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Résumé de la thèse

Contexte et motivations

Les systèmes de communication et de transmission sans �l connaissent un essor impor-

tant depuis de nombreuses années. Cette sollicitation croissante des systèmes antennaires

émerge de la multiplication des applications qui leurs sont liées telles que les réseaux mo-

biles terrestres, internet par satellite ou la multiplication des objets connectés (Internet of

Things - IoT) [1, 2]. Cette tendance générale conduit à des développements toujours plus

nombreux, entraînant d'importants besoins en caractérisation des antennes. La mesure du

rayonnement de ces structures est en e�et une étape clé dans la conception et la validation

des systèmes de communication sans �l.

En plus de cet essor, la tendance est à la conception d'antennes de taille (électrique)

et de complexité toujours plus grandes, et ce a�n de répondre aux contraintes exigeantes

en termes de performances en rayonnement, de bandes de fréquences, de recon�gurabilité,

... Au-delà de l'augmentation de la demande en terme de caractérisation, ces structures

sont également de plus en plus di�ciles à mesurer, que ce soit en terme d'équipement ou

de compétences. Ainsi, la caractérisation d'une antenne requiert souvent la mesure d'un

ou plusieurs diagrammes de rayonnement en 3D (sur la sphère complète), et implique

donc une mobilisation étendue dans le temps des équipements de mesure. La mesure 3D

du rayonnement d'une antenne de taille maximale 10λ est environ de 10 heures dans les

chambres anéchoïques de l'IETR1.

En�n, la caractérisation d'une antenne est souvent désirée dans un environnement qui

soit le plus réaliste possible. Ainsi, l'antenne est typiquement montée sur l'appareil destiné à

l'accueillir ou une maquette de celui-ci. La simulation numérique d'environnements réalistes

complexes est une opération fortement coûteuse en terme de ressources de calcul, à laquelle

s'ajoutent des di�cultés liées à la modélisation et à la prise en compte des nombreux

paramètres ayant un impact sur le rayonnement. La mesure est souvent le seul moyen de

prévoir le comportement en condition de l'antenne de façon �able et réaliste. L'implantation

des antennes dans leur environnement pendant la caractérisation implique généralement

des temps de mesure encore plus grands en raison de l'augmentation des dimensions. Des

di�cultés en terme de mécanique et de cinématique au sein des systèmes de mesure sont

également fréquemment rencontrées.

L'objectif de ces travaux de thèse est de tirer le meilleur parti des installations de

mesures, typiquement des chambres anéchoïques, a�n d'accélérer la mesure tout en garan-

tissant la précision des résultats sur les diagrammes de rayonnement obtenus.

Ces travaux se sont déroulés à l'Université de Rennes 1 au laboratoire IETR, en col-

1Institut d'Électronique et des Technologies du numéRique
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RÉSUMÉ DE LA THÈSE 6

laboration et avec le soutien �nancier du CNES1 et du LNE 2. Ces deux institutions sont

impliquées, parmi leurs nombreuses autres activités, dans la caractérisation de structures

rayonnantes et béné�cient donc directement des résultats de cette thèse. Une partie des

travaux a également été réalisée en collaboration avec l'Université Technique du Danemark

(DTU).

Parallèlement à cette thèse, une action Recherche et Technologie du CNES intitulée

"Nouvelles stratégies d'échantillonnage du champ électromagnétique pour l'accélération

du temps de mesure" d'une durée de 18 mois a été menée.

Objectifs et contributions

L'objectif de ce travail de thèse est de développer de nouvelles méthodes permettant une

caractérisation plus rapide et/ou plus �able de structures rayonnantes. Ainsi, plusieurs

techniques ont été proposées a�n d'optimiser l'exploitation des systèmes de mesure actuels.

Ces méthodes contiennent des procédures de mesures liées à des traitement spéci�ques a�n

d'améliorer la détermination des diagrammes de rayonnement.

Tout d'abord, la caractérisation du rayonnement 3D des antennes peut être accélérée

de façon signi�cative par la réduction du nombre d'échantillons de mesure. Deux approches

ont été étudiées en ce sens.

La première approche est basée sur la décomposition en ondes sphériques du champ

rayonné par l'antenne sous test. Elle nécessite uniquement la connaissance de la dimension

électrique maximale de l'antenne. Une procédure de traitement automatique des données,

contenant notamment une stratégie d'échantillonnage rapide, combinée à l'exploitation de

la parcimonie de la décomposition en ondes sphériques a été proposée. L'accélération de la

mesure liée à cette nouvelle technique a été démontrée et quanti�ée expérimentalement en

considérant des structures rayonnantes variées, que ce soit par leur type ou leur bande de

fréquences.

La deuxième approche repose sur la construction d'un modèle d'ordre réduit adapté au

problème de la caractérisation d'antennes. Les dimensions externes de l'antenne sous test

et la connaissance de la surface de mesure permettent de construire une matrice de rayon-

nement liant les courants équivalents autour de l'antenne au champ rayonné. La méthode

proposée est générale et peut être appliquée à n'importe quelle structure rayonnante et

géométrie de la surface de mesure (sphérique, planaire, ...) en champ proche et lointain. Ce

modèle de caractérisation d'antenne fournit non-seulement le nombre d'échantillons mini-

mal requis mais permet également d'interpoler le champ rayonné par l'antenne sous test

avec une précision contrôlée, choisie selon la dynamique de la mesure. Cette approche peut

être interprétée comme une généralisation numérique des études analytiques menées sur le

nombre de degrés de liberté du champ rayonné par une antenne donnée.

De plus, des procédures de post-traitement des données de mesure ont été développées

a�n d'optimiser le positionnement de l'antenne au sein du système de mesure, permettant

ainsi d'améliorer la précision de la reconstruction du diagramme de rayonnement mesuré

sans aucun coût supplémentaire. Ainsi, l'orientation et la position de l'antenne sous test

sont optimisées a�n de compresser la décomposition en ondes sphériques du champ rayonné,

ce qui facilite sa reconstruction à partir d'un jeu de mesure donné. Ces techniques sont

1Centre National d'Études Spatiales
2Laboratoire National de métrologie et d'Essais



RÉSUMÉ DE LA THÈSE 7

particulièrement adaptées aux cas de mesures d'antennes en environnement ou d'antennes

de diagrammes de rayonnement recon�gurables.

En résumé, nous pensons que les principales contributions de ce travail de thèse sont :

1. La conception, l'implémentation et la validation de plusieurs méthodes de modé-

lisation électromagnétique (décomposition en ondes sphériques, méthode des mo-

ments par intégration surfacique), d'outils mathématiques (translation et rotation

des ondes sphériques), de codes basés sur des méthodes aux éléments �nis (création

de maillage, outils de visualisation) et de procédures d'optimisation (reconstruction

parcimonieuse, processus Gaussiens, descente de gradient).

2. La validation expérimentale systématique de toutes les méthodes proposées sur des

structures rayonnantes variées, opérant dans des bandes de fréquences diverses et

caractérisées dans di�érents systèmes de mesure, incluant les chambres anéchoïques

de l'IETR et un système de mesure commercial de chez MVG [3].

A�n d'illustrer les contributions de ce travail en terme de caractérisation rapide d'an-

tenne, la �gure suivante montre des estimations du temps d'acquisition du champ élec-

trique dans les chambres anéchoïques de l'IETR en fonction de la dimension maximale

de l'antenne. Le temps requis par la technique de mesure standard par ondes sphériques,

dénotée Standard est comparé à celui des deux approches proposées : la décomposition

parcimonieuse en ondes sphériques Sparse SWE pour Spherical Wave Expansion et la mé-

thode utilisant un modèle d'ordre réduit, ici en entourant l'antenne par un cube, technique

appelée ROM pour Reduced-Order Model.

2 4 6 8 10 12 14 16 18 20
Antenna maximal size ( )

0

5

10

15

20

25

Ac
qu

isi
tio

n 
du

ra
tio

n 
(h

) Standard
Sparse (SWE)
ROM (cube)

Figure 1 : Durée estimée du temps d'acquisition du champ rayonné dans les bases de
mesure de l'IETR en utilisant la procédure de mesure standard et les 2 méthodes de
mesure rapide proposées lors de cette thèse.
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Contenu du mémoire

Ce mémoire de thèse comprend 4 chapitres dont les contenus sont résumés ici.

Chapitre 1

Le Chapitre 1 présente un tour d'horizon des techniques liées à la caractérisation des

champs rayonnés par les antennes. Les quantités d'intérêts concernant la mesure des ca-

ractéristiques de rayonnement des antennes sont dé�nies, du champ rayonné lui-même aux

valeurs dites intégrées telles que la directivité, ou la polarisation [4, 5]. Les con�gurations

classiques de mesure d'antennes sont décrites. Elles sont habituellement séparées en deux

grandes catégories, les techniques dites champ proche et champ lointain, déterminées par

la distance électrique entre l'antenne mesurée et la sonde de mesure. Les dispositifs de

mesure disponibles à l'IETR, qui ont permis de valider les procédures développées sur des

données expérimentales, sont également détaillés [3, 6, 7].

Les diagrammes de rayonnement, résultats de la caractérisation d'une antenne, sont

des fonctions continues (habituellement sur la sphère en champ lointain) qui représentent

les caractéristiques de l'antenne en tant qu'élément rayonnant. La comparaison de ces

diagrammes est donc un élément crucial dans la conception et la validation des techniques

de mesure. Ainsi, des métriques de comparaison, notamment utilisées dans le cadre de

campagne de comparaison de bases de mesure européennes [8] ou de techniques de mesure

rapide [9,10], sont données et appliquées sur des exemples a�n d'en montrer les propriétés

respectives.

De façon générale, la précision des techniques de mesure est fortement liée au nombre

d'échantillons du champ à disposition. Chaque con�guration et/ou technique de post-

traitement des données donne lieu à son propre nombre d'échantillons. Un compromis est

néanmoins inévitable entre la précision de la mesure et le temps d'acquisition du champ.

Ce dernier augmente avec le nombre d'échantillons de mesure, une estimation de ces temps

en lien avec les techniques étudiées à l'IETR est alors donnée, ce qui permet de conclure

de façon quantitative sur le gain e�ectif en temps d'acquisition du champ rayonné.

Chapitre 2

Le Chapitre 2 concerne la première méthode de caractérisation rapide d'antennes étudiée

au cours de ce travail. Elle est basée sur la décomposition parcimonieuse du champ rayonné

en ondes sphériques (Spherical Waves, SW [11]), aussi appelées harmoniques sphériques. La

caractérisation du champ rayonné repose de façon générale sur la décomposition du signal

mesuré dans une base de fonctions. La mesure du champ rayonné est une discrétisation

du diagramme de rayonnement, la caractérisation 3D en est l'interpolation de ce champ

sur la sphère. Les ondes sphériques sont en particulier une base des fonctions sur la sphère

[12] tout en étant solution des équations de Maxwell. Ces deux propriétés, mathématique

et physique, permettent de décomposer le champ rayonné par les antennes [11], tout en

garantissant leur pertinence dans ce contexte. Après un rappel de l'origine et de la dé�nition

de ces fonctions, la décomposition du champ est considérée.

La méthode usuelle de caractérisation du champ rayonné par une antenne sur une

sphère [11] peut être vue comme sur une généralisation de la notion de fréquence de Nyquist

[13] au cas de la décomposition sur la sphère. Cette technique garantit une identi�cation

exacte des coe�cients sous l'hypothèse que le champ rayonné possède une bande passante
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limitée en termes de variations spatiales (de la même façon que le contenu fréquentiel

d'un signal temporel sera exactement identi�é si l'échantillonnage est su�samment �n).

Si l'importance et la précision de cette technique ne sont plus à démontrer [14,15], cela se

fait au prix d'un grand nombre d'échantillons de mesure, et donc de temps d'acquisition

du champ importants voire rédibhitoires dans certains cas.

Néanmoins, la décomposition du champ dans la base des ondes sphériques possède une

propriété remarquable ; beaucoup de coe�cients de pondération de ces ondes sphériques

sont d'amplitudes négligeables. Cette particularité permet de reformuler la caractérisation

d'antennes en un problème convexes de reconstruction parcimonieuse [16,17] et d'en utiliser

les outils [18�20].

Ainsi, la détermination automatique du paramètre contrôlant l'attache aux données

de mesures, un point crucial et récurrent pour la résolution de problèmes inverses avec

régularisation, est discutée. Une approche, inspirée d'études menées pour des applications

di�érentes [21,22] a été étendue avec succès à notre problèmes de caractérisation d'antennes.

Par ailleurs, le nombre minimal de points de mesure à utiliser pour cette technique de

caractérisation rapide d'antennes avec une précision donnée, n'est pas connu à l'avance.

Néanmoins, à l'aide d'hypothèses réalistes sur les spectres générés par la mesure antenne, un

facteur de sous-échantillonnage global peut être obtenu grâce à l'utilisation de la théorie de

la reconstruction parcimonieuse, et plus particulièrement les diagrammes de transition de

phase [23]. Ces diagrammes ont été introduits à des �ns théoriques radicalement di�érentes.

Ils peuvent être étendus à la mesure d'antennes, comme notamment dans [24, 25]. Nos

contributions sont validées sur des données expérimentales et une estimation des gains sur

le temps des mesures d'antennes réalisée à l'IETR est donné en fonction de la dimension

électrique maximale de l'antenne.

Chapitre 3

Le Chapitre 3 traite de l'amélioration de la reconstruction du diagramme de rayonnement

par optimisation du positionnement de l'antenne en post-traitement en utilisant la décom-

position en ondes sphériques. Nous avons montré dans le chapitre 2 que la précision des

résultats est liée au nombre de points de mesure, que l'on utilise la technique standard

basée sur un taux d'échantillonnage de Nyquist ou les techniques de mesure rapide. Néan-

moins nous pouvons également favoriser l'extraction de l'information contenue dans un

jeu de donnée de façon plus pertinente en utilisant les propriétés des ondes sphériques et

de la reconstruction parcimonieuse, cette dernière étant très sensible aux variations et au

nombre de coe�cients signi�catifs impliqués dans la décomposition du champ.

En e�et, le spectre en ondes sphériques d'une antenne, c'est à dire l'ensemble des co-

e�cients de pondération, est une représentation du champ relativement à un système de

coordonnées dé�ni. Une modi�cation de position ou d'orientation de ce système modi�e

ce spectre [26�28] et peut donc être mis à pro�t pour favoriser l'identi�cation correcte des

coe�cients. Ce système de coordonnées peut-être modi�é une fois la mesure du champ

e�ectuée par les formules analytiques de translation et de rotation des ondes sphériques.

L'exploitation de ces formules et des e�ets de ces transformations sur le spectre des co-

e�cients permet d'obtenir une représentation encore plus compacte du rayonnement de

l'antenne. La compacité de ce spectre est en relation directe avec l'identi�cation précise des

coe�cients à partir d'un nombre restreint de données de mesure [23,25]. Une optimisation

du positionnement de l'antenne (origine et orientation du système de coordonnées) a été
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proposée a�n d'améliorer la reconstruction du diagramme de rayonnement d'une antenne à

partir du champ mesuré. Cette approche ne nécessite pas de mesures supplémentaires. Ses

avantages sur la précision de la mesure rapide sont démontrés avec de nombreux exemples

numériques et expérimentaux en champ proche sphérique et lointain.

Chapitre 4

Le Chapitre 4 s'intéresse à la construction d'un modèle d'ordre réduit pour la caractérisa-

tion d'antennes [29]. Ces travaux ont été réalisés en collaboration avec le Prof. M. Mattes

de l'université technique du Danemark (DTU).

Le principe de surface équivalente ou de Huygens permet la représentation d'un en-

semble de sources par des courants équivalents sur une surface qui les entoure [30]. Une

formulation dite aux éléments �nis de frontière peut alors être utilisée a�n d'approcher

ces courants équivalents par une pondération de fonction de bases connue de ces courants.

Cela permet la construction d'une matrice de rayonnement. Cette approche a été proposée

pour réaliser du diagnostic d'antennes dans [31�34].

La décomposition en valeurs singulières de cette matrice de rayonnement permet la

construction d'une base des champs rayonnés par l'antenne. Cette base, construite nu-

mériquement, est parfaitement adaptée à notre problème de caractérisation d'antennes

puisqu'elle prend en compte la géométrie de l'antenne ainsi que la surface de mesure. Elle

est tronquée de façon appropriée a�n de générer une représentation compacte des champs

rayonnés par une antenne contenue dans la surface équivalente. Nous avons montré que

le nombre minimal d'échantillons requis pour caractériser une antenne pour une précision

donnée est lié à l'aire de cette surface équivalente. Ce résultat, obtenu numériquement

et validé expérimentalement, généralise les travaux analytiques menées sur le nombre de

degrés de liberté des champs rayonnés [35].

Conclusion

Cette thèse a contribué au développement de méthodes de mesure pour améliorer la ca-

ractérisation d'antennes et donc l'utilisation des bases de mesure. La réalisation de ces

travaux a donné lieu à la conception et à la validation de plusieurs codes et méthodes en

plus de l'utilisation de routines existantes. Ces développements contiennent notamment

la décomposition en ondes sphériques et la méthode des moments par éléments �nis aux

frontières. Tous ces outils ont tous été validés par des études sur des données de simulation

et de mesures réalisées à l'IETR.

Suite à ce travail, plusieurs pistes sont envisageables. Il serait ainsi intéressant de vali-

der expérimentalement les techniques de mesure rapide d'antennes au champ proche. Par

ailleurs, il semble prometteur d'adapter les approches de mesures rapides d'antennes aux

mesures sans phase. En outre, l'interpolation, en plus de la dimension spatiale, de l'axe

électrique / fréquentiel des mesures de champ électromagnétique est une piste qu'il convient

de creuser. En�n, les techniques de positionnement de l'antenne pourraient certainement

être adaptées a�n d'estimer leur centre de phase.
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Introduction

Framework and motivations

There is a massive growth in the development of wireless devices that is driven by the

constant increase of mobile data communications and the arising of new applications, such

as Internet of Things, smart cities and Car2X communications to name just a few [1, 2].

The performance of these wireless devices is obviously tightly linked to their transmitting

and receiving component: the antenna. There is therefore a growing demand in testing

ubiquitous antennas to make sure that the radiating performances of the wireless devices

comply to the expected speci�cations. Antenna characterization is indeed an unavoidable

step to validate the development and production of any wireless system.

