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CHAPTER 1

An introduction to statistical learning problems

On the most fundamental level, the goal of a statistician is to infer patterns and identify
structures underlying a given phenomenon from observational data. More formally, the
statistician is given observations Z1, . . . , Zn taking values in an abstract space Z as well as a
task related to these data points. Throughout this report, we will make the assumption that
the observations are independent realizations of a random variable Z, distributed according
to a probability distribution P ∗. This corresponds to the standard i.i.d. (“independent
and identically distributed”) assumption which underlies a large portion of the statistical
theory literature. Given those observations, the statistician wants to infer some properties —
determined by the task to be solved — of the unknown probability distribution P ∗.
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18 CHAPTER 1. AN INTRODUCTION TO STATISTICAL LEARNING PROBLEMS

1.1 A typology of learning problems

There is a large variety of learning tasks and problems that can be tackled by a statistician
(see, e.g., Friedman, Hastie, and Tibshirani (2001)). In this thesis, we will present theoretical
contributions covering several distinct frameworks studied in the statistical learning literature.
For the sake of clarity, we propose a rather coarse and non-exhaustive typology of statistical
learning problems to give a more precise feeling of what this thesis is about. The distinctions we
make stem from three usual questions of interest in any learning task: (i) does the statistician
have access to all the data at once ? (ii) are the data points labelled ? (iii) should all the
features be treated the same ?

Online and batch learning. The first distinction concerns the way the data are received
and treated by the statistician. Perhaps the batch learning setting is better known since it
is usually the first one to be taught in most introductory machine learning courses. In this
setting, the statistician has access to the whole dataset Z1, . . . , Zn at once and proposes a
learning procedure which is based on all the data points. But this is not always the case: in
some applications, data points are received sequentially and the statistician needs to develop
a learning procedure which adapts to every new data point. This corresponds to the online
learning setup. For example, in web advertisement placement, a given ad can be shown to
a bunch of successive visitors, generating a stream of data which consists of the available
characteristics of the users as well as whether or not they clicked on the ad. In such case,
the statistician wants to learn which ad should be shown to which kind of user and adapt
his/her strategy as more data becomes available. Note that it might also be the case that the
statistician has to treat the data sequentially for computing power and/or storage constraints.

Supervised and unsupervised learning. The second distinction concerns the presence
(or absence) of a label for each data point. In supervised learning, the random variable Z
can be decomposed into a set of features X and a label Y . For instance, X could be some
measurements from a flower (e.g., the lengths and widths of its sepal and petal) and Y the
specie of the flower, as in the well-known Fisher’s Iris data set (Fisher 1936). The statistician’s
goal is then to learn a function that maps an input feature to an output label based on example
input-output pairs (X1, Y1), . . . , (Xn, Yn) where Xi and Yi are, respectively, the features and
the label of the i-th observation. In Fisher’s Iris dataset example, the labels were determined
by botanists according to specific criteria.
There are two important points we would like to underline: first, the features might not contain
all the information about the criteria used by botanists to classify the flowers of interest, hence
the learning procedure might have to make decisions with incomplete information on the label
of interest; second, labelling flowers requires human knowledge and time which are sparse —
and therefore costly — resources. An empirical consequence of the last remark is that most
of the time, no explicit label is given or available in a dataset, leading to the unsupervised
learning setting. The goal of the statistician is then to find some structure in the data. For
instance, continuing with Fisher’s Iris dataset example, the statistician might only have access
to measurements from unidentified flowers and has to group, in an automatic manner, flowers
that are “similar” in some sense to be determined.
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Fair learning. Finally, the third distinction that has attracted a lot of attention in recent
years and plays an important role in the present manuscript, concerns the way the features
(which can be roughly defined as components of the data) are considered. It might be the case
that some features need to be treated differently from the others for moral or ethical reasons.
For instance, if a statistician’s task is to develop an algorithm for hiring decisions in the US or
in France, the statistician has to make sure that it does not discriminate individuals based on
their gender or their ethnicity. Fair learning is about making decisions while being aware that
some aspects of the data have to carefully be taken into account.
The typology of statistical learning problems we have introduced is deliberately coarse. We
refer the reader to the books (Bishop 2006; Shalev-Shwartz and Ben-David 2014) for a broad
covering of the most common statistical learning problems. Nevertheless, the goal of our
typology is to give the possibility to most readers to grasp what the chapters of this thesis
are about. In the next introductory chapters, we will refine our definitions and introduce
mathematically sound frameworks to formalize those concepts.
Before diving into the details, let us clarify what we mean by statistical learning theory.
Machine learning algorithms are celebrated for their impressive performance on many tasks
that we thought were dedicated to human minds, from handwritten digits recognition (LeCun
et al. 1990) to cancer prognosis (Kourou et al. 2015). Statistical learning theory is the branch
of machine learning which aims at providing (i) a powerful modelling formalism for inference
problems (ii) a better understanding of the statistical properties of learning algorithms.
Statistical learning theory sits at the intersection of statistics, probability theory, functional
analysis, among other domains, and constitutes a general sound mathematical framework for
learning.
Recently, the striking development and use of machine learning algorithms in the real world
raised an important question in the author’s mind: why bother studying in theory procedures
that works well in practice ? Wouldn’t it be more beneficial to focus on the implementation of
high-performance algorithms such as deep neural networks ? In the author’s humble opinion,
matured by those three years of PhD, statistical learning theory participates to this effort
since the statistical learning theory framework allows to (i) get a better understanding of
the cases in which an algorithm performs well (ii) quantify trade-offs inherent to learning for
better-informed algorithmic choices (iii) provide insights to develop new algorithms which will
eventually outperform existing ones or tackle new tasks. We hope that the reader will find in
this thesis a satisfactory illustration of those three key points.
The introduction of this manuscript is split into two chapters. The rest of this first chapter is
devoted to the presentation of two traditional learning problems considered in this thesis. In
Section 1.2, we introduce a framework for online learning problems, in particular we focus
on the quantification of uncertainties of estimators. Section 1.3 concerns generative models
as an unsupervised learning problem for sampling. Finally, Chapter 2 serves as a general
introduction to (supervised) fair learning.
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1.2 Online learning and anytime deviation bounds

In the online learning setup, it is often the case that the sample size n of an experiment is
unknown in advance. For instance, if we assume that the acquisition of each data point x has
a cost ψ(x) ≥ 0, this number n might be given by

n = max{k ∈ N∗ : ψ(X1) + . . .+ ψ(Xk) ≤ B},

where B > 0 is a given available budget.
In the following we will assume that random variables X,X1, X2, . . . are independently drawn
from a probability distribution P ∗ on some space X . As usual, the statistician wants to
infer some property of the distribution P ∗ such as its mean, its median, etc., given that such
quantities are well-defined. We will denote by θ∗ the quantity of interest and assume that it
belongs to some subspace Θ of the Euclidean space Rp. As we have pointed out, unlike in the
usual (offline) setup, the size n of observed data is not fixed once and for all. In particular, n
can be an arbitrarily complex function of the past observations. Therefore, the statistician has
to propose a sequence of estimators (θ̂n)n∈N of the quantity of interest θ∗ such that, for any
positive integer n, θ̂n is an estimator of θ∗ based on the first n observations, i.e., a measurable
function of the data X1, . . . , Xn.
Of course, as taught in the most basic statistics courses (Wasserman 2013), a point estimation
is void if it does not come with a measure of uncertainty and any careful statistical estimation
procedure must provide a way of computing confidence intervals (also referred to as deviation
bounds in the learning literature) around a proposed estimator. For a given level of confidence
δ ∈ (0, 1) and a given norm ∥·∥ on Rp, it can be formalized through a sequence (c(n, δ))n of
positive real numbers such that

P(X1,...,Xn)
(∥∥∥θ̂n − θ∗

∥∥∥ ≤ c(n, δ)) ≥ 1− δ, ∀n ≥ 1. (1.1)

It goes without saying that the goal of the statistician is to make the terms of the sequence
(c(n, δ))n as small as possible. There are mainly two levers for this task: the choice of the
estimator and the ability to compute uncertainty precisely.
Most of the literature on statistical inference provides bounds such as the ones in Eq. (1.1).
Those are well-suited for the usual offline setup but, as we will see, may come short in the
online learning setup. When the sample size n is random and eventually depends on the
observed data , an analogous to Eq. (1.1) is given by

P(X1,X2,... )
(
∀n ≥ 1,

∥∥∥θ̂n − θ∗
∥∥∥ ≤ c(n, δ)) ≥ 1− δ. (1.2)

Importantly, to take into account the fact that the sample size n is random, the probability
measure depends on the whole sequence X1, X2, . . . and the inequalities must hold for any
sample size n on the same high-probability event.
A simple trick for offline-to-online transformation of deviation bounds is to apply the union
bound trick. Indeed, assume that the statistician needs to provide deviation bounds for the
first m ≥ 1 observations but only has access to bounds from Eq. (1.1). Using a simple union
bound argument yields

P(X1,...,Xm)
(
∀1 ≤ n ≤ m,

∥∥∥θ̂n − θ∗
∥∥∥ ≤ c(n, δ)) ≥ 1−mδ.
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Figure 1.1: Looseness of the union bound probability. In this experiment we set δ = 0.05
and n = m = 100. The probability is estimated computing empirical frequencies over
10000 independent draws of n = 100 standard normal variable. The estimation procedure
is independently repeated 100 times to obtain an empirical distribution for the empirical
frequencies. The broken vertical line represents the theoretical lower bound on the probability
obtained with the union bound trick.

There may be two problems with this trick: first, if one does not adapt the sequence (c(n, δ))n
the confidence goes to −∞ as m grows. To overcome this benign issue, one can obtain a
confidence of level at least 1− δ taking the sequence (c(n, δ/m))n∈[m]. However, the resulting
coverage might be too loose as illustrated in the following simple example.
Assume that P ∗ is the standard normal distribution N (0, 1). Denoting by qα the standard
normal percentile of order α ∈ (0, 1), the sequence c(n, δ) = q1−δ/2

n , n ≥ 1, is tight in the sense
that

P(X1,...,Xn)
(
|X̄n| ≤ c(n, δ)

)
= 1− δ, ∀n ≥ 1.

As shown in Figure 1.1, the uniform bound obtained with the union bound trick is highly
conservative: while the union bound gives a lower bound on the probability of level 95%, the
actual probability is greater than 99%. Intuitively, there is no reason that the union bound
trick preserves tightness of the sequence (c(n, δ))n since the union bound is a very general
trick. In particular it does not take into account any particular structure in the sequence of
estimators (θ̂n)n and the resulting probability ignores the potential dependencies between
successive events.
This toy example illustrates that the simplicity of the union bound trick comes at the price of
a looser control and, therefore, that it is necessary to carefully design confidence bounds for
a sequence of estimators tailored for the online setting. The crucial difference is that, while
deviation bound in the usual setting holds for a given sample size with high probability, we
will be looking for deviation bounds which hold for any sample size with high probability. We
will call such bounds anytime or uniform bounds.
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The contribution we will present was inspired from Jamieson et al. (2014), who obtained
anytime bounds for the empirical means of i.i.d. data. The rate of their bounds matches that
of the law of iterated logarithm, which we will recall in the next section. The authors exploited
their bound to prove optimality of a new procedure for the best-arm identification problem, a
sub-problem of the multi-armed bandit framework. The literature on the multi-armed bandit
is vast and since it concerns a small fraction of this manuscript, we do not intent to present it
here. We refer the reader to the excellent book (Lattimore and Szepesvári 2020) for a general
presentation of the theory and the algorithms developed for this framework.
We begin by recalling the asymptotic and finite-sample theory of sample averages before
moving on to more general estimators, the so-called convex M -estimators. We then present
our contributions which are anytime bounds for a general class of convex M -estimators.

1.2.1 Asymptotic theory of sample averages on the real line

Let us precise the considered setting and introduce some basic definitions. Random variables
X,X1, X2, . . . are independently drawn from a probability distribution P ∗ on some measurable
subset X of the real line R. We denote their mean by µ := E[X] which we assume to be
finite. We consider the sequence of sample averages X̄n := n−1∑n

i=1Xn, n ≥ 1. Note that
we consider here the univariate setting for the sake of simplicity. The results we will present
generalize to multivariate settings.

Two fundamental theorems on the asymptotic behaviour of the sample means.
Perhaps the most fundamental theorems in statistics are the law of large numbers (LLN) and
the central limit theorem (CLT). They state that a sample average converges almost surely
or in probability to the population average, and if one zooms in by multiplying by a square
root factor, a much weaker form of stochastic convergence still holds, namely, convergence
in distribution1 towards a Gaussian law. For the sake of completeness, let us formally recall
those two fundamental theorems. We refer the reader to Jacod and Protter (2012, Chapter 20
& 21) for proofs of these results.

Theorem (Law of large numbers). Assume that E|X| < +∞. Then, the sequence (Xn)n
converges almost surely to µ, i.e.,

P
(

lim
n→+∞

X̄n = µ

)
= 1. (LLN)

Theorem (Central limit theorem). Assume that σ2 := V ar[X] <∞. Then
√
n(X̄n − µ) d−−−−−→

n→+∞
N (0, σ2). (CLT)

The law of iterated logarithm. An intermediate result, known as the law of iterated
logarithm (LIL), shows what happens in between the two scales. By zooming in slightly less

1Given a probability distribution P with Cumulative Distribution Function (CDF) F and sequences of
random variables Y1, Y2, . . . with associated CDFs F1, F2, . . . , we say that the sequence (Yn)n converges
in distribution to P (which we write Xn

d−−−−−→
n→+∞

P ), if for any number x ∈ R at which F is continuous,
Fn(x) −→ F (x) as n → +∞.



1.2. ONLINE LEARNING AND ANYTIME DEVIATION BOUNDS 23

0 1000 2000 3000 4000 5000

n

−0.2

−0.1

0.0

0.1

0.2

X̄n

LIL radius
√

2 log log(n)/n

CLT radius 1/
√
n

Figure 1.2: Illustration of the central limit theorem (CLT) and the law of iterated logarithm
(LIL). Each transparent line represents a sequence of empirical averages from i.i.d. centered
Bernoulli random variables.

than in the CLT, i.e., by rescaling the sample average with a slightly smaller factor than in
the CLT, it is possible to gain a guarantee for infinitely many sample sizes, almost surely.
The precise statement of the law of iterated logarithm, discovered by Khintchine (1924) and
Kolmogoroff (1929) almost a century ago, is as follows:

Theorem (Law of iterated logarithm). Assume that σ2 := V ar[X] <∞. Then

−1 = lim inf
n→∞

√
n (X̄n − µ)
σ
√

2 ln lnn
≤ lim sup

n→∞

√
n (X̄n − µ)
σ
√

2 ln lnn
= 1, almost surely. (LIL)

This provides a guarantee on the deviations of the sample average as an estimator of the mean
µ since it yields that, with probability one, for any constant c > 1, there exists a random
integer n0 ∈ N such that for every n ≥ n0

|X̄n − µ| ≤ cσ

√
2 ln lnn

n
.

As compared to the deviation guarantees provided by the central limit theorem, the one
resulting from the law of iterated logarithm has the advantage of being valid for any sample
size large enough. This advantage is gained at the expense of a factor (ln lnn)1/2. Akin to the
classic version of the CLT, the applicability of the LIL is limited by the fact that it is hard to
get any workable expression of n0.

1.2.2 From asymptotic theory to finite-sample bounds

The results we have stated in the previous section are all asymptotic in nature: they yield
insights on the behaviour of the sample averages as the sample size n approaches +∞. Such a



24 CHAPTER 1. AN INTRODUCTION TO STATISTICAL LEARNING PROBLEMS

situation is purely theoretical since in practice one only has access to a finite number of samples.
There are mainly two ways to overcome this gap between theory and practice: pretend that
those results (roughly) hold for n large enough; develop non-asymptotic counterparts to those
results i.e., obtain quantitative control of the sample averages for finite sample size n. We
will focus on the latter option in what follows.

Non-asymptotic counterpart to the CLT. In the case of the CLT and its use in statistical
learning, the drawback related to n0 was lifted by exploiting concentration inequalities, such
as Hoeffding or Bernstein inequalities, that can be seen as non-asymptotic versions of the
CLT. We refer the reader to (Boucheron, Lugosi, and Massart 2013) for a general presentation
of the topic of concentration inequalities. Perhaps the simplest of those bounds, known as
Hoeffding’s inequality (Hoeffding 1994) deals with bounded random variables. For clarity of
exposition we state a particular case, the more general statement can be found in (Vershynin
2018, Theorem 2.2.6).

Theorem (Hoeffding’s inequality for bounded random variables). Assume that X is bounded
in [0, 1] almost surely. Then, for any n ≥ 1 and δ ∈ (0, 1),

|X̄n − µ| ≤

√
ln(2/δ)

2n , with probability ≥ 1− δ.

It is easy to show that if X is distributed according to a Gaussian distribution with standard
deviation 1/2, then the sample averages X̄n satisfy the inequalities of the previous theorem.
Hence such results are not limited to bounded distributions. Actually, one can define a large
class of distributions which satisfy such inequalities, known as sub-Gaussian distributions: we
say that the random variable X has a sub-Gaussian distribution with parameter σ > 0 if, for
all t > 0,

P (|X − µ| > t) ≤ 2e−t2/2σ2
. (1.3)

The sub-Gaussian property is particularly handy because it can equivalently be expressed
in many different ways such as moment conditions or conditions on the moment generating
function. We refer the reader to Vershynin (2018, Section 2.5) for a collection of results on
sub-Gaussian distributions, such as the following theorem.

Theorem (Hoeffding’s inequality for sub-Gaussian random variables). If X is σ-sub-Gaussian,
then, for any n ≥ 1 and δ ∈ (0, 1),

|X̄n − µ| ≤ σ

√
2 ln(2/δ)

n
, with probability ≥ 1− δ.

Non-asymptotic counterpart to the LIL. Combining the union bound trick presented
in the previous section with Hoeffding’s inequality for sub-Gaussian random variables, one
can easily obtain the following anytime bound on the sample means: for any ε > 0 and for
any δ ∈ (0, 1), it holds, with probability at least 1− (1 + ε−1)δ,

|X̄n − µ| ≤ σ

√
2 ln(n1+ε/δ)

n
, ∀n ≥ 1. (UB)
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Note that unlike Hoeffding’s bound which presents the same 1/
√
n rate as the CLT, the rate

obtained in (UB) is slower than the
√

ln lnn
n rate of the LIL. Is it then possible to obtain an

anytime bound whose width has the rate given in the LIL ? Several works (Jamieson et al.
2014; Kaufmann, Cappé, and Garivier 2016; Howard et al. 2018) provide a positive answer to
this question. For instance, let us state the following result from Jamieson et al. (2014) which
served as a starting point for our work.

Theorem (Jamieson et al. 2014, Lemma 3). If X is σ-sub-Gaussian, then for any ε ∈ (0, 1)
and δ ∈ (0, log(1 + ε)/e), we have

P

∀n ≥ 1, X̄n ≤ cεσ

√
1
n

log
( log((1 + ε)n)

δ

) ≥ 1− c′
εδ

1+ε,

where cε, c′
ε are constants which only depends on ε.

The width of the last theorem matches that of the LIL; hence, one cannot hope to obtain a
tighter dependence on n.
Up until now we have focused on the estimation of the mean using the empirical mean, which
is probably the most well-known in statistics. The mean is not necessarily the only quantity
of interest in statistics. For instance, one might be interested in the quantiles of a given
probability distribution such as the median. In particular, the mean is not defined for some
heavy-tailed distributions such as the Cauchy distribution, while the quantiles are always
well-defined. In the next section, we introduce convex M -estimators, a large class of popular
estimators which encompasses, among others, the sample mean, and we present known results
on such estimators.

1.2.3 Convex M-estimators

In a foundational paper of the theory of robust statistics (Huber 1964), Huber proposed a
generalization of the maximum-likelihood estimation procedure motivated by the estimation of
a location parameter from contaminated Gaussian data. The resulting estimators, presented
in the next paragraph, are known as M -estimators.
Let ϕ : X × Θ → R be a given loss function. Throughout this work, we make the tacit
assumption that the random variable ϕ(X, θ) has a finite expectation for all θ ∈ Θ. The
population and the empirical risks are then defined, respectively, by the formulas

Φ(θ) = EX∼P ∗ [ϕ(X, θ) ] , Φ̂n(θ) = 1
n

n∑
i=1

ϕ(Xi, θ),

where n ≥ 1 is an integer. We denote by θ∗ a minimizer of the function Φ on Θ. The
M -estimators associated to the loss function ϕ are then defined as minimizers of the empirical
risk:

θ̂n ∈ arg min
θ∈Θ

{
Φ̂n(θ) := n−1

n∑
i=1

ϕ(Xi, θ)
}
. (1.4)
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Figure 1.3: Four common choices for the loss ϕ.

We will consider the class of convex M -estimators which are those M -estimators associated to
a loss function ϕ such that the mapping ϕ(X, ·) is convex for P ∗-almost all values of X.
Let us now remind some popular convex M -estimators and the associated loss function ϕ.
Considering the squared loss ϕ(x, θ) = (x− θ)2, θ̂n defined in Eq.(1.4) is the sample average.
The absolute loss ϕ(x, θ) = |x− θ| yields the estimation of the median with empirical median.
Finally, we shall present another popular convex M -estimator known as Huber’s M-estimator
(Huber 1964): for c > 0, define the mapping

gc(x) =
{
x2 if|x| ≤ c
c(2|x| − c) if|x| > c

,

and let ϕ(x, θ) = gc(x− θ). See Figure 1.2.3 for an illustration of common loss function ϕ.
Under mild assumptions, M -estimators are both consistent and asymptotically normal (Haber-
man 1989; Niemiro 1992), i.e., suitably adapted versions of the LLN and the CLT apply
to them. Moreover, some versions of the LIL were also shown for M -estimators (Arcones
1994; He and Wang 1995). They suffer, however, from the limitations explained above for the
standard LIL; namely their asymptotic nature which makes it hard to use them in practice. Is
it possible to obtain anytime deviation bounds whose width has the rate given in the LIL for
a general class of convex M -estimators ? Up to our knowledge, no such results were available.

1.2.4 Contributions

Non-asymptotic LIL for M-estimators. Our contributions allow to circumvent the
limitations exposed in the previous section by providing general anytime deviation bounds
whose width has the rate given in the LIL for a general class of convex M -estimators.
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In Chapter 4, we extend the anytime bounds for sample averages obtained by Jamieson et al.
(2014) to a large class of M -estimators containing, among others, the median, the quantiles,
and Huber’s M -estimator. Under mild assumptions on the loss function ϕ and the data
distribution P ∗, Theorem 4.2.4 states that there exists an explicit positive constant c > 0 such
that the M -estimators (θ̂n) defined in (1.4) satisfy

P

∀n ≥ n0, |θ̂n − θ∗| ≤ c

√
ln lnn+ ln(1/δ)

n
+ o

( 1
n

) ≥ 1− δ, ∀δ ∈ (0, 1).

Note that the presence of the asymptotic term o
(

1
n

)
in the formulation above was added

for the sake of simplicity. The result stated in Theorem 4.2.4 is fully non-asymptotic and
provides explicitly all the constants and terms hidden in the little-o notation. Theorem 4.3.5
provides an extension of our univariate result to penalized multivariate M -estimators for the
problem of predicting a real-valued label given a d-dimensional feature vector. Our formalism
is applicable to settings such as the maximum a posteriori approach and penalized empirical
risk minimization.

Application to the problem of Best Arm Identification. For a given set of K (unknown)
probability distributions P1, . . . ,PK , Best Arm Identification (BAI) in the fixed confidence
setting consists in identifying, for a given confidence level, the distribution which has the
highest expected outcome while minimizing the number of samples (sequentially) drawn from
those distributions (Audibert and Bubeck 2010; Gabillon, Ghavamzadeh, and Lazaric 2012;
Kaufmann, Cappé, and Garivier 2016). Naturally, the same problem can be formulated for
finding the distribution with the largest median, or the largest quantile of a given order.
In particular, such a formulation of the problem might be of interest in cases where the
expectations of the outcomes of each arm may not be defined (rewards are heavy-tailed) or
are not meaningful (rewards are subject to some arbitrary contamination) (Altschuler, Brunel,
and Malek 2018). We show that the univariate bounds we established can be converted
into an extension of lil’UCB algorithm from Jamieson et al. (2014) with provably optimal
theoretical guarantees: one can replace the empirical mean by any M -estimator satisfying our
assumptions while preserving optimality of the procedure for best-arm identification according
to the corresponding M -estimator.
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1.3 Generative models

A short introductory story. On 27 July 1890, aged 37, Vincent Van Gogh hopelessly shot
himself in the chest with a 7mm Lefaucheux pin fire revolver (Sweetman 1990). More than
a century later, he is acclaimed as one of the most revolutionary painters of human history.
He left us with around nine hundred known paintings, which are now exposed all around the
world. This number might still grow slightly if, for instance, someone discovers a forgotten
painting of Vincent Van Gogh in his attic 2. Nevertheless, the total number of paintings that
Vincent Van Gogh created is finite and fixed forever. Despite this undeniable fact, one might
wonder: how would Van Gogh have painted a modern scene such as a street from Arles in
France nowadays ? Modern painters could try to mimic his style to fulfil such curiosity but
it requires a lot of work and will potentially be quite expensive. Can we automatize such a
task, to overcome this limitation ? With all its promises, could modern artificial intelligence
continue Vincent Van Gogh’s work and fill us with paintings similar in style to his ? Since
most painters and artists in general train themselves by mimicking their masters, designing
an AI with such abilities would constitute a first step in the direction of developing creative
artificial intelligence.

Figure 1.4: A famous painting by Vincent Van Gogh, “Terrasse du café le soir” depicting a
café terrace at night in Arles, France. It was painted in mid-September 1888 according to the
Wikipedia page dedicated to this painting.

2This actually happened in 2013 as related in the New York Time’s article “A Van Gogh’s Trip From the
Attic to the Museum”.

https://en.wikipedia.org/wiki/Caf%C3%A9_Terrace_at_Night
https://www.nytimes.com/2013/09/10/arts/design/new-van-gogh-painting-discovered-in-amsterdam.html
https://www.nytimes.com/2013/09/10/arts/design/new-van-gogh-painting-discovered-in-amsterdam.html
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1.3.1 Problem presentation and formalization

Problem presentation. The problem of learning generative models has attracted a lot
of attention during the last 5 years in machine learning and artificial intelligence. The most
prominent example is generating artificial images that look similar to actual photographs,
by means of generative adversarial networks (GANs) (Goodfellow et al. 2014). The general
formulation of generative adversarial networks can be given as a game between a generator
which aims to draw samples similar to the observed samples and a discriminator that learns
to distinguish the true samples from the simulated ones. Those two players are usually
implemented in practice as neural networks. As we will see, a trade-off appears in this
competition: the quality of the overall model depends on the relative ability of the players to
achieve their task. We postpone a more thorough presentation of GANs and the associated
adversarial generative models to the next subsection.
Let us provide a few reasons to study generative models and GANs in particular. Perhaps the
most prominent and possibly straightforward application of GANs concerns data augmentation,
a set of techniques used to generate new data from existing one to increase the number of
available training data points (Antoniou, Storkey, and Edwards 2017). Such techniques are
increasingly useful as modern algorithms, such as deep learning-based algorithms which require
a massive amount of data to be trained. As argued by Goodfellow (2016), GANs may also
prove useful to improve performance of model-based reinforcement learning. More generally,
generative models can be used for likelihood-free inference, when intractability issues arise
(see, e.g., Diggle and Gratton 1984; Briol et al. 2019). Last but not least, modern generative
models could be used for generating art, such as paintings, poems, music, texture of sounds,
etc. For instance, WaveNet, a deep-neural network architecture, is able to generate original
and often highly realistic musical fragments (Oord et al. 2016). Just as supervised learning
algorithms are used as a tool for decision-making, generative models could be used as a tool
for creating art.

Problem formalization. Assume that we are given a collection of i.i.d. random variables
X1, . . . ,Xn from some probability distribution P ∗ supported on a subset X of RD, where D is
typically a large integer (e.g., D = 28× 28 = 784 for the MNIST dataset (LeCun 1998)). Those
data points could represent, for example, a collection of digitalized paintings from Vincent
Van Gogh or a set of financial features from different individuals, depending on the reader’s
personal taste. Morally, we would like to generate new data points Y1, . . . ,Ym such that those
could have been drawn from the distribution P ∗.
For example, in the one-dimensional case, we could ask that a Kolmogorov-Smirnov test fails
to distinguish between the set of generated samples and the observed samples at a prescribed
level. We shall give more precise definitions of how we measure the closeness of the generated
samples to the original samples in a subsequent paragraph. One (naive) way of achieving our
goal is to sample with replacement from the collection of observed samples X1, . . . ,Xn, which
will mimic the sampling process from P ∗ such as in bootstrap approaches. However, the reader
will agree that this procedure is far from desirable in our case, as it does not bring anything
new than what we already had. Thus, a desirable first property of a sampling procedures that
we will be looking for is the ability to generalize beyond the observed data, i.e., to generate
data points which were not observed but are similar, in some sense, to the observations.
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Remark 1.3.1 (Some comments on sampling). Sampling is a fundamental problem in statistics
which covers a wide variety of topics. In this thesis we focus on a specific sampling problem in
which we observe data from an unknown probability distribution and would like to sample new
data points. We refer the reader to the book of Devroye (1986) for general techniques such
as inversion and rejection to generate/sample random variables given an analytic expression
for their distribution. We also mention that there is a whole body of literature on Markov
chains based sampling techniques, known as Markov Chain Monte Carlo (MCMC) (Robert and
Casella 2004) which is in part motivated by Bayesian statistics applications (Robert 2007).

Prescribed and implicit probabilistic models. In order to go beyond purely empirical
observations, we need to carefully choose a probabilistic model to describe our data. We
will follow Mohamed and Lakshminarayanan (2016) who proposes an interesting distinction
between two classes of probability models: prescribed and implicit probabilistic models.
The former class of so-called prescribed probabilistic models requires an explicit parametric
description of the distribution of the observed data points through a likelihood function. Those
models are ubiquitous in theoretical statistics, statistical learning, etc. In particular, they
underpin the well-known maximum likelihood approach: for a given parametric specification
of the likelihood function (fθ)θ∈Θ, find a parameter θ inside a set Θ ⊂ Rp which is the most
likely to have generated the data:

θ̂n ∈ arg max
θ∈Θ

n∏
i=1

fθ(Xi).

The main limitation of prescribed probabilistic models is that one needs to be able to explicitly
provide a (preferably relevant) likelihood function to model the observed data – an increasingly
difficult task as the complexity of the data grows. Moreover, even when the parameter θ
is known, sampling a random variable according to the density fθ might still constitute a
challenging task (Robert and Casella 2004).
Taking a rather different but complementary approach, implicit probabilistic models define
a stochastic procedure that directly generates data. In particular, they do not require a
likelihood function for the observed data nor the existence of a density with respect to a
prescribed measure. Such models are usually based on a latent variable procedure: first, a
d-dimensional latent variable Z is drawn according to some easy-to-sample-from distribution
(e.g., Gaussian distribution or uniform distribution on the unit hypercube); then a chosen
function g : Rd → RD is applied to the latent variable Z to transform it into another variable
X := g(Z). Importantly, the dimension d of the latent space is usually less than or equal
to the ambient space dimension D and can be thought of as the intrinsic dimension of the
observed data. Returning to the MNIST example, typical values of d would be between 10 and
15 (Costa and Hero 2004b; Facco et al. 2018), while, we recall that D = 784.
The assumption that the intrinsic dimension is smaller than the ambient one stems from
an empirical observation, known as the “manifold hypothesis” (see (Fefferman, Mitter, and
Narayanan 2016), and references therein), that real world data tend to lie close to a low
dimensional manifold embedded in a high-dimensional ambient space. It supports the idea
that, even though the observed samples are usually of very high dimension, they may exhibit
significant structures such as the harmonic and rhythmic schemes followed by a melody or a
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poem, or the presence of simple shapes in an image. Such an assumption is at the core of the
manifold learning literature (Cayton 2005; Pless and Souvenir 2009) and could explain the
ability of some algorithms to learn the structure of the data even when the observed data is
extremely high-dimensional. We also refer the reader to the recent work of Goldt et al. (2020)
which, in a similar flavour, proposes the “hidden manifold model” to study the influence of
data structure on learning in neural networks.
Furthermore, implicit probabilistic models subsume a large class of well-known procedures.
For instance, in one dimension, we recover the inversion method for sampling (Devroye 1986)
by defining the mapping g as the inverse CDF of the target variable X and Z as a uniform
random variable on the interval [0, 1]. Implicit probabilistic models are particularly convenient
for data distributions which are supported on low-dimensional manifolds such as distributions
which can be expressed as the pushforward measure (or image measure) of a distribution
supported on a low-dimensional subspace. Such distributions do not admit a density with
respect to the Lebesgue measure as a consequence of Sard’s theorem, which we recall now.

Theorem 1.3.2 (Sard’s theorem, Sard (1942)). Let f : Rd → RD be k-times continuously
differentiable (where k ≥ max(d−D + 1, 1)). Let Jf(x) denote the Jacobian of f at the point
x and let C := {x : rank(Jf(x)) < D} denote the critical set of f . Then the image f(C) has
Lebesgue measure zero in RD.

Implicit probabilistic models are good candidates for our sampling task. Indeed, they provide
a way of generating data which do not admit a simple likelihood modelization and/or do
not admit a density with respect to a known measure. Such flexibility is necessary for our
task, since, following the manifold hypothesis, natural data is expected to live close to an
unknown low-dimensional manifold. Providing a likelihood function in such case would require
estimating the manifold to choose a relevant dominating measure on/around this manifold — a
challenging task which necessitates additional assumptions on the data (Genovese et al. 2012).
Furthermore, implicit probabilistic models are better suited than parametric models because
they yield a distribution which is close to the unknown target distribution and easy-to-sample
from. We note that, in an iconoclastic work, Richardson and Weiss (2018) tried to fit Gaussian
Mixture Models on high-dimensional images data and generated new samples from the fitted
models. Even though the results are better than one could have expected, they are still far
from the impressive results obtained by procedures based on implicit probabilistic models. Let
us now see how can one learn implicit probabilistic models.

Likelihood-free learning in implicit probabilistic models. Mohamed and Lakshmi-
narayanan (2016) insist on testing and density estimation-by-comparison as principles for
learning in implicit generative models. In particular, they identify four ways to perform
likelihood-free inference:

1. class probability estimation: the ratio of densities is estimated by training a classifier
that discriminates real data from generated data;

2. divergence minimisation: use a divergence (Ali and Silvey 1966; Csiszár 1967) between
the true density and the model as an objective to drive learning of the generative model;

3. ratio matching: minimise error between the true density ratio and an estimate of it
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obtained through, e.g., least squares importance fitting, see, e.g., Sugiyama, Suzuki, and
Kanamori (2012);

4. moment matching: evaluate whether the moments of the true distribution and that
of the model are the same.

The authors argue that the second and the third ways are not particularly well suited for
learning generative models. In the next subsection, we will focus on examples of procedures
which follow either the first or the last principle for learning implicit probabilistic models.

1.3.2 Generative adversarial networks: foundations and practice

GAN foundations. Generative adversarial networks were introduced in the seminal paper
(Goodfellow et al. 2014). In this initial framework, two models, implemented as deep neural
networks, compete against each other: a generative model G : Rd → RD and a discriminative
model D : RD → R. Goodfellow et al. (2014) give a nice metaphor to think about those
models: the generative model G can be thought of as analogous to a team of counterfeiters,
trying to produce fake currency and use it without detection, while the discriminator model D
is analogous to the police, trying to detect the counterfeit currency. The generator transforms
low-dimensional latent variable Z ∼ PZ (usually uniform or Gaussian) into fake data G(Z),
distributed according to the generating distribution Plearner := G#PZ . The discriminator
receives data (real and fake) and needs to guess for each data point whether it comes from the
generator or from the observed data. In practice, the two models are trained simultaneously
through backpropagation (see, e.g., Goodfellow et al. 2016, for an introduction to deep learning
and deep neural networks). Figure 1.5 illustrates the general functioning of GANs. The hope
is that the training leads to an equilibrium in which the discriminator is not able anymore
to distinguish between generated and real data. The whole framework can be formalized
as a two-player zero-sum game in which the generator G (respectively the discriminator D)
maximizes (respectively minimizes) the objective

EX∼P ∗ [D(X)] + EZ∼PZ
[1−D(G(Z))]. (GAN)

Since the introduction of GANs, impressive results have been obtained in practice for generating
realistically looking images (see, e.g., Radford, Metz, and Chintala 2015; Brock, Donahue,
and Simonyan 2018) but also for more complex tasks such as image-to-image translation
(Isola et al. 2017) and image super-resolution (Ledig et al. 2017). In addition to its striking
empirical performance, one of the main advantages of GANs is the "low" computational
cost of generating new samples once the generator is learned: it amounts to drawing a low-
dimensional Gaussian or uniform random vector and passing it through the generator network.
A large part of subsequent works to Goodfellow et al. (2014) focused on proposing new neural
network architectures or finding training heuristics and tricks to improve the quality of the
generated images. We refer the reader to “The GAN zoo” GitHub repository for an index of
hundreds of GAN variations3. As we will see in the next section, some works also introduced
new formulations for the GAN objective which resulted in popular adaptation of the initial
framework.

3There were more than 500 named GAN paper at the time of writing this manuscript.

https://github.com/hindupuravinash/the-gan-zoo
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Figure 1.5: Illustration of the original GAN model on Vincent Van Gogh’s self-portraits.
During the training phase, real data and generated data are fed to the discriminator (dotted
arrows) which in turn must predict which data is real and which is fake. Feedback (in the form
of gradients of the loss) are then sent to the generator and the discriminator (broken arrows)
based on predictions from the latter to update their parameters (through back-propagation in
the case of neural networks). Note that the generator cannot see the real data.

Limitations of GANs and challenges. Despite their impressive empirical performance,
GANs are notoriously hard to train. Even though some fixes have been proposed (Salimans
et al. 2016), several problems are yet to be fully understood and solved such as, for instance,
the lack of originality of generated samples or the so-called “mode collapse” problem in
which the generator is only able to sample from one mode while the true distribution P ∗ is
multi-modal. Furthermore, as for most deep learning models, a sound mathematical theory
for understanding GANs is lacking. In particular, a fully satisfactory statistical framework for
studying GANs is yet to be developed. In the next section we present some theoretical works
on (or inspired by) the GAN framework.

1.3.3 Generative adversarial model theory

In what follows, we call generative adversarial model any abstraction of the original GAN
model in which a generator learns against a general (and potentially abstract) adversary.
Since GANs initially emerged from the deep learning community, the first line of work primarily
relied on empirical insights and general mathematical intuitions. Later on, a parallel line
of work tackled the GAN problem from the statistical perspectives (Biau, Sangnier, and
Tanielian 2020; Biau et al. 2018; Chen et al. 2020; Liang 2018; Singh et al. 2018; Luise, Pontil,
and Ciliberto 2020; Uppal, Singh, and Poczos 2019) as well as optimization and algorithmic
viewpoints (Pfau and Vinyals 2016; Kodali et al. 2017; Liu, Bousquet, and Chaudhuri 2017;
Nagarajan and Kolter 2017; Genevay, Peyré, and Cuturi 2017; Genevay et al. 2018; Liang
and Stokes 2018; Nie and Patel 2020). We begin this section by explaining how to obtain a
general formulation for the generative adversarial model objective before presenting the main
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Table 1.1: Some popular IPMs.
Metric name Class F
Total Variation distance {f : ∥f∥∞ ≤ 1}
Dudley metric {f : ∥f∥∞ + ∥f∥L ≤ 1}
Kolmogorov distance {1(−∞,t](·) : t ∈ Rd}
Maximum Mean Discrepancy (MMD) {f : ∥f∥H ≤ 1} for RKHS H

known statistical results.

From the GAN discriminator to Integral Probability Metrics. Goodfellow et al.
(2014) showed that minimizing the objective (GAN) with respect to the generator G against
optimal discriminator D∗(G) (i.e., the discriminator which maximizes (GAN)) amounts
to minimizing (w.r.t. G) the Jensen-Shannon (JS) divergence between the generated data
distribution G♯PZ and the real sample distribution P ∗. Arguing that the topology induced
by the JS divergence is rather coarse, Arjovsky, Chintala, and Bottou (2017) proposed to
replace this divergence by the Wasserstein-1 distance, leading to the so-called Wasserstein
GAN. More precisely, the goal of the generator G in this variant is to generate data from a
distribution that is as close as possible, w.r.t. the Wasserstein-1 distance, to the empirical
distribution of the original data. This leads to the (empirical) objective

W1
(
G♯PZ , P̂n

)
= sup

f∈Lip1(X )

∣∣∣∣ 1n
n∑
i=1

f(Xi)− EX̃∼G♯PZ
[f(X̃)]

∣∣∣∣, (1.5)

where Lip1(X ) is the set of 1-Lipschitz real-valued functions on the (metric) space X . In view
of this relation, which follows from the Kantorovitch-Rubinstein duality theorem (Villani 2008,
Theorem 5.9, Remark 6.5), the Wasserstein distance admits a nice interpretation as a sampling
error. Furthermore, replacing the class of Lipschitz functions by an arbitrary functional class
F , we obtain a pseudo-metric over the space of Borel probability measures P,

dF (P,Q) = sup
f∈F
|EX∼P [f(X)]− EY ∼Q[f(Y )]|, P,Q ∈ P. (IPM)

All such pseudo-metrics over the space of probability measures constitute the so-called Integral
Probability Metrics (IPM) (Müller 1997). Depending on the choice of F , IPM encompass
a large family of popular probability metric as illustrated in Table 1.1. We refer the reader
to Sriperumbudur et al. (2012), Liang (2019) and reference therein for theoretical results on
IPM such as sample complexities and computationally tractable consistent estimators. An
interesting fact is that Csiszár ϕ-divergences (Csiszár 1964), which comprise the well-known
Kullback-Leibler divergence, and IPM are fundamentally different and only intersect at the
Total Variation distance.
An IPM can naturally be interpreted as an adversarial loss: to compare two probability
distributions, it seeks for the function f∗ in F for which the expectations of f(X) under the
two distributions have the largest discrepancy. The class F and the induced IPM can then be
seen as an abstraction of the discriminator from the initial GAN framework which compares
distributions via a (generalized) moment matching principle. We can now state a general
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(population) objective for abstract adversarial generative models: given a class of admissible
generators G and a class of discriminators F , find a minimizer G ∈ G of

dF (G♯PZ , P
∗) = sup

f∈F
|EX∼P ∗ [f(X)]− EZ∼PZ

[f(G(Z))]|.

In practice we usually do not have access to the true distribution P ∗ which we replace by the
empirical measure Pn as a proxy to obtain the empirical objective. This substitution opens
the way to many interesting statistical questions.

1.3.4 Existing statistical results

From a statistical perspective, the usual goal is to obtain a bound on the discrepancy between
the learned distribution Plearner and the true distribution P ∗ of the data (X1, . . . ,Xn), with
respect to a given evaluation metric d. A particularly relevant task is the quantification of the
rate of convergence to zero of this discrepancy as the sample size n grows to infinity. Given a
family of candidate distributions P, typical bounds are of the form

E(X1,...,Xn)∼Pobs

[
d(Plearner, P

∗)
]
− inf
P∈P

d(P, P ∗) ≲ n−r(α,β,d,D).

for some exponent r(α, β, d,D) > 0, where the parameter α characterises the complexity of
the discriminator, β represents the smoothness of the generator, d is the intrinsic dimension of
the data and D is the ambient dimension (e.g., the number of pixels in an image). Since D is
typically much larger than d, it is desirable to avoid any decaying dependence on D in the
exponent r(α, β, d,D) — potentially avoiding the curse of dimensionality.
The statistical results on generative adversarial models can be split in three categories
depending on the considered loss: vanilla GAN (Biau et al. 2018), IPM-based loss (Liang
2018; Chen et al. 2020; Uppal, Singh, and Poczos 2019; Singh and Póczos 2018) and optimal
transport based loss (Genevay, Peyré, and Cuturi 2018; Biau, Sangnier, and Tanielian 2020;
Luise, Pontil, and Ciliberto 2020). The last two intersect at Wasserstein-1 loss for GANs.
In the first category, Biau et al. (2018) is among the first to provide mathematical and
statistical insights on the "vanilla" GAN problem. In particular, the authors propose a
sound mathematical analysis of the connection between the Jensen-Shannon divergence and
the GAN population-level objective, as well as the role of the discriminator family in this
connection. Finally, they derive several large sample properties of the estimated parameters
and distributions in a parametric statistics style such as asymptotic normality of the estimated
generator’s parameters. Finite-sample guarantees are yet to be derived for this setting.
Most of the subsequent works focused on different losses, fostered by improvements of variants
of GAN’s initial objective. We now present results based on IPM-based loss. Liang (2018)
obtained both parametric and non-parametric rates of convergence for learning distributions
under IPM losses. For instance, Liang (2018, Theorem 1) can informally be stated as follows.

Theorem (Informal). Assume that the target density as well as the IPM loss dF are charac-
terized by D-dimensional Hilbert-Sobolev balls of smoothness α and β respectively. Then, the
minimax optimal rate is given by

inf
ν̃n

sup
ν∈G

E[dF (ν̃n, ν)] ≍ n− α+β
2α+D ∨ n− 1

2 ,
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where ν̃n is any estimator for ν based on n i.i.d. drawn samples X1, . . . ,Xn ∼ ν. The minimax
rate is achieved by a thresholded Fourier decomposition estimator.

We notice that the rate is similar to the usual minimax rates obtained for non-parametric
estimation problems (Tsybakov 2008) and presents a typical curse of dimensionality behaviour
in the low smoothness regime β < D/2. Crucially, the proof heavily relies on the assumption
that the target distribution admits a Lebesgue density on the D-dimensional hypercube [0, 1]D
to leverage the rich toolboxes from Fourier theory and non-parametric estimation. As a
consequence, it does not generalize to scenarios when the target distribution does not admit
a simple density, such as when it can be expressed as the pushforward of a low-dimensional
latent distribution — a foundational assumption in GAN’s applications. We note that Liang
(2018) also provides upper bounds on the expected risk when functions of interest lie in RKHS
balls such as in MMD GAN. Interestingly, in this latter case, the rate depends on the intrinsic
dimension of the RKHS rather than the ambient dimension of the data. In a similar flavour,
Chen et al. (2020, Theorem 2) obtained the following rate of convergence in the Hölder case:

E[dF (ν̃n, ν)] ≲ n−β/(2β+D) log2 n.

Surprisingly their rate does not scale with the smoothness of the target density, unlike Liang
(2018). According to the authors, this comes from the fact that their estimator is an empirical
risk minimizer: the target distribution µ is replaced by the empirical measure µ̂n which does
not contain any information regarding smoothness.
Finally, generalizing results from Liang (2018) and Singh et al. (2018), Uppal, Singh, and
Poczos (2019) derived minimax rates for the estimation of non-parametric probability density
in Besov spaces (which include Lp, Hölder, Hilbert-Sobolev spaces) under Besov IPM.
A common thread of the aforementioned works is the assumption of absolute continuity of
the target distribution w.r.t. to some known measure (such as the Lebesgue measure) and,
thus, they study GANs as a (non-parametric) density estimation under IPM loss problem.
They yield insightful theoretical results on the performance of GANs as a non-parametric
estimation procedure. Yet, they do not fully explain the impressive ability of GANs to
generate high-dimensional data and seemingly avoid the curse of dimensionality. Overcoming
the dependence of their bounds on the dimension D of the ambient space should necessarily
pass by (i) dropping the density assumption (ii) taking advantage of the particular structure
of the candidate distributions which is arguably one of the defining features of of GANs: they
are expressed as pushforward measures of an easy-to-sample-from low-dimensional distribution
into the high-dimensional sample space. In particular, as a consequence of Sard’s theorem (see
Theorem 1.3.2), we have seen that the distributions induced by a GAN generator do not admit
a density with respect to the Lebesgue measure of the sample space. Hence, we would like to
work with metrics which can provide meaningful measure of distances between distributions
without requiring the existence of a known dominating measure. Optimal transport based
metrics fulfil this requirement, among others, and appear as good candidates for this task.
For instance, the Wasserstein-GAN variation (Arjovsky, Chintala, and Bottou 2017) relies on
the Wasserstein-1 metric which is at the same time an IPM and an optimal transport metric.
In this direction, Biau, Sangnier, and Tanielian (2020) provided a theoretical analysis of the
Wasserstein-GAN parametrized by neural networks. In particular they obtained parametric
rate of convergence under the IPM induced by a parametric class of discriminators contained
in the set of 1-Lipschitz functions.
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Instead of approximating the class of 1-Lipschitz functions, the last category of results —
general optimal transport based loss — rely on a different, but more convenient formulation
of Wasserstein distance, whose evaluation is known to be a hard computational problem. To
circumvent this issue, Cuturi (2013) introduced a regularized version of the optimal transport
metrics known as Sinkhorn divergences, also referred to as entropic regularized optimal
transport. Following this track, Genevay, Peyré, and Cuturi (2018) proposed the first tractable
method to train large-scale generative models using Sinkhorn loss. Later, Luise, Pontil, and
Ciliberto (2020) provided statistical guarantees for learning generative models under the
Sinkhorn loss. Interestingly and unlike the rest of the theoretical literature, the authors
advocated optimizing simultaneously for the generator as well as for the latent distribution.
They obtained parametric rates of convergence n−1/2 under the Sinkhorn loss when the
generator belongs to a Hölder class with smoothness larger than d/2. To our knowledge, Luise,
Pontil, and Ciliberto (2020) is the only work, other than ours, which establishes statistical
guarantees under the assumption that the data generating process is a smooth transformation
of a low-dimensional latent distribution.

1.3.5 Contributions

As we have seen, most statistical results on generative adversarial models are either stated
under the stiff parametric framework or under the assumption that the target distribution is
absolutely continuous w.r.t. a base measure such as the Lebesgue measure. However, positing
that the target distribution P ∗ has a density with respect to the Lebesgue measure, or any
other dominating σ-finite measure µ on RD, is, in general, incompatible with the fact that
P ∗ is inherited from a low-dimensional latent variable and supported by a low-dimensional
manifold (see Sard’s theorem, Theorem 1.3.2). As a consequence of the restriction to dominated
distributions, the available statistical results fail to assess the benefits of the reduced dimension
d of the latent space (as compared to the ambient dimension D) on the quality of the generative
model and present a typical curse of dimensionality behaviour.
In Chapter 6, we propose a convenient framework for studying adversarial generative models
from a statistical perspective to assess the impact of dimension reduction on the error of
the generative model. In this work, the latent distribution is chosen as the uniform on the
d-dimensional hypercube Ud. For a smooth class of real-valued functions F on the sample
space RD and the Integral Probability Metric dF , the risk of a generator G : [0, 1]d → RD is
defined by

RdF ,P ∗(G) := dF
(
G♯Ud, P ∗) := sup

f∈F
|EU∼Ud

[f(G(U))]− EX∼P ∗ [f(X)]|.

In particular, this formulation encompasses that of Wasserstein-1 GAN.
Assuming that the distribution of the training samples, up to some noise and adversarial
contamination, is a smooth transformation of the uniform distribution on the d-dimensional
hypercube, we establish non-asymptotic risk bounds for the Empirical Risk Minimizer (ERM)
for which the exponent of the rate depends on the latent space dimension d, while the ambient
dimension D only enters as a constant multiplicative factor – hence our rate does not exhibit
the usual non-parametric curse of dimensionality. Furthermore, our new bounds, which are
of independent interest, leverage both the smoothness of the distribution of the samples and
that of the functions in the IPM class F .
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In Chapter 5, we provide upper bounds on the expectation of the supremum of empirical
processes indexed by Hölder classes of any smoothness and for any distribution supported
on a bounded set in Rd. These results can alternatively be seen as non-asymptotic risk
bounds, when the unknown distribution is estimated by its empirical counterpart, based on n
independent observations, and the error of estimation is quantified by an IPM indexed by a
Hölder class. These results interpolate between two well-known extreme cases: the rate n−1/d

corresponding to the Wasserstein-1 distance (the least smooth case) and the fast rate n−1/2

corresponding to very smooth functions (for instance, functions from a RKHS defined by a
bounded kernel). Those theoretical results enable us to obtain our bounds in Chapter 6.



CHAPTER 2

An introduction to fair learning

If knowledge can create problems,
it is not through ignorance that
we can solve them.

Isaac Asimov

Statistical algorithms trained on personal data take pivotal decisions which influence our lives
on a daily basis. Recent studies show that a naive use of these algorithms in sensitive domains
may lead to unfair and discriminating decisions, often inheriting or even amplifying biases
present in data (Barocas and Selbst 2016). Consider an example from a recent survey on
the subject (Barocas, Hardt, and Narayanan 2017): “Amazon uses a data-driven system to
determine the neighbourhoods in which to offer free same-day delivery. A 2016 study found
stark disparities in the demographic make-up of these neighbourhoods: in many U.S. cities,
white residents were more than twice as likely as black residents to live in one of the qualifying
neighbourhoods.”. This example highlights a worrying trend that data-driven algorithms can
lead to unfair decisions in much more sensitive domains such as, for instance, court decisions1,
school/university admissions, loan approvals, etc. Therefore, there is a growing need for
ensuring that practical algorithms are not contradicting neither moral nor legal grounds
while still being useful. This issue sits at the intersection of several domains such as political
philosophy, sociology, statistics, computer science, etc. Thus, its full comprehension must
ultimately involve interdisciplinary discussions. Following the wisdom of the Latin expression
“Sutor, ne ultra crepidam”2, we will primarily focus on aspects of this issue which lie inside our
domain of expertise. In particular, we will rely on recent advances in learning theory which
allow to address some aspects of this problem within a rigorous statistical framework. We

1See Propublica’s study of the risk assessment software COMPAS that is used in US courts to assess the
likelihood of a defendant becoming a recidivist.

2The expression literally means "Shoemaker, not beyond the shoe" and was used to warn people to avoid
passing judgment beyond their expertise (Wikipedia).
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https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://en.wikipedia.org/wiki/Sutor,_ne_ultra_crepidam
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refer the reader to Mehrabi et al. (2019) and Barocas, Hardt, and Narayanan (2019) for a
general introduction on algorithmic fairness and to Oneto and Chiappa (2020) and Barrio,
Gordaliza, and Loubes (2020) for reviews of the most recent theoretical advances.
In this chapter of the manuscript we will focus on the problem of fairness-aware learning
(Menon and Williamson 2018a). Once again, we do not pretend or aim to derive a general
theory of fairness nor to debate about what is fair and what is not. This is a political debate,
which should be held on the level of society. Our goal will be much more modest. As presented
in the next section, inspired by recognized legal or philosophical concepts, (mainly) computer
scientists have proposed several mathematical formalizations of discrimination of decision
rules. Our goal as statisticians will be to evaluate, given a measure of performance and
fairness criteria, what is the best one can hope to achieve from a learning perspective regarding
fairness and performance. In particular, we will see that a natural trade-off appears between
satisfying fairness constraints and achieving good (predictive) performance. Our approach to
fairness-related issues does not discuss the relevance of a given choice (such as the choice of a
fairness criterion and a measure of risk), which is ultimately left to the decision-maker, but
yields a better understanding of the consequences of this choice. Such an approach is in phase
with what Weber (1992) defined as one of the goals of science in general – not a substitute for
human’s judgment but a tool for informed decision-making.
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2.1 Problem formalization and definitions

In what follows, we place ourselves in the supervised learning setting: a statistician, which
is given couples of feature and label variables, aims to express the label as a function of the
feature variables in order to predict correctly the label associated to new and unseen feature
variables. The fairness-aware (supervised) learning setting slightly differs from the usual setting
in that we do not treat all features equally. In particular, we distinguish between two types of
features: a set of (nominally) unsensitive features X and a set of sensitive features S. The
reader can think of the latter as, for instance, gender, ethnicity, and/or age. Importantly, the
set of sensitive features S contains those features against which we want to control potential
discriminations. The set S will generally be a finite set in this manuscript. We would like to
point out that in the considered framework, the choice of sensitive attributes belongs to the
decision-maker, potentially incentivized by legal or ethical motives. It is not the statistician’s
task to determine which feature should be regarded as sensitive.
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More formally, the statistician observes independent copies of a triplet (X, S, Y ) ∼ P where
X is the feature vector, Y the label variable and S is a sensitive feature (e.g. gender, ethnicity
or age). Those random variables take their values in the sets X ,Y, and S, respectively. For
full generality, we will consider predictors of the form f : Z → Y where, following the notation
from Donini et al. (2018), the set Z is either the set of unsensitive features X or the whole
set of features X × S, depending on whether the statistician is allowed to access the sensitive
attribute for prediction. Analogously, we define Z as X or (X, S) depending on the type
of predictions at hand. Note that any predictor f induces group-wise distributions of the
predicted outcomes Law(f(Z) | S=s) for s ∈ S. The general goal of the statistician is two-fold:
maximize prediction performance by minimizing a given risk while satisfying one or several
given fairness constraints. Let us now dive into the mathematical definitions of fairness to
specify this general goal.

Individual and group fairness. Basically, the mathematical definitions of fairness can
be divided into two groups (Dwork et al. 2012): individual fairness and group fairness. The
former notion reflects the principle that similar individuals must be treated similarly, which
translates into Lipschitz type constraints on possible (often randomized) prediction rules.
The latter defines fairness on population level via (conditional) statistical independence of a
prediction from sensitive attribute S (e.g., gender, ethnicity). The high-level idea of group
fairness notions can be seen as bounding or diminishing an eventual discrepancy between
group-wise distributions of the predicted outcomes. In this thesis we will focus on the group
fairness. We refer the reader to the seminal paper of Dwork et al. (2012) for an introduction
to individual fairness and to Jung et al. (2019), Dwork, Ilvento, and Jagadeesan (2020), and
Mukherjee et al. (2020) for examples of recent works in this context.

Disparate Treatment. Before introducing the main group fairness definitions, let us define
a first natural (and naive) notion of fairness which essentially restricts the class of predictors
to those which do not take as input the sensitive attribute S.

Definition 2.1.1 (Disparate Treatment). Any function f : X → Y that cannot receive the
sensitive attribute S in its functional form does not produce Disparate Treatment.

Gajane and Pechenizkiy (2017) refer to this definition as fairness through unawareness, as
opposed to fairness through awareness, introduced by Dwork et al. (2012). The latter type of
prediction allows one to build separate model for each sensitive attribute, while the former
obliges one to fix a single model which is later applied across all groups. This property might
be desirable for obvious legal and/or privacy reasons (Primus 2003; Barocas and Selbst 2016;
Gajane and Pechenizkiy 2017; Lipton, McAuley, and Chouldechova 2018). For instance, in
France it is forbidden to use ethnicity as a sensitive attribute for any statistical treatment3

(hence in particular for prediction).

Remark 2.1.2. For some authors, treatment disparity encompasses a larger phenomenon.
For instance, Lipton, McAuley, and Chouldechova (2018) consider that disparate treatment
addresses intentional discrimination which includes decisions explicitly based on protected char-
acteristics, as in Definition 2.1.1, but also intentional discrimination via proxy variables (e.g

3See “Décision n° 2007-557 DC du 15 novembre 2007 du Conseil Constitutionnel, Loi relative à la maîtrise
de l’immigration, à l’intégration et à l’asile” (link to English version).

https://www.conseil-constitutionnel.fr/en/decision/2007/2007557DC.htm
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Figure 2.1: A simple example of an (optimal) predictor which does not produce Disparate
Treatment but whose predictions differ across sensitive groups. The sensitive attribute S
can take two values S = 1 and S = 2 with equal probability. The feature X is distributed
according to a Gaussian mixture model: X|S = 1 ∼ N (−1, 1), X|S = 2 ∼ N (1, 1). The
group-wise feature distributions are represented on top in dotted blue (S = 1) and solid orange
(S = 2). The label Y is obtained as Y = f∗(X) where f∗(x) = 1

1+e−x . The distribution of
predictions from f∗ across groups are plotted on the right in dotted blue (S = 1) and solid
orange (S = 2).

literacy tests for voting eligibility). Since the mathematical formalization of such phenomenon
is not evident, we prefer to stick to the definition we introduced.

Importantly, the absence of Disparate Treatment does not guarantee the prediction to be
statistically independent from the sensitive attribute S because of correlations and, more
generally, dependencies between the sensitive attribute S and the feature vector X (Pedreshi,
Ruggieri, and Turini 2008). Indeed, consider the Bayes optimal predictor x 7→ f∗(x) defined
as

f∗(x) = E[Y |X = x].

By definition, it does not take as input the sensitive attribute and achieves the lowest possible
squared risk among predictions avoiding Disparate Treatment. Yet, the predictor f∗ might still
promote disparity between sensitive groups if the distributions of features X differ between
groups. An example of such scenario is given in Figure 2.1: even though the predictor does
not produce DT (it is the same for both groups), the distribution of the predictions for the
first group significantly differ from that of the second group because of the distributions of
features.
Moreover, in the classification setting, Lipton, McAuley, and Chouldechova (2018) showed
that avoiding Disparate Treatment (DT) is not necessarily desirable, even when combined
with other fairness criteria as in Disparate Learning Processes, a class of learning procedures
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which can access sensitive attribute during training but cannot use it for prediction. They
prove that a decision rule that does not produce DT cannot achieve a better accuracy than an
optimal rule that uses this information; leading them to the conjecture that any rule which
avoids DT yields a suboptimal trade-off between fairness and performance. Furthermore, the
authors provide empirical evidence that avoiding DT leads to indirect treatment disparity, via
proxy variables, or within-class discrimination. Several questions stem from those insightful
observations. Is it possible to provide satisfactory theoretical justifications of their results
? Are those phenomenon limited to the classification setting ? How fair and accurate can
one hope to be by allowing to treat subgroups differently ? Chapter 7 and 8 will provide a
tentative theoretical answer to those questions in the regression setting.

Disparate Impact. As we have seen, given a predictor f , the prediction distributions
(Law(f(Z)|S = s))s∈S may differ across sensitive subgroups and, importantly, this phenomenon
may happen unintentionally, i.e., not because of a pernicious statistician, but as a by-product
of the learning process. The decision-maker might deem as undesirable such difference; for
instance, if a predictor f is used to determine the salaries of employees in a company, the
board might want (or have to) choose a predictor which yields similar salary distributions
across subgroups (e.g., men and women). Hence, most fairness notions focus on controlling the
discrepancy between the distributions of the predictions across groups. We will now provide
some of the most popular fairness definitions regarding the distributions of the predictions.
Since most of the literature focuses on the fair classification problem (see Calders, Kamiran,
and Pechenizkiy (2009) and previous references), the subsequent fairness definitions were
initially given in this framework. For clarity we will provide those definitions in the binary
classification with binary-valued sensitive attribute setting. We will explain, when needed,
how to extend those definitions to regression problems and to non-binary sensitive attributes.
Those extensions will be based on the independence property between random variables. We
will use the notation A ⊥⊥ B to express the independence between random variables A and B.
First of all, it might be the case that the risk of a predictor is small on average across the
whole population but with a high group-wise discrepancy in risk. Such a situation could
be considered as discriminatory for groups with high level of risk. To prevent such issues,
we introduce a first definition of fairness in binary classification, which asks for equality of
group-wise risks.

Definition 2.1.3 (Equality of Group-wise Risks). A classifier f : Z → {0, 1} achieves Equal
Group Wise risk with respect to the distribution P of (X, S, Y ) if

P(f(Z) ̸= Y | S = 0) = P(f(Z) ̸= Y | S = 1).

Buolamwini and Gebru (2018) argues that it corresponds to the requirement that all group
receive good service and Zafar et al. (2017) advocates for this notion to avoid disparate
mistreatment. Note that this definition immediately generalizes to any expected risk notion.
A relaxed formulation of this fairness notion was considered in the context of regression
by Agarwal, Dudík, and Wu (2019).
Next, we introduce the main fairness notion that this thesis will focus on. It was formally
introduced by Calders, Kamiran, and Pechenizkiy (2009) and essentially asks for the prediction
to be (statistically) independent from the sensitive attribute.
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Definition 2.1.4 (Demographic Parity). A classifier f : Z → {0, 1} achieves Demographic
Parity with respect to the distribution P of (X, S, Y ) if

P(f(Z) = 1 | S = 0) = P(f(Z) = 1 | S = 1).

Simply put, this definition assigns equal chances of positive decision for both groups. It acts
as an incentive to promote diversity through affirmative action (Mouzannar, Ohannessian,
and Srebro 2019). We can equivalently express Demographic Parity as the (probabilistic)
independence between the distribution of the prediction f(Z) and that of the sensitive attribute
S, which we denote by

f(Z) ⊥⊥ S. (DP)

Such characterization immediately generalizes the initial definition to any supervised learning
problem and any sensitive attribute.
As argued by Hardt, Price, and Srebro (2016), if deployed in reality, such a notion may cause
more negative effects than positive ones in some cases. An example they give is connected
with credit landing, where Y = 1 means that an individual (X, S) is able to pay back the loan
and f(Z) = 1 means the bank approves the credit. In case when the paying abilities of two
groups are drastically different, providing equal chances of getting a credit without looking at
the paying ability Y sets less privileged individuals to the path of default. To circumvent the
above issue Hardt, Price, and Srebro (2016) proposed the following two definitions.

Definition 2.1.5 (Equalized Odds). A classifier f : Z → {0, 1} achieves Equalized Odds
with respect to the distribution P of (X, S, Y ) if

P(f(Z) = 1 | S = 0, Y = y) = P(f(Z) = 1 | S = 1, Y = y), ∀ y ∈ {0, 1}.

This fairness notion asks for the prediction f : Z → {0, 1} to equalize True Positive and True
Negative rates across both groups. One immediately sees that this definition can be expressed
in a more general form as

(f(Z) ⊥⊥ S) | Y. (EOdd)

It means that, given the true label of an individual, knowing the value of the sensitive attribute
does not bring any information on the distribution of the prediction. Typically, the equalization
of True Negatives is not necessary in practice, since f(Z) = 1 is interpreted as a positive
decision and it can be natural to focus on such decisions. In this way we arrive at the definition
of Equal Opportunity.

Definition 2.1.6 (Equal Opportunity). A classifier f : Z → {0, 1} achieves Equal Opportu-
nity with respect to the distribution P of (X, S, Y ) if

P(f(Z) = 1 | S = 0, Y = 1) = P(f(Z) = 1 | S = 1, Y = 1).

Equal Opportunity is less constraining than Equalized Odds as it just asks for the True Positive
rates to be the same across all groups. In the credit landing example, Equal Opportunity
means that among the clients who are able to pay back their loan, the proportion of attributed
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loans across groups should be the same. It is easy to see that this definition is equivalent to
the more general conditional independence constraint

(f(Z) ⊥⊥ S) | Y = 1. (EOpp)

Note, however, that the extension of this notion to the regression setting is not obvious
at all. That is because the definition of Equal Opportunity relies on the fact that Y = 1
can be interpreted as a positive decision (e.g., attribute a loan) and there is no immediate
equivalent of a "positive decision" in the regression setting. It is still an open question to find
a transposition of the notion of Equal Opportunity outside of the classification setting.
All the fairness definitions introduced up until now are expressed as the conditional probability
of a positive prediction f(Z) = 1 given the value sensitive attribute S and eventually the true
label Y . Unlike the previous definitions, the next one deals with conditional probabilities
w.r.t. to the event of a positive prediction (f(Z) = 1).

Definition 2.1.7 (Test fairness). A classifier f : Z → {0, 1} satisfies Test Fairness with
respect to the distribution P of (X, S, Y ) if

P(Y = 1 | S = 0, f(Z) = 1) = P(Y = 1 | S = 1, f(Z) = 1).

As for the previous definitions, the last one can naturally be expressed as the conditional
independence condition

(Y = 1 ⊥⊥ S) | f(Z) = 1. (Test fairness)

Test fairness is also referred to as predictive parity. It imposes equality across sensitive groups
of the rates of positive outcomes Y = 1 among those who received a positive prediction
f(Z) = 1. It is tightly related to the concept of calibration (Barocas, Hardt, and Narayanan
2017, Chapter 2).
We have given five definitions of fairness which encompass different conceptions of discrimina-
tion. Considering those definitions as constraints, we can now clarify the goal of fairness-aware
learning: minimize a given risk over the class of predictors which satisfy (a subset of) those
definitions. Note that all the constraints are distribution-dependent i.e., they depend on
the joint distribution (X, S, Y ). Hence, the resulting constrained optimization problems are
quite different from the usual shape-constrained problems in which distribution-independent
constraints are imposed on the predictors, such as smoothness constraints.
Let us now briefly expose an illuminating well-known fairness case study to point out some
issues one might encounter. COMPAS (which stands for Correctional Offender Management
Profiling for Alternative Sanctions) is a risk-assessment software developed by Northpointe
Group, a technology and management consulting firm which is used to predict recidivism risk
in US courts. A study by ProPublica (Angwin et al. 2016) showed that COMPAS yields a high
discrepancy regarding False Positive and False Negative rates across ethnicity groups, hence
it does not satisfy Equalized Odds. However, Northpointe’s refutation (Dieterich, Mendoza,
and Brennan 2016) claimed that COMPAS satisfies (a generalized notion of) predictive parity.
This example highlights that the choice of the fairness criterion is crucial when discussing
discriminatory behaviour of a decision rule. Furthermore, it brings the question of whether one
should stick to a particular fairness criterion or try to satisfy several criteria simultaneously.
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Of course, ideally (and naively), one would like to obtain a predictor which satisfies as many
fairness constraints as possible. However this is not necessarily desirable since the class of
predictors might be small or even empty. Indeed, Chouldechova (2017) showed an impossibility
result which states that unless P(Y = 1|S = s) is the same across groups, no classifier
f : Z → {0, 1} can simultaneously satisfy Test fairness and Equalized Odds. What lessons can
we take out of this ? First of all, one indeed needs to be careful about chosen fairness criteria
for a given task; secondly, it might indicate that the fairness notions we consider are too stiff
and it would be worth exploring ways of relaxing those constraints. This will be the subject of
the next section.

A word on bias in data and causality. Before going on to the next section, let us discuss
an important point to us. An attentive reader might have noticed that all the definitions we
gave focus on potential discrimination on the prediction level while nothing has been said
on the potential biases in the data. Why did we make such a choice ? In a nutshell, we are
interested in the outcome of the algorithms, not in the identification of biases in the data,
because the reasons for which a procedure or an algorithm can have discriminatory behaviour
are, most of the time, far from obvious and potentially impossible to unveil unless we are ready
to make strong assumptions about our data. For example, if features are high-dimensional
images, it might be an extremely difficult task to provide or test a causal model for the
data because of its complexity (Bühlmann 2013). Nevertheless, we would like to mention a
complementary growing sub-branch of algorithmic fairness literature which tries to incorporate
causal reasoning into fairness-aware learning (see,e.g., Kilbertus et al. 2017; Kusner et al. 2017;
Loftus et al. 2018; Makhlouf, Zhioua, and Palamidessi 2020). They provide new formalizations
of fairness notions and new procedures to overcome potential bias and discriminations using
the machinery of causal learning. The setting that is of interest to us is one in which providing
a causal model for the problem of interest is too difficult, too time consuming or too expensive.
Hence we focus on controlling bias in prediction, which is something we can observe and test.

