
HAL Id: tel-03465118
https://theses.hal.science/tel-03465118

Submitted on 3 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning Methods for UAV-aided Wireless
Networks

Harald Bayerlein

To cite this version:
Harald Bayerlein. Machine Learning Methods for UAV-aided Wireless Networks. Computer Aided
Engineering. Sorbonne Université, 2021. English. �NNT : 2021SORUS154�. �tel-03465118�

https://theses.hal.science/tel-03465118
https://hal.archives-ouvertes.fr

Machine Learning Methods for UAV-aided
Wireless Networks

Dissertation

submitted to

Sorbonne Université

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

Author:

Harald Bayerlein

Publicly defended on the 7th of September 2021, before a committee composed of:

Reviewers
Prof. Mehdi Bennis University of Oulu, Finland
Prof. Andrea M. Tonello University of Klagenfurt, Austria

Examiners
Prof. Roberto Verdone University of Bologna, Italy
Prof. Sofie Pollin KU Leuven, Belgium
Prof. Florian Kaltenberger EURECOM, France

Thesis Advisor
Prof. David Gesbert EURECOM, France

Méthodes d’apprentissage automatique
pour l’utilisation des drones dans les

réseaux sans-fil

Thèse

soumise à

Sorbonne Université

pour l’obtention du grade de docteur

présentée par:

Harald Bayerlein

Soutenance de thèse effectuée le 7 septembre 2021 devant un jury composé de:

Rapporteurs
Prof. Mehdi Bennis Université d’Oulu, Finlande
Prof. Andrea M. Tonello Université de Klagenfurt, Autriche

Examinateurs
Prof. Roberto Verdone Université de Bologne, Italie
Prof. Sofie Pollin KU Leuven, Belgique
Prof. Florian Kaltenberger EURECOM, France

Directeur de thèse
Prof. David Gesbert EURECOM, France

To my parents,
Waltraut and Norbert

Abstract

Autonomous unmanned aerial vehicles (UAVs), spurred by rapid innovation in drone
hardware and regulatory frameworks during the last decade, are envisioned for a multitude
of applications in service of the society of the future. From the perspective of next-
generation wireless networks, UAVs are not only anticipated in the role of passive
cellular-connected users, but also as active enablers of connectivity as part of UAV-
aided networks. Use cases range from ‘last mile’ delivery of goods, passenger transport,
infrastructure inspection, environmental monitoring and surveying to enablers of smart
agriculture. Their fast and flexible deployment makes them especially useful in situations
where terrestrial communication infrastructure is overwhelmed or destroyed, e.g. in
natural disasters and search-and-rescue situations. In remote areas where it is not feasible
or economically viable to extend permanent network infrastructure, UAVs could provide
mobile Internet access to half the world’s population currently without it.

The defining advantage of UAVs in all potential application scenarios is their mobility.
To take full advantage of their capabilities, flexible and efficient path planning methods
are necessary. This thesis focuses on exploring machine learning (ML), specifically rein-
forcement learning (RL), as a promising class of solutions to UAV mobility management
challenges. With the recent research advances in combining RL and neural networks,
deep RL is one of the few frameworks that allows us to tackle the complex task of UAV
control and deployment in communication scenarios directly, given that these are gener-
ally NP-hard optimization problems and badly affected by non-convexity. Furthermore,
deep RL offers the possibility to balance multiple objectives of UAV-aided networks in
a straightforward way, it is very flexible in terms of the availability of prior or model
information, while deep RL inference is computationally efficient.

A key limitation in path planning for small to mid-size UAV is their maximum active
mission time restricted by the energy density of on-board batteries. When used as aerial
base stations (BSs) providing data services to ground users, autonomous UAVs need to
jointly optimize their flying time and the communication performance goals of the system.
The first part of the thesis explores the use of deep Q-learning to control an aerial BS
that collects data from ground users while integrating dedicated landing spots, where the
UAV can land thus saving energy while continuing to serve users, in its trajectory. Deep
Q-learning allows the UAV to find efficient trajectories without being given any explicit
information about the environment or the mission.

While the RL paradigm offers many advantages for solving optimization problems in
UAV-aided networks, there remain some practical challenges, especially in the context

i

Abstract

of the demand for training data the UAV can learn from. Collecting training data in
the real world is an expensive and time-consuming process, while in the conventional
RL approach, the lengthy training process needs to be repeated if a parameter of the
mission changes, e.g. the UAV’s battery capacity. In this thesis, we address this issue
by proposing a deep RL algorithm that is extending training to random instances of a
UAV data collection mission from distributed Internet of Things (IoT) devices, where
no retraining is needed if parameters of the mission change. The result is a much more
complex problem compared to the conventional approach, as solutions to thousands of
mission instances need to be found at the same time. This is made possible by exploiting
intelligently processed map information of the dense, urban environment of the mission.
We extend this setting to the cooperative multi-UAV case, where additional challenges in
team coordination arise, and to large, complex and realistic city environments.

The following part of the thesis explores the connection of UAV-aided communications
and robotics, two generally disjoint research communities. The inherent flexibility of
the RL paradigm offers the opportunity to propose solutions that work in multiple
instances of UAV path planning, such as IoT data collection and coverage path planning
(CPP), a classical robotics problem. Finally, in the last part of this thesis, another
approach to solving the training data demand challenge of RL algorithms based on a
model-aided learning framework is examined. In this approach, the UAV learns a model
of the real-world environment first, while then exploiting the learned model to generate
simulated training data, reducing the demand for expensive real-world data drastically.

ii

Abrégé

Les drones autonomes, stimulés par l’innovation rapide des technologies associées et
l’évolution des cadres réglementaires au cours de la dernière décennie, sont envisagés
pour une multitude d’applications au service de la société du futur. Du point de vue des
réseaux sans-fil de la prochaine génération, les drones ne sont pas seulement prévus dans
le rôle d’utilisateurs passifs connectés au réseau cellulaire, mais aussi comme facilitateurs
actifs de la connectivité dans le cadre de réseaux assistés par drones. Les cas d’utilisation
vont de la livraison de marchandises ‘last mile’, transport de passagers, inspection des
infrastructures, surveillance de l’environnement et de l’arpentage à la mise en place d’une
agriculture intelligente. Leur déploiement rapide et flexible les rend particulièrement
utiles dans les situations où l’infrastructure de communication terrestre est dépassée ou
détruite, par exemple lors de catastrophes naturelles et de situations de recherche et
sauvetage. Dans les zones reculées où il n’est pas possible ou économiquement viable
d’étendre une infrastructure de réseau permanente, les drones pourraient fournir un accès
Internet mobile à la moitié de la population mondiale qui en est actuellement privée.

L’avantage déterminant des drones dans tous les scénarios d’application potentiels est
leur mobilité. Pour tirer pleinement parti de leurs capacités, des méthodes de planification
de trajectoire flexibles et efficaces sont une nécessité impérative. Cette thèse se concentre
sur l’exploration de l’apprentissage automatique (ML), en particulier l’apprentissage
par renforcement (RL), comme une classe prometteuse de solutions aux défis de la
gestion de la mobilité des drones. Avec les récentes avancées de la recherche dans la
combinaison de l’apprentissage par renforcement et des réseaux de neurones artificiels,
l’apprentissage par renforcement profond est l’un des rares cadres qui nous permet de
nous attaquer directement à la tâche complexe du contrôle et du déploiement des drones
dans les scénarios de communication, étant donné qu’il s’agit généralement de problèmes
d’optimisation non convexes et NP-difficile. De plus, le RL profond offre la possibilité
d’équilibrer les objectifs multiples des réseaux assistés par drones de manière directe, il
est très flexible en termes de disponibilité d’informations préalables ou de modèles, tandis
que l’inférence RL profonde est efficace sur le plan informatique.

L’une des principales limites de la planification de trajectoire pour les drones de
petite et moyenne taille est leur durée maximale de mission active, limitée par la densité
énergétique des batteries intégrées. Lorsqu’ils sont utilisés comme stations de base (BS)
aériennes fournissant des services de données aux utilisateurs au sol, les drones autonomes
doivent optimiser conjointement leur temps de vol et les objectifs de performance de
communication du système. La première partie de la thèse explore l’utilisation de deep

iii

Abrégé

Q-learning pour contrôler une BS aérienne qui collecte les données des utilisateurs au
sol tout en intégrant dans sa trajectoire des spots d’atterrissage dédiés, où le drone
peut se poser en économisant de l’énergie tout en continuant à servir les utilisateurs.
Le deep Q-learning permet au drone de trouver des trajectoires efficaces sans recevoir
d’informations explicites sur l’environnement ou la mission.

Bien que le paradigme RL offre de nombreux avantages pour résoudre les problèmes
d’optimisation dans les réseaux assistés par drone, il reste quelques défis pratiques,
notamment dans le contexte de la demande de données d’entrâınement à partir desquelles
le drone peut apprendre. La collecte de données d’entrâınement dans le monde réel est
un processus coûteux et long, tandis que dans l’approche RL conventionnelle, le long
processus d’entrâınement doit être répété si un paramètre de la mission change, par
exemple la capacité de la batterie du drone. Cette thèse aborde ce problème en proposant
un algorithme deep RL qui étend l’entrâınement à des instances aléatoires d’une collecte
de données par drone à partir de dispositifs distribués de l’Internet des objets (IoT), où
aucun réentrâınement n’est nécessaire si les paramètres de la mission changent. Il s’agit
d’un problème beaucoup plus complexe par rapport à l’approche conventionnelle, car il
faut trouver des solutions à des milliers d’instances de mission en même temps. Ceci est
rendu possible par l’exploitation d’informations cartographiques traitées intelligemment
de l’environnement dense et urbain de la mission. La thèse étend ce cadre au cas des
multi-drones coopératifs, où des défis supplémentaires en matière de coordination se
présentent, et aux environnements urbains vastes, complexes et réalistes.

La dernière partie de la thèse explore la connexion entre les communications assistées
par drone et la robotique, deux communautés de recherche souvent disjointes. La flexibilité
inhérente au paradigme RL offre l’opportunité de proposer des solutions qui fonctionnent
dans de multiples instances de recherche de chemin de drone, comme la collecte de données
IoT et la recherche de chemin de couverture (CPP), un problème de robotique classique.
Enfin, une autre approche pour résoudre le défi de la demande de données d’entrâınement
des algorithmes RL, basée sur un cadre d’apprentissage assisté par modèle, est examinée.
Dans cette approche, le drone apprend d’abord un modèle de l’environnement du monde
réel, tout en exploitant ensuite le modèle appris pour générer des données d’entrâınement
simulées, ce qui réduit considérablement la demande de données coûteuses du monde réel.

iv

Acknowledgements

This thesis would not have been possible without the support of a large number of
fantastic individuals. First and foremost, I would like to thank my advisor David Gesbert
for his invaluable guidance, as well as his unconditional support during the full course
of my research. I am also deeply grateful to Paul de Kerret for co-advising me during
the first half of my thesis. I profited immensely from his mentorship. I thank Mehdi
Bennis and Andrea Tonello for carefully reviewing this thesis and providing constructive
feedback. Special thanks go to my colleagues and co-authors Rajeev Gangula and Omid
Esrafilian for many great discussions. Their advice and wealth of experience were a
great source of support for me. I am very grateful to Mirco Theile for the fantastic
collaboration and being always able to discuss the wildest ideas with him, as well as my
other collaborators at TU Munich, Marco Caccamo and Michael Koller. I also thank
Akira Hirose for welcoming me into his lab at the University of Tokyo for the second
time and the amazing group of people I was able to meet in Japan: thank you Eva, Jan,
Jana, Jenny, Jungmin, and Yuta. I would also like to thank my first academic mentor,
Michael Schöffler, and all people that have influenced me along the way of my studies
and inspired me to undertake this thesis.

I feel extremely lucky that my experience at EURECOM was shaped by the great
atmosphere created by all past and present members of the M3 group, my office-mates,
and the amazing group of colleagues and friends I had the pleasure of getting to know
during the last years. Thank you Alex, Ali, Alireza, Alison, Andreas, Anta, Antonio, Chia-
Yu, Ehsan, Emanuele, Flavio, Ismail, Italo, Jonas, Judy, Konstantinos, Lorenzo, Maha,
Marina, Matteo, Minhoe, Mody, Mohamad, Mounia, Naser, Omid, Placido, Pramod,
Rajeev, Raphael, Riccardo, Robert, Rosa, Roya, Sagar, Shahab, Sihem, Sumit, Thomas,
Xiaoguang, and everyone else who made this such a great experience. Special thanks to
Guilherme who even made living through a global pandemic feel not so bad. Thanks
also to all friends that have supported me from back home and from many other places
around the world. Last not least, I am especially grateful to my family.

v

Acknowledgements

vi

Contents

Abstract . i

Abrégé [Français] . iii

Acknowledgements . v

Contents . vii

List of Figures . xi

List of Tables . xv

Acronyms . xvii

Notations . xxi

1 Introduction 1

1.1 UAVs in Wireless Communications . 2

1.1.1 Cellular-connected UAVs . 2

1.1.2 UAV-aided Communications . 3

1.1.3 UAV Classification . 5

1.1.4 Regulatory Status . 6

1.2 Machine Learning for UAV Communications 7

1.3 Aims and Objectives . 9

1.4 Outline and Contributions of the Thesis 10

2 System Model and Methodology 15

2.1 System Model . 15

2.1.1 Grid World and UAV Model . 15

2.1.2 Communication Channel Model . 17

2.2 Markov Decision Process . 18

2.3 Reinforcement Learning . 19

2.3.1 Agent-Environment Interaction Cycle 19

2.3.2 Q-learning . 19

2.3.3 Deep Q-learning . 22

2.3.4 Exploration-Exploitation Dilemma 22

vii

Contents

3 Aerial Base Station Trajectory Planning with Landing Spots 25

3.1 Introduction . 25

3.2 Optimization Problem . 27

3.2.1 UAV Model . 27

3.2.2 Communication Channel Model and Maximization Problem 28

3.3 Neural Network Training and Algorithm 28

3.3.1 Markov Decision Process . 28

3.3.2 Neural Network Model . 30

3.3.3 DQN Training Algorithm . 31

3.4 Simulation and Numerical Results . 32

3.4.1 Simulation Setup . 32

3.4.2 Scenario 1 - Different SNR Conditions 32

3.4.3 Comparison with Dynamic Programming 33

3.4.4 Scenario 2 - Decision between Landing Spots 34

3.4.5 Scenario 3 - High and Low Shadowing Loss 34

3.5 Conclusion . 36

4 Multi-Scenario UAV Data Harvesting in IoT Networks 39

4.1 Introduction . 39

4.1.1 Related Work . 40

4.1.2 Contributions . 41

4.2 System Model and MDP . 42

4.2.1 System Model . 42

4.2.2 Markov Decision Process . 44

4.3 Map Processing . 45

4.4 Extensions to the DQN Paradigm . 46

4.5 Neural Network Model . 47

4.6 Simulations . 47

4.6.1 Simulation Setup . 47

4.6.2 Centered vs. Non-Centered Map 50

4.6.3 Collectible Data and Device Accessibility 51

4.6.4 Manhattan Scenario . 52

4.7 Conclusion . 52

5 Multi-UAV Coordination in Multi-Scenario Data Harvesting 55

5.1 Introduction . 55

5.1.1 Related Work . 56

5.1.2 Contributions . 57

5.2 System Model . 58

5.2.1 UAV Model . 59

viii

Contents

5.2.2 Communication Channel Model . 60

5.2.3 Optimization Problem . 62

5.3 Decentralized Partially Observable Markov Decision Process (Dec-POMDP) 63

5.3.1 State Space . 63

5.3.2 Safety Controller . 63

5.3.3 Reward Function . 64

5.4 Map-Processing and Observation Space 64

5.4.1 Map-Processing . 65

5.4.2 Observation Space . 68

5.5 Multi-Agent Reinforcement Learning . 69

5.5.1 Multi-Agent Q-learning . 69

5.5.2 Neural Network Model . 70

5.6 Simulations . 72

5.6.1 Simulation Setup . 72

5.6.2 Training with Map-based vs. Scalar Inputs 73

5.6.3 ‘Manhattan32’ Scenario . 74

5.6.4 ‘Urban50’ Scenario . 77

5.6.5 Influence of Scenario Parameters on Performance and System-level

Benefits . 79

5.6.6 Discussion of the Algorithm’s Dependency on the Channel Model . 81

5.6.7 Comparison of UAV-aided and Stationary Base Station System . . 83

5.6.8 Inter-UAV Interference . 84

5.7 Conclusion . 86

6 Coverage Path Planning 87

6.1 Introduction . 87

6.1.1 Related Work . 88

6.1.2 Contributions . 89

6.2 Problem Formulation . 89

6.2.1 Agent System . 89

6.2.2 Environment and UAV Model . 89

6.2.3 Target and Mission Definitions . 90

6.3 Methodology . 91

6.4 Simulations . 92

6.4.1 Simulation Setup . 92

6.4.2 General Evaluation . 93

6.4.3 Global-Local Parameter Evaluation 94

6.5 Conclusion . 97

ix

Contents

7 Model-aided Sample-efficient UAV Trajectory Planning 99

7.1 Introduction . 99

7.2 Problem Formulation . 100

7.3 Model-aided Deep Q-learning . 102

7.3.1 Simultaneous Node Localization and Channel Learning 102

7.3.2 Algorithm . 105

7.4 Simulations . 107

7.5 Conclusion . 107

8 Conclusion 111

Appendices 113

A Résumé [Français] 115

A.1 Introduction . 115

A.1.1 Réseaux assistés par drones . 116

A.1.2 Apprentissage automatique pour les communications par drones . 117

A.2 Planification de trajectoire pour station de base aérienne avec points

d’atterrissage (Chapitre 3) . 118

A.3 Collecte de données par drone dans les réseaux IoT multi-scénario (Chapitre

4) . 120

A.4 Coordination de plusieurs drones dans la collecte de données multi-scénario

(Chapitre 5) . 121

A.5 Planification du chemin de couverture (Chapitre 6) 124

A.6 Planification de trajectoire des drones assistée par modèle (Chapitre 7) . . 124

x

List of Figures

1.1 Example applications for UAVs providing communication services and
supporting stationary infrastructure. 3

1.2 UAV Classifications. 5

1.3 Taxonomy of terminology in artificial intelligence and machine learning,
derived from [2,3]. 7

2.1 Simplified visualization of the UAV moving through a small grid world
with two ground-level users and the start/landing position marked in blue. 16

2.2 The RL interaction cycle between agent and environment. 19

2.3 Classification of Q-learning in the context of a taxonomy of RL methods. 21

2.4 The training process of DQN with experience replay and target network. . 23

3.1 Aerial base station trajectory planning with landing spots overview. . . . 26

3.2 Neural network architecture . 30

3.3 Scenario 1 includes a single L = 1 landing spot. The DQN training is
run under two different cell-edge SNR conditions and the final trajectories
compared. 33

3.4 Performance comparison of the collected data per mission obtained by the
DQN approach over training episodes with the optimal trajectory obtained
by DP. 34

3.5 Scenario 2 includes two landing spots, one favorably close to a user cluster,
the other further away. 35

3.6 Scenario 3 features L = 2 landing spots and an obstacle that causes
shadowing from some users on the map. The final results for high and low
shadowing loss are compared. 36

4.1 Overview of the single-UAV data harvesting scenario. The UAV can base
its movement decision on map information in addition to its own position
and battery status. 39

4.2 Example of a single UAV collecting data from two IoT devices in an urban
environment of size M ×M with NFZs, a single start/landing zone, and
buildings causing shadowing. 42

4.3 Comparison of non-centered and centered input maps, with UAV position
represented by the green star and the intersection of the dashed lines. . . 45

xi

List of Figures

4.4 DDQN architecture with map centering, with the device map encoded in
separate layers, but visualized in RGB channels. 48

4.5 Training process comparison between centered and non-centered map input
showing the average and 99% quantiles of three training processes each,
with episodic metrics grouped in bins of 5000 step width. 50

4.6 Illustration of the same agent adapting to differences in collectible data
with all other mission parameters fixed. 51

4.7 Illustration of the same agent adapting to differences in device count and
device placement as well as flight time limits, showing used and available
flying time and collected and available total data in the Manhattan scenario. 54

5.1 Visualization of the global-local map processing. The active agent’s posi-
tion is marked by a red spot on the original map 5.1a. 67

5.2 Classification of the presented approach in the context of a taxonomy of
MARL methods. 70

5.3 DDQN architecture with map centering and global and local map pro-
cessing. Layer sizes are shown in in blue for the smaller ‘Manhattan32’
scenario and orange for the larger ‘Urban50’ scenario. 71

5.4 Training process comparison between map-based DRL path planning and
scalar input DRL path planning. 73

5.5 Example trajectories for ‘Manhattan32’ map. 76

5.6 Example trajectories for ‘Urban50’ map with K = 10 IoT devices, all with
Dk,init = 15 data units to be picked up and a maximum flying time of
b0 = 100 steps for all UAVs (legend in Tab. 5.4). 78

5.7 Influence of specific scenario parameters on the data collection ratio with
successful landing of all agents. 80

5.8 Trajectory plots illustrating the influence that a change in propagation
conditions has on the already trained agent. 81

5.9 ‘Manhattan32’ map with base station placed at the center and marked
in blue, showing the positions with LoS connectivity in white and NLoS
connectivity in gray. 83

5.10 Influence of interference on the collection ratio with successful landing
performance metric depending on the number of deployed UAVs. Each
data point is the average of 500 random Monte Carlo scenarios. 85

6.1 System diagram. 90

6.2 Example trajectories from the Monte Carlo simulations for CPP on 32×32
Manhattan map and 50× 50 Urban map. 94

6.3 Parameter grid search for CPP and DH with parameters from Table 6.3;
the black stars correspond to agents without global-local map processing. 96

7.1 Trajectory obtained by model-aided Q-learning and the estimates of un-
known node locations in the final episode of Algorithm 1. 108

7.2 The normalized, combined radio map for the scenario in Fig. 7.1 with six
users, before and after map centering. 109

xii

List of Figures

7.3 Comparison of proposed model-aided, full-knowledge map-based (chapter
4), and no prior knowledge baseline DQN (chapter 3), showing accumulated
collected data versus training episodes on a logarithmic scale. 109

A.1 Exemples d’applications pour les drones fournissant des services de com-
munication et soutenant l’infrastructure stationnaire. 116

A.2 Scénario comportant L = 2 points d’atterrissage et un obstacle qui pro-
voque l’ombrage de certains utilisateurs sur la carte. Les résultats finaux
pour une perte d’ombre élevée et faible sont comparés. 119

A.3 Comparaison des processus de formation entre les cartes centrées et non
centrées, montrant la moyenne et les quantiles à 99 % de trois processus
de formation chacun, avec des métriques épisodiques regroupées dans des
bins de 5000. 120

A.4 Vue d’ensemble du scénario de collecte de données par plusieurs drones. Les
drones utilisent une carte globale compressée et une carte locale recadrée
pour planifier leurs trajectoires. 122

A.5 Influence des paramètres spécifiques du scénario sur le ratio de collecte de
données avec atterrissage réussi de tous les agents. 126

xiii

List of Figures

xiv

List of Tables

1.1 Comparison of key assumptions, available prior information and type of
approach for the scenarios discussed in each chapter. 11

4.2 Legend for scenario plots. 42
4.3 Hyperparameters for DDQN training with centered map input. 47
4.4 Performance metrics averaged over 1000 random scenario Monte Carlo

iterations. 52

5.1 Million floating point operations (MFLOPs) needed for inference of the
networks based on map-processing. 65

5.2 DDQN Hyperparameters for 32× 32 and 50× 50 maps. 72
5.3 Performance metrics averaged over 1000 random scenario Monte Carlo

iterations. 75
5.4 Legend for scenario plots with small and tall buildings. 75
5.5 Data collection ratio of stationary base station at the map center vs.

UAV data harvesters on the ‘Manhattan32’ map, each averaged over 1000
random scenario Monte Carlo iterations. 84

5.6 Interference performance metrics on the ‘Manhattan32’ map averaged over
1000 random scenario Monte Carlo iterations. 85

6.1 Legend for CPP scenario plots. 93
6.2 Performance metrics averaged over 1000 random scenario Monte Carlo

iterations. 94
6.3 Flatten layer size for ‘Manhattan32’ with different global map scaling and

local map sizes; Without global-local map processing the size is 48,401
neurons. 95

6.4 Training time speedup for the CPP and DH problem relative to without
global-local map processing. 95

xv

List of Tables

xvi

Acronyms and Abbreviations

The acronyms and abbreviations used throughout the manuscript are specified in the
following. They are presented here in their singular form, and their plural forms are
constructed by adding an s, e.g. UAV and UAVs. The meaning of an acronym is also
indicated the first time that it is used. The English acronyms are also used for the
abstract and summary in French.

AA air-to-air channel

Adam adaptive moment estimation

AG air-to-ground channel

AI artificial intelligence

AP access point

BS base station

BVLOS beyond visual line of sight

CDMA code-division multiple access

CNN convolutional neural network

CPP coverage path planning

CR collection/coverage ratio

CRAL collection/coverage ratio and landed

CSMA/CA carrier-sense multiple access with collision avoidance

CTDE centralized training and decentralized execution

DDPG deep deterministic policy gradient

DDQN double deep Q-network

Dec-POMDP decentralized partially observable Markov decision process

DNN deep neural network

DoF degree of freedom

DH data harvesting

xvii

Acronyms

DL downlink

DP dynamic programming

DQN deep Q-network

DRL deep reinforcement learning

EASA European Union Aviation Safety Agency

FAA Federal Aviation Administration

FL federated learning

FLOP floating point operation

FoV field of view

FRAN flying radio access network

GG ground-to-ground channel

HAP high-altitude platform

i.i.d. independent and identically distributed

IoT Internet of Things

k-NN k nearest neighbors algorithm

LAP low-altitude platform

LoS line of sight

LS landing spot

LTE Long Term Evolution

MAC multiple access control

MARL multi-agent reinforcement learning

MDP Markov decision process

MFLOP million floating point operations

ML machine learning

MTOM maximum take-off mass

NFZ no-fly zone

NLoS non-line-of-sight

NN neural network

xviii

Acronyms

NOMA non-orthogonal multiple access

PBFT practical byzantine fault tolerance

POMDP partially observable Markov decision process

PSO particle swarm optimization

QoS quality of service

ReLU rectified liner unit

RNN recurrent neural network

RL reinforcement learning

RSS received signal strength

SC safety controller

SGD stochastic gradient descent

SVM support vector machine

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

TD temporal difference

TDMA time-division multiple access

UAV unmanned aerial vehicle

UAS unmanned aircraft system

UE user equipment

UL uplink

3GPP 3rd Generation Partnership Project

xix

Acronyms

xx

Notations

The following list gives an overview of some specific notation used throughout this
manuscript. Boldface uppercase letters (A) are used for matrices or tensors, boldface
lowercase letters for vectors (a), and regular lowercase letters for scalars (a). Sets are
represented by calligraphic uppercase letters (A).

(a1, . . . , aN) N-tuple

arg max Points or elements of the domain of some function at which the
function values are maximized

d. . .e Ceiling function

b. . .e Rounding to integer function

b. . .c Floor function

B Boolean domain {0, 1}

EX [. . .] Expectation over X

R+ Set of positive real numbers : {x ∈ R : x > 0}

AH Hermitian transpose of matrix A

AT Transpose of matrix A

N (0, σ2) Zero-mean Gaussian distribution with variance σ2

×iai Joint space of vectors ai over i

|A| Cardinality of set A

x ∼ X Variable x follows distribution X

xxi

Notations

xxii

Chapter 1

Introduction

The technology and potential applications of unmanned aerial vehicles (UAVs), also
commonly referred to as drones or unmanned aircraft systems (UAS), have undergone
rapid innovation in the last decade. Crucial advances in UAV hardware, manufacturing
and cost [1], in connection with newly created regulatory frameworks for the commercial
use of UAVs [4], have led to the creation of a market expected to grow to $63.6 billion by
2025 [5].

Before the developments of the last decade, unmanned flight already looked back
on a long history, but was mostly considered for its military applications, albeit with
varying degrees of success. The first reported military use of UAVs took place in July
1849 during the Austrian siege of Venice [6]. The Austrians fitted around 100 hot-air
balloons with time fuses and bombs and deployed them upwind of Venice hoping that
the wind would carry them over the city. Despite thorough wind direction measurements,
the balloons were scattered in all direction with a few even coming back at the Austrians
themselves. No further attempts were made after this.

Fortunately, civil applications of UAVs for the society of the future have shown
much more promise recently. A frequently cited scenario is the ‘last mile’ delivery of
goods to consumers with drones. One successful commercial project of autonomous
drones delivering food and groceries to customers in Iceland’s capital Reykjavik was
started as early as 2018, putting the Icelandic air authorities at the top of the list of
countries that have allowed some form of autonomous drone flight [7]. An example in the
context of keeping the world’s aging infrastructure in shape is the Japanese company
Hitachi, that is already commercially deploying partially autonomous UAVs which collect
maintenance data from Internet of Things (IoT) sensors embedded in large structures,
such as the San Juanico and Agas-Agas Bridges in the Philippines [8]. UAVs can even
be used to save lives: their flexible and fast deployment make them very attractive for
scenarios when stationary infrastructures (e.g. communication networks) are destroyed or
unavailable, i.e. in disaster and search and rescue situations. This can be the case when a
natural catastrophe like an earthquake destroys cell towers and drones act as flying base
stations (BSs) to re-establish communication capabilities for first responders [9]. To fulfill
their potential in support of the society of the future, it is clear that all UAVs require
well-designed communication capabilities or provide communication services themselves.

1

Chapter 1. Introduction

1.1 UAVs in Wireless Communications

Recent years have shown a steady increase in interest for integrating UAVs into wireless
communication networks, both from the commercial and academic research sphere.
Fundamentally, UAVs in communication networks can be thought of in two ways and
described as [1, 10]:

1. cellular-connected UAVs that are attached to mobile networks with a command
and control link as network terminals or aerial user equipment (UE);

2. providers of communication services in UAV-aided communication networks, also
referred to as flying radio access network (FRAN), which is also the focus of this
thesis.

1.1.1 Cellular-connected UAVs

Attaching drones to cellular networks provides several benefits over other forms of
connectivity, such as dedicated ground-to-UAV links. The high availability of mobile
networks worldwide makes it possible to monitor autonomous UAVs or to pilot them
remotely from thousands of kilometers away via cellular command and control links. At
the same time it can enable UAV-to-UAV communication or the information exchange
with air traffic control. Compared to traditional direct ground-to-UAV communication,
cellular networks can also provide higher reliability and throughput, as well as enhanced
privacy and security. Maybe most importantly, using existing cellular networks removes
the requirement to set up expensive alternative infrastructure and presents a considerable
advantage in cost-effectiveness [11].

Potential application scenarios are manifold, with goods delivery being the most
obvious one. Large multinational companies are close to or are already deploying
solutions, including Amazon’s prime air delivery service using fully autonomous multirotor
drones [12] or Google’s Wing delivery service that was launched for a select number of
Australian suburbs in 2019 [13]. Other applications such as surveillance, remote sensing
and virtual reality all have similar similar network requirements for reliable, low-latency
and high-speed uplink (UL) connectivity [10].

Field and experimental studies of recent years have identified the main technical
challenges for cellular-connected UAVs. In [14], measurements in different altitudes
showed that while more BSs are detectable at higher altitudes, the signal-to-interference-
plus-noise (SINR) ratio of the best cell degrades from 150m due to downlink (DL)
interference. Commercial LTE networks were shown to provide acceptable signal quality
up to 120m, despite the fact that terrestrial BS antennas are tilted towards the ground [15].
Interference was also identified as the major concern 3GPP technical report TR36.777
on enhanced LTE support for UAS [16]. The report identified possibilities to detect
interference at the network and/or UE side, suggests UL interference mitigation via power
control, 3D beamforming, and directional UE antennas, which can be similarly applied to
reduce DL interference. The potential effects of UAV mobility such as frequent handovers
can be mitigated by explicitly considering the location and trajectory of the UAV. In

2

Chapter 1. Introduction

UAV Relay

UAV BS
offloading

UAV BS
stand-alone

UAV data
collection

IoT sensors

Figure 1.1 – Example applications for UAVs providing communication services and
supporting stationary infrastructure.

summary, the 3GPP report concludes that small numbers of cellular-connected UAVs can
be supported by existing LTE infrastructure, but that the expected exponential growth
of the UAV market mandates adapted techniques. It is expected that the upcoming
3GPP TS 22.125 and TS 22.261 Release 17 concerning 5G enhancement for UAVs [17]
will address some of these issues in light of 5G networks.

Concrete research challenges often revolve around UAV path planning. In [18],
multiple UAVs aim to reach their respective end positions maximizing energy efficiency
and minimizing both wireless latency and the interference caused on the ground network
along their paths. In [19], a UAV is aiming to stay on a trajectory that guarantees reliable
cellular connection while minimizing flight time. Seamless UAV connectivity is also
investigated in [20,21]. Further topics include handover and resource management [22,23],
protocol design [24], and UAV UE to base station association [25]. Surveys that summarize
the current state of research are given by [1,10,26].

1.1.2 UAV-aided Communications

The advances in UAV hardware as well as the miniaturization of wireless communications
equipment have enabled a multitude of potential applications for UAV-aided wireless
networks, some of which are depicted in Figure 1.1. A natural use case is to attach
a wireless access point (AP) as payload to a drone that then can provide additional
communications capacity in areas where terrestrial networks are congested [27, 28].
Another use case of these aerial BSs are the establishment of stand-alone communication
services, e.g. in areas that do not have coverage or where terrestrial infrastructure is
disabled [29, 30]. UAV relays [31, 32] are likely to be able establish line-of-sight (LoS)

3

Chapter 1. Introduction

links to obstructed users, thanks to their high degree of mobility and altitude. Energy-
and throughput-constrained Internet of Things (IoT) sensor networks can be supported
by UAV data collectors that are able to describe a flight pattern that brings them into
close range of devices, thereby increasing energy efficiency [33–35].

In this thesis, we focus on two use cases: an aerial BS scenario (chapter 3) and data
collection from distributed IoT devices (chapters 4, 5 and 7). In the aerial BS scenario,
the UAV is serving ground users at unknown locations trying to collect as much of their
data in the limited mission time while granting all users equal channel access. In the IoT
scenario in chapters 4 and 5, the location of the IoT devices is known, while each IoT
device has a finite amount of data to be collected. In some investigated scenarios, it is
possible for the UAV to collect all the data within the flying time limit, in some cases
it needs to abandon a portion of the data. Chapter 7 analyzes a mixed scenario, where
not all IoT device positions are known and the amount of data to be picked up at each
device is unlimited.

Compared to fixed terrestrial networks, UAV-aided communication brings forward a
number of unique design and research challenges [36]. Firstly, the deployment aerial BSs
in 3D space provides an additional degree of freedom (DoF) compared to the typically
2D deployment of terrestrial base stations. Another major challenge is the different
propagation environment [37]. The air-to-ground (AG) channel for UAVs has not been
studied in too much detail previously, yet accurate propagation models are essential
for developing robust communication protocols and techniques. Finally, aerial BSs and
relays also add additional constraints to the maximization of communication performance
or quality of service (QoS), such as limited flight time and intrinsic flight dynamics
requirements. Scheduling, research allocation, and multiple access protocols need to be
adapted to account for theses changes

These challenges guide the research into UAV-aided communications. Mobility can
either be taken into account by UAV BS/relay placement optimization, or full end-to-end
trajectory optimization. Even UAV placement is a more challenging problem compared to
stationary BSs due to the additional DoF. Algorithms for UAV BS placement range from
brute force [38], genetic programming [27], K-means clustering [25] to contract theory
and machine learning (ML) [39]. Full trajectory optimization has been tackled, e.g. by
sequential convex optimization [40], functional optimization and optimal control [41], or
reinforcement learning (RL) [42]. Improving AG channel modeling requires experimental
studies such as [14,43]. Surveys and tutorials that summarize recent research are given
by [1,10,44].

In the context of commercial 5G wireless networks, there are three scenarios that
are especially relevant for UAV-aided communcations: enhanced mobile broadband
(eMBB) supporting high peak data rates, massive machine-type communications (mMTC)
in the context of IoT networks, and ultra-reliable and low-latency communications
(URLLC) with very high reliability from a limited set of terminals [45]. While waiting
for the widespread commercial implementation of delivery drones connected to 4G and
5G networks, the first considerations for what aerial communications means for 6G
networks has already started [26]. Throughout the next decade, it is expected that
increasing numbers of passenger air taxis, cargo UAVs, an integrated ground-air-space

4

Chapter 1. Introduction

Figure 1.2 – UAV Classifications.

communication network, and cell-free architectures for UAVs, will guide the process of
defining 6G requirements, making 6G a native UAV-aided communication architecture.

1.1.3 UAV Classification

While the terms UAV, UAS or drone commonly refer to any aircraft without on-board
pilot, there are various ways to classify and describe UAVs according to their capabilities
and intended application scenario. A possible taxonomy is depicted in Figure 1.2.

Most obviously, UAVs can be based on different flying mechanisms and classified as
such. Rotary-wing drones allow for vertical take-off/landing and can hover over fixed
location, e.g. the widely used quadcopter-type drones fall under this category. Fixed-wing
drones can neither hover nor take-off vertically, but are typically more energy efficient and
can carry a heavier payload while also typically flying at higher altitude. Balloons and
airships are quasi-stationary with very long endurance and can lift heavy payloads [46].

In terms of operation altitude, UAVs are often only classified as low-altitude (LAP)
or high-altitude platforms (HAP). LAPs are smaller and more flexible UAVs that can
be deployed rapidly, e.g. consumer and almost all commercial drones usually fall into
this category. To exceed altitudes of around 100m, most regulators require a license.
HAPs on the other hand are typically deployed at altitudes above 17km for much longer
missions [36]. Famous examples of HAPs are the now terminated projects Google Loon
and Facebook Aquila [46]. Both projects were aiming to bring Internet connectivity
to remote areas were the only current option is to use expensive and higher latency
satellite connections. Google Loon aimed to launch stratospheric balloons to relay LTE
signals from ground stations to cover wide areas. Aquila had a similar aim but was
based on large solar-powered fixed-wing UAVs that operate at altitudes of 18− 20km.
Both projects were eventually deemed economically unviable and cancelled in 2018 [47]
and 2021 [48] respectively. The end of these means that there are currently no large
commercial projects targeting HAPs for UAV-aided communication.

