Chipsets: Technology Outlook and Use Cases. Technical report, 09 2019.

[3] Emma Strubell, Ananya Ganesh, and Andrew Mccallum. Energy and policy considerations for deep
learning in nlp. In In the 57th Annual Meeting of the Association for Computational Linguistics (ACL).
Florence, Italy. July 2019, 06 2019.

[4] Roy Schwartz, Jesse Dodge, Noah A Smith, and Oren Etzioni. Green ai. arXiv preprint
arXiv:1907.10597, 2019.

[5] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu, Anoop Korattikara, Alireza Fathi, Ian
Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, et al. Speed/accuracy trade-offs for
modern convolutional object detectors. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7310–7311, 2017.

[6] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. Ex-
plaining explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th Inter-
national Conference on data science and advanced analytics (DSAA), pages 80–89. IEEE, 2018.

[7] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature,
521(7553):452–459, 2015.

[8] Edmon Begoli, Tanmoy Bhattacharya, and Dimitri Kusnezov. The need for uncertainty quantification
in machine-assisted medical decision making. Nature Machine Intelligence, 1(1):20–23, 2019.

[9] John McCarthy, Marvin L Minsky, Nathaniel Rochester, and Claude E Shannon. A proposal for
the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine,
27(4):12–12, 2006.

[10] Ylva Fernaeus, Martin Jonsson, and Jakob Tholander. Revisiting the jacquard loom: threads of
history and current patterns in hci. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pages 1593–1602, 2012.

[11] John Michael Dubbey and John Michael Dubbey. The mathematical work of Charles Babbage.
Cambridge University Press, 2004.

[12] George Boole. An investigation of the laws of thought: on which are founded the mathematical
theories of logic and probabilities. Dover Publications, 1854.

[13] Alan Mathison Turing. On computable numbers, with an application to the entscheidungsproblem.
J. of Math, 58(345-363):5, 1936.

203

[14] John Von Neumann. First draft of a report on the edvac. IEEE Annals of the History of Computing,
15(4):27–75, 1993.

[15] Adrien-Marie Legendre and DE Smith. On the method of least squares. A Source Book in Mathe-
mathics, Ed. DE Smith (originally published in 1805), pages 576–579, 1959.

[16] Claude Lemaréchal. Cauchy and the gradient method. Doc Math Extra, 251:254, 2012.

[17] Thomas Bayes. Lii. an essay towards solving a problem in the doctrine of chances. by the late
rev. mr. bayes, frs communicated by mr. price, in a letter to john canton, amfr s. Philosophical
transactions of the Royal Society of London, (53):370–418, 1763.

[18] Pierre Simon Laplace. Théorie analytique des probabilités. Courcier, 1820.

[19] Andrey Andreyevich Markov. Extension of the limit theorems of probability theory to a sum of
variables connected in a chain. Dynamic probabilistic systems, 1:552–577, 1971.

[20] Nicholas Metropolis and Stanislaw Ulam. The monte carlo method. Journal of the American statis-
tical association, 44(247):335–341, 1949.

[21] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
Teller. Equation of state calculations by fast computing machines. The journal of chemical physics,
21(6):1087–1092, 1953.

[22] W Keith Hastings. Monte carlo sampling methods using markov chains and their applications. 1970.

[23] Edward I George, UE Makov, and AFM Smith. Conjugate likelihood distributions. Scandinavian
Journal of Statistics, pages 147–156, 1993.

[24] Barry A Cipra. The best of the 20th century: Editors name top 10 algorithms. SIAM news, 33(4):1–2,
2000.

[25] John Zachary Young. The functioning of the giant nerve fibres of the squid. Journal of Experimental
Biology, 15(2):170–185, 1938.

[26] Norbert Wiener. Cybernetics or control and communication in the animal and the machine. Tech-
nology Press, 1948.

[27] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity.
The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[28] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its
application to conduction and excitation in nerve. The Journal of physiology, 117(4):500–544, 1952.

[29] Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology
Press, 2005.

[30] Bernhard Hassenstein and Werner Reichardt. Systemtheoretische analyse der zeit-, reihenfolgen-
und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Zeitschrift
für Naturforschung B, 11(9-10):513–524, 1956.

[31] David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional archi-
tecture in the cat’s visual cortex. The Journal of physiology, 160(1):106–154, 1962.

[32] David P Watson and David H Scheidt. Autonomous systems. Johns Hopkins APL technical digest,
26(4):368–376, 2005.

204

[33] Yutaka Naitoh and Roger Eckert. Ionic mechanisms controlling behavioral responses of parame-
cium to mechanical stimulation. Science, 164(3882):963–965, 1969.

[34] Siming Li, Christopher M Armstrong, Nicolas Bertin, Hui Ge, Stuart Milstein, Mike Boxem, Pierre-
Olivier Vidalain, Jing-Dong J Han, Alban Chesneau, Tong Hao, et al. A map of the interactome
network of the metazoan c. elegans. Science, 303(5657):540–543, 2004.

[35] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to computational geometry.
MIT press, 2017.

[36] Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. Technical report, Stanford Univ
Ca Stanford Electronics Labs, 1960.

[37] Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical Mathemat-
ics, 16(2):146–160, 1976.

[38] John Henry Holland et al. Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence. MIT press, 1992.

[39] Claude E Shannon. Xxii. programming a computer for playing chess. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 41(314):256–275, 1950.

[40] Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
research and development, 3(3):210–229, 1959.

[41] James R Slagle. A heuristic program that solves symbolic integration problems in freshman calculus.
Journal of the ACM (JACM), 10(4):507–520, 1963.

[42] Gerald J Sussman. A computational model of skill acquisition. 1973.

[43] M Ross Quillan. Semantic memory. Technical report, BOLT BERANEK AND NEWMAN INC CAM-
BRIDGE MA, 1966.

[44] Patrick H Winston. Learning structural descriptions from examples. 1970.

[45] Adolfo Guzmán. Decomposition of a visual scene into three-dimensional bodies. In Proceedings of
the December 9-11, 1968, fall joint computer conference, part I, pages 291–304, 1968.

[46] David Waltz. Understanding line drawings of scenes with shadows. In The psychology of computer
vision. Citeseer, 1975.

[47] Donald Waterman. A guide to expert systems. 1986.

[48] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on infor-
mation theory, 13(1):21–27, 1967.

[49] Donald Michie. Experiments on the mechanization of game-learning part i. characterization of the
model and its parameters. The Computer Journal, 6(3):232–236, 1963.

[50] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202, 1980.

[51] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

[52] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

205

[53] Paul J Werbos. Backpropagation through time: what it does and how to do it. Proceedings of the
IEEE, 78(10):1550–1560, 1990.

[54] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[55] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

[56] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[57] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[58] Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play.
Neural computation, 6(2):215–219, 1994.

[59] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intelligence,
134(1-2):57–83, 2002.

[60] John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

[61] John J Hopfield. Neurons with graded response have collective computational properties like those
of two-state neurons. Proceedings of the national academy of sciences, 81(10):3088–3092, 1984.

[62] Wolfgang Maass and Thomas Natschläger. Networks of spiking neurons can emulate arbitrary
hopfield nets in temporal coding. Network: Computation in Neural Systems, 8(4):355–371, 1997.

[63] Carver Mead. Neuromorphic electronic systems. Proceedings of the IEEE, 78(10):1629–1636,
1990.

[64] Teuvo Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480, 1990.

[65] Vladimir Vapnik and AJ Lerner. Generalized portrait method for pattern recognition. Automation
and Remote Control, 24(6):774–780, 1963.

[66] Mark A Aizerman. Theoretical foundations of the potential function method in pattern recognition
learning. Automation and remote control, 25:821–837, 1964.

[67] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

[68] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of on-line learning and an
application to boosting. In European conference on computational learning theory, pages 23–37.
Springer, 1995.

[69] Tin Kam Ho. Random decision forests. In Proceedings of 3rd international conference on document
analysis and recognition, volume 1, pages 278–282. IEEE, 1995.

[70] NVIDIA Launches the World’s First Graphics Processing Unit: GeForce 256. https :
//www.nvidia.com/object/IO200201115424.html, 1999.

[71] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015.

206

[72] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

[73] Mnih Volodymyr, Kavukcuoglu Koray, Silver David, Graves Alex, Antonoglou Ioannis, W Daan, and
R Martin. Playing atari with deep reinforcement learning. In NIPS Deep Learning Workshop, 2013.

[74] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the
game of go with deep neural networks and tree search. nature, 529(7587):484, 2016.

[75] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

[76] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[77] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[78] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information
processing systems, pages 2672–2680, 2014.

[79] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Rob Fergus. Deconvolutional networks.
In 2010 IEEE Computer Society Conference on computer vision and pattern recognition, pages
2528–2535. IEEE, 2010.

[80] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[81] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt
Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size.
arXiv preprint arXiv:1602.07360, 2016.

[82] Herbert Jaeger. The “echo state” approach to analysing and training recurrent neural networks-with
an erratum note. Bonn, Germany: German National Research Center for Information Technology
GMD Technical Report, 148(34):13, 2001.

[83] Wolfgang Maass, Thomas Natschläger, and Henry Markram. Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural computation,
14(11):2531–2560, 2002.

[84] Ethan Farquhar, Christal Gordon, and Paul Hasler. A field programmable neural array. In 2006 IEEE
International Symposium on Circuits and Systems, pages 4–pp. IEEE, 2006.

[85] Ben Varkey Benjamin, Peiran Gao, Emmett McQuinn, Swadesh Choudhary, Anand R Chan-
drasekaran, Jean-Marie Bussat, Rodrigo Alvarez-Icaza, John V Arthur, Paul A Merolla, and
Kwabena Boahen. Neurogrid: A mixed-analog-digital multichip system for large-scale neural simu-
lations. Proceedings of the IEEE, 102(5):699–716, 2014.

207

[86] Ning Qiao, Hesham Mostafa, Federico Corradi, Marc Osswald, Fabio Stefanini, Dora Sumislawska,
and Giacomo Indiveri. A reconfigurable on-line learning spiking neuromorphic processor comprising
256 neurons and 128k synapses. Frontiers in neuroscience, 9:141, 2015.