2.2 Relaxation and trade-offs.

In the previous section, we have provided some popular ways of formalizing what it means for
a predictor to be fair, i.e., to avoid particular discriminations. We have broadly stated the
fairness-aware learning problem as that of finding a predictor f which has a low risk R(f)
while satisfying one or several fairness criteria, such as the ones we have defined. Following
this paradigm, fairness-aware learning problem can be expressed a constrained optimization
problem:

arg min
f :Z→Y

{R(f) : f is “fair” } ,

where the constraint could be, for instance, imposing that the predictors satisfy one or several
of the definition we have introduced such as Definitions 2.1.4 and 2.1.5. Given this general
formulation of the fairness-aware learning problem, a natural question arises: what is the
impact of introducing the fairness constraint on the risk of the best fair predictors ? In order
to form a relevant answer, we will argue why relaxation of the fairness constraints is needed
and provide different ways of achieving it. This will allow us to derive a general framework for
studying the trade-off between performance and fairness.
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Relaxation of fairness constraints. There are four main reasons why relaxation is
necessary. First, mathematical fairness definitions are imperfect transposition of qualitative
ideas, thus it might not be desirable to aim at exact satisfaction of the resulting constraints.
Second, two sources of randomness might blur the satisfaction our definitions: we have
introduced fairness definitions for fixed predictors while in practice we will be working with
estimators i.e. predictors which depends on a finite number of samples from the joint
distribution (X, S, Y ); furthermore, the quantities of interest (such as the False Positive Rate
for instance) also have to be estimated from finite samples. Those unavoidable uncertainties
and the resulting errors needs to be taken into account in the constraints. Third, a drastic
change of a prediction policy can have a negative impact: for instance, if the task consists in
setting wages in a company, employees will probably not tolerate an abrupt (negative) change
in their salary. We might want to introduce fairness in a continuous manner hence we need
a way to interpolate smoothly between fair and unfair situations. Finally, the introduced
definitions are too stiff as do not allow to compare the discriminatory behaviour of two
predictors which do not satisfy the fairness constraint(s): a predictor is either considered
as fair or unfair. As for the risk, we would like to have some kind of order relation on the
predictors regarding their fairness.
Hence the need to find a way to relax the initial definitions and provide meaningful notions of
unfairness, defined as the violation of the fairness constraints. In what follows, we will focus on
relaxations of the Demographic Parity constraint as all works from this thesis are based on this
constraint. Recall that DP requires equality of two quantities of interest, P(f(Z) = 1 | S = 0)
and P(f(Z) = 1 | S = 1).
A first natural way to relax exact fairness constraints is to ask for the difference of the
quantities of interest to be small. In the case of Demographic Parity, this amounts to

|P(f(Z) = 1 | S = 0)− P(f(Z) = 1 | S = 1)| ≤ ε,

for some prescribed threshold level ε ≥ 0. One can also consider other types of relaxations;
for instance, multiplicative instead of additive. Note that those ideas easily generalize to
other notions of fairness we have introduced in the classification with binary-valued sensitive
attribute setting, S × Y = {0, 1}2. However, it is not clear how to proceed for other settings
such as regression or general sensitive attribute.
Another way of relaxing fairness criteria relates to the alternative (conditional) independence
definitions we have provided. As we have seen, three popular fairness constraints can be
expressed as (conditional) independence conditions depending on the joint distribution of the
triplet (f(Z), Y, S). In order to formalize this idea, any metric/divergence d on the space
of probability distributions (such as Kolmogorov-Smirnov distance, total variation distance,
Kullback-Leibler divergence, etc.) can be used to measure the discrepancy between group-wise
predictions as

d
(

Law(f(Z)|S = s),Law(f(Z)|S = s′)
)
,

for any values s, s′ ∈ S of the sensitive attribute. In particular, if d satisfies the “identity of
indiscernible” (namely, for any probability distributions P and Q, d(P,Q) = 0 =⇒ P = Q)
Demographic Parity is satisfied if and only if

d
(

Law(f(Z)|S = s),Law(f(Z)|S = s′)
)

= 0, ∀s, s′ ∈ S.
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A natural idea is to define a functional U on the set of predictors which quantifies the violation
of the DP constraint using a chosen metric and to declare a prediction approximately fair if this
functional does not exceed a user pre-specified threshold. In recent years a large variety of such
relaxations has been proposed: correlation based (Baharlouei et al. 2019; Mary, Calauzènes,
and El Karoui 2019; Komiyama et al. 2018); Kolmogorov-Smirnov distance (Agarwal, Dudík,
and Wu 2019); Mutual information (Steinberg et al. 2020; Steinberg, Reid, and O’Callaghan
2020); Total Variation distance (Oneto, Donini, and Pontil 2019b; Oneto et al. 2019); Equality
of means and higher moment matching (Raff, Sylvester, and Mills 2018; Fitzsimons et al.
2019; Calders et al. 2013; Berk et al. 2017; Olfat et al. 2020; Donini et al. 2018); Maximum
Mean Discrepancy (Quadrianto and Sharmanska 2017; Madras et al. 2018); Wasserstein
distance (Chiappa et al. 2020; Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c;
Gordaliza et al. 2019).
The most common relaxations of the Demographic Parity constraint are based on the Total
Variation (TV) and the Kolmogorov-Smirnov (KS) distances (Agarwal, Dudík, and Wu 2019;
Oneto, Donini, and Pontil 2019a; Agarwal et al. 2018; Chzhen et al. 2020a). There are various
ways to use the TV or KS in order to build a functional U , which quantifies the violation of
the DP constraint. To compare those measures of discrepancy with the one that we introduce
in our work, we define UTV and UKS as follows

TV unfairness: UTV(f) :=
∑
s∈[K]

TV (Law(f(X, S) | S = s),Law(f(X, S))) ,

KS unfairness: UKS(f) :=
∑
s∈[K]

KS (Law(f(X, S) | S = s),Law(f(X, S))) .

Using these notions, one wishes to study those predictors f which satisfy relaxed fairness
constraint U□(f) ≤ ε, where □ is KS or TV and ε ≥ 0 is a user specified parameter. Note
that since both KS and TV are metrics, setting ε = 0 is equivalent to the DP constraint.
Meanwhile, for ε > 0 these formulations allow some slack. It is known that the TV distance
is rather strong and extremely sensitive to small changes in distributions which is the major
drawback of the TV unfairness. This limitation can be addressed by the KS unfairness due to
an obvious relation UKS(f) ≤ UTV(f).

The price of fairness and the risk-fairness trade-off. Now that we have defined a
quantitative notion of unfairness, we can study the impact of incorporating a fair constraint
in the risk minimization problem. As usual we define the Bayes optimal predictor f∗ as an
unconstrained minimizer of the risk

f∗ ∈ arg min
f :Z→Y

R(f).

For clarity of exposition we will assume in the following that the minimum is indeed attained.
The Bayes predictor, and its associated level of risk, give us a sense of the best (risk)
performance one can hope to achieve for a given problem. Note that the level of unfairness
of the Bayes optimal predictor depends on the problem at hand, not on the statistician’s
choices. In particular, if one wants to optimize for risk and unfairness simultaneously, new
notions of optimality need to be defined. For a given metric □ (e.g., TV or KS) and a positive
real number ε > 0, we define an optimal ε-fair predictor as a minimizer f∗

ε of the risk whose
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unfairness, measured through the functional U□, does not exceed the threshold
varepsilon:

f∗
ε ∈ arg min{R(f) : U□(f) ≤ ε}.

Since the Bayes optimal predictor achieves the smallest risk among all predictors, we must
have

R(f∗
ε )−R(f∗) ≥ 0,

for any predictor ε-fair predictor f∗
ε and for any ε > 0, showing that the incorporation of the

fairness constraint can only increase the risk. Furthermore, since we have a natural order on
the constraints, the difference in risk in Eq. (2.1) decreases with respect to the threshold ε.
Thus, a natural trade-off arises between the fairness condition and the risk and it can entirely
be measured through the excess risks

R(f∗
ε )−R(f∗), ε ≥ 0.

One of our goals will be to precisely understand and quantify this trade-off in the regression
setting to answer questions such as: for a prescribed level of risk, what is the best achievable
fairness level ? Or what is the cost in risk of switching from fairness threshold ε to ε′ ?

2.3 Fair regression and optimal transport

Unlike its classification counterpart, the problem of fair regression has received far less attention
in the literature. However, as argued by Agarwal, Dudík, and Wu (2019) classifiers only
provide binary decisions, while in practice final decisions are taken by humans based on
predictions from the machine. In this case a continuous prediction is more informative than
a binary one and justifies the need for studying fairness in the regression framework. Until
very recently, contributions on fair regression were almost exclusively focused on the practical
incorporation of proxy fairness constraints in classical learning methods, such as random
forest, ridge regression, kernel based methods to name a few (Calders et al. 2013; Komiyama
and Shimao 2017; Berk et al. 2017; Pérez-Suay et al. 2017; Raff, Sylvester, and Mills 2018;
Fitzsimons et al. 2018). Several works empirically study the impact of (relaxed) fairness
constraints on the risk (Bertsimas, Farias, and Trichakis 2012; Zliobaite 2015; Haas 2019;
Wick, Panda, and Tristan 2019; Zafar et al. 2017). Yet, the problem of precisely quantifying
the effect of such constraints on the risk has not been tackled.
More recently, statistical and learning guarantees for fair regression were derived (Agarwal,
Dudík, and Wu 2019; Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c; Chiappa et al.
2020; Fitzsimons et al. 2019; Plečko and Meinshausen 2019; Chzhen et al. 2020a). The closest
works to our contribution are that of (Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c;
Chiappa et al. 2020), who draw a connection between the problem of exactly fair regression
of demographic parity and the multi-marginal optimal transport formulation (Gangbo and
Święch 1998; Agueh and Carlier 2011). In particular, (Le Gouic, Loubes, and Rigollet 2020;
Chzhen et al. 2020c) derive the form of optimal fair prediction, provide statistical guarantees on
plug-in type estimators, and establish the exact value of the risk of the optimal fair prediction.
Let us cite in full their result which served as a starting point for our work.
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Theorem 2.3.1 (Le Gouic, Loubes, and Rigollet (2020) and Chzhen et al. (2020c)). Assume
that for any s ∈ [K], the random variable (f∗(X, S)|S = s) has a finite second moment and is
non-atomic. Then,

min
{
R(f) :

(
f(X, S) | S = s

) d=
(
f(X, S) | S = s′) ∀s, s′ ∈ [K]

}
= U(f∗).

Moreover, the distribution of the minimizer of the problem on the l.h.s. is given by

arg min
ν∈P2(R)

K∑
s=1

wsW2
2 (Law(f∗(X, S) | S=s), ν) .

This result is important for two reasons: it puts a measure of performance the risk R, and a
measure of unfairness U on the same scale. Moreover it expresses a deep connection between
the Wasserstein-2 barycenter problem and the fairness-aware learning problem squared risk
under Demographic Parity.
We note that the use of optimal transport tools in the study of fairness is relatively recent.
Initially, contributions in this direction were mainly dealing with the problem of binary
classification (Gordaliza et al. 2019; Jiang et al. 2019). Later on, the tools of the optimal
transport theory migrated to the setup of fair regression (Chiappa et al. 2020; Chzhen et al.
2020c; Le Gouic, Loubes, and Rigollet 2020). As we will see, we made extensive use of the
Wasserstein-2 metric to derive more results in the fair regression setup.

2.4 Contributions

2.4.1 Risk-fairness trade-off in the regression setup

Chapter 7 introduces a theoretical framework for rigorous analysis of regression problems
under fairness requirements. Within this framework we precisely quantify the risk-fairness
trade-off and derive general lower bound for learning under the Demographic Parity constraint.
We study the regression problem when a sensitive attribute is available. The statistician
observes triplets (X1, S1, Y1), . . . , (Xn, Sn, Yn) ∈ Rp × [K] × R, which are connected by the
following regression-type relation

Yi = f∗(Xi, Si) + ξi, i ∈ [n], (2.1)

where ξi ∈ R is a centered random variable and f∗ : Rp × [K]→ R is the regression function.
Here for each i ∈ [n], Xi is a feature vector taking values in Rp, Si is a sensitive attribute
taking values in [K], and Yi is a real-valued dependent variable. We define the risk of a
prediction function f via the L2 distance to the regression function f∗ as

R(f) := ∥f − f∗∥22 :=
K∑
s=1

wsE
[
(f(X, S)− f∗(X, S))2 | S = s

]
, (Risk measure)

where E[· | S=s] is the expectation w.r.t. the distribution of the features X in the group S = s
and w = (w1, . . . , wK)⊤ ∈ ∆K−1 is a probability vector, which weights the group-wise risks.
For any s ∈ [K] define ν∗

s as Law(f∗(X, S) | S=s) – the distribution of the optimal prediction
inside the group S = s. Throughout this work we make the following assumption on those
measures, which is, for instance, satisfied in linear regression with Gaussian design.
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Assumption 2.4.1. The measures {ν∗
s}s∈[K] are non-atomic and have finite second moments.

As we have seen, exact DP is not necessarily desirable in practice and it is common in the
literature to consider relaxations of this constraint. In this work we introduce the α-Relative
Improvement (α-RI) constraint – a novel DP relaxation based on our unfairness measure.
Following the works of (Chzhen et al. 2020c; Le Gouic, Loubes, and Rigollet 2020) which
linked the problem of regression under (exact) Demographic Parity constraint to a Wasserstein
barycenter problem, we propose a new measure of unfairness

U(f) := min
ν∈P2(R)

K∑
s=1

wsW2
2
(
Law(f(X, S) | S=s), ν

)
,

which can be used to relax the Demographic Parity constraint: U(f) is equal to zero if and
only if the distributions of the prediction are the same across all sensitive feature groups, i.e.
if the predictor f satisfies the Demographic Parity constraint. Otherwise it is positive and
quantifies the violation of this constraint. Equipped with this unfairness measure, we introduce
a collection {f∗

α}α∈[0,1] of oracle α-relative improvement (α-RI) indexed by the parameter α as

f∗
α ∈ arg min

{
K∑
s=1

wsE
[
(f(X, S)− f∗(X, S))2 | S = s

]
: U(f) ≤ αU(f∗)

}
.

Note that we consider relative unfairness, w.r.t. the Bayes predictor, to make the parameter α
more interpretable. For α = 0 the predictor f∗

0 corresponds to the optimal fair predictor in
the sense of DP studied by (Chzhen et al. 2020c; Le Gouic, Loubes, and Rigollet 2020) while
for α = 1 the corresponding predictor f∗

1 coincides with the regression function f∗. Those two
extreme cases have been previously studied but, up to our knowledge, nothing is known about
those “partially fair” predictors which correspond to α ∈ (0, 1). Importantly, the fairness
requirement is stated relatively to the unfairness of the regression function f∗, which allows to
make a more informed choice of α. Our study of the family {f∗

α}α∈[0,1] serves as a basis for
our statistical framework and analysis. It also reveals the intrinsic interplay of the fairness
constraint with the risk measure.
Formally, for a fixed α ∈ [0, 1], the goal of a statistician in our framework is to build an
estimator f̂ using data, which enjoys two guarantees (with high probability)

α-RI guarantee: U(f̂) ≤ αU(f∗) and Risk guarantee: R(f̂) ≤ rn,α,f∗ .

The former ensures that f̂ satisfies the α-RI constraint. In the latter guarantee we seek the
sequence rn,α,f∗ being as small as possible in order to quantify two effects: the introduction
of the α-RI fairness constraint and the statistical estimation. We note that rn,α,f∗ depends
on the sample size n, the fairness parameter α, as well as the regression function f∗ to be
estimated, we clarify the reason for this dependency later in the text.
The contributions of this work can be roughly split into three interconnected groups:

1. We provide a theoretical study of the family of oracle α-RI {f∗
α}α∈[0,1] from which we

derive a precise quantification of the risk-fairness trade-off on the population level as
illustrated in Figure 2.2.
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Figure 2.2: Risk R and unfairness U of α-RI oracles {f∗
α}α∈[0,1]. Green curves (decreasing,

convex) correspond to the risk, while orange curves (increasing, linear) correspond to the
unfairness. Each pair of curves (solid, dashed, dashed dotted) corresponds to three regimes:
high, moderate, and low unfairness of the regression function f∗ respectively.

2. In order to quantify the statistical price of fairness, we introduce a minimax statistical
framework and derive a general problem-dependent minimax lower bound for the problem
of regression under the α-RI constraint. In particular, we show in Theorem 7.5.3 that
any estimator f̂ satisfying the α-RI constraint with high probability must incur

R(f̂) ≥ δn ∨ (1−
√
α)2U(f∗),

where δn is the rate one would obtain without restricting the set of possible estimators.

3. In order to demonstrate that the general problem-dependent lower bound we derived
does indeed yield minimax optimal rates, we derive such rates for the statistical model
of linear regression with systematic group-dependent bias and Gaussian design under
the α-RI constraint.

2.4.2 Demographic Parity without Disparate Treatment in the regression
setting

As we have seen in Section 2.1, the sensitive feature might be inaccessible to the statistician
for legal reasons and one may have to build fair regressor which does not produce Disparate
Treatment (Definition 2.1.1). As discussed earlier, Lipton, McAuley, and Chouldechova (2018)
provided an insightful study of this issue for classification problems. However, very little is
known in the regression setting about the predictions which avoid Disparate Treatment and
achieve Demographic Parity, even in the infinite sample regime. Actually, even the existence
of non-trivial regression prediction strategies satisfying the two constraints is unclear.
In Chapter 8, we make progress towards the mathematical understanding of the latter problem.
We make the following contributions: we propose a large family of prediction functions which
achieve Demographic Parity without producing Disparate Treatment (not taking as input the
sensitive feature); we identify a specific function within this class which additionally equalizes
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the group-wise risks. To the best of our knowledge this is the first explicit construction of a
non-constant predictor simultaneously satisfying those three fairness constraints. Even though
the proposed prediction rule achieves several desirable formal group-fairness notions, we argue
that this prediction is not suitable for real-world scenarios. We show on simple scenarios
that, even though those predictors satisfy desirable fairness constraints, they may violate an
intuitive conception of fairness, namely that some kind of group-wise order on the individuals
should be preserved by fair procedures. In contrast, a prediction that is allowed to produce
Disparate Treatment can alleviate these drawbacks. In the context of binary classification,
similar conclusions were reached by Lipton, McAuley, and Chouldechova (2018).

2.4.3 Fair classification with abstention

In Chapter 9 we come back to the classification setting and introduce the possibility for
decision rules to "reject" a fixed proportion of predictions (i.e. abstains from giving certain
predictions), as it is done in usual classification with abstention/rejection procedures (Lei
2014b). In this setting a classifier is a mapping g : Rd × [K]→ {0, 1, r}. That is, any classifier
g is able to provide a prediction in {0, 1}, or to abstain from prediction by outputting r. Our
hope is that such an abstention can potentially overcome the usual risk-fairness trade-off.
More precisely, Chapter 9 combines and extends previous results in abstention framework
with recent results on fair binary classification. Namely, similarly to Denis and Hebiri (2020),
we aim at minimizing misclassification risk under a control over group-wise reject rates. As we
would like to avoid disparate impact, we explicitly add the Demographic Parity constraint in
our framework.
Formally, given reject rates α = (α1, . . . , αK)⊤ ∈ [0, 1]K over the K sensitive groups, our goal
is to find a solution of the problem

min
g:Rd×[K]→{0,1,r}

P(Y ̸= g(X, S) | g(X, S) ̸= r)

s.t. , ∀s ∈ [K],
{

NAbs(g) = αs

PTs(g) = PT(g)

, (DPWA)

where we defined

NAbs(g) := P(g(X, S) ̸= r | S = s),
PTs(g) := P(g(X, S) = 1 | S = s, g(X, S) ̸= r),
PT(g) := P(g(X, S) = 1 | g(X, S) ̸= r)).

Abstention framework has not yet received a lot of attention in the context of fair learning.
Notable exceptions are work of Madras, Pitassi, and Zemel (2018) and Jones et al. (2020). The
latter demonstrates that an imprudent use of abstention might amplify potential disparities
already present in the data. In particular, they show that in the framework of prediction
without disparate treatment (Zafar et al. 2017) the use of the same rejection threshold across
sensitive groups might result in a large group-wise risks disparities. As a potential remedy, our
work offers a theoretically grounded way to enforce fairness constraints as well as a desired
group-dependent reject rates. The idea of relying on a reject mechanism to enforce fairness
has only been explored once, in Madras, Pitassi, and Zemel (2018). The authors introduce
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“learning to defer” framework – an extension of classification with abstention – where the cost
of rejection is allowed to depend on the prediction of an external decision-maker (e.g., a
human expert). The authors argue that by making the automated model aware of the potential
biases and weaknesses of the external decision-maker, it can globally optimize for accuracy
and fairness. The authors enforce Equalized Odds (Hardt, Price, and Srebro 2016) through
regularization of the risk and thus cannot control explicitly the reject rate, which might
potentially lead to a huge external decision-maker costs. While the authors provide empirical
evidences of their claims, theoretical justification of their results remains open.
Our work offers a completely theory-driven way to enforce both fairness and rejection con-
straints while optimizing for accuracy, leading to a computationally efficient post-processing
algorithm. We derive in Theorem 9.3.2 the optimal form of a reject classifier, which minimizes
the misclassification risk under the discussed constraints. Our explicit characterization of
the optimal reject classifier provides a better understating of the interplay between, on one
side, the fairness and rejection constraints and, on the other side, the accuracy. We propose
a data-driven post-processing algorithm which enjoys generic plug-and-play finite sample
guarantees regarding fairness and risk. An appealing feature of our post-processing algorithm
is that it can be used on top of any pre-trained classifier, thus avoiding the – potentially high
– cost of re-fitting a classifier from scratch. From numerical perspective, the proposed method
reduces to a solution of a sparse linear program, allowing us to leverage efficient LP solvers.
Numerical experiments validate our theoretical result demonstrating that the proposed method
successfully enforces fairness and rejection constraints in practice, while achieving a high level
of accuracy.



CHAPTER 3

Une introduction à l’apprentissage équitable1

Les algorithmes entraînés sur nos données personnelles prennent des décisions cruciales qui
influencent notre vie au quotidien. Des études récentes montrent qu’une utilisation naïve de ces
algorithmes dans des domaines sensibles peut conduire à des décisions injustes et discriminantes,
héritant souvent ou même amplifiant les biais présents dans les données (Barocas and Selbst
2016). Prenons un exemple tiré d’une enquête récente sur le sujet (Barocas, Hardt, and
Narayanan 2017) : “Amazon utilise un système basé sur des données pour déterminer les
quartiers dans lesquels proposer une livraison gratuite le jour même. Une étude de 2016 a
révélé de fortes disparités dans la composition démographique de ces quartiers : dans de
nombreuses villes américaines, les résidents blancs étaient plus de deux fois plus susceptibles
que les résidents noirs de vivre dans l’un des quartiers admissibles.” Cet exemple met en lumière
une tendance inquiétante, à savoir que les algorithmes basés sur des données peuvent conduire
à des décisions injustes dans des domaines beaucoup plus sensibles tels que, par exemple,
les décisions de justice2, les admissions dans les écoles/universités, les approbations de prêts
bancaires, etc. Il est donc de plus en plus nécessaire de s’assurer que les algorithmes utilisés en
pratique ne contredisent pas les fondements moraux et juridiques de nos sociétés tout en restant
utiles. Cette question se situe à l’intersection de plusieurs domaines tels que la philosophie
politique, la sociologie, les statistiques, l’informatique, etc. Ainsi, sa pleine compréhension
doit en fin de compte impliquer des discussions interdisciplinaires. Suivant la sagesse de
l’expression latine “Sutor, ne ultra crepidam”3, nous nous concentrerons principalement sur
les aspects de cette question qui se situent dans notre domaine d’expertise. En particulier,
nous nous appuierons sur les avancées récentes de la théorie de l’apprentissage statistique qui
permettent d’aborder certains aspects de ce problème dans un cadre statistique rigoureux.
Nous renvoyons le lecteur à Mehrabi et al. (2019) and Barocas, Hardt, and Narayanan (2019)

1Ce chapitre est une traduction en français (par Google Traductions) du chapitre précédent.
2Voir L’étude de Propublica sur le logiciel d’évaluation des risques COMPAS qui est utilisé dans les tribunaux

américains pour évaluer la probabilité qu’un criminel récidive.
3L’expression signifie littéralement "Cordonnier, pas plus haut que la chaussure" et était utilisée pour avertir

les gens d’éviter de porter un jugement au-delà de leur expertise (Wikipedia).
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https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://en.wikipedia.org/wiki/Sutor,_ne_ultra_crepidam
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pour une introduction générale sur l’équité algorithmique et à Oneto and Chiappa (2020) and
Barrio, Gordaliza, and Loubes (2020) pour une revue des avancées théoriques les plus récentes.
Dans ce chapitre du manuscrit, nous nous concentrerons sur le problème de l’apprentissage
équitable (Menon and Williamson 2018a). Encore une fois, nous n’avons pas la prétention
ni l’objectif de bâtir une théorie générale de l’équité, ni de débattre de ce qui est juste et
de ce qui ne l’est pas. Il s’agit là d’un débat politique, qui doit être mené au niveau de
la société. Notre objectif sera beaucoup plus modeste. Comme présenté dans la section
suivante, inspirés par des concepts juridiques ou philosophiques reconnus, des informaticiens et
mathématiciens ont proposé plusieurs formalisations mathématiques de la discrimination des
règles de décision. Notre objectif, en tant que statisticiens, sera d’évaluer, compte tenu d’une
mesure de performance et de critère(s) d’équité, quel est le meilleur résultat que l’on puisse
espérer obtenir dans une perspective d’apprentissage en matière d’équité et de performance. En
particulier, nous verrons qu’un compromis naturel apparaît entre la satisfaction des contraintes
d’équité et l’obtention de bonnes performances (prédictives). Notre approche des questions
liées à l’équité ne discute pas de la pertinence d’un choix donné (tel que le choix d’un critère
d’équité et d’une mesure du risque), qui est finalement laissé au décideur, mais permet de
mieux comprendre les conséquences de ce choix. Une telle approche est en phase avec ce que
Weber (1992) a défini comme l’un des objectifs de la science en général – non pas un substitut
au jugement de l’homme mais un outil pour une prise de décision éclairée.

Contents
3.1 Formalisation du problème et définitions . . . . . . . . . . . . . . 56
3.2 Relaxation et compromis . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Régression équitable et transport optimal . . . . . . . . . . . . . 66

3.1 Formalisation du problème et définitions

Dans ce qui suit, nous nous plaçons dans le cadre de l’apprentissage supervisé : un statisticien,
qui reçoit des couples de variables de caractéristiques et d’étiquettes, cherche à exprimer
l’étiquette en fonction des variables de caractéristiques afin de prédire correctement l’étiquette
associée à de nouvelles variables de caractéristiques. Le cadre d’apprentissage (supervisé)
équitable diffère légèrement du cadre habituel en ce sens que nous ne traitons pas toutes
les caractéristiques de la même manière. En particulier, nous distinguons deux types de
caractéristiques : un ensemble de caractéristiques (nominalement) insensibles X et un ensemble
de caractéristiques sensibles S. Le lecteur peut considérer ces dernières comme étant, par
exemple, le sexe, l’origine ethnique et/ou l’âge. Il est important de noter que l’ensemble
des caractéristiques sensibles S contient les caractéristiques contre lesquelles nous voulons
contrôler les discriminations potentielles. L’ensemble S sera généralement un ensemble fini
dans ce manuscrit. Nous tenons à souligner que dans le cadre considéré, le choix des attributs
sensibles appartient au décideur, potentiellement incité par des motifs juridiques ou éthiques.
Ce n’est pas la tâche du statisticien de déterminer quelle caractéristique doit être considérée
comme sensible.
Formellement, le statisticien observe des copies indépendantes d’un triplet (X, S, Y ) ∼ P où
X est le vecteur de caractéristiques, Y la variable d’étiquette et S est une caractéristique
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sensible (par exemple sexe, ethnicité ou âge). Ces variables aléatoires prennent leurs valeurs
dans les ensembles X ,Y , et S, respectivement. Nous considérerons des prédicteurs de la forme
f : Z → Y où, suivant la notation de Donini et al. (2018), l’ensemble Z est soit l’ensemble
des caractéristiques non sensibles X , soit l’ensemble des caractéristiques X × S, selon que le
statisticien est autorisé ou non à accéder à l’attribut sensible pour la prédiction. De manière
analogue, nous définissons Z comme X ou (X, S) selon le type de prédiction en question.
Notons que chaque prédicteur f induit des distributions par groupe des résultats prédits
Law(f(Z) | S=s) pour s ∈ S. L’objectif général du statisticien est double : maximiser les
performances de prédiction en minimisant un risque donné tout en satisfaisant une ou plusieurs
contraintes d’équité données. Rentrons maintenant dans les définitions mathématiques de
l’équité pour préciser cet objectif général.

Equité individuelle et équité collective. Fondamentalement, les définitions mathéma-
tiques de l’équité peuvent être divisées en deux groupes (Dwork et al. 2012) : équité individuelle
et équité de groupe. La première notion reflète le principe selon lequel des individus similaires
doivent être traités de manière similaire, ce qui se traduit par des contraintes de type Lipschitz
sur les règles de prédiction possibles (souvent aléatoires). La seconde définit l’équité au niveau
de la population via l’indépendance statistique (conditionnelle) d’une prédiction par rapport à
un attribut sensible S (e.g., sexe, ethnicité). L’idée générale des notions de équité de groupe
peut être vue comme la limitation ou la diminution d’une éventuelle divergence entre les
distributions par groupe des résultats prédits. Dans cette thèse, nous nous concentrerons sur
la équité de groupe. Nous renvoyons le lecteur à l’article fondateur de Dwork et al. (2012) pour
une introduction à l’équité individuelle et à Jung et al. (2019), Dwork, Ilvento, and Jagadeesan
(2020), and Mukherjee et al. (2020) pour des exemples de travaux récents dans ce contexte.

Traitement différencié. Avant d’introduire les principales définitions de l’équité de groupe,
définissons une première notion naturelle (et naïve) d’équité qui restreint essentiellement la
classe des prédicteurs à ceux qui ne prennent pas en entrée l’attribut sensible S.

Definition 3.1.1 (Traitement différencié). Toute fonction f : X → Y qui ne peut pas recevoir
l’attribut sensible S dans sa forme fonctionnelle ne produit pas de Traitement différencié.

Gajane and Pechenizkiy (2017) font référence à cette définition comme fairness through
unawareness, par opposition à fairness through awareness, introduite par Dwork et al. (2012).
Ce dernier type de prédiction permet de construire un modèle distinct pour chaque attribut
sensible, tandis que le premier oblige à fixer un modèle unique qui est ensuite appliqué à
tous les groupes. Cette propriété peut être souhaitable pour des raisons juridiques et/ou de
confidentialité évidentes : (Primus 2003; Barocas and Selbst 2016; Gajane and Pechenizkiy
2017; Lipton, McAuley, and Chouldechova 2018). Par exemple, en France, il est interdit
d’utiliser l’appartenance ethnique comme attribut sensible pour tout traitement statistique 4

donc notamment pour la prédiction.

Remark 3.1.2. Pour certains auteurs, la disparité de traitement englobe un phénomène plus
large. Par exemple, Lipton, McAuley, and Chouldechova (2018) considère que la disparité de

4Voir "Décision n° 2007-557 DC du 15 novembre 2007 du Conseil Constitutionnel, Loi relative à la maîtrise
de l’immigration, à l’intégration et à l’asile" (lien)

https://www.conseil-constitutionnel.fr/decision/2007/2007557DC.htm
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Figure 3.1: Un exemple simple d’un prédicteur (optimal) qui ne produit pas de traitement
différencié mais dont les prédictions diffèrent selon les groupes sensibles. L’attribut sensible S
peut prendre deux valeurs S = 1 et S = 2 avec une probabilité égale. La caractéristique X est
distribuée selon un modèle de mélange gaussien : X|S = 1 ∼ N (−1, 1), X|S = 2 ∼ N (1, 1).
Les distributions des caractéristiques par groupe sont représentées en haut en bleu pointillé
(S = 1) et en orange plein (S = 2). L’étiquette Y est obtenue par Y = f∗(X) où f∗(x) = 1

1+e−x .
La distribution des prédictions de f∗ entre les groupes est représentée sur la droite en bleu
pointillé (S = 1) et en orange plein (S = 2).

traitement concerne la discrimination intentionnelle qui inclut les décisions explicitement basées
sur des caractéristiques protégées, comme dans la Définition 3.1.1, mais aussi la discrimination
intentionnelle via des variables de substitution (par exemple les tests d’alphabétisation pour
l’éligibilité au vote). La formalisation mathématique de ce phénomène n’étant pas évidente,
nous préférons nous en tenir à la définition que nous avons introduite.

Il est important de noter que l’absence de traitement différencié ne garantit pas que la prédiction
soit statistiquement indépendante de l’attribut sensible S en raison des corrélations et, plus
généralement, des dépendances entre l’attribut sensible S et le vecteur de caractéristiques X
(Pedreshi, Ruggieri, and Turini 2008). En effet, considérons le prédicteur optimal de Bayes
x 7→ f∗(x) défini comme suit

f∗(x) = E[Y |X = x].

Par définition, il ne prend pas en entrée l’attribut sensible et atteint le risque quadratique
le plus faible possible parmi les prédictions évitant le traitement différencié. Pourtant, le
prédicteur f∗ peut encore favoriser la disparité entre les groupes sensibles si les distributions
des caractéristiques X diffèrent entre les groupes. Un exemple d’un tel scénario est donné
dans la Figure 3.1 : même si le prédicteur ne produit pas de DT (il est le même pour les deux
groupes), la distribution des prédictions pour le premier groupe diffère significativement de
celle du second groupe en raison des distributions des caractéristiques.



3.1. FORMALISATION DU PROBLÈME ET DÉFINITIONS 59

De plus, dans le cadre de la classification, Lipton, McAuley, and Chouldechova (2018) a montré
qu’éviter le traitement différencié (TD) n’est pas nécessairement souhaitable, même lorsqu’il
est combiné à d’autres critères d’équité comme dans les processus d’apprentissage différencié,
une classe de procédures d’apprentissage qui peuvent accéder à un attribut sensible pendant
la formation mais ne peuvent pas l’utiliser pour la prédiction. Ils prouvent qu’une règle de
décision qui ne produit pas de TD ne peut pas atteindre une meilleure précision qu’une règle
optimale qui utilise cette information ; ce qui les amène à la conjecture que toute règle qui
évite le TD produit un compromis sous-optimal entre l’équité et la performance. En outre, les
auteurs fournissent des preuves empiriques que l’évitement du TD conduit à une disparité
de traitement indirecte, via des variables de substitution, ou à une discrimination au sein de
la classe. Plusieurs questions découlent de ces observations. Est-il possible de fournir des
justifications théoriques satisfaisantes de leurs résultats ? Ces phénomènes sont-ils limités
au cadre de la classification ? Dans quelle mesure peut-on espérer être juste et précis en
permettant de traiter des sous-groupes différemment ? Les chapitres 7 et 8 fourniront une
réponse théorique provisoire à ces questions dans le cadre de la régression.

Disparate Impact. Comme nous l’avons vu, étant donné un prédicteur f , les distributions
de prédiction (Law(f(Z)|S = s))s∈S peuvent différer entre les sous-groupes sensibles et,
fait important, ce phénomène peut se produire involontairement, i.e., non pas à cause d’un
statisticien pernicieux, mais comme corollaire du processus d’apprentissage. Le décideur peut
estimer qu’une telle différence n’est pas souhaitable ; par exemple, si un prédicteur f est utilisé
pour déterminer les salaires des employés d’une entreprise, le conseil d’administration peut
vouloir (ou doit) choisir un prédicteur qui donne des distributions de salaires similaires entre
les sous-groupes (par exemple les hommes et les femmes). Par conséquent, la plupart des
notions d’équité se concentrent sur le contrôle de l’écart entre les distributions des prédictions
de chaque groupe. Nous allons maintenant fournir certaines des définitions d’équité les plus
populaires concernant les distributions des prédictions. Puisque la plupart de la littérature se
concentre sur le problème de la classification équitable (voir Calders, Kamiran, and Pechenizkiy
(2009) et les références précédentes), les définitions d’équité suivantes ont été initialement
données dans ce cadre. Pour plus de clarté, nous fournirons ces définitions dans le cadre de la
classification binaire avec attribut sensible à valeur binaire. Nous expliquerons, si nécessaire,
comment étendre ces définitions aux problèmes de régression et aux attributs sensibles non
binaires. Ces extensions seront basées sur la propriété d’indépendance entre les variables
aléatoires. Nous utiliserons la notation A ⊥⊥ B pour exprimer l’indépendance entre les variables
aléatoires A et B.
Tout d’abord, il se peut que le risque d’un prédicteur soit faible en moyenne sur l’ensemble
de la population, mais que l’écart de risque entre les groupes soit élevé. Une telle situation
pourrait être considérée comme discriminatoire pour les groupes à haut niveau de risque.
Pour éviter de tels problèmes, nous introduisons une première définition de l’équité dans la
classification binaire, qui demande l’égalité des risques par groupe.

Definition 3.1.3 (Égalité des risques par groupe). Un classificateur f : Z → {0, 1} atteint
l’galité des risques par groupe par rapport à la distribution P de (X, S, Y ) si

P(f(Z) ̸= Y | S = 0) = P(f(Z) ̸= Y | S = 1).

Buolamwini and Gebru (2018) soutient qu’elle correspond à l’exigence que tous les groupes
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reçoivent un bon service et Zafar et al. (2017) défend cette notion pour éviter les mauvais
traitements disparates. Notons que cette définition se généralise immédiatement à toute notion
de risque en espérance. Une formulation relaxée de cette notion d’équité a été considérée dans
le contexte de la régression par Agarwal, Dudík, and Wu (2019).
Ensuite, nous présentons la principale notion d’équité sur laquelle cette thèse va se concentrer.
Elle a été formellement introduite par Calders, Kamiran, and Pechenizkiy (2009) et demande
essentiellement que la prédiction soit (statistiquement) indépendante de l’attribut sensible.

Definition 3.1.4 (Parité démographique). Un classificateur f : Z → {0, 1} atteint la parité
démographique par rapport à la distribution P de (X, S, Y ) si

P(f(Z) = 1 | S = 0) = P(f(Z) = 1 | S = 1).

En termes simples, cette définition attribue des chances égales de décision positive aux
deux groupes. Elle agit comme une incitation à promouvoir la diversité par le biais de la
discrimination positive (Mouzannar, Ohannessian, and Srebro 2019). Nous pouvons exprimer
de manière équivalente la parité démographique comme l’indépendance (probabiliste) entre la
distribution de la prédiction f(Z) et celle de l’attribut sensible S, que nous désignons par

f(Z) ⊥⊥ S. (DP)

Une telle caractérisation généralise immédiatement la définition initiale à tout problème
d’apprentissage supervisé et à tout attribut sensible.
Comme le fait valoir Hardt, Price, and Srebro (2016), si elle est déployée dans la réalité, une
telle notion peut avoir des effets plus négatifs que positifs dans certains cas. Un exemple qu’ils
donnent est lié à l’octroi de crédit bancaire, où Y = 1 signifie qu’un individu (X, S) est capable
de rembourser le prêt et f(Z) = 1 signifie que la banque approuve le crédit. Dans le cas où
les capacités de remboursement de deux groupes sont radicalement différentes, le fait d’offrir
des chances égales d’obtenir un crédit sans tenir compte de la capacité de remboursement Y
met les individus moins privilégiés sur la voie de la défaillance. Pour contourner le problème
ci-dessus, Hardt, Price, and Srebro (2016) a proposé les deux définitions suivantes.

Definition 3.1.5 (Egalité des erreurs). Un classificateur f : Z → {0, 1} atteint l’égalité des
erreurs par rapport à la distribution P de (X, S, Y ) si

P(f(Z) = 1 | S = 0, Y = y) = P(f(Z) = 1 | S = 1, Y = y), ∀ y ∈ {0, 1}.

Cette notion d’équité demande la prédiction f : Z → {0, 1} pour égaliser les taux de vrais
positifs et de vrais négatifs dans les deux groupes. On voit immédiatement que cette définition
peut être exprimée sous une forme plus générale comme suit

(f(Z) ⊥⊥ S) | Y. (EOdd)

Cela signifie que, étant donné la vraie étiquette d’un individu, connaître la valeur de l’attribut
sensible n’apporte aucune information sur la distribution de la prédiction. Typiquement,
l’égalisation des vrais négatifs n’est pas nécessaire en pratique, puisque f(Z) = 1 est interprété
comme une décision positive et qu’il peut être naturel de se concentrer sur de telles décisions.
De cette façon, nous arrivons à la définition de l’égalité des chances.
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Definition 3.1.6 (Egalité des chances). Un classificateur f : Z → {0, 1} atteint l’égalité des
chances par rapport à la distribution P de (X, S, Y ) si

P(f(Z) = 1 | S = 0, Y = 1) = P(f(Z) = 1 | S = 1, Y = 1).

L’égalité des chances est moins contraignante que l’égalité des erreurs car elle demande
simplement que les taux de vrais positifs soient les mêmes pour tous les groupes. Dans
l’exemple du palier de crédit, l’égalité des chances signifie que parmi les clients qui sont en
mesure de rembourser leur prêt, la proportion de prêts attribués doit être la même dans tous les
groupes. Il est facile de voir que cette définition est équivalente à la contrainte d’indépendance
conditionnelle plus générale

(f(Z) ⊥⊥ S) | Y = 1. (EOpp)

Notons cependant que l’extension de cette notion au cadre de la régression n’est pas du tout
évidente. En effet, la définition de l’égalité des chances repose sur le fait que Y = 1 peut être
interprété comme une décision positive (e.g., attribue un prêt) et il n’existe pas d’équivalent
immédiat d’une "décision positive" dans le cadre de la régression. La question de trouver une
transposition de la notion d’égalité des chances en dehors du cadre de la classification reste
ouverte.
Toutes les définitions de l’équité présentées jusqu’à présent sont exprimées comme la probabilité
conditionnelle d’une prédiction positive f(Z) = 1 étant donné la valeur sensible de l’attribut
S et éventuellement la véritable étiquette Y . Contrairement aux définitions précédentes, la
suivante traite des probabilités conditionnelles par rapport à l’événement d’une prédiction
positive (f(Z) = 1).

Definition 3.1.7 (Test d’équité). Un classificateur f : Z → {0, 1} satisfait au test d’équité
par rapport à la distribution P de (X, S, Y ) si

P(Y = 1 | S = 0, f(Z) = 1) = P(Y = 1 | S = 1, f(Z) = 1).

Comme pour les définitions précédentes, la dernière peut naturellement être exprimée comme
la condition d’indépendance conditionnelle

(Y = 1 ⊥⊥ S) | f(Z) = 1. (Test fairness)

L’équité du test est également appelée parité prédictive. Elle impose l’égalité entre les groupes
sensibles des taux de résultats positifs Y = 1 parmi ceux qui ont reçu une prédiction positive
f(Z) = 1. Elle est étroitement liée au concept de calibrage (Barocas, Hardt, and Narayanan
2017, Chapitre 2).
Nous avons donné cinq définitions de l’équité qui englobent différentes conceptions de la
discrimination. En considérant ces définitions comme des contraintes, nous pouvons maintenant
clarifier l’objectif de l’apprentissage sensible à l’équité : minimiser un risque donné sur la
classe de prédicteurs qui satisfont (un sous-ensemble de) ces définitions. Notons que toutes les
contraintes sont distribution-dépendantes c’est-à-dire qu’elles dépendent de la distribution jointe
(X, S, Y ). Par conséquent, les problèmes d’optimisation sous contrainte qui en résultent sont
très différents des problèmes habituels sous contrainte de forme dans lesquels des contraintes
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indépendantes de la distribution sont imposées aux prédicteurs, comme les contraintes de
régularité.
Exposons maintenant brièvement une étude de cas éclairante et bien connue sur l’équité
afin de mettre en évidence certains problèmes que nous pouvons peut rencontrer. COMPAS
(qui signifie Correctional Offender Management Profiling for Alternative Sanctions) est un
logiciel d’évaluation des risques développé par Northpointe Group., une société de conseil en
technologie et en gestion, qui est utilisé par les tribunaux américains pour prédire le risque
de récidive. Une étude réalisée par ProPublica (Angwin et al. 2016) a montré que COMPAS
donne lieu à un écart important en ce qui concerne les taux de faux positifs et de faux négatifs
entre les groupes ethniques, et qu’il ne satisfait donc pas au principe d’égalité des erreurs.
Cependant, la réfutation de Northpointe (Dieterich, Mendoza, and Brennan 2016) a affirmé que
COMPAS satisfait (une notion généralisée de) la parité prédictive. Cet exemple souligne que le
choix du critère d’équité est crucial lors de la discussion du comportement discriminatoire d’une
règle de décision. En outre, il soulève la question de savoir si l’on doit s’en tenir à un critère
d’équité particulier ou essayer de satisfaire plusieurs critères simultanément. Bien sûr, dans
l’idéal (et naïvement), on aimerait obtenir un prédicteur qui satisfasse autant de contraintes
d’équité que possible. Cependant, cela n’est pas nécessairement souhaitable puisque la classe
de prédicteurs peut être petite ou même vide. En effet, Chouldechova (2017) a montré un
résultat d’impossibilité qui stipule qu’à moins que P(Y = 1|S = s) soit le même dans tous les
groupes, aucun classifieur f : Z → {0, 1} ne peut satisfaire simultanément l’équité du test et
l’égalité des erreurs. Quelles leçons pouvons-nous tirer de tout cela ? Tout d’abord, il faut
effectivement faire attention aux critères d’équité choisis pour une tâche donnée ; ensuite, cela
pourrait indiquer que les notions d’équité que nous considérons sont trop rigides et qu’il serait
intéressant d’explorer des moyens de relâcher ces contraintes. Ce sera le sujet de la prochaine
section.

Un mot sur le biais dans les données et la causalité. Avant de passer à la section
suivante, discutons d’un point important que nous jugeons important. Un lecteur attentif
aura peut-être remarqué que toutes les définitions que nous avons données se concentrent sur
la discrimination potentielle au niveau de la prédiction alors que rien n’a été dit sur les biais
potentiels dans les données. Pourquoi avons-nous fait ce choix ? En bref, nous nous intéressons
au résultat des algorithmes, et non à l’identification des biais dans les données, car les raisons
pour lesquelles une procédure ou un algorithme peut avoir un comportement discriminatoire
sont, la plupart du temps, loin d’être évidentes et potentiellement impossibles à dévoiler à
moins que nous soyons prêts à faire des hypothèses fortes sur nos données. Par exemple, si les
caractéristiques sont des images à haute dimension, il peut s’avérer extrêmement difficile de
fournir ou de tester un modèle causal pour les données en raison de leur complexité (Bühlmann
2013). Néanmoins, nous aimerions mentionner une sous-branche complémentaire en pleine
expansion de la littérature sur l’équité algorithmique qui tente d’incorporer le raisonnement
causal dans l’apprentissage équitable : (see,e.g., Kilbertus et al. 2017; Kusner et al. 2017;
Loftus et al. 2018; Makhlouf, Zhioua, and Palamidessi 2020). Ils fournissent de nouvelles
formalisations des notions d’équité et de nouvelles procédures pour surmonter les biais et
discriminations potentiels en utilisant les mécanismes de l’apprentissage causal. Le cadre qui
nous intéresse est celui dans lequel fournir un modèle causal pour le problème d’intérêt est
trop difficile, trop long ou trop coûteux. Par conséquent, nous nous concentrons sur le contrôle
du biais dans la prédiction, qui est quelque chose que nous pouvons observer et tester.
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3.2 Relaxation et compromis

Dans la section précédente, nous avons fourni quelques moyens populaires de formaliser
ce que signifie pour un prédicteur d’être équitable, c’est-à-dire d’éviter des discriminations
particulières. Nous avons énoncé de manière générale le problème d’apprentissage équitable
comme étant celui de la recherche d’un prédicteur f qui présente un faible risque R(f) tout en
satisfaisant un ou plusieurs critères d’équité, tels que ceux que nous avons définis. En suivant
ce paradigme, le problème d’apprentissage sensible à l’équité peut être exprimé comme un
problème d’optimisation sous contrainte :

arg min
f :Z→Y

{R(f) : f est “équitable” } ,

où la contrainte pourrait être, par exemple, d’imposer que les prédicteurs satisfassent une ou
plusieurs des définitions que nous avons introduites telles que les définitions 3.1.4 et 3.1.5.
Étant donné cette formulation générale du problème d’apprentissage sensible à l’équité, une
question naturelle se pose : quel est l’impact de l’introduction de la contrainte d’équité sur le
risque des meilleurs prédicteurs équitables ? Afin d’apporter une réponse pertinente, nous
allons expliquer pourquoi un assouplissement des contraintes d’équité est nécessaire et proposer
différentes manières d’y parvenir. Pour l’instant, il n’est pas évident de savoir pourquoi on
veut assouplir quoi que ce soit ? Cela nous permettra de dériver un cadre général pour étudier
le compromis entre performance et équité.

Relaxation des contraintes d’équité. Il y a quatre raisons principales pour lesquelles la
relaxation est nécessaire. Premièrement, les définitions mathématiques de l’équité sont une
transposition imparfaite d’idées qualitatives, il n’est donc pas forcément souhaitable de viser
une satisfaction exacte des contraintes qui en résultent. Deuxièmement, deux sources d’aléa
peuvent brouiller la satisfaction de nos définitions : nous avons introduit des définitions d’équité
pour des prédicteurs fixes alors qu’en pratique, nous travaillerons avec des estimateurs c’est-à-
dire des prédicteurs qui dépendent d’un nombre fini d’échantillons de la distribution conjointe
(X, S, Y ) ; en outre, les quantités d’intérêt (comme le taux de faux positifs par exemple)
doivent également être estimées à partir d’échantillons finis. Ces incertitudes inévitables et les
erreurs qui en résultent doivent être prises en compte dans les contraintes. Troisièmement,
un changement drastique d’une politique de prédiction peut avoir un impact négatif : par
exemple, si la tâche consiste à fixer les salaires dans une entreprise, les employés ne toléreront
probablement pas un changement brusque (négatif) de leur salaire. Nous pourrions vouloir
introduire l’équité de manière continue, d’où la nécessité d’un moyen d’interpoler en douceur
entre les situations justes et injustes. Enfin, les définitions introduites sont trop rigides car
elles ne permettent pas de comparer le comportement discriminatoire de deux prédicteurs
qui ne satisfont pas la ou les contraintes d’équité : un prédicteur est considéré soit comme
équitable, soit comme injuste. En ce qui concerne le risque, nous aimerions avoir une sorte de
relation d’ordre sur les prédicteurs concernant leur équité.
D’où la nécessité de trouver un moyen d’assouplir les définitions initiales et de fournir des
notions significatives d’iniquité, définie comme la violation des contraintes d’équité. Dans ce
qui suit, nous nous concentrerons sur les relaxations de la contrainte de parité démographique
car tous les travaux de cette thèse sont basés sur cette contrainte. Rappelons que la DP
requiert l’égalité de deux quantités d’intérêt, P(f(Z) = 1 | S = 0) et P(f(Z) = 1 | S = 1).
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Une première façon naturelle de relâcher les contraintes d’équité exacte est de demander que
la différence des quantités d’intérêt soit petite. Dans le cas de la parité démographique, cela
revient à

|P(f(Z) = 1 | S = 0)− P(f(Z) = 1 | S = 1)| ≤ ε,

pour un certain seuil ε ≥ 0 prescrit. On peut également considérer d’autres types de
relaxations, par exemple, multiplicatives au lieu d’additives. On peut également demander
que les rapports de ces quantités soient proches de 1 ou trouver un autre critère basé sur toute
autre combinaison des quantités d’intérêt jugée pertinente et/ou pratique. Notons que ces
idées se généralisent facilement aux autres notions d’équité que nous avons introduites dans le
cadre de la classification avec attribut sensible à valeur binaire, S × Y = {0, 1}2. Cependant,
la manière de procéder pour d’autres paramètres tels que la régression ou l’attribut sensible
général n’est pas claire.
Une autre façon d’assouplir les critères d’équité est liée aux définitions alternatives de
l’indépendance (conditionnelle) que nous avons fournies. Comme nous l’avons vu, trois
contraintes d’équité populaires peuvent être exprimées comme des conditions d’indépendance
(conditionnelle) dépendant de la distribution conjointe du triplet (f(Z), Y, S). Afin de for-
maliser cette idée, toute métrique/divergence d sur l’espace des distributions de probabilité
(telle que la distance de Kolmogorov-Smirnov, la distance de variation totale, la divergence de
Kullback-Leibler, etc.) peut être utilisée pour mesurer l’écart entre les prédictions par groupe,
comme suit

d
(

Law(f(Z)|S = s),Law(f(Z)|S = s′)
)
,

pour toute valeur s, s′ dansS de l’attribut sensible. En particulier, si d satisfait à la propriété
de séparation (à savoir que pour toute distribution de probabilité P et Q, d(P,Q) = 0 =⇒
P = Q), la parité démographique est satisfaite si et seulement si

d
(

Law(f(Z)|S = s),Law(f(Z)|S = s′)
)

= 0, ∀s, s′ ∈ S.

Une idée naturelle est de définir une fonctionnelle U sur l’ensemble des prédicteurs qui
quantifie la violation de la contrainte DP en utilisant une métrique choisie et de déclarer une
prédiction approximativement juste si cette fonctionnelle ne dépasse pas un seuil pré-spécifié
par l’utilisateur. Ces dernières années, une grande variété de relaxations de ce type a été
proposée : basée sur la corrélation (Baharlouei et al. 2019; Mary, Calauzènes, and El Karoui
2019; Komiyama et al. 2018) ; distance de Kolmogorov-Smirnov (Agarwal, Dudík, and Wu
2019) ; Information mutuelle (Steinberg et al. 2020; Steinberg, Reid, and O’Callaghan 2020) ;
Distance de variation totale (Oneto, Donini, and Pontil 2019b; Oneto et al. 2019) ; Égalité
des moyennes et correspondance des moments supérieurs (Raff, Sylvester, and Mills 2018;
Fitzsimons et al. 2019; Calders et al. 2013; Berk et al. 2017; Olfat et al. 2020; Donini et al. 2018)
; Écart moyen maximal (Quadrianto and Sharmanska 2017; Madras et al. 2018) ; Distance de
Wasserstein (Chiappa et al. 2020; Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c;
Gordaliza et al. 2019).
Les relaxations les plus courantes de la contrainte de parité démographique sont basées sur la
variation totale (TV) et les distances de Kolmogorov-Smirnov (KS) (Agarwal, Dudík, and Wu
2019; Oneto, Donini, and Pontil 2019a; Agarwal et al. 2018; Chzhen et al. 2020a). Il existe
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plusieurs façons d’utiliser la TV ou la KS afin de construire une U fonctionnelle, qui quantifie
la violation de la contrainte DP. Pour comparer ces mesures de divergence avec celle que nous
introduisons dans notre travail, nous définissons UTV et UKS comme suit

TV unfairness: UTV(f) :=
∑
s∈[K]

TV (Law(f(X, S) | S = s),Law(f(X, S))) ,

KS unfairness: UKS(f) :=
∑
s∈[K]

KS (Law(f(X, S) | S = s),Law(f(X, S))) .

Ces mesures sont légèrement différentes des comparaisons par paire que nous avons introduites,
mais on peut facilement observer qu’elles reviennent finalement au même type de relaxation.
En utilisant ces notions, on souhaite étudier les prédicteurs f qui satisfont à la contrainte
d’équité relaxée U□(f) ≤ ε, où □ est KS ou TV et ε ≥ 0 est un paramètre spécifié par
l’utilisateur. Notons que puisque KS et TV sont des métriques, définir ε = 0 est équivalent à la
contrainte DP. En revanche, pour ε > 0, ces formulations permettent un certain relâchement. Il
est connu que la distance TV est plutôt forte et extrêmement sensible aux petits changements
dans les distributions, ce qui est le principal inconvénient de l’inéquité TV. Cette limitation
peut être résolue par l’inéquité KS grâce à une relation évidente : UKS(f) ≤ UTV(f).

Le prix de l’équité et le compromis risque-équité. Maintenant que nous avons défini
une notion quantitative de l’inéquité, nous pouvons étudier l’impact de l’incorporation d’une
contrainte d’équité dans le problème de minimisation du risque. Comme d’habitude, nous
définissons le prédicteur optimal de Bayes f∗ comme un minimiseur non contraint du risque

f∗ ∈ arg min
f :Z→Y

R(f).

Pour la clarté de l’exposé, nous supposerons dans ce qui suit que le minimum est effectivement
atteint. Le prédicteur de Bayes et le niveau de risque qui lui est associé nous donnent une
idée de la meilleure performance (risque) que l’on peut espérer obtenir pour un problème
donné. Notons que le niveau d’inéquité du prédicteur optimal de Bayes dépend du problème en
question, et non des choix du statisticien. En particulier, si l’on veut optimiser simultanément le
risque et l’inéquité, il faut définir de nouvelles notions d’optimalité. Pour une métrique donnée
□ (e.g., TV ou KS) et un nombre réel positif ε > 0, nous définissons un prédicteur optimal
ε-équitable comme un minimiseur f∗

ε du risque dont l’inéquité, mesurée par la fonctionnelle
U□, ne dépasse pas le seuil ε :

f∗
ε ∈ arg min{R(f) : U□(f) ≤ ε}.

Puisque le prédicteur optimal de Bayes présente le risque le plus faible parmi tous les prédicteurs,
nous devons avoir

R(f∗
ε )−R(f∗) ≥ 0,

pour tout prédicteur ε-équitable f∗
ε et pour tout ε > 0, ce qui montre que l’incorporation de

la contrainte d’équité ne peut qu’augmenter le risque. En outre, puisque nous avons un ordre
naturel sur les contraintes, la différence de risque dans l’équation (2.1) diminue par rapport
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au seuil ε. Ainsi, un compromis naturel apparaît entre la condition d’équité et le risque et il
peut être entièrement mesuré par les excès de risque

R(f∗
ε )−R(f∗), ε ≥ 0.

L’un de nos objectifs sera de comprendre et de quantifier précisément ce compromis dans le
cadre de la régression afin de répondre à des questions telles que : pour un niveau de risque
donné, quel est le meilleur niveau d’équité réalisable ? Ou quel est le coût en risque du passage
du seuil d’équité ε à ε′ ?

3.3 Régression équitable et transport optimal

Contrairement à son homologue en classification, le problème de la régression équitable a
reçu beaucoup moins d’attention dans la littérature. Cependant, comme le soutient Agarwal,
Dudík, and Wu (2019), les classificateurs ne fournissent que des décisions binaires, alors
qu’en pratique, les décisions finales sont prises par les humains sur la base des prédictions
de la machine. Dans ce cas, une prédiction continue est plus informative qu’une prédiction
binaire et justifie la nécessité d’étudier l’équité dans le cadre de la régression. Jusqu’à très
récemment, les contributions sur la régression équitable étaient presque exclusivement axées
sur l’incorporation pratique de contraintes d’équité “proxy” dans les méthodes d’apprentissage
classiques, telles que la forêt aléatoire, la régression ridge, les méthodes à noyau pour n’en
citer que quelques-unes (Calders et al. 2013; Komiyama and Shimao 2017; Berk et al. 2017;
Pérez-Suay et al. 2017; Raff, Sylvester, and Mills 2018; Fitzsimons et al. 2018). Plusieurs
travaux étudient empiriquement l’impact des contraintes d’équité (relaxées) sur le risque
(Bertsimas, Farias, and Trichakis 2012; Zliobaite 2015; Haas 2019; Wick, Panda, and Tristan
2019; Zafar et al. 2017). Pourtant, le problème de la quantification précise de l’effet de ces
contraintes sur le risque n’a pas été abordé.
Plus récemment, des garanties statistiques et d’apprentissage pour la régression équitable ont
été obtenues (Agarwal, Dudík, and Wu 2019; Le Gouic, Loubes, and Rigollet 2020; Chzhen et al.
2020c; Chiappa et al. 2020; Fitzsimons et al. 2019; Plečko and Meinshausen 2019; Chzhen et al.
2020a). Les travaux les plus proches de notre contribution sont ceux de (Le Gouic, Loubes,
and Rigollet 2020; Chzhen et al. 2020c; Chiappa et al. 2020), qui établissent une connexion
entre le problème de la régression exactement équitable (pour la parité démographique) et
la formulation du transport optimal multi-marginal (Gangbo and Święch 1998; Agueh and
Carlier 2011). En particulier, (Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c)
ont obtenu la forme de la prédiction équitable optimale, fournissent des garanties statistiques
sur les estimateurs de type plug-in, et établissent la valeur exacte du risque de la prédiction
équitable optimale. Nous citons intégralement leur résultat qui a servi de point de départ à
notre travail.

Theorem 3.3.1 (Le Gouic, Loubes, and Rigollet (2020) and Chzhen et al. (2020c)). Supposons
que pour tout s ∈ [K], la variable aléatoire (f∗(X, S)|S = s) a un second moment fini et est
non-atomique. Alors,

min
{
R(f) :

(
f(X, S) | S = s

) d=
(
f(X, S) | S = s′) ∀s, s′ ∈ [K]

}
= U(f∗).
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De plus, la distribution du minimiseur du problème est donnée par

arg min
ν∈P2(R)

K∑
s=1

wsW2
2 (Law(f∗(X, S) | S=s), ν) .

Ce résultat est important pour deux raisons : il met sur la même échelle une mesure de la
performance, le risque R, et une mesure de l’inéquité U . De plus, il exprime une connexion
profonde entre le problème du barycentre de Wasserstein-2 et le problème de l’apprentissage
équitable du risque au carré sous la parité démographique.
Nous notons que l’utilisation des outils de transport optimal dans l’étude de l’équité est relative-
ment récente. Initialement, les contributions dans cette direction portaient principalement sur
le problème de la classification binaire parencitegordaliza2019obtaining,jiang2019wasserstein.
Plus tard, les outils de la théorie du transport optimal ont migré vers la configuration de
la régression équitable (Chiappa et al. 2020; Chzhen et al. 2020c; Le Gouic, Loubes, and
Rigollet 2020). Comme nous le verrons, nous avons fait un usage intensif de la métrique de
Wasserstein-2 pour obtenir davantage de résultats dans le cadre de la régression équitable.
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CHAPTER 4

A nonasymptotic law of iterated logarithm for general M-estimators

M -estimators are ubiquitous in machine learning and statistical learning theory. They are
used both for defining prediction strategies and for evaluating their precision. In this chapter,
we propose the first non-asymptotic “any-time” deviation bounds for general M -estimators,
where “any-time” means that the bound holds with a prescribed probability for every sample
size. These bounds are non-asymptotic versions of the law of iterated logarithm. They are
established under general assumptions such as Lipschitz continuity of the loss function and
(local) curvature of the population risk. These conditions are satisfied for most examples
used in machine learning, including those ensuring robustness to outliers and to heavy-tailed
distributions. As an example of application, we consider the problem of best arm identification
in a stochastic multi-armed bandit setting. We show that the established bound can be
converted into a new algorithm, with provably optimal theoretical guarantees. Numerical
experiments illustrating the validity of the algorithm are reported.
Based on Nicolas Schreuder, Victor-Emmanuel Brunel, and Arnak S. Dalalyan (2020). “A
nonasymptotic law of iterated logarithm for general M-estimators”. In: The 23rd International
Conference on Artificial Intelligence and Statistics, AISTATS 2020. Vol. 108. Proceedings of
Machine Learning Research. PMLR, pp. 1331–1341.
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4.1 Introduction

Perhaps the most fundamental theorems in statistics are the law of large numbers (LLN)
and the central limit theorem (CLT). Morally, they state that a sample average converges
almost surely or in probability to the population average, and if one zooms in by multiplying
by a square root factor, a much weaker form of stochastic convergence still holds, namely,
convergence in distribution towards a Gaussian law. A fine intermediate result shows what
happens in between the two scales: the law of iterated logarithm (LIL). By zooming in slightly
less than in the CLT, i.e., by rescaling the sample average with a slightly smaller factor than
in the CLT, it is possible to gain a guarantee for infinitely many sample sizes, almost surely.
In practice, however, the LIL has limited applicability, since it does not specify for which
sample sizes the guarantee holds. The goals of the present work are to lift this limitation, by
proving a LIL valid for every sample size, and holding for general M -estimators, rather than
for the sample mean only.
The precise statement of the LIL, discovered by Khintchine (1924) and Kolmogoroff (1929)
almost a century ago, is as follows: for a sequence of i.i.d. random variables {Yi}i∈N with
mean θ and variance σ2 <∞, the sample averages Ȳn = (Y1 + . . .+ Yn)/n satisfy the relations

lim inf
n→∞

√
n (Ȳn − θ)
σ
√

2 ln lnn
= −1,

lim sup
n→∞

√
n (Ȳn − θ)
σ
√

2 ln lnn
= 1,

almost surely. This provides a guarantee on the deviations of the sample average as an
estimator of the mean θ since it yields that, with probability one, for any constant c > 1, there
exists an integer n0 ∈ N such that |Ȳn − θ| ≤ cσ(2 ln lnn/n)1/2 for every n ≥ n0. As compared
to the deviation guarantees provided by the central limit theorem, the one of the last sentence
has the advantage of being valid for any sample size large enough. This advantage is gained at
the expense of a factor (ln lnn)1/2. Akin for the classic version of the CLT, the applicability
of the LIL is limited by the fact that it is hard to get any workable expression of n0.
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In the case of the CLT and its use in statistical learning, the drawback related to n0 was lifted
by exploiting concentration inequalities, such as the Hoeffding or the Bernstein inequalities,
that can be seen as non-asymptotic versions of the CLT. For bounded random variables, the
aforementioned concentration inequalities imply that for a prescribed tolerance level δ ∈ (0, 1),
for every n ∈ N, the event1 An = {|Ȳn − θ| ≤ C(ln(1/δ)/n)1/2} holds with probability at
least 1− δ. Such a deviation bound is satisfactory in a batch setting, when all the data are
available in advance. In contrast, when data points are observed sequentially, as in online
learning, or when the number of acquired data points depends on the actual values of the
data points, the event of interest is ĀN = A1 ∩ . . . ∩ AN or even a version of it in which N
can be replaced by ∞. One can use the union bound to ensure that ĀN has a probability at
least 1 −Nδ but this is too crude. Furthermore, replacing in An the confidence δ by δ/n2,
we get coverage 1− π2δ/6, valid for any sample size n, for an interval of length O((lnn/n)1/2).
This result, obtained by a straightforward application of the union bound, is sub-optimal. A
remedy to such a sub-optimality—in the form of a nonasymptotic version of the LIL—was
proposed by Jamieson et al. (2014) and further used by Kaufmann, Cappé, and Garivier
(2016), Kaufmann and Koolen (2018), and Howard et al. (2018). In addition, its relevance
for online learning was demonstrated by deriving guarantees for the best arm selection in a
multi-armed bandit setting. Note that these recent results apply exclusively to the sample
mean in the one-dimensional setting; there is no equivalent of these bounds for other types of
(possibly multivariate) estimators.
In this work, we establish a non-asymptotic LIL in a general setting encompassing many
estimators, far beyond the sample mean. More precisely, we focus on the class of (penalized)
M -estimators comprising the sample mean but also the sample median, the quantiles, the
least-squares estimator, etc. Of particular interest to us are estimators that are robust to
outliers and/or to heavy-tailed distributions. This is the case of the median, the quantiles, the
Huber estimator, etc. (Huber 1964; Huber and Ronchetti 2009). It is well known that under
mild assumptions, M -estimators are both consistent and asymptotically normal, i.e., suitably
adapted versions of the LLN and the CLT apply to them (Vaart 1998; Portnoy 1984; Collins
1977). Moreover, some versions of the LIL were also shown for M -estimators (Arcones 1994;
He and Wang 1995). They suffer, however, from the same limitations as those explained above
for the standard LIL. Our contributions allow to circumvent these limitations by providing a
general non-asymptotic LIL for M -estimators both in one dimensional and in multivariate
cases.
We apply the developed methodology to the problem of multi-armed bandits when the rewards
are heavy-tailed or contaminated by outliers. In such a context, Altschuler, Brunel, and Malek
2018 tackled the problem of best median arm identification; this corresponds to replacing
the average regret by the median regret. The relevance of this approach relies on the fact
that even a small number of contaminated samples obtained from each arm may make the
corresponding means arbitrarily large. In that setup, would it be possible to improve the upper
bounds on the sample complexity of their algorithm—similarly to Jamieson et al. 2014—by
using some finite-sample any-time version of the LIL for empirical medians or, more generally,
for robust estimators? Our main results yield a positive answer to this question and establish
rate-optimality of the proposed algorithm.
The rest of the paper is organized as follows. The next section contains the statement of the

1Here C is a universal constant.
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LIL in a univariate setting and provides some examples satisfying the required conditions. A
multivariate version of the LIL for penalized M -estimators is presented in Section 4.3.3. An
application to online learning is carried out in Section 4.4.2, while a summary of the main
contributions and some future directions of research are outlined in Section 4.6. Detailed
proofs are deferred to the supplementary material.

4.2 Uniform LIL for univariate M-estimators

In this section, we focus on the case of univariate M -estimators. This is a vast family that
contains the sample mean, the sample median and many other estimators. The relevance
of M -estimators in contaminated models has been highlighted by several studies (see Huber
1964; Maronna 1976 as well as the recent work Loh (2015) and references therein).

4.2.1 Assumptions and main result

The precise setting considered in this section is the following. Random variables Y, Y1, Y2, . . .
are independently drawn from a probability distribution PY on some space Y . Let ϕ : Y×Θ→ R
be a given loss function, where Θ is an open interval in R. Throughout this work, we make
the tacit assumption that the random variable ϕ(Y, θ) has a finite expectation for all θ ∈ Θ.
The population and the empirical risks are then defined, respectively, by the formulas

Φ(θ) = E [ϕ(Y, θ) ] , Φ̂n(θ) = 1
n

n∑
i=1

ϕ(Yi, θ),

where n ≥ 1 is an integer. We denote by θ∗ a minimizer of Φ on Θ, and by θ̂n a minimizer of
Φ̂n on Θ.

Assumption 4.2.1. The function ϕ(Y, ·) is convex PY -almost surely and ϕ(Y, θ)→∞ as θ
approaches the boundary of Θ, PY -almost surely (we say that the function ϕ(Y, ·) is convex
and coercive).

Assumption 4.2.1 requires from the loss ϕ to be approximately U-shaped and guarantees that
θ∗ and θ̂n are well defined. To show that θ̂n converges fast enough (with high probability) to
θ∗, we will impose a local positive-curvature assumption on the population risk.

Assumption 4.2.2. There exist two positive constants r and α such that for all θ ∈ Θ with
|θ − θ∗| ≤ r, Φ(θ) ≥ Φ(θ∗) + (α/2)(θ − θ∗)2.

It is worth emphasizing here that this “local positive-curvature” assumption needs to hold for
the population risk only. Clearly, a sufficient condition for Assumption 4.2.2 to hold is that
Φ is strongly convex in a neighborhood of θ∗. Finally, to be able to obtain non-asymptotic
guarantees that take the form of anytime Gaussian concentration, we require from the process
θ 7→ ϕ(Y − θ) to be smooth and to have sub-Gaussian tails (see 1.3 for a definition of
sub-Gaussian random variables).

Assumption 4.2.3. There exists a positive constant σ such that the random variables ϕ(Y, θ)−
ϕ(Y, θ∗) are σ2(θ − θ∗)2-sub-Gaussian for all θ ∈ Θ.
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One checks that Assumption 4.2.3 is fulfilled if ϕ(Y, ·) is η-Lipschitz with a sub-Gaussian
variable η. We stress that the function ϕ is not assumed differentiable and, more importantly,
that Y is not necessarily sub-Gaussian. We are now ready to state our first theorem on the
uniform concentration of M -estimators.