5

Chapter 1. Introduction

UAVs for the tasks in communication networks mentioned in the previous sections
1.1.1 and 1.1.2 typically fall into the categories of small size (up to 25kg) with a short or
close range (up to 70km). Regulatory classifications by the European Union Aviation
Safety Agency (EASA) depending on maximum take-off mass (MTOM), sort these UAVs
in the open category for leisure and low risk commercial drones A1-A3 [49]. The Federal
Aviation Administration (FAA) applies similar rules that partially depend on weight and
partially on maximum possible kinetic impact energy [50]. The autonomy capabilities of
UAVs are another important aspect and can be roughly classified from fully autonomous,
i.e. UAVs that do not require any human intervention, to remotely piloted. Remotely
operated or semi-autonomous UAVs might, e.g. fly independently from waypoint to
waypoint, but require a human operator to decide on and define waypoints [51].

1.1.4 Regulatory Status

In addition to the advances in UAV hardware and costs, newly created regulatory
frameworks that state well-defined general rules for the use of UAVs, be it for commercial
or leisure activities, were an important driving force in the rapid development of the
drone sector [36,46,52]. There are two main concerns that regulation is aiming to address.
First, privacy and data protection are of high concern for UAVs, as airborne drones can
easily breach personal privacy or business security through aerial surveillance, intended
or not. All big regulators, including the FAA and the European Union, have put limits
in place on where and when UAVs can be operated to collect any kind of data. Existing
stringent data protection laws, such as General Data Protection Regulation (GDPR) in
the European Union, also directly apply to UAVs and specify how legally collected data
can be used, stored and processed.

The second main concern is the one of public safety, specifically the personal safety
of individuals, as well as airspace safety. The wide availability of cheap end-consumer
drones that are flown by mostly inexperienced pilots, poses a risk of accidents occurring
through pilot or operator errors. This was addressed by eventually passing rules that
define under what circumstances UAVs can be operated near of above people [49, 50]. In
general, this is to be avoided in all jurisdictions and usually completely forbidden above
or near large gatherings. Additionally limiting the maximum weight or kinetic impact
energy of consumer drones reduces the gravity of accidents if they do occur. Collisions
of drones with manned aircraft or sensitive infrastructure pose an even greater danger
and can cause catastrophic accidents. This is the reason for the definition of categorical
no-fly zones (NFZs), such as airports or urban city centers in UAV rule books. Virtually
all jurisdictions have introduced maximum altitudes to avoid the collision of UAVs and
manned aircraft in flight, typically somewhere around a maximum of 100m. The general
maximum by the FAA is set at 400ft and at 120m by the EASA. National and regional
regulators can be more stringent, e.g. the maximum is set as low as 50m for significant
parts of France [53].

Given that the focus for UAVs in communications lies on fully autonomous drones
that typically operate in the beyond visual line of sight (BVLOS) regime, aspects of
regulation that are important especially for large-scale commercial use are still going

6

Chapter 1. Introduction

through the process of definition. Although it is not very clear as of now what future
regulation of autonomous UAVs will look like, it can be assumed, based on the current
rules for pilot-controlled drones, that altitude and NFZ restrictions will form part of a
framework of regulation. The FAA, after having published definitive rules on flying over
or near people, has now established the FAA BEYOND program [54] tackling remaining
challenges of UAV integration. Specifically, these are: 1) BVLOS operations that are
repeatable, scalable and economically viable with specific emphasis on infrastructure
inspection, public operations and small package delivery, 2) leveraging industry operations
to better analyze and quantify the societal and economic benefits of UAV operations, and
3) focusing on community engagement efforts to collect, analyze and address community
concerns.

1.2 Machine Learning for UAV Communications

Artificial Intelligence

Machine Learning

Supervised
Learning

Unsupervised
Learning

Deep
Learning

Reinforcement
Learning

Deep
Reinforcement

Learning

Figure 1.3 – Taxonomy of terminology in artificial intelligence and machine learning,
derived from [2,3].

The expansion of potential UAV applications and the technological progress in drone
hardware also led to the emergence of new associated challenges and problems. Solutions
to these challenges based on artificial intelligence (AI) and machine learning (ML) have
become a highly active research area. An explosive growth of interest in both aspects of
this thesis, UAV-aided communications and ML, coincided over the last years, leading to
a manifold of research results that combine both. While some terminology, like AI and
ML, do not necessarily have a single universally agreed definition, Figure 1.3 shows the

7

Chapter 1. Introduction

relationship among the most commonly used AI/ML terminology [2].

AI is the most broad term, describing the area encompassing ML. While even the
‘gold standard’ of AI textbooks, Russell and Norvig [55], only ventures as far as giving
no less then four different definitions, the general definition of Bellman [56] defining AI
as “[The automation of] activities that we associate with human thinking, activities such
as decision-making, problem solving, learning ...“, seems at least not to raise too many
objections. Machine learning, on the other hand, is an umbrella term for algorithms
that improve automatically through experience and the use of data [57]. Specifically, ML
algorithms are classified in the categories of supervised, unsupervised or reinforcement
learning (RL). While a labeled data set of input-output pairs is available to direct the
learning process in the supervised setting, unsupervised algorithms infer information
from patterns in unlabeled data. In reinforcement learning, there is a form of feedback,
but no explicit input-output data examples are available. RL is essentially based on
exploring a problem by trial and error in settings where an agent makes sequential
decisions interacting with an environment. Deep learning refers to variants of these
three ML subclasses where a deep neural network (DNN) is used as part of the learning
algorithm. Whether a neural network is considered ‘deep’ or ‘shallow’ is again a question
of definition for which there is no consensus, but generally all neural networks with more
than two hidden layers are referred to as ‘deep networks’.

Supervised learning tasks often are either a form of regression, typically in the sense
of prediction or forecasting, or classification. Combined regression and classification is
also possible, e.g. support vector machines (SVMs) can perform both tasks. Concrete
examples of supervised learning in UAV communications include trajectory prediction of
UAVs relative to base station to improve communication efficiency [58], UAV-to-UAV
path loss prediction using random forest and k-nearest neighbors (k-NN) algorithms [59]
or the detection of UAV UEs based on LTE radio measurements [60]. The ubiquitous
usage of convolutional neural networks (CNNs) in image classification has also inspired
related UAV-based applications, e.g. harvest estimation in high-tech agriculture through
drone imaging [61].

Algorithms that are frequently used in unsupervised learning often tackle clustering
(e.g. K-means, Gaussian mixture models), dimensionality reduction (e.g. autoencoder,
multi-dimensional scaling), or the generation of synthetic data (e.g. generative adverserial
networks). In relation to the deployment of UAV BSs, unsupervised learning was used e.g.
in the form of weighted expectation maximization (WEM) clustering to predict download
traffic and deploy aerial BSs accordingly [39], or for joint mobility prediction and object
profiling of UAVs to facilitate control and communication protocols [62]. In [63], clustering
is used to model the 3D UAV-to-ground channel based on k-means. Unsupervised learning,
specifically one-class SVM, can also be used for the detection of active eavesdropping in
UAV-aided relay networks [64]. A general overview of unsupervised anomaly detection in
UAVs can be found in [65].

The framework of reinforcement learning is especially suitable for challenges arising
from deploying autonomous UAVs in communication networks, as the central idea is an
autonomous agent taking decisions (e.g. trajectory planning) to maximize some objective
(e.g. QoS for an aerial BS) in an unknown environment. Deep reinforcement learning

8

Chapter 1. Introduction

(DRL) can be used in many instances of UAV placement and trajectory planning, such as
interference-aware multi-UAV path planning [18], data collection in the context of mobile
crowdsensing [66], or maximizing communications coverage in UAV-aided networks [30].
Resource allocation is one of the UAV network applications that go beyond path planning.
In [67], multi-agent reinforcement learning (MARL) is used to automatically select each
UAV’s communicating user, power level and subchannel without any information exchange
among UAVs. An RL-based user association algorithm is developed that minimizes user
hand-offs in a UAV BS network [68]. The combination of UAVs with intelligent reflecting
surfaces in the context of 6G also gives rise to various challenges that can be solved by
RL [26].

Another subfield of ML that has become relevant in the context of UAV communi-
cations is federated learning (FL). In deep FL, a group of decentralized edge devices
collaboratively train a DNN model under orchestration of a central server [69]. Instead
of exchanging all relevant data with the central server, individual devices hold on to
their share of data samples, avoiding the exchange of large quantities of data and the
associated privacy and data security concerns. These are issues that are also relevant for
the application of ML techniques in UAV communication networks, where UAVs build a
learning model collaboratively, e.g. in trajectory planning, channel modeling, or data
routing and caching [70].

While ML-based approaches have shown great promise in many UAV communications
applications, it is important to point out that this by no measure means that ML
generally outperforms classical approaches in all scenarios and applications. In fact,
ML brings its own challenges over classical approaches: sacrificing interpretability and
guaranteed performance in some scenarios, while performance gains in the real world
have not materialized in many areas, due to the fact that practical real-world deployment
of ML-based solutions is often still difficult to achieve. However, it is also true that ML
offers the chance for viable solutions to problems that are hard or impossible to tackle
with classical approaches.

A wide-ranging survey on current research themes in AI for UAV-enabled wireless
networks is given by [61]. Bithas et al. [71] provided an overview covering similar topics,
while [52] focuses on DRL approaches.

1.3 Aims and Objectives

The most central difference of UAV-aided wireless communication networks compared to
classical ones is the high degree of mobility as an additional DoF in the system. This is the
defining feature that this thesis aims to explore. The advantage of UAV-aided networks
essentially lies in exploiting the UAV’s ability to move closer to users, avoid positions
that are detrimental to communication performance, in general adapt its trajectory
to serve the QoS goals of the network. Trajectory planning, an old but still complex
problem, is altered from the typical aim to find the shortest or fastest path from A to B,
to strike a balance between the classical path planning goals and communication network
performance.

This thesis also aims to show that the problem of trajectory planning in UAV-aided

9

Chapter 1. Introduction

networks thereby mirrors exactly the typical formulation of an RL problem: the UAV
needs to make instantaneous control decisions during its mission and receives subsequent
feedback on the quality of its decisions, e.g. by achieving a certain data rate, QoS,
coverage area, or a certain amount of collected data. This typically happens in a complex
environment for which various parameters are subject to uncertainty, e.g. the wireless
channel characteristics, structure of the environment, or exact positions of networks
users. The UAV needs to explore these unknowns in the environment, while then later
exploiting the knowledge it has accumulated, the classical exploration-exploitation trade-
off in RL. Another important reason for the attractiveness of RL in this context is
the fact that UAV control and deployment in communication scenarios are generally
non-convex optimization problems [1,30,36,72–74], and proven to be NP-hard in many
instances [1, 73,74], therefore difficult to solve by classical methods.

Although this work is focused on UAV communication scenarios, the inherent flexibility
of RL also enables the adaptation of the described methods in other instances of UAV path
planning. By making a comparison between the classical robotics problem of coverage
path planning (CPP), where the drone’s goal is to find a path that fully covers an area of
interest, and a data collection scenario, we aim to show the interdisciplinary connection
in the often disjoint research communities of robotics and wireless communications.

With this work concentrating especially on deep reinforcement learning (DRL) as
a methodology to solve UAV trajectory planning problems, the well-known challenges
of deploying DRL in practical real-world applications are also explored [75]. Maybe
the most important challenge is thereby the need for often lengthy training phases of
DRL algorithms to realize the promised performance, while training in the real-world, i.e.
flying a drone, is time-consuming, complex and expensive. At the same time, state space
representations of problems that are solved in the literature are often small and how
to adapt the results for larger, more realistic state spaces often remains unclear. This
thesis aims to explore solutions on the way to making DRL more applicable to real-world
scenarios.

In many UAV communication scenarios, the expectation is that large benefits can be
drawn from deploying teams of UAVs that provide communication services cooperatively.
This thesis also explores the challenges that arise in cooperation and decentralization
in multi-UAV systems. With reference to the previous section 1.1, the focus of this
work is on UAV-aided communications while cellular-connected UAVs are not directly
considered. Specifically, employing UAVs as BSs and for data collection in IoT networks
are considered in detail. With reference to subsection 1.1.3, only the most common type
of small rotary-wing LAP type UAVs with short to close ranges in fully autonomous
scenarios are considered.

1.4 Outline and Contributions of the Thesis

Each of the following chapters explores a specific instance of UAV path planning. An
overview of key modeling assumptions, available prior information, goal and problem
formulations for each chapter is given in Tab. 1.1. While chapters 3, 4, 5 and 7 investigate
UAV data uplink collection from IoT devices or users, chapter 6 explores the synergies of

10

Chapter 1. Introduction

C
h
ap

te
r

3
C

h
ap

te
r

4
C

h
ap

te
r

5
C

h
ap

te
r

6
C

h
ap

te
r

7

Priorinformation
C

h
an

n
el

m
o
d

el
7

7
7

–
7

E
n
v
ir

on
m

en
t

m
a
p

7
3

3
3

3

T
a
rg

et
lo

ca
ti

o
n

7
3

3
3

p
ar

ti
al

ly

In
p

u
t

fo
rm

a
t

S
ca

la
r

C
en

te
re

d
m

ap
C

en
te

re
d

gl
ob

al
-l

o
ca

l
m

ap
s

C
en

te
re

d
gl

ob
al

-l
o
ca

l
m

ap
s

C
en

te
re

d
ra

d
io

m
ap

M
u

lt
i-

sc
en

ar
io

le
a
rn

in
g

7
3

3
3

7

N
u
m

b
er

o
f

U
A

V
s

S
in

g
le

S
in

gl
e

M
u

lt
ip

le
S
in

gl
e

S
in

gl
e

P
ro

b
le

m
fo

rm
u
la

ti
on

M
D

P
M

D
P

D
ec

-P
O

M
D

P
P

O
M

D
P

M
D

P

G
oa

l
U

p
li
n
k

d
a
ta

co
ll
ec

ti
on

(i
n

fi
n
it

e
b

a
ck

lo
g)

U
p
li
n
k

d
at

a
co

ll
ec

ti
on

(fi
n

it
e

b
ac

k
lo

g)

U
p
li
n
k

d
at

a
co

ll
ec

ti
on

(fi
n

it
e

b
ac

k
lo

g)

C
ov

er
ag

e
p

at
h

p
la

n
n
in

g
U

p
li
n
k

d
at

a
co

ll
ec

ti
on

(i
n

fi
n
it

e
b

ac
k
lo

g)

T
D

M
A

sc
h

ed
u
li
n
g

R
ou

n
d
-r

ob
in

M
ax

-r
at

e
M

ax
-r

at
e

–
R

ou
n

d
-r

ob
in

T
ab

le
1.

1
–

C
om

p
ar

is
on

of
ke

y
as

su
m

p
ti

on
s,

av
ai

la
b
le

p
ri

or
in

fo
rm

at
io

n
an

d
ty

p
e

of
ap

p
ro

ac
h

fo
r

th
e

sc
en

ar
io

s
d
is

cu
ss

ed
in

ea
ch

ch
a
p

te
r.

T
h
e

g
o
a
l

in
ch

a
p

te
r

6
is

co
v
er

a
g
e

p
a
th

p
la

n
n
in

g
m

a
k
in

g
th

e
ch

a
n

n
el

a
n

d
sc

h
ed

u
li
n

g
ca

te
g
o
ry

n
o
t

a
p
p

li
ca

b
le

.
T

a
rg

et
lo

ca
ti

on
s

re
fe

r
to

ei
th

er
u
se

r
p

os
it

io
n
s,

Io
T

d
ev

ic
e

lo
ca

ti
on

s,
or

th
e

lo
ca

ti
on

of
th

e
zo

n
e

of
in

te
re

st
fo

r
co

ve
ra

ge
p
at

h
p
la

n
n
in

g.

11

Chapter 1. Introduction

UAV trajectory planning in robotics and communications. We either look at solving a
single mission scenario at a time (chapters 3 and 7), or we attempt to generalize learning
over multiple scenario instances at the same time (chapters 4, 5 and 6). The fact that the
amount of data to be collected in chapters 3 and 7 is assumed to be unlimited (infinite
data backlog) is a consequence of the unavailability of precise prior information about
the users or IoT devices. Precise information is available in chapters 4 and 5, therefore
the finite amount of data available at each device is known (finite data backlog). As a
consequence, the TDMA scheduling is either assumed to follow the max-rate (limited data)
or equal access rules (unlimited data). All instances of path planning are tackled with a
DRL approach, specifically different variants of the deep Q-network (DQN) paradigm. In
chapter 2, we introduce the methodology and models that are relevant for all following
chapters. Specifically, this includes the grid world and UAV model, a segmented channel
model for urban environments, the formulation of the general Markov decision process
and an introduction to RL and deep Q-learning. The rest of this section is dedicated to
giving a short description for each of the following chapters.

Chapter 3: Aerial Base Station Trajectory Planning with Landing Spots

In this chapter, we introduce the concept of using a deep Q-learning system to train a
neural network to make control decisions for an autonomous UAV BS serving a group
of ground users. In contrast to the following chapters, we assume absolutely no prior
knowledge about the mission, the environment, or the wireless channel is available. We
show that the RL framework allows the UAV agent to learn all these features while
interacting with the environment. As small UAVs’ mission time is strongly limited by
on-board battery capacity, we introduce the concept of landing spots (LS), a small piece
of real estate where the UAV can rest while continuing to serve users. Comparing the
final learned trajectory to the optimal solution obtained by dynamic programming and
full model knowledge, we show that the UAV agent learns to integrate LSs effectively into
its trajectory, while extending its operating time and maximizing the collected data over
the whole mission. The training procedure is also able to adapt to complex environmental
effects, like small-scale fading and obstacle shadowing. The results of this chapter were
published in:

• H. Bayerlein, P. de Kerret, and D. Gesbert, “Trajectory Optimization for Au-
tonomous Flying Base Station via Reinforcement Learning,” in Proc. IEEE Inter-
national Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2018 [29].

• H. Bayerlein, R. Gangula, and D. Gesbert, “Learning to Rest: A Q-learning
Approach to Flying Base Station Trajectory Design with Landing Spots,” in Proc.
52nd Asilomar Conference on Signals, Systems, and Computers, 2018, pp. 724–728
[76].

12

Chapter 1. Introduction

Chapter 4: Multi-Scenario UAV Data Harvesting in IoT Networks

While the approach in the previous chapter does not require any prior knowledge about
the scenario, this comes at the price of long training time. Even more so as any change in
the scenario, e.g. the position of the users, requires to rerun the full training procedure.
This is also the case for the vast majority of previous work proposing DRL approaches for
UAV-aided communication missions. Here, we introduce a new double deep Q-network
(DDQN) method with combined experience replay for UAV trajectory planning in an
IoT data harvesting scenario where the IoT devices hold a finite amount of data to be
picked up by the drone. By leveraging a convolutional neural network model that exploits
information about the environment from map layers, we show that we can generalize
learning over multiple scenarios, i.e. the UAV agent learns to adapt instantly to significant
changes in the scenario such as the number and location of IoT devices or maximum
available battery capacity, without the need for lengthy retraining. Specifically, also show
the large gain in learning efficiency from centering the environment maps on the UAV
agent’s position. These results were published in:

• H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “UAV Path Planning for
Wireless Data Harvesting: A Deep Reinforcement Learning Approach,” in Proc.
IEEE Global Communications Conference (GLOBECOM), 2020 [77].

Chapter 5: Multi-UAV Coordination in Multi-Scenario Data Harvesting

So far, we have only analyzed single UAV scenarios which we extend in this chapter to the
multi-UAV case of the IoT data harvesting scenario. This introduces new challenges in
terms of coordination and multi-agent reinforcement learning (MARL) and also requires
changes in the underlying Markov decision process formulation. Based on the results
from the previous chapter, we also introduce a MARL approach based on centralized
learning with decentralized execution (CTDE) to control a team of homogeneous UAVs
on a data collection mission. We again learn a policy that can adapt without retraining
to large changes in the parameters that define the data harvesting mission, such as the
number of UAVs, their start positions, the number and position of IoT devices, as well
as the amount of data that needs to be picked from each of them. We further adapt the
approach from chapter 4 to large and complex urban environments, which necessitates
an intelligent way of handling the large environment maps via dual global-local map
processing. In general, the scenario in this chapter is a more complex problem with a
larger state space than most of previous works have attempted to solve. We also use
this chapter’s approach to provide a detailed analysis of the connection between system
performance and scenario parameters, as well as to compare scalar and map-based input
representations and to provide some intuition about the algorithm’s dependency on the
channel model and the data collection performance of a stationary base station vs. the
UAV-aided system. This work has led to the publication of:

• H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “Multi-UAV Path Planning
for Wireless Data Harvesting with Deep Reinforcement Learning,” IEEE Open
Journal of the Communications Society, vol. 2, pp. 1171–1187, 2021 [35].

13

Chapter 1. Introduction

Chapter 6: Coverage Path Planning

Although the main focus of this thesis are UAV-aided communication scenarios, several
other instances of UAV trajectory planning are closely related. In this chapter, we want
to highlight the connection of IoT data harvesting to the classical robotics problem of
coverage path planning (CPP). The goal for the UAV in CPP is to cover an area of
interest, while adhering to obstacle avoidance and flight time constraints. The flexibility
of DRL allows both problems to be solved with the same approach and neural network
architecture, fundamentally only requiring a change in the reward function to reflect
the change of the goal function from data collection ratio to coverage ratio. By finding
a common formulation of both problems based on environment and target map layers,
we show that aerial robotics and UAV communications are research areas with large
unexplored synergies. We also analyze the influence of key map processing parameters of
the global-local map approach on the learning performance. This work has resulted in
the publications/submissions of the following articles:

• M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV Coverage Path
Planning under Varying Power Constraints using Deep Reinforcement Learning,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2020 [78].

• ——, “UAV Path Planning using Global and Local Map Information with Deep
Reinforcement Learning,” submitted to 20th International Conference on Advanced
Robotics (ICAR), arXiv:2010.06917 [cs.RO], 2021 [79].

Chapter 7: Model-aided Sample-efficient UAV Trajectory Planning

In this chapter, we return to another instance of IoT data collection with limited prior
information available, i.e. more than in chapter 3 but a little less than in chapters 4 and
5. Specifically, the key idea consists of using a small subset of IoT nodes as anchors (i.e.
with known locations) and learning a model of the propagation environment in order
to estimate the location of the other IoT nodes with unknown locations. We propose a
model-accelerated DQN learning procedure that allows for fast convergence while only
requiring a minimum of training data collected in the real world, as flying a drone just
for training is expensive and time-consuming. By exploiting a map of the dense urban
environment, learning a model of the wireless channel and introducing an IoT device
localization algorithm, we achieve a reduction in real-world training data demand of
at least one magnitude compared to baseline approaches with identical data collection
performance. This work has been submitted to:

• O. Esrafilian, H. Bayerlein, and D. Gesbert, “Model-aided Deep Reinforcement
Learning for Sample-efficient UAV Trajectory Design in IoT Networks,” to be pre-
sented at IEEE Global Communications Conference (GLOBECOM), arXiv:2104.10403
[cs.IT], 2021 [80].

14

Chapter 2

System Model and Methodology

This chapter introduces the key concepts for the general system model pertaining to
all specific instances of UAV trajectory planning in UAV-aided networks that are inves-
tigated in the following chapters. Specifically, this includes the grid world, UAV and
communication channel models. Note that some level of simplification is needed when
modeling the UAVs’ dynamics in order to enable the implementation of the RL approach.
The underlying assumptions are explicit whenever suitable.

Before moving on to a short introduction of reinforcement learning (RL), specifically
Q-learning which we use in various forms in the later chapters, we describe Markov
decision processes (MDPs) as the prerequisite to formulating an RL problem.

2.1 System Model

2.1.1 Grid World and UAV Model

We consider a square grid world of size M ×M ∈ N2 with cell size c and the set of all
possible positions M. A number of K communication service users is located within the
limits of the grid world. The k-th user is located on ground level at uk = [xk, yk, 0]T ∈ R3

with k ∈ K where |K| = K. Discretization of the environment is a necessary condition for
the map-processing approaches presented in the following chapters, however note that all
presented methods can be applied to any rectangular grid world.

As depicted in Figure 2.1, the UAV moves within the limits of the grid world M.
The UAV’s mission is over after T ∈ N mission time steps, where the time horizon is
discretized into equal mission time slots t ∈ [0, T] of length δt seconds. The state of the
UAV is thereby described through its:

• position p(t) = [x(t), y(t), z(t)]T ∈ R3 with altitude z(t) ∈ {0, h}, either at ground
level or in constant altitude h;

• battery energy level b(t) ∈ R.

Hence, the trajectory optimization is limited to flying the UAV in a plane of fixed altitude
h with only binary altitude control that allows the UAV to decide when to land. While

15

Chapter 2. System Model and Methodology

Figure 2.1 – Simplified visualization of the UAV moving through a small grid world with
two ground-level users and the start/landing position marked in blue.

it is a common assumption to make in the UAV communications trajectory planning
literature [1, 10,44,61], it seems relatively restrictive considering that in many cases the
reason to use a UAV is to take advantage of altitude control as an additional degree of
freedom. However, this advantage already materializes if an altitude is chosen that allows
the UAV to avoid as many obstacles as possible and establish predominantly LoS links
with the target communication devices, not necessarily requiring active altitude control
during the mission.

As explained in section 1.1.4, it is also not very clear as of now what future regulation
of autonomous UAVs will look like, but it can be assumed, that altitude restrictions
will form part of a framework of regulation. Current regulation in France on flying
small quadcopter-type drones sets the maximum altitude at 50m for significant parts
of France [53]. For the dense urban scenarios we consider later, this would mean that
even with full altitude control, UAVs would not be able to fly over the significant number
of high-rise buildings, therefore not being able to take full advantage of the additional
degree of freedom in any case.

Furthermore, UAVs are typically severely restricted by their on-board battery budget
and rely on energy-efficient flight to maximize their active mission time. Climbing flight
consumes more energy than horizontal flight [81], impacting the mission duration and
therefore communication performance. For the mentioned reasons, the focus of this work
is on designing 2D trajectories.

We consider different power consumption models and discrete action spaces available
to the UAV in different scenarios, which is why those will be introduced in the specific
chapters later on.

16

Chapter 2. System Model and Methodology

2.1.2 Communication Channel Model

In UAV-aided communications, essentially three types of channels exist: the air-to-ground
(AG) channel, the air-to-air (AA) channel, and the ground-to-ground (GG) channel. While
the GG channel is well investigated, the AA or UAV-to-UAV channel can usually be
modelled by simple free space loss due to the unobstructed propagation environment [82].
The AG or UAV-to-ground channel on the other hand, exhibits distinct characteristics in
comparison to terrestrial communication channels [37].

The inherent advantage of the AG channel over the GG channel is the increased
likelihood of establishing LoS connections with ground users due to the UAV altitude.
Even under NLoS conditions it is likely that the AG channel incurs smaller diffraction
and shadowing losses than near-ground terrestrial links. The high degree of UAV mobility,
on the other hand, leads to faster changes and fluctuations compared to GG channels.
As rotary-wing type UAVs have the possibility to hover however, it is also possible that
adverse propagation conditions, e.g. caused by local fading, last several seconds [45].

The following channel model will be used for all following chapters of this thesis,
except chapter 3, where we used a simplified but similar model. Due to the focus of this
work on environments with many obstructions, i.e. urban environments, we follow an
LoS/NLoS segmented UAV-to-ground channel model. Consequently, the communication
links between UAVs and the K users are modeled as LoS/NLoS point-to-point channels
with log-distance path loss and shadow fading. The information rate at time t for the
k-th user is given by

Rk(t) = log2 (1 + SNRk(t)) . (2.1)

The SNR with transmit power Pk, white Gaussian noise power at the receiver σ2, UAV-
user distance dk, path loss exponent αe and ηe ∼ N (0, σ2

e) modeled as a Gaussian random
variable, is defined as

SNRk(t) =
Pk
σ2
· dk(t)−αe · 10ηe/10. (2.2)

The existence of propagation obstacles hindering free propagation causes a strong de-
pendence of the propagation parameters on the e ∈ {LoS, NLoS} condition and note
that (2.2) is the SNR averaged over small scale fading. The UAV trajectory optimization
time scale is usually much longer than the fast fading coherence time, hence fast fading
can be averaged out in approximation. It is also important to note that the RL-based
trajectory planning algorithms we develop in later chapter are model-free and therefore
do not rely on any specific channel model. While a more accurate and complex model
could be directly used with RL approach, the most important features for UAV com-
munication mission in urban environments, the dependence of the SNR on dk and the
e ∈ {LoS, NLoS} condition, are already captured in (2.2). A more detailed analysis of
the channel model dependency and the description of multiple access control (MAC)
protocols follows in the later chapters.

17

Chapter 2. System Model and Methodology

2.2 Markov Decision Process

Markov decision processes (MDPs) are a mathematically idealized form of the reinforce-
ment learning problem and as such, form the basis of RL [83,84]. This section introduces
the key concepts of finite-horizon, discrete-time, stochastic MDPs. We then extend the
basic MDP formulation in the following chapters as required for the specific scenario.
While infinite-horizon MDP formulations are also possible, UAV-aided communication
scenarios typically have a well-defined end-point, i.e. when the UAV’s battery runs out
and it must return to a charging station. Stochastic MDPs are an extension of deter-
ministic state transitions: in a stochastic MDP, the next state is not deterministically
given by the current state and action. Instead, the next state is a random variable, and
the current state and action give the probability density of this random variable [85]. In
terms of notation, we follow the example of Puterman [86], one of the standards in the
MDP literature. As such and in line with standard MDP convention, the time index t is
written in subscript in the following, but will be omitted in later chapters.

MDPs can be used to formalize a discrete time planning task of a single agent in a
stochastically changing environment, on the condition that the agent can observe the
state of the environment. It is defined by the tuple (S,A, P, R) with state-space S, action
space A, state transition function P and reward function R:

• The state space S defines the current condition of the environment, i.e. a finite
set of states, where a state is a unique characterization of all that is important for
the problem that is modeled. The state typically includes features like the current
position and battery content of the drone.

• A finite set of actions is defined by the action space A. Actions can be used to
control the system state, e.g. the movement directions that are available to the
UAV. In some systems, not all actions can be applied in every state, e.g. the safety
controller of a drone can block unsafe actions to prevent accidents.

• The probabilistic state transition function is given by P : S ×A× S → R, i.e. the
probability of ending up in state st+1 after executing action at in state st is denoted
P (st+1|at, st). P is therefore equivalent to a probability distribution over possible
next states.

• The reward function, that defines the UAV mission goals and is a measure of its
performance, maps state-action pairs to a real-valued reward, i.e. R : S ×A → R.

The Markov property is fulfilled if the effect of an action only depends on the current
state and not on the history of past actions and visited states, i.e.

P (st+1|st, at, st−1, at−1, ...) = P (st+1|st, at), (2.3)

implying that the current state gives enough information to make an optimal decision for
the next action.

18

Chapter 2. System Model and Methodology

Figure 2.2 – The RL interaction cycle between agent and environment.

2.3 Reinforcement Learning

2.3.1 Agent-Environment Interaction Cycle

Reinforcement learning (RL) in general proceeds in a cycle of interaction between an
agent and the environment as depicted in Figure 2.2. The environment enables the agent
to learn and optimize a behavior, i.e. the agent observes state st ∈ S and performs an
action at ∈ A at time t. The environment subsequently assigns a reward r(st, at) ∈ R to
the agent. Then, the cycle restarts with the propagation of the agents to the next state
st+1. The agent’s goal is to learn a behavior rule, referred to as a policy that maximizes
its reward. Different RL algorithms exist that can be used to learn a policy, such as
Q-learning, explained in detail in the following section.

Another important question to consider in this context is the agent-environment
boundary: what element of the system is actually considered part of the agent or the
environment respectively? Typically, it is not the same as the physical boundary between
e.g. the drone and the surrounding environment, but instead the mechanical and sensor
hardware of the drone should already be considered part of the environment. The general
rule is that anything that cannot be changed arbitrarily by the agent is considered to be
outside of it and thus forms part of its environment [83]. This does not necessarily mean
that everything concerning the environment is unknown to the agent, e.g. having some
idea about how the reward is computed is essential, but as it is beyond the control of the
agent, the reward is considered part of the environment. This also does not exclude the
possibility that the agent-environment boundary changes for different tasks, e.g. if an
agent has to make high- and low-level decisions, the boundary can include different parts
of the system for different purposes.

2.3.2 Q-learning

Q-learning is an off-policy RL method proposed first by Watkins in 1989 [87] and developed
further in 1992 [88]. It is classified as off-policy because the decisions are made by a
policy that is different from the one that is being learned. Q-learning specifically allows
an agent to learn to act optimally in an environment that can be represented by an
MDP. In such an environment, Q-learning is proven to find a reward-optimal mapping
between states and actions given that all actions in all states are repeatedly sampled [88].

19

Chapter 2. System Model and Methodology

This guarantee does unfortunately not hold if function approximation, such as a neural
network (NN) is used.

In order to learn to act optimally, the agent learns a behavior rule or a policy that
maximizes its reward. A probabilistic policy π(a|s) is a distribution over actions given
the state such that π : S ×A → R. In the deterministic case, it reduces to π(s) such that
π : S → A.

To judge ‘how good’ it is for the agent to be in a certain state, the value of a state s
under policy π is given as

V π = Eπ [Gt | st = s] (2.4)

representing an expectation of the the discounted cumulative return Gt from the current
state st up to a terminal state at time T , which is given by

Gt =

T∑
k=t

γk−tr(sk, ak) (2.5)

with γ ∈ [0, 1] being the discount factor, balancing the importance of immediate and
future rewards. Similarly, Q-learning is based on iteratively improving the state-action
value function or Q-function to guide and evaluate the process of learning a policy π. It
is given as

Qπ(s, a) = Eπ [Gt | st = s, at = a] . (2.6)

Value functions fundamentally satisfy a recursive property as given by the Bellman
Equation [89]

V π(s) = Eπ
[
rt + γrt+1 + γ2rt+2 + . . . | st = t

]
= Eπ [rt + γV π (st+1) | st = s]

=
∑
s′

P
(
s, π(s), s′

) (
R
(
s, a, s′

)
+ γV π

(
s′
))
.

(2.7)

It denotes that the expected value of state s is defined in terms of the immediate
reward and values of possible next states weighted by their transition probabilities, and
additionally a discount factor. V π is the unique solution for this set of equations. Note
that multiple policies can have the same value function, but for a given policy π, V π is
unique [84].

The optimal Q-function for a given MDP is given by

Q∗(s, a) =
∑
s′

P
(
s, a, s′

)(
R
(
s, a, s′

)
+ γmax

a′
Q∗
(
s′, a′

))
(2.8)

with the optimal policy directly following as

π∗(s) = arg max
a

Q∗(s, a). (2.9)

This clarifies why the Q-function is useful: no forward reasoning step is needed to decide
on an optimal action and P and R can be unknown. If the Q-function is known, the best
action is always the one that maximizes the Q-function.

20

Chapter 2. System Model and Methodology

Figure 2.3 – Classification of Q-learning in the context of a taxonomy of RL methods.

In other forms of RL algorithms, the Q-function does not always play a role. Referring
to the taxonomy depicted in Figure 2.3, Q-learning is a critic-only RL method relying on
an indirect way to find a behavior policy by iteratively improving on the approximation of
the state-action value function. In contrast, actor-only learning methods iterate directly
over the policy space. Actor-critic methods are a combination of both paradigms. As the
goal in Q-learning is not to directly learn a model of the environment, i.e. the MDP, it is
a model-free method. Model-based RL explicitly aims to learn the MDP and then uses a
different kind of planning algorithm on the MDP to solve the problem.

As Q-learning does not follow the learned policy during exploration of the state space,
it is categorized as off-policy, which means that the learned state-action value function
Qπ directly approximates Qπ∗ , independently of the policy being followed. The policy
still has the effect of controlling which state-action pairs are visited and updated during
the process of exploration. Learning off-policy is a necessary condition for training the
neural network as explained in the following section.

Furthermore, Q-learning can be seen as an instance of interactive learning as the
agent can directly influence its observations and thereby the distribution of training data.
Additionally, Q-learning is an instance of an online learning as feedback is given through
the reward signal during the learning process, as opposed to methods that only produce
a policy after a defined minimum number of samples is available [90].

21

Chapter 2. System Model and Methodology

2.3.3 Deep Q-learning

For ease of exposition, st and at are abbreviated to s and a, while st+1 and at+1 are
abbreviated to s′ and a′ in the following. As demonstrated in [29], representing the
Q-function (2.6) as a table of values is not efficient in the large state and action spaces
of UAV trajectory planning. Instead, a neural network parameterizing the Q-function
with the parameter vector θ can be trained to minimize the expected temporal difference
(TD) error given by

L(θ) = Eπ[(Qθ(s, a)− Y (s, a, s′))2] (2.10)

with target value
Y (s, a, s′) = r(s, a) + γmax

a′
Qθ(s

′, a′). (2.11)

While a neural network is significantly more data efficient compared to a Q-table due to its
ability to generalize, the deadly triad [83] of function approximation, bootstrapping and
off-policy training can make its training unstable and cause divergence. These problems
become more serious with larger networks, which are called deep Q-networks (DQNs).

Through the work of Mnih et al. [91] on the application of techniques such as experience
replay, it became possible to train large DQNs stably. Experience replay is a technique to
reduce correlations in the sequence of training data. New experiences made by the agent,
represented by quadruples of (s, a, r, s′), are stored in the replay memory D. During
training, a minibatch of size m is sampled uniformly from D and used to compute the
loss.