In addition, the current trend is to design radiating structures of larger electrical di-

mension, with increased complexity in terms of speci�cations or environment. This is in

answer to always more demanding needs in terms of performances, frequency band and

functionalities (recon�gurability, multiple beam patterns, various operating modes). Con-

sequently, the characterization of antennas has become more and more cumbersome and

costly. The measurement of one or several 3D (full sphere) radiation patterns is often

required to properly characterize the antenna under test, often leading to time consum-

ing procedures. As a representative example, the 3D radiation pattern measurement of

an antenna of maximum dimension equal to 10 wavelengths takes about 10 hours in the

anechoic chamber of IETR1 at the time of this manuscript.

Besides, the characterization of antennas in a realistic environment, typically embedded

in a structure, is nowadays a frequently encountered requirement. It is indeed computa-

tionally costly to simulate numerically an accurate model of such embedded antennas so

as to predict their radiation pattern as faithfully as possible. The measurement is often

the only resort to get realistic and reliable predictions of the radiation characteristics of

such systems. The large electrical dimensions of these structures render their characteriz-

ation time consuming and impose some mechanical constraints on their positioning in the

measurement facilities. Both speci�cations deserve to be properly addressed.

In this context, the main goal of this work is to improve the characterization of antennas

by using and exploiting more e�ciently measurement facilities, typically anechoic cham-

bers. More speci�cally, contributions, including measurement procedures and processing,

are proposed to speed up and/or improve the accuracy of the measurement of antenna

radiation patterns.

This PhD thesis has been carried out at the UR12 in the IETR laboratory in collabor-

1Institut d'Électronique et des Technologies du numéRique
2Université de Rennes 1

14



INTRODUCTION 15

ation and with the �nancial support of the CNES1 and the LNE2. Among their numerous

activities, these two institutions are involved in the characterization of radiating structures

and can therefore directly bene�t from the results of this thesis. Besides, the last part of

this thesis (use of reduced order model for a fast antenna characterization) has been done

in collaboration with Prof. M. Mattes from the DTU3 in Denmark.

In parallel to the present work, a Recherche and Technologie CNES action entitled

Nouvelles stratégies d'échantillonnage du champ électromagnétique pour l'accélération du

temps de mesure (New electromagnetic �eld sampling strategies for antenna measurement

acceleration) of 18 months duration has been carried out.

Objectives and contributions

The goal of the PhD thesis is to develop methods that enable a faster and/or more ac-

curate characterization of radiating structures. Thus, several techniques are proposed to

improve the use of existing antenna measurement systems. They encompass measurement

procedures associated to a speci�c processing of the produced data in order to increase the

e�ciency of antenna radiation pattern measurements.

The measurement of the radiation pattern of an antenna can be divided into four main

phases: logistics, calibrations, the �eld acquisition and the post-processing of the measure-

ment data to produce the �nal results and evaluate the quantities of interest. First, the

measurement system must be chosen according to the antenna size and operating frequency.

The weight and outer dimensions of the whole radiating structure are also constraints to be

taken into account. A proper interface between the radiating structure and the positioning

system has to be designed, takin into account the cinematic constraints. The probe has

to be appropriately chosen, speci�c protections to minimize interaction between the AUT

and the measurement system like absorbers are set and numerous other practical aspects

must be considered. Then, a careful calibration of the system has to be performed, which

contains non-exhaustively [3]: channel-balance, amplitude and phase drifts corrections,

alignment procedures, sanity checks. This calibration step often implies some feedback

loop to the logistic step. These two steps are driven by well-de�ned procedures, follow-

ing measurement standards. While their impact over the total measurement time is very

signi�cant, these procedures cannot easily be shortened as it would inevitably impact the

accuracy of the measurement. The next phase is the acquisition of the near or far �eld

radiated by the AUT. The probe measures the radiated �eld according to a pre-de�ned

sampling. This acquisition phase duration is also signi�cant, as illustrated in Fig. 2. It can

be reduced by decreasing the number of �eld samples. Because of its practical relevance,

many e�orts have been led in this direction. In this thesis, we propose two approaches to

speed up the antenna characterization by reducing the number of radiated �eld samples.

The �rst one is based on the spherical wave expansion of the �eld radiated by the

antenna under test and only calls for the knowledge of its maximum electrical dimension.

By harnessing the sparse expansion of the radiated �eld, an automatic procedure including

an e�cient �eld sampling strategy has been proposed. This approach has been shown

experimentally to lead to faster pattern characterizations for a wide range of radiating

structures operating in diverse frequency bands.

1Centre National d'Études Spatiales
2Laboratoire National de métrologie et d'Essais
3Technical University of Denmark
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Figure 2: Estimated �eld acquisition durations at IETR using the standard approach and
the proposed fast antenna characterization procedures.

In addition, several post-processing strategies based have been developed to optimize

the positioning of the antenna under test within the measurement system. By doing

so, it is possible to improve the quality of the radiation pattern measurement without

any additional cost. Thus, both the rotation and the translation of the antenna can be

optimized so as to further compress the antenna pattern representation and consequently

ease its interpolation from a given �eld dataset. This approach �nds a great relevance in

many frequently encountered scenarios including the case where antennas are mounted on

structures that also contributes to the radiation pattern.

The second approach, to speed up antenna measurements, relies on the construction

of a reduced order model for the antenna characterization problem. It exploits the outer

dimensions of the antenna under test and the geometry of the measurement surface so as

to build the radiation matrix that maps the equivalent currents representing the antenna

to the radiated �eld. The proposed methodology is general, it can be applied to any

radiating structures and �eld measurement scans in either near or far �eld. This reduced

antenna characterization model provides not only the minimum number of �eld samples

to properly characterize antennas, but also the way to interpolate the �eld radiated by the

antenna under test with a controlled accuracy. This approach can be seen as a numerical

generalization of the analytical works on the number of degrees of freedom of the �elds

radiated by antennas [4].

In summary, we believe that the main contributions of this work are:

1. The development, implementation and validation of several electromagnetic model-

ling methods (spherical wave expansion of the �eld, surface integral equation method

of moment), mathematical tools (translation and rotation of the spherical waves), �-

nite element tools (meshing, current visualizations) and optimization solvers (sparse

recovery methods, Gaussian processes, gradient descent) for a better antenna char-

acterization.

2. The systematic experimental validations of all proposed procedures on various radi-

ating structures operating in di�erent frequency bands and characterized in di�erent
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measurement facilities including several laboratory anechoic chambers and a com-

mercial measurement system.

To illustrate our contribution in terms of fast antenna characterization, the following

�gure plots an estimation of the �eld acquisition duration in our anechoic chambers as a

function of the antenna maximal dimension. It compares the standard approach (often

called Nyquist) using Spherical Wave Expansion (SWE) to our two proposed methods: the

sparse SWE and the Reduced Order Model (ROM) using a cube.

Content of the manuscript

This PhD work is organized in four chapters.

The Chapter I gives an overview on antenna measurement techniques and tools related

to radiation pattern characterization. The quantities of interest for the present work and

the measurement con�gurations are presented. The antenna measurement facilities of our

laboratories, used to validate our work, are described. Various metrics to assess the quality

of the antenna pattern measurement are proposed and discussed and the way to estimate

the antenna �eld acquisition duration, a key point of our work, is also provided.

The Chapter II addresses our �rst fast antenna characterization approach based on

the sparse spherical wave expansion. The de�nition of the SW is �rst recalled and their

exploitation in a context of a coarse antenna pattern sampling is then detailed. The

proposed procedure enables to properly characterize antenna patterns from a number of

�eld samples smaller than standard approaches, as shown in Fig. 2. The corresponding

gain in �eld acquisition durations are estimated.

The Chapter III deals with the improvement of the antenna pattern reconstruction

by optimizing the antenna position and orientation a posteriori from the measurement of

its radiation pattern. To this end, the analytical formulas for translation and rotation of

the spherical waves are given and the e�ects over the spherical coe�cients are shown and

discussed. The positioning of the antenna under test can be optimized in order to make the

SW spectrum more compact and therefore easier to retrieve. This approach enables the

reconstruction of the antenna radiation pattern from a given measurement dataset with a

better accuracy, as validated using numerous numerical and experimental dataset.

The Chapter IV proposes our second fast antenna characterization approach that relies

on the construction of a reduced order model of the antenna characterization problem.

Using the Huygens' equivalent principle, the radiation matrix that links the electromagnetic

sources to the radiated �eld is built. The truncated singular value decomposition of this

matrix provides a compressed representation of the antenna characterization problem. The

minimum number of �eld samples to characterize an antenna with a controlled accuracy

is derived and checked both numerically and experimentally. This number is linked to the

area of the equivalent surface as con�rmed for various antenna shapes. This result is in

agreement and extends existing analytical works.

Finally, the conclusions of this work are drawn and ideas for future investigations are

given.
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Chapter I

Antenna radiation pattern

characterization

I.1 Introduction

The measurement of antennas is a necessary step to determine their electrical properties

and more speci�cally their radiation characteristics. The full wave electromagnetic soft-

ware combined to the increasing computational power are e�cient and accurate tools to

predict faithfully the radiation characteristics. However, measurements remain inevitable

to provide the ground truth of the manufactured antenna.

The behaviour of antennas are described by various parameters. In this work, we focus

on the radiation performances of antennas and the relevant parameters to be characterized

to this end are detailed. The radiation parameters of antennas are usually measured

in a controlled (interference free) environment so as to be able to characterize only the

Antenna Under Test (AUT) or Device Under Test (DUT) itself. In the sequel, we will

refer to DUT when the antenna is not alone but mounted on a structure for instance.

Among antenna measurement facilities, we can distinguish outdoor and indoors ranges,

such as anechoic chambers, which are designed to isolate the tested device as much as

possible from unwanted electromagnetic radiations. There are various types and sizes of

anechoic chambers, they are topically covered with absorbing elements, as the one shown

in Fig. I.1.

There are various measurement techniques to characterize the radiation pattern of an-

tennas. These techniques can be discriminated by the electrical distance between the AUT

and the measurement probe (near or far �eld) and the geometry of the �eld measurement

scan (typically planar, cylindrical or spherical). These various measurement ranges and

their characteristics are reviewed. The systems available in our laboratory and used to

validate our antenna characterization procedures are described.

The variety of antenna measurement techniques and the use of dedicated processing

call for the assessment of the characterization results. To this end, several complementary

metrics are proposed in order to compare two antenna radiation patterns. These metrics

are essential to assess the quality of the proposed antenna characterization strategies.

The accuracy of AUT measurements highly depends on the measurement sampling.

Any antenna pattern measurement, no matter the con�guration (near and far �eld, geo-

metry of the measurement scan), requires to ful�l a sampling criterion to ensure a proper

characterization. The standard �eld sampling criterion is recalled. One of the goal of this

19



CHAPTER I. ANTENNA PATTERN CHARACTERIZATION 20

Figure I.1: A Luneburg lens antenna on the positioning system of the CACENDRA, an-
echoic chamber of IETR-UR1 for centimetric wavelength antennas.

work is precisely to go beyond this standard sampling. To achieve this so-called under-

sampling, we leverage a priori information about the �eld radiated by antennas or about

the AUT geometry.

Indeed, the �eld sampling directly impacts the duration of the �eld acquisition and

therefore the whole antenna pattern measurement. A procedure to estimate the duration

of this �eld acquisition phase in our anechoic chamber is provided. Such an estimation is

important in order to assess the two fast antenna characterization approaches proposed in

this thesis.

I.2 Measurement techniques

I.2.a Antenna parameters

The antenna parameters commonly refer to the electrical properties of the radiating system.

We provide a non-comprehensive list of these parameters, with a focus on the radiation

properties. The quoted de�nitions comes from the IEEE standard de�nition document of

terms for antennas [1].

Radiation pattern

The radiation pattern is �the spatial distribution of a quantity that characterizes the elec-

tromagnetic �eld generated by an antenna�. In spherical coordinates (θ, ϕ), illustrated in

Fig. I.2, it is an angular function of an antenna radiation parameter as it is always con-

sidered at a given distance. If not speci�ed otherwise, the radiation pattern usually refers

to the electric �eld magnitude.

Field pattern

The electric or magnetic �eld pattern is a type of radiation pattern where the quantity of

interest is the electric �eld E itself (or magnetic one H), seen as a function over the region

of interest, e.g. E(r, θ, ϕ) in spherical coordinates. Strictly speaking, an electromagnetic

�eld is time dependent, i.e. E(t, r, θ, ϕ). However this time dependency can be assumed
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Figure I.2: The spherical coordinates and the spherical basis.

harmonic by looking at each frequency independently, which happens in practice as antenna

measurements requires a discretization of the frequency axis, also called electrical axis.

Thus E(t, r, θ, ϕ) = e±jωtE(r, θ, ϕ) where ω = 2πf with f the considered frequency. The

sign of the exponent sets the time convention and can be chosen arbitrarily for antenna

measurements. An example of an electric �eld pattern simulated using CST is shown in

Fig. I.3.

Figure I.3: The electric far-�eld magnitude of a standard gain horn in X band simulated
using Computer Simulation Technology (CST) [2] Wavestudio.

The electromagnetic �elds are vectors and di�erent conventions can be used to describe

them. In the case of spherical measurements, the spherical coordinate basis, given by

(r̂, Θ̂, ϕ̂) in Fig. I.2 is often considered. The co- and cross-polarization de�nitions by

Ludwig [3] are also often used in practice. The third Ludwig de�nition transforms the

spherical basis into what can be called a Horizontal/Vertical basis in most cases (due to

the orientation of the probe polarization in the anechoic chamber corresponding to these

directions), (r̂, v̂, ĥ). This transformation is de�ned as shown in Fig. I.4.
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Figure I.4: The transformation between the spherical basis and the third de�nition of co-
and cross-polarization by Ludwig.

Gain and Directivity

Antennas can emit or receive power. This means that the interaction between such systems

is enabled by a power �ux [4]. The gain relates this power �ux density depending on the

direction (θ, ϕ), to the power accepted by the antenna. The gain G is de�ned as �the

ratio of the radiation intensity in a given direction to the radiation intensity that would be

produced if the power accepted by the antenna were isotropically radiated�. For a single

main-beam antenna, the gain simply refers to the maximum. There are several variations

on this de�nition depending on the consideration of the various losses.

The directivity D connects the power �ux density to the total radiated power. It

measures how much the power �ux is focused in some directions. It is de�ned as �the ratio

of the radiation intensity in a given direction from the antenna to the radiation intensity

averaged over all directions�. It is given by the equation [5]

D(θ, ϕ) =
4π‖E(θ, ϕ‖22

Prad
(I.1)

where Prad is the radiated power. The radiation e�ciency η is de�ned as the ratio G/D. If

all the accepted power by the antenna is radiated, the e�ciency is maximal (η = 100 %).

Polarization

The polarization of an electromagnetic wave is de�ned by the curve described by the

electric �eld vector through time in a plane perpendicular to the propagation direction.

The polarization of the antenna is thus �the polarization of the wave transmitted by the

antenna�. The polarization of this wave describes how this vector oscillation is behaving

with respect to time at a given position. There are 3 main polarization types:

1. Linear polarization: the electric �eld oscillates within a given plane, see Fig. I.5a.

2. Circular polarization: the electric �eld oscillates isotropically in all orthogonal direc-

tions with respect to the propagation one, see Fig. I.5b.
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3. Elliptical polarization: the electric �eld oscillates in all orthogonal directions with

di�erent intensities. The tip of the electric �eld E follows an ellipse.

If not stated otherwise, the polarization of the antenna commonly refers to the one

in the maximum gain direction. Circular and elliptical polarizations are given a rotation

direction of the �eld, which can be either left or right handed. For the circular case

they are abbreviated LHCP (and RHCP) for Left-Handed (and Right-Handed) Circular

Polarization. If the large axis is understood as the propagation direction, a RHCP from

the source is seen as LHCP from the receiver point-of-view.

(a) Linear polarization.

(b) Circular polarization, E or H.

Figure I.5: (a) The linear and (b) circular polarization types. The vertical and horizontal
axes de�nes the polarization directions. The propagation direction axis can also be under-
stood as a time axis if the electric �eld is observed at a given position. Credits: Wikipedia.

I.2.b Antenna pattern measurement techniques

There are various techniques to perform an antenna radiation pattern characterization. Its

choice depends mainly on the antenna type and application. The measurement techniques

are split in two main categories; the near and far-�eld measurements, depending on the

distance between the AUT and the probe. These two regions are de�ned in [6] as illustrated

in Fig. I.6. A typical measurement con�guration is made of the AUT or DUT, mounted

on a positioning system, and a probe.

In the far-�eld region, the electromagnetic wave can be approximated locally by planes

and the magnitude of the electric �eld decreases isotropically. The variations of the �eld

are thus determined by the angles only and the measurement distance can be omitted.

The electric far �eld is a function of the spherical coordinates angles (θ, ϕ) as in Fig. I.2.

In the near �eld, these considerations do not hold, leading to more complicated coupling
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Figure I.6: The measurement regions around the antenna. The radius of the minimal
sphere is denoted a and the measured wavelength is λ, δ(λ) is a margin to delimit the
reactive region, in which no measurements are feasible.

computations and measurement procedures. However the far �eld might be out of reach in

practice. For example, an antenna operating at 30 GHz and mounted on a satellite having

maximal size 2 m has a far-�eld region at 80 m according to the relation given in Fig. I.6.

Near-�eld ranges

In most near-�eld measurement systems, the measurement data is expanded into a modal

basis. The complicated function representing the electrical �eld is thus represented by an

expansion into a known function basis and the antenna pattern characterization consists

in the determination of the expansion coe�cients, the weights, of the radiation pattern

in the basis. This expansion allows in particular to transform the �eld and consequently

to derive the far �eld (often called Near to Far Field Transformation, NFFT). Because of

this transformation, such techniques are sometimes called indirect measurements [4]. The

main point of near-�eld testing is to avoid the possibly very large measurement distances

or complex measurement con�gurations, then performing a transformation to obtain the

far �eld. There are three main types of near-�eld measurements: planar, cylindrical and

spherical. For all three, the pattern of the probe has to be compensated in some way.

For the usual planar measurement technique, the NFFT is performed by a Fourier

Transform, requiring a constant step sampling. However, the constraint imposed by this

post-processing technique over the sampling as led to a lot of research on this domain. For

example, spiral scanning over the plane have been developed in [8] to reduce the number

of required �eld samples. The principle of a standard planar scanning system is shown in

Fig. I.7.