Theorem 4.2.4. Let Assumptions 4.2.1 to 4.2.3 hold. For any δ ∈ (0, 1), set

tLIL
n,δ := 3.3σ

α

√
1.1 ln lnn+ ln(15/δ) + 2.6

n
.

Let n0 = n0(α, r, δ) be the smallest integer n ≥ 12 for which tLIL
n,δ ≤ r. Then,

P
(
∀n ≥ n0, |θ̂n − θ∗| ≤ tLIL

n,δ

)
≥ 1− δ. (4.1)

While the complete proof of Theorem 4.2.4 is postponed to the supplementary material, let
us make a quick comment. In our proof, we show that it is enough to establish any-time
concentration inequalities for sums of sub-Gaussian random variables. For partial sums of a
sequence of sub-Gaussian random variables, sharp any-time concentration inequalities were
recently proved in Jamieson et al. (2014), Maillard (2019), and Howard et al. (2018). However,
these bounds do not apply in our case, since the terms in the sums arising in our proof change
with the size of the sum. In other words, our sums are not partial sums of a given sequence of
sub-Gaussian random variables.
Our proof is based on the peeling trick which, as noted in Garivier and Leonardi (2011,
Proposition A.1), seemed to have first appeared in proofs for the Law of Iterated Logarithm
(see, e.g., Neveu (1972)).
The setting described in the beginning of this section might seem disconnected from any
application, since it builds on an infinite set of independent random variables. However, the
validity of the bound for an infinity of values of the sample size n makes it suitable for using
in situations where the sample size is random and data-dependent. More precisely, the last
theorem implies that for any δ ∈ (0, 1) and for any random variable N taking values in the set
of natural numbers N, we have, with probability larger than 1− δ,

|θ̂N − θ∗| ≤ 3.3σ
α

√
1.1 ln lnN + ln(15/δ) + 2.6

N

For instance, if we assume that the acquisition of each data point y has a cost ψ(y), the
number N might be given by N = max{n : ψ(Y1) + . . . + ψ(Yn) ≤ B}, where B is a given
available budget.

4.2.2 Examples

We now present three common examples for which all the assumptions presented above are
satisfied. In all these examples, Y = Θ = R.

Mean estimation Let ϕ(x, θ) = (x− θ)2. Assume that Y is s2-sub-Gaussian. Then, one
can check that Assumptions 4.2.1 to 4.2.3 are all satisfied with r = +∞, α = 2 and σ = 2s.
For an in-depth analysis of this particular case we refer to (Howard et al. 2018).
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Median and quantile estimation Let ϕ(x, θ) = |x− θ| − |x|. Assume that Y has a unique
median θ∗ and that its cumulative distribution function F satisfies |F (θ)− 1/2| ≥ (α/2)|θ− θ∗|,
for all θ ∈ [θ∗ − r, θ∗ + r], where α, r > 0 are fixed numbers. Then, θ∗ is the unique minimizer
of Φ and for all θ ∈ [θ∗ − r, θ∗ + r], the increment Φ(θ)− Φ(θ∗) is equal to

2
∫ θ

θ∗
x dF (x)− (θ − θ∗) + 2

(
θF (θ)− θ∗F (θ∗)

)
(a)= 2

∫ θ

θ∗
F (x) dx− (θ − θ∗),

where (a) is obtained by integration by parts. Hence, Φ(θ) − Φ(θ∗) =
∫ θ
θ∗(2F (x) − 1) dx ≥

α/2(θ − θ∗)2, yielding Assumption 4.2.2. Moreover, since ϕ(Y, θ) is bounded almost surely and
1-Lipschitz, for all θ ∈ R, Assumption 4.2.3 is automatically true (with σ = 1).
The same arguments hold true if ϕ(x, θ) = τβ(x − θ) − τβ(x), where τβ(x) = βx − x− with
x− = min(x, 0) the negative part. For this function ϕ, θ∗ is the β-quantile of PY , for β ∈ (0, 1).

Huber’s M-estimators For c > 0, we define by gc(x) = x2 if |x| ≤ c and gc(x) = c(2|x|− c)
if |x| > c. Let ϕ(x, θ) = gc(x−θ)−gc(x). This function gc being 2c-Lipschitz, Assumption 4.2.3
is satisfied with σ = 2c. Assume that Y has a positive density f on R. Then, it is easy to
check that Φ is twice differentiable, with Φ′′(θ) = 2 (F (θ + c)− F (θ − c) ) > 0, for all θ ∈ R,
where F is the cumulative distribution function of Y . Hence, θ∗ is well-defined and unique,
and if there exists m > 0 such that f(x) ≥ m for x ∈ [θ∗ − 2c, θ∗ + 2c], then Assumption 4.2.2
is satisfied with r = 2c and α = 4cm.

4.2.3 Comparison with union bound

Let Y1, . . . , Yn be i.i.d. random variables and let ϕ : R × R −→ R be a loss such that
assumptions of Theorem 4.2.4 are satisfied. Let θ̂n be the M -estimator associated with
the samples Y1, . . . , Yn and the loss ϕ. Using the same trick we developed for the proof of
Theorem 4.2.4 (see supplementary material) we obtain the following tail bound : ∀n ≥ 1,
P
(
|θ̂n − θ∗| > 2σ

α

√
2 ln(2/δ)/n

)
≤ δ. Setting

tUB
n,δ := 2σ

α

√
2 ln(2n1+ε/δ)

n
,

the union bound leads to

P
(
∀n ≥ 12 |θ̂n − θ∗| ≤ tUB

n,δ

)
≥ 1−

∞∑
n=12

δ

n1+ε . (4.2)

Figure 4.1 shows the ratio of the sub-Gaussian upper bound tUB
n,δ′ over the LIL upper bound

tLIL
n,δ provided by Theorem 4.2.4 for different levels of global confidence. The parameters δ and
δ′ are chosen to guarantee that the right hand sides in both (4.1) and (4.2) are equal to the
prescribed confidence level 1− ν. For tUB

n,δ′ , we chose ε = 0.1, the results for other values of ε
being very similar. We observe that for most sample sizes n, the LIL bound is tighter than
the one obtained by the union bound. In addition, the gap between the bounds widens as the
sample size grows.
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Figure 4.1: Ratio tUB
n,δ′/tLIL

n,δ for different sample sizes n and confidence levels ν.

4.3 Uniform LIL for M-estimators of a multivariate parameter

We consider here the multivariate analog of the previous problem. The goal is to predict a
real-valued label using a d-dimensional feature.

4.3.1 Assumptions and main result

We are given n independent label-feature pairs (X1, Y1), . . . , (Xn, Yn), with labels Yi ∈ R and
features Xi ∈ Rd, drawn from a common probability distribution P. Let ϕn : R × R → R
be a given loss function and ρn : Rd → R be a given penalty. We assume throughout that
the random variable ϕn(Y1,θ

⊤X1) has a finite expectation, for every θ, with respect to the
probability distribution P.
For a sample (X1, Y1), . . . , (Xn, Yn), we define the penalized empirical and population risks

Φ̂n(θ) = 1
n

n∑
i=1

ϕn(Yi,θ⊤Xi) + ρn(θ),

Φn(θ) = E
[
ϕn(Y1,θ

⊤X1)
]

+ ρn(θ).

Note that both the loss function ϕn and the penalty ρn are allowed to depend on the sample
size n. Since our results are non-asymptotic, this dependence will be reflected in the constants
appearing in the law of iterated logarithm stated below. We also define the penalized M -
estimator θ̂n and its population counterpart θ∗

n by

θ̂n ∈ arg min
θ∈Rd

Φ̂n(θ) and θ∗
n ∈ arg min

θ∈Rd
Φn(θ). (4.3)
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Typical examples where such a formalism is applicable are the maximum a posteriori approach
and penalized empirical risk minimization. Our goal is to establish a tight non-asymptotic
bound on the error of θ̂n, that is, with high probability, valid for every n ∈ N.
The main result of this section is valid under the assumptions listed below. We will present
later on some common examples in which all these assumptions are satisfied.

Assumption 4.3.1. (Lipschitz loss) The function θ 7→ ϕn(y, θ) is Ln-Lipschitz, for every
fixed y ∈ R.

Assumption 4.3.2. (Convex penalty) The function θ 7→ Φ̂n(θ) is convex almost surely.

Assumption 4.3.3. (Curvature of the population risk) There exists a positive non-increasing
sequence (αn) such that, for any n ∈ N∗, for any w ∈ Rd, Φn(θ∗

n + w)−Φn(θ∗
n) ≥ (αn/2)∥w∥22.

Assumption 4.3.4. (Boundedness of features) There exists a positive constant B such that
∥X1∥2 ≤ B almost surely.

We will use the notation κn = Ln/αn and refer to this quantity as the condition number.
Note that all the foregoing assumptions are common in statistical learning, see for instance
Sridharan, Shalev-shwartz, and Srebro (2009) and Rakhlin, Shamir, and Sridharan (2012).
They are helpful not only for proving statistical guarantees but also for designing efficient
computational methods for approximating θ̂n.

Theorem 4.3.5. Let Assumptions 4.3.1 to 4.3.4 be satisfied for every n ∈ N. Assume, in
addition, that starting from some integer n0 ≥ 6, the sequence κ2

n ln lnn/n is decreasing. Define
for any δ ∈ (0, 1), n ≥ n0,

tMVLIL
n,δ = 3.6κnB

√
ln lnn+ ln(50/δ) + 1√

n
.

Then, for any q ≥ 2 and δ ∈ (0, 1), it holds that

P
(
∀n ≥ n0, ∥θ̂n − θ∗

n∥q ≤ tMVLIL
n,δ

)
≥ 1− δ.

4.3.2 Discussion

As an immediate consequence of Theorem 4.3.5 we get the following result. Let N be a
randomly chosen integer that can depend on the infinite sequence {(Xi, Yi), i ∈ N∗} of random
feature-label pairs drawn from P. We observe only the first N elements of this sequence and
wish to make a prediction of the label Y at a point x ∈ Rd. Assume that the best linear
prediction is of the form g(x⊤θ∗), where θ∗ is the minimizer of the expected loss and g is a
known, L-Lipschitz, link function. Then, we can predict the label at x by g(x⊤θ̂N ), where θ̂N
is the empirical risk minimizer. According to the last theorem, this predicted value satisfies

|g(x⊤θ̂N )− g(x⊤θ)| ≤ L∥x∥2 t
MVLIL
N,δ ,

with probability at least 1− δ.
A bound for the case q ∈ [1, 2) can be obtained by using the fact that the ℓq norm is
upper bounded by d(2−q)/(2q) times the ℓ2 norm (Hölder’s inequality). The resulting bound
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corresponds to the ℓ2 bound multiplied by this factor. Note this dependence on d is optimal,
even in batch setting.
As noted above, all the foregoing assumptions are common in statistical learning. For instance,
if ρn(θ) = λn∥θ∥22 is the ridge penalty (Hoerl and Kennard 2000) and ϕn is either the absolute
deviation (ϕabs(y, y′) = |y − y′|, see for instance Wang, Wonka, and Ye (2014)), the hinge
(ϕabs(y, y′) = (1 − yy′)+ with y ∈ [−1, 1]) or the logistic (ϕlog(y, y′) = ln(1 + e−yy′) with
y ∈ [−1, 1]) loss, the aforementioned assumptions are satisfied with Ln = 1 and αn = λn. One
can also consider the usual squared loss ϕ(y, y′) = (y − y′)2 under the additional assumption
that Y is bounded by a known constant By. Under this condition, if the minimization problems
in (4.3) are constrained to the ball of radius R, Assumptions 4.3.1 and 4.3.3 are satisfied with
αn = 1 and Ln = 2By+BR. It should be noted that Assumption 4.3.3 is satisfied, for instance,
when Φn is strongly convex. Remarkably, as opposed to some other papers (Shalev-Shwartz,
Srebro, and Zhang 2010; Hsu and Sabato 2016), Theorem 4.3.5 requires this assumption for
the population risk only.
Assumption 4.3.4 can be replaced, with some extra work, by sub-Gaussianity of ∥X∥2. The
statement of this extension and its proof can be found in Section 4.7.3.

4.3.3 Possible extensions

The conditions under which Theorem 4.3.5 holds can be further relaxed. We have in mind the
following two extensions. First, the curvature condition can be restricted to a neighborhood
of θ∗

n only, by letting Φn grow linearly outside the neighborhood. Second, the Lipschitz
assumption on ϕn can be replaced by the following one: for a constant β and a sub-Gaussian
random variable η, the function u 7→ ϕn(Y, u)− βu2 is η-Lipschitz. This last extension will
allow us to cover the case of squared loss without restriction to a bounded domain. All these
extensions are fairly easy to implement, but they significantly increase the complexity of the
statement of the theorem. In this work, we opted for sacrificing generality in order to get
better readability of the result.
Another interesting avenue for future research is the extension of the presented results to the
high-dimensional online setting, i.e., when the dimension might be larger than the sample size.
In the batch setting, an in-depth analysis of M -estimators can be found in Negahban et al.
(2012). It is also important in such a high-dimensional setting to avoid the factor B in the
expression of tMVLIL

n,δ , since it might scale as
√
d.

Finally, we can consider a more general setting in which the terms ϕ(Yi,θ⊤Xi) are replaced
by ψ(Zi, θ), where Zi are i.i.d. random variables. The only change to be made is in replacing
Assumptions 4.3.1 and 4.3.4 by a new assumption, that requires the function [ψ(Zi,θ) −
ψ(Zi,θ′)] to be bounded by |V ⊤

i (θ − θ′)|, for all θ, θ′, with a random vector Vi which has a
bounded (or sub-Gaussian) norm. This setting has the advantage of being more general than
the one adopted in Section 3. However, the relevant examples we have in mind at correspond
all to partial linear models.
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4.4 Application to Bandits

In this section, we apply the univariate uniform law of iterated logarithm established in
Section 4.2 to the multi-armed bandit problem. More precisely, we study the Best Arm
Identification (BAI) problem in the fixed confidence setting. It consists in identifying, for
a given confidence level and as fast as possible, which arm produces the highest expected
outcome, (see Audibert and Bubeck (2010), Gabillon, Ghavamzadeh, and Lazaric (2012), and
Kaufmann, Cappé, and Garivier (2016)). This means that we are able to collect data by
sampling from K unknown distributions P1, . . . ,PK and our goal is to identify the distribution
having the largest expectation. Naturally, the same problem can be formulated for finding the
distribution with the largest median, or the largest quantile of a given order. In particular,
such a formulation of the problem might be of interest in cases where the expectations of the
outcomes of each arm may not be defined (rewards are heavy-tailed) or are not meaningful
(rewards are subject to some arbitrary contamination), see Altschuler, Brunel, and Malek 2018.
We show in this section that theoretical results of previous sections provide an extension of
the lil’UCB algorithm of Jamieson et al. (2014) to this framework.

4.4.1 Robust Best Arm Identification (RBAI)

We consider a robust version of BAI, which we call Robust BAI (RBAI). Suppose there are K
arms, each arm k ∈ [K] producing i.i.d. rewards

Y1,k, Y2,k, Y3,k, . . .
i.i.d.∼ Pk.

At each round n = 1, 2, . . ., the player chooses an arm In ∈ [K] and receives the corresponding
reward YTIn (n−1),In

, where Tk(n− 1) = 1(I1 = k) + . . .+ 1(In−1 = k) is the number of times
the arm k was pulled during the rounds 1, . . . , n− 1.
For a given loss function ϕ : R×R→ R, convex with respect to its second argument, we define

θk ∈ arg min
θ∈R

EPk
[ϕ(Y, θ)].

From a statistical perspective, the problem under consideration encompasses that of finding
the maximum point (by active learning) in a quantile regression problem (Chernozhukov 2005).
For instance, consider the case of median regression. The aim is to maximize a function
f : [0, 1]→ R over a grid of points x1, . . . , xK ∈ [0, 1], using noisy evaluations of f . At each
round n, we can choose one xk and observe the value

Yn = f(xk) + ξn,

where {ξn} is a sequence of i.i.d. random variables with median equal to zero. Clearly, this
enters into the framework described in the previous paragraph with θk = f(xk) and each Pk is
just a shifted-by-θk version of the distribution of ξn.
We use the rewards of the k-th arm for estimating θk by empirical risk minimisation: for every
arm k ∈ [K] and every sample size n ≥ 1, we let

θ̂k,n ∈ arg min
θ∈R

1
n

n∑
i=1

ϕ(Yi,k, θ).



4.4. APPLICATION TO BANDITS 79

With this notation, after n rounds, we are able to compute the quantities θ̂k,Tk(n) for k ∈ [K].
These quantities, combined with the confidence bounds furnished by the LIL of Theorem 4.2.4,
lead to M -estimator lil’UCB algorithm described in Algorithm 12.

Procedure 1 M-estimator lil’UCB.
Input: ν, λ, γ > 0 and n0 ∈ N

1: Sample each arm n0 times
2: Set δ = ((

√
16ν + 9− 3)/16)2

3: for k in 1 : K do
4: Tk ← n0
5: Sample kth arm n0 times
6: Compute θ̂k,Tk

7: Set s(k)← θ̂k,Tk
+ γ

√
ln lnTk+ln(1/δ)

Tk

8: end for
9: n← Kn0

10: while (1 + λ) maxk∈[K] Tk < 1 + λn do
11: I ← arg maxk∈[K] s(k)
12: Sample arm I
13: Update TI ← TI + 1, n← n+ 1
14: Compute θ̂I,TI

15: Set s(I)← θ̂I,TI
+ γ

√
ln lnTI+ln(1/δ)

TI

16: end while
Output: arg maxk∈[K] Tk

4.4.2 Main results

To state the theoretical results, let k∗ = argmaxk∈[K] θk be the subscript corresponding to
the best arm. We assume k∗ to be unique, and we define, for k ̸= k∗, the sub-optimality gaps
∆k = θk∗ − θk. We introduce the quantities

H1 =
∑
k ̸=k∗

1
∆2
k

, H2 =
∑
k ̸=k∗

ln
(
2 + ln+(1/∆2

k)
)

∆2
k

.

Those quantities play a key role in characterizing the complexity of the BAI problem.

Theorem 4.4.1. Let θ 7→ ϕ(y, θ) be a convex function for every y ∈ R and let the distributions
Pk satisfy Assumptions 4.2.2 and 4.2.3 with parameters α, σ > 0. For any ν ∈ (0, 0.2) and
β ∈ (0, 4.8), there exist positive constants3 λ and C such that with probability at least 1− ν,
Algorithm 1, used with parameters ν, λ, γ = 4.4(1 + β)σ/α and n0 ≥ 12, stops after at most

Kn0 + C
(
H1 ln(1/ν) + H2

)
steps and returns the best arm.

2λ, γ and n0 should be seen as tuning parameters for which our theoretical results give some guidance.
3λ and C depend only on β and σ/α.
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Figure 4.2: Total number of pulls done by the median lil’UCB and the lil’UCB algorithms for
K ∈ {2, 4, 8, 16, 32, 64, 128}.

Note that (ln 2)H1 ≤ H2. Therefore, for a fixed confidence level ν, the number of pulls
provided by Theorem 4.4.1 is O(H2). The next result shows that this order of magnitude is
optimal.

Theorem 4.4.2. Consider the RBAI framework with fixed confidence δ ∈ (0, 1/2) described
above and assume K = 2. Let θ1, θ2 ∈ R be such that ∆ = |θ1−θ2| > 0. Let ϕ(y, θ) = ϕ0(|y−θ|)
for some function ϕ0 and the arm distributions be N (θ1, 1) and N (θ2, 1). Then, any algorithm
that finds after T rounds the best arm with probability at least 1− δ, for all values of ∆ > 0,
must satisfy

lim sup
∆→0

E[T ]
∆−2 ln ln(∆−2) ≥ 2− 4δ.

Proofs of these two theorems are provided in the supplementary material.

4.5 Numerical experiments
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Figure 4.3: Total number of pulls done by the median lil’UCB and the median UCB based on
the union bound.
To illustrate the results of the previous section, we conducted the following experiment. We
chose the values of θk’s according to the “α-model" from Jamieson et al. (2014) with α = 0.3.
It imposes an exponential decay on the parameters, that is θk = 1− (k/K)α. Along with these
parameters, we consider three reward generating processes:
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• Gaussian rewards, where Yi,k
i.i.d.∼ N (θk, σ2),

• Gaussian rewards subject to Cauchy contamination, where Yi,k
i.i.d.∼ (1− ε)N (θk, σ2) +

εCauchy(θk) for ε = 5%,

• Student rewards, where Yi,k
i.i.d.∼ t2(θk) (i.e., Student distribution with 2 degrees of

freedom).

Note that all these processes are median centered at θk’s. In the case of Gaussian and Student
rewards, they are also mean-centered at θk, while in the case of contaminated Gaussian rewards
the mean is not defined. To test the robustness of the compared algorithms, we tuned their
parameters to fit the Gaussian reward scenario.
In this set-up, we compared the original lil’UCB algorithm from Jamieson et al. (2014)—see
also Jamieson and Nowak (2014) for a more comprehensive experimental evaluation—and the
M -estimator lil’UCB described in Algorithm 1, where θ̂k,n is the empirical median of rewards
from arm k up to time n. This corresponds to the M -estimator associated with the absolute
deviation loss. This version of the M -estimator lil’UCB is hereafter referred to as median
lil’UCB or med-lil’UCB.
In order to conduct a fair comparison, we assigned the same values to parameters shared by
both procedures and set the values as in Jamieson et al. (2014): β = 1, λ = (1 + 2/β)2, σ = 0.5,
ε = 0.01 and ν = 0.1. Note that, as underlined in Jamieson et al. 2014, the choice of λ does
not fit their theoretical result. This choice is justified by the fact that λ should theoretically
be proportional to (1 + 2/β)2 with a constant converging to 1 when the confidence approaches
0. For our algorithm we chose γ = 2 and n0 = 20.
The results, for several values of K (the total number of arms), obtained by 200 independent
runs of each algorithm in all the three settings, are summarized in Figure 4.2 and in Table 4.1.
Numbers reported in Table 4.1 represent the proportion of times each algorithm succeeded to
find the best arm, while Figure 4.2 displays the number of pulls for each algorithm. Table 4.1
shows that lil’UCB performed poorly on the non-Gaussian models. For contaminated Gaussian
rewards, the performance of lil’UCB deteriorates as the number of arms grows, while it does
not seem to be affected by the number of arms in the case of Student rewards : it identifies
correctly the best arm for only around 60% of the runs in this last case. In contrast, median
lil’UCB performs well in all the three scenarios, giving perfect identification over all runs.
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Table 4.1: Proportion of correct best arm identification (over 200 runs per sce-
nario/algorithm).

K Algorithm Gauss Contam. Student

2 lil’UCB 1.00 0.81 0.61
med-lil’UCB 1.00 1.00 1.00

4 lil’UCB 1.00 0.75 0.61
med-lil’UCB 1.00 1.00 1.00

8 lil’UCB 1.00 0.69 0.63
med-lil’UCB 1.00 1.00 1.00

16 lil’UCB 1.00 0.66 0.60
med-lil’UCB 1.00 1.00 1.00

32 lil’UCB 1.00 0.57 0.61
med-lil’UCB 1.00 1.00 1.00

64 lil’UCB 1.00 0.54 0.62
med-lil’UCB 1.00 1.00 1.00

128 lil’UCB 1.00 0.44 0.60
med-lil’UCB 1.00 1.00 1.00

The curves in Figure 4.2 represent the median number of pulls over the 200 runs while the
colored areas around the curves are delimited by the 10% and 90% quantiles of the number of
pulls over these 200 runs. We observe that the spread of the number of pulls of lil’UCB is
large for non-Gaussian models, while the curves for median lil’UCB are almost identical in the
three models of rewards. The number of pulls for median lil’UCB is higher than the number of
pulls for lil’UCB in the Gaussian and Student models. However, in the contaminated Gaussian
model, lil’UCB might require more pulls when the number of arms is large.
Moreover, we noticed that the performance of our procedure is not sensitive to the level of
contamination : we conducted the same experiment with ε ∈ {5, 10, 20, 40, 60} and in all
cases our procedure is 100% successful in finding the best arm. Furthermore, the number of
pulls does not increase when ε increases. In contrast, the performance of the original lil’UCB
procedure drops down to 35% of correct identification when ε = 60% and there are 4 arms.
Finally, we observed that if we replace the LIL by the naive union bound in our algorithm,
the detection accuracy remains the same, but the running time increases (between 10% and
30%), see Figure 4.3.
These experiments illustrate the lack of robustness of lil’UCB to heavy tailed rewards and the
effective robustness of median lil’UCB. Since this robustness comes with a higher number of
pulls, median lil’UCB should be preferred to vanilla lil’UCB only if one suspects non-Gaussian
or heavy-tailed rewards.

4.6 Conclusion and further work

We have proved a nonasymptotic law of iterated logarithm for general M -estimators both in
univariate and in multivariate settings. These results can be seen as off-the-shelf deviation
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bounds that are uniform in the sample size and, therefore, suitable for online learning problems
and problems in which the sample size may depend on the observations. There are several
avenues for future work. For simplicity, in the multivariate case, the population risk was
assumed to be above an elliptic paraboloid on the whole space. First in our agenda is to
replace this condition by a local curvature one. A second interesting line of research is to
establish an any-time deviation bound for sequential estimators such as the online gradient
descent. It would also be of interest to obtain “in-expectation” bounds of the same type as
those in (Shin, Ramdas, and Rinaldo 2019).

4.7 Proofs

This section contains the proofs of the theorems stated and discussed in the main body of the
paper. Some technical lemmas used in the proofs of this section are postponed to Section 4.7.6.

4.7.1 Notations

We begin by introducing notations we will use throughout the proofs. For any positive real
number x, we define ⌈x⌉ as the smallest integer greater than or equal to x. We denote by
Sd−1 the d-dimensional unit Euclidean sphere, i.e., Sd−1 = {v ∈ Rd : ∥v∥2 = 1}. The natural
logarithm function (i.e., base e logarithm) is denoted by ln. We write vectors and matrices
in bold font, we use lower-case symbols for the former and upper-case symbols for the latter.
When we write Xi we mean the j-th column of the matrix X. We denote by ∥X∥F the
Frobenius norm of the matrix X, ∥X∥2F = Tr(XX⊤). For a vector v, ∥v∥∞ stands for maxj |vj |.
For any integer K ∈ N, we set [K] = {1, . . . ,K}.

4.7.2 Proof of Theorem 4.2.4

For any integer n ≥ 12, define the sequence

t(n) = 3.3σ
α
√
n

√
1.1 ln lnn+ ln(15/δ) + 2.6.

Note that it is a non-increasing sequence and converges to 0. Denote by n0 the smallest
positive integer n ≥ 12 such that t(n) ≤ r. For k ≥ 1 and β = 1.1, let nk = ⌈βnk−1⌉. To ease
notation, we set tk = t(nk). We also define the integer intervals Ik = [nk, nk+1) ∩ N. We wish
to upper bound the probability of the event

A =
∞⋃

n=n0

An, where An =
{
θ̂n − θ∗ > t(n)

}
.

For n ≥ 1 and t ∈ (0, r], define the random variables

Sn(t) = n
(
Φ̂n(θ∗)− Φ(θ∗)

)
− n

(
Φ̂n(θ∗ + t)− Φ(θ∗ + t)

)
.

For any integers k ≥ 0, n ∈ Ik, the event An is included in the event Bn = {Sn(tk+1) ≥
(α/2)nkt2k+1}. Indeed, the fact that the sequence (t(n)) is non-increasing, the convexity of the
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function Φ̂n (see Figure 4.4 for an illustration of the second implication) and Assumption 4.2.2
yield, for integers k ≥ 0, n ∈ Ik,

θ̂n > θ∗ + t(n) =⇒ θ̂n > θ∗ + tk+1

=⇒ Φ̂n(θ∗) ≥ Φ̂n(θ∗ + tk+1)
=⇒ Sn(tk+1)/n ≥ Φ(θ∗ + tk+1)− Φ(θ∗)

=⇒ Sn(tk+1) ≥ α

2 nkt
2
k+1.

Combining the previous observation with a union bound yield

P
( ∞⋃
n=n0

An

)
≤

∞∑
k=0

P

 ⋃
n∈Ik

An

 ≤ ∞∑
k=0

P

 ⋃
n∈Ik

Bn

 .
Furthermore, letting xk = (α/2)nkt2k+1, we get, for any positive λ,

P

 ⋃
n∈Ik

Bn

 ≤ P
(

sup
n∈Ik

Sn(tk+1) ≥ xk
)
≤ P

(
sup
n∈Ik

exp {λSn(tk+1)} ≥ eλxk

)
.

The stochastic process (Sn(tk+1))n∈Ik
is a discrete martingale. Hence, by Jensen’s inequality,

for all λ > 0, (exp(λSn(tk+1)))n∈Ik
is a discrete submartingale. Therefore, Markov’s inequality

followed by Doob’s maximal inequality implies

P

 ⋃
n∈Ik

Bn

 ≤ e−λxkE
[

sup
n∈Ik

exp {λSn(tk+1)}
]
≤ e−λxkE

[
exp

{
λSnk+1(tk+1)

}]
.

Since the random variable Snk+1(tk+1) is the sum of nk+1 independent σ2t2k+1-sub-Gaussian
random variables (Assumption 4.2.3), we have a simple upper bound on the moment generating
function of Snk+1(tk+1) which yields

P

 ⋃
n∈Ik

Bn

 ≤ exp
{
−λxk + (λ2σ2/2)nk+1t

2
k+1

}
.

Choosing λ = xk/(σ2nk+1t
2
k+1) and recalling that β = 1.1 (which ensures βnk/nk+1 ≥

√
0.88),

we obtain

P

 ⋃
n∈Ik

Bn

 ≤ exp
{
− x2

k

2σ2nk+1t
2
k+1

}
≤ exp

{
−
α2n2

kt
2
k+1

8σ2nk+1

}
≤ exp

{
−

0.88α2nk+1t
2
k+1

8β2σ2

}
.

Replacing tk+1 by its expression,

t2k+1 =
(3.3σ

α

)2 1.1 ln lnnk+1 + ln(15/δ) + 2.6
nk+1

,

and using the inequality lnnk+1 ≥ ln(βk+1n0) ≥ (k + 27) ln β we arrive at

P

 ⋃
n∈Ik

Bn

 ≤ exp
{
−

0.88× 3.32 ×
(
1.1 ln lnnk+1 + ln(15/δ) + 2.6

)
8β2

}
≤ exp

{
−
(
1.1 ln(k + 27) + 1.1 ln ln β + ln(15/δ) + 2.6

)}
≤ δ

15 exp {−1.1 ln(k + 27)} = δ

15(k + 27)1.1 .
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Figure 4.4: Illustration of the shape of the function Φ̂n.

Finally, using the fact that
∞∑
k=0

1
(k + 27)1.1 ≤

∫ ∞

26
x−1.1 dx = 26−0.1

0.1 ≤ 7.5,

we get

P
(
∃n ≥ n0, θ̂n > θ∗ + t(n)

)
≤ δ/2.

The exact same reasoning yields

P
(
∃n ≥ n0, θ̂n < θ∗ − t(n)

)
≤ δ/2,

and Theorem 4.2.4 follows from a union bound combined with the two previous inequalities.

Remark 4.7.1. Several high probability uniform bounds on the sum of sub-Gaussian random
variables have been proved (see, e.g., Jamieson et al. (2014), Maillard (2019), and Howard
et al. (2018)). However, those bound do not apply in our case since the elements of the sum
change with the size of the sum.

4.7.3 Proof of Theorem 4.3.5

Let β = 1.1. Throughout the proof, we consider the sequence of integers {nk : k ∈ N} defined
by nk+1 = ⌈βnk⌉ (recall that n0 ≥ 6). We also introduce the sequence of integer intervals
Ik = [nk, nk+1) ∩ N and the sequence (t(n))n∈N defined by

t(n) = (39/11)κnB
√

ln lnn+ ln(50/δ) + 1√
n

, for n ≥ 1.

To avoid double subscripts, we write t(nk) = tk for any integer k. We wish to upper bound
the probability of the event

Aq =
∞⋃

n=n0

Aqn, where Aqn =
{
∥θ∗

n − θ̂n∥q > t(n)
}
.
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n0 β Cmult Cadd

1.1 3.35 5.4
6 1.05 3.3 6

1.01 3.3 7.6
1.1 3.3 5.3

12 1.05 3.1 6
1.01 3.1 7.6
1.1 3.25 5.3

20 1.05 3.1 6
1.01 3 7.6
1.1 3.2 5.3

50 1.05 3.1 6
1.01 2.9 7.6
1.1 3.2 5.3

80 1.05 3 6
1.01 2.9 7.5

Table 4.2: Effect of the choice of n0 and β on the constants in the sequence tLIL
n =

Cmult
σ
α

√
1.1 ln lnn+ln(1/δ)+Cadd

n
.

Reduction to the case q = 2 Since for any real number q ≥ 2 and vector x ∈ Rd,
∥x∥q ≤ ∥x∥2, an upper bound on the probability of A2 implies an upper bound on the
probability pf Aq for any q ≥ 2. Therefore it is sufficient to obtain an upper bound for the
case q = 2. For simplicity we write A := A2 and An := A2

n from now on.
For every w ∈ Rp, we define the random variables

Sn(w) = n
(
Φ̂n(θ∗

n)− Φn(θ∗
n)
)
− n

(
Φ̂n(θ∗

n −w)− Φn(θ∗
n −w)

)
, n ≥ 1.

The following result is a consequence of the convexity of Φ̂n.

Lemma 4.7.2. Under Assumptions 4.3.1 to 4.3.3, for any k ∈ N and n ∈ Ik, the event An is
included in the event

Bn :=
{

sup
w∈tk+1Sd−1

[
Sn(w)− (αn/2)nt2k+1

]
≥ 0

}
.

Combining Lemma 4.7.2 with the union bound gives

P (A) ≤ P
( ⋃
k≥0

⋃
n∈Ik

Bn
)
≤
∑
k≥0

P
( ⋃
n∈Ik

Bn
)
.

Let k be an integer. Since the sequence {αn}n is non-increasing we have, for any integer
n ∈ Ik, αn ≥ αnk+1 . Setting β = 1.1 we have nk/nk+1 ≥ 11/13 for n ≥ 6. Thus, for any
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positive real λ,

P
( ⋃
n∈Ik

Bn
)
≤ P

(
sup
n∈Ik

sup
w∈tk+1Sd−1

[
Sn(w)− αn

2 nkt
2
k+1

]
≥ 0

)

≤ P
(

sup
n∈Ik

sup
w∈tk+1Sd−1

[
Sn(w)−

11αnk+1

26 nk+1t
2
k+1

]
≥ 0

)

≤ P
(

sup
n∈Ik

sup
w∈tk+1Sd−1

exp
{
λ

(
Sn(w)−

11αnk+1

26 nk+1t
2
k+1

)}
≥ 1

)
.

The stochastic process
(
supw∈tk+1Sd−1 exp

{
λ
(
Sn(w)− 11αnk+1nk+1t

2
k+1/26

)})
, n ∈ N∗, is a

submartingale with respect to its natural filtration. Therefore, Doob’s maximal inequality for
submartingales yields,

P
( ⋃
n∈Ik

Bn
)
≤ inf

λ≥0
E
[

sup
w∈tk+1Sd−1

exp
{
λ

(
Snk+1(w)−

11αnk+1

26 nk+1t
2
k+1

)}]
. (4.4)

The next lemma uses classic tools from empirical processes theory such as the symmetrization
trick and the contraction principle to bound the expectation from (4.4).

Lemma 4.7.3. Under Assumption 4.3.1, given a positive integer m and three positive real
numbers t, α and λ, letting t′ = (2mα/L)t, we have,

inf
λ≥0

E
[

sup
w∈tSd−1

exp
{
λ
(
Sm(w)− αmt2

)}]
≤ inf

λ≥0
E
[

sup
w∈t′Sd−1

exp
{
λ
(
w⊤Xε− (t′)2/2

)}]
,

where ε is a n-dimensional vector of i.i.d. Rademacher random variables independent of the
matrix X ∈ Rd×n whose columns are the observations vectors X1, . . . ,Xn.

Let us introduce the additional notation

sk+1 = 11nk+1
13κnk+1

tk+1.

Applying Lemma 4.7.3 with m = nk+1, α = 11αnk+1/26 and t = tk+1 gives

P
( ⋃
n∈Ik

Bn
)
≤ inf

λ≥0
E
[

sup
w∈sk+1Sd−1

exp
{
λ(w⊤Xε− s2

k+1/2)
}]

(4.5)

= inf
λ≥0

E [exp {λsk+1∥Xε∥2}] e−λs2
k+1/2. (4.6)

The last line follows from the simple identity ∥x∥2 = sup∥y∥2=1 y⊤x valid for any vector
x ∈ Rd. We now state a lemma to bound the quantity Ee∥Xε∥2 for deterministic matrix X.

Lemma 4.7.4. Let X be a d× n deterministic matrix and ε be an n-dimensional vector with
i.i.d. Rademacher entries. Then the following inequality holds

Ee∥Xε∥2 ≤ 2e(3∥X∥F+∥X∥2
F)/2.
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Combining Lemma 4.7.4 and (4.6), we get

P
( ⋃
n∈Ik

Bn
)
≤ inf

λ≥0
E
[
eλ(∥Xε∥2−s2

k+1/2)
]

(4.7)

≤ 2E exp
{1

2 inf
λ≥0

[
(λsk+1)2∥X∥2F − (λsk+1)(sk+1 − 3∥X∥F)

]}
(4.8)

= 2E exp
{1

2 inf
λ≥0

[
λ2∥X∥2F − λ(sk+1 − 3∥X∥F)

]}
. (4.9)

Choosing λ∗ = (sk+1 − 3∥X∥F)+/(2∥X∥2F) and upper bounding the infimum over all positive
λ’s by the value at λ∗, we arrive at the inequality

P
( ⋃
n∈Ik

Bn
)
≤ 2 exp

{
−1

8
( sk+1
∥X∥F

− 3
)2

+

}
≤ 2 exp

{
−1

8
( sk+1
B
√
nk+1

− 3
)2

+

}
.

In the last step above we have used the inequality ∥X∥F ≤
√
nk+1B. Replacing sk+1 and tk+1

by their expressions, we get

1
8
( sk+1
B
√
nk+1

− 3
)2

+
= 1

8
( 11nk+1tk+1

13Bκnk+1
√
nk+1

− 3
)2

+

= 1
8
(11√nk+1tk+1

13Bκnk+1

− 3
)2

+

= (9/8)
(

ln lnnk+1 + ln(50/δ)
)
.

Using the inequality lnnk+1 ≥ ln(βk+1n0) ≥ (k + 19) ln β we arrive at

P

 ⋃
n∈Ik

Bn

 ≤ exp
{
−(9/8)

(
ln(k + 19) + ln ln β + ln(50/δ)

)}
≤ 0.21δ

(k + 19)9/8 .

Using the fact that
∞∑
k=0

1
(k + 19)9/8 ≤

∫ ∞

18
x−9/8 dx = 8× 18−1/8 ≤ 5.58,

we get P
(
∃n ≥ n0, ∥θ̂n − θ∗

n∥2 ≥ t(n)
)
≤ δ. To conclude, it suffices to note that tMVLIL

n,δ ≥ t(n)
for every n ∈ N∗.

Extension to sub-Gaussian norm

The boundedness of the features (Assumption 4.3.4) can be relaxed to a sub-Gaussian
assumption4 on the norm of the features, stated as follows :

Assumption 4.7.5. ∥X1∥2 is σ-sub-Gaussian for some σ > 0 : Ee∥X1∥2
2/σ

2 ≤ 2.

We now restate Theorem 4.3.5 with this new assumption.
4We refer the reader to Vershynin 2018, Section 2.5 for equivalent definitions and details on sub-Gaussian

random variables.
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Theorem 4.7.6. Let Assumptions 4.3.1 to 4.3.3 and 4.7.5 be satisfied for every integer
n ∈ N∗. Assume, in addition, that starting from some integer n0 ≥ 1, the sequence κ2

n ln lnn/n is
decreasing. Then, for any q ≥ 2 and δ ∈ (0, 1), there exist positive absolute constants c, c′, c′′,
such that

P
(
∀n ≥ n0, ∥θ̂n − θ∗

n∥q ≤ cκnσ
√

ln lnn+ ln(c′/δ) + c′′
√
n

)
≥ 1− δ.

Proof. In the proof we denote by c, c′, c′′... positive absolute constants, their values may change
from one line to another. We use the symbol ≲ to mean "less than or equal to, up to an absolute
constant". Under this new assumption, the proof is exactly the same as for Theorem 4.3.5 up
to (4.7). Let k be an integer. Applying Cauchy-Schwarz inequality at this point yields

E
[

inf
λ>0

e2λ2∥X∥2
F −λ(sk+1−3∥X∥F )

]
≤ inf

λ>0
e−λsk+1

[
Ee4λ2∥X∥2

F

]1/2 [
Ee6λ∥X∥F

]1/2

For i = 1, . . . , nk+1, let zi := ∥Xi∥2 and define the random vector z := (z1, . . . , znk+1). Note
that we have ∥X∥F = ∥z∥2 and that the coordinates of the random vector z are independent
σ-sub-Gaussian random variables. In particular it implies that ∥z∥2 is a √nk+1σ-sub-Gaussian
random variable. Indeed, Jensen’s inequality applied to the concave map (x 7→ x1/nk+1) gives

Ee∥z∥2
2/(√nk+1σ)2 ≤

(
E
nk+1∏
i=1

ez
2
i /σ

2
)1/nk+1

,

then the independence of the coordinates assumption allows us to switch the product and the
expectation and the resulting quantity is upper bounded by 2 thanks to the sub-Gaussian
assumption on the coordinates.

Bounding the first expectation Vershynin 2018, Proposition 2.5.2 (iii) gives a bound
on the moment-generating function of a squared sub-Gaussian random variable. Using the
independence assumption to switch the product and the expectatione before applying this
proposition to each squared coordinate z2

i independently, we get, for any |λ| ≲ σ−1,

Ee2λ2∥z∥2
2 =

nk+1∏
i=1

(
Ee2λ2z2

i

)nk+1 ≤ ecnk+1σ
2λ2
.

where c is an absolute constant.

Bounding the second expectation The centering lemma Vershynin 2018, Lemma 2.6.8
states that if a random variable is sub-Gaussian, then its centered version is sub-Gaussian
with same sub-Gaussian variance proxy, up to an absolute constant. Therefore the centered
random variable ∥z∥2−E∥z∥2 is a c√nk+1σ-sub-Gaussian random variable with c an absolute
constant. Applying Vershynin 2018, Proposition 2.5.2 (v) to control the moment-generating
function of a centered sub-Gaussian random variable, we get

Ee6λ(∥z∥2−E∥z∥2) ≤ ecλ2nk+1σ
2 (4.10)
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Finally, Jensen’s inequality followed by a control on the L2 norm of a sub-Gaussian random
variable (see, e.g., Vershynin 2018, Proposition 2.5.2 (ii)) yield

E∥z∥2 ≤
√
nk+1

√
Ez2

1 ≲
√
nk+1σ. (4.11)

Combining (4.10) and (4.11), we get

Ee6λ∥z∥2 ≤ e6λE∥z∥2Ee6λ(∥z∥2−E∥z∥2) ≤ ecλ2nk+1σ
2+c′λ

√
nk+1σ.

Combining the bounds on expectations

E
[

inf
λ>0

e2λ2∥X∥2
F −λ(sk+1−3∥X∥F )

]
≤ inf

0<λ≲σ−1
exp{cnk+1σ

2λ2 + c′λ
√
nk+1σ − λsk+1}.

The non-negative minimizer of the polynomial inside the exponential is given by λ∗ =
(sk+1−c′√nk+1σ)+

cnσ2 . It satisfies the upper bound constraint (up to taking bigger constants) :
since sk+1 is of order √nk+1σ, λ∗ is of order (√nk+1σ)−1. This yields the following upper
bound, valid for any integer k,

P

 ⋃
n∈Ik

Bn

 ≤ 2 exp

−
(

sk+1
c
√
nk+1σ

− c′
)2

+

 .
Note that, replacing σ by B, it is the same upper bound we get in the bounded case, up to
absolute constants. Recalling that sk+1 = c

nk+1
κnk+1

tk+1, we have

P

 ⋃
n∈Ik

Bn

 ≤ 2 exp

−
(
c

√
nk+1tk+1

σκnk+1

− c′
)2

+

 .
Letting

t(n) = cκnσ

√
ln lnn+ ln(c′/δ) + c′′

n
,

for some suitable absolute positive constants c, c′ and c′′, we get

P

 ⋃
n∈Ik

Bn

 ≲
δ

(k + c′)γ ,

with γ > 1 an absolute constant. If the absolute constants are set suitably we finally obtain

P
(
∃n ≥ n0, ∥θ̂n − θ∗

n∥2 ≥ t(n)
)
≤ δ.

4.7.4 Proof of Theorem 4.4.1

In this section, we provide the proof of the upper bound established for the proposed algorithm
in the problem of best arm identification for multi-armed bandit. We start with two technical
lemmas, then we provide two other lemmas that constitute the core technical part of the proof
of Theorem 4.4.1. Finally, in Section 4.7.4, we put all the pieces together and present the
proof of the theorem.
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Preliminary lemmas

We state and prove two elementary lemmas which we will need for the proof of Theorem 4.4.1.

Lemma 4.7.7. For t ≥ 2, c > 0 and 0 < ω ≤ 0.15, we have

1
t

ln
( ln t
ω

)
≥ c =⇒ t ≤ 1

c
ln
(2 ln(1/(2cω))

ω

)
.

Proof. Let f(t) = 1
t ln

( ln t
ω

)
, defined for any t ≥ 2 and t∗ = 1

c ln
(2 ln(1/(2cω))

ω

)
. It suffices to

show that f(t∗) ≤ c. Indeed, since the function f is decreasing, it implies that f(t) < c for
any t > t∗ which is the contrapositive of the claimed implication. Using the definition of f
and t∗ we have,

f(t∗) ≤ c ⇐⇒ ln
( ln(t∗)

ω

)
≤ t∗c

⇐⇒ t∗ ≤
1

(2cω)2

⇐⇒ ln
(2 ln(1/(2cω))

ω

)
≤ 1

4cω2 .

The last inequality is clearly true since ln(x) ≤ x
2 on (0,∞) and this proves our claim.

Lemma 4.7.8. For t ≥ 2, s ≥ e, c ∈ (0, 1], 0 < ω ≤ δ ≤ e−e/2, we have,

1
t

ln
( ln t
ω

)
≥ c

s
ln
( ln s
δ

)
=⇒ t ≤ s

c

ln(2/ω) + ln ln(1/2cω)
ln(1/δ) .

Proof. Lemma 4.7.7 immediately implies that

ct

s
≤ ln(2/ω) + ln [ln s+ ln(1/2cω)− ln ln(ln s/δ)]

ln(1/δ) + ln ln(s) .

Using the fact that ln ln(ln s/δ) ≥ 1 and the following fact

s ≥ e =⇒ ln s− 1 ≥ 0
=⇒ ln s− 1 ≤ e(ln s− 1)
=⇒ ln s− 1 ≤ (ln s− 1) ln(1/2cω)
=⇒ ln s+ ln(1/2cω)− 1 ≤ ln s ln(1/cω)
=⇒ ln s+ ln(1/2cω)− ln ln(ln s/δ) ≤ ln s ln(1/2cω),

we have

ct

s
≤ ln(2/ω) + ln ln(1/2cω) + ln ln s

ln(1/δ) + ln ln s .

We conclude by applying the inequality a ≥ b, x > 0 =⇒ x+a
x+b ≤ a/b with a = ln(2/ω) +

ln ln(1/2cω), b = ln(1/δ) and x = ln ln s.
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Main lemmas

Without loss of generality, we assume hereafter that the arms’ parameters are ranked in
decreasing order: θ1 ≥ θ2 ≥ . . . ≥ θK . We define the function

U(n, ω) = 4.4σ
α

√
1
n

ln
(

1 ∨ lnn
ω

)
, n ∈ N∗, ω ∈ (0, 1),

and the events

Ek(ω) =
{
∀n ≥ n0(ω) it holds that |θ̂k,n − θk| ≤ U(n, ω)

}
,

where n0(ω) is the smallest integer n ≥ 15 for which U(n, ω) ≤ r. According to Theorem 4.2.4,
we have P

(
Ek(ω)∁

)
≤ 15ω for every k ∈ [K], w ∈ (0, 0.001). The proof of Theorem 4.4.1 is

essentially the combination of two lemmas. The first lemma states that with high probability
the number of times each sub-optimal arm is pulled is not too large. The second lemma shows
that the algorithm indeed stops at some time and returns the best arm with high probability.

Lemma 4.7.9. Let β ∈ (0, 4.8), δ ∈ (0, 0.001) and κ = (2 + β)2(4.4σ/α)2. For every n ≥ 1,
with probability at least 1− 16δ,

K∑
k=2

Tk(n) ≤ n0(δ)(K − 1) + 150κH1 ln(1/δ) +
K∑
k=2

κ
ln(2 max{1, ln(κ/(2∆2

kδ))})
∆2
k

Proof. The proof is carried out in two steps. In the first step, we upper bound the number
of pulls on events for which the rewards are well behaved. In the second step we resort to
standard concentration arguments to show that the events considered in the first step happen
with high probability.
Step 1. Let k > 1, ω ∈ (0, 1) and E(n, k, δ, ω) = E1(δ) ∩ Ek(ω) ∩ {In = k}. Throughout this
step, we assume that E(n, k, δ, ω) holds true and that n ≥ Kn0(δ) (i.e., the warm-up stage is
over). This yields

θk + U(Tk(n), ω) + (1 + β)U(Tk(n), δ) ≥ θ̂k,Tk(n) + (1 + β)U(Tk(n), δ) (Ek(ω) holds)
≥ θ̂1,T1(n) + (1 + β)U(T1(n), δ) (In = k)
≥ θ1. (E1(δ) holds)

Since the function U is decreasing in its second argument, we deduce from the last inequality
that

∆k := θ1 − θk ≤ (2 + β) max
{
U(Tk(n), ω), U(Tk(n), δ)

}
≤ (2 + β)U

(
Tk(n),min(ω, δ)

)
.
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For κ = (2 + β)2(4.4σ/α)2 and c = ∆2
k/κ, Lemma 4.7.7 implies that

Tk(n) ≤ κ
∆2
k

ln
(2 ln(κ/(2∆2

k min(ω,δ)))
min(ω, δ)

)
= κ

∆2
k

(
ln
(2
δ

)
+ ln

( ln(κ/2∆2
kδ) + ln(1/ω)− ln min(1/δ, 1/ω)

(1 + ln(1/ω)) min(1/δ, 1/ω)

)
+ ln

(1 + ln(1/ω)
ω

))
≤ κ

∆2
k

ln
(2
δ

)
+ κ

∆2
k

ln
( ln(κ/2∆2

kδ) + ln(1/ω)
1 + ln(1/ω)

)
+ κ

∆2
k

ln
(1 + ln(1/ω)

ω

)
≤ τk + κ

∆2
k

ln
(1 + ln(1/ω)

ω

)
≤ τk + 2κ

∆2
k

ln (1/ω) .

with τk = κ
∆2

k
ln ((2/δ) max{1, ln(κ/2∆2

kδ)}). Since Tk(n) increases only when k is pulled, the
above argument shows that the following inequality is true for any time n ≥ 1 :

Tk(n)1{E1(δ) ∩ Ek(ω)} ≤ n0(δ) + τk + 2κ
∆2
k

ln (1/ω) . (4.12)

Indeed, let mn = max{m ≤ n : Im = k} be the last time the arm k is pulled among first n
rounds. If mn > Kn0(δ) then

Tk(n)1{E1(δ) ∩ Ek(ω)} = Tk(mn)1{E(mn, k, δ, ω)} ≤ τk + 2κ
∆2
k

ln(1/ω).

Otherwise, mn ≤ Kn0(δ), which means that the arm k has not been pulled after the warm-up
stage. Therefore,

Tk(n)1{E1(δ) ∩ Ek(ω)} = Tk(Kn0)1{E1(δ) ∩ Ek(ω)} ≤ n0(δ) ≤ n0(δ) + τk + 2κ
∆2
k

ln (1/ω) .

Step 2. We define the random variable Ωk := max{ω ∈ [0, 0.001] : Ek(ω) holds true}.
Theorem 4.2.4 guarantees that it is well defined and that P(Ωk < ω) = P(Ek(ω) is wrong) ≤ cω
with c = 15. Furthermore, one can rewrite Eq. (4.12) as

Tk(n)1{E1(δ)} ≤ n0(δ) + τk + 2κ
∆2
k

ln (1/Ωk) .

Therefore, for any x > 0,

P
(

K∑
k=2

Tk(n) > x+
K∑
k=2

(τk + n0(δ))
)
≤ P

(
E1(δ)∁

)

+P
({

K∑
k=2

Tk(n) > x+
K∑
k=2

(τk + n0(δ))
}⋂

E1(δ)
)

≤ cδ + P
(

K∑
k=2

2κ
∆2
k

ln (1/Ωk) > x

)
.
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Define the random variables Zk = 2κ
∆2

k
ln (1/Ωk), for k ∈ [K]\{1}. Observe that these are

independent non-negative random variables and since P(Ωk < ω) ≤ cω, it holds that

P(Zk > x) = P(Ωk < exp{−x∆2
k/(2κ)}) ≤ c exp(−x/ak),

with ak = 2κ/∆2
k for every x ≥ 3ak ln 10. Observing that

EZk =
∫ +∞

0
P (Zk > x) dx ≤ 3ak ln 10 + c

∫ +∞

3ak ln 10
e−x/ak dx ≤ 0.5cak

and applying a basic concentration inequality for the sum of sub-exponential random variables
(see Lemma 4.7.12), we have,

P
(

K∑
k=2

(Zk − 0.5cak) > z

)
≤ P

(
K∑
k=2

(Zk − EZk) > z

)

≤ exp
(
−min

{
z2

8c∥a∥22
,

z

4∥a∥∞

})

≤ exp
(
−min

{
z2

8c∥a∥21
,

z

4∥a∥1

})
.

Putting everything together with z = 4c∥a∥1 ln(1/δ), x = z + 0.5c∥a∥1 one obtains, for n ≥ 1

P
(

K∑
k=2

Tk(n) >
K∑
k=2

(
10κc ln(1/δ)

∆2
k

+ τk + n0(δ)
))
≤ 16δ

and the claim of the lemma follows.

Lemma 4.7.10. Let β ∈ (0, 4.8), δ ∈ (0, 0.001) and cβ =
(2+β

β

)2. If

λ ≥ ϱ

1− 15δ −
√
δ1/4 ln(1/δ)

, with ϱ = cβ
ln (2 ln(cβ/2δ)/δ)

ln(1/δ) ,

then, for all k = 2, . . . ,K and n = 1, 2, . . . we have Tk(n) < n0(δ) + λ
∑
ℓ ̸=k Tℓ(n) with

probability at least 1− 6
√
δ.

Proof. Let k > ℓ. Assuming that Ek(ω) and Eℓ(δ) hold true and that In = k, one has, for
n ≥ Kn0(δ),

θk + U(Tk(n), ω) + (1 + β)U(Tk(n), δ) ≥ θ̂k,Tk(n) + (1 + β)U(Tk(n), δ)
≥ θ̂ℓ,Tℓ(n) + (1 + β)U(Tℓ(n), δ)
≥ θℓ + βU(Tℓ(n), δ).

This implies (2 + β)U(Tk(n),min(ω, δ)) ≥ βU(Tℓ(n), δ). Applying Lemma 4.7.8 with c = c−1
β

one obtains that if Ek(ω) and Eℓ(δ) hold true and In = k then

Tk(n) ≤ cβ
ln (2 ln(cβ/2 min(ω,δ))/min(ω, δ))

ln(1/δ) Tℓ(n). (4.13)
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Since Tk(n) only increases when k is played, then, for all n ≥ 1,

(Tk(n)− n0(δ))1 (Ek(ω) ∩ Eℓ(δ)) ≤ cβ
ln (2 ln(cβ/2 min(ω,δ))/min(ω, δ))

ln(1/δ) Tℓ(n).

Using (4.13) with ω = δk−1 we see that

1{Ek(δk−1)} 1
k − 1

k−1∑
ℓ=1

1{Eℓ(δ)} > 1− α =⇒ (1− α)(Tk(n)− n0(δ)) ≤ ϱ
∑
ℓ̸=k

Tℓ(n).

The above implication leads to the following inequalities

P
(
∃(k, n) ∈ {2, . . . ,K} × N∗ : (1− α)(Tk(n)− n0(δ)) ≥ ϱ

∑
ℓ̸=k

Tℓ(n)
)

≤ P
(
∃k ∈ {2, . . . ,K} : 1{Ek(δk−1)} 1

k − 1

k−1∑
ℓ=1

1{Eℓ(δ)} ≤ 1− α
)

≤
K∑
k=2

P
(
Ek(δk−1)∁

)
+

K∑
k=2

P
( 1
k − 1

k−1∑
ℓ=1

1 (Eℓ(δ)) ≤ 1− cδ − (α− cδ)
)
.

Since E1 (Eℓ(δ)) ≥ 1 − cδ with c = 15, using separately a union bound and Hoeffding’s
inequality, we get

P
( 1
k − 1

k−1∑
ℓ=1

1 (Eℓ(δ)) ≤ 1− cδ − (α− cδ)
)
≤ min

(
c(k − 1)δ, exp(−2(k − 1)(α− cδ)2).

Define R = e−2δ1/4 ln(1/δ) and j = ⌈ln{2δ3/4(1−R)}/ lnR⌉. One can check that

1−R = 1− e2δ1/4 ln δ ≥ 0.64δ1/4 ln(1/δ),

which leads to

j − 1 ≤ − ln{2δ3/4(1−R)}
2δ1/4 ln(1/δ)

≤ − ln{1.28δ ln(1/δ)}
2δ1/8 ln(1/δ)

≤ (1/2)δ−1/4.

Setting α = cδ +
√
δ1/4 ln(1/δ), we have

P
(
∃(k, n) ∈ {2, . . . ,K} × N∗ :

(
1− cδ −

√
δ1/4 ln(1/δ)

)(
Tk(n)− n0(δ)

)
≥ ϱ

∑
ℓ̸=k

Tℓ(n)
)

≤
K∑
k=2

{
cδk−1 + min

(
c(k − 1)δ, e−2(k−1)δ1/4 ln(1/δ))}

≤ c δ

1− δ + cδ

2 j
2 + Rj

1−R ≤ 15.2δ + 7.5δj2 + 2δ3/4 ≤ 6
√
δ.

This completes the proof of the lemma.
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Putting all lemmas together

Let ν be the confidence level from Theorem 4.4.1 and let δ satisfy the relation ν = 16δ + 6
√
δ.

Note that this implies
√
δ = (

√
16ν + 9− 3)/16, which is the value of δ given in Algorithm 1.

On the one hand, Lemma 4.7.9 states that, with probability at least 1−16δ, the total number of
times the suboptimal arms are sampled does not exceed (K−1)n0(δ) +κ (150H1 ln(1/δ) + H2)
where κ = ((2 + β)4.4σ/α)2. On the other hand, Lemma 4.7.10 states that with probability
at least 1 − 6

√
δ, if the parameter λ is large enough, only the optimal arm will meet the

stopping criterion and therefore, the number of pulls from the optimal arm is equal to
n0(δ) + λ

∑
k≥2 Tk(n). Combining those two lemmas, we have that with probability at least

1− 16δ − 6
√
δ, the optimal arm meets the stopping criterion and the total number of pulls

does not exceed (1 + λ)Kn0(δ) + (1 + λ)κ (150H1 ln(1/δ) + H2).

4.7.5 Proof of Theorem 4.4.2

Since ϕ0 is symmetric, the means of the two arms θ1 and θ2 coincide with the parameters of
interest and so, the gap ∆ coincides with the difference in means, i.e., ∆ = |θ1− θ2|. Therefore,
finding the best arm amounts to finding the arm with the best mean and the result is equivalent
to Jamieson et al. 2014, Corollary 1, which in turn is a consequence of the following result by
Farrell (1964).

Theorem 4.7.11. Farrell 1964, Theorem 1 Let X1, X2, ... be i.i.d. Gaussian random variables
with unknown mean ∆ ̸= 0 and variance 1. Consider testing whether ∆ > 0 or ∆ < 0. Let
Y ∈ {−1, 1} be the decision of any such test based on T samples (possibly a random number)
and let δ ∈ (0, 1/2). If sup∆ ̸=0 P (Y ̸= sign(∆)) ≤ δ, then

lim sup
∆−→0

Eδ[T ]
δ−2 ln ln ∆−2 ≥ 2− 4δ.

4.7.6 Proofs of postponed lemmas

Proof of Lemma 4.7.2 Let k ≥ 1, n ∈ Ik and define

v∗
n := θ∗

n − θ̂n

∥θ∗
n − θ̂n∥2

∈ Sd−1, θ̄n := θ∗
n − tk+1v∗

n and pn := tk+1

∥θ∗
n − θ̂n∥2

.

Simple algebra yields

θ̄n = pnθ̂n + (1− pn)θ∗
n.

Furthermore, since the sequence (t(n)) is non-increasing on each interval Ik,

∥θ∗
n − θ̂n∥2 > t(n) =⇒ pn ∈ (0, 1).

Therefore, on the event An, by convexity of Φ̂n,

inf
w∈tk+1Sd−1

Φ̂n(θ∗
n −w) ≤ Φ̂n(θ̄n) ≤ (1− pn)Φ̂n(θ∗

n) + pnΦ̂n(θ̂n) ≤ Φ̂n(θ∗
n).
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Finally, after a centering step, the curvature of the population risk yields the stated result.
Proof of Lemma 4.7.3 A modified version5 of the symmetrization inequality yields

E
[

sup
w∈tSd−1

exp
{
λ
(
Sm(w)− αmt2

)}]
≤ E

[
sup

w∈tSd−1
exp

{
2λ(S′

m(w)− αmt2)
}]

,

where S′
m(w) is the symmetrized version of Sm(w), defined by

S′
m(w) =

m∑
i=1

εi
{
ϕ(Yi,X⊤

i θ∗)− ϕ(Yi,X⊤
i (θ∗ −w))

}
.

We define the set R =
{
tX⊤v : v ∈ Sd−1

}
⊂ Rm and the functions φi : R→ R by

φi : r 7→
[
ϕ(Yi,X⊤

i θ∗)− ϕ(Yi,X⊤
i θ∗ − r)

]
/L, i = 1, . . . ,m.

These functions φi are contractions (Assumption 4.3.1) such that φi(0) = 0. The contraction
principle Koltchinskii 2011a, Theorem 2.2 gives

E
[

sup
w∈tSd−1

exp
{

2λ(S′
m(w)− αmt2)

}]
≤ E

[
sup

w∈tSd−1
exp

{
2λ(Lw⊤Xε− αmt2)

}]
.

Setting t′ = (2mα/L)t and λ′ = (L2/mα)λ, we arrive at

E
[

sup
w∈tSd−1

exp
{

2λ(S′
m(w)− αmt2)

}]
≤ E

[
sup

w∈t′Sd−1
exp

{
λ′(w⊤Xε− (t′)2/2)

}]
.

Finally, since the positive real numbers λ and λ′ are positively proportional, taking the infimum
over all positive λ is exactly the same as taking the infimum over all positive λ′.
Proof of Lemma 4.7.4 Note that the following inequality is always true,

Ee∥Xε∥2 ≤ e∥X∥F E
[
e(∥Xε∥2−∥X∥F )+

]
.

Using the fact that for a non-negative random variable η, Eη =
∫+∞

0 P (η > t)dt, we have

E
[
e(∥Xε∥2−∥X∥F )+ − 1

]
=
∫ +∞

0
P
(
e(∥Xε∥2−∥X∥F )+ > t+ 1

)
dt

=
∫ +∞

0
P (∥Xε∥2 > ∥X∥F + ln(t+ 1)) dt

≤
∫ +∞

0
exp

(
−
(

ln(t+ 1)
)2

2∥X∥2F

)
dt.

The last inequality follows from an application of the bounded difference inequality, see
Boucheron, Lugosi, and Massart 2013, Theorem 6.2, Example 6.3 for more details. Using the

5The version we use here can be found, for instance, in Lecué and Rigollet 2014, Eq. (2.3).
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change of variable u = ln(t+ 1) ⇐⇒ t = eu − 1, we get

∫ +∞

0
exp

(
−(ln(t+ 1))2

2∥X∥2F

)
dt =

∫ +∞

0
exp

(
u− u2

2∥X∥2F

)
du

=
∫ +∞

0
exp

(
− 1

2∥X∥2F
(u− ∥X∥2F )2 + ∥X∥

2
F

2

)
du

≤
√

2π∥X∥F exp
(
∥X∥2F /2

)
FN (0,1)(∥X∥F ),

where FN (0,1) is the cdf of the standard normal distribution. Therefore,

Ee∥Xε∥2 ≤ e∥X∥F

(
1 +
√

2π∥X∥F exp
(
∥X∥2F /2

)
FN (0,1)(∥X∥F )

)
≤ exp

{
(∥X∥2F + 3∥X∥F )/2

}
sup
y≥0

(
e−(y+y2)/2 +

√
2π ye−y/2FN (0,1)(y)

)
≤ 1.86 exp

{
(∥X∥2F + 3∥X∥F )/2

}
.

This completes the proof of the lemma.

Bounding the sum of random variables with sub-exponential right tails

Lemma 4.7.12. Let X1, . . . , Xn be independent, non-negative, random variables such that
there exist positive constants c and a1, . . . , an satisfying

P (Xi > x) ≤ ce−x/ai , ∀x > 0, i = 1, . . . , n.

Then, for any real positive t,

P
(

n∑
i=1

(Xi − EXi) > t

)
≤ exp

(
−min

(
t2

8∥a∥22
,

t

4∥a∥∞

))
.

Proof Defining ψi(λ) := logEeλ(Xi−EXi), i = 1, . . . , n, Markov inequality and the independence
hypothesis give

P
(

n∑
i=1

(Xi − EXi) > t

)
≤ inf

λ>0
e−λt

n∏
i=1

eψi(λ). (4.14)

Using the inequality ln u ≤ u− 1 valid for any positive real u, we have

ψi(λ) := lnEeλXi − λEXi ≤ E
[
eλXi − λXi − 1

]
.

Let ϕ(u) = eu − u− 1. The monotone convergence theorem guarantees that for any λ > 0,

Eϕ(λXi) =
∑
p≥2

λp

p! EX
p
i .
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Since the Xi’s are non-negative, we have, for any integer p ≥ 2 and for any index i = 1, . . . , n,

EXp
i =

∫ +∞

0
P
(
Xi > t1/p

)
dt ≤ cp

∫ +∞

0
tp−1e−t/aidt = capi p!.

Therefore, for any λ ∈ (0, 1/2ai)

ψi(λ) ≤ Eϕ(λXi) ≤ 2c(λai)2. (4.15)

Plugging (4.15) into (4.14) yields

P
(

n∑
i=1

(Xi − EXi) > t

)
≤ inf

λ∈(0,1/2ai)
exp

(
2c∥a∥22λ2 − λt

)
.

The minimum above is attained in

λ∗ = min
(

t

4c∥a∥22
,

1
2∥a∥∞

)
.

This yields the stated upper bound

P
(

n∑
i=1

(Xi − EXi) > t

)
≤ exp

(
−min

(
t2

8∥a∥22
,

t

4∥a∥∞

))

and the claim of the lemma follows.
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CHAPTER 5

Bounding the expectation of the supremum of empirical processes indexed
by Hölder classes

In this chapter, we provide upper bounds on the expectation of the supremum of empirical
processes indexed by Hölder classes of any smoothness and for any distribution supported on a
bounded set in Rd. These results can alternatively be seen as non-asymptotic risk bounds, when
the unknown distribution is estimated by its empirical counterpart, based on n independent
observations, and the error of estimation is quantified by integral probability metrics (IPM).
In particular, IPM indexed by Hölder classes are considered and the corresponding rates are
derived. These results interpolate between two well-known extreme cases: the rate n−1/d

corresponding to the Wassertein-1 distance (the least smooth case) and the fast rate n−1/2

corresponding to very smooth functions (for instance, functions from a RKHS defined by a
bounded kernel).
Based on Nicolas Schreuder (2020). “Bounding the expectation of the supremum of empirical
processes indexed by Hölder classes”. In: Mathematical Methods of Statistics 29, pp. 76–86.
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5.1 Introduction

In many problems of mathematical statistics and learning theory, a crucial step is to understand
how well the empirical distribution of a sample approximates the underlying true distribution.
The theory of empirical processes is devoted to this question. There are many papers and
books treating this and related problems, both from asymptotic and nonasymptotic points
of view; see, for instance, Vaart and Wellner (1996) and Barrio, Deheuvels, and Geer (2007).
Among many remarkable achievements of the theory of empirical processes, there are two
results that have been particularly often evoked and used in the recent literature in statistics
and machine learning.
To quickly present these two results, let us give some details on the framework. It is assumed
that n independent copies X1, . . . , Xn of a random variable X taking its values in the d-
dimensional hypercube [0, 1]d are observed. The aforementioned two results characterize the
order of magnitude of supremum of the empirical process Xn(f) = 1

n

∑
i=1 f(Xi)− E[f(X)]

over some class of functions F . More precisely, the first result established by Dudley 1968
states that supf∈Lip(1) Xn(f) is of order O(n−1/d),where Lip(1) is the set of all the Lipschitz-
continuous functions with Lipschitz constant 1. The second result Briol et al. 2019, Lemma 1,
tells us that if F contains functions that are smooth enough, for instance functions that are in
a finite ball of a RKHS defined by a bounded kernel, then supf∈F Xn(f) is of order O(n−1/2),
i.e., the same order as in the case when F contains only one function.
The main result of this chapter provides an interpolation between the two aforementioned
results. Roughly speaking, it shows that if F is the class of functions defined on [0, 1]d that
are Hölder-continuous for a given constant L and a given order α > 0, then the supremum of
the empirical process over F is of order O(n−( α

d
∧ 1

2 )) with an additional slowly varying factor
logn when α = d/2. Clearly, when α = 1 this coincides with the result from Dudley (1968),
while for α ≥ d/2 we get the fast and dimension-free rate n−1/2, up to a log factor.
The rest of this chapter is organized as follows. We complete this introduction by providing
all the important notations used throughout this chapter. Section 5.2 is devoted to presenting
and formally defining Hölder classes and Integral Probability Metrics (IPM). In Section 5.3,
we expose some important concepts and results from empirical process theory needed for our
proofs. We end this chapter by stating our main theorem in Section 5.4. Some extensions are
mentioned in Section 5.5. The proofs are postponed to the appendix.

Notations

A multi-index k is a vector with integer coordinates (k1, . . . , kd). We write |k| = ∑d
i=1 ki. For

a given multi-index k = (k1, . . . , kd), we define the differential operator

Dk = ∂|k|

∂xk1
1 . . . ∂xkd

d

.
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For any positive real number x, ⌊x⌋ denotes the largest integer strictly smaller than x. We let
X be a convex bounded set in Rd with non-empty interior. We assume that all the functions
and function classes considered in this chapter are supported on the bounded set X . For any
integer k, we denote by Ck(X ,R) the class of real-valued functions with domain X which are
k-times differentiable with continuous k-th differentials. For any real-valued bounded function
f on X , we let ∥f∥∞ := supx∈X |f(x)| ∈ [0,+∞). Note that we can consider the essential
supremum instead of the supremum over X in which case our results would hold almost surely.
We let ∥·∥ denote some norm on Rd. We denote by σ1, . . . , σn i.i.d. Rademacher random
variables, i.e., discrete random variables such that P(σ1 = 1) = P(σ1 = −1) = 1/2 which are
independent of any other source of randomness. We use the convention 1/0 = +∞.