In addition to experience replay, Mnih et al. used a separate target network for the
estimation of the next maximum Q-value, giving the loss as

LDQN(θ) = Es,a,s′∼D[(Qθ(s, a)− Y DQN(s, a, s′))2] (2.12)

with target value
Y DQN(s, a, s′) = r(s, a) + γmax

a′
Qθ̄
(
s′, a′

)
. (2.13)

θ̄ represents the parameters of the target network. The parameters of the target network
θ̄ can either be updated as a periodic hard copy of θ or with a soft update

θ̄ ← (1− τ)θ̄ + τθ (2.14)

after each update of θ. τ ∈ [0, 1] is the update factor determining the adaptation pace.
Figure 2.4 summarizes the DQN training process.

2.3.4 Exploration-Exploitation Dilemma

At the heart of any RL algorithm like Q-learning lies a fundamental dilemma: the
exploration-exploitation trade-off. It is a specific characteristic of RL and does not appear
in other forms of learning. Fundamentally, the RL agent must interact with environment
to learn, i.e. learning by trial-and-error, that means exploring the environment and
perceiving the consequences in the form of the reward signal. However, the agent also
has to exploit its accumulated knowledge in order to increase the reward it obtains.

22

Chapter 2. System Model and Methodology

Figure 2.4 – The training process of DQN with experience replay and target network.

Additionally, in a stochastic environment, every action must be selected multiple times
to gain any kind of meaningful estimate of the expected reward. How long should the
agent keep exploring before exploiting its knowledge? This is the exploration-exploitation
dilemma, which has been studied intensively in mathematics, yet remains unresolved [83].

In RL, the exploration-exploitation trade-off is balanced through the use of exploration
strategies. These strategies introduce a certain amount of randomness in the action
selecting policy, recalling (2.9) that states that the optimal policy for perfect knowledge
of the Q-function is the greedy policy. The randomness fulfills the function of exploring
the state-action space and is reduced gradually over the learning time of the agent to
allow for a gradual increase in exploitation.

One commonly used exploration policy is the ε-greedy policy, where with probability
ε, an action is randomly selected from the action space A and otherwise the action that
maximizes the Q-function in the current state. The ε-greedy policy is given by

π(a|s) =

{
randomly select from A, with probability ε

arg maxa∈AQθ(s, a), otherwise.
(2.15)

The ε-greedy policy is simple, but is as likely to choose the worst-appearing action as
it is to choose the next-to-best action. Another commonly used strategy, the soft-max
policy, avoids this problem by varying the action probabilities as a graded function of

23

Chapter 2. System Model and Methodology

estimated value. The soft-max policy given by

π(a|s) =
eQθ(s,a)/β∑

∀ai∈A eQθ(s,ai)/β
. (2.16)

This is also referred to as Boltzmann exploration as the agent draws from a Boltzmann
distribution. The temperature parameter β ∈ R scales the balance of exploration versus
exploitation.

24

Chapter 3

Aerial Base Station Trajectory
Planning with Landing Spots

3.1 Introduction

One promising idea in UAV-aided networks is to leverage the versatility of drones for
the mobile communication infrastructure itself. Deploying mobile base stations (BSs)
mounted on UAVs could provide network operators with the capability to react fast and
efficiently to sudden demand increases in localized areas, e.g. caused by crowded events,
as well as immediately re-establish destroyed networks in disaster and search-and-rescue
scenarios. Alternative carrier systems such as fixed-wing aircraft or balloons could also
be used to establish network coverage and Internet connectivity in areas without fixed
infrastructure.

No matter the scale of the established network, the Quality of Service (QoS) afforded
to the network’s users is strongly dependent on the location of the aerial BS. Previous
works either addressed the placement problem of finding a drone position that maximizes
the system’s QoS goals, e.g. in [92, 93], or the trajectory planning problem where the
drone’s flying path from start to end is optimized with respect to the QoS goals, e.g.
in [29,40,94,95]. When only addressing the placement problem, the performance while
flying to and from the designated position is not being optimized. In [94], considering the
whole trajectory allows the authors to jointly optimize scheduling and user association,
whereas the authors of [40] and [95] consider the power consumption of the UAV and
attached BS in addition to the QoS.

As this work focuses on small and versatile multirotor type drones, of which the
quadcopter is the most commonly used example, power consumption and battery energy
density restrictions are central constraints for UAV BS mission planning. A typical
quadcopter fitted with a small base station as used in experiments at EURECOM [96] can
only sustain a mission duration of around 15 minutes. Even when turning a quadcopter
into a “flying battery”, maximum mission durations can usually not exceed two hours [97].
As power consumption for flying usually exceeds power consumption of the carried BS by
far, the concept of landing spots (LSs) was introduced in [95] to extend mission duration.

25

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

User 1
u1=[x1,y1,0]T

User 2
u2=[x2,y2,0]TUser 3

u3=[x3,y3,0]T

Sum Rate
R(t) = R1(t) + R2(t) + R3(t)

Movement Decision
a(x, y, battery)

R1(t)

Reinforcement
Learning

max ∑ R(t)

R2(t)

R3(t)

t=0

T

a(t)

Figure 3.1 – Aerial BS movement decisions are made based on the drone’s current state,
i.e. position and battery content. The UAV has absolutely no prior knowledge of the
environment, i.e. no knowledge of the existence or location of LSs, of user positions, of
the channel model, or of the final UAV landing position. While LSs offer the possibility
to conserve energy, the UAV BS might have to sacrifice some QoS for some users.

A landing spot is a small piece of real estate, e.g. a roof, where a UAV BS can land thus
saving energy while continuing to serve users. Often, the utilization of the LS goes along
with the sacrifice of some instantaneous QoS for some users, but helps to extend the
overall mission duration.

As introduced in sections 2.3.2 and 2.3.3, Q-learning is now a widely used RL technique
in UAV communications [52,61,98]. Since the seminal paper by Mnih et al. [91], especially
the deep Q-network (DQN) paradigm that allows for stable training of larger networks
has found many applications in UAV trajectory planning. Two of the earliest examples
are [99] and [29]. In [99], a UAV is tasked with collecting data in the context of smart
cities with the help of charging stations. The UAV agent makes movement decisions
under the guidance of a DQN. In [29], the concept of UAV BS trajectory optimization
with DQN is introduced, while making a comparison that showcases the advantages of
DQN over table-based Q-learning in the large state-action spaces of UAV trajectory
optimization, however without any consideration of power consumption and LSs.

In this chapter, we consider the UAV acting as a mobile BS serving a group of ground
users maximizing the sum of the information rate over the whole flying time with a
limited amount of energy in the drone’s battery at the start. Movement decisions are
therefore made based on the UAV’s current position and battery content, as well as the
expectation of the total sum rate that can be achieved until the battery has run out. To
save energy during the mission, the UAV is allowed to land in designated LSs as depicted

26

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

in Fig. 3.1.
It is important to note that, also in contrast to the scenarios described in later chapters

of this thesis, the UAV here has absolutely no prior knowledge of the environment or
the mission scenario. That means no knowledge of the existence or location of LSs, of
the number and location of users, of obstacles, of the channel model, or of the final UAV
landing position. With reference to the exploration-exploitation dilemma (see section
2.3.4), this means the UAV must discover all environmental features by trial-and-error.
We also compare the data collection performance of the DQN system with the optimal
trajectory that can be computed using dynamic programming (DP) based on an approach
along the lines of [95]. In contrast, the DP approach of course requires complete prior
knowledge of the environment and the model.

3.2 Optimization Problem

In reference to section 2.1.1, we consider the UAV BS inside a square grid world
M = [0,M] × [0,M] with cell size c serving K ground users located at positions
uk = [xk, yk, 0]T ∈M with k ∈ {1, ...,K}. The LSs and their locations are given by the
set

L =
{[
xli, y

l
i

]
, i = 1, . . . , L, :

[
xli, y

l
i

]
∈M

}
.

3.2.1 UAV Model

The UAV starts its mission from an initial position p0 = [x0, y0, 0]T and is assumed to
travel at constant altitude h with a maximum velocity V , i.e. v(t) ≤ V . The mission is
over when the drone’s battery is empty defined as time T , by which the UAV is supposed
to be in the final position pf = [xf , yf , 0]T. During the mission, t ∈ [0, T], the drone’s
position is given by p(t) = [x(t), y(t), z(t)]T with altitude z(t) ∈ {0, h}. As we basically
look at a 2D problem, the UAV’s position is defined by the functions x(t) and y(t) given
as

x :

(
[0, T]→ R
t→ x(t)

)
y :

(
[0, T]→ R
t→ y(t)

)
(3.1)

subject to

x(0) = x0, y(0) = y0 (3.1a)

x(T) = xf , y(T) = yf (3.1b)

As The UAV battery’s energy content is denoted by

b(t) ≥ 0, ∀t ∈ [0, T] (3.2)

during mission time with a full charge when the mission begins, i.e. b(0) = bmax. Power
consumption of the autonomous UAV BS is modeled by a flying and mobility component
pf (t), as well as a communication and computation component pc(t) which is assumed to
be constant during the mission, i.e.

pc(t) = pc, ∀t ∈ [0, T]. (3.3)

27

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

Energy usage for flying is constant as well, except when the drone has landed in a
designated LS, i.e.

pf (t) =

{
0, ∀t : [x(t), y(t)] ∈ L,
pf , otherwise.

(3.4)

It follows that the UAV’s battery content evolves according to

b(t+ 1) = b(t)− pf (t)− pc (3.5)

over the whole mission time t ∈ [0, T] of the aerial BS

3.2.2 Communication Channel Model and Maximization Problem

The communication links between UAV BS and the group of K users are modeled as
orthogonal point-to-point channels. We deviate here from the model presented in section
2.1.2 by considering random small-scale Rayleigh fading and a constant attenuation factor
under NLoS condition, as the goal of this work is also to allow for direct comparison
with the dynamic programming approach from [95] and the previous work in [29]. The
work in subsequent chapters will however use the more realistic model as presented in
section 2.1.2. Consequently, the information rate for the k-th user, k ∈ {1, ...,K} located
at static position uk ∈M at ground level is given by

Rk(t) = log2 (1 + SNRk(t)) , (3.6)

where the signal-to-noise ratio (SNR) with transmit power Pk, UAV-user distance dk(t)
and path loss exponent α = 2, is defined as

SNRk(t) =
Pk
σ2
· dk(t)−α ·XRayleigh · βshadow. (3.7)

Rayleigh fading was modeled as a random variable XRayleigh ∼ exp(1). Attenuation
through obstacle obstruction is a discrete factor βshadow = 0.01 under NLoS conditions,
and βshadow = 1 everywhere else.

Using the described model, the maximization problem can be formulated as

max
x(t),y(t)

T∑
t=0

K∑
k=1

Rk(t) (3.8)

subject to aforementioned constraints (3.1a), (3.1b), (3.2) and (3.5).

3.3 Neural Network Training and Algorithm

3.3.1 Markov Decision Process

With reference to section 2.2, we transform the maximization problem (3.8) into an
MDP that allows us to solve it with an RL approach. The MDP is defined by the
tuple (S,A, P,R) with state-space S. In this scenario, we assume a deterministic state
transition function P : S ×A → S.

28

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

State Space

The state space S is defined solely through the UAV agent’s own state. It is given as

S = R3︸︷︷︸
UAV

position

× R︸︷︷︸
Battery
content

× B︸︷︷︸
LS

detection

(3.9)

in which the elements s(t) ∈ S are

s(t) = ({p(t)}, {b(t)}, {boolLS(t)}), (3.10)

where boolLS(t) is a boolean variable that indicates whether the UAV is currently in a
LS position. In practice, only the 2D position of the drone is relevant for movement
decisions during the mission. Therefore, p(t) is now defined as the UAV’s 2D position
projected on the ground.

Action Space

The action space of the aerial BS agent is defined as

A =

{ [
0
0

]
︸︷︷︸

hover/land

,

[
0
c

]
︸︷︷︸
north

,

[
c
c

]
︸︷︷︸

northeast

,

[
0
c

]
︸︷︷︸
east

,

[
−c
c

]
︸ ︷︷ ︸

southeast

,

[
−c
0

]
︸ ︷︷ ︸
south

,

[
−c
−c

]
︸ ︷︷ ︸

southwest

,

[
0
−c

]
︸ ︷︷ ︸
west

,

[
c
−c

]
︸ ︷︷ ︸

northwest

,

}
. (3.11)

If the agent decides to stand still, this is implicitly defined as landing if the UAV is
currently in a LS location, or as hovering if not in a LS location.

Reward Function

The reward function R : S ×A → R is comprised of the following elements:

r(t) =
K∑
k=1

Rk(t) + ρ(t) + κ(t) + ξ(t), (3.12)

where the main element is the sum information rate of all users in the current time slot.
The other elements are defined as follows:

ρ(t) =

{
−10, if x(t) > M ∨ y(t) > M

0, otherwise
(3.13a)

κ(t) =

{
−
∑K

k=1Rk(t)− 10, if ‖(x(t), y(t))− (xf , yf)‖1 = V (T − t)
0, otherwise

(3.13b)

ξ(t) =

{
10 if (x(t), y(t)) ∈ L and first visit

0, otherwise,
(3.13c)

where ρ(t) represents a punishment for leaving the assigned mission area, i.e. stepping
out of the 11 by 11 grid world, κ(t) is activated as a punishment if the UAV’s safety

29

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

controller detects that the final position is not reachable anymore within the given flight
time limit, and ξ(t) is a special one-off reward that is given to the agent for discovering a
new LS. As the numerical value of these punishments and rewards can be chosen freely
by the environment designer, it is reasonable to fix them to values in the same range as
the expected reward from the sum rate, the reward signal’s main component. If tested in
more diverse scenarios then it is the case here, the numerical rewards and punishments
should be normalized.

3.3.2 Neural Network Model

In traditional Q-learning, the Q-function is usually represented by a multidimensional
table that contains one Q-value for each state-action pair. It becomes immediately
evident that this is not practical in large state and action spaces as the table size would
grow exponentially when adding space dimensions. A way out of this dilemma is the
use of a DQN (see section 2.3.3 which approximates the optimal Q-function Q∗(s, a)
by a neural network Qθ(s, a) with network parameters θ. The main advantages of this
approach include the DQN’s ability to generalize from few data samples to the whole
state space and the higher training data efficiency. A more detailed comparison of table-
and NN-based Q-learning for UAV BS trajectory optimization can be found in [29].

Fig. 3.2 shows the DQN architecture used in this work. One state space sample
containing drone position, current battery content and landing spot availability forms
the input. Two fully connected hidden layers with n = 100 units each are followed by
the output layer with outputs equal to the cardinality of the drone’s action space. All
neurons are rectified linear units (ReLU).

xt

yt

bt

boolLS

Q-value #1

Q-value #2

Q-value #3

Q-value #4

Q-value #9

...
...

...

Hidden

layer 1

Hidden

layer 2Input

layer

Output

layer

Figure 3.2 – Neural network architecture consisting of four input and nine output neurons
representing the state and action space respectively, as well as two hidden and fully
connected layers with 100 neurons each.

30

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

3.3.3 DQN Training Algorithm

Algorithm 1 DQN training for UAV BS trajectory planning

Initialize replay memory D to size D
Initialize primary network Qθ with random parameters θ
Initialize target network Qθ̄ with random parameters θ̄

1: for n = 0 to Nmax do
2: Initialize state s0 = (x0, y0, bmax, boolLS), t = 0
3: if (n mod Ntarget = 0) then
4: θ̄ ← θ
5: end if
6: while b ≥ 0 do

7: at =

{
randomly select from A, with probability ε

arg maxaQθ(st, a), otherwise (2.15)
8: Observe rt, st+1

9: Store e = (st, at, rt, st+1) in D
10: for i = 0 to m do
11: Sample (si, ai, ri, si+1) uniformly from D

12: Y DQN
i =

{
ri, if terminal

ri + γmaxa′ Qθ̄(si+1, a
′), otherwise according to (2.13)

13: Compute LDQN
i (θ) = E

[(
Qθ(si, ai)− Y DQN

i

)2
]

according to (2.12)

14: end for
15: θ ← θ − η · 1

m∇θ
∑m

i=1 L
DQN
i (θ)

16: t = t+ 1
17: end while
18: ε← εfinal + (εstart − εfinal)e−κn
19: end for

In the following, the DQN training algorithm 1 is described in more detail. After
initialization of replay memory buffer and network parameters, a new learning episode
is started by resetting the time index and the drone’s position, as well as the drone’s
battery (line 2). Every Ntarget episodes, the target network parameters θ̂ are updated
with a hard update (line 4).

As long as there is energy left in the UAV’s battery, the mission continues and
the agent makes a movement decision according to the ε-greedy policy (2.15). With
probability ε, an action is randomly selected from the action space A and otherwise the
action that maximizes the Q-function in the current state. Subsequently, the environment
assigns a reward rt and propagates the UAV to the next state st+1. The new experience
tuple is saved in the replay memory (line 9).

To train the DQN, a minibatch of m experiences is sampled uniformly from the
replay buffer D, the target value Y DQN

i is set using the target network and the loss
computed according to (2.12) (lines 10-14). Using the adaptive moment estimation

31

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

(Adam) optimizer [100], an improved version of stochastic gradient descent (SGD), the
primary network parameters θ are updated with learning rate η (line 15). After the
battery is empty and the mission is over, the probability for random exploration of
the state space is exponentially decayed with decay constant κ (line 18). Algorithm 1
terminates when the final learning episode n = Nmax is reached.

3.4 Simulation and Numerical Results

3.4.1 Simulation Setup

Algorithm 1 is applied to various aerial BS scenarios in the next sections. As depicted in
Fig. 3.3a, the scenarios are defined by a grid world of size 1000 m× 1000 m discretized
by a cell size of c = 100 m (121 unique geometric positions). The UAV’s start and final
position are at the origin and the upper right corner, respectively. The UAV serves
K = 10 users. While Fig. 3.3 illustrates a simple environment with L = 1 LS, Fig. 3.5
and Fig. 3.6 depict scenarios with a number of L = 2 LSs.

As described in section 3.3.1, in addition to hovering/landing, the action space of
the UAV is limited to 8 movement directions due to the geometric restrictions. With
the above chosen grid world size M = 1000 m and cell size c = 100 m, this leads to the
following possible flying speeds and angles for the UAV:

v ∈
{[

0 m s−1

0

]
,

[
12.5 m s−1

φ

]
,

[
17.7 m s−1

φ+ π
4

]}
(3.14)

with φ ∈ {0, π2 , π,
3π
2 }. The UAV is assumed to travel at a constant altitude of h = 40 m.

The drone’s battery content is bmax = 31 Wh when fully charged. Power consumption for
flying and communication is assumed to be pf = 400 W and pc = 40 W, respectively. These
values reflect our experiences from real-world UAV BS experiments at EURECOM [96].

3.4.2 Scenario 1 - Different SNR Conditions

We start by investigating the basic scenario 1 as depicted in Fig. 3.3a. The K = 10 users
are relatively unevenly distributed, with a cluster in the lower right corner. A single LS
is available in the scenario and relatively far away from the user cluster. This setup is
useful to show how the agent adapts to a change in wireless link conditions and that
landing in the LS, although saving energy, is not always the optimal behavior for the
overall data collection performance.

To this end, Fig. 3.3a shows two different trajectories under different cell-edge SNR
conditions of 10db and -15dB. The cell-edge SNR is defined as the SNR of the radio link
between the UAV at center position (500m, 500m) and a user maximally far apart, e.g.
at (0m, 1000m). For a low cell-edge SNR, the drone ignores the LS and instead flies
around the maximum sum rate point near the user cluster in the lower right corner and
returns to the final position in time before its battery runs out. Under high cell-edge
SNR conditions (10dB), the UAV BS learns to obtain an overall higher sum rate result
by landing in the LS and extending the mission duration by conserving energy. It is also

32

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

(a) Final UAV BS trajectories.

(b) Mission duration over training episodes.

Figure 3.3 – Scenario 1 includes a single L = 1 landing spot. The DQN training is run
under two different cell-edge SNR conditions and the final trajectories compared.

interesting to note that the UAV does not use the direct path to reach its final destination
from the LS, but takes a detour towards the center of the map, bringing it closer to the
user cluster.

The difference in mission duration can clearly be seen in Fig. 3.3b, as the UAV
remains flying for the whole mission in the scenario with cell-edge SNR -15dB. As power
consumption while flying is constant, the mission duration stays the also constant in this
case.

3.4.3 Comparison with Dynamic Programming

Scenario 1 was chosen in such a way that it enables direct comparison with dynamic
programming (DP) approach from [95]. DP is an optimization method based on breaking
a problem into simpler sub-problems in a recursive manner. Given an initial state s0, the
optimal cost for the trajectory planning problem in scenario 1 can be computed recursively
using Bellman’s equations by proceeding backwards in time [101]. The solution obtained
by DQN, in contrast, offers no guarantee of optimality. Empirically, from Fig, 3.5, it can
be seen that the DQN converges to the maximum of collected data as well. It is important
to note again that, while absolutely no prior knowledge is necessary and no modelling
assumptions are made with the DQN approach, the DP approach requires perfect model
knowledge or requires to make assumptions about the environment. Furthermore, the

33

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

(a) Collected data for cell-edge SNR 10dB (b) Collected data for cell-edge SNR -15dB.

Figure 3.4 – Performance comparison of the collected data per mission obtained by the
DQN approach over training episodes with the optimal trajectory obtained by DP.

DP requires large computational resources [95], that are not supportable for larger maps.
In the following chapters of this thesis, we show that the deep reinforcement learning
approach can adapt with reasonable computational demand to larger and more complex
environments.

3.4.4 Scenario 2 - Decision between Landing Spots

With reference to the problem of the exploration-exploitation dilemma described in
section 2.3.4, it is worth considering whether the ε-greedy exploration policy as used in
algorithm 1, is able to explore the state-action space effectively. As depicted in Fig. 3.5a,
this scenario requires that the agent decides between two LSs: one in a much more
favorable location close to the user cluster and one further away. Recall that the UAV
agent has absolutely no reference points apart from its own position and must build an
internal representation of the environmental features such as LS positions and distance
to users or final destination.

The depicted training run was specifically selected for the fact that, by virtue of
random exploration, the UAV discovers the less favorable LS first and also begins to use it
to extend its mission time, but continues exploring nonetheless and finally also discovers
the other LS. The final trajectory as depicted, then incorporates the more favorable LS
to obtain an overall higher amount of collected data over the whole mission time. This
is classical case where if exploration had ended too early, the agent would have gotten
stuck in a suboptimal strategy exploiting its incomplete knowledge of only one LS.

3.4.5 Scenario 3 - High and Low Shadowing Loss

In addition to the environmental features of scenario 1 and 2 (start/final positions, user
distribution), scenario 3 includes an obstacle that causes shadowing and obstructs the

34

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

(a) Final UAV BS trajectory.

(b) Mission duration over training episodes.

(c) Data collected over training episodes.

Figure 3.5 – Scenario 2 includes two landing spots, one favorably close to a user cluster,
the other further away.

LoS connection to some users. The shadowed areas are depicted in Fig. 3.6a as different
shades of gray, where the darker regions are shadowed from more users. The LS towards
the right of the map is in the shadow of the obstacle whereas the left LS provides a LOS
connection to all 10 users, but is further away from the user cluster.

Fig. 3.6a shows two results for high shadowing loss (β = 0.01) and low shadowing
loss (β = 0.1), both under high cell-edge SNR conditions (10dB). With low shadowing,
the drone stays on the direct line between start and final position until reaching the LS
where it lands and conserves energy. With the minimum amount of energy left in the
battery that is required to reach the final position, it restarts from the LS to arrive at
the final position in time.

In contrast, higher shadowing loss leads the agent to realize that the left LS, despite
being far away from most users and requiring more energy to reach, leads to a better
overall sum rate result in the long run. Even under challenging conditions with random
small-scale fading and shadowing obstacles in the environment, the DQN agent is able
to discriminate between multiple LSs and different channel conditions to achieve the
best long-term result. Fig. 3.6c shows the overall collected data per training episode (or
completed mission) during the learning process. The overall mission duration in Fig. 3.6b
for the high shadowing loss case does not reach the same level as for low shadowing

35

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

(a) Final UAV BS trajectory.

(b) Mission duration over training episodes.

(c) Data collected over training episodes.

Figure 3.6 – Scenario 3 features L = 2 landing spots and an obstacle that causes
shadowing from some users on the map. The final results for high and low shadowing
loss are compared.

loss conditions, owing to the fact that the UAV must fly a longer distance to reach the
unobstructed LS.

The training converges for both shadowing conditions to a stable solution at about
n = 32, 000 episodes. Note that also in this scenario, as the agent has no access to prior
information about user or obstacle positions, their positions and the resulting shadowing
effect must be learned and internally represented by the agent.

3.5 Conclusion

In this chapter, we have introduced a Q-learning system that trains a neural network to
make movement decisions for an autonomous UAV BS under an energy constraint. The
training procedure was shown to adapt effectively to complex environmental effects like
small-scale fading and obstacle shadowing. The UAV agent also learns to effectively exploit
landing spots to extend its mission service time and discriminate between favorable and
less favorable landing spot locations, while maximizing the sum rate of the transmission
over the whole aerial BS mission. In comparison to other algorithms like dynamic

36

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

programming proposed in [95], this is possible without a model or any prior information
about the environment. This is also the differentiating factor in the context of the
following chapters of this thesis: we were able to find efficient UAV trajectories without
making any explicit assumptions about the mission, environment or the underlying
models. The price of this flexibility is the long training time and the fact that training
must be rerun when parameters of the scenario change. In many cases, some additional
information about the mission might be actually easily available, e.g. a map of the
environment the UAV is flying in. This is the type of information that we exploit in
the next chapter to generalize the learned control policy over a large mission parameter
space. This means that the training procedure does not need to be rerun when certain
parameters change and the UAV agent can adapt instantly to the new scenario.

37

Chapter 3. Aerial Base Station Trajectory Planning with Landing Spots

38

Chapter 4

Multi-Scenario UAV Data Harvesting
in IoT Networks

4.1 Introduction

Reinforcement
Learning

max ∑ D(t)

IoT device 3

u3=[x3,y3,0]T

D3(t)
IoT device 2
u2=[x2,y2,0]T

D2(t)

IoT device 1
u1=[x1,y1,0]T

D1(t)

no-fly zone

Movement Decision
a(t,map,battery)

Collected Data

D(t) = ∑ Dk(t)
Devices

Collected Data

D(t) = ∑ Dk(t)
Devices

t=0

T

a(t)

Figure 4.1 – Overview of the single-UAV data harvesting scenario. The UAV can base
its movement decision on map information in addition to its own position and battery
status.

In the previous chapter, we have shown that a DQN-based trajectory planning
approach for aerial BSs enables us to design trajectories that reach optimal performance
levels - without any assumptions about the underlying model and without any prior
knowledge about the environment or the scenario. This goes hand in hand with a great
demand for training data, as the UAV agent has to deduce all the information from
trial-and-error exploration. Even more problematic is the fact that if something about
the scenario changes, like a user position, the training procedure must be rerun again in

39

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

order to adapt to the new scenario. However, in many application cases, some additional
information about the environment is actually available, e.g. a map of the environment.
In this chapter, we aim to make use of map information to design a DRL algorithm that
can generalize the trajectory design over multiple scenarios, i.e. take varying parameters
in the scenario during training into account and find a trajectory planning policy that
adapts instantly to a change in the scenario and does not require retraining. This is a
much more complex problem as will become evident in the following sections. If deep RL
methods are to be applied in real-world missions, the prohibitively high training data
demand poses one of the most severe challenges [75]. By taking varying parameters in
the design and training of the neural network model into account, we take a step towards
the mitigation of this challenge.

We also move from the scenario of an aerial BS to a UAV on a data collection from
distributed Internet of Things (IoT) devices mission. Fig. 4.1 provides a visualization of
the mission setting. Here, the IoT devices have a finite amount of data that needs to
be collected by the drone. For instance, IoT operators can deploy UAV data harvesters
in the absence of otherwise expensive cellular infrastructure nearby. Another advantage
is the throughput efficiency benefits related to having UAVs that describe a flight
pattern that brings them close to the IoT devices. As an example in the context
of infrastructure maintenance and preserving structural integrity, Hitachi is already
commercially deploying partially autonomous UAVs that collect data from IoT sensors
embedded in large structures, such as the San Juanico and Agas-Agas Bridges in the
Philippines [8].

Collecting data from sensor devices in an urban environment imposes challenging
constraints on the trajectory design for autonomous UAVs. Battery energy density
restricts mission duration for quadcopter drones severely, while the complex urban
environment poses challenges in obstacle avoidance and the adherence to regulatory
no-fly zones (NFZs). Additionally, the wireless communication channel is characterized
by frequent fluctuations in attenuation through alternating line-of-sight (LoS) and non-
line-of-sight (NLoS) links. DRL approaches offer the opportunity to balance challenges
and data collection goal for complex environments in a straightforward way by combining
them in the reward function. Another reason for the popularity of the DRL paradigm in
this context is the computational efficiency of DRL inference. DRL is also one of the few
methods that allows us to tackle the complex task directly.

4.1.1 Related Work

Although quite a few previous approaches to path planning for UAVs providing some
form of communication services or collecting data based on DRL existed before the
work presented in this chapter, it is crucial to note that the majority of previous works
concentrates on only finding the optimal trajectory solution for one set of scenario
parameters at a time, requiring full or partial retraining if the scenario changes. In
contrast, the presented approach aims to train and generalize over a large scenario
parameter space directly, finding efficient solutions without the need for lengthy retraining,
but also increasing the complexity of the path planning problem significantly.

40

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

A particular variety of IoT data collection is the one tackled in [102], where the authors
propose a DQN-based solution to minimize the age of information of data collected from
sensors. In contrast to our approach, the mentioned approaches are set in much simpler
environments and agents have to undergo computationally expensive retraining when
scenario parameters change. The authors in [67] investigate table-based Q-learning for
UAV data collection. As mentioned in the previous chapter, table-based Q-learning is not
suitable for the complex state-action spaces investigated here. Deep deterministic policy
gradient (DDPG), an actor-critic RL method, was proposed by Qi et al. [103] to learn a
continuous control policy for a UAV providing persistent communications coverage to
a group of users in an environment without obstacles. If a critical scenario parameter
like the number of users changes, the agent has to undergo computationally expensive
retraining.

There are also many previous approaches to UAV data collection that are not based
on RL and only find a solution for one set of scenario parameters at a time. Esrafilian et
al. [104] proposed a two-step algorithm to optimize a UAV’s trajectory and its scheduling
decisions in an urban data collection mission using a combination of dynamic and
sequential convex programming. While set in a similar environment, the scenario does
not account for NFZs or obstacle avoidance as the drone is assumed to always fly above
the highest building. This also holds for the hybrid offline-online optimization approach
presented in [105], where a preliminary trajectory is computed before the UAV’s start
based on a probabilistic LoS channel model and then optimized while the UAV is on its
mission in an online fashion.

Some works under the paradigm of mobile crowdsensing, where mobile devices are
leveraged to collect data of common interest, have also suggested the use of UAVs for
data collection. Liu et al. [66] proposed an RL multi-agent DDPG algorithm collecting
data simultaneously with ground and aerial vehicles in an environment with obstacles
and charging stations. While their approach also makes use of convolutional processing
to exploit a map of the environment, they do not center the map on the agent’s position,
which we show to be highly beneficial. Furthermore, in contrast to our method, control
policies have to be relearned entirely when scenario and environmental parameters
change. In [106], after partitioning a sensing area without obstacles into subregions,
a fixed-wing UAV is assigned to each subregion and its trajectory optimized for data
collection. The authors compare two sets of non-RL algorithms that both mandate
complete recomputation to adapt to changing scenario parameters.

4.1.2 Contributions

In particular, this chapter will discuss the following aspects and contributions in detail:

• Introducing a double deep Q-network (DDQN) method to control a UAV on an IoT
data harvesting mission, maximizing collected data under flying time and navigation
constraints without prior information about the wireless channel characteristics;

• Showing the considerable increase in learning efficiency for the RL agent when
exploiting a centered multi-layer map of the environment;

41

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

• Learning to effectively adapt to variations in environmental and scenario parameters
as the first step to more realistic RL methods in the context of UAV IoT data
collection.

4.2 System Model and MDP

4.2.1 System Model



M

Figure 4.2 – Example of a single UAV collecting data from two IoT devices in an urban
environment of size M ×M with NFZs, a single start/landing zone, and buildings causing
shadowing.

Symbol Description

D
Q
N

In
p
u
t Start and landing zone

Regulatory no-fly zone (NFZ)

Buildings

IoT device

V
is
u
a
li
za
ti
o
n

Summation of building shadows

Starting and landing positions during an episode

UAV movement while comm. with green device

Hovering while comm. with green device

Actions without comm. (all data collected)

Table 4.2 – Legend for scenario plots.

In the following, only the key differences to the model from the previous chapter
are summarized, while many assumptions are actually identical. We again consider a
square grid world of size M ×M ∈ N2 with cell size c and the set of all possible positions

42

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

M. Discretization of the environment is a necessary condition for our map-processing
approach, however note that our method can be applied to any rectangular grid world.
The environment contains L designated start/landing positions given by the set

L =

{[
xli, y

l
i

]T
, i = 1, . . . , L, :

[
xli, y

l
i

]T
∈M

}
and the combination of the Z positions the UAV cannot occupy is given by the set

Z =
{

[xzi , y
z
i]

T , i = 1, . . . , Z, : [xzi , y
z
i]

T ∈M
}
.

This includes buildings which the UAVs cannot fly over and regulatory no-fly zones
(NFZ). The number of B obstacles blocking wireless links are given by the set

B =

{[
xbi , y

b
i

]T
, i = 1, . . . , B, :

[
xbi , y

b
i

]T
∈M

}
.

The lowercase letters l, z, b indicate the coordinates of the respective set of environmental
features L,Z,B. An example of a grid world is depicted in Fig. 4.2, where obstacles,
NFZs, start/landing zone, and an example of a UAV trajectory are marked as described
in the attached legend in Tab. 4.2.

Identical to the model in section 3.2.1, the UAV’s data collection mission is over at
time T ∈ N, where the time horizon is discretized into equal mission time slots t ∈ [0, T].
The UAV’s position is given by p(t) = [x(t), y(t), z(t)]T with altitude z(t) ∈ {0, h}. The
k-th IoT device is located on ground level at uk = [xk, yk, 0]T ∈ R3 with k ∈ K. Mission
time slots are chosen sufficiently small so that the UAV’s velocity v(t) can be considered
to remain constant in one time slot. The UAV is limited to moving with constant velocity
V or hovering, i.e. v(t) ∈ {0, V } for all t ∈ [0, T]. The remaining flying time of the UAV
b(t) ∈ N is initialized to T time steps and decremented by one after each action the UAV
takes. In section 5.2.1, we briefly comment on the validity of this simplistic but for small
quadcopters still realistic energy model.

As it is expected that the communication channel is subject to faster changes than
the UAV’s movement, we partition each mission time slot t ∈ [0, T] into a number of
δ ∈ N communication time slots. The communication time index is then n ∈ [0, N] with
N = δT . The number of communication time slots per mission time slot δ is chosen
sufficiently large so that the UAV’s position, which is interpolated linearly between p(t)
and p(t+ 1), and the channel gain can be considered constant within one communication
time slot.

Similar to the channel model in [104], the communication links between UAV and
the K IoT devices are modeled as LoS/NLoS point-to-point channels with log-distance
path loss and shadow fading according to section 2.1.2. Note that this is different from
the channel model in chapter 3, as there direct comparison with another approach was
necessary. We now follow equations (2.2) and (2.1) directly.

The sensor nodes are served by the UAV in a simple time-division multiple access
(TDMA) manner where, in each communication time slot n ∈ [0, N], the sensor node
k ∈ [1, K] with the highest SNRk(n) with remaining data to be uploaded is picked by the

43

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

scheduling algorithm. The TDMA constraint for the scheduling variable qk(n) ∈ {0, 1} is
given by

K∑
k=1

qk(n) ≤ 1, n ∈ [0, N] . (4.1)

The achievable throughput for one mission time slot t is then the sum of the achieved
rates of the corresponding communication time slots n ∈ [δt, δ(t+ 1)− 1] over K sensor
nodes and given by

C(t) =

δ(t+1)−1∑
n=δt

K∑
k=1

qk(n)Rk(n). (4.2)

The central goal of the trajectory optimization problem is the maximization of
throughput over the whole data collection mission while minimizing flight duration,
subject to the constraints of maximum flight time, adherence to NFZs, obstacle avoidance,
and safe landing in designated landing areas. We translate this optimization problem
again into a reward function as part of a Markov decision process.

4.2.2 Markov Decision Process

The state at mission time t in the grid world of sizeM×M is given by st = (Dt,pt, bt,M,U)
and consists of five components:

• Dt ∈ RK×2 represents the initially available and the already collected data for each
device;

• pt ∈ R2 is the UAV position projected on the ground;

• bt ∈ N is the UAV’s remaining flying time;

• M ∈ BM×M×3 is the map of the physical environment in the Boolean domain {0, 1}
encoded with three map layers for start/landing positions, NFZs and buildings;

• U ∈ RK×2 are the 2D coordinates of the K IoT devices.

Note that the state is transformed before being fed into the agent as detailed in 4.3.
Considering the five described components, the total size of the state space is

S = R2︸︷︷︸
Position

× BM×M×3︸ ︷︷ ︸
Environment

Map

× RK×2︸ ︷︷ ︸
Device

Positions

×RK×2︸ ︷︷ ︸
Device
Data

× N︸︷︷︸
Flying
Time

.