A widely measurement type is the spherical near �eld, leading to an IEEE standard

procedure document [9] and well known for its accuracy [10]. Similarly as in the planar

measurements, the usual technique requires a constant angular step sampling in both

directions θ, ϕ, leading to possibly prohibitive �eld acquisition times when used with the

standard method described by Hansen [6]. The cylindrical measurements are close to the

spherical ones. This method is particularly adapted for the characterization of antennas

for radar applications with azimuthal scanning.

Far-�eld ranges

By de�nition, the measured signal from the probe in far �eld is considered to be the

electric �eld, allowing a direct measurement of this quantity. However, to speed up the

3D characterization process, an interpolation using a function basis can still be performed.
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Figure I.7: Coordinate system for planar scanning, adapted from [7].

The experimental data presented in this manuscript is in the far �eld.

Because of possibly long measurement distances, making the true far �eld impossible

for indoor measurements, outdoors systems have been developed but are heavily impacted

by the environment. Fortunately, we can reach the far-�eld condition using collimating

elements, such systems are know as Compact Antenna Test Range (CATR) [4]. While the

usual de�nition of the far �eld involves the distance between the probe and the AUT, it is

truly characterized by the fact that the emitted electromagnetic waves can be approximated

locally by planes, as detailed in [7]. CATR systems generate a plane wave using lens

and/or re�ectors, allowing to reach the far �eld without resorting to large measurement

con�gurations. An example of such measurement system is sketched in Fig. I.8. Two

photographies of CATR system are shown in Fig. I.11.a for the IETR-UR1 one, with a

rolled edge re�ector, and in Fig. I.9 for the one located at CNES, with a serrated edge

re�ector.

Figure I.8: An example of a CATR measurement con�guration.
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Figure I.9: CATR measurement at CNES with a serrated re�ector. Credits: D. Belot,

CNES.

While being powerful, such systems are costly as the re�ectors have to be designed and

calibrated very carefully within the measurement environment. The operator also has to

ensure that the AUT is within the so-called quiet zone, the region where the re�ected wave

from the primary source is planar. The re�ector size is proportional to the generated quiet

zone, and its shape accuracy de�nes the upper bound of the frequency range. Moreover,

the feeds have to ful�l radiation pattern symmetry and phase centre stability. These

constraints are major problem for submillimetric wave applications.

I.2.c IETR measurement facilities

The antenna characterization equipments are regrouped under the M2ARS division for the

UR1 part (it stands for Manufacturing Measurement Analysis of Radiating Systems) [11],

managed by L. Le Coq. These equipments are about to evolve signi�cantly at the time of

this manuscript. They currently contain, among prototyping equipments and measurement

systems for other tasks:

1. A planar near-�eld system for measurements between 10 GHz and 500 GHz, illus-

trated in Fig. I.10.

2. Two spherical measurement systems in far �eld, CAMILL (for millimetric and sub-

millimetric operating antennas), using CATR or direct illumination con�gurations

and CACENDRA (for centimetric operating antennas), illustrated in Fig. I.11.

These spherical systems are roll-over-azimuth sequential positioners with a step-by-step

�eld acquisition (complete stop at each sampling position) and a mechanical or electrical

change of the polarization. An illustration of such system is shown in Fig. I.12, the relation

with the spherical coordinates de�ned in Fig. I.2 is also displayed.

Other equipments are located in the INSA part of the laboratory. The antenna charac-

terization part involves two near-�eld spherical scanners provided by two MVG multi-probe

systems, Stargate SG32 and MVG Starlab [12], illustrated in Fig. I.13. The former system

operates between 0.65 and 18 GHz, the antenna is positioned at the center of an arch

containing multiple probes, the AUT rotates over one axis to perform the spherical scan.
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Figure I.10: Near-�eld planar measurement system of IETR-UR1 - 10 to 500 GHz.

(a) CAMILL - 18 to 330 GHz. (b) CACENDRA - 0.8 to 26 GHz.

Figure I.11: Spherical far-�eld measurements systems of IETR-UR1. (a) A horn in CA-
MILL with the rolled edge re�ector for CATR measurements (direct illumination also
possible). (b) A Luneburg lens on the positioning system of CACENDRA.

Figure I.12: Roll-over-azimuth positioning system for spherical measurements of IETR-
UR1.

An oversampling can be achieved by a slight tilt of the arch to move the probes, enabling

thin but fast spherical scans with a limited number of probes.

I.3 Antenna radiation pattern measurement

The radiation pattern of the antenna is measured to perform the characterization of its

radiation properties. This section introduces the metrics used to compare these measure-

ments, the number of required �eld samples and the duration of their acquisition.
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Figure I.13: StarLab multi-probe system from MVG with its calibration horn located at
IETR-INSA [13].

I.3.a Metrics for antenna pattern comparison

In order to assess a new measurement technique or con�guration, to chose between two

di�erent DUT operating modes and so on, one has to use metrics to compare the obtained

radiation patterns. The comparison between these patterns can be achieved using two

approaches: point-wise or global comparison. The point-wise comparison of two patterns

provides a new pattern, depending on the used metric, while a global comparison of two

patterns returns a single number to evaluate the proximity between the two. This number

can be used as an objective function for optimization purposes or to compare the accuracy

of di�erent post-processing methods. In this section, f1(θ, ϕ) and f2(θ, ϕ) are two radi-

ation patterns over the sphere and y1,y2 their corresponding discretizations over the same

sampling.

Point-wise metrics

Each point-wise comparison metrics will emphasize on some aspects of the di�erences

between the compared patterns. The choice mainly depends on what di�erences are looked

more speci�cally. The presented metrics are all de�ned in [14].

∆lin(θ, ϕ) = |f1(θ, ϕ)− f2(θ, ϕ)| Linear di�erence

∆W,lin(θ, ϕ) = Wlin∆lin(θ, ϕ) Weighted lin. di�.

∆log(θ, ϕ) = 20 log10 |f1(θ, ϕ)| − 20 log10 |f2(θ, ϕ)| Logarithmic di�erence

∆W,log(θ, ϕ) = Wlog∆log(θ, ϕ) Weighted log. di�.

The weighting functions Wlin and Wlog are used to mitigate the di�erences between the

patterns over regions where the comparison is not relevant. For example, if a measure-

ment con�guration is known to produce reliable patterns down to −50 dB, focusing on

the di�erences occurring at −60 dB is highly questionable. An example of such weight-

ing function, with s the magnitude in dB of the normalized reference pattern f1 with a

minimum con�dence of −60 dB, is de�ned in [14] by

W (s) =

{
1 + 10−60/20 − 10(−60−s)/20 if− 60 ≤ s ≤ 0,

Discard otherwise.
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Let us consider the far-�eld pattern of an E-plane horn at 30 GHz to illustrate some of

these metrics. The reference is provided by an ideal, theoretical pattern from [5], the

simulation is a result given by CST and the measurement is mimicked by the theoretical

expression with an additive Gaussian white noise. The patterns are illustrated in Fig. I.14.

As illustrated, the logarithmic di�erence ∆log does not assume any con�dence level, and

all magnitudes in dB are considered with the same importance. Conversely, the weighted

di�erence ∆W,log di�erentiates these di�erences with respect to the magnitude level. The

control of the con�dence threshold allows to better �t the reality of the measurement

con�guration when interpreting the results.
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(b) Comparison metrics.

Figure I.14: Pointwise comparison metric values over patterns of an E-plane horn: (a) �eld
magnitude patterns, (b) metrics values between the considered pattern and the reference.
Two con�dence levels, -40 and -50 dB are used for the weighted logarithmic di�erence.

Global metrics

Any mathematical norm over a �nite space provides such metric in practice, as the �eld

is always discretized in some way. However, speci�c norms have been developed to better

contrast the di�erences in antenna measurements. It is worth noting that some antenna

parameters such as the directivity in (I.1) can also be used as �gure of merit to provide

comparison metrics.

A standard family of mathematical norms are given by the `p functions, p ≥ 1. The `p
norm of a complex vector y of size M is de�ned as [15]

‖y‖p =

(
M∑
i=1

|yi|p
)1/p

(I.2)

This de�nition can be extended to p = ∞. The `∞ or ∞-norm of y , ‖y‖∞, is the

maximum modulus component of y. As a side-note, the `2 norm is also known as the

Euclidean norm and corresponds to the intuitive notion of distance in a 2D or 3D space.

Most of the global comparison metrics used in antenna measurements have convenient

expressions when expressed using the `p norms.
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The relative residual �eld is the normalized `2 norm of the di�erence introduced in

[16]. It mostly emphasizes on the errors in the highest magnitudes regions between a

reference, discretized in y1, and another �eld discretization y2, eventually an estimation

of the reference. It is de�ned as

ε(y1,y2) =
‖y1 − y2‖2
‖y1‖2

. (I.3)

If y2 is expected to be a good estimate of y1, the value should be close to 0. The degree of

correlation [16,17] rather measures the proximity between two �elds, a value of 1 indicating

that the two vector are the same. It indicates if the two patterns follows close variations, but

is not very sensitive to slight, local, di�erences such as additive noise with low magnitude.

It is de�ned as

δ(y1,y2) =
‖〈y1,y2〉‖22
‖y1‖22‖y2‖22

, (I.4)

where 〈y1,y2〉 is the Hermitian product.

Finally, the Equivalent Noise Level [18], ENL, is a normalized mean error in dB between

a reference y1 and another �eld y2, as in the relative residual �eld1. This metric should be

considered when the two vector �elds are expected to be close to each other in a uniform

manner over the measurement region. Because of the mean operation, a localized signi�cant

di�erence, even in the main beam, might be out of sight if the �elds in the others regions

are very similar. However, this metric has the advantage to provide an intuitive result and

ENL can be easily compared between various comparison scenarios. It is de�ned as

ENL(y1,y2) = 20 log10

(
‖y1 − y2‖1
M‖y1‖∞

)
. (I.5)

Gaussian noise mean (dB) -40 -50 -60

Residual �eld ε 1.12×10−3 1.03×10−4 9.88×10−6

Correlation degree δ (%) 99.95 99.99 99.99

Equivalent Noise Level ENL (dB) -38.9 -48.3 -58.7

Table I.1: Global comparison metrics value for the E-plane horn between the reference and
the noisy patterns of Fig. I.15.

An illustration of these metrics is given by considering the far-�eld pattern of an E-

plane horn at 30 GHz. The normalized reference pattern and three altered versions using

additive Gaussian/white noise with di�erent mean magnitudes are shown in Fig. I.15. The

corresponding values of the aforementioned metrics are in the table I.1. The link between

the ENL and the noise mean magnitude is quite clear. Similar variations can be observed

with the residual �eld but over a di�erent scale, where reducing the noise mean by 10

dB roughly divide the metric value by 10. As claimed, the correlation degree does not

discriminate e�ciently these di�erent situations because of the additive noise scenario.

1The Equivalent Error Signal (EES) is used as a synonym to ENL in this manuscript. The EES
quantity often refers in the literature to an error radiation pattern instead.
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Figure I.15: The E-plane horn pattern magnitude, reference and noisy patterns with mul-
tiple Gaussian noise mean magnitudes, -40, -50 and -60 dB.

I.3.b Number of �eld samples

The required number of �eld samples depends on the used measurement technique. The

minimum sampling step, either angular or spatial for spherical or planar measurements,

respectively, is often referred to as Nyquist sampling rate. Strictly speaking, the Nyquist-

Shannon sampling theorem is only valid for a bandwidth limited signal using the Fourier

transform [19], such as planar measurements. An example of this sampling limitation is

given in Fig. I.16 However, it can be generalized to other transformations or expansions.
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Figure I.16: Illustration of the Nyquist sampling rate: the two signals provide the same
time sampling (markers). If the true signal to be characterized is represented by the plain
blue line, this measurement sampling rather identi�es the orange one (aliasing).

In planar near-�eld measurements using a square grid, the minimal spatial sampling

step is derived in [7] and given by

dx = dy =
λ

2 sin θmax
(I.6)
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where θmax stands for the upper bound in θ for which the characterization is achieved and

the steps dx, dy are the distance between two sampling points in the x and y direction of

the plane. These quantities are illustrated in Fig. I.17. The steps are also shown in 2D

in Fig. I.7. According to sampling theory, it allows an exact reconstruction of a properly

bandwidth limited signal in the characterized region determined by θmax.

Figure I.17: A planar near-�eld system scheme, adapted from [7]. θmax is the half �eld of
view and dx or dy the steps between two sampling positions over the measurement plane.

For spherical near and far �eld, the angular step between the sampling positions given

by the spherical wave theory in the famous book by Hansen [6], and is

δθ =
π

N + 1
, δϕ =

2π

2N + 1
(I.7)

where N = bkac+n1 with k the wavenumber and a the minimal sphere radius, the sphere

centered at the origin of the measurement coordinate system and enclosing all the sources,

as illustrated in Fig. I.6, n1 is an integer usually set to 10. It leads to the following total

number of samples

MH = 2(N + 1)(2N + 1). (I.8)

Note the factor 2 at the beginning, coming from the two orthogonal polarizations measured

for each sampling position.

If the sources (the DUT) are enclosed in a large surface Σ (in terms of electrical length),

Bucci et al. [20] gives another formula

MB = 2
A(Σ)

(λ/2)2
(I.9)

whereA(Σ) stands for the area of the surface Σ enclosing the sources and the factor 2 comes

from the polarizations per position, as before. According to the authors, an oversampling

is required for successful characterization.

I.3.c Duration of the �eld acquisition

The duration of the �eld acquisition is impacted by numerous factors. For a given meas-

urement con�guration, the sampling strategy and the number of samples are the critical

ones. Using a simple rigid modelling of the positioning engines cinematic and time-stamped

measurements, we are able to estimate the �eld acquisition time for given sampling in IETR
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anechoic chamber CACENDRA. More details are available in the Appendix A. The steps

of the acquisition procedure for samplings having cuts in θ in this system are:

1. Measurement of one polarization component of the �eld for a �xed θ, varying ϕ.

2. Mechanical change of the measured �eld polarization (rotation of the probe).

3. Same as step 1 for this new polarization.

4. Returning to the �rst polarization orientation and moving to the next θ.

5. Repeat steps from 1 to 4 until all θ have been run through.
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Figure I.18: Number of samples MH according to spherical near-�eld measurement theory
and estimated �eld acquisition time in IETR anechoic chamber CACENDRA.

According to the spherical measurement theory [6], the number of �eld samples is

determined by the maximum electrical size of the DUT and the sampling has to follow an

equiangular sampling (constant step in both δθ and δϕ, which can be di�erent). The results

are shown in Fig. I.18. We clearly observe the link between the �eld acquisition duration

and the number of samples. Note however that this agreement can be less obvious using

di�erent measurement system con�gurations and sampling strategies (using a continuous

acquisition and a spiral scanning for example).
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Chapter II

Antenna characterization using

sparse spherical wave expansion

II.1 Introduction

II.1.a Motivations

The Spherical Waves (SW) are solutions of the Maxwell's equations in spherical coordin-

ates. Because they also form an orthogonal function basis, they are very convenient to

expand and interpolate the radiated spherical near and far �eld [1]. The use of SW for the

characterization of the antenna radiation pattern is already well established and widely

spread in the antenna measurement community [1�4]. Although very accurate, this stand-

ard spherical measurement approach may be time consuming as it requires an important

number of �eld samples. To give some insights, note that the characterization of the 3D

radiation pattern of a DUT of diameter 10λ requires at IETR approximately 10 hours

for the acquisition of the �eld, see Fig. I.18. This duration increases drastically in the

case of embedded antennas, for which the maximal electrical size of the DUT includes the

whole structure that contributes inevitably to the radiated �eld. For all these reasons as

well as the ones detailed in the global introduction (p. 14), the need for faster antenna

characterization based on SW has recently received a lot of attention.

II.1.b State of the art

The SW expansion of the radiated �eld requires very limited prior knowledge about the

DUT: its maximum dimension and the measurement frequency. It also provides an exact

computation of the expansion coe�cients following a generalized Nyquist sampling rate

approach (provided that the signal is bandwidth limited). Moreover, this technique to

determine the SW expansion coe�cients is robust again noise as coe�cients are derived

from integral operations. These bene�cial aspects come at the price of a high number of

required �eld samples, denoted MH , where the subscript H stands for Hansen [1]. This

number of �eld samples is MH = 2(N + 1)(2N + 1) ≈ 4(πD + 10)2 with D the diameter

of the antenna in wavelength.

Other analytical �eld expansions have been proposed to tackle the antenna characteriz-

ation problem. Thus, Prof. Bucci et al. [5] have proposed another analytical function basis

that is constructed from the radiation operator, with a number of samples also based on

a compact bandwidth assumption. Surfaces with a revolution axis that �t the DUT geo-

36
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metry are then used to minimize the number of �eld samples, as shown in Fig. II.1. This

method has also been adapted numerically to further account for the antenna geometry [6].

Figure II.1: The DUT is enclosed in a convex shape Σ, allowing to reduce the number of
�eld samples [5].

Numerical basis can also be constructed in order to reduce the number of �eld samples,

provided that detailed information are available on the DUT. The presentation of this type

of approaches is left for the Chapter IV that precisely proposes such a technique to speed

up antenna measurements.

The �elds radiated by the DUT exhibit regularities and symmetries. These physical

properties render the spherical wave spectrum of antennas to be sparse. It means that a

small number of SW are su�cient to described the pattern radiated by antennas. This

sparsity aspect has been noticed in [7] and �rst exploited for antenna characterization

in [8] and [9]. The authors have shown that sparse recovery algorithms can be used to

characterize antennas with fewer samples than number of unknowns (SW expansion coef-

�cients). Since many SW are negligible, as illustrated in Fig.II.2, the number of required

�eld samples can be signi�cantly reduced. According to the authors of [8], the number

of �eld samples can be reduced by a factor up to 75 % with respect to the Nyquist rate

equivalent, also known as the standard method.

This sparse SW expansion technique has been applied successfully in the far �eld [10]

using scalar SW with a sampling strategy well suited for IETR positioning systems (se-

quential roll-over-azimuth with step-by-step acquisition) called the igloo sampling. This

sampling has also the advantage to be distributed almost uniformly over the sphere while

enabling e�cient spherical scans.