5.2 A primer on Hölder classes and integral probability metrics

In this section we define Hölder classes of functions and integral probability metrics. We then
discuss some properties of these notions and highlight their role in statistics and statistical
learning theory.

5.2.1 Hölder classes

A central problem in nonparametric statistics is to estimate a function belonging to an
infinite-dimensional space (e.g., density estimation, regression function estimation, hazard
function estimation), see Tsybakov (2008) for an introduction to the topic of nonparametric
estimation. To obtain nontrivial rates of convergence, some kind of regularity is assumed
on the function of interest. It can be expressed as conditions on the function itself, on its
derivatives, on the coefficients of the function in a given basis, etc. Hölder classes are one of
the most common classes considered in the nonparametric estimation literature, they form a
natural extension of Lipschitz-continuous functions and can be formalised with the following
simple conditions. For any real number α > 0, we define the Hölder norm of smoothness α of
a ⌊α⌋-times differentiable function f as

∥f∥Hα := max
|k|≤⌊α⌋

∥Dkf∥∞ + max
|k|=⌊α⌋

sup
x ̸=y

|Dkf(x)−Dkf(y)|
∥x− y∥α−⌊α⌋ .

The Hölder ball of smoothness α and radius L > 0, denoted by Hα(L), is then defined as
the class of ⌊α⌋-times continuously differentiable functions with Hölder norm bounded by the
radius L:

Hα(L) =
{
f ∈ C⌊α⌋(X ,R) | ∥f∥Hα ≤ L

}
.

To get a grasp of why Hölder classes are convenient, let us consider the case d = 1. In
this setting, one can easily derive an upper bound on the remainder of the best polynomial
approximation of any given Hölder function. Indeed, for any positive α > 0 with ⌊α⌋ = ℓ, for
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any function f ∈ Hα(L), Taylor’s theorem yields that for any points x, y ∈ X ,∣∣∣∣f(y)−
ℓ∑

k=0

f (k)(x)
k! (y − x)k

∣∣∣∣ ≤ |y − x|ℓ(ℓ− 1)!

∫ 1

0
|f (ℓ)(x+ t(y − x))− f (ℓ)(x)|(1− t)ℓdt

≤ L |y − x|
α

(ℓ− 1)!

∫ 1

0
tα−ℓ(1− t)ℓdt

≤ L |y − x|
α

ℓ! .

Note that this bound holds uniformly over the Hölder ball Hα(L).

5.2.2 Integral probability metrics

The class H1(1) of 1-Lipschitz functions has received a lot of attention in the optimal transport
literature; see (Santambrogio 2015) for an overview of the topic of mathematical optimal trans-
port. This interest comes from the Kantorovitch duality, which implies that the Wasserstein-1
distance (also known as the earth mover’s distance) can be expressed, for any probability
measures P,Q, as a supremum of some functional over 1-Lipschitz functions:

W1(P,Q) = sup
f∈H1(1)

|EX∼P f(X)− EY∼Qf(Y )|.

More generally, recall from (IPM) that for a given class F of bounded functions, one can
define a pseudo-metric on the space of probability measures, the integral probability metric
(IPM) induced by the class F , as

dF (P,Q) = sup
f∈F
|EX∼P f(X)− EY∼Qf(Y )|.

The literature on IPM has recently been boosted by the advent of adversarial generative
models (Arjovsky, Chintala, and Bottou 2017; Goodfellow et al. 2014). A reason for this is
that an IPM can be seen as an adversarial loss: to compare two probability distributions,
it seeks for the function which discriminates the most the two distributions in expectation.
Initially studied by the deep learning community, impressive empirical results obtained by
adversarial generative models on several tasks such as image generation led statisticians to
study it theoretically (Liang 2018; Chen et al. 2020; Briol et al. 2019) (see also Sriperumbudur
et al. (2012) for statistical results on IPM in a general framework). Since, as pointed out
earlier, Lipschitz functions are also Hölder, one can wonder what happens for IPM indexed by
general Hölder classes. Such IPM already appeared in the literature: Scetbon et al. (2020)
showed that α-Hölder IPM with smoothness α ≤ 1 correspond to the cost of a generalized
optimal transport problem.
To further motivate our study, let us consider the abstract problem of minimum distance
estimation: for a given probability measure P , find a distribution Q in a given set of probability
measures Q such that Q is close to P under the metric dF :

min
Q∈Q

dF (Q,P ). (5.1)

For example, when F is taken to be the class of 1-Lipschitz function, this problem is known
as minimum Kantorovitch estimation (Bassetti, Bodini, and Regazzini 2006). In statistics, the
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probability P is usually unknown and one is only given i.i.d. samples X1, . . . , Xn from the
probability distribution P . A natural strategy is then to employ the empirical distribution
Pn = 1/n∑n

i=1 δXi as a proxy for the theoretical distribution and instead of (5.1) solve the
problem:

min
Q∈Q

dF (Q,Pn). (5.2)

Since the triangle inequality yields

|dF (Q,P )− dF (Q,Pn)| ≤ dF (P, Pn) = sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)− Ef(X)
∣∣∣∣,

one question of interest is to measure how fast the empirical measure approximates the true
measure under the IPM dF . If the rates are fast, we do not loose much by considering the
empirical problem (5.2) instead of the theoretical one of (5.1). However if the rates are slow,
one cannot expect the distances of the solutions to the measure P to be close. We will see
in the next section that the latter expression corresponds to the supremum of the empirical
process indexed by the class F , it will enable us to leverage the rich literature on empirical
processes to obtain rates of convergence for dF (P, Pn).

5.3 Empirical processes, metric entropy and Dudley’s bounds

This section provides a short account of the notions and tools from the theory of empirical
processes which are necessary for stating and establishing the main result.

5.3.1 Empirical processes

Empirical process are ubiquitous in statistical learning theory, we refer the reader to Koltchinskii
2011b; Giné and Nickl 2016 for a general presentation of results on empirical processes and
their link with statistics and learning theory. For clarity, we begin by recalling the definition
of an empirical process.
Definition 5.3.1. Let F be a class of real-valued functions f : X → R, where (X ,A, P ) is a
probability space. Let X be a random point in X distributed according to the distribution P
and let X1, . . . , Xn be independent copies of X. The random process

(
Xn(f)

)
f∈F defined by

Xn(f) := 1
n

n∑
i=1

f(Xi)− Ef(X)

is called an empirical process indexed by F .

In our case, we are interested in controlling the (expectation of the) supremum of an empirical
process, a common case in the literature. Most of the time, the first step to apply for achieving
this goal is to “symmetrize" the empirical process as allowed by the following lemma. Let
R̂n(F) be the empirical Rademacher complexity of function class F , defined as

R̂n(F) = E
[

sup
f∈F

1
n

n∑
i=1

σif(Xi)
∣∣∣X1, . . . , Xn

]
.
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Lemma 5.3.2 (Symmetrization). For any class F of P -integrable functions,

E
[

sup
f∈F
|Xn(f)|

]
≤ 2E

[
R̂n(F)

]
.

The advantage of Rademacher processes is that, regardless of the distribution of the random
variable X and the function class F , for a fixed sample X1, . . . , Xn, the random variable∑n
i=1 σif(Xi) has a sub-Gaussian behavior, in the following sense.

Definition 5.3.3 (Sub-Gaussian behavior). A centered random variable Y has a sub-Gaussian
behavior if there exists a positive constant σ such that

EeλY ≤ eλ2σ2/2, ∀λ ∈ R.

In that case, we define the sub-Gaussian norm1 of Y as

∥Y ∥ψ2 = inf
{
t > 0 : EeY 2/t2 ≤ 2

}
.

Having a sub-Gaussian behavior essentially means to be at least as concentrated as a Gaussian
random variable around its mean. Our definition is equivalent to the tail inequalities

P(|Y | > t) ≤ 2e−t2/(2σ2), ∀t > 0.

This type of behavior will be crucial to obtain the main result of this note. Indeed, as we will
see, the behavior of the supremum of an empirical process (and more generally a stochastic
process) which has sub-Gaussian increments exclusively depends on the topology of the space
by which the process is indexed.

5.3.2 Metric entropy

Let (T, d) be a totally bounded metric space, i.e., for every real number ε > 0, there exists a
finite collection of open balls of radius ε whose union contains T . We give a formal definition
of such finite collections, see also Figure 5.1 for an illustration.

Definition 5.3.4. Given ε > 0, a subset Tε ⊂ T is called an ε-cover of T if for every t ∈ T ,
there exists s ∈ Tε such that d(s, t) ≤ ε.

Note that adding any point to an ε-cover still yields an ε-cover. Thus we can look for ε-covers
of a set with smallest cardinality, which we call covering number.

Definition 5.3.5. The ε-covering number of T , denoted by N (T, d, ε), is the cardinality of
the smallest ε-cover of T , that is

N (T, d, ε) := min
{
|Tε| : Tε is an ε-cover of T

}
.

The metric entropy of T is given by the logarithm of the ε-covering number.
1See Vershynin 2018, Section 2.5 for the link between definitions of sub-Gaussian random variables (bound

on moment-generating function, tail inequalities...) and the Orlicz norm ψ2.
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Figure 5.1: Illustration of an ε-cover for some space T .

Remark 5.3.6. A totally bounded metric space (T, d) is pre-compact in the sense that its
closure is compact. The metric entropy (or entropic numbers) of (T, d) can then be seen as
some measure of compactness of the space. Indeed, N (T, d, ε) quantifies precisely how many
balls of radius ε are needed to cover the whole space T .

Entropic numbers for Hölder classes are known and can be found in e.g. Shiryayev (1993) and
Vaart and Wellner (1996).

Theorem 5.3.7 (Theorem 2.7.3 in Vaart and Wellner 1996). Let X be a bounded, convex
subset of Rd with nonempty interior. There exists a constant Kα,d depending only on α and d
such that, for every ε > 0,

logN (Hα(1), ∥·∥∞, ε) ≤ Kα,dλd(X 1) ε−d/α,

where λd is the d-dimensional Lebesgue measure and X 1 is the 1-blowup of X : X 1 = {y :
infx∈X ∥y − x∥ < 1}.

5.3.3 Dudley’s bound and its refined version

We now present classic results which show the link between the topology of the indexing set
and the behavior of the supremum of the corresponding empirical process. Following Vershynin
2018, Definition 8.1.1, for K ≥ 0, we say that a random process (Xt)t∈T on a metric space
(T, d) has K-sub-Gaussian increments if

∥Xt −Xs∥ψ2 ≤ Kd(t, s), for all t, s ∈ T.

Theorem 5.3.8 (Dudley’s inequality). Let (Xt)t∈T be a mean-zero random process on a
metric space (T, d) with K-sub-Gaussian increments. Then

E
[

sup
t∈T

Xt

]
≤ CK

∫ +∞

0

√
logN (T, d, ε) dε,

for some universal constant C > 0.
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One drawback of Dudley’s bound is that the integral on the right hand side may diverge if
the metric entropy of T tends to infinity at a very fast rate when ε→ 0. For example, when
the metric entropy is upper bounded by ε−γ , as it was seen to be the case with γ = d/α for
α-Hölder-smooth d-variate functions, the integral converges if and only if γ < 2.
An improvement of Dudley’s bound in the case where the process Xt is a Rademacher average
indexed by a class of functions F—circumventing the problem of divergence of the integral—was
proposed by Srebro, Sridharan, and Tewari 2010, Lemma A.3 (see also Srebro and Sridharan
(2010)). Before stating the theorem, let us recall the definition of the L2(Pn) norm of a
function f :

∥f∥2L2(Pn) =
∫

X
f2 dPn = 1

n

n∑
i=1

f(Xi)2.

Theorem 5.3.9. Let F ⊂ {f : X → R} be any class of measurable functions containing the
uniformly zero function and let Sn(F) = supf∈F∥f∥L2(Pn). We have

R̂n(F) ≤ inf
τ>0

{
4τ + 12√

n

∫ Sn(F)

τ

√
logN (F , L2(Pn), ε) dε

}
.

Note that the refined Dudley bound gives an upper bound on the empirical Rademacher
process and depends on the metric entropy with respect to the empirical norm L2(Pn). The
following simple lemma shows that the L2(Pn)-norm can be replaced by the supremum-norm
in the refined Dudley bound.

Lemma 5.3.10. Let F be any class of bounded functions defined on X . For any sample
X1, . . . , Xn, let F|X1,...,Xn

be the subset of Rn defined by

F|X1,...,Xn
=
{
u ∈ Rn : ∃f ∈ F such that ui = f(Xi) for all i = 1, . . . , n

}
.

For any ε > 0, we have

N (F , L2(Pn), ε) ≤ N (F|X1,...,Xn
, ∥·∥∞, ε) ≤ N (F , ∥·∥∞, ε).

Proof. Let {u1, . . . , uM} be a minimal ε-net for F|X1,...,Xn
with respect to the supremum

norm. Let f1, . . . , fM ∈ F be such that
(
fj(X1), . . . , fj(Xn)) = uj for every j = 1, . . . ,M .

Then, for any f ∈ F , there exists an index j ∈ [M ] such that maxi|f(Xi) − (uj)i| =
maxi|f(Xi)− fj(Xi)| ≤ ε. Since for any function f in F ,

∥f − fj∥2L2(Pn) = 1
n

n∑
i=1

(f(Xi)− fj(Xi))2 ≤ ∥f − fj∥2∞,

{f1, . . . , fM} is an ε-net for F with respect to the empirical L2 norm. This proves the first
inequality. Let now f1, . . . , fM be an ε-net of (F , ∥·∥∞). One readily checks that u1, . . . , uM
defined by uj = (fj(X1), . . . , fj(Xn)) is an ε-net of F|X1,...,Xn

. This completes the proof.
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5.4 Main result

We are now in a position to state the main theorem which gives, for an IPM defined by a Hölder
class, the rate of convergence of the empirical measure towards its theoretical counterpart.

Theorem 5.4.1. Let X ⊂ Rd be a convex bounded set with non-empty interior. Let Hα(L) be
the Hölder class of α-smooth functions supported on the set X and with Hölder norm bounded
by L. For any probability distribution P supported on X , denoting by Pn the empirical measure
associated to i.i.d. samples X1, . . . , Xn ∼ P , we have,

E
[
dHα(L)(Pn, P )

]
= E

[
sup

h∈Hα(L)

∣∣Xn(h)
∣∣] ≤ cL


n−α/d if α < d/2,

n−1/2 ln(n) if α = d/2,

n−1/2 if α > d/2,

(5.3)

where c is a constant depending only on d, λd(X 1) and α.

We notice two different regimes: for highly smooth functions (α > d/2), the rate of convergence
does not depend on the smoothness α nor on the dimension d and corresponds to the usual
parametric rate of convergence (note that it also matches the rate known for the Maximum
Mean Discrepancy metric, which is an IPM indexed by the unit ball of a RKHS with bounded
kernel (Briol et al. 2019)). For less regular Hölder functions (α < d/2), the rate of convergence
depends both on the smoothness and on the dimension in a typical curse of dimensionality
behavior. These two regimes coincide, up to a logarithmic factor, at their smoothness
boundary α = d/2: we have a continuous transition in terms of the exponent of the sample size.
Interestingly the rates we obtain interpolate between the n−1/d rate known for Wasserstein-1
distance (Weed and Bach 2019) when considering H1(1) and the n−1/2 rate for Maximum Mean
Discrepancy when considering Hölder classes with enough smoothness. Those observations are
summarised in Figure 5.2.
Finally, let us mention that the formulation of Theorem 5.4.1 given above aims at characterizing
the behaviour of the expected error in the asymptotic setting of large samples. This result
follows from the following finite sample upper bound (proved in Section 5.6.2):

E [dHα(Pn, P )] ≤ 12


(
Kλ
n

)α/d [
d

d−2α ∧ (1 + 0.5 log( n
9Kλ))

]
if α < d/2,(

Kλ
n

)1/2 [ 2α
2α−d ∧ (1 + α

d log( n
9Kλ))

]
if α ≥ d/2,

(5.4)

where λ := λd(X 1) and K = Kα,d is the constant depending only on α and d borrowed from
Theorem 5.3.7.

5.5 Some extensions

A slightly less precise but more general result can be obtained for any bounded class whose
entropy grows polynomially in 1/ε; see also Rakhlin, Sridharan, and Tsybakov 2017, Theorem
2, where this condition naturally arises. Such an extension can be stated as follows.
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00

Parametric rate 

Slow rate 

Figure 5.2: Exponent p appearing in the rates of convergence n−p in Theorem 5.4.1 as a
function of the smoothness α.

Theorem 5.5.1. Let X ⊂ Rd be a convex bounded set with non-empty interior. Let H be a
bounded class of functions supported on the set X . Assume that the entropy of the class grows
polynomially, i.e., there exist positive real numbers p and A such that

∀ε > 0, logN (H, ∥·∥∞, ε) ≤ Aε−p.

Then, for any probability distribution P supported on X , denoting by Pn the empirical measure
associated to i.i.d. samples X1, . . . , Xn ∼ P , we have,

E
[
dH(Pn, P )

]
= E

[
sup
h∈H

∣∣Xn(h)
∣∣] ≤ c


n−1/p if p > 2,
n−1/2 ln(n) if p = 2,
n−1/2 if p < 2,

(5.5)

where c is a constant.

The proof of the extension is exactly the same as the proof of Theorem 5.4.1 up to constants.
In this chapter we have seen Hölder classes as examples of classes with polynomial growth of
the entropy but there are many other such classes. To illustrate this we give the example of
Sobolev classes which, in some cases, are more general than Hölder classes. For a positive
integer s and a real number 1 ≤ p ≤ +∞, define the Sobolev space Ws

p(r) with radius r > 0 as

Ws
p(r) :=

f ∈ Cs(X ,R) :
∑

|k|≤s
∥Dkf∥p ≤ r

 .
Note that for any positive integer s and for any positive radius L, there exist radii r and r′

such that

Ws
∞(r) ⊂ Hs(L) ⊂ Ws−1

∞ (r′).
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Birman and Solomyak 1967 Metric entropy bounds for Sobolev function classes on bounded
subsets of Euclidean space were initialy obtained by Birman and Solomyak 1967. Nickl and
Pötscher 2007 extended those results to more general smoothness classes. In particular, a
consequence of Nickl and Pötscher 2007, Corollary 1 is that for any positive integer s > 0, and
real number p such that d/s < p ≤ +∞, the entropy of a Sobolev class grows polynomially as

logN (Ws
p(L), ∥·∥∞, ε) ≤ Aε−d/s,

for some positive constant A. Thus Theorem 5.5.1 holds for this class. Finally we point out
that such bounds on the entropy hold for more general spaces such as some Besov spaces. We
refer the reader to Nickl and Pötscher (2007) for more details.
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5.6 Proofs

This section contains the proofs of the main results, Theorems 5.3.9 and 5.4.1, stated in the
main body of the note.

5.6.1 Proof of Theorem 5.3.9

The proof of Theorem 5.3.9 can be found in Srebro and Sridharan 2010. We add it here for
completeness.
Let γ0 = Sn(F) = supf∈F∥f∥L2(Pn). Define γj = 2−jγ0, for every integer j ∈ N, and let Tj
be a minimal γj-cover of F with respect to L2(Pn). For any function f ∈ F , we denote by
f̂j an element of Tj which is an γj approximation of f . For any positive integer N we can
decompose the function f as

f = f − f̂N +
N∑
j=1

(f̂j − f̂j−1)

where f̂0 = 0 ∈ F . Hence, for any positive integer N , we have

R̂n(F) = 1
n
Eσ

sup
f∈F

n∑
i=1

σi

f(Xi)− f̂N (Xi) +
N∑
j=1

(f̂j(Xi)− f̂j−1(Xi))


≤ 1
n
Eσ

[
sup
f∈F

n∑
i=1

σi(f(Xi)− f̂N (Xi))
]

+
N∑
j=1

1
n
Eσ

[
sup
f∈F

n∑
i=1

σi(f̂j(Xi)− f̂j−1(Xi))
]

≤ 1
n

sup
f∈F

n∑
i=1
|(f(Xi)− f̂N (Xi))|+

N∑
j=1

1
n
Eσ

[
sup
f∈F

n∑
i=1

σi(f̂j(Xi)− f̂j−1(Xi))
]

= sup
f∈F
∥f − f̂N∥L2(Pn) +

N∑
j=1

1
n
Eσ

[
sup
f∈F

n∑
i=1

σi(f̂j(Xi)− f̂j−1(Xi))
]

≤ γN +
N∑
j=1

1
n
Eσ

[
sup
f∈F

n∑
i=1

σi(f̂j(Xi)− f̂j−1(Xi))
]
.

For any positive integer j, the triangle inequality gives

∥f̂j − f̂j−1∥L2(Pn) ≤ ∥f̂j − f∥L2(Pn) + ∥f − f̂j−1∥L2(Pn) ≤ γj + γj−1 = 3γj . (5.6)

We need the following classic lemma which controls the expectation of a Rademacher average
over a finite set2.

Lemma 5.6.1 (Massart’s finite class lemma). Let X be a finite subset of Rn and let σ1, . . . , σn
be independent Rademacher random variables. Denote the radius of X by R = supx∈X ∥x∥.
Then, we have,

E
[

sup
x∈X

1
n

n∑
i=1

σixi

]
≤ R

√
2 log|X |
n

.

2We refer the reader to https://ttic.uchicago.edu/~tewari/lectures/lecture10.pdf for a simple proof
of this lemma.

https://ttic.uchicago.edu/~tewari/lectures/lecture10.pdf
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Applying this lemma to Xj =
{

(f̂j(Xi)− f̂j−1(Xi))ni=1 ∈ Rn : f ∈ F
}

for any j = 1, . . . , n and
using (5.6), we get

N∑
j=1

1
n
Eσ

[
sup
f∈F

n∑
i=1

σi(f̂j(Xi)− f̂j−1(Xi))
]
≤

N∑
j=1

3γj

√
2 log(|Tj |·|Tj−1|)

n

Therefore we have

R̂n(F) ≤ γN +
N∑
j=1

3γj

√
2 log(|Tj |·|Tj−1|)

n

≤ γN + 6
n

N∑
j=1

γj

√
log|Tj |

= γN + 12
n

N∑
j=1

(γj − γj+1)
√

log|Tj |

= γN + 12
n

N∑
j=1

(γj − γj+1)
√

logN (F , L2(Pn), γj)

≤ γN + 12
n

∫ γ0

γN+1

√
logN (F , L2(Pn), ε)dε.

For any τ > 0, pick N = sup{j : γj > 2τ}. Then γN = 2γN+1 ≤ 4τ and γN+1 = γN/2 ≥ τ .
Hence, we conclude that

R̂n(F) ≤ 4τ + 12√
n

∫ γ0

τ

√
logN (F , L2(Pn), ε) dε.

Since τ can take any positive value we can take the infimum over all positive τ and this
concludes the proof.

5.6.2 Proof of Theorem 5.4.1

Without loss of generality, we prove the theorem in the case L = 1. The general case will follow
by homogeneity. For simplicity we write Hα = Hα(1), Ph =

∫
X h dP and Pnh =

∫
X h dPn. A

symmetrization argument (Lemma 5.3.2) gives

E
[

sup
h∈Hα

|Ph− Pnh|
]
≤ 2E

[
R̂n(Hα)

]
,

where the empirical Rademacher process R̂n(Hα) is given by

R̂n(Hα) = 1
n
E
[

sup
h∈Hα

n∑
i=1

σih(Xi)
∣∣∣∣X1, . . . , Xn

]
.

Noting that, for any h ∈ Hα,

Pnh
2 := 1

n

n∑
i=1

h2(Xi) ≤ ∥h2∥∞ ≤ 1,
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the improved Dudley bound (Theorem 5.3.9) coupled with Lemma 5.3.10 yields,

E
[

sup
h∈Hα

|Pnh− Ph|
]
≤ inf

τ>0

(
4τ + 12√

n

∫ 1

τ

√
logN (Hα, ∥·∥∞, ε)dε

)

≤ inf
τ>0

(
4τ + 12

√
Kλd(X 1)√
n

∫ 1

τ
ε−d/2αdε

)

Applying Lemma 5.6.2 with β = d
2α and a = 3

√
Kλ
n where K = Kα,d is the constant depending

only on α and d borrowed from Theorem 5.3.7 and λ := λd(X 1), we get

E
[

sup
h∈Hα

|Pnh− Ph|
]
≤ 12


(
Kλ
n

)α/d [
d

d−2α ∧ (1 + 0.5 log( n
9Kλ))

]
if α < d/2,(

Kλ
n

)1/2 [ 2α
2α−d ∧ (1 + α

d log( n
9Kλ))

]
if α ≥ d/2.

(5.7)

The proof is finished since the upper bound stated in Theorem 5.4.1 is a direct consequence of
(5.7)

5.6.3 Additional lemma

The following lemma enables to obtain an upper bound on Dudley’s refined bound (Theo-
rem 5.3.9) for any bounded class whose entropy grows polynomially in 1/ε.

Lemma 5.6.2. For any real positive numbers a and β, it holds

min
0≤τ≤1

(
τ + a

∫ 1

τ
ε−βdε

)
≤ (a1/β ∨ a)

[(
β ∨ 1
|β − 1|

)
) ∧

(
1 + log(1/a)

β ∨ 1

)]
.

Proof. Let a and β be real positive numbers. Define the function

f : [0, 1]→ R

τ 7→ τ + a

∫ 1

τ
ε−βdε.

One can easily check that

f∗ := min
0≤τ≤1

f(τ) =
{

1 if a > 1,
a1/β + a

1−β (1− a1/β−1) if a < 1 .

In the case a < 1, using the fact that 1− xα ≤ log(x−α) for any α > 0 and x ∈ (0, 1], we have

f∗ ≤ (a1/β ∨ a)
[(

β ∨ 1
|β − 1|

)
) ∧

(
1 + log(1/a)

β ∨ 1

)]
. (5.8)

Finally, since the RHS of (5.8) is greater than 1 for any a > 1, (5.8) holds for any positive
real a and this concludes the proof.



CHAPTER 6

Statistical guarantees for generative models without domination

To copy is merely to reflect
something already there, inertly
[...]. But by imitation we enlarge
nature itself, we become nature
or we discover in ourselves
nature’s active part.

William Carlos William

In this chapter, we introduce a convenient framework for studying (adversarial) generative
models from a statistical perspective. It consists in modeling the generative device as a smooth
transformation of the unit hypercube of a dimension that is much smaller than that of the
ambient space and measuring the quality of the generative model by means of an integral
probability metric. In the particular case of integral probability metric defined through a
smoothness class, we establish a risk bound quantifying the role of various parameters. In
particular, it clearly shows the impact of dimension reduction on the error of the generative
model.
Based on Nicolas Schreuder, Victor-Emmanuel Brunel, and Arnak S. Dalalyan (2021). “Statis-
tical guarantees for generative models without domination”. In: Algorithmic Learning Theory.
Ed. by Vitaly Feldman, Katrina Ligett, and Sivan Sabato. Vol. 132. Proceedings of Machine
Learning Research. PMLR, pp. 1051–1071.
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6.1 Introduction

The problem of learning generative models has attracted a lot of attention during the last 5
years in machine learning and artificial intelligence. The most prominent example is generating
artificial images that look similar to actual photographs, by means of generative adversarial
networks. The more general formulation of the problem can be given as a game between the
user and the learner. The user samples a set of elements (images of natural scenes, poems,
pieces of music, etc.) from a hidden distribution P ∗ = Puser defined on a hidden (and not
so well known) space. The learner receives a noisy and possibly contaminated version of
these elements and aims at generating a new set of elements, that are different from those
transmitted by the user, but that could have been sampled from the hidden distribution P ∗.
Note that the revealed elements are usually of very high dimension. However, they may exhibit
rich structures such as the harmonic and rhythmic schemes followed by a melody or a poem,
or the presence of simple shapes in an image. It is therefore reasonable to assume that these
elements can be represented by means of a much lower dimensional latent variable, which is
unobserved.
In other words, generative models are used for accomplishing the following task. The user
draws n independent samples Y1, . . . ,Yn from a distribution Puser defined on RD. The learner
is given a noisy and contaminated version X1, . . . ,Xn of this sample. The goal of the learner
is to design an algorithm that generates random samples from a distribution Plearner which is
as close as possible to Puser. This can be viewed as a distribution estimation problem with
two requirements:

[R1] It should be easy to sample from Plearner.

[R2] The way we measure the closeness between Plearner and Puser for evaluating the error
has to admit an interpretation as a sampling error.

Of course, this formulation is incomplete since it allows to take the uniform distribution over
the observed samples as Plearner, i.e., Plearner = P̂n = 1

n

∑n
i=1 δXi (the empirical distribution

based on the sample X1, . . . ,Xn). From a generative modeling perspective, P̂n is pointless
since it does not yield new samples that are different from the previous ones. Hence, generative
modeling requires a third distinctive feature:

[R3] Samples drawn from Plearner should be different from those revealed by the user.

Requirement R3 is perhaps the hardest to translate into a statistical language. Most prior
work focused on the case where both Puser and Plearner, defined on RD equipped with the Borel
σ-field, are absolutely continuous with respect to the Lebesgue measure (or another σ-finite
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measure). This readily implies that the total variation distance between Plearner and P̂n is
equal to 1, which can be considered as a guarantee for Plearner to satisfy R3.
Positing that Puser has a density with respect to the Lebesgue measure, or any other dominating
σ-finite measure µ on RD, is, in general, incompatible with the fact that Puser is inherited
from a low-dimensional latent variable and supported by a low-dimensional manifold. For
instance, in the simple example of Puser = U(aSD−1), the uniform measure on aSD−1 (the
sphere of radius a centered at the origin), there exists no σ-finite measure dominating all
the measures U(aSD−1), for a > 0. Very importantly, as a consequence of the restriction to
dominated distributions, the available statistical results fail to assess the positive impact of
the reduced dimension of the latent space (as compared to the ambient dimension D) on the
quality of the generative model.
We propose to circumvent this drawback by restricting the set of candidate generators to
those defined as a smooth transformation of the uniform distribution on a low-dimensional
hyper-cube. Obviously, the support of these candidate distributions is a path-connected
set. Therefore, the empirical distribution P̂n, as well as any finitely or countably supported
distribution is not among these candidates.
The following notation will be used throughout this work. For every positive integer p, we
denote by Up the uniform distribution on the hyper-cube [0, 1]p. For any convex set X ⊂ Rp,
LipL(X ) stands for the set of all Lipschitz-continuous functions defined on X with a Lipschitz
constant less than or equal to L. For a distribution P defined on a measurable space (E,E )
and a measurable map g : E 7→ F , where F is another space endowed with a σ-algebra F , we
denote by g♯P the “push-forward” measure defined by (g♯P )(A) = P

(
g−1(A)

)
for all A ∈ F .

For a function g : X → R, ∥g∥∞ = maxx∈X |g(x)| is the supremum norm of g.
The rest of the paper is organised as follows. A brief review of the prior work on generative
models is presented in Section 6.2, while Section 6.3 provides the formal statement of the
problem. In order to convey the main ideas in a simple setting, we analyse the case of noise-free
and uncontaminated observations in Section 6.4. The main results are stated and discussed in
Section 6.5. A summary of the contributions and some avenues for future research are included
in Section 6.6, while Section 6.7 gathers the proofs of the results stated in previous sections.

6.2 Related work (and contributions)

The procedures for generative modeling can be split into two groups: prescribed and implicit
probabilistic models (Mohamed and Lakshminarayanan 2016). The former requires an explicit
(parametric) specification of the distribution of the observed random variables (e.g., mixture
of Gaussian) through a likelihood function, whereas the latter defines a stochastic procedure
that directly generates data. The growing complexity of the data makes it harder to design a
relevant likelihood function and thus favoured the advent of the latter models. For instance,
Generative Adversarial Networks (GANs), perhaps the most well-known generative models
based on implicit modeling, enabled groundbreaking advances in the generation of realistic
images (Goodfellow et al. 2014; Radford, Metz, and Chintala 2015; Goodfellow 2016; Isola et al.
2017; Zhu et al. 2017; Brock, Donahue, and Simonyan 2018; Karras, Laine, and Aila 2019).
In the original GAN framework (Goodfellow et al. 2014) a generator G competes against a
discriminator D, both implemented as deep neural networks, in the following zero-sum game:
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the generator G (resp. the discriminator D) maximizes (resp. minimizes) the objective

Φ(G,D) = 1
n

n∑
i=1

logD(Xi) + EX̃∼G♯PU
log

(
1−D(X̃)

)
, (6.1)

where PU is an easy-to-sample-from noise distribution (e.g., Gaussian or uniform). The goal
of the generator is to transform the (low-dimensional) latent variable into artificial data as
indistinguishable as possible from the examples drawn from the target distribution. As for
the discriminator, the aim is to discriminate between true examples and generated data. See
Figure 6.1 for an illustration of the original GAN model. Informally, the generative model
can be thought of as a counterfeiter, trying to produce fake paintings and selling it without
detection, while the discriminative model is analogous to art experts, trying to detect the
counterfeit paintings. Let us note that here Plearner would be the distribution of the generated
data, i.e., G♯PU .
Despite their impressive empirical performance, GANs are notoriously hard to train; Even
if some fixes have been proposed (Salimans et al. 2016), several problems are yet to be
fully understood and solved (e.g., mode collapse, vanishing gradients, failure to converge).
Goodfellow et al. (2014) showed that, when the discriminator is optimal, minimizing (6.1)
with respect to the generator G amounts to minimizing the Jensen-Shannon (JS) divergence
between the generated data distribution and the real sample distribution. Arguing that the
topology induced by the JS divergence is rather coarse, Arjovsky, Chintala, and Bottou (2017)
proposed to replace this divergence by the Wasserstein-1 distance to stabilize training, leading
to the so-called Wasserstein GAN. More precisely, the goal of the generator G in this variant
is to generate data from a distribution that is as close as possible, w.r.t. the Wasserstein-1
distance, to the empirical distribution of the original data. This leads to the objective

W1
(
G♯PU , P̂n

)
= sup

f∈Lip1(X )

∣∣∣∣ 1n
n∑
i=1

f(Xi)−EX̃∼G♯PU
f(X̃)

∣∣∣∣. (6.2)

In view of this relation, which follows from the Kantorovitch-Rubinstein duality theorem
(Villani 2008, Theorem 5.9, Remark 6.5), the Wasserstein distance admits a nice interpretation
as a sampling error. Recall from (IPM) that replacing the class of Lipschitz functions by an
arbitrary functional class F , we obtain general Integral Probability Metrics (IPM) : a class of
pseudo-metrics on the space of probability measures (Müller 1997). We refer the reader to
Liang (2019) and Sriperumbudur et al. (2012) for statistical results related to IPM. An IPM
can naturally be interpreted as an adversarial loss: to compare two probability distributions, it
seeks for the function f∗ in F for which the expectations of f(X) under the two distributions
have the largest discrepancy. This formalization enables to study a family of pseudo-metrics
which encompasses the Wasserstein-1 distance and generalises the Wasserstein GAN problem.
In particular, in this work, we will consider IPM indexed by Sobolev-type classes of functions.
Since GANs initially emerged from the deep learning community, the first line of work primarily
relied on empirical insights and general mathematical intuitions. Later on, a parallel line
of work tackled the GAN problem from the statistical perspectives (Biau, Sangnier, and
Tanielian 2020; Biau et al. 2018; Chen et al. 2020; Liang 2018; Singh et al. 2018; Luise, Pontil,
and Ciliberto 2020; Uppal, Singh, and Poczos 2019) as well as optimization and algorithmic
viewpoints (Liang and Stokes 2018; Kodali et al. 2017; Pfau and Vinyals 2016; Nie and Patel
2020; Nagarajan and Kolter 2017; Genevay, Peyré, and Cuturi 2017; Genevay et al. 2018).



6.2. RELATED WORK (AND CONTRIBUTIONS) 119

Real data
Generator

Discriminator

Predict real 
or fake

...

Latent 
variable

Sample Sample

Training 
feedbacks

Figure 6.1: Illustration of the original GAN model on some of Vincent Van Gogh’s self-portraits.
During the training phase, real data and generated data are fed to the discriminator (dotted
arrows) which in turn must predict which data is real and which is fake. Feedback (in the form
of gradients of the loss) are then sent to the generator and the discriminator (broken arrows)
based on predictions from the latter to update their parameters (through back-propagation in
the case of neural networks). Note that the generator does not directly have access to real
data.

From a statistical perspective, the usual goal is to obtain a bound on the discrepancy between
the learned distribution Plearner and the true distribution of the data P ∗ = Puser with respect
to a given evaluation metric d. A particularly relevant task is the quantification of the rate of
convergence to zero of this discrepancy as the sample size n grows to infinity. Given a family
of candidate distributions P, typical bounds are of the form

E(X1,...,Xn)∼Pobs

[
d(Plearner, Puser)

]
− inf
P∈P

d(P, Puser) ≲ n−r(α,β,d,D).

for some exponent r(α, β, d,D) > 0, where the parameter α characterises the complexity of
the discriminator (e.g., the smoothness of the class F used in the IPM), β represents the
smoothness of the generator, d is the intrinsic dimension of the data, (i.e., the dimension of the
latent variable U) and D is the ambient dimension (e.g., the number of pixels in an image).
Since D is typically much larger than d, it is suitable to avoid any dependence on D in the
exponent r(α, β, d,D).
Chen et al. 2020; Liang 2018; Singh et al. 2018; Uppal, Singh, and Poczos 2019 obtained rates
depending on the smoothness of the density of the target distribution and (eventually) on the
smoothness of the class F of admissible discriminators. Their rates do depend on the ambient
dimension D, leading to the curse of dimensionality phenomenon; they do not account for
possible low-dimensionnality of the data. Moreover, the learner distributions proposed in
those papers are not necessarily easy-to-sample-from.
Without any smoothness assumptions, Biau et al. 2018 provide large sample properties of
the estimated distribution assuming that all the densities induced by the class of generators
are dominated by a fixed known measure on a Borel subset of RD. When the admissible
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discriminators are neural networks with a given architecture, Biau, Sangnier, and Tanielian
2020 obtained the parametric rate n−1/2.
To our knowledge, Luise, Pontil, and Ciliberto (2020) is the only work which establishes
statistical guarantees under the assumption that the data generating process is a smooth
transformation of a low-dimensional latent distribution. Two key differences with our work is
that Luise, Pontil, and Ciliberto (2020) measure quality of sampling through the Sinkhorn
divergence (while we consider IPMs) and consider smoothness larger than d/2. The latter leads
to parametric rates of convergence n−1/2. Note also that the Sinkhorn divergence, introduced
as a compelling computational alternative to the Wasserstein distance (Cuturi 2013), does not
admit a straightforward interpretation as a sampling error.
In this work, we assess the impact of the smoothness of the data generating process and the
low-dimensionality of the latent space on the rates of convergence. The rates in the literature
either depend on the ambient dimension, which can not explain the effectiveness of GANs, or
assume strong smoothness assumption leading to parametric rate. This prevents a fine-grained
analysis of the interplay between dimensions and smoothness. In this work we obtain rates
which, in terms of dimension, depend only on the intrinsic dimension d of the data and on the
smoothness of the data generating process and the admissible discriminators.

6.3 Problem statement

We are given n points X1, . . . ,Xn in RD, that we assume drawn independently from an
unknown joint probability distribution P (n)

obs . We will make the hypothesis that the data points
lie—up to a small noise—on a d-dimensional smooth manifold M with an intrinsic dimension
d much smaller than the ambient dimension D. More precisely, we assume that the Xi’s are
perturbed versions of n independent copies of a point randomly sampled from a distribution
P ∗ supported on the smooth manifold M. The goal of generative modeling is to design a
smooth function

g : [0, 1]d → [0, 1]D

such that the image of the uniform distribution Ud := U([0, 1]d) by g is close to the target
distribution P ∗. Of course, this framework requires to make precise what is meant by
“smoothness” of the function g and how the closeness of two distributions is measured. Since
the goal of the present work is to gain a better theoretical understanding of the problem of
generative modeling, we assume that the "intrinsic dimension" d is known.
The following condition will be assumed to be true throughout this work, where σ ≥ 0 and
ε ∈ [0, 1] are fixed yet possibly unknown constants.
Assumption A: There exists a mapping g∗ : [0, 1]d → [0, 1]D (with d≪ D), as well as random
vectors U1, . . . ,Un ∈ Rd and ξ1, . . . , ξn ∈ RD such that

• Ui are iid uniformly distributed in the hypercube [0, 1]d (denoted by Ui
iid∼ Ud),

• maxi=1,...,n E[∥ξi∥2] ≤ σ for some σ <∞,

• For some I ⊂ {1, . . . , n} of cardinality at least (1− ε)n, we have Xi = g∗(Ui) + ξi for
every i ∈ I.
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Figure 6.2: An illustration of Assumption A. Most Xi’s are close to the manifold defined as
the image of [0, 1]d by the smooth map g. A small fraction of the Xi’s (such as X3 in this
figure) might be at a large distance from g([0, 1]d).

The parameters σ and ε, referred to as the noise magnitude and the rate of contamination,
are unknown but assumed to be small. The subset I in the last item of the assumption is the
set of inliers. Assumption A means that up to some noise, the inliers are drawn from the
uniform distribution on the hyper-cube and pushed-forward by g∗. The setting considered
here is adversarial: the set of inliers and the values of the outliers {Xi : i ̸∈ I} may depend on
all the random variables Ui,Xi, ξi. Furthermore, Ui and ξi are not necessarily independent.
Note that the the mapping g∗ is not identifiable: pre-composing it with any mass preserving
mapping h : [0, 1]d → [0, 1]d and taking the image of Ud yields the same distribution as g∗♯Ud.
Similar identifiability issues arise in graphon estimation problems where identifiability is only
possible up to some transformations (Klopp, Tsybakov, and Verzelen 2017; Klopp and Verzelen
2019).
In what follows, we set P ∗ = g∗♯Ud and call it the oracle generator. Let d be a pseudo-metric
on the space of all probability measures on RD. Most relevant examples in the present context
are IPMs, but one could also consider the Wasserstein q-distances with q ≥ 1, the Hellinger
distance, the maximum mean discrepancy and so on. For every candidate generator g—a
measurable mapping from [0, 1]d to RD—we define the risk

Rd,P ∗(g) := d
(
g♯Ud, P ∗). (6.3)

Our goal is to find a mapping

Ĝ : (RD)n → G
(X1, . . . ,Xn) 7→ ĝn,

such that Rd,P ∗(ĝn) is as small as possible. Note here that Rd,P ∗(ĝn) is a random variable,
since ĝn is random. Let G be a set of smooth (at least Lipschitz continuous) functions from
[0, 1]d to RD. We define the generator minimizing the empirical risk, hereafter referred to as
the ERM, by

ĝERM
n,G ∈ arg min

g∈G
d
(
g♯Ud, P̂n

)
. (ERM)
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We assume that the minimum is attained. Our results extend easily to the case in which it is
not attained but adds some unnecessary technicalities. Our main result, presented in the next
section, provides an upper bound on the risk (6.3) of the ERM.
To enforce requirement R2, we consider distances on the space of probability distributions
that can be expressed as integral probability metrics for a class F of real-valued functions
defined on [0, 1]D (see (IPM)).

6.4 Warming up: guarantees in the noiseless setting for W1

Let us first consider the noiseless and uncontaminated setting σ = ε = 0, corresponding to
Pobs = (P ∗)⊗n. To convey the main ideas of this work without diving into technicalities, we
first consider the case of the Wasserstein W1-distance. Using arguments that are now standard
in learning theory, we get1

Rd,P ∗(ĝERM
n,G ) ≤ inf

g∈G
d
(
g♯Ud, P ∗)+ 2 d

(
P̂n, P

∗). (6.4)

This inequality holds for any pseudo-metric d. It follows from the following chain of inequalities:

Rd,P ∗(ĝ ERM
n,G ) = d

(
ĝERM
n,G ♯Ud, P ∗)

≤ d
(
ĝERM
n,G ♯Ud, P̂n

)
+ d

(
P̂n, P

∗)
≤ inf

g∈G
d
(
g♯Ud, P̂n

)
+ d

(
P̂n, P

∗)
≤ inf

g∈G
d
(
g♯Ud, P ∗)+ 2 d

(
P̂n, P

∗).
Note that if we replace in (ERM) the empirical distribution P̂n by another estimator P̃n of
P ∗, then (6.4) continues to be true with P̃n instead of P̂n in the right hand side.
The inequality (6.4) provides an upper bound on the risk that is composed of the approximation
error infg∈G d

(
g♯Ud, P ∗) and the stochastic error 2 d

(
P̂n, P

∗). While the former is unavoidable,
it is not clear how tight the latter is. In particular, the fact that the term 2 d

(
P̂n, P

∗) measures
the distance between the unknown distribution P ∗ and an approximation of it that does not
take into account the specific structure of P ∗ suggests that it might be possible to get a better
upper bound.
This being said, we stick here to inequality (6.4) and devote the rest of this chapter to
establishing upper bounds on the stochastic error. To this end, we take advantage of the
interplay between the assumptions on PX and P ∗ on the one hand, and the set F defining the
IPM d = dF on the other hand. In the case when both the mapping g∗ underlying P ∗ and the
elements of F are Lipschitz, we get the following result.

Theorem 6.4.1. Let Assumption A be fulfilled with σ = ε = 0 and g∗ ∈ LipL([0, 1]d) for some
L > 0. Let d = W1 and set ĝn = ĝ ERM

n,G . Then, for some universal constant c > 0,

E[RW1,P ∗(ĝn)] ≤ inf
g∈G

RW1,P ∗(g) + cL
√
d

n1/d ∧ n1/2
(
1 + 1d=2 logn

)
. (6.5)

1See (Liang 2018, Lemma 1) for a similar result.
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The full proof of this result being postponed to Section 6.7.1, we provide here a sketch of
it. In view of (6.4), it suffices to upper bound d(P̂n, P ) = W1(P̂n, P ∗). Since P ∗ and P̂n
are the pushforward measures of Ud and its empirical counterpart by the same Lipschitz
mapping, and the composition of two Lipschitz mappings is still Lipschitz, we can upper
bound W1(P̂n, P ∗) by LW1(P̂U,n,Ud). Here, P̂U,n is the empirical distribution of U1, . . . ,Un

independently sampled from Ud. It is known that, for the Wasserstein-1 distance, there is a
universal constant c > 0 such that E[W1(P̂U,n,Ud)] is upper bounded by the second summand
of the right hand side of (6.5); this fact has been established in the seminal paper Dudley
(1969) and later refined and extended by many authors; see Weed and Bach (2019), Singh
and Póczos (2018), and Lei (2020) and references therein. The version we use here (with an
explicit dependence of the constant on the dimension) can be found in Niles-Weed and Rigollet
2019, Prop. 1. This completes the proof.
Some remarks are in order. First, the rate of convergence to zero of the stochastic term, when
the sample size goes to infinity, is characterized by the intrinsic dimension only. This rate,
n−1/d, is much smaller than the naive rate n−1/D provided that the intrinsic dimension is small
as compared to D. To the best of our knowledge, despite the embarrassing simplicity of this
result, this is the first time that this phenomenon is highlighted in the context of generative
modeling.
The second remark concerns the fact that the choice of the set G in (ERM) impacts only
the first term, the approximation error, in the risk bound given by (6.5). This indicates
that inequality (6.5) might not be tight when G is a very narrow set. On the positive side,
this bound implies that the set G can be chosen very large, as long as feature R1 holds and
optimisation problem (ERM) is computationally tractable. Finally, one can wonder whether
the assumption that g∗ is Lipschitz is realistic in some applications. We believe that it is.
Indeed, the generator learned by GAN is a Lipschitz function of the input (Seddik et al. 2020)
and leads to qualitatively good results. Therefore, it makes perfect sense to assume that g∗ is
Lipschitz.

6.5 Main result in the noisy setting for smooth classes

The rate of convergence obtained in the previous section might be overly pessimistic. Indeed,
the Wasserstein distance W1 might be very weak for many applications: it may be sufficient
to take as F a set which is much smaller than that of the Lipschitz functions. In particular,
one can consider the case where F is a smoothness class with a degree of smoothness strictly
larger than one. The main result stated below considers this setting and answers the following
three questions:

[Q1] Can we take advantage of the further smoothness of g∗ and that of the functions in
F for improving the risk bound (6.5)?

[Q2] How does the noise magnitude σ impact the risk?

[Q3] Can we get meaningful risk bounds if some data points Xi are corrupted?

To answer these questions, we consider the case of smoothness classes containing all the
functions with bounded partial derivatives up to a given order. Let X ⊂ RD be some compact
set, which will be chosen to be [0, 1]D later on in this section. In what follows, for every
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positive integer α, Cα(X ,R) denotes the set of all α-times continuously differentiable functions.
In addition, for a multi-index k ∈ ND, we write Dkf for the k-th order differential of f . Define
the α-smoothness class Wα(X ; r) over X with radius L > 0 by

Wα(X ;L) :=
{
f ∈ Cα(X ,R) : max

|k|≤α
∥Dkf∥∞ ≤ L

}
.

Clearly, W1(X ;L) is included in the set LipL(X ) of Lipschitz-continuous functions. Further-
more, one can check that W1(X ;L) is dense in LipL(X ).

Theorem 6.5.1. Let Assumption A hold and let the coordinates g∗
j of g∗ belong toWα([0, 1]d, L)

for some L ≥ 1. Then, if F =Wα([0, 1]D, 1) in the definition of the IPM, we have

E[RdF ,P ∗(ĝERM
n,G )] ≤ inf

g∈G
RdF ,P ∗(g) + L(σ + 2ε) + cLα

nα/d ∧ n1/2
(
1 + 1d=2α logn

)
. (6.6)

where c is a constant which depends only on α, d,D.

Let us note that this theorem answers the three questions Q1-Q3. In particular, it shows
that if the oracle generator map g∗ is α-smooth with α ≤ d/2, and the test function defining
the distance dF are α-smooth as well, then the last term of the risk bound of the generator
minimizing the empirical risk is of order n−α/d. This rate improves with increasing α and
reaches the optimal rate n−1/2, up to a log factor, when α = d/2. It also follows from (6.6)
that the risk of the generator ĝERM

n,G decreases linearly fast in the noise magnitude σ and the
contamination rate ε, when these parameters go to zero.
As mentioned earlier, (6.6) is a consequence of (6.4) and we do not know whether the latter is
tight. However, we can show that the right hand side of (6.6) is a tight upper bound on the
right hand side of (6.6). More precisely, as stated in the next result, the dependence on σ and
ε is tight, while the dependence on n is tight when α = 1 or α > d/2.

Theorem 6.5.2. Let Pn,D(d, σ, ε, g∗) be the set of all distributions of n points (X1, . . . ,Xn)
in RD satisfying Assumption A. Let G∗ be a set of functions g : [0, 1]d → [0, 1]D containing the
linear functions. If σ ≤ 1/2 and F contains the projection onto the first axis x ∈ [0, 1]D 7→
x1 ∈ R, then there is a universal constant c1 > 0 such that

sup
g∗∈G∗

sup
P (n)∈Pn,D(d,σ,ε,g∗)

EP (n) [dF (P̂n, P ∗)] ≥ c1
(
σ + ε+ 1

n1/2

)
.

If, in addition, F contains the set of all 1-Lipschitz functions, then

sup
g∗∈G∗

sup
P (n)∈Pn,D(d,σ,ε)

EP(n) [dF (P̂n, P ∗)] ≥ c1(σ + ε) +
cd
(
1 + 1d=2 logn

)
n1/d ∧ n1/2 ,

where c1 is a universal constant and cd is a constant depending on d.

The proof of the theorem is postponed to Section 6.7.4. Note that it does not establish the
tightness of the dependence of the bound in n in the case of smoothness α ∈ (1, d/2). However,
it is very likely that the rate is also optimal in this case as well.
To complete this section, we show that the dependence in ε and σ of the upper bound (6.6) is
tight.
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Theorem 6.5.3. Let Pn,D(d, σ, ε, g∗) be the set of all distributions of n points (X1, . . . ,Xn)
in RD satisfying Assumption A. Let G∗ be a set of functions g : [0, 1]d → [0, 1]D containing
the affine functions. Assume that F is a set of functions f : [0, 1]D → R bounded by2 L and
containing the projection onto the first axis x ∈ [0, 1]D 7→ x1 ∈ R. Then, if σ ≤ 1/2 and
n ≥ (6/ε) log(20L/ε), we have

inf
ĝn

sup
g∗∈G∗

sup
P (n)∈Pn,D(d,σ,ε,g∗)

E[RdF ,P ∗(ĝn)] ≥ 0.1(σ + ε),

where the inf is taken over all possible generators ĝn.

The proof of this result is postponed to Section 6.7.5. If we compare this lower bound with
the upper bound of Theorem 6.5.1, we see that the linear dependence of the expected risk on
the parameters σ and ε is optimal and cannot be improved. This is true for any generator,
meaning that the empirical risk minimizer is minimax rate-optimal in terms of σ and ε. We
are currently working on establishing similar lower bounds showing the optimality in terms of
n as well.

6.6 Conclusion and outlook

In this work, we introduced a general and nonparametric framework for learning generative
models. Given data in a possibly high-dimensional space, we learn their distribution in order
to sample new data points that resemble the training ones, while not being identical to those.
A key point in our work is to leverage the fact that the distribution of the training samples,
up to some noise and adversarial contamination, is supported by a low-dimensional smooth
manifold. This allows us to alleviate the curse of dimensionality. Such an assumption is very
reasonable as it reflects the structural properties of the training samples. For instance, the
MNIST dataset (LeCun 1998) is composed of 28× 28 pixels pictures of handwritten digits
while the intrinsic dimension of the data is estimated to be around 14 (Costa and Hero 2004a;
Levina and Bickel 2005).
We established risk bounds for the minimizer of the distance between the empirical distribution
and admissible generators, where an admissible generator is a smooth function pushing forward
a low-dimensional uniform distribution into the high-dimensional sample space. We use Integral
Probability Metrics for measuring the discrepancy between the target distribution and our
estimate: These metrics, which include the total variation and the Wasserstein-1 distances,
mimic the role of a discriminator which would try to discriminate between true samples and
the simulated ones.
By proving new bounds on the distance between such distributions and their empirical
counterparts, we were able to derive nonasymptotic bounds for the regret of our empirical
risk minimizer, with rates of convergence that only depend on the ambient dimension through
fixed multiplicative constants. Our new bounds, which are of independent interest, leverage
both the smoothness of the distribution of the samples and that of the functions in the IPM
class.
We were also able to take into account possible adversarial corruption of the training samples
both by noise (e.g., blurry images) and by a small proportion of outliers (i.e., wrong samples

2It can be checked that the same result holds if the functions f satisfy maxx f(x) − minx f(x) ≤ L.
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in the training set), inducing some error terms that are shown to be unavoidable. To the
best of our knowledge, this is the first result assessing the influence of the noise and of the
contamination on the error of generative modeling. This constitutes an appealing complement
to the recently obtained statistical guarantees (Biau, Sangnier, and Tanielian 2020; Luise,
Pontil, and Ciliberto 2020).
As a route for future work, we believe that our regret bounds are not minimax optimal in all
possible regimes (depending on the smoothness of the generators). Namely, it is not clear that
fitting our generator to the empirical distribution P̂n yields an optimal method, especially
when the smoothness α is less than the half of the dimension d. It might be more judicious to
fit the generator to a smoothed version of the empirical distribution P̂n. In another direction,
since the particular structure of deep neural networks might explain why they appear to
avoid the curse of dimensionality (Poggio et al. 2017)), it could be worth incorporating in
our procedure this feature of deep neural networks, that are used for implementing GANs in
practice.

6.7 Proofs

This section contains the proofs of the main results stated in previous sections. We start by
providing the proof of Theorem 6.4.1. Then, the proof of Theorem 6.5.1 is presented up to the
proof of a technical lemma on the composition of smooth functions, postponed to Section 6.7.3.

6.7.1 Proof of Theorem 6.4.1

To ease notation, we write ĝn instead of ĝERM
n,G . In view of (6.4), we have

RW1,P ∗(ĝn) ≤ inf
g∈G

W1(g♯Ud, P ∗) + 2W1(P̂n, P ∗).

Using the variational formulation of the Wasserstein-1 distance we write

W1(P̂n, P ∗) = sup
f∈Lip1([0,1]D)

∣∣∣ 1
n

n∑
i=1

f(Xi)−EX∼P ∗f(X)
∣∣∣

= sup
f∈Lip1([0,1]D)

∣∣∣ 1
n

n∑
i=1

f ◦ g∗(Ui)−EU∼Ud
f ◦ g∗(U)

∣∣∣
= sup

h∈HL

( 1
n

n∑
i=1

h(Ui)−EU∼Ud
h(U)

)
where we define the class HL = {h : [0, 1]d → R : h = f ◦ g∗, f ∈ Lip1([0, 1]D)}. Finally, taking
the expectation and noting that HL is a subset of the L-Lipschitz functions on [0, 1]d with
values in R, we get

E[W1(P̂n, P ∗)] ≤ E
[

sup
h∈LipL([0,1]d)

( 1
n

n∑
i=1

h(Ui)−EU∼Ud
h(U)

)]
≤ LE[W1(P̂U,n,Ud)]

≤ cL
√
d

n1/d ∧ n1/2
(
1 + 1d=2 logn

)
,
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with c a universal constant. The last inequality follows from Niles-Weed and Rigollet 2019,
Proposition 1.

6.7.2 Proof of Theorem 6.5.1

In view of (6.4), we need to establish an upper bound on the expected stochastic error

NoisyStochErrn = E[dF (Pn, P ∗)] = E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)−E[f(g∗(U))]
∣∣∣∣],

where U ∼ Ud and F = Wα([0, 1]D, 1). The first step in the proof is a lemma showing the
influence of the noise and the corruption on the error StochErrn.

Lemma 6.7.1. If PX satisfies Assumption A with ε ∈ [0, 1] and all the functions in F are
bounded by a constant LF and Lipschitz with constant LF , then

NoisyStochErrn ≤ LFσ + 2MFε+ NoiseFreeStochErrn,

where

NoiseFreeStochErrn = E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

(f ◦ g∗)(Ui)−E[(f ◦ g∗)(U)]
∣∣∣∣],

with U ,U1, . . . ,Un iid random vectors drawn from Ud.

Proof. The triangle inequality yields

StochErrn ≤ E
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

{
f(Xi)− (f ◦ g∗)(Ui)

}∣∣∣∣]+ NoiseFreeStochErrn.

Let us define Yi = g∗(Ui) + ξi for i = 1, . . . , n. The third item of Assumption A implies that
Yi = Xi for i ∈ I. For i ̸∈ I, we have |f(Xi)− f(Yi)| ≤ 2MF . Therefore, the first term in
the right hand side of the last display can be further bounded as follows:∣∣∣∣ 1n

n∑
i=1

{
f(Xi)− (f ◦ g∗)(Ui)

}∣∣∣∣ ≤ ∣∣∣∣ 1n
n∑
i=1

{
f(Yi)− (f ◦ g∗)(Ui)

}∣∣∣∣+ 2MF (n− nI)
n

≤ LF
n

n∑
i=1

∥∥Yi − g∗(Ui)
∥∥+ 2MF ε

= LF
n

n∑
i=1

∥∥ξi∥∥+ 2MF ε.

To get the claimed result, it suffices to take the expectation of both sides of the last display.

The next step consists in upper bounding the stochastic error in the noise free case. If we use
the notation F ◦ g∗ = {f ◦ g∗ : f ∈ F}, the noise free stochastic error can be written as

NoiseFreeStochErrn = E[dF◦g∗(P̂U,n,Ud)]. (6.7)
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We see that the problem is reduced to that of evaluating the distance between the uniform
distribution and the empirical distribution of n independent random points uniformly dis-
tributed on the unit hypercube. In order to upper bound this distance, we first show that the
class F ◦ g∗, under the assumptions of Theorem 6.5.1, is included in a smoothness class of
order α. The precise statement is the following.

Lemma 6.7.2. Let g : [0, 1]d → [0, 1]D and h : [0, 1]D → [−1, 1] two mappings such that
g ∈ Wα([0, 1]d, L) and h ∈ Wα([0, 1]D, 1) for some α ∈ N∗ and some L ≥ 1. Then, there
exists a constant C = C(D, d, α) such that

|Dk(h ◦ g)(x)| ≤ CLα, ∀x ∈ [0, 1]d,

for every multi-index k = (k1, . . . , kd) ∈ Nd such that |k| ≤ α.

This lemma, in conjunction with (6.7) and the assumption g∗ ∈ Wα([0, 1]d, L), implies that

NoiseFreeStochErrn ≤ E[dWα([0,1]d,CLα)(P̂U,n,Ud)]
= CLαE[dWα([0,1]d,1)(P̂U,n,Ud)].

The last step is to use Schreuder (2020, Theorem 4), which provides the inequality

E[dWα([0,1]d,CLα)(P̂U,n,Ud)] ≤ C̃Lαn−(α∧d/2)/d(1 + 1α=d/2 logn).

This completes the proof of the theorem.

6.7.3 Image of a smoothness class by a smooth function

Proof of Lemma 6.7.2 The proof relies on Fraenkel 1978, Formula B providing an explicit
formula for derivatives of composite functions: for any multi-index k such that 1 ≤ |k| ≤ α
and for any x ∈ [0, 1]d,

Dk(h ◦ g)(x) = k!
∑

a:1≤|a|≤|k|

(Dah)(g(x))
a! Qk,a(g; x), (6.8)

where Qk,a(g; ·) is a homogeneous polynomial of degree |a| in derivatives of g1, . . . , gD. Since
the partial derivatives of h of any order up to α are bounded by one, we infer from the last
display that

∣∣Dk(h ◦ g)(x)
∣∣ = k!

∑
a:1≤|a|≤|k|

1
a!
∣∣Qk,a(g; x)|. (6.9)

We can give an explicit expression of Qk,a using the following notation. Let r be the cardinality
of the set {β ∈ Nd | 0 < β ≤ γ} and β(1), . . . ,β(r) be its elements somehow enumerated.
Define, for γ ∈ Nd and for a ∈ N, the set of multi-indices

R(γ, a) =
{

ρ ∈ Nr
∣∣ r∑
j=1

ρjβ(j) = γ, |ρ| = a

}
,
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and, for any v : Rd → R, the polynomials

Pγ(a, v; x) =
∑

ρ∈R(γ,a)

a!
ρ!

r∏
j=1

(Dβ(j)v(x))ρj

β(j)! . (6.10)

The functions Qk,a in (6.9) are given by

Qk,a(g; x) =
∑

γ(1)+...+γ(D)=k

D∏
m=1

Pγ(m)(am, gm; x).

Since, according to the conditions of the lemma, all the partial derivatives of g appearing in
(6.10) for v = gm are bounded by L ≥ 1, we have

∣∣Pγ(m)(am, gm; x)
∣∣ ≤ ∑

ρ∈R(γ(m),am)
L|ρ|am!

ρ!

r∏
j=1

1
β(j)! .

Since |ρ| ≤ am and |a| ≤ |k| ≤ α, this leads to

∣∣Qk,a(g; x)
∣∣ ≤ Lαa!

∑
γ(1)+...+γ(D)=k

D∏
m=1

 ∑
ρ∈R(γ(m),am)

1
ρ!

r∏
j=1

1
β(j)!

 .
Combining this inequality with (6.9), we arrive at

|Dk(h ◦ g)(x)| ≤ Lαk!
∑

1≤|a|≤|k|

∑
γ(1)+···+γ(D)=a

D∏
m=1

 ∑
ρ∈R(γ(m),am)

1
ρ!

r∏
j=1

1
β(r)!

 .
Denoting by C(D, d, α) the maximum of the right hand side over all multi-indices k such that
|k| ≤ α, we get the claim of the lemma.

6.7.4 Proof of the lower bounds in Theorem 6.5.2

Since the bound we wish to prove does not depend on the dimension, we assume without loss
of generality that D = d. First, we start by considering the case σ + ε ≥ 2/n1/2.
Let us define g∗(x) = (2x + 1)/4. This function is clearly 1-Lipschitz. Let ξ1 be a random
variable drawn from the uniform in [0, 1] distribution. We define P (n)

0 to be the distribution of
i.i.d. vectors X1, . . . ,Xn such that Xi

dist∼ g∗(U) + σξ1 for i = 1, . . . , nε and Xi = (1, . . . , 1)⊤

for i > nε. Then, it is clear that P (n)
0 ∈ Pn,D

(
d, σ, (1− ε)n

)
and

E
P

(n)
0

[dF (P̂n, P ∗)] = E
P

(n)
0

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(Xi)−E[(f ◦ g∗)(U)]
∣∣∣∣] (6.11)

≥ E
P

(n)
0

[∣∣∣∣ 1n
n∑
i=1

Xi,1 −E[g∗(U)1]
∣∣∣∣] (6.12)

= E
P

(n)
0

[∣∣∣∣ 1n
n∑
i=1

(
Xi,1 −E[Xi,1]

)
+ ε+ 0.5σ − εE[g∗(U)1]

∣∣∣∣] (6.13)

= E
P

(n)
0

[∣∣∣∣ 1n
n∑
i=1

(
Xi,1 −E[Xi,1]

)
+ 0.5(σ + ε)

∣∣∣∣]. (6.14)
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The first inequality above follows by replacing the sup over F by the corresponding expression
evaluated at the representer f0(x) = x1. The third line above follows from E[Xi,1] =
E[g∗(U)1] + 0.5σ if i ≤ nε whereas E[Xi,1] = 1 if i > nε. The last line is a consequence of
E[g(U)1] = 0.5. Combining the above lower bound with the triangle inequality, we arrive at

E
P

(n)
0

[dF (P̂n, P ∗)] ≥ 0.5(σ + ε)−E
P

(n)
0

[∣∣∣∣ 1n
n∑
i=1

(
Xi,1 −E[Xi,1]

)∣∣∣∣]

≥ 0.5(σ + ε)−
(

E
P

(n)
0

[∣∣∣∣ 1n
n∑
i=1

(
Xi,1 −E[Xi,1]

)∣∣∣∣2])1/2

≥ 0.5(σ + ε)− 0.5/
√
n

≥
(
σ + ε+ 1/

√
n
)
/6.

To get the second line above, we used that the first-order moment is bounded by the second-
order moment. In the third line, we used that the variance of the sum of independent random
variables is the sum of variances and that the variance of a random variables taking its values
in [0, 1] is always ≤ 1/4. Finally, the last line is derived from the assumption σ + ε ≥ 2/

√
n.

We now turn to the case σ + ε ≤ 2/
√
n. In this case, we use the same distribution P

(n)
0 as in

the previous case but we choose σ = ε = 0. From (6.14) we derive that

E
P

(n)
0

[
dF (P̂n, P ∗)

]
≥ E

P
(n)
0

[∣∣∣∣ 1n
n∑
i=1

(
Xi,1 −E[Xi,1]

)∣∣∣∣] (6.15)

≥ 0.5 E
Ui

iid∼U1

[∣∣∣∣ 1n
n∑
i=1

(Ui − 0.5)
∣∣∣∣] ≥ 0.105/

√
n (6.16)

In view of the assumption σ + ε ≤ 2/
√
n, this leads to

E
P

(n)
0

[
dF (P̂n, P ∗)

]
≥ E

P
(n)
0

[∣∣∣∣ 1n
n∑
i=1

(
Xi,1 −E[Xi,1]

)∣∣∣∣]

≥ 0.5 E
Ui

iid∼U1

[∣∣∣∣ 1n
n∑
i=1

(Ui − 0.5)
∣∣∣∣] ≥ 0.035(σ + ε+ 1/

√
n),

which completes the proof of the first inequality of the theorem. For the second inequality, it
suffices to combine the first inequality with the lower bound established in the seminal paper
Dudley (1969).

6.7.5 Proof of the lower bound in Theorem 6.5.3

We split the proof of Theorem 6.5.3 into two propositions: The first one shows the tightness
of the dependence on the contamination rate whereas the second one establishes the tightness
of the dependence on the noise-level.

Proposition 6.7.3 (Tightness wrt to the contamination rate). Under the assumptions of
Theorem 6.5.3,

inf
ĝn

sup
g∗

sup
P (n)∈Pn,D(d,σ,ε,g∗)

E[RdF ,P ∗(ĝn)] ≥ ε/3.
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Proof. It can be easily checked that the supremum of the expected risk over Pn,D(d, σ, ε, g∗)
is always not smaller than the supremum of the same quantity over Pn,1(d, 0, ε, g∗). To ease
notation, we write Pn(d, ε, g∗) = Pn,1(d, 0, ε, g∗) and also set µ = Ud.

Step 1: Reduction to Huber contamination model. Note that the set of admissible
data distributions Pn,D(d, ε, g∗) comprises the data distributions from Huber’s deterministic
contamination model Bateni and Dalalyan 2020, Section 2.2, namely data distributions such
that a (deterministic) proportion (1− ε) of the data is distributed according to a reference
distribution P ∗ while the remaining proportion ε is independently drawn from another
distribution Q. Therefore, denoting by PHDC

n (d, ε, g∗) such distributions, it holds, for any
estimator ĝn and generator g∗,

sup
P (n)∈Pn(d,ε,g∗)

E[RdF ,P ∗(ĝn)] = sup
P (n)∈Pn(d,ε,g∗)

E[dF (g∗♯µ, ĝn♯µ)]

≥ sup
P (n)∈PHDC

n (d,ε,g∗)
E[dF (g∗♯µ, ĝn♯µ)].

Furthermore, let us denote by PHC
D (d, ε, g∗) the set of data distributions such that there

is a distribution Q defined on the same space as a reference distribution P ∗ = g∗♯µ such
that the observations X1, . . . ,Xn are independent and drawn from the mixture distribution
(1−ε)P ∗ +εQ. In view of supg,g′ dF (g♯µ, g′♯µ) ≤ L and Bateni and Dalalyan 2020, Proposition
1, for any estimator ĝn and generator g∗, we have

sup
P (n)∈PHDC

n (d,ε,g∗)
E[dF (g∗♯µ, ĝn♯µ)] ≥ sup

P (n)∈PHC
n (d,ε/2,g∗)

E[dF (g∗♯µ, ĝn♯µ)]− e−nε/6L.

The second step consists in lower bounding the risk in the Huber contamination model using
an argument based on two simple hypotheses.

Step 2: Construction of hypotheses. Let us define the generators g∗
1, g

∗
2 : [0, 1]d → [0, 1]

as

g∗
1(u) = (1− ε)u1 and g∗

2(u) = (1− ε)u1 + ε, for u = (u1, . . . , ud) ∈ [0, 1]d.

For contamination distributions Q1 := U([1 − ε, 1]) and Q2 := U([0, ε]), define the data
generating distributions

P
(n)
1 = [(1− ε)g∗

1♯µ+ εQ1]⊗n and P
(n)
2 = [(1− ε)g∗

2♯µ+ εQ2]⊗n.

One can easily check that P (n)
1 = P

(n)
2 = U([0, 1])⊗n and P

(n)
j ∈ PHC

n (d, ε, g∗
j ) for j = 1, 2.