In contrast to chapter 3, we simplify the action space as the additional diagonal move-
ment directions do not improve the fundamental trajectory planning strategy, but add
implementation complexity due to the resulting different traveling speeds. It assumed
that the UAV would anyway fly at the highest economical speed or hover if no movement
action would improve its current communication performance. We however differentiate
between hovering and landing explicitly now, as the UAV can also decide to end its

44

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

mission early with energy left in its battery by landing. The UAV is limited to six actions
contained in the action space

A =

{0
0
0


︸︷︷︸
hover

,

c0
0


︸︷︷︸
east

,

0
c
0


︸︷︷︸
north

,

−c0
0


︸ ︷︷ ︸

west

,

 0
−c
0


︸ ︷︷ ︸
south

,

 0
0
−h


︸ ︷︷ ︸

land

}
. (4.3)

The reward function maps state-action pairs to a real-valued reward, i.e. R : S ×
A → R. Representing the mission goals, the reward function consists of the following
components:

• rdata (positive) the data collection reward given by the achieved throughput (4.2)
in the current time slot;

• rsc (negative) safety controller (SC) penalty in case the drone has to be prevented
from colliding with a building or entering an NFZ;

• rmov (negative) constant movement penalty that is applied for every action the
UAV takes without completing the mission;

• rcrash (negative) penalty in case the drone’s remaining flying time reaches zero
without having landed safely in a landing zone.

4.3 Map Processing

︸ ︷︷ ︸
M

(a) Non-centered input map

︸ ︷︷ ︸
Mc

(b) Centered input map

Figure 4.3 – Comparison of non-centered and centered input maps, with UAV position
represented by the green star and the intersection of the dashed lines.

45

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

As it is realistic to assume that map information is available for an IoT network in an
urban environment, this section introduces the necessary map processing. However, we
only offer a short summary here and would like to refer to the following chapter 5 for a
more rigorous formulation. The global map is composed of the static environmental map
and a dynamic device data map, which is formatted as two real-valued map layers. The
first layer represents the data available for collection from each device at its respective
position and the second layer records the data that has already been collected throughout
the mission.

With this encoding, it would be possible to feed the map data directly into the agent
as it was done in [78], with an input space defined through

I = R2︸︷︷︸
Position

× BM×M×3︸ ︷︷ ︸
Environment

Map

× RM×M×2︸ ︷︷ ︸
Device Data

Map

× N︸︷︷︸
Flying
Time

.

However, here we show that centering the map layers on the UAV’s position greatly
benefits its ability to generalize over varying scenario parameters. While centering an
input map was already applied to local maps that only show the area immediately
surrounding the agent, such as in the related field of UAV navigation [107], it is here
applied for the first time to global maps in a UAV data collection scenario.

The map centering process inside the computational graph is illustrated in Fig.
4.3 with a legend provided in Table 4.2. For centering, the maps are expanded to
(2M − 1)× (2M − 1) in order to enable the agent to observe the entire map independent
of its position in it. Translation of the original map centers the expanded map on the
UAV’s position. The resulting input space is defined through

Ic = B(2M−1)×(2M−1)×3︸ ︷︷ ︸
Centered Environment

Map

×R(2M−1)×(2M−1)×2︸ ︷︷ ︸
Centered Device

Data Map

× N︸︷︷︸
Flying
Time

.

4.4 Extensions to the DQN Paradigm

In section 2.3.3, we have introduced the DQN paradigm as introduced by Mnih et al. [91].
Here we make use of additional improvements to the training process that were suggested
in [108], resulting in the inception of double deep Q-networks (DDQNs). With the
application of this extension, we avoid the overestimation of action values under certain
conditions in standard DQN and arrive at the loss function for our network given by

LDDQN(θ) = Es,a,s′∼D[(Qθ(s, a)− Y (s, a, s′))2] (4.4)

where the target value is given by

Y DDQN(s, a, s′) = r(s, a) + γQθ̄(s
′, arg max

a′
Qθ(s

′, a′)). (4.5)

In the standard DQN paradigm, new experiences made by the agent, represented by
quadruples of (s, a, r, s′), are stored in the replay memory D. During training, a minibatch

46

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

Parameter Value Description

|D| 50,000 replay memory buffer size

Nmax 10,000 maximum number of training episodes

β 0.1 temperature parameter (2.16)

m 128 minibatch size

γ 0.95 discount factor for target value in (4.5)

τ 0.005 target network update factor (2.14)

Table 4.3 – Hyperparameters for DDQN training with centered map input.

of size m is sampled uniformly from D and used to compute the loss. The size of the
replay memory |D| was shown to be an essential hyperparameter for the agent’s learning
performance and typically must be carefully tuned for different tasks or scenarios. Zhang
and Sutton [109] proposed combined experience replay as a remedy for this sensitivity
with very low computational complexity O(1). In this extension to the replay memory
method, only m− 1 samples of the minibatch are sampled from memory, and the latest
experience the agent made is always added. This corrected minibatch is then used to
train the agent. Therefore, all new transitions influence the agent immediately, making
the agent less sensitive to the selection of the replay buffer size in our approach. In this
section we apply DDQN and combined experience replay to the UAV trajectory planning
problem.

4.5 Neural Network Model

Fig. 4.4 shows the DQN structure and the map centering pre-processing. Note that
the device information is encoded in channel 4 and 5, but is visualized using colors
from the first 3 channels. The centered map is fed through convolutional layers with
ReLU activation and then flattened and concatenated with the scalar input indicating
remaining flight time. After passing through fully connected layers with ReLU activation,
the data reaches the last fully-connected layer of size |A| and without activation function,
directly representing the Q-values for each action given the input state. The arg max
of the Q-values, i.e. the greedy policy, is given by equation (2.15). It is deterministic
and used when evaluating the agent. During training, the soft-max policy (2.16) is used.
Hyperparameters for DDQN training are identical to [78] and can be found in Tab. 4.3.

4.6 Simulations

4.6.1 Simulation Setup

The UAV starts each new mission from a random position inside the start/landing zone
in a world discretized into 16 × 16 cells where each grid cell is of size 10m × 10m. It
starts with a remaining flying time of T steps, which is decremented by one after every

47

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

arg
m

ax

so
ftm

ax
𝜋
(𝑎

|𝑠)

F
u
lly

 C
o
n
n
ected

L
ay

ers

F
latten

 L
ay

er

C
o
n
v
o
lu

tio
n
 L

ay
ers

Q
-v

alu
es

en
v
iro

n
m

en
t

m
ap

p
o
sitio

n

d
ev

ice

m
ap

rem
ain

in
g

fly
in

g
 tim

e

𝜋
(𝑠)

2
7

x
2

7
x
1
6

5

5

5

5

3
1

x
3

1
x
5

2
5

6
2

5
6

2
5

6
6

8
4

6
5

cen
terin

g

F
ig

u
re

4
.4

–
D

D
Q

N
a
rch

itectu
re

w
ith

m
a
p

cen
terin

g
,

w
ith

th
e

d
ev

ice
m

a
p

en
co

d
ed

in
sep

a
ra

te
lay

ers,
b
u

t
v
isu

a
lized

in
R

G
B

ch
a
n
n

els.

48

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

action the agent takes, no matter if moving or hovering. The UAV flies at a constant
altitude of h = 10m inside ‘urban canyons’ through a city environment or open fields
and is, for regulatory reasons, not allowed to fly over buildings, enter NFZs, or leave the
16× 16 grid.

In this work, we aim to provide an algorithm that is able to generalize the learned
UAV control policy over a large parameter space that defines the specific data collection
scenario. That means that at the start of a new training episode, a set of scenario
parameters is sampled randomly from a given range of possible values defining the
mission. Then the mission starts and the agents are deployed to collect as much data as
possible in the given circumstances. Specifically, we define a new mission through the
following randomly varying scenario parameters:

• Number and position of IoT sensor nodes;

• Amount of data to be collected from IoT nodes;

• Flying time available for UAVs at mission start;

• UAV start positions.

Each mission time slot contains δ = 4 scheduled communication time slots. Propaga-
tion parameters (see 2.1.2) are chosen in-line with [110] according to the urban micro
scenario with αLoS = 2.27, αNLoS = 3.64, σ2

LoS = 2 and σ2
NLoS = 5. The shadowing maps

to simulate the environment were computed using ray tracing from and to the center
points of cells. Transmission and noise powers are normalized through the definition of a
cell-edge SNR of -15dB. The agent has absolutely no prior knowledge of the shadowing
maps or wireless channel characteristics.

We use the following metrics to evaluate the agent’s performance in different scenarios
and to compare training instances:

• Cumulative reward : the sum of all rewards received throughout an episode;

• Has landed : records whether the agent landed in time at the end of an episode;

• Collection ratio: the ratio of collected data to total initially available device data
at the end of a mission;

• Collection ratio and landed : the product of has landed and collection ratio per
episode.

In contrast to many other works in deep RL, we only use cumulative reward as a metric
to illustrate the training process and focus on collection ratio and landed as the main
performance metric because it is most indicative of a successful UAV data collection
mission.

As we train a single agent to generalize over a large scenario parameter space, defined
by the number of IoT devices, position of IoT devices, data to be collected at each device,
start positions, and flying time limits, evaluation is challenging. During training, we
evaluate the agent’s training progress in a randomly selected scenario every ten episodes

49

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

(a) Episodic cumulative reward (b) Collection ratio and landed

Figure 4.5 – Training process comparison between centered and non-centered map input
showing the average and 99% quantiles of three training processes each, with episodic
metrics grouped in bins of 5000 step width.

and form an average over multiple evaluations. A single evaluation could be tainted by
unusually easy conditions, e.g., when all devices are placed very close to each other by
chance. Therefore, only an average over multiple evaluations can be indicative of the
agent’s progress. As it is computationally infeasible to evaluate the trained agent on
all possible scenario variations, we perform Monte Carlo analysis on a large number of
randomly selected scenario parameter combinations.

4.6.2 Centered vs. Non-Centered Map

As described in Section 4.3, the map of the environment is processed to be centered on
the UAV’s position before feeding it into the convolutional layers of the agent. This
proved to be highly beneficial to the learning performance and the generalization ability
of the DDQN agent. Fig. 4.5 shows comparisons of two performance metrics, cumulative
reward per episode, and achieved data collection ratio in missions with in-time landing
over training time, for centered and non-centered map inputs in identical scenarios.

The difference between the agents is that the non-centered agent’s convolutional layers
are padded, while the centered agent’s are not. By setting the number of convolutional
layers to four, the last convolutional layer of the two agents have similar shape (15x15x16
for centered and 16x16x16 for non-centered), yielding a similar size flatten layer. This is
done to eliminate the size factor of the flatten layer as a parameter for their performance.
The only difference between the agents is that the non-centered agent receives the position
as a 2D-one-hot encoded map layer similar to [78]. Each graph is averaged over three
training runs to account for possible random variations in the training process. A clear
performance advantage for the agent using the centered map input can be seen throughout
the whole learning process.

The benefit of using a centered map is the result of a change in position to which a
neuron of the ”Flatten” layer (see Fig. 4.4) corresponds. If the map is not centered, the

50

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

(a) Equal data amounts (b) Orange device with a quarter of the green
device’s data

Figure 4.6 – Illustration of the same agent adapting to differences in collectible data with
all other mission parameters fixed.

neurons in that layer correspond to features at absolute positions. If the map is centered,
they correspond to features at positions relative to the agent. Since the agent’s actions
are solely based on its relative position to features, e.g. its distance to devices, learning
efficiency increases considerably.

4.6.3 Collectible Data and Device Accessibility

The scenario map in Fig. 4.6 is divided into an open field and an adjacent city. To show
the agent’s responsiveness to differences in collectible data at the same devices, we fixed
the number of IoT devices to K = 2, while allowing for fully randomized device positions
in unoccupied map space, for each device randomized collectible data (D0 ∈ [1.0, 25.0]
data units), randomized flying time limits (b0 ∈ [35, 70] steps) and eight possible start
positions.

Fig. 4.6 shows the agent adapting to a change in collectible data at the two devices.
The agent only enters the hard to navigate courtyard if the amount of data at the
orange device requires it. While starting to communicate with the unobstructed green
device in Fig. 4.6a, the agent proceeds to collect data from the harder-to-access orange
device first, then picking up the rest from the green device before returning straight
to the landing area. For the case in Fig. 4.6b, the UAV changes its strategy. While
immediately reducing its distance to the green node after starting and collecting all its
data, it collects the data from the orange device on the way back with a detour only as
long as required, minimizing the overall mission duration. The UAV is also clearly able
to identify unobstructed positions to communicate with the orange device.

51

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

4.6.4 Manhattan Scenario

Metric Manhattan Open Field and City

Has Landed 99.5% 99.9%

Collection Ratio 94.8% 90.0%

Collection Ratio and Landed 94.6% 89.9%

Table 4.4 – Performance metrics averaged over 1000 random scenario Monte Carlo
iterations.

The main scenario we investigate is defined by a Manhattan-like city structure (see
Fig. 4.7) containing regularly distributed city blocks with streets in between, as well as
an NFZ district. In this challenging setting, we want to demonstrate the agent’s ability
to generalize over significant variations in scenario parameters with randomly changing
device count (K ∈ [2, 5]), device data (D0 ∈ [5.0, 20.0] data units), maximum flying time
(b0 ∈ [35, 70] steps), and eight possible starting positions. Similar to the previous scenario,
device positions are randomized throughout the unoccupied map space.

This and the previous scenario are evaluated using Monte Carlo simulations on their
full range of scenario parameters with average performance metrics shown in Table 4.4.
Both agents show a similarly high successful landing performance. It is expected that
the collection ratio must be less than 100% in some scenario instances depending on the
randomly assigned maximum flying time and IoT device parameters.

In Fig. 4.7, four scenario instances chosen from the random Monte Carlo evaluation
for device counts of K ∈ {2, 3, 4, 5} for 4.7a through 4.7d illustrate the agent’s adaptability.
With K = 2 devices in Fig. 4.7a, finding a trajectory is complicated by the location of
the blue device inside the NFZ and the resulting shadowing effects, which have to be
deduced by the agent from building and device positions. In Fig. 4.7b, the considerable
distance to the red device requires the agent to exhaust its entire flight time. For the
scenario in Fig. 4.7c the available flying time T = 35 is not sufficient to collect all data.
Therefore, the agent ignores the isolated blue device and lands early after collecting all
data within reach. In Fig. 4.7d the agent successfully collects all data in an efficient
order while minimizing its flying time, e.g. by turning away from the green device before
transmitting all its data. We observed that rerunning the same scenario configuration
leads to a variation in trajectories which adapt to effects of the random communication
channel fading.

4.7 Conclusion

In this chapter, we introduced a new DDQN method with combined experience replay
for UAV trajectory planning in an IoT data harvesting scenario. By leveraging a neural
network model that exploits information about the environment from centered map layers
through convolutional processing, we showed that the UAV agent learns to effectively
adapt to significant variations in the scenario such as number and position of IoT devices,

52

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

amount of collectible data or maximum flying time, without the need for expensive
retraining or recollection of training data. Using this method, we have shown that
the UAV balances the goals of data collection, obstacle avoidance, and minimizing
mission time effectively, while not requiring any prior information about the challenging
wireless channel characteristics in an urban environment. However, the presented map
centering approach also introduces a new challenge, namely the linear increase of trainable
parameters in the flatten layer of the neural network model with map area. In the next
chapter, we will tackle this issue of scalability to larger maps. Furthermore, we have so
far only looked at single UAV scenarios and the extension to the multi-UAV case brings
additional challenges in terms of coordination and multi-agent reinforcement learning
(MARL), which we will also detail in the following chapter. We will further extend the
scenario parameter generalization of the learned control policy to a larger scenario space,
including the number of deployed UAVs, that enables us to identify system-level trade-offs
in the IoT data harvesting system easily.

53

Chapter 4. Multi-Scenario UAV Data Harvesting in IoT Networks

(a) Time 31/38; Data 17.4/17.4 (b) Time 41/41; Data 34.5/34.5

(c) Time 30/35; Data 32.0/50.6 (d) Time 45/65; Data 60.7/60.7

Figure 4.7 – Illustration of the same agent adapting to differences in device count and
device placement as well as flight time limits, showing used and available flying time and
collected and available total data in the Manhattan scenario.

54

Chapter 5

Multi-UAV Coordination in
Multi-Scenario Data Harvesting

5.1 Introduction

In this chapter, we extend and improve on the results from chapter 4 while considering a
similar UAV-aided communications scenario with data collection from distributed IoT
devices. It is reasonable to assume that a network operator deploying UAV data harvesters
as part of its IoT network infrastructure, would try to increase the effectiveness of the
system by deploying multiple of these UAVs. From the trajectory planning perspective,
this requires taking into account the coordination aspect and a reformulation of the
approach to multi-agent reinforcement learning (MARL). Hence, we formulate the path
planning problem for a cooperative, non-communicating, and homogeneous team of UAVs
tasked with maximizing collected data from distributed IoT sensor nodes subject to
flying time and collision avoidance constraints. The path planning problem is translated
into a decentralized partially observable Markov decision process (Dec-POMDP), which
we solve through a DDQN approach, approximating the optimal UAV control policy
without prior knowledge of the challenging wireless channel characteristics in dense urban
environments.

The second improvement is related to the fact that the map centering approach as
introduced previously, although leading to high learning performance gains, also increases
the number of trainable neural network parameters that makes it unsustainable for
larger, more realistic and complex maps. In this chapter, we also modify the scenario to
differentiate between tall buildings that act as navigation obstacles, as well as smaller
buildings that can be flown over by the UAV. We tackle the issue of increasing trainable
parameters by exploiting a combination of centered global and local map representations
of the environment that are fed into convolutional layers of the agents. We show that our
proposed network architecture enables the agents to cooperate effectively by carefully
dividing the data collection task among themselves, adapt to large complex environments
and state spaces, and make movement decisions that balance data collection goals,
flight-time efficiency, and navigation constraints.

55

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

Finally, in this work, we focus on controlling a team of UAVs, consisting of a variable
number of identical drones tasked with collecting varying amounts of data from a variable
number of stationary IoT sensor devices at variable locations in an urban environment.
This imposes challenging constraints on the trajectory design for autonomous UAVs.
Learning a control policy that generalizes over the scenario parameter space enables us
to analyze the influence of individual parameters on collection performance and provide
some intuition about system-level benefits.

5.1.1 Related Work

The focus of this section is to extend on the discussed literature in the previous chapter
by concentrating on multi-UAV DRL trajectory planning in UAV-aided communications.
Research into UAV-aided data collection from IoT devices or wireless sensors include the
works [33, 66, 67, 111, 112], with [102, 113–115] concentrating on minimizing the age of
information of the collected data specifically. The most relevant surveys for multi-UAV
systems include [74] that spans the various application areas for multi-UAV systems from
a cyber-physical perspective. The general challenges and opportunities of multi-UAV
communications are also summarized in publications by Zeng et al. [1] and Saad et
al. [36], which both include data collection from IoT devices. This specific scenario is
also included in [52] and [61], surveys that comprise information on the classification of
UAV communication applications including a focus on MARL methods.

Multi-UAV path planning for serving ground users employing table-based Q-learning
is investigated in [73], based on a relatively complex 3-step algorithm consisting of
grouping the users with a genetic algorithm, then deployment and movement design in
two separated instances of Q-learning. The investigated optimization problem is proven to
be NP-hard, with Q-learning being confirmed as a useful tool to solve it. Pan et al. [111]
investigate an instance of multi-UAV data collection from sensor nodes formulated as a
classical traveling salesman problem without modeling the communication phase between
UAV and node. The UAVs’ trajectories are designed with a genetic algorithm that uses
some aspects of DRL, namely training a deep neural network and experience replay.
In contrast to the multi-stage optimization algorithms in [73] and [111], the approach
presented in this chapter consists of a more straightforward end-to-end DRL approach that
scales to large and complex environments, generalizing over varying scenario parameters.

The combination of DRL and multi-UAV control has been studied previously in
various scenarios. The authors in [113] focus on trajectory design for minimizing the age
of information of sensing data generated by multiple UAVs themselves where the data can
be either transmitted to terrestrial base stations or mobile cellular devices. Their focus lies
on balancing the UAV sensing and transmission protocol in an unobstructed environment
for one set of scenario parameters at a time. Other MARL path planning approaches
to minimize the age of information of collected data include [114] and [115]. In [116], a
swarm of UAVs on a target detection and tracking mission in an unknown environment is
controlled through a distributed DQN approach. While the authors also use convolutional
processing to feed map information to the agents, the map is initially unknown and has to
be explored to detect the targets. The agents’ goal is to learn transferable knowledge that

56

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

enables adaptation to new scenarios with fast relearning, compared to our approach to
learn a control policy that generalizes over scenario parameters and requires no relearning.

Hu et al. [30] proposed a distributed multi-UAV meta-learning approach to control a
group of drone base stations serving ground users with random uplink access demands.
While meta-learning allows them to reduce the number of training episodes needed to
adapt to a new unseen uplink demand scenario, several hundred are still required. The
approach presented in this chapter focuses on training directly on random but observable
scenario parameters within a given value range, therefore not requiring retraining to adapt.
Due to the small and obstruction-less environment, no maps are required in [30] and
navigation constraints are omitted by keeping the UAVs at dedicated altitudes. In [33],
multi-agent deep Q-learning is used to optimize trajectories and resource assignment
of UAVs that collect data from pre-defined clusters of IoT devices and provide power
wirelessly to them. The focus here is on maximizing minimum throughput in a wirelessly
powered network without a complex environment and navigation constraints, only for a
single scenario at a time. Similarly, in [112] there is also a strong focus on the energy
supply of IoT devices through backscatter communications when a team of UAVs collects
their data. The authors propose a multi-agent approach that relies on the definition
of ambiguous boundaries between clusters of sensors. The scenario is set in a simple,
unobstructed environment, not requiring maps or adherence to multiple navigation
constraints, but requiring retraining when scenario parameters change.

In [42], a group of interconnected UAVs is tasked with providing long-term commu-
nication coverage to ground users cooperatively. While the authors also formulate a
POMDP that they solve by a DRL variant, there is no need for map information or pro-
cessing. The scenario is set in a simple environment without obstacles or other navigation
constraints. This work was extended under the paradigm of mobile crowdsensing, where
mobile devices are leveraged to collect data of common interest in [66]. The authors
proposed a heterogeneous multi-agent DRL algorithm collecting data simultaneously
with ground and aerial vehicles in an environment with obstacles and charging stations.
While in this work, the authors also suggest a convolutional neural network to exploit
a map of the environment, the small grid world does not necessitate extensive map
processing. Furthermore, they do not center the map on the agent’s position, which
is highly beneficial as discussed in the previous chapter 4. In contrast to the method
presented here, control policies have to be relearned entirely in a lengthy training process
for both mentioned approaches when scenario and environmental parameters change.

5.1.2 Contributions

As introduced in chapter 4, if DRL methods are to be applied in any real-world mission,
the prohibitively high training data demand poses one of the most severe challenges [75].
This is exacerbated by the fact that even minor changes in the scenario, such as in
the number or location of sensor devices in data collection missions, typically requires
repeating the full training procedure of the DRL agent. This is the case for existing
approaches such as [29, 33, 42, 66, 112–115]. Other approaches to reduce the training data
demand include meta-learning [30] and transfer learning [75]. The approach introduced

57

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

here is, to the best of the author’s knowledge, the first work that addresses this problem
in path planning for multi-UAV data harvesting by proposing a DRL method that is able
to generalize over a large space of scenario parameters in complex urban environments
without prior knowledge of wireless channel characteristics based on centered global-local
map processing. The main contributions in this chapter can be summarized as follows:

• We formulate a flying time constrained multi-UAV path planning problem to
maximize harvested data from IoT sensors. We consider its translation to a
decentralized partially observable Markov decision process (Dec-POMDP) with
full reward function description in large, complex, and realistic environments that
include no-fly zones, buildings that block wireless links (some possible to be flown
over, some not), and dedicated start/landing zones.

• To solve the Dec-POMDP under navigation constraints without any prior knowledge
of the urban environment’s challenging wireless propagation conditions, we employ
deep multi-agent reinforcement learning with centralized training and decentralized
execution (CTDE).

• We show the advantage in learning and adaptation efficiency to large maps and
state spaces through a dual global-local map approach with map centering over
more conventional scalar neural network input in a multi-UAV setting.

• We extend on the feature of the proposed algorithm introduced in the previous
chapter, parameter generalization, which means that the learned control policy
can be reused over a wide array of scenario parameters, including the number
of deployed UAVs, variable start positions, maximum flying times, and number,
location and data amount of IoT sensor devices, without the need to restart the
training procedure as typically required by other DRL approaches.

• Learning a generalized control policy enables us to compare performance over a
large scenario parameter space directly. We analyze the influence of individual
parameters on collection performance and provide some intuition about system-level
benefits.

5.2 System Model

The system model is very similar to the one presented in section 4.2.1, but needs to be
partially reformulated to account for the presence of multiple UAVs. We still consider a
square grid world of size M ×M ∈ N2 with cell size c and the set of all possible positions
M. The environment contains L designated start/landing positions given by the set L.
The combination of the Z positions the UAVs cannot occupy which is given by the set
Z which includes tall buildings which the UAVs can not fly over and regulatory no-fly
zones (NFZ). The number of B obstacles blocking wireless links are given by the set
B representing all buildings, also smaller ones that can be flown over. The exact set
definitions are given in section 4.2.1.

58

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

5.2.1 UAV Model

The set I of I deployed UAVs moves within the limits of the grid world M. The state of
the i-th UAV is described through its:

• position pi(t) = [xi(t), yi(t), zi(t)]
T ∈ R3 with altitude zi(t) ∈ {0, h}, either at

ground level or in constant altitude h;

• operational status φi(t) ∈ {0, 1}, either inactive or active;

• battery energy level bi(t) ∈ N.

Note that the assumption of all UAVs sharing the same flying altitude is not too restrictive
and that the presented method allows each UAV to fly at a different altitude as long
as it remains constant throughout the mission. The UAV agent’s altitude can be made
observable by simply adding it to the observation space along the flying time. Here, we
only tackle 2D trajectory optimization, as the environment is dominated by high-rise
buildings that would require long climbing phases to be overflown. The mission time
limited by the UAVs’ on-board batteries restricts the effectiveness of 3D control for
the data collection performance given that climbing flight consumes more energy [81]
and that the UAVs needs to land at ground level at the end of the mission. The data
collection mission is over after T ∈ N mission time steps for all UAVs, where the time
horizon is discretized into equal mission time slots t ∈ [0, T] of length δt seconds. The
action space of each UAV is identical to (4.3). However, each UAV’s movement actions
ai(t) ∈ Ã(pi(t)) are limited to

Ã(pi(t)) =

{
A, pi(t) ∈ L
A \ [0, 0,−h]T, otherwise,

(5.1)

where Ã defines the set of feasible actions depending on the respective UAV’s position,
specifically that the landing action is only allowed if the UAV is in the landing zone.

The distance the UAV travels within one time slot is equivalent to the cell size c.
Mission time slots are chosen sufficiently small so that each UAV’s velocity vi(t) can be
considered to remain constant in one time slot. The UAVs are limited to moving with
horizontal velocity V = c/δt or standing still, i.e. vi(t) ∈ {0, V } for all t ∈ [0, T]. Each
UAV’s position evolves according to the motion model given by

pi(t+ 1) =

{
pi(t) + ai(t), φi(t) = 1

pi(t), otherwise,
(5.2)

keeping the UAV stationary if inactive. The evolution of the operational status φi(t) of
each UAV is given by

φi(t+ 1) =


0, ai(t) = [0, 0,−h]T

∨ φi(t) = 0

1, otherwise,

(5.3)

59

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

where the operational status becomes inactive when the UAV has safely landed. The end
of the data harvesting mission T is defined as the time slot when all UAVs have reached
their terminal state and are not actively operating anymore, i.e. the operational state is
φi(t) = 0 for all UAVs.

The i-th UAV’s battery content evolves according to

bi(t+ 1) =

{
bi(t)− 1, φi(t) = 1

bi(t), otherwise,
(5.4)

assuming a constant energy consumption while the UAV is operating and zero energy
consumption when operation has terminated. This is a simplification justified by the
fact that power consumption for small quadcopter UAVs is dominated by the hovering
component. Using the model from [81], the ratio between the additional power nec-
essary for horizontal flight at 10m/s and just hovering could be roughly estimated as
30W/310W ≈ 10%, which is negligible. Considering power consumption of on-board
computation and communication hardware which does not differ between flight and
hovering, the overall difference becomes even smaller. In the following, we will refer to
the battery content as remaining flying time, as it is directly equivalent.

The overall multi-UAV mobility model is restricted by the following constraints:

pi(t) 6= pj(t) ∨ φj(t) = 0, ∀i, j ∈ I, i 6= j,∀t (5.5a)

pi(t) /∈ Z, ∀i ∈ I, ∀t (5.5b)

bi(t) ≥ 0, ∀i ∈ I, ∀t (5.5c)

pi(0) ∈ L ∧ zi(0) = h, ∀i ∈ I (5.5d)

φi(0) = 1, ∀i ∈ I (5.5e)

The constraint (5.5a) describes collision avoidance among active UAVs with the exception
that UAVs can land at the same location. (5.5b) forces the UAVs to avoid collisions
with tall obstacles and prevents them from entering NFZs. The constraint (5.5c) limits
operation time of the drones, forcing UAVs to end their mission before their battery has
run out. Since operation can only be concluded with the landing action as described in
(5.3) and the landing action is only available in the landing zone as defined in (5.1), the
constraint (5.5c) ensures that each UAV safely lands in the landing zone before their
batteries are empty. The starting constraint (5.5d) defines that the UAV start positions
are in the start/landing zones and that their starting altitude is h, while (5.5e) ensures
that the UAVs start in the active operational state.

5.2.2 Communication Channel Model

Link Performance Model

The link performance model is identical to the one presented in section 4.2.1. Each mission
time slot t ∈ [0, T] is partitioned into a number of λ ∈ N communication time slots. The
communication time index is then n ∈ [0, N] with N = λT , where one communication
time slot n is of length δn = δt/λ seconds.

60

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

The k-th IoT device is located on ground level at uk = [xk, yk, 0]T ∈ R3 with k ∈ K
where |K| = K. Each IoT sensor has a finite amount of data Dk(t) ∈ R+ that needs to
be picked up over the whole mission time t ∈ [0, T]. The device data volume is set to an
initial value at the start of the mission Dk(t = 0) = Dk,init. The data volume of each IoT
node evolves depending on the communication time index n over the whole mission time,
given by Dk(n) with n ∈ [0, N], N = λT .

We follow the same UAV-to-ground channel model as described in section 2.1.2 and
only recall it here with the extension for the multi-UAV case. The maximum achievable
information rate at time n for the k-th device is given by

Rmax
i,k (n) = log2 (1 + SNRi,k(n)) . (5.6)

Considering the amount of data available at the k-th device Dk(n), the effective informa-
tion rate is given as

Ri,k(n) =

{
Rmax
i,k (n), Dk(n) ≥ δnRmax

i,k (n)

Dk(n)/δn, otherwise.
(5.7)

The SNR with transmit power Pi,k, white Gaussian noise power at the receiver σ2, UAV-
device distance di,k, path loss exponent αe and ηe ∼ N (0, σ2

e) modeled as a Gaussian
random variable, is defined as

SNRi,k(n) =
Pi,k
σ2
· di,k(n)−αe · 10ηe/10. (5.8)

Note that the urban environment with the set of obstacles B hindering free propagation
causes a strong dependence of the propagation parameters on the e ∈ {LoS, NLoS}
condition and that (5.8) is the SNR averaged over small scale fading. It is also important
to recall that the presented DQN-based trajectory planning approach is model-free and
does therefore not rely on any specific channel model. While a more accurate and
complex model could be directly used with our approach, the most important features
for data collection missions of the urban channel, the dependence of SNR on di,k and the
e ∈ {LoS, NLoS} condition, are already captured in (5.8).

Multiple Access Protocol

The multiple access protocol is assumed to follow the standard time-division multiple
access (TDMA) model when it comes to the communication between one single UAV and
the various ground nodes. We further assume that the communication channel between
the ground nodes and a given UAV operates on resource blocks (time-frequency slots)
that are orthogonal to the channels linking the ground nodes and other UAVs, so that no
inter-UAV interference exists in our model and inter-UAV synchronization is not necessary.
Hence, the UAVs are similar to base stations that would be assigned orthogonal spectral
resources. We also assume that IoT devices are operating in multi-band mode, hence
are capable of simultaneously communicating with all UAVs on the set of all orthogonal
frequencies. As a consequence, scheduling decisions are not part of the action space. The

61

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

number of available orthogonal subchannels for UAV-to-ground communication is one of
the variable scenario parameters and equivalent to the number of deployed UAVs.

Designing multiple access protocols for UAV networks is in itself a challenging research
problem [44] due to high mobility of the nodes and fast changing link performance and is
out of scope for this work. However, our proposed algorithm can in principle be integrated
with existing solutions and does not rely on any specific channel model or multiple access
protocol. While our model avoids and does not consider inter-UAV interference, we would
like to point out that the behavior of the UAV agents that emerges naturally during
the learning process of dividing the data collection task geographically, as illustrated
in section 5.6.4, would mitigate the influence of interference on the trajectory planning
decisions to some extent.

Our scheduling protocol is assumed to follow the max-rate rule: in each communication
time slot n ∈ [0, N], the sensor node k ∈ [1, K] with the highest SNRi,k(n) with remaining
data to be uploaded is picked by the scheduling algorithm. The TDMA constraint for
the scheduling variable qi,k(n) ∈ {0, 1} is given by

K∑
k=1

qi,k(n) ≤ 1, n ∈ [0, N] , ∀i ∈ I. (5.9)

It follows that the k-th device’s data volume evolves within one communication time slot
according to

Dk(n+ 1) = Dk(n)−
I∑
i=1

qi,k(n)Ri,k(n)δn. (5.10)

The achievable throughput for the i-th UAV for one mission time slot t ∈ [0, T], com-
prised of λ communication time slots, is the sum of rates achieved in the communication
time slots n ∈ [λt, λ(t+ 1)− 1] over K sensor nodes. It depends on the UAV’s operational
status φi(t) and is given by

Ci(t) = φi(t)

λ(t+1)−1∑
n=λt

K∑
k=1

qi,k(n)Ri,k(n)δn. (5.11)

5.2.3 Optimization Problem

Using the described UAV model in 5.2.1 and communication model in 5.2.2, the central
goal of the multi-UAV path planning problem is the maximization of throughput over the
whole mission time and over all I deployed UAVs while adhering to mobility constraints
(5.5a)-(5.5e) and the scheduling constraint (5.9). The maximization problem is given by

max
×iai(t)

T∑
t=0

I∑
i=1

Ci(t). (5.12)

s.t. (5.5a), (5.5b), (5.5c), (5.5d), (5.5e), (5.9)

optimizing over joint actions ×iai(t).

62

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

5.3 Decentralized Partially Observable Markov Decision Process
(Dec-POMDP)

To address the aforementioned optimization problem, the simple MDP framework is
not applicable anymore, as the multi-agent formulation requires decentralization and
the map-processing (as detailed in section 5.4) causes the problem to be only partially
observable. Hence, we translate the optimization problem (5.12) to a decentralized
partially observable Markov decision process (Dec-POMDP) [117], which is defined
through the tuple (S,A×, P,R,Ω×,O, γ). In the Dec-POMDP, S describes the state
space, A× = AI the joint action space, and P : S×A××S 7→ R the transition probability
function. R : S × A× S 7→ R is the reward function mapping state, individual action,
and next state to a real valued reward. The joint observation space is defined through
Ω× = ΩI and O : S × I 7→ Ω is the observation function mapping state and agents to
one agent’s individual observation. The discount factor γ ∈ [0, 1] controls the importance
of long vs. short term rewards.

5.3.1 State Space

The state space of the multi-agent data collection problem consists of the environment
information, the state of the agents, and the state of the devices. It is given as

S = L︸︷︷︸
Landing
Zones

× Z︸︷︷︸
NFZs

× B︸︷︷︸
Obstacles

}
Environment

× RI×3︸ ︷︷ ︸
UAV

Positions

× NI︸︷︷︸
Flying
Times

× BI︸︷︷︸
Operational

Status

}
Agents (5.13)

× RK×3︸ ︷︷ ︸
Device

Positions

× RK︸︷︷︸
Device
Data

}
Devices

in which the elements s(t) ∈ S are

s(t) = (M, {pi(t)}, {bi(t)}, {φi(t)}, {uk}, {Dk(t)}), (5.14)

∀i ∈ I and ∀k ∈ K, in which M ∈ BM×M×3 is the tensor representation of the set of
start/landing zones L, obstacles and NFZs Z, and obstacles only B. The other elements
of the tuple define positions, remaining flying times, and operational status of all agents,
as well as positions and available data volume of all IoT devices.

5.3.2 Safety Controller

To enforce the collision avoidance constraint (5.5a) and the NFZ and obstacle avoidance
constraint (5.5b), a safety controller is introduced into the system. Additionally, the
safety controller enforces the limited action space excluding the landing action when
the respective agent is not in the landing zone as defined in (5.1). The safety controller

63

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

evaluates the action ai(t) of agent i and determines if it should be accepted or rejected.
If rejected, the resulting safe action is the hovering action. The safe action as,i(t) is thus
defined as

as,i(t) =



[0, 0, 0]T, pi(t) + ai(t) ∈ Z
∨ pi(t) + ai(t) = pj(t) ∧ φj(t) = 1,

∀j, j 6= i

∨ ai(t) = [0, 0,−h]T ∧ pi(t) /∈ L
ai(t), otherwise.

(5.15)

Without path planning capabilities, the safety controller cannot enforce the flying time
and safe landing constraint in (5.5c). Therefore, we relax the hard constraint on flight
time by adding a high penalty on not landing in time instead. In the simulation, a
crashed agent, i.e. an agent with bi(t) < 0, is defined as not operational.