[87] Filipp Akopyan, Jun Sawada, Andrew Cassidy, Rodrigo Alvarez-Icaza, John Arthur, Paul Merolla,
Nabil Imam, Yutaka Nakamura, Pallab Datta, Gi-Joon Nam, et al. Truenorth: Design and tool flow of
a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE transactions on computer-aided
design of integrated circuits and systems, 34(10):1537–1557, 2015.

[88] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. IEEE Micro, 38(1):82–99, 2018.

[89] Jeffrey R Yost. The IBM century: Creating the IT revolution. IEEE Computer Society Press, 2011.

[90] James R Goodman. Using cache memory to reduce processor-memory traffic. In Proceedings of
the 10th annual international symposium on Computer architecture, pages 124–131, 1983.

[91] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous multithreading: Maximizing
on-chip parallelism. In Proceedings of the 22nd annual international symposium on Computer ar-
chitecture, pages 392–403, 1995.

[92] John Backus. Can programming be liberated from the von neumann style? a functional style and
its algebra of programs. Communications of the ACM, 21(8):613–641, 1978.

[93] John McCarthy. Recursive functions of symbolic expressions and their computation by machine,
part i. Communications of the ACM, 3(4):184–195, 1960.

[94] Richard D Greenblatt, Thomas F Knight, John T Holloway, and David A Moon. A lisp machine.
In Proceedings of the fifth workshop on Computer architecture for non-numeric processing, pages
137–138, 1980.

[95] Peter Alfke, Ivo Bolsens, Bill Carter, Mike Santarini, and Steve Trimberger. It’s an fpga! IEEE
Solid-State Circuits Magazine, 3(4):15–20, 2011.

[96] Amos R Omondi and Jagath Chandana Rajapakse. FPGA implementations of neural networks,
volume 365. Springer, 2006.

[97] Lukas Cavigelli, David Gschwend, Christoph Mayer, Samuel Willi, Beat Muheim, and Luca Benini.
Origami: A convolutional network accelerator. In Proceedings of the 25th edition on Great Lakes
Symposium on VLSI, pages 199–204, 2015.

[98] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics. IEEE Transactions on
computer-aided design of integrated circuits and systems, 26(2):203–215, 2007.

[99] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. Nvidia tesla: A unified graphics
and computing architecture. IEEE micro, 28(2):39–55, 2008.

[100] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter performance analysis of
a tensor processing unit. In Proceedings of the 44th Annual International Symposium on Computer
Architecture, pages 1–12, 2017.

[101] Song Huang, Shucai Xiao, and Wu-chun Feng. On the energy efficiency of graphics processing
units for scientific computing. In 2009 IEEE International Symposium on Parallel & Distributed
Processing, pages 1–8. IEEE, 2009.

208

[102] Misha Mahowald and Rodney Douglas. A silicon neuron. Nature, 354(6354):515–518, 1991.

[103] Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton, André Van Schaik, Ralph
Etienne-Cummings, Tobi Delbruck, Shih-Chii Liu, Piotr Dudek, Philipp Häfliger, Sylvie Renaud, et al.
Neuromorphic silicon neuron circuits. Frontiers in neuroscience, 5:73, 2011.

[104] Chiara Bartolozzi and Giacomo Indiveri. Synaptic dynamics in analog vlsi. Neural computation,
19(10):2581–2603, 2007.

[105] Kostas Pagiamtzis and Ali Sheikholeslami. Content-addressable memory (cam) circuits and archi-
tectures: A tutorial and survey. IEEE journal of solid-state circuits, 41(3):712–727, 2006.

[106] Carlos Zamarreño-Ramos, Alejandro Linares-Barranco, Teresa Serrano-Gotarredona, and Bernabé
Linares-Barranco. Multicasting mesh aer: A scalable assembly approach for reconfigurable neuro-
morphic structured aer systems. application to convnets. IEEE transactions on biomedical circuits
and systems, 7(1):82–102, 2012.

[107] A-J Annema. Analog circuit performance and process scaling. IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, 46(6):711–725, 1999.

[108] Ning Qiao and Giacomo Indiveri. Scaling mixed-signal neuromorphic processors to 28 nm fd-soi
technologies. In 2016 IEEE Biomedical Circuits and Systems Conference (BioCAS), pages 552–
555. IEEE, 2016.

[109] Henry Markram, Wulfram Gerstner, and Per Jesper Sjöström. Spike-timing-dependent plasticity: a
comprehensive overview. Frontiers in synaptic neuroscience, 4:2, 2012.

[110] Diasynou Fioravante and Wade G Regehr. Short-term forms of presynaptic plasticity. Current
opinion in neurobiology, 21(2):269–274, 2011.

[111] Jan Benda and Andreas VM Herz. A universal model for spike-frequency adaptation. Neural com-
putation, 15(11):2523–2564, 2003.

[112] Saber Moradi and Rajit Manohar. The impact of on-chip communication on memory technologies
for neuromorphic systems. Journal of Physics D: Applied Physics, 52(1):014003, 2018.

[113] Gustav Tauschek. Reading machine. US Pat, 2026329, 1935.

[114] Isaac L Auerbach, John Presper Eckert, Robert F Shaw, and C Bradford Sheppard. Mercury delay
line memory using a pulse rate of several megacycles. Proceedings of the IRE, 37(8):855–861,
1949.

[115] Arnold S Farber and Eugene S Schlig. Nondestructive memory array, November 21 1967. US
Patent 3,354,440.

[116] Robert H Dennard. Field-effect transistor memory, June 4 1968. US Patent 3,387,286.

[117] Fujio Masuoka, Masamichi Asano, Hiroshi Iwahashi, Teisuke Komuro, and Shinichi Tanaka. A
new flash e 2 prom cell using triple polysilicon technology. In 1984 International Electron Devices
Meeting, pages 464–467. IEEE, 1984.

[118] Fujio Masuoka, Masaki Momodomi, Yoshihisa Iwata, and Riichiro Shirota. New ultra high density
eprom and flash eeprom with nand structure cell. In 1987 International Electron Devices Meeting,
pages 552–555. IEEE, 1987.

209

[119] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer. Reproducible switching effect in thin
oxide films for memory applications. Applied Physics Letters, 77(1):139–141, 2000.

[120] Qi Liu, Jun Sun, Hangbing Lv, Shibing Long, Kuibo Yin, Neng Wan, Yingtao Li, Litao Sun, and
Ming Liu. Resistive switching: Real-time observation on dynamic growth/dissolution of conductive
filaments in oxide-electrolyte-based reram (adv. mater. 14/2012). Advanced Materials, 24(14):1774–
1774, 2012.

[121] H. . P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M. Asheghi, and K. E.
Goodson. Phase change memory. Proceedings of the IEEE, 98(12):2201–2227, Dec 2010.

[122] Claude Chappert, Albert Fert, and Frédéric Dau. The emergence of spin electronics in data storage.
Nature materials, 6:813–23, 12 2007.

[123] Thomas Mikolajick, Christine Dehm, Walter Hartner, Ivan Kasko, MJ Kastner, Nicolas Nagel, Man-
fred Moert, and Carlos Mazure. Feram technology for high density applications. Microelectronics
Reliability, 41(7):947–950, 2001.

[124] Leon Chua. Memristor-the missing circuit element. IEEE Transactions on circuit theory, 18(5):507–
519, 1971.

[125] Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams. The missing
memristor found. nature, 453(7191):80–83, 2008.

[126] Sascha Vongehr and Xiangkang Meng. The missing memristor has not been found. Scientific
reports, 5:11657, 2015.

[127] IG Baek, MS Lee, S Seo, MJ Lee, DH Seo, D-S Suh, JC Park, SO Park, HS Kim, IK Yoo, et al.
Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipo-
lar voltage pulses. In IEDM Technical Digest. IEEE International Electron Devices Meeting, 2004.,
pages 587–590. IEEE, 2004.

[128] Michael Kund, Gerhard Beitel, C-U Pinnow, Thomas Rohr, Jorg Schumann, Ralf Symanczyk,
K Ufert, and Gerhard Muller. Conductive bridging ram (cbram): An emerging non-volatile mem-
ory technology scalable to sub 20nm. In IEEE InternationalElectron Devices Meeting, 2005. IEDM
Technical Digest., pages 754–757. IEEE, 2005.

[129] Stefano Ambrogio, Simone Balatti, Antonio Cubeta, Alessandro Calderoni, Nirmal Ramaswamy,
and Daniele Ielmini. Statistical fluctuations in hfo x resistive-switching memory: part i-set/reset
variability. IEEE Transactions on electron devices, 61(8):2912–2919, 2014.

[130] Yong Chen, Gun-Young Jung, Douglas AA Ohlberg, Xuema Li, Duncan R Stewart, Jan O Jeppesen,
Kent A Nielsen, J Fraser Stoddart, and R Stanley Williams. Nanoscale molecular-switch crossbar
circuits. Nanotechnology, 14(4):462, 2003.

[131] Indranil Chakraborty, Mustafa Ali, Aayush Ankit, Shubham Jain, Sourjya Roy, Shrihari Sridharan,
Amogh Agrawal, Anand Raghunathan, and Kaushik Roy. Resistive crossbars as approximate hard-
ware building blocks for machine learning: Opportunities and challenges. Proceedings of the IEEE,
2020.

[132] Leibin Ni, Yuhao Wang, Hao Yu, Wei Yang, Chuliang Weng, and Junfeng Zhao. An energy-efficient
matrix multiplication accelerator by distributed in-memory computing on binary rram crossbar. In
2016 21st Asia and South Pacific Design Automation Conference (ASP-DAC), pages 280–285.
IEEE, 2016.

210

[133] Alexandre Levisse, B Giraud, JP Noel, M Moreau, JM Portal, et al. Architecture, design and technol-
ogy guidelines for crosspoint memories. In 2017 IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), pages 55–60. IEEE, 2017.

[134] Xiaoyu Sun, Xiaochen Peng, Pai-Yu Chen, Rui Liu, Jae-sun Seo, and Shimeng Yu. Fully parallel
rram synaptic array for implementing binary neural network with (+ 1,- 1) weights and (+ 1, 0)
neurons. In 2018 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), pages
574–579. IEEE, 2018.