The under-sampling theory [11] applied to fast antenna measurements has led to con-

siderations on more sophisticated samplings to better harness the mathematical properties

of sparse recovery. To this end, a sampling that minimizes the cross correlation between

the discretization of the basis functions has been proposed by [12]. Even if the SW form an

orthogonal basis of functions over a sphere, their discretization does not necessarily lead
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Figure II.2: An example of SW expansion coe�cient spectrum (simulated patch array in
X band). Many SW coe�cients have a magnitude that can be neglected, lower than -40
dB as compared to the maximum level.

to orthogonal vectors. However, orthogonality can be promoted by optimizing the position

of the �eld samples. Three examples of �eld samples with various number of points that

induce a low mutual coherence of the sensing matrix are shown in Fig. II.3. However, the

complicated distribution of the �eld samples over the sphere remains a problem for the

scan in practice.

Figure II.3: Spherical samplings (red dots) with low correlation between the SW discret-
ization for M = 97, 500 and 800 measurement points [12].

Besides,Phase Transition Diagrams (PTD) are a useful representation, also coming from

the under-sampling theory [13], to draw conclusions on the number of samples using various

sampling strategies to ensure successful characterization using sparse recovery techniques

[14]. These transitions are evaluated by randomly drawing large families of expansion

coe�cients which are being retrieved by sparse recovery algorithm from the �elds they

generate. By doing so, it is possible to give an estimation of the probability of successful

coe�cients identi�cation, and thus of the proper antenna characterization. The value of

this probability depends on the number of �eld samples, the number of SW and the number

of signi�cant SW expansion coe�cients. Roughly speaking, the smaller the number of

signi�cant SW coe�cients, the smaller the number of �eld samples. This expected and

intuitive rule of thumb is illustrated by the PTD in Fig. II.4. If ζ = 20 % of the coe�cients

are non-zero, only δ ≈ 50 % of sampling data are required with respect to the number of

coe�cients to determine. If the proportion of non-zero coe�cients increase to ζ = 40 %,

then δ ≈ 80 % are required. Interestingly, it appears that only a few samples separate a

failing recovery from a successful one. This sharp transition is discussed in [13].
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Figure II.4: An example of phase transition diagram for antenna measurements from [14].
The probability of successful recovery of the coe�cients is a function of the number of �eld
samples M , the number of unknowns N and the number of non-zero coe�cients k.

II.1.c Contributions

This chapter proposes procedures to automatize and render the fast antenna pattern char-

acterization via sparse SW expansion more reliable. The sparse recovery algorithms, that

are necessary for our fast measurement procedure, are not parameter free. More speci�c-

ally, they require the proper tuning of a regularization parameter, which can be understood

in our problem as an error tolerance, also known as data �tting. A procedure to automat-

ically choose this parameter by going through several solutions using a reduced set of �eld

samples is proposed.

Besides, the �eld sampling strategy is a crucial point to ensure a successful fast antenna

measurement procedure. The number of �eld samples and the sampling distribution over

the sphere are addressed by exploiting and extending the conventional use of phase trans-

ition diagrams. Realistic assumptions in the derivation of a minimal number of samples

suitable for uniform sampling strategies, e.g. the igloo, are made and lead to reliable

antenna sampling numbers.

Experimental examples and estimated gains in terms of �eld acquisition duration val-

idate the proposed procedures.

II.2 Spherical wave expansion

II.2.a Introduction of the spherical waves

The electromagnetic �eld (E,H) in a linear, isotropic and homogeneous medium with

an assumed harmonic time dependence in e−jωt are solutions to the following Maxwell's

equations [1]

∇×H = −jωεE + J, (II.1)

∇×E = jωµH−M. (II.2)
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where ω = 2πf , f being the frequency, and ε, µ are the permittivity and the permeability

of the medium and J,M are the electric and magnetic currents, respectively.

Furthermore, when the considered propagation region is source-free, this equation sim-

pli�es as the currents are identically zero, J ≡ 0, M ≡ 0. Then, the electromagnetic �eld

satis�es the so-called vector wave equation

∇× (∇×E)− k2E = 0 (II.3)

where k = 2π/λ is the propagation constant or the wavenumber, λ being the wavelength.

The SW form an orthogonal function basis of the solutions of the vector wave equation

(II.3). More speci�cally, they provide an orthogonal basis of the space of square integrable

functions over the sphere [15]. It means in particular that any continuous function on

the sphere, such as the electric �eld radiated by antennas, can be expanded into the SW

basis. Thanks to these two properties, the use of such function basis in a spherical antenna

measurement context is relevant.

The SW, as solutions to the vector wave equation (II.3), are obtained using the separ-

ation of variables technique. A SW is a product of three functions, each of them depends

on one spherical coordinate, r, θ and ϕ. A SW is described by one index speci�cally for the

radial dependency, the propagation type c (standing, travelling inward or outward waves)

and three more indexes being the propagation mode s, Transverse Electric or Magnetic,

(TE or TM), the degree n and the order m. The SW F
(c)
smn are expressed as follow

F(c)
smn(r, θ, ϕ) = Radial(r)× Elevation(θ)×Azimuth(ϕ). (II.4)

II.2.b De�nitions

Azimuth dependency:

The azimuth part in ϕ depends on the orderm only and simply reads: Azimuth(ϕ) = eimϕ.

Elevation dependency: Legendre polynomials

The Legendre polynomials of degree n, denoted Pn are solutions of the following equation

over [−1, 1]
d

dx

[
(1− x2)

d

dx
Pn(x)

]
+ n(n+ 1)Pn(x) = 0. (II.5)

In particular, they form an orthogonal basis of continuous functions over [−1, 1]. These

polynomials are converted into the associated Legendre polynomials Pmn , that depends

both on the order m and the degree n, de�ned in θ as [1]

Pmn (cos θ) = (sin θ)m
dm

d(cos θ)m
Pn(cos θ). (II.6)

They can be normalized so that their integral over θ ∈ [0, π] is equal to unity, as follows

P
m
n (cos θ) =

√
2n+ 1

2

(n−m)!

(n+m)!
Pmn (cos θ). (II.7)

where ! is the factorial operator (for any integer n, n! = 1× 2× · · · × n).
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These normalized associated Legendre polynomials are the elevation part of the spher-

ical vector wave functions (II.4), i.e. Elevation(θ) = P
m
n (cos θ).

Radial part: Bessel functions

The radial part can be used to represent four propagation types: c = 1 or 2 for standing

waves, c = 3 for outward travelling waves and c = 4 for inward travelling waves. The radial

dependency depends on the degree n. Following the notations in [1], the radial dependency

is denoted Radial(r) := z
(c)
n (kr) in (II.4) and de�ned as

z(1)
n (kr) = jn(kr) Spherical Bessel

z(2)
n (kr) = nn(kr) Spherical Neumann

z(3)
n (kr) = h(1)

n (kr) Spherical Hankel (1st kind)

z(4)
n (kr) = h(2)

n (kr) Spherical Hankel (2nd kind)

where r is the distance to the origin.

Spherical vector wave functions

The general expressions of the normalized SW are [1]

F
(c)
1mn(r, θ, ϕ) =Nn,me

jmϕz(c)
n (kr)

(
jmP

|m|
n (cos θ)

sin θ
θ̂ − dP

|m|
n (cos θ)

dθ
ϕ̂

)
(II.8)

F
(c)
2mn(r, θ, ϕ) =Nn,me

jmϕ

[
n(n+ 1)

kr
z(c)
n (kr)P

|m|
n (cos θ)r̂

+R
(c)
2n (kr)

(
dP
|m|
n (cos θ)

dθ
θ̂ +

jmP
|m|
n (cos θ)

sin θ
ϕ̂

)]
(II.9)

where Nn,m and R
(c)
2n (kr) are de�ned as

Nn,m =
1√
2π

1√
n(n+ 1)

(
− m

|m|

)m
(II.10)

R
(c)
2n (kr) =

1

kr

d

d(kr)
(krz(c)

n (kr)) (II.11)

These expressions are used for the computation of the SW. As a side note, quantit-

ies such as associated Legendre polynomials and Bessel functions are typically evaluated

using recurrence relations. More details about their numerical computation are given in

Appendix C.
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II.2.c Expansion of the electromagnetic �eld

General formula

In a source-free region, the electromagnetic �eld (E,H) is a solution to the vector wave

equation (II.3). Therefore, the radiated �eld can be expanded into spherical wave functions

[1] as follows

E(r, θ, ϕ) =
k√
υ

∑
csmn

Q(c)
smnF

(c)
smn(r, θ, ϕ) (II.12)

H(r, θ, ϕ) = −jk
√
υ
∑
csmn

Q(c)
smnF

(c)
3−s,m,n(r, θ, ϕ) (II.13)

where υ is the admittance1 of the propagation medium and Q
(c)
smn are the complex SW

expansion coe�cients. When the observation point (r, θ, ϕ) is outside the minimal sphere,

which center is at the origin and containing all the sources, the value c = 3 su�ces to

expand the �eld and the expansion of the electric �eld (II.12) simpli�es to

E(r, θ, ϕ) =
k√
υ

2∑
s=1

∞∑
n=1

n∑
m=−n

Q(3)
smnF

(3)
smn(r, θ, ϕ). (II.14)

A similar expression can be derived for the magnetic �eld based on II.13. Consequently,

the characterization of the radiated �eld of the antenna boils down to the identi�cation of

Q
(3)
smn, often called spherical coe�cients. For convenience, the c dependence is omitted in

the sequel and the coe�cients are denoted as Qsmn unless stated otherwise. The same is

done for F
(3)
smn, denoted Fsmn. The spherical coe�cients are usually displayed using two

triangles, one for each propagating mode s = 1 for TE and s = 2 for TM, using the pattern

shown in Fig. II.5.

Truncation order

The expansion of the electric �eld (II.14) is a series over the degree n. For a numerical im-

plementation, this series can be truncated according to the electrical length of the minimal

sphere by the following rule [1]

N = bkac+ n1 (II.15)

where a is the radius of the minimal sphere, as shown in Fig. II.6. The positive integer

n1 is a safety margin introduced to mitigate potential truncation errors. This margin is

usually set to n1 = 10. As a side note, it can be safely reduced when expanding the far

�eld. The summation of (II.14),
∑

s

∑
n

∑
m is written

∑
smn

for convenience in the sequel.

1The reference [1] rather uses η for the admittance. This notation is saved for impedance in this
manuscript.
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Figure II.5: Triangle representation of spherical coe�cients Qsmn, each spherical coe�-
cients set contains two of them, one for each s value (s = 1 for TE or s = 2 for TM).

Figure II.6: AUT minimal sphere S of radius a with respect to the measurement coordinate
system, whose origin is not necessarily located at the center of the antenna. SW expansion
is valid everywhere outside S.

Radiated power

The normalization of the di�erent quantities involved in the de�nition of the SW allows

an easy computation of the radiated power using the following equation

Prad =
1

2

∑
smn

|Qsmn|2. (II.16)

A standard sanity check is performed to ensure a proper choice of the truncation order, the

N -test [1]. The radiated power can be evaluated individually for a given region of the SW
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spectrum. The n-spectrum represents the power radiated for each degree n and is de�ned

as

P (n) =
1

2

∑
sm

|Qsmn|2. (II.17)

The N -test is satis�ed when the n-spectrum decreases signi�cantly as n gets close to N .

Otherwise, truncation error cannot be considered negligible. A common threshold value of

−40 dB for a normalized n-spectrum is often taken but can be smaller depending on the

aimed measurement result accuracy.

Directivity

The simple expression for the radiated power also allows expressing the directivity de�ned

in (I.1) using the spherical coe�cients. It is given in [1] to be

D(θ, ϕ) =
‖
∑

smnQsmnKsmn(θ, ϕ)‖2∑
smn |Qsmn|2

(II.18)

where Ksmn are the far-�eld pattern functions. They are asymptotic expressions of the

SW and are de�ned as

Ksmn(θ, ϕ) = lim
r→∞

√
4π

kr

ejkr
F(3)
smn(r, θ, ϕ). (II.19)

II.3 Spherical coe�cients identi�cation

The antenna characterization using the SW expansion implies the identi�cation of the

spherical coe�cients Qsmn. From these coe�cients, the �eld radiated by the DUT can be

reconstructed outside the minimal sphere enclosing all sources, i.e. S in Fig. II.6. For

a truncation order N of the SW expansion de�ned as in (II.15), the number of spherical

coe�cients to determine is

Nc = 2N(N + 2). (II.20)

The method to determine these Nc spherical coe�cients depends both on the number of

�eld samples and the sampling strategy. A distinction between a spherical near �eld and

a far �eld con�guration must also be made.

II.3.a Spherical �eld measurement con�guration

In the far �eld, the measured quantity is the electric �eld radiated by the AUT, hence

the measured data can be directly plugged into the SW expansion (II.14). In the near

�eld, the radiation pattern of the probe has to be compensated, leading to the use of the

transmission formula instead. More details can be found at p. 62 and following in [1].

Most of the measurements shown in this work have been performed in the far �eld.

The only near-�eld cases are coming from either simulations or measurements carried out

using the MVG Starlab [4]. In the case of electromagnetic full wave simulation, the value

of the �eld is provided everywhere without having to resort to any probe compensation.

In the case of the measurements done with the Starlab, the probe compensation is already

included in the MVG software. Consequently, the spherical wave expansion formula (II.12)

is the only one used in this manuscript.



CHAPTER II. SPARSE SPHERICAL WAVE EXPANSION 45

II.3.b Analytical method: Nyquist sampling rate

The analytical method to identify the SW coe�cients [1] is performed by projecting the

measured or discretized �eld into SW by exact derivation of some integrals under the

hypothesis of a (spatial) bandwidth limited signal. These computations rely on a Fourier

transform approach and a generalization of the Nyquist sampling theorem to the SW. The

sampling scheme requires a constant step in both angular coordinates θ, ϕ, such a sampling

is often called equiangular and an example is illustrated in Fig. II.7a. It is worth pointing

out the oversampling at the pole of this technique.

(a) Equiangular sampling. (b) Igloo sampling [10].

Figure II.7: Two di�erent spherical sampling strategies over the hemisphere.

The identi�cation of the spherical coe�cients using this technique is exact, compu-

tationally e�cient and scales well to high truncation orders [3]. However, this method

requires a high amount of �eld samples [1], which is, for an equal step in both angles θ, ϕ,

given by

MH = 2(2N + 1)(N + 1) (II.21)

where N is the truncation order of the SW expansion given by (II.15). For a DUT of

diameter 10λ, the truncation order is N = 41 and MH = 6972. Note that the factor two

in front stands for the two polarizations of the �eld.

II.3.c Numerical method: approximated expansion

The angular directions are discretized when performing the measurement, the electric �eld

is measured in two orthogonal/tangential directions at P positions over a sphere of radius

R denoted by (θp, ϕp) for p = 1, ..., P . The SW expansion (II.14) can then be rewritten as

a linear system of equation, whose matrix-vector formulation is

y = Ax (II.22)

where the various indexes (s,m, n) of the SW must be ordered.
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We de�ne in this regard

y =



Eθ(θ1, ϕ1)
...

Eθ(θp, ϕp)

Eϕ(θ1, ϕ1)
...

Eϕ(θp, ϕp)


, x =

[
Q1

Q2

]
, Qs =



Qs,−1,1

Qs,0,1
Qs,1,1
Qs,−2,2

Qs,−1,2
...

Qs,N,N


(II.23)

A =
k√
υ

[
Fθ,1mn Fϕ,1mn
Fθ,2mn Fϕ,2mn

]
. (II.24)

where Fθ,1mn,Fϕ,1mn denotes the θ̂, ϕ̂ component of F1mn, respectively.

This matrix formulation allows using standard linear system inversion procedures to

identify the spherical coe�cients x from the known measured �eld y. The least square

problem or regularized least square using Singular Value Decomposition (SVD) approaches

are two examples. Most of these matrix inversion procedures requires at least as much data

as unknowns to work properly. It means that the number of measured �eld samples (length

of y) should be equal to or greater than the number of unknown SW coe�cients (length

of x), Nc in (II.20). These standard matrix inversion approaches provide admittedly an

approximated solution but they only require about half of the measurement samples as

compared to the analytical approach: MLS ≈MH/2.

In addition, the matrix formulation allows using any spherical sampling strategy. At

IETR, the use of the igloo sampling [10], shown in Fig. II.7b, allows to avoid the over-

sampling near the poles induced by the equiangular sampling while enabling fast spherical

scans with a constant elevation θ step and and constant azimuthal ϕ step at a given

elevation.

As a summary, the matrix approach has the following advantages

� Enables a �exible sampling scheme.

� Reduces the number of sampling points as compared to the analytical approach.

Conversely, the drawbacks are

� Approximated solutions.

� Numerical stability has to be assessed.

� Computationally more demanding.

II.4 Sparse recovery of the spherical coe�cients

Any under-determined linear system of equations, one having more unknowns than ob-

servations/data, has an in�nite number of solutions. Under the assumption that the true

solution is sparse, i.e. it contains a lot of zeroes, we are able to determine a solution vector

among the in�nity of them [11, 13, 16]. The �elds emitted by any DUT present symmet-

ries and smoothness, reducing their inner complexity. A small number of SW coe�cients
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su�ces to describe the radiated �eld with respect to their total number Nc in (II.20). Con-

sequently, the spherical coe�cients form a sparse vector and sparse recovery techniques

can be used to identify or approximate it, as already shown in [8�10]

II.4.a Norms and sparsity

Let us introduce di�erent norms that will be later used to describe the sparse recovery and

di�erent optimization methods.

The `p norm, p ≥ 1, of a complex vector x of size M reads [17]

‖x‖p =

(
M∑
i=1

|xi|p
)1/p

(II.25)

This de�nition can be extended to the case p =∞. The `∞ or∞-norm of x is the maximum

modulus component. For 0 < p < 1, the `p function is no longer a norm but can still be

computed from (II.25). We can also de�ne the `0 "norm", which is the number of non-zero

components of x. The `0 norm is the true measure of the sparsity. The unit balls for some

`p norms are illustrated in Fig. II.8.

1 0 1

1

1 1/2

1
2

Figure II.8: Unit balls (the set of vectors having unity norm) for `p, p = 1/2, 1, 2 and ∞.