5.3.3 Reward Function

The reward function R : S ×A×S 7→ R of the Dec-POMDP is comprised of the following
elements:

ri(t) = α
∑
k∈K

(
Dk(t+ 1)−Dk(t)

)
+ βi(t) + γi(t) + ε. (5.16)

The first term of the sum is a collective reward for the collected data from all devices
by all agents within mission time slot t. It is parameterized through the data collection
multiplier α. This is the only part of the reward function that is shared among all agents.
The second addend is an individual penalty when the safety controller rejects an action
and given through

βi(t) =

{
β, ai(t) 6= ai,s(t)

0, otherwise.
(5.17)

It is parameterized through the safety penalty β. The third term is the individual penalty
for not landing in time given by

γi(t) =

{
γ, bi(t+ 1) = 0 ∧ pi(t+ 1) = [·, ·, h]T

0, otherwise.
(5.18)

and parameterized through the crashing penalty γ. The last term is a constant movement
penalty parameterized through ε, which is supposed to incentivize the agents to reduce
their flying time and prioritize efficient trajectories.

5.4 Map-Processing and Observation Space

To aid the agents in interpreting the large state space given in (5.13), we implement two
map processing steps. The first is centering the map around the agent’s position, shown
in the previous chapter 4 to significantly improve the agent’s learning performance. This
benefit is a consequence of neurons in the layer after the convolutional layers (compare

64

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

Fig. 5.3) corresponding to features relative to the agent’s position, rather than to absolute
positions if the map is not centered. This is advantageous as one agent’s actions are
solely based on its relative position to features, e.g. its distance to sensor devices. The
downside of this approach is that it increases the size of the maps and the observation
space even further, therefore requiring larger networks with more trainable parameters.

The second map processing step is to present the centered map as a compressed global
and uncompressed but cropped local map as introduced in [79]. In path planning, as
distant features lead to general direction decisions while close features lead to immediate
actions such as collision avoidance, the level of detail passed to the agent for distant
objects can be less than for close objects. The advantage is that the compression of the
global map reduces the necessary neural network size considerably.

This reduction in network size directly translates to a reduction in computational
load. Table 5.1 shows the number of floating point operations needed for each of the
two maps under different map processing regimes as given by the TensorFlow graph
profiler. Only centering increases the computational load considerably, while global-local
map processing offsets the increase and reduces floating point operations considerably.
Considering that modern embedded processors operate in the region of giga floating point
operations, it seems realistic that the required processing can be carried out even on
small and energy-limited UAVs. The mathematical descriptions of the map processing
functions and the observation space are detailed in the following.

Map No Processing Centering Centering + Global-Local

Manhattan32 15 80 7.7

Urban50 45 217 6.5

Table 5.1 – Million floating point operations (MFLOPs) needed for inference of the
networks based on map-processing.

5.4.1 Map-Processing

For ease of exposition, we introduce the 2D projections of the UAV and IoT device
positions on the ground, ũk ∈ N2 and p̃k ∈ N2 respectively, given by

ũk =

⌊(
1
c 0 0
0 1

c 0

)
uk

⌉
, p̃i =

⌊(
1
c 0 0
0 1

c 0

)
pi

⌉
(5.19)

rounded to integer grid coordinates.

Mapping

The centering and global-local mapping algorithms are based on map-layer representations
of the state space. To represent any state with a spatial aspect given by a position and a
corresponding value as a map-layer, we define a general mapping function

fmapping : NQ×2 × RQ 7→ RM×M . (5.20)

65

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

In this function, a map layer A ∈ RM×M is defined as

A = fmapping({p̃q}, {vq}), (5.21)

with a set of grid coordinates {p̃q} and a set of corresponding values {vq}. The elements
of A are given through

ap̃q,0,p̃q,1 = vq, ∀q ∈ [0, ..., Q− 1] (5.22)

or 0 if the index is not in the grid coordinates. With this general function, we define the
map-layers

D(t) =fmapping({ũk}, {Dk(t)}) (5.23a)

B(t) =fmapping({p̃i(t)}, {bi(t)}) (5.23b)

Φ(t) =fmapping({p̃i(t)}, {φi(t)}) (5.23c)

for device data, UAV flying times, and UAV operational status respectively. If the
map-layers are of same type they can be stacked to form a tensor of RM×M×n for ease of
representation.

Map Centering

Given a tensor A ∈ RM×M×n describing the map-layers, a centered tensor B ∈ RMc×Mc×n

with Mc = 2M − 1 is defined through

B = fcenter(A, p̃,xpad), (5.24)

with the centering function defined as

fcenter : RM×M×n × N2 × Rn 7→ RMc×Mc×n. (5.25)

The elements of B with respect to the elements of A are defined as

bi,j =


ai+p̃0−M+1,j+p̃1−M+1, M ≤ i+ p̃0 + 1 < 2M

∧ M ≤ j + p̃1 + 1 < 2M

xpad, otherwise,

(5.26)

effectively padding the map layers of A with the padding value xpad. Note that ai,j , bi,j ,
and xpad are vector valued of dimension Rn. An illustration of the centering on a 16× 16
map (M = 16, Mc = 31) was given in the previous chapter and can be seen in Figure 4.3
with the legend in Tab. 4.2.

Global-Local Map

The tensor B ∈ RMc×Mc×n resulting from the map centering function is processed in two
ways. The first is creating a local map according to

X = flocal(B, l) (5.27)

66

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

(a) Original complete map. (b) Compressed and centered
global map.

(c) Uncompressed but cropped
local map.

Figure 5.1 – Visualization of the global-local map processing. The active agent’s position
is marked by a red spot on the original map 5.1a.

with the local map function defined by

flocal : RMc×Mc×n × N 7→ Rl×l×n. (5.28)

The elements of X with respect to the elements of B are defined as

xi,j = bi+M−d l
2
e,j+M−d l

2
e (5.29)

This operation is effectively a central crop of size l × l.
The second processing creates a global map according to

Y = fglobal(B, g) (5.30)

with the global map function

fglobal : RMc×Mc×n × N 7→ Rb
Mc
g
c×bMc

g
c×n

(5.31)

The elements of Y with respect to the elements of B are defined as

yi,j =
1

g2

g−1∑
u=0

g−1∑
v=0

bgi+u,gj+v (5.32)

This operation is equal to an average pooling operation with pooling cell size g.

The functions flocal and fglobal are parameterized through l and g, respectively.
Increasing l increases the size of the local map, whereas increasing g increases the size of
the average pooling cells, therefore decreasing the size of the global map. The global-local
map processing is visualized in Fig. 5.1.

67

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

5.4.2 Observation Space

Using the map processing functions, the observation space can be defined. The observation
space Ω, which is the input space to the agent, is given as

Ω = Ωl︸︷︷︸
Local
Map

× Ωg︸︷︷︸
Global
Map

× N︸︷︷︸
Flying
Time

containing the local map

Ωl = Bl×l×3 × Rl×l × Nl×l × Bl×l

and the global map
Ωg = Rḡ×ḡ×3 × Rḡ×ḡ × Rḡ×ḡ × Rḡ×ḡ.

with ḡ = bMc
g c. Note that the compression of the global map through average pooling

transforms all map layers into R. Observations oi(t) ∈ Ω are defined through the tuple

oi(t) = (Ml,i(t),Dl,i(t),Bl,i(t),Φl,i(t),

Mg,i(t),Dg,i(t),Bg,i(t),Φg,i(t), bi(t)). (5.33)

In one observation tuple, Ml,i(t) is the local observation of agent i of the environment,
Dl,i(t) is the local observation of the data to be collected, Bl,i(t) is the local observation
of the remaining flying time of all agents, and Φl,i(t) is the local observation of the
operational status of the agents. Mg,i(t), Dg,i(t), Bg,i(t), and Φg,i(t) are the respective
global observations. bi(t) is the remaining flying time of agent i, which is equal to the
one in the state space. Note that the environment map’s local and global observations
are dependent on time, as they are centered around the UAV’s time-dependent position.
Additionally, it should be noted that the remaining flying time of agent i is given in the
center of Bl,i(t) and additionally as a scalar bi(t). This redundancy in representation
helps the agent to interpret the remaining flying time.

Consequently, the complete mapping from state to observation space is given by

O : S × I 7→ Ω (5.34)

in which the elements of oi(t) are defined as follows:

Ml,i(t) =flocal(fcenter(M,pi(t), [0, 1, 1]T), l) (5.35a)

Dl,i(t) =flocal(fcenter(D(t),pi(t), 0), l) (5.35b)

Bl,i(t) =flocal(fcenter(B(t),pi(t), 0), l) (5.35c)

Φl,i(t) =flocal(fcenter(Φ(t),pi(t), 0), l) (5.35d)

Mg,i(t) =fglobal(fcenter(M,pi(t), [0, 1, 1]T), g) (5.35e)

Dg,i(t) =fglobal(fcenter(D(t),pi(t), 0), g) (5.35f)

Bg,i(t) =fglobal(fcenter(B(t),pi(t), 0), g) (5.35g)

Φg,i(t) =fglobal(fcenter(Φ(t),pi(t), 0), g) (5.35h)

68

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

By passing the observation space Ω into the agent instead of the state space S as done
in the previous chapter 4, the presented path planning problem is artificially converted
into a partially observable MDP. Partial observability is a consequence of the restricted
size of the local map and the compression of the global map. However, as shown in [79],
partial observability does not render the problem infeasible, even for a memory-less agent.
Instead, the compression greatly reduces the neural network’s size, leading to a significant
reduction in training time.

5.5 Multi-Agent Reinforcement Learning

5.5.1 Multi-Agent Q-learning

In principle, we apply the DDQN algorithm as introduced in section 4.4 directly to the
presented multi-UAV problem. Loss function and target are given by equations (4.4)
and (4.5) respectively. The following provides a characterization of the proposed DDQN
multi-agent algorithm.

The original table-based Q-learning algorithm was extended to the cooperative multi-
agent setting by Claus and Boutilier in 1998 [118]. Without changing the underlying
principle, it can also be applied to DDQN-based multi-agent cooperation. With the
taxonomy from [119], our agents can be classified as homogeneous and non-communicating.
Homogeneity is a consequence of deploying a team of identical UAVs with the same
internal structure, domain knowledge, and identical action spaces. Non-communication
is to be interpreted in a multi-agent system sense, i.e. that the agents can not coordinate
their actions or choose what to communicate. However, as they all perceive state
information that includes other UAVs’ positions, in a practical sense, position information
would most likely be communicated via the command and control links of the UAVs, that
especially autonomous UAVs would have to maintain for regulatory purposes in any case.

The best way to describe our learning approach is by centralized training with
decentralized execution (CTDE). As DDQN learning requires an extensive experience
database to train the neural networks on, it is reasonable to assume that the experiences
made by independently acting agents can be centrally pooled throughout the training
phase. After training has concluded, the control systems are individually deployed to the
distributed drone agents. The rationale behind this concept is that we investigate a team
of homogeneous UAVs with identical capabilities and tasks, therefore all experiences are
useful for the training of all agents. In a real-world deployment of a team of quadcopter
UAVs, all UAVs would be required to regularly return to a charging station, as flying time
remains strongly limited by available on-board battery capacity. While being recharged,
the UAVs would upload their experience data to a central server with larger memory
and computation resources.

Our setting can not be characterized as fully cooperative as our agents do not share
a common reward [120]. Instead, each agent has an individual but identical reward
function. As the main component of the reward function is based on the jointly collected
data from the IoT devices described in Section 5.3.3, they do share a common goal,
leading to the classification of our setting as a simple cooperative or individualistic setting.

69

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

Figure 5.2 – Classification of the presented approach in the context of a taxonomy of
MARL methods.

Fig. 5.2 gives an overview of the taxonomy of MARL approaches.

5.5.2 Neural Network Model

We use a neural network model similar to the one presented in the previous chapter and
depicted in Fig. 4.4 . Fig. 5.3 shows the DDQN structure and the map centering and
global-local map processing. The map information of the environment, NFZs, obstacles,
and start/landing area is stacked with the IoT device map and the map with the other
UAVs’ flying times and operational status. According to Section 5.4.1, the map is
centered on the UAV’s position and split into a global and local map. The global and
local maps are fed through convolutional layers with ReLU activation and then flattened
and concatenated with the scalar input indicating battery content or remaining flight
time. After passing through fully connected layers with ReLU activation, the data reaches
the last fully-connected layer of size |A| without activation function, directly representing
the Q-values for each action given the input observation. The greedy policy is used for
evaluation and the soft-max policy for training, given by equations (2.15) and (2.16)
respectively. Hyperparameters are listed in Tab. 5.2.

70

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

F
ig

u
re

5.
3

–
D

D
Q

N
ar

ch
it

ec
tu

re
w

it
h

m
ap

ce
n
te

ri
n
g

an
d

gl
ob

al
an

d
lo

ca
l

m
ap

p
ro

ce
ss

in
g.

L
ay

er
si

ze
s

ar
e

sh
ow

n
in

in
b
lu

e
fo

r
th

e
sm

al
le

r
‘M

a
n

h
at

ta
n
3
2’

sc
en

a
ri

o
an

d
or

an
ge

fo
r

th
e

la
rg

er
‘U

rb
an

50
’

sc
en

ar
io

.

71

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

Parameter 32× 32 50× 50 Description

|θ| 1,175,302 978,694 trainable parameters

Nmax 3,000,000 4,000,000 maximum training steps

l 17 17 local map scaling

g 3 5 global map scaling

nc 2 number of conv. layers

nk 16 number of kernels

sk 5 conv. kernel width

|D| 50,000 replay memory buffer size

m 128 minibatch size

τ 0.005 soft update factor in (2.14)

γ 0.95 discount factor in (4.5)

β 0.1 temperature parameter (2.16)

Table 5.2 – DDQN Hyperparameters for 32× 32 and 50× 50 maps.

5.6 Simulations

5.6.1 Simulation Setup

In line with the previous chapter 4, we aim to provide an algorithm1 that is able to
generalize the learned UAV control policy over a the parameter space that defines a data
collection mission. In addition to the parameters listed in section 4.6.1, i.e. number and
position of IoT sensor nodes, data amount, flying time, and starting positions, we also
generalize over the number of deployed UAVs.

The exact value ranges from which these parameters are sampled are given in the
following Sections 5.6.3 and 5.6.4 depending on the map. We deploy our system on two
different maps. In ‘Manhattan32’, the UAVs fly inside ‘urban canyons’ through a dense
city environment discretized into 32× 32 cells, whereas ‘Urban50’ is an example of a less
dense but larger 50× 50 urban area. Note that we only trained a single agent on each of
these maps, meaning that all results discussed in the following are a result of only two
trained agents. Generalization over this large parameter space is possible in part due
to the learning efficiency benefits from feeding map information centered on the agents’
respective positions into the network, as we have described previously in chapter 4. The
evaluation strategy is identical to the one described before in section 4.6.1.

Irrespective of the map, the grid cell size is c = 10m and the UAVs fly at a constant
altitude of h = 10m over city streets. The UAVs are not allowed to fly over tall buildings,
enter NFZs, or leave the respective grid worlds. Each mission time slot t ∈ [0, T] contains
λ = 4 scheduled communication time slots n ∈ [0, N]. Propagation parameters (see

1The Python code for this work is available under https://github.com/hbayerlein/uav_data_

harvesting.

72

https://github.com/hbayerlein/uav_data_harvesting
https://github.com/hbayerlein/uav_data_harvesting

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

2.1.2) are again chosen in line with [110] according to the urban micro scenario with
αLoS = 2.27, αNLoS = 3.64, σ2

LoS = 2 and σ2
NLoS = 5.

Due to the drones flying below or slightly above building height, the wireless channel
is characterized by strong LoS/NLoS dependency and shadowing. The shadowing maps
used for simulation of the environment were computed using ray tracing from and to the
center points of cells based on a variation of Bresenham’s line algorithm. Transmission
and noise powers are normalized by defining a cell-edge SNR for each map.

5.6.2 Training with Map-based vs. Scalar Inputs

(a) Cumulative reward per episode (b) Data collection ratio with successful landing
per episode

Figure 5.4 – Training process comparison between map-based DRL path planning and
scalar input DRL path planning. Scalar inputs to the neural networks (NNs) are either
encoded as absolute coordinate values or relative distances from the respective agent. We
compare two different scalar input network architectures with large and small numbers
of trainable parameters. The average and 99% quantiles are shown with metrics per
training episode grouped in bins of 2e5 step width. Note that the metrics are plotted
over training steps as training episode length is variable.

In this section, we show that our map-based approach has a good complexity-
performance trade-off in comparison to classical scalar input neural network approaches
from the literature despite the added complexity through map-processing. To illustrate
that it is in fact imperative for training success to feed map information instead of
concatenated scalar values as state input to the agent, we extend our previous analysis
from chapter 4 and [79] by comparing our proposed centered global-local map approach
to agents trained only on scalar inputs. This is not an entirely fair comparison as the
location of NFZs, buildings, and start/landing zones can not be efficiently represented
by scalar inputs and must be therefore learned by the scalar agents through trial and
error. However, the comparison illustrates the need for state space representations that
are different from the traditional scalar inputs and confirms that scalar agents are not

73

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

able to solve the multi-UAV path planning problem over the large scenario parameter
space presented. Conversely, the alternative comparison of map-based and scalar agents
trained on a single data harvesting scenario would not yield meaningful results as our
method is specifically designed to generalize over a large variety of scenarios and would
require tweaking in exploration behavior and reward balance to find the optimal solution
to a single scenario. Note that most of the previous work discussed in section 5.1.1 is
precisely focused on finding optimal DRL solutions to single scenario instances.

The observation space of the agents trained with concatenated scalar inputs is
described by

Oscalar = N2︸︷︷︸
Ego

Position

× N︸︷︷︸
Ego Flying

Time

}
Ego agent

× NI×2︸ ︷︷ ︸
UAV

Positions

× NI︸︷︷︸
Flying
Times

× BI︸︷︷︸
Operational

Status

}
Other agents (5.36)

× NK×2︸ ︷︷ ︸
Device

Positions

× RK︸︷︷︸
Device
Data

}
Devices

forming the input of the neural network as concatenated scalar values. Since the number
of agents and devices is variable, the scalar input size is fixed to the maximum number
of agents and devices. The agent and device positions are either represented as absolute
values in the grid coordinate frame or relative as distances from the ego agent. The
neural network is either small, containing the same number of hidden layers as in Fig.
5.3, or large, for which the number and size of hidden layers is adapted such that the
network has as many trainable parameters as the map-based 32× 32 agent in Tab. 5.2.

Fig. 5.4 shows the cumulative reward and the collection ratio with successful landing
metric over training time on the ‘Manhattan32’ map for the five different network
architectures. It is clear that the scalar agents are not able to effectively adapt to the
changing scenario conditions. The small neural network agents seem to have a slight
edge over the large agents, but representing the positions as absolute or relative does not
influence the results.

Referring further to Fig. 5.4, the map-based agent converges to final performance
metric levels after the first 20% of the training steps. However we observed that additional
training is needed after that to optimize the trajectories in a more subtle way for flight
time efficiency and multi-UAV coordination. The overall training time for the full 3
million training steps was around 40 hours on a 2017 Nvidia Titan Xp GPU.

5.6.3 ‘Manhattan32’ Scenario

The scenario, as shown in Fig. 5.5 is defined by a Manhattan-like city structure containing
mostly regularly distributed city blocks with streets in between, as well as two NFZ
districts and an open space in the upper left corner, divided into M = 32 cells in each grid
direction. This is double the size of the otherwise similarly designed single UAV scenario
in chapter 4. We are able to solve the larger scenario without increasing network size,

74

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

thanks to the global-local map approach. The value ranges from which the randomized
scenario parameters are chosen as follows: number of deployed UAVs I ∈ {1, 2, 3}, number
of IoT sensors K ∈ [3, 10], data volume to be collected Dk,init ∈ [5.0, 20.0] data units per
device, maximum flying time b0 ∈ [50, 150] steps, and 18 possible starting positions. The
IoT device positions are randomized throughout the unoccupied map space.

Metric Manhattan32 Urban50

Successful Landing 99.4% 98.8%

Collection Ratio 88.0% 82.1%

Collection Ratio and Landed 87.5% 81.1%

Table 5.3 – Performance metrics averaged over 1000 random scenario Monte Carlo
iterations.

The performance on both maps is evaluated using Monte Carlo simulations on their
respective full range of scenario parameters with overall average performance metrics
shown in Table 5.3. Both agents show a similarly high successful landing performance.
It is expected that the collection ratio cannot reach 100% in some scenario instances
depending on the randomly assigned maximum flying time, number of deployed UAVs,
and IoT device parameters.

Symbol Description

D
Q
N

In
p
u
t

Start and landing zone

Regulatory no-fly zone (NFZ)

Tall buildings* (UAVs cannot fly over)

Small buildings* (UAVs can fly over)

IoT device

Other agents

*all buildings obstruct wireless links

V
is
u
a
li
za
ti
o
n

Summation of building shadows

Starting and landing positions during an episode

UAV movement while comm. with green device

Hovering while comm. with green device

Actions without comm. (all data collected)

Table 5.4 – Legend for scenario plots with small and tall buildings.

In Fig. 5.5, three scenario instances chosen from the random Monte Carlo evaluation
for number of deployed UAVs I ∈ {1, 2, 3} for 5.5a through 5.5c illustrate how the
path planning adapts to the increasing number of deployed UAVs. All other scenario
parameters are kept fixed. It is a fairly complicated scenario with a large number of IoT

75

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

(a) I = 1 agent, data collection ratio 56.2% (b) I = 2 agents, data collection ratio 76.5%

(c) I = 3 agents, data collection ratio 100%

Figure 5.5 – Example trajectories for ‘Manhattan32’ map with K = 10 IoT devices, all
with Dk,init = 15 data units to be picked up and a maximum flying time of b0 = 60
steps. The color of the UAV movement arrows shows with which device the drone is
communicating at the time (see legend in Tab. 5.4).

76

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

devices spread out over the whole map, including the brown and purple device inside an
NFZ. The agents have no access to the shadowing map and have to deduce shadowing
effects from building and device positions.

In Fig. 5.5a, only one UAV starting in the upper left corner is deployed. Due to its
flight time constraint, the agent ignores the blue, red, purple, and brown IoT devices
while collecting all data from the other devices on an efficient trajectory to the landing
zone in the lower right corner. When a second UAV is deployed in Fig. 5.5b, the data
collection ratio increases to 76.5%. While the first UAV’s behavior is almost unchanged
compared to the single UAV deployment, the second UAV flies to the landing zone in the
lower right corner via an alternative trajectory collecting data from the devices the first
UAV ignores. With the number of deployed UAVs increased to three (two starting from
the upper left and one from the lower right zone) in Fig. 5.5c, all data can be collected.
The second UAV modifies its behavior slightly, accounting for the fact that the third UAV
can collect the cyan device’s data now. The three UAVs divide the data harvesting task
fairly among themselves, leading to full data collection with in-time landing on efficient
trajectories while avoiding the NFZs.

5.6.4 ‘Urban50’ Scenario

Fig. 5.6 shows three example trajectories for UAV counts of I ∈ {1, 2, 3} for 5.6a
through 5.6c in the large 50 × 50 urban map. The scenario is defined by an urban
structure containing irregularly shaped large buildings, city blocks and an NFZ, with
the start/landing zone surrounding a building in the center, divided into M = 50 cells in
each grid direction. The map has an order of magnitude more cells than the scenarios in
chapter 4. The ranges for randomized scenario parameters are chosen as follows: number
of deployed UAVs I ∈ {1, 2, 3}, number of IoT sensors K ∈ [5, 10], data volume to be
collected Dk,init ∈ [5.0, 20.0] data units, maximum flying time b0 ∈ [100, 200] steps, and
40 possible starting positions. The IoT device positions are randomized throughout the
unoccupied map space.

Fig. 5.6a shows a single agent trying to collect as much data as possible during
the allocated maximum flying time. The agent focuses on collecting the data from the
relatively easily reachable device clusters on the right and lower half before safely landing.
With a second UAV assigned to the mission as shown in Fig. 5.6b, one UAV services the
devices on the lower left of the map, while the other one collects data from the devices
on the lower right, ignoring the more isolated blue and orange device in the top half of
the map. A third UAV makes it possible to divide the map into three sectors and collect
all IoT device data, as shown in Fig. 5.6c.

This map’s primary purpose is to showcase the significant advantages in terms of
training time efficiency and the required network size from the global-local map approach.
Thanks to a higher global map scaling or compression factor g (see Table 5.2), the number
of trainable parameters of the network employed in this scenario is even smaller compared
to the network used for ‘Manhattan32’. A network without a map scaling approach
would need to contain 34,061,446 trainable parameters, hence a size that is infeasible to
train using reasonable resources.

77

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

(a) I = 1 agent, data collection ratio 41.8% (b) I = 2 agents, data collection ratio 80.2%

(c) I = 3 agents, data collection ratio 100.0%

Figure 5.6 – Example trajectories for ‘Urban50’ map with K = 10 IoT devices, all with
Dk,init = 15 data units to be picked up and a maximum flying time of b0 = 100 steps for
all UAVs (legend in Tab. 5.4).

78

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

5.6.5 Influence of Scenario Parameters on Performance and System-level Ben-
efits

An advantage of our approach to learn a generalized path planning policy over various
scenario parameters is the possibility to analyze how performance indicators change
over a variable parameter space. This makes it possible for an operator to decide on
system-level trade-offs, e.g. how many drones to deploy vs. collected data volume. An
excellent example that we found for the ‘Manhattan32’ map was that deploying multiple
coordinating drones can trade-off the cost of extra equipment (i.e. the extra drones) for
substantially reduced mission time. For instance, it takes twice the flying time (b0 = 150)
for a single UAV to complete the data collection mission that two coordinating UAVs
will require (b0 = 75) to conclude successfully. Specifically, that means that for both
scenarios the average data collection ratio with in-time successful landing stays at the
same performance level of around 88%.

We first analyze the performance of the agent in Fig. 5.7 within the training range
of the scenario parameters (solid lines), then extend the analysis to out-of-distribution
scenarios (dashed lines) in the last paragraph of this section. Fig. 5.7 shows the influence
of single scenario parameters on the average data collection ratio with successful landing
of all agents. As already evident from the example trajectories shown previously, Fig.
5.7a indicates the increase in collection performance when more UAVs are deployed. At
the same time, more UAVs lead to increased collision avoidance requirements, as we
observed through more safety controller activations in the early training phases. As IoT
devices are positioned randomly throughout the unoccupied map space, an increase in
devices leads to more complex trajectory requirements and a drop in performance, as
depicted in Fig. 5.7b.

Fig. 5.7c shows the influence of increasing initial data volume per device on the
overall collection performance. It appears that higher initial data volumes per device
are beneficial roughly up to the point of Dk,init ∈ [10, 12.5] data units, after which flying
time constraints force the UAVs to abandon some of the data, and the collection ratio
shows a slightly negative trend. An increase in available flying time is clearly beneficial
to the collection performance, as indicated in Fig. 5.7d. However, the effect becomes
smaller when most of the data is collected, and the UAVs start to prioritize minimizing
overall flight time and safe landing over the collection of the last bits of data.

It is further shown in Fig. 5.7 how the agents react to scenario parameters which
were not encountered during training. The corresponding values are highlighted with
dashed lines. It can be seen that the performance of the agents follows the same trend as
in the rest of the data, when increasing the number of devices (Fig. 5.7b) or initial data
per device (Fig. 5.7c) out of the trained region. When increasing the maximum flying
time (Fig. 5.7d) for the Manhattan32 agents, or decreasing it for Urban50 agents, the
collection ratio with successful landing performance, increases or decreases accordingly.
Incrementing the number of agents to four (Fig. 5.7a) reduces the performance slightly.
The reason is the decrease in landing performance. However, this is to be expected since
the probability of all agents landing decreases with the number of agents. Since the
collection ratio is nearly saturated for the scenarios with three agents, the drop in overall

79

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

(a) Number of agents I ∈ {1, 2, 3, 4}
.

(b) Number of devices K ∈ [3, 14] sorted into
bins of two.

(c) Data to be collected from devices Dk,init ∈
[5, 25] sorted into eight bins.

(d) Maximum flying time sorted into six bins
in b0 ∈ [50, 200]

Figure 5.7 – Influence of specific scenario parameters on the data collection ratio with
successful landing of all agents. Each data point is an average of 500 Monte Carlo
iterations over the respective parameter spaces for the ‘Manhattan32’ and ‘Urban50’
map. The parameters within the training range are rendered in solid lines and the
out-of-distribution parameter evaluation in dashed lines.

80

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

landing performance decreases the collection ratio and landed performance. In general, it
is evident that the proposed approach cannot only generalize over the whole range of
scenario parameters encountered during training but can also extrapolate successfully to
out-of-distribution parameters.

5.6.6 Discussion of the Algorithm’s Dependency on the Channel Model

Link Performance Model

(a) αLoS = 2.27, αNLoS = 3.64 (b) αLoS = 2.1, αNLoS = 3.0

Figure 5.8 – Trajectory plots illustrating the influence that a change in propagation
conditions has on the already trained agent. Fig. 5.8a shows the original behavior with
path loss exponents at the level the agent was trained with. Fig. 5.8b shows the same
agent in an otherwise unchanged scenario with slightly lower path loss exponents.

In this section, we would like to expand our discussion of the proposed algorithm’s
relationship with the rather simple channel model. In principle, our algorithm is based
on model-free Q-learning and as such does not use any explicit knowledge about the
environment the agent interacts with, specifically it does not use the transition probability
function of the MDP [83]. Hence, the approach does not rely on any single specific
environment model or channel model.

Although our algorithm can be simply retrained in a scenario with any type of channel
model, we are aiming in this work for something else: to provide an algorithm that is able
to generalize over scenario parameters, therefore does not require retraining when the
scenario changes. However, we did not consider the channel model as part of the variable
mission scenario parameters here. Consequently, it can be expected that the agent would
need to be retrained when the channel model changes significantly to achieve the best
possible data collection performance.

81

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

This is put into perspective by the fact that the UAV agents mostly exploit two
features of the channel model to make movement decisions. The first one is the simple
fact that the smaller the UAV to IoT device distance, the higher the achievable data rate
and the more data can be collected. Secondly, the strong dependence of the data rate
on LoS vs. NLoS link conditions in an urban environment entices the UAV to choose
trajectories that maximize LoS connection opportunities. As both features are very
fundamental and would be present in any urban channel model, it is plausible to assume
that the agent would perform reasonably well even without retraining in a new channel
model. Also recall that the agent has no prior knowledge of the radio map, therefore has
to build an internal representation of LoS/NLoS positions from the known building and
IoT device positions during the learning process.

To illustrate how much a simple change in the channel model influences the behavior
of the agent without retraining, we have replotted the scenario from Fig. 5.5c. For the
otherwise unchanged scenario in Fig. 5.8b, we have set the path loss exponents below the
levels that were used during the agent’s training process. For the most part, the behavior
does not differ significantly, but some smaller deviations in the trajectories compared to
Fig. 5.8a are recognizable. Making the propagation environment slightly more favorable
changes the UAV agents’ control decision in so far as the collected and remaining data
evolve differently over the course of the mission. The reduction in path loss means that,
e.g. at the mission time half point, there is already more data collected leading the agents
to adapt their immediate behavior accordingly. As the agents have otherwise no means
to detect the change in the channel model, their overall strategy will not change. This of
course in the case without retraining or explicitly trying to generalize the learning over
different channel coefficients.

Multiple Access Protocol

As described in section 5.2.2, the TDMA protocol ensures that no inter-UAV interference
exists in our model and synchronization between the different UAVs is not necessary. We
also assume that the IoT devices are capable of simultaneously communicating with all
UAVs on all orthogonal frequency bands. This is a simplification owing to the focus of
this work on demonstrating multi-UAV, map-based and generalizing trajectory planning.
An extension of this work could be envisioned where scheduling decisions are included in
the action space of the UAV agents and optimized.

Designing a MAC protocol for aerial networks in general is a challenging research
problem in itself due to high mobility and frequent link quality changes. Various UAV
MAC protocols have been proposed, considering different access mechanisms (TDMA,
CDMA, NOMA, etc.), as well as omni-directional or beamforming antennas [44]. We would
like to refer to a specific proposed UAV MAC protocol [121] that utilizes itself a distributed
Q-learning scheme to switch between TDMA and CSMA/CA at the UAV depending
on which is more appropriate for the current state of the UAV. In [121], the mentioned
problem of synchronization is solved through a synchronous switching procedure based
on practical byzantine fault tolerance (PBFT) consensus decision. Integration of such
schemes is in principle possible with our proposed trajectory optimization approach and

82

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

could be explored in future work, but also increases the system complexity significantly.

It is possible that a change of the multiple access protocol, e.g. introducing inter-UAV
interference, could trigger a larger change in what constitutes the optimal behavior for
multiple UAVs, which consequently might require retraining. However, referring to Fig.
5.6c a natural behavior emerges that would actually mitigate the influence of inter-UAV
interference. It is clear, that the three UAV agents tend to divide the data collection task
geographically among themselves. This increases the average inter-UAV distance over the
mission and would mitigate the importance of interference to some extent in any case.

5.6.7 Comparison of UAV-aided and Stationary Base Station System

Having analyzed the DRL multi-UAV data harvesting system in detail, we now compare
the data collection performance of the UAV system to a traditional stationary base station
on the ‘Manhattan32’ map. To this end, we place a standard tri-sector base station right
at the center of the map, as depicted in Fig. 5.9. For simplification, we assume that the
antennas are mounted at a height of 10m, identical to the UAV altitude. The BS has the
advantage of being able to use directional antennas with higher gain, compared to the
smaller omnidirectional AP antenna on board the UAVs. Comparing the specifications of
the antenna that is used on experimental UAV APs at EURECOM [122] and a standard
LTE base station antenna [123,124], we roughly estimate that the stationary base station
achieves a 10dB higher gain on average at frequencies around 2GHz. For the sake of a fair
comparison, all other parameters like MAC protocol and available frequency resources
are assumed to be identical.

Figure 5.9 – ‘Manhattan32’ map with base station placed at the center and marked in
blue, showing the positions with LoS connectivity in white and NLoS connectivity in
gray.

83

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

Base Station Single UAV Two UAVs Three UAVs

Collection Ratio 34.5% 74.8% 92.7% 97.4%

Table 5.5 – Data collection ratio of stationary base station at the map center vs. UAV
data harvesters on the ‘Manhattan32’ map, each averaged over 1000 random scenario
Monte Carlo iterations.

Tab. 5.5 lists the data collection ratios, each averaged over 1000 random scenario
instances, for the base station at the center of the map and for I ∈ {1, 2, 3} UAV data
harvesters. Despite the advantage in antenna gain, a single UAV is on average able to
collect twice as much data as the BS. Increasing the number of UAVs leads to nearly
complete data collection on average. Note with the exception of the number of UAVs,
all other scenario parameters are still sampled randomly from the same value ranges
as in section 5.6.3. This also explains why the BS is able on average to collect 34.5%
of the data: in some scenarios where the IoT devices are placed by chance close to the
BS, it is able to collect the data effectively, while in other scenarios where devices are
placed behind buildings, the BS will almost collect no data at all. It is also important to
consider that the relatively smaller size of the ‘Manhattan32’ map, as well as the fact
that a BS placed at the center on this map can establish LoS connections with devices
for significant parts of the map (e.g. the open area at the top left corner), work in the
favor of the BS. The advantage of the UAV-aided system would increase on a larger map
with more evenly distributed obstacles like the ‘Urban50’ map.

5.6.8 Inter-UAV Interference

We are concluding the results section with a short investigation into the effects that inter-
ference has on the performance of the multi-UAV data harvesting system. Specifically, we
are now assuming that UAVs do not operate on orthogonal resource blocks, but share the
same spectral resources, and that consequently, inter-UAV interference exists in our model
(analogous to intercell interference). We analyze the effects on the smaller ‘Manhattan32’
map and without considering any interference-mitigating scheduling strategy. Therefore,
the effects on performance are expected to be severe.

Consequently and in contrast to equation (5.8), we now have the signal-to-interference-
plus-noise ratio (SINR) at time n with transmit power Pi,k, noise power N , channel gain
hi,k(n) between the ith UAV and kth device given as

SINRi,k(n) =
Pi,khi,k(n)

N + Ii,k(n)
. (5.37)

The channel gain hi,k(n) is otherwise identical to the one in the previous SNR formulation
from equation (5.8). The total interference power at UAV i at time n is given by

Ii,k(n) =
∑
∀l 6=k

Pi,lhi,l(n). (5.38)

84

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

Metric No interference
With interference

(no retraining)
With interference

and retraining

Successful Landing 99.4% 92.4% 97.6%

Collection Ratio 88.0% 58.5% 67.7%

Collection Ratio and Landed 87.5% 55.3% 66.0%

Table 5.6 – Interference performance metrics on the ‘Manhattan32’ map averaged over
1000 random scenario Monte Carlo iterations.

Figure 5.10 – Influence of interference on the collection ratio with successful landing
performance metric depending on the number of deployed UAVs. Each data point is the
average of 500 random Monte Carlo scenarios.

In Tab. 5.6, we present the overall performance figures for the original case with no
interference, the case where we evaluate the agent in an environment with interference
that was previously trained exclusively in environments without interference (without
any retraining), and the case where we train the DRL system from the beginning on
environments with interference. In Fig. 5.10, the performance in the same three cases is
shown depending on the number of deployed UAVs. As expected, simply evaluating the
previously trained agents on scenarios that include interference, leads to large performance
losses as it is impossible for the DRL system to adapt to such a fundamental change in
the underlying reward calculation without retraining. Adding additional UAVs in this
case actually leads to steeply reduced performance. However, it is clear that when the
system is trained from the beginning in scenarios that include inter-UAV interference,
overall performance increases and adding additional UAVs has again a positive effect
on the data collection performance. As scheduling decisions are not part of the UAV
agent action space here and otherwise no interference-mitigating strategies are used, this

85

Chapter 5. Multi-UAV Coordination in Multi-Scenario Data Harvesting

signifies that the agents learn to optimize their movement decision with respect to the
interference to some degree, e.g. by avoiding to move to positions with LoS conditions for
other active UAV-device links that would cause strong interference, basically the UAV
agents are ‘hiding’ from each other behind buildings. For future work, it would be of
course advantageous to consider interference-mitigating scheduling strategies [44, 121] or
to make scheduling decisions part of the action space and jointly optimizing them with
path planning decisions [125,126].