[135] Alessandro Grossi, Elisa Vianello, Cristian Zambelli, Pablo Royer, Jean-Philippe Noel, Bastien Gi-
raud, Luca Perniola, Piero Olivo, and Etienne Nowak. Experimental investigation of 4-kb rram ar-
rays programming conditions suitable for tcam. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 26(12):2599–2607, 2018.

[136] BE Boser and Eduard Sackinger. An analog neural network processor with programmable network
topology. In 1991 IEEE International Solid-State Circuits Conference. Digest of Technical Papers,
pages 184–314. IEEE, 1991.

[137] Hiroshi Ishiwara. Proposal of adaptive-learning neuron circuits with ferroelectric analog-memory
weights. Japanese journal of applied physics, 32(1S):442, 1993.

[138] Osamu Fujita and Yoshihito Amemiya. A floating-gate analog memory device for neural networks.
IEEE transactions on electron devices, 40(11):2029–2035, 1993.

[139] Hyejung Choi, Heesoo Jung, Joonmyoung Lee, Jaesik Yoon, Jubong Park, Dong-jun Seong,
Wootae Lee, Musarrat Hasan, Gun-Young Jung, and Hyunsang Hwang. An electrically modifiable
synapse array of resistive switching memory. Nanotechnology, 20(34):345201, 2009.

[140] Alex Pappachen James and Sima Dimitrijev. Cognitive memory network. Electronics Letters,
46(10):677–678, 2010.

[141] Sven Möller, Craig Perlov, Warren Jackson, Carl Taussig, and Stephen R Forrest. A poly-
mer/semiconductor write-once read-many-times memory. Nature, 426(6963):166–169, 2003.

[142] Tae-Wook Kim, Hyejung Choi, Seung-Hwan Oh, Gunuk Wang, Dong-Yu Kim, Hyunsang Hwang,
and Takhee Lee. One transistor–one resistor devices for polymer non-volatile memory applications.
Advanced Materials, 21(24):2497–2500, 2009.

[143] G Navarro, A Verdy, N Castellani, G Bourgeois, V Sousa, G Molas, M Bernard, C Sabbione, P Noé,
J Garrione, et al. Innovative pcm+ ots device with high sub-threshold non-linearity for non-switching
reading operations and higher endurance performance. In 2017 Symposium on VLSI Technology,
pages T94–T95. IEEE, 2017.

[144] Fabien Alibart, Elham Zamanidoost, and Dmitri B Strukov. Pattern classification by memristive
crossbar circuits using ex situ and in situ training. Nature communications, 4(1):1–7, 2013.

[145] Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert M Shelby, Irem Boybat, Carmelo di Nolfo,
Severin Sidler, Massimo Giordano, Martina Bodini, Nathan CP Farinha, et al. Equivalent-accuracy
accelerated neural-network training using analogue memory. Nature, 558(7708):60–67, 2018.

[146] Can Li, Daniel Belkin, Yunning Li, Peng Yan, Miao Hu, Ning Ge, Hao Jiang, Eric Montgomery, Peng
Lin, Zhongrui Wang, et al. Efficient and self-adaptive in-situ learning in multilayer memristor neural
networks. Nature communications, 9(1):1–8, 2018.

211

[147] Can Li, Zhongrui Wang, Mingyi Rao, Daniel Belkin, Wenhao Song, Hao Jiang, Peng Yan, Yunning Li,
Peng Lin, Miao Hu, et al. Long short-term memory networks in memristor crossbar arrays. Nature
Machine Intelligence, 1(1):49–57, 2019.

[148] Zhongrui Wang, Can Li, Peng Lin, Mingyi Rao, Yongyang Nie, Wenhao Song, Qinru Qiu, Yunning
Li, Peng Yan, John Paul Strachan, et al. In situ training of feed-forward and recurrent convolutional
memristor networks. Nature Machine Intelligence, 1(9):434–442, 2019.

[149] Greg S Snider. Spike-timing-dependent learning in memristive nanodevices. In 2008 IEEE interna-
tional symposium on nanoscale architectures, pages 85–92. Ieee, 2008.

[150] Damien Querlioz, Olivier Bichler, and Christian Gamrat. Simulation of a memristor-based spiking
neural network immune to device variations. In The 2011 International Joint Conference on Neural
Networks, pages 1775–1781. IEEE, 2011.

[151] Mirko Prezioso, Farnood Merrikh-Bayat, BD Hoskins, Gina C Adam, Konstantin K Likharev, and
Dmitri B Strukov. Training and operation of an integrated neuromorphic network based on metal-
oxide memristors. Nature, 521(7550):61–64, 2015.

[152] Stanisław Woźniak, Angeliki Pantazi, Thomas Bohnstingl, and Evangelos Eleftheriou. Deep learn-
ing incorporating biologically inspired neural dynamics and in-memory computing. Nature Machine
Intelligence, 2(6):325–336, 2020.

[153] Miao Hu, Catherine E Graves, Can Li, Yunning Li, Ning Ge, Eric Montgomery, Noraica Davila, Hao
Jiang, R Stanley Williams, J Joshua Yang, et al. Memristor-based analog computation and neural
network classification with a dot product engine. Advanced Materials, 30(9):1705914, 2018.

[154] Shahar Kvatinsky, Dmitry Belousov, Slavik Liman, Guy Satat, Nimrod Wald, Eby G Friedman, Avi-
noam Kolodny, and Uri C Weiser. Magic—memristor-aided logic. IEEE Transactions on Circuits and
Systems II: Express Briefs, 61(11):895–899, 2014.

[155] An Chen. Utilizing the variability of resistive random access memory to implement reconfigurable
physical unclonable functions. IEEE Electron Device Letters, 36(2):138–140, 2014.

[156] Fuxi Cai, Suhas Kumar, Thomas Van Vaerenbergh, Xia Sheng, Rui Liu, Can Li, Zhan Liu, Martin
Foltin, Shimeng Yu, Qiangfei Xia, et al. Power-efficient combinatorial optimization using intrinsic
noise in memristor hopfield neural networks. Nature Electronics, 3(7):409–418, 2020.

[157] Mark W Johnson, Mohammad HS Amin, Suzanne Gildert, Trevor Lanting, Firas Hamze, Neil Dick-
son, Richard Harris, Andrew J Berkley, Jan Johansson, Paul Bunyk, et al. Quantum annealing with
manufactured spins. Nature, 473(7346):194–198, 2011.

[158] Joseph S Friedman, Laurie E Calvet, Pierre Bessière, Jacques Droulez, and Damien Querlioz.
Bayesian inference with muller c-elements. IEEE Transactions on Circuits and Systems I: Regular
Papers, 63(6):895–904, 2016.

[159] Damir Vodenicarevic, Nicolas Locatelli, Alice Mizrahi, Joseph S Friedman, Adrien F Vincent, Miguel
Romera, Akio Fukushima, Kay Yakushiji, Hitoshi Kubota, Shinji Yuasa, et al. Low-energy truly
random number generation with superparamagnetic tunnel junctions for unconventional computing.
Physical Review Applied, 8(5):054045, 2017.

[160] Rafatul Faria, Kerem Y Camsari, and Supriyo Datta. Implementing bayesian networks with embed-
ded stochastic mram. AIP Advances, 8(4):045101, 2018.

212

[161] Stuart SP Parkin, Masamitsu Hayashi, and Luc Thomas. Magnetic domain-wall racetrack memory.
Science, 320(5873):190–194, 2008.

[162] M Radosavljević, M Freitag, KV Thadani, and AT Johnson. Nonvolatile molecular memory elements
based on ambipolar nanotube field effect transistors. Nano Letters, 2(7):761–764, 2002.

[163] Tsutomu Tezuka and Atsushi Kurobe. Quantum dot memory cell, July 13 1999. US Patent
5,923,046.

[164] Brian Julsgaard, Jacob Sherson, J Ignacio Cirac, Jaromı́r Fiurášek, and Eugene S Polzik. Experi-
mental demonstration of quantum memory for light. Nature, 432(7016):482–486, 2004.

[165] Open data, reséaux énergies. https : //opendata.reseaux− energies.frl, 2020.

[166] Lambda. Openai’s gpt-3 language model: A technical overview, 2020.

[167] Brian Hayes. Cloud computing, 2008.

[168] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, and Fahim Kawsar. An
early resource characterization of deep learning on wearables, smartphones and internet-of-things
devices. In Proceedings of the 2015 international workshop on internet of things towards applica-
tions, pages 7–12, 2015.

[169] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges. IEEE Internet
of Things Journal, 3(5):637–646, Oct 2016.

[170] Xiaowei Xu, Yukun Ding, Sharon Hu, Michael Niemier, Jason Cong, Yu Hu, and Yiyu Shi. Scaling
for edge inference of deep neural networks. Nature Electronics, 1, 04 2018.

[171] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. Edge intelligence: Paving the
last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8):1738–1762,
2019.

[172] Barry J Maron, Win-Kuang Shen, Mark S Link, Andrew E Epstein, Adrian K Almquist, James P
Daubert, Gust H Bardy, Stefano Favale, Robert F Rea, Giuseppe Boriani, et al. Efficacy of im-
plantable cardioverter–defibrillators for the prevention of sudden death in patients with hypertrophic
cardiomyopathy. New England Journal of Medicine, 342(6):365–373, 2000.

[173] Yarin Gal. Uncertainty in deep learning. University of Cambridge, 1(3), 2016.

[174] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for computer
vision? In Advances in neural information processing systems, pages 5574–5584, 2017.

[175] Radford M Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business
Media, 2012.

[176] M Mirowski. The automatic implantable cardioverter-defibrillator: an overview. Journal of the Amer-
ican College of Cardiology, 6(2):461–466, 1985.

[177] Stuart J Connolly, AP Hallstrom, Riccardo Cappato, Eleanor B Schron, K-H Kuck, Douglas P Zipes,
H Leon Greene, S Boczor, M Domanski, D Follmann, et al. Meta-analysis of the implantable car-
dioverter defibrillator secondary prevention trials. European heart journal, 21(24):2071–2078, 2000.

[178] James P Daubert, Wojciech Zareba, David S Cannom, Scott McNitt, Spencer Z Rosero, Paul Wang,
Claudio Schuger, Jonathan S Steinberg, Steven L Higgins, David J Wilber, et al. Inappropriate
implantable cardioverter-defibrillator shocks in madit ii: frequency, mechanisms, predictors, and
survival impact. Journal of the American College of Cardiology, 51(14):1357–1365, 2008.

