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Chapter 1

Introduction

1.1 Context

Strongly-correlated fermions are ubiquitous in nature, from the quark-gluon plasma of the early
universe to neutron stars, they lie as well at the heart of many modern materials such as high-
temperature superconductors and giant magneto-resistance devices [1, 2]. While being a pressing
issue covering a wide range of fundamental and technological scopes, the understanding of
strongly-correlated fermions constitutes an ongoing challenge of modern physics. Solid-state
materials can host a vast variety of strongly correlated states of matter but their intrinsic
complexity renders an experimental interpretation difficult. The contribution of ultracold
gases experiments [3] in this outstanding quest resides in the ability to set fermions in a well-
characterized environment, where one can add a single ingredient at a time (spin mixture,
interactions, lattice, etc.) with a high degree of control, allowing for an incremental complexity,
which represents an ideal playground for a direct comparison to many-body theories. A
prominent example, where ultracold Fermi gases were shown to be useful testbeds, is found in
the recent measurements of the equation of state of the unitary Fermi gas [4, 5].

The system of interest here is a two-component Fermi gas with tunable interactions, where
two hyperfine states can be mapped onto the Zeeman projection of a spin-1/2 particle. The
inter-particle interactions are characterized by a single length scale, the scattering length a. We
stress that such simple description of interactions is not for convenience(a) - as used to be the
case for helium systems, for instance - but reflects the actual behavior of the system in our
experiments with high accuracy. Indeed, due to the extreme diluteness and low temperature of
the gas, collisions only occur at short-distance and in an isotropical manner. Formally, one refers
to those as s-wave contact interactions, which is the generic case in quantum gas experiments
where the atomic species or molecules under study do not feature a significant permanent
magnetic moment or induced electric moment. A direct consequence of this type of interactions
for Fermi gases is the fact that they can only occur between a spin ↑ and spin ↓, collisions
between atoms of identical spins being forbidden by Pauli’s exclusion principle [6].

By means of a Feshbach resonance [7, 8], we can experimentally tune the strength and sign
of the scattering length a. Formally, when 1/a is tuned from "−∞" to "+∞", the system evolves

(a)Even though the benefit for comparison to many-body theories is obvious.
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from a Fermi gas with attractive interactions to a gas of tightly bound bosonic molecules(b). At
sufficiently low temperature, the former limiting case corresponds to the celebrated Bardeen-
Cooper-Schrieffer (BCS) superfluid(c) state [9, 10], where a Fermi sea is altered by a fraction of
long-range weakly attractive Cooper pairs. In the latter limiting case, the assembly of molecules
would form a Bose-Einstein Condensate (BEC). In fact, a remarkable property of this system
is that, at sufficiently low temperature, the system is superfluid not only in these two limiting
cases but also for any (non-zero) interaction strength, hence the name of "BEC-BCS crossover".
The observation of this crossover in the early 2000 was only possible with the advent of ultracold
Fermi gases [3], which allowed to confirm for the first time a 20 year old prediction [11, 12].

Tc

BEC BCS 

T/TF 

1/kFa 
+∞ 0 -∞ 

μé-μê 
 

μé+μê 

interaction parameter   

Unitarity 

Figure 1.1: Spin–1/2 system with tunable interactions and spin imbalance. At sufficiently low tem-
perature the system is superfluid throughout the crossover. The unitary point, where the scattering length
a diverges, corresponds to a regime of strong correlations and represents one of the biggest challenges of
many-body physics [13].

Besides the fact that they can be continuously connected, the two limiting cases discussed
above are not of high interest from the many-body perspective, as they are both in a well
understood mean-field regime. Instead, in between, as we move away from the two a → 0

(b)Note that a more natural way to picture this transformation is to think in terms of interaction potential. The
interaction potential is always negative (despite the change in the sign of a). From the two-body perspective, this
picture is incomplete as the binding energy is only non-zero on the a > 0 side and reaches zero when 1/a → 0+.
However, taking into account the many-body effects, the binding energy always remains finite and approaches
asymptotically to zero when 1/a → −∞. Hence, when 1/a is tuned from "−∞" to "+∞", the attractive potential
continuously evolves from shallow to deep. A ↑ + ↓ pair therefore evolves from weakly to deeply bound. On the
other hand, the description in terms of the scattering length a renders the singularity at the unitary point more
evident as 1/a = 0.

(c)The constituents being electrically neutral in our case.
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limits, the system’s behavior tends to be more and more dominated by interactions. A natural
measure of this degree of correlation is the interaction parameter 1/kFa, which compares the the
inter-particle spacing ∼ 1/kF (kF, being the Fermi wavevector) to the scattering length. It is also
equivalent (within a power of 2) to compare the Fermi energy ~2k2F/2m to the effective binding
energy ~2/(2ma2). The regime where |kFa| ≥ 1 is referred to as the strongly-correlated regime
and has been the subject of intense theoretical and experimental efforts over past two decades
[13].

1.1.1 The unitary Fermi gas

In the strongly-correlated regime, the point where 1/kFa = 0 is referred to as the unitary limit(d)

and plays a special role. On this point lies the Feshbach resonance, where the scattering length
diverges a→∞. There, as the interactions do not introduce any explicit length scale anymore,
the only length scales are the 1/kF and the de Broglie wavelength λdB. Or, in terms of energy
scales, we are only left with the Fermi energy EF and the thermal energy kBT . This fact has
crucial implications and leaves a door open to understand the unitary Fermi gas, which is
notoriously difficult to tackle theoretically.

This advantage becomes evident when it comes to investigating the ground-state energy of
a unitary Fermi gas. For example, a simple dimensional analysis shows that the ground state
energy of a unitary Fermi gas E0

Unitary is proportional to the energy of the non-interacting Fermi
gas E0

Free:

E0
Unitary = ξB · E0

Free,

where ξB is a universal constant called the Bertsch parameter, in honor of the G. Bertsch who first
identified that the challenge of calculating E0

Unitary is only reduced to determining ξB [14, 15].
The ground-state results can be generalized to finite temperature:

EUnitary = ξB · EFree · f
(
T

TF

)
,

where f is now a universal function of dimensionless ratio T/TF (where TF = EF/kB is the Fermi
temperature). In fact, the existence of only two energy scales implies that any thermodynamic
quantity has to be a universal function of the ratio T/TF .

The universal character of the unitary Fermi gas will not only reflect on the thermodynamics,
but also dynamical properties [16] and microscopic properties [17, 18], which we do not discuss
here in detail. However, we want to stress that this property renders the unitary gas of interest
from a very broad perspective. Indeed, the universality of the unitary Fermi gas means that any
two-spin fermionic matter, independent of its size, density, temperature range or constituents,
is governed by the same equations as long as the interactions with the particles are s-wave,

(d)This name has a somewhat indirect origin. While this point corresponds to the diverging scattering length,
formally there is a bound set by quantum mechanics on the modulus of the scattering amplitude f(k). Applying the
optical theorem to the problem describing the scattering of two opposite-spin fermions via s-wave interactions - so
that f(k) depends only on the modulus of the relative momentum k - one can show that |f(k)| ≤ 1/k. The optical
theorem, being a consequence of the unitarity of the quantum evolution operator, this limit is called the unitary limit.
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short-range and "infinite". For instance, the knowledge that we can acquire in our laboratory at
the nK range is relevant for neutron stars in the outer-space where the temperature is on the
order of 109 K [19].

Figure 1.2: Neutron Star. False color radiation e-
mission from Pulsar PSR B1509-58 [20]. The inner
crust composed of neutrons can be described as a
unitary Fermi gas. Temperature is in the order of
T = 109 K and densities of n = 1038 at/cm3, corre-
sponding to a TF = 1011 K. Despite several order
of magnitude in absolute temperature and density,
the ratio T/TF = 0.01 is on the same order of values
reached in our lab.

1.1.2 Spin-imbalanced Fermi gases

Besides the tunabilty of interactions and temperature, ultracold Fermi gas experiments also offer
the ability to vary the spin population imbalance. This knob should not be seen as a practicality
but a unique opportunity to understand the behavior of strongly interacting fermionic matter.
In fact, the question of the behavior of spin-imbalanced Fermi gases was raised only a few
years after BCS theory. In 1962, Chandrasekhar [21] and Clogston [22] addressed this issue in
the context of superconductors. More precisely, the question was to determine whether the
superconducting state could survive the presence of a magnetic field, as the magnetic field tends
to align spins in the same direction while pairing occurs between opposite spins. They found
that the superconducting state breaks down above a critical magnetic field hc - corresponding
to a critical spin-imbalance Pc. This "Clogston-Chandrasekhar limit" marks the point where
pairing breaks down in favor of a normal state. In 1964, Fulde and Ferell [23], as well as
Larkin and Ovchinnikov [24] investigated the possibility of an inhomogeneous phase featuring
a spatially modulated superfluid fraction. Their findings show that before turning into a normal
state, the superconductor can host a certain amount of excess spins, trapped in the nodes of
a spatially oscillating order parameter that can be either standing (FF) or traveling (LO). This
exotic superconducting phase is referred to as the FFLO phase and has not been observed since
its prediction.

Interestingly, for decades the question of superfluidity and spin-imbalance was essentially
an academic question as the Meissner effect [25] expels magnetic fields from the bulk of a
superconductor, preventing the experimental study of the effect. However, about 15 years
ago, spin-imbalanced exotic superconductors were discovered [26]. Other realization of spin-
imbalanced Fermi gases are found in nuclei and possibly the core of neutron stars where
quark superfluids with unequal quark populations are expected to exist. The experimental
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investigation of these systems nevertheless comes with a number of difficulties, and is often
faced with limited probing capabilities and the absence of tunability.

With the advent of ultracold Fermi gases, where the spin-imbalance can be varied at will
by simply picking the population of (hyperfine) spin states, a whole avenue for experimental
studies opened up.

1.2 State of the art in short

Since the achievement of the first degenerate Fermi gas in 1999 [27], the studies on ultracold Fer-
mi gases have produced a great number of results, ranging from the experimental realization of
the BEC-BCS crossover [13] to the observation of Mott-insulating [28–31] and anti-ferromagnetic
states [30, 32] of the Hubbard model. In the following we provide a short overview of the
research carried out on the BEC-BCS crossover in 3D.

1.2.1 Qualitative results

Between 1999 and 2001, the collisional properties of ideal Fermi gases were studied. In 2002,
several groups managed to optically confine a two-component mixture in the vicinity of a
Feshbach resonance [33–36]. The tunability of interactions led to the observation of hydrody-
namic behavior [37, 38] and the creation of Feshbach molecules [39–41]. Shortly afterwards, BCS
fermion pair condensates were observed [42].

A number of studies on this new crossover superfluid were performed, in terms of thermody-
namic measurements [38, 43], collective excitations [44, 45], and RF spectroscopy [46]. However,
all of these early studies on the BEC-BCS crossover were only consistent with superfluid behav-
ior but did not unambiguously demonstrate it. Finally, in 2005, phase coherence and fermionic
superfluidity were adequately demonstrated through the excitation and observation of quan-
tized vortices and vortex lattices [47]. More recently, the experimental realization of a Josephson
junction of Fermions have demonstrated the phase coherence of a fermionic superfluid across
the whole BEC-BCS crossover region [48].

1.2.2 Quantitative results

In the recent past years, several groups have demonstrated that thermodynamic observables
can be precisely measured within the local density approximation [4, 5, 49]. These types of
measurements rely on a well characterized inhomogeneous trapping potential and an accurately
determined density. These techniques have led to the measurement of the ground-state equation
of state (EoS) of the two component Fermi gas in the whole BEC-BCS crossover [4, 50] (Fig.
1.3). At finite temperature, the equation of state has only been measured for the spin-balanced
unitary gas. The measurement of the critical temperature across the BEC-BCS crossover remains
an open challenge.

Beyond the investigation of thermodynamic quantities, the measurement of correlations has
also been initiated. In the BEC-BCS crossover context, only short range density-density correla-
tions, characterized by the contact C [17, 18, 51], have been investigated. Various techniques
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have been employed to quantitatively determine C, including RF spectroscopy [52–54], Bragg
spectroscopy [55, 56] and three-body losses [57]. The advent of quantum gas microscopy has
opened up the possibility to probe correlation functions. While there is a considerable amount
of results on correlations in Hubbard lattice models, bulk gases have never been explored under
a quantum gas microscope.

1.3 Objectives of the new experiment

The extensive studies carried on BEC-BCS Fermi gases over the past ten years have significantly
improved our understanding of strongly interacting Fermi gases. However, as we have seen
previously, very little is known about the correlation functions or the nature of these correlations.
Furthermore, it is also unclear how these correlations build up upon crossing the superfluid
transition and what the corresponding critical exponents are.
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BEC-BCS Crossover

Spin ½ system with tunable interactions and spin imbalance.
At sufficiently low temperature the system is superfluid
thourghout the crossover. The Unitary point, where the
scattering length a diverges, corresponds to a regime of
strong correlations and represents one of the hardest
challenge of many-body physics [1].
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The equation of state (EoS) at Unitarity in the case of
balanced spin population has been measured through the
normal to superfluid transition (blue line) [2,3]. The
corresponding critical temperature (blue star) has been
determined [3]. The EoS at (almost) zero temperature has
also been measured (blue plane) [4].

There are still many open questions. Where is the critical line
in the spin-balanced plane (red frame)? Does the FFLO
phase exist in 3D (green frame)? We know the system is
strongly correlated, but what is nature of these correlations ?
How do they build up during a quench through the normal to
superfluid transition ? What are the critical exponents ? …

What do we want to know ?

A baby step : The Contact

The contact at finite temperature

Contact

References:

Box optical potential
Towards Single Atom Imaging 

of dilute Li gases 

Measuring the homogeneous contact

In order to fully describe a many-body system, one would
ideally need to access a number of correlation functions.
For the unitary, none of this function is known!

A first step is to look at the density-density correlator for
spin up and spin down. At short distance, one can show
analytically that for contact interaction, the density-density
correlator of the Unitray Fermi gas decreases as 1/r2 and is
propotional to a constant called the Contact

The determination of the Contact of the Unitary Fermi gas
is already a theoretical and experimental challenge.

In a previous work [5], we have used a
bosonic impurity (7Li) immersed in a Unitary
Fermi gas (6Li) to determine the contact near
zero temperature. In the regime where the
impurity is weakly coupled to the strongly
interacting gas, it is expelled of trap via 3-body
losses at a rate proportional to the Contact.

In order to measure the spatial
dependence of the correlation
functions, it crucial to use a
homogeneous potential. We have
developed a Box potential based on
the design of [10] and created
homogeneous optical potentials with a
level of corrugation below 0.5%.
This potential will be used for both 3D
and 2D systems.

New Generation Experiment

A crucial point of our
experiment is to
access the spatial
distribution with single
atom resolution and
spin sensitivity. After
the Unitary gas is
prepared at a given
density and
temperature, the
atoms will be pinned
in a deep lattice.

A Raman side-band cooling technique similar to what has
been used in [11,12] will allow us to detect the position of
the atoms with spin sensitivity. As opposed to other
existing experiments, we will use such quantum gas
microscope on a continuous system. This requires an
extreme diluteness of the cloud and reaching
temperatures on the order of 10nK.

Another important information is how the Contact
depends with temperature, especially across the normal-
to-superfluid transition. Several theoretical and
experimental groups have tackled this question with
various outcomes. Two recent experimental works [6,7]
agree with each other and the predictions in [8] and [9].

From [6].

MOT chamber

We are building a new generation Lithium experiment that
will allow to study the spatial ordering of strongly interacting
Fermi gases in 3D and 2D. In particular, this setup will give
direct access to all density correlation functions. Currently,
the setup produces degenerate 6Li gases at Unitarity with a
10s duty cycle. Next steps include setting up a
homogeneous potential and a quantum gas microscope.
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Figure 1.3: Phase diagram of a two-component Fermi gas versus the interaction strength (1/kFa), the
spin imbalance and the temperature. The EoS has been measured in the ground state [50] (blue-shaded
plane) and at finite temperature for the spin-balanced unitary Fermi gas [4, 5] (blue solid line). This leaves
large parts of the phase diagram uncharted.

Many open questions also remain even concerning our knowledge of the phase diagram
(Fig. 1.3). For example, the critical temperature has only been measured at unitarity, while the
rest of the BEC-BCS crossover remains uncharted territory. Moreover, past experiments have
devoted a large part of their efforts to probing and understanding ultracold Fermi gases in the
deep superfluid regime, well below the critical temperature Tc. However, the state of matter in
the critical region (around Tc) remains poorly understood, and is subject to a vivid debate [13].

Our new generation experiment aims at pursuing the effort towards answering these ques-
tions. For that purpose we will use cutting edge techniques, such as quantum gas microscopy
[58–64] and tailored potentials [65–68], in order to provide a microscopic and highly quantitative
perspective on strongly-interacting Fermi gases.

So far, most experiments performed with ultracold Fermi gases used inhomogeneous traps,
typically harmonic potentials. While such potentials were proven to be extremely useful and
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well suited for some thermodynamic studies, they constitute at the same time the main obstacle
to quantitatively accessing other crucial observables. Indeed, as a consequence of the trap
inhomogeneity, any probe addressing the whole cloud yields a trap-averaged, biased, response.
For instance, radiofrequency-photon spectroscopy, typically used to obtain the single-particle
excitation spectrum of a Fermi gas, leads to a blurred response in the case of a harmonically
trapped sample, and instead, benefits significantly from the use of a homogeneous potential
[67].

The use of tailored optical potentials [65–68] will be combined with single atom detection
in a quantum gas microscope, which has been under rapid development in the last ten years.
Quantum gas microscopes relies on fluorescence imaging and require long-interrogation times
in which the atoms should not move. The atomic motion is inhibited by the use of deep optical
lattices that pin or freeze atoms to the potential wells. This technique can yield impressive
signal-to-noise ratios, with near unity fidelity. Since the first realization of single atom resolved
imaging [58, 59], this technique has enabled numerous studies of phase transition [58, 59],
correlations [69–71], spin-interactions [72], quantum magnetism [73], long-range interactions
using Rydberg atoms [74–76] and entanglement [77, 78]. Since the more recent realizations of
fermionic quantum gas microscopes [60–64], this powerful technique has provided an excellent
way of studying fermionic many body systems [32, 79–85]. While quantum gas microscopes
have only been used so far to probe the physics of fermions in a lattice, we propose in our setup
to extend the scope of this technique to the study of a bulk gas of strongly-interacting fermions.
By probing the atom distribution at the single atom and single spin level, we will be able to
access directly density and spin correlations, from the scale of neighboring atoms to the size of
the whole sample. This opens truly fascinating perspectives, from the direct observation of the
build-up of correlations near the superfluid phase transition in various interaction regimes, to
the possibility of revealing unambiguously the long sought after FFLO state, where it exists.

Thesis outline

This thesis describes the design and characterization of a second generation quantum gas
experiment dedicated for the study of strongly interacting Fermi gases. It includes 6 additional
chapters:

• Chapter 2 describes the experimental setup. The various subsystems, including the
vacuum manifold, the 671 nm laser setup to laser cool 6Li atoms and the magnetic field
generation are presented.

• Chapter 3 presents the results of laser cooling on 6Li, in particular the characterization of
the MOT and the performance of the D1 gray molasses.

• Chapter 4 focuses on the description, characterization and performance of the high power
infrared laser setup, and operation of the experiment near the Feshbach resonance. In
particular, we characterize the optical transport, the radio-frequency transfer, as well as
the evaporative cooling in the science cell.
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• Chapter 5 describes the creation and characterization of a degenerate Fermi gas produced
in the strongly interacting regime. We are able to precisely characterize the degree of
degeneracy of our Fermi gas using measurements on the equation-of-state and we present
also proof of superfluidity of our gas.

• Chapter 6 presents the design of the setup dedicated to the imaging of 6Li clouds at the
single atom level.

• Chapter 7 summarizes the work and gives the perspective on future developments of the
experiment.



Chapter 2

Experiment overview

The main part of this PhD work is dedicated to the design and setup of a new experiment
for studying strongly interacting Fermi gases, which poses many technical challenges. In this
chapter we first present some relevant properties of 6Li. Then we describe the experiment
hardware, in particular the vacuum manifold, and the laser system to laser cool 6Li and the
magnetic field generation to address the Feshbach resonance of 6Li. The high power laser setup
for the evaporative cooling of 6Li is presented in more detail in chapter 4.
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Figure 2.1: Left: The D1 and D2 transitions of 6Li. Right: Zeeman energy shift of the ground states
22S1/2.

2.1 Atomic source: Properties of 6Li

Here we briefly recall some basic properties of 6Li. In particular, we mention the relevant optical
transitions (D1 and D2) for laser cooling and the Feshbach resonances between the three lowest
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high field seeking energy states. For more details on the properties of 6Li the reader can refer to
[86].