II.4.b From `0 to `1 minimization

The solution x of Ax = y is assumed to be sparse, the sparsity of x is given by its `0 norm,

namely ‖x‖0. Since an under-determined system has an in�nity of solutions, our choice is

to search for the sparsest one, which translates into the following optimization problem,

called `0-minimization [11]

min
x
‖x‖0 subject to Ax = y. (II.26)

Unfortunately, this problem is NP-hard [11,16], meaning that reaching a solution requires

an intractable computation time even for small size problems. Various classes of algorithms
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have been proposed to solve this sparse recovery problem, that is encountered in many

applications.

Greedy algorithms

This class of algorithms focuses on the regularization term ‖x‖0. Components of x are

added sequentially till the equality constraint Ax = y is satis�ed. The greatest example of

this class is the Matching Pursuit [18]. Before adding another component, the algorithm

check if the previously chosen ones can be updated to better �t the equality, hence the

name. However it might get stuck in a loop depending on the updates. The orthogonal

version of this algorithm, the Orthogonal Matching Pursuit (OMP) [19], corrects this

problem but induces costly computational tasks. The greedy algorithms are mostly variants

of the OMP (StOMP, ROMP, ....).

Thresholding algorithms

The family of thresholding techniques rather focuses on the equality constraint Ax = y.

This residual error ‖y − Ax‖2 is minimized iteratively, and the sparsity is ensured by

thresholding the coe�cients of the estimated solution. Among the many algorithms of this

class, we can cite the Iterative Hard Thresholding [20]. It simply puts to zero the negligible

coe�cients between each iteration while trying to minimize the residual error. However the

returned solution might be non-satisfactory even if the correct non-zero components have

been identi�ed. Again, there are several variants based on this approach for mitigating

these drawbacks, for example the Hard Thresholding Pursuit [16].

Convex relaxation

The complexity of the `0-minimization and the various numerical problem it induces are

due to the non-convexity of the `0 norm. However, the optimization problem (II.26) can

be turned into a convex optimization problem that is much easier to solve by replacing

the `0 norm by the `1 one. This operation is called convex relaxation. Instead of the `0-

minimization problem problem, one rather solves the convex, `1, one, named Basis Pursuit

(BP) [11] and de�ned as

min
x
‖x‖1 subject to Ax = y. (II.27)

The name Basis Pursuit comes from the process in �nding the solution of this problem,

which is about selecting columns of A to form an invertible submatrix that can be used

to solve the equality constraint. It has been proven in [21] that the solution to the `1-

minimization problem (II.27) is equal to the `0 one if the sparse vector x to be recovered

is sparse enough. Indeed, the `1 norm also provides sparse solutions [11,16], as illustrated

in Fig. II.9.

For a 2D example, the solutions for `1 and `2 minimizations are the intersections of

the scaled unit balls and the plain straight line that represents the solution of Ax = y.

The minimal `1 solution line will likely hit a corner of the scaled corresponding norm ball,

leading to one coordinate being 0. On the contrary, the `2 norm does not have a preferred

direction and hence does not possess such sparsity feature, both coordinates of the minimal

`2 solution are non-zero.
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1
2

Ax = y

Figure II.9: Geometrical visualization of the sparsity induced by `1 minimization for a
linear system Ax = y.

II.4.c Basis Pursuit DeNoising (BPDN)

The use of `1-minimization for sparse recovery has been motivated, leading to the formula-

tion of a convex optimization problem (II.27). However, real world measurements are noisy

and the equality constraint Ax = y is not suitable for such data. This can be accounted

by replacing this equality constraint by an inequality with an user-de�ned upper bound,

leading to the following problem [11]

min
x
‖x‖1 subject to ‖Ax− y‖2 ≤ σ (II.28)

where σ ≥ 0 is the error tolerance parameter. This problem is known as Basis Pursuit

DeNoising (BPDN). The name comes from the same reasons as the Basis Pursuit in (II.27)

and the denoising is due to the inequality constraint, which mitigates the e�ects of noise

over the minimization process. The BPDN is solved in this work using the fast and

e�cient SPGL1 algorithm [22, 23], which stands for Spectral Projected Gradient for `1-

minimization. The solution to the BPDN problem (II.28) is approximated by iterative

resolutions of LASSO problems (Least Absolute Shrinkage Selection Operator), which are

also called `1-regularization problems and are de�ned in [16] as

min
x
‖Ax− y‖2 + λ‖x‖1 (II.29)

where λ is the regularization parameter. These problems are easier to solve, the SPGL1

algorithm iterates over the parameter λ till the returned solution also satis�es the BPDN

for the chosen error tolerance σ.

Application to the characterization of a horn at 30 GHz

The �eld reconstruction using sparse recovery technique of a pyramidal horn simulated

in HFSS is demonstrated. The antenna has a minimal sphere of radius a = 3 cm, and

consequently a truncation order of N = 28 which implies Nc = 1680 spherical coe�cients
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at 30 GHz. The standard analytical method requiresMH = 3306 �eld samples in this case.

Two igloo samplings of di�erent sizes and linear system resolution methods are considered

for the characterization.

The �rst one hasMTSV D = 2245 data, and the spherical coe�cients are identi�ed using

the Truncated Singular Value Decomposition (TSVD) [24], a classical method for over-

determined systems closely related to least-square solutions. The second one emulates a

fast measurement procedure with onlyMBPDN = 630 measured �eld samples and spherical

coe�cients are found by solving the BPDN problem.

The reconstructed �elds from both coe�cient identi�cation strategies are compared to

the simulation by displaying their magnitudes in Fig. II.10 following the Ludwig-3 de�n-

itions of co- and cross-polarizations [25]. The far-�eld radiated by the horn is accurately

reconstructed down to very low magnitude levels in both cases despite the lower number of

samples, even for the fast testing sampling. Thus, a signi�cant reduction of the number of

�eld samples is achieved while preserving the accuracy of the �eld reconstruction. We have

MTSV D = 0.68MH and MBPDN = 0.2MH . In other words, the number of �eld samples

used for the sparse recovery approach is �ve times smaller than the one advocated by the

generalized Nyquist sampling rate technique.

(a) Field co-polarization magnitudes.

(b) Field cross-polarization magnitudes.

Figure II.10: Simulated and reconstructed �eld magnitudes over some cutting planes on
the co-polarization and cross-polarization components.

II.4.d The error tolerance parameter

The error tolerance parameter σ in (II.28) has to be properly set, as it greatly in�uences

the solution of the sparse recovery problem. Its determination is a well known problem in

convex optimization theory, it is discussed in this section in the context of fast antenna

measurements.
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Criterion for `2 regularization

The `2 regularization, also known as Tikhonov regularization, problem [26] is formulated

min
x
‖Ax− y‖22 + λ‖x‖22 (II.30)

where λ > 0 is the regularization parameter, playing a similar role as σ in (II.28). This

parameter controls the data �tting, i.e. the trust given in the data. This well known prob-

lem has been largely investigated for a wide range of applications. Without regularization

(λ = 0), it boils down to solve the standard least square problem. As the regularization

parameter λ increases, the solution of the least square problem is more and more forced to

exhibit the smallest possible energy, ‖x‖2.
The curve de�ned by λ 7→ (‖Ax − y‖2, ‖x‖2) presents typically a L-shape in `2 regu-

larization contexts, as displayed in Fig. II.11a. It has been shown that the most relevant

choice of λ without further assumptions is given by the value corresponding to the corner

of this curve [27]. We illustrate this criterion with an example in Fig. II.11 and II.12.

The quantity xλ denotes the solution of the `2 regularization problem (II.30) for λ as the

regularization parameter. A true signal y0, displayed in Fig. II.12 is reconstructed using

21 noisy data points, which is modelled by Gaussian white noise, for a Discrete Cosinus

Transform (DCT) matrix with 101 coe�cients, or unknowns.
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Figure II.11: (a) Typical L-curve observed for Tikhonov regularization, (b) reconstruction
metric with respect to the true signal. The criterion recommends the penalty term value
λ ≈ 1 .

The corner of the curve is the best compromise between minimizing the residual error,

i.e. solving at best the linear system, and minimizing the norm of the solution, understood

as a measure of its complexity. If we go past the corner on the horizontal part of the

curve, the residual error is increased without impacting the complexity of the solution.

Conversely, if we go up the vertical part, we do little improvements over the residual errors

at the cost of signi�cantly more complex/larger norm solutions, indicating that we are

probably trying to �t some noisy contributions instead of the desired signal.

Extension to `1 minimization

The error tolerance parameter σ in (II.28) plays the same role as the regularization para-

meter λ in the `2 regularization (II.30), as demonstrated in [28], or in the LASSO problem
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Figure II.12: Illustration of the reconstructed signals using noisy data sample for several
penalty terms λ. The choice λ = 1 × 10−6 leads to an under-regularization (oscillations),
λ = 1 is the penalty term given by the criterion and λ = 100 induces an over-regularization
(also known as dampening).

(II.29). For this reason, we propose to use the L-curve approach previously described in

order to �nd the best error tolerance parameter value σ.

The curve de�ned by σ 7→ (‖Ax − y‖2, ‖x‖1), similar to the de�nition of the L-curve

for `2 regularization, also presents a L shape, as illustrated in the examples Fig. II.14a and

II.15a. However, it is notably smoother. This has been discussed in [22] and the corner

criterion has also been tested in `1 minimization context, e.g. for tomography in [29]. The

same explanation as previously discussed remains true, the corner is the best trade-o�

between the sparsity of the solution and the residual error.

The corner of the L-curve can be identi�ed accurately by computing its curvature κ. It

is mathematically de�ned at any point of a smooth curve as the inverse radius of the circle

approximating at best this curve around the considered point, also known as the osculating

circle. The curvature of the curve in Fig. II.13 at the point P is 1/R. Consequently, we

recommend to use the value σ that corresponds to the maximum curvature of the curve

σ 7→ (‖Ax− y‖2, λ‖x‖1).

Figure II.13: The curvature of the curve at the point P is given by the inverse of the radius
R of the best approximating circle of the curve at that point.

Search algorithm for the error tolerance parameter

The curvature κ of a plane curve quanti�es how much the curve changes its direction

locally. Hence the corner of the L-curve corresponds to the maximum of the curvature.
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Unfortunately, the computation of the L-curve is time consuming. A search algorithm has

been developed in [30] for `2-regularization for the automatic and e�cient identi�cation of

the curve corner using Menger curvature estimation. This algorithm has been adapted to

our problematic. It is provided in the Appendix B, Algorithm 2.

However, the Menger estimation of the curvature has been observed to provide noisy

results in our context. Another estimation technique of the curvature, called the parabola

method [31] has been implemented to overcome this problem. The input of the algorithm

is an interval to search in, which is provided by a �rst estimation of the error tolerance

parameter σ̃ =
√
M‖y‖∞10−T/20 with M the size of y, the number of measurement data,

and T the estimated noise-�oor over the measurement data in dB. This estimation comes

from a simple upper bound of the residual error under the assumption that every sampling

point data is true down to −T dB. Then it su�ces to consider the following interval[
σ̃
10 , 10σ̃

]
. The output of the search algorithm is noted σκ in the sequel.

Application to fast antenna measurements

Let us consider the measurement of a re�ectarray at 12 GHz in order to assess our procedure

to choose the error tolerance criterion. The DUT has a minimal sphere of radius 12 cm,

leading to a truncation order N = 42 of the SW series, or equivalently Nc = 4606 spherical

coe�cients to identify. A fast measurement is achieved by considering a sample of size

M = 3112 along an igloo sampling. This small dataset is used to identify the Nc coe�cients

to interpolate the �eld over a dense measurement sampling to compare with the reference

data. The accuracy of the reconstruction using the fast measurement sampling is assessed

by computing the residual �eld and the ENL, de�ned in (I.3) and (I.5), respectively. As

shown by the results in Fig. II.14, the best reconstruction metrics values corresponds to

the corner of the curve, captured by the maximum curvature, which con�rms the validity

of the proposed strategy. In these �gures, the grey area represents the zone where the error

parameter σ should be chosen. This zone is precisely the one of the best �eld interpolations

as shown by the values of the comparison metrics.
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Figure II.14: Fast measurement of the re�ectarray at 12 GHz: (a) L-curve in BPDN and
its normalized curvature, (b) corresponding metrics values. The green line σκ is the value
returned by the automatic research algorithm.

The choice of the error tolerance parameter has also been tested with the same meth-

odology on a radiating cavity antenna at 6 GHz, which is a less directive antenna than the

re�ectarray and consequently provides a very di�erent example. The results are displayed



CHAPTER II. SPARSE SPHERICAL WAVE EXPANSION 54

in Fig. II.15. The σ choices leading to the best reconstruction metrics are located around

the maximum curvature point. However, we can note that the criterion slightly overshoots

the optimal choice here, which is often the case in `2 regularization as reported in [27].

For both cases, the maximum curvature search algorithm σκ has provided correct res-

ults, as shown in Fig. II.14b and II.15b.
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Figure II.15: Fast measurement of the radiating cavity antenna at 6 GHz: (a) L-curve in
BPDN and its normalized curvature, (b) corresponding metrics values. The green line σκ
is the value returned by the automatic research algorithm.

II.5 On the number of �eld samples

The sparse recovery of the spherical coe�cients allows to signi�cantly reduce the number

of �eld samples as compared to standard approaches while ensuring a proper and accurate

antenna characterization. We propose a methodology to derive the minimum number

of samples to properly retrieve the sparse SW coe�cients and therefore to enable a fast

characterization of its radiation pattern.

II.5.a Phase transition diagrams

The Phase Transition Diagrams (PTD) are a 2D graphic that display under which condi-

tions an under-determined linear problem can be properly solved. These conditions are:

1. the sampling size, under the measurement ratio δ, the number of measurements over

the number of unknown coe�cients. It is the abscissa axis of the graphic.

2. the sparsity level ζ, the number of non-zero coe�cients in the solution over the

number of measurements. It is the ordinate axis.

For a �xed numerical solution, given its sparsity and the number of �eld samples, the

PTD indicates whether the resolution might be successful or not. The typical aspect of

a PTD is represented in Fig. II.16. Roughly speaking and as expected, the sparser the

solution, the easier its recovery from a small number of samples. While this holds true in

general, this global tendency is not enough to provide a minimum number of samples.

In the original paper [13], the PTD are analytically computed for Gaussian sensing

matrices A. However it can be generalized numerically to various sensing matrices. We

extend the application of PTD to fast antenna measurements where the sensing matrices

are built from SW.
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Figure II.16: Phase transition diagram sketch with its three regions: failure, transition and
success of the solution identi�cation as a function of its sparsity ζ (the number of non-zeros
in the solution) and the sampling ratio δ (number of �eld samples over the total number
of coe�cients).

II.5.b Application to antenna measurements

The �rst applications of PTD for antenna characterization can be found in [9, 10]. A

detailed study using PTD is also provided in [14], from which Fig. II.4 comes from. Prof.

Eibert et al. use a formulation that is closer to the original theory of [13], enabling a

comparison with exact bounds, such as the Bounded Orthonormal System one [32]. The

impact of the probe compensation for spherical near-�eld measurements is also taken into

account, which increases the practical relevance of this work. The present manuscript

adds on these interesting investigations by considering scenarios that are, we believe, more

representative of antenna characterization problems.

The numerical derivation of a PTD can be done as follows. A spherical expansion

coe�cient set is drawn to generate �eld samples over given spherical samplings. These �eld

samples are used as measurement data and the BPDN is solved to retrieve the coe�cients.

Finally, the retrieved solution is compared to the exact one to assess the success or failure

of the procedure. This process must be repeated enough times to provide a relevant and

reliable estimation of the probability of successful recovery. This computation has to be

done for various couples of measurement ratios and sparsity levels (δ, ζ) so as to be able

to display a 2D PTD graphic. A number of 200 SW coe�cient sets have been generated

for each tested couple in the present work.

The random drawing of the SW expansion coe�cients can be done in various ways, the

same parameters in the Gaussian law were considered for drawing the coe�cients across

the whole spectrum. However, the truncation order has to be set so that the radiated power

by the SW having degree n ≈ N is negligible. This veri�cation is performed by the N -test.

It means that a realistic SW coe�cient magnitude set should be signi�cantly smaller for

the degrees n close to the truncation order N . This can be ensured by a proper decrease

of the variance parameter of the Gaussian law, forcing the magnitude of the coe�cients to

decrease as expected.

Moreover, real measurement data are noisy. Therefore a relevant measure of sparsity

is rather provided by the proportion of signi�cant coe�cients instead of non-zero ones. If

a coe�cient has a negligible magnitude with respect to other ones and to the expected

measurement accuracy, its identi�cation is not relevant. Consequently, we introduce the
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e�ective sparsity to count how many coe�cients we can expect to retrieve in practice. The

e�ective sparsity ζT with threshold T is de�ned as follows

ζT =
1

Nc
#

{
|xi|
‖x‖∞

> 10T/20, i = 1, . . . , NC

}
(II.31)

where Nc is the total number of coe�cients, # is the cardinal operator and T the threshold

separating signi�cant and negligible coe�cient magnitudes. If a value of T = −40 dB is

chosen in practice, the radiated �eld generated by truncating lower magnitude coe�cients

is close up to −50 dB in ENL in (I.5) to the original one.

Furthermore, the goal of the fast measurement procedures is to reconstruct the radiation

pattern. It is therefore the true �gure of merit that distinguishes a successful from a failed

recovery. The success of the fast characterization procedure is thus tested on the radiation

patterns rather than the spherical coe�cients. We have used the ENL metric to this

end, comparing the reference �eld generated by the randomly drawn coe�cients and the

�eld reconstructed from the coe�cients found by the BPDN and the reduced number of

samples. The criterion for successful recovery is that the ENL between the reference and

the reconstructed pattern must be lower than −50 dB, corresponding to choice of the

e�ective sparsity T−40.

Finally, the in�uence of the sampling over the sparse recovery performance can be

signi�cant and studies have been led to derive a sampling strategy that minimizes the

cross-correlation of the sensing matrix and therefore enlarges the �success� region in the

PTD [12]. During this work, we have chosen to limit ourselves to the igloo sampling and

the spiral sampling, both illustrated in Fig. II.17. The igloo sampling is the one used at

IETR, for reasons previously discussed, and the spiral one is one of the best approximation

of a uniform sampling on the sphere, providing a reference test. This sampling has also

been treated in [14].

(a) Igloo sampling [10]. (b) Spiral or Fibonacci's sampling

Figure II.17: Two di�erent spherical sampling strategies tested using PTD over the hemi-
sphere.