5.7 Conclusion

We have introduced a multi-agent reinforcement learning approach that allows us to
control a team of cooperative UAVs on a data harvesting mission in a large variety of
scenarios without the need for recomputation or retraining when the scenario changes.
By leveraging a DDQN with combined experience replay and convolutionally processing
dual global-local map information centered on the agents’ respective positions, the
UAVs are able to find efficient trajectories that balance data collection with safety and
navigation constraints without any prior knowledge of the challenging wireless channel
characteristics in the urban environments. We have also presented a detailed description
of the underlying path planning problem and its translation to a decentralized partially
observable Markov decision process. Planning a trajectory for UAVs in the scenario of a
UAV BS (chapter 3) and the (multi)-UAV data harvesting from IoT devices (this chapter
and chapter 4), are very similar problems that essentially can be solved by means of the
same DRL methods. In the following chapter, we will demonstrate that also other UAV
path planning problems can be tackled directly by the methods that were introduced.
By finding a common map-based description of the IoT data collection and the coverage
path planning (CPP) problem, we show that the special flexibility of the DRL paradigm
allows us to solve both problems from distinctly different research communities, robotics
and UAV-aided communications, with identical methodology.

86

Chapter 6

Coverage Path Planning

6.1 Introduction

The preceding chapters have demonstrated how DRL methods can be applied to various
scenarios of UAV trajectory planning in UAV-aided communication networks. This
chapter is a little excursion into the adjacent research area of aerial robotics. Despite
working on highly similar problems, as will be demonstrated in this chapter, the two
research communities of UAV communications and aerial robotics are often disjoint and
research runs mostly along parallel, non-intersecting lines. This chapter aims to give
some insight into possible synergies. For ease of exposition, we analyze both problems in
the single UAV case.

Coverage path planning (CPP) is the task of designing a trajectory that enables a
mobile agent to travel over every point of an area of interest. Whereas the CPP problem
for ground-based robotics has already found its way into our everyday life in the form of
vacuum cleaning robots [127], autonomous coverage with UAVs, while not yet having
attained the same level of prominence, is being considered for a wide range of applications,
such as photogrammetry, smart farming and especially disaster management [128]. UAVs
can for example be deployed rapidly to gather initial or continuous survey data of areas
hit by natural disasters, or mitigate their consequences. In the aftermath of the 2019-20
Australian bushfire season, wildlife officers inventively used quadcopter drones with
infrared sensors to conduct a search-and-rescue operation for koalas affected by the
blaze [129].

As its name suggests, covering all points inside an area of interest with CPP is related
to conventional path planning where the goal is to find a path between start and goal
positions. In general, CPP aims to cover as much of the target area as possible within
given energy or path-length constraints while avoiding obstacles or no-fly zones. The
same power constraints as in UAV-aided communications lead to similar constraints on
flying time. Finding a CPP control policy that generalizes over varying power constraints
and setting a specific movement budget can be seen as a way to model the variations in
actual power consumption during the mission, e.g. caused by environmental factors that
are hard to predict. Similar to conventional path planning, CPP can usually be reduced
to some form of the traveling salesman problem, which is NP-hard [127]. Lawn-mowing

87

Chapter 6. Coverage Path Planning

and milling [130] are other examples of closely related problems.

6.1.1 Related Work

To guarantee complete coverage, most classical CPP approaches split the target area and
surrounding free space into cells, by means of exact or approximate cellular decomposition.
Choset and Pignon [131] proposed the classical boustrophedon (“the way of the ox”,
back and forth motion) cellular decomposition, an exact decomposition method that
guarantees full coverage but offers no bounds on path-length. This algorithm was extended
by Mannadiar and Rekleitis [132] through encoding the cells of the boustrophedon
decomposition as a Reeb graph and then constructing the Euler tour that covers every
edge in the graph exactly once. Cases where the mobile agent does not have enough power
to cover the whole area are not considered. The authors in [133] adapted this method for
use in a non-holonomic, fixed-wing UAV and conducted extensive experimental validation.
Two other approaches combining CPP and the traveling salesman problem to find near-
optimal solutions for coverage of target regions enclosed by non-target areas are proposed
by the authors in [134]: grid-based and dynamic programming-based, respectively. Both
approaches suffer from exponential increase in time complexity with the number of target
regions and do not consider obstacles or UAV power limitations.

Non-standard approaches have made use of neural networks (NNs) before. The authors
in [135] design a network of neurons with only lateral connections that each represent
one grid cell in a cleaning robot’s non-stationary 2D environment. The path planning
is directly based on the neural network’s activity landscape, which is computationally
simple and can support changing environments, but does not take path-length or power
constraints into account.

Reinforcement learning with deep neural networks has only recently started to be
considered for aerial robotics path planning. Maciel-Pearson et al. [107] proposed a method
using an extended double deep Q-network (EDDQN) to explore and navigate from a start
to a goal position in outdoor environments by combining map and camera information
from the drone. Their approach is focused on obstacle avoidance under changing weather
conditions. The authors in [136] investigate the CPP-related drone patrolling problem
where a UAV patrols an area optimizing the relevance of its observations through the use of
a single-channel relevance map fed into a convolutional layer of a DDQN agent. However,
there is no consideration for power constraints and the relevance map is preprocessed
showing only local information.

Other UAV path planning works exist that also made use of convolutional map
processing for DRL agents. In [137], fixed-wing UAVs are tasked with monitoring a
wildfire propagating stochastically over time. Control decisions are based on either direct
observations or belief maps fed into the DRL agents. The focus here is the inherent
uncertainty of the problem, not balancing a mission goal and navigation constraints in
large complex environments. Wildfire surveillance is also the mission of the quadcopter
UAVs in [138], which is set in a similar scenario without navigation constraints and makes
use of uncertainty maps to guide path planning. Their approach is based on an extended
Kalman filter and not the reinforcement learning (RL) paradigm. To monitor another

88

Chapter 6. Coverage Path Planning

natural disaster situation, Baldazo et al. [139] present a multi-agent DRL method for
flood surveillance using the UAVs’ local observations of the inundation map to make
control decisions. All mentioned approaches focus on solving a single class of UAV
missions in simple physical environments and do not consider combining local and global
map information.

A recent survey of UAV coverage path planning is given by Cabreira et al. [128].
Galceran and Carreras [127] provide a survey of general (ground robotics) approaches to
CPP. A survey of various applications for UAV systems from a cyber-physical perspective
is offered in [74].

6.1.2 Contributions

In this chapter, we aim to establish the previously described DDQN approach with global-
local map processing as a general method for UAV trajectory planning by demonstrating
its applicability to two distinctly different mission scenarios: coverage path planning
(CPP) and path planning for wireless data harvesting (DH). Control policy generalization
over scenario parameters is extended to fully randomly generated target zones in coverage
path planning. We also analyze and discuss the effects of key map processing parameters
on the trajectory learning performance. This work also establishes DRL as a promising
approach to the UAV CPP problem.

6.2 Problem Formulation

6.2.1 Agent System

The sensors of the CPP UAV forming the input of the reinforcement learning agent are
depicted in Figure 6.1: camera and GPS receiver. The camera gives a periodic frame of
the current coverage view and the GPS yields the drone’s position. Power constraints
determined by external factors are modeled as a movement budget for the drone that
is fixed at mission start. Two additional software components are running on the UAV.
The first is the mission algorithm which is responsible for the analysis of the camera
data. We assume that any mission algorithm can give feedback on the area that was
already covered. The second component is a safety controller (see (5.15)) that evaluates
the proposed action of the agent and accepts or rejects it based on the safety constraints
(entering into no-fly zones or landing in unsuitable areas). Note that the safety controller
does not assist the agent in finding the landing area. The last component is a map which
is provided by the operator on the ground. While this map could be dynamic throughout
the mission, we focus on static maps for the duration of one mission here.

6.2.2 Environment and UAV Model

We consider the same model as in previous chapters: a grid world of size M×M ∈ N2 with
cell size c. The environment contains designated start/landing positions, regulatory no-fly
zones (NFZs), and obstacles. The map can be described through a tensor M ∈ BM×M×3,
where B = {0, 1} and with the start/landing zones in map-layer 1, the union of NFZs

89

Chapter 6. Coverage Path Planning

Figure 6.1 – System diagram.

and obstacles in map-layer 2, and the obstacles alone in map-layer 3. The UAV position
is defined through p(t) ∈ N2.

6.2.3 Target and Mission Definitions

In the following, we show that a universal description for coverage path planning (CPP)
and data harvesting (DH) can be found through separation into two parts, the environment
and the target.

Coverage Path Planning

In coverage path planning, the mission is to cover a designated target area by flying
above or near it, such that it is in the field of view of a camera-like sensor mounted
underneath the UAV. The target area can be described through T(t) ∈ BM×M , in which
each element describes whether a cell has to be covered or not. The current field of view
of the camera can be described with V(t) ∈ BM×M indicating for each cell whether it
is in the current field of view or not. In this work, the field of view is a square of 5× 5
surrounding the current UAV position. Additionally, buildings can block line-of-sight,
which is also incorporated in calculating V(t). This prohibits the UAV from ‘seeing’
around the corner.

90

Chapter 6. Coverage Path Planning

Consequently, the target area evolves according to

T(t+ 1) = T(t) ∧ ¬V(t), (6.1)

in which ∧ and ¬ are the cell-wise logical and and negation operators, respectively. In
our mission definition, obstacle cells in the environment cannot be a coverage target,
while start and landing zones and no-fly-zones can be. The goal is to cover as much of
the target area as possible within the maximum flying time constraint.

Data Harvesting

Conversely, the mission in path planning as stated for wireless data harvesting in chapter
4 is to collect data from K ∈ N stationary IoT devices spread throughout the environment
at ground-level, with the position of device k ∈ [1,K] given through uk ∈ N2. Each
device has an amount of data Dk(t) ∈ R to be collected by the UAV. Link performance
and MAC protocol are identical with section 5.2.2. Hence, the data at each device evolves
according to

Dk(t+ 1) = Dk(t)− Ck(t) (6.2)

with data throughput Ck(t) (5.11). Devices can be located in every cell except for the
starting and landing zones or inside obstacles.

Unifying Map-Layer Description

Both problems can be described through a single target map-layer D(t) ∈ RM×M . In
CPP, the target map-layer is given through T(t) evolving according to (6.1). In DH, the
target map-layer shows the amount of available data in each cell that one of the devices is
occupying, i.e. the cell at position uk has value Dk(t) and is evolving according to (6.2).
If a cell does not contain a device or the device data has been collected fully, the cell’s
value is 0. Since the two problems can be described with similar state representations,
both can be solved through deep reinforcement learning with a neural network having
the same structure.

6.3 Methodology

To address both problems we formulate them as a partially observable Markov decision
process (POMDP) [140] which is defined through the tuple (S,A, P,R,Ω,O, γ). Decen-
tralization is not necessary for the single UAV case, but otherwise the definitions from
section 5.3 are also valid here.

We unify the UAV path planning problems by describing their state space with

S = BM×M×3︸ ︷︷ ︸
Environment

Map

×RM×M︸ ︷︷ ︸
Target
Map

× N2︸︷︷︸
Position

× N︸︷︷︸
Flying
Time

, (6.3)

in which the elements s(t) ∈ S are

s(t) = (M,D(t),p(t), b(t)). (6.4)

91

Chapter 6. Coverage Path Planning

The four components of the tuple are

• M the environment map containing start and landing zones, no-fly zones, and
obstacles;

• D(t) the target map indicating remaining data at device locations or remaining
cells to be uncovered at time t;

• p(t) the UAV’s position at time t;

• b(t) the UAV’s remaining movement budget at time t;

The UAV’s action space is identical to (4.3). The generalized reward functionR(s(t), a(t), s(t+
1)) consists of the following elements:

• rc (positive) the data collection or cell covering reward given by the collected data
or the amount of newly covered target cells, comparing s(t+ 1) and s(t);

• rsc (negative) safety controller (SC) penalty in case the drone has to be prevented
from colliding with a building or entering an NFZ;

• rmov (negative) constant movement penalty that is applied for every action the
UAV takes without completing the mission;

• rcrash (negative) penalty in case the drone’s remaining flying time reaches zero
without having landed safely in a landing zone.

The neural network model for the DDQN approach is identical to Fig. 5.3, with the
exception of different sizes for the convolutional and flatten layers depending on the
factors chosen for the global-local map processing, which was described in section 5.4
previously. The loss function for the DDQN training is given in (4.4).

As explained in section 5.4, the relevant parameter for scalability to larger maps is
the size of the flatten layer. It can be calculated through

N = nk

((
l − ncb

sk
2
c
)2

+

(
bMc

g
c − ncb

sk
2
c
)2
)

+ 1 (6.5)

with nk being the number of kernels, nc the number of convolutional layers, and sk being
the kernel size. The standard hyperparameters for 32× 32 and 50× 50 maps are listed in
Tab. 5.2. Setting the global map scaling parameter to g = 1 and the local map size to
l = 0 deactivates global-local map processing, i.e., no downsampling and no extra local
map.

6.4 Simulations

6.4.1 Simulation Setup

We use again the two different grid worlds from the previous chapter 5: the ‘Manhattan32’
scenario the ‘Urban50’ scenario. The cell size for the scenarios is 10m× 10m with Table
6.1 providing the legend for plots.

92

Chapter 6. Coverage Path Planning

For the CPP problem, the UAV is flying at a constant altitude of 25m with a camera
mounted underneath that has a field of view angle of 90◦. Consequently, the UAV can
cover an area of 5 × 5 cells simultaneously, as long as obstacles do not block line of
sight. The target areas are generated by randomly sampling geometric shapes of different
sizes and types and overlaying them, creating partially connected target zones. For
evaluation, a traditional metric for the CPP problem is the path length. However, this
metric only offers meaningful comparison when full coverage is possible. In this work,
we investigate flight time constrained CPP, in which full coverage is often impossible.
Therefore, the evaluation metrics used are the coverage ratio (CR), i.e. the ratio of
covered target cells to the initial target cells at the end of the episode, and coverage ratio
and landed (CRAL), which is zero if the UAV did not land successfully and equal to CR
if it did. The benefits of the CRAL metric are that it combines the two goals, achieving
high coverage and returning to the landing zone within the flight time constraint. By
normalizing performance to a value in [0, 1], it enables performance comparisons over the
changing scenarios with randomly generated target zones. Evaluation in the DH scenario
was already explained in section 4.6.1 and uses the data collection ratio instead of the
coverage ratio. The abbreviations CR and CRAL either stand for coverage or collection
ratio depending on the context mission.

Symbol Description

DQN Input
Start and landing zone
Regulatory no-fly zone (NFZ)
Buildings blocking wireless links and FoV
Remaining target zone (yellow also NFZ)

Visualization
Not covered and covered
Starting and landing positions during an episode

Table 6.1 – Legend for CPP scenario plots.

6.4.2 General Evaluation

The CPP problem agents were trained on target zones containing 3-8 shapes covering
20-50% of the available area. The movement range was set to 50-150 steps for the
‘Manhattan32’ scenario and 150-250 for the ‘Urban50’ scenario. For the DH scenarios,
3-10 devices are placed randomly in free cells and contain 5.0-20.0 data units. The
movement range was set to 50-150 steps for the ‘Manhattan32’ scenario and 100-200 for
the ‘Urban50’ scenario. Four scenarios are evaluated in detail.

In the CPP scenarios, the agents in Fig. 6.2a and 6.2b show that they can find
trajectories to cover most of the target area. Even the area in the NFZs is mostly covered.
It can be seen that small areas that would require a detour are ignored, leading to
incomplete coverage. However, most of the target area is covered efficiently. Plots for

93

Chapter 6. Coverage Path Planning

Metric Manhattan32 Manhattan32 Urban50 Urban50
CPP DH CPP DH

Landed 98.5% 98.2% 98.1% 99.5%
CR 71.0% 83.6% 81.5% 74.5%

CRAL 70.3% 82.5% 80.1% 74.2%

Table 6.2 – Performance metrics averaged over 1000 random scenario Monte Carlo
iterations.

the DH scenario were already shown in Fig. 5.5 and 5.6, although separate agents were
trained here to enable direct comparison.

All four agents (one for each map and the CPP or DH problem) were trained for
2 million steps. When analyzing their performance in all four missions using 1000
Monte Carlo generated scenarios (see Table 6.2), it can be seen that all agents’ landing
performances are good, with the ‘Urban50’ DH agent being slightly better.

(a) Movement 124/140, coverage ratio 0.94 (b) Movement 234/250, coverage ratio 0.94

Figure 6.2 – Example trajectories from the Monte Carlo simulations for CPP on 32× 32
Manhattan map and 50× 50 Urban map.

6.4.3 Global-Local Parameter Evaluation

To establish the performance sensitivity to the new hyper-parameters, global map scaling
g, and local map size l, we trained multiple agents with different parameters on the
CPP and DH problems. We chose four values for l and four for g and trained three
agents for each possible combination. Additionally, we trained three agents without the
usage of global and local map processing, which is equivalent to setting g = 1 and l = 0.

94

Chapter 6. Coverage Path Planning

Global map Local map scaling l
scaling g 9 17 25 33

2 8,481 9,761 13,089 18,465
3 2,721 4,001 7,329 12,705
5 273 1,553 4,881 10,257
7 33 1,313 4,641 10,017

Table 6.3 – Flatten layer size for ‘Manhattan32’ with different global map scaling and
local map sizes; Without global-local map processing the size is 48,401 neurons.

Global Local map scaling l
map 9 17 25 33

scaling g CPP DH CPP DH CPP DH CPP DH
2 2.7 2.2 2.3 2.0 1.8 1.6 1.3 1.1
3 3.5 3.0 3.0 2.5 2.2 1.9 1.6 1.4
5 4.2 3.6 3.4 3.0 2.5 2.2 1.9 1.6
7 4.7 3.8 3.6 3.0 2.5 2.2 2.5 2.1

Table 6.4 – Training time speedup for the CPP and DH problem relative to without
global-local map processing.

The resulting 51 agents for the CPP and DH problems were trained for 500k steps each
and evaluated on 200 Monte Carlo generated scenarios. The difference to the previous
evaluation is that the movement budget range was set to 150− 300.

Table 6.3 shows the selected parameters and the resulting flatten layer size according
to (6.5). A significant speedup of the training process compared to agents without global
and local map processing can be observed in Table 6.4.

The resulting CRAL values from the Monte Carlo simulations for each agent with
respect to the agent’s flatten layer size are shown in Fig. 6.3a and 6.3b for the CPP
and DH problem, respectively. It can be seen that the DH problem is more sensitive to
the parameters than the CPP problem. Generally, a larger flatten layer yields better
performance up to a point. For both problems, it can be seen that a large flatten layer
can cause the learning to get unstable, resulting in a CRAL of zero for some runs. This
is caused by the agent’s failure to learn how to land. The DH agents, which are not using
the global-local map approach, never learn how to land reliably and thus have a CRAL
score near zero.

In both cases, the agents with l = 17 and g = 3 or g = 5 show the best performance
with respect to their flatten layer size, justifying the selection in Table 5.2. Besides these
two parameter combinations, it is noteworthy that the agents with l = 9 and g = 7 also
perform well in both scenarios, despite their small flatten layer size of only 33 neurons.

95

Chapter 6. Coverage Path Planning

(a) Grid search for CPP

(b) Grid search for DH

Figure 6.3 – Parameter grid search for CPP and DH with parameters from Table 6.3; the
black stars correspond to agents without global-local map processing.

96

Chapter 6. Coverage Path Planning

6.5 Conclusion

We have presented a method for generalizing autonomous UAV control over two distinctly
different mission types, coverage path planning and data harvesting. Through the
flexibility afforded by combining specific mission goals and navigation constraints in
the reward function, we trained DDQNs with identical structures in both scenarios to
make efficient movement decisions. We have analyzed the effects of the dual global-
local map processing parameters on learning performance. After this excursion into the
research field of aerial robotics, we will return to a different formulation of the IoT data
collection scenario in the next chapter and explore the idea of using a model-accelerated
DRL training procedure that reduces the requirement for training data collected in the
real-world, however while learning a control policy for single specific scenario at a time.

97

Chapter 6. Coverage Path Planning

98

Chapter 7

Model-aided Sample-efficient UAV
Trajectory Planning

7.1 Introduction

In this final chapter, we explore another approach to solve the training data demand
challenge of DRL: model-aided DQN learning. At the same time we investigate a
data collection scenario in which the UAV agent has more prior knowledge about the
environment than in the scenario described in chapter 3, but a little less than in the
scenarios of chapters 4 and 5. In contrast to the approaches in chapters 4, 5 and 6,
we do not look at generalizing the UAV control policy over many scenario parameter
variations here, but focus on solving a single scenario (similar to chapter 3) with the
least amount of expensive real-world training data possible. In contrast to the previous
scenarios, we also assume that the UAV flies above the city buildings at all times. Hence,
obstacle avoidance is not a concern in this trajectory planning problem. In contrast to
the chapters 4 and 5, but in accordance with chapter 3, we also assume that an unlimited
amount of data can be picked up from each IoT device. In general, the assumptions in
this chapter are closer to the ones in chapter 3, in order to enable a comparison of the
model-aided approach with the baseline of deep Q-learning with scalar state space input
and no prior information.

The model-aided deep Q-learning approach considerably reduces the need for expensive
training data samples, while still achieving the overarching goal of DRL, i.e to guide
a battery-limited UAV towards an efficient data harvesting trajectory, without prior
knowledge of wireless channel characteristics and limited knowledge of wireless node
locations. On the one hand, approaches as the one from chapter 3 assume absolutely no
prior knowledge of the environment, but require large amounts of training data even in
a simple environment as the DRL agent has to deduce the scenario conditions purely
by trial and error. On the other hand, near perfect state information in works such
as [112], where cooperative UAVs are tasked with collecting data from IoT devices in a
relatively simple unobstructed environment, enables faster convergence and requires less
training data. Here, prior knowledge available to the UAV agent is in between the two

99

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

extremes: while some reference IoT node positions are known (referred to as anchors),
other node positions and the challenging wireless channel characteristics in a dense urban
environment that causes alternation between LoS and NLoS links, must be estimated
and a model of the environment constructed. Offline interaction with the model allows
us to train a DQN to approximate the optimal UAV control policy. In comparison with
standard DRL approaches, the proposed model-aided approach requires at least one order
of magnitude less training data samples to reach identical data collection performance.

In the context of sample-efficient RL, model-accelerated solutions have been proposed
previously for a variety of applications. A method called imagination rollouts to increase
sample-efficiency for a continuous Q-learning variant has been suggested for simulated
robotic tasks in [141]. Their approach is based on using iteratively refitted time-varying
linear models, in contrast to a DQN model that we propose here. Learning a NN model
in the context of stochastic value gradient learning methods has been proposed in [142].

Other works in the area of RL trajectory optimization for UAV communications
have suggested other ways of reducing training data demand. Li et al. [143] proposed a
DRL method for sum-rate maximization from moving users based on transfer learning
to reduce training time. In [30], the authors propose meta-learning on random user
uplink access demands for distributed UAV BS control, reducing training time by around
50% compared to standard RL. Another possibility as in chapters 4 and 5 is to directly
generalize training over a range of likely scenario parameters, where the agent requires no
retraining when scenario parameters change. This is at the cost of longer initial training
and it also requires that the change is observable for the agents.

To the best of our knowledge, this is the first work that proposes model-based
acceleration of the training process in DRL UAV path planning and also the first one
that suggests the use of IoT anchor nodes for localization of IoT devices with unknown
locations. By introducing a device localization algorithm that exploits a limited number
of reference device positions and a city 3D map, we show that our proposed method
offers fast convergence even under uncertainty about device positions and without prior
knowledge of the challenging radio channel conditions in a dense urban environment.
Finally, we compare our model-aided approach to the baselines of standard DRL without
any prior information (along the principles of chapter 3) as well as map-based full
knowledge DRL (compare chapters 4 and 5) and show that the model-aided approach
achieves a reduction in training data demand of at least one order of magnitude with
identical data collection performance.

7.2 Problem Formulation

We consider a UAV data collection scenario very similar to the one described in section
4.2.1 and to 5.2.1 (in the single UAV case). There are K static ground level nodes (IoT
sensors) distributed in an urban area. The k-th ground node, k ∈ [1,K], is located
at uk ∈ R2. The ground nodes are split into two groups: nodes with known locations
uk, k ∈ Uknown, and nodes with unknown locations uk, k ∈ Uunknown. Note that the
ground level node assumption is not restrictive and the proposed algorithms can in
principle be applied to a scenario where the nodes are located in 3D.

100

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

The UAV mission lasts for a maximum duration of T ∈ N mission time steps for all
UAVs, where the time horizon is discretized into equal mission time slots t ∈ [0, T] of
length δt seconds. The UAV’s position is given by p(t) = [x(t), y(t), h]T. The action
space is identical to (4.3) and the position evolves according to

p(t+ 1) = p(t) + a(t), a(t) ∈ A. (7.1)

The drone’s battery content changes according to

b(t+ 1) =

{
b(t)− 0.5, an = hover

b(t)− 1, otherwise,
(7.2)

which is a variation on the battery model from chapter 5 that puts a greater emphasis
on the advantage of hovering over flying at speed. Given the fact that IoT devices in
this chapter have an unlimited amount of data that can be picked up, we expect that
hovering is of greater importance in this scenario compared to chapters 4 and 5.

The AG channel model follows the LoS/NLoS segmented, point-to-point channel
described in section 2.1.2 with log-distance path loss and shadow fading. The MAC
follows the TDMA principle, but in contrast to chapters 4 and 5, we assume here that all
ground nodes have an equal communication time access. The UAV’s goal is to collect the
maximum amount of data over the course of its mission, while reaching the final position
p(T) = vF ∈ R3 before the battery runs out.

The trajectory planning problem is again formulated as a standard MDP, similar to
chapter 4. As we only investigate the single UAV case and do not use global-local map
processing because of the relatively small map, the MDP is neither partially observable,
nor decentralized.

The reward function R : S ×A× S 7→ R of the MDP is comprised of two elements:

r(t) =
∑
k∈K

Ck(t) + λ(t). (7.3)

The first term in (7.3) is the instantaneous collected data from all nodes at time step t,
and λ(t) is a penalty imposed by the safety controller that guarantees the UAV will reach
the terminal point vF. In contrast to chapters 4 and 5, the safety controller here can force
the UAV to return to the final position easily as the UAV is flying above all buildings
and obstacle avoidance is of no concern. Specifically, the safety controller at each time
step computes the shortest trajectory (a minimum set of actions) and the minimum
required power for getting to the destination point from the current UAV location, then
based on these values it declines or accepts the current action a(t) chosen by the UAV.
If action a(t) is rejected, a penalty term will be added to the reward function. The
shortest trajectory and the minimum required power computed at time step t by the
safety controller are denoted by Asct and bsct , respectively. Thus, the safety penalty λ(t)
is given by

λ(t) =

{
λ, b(t) ≤ bsct
0, otherwise.

(7.4)

101

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

The action chosen by the UAV at each time step is checked and modified (if necessary)
by the safety controller as follows

a(t) =

{
asct,1, b(t) ≤ bsct ∧ a(t) /∈ Asct
at, otherwise,

(7.5)

where asct,1 is the first element of Asct .

7.3 Model-aided Deep Q-learning

To solve the MDP, we again employ deep Q-learning, also as to enable direct comparison
of the model-aided approach with the other approaches in this thesis and the literature.
Note that our aim is to reduce the real-world training data samples of Q-learning by model-
aided acceleration with an external model that simulates the environment. Accordingly,
the DQN algorithm (see section 2.3.3) is unchanged and follows the standard cycle of
interaction between agent and environment to iteratively learn a policy π(s). Tackling
again the problem of the large training data demand of DRL methods, we propose an
algorithm where the agent learns an environment model continuously while collecting
real-world measurements. This model is then used by the agent to simulate experiments
and supplement the real-world data.

Specifically, the next state st+1 given the current state st and action at can be
computed from (7.1), (7.2). The reward function (7.3) consists of two parts: the safety
penalty, which is known from (7.5), and the instantaneous collected data from the IoT
node devices. Therefore we only need to estimate the instantaneous collected data from
devices which according to section 2.1.2, is a function of ground node locations and the
radio channel model. Hence, the approximation of the reward function boils down to
ground node localization and radio channel learning from collected radio measurements.

The problem of simultaneous wireless node localization and channel learning has been
studied in previously [144]. In this section, we propose an approach of model-free node
localization by leveraging the 3D map of the environment. Akin to [144] and the previous
chapters of this thesis, a LoS/NLoS segmented radio channel is assumed. However,
in contrast to [144], the goal here is to estimate the radio channel using a model-free
method while localizing the ground nodes. We train a neural network to approximate the
radio channel model, which is utilized along with a particle swarm optimization (PSO)
technique and a 3D map of the city to localize the wireless nodes with unknown positions.

7.3.1 Simultaneous Node Localization and Channel Learning

As the first goal of the UAV is to learn the channel and localize the unknown IoT
nodes, we firstly assume that the UAV follows an arbitrary trajectory denoted by
χ = {p(t), t ∈ [1, T]} for collecting received signal strength (RSS) measurements, where
p(t) represents the UAV’s position in the time interval t. We also assume that the UAV
collects radio measurements form all K nodes at each location. Let gt,k represent the
RSS measurements (in dB scale) obtained from the k-th node by the UAV in interval

102

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

t. Assuming a LoS/NLoS segmented pathloss model that is suitable for air-to-ground
channels in urban environments with buildings [145], we have

gt,k=

{
ψϑ(dt,k, φt,k, wt,k=1) + ηt,k,LoS if LoS

ψϑ(dt,k, φt,k, wt,k=0) + ηt,k,NLoS if NLoS,
(7.6)

where dt,k = ‖uk − p(t)‖, and φt,k = arcsin(
d̄t,k
dt,k

) is the elevation angle between the

UAV at time step t and node k with d̄t,k representing the ground distance between
the ground node and the UAV. ωt,k ∈ {0, 1} is the classification binary variable (yet
unknown) indicating whether a measurement falls into the LoS or NLoS category. The
function ψϑ(.) is the channel model parameterized by ϑ. Note that, neither function ψ(.)
nor parameters ϑ are known and need to be estimated. ηt,k,z represents the shadowing
effect following a zero-mean Gaussian distribution with variance σ2

z , which we assume to
be known for both segments z ∈ {LoS,NLoS}. The probability distribution of a single
measurement in (7.6) is modeled as

p(gt,k) = (ft,k,LoS)wt,k(ft,k,NLoS)(1−wt,k), (7.7)

where ft,k,z has a Gaussian distribution with N (ψϑ(dt,k, φt,k, wt,k), σ
2
z).

Assuming that collected measurements conditioned on the channel and node positions
are independent and identically distributed (i.i.d) [145], using (7.7), the negative log-
likelihood of measurements leads to

L = log

(
σ2

LoS

σ2
NLoS

) K∑
k=1

T∑
t=1

ωt,k+

K∑
k=1

T∑
t=1

ωt,k
σ2

LoS

|gt,k−ψϑ(dt,k, φt,k, wt,k)|2 +

K∑
k=1

T∑
t=1

(1− ωt,k)
σ2

NLoS

|gt,k−ψϑ(dt,k, φt,k, wt,k)|2 .

(7.8)

The estimate of ψ(.),ϑ, and uk can then be obtained by solving

min
ωt,k,uk,∀t,∀k

ψ(.),ϑ

L
(7.9a)

s.t. ωt,k ∈ {0, 1}, ∀t,∀k. (7.9b)

The binary variables ωt,k in objective function (7.8), and the fact that ψ(.) is not explicitly
known and is a nonlinear function of node locations, make problem (7.9) challenging
to solve since it is a joint classification, channel learning and node localization problem.
To tackle this difficulty, we split (7.9) into two sub-problems of learning the channel
and localizing nodes. We also leverage the 3D map of the city for the measurements
classification which will be discussed next.

103

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

Radio Channel Learning

Our aim is to learn the radio channel using collected radio measurements from the IoT
nodes with known location (anchor nodes). Since the characteristic of the radio channel
is independent of the node location and only affected by the structure of the city and
the blocking objects in the environment, learning the radio channel from the nodes with
known location can provide a good approximation. The measurements are classified by
leveraging the 3D map of the city, since for a node with known location the classification
variables ωt,k can be directly inferred. Having classified the measurements, we use a
neural network with parameters ϑ as an approximation of ψϑ(.). The neural network
accepts an input vector [dt,k, φt,k, wt,k]T and returns an estimate of the channel gain ĝt,k.
Just by considering the anchor nodes, problem (7.9) can be rewritten as follows

min
ϑ

k∈Uknown,∀t

L.
(7.10)

This optimization is a standard problem in machine learning and can be solved using any
gradient-based optimizer. The parameters obtained by solving (7.10) are denoted by ϑ∗.

Node Localization

Having learned the radio channel, we continue to localize the unknown nodes. The
optimization problem (7.9) for the set of unknown nodes and utilizing the learned radio
channel can be reformulated as follows:

min
ωt,k,uk,∀t
k∈Uunknown

L∗
(7.11a)

s.t. ωt,k ∈ {0, 1}, k ∈ Uunknown,∀t, (7.11b)

where L∗ is obtained by substituting the learned channel model ψϑ∗(.) in (7.8). The
binary random variables ωt,k, and the non-linear and non-convex objective function L∗
make problem (7.11) hard to solve. We use the PSO algorithm which is suitable for solving
various non-convex and non-linear optimization problems. PSO is a population-based
optimization technique that tries to find the solution to an optimization problem by
iteratively trying to improve a candidate solution with regard to a given measure of
quality (or objective function). The algorithm is initialized with a population of random
solutions, called particles, and a search for the optimal solution is performed by iteratively
updating each particle’s velocity and position based on a simple mathematical formula
(for more details on PSO see [146]).

For ease of exposition, we first solve (7.11) by assuming only one unknown node.
Then we will generalize our proposed solution to the multi-node case. To apply the PSO
algorithm, we define each particle to have the following form

cj = [xj , yj]
T ∈ R2, j ∈ [1, C], (7.12)

where C is the number of particles and each particle represents a possible node location in
the city. Therefore, the negative log-likelihood (7.8) for a given particle can be rewritten

104

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

as follows

L∗(c(i)j) = log

(
σ2
LoS

σ2
NLoS

)
|MLoS,1,j |+∑

z∈{LoS,NLoS}

∑
t∈Mz,1,j

1

σ2
z

|gt,1−ψϑ∗(dt,k, φt,k, z)|2 ,
(7.13)

where c
(i)
j is the j-th particle at the i-th iteration of the PSO algorithm, and Mz,1,j is

a set of time indices of measurements collected from node 1 which are in segment z by
assuming that the location of node 1 is the same as particle j. To formMz,1,j , a 3D map
of the city is utilized. For example, measurement gn,1 is considered LoS, if the straight

line passing through c
(i)
j and the drone position p(t) lies higher than any buildings in

between. Therefore, the best particle minimizing (7.13) can be obtained from solving the
optimization

j∗ := arg min
j∈[1,C]

L∗(c(i)
j), (7.14)

where j∗ is the index of the best particle which minimizes the objective function in (7.14).
In the next iteration of the PSO algorithm, the position and the velocity of particles are
updated and the algorithm repeats for τ iterations. The best particle position in the last
iteration is considered as the estimate of the node location.

Note that for the multi-node case, without loss of optimality, the problem can be
transformed to the multi single-node localization problem and then each problem can be
solved individually. This is a consequence of the fact that the radio channel is learned
beforehand and is assumed to have the same characteristics for all UAV-node links.

7.3.2 Algorithm

The proposed Algorithm 2 iterates between three phases: 1) the agent uses a policy
obtained from the DQN (initially random) to collect real-world RSS measurements from
the IoT nodes; 2) the collected measurements are used to learn the radio channel and
localize the nodes with unknown locations as described in sections 7.3.1 and 7.3.1; 3) the
agent performs a new set of experiments in the simulated environment under the learned
radio channel model using the estimate of the node locations to train the DQN. Then,
the agent repeats the first phase of the algorithm by generating a new policy using the
trained Q-network and the procedure continues until convergence.

The experience replay buffers for real world and simulated world experiments are
denoted D and D̃, respectively. A new episode in phase 1 and phase 3 starts by resetting
the time index, the initial UAV position and the battery budget (lines 7 and 22). To train
the DQN, an ε-greedy exploration technique is used (line 36) with decay constant κ (2.15).
η is the learning rate for primary network parameters θ. Target network parameters are
updated every Ntarget episodes with a hard update. In phase 3, the algorithm performs
I sets of experiments in the simulated world, and the whole algorithm terminates after
carrying out Emax real-world experiments.

105

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

Algorithm 2 Model-aided DQN trajectory design

1: Initialize replay buffer D, D̃
2: Initialize primary network parameters θ and target network parameters θ̄
3: Initialize episode counter for real-world and simulated training episodes n = 0
4: for e = 0 to Emax do
5: n = n+ 1
6: 1) Real-world experiment:
7: Initialize s0 = (p(t) = vI, bmax), t = 0
8: while b(t) ≥ 0 do
9: at = arg maxa′ Qθ(st, a

′)
10: Validate at using the safety controller (7.5)
11: Observe rt, st+1, γ1,t, · · · , γK,t
12: Store (st, at, rt, st+1) in D
13: Memorize (pt, γ1,t, · · · , γK,t)
14: t = t+ 1
15: end while
16: 2) Learning the environment:
17: Learn the radio channel as described in Section 7.3.1
18: Localize unknown nodes as described in Section 7.3.1
19: 3) Simulated-world experiment:
20: for i = 0 to I do
21: n = n+ 1
22: Initialize s̃0 = (p(t) = vI, bmax), t = 0
23: while b(t) ≥ 0 do

24: ãt =

{
randomly select fromA with probability ε

arg maxa′ Qθ̄(s̃t, a
′) otherwise (2.15)

25: Validate ãt using the safety controller (7.5)
26: Compute r̃t from (7.3), and s̃t+1 from (7.1), (7.2)
27: store (s̃t, ãt, r̃t, s̃t+1) in D̃
28: for i = 0 to m do
29: Sample (si, ai, ri, si+1) uniformly from {D ∪ D̃}

30: yi =

{
ri if terminal

ri + γmaxa′ Qθ̄(si+1, a
′) otherwise according to (2.13)

31: Compute LDQN
i (θ) = E

[(
Qθ(si, ai)− Y DQN

i

)2
]

according to (2.12)

32: end for
33: θ ← θ − η · 1

m∇θ
∑m

i=1 L
DQN
i (θ)

34: t = t+ 1
35: end while
36: ε← εfinal + (εstart − εfinal)e−κn
37: if (n mod Ntarget = 0) then θ̄ = θ
38: end for
39: end for

106

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

7.4 Simulations

We consider a dense urban city neighborhood comprising buildings and regular streets
as shown in Fig. 7.1. The height of the buildings is Rayleigh distributed in the range
of 5 to 40 m and the true propagation parameters are identical to chapter 4. The UAV
collects radio measurements from the ground nodes every 5 m and we assume that the
altitude of the UAV is fixed to 60 m during the course of its trajectory, above the height
of all buildings. The mission time of each episode is fixed to T = 20 time steps with a
fixed UAV movement step size of c = 50 m.