2.1.1 Level structure of 6Li

An overview of the relevant optical transitions is shown in Fig. 2.1. The D1 and D2 transitions
at 671 nm have a natural linewidth of Γ = 2π × 5.87 MHz and have a difference in frequency of
approximately 10 GHz only [86].

The ground state hyperfine energy splitting of 6Li is only EHFS = h · 228.205 MHz at zero
magnetic field, which is small compared to the other alkali elements. This means that for
relatively small magnetic field, 6Li enters the Paschen-Back regime already. In the right graph
of Fig. 2.1, we show the Zeeman splitting of 6Li calculated using the Breit-Rabi formula. We
see that the energy differences between the high field seeking (resp. low field seeking) Zeeman
sublevels become already comparable to the hyperfine splitting for a magnetic field of ∼200 G.

We also notice the hyperfine splitting of the excited levels is very small. For 22P3/2 the
hyperfine splitting is only a few MHz, which is less than the linewidth of D2 transition. This
prevents the standard sub-Doppler cooling of 6Li with the MOT beams. The gray molasses
cooling on D1 transition hence is introduced to cool down the atoms further.

2.1.2 Feshbach resonance of 6Li

6Li possesses broad Feshbach resonances. Each pair of the high-field seeking states possesses
one resonance with a width of several hundreds of gauss (Fig. 2.2). For conventional reasons,
the Zeeman states counting from the lowest energy level to the highest energy levels are noted
as |1〉, |2〉, ..., |6〉. In our experiments, we only use the mixture of states |1〉 and |2〉. The center of
the Feshbach resonance for |1〉 and |2〉 lies at 832 G and it has a width of approximately 300 G.

2.2 Vacuum manifold

The ultrahigh vacuum manifold provides the environment where the experiment takes place. Its
design is based on and closely related to the cooling techniques and the goal of the experiment,
which is to achieve a high resolution single atom imaging apparatus.

An overview of the experiment is shown in Fig. 2.3. We can find the standard elements of an
cold atom eperiment of 6Li, more specifically:

• the oven (1) heated to ∼500 °C to ensure a sufficient Lithium vapor pressure,

• the shutter (2) that allows to block the atomic jet,

• the differential pumping section (3) that isolates the high pressure in the oven section to
ensure a low pressure in the rest of the experiment,

• the Zeeman slower (4) to slow down the atomic jet,

• the main chamber (5) to achieve a MOT and to perform gray molasses cooling,
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Figure 2.2: The Feshbach resonances between the three low-field seeking spin states of 6Li: |1〉, |2〉 and
|3〉.

• the science cell (9) where we transport the atoms to perform further evaporative cooling
and achieve degeneracy.

2.2.1 Main components of the vacuum system

Lithium oven

Figure 2.4: Li oven.

The oven is a small container which we fill with lithium
samples. We have filled the oven with approximately 1 g
of natural Lithium and 1 g of enriched pure 6Li. Since the
natural abundance of 6Li is only 7.5%, we thus have approx-
imately equal amount of 6Li and 7Li in the oven.

The structure of the oven has one particular perk. The
horizontal tube as shown in Fig. 2.4 has an inner diameter
of 5 mm and a length of 7.5 cm. We fill the oven from the top
and this horizontal tube not only collimates the atom jet but
also serves as a first differential pumping tube.

During operation, we heat up this tube to higher temper-
atures than the bottom to avoid clogging the tube. We also
inserted a sheet of metallic grid inside this tube to facilitate
the recycling of lithium [87].
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Figure 2.3: Overview of the experiment: 1) lithium oven. 2) atomic beam blocker. 3) differential pumping
section. 4) Zeeman slower. 5) main chamber. 6) MOT coils. 7) ion pumps. 8) SAES getter pumps. 9)
science cell section with Feshbach & curvature coils around. A) MOT beams. B) gray molasses beams.
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Differential pumping

Lithium has a very low vapor pressure at room temperature, which requires heating to typically
around 500 °C to achieve an atomic jet with large atomic flux [86]. At this temperature the oven
not only generates an atomic jet with strong flux but also outgases non-desired elements like
nitrogen or hydrogen, which increases the background gas pressure and decreases the cold
atoms gas lifetime. For typical operational temperatures of the Lithium oven, the pressure inside
the oven can be as high as 10−4 Torr, which is way too high for the required vacuum pressure
for the experiment, typically 10−11 Torr.

One way to solve this issue is to isolate the oven part (high-vacuum part) of the experiment
from the rest of the experiment (ultrahigh-vacuum part) where we trap the cold atoms, by
introducing differential pumping tubes. They are simply metal tubes having a small diameter of
several millimeters inserted between two flanges. According to the actual pumping capacities
on both sides of the differential pumping tube, vacuum pressure can be reduced up to two or
three orders of magnitude from one side to the other.

In our experiment, the dimensions of the tubes are based on the calculation and design in
[88]. The collimation tube of the oven serves as a first vacuum differential pumping tube, with a
length of 7.5 cm and an inner diameter of 5 mm. The second differential tube has a length of
10 cm and an inner diameter of 5 mm. The third one has the same length of 10 cm, but a larger
inner diameter of 10 mm.

Figure 2.5: Main chamber.

We have in total two ion pumps: one with 40 L/s pumping
speed(a) close to the oven and another 20 L/s(b) close to the Zee-
man window. The main pumping capacity of the experiment,
however, is assured by four ion-getter pumps. They have in-
side a stack of Getter materials installed to absorb the residual
gas, in particular hydrogen, in the system. These pumps have
significantly higher pumping capacities than the conventional
ion pumps. In our experiment, we installed three Getter pump-
s of 200 L/s(c) and one of 500 L/s(d) installed close to the main
chamber.

With the aforementioned pumping capacities, the evaluated
pressure inside the science cell, when the pressure inside the oven

is ∼ 1× 10−4 Torr, is seven orders of magnitude lower, i.e. ∼ 1× 10−11 Torr.

Main chamber

The main chamber is the place where we implement the laser cooling. We have chosen a
spherical cube(e) (Fig. 2.5) because it has a large number of viewports and hence guaranties

(a)Agilent Technologies VacIon Plus StarCell 40
(b)Agilent Technologies VacIon Plus StarCell 20
(c)NexTorr D 200-5
(d)NexTorr D 500-5
(e)Kimball Physics MCF450-SphCube-E6C8A12
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a good optical access. In total it possesses 6 CF63 viewports, 8 CF40 viewports and 12 CF16
viewports.

The MOT beams are sent through the CF63 viewports. The Zeeman slower is connected to
the CF40 flanges and the gray molasses light are sent through the CF16 viewports. The imaging
in the main chamber can be performed through CF40 viewports in three independent directions.

Science cell

The science cell in our experiment is a ColdQuanta glass cell made of Shott Borofloat 33, AR-
coated for 671 nm and 1064 nm, with a wall thickness of 3 mm. The inner dimension of the cell
is 20×20×60 mm3. The material Borofloat is a relatively new material available on the market.
Compared to the standard materials like fused silica, Borofloat is easier to be AR-coated and
can be joined at low temperature. Fused silica, on the contrary, can be joined only at high
temperature that is susceptible to damage the AR-coatings. For this reason, most glass cells in
fused silica have AR-coatings applied only on the exterior surfaces, once only after the cell is
assembled. Glass walls of Borofloat, in comparison, can be first AR-coated on both sides and
then joint at low temperature.

The disadvantage of Borofloat is the higher likelihood to show thermal effect when exposed
to high power lasers. Systematic data for Borofloat is still difficult to come by. But thermal
lensing effect on Borofloat cell with 5 mm wall thickness has been observed [89].

2.2.2 Assembly and baking

In order to achieve the low pressure, it is necessary to bake the vacuum system upon assembly.

Once the vacuum system is assembled, we use two turbo pumps connected to both sides of
the main experiment and start pumping. We wrap heating tapes around the whole experiment
to heat up to 180 °C gradually in several hours. One must take special care to the vacuum
viewports while increasing the heating temperature and have to make sure the heating rate does
not exceed the specification(f). Once the pressure drops below 10−7 Torr, we switched on the ion
pumps. We have kept the experiment continuously in 180 °C during one month. At the very
end of this pumping, the pressure reduced to 10−9 Torr at 180 °C. At this time, the heating of
the whole vacuum system is stopped and the Getter pumps are activated. In the end, the final
pressure provided by the Getter ion pumps’ current is below nano Ampere, which corresponds
to a pressure scale of less than 10−12 Torr.

There are several elements in the experiment that require supplementary baking in addition
to the aforementioned standard baking procedure.

To start with, the Zeeman slower tube needs to be baked before winding. We baked at 380 °C
and evacuated to pressure as low as 5× 10−8 Torr before decreasing the temperature. Once the
Zeeman slower is wound and assembled, we use the first layer of heating wires, as we will see
more in detail in the following, to bake at 180 °C together with the rest of the vacuum system.

(f)Typically less than 2 °C per minute.
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The oven also needs to be baked prior to integration into the main vacuum system. After the
oven is filled with lithium, we connect it directly to a turbo pump and a vacuum gauge using
nickel gaskets and heat up to 600 °C. We use nickel gaskets since lithium is corrosive at high
temperature so that standard copper gasket would develop leaks. We bake the oven at relatively
high temperatures, between 600 °C and 700 °C, since the operating temperature of the oven is
typically 400 °C to 500 °C. For the oven baking the pressure decreased to 10−7 Torr at 600 °C at
the end.

The last part that requires special attention is the differential pumping tubes. Since they are
fabricated in the machine shop, they are first cleaned with ultrasonic bath and then carefully
wiped with acetone. Then they are enclosed in a container of stainless steel and baked at 600 °C.
And we stopped baking at a similar pressure as for the oven baking, i.e. 10−7 Torr before taking
them out.

2.3 Laser cooling setup overview

Laser cooling is the first step of a cold atom experiment. Frequency stabilized lasers need to be
applied at different instants to address given optical transitions in order to trap and cool atoms.

One of the disadvantages of Lithium is that the conventional laser diodes lack power at the
relevant transition wavelength (671 nm). Many developments have been made for designing a
solid state lasers [90, 91] at this wavelength, being able to deliver power of more than 1 Watt,
but commercial choices capable of this power level are still limited. For our experiments, we opt
for the diode lasers from Toptica and TA chips from Eagleyard to perform the laser cooling and
the detection of 6Li.

On the one hand, there are laser beams that require much power for laser cooling, such as
the Zeeman slowing beam, the MOT beams and the gray molasses beams. More specifically,
the operation of a MOT requires the intensity of each MOT beam to be on the order of several
Isat, whereas the operation of a gray molasses requires each beam to be around 10 Isat [92]. Here
Isat = 2.54 mW/cm2 is the saturation intensity of D2 transition(g). For these beams, we use
hence tapered amplifier chips to amplify the power.

On the other hand, laser beams for optical pumping and detection require much less power.
For example, absorption imaging requires that the imaging beams have intensities such that
I/Isat < 0.1. Optical pumping also requires intensity on the same order of magnitude. For the
detection and optical pumping at zero magnetic field, we derive light directly, using AOMs,
from the same master laser for the laser cooling on the D2 line. For detection at high field around
832 G where lies the Feshbach resonance, we use an independent laser DL Pro having an output
of 25 mW, and we implement an offset lock of approximately 1.2 GHz with the D2 master laser
[93]. A schematic of the 671 nm laser setup is shown in Fig. 2.6.

(g)Note that for conventional reasons, although the gray molasses for 6Li is operated on D1 transition, people use
the saturation intensity of D2 to indicate the intensity of the molasses beams.
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Figure 2.6: Simplified schematic of the laser setup at 671 nm for laser cooling, optical pumping and
detection.
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2.3.1 6Li spectroscopy

The laser frequencies need to be stabilized using spectroscopic signals. We send laser light
through a spectroscopy cell, which consists of a long tube of ∼40 cm with CF40 flange ends.
Lithium atoms are in the center region, which we heat up to 300 °C to ensure a sufficient high
lithium vapor pressure. However, should the lithium vapor reach the vacuum viewports at the
two ends, it can coat the viewports through deposition. To avoid that, we introduced Argon in
the cell as buffer gas on the one hand, and installed water-cooling pipes at the two extremities
of the spectroscopy cell on the other hand.

The optical setup around the spectroscopy cell is shown in Fig. 2.7. We use the modulation
transfer spectroscopy technique [94], which has two advantages over the standard saturation
spectroscopy. Firstly, the error signal generated in this case does not contain an offset depending
on the intensity of the beam. Secondly, the absence of a linear background absorption leads to a
lower sensitivity to beam intensity and cell temperature.

PD2

pump

D2 light 

for spectroscopy

probe

EOM

dumped

D1 light 

for spectroscopy

pump
EOM

not in use

probePD1

Figure 2.7: The laser set-up for the spectroscopy. The two laser setups go through the same spectroscopy
cell.

The D1 and the D2 lights are sent through the same spectroscopy cell. The EOMs used for
modulating the pump beams are modulated at 17 MHz using the PDD110 modules from Toptica.

For the D2 laser we lock on the transition F = 3/2→ F ′. And for the D1 laser we lock on the
crossover between the transitions F = 3/2→ F ′ and F = 1/2→ F ′. The linewidth of the locked
laser, after being locked, is typically sub-MHz, which is sufficiently stable for implementing
laser cooling.

2.3.2 Zeeman slower

The Zeeman slower [95] is one of the ways to decelerate the atomic jet from several hundreds of
m/s to several tens of m/s. Simply speaking, it creates a spatially dependent magnetic field
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to compensate the Doppler effect of the atoms due to deceleration. The optimal profile of the
magnetic field of a Zeeman slower is a parabola.

There are in total three different kinds of Zeeman slowers according to their magnetic field
profiles: increasing field Zeeman slower, decreasing field Zeeman slower and spin flip Zeeman
slower. The increasing (resp. decreasing) field Zeeman slower is such that the magnetic field
increases (resp. decreases) in amplitude as a function of the distance in the direction of the atomic
jet. A spin-flip Zeeman slower is such that the magnetic field crosses zero and changes sign at a
certain point along the trajectory of the atoms. All these three types have their advantages and
disadvantages. For increasing/decreasing field Zeeman slower, since the magnetic field does
not change the sign along the trajectory, only one cooling beam frequency is needed. Whereas
for the spin-flip Zeeman slower, as its name rightfully indicates, the atoms can eventually fall to
the wrong Zeeman sublevels while crossing the magnetic field zero, hence the necessity of a
repumping frequency in addition to the cooling frequency. However, a spin-flip Zeeman slower
consume less electrical power than its other two counterparts, since the magnetic field changes
sign and hence results in less driving current overall.

Zeeman slower field The Zeeman slower in our experiment is a spin-flip Zeeman slower. It
has a length of 60 cm, wound with in total 24 layers of copper wires of different lengths to create
a appropriate magnetic field.

(a) First layer of heating tape. (b) Two layers of cooling tubes.

(c) Electric wires with different lengths. (d) Almost finished winding

Figure 2.8: Zeeman slower during winding procedure.

The Zeeman slower is wound in the mechanical workshop. The winding of the Zeeman
slower must take into consideration several practical aspects: Apart from the multiple layers of
electric wires to produce the appropriate magnetic field, we will need some heating capacity
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installed directly around the vacuum tube to allow to bake the Zeeman slower tube once it is
integrated into the vacuum system. After that, some cooling capacity is also needed, in that
a power consumption on the order of several hundreds of Watts to one kilowatt is estimated
during operation. For these requirements, we install three types of wires.

A first layer of heating tapes are wound directly around the CF40 tube and then covered
with a layer of Kapton tape to protect from the rest of the layers. We then wind two layers of
hollow copper tubes along the whole length of the tube for cooling purposes. After that, we wind
multiple layers of electric wires with appropriate lengths according to prior calculations, using a
wire with rectangular section (2.5× 1.6 mm2). A third layer of cooling tubes are added between
the 4th and the 5th layer of electric wires.

Zeeman light The light for the Zeeman slower derives directly from a TA chip, and has a
power of 200 mW at the output. After fiber coupling the output is around ∼80 mW at the
experiment. We enlarge the beam diameter with a waist of approximately 1 cm at the entrance
of the CF40 window and we converge the beam approximately at the position of the oven.
The repumping frequency is derived from the cooling frequency with a resonant EOM(h) at
228 MHz. A quarter waveplate is placed directly in front of the vacuum window to produce a
σ+ polarization.

Figure 2.9: MOT coils during the winding process (left) and after being integrated on the main experi-
ment (right).

Realization The measured magnetic field of the Zeeman slower compared to the calculation
are presented in Fig. 2.10. We see a globally very good agreement between the calculated field
and the realistic field.

Using the measured magnetic field, we can also estimate the velocity evolution of atoms
with different incoming velocities. We see that the Zeeman slower can capture atoms up to
velocities up to around 830 m/s.

(h)Qubig EO-Li6-M3



20 Chapter 2. Experiment overview

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

100

200

300

400

500

600

700

800

900

1000

-200

-100

0

100

200

300

400

500

600

700

800

Figure 2.10: Magnetic field of the Zeeman slower (blue) and the velocity evolution for different incoming
velocity groups. The dashed line is the calculated magnetic field and the square points are the measured
field after realization, which shows excellent agreement. The velocity evolution is calculated using the
measured data, for an atom in stretched state, with a laser detuning of∼ −300 MHz and with a saturation
parameter of s0 ≈ 20. We see that all atoms having velocities smaller than ∼ 830 m/s are slowed down to
around 50 m/s, which is the typical capture velocity of a lithium magneto-optical trap.

2.3.3 Magneto-optical trap

After the deceleration of the atomic jet through the Zeeman slower, the atoms are captured in a
Magneto-Optical Trap (MOT).

MOT coils Two identical coils are needed to produce a gradient on the order of 101 G/cm for
the MOT. Since the main chamber is relatively large, the distance of the magnetic coils from
the center of the chamber cannot be smaller than 10 cm. This in turn limits the minimal size of
the MOT coils to be comparable to this value. Such a large diameter will very likely block the
adjacent vacuum viewports. A compromise is then to have conical shaped coils to ensure the
optical access (Fig. 2.9).

MOT beams Like the Zeeman beams, the MOT beams are derived directly from a TA with
a total output of ∼300 mW (Fig. 2.6). Differently from the Zeeman slower beam though, it is
necessary to switch off the MOT beams quickly with an AOM. The output light is then split in
four and coupled into four different fibers and fed through the main chamber. In two of the
three mutually perpendicular directions, the MOT lights are retro-reflected (Fig. 2.3). For each
MOT beam we have a waist of roughly 7 mm and a power of ∼10 mW. This gives an intensity of
I ∼ 5 Isat per beam.
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2.3.4 Gray molasses cooling

Gray molasses implemented on the D1 line of 6Li allows to efficiently reach sub-Doppler
temperatures. Compared to previous techniques such as sympathetic cooling using another
atomic species [96–98] or loading into an optical cavity [99, 100], gray molasses is simple to
implement and efficient in cooling performance. In the new experiment we intend to apply this
technique for reaching sub-Doppler temperatures for 6Li.

D1 gray molasses light The experimental realization of the D1 molasses necessitates high
intensity. We have a Toptica TA Pro uniquely dedicated to this purpose (Fig. 2.6). The gray
molasses beams are combined in one direction with the MOT beams and separate beams in the
two other directions. All beams in three directions are retro-reflected. For the two directions
that are not mixed with the MOT beams, we have 18 mW with a beam waist of 4 mm. And in
the direction combined with the MOT beam, we have 77 mW with a beam waist of 8 mm. This
yields an intensity of ∼ 30 Isat in each of the three directions.

The repumping frequency is derived from the cooling frequency using an EOM. Since
the gray molasses requires good coherence between the cooling frequency and the repumper
frequency, we use a DDS, which has a linewidth of 20 Hz, as the RF driver source for the EOM.

Magnetic field compensation The magnetic field during the D1 gray molasses must be well
compensated in order to reach the lowest temperatures. For this purpose, three pairs of magnetic
field compensation coils are installed around the main chamber in the same directions of the
MOT beams. They are mounted directly around the CF60 viewports and have 17 turns each.
With a current of several Amperes, each pair can provide an offset magnetic field of several
Gauss easily.

2.3.5 Optical pumping and imaging

The detection of the atomic cloud is done with absorption imaging. In the experiment the atoms
are detected both at low field and at high field (∼ 832 G).

For the low field imaging we use the transition F = 3/2 → F ′. This light is derived from
the same master laser used for the Zeeman and the MOT beams. However, at different stages
of the experiment, it is possible that the atoms are not all in the F = 3/2 hyperfine states. In
order to count all the atoms at low field, before we shine the imaging pulses, we shine an optical
pumping pulse which lasts for ∼ 5µs, detuned to F = 1/2→ F ′ to optically transfer the atoms
from F = 1/2 to F = 3/2.