The results for the criterion success ENL < −50 dB and using two sampling strategies

for the fast measurement samplings, igloo and spiral, are shown in Fig. II.18. According to

these results, a measurement ratio δ = 75 % is enough to properly characterize any antenna

for a truncation order N = 40. Indeed, this ratio leads to successful �eld reconstruction in

all cases for this truncation order. Further studies have been carried out to show that this

ratio is stable with respect to the truncation order N of the SW expansion, as suggested
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by Fig. II.19. This �gure can be seen as a cutting plane of the PTD for ζ−40 = 40 %.
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Figure II.18: Obtained transition diagram, probability evaluated from 200 trials. Dashed
or coloured regions mean 100 % successful reconstruction for the criterion success being
EES < −50 dB for a truncation order N = 40 of the SW. The markers denotes two
measurements presented in Section II.4.d.
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Figure II.19: ENL (average value over 200 trials) using an igloo sampling for several SW
series truncation order N and an e�ective sparsity of ζ−40 = 0.4.

As a conclusion and according to our results, for a given antenna having truncation

order N , the total number of coe�cients to determine is Nc = 2N(N+2) and the measure-

ment data set has to be as least at 0.75Nc to ensure a successful antenna characterization

for our chosen success criterion and sampling strategy.

II.5.c Fast antenna measurements at IETR

The IETR spherical measurement systems have been described and illustrated in Section

I.2.c. They consist in roll-over-azimuth positioning systems with sequential engine motions

using a step by step �eld acquisition. Details about the measurement procedure, i.e. how

the system is going through the sampling is also given in Section I.2.c, and the estimation

of the duration of the �eld acquisition is detailed in Appendix A.

For a given DUT, we can deduce the number Nc of SW involved in the expansion of its

radiated �eld from its electrical size. According to the PTD computed for SW matrices and

realistic data in the context of antenna measurements, we conclude that a fast measurement

with sparse recovery technique and SW function basis requires only 75% of the number of
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expansion coe�cients Nc as �eld sampling size. The number of samples if thus given by

MBPDN ≈
3

2
N(N + 2) (II.32)

where N in (II.15) is given by the electrical length of the DUT. The sparse recovery

technique allows using only a �eld sampling size of 37 % of the analytical, Nyquist sample

rate, approach for which of the number of samples was MH = 2(2N + 1)(N + 1).

Combining this statement with the estimated �eld acquisition duration at IETR, the

time savings induced by the fast measurement method with respect to the standard method

in our measurement facilities can be deduced and are plotted in Fig. II.20.
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Figure II.20: Estimated �eld acquisition duration at IETR as a function of the DUT
maximal size in wavelength λ. Std stands for the standard spherical measurement method
based on the Nyquist sampling rate [1] and Fast for the sparse recovery method, using an
igloo sampling and with a 75 % measurement ratio.

Application to the measurement of a Pillbox antenna at 270 GHz

The DUT is a square of 24 mm made of copper with radiating slots designed by KTH and

IETR [33]. This antenna has been measured at 270 GHz at IETR using a fast measurement

sampling over a hemisphere. The considered minimal sphere has a radius of 14 mm and

consequently a truncation order of N = 120 is considered. Since the measurement is

only performed over the hemisphere, only even SW can be used in the expansion, Fsmn
such that m + n is even, by assuming a symmetric radiation pattern with respect to

the equator, leading to Nc = 29280 coe�cients. The fast measurement sampling has

21834 �eld samples, or a measurement ratio of ≈ 75 %, as advocated by the PTD results.

The analytical approach would have required MH = 2(2N + 1)(N + 2) = 58322 �eld

samples in comparison. The reference for reconstruction assessment is provided by dense

measurements over the cutting planes φ = 0° and 45°.

The 3D reconstruction of the �eld using the fast measurement procedure, i.e. igloo

sampling and `1 minimization by BPDN, is given in Fig. II.21 and the comparison to

the reference over the cutting planes in Fig. II.22. An excellent agreement between the

reconstructed and densely measured �eld over the cutting planes is achieved despite the

signi�cant reduction in the number of samples. The proposed fast antenna characterization

approach has allowed to bring down the �eld acquisition duration from 62 to 26 hours.
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Figure II.21: Normalized magnitude of the 3D reconstructed radiated �eld of the pillbox
antenna at 270 GHz.
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Figure II.22: Normalized magnitudes of the radiated �elds from the pillbox antenna at 270
GHz, comparison of the reconstructed �eld and the reference measurement (dense measure)
(a) over the main cutting plane and (b) another one containing a lot of minimums.

II.6 Conclusion

The SW expansion of radiated �elds and the fast antenna measurement technique using

sparse recovery have been introduced and detailed. The proposed fast antenna pattern

characterization approach requires the choice of an error tolerance parameter and the

number of samples to be measured. An automatized procedure has been developed to

apply the sparse recovery of the SW expansion of radiated �elds. More speci�cally, a

search algorithm has been proposed to properly set the data �tting term whereas existing

tools have been adapted to derive the general minimal number of samples. This fast

measurement procedure reduces the �eld acquisition duration by a factor around 2 as

compared to the standard technique based on the Nyquist sampling rate in the IETR

measurement facilities.

Besides, it is possible to further enhance the sparsity of the measured antenna spectrum

and consequently improve the reconstruction of its radiation pattern from a given number

of �eld samples. To this end, the optimization of the antenna positioning is addressed in

the next chapter as a mean to improve, by post-processing, the accuracy of the antenna

pattern measurement.
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Chapter III

Antenna positioning for radiation

pattern reconstruction

III.1 Introduction

III.1.a Motivations

The positioning of the Antenna Under Test (AUT), i.e. its location and orientation in

the anechoic chamber, is crucial to ensure the proper measurement of its radiation pat-

tern. Therefore, alignment and centering procedures, that are often time consuming, are

systematically used before any measurement. However, the accurate determination of the

position of the antenna within the anechoic chamber is not an easy task, especially at

high frequencies since this accuracy is tied to the wavelength. In addition, it is not always

straightforward to guess in advance where to place at best the antenna in order to improve

its radiation pattern characterization because of the possible interactions between the AUT

and its surrounding. Besides, when the antenna is mounted on a structure, the Device Un-

der Test (DUT) cannot always be positioned at will in the measurement system because

of cinematic or weight constraints. For all these reasons, the development of a procedure

to automatically �nd the best antenna positioning would greatly contribute in improving

its radiation pattern characterization. In this chapter, the positioning of the AUT refers

to both the position and the orientation of the antenna with respect to the measurement

coordinate system. A translation refers to a change of the position and rotation to the

orientation.

III.1.b State of the art

Many works have been led to understand the in�uence of the AUT positioning on its

radiation pattern measurement. It has been investigated for SW expansion in [1]. As

illustrated in Fig. III.1, the power distribution over the spectrum of a dipole is shown to

be connected to its distance from the origin.

New �eld sampling strategies have been proposed in [2] to improve the characterization

of an o�set-mounted antenna. When a relevant position to expand the �eld is known

a priori, it is possible to translate the SW origin in post-processing so as to reduce its

SW truncation order and to enable a down-sampled �eld acquisition, as smartly proposed

in [3]. Finally, approaches to reduce the computational burden induced by a change of the

SW expansion origin changes are given in [4]. Note that the change of the SW expansion

63
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Figure III.1: The n-spectrum of the SW expansion of a Hertz dipole located at di�erent
electric distances kr0 from the origin [1].

origin requires to adapt the probe compensation technique, which is necessary for spherical

near-�eld measurements and has been addressed in [5].

Besides, two iterative approaches have been proposed to optimize the antenna posi-

tioning in post-processing. The �rst one [6] minimizes the number of signi�cant modes

to improve the �eld reconstruction quality according to the sparse recovery theory [7], as

discussed in Section II.5. Indeed, the reconstruction accuracy from a low density �eld

sampling is linked to the number of signi�cant modes in the expansion, as shown in [8�11].

As illustrated in Fig. III.2, an inappropriate positioning generates many non-zero spherical

coe�cients while describing the same antenna yet.

(a) Rotated and shifted dipole.

(b) Centered dipole

Figure III.2: Dipole positioning and corresponding SW spectra [6].
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However, the number of non-zero coe�cients is not the only indicator of a good or

bad antenna positioning and the distribution of these coe�cients over the spectrum also

provides meaningful information. A second strategy [12] works over the power distribu-

tion over the spectrum, the n-spectrum, to estimate the so-called radiation center of the

antenna. It corresponds to the phase center in the case of antennas having a single main

beam. A �xed perturbation in the 6 directions from the current position (the 3 Cartesian

ones in both ways) is applied with a �xed step. The origin is then moved in the direction

leading to the best power concentration within a predetermined low frequency part of the

spectrum.

Finally, the orientation of the AUT also modi�es its SW spectrum. Consequently,

one can legitimately wonder how to choose the coordinate system orientation yielding the

sparsest �eld expansion. This very point has also been addressed by [6]. To our best

knowledge, this is the only work where the AUT orientation is optimized to this end.

Consequently, this work will be referred to as State-Of-the-Art (SOA) when dealing with

antenna orientation optimization.

III.1.c Contributions

The Spherical Wave (SW) spectrum encompasses many valuable physical information

about the AUT radiated �eld that deserve to be fully exploited. More precisely, it provides

an identity card of the radiated �eld relatively to a given coordinate system. This means

that both the position and the orientation of the antenna with respect to the measurement

system in�uence the SW expansion, as illustrated with a dipole in Fig. III.2, from [6]. Al-

though the antenna positioning is imposed by its placement in the measurement system at

�rst, it can be changed after the acquisition of the �eld by post-processing. The analytical

nature of the SW indeed allows for exact transformations on translating or rotating the

electromagnetic �eld [13].

To optimize the positioning of the AUT, the SW spectrum must be concentrated to-

wards low spatial or angular frequency content, i.e. the slowly varying SW, as they are

easier to identify. The best position can thus be de�ned as the coordinate system origin

achieving the highest concentration in the low-degree part of the SW spectrum, for which

an appropriate metric is proposed thereafter. The optimization of the antenna orientation

is performed by enhancing the sparsity of its SW spectrum, i.e. the number of non-zero

coe�cients involved in the expansion of the radiation pattern. Finally both approaches

are combined into a full positioning optimization procedure that is carried out in post-

processing, namely after the radiated �eld acquisition. Note that this antenna positioning

procedure does not require any additional �eld measurement.

III.2 Spherical wave function transformations

The formula to achieve the analytical translation and rotation of the SW functions are

given and their e�ects over the SW spectrum of an antenna are illustrated.

III.2.a Rotation

Let r be the position in the measurement coordinate system and rrot the position in the

one rotated according to Euler's angle (ϕ0, θ0, χ0) in zyz convention, as illustrated in Fig.
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Figure III.3: Euler's angles in zyz convention. Three rotations of angles (ϕ0, θ0, χ0) with
respect to the axis z,y1, z2 = z′ enables to go from the basis {x,y, z} to {x′,y′, z′}. The
radius of the minimum enclosing sphere around the antenna is denoted a. The intermediate
basis {x1,y1, z1} and {x2,y2, z2} are also displayed.

III.3. We have from [13] p.343 the following expression

Fsmn(r) =
n∑

µ=−n
Dn
µm(χ0, θ0, ϕ0)Fsµn(rrot) (III.1)

where Dn
µm are the Wigner D-functions, de�ned from the (small)d-functions [14].

III.2.b Translation

Let r be the position in the measurement system and r′ the position in the translated one

by some vector d, as depicted in Fig. III.4. If the observation distance ‖r‖ is larger than
the translation distance ‖d‖, for a translation over the z-axis, then we have from [13] p.353

the following expression

Fsµn(r) =

2∑
σ=1

∞∑
ν=|µ|
ν 6=0

Csn(1)
σµν (k‖d‖)F(c)

σµν(r′) (III.2)

where C
sn(1)
σµν (k‖d‖) are the translation coe�cients depending on the distance and the

measured frequency.

An arbitrary translation is achieved by a 3 step process

1. A �rst rotation to align the translation vector with the z-axis.

2. A translation over the z-axis.

3. A second rotation to put the antenna back to its initial orientation.

The transformation of the coordinate system tied to the AUT can also be done more

easily the in far �eld since it boils down to a simple phase shift. Let us consider an

arbitrary component (e.g. θ̂ or ϕ̂ component) of the electric far �eld E with respect to the

measurement basis around O. The same �eld component in the translated measurement
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Figure III.4: Translation of the coordinate system by a vector d. The corresponding
minimal spheres enclosing the AUT are S, S′ with radii a, a′ respectively.

system around O′, as in Fig. III.4, noted Ed is expressed as [15,16]

Ed = Ee
−jk r′

‖r′‖ ·d, (III.3)

where · is the scalar product. Note that the amplitude and sampling positions changes are

neglected when considering a far �eld scenario.

By applying either the SW transformation (III.2) or the phase shift of the �eld (III.3),

the electric far �eld can be derived in any translated coordinate system. The modi�cation

of the SW is more accurate as there is no approximation over amplitude or sampling

positions changes. This improved accuracy comes at a price of costly operations in terms

of computational power.

III.3 E�ects of antenna positioning on the spherical wave

spectrum

A translation of the coordinate system is known to generate modi�cations on the distri-

bution of signi�cant spherical coe�cients over both the degree n and the order m. More

speci�cally, rotations have an impact only on the distribution over the order m, as rotation

of a SW in (III.1) with given degree n is written using only SW of the same degree n. These

considerations are represented in Fig. III.5. The intuitive explanation is that any rotation

around the origin does not change the radius of the minimum sphere enclosing the AUT

and thus the truncation order N in (II.15) of the SW series. Conversely, any translation

does modify this radius and therefore N .

Illustrations with a simulated horn antenna

We illustrate these e�ects using a full wave electromagnetic solver (Ansys HFSS [17]) of a

horn antenna at 30 GHz. The far �eld is expanded on the SW basis for several shifts of

the antenna position over the z-axis by a step of a wavelength: at initial position, close to
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Figure III.5: Representation of a SW spectrum and the e�ects of a change in the coordinate
system. Rotations will only have an e�ect over the order m while translations impact both
the orders and the degrees n. The dashed region represents the area of the spectrum where
n ≤ n0, a �xed, arbitrary, degree.

its a priori phase center, between the apex point of the �anges and the aperture [15], and

after translations of the coordinate system origin of 1, 2 and 3 wavelengths λ on the z-axis.

The spherical coe�cients are displayed in Fig. III.6. All these coe�cient sets describe the

same far �eld in magnitude, as only the phase changes signi�cantly. As the translation of

the AUT increases, the spread of the spectrum towards higher degrees n becomes more

signi�cant.
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Figure III.6: Normalized spherical coe�cients for s = 1 of the horn antenna at 30 GHz at
several positions. Translations are performed along the z-axis.
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A similar numerical investigation is carried out for the rotation of the AUT by random

Euler's angle triplet and the results are displayed in Fig. III.7. As previously claimed, there

is no spread of the signi�cant modes to larger degrees n when changing the orientation of

the antenna, but only over the orders m.
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Figure III.7: Normalized SW spectra of a horn antenna at 30 GHz. (a) Expansion in the
initial coordinate system and (b) after rotation by Euler's angles (170, 32, 63)° (b).

III.4 Optimization of the antenna position

III.4.a Spherical coe�cient distribution

The transformation of the coordinate system modi�es the power distribution over the SW

spectrum in both the order and the degree directions. We introduce a metric to quantify

this distribution along the degree n. This metric is harnessed to better position the antenna

and consequently to improve its radiation pattern characterization.

The n-spectrum

The spectrum is truncated at a given truncation orderN de�ned in (II.15) from the minimal

sphere. The power remaining in the spectrum for degrees n ≥ N must be negligible to

ensure a proper characterization. This veri�cation is called the N -test [13] and is based on

the n-spectrum, already de�ned in (II.17) and recalled here. The power radiated for the

spherical coe�cient set Qsmn of an antenna at a given degree n is expressed as follows:

P (n) =
1

2

∑
sm

|Qsmn|2. (III.4)

As an illustrative example, let us consider the horn antenna simulated at 30 GHz previ-

ously investigated. The n-spectra corresponding to the spherical coe�cients after various

translations over the z-axis presented in Fig. III.6 are shown in Fig. III.8. The 0λ case

means that the origin is centered around the phase center of the horn. The spread of

signi�cant modes to higher degrees n leads to greater values of the n-spectrum P (n) in

these regions.
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Figure III.8: Normalized n-spectra of the horn antenna at 30 GHz for di�erent translations
over the z-axis.

Advantages of Low Degree Modes

The best antenna position is de�ned in this chapter as the origin of the SW expansion

leading to the highest concentration of the SW coe�cient to low degrees n, or equivalently

the fastest decreasing n-spectrum. There are multiple reasons to motivate this de�nition.

A faster decrease of the n-spectrum allows the reduction of the truncation order N . Con-

sequently, it requires less �eld samples and reduces computational load. For example in

Fig. III.8 and a standard criterion of power below −40 dB, the horn properly positioned (no

translation, 0λ) requires a minimum truncation order around N = 20, or 880 coe�cients

whereas the horn translated by a distance of 3λ needs at least N = 27, and consequently

1566 coe�cients. Moreover, a low-degree spectrum induces a more compact representation

of the antenna and is connected to the radiation center, as explained in [12].

The modes having high-spatial frequencies, or equivalently high-degree SW, require

more �eld samples to be properly identi�ed with respect to low-frequency ones, because

of aliasing phenomenons. If the actual power distribution can lead to a reduction of the

truncation order (e.g. by a N -test), the true number of unknowns decreases and fewer

samples are thus required to achieve a proper reconstruction for a given accuracy level.

We illustrate this statement by randomly generating two families of 100 spherical coe�-

cients spectra having the same total number of coe�cients Nc, truncation order of N = 45,

and non-zero coe�cients (30 %). Non-zero coe�cients are drawn over the degrees n ≤ 25

for the �rst family and n ≤ 35 for the second one. The only di�erence between the two

families is the power distribution is constrained di�erently over the degrees. Using a sparse

recovery approach, the BPDN in (II.28), each spectrum is recovered using far-�eld samples

of di�erent sizesM , or di�erent sampling ratioM/Nc. The accuracy of the recovered spec-

trum is assessed by comparing the reconstructed far �eld from the M �eld samples to the

one directly generated by the randomly drawn spectrum. This comparison is achieved us-

ing the Equivalent Error Signal (EES), understood as a synonym to the previously de�ned

ENL. The results are displayed in Fig. III.9.