213

[179] Kara E Yopak, Thomas J Lisney, and Shaun P Collin. Not all sharks are “swimming noses”: variation
in olfactory bulb size in cartilaginous fishes. Brain Structure and Function, 220(2):1127–1143, 2015.

[180] Fabienne Dupuy, Thomas Steinmann, Dominique Pierre, Jean-Philippe Christidès, Graham Cum-
mins, Claudio Lazzari, John Miller, and Jérôme Casas. Responses of cricket cercal interneurons to
realistic naturalistic stimuli in the field. Journal of Experimental Biology, 215(14):2382–2389, 2012.

[181] Melis Yilmaz and Markus Meister. Rapid innate defensive responses of mice to looming visual
stimuli. Current Biology, 23(20):2011–2015, 2013.

[182] Nathan C. Klapoetke, Aljoscha Nern, Martin Y. Peek, Edward M. Rogers, Patrick Breads, Gerald M.
Rubin, Michael B. Reiser, and Gwyneth M. Card. Ultra-selective looming detection from radial
motion opponency. Nature, 551:237, Nov 2017.

[183] Hiroto Ogawa and John P. Miller. Cercal System, pages 1–6. Springer New York, New York, NY,
2019.

[184] Jan M Ache, Jason Polsky, Shada Alghailani, Ruchi Parekh, Patrick Breads, Martin Y Peek, Davi D
Bock, Catherine R von Reyn, and Gwyneth M Card. Neural basis for looming size and velocity
encoding in the drosophila giant fiber escape pathway. Current Biology, 29(6):1073–1081, 2019.

[185] Niko Tinbergen. The study of instinct. 1951.

[186] Jesse N Weber and Hopi E Hoekstra. The evolution of burrowing behaviour in deer mice (genus
peromyscus). Animal Behaviour, 77(3):603–609, 2009.

[187] Yi Wei, Dmitry Tsigankov, and Alexei Koulakov. The molecular basis for the development of neural
maps. Annals of the New York Academy of Sciences, 1305(1):44–60, 2013.

[188] Alexander Borst and Moritz Helmstaedter. Common circuit design in fly and mammalian motion
vision. Nature neuroscience, 18(8):1067, 2015.

[189] Anthony M Zador. A critique of pure learning and what artificial neural networks can learn from
animal brains. Nature communications, 10(1):1–7, 2019.

[190] Marvin Minsky and Seymour A Papert. Perceptrons: An introduction to computational geometry.
MIT press, 1969.

[191] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The
loss surfaces of multilayer networks. In Artificial intelligence and statistics, pages 192–204, 2015.

[192] Thomas Dalgaty, Elisa Vianello, Denys Ly, Giacomo Indiveri, Barbara De Salvo, Etienne Nowak,
and Jerome Casas. Insect-inspired elementary motion detection embracing resistive memory and
spiking neural networks. In Conference on Biomimetic and Biohybrid Systems, pages 115–128.
Springer, 2018.

[193] Michael Schmuker, Thomas Pfeil, and Martin Paul Nawrot. A neuromorphic network for generic
multivariate data classification. Proceedings of the National Academy of Sciences, 111(6):2081–
2086, 2014.

[194] Fredrik Sandin and Mattias Nilsson. Synaptic delays for insect-inspired temporal feature detection
in dynamic neuromorphic processors. Frontiers in Neuroscience, 14:150, 2020.

[195] Randall D Beer, Hillel J Chiel, Roger D Quinn, Kenneth S Espenschied, and Patrik Larsson. A dis-
tributed neural network architecture for hexapod robot locomotion. Neural Computation, 4(3):356–
365, 1992.

214

[196] Donald Olding Hebb. The organization of behavior: a neuropsychological theory. J. Wiley; Chap-
man & Hall, 1949.

[197] Gwen A Jacobs, John P Miller, and Zane Aldworth. Computational mechanisms of mechanosensory
processing in the cricket. Journal of Experimental Biology, 211(11):1819–1828, 2008.

[198] Teresita C Insausti, Claudio R Lazzari, and Jérôme Casas. The terminal abdominal ganglion of the
wood cricket nemobius sylvestris. Journal of morphology, 269(12):1539–1551, 2008.

[199] TC Insausti, CR Lazzari, and Jérôme Casas. The morphology and fine structure of the giant in-
terneurons of the wood cricket nemobius sylvestris. Tissue and Cell, 43(1):52–65, 2011.

[200] Christelle Magal, Olivier Dangles, Philippe Caparroy, and Jérôme Casas. Hair canopy of cricket
sensory system tuned to predator signals. Journal of theoretical biology, 241(3):459–466, 2006.

[201] John Miller, Susan Krueger, Jeff Heys, and Tomáš Gedeon. Quantitative characterization of the
filiform mechanosensory hair array on the cricket cercus. PloS one, 6:e27873, 11 2011.

[202] Jeff Heys, Prathish Kumar Rajaraman, Tomáš Gedeon, and John Miller. A model of filiform hair
distribution on the cricket cercus. PloS one, 7:e46588, 10 2012.

[203] JP Bacon and RK Murphey. Receptive fields of cricket giant interneurones are related to their
dendritic structure. The Journal of physiology, 352(1):601–623, 1984.

[204] Gwen A Jacobs and Frederic E Theunissen. Functional organization of a neural map in the cricket
cercal sensory system. Journal of Neuroscience, 16(2):769–784, 1996.

[205] Sussan Paydar, Caitlin A Doan, and Gwen A Jacobs. Neural mapping of direction and frequency in
the cricket cercal sensory system. Journal of Neuroscience, 19(5):1771–1781, 1999.

[206] Gwen A Jacobs and Frederic E Theunissen. Extraction of sensory parameters from a neural map
by primary sensory interneurons. Journal of Neuroscience, 20(8):2934–2943, 2000.

[207] Gwen A Jacobs and RK Murphey. Segmental origins of the cricket giant interneuron system. Journal
of Comparative Neurology, 265(1):145–157, 1987.

[208] DeanaA Bodnar, JohnP Miller, and GwenA Jacobs. Anatomy and physiology of identified wind-
sensitive local interneurons in the cricket cercal sensory system. Journal of comparative physiology.
A, Sensory, neural, and behavioral physiology, 168(5):553–564, 1991.

[209] Y Baba, K Hirota, T Yamaguchi, and T Shimozawa. Differing afferent connections of spiking and
nonspiking wind-sensitive local interneurons in the terminal abdominal ganglion of the cricket gryllus
bimaculatus. Journal of Comparative Physiology A, 176(1):17–30, 1995.

[210] GA Jacobs, JP Miller, and RK Murphey. Integrative mechanisms controlling directional sensitivity of
an identified sensory interneuron. The Journal of Neuroscience, 6(8):2298–2311, 1986.

[211] T Shimozawa, T Kumagai, and Y Baba. Structural scaling and functional design of the cercal wind-
receptor hairs of cricket. Journal of Comparative Physiology A, 183(2):171–186, 1998.

[212] MA Landolfa and JP Miller. Stimulus-response properties of cricket cereal filiform receptors. Journal
of Comparative Physiology A, 177(6):749–757, 1995.

[213] MA Landolfa and GA Jacobs. Direction sensitivity of the filiform hair population of the cricket cereal
system. Journal of Comparative Physiology A, 177(6):759–766, 1995.

215

[214] Thomas Steinmann and Jérôme Casas. The morphological heterogeneity of cricket flow-sensing
hairs conveys the complex flow signature of predator attacks. Journal of The Royal Society Interface,
14(131):20170324, 2017.

[215] John P Miller, Gwen A Jacobs, and Frédéric E Theunissen. Representation of sensory information
in the cricket cercal sensory system. i. response properties of the primary interneurons. Journal of
Neurophysiology, 66(5):1680–1689, 1991.

[216] Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances
in neural information processing systems, pages 950–957, 1992.

[217] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31,
2012.

[218] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch.
2017.

[219] HC Bennet-Clark. The energetics of the jump of the locust schistocerca gregaria. Journal of Exper-
imental Biology, 63(1):53–83, 1975.

[220] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[221] Hirotogu Akaike. Information theory and an extension of the maximum likelihood principle. In
Selected papers of hirotugu akaike, pages 199–213. Springer, 1998.

[222] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2:598–605, 1989.

[223] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

[224] John Lazzaro, Sylvie Ryckebusch, Misha Anne Mahowald, and Caver A Mead. Winner-take-all
networks of o (n) complexity. In Advances in neural information processing systems, pages 703–
711, 1989.

[225] Wolfgang Maass. On the computational power of winner-take-all. Neural computation, 12(11):2519–
2535, 2000.

[226] Shin-ya Takemura, Arjun Bharioke, Zhiyuan Lu, Aljoscha Nern, Shiv Vitaladevuni, Patricia K.
Rivlin, William T. Katz, Donald J. Olbris, Stephen M. Plaza, Philip Winston, Ting Zhao, Jane Anne
Horne, Richard D. Fetter, Satoko Takemura, Katerina Blazek, Lei-Ann Chang, Omotara Ogundeyi,
Mathew A. Saunders, Victor Shapiro, Christopher Sigmund, Gerald M. Rubin, Louis K. Scheffer,
Ian A. Meinertzhagen, and Dmitri B. Chklovskii. A visual motion detection circuit suggested by
drosophila connectomics. Nature, 500:175, Aug 2013.

[227] Matthew S. Maisak, Juergen Haag, Georg Ammer, Etienne Serbe, Matthias Meier, Aljoscha Leon-
hardt, Tabea Schilling, Armin Bahl, Gerald M. Rubin, Aljoscha Nern, Barry J. Dickson, Dierk F. Reiff,
Elisabeth Hopp, and Alexander Borst. A directional tuning map of drosophila elementary motion
detectors. Nature, 500:212, Aug 2013.

[228] Juergen Haag, Alexander Arenz, Etienne Serbe, Fabrizio Gabbiani, and Alexander Borst. Comple-
mentary mechanisms create direction selectivity in the fly. eLife, 5:e17421, aug 2016.