For the high field imaging around 832 G, the Zeeman shift makes the imaging frequency
about 1 GHz red detuned from the transition at low field. This energy difference cannot be easily
covered using an AOM. Our solution is to dedicate a DL pro laser for performing the high field
imaging and the frequency is offset-locked with the D2 laser based on the beatnote between
them. Details of the offset-lock setup can be found in [93]. The frequency of this laser is also on
the sub-MHz level, sufficiently small compared to the linewidth for imaging purposes.
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2.4 Magnetic field in the science cell

The science cell is separated from the main chamber by 31.5 cm. The main evaporation in the
science cell happens with a magnetic offset field at 832 G, where lies the Feshbach resonance
between state |1〉 and state |2〉. This requires at least one pair of coils, hereafter named Feshbach
coils, to be placed around the science cell in the Helmholtz configuration to create a homogeneous
field up to this value.

In practice, we add furthermore another pair of coils, hereafter named curvature coils, to
also create a curvature in the horizontal plane to provide some additional magnetic trapping.
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Figure 2.11: The magnetic field and the positioning of the two pairs of coils around the science cell. a)
View along the science cell, with two Feshbach coils placed close by and two (smaller) curvature coils
placed further. b) The magnetic field created in the median horizontal plane by the curvature coils. c)
magnetic field created in the median horizontal plane by the Feshbach coils. d) The magnetic field created
in the vertical axial direction by the curvature coils. e) The magnetic field created in the vertical axial
direction by the Feshbach coils. f) Simplified view of the coils’ arrangement. The green dashed axis
denotes the coils’ axial direction.
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In Fig. 2.11, we show the designed magnetic field created by these coils in the axial (verti-
cal) direction and in the horizontal plane. The Feshbach coils are designed to create only an
homogeneous offset field. Whereas the curvature coils generate rather a curvature with a small
offset.

With the dimension shown in Fig. 2.11, the Feshbach coils can create an offset field of
3.78 G/A. The curvature coils can create an anti-confining curvature of 0.124 G/cm2/A in the
vertical direction and a confining curvature of 0.062 G/cm2/A in the horizontal plane, which is
half the value in the vertical direction(i). Also the current in one of these two pairs of coils can be
inverted and create a gradient at the position of the atoms. For the Feshbach coils, the gradient
created in the vertical direction is 0.033 G/cm/A and for the curvature coils 0.011 G/cm/A.

2.5 Experiment control

The experiment machine is controlled by two National Instruments PXI systems connected
to a control computer. For our application, digital cards and analog cards are used to output
logic signals (0 or 3.3 V) or continuous outputs (-10 V to 10 V). The analog cards we use have a
resolution of 12 bits.

The software for controlling the experiment is developed by Aviv Keshet at MIT [101] to
operate the NI-system. A very user-friendly and easy-to-manipulate interface is provided for
editing the experimental sequence. Once the sequence is edited, buffers are generated and
uploaded onto the NI-system which output the set values inside each clock cycle. The timing
of the sequence is ensured by an external FPGA with variable clock speed, which allows for
different time resolution during different timesteps and hence allows for longer experiment
sequences.

Most of the experiment control signals are opto-coupled. This is to, on the one hand, protect
the feedback to the control computer from the experiment side (high current power supplies
for example), and, on the other hand, provide enough current to the devices to prevent current
drain from the outputs [102].

2.6 Summary

In this chapter we have presented an overview about the whole experiment and the essential
hardware to control and perform laser cooling on atomic 6Li and to reach the Feshbach resonance
at 832 G. In the next chapter we will present results of the laser cooling on the atoms of 6Li.

(i)Note that the curvature in the vertical axial direction and in the horizontal plane, according to Maxwell’s law,
have opposite sign. Hence if in one direction the trap is confining in the other direction the trap is anti-confining.
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Chapter 3

Laser cooling results

In this chapter we show the results of laser cooling on 6Li atoms. In particular we show the
realization and characterization of a large MOT of 6Li and the sub-Doppler cooling of 6Li by
implementing a gray molasses on the D1-line. With these laser cooling strategies, we achieve an
atomic sample of 7× 108 atoms at a temperature of ∼ 50µK in less than 2 s.

3.1 Oven and Zeeman slower

In this section we show some preliminary but very interesting results of laser cooling before
having the MOT, including the characterization of the atomic jet flux and the operation of the
Zeeman slower using spectroscopic measures.

Figure 3.1: The atomic jet
out of the oven illuminat-
ed with a perpendicular
beam.
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Figure 3.2: The atomic flux as a function of the oven tempera-
ture.
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3.1.1 Oven flux

The oven flux can be measured by collecting the fluorescence of the atomic jet illuminated by a
beam, shining perpendicularly to it. We can collect this fluorescence using a lens, and by taking
into account the solid angle defined by the collecting lens and the sensitivity of the photodiode
we can evaluate the number of fluorescence photons per unit of time. With this we can deduce
the atomic flux. When the oven is heated to 500 °C, the estimated atomic flux is about 1012/s
(Fig. 3.1).

We see that the atomic flux decreases by a factor of two for every 20 °C approximately.

3.1.2 Zeeman slower operation

The atoms coming from the oven are able to be slowed down by the Zeeman slower from several
hundreds of m/s to around 50 m/s as we have seen in chapter 2.

Figure 3.3: The atomic jet
in the main chamber illu-
minated with an inclined
beam.

-1000 -750 -500 -250 0 250 500

Figure 3.4: The Zeeman slower while functioning with current
I = 16.7 A. The lines resulting from the perpendicular beam:
a), b), c) and d). The angle between the perpendicular beam
and the atomic jet gives the calibration ratio for detuning and
speed v/δ = 0.82 (m/s)/MHz. From the green line to the blue
line, the exit velocity of the atomic jet decreased by 55 m/s.

One way to test the functioning of the Zeeman slower, without having a MOT, is to send
a laser beam with an angle different from 90° to the atomic beam [103]. By scanning the laser
frequency, we can probe the velocity distribution of the atomic beam. Depending on whether the
Zeeman slower is operational, this velocity distribution also varies. More specifically, when the
frequency of the Zeeman slowing beam is changed, we are able to see the velocity distribution
of the atoms going through the Zeeman slower evolve accordingly.

In practice, we send not only the aforementioned beam with an angle but also another beam
perpendicular to the atomic jet. This perpendicular beam does not see the velocity distribution
and hence serves as a reference for zero velocity. The intensity between these two beams are
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very different: The angled beam has a high intensity since it is resonant only with the atoms with
the right velocity and consequently shows a weaker fluorescence, while as the perpendicular
beam is resonant with all the atoms. In practice, the angle beam is sent with an angle of 35° to
the atomic beam and has a power of 24 mW with a waist of approximately 4 mm, which gives
an intensity of 40 Isat. On the contrary, the perpendicular beam has the same waist but only a
power of 100µW.

The fluorescence of these two beams are collected on a photodiode. The representative
results are shown in Fig. 3.4, the lines a), b), c) and d) are the peaks due to the perpendicular
beam. The peaks 1), 2) and 3) represent the different velocity groups of atoms when we change
the Zeeman beam frequency. For different frequencies of the Zeeman beam, we see this peak
approaches the peak a), which is the peak correponding to the atoms having zero velocity.
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Figure 3.5: The sequence of MOT loading, CMOT and D2 molasses.

The three peaks 1′), 2′) and 3′) are the three mirror symmetric peaks of 1), 2) and 3) respec-
tively with respect to a). Their presence is due to the reflection on the outgoing windows and
hence the atoms having the same velocity in the inverse direction, giving rise to a peak on the
other side.
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3.2 MOT and compressed MOT

3.2.1 Overview

After the atoms are slowed down by the Zeeman slower, they are captured in the main chamber
by the magneto-optical trap (MOT) as shown in Fig. 3.6.

Figure 3.6: Operational 6Li MOT,
showing the fluorescence of the
trapped lithium atoms.

The MOT loading sequence is shown in Fig. 3.5. During
1.5 s the slowing beams and the magnetic field gradient are
switched on, where we can trap up to 109 atoms. On a daily
basis, more than 8×108 atoms are trapped in the MOT when
loaded in 1.5 ∼ 2 s. After that, we increase the magnetic
field gradient from 10 G/cm to 25 G/cm during 50 ms to
compress the MOT. The cloud after compression is only
about 1 mm in radius and has a temperature of 1 ∼ 1.2 mK.
This size is optimum for the following gray molasses cooling
since the gray molasses beams have only a waist of several
millimeters. Before implementing the gray molasses, we
perform a D2 molasses with a duration of 3 ms, where we
switch off the magnetic field gradient, while at the same time
approach the resonance from −3.4 Γ to −Γ and decrease the
MOT beam intensity by 25%. The role of this D2 molasses

step is two fold: Firstly, the MOT coils induce non negligible eddy current when switched off.
This eddy current decays to zero on a timescale of approximately 2 ms, during which time the
D1 molasses does not work due to strong transit magnetic field present. The implementation
of this D2 molasses during this period keeps the atoms in position and prevents the cloud to
expand. Secondly, we found also that by performing this step, the temperature of the cloud
slightly decreases from 1.2 mK to 900µK without apparent atom loss.

3.2.2 Detection method

In order to be able to quantitatively evaluate the atom number and the temperatures of the
atomic cloud, we perform the standard absorption imaging technique. Here, we recall very
briefly the principles of absorption imaging.

We send a laser light pulse with intensity I0 on an atomic cloud along the z axis. The light is
absorbed by the cloud and the intensity through the cloud is given by

I = I0e
−n(x,y)σ, (3.1)

where n(x, y) is the column density of the cloud and σ the cross section given by

σ =
σ0

1 + I0/Isat + (2∆/Γ)2
. (3.2)

with σ0 the cross section on resonance given by σ0 = ~ωΓ/(2Isat). Here ∆ is the detuning of the
laser from the atomic resonance, Γ the natural linewidth, and Isat the saturation intensity.



3.2 MOT and compressed MOT 29

The optical density (OD) is defined as

OD(x, y) = n(x, y)σ, (3.3)

and can be experimentally measured by measuring the intensity of the incoming and outgoing
intensities of the light pulse. In practice, taking into account the dark currents of the camera and
the stray light, the optical density can be measured by taking three pictures: A first picture with
the atomic cloud and absorbed imaging beam (Iatoms), the second without atomic cloud, hence
only the imaging light (Ilight), and the third a dark picture without the imaging pulse (Idark).
The measured optical density is given by:

OD = ln
Ilight − Idark
Iatoms − Idark

, (3.4)

Note that this value is already integrated in the imaging direction along z axis.

Atom number The atom number of the probed atomic cloud then can be obtained by integrat-
ing in the imaging plane (x, y):

N =

∫ ∞
−∞

∫ ∞
−∞

n(x, y)dxdy =
1

σ

∫ ∞
−∞

∫ ∞
−∞

ODdxdy. (3.5)

Temperature The temperature of the cloud is measured using the time-of-flight expansion
technique. For an ensemble of atoms with different velocities, the free expansion of the size is
governed by:

σ(t) =
√
σ20 + v2t2 (3.6)

where the averaged velocity of the ensemble can be associated with the temperature T =

mv2/kB.
Hence the temperature can be obtained by fitting the measured sizes of the cloud at different

TOFs.

Phase space density The phase space density of the cloud D depends on the density and the
temperature and is defined in the most general case, as

D = nλ3dB, (3.7)

where λdB is the thermal de Broglie wavelength λdB =
√

2π~2/(mkBT ). The density n at the
center of the cloud can be evaluated via the atom number and the cloud size.

3.2.3 Dependence on the laser detuning

We show in Fig. 3.7 the dependence of the MOT loading as a function of the detuning of the
Zeeman slower beam frequency and the MOT beams frequency.

In these graphs we observed minor dependence on the Zeeman slower beams and the
optimum loading in terms of atom number was found around −3.4 Γ for the MOT beams. The
temperature of the cloud for large detuning is found to be lower, probably due to the lower
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Figure 3.7: The dependence of the atom number in the MOT as a function of the frequency of the
Zeeman slower beam (left) and the MOT beams. We did not observe strong atom number dependence on
the Zeeman slower beams. Optimum atom number is obtained around −3.4 Γ for the MOT beams.

number of atoms. When we approach the transition however, the atom number decreases,
while as the temperature is found to be the same, due to stronger light assisted collisions in this
regime.

3.2.4 Dependence on the ratio between repumper and cooler

The repumping frequencies of the MOT beams and the Zeeman beam are generated both with
resonant EOMs and sent to a Fabry-Perot cavity to measure and monitor the power ratio between
these two frequencies. The dependence of the power ratio between them on the MOT loading is
reported in Fig. 3.8.
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Figure 3.8: The dependence of the atom number in the MOT as a function of the ratio between the
repumper and cooler frequencies, for the Zeeman beam and the MOT beams respectively.

Optimum loading is found to be around IR/IC ≈ 0.4 for the Zeeman beam as well as the
MOT beams.
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3.3 D2 molasses

The D2 molasses, as we mentioned previously, allows the cloud to expand diffusively instead of
ballistically. In particular, we have found that the frequency of the beams at the end of the ramp
(Fig. 3.5) has an important effect on the density of the cloud and we report this dependence in
Fig. 3.9.
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Figure 3.9: The dependence of the atom number and the density of the cloud as a function of the final
detuning of the D2 frequency ramp. Data measured with 1 ms TOF.

We found that by approaching the resonance, we increase the peak density of the cloud. The
density of the cloud reaches peak value for a frequency ramp up to −1.7 Γ and stays constant.
We hence choose the final frequency of the ramp to −Γ.

Keeping such a high density is favorable. Because on the one hand, the atom number staying
constant, a higher density means a smaller volume. This can help the D1 gray molasses capture
more atoms. On the other hand, the density of the cloud during D1 gray molasses is determined
by the density of the cloud at this stage and a higher density would benefit also the later loading
into an optical dipole trap.

3.4 Performances of D1 gray molasses

After the D2 molasses the atoms are captured by the D1 gray molasses. The sub-Doppler cooling
of 6Li has always been complicated until several years ago, since the hyperfine splitting of
D2-line of 6Li is badly resolved. In 2012, sub-Doppler cooling has been achieved first on the
D1-line of 40K [104], later also on 7Li [105] and on 6Li [92]. Up till recently, the D1 gray molasses
has been widely implemented and has become a popular tool to reach sub-Doppler cooling
temperatures for alkali atoms [106–108].
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3.4.1 Principle of operation

The principle of, as well as thorough theoretical and experimental studies on gray molasses are
well explained in [109] and in [110]. Here we will only briefly mention the essential working
mechanism for completeness.

The principle ccoling mechanism of the gray molasses is the combination of Sisyphus cooling
and VSCPT (Velocity-Selective Coherent Population Trapping). Historically, Sisyphus cooling
have been implemented on alkali species 87Rb and 133Cs on the D2 line in the form of bright
molasses. Sisyphus cooling makes use of a light polarization gradient in place to cool the atomic
cloud below the Doppler limit. The handwaving explanation for its working principle is as
follows: Two counter-propagating and red detuned beams create a spatially periodic modulation
of the polarization. As a result, a spatial dependent Zeeman shift is created and the atoms see a
sinusoidal potential shape in real space. When it is at a potential maximum, the atom is more
likely to be excited to the excited state. Therefore an atom "climbs" the potential hills before
getting pumped back to the lower energy lying state in a repetitive way, until it does not possess
enough energy anymore to climb the energy hill.

Figure 3.10: Principles of working
of the gray molasses.

In gray molasses, the use of two pumping frequencies
allows to pump the atom in a "dark" state, not coupled to
the light. The probability to leave this non-coupled state for
a coupled state is the highest at the bottom of a potential
energy hill for the coupled state, which then allows Sisyphus
cooling.

For 6Li, since the D2 lines are not well resolved at all, the
bright molasses of 6Li leads to heating and atom loss. In-
stead, blue detuned light on the D1 transition, together with
appropriate magnetic field compensation, leads to efficient
cooling.

3.4.2 Realization and sequence

The D2-MOT beams and the D1 gray molasses beams go
through different viewports, apart from in one direction
where they are combined. Therefore it is very important to
assure a good spatial overlap between the two molasses. In

practice, we tune the D1 beams on resonance and shine individually in the three directions of the
molasses and we make sure the light destroy the D2 molasses. Once the cloud can be captured
by three pairs of D1 beams with the correct detuning, we change finely the current values in
the three pairs of compensation coils to optimize the atom number and the temperature of the
captured cloud.

The sequence of the gray molasses is as depicted in Fig. 3.11 and consists of three steps. The
gray molasses beams are first switched on at maximum power during 3 ms to capture the atoms
from the D2 molasses as we described previously. The compensation coils in three mutually
orthogonal directions are switched on at the beginning of this step. The current in the three
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Figure 3.11: The sequence of D1 gray molasses. Three different phases are included in the cooling
process: A first capture phase, where the intensity of the beams are output at maximum, a subsequent
cooling phase, where the intensity of the beams are decreased to about one half of the initial maximum
value, and a final thermalization phase where the intensity of the beams are hold at the decreased value.
A short pulse on the cooling frequency of 10µs allows most of the atoms to be optically pumped to
F = 1/2.
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pairs of compensation coils reach stationary values in 1 ∼ 1.5 ms due to the limitations of the
power supply we use(a). But we found that this transitory magnetic field establishment did not
have a strong impact on the temperature decrease on the atomic cloud as we will see later more
in detail. Once the temperature of the cloud reaches stationary value, we decrease the intensities
of the D1 gray molasses beams to about 50% of its original value over 2 ms and hold at this
final value for 1 ms, to decrease further the temperatures of the atomic cloud. This intensity
ramp is found to be able to decrease the temperature by almost 30% without significant atom
loss. Finally we switch off the repumper frequency of the gray molasses beams to let all the
atoms to fall to the hyperfine level F = 1/2. In this way the atoms are automatically in the state
|1〉 and state |2〉 when going to high magnetic field, which serves as a good starting point for
evaporation that we will present in detail in chapter 4.

3.4.3 Magnetic field compensation

The compensation of the residual magnetic field is done by scanning the current values in the
three pairs of compensation coils. In the left plot of Fig. 3.12, we show the dependence of the
temperature on the applied magnetic field. Here the temperatures are measured after 3 ms of
gray molasses capture so that the temperature already reached equilibrium (Fig. 3.12 right). We
see that the minimum in temperature also corresponds to the maximum in atom number.
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Figure 3.12: Left: magnetic field for optimizing the temperature and the atom number in the gray
molasses. Right: Temperature and atom number as a function of the duration of the gray molasses.

3.4.4 Cooling efficiency

The D2 molasses having a temperature of approximately 900µK, the D1 gray molasses proves
to be extremely efficient in terms of cooling: The cloud are cooled down to ∼100µK in approxi-
mately 1 ms and reaches the equilibrium temperature of 70µK in merely 3 ms (Fig. 3.12).

(a)Delta-Elektronika ES 015-10
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Figure 3.13: The performance of the D1 molasses cooling as a function of η, which is the ratio of the
final intensity value to the initial intensity value. From the graph we see that for η & 0.5, the temperature
decreases whereas the atom number stays the same. For η . 0.5, the temperature continues to drop
whereas the atom number also begins to decrease. For very small η . 0.1, the molasses cannot hold the
atoms anymore and we observe heating.

3.4.5 Ramp optimization

Like the D2 molasses, an intensity ramp of the molasses beams allows to decrease the cloud
temperature even further. We have optimized the end value of the intensity ramp and we show
this result in Fig. 3.13.

In the graph, the parameter η is defined as the intensity ratio between the final value of the
intensity ramp and its initial (maximum) value. We see a clear optimum around η ≈ 0.5 where
we have a maximum amount of atoms while the cloud can be cooled to a temperature of around
50µK.

3.4.6 Capture efficiency

The capture efficiency of the D1 molasses from the D2 molasses is determined principally by
the overlap of the beams, due to the small beam diameters of the D1 beams. Compared to
experiments where the MOT beams are mixed together with the D1 beams [92, 111] where the
gray molasses capture efficiency from a D2 cloud reaches unity, in our case we reach only about
70% to 80%. On a day-to-day basis, we can capture 5 × 108 to 7 × 108 atoms in the D1 gray
molasses. Representative images of the cloud after D2 and D1 molasses are shown in Fig. 3.14.

Although the capture efficiency is lower in our case, it has little or next to no influence on
the following experimental step, which is loading into an optical dipole trap. As we will see
in the following chapter, the low loading efficiency of an optical dipole trap from an atomic
cloud makes the less-than-unity efficiency of the gray molasses less critical. As long as the
gray molasses captures most of the atoms from the D2 molasses and efficiently cools the cloud
to sub-Doppler temperatures with high density, it will be largely enough for the dipole trap
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Figure 3.14: The in situ images of the D2 molasses and the D1 molasses.