Using the fact that the maximum is larger than the arithmetic mean, in conjunction with the
triangular inequality, we obtain

sup
g∗

sup
P (n)∈PHC

n (d,ε,g∗)
E[dF (g∗♯µ, ĝn♯µ)] ≥ 1

2

[
E
P

(n)
1

dF (g∗
1♯µ, ĝn♯µ) + E

P
(n)
2

dF (g∗
2♯µ, ĝn♯µ)

]
= 1

2E
P

(n)
0

[dF (g∗
1♯µ, ĝn♯µ) + dF (g∗

2♯µ, ĝn♯µ)]

≥ 1
2dF (g∗

1♯µ, g
∗
2♯µ) ≥ ε/2.

The last inequality comes from choosing the representer f(u) = u1 from F .
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Conclusion. Combining the previous two steps, we get

sup
P (n)∈PHDC

n (d,ε,g∗)
E[dF (g∗♯µ, ĝn♯µ)] ≥ (1/4)ε− e−nε/6L.

Choosing n ≥ (6/ε) log(20L/ε), we get the claim of the proposition.

Proposition 6.7.4 (Tightness wrt to the noise level). Under the assumptions of Theorem 6.5.3,
we have

inf
ĝn∈G

sup
g∗∈G∗

sup
P (n)∈Pn,D(d,σ,ε,g∗)

E[dF (g∗♯µ, ĝn♯µ)] ≥ σ/2.

Proof. Once again, without loss of generality we assume that D = 1, ε = 0 and drop the
dependence of different quantities on these two parameters. Recall that µ = Ud. Let us define
the generators g∗

j : [0, 1]d → [0, 1]D, j = 1, 2, by

g∗
1(u) ≡ 0 and g∗

2(u) ≡ σ, for u = (u1, . . . , ud) ∈ [0, 1]d.

These functions allow us to define the data generating distributions

P
(n)
1 = [g∗

1♯µ ∗ δσ]⊗n and P
(n)
2 = [g∗

2♯µ ∗ δ0]⊗n.

One can easily check that P (n)
1 = P

(n)
2 = δ⊗n

σ , which belongs to Pn(d, σ, g∗
1) ∩ Pn(d, σ, g∗

2).
Furthermore, g∗

j ∈ G∗ for j = 1, 2 since the latter contains all the affine functions. Using the
same arguments as in the proof of the previous proposition, we arrive at

sup
g∗∈G∗

sup
P (n)∈Pn(d,σ,g∗)

E[dF (g∗♯µ, ĝn♯µ)] ≥ 1
2E

P
(n)
1

[dF (g∗
1♯µ, ĝn♯µ) + dF (g∗

2♯µ, ĝn♯µ)]

≥ 1
2dF (g∗

1♯µ, g
∗
2♯µ) ≥ σ/2.

This completes the proof of the proposition.

To get the claim of Theorem 6.5.3, it suffices to combine the claims of the last two propositions
with the fact that (0.2ε ∨ 0.5σ) ≥ 0.1(ε+ σ).



CHAPTER 7

A minimax framework for quantifying risk-fairness trade-off in regression

We propose a theoretical framework for the problem of learning a real-valued function which
meets fairness requirements. This framework is built upon the notion of α-relative (fairness)
improvement of the regression function which we introduce using the theory of optimal
transport. Setting α = 0 corresponds to the regression problem under the Demographic Parity
constraint, while α = 1 corresponds to the classical regression problem without any constraints.
For α ∈ (0, 1) the proposed framework allows to continuously interpolate between these two
extreme cases and to study partially fair predictors. Within this framework we precisely
quantify the cost in risk induced by the introduction of the fairness constraint. We put forward
a statistical minimax setup and derive a general problem-dependent lower bound on the risk
of any estimator satisfying α-relative improvement constraint. We illustrate our framework
on a model of linear regression with Gaussian design and systematic group-dependent bias,
deriving matching (up to absolute constants) upper and lower bounds on the minimax risk
under the introduced constraint. Finally, we perform a simulation study of the latter setup.
Based on Evgenii Chzhen and Nicolas Schreuder (2020a). “A minimax framework for quanti-
fying risk-fairness trade-off in regression”. In: arXiv preprint arXiv:2007.14265.

Contents
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.2 Problem statement and contributions . . . . . . . . . . . . . . . . 135

7.2.1 Regression with fairness constraints . . . . . . . . . . . . . . . . . . 135
7.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.3 Prior and related works . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.3.1 Other notions of unfairness . . . . . . . . . . . . . . . . . . . . . . . 139
7.3.2 Optimal transport and fair regression . . . . . . . . . . . . . . . . . 140

7.4 Oracle α-relative improvement . . . . . . . . . . . . . . . . . . . . 141
7.4.1 An abstract geometric lemma . . . . . . . . . . . . . . . . . . . . . . 142
7.4.2 Risk-fairness trade-off on the population level . . . . . . . . . . . . . 144

133



134 CHAPTER 7. QUANTIFYING RISK-FAIRNESS TRADE-OFF

7.4.3 Pareto efficiency: a systematic way to select α . . . . . . . . . . . . 145
7.5 Minimax setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.5.1 Generic lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.6 Application to linear model with systematic bias . . . . . . . . . 149

7.6.1 Upper bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.6.2 Lower bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
7.6.3 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.8 Reminder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.8.1 The Wasserstein-2 distance . . . . . . . . . . . . . . . . . . . . . . . 156
7.8.2 Tail inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7.9 Proofs for Section 7.4 . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.9.1 Auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.9.2 Proof of Proposition 7.4.1 . . . . . . . . . . . . . . . . . . . . . . . . 159

7.10 Proof of Theorem 7.5.3 . . . . . . . . . . . . . . . . . . . . . . . . . 160
7.11 Proofs for Section 7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.11.1 Proof of Lemma 7.6.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.11.2 Auxiliary results for Theorem 7.6.4 . . . . . . . . . . . . . . . . . . . 162
7.11.3 Proof of Theorem 7.6.4 . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.11.4 Auxiliary results for Theorem 7.6.5 . . . . . . . . . . . . . . . . . . . 170
7.11.5 Proof of Theorem 7.6.5 . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.12 Relation between UKS and U . . . . . . . . . . . . . . . . . . . . . . 173

7.1 Introduction

Data driven algorithms are deployed in almost all areas of modern daily life and it becomes
increasingly more important to adequately address the fundamental issue of historical biases
present in the data (Barocas, Hardt, and Narayanan 2019). The goal of algorithmic fairness is
to bridge the gap between the statistical theory of decision making and the understanding of
justice, equality, and diversity. The literature on fairness is broad and its volume increases
day by day, we refer the reader to (Mehrabi et al. 2019; Barocas, Hardt, and Narayanan 2019)
for a general introduction on the subject and to (Oneto and Chiappa 2020; Barrio, Gordaliza,
and Loubes 2020) for reviews of the most recent theoretical advances.
Basically, the mathematical definitions of fairness can be divided into two groups (Dwork et al.
2012): individual fairness and group fairness. The former notion reflects the principle that
similar individuals must be treated similarly, which translates into Lipschitz type constraints
on possible prediction rules. The latter defines fairness on population level via (conditional)
statistical independence of a prediction from a sensitive attribute (e.g., gender, ethnicity). A
popular formalization of such notion is through the Demographic Parity constraint, initially
introduced in the context of binary classification (Calders, Kamiran, and Pechenizkiy 2009).
Despite of some limitations (Hardt, Price, and Srebro 2016), the concept of Demographic
Parity is natural and suitable for a range of applied problems (Köeppen, Yoshida, and Ohnishi
2014; Zink and Rose 2019).
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In this work we study the regression problem of learning a real-valued prediction function,
which complies with an approximate notion of Demographic Parity while minimizing expected
squared loss.
Unlike its classification counterpart, the problem of fair regression has received far less attention
in the literature. However, as argued by Agarwal, Dudík, and Wu 2019, classifiers only provide
binary decisions, while in practice final decisions are taken by humans based on predictions
from the machine. In this case a continuous prediction is more informative than a binary one
and justifies the need for studying fairness in the regression framework.

Notation For any univariate probability measure µ we denote by Fµ (resp. F−1
µ ) the

cumulative distribution function (resp. the quantile function) of µ. For two random variables
U and V we denote by Law(U | V=v) the conditional distribution of the random variable
U | V=v and we write U d= V to denote their equality in distribution. For any integer K ≥ 1,
we denote by ∆K−1 the probability simplex in RK and we write [K] = {1, . . . ,K}. For any
a, b ∈ R we denote by a ∨ b (resp. a ∧ b) the maximum (resp. the minimum) between a, b. We
denote by P2(Rd) the space of probability measures on Rd with finite second-order moment.

7.2 Problem statement and contributions

We study the regression problem when a sensitive attribute is available. The statistician
observes triplets (X1, S1, Y1), . . . , (Xn, Sn, Yn) ∈ Rp × [K] × R, which are connected by the
following regression-type relation

Yi = f∗(Xi, Si) + ξi , i ∈ [n] , (7.1)
where ξi ∈ R is a centered random variable and f∗ : Rp × [K]→ R is the regression function.
Here for each i ∈ [n], Xi is a feature vector taking values in Rp, Si is a sensitive attribute
taking values in [K], and Yi is a real-valued dependent variable. A prediction is any measurable
function of the form f : Rp × [K]→ R. We define the risk of a prediction function f via the
L2 distance to the regression function f∗ as

R(f) := ∥f − f∗∥22 :=
K∑
s=1

wsE
[
(f(X, S)− f∗(X, S))2 | S = s

]
, (Risk measure)

where E[· | S=s] is the expectation w.r.t. the distribution of the features X in the group S = s
and w = (w1, . . . , wK)⊤ ∈ ∆K−1 is a probability vector, which weights the group-wise risks.
For any s ∈ [K] define ν∗

s as Law(f∗(X, S) | S=s) – the distribution of the optimal prediction
inside the group S = s. Throughout this work we make the following assumption on those
measures, which is, for instance, satisfied in linear regression with Gaussian design.
Assumption 7.2.1. The measures {ν∗

s}s∈[K] are non-atomic and have finite second moments.

7.2.1 Regression with fairness constraints

Any predictor f induces a group-wise distribution of the predicted outcomes Law(f(X, S) |
S=s) for s ∈ [K]. The high-level idea of group fairness notions is to bound or diminish an
eventual discrepancy between these distributions.



136 CHAPTER 7. QUANTIFYING RISK-FAIRNESS TRADE-OFF

We define the unfairness of a predictor f as the sum of the weighted distances between
{Law(f(X, S) | S=s)}s∈[K] and their common barycenter w.r.t. the Wasserstein-2 distance1:

U(f) := min
ν∈P2(R)

K∑
s=1

wsW
2
2
(

Law(f(X, S) | S=s), ν
)
. (Unfairness measure)

In particular, since the Wasserstein-2 distance is a metric on the space probability distributions
with finite second-order moment P2(Rd), a predictor f is such that U(f) = 0 if and only if it
satisfies the Demographic Parity (DP) constraint defined as(

f(X, S) | S = s
) d=

(
f(X, S) | S = s′), ∀s, s′ ∈ [K] . (DP)

Exact DP is not necessarily desirable in practice and it is common in the literature to consider
relaxations of this constraint. In this work we introduce the α-Relative Improvement (α-RI)
constraint – a novel DP relaxation based on our unfairness measure. We say that a predictor
f satisfies the α-RI constraint for some α ∈ [0, 1] if its unfairness is at most an α fraction of
the unfairness of the regression function f∗, that is, U(f) ≤ αU(f∗). Importantly, the fairness
requirement is stated relatively to the unfairness of the regression function f∗, which allows to
make a more informed choice of α.
Formally, for a fixed α ∈ [0, 1], the goal of a statistician in our framework is to build an
estimator f̂ using data, which enjoys two guarantees (with high probability)

α-RI guarantee: U(f̂) ≤ αU(f∗) and Risk guarantee: R(f̂) ≤ rn,α,f∗ .

The former ensures that f̂ satisfies the α-RI constraint. In the latter guarantee we seek the
sequence rn,α,f∗ being as small as possible in order to quantify two effects: the introduction
of the α-RI fairness constraint and the statistical estimation. We note that rn,α,f∗ depends
on the sample size n, the fairness parameter α, as well as the regression function f∗ to be
estimated, we clarify the reason for this dependency later in the text.

7.2.2 Contributions

The first natural question that we address is: assuming that the underlying distribution of
X | S and the regression function f∗ are known, which prediction rule f∗

α minimizes the
expected squared loss under the α-RI constraint U(f∗

α) ≤ αU(f∗)? To answer this question we
shift the discussion to the population level and define a collection {f∗

α}α∈[0,1] of oracle α-RI
indexed by the parameter α as

f∗
α ∈ arg min {R(f) : U(f) ≤ αU(f∗)} , ∀α ∈ [0, 1] . (Oracle α-RI)

For α = 0 the predictor f∗
0 corresponds to the optimal fair predictor in the sense of DP while

for α = 1 the corresponding predictor f∗
1 coincides with the regression function f∗. Those

two extreme cases have been previously studied but, up to our knowledge, nothing is known
about those “partially fair” predictors. Our study of the family {f∗

α}α∈[0,1] serves as a basis
for our statistical framework and analysis. It also reveals the intrinsic interplay of the fairness
constraint with the risk measure.
The contributions of this work can be roughly split into three interconnected groups:

1See Appendix 7.8.1 for a reminder on Wasserstein distances.
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f
∗ α)

Risk and unfairness of oracle α-relative improvements (α-RI)

Figure 7.1: Risk R and unfairness U of α-RI oracles {f∗
α}α∈[0,1]. Green curves (decreasing,

convex) correspond to the risk, while orange curves (increasing, linear) correspond to the
unfairness. Each pair of curves (solid, dashed, dashed dotted) corresponds to three regimes:
high, moderate, and low unfairness of the regression function f∗ respectively.

1. We provide a theoretical study of the family of oracle α-RI {f∗
α}α∈[0,1] on the population

level;

2. We introduce a minimax statistical framework and derive a general problem-dependent
minimax lower bound for the problem of regression under the α-RI constraint;

3. We derive minimax optimal rate of convergence for the statistical model of linear
regression with systematic group-dependent bias and Gaussian design under the α-RI
constraint.

Properties of oracle α-RI {f∗
α}α∈[0,1] It has been shown that, under the squared loss,

the optimal fair predictor f∗
0 can be obtained as the solution of a Wasserstein-2 barycenter

problem (Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c). In Section 7.4 we
study the whole family {f∗

α}α∈[0,1] for arbitrary choice of α ∈ [0, 1]. To provide complete
characterization of {f∗

α}α∈[0,1] we derive Lemma 7.4.3, which could be of independent interest.
This result can be summarized as follows: given a fixed collection of points a1, . . . , aK in
an abstract metric space (X , d), if one walks along the (constant speed) geodesics starting
from as and leading to their (weighted) barycenter until it reaches a proportion α of the
full path, then these intermediate points b1, . . . , bK minimize the weighted distance to the
initial points while being α-closer to their own barycenter. This abstract result enables us to
characterize explicitly oracle α-RI {f∗

α}α∈[0,1]. In particular, we show that the family of oracle
α-RI {f∗

α}α∈[0,1] admits a simple structure: for any α ∈ [0, 1] the prediction f∗
α is the point-wise

convex combination of the regression function f∗ ≡ f∗
1 and the optimal fair predictor f∗

0 , that
is,

f∗
α(x, s) =

√
αf∗

1 (x, s) + (1−
√
α)f∗

0 (x, s), ∀ (x, s) ∈ Rp × [K] .
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The final contribution of Section 7.4 is the quantification of the risk-fairness trade-off on the
population level. In particular, Lemma 7.4.5 establishes that for every α ∈ [0, 1] it holds that

R(f∗
α) = (1−

√
α)2R(f∗

0 ) and U(f∗
α) = αU(f∗) .

Observe that f∗
0 , which is the optimal fair predictor in terms of DP, has the highest risk and

the lowest unfairness, while the situation is reversed for f∗
1 ≡ f∗ – the risk is the lowest and

the unfairness is the highest. Since the function α→ (1−
√
α)2 grows rapidly in the vicinity

of zero, even a mild relaxation of the exact fairness constraint (α = 0) yields a noticeable
improvement in terms of the risk while having a low unfairness inflation. For instance, the
risk of f∗

1/2 is only around 8.5% of the risk of f∗
0 , while its fairness is two times better than

that of f∗. This observation is illustrated in Figure 7.1.

Minimax framework In order to quantify the statistical price of fairness, in Section 7.5 we
propose a minimax framework and in Section 7.5.1 we derive a general problem-dependent
lower bound on the minimax risk of estimators satisfying the α-RI constraint. Statistical study
of the model in Eq. (7.1) typically requires additional assumptions to provide meaningful
statistical guarantees. Classically, one chooses a set F of possible candidates for the regression
function f∗ (e.g., linear functions) and, possibly, introduces additional conditions on nuisance
parameters of the model via some set Θ (e.g., variance of the noise). The goal of our lower
bound is to understand fundamental limits of the problem of prediction under α-RI constraint
in arbitrary statistical model for Eq. (7.1). To this end, we show in Theorem 7.5.3 that any
estimator f̂ satisfying the α-RI constraint with high probability must incur

R(f̂) ≥ δn(F ,Θ) ∨ (1−
√
α)2U(f∗) ,

where δn(F ,Θ) is the rate one would obtain without restricting the set of possible estimators.

Application to linear model The goal of Section 7.6 is to demonstrate that the general
problem-dependent lower bound does indeed yield minimax optimal rates. To this end, we
apply our machinery to the problem of linear regression with systematic bias formalized by
the following linear model

Yi = ⟨Xi,β
∗⟩+ b∗

Si
+ ξi, i = 1, . . . , n ,

where the ξi’s are i.i.d. zero mean Gaussian with variance σ2 and the p-dimensional covariates
{Xi}ni=1 are i.i.d. Gaussian random vectors. We propose an estimator f̂ which, with probability
at least 1− δ, satisfies U(f̂) ≤ αU(f∗) and achieves the following minimax optimal rate

R(f̂) ≍
{
σ2
(
p+K

n
+ log(1/δ)

n

)}∨{
(1−
√
α)2U(f∗)

}
.

Finally, we conduct a simulation study of the proposed estimator f̂ and compare its performance
with more straightforward approaches in terms of unfairness and risk.
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7.3 Prior and related works

Until very recently, contributions on fair regression were almost exclusively focused on the
practical incorporation of proxy fairness constraints in classical learning methods, such as
random forest, ridge regression, kernel based methods to name a few (Calders et al. 2013;
Komiyama and Shimao 2017; Berk et al. 2017; Pérez-Suay et al. 2017; Raff, Sylvester, and Mills
2018; Fitzsimons et al. 2018). Several works empirically study the impact of (relaxed) fairness
constraints on the risk (Bertsimas, Farias, and Trichakis 2012; Zliobaite 2015; Haas 2019;
Wick, Panda, and Tristan 2019; Zafar et al. 2017). Yet, the problem of precisely quantifying
the effect of such constraints on the risk has not been tackled.
More recently, statistical and learning guarantees for fair regression were derived (Agarwal,
Dudík, and Wu 2019; Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c; Chiappa et al.
2020; Fitzsimons et al. 2019; Plečko and Meinshausen 2019; Chzhen et al. 2020a). The closest
works to our contribution are that of Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c;
Chiappa et al. 2020, who draw a connection between the problem of exactly fair regression
of demographic parity and the multi-marginal optimal transport formulation (Gangbo and
Święch 1998; Agueh and Carlier 2011).
As already mentioned in the previous section, considering predictors which satisfy the DP
constraint incurs an unavoidable price in terms of the risk. Depending on the application
at hand, this price might or might not be reasonable. However, since the notion of DP
is completely fairness driven, it does not allow to quantify the price of considering “fairer”
predictions than the regression function f∗. For this reason, several contributions relax this
constraint, forcing a milder fairness requirement. A natural idea is to define a functional U
which quantifies the violation of the DP constraint and to declare a prediction approximately
fair if this functional does not exceed a user pre-specified threshold. In recent years a
large variety of such relaxations has been proposed: correlation based (Baharlouei et al.
2019; Mary, Calauzènes, and El Karoui 2019; Komiyama et al. 2018); Kolmogorov-Smirnov
distance (Agarwal, Dudík, and Wu 2019); Mutual information (Steinberg et al. 2020; Steinberg,
Reid, and O’Callaghan 2020); Total Variation distance (Oneto, Donini, and Pontil 2019b;
Oneto et al. 2019); Equality of means and higher moment matching (Raff, Sylvester, and
Mills 2018; Fitzsimons et al. 2019; Calders et al. 2013; Berk et al. 2017; Olfat et al. 2020;
Donini et al. 2018); Maximum Mean Discrepancy (Quadrianto and Sharmanska 2017; Madras
et al. 2018); Wasserstein distance (Chiappa et al. 2020; Le Gouic, Loubes, and Rigollet 2020;
Chzhen et al. 2020c; Gordaliza et al. 2019).

7.3.1 Other notions of unfairness

The most common relaxations of the Demographic Parity constraint are based on the Total
Variation (TV) and the Kolmogorov-Smirnov (KS) distances (Agarwal, Dudík, and Wu 2019;
Oneto, Donini, and Pontil 2019a; Agarwal et al. 2018; Chzhen et al. 2020a). There are various
ways to use the TV or KS in order to build a functional U , which quantifies the violation of
the DP constraint. To compare those measures of discrepancy with the one that we introduce
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in our work, we define UTV and UKS as follows

TV unfairness: UTV(f) :=
∑
s∈[K]

TV (Law(f(X, S) | S = s),Law(f(X, S))) ,

KS unfairness: UKS(f) :=
∑
s∈[K]

KS (Law(f(X, S) | S = s),Law(f(X, S))) .

Using these notions, one wishes to study those predictors f which satisfy relaxed fairness
constraint U□(f) ≤ ε, where □ is KS or TV and ε ≥ 0 is a user specified parameter. Note
that since both KS and TV are metrics, setting ε = 0 is equivalent to the DP constraint.
Meanwhile, for ε > 0 these formulations allow some slack. It is known that the TV distance
is rather strong and extremely sensitive to small changes in distributions which is the major
drawback of the TV unfairness. This limitation can be addressed by the KS unfairness due to
an obvious relation UKS(f) ≤ UTV(f).
In our work we argue that the introduced notion of unfairness U is better suited for the problem
of regression with squared loss under fairness constraint. Indeed, we prove in Lemma 7.4.5 that
U can be naturally connected to the squared risk and allows to give a precise quantification of
the risk-fairness trade-off. This result is the major advantage of U over both UKS and UTV.
Nevertheless, it is still interesting to understand whether a more popular KS unfairness can
be related to U that we introduce. In Appendix we prove the following connection.

Proposition 7.3.1. Fix some predictor f : Rp × [K] → R. Assume that the distribution
Law(f(X, S) | S=s) ∈ P2(R) and that it admits a density bounded by Cf,s > 0 for all s ∈ [K].
Then 2

UKS(f) ≤ ∥1/w∥∞
√

8C̄f · U1/4(f) ,

where C̄f = ∑K
s=1wsCf,s and 1/w = (1/w1, . . . , 1/wK)⊤.

The latter result indicates that if one can control the unfairness U introduced in this work, one
also has some control over the KS unfairness. Note that the leading constant of the previous
bound depends on the predictor f . More precisely, this constant corresponds to the upper
bound on the density of f(X, S).
Another advantage of the introduced unfairness measure, and, in particular, the notion of
α-relative improvement is the fact that the parameter α has a clear practical interpretation,
while the interpretation of ε is not intuitive. Of course, using UKS or UTV one can also define
unfairness of a predictor f relatively to the regression function f∗. However, due to completely
different geometries induced by R in the space of functions and by UKS /TV in the space
of distributions, precise theoretical study of such formulations is notoriously complicated if
possible.

7.3.2 Optimal transport and fair regression

The use of optimal transport tools in the study of fairness is relatively recent. Initially, contribu-
tions in this direction were mainly dealing with the problem of binary classification (Gordaliza

2One can erase the term ∥1/w∥∞ from the bound defining UKS(f) as∑
s∈[K] ws KS (Law(f(X, S) | S = s),Law(f(X, S))).
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et al. 2019; Jiang et al. 2019). Later on, the tools of the optimal transport theory migrated
to the setup of fair regression (Chiappa et al. 2020; Chzhen et al. 2020c; Le Gouic, Loubes,
and Rigollet 2020). The main theoretical motivation to consider U instead of the KS and TV
unfairnesses lies in the following recent result due to (Chzhen et al. 2020c; Le Gouic, Loubes,
and Rigollet 2020).

Theorem 7.3.2 (Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c). Let Assump-
tion 7.2.1 be satisfied, then

min
{
R(f) :

(
f(X, S) | S = s

) d=
(
f(X, S) | S = s′) ∀s, s′ ∈ [K]

}
= U(f∗) . (7.2)

Moreover, the distribution of the minimizer of the problem on the l.h.s. is given by

arg min
ν∈P2(R)

K∑
s=1

wsW
2
2 (Law(f∗(X, S) | S=s), ν) .

An important consequence of Theorem 7.3.2 is that it puts the risk R and the unfairness U –
two conflicting quantities – on the same scale. In particular, it allows to measure both fairness
and risk using the same unit measurements, hence, study the trade-off between the two. In
order to build our framework, we remark that since W2 is a metric then the problem on the
l.h.s. of Eq. (7.2) can be equivalently written as min {R(f) : U(f) ≤ 0× U(f∗)}. Moreover,
one can observe that the regression function f∗ ∈ min {R(f) : U(f) ≤ 1× U(f∗)}. Thus, a
natural relaxation of the above formulation is the introduced notion of α-relative improvement,
which interpolates between the exactly fair predictor f∗

0 and the regression function f∗
1 ≡ f∗. In

this retrospect, the result of Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c provides
characterization of f∗

0 but says nothing about the whole family of oracle α-RI {f∗
α}α∈[0,1].

7.4 Oracle α-relative improvement

This section is devoted to the study of the α-relative improvement f∗
α on population level,

that is, in this section we study

f∗
α ∈ arg min {R(f) : U(f) ≤ αU(f∗)} , ∀α ∈ [0, 1] . (7.3)

The next result establishes a closed form solution to the minimization Problem (7.3) under
Assumption 7.2.1 for any value of α ∈ [0, 1].

Proposition 7.4.1. Let Assumption 7.2.1 be satisfied, then for all α ∈ [0, 1] and all (x, s) ∈
Rp × [K] (up to a set of null measure) it holds that

f∗
α(x, s) =

√
αf∗(x, s) +

(
1−
√
α
) K∑
s′=1

ws′F−1
ν∗

s′
◦ Fν∗

s
◦ f∗(x, s)

=
√
αf∗

1 (x, s) + (1−
√
α)f∗

0 (x, s) .

Recall that f∗ = f∗
1 , hence the α-relative improvement f∗

α is the point-wise convex combination
of exactly fair prediction f∗

0 and the regression function f∗
1 . Besides, setting α = 0 we recover

the result of Chzhen et al. 2020c; Le Gouic, Loubes, and Rigollet 2020 as a particular case of
our framework. The set of oracle α-RI {f∗

α}α∈[0,1] satisfies the following properties.
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1. Risk and fairness monotonicity: if α ≤ α′, then R(f∗
α) ≥ R(f∗

α′) and U(f∗
α) ≤ U(f∗

α′).

2. Point-wise convexity: for all α, α′ ∈ [0, 1] and all τ ∈ [0, 1] it holds that τf∗
α + (1−

τ)f∗
α′ ∈ {f∗

α}α∈[0,1]. Moreover τf∗
α + (1− τ)f∗

α′ = f∗
ᾱ with ᾱ = (τ

√
α+ (1− τ)

√
α′)2.

3. Order preservation: for all s ∈ [K],x,x′ ∈ Rp, if f∗(x, s) ≥ f∗(x′, s), then for all
α ∈ [0, 1] it holds that f∗

α(x, s) ≥ f∗
α(x′, s).

The first property is intuitive and does not require the result of Proposition 7.4.1. The
second property can be directly derived using the expression of f∗

α and it describes additional
algebraic structure of the family {f∗

α}α∈[0,1] . The third group-wise order preserving property
of f∗

α is particularly attractive. Its proof is straightforward after the observation that Fν∗
s

and ∑K
s′=1ws′F−1

ν∗
s′

are non-decreasing functions and the fact that the composition of two
non-decreasing functions is non-decreasing. For the special case of α = 0, this observation
has already been made in (Chzhen et al. 2020c) and a practical algorithm that follows the
group-wise order preservation property was proposed by Plečko and Meinshausen 2019. In
words, this property says: given any two individuals x,x′ ∈ Rp from the same sensitive group
s ∈ [K], if the optimal prediction f∗(x, s) for x is larger than that for x′, then across all levels
α of fairness parameter the oracle α-RI f∗

α is not changing this order.

7.4.1 An abstract geometric lemma

The proof of Proposition 7.4.1 relies on a abstract geometric result, Lemma 7.4.3, which
might be interesting on its own. First, let us introduce the following definition, which asks for
existence of finitely supported barycenters in a metric space (X , d).

Definition 7.4.2. We say that a metric space (X , d) satisfies the barycenter property if for
any weights w ∈ ∆K−1 and tuple a = (a1, . . . , aK) ∈ XK there exists a barycenter

Caw ∈ arg min
C∈X

K∑
s=1

wsd
2(as, C) .

Moreover, for any tuple a = (a1, . . . , aK) ∈ XK we denote3 by Caw a barycenter of a weighted
by w ∈ ∆K−1.

Lemma 7.4.3 (Abstract geometric lemma). Let (X , d) be a metric space satisfying the
barycenter property. Let a = (a1, . . . , aK) ∈ XK , w = (w1, . . . , wK)⊤ ∈ ∆K−1 and let Ca be
a barycenter of a with respect to weights w. For a fixed α ∈ [0, 1] assume that there exists
b = (b1, . . . , bK) ∈ XK which satisfies

d(as, Ca) = d(as, bs) + d(bs, Ca) , s = 1, . . . ,K , (P1)
d(bs, as) = (1−

√
α)d(as, Ca) , s = 1, . . . ,K . (P2)

Then, b is a solution of

inf
b∈X K

{
K∑
s=1

wsd
2(bs, as) :

K∑
s=1

wsd
2(bs, Cb) ≤ α

K∑
s=1

wsd
2(as, Ca)

}
. (7.4)

3When there is no ambiguity in the weights w we simply write Ca.
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Figure 7.2: Illustration of Lemma 7.4.3 for (X , d) = (R2, ∥ · ∥2) and α ∈ {0.25, 0.5, 0.75}. The
initial points a1, a2, a3 are the vertices of an isosceles triangle. The weights are set as follows:
w1 = 0.1, w2 = 0.4 and w3 = 0.5.

Remark 7.4.4. Property (P1) essentially requires that each bi lies on the geodesic between ai
and Ca while Property (P2) specifies the location of bi on this geodesic: bi should be (1−

√
α)

times closer to ai, than Ca to ai. An illustration provided on Figure 7.2 describes these
properties in Euclidean geometry. For general case, the straight lines should be replaced by
geodesics.

The setting of Lemma 7.4.3 is quite general and only requires existence of barycenters (also
known as the Fréchet means) for any finite weighted combination of points in accordance
with Definition 7.4.2. For our purposes, Lemma 7.4.3 will be applied to the metric space
(X , d) = (P2(R),W2). We refer to (Agueh and Carlier 2011; Le Gouic and Loubes 2017) who
investigate and prove the existence of Wasserstein barycenters of random probabilities defined
on geodesic spaces.

Proof of Lemma 7.4.3. Fix some a = (a1, . . . , aK) ∈ XK , w = (w1, . . . , wK)⊤ ∈ ∆K−1 and let
Ca be a barycenter of a with respect to weights w. Fix α ∈ [0, 1] and any b = (b1, . . . , bK) ∈ XK
which satisfies properties (P1)–(P2). Let bk = (bk1, . . . , bkK) ∈ XK be a minimizing sequence
of the problem (7.4) and for any b′ = (b′

1, . . . , b
′
K) ∈ XK denote by G(b′) = ∑K

s=1wsd
2(b′

s, as)
the objective function of the problem (7.4). Then, by the definition of a minimizing sequence,
the following two properties hold

lim
k→∞

G(bk) = inf
b∈X K

{
G(b) :

K∑
s=1

wsd
2(bs, Cb) ≤ α

K∑
s=1

wsd
2(as, Ca)

}
, (7.5)

K∑
s=1

wsd
2(bks , Cbk

) ≤ α
K∑
s=1

wsd
2(as, Ca) , ∀k ∈ N . (7.6)

Furthermore, using properties (P1)–(P2) we deduce that
K∑
s=1

wsd
2(bs, Cb) (a)=

K∑
s=1

wsd
2(bs, Ca) (P1)=

K∑
s=1

ws (d(as, Ca)−d(as, bs))2 (P2)= α
K∑
s=1

wsd
2(as, Ca) ,

where (a) follows from Lemma 7.9.3 in appendix. Therefore, b = (b1, . . . , bs) ∈ XK is feasible
for the problem (7.4).
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By Lemma 7.9.2 it holds for all k ∈ N that

{
K∑
s=1

wsd
2(as, Cbk

)
}1/2

≤
{

K∑
s=1

wsd
2(as, bks)

}1/2

+
{

K∑
s=1

wsd
2(bks , Cbk

)
}1/2

= G
1/2(bk) +

{
K∑
s=1

wsd
2(bks , Cbk

)
}1/2

.

We continue using the definition of Ca and Eq. (7.6) to obtain for all k ∈ N{
K∑
s=1

wsd
2(as, Ca)

}1/2

≤
{

K∑
s=1

wsd
2(as, Cbk

)
}1/2

≤ G1/2(bk) +
√
α

{
K∑
s=1

wsd
2(as, Ca)

}1/2

,

which after rearranging implies that

(1−
√
α)
{

K∑
s=1

wsd
2(as, Ca)

}1/2

≤ G1/2(bk), ∀k ∈ N .

Finally, using property (P2) we derive that

G(b) ≤ G(bk), ∀k ∈ N .

Recall that we have already shown that b is feasible for the problem (7.4), hence taking the
limit w.r.t. to k concludes the proof of Lemma 7.4.3.

The complete proof of Proposition 7.4.1 is omitted in the main body. We only provide a short
intuition.

Sketch of the proof. The idea of the proof is to apply Lemma 7.4.3 with (X , d) = (P2(R),W2)
and with measures as := ν∗

s , which belong to P2(R) due to Assumption 7.2.1. Then, we need
to construct measures b = (b1, . . . , bK)⊤ ∈ PK2 (R), which satisfy the properties (P1)–(P2). To
this end, let γs be the (constant-speed) geodesic between as and Ca i.e., γs(0) = as, γs(1) = Ca.
We define bs := γs(1−

√
α) for s ∈ [K], similarly to the intuition provided by Figure 7.2. One

can verify that that b = (bs)s∈[K] satisfies (P1) and (P2). Then, by Lemma 7.4.3 we know that
b solves the minimization problem in Eq. (7.4). For the final part of the proof we propagate the
optimality of b in the space of distributions to the optimality of f∗

α in the space of predictions
using the assumption that a admits a density and an explicit construction of the geodesic
γs.

7.4.2 Risk-fairness trade-off on the population level

The next key result of our framework establishes the risk-fairness trade-off provided by the
parameter α ∈ [0, 1] on the population level. In particular, it establishes a simple user-friendly
relation between the risk and unfairness of α-relative improvement. Note that such a result is
not available neither for UTV nor for UKS, due to fundamentally different geometries of the
squared risk and the aforementioned distances.



7.4. ORACLE α-RELATIVE IMPROVEMENT 145

Lemma 7.4.5. Let Assumption 7.2.1 be satisfied, then for any α ∈ [0, 1] it holds that

R(f∗
α) = (1−

√
α)2R(f∗

0 ) = (1−
√
α)2U(f∗) . (7.7)

Proof. Proposition 7.4.1 gives the following explicit expression for the best α-improvement of
f∗:

f∗
α(x, s) =

√
αf∗(x, s) + (1−

√
α)f∗

0 (x, s) .

Plugging it in the risk gives

R(f∗
α) = ∥f∗

α − f∗∥22 = (1−
√
α)2∥f∗

0 − f∗∥22 = (1−
√
α)2R(f∗

0 ) .

This proves the first equality. Given the definition of f∗
0 , the second equality is exactly the

result stated in Theorem 7.3.2.

Recall that thanks to Theorem 7.3.2 we have R(f∗
0 ) = U(f∗). Hence, the α-relative improve-

ment f∗
α enjoys the following two properties

R(f∗
α) = (1−

√
α)2R(f∗

0 ) and U(f∗
α) = αU(f∗) .

For instance, if α = 1/2, that is, we want to half the unfairness of f∗, it incurs the risk which is
equal to ≈ 8.5% of the risk of exactly fair predictor f∗

0 . We illustrate this general behaviour in
Figure 7.1 (Section 7.2), where the risk and the unfairness of f∗

α are shown for different levels
of U(f∗). A striking observation we can make from this plot is that, letting α vary between 0
and 1, the risk of f∗

α growth rapidly in the vicinity of zero, while it behaves almost linearly in
a large neighbourhood of one. That is, one can find a prediction f whose unfairness U(f) is
smaller than that of f∗ by a constant multiplicative factor, without a large increase in risk.

Remark 7.4.6. Let us remark that the results of this section apply in the case of arbitrary
weights w. This can be potentially useful for applications where the group-wise risks must be
re-weighted. For instance, one can consider uniform weights w = (1/K, . . . , 1/K)⊤ or weights
which are proportional to 1/P(S = s).

7.4.3 Pareto efficiency: a systematic way to select α

Even though the parameter α ∈ [0, 1] has a clear interpretation in our framework, one still
might have to figure out which α to pick in practice. The ultimate theoretical goal is to find a
prediction f which simultaneously minimizes the risk R and the unfairness U . Yet, unless
f∗ satisfies U(f∗) = 0, this goal is unreachable and some trade-offs must be examined. A
standard approach to study such multi-criteria optimization problems is via the notion of
Pareto dominance and Pareto efficiency (Osborne and Rubinstein 1994). In words, the idea of
Pareto analysis is to restrict the attention of a practitioner to some set of “good” predictors,
termed Pareto frontier of the multi-criteria optimization problem, instead of considering all
possible predictions. In this section, we show that the set of oracle α-RI {f∗

α}α∈[0,1] is the
Pareto frontier of the multi-criteria minimization problem with target functions f 7→ R(f)
and f 7→ U(f).
Let us first introduce the terminology of the Pareto analysis specified for our setup. We say
that a prediction f Pareto dominates a prediction f ′ if one of the following holds
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Figure 7.3: Illustration of Pareto frontiers and Pareto dominance. Left: Orange (hatched)
part is not realisable by any prediction f ; Each point of green (not hatched) part is realizable
by some prediction f ; The curve that separates the two is the Pareto frontier. Center : The
darker green (dotted) rectangle in the upper right corner is the set of predictors dominated by
f∗

0.2. Right: Evolution of the Pareto frontier when U(f∗) decreases.

• R(f) ≤ R(f ′) and U(f) < U(f ′);

• R(f) < R(f ′) and U(f) ≤ U(f ′).

To denote the fact that f ′ is dominated by f we write f ′ ≺ f . Moreover, we say that f ′ and f
are comparable if either f ′ ≺ f or f ≺ f ′. Intuitively, whenever f ′ ≺ f , the prediction f is
strictly preferable, since it is at least as good as f ′ for both criteria and it is strictly better for
at least one of them.
Note that not every two predictions are actually comparable, that is, the relation ≺ only
defines a partial-order. It is a known fact that partially ordered sets can be partitioned into
well-ordered chains, that is, every pair within the chain is comparable and the restriction of
≺ on this chain defines an order relation. In this set-theoretic terminology, a prediction f is
Pareto efficient if it is maximal within some chain in the sense of the partial order ≺. In other
words, a prediction f is Pareto efficient if it is not dominated by any other prediction. The
set of all Pareto efficient predictions is called the Pareto frontier and is denoted by PF.
Note that it would be more accurate to say that f ′ P-Pareto dominates f and f ′ is P-Pareto
efficient, since the above definitions are acting on the level of population and they do depend
on the underlying distribution. We omit this notation for simplicity.
In general, an analytic description of the Pareto frontier PF is not necessarily feasible. However,
in our case, thanks to the analysis of the previous section, we can precisely describe the Pareto
frontier of this problem.

Proposition 7.4.7. Let Assumption 7.2.1 be satisfied. Then, the Pareto frontier for the multi-
criteria minimization problem with objective functions R(f) and U(f) is given by {f∗

α}α∈[0,1].

Proof. On the one hand, by definition of f∗
α it holds that {f∗

α}α∈[0,1] ⊂ PF. On the other hand,
let f ∈ PF with U(f) ̸= 0 and let αf := U(f)/U(f∗). Then by the definition of αf it holds
that U(f) = αf U(f∗). Furthermore, by definition of f∗

αf
it holds that R(f∗

αf
) ≤ R(f) and
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by Lemma 7.4.5 it holds that U(f∗
αf

) = αf U(f∗). Finally, since f is Pareto efficient it holds
that R(f) ≤ R(f∗

αf
). If f ∈ PF is such that U(f) = 0, then it is as good as f∗

0 in the sense of
Pareto. The proof is concluded4.

Note that any predictor f defines a point (U(f),R(f)) in the coordinate system (U ,R). The
left plot of Figure 7.3 illustrates the Pareto frontier and those values of (U ,R) that are
attainable by some prediction f . We remark that the convexity of the Pareto frontiers curve
is due to the specific trade-off provided by the parameter α. For a general multi-criteria
optimization problem this convexity is not ensured. The right plot of Figure 7.3 demonstrates
the evolution of the Pareto frontier when U(f∗) decreases. A general conclusion of this plot is
that if U(f∗) is low, then one can set α = 1.
Finally, Proposition 7.4.7 provides simple practical guidelines for the study of the trade-
off given by α. Note that since thanks to Lemma 7.4.5 it holds that R(f∗

0 ) = U(f∗) and
U(f∗

1 ) = U(f∗), then the practitioner needs to estimate only one quantity U(f∗) and trace the
curve of Pareto frontier in order to establish the desired trade-off for the problem at hand.

7.5 Minimax setup

While the previous section was dealing with the general framework on the population level, the
goal of this section is to put forward a minimax setup for the statistical problem of regression
with the introduced fairness constraints.
Let (X1, S1, Y1), . . . , (Xn, Sn, Yn) be i.i.d. sample with joint distribution P(f∗,θ), where the
pair (f∗,θ) ∈ F ×Θ for some class F and Θ. In this notation f∗ is the regression function and
θ is a nuisance parameter. For example F can be the set of all affine or Lipschitz continuous
functions and Θ defines additional assumptions on the model in Eq. (7.1) (see Section 7.6 for a
concrete example). For a given fairness parameter α ∈ [0, 1] and a given confidence parameter
t > 0, the goal of the statistician is to construct an estimator5 f̂ , which simultaneously satisfies
the following two properties

1. Uniform fairness guarantee:

∀(f∗,θ) ∈ F ×Θ P(f∗,θ)
(
U(f̂) ≤ αU(f∗)

)
≥ 1− t , (7.8)

2. Uniform risk guarantee:

∀(f∗,θ) ∈ F ×Θ P(f∗,θ)
(
R(f̂) ≤ rn,α,f∗(F ,Θ, t)

)
≥ 1− t . (7.9)

Eq. (7.8) states that the constructed estimator satisfies the fairness requirement with high
probability uniformly over the class F ×Θ. Meanwhile, in Eq. (7.9) we seek for the smallest
rate rn,α,f∗(F ,Θ, t) to quantify the statistical price of being α-relatively fair. Note that
rn,α,f∗(F ,Θ, t) depends explicitly on f∗. This is explained by the fact that the fairness of

4To be more precise, one needs to introduce the equivalence relation ∼ defined as f ∼ f ′ iff R(f) = R(f ′)
and U(f) = U(f ′) and to perform the exact same proof on the quotient space. For the sake of presentation we
omit this benign technicality.

5As usual, an estimator f̂ is a measurable mapping of data to the space of predictions.



148 CHAPTER 7. QUANTIFYING RISK-FAIRNESS TRADE-OFF

f̂ is measured relatively to f∗, hence the price of this constraint also depends on the initial
unfairness level of the regression function f∗.
The actual construction of the estimator f̂ is problem dependent and the proving that it
satisfies Eqs. (7.8)–(7.9) requires a careful case-by-case study. In Section 7.6 we provide an
example of such analysis for a simple statistical model of linear regression with systematic
group-dependent bias.

7.5.1 Generic lower bound

While the upper bounds of Eqs. (7.8)–(7.9) require a problem dependent analysis, a general
problem dependent lower bound can be derived. In this section we develop such lower bound.
Let us first introduce some useful definitions.

Assumption 7.5.1 (Unconstrained rate). For a fixed confidence level t ∈ (0, 1) and a class
(F ,Θ), there exists a positive sequence δn(F ,Θ, t) such that

inf
f̂

sup
(f∗,θ)∈F×Θ

P(f∗,θ)
(
R(f̂) ≥ δn(F ,Θ, t)

)
≥ t ,

where the infimum is taken over all estimators.

Assumption 7.5.1 can be used with any sequence δn(F ,Θ, t), however, we implicitly assume
that δn(F ,Θ, t) corresponds to the minimax optimal rate of estimation of f∗ by any estimator
(without constraints) in expected squared loss.

Definition 7.5.2 (Valid estimators). For some α ∈ [0, 1] and confidence level t′ ∈ (0, 1) we
say that an estimator f̂ is (α, t′)-valid w.r.t. the class (F ,Θ) if

inf
(f∗,θ)∈F×Θ

P(f∗,θ)
(
U(f̂) ≤ αU(f∗)

)
≥ 1− t′ .

The set of all (α, t′)-valid estimators w.r.t. the class (F ,Θ) is denoted by F̂(α,t′).

Definition 7.5.2 characterizes estimators which satisfy the α-RI constraint at least with constant
probability uniformly over the class (F ,Θ).
Equipped with Assumption 7.5.1 and Definition 7.5.2 we are in position to state the main
result of this section, which establishes the statistical risk-fairness trade-off. As we will see in
Section 7.6, supported by appropriate upper bounds, Theorem 7.5.3 yields optimal rates of
convergence up to a multiplicative factor.

Theorem 7.5.3. Let Assumption 7.2.1 be satisfied. Let δn(F ,Θ, t) be a sequence that satisfies
Assumption 7.5.1. Then

inf
f̂∈F̂(α,t′)

sup
(f∗,θ)∈F×Θ

P(f∗,θ)
(
R1/2(f̂) ≥ δ1/2

n (F ,Θ, t) ∨ (1−
√
α)U 1/2(f∗)

)
≥ t ∧ (1− t′) .

Drawing an analogy with Lemma 7.4.5, the two terms of the derived bound have natural
interpretations: the first term δn(F ,Θ, t) is the price of statistical estimation; the second term
(1−
√
α)2U(f∗) is the price of fairness. Consequently, the rate rn,α,f∗(F ,Θ, t) in Eq. (7.9) is
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lower bounded (up to a multiplicative constant factor) by δ1/2
n (F ,Θ, t)∨ (1−

√
α)U 1/2(f∗). The

confidence parameter on the r.h.s. of the bound is t ∧ (1 − t′). The reasonable choice of t′
is in the vicinity of zero, which corresponds to estimators satisfying the fairness constraint
with high probability. Finally, observe that this bound in not conventional in the sense of
classical statistics, where the bound would converge to zero with the growth of sample size.
This behavior is not surprising, since the infimum is taken w.r.t. to (α, t′)-valid estimators and
not w.r.t. all possible estimators. One can draw an analogy of the obtained bound with recent
results in robust statistics (Chen, Gao, and Ren 2016; Chen, Gao, and Ren 2018), where the
minimax rate converges to a function of the proportion of outliers, which might be different
from zero.

7.6 Application to linear model with systematic bias

Additional notation We denote by ∥ · ∥2 and by ∥ · ∥n = (1/
√
n)∥ · ∥2 the Euclidean and the

normalized Euclidean norm. The standard scalar product is denoted by ⟨·, ·⟩. We denote by
1p the vector of all ones of size p. For square matrix A ∈ Rn×n, n ≥ 1, we write A ≻ 0 if A is
symmetric positive-definite.
The goal of this part is to provide an example of a complete statistical analysis for a regression
problem under the α-RI constraint. In particular, we show how to apply the plug-and-play
results of Section 7.5.1 in order to derive minimax rate optimal bounds under the α-RI
constraint. To this end we apply the developed theory to the following model of linear
regression with systematic group-dependent bias

Y = ⟨X,β∗⟩+ b∗
S + ξ , (7.10)

where X ∼ N (0,Σ) is a feature vector independent from the sensitive attribute S with Σ ≻ 0;
ξ ∼ N (0, σ2) is an additive independent noise; and the vector b∗ = (b∗

1, . . . , b
∗
K) is the vector

of systematic bias. We assume that the noise level σ is known to the statistician. Note that
in this case the regression function f∗ is given by the expression f∗(x, s) = ⟨x,β∗⟩+ b∗

s and
Assumption 7.2.1 is satisfied. We assume that the observations are

Ys = Xsβ
∗ + b∗

s1ns + ξs, s = 1, . . . ,K , (7.11)

with Ys, ξs ∈ Rns , Xs ∈ Rns×p, and 1ns is the vector of all ones of size ns. The rows of Xs

are i.i.d. realization of X, the components of ξs are i.i.d. from N (0, σ2). Additionally, we set
n = n1 + . . .+ nK and ws = ns/n. The risk of a prediction rule f : Rp × [K]→ R is defined as

R(f) =
K∑
s=1

wsE (⟨X,β∗⟩+ b∗
s − f(X, s))2 .

Remark 7.6.1. We set ws = ns/n instead of ws = P(S = s) to simplify the presentation and
proofs of the main results. Thanks to Remark 7.4.6, all of the statements of Sections 7.4-
7.5 are applied for this choice. Finally, note that if P(S = s) = w′

s and S1, . . . , Sn is an
i.i.d. sample, then ns = ∑n

i=1 I{Si = s} and E[ns/n] = w′
s, that is our choice of weights

essentially corresponds to the scenario of i.i.d. sampling of sensitive attribute.
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Using the terminology of Section 7.5.1 the joint distribution of data sample P(f∗,θ) is uniquely
defined by (β∗, b∗) and (Σ, σ). That is, (β∗, b∗) defines the regression function f∗ and (Σ, σ)
is the nuisance parameter θ. To simplify the notation we write P(β∗,b∗) instead of P(β∗,b∗,Σ,σ).
The following result is the application of Proposition 7.4.1 to the model in Eq. (7.10).

Proposition 7.6.2. For all α ∈ [0, 1], the α-relative improvement of f∗ is given for all
(x, s) ∈ Rp × [K] by

f∗
α(x, s) = ⟨x,β∗⟩+

√
αb∗

s + (1−
√
α)

K∑
s=1

wsb
∗
s .

In order to build an estimator f̂ , which improves the fairness of f∗, while providing minimal risk
among such predictions, we first estimate parameters of model in Eq. (7.10) using least-squares
estimators

(β̂, b̂) ∈ arg min
(β,b)∈Rp×RK

K∑
s=1

ws ∥Ys −Xsβ − bs1ns∥
2
ns

. (7.12)

Based on the above quantities we then define a family of linear estimators f̂τ parametrized by
τ ∈ [0, 1] as

f̂τ (x, s) = ⟨x, β̂⟩+
√
τ b̂s + (1−

√
τ)

K∑
s=1

wsb̂s, (x, s) ∈ Rp × [K] . (7.13)

We would like to find a value of τ = τn(α) such that Eqs. (7.8)–(7.9) are satisfied. Note that
the choice of τ = α would not yield the desired fairness guarantee stated in Eq. (7.8). As it
will be shown later, τ should be smaller than α, in order to account for finite sample effects
and derive high confidence fairness guarantee. The next result shows that under the model in
Eq. (7.10), the unfairness of f̂τ can be computed in a data-driven manner, which is crucial for
the consequent choice of τ .

Lemma 7.6.3. For any τ ∈ [0, 1], the unfairness of f̂τ is given by

U(f̂τ ) = τ
K∑
s=1

ws

(
b̂s −

K∑
s′=1

ws′ b̂s′

)2

,

almost surely.

Apart from being computable in practice, Lemma 7.6.3 provides an intuitive result that U(f̂τ )
is the variance of the bias term b̂.

7.6.1 Upper bound

Linear regression is one of the most well-studied problems of statistics (Nemirovski 2000;
Tsybakov 2003; Györfi et al. 2006; Mourtada 2019; Catoni 2004; Hsu, Kakade, and Zhang
2012; Audibert and Catoni 2011). In the context of fairness, linear regression is considered
in (Calders et al. 2013; Berk et al. 2017; Donini et al. 2018), where the fairness constraint is
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formulated via the approximate equality of group-wise means. In this section we establish a
statistical guarantee on the risk and fairness of f̂τ for an appropriate data-driven choice of τ .
Our theoretical analysis in this part is inspired by that of Hsu, Kakade, and Zhang 2012, who
derived high probability bounds on least squares estimator for linear regression with random
design.
The following rate plays a crucial rule in the analysis of this section

δn(p,K, t) = 8
(
p

n
+ K

n

)
+ 16

√ p

n
+
√
K

n

√ t

n
+ 32t

n
.

Not taking into account the confidence parameter t > 0, δn(p,K, t) ≍ (p+K)/n up to a
constant multiplicative factor, which as it is shown in Theorem 7.6.5 is the minimax optimal
rate for the model in Eq. (7.10) without the fairness constraint.

Theorem 7.6.4 (Fairness and risk upper bound). Define

τ̂ =

α
(

1 + σδ
1/2
n (p,K,t)

U1/2(f̂1)−σδ
1/2
n (p,K,t)

)−2
if U 1/2(f̂1) > σδ

1/2
n (p,K, t)

0, otherwise
.

Consider p,K ∈ N, t ≥ 0 and define γ(p,K, t) = (4
√
K + 5

√
t+ 6√

p)/(√p+
√
t). Assume that√

n ≥ 2(√p+
√
t)/(γ(p,K, t) −

√
γ2(p,K, t) − 3). Then, for any α ∈ [0, 1], with probability at least

1− 4 exp(−t/2) it holds that

U(f̂τ̂ ) ≤ αU(f∗) and R1/2(f̂τ̂ ) ≤ 2σ(1+
√
α)δ1/2

n (p,K, t) + (1−
√
α)U 1/2(f∗) .

Theorem 7.6.4 simultaneously provides two results: first, it shows that the estimator f̂τ̂ is
(α, 4e−t/2)-valid, that is, it satisfies the fairness constraint with high probability; second it pro-
vides the rate of convergence which consists of two parts. The first part of the rate, σδ1/2

n (p,K, t),
is the price of statistical estimation of (β∗, b∗), while the second part, (1−

√
α)U 1/2(f∗), is the

price one has to pay when introducing the α-RI fairness constraint. In order to achieve the
fairness validity, we need to loosen the value of α to reflect the base level of unfairness, that is,
τ̂ is adjusted by U(f̂1). Let us point out that the bound of Theorem 7.6.4 slightly differs from
the conditions required by Eqs. (7.8)–(7.9). In particular, it provides a joint guarantee on risk
and fairness.
Let us remark that the previous result requires n to be sufficiently large, similarly to the
conditions in (Hsu, Kakade, and Zhang 2012; Audibert and Catoni 2011). One can obtain a
more explicit, but more restrictive bound on n by finding sufficient conditions under which
the assumption on n is satisfied. For instance, rough computations show that it is sufficient to
assume that

√
n ≥ 16

√
K and

√
n ≥ 12.5(√p+

√
t).

At last, we emphasize that the choice of τ̂ requires the knowledge of the noise level σ, that is,
this choice is not adaptive. However, our proof can effortlessly be extended to the case when
only an upper bound σ̄ on the noise level σ is known. In this case σ should be replaced by σ̄
in the definition of τ̂ and in the resulting rate. The question of adaptation to σ without any
prior knowledge should be treated separately and is out of the scope of this work.
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Figure 7.4: Dashed green and brown lines correspond to the risk and unfairness of f∗
α

respectively. Solid green and brown lines correspond to the average risk and unfairness of
f̂τ(α) and the shaded region shows three standard deviations over 50 repetitions. On the left
τ(α) = τ̂ and on the risk τ(α) = α.

7.6.2 Lower bound

The goal of this section is to provide a lower bound, demonstrating that the result of
Theorem 7.6.4 is minimax optimal up to a multiplicative constant factor. Recall that thanks
to the general lower bound derived in Theorem 7.5.3 it is sufficient to prove a lower bound
on the risk without constraining the set of possible estimators. Even though the problem of
linear regression is well studied, to the best of our knowledge there is no known lower bound
for the model in Eq. (7.10) which i) holds for the random design ii) is stated in probability iii)
considers explicitly the confidence parameter t. Next theorem establishes such lower bound.

Theorem 7.6.5. For all n, p,K ∈ N, t ≥ 0, σ > 0 it holds that

inf
f̂

sup
(β∗,b∗)∈Rp×RK ,Σ≻0

P(β∗,b∗)

(
R(f̂) ≥ σ2

3 · 29n
(
√
p+K +

√
32t)2

)
≥ 1

12e
−t ,

where the infimum is taken w.r.t. all estimators.

The proof of Theorem 7.6.5 relies on standard information theoretic results. In particular, in
order to prove optimal exponential concentration we follow similar strategy as that of Bellec
2017; Kerkyacharian et al. 2014 who derived optimal exponential concentrations in the context
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Figure 7.5: Dashed green and brown lines correspond to the risk and unfairness of f∗
α

respectively. Solid green and brown lines correspond to the average risk and unfairness of
f̂τ(α) and the shaded region shows three standard deviations over 50 repetitions. On the left
τ(α) = τ̂ while on the right τ(α) = α.

of density aggregation and binary classification. Theorem 7.6.5 combined with generic lower
bound derived in Theorem 7.5.3 yields the following corollary.

Corollary 7.6.6. Let δ̄n(p,K, t) = (
√

(p+K)/n +
√

32t/n)2/(3 · 29). For all n, p,K ∈ N, t ≥ 0,
σ > 0, α ∈ [0, 1] it holds for all t ≥ 0 and all t′ ≤ 1− e−t/12 that

inf
f̂∈F̂α,t′

sup
(β∗,b∗)∈Rp×RK ,Σ≻0

P(β∗,b∗)
(
R1/2(f̂) ≥ σδ̄1/2

n (p,K, t) ∨ (1−
√
α)U 1/2(f∗)

)
≥ 1

12e
−t .

Comparing the upper bound of Theorem 7.6.4 and the lower bound of Corollary 7.6.6 we
conclude that the two obtained rates are the same up to a multiplicative constant factor.
Hence confirming the tightness of the results derived in Section 7.5.1.

7.6.3 Simulation study

In this section we perform simulation study to empirically validate our theoretical analysis6.
Before continuing let us discuss the notion of signal-to-unfairness ratio. Setting β∗ = 0 in

6For our empirical validation and illustrations we have relied on the following python pack-
ages: scikit-learn (Pedregosa et al. 2011a), numpy (Van Der Walt, Colbert, and Varoquaux 2011),
matplotlib (Hunter 2007), seaborn.
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the model (7.10), if the amplitudes of b∗
s is much smaller than the noise level σ2, then the

observations Ys are mainly composed of noise. While for the prediction problem it is not a
problem, since our rates will scale with the noise level, it becomes important for the estimation
of unfairness U(f∗). Motivated by this discussion, we define the noise-to-unfairness ratio as

NUR2 := σ2

U(f∗) .

The signal-to-unfairness ratio tells as how the level of unfairness compares to the noise level.
The regime NUR ≫ 1 means that the unfairness of the distributions is below the noise level,
and it is statistically difficult to estimate it. In contrast, NUR ≪ 1 implies that the unfairness
dominates the noise. Instead of varying U(f∗) and σ we fix σ and perform our study for
different values of NUR.
We follow the following protocol. For some fixed K,n1, . . . , nK , p, σ,NUR we simulate the
model in Eq. (7.11) with Σ = Ip. In all the experiments we set β∗ = (1, . . . , 1)⊤ ∈ Rp. For
b∗ we first define v = (1,−1, 1,−1, . . .)⊤ ∈ RK and set b∗ = v

√
σ2/NUR ·VarS(v), where VarS(v)

is the variance of v with weights w1, . . . , wK . So that the unfairness of this model is exactly
equal to σ2/NUR2. On each simulation round of the model, we compute the estimator in
Eq. (7.13) with two choices of parameter τ :

1. Proposed: τ(α) = τ̂ from Theorem 7.6.4;
2. Naive: τ(α) = α.

Remark 7.6.7. While performing experiments we have noticed that setting τ̂ with δn(p,K, t)
defined in Theorem 7.6.4 results in too pessimistic estimates in terms of unfairness, for this
reason in all of our experiments we set δn(p,K, t) = (p/n) + (K/n), which is of the same order
as that of Theorem 7.6.4.

Then, for each f̂τ(α) we evaluate R(f̂τ(α)) and U(f̂τ(α)). This procedure is repeated 50 times,
which results in 50 values of R(f̂τ(α)) and U(f̂τ(α)) for each α ∈ (0, 1). For these 50 values
we compute mean and standard deviation. We considered p = 10, K = 5, σ = 1, and
NUR ∈ {0.2, 0.5, 2}. Furthermore, for the choice of n1, . . . , nK we study the following two
regimes

1. Balanced: n1 = . . . = n5 = 100.
2. Unbalanced: n1 = 5, n2 = 45, n3 = 100, n4 = 100, n5 = 250.

The reason we consider two regimes is to confirm the theoretical findings of Theorem 7.6.4,
which indicate that the rate is governed by n1 + . . .+nK instead of the their individual values.
Finally, for a given fairness parameter function α 7→ τ(α) we report cumulative risk increase
over all α ∈ [0, 1] defined as

∆R(τ) :=
∫ 1

0

(
R(f̂τ(α))−R(f∗

α)
)
dα .

This quantity describes the cumulative risk loss of the rule τ(α) across all the levels of fairness
α compared to the best α-relative improvement f∗

α.
On Figures 7.4–7.5 we draw the evolution of the risk and of the unfairness when α traverses
the interval [0, 1]. We also report ∆R(τ) defined above. Inspecting the plots we can see that
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Balanced

Oracle Proposed Naive
α R(f∗

α) U(f∗
α) R(f̂τ̂ ) U(f̂τ̂ ) R(f̂α) U(f̂α)

0 2.0 0.0 2.13± 0.03 0.0± 0.0 2.13± 0.03 0.0± 0.0
0.2 0.61 0.4 0.87± 0.05 0.31± 0.02 0.74± 0.04 0.40± 0.03
0.4 0.27 0.8 0.52± 0.05 0.62± 0.05 0.40± 0.04 0.81± 0.05
0.6 0.10 1.2 0.34± 0.04 0.93± 0.07 0.24± 0.04 1.21± 0.08
0.8 0.02 1.6 0.23± 0.04 1.25± 0.09 0.16± 0.03 1.61± 0.11
1 0.0 2.0 0.17± 0.03 1.56± 0.12 0.14± 0.03 2.02± 0.14

Table 7.1: Summary for p = 10,K = 5,NUR = 0.5. We report the mean and the standard
deviation.

that the main disadvantage of the naive choice of τ = α is its poor fairness guarantee, that is,
in almost half of the outcomes, the unfairness of f̂α exceeded the prescribed value. In contrast,
the proposed choice of τ(α) = τ̂ consistently improves the unfairness of the regression function
f∗, empirically validating our findings in Theorem 7.6.4. However, good fairness results
come at the cost of consistently higher risk. One can also see that the effect of unbalanced
distributions is negligible for the considered model (it only affects the variance of the result).
This is explained by the definition of the risk, which weights the groups proportionally to their
frequencies. Finally, observing the behavior of naive approach for NUR = 0.2 and NUR = 2
we note that in the latter case the unfairness of f̂α starts to deviate from the true value
(with consistently positive bias). Meanwhile, since the proposed choice τ(α) = τ̂ is more
conservative, the bias remains negative, that is, the unfairness of f∗ is still improved.
Table 7.1 presents the numeric results for p = 10, K = 5, NUR = 0.5. We remark the striking
drop in the risk for α = 0.2, indicating that a slight relaxation of the Demographic Parity
constraint results in a significant improvement in terms of the risk. Of course, the justification
of such a relaxation must be considered based on the application at hand.

7.7 Conclusion

In this work we proposed a theoretical framework for rigorous analysis of regression problems
under fairness requirements. Our framework allows to interpolate between the regression of
demographic parity and the unconstrained regression using univariate parameter between zero
and one. Within this framework we precisely quantified the risk-fairness trade-off and derived
general plug-n-play lower bound. To demonstrate the generality of our results we provided
minimax analysis of the linear model with systematic group-dependent bias. Finally, we have
performed empirical validation. For future work it would be interesting to extend our analysis
to other statistical model, providing estimators with high confidence fairness improvement.
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7.8 Reminder

7.8.1 The Wasserstein-2 distance

Additional notation For any s ∈ [K], we denote by µX|s the conditional distribution of
the feature vector X knowing the attribute s. For a probability measure µ on Rp and a
measurable function g : Rp → R, we denote by g#µ the push-forward (image) measure. That
is for all measurable set C ⊂ R it holds that (g#µ)(C) := µ{x ∈ Rp : g(x) ∈ C}.
We recall basic results on the Wasserstein-2 distance on the real line. We recall that the
Wasserstein-2 distance between probability distributions µ and ν in P2(Rd), the space of
measures on Rd with finite second moment, is defined as

W 2
2 (µ, ν) := inf

γ∈Γ(µ,ν)

{∫
Rd×Rd

∥x− y∥22dγ(x,y)
}

, (7.14)

where Γ(µ, ν) denotes the collection of measures on Rd × Rd with marginals µ and ν. See
Santambrogio (2015) and Villani (2003) for more details about Wasserstein distances and
optimal transport.
The following lemma gives a closed form expression for the Wasserstein-2 distance between
two univariate Gaussian distributions.

Lemma 7.8.1 (Fréchet 1957). For any m0,m1 ∈ R, σ0, σ1 ≥ 0 it holds that

W 2
2

(
N (m0, σ

2
0),N (m1, σ

2
1)
)

= (m0 −m1)2 + (σ0 − σ1)2 .

The next lemma gives a closed form expression for the barycenter of K univariate Gaussian
distributions. It shows in particular that such barycenter is also a univariate Gaussian
distribution.

Lemma 7.8.2 (Agueh and Carlier 2011). Let w ∈ RK be a probability vector, then the solution
of

min
ν∈P2(R)

K∑
s=1

wsW
2
2

(
N (ms, σ

2
s), ν

)
,

is given by N (m̄, σ̄2) with

m̄ =
K∑
s=1

wsms and σ̄ =
K∑
s=1

wsσs .

Finally we state a lemma giving an explicit form for the transport map to the barycenter
of probability distributions supported on the real line and the corresponding constant speed
geodesics. See Agueh and Carlier 2011, Section 6.1.

Lemma 7.8.3. Let a1, . . . , aK be non-atomic probability measures on the real line that have
finite second moments, and let w1, . . . , wK be positive reals that sum to 1. Denote by ā a
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barycenter of those measures (w.r.t. to the Wasserstein-2 distance). For any s ∈ [K], the
transport map from as to the barycenter ā is given by

Tas→ā =
(

K∑
s′=1

ws′F−1
s′ ◦ Fs

)
,

where Fs is the cumulative distribution function of as and F−1
s denotes the generalized inverse

of Fs defined as

F−1
s (t) = inf{x : Fs(x) ≥ t} .

In particular, the constant speed geodesic γs(·) from as to ā is given by

γs(t) = ((1− t) Id +tTas→ā)#as, t ∈ [0, 1] .

7.8.2 Tail inequalities

The next result can be found in Laurent and Massart 2000, Lemma 1.

Lemma 7.8.4. Let ζ1, . . . , ζp be i.i.d. standard Gaussian random variables and let a =
(a1, . . . , ap)⊤ be component-wise non-negative. Then

P

 p∑
j=1

aj(ζ2
j − 1) ≥ 2 ∥a∥2

√
t+ 2 ∥a∥∞ t

 ≤ exp(−t), ∀t ≥ 0 .

In particular, setting ζ = (ζ1, . . . , ζp)⊤ and applying the previous result with a1 = . . . = ap = 1
we get

P
(
∥ζ∥22 ≥ p+ 2

√
pt+ 2t

)
≤ exp(−t), ∀t ≥ 0

We need one result from random matrix theory to control the smallest and largest singular
values of a Gaussian matrix, see Vershynin 2010, Corollary 5.35.

Lemma 7.8.5. Let A be an N ×m matrix whose entries are independent standard normal
random variables. Then,

P
(
σmin(A) ≤

√
N −

√
m− t

)
∨P

(
σmax(A) ≥

√
N +

√
m+ t

)
≤ exp(−t2/2), ∀t ≥ 0 .

7.9 Proofs for Section 7.4

7.9.1 Auxiliary results

The next result is taken from (Le Gouic, Loubes, and Rigollet 2020, Theorem 3).
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Lemma 7.9.1. Let f : Rp × [K]→ R be any measurable function. Let Assumption 7.2.1 be
satisfied, then

R(f) ≥
K∑
s=1

wsW
2
2

(
f(·, s)#µX|s, f

∗(·, s)#µX|s

)
.

Lemma 7.9.2 (Minkowski’s inequality). Let (X , d) be a metric space. Fix an integer K ≥ 2,
a weight vector w ∈ ∆K−1 and define the mapping dw : XK ×XK → R as

dw(a, b) =

√√√√ K∑
s=1

wsd2(as, bs), for any a, b ∈ XK .

Then, dw is a pseudo-metric on the product space XK .

Proof. The mapping dw is clearly symmetric and non-negative. We only have to check the
triangle inequality. Fix arbitrary a, b, c ∈ XK . Then, by triangular inequalities on the distance
d and Jensen’s inequality,

K∑
s=1

wsd
2(as, bs) ≤

K∑
s=1

wsd(as, bs)d(as, cs) +
K∑
s=1

wsd(as, bs)d(cs, bs)

≤

√√√√ K∑
s=1

wsd2(as, bs)

√√√√ K∑
s=1

wsd2(as, cs) +

√√√√ K∑
s=1

wsd2(as, bs)

√√√√ K∑
s=1

wsd2(cs, bs) .

That is,

dw(a, b) =

√√√√ K∑
s=1

wsd2(as, bs) ≤

√√√√ K∑
s=1

wsd2(as, cs) +

√√√√ K∑
s=1

wsd2(cs, bs)

= dw(a, c) + dw(c, b) .

Lemma 7.9.3. Let a = (a1, . . . , aK) ∈ XK , w = (w1, . . . , wK)⊤ ∈ ∆K−1. Assume that
b = (b1, · · · , bK) ∈ XK satisfies (P1)–(P2), then√√√√ K∑

s=1
wsd2(bs, Cb) =

√√√√ K∑
s=1

wsd2(bs, Ca) .

Proof. Let Cb be a barycenter of (bs)s∈[K] with weights (ws)s∈[K], then by Lemma 7.9.2 it
holds that √√√√ K∑

s=1
wsd2(as, Cb) ≤

√√√√ K∑
s=1

wsd2(as, bs) +

√√√√ K∑
s=1

wsd2(bs, Cb) . (7.15)
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The following chain of inequalities holds thanks to Eq. (7.15) and properties (P1)–(P2)√√√√ K∑
s=1

wsd2(bs, Cb) ≥

√√√√ K∑
s=1

wsd2(as, Cb)−

√√√√ K∑
s=1

wsd2(as, bs)

≥

√√√√ K∑
s=1

wsd2(as, Ca)−

√√√√ K∑
s=1

wsd2(as, bs)

= 1√
α

√√√√ K∑
s=1

wsd2(bs, Ca)− 1−
√
α√
α

√√√√ K∑
s=1

wsd2(bs, Ca)

=

√√√√ K∑
s=1

wsd2(bs, Ca) .