As an example, a �eld sampling ratio M/Nc = 60% is enough for all 100 trials of the

low-frequency family (n ≤ 25) to achieve a reconstruction accuracy of -45 dB in EES.

Conversely, the high-frequency one (n ≤ 35) never reached this accuracy for this sampling

ratio and required around 70 % to perform equally well. This trend is expressed over all
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Figure III.9: Reconstruction accuracy in EES for 100 trials (median in plain lines and
envelopes in dotted ones) for two spherical spectra families of same size Nc and same
number of non-zero coe�cients (30 %) but di�erent power distributions over the degrees
n (constrained to n ≤ 25 or n ≤ 35) with respect to the sampling ratio M/Nc, M being
the size of the �eld sample used for recovery.

the sampling ratios as the median values of reconstruction accuracy in EES is always better

for the lower frequency spectra using the same sampling ratio.

III.4.b Determination of the antenna position

A simple criterion is presented to characterize the power distribution over the degrees. It

is then used as an objective function in order to foster low-degree spectra.

The cumulative n-spectrum

The cumulative n-spectrum is de�ned for all degrees n lower than the truncation order N .

Its value at a given degree n0 ≤ N contains the power of all modes of degrees n ≤ n0, the

region illustrated by the dashed area in Fig. III.5. We consider the normalized version,

allowing a constant scale, which is not mentioned explicitly in the name for convenience in

the sequel, and is given by

H(n0) =
1

Prad

n0∑
n=1

P (n). (III.5)

As a cumulative normalized function, it increases towards 1 as n0 approaches the truncation

order N . A faster decrease of the power in the n-spectrum leads to a cumulative spectrum

reaching 1 more quickly, as illustrated in Fig. III.10, corresponding to the n-spectra of the

horn at 30 GHz for several positions shown in Fig. III.8 and the spectra in Fig. III.6.

A cumulative spectrum can be associated to a mean value, which is de�ned by

〈H〉 =
1

N − 1

N−1∑
n=1

H(n). (III.6)

It is clear that a cumulative spectrum converging faster to 1 has a larger mean value. Mean

values for the cumulative spectrum curves of the horn in Fig. III.10 are shown in Table
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Figure III.10: Cumulative n-spectra H of a horn antenna at 30 GHz for di�erent trans-
lations over the z-axis. A better concentration on low degrees n modes makes the curve
approaching 1 for lower n-values.

III.1. We do not consider the last value H(N) in the computation as it is always equal to

1.

In order to better emphasize the contrast between the cumulative spectra and to help

the choice of the best antenna position, we replace H by a modi�ed version de�ned as:

Hmod(n) = 10 log10

[ n
N

(1−H(n))
]
. (III.7)

Working on 1−H(n) maps the increase towards 1 of the cumulative spectrum function to

a decrease to 0, where values can be better discriminated by the logarithmic scale. The

multiplication by n/N accounts for the number of SW of same degree n while keeping the

values in the interval [0, 1]. The values of the cumulative spectrum and its modi�ed version

are reported in Table III.1 for the horn simulated at 30 GHz, showing the improvements

in the discrimination of high-frequency content of this adapted metric.

Table III.1: Means of the cumulative n-spectra of the Horn at 30 GHz for Several Trans-
lations over the z-axis:

Translation Distance 0λ 1λ 2λ 3λ

〈H〉 0.84 0.80 0.77 0.73

〈Hmod〉 dB -69.1 -67.7 -52.4 -24.1

III.4.c Optimization problem formulation

The concentration of the power distribution to the low-degree part is achieved by a minim-

ization of the mean value of cumulative n-spectrum on the modi�ed scale 〈Hmod〉. Given
a translation d of the AUT relatively to the origin of the measurement coordinate system,

as in Fig. III.4, we identify the spectrum Qd with the method of our choice (analytical

projection or numerical inversion), enabling the evaluation of the cumulative n-spectrum

and therefore its mean value, denoted 〈Hmod〉(Qd). This optimization problem can be

formulated as follows

min
d
〈Hmod〉(Qd). (III.8)
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The solution of this optimization problem is an estimation of the best translation to apply

to the AUT, leading to the highest concentration of the radiated power on the low degree

part according to our metric. This solution is denoted d∗.

Note that in the case of a numerical inversion to �nd the spectrum Qd, two situations

can be distinguished to get the matrix formulation (II.22) after a translation d:

� Adx = y with near- or far-�eld data, with Ad the translated version of the SW

contained in A.

� Ax = yd where yd contains electric far-�eld data and computed according to (III.3).

This antenna position procedure is carried out in post-processing, once the AUT measure-

ments are done. No additional measurements are required.

III.4.d Optimization of antenna position using gradient descent.

We propose an iterative algorithm to solve the optimization problem (III.8) and �nd the

antenna position that concentrates the signi�cant spherical modes on the low degrees.

Gradient Descent Algorithm

The optimization of the position, or equivalently the translation d from the origin of

the measurement coordinate system, using (III.7) or (III.8) is not a convex problem and

cannot be solved easily. We propose a gradient descent technique to �nd the translation

d∗ corresponding to the best AUT position. This iterative algorithm follows the negative

(approximated) gradient of the objective function, 〈Hmod〉(Qd). The detailed procedure

is given in Algorithm 1. The proposed approach is general and can be applied with no

modi�cation to all spherical coe�cient identi�cation methods (analytical and numerical

ones), for both near-�eld and far-�eld measurements.

Algorithm 1 Concentration of the spherical spectrum power distribution to low degrees

Require: δ the perturbation step, µ the gradient multiplier, d0 the initialization point.
1: Initialization

2: d← d0

3: while Stopping criterion not met do
4: Apply the translation d
5: Compute the spherical coe�cients at d, Qd

6: Evaluating 〈Hmod〉(Qd)
7: # Computation of the numerical gradient D
8: for û = x̂, ŷ, ẑ do
9: dû ← d + δû
10: Compute the spherical coe�cients at dû, , Qdû

11: Evaluating 〈Hmod〉(Qdû)
12: Dû ← [〈Hmod〉(Qdû)− 〈Hmod〉(Qd)] /δ
13: D← [Dx̂, Dŷ, Dẑ]

T

14: # Position Update

15: d← d− µD
16: return d
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Implementation Details

The perturbation step δ is the (small) change applied to the translation for approximating

the gradient of the metric. This value has to be chosen relatively to the expected accuracy

of the measurement system con�guration to generate perturbations that are meaningful

with respect to the available data. A too small δ would result in a noisy and unstable

estimation. Conversely, a too large δ would lead to unfaithful and too coarse gradient

evaluation. A value of δ = 0.5 mm has been successfully used in all presented cases. The

gradient multiplier µ is a constant chosen in order to avoid large updates of d within one

iteration by a proper re-scaling of the gradient. It should be �xed so that the position

update is not too large in terms of wavelength or with respect to the tested structure

to ensure proper convergence of the algorithm. A value µ ≈ 10−5 for normalized data

(‖y‖ = 1) leads to updates around several mm for most cases.

The initialization point d0 in Algorithm 1 can be set using various methods. A starting

value d0 = 0 means that the optimization is started from the origin of the measurement

coordinate system. It can also be chosen randomly or one can provide an initial guess

based on some prior knowledge, e.g. the estimated known position of the AUT geometrical

center with respect to the measurement coordinate system.

Multiple stopping criteria can be chosen. One can use the di�erence of the cost func-

tion between two or more iterations, the decrease of the cost function below a prede�ned

threshold or de�ne a maximum distance for the translation d, (for example with respect

to the wavelength or the dimensions of the antenna), or a prede�ned number of iterations.

With proper parameter tuning, a notable reduction of the objective function has been

achieved within only a few iterations for all investigated cases. The translation corres-

ponding to the lowest value of the cost function should be kept.

III.4.e Validations on near-�eld simulations

The proposed approach for AUT position optimization is applied on various radiating

structures, whose near �eld is computed by CST MWS [18].

Antenna linear 11-Patch Array at 9.5 GHz

Let us consider a linear array composed of 11 patches operating in X band at 9.5 GHz,

an illustration is given in Fig. III.11. Each square patch has side length of 10 mm and

the overall size of the array is 165 mm (≈ 5.25λ), the electric near �eld is exported from

CST at 200 mm from the geometric center. As illustrated, not all patches are fed with the

same amplitude. The left patch is not receiving any power and the feeding is increasing

as we go to the right patch in order to generate an asymmetric current distribution. The

truncation order is N = 27, or 1566 coe�cients and a �eld sample along an igloo sampling

of size 900 is taken to generate a very coarse measurement set and is used for both position

optimization and reconstruction.

Taking the geometric center of the array as the origin yields the spectra displayed in

Fig.III.12.a while the optimized position yields the ones in III.12.b. If the geometric center

of the antenna is taken as the origin of the measurement coordinate system, the proposed

algorithm �nds the optimized coordinate system origin to be at d∗ = (0.6, 18.7, 2.1) mm,

meaning that it is shifted towards the area containing most part of the electric current

density. It also preserves the symmetry around the x-axis, the orthogonal direction to
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Figure III.11: Normalized surface current magnitude of the 11-patch array (average value
over one phase cycle): measurement coordinate system (x,y) (geometric center) and op-
timized one (x′,y′).

the array, with a shift of less than λ/50. No additional knowledge have been used in the

process. The whole AUT position optimization process takes about 52 s on an Intel i7

8700 with 16 GB RAM.

The optimized coordinate system position enables not only to signi�cantly reduce the

amount of signi�cant spherical coe�cients but also to concentrate them to low-degree

modes as displayed in Fig. III.12.
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Figure III.12: Normalized spherical coe�cients of the patch array: (a) with origin at the
geometric center, (b) with optimized position.

The accuracy of the reconstructed radiated �eld from the same initial data set with

respect to the reference (the electric spherical near �eld exported from CST over a dense

set of points) are evaluated by EES values of -42.5 dB for the geometric center and -56.5

dB for the optimized position. The co-polarization component of the �eld magnitude for

the reference data and the reconstructions with and without optimization of the position

are displayed in Fig. III.13. There are clear improvements in the reconstruction of the

�eld using the fast measurement sampling thanks to the position optimization.

Antenna on a satellite structure at 11 GHz

As a study case, a single rectangular patch is now placed on a platform of the satellite

ANGELS [19] (the real payload being a di�erent antenna), the whole structure is displayed

in Fig. III.14 and we exploit the simulated spherical near �eld simulated at 5 m from the
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Figure III.13: Electric �eld normalized magnitude in the main cutting plane. Comparison
of the reference and the reconstructions using the fast measurement sampling before (Raw)
and after (Trans) position optimization.

origin of the measurement coordinate system, supposed at the center of the satellite's

body for practical reasons: cinematic or weight for instance. The minimum sphere is set

to enclose the satellite body and some parts of the solar panels, leading to 6726 spherical

coe�cients. The dataset comes from a �eld sampling of size 1700 along an igloo. There are

enough data with respect to the patch alone according to the fast measurement sampling

rule while still having a largely under-determined linear system to cope with for the whole

structure.

The geometric center of the antenna is then located at dc = (0, 120, 113) mm from

the center of the satellite, which corresponds to a distance of approximately 6λ. The

optimization process starts from the center of the satellite and converges to an optimized

position of d∗ = (0.3, 125.6, 102.9) mm that turns out to be fairly close to the coordinates of

the antenna geometric center. The spectra are represented in Fig. III.15 and the modi�ed

cumulative n-spectra Hmod are shown in Fig. III.16. The returned optimized position

is close but not equal to the geometric center, resulting in a di�erent power distribution.

Indeed, we observe more power at very low degrees when centered at the antenna but the

optimized position allows a faster decrease of the contained power for degrees n ≥ 10,

allowing for a slightly more accurate far-�eld reconstruction for the considered data. The

obtained EES of the reconstructed �eld from the same initial data over a dense reference

sampling are respectively -43.1 dB and -43.6 dB for the centered on the antenna and the

optimized position from the center of the satellite.

Discussion

The geometry of the radiating structure does not always help the choice of the origin for

the coordinate system of the SW expansion. In the patch array case, various excitation

sets induce di�erent radiation patterns and consequently several ideal coordinate system

origins. The proposed procedure enables to automatically determine the position leading

to a high concentration of the spectrum over the low-degree modes without any knowledge
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Figure III.14: Simulated model of the antenna (a patch) on a platform satellite (a simpli�ed
version of ANGELS) with the patch antenna at 11 GHz and the measurement coordinate
system.
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Figure III.15: Normalized spherical coe�cients for s = 2 of the mounted patch at 11 GHz:
(a) measurement coordinate system, (b) optimized position.
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Figure III.16: Modi�ed scale of the cumulative n-spectra for the initial measurement origin,
centered on the antenna and with optimized position.

of the structure apart from its maximum dimension and measured frequency in order to

set the truncation order of the SW series. It is of great interest for recon�gurable antennas,

where several operating modes must be tested. In the case of the antenna embedded in a
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satellite, the procedure automatically �nds the best position (according to our metric), at

a distance of around 6 λ from the measurement origin. This optimized location yields a

slight improvement of the pattern reconstruction and con�rm the stability of the proposed

procedure. Indeed, despite having a small number of measurement samples with respect

to the spherical coe�cients to be determined, the necessary large translation of the AUT

is properly retrieved.

These representative numerical examples demonstrate the robustness of the approach

as well as its practical relevance. The proposed procedure enables to compensate auto-

matically uncertainties on the antenna position with respect to the measurement system.

It also allows to accurately position embedded antennas when the interaction between the

radiator and its structure cannot be neglected.

III.4.f Validations on far-�eld measurements

Let us now consider radiating structures that have been measured in the far-�eld anechoic

chambers of the M2ARS facilities at IETR. These facilities are equipped with a roll-over-

azimuth positioning system and a mechanical probe polarization change. The �eld is

acquired step by step following an igloo strategy [9].

Two antenna far-�eld measurements, carried out over an hemisphere using a low-density

sampling, are presented here. The reference is provided by a measurement of a densely

sampled cutting plane. Since the sampling positions only cover a hemisphere in far �eld,

we can restrict ourselves the modes of Fsmn such that n + m is even. By assuming the

symmetry of the radiation pattern with respect to the equator, all the spherical coe�cients

Qsmn such that m + n is odd are necessarily zero. This trick further reduces the number

of samples required to characterize the radiation pattern over the measurement region.

Leaky Wave Antenna (LWA) in K Band

The AUT is a LWA designed and measured at IETR at 18 GHz, based on [20]. Let us

compare the reconstruction of the �eld over the cutting plane ϕ = 90° for the measurement

coordinate system origin and the optimized position using the proposed approach. The

antenna has a radius of a = 15 cm, leading to a truncation order of N = 65 hence 4420

even spherical coe�cients to retrieve. The measurement data follows an igloo sampling

and has size 3458, leading to a sampling ratio of 78 %, slightly above the 75 % required

by our previous study for fast measurements in [21]. The usual method in [13] would have

required a data set of size around 1.7 × 104. The antenna have been measured using a

CATR con�guration in CAMILL described in Section I.2.c. To be properly located in

the quiet zone, the antenna had to be shifted away from the nominal position in terms of

minimal sphere, leading to high-degree contributions ober the degree n.

The spherical coe�cients before and after optimization for one propagating mode s are

displayed in Fig. III.17, leading to the objective function 〈Hmod〉 values of −11.2 dB and

−39.5 dB with a proportion of signi�cant coe�cients being 54 % and 27 % respectively.

The cutting plane for comparison to reference is shown in Fig. III.18. We observe a much

better agreement of the �eld reconstruction when optimizing the position of the antenna.

The reconstructed �eld phases around the main beam angular zone are plotted in Fig.

III.19. These phase behaviors have been smoothed out signi�cantly after repositioning the

AUT by applying the proposed procedure. Using the data phase-shift equation (III.3) for
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Figure III.17: Normalized spherical coe�cients for s = 2 of the LWA at 18 GHz (a) for the
measurement coordinate system origin position and (b) with optimized position .

optimizing the AUT position, the optimization process took 47 s on an Intel i7 8700 with

16 GB RAM.
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Figure III.18: Normalized magnitude of the �eld co- and cross-polarization components
over the cutting plane ϕ = 90° of the LWA at 18 GHz .

Circularly polarized horn antenna at 320 GHz

This antenna has been designed and measured at IETR [22] along a coarse sampling over

the hemisphere at 320 GHz. We use the same methodology as the previous one with a

cutting plane at ϕ = 0°. The minimal sphere leads to a truncation order of N = 50,

hence 2650 even coe�cients. The measurement data set has been acquired along an igloo

sampling and of size 2122, corresponding to a sampling ratio ≈ 80%. The usual method

in [13] would have required a data set of size around 104.

The spherical coe�cients for one propagating mode s for measurement and optimized

positions are displayed in Fig. III.20, leading to objective function 〈Hmod〉 values of −22.2

dB and −26.6 dB with proportion of signi�cant coe�cients of 15 % and 6 % respectively.

The cutting plane in magnitude for comparison to the reference is shown in Fig. III.21.
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Figure III.19: Phases of the reconstructed �eld co- and cross-polarization components
around the main lobe over the cutting plane ϕ = 90°° of the LWA at 18 GHz .

The reconstructed �eld phases around the main beam angular zone are plotted in Fig.

III.22, the optimized antenna position leads, here as well, to smoother phase variations.
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Figure III.20: Normalized spherical coe�cients for s = 1 of the horn at 320 GHz (a) for
the measurement coordinate system origin position and (b) with optimized position .

Discussion

The concentration of the spectrum in low-degree modes has been achieved in both cases

as shown by the spectra. This leads to signi�cant improvements in the �eld reconstruction

from a given initial undersampled far-�eld dataset and thereby validates experimentally

our approach. The position optimization of the antenna induces smoother phase variations

over the main beam. This particular point is described in [12, 23] and referred to as the

antenna radiation center, the virtual point from which the main beam of the antenna is

emitted.

III.5 Optimization of the antenna orientation

The orientation of the AUT is optimized in order to foster the sparsity of its SW spectrum.

A sparser SW spectrum can indeed be correctly retrieved from a smaller number of �eld

samples as shown in Section II.5. Consequently, the e�ective sparsity is used as a metric

to optimize the rotation of the AUT.
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Figure III.21: Normalized magnitude of the �eld co- and cross-polarization components
over the cutting plane ϕ = 0° of the horn at 320 GHz.
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Figure III.22: Phases of the reconstructed �eld co- and cross-polarization components
around main lobe over the cutting plane ϕ = 0° the horn at 320 GHz.