3.5 Summary

In this chapter we have shown the main results of the laser cooling on 6Li atoms. By implement-
ing a standard red MOT and applying the gray molasses cooling on the D1 line, we achieve, on
a daily basis, within two seconds an atomic cloud with up to 7× 108 atoms with temperature as
low as 50µK. This serves as an excellent condition for loading into an optical dipole trap and
perform further evaporation. The parameters for different steps of laser cooling, including the
atom number, the temperature and the phase-space density (PSD) is summarized in Table 3.1.

Table 3.1: Summary of each steps of the laser cooling.

Stage Atom number Temperature PSD

cMOT ∼ 1× 109 1.2 mK 5.5×10−7

D2 molasses ∼ 1× 109 800µK 5.8×10−7

D1 molasses capture ∼ 7× 108 80µK 1.8×10−5

D1 molasses cooling ∼ 7× 108 50µK 5.2×10−5



Chapter 4

Optical transport and evaporation

Once the atoms are cooled by the gray molasses to a temperature of about 50µK, they are loaded
into a high-power optical dipole trap in the MOT chamber and transported into the science cell
for further evaporative cooling. In this chapter we will present the high power optical setup for
the optical dipole traps, the performances of the optical transport, and finally the results of the
evaporative cooling inside the glass cell.

4.1 Introduction

The optical dipole trap [112], together with magnetic trap, are the most widely implemented
traps in cold atom experiments. Both have their advantages and disadvantages.

For the magnetic traps, they make use of electromagnets or permanent magnets to create
the appropriate magnetic field profiles to trap the atoms. The trapping extension of magnetic
traps are given by the dimension of the magnets, typically on the macroscopic scales, i.e. several
centimeters. Together with the usual experimental curvature or gradient values, they give rise
to a large trap depth to a scale of typically several hundreds of millikelvin. Compared to the
standard size and the temperature of the atomic cloud, it is not surprising that with magnetic
traps, near unity loading efficiency can be easily achieved. However, the functioning of the
magnetic traps depends on the inner states of the atoms and usually requires the atoms to be in
the appropriate Zeeman levels(a).

Optical traps on the other hand, make use of the dipole force of an off-resonant electro-
magnetic field on the neutral atoms and depend less strongly on the inner state of the atoms.
However, compared to the magnetic traps, the extension of the optical traps are determined by
the size of the optical beam waist, which is very often at least one order of magnitude smaller
than the size of the atomic cloud. Moreover, the typical depth of an optical trap is only of
millikelvin scale and requires high optical power on the order of 10 W to 102 W.

Although optical traps have such disadvantages, the trapping frequencies they provide are
typically on the order of kilohertz range in the strongly confining direction. This is beneficial for
the evaporative cooling, where a strong confinement results in a very high collision rate. Further

(a)In most of the cases the atoms are required to be in the appropriate low field seeking levels, as it is not possible to
create a magnetic field maximum.
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increase in trapping frequency can be achieved by crossing two optical dipole traps. Even at the
low optical power, the trapping frequencies are typically several hundreds of hertz, which is
still larger than the typical magnetic trapping frequencies.

In the spirit of having a quick repetition rate of the experiment, a short evaporation time
is preferred. After taking into consideration all the aforementioned factors, we decided to
implement a hybrid trap. More precisely, we use one optical trap to load the atoms in the main
chamber and then we transport the atoms into the science cell. There we implement another
dipole trap to cross with the first one. The trapping in the plane of the two laser beams is further
reinforced by a pair of curvature coils.

4.2 Working principle

When the difference between the oscillation frequency of the laser ω and the atomic optical
transition ω0 defined by ∆ ≡ ω − ω0, is much larger than the fine and hyperfine splittings of the
atoms of interest, 6Li in our case, the atom can be treated as a classical oscillator and the dipole
potential seen by the atom can be derived and reads as follows in the case of weak saturation
[112]:

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I(r)

=
3πc2

ω2
0

Γ

∆(ω0 + ω)
I(r). (4.1)

which is proportional to the laser intensity I(r). Here Γ is the linewidth of the considered
transition and c the speed of light.

From Eq. (4.1) we see that if the laser beam is red-detuned (∆ < 0), the potential is attractive
and the atoms are trapped at the intensity maxima. Inversely, if the laser is blue detuned then
the trap is repulsive and the atoms are trapped at intensity minima.

For a Gaussian beam with a waist w0 and a power P , the intensity profile in space reads:

I(r, z) =
2P

πw2
0(1 + z2/z2R)

exp

[
− 2r2

w2
0(1 + z2/z2R)

]
, (4.2)

where r and z are the radial and axial coordinates, respectively. The quantity zR ≡ πw2
0/λOT is

the Rayleigh length of the dipole trap beam with wavelength λOT. Hence the largest intensity is
achieved at the focus, where the beam has its smallest waist w0. The depth of the optical dipole
trap is given by:

U0 =
3πc2

ω2
0

Γ

∆(ω0 + ω)

2P

πw2
0

=
6c2ΓP

ω2
0

(
ω2 − ω2

0

)
w2
0

. (4.3)

Close to the trap bottom, the atoms experience a quasi-harmonic potential according to the
expansion of Eq. (4.2) around r = 0 and z = 0. The radial and axial trapping frequencies are
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given by:

ωr ≡

√
4U0

mw2
0

, (4.4a)

ωz ≡

√
2U0

mz2R
=

1√
2π

λOT

w0
ωr. (4.4b)

Note that since the depth scales as U0 ∝ P/w2
0 and the Rayleigh length zR ∝ w2

0, the above
frequencies scale as ωr ∝

√
P/w2

0 and ωz ∝
√
P/w3

0.

4.3 Transport trap

4.3.1 Setup

The setup of the transport trap is depicted in Fig. 4.1 a). The setup makes use of a high power
laser of 200 W from IPG photonics(b) focused down to a designed waist of 62µm. At maximum
power we can have effectively 160 W on the atoms.

Since this setup needs to transport the atoms, which are trapped at the focus of the beam, from
the main chamber into the science cell, two rectangular mirrors are mounted on a translation
stage from Newport(c) that has a full travel range of 16 cm. The effective maximum travel range
of the focus position is hence twice this value, i.e. 32 cm, which is slightly larger than the effective
distance of 31.5 cm between the main chamber and the science cell center.

Once the focus of the beam is shifted into the science cell, we cross the beam with another
dipole trap beam to perform evaporation. The power of the transport beam is controlled by a
halfwaveplate mounted on a step-motorized rotational mount together with a high extinction
ratio cube. This allows to ramp down the power of the beam from 160 W to 50 mW. Compared
to the traditional way of using an AOM to control the power, this option allows us to avoid
the thermal lensing issues induced by the AOM crystal. However, this means that we cannot
modulate the power of the laser as quickly as an AOM. But since the evaporation is performed
on the order of seconds, we do not need to ramp the power as quickly. The fact the power cannot
be well controlled, due to the step-motor nature, in a continuous and smooth way, especially at
low power, will influence the evaporation strategy as we see later.

4.3.2 Loading performance

During theD2 molasses we switch on the optical dipole trap already. Then it is kept at maximum
power all through the D1 molasses.

(b)IPG YLR-200-LP
(c)Newport XMS160-S
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Figure 4.1: The simplified laser set-up. a) The optical setup of the transport trap. The trap is designed to have a waist of 62µm at the position of the atoms. b)
The optical setup of the crossed dipole trap with the ALS laser, designed to have a waist of 60µm. c) The ALS setup on the main table. The spatial orientation
of the beams as well as the imaging directions around the science cell is shown in Fig.4.8.
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The loading of the dipole trap depends on the ratio of the trap depth and the cloud tempera-
ture η ≡ U/kBT , as well as the spatial overlap between the optical dipole trap and the atomic
cloud. Mode matching between the cloud shape and the dipole trap shape can improve the trap
loading [111]. In our case we did not try to extend the cloud to match the dipole trap’s shape.
Since the gray molasses beams go through the CF16 viewports and have small diameters, it
is difficult to change the diameters of the beams. In fact, we have found that the trap loading
depends more on the cloud density after the D1 molasses rather than the absolute atom number.
In the main chamber we have two independent observation axes, along which we can observe
the dipole trap’s positioning compared to the gray molasses. One of these observation axes is
along the dipole trap. This direction is particularly useful because it integrates all the column
density of the atoms loaded in the IPG. We can easily find a signal by looking in this direction
to begin with. Once we have optimized the positioning along this direction we can switch to
the other observation axis, which has an angle of approximately 60◦ compared to the IPG axial
direction.

0

2

4

0

0.4

0.8

Figure 4.2: Atoms loaded in the IPG. Up: The atoms loaded in the IPG after 2 ms hold time from the D1

gray molasses. Down: Atoms loaded in the IPG after 20 ms hold time. The atoms not loaded into the IPG
are not visible and the loaded atoms are fully extended in the axial direction.

In Fig. 4.2 we show the process of the atoms loading from the gray molasses into the IPG. In
the upper panel we show the in situ image of atoms in the IPG after having switched off the
gray molasses light for 2 ms. The atoms not loaded into the IPG are effectively in time-of-flight
expansion. In the lower panel we show the same figure but after having switched off the light
for 20 ms. The atoms not loaded into the dipole trap have already flown away and the atoms
loaded in the trap are fully extended in the axial direction.

Atom number

The atom number loaded in the IPG depends also on the position of the focus with respect to
the cloud. We report the dependence in Fig. 4.3. The maximum atom number ever loaded in the
IPG is 7.5× 106. And on a daily basis, we work comfortably with more than 4× 106 atoms in
the IPG.

The loading of the dipole trap depends on two factors: The depth of the trap and the trapping
volume. Both depends on the size of dipole beam waist. On the one hand, in order to achieve
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Figure 4.3: Scanning the axial position of the IPG.

efficient loading, the depth of the dipole trap needs to be deep enough, which requires a small
waist size. On the other hand, the trapping volume grows as the waist size increases. The
optimum loading is a compromise of this two parameters.

When scanning the axial position of the focus and counting the atoms loaded in the dipole
trap, we observed a single maximum value. This means that the limiting factor in our case is
mainly the depth of the optical trap. If the optical dipole trap is deep enough, while scanning
along this direction we would observe two maxima, corresponding to a larger trapping volume
away from the focus as shown in [113] for example.

Temperature

The temperature of the atoms loaded in the IPG after 20 ms of hold time is measured to be
120µK using a time-of-flight technique, which is higher than the temperature of the cloud before
loading (∼50µK). The actual increase of temperature can result from many factors. Generally
speaking, in a more tightly confining optical potential forces the cloud has higher density. Since
the gray molasses still works in presence of strong electromagnetic field, the photon scattering in
the dipole trap is also stronger than in free space. Therefore the atoms loaded in the dipole trap
have higher temperatures than the D1 molasses in real space. Similar temperatures, however, of
atoms loaded in the dipole trap from the gray molasses of 6Li has been reported [111].

Before transporting the atoms, it is useful to understand the effects of the dipole trap at
maximum power on the atoms when holding them in the main chamber. We plot the atom
number and the measured temperatures for different hold times in the main chamber in Fig. 4.4.

This plot shows that the atom number drops in the first 100 ms after loading and stays the
same afterwards. The temperature stays the same during the first 500 ms after loading and then
increases linearly with a heating rate of 42± 8µK/s found by a linear fit.

This heating rate is very large compared to the heating rate induced by off-resonant photon
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Figure 4.4: Number and temperature of atoms loaded in the IPG as a function of the holding time
inside the IPG. The red dashed line is a linear fit of the measured temperature values (first red point not
included), which yields a heating rate of 42± 8µK/s.

scattering due to high intensity at the waist. In fact, the absorption occurs with a rate:

Γsc =
Γ

∆

Udip

~
. (4.5)

With a recoil energy EOT due to the dipole trap light operating at λOT = 1070 nm:

EOT =
h2

2mλOT
≈ kB · 1.4µK, (4.6)

the heating rate due to off-resonant scattering can be calculated as:

Ṫ =
2

3

ΓscEOT

kB
≈ 3.4µK/s, (4.7)

which is about one order of magnitude smaller than the measured heating rate. This means that
apart from off-resonant photon scattering, there are probably other heating mechanisms, for
example, intensity noise of the laser [114] in play.

Eventually, this measurement tells that although we observe significant heating after 2 s, it
will not pose a problem if we transport the atoms at shorter timescale.

Trapping frequency measurement

Experimentally we can measure the trap frequency by radially exciting the oscillation through
a quick switch-off-and-back-on experiment. Once the cloud is loaded in the trap, we quickly
switch off the trap for 30 to 50µs. This duration is determined by the expected radial frequency
of the dipole trap. During this time the cloud slightly expands and we then switch back on the
trap to recapture the atoms and record the cloud’s radial size as a function of hold time in the
dipole trap.
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We show this result in Fig. 4.5. We measured an oscillation frequency of 7.93 ± 0.08 kHz,
which corresponds to a dipole oscillation frequency of half this value in the limit of high
temperature [115], hence 3.97 kHz. And from this frequency, together with the optical power
(160W), we extract a waist of 85.6± 0.4µm.
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Figure 4.5: Radial oscillation measurement: The measured radial cloud size as a function of the duration
held in the dipole trap after the quick switch (see text).

This waist value is larger than the designed value by 40%. There are two possible reasons for
this discrepancy. Firstly, the two rectangular mirrors(d) used for the transport are relatively thin
with a thickness of 5 mm, They are hence more susceptible to distortion due to the force exerted
on them during installation. A small curvature due to installation can change the effective
waist at the position of the atoms. Secondly, the optical window where the high power laser go
through can have some thermal effects and hence changes the beam waist.

The more probable reason for this difference is the second one in our opinion. Since the
atoms, when imaged along the transport direction, have a very nice and round shape. The
curvature of the mirror surface due to the installation is hardly likely to preserve the cylindrical
symmetry of the beam. The vacuum viewport, in contrary, is circular in shape and can indeed
preserve the circular symmetry while only change the waist size.

The consequence of this large waist is that the axial trapping frequency of the IPG is only
∼8 Hz, which penalizes the evaporation as we shall see later.

4.4 Optical transport

The optical transport is realized by sending an analog signal from 0 to 10 V to the translation
stage. Each given voltage correspond to one specific position. The optical dipole trap has to be
moved in such a way to avoid axial sloshing. This means that the acceleration during transport

(d)Laseroptik L-15116 HR1064-1070 nm/45◦ 75×50×5 mm
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Figure 4.6: The position, velocity, acceleration and jerk (derivative of the acceleration) of the translation
stage during transport.

needs to be varied smoothly to avoid sudden changes in the inertial force seen by the atoms.
This inertial force also needs to minimally disturb the potential along the axial direction.

The actual curve of the transport that we chose is a quartic curve (fourth order of the time) as
shown in Fig. 4.6. The jerk, defined as the time derivative of the acceleration, is a linear function
of time. The chosen ramp duration of 1.2 s is a compromise between the heating timescale, the
minimization of the inertial force, and the speed limitations of the translation stage.

4.4.1 Transport efficiency

The efficiency of the optical transport is measured using the back-and-forth method: The atoms
are transported to different distances during 1.2 s and then back to the MOT chamber with the
same duration. The efficiency ξ is the ratio between the number of atoms after the back-and-forth
movement and before the transport.

The result of the back and forth transport efficiency measurement is shown in Fig. 4.7. Here
we need to specifically notice that the atoms before the transport are counted right after loading
into the dipole trap. In Fig. 4.4 we see that there are some atom losses during the first 100 ms
after loading. The transport efficiency at 0 travel distance represent this atom loss.

Moreover, we see limited atom number decrease during the transport, with an efficiency ξ2

going from 70% to 60%. This slow decrease could be due to the increasing inertial forces felt by
the atoms for further distances traveled. From these data we can infer a single trip efficiency
ξ = 0.77± 0.04.

4.4.2 Temperature after transport

We measure the temperature in the science cell and we found similar temperature as indicated
in Fig. 4.4, i.e. 150µK. This indicates that the transport itself does not heat up the atoms more
than the dipole trap itself.
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Figure 4.7: The back and forth transport efficiency.

4.5 Crossed dipole trap

4.5.1 Design considerations

Figure 4.8: The crossed dipole trap in the science cell, composed of the transport beam (IPG) and the
ALS beam, with an angle of 90◦ between them. The three green arrows indicate the imaging directions.
One Feshbach coil is shown solely for spatial reference purposes.

As we have seen previously, the larger-than-expected IPG waist makes the axial trapping
frequency only on the order of several hertz, which is quite low for providing a axial confinement.
In order to perform evaporation efficiently, we decide to cross the IPG beam with another laser
beam in order to provide stronger confinement in the aforementioned direction. However, the
overlap between two optical traps decreases further the trapping volume of the crossed region
and potentially further decreases the atom number.
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In order to have a strong confinement and a large trapping volume, there are in general
two ideas for designing crossed dipole trap setups, according to the crossing angle between
the two dipole trap beams. For small crossing angles (less than 20°), the two dipole trapping
arms provide already a relatively large trapping volume, the waists of the two dipole traps arms
do not necessarily need to be large. For large crossing angles (close to 90°), it is rather more
frequent to have one arm with a small waist (< 60µm) to provide tight confinement and the
other a large waist (> 90µm) to increase the trapping volume.

In our experiment we have chosen a waist of 60µm for the second arm of the crossed optical
dipole trap. This second beam is derived from a high power continuous wave laser (e) with 45 W
output. The setup of this trap can be found in Fig. 4.1 b) and c). The power of the laser is split
into two paths, each controlled by an AOM, on the one hand for fast switching, and on the other
hand for power regulation. The diffracted order is coupled into a high power fiber and has a
maximum power of 18 W at the fiber output. On a daily basis, we work at about 85% of this
power level, i.e. 15.4 W. With a designed waist of 60µm, this beam alone yields a potential depth
of kB · 150µK.

0
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1

1.5

Figure 4.9: Optical dipole trap imaged in the direction of the ALS beam ("Img 3" direction in Fig. 4.8).
The lower panel is a zoom of the upper panel in the center region.

The temperature of the gas arriving at the science cell being ∼ 150µK, which is comparable
to the ALS trap depth, we can already see the effect of the optical dipole trap on the atoms in
the transport beam once we switch it on. In Fig. 4.9 we see the atoms in the ODT prior to any
evaporation.

4.5.2 Trapping frequency measurement in the science cell

The same measurement as in section 4.3.2 can be taken in the crossed dipole trap to deduce the
waist of the ALS beam. We ramp down the power of the IPG to have the atoms fully transferred
to the crossed dipole trap (details can be found in the next section). We then switch off the ALS
beam and the IPG beam very quickly for 50µs and then back on to excite oscillations in the
radial directions of the two beams.

Fig. 4.10 shows that from the measurement of the oscillation frequencies at different laser
power levels one can deduce the waist of the two beams. The data in Fig. 4.10 yields wALS =

65.0 ± 1.0µm, wIPG = 88.7 ± 0.3µm. In particular, the measurement of the IPG waist is in
agreement with the previous measurement in the MOT chamber, and the measurement of the
ALS waist is compatible with the designed value.

(e)Azur Light System ALS-IR-50-SF
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Figure 4.10: Left: Frequency measurements in the crossed dipole trap. Oscillations in the radial
directions of the two traps are excited by quickly switching off the ALS and the IPG beams. Right:
Measured radial frequencies of the two beams as a function of the beam powers. From the fit we can
extract the waist of the two laser beams (see text).

4.6 Evaporative cooling

After the atoms arrive in the science cell, the atomic cloud is further cooled evaporatively. For a
Fermi gas, the evaporation is most efficient when the population of the two spin states are equal.
In the case of population imbalance, radio-frequency (RF) sweep is a standard technique for
transferring atoms from one spin state to the other.

4.6.1 Radio-frequency sweep

At the end of the D1 gray molasses cooling stage, we have all the atoms in the manifold F = 1/2

in he ground state. In the ideal case, the atoms are equally distributed in the two sub-Zeeman
levelsmF = ±1/2. However, in practice we detect almost a factor of 1.5 between the populations
of the two spin states. On a day-to-day basis, we have about 1.4×106 atoms in state |1〉 and
0.9×106 atoms in state |2〉 after optical transport.

Landau-Zener sweep

Let us consider two spin states |1〉 and |2〉. If all the atoms are in state |1〉, a RF sweep across the
transition frequency allows one to adiabatically transfer all the atoms from state |1〉 to |2〉, if the
sweeping speed is slow enough.

More quantitatively, the probability of transfer from state |1〉 to state |2〉 is given by the
Landau-Zener formula [116, 117]:

P|1〉→|2〉 = 1− exp

(
−Ω2

4∆̇

)
, (4.8)

where Ω is the on resonance Rabi-frequency driven by the RF-transition and ∆̇ the RF frequency
sweep speed. For a linear frequency sweep ∆̇ ≡ δν/t, with δν the swept frequency range and t
the sweep duration.
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Figure 4.11: Left: central frequency scan for a fixed duration RF sweep with a duration of 20ms and a
sweep range of 40 kHz: The start frequency is fc − 20 kHz and the final frequency fc + 20 kHz. The fitted
Gaussian curve gives a central frequency of 76.267 MHz, which corresponds to a magnetic field of 832 G.
Right: the populations of the two hyperfine states after an RF sweep of variable duration centered on the
frequency found on the left figure, with a sweep range of 400 kHz. The populations in the two hyperfine
states are found to be inversed for long scan duration, which corresponds to an adiabatic transfer. The
dashed lines are exponential fits (see text).