216

[229] Rudy Behnia, Damon A. Clark, Adam G. Carter, Thomas R. Clandinin, and Claude Desplan. Pro-
cessing properties of on and off pathways for drosophila motion detection. Nature, 512:427, Jul
2014.

[230] Sarah Nicola Jung, Alexander Borst, and Juergen Haag. Flight activity alters velocity tuning of fly
motion-sensitive neurons. Journal of Neuroscience, 31(25):9231–9237, 2011.

[231] Marie P. Suver, Akira Mamiya, and Michael H. Dickinson. Octopamine neurons mediate flight-
induced modulation of visual processing in drosophila. Current Biology, 22(24):2294 – 2302, 2012.

[232] Alexander Arenz, Michael S. Drews, Florian G. Richter, Georg Ammer, and Alexander Borst. The
Temporal Tuning of the Drosophila Motion Detectors Is Determined by the Dynamics of Their Input
Elements. Current Biology, 27(7):929 – 944, 2017.

[233] Hassenstein B. and Reichardt W. Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorze-
ichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. 11:513, 1956.
9-10.

[234] Reid R. Harrison and Christof Koch. An Analog VLSI Model of the Fly Elementary Motion Detector.
In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing
Systems 10, pages 880–886. MIT Press, 1998.

[235] Shih-Chi Liu. A neuromorphic aVLSI model of global motion processing in the fly. IEEE Transactions
on Circuits and Systems II: Analog and Digital Signal Processing, 47(12):1458–1467, Dec 2000.

[236] R. R. Harrison. A biologically inspired analog IC for visual collision detection. IEEE Transactions on
Circuits and Systems I: Regular Papers, 52(11):2308–2318, Nov 2005.

[237] Johannes Plett, Armin Bahl, Martin Buss, Kolja Kühnlenz, and Alexander Borst. Bio-inspired visual
ego-rotation sensor for MAVs. Biological Cybernetics, 106(1):51–63, Jan 2012.

[238] J. kramer. Compact integrated motion sensor with three-pixel interaction. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 44(2):86–101, March 1996.

[239] J. kramer and C. Koch. Pulse-based analog VLSI velocity sensors. IEEE Transactions on Circuits
and Systems II: Analog and Digital Signal Processing, 44(2):86–101, Feb 1997.

[240] R. Sarpeshkar, J. Kramer, G. Indiveri, and C. Koch. Analog VLSI architectures for motion process-
ing: from fundamental limits to system applications. Proceedings of the IEEE, 84(7):969–987, Jul
1996.

[241] P. A. Shoemaker. Implementation of Visual Motion Detection in Analog Neuromorphic Circuitry -
A Case Study of the Issue of Circuit Precision. Proceedings of the IEEE, 102(10):1557–1570, Oct
2014.

[242] Moritz B Milde, Olivier JN Bertrand, Harshawardhan Ramachandran, Martin Egelhaaf, and Elisa-
betta Chicca. Spiking elementary motion detector in neuromorphic systems. Neural computation,
30(9):2384–2417, 2018.

[243] P. Lichtsteiner, C. Posch, and T. Delbruck. A 128×128 120 dB 15µs Latency Asynchronous Tempo-
ral Contrast Vision Sensor. IEEE Journal of Solid-State Circuits, 43(2):566–576, Feb 2008.

[244] T. Serrano-Gotarredona and B. Linares-Barranco. A 128×128 1.5% Contrast Sensitivity 0.9%
FPN 3µs Latency 4 mW Asynchronous Frame-Free Dynamic Vision Sensor Using Transimpedance
Preamplifiers. IEEE Journal of Solid-State Circuits, 48(3):827–838, March 2013.

217

[245] Sadique Sheik, Elisabetta Chicca, and Giacomo Indiveri. Exploiting device mismatch in neuromor-
phic vlsi systems to implement axonal delays. In The 2012 International Joint Conference on Neural
Networks (IJCNN), pages 1–6. IEEE, 2012.

[246] David Powers. Evaluation: From precision, recall and f-factor to roc, informedness, markedness
correlation. Mach. Learn. Technol., 2, 01 2008.

[247] Dan Simon. Evolutionary Optimization Algorithms. John Wiley & Sons, Inc., Hoboken, New Jersey,
2013.

[248] David J. Montana and Lawrence Davis. Training Feedforward Neural Networks Using Genetic Algo-
rithms. In Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume
1, IJCAI’89, pages 762–767, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

[249] Matthew S Maisak, Juergen Haag, Georg Ammer, Etienne Serbe, Matthias Meier, Aljoscha Leon-
hardt, Tabea Schilling, Armin Bahl, Gerald M Rubin, Aljoscha Nern, et al. A directional tuning map
of drosophila elementary motion detectors. Nature, 500(7461):212–216, 2013.

[250] Ming Wu, Aljoscha Nern, W Ryan Williamson, Mai M Morimoto, Michael B Reiser, Gwyneth M
Card, and Gerald M Rubin. Visual projection neurons in the drosophila lobula link feature detection
to distinct behavioral programs. Elife, 5:e21022, 2016.

[251] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using
backpropagation. Frontiers in neuroscience, 10:508, 2016.

[252] Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019.

[253] Shin-ya Takemura, Yoshinori Aso, Toshihide Hige, Allan Wong, Zhiyuan Lu, C Shan Xu, Patricia K
Rivlin, Harald Hess, Ting Zhao, Toufiq Parag, et al. A connectome of a learning and memory center
in the adult drosophila brain. Elife, 6:e26975, 2017.

[254] Karl Deisseroth. Optogenetics. Nature methods, 8(1):26–29, 2011.

[255] J. von Neumann. First draft of a report on the edvac. IEEE Annals of the History of Computing,
15(4):27–75, 1993.

[256] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–44, 05 2015.

[257] D. Li, X. Chen, M. Becchi, and Z. Zong. Evaluating the energy efficiency of deep convolutional
neural networks on cpus and gpus. In 2016 IEEE International Conferences on Big Data and Cloud
Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and
Communications (SustainCom) (BDCloud-SocialCom-SustainCom), pages 477–484, Oct 2016.

[258] L. Chua. Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5):507–
519, Sep. 1971.

[259] Dmitri Strukov, Gregory Snider, Duncan Stewart, and Stan Williams. The missing memristor found.
Nature, 453:80–3, 06 2008.

[260] Qiangfei Xia and Jianhua Joshua Yang. Memristive crossbar arrays for brain-inspired computing.
Nature Materials, 18:309–323, 04 2019.

218

[261] Stefano Ambrogio, Pritish Narayanan, Hsinyu Tsai, Robert Shelby, Irem Boybat, Carmelo Nolfo,
Severin Sidler, Massimo Giordano, Martina Bodini, Nathan Farinha, Benjamin Killeen, Christina
Cheng, Yassine Jaoudi, and Geoffrey Burr. Equivalent-accuracy accelerated neural-network training
using analogue memory. Nature, 558, 06 2018.

[262] Mirko Prezioso, Farnood Merrikh-Bayat, Brian Hoskins, Gina Adam, Konstantin Likharev, and Dmitri
Strukov. Training and operation of an integrated neuromorphic network based on metal-oxide mem-
ristors. Nature, 521, 12 2014.

[263] Zhongrui Wang, Can Li, Wenhao Song, Mingyi Rao, Daniel Belkin, Yunning Li, Peng Yan, Hao Jiang,
Peng Lin, Miao Hu, John William Strachan, Ning Ge, Mark Barnell, Qing wu, Andrew Barto, Qinru
Qiu, Stan Williams, Qiangfei Xia, and Jianhua Joshua Yang. Reinforcement learning with analogue
memristor arrays. Nature Electronics, 2, 03 2019.

[264] Miao Hu, Catherine E. Graves, Can Li, Yunning Li, Ning Ge, Eric Montgomery, Noraica Davila, Hao
Jiang, R. Stanley Williams, J. Joshua Yang, Qiangfei Xia, and John Paul Strachan. Memristor-
based analog computation and neural network classification with a dot product engine. Advanced
Materials, 30(9):1705914, 2018.

[265] Can Li, Daniel Belkin, Yunning Li, Peng Yan, Miao Hu, Ning Ge, Hao Jiang, Eric Montgomery, Peng
Lin, Zhongrui Wang, Wenhao Song, John William Strachan, Mark Barnell, Qing wu, Stan Williams,
Jianhua Joshua Yang, and Qiangfei Xia. Efficient and self-adaptive in-situ learning in multilayer
memristor neural networks. Nature Communications, 9, 12 2018.

[266] Peng Yao, Huaqiang Wu, Bin Gao, Jianshi Tang, Qingtian Zhang, Wenqiang Zhang, Jianhua Joshua
Yang, and he Qian. Fully hardware-implemented memristor convolutional neural network. Nature,
577:641–646, 01 2020.

[267] Tayfun Gokmen, Murat Onen, and Wilfried Haensch. Training deep convolutional neural networks
with resistive cross-point devices. Frontiers in Neuroscience, 11:538, 2017.

[268] G. W. Burr, R. M. Shelby, S. Sidler, C. di Nolfo, J. Jang, I. Boybat, R. S. Shenoy, P. Narayanan,
K. Virwani, E. U. Giacometti, B. N. Kurdi, and H. Hwang. Experimental demonstration and toler-
ancing of a large-scale neural network (165 000 synapses) using phase-change memory as the
synaptic weight element. IEEE Transactions on Electron Devices, 62(11):3498–3507, Nov 2015.

[269] D. Garbin, E. Vianello, O. Bichler, Q. Rafhay, C. Gamrat, G. Ghibaudo, B. DeSalvo, and L. Perniola.
HfO2-Based OxRAM Devices as Synapses for Convolutional Neural Networks. IEEE Transactions
on Electron Devices, 62(8):2494–2501, Aug 2015.

[270] Abu Sebastian, Daniel Krebs, Manuel Le Gallo, Haralampos Pozidis, and Evangelos Eleftheriou. A
collective relaxation model for resistance drift in phase change memory cells. 2015 IEEE Interna-
tional Reliability Physics Symposium, pages MY.5.1–MY.5.6, 2015.

[271] X. Guan, S. Yu, and H. . P. Wong. On the switching parameter variation of metal-oxide rram—part
i: Physical modeling and simulation methodology. IEEE Transactions on Electron Devices,
59(4):1172–1182, April 2012.