We assume there are six ground nodes. Only the locations of anchor nodes u1 and u2

are known to the UAV in advance. The UAV starts from vI = [100, 100, 60]T and needs
to reach the destination point vF = [300, 400, 60]T by the end of the mission. To learn the
channel, we use a NN with two hidden layers where the first layer has 60 neurons with
tanh activation function, and the second layer 30 neurons with ReLU activation function.
The DQN comprises 2 hidden layers each with 120 neurons and ReLU activation function.

In Fig. 7.3, we compare the performance of the baseline Q-learning algorithm as
explained in section 2.3.3 and akin to chapter 3, with the proposed model-aided Q-learning
algorithm. Moreover, we show the result of an algorithm similar to chapter 4, where the
mixed-radio map of the nodes is embedded in the state vector. Fig. 7.2 shows a plot of
the normalized combined radio map for the scenario in Fig. 7.1. In reference to chapter
4, where we showed that centering the map on the UAV position is highly beneficial for
learning performance, we feed the centered map from Fig. 7.2b to the agent. To compute
the mixed-radio map, the individual radio maps of all nodes are combined. Individual
radio maps are computed using the 3D map of the city and assuming perfect knowledge
node positions and the radio channel. The model-aided algorithm outperforms the other
approaches since it merely requires 10 real-world experiments episodes to converge to the
same performance level as other algorithms. The radio map-based algorithm is superior
to the baseline since it uses more information in a more efficient form, i.e. the map and
perfect knowledge of node positions and the radio channel model.

Fig. 7.1 shows the final trajectory after convergence of algorithm 2. The UAV
starts flying towards the closest node and hovers above for several time steps in order to
maximize the amount of collected data, and then reaches the destination vF. Moreover,
the estimate of unknown node locations obtained at the last episode of the training phase
of Algorithm 2 are shown and confirmed to be very close the true positions.

7.5 Conclusion

We have introduced a novel model-accelerated DRL path planning algorithm for UAV
data collection from distributed IoT nodes with only partial knowledge of the nodes’
locations. In comparison to two standard deep Q-learning algorithms, using either full
or no knowledge of sensor node locations, we have demonstrated that the model-aided
approach requires at least one order of magnitude less training data samples to reach
the same data collection performance. However, this was demonstrated for a single
mission scenario at a time, in contrast to chapters 4, 5, and 6, where we learned a control

107

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

vI

vF

Figure 7.1 – Trajectory obtained by model-aided Q-learning and the estimates of unknown
node locations in the final episode of Algorithm 1.

policy that generalizes on mission parameters, which is a more complex problem. In
summary, the model-aided approach is a promising step in the direction of real-world
UAV trajectory planning with deep reinforcement learning. In future work, we also
plan to extend this method to the multi-UAV case in CTDE and/or fully decentralized
settings.

108

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

(a) Non-centered radio map. (b) Centered radio map with padding.

Figure 7.2 – The normalized, combined radio map for the scenario in Fig. 7.1 with six
users, before and after map centering.

100 101 102 103 104

Episode [log scale]

2

4

6

8

10

12

A
cc

u
m

u
la

te
d

 C
o

lle
ct

e
d

 D
a

ta
 [

K
b

it
]

Model-aided (proposed)

Full map-based DQN
Baseline DQN

Figure 7.3 – Comparison of proposed model-aided, full-knowledge map-based (chapter 4),
and no prior knowledge baseline DQN (chapter 3), showing accumulated collected data
versus training episodes on a logarithmic scale.

109

Chapter 7. Model-aided Sample-efficient UAV Trajectory Planning

110

Chapter 8

Conclusion

In this dissertation, we have focused on the design of trajectories for drones in UAV-aided
wireless networks, with the UAVs’ mobility as the most central difference and advantage
compared to classical stationary network infrastructure. Reinforcement learning as
a method of trajectory design thereby mirrors the underlying challenge directly: an
autonomous UAV agent needs to make instantaneous control decisions that balance the
system’s communication goals with other constraints such as limited flying time, obstacle
avoidance or multi-UAV coordination with varying degrees of prior information available
about the environment and mission to support its decisions.

We have started this investigation with a scenario where virtually no prior information
is available to an aerial base station serving ground users before starting its mission.
We showed that the RL paradigm, through exploration of the state space and then
exploitation of learned knowledge, allows the UAV agent to converge to the optimal
control policy while efficiently integrating landing spots into the trajectory that allow the
aerial BS to extend its active mission time. The training procedure was shown to adapt
to complex and random environmental effects, albeit at the price of long training time.

In the following parts of this thesis, we have offered two approaches to mitigate this
drawback. First, by learning a generalized control policy that is able to adapt instantly to
changes in the defining parameters of the UAV mission, we have shown that it is possible
to take away the need for lengthy retraining when the scenario changes, including when
the number of UAVs that are deployed in a team changes. Secondly, we have offered an
approach for model-aided acceleration of the training process that minimizes the need for
expensive training data collection in the real world. Both approaches were demonstrated
to work effectively in a scenario where UAV data harvesters are deployed in a dense urban
environment to collect data from distributed Internet of Things sensor nodes. Here, it
was assumed that a map of the city is available for the UAV agents to make movement
decisions.

We have shown that it is of high importance how the additional knowledge available to
the agents is exploited. By centering the map on the agent’s position and feeding it into
convolutional network layers, training performance is increased considerably. We have
also introduced a dual map processing approach that divides the available information
into a local and a global environment map, which allows the approach to scale to even

111

Chapter 8. Conclusion

larger and more complex environments. Furthermore, by describing the UAV trajectory
planning problem based on map layers, we have shown that the proposed DRL methods
can be directly used to solve other instances of UAV trajectory planning, such as coverage
path planning.

In this thesis, we have laid some ground work and suggested steps towards the goal
of deploying DRL trajectory planning to real-world UAV-aided communication networks.
Although DRL has shown great promise in many application areas, actual non-prototype
use in the real-world is still rare due to a number of high-level challenges [75], one of
the most important ones is the expensive training data collection process. In addition
to the concepts presented in this thesis, investigations in future work can explore the
combination with other existing approaches such as transfer learning [147], where the goal
is to improve learning performance by transferring knowledge contained from different
but related source domains. Multi-task reinforcement learning [148] is interesting for
cases where the UAV needs to perform multiple tasks in the same mission scenario, where
the aim is to leverage the learned knowledge contained in multiple related tasks to help
improve the generalization performance for all tasks. A very promising research direction
is also the concept of training RL agents from offline data, i.e. training data that was
collected previously and that can be used without repeated direct interaction with the
real-world environment [149]. Apart from the combination with new concepts, future
improvements of the approaches presented in this paper could include the extension of
the UAV action space to continuous 3D control, the investigation of attention-based
mechanisms for map processing and allowing for adaption to even larger maps with
macro-actions or options [150].

112

Appendices

113

Annexe A

Résumé

A.1 Introduction

La technologie et les applications potentielles des drones, aussi communément appelés par
l’acronyme anglais UAV, ont connu une innovation rapide au cours de la dernière décennie.
Des avancées cruciales en matière de matériel, de fabrication et de coût des UAV [1],
associées à des cadres réglementaires nouvellement créés pour l’utilisation commerciale
des UAV [4], ont conduit à la création d’un marché qui devrait atteindre 63,6 milliards
de dollars d’ici à 2025 [5].

Un scénario d’application fréquemment cité est la livraison de marchandises aux
consommateurs sur le dernier kilomètre par des drones. Un projet commercial réussi
de drones autonomes livrant de la nourriture et des produits d’épicerie aux clients de
Reykjavik, la capitale de l’Islande, a été lancé dès 2018, plaçant les autorités aériennes
islandaises en tête de liste des pays ayant autorisé une certaine forme de vol de drone
autonome [7]. Un exemple dans le contexte du maintien en état des infrastructures
vieillissantes du monde est la société japonaise Hitachi, qui déploie déjà commercialement
des drones partiellement autonomes qui collectent des données de maintenance à partir
de capteurs de l’Internet des objets (IoT) intégrés dans de grandes structures, comme les
ponts de San Juanico et d’Agas-Agas aux Philippines [8]. Les drones peuvent même être
utilisés pour sauver des vies : leur déploiement flexible et rapide les rend très intéressants
pour les scénarios où les infrastructures fixes (par exemple, les réseaux de communication)
sont détruites ou indisponibles, c’est-à-dire dans les situations de catastrophe et de
recherche et sauvetage. Cela peut être le cas lorsqu’une catastrophe naturelle, comme
un tremblement de terre, détruit les stations de base (BS) et que les drones font office
de stations de base volantes pour rétablir les capacités de communication des premiers
intervenants [9]. Pour réaliser leur potentiel en faveur de la société du futur, il est clair
que tous les drones ont besoin de capacités de communication bien conçues ou fournissent
eux-mêmes des services de communication.

115

Annexe A. Résumé [Français]

Drone supportant
station de base Drone point

d‘accès

Drone collecteur
de données

IoT capteurs

Drone
 relais

Figure A.1 – Exemples d’applications pour les drones fournissant des services de
communication et soutenant l’infrastructure stationnaire.

A.1.1 Réseaux assistés par drones

Ces dernières années, l’intérêt pour l’intégration des drones dans les réseaux de communi-
cation sans-fil n’a cessé de crôıtre, tant dans la sphère commerciale que dans celle de la
recherche universitaire. Fondamentalement, les drones dans les réseaux de communication
peuvent être envisagés de deux manières et décrits comme [1,10] : drones connectés par
voie cellulaire qui sont attachés aux réseaux mobiles avec un lien de commande et de
contrôle en tant que terminaux de réseau ou équipement utilisateur aérien (UE), et les
fournisseurs de services de communication dans les réseaux de communication assistés par
drone, également appelés réseau d’accès radio volant (FRAN). Cette thèse se concentre
sur les réseaux de communication assistés par drones.

Les progrès réalisés dans le matériel des drones ainsi que la miniaturisation des équi-
pements de communication sans fil ont permis une multitude d’applications potentielles
pour les réseaux sans fil assistés par drones, dont certaines sont représentées sur la figure
A.1. Un cas d’utilisation naturel consiste à attacher un point d’accès (AP) sans fil comme
charge utile à un drone qui peut alors fournir une capacité de communication supplé-
mentaire dans les zones où les réseaux terrestres sont encombrés [27,28]. Un autre cas
d’utilisation de ces stations de base aériennes est l’établissement de services de communi-
cation autonomes, par exemple dans des zones qui ne disposent pas de couverture ou dans
lesquelles l’infrastructure terrestre est désactivée [29,30]. Les relais de drones [31,32] sont
susceptibles de pouvoir établir des liaisons en visibilité directe (LoS) vers des utilisateurs
obstrués, grâce à leur haut degré de mobilité et d’altitude. Les réseaux de capteurs de
l’Internet des objets (IoT) soumis à des contraintes d’énergie et de débit peuvent être pris
en charge par des collecteurs de données de drones capables de décrire un modèle de vol

116

Annexe A. Résumé [Français]

qui les amène à proximité des dispositifs, augmentant ainsi l’efficacité énergétique [33–35].

Par rapport aux réseaux terrestres fixes, la communication assistée par drone présente
un certain nombre de défis uniques en matière de conception et de recherche [36]. Tout
d’abord, le déploiement des stations de base aériennes dans un espace 3D offre un degré de
liberté (DoF) supplémentaire par rapport au déploiement typiquement 2D des stations de
base terrestres. Un autre défi majeur est l’environnement de propagation différent : [37]. Le
canal air-sol (AG) pour les drones n’a pas été étudié de manière trop détaillée auparavant,
pourtant des modèles de propagation précis sont essentiels pour développer des protocoles
et des techniques de communication robustes. Enfin, les stations de base et les relais
aériens ajoutent des contraintes supplémentaires à la maximisation des performances
de communication ou de la qualité de service (QoS), telles que le temps de vol limité
et les exigences intrinsèques de la dynamique de vol. Les protocoles d’ordonnancement,
d’allocation de recherche et d’accès multiple doivent être adaptés pour tenir compte de
ces changements.

Ces défis guident la recherche sur les communications assistées par drone. La mobilité
peut être prise en compte soit par l’optimisation du placement des stations de base/relais
des drones, soit par l’optimisation complète de la trajectoire de bout en bout. Même
le placement des drones est un problème plus difficile que celui des stations de base
stationnaires, en raison de la profondeur de champ supplémentaire. Les algorithmes pour
le placement des stations de base UAV vont de la force brute [38], la programmation
génétique [27], le regroupement K-means [25] à la théorie des contrats et l’apprentissage
automatique (ML) [39]. L’optimisation de la trajectoire complète a été abordée, par
exemple par l’optimisation convexe séquentielle [40], l’optimisation fonctionnelle et le
contrôle optimal [41], ou l’apprentissage par renforcement (RL) [42]. L’amélioration de la
modélisation des canaux AG nécessite des études expérimentales telles que [14,43]. Des
enquêtes et des tutoriels qui résument les recherches récentes sont donnés par [1, 10,44].

A.1.2 Apprentissage automatique pour les communications par drones

L’expansion des applications potentielles des drones et les progrès technologiques dans le
matériel des drones ont également conduit à l’émergence de nouveaux défis et problèmes
associés. Les solutions à ces défis basées sur l’intelligence artificielle (AI) et l’apprentissage
machine (ML) sont devenues un domaine de recherche très actif. Une croissance explosive
de l’intérêt pour les deux aspects de cette thèse, les communications assistées par drone et
le ML, a cöıncidé au cours des dernières années, conduisant à une multitude de résultats
de recherche qui combinent les deux.

Le cadre de l’apprentissage par renforcement est particulièrement adapté aux défis
posés par le déploiement de drones autonomes dans les réseaux de communication, car
l’idée centrale est celle d’un agent autonome prenant des décisions (par exemple, la
planification d’une trajectoire) pour maximiser un certain objectif (par exemple, la
qualité de service pour une station de base aérienne) dans un environnement inconnu.
L’apprentissage par renforcement profond (DRL) peut être utilisé dans de nombreux
cas de placement et de planification de trajectoire de drones, comme la planification de
trajectoire multi-drones sensible aux interférences [18], la collecte de données dans le

117

Annexe A. Résumé [Français]

contexte de la détection de foule mobile [66], ou la maximisation de la couverture des
communications dans les réseaux assistés par drones [30]. L’allocation des ressources
est l’une des applications des réseaux de drones qui vont au-delà de la planification des
chemins. Dans [67], l’apprentissage par renforcement multi-agent (MARL) est utilisé
pour sélectionner automatiquement l’utilisateur communicant, le niveau de puissance
et le sous-canal de chaque drone sans aucun échange d’informations entre les drones.
Un algorithme d’association d’utilisateurs basé sur le RL est développé dans [68] pour
minimiser les transferts d’utilisateurs dans un réseau de drones BS. La combinaison de
drones avec des surfaces réfléchissantes intelligentes dans le contexte de la 6G donne
également lieu à divers défis qui peuvent être résolus par RL [26].

Si les approches basées sur le ML se sont révélées très prometteuses dans de nombreuses
applications de communication par drone, il est important de souligner que cela ne signifie
en aucun cas que le ML surpasse généralement les approches classiques dans tous les
scénarios et applications. En fait, le ML apporte ses propres défis par rapport aux
approches classiques : il sacrifie l’interprétabilité et les performances garanties dans
certains scénarios, tandis que les gains de performances dans le monde réel ne se sont pas
matérialisés dans de nombreux domaines, en raison du fait que le déploiement pratique
dans le monde réel des solutions basées sur le ML est souvent encore difficile à réaliser.
Cependant, il est également vrai que le ML offre la possibilité de trouver des solutions
viables à des problèmes qui sont difficiles ou impossibles à aborder avec des approches
classiques.

Une enquête exhaustive sur les thèmes de recherche actuels en AI pour les réseaux
sans fil basés sur les drones est donnée par [61]. Bithas et al. [71] ont fourni une vue
d’ensemble avec une sélection similaire de sujets, tandis que [52] se concentre sur les
approches DRL.

A.2 Planification de trajectoire pour station de base aérienne avec

points d’atterrissage (Chapitre 3)

Comme ce travail se concentre sur les petits drones polyvalents de type multirotor, dont
le quadcopter est l’exemple le plus couramment utilisé, les restrictions en matière de
consommation d’énergie et de densité d’énergie de la batterie sont des contraintes centrales
pour la planification des missions de BS aérienne. Même en transformant un quadrirotor
en “batterie volante”, la durée maximale de la mission ne peut généralement pas dépasser
deux heures [97]. Comme la consommation d’énergie pour le vol dépasse généralement de
loin la consommation d’énergie de la station de base transportée, le concept de points
d’atterrissage (LS) a été introduit dans [95] pour prolonger la durée de la mission. Un
point d’atterrissage est une petite parcelle d’immobilier, par exemple un toit, où une
station de base de drone peut se poser, ce qui permet d’économiser de l’énergie tout
en continuant à servir les utilisateurs de service mobile. Souvent, l’utilisation du LS
s’accompagne du sacrifice d’une certaine qualité de service instantanée pour certains
utilisateurs, mais permet d’allonger la durée globale de la mission.

Nous démontrons dans ce chapitre l’utilisation d’un réseau Q profond (DQN), une

118

Annexe A. Résumé [Français]

(a) Trajectoire finale du drone BS.

(b) Durée de la mission sur les épisodes de
formation.

(c) Données collectées au cours d’épisodes
de formation.

Figure A.2 – Scénario comportant L = 2 points d’atterrissage et un obstacle qui
provoque l’ombrage de certains utilisateurs sur la carte. Les résultats finaux pour une
perte d’ombre élevée et faible sont comparés.

technique d’apprentissage par renforcement, pour planifier la trajectoire d’un UAV BS tout
en servant un groupe d’utilisateurs au sol en maximisant la somme du taux d’information
sur toute la durée du vol avec une quantité limitée d’énergie dans la batterie du drone au
départ. Les décisions de mouvement sont donc prises en fonction de la position actuelle
du drone et du contenu de la batterie, ainsi que de l’espérance du taux de somme totale
qui peut être atteint jusqu’à ce que la batterie soit épuisée. Pour économiser de l’énergie
pendant la mission, le drone est autorisé à atterrir dans les LS désignés.

Il est important de noter que, contrairement aux scénarios décrits dans les chapitres
suivants de cette thèse, le drone n’a absolument aucune connaissance préalable de
l’environnement ou du scénario de la mission. Cela signifie qu’il n’a aucune connaissance
de l’existence des LS, du nombre et de l’emplacement des utilisateurs, des obstacles,
du modèle de canal ou de l’emplacement de la zone d’atterrissage. En référence au
dilemme exploration-exploitation, cela signifie que le drone doit découvrir toutes les
caractéristiques de l’environnement par essais et erreurs. Nous comparons également les
performances de collecte de données du système DQN avec la trajectoire optimale qui

119

Annexe A. Résumé [Français]

(a) Récompense cumulative épisodique. (b) Taux de recouvrement et atterrissage réussi.

Figure A.3 – Comparaison des processus de formation entre les cartes centrées et non
centrées, montrant la moyenne et les quantiles à 99 % de trois processus de formation
chacun, avec des métriques épisodiques regroupées dans des bins de 5000.

peut être calculée à l’aide de la programmation dynamique (DP) basée sur une approche
similaire à celle de [95]. En revanche, l’approche DP nécessite bien sûr une connaissance
préalable complète de l’environnement et du modèle.

La figure A.2 présente un exemple de mission de BS de drone dans un environnement
comportant un obstacle et deux points d’atterrissage. L’adaptation des drones à des
conditions de perte d’ombrage élevées et faibles est illustrée.

A.3 Collecte de données par drone dans les réseaux IoT multi-
scénario (Chapitre 4)

Dans le chapitre précédent, nous avons montré qu’une approche de planification de
trajectoire basée sur DQN pour les stations de base aériennes permet de concevoir des
trajectoires qui atteignent des niveaux de performance optimaux - sans aucune hypothèse
sur le modèle sous-jacent et sans aucune connaissance préalable de l’environnement ou du
scénario. Cela va de pair avec une grande demande de données d’entrâınement, car l’agent
du drone doit déduire toutes les informations de l’exploration par essais et erreurs. Plus
problématique encore, si un élément du scénario change, comme la position de l’utilisateur,
la procédure d’apprentissage doit être relancée afin de s’adapter au nouveau scénario.
Cependant, dans de nombreux cas d’application, certaines informations supplémentaires
sur l’environnement sont disponibles, par exemple une carte de l’environnement. Dans
ce chapitre, nous souhaitons utiliser les informations cartographiques pour concevoir
un algorithme DRL capable de généraliser la conception de trajectoire sur plusieurs
scénarios, c’est-à-dire de prendre en compte les paramètres variables du scénario pendant
l’apprentissage et de trouver une politique de planification de trajectoire qui s’adapte
instantanément à un changement de scénario et ne nécessite pas de réapprentissage, ce
qui est un problème beaucoup plus complexe. Si les méthodes RL profondes doivent être

120

Annexe A. Résumé [Français]

appliquées dans des missions réelles, la demande prohibitive de données d’entrâınement
pose l’un des défis les plus sévères [75]. En prenant en compte des paramètres variables
dans la conception et la formation du modèle de réseau neuronal, nous faisons un pas
vers l’atténuation de ce défi.

Nous passons également du scénario d’une station de base aérienne à un drone en
mission de collecte de données à partir de dispositifs distribués de l’Internet des objets
(IoT). Par exemple, les opérateurs de l’IoT peuvent déployer des collecteurs de données
par drone en l’absence d’infrastructure cellulaire coûteuse à proximité. Une autre raison
est le bénéfice de l’efficacité du débit lié à la présence de drones qui décrivent un modèle
de vol qui les rapproche des dispositifs IoT.

La collecte de données à partir de dispositifs de capteurs dans un environnement
urbain impose des contraintes difficiles sur la conception de la trajectoire des drones
autonomes. La densité énergétique de la batterie limite fortement la durée de la mission
pour les drones quadrirotors, tandis que l’environnement urbain complexe pose des
problèmes d’évitement des obstacles et de respect des zones d’interdiction de vol (NFZ)
réglementaires. De plus, le canal de communication sans fil est caractérisé par de fréquentes
fluctuations de l’atténuation par l’alternance de liaisons en visibilité directe (LoS) et de
liaisons sans visibilité directe (NLoS). Les approches DRL offrent la possibilité d’équilibrer
les défis et l’objectif de collecte de données pour les environnements complexes d’une
manière simple en les combinant dans la fonction de récompense. Une autre raison de
la popularité du paradigme DRL dans ce contexte est l’efficacité computationnelle de
l’inférence DRL. DRL est également l’une des rares méthodes qui nous permet de nous
attaquer directement à la tâche complexe.

Enfin, nous avons également montré dans ce chapitre qu’il y a une augmentation
considérable de l’efficacité d’apprentissage pour l’agent RL lorsqu’il exploite une carte de
l’environnement centrée sur la propre position de l’agent drone. Ceci est visualisé dans
la figure A.3. L’avantage d’utiliser une carte centrée est le résultat d’un changement de
position auquel correspond un neurone de la couche “Flatten”. Si la carte n’est pas centrée,
les neurones de cette couche correspondent à des caractéristiques à des positions absolues.
Si la carte est centrée, ils correspondent à des éléments en position relative par rapport
à l’agent. Comme les actions de l’agent sont uniquement basées sur sa position relative
par rapport aux caractéristiques, par exemple sa distance par rapport aux dispositifs,
l’efficacité de l’apprentissage augmente considérablement.

A.4 Coordination de plusieurs drones dans la collecte de données

multi-scénario (Chapitre 5)

Dans ce chapitre, nous étendons et améliorons les résultats du précédent tout en considé-
rant un scénario similaire de communications assistées par drone avec collecte de données
à partir de dispositifs IoT distribués. Il est raisonnable de supposer qu’un opérateur de
réseau déployant des drones de collecte de données dans le cadre de son infrastructure
de réseau IoT, tenterait d’augmenter l’efficacité du système en déployant plusieurs de
ces drones. Du point de vue de la planification de trajectoire, cela nécessite de prendre

121

Annexe A. Résumé [Français]

Reinforcement
Learning

max ∑ D(t)

IoT device 3

u3=[x3,y3,0]T

D1,3(t)
IoT device 2
u2=[x2,y2,0]T

D1,2(t)

IoT device 1
u1=[x1,y1,0]T

D2,1(t)

no-fly zone

Movement Decision
ai(t,map,battery)

Collected Data

D(t) = ∑ ∑ Di,k(t)
UAVs Devices

Collected Data

D(t) = ∑ ∑ Di,k(t)
UAVs Devices

t=0

T

×i ai(t)

Figure A.4 – Vue d’ensemble du scénario de collecte de données par plusieurs drones. Les
drones utilisent une carte globale compressée et une carte locale recadrée pour planifier
leurs trajectoires.

en compte l’aspect coordination et une reformulation de l’approche de l’apprentissage
par renforcement multi-agent (MARL). Par conséquent, nous formulons le problème de
planification de trajectoire pour une équipe de drones coopérative, non communicante et
homogène chargée de maximiser les données collectées à partir de capteurs IoT distribués,
sous réserve de contraintes de temps de vol et d’évitement des collisions, comme le montre
la figure A.4. Le problème de planification de trajectoire est traduit en un processus
de décision de Markov partiellement observable décentralisé (Dec-POMDP), que nous
résolvons par une approche DDQN, en approximant la politique de contrôle optimale du
drone sans connaissance préalable des caractéristiques difficiles des canaux sans fil dans
les environnements urbains denses.

La deuxième amélioration est liée au fait que l’approche de centrage de la carte
telle qu’introduite précédemment, bien que conduisant à des gains de performance
d’apprentissage élevés, augmente également le nombre de paramètres de réseau neuronal
entrâınables, ce qui la rend non viable pour des cartes plus grandes, plus réalistes et plus
complexes. Dans ce chapitre, nous modifions également le scénario pour différencier les
grands bâtiments qui agissent comme des obstacles à la navigation, ainsi que les bâtiments
plus petits qui peuvent être survolés par les drones. Nous abordons le problème des
paramètres croissants en exploitant une combinaison de représentations cartographiques
globales et locales centrées de l’environnement qui sont introduites dans les couches
convolutives des agents. Nous montrons que l’architecture de réseau que nous proposons
permet aux agents de coopérer efficacement en divisant soigneusement la tâche de collecte
de données entre eux, de s’adapter à de grands environnements complexes, et de prendre
des décisions de mouvement qui équilibrent les objectifs de collecte de données, l’efficacité

122

Annexe A. Résumé [Français]

du temps de vol et les contraintes de navigation.

Enfin, dans ce travail, nous nous concentrons sur le contrôle d’une équipe de drones,
composée d’un nombre variable de drones identiques chargés de collecter des quantités
variables de données à partir d’un nombre variable de dispositifs de capteurs IoT sta-
tionnaires à des emplacements variables dans un environnement urbain. Cela impose
des contraintes difficiles sur la conception de trajectoires pour les drones autonomes.
L’apprentissage d’une politique de contrôle qui se généralise sur l’espace des paramètres
du scénario nous permet d’analyser l’influence des paramètres individuels sur les perfor-
mances de collecte et de fournir une certaine intuition sur les avantages au niveau du
système, comme le montre la Fig. A.5. Un excellent exemple que nous avons trouvé pour
la carte ‘Manhattan32’ est que le déploiement de plusieurs drones de coordination peut
compenser le coût de l’équipement supplémentaire (c’est-à-dire les drones supplémen-
taires) par une réduction substantielle du temps de mission. Par exemple, il faut deux
fois plus de temps de vol (b0 = 150) à un seul drone pour achever la mission de collecte
de données que deux drones de coordination (b0 = 75) pour la mener à bien.

En nous référant à la Fig. A.5, nous analysons d’abord les performances de l’agent
de la Fig. A.5 dans la plage d’entrâınement des paramètres du scénario (lignes pleines),
puis nous étendons l’analyse aux scénarios hors distribution (lignes pointillées). La Fig.
A.5 montre l’influence des paramètres d’un seul scénario sur le ratio moyen de collecte
de données avec atterrissage réussi de tous les agents et indique l’augmentation des
performances de collecte lorsque davantage de drones sont déployés. Dans le même temps,
un plus grand nombre de drones entrâıne des exigences accrues en matière d’évitement
des collisions, comme nous l’avons observé à travers un plus grand nombre d’activations
de contrôleurs de sécurité dans les premières phases de formation. Comme les capteurs
IoT sont positionnés de manière aléatoire dans l’espace cartographique inoccupé, une
augmentation du nombre de capteurs entrâıne des exigences de trajectoire plus complexes
et une baisse des performances, comme le montre la figure A.5b.

La Fig. A.5c montre l’influence de l’augmentation du volume initial de données
par capteur sur les performances globales de collecte. Il apparâıt que des volumes de
données initiaux plus élevés par capteur sont bénéfiques à peu près jusqu’au point
de Dk,init ∈ [10, 12.5] unités de données, après quoi les contraintes de temps de vol
obligent les drones à abandonner une partie des données, et le rapport de collecte montre
une tendance légèrement négative. Une augmentation du temps de vol disponible est
clairement bénéfique pour les performances de collecte, comme l’indique la figure A.5d.
Cependant, l’effet devient plus faible lorsque la plupart des données sont collectées, et
les drones commencent à donner la priorité à la minimisation du temps de vol total et à
l’atterrissage en toute sécurité plutôt qu’à la collecte des derniers bits de données.

La Fig. A.5 montre en outre comment les agents réagissent aux paramètres du scénario
qui n’ont pas été rencontrés pendant la formation. Les valeurs correspondantes sont mises
en évidence par des lignes pointillées. On constate que la performance des agents suit la
même tendance que dans le reste des données, lorsqu’on augmente le nombre de capteur
(Fig. A.5b) ou les données initiales par capteur (Fig. A.5c) hors de la région entrâınée.
En augmentant le temps de vol maximum (Fig. A.5d) pour les agents Manhattan32,
ou en le diminuant pour les agents Urban50, le taux de collecte avec des performances

123

Annexe A. Résumé [Français]

d’atterrissage réussi, augmente ou diminue en conséquence. L’augmentation du nombre
d’agents à quatre (Fig. A.5a) réduit légèrement les performances. La raison en est la
diminution des performances d’atterrissage. Cependant, il faut s’y attendre puisque la
probabilité que tous les agents atterrissent diminue avec le nombre d’agents. Comme
le ratio de collecte est presque saturé pour les scénarios avec trois agents, la baisse des
performances globales d’atterrissage diminue le ratio de collecte et les performances
d’atterrissage. En général, il est évident que l’approche proposée ne peut pas seulement
généraliser sur toute la gamme des paramètres de scénario rencontrés pendant la formation,
mais peut également extrapoler avec succès aux paramètres hors distribution.

A.5 Planification du chemin de couverture (Chapitre 6)

En plus de la planification de trajectoire pour les applications dans les réseaux assistés
par drones, les méthodes DRL présentées dans les chapitres précédents peuvent également
être utilisées dans d’autres domaines où les drones autonomes présentent un intérêt. Un
exemple pour ces applications est la planification de trajectoire de couverture de zone
(CPP) [78], un problème de robotique classique. Comme son nom l’indique, la couverture
de tous les points à l’intérieur d’une zone d’intérêt avec CPP est liée à la planification de
chemin conventionnelle, où le but est de trouver un chemin entre les positions de départ et
d’arrivée. En général, le CPP vise à couvrir la plus grande partie possible de la zone cible
en respectant des contraintes d’énergie ou de longueur de chemin données, tout en évitant
les obstacles ou les zones interdites de vol. Comme les méthodes DRL proposées sont très
flexibles, elles peuvent fondamentalement être employées à n’importe quel problème de
planification de trajectoire avec un objectif d’optimisation supplémentaire, par exemple
la maximisation des données collectées à partir des dispositifs IoT ou la couverture
complète d’une zone d’intérêt. Dans ce chapitre, nous démontrons l’applicabilité de notre
approche de planification DDQN basée sur les cartes à ces deux scénarios de mission
nettement différents. L’influence des principaux paramètres de traitement des cartes sur
les performances d’apprentissage des trajectoires est également analysée.

A.6 Planification de trajectoire des drones assistée par modèle

(Chapitre 7)

Dans ce chapitre, nous étudions une autre approche qui s’attaque à la forte demande en
données d’entrâınement des méthodes DRL pour la planification de trajectoires de drones.
Nous proposons ici une approche d’apprentissage Q profond assistée par un modèle qui,
contrairement aux travaux précédents, réduit considérablement le besoin de données
d’entrâınement importants, tout en atteignant l’objectif primordial de l’apprentissage
Q profond, à savoir guider un drone à batterie limitée vers une trajectoire efficace de
collecte de données, sans connaissance préalable des caractéristiques des canaux sans fil
ni connaissance limitée de l’emplacement des nœuds IoT sans fil. L’idée clé consiste à
utiliser un petit sous-ensemble de nœuds comme ancres (c’est-à-dire avec une localisation
connue) et à apprendre un modèle de l’environnement de propagation tout en estimant

124

Annexe A. Résumé [Français]

implicitement les positions des nœuds réguliers. Nous montrons que par rapport aux
approches DRL standard, l’approche proposée, assistée par un modèle, nécessite au
moins un ordre de grandeur de moins de données d’entrâınement pour atteindre des
performances de collecte de données identiques, offrant ainsi une première étape pour
faire de la DRL une solution viable au problème.

125

Annexe A. Résumé [Français]

(a) Nombre d’agents I ∈ {1, 2, 3, 4}. (b) Nombre de capteurs IoT K ∈ [3, 14] triés
en tranches de deux.

(c) Données à collecter auprès des capteurs
Dk,init ∈ [5, 25] triés en huit bacs.

(d) Temps de vol maximal trié en six catégories
dans b0 ∈ [50, 200].

Figure A.5 – Influence des paramètres spécifiques du scénario sur le ratio de collecte
de données avec atterrissage réussi de tous les agents. Chaque point de données est une
moyenne de 500 itérations de Monte Carlo sur les espaces de paramètres respectifs pour
les cartes ‘Manhattan32’ et ‘Urban50’. Les paramètres dans la plage d’entrâınement sont
représentés par des lignes pleines et l’évaluation des paramètres hors distribution par des
lignes pointillées.

126

Bibliography

[1] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on UAV
communications for 5G and beyond,” Proceedings of the IEEE, vol. 107, no. 12, pp.
2327–2375, 2019.

[2] Y. Li, “Deep reinforcement learning,” arXiv:1810.06339 [cs.LG], 2018.

[3] R. Trumpp, “Deep reinforcement learning-based coordination of autonomous cars
and street-crossing pedestrians,” Master’s thesis, Technical University of Munich,
Germany, May 2021.

[4] Federal Aviation Authority (FAA), “New FAA rules for small unmanned aircraft
systems go into effect - [press release],” August 2016. [Online]. Available:
https://www.faa.gov/news/press releases/news story.cfm?newsId=20734

[5] L. Wood, “$63.6 bn drone service markets, 2025 - increasing use of drone services
for industry-specific solutions - [online],” Businesswire, 17 Apr 2019. [Online].
Available: https://www.businesswire.com/news/home/20190417005302/en

[6] R. Hallion, Taking flight: inventing the aerial age, from antiquity through the First
World War. Oxford University Press, 2003.

[7] P. E. Ross, “Iceland’s consumers try drone delivery - [online],” IEEE Spectrum,
vol. 55, no. 10, pp. 12–13, 2018.

[8] M. Minevich, “How Japan is tackling the national & global infrastructure
crisis & pioneering social impact - [online],” Forbes, 21 Apr 2020.
[Online]. Available: https://www.forbes.com/sites/markminevich/2020/04/21/
how-japan-is-tackling-the-national--global-infrastructure-crisis--pioneering-social-impact/
#483791ef2eaf

[9] K. Namuduri, “Flying cell towers to the rescue,” IEEE Spectrum, vol. 54, no. 9, pp.
38–43, 2017.

[10] M. Mozaffari, W. Saad, M. Bennis, Y. Nam, and M. Debbah, “A tutorial on
UAVs for wireless networks: Applications, challenges, and open problems,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.

127

https://www.faa.gov/news/press_releases/news_story.cfm?newsId=20734
https://www.businesswire.com/news/home/20190417005302/en
https://www.forbes.com/sites/markminevich/2020/04/21/how-japan-is-tackling-the-national--global-infrastructure-crisis--pioneering-social-impact/#483791ef2eaf
https://www.forbes.com/sites/markminevich/2020/04/21/how-japan-is-tackling-the-national--global-infrastructure-crisis--pioneering-social-impact/#483791ef2eaf
https://www.forbes.com/sites/markminevich/2020/04/21/how-japan-is-tackling-the-national--global-infrastructure-crisis--pioneering-social-impact/#483791ef2eaf

Bibliography

[11] Y. Zeng, J. Lyu, and R. Zhang, “Cellular-connected UAV: Potential, challenges,
and promising technologies,” IEEE Wireless Communications, vol. 26, no. 1, pp.
120–127, 2018.