Implementation

In order to implement the radiofrequency sweep, an antenna adapted to the dimension of
the science cell is made and placed as close as possible. The RF signal is generated from a
high-precision RF generator(f) and amplified with a high power RF amplifier(g) of 50 W.

On-resonance Rabi oscillation

The precise RF transition frequency between the states |1〉 and |2〉 can be calculated using the
Breit-Rabi formula. At 832 G, this frequency is calculated to be 76.267 MHz.

In order to find this resonance, we apply a sufficiently slow linear RF sweep, typically
of 20 ms duration and with a sweep range of 400 kHz to begin with. When the RF transition
frequency falls within the sweep range, the atoms in state |1〉 are adiabatically transferred to state
|2〉 and vice versa. In order to more precisely pinpoint the transition frequency, we gradually
decrease the sweep width. In the left plot of Fig. 4.11 the result of such a frequency scan is
shown.

Once the resonant RF frequency is found, we can coherently drive the transition between
state |1〉 and state |2〉 by applying an RF pulse at the resonance frequency. The population
between this two states oscillate with a frequency Ω, which is the Rabi frequency as shown in
Fig. 4.12.

(f)MXG ATE Analog Signal Generator N5161A
(g)Mini-Circuits LZY-1+
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Figure 4.12: The Rabi oscillation observed with state |1〉. The measured Rabi frequency Ω = 2π× (7.51±
0.03) kHz. Note that the damping is due to trap inhomogeneity induced decoherence. The time constant
for this decay, fitted by an exponential, is τ = 960± 160µs.

Spin balancing using non-adiabatic sweep

Since we want to balance the spin population of the two spin states, we need to sweep the RF
pulse in a non-adiabatic way. By decreasing the duration of the RF sweep, the atom transfer will
become more non-adiabatic. The appropriate sweep duration is such that the atom number in
the two spin states are equal.

We apply a linear sweep with 400 kHz sweep range, centered on the resonance frequency
fc = 76.267 MHz we found previously. We gradually decrease the duration of the sweep and we
measure the atom numbers in the two spin states. It is expected that for very quick RF sweeps,
the atoms cannot be transferred between the two states and retains the initial number ratio
before the RF sweep. For very long RF sweeps, the atoms in one state can always be adiabatically
transferred to the other and the population should be inversed, as shown in the right plot of Fig.
4.11.

Since we perform a linear frequency ramp, the sweep speed ∆̇ in Eq. (4.8) can be very
well known. As a matter of fact, the on-resonance Rabi frequency Ω is related to the measured
exponential time constant τ of the curves in the right plot of Fig. 4.11 as

Ω = 2

√
δν

τ
. (4.9)

The extracted time constants of the two curves in Fig. 4.11 gives τ1 = 0.86 ± 0.08 ms and
τ2 = 0.80 ± 0.05 ms. According the above expression, we can estimate the Rabi oscillation
frequency to be Ω1 = 2π × (7.0 ± 0.6) kHz and Ω2 = 2π × (7.3 ± 0.3) kHz. Both values are in
agreement with the direct measurement of the Rabi frequency through Rabi oscillation shown
in Fig. 4.12.

As a result, in order to balance the population of the two spin states, we apply a single linear
RF sweep of 400 kHz sweep range centered around 76.226 MHz during 550µs to balance the
population in the two spin states. The atom numbers after the RF sweep are typically 1.1× 106

in each of the two spin states.
Note that after the RF sweep, a wait time of 300 ms is added before we begin evaporative

cooing. This wait time, which is much longer than the decay time constant we measured in
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the Rabi oscillation, ensures that the atoms are no longer coherent with each other and allow
collisions between them.

4.6.2 Evaporative cooling: Principle and key parameters
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Figure 4.13: The first step of evaporation where
the atoms in the IPG are transferred into the
crossed dipole trap. In the fist picture we see
clearly the atoms still in the IPG wings and in the
last figure we see only ALS in the axial direction
and the IPG wings are no longer visible. Images
are taken in the "Img 3" direction in Fig. 4.8.

Evaporative cooling is the major technique in
quantum gas experiments to reach ultracold tem-
peratures. The idea is to let the hottest atoms
escape the trap and allow the remaining atoms
thermalize at a lower temperature. The temper-
ature decrease slows down the escaping process
and hence the trap depth needs to be lowered ac-
cordingly. In the following we present some of
the most important parameters to characterize the
evaporative cooling.

Collision rate Γcoll The collision rate describes
at which timescale the gas reaches equilibrium.
In order to have an efficient evaporation, the col-
lision rate should be as high as possible, ideally
larger than 103 s−1 in the case of 6Li.

For a gas at unitarity with temperature T , in
the high temperature limit (T � TF ), the collision
rate is given by [118]:

Γcoll =
2N~2ω3

π(kBT )2
, (4.10)

where ω is the geometrical mean of the trapping frequencies in three directions in space and N
the atom number per spin state.

Phase space density D The phase space density as we have introduced in Eq. (3.7), can be, for
a harmonically trapped atomic gas, expressed in terms of the trapping frequencies:

D =

(
~ω
kB

)3 N

T 3
(4.11)

The goal of evaporation is to achieve a degenerate Fermi gas. This means that the final phase
space density D ∼ 100.

Evaporation efficiency γ The evaporation efficiency γ defined as

γ =

∣∣∣∣ ln(Dfin/Dini)

ln(Nfin/Nini)

∣∣∣∣ , (4.12)

compares the orders of magnitudes the number of atoms lost to the increase in phase space
density D. For a good evaporation this value should be large.
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4.6.3 Implementation and results

Power Stablilisation

The optical power of the evaporation usually can decrease from several tens of Watt all the way
down to the mW scale. At such low power, any fluctuations in power would heat up the cloud
and hence result in atom loss.

The optical power stabilisation in this regard is especially important for dipole traps at low
power. The power of the ALS beam is regulated using the leakage light though a mirror and
acting on the driving RF-power of the AOM as shown in Fig. 4.1. We can regulate the power of
the ALS beam from 16 W to 25 mW reliably.

However, for the IPG beam, as we mentioned previously, since its power is not controlled by
an AOM but with a halfwaveplate on the rotatable mount and a cube, feedback on the rotational
mount actually induces noise and due to the mechanical nature of the rotational mount, the
response of the PID is very slow (bandwidth on the hertz level). Hence the power of the IPG is
not PID-regulated.

Power ramp

The power ramp of the two laser beams, as well as the manipulation of the magnetic field, is
shown in Fig. 4.14.

Transfer from the IPG into the crossed dipole trap

Before we perform the evaporative cooling, we typically have a balanced Fermi gas with
N1 = N2 = 1.1× 106 atoms at a temperature of T = 150µK.

A first evaporation ramp is performed by exponentially decreasing the power of the IPG
beam until it provides almost the same trap depth as the ALS beam. At this moment, the cloud
is almost all transferred in the cross dipole trap and no wings of atoms in the IPG can be seen
(Fig. 4.13).

The power of the IPG is decreased by a factor of exp(−1.7) = 0.18 from its maximum power
of 156 W to 28.5 W during approximately 4.5 s. At this stage we have typically 1.7×105 atoms in
each spin states with a temperature of 23.1±0.4µK measured using a time-of-flight technique.
From these data we can estimate the collision rate and the phase space density before and after
this step of evaporation shown in Table 4.1.

Parameters Initial Final

Atom number (per spin) 2.2× 106 3.4× 105

Temperature 150µK 23µK
Phase space density 2.4× 10−5 2.7× 10−2

Collision rate 300 5.2× 104

Table 4.1: Key parameters for the first step of evaporation.
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Figure 4.14: The sequence for the evaporation: After the optical transport, the magnetic field are
switched on to 832 G during about 100 ms. The RF sweep as we presented previously is done once the
magnetic field is stabilized (step 0), and a wait time of 0.3 s is added before we perform any evaporation.
A first intensity ramp (step 1) of the IPG beam allows to transfer the atoms into the crossed dipole trap.
Two following linear ramps (step 2 and 3) on the IPG and the ALS power consists the evaporation in the
crossed dipole trap. Then the power of the IPG is decreased to minimum in 500 ms and switched totally
off for another 100 ms using a TTL signal. A further power decrease of the ALS beam (step 4) allows one
to finish the evaporation in the single ALS beam. Before imaging, the atoms are held in the final ALS
power value for another 500 ms. Finally, the atoms are imaged at high field.
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The presence of the ALS beam provides strong confinement in the axial direction of the IPG
beam. Hence at the end when all atoms are in the crossed dipole trap, the phase-space density
and the collision rate are particularly high, which benefits the following evaporation. Using
these parameters, we estimate an evaporation efficiency γIPG = 3.7.

Evaporation in the crossed dipole trap

Once the atoms are totally transferred into the crossed dipole trap, we decrease simultaneously
the power of the two beams linearly. We measure the atom number and the temperature
corresponding to different power levels shown in Fig. 4.15.
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Figure 4.15: Atom number, temperature (left) and PSD (right) evolution in the crossed dipole trap, and
later, in the single ALS beam. The evaporation begins in the crossed dipole trap with the ALS beam
power at 15.4 W. When both beams are decreased by about 60% of their initial values, we switch off the
IPG beam and finish evaporation in a single ALS beam. The phase space density is computed using Eq.
(4.11).

From Fig. 4.15 we can see that by decreasing the power of the crossed dipole trap to 40% of
its initial values, we gain almost a factor of 3 in temperature while losing only about 30% of the
total atoms. The phase space density in this case increases from 2.8× 10−2 to 1.1× 10−1, which
is about only one order of magnitude below the degenerate regime (∼ 100).

The evaporation efficiency for this step of evaporation in the crossed dipole trap can be
calculated using the aforementioned data to be γCDT ≈ 4.1.

Evaporation in single ALS beam

Since the power of the IPG beam is not well controlled, especially in low power, we switched it
off during the evaporation and then finish the evaporation in a single ALS beam. The switch-off
of the IPG beam is done by ramping the Owis mount to the position corresponding to the
minimum intensity during 500 ms and then wait for another 100 ms before performing further
evaporation. During the 100 ms hold time, the IPG is switched off totally via a TTL signal to
ensure no leakage light is present.
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Since we finish the evaporation in a single ALS trap, the trapping in the ALS beam’s axial
direction must be reinforced by the curvature coils, whose trapping frequency in the horizontal
plane is estimated to be around 20 Hz. The duration for ramping off the IPG is chosen to be much
larger than the inverse of the minimum trapping frequency, so the operation can be considered
as slow.

Parameters IPG On IPG Off

Atom number (per spin) 1.2× 105 1.2× 105

Temperature 8.3µK 5.5µK
Phase space density 0.14 4.2× 10−3

Collision rate 7.1× 104 3.2× 103

Table 4.2: Key parameters before and after switching off the IPG beam.

Further performance of the evaporative cooling in the single ALS beam is also shown in Fig.
4.15. And the key parameters before and after switching off the IPG beam is shown in Table 4.2.
When switching off the IPG, we observe a decrease in temperature by slightly less than a factor
of two, with no visible atom loss. This means that we perform in this stage a slow and efficient
evaporation, in which very few atoms are lost, and we maintain an almost constant η = U0/kBT

(since the ALS beam and the IPG beam have roughly the same trap depth). However, since we
lost the trapping in the IPG radial direction and the vertical direction, the phase space density
after switching off the IPG has drastically decreased by more than one order of magnitude to
4.2× 10−3.

Nevertheless, the evaporation in the single ALS proves to be no less efficient than the
evaporation in the crossed dipole trap, since the collision rate in a single ALS beam, although
much smaller than that in the crossed dipole trap, still stands at several 103 s−1, which ensures
the following evaporation in the single dipole beam to be efficient. By decreasing the power of
the single ALS beam to about 500 mW, we lose roughly a factor of two in atom number but the
temperature decreases by a factor of 10, which leads to nearly fifty-fold increase in the phase
space density up to D ≈ 0.2. The efficiency of this second stage of evaporation in the single ALS
beam has a efficiency of γALS ≈ 6.2.

4.7 Summary

In this chapter we have presented the high power laser setup, dedicated to the loading from a
gray molasses in the MOT chamber, the optical transport into the science cell and the evaporative
cooling in the science cell.

In particular, we achieve high atom number (at most 7.5× 106, and more than 4× 106 on a
daily basis) loading in the IPG trap in the MOT chamber and we transport them into the science
cell with high efficiency (80%). After balancing the two spin states with a radio-frequency sweep,
a first evaporation in the crossed dipole trap and a further evaporation in the single ALS beam
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allows to increase the phase space density of the cloud to roughly 0.2.
Further evaporative cooling that allows to obtain a degenerate Fermi gas, and the characteri-

zation about such a gas, shall be presented in the next chapter.



Chapter 5

A unitary Fermi superfluid

This chapter describes the last step towards the main goal of this PhD thesis, which is reaching
the superfluid state for a strongly-interacting Fermi gas. The work presented here focuses on
the emblematic unitary regime where the scattering length a diverges and the system features
universal properties. In the following, we provide two complementary proofs of superfluidity.
On the one hand, we use thermometry based on the equation of state (EoS) that was already
precisely measured [4, 5]. With this method we show that our samples reach temperatures as
low as 0.05TF, well below the critical temperature Tc = 0.17TF. On the other hand, we prepare
a spin-imbalanced unitary Fermi gas in the phase-separation regime, that is where a superfluid
core is surrounded by a halo in the normal phase. By choosing a spin-imbalance sufficiently
low to stay below the Clogston-Chandrasekhar limit but large enough to maintain a prominent
superfluid region, we were able to reveal the so-called "superfluid plateau" via simultaneous
spin-selective imaging.

5.1 Quantitative analysis for probing a degenerate Fermi Gas

5.1.1 Ideal Fermi gas

For an ideal non-interacting Fermi gas, when the thermal energy is much larger than the energy
level spacing of the trap, the density of states is approximated by the so-called Thomas-Fermi
approximation, which reads:

f(r,p) =
1

e
β
(

p2

2m
+V (r)−µ

)
+ 1

, (5.1)

where r (resp. p) is the coordinates in real space (resp. momentum space), and V (r) the
external trapping potential and µ the chemical potential at the center of the trap. The parameter
β ≡ 1/(kBT ).

The real-space density distribution n(r) in such a potential V (r) is obtained by integrating
over the whole momentum space

n(r) =

∫
dp

(2π~)3
f(r,p) = − 1

λ3dB
Li3/2

(
−eβ(µ−V (r))

)
, (5.2)
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where λdB is the thermal de Broglie wavelength and Lin denotes the polylogarithm of n−th
order.

Suppose that now the cloud is in a harmonic trap with

V (r) =
1

2
mω2

xx
2 +

1

2
mω2

yy
2 +

1

2
mω2

zz
2, (5.3)

the one dimensional density profile n(z) can be obtained by integrating(a)over the coordinates x
and y:

n(z) =

∫ +∞

−∞
dx
∫ +∞

−∞
dy n(r)

=

∫ +∞

−∞
dx
∫ +∞

−∞
dy
{
− 1

λ3dB
Li3/2

(
−eβ(µ−

1
2
mω2

xx
2− 1

2
mω2

yy
2− 1

2
mω2

zz
2)
)}

= − 1

λ3dB

2πkBT

mωxωy
Li5/2

(
−eβµ(z)

)
, (5.5)

where µ(z) = µ−mω2
zz

2/2.

Different definitions of the Fermi temperature The expression Eq. (5.5) is suitable for fitting
the one-dimensional doubly integrated density profile of an elongated gas. From the fit we
can extract the temperature of the gas T and the parameter βµ, which is directly related to the
degree of degeneracy T/TF. However, one must distinguish two different definitions of the
Fermi temperature TF.

The first definition of TF is based on the highest energy level of an arbitrary potential
occupied by an atom at zero temperature. In particular, in the case of harmonic trapping, this
energy can be expressed in terms of trapping frequencies EF,HO = kBTF,HO = ~ω(6N)1/3, with
N being the atom number for one spin state. In this regime, the degeneracy parameter T/TF can
be readily obtained by integrating Eq. (5.5) over the coordinate z:

T

TF

∣∣∣∣
HO

=
[
−6Li3(−eβµ)

]−1/3
. (5.6)

The second way of defining TF is through the local density of the gas n for each spin state,

TF =
~2

2mkB
(6π2n)2/3. (5.7)

This definition means that for each density n, one can associate a value of TF with it. For a
harmonically trapped gas, since the density is not uniform, in the framework of the local density
approximation (LDA), the Fermi energy defined in this way is also space-dependent. Since
the temperature of the gas, while at equilibrium, is uniform, the degeneracy value T/TF is
space-dependent as well. In particular, for a gas at the trap center, the density in 3D, according
to Eq. (5.2), is given by

n(0) = − 1

λ3dB
Li3/2

(
−eβµ

)
, (5.8)

(a)The expression ∫ +∞

−∞
dαLin

(
ze−α

2
)
=
√
πLin+1/2(z) (5.4)

is used.
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if we assume that V (0) = 0.
With Eq. (5.7) and (5.8), one obtains a local value of T/TF at the center of the trap:

T

TF
=

4[
6
√
πLi3/2(−eβµ)

]2/3 . (5.9)

The difference between Eq. (5.6) and Eq. (5.9) is that the former is a global quantity, deter-
mined by the global trap shape and depth, as well as the total atom number, while as the latter
is a local quantity, which depends on the local gas density. Since in our experiment we have
an harmonic trap, in order to describe the local thermodynamic quantities and properties, the
second definition is more appropriate. In the following, unless explicitly explained otherwise,
the T/TF is the local degeneracy value at the center of the trap.

Pressure Note that the pressure of the gas P0, thanks to the to the Gibbs-Duhem identity, is
proportional to the integrated density [119]:

P0(µ(z), T ) =
mωxωy

2π
n(z). (5.10)

Therefore, the pressure of the gas, using Eq. (5.5), can be expressed as:

P0(µ(z), T ) = −kBT
λ3dB

Li5/2
(
−eβµ(z)

)
. (5.11)

5.1.2 Strongly interacting Fermi gas
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Figure 5.1: a) The dependence of the correction function as a function of βµ. The red points are the
experimental data from MIT. The blue points are Virial expansion in the high temperature limit to
the third order. The dark green points are the extension at low temperature limit using the excitation
spectrum (see text for details). b) The dependence of the local value of T/TF as a function of βµ, extended
using the expansion in the high- and low-temperature limit.

Although the density profile in the strongly interacting regime is modified by the presence of
interaction, we can still use the property of a gas at unitarity in order to extract the temperature.
Since in the unitary regime, the only relevant energy scale is the Fermi energy, the fit function
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can be related to that in the weakly interacting case, multiplied by a "correction function" that
depends only on βµ. In order words, the density profile of a unitary Fermi gas can be written as:

nu(z) =
1

λ3dB

2πkBT

mωxωy

[
−Li5/2

(
−eβµ(z)

)]
× ψ [βµ(z)] . (5.12)

Such a function constitutes the pressure equation of state (EoS) of a unitary Fermi gas, and
has been first measured in our group [4] and later more precisely measured at MIT [5]. In
particular, for a homogeneous system, for each value of βµ, a ratio between the pressure of a
unitary Fermi gas and an ideal Fermi gas is determined as shown in the left plot of Fig. 5.1.
Since the pressure is directly proportional to the doubly integrated density [119], it essentially
gives the ratio between the doubly integrated density of a unitary Fermi gas and an ideal Fermi
gas.

Thanks to the thermodynamic relation

n =
∂P

∂µ

∣∣∣∣
T

, (5.13)

one can also obtain the density EoS, with which one can extract the relation between T/TF and
βµ, since

T

TF
=

4π

(3π2)2/3
1

(nλ3dB)2/3
. (5.14)

The relation between T/TF and βµ is shown in the right plot of Fig. 5.1.

High temperature limit In the high temperature limit, the pressure can be written as a sum of
increasing powers of the fugacity:

P (µ, T ) =
kBT

λ3dB

∑
j

bj

(
eβµ
)j
, (5.15)

which is called the Virial expansion, where the coefficients b1 = 1, b2 = 3
√

2/8 [120] and
b3 = −0.29095295 [121] have either been determined analytically or numerically. We extend the
MIT data by the third order Virial expansion in the high temperature regime as shown in the
blue points in the left plot of Fig. 5.1. They connect very smoothly together. Also we see that the
value of P/P0 approaches 1 when βµ→ −∞, which means that the pressure of a unitary gas
and that of an ideal Fermi gas, as we expected, become the same for high temperatures.