[272] S. Yu, X. Guan, and H. . P. Wong. On the switching parameter variation of metal oxide rram—part
ii: Model corroboration and device design strategy. IEEE Transactions on Electron Devices,
59(4):1183–1188, April 2012.

219

[273] S. Sidler, I. Boybat, R. M. Shelby, P. Narayanan, J. Jang, A. Fumarola, K. Moon, Y. Leblebici,
H. Hwang, and G. W. Burr. Large-scale neural networks implemented with non-volatile memory as
the synaptic weight element: Impact of conductance response. In 2016 46th European Solid-State
Device Research Conference (ESSDERC), pages 440–443, Sep. 2016.

[274] C. H. Bennett, D. Garland, R. B. Jacobs-Gedrim, S. Agarwal, and M. J. Marinella. Wafer-scale
taox device variability and implications for neuromorphic computing applications. In 2019 IEEE
International Reliability Physics Symposium (IRPS), pages 1–4, March 2019.

[275] S. Agarwal, S. J. Plimpton, D. R. Hughart, A. H. Hsia, I. Richter, J. A. Cox, C. D. James, and
M. J. Marinella. Resistive memory device requirements for a neural algorithm accelerator. In 2016
International Joint Conference on Neural Networks (IJCNN), pages 929–938, July 2016.

[276] S. R. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian, and E. Eleftheriou. Mixed-
precision architecture based on computational memory for training deep neural networks. In 2018
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–5, May 2018.

[277] Irem Boybat, Manuel Gallo, Nandakumar S.R., Timoleon Moraitis, Thomas Parnell, Tomas Tuma,
Bipin Rajendran, Yusuf Leblebici, Abu Sebastian, and Evangelos Eleftheriou. Neuromorphic com-
puting with multi-memristive synapses. Nature Communications, 9, 11 2017.

[278] Alexander Serb, Johannes Bill, Ali Khiat, Radu Berdan, Robert Legenstein, and Themis Prodro-
makis. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memris-
tive synapses. Nature Communications, 7:12611, 09 2016.

[279] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat. Immunity to device variations in a spiking neural
network with memristive nanodevices. IEEE Transactions on Nanotechnology, 12(3):288–295, May
2013.

[280] Thomas Dalgaty, Melika Payvand, Filippo Moro, Denys R. B. Ly, Florian Pebay-Peyroula, Jerome
Casas, Giacomo Indiveri, and Elisa Vianello. Hybrid neuromorphic circuits exploiting non-
conventional properties of rram for massively parallel local plasticity mechanisms. APL Materials,
7(8):081125, 2019.

[281] A. Chen. Utilizing the variability of resistive random access memory to implement reconfigurable
physical unclonable functions. IEEE Electron Device Letters, 36(2):138–140, Feb 2015.

[282] S. Balatti, S. Ambrogio, Z. Wang, and D. Ielmini. True random number generation by variability
of resistive switching in oxide-based devices. IEEE Journal on Emerging and Selected Topics in
Circuits and Systems, 5(2):214–221, June 2015.

[283] Damir Vodenicarevic, Nicolas Locatelli, Alice Mizrahi, Joseph S Friedman, Adrien F Vincent, Miguel
Romera, Akio Fukushima, Kay Yakushiji, Hitoshi Kubota, Shinji Yuasa, et al. Low-energy truly
random number generation with superparamagnetic tunnel junctions for unconventional computing.
Physical Review Applied, 8(5):054045, 2017.

[284] Rafatul Faria, Kerem Y Camsari, and Supriyo Datta. Implementing bayesian networks with embed-
ded stochastic mram. AIP Advances, 8(4):045101, 2018.

[285] Alice Mizrahi, Tifenn Hirtzlin, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Julie Grollier, and
Damien Querlioz. Neural-like computing with populations of superparamagnetic basis functions.
Nature communications, 9(1):1533, 2018.

[286] Kerem Yunus Camsari, Rafatul Faria, Brian M Sutton, and Supriyo Datta. Stochastic p-bits for
invertible logic. Physical Review X, 7(3):031014, 2017.

220

[287] William A Borders, Ahmed Z Pervaiz, Shunsuke Fukami, Kerem Y Camsari, Hideo Ohno,
and Supriyo Datta. Integer factorization using stochastic magnetic tunnel junctions. Nature,
573(7774):390–393, 2019.

[288] W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

[289] Zoubin Ghahramani. Probabilistic machine learning and artificial intelligence. Nature, 521:452–9,
05 2015.

[290] A. Grossi, E. Nowak, C. Zambelli, C. Pellissier, S. Bernasconi, G. Cibrario, K. E. Hajjam,
R. Crochemore, J. F. Nodin, P. Olivo, and L. Perniola. Fundamental variability limits of filament-
based rram. In 2016 IEEE International Electron Devices Meeting (IEDM), pages 4.7.1–4.7.4, Dec
2016.

[291] D. Ielmini. Modeling the universal set/reset characteristics of bipolar rram by field- and temperature-
driven filament growth. IEEE Transactions on Electron Devices, 58(12):4309–4317, Dec 2011.

[292] Simon Rogers and Mark Girolami. A first course in machine learning. CRC Press, 2016.

[293] W H Wolberg and O L Mangasarian. Multisurface method of pattern separation for medical diag-
nosis applied to breast cytology. Proceedings of the National Academy of Sciences, 87(23):9193–
9196, 1990.

[294] Huan Liu and Rudy Setiono. Chi2: feature selection and discretization of numeric attributes. Pro-
ceedings of 7th IEEE International Conference on Tools with Artificial Intelligence, pages 388–391,
1995.

[295] Alessandro Grossi, Elisa Vianello, Mohamed M Sabry, Marios Barlas, Laurent Grenouillet, Jean
Coignus, Edith Beigne, Tony Wu, Binh Q Le, Mary K Wootters, et al. Resistive ram endurance:
Array-level characterization and correction techniques targeting deep learning applications. IEEE
Transactions on Electron Devices, 66(3):1281–1288, 2019.

[296] George B Moody and Roger G Mark. The impact of the mit-bih arrhythmia database. IEEE Engi-
neering in Medicine and Biology Magazine, 20(3):45–50, 2001.

[297] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press, 1998.

[298] Matt Hoffman, Arnaud Doucet, Nando de Freitas, and Ajay Jasra. Trans-dimensional mcmc for
bayesian policy learning. In Proceedings of the 20th International Conference on Neural Information
Processing Systems, NIPS’07, page 665–672, Red Hook, NY, USA, 2007. Curran Associates Inc.

[299] A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike adaptive elements that can solve difficult
learning control problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-13(5):834–
846, Sep. 1983.

[300] Radu Berdan, Takao Marukame, Shoichi Kabuyanagi, Kensuke Ota, Masumi Saitoh, Shosuke Fujii,
Jun Deguchi, and Yoshifumi Nishi. In-memory reinforcement learning with moderately-stochastic
conductance switching of ferroelectric tunnel junctions. In 2019 Symposium on VLSI Technology,
pages T22–T23. IEEE, 2019.

[301] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei Rusu, Joel Veness, Marc Bellemare,
Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518:529–33,
02 2015.

221

[302] H-S Philip Wong, Heng-Yuan Lee, Shimeng Yu, Yu-Sheng Chen, Yi Wu, Pang-Shiu Chen, By-
oungil Lee, Frederick T Chen, and Ming-Jinn Tsai. Metal–oxide rram. Proceedings of the IEEE,
100(6):1951–1970, 2012.

[303] Hao-Chiao Hong and Guo-Ming Lee. A 65-fj/conversion-step 0.9-v 200-ks/s rail-to-rail 8-bit succes-
sive approximation adc. IEEE Journal of Solid-State Circuits, 42(10):2161–2168, 2007.

[304] Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli. Summarizing cpu and gpu design
trends with product data. arXiv preprint arXiv:1911.11313, 2019.

[305] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates,
Inc., 2012.

[306] Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung
Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan Horgan,
Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jader-
berg, Alexander S. Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden,
Yury Sulsky, James Molloy, Tom L. Paine, Caglar Gulcehre, Ziyu Wang, Tobias Pfaff, Yuhuai Wu,
Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy
Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, pages 1–5, 10 2019.

[307] R. Mochida, K. Kouno, Y. Hayata, M. Nakayama, T. Ono, H. Suwa, R. Yasuhara, K. Katayama,
T. Mikawa, and Y. Gohou. A 4m synapses integrated analog reram based 66.5 tops/w neural-
network processor with cell current controlled writing and flexible network architecture. In 2018
IEEE Symposium on VLSI Technology, pages 175–176, June 2018.

[308] Charles Mackin, Hsinyu Tsai, Stefano Ambrogio, Pritish Narayanan, An Chen, and Geoffrey Burr.
Weight programming in dnn analog hardware accelerators in the presence of nvm variability. Ad-
vanced Electronic Materials, page 1900026, 04 2019.

[309] A. Valentian, F. Rummens, E. Vianello, T. Mesquida, C. Lacat-Mathieu de Boissac, and C. Reita.
Fully integrated spiking neural network with analog neurons and rram synapses. In International
Electron Device Meeting, 2019.

[310] D. Querlioz, O. Bichler, A. F. Vincent, and C. Gamrat. Bioinspired programming of memory devices
for implementing an inference engine. Proceedings of the IEEE, 103(8):1398–1416, Aug 2015.

[311] Marc Bocquet, Tifenn Hirztlin, J-O Klein, Etienne Nowak, Elisa Vianello, J-M Portal, and Damien
Querlioz. In-memory and error-immune differential rram implementation of binarized deep neural
networks. In 2018 IEEE International Electron Devices Meeting (IEDM), pages 20–6. IEEE, 2018.

[312] Tifenn Hirtzlin, Marc Bocquet, Bogdan Penkovsky, Jacques-Olivier Klein, Etienne Nowak, Elisa
Vianello, Jean-Michel Portal, and Damien Querlioz. Digital biologically plausible implementation
of binarized neural networks with differential hafnium oxide resistive memory arrays. Frontiers in
Neuroscience, 13:1383, 2020.