[12] Amazon Inc., “Amazon Prime Air delivery service.” [Online]. Available:
https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011

[13] E. Ackerman, “Wing officially launches Australian drone delivery service,” IEEE
Spectrum, October 2019. [Online]. Available: https://spectrum.ieee.org/automaton/
robotics/drones/wing-officially-launches-australian-drone-delivery-service

[14] B. Van der Bergh, A. Chiumento, and S. Pollin, “LTE in the sky: Trading off
propagation benefits with interference costs for aerial nodes,” IEEE Communications
Magazine, vol. 54, no. 5, pp. 44–50, 2016.

[15] Qualcomm, “LTE unmanned aircraft systems trial report.” Tech. Rep.,
May 2017. [Online]. Available: https://www.qualcomm.com/documents/
lte-unmanned-aircraft-systems-trial-report

[16] 3GPP TR 36.777 version 15.0.0 Release 15, “Technical specification group radio
access network: Study on enhanced LTE support for aerial vehicles,” 3GPP, Tech.
Rep., January 2018.

[17] 3GPP TS 22.125 and TS 22.261 Release 17, “5G enhancement for UAVs,” 3GPP,
Tech. Rep., upcoming.

[18] U. Challita, W. Saad, and C. Bettstetter, “Interference management for cellular-
connected UAVs: A deep reinforcement learning approach,” IEEE Transactions on
Wireless Communications, vol. 18, no. 4, pp. 2125–2140, 2019.

[19] O. Esrafilian, R. Gangula, and D. Gesbert, “3D-Map assisted UAV trajectory
design under cellular connectivity constraints,” in IEEE International Conference
on Communications (ICC). IEEE, 2020.

[20] R. Amer, W. Saad, and N. Marchetti, “Mobility in the sky: Performance and mobil-
ity analysis for cellular-connected UAVs,” IEEE Transactions on Communications,
vol. 68, no. 5, pp. 3229–3246, 2020.

[21] J. Stanczak, I. Z. Kovacs, D. Koziol, J. Wigard, R. Amorim, and H. Nguyen, “Mo-
bility challenges for unmanned aerial vehicles connected to cellular LTE networks,”
in IEEE 87th Vehicular Technology Conference (VTC Spring). IEEE, 2018.

[22] A. Azari, F. Ghavimi, M. Ozger, R. Jantti, and C. Cavdar, “Machine learning
assisted handover and resource management for cellular connected drones,” in IEEE
91st Vehicular Technology Conference (VTC2020-Spring). IEEE, 2020.

[23] A. Fakhreddine, C. Bettstetter, S. Hayat, R. Muzaffar, and D. Emini, “Handover
challenges for cellular-connected drones,” in Proceedings of the 5th Workshop on
Micro Aerial Vehicle Networks, Systems, and Applications, 2019, pp. 9–14.

128

https://www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011
https://spectrum.ieee.org/automaton/robotics/drones/wing-officially-launches-australian-drone-delivery-service
https://spectrum.ieee.org/automaton/robotics/drones/wing-officially-launches-australian-drone-delivery-service
https://www.qualcomm.com/documents/lte-unmanned-aircraft-systems-trial-report
https://www.qualcomm.com/documents/lte-unmanned-aircraft-systems-trial-report

Bibliography

[24] J. Hu, H. Zhang, L. Song, Z. Han, and H. V. Poor, “Reinforcement learning for
a cellular internet of UAVs: Protocol design, trajectory control, and resource
management,” IEEE Wireless Communications, vol. 27, no. 1, pp. 116–123, 2020.

[25] B. Galkin, E. Fonseca, R. Amer, L. A. DaSilva, and I. Dusparic, “REQIBA:
Regression and deep q-learning for intelligent UAV cellular user to base station
association,” arXiv:2010.01126 [cs.IT], 2020.

[26] G. Geraci, A. Garcia-Rodriguez, M. M. Azari, A. Lozano, M. Mezzavilla,
S. Chatzinotas, Y. Chen, S. Rangan, and M. D. Renzo, “What will the future of
UAV cellular communications be? A flight from 5G to 6G,” 2105.04842 [cs.IT],
2021.

[27] S. Rohde, M. Putzke, and C. Wietfeld, “Ad hoc self-healing of ofdma networks
using UAV-based relays,” Ad Hoc Networks, vol. 11, no. 7, pp. 1893–1906, 2013.

[28] V. Sharma, K. Srinivasan, H.-C. Chao, K.-L. Hua, and W.-H. Cheng, “Intelligent
deployment of UAVs in 5G heterogeneous communication environment for improved
coverage,” Journal of Network and Computer Applications, vol. 85, pp. 94–105,
2017.

[29] H. Bayerlein, P. De Kerret, and D. Gesbert, “Trajectory optimization for au-
tonomous flying base station via reinforcement learning,” in IEEE 19th International
Workshop on Signal Processing Advances in Wireless Communications (SPAWC),
2018.

[30] Y. Hu, M. Chen, W. Saad, H. V. Poor, and S. Cui, “Distributed multi-agent
meta learning for trajectory design in wireless drone networks,” to appear in IEEE
Journal on Selected Areas in Communications, arXiv:2012.03158 [cs.LG], 2020.

[31] W. Guo, C. Devine, and S. Wang, “Performance analysis of micro unmanned air-
borne communication relays for cellular networks,” in 9th International Symposium
on Communication Systems, Networks & Digital Signal Processing (CSNDSP).
IEEE, 2014, pp. 658–663.

[32] D. Orfanus, E. P. de Freitas, and F. Eliassen, “Self-organization as a supporting
paradigm for military UAV relay networks,” IEEE Communications Letters, vol. 20,
no. 4, pp. 804–807, 2016.

[33] J. Tang, J. Song, J. Ou, J. Luo, X. Zhang, and K.-K. Wong, “Minimum through-
put maximization for multi-UAV enabled WPCN: A deep reinforcement learning
method,” IEEE Access, vol. 8, pp. 9124–9132, 2020.

[34] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Mobile unmanned aerial
vehicles (uavs) for energy-efficient internet of things communications,” IEEE Trans-
actions on Wireless Communications, vol. 16, no. 11, pp. 7574–7589, 2017.

129

Bibliography

[35] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “Multi-UAV path planning
for wireless data harvesting with deep reinforcement learning,” IEEE Open Journal
of the Communications Society, vol. 2, pp. 1171–1187, 2021.

[36] W. Saad, M. Bennis, M. Mozaffari, and X. Lin, Wireless Communications and
Networking for Unmanned Aerial Vehicles. Cambridge University Press, 2020.

[37] W. Khawaja, I. Guvenc, D. W. Matolak, U.-C. Fiebig, and N. Schneckenberger, “A
survey of air-to-ground propagation channel modeling for unmanned aerial vehicles,”
in UAV Communications for 5G and Beyond, Y. Zeng, I. Guvenc, R. Zhang,
G. Geraci, and D. W. Matolak, Eds. Wiley Online Library, 2020, ch. 2.

[38] A. Merwaday and I. Guvenc, “UAV assisted heterogeneous networks for public safety
communications,” in IEEE wireless communications and networking conference
workshops (WCNCW). IEEE, 2015, pp. 329–334.

[39] Q. Zhang, W. Saad, M. Bennis, X. Lu, M. Debbah, and W. Zuo, “Predictive
deployment of UAV base stations in wireless networks: Machine learning meets
contract theory,” IEEE Transactions on Wireless Communications, vol. 20, no. 1,
pp. 637–652, 2021.

[40] Y. Zeng and R. Zhang, “Energy-efficient uav communication with trajectory op-
timization,” IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp.
3747–3760, 2017.

[41] R. Gangula, P. de Kerret, O. Esrafilian, and D. Gesbert, “Trajectory optimization
for mobile access point,” in 51st Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2017, pp. 1412–1416.

[42] C. H. Liu, X. Ma, X. Gao, and J. Tang, “Distributed energy-efficient multi-UAV
navigation for long-term communication coverage by deep reinforcement learning,”
IEEE Transactions on Mobile Computing, vol. 19, no. 6, pp. 1274–1285, 2020.

[43] E. Yanmaz, R. Kuschnig, and C. Bettstetter, “Channel measurements over 802.11
a-based UAV-to-ground links,” in IEEE GLOBECOM Workshops. IEEE, 2011,
pp. 1280–1284.

[44] A. I. Hentati and L. C. Fourati, “Comprehensive survey of UAVs communication
networks,” Computer Standards & Interfaces, p. 103451, 2020.

[45] Y. Zeng, I. Guvenc, R. Zhang, G. Geraci, and D. W. Matolak, UAV Communications
for 5G and Beyond. Wiley Online Library, 2020.

[46] A. Fotouhi, H. Qiang, M. Ding, M. Hassan, L. G. Giordano, A. Garcia-Rodriguez,
and J. Yuan, “Survey on UAV cellular communications: Practical aspects, standard-
ization advancements, regulation, and security challenges,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 4, pp. 3417–3442, 2019.

130

Bibliography

[47] M. Harris, “Facebook cancels program to deliver internet by aquila drones,” IEEE
Spectrum, June 2018. [Online]. Available: https://spectrum.ieee.org/tech-talk/
telecom/internet/facebook-pulls-out-of-secret-spaceport-internet-drone-tests

[48] M. Koziol, “Alphabet’s loon failed to bring internet to the
world. what went wrong?” IEEE Spectrum, February 2021.
[Online]. Available: https://spectrum.ieee.org/tech-talk/telecom/wireless/
why-did-alphabets-loon-fail-to-bring-internet-to-the-world

[49] E. U. A. S. A. (EASA), “Open category - civil drones,” Tech. Rep., December
2021. [Online]. Available: https://www.easa.europa.eu/domains/civil-drones-rpas/
open-category-civil-drones

[50] F. A. Administration, “Executive summary: Final rule on operation of
small unmanned aircraft systems over people,” Tech. Rep., December
2020. [Online]. Available: https://www.faa.gov/news/media/attachments/OOP
Executive Summary.pdf

[51] K. Dalamagkidis, “Classification of UAVs,” in Handbook of unmanned aerial vehicles,
K. P. Valavanis and G. J. Vachtsevanos, Eds. Springer, 2015, ch. 10.

[52] Z. Ullah, F. Al-Turjman, and L. Mostarda, “Cognition in UAV-aided 5G and beyond
communications: A survey,” IEEE Transactions on Cognitive Communications and
Networking, vol. 6, no. 3, pp. 872–891, 2020.

[53] Institut national de l’information géographique et forestière, “Restrictions UAS caté-
gorie ouverte et aéromodélisme,” Géoportail, May 2021. [Online]. Available: https:
//www.geoportail.gouv.fr/carte?c=0.41206420680184447,46.197314358870585&
z=6&l0=ORTHOIMAGERY.ORTHOPHOTOS::GEOPORTAIL:OGC:
WMTS(1)&l1=TRANSPORTS.DRONES.RESTRICTIONS::GEOPORTAIL:
OGC:WMTS(1)&permalink=yes

[54] Federal Aviation Authority (FAA), “Unmanned aircraft systems beyond
program,” October 2020. [Online]. Available: https://www.faa.gov/uas/programs
partnerships/beyond

[55] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed.
Prentice Hall, 2010.

[56] R. Bellman, An introduction to artificial intelligence: can computers think? Boyd
& Frase, 1978.

[57] T. M. Mitchell et al., “Machine learning,” 1997.

[58] K. Xiao, J. Zhao, Y. He, and S. Yu,“Trajectory prediction of UAV in smart city using
recurrent neural networks,” in IEEE International Conference on Communications
(ICC). IEEE, 2019.

131

https://spectrum.ieee.org/tech-talk/telecom/internet/facebook-pulls-out-of-secret-spaceport-internet-drone-tests
https://spectrum.ieee.org/tech-talk/telecom/internet/facebook-pulls-out-of-secret-spaceport-internet-drone-tests
https://spectrum.ieee.org/tech-talk/telecom/wireless/why-did-alphabets-loon-fail-to-bring-internet-to-the-world
https://spectrum.ieee.org/tech-talk/telecom/wireless/why-did-alphabets-loon-fail-to-bring-internet-to-the-world
https://www.easa.europa.eu/domains/civil-drones-rpas/open-category-civil-drones
https://www.easa.europa.eu/domains/civil-drones-rpas/open-category-civil-drones
https://www.faa.gov/news/media/attachments/OOP_Executive_Summary.pdf
https://www.faa.gov/news/media/attachments/OOP_Executive_Summary.pdf
https://www.geoportail.gouv.fr/carte?c=0.41206420680184447,46.197314358870585&z=6&l0=ORTHOIMAGERY.ORTHOPHOTOS::GEOPORTAIL:OGC:WMTS(1)&l1=TRANSPORTS.DRONES.RESTRICTIONS::GEOPORTAIL:OGC:WMTS(1)&permalink=yes
https://www.geoportail.gouv.fr/carte?c=0.41206420680184447,46.197314358870585&z=6&l0=ORTHOIMAGERY.ORTHOPHOTOS::GEOPORTAIL:OGC:WMTS(1)&l1=TRANSPORTS.DRONES.RESTRICTIONS::GEOPORTAIL:OGC:WMTS(1)&permalink=yes
https://www.geoportail.gouv.fr/carte?c=0.41206420680184447,46.197314358870585&z=6&l0=ORTHOIMAGERY.ORTHOPHOTOS::GEOPORTAIL:OGC:WMTS(1)&l1=TRANSPORTS.DRONES.RESTRICTIONS::GEOPORTAIL:OGC:WMTS(1)&permalink=yes
https://www.geoportail.gouv.fr/carte?c=0.41206420680184447,46.197314358870585&z=6&l0=ORTHOIMAGERY.ORTHOPHOTOS::GEOPORTAIL:OGC:WMTS(1)&l1=TRANSPORTS.DRONES.RESTRICTIONS::GEOPORTAIL:OGC:WMTS(1)&permalink=yes
https://www.geoportail.gouv.fr/carte?c=0.41206420680184447,46.197314358870585&z=6&l0=ORTHOIMAGERY.ORTHOPHOTOS::GEOPORTAIL:OGC:WMTS(1)&l1=TRANSPORTS.DRONES.RESTRICTIONS::GEOPORTAIL:OGC:WMTS(1)&permalink=yes
https://www.faa.gov/uas/programs_partnerships/beyond
https://www.faa.gov/uas/programs_partnerships/beyond

Bibliography

[59] Y. Zhang, J. Wen, G. Yang, Z. He, and X. Luo, “Air-to-air path loss prediction based
on machine learning methods in urban environments,” Wireless Communications
and Mobile Computing, vol. 2018.

[60] R. Amorim, J. Wigard, H. Nguyen, I. Z. Kovacs, and P. Mogensen, “Machine-
learning identification of airborne UAV-UEs based on LTE radio measurements,”
in IEEE GLOBECOM Workshops. IEEE, 2017.

[61] M.-A. Lahmeri, M. A. Kishk, and M.-S. Alouini, “Artificial intelligence for UAV-
enabled wireless networks: A survey,” IEEE Open Journal of the Communications
Society, vol. 2, pp. 1015–1040, 2021.

[62] H. Peng, A. Razi, F. Afghah, and J. Ashdown, “A unified framework for joint
mobility prediction and object profiling of drones in UAV networks,” Journal of
Communications and Networks, vol. 20, no. 5, pp. 434–442, 2018.

[63] J.-L. Wang, Y.-R. Li, A. B. Adege, L.-C. Wang, S.-S. Jeng, and J.-Y. Chen,“Machine
learning based rapid 3d channel modeling for UAV communication networks,” in
16th IEEE Annual Consumer Communications & Networking Conference (CCNC).
IEEE, 2019.

[64] T. M. Hoang, N. M. Nguyen, and T. Q. Duong, “Detection of eavesdropping attack
in UAV-aided wireless systems: Unsupervised learning with one-class svm and
k-means clustering,” IEEE Wireless Communications Letters, vol. 9, no. 2, pp.
139–142, 2019.

[65] S. Khan, C. F. Liew, T. Yairi, and R. McWilliam, “Unsupervised anomaly detection
in unmanned aerial vehicles,” Applied Soft Computing, vol. 83, p. 105650, 2019.

[66] C. H. Liu, Z. Dai, Y. Zhao, J. Crowcroft, D. O. Wu, and K. Leung, “Distributed and
energy-efficient mobile crowdsensing with charging stations by deep reinforcement
learning,” IEEE Transactions on Mobile Computing, vol. 20, no. 1, pp. 130–146,
2021.

[67] J. Cui, Z. Ding, Y. Deng, and A. Nallanathan, “Model-free based automated
trajectory optimization for UAVs toward data transmission,” in IEEE Global
Communications Conference (GLOBECOM), 2019.

[68] Q. Li, M. Ding, C. Ma, C. Liu, Z. Lin, and Y.-C. Liang, “A reinforcement learn-
ing based user association algorithm for UAV networks,” in 28th International
Telecommunication Networks and Applications Conference (ITNAC). IEEE, 2018.

[69] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji,
K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al., “Advances and open
problems in federated learning,” arXiv:1912.04977 [cs.LG], 2019.

[70] B. Brik, A. Ksentini, and M. Bouaziz, “Federated learning for UAVs-enabled
wireless networks: Use cases, challenges, and open problems,” IEEE Access, vol. 8,
pp. 53 841–53 849, 2020.

132

Bibliography

[71] P. S. Bithas, E. T. Michailidis, N. Nomikos, D. Vouyioukas, and A. G. Kanatas, “A
survey on machine-learning techniques for UAV-based communications,” Sensors,
vol. 19, no. 23, p. 5170, 2019.

[72] X. Li, H. Yao, J. Wang, S. Wu, C. Jiang, and Y. Qian, “Rechargeable multi-UAV
aided seamless coverage for QoS-guaranteed IoT networks,” IEEE Internet of Things
Journal, vol. 6, no. 6, pp. 10 902–10 914, 2019.

[73] X. Liu, Y. Liu, and Y. Chen, “Reinforcement learning in multiple-UAV networks:
Deployment and movement design,” IEEE Transactions on Vehicular Technology,
vol. 68, no. 8, pp. 8036–8049, 2019.

[74] R. Shakeri, M. A. Al-Garadi, A. Badawy, A. Mohamed, T. Khattab, A. K. Al-
Ali, K. A. Harras, and M. Guizani, “Design challenges of multi-UAV systems in
cyber-physical applications: A comprehensive survey and future directions,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3340–3385, 2019.

[75] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-world rein-
forcement learning,” International Conference on Machine Learning Workshop on
Real-Life RL, arXiv:1904.12901 [cs.LG], 2019.

[76] H. Bayerlein, R. Gangula, and D. Gesbert, “Learning to rest: A Q-learning approach
to flying base station trajectory design with landing spots,” in 52nd Asilomar
Conference on Signals, Systems, and Computers. IEEE, 2018, pp. 724–728.

[77] H. Bayerlein, M. Theile, M. Caccamo, and D. Gesbert, “UAV path planning for
wireless data harvesting: A deep reinforcement learning approach,” in IEEE Global
Communications Conference (GLOBECOM), 2020.

[78] M. Theile, H. Bayerlein, R. Nai, D. Gesbert, and M. Caccamo, “UAV coverage path
planning under varying power constraints using deep reinforcement learning,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2020.

[79] ——, “UAV path planning using global and local map information with deep
reinforcement learning,” submitted to 20th International Conference on Advanced
Robotics (ICAR), arXiv:2010.06917 [cs.RO], 2021.

[80] O. Esrafilian, H. Bayerlein, and D. Gesbert, “Model-aided deep reinforcement
learning for sample-efficient UAV trajectory design in IoT networks,” to be presented
at IEEE Global Communications Conference (GLOBECOM), arXiv:2104.10403
[cs.IT], 2021.

[81] Z. Liu, R. Sengupta, and A. Kurzhanskiy, “A power consumption model for multi-
rotor small unmanned aircraft systems,” in International Conference on Unmanned
Aircraft Systems (ICUAS), 2017.

133

Bibliography

[82] N. Ahmed, S. S. Kanhere, and S. Jha, “On the importance of link characterization
for aerial wireless sensor networks,” IEEE Communications Magazine, vol. 54, no. 5,
pp. 52–57, 2016.

[83] R. S. Sutton and A. G. Barto, Reinforcement Learning: an introduction, 2nd ed.
MIT Press, 2018.

[84] M. Wiering and M. Van Otterlo, “Reinforcement learning,” Adaptation, learning,
and optimization, vol. 12, no. 3, 2012.

[85] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement learning and
dynamic programming using function approximators. CRC press, 2017.

[86] M. L. Puterman, Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2005.

[87] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation, King’s
College, Cambridge University, 1989.

[88] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[89] R. Bellman, “Dynamic programming,” Science, vol. 153, no. 3731, pp. 34–37, 1966.

[90] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis lectures on artifi-
cial intelligence and machine learning, vol. 4, no. 1, pp. 1–103, 2010.

[91] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare et al.,
“Human-level control through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, 2015.

[92] J. Kosmerl and A. Vilhar,“Base stations placement optimization in wireless networks
for emergency communications,” in IEEE International Conference on Communi-
cations Workshops (ICC), 2014, pp. 200–205.

[93] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Optimal transport theory for
power-efficient deployment of unmanned aerial vehicles,” in IEEE International
Conference on Communications (ICC), 2016.

[94] Q. Wu, Y. Zeng, and R. Zhang, “Joint trajectory and communication design for
multi-UAV enabled wireless networks,” IEEE Transactions on Wireless Communi-
cations, vol. 17, no. 3, pp. 2109–2121, 2018.

[95] R. Gangula, D. Gesbert, D.-F. Külzer, and J. M. Franceschi Quintero, “A landing
spot approach to enhancing the performance of UAV-aided wireless networks,”
in IEEE Workshop on Integrating UAVs into 5G, International Conference on
Communications (ICC), 2018.

[96] (2017) Eurecom - autonomous aerial cellular relaying robots (video). [Online].
Available: https://youtu.be/GI lOsg qmQ

134

https://youtu.be/GI_lOsg_qmQ

Bibliography

[97] C. Q. Choi, “New electric drone has groundbreaking flight time - [online],” IEEE
Spectrum, Sep 2018.

[98] A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement learning
for AI-enabled wireless networks: A tutorial,” IEEE Communications Surveys &
Tutorials, 2021.

[99] B. Zhang, C. H. Liu, J. Tang, Z. Xu, J. Ma, and W. Wang, “Learning-based energy-
efficient data collection by unmanned vehicles in smart cities,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 4, pp. 1666–1676, 2017.

[100] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980 [cs.LG], 2014.

[101] D. P. Bertsekas, Dynamic programming and optimal control, 3rd ed. Athena
Scientific Belmont, MA, 2011, vol. 2.

[102] M. Yi, X. Wang, J. Liu, Y. Zhang, and B. Bai, “Deep reinforcement learning
for fresh data collection in UAV-assisted IoT networks,” in IEEE Conference on
Computer Communications Workshops (IEEE INFOCOM WKSHPS), 2020.

[103] H. Qi, Z. Hu, H. Huang, X. Wen, and Z. Lu, “Energy efficient 3-D UAV control
for persistent communication service and fairness: A deep reinforcement learning
approach,” IEEE Access, vol. 8, 2020.

[104] O. Esrafilian, R. Gangula, and D. Gesbert, “Learning to communicate in UAV-aided
wireless networks: Map-based approaches,” IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 1791–1802, 2018.

[105] C. You and R. Zhang, “Hybrid offline-online design for UAV-enabled data harvesting
in probabilistic LoS channel,” IEEE Transactions on Wireless Communications,
vol. 19, no. 6, pp. 3753–3768, 2020.

[106] Z. Zhou, J. Feng, B. Gu, B. Ai, S. Mumtaz, J. Rodriguez, and M. Guizani, “When
mobile crowd sensing meets UAV: Energy-efficient task assignment and route
planning,” IEEE Transactions on Communications, vol. 66, no. 11, pp. 5526–5538,
2018.

[107] B. G. Maciel-Pearson, L. Marchegiani, S. Akcay, A. Atapour-Abarghouei, J. Gar-
forth, and T. P. Breckon, “Online deep reinforcement learning for autonomous UAV
navigation and exploration of outdoor environments,” arXiv:1912.05684 [cs.CV],
2019.

[108] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
Q-learning,” in Thirtieth AAAI conference on artificial intelligence, 2016, pp. 2094–
2100.

[109] S. Zhang and R. S. Sutton, “A deeper look at experience replay,” arXiv:1712.01275
[cs.LG], 2017.

135

Bibliography

[110] 3GPP TR 38.901 version 14.0.0 Release 14, “Study on channel model for frequencies
from 0.5 to 100 GHz,” ETSI, Tech. Rep., May 2017.

[111] Y. Pan, Y. Yang, and W. Li, “A deep learning trained by genetic algorithm to
improve the efficiency of path planning for data collection with multi-UAV,” IEEE
Access, vol. 9, pp. 7994–8005, 2021.

[112] Y. Zhang, Z. Mou, F. Gao, L. Xing, J. Jiang, and Z. Han, “Hierarchical deep
reinforcement learning for backscattering data collection with multiple UAVs,”
IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3786–3800, 2021.

[113] F. Wu, H. Zhang, J. Wu, L. Song, Z. Han, and H. V. Poor, “UAV-to-device
underlay communications: Age of information minimization by multi-agent deep
reinforcement learning,” IEEE Transactions on Communications (early access),
2021.

[114] J. Hu, H. Zhang, L. Song, R. Schober, and H. V. Poor, “Cooperative Internet of
UAVs: Distributed trajectory design by multi-agent deep reinforcement learning,”
IEEE Transactions on Communications, vol. 68, no. 11, pp. 6807–6821, 2020.

[115] M. A. Abd-Elmagid, A. Ferdowsi, H. S. Dhillon, and W. Saad, “Deep reinforcement
learning for minimizing age-of-information in UAV-assisted networks,” in IEEE
Global Communications Conference (GLOBECOM), 2019.

[116] F. Venturini, F. Mason, F. Pase, F. Chiariotti, A. Testolin, A. Zanella, and M. Zorzi,
“Distributed reinforcement learning for flexible UAV swarm control with transfer
learning capabilities,” in Proceedings of the 6th ACM Workshop on Micro Aerial
Vehicle Networks, Systems, and Applications, 2020.

[117] F. A. Oliehoek and C. Amato, A concise introduction to decentralized POMDPs.
Springer, 2016.

[118] C. Claus and C. Boutilier, “The dynamics of reinforcement learning in cooperative
multiagent systems,” AAAI/IAAI, vol. 1998, no. 746-752, p. 2, 1998.

[119] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine learning
perspective,” Autonomous Robots, vol. 8, no. 3, pp. 345–383, 2000.

[120] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective
overview of theories and algorithms,” arXiv:1911.10635 [cs.LG], to be published as
chapter in Handbook on RL and Control (Springer), 2019.

[121] M. Zhang, C. Dong, and Y. Huang, “FS-MAC: An adaptive MAC protocol with
fault-tolerant synchronous switching for FANETs,” IEEE Access, vol. 7, pp. 80 602–
80 613, 2019.

[122] Link Technologies, “ANT-5GWWS1-SMA cellular sub-6 antenna datasheet,”
Tech. Rep. [Online]. Available: https://eu.mouser.com/datasheet/2/238/
ant-5gwws1-sma-ds-1855874.pdf

136

https://eu.mouser.com/datasheet/2/238/ant-5gwws1-sma-ds-1855874.pdf
https://eu.mouser.com/datasheet/2/238/ant-5gwws1-sma-ds-1855874.pdf

Bibliography

[123] B. Partov, D. J. Leith, and R. Razavi, “Utility fair optimization of antenna tilt
angles in LTE networks,” IEEE/ACM Transactions on Networking, vol. 23, no. 1,
pp. 175–185, 2015.

[124] Kathrein, “Multi-band F-Panel dual polarization 742215 antenna datasheet,” Tech.
Rep. [Online]. Available: http://www.selteq.com/Products/kathrein/data sheets/
742215.pdf

[125] M. Samir, M. Elhattab, C. Assi, S. Sharafeddine, and A. Ghrayeb,“Optimizing age of
information through aerial reconfigurable intelligent surfaces: A deep reinforcement
learning approach,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4, pp.
3978–3983, 2021.

[126] R. Zhong, X. Liu, Y. Liu, and Y. Chen, “Multi-agent reinforcement learning in
noma-aided uav networks for cellular offloading,” IEEE Transactions on Wireless
Communications, 2021.

[127] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[128] T. Cabreira, L. Brisolara, and P. R Ferreira, “Survey on coverage path planning
with unmanned aerial vehicles,” Drones, vol. 3, no. 1, 2019.

[129] D. Gimesy, “Drones and thermal imaging: saving koalas injured
in the bushfires - [online],” The Guardian, 10 Feb 2020. [Online].
Available: https://www.theguardian.com/australia-news/gallery/2020/feb/11/
drones-thermal-imaging-australia-koalas-bushfire-crisis

[130] E. M. Arkin, S. P. Fekete, and J. S. Mitchell, “Approximation algorithms for lawn
mowing and milling,” Computational Geometry, vol. 17, no. 1-2, pp. 25–50, 2000.

[131] H. Choset and P. Pignon, “Coverage path planning: The boustrophedon cellular
decomposition,” in Field and service robotics. Springer, 1998, pp. 203–209.

[132] R. Mannadiar and I. Rekleitis, “Optimal coverage of a known arbitrary environment,”
in IEEE International Conference on Robotics and Automation, 2010, pp. 5525–
5530.

[133] A. Xu, C. Viriyasuthee, and I. Rekleitis, “Optimal complete terrain coverage using
an unmanned aerial vehicle,” in IEEE International Conference on Robotics and
Automation, 2011, pp. 2513–2519.

[134] J. Xie, L. R. G. Carrillo, and L. Jin, “An integrated traveling salesman and coverage
path planning problem for unmanned aircraft systems,” IEEE control systems
letters, vol. 3, no. 1, pp. 67–72, 2018.

[135] S. X. Yang and C. Luo, “A neural network approach to complete coverage path plan-
ning,” IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 34, no. 1, pp. 718–724, 2004.

137

http://www.selteq.com/Products/kathrein/data_sheets/742215.pdf
http://www.selteq.com/Products/kathrein/data_sheets/742215.pdf
https://www.theguardian.com/australia-news/gallery/2020/feb/11/drones-thermal-imaging-australia-koalas-bushfire-crisis
https://www.theguardian.com/australia-news/gallery/2020/feb/11/drones-thermal-imaging-australia-koalas-bushfire-crisis

Bibliography

[136] C. Piciarelli and G. L. Foresti, “Drone patrolling with reinforcement learning,” in
Proceedings of the 13th International Conference on Distributed Smart Cameras.
ACM, 2019. [Online]. Available: https://doi.org/10.1145/3349801.3349805

[137] K. D. Julian and M. J. Kochenderfer, “Distributed wildfire surveillance with
autonomous aircraft using deep reinforcement learning,” Journal of Guidance,
Control, and Dynamics, vol. 42, no. 8, pp. 1768–1778, 2019.

[138] E. Seraj and M. Gombolay, “Coordinated control of UAVs for human-centered
active sensing of wildfires,” in American Control Conference (ACC). IEEE, 2020,
pp. 1845–1852.

[139] D. Baldazo, J. Parras, and S. Zazo, “Decentralized multi-agent deep reinforce-
ment learning in swarms of drones for flood monitoring,” in 27th European Signal
Processing Conference (EUSIPCO). IEEE, 2019.

[140] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial intelligence, vol. 101, no. 1-2,
pp. 99–134, 1998.

[141] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep Q-learning
with model-based acceleration,” in International Conference on Machine Learning
(ICML), 2016.

[142] N. Heess, G. Wayne, D. Silver, T. Lillicrap, Y. Tassa, and T. Erez, “Learning
continuous control policies by stochastic value gradients,” in 28th International
Conference on Neural Information Processing Systems, 2015.

[143] X. Li, Q. Wang, J. Liu, and W. Zhang, “Trajectory design and generalization for
UAV enabled networks: A deep reinforcement learning approach,” in IEEE Wireless
Communications and Networking Conference (WCNC), 2020.

[144] O. Esrafilian, R. Gangula, and D. Gesbert, “Three-dimensional-map-based trajec-
tory design in UAV-aided wireless localization systems,” IEEE Internet of Things
Journal, vol. 8, no. 12, pp. 9894–9904, 2021.

[145] J. Chen, U. Yatnalli, and D. Gesbert, “Learning radio maps for UAV-aided wireless
networks: A segmented regression approach,” in IEEE International Conference on
Communications (ICC), 2017.

[146] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in International
Conference on Neural Networks (ICNN), 1995.

[147] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A
comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1,
pp. 43–76, 2020.

[148] Y. Zhang and Q. Yang, “A survey on multi-task learning,” IEEE Transactions on
Knowledge and Data Engineering (early access), 2021.

138

https://doi.org/10.1145/3349801.3349805

Bibliography

[149] S. Levine, A. Kumar, G. Tucker, and J. Fu, “Offline reinforcement learning: Tutorial,
review, and perspectives on open problems,” arXiv:2005.01643 [cs.LG], 2020.

[150] R. S. Sutton, D. Precup, and S. Singh, “Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning,” Artificial intelligence,
vol. 112, no. 1-2, pp. 181–211, 1999.

139

	Abstract
	Abrégé [Français]
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Notations
	1 Introduction
	1.1 UAVs in Wireless Communications
	1.1.1 Cellular-connected UAVs
	1.1.2 UAV-aided Communications
	1.1.3 UAV Classification
	1.1.4 Regulatory Status

	1.2 Machine Learning for UAV Communications
	1.3 Aims and Objectives
	1.4 Outline and Contributions of the Thesis

	2 System Model and Methodology
	2.1 System Model
	2.1.1 Grid World and UAV Model
	2.1.2 Communication Channel Model

	2.2 Markov Decision Process
	2.3 Reinforcement Learning
	2.3.1 Agent-Environment Interaction Cycle
	2.3.2 Q-learning
	2.3.3 Deep Q-learning
	2.3.4 Exploration-Exploitation Dilemma

	3 Aerial Base Station Trajectory Planning with Landing Spots
	3.1 Introduction
	3.2 Optimization Problem
	3.2.1 UAV Model
	3.2.2 Communication Channel Model and Maximization Problem

	3.3 Neural Network Training and Algorithm
	3.3.1 Markov Decision Process
	3.3.2 Neural Network Model
	3.3.3 DQN Training Algorithm

	3.4 Simulation and Numerical Results
	3.4.1 Simulation Setup
	3.4.2 Scenario 1 - Different SNR Conditions
	3.4.3 Comparison with Dynamic Programming
	3.4.4 Scenario 2 - Decision between Landing Spots
	3.4.5 Scenario 3 - High and Low Shadowing Loss

	3.5 Conclusion

	4 Multi-Scenario UAV Data Harvesting in IoT Networks
	4.1 Introduction
	4.1.1 Related Work
	4.1.2 Contributions

	4.2 System Model and MDP
	4.2.1 System Model
	4.2.2 Markov Decision Process

	4.3 Map Processing
	4.4 Extensions to the DQN Paradigm
	4.5 Neural Network Model
	4.6 Simulations
	4.6.1 Simulation Setup
	4.6.2 Centered vs. Non-Centered Map
	4.6.3 Collectible Data and Device Accessibility
	4.6.4 Manhattan Scenario

	4.7 Conclusion

	5 Multi-UAV Coordination in Multi-Scenario Data Harvesting
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Contributions

	5.2 System Model
	5.2.1 UAV Model
	5.2.2 Communication Channel Model
	5.2.3 Optimization Problem

	5.3 Decentralized Partially Observable Markov Decision Process (Dec-POMDP)
	5.3.1 State Space
	5.3.2 Safety Controller
	5.3.3 Reward Function

	5.4 Map-Processing and Observation Space
	5.4.1 Map-Processing
	5.4.2 Observation Space

	5.5 Multi-Agent Reinforcement Learning
	5.5.1 Multi-Agent Q-learning
	5.5.2 Neural Network Model

	5.6 Simulations
	5.6.1 Simulation Setup
	5.6.2 Training with Map-based vs. Scalar Inputs
	5.6.3 `Manhattan32' Scenario
	5.6.4 `Urban50' Scenario
	5.6.5 Influence of Scenario Parameters on Performance and System-level Benefits
	5.6.6 Discussion of the Algorithm's Dependency on the Channel Model
	5.6.7 Comparison of UAV-aided and Stationary Base Station System
	5.6.8 Inter-UAV Interference

	5.7 Conclusion

	6 Coverage Path Planning
	6.1 Introduction
	6.1.1 Related Work
	6.1.2 Contributions

	6.2 Problem Formulation
	6.2.1 Agent System
	6.2.2 Environment and UAV Model
	6.2.3 Target and Mission Definitions

	6.3 Methodology
	6.4 Simulations
	6.4.1 Simulation Setup
	6.4.2 General Evaluation
	6.4.3 Global-Local Parameter Evaluation

	6.5 Conclusion

	7 Model-aided Sample-efficient UAV Trajectory Planning
	7.1 Introduction
	7.2 Problem Formulation
	7.3 Model-aided Deep Q-learning
	7.3.1 Simultaneous Node Localization and Channel Learning
	7.3.2 Algorithm

	7.4 Simulations
	7.5 Conclusion

	8 Conclusion
	Appendices
	A Résumé [Français]
	A.1 Introduction
	A.1.1 Réseaux assistés par drones
	A.1.2 Apprentissage automatique pour les communications par drones

	A.2 Planification de trajectoire pour station de base aérienne avec points d'atterrissage (Chapitre 3)
	A.3 Collecte de données par drone dans les réseaux IoT multi-scénario (Chapitre 4)
	A.4 Coordination de plusieurs drones dans la collecte de données multi-scénario (Chapitre 5)
	A.5 Planification du chemin de couverture (Chapitre 6)
	A.6 Planification de trajectoire des drones assistée par modèle (Chapitre 7)