The relation between T/TF and βµ, in this high temperature regime, can be similarly obtained
using Eq. (5.13) and Eq. (5.14). The extension with the MIT data (right plot in Fig. 5.1), as we
see, is equally smooth.

Low temperature limit In the limit where T � TF, the temperature dependence of the energy
of the gas can be approximated by elementary excitations present in the superfluid phase:
boson-like Bogoliubov-Anderson phonons and fermion-like Bogoliubov quasi-particles. The
energy contributions of these terms can be expressed as follows [122]

εph+qp(n, T ) =
3

5
nEF

[
ξ +

√
3π4

16ξ3/2

(
kBT

EF

)4

+
5

2

√
2π∆3kBT

E4
F

exp

(
− ∆

kBT

)]
, (5.16)
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where ξ = 0.376 is the Bertsch parameter, EF the Fermi energy for a given density n and ∆ the
gap of the system

∆ ≈
(

2

e

)7/3

EF exp

(
π

2kFa

)
. (5.17)

In the unitary limit, ∆ ≈ (2/e)7/3EF since 1/kFa→ 0.

Knowing the thermodynamics relation for the entropy s and the free energy f ,

s =

∫ T

0

dT ′

T ′
∂ε

∂T ′
,

f = ε− T · s,

where the energy ε = εph+qp given by Eq. (5.16), for given values of T and T/TF, we can calculate
the corresponding values of βµ and the pressure P :

βµ =
1

kBT

(
∂f

∂n

)
, (5.18)

P =
2ε

3
. (5.19)

Using these quantities we can extend the curveP/P0 as a function of T/TF to the low temperature
side, as shown in the green points in Fig. 5.1.

We show in Fig. 5.2 the simulated one dimensional cloud profiles for different values of T/TF
at the center of the trap. We observe no obvious difference between the two density profiles
when the cloud is far from degenerate. When the temperature is decreased, the density profile
of a unitary gas becomes peakier and deviates from the non-interacting case, which is a direct
signature of the attractive character of the interactions.

5.2 Experimental procedure and results

Experimentally we follow the same intensity ramps as we presented in the previous chapter to
go to lower power values. At each step of the evaporation, we take in situ images of the cloud
and we extract the temperature T as well as the degeneracy in terms of T/TF at the center of the
cloud as shown in Fig. 5.3.

5.2.1 EoS fit vs. TOF measurement of the temperature

In order to confirm the validity of the fit, we compare the measured temperature from the EoS
fit to the measured temperature using the time-of-flight expansion (Fig. 5.4), for relatively high
powers of the ALS beam as the end of evaporation.

Fig. 5.4 shows that the temperature measured using both methods are globally in very good
agreement. Slight discrepancies, however, are seen in higher temperatures. This is because at
high temperatures the cloud has longer axial extension and explore the region where the trap is
not exactly harmonic. In this regime, the EoS fit is not precise. At low temperatures (close to but
above degeneracy), the agreement of the two measurement is excellent.
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Figure 5.2: The simulated strongly interacting (in blue) 1D cloud profiles using equation 5.12 for different
degrees of degeneracy: a) T/TF = 5, b) T/TF = 1, c) T/TF = 0.5 and d) T/TF = 0.1. We also plot (in red)
the 1D cloud profiles for an ideal gas, with the same atom number and temperature using Eq. (5.12) for
comparison. we see that for an increasingly degenerate Fermi gas, the profiles become narrower than
their non-interacting counterparts. The parameters for the trap are chosen as ωx = ωy = 2π × 1 kHz,
ωz = 2π × 25 Hz.
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Figure 5.3: Cloud in the ALS trap at different stages of evaporation: a) PALS = 320 mW; b) PALS =

260 mW; c) PALS = 180 mW; d) PALS = 110 mW; e) PALS = 70 mW; f) PALS = 30 mW. The data on the
right panel are the doubly integrated density profiles corresponding to the images on the left panel. The
red curves are the EoS fits, from which one can deduce the values of T/TF at the center of the trap. We
observe the increase in OD at the center of the trap in the course of evaporation. At the end of evaporation
we typically end up with 2.4(2)×104 atoms per spin state with T/TF = 0.06(3). Image taken in the "Img
2" direction as depicted in Fig. 4.8.



64 Chapter 5. A unitary Fermi superfluid

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

Figure 5.4: Temperature of the cloud measured using the EoS fit (red circle) and the time of flight
expansion (purple star). The agreement of the two curves converges at low temperature. For the lowest
temperature the corresponding T/TF ∼ 3, which means the gas is still in the classical regime.

At even lower temperatures (not shown on Fig. 5.4), we expect the two data to differ again,
as the TOF expansion will give a measure of the release energy rather than the temperature itself.
In this case, the TOF expansion is no longer a trustworthy way to measure the temperature and
one should rely on the EoS fit instead.

5.2.2 Evaporation performance

Following the evaporation in the single ALS beam, when decreasing the beam power to roughly
350 mW we reach the degenerate regime (T/TF < 1). The deeply degenerate regime (T/TF < 0.2)
is attained when the power is further decreased to 70 mW. In the end, we decrease the power
of the ALS to 30 mW to obtain a deeply degenerate unitary Fermi gas with T/TF = 0.06(3) for
typically 2.4(2)× 104 atoms per spin state(b). The evolution of atom number, temperature, and
degeneracy parameters are shown in Fig. 5.5.

5.3 Fermionic superfluidity

5.3.1 Superfluid transition

Superfluidity in fermionic states of matter is closely linked to pairing. On the two-particle
level, pairing implies the existence of a bound-state in the inter-particle potential. However,
for a many-body system, pairing can occur without two-particle bound-states, as was first
discovered by Cooper [10]. Cooper-pairs, consisting of weakly-bound fermions of opposite spin
and momentum, feature a length scale that greatly exceeds the inter-particle spacing.

(b)Note that we do not aim for high atom numbers on this experiment, as the samples will be probed under a
microcope eventually.
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Figure 5.5: Left: The atom number (per spin state) and temperature evolution in the ALS beam till
degeneracy. Right: The phase space density and the local T/TF value measured using EoS fit.

While at zero-temperature, the system always forms a superfluid, irrespective of the under-
lying nature of the pairs, the signatures of superfluidity vastly differ for the two limits of tightly
bound molecules and long-range cooper pairs. Well established techniques for bosonic systems
such as the measurement of the condensate fraction through the momentum distribution only
work for the molecular fermionic superfluid [38, 40, 123, 124].

In this thesis, most experiments were performed at unitarity, which lies in the crossover
regime between the two pairing limits. Therefore, a simple detection of superfluidity through the
presence of a condensate peak in the momentum distribution is not possible. In our experiments,
we produce routinely atomic gases with T/TF = 0.06(3) at unitarity, which is well below the
known transition of Tc/TF = 0.17 [4, 5]. While the thermometry method employed by us is
well-established in the research field and typically yields reliable results, we nevertheless aim
at the measurement of an independent signature of condensation, which is synonymous to
superfluidity in 3D.

The question of how to identify a condensate fraction in a strongly interacting Fermi gas,
nevertheless, is not easy, and was the subject of intense research. In the following, we discuss
several methods that have been used in the past.

5.3.2 Experimental methods to probe superfluidity

Rapid ramp

The rapid ramp technique is first developed in the JILA group [42] on 40K and later adapted by
the MIT group [41] on 6Li. The basic idea is to prevent the fermion pairs formed at unitarity to
dissociate by quickly sweeping towards the BEC side.

This method not only allows one to reveal the momentum distribution at unitarity, but across
the whole BEC-BCS crossover region as shown in Fig. 5.6, which reveals the double structure
as the signature of a BEC(c). However, this method allows for qualitative evaluation but does

(c)Note that this method proves the gas is a molecular BEC, not directly its superfluidity, since Bose-Einstein



66 Chapter 5. A unitary Fermi superfluid
shown in Fig. 42. The drastically reduced interaction results in a clear separation of the

condensate from the “thermal” or uncondensed part of the cloud (21).

Fig. 42. – Fermion pair condensates. Axial density of the atomic cloud after switching off
the optical trap, a rapid ramp to zero field (in < 100µs), further expansion (for 10 ms), and
dissociation of the resulting molecules by ramping back across resonance. The initial field B0,
the number of fermion pairs N , the condensate fraction and the interaction parameter 1/kF a
where a) 745 G, 700 000, 47%, 1.2; b) 835 G, 1.4× 106, 81%, 0.0 (resonance); c) 912 G, 1× 106,
49%, -0.5.

The condensate fraction was determined by fitting a bimodal distribution to the

profiles like those in Fig. 42, a parabola for the central dense part and a gaussian for the

thermal background (see chapter 3). Remarkably large condensate fractions were found

throughout the entire BEC-BCS crossover, with a peak of 80% at B ≈ 820 G, close to

the resonance, but still on its BEC-side (see Fig. 43).

The high condensate fraction is a hint that the pairs in the strongly interacting regime

on the BCS-side of the resonance are still smaller than the interparticle spacing, not

larger, as one would expect for conventional Cooper pairs. An intuitive assumption is

that during the magnetic field sweep an atom preferably forms a molecule with its nearest

neighbor (22). In the case of localized pairs, molecules are then formed from the original

“Cooper partners”. In the case of delocalized Cooper pairs, molecules might rather form

(21) At zero field, the scattering length between molecules should be on the order of the singlet
scattering length of lithium atoms, which is about 40 a0. The exact value is not known. In fact,
the residual mean-field interaction at zero field is so low that the condensate practically does
not expand if the rapid ramp is performed immediately after switching off the trap. For this
reason, it is sometimes beneficial to let the cloud expand by some amount before the rapid ramp
is performed. This converts some of the interaction energy in the cloud into kinetic energy,
which allows one to “choose” the final expanded size of the molecular condensate.
(22) This should happen as long as the relative momentum is not larger than the inverse distance,
i.e. the neighbor populates the same phase space cell. This is the case in the regime of quantum
degeneracy, and it is experimentally confirmed by the almost 100% conversion from atoms into
molecules (see 2

.
4.2).
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Figure 5.6: The rapid ramp technique that reveals the bimodal distribution of a fermionic pair condensate
across the Feshbach resonance. Taken from [125].

not allow for adequate quantitative measurement, since the rapid ramp does not necessarily
conserve the condensate fraction before and after the field ramp.

Vortices lattice

Direct observation of superfluidity is the formation of quantized vortices or vortex arrays after
stirring the cloud to excite surface excitations, as shown in Fig. 5.7. This is a direct proof of
superfluidity since only superfluid with appropriate excitation can host such vortex lattices.

Fig. 59. – Observation of vortices in a strongly interacting Fermi gas, below, at and above the
Feshbach resonance. This establishes superfluidity and phase coherence in fermionic gases. After
a vortex lattice was created at 812 G, the field was ramped in 100 ms to 792G (BEC-side), 833G
(resonance) and 853G (BCS-side), where the cloud was held for 50 ms. After 2ms of ballistic
expansion, the magnetic field was ramped to 735G for imaging (see text for details). The field
of view of each image is 880 µm x 880 µm. More recent version of Fig. 3 in [68].

need to be analyzed, as in the case of the observation of condensation via rapid ramps.

The conclusion is that vortex lattices cannot form during the 10 ms of expansion at the

imaging field, on the BEC-side of the resonance. We observed that the vortex lattice

needs many hundreds of milliseconds to form in the stirred cloud. This is the same

time scale found for the lattice formation in atomic BECs [332, 333]. This time scale

was found to be independent of temperature [333] and seems to represent an intrinsic

time scale of superfluid hydrodynamics, dependent only on the trapping frequencies. It

is also in agreement with a theoretical study of vortex formation in strongly interacting

Fermi gases [336]. When a thermal cloud is slowly cooled through the transition tempera-

ture [330], the condensate first forms without a vortex. As the condensate grows, vortices

are nucleated at the surface and then enter the condensate [318]. When a thermal cloud

is suddenly cooled, a condensate with phase fluctuations will form [337, 338] which can

arrange themselves into a vortex tangle. In either case, one would expect a crystalliza-

tion time of at least several hundred milliseconds before a regular vortex lattice would

emerge. Also, it takes several axial trapping periods for the vortex tangle to stretch out.

Even if these time scales were not known, it is not possible to establish a regular vortex

lattice with long-range order in a gas that expands at the speed of sound of the trapped

gas. Opposing edges of the expanding cloud simply cannot “communicate” fast enough

with each other.
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Figure 5.7: Vortex lattice excited in a ultracold Fermi gas at unitarity. Taken from [47].

Spin imbalance

The technique that we present in the following, in the framework of this thesis, involves
introducing a population imbalance between the two spin states [126]. In fact, for a sufficiently
cold imbalanced Fermi gas, there exists a superfluid core, where the two spin species are fully
paired (n1 − n2 = 0). Using the Gibbs-Duhem relation ni = ∂Pi/∂µi (i=1,2), inside the core,

∂P1

∂µ1
− ∂P2

∂µ2
= 0. (5.20)

condensate does not always necessarily implies superfluidity. In three dimensional space, however, the two happens
at the same time.
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Since the pressure Pi is proportional to the integrated density ni and in the axial line

∂

∂µ1
=

∂

∂µ2
= − 1

mω2
zz

∂

∂z
, (5.21)

then combining the above two equations we have

∂(n2 − n1)
∂z

= 0. (5.22)

This means that in the central region of a spin-imbalanced superfluid, the difference of the
doubly integrated density profiles of the two spin species shows a plateau(d).

5.3.3 Implementing spin imbalance

Implementing a spin imbalance in our experiment is very easy, since we can control the spin
populations at the beginning of the evaporation with an RF sweep, as presented in the previous
chapter. By varying the RF sweep speed, we can thus control the spin imbalance between the
two spin states at the end of the evaporation.

Since the evaporation is a non-linear process, the spin imbalance we introduce also affects
the efficiency of the whole evaporation. If the gas is too polarized in the beginning, it is possible
that it becomes totally polarized during the evaporation before reaching degenerate regime.
This means one must carefully choose the RF sweep duration to have a proper spin-imbalance
for revealing the existence of a superfluid core.
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Figure 5.8: Left: Images taken for the two spin states |1〉 and |2〉. In this shot there are approximately
twice as many atoms in spin state |1〉 than in spin state |2〉. Right: Atom numbers for the two spin states
at the end of evaporation with PALS = 30 mW, as a function of the RF sweep duration applied at the start
of the evaporation.

(d)Note that this method is also not a direct proof of superfluidity. This method only shows there are equal number
of atoms in the core region, and, as a result, is a proof of pairing. On top of that, it has been shown that only in the
region where the spin difference shows a plateau that one can excite vortices [127], which confirms the superfluidity
in the region where a plateau in density difference is present.
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Double spin imaging

At high field, the detuning between imaging frequencies for the two spin species is about
80 MHz. In order to be able to image the two spin states at high field in situ, we use the camera
in the double shutter mode. This mode allows the camera to take two successive shots with
a minimum of 1µs time lapse between them. In practice, we take two images with two light
pulses resonant with the imaging transition for the two spin species respectively of the same
duration 7µs. The two imaging pulses are lapsed with a interval of 3µs.

Typical in situ images of the double spin species are shown in Fig. 5.8. By controlling the
duration of the RF sweep, we can achieve easily almost twice as many atoms in the majority
spin state as in the minority spin state at the end of evaporation.
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Figure 5.9: a): The difference (green dots) of the doubly integrated density profiles of the two spin
species (red and blue) shows a plateau in the central region. The ALS beam power at the end of the
evaporation is PALS = 30 mW. The presented data is an average of 40 identical images in order to decrease
the noise level. The plateau in the population difference is clearly present. The lines in the picture are
for guide-to-the-eye purposes only. b): More quantitative approaches to be convinced of the presence of
a plateau. We fit the population difference (on the left side of the picture) with a gaussian (gray curve)
and a gaussian with central plateau (green). The data points follows the green curve clearly much better
than the gray curve. c): we compute the residual between the data and the gaussian fit (gray curve in b).
We see systematic deviation from the gaussian fit at the center and around the "shoulder" of the plateau.
And this deviation can be very well followed by the green curve, which is the difference of the two fit
curves in b).

5.3.4 Superfluid plateau

In Fig. 5.9, we show a plateau for the difference in the doubly integrated density profiles at
the end of evaporation with PALS = 30 mW, with the population of the majority species being
N1 = (2.0 ± 0.2) × 104 and the minority species N2 = (1.2 ± 0.1) × 104. This region where
a plateau is present corresponds to the region where the individual atoms form pairs. The
link between the density difference plateau and superfluidity was demonstrated at MIT in
experiments combining spin imbalance and vortex lattices [127].
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More quantitative analysis for the presence of the plateau can be performed by fitting the
difference with a simple gaussian and a plateaued gaussian in the center(e), respectively. By
computing the residual between the data and the gaussian fit, systematic deviation is found as
we see in Fig. 5.9 c) and can be well described by the difference of the two fits.

5.4 Summary

In this chapter, we have presented the production of a deeply degenerate Fermi gas in the
strongly interacting regime. A quantitative method using the EoS is applied to characterize the
degree of degeneracy of the obtained sample. We are able to produce deeply degenerate Fermi
gases with 2.4(2)× 104 atoms per spin state with temperature as low as 0.05TF.

Furthermore, we have been able to imbalance the spin population of the sample in a well-
controlled manner and with it, provide a first proof for superfluidity in such an imbalanced
Fermi gas.

(e)Note that the wings of the density difference is, in principle, not a simple gaussian. The totally polarized phase
being a non-intereacting Fermi gas, its doubly integrated profile can be described by Eq. (5.5). But the density profile
of the polaron phase between the superfluid core and the normal phase cannot be simply described by a given
expression. The plateaued gaussian fit here is simply for illustrating the existence of a central plateau and should not
be used as a quantitative formula.
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Chapter 6

Towards single atom imaging of a
unitary Fermi gas

In this chapter, we describe the ongoing work towards the study of strongly interacting Fermi
gases, using a quantum gas microscope with single atom resolution.

We start with an overview of quantum gas microscopy and its applications. Then we present
our design for applying this technique on a bulk system composed of strongly interacting
fermions. In particular, we present the hardware including the pinning lattice setup and the
high resolution objective. At the end, we explain the principle of Raman sideband cooling - the
laser cooling technique in a deep lattice that we intend to apply to achieve the goal of single
atom imaging.

6.1 State of the art

In a quantum gas microscope, utracold atoms are pinned in space by an optical lattice, and
imaged with a high resolution objective, which gives access to the individual atom position
information, at the scale of a single lattice site. This technique was first realized with bosonic
87Rb, and allowed the space-resolved study of the superfluid to Mott insulator transition [58, 59].
It also proved a powerful tool for the study of spatial dynamics and correlations [128]. The single-
atom imaging of ultracold fermions, which is more challenging, was realized with fermionic
species 40K and 6Li a few years later [60–64]. Once again, it allowed unprecedented access to
the physics of fermions in a lattice, allowing the study of equilibrium [31] or out-of-equilibrium
[129] properties and the measurement of density and spin correlations [81, 130].

The single atom imaging of individual atoms presents two main challenges. First, the
imaging system must be able to resolve the typical lattice spacing, which is of several hundreds
of nanometers. Since the atoms are placed in the periodic structure of the lattice, the identification
of their position is facilitated, and a resolution of the order of the lattice spacing is sufficient.
This nevertheless requires the use of a high-aperture objective.

The second challenge is to collect enough information about the position of the atom without
disturbing them. The imaging technique of choice so far has been fluorescence imaging, for
which high signal-to-noise ratios can be achieved. However, in order to collect enough fluores-
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cence photons while maintaining the atoms in their respective sites in spite of the recoil energy,
the fluorescence process must be combined with a laser cooling technique(a).

In the following we will present why and how we plan to implement single-atom imaging
of atoms in our experimental setup.

6.2 Quantum gas microscope on a bulk Fermi gas

Quantum gas microscopes have only been used so far to study lattice physics of bosons or
fermions: before performing imaging, the atoms were already evolving in low-energy bands of
an optical lattice (which can be the same as, or different from the one used to pin them in space
for imaging). A highly interesting perspective is to extend this technique to the study of a bulk
system. Of particular interest here are the strongly interacting Fermi gases we can produce in
our setup: a microscope would allow to probe directly the correlations and complex dynamics
of this truly N -body problem, where correlations exist between all particles.

The goal of our experiment is then to measure, with a quantum gas microscope, density
and spin correlation functions across the BEC-BCS crossover. These correlations are of course
difficult to obtain on the bulk. For instance, the measurement of the contact(b), has required
several attempts and involved a variety of indirect probes [50, 53, 54, 56, 57] before a satisfactory
quantitative picture was reached for the unitary gas. With a quantum gas microscope, direct
measurements can be obtained, for a whole range of distances. It can, for example, allow direct
access to the build-up of correlations across the superfluid transition, or to the spin correlations
that should arise in a polarized (imbalanced) Fermi gas, in the so called FFLO phase.