[313] Chetan Singh Thakur, Saeed Afshar, Runchun M Wang, Tara J Hamilton, Jonathan Tapson, and
André Van Schaik. Bayesian estimation and inference using stochastic electronics. Frontiers in
neuroscience, 10:104, 2016.

222

[314] Przemyslaw Mroszczyk and Piotr Dudek. The accuracy and scalability of continuous-time bayesian
inference in analogue cmos circuits. In 2014 IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pages 1576–1579. IEEE, 2014.

[315] Thomas Dalgaty, Nicollo Castellani, Damien Querlioz, and Elisa Vianello. In-situ learning
harnessing intrinsic resistive memory variability through markov chain monte carlo sampling.
arXiv:2001.11426, 2020.

[316] T. K. Moon. The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6):47–
60, Nov 1996.

[317] Alessandro Grossi, Elisa Vianello, Mohamed M Sabry, Marios Barlas, Laurent Grenouillet, Jean
Coignus, Edith Beigne, Tony Wu, Binh Q Le, Mary K Wootters, et al. Resistive ram endurance:
Array-level characterization and correction techniques targeting deep learning applications. IEEE
Transactions on Electron Devices, 66(3):1281–1288, 2019.

[318] P.L. Hsu and Herbert Robbins. Complete convergence and the law of large numbers. Proc Natl
Acad Sci USA, 1947.

[319] Geoffrey E Hinton and Drew Van Camp. Keeping the neural networks simple by minimizing the
description length of the weights. In Proceedings of the sixth annual conference on Computational
learning theory, pages 5–13, 1993.

[320] Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International Conference on Machine Learning, pages 1613–1622. PMLR, 2015.

[321] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and David M Blei. Automatic
differentiation variational inference. The Journal of Machine Learning Research, 18(1):430–474,
2017.

[322] Matthew Hoffman and Andrew Gelman. The no-u-turn sampler: Adaptively setting path lengths in
hamiltonian monte carlo. Journal of Machine Learning Research, 15:1351–1381, 04 2014.

[323] Thomas Wiecki and Maxim Kochurov. Bayesian deep learning, 2016.

[324] David D Fan, Jennifer Nguyen, Rohan Thakker, Nikhilesh Alatur, Ali-akbar Agha-mohammadi, and
Evangelos A Theodorou. Bayesian learning-based adaptive control for safety critical systems. arXiv
preprint arXiv:1910.02325, 2019.

[325] Yihong Wang, Rubin Wang, and Xuying Xu. Neural energy supply-consumption properties based
on hodgkin-huxley model. Neural plasticity, 2017, 2017.

[326] Mark Girolami and Ben Calderhead. Riemann manifold langevin and hamiltonian monte carlo meth-
ods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214,
2011.

[327] Matthew D Hoffman and Andrew Gelman. The no-u-turn sampler: adaptively setting path lengths
in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

[328] Dougal Maclaurin and Ryan P. Adams. Firefly monte carlo: Exact mcmc with subsets of data.
In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, UAI’14, page
543–552, Arlington, Virginia, USA, 2014. AUAI Press.

[329] Anoop Korattikara, Yutian Chen, and Max Welling. Austerity in mcmc land: Cutting the metropolis-
hastings budget. In International Conference on Machine Learning, pages 181–189, 2014.

223

[330] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pages 1050–1059.
PMLR, 2016.

[331] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. arXiv preprint arXiv:1612.01474, 2016.

[332] Sebastian Farquhar, Lewis Smith, and Yarin Gal. Liberty or depth: Deep bayesian neural nets do
not need complex weight posterior approximations. arXiv e-prints, pages arXiv–2002, 2020.

[333] Declan A Doyle, Joao Morais Cabral, Richard A Pfuetzner, Anling Kuo, Jacqueline M Gulbis,
Steven L Cohen, Brian T Chait, and Roderick MacKinnon. The structure of the potassium channel:
molecular basis of k+ conduction and selectivity. science, 280(5360):69–77, 1998.

[334] Martin Stemmler and Christof Koch. How voltage-dependent conductances can adapt to maximize
the information encoded by neuronal firing rate. Nature Neuroscience, 2:521–527, 1999.

[335] Gina G Turrigiano and Sacha B Nelson. Homeostatic plasticity in the developing nervous system.
Nature Reviews Neuroscience, 5:97, 2004.

[336] WB Levy and O Steward. Temporal contiguity requirements for long-term associative potentia-
tion/depression in the hippocampus. Neuroscience, 8(4):791–797, 1983.

[337] Yang Dan and Mu-ming Poo. Hebbian depression of isolated neuromuscular synapses in vitro.
Science, 256(5063):1570–1573, 1992.

[338] E. Chicca, F. Stefanini, C. Bartolozzi, and G. Indiveri. Neuromorphic electronic circuits for building
autonomous cognitive systems. Proceedings of the IEEE, 102(9):1367–1388, Sept 2014.

[339] Saber Moradi, Ning Qiao, Fabio Stefanini, and Giacomo Indiveri. A scalable multicore architec-
ture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors
(dynaps). IEEE transactions on biomedical circuits and systems, 12(1):106–122, 2017.

[340] Chetan Singh Thakur, Jamal Lottier Molin, Gert Cauwenberghs, Giacomo Indiveri, Kundan Kumar,
Ning Qiao, Johannes Schemmel, Runchun Wang, Elisabetta Chicca, Jennifer Olson Hasler, et al.
Large-scale neuromorphic spiking array processors: A quest to mimic the brain. Frontiers in neuro-
science, 12:891, 2018.

[341] Matthew D. Pickett, Gilberto Medeiros-Ribeiro, and R. Stanley Williams. A scalable neuristor built
with Mott memristors. Nature Materials, 12(2):114–117, 2013.

[342] Tomas Tuma, Angeliki Pantazi, Manuel Le Gallo, Abu Sebastian, and Evangelos Eleftheriou.
Stochastic phase-change neurons. Nature nanotechnology, 11(8):693, 2016.

[343] Robert Berdan. Scanning electron microscopy photography, 2017.

[344] E. Vianello, O. Thomas, G. Molas, O. Turkyilmaz, N. Jovanović, D. Garbin, G. Palma, M. Alayan,
C. Nguyen, J. Coignus, B. Giraud, T. Benoist, M. Reyboz, A. Toffoli, C. Charpin, F. Clermidy, and
L. Perniola. Resistive memories for ultra-low-power embedded computing design. In 2014 IEEE
International Electron Devices Meeting, pages 6.3.1–6.3.4, Dec 2014.

[345] Wulfram Gerstner. Time structure of the activity in neural network models. Physical review E,
51(1):738, 1995.

224

[346] Giacomo Indiveri and Yulia Sandamirskaya. The importance of space and time for signal processing
in neuromorphic agents: the challenge of developing low-power, autonomous agents that interact
with the environment. IEEE Signal Processing Magazine, 36(6):16–28, 2019.

[347] Andreea Lazar, Pipa Gordon, and Jochen Triesch. Sorn: a self-organizing recurrent neural network.
Frontiers in computational neuroscience, 3:23, 2009.

[348] R Baddeley, L F Abbott, M C Booth, F Sengpiel, T Freeman, E A Wakeman, and E T Rolls. Re-
sponses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings
of the Royal Society B: Biological Sciences, 264:1775–83, 1997.

[349] David Heeger. Markov chains. Cambrdige University Press, 2000.

[350] Yoshifumi Nishi, Ulrich Bottger, Rainer Waser, and Stephan Menzel. Crossover from deterministic
to stochastic nature of resistive-switching statistics in a tantalum oxide thin film. IEEE Transactions
on Electron Devices, PP:1–6, 09 2018.

[351] A Rukhin, J Soto, J C Nechvatal, M Smid, E Barker, L Stefan, and S Vo. A Statistical Test Suite for
Random and Pseudorandom Number Generators for Cryptographic Applications. NIST: National
Institute of Standards and Technology, 2010.

[352] Tobias Delbrueck and C Mead. Bump circuits. In Proceedings of International Joint Conference on
Neural Networks, volume 1, pages 475–479, 1993.

[353] J R Norris. Poisson Model of Spike Generation. 1998.

[354] Kwabena A Boahen. Point-to-point connectivity between neuromorphic chips using address events.
IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(5):416–
434, 2000.

[355] Alessandro Mortara, Eric A Vittoz, and Philippe Venier. A communication scheme for analog vlsi
perceptive systems. IEEE Journal of Solid-State Circuits, 30(6):660–669, 1995.

[356] Joseph Lin, Paul Merolla, John Arthur, and Kwabena Boahen. Programmable connections in neu-
romorphic grids. In 2006 49th IEEE International Midwest Symposium on Circuits and Systems,
volume 1, pages 80–84. IEEE, 2006.

[357] Siddharth Joshi, Steve Deiss, Mike Arnold, Jongkil Park, Theodore Yu, and Gert Cauwenberghs.
Scalable event routing in hierarchical neural array architecture with global synaptic connectivity. In
2010 12th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA
2010), pages 1–6. IEEE, 2010.

[358] Olaf Sporns and Jonathan D Zwi. The small world of the cerebral cortex. Neuroinformatics,
2(2):145–162, 2004.

[359] Rodrigo Perin, Thomas K Berger, and Henry Markram. A synaptic organizing principle for cortical
neuronal groups. Proceedings of the National Academy of Sciences, 108(13):5419–5424, 2011.

[360] Muhammad Mukaram Khan, David R Lester, Luis A Plana, A Rast, Xin Jin, Eustace Painkras, and
Stephen B Furber. Spinnaker: mapping neural networks onto a massively-parallel chip multipro-
cessor. In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 2849–2856. Ieee, 2008.

[361] Vladimir Kornijcuk and Doo Seok Jeong. Recent progress in real-time adaptable digital neuromor-
phic hardware. Advanced Intelligent Systems, 1(6):1900030, 2019.

225

[362] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature,
393(6684):440–442, 1998.

[363] Ed Bullmore and Olaf Sporns. Complex brain networks: graph theoretical analysis of structural and
functional systems. Nature reviews neuroscience, 10(3):186–198, 2009.

[364] Christoph Stosiek, Olga Garaschuk, Knut Holthoff, and Arthur Konnerth. In vivo two-photon calcium
imaging of neuronal networks. Proceedings of the National Academy of Sciences, 100(12):7319–
7324, 2003.