The converse inequality follows from the definition of Cb, which concludes the proof.

7.9.2 Proof of Proposition 7.4.1

Let α ∈ [0, 1]. For any s ∈ [K], define

as = f∗(·, s)#µX|s = ν∗
s , (7.16)

Let γs be the (constant-speed) geodesic between as and Ca i.e., γs(0) = as, γs(1) = Ca and
W2(γs(t1), γs(t2)) = |t2 − t1|W2(as, Ca) for any t1, t2 ∈ [0, 1]. Note that the uniqueness of the
geodesic come from the particular structure of the Wasserstein-2 space on the real line, see
e.g., Kloeckner 2010, Section 2.2. We define bs := γs(1−

√
α) for s ∈ [K]. Let us show that

b = (bs)s∈[K] satisfies the properties (P1)–(P2) of the Geometric Lemma 7.4.3 when considering
a = (as)s∈[K] with the weights (ws)s∈[K] and d ≡W2. By construction of bs = γs(1−

√
α), we

have

W2(bs, Ca) =
√
αW2(as, Ca) , (7.17)

W2(bs, as) = (1−
√
α)W2(as, Ca) . (7.18)

This shows that b = (bs)s∈[K] satisfies (P1) and (P2). Therefore, using Lemma 7.4.3 we get

K∑
s=1

wsW
2
2 (bs, as) = inf

b∈PK
2 (R)

{
K∑
s=1

wsW
2
2 (bs, as) :

K∑
s=1

wsW
2
2 (bs, Cb)≤α

K∑
s=1

wsd
2(as, Ca)

}
.

(7.19)

Finally, thanks to the Assumption 7.2.1 which says that that as = ν∗
s is atomless the constant

speed geodesic γs between as and Ca can be written as

γs(t) =
(

(1− t) Id +t
(

K∑
s′=1

ws′F−1
as′ ◦ Fas

))
#as

=
{(

(1− t) Id +t
(

K∑
s′=1

ws′F−1
as′ ◦ Fas

))
◦ f∗(·, s)

}
#µX|s, t ∈ [0, 1] .
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See Appendix 7.8.1 for details about the first equality. Substituting t = 1−
√
α to γs, the

expression for bs is

bs =
{(
√
α Id +

(
1−
√
α
)( K∑

s′=1
ws′F−1

as′ ◦ Fas

))
◦ f∗(·, s)

}
#µX|s . (7.20)

We define f∗
α for all (x, s) ∈ Rp × [K] as

f∗
α(x, s) =

√
αf∗(x, s) + (1−

√
α)

K∑
s′=1

ws′F−1
as′ (Fas(f∗(x, s))) , (7.21)

then after Eq. (7.20) it holds that bs = f∗
α(·, s)#µX|s and

W 2
2 (bs, as) = E

[
(f∗(X, S)− f∗

α(X, S))2 | S = s
]
. (7.22)

with U(f∗
α) = αU(f∗). Moreover, Lemma 7.9.1 implies that for any f such that U(f) ≤ αU(f∗)

we have

E(f∗(X,S)− f(X,S))2 ≥
K∑
s=1

wsW
2
2 (bs, as) =

K∑
s=1

wsE
[
(f∗(X, S)− f∗

α(X, S))2 | S = s
]

= R(f∗
α) .

Thus, f∗
α is the optimal fair prediction with α relative improvement. The proof is concluded.

7.10 Proof of Theorem 7.5.3

To ease the notation we write δn instead of δn(F ,Θ, t). We also define

Ψ(f̂ , (f∗,θ)) := P(f∗,θ)
(
R1/2(f̂) ≥ δ1/2

n ∨ (1−
√
α)U 1/2(f∗)

)
.

We split the proof according to two complementary cases.
Case 1: there exists (f∗,θ) ∈ F ×Θ such that δn ≤ (1−

√
α)2U(f∗). In this case, for such

couple (f∗,θ) ∈ F ×Θ and for any estimator f̂ ∈ F̂(α,t′) we have

Ψ(f̂ , (f∗,θ)) ≥ P(f∗,θ)
(
R1/2(f̂) ≥ δ1/2

n ∨ (1−
√
α)U 1/2(f∗), U(f̂) ≤ αU(f∗)

)
def. of f∗

α

≥ P(f∗,θ)
(
R1/2(f∗

α) ≥ δ1/2
n ∨ (1−

√
α)U 1/2(f∗), U(f̂) ≤ αU(f∗)

)
Lemma 7.4.5= P(f∗,θ)

(
U(f̂) ≤ αU(f∗)

)
I
{
δn ≤ (1−

√
α)2U(f∗)

}
.

Note that by definition of F̂(α,t′) it holds that

∀f̂ ∈ F̂(α,t′),∀(f∗,θ) ∈ F ×Θ, P(f∗,θ)
(
U(f̂) ≤ αU(f∗)

)
≥ 1− t′ .

Since in the considered case there exists a couple (f∗,θ) ∈ F̂(α,t′) × Θ such that δn ≤
(1−
√
α)2U(f∗), by definition of F̂(α,t′) we have

inf
f̂∈F̂(α,t′)

sup
(f∗,θ)∈F×Θ

Ψ(f̂ , (f∗,θ)) ≥ 1− t′ . (7.23)
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Case 2: for any couple (f∗,θ) ∈ F ×Θ it holds that δn > (1−
√
α)2U(f∗). In this case, for

any couple (f∗,θ) ∈ F ×Θ and for any estimator f̂ ∈ F̂(α,t′),

Ψ(f̂ , (f∗,θ)) = P(f∗,θ)
(
R(f̂) ≥ δn

)
.

By definition of δn it holds in this case that

inf
f̂∈F̂(α,t′)

sup
(f∗,θ)∈F×Θ

Ψ(f̂ , (f∗,θ)) ≥ inf
f̂

sup
(f∗,θ)∈F×Θ

Ψ(f̂ , (f∗,θ))

= inf
f̂

sup
(f∗,θ)∈F×Θ

P(f∗,θ)
(
R(f̂) ≥ δn

)
≥ t . (7.24)

Putting two cases together, and in particular using Eqs. (7.23) and (7.24) we obtain

inf
f̂∈F̂(α,t′)

sup
(f∗,θ)∈F×Θ

Ψ(f̂ , (f∗,θ)) ≥
{

1− t′ if ∃(f∗,θ) ∈ F ×Θ s.t. δn ≤ (1−
√
α)2U(f∗)

t otherwise
.

We conclude the proof observing that the r.h.s. of the last inequality is lower bounded by
t ∧ (1− t′).

7.11 Proofs for Section 7.6

Additional notation We denote by Sp−1 the unit sphere in Rp. For any matrix A we
denote by ∥A∥op, the operator norm of A. We denote by χ2(p) the standard chi-square
distribution with p degrees of freedom and by N (µ,Σ) the multivariate Gaussian with mean
µ and covariance Σ. We denote by Ip the identity matrix of size p× p.

7.11.1 Proof of Lemma 7.6.3

Throughout the proof we implicitly condition on the observations. Let τ ∈ [0, 1]. For each
s ∈ [K] we set m̂s =

√
τ b̂s + (1 −

√
τ)∑K

s=1wsb̂s. Note that for all s ∈ [K], (f̂τ (X, S)|S =
s) ∼ N (m̂s, ⟨β̂,Σβ̂⟩). Therefore, by the definition of the unfairness and Lemma 7.8.2

U(f̂τ ) = min
ν

K∑
s=1

wsW
2
2

(
N (m̂s, ⟨β̂,Σβ̂⟩), ν

)

=
K∑
s=1

wsW
2
2

(
N (m̂s, ⟨β̂,Σβ̂⟩),N (m̄, ⟨β̂,Σβ̂⟩)

)
,

where m̄ = ∑K
s=1wsm̂s. We conclude the proof by noticing that thanks to Lemma 7.8.1 it

holds that

W 2
2

(
N (m̂s, ⟨β̂,Σβ̂⟩),N (m̄, ⟨β̂,Σβ̂⟩)

)
= (m̂s − m̄)2

=
{
√
τ b̂s + (1−

√
τ)

K∑
s=1

wsb̂s −
K∑
s=1

wsb̂s

}2

.

The proof is concluded.
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7.11.2 Auxiliary results for Theorem 7.6.4

Lemma 7.11.1 (Fixed design analysis). Define the following matrix of size (p+K)× (p+K)

Ψ̂ =
[

1
2
∑K
s=1wsX⊤

s Xs/ns O
O⊤ 1

2W

]
,

where O = [w1X̄1, . . . , wKX̄K ] ∈ Rp×K and W = diag(w1, . . . , wK). For all t ≥ 0 it holds
that

P

∥Ψ̂1/2∆̂∥22 ≥ σ2


(
p

n
+ K

n

)
+ 2

√ p

n
+
√
K

n

√ t

n
+ 4 t

n


∣∣∣∣X1:K

 ≤ 2 exp(−t) ,

where ∆̂ = (β̂ − β∗, b̂− b∗) ∈ Rp × RK and X1:K = (X1, . . . ,XK).

Proof. By optimality of (β̂, b̂) and the linear model assumption in Eq. (7.11) it holds that

K∑
s=1

ws
∥∥∥Ys −Xsβ̂ − b̂s1ns

∥∥∥2

ns

≤
K∑
s=1

ws ∥ξs∥2ns
.

After simplification, the above yields

K∑
s=1

ws
∥∥∥Xs(β∗ − β̂) + (b∗

s − b̂s)1ns

∥∥∥2

ns

≤ 2
K∑
s=1

ws
〈
Xs(β̂ − β∗) + (b̂s − b∗

s)1ns , ξs/ns
〉

= 2
〈

β̂ − β∗,
K∑
s=1

X⊤
s ξs/n

〉
+ 2

K∑
s=1

ws(b̂s − b∗
s)ξ̄s ,

where ξ̄s = (1/ns)
∑ns
i=1(ξs)i. Using Young’s inequality, we can write

2
〈

β̂ − β∗,
K∑
s=1

X⊤
s ξs/n

〉
≤ 1

2

K∑
s=1

ws∥Xs(β∗ − β̂)∥2ns
+ 2


〈
β̂ − β∗,

∑K
s=1 X⊤

s ξs/n
〉

√∑K
s=1ws∥Xs(β∗ − β̂)∥2ns

2

≤ 1
2

K∑
s=1

ws∥Xs(β∗ − β̂)∥2ns
+ 2 sup

∆∈Rp


〈
∆,
∑K
s=1 X⊤

s ξs/n
〉

√∑K
s=1ws∥Xs∆∥2ns

2

.

We also observe that again thanks to Young’s inequality

2
K∑
s=1

ws(b̂s − b∗
s)ξ̄s ≤

1
2

K∑
s=1

ws(b̂s − b∗
s)2 + 2

K∑
s=1

wsξ̄
2
s .

Putting everything together, we have shown that

∥Ψ̂1/2∆̂∥22 ≤ 2 sup
∆∈Rp


〈
∆,
∑K
s=1 X⊤

s ξs/n
〉

√∑K
s=1ws∥Xs∆∥2ns

2

+ 2
K∑
s=1

wsξ̄
2
s . (7.25)
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Notice that since ξs ∼ N (0, σ2Ins), then conditionally on X1, . . . ,XK ,

K∑
s=1

X⊤
s ξs/n

d= σ

n

(
K∑
s=1

X⊤
s Xs

)1/2

ζ ,

where ζ ∼ N (0, Ip). Besides, since ws = ns/n, it holds for all ∆ ∈ Rp that

K∑
s=1

ws∥Xs∆∥2ns
= ∆⊤

(
1
n

K∑
s=1

X⊤
s Xs

)
∆ =

∥∥∥∥∥∥
(

1
n

K∑
s=1

X⊤
s Xs

)1/2

∆

∥∥∥∥∥∥
2

2

.

The above implies that conditionally on X1, . . . ,XK ,

√
U := sup

∆∈Rp

〈
∆,
∑K
s=1 X⊤

s ξs/n
〉

√∑K
s=1ws∥Xs∆∥2ns

d= σ√
n

sup
∆∈Rp

〈(∑K
s=1 X⊤

s Xs

)1/2
∆, ζ

〉
∥∥∥∥(∑K

s=1 X⊤
s Xs

)1/2
∆
∥∥∥∥

2

. (7.26)

Note that for any random variable ζ taking values in Rp,

sup
∆∈Rp

〈(∑K
s=1 X⊤

s Xs

)1/2
∆, ζ

〉
∥∥∥∥(∑K

s=1 X⊤
s Xs

)1/2
∆
∥∥∥∥

2

≤ ∥ζ∥2 almost surely. (7.27)

Furthermore, recalling that ξ̄s ∼ N (0, 1/ns) we get

V :=
K∑
s=1

wsξ̄
2
s ∼

σ2

n
χ2(K) . (7.28)

For any u, v ∈ R it holds that

P
(
∥Ψ̂1/2∆̂∥22 ≥ 2(u+ v)

∣∣X1:K
)(7.25)
≤ P

(
2(U + V ) ≥ 2(u+ v)

∣∣X1:K
)

(a)
≤ P

(
σ2

n
χ2(p) ≥ u

∣∣X1:K

)
+ P

(
σ2

n
χ2(K) ≥ v

∣∣X1:K

)
,

where inequality (a) uses Eqs. (7.26) and (7.28) and the fact that P(U + V ≥ u + v) ≤
P(U ≥ u) + P(V ≥ v) for all random variables U, V and all u, v ∈ R. Finally, setting
u = un(σ, p, t), v = vn(σ, p, t) with

un(σ, p, t) = σ2p

n
+ 2σ2

√
p

n

√
t

n
+ 2σ

2t

n
, vn(σ,K, t) = σ2K

n
+ 2σ2

√
K

n

√
t

n
+ 2σ

2t

n
,

we obtain the stated result after application of Lemma 7.8.4 in appendix

P
(
∥Ψ̂1/2∆̂∥22 ≥ 2(un(σ, p, t) + vn(σ, p, t))

∣∣X1:K
)
≤ 2 exp(−t) .
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Theorem 7.11.2 (From fixed to random design). Define,

δn(p,K, t) = 8
(
p

n
+ K

n

)
+ 16

√ p

n
+
√
K

n

√ t

n
+ 32t

n
.

Consider p,K ∈ N, t ≥ 0 and define γ(p,K, t) = (4
√
K + 5

√
t+ 6√

p)/(√p+
√
t). Assume that√

n ≥ 2(√p+
√
t)/(γ(p,K, t) −

√
γ2(p,K, t) − 3), then with probability at least 1− 4 exp(−t/2)

∥Σ1/2(β∗ − β̂)∥22 +
K∑
s=1

ws(b∗
s − b̂s)2 ≤ σ2δn(p,K, t) .

Proof. Define the (p+K)× (p+K) matrix

Ψ = 1
2

[
Σ 0
0 W

]
, (7.29)

then under notation of Lemma 7.11.1 we can write

∥Ψ̂1/2∆̂∥22 = ∆̂⊤Ψ1/2Ψ−1/2Ψ̂Ψ−1/2Ψ1/2∆̂

= ∆̂⊤Ψ1/2Ψ−1/2
(
Ψ̂−Ψ

)
Ψ−1/2Ψ1/2∆̂ + ∆̂⊤Ψ∆̂

≥
(
1 + λmin

(
Ψ−1/2

(
Ψ̂−Ψ

)
Ψ−1/2

))
∥Ψ1/2∆̂∥22 . (7.30)

If we set Σ̂ = ∑K
s=1wsX⊤

s Xs/ns, then

Ψ−1/2
(
Ψ̂−Ψ

)
Ψ−1/2 =

[
Σ−1/2

(
Σ̂−Σ

)
Σ−1/2 2Σ−1/2OW−1/2

2W−1/2O⊤Σ−1/2 0

]
.

Furthermore, by Courant-Fisher theorem it holds that

λmin
(
Ψ−1/2

(
Ψ̂−Ψ

)
Ψ−1/2

)
≥ λmin

(
Σ−1/2

(
Σ̂−Σ

)
Σ−1/2

)
− 4∥Σ−1/2OW−1/2∥op .

(7.31)

Using the definition of O we can write

Σ−1/2OW−1/2 = [w1/2
1 Σ−1/2X̄1, . . . , w

1/2
K Σ−1/2X̄K ] .

Note that the random variable on right hand side of Eq. (7.31) is independent from ξ1, . . . , ξK .
Recall that since ws = ns/n and X̄s ∼ N (0,Σ/n), then for all s = 1, . . . ,K it holds that

w1/2
s Σ−1/2X̄s ∼ N (0, Ip/n) ,

and these vectors are independent. Hence, the matrix Σ−1/2OW−1/2 ∈ Rp×K has i.i.d. Gaus-
sian entries with variance 1/n. Therefore, by Lemma 7.8.5 we get

P

∥Σ−1/2OW−1/2∥op ≥
√
p

n
+
√
K

n
+
√
t

n

 ≤ exp(−t/2) . (7.32)
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Furthermore, we observe that

Σ−1/2Σ̂Σ−1/2 d= 1
n

n∑
i=1

ζiζ
⊤
i ,

where ζi
i.i.d.∼ N (0, Ip). It implies that

Σ−1/2
(
Σ̂−Σ

)
Σ−1/2 d= 1

n

n∑
i=1

ζiζ
⊤
i − Ip = 1

n

(
Z⊤Z− nIp

)
,

where Z is a matrix of size n × p with ith-row being equal to ζ⊤
i . Note that the spectral

theorem and the relation between eigenvalues of Z⊤Z and the singular values of Z imply that

nλmin
(
Σ−1/2

(
Σ̂−Σ

)
Σ−1/2

)
d= λmin

(
Z⊤Z− nIp

)
= σ2

min(Z)− n .

where σmin(Z) is the maximal singular value of Z. Applying Lemma 7.8.5 from appendix we
get for all t ≥

√
n−√p that P

(
1
nσ

2
min(Z) ≤ 1

n(
√
n−√p− t)2

)
equals to

P
(

1
n

(σ2
min(Z)− n) ≤ p

n
+ 2

√
p

n

t√
n

+ t2

n
− 2

√
p

n
− 2 t√

n

)
≤ exp(−t2/2) .

Changing variables t2 7→ t we get

P
(
λmin

(
Σ−1/2

(
Σ̂−Σ

)
Σ−1/2

)
≤ p

n
+ 2

√
p

n

√
t

n
+ t

n
− 2

√
p

n
−
√
t

n

)
≤ exp(−t/2) .

(7.33)

Combining Eqs. (7.31),(7.32), and (7.33) we deduce that

P
(
λmin

(
Ψ−1/2

(
Ψ̂−Ψ

)
Ψ−1/2

)
≤ ψn(p,K.t)

)
≤ 2 exp(−t/2) ,

where ψn(p,K, t) = p
n − 6

√
p
n + 2

√
p
n

√
t
n − 4

√
K
n + t

n − 5
√

t
n . Applying Lemma 7.11.3 we

deduce that under the assumption on n that ψn(p,K, t) ≥ −0.75. Thus,

P
(
λmin

(
Ψ−1/2

(
Ψ̂−Ψ

)
Ψ−1/2

)
≤ −0.75

)
≤ 2 exp(−t/2) .

Combining the above fact with Eq. (7.30) and Lemma 7.11.1 we conclude that with probability
at least 1− 2 exp(−t)− 2 exp(−t/2)

∥Ψ1/2∆̂∥22 ≤ σ2

4
(
p

n
+ K

n

)
+ 8

√ p

n
+
√
K

n

√ t

n
+ 16 t

n

 = σ2 δn(p,K, t)
2 .

The statement of the lemma follows from the fact that

∥Ψ1/2∆̂∥22 = 1
2

(
∥Σ1/2(β∗ − β̂)∥22 +

K∑
s=1

ws(b∗
s − b̂s)2

)
.
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Lemma 7.11.3. Consider p,K ∈ N, t ≥ 0 and define

γ(p,K, t) =
4
√
K + 5

√
t+ 6√p

√
p+
√
t

.

For all n,K, p ∈ N, t ≥ 0, the following two conditions are equivalent

• n ≥
(

2(√p+
√
t)

γ(p,K,t)−
√
γ2(p,K,t)−3

)2
;

• p
n − 6

√
p
n + 2

√
p
n

√
t
n − 4

√
K
n + t

n − 5
√

t
n ≥ −0.75.

Proof. To simplify the notation and to save space we write γ instead of γ(p,K, t). Let
x = n−1/2, we want to solve

x2(√p+
√
t)2 − x(6√p+ 4

√
K + 5

√
t) ≥ −0.75

Set y = x(√p+
√
t), then thanks to the definition of γ, the previous inequality amounts to

y2 − γy + 0.75 ≥ 0 .

The roots of the polynomial above are

x−, x+ = γ ±
√
γ2 − 3
2 ,

which are both positive. The polynomial is non-negative outside the interval (x−, x+) ⊂ R+.
Hence, a sufficient condition is to have

y ≤ γ −
√
γ2 − 3
2 .

Substituting x = n−1/2 and the expression for γ we conclude.

Lemma 7.11.4 (General unfairness control). Under notation of Lemma 7.6.3 it holds that,
for any α ∈ [0, 1],

U(f̂α) ≤ αU(f∗)

1 + NUR

√∑K
s=1ws(b̂s − b∗

s)2

σ2


2

, almost surely. (7.34)

Moreover,

∣∣∣U 1/2(f̂1)− U 1/2(f∗)
∣∣∣ ≤ { K∑

s=1
ws(b̂s − b∗

s)2
}1/2

, almost surely. (7.35)
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Proof. Let U and V be discrete random variables such that P(U = b̂s, V = b∗
s′) = wsδs,s′ ,

for any s, s′ ∈ [K]. Note that, in particular, P(U = b̂s) = ws and P(V = b∗
s) = ws. Then,

according to Lemma 7.6.3 and the definition of f̂α it holds that

U(f̂α) = αVar(U) and U(f̂α) = αU(f∗) = αVar(V ) .

Therefore, with our notations we have

U(f̂α)− αU(f∗) = α (Var(U)− Var(V )) . (7.36)

Furthermore, for all ε ∈ (0, 1) we have that Var(U) equals to

Var(U − V + V ) = Var(U − V ) + 2E[(U − V −E[U ] + E[V ])(V −E[V ])] + Var(V )

≤ Var(U − V ) + 2
√

Var(U − V )Var(V ) + Var(V )

≤
K∑
s=1

ws(b̂s − b∗
s)2 + 2

√
U(f∗)

√√√√ K∑
s=1

ws(b̂s − b∗
s)2 + Var(V ) (7.37)

Finally, combining Eqs. (7.36) and (7.37) we deduce

U(f̂α) ≤ α

 K∑
s=1

ws(b̂s − b∗
s)2 + 2

√
U(f∗)

√√√√ K∑
s=1

ws(b̂s − b∗
s)2 + U(f∗)

 .

The proof of Eq. (7.34) is concluded after factorizing the square of the r.h.s. of the above
bound. To prove Eq. (7.35), we set α = 1 in Eq. (7.34) to get

U 1/2(f̂1) ≤ U 1/2(f∗) +
{

K∑
s=1

ws(b̂s − b∗
s)2
}1/2

.

The converse bound is derived in a similar fashion using

Var(V ) ≤ Var(U − V ) + 2
√

Var(U − V )Var(U) + Var(U).

Lemma 7.11.5 (General risk control). Under notation of Lemma 7.6.3 it holds that

R(f̂α) ≤
K∑
s=1

wsE(⟨X,β∗ − β̂⟩+ (b∗
s − b̂s))2

+ 2(1−
√
α)

√√√√ K∑
s=1

ws(b∗
s − b̂s)2

√√√√√ K∑
s=1

ws

(
b̂s −

K∑
s′=1

ws′ b̂s′

)2

+ (1−
√
α)2

K∑
s=1

ws

(
b̂s −

K∑
s′=1

ws′ b̂s′

)2

.
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Proof. Recall the expression for f̂α

f̂α(x, s) = ⟨x, β̂⟩+
√
αb̂s + (1−

√
α)

K∑
s=1

wsb̂s .

Using this expression, we can write for the risk of f̂α

R(f̂α) =
K∑
s=1

wsE
(
⟨X,β∗ − β̂⟩+ (b∗

s − b̂s) + (1−
√
α)
(
b̂s −

K∑
s′=1

ws′ b̂s′

))2

(a)=
K∑
s=1

wsE(⟨X,β∗ − β̂⟩+ (b∗
s − b̂s))2 + 2(1−

√
α)

K∑
s=1

ws(b∗
s − b̂s)

(
b̂s −

K∑
s′=1

ws′ b̂s′

)

+ (1−
√
α)2

K∑
s=1

ws

(
b̂s −

K∑
s′=1

ws′ b̂s′

)2

(b)
≤

K∑
s=1

wsE(⟨X,β∗ − β̂⟩+ (b∗
s − b̂s))2 + (1−

√
α)2

K∑
s=1

ws

(
b̂s −

K∑
s′=1

ws′ b̂s′

)2

+ 2(1−
√
α)

√√√√ K∑
s=1

ws(b∗
s − b̂s)2

√√√√√ K∑
s=1

ws

(
b̂s −

K∑
s′=1

ws′ b̂s′

)2

where (a) follows from the fact that X is centered and (b) is due to the Cauchy-Schwarz
inequality.

Theorem 7.11.6 (Risk-unfairness bound for any τ). Recall the definition of δn(p,K, t)

δn(p,K, t) = 8
(
p

n
+ K

n

)
+ 16

√ p

n
+
√
K

n

√ t

n
+ 32t

n
.

On the event

A =
{
∥Σ1/2(β∗ − β̂)∥22 +

K∑
s=1

ws(b∗
s − b̂s)2 ≤ σ2δn(p,K, t)

}
,

it holds that

R(f̂τ ) ≤
(
σδ

1/2
n (p,K, t) + (1−

√
τ)U 1/2(f̂1)

)2
.

U(f̂τ ) ≤ τU(f∗)
(
1 + NUR δ

1/2
n (p,K, t)

)2
.

Proof. We recall that Lemma 7.6.3 gives, for any τ ∈ [0, 1],

U(f̂τ ) = τ
K∑
s=1

ws

(
b̂s −

K∑
s′=1

ws′ b̂s′

)2

. (7.38)
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Let us start by proving the first part of the statement. Using Lemma 7.11.5 to upper bound
the risk R(f̂τ ) and the definition of A to control this upper bound, we obtain

R(f̂τ ) ≤ σ2δn(p,K, t) + 2σ
√
δn(p,K, t)

(
(1−

√
τ)
√
U(f̂1)

)
+ (1−

√
τ)2U(f̂1)

=
(
σ
√
δn(p,K, t) + (1−

√
τ)
√
U(f̂1)

)2
.

The second part of the statement follow by applying Lemma 7.11.4 and Theorem 7.11.2 to get

U(f̂τ ) ≤ τU(f∗)
(

1 + NUR
√
δn(p,K, t)

)2
. (7.39)

7.11.3 Proof of Theorem 7.6.4

We set f̂ := f̂1 and δn = δn(p,K, t). The proof relies on Eq. (7.35) of Lemma 7.6.3. Using
notations of Theorem 7.11.6 we also define the event

A =
{
∥Σ1/2(β∗ − β̂)∥22 +

K∑
s=1

ws(b∗
s − b̂s)2 ≤ σ2δn(p,K, t)

}
(7.40)

which holds with probability at least 1− 4 exp(−t).

Case 1. Assume that U 1/2(f̂) > σδ
1/2
n (p,K, t). Note that thanks to Theorem 7.11.6, and the

definition of τ̂ we derive on the event A that

U(f̂τ̂ ) ≤ τ̂U(f∗)
(

1 + σ

√
δn
U(f∗)

)2

= αU(f∗)
(

1 + σ

√
δn
U(f∗)

)2(
1 + σδ

1/2
n

U 1/2(f̂)− σδ1/2
n

)−2

(a)
≤ αU(f∗)

(
1 + σ

√
δn
U(f∗)

)2(
1 + σδ

1/2
n

U 1/2(f∗)

)−2

= αU(f∗) .

In the last equation, inequality (a) follows from Eq. (7.35) of Lemma 7.6.3 and thanks to the fact
that on the event A it holds that U 1/2(f̂) ≤ U 1/2(f∗)+

{∑K
s=1ws(b̂s − b∗

s)2
}1/2
≤ U 1/2(f∗)+σδ1/2

n .
For the risk we have thanks to Theorems 7.11.6 that

R(f̂τ̂ ) ≤
(
σ
√
δn + (1−

√
τ̂)
√
U(f̂)

)2
. (7.41)

Furthermore, we note that

√
τ̂U(f̂) =

√
α

√
U(f̂)

1 + σ
√
δn√

U(f̂)−σ
√
δn

=
√
α

(√
U(f̂)− σ

√
δn

)
(b)
≥
√
α

(√
U(f∗)− 2σ

√
δn

)
, (7.42)
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where inequality (b) again follows from Eq. (7.35) of Lemma 7.6.3 and thanks to the fact that
on the event A it holds that U 1/2(f̂) ≥ U 1/2(f∗) −

{∑K
s=1ws(b̂s − b∗

s)2
}1/2
≥ U 1/2(f∗) − σδ1/2

n .
Recall, that we have already shown that on the event A we have

U 1/2(f̂) ≤ U 1/2(f∗) + σδ
1/2
n . (7.43)

Combining Eqs. (7.42) and (7.43) we obtain

(1−
√
τ̂)
√
U(f̂) ≤

√
U(f∗) + σ

√
δn −

√
α

(√
U(f∗)− 2σ

√
δn

)
= (1−

√
α)
√
U(f∗) + (1 + 2

√
α)σ

√
δn

Thus since the function (σδ1/2
n + ·)2 is increasing on [−σ

√
δn,∞) we get from Eq. (7.41) that

R(f̂τ̂ ) ≤
(

2(1 +
√
α)σ

√
δn + (1−

√
α)
√
U(f∗)

)2
,

which concludes the proof of the first case.

Case 2. if U 1/2(f̂) ≤ σδ1/2
n (p,K, t), then

f̂0(x, s) = ⟨x, β̂⟩+
K∑
s=1

wsb̂s .

Furthermore, on the event A thanks to Theorem 7.11.6 it holds that 0 = U(f̂0) ≤ αU(f∗) and

R(f̂0) ≤
(
σδ

1/2
n + U 1/2(f̂)

)2
=
(
σδ

1/2
n +

√
αU 1/2(f̂) + (1−

√
α)U 1/2(f̂)

)2

≤
(
(1 +

√
α)σδ1/2

n + (1−
√
α)U 1/2(f̂)

)2

≤
(
(1 +

√
α)σδ1/2

n + (1−
√
α)
(
U 1/2(f∗) + σδ

1/2
n

))2

=
(
2σδ1/2

n + (1−
√
α)U 1/2(f∗)

)2
.

The proof is concluded by application of Theorem 7.11.2 to control the probability of event A.

7.11.4 Auxiliary results for Theorem 7.6.5

Let us first present auxiliary results used for the proof of Theorem 7.6.5. The next lemma is
known as Varshamov-Gilbert Lemma (Varshamov 1957; Gilbert 1952), its statement is taken
from Rigollet and Hütter 2015, Lemma 4.12, see also Tsybakov 2009, Lemma 2.9.

Lemma 7.11.7. Let d ≥ 1 be an integer. There exist binary vectors ω1, . . . ,ωM ∈ {0, 1}d
such that

1. ρ(ωj ,ωj′) ≥ d/4 for all j ̸= j′,

2. M = ⌊ed/16⌋ ≥ ed/32,

where ρ(·, ·) is the Hamming’s distance on binary vectors.
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The next lemmas can be found in Bellec 2017, Lemma 5.1, see also Kerkyacharian et al. 2014,
Lemma 3.

Lemma 7.11.8. Let (Ω,A) be a measurable space and M ≥ 1. Let A0, . . . , AM be disjoint
measurable events. Assume that Q0, . . . ,QM are probability measures on (Ω,A) such that

1
M

M∑
j=1

KL(Qj ,Q0) ≤ κ <∞ .

Then,

max
j=0,...,M

Qj(Acj) ≥
1
12 min(1,M exp(−3κ)) .

Define the diagonal matrix W = diag(w1, . . . , wK).

Lemma 7.11.9. Let n ≥ 1 be an integer and s > 0 be a positive number. Let M ≥ 1 and
(βj , bj) ∈ Rp × RK , j = 0, . . . ,M , such that ∥Σ1/2(βj − βk)∥22 + ∥W1/2(bj − bk)∥22 ≥ 4s for
j ̸= k. Assume that

1
M

M∑
j=1

KL(P(βj ,bj),P(β0,b0)) ≤ κ <∞.

Then, for any estimator f̂ ,

max
j=0,...,M

P(βj ,bj)
(
R(f̂) ≥ s

)
≥ 1

12 min (1,M exp(−3κ)) .

Proof. Denote by Aj the event Rj(f̂) < s for j = 1, . . . ,M . Note that the events A0, . . . , AM
are pair-wise disjoint. Indeed, if they were not there would exist indices j and j′, with j ̸= j′,
such that, on the non-empty event Aj ∩Aj′ ,

∥Σ1/2(βj − βj′)∥22 + ∥W1/2(bj − bj′)∥22 ≤ 2Rj(f̂) + 2Rj′(f̂) < 4s (7.44)

contradicting our assumption on the (βj , bj) and (βj′ , bj′). We conclude applying Lemma 7.11.8.

7.11.5 Proof of Theorem 7.6.5

Define the (p+K)× (p+K) matrix

Ψ =
[

Σ 0
0 W

]
, (7.45)

Apply Lemma 7.11.7 to obtain ω0, . . . ,ωM with M + 1 ≥ e(p+K)/32 and such that ρ(ωj ,ωk) ≥
(p+K)/4. Let B0 = (β0, b0), . . . ,BM = (βM , bM ) be such that

Bj = φ

√
σ2

n

(
1 +

√
t/(p+K)

)
Ψ−1/2ωj , (7.46)
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with p+K ≤ 32 log(M) and φ > 0 to be determined later.
On the one hand we have

∥Σ1/2(βj − βk)∥22 + ∥W1/2(bj − bk)∥22 = φ2σ2

n
(1 +

√
t/(p+K))2ρ(ωj ,ωj′)

≥ φ2σ2

n
(1 +

√
t/(p+K))2(p+K)/4

= φ2σ2

4n (
√
p+K +

√
t)2 .

On the other hand, recall that PY |X,S=s = N (⟨X,β⟩+ bs, σ
2) and PX = N (0,Σ), then, for a

given (β, b) ∈ Rp × RK the joint distribution of observations is

P(β,b) =
K⊗
s=1

(
N (⟨X,β⟩+ bs, σ

2)⊗N (0,Σ)
)⊗ns

.

Given B = (β, b),B′ = (β′, b′) in Rp × RK we can write

KL
(
P(β,b),P(β′,b′)

)
=

K∑
s=1

nsEX∼N (0,Σ)
[
K̃L

(
N (⟨X,β⟩+ bs, σ

2),N (⟨X,β′⟩+ b′
s, σ

2)
)]

=
K∑
s=1

nsEX∼N (0,Σ)

(
(⟨X,β − β′⟩+ bs − b′

s)
2

2σ2

)

=
K∑
s=1

ns

(
∥Σ1/2(β − β′)∥22

2σ2 + (bs − b′
s)2

2σ2

)

= n

(
∥Σ1/2(β − β′)∥22

2σ2 + ∥W
1/2(b− b′)∥22

2σ2

)
= n

2σ2 ∥Ψ
1/2(B −B′)∥22

≤ φ2

2 (
√
p+K +

√
t)2 ≤ φ2(p+K) + φ2t ≤ 32φ2 log(M) + φ2t .

Let f̂ be any estimator and define the risks

Rj(f̂) =
K∑
s=1

wsE
[
(f̂(X, S)− ⟨X,βj⟩ − (bj)S)2 | S = s

]
, j = 1, . . . ,M .

Set un(p,K, t, φ, σ) = φ2σ2

16n (
√
p+K +

√
t)2. Applying Lemma 7.11.9 after reducing the

supremum to a finite number of hypothesis, we get for all estimators f̂ that

sup
(β∗,b∗)∈Rp×RK

P(β∗,b∗)
(
R(f̂) ≥ un(p,K, t, φ, σ)

)
≥ max

j=0,...,M
P(βj ,bj)

(
Rj(f̂) ≥ un(p,K, t, φ, σ)

)
≥ 1

12 min
(
1,M exp

(
−96φ2 log(M)−3φ2t

))
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Setting φ = 1/
√

96, we obtain

sup
(β∗,b∗)∈Rp×RK

P(β∗,b∗)

(
R(f̂) ≥ σ2

1536n
(√

p+K +
√
t
)2
)
≥ 1

12 exp
(
− t

32

)
.

The proof is concluded.

7.12 Relation between UKS and U

Lemma 7.12.1. Let µ, ν be two univariate measures such that µ admits a density w.r.t. the
Lebesgue measure bounded by Cµ, then

KS(µ, ν) ≤ 2
√
CµW1(µ, ν) .

Proposition 7.12.2. Fix some measurable f : Rp × [K]→ R. Assume that as = f(·, s)#µs ∈
P2(R) and it admits density bounded by Cf,s for all s ∈ [K], then

UKS(f) ≤ ∥1/w∥∞
√

8C̄f · U1/4(f) ,

where C̄f = ∑K
s=1wsCf,s.

Proof. We set as = Law(f(X, S) | S=s) and a = ∑K
s=1wsas. Therefore, thanks to assumption

of the proposition and Lemma 7.12.1 we can write

UKS(f) :=
K∑
s=1

KS(as, a) ≤ ∥1/w∥∞
K∑
s=1

ws KS(as, a) ≤ 2∥1/w∥∞
K∑
s=1

wsC
1/2
f,sW

1/2
1 (as, a) .

Furthermore we can write for any measure ν ∈ P2(R) that

UKS(f)
(a)
≤ 2∥1/w∥∞

K∑
s=1

wsC
1/2
f,s

{
K∑
s′=1

ws′W1(as, as′)
}1/2

(b)
≤ 2∥1/w∥∞

K∑
s=1

wsC
1/2
f,s

{
W1(as, ν) +

K∑
s′=1

ws′W1(as′ , ν)
}1/2

.

In the above inequalities (a) follows from the convexity of W1(as, ·) see e.g., Bobkov and
Ledoux 2019, Section 4.1 and (b) uses the triangle inequality. Applying the Cauchy–Schwarz
inequality we obtain

UKS(f) ≤ 2∥1/w∥∞

{
K∑
s=1

wsCf,s

}1/2{ K∑
s=1

ws

(
W1(as, ν) +

K∑
s′=1

ws′W1(as′ , ν)
)}1/2

= 23/2∥1/w∥∞

{
K∑
s=1

wsCf,s

}1/2{ K∑
s=1

wsW1(as, ν)
}1/2

(c)
≤ 23/2∥1/w∥∞

{
K∑
s=1

wsCf,s

}1/2{ K∑
s=1

wsW
2
1 (as, ν)

}1/4

,



174 CHAPTER 7. QUANTIFYING RISK-FAIRNESS TRADE-OFF

where (c) uses the Cauchy–Schwarz inequality one more time. Finally, setting ν as the
Wasserstein-2 barycenter of a1, . . . , aK and using the fact that W1(µ, ν) ≤W2(µ, ν) we deduce
that

UKS(f) ≤ 23/2∥1/w∥∞

{
K∑
s=1

wsCf,s

}1/2

U1/4(f) .

The proof is concluded.



CHAPTER 8

An example of prediction which complies with Demographic Parity and
equalizes group-wise risks in the context of regression

Let (X, S, Y ) ∈ Rp × {1, 2} × R be a triplet following some joint distribution P with feature
vector X, sensitive attribute S , and target variable Y . The Bayes optimal prediction f∗

which does not produce Disparate Treatment is defined as f∗(x) = E[Y |X = x]. We provide
a non-trivial example of a prediction x → f(x) which satisfies two common group-fairness
notions: Demographic Parity and Equal Group-Wise Risks

(f(X) | S = 1) d= (f(X) | S = 2) ,

E[(f∗(X)− f(X))2 | S = 1] = E[(f∗(X)− f(X))2 | S = 2] .

To the best of our knowledge this is the first explicit construction of a non-constant predictor
satisfying the above. We discuss several implications of this result on better understanding of
mathematical notions of algorithmic fairness.
Based on Evgenii Chzhen and Nicolas Schreuder (2020b). “An example of prediction which
complies with Demographic Parity and equalizes group-wise risks in the context of regression”.
In: arXiv preprint arXiv:2011.07158.
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8.1 Introduction

Designing methods that satisfy group-fairness requirements has received a lot of theoretical
and empirical attention in recent years (Barocas, Hardt, and Narayanan 2019; Calmon et al.
2017; Chierichetti et al. 2017; Donini et al. 2018; Dwork et al. 2018; Hardt, Price, and Srebro
2016; Dwork et al. 2012; Kilbertus et al. 2017; Lum and Johndrow 2016; Zafar et al. 2017;
Zemel et al. 2013; Agarwal, Dudík, and Wu 2019; Lipton, McAuley, and Chouldechova 2018;
Chiappa et al. 2020; Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c). Most of the
contributions in this direction are concerned with the problem of binary classification, while
the regression setup receiving much less attention to this date (Agarwal, Dudík, and Wu 2019).
However, even if the underlying problem at hand has a structure of binary classification, a
continuous regression-type output might be more informative in real-world scenarios.
In the literature on algorithmic fairness, it is a standard practice to consider two distinct
types of predictions: fairness through awareness (Dwork et al. 2012) and fairness through
unawareness (without Disparate Treatment) (Gajane and Pechenizkiy 2017; Lipton, McAuley,
and Chouldechova 2018). The former type of prediction allows one to build separate model
for each sensitive attribute, while the latter obliges one to fix a single model which is later
applied across all groups. In the infinite sample regime, assuming that the joint distribution
of the observations is known, recent works showed that the problem of regression with fairness
through awareness under the Demographic Parity constraint shares a strong connection with
the problem of Wasserstein barycenters (Le Gouic, Loubes, and Rigollet 2020; Chzhen et al.
2020c). In particular, Le Gouic, Loubes, and Rigollet (2020) derives a closed form expression
of fair optimal prediction in the sense of Demographic Parity. However, very little is known
about the predictions which avoid Disparate Treatment and achieve Demographic Parity even
in the infinite sample regime. Actually, even the existence of non-trivial regression prediction
strategies satisfying the two constraints is unclear.
In this work we make progress towards the mathematical understanding of the latter problem.
We make the following contributions: we propose a large family of prediction functions which
achieve Demographic Parity without producing Disparate Treatment; we identify a specific
function within this class which additionally equalizes the group-wise risks. Even though the
proposed prediction rule achieves several desirable formal group-fairness notions, we argue
that this prediction is not suitable for real-world scenarios. In contrast, a prediction that is
allowed to produce Disparate Treatment can alleviate these drawbacks. In the context of
binary classification, similar conclusions were reached by Lipton, McAuley, and Chouldechova
2018.

Organization The rest of this chapter is organised as follows. We present in Section 8.2
our setup and general goal. In Section 8.3 we provide a description of a family of prediction
rules satisfying the fairness constraints of interest. Finally in Section 8.4 we discuss a critical
flaw of those prediction rules from individual level fairness viewpoint and provide some open
questions. Proofs can be found in Section 8.7.

Notation For a distribution µ defined on a measurable space (X,X ) and a measurable
map T : X 7→ Y , where Y is another space endowed with a σ-algebra Y , we denote by
T♯µ the push-forward measure defined by (T♯µ)(A) = µ

(
T−1(A)

)
for all A ∈ Y . For two
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random variables U, V we write U d= V to denote their equality in distribution. The standard
Euclidean inner product and Euclidean norm in Rp are denoted by ⟨·, ·⟩ and ∥ · ∥2 respectively.

8.2 Setup and general goal

Let (X, S, Y ) ∈ Rp × {1, 2} × R be a triplet following some joint distribution P where X is a
feature vector, S a binary sensitive attribute (e.g., gender or race) and Y is a target variable.
For s ∈ {1, 2}, let µX|s denote the distribution of the features inside the group S = s. We are
interested in finding a mapping between the feature vector and the target variable which is
fair in a sense we specify in this section.
The first notion of fairness that we consider restricts the class of predictors to those which do
not take as input the sensitive attribute S.

Definition 8.2.1 (Disparate Treatment). Any measurable function f : Rp → R that cannot
receive the sensitive attribute S in its functional form does not produce Disparate Treatment.

We note that Gajane and Pechenizkiy (2017) refer to the latter as fairness through unawareness.
This property might be desirable for obvious legal and/or privacy reasons (Primus 2003; Barocas
and Selbst 2016; Gajane and Pechenizkiy 2017). However it does not guarantee the prediction
to be statistically independent from the sensitive attribute S because of correlations between
the sensitive attribute S and the feature vector X. Indeed, consider the Bayes optimal
predictor x 7→ f∗(x) defined as

f∗(x) = E[Y |X = x] .

It does not take as input the sensitive attribute and achieves the lowest possible squared risk
among predictions avoiding Disparate Treatment. Yet, the predictor f∗ might still promote
disparity between sensitive groups if the distributions of features X differ between groups.
To address the above shortcoming, we further restrict the space of possible predictions to
those satisfying Demographic Parity (DP) (Calders, Kamiran, and Pechenizkiy 2009; Calders
et al. 2013).

Definition 8.2.2 (Demographic Parity). A predictor f : Rp → R achieves Demographic
Parity if

(f(X) | S = 1) d= (f(X) | S = 2) .

Such predictors are also said to avoid Disparate Impact. This notion of fairness is quite intuitive
since it asks the group-wise distributions of the predictions to be the same across all groups.
However this probabilistic constraint is not particularly nice to handle and describing explicitly
all the functions satisfying this constraint is not an easy task. Obviously, any constant function
satisfies this constraint; but what about functions depending on the feature vector X ? It
is not obvious that one can design a non-trivial function f which does not depend on the
sensitive attribute S while achieving Demographic Parity. We give two simple scenarios for
which we can explicit the class of functions satisfying Demographic Parity.
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Example 8.2.3 (Simple case 1). Assume that distributions of the features X is the same
within each group, i.e.,

(X | S = 1) d= (X | S = 2) .

In this case any function f : Rp → R achieves Demographic Parity. In particular, one can use
the Bayes optimal prediction f∗.

Example 8.2.4 (Simple case 2). Assume that the sensitive attribute S is a deterministic
function of the features X and that the supports of µX|1 and µX|2 are non-intersecting. Then
we can construct two different functions f1, f2 : Rp → R such that

(f1(X) | S = 1) d= (f2(X) | S = 2) .

Then we define f(x) := f1(x) for all x in the support of µX|1 and f(x) := f2(x) for all x in
the support of µX|2. In this way Demographic Parity is achieved by one function f , which
avoids Disparate Impact. In other words, when the sensitive attribute S is a deterministic
function of features X, using S or not using S in the functional form of the prediction does
not change anything.

Those two toy examples enable us to get a better understanding of Demographic Parity;
however they are far from sufficient since assuming that the features are distributed the
same across groups or that the sensitive attribute is a deterministic function of X is clearly
unrealistic in practice. Thus, we would like to be able to cover more scenarios than those
listed above. More formally, the main question that we would like to address is:

Main question: Is there a non trivial prediction strategy f which
1) avoids Disparate Treatment;
2) achieves Demographic Parity;
under minimal assumptions on the distribution of (X, S, Y ) ?

Let us emphasize that the main mathematical challenge of this question comes from the fact
that the sensitive attribute cannot be used in the functional form of the prediction while the
prediction must satisfy a constraint depending on the sensitive attribute. We elaborate more
on this issue in the next example.

Example 8.2.5 (Gaussian features). Assume that the feature vector X | S is distributed as

(X | S = 1) ∼ N (m1, I), (X | S = 2) ∼ N (m2, 2I) ,

with m1 ̸= m2. It is very easy to find a function g : Rp × {1, 2} → R so that

(g(X, S) | S = 1) d= (g(X, S) | S = 2) .

In particular, one can consider group-wise affine predictions: g(x, 1) = ⟨β1,x⟩ + b1 and
g(x, 2) = ⟨β2,x⟩+ b2 with β1,β2 ∈ Rp satisfying

⟨β1,m1⟩+ b1 = ⟨β2,m2⟩+ b2, ∥β1∥2 =
√

2∥β2∥2 .
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Moreover, the risk-optimal choice of g is also group-wise affine (we elaborate on it later in the
text). However, there is no non-trivial (i.e., nonconstant) affine function f : Rp → R which
achieves Demographic Parity and avoids Disparate Treatment.
Indeed, assume that there exist β ∈ Rp, b ∈ R such that f(x) = ⟨β,x⟩+b achieves Demographic
Parity. Since the features are group-wise Gaussians, then

(f(X) | S = 1) ∼ N (⟨β,m1⟩+ b, ∥β∥22), (f(X) | S = 2) ∼ N (⟨β,m2⟩+ b, 2∥β∥22) .

For the above two distributions to be equal we must set β = 0 and the prediction f ≡ b reduces
to a trivial constant.

Example 8.2.5 highlights the intrinsic difficulty of the considered question – even if the
distribution of the covariates is group-wise Gaussian and even if the Bayes optimal prediction
f∗(x) = E[Y |X = x] is affine, there is no non-trivial affine prediction rule f(x) = ⟨β,x⟩+ b
achieving Demographic Parity and avoiding Disparate Treatment. Besides, this example
demonstrates that learning prediction function without Disparate Impact and Disparate
Treatment in an agnostic learning manner might be a bad idea. Indeed, assume the same
model as in Example 8.2.5 and define fDP

affine as a solution of

min
f :Rp→R

{
E(Y − f(X))2 : (f(X) | S = 1) d= (f(X) | S = 2), f ∈ Faffine

}
,

where Faffine = {f : x 7→ ⟨β,x⟩+ b; β ∈ Rp, b ∈ R} – a recurrent prediction class restriction in
the learning literature (Vapnik and Chervonenkis 1968). Following Example 8.2.5 we know
that fDP

affine is a trivial constant prediction thus building a data-driven method which performs
as well as fDP

affine is not that relevant. Due to these observations we believe that current fairness
definitions should be first examined without the restriction of the predictors.
In this work we provide a large family of prediction functions F1, which are parametrized by
non-decreasing continuous functions Q : [0, 1]→ R. Every function fQ ∈ F1 avoid Disparate
Treatment and achieves Demographic Parity. Furthermore, we show that the family F1
contains a special prediction function fQ∗ , which achieves an additional fairness criterion.
Namely, it achieves Equality of Group-Wise Risks defined below.

Definition 8.2.6. A predictor f : Rp → R achieves the Equality of Group-Wise Risks
(EGWR) constraint if

E[(f∗(X)− f(X))2 | S = 1] = E[(f∗(X)− f(X))2 | S = 2] .

Similar notion of fairness in its relaxed formulation was considered in the context of regression
by Agarwal, Dudík, and Wu 2019.
Despite three fruitful properties of formal group-fairness requirements achieved by fQ∗ , we
argue that this function fails to satisfy basic principles of fairness and justice. The main reason
for its failure is the avoidance of Disparate Treatment, which forces a prediction to “guess”
the sensitive attribute of a given feature vector x ∈ Rp. Such guessing leads to undesirable
predictions for individuals x ∈ Rp with sensitive attribute S = 1 but who are more likely to
have S = 2 and vice-versa.
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Fairness through awareness: a reminder Before going further into the problem, let
us provide a short theoretical reminder for the situation when the sensitive attribute S is
allowed to be used in the functional form of the prediction, that is, the Disparate Treatment
is allowed. More formally, we are interested in finding a prediction g∗ : Rp × {1, 2} → R which
is a solution of

min
g:Rp×{1,2}→R

{
E(Y − g(X, S))2 : (g(X, S) | S = 1) d= (g(X, S) | S = 2)

}
.

Le Gouic, Loubes, and Rigollet (2020) and Chzhen et al. (2020c) showed that under mild
additional assumptions1 on the distribution P, the optimal fair prediction g∗ can be obtained
for all (x, s) ∈ Rp × {1, 2} as

g∗(x, s) =
(
p1G

−1
1 + p2G

−1
2

)
◦Gs

(
E[Y |X = x, S = s]

)
, (8.1)

where ps = P(S = s), Gs(t) = P (E[Y |X, S] ≤ t | S = s), and G−1
s is the generalized inverse

of Gs for all s ∈ {1, 2}. In particular, returning to Example 8.2.5, one can show that if
E[Y | X, S] = ⟨β∗

S ,X⟩ + bS , then the fair optimal prediction g∗ is also group-wise affine.
Indeed, we note that under the assumptions of Example 8.2.5 it holds that

(E[Y |X, S] | S = 1) ∼ N (b1, ∥β∗
1∥22), (E[Y |X, S] | S = 2) ∼ N (b2, 2∥β∗

2∥22) .

Denoting by Φ the cumulative distribution function of the standard Gaussian we can write
that G1(t) = Φ((t− b1)/∥β∗

1 ∥2) and G2(t) = Φ((t− b2)/
√

2∥β∗
1 ∥2). Their inverses can be respectively

written as

G−1
1 (t) = b1 + ∥β∗

1∥2Φ−1(t), G−1
2 (t) = b2 +

√
2∥β∗

2∥2Φ−1(t) .

Substituting these expressions into Eq. (8.1) and simplifying we get that

g∗(x, 1) = ⟨β∗
1,x⟩

(
p1 + p2

√
2∥β∗

2∥2
∥β∗

1∥2

)
+ p1b1 + p2b2 ,

g∗(x, 2) = ⟨β∗
2,x⟩

(
p2 + p1

∥β∗
1∥2√

2∥β∗
2∥2

)
+ p1b1 + p2b2 .

The above highlights that in the case of linear regression model, the predictor g∗ : Rp×{1, 2} →
R which minimizes the risk under the Demographic Parity constraint remains affine. We again
emphasize that the situation is changed drastically if a prediction is not allowed to produce
Disparate Treatment.

8.3 Description of the family

In this section we present a family of prediction rules, indexed by the set of continuous
non-decreasing functions Q : [0, 1] → R, which achieve Demographic Parity and explicit a
function from this family which also satisfies the Equality of Group-Wise Risks constraint.

1They assume that for all s ∈ {1, 2} the measure g(·, s)♯µX|s is continuous and has finite second moment.
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Densities of µX|1, µX|2

µX|1

µX|2

Jordan decomposition of µX|1−µX|2
µ+

µ−

Figure 8.1: Jordan decomposition of a signed measure. (Left) An example of feature
distributions within two groups. (Right) Jordan decomposition of the difference µX|1 − µX|2.

Jordan decomposition Consider the signed measure µ := µX|1 − µX|2, and let µ+, µ−

be its Jordan decomposition, that is µ = µ+ − µ− and supp(µ+) ∩ supp(µ−) = ∅. Unless
the supports of µX|1 and µX|2 are disjoint, the measures µ+ and µ− do not integrate to one,
i.e., they are not probability measures. However, both µ+ and µ− have the same total mass.
We define Pµ± = µ±/µ±(R) the projection of µ± on the space of probability measures. We also
define

F±(t) := Pµ± ({x ∈ Rp : f∗(x) ≤ t}) ,

the cumulative distribution function of f∗♯Pµ±.
The supports of measures µ+ and µ− have a simple and intuitive interpretation. Note that
if x ∈ supp(µ+), then x is more likely to be a member of the group S = 1 and vice versa.
Meanwhile, if x ∈ Rp \ (supp(µ+)∪ supp(µ−)) then x can be equally likely coming from S = 1
or from S = 2. See Figure 8.1 for an illustration with univariate covariates.
The rational behind the introduction of the Jordan decomposition of µ into µ+ and µ− comes
from the following simple insight. It says that in order to check Demographic Parity for
predictions without Disparate Treatment one only needs to know µ+ and µ− instead of the
whole distribution of the covariates µX|s. This idea is formalized in the next lemma.

Lemma 8.3.1. A prediction without Disparate Treatment f : Rp → R achieves Demographic
Parity iff

f♯µ+ = f♯µ− . (8.2)

Proof. Set A□ = supp(µ□) for □ ∈ {±} and A0 = Rp \ (A+ ∪A−).
(⇒) If f achieves Demographic Parity, then f♯µX|1 = f♯µX|2. Note that, for all t ∈ R it holds
that

µX|□ {x ∈ Rp : f(x) ≤ t} = µX|□ {x ∈ A+ : f(x) ≤ t}+ µX|□ {x ∈ A− : f(x) ≤ t}
+ µX|□ {x ∈ A0 : f(x) ≤ t} .

Note that by the definition of µ+ and µ− it holds that

µX|1 {x ∈ A0 : f(x) ≤ t} = µX|2 {x ∈ A0 : f(x) ≤ t} ,
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and thus, the condition f♯µX|1 = f♯µX|2 implies that for all t ∈ R

µX|1 {x ∈ A+ : f(x) ≤ t}−µX|2 {x ∈ A+ : f(x) ≤ t} =
µX|2 {x ∈ A− : f(x) ≤ t} − µX|1 {x ∈ A− : f(x) ≤ t} . (8.3)

The latter is equivalent to Eq. (8.2).
(⇐) Recall that Eq. (8.2) is equivalent to Eq. (8.3) and that for any f : Rp → R it holds that

µX|1 {x ∈ A0 : f(x) ≤ t} = µX|2 {x ∈ A0 : f(x) ≤ t} .

Combining both concludes the proof.

Note that such an argument would not work if f was allowed to depend on the sensitive
attribute.

Prediction rules Let Q : [0, 1]→ R be any continuous non-decreasing function. Define the
following prediction rule

fQ(x) =


Q ◦ F+ ◦ f∗(x) if x ∈ supp(µ+)
Q ◦ F− ◦ f∗(x) if x ∈ supp(µ−)
f∗(x) if x ∈ Rp \

(
supp(µ+) ∪ supp(µ−)

) . (∗)

One should think of Q as a quantile function of some continuous univariate probability measure
λ. In the language of optimal transport the function Q ◦ F□ ◦ f∗(·) is the optimal transport
map from f∗♯Pµ□ to λ. An exact theoretical motivation to introduce function Q will be
clarified later in the text.
There are three cases in the above prediction rule:

1. x ∈ supp(µ+), in this case x is more likely associated with S = 1.

2. x ∈ supp(µ−), in this case x is more likely associated with S = 2.

3. x ∈ Rp \
(
supp(µ+) ∪ supp(µ−)

)
, in this case x can be equally likely associated with

group S = 1 and S = 2 and the decision is made in accordance with the Bayes optimal
prediction by the analogy with Example 8.2.3.

Fairness of prediction rules Note that since the prediction rules are not allowed to depend
on the sensitive attribute in its functional form, they do not produce Disparate Treatment. In
order to show that the prediction rules defined in (∗) satisfy other fairness constraints, we
make one standard technical assumption about particular distributions induced by the Bayes
rule.

Assumption 8.3.2. The measures f∗♯µ+, f∗♯µ− are non-atomic with finite second moments.

The following proposition states that, under the previous assumption, the defined prediction
rules achieve Demographic Parity.
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Figure 8.2: (Left) The Bayes optimal prediction f∗ is illustrated in the center. The group-wise
distributions of features is illustrated on the top. The group-wise distribution of the Bayes
optimal prediction is illustrated on the right. (Right) Jordan decomposition of µX|1 − µX|2 is
illustrated on the top and their push-forward (through f∗) measures are on the right.

Proposition 8.3.3. Let Assumption 8.3.2 hold. Let Q : [0, 1] → R be any continuous
non-decreasing function, then the prediction rule fQ is fair in the sense of Demographic Parity.

The proof of Proposition 8.3.3 is postponed to Section 8.7. The result becomes rather
intuitive following the interpretation of Q as a quantile function of some continuous univariate
probability measure λ and of Q ◦ F□ ◦ f∗(·) as the optimal transport map from f∗♯Pµ□ to λ
in combination with Lemma 8.3.1.
We have a large class of prediction rules which avoid Disparate Treatment and achieves
Demographic Parity. Can we find a subset of this class such that its elements also satisfy
Equality of Group-Wise Risks? The next proposition explicitly gives a continuous non-
decreasing function Q∗ such that the resulting prediction rule fQ∗ satisfies the Equality of
Group-Wise Risks constraint.

Proposition 8.3.4. Let Assumption 8.3.2 hold. For the choice Q∗ = (F−1
+ + F−1

− )/2, the
prediction rule fQ∗ is fair in the sense of Equality of Group-Wise Risks.

8.4 Discussion and open questions

In the previous section we have proved that the prediction rules defined in (∗) achieve
Demographic Parity and that for a specific choice of continuous non-decreasing function Q∗,
the prediction rule fQ∗ also satisfies the Equality of Group-Wise Risks. The latter prediction
rule is represented in Figure 8.3 for a particular problem: the features are assumed to be
group-wise Gaussian random variables with different means and variances. We set the Bayes
optimal predictor as f∗(x) = 1/(1 + eax) for some positive real a > 0.
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Figure 8.3: (Left) Prediction fQ∗ which achieves DP and EGWR. (Right) Concrete examples
of predictions.

In both plots the dashed grey curve corresponds to the Bayes prediction rule f∗(x) = E[Y |X =
x] while the black solid curve represents the prediction rule fQ∗ defined in Proposition 8.3.4.
On top of the plots are the densities from the (normalized) Jordan decomposition of µX|1−µX|2
(see also Figure 8.1) while on the right side are the densities corresponding to the predictions.
In the right plot, the green horizontal dashed line corresponds to the prediction by fQ∗ for the
points whose axis correspond to the vertical blue and orange dashed lines. The horizontal blue
and orange dashed lines correspond to the prediction by f∗. We notice that the prediction
curve corresponding to fQ∗ looks like a piece-wise translation of the Bayes decision rule
in which the predicted value is increased for features which seem to come from the group
corresponding to S = 1 and lowered for the other features.
The prediction rule fQ∗ could be formally considered as a good fair predictor since it simul-
taneously satisfies several formal group-fairness constraints and avoids Disparate Treatment.
However, Demographic Parity and EGWR only define fairness on the group level and inspect-
ing the individual level reveals a critical flow of this prediction rule. We have constrained
our predictors to those that do not produce Disparate Treatment by prohibiting them from
having the sensitive variable as direct input. Nevertheless, enforcing group level fairness
constraints (such as DP and EGWR) forces the prediction rule to guess the sensitive attribute
corresponding to a given feature vector x. The idea of our prediction rules is simple: if a
feature vector x is more likely to belong to some group then it is treated as a member of
this group. A critical resulting issue of this is that an individual from the minority (i.e., the
group which gets discriminated) which "looks like" an individual from the majority will be
treated as the latter and thus might potentially receive a negative discrimination, worsening
their position in the population and in the society. This is clearly contrary to what one would
expect from a fair decision-making system and should therefore be avoided. We remark that a
simple remedy from the above flaw is to allow to construct a separate prediction rule for each
sensitive group – wave away the Disparate Treatment requirement. Indeed, making separate
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predictions for separate groups erases the effect of group guessing and allows to make a more
informed decision (Le Gouic, Loubes, and Rigollet 2020; Chzhen et al. 2020c; Lipton, McAuley,
and Chouldechova 2018).
An interesting open question concerns the optimality of the derived prediction rules: is it pos-
sible to find a prediction rule which avoids Disparate Treatment while achieving Demographic
Parity and which has smaller squared risk than those of the prediction rules in (∗) ? An answer
to this question would yield an important step towards understanding the limits of predictions
under fairness constraint without having access to the sensitive attribute. Establishing the
optimality would also allow to address relaxed notions of fairness in this context and provide
a statistical study similar to Chzhen and Schreuder (2020a).

8.5 Conclusion

In this work we proposed a large family of prediction rules which simultaneously avoid Disparate
Treatment and achieve Demographic Parity. In addition, we also showed that a particular
member of the proposed family equalizes the group-wise risks. However, despite these fruitful
formal fairness properties, none of the above predictions are able to comply with the intuitive
understanding of fairness. We attribute this effect to the avoidance of Disparate Treatment.
An interesting mathematical challenge which remains unsolved is connected with the risk
optimality of the proposed prediction rules.

8.6 Extension to non-binary sensitive attribute

Previous parts were dealing with the construction of a DP fair prediction f : Rd → R in case
when there are only two sensitive attributes. Here we provide an extension.
Assume that the measures µX|1, . . . , µX|K admit density. For any permutation σ of [K], any
K − 1 tuple of univariates measures with densities λ = (λ1, . . . , λK−1) and any measurable
functions g with supc∈R Leb

{
x ∈ Rd : g(x) = c

}
= 0, set

ν1
s = g♯µX|σ(s), ∀s ∈ [K] .

For any j = 1, . . . ,K − 1 set

νj+1
s = T

(σ,λ)
j ♯νjs , (8.4)

where T (σ,λ)
j is defined as

T
(σ,λ)
j (y) =


T+
j (y) y ∈ supp(π+

j )
T−
j (y) y ∈ supp(π−

j )
y otherwise

,

with π±
j defined as the re-scaled Jordan decomposition of νjj − ν

j
j+1 and T±

j being the optimal
transport maps from π±

j to λj . Finally, define

fσ,λ,g :=
(
T

(σ,λ)
K−1 ◦ . . . ◦ T

(σ,λ)
1 ◦ g

)
. (8.5)
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Lemma 8.6.1. Under the assumptions of the above construction any function fσ,λ,g defined
in Eq. (8.5) achieves Demographic Parity.

Proof. Fix some real-valued function g : Rd → R, some non-atomic univariate measures
λ1, . . . , λK−1.
The proof goes by induction on K with the base case K = 2. If K = 2, then

fσ,λ,g :=
(
T

(σ,λ)
1 ◦ g

)
.

Note that since ν1
1 , ν1

2 , admit density, then the re-scaled Jordan decomposition π+
1 , π

−
1 of

ν1
1 − ν1

2 also admit a density. Thus, there exist optimal transport maps T+
1 , T

−
1 from π+

1 , π
−
1

to λ1, implying that T (σ,λ)
1 is well-defined. Moreover, by construction

T
(σ,λ)
1 ♯ν1

1 − T
(σ,λ)
1 ♯ν1

2 = T+
1 ♯π

+
1 − T

−
1 ♯π

−
1 = 0 ,

which proves the base case.
Fix some permutation σ of [K + 1]. For K + 1 by the induction assumption it holds for any
s, s′ ∈ {σ(1), . . . ,σ(K)} that(

T
(σ,λ)
K−1 ◦ . . . ◦ T

(σ,λ)
1 ◦ g

)
♯µX|s =

(
T

(σ,λ)
K−1 ◦ . . . ◦ T

(σ,λ)
1 ◦ g

)
♯µX|s′ ,

implying that ∀s, s′ ∈ {σ(1), . . . ,σ(K)}

T
(σ,λ)
K ♯

(
T

(σ,λ)
K−1 ◦ . . . ◦ T

(σ,λ)
1 ◦ g

)
♯µX|s = T

(σ,λ)
K ♯

(
T

(σ,λ)
K−1 ◦ . . . ◦ T

(σ,λ)
1 ◦ g

)
♯µX|s′ .

The above is equivalent to

fσ,λ,g♯µX|s = fσ,λ,g♯µX|s′ ∀s, s′ ∈ {σ(1), . . . ,σ(K)} .

To complete the proof it is sufficient to show that

fσ,λ,g♯µX|σ(K+1) = fσ,λ,g♯µX|σ(K) .

Observing that

fσ,λ,g♯µX|σ(K+1) = T
(σ,λ)
K ♯νKK+1 ,

fσ,λ,g♯µX|σ(K+1) = T
(σ,λ)
K ♯νKK ,

we use the fact that by construction

T
(σ,λ)
K ♯νKK+1 − T

(σ,λ)
K ♯νKK = T+

K ♯π
+
K − T

−
K ♯π

−
K = 0 .

The proof is concluded.
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8.7 Proofs

We recall that the Wasserstein-2 distance between probability distributions µ and ν in P2(Rd),
the space of measures on Rd with finite second moment, is defined as

W2
2(µ, ν) := inf

γ∈Γ(µ,ν)

{∫
Rd×Rd

∥x− y∥22dγ(x,y)
}

, (8.6)

where Γ(µ, ν) denotes the collection of measures on Rd × Rd with marginals µ and ν. See
Santambrogio 2015; Villani 2003 for more details about Wasserstein distances and optimal
transport.

Proof of Proposition 8.3.3. In order to prove that fQ satisfies the Demographic Parity con-
straint we examine the following quantity

∆fQ
(t) = µX|1 {x ∈ Rp : fQ(x) ≤ t} − µX|2 {x ∈ Rp : fQ(x) ≤ t} ,

for any t ∈ R. Fix some t ∈ R. Let us fix some Q : [0, 1] → R continuous non-decreasing
function. For simplicity we drop the subscript Q from fQ and write f instead. We can write
by the definition of f , µ and µ+, µ− that

∆f (t) =
∫
f(x)≤t

dµ(x) =
∫
f(x)≤t

dµ+(x)−
∫
f(x)≤t

dµ−(x)

=
∫
Q(µ+{x′∈Rp : f∗(x′)≤f∗(x)})≤t

dµ+(x)−
∫
Q(µ−{x′∈Rp : f∗(x′)≤f∗(x)})≤t

dµ−(x) .

Let Q−1 be the generalized inverse of Q. Hence, since Q is assumed to be continuous we can
write

∆f (t) =
∫
µ+{x′∈Rp : f∗(x′)≤f∗(x)}≤Q−1(t)

dµ+(x)−
∫
µ−{x′∈Rp : f∗(x′)≤f∗(x)}≤Q−1(t)

dµ−(x) .

Introduce F□(·) = µ□ {x′ ∈ Rp : f∗(x′) ≤ ·} for □ ∈ {±} and note that thanks to Assump-
tion 8.3.2 both F+ and F− are non-decreasing continuous. Thus,

∆f (t) =
∫
F+(f∗(x))≤Q−1(t)

dµ+(x)−
∫
F−(f∗(x))≤Q−1(t)

dµ−(x)

=
∫
f∗(x)≤F−1

+ ◦Q−1(t)
dµ+(x)−

∫
f∗(x)≤F−1

− ◦Q−1(t)
dµ−(x)

= F+ ◦ F−1
+ ◦Q−1(t)− F− ◦ F−1

− ◦Q−1(t) = 0 .

The proof is concluded since supt∈R |∆f (t)| = 0 implies that f satisfies the Demographic Parity
constraint.

Proof of Proposition 8.3.4. In this proof we consider the prediction rule fQ∗ defined in (∗)
with the specific choice Q∗ := (F−1

+ + F−1
− )/2. Let p1 = P(S = 1) and p2 = P(S = 2) = 1− p1.

Since Q∗ is fixed in throughout this proof, we drop the subscript Q∗ and write f instead of
fQ∗ for compactness.
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Recall that we defined the signed measure µ = µX|1 − µX|2. Using its Hahn decomposition,
µ = µ+ − µ−, we can write µX|1 = µ+ − µ− + µX|2 and express the risk of the predictor f as

R(f) = p1

∫
(f∗(x)− f(x))2dµX|1(x) + p2

∫
(f∗(x)− f(x))2dµX|2(x)

=
∫

(f∗(x)− f(x))2dµX|2(x) (8.7)

+ p1

(∫
(f∗(x)− f(x))2dµ+(x)−

∫
(f∗(x)− f(x))2dµ−(x)

)
.