In order to realize such a microscope apparatus, with single-site resolution, we have to
achieve three main requirements:

• Atoms are pinned down in position for imaging: this requires a three dimensional optical
lattice, which allows us to "project" the atoms on individual sites, and in which we can
then perform fluorescence imaging,

• High resolution imaging: this requires a high-aperture imaging system, which will typically
have a short depth of focus. In order to image the atoms, we will have to select a 2D plane of
the pinning lattice, in the imaging plane of the objective.

• Fluorescence extraction and cooling: we need to collect fluorescence from the atoms, while
cooling them in order to prevent hopping in the lattice.

In the following, we present the current progress towards achieving these requirements.

(a)With the rare exception of heavy atoms like Ytterbium [131].
(b)The quantity of the contact C is proportional to the short range limit of the density-density correlation function

and is defined as

〈n↑(0)n↓(r)〉
r→0−−−→ C

16π2r2
,

where r is the distance between two particles with different spins.
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6.2.1 Pinning lattice

As explained above, we have to isolate a 2D plane of atoms in the focal plane of the objective,
and freeze them in space on this plane. For this reason the pinning lattice is composed of a
2D horizontal lattice setup combined with a 1D vertical lattice setup. The main interest in our
design of these setups is to obtain a sufficiently large potential depth Umax and a lattice spacing
a compatible with imaging setup.

Two-dimensional pinning lattice setup

With the laser power available (45 W ALS at λL =1064 nm), we have considered a number of
options about the geometry of the pinning lattice setup. At last, we decided to implement a
triangular lattice instead of a standard square lattice, since a triangular lattice setup would allow
for a larger lattice depth and a resolution more adaptable to the planned objective. Details of the
design and setup of the pinning lattice can be found in [132].
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Figure 6.1: The simplified pinning lattice setup.

The setup of the pinning lattice is presented in Fig. 6.1. The laser beam goes through an
AOM and can be rapidly switched on and off. The diffracted order of the beam is focused in
the science cell with a waist of 70µm, and reflected twice to create a triangular lattice geometry.
Due to practical choices, the angle between the three beams are close to but not exactly 120°.
The effective depth of the lattice is kB · 2.2 mK and a lattice spacing of a = 710 nm, which is
comparable to the resolution of the objective that we will present in section 6.2.2.

Vertical 1D lattice

The depth of the focus for the high resolution objective is typically several µm. This is much
smaller than the typical size of the cloud after evaporation, which is on the scale of several
tens of µm. Therefore, it is necessary to select one slice of the atoms, at the µm scale, before
performing single atom imaging.

The setup intended for this purpose is a vertical 1D lattice, which involves two counter-
propagating beams(c), leading to a separation of az = λL/2 ≈ 530 nm. This length determines

(c)A scheme where the vertical lattice is realized via two angled beams is also being studied at the moment.
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the vertical length scale of a slice of cloud confined in such a lattice, and is smaller than the
previously mentioned depth of focus.

In addition, in order to select this single plane of atoms while removing the other planes, we
plan to use magnetic gradients provided by the curvature coils or the Feshbach coils, combined
with a microwave transfer technique [133].

Additional comments on the lattice filling

For probing a superfluid Fermi gas in the unitary limit, ideally it is desirable to reach tempera-
tures of T ≈ 0.1TF. In this regime, a compromise has to be made concerning the density of the
cloud: On the one hand, a dilute cloud would decrease the chance of having more than one atom
per site and hence avoid their loss through light-assisted collisions during imaging [134]. Also,
a dilute cloud has the benefit of allowing for several empty sites between two occupied ones, so
that the extracted correlation functions are not subject to the discretization introduced by the
lattice; On the other hand, since the Fermi temperature is directly linked to density, in order to
produce deeply degenerate Fermi gas at T ≈ 0.1TF that is dilute, the absolute temperature has
to be ultralow, which is not always straightforward to achieve experimentally. Nevertheless, as
we will see below, the current performances of the experiment are very promising in this regard.

The Fermi temperature TF of our atomic cloud in the superfluid regime or in the vicinity
of the transition, typically ranges from 100 nK to 300 nK at the center of the cloud. With such a
Fermi temperature we can compute a density

n0 =
(2mkBTF)3/2

3π2~3
,

which equals to n0 = 0.14µm−3 for TF = 100 nK. The corresponding inter-particle distance is
then d = n

−1/3
0 = 1.95µm.

In each plane, the Wigner-Seitz cell for a triangular lattice is a hexagon and has an area of
A ≡ 2λ2L/3

√
3. The adjacent plane is separated by az and has an unit volume of A · az . Therefore,

the average site occupancy is A · az · n = 3 %.

This means that 3% of the total number of atoms will occupy the same lattice site and get lost
due to light-assisted collisions during Raman sideband cooling, which is in general acceptable(d).

6.2.2 High resolution objective

Specs of the microscopes

The high resolution objective is a custom objective from Special Optics. it has a working distance
of 15 mm and an effective focal length (EFL) of 27 mm. The numerical aperture of the objective
is NA=0.55.

(d)Note that, in this estimate, we ignore the effect of Pauli’s principle, which will spread further the atoms of the
same spin, and the effect of interactions which will bring closer atoms of opposite spins.
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1.2 High resolution objective
Because atoms are pinned in an optical lattice, a high-resolution objective is needed in order to be
able to resolve them. Indeed, in the case of a triangular lattice, the distance between two neighboring
sites, which is the closest two atoms can get, is 2λ/3. For λ = 1064 nm, this gives a distance of about
0.7 µm. Thus, if we want to be able to distinguish two atoms on neighboring sites, we need a resolution
of 0.7 µm (Rayleigh criterion).

The image of a point source at infinity by a perfect lens is an Airy disk. This results from the
diffraction of the incoming light on the lens finite aperture. In the focal plane, intensity is given by :

I(r) = I0

(2J1(x)
x

)2
, (1.1)

where r is the distance to the center of the screen, I0 is the intensity at the center of the screen, J1 is
the Bessel function of the first kind of order one, x = r 2πa

λf with a the radius of the lens, λ the imaging
wavelength (671 nm) and f the focal length. This intensity distribution, known as the Point Spread
Function (PSF) of the objective is shown in Figure 4. By denoting NA = a/f the lens numerical
aperture, we have x = r × 2πNA/λ. The resolution limit δ, given by the position of the first zero of
the point spread function, can be calculated using the fact that J1(x) = 0 first for x0 ≈ 3.83. This
leads to Eq. (1.2) for the resolution δ :

δ = x0
λ

2πNA ≈ 0.61 λ

NA . (1.2)

In order to take images of atoms, we use a Special Optics objective with a NA ≈ 0.55 and a
resolution δ ≈ 0.75 µm according to the specifications. The objective point spread function simulated
by the constructor is also shown in Figure 4. According to the Rayleigh criterion, the resolution is just
high enough to be able to distinguish between nearest lattice sites, which means that we would need
to be in the best possible conditions with our objective in order to be resolved. In practice, we will
probably still be able to resolve neighboring sites with a slightly lower resolution, like δ ∼ 0.8−0.9 µm.

The objective also has a working distance of 15 mm, an effective focal length (EFL) of 27 mm, a
depth of field (DOF) of a few µm and a field of view (FOV) of a few hundreds of µm. It is designed
to compensate for 3 mm of borofloat (optical index n = 1.47 at 670 nm) due to the glass cell walls.

Figure 4: Point spread function (PSF) simulated by the constructor (blue points), and best fit of an
Airy disk PSF (red line). The fit gives a resolution of δ = 0.75 µm.

7

Airy disk fit

Computed data from design

Figure 6.2: Computed point spread function of the objective. The Airy disk fit gives a resolution of
δ = 0.75µm.

The resolution of such a objective is given by the size of the point spread function, with the
following mathematical form:

I(r) = I0

[
2J1(r̃)

r̃

]2
, (6.1)

where r̃ ≡ πr/(λN) and Jν is the Bessel function of the first kind. Here r is the radial distance
from the optical axis in the focal plane andN = R/d, then ratio between the observation distance
R and d the aperture diameter. The resolution of the optical system is given by the first zero of
such a function, which corresponds to r̃ ≈ 3.8317, which gives the resolution δ = 1.22λN .

Shown in Fig. 6.2 is the computed point-spread function (PSF) of a point source for the given
objective. The fit yields a resolution of δ = 0.75µm, which is comparable to the pinning lattice
spacing, a = 710 nm.

Preliminary test

In a first test setup, we have measured the resolution of the objective using a pinhole, with a
diameter of 0.5µm.

The measurement is shown in Fig. 6.3. A fit using the diffraction limited Airy disk yields
a resolution of δm = 0.98µm. This result is larger than the computed value of 0.75µm. The
reason for this deviation is probably due to the size of the pinhole, which has a relatively large
uncertainty of 0.1µm on the diameter due to manufacture process. Furthermore, the focusing
lens used in combination with the objective in this test is not in accordance with the desired
specifications for our final setup [135]. Further tests of the objective will take place soon in more
optimal conditions but the result of this preliminary test is promising.
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A)

B)

Figure 6.3: A): The image of the pinhole on the camera. B): The intensity profile fit using diffraction
limited Airy disk function in the x and y direction. Both fits yield a resolution of δm = 0.98µm.

Choice of the magnification

The magnification of the imaging system directly determines over how many camera pixels the
PSF is distributed. On the one hand, it is not desirable to have a PSF which spreads over too
many pixels, since then each pixel will have very few photon counts. On the other hand, if the
PSF concentrates on only one or two pixels, it is more likely to be mistaken for noise, and the
determination of its position is less precise.

Indeed, if we have a point source emitting light and we collect n photons during unit time
τ using the objective, the integration of the intensity profile in the observation plane of such a
point source should give the optical power P . In other words,

P = nhν/τ =

∫∫
S
I(r)dS

=

∫ 2π

0
dθ
∫ ∞
0

I(r)rdr,

where hν is the energy of a single scattered photon, and I(r) the point spread function introduced
before.

The result of the integration gives the relation between the collected optical power P and the
intensity I0 at the center of the point spread function

P =
I0
π

(2λN)2 = 0.855I0δ
2. (6.2)

If the magnification of the system is M , on the camera plane the point spread function is
magnified by a factor M , and the central intensity is accordingly attenuated by a factor M2. In
other words, on the imaging plane,

P = 0.855I
(R)
0 ×∆2, (6.3)
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with ∆ = Mδ the resolution on camera and I(R)
0 = I0/M

2 the center intensity on the camera.
The number of photons hitting on the pixel with size Spix at the center of the PSF during

duration τ is hence

n(c) =
I
(R)
0 Spixτ

hν
=

nSpix

0.855M2δ2
. (6.4)

And with this number we can compute the statistical noise at the central pixel of the PSF, which
is given by 1/

√
n(c).
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Figure 6.4: The noise level at the center of the PSF and the PSF size as a function of the magnification M ,
for a duration of fluorescence collection of 1 s and assuming a number of 500 photons collected per atom
during this time.

The camera we plan to use(e) has a very high quantum efficiency η ≈ 0.95 and a pixel size
of Spix = 13µm×13µm. According to already existing quantum gas microscopes [61, 62, 64],
the objective typically collects several hundred photons per second per atom. And finally, the
resolution of the objective being δ = 0.75µm, we can plot the noise level (for 1 s of fluorescence
collected) and the PSF size in terms of magnification in Fig. 6.4. Here the PSF size is the size of
the disk with radius Mδ in terms of pixel numbers.

In practice, apart from the statistical noise, there is also electronic noise and noise induced by
stray light(f), which is not taken into consideration here. We see from the graph that a reasonable
choice of the magnification is around M = 40, where the statistical noise is only around 10%
and a single PSF spans over 10 to 20 pixels, which means that the PSF occupies 3 to 5 pixels in
one dimension.

(e)Andor iXon
(f)The actual electronic noise for Andor iXon is very low, typically less than 1 count per pixel in the exposition time

we consider here. The noise induced by the stray light, however, is a priori difficult to quantify.
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Figure 6.5: Simulated images for different magnifications and number of photons collected per atom. The whole camera chip is composed of 1700×1700
pixels. A)- D): for 500 photons collected per atom, with a magnification of M = 20 (A), M = 40 (B), M = 60 (C) and M = 80 (D). a)-d): The same magnification
values but for only 150 photons collected per atom. The noise level here is purely the statistical noise due to photon counts. Pictures taken from [135].
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A simulation about the quality of the images is presented in Fig. 6.5 with magnification
ranging from 20 to 80, with a density given by n0 = 0.14µm−3, for 500 photons collected per
atom (top row) and 150 photons collected per atom (bottom row), respectively. These images
show that for more than 150 photons collected per atom, it is possible to identify single atoms
with high fidelity, as is possible by the eye. When the collected photon number decreases, the
quality of the image deteriorates especially for large magnifications, as the PSF is spread on
more pixels and relative noise is higher (Fig. 6.5 D and d).

6.2.3 Raman sideband cooling

Fluorescence imaging gives excellent signal-to-noise ratio and has proven to be a successful
strategy for imaging single atoms in optical lattices. However, the successive scattering of
photons by each atom on a lattice site can lead to heating, causing the atom to get in higher
lattice bands and eventually leave the trap. Hence some cooling mechanism is necessary during
the imaging process.

For the first quantum gas microscopes with Rubidium, polarization gradient molasses
cooling was implemented for cooling and imaging 87Rb [58, 59]. However, this method is
not suitable for fermions like 6Li and 40K, given the unresolved nature of the hyperfine states.
Gray-molasses cooling has been demonstrated to work for 6Li, both in free space and in a dipole
trap [111], but not yet been extended to the application of a deep optical lattice.

For the fluorescence imaging of fermions, this has led to the use of two-photon techniques,
either Raman sideband cooling [61, 62, 64, 84] or EIT cooling [60, 63]. Since they rely on coherent
two-photon processes, far-detuned from the excited state, the unresolved excited state structure
is less of a problem.

Raman sideband cooling has been successfully demonstrated for single atom imaging of
6Li at low magnetic field, for the imaging of dilute and dense (Mott insulator) samples alike.
However, EIT cooling has been found to be less reliable at high densities [136]. We therefore
made the choice to implement Raman sideband cooling for the single-atom imaging in our
experiment.

The principle of Raman sideband cooling can be shown in Fig. 6.6. In total, three laser
beams are involved in the cooling cycle. Two laser beams with appropriate polarizations couple
in a Raman transition the following states: |g1〉 with vibrational quanta n, and state |g2〉 with
vibrational quanta n− 1. By using a beam with a third frequency to repump the atoms, those in
state |g2〉with the quanta n− 1 can decay back into the state |g1〉, with one quantum of vibration
removed. In this process the atoms emit light but are also simultaneously cooled. The emitted
photon during optical pumping is collected for fluorescence imaging.

An important criterion to know whether the cooling process is efficient is to compare the
amount of energy taken away by one cooling cycle and the recoil energy given to the atom
when emitting the fluorescence photon. The latter is simply given by Erec = ~2k2/2m with k the
wavevector of the scattered photon, and we have Erec/~ ∼ 2π × 70 kHz. The former is given by
the energy difference between adjacent lattice bands, which can be approximated by the energy
spacing of a harmonic oscillator for the lowest energy bands, and is given by ~ωtr, with ωtr the
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Figure 6.6: The principle of the Raman sideband cooling. The two Raman beams are denoted in blue.
The repumper beams are denoted in red.

trapping frequency in a lattice well. For the available power P = 35 W and a waist of 70µm, we
can achieve an on-site trapping frequency of ωtr = 2π × 1.74 MHz.

A useful parameter is then the Lamb-Dicke parameter

η ≡
√
Erec

~ωtr
,

which compares the two relevant energy scales, or, equivalently, the wavelength of the scattered
photon with the extension of the atom wavefunction. In our case we expect a Lamb-Dicke
parameter of approximately 0.21, which is the typical value for a fermionic quantum gas
microscope [61, 62, 64].

6.3 Summary

In this last chapter we have presented how we plan to use a quantum gas microscope technique
in our setup to access information at the single atom level. We have discussed several key points
and presented our design choices to achieve this goal, for the pinning lattice, the high-resolution
objective and the fluorescence imaging. The incorporation of these elements in the existing setup
constitutes the next main experimental goal and should open up new horizons for the study of
strongly interacting Fermi gases across the BEC-BCS crossover .



Chapter 7

Conclusion and perspectives

7.1 General conclusion

This thesis presents the design and characterization of a second generation quantum gas exper-
iment dedicated to studying strongly interacting Fermi gases. In the course of the thesis, we
have thoroughly described the experimental setup, presented the results of laser cooling on 6Li
atoms and the evaporative cooling in a hybrid magnetic-optic trap leading to the creation of a
deeply degenerate unitary Fermi gas, well below the superfluid transition temperature.

In chapter 2 and 3, we described the experimental setup for the stage of laser cooling of 6Li
atoms. In particular, we presented the design and assembly procedure of the vacuum manifold
and the red laser system, as well as other subsystems including the magnetic field generation
and computer control of the experiment. Precise measurement of the atomic jet flux is given.
Quantitative characterizations of a MOT and gray molasses of 6Li are presented. In the end, we
are able to very efficiently decrease the temperature of several 108 atoms from 550 °C to 50µK in
a duration of merely 2 s.

In chapter 4 we presented the setup of the high power infrared laser system for evaporatively
cooling the 6Li atoms to degeneracy. More specifically, we presented the optical transport dipole
trap, capable of loading up to 7.5×106 atoms directly from the gray molasses and transporting
with an efficiency of up to 80% into the science cell. Although in the dipole trap beam diameter
is unexpectedly larger than we planned, we were able to cross this transport trap with another
dipole beam and efficiently perform evaporative cooling in the science cell, by means of a well
controlled RF sweep to balance the populations of the two spin states, at a magnetic field of
832 G, where lies the relevant Feshbach resonance for these two states. Characterization of the
evaporation ramp, including the evolution of the temperature, the atom number and the phase
space density at each stage of evaporation, was presented.

In order to characterize more precisely the temperature and more importantly, the degree
of degeneracy of the obtained Fermi gas, in chapter 5, we applied a fit protocol based on
the previous measurements on the equation of state of a unitary Fermi gas and extract the
typical value of T/TF at the center of the trap. This fit protocol serves as a thermometry in the
near-degenerate as well as the degenerate regime. We are able to routinely produce a deeply
degenerate Fermi gas of T/TF ≈ 0.06, whose temperature is well below the superfluid transition
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temperature. In the end, we showed a direct observation of the so called "superfluid plateau",
by carefully choosing the spin imbalance of the two spin states, which reveals the superfluidity
of the obtained sample.

In chapter 6 of this thesis, we described the design of the setup for achieving single-atom
site-resolved imaging, to study strongly interacting Fermi gas. More specifically, we presented
the setup of the pining lattice, the high resolution objective and the simulation of images with
different magnification factors, and finally the Raman sideband cooling scheme for imaging and
cooling 6Li in an optical lattice.

7.2 Improvements on the current setup

The current experiment setup proves to be very stable on a daily basis. The total duration for
producing a degenerate Fermi gas with T/TF ≈ 0.06 is 16 s. This allows to have an excellent
repetition rate.

During the whole sequence of 16 s, the longest steps in duration are listed in the following
table:

Steps Duration

MOT loading 1.5 - 2 s
Optical transport 1.2 s
Evaporation 11 s

Table 7.1: Duration for different steps of the experiment.

The most time-consuming process in the experiment is the evaporative cooling, which
accounts for more than half of the total sequence duration. Compared to other experiments
working with lithium, such an evaporation is particularly long. The reason for such a long
duration of evaporation is two-fold.

On the one hand, the waist of the IPG beam is much larger than what we intended it to be.
The increase of the waist not only negatively affects the loading in the MOT chamber from the
D1 gray molasses, but also sets a non-ideal starting point for evaporation. In particular, the
collision rate decreases drastically with the size of the waist. Should the waist size be 60µm as
we expected, the collision rate at the beginning of the evaporation would possibly reach 103 s−1

and allow for much more efficient evaporative cooling (more details see Appendix C).

On the other hand, a fraction of the evaporation time (∼4 s) is the result of switching from
a crossed dipole trap to a single ALS trap, the reason for which is to have an elongated trap
along one direction. The density distribution along this elongated direction gives a reliable
density profile, suited for thermometry using an EoS fit and observation of superfluid plateau.
Unfortunately, the switching operations decreases the collision rate and the phase space density
as we reported in chapter 4, and sets back the evaporation progress. In the future, we plan
to load a box potential directly from the crossed-dipole trap, in which case the evaporation is
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performed solely in the crossed-dipole trap. The duration of the sequence is expected to be
several seconds shorter.

Nevertheless, a possible improvement could be to modify the IPG setup to obtain the 60µm
beam waist size as initially planned. The gain in initial collision rate would significantly speed
up the evaporation sequence.