[365] Joseph M Brader, Walter Senn, and Stefano Fusi. Learning real-world stimuli in a neural network
with spike-driven synaptic dynamics. Neural computation, 19(11):2881–2912, 2007.

[366] Mark D Humphries, Kevin Gurney, and Tony J Prescott. The brainstem reticular formation is a
small-world, not scale-free, network. Proceedings of the Royal Society B: Biological Sciences,
273(1585):503–511, 2006.

[367] Mark D Humphries and Kevin Gurney. Network ‘small-world-ness’: a quantitative method for deter-
mining canonical network equivalence. PloS one, 3(4):e0002051, 2008.

[368] Federico Corradi and Giacomo Indiveri. A neuromorphic event-based neural recording system for
smart brain-machine-interfaces. IEEE transactions on biomedical circuits and systems, 9(5):699–
709, 2015.

[369] Reid R Harrison. The design of integrated circuits to observe brain activity. Proceedings of the
IEEE, 96(7):1203–1216, 2008.

[370] Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics and
intelligent laboratory systems, 2(1-3):37–52, 1987.

[371] Wilten Nicola and Claudia Clopath. Supervised learning in spiking neural networks with force train-
ing. Nature communications, 8(1):1–15, 2017.

[372] Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514–1541, 2018.

[373] Fred Rieke, David Warland, Rob De Ruyter Van Steveninck, William S Bialek, et al. Spikes: explor-
ing the neural code, volume 7. MIT press Cambridge, 1999.

[374] Alexander Borst and Frédéric E Theunissen. Information theory and neural coding. Nature neuro-
science, 2(11):947–957, 1999.

[375] Rufin VanRullen, Rudy Guyonneau, and Simon J Thorpe. Spike times make sense. Trends in
neurosciences, 28(1):1–4, 2005.

[376] Staffan Cullheim. Relations between cell body size, axon diameter and axon conduction velocity of
cat sciatic α-motoneurons stained with horseradish peroxidase. Neuroscience letters, 8(1):17–20,
1978.

[377] MJ Gillespie and RB Stein. The relationship between axon diameter, myelin thickness and con-
duction velocity during atrophy of mammalian peripheral nerves. Brain research, 259(1):41–56,
1983.

[378] Biswa Sengupta, Simon Barry Laughlin, and Jeremy Edward Niven. Consequences of converting
graded to action potentials upon neural information coding and energy efficiency. PLoS Comput
Biol, 10(1):e1003439, 2014.

226

[379] KG Pearson and CR Fourtner. Nonspiking interneurons in walking system of the cockroach. Journal
of neurophysiology, 38(1):33–52, 1975.

[380] KATHERINE Graubard. Synaptic transmission without action potentials: input-output properties of
a nonspiking presynaptic neuron. Journal of Neurophysiology, 41(4):1014–1025, 1978.

[381] Katharina Eichler, Feng Li, Ashok Litwin-Kumar, Youngser Park, Ingrid Andrade, Casey M
Schneider-Mizell, Timo Saumweber, Annina Huser, Claire Eschbach, Bertram Gerber, et al. The
complete connectome of a learning and memory centre in an insect brain. Nature, 548(7666):175–
182, 2017.

[382] C Shan Xu, Michal Januszewski, Zhiyuan Lu, Shin-ya Takemura, Kenneth Hayworth, Gary Huang,
Kazunori Shinomiya, Jeremy Maitin-Shepard, David Ackerman, Stuart Berg, et al. A connectome
of the adult drosophila central brain. BioRxiv, 2020.

[383] Romain Franconville, Celia Beron, and Vivek Jayaraman. Building a functional connectome of the
drosophila central complex. Elife, 7:e37017, 2018.

[384] Yoshinori Aso, Divya Sitaraman, Toshiharu Ichinose, Karla R Kaun, Katrin Vogt, Ghislain Belliart-
Guérin, Pierre-Yves Plaçais, Alice A Robie, Nobuhiro Yamagata, Christopher Schnaitmann, et al.
Mushroom body output neurons encode valence and guide memory-based action selection in
drosophila. Elife, 3:e04580, 2014.

[385] Thomas Stone, Barbara Webb, Andrea Adden, Nicolai Ben Weddig, Anna Honkanen, Rachel Tem-
plin, William Wcislo, Luca Scimeca, Eric Warrant, and Stanley Heinze. An anatomically constrained
model for path integration in the bee brain. Current Biology, 27(20):3069–3085, 2017.

[386] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios Anas-
tasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn, et al. Dynet: The
dynamic neural network toolkit. arXiv preprint arXiv:1701.03980, 2017.

[387] Pico Caroni, Flavio Donato, and Dominique Muller. Structural plasticity upon learning: regulation
and functions. Nature Reviews Neuroscience, 13(7):478–490, 2012.

[388] Sophie Deneve. Bayesian inference in spiking neurons. In Advances in neural information process-
ing systems, pages 353–360, 2005.

[389] Yanping Huang and Rajesh PN Rao. Neurons as monte carlo samplers: Bayesian inference and
learning in spiking networks. In Advances in neural information processing systems, pages 1943–
1951, 2014.

[390] Hesham Mostafa, Lorenz K Müller, and Giacomo Indiveri. Rhythmic inhibition allows neural net-
works to search for maximally consistent states. Neural computation, 27(12):2510–2547, 2015.

[391] Rodrigo Echeveste, Laurence Aitchison, Guillaume Hennequin, and Máté Lengyel. Cortical-like
dynamics in recurrent circuits optimized for sampling-based probabilistic inference. Nature neuro-
science, pages 1138–1149, 2020.

[392] Michelle A Lee, Yuke Zhu, Krishnan Srinivasan, Parth Shah, Silvio Savarese, Li Fei-Fei, Animesh
Garg, and Jeannette Bohg. Making sense of vision and touch: Self-supervised learning of mul-
timodal representations for contact-rich tasks. In 2019 International Conference on Robotics and
Automation (ICRA), pages 8943–8950. IEEE, 2019.

227

[393] Pierre Sermanet, Corey Lynch, Yevgen Chebotar, Jasmine Hsu, Eric Jang, Stefan Schaal, Sergey
Levine, and Google Brain. Time-contrastive networks: Self-supervised learning from video. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 1134–1141. IEEE, 2018.

[394] Eric Jang, Coline Devin, Vincent Vanhoucke, and Sergey Levine. Grasp2vec: Learning object
representations from self-supervised grasping. arXiv preprint arXiv:1811.06964, 2018.

[395] Yoshinori Aso, Daisuke Hattori, Yang Yu, Rebecca M Johnston, Nirmala A Iyer, Teri-TB Ngo, Heather
Dionne, LF Abbott, Richard Axel, Hiromu Tanimoto, et al. The neuronal architecture of the mush-
room body provides a logic for associative learning. elife, 3:e04577, 2014.

[396] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale
machine learning. In 12th {USENIX} symposium on operating systems design and implementation
({OSDI} 16), pages 265–283, 2016.

[397] John Salvatier, Thomas V Wiecki, and Christopher Fonnesbeck. Probabilistic programming in
python using pymc3. PeerJ Computer Science, 2:e55, 2016.

[398] Dan FM Goodman and Romain Brette. The brian simulator. Frontiers in neuroscience, 3:26, 2009.

[399] A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous system. Nature reviews
neuroscience, 9(4):292–303, 2008.

[400] J Robert, PH Deval, and G Wegmann. Very accurate current divider. Electronics Letters,
25(14):912–913, 1989.

228

	Introduction
	A brief history of artificial intelligence
	Pre-history
	1950's, 60's and 70's
	1980's and 90s
	21st Century

	Hardware in artificial intelligence
	LISP machines
	Field programmable gate arrays
	Graphics and tensor processing units
	Neuromorphic processors
	Memory technologies

	Challenges in applying artificial intelligence
	Training energy consumption
	Bringing learning to the edge
	Ethical application of AI

	Scope of this thesis

	Bio-inspired neural network architectures
	Chapter introduction
	Model of the cricket cercal system escape response
	Introduction
	Model definition
	Model evaluation
	Universal approximator benchmarking
	Model interpretation

	Model of the Drosophila elementary motion detection system
	Introduction
	Model definition
	Model evaluation

	Chapter discussion

	Bayesian machine learning with resistive memory
	Chapter introduction
	In-situ resistive memory based Markov Chain Monte Carlo
	Introduction
	In-memory implementation
	Application to supervised learning
	Application to reinforcement learning
	System level energy estimation

	Ex-situ transfer of a Bayesian neural network
	Section introduction
	Expectation-maximisation based parameter decomposition
	Ex-situ training of an RRAM-based Bayesian neural network
	Transfer to resistive memory based inference hardware
	Allowing a model to say `I don't know'

	Chapter discussion

	A non-von Neumann neuromorphic computing fabric
	Chapter introduction
	Hybrid neuromorphic circuits
	CMOS-RRAM analogue circuit models
	An OxRAM based intrinsic plasticity algorithm

	Neuromorphic event routing architecture
	Column circuits
	Neuron and routing tiles
	Application to reservoir computing
	Small world graph properties
	Heartbeat arrhythmia detection

	Chapter discussion

	Conclusion
	A vision of a Bayesian neuromorphic computing system
	Perspectives and future work

	Appendices
	 Appendix - Additional circuits and layouts
	Inverter unit cell
	Thick oxide inverter unit cell
	Starved inverter
	Operational amplifier
	Pulse extender
	Half OR
	Multiplexer
	Level shifter
	CMOS neuron
	CMOS synapse
	Delta modulator layout
	1T1R cell
	Column circuit layout
	Hybrid synapse layout
	Hybrid neuron layout

	Appendix - Note on MOS capacitors
	Appendix - Resistive memory experiments
	Appendix - Implementation of RRAM-based MCMC simulator
	Appendix - Note on implementation of neural network models
	Appendix - Pre-processing of the electrocardiogram dataset
	Appendix - Cercal system statistical model response
	Appendix - Observed shift of the OxRAM normal random variable
	Appendix - Cercal system model input neuron circuit implementation
	Appendix - Robustness of TAG model to random parameter permutations
	Appendix - Measurements of fabricated CMOS neuron circuits