Since f♯µ□ = T□♯(f∗♯µ□) for □ ∈ {±}, where T□ = Q ◦ F□ is a monotone non-decreasing
function, Santambrogio 2015, Theorem 2.9 implies∫

(f∗(x)− f(x))2dµ□(x) = W2
2(f∗♯µ□, f♯µ□), for □ ∈ {±} .

Following Agueh and Carlier 2011, Section 6.1, the solution to the Wasserstein-2 barycenter
problem

min
ν

(1
2W2

2(ν, f∗♯µ+) + 1
2W2

2(ν, f∗♯µ−)
)

is given by the measure

ν̄ = 1
2
(
F−1

+ + F−1
−

)
◦ F+ ◦ f∗♯µ+ (8.8)

= 1
2
(
F−1

+ + F−1
−

)
◦ F− ◦ f∗♯µ− . (8.9)

Indeed, observe that 1
2

(
F−1

+ + F−1
−

)
◦F+ is the optimal transportation plan from f∗♯µ+ to the

barycenter of f∗♯µ+, f∗♯µ−. Since Eq. (8.8) corresponds to f♯µ+ on supp(µ+) and Eq. (8.9)
to f♯µ− on supp(µ−), the distances to the barycenter being equal, we have

W2
2(f∗♯µ+, f♯µ+) = W2

2(f∗♯µ−, f♯µ−) . (8.10)

Plugging (8.10) in (8.7) yields

R(f) =
∫

(f∗(x)− f(x))2dµX|2(x) ,

and concludes the proof.



CHAPTER 9

Classification with abstention but without disparities

Classification with abstention has gained a lot of attention in recent years as it allows to
incorporate human decision-makers in the process. Yet, abstention can potentially amplify
disparities and lead to discriminatory predictions. The goal of this work is to build a general
purpose classification algorithm, which is able to abstain from prediction, while avoiding
disparate impact. We formalize this problem as risk minimization under fairness and abstention
constraints for which we derive the form of the optimal classifier. Building on this result, we
propose a post-processing classification algorithm, which is able to modify any off-the-shelf
score-based classifier using only unlabeled sample. We establish finite sample risk, fairness,
and abstention guarantees for the proposed algorithm. In particular, it is shown that fairness
and abstention constraints can be achieved independently from the initial classifier as long as
sufficiently many unlabeled data is available. The risk guarantee is established in terms of the
quality of the initial classifier. Our post-processing scheme reduces to a sparse linear program
allowing for an efficient implementation, which we provide. Finally, we validate our method
empirically showing that moderate abstention rates allow to bypass the risk-fairness trade-off.
Based on Nicolas Schreuder and Evgenii Chzhen (2021). “Classification with abstention but
without disparities”. In: Proceedings of the 37th Conference on Uncertainty in Artificial
Intelligence (UAI). Proceedings of Machine Learning Research. PMLR.
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9.1 Introduction

In recent years classification with abstention or with reject option has gained a considerable
amount of attention from both statistical and machine learning communities. Probably the
earliest appearance of classification with reject option can be found in the works of Chow (1957)
and Chow (1970) in the context of information retrieval and an initial statistical treatment was
given in (Györfi, Györfi, and Vajda 1979). Much later, Herbei and Wegkamp (2006) provided
non-parametric analysis for the problem of binary classification with a fixed rejection cost in
the spirit of Audibert and Tsybakov (2007). Several extensions followed later, all working
with fixed cost of rejection (Yuan and Wegkamp 2010; Wegkamp and Yuan 2011; Bartlett and
Wegkamp 2008).
Following the conformal prediction literature (see, e.g., Vovk, Gammerman, and Shafer
2005), Lei (2014a) considers a framework where ones wants to minimize the reject rate
under a pre-specified accuracy constraint, meanwhile Denis and Hebiri (2020) target its
reversed formulation. Both derive finite sample guarantees for plug-in type classification
procedures and instanciate their analysis to standard non-parametric class of distributions.
In a similar direction, several practical methods (Grandvalet et al. 2008; Nadeem, Zucker,
and Hanczar 2009) have been proposed in the machine learning community to address the
problem of classification with abstention. Recently, Bousquet and Zhivotovskiy (2019), Neu
and Zhivotovskiy (2020), and Puchkin and Zhivotovskiy (2021) show that abstention can
significantly improve regret bounds and convergence rates for the problems of online and batch
classification.
Crucially, in our work we view abstention as a mechanism to lighten the burden of fairness
constraints and bypass the risk-fairness trade-off (Agarwal et al. 2018; Menon and Williamson
2018b; Chzhen and Schreuder 2020a): one can enjoy the best of both worlds – a simultaneously
fair and accurate classifier – at the cost of rejection. A majority of observations are still classified
in an automatic manner, while the rejected ones can be handled by, e.g., human experts.
Importantly, in our setting, the rejection rate is rigorously controlled by the practitioner
depending on the number of available experts. In addition, since it is illusory to assume that
a data-dependent classifier can make error-less and trustworthy decisions, it is desirable to
put human experts back in the loop for sensitive tasks. The rejection mechanism partially
transfers the burden of optimizing those conflicting quantities to human experts, who can
eventually have access to more information to make a better informed decision (e.g., a doctor
can ask for extra medical examination for its final diagnosis).
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Fairness in binary classification is a very popular topic with various types of algorithmic
and statistical contributions (see, e.g., Hardt, Price, and Srebro 2016; Barocas, Hardt, and
Narayanan 2019). However, abstention framework has not yet received a lot of attention
in the context of fair learning. Notable exceptions are work of Madras, Pitassi, and Zemel
(2018) and Jones et al. (2020). The latter demonstrates that an imprudent use of abstention
might amplify potential disparities already present in the data. In particular, they show that
in the framework of prediction without disparate treatment (Zafar et al. 2017) the use of
the same rejection threshold across sensitive groups might result in a large group-wise risks
disparities. As a potential remedy, our work offers a theoretically grounded way to enforce
fairness constraints as well as a desired group-dependent reject rates. The idea of relying on a
reject mechanism to enforce fairness has only been explored once, in Madras, Pitassi, and Zemel
(2018). The authors introduce “learning to defer” framework – an extension of classification
with abstention – where the cost of rejection is allowed to depend on the prediction of an
external decision-maker (e.g., a human expert). The authors argue that by making the
automated model aware of the potential biases and weaknesses of the external decision-maker,
it can globally optimize for accuracy and fairness. The authors enforce Equalized Odds (Hardt,
Price, and Srebro 2016) through regularization of the risk and thus cannot control explicitly
the reject rate, which might potentially lead to a huge external decision-maker costs. While
the authors provide empirical evidences of their claims, theoretical justification of their results
remains open. Our work offers a completely theory-driven way to enforce both fairness and
rejection constraints while optimizing for accuracy, leading to a computationally efficient
post-processing algorithm.
Contributions. Our work combines and extends previous results in abstention framework
with recent results on fair binary classification. Namely, similarly to (Denis and Hebiri 2020),
we aim at minimizing misclassification risk under a control over group-wise reject rates. As we
would like to avoid disparate impact, we explicitly add this as a constraint to our framework.
We derive the optimal form of a reject classifier, which minimizes the misclassification risk
under the discussed constraints. Our explicit characterization of the optimal reject classifier
provides a better understating of the interplay between, on one side, the fairness and rejection
constraints and, on the other side, the accuracy. We propose a data-driven post-processing
algorithm which enjoys generic plug-and-play finite sample guarantees. An appealing feature
of our post-processing algorithm is that it can be used on top of any pre-trained classifier,
thus avoiding the – potentially high – cost of re-fitting a classifier from scratch. From
numerical perspective, the proposed method reduces to a solution of a sparse linear program,
allowing us to leverage efficient LP solvers. Numerical experiments validate our theoretical
result demonstrating that the proposed method successfully enforces fairness and rejection
constraints in practice, while achieving a high level of accuracy.
Notation. For each K ∈ N we denote by [K] the set of the first K positive integers. The
standard Euclidean inner product is denoted by ⟨·, ·⟩. For a real number a ∈ R we write (b)+
(resp. (a)−) to denote the positive (resp. the negative) part of a. For two real numbers a, b we
denote by a ∨ b (resp. a ∧ b) the maximum (resp. the minimum) between the two. We denote
by 1 ∈ RK the vector composed of ones and by es ∈ RK the sth basis vector of RK .
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9.2 Problem presentation

Consider a triplet (X, S, Y ) ∼ P, where X ∈ Rd is the feature vector, S ∈ [K] is the sensitive
attribute, and Y ∈ {0, 1} is the binary label to be predicted. A classifier is a mapping
g : Rd × [K]→ {0, 1, r}. That is, any classifier g is able to provide a prediction in {0, 1}, or
to abstain from prediction by outputting r. With any classifier g, we associate the following
quantities:

R(g) := P(Y ̸= g(X, S) | g(X, S) ̸= r) ,

NAbs(g) := P(g(X, S) ̸= r | S = s) ,

NAb(g) := P(g(X, S) ̸= r) ,

PTs(g) := P(g(X, S) = 1 | S = s, g(X, S) ̸= r) ,

PT(g) := P(g(X, S) = 1 | g(X, S) ̸= r)) .

(9.1)

The first one is the risk of a classifier, which measures the probability of incorrect prediction,
given that an actual prediction was issued. The second two quantities measure the group-wise
and marginal prediction rates. The last two quantities describe the group-wise and marginal
rates of positive predictions given that the prediction was made. Intuitively, a good classifier
has low risk R, high NAbs, and low disparities between PTs(g).

Fairness constraint. We formalize fairness through the notion of Demographic Parity
(see for instance, Barocas, Hardt, and Narayanan 2019). A predictor g is said to satisfy
Demographic Parity (or, equivalently, to avoid Disparate Impact) if the distribution of its
prediction is independent from the sensitive attribute. Formally, in the standard binary
classification framework it means that for any z ∈ {0, 1} and for any s, s′ ∈ [K],

P(g(X,S) = z | S = s) = P(g(X,S) = z | S = s′) .

In the setting of classification with abstention, we naturally want to condition on the fact
that the classifier issues a prediction, that is, g(X,S) ̸= r. Using the quantities introduced in
Eq. (9.1), the latter reduces to

∀s ∈ [K], PTs(g) = PT(g) .

Penalized version. There are various trade-offs that one can consider between the quantities
in Eq. (9.1). For instance, adapting the approach of Herbei and Wegkamp (2006) to the
context of fairness, one can target a prediction which avoids disparate impact and minimizes
penalized risk. Formally, it amounts to solving the following problem:

min
g:Rd×[K]→{0,1,r}

R(g) +
K∑
s=1

λs NAbs(g)

s.t. ∀s ∈ [K], PTs(g) = PT(g)
, (P-DPWA)

for some λs ≥ 0, s ∈ [K]. This approach also resembles the one employed by Madras, Pitassi,
and Zemel 2018, who additionally penalized for fairness violation instead of directly controlling
it. The main issue with the formulation (P-DPWA) is connected with the choice of the
penalization parameters λs ≥ 0, s ∈ [K], which do not have simple and intuitive interpretation.
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Indeed, it is impossible to know beforehand which λs ≥ 0, s ∈ [K] will result in a usable
reject rate, forcing the practitioner to explore the whole space of the hyperparameters λs ≥ 0,
s ∈ [K]. Instead of the above formulation, we consider the problem in which one is able to
explicitly control the rejection rate. In particular, such an approach allows us to develop a
parameter-free post-processing method.

Explicit control of reject. Given α = (α1, . . . , αK)⊤ ∈ [0, 1]K , our goal is to find a solution
of the following problem

min
g:Rd×[K]→{0,1,r}

R(g)

s.t. ,∀s ∈ [K],
{

NAbs(g) = αs

PTs(g) = PT(g)

. (DPWA)

It will be shown later that, under a mild assumption on the distribution of the conditional
expectation E[Y |X, S], the above problem admits a global minimizer written in the form of
group-wise thresholding.
The first constraint in (DPWA) specifies the abstention level accepted for each class while
the second constraint, as before, demands the classifier g to avoid disparate impact. Notably,
in this formulation, the parameter vector α ∈ [0, 1]K has a simple and intuitive interpretation
– it allows to fix precisely different levels of rejects for different groups. This, for instance,
can be beneficial, if g(x, s) = r is followed by the intervention of a human decision-maker,
who replaces the classifier. One can force a higher rejection rate (i.e., a higher rate of human
intervention) for disadvantaged groups by lowering the corresponding αs ∈ [0, 1]. Crucially, we
implicitly assume that the practitioner is able to treat unclassified instances in an accurate and
fair manner. While this assumption is void for the theoretical contributions of this chapter,
we warn the practitioner that it must not be overlooked once our method is deployed in real
world.
This formulation allows to bypass the usual trade-off between fairness and accuracy at the
price of rejection. Indeed, note that a classifier that solves (DPWA) is fair for any parameters
(αs)s∈[K]. At the same time, setting α1 = . . . = αK = α̃ for some α̃ ∈ (0, 1], one can observe
that by varying α̃ we can recover the accuracy of a classifier without constraints while still
satisfying Demographic Parity. This will be later empirically confirmed in Section 9.7. We
again emphasize that the accuracy gain comes at a price of a possible reject region, which,
depending on the application at hand might or might not constitute a reasonable price.

9.3 Optimal classifier

Our first theoretical contribution is the derivation of a classification strategy g∗, which is a
solution of (DPWA). We define the conditional expectation of the label Y knowing (X, S) as

η(X, S) = E[Y |X, S] .

It is known that the Bayes optimal rule for the problem of binary classification with misclas-
sification risk is given by the point-wise thresholding of η(X, S) on the level 1/2 (Devroye,
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Györfi, and Lugosi 2013). In our case the classifier does not correspond to the Bayes decision.
Instead, it is a solution of a constrained optimization problem with constraints that depend
on the unknown data distribution P. In several frameworks, which are also formulated as
risk minimization under distribution dependent constraints, it is possible to obtain a closed
form expression of a minimizer under fairly mild assumptions. In particular, it is the case for
the classification with reject option (Chow 1970; Lei 2014a; Denis and Hebiri 2020) as well
as classification under various fairness constraints (Hardt, Price, and Srebro 2016; Chzhen
et al. 2019; Barrio, Gordaliza, and Loubes 2020). Similarly to the above contributions, we
will make a mild assumption on the behaviour of η(X, S), which is, for instance, naturally
satisfied whenever η(X, S) admits a density w.r.t. the Lebesgue measure.

Assumption 9.3.1. The random variables (η(X, S) | S = s) are non-atomic for all s ∈ [K].

One can actually get rid of this assumption, as explained in Lei (2014a), by switching from
deterministic classification strategies, which are valued in {0, 1, r}, to randomized classifiers,
which output a distribution over {0, 1, r}.
To present the main result of this section, we introduce the notations ps := P(S = s),
ᾱ := ∑

s∈[K] psαs and we define the following function

G(x, s,λ,γ) =
∣∣∣∣ ps2ᾱ(1− 2η(x, s)− ⟨γ,1⟩) + γs

2αs

∣∣∣∣− ps
2ᾱ(1− ⟨γ,1⟩)− λs −

γs
2αs

,

which plays a key role in the derivation of an optimal classifier for (DPWA). We now state
the first result of this work, which provides a form of g∗ – solution for (DPWA).

Theorem 9.3.2. Under Assumption 9.3.1, an optimal classifier for (DPWA) is given for
all (x, s) ∈ Rd × [K] by

g∗(x, s) =

r if G(x, s,λ∗,γ∗) ≤ 0
1
(
η(x, s) ≥ 1

2 + cγ∗,s

)
otherwise

,

where (λ∗,γ∗) are solutions of

min
(λ,γ)

{
⟨λ,α⟩+

K∑
s=1

EX|S=s[(G(X, S,λ,γ))+]
}

,

and cγ∗,s := 1
2
( ᾱγ∗

s
αsps
− ⟨1,γ∗⟩

)
.

Let us mention that unlike other similar results described above, the main difficulty in the
proof of Theorem 9.3.2 lies in the fact the misclassification risk in our case involves conditioning
on the event which itself depends on the classifier that we want to find. Theorem 9.3.2 is
instructive and allows to develop an intuition which is similar to that of the original rule
derived by Chow 1957; Chow 1970. To be more precise, denoting by

tγ∗,s := (1− ⟨γ, 1⟩) + ᾱγs
psαs

,

the reject region is expressed as a strip around tγ,s:

|η(x, s)− tγ,s| ≤ tγ,s + ᾱλs
ps

.
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We highlight that the center as well as the size of this strip is group-dependent. Interestingly,
the position of the strip only depends on the Lagrange multiplier controlling for the fairness
constraint, while its width is determined by both constraints.

9.4 Empirical method

The form of the optimal classifier suggests to develop a post-processing algorithm, which receives
an estimator η̂(x, s) of η(x, s) and an additional unlabeled set of samples to estimate (γ∗,λ∗).
Indeed, observe that the optimal classifier g∗ is know up to the quantities η(x, s),γ∗,λ∗.

Remark 9.4.1. For simplicity of exposition we assume that the marginal distribution of S is
known, that is, we have access to ps := P(S = s). Note that S follows multinomial distribution,
and, in practice, we can estimate these probabilities by their empirical counterparts, which is the
direction that we take in our experimental section. Our proofs generalize straightforwardly for
the case of unknown ps, but such modification results in additional, unnecessary, complications.

We denote by η̂(X, S) any off-the-shelf estimator of η(X, S). For instance, one can take
k-NN (Stone 1977; Devroye, Györfi, and Lugosi 2013), locally polynomial estimator (Ko-
rostelev and Tsybakov 2012), logistic regression Bühlmann and Van de Geer 2011, random
forest (Breiman 2001; Biau and Scornet 2016; Mourtada, Gaïffas, and Scornet 2020) to name
a few. Our theoretical guarantees on the misclassification risk will explicitly depend on the
quality of this off-the-shelf estimator, hence it is advisable to use those methods which are
supported by statistical guarantees. Yet, our algorithm remains valid even for inconsistent
estimators η̂ in the sense that the resulting classifier after post-processing will (nearly) satisfy
the prescribed constraints independently from η̂.

Remark 9.4.2. In what follows we assume that the estimator η̂(X,S) is independent from
the unlabeled sample (introduced below) and is valued in [0, 1]. In other words, we require
a new unseen unlabeled sample for the post-processing. As it will be seen from our bound,
the assumption that η̂(X,S) is valued in [0, 1] is not restrictive, since we can always perform
clipping without damaging statistical properties. On a more technical note, we require that
P(η̂(X,S) = c | η̂) = 0 almost surely for any c ∈ [0, 1]. Again, this assumption is not restrictive,
since we can always randomize the output of η̂(X,S) by adding a negligible noise coming
from a continuous distribution. In Algorithm 2 we use uniformly distributed noise supported
on [0, σ], with σ being a small parameter. One can take this parameter σ arbitrarily small,
preserving the statistical properties of η̂.

As mentioned before, to build the post-processing scheme, we will use only unlabeled sample.
We also do not restrict ourselves to sampling from P(X,S). Instead, we assume that for all
s ∈ [K] we observe {Xi}i∈Is sampled i.i.d. from PX|S=s. In the above notation, Is have
cardinality ns and they form a partition of [n]. That is, we have that n1 + . . .+ nK = n. The
described sampling scheme is potentially appealing in situations when it is possible to gather
a lot of data about the minority group without the need of labeling them. In particular, this
sampling scheme allows to set n1 = . . . = nK , which, since we do not require labeling, is more
realistic. The conditional expectation EX|S=s is estimated based on the following empirical
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Procedure 2 Post-processing
1: Input: base estimator η̂, unlabeled data {Xi}i∈Is for s ∈ [K], noise magnitude σ
2: Randomize:
3: for i ∈ Is, s ∈ [K] do
4: Sample independently ζi ∼ U([0, σ])
5: Set η̂(Xi, s)← η̂(Xi, s) + ζi
6: end for
7: Solve: Eq. (9.3) based on LP formulation to get (λ̂, γ̂)
8: Output: (λ̂, γ̂)

measure

P̂X|S=s = 1
ns

∑
i∈Is

δXi .

Before providing the proposed post-processing method, we define the empirical counterpart to
the function G as

Ĝ(x, s,λ,γ) =
∣∣∣∣ ps2ᾱ(1− 2η̂(x, s)− ⟨γ,1⟩) + γs

2αs

∣∣∣∣− ps
2ᾱ(1− ⟨γ,1⟩)− λs −

γs
2αs

The post-processing classifier with abstention is given by

ĝ(x, s)=

r if Ĝ(x, s, λ̂, γ̂) ≤ 0
1
(
η̂(x, s)>1

2 + cγ̂,s

)
otherwise

, (9.2)

where cγ̂,s := 1
2
( ᾱγ̂s

αsps
− ⟨1, γ̂⟩

)
and (λ̂, γ̂) is a solution of

min
(λ,γ)

{
⟨λ,α⟩+

K∑
s=1

ÊX|S=s(Ĝ(X, s,λ,γ))+

}
. (9.3)

We summarize the proposed procedure in Algorithm 2 incorporating the randomization step.
Note that there is a clear analogy between the result of Theorem 9.3.2 and the constructed
algorithm. Indeed, the latter is an empirical version of the former built via the plug-in
approach.

Lemma 9.4.3. The minimization problem in Eq. (9.3) is convex and it admits a global
minimizer.

In Section 9.6 we will actually prove a stronger statement. Namely, it will be shown that the
minimization problem in Eq. (9.3) is equivalent to a linear program with sparse constraints,
which will allow us to provide an efficient implementation of the proposed procedure.

9.5 Finite sample guarantees

In this section we provide finite sample guarantees on the behavior of the post-processing
classifier with abstention regarding its performance, its reject rate and its fairness. In order to
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Figure 9.1: Results on Adult dataset with Logistic Regression (LR) as the base estimator.
Blue lines correspond to our post-processing method; Orange lines correspond to the base
classifier. Dashed line correspond to s = 1 and solid line to s = 0. Shaded areas correspond to
the variance of the result over 20 repetitions.

lighten the presentation of our results, let us define now the sequence

uδ,Kn :=

√
2 log(4K/δ)

2n + 2
n
, ∀n ≥ 1 .

The sequence uδ,Kn behaves as O(
√

log(K/δ)/n), that is, it depends logarithmically on the
number of sensitive attributes K, on the confidence parameter δ and goes to zero as n−1/2

with the growth of n. Our goal in this section is to derive constraint and risk guarantees.
Namely, we would like to show that when ns →∞ we have for all s ∈ [K] that

|NAbs(ĝ)− αs| → 0
|PTs(ĝ)− PT(ĝ)| → 0

and E(ĝ) := R(ĝ)−R(g∗)→ 0 .

The first part ensures satisfaction of reject and fairness constraints, while the second part shows
that the risk of the proposed method is similar to that of g∗. Importantly, both guarantees
will be derived in the finite-sample regime and with high probability.
The next proposition provides a quantitative control on the violation of the reject and
Demographic Parity constraints in the finite sample regime.

Proposition 9.5.1. Let δ ∈ (0, 1). The violation of the constraints by the post-processing
classifier with abstention ĝ defined in Eq. (9.2) can be controlled, with probability at least 1− δ,
for any s ∈ [K], as

|NAbs(ĝ)− αs| ≤ u
δ/2,K
ns

, and |PTs(ĝ)− PT(ĝ)| ≤ 6
αs
uδ,Kns

+ 6
ᾱ

K∑
s=1

psu
δ,K
ns

.

The proof for the control of the reject rate is postponed to Section 9.9.3 while the proof for
the control of the Demographic Parity constraint can be found in Section 9.9.4.
Remarkably Proposition 9.5.1 is assumption-free. In particular it does not depend on the
conditional expectation η as well as it does not depend on the initial estimator η̂. If one has
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enough unlabeled data than one can get arbitrarily close to exact satisfaction of the constraints.
Intuitively, this is the case because the fairness and reject constraints only depend on the
conditional distribution of the feature vector X given the sensitive attribute S, not on the
relation between the features and the label Y .
We also remark that both bounds of Proposition 9.5.1 depend on the amount of observation
available for each group s ∈ [K] – it is easier to satisfy constraints for well-represented groups.
In particular, it is advisable to collect an unlabeled sample which is balanced in terms of
the sensitive attributes. Note that it is explicitly allowed in our framework, since we require
samples from PX|S=s and not from P(X,S).
The next result establishes excess risk guarantees for the proposed method.
Proposition 9.5.2. Assume that 2uδ,Kns

< αs < 1 − 2/ns for any s ∈ [K] and that Assump-
tion 9.3.1 holds. Then, for any δ ∈ (0, 1), the excess risk of the post-processing classifier with
abstention ĝ defined in Eq. (9.2) satisfies with probability at least 1− δ,

E(ĝ) ≤ 3
ᾱ
∥η − η̂∥1 + 6

K∑
s=1

(
ps
ᾱ

+ 1
αs

)
uδ,Kns

. (9.4)

For convenience and clarity of exposition we stated separately the control on the constraint
and on the excess risk. However, we remark that both Proposition 9.5.1 and Proposition 9.5.2
hold on the same high-probability event.
We naturally conclude from Proposition 9.5.2 that if one has access to a consistent estimator
η̂ of η, i.e., such that ∥η − η̂∥1 goes to 0 as the sample sizes (ns)Ks=1 go to infinity, then the
excess risk can be made arbitrarily small by getting more labeled and unlabeled data.
The only assumption, constraining the reject rates (αs)Ks=1, is quite benign. Recall that αs is
the rate at which the classifier is asked to give a prediction thus, in practice, it is expected to be
at least greater than a half. Furthermore, note that it only depends on the size of the unlabeled
dataset thus, if one has enough samples, this assumption essentially holds for free. If the sample
size is small, than one has to allow the classifier to reject more often in order to satisfy the
constraints. Similar constraints are present in other contributions (agarwal2018reductions;
see e.g., Agarwal, Dudík, and Wu 2019).
Our theoretical analysis is inspired by that of Chzhen et al. 2020b. However, their results
hold only in expectation while ours hold with high-probability. Moreover, due to the interplay
of the reject and demographic parity constraints, their proof technique requires a non-trivial
adaptation to our context.

9.6 LP reduction

We recall that the proposed post-processing scheme involves solving convex non-smooth
minimization problem in Eq. (9.3). While for low values of K (few sensitive attributes) this
problem can be solved via simple grid-search, which would be faster than sub-gradient methods,
large values of K can pose significant computational difficulties.
It turns out that the minimization problem in Eq. (9.3) is equivalent to Linear Programming
(LP) (Matousek and Gärtner 2007) with sparse constraint matrix. For any matrix A ∈ Rn×m

we denote by nnz(A) the number of non-zero elements of A.
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Figure 9.2: Results on German dataset with Logistic Regression (LR) as the base estimator.
Blue lines correspond to our post-processing method; Orange lines correspond to the base
classifier. Dashed line correspond to s = 1 and solid line to s = 0. Shaded areas correspond to
the variance of the result over 20 repetitions.

Proposition 9.6.1. There exist c ∈ Rn+2K , b ∈ R2n, A ∈ R2n×(n+2K) with nnz(A) ≤
4n+ nK, such that the minimization problem in Eq. (9.3), is equivalent to

min
y∈Rn+2K

⟨c,y⟩

s.t.
{

Ay ≤ b

yi ≥ 0 i ∈ [n]
.

(LP)

Due to the space considerations, the previous result is stated in existential form, however, all
the parameters of the LP are explicit and are provided in the supplementary material. Seminal
works of (Khachiyan 1979; Karmarkar 1984) confirmed that LP with rational coefficients can
be solved in weakly polynomial time. Since then, extremely efficient solvers were developed
based on the interior-point and simplex methods. The fact that the post-processing reduces
to an LP problem allows us to use these fast solvers. In particular, most of the computational
burden lies on the training of the base estimator η̂ while the post-processing can be performed
almost instantly. From theoretical perspective, one can leverage the sparse structure of the
problem using, for instance, the result of (Lee and Sidford 2015) who provide an efficient solver
to find an ε solution of an LP in Õ((nnz(A)+n2)

√
n log(ε−1)) time. In particular, the previous

guarantee scales only linearly with the number of sensitive attributes and logarithmically with
the precision ε. However, in our practical implementation of the proposed method, we use
interior point method available as a part of scipy.optimize.linprog (Virtanen et al. 2020).

9.7 Experiments

We provide an implementation of the proposed post-processing procedure described in Al-
gorithm 2 using scipy.optimize.linprog (Virtanen et al. 2020), which implements in-
terior point method for solving problem (LP). The source code is available at https:
//github.com/evgchz/dpabst. We consider Adult (Kohavi 1996) and German (Dua and
Graff 2017) datasets, which are standard benchmark datasets in the fairness literature.

https://github.com/evgchz/dpabst
https://github.com/evgchz/dpabst
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Adult dataset is fetched via fairlearn.datasets (Bird et al. n.d.). This dataset contains
14 features and around 48, 000 observations. We dropped those observations that contain
missing values. This dataset consists of 1994 US Census entries. Each entry of this dataset
corresponds to an individual who is described by 14 characteristics, the binary target variable
is equal to 1 if the individual earns more than $50K per year and it is set to 0 otherwise. In
our experiments we take sex as a sensitive attribute.
German dataset is hosted on the UCI Machine Learning Repository (Dua and Graff 2017).
Each of the 1, 000 entries represents a person who takes a credit by a bank. The binary
target variable is equal to one if the individual is considered as good credit risks based on 20
categorical/symbolic attributes and is set to 0 otherwise. We use ordinal-encoding for ordinal
variables and one-hot-encoding for other categorical variables which yields 46 features in total.
In our experiments we take sex as sensitive attribute.
We consider the following off-the-shelf methods: Random Forest (RF) and Logistic Regression
(LR). We used the sklearn (Pedregosa et al. 2011b) implementation of the aforementioned
methods.
Each dataset of size N we partition in three parts. The first labeled part (60% of N) is used to
train the base classifier, the second unlabeled part (20% of N) is used to apply the proposed
post-processing, and the third part (20% of N) is used for evaluation of various statistics,
which describe performance of the algorithm.
The hyperparameters of each base algorithm are tuned via 5-fold cross validation with accuracy
as the performance measure. The regularization parameter of LR is searched among 30 values,
equally spaced in logarithmic scale between 10−4 and 104. For RF the number of trees has
been set to 1000 and the size of the subset of features optimized at each node has been searched
in {d,

⌈
d

15/16
⌉
,
⌈
d

7/8
⌉
,
⌈
d

3/4
⌉
,
⌈
d

1/2
⌉
,
⌈
d

1/4
⌉
,
⌈
d

1/8
⌉
,
⌈
d

1/16
⌉
, 1} where d is the number of features in

the dataset. Recall that our post-processing algorithm is parameter-free, thus, the second step
is performed without any tuning. Our setup allows to set different reject rates for different
groups. However, the exact values heavily depend on the domain specific knowledge and on
the problem itself. Because of that, in our experiments, we set α1 = . . . = αK = α for 20
values of α taking values in the uniform grid over [.8, .99], which correspond to reject rate
ranging from 20% to 1%.
Given a classifier with reject option g and a test data T = {(xi, si, yi)}ntest

i=1 , we evaluate the
following statistics

âccs(g) =
∑ntest
i=1 I{g(xi, si) = yi}I{si = s}∑ntest
i=1 I{g(xi, si) ̸= r}I{si = s}

, s = 1, . . . ,K ,

ĉlfs(g) =
∑ntest
i=1 I{g(xi, si) ̸= r}I{si = s}∑ntest

i=1 I{si = s}
, s = 1, . . . ,K ,

p̂oss(g) =
∑ntest
i=1 I{g(xi, si) = 1}I{si = s}∑ntest
i=1 I{g(xi, si) ̸= r}I{si = s}

, s = 1, . . . ,K .

The first statistic measures the accuracy of g, the second the group-wise classification rate of
g, and the third one measures the group-wise predicted positive rate of g. It is important to
keep in mind that a classifier g which never rejects achieves clfs(g) = 1 on any dataset.
Figure 9.1 presents results on Adult dataset. First of all we observe that the proposed post-
processing is effective in imposing reject and fairness constraints as illustrated on Figures 9.1(b)-
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Figure 9.3: Results on Adult dataset with Random Forest (RF) without additional random-
ization as the base estimator. Blue lines correspond to our post-processing method; Orange
lines correspond to the base classifier. Dashed line correspond to s = 1 and solid line to s = 0.
Shaded areas correspond to the variance of the result over 20 repetitions.
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Figure 9.4: Results on Adult dataset with Random Forest (RF) with additional randomization
as the base estimator. Blue lines correspond to our post-processing method; Orange lines
correspond to the base classifier. Dashed line correspond to s = 1 and solid line to s = 0.
Shaded areas correspond to the variance of the result over 20 repetitions.

9.1(c). Looking at Figure 9.1(a), we observe that for already moderately low values of rejection
our classification algorithm equalizes and even exceeds the accuracy per groups and overall of
the base classifier. Figure 9.2 presents result on German dataset. Overall conclusions remain
the same as for the Adult dataset. The main difference is an increase in variance of the
result. This effect should not be attributed to the method itself but rather to the size of the
two datasets. Indeed, Adult contains around 40, 000 observation, while German contains
only 1, 000 observations. Hence, it is simply a more difficult task to learn stable classification
algorithms on the German dataset. Remarkably, already 1% of reject rate allows to maintain
the accuracy of the base classifier while significantly improving its fairness as illustrated on
Figure 9.2(a).
We would also like to highlight the importance of the additive noise perturbation present
in Algorithm 2. To this end, we consider RF classifier, which naturally does not lead to
continuous estimator η̂(X, S) due to its partitioning nature. On Figure 9.3 we display the
performance of our algorithm without any additional randomization and on Figure 9.4 follow
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Algorithm 2 with σ = 10−3. One can see that on Figure 9.3(c) the behaviour of our procedure
fails to satisfy rejection rate constraints for lower values of α, even, considering the fact, that
we have a rather large dataset. In contrast, this phenomenon disappears once the noise is
added (see Figure 9.4(c)), confirming our theoretical findings. It is important to emphasize
that this additional randomization has only a little impact on the group-wise accuracy, which
suggest that the randomization step is always advisable in practice.

9.8 Conclusion

We proposed a classification with abstention algorithm which is able to satisfy Demographic
Parity and whose reject rate is controlled explicitly. Our procedure is based on a post-processing
scheme of any base estimator and can be computed efficiently using LP solvers. We derived
distribution-free finite-sample guarantees demonstrating that the proposed method is able to
achieve the prescribed constraints with high probability. Under additional mild assumption,
we showed the risk of the proposed procedure nearly matches that of the theoretical minimum,
provided the initial estimator is consistent. Our experimental results support the developed
theory and suggest that by allowing small reject rate it is possible to avoid the accuracy-fairness
trade-off.

9.9 Proofs

Appendix 9.9.1 is devoted to the proof of Theorem 9.3.2. Appendix 9.9.2 reminds and
proves auxiliary results that are used in the rest of the supplementary material. The proof
of Proposition 9.5.1 is split across Appendix 9.9.3 for the control of the reject rate and
Appendix 9.9.4 for the control of the demographic parity violation. Appendix 9.9.5 contains
the proof of Proposition 9.5.2. Finally, Appendix 9.9.6 provides a constructive proof of
Proposition 9.6.1.

9.9.1 Derivation of the optimal prediction

Recall that we are interested in solving the following problem

min
g:Rd×[K]→{0,1,r}

P(g(X, S) ̸= Y | g(X, S)) ̸= r)

s.t.,∀s ∈ [K],
{
P(g(X, S)) ̸= r | S = s) = αs,

P(g(X, S) = 1 | S = s, g(X, S) ̸= r) = P(g(X, S) = 1 | g(X, S)) ̸= r).
.

Simplifications

First we simplify the quantities involved in the above problem. Set ᾱ = ∑K
s=1 psαs and recall

that we defined the random variable η(X, S) = E[Y |X, S]. Observe that for any g such that
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P(g(X, S) ̸= r | s = s) = αs, we can write

P(g(X, S) ̸= Y | g(X, S) ̸= r) =
K∑
s=1

ps
ᾱ
EX|S=s

[
(1−η(X, S)1g(X,S)=1 + η(X, S)1g(X,S)=0

]
,

P(g(X, S) ̸= r|S = s) = EX|S=s
[
1g(X,S)=1 + 1g(X,S)=0

]
,

P(g(X, S) = 1 | g(X, S) ̸= r) =
K∑
s=1

ps
ᾱ
EX|S=s

[
1g(X,S)=1

]
,

P(g(X, S) = 1|S = s, g(X, S) ̸= r) = 1
αs

EX|S=s
[
1g(X,S)=1

]
.

Lagrangian

We introduce the Lagrangian L of the constrained minimization problem as

L(g,λ,γ) = P(g(X, S) ̸= Y | g(X, S) ̸= r) +
K∑
s=1

λs(P(g(X, S) ̸= r|S = s)− αs)

+
K∑
s=1

γs(P(g(X, S) = 1|S = s, g(X, S) ̸= r)− P(g(X, S) = 1|g(X, S) ̸= r)) .

Using the simpler expressions we derived earlier, the Lagrangian can be expressed as

L(g,λ,γ) =
K∑
s=1

ps
ᾱ
EX|S=s

[
(1− η(X, S))1g(X,S)=1 + η(X, S)1g(X,S)=0

]

+
K∑
s=1

λs
{
EX|S=s

[
1g(X,S)=1 + 1g(X,S)=0

]
− αs

}

+
K∑
s=1

γs
αs

EX|S=s
[
1g(X,S)=1

]
−
(

K∑
s′=1

γs′

)(
K∑
s=1

ps
ᾱ
EX|S=s

[
1g(X,S)=1

])
.

After straightforward algebraic manipulations, the Lagrangian can be simplified to

L(g,λ,γ) =
K∑
s=1

EX|S=s
[
H(X,s)(g,λ,γ)

]
−

K∑
s=1

λsαs ,

where, setting γ̄ := ∑K
s=1 γs, we defined the function

H(x,s)(g,λ,γ) =


0, if g(x, s) = r
ps

ᾱ η(x, s) + λs, if g(x, s) = 0
ps

ᾱ (1− η(x, s)− γ̄) + λs + γs

αs
, if g(x, s) = 1

.

Using this Langrangian, our initial problem can be expressed as

min
g

max
(λ,γ)∈RK×RK

L(g,λ,γ) .

Weak duality then implies that

min
g

max
(λ,γ)∈RK×RK

L(g,λ,γ) ≥ max
(λ,γ)∈RK×RK

min
g
L(g,λ,γ) .
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Dual problem. We first solve the inner minimization problem of the max min formulation
for any (λ,γ),

min
g
L(g,λ,γ) , (9.5)

and then show that strong duality holds under our assumptions. The problem in Eq. (9.5)
can be solved point-wise, that is, it is sufficient to solve

min
z∈{0,1,r}

H(x,s)(z,λ,γ) ,

for any s ∈ [K] and any x ∈ Rd. One can easily check that, for any given couple (x, s), the
minimizer of the above expression is given by

g̃(x, s)=
{
r, if 0 ≤ λs+ min(ps

ᾱ η(x, s), ps

ᾱ (1−η(x, s)−γ̄)+ γs

αs
)

1(ps

ᾱ (1−2η(x, s)−γ̄)+ γs

αs
< 0), otherwise

.

Note that, using the fact that 2 min(a, b) = a+ b− |a− b|, the previous expression simplifies to

g̃(x, s)=

r, if
∣∣∣ ps

2ᾱ(1−2η(x, s)−γ̄)+ γs

2αs

∣∣∣ ≤ λs+ ps

2ᾱ(1−γ̄)+ γs

2αs

1(ps

ᾱ (1−2η(x, s)−γ̄)+ γs

αs
< 0), otherwise

.

Plugging back the expression for g̃ in the function H we get

H(x,s)(g̃,λ,γ) =
(
ps
2ᾱ(1− γ̄) + λs + γs

2αs
−
∣∣∣∣ ps2ᾱ(1− 2η(x, s)− γ̄) + γs

2αs

∣∣∣∣)
−

,

where (a)− := min(a, 0). Substituting this expression into the Lagrangian, we can derive the
dual optimization problem as

max
(λ,γ)

{
K∑
s=1

EX|S=s

(
ps
2ᾱ(1− γ̄) + λs + γs

2αs
−
∣∣∣∣ ps2ᾱ(1− 2η(x, s)− γ̄) + γs

2αs

∣∣∣∣)
−
−

K∑
s=1

λsαs

}
.

Writing this optimization problem as a minimization problem in vector form, the optimal
Lagrange multipliers (λ∗,γ∗) are a solution of

min
(λ,γ)

{
K∑
s=1

EX|S=s

(∣∣∣∣ ps2ᾱ(1−2η(X, S)−⟨γ,1⟩)+ γs
2αs

∣∣∣∣− ps2ᾱ(1−⟨γ,1⟩)−λs−
γs
2αs

)
+

+ ⟨λ,α⟩
}

,

(9.6)

where for any real number y, (y)+ := max(x, 0).
Let us check that the objective function of the above optimization problem is jointly convex
in (λ,γ). First of all, the mappings

(λ,γ) 7→ ps
2ᾱ(1− 2η(x, s)− ⟨γ,1⟩) + γs

2αs
,

(λ,γ) 7→ − ps2ᾱ(1− ⟨γ,1⟩)− λs −
γs
2αs

,



9.9. PROOFS 205

are clearly affine mappings. Since taking the absolute value of an affine mapping gives a convex
mapping (as a maximum between two affine, hence convex, functions), the sum of the absolute
value of the first mapping with the second mapping is a convex function. Furthermore, the
composition with the positive part function preserves convexity since this operation can be
expressed as taking the maximum between two convex functions. Finally, by linearity of
expectation, we notice that the objective is expressed as a finite sum of convex functions and
conclude that it is jointly convex in (λ,γ).
The objective function is not smooth everywhere due to the presence of absolute values and
positive part functions. However, thanks to Assumption 9.3.1, the set of points at which the
objective function is not differentiable has zero Lebesgue measure and can thus be ignored.
The First-Order Optimality Conditions (FOOC) on the optimal Lagrange multipliers (λ∗,γ∗)
then read as, for any s ∈ [K],

αs = PX|S=s

(∣∣∣∣ ps2ᾱ(1−2η(X, s)−⟨γ∗,1⟩)+ γ∗
s

2αs

∣∣∣∣ ≥ ps
2ᾱ(1−⟨γ∗,1⟩)+λ∗

s+
γ∗
s

2αs

)

0 =
K∑
s=1

(
ps
ᾱ

1−es
αs

)
PX|S=s

(
min

(
2η(X, S), η(X, S)− ᾱλs

ps

)
≥ ᾱγs
psαs

+1−γ̄
)

,

(FOOC)

where, for any s ∈ [K], es is the s-basis vector of RK .

Feasibility of g̃ for the primal problem Let us check that g̃ is feasible for the primal
problem. Using the definition of g̃ and the first-order optimal condition on λ∗ we obtain, for
any s ∈ [K],

P(g̃(X, S) ̸= r | S = s)

= PX|S=s

(∣∣∣∣ ps2ᾱ(1− 2η(X, s)− ⟨γ,1⟩) + γs
2αs

∣∣∣∣ ≥ ps
2ᾱ(1− ⟨γ,1⟩) + λs + γs

2αs

)
= αs ,

which proves that g̃ satisfies the first set of constraints. For the Demographic Parity constraints,
one easily obtains

PX|S=s(g̃(X, S) = 1 | g̃(X, S) ̸= r)

= 1
αs

PX|S=s(g̃(X, S) = 1)

= 1
αs

PX|S=s

(
min

(
2η(X, S), η(X, S)− ᾱλs

ps

)
≥ αγs
psαs

+ 1− γ̄
)

,

P(X,S)(g̃(X, S) = 1 | g̃(X, S) ̸= r)

=
K∑
s=1

ps
ᾱ
PX|S=s

(
min

(
2η(X, S), η(X, S)− ᾱλs

ps

)
≥ ᾱγs
psαs

+ 1− γ̄
)

.

The first-order optimality condition for γ∗ guarantees that for, any s ∈ [K],

PX|S=s(g̃(X, S) = 1 | g̃(X, S) ̸= r) = P(X,S)(g̃(X, S) = 1 | g̃(X, S) ̸= r) ,

i.e. it guarantees that the classifier g̃ satisfies the Demographic Parity constraint.
We conclude that the classifier g̃ is feasible for the primal problem and thus that strong duality
holds.
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9.9.2 Auxiliary results

We will need a tight control on the sup-norm of the difference between CDF and empirical
CDF. The next result is (Massart 1990, Corollary 1).

Theorem 9.9.1. Let Z,Z1, . . . ,Zn be n+ 1 i.i.d. continuous random variable sampled from
P on Z, then for any δ > 0, with probability at least 1− δ,

sup
z∈R

∣∣∣∣∣ 1n
n∑
i=1

I{Zi ≤ z} − P(Z ≤ z)
∣∣∣∣∣ ≤

√
log(2/δ)

2n .

9.9.3 Control of reject rate

Proposition 9.9.2. For all δ ∈ (0, 1), the proposed algorithm satisfies with probability at least
1− δ that

|P(ĝ(X, S) ̸= r | S = s)− αs| ≤
√

2 log(2K/δ)
ns

+ 2
ns
, ∀s ∈ [K] .

The rest of this section is devoted to the proof of this result. In what follows, all the derivations
should be understood conditionally on η̂. In simple words, the estimator η̂ is treated as fixed
and the only randomness comes from the unlabeled data. According to the definition of our
estimator,

PX|S=s (ĝ(X, s) ̸= r) = PX|S=s
(
Ĝ(X, s, λ̂, γ̂) > 0

)
.

Using the triangle inequality we can upper bound |PX|S=s
(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs| by two

terms ∣∣∣PX|S=s
(
Ĝ(X, s, λ̂, γ̂) > 0

)
− P̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)∣∣∣︸ ︷︷ ︸
T1

+
∣∣∣P̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs

∣∣∣︸ ︷︷ ︸
T2

,
(9.7)

which are treated separately.

Control of T1. The first term T1 can be controlled using tools from empirical process theory.
One can directly observe that

T1 ≤ sup
(λ,γ)∈RK ×RK

∣∣∣PX|S=s

(
Ĝ(X, s,λ,γ) > 0

)
− P̂X|S=s

(
Ĝ(X, s,λ,γ) > 0

)∣∣∣
≤ sup

(a,b)∈R×R

∣∣∣PX|S=s

(∣∣∣ ps

2ᾱ η̂(X, S)− a
∣∣∣− a+ b > 0

)
− P̂X|S=s

(∣∣∣ ps

2ᾱ η̂(X, S)− a
∣∣∣− a+ b > 0

)∣∣∣
≤ sup

(a,c)∈R×R

∣∣∣PX|S=s

(∣∣∣ ps

2ᾱ η̂(X, S)− a
∣∣∣ > c

)
− P̂X|S=s

(∣∣∣ ps

2ᾱ η̂(X, S)− a
∣∣∣ > c

)∣∣∣
≤ 2 sup

a∈R

∣∣∣PX|S=s(η̂(X, S) ≤ a)− P̂X|S=s(η̂(X, S) ≤ a)
∣∣∣ ,

(9.8)
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where we used the triangle inequality and the fact that (η̂(X, S) | S = s) is a continuous
random variable to obtain the last inequality.
By our assumption (see Remark 9.9.4), the random variables η̂(Xi, s), (η̂(X, S) | S = s) for
i ∈ Is are i.i.d. continuous conditionally on η̂. Thus, applying Theorem 9.9.1 we conclude that
with probability at least 1− δ it holds that

T1 ≤

√
2 log(2/δ)

ns
. (9.9)

Control of T2. The control of the second term T2 requires a more involved analysis. Since λ̂
is a minimizer of (9.3), the first order optimality condition for convex non-smooth minimization
problems state that for any s ∈ [K], there exists ρs ∈ [0, 1] such that

αs = P̂X|S=s
(
Ĝ(X, s, λ̂, γ̂) > 0

)
+ ρsP̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) = 0

)
Thus, the second term of Eq. (9.7) can be bounded as∣∣∣P̂X|S=s

(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs

∣∣∣ ≤ P̂X|S=s
(
Ĝ(X, s, λ̂, γ̂) = 0

)
. (9.10)

The control of P̂X|S=s
(
Ĝ(X, s, λ̂, γ̂) = 0

)
is provided by the following result.

Lemma 9.9.3. Assume that (η̂(X, S) | S = s, η̂) is almost surely continuous, then for any
s ∈ [K], for any (λ,γ),

P̂X|S=s
(
Ĝ(X, s,λ,γ) = 0

)
≤ 2
ns

, a.s.

Proof. We recall that by definition of P̂X|s we have

P̂X|S=s
(
Ĝ(X, s,λ,γ) = 0

)
= 1
ns

ns∑
i=1

1(Ĝ(Xi, s,λ,γ) = 0) .

The proof goes by contradiction. Assume that the event

1
ns

ns∑
i=1

1(Ĝ(Xi, s,λ,γ) = 0) ≥ 3
ns

,

happens with positive probability. Then, there exist three indexes i1, i2, i3 such that

Ĝ(Xij , s,λ,γ) = 0 , j = 1, 2, 3 .

However, Ĝ(X, s,λ,γ) = 0 implies that either

p̂s
ᾱ
η̂(X, s) + λs = 0 or p̂s

ᾱ
(η̂(X, s) + ⟨γ, 1⟩ − 1)− λs + γs

αs
= 0 .

By the pigeonhole principle, there exist i, j ∈ {i1, i2, i3}, i ̸= j such that

η̂(Xi, s) = η̂(Xj , s) ,

which contradicts our assumption that (η̂(X, S) | S = s, η̂) is continuous almost surely.
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Remark 9.9.4. Recall that the assumption of continuity of (η̂(X, S) | S = s, η̂) can always
be fulfilled with the help of additional randomization. More formally, one needs to replace η̂ by
its smoothed version using additional randomization present in Algorithm 2. To keep things
simple, we avoid this technicality in our proof and simply assume that (η̂(X, S) | S = s, η̂) is
indeed continuous. The statement of this result is straightforwardly adapted to the perturbed
version of η̂.

Lemma 9.9.3 allows to control the second term in Eq. (9.7) yielding

T2 ≤
2
ns

. (9.11)

Putting together. Substituting Eqs. (9.9) and (9.11) into Eq. (9.8), we deduce that for all
s ∈ [K] we have, with probability 1− δ,

∣∣∣PX|S=s
(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs

∣∣∣ ≤
√

2 log(2/δ)
ns

+ 2
ns

.

Finally, taking the union bound we deduce that, with probability at least 1− δ, we have for
all s ∈ [K]

∣∣∣PX|S=s
(
Ĝ(X, s, λ̂, γ̂) > 0

)
− αs

∣∣∣ ≤
√

2 log(2K/δ)
ns

+ 2
ns

.

The proof of Proposition 9.9.2 is concluded.

9.9.4 Control of Demographic Parity violation

Proposition 9.9.5. For any δ ∈ (0, 1), the proposed algorithm satisfies with probability at
least 1− δ, for any s ∈ [K],∣∣∣PX|S=s (ĝ(X, s) = 1 | ĝ(X, s) ̸= r)− P(X,S) (ĝ(X, S) = 1 | ĝ(X, S) ̸= r)

∣∣∣
≤ 1
αs
vδ,Kns

+ 1
ᾱ

K∑
s=1

psv
δ,K
ns

,

where

vδ,Kn :=

3

√
log(4K/δ)

n
+ 4
n

 .

Remark 9.9.6. It is easy to see in the proof that the high-probability event on which Proposi-
tion 9.9.5 holds is contained in the high-probability event on which Proposition 9.9.2 holds.

The rest of this section is devoted to the proof of this result.
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Problem splitting. Similarly to the control of the reject rate we start by splitting our
problem in several parts. Recall that our goal here is to control

(DPs) :=
∣∣∣PX|S=s (ĝ(X, s) = 1 | ĝ(X, s) ̸= r)− P(X,S) (ĝ(X, S) = 1 | ĝ(X, S) ̸= r)

∣∣∣ ,
for all s ∈ [K]. Triangle inequality yields that

(DPs) ≤
∣∣∣PX|S=s (ĝ(X, s) = 1 | ĝ(X, s) ̸= r)− α−1

s PX|S=s (ĝ(X, s) = 1)
∣∣∣

+
∣∣∣α−1
s PX|S=s (ĝ(X, s) = 1)− α−1

s P̂X|S=s (ĝ(X, s) = 1)
∣∣∣

+

∣∣∣∣∣∣α−1
s P̂X|S=s (ĝ(X, s) = 1)− ᾱ−1 ∑

s∈[K]
psP̂X|S=s (ĝ(X, s) = 1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ᾱ−1 ∑
s∈[K]

psP̂X|S=s (ĝ(X, s) = 1)− ᾱ−1 ∑
s∈[K]

psPX|S=s (ĝ(X, s) = 1)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ᾱ−1 ∑
s∈[K]

psPX|S=s (ĝ(X, s) = 1)− P(X,S) (ĝ(X, S) = 1 | ĝ(X, S) ̸= r)

∣∣∣∣∣∣ .
The second and the fourth terms will be controlled using empirical process theory. We can get
a bound on the first and fifth terms through our control of the reject rate. The third term is
controlled via the first-order optimality condition on γ.

High-probability event. Let us describe in details the high-probability event on which we
will place ourselves for controlling all the terms, uniformly over the classes s ∈ [K].
Proposition 9.9.2 states that there exists an event R that holds with probability at least
1−Kδ and on which, for any δ ∈ (0, 1/K), the proposed algorithm satisfies with probability
at least 1−Kδ that

|P(ĝ(X, S) ̸= r | S = s)− αs| ≤ uδns
, ∀s ∈ [K] ,

where

uδn :=

√
2 log(2/δ)

n
+ 2
n
, ∀n ≥ 1 .

Furthermore, for any class s ∈ [K], using the fact that the random variable (η(X, S) | S = s)
is continuous, the event

EPs :=

sup
a∈R

∣∣∣PX|S=s (η(X, s) > a)− P̂X|S=s (η(X, s) > a)
∣∣∣ ≤

√
log(2/δ)

2ns

 ,

holds with probability at least 1− δ (see Theorem 9.9.1). By a simple union bound argument,
the intersection of those events, denoted by EP := ∩s∈[K]EPs, then holds with probability at
least 1− 2Kδ.
In what follows we place ourselves on the event A := R ∩ EP which holds with probability at
least 1− 2Kδ.
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First-order optimality condition for γ̂. Recall that (λ̂, γ̂) is a solution of

min
(λ,γ)

[
⟨λ,α⟩+ ÊX|S=s(Ĝ(X, s,λ,γ))+

]
,

where the function Ĝ is defined as

Ĝ(x, s,λ,γ) =
∣∣∣∣ p̂s2ᾱ(1− 2η̂(x, s)− ⟨γ,1⟩) + γs

2αs

∣∣∣∣− p̂s
2ᾱ(1− ⟨γ,1⟩)− λs −

γs
2αs

.

The positive part of Ĝ can be expressed as
(Ĝ(x, s,λ,γ))+ = max(0,m+(x, s,λ,γ),m−(x, s,λ,γ)) ,

where
m+(x, s,λ,γ) = −ps

ᾱ
η̂(x, s)− λs

and
m−(x, s,λ,γ) = ps

ᾱ
(η̂(x, s) + ⟨γ, 1⟩ − 1)− γs

αs
− λs .

Noticing that the event m−(x, s,λ,γ) > max(0,m+(x, s,λ,γ)) is the same as the event
ĝ(X, s) = 1, the first-order optimality condition on γ̂ reads as: ∃(ρs)Ks=1 ∈ [0, 1]K s.t.

K∑
s=1

(
ps
ᾱ

1− 1
αs

es

)(
P̂X|S=s (ĝ(X, s) = 1) + ρsP̂X|S=s

(
∆s(λ̂, γ̂)

))
= 0 ,

where we define the event ∆s(λ,γ) := {m−(X, s,λ,γ) = max(0,m+(X, s,λ,γ))}. In scalar
form the previous condition can be expressed as: for any s ∈ [K], there exists ρs ∈ [0, 1] such
that

K∑
s=1

ps
ᾱ

(
P̂X|S=s (ĝ(X, s) = 1) +ρsP̂X|S=s

(
∆s(λ̂, γ̂)

))

= 1
αs

(
P̂X|S=s (ĝ(X, s) = 1) + ρsP̂X|S=s

(
∆s(λ̂, γ̂)

))
.

Control of the first term. Re-arranging terms and using the fact that
PX|S=s (ĝ(X, S) = 1) ≤ PX|S=s (ĝ(X, S) ̸= r) ,

we get

(DPs1) :=
∣∣∣PX|S=s (ĝ(X, s) = 1 | ĝ(X, s) ̸= r)− α−1

s PX|S=s (ĝ(X, S) = 1)
∣∣∣

=
∣∣∣∣∣ 1
αs
− 1

PX|S=s (ĝ(X, s) ̸= r)

∣∣∣∣∣PX|S=s (ĝ(X, S) = 1)

≤
∣∣∣∣∣ 1
αs
− 1

PX|S=s (ĝ(X, s) ̸= r)

∣∣∣∣∣PX|S=s (ĝ(X, S) ̸= r)

= 1
αs

∣∣∣PX|S=s (ĝ(X, S) ̸= r)− αs
∣∣∣ .

Considering that we restrict ourselves to the high-probability event A, we can conclude that

(DPs1) ≤
uδns

αs
.
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Control of the second term The second term is given by the empirical process

(DPs2) := α−1
s

∣∣∣PX|S=s (ĝ(X, S) = 1)− P̂X|S=s (ĝ(X, S) = 1)
∣∣∣ .

The event {ĝ(X, s) = 1} is the same as the event{ ∣∣∣∣ ps2ᾱ(1− 2η̂(X, s)− ⟨1, γ̂⟩) + γ̂s
2αs

∣∣∣∣ > ps
2ᾱ(1− ⟨1,γ⟩) + λ̂s + γ̂s

2αs
,

2η̂(X, s) ≥ 1 + ᾱγ̂s
αsps

− ⟨γ̂,1⟩
}
,

which can be compacted to

S(λ,γ) :=
{
η̂(X, s) > max

(1
2 + ᾱγ̂s

2αsps
− 1

2 ⟨γ̂,1⟩ ,
ᾱ

ps

(
λ̂s + γ̂s

αs

)
+ 1− ⟨1,γ⟩

)}
.

Following this observation, we can express the second term as

(DPs2) = α−1
s sup

(λ,γ)

∣∣∣PX|S=s (S(λ,γ))− P̂X|S=s (S(λ,γ))
∣∣∣

≤ α−1
s sup

a∈R

∣∣∣PX|S=s (η̂(X, s) > a)− P̂X|S=s (η̂(X, s) > a)
∣∣∣ .

Since we are on the event A which is contained in the event EPs, we have

(DPs2) ≤ 1
αs

√
log(2/δ)

2ns
.

Control of the third term. The third term can be controlled with the first-order optimality
condition on γ̂ and multiple triangle inequalities as

(DPs3) :=

∣∣∣∣∣∣α−1
s P̂X|S=s (ĝ(X, S) = 1)− ᾱ−1 ∑

s∈[K]
psP̂X|S=s (ĝ(X, S) = 1)

∣∣∣∣∣∣
=
∣∣∣∣∣ ρsαs P̂X|S=s

(
∆s(λ̂, γ̂)

)
−

K∑
s=1

ps
ᾱ
ρsP̂X|S=s

(
∆s(λ̂, γ̂)

)∣∣∣∣∣
≤ 1
αs

P̂X|S=s
(
∆s(λ̂, γ̂)

)
+

K∑
s=1

ps
ᾱ
P̂X|S=s

(
∆s(λ̂, γ̂)

)
.

The following lemma gives an almost sure upper bound on P̂X|S=s
(
∆s(λ̂, γ̂)

)
for any s ∈ [K].

Lemma 9.9.7. Assume that (η̂(X, S) | S = s, η̂) is almost surely continuous, then for any
s ∈ [K], for any (λ,γ),

P̂X|S=s
(
∆s(λ̂, γ̂)

)
≤ 2
ns
, a.s.
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Proof. This proof is similar to proof of Lemma 9.9.3. Assume by contradiction that the stated
bound is not true. Then, it happens with positive probability that

1
ns

ns∑
i=1

1 {m−(Xi, s,λ,γ) = max(0,m+(Xi, s,λ,γ))} ≥ 3
ns

,

which implies that there exist a triplet i1, i2, i3 such that

m−(Xij , s,λ,γ) = max(0,m+(Xij , s,λ,γ)), for j = 1, 2, 3 .

By the pigeonhole principle, there must exist a couple (i, j), i ̸= j among this triplet such that
either

m−(Xi, s,λ,γ) = m−(Xj , s,λ,γ)

or

m−(Xi, s,λ,γ)−m+(Xi, s,λ,γ) = m−(Xj , s,λ,γ)−m+(Xj , s,λ,γ) .

In both cases one must have η̂(Xi, s) = η̂(Xj , s) which happens with probability 0 by the
continuity assumption and leads to a contradiction. The proof of lemma is concluded.

Plugging in the bounds from Lemma 9.9.7 yields

(DPs3) ≤ 2
nsαs

+ 2
ᾱ

K∑
s=1

ps
ns

.

Control of the fourth term. The fourth term can be seen as a sum of empirical processes:

(DP4) := ᾱ−1

∣∣∣∣∣∣
∑
s∈[K]

psP̂X|S=s (ĝ(X, S) = 1)−
∑
s∈[K]

psPX|S=s (ĝ(X, S) = 1)

∣∣∣∣∣∣
≤ ᾱ−1

K∑
s=1

ps
∣∣∣P̂X|S=s (ĝ(X, S) = 1)− PX|S=s (ĝ(X, S) = 1)

∣∣∣ .
We can control the fourth term from the bound we have on the second term (which holds
uniformly over the classes s) as

(DP4) ≤ 1
ᾱ

∑
s∈K

ps

√
log(2/δ)

2ns
.
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Control of the fifth term. Finally, the fifth term can be bounded using the same trick as
for the first term.

(DP5) :=

∣∣∣∣∣∣ᾱ−1 ∑
s∈[K]

psPX|S=s (ĝ(X, S) = 1)− P(X,S) (ĝ(X, s) = 1 | ĝ(X, s) ̸= r)

∣∣∣∣∣∣
=
∣∣∣∣∣ 1ᾱ − 1∑K

s=1 psPX|S=s (ĝ(X, s) ̸= r)

∣∣∣∣∣
K∑
s=1

psPX|S=s (ĝ(X, S) = 1)

≤
∣∣∣∣∣ 1ᾱ − 1∑K

s=1 psPX|S=s (ĝ(X, s) ̸= r)

∣∣∣∣∣
K∑
s=1

psPX|S=s (ĝ(X, S) ̸= r)

= 1
ᾱ

∣∣∣∣∣
K∑
s=1

ps(PX|S=s (ĝ(X, s) ̸= r)− αs)
∣∣∣∣∣ ≤ 1

ᾱ

K∑
s=1

psu
δ
ns
.

Summary. Putting everything together, we have shown that, on the event A which holds
with probability at least 1− 2Kδ, we have, for any s ∈ [K],

(DPs) ≤ 1
αs

3
√

log(2/δ)
2ns

+ 4
ns

+ 2
ᾱ

K∑
s=1

ps

3
√

log(2/δ)
2ns

+ 4
ns

 .

9.9.5 Control of the excess risk

Define the sequence

uδ,Kn :=

√
2 log(4K/δ)

n
+ 2
n
, ∀n ≥ 1 .

We state and prove slightly more precise bound then the one presented in the main body.

Proposition 9.9.8. Assume that uδ,Kns
< αs < 1− 2

ns
for any s ∈ [K] and that Assumption 9.3.1

holds. Then, for any δ ∈ (0, 1), the excess risk of the post-processing classifier with abstention
ĝ defined in Eq (9.2) satisfies, with probability at least 1− δ,

E(ĝ) ≤
(

1
ᾱ

+ 1
ᾱ−

∑
s psu

δ,K
ns

)
∥η − η̂∥1 + 6

K∑
s=1

(
ps
ᾱ

+ 1
αs

)
uδ,Kns

.

A quick inspection of the proof shows that the high-probability event on which the stated
bound holds is the same as the event on which Proposition 9.9.5 holds, which is contained
in the event on which Proposition 9.9.2 holds. Thus we can control the excess risk and the
violation of the constraints on the same high-probability event.

Proof. Since, using Assumption 9.3.1 we have established strong duality, the following equality
holds

R(g∗) = max
(λ,γ)

{
K∑

s=1
EX|S=s

(
ps

2ᾱ (1−γ̄)+λs+ γs

2αs
−
∣∣∣∣ ps

2ᾱ (1−2η(x, s)−γ̄)+ γs

2αs

∣∣∣∣)
−
−

K∑
s=1

λsαs

}
.

(9.12)
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Besides, we can control the risk of any classifier g as

R(g) =
K∑
s=1

ps
P(g(X, S) ̸= r)EX|S=s

[
(1− η(X, s)1g(X,s)=1 + η(X, s)1g(X,s)=0

]

≤
K∑
s=1

ps
P(g(X, S) ̸= r)EX|S=s

[
(1− η̂(X, s)1g(X,s)=1 + η̂(X, s)1g(X,s)=0

]
+ ∥η − η̂∥1

P(g(X, S) ̸= r) .

(9.13)

Setting As(g) := ps

ᾱ EX|S=s
[
(1− η̂(X, s))1g(X,s)=1 + η̂(X, s)1g(X,s)=0

]
, we have for any clas-

sifier g,

R(g) ≤
K∑
s=1

As(g) + ∥η − η̂∥1
P(g(X, S) ̸= r) + 1

ᾱ
|P(g(X, S) ̸= r)− ᾱ| .

In what follows we bound r1(g) := ∑K
s=1 As(g). Re-arranging terms we trivially have

r1(g) =
K∑
s=1

ps
ᾱ
EX|S=s

[
(1− η̂(X, S))1g(X,S)=1 + η̂(X, S)1g(X,S)=0

]

±
K∑
s=1

λ̂s
{
EX|S=s

[
1g(X,S)=1 + 1g(X,S)=0

]
− αs

}

±
K∑
s=1

γ̂s
αs

EX|S=s
[
1g(X,S)=1

]
−
(

K∑
s′=1

γ̂s′

)(
K∑
s=1

ps
ᾱ
EX|S=s

[
1g(X,S)=1

])

=
K∑
s=1

EX|S=s
[
Ĥ(X,s)(g, λ̂, γ̂)

]

−
K∑
s=1

λ̂sαs −
K∑
s=1

λ̂s
{
EX|S=s

[
1g(X,S)=1 + 1g(X,S)=0

]
− αs

}

−
K∑
s=1

γ̂s
αs

EX|S=s
[
1g(X,S)=1

]
−
(

K∑
s′=1

γ̂s′

)(
K∑
s=1

ps
ᾱ
EX|S=s

[
1g(X,S)=1

])
,

where

Ĥ(x,s)(g,λ,γ) =


0, if g(x, s) = r
ps

ᾱ η̂(x, s) + λs, if g(x, s) = 0
ps

ᾱ (1− η̂(x, s)− γ̄) + λs + γs

αs
, if g(x, s) = 1

,

with γ̄ = ∑K
s=1 γs. Note that, by the definition of ĝ, it holds that

K∑
s=1

EX|S=s
[
Ĥ(X,s)(ĝ, λ̂, γ̂)

]
= E(−Ĝ(X, s, λ̂, γ̂))− .
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Thus, it holds that

r1(ĝ) =
K∑
s=1

EX|S=s

(
ps
2ᾱ(1− ¯̂γ) + λ̂s + γ̂s

2αs
−
∣∣∣∣ ps2ᾱ(1− 2η̂(X, s)− ¯̂γ) + γ̂s

2αs

∣∣∣∣)
−
−

K∑
s=1

λ̂sαs

−
K∑
s=1

λ̂s (P(ĝ(X, S) ̸= r | S = s)− αs)

−
K∑
s=1

γ̂s

(
P(ĝ(X, S) = 1 | S = s)

αs
−

K∑
s′=1

ps′

ᾱ
P(ĝ(X, S) = 1 | S = s′)

)
.

(9.14)
Finally, substituting Eq. (9.14) into Eq. (9.13) we obtain the following upper bound on R(ĝ)

R(ĝ) ≤
K∑
s=1

EX|S=s

(
ps
2ᾱ(1− ¯̂γ) + λ̂s + γ̂s

2αs
−
∣∣∣∣ ps2ᾱ(1− 2η̂(X, s)− ¯̂γ) + γ̂s

2αs

∣∣∣∣)
−
−

K∑
s=1

λ̂sαs

−
K∑
s=1

λ̂s (P(ĝ(X, S) ̸= r | S = s)− αs)

−
K∑
s=1

γ̂s

(
P(ĝ(X, S) = 1 | S = s)

αs
−

K∑
s′=1

ps′

ᾱ
P(ĝ(X, S) = 1 | S = s′)

)

+ ∥η − η̂∥1
P(ĝ(X, S) ̸= r) + 1

ᾱ
|P(ĝ(X, S) ̸= r)− ᾱ| ,

which holds almost surely.
Define the excess risk E(ĝ) := R(ĝ)−R(g∗). Note that, using the fact that mapping x 7→ (x)−
is 1-Lipschitz followed by the triangle inequality, the difference∣∣∣∣ ( ps

2ᾱ (1− γ̄) + λs + γs

2αs
−
∣∣∣∣ ps

2ᾱ (1− 2η̂(x, s)− γ̄) + γs

2αs

∣∣∣∣)
−

−
(
ps

2ᾱ (1− γ̄) + λs + γs

2αs
−
∣∣∣∣ ps

2ᾱ (1− 2η(x, s)− γ̄) + γs

2αs

∣∣∣∣)
−

∣∣∣∣ ,
can be upper bounded by ps

ᾱ |η̂(x, s)− η(x, s)|, for any (x, s,λ,γ). Thus, replacing (λ∗,γ∗)
by (λ̂, γ̂) in the expression for R(g∗) in Eq. (9.12) we obtain

E(ĝ) ≤∥η − η̂∥1
ᾱ

+ 1
ᾱ
|P(g(X, S) ̸= r)− ᾱ|+ ∥η − η̂∥1

P(g(X, S) ̸= r)

+
K∑
s=1
|λ̂s| |P(ĝ(X, S) ̸= r | S = s)− αs|

+
K∑
s=1
|γ̂s|

∣∣∣∣∣P(ĝ(X, S) = 1 | S = s)
αs

−
K∑
s′=1

ps′

ᾱ
P(ĝ(X, S) = 1 | S = s′)

∣∣∣∣∣ .
(9.15)

In the above inequality we can control all the terms.
Indeed, using the fact that on the event of Proposition 9.9.5 we have, with probability at least
1− 2Kδ, for all s ∈ [K],

|P(ĝ(X, S) ̸= r | S = s)− αs| ≤ uδns
, with uδn :=

√
2 log(2/δ)

n
+ 2
n
, ∀n ≥ 1 ,



216 CHAPTER 9. FAIR CLASSIFICATION WITH ABSTENTION

we deduce that with probability at least 1− 2Kδ the following three inequalities hold

1
ᾱ
|P(g(X, S) ̸= r)− ᾱ| ≤ 1

ᾱ

K∑
s=1

psu
δ
ns

,

∥η − η̂∥1
P(ĝ(X, S) ̸= r) ≤

∥η − η̂∥1
ᾱ−

∑
s psu

δ
ns

,

K∑
s=1
|λ̂s| |P(ĝ(X, S) ̸= r | S = s)− αs| ≤

K∑
s=1
|λ̂s|uδns

.