7.3 Perspectives

In the following we discuss a series a measurements which could take place on our experiment
in a near future.

Spatial dependence of correlations

As discussed in the introduction, very little is known about correlations in the BEC-BCS crossover.
This lack of knowledge is especially stunning in the case of the unitary Fermi gas which is an
emblematic case of strongly-correlated matter. In practice, no measurement to date allows to
assess the degree or the nature of these correlations.

In that regard, the measurement of the EoS provided a first indication as it clearly deviates
from mean-field theory. However, the EoS hardly represents a discriminant measure of how
strongly-correlated in the system is. For instance, one could argue that the Bertsch parameter
predicted by mean-field theories (ξMF = 0.59) is on the same order of magnitude than the actual
value ξ = 0.37.

Another important step in the characterization of correlations at unitarity are the recent
measurements of the contact C as a function of temperature, through the normal-to-superfluid
transition [54, 56]. While being extremely useful(a), this measurement only represents a minute
segment of information when it comes to characterizing the correlated nature of the unitary
gas. Firstly, the contact is only the short-range limit of the density-density correlation g(2)(r) =

〈n↑(0)n↓(r)〉 and does not provide any information on the spatial variation of the latter. Secondly,
the aforementioned measurements show that the two-body contact does not seem to be a
sensitive probe of the overall correlations in the system. While the transition to the superfluid
state is signaled by a sudden increase of C, the relative change between the high temperature
value (T ≈ TF) and the deep superfluid regime is only on the order of 30%. This suggests
that higher order correlations are required to reach a comprehensive description of many-body
effects in the unitary gas.

Our newly built experiment offers the possibility to tackle the paramount task of under-
standing the nature of many-body correlations in the unitary Fermi gas. Using spin-resolved
single-atom imaging, we will be able to access a variety of spatial correlations beyond the short
range behavior addressed so far, and furthermore, density correlation functions of arbitrary or-
der. This series of measurement will open a new window on the characterization of the strongly
correlated Fermi gases and provide a fundamentally new input for many-body theories.

(a)In particular, this work provides two insights: (i) settles the debate about the behavior of the two-body contact at
the transition and (ii) sorts out the useful theories among the multiple predictions put forward in that context.
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Figure 7.1: Single-atom spin-resolved detection of a dilute cloud (Simulation) [135, 137]. The quantum gas microscope is a powerful tool so far devoted
to the study of lattice physics. We propose to apply it to homogeneous gases : after the cloud has been prepared in a given state of matter, we will pin
the atoms in a deep optical lattice and expose them to near-resonant light. Shown are the distributions of atoms in both spin states expected for realistic
experimental parameters (here, uncorrelated gas for simplicity). Each bright spot signals the presence of an atom with a fidelity >99%. Our simulations have
shown that such a detection scheme is compatible with atomic densities targeted in the experiment.
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Critical temperature and critical dynamics

As discussed in the introduction, the Tc-line of the balanced Fermi gas throughout the crossover
is only known at unitarity [4, 5]. Everywhere else, theoretical predictions exist but rely on
numerical methods with uncontrolled error bars.

The ability to measure Tc at unitarity is a direct consequence of universality, which relies on
a clean thermodynamic analysis within the LDA framework. In the unitary case, the varying
density imposed by the trap yields the tuning of a single parameter: T/TF. Away from unitarity,
T/TF depends not only on the spatial position but also on the interaction parameter 1/(kFa).
This renders the methods used at ENS and MIT non-applicable (or at least introduces severe
complications in the analysis).

Figure 7.2: 3D render of a box potential. Most
experiments performed with ultracold Fermi gases
used inhomogeneous traps, typically harmonic po-
tentials. While such potentials were proven to be
extremely well suited for some thermodynamic s-
tudies, they constitute at the same time the main
obstacle to quantitatively access other crucial observ-
ables. As a consequence of the trap inhomogeneities,
any probe addressing the whole cloud yields a trap-
averaged response. Using a box potential, we will
first map precisely the Tc line throughout the BEC-
BCS crossover. Second, we will measure critical ex-
ponents and check whether they agree with the ones
of the 3D XY universality class, a common belief
which has never been verified experimentally for a
strongly correlated Fermi gas.

Here, we propose to use a box-potential to determine the Tc-line throughout the BEC-BCS
crossover by measuring the onset of superfluid long-range order. The onset of long-range order
is reflected in the momentum distribution nP (k) of fermion pairs as a sharp peak around k = 0.
Our strategy to reveal the pair momentum distribution is to use the rapid-ramp technique,
introduced at JILA [42] and then investigated further at MIT [41, 138]. The idea of this technique
is to rapidly ramp the magnetic field to the BEC regime, and to measure the momentum
distribution nm(k) of the produced tightly bound diatomic molecules. Formally, a model-
independent theoretical understanding of the link between nP (k) and nm(k) is not available
in the literature to date, but our colleague Félix Werner [139] has made important steps in this
direction that will allow us to relate the two.

In addition, this will allow us to study the critical dynamics of the superfluid transition and
measure the corresponding critical exponents η and ν. This transition is believed to belong to
the 3D XY universality class, but this has never been verified experimentally for a strongly-
correlated Fermi gas. The first exponent can be extracted from nP (k) at T = Tc, where one
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expects

nP (k) ∼
k→0

1

k2−η
(7.1)

with a critical exponent η ≈ 0.038 for the 3D XY universality class. The second critical exponent
can be extracted by varying the temperature around Tc, and measure the width w of nP (k),
which is expected to vanish for T → Tc as

w ∼ 1/ξ ∼ |T − Tc|ν (7.2)

with a critical exponent ν ≈ 0.68, where ξ stands for the correlation length associated with
coherence between pairs.

These measurements will also allow us to determine the size of the critical region. One
definition of the critical region is the temperature window around Tc where the correlation
length ξ is large compared to the typical microscopic length-scale, which is set by the interparticle
distance in the strongly correlated regime. An alternative definition of the critical region is the
regime where the power-law in Eq. (7.2) holds.

Note that the use of a homogeneous potential is crucial for such studies, as one requires
critical correlations and fluctuations to extend over the entire cloud. In conventional harmonic
traps, the condition T = Tc can only be met on a two-dimensional surface within a three-
dimensional cloud.

The challenge for these measurements is to perform reliable thermometry, due to the absence
of spatial density variations in the trap. A way to solve this problem is to have one or two
regions at the edges of the box with spatially varying potential to serve for thermometry, but
from which the pairs would not be probed. Another longer term option would be to introduce a
weakly interacting Bose gas of 7Li in thermal equilibrium with the homogeneous Fermi gas to
serve as a thermometer. In the case of a weakly interacting Bose gas, thermometry is readily
accessible from time-of-flight density profiles.
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Figure 7.3: Lab in April, 2016.
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Figure 7.4: The control room. Picture taken in November, 2019 (Can you find the Easter egg in the picture?).
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Figure 7.5: The main experiment room. Picture taken in November, 2019.
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Figure 7.6: Laser table.



Appendix A

Fermi energy

The Fermi energy sets the characteristic energy scale for the system.

A.1 Homogeneous Fermi gases

Consider a homogeneous system of fixed volume V in d dimensions at temperature T = 0, the
total atom number can be obtained by integrating over the momentum eigenstates that go up
to the Fermi momentum kF, which sets the limit between the occupied momentum states and
unoccupied ones. In other words,

N =

∫ |~k|≤kF
0

ddk
V

(2π)d
. (A.1)

Using the dispersion relation for free particles E = ~2k2/(2m), the above equation can be
rewritten as an integral over energy up to EF. This allows to obtain the relation between the
Fermi energy and the atom number density n ≡ N/V [140]

EF =
~2

2m
×


(3π2n)2/3 (d = 3)

(2πn) (d = 2)

(πn)2 (d = 1)

(A.2)

This means that for a homogeneous system, the Fermi energy is directly related to the
density of the system. Note that here n designates the density of two spin states with equal atom
numbers. If n designates the density of a single component Fermi gas, the Fermi temperature,
for example in 3D, is given by EF = ~2(6π2n)2/3/(2m).

A.2 Harmonically trapped Fermi gases

In more realistic experimental conditions, the gases are trapped not in a homogeneous box
potential, but in an harmonic potential. In this particular case, the total number N can be
obtained, like previously, as an integral over all energies up to the Fermi energy EF, divided by
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the number of states per energy interval [140]. In d dimensions,

N =

(
d∏
i=1

1

~ωi

)∫ EF

0
dε1

∫ EF−ε1

0
dε2 · · ·

∫ EF−
d−1∑
j=1

εj

0
dεd. (A.3)

The Fermi energy and the particle number is then given by

EF = ~ω(d!N)1/d, (A.4)

where the geometric mean of the trap frequencies ω ≡ (
∏d
i=1 ωi)

1/d.

A.3 Energy scales

The most cited systems for comparison with the cold atom experiments are the metals and the
neutron stars. The electrons in metals having a density of 1023 to 1024 cm−3, the corresponding
Fermi temperature is on the order of 104 K. The neutron density in a neutron star being as high
as 1038 cm−3, the Fermi Fermi temperature in this case mounts to 1011 K. This temperature is
typically larger than the core temperature and several orders of magnitude higher than the
surface temperature. As a result, for these systems, they are all deeply quantum degenerate.

The ultracold atomic samples we created in the lab are very difficult to compete in terms of
quantum degeneracy with these aforementioned systems. The typical dilute deeply degenerate
gases have a density of the order of 1012 cm−3, the typical Fermi temperature in experimental
conditions is on the order of µK. Up to date, experiments on ultracold Fermi gases can reach
temperatures as low as several tens of nK, which is several percent of the Fermi temperature.
Yet, these samples are still much less degenerate than the degenerate Fermi systems existing in
nature.

The interest of studying ultracold Fermi gases lies in the interactions between particles that
one can engineer. The onset of fermionic superfluidity for conventional superconductors, for
example, occurs at several orders of magnitude lower than TF, and makes the observation of
superfluidity in such systems difficult. In contrast, the superfluid critical temperature in strongly
interacting Fermi gases lies around 0.17TF, and is accessible in practice. Indeed, superfluidity
in such systems have been observed and has led to many interesting studies.
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Tapered amplifier characterization

B.1 Tapered amplifiers

Tapered amplifiers (TAs) are diode lasers without the end facets that allows to amplify the laser
power. It needs a seeding light, and it amplifies the light while preserving the polarization and
seeding wavelength. For these properties, it is widely used in cold atom experiments for laser
cooling.

In our experiments, we use two TA chips housed in a homemade mount. For TA chips oper-
ating around 671 nm, with a maximum seeding power 25 mW, the TA chip allows a maximum
output power of 500 mW for a driving current of 800−900 mA depending on the chip. This
power is largely sufficient for laser cooling of Lithium. However, the spatial output mode is
often less than optimal, so that the coupling efficiency for such output light may rarely exceed
40%. Nevertheless, the power available for the Zeeman and the MOT light are still enough and
we in practice work in reduced current regime with a driving current of 600 mA to 700 mA. Since
one of the known problems with these TA chips, when working at nominal driving current, is
that they decrease in output power after years of use. The output power of the TAs is known to
decrease from 500 mW to 300 mW.

B.2 Old tapered amplifiers

Tapered amplifiers can become dead or obsolete, if the output power is far below its nominal
output. In this case, it needs to be replaced. However, it is not always obvious at which point
an aging TA chip needs replacement. Since "dead" TA chips emit fluorescence light just as
the normal one and does not necessarily decrease abruptly the output power much below the
nominal output power.

In figure B.1 we show the output power curve as a function of the driving current for four
different TA chips. We see that for a new TA chip, the dependence curve of power vs. current is
continuous and monotonously increasing. Whereas for an aging TA chip, or a dead TA chip,
the output power fluctuates when the driving current increases and at the maximum driving
current, it cannot be able to output the nominal power.
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Figure B.1: Output power as a function of the driving current for TA chips. Left: Newly mounted TA
chips used for providing the Zeeman slower light and the MOT light. Right: The same characteristics
curve for an aging TA and a dead TA. Apart from the maximum output power, the power vs. current
curve for an aged/ dead TA clearly shows clearly more fluctuations, unlike the curve for a new TA, the
current is found to be monotonously increasing.

Thus one of the ways to identify if an TA chip is aging is to measure the power vs. current
curve and see if there is such fluctuating behaviors on the output power.
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Dependence of the collision rate on the
waist size

The choice of the waist value for the transport trap is very important. On the one hand, this
value determines the trap depth and hence the trap loading in the main chamber from the D1

molasses. On the other hand, this waist value also determines the trapping frequencies and
hence the collision rate once the atoms are in the science cell, which, as a result, affects the
efficiency of evaporation.
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Figure C.1: The dependence of the trap depth (right axis) and the estimated collision rate before
performing evaporation (left axis) with 5× 106 atoms per spin state at temperature of 150µK.

The collision rate at unitarity is given by the following expression [118]

Γcoll =
2N~2ω3

π(kBT )2
. (C.1)

, where ω is the geometric mean of the trapping frequencies, and in the case of a cylindrically
symmetric trap ω = (ω2

rωz)
1/3.



96 Chapter C. Dependence of the collision rate on the waist size

With expressions 4.3 and 4.4, we can express the collision rate as follows

Γcoll =

√
2N~2λOT

(πkBT )2

(
4β

m

)3/2 1

w7
0

, (C.2)

where β ≡ 6c2ΓP/[(ω2 − ω2
0)ω2

0].
The expression C.2 shows that the collision rate, for a given temperature T , atom number N

and given optical power P is strongly dependent on the size of the waist to the power of seven.
In C.1 we plot the depth of the optical dipole trap as a function of the beam waist, as well as

the estimated collision rate at unitarity before evaporation for a standard value of number of
atoms loaded in the dipole trap (5× 106) and for a typical the temperature after loading (150µK).

At the experimentally measured waist size of 88.7µm, the collision rate is as we estimated
in chapter 4, around 300 s−1. Whereas if the waist were 60µm, the collision rate, for the same
atom number and the same temperature, will be around 4500 s−1. In reality, when the waist
changes, looking at expression C.2, only the atom number N , the cloud temperature T will
change accordingly.

In practice, for a optical dipole trap with smaller waist, it is difficult to predict whether
the atom number loaded in the dipole trap will decrease or increase, since the capture volume
decreases whereas the trap also becomes deeper. But it is unlikely that the atom number varies as
strongly as w7

0. Temperature-wise however, since the trap is more tightly confined, it is probable
that the atoms are hotter when loaded into a waist with smaller size.

In the end, the atom number in the trap might decrease, the temperature of the cloud in
the trap is likely higher, but since the collision rate varies linearly to the atom number and
is inversely proportional to the temperature, it is unlikely that the decrease of the waist size
from 90µm to 60µm makes the ratio of N/T 2 vary as w−70 . In other words, the collision rate
for decreasing the waist is likely to increase when decreasing waist from the current 90µm to
60µm.



Appendix D

Technical details for fitting the
temperature using EoS fit

In order to be able to use the EoS fit to extract reliably the temperature and the degree of
degeneracy of the cloud, many parameters related to the trap and the detection has to be
characterized carefully.

Firstly, trap needs to be well characterized. The radial trapping frequencies can be deduced
from the laser beam power and the measured waist, the axial trapping frequency, can only be
well characterized by measuring the oscillation of the cloud in the axial direction.

Secondly, the imaging system needs to be reliable and well under control. In particular, the
magnification needs to be well measured. The imaging light needs to be perfectly σ+. And
moreover, the cloud needs to be at focus so that there would not be any blurring on the border
of the cloud.

We give more details in the following on how we address these issues.

D.1 Magnetic curvature measurement

The measurement of the magnetic trap frequency is performed by deliberately misalign the IPG
from the center of the magnetic field center. By abruptly switching off the IPG beam, the atoms
expand in the ALS beam and also oscillates in the ALS axial direction.

Precise measurement on the oscillation frequency can be extracted from the center-of mass
position at different time. The measured frequency is the combined frequency of the magnetic
trap and the axial trapping frequency of the ALS beam. We have measured with several different
power values and oscillation amplitudes, the extracted magnetic trapping frequency all agree
with each other and fmag = 23.4± 0.1 Hz.

D.2 Magnification calibration

The magnification of the camera has also to be carefully calibrated. Since we are looking in
the vertical direction, we cannot simply use the gravity to calibrate the free fall of a cold cloud.
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Figure D.1: Left: The center-of-mass oscillation of the cloud in the ALS beam of power PALS = 160 mW.
The axial trapping frequency due to the optical trap is then fALS = 5.0 Hz. The measured oscillation
frequency is fosc = 24.0± 0.1 Hz. The magnetic trapping frequency is hence fmag =

√
(f2osc − f2ALS) =

23.4± 0.1 Hz. The damping is due to the fact that the amplitude of the oscillation is large and it begins to
experience the non-harmonic part of the optical trap. Right: The calibration of the magnification using
the free fall of a cloud in the vertical direction. The fitted curve gives a magnification of M = 1.49± 0.05.

We have to calibrate the free fall of the cloud on another camera observing in the horizontal
direction, then we move the ALS beam by a given quantity in the horizontal direction and we
therefore deduce the magnification on this vertical camera.

The free fall measurement is performed with a cold cloud with temperature of roughly
500 nK. The cloud is released at low field and we record the center position of the cloud as
shown in figure D.1. The magnification on the horizontal camera is Mhor = 1.49 ± 0.05. The
magnification on the camera looking in the vertical direction can be determined using the above
method to be Mvert = 1.48± 0.06.

Such an error on the magnification allows us to have a relative error on T/TF of less than 4%.

D.3 Global factor in the fit

In reality, the physical quantity we extract from the images is the optical density. In one
dimension,

OD1D = n1 ×
σ0
∆p

, (D.1)

where n1 is the doubly integrated density profile, ∆p the size of a pixel at the level of the atoms
and σ0 the on resonance cross section defined as

σ0 =
~ωΓ

2Isat
, (D.2)

since we have σ+ light.
The quality of the σ+ light is ensured by first a cube and then a quarterwaveplate before

shooting on the atoms (no optical elements between the quarterwaveplate and the atoms). The
positioning of the quarterwaveplate is optimized on the signal of the images taken through
absorption.
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The result D.1 is exact and in principal no further global factor is needed in the fit. However,
should the light for some reason is not perfectly σ+ and the cross section is somehow smaller than
σ0, we would then underestimate the atom number and hence have an error on the estimated
T/TF.

In order to check the consistency, we need to have a relatively low noise on the doubly
integrated density profiles. In practice we average over 40 images with the same atom numbers
and the final evaporation depth, we fit the averaged profile with the function introduced in
chapter 5, with a global multiplicative factor κ, and we found this global factor κ = 1.1± 0.2.

In practice, this factor cannot be larger than 1, the result, is consistent with the expected
value κ = 1.
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RÉSUMÉ 

 

Cette thèse expose la construction d’une expérience de gaz quantiques de nouvelle 

génération, ayant pour objectif d’étudier les gaz de Fermi de 6Li en interaction forte. Une 

description détaillée du design et de la mise en œuvre, ainsi que la caractérisation du 

montage sont présentées. Nous avons réalisé un grand piège magnéto-optique de 6Li, suivi 

par une mélasse grise, afin de refroidir efficacement les atomes à des températures sub-

Doppler, ce qui constitue un excellent point de départ pour le chargement dans un piège 

dipolaire optique. Un transport optique avec une haute efficacité conjointement à un 

refroidissement évaporatif à l’unitarité permet la production d’un gaz de Fermi ultrafroid 

de 6Li à la fin d'une séquence d’une durée totale de 16is. 

Combinée avec l’utilisation de l’imagerie à atome unique et de potentiels sur-mesure, cette 

nouvelle machine ouvre la voie à des expériences nouvelles sur les gaz de Fermi 

ultrafroids, comme par exemple la mesure des fonctions de corrélation dépendant du spin, 

ou la recherche des phases exotiques de superfluides à déséquilibre de spin. 

ABSTRACT 

 

This thesis reports on the construction of a new generation quantum gas experiment aiming 

to study strongly interacting Fermi gases of 6Li. A detailed description of the design and 

implementation, as well as characterization of the apparatus is presented. We have realized 

a large magneto-optical trap of 6Li followed by a gray molasses, to efficiently cool the 

atoms to sub-Doppler temperatures, which yield excellent starting conditions for loading 

into an optical dipole trap. An optical transport with high efficiency as well as evaporative 

cooling at unitarity leads to the production of an ultracold Fermi gas of 6Li in a total 

sequence duration of 16is. 

Combined with the utilization of single-atom imaging and tailored potentials, this newly 

built machine paves the way towards novel experiments on ultracold Fermi gases, such as 

the measurement of spin-dependent correlation functions or the quest for exotic spin-

imbalanced superfluid phases.  

MOTS CLÉS 

 

Gaz Ultrafroids – Fermions en Interaction Forte – Superfluidité – Imagerie à Atome 

Unique 
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