(9.16)

Note that by the assumption of the proposition, the term ᾱ−
∑
s psu

δ
ns
> 0.

Furthermore, on the same event, using the notations of the proof of Proposition 9.9.5, we have
for any s ∈ [K]∣∣∣∣∣PX|S=s (ĝ(X, S) = 1)

αs
−

K∑
s′=1

ps′

ᾱ
PX|S=s′(ĝ(X, S) = 1)

∣∣∣∣∣ ≤ (DPs2) + (DPs3) + (DP4)

≤ 1
αs
vδns

+ 2
ᾱ

K∑
s=1

psv
δ
ns

.

(9.17)

where vδn =
√

log(2/δ)
2n + 2

n . All in all, substituting Eqs. (9.16) and (9.17) into Eq. (9.15) we
deduce that

E(ĝ) ≤
(

1
ᾱ

+ 1
ᾱ−

∑
s psu

δ
ns

)
∥η − η̂∥1 +

K∑
s=1

(
ps
ᾱ

+
∣∣∣λ̂s∣∣∣)uδns

+
K∑
s=1

(
|γ̂s|
αs

+ 2ps
ᾱ

(
∑
s′

|γ̂s′ |)
)
vδns

=
(

1
ᾱ

+ 1
ᾱ−

∑
s psu

δ
ns

)
∥η − η̂∥1 +

K∑
s=1

(
2ps
ᾱ

+ 2
∣∣∣λ̂s∣∣∣+ |γ̂s|

αs
+ 2ps

ᾱ
(
∑
s′

|γ̂s|)
)√

log(1/δ)
2ns

+
K∑
s=1

(
ps
ᾱ

+ |λ̂s|+
|γ̂s|
αs

+ 2ps
ᾱ

(
∑
s′

|γ̂s′ |)
)

2
ns

.

In order to finish the proof it remains to provide a bound on |λ̂s| and |γ̂s|. Proposition 9.9.9,
proven below, establishes this bound and yields

E(ĝ) ≤
(

1
ᾱ

+ 1
ᾱ−

∑
s psu

δ
ns

)
∥η − η̂∥1 +

K∑
s=1

(4ps
ᾱ

+ 3
αs

)√2 log(2/δ)
ns

+
( 6
αs

+ 6ps
ᾱ

) 2
ns


≤
(

1
ᾱ

+ 1
ᾱ−

∑
s psu

δ
ns

)
∥η − η̂∥1 + 6

K∑
s=1

(
ps
ᾱ

+ 1
αs

)
uδns

.

the proof is concluded after the observation that thanks to our assumption we have ᾱ −∑
s psu

δ
ns
≥ ᾱ/2.

Boundedness of optimal parameters
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Proposition 9.9.9. The minimization problem in Eq. (9.6) admits a global minimizer (λ∗,γ∗)
which satisfies

∥γ∗∥1 ≤ 2 and |λ∗
s| ≤

ps
ᾱ
∨ |γ

∗
s |
αs

.

Furthermore, if for any s, ns > 2
αs∧(1−αs) and η̂(·, s) ∈ [0, 1], the same holds for Eq. (9.3),

that is,

∥γ̂∥1 ≤ 2 and |λ̂s| ≤
ps
ᾱ
∨ |γ̂s|
αs

.

Proof. We denote the conditional expectation of Y given S = s by η(s). Denote by H(λ,γ)
the objective function of the minimization problem in Eq. (9.6).

Existence of global minizer. Fix arbitrary (λ,γ) ∈ RK × RK such that ∑K
s=1 γs = 0.

Since the function x 7→ (|x| − b)+ is convex for any b ∈ R we can lower bound H(λ,γ) using
Jensen’s inequality as

H(λ,γ) = 1
2

K∑
s=1

1
αs

EX|S=s

(∣∣∣∣αspsᾱ (1− 2η(X, s)) + γs

∣∣∣∣− psαs
ᾱ
− 2αsλs − γs

)
+

+
K∑
s=1

λsαs

≥ 1
2

K∑
s=1

1
αs

(∣∣∣∣αspsᾱ (1− 2η(s)) + γs

∣∣∣∣− psαs
ᾱ
− 2αsλs − γs

)
+

+
K∑
s=1

λsαs .

Furthermore, since αs ≤ 1 for any s and by assumption, γ̄ = 0, we can further lower bound
H(λ,γ) as

H(λ,γ) ≥ 1
2

K∑
s=1

(∣∣∣∣αspsᾱ (1− 2η(s)) + γs

∣∣∣∣− psαs
ᾱ
− 2αsλs − γs

)
+

+
K∑
s=1

λsαs

≥ 1
2

(
∥γ∥1 −

K∑
s=1

αsps
ᾱ
|(1− 2η(s))| − 1− 2

K∑
s=1

λsαs

)
+

+
K∑
s=1

λsαs

≥ ∥γ∥12 − 1 , (9.18)

where we used the triangle inequality for the second inequality and we lower bounded the
positive part by the number itself and upper bounded |1− 2η(s)| by one.
Besides, notice that

H(λ,γ) = 1
2

K∑
s=1

1
αs

EX|S=s

(∣∣∣∣αspsᾱ (1− 2η(X, s)) + γs

∣∣∣∣− psαs
ᾱ
− 2αsλs − γs

)
+

+
K∑
s=1

λsαs

≥
K∑
s=1

1
αs

EX|S=s

(
−αsps

ᾱ
η(X, s)− αsλs

)
+

+
K∑
s=1

λsαs

≥
K∑
s=1

{(
−ps
ᾱ
η(s)− λs

)
+

+ λsαs

}
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One easily observes that
K∑
s=1

{(
−ps
ᾱ
η(s)− λs

)
+

+ λsαs

}
≥

K∑
s=1
{αs ∧ (1− αs)}|λs| −

K∑
s=1

ps
ᾱ
η(s){(2αs) ∨ 1} . (9.19)

Observe that for any (λ,γ) ∈ RK × RK and for any c ∈ R the transformation

γs 7→ γs + psαs
ᾱ

c, and λs 7→ λs s ∈ [K] ,

does not change the value of the objective function. Take any minimizing sequence (λk,γk) of
H. Due to the above observation we transform (λk,γk) to another minimizing sequence with
the property

K∑
s=1

γks = 0, ∀k ∈ N . (9.20)

By an abuse of notation we denote this transformed sequence by (λk,γk). By definition of
(λk,γk), for any ϵ > 0 there exists N ∈ N such that

H(λk,γk) ≤ H(0,0) + ϵ, ∀k ≥ N .

Since,

H(0,0) =
K∑
s=1

ps
2ᾱ (|1− 2η(X, s)| − 1)+ = 0 ,

it holds for all k ≥ N that

H(λk,γk) ≤ ϵ, ∀k ≥ N .

Furthermore, since for all k ∈ N the property in Eq. (9.20) holds, then using Eqs. (9.18)
and (9.19) we obtain

∥γk∥1 ≤ 2(1 + ϵ) ,

K∑
s=1
{αs ∧ (1− αs)}|λks | ≤ ϵ+

K∑
s=1

ps
ᾱ
η(s){(2αs) ∨ 1} .

Thus for all k ≥ N the minimizing sequence (λk,γk) is bounded, extracting convergent
sub-sequence and using the fact that H is continuous we conclude that the global minimizer
exists.

Refined bound on λ. Recall that the first-order optimality condition on λ∗ (see (FOOC))
is given by: for all sin[K]

αs = PX|S=s

(∣∣∣∣ ps2ᾱ(1− 2η(X, s)− ⟨γ∗,1⟩) + γ∗
s

2αs

∣∣∣∣ ≥ ps
2ᾱ(1− ⟨γ∗,1⟩) + λ∗

s + γ∗
s

2αs

)
.
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Since η(x, s) ∈ [0, 1], then for any x ∈ Rd it holds that

−ps
ᾱ
− (γ∗

s )−
αs

≤
∣∣∣∣ ps2ᾱ(1− 2η(x, s)) + γ∗

s

2αs

∣∣∣∣− ps
2ᾱ −

γ∗
s

2αs
≤ −(γ∗

s )−
αs

.

Therefore, if αs is not in {0, 1}, we must have that

−ps
ᾱ
≤ λ∗

s + (γ∗
s )−
αs

≤ 0 ,

otherwise the considered probability is either equal to 0 or to 1. In particular, it implies that

|λ∗
s| ≤

ps
ᾱ
∨ |γ

∗
s |
αs

.

Note that the same can be shown for λ̂ since Eq. (9.10) and Lemma 9.9.3 imply∣∣∣∣P̂X|S=s

(∣∣∣∣ ps2ᾱ(1− 2η̂(X, s)− γ̂s) + γ̂s
2αs

∣∣∣∣ ≥ ps
2ᾱ(1− γ̂s) + λ̂s + γs

2αs

)
− αs

∣∣∣∣ ≤ 2
ns
,∀s ∈ [K] ,

and the assumption on ns guarantee that the empirical probability is strictly between 0 and 1.

9.9.6 Reduction to linear programming

In this section we show that the minimization problem in Eq. (9.3) can be reduced to a
problem of linear programming. Recall that our goal is to solve

min
(λ,γ)

{
⟨λ,α⟩+

K∑
s=1

ÊX|S=s(Ĝ(X, s,λ,γ))+

}
, (9.21)

where

Ĝ(x, s,λ,γ) =
∣∣∣∣ ps2ᾱ(1− 2η̂(x, s)− ⟨γ,1⟩) + γs

2αs

∣∣∣∣− ps
2ᾱ(1− ⟨γ,1⟩)− λs −

γs
2αs

.

Similarly to the support vector machines, the reduction is achieved via the slack variables ζi,
i = 1, . . . , n. With these slack variables the above problem can be expressed as

min
(λ,γ,ζ)

⟨λ,α⟩+
K∑
s=1

∑
i∈Is

ζi
ns

s.t.


ζi ≥ 0 ∀i ∈ [n]
0 ≤ ζi + λs + ps

ᾱ η̂(xi, s) ∀i ∈ Is∀s ∈ [K]
0 ≤ ζi +

〈
γ, 1

αs
es − ps

ᾱ 1
〉

+ λs + ps

ᾱ (1− η̂(xi, s)) ∀i ∈ Is∀s ∈ [K]

(LP-Primal)

To prove this result it is sufficient to observe that for all x ∈ R it holds that

(x)+ = min
ζ≥x,ζ≥0

ζ .
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Introduce the following notation

c =

1/n1, . . . , 1/n1︸ ︷︷ ︸
I1

, . . . 1/ns, . . . , 1/ns︸ ︷︷ ︸
Is

, . . . , 1/nK, . . . , 1/nK︸ ︷︷ ︸
IK

, α1, . . . , αK , 0 . . . , 0


y = (ζ⊤,λ⊤,γ⊤)

b = 1
ᾱ

(
(p1η̂(xi, s))i∈I1

, . . . , (pK η̂(xi, s))i∈IK
,

(p1(1−η̂(xi, s)))i∈I1
, . . . , (pK(1−η̂(xi, s)))i∈IK

)

A =



−In1×n1 0n1×n2 . . . 0n1×nK −E1
n1×K 0n2×K

0n2×n1 −In2×n2 . . . 0n2×nK −E2
n2×K 0n1×K

...
... . . . ...

...
...

0nK×n1 0nK×n2 . . . −InK×nK −EK
nK×K 0nK×K

−In1×n1 0n1×n2 . . . 0n1×nK −E1
n1×K

p1
ᾱ 1n1×K − 1

α1
E1
n1×K

0n2×n1 −In2×n2 . . . 0n2×nK −E2
n2×K

p2
ᾱ 1n2×K − 1

α2
E2
n2×K

...
... . . . ...

...
...

0nK×n1 0nK×n2 . . . −InK×nK −EK
nK×K

pK
ᾱ 1nK×K − 1

αK
EK
nK×K


where Es

n×m is a n ×m matrix composed of zeros and ones, whose sth column is equal to
1 and all other elements are zero, 1n×m is a matrix of ones of size n×m. Using the above
notation, the problem in (LP-Primal) can be written as

min
y∈Rn+2K

⟨c,y⟩

s.t.
{

Ay ≤ b

yi ≥ 0 i ∈ [n]

(LP-Primal-compacted)

While the dimension of matrix A is 2n× (n+ 2K), this matrix has at most 4n+ nK non-zero
elements. This fact can be exploited if n≫ K, that it, the amount of unlabeled data is large
compared to the amount of groups.



Bibliography

Agarwal, Alekh, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna M. Wallach
(2018). “A Reductions Approach to Fair Classification”. In: Proceedings of the 35th In-
ternational Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018. Ed. by Jennifer G. Dy and Andreas Krause. Vol. 80. Proceedings
of Machine Learning Research. PMLR, pp. 60–69. url: http://proceedings.mlr.press/
v80/agarwal18a.html.

Agarwal, Alekh, Miroslav Dudík, and Zhiwei Steven Wu (2019). “Fair regression: Quantitative
definitions and reduction-based algorithms”. In: arXiv preprint arXiv:1905.12843.

Agueh, Martial and Guillaume Carlier (2011). “Barycenters in the Wasserstein space”. In:
SIAM Journal on Mathematical Analysis 43.2, pp. 904–924.

Ali, Syed Mumtaz and Samuel D Silvey (1966). “A general class of coefficients of divergence
of one distribution from another”. In: Journal of the Royal Statistical Society: Series B
(Methodological) 28.1, pp. 131–142.

Altschuler, Jason, Victor-Emmanuel Brunel, and Alan Malek (Feb. 2018). “Best Arm Identifi-
cation for Contaminated Bandits”. In: arXiv e-prints, arXiv:1802.09514, arXiv:1802.09514.
arXiv: 1802.09514.

Angwin, Julia, Jeff Larson, Surya Mattu, and Lauren Kirchner (May 23, 2016). “Machine
Bias”. In: ProPublica. url: https://www.propublica.org/article/machine-bias-
risk-assessments-in-criminal-sentencing (visited on 05/23/2016).

Antoniou, Antreas, Amos Storkey, and Harrison Edwards (2017). “Data augmentation genera-
tive adversarial networks”. In: arXiv preprint arXiv:1711.04340.

Arcones, Miguel A (1994). “Some strong limit theorems for M-estimators”. In: Stochastic
Processes and Their Applications 53.2, pp. 241–268.

Arjovsky, Martin, Soumith Chintala, and Léon Bottou (2017). “Wasserstein gan”. In: arXiv
preprint arXiv:1701.07875.

Audibert, Jean-Yves and Sébastien Bubeck (2010). “Best arm identification in multi-armed
bandits”. In.

Audibert, Jean-Yves and Olivier Catoni (2011). “Robust linear least squares regression”. In:
The Annals of Statistics 39.5, pp. 2766–2794.

221

http://proceedings.mlr.press/v80/agarwal18a.html
http://proceedings.mlr.press/v80/agarwal18a.html
https://arxiv.org/abs/1802.09514
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing


222 BIBLIOGRAPHY

Audibert, Jean-Yves and Alexandre B Tsybakov (2007). “Fast learning rates for plug-in
classifiers”. In: The Annals of statistics 35.2, pp. 608–633.

Baharlouei, Sina, Maher Nouiehed, Ahmad Beirami, and Meisam Razaviyayn (2019). “Rényi
Fair Inference”. In: arXiv preprint arXiv:1906.12005.

Barocas, Solon, Moritz Hardt, and Arvind Narayanan (2017). “Fairness in machine learning”.
In: NIPS Tutorial 1.

Barocas, Solon, Moritz Hardt, and Arvind Narayanan (2019). Fairness and Machine Learning.
http://www.fairmlbook.org. fairmlbook.org.

Barocas, Solon and Andrew D Selbst (2016). “Big data’s disparate impact”. In: Calif. L. Rev.
104, p. 671.

Barrio, Eustasio del, Paul Deheuvels, and Sara van de Geer (2007). Lectures on empirical
processes. EMS Series of Lectures in Mathematics. Theory and statistical applications,
With a preface by Juan A. Cuesta Albertos and Carlos Matrán. European Mathematical
Society (EMS), Zürich, pp. x+254.

Barrio, Eustasio del, Paula Gordaliza, and Jean-Michel Loubes (2020). “Review of Mathematical
frameworks for Fairness in Machine Learning”. In: arXiv preprint arXiv:2005.13755.

Bartlett, P. and M. Wegkamp (2008). “Classification with a reject option using a hinge loss”.
In: J. Mach. Learn. Res. 9, pp. 1823–1840.

Bassetti, Federico, Antonella Bodini, and Eugenio Regazzini (2006). “On minimum Kantorovich
distance estimators”. In: Statistics & probability letters 76.12, pp. 1298–1302.

Bateni, Amir-Hossein and Arnak S. Dalalyan (2020). “Confidence regions and minimax rates in
outlier-robust estimation on the probability simplex”. In: Electron. J. Statist. 14.2, pp. 2653–
2677. doi: 10.1214/20-EJS1731. url: https://doi.org/10.1214/20-EJS1731.

Bellec, Pierre C (2017). “Optimal exponential bounds for aggregation of density estimators”.
In: Bernoulli 23.1, pp. 219–248.

Berk, R., H. Heidari, S. Jabbari, M. Joseph, M. Kearns, J. Morgenstern, S. Neel, and A.
Roth (2017). “A convex framework for fair regression”. In: Fairness, Accountability, and
Transparency in Machine Learning.

Bertsimas, Dimitris, Vivek F Farias, and Nikolaos Trichakis (2012). “On the efficiency-fairness
trade-off”. In: Management Science 58.12, pp. 2234–2250.

Biau, Gérard, Benoît Cadre, Maxime Sangnier, and Ugo Tanielian (2018). “Some theoretical
properties of GANs”. In: arXiv preprint arXiv:1803.07819.

Biau, Gérard, Maxime Sangnier, and Ugo Tanielian (2020). “Some Theoretical Insights into
Wasserstein GANs”. In: arXiv preprint arXiv:2006.02682.

Biau, Gérard and Erwan Scornet (2016). “A random forest guided tour”. In: Test 25.2, pp. 197–
227.

Bird, Sarah, Miro Dudík, Richard Edgar, Brandon Horn, Roman Lutz, Vanessa Milan,
Mehrnoosh Sameki, Hanna Wallach, and Kathleen Walker (n.d.). Fairlearn: A toolkit
for assessing and improving fairness in AI. Tech. rep.

Birman, Mikhail Shlemovich and Mikhail Zakharovich Solomyak (1967). “Piecewise-polynomial
approximations of functions of the classes W_pˆα”. In: Matematicheskii Sbornik 115.3,
pp. 331–355.

Bishop, Christopher M (2006). Pattern recognition and machine learning. springer.
Bobkov, S. and M. Ledoux (2019). One-Dimensional Empirical Measures, Order Statistics,

and Kantorovich Transport Distances. Memoirs of the American Mathematical Society.
American Mathematical Society. isbn: 9781470436506.

http://www.fairmlbook.org
https://doi.org/10.1214/20-EJS1731
https://doi.org/10.1214/20-EJS1731


BIBLIOGRAPHY 223

Boucheron, Stéphane, Gábor Lugosi, and Pascal Massart (2013). Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, p. 172.

Bousquet, Olivier and Nikita Zhivotovskiy (2019). “Fast classification rates without standard
margin assumptions”. In: arXiv preprint arXiv:1910.12756.

Breiman, Leo (2001). “Random forests”. In: Machine learning 45.1, pp. 5–32.
Briol, Francois-Xavier, Alessandro Barp, Andrew B Duncan, and Mark Girolami (2019).

“Statistical Inference for Generative Models with Maximum Mean Discrepancy”. In: arXiv
preprint arXiv:1906.05944.

Brock, Andrew, Jeff Donahue, and Karen Simonyan (2018). “Large scale gan training for high
fidelity natural image synthesis”. In: arXiv preprint arXiv:1809.11096.

Bühlmann, Peter (2013). “Causal statistical inference in high dimensions”. In: Mathematical
Methods of Operations Research 77.3, pp. 357–370.

Bühlmann, Peter and Sara Van de Geer (2011). Statistics for high-dimensional data: methods,
theory and applications. Springer Science & Business Media.

Buolamwini, Joy and Timnit Gebru (2018). “Gender shades: Intersectional accuracy dispari-
ties in commercial gender classification”. In: Conference on fairness, accountability and
transparency. PMLR, pp. 77–91.

Calders, T., F. Kamiran, and M. Pechenizkiy (2009). “Building classifiers with independency
constraints”. In: IEEE international conference on Data mining.

Calders, T., A. Karim, F. Kamiran, W. Ali, and X. Zhang (2013). “Controlling attribute effect
in linear regression”. In: IEEE International Conference on Data Mining.

Calmon, F., D. Wei, B. Vinzamuri, K. N. Ramamurthy, and K. R. Varshney (2017). “Optimized
Pre-Processing for Discrimination Prevention”. In: Neural Information Processing Systems.

Catoni, O. (2004). Statistical learning theory and stochastic optimization. Ecole d’été de
probabilités de Saint-Flour XXXI-2001. Collection : Lecture notes in mathematics n°1851.
Springer, pp. viii–272. url: https://hal.archives-ouvertes.fr/hal-00104952.

Cayton, Lawrence (2005). “Algorithms for manifold learning”. In: Univ. of California at San
Diego Tech. Rep 12.1-17, p. 1.

Chen, Mengjie, Chao Gao, and Zhao Ren (2016). “A general decision theory for Huber’s
ϵ-contamination model”. In: Electronic Journal of Statistics 10.2, pp. 3752–3774.

Chen, Mengjie, Chao Gao, and Zhao Ren (2018). “Robust covariance and scatter matrix
estimation under Huber’s contamination model”. In: The Annals of Statistics 46.5, pp. 1932–
1960.

Chen, Minshuo, Wenjing Liao, Hongyuan Zha, and Tuo Zhao (2020). “Statistical Guarantees
of Generative Adversarial Networks for Distribution Estimation”. In: arXiv preprint
arXiv:2002.03938.

Chernozhukov, Victor (2005). “Extremal quantile regression”. In: Ann. Statist. 33.2, pp. 806–
839.

Chiappa, Silvia, Ray Jiang, Tom Stepleton, Aldo Pacchiano, Heinrich Jiang, and John Aslanides
(2020). “A General Approach to Fairness with Optimal Transport”. In: The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020. AAAI Press, pp. 3633–3640. url: https://aaai.org/ojs/index.
php/AAAI/article/view/5771.

Chierichetti, F., R. Kumar, S. Lattanzi, and S. Vassilvitskii (2017). “Fair Clustering Through
Fairlets”. In: Neural Information Processing Systems.

https://hal.archives-ouvertes.fr/hal-00104952
https://aaai.org/ojs/index.php/AAAI/article/view/5771
https://aaai.org/ojs/index.php/AAAI/article/view/5771


224 BIBLIOGRAPHY

Chouldechova, Alexandra (2017). “Fair prediction with disparate impact: A study of bias in
recidivism prediction instruments”. In: Big data 5.2, pp. 153–163.

Chow, C. (1957). “An optimum character recognition system using decision functions”. In:
IRE Transactions on Electronic Computers 4, pp. 247–254.

Chow, C. (1970). “On optimum error and reject trade-off”. In: IEEE Trans. Inform. Theory
16, pp. 41–46.

Chzhen, Evgenii, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil
(2019). “Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification”.
In: NeurIPS 2019-33th Annual Conference on Neural Information Processing Systems.

Chzhen, Evgenii, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pon-
til (2020a). “Fair Regression via Plug-in Estimator and Recalibration With Statistical
Guarantees”. In: arXiv preprint arXiv.

Chzhen, Evgenii, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil
(2020b). “Fair regression via plug-in estimator and recalibration with statistical guarantees”.
In.

Chzhen, Evgenii, Christophe Denis, Mohamed Hebiri, Luca Oneto, and Massimiliano Pontil
(2020c). “Fair regression with wasserstein barycenters”. In: Advances in Neural Information
Processing Systems 33.

Chzhen, Evgenii and Nicolas Schreuder (2020a). “A minimax framework for quantifying
risk-fairness trade-off in regression”. In: arXiv preprint arXiv:2007.14265.

Chzhen, Evgenii and Nicolas Schreuder (2020b). “An example of prediction which complies
with Demographic Parity and equalizes group-wise risks in the context of regression”. In:
arXiv preprint arXiv:2011.07158.

Collins, John R. (1977). “Upper bounds on asymptotic variances of M -estimators of location”.
In: Ann. Statist. 5.4, pp. 646–657.

Costa, Jose A and Alfred O Hero (2004a). “Learning intrinsic dimension and intrinsic entropy
of high-dimensional datasets”. In: 2004 12th European Signal Processing Conference. IEEE,
pp. 369–372.

Costa, Jose A. and Alfred O. Hero (2004b). “Learning intrinsic dimension and intrinsic entropy
of high-dimensional datasets”. In: 2004 12th European Signal Processing Conference,
pp. 369–372.

Csiszár, Imre (1964). “Eine informationstheoretische ungleichung und ihre anwendung auf
beweis der ergodizitaet von markoffschen ketten”. In: Magyer Tud. Akad. Mat. Kutato Int.
Koezl. 8, pp. 85–108.

Csiszár, Imre (1967). “Information-type measures of difference of probability distributions and
indirect observation”. In: studia scientiarum Mathematicarum Hungarica 2, pp. 229–318.

Cuturi, Marco (2013). “Sinkhorn distances: Lightspeed computation of optimal transport”. In:
Advances in neural information processing systems, pp. 2292–2300.

Denis, Christophe and Mohamed Hebiri (2020). “Consistency of plug-in confidence sets for
classification in semi-supervised learning”. In: Journal of Nonparametric Statistics 32.1,
pp. 42–72.

Devroye, Luc (1986). Non-Uniform Random Variate Generation. Springer. isbn: 978-1-4613-
8645-2. doi: 10.1007/978-1-4613-8643-8. url: https://doi.org/10.1007/978-1-
4613-8643-8.

Devroye, Luc, László Györfi, and Gábor Lugosi (2013). A probabilistic theory of pattern
recognition. Vol. 31. Springer Science & Business Media.

https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/978-1-4613-8643-8
https://doi.org/10.1007/978-1-4613-8643-8


BIBLIOGRAPHY 225

Dieterich, William, Christina Mendoza, and Tim Brennan (2016). “COMPAS risk scales:
Demonstrating accuracy equity and predictive parity”. In: Northpoint Inc 7.7.4, p. 1.

Diggle, Peter J. and Richard J. Gratton (1984). “Monte Carlo Methods of Inference for Implicit
Statistical Models”. In: Journal of the Royal Statistical Society: Series B (Methodological)
46.2, pp. 193–212. doi: https://doi.org/10.1111/j.2517-6161.1984.tb01290.x.
eprint: https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.
1984.tb01290.x. url: https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.
2517-6161.1984.tb01290.x.

Donini, M., L. Oneto, S. Ben-David, J. S. Shawe-Taylor, and M. Pontil (2018). “Empirical
risk minimization under fairness constraints”. In: Neural Information Processing Systems.

Dua, Dheeru and Casey Graff (2017). UCI Machine Learning Repository. url: http://
archive.ics.uci.edu/ml.

Dudley, R. M. (1968). “The speed of mean Glivenko-Cantelli convergence”. In: Ann. Math.
Statist. 40, pp. 40–50.

Dudley, Richard Mansfield (1969). “The speed of mean Glivenko-Cantelli convergence”. In:
The Annals of Mathematical Statistics 40.1, pp. 40–50.

Dwork, C., N. Immorlica, A. T. Kalai, and M. D. M. Leiserson (2018). “Decoupled Classifiers
for Group-Fair and Efficient Machine Learning”. In: Conference on Fairness, Accountability
and Transparency.

Dwork, Cynthia, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel (2012).
“Fairness through awareness”. In: Proceedings of the 3rd innovations in theoretical computer
science conference, pp. 214–226.

Dwork, Cynthia, Christina Ilvento, and Meena Jagadeesan (2020). “Individual fairness in
pipelines”. In: arXiv preprint arXiv:2004.05167.

Facco, Elena, Maria d’Errico, Alex Rodriguez, and Alessandro Laio (2018). “Estimating
the intrinsic dimension of datasets by a minimal neighborhood information”. In: CoRR
abs/1803.06992. arXiv: 1803.06992. url: http://arxiv.org/abs/1803.06992.

Farrell, Roger H (1964). “Asymptotic behavior of expected sample size in certain one sided
tests”. In: The Annals of Mathematical Statistics, pp. 36–72.

Fefferman, Charles, Sanjoy Mitter, and Hariharan Narayanan (2016). “Testing the manifold
hypothesis”. In: Journal of the American Mathematical Society 29.4, pp. 983–1049.

Fisher, Ronald A (1936). “The use of multiple measurements in taxonomic problems”. In:
Annals of eugenics 7.2, pp. 179–188.

Fitzsimons, J., A. Al Ali, M. Osborne, and S. Roberts (2018). “Equality Constrained De-
cision Trees: For the Algorithmic Enforcement of Group Fairness”. In: arXiv preprint
arXiv:1810.05041.

Fitzsimons, Jack, AbdulRahman Al Ali, Michael Osborne, and Stephen Roberts (2019). “A
general framework for fair regression”. In: Entropy 21.8, p. 741.

Fraenkel, LE (1978). “Formulae for high derivatives of composite functions”. In: Mathematical
Proceedings of the Cambridge Philosophical Society. Vol. 83. 2. Cambridge University Press,
pp. 159–165.

Fréchet, Maurice (1957). “Sur la distance de deux lois de probabilité”. In: Comtes Rendus
Hebdomadaires des Seances de l’Academie des Sciences 244.6, pp. 689–692.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2001). The elements of statistical
learning. Vol. 1. 10. Springer series in statistics New York.

https://doi.org/https://doi.org/10.1111/j.2517-6161.1984.tb01290.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1984.tb01290.x
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.2517-6161.1984.tb01290.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1984.tb01290.x
https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/j.2517-6161.1984.tb01290.x
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://arxiv.org/abs/1803.06992
http://arxiv.org/abs/1803.06992


226 BIBLIOGRAPHY

Gabillon, Victor, Mohammad Ghavamzadeh, and Alessandro Lazaric (2012). “Best Arm
Identification: A Unified Approach to Fixed Budget and Fixed Confidence”. In: Advances
in NeurIPS 25, pp. 3221–3229.

Gajane, Pratik and Mykola Pechenizkiy (2017). “On formalizing fairness in prediction with
machine learning”. In: arXiv preprint arXiv:1710.03184.

Gangbo, Wilfrid and Andrzej Święch (1998). “Optimal maps for the multidimensional Monge-
Kantorovich problem”. In: Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences 51.1, pp. 23–45.

Garivier, Aurélien and Florencia Leonardi (2011). “Context tree selection: A unifying view”.
In: Stochastic Processes and their Applications 121.11, pp. 2488–2506.

Genevay, Aude, Lénaic Chizat, Francis Bach, Marco Cuturi, and Gabriel Peyré (2018). “Sample
complexity of Sinkhorn divergences”. In: arXiv preprint arXiv:1810.02733.

Genevay, Aude, Gabriel Peyré, and Marco Cuturi (2017). “Learning generative models with
sinkhorn divergences”. In: arXiv preprint arXiv:1706.00292.

Genevay, Aude, Gabriel Peyré, and Marco Cuturi (2018). “Learning generative models with
Sinkhorn divergences”. In: International Conference on Artificial Intelligence and Statistics.
PMLR, pp. 1608–1617.

Genovese, Christopher R, Marco Perone Pacifico, Verdinelli Isabella, and Larry Wasserman
(2012). “Minimax manifold estimation”. In.

Gilbert, E. (1952). “A comparison of signalling alphabets”. In: The Bell system technical
journal 31.3, pp. 504–522.

Giné, Evarist and Richard Nickl (2016). Mathematical foundations of infinite-dimensional
statistical models. Vol. 40. Cambridge University Press.

Goldt, Sebastian, Marc Mezard, Florent Krzakala, and Lenka Zdeborová (2020). “Modelling
the influence of data structure on learning in neural networks: the hidden manifold model”.
In.

Goodfellow, Ian (2016). “Nips 2016 tutorial: Generative adversarial networks”. In: arXiv
preprint arXiv:1701.00160.

Goodfellow, Ian, Yoshua Bengio, Aaron Courville, and Yoshua Bengio (2016). Deep learning.
Vol. 1. 2. MIT press Cambridge.

Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio (2014). “Generative adversarial nets”. In:
Advances in neural information processing systems, pp. 2672–2680.

Gordaliza, P., E. Del Barrio, G. Fabrice, and J. M. Loubes (2019). “Obtaining fairness using
optimal transport theory”. In: International Conference on Machine Learning.

Grandvalet, Yves, Alain Rakotomamonjy, Joseph Keshet, and Stéphane Canu (2008). “Support
vector machines with a reject option”. In: Advances in neural information processing systems
21, pp. 537–544.

Györfi, L., Z. Györfi, and I. Vajda (Jan. 1979). “Bayesian decision with rejection”. In: Problems
of Control and Information Theory 8.

Györfi, László, Michael Kohler, Adam Krzyzak, and Harro Walk (2006). A distribution-free
theory of nonparametric regression. Springer Science & Business Media.

Haas, Christian (2019). “The Price of Fairness-A Framework to Explore Trade-Offs in Algo-
rithmic Fairness”. In: arXiv preprint arXiv.

Haberman, Shelby J (1989). “Concavity and estimation”. In: The Annals of Statistics, pp. 1631–
1661.



BIBLIOGRAPHY 227

Hardt, M., E. Price, and N. Srebro (2016). “Equality of opportunity in supervised learning”.
In: Neural Information Processing Systems.

He, Xuming and Gang Wang (1995). “Law of the iterated logarithm and invariance principle for
M-estimators”. In: Proceedings of the American Mathematical Society 123.2, pp. 563–573.

Herbei, R. and M. Wegkamp (2006). “Classification with reject option”. In: Canad. J. Statist.
34.4, pp. 709–721.

Hoeffding, Wassily (1994). “Probability inequalities for sums of bounded random variables”.
In: The Collected Works of Wassily Hoeffding. Springer, pp. 409–426.

Hoerl, Arthur E. and Robert W. Kennard (2000). “Ridge Regression: Biased Estimation for
Nonorthogonal Problems”. In: Technometrics 42.1, pp. 80–86.

Howard, Steven R, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon (2018). “Uniform,
nonparametric, non-asymptotic confidence sequences”. In: arXiv preprint arXiv:1810.08240.

Hsu, Daniel, Sham M Kakade, and Tong Zhang (2012). “Random design analysis of ridge
regression”. In: Conference on learning theory, pp. 9–1.

Hsu, Daniel and Sivan Sabato (2016). “Loss Minimization and Parameter Estimation with
Heavy Tails”. In: Journal of Machine Learning Research 17.18, pp. 1–40.

Huber, Peter J (1964). “Robust estimation of a location parameter”. In: The annals of
mathematical statistics 35.1, pp. 73–101.

Huber, Peter J. and Elvezio M. Ronchetti (2009). Robust statistics. Second. Wiley Series in
Probability and Statistics. John Wiley & Sons, Inc., Hoboken, NJ.

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment”. In: Computing in Science &
Engineering 9.3, pp. 90–95. doi: 10.1109/MCSE.2007.55.

Isola, Phillip, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros (2017). “Image-to-image
translation with conditional adversarial networks”. In: Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 1125–1134.

Jacod, Jean and Philip Protter (2012). Probability essentials. Springer Science & Business
Media.

Jamieson, Kevin, Matthew Malloy, Robert Nowak, and Sébastien Bubeck (2014). “lil’UCB:
An optimal exploration algorithm for multi-armed bandits”. In: Conference on Learning
Theory, pp. 423–439.

Jamieson, Kevin G. and Robert D. Nowak (2014). “Best-arm identification algorithms for
multi-armed bandits in the fixed confidence setting”. In: 48th Annual Conference on
Information Sciences and Systems, CISS, pp. 1–6.

Jiang, R., A. Pacchiano, T. Stepleton, H. Jiang, and S. Chiappa (2019). “Wasserstein fair
classification”. In: arXiv preprint arXiv:1907.12059.

Jones, Erik, Shiori Sagawa, Pang Wei Koh, Ananya Kumar, and Percy Liang (2020). Selective
Classification Can Magnify Disparities Across Groups. arXiv: 2010.14134 [cs.LG].

Jung, Christopher, Michael Kearns, Seth Neel, Aaron Roth, Logan Stapleton, and Zhiwei
Steven Wu (2019). “Eliciting and enforcing subjective individual fairness”. In: arXiv
preprint arXiv:1905.10660.

Karmarkar, Narendra (1984). “A new polynomial-time algorithm for linear programming”. In:
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pp. 302–311.

Karras, Tero, Samuli Laine, and Timo Aila (2019). “A style-based generator architecture for
generative adversarial networks”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 4401–4410.

https://doi.org/10.1109/MCSE.2007.55
https://arxiv.org/abs/2010.14134


228 BIBLIOGRAPHY

Kaufmann, Emilie, Olivier Cappé, and Aurélien Garivier (2016). “On the Complexity of
Best-Arm Identification in Multi-Armed Bandit Models”. In: Journal of Machine Learning
Research 17, 1:1–1:42.

Kaufmann, Emilie and Wouter M. Koolen (2018). “Mixture Martingales Revisited with
Applications to Sequential Tests and Confidence Intervals”. In: CoRR abs/1811.11419.

Kerkyacharian, Gerard, Alexandre B Tsybakov, Vladimir Temlyakov, Dominique Picard, and
Vladimir Koltchinskii (2014). “Optimal exponential bounds on the accuracy of classifica-
tion”. In: Constructive Approximation 39.3, pp. 421–444.

Khachiyan, Leonid Genrikhovich (1979). “A polynomial algorithm in linear programming”. In:
Doklady Akademii Nauk. Vol. 244. 5. Russian Academy of Sciences, pp. 1093–1096.

Khintchine, Aleksandr (1924). “Über einen Satz der Wahrscheinlichkeitsrechnung”. ger. In:
Fundamenta Mathematicae 6.1, pp. 9–20.

Kilbertus, N., M. Rojas-Carulla, G. Parascandolo, M. Hardt, D. Janzing, and B. Schölkopf
(2017). “Avoiding Discrimination through Causal Reasoning”. In: Neural Information
Processing Systems.

Kloeckner, Benoit (2010). “A geometric study of Wasserstein spaces: Euclidean spaces”. In:
Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 9.2, pp. 297–323.

Klopp, Olga, Alexandre B. Tsybakov, and Nicolas Verzelen (2017). “Oracle inequalities for
network models and sparse graphon estimation”. In: The Annals of Statistics 45.1, pp. 316–
354. doi: 10.1214/16-AOS1454.

Klopp, Olga and Nicolas Verzelen (2019). “Optimal graphon estimation in cut distance”. In:
Probability Theory and Related Fields 174.3, pp. 1033–1090.

Kodali, Naveen, Jacob Abernethy, James Hays, and Zsolt Kira (2017). “On convergence and
stability of GANs”. In: arXiv preprint arXiv:1705.07215.

Köeppen, M., K. Yoshida, and K. Ohnishi (2014). “Evolving Fair Linear Regression for the
Representation of Human-Drawn Regression Lines”. In: 2014 International Conference on
Intelligent Networking and Collaborative Systems, pp. 296–303.

Kohavi, Ron (1996). “Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid.”
In: Kdd. Vol. 96, pp. 202–207.

Kolmogoroff, A. (1929). “Über das Gesetz des iterierten Logarithmus”. In: Mathematische
Annalen 101, pp. 126–135.

Koltchinskii, Vladimir (2011a). Oracle inequalities in empirical risk minimization and sparse re-
covery problems. Vol. 2033. Lecture Notes in Mathematics. Heidelberg: Springer, pp. x+254.

Koltchinskii, Vladimir (2011b). Oracle Inequalities in Empirical Risk Minimization and Sparse
Recovery Problems: Ecole d’Eté de Probabilités de Saint-Flour XXXVIII-2008. Vol. 2033.
Springer Science & Business Media.

Komiyama, J. and H. Shimao (2017). “Two-stage Algorithm for Fairness-aware Machine
Learning”. In: arXiv preprint arXiv:1710.04924.

Komiyama, J., A. Takeda, J. Honda, and H. Shimao (2018). “Nonconvex Optimization for
Regression with Fairness Constraints”. In: International Conference on Machine Learning.

Korostelev, Aleksandr Petrovich and Alexandre B Tsybakov (2012). Minimax theory of image
reconstruction. Vol. 82. Springer Science & Business Media.

Kourou, Konstantina, Themis P Exarchos, Konstantinos P Exarchos, Michalis V Karamouzis,
and Dimitrios I Fotiadis (2015). “Machine learning applications in cancer prognosis and
prediction”. In: Computational and structural biotechnology journal 13, pp. 8–17.

Kusner, M. J., J. Loftus, C. Russell, and R. Silva (2017). “Counterfactual fairness”. In: Neural
Information Processing Systems.

https://doi.org/10.1214/16-AOS1454


BIBLIOGRAPHY 229

Lattimore, Tor and Csaba Szepesvári (2020). Bandit Algorithms. Cambridge University Press.
doi: 10.1017/9781108571401.

Laurent, Beatrice and Pascal Massart (2000). “Adaptive estimation of a quadratic functional
by model selection”. In: Annals of Statistics, pp. 1302–1338.

Le Gouic, Thibaut and Jean-Michel Loubes (2017). “Existence and consistency of Wasserstein
barycenters”. In: Probability Theory and Related Fields 168.3-4, pp. 901–917.

Le Gouic, Thibaut, Jean-Michel Loubes, and Philippe Rigollet (2020). “Projection to fairness
in statistical learning”. In: arXiv preprint arXiv:2005.11720.

Lecué, Guillaume and Philippe Rigollet (Feb. 2014). “Optimal learning with Q-aggregation”.
In: Ann. Statist. 42.1, pp. 211–224.

LeCun, Yann (1998). “The MNIST database of handwritten digits”. In: http://yann. lecun.
com/exdb/mnist/.

LeCun, Yann, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne E Hubbard, and Lawrence D Jackel (1990). “Handwritten digit recognition with
a back-propagation network”. In: Advances in neural information processing systems,
pp. 396–404.

Ledig, Christian, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejan-
dro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, and Zehan Wang (2017).
“Photo-realistic single image super-resolution using a generative adversarial network”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4681–
4690.

Lee, Yin Tat and Aaron Sidford (2015). “Efficient inverse maintenance and faster algorithms for
linear programming”. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science. IEEE, pp. 230–249.

Lei, J. (2014a). “Classification with confidence”. In: Biometrika 101.4, pp. 755–769.
Lei, Jing (2014b). “Classification with confidence”. In: Biometrika 101.4, pp. 755–769.
Lei, Jing (2020). “Convergence and concentration of empirical measures under Wasserstein

distance in unbounded functional spaces”. In: Bernoulli 26.1, pp. 767–798.
Levina, Elizaveta and Peter J Bickel (2005). “Maximum likelihood estimation of intrinsic

dimension”. In: Advances in neural information processing systems, pp. 777–784.
Liang, Tengyuan (2018). “On how well generative adversarial networks learn densities: Non-

parametric and parametric results”. In: arXiv preprint arXiv:1811.03179.
Liang, Tengyuan (2019). “Estimating Certain Integral Probability Metric (IPM) Is as Hard as

Estimating under the IPM”. In: arXiv preprint arXiv:1911.00730.
Liang, Tengyuan and James Stokes (2018). “Interaction matters: A note on non-asymptotic

local convergence of generative adversarial networks”. In: arXiv preprint arXiv:1802.06132.
Lipton, Zachary, Julian McAuley, and Alexandra Chouldechova (2018). “Does mitigating

ML’s impact disparity require treatment disparity?” In: Advances in Neural Information
Processing Systems, pp. 8125–8135.

Liu, Shuang, Olivier Bousquet, and Kamalika Chaudhuri (2017). “Approximation and conver-
gence properties of generative adversarial learning”. In: arXiv preprint arXiv:1705.08991.

Loftus, Joshua R, Chris Russell, Matt J Kusner, and Ricardo Silva (2018). “Causal reasoning
for algorithmic fairness”. In: arXiv preprint arXiv:1805.05859.

Loh, Po-Ling (2015). “Statistical consistency and asymptotic normality for high-dimensional
robust M -estimators”. In: CoRR abs/1501.00312. arXiv: 1501.00312. url: http://arxiv.
org/abs/1501.00312.

https://doi.org/10.1017/9781108571401
https://arxiv.org/abs/1501.00312
http://arxiv.org/abs/1501.00312
http://arxiv.org/abs/1501.00312


230 BIBLIOGRAPHY

Luise, Giulia, Massimiliano Pontil, and Carlo Ciliberto (2020). “Generalization Properties
of Optimal Transport GANs with Latent Distribution Learning”. In: arXiv preprint
arXiv:2007.14641.

Lum, K. and J. Johndrow (2016). “A statistical framework for fair predictive algorithms”. In:
arXiv preprint arXiv:1610.08077.

Madras, David, Elliot Creager, Toniann Pitassi, and Richard Zemel (2018). “Learning Adver-
sarially Fair and Transferable Representations”. In: International Conference on Machine
Learning, pp. 3384–3393.

Madras, David, Toni Pitassi, and Richard Zemel (2018). “Predict Responsibly: Improving
Fairness and Accuracy by Learning to Defer”. In: Advances in Neural Information Processing
Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett. Vol. 31. Curran Associates, Inc. url: https://proceedings.neurips.cc/
paper/2018/file/09d37c08f7b129e96277388757530c72-Paper.pdf.

Maillard, Odalric-Ambrym (2019). “Sequential change-point detection: Laplace concentration
of scan statistics and non-asymptotic delay bounds”. In: Proceedings of ALT. Vol. 98.
PMLR, pp. 610–632.

Makhlouf, Karima, Sami Zhioua, and Catuscia Palamidessi (2020). “Survey on Causal-based
Machine Learning Fairness Notions”. In: arXiv preprint arXiv:2010.09553.

Maronna, Ricardo Antonio (1976). “Robust M-Estimators of Multivariate Location and
Scatter”. In: The Annals of Statistics 4.1, pp. 51–67.

Mary, Jérémie, Clément Calauzènes, and Noureddine El Karoui (2019). “Fairness-aware
learning for continuous attributes and treatments”. In: International Conference on Machine
Learning, pp. 4382–4391.

Massart, Pascal (1990). “The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality”. In:
The annals of Probability, pp. 1269–1283.

Matousek, Jiri and Bernd Gärtner (2007). Understanding and using linear programming.
Springer Science & Business Media.

Mehrabi, Ninareh, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Gal-
styan (2019). “A survey on bias and fairness in machine learning”. In: arXiv preprint
arXiv:1908.09635.

Menon, A. K. and R. C. Williamson (2018a). “The cost of fairness in binary classification”. In:
Conference on Fairness, Accountability and Transparency.

Menon, Aditya Krishna and Robert C Williamson (23–24 Feb 2018b). “The cost of fairness in
binary classification”. In: Proceedings of the 1st Conference on Fairness, Accountability
and Transparency. Ed. by Sorelle A. Friedler and Christo Wilson. Vol. 81. Proceedings
of Machine Learning Research. New York, NY, USA: PMLR, pp. 107–118. url: http:
//proceedings.mlr.press/v81/menon18a.html.

Mohamed, Shakir and Balaji Lakshminarayanan (2016). “Learning in implicit generative
models”. In: arXiv preprint arXiv:1610.03483.

Mourtada, Jaouad (2019). “Exact minimax risk for linear least squares, and the lower tail of
sample covariance matrices”. In: arXiv preprint arXiv:1912.10754.

Mourtada, Jaouad, Stéphane Gaïffas, and Erwan Scornet (2020). “Minimax optimal rates for
Mondrian trees and forests”. In: Annals of Statistics 48.4, pp. 2253–2276.

Mouzannar, Hussein, Mesrob I Ohannessian, and Nathan Srebro (2019). “From fair decision
making to social equality”. In: Proceedings of the Conference on Fairness, Accountability,
and Transparency, pp. 359–368.

https://proceedings.neurips.cc/paper/2018/file/09d37c08f7b129e96277388757530c72-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/09d37c08f7b129e96277388757530c72-Paper.pdf
http://proceedings.mlr.press/v81/menon18a.html
http://proceedings.mlr.press/v81/menon18a.html


BIBLIOGRAPHY 231

Mukherjee, Debarghya, Mikhail Yurochkin, Moulinath Banerjee, and Yuekai Sun (13–18 Jul
2020). “Two Simple Ways to Learn Individual Fairness Metrics from Data”. In: Proceedings
of the 37th International Conference on Machine Learning. Ed. by Hal Daumé III and
Aarti Singh. Vol. 119. Proceedings of Machine Learning Research. PMLR, pp. 7097–7107.
url: http://proceedings.mlr.press/v119/mukherjee20a.html.

Müller, Alfred (1997). “Integral probability metrics and their generating classes of functions”.
In: Advances in Applied Probability 29.2, pp. 429–443.

Nadeem, Malik Sajjad Ahmed, Jean-Daniel Zucker, and Blaise Hanczar (2009). “Accuracy-
rejection curves (ARCs) for comparing classification methods with a reject option”. In:
Machine Learning in Systems Biology, pp. 65–81.

Nagarajan, Vaishnavh and J Zico Kolter (2017). “Gradient descent GAN optimization is locally
stable”. In: Advances in neural information processing systems, pp. 5585–5595.

Negahban, Sahand N., Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu (Nov. 2012).
“A Unified Framework for High-Dimensional Analysis of M -Estimators with Decomposable
Regularizers”. In: Statist. Sci. 27.4, pp. 538–557.

Nemirovski, A (2000). “TOPICS IN NON-PARAMETRIC STATISTICS”. In: Lecture Notes
in Mathematics 1738, pp. 86–282.

Neu, Gergely and Nikita Zhivotovskiy (2020). “Fast rates for online prediction with abstention”.
In: Conference on Learning Theory. PMLR, pp. 3030–3048.

Neveu, Jacques (1972). Martingales à temps discret. Vol. 1. 1. Masson Paris.
Nickl, Richard and Benedikt M Pötscher (2007). “Bracketing metric entropy rates and empirical

central limit theorems for function classes of Besov-and Sobolev-type”. In: Journal of
Theoretical Probability 20.2, pp. 177–199.

Nie, Weili and Ankit B Patel (2020). “Towards a better understanding and regularization of
GAN training dynamics”. In: Uncertainty in Artificial Intelligence. PMLR, pp. 281–291.

Niemiro, Wojciech (1992). “Asymptotics for M-estimators defined by convex minimization”.
In: The Annals of Statistics 20.3, pp. 1514–1533.

Niles-Weed, Jonathan and Philippe Rigollet (2019). “Estimation of Wasserstein distances in
the Spiked Transport Model”. In: arXiv preprint arXiv:1909.07513.

Olfat, Matt, Stephen Sloan, Pedro Hespanhol, Matt Porter, Ram Vasudevan, and Anil Aswani
(2020). “Covariance-Robust Dynamic Watermarking”. In: arXiv preprint arXiv:2003.13908.

Oneto, L., M. Donini, and M. Pontil (2019a). “General Fair Empirical Risk Minimization”. In:
arXiv preprint arXiv:1901.10080.

Oneto, L., M. Donini, and M. Pontil (2019b). “General fair empirical risk minimization”. In:
arXiv preprint arXiv:1901.10080.

Oneto, Luca and Silvia Chiappa (2020). “Fairness in Machine Learning”. In: Recent Trends in
Learning From Data. Springer, pp. 155–196.

Oneto, Luca, Michele Donini, Andreas Maurer, and Massimiliano Pontil (2019). “Learning
fair and transferable representations”. In: arXiv preprint arXiv:1906.10673.

Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex
Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu (2016). “Wavenet: A
generative model for raw audio”. In: arXiv preprint arXiv:1609.03499.

Osborne, Martin and Ariel Rubinstein (1994). A Course in Game Theory. Tech. rep. The MIT
Press.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,

http://proceedings.mlr.press/v119/mukherjee20a.html


232 BIBLIOGRAPHY

M. Perrot, and E. Duchesnay (2011a). “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12, pp. 2825–2830.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay (2011b). “Scikit-learn: Machine Learning in Python”. In:
Journal of Machine Learning Research 12, pp. 2825–2830.

Pedreshi, Dino, Salvatore Ruggieri, and Franco Turini (2008). “Discrimination-aware data
mining”. In: Proceedings of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 560–568.

Pérez-Suay, Adrián, Valero Laparra, Gonzalo Mateo-Garcia, Jordi Muñoz-Marí, Luis Gómez-
Chova, and Gustau Camps-Valls (2017). “Fair Kernel Learning”. In: Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Skopje,
Macedonia, September 18-22, 2017, Proceedings, Part I. Ed. by Michelangelo Ceci, Jaakko
Hollmén, Ljupco Todorovski, Celine Vens, and Saso Dzeroski. Vol. 10534. Lecture Notes in
Computer Science. Springer, pp. 339–355. doi: 10.1007/978-3-319-71249-9\_21. url:
https://doi.org/10.1007/978-3-319-71249-9%5C_21.

Pfau, David and Oriol Vinyals (2016). “Connecting generative adversarial networks and
actor-critic methods”. In: arXiv preprint arXiv:1610.01945.

Plečko, Drago and Nicolai Meinshausen (2019). “Fair Data Adaptation with Quantile Preser-
vation”. In: arXiv preprint arXiv:1911.06685.

Pless, Robert and Richard Souvenir (2009). “A survey of manifold learning for images”. In:
IPSJ Transactions on Computer Vision and Applications 1, pp. 83–94.

Poggio, Tomaso A., Hrushikesh Mhaskar, Lorenzo Rosasco, Brando Miranda, and Qianli Liao
(2017). “Why and when can deep-but not shallow-networks avoid the curse of dimensionality:
A review”. In: Int. J. Autom. Comput. 14.5, pp. 503–519. doi: 10.1007/s11633-017-
1054-2. url: https://doi.org/10.1007/s11633-017-1054-2.

Portnoy, Stephen (1984). “Asymptotic behavior of M -estimators of p regression parameters
when p2/n is large. I. Consistency”. In: Ann. Statist. 12.4, pp. 1298–1309.

Primus, Richard A (2003). “Equal protection and disparate impact: Round three”. In: Harv.
L. Rev. 117, p. 494.

Puchkin, Nikita and Nikita Zhivotovskiy (2021). “Exponential Savings in Agnostic Active
Learning through Abstention”. In: arXiv preprint arXiv:2102.00451.

Quadrianto, Novi and Viktoriia Sharmanska (2017). “Recycling privileged learning and dis-
tribution matching for fairness”. In: Advances in Neural Information Processing Systems,
pp. 677–688.

Radford, Alec, Luke Metz, and Soumith Chintala (2015). “Unsupervised representation
learning with deep convolutional generative adversarial networks”. In: arXiv preprint
arXiv:1511.06434.

Raff, E., J. Sylvester, and S. Mills (2018). “Fair forests: Regularized tree induction to minimize
model bias”. In: AAAI/ACM Conference on AI, Ethics, and Society.

Rakhlin, Alexander, Ohad Shamir, and Karthik Sridharan (2012). “Making Gradient De-
scent Optimal for Strongly Convex Stochastic Optimization”. In: ICML 2012. icml.cc /
Omnipress.

Rakhlin, Alexander, Karthik Sridharan, and Alexandre B. Tsybakov (May 2017). “Empirical
entropy, minimax regret and minimax risk”. In: Bernoulli 23.2, pp. 789–824.

Richardson, Eitan and Yair Weiss (2018). “On GANs and GMMs”. In: Advances in Neural
Information Processing Systems. Ed. by S. Bengio, H. Wallach, H. Larochelle, K. Grau-

https://doi.org/10.1007/978-3-319-71249-9\_21
https://doi.org/10.1007/978-3-319-71249-9%5C_21
https://doi.org/10.1007/s11633-017-1054-2
https://doi.org/10.1007/s11633-017-1054-2
https://doi.org/10.1007/s11633-017-1054-2


BIBLIOGRAPHY 233

man, N. Cesa-Bianchi, and R. Garnett. Vol. 31. Curran Associates, Inc. url: https:
//proceedings.neurips.cc/paper/2018/file/0172d289da48c48de8c5ebf3de9f7ee1-
Paper.pdf.

Rigollet, Phillippe and Jan-Christian Hütter (2015). “High dimensional statistics”. In: Lecture
notes for course 18S997.

Robert, Christian (2007). The Bayesian choice: from decision-theoretic foundations to compu-
tational implementation. Springer Science & Business Media.

Robert, Christian P. and George Casella (2004). Monte Carlo Statistical Methods. Springer
Texts in Statistics. Springer. isbn: 978-1-4419-1939-7. doi: 10.1007/978-1-4757-4145-2.
url: https://doi.org/10.1007/978-1-4757-4145-2.

Salimans, Tim, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen
(2016). “Improved techniques for training GANs”. In: Advances in neural information
processing systems, pp. 2234–2242.

Santambrogio, Filippo (2015). “Optimal transport for applied mathematicians”. In: Birkäuser,
NY 55.58-63, p. 94.

Sard, Arthur (1942). “The measure of the critical values of differentiable maps”. In: Bulletin
of the American Mathematical Society 48.12, pp. 883–890.

Scetbon, Meyer, Laurent Meunier, Jamal Atif, and Marco Cuturi (2020). “Equitable and
Optimal Transport with Multiple Agents”. In: arXiv preprint arXiv:2006.07260.

Schreuder, Nicolas (2020). “Bounding the expectation of the supremum of empirical processes
indexed by Hölder classes”. In: Mathematical Methods of Statistics 29, pp. 76–86.

Schreuder, Nicolas, Victor-Emmanuel Brunel, and Arnak S. Dalalyan (2020). “A nonasymptotic
law of iterated logarithm for general M-estimators”. In: The 23rd International Conference
on Artificial Intelligence and Statistics, AISTATS 2020. Vol. 108. Proceedings of Machine
Learning Research. PMLR, pp. 1331–1341.

Schreuder, Nicolas, Victor-Emmanuel Brunel, and Arnak S. Dalalyan (2021). “Statistical
guarantees for generative models without domination”. In: Algorithmic Learning Theory.
Ed. by Vitaly Feldman, Katrina Ligett, and Sivan Sabato. Vol. 132. Proceedings of Machine
Learning Research. PMLR, pp. 1051–1071.

Schreuder, Nicolas and Evgenii Chzhen (2021). “Classification with abstention but without
disparities”. In: Proceedings of the 37th Conference on Uncertainty in Artificial Intelligence
(UAI). Proceedings of Machine Learning Research. PMLR.

Seddik, Mohamed El Amine, Cosme Louart, Mohamed Tamaazousti, and Romain Couillet
(2020). “Random matrix theory proves that deep learning representations of gan-data
behave as gaussian mixtures”. In: arXiv preprint arXiv:2001.08370.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding Machine Learning - From The-
ory to Algorithms. Cambridge University Press. isbn: 978-1-10-705713-5. url: http://www.
cambridge.org/de/academic/subjects/computer-science/pattern-recognition-
and-machine-learning/understanding-machine-learning-theory-algorithms.

Shalev-Shwartz, Shai, Nathan Srebro, and Tong Zhang (2010). “Trading Accuracy for Sparsity
in Optimization Problems with Sparsity Constraints”. In: SIAM Journal on Optimization
20.6, pp. 2807–2832.

Shin, Jaehyeok, Aaditya Ramdas, and Alessandro Rinaldo (2019). “On the bias, risk and
consistency of sample means in multi-armed bandits”. In: CoRR abs/1902.00746. url:
http://arxiv.org/abs/1902.00746.

Shiryayev, AN (1993). Selected Works of AN Kolmogorov: Volume III: Information Theory
and the Theory of Algorithms. Vol. 27. Springer.

https://proceedings.neurips.cc/paper/2018/file/0172d289da48c48de8c5ebf3de9f7ee1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0172d289da48c48de8c5ebf3de9f7ee1-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/0172d289da48c48de8c5ebf3de9f7ee1-Paper.pdf
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1007/978-1-4757-4145-2
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://www.cambridge.org/de/academic/subjects/computer-science/pattern-recognition-and-machine-learning/understanding-machine-learning-theory-algorithms
http://arxiv.org/abs/1902.00746


234 BIBLIOGRAPHY

Singh, Shashank and Barnabás Póczos (2018). “Minimax distribution estimation in Wasserstein
distance”. In: arXiv preprint arXiv:1802.08855.

Singh, Shashank, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, and Barnabás
Póczos (2018). “Nonparametric density estimation with adversarial losses”. In: Proceedings
of the 32nd International Conference on Neural Information Processing Systems. Curran
Associates Inc., pp. 10246–10257.

Srebro, Nathan and Karthik Sridharan (2010). “Note on refined Dudley integral covering
number bound”. In: Unpublished results. http://ttic. uchicago. edu/karthik/dudley. pdf.

Srebro, Nathan, Karthik Sridharan, and Ambuj Tewari (2010). “Smoothness, low noise and
fast rates”. In: Advances in neural information processing systems, pp. 2199–2207.

Sridharan, Karthik, Shai Shalev-shwartz, and Nathan Srebro (2009). “Fast Rates for Regular-
ized Objectives”. In: Advances in NeurIPS 21, pp. 1545–1552.

Sriperumbudur, Bharath K, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert
RG Lanckriet (2012). “On the empirical estimation of integral probability metrics”. In:
Electronic Journal of Statistics 6, pp. 1550–1599.

Steinberg, Daniel, Alistair Reid, and Simon O’Callaghan (2020). “Fairness Measures for
Regression via Probabilistic Classification”. In: arXiv preprint arXiv:2001.06089.

Steinberg, Daniel, Alistair Reid, Simon O’Callaghan, Finnian Lattimore, Lachlan McCalman,
and Tiberio Caetano (2020). “Fast Fair Regression via Efficient Approximations of Mutual
Information”. In: arXiv preprint arXiv:2002.06200.

Stone, Charles J (1977). “Consistent nonparametric regression”. In: The annals of statistics,
pp. 595–620.

Sugiyama, Masashi, Taiji Suzuki, and Takafumi Kanamori (2012). Density ratio estimation in
machine learning. Cambridge University Press.

Sweetman, David (1990). Van Gogh: His life and his art. Crown Publishers New York.
Tsybakov, A. (2009). Introduction to nonparametric estimation. Springer Series in Statistics.

New York: Springer.
Tsybakov, Alexandre B (2003). “Optimal rates of aggregation”. In: Learning theory and kernel

machines. Springer, pp. 303–313.
Tsybakov, Alexandre B (2008). Introduction to nonparametric estimation. Springer Science &

Business Media.
Uppal, A., S. Singh, and B. Poczos (2019). “Nonparametric Density Estimation: Convergence

Rates for GANs under Besov IPM Losses”. In: Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., pp. 9089–9100.

Vaart, A. W. van der (1998). Asymptotic statistics. Vol. 3. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, Cambridge, pp. xvi+443.

Vaart, Aad W. van der and Jon A. Wellner (1996). Weak convergence and empirical processes.
Springer Series in Statistics. With applications to statistics. Springer-Verlag, New York,
pp. xvi+508.

Van Der Walt, Stefan, S Chris Colbert, and Gael Varoquaux (2011). “The NumPy array: a
structure for efficient numerical computation”. In: Computing in Science & Engineering
13.2, p. 22.

Vapnik, V. and A. Chervonenkis (1968). “On the uniform convergence of relative frequencies
of events to their probabilities”. In: Doklady Akademii Nauk SSSR 181.4, pp. 781–787.

Varshamov, R. (1957). “Estimate of the number of signals in error correcting codes”. In: Dokl.
Akad. Nauk SSSR 117, pp. 739–741.



BIBLIOGRAPHY 235

Vershynin, Roman (2010). “Introduction to the non-asymptotic analysis of random matrices”.
In: arXiv preprint arXiv:1011.3027.

Vershynin, Roman (2018). High-dimensional probability: An introduction with applications in
data science. Vol. 47. Cambridge University Press.

Villani, C. (2003). Topics in Optimal Transportation. American Mathematical Society.
Villani, Cédric (2008). Optimal transport: old and new. Vol. 338. Springer Science & Business

Media.
Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David

Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stefan
J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov,
Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, CJ Carey, lhan Polat, Yu
Feng, Eric W. Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman,
Ian Henriksen, E. A. Quintero, Charles R Harris, Anne M. Archibald, Antonio H. Ribeiro,
Fabian Pedregosa, Paul van Mulbregt, and SciPy 1. 0 Contributors (2020). “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python”. In: Nature Methods.

Vovk, Vladimir, Alex Gammerman, and Glenn Shafer (2005). Algorithmic learning in a random
world. Springer Science & Business Media.

Wang, Jie, Peter Wonka, and Jieping Ye (2014). “Scaling SVM and Least Absolute Deviations
via Exact Data Reduction”. In: ICML 2014. Vol. 32. JMLR W.& C.P. Pp. 523–531.

Wasserman, Larry (2013). All of statistics: a concise course in statistical inference. Springer
Science & Business Media.

Weber, Max (1992). Wissenschaft als Beruf: 1917-1919; Politik als Beruf: 1919. Vol. 17. Mohr
Siebeck.

Weed, Jonathan and Francis Bach (2019). “Sharp asymptotic and finite-sample rates of
convergence of empirical measures in Wasserstein distance”. In: Bernoulli 25.4A, pp. 2620–
2648.

Wegkamp, M. and M. Yuan (2011). “Support vector machines with a reject option”. In:
Bernoulli 17.4, pp. 1368–1385.

Wick, Michael, Swetasudha Panda, and Jean-Baptiste Tristan (2019). “Unlocking Fairness: a
Trade-off Revisited”. In: Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., pp. 8783–8792. url: http://papers.nips.cc/paper/9082-unlocking-
fairness-a-trade-off-revisited.pdf.

Yuan, M. and M. Wegkamp (2010). “Classification methods with reject option based on convex
risk minimization”. In: J. Mach. Learn. Res. 11, pp. 111–130.

Zafar, M. B., I. Valera, M. Gomez Rodriguez, and K. P. Gummadi (2017). “Fairness be-
yond disparate treatment & disparate impact: Learning classification without disparate
mistreatment”. In: International Conference on World Wide Web.

Zemel, R., Y. Wu, K. Swersky, T. Pitassi, and C. Dwork (2013). “Learning fair representations”.
In: International Conference on Machine Learning.

Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A Efros (2017). “Unpaired image-to-
image translation using cycle-consistent adversarial networks”. In: Proceedings of the IEEE
international conference on computer vision, pp. 2223–2232.

Zink, Anna and Sherri Rose (2019). “Fair regression for health care spending”. In: Biometrics
n/a.n/a.

Zliobaite, I. (2015). “On the relation between accuracy and fairness in binary classification”.
In: arXiv preprint arXiv:1505.05723.

http://papers.nips.cc/paper/9082-unlocking-fairness-a-trade-off-revisited.pdf
http://papers.nips.cc/paper/9082-unlocking-fairness-a-trade-off-revisited.pdf


236 BIBLIOGRAPHY



Titre : Des compromis en apprentissage statistique: apprentissage en ligne, modèles génératifs et équité

Mots clés : Apprentissage statistique, statistique théorique, modèles génératifs, équité

Résumé : Les algorithmes d’apprentissage automa-
tique sont reconnus pour leurs performances im-
pressionnantes sur de nombreuses tâches que l’on
croyait dédiées à l’esprit humain. Néanmoins, les
algorithmes d’apprentissage automatique devenant
omniprésents dans notre quotidien, il existe un besoin
croissant de comprendre précisément leurs compor-
tements et leurs limites. La théorie de l’apprentissage
statistique est la branche de l’apprentissage automa-
tique qui vise à fournir un formalisme de modélisation
solide pour les problèmes d’inférence ainsi qu’une
meilleure compréhension des propriétés statistiques
des algorithmes d’apprentissage. La théorie de l’ap-
prentissage statistique permet (i) de mieux com-
prendre les cas dans lesquels un algorithme fonc-
tionne correctement (ii) de quantifier les compromis
inhérents à l’apprentissage pour des choix algorith-
miques pertinents (iii) de fournir des informations pour
développer de nouveaux algorithmes. S’appuyant sur
le cadre de l’apprentissage statistique, cette thèse
présente des contributions liées à trois problèmes
différents : l’apprentissage en ligne, la génération de
données et, enfin, l’apprentissage équitable. Dans le
cadre de l’apprentissage en ligne - où la taille de

l’échantillon n’est pas connue à l’avance - nous four-
nissons des bornes de déviations uniformes en la
taille de l’échantillon, dont la vitesse de convergence
correspond à celle donnée par la loi du logarithme
itéré pour une classe générale de M-estimateurs
convexes – comprenant la moyenne, la médiane, les
M-estimateurs de Huber. En ce qui concerne les
modèles génératifs, nous proposons un cadre pra-
tique pour étudier les modèles génératifs adversa-
riaux (Goodfellow et al. 2014) d’un point de vue sta-
tistique afin d’évaluer l’impact d’une faible dimension-
nalité intrinsèque des données sur l’erreur du modèle
génératif. Nous établissons des limites de risque non
asymptotiques pour le minimiseur du risque empi-
rique. Enfin, notre travail sur l’apprentissage équitable
consiste en une large étude de la contrainte de pa-
rité démographique, une contrainte populaire dans
la littérature sur l’apprentissage équitable. Celle-ci
contraint les prédicteurs à traiter des sous-groupes,
définis par un attribut sensible comme le genre, pour
qu’ils soient ≪ traités de la même manière ≫. En par-
ticulier, nous proposons un cadre statistique minimax
pour quantifier précisément le coût en risque d’intro-
duire cette contrainte dans le cadre de la régression.

Title : A study of some trade-offs in statistical learning: online learning, generative models and fairness

Keywords : Statistical learning, theoretical statistics, online learning, generative models, fairness

Abstract : Machine learning algorithms are celebra-
ted for their impressive performance on many tasks
that we thought were dedicated to human minds, from
handwritten digits recognition (LeCun et al. 1990) to
cancer prognosis (Kourou et al. 2015). Nevertheless,
as machine learning becomes more and more ubiqui-
tous in our daily lives, there is a growing need for pre-
cisely understanding their behaviours and their limits.
Statistical learning theory is the branch of machine
learning which aims at providing a powerful modelling
formalism for inference problems as well as a better
understanding of the statistical properties of learning
algorithms. Importantly, statistical learning theory al-
lows one to (i) get a better understanding of the cases
in which an algorithm performs well (ii) quantify trade-
offs inherent to learning for better-informed algorith-
mic choices (iii) provide insights to develop new algo-
rithms which will eventually outperform existing ones
or tackle new tasks. Relying on the statistical learning
framework, this thesis presents contributions related
to three different learning problems: online learning,
learning generative models and, finally, fair learning.

In the online learning setup – in which the sample
size is not known in advance – we provide gene-
ral anytime deviation bounds (or confidence inter-
vals) whose width has the rate given in the Law of
Iterated Logarithm for a general class of convex M-
estimators – comprising the mean, the median, Hu-
ber’s M-estimators.
Regarding generative models, we propose a conve-
nient framework for studying adversarial generative
models (Goodfellow et al. 2014) from a statistical
perspective to assess the impact of (eventual) low in-
trinsic dimensionality of the data on the error of the
generative model. We establish non-asymptotic risk
bounds for the Empirical Risk Minimizer.
Finally, our work on fair learning consists in a broad
study of the Demographic Parity constraint, a popular
constraint in the fair learning literature. It essentially
constrains predictors to treat groups defined by a sen-
sitive attribute (e.g., gender or ethnicity) to be “treated
the same”. In particular, we propose a statistical mini-
max framework to precisely quantify the cost in risk of
introducing this constraint in the regression setting.

Institut Polytechnique de Paris
91120 Palaiseau, France
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