III.5.a Optimization problem formulation

The goal is to �nd the rotation angles (ϕ0, θ0, χ0) leading to the sparsest SW representation

of the �eld radiated by the AUT. The rotation angle ϕ0 only introduces a phase shift

according to (III.1), and thus does not in�uence the sparsity of the antenna spectrum.

Therefore, only the couple of rotation angles (θ0, χ0) has to be determined. After rotations

of angles (θ0, χ0), the equation satis�ed by the radiated �eld reads

(ARθ0,χ0)x(θ0, χ0) = y (III.9)

where Rθ0,χ0 is the matrix encoding the rotation of the SW, described in (III.1) for the

couple (θ0, χ0). We then solve:

min
x
‖x‖1 subject to ‖ARθ0,χ0x− y‖2 ≤ σ (III.10)
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We evaluate the e�ective sparsity k−40 de�ned in (II.31) of the solution x(θ0, χ0) using

only the two rotation angles (θ0, χ0). The computation of Rθ0,χ0 takes about 1.5 s and the

resolution of (III.10) using SPGL1 takes about 1.2 s for a matrix A of size 2522 × 4606

with an Intel i7-8700 and 16 GB RAM. The resolution of the BPDN problem is not as

time consuming as computing the SW rotation matrix. However, testing a lot of couples

(θ0, χ0) may become a heavy computational task. To avoid that di�culty, the e�ective

sparsity of the SW spectra, noted k−40(θ0, χ0), is estimated from a coarse (θ0, χ0) grid

using Gaussian processes and a relevant restriction of the research domain.

The SOA method [6] proposes to �nd x(0, 0) before optimizing over the three Euler's

angles by minimizing ‖Rϕ0,θ0,χ0x(0, 0)‖1. Note that this problem is much harder than

minimizing ‖Tx‖1 for a given matrix T , as it cannot be casted into a convex optimization

problem. Iterative minimization methods, such as gradient descent, may be trapped in

local minima and will require a lot of rotation matrix computations. The optimization has

to be done for several initialization points and one should keep in mind that the �nal result

may not be the true minimum.

III.5.b E�ective sparsity minimization

The rotation of the SW basis can be seen as the rotation of the AUT into the new coordinate

system. Physically, it represents a continuous modi�cation of the �eld, and thus of its

spectrum. The function kT (x(θ0, χ0)) can consequently be fairly well approximated by

a continuous function, as shown in Fig. III.23. Gaussian Processes (GP) are stochastic

objects that can be used to interpolate continuous functions. They are well adapted to

situations where evaluating the function is computationally heavy. GP have already shown

a great relevance in many applications and motivated a lot of research [24]. They enable the

computation of con�dence intervals and parameters tuning for better estimation depending

on the fed data. The region with the lowest sparsity is indeed well identi�ed with a few

samples. In this case, the SOA method detects a sparsity minimum but the minimization

of ‖Rϕ0,θ0,χ0x(0, 0)‖1 does not lead to the correct Euler's angles.
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Figure III.23: E�ective sparsity k−40 for χ0 = 0°, containing the minimum of k−40, its GP
estimation and the `1 norm found by the SOA method of the spherical coe�cients for the
12 GHz re�ectarray measurement. The GP curve is derived from the discrete set of values
represented by black markers.
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The objective is to interpolate the e�ective sparsity function kT (x(θ0, χ0)) from a re-

duced number of values, at points (θ
(p)
0 , χ

(p)
0 ). The interpolation k̃T is therefore an estim-

ation.

Interpolation using Gaussian processes

A GP is characterized by its expectancy, set to 0 in our case, and its covariance, or kernel

function, V. Let us de�ne V(a1,a2) = h(‖a1 − a2‖) = exp(−‖a1−a2‖2
2l2

), where ‖ · ‖ is the
Euclidean norm and l a positive parameter characterizing the distance at which points

in�uence themselves. This kernel is named square exponential and is known to produce

inde�nitely di�erentiable curves [24]. If a = (θ0, χ0) and the known values of kT are located

at points a(p) = (θ
(p)
0 , χ

(p)
0 ), p ∈ {1, . . . , P}, then let K be the vector gathering the kT (a(p))

and the following estimation [24] can be made

k̃T (x(a)) =
[
V(a,a(1)) . . . V(a,a(P ))

]
V−1K (III.11)

where V = (vlm) is the matrix containing the covariance between the data points a(i),

i.e. vlm = V(a(l),a(m)). Once the values kT are known at some points, evaluating k̃T can

be done by small scale matrix multiplications, enabling the use of many fast optimization

techniques.

Research domain and testing grid of the cost function

The initial domain of (θ0, χ0) is [0, 180]× [0, 360] in degrees. Thanks to the symmetries of

the SW, this angular region can be reduced to (θ0, χ0) ∈ [0, 180[×[0, 90[. First, the case

θ0 = 0°, or 180° by symmetry, has to be computed once, because it only induces a phase

shift of the coe�cients. Secondly, a �rst known rotation in χ0 can be applied to ensure

that the main beam of the �eld can be sent to one of the pole or to achieve symmetry with

respect to the equatorial plane, ensuring proper minimization of the number of non-zero

coe�cients. The number of tested points has been chosen empirically and these points

are regularly spaced on a testing grid with a step of 17°, allowing to capture the global

behaviour of the e�ective sparsity. This procedure implies the resolution of 61 BPDN

problems to solve and computation of rotation matrices, 6 di�erent χ0 values for 10 θ0

values plus one at θ0 = 0°. Finally, the characteristic length l of the GP is set to 22.5°.

This value is between 17° and 17
√

2 ≈ 24°, that are the length of the edge or the diagonal

of a cell of the testing grid, respectively

III.5.c Validation on near-�eld simulations

A waveguide array at 50 GHz antenna is modelled numerically using HFSS. The array

is composed of 13 open ended waveguides with 3 mm≈ λ/2 spacing. The excitations of

the waveguides have the same magnitude but di�erent phases, with an enclosing sphere of

radius a =25 mm, hence a truncation order N = 36 (or Nc = 2736 coe�cients).

The near and far �elds are exported over an equiangular sampling scheme, δϕ = δθ = 2°

(where δϕ and δθ are the angular steps in ϕ and θ respectively) over the full sphere,

constituting the reference data set. The reference set has 6152 samples, while the near-�eld

subsample, used for sparse recovery, has only 1876 samples. The measurement coordinate

system (x,y, z) does, on purpose, not correspond to the symmetry of the array. The
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spherical coe�cients with and without rotation found by GP interpolation are shown in

Fig. III.24.
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Figure III.24: Normalized spherical coe�cients of the waveguide array simulated at 50 GHz.

After running the proposed optimization procedure, the estimated rotation angles are

θ0 = 45° and χ0 = 55°. We observe at the right part of the spectrum in Fig III.24.a that

raw data produces some high frequency modes which are not physically realistic and are

due to the too low density sampling rate. The optimized rotation induces a signi�cant

reduction of the signi�cant spherical coe�cients and consequently the non-physical high

frequency modes vanish. The reference far �eld is illustrated in Fig. III.25 with a speci�c

cutting plane. The optimized pattern better �ts the one of reference than the raw pattern.

The e�ective sparsities are kT = 33 % and 15 % for the raw and rotated �elds respectively

with corresponding EES values of −36.6 dB and −53.4 dB.

III.5.d Validation on far-�eld measurements

Let us now validate the procedure using antenna far-�eld measurements. Three antennas

are investigated: a Luneburg lens antenna, a Radiating Cavity Antenna (RCA) and a

Re�ectArray (RA). The Table III.2 gathers information about the presented cases in this

section. For each antenna, a cartography of the pattern and the position of the optical axis

z′ of the optimized rotated coordinate system is shown in Fig. III.26. The reconstruction

results are reported in Table III.3.
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Figure III.25: (a) Normalized electric far �eld radiated by the waveguide array at 50 GHz
(z′ chosen by GP) and (b) the cutplane represented by the green doted line in.

Table III.2: Characteristics of the investigated antenna measurements:

Antenna Size a(λ) Coef. Nc Meas. set Subsample

Lens 12 GHz 6 4606 9746 3702

RCA 6 GHz 2.6 1456 2332 1088

RA 12 GHz 6 4606 10970 2628

Methodology

All measurements have been carried out in the two far-�eld anechoic chambers of the

M2ARS facilities at IETR. Both are equipped with a roll-over-azimuth positioning system

where the AUT is placed and a roll axis enables to change the polarization of the probe.

The �eld is acquired step by step with a high density sampling rate following an igloo

strategy to avoid the oversampling near the poles, providing our reference patterns. As in

near-�eld validations, we select a coarse igloo sampling to emulate a fast measurement data

set. The resulting interpolated �eld is derived from the spherical coe�cients identi�ed by

BPDN and compared with the reference pattern. The GP interpolation is done with the

same parameters as in near �eld.
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Figure III.26: Normalized electric far-�elds radiated by: (a) the single beam Luneburg lens
antenna at 12 GHz, (b) the dual beam version, (c) the radiating cavity antenna at 6 GHz
and (d) the re�ectarray at 12 GHz. Cross markers z′ are the position of the z-axis after
the rotation optimized by Gaussian processes.

Luneburg Lens Antenna at 12 GHz

The �at Luneburg lens antenna is fed by several waveguides [25] and measured over the full

sphere. We investigate two con�gurations: one excited waveguide generating one beam and

two excited waveguides radiating two beams. The resulting reference far �elds are shown

in Fig. III.26a and III.26b.

Lens with single beam The 3D far-�eld pattern is displayed in Fig. III.26a. We note that

the procedure chooses to orientate the z′-axis at the maximum of the �eld. Spherical coef-

�cients are displayed in Fig. III.27b, we clearly observe less signi�cant coe�cients for the

rotated �eld expansion with the proposed approach than the defaut orientation. The result

of the SOA method is di�erent. The rotation is done such that a symmetry with respect

to the equator of the radiation pattern is achieved, explaining the peculiar spectrum in

Fig. III.27a.

Lens with dual beam We generate this case from two single beam measurements. The

radiation pattern is shown in Fig. III.26b. The two beams nearly have the same magnitude,

and the z′-axis is not located at a maximum magnitude point this time. However, the SOA

method returns the same result as the single beam case for the same reason involving the

symmetry around the equator.
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Figure III.27: Normalized spherical coe�cients for s = 1 of the Luneburg Lens antenna
with single beam for the angles found by (a) the SOA method, (b) the proposed approach
and (c) default position.

Radiating Cavity Antenna at 6 GHz

The AUT is measured over the full sphere and is designed for Car 2 X (C2X) communic-

ations. The reference electric far �eld is illustrated in Fig. III.26c. This antenna has a

small dynamic range, as the measured magnitudes of the electric far �eld vary from 0 to

−25 dB. The best rotation angles determined by GP, indicated by the cross marker in Fig.

III.26c, are the same as the SOA method. After performing this rotation, the number of

signi�cant coe�cients is halved, as shown in Table III.3.

Re�ectarray at 12 GHz

The �eld of the re�ectarray is illustrated in Fig. III.26d. It has a very directive pattern

with a tilted beam and the measurement is carried out over an hemisphere. Because of this,

the optimization has led to an orientation axis on the equator so the pattern complexity

mostly concerns by the ϕ coordinate.

III.5.e Discussion

Reconstruction accuracy

In all cases, the sparsity of the spherical coe�cients is greater or equal than the one of the

SOA method. This enhanced sparsity leads to an improvement of the �eld reconstruction

as illustrated by the values of EES in Table III.3. The choice of rotation angles is not trivial
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for most cases and cannot be easily predicted in advance, as shown by the z′ markers in

the far-�eld mappings in Fig. III.26.

Impact of the mode distribution

The rotation of the radiated �eld by the single beam lens at 12 GHz in Fig. III.26a by

(ϕ0, θ0, χ0) = (0, 90, 90) in degrees places the main beam orthogonal to the equator. In

such con�guration, the �eld is symmetric with respect to the equator and the spherical

spectrum is concentrated in the modes Fsmn such that m + n is even. Moreover, the

sparsity is greatly promoted, explaining the speci�c spectrum shown in Fig. III.27a. This

sparsity increase is achieved at a cost of pushing some modes to higher order ones (further

from the line m = 0), which are harder to identify with undersampled sets. This case will

lead to a sudden variation of the e�ective sparsity, which is noticeable using our approach.

For the RCA case, both methods yield a symmetry with respect to the equator. However,

due to the small directivity of the pattern, shown in Fig. III.26c, there is no creation of

high order modes as in the previous case.

Considering the re�ectarray case, the SOA method fails to detect the rotation angles

leading to the sparsest expansion. This can be explained by the relatively low number of

samples with respect to the number of unknowns since this method optimizes the rotation

using the spherical coe�cients found along the default orientation.

Computation time

The computation time is di�cult to estimate for the SOA method. Indeed, several initial-

ization points must be tested to ensure a proper optimization, it requires the computation

of multiple rotation matrix per iteration, being at least as costly as solving the BPDN

with SPGL1. The convergence speeds highly depends on the proper tuning of several

parameters, which is no trivial matter. The proposed approach takes less than 3 minutes

of computation with an Intel i7-8700 and 16 GB RAM for all investigated examples.

Minimization accuracy

The angular distance between our procedure and a brute force approach (successive re-

�nements of a dense testing grid around the expected minima up to 0.2°) of the optimized

rotation angles is lower than 2.5° for all the presented measurements. The corresponding

e�ective sparsities k−40 and EES values show di�erences of 2 % and 0.14 dB in the worst

case.

Table III.3: EES Values, Corresponding E�ective Sparsities k−40:

k−40 (%) EES (dB)

Antenna Raw SOA GP Raw SOA GP

Lens (single) 62 43 41 -46.9 -50.0 -51.2

Lens (double) 58 37 37 -43.6 -48.3 -49.3

RCA 33 15 15 -37.2 -39.0 -39.1

RA 40 40 29 -48.0 -48.0 -50.9
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III.6 Antenna positioning procedure

The combination of the antenna position and orientation search methods, in this order,

leads to a full positioning optimization algorithm. This complete procedure is demonstrated

using the measurement of a horn at 10 GHz into the MVG multi-probe system StarLab [26].

The horn has been measured at two di�erent positions, illustrated in Fig. III.28: the

nominal one (the horn is centered at best for performing the measurement), the shifted

one (the horn is translated by a vector (3λ, 0, 3λ) with respect to the nominal position).

(a) Nominal position (b) Shifted position

Figure III.28: The horn at 10 GHz in the MVG StarLab.

The �eld samples used for optimization are derived from the spherical coe�cients re-

turned by the MVG software, which are shown in Fig. III.29. The truncation order of the

SW is set to N = 56, using the minimal sphere for the shifted horn, or equivalently 6496

coe�cients. The �eld samples are derived in the far �eld over an igloo sampling on the full

sphere from the spherical coe�cients. This sample set has a size of 4036 (or 2018 sampling

positions times 2 polarizations). This choice leads to a quite signi�cant under-determinated

linear system of equations for the shifted horn, emulating a fast measurement procedure.
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(b) Shifted position

Figure III.29: Normalized spherical coe�cients of the horn at 10 GHz returned by the
MVG software.

The positioning of the horn is optimized in the far �eld. The spherical coe�cients

retrieved from the fast measurement sample are shown in Fig. III.30. The fast sampling
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induces identi�cation problem over the high degree part of the spectrum. These e�ects are

completely negated by the optimization process, as shown by the spherical coe�cients in

Fig. III.30.c. The obtained spectrum is even more compact than the one in its nominal

position in the measurement system, in Fig. III.29.a. In this case, it leads to orientation

angles (θ0, χ0) = (−90, 90)°. The full process allows a signi�cant reduction of the signi�cant

spherical coe�cients: from 37 % to 4 %.
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(a) Shifted horn
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(b) Shifted horn with optimized position
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(c) Shifted horn with fully optimized positioning

Figure III.30: Normalized spherical coe�cients of the horn at 10 GHz identi�ed using the
fast measurement �eld sample.
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(b) Shifted horn with optimized position

Figure III.31: Normalized reconstructed �eld magnitudes of the horn at 10 GHz at the
shifted position.

The reconstruction results over the main cutting plane ϕ = 0° are shown in Fig. III.31

for the normalized magnitude and III.32 for the phase. As illustrated, the agreement with

the reference, the �eld reconstructed by the spherical coe�cients returned by the MVG

software, is greatly improved after the positioning optimization. The phase is also smoother

after the optimization of the positioning. This means that the optimization of the position

if connected to the estimation of the radiation center, as hinted by [27].
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Figure III.32: Normalized reconstructed �eld phases of the horn at 10 GHz at the shifted
position.

III.7 Conclusion

A procedure that processes radiation pattern measurements so as to �nd the best position

of the AUT has been proposed. The underlying idea is to exploit as much as possible

the valuable information encompassed in the SW spectrum of the antenna. By properly

translating the antenna with respect to the measurement coordinate system, it is possible to

concentrate the power of its spectrum to low frequency content. For that purpose, a metric

based on the n-spectrum has been developed and integrated to an e�cient optimization

strategy. The proposed approach induces not only lower truncation orders for the SW

series but also better 3D radiation pattern reconstructions. It also diminishes the impact

of an eventually bad AUT positioning in terms of power distribution among the spectrum.

An e�cient procedure using rotations of the measured antenna patterns for generating

a sparser expansion of the �eld has also been developed. This post-processing method

is valid for spherical near and far-�eld antenna characterization with low sampling rates.

It does not require extra measurement nor modi�cation It allows to exploit at best the

information contained in a given undersampled �eld dataset. In addition, the proposed

approach is applicable to any type of spherical sampling strategy.

Both antenna position and rotation methods have been validated using numerical and

experimental data in near and far �eld. The joint optimization of the antenna position and

rotation provides a complete antenna positioning procedure that has been experimentally

validated using a commercial antenna measurement system, the MVG StarLab multi-probe

system.
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Chapter IV

Antenna characterization via

reduced-order model

IV.1 Introduction

IV.1.a Motivations

The �elds radiated by antennas of �nite sizes can be expanded using truncated series

[1, 2]. The choice of the basis functions to perform this expansion depends on available

a priori information about the antenna (e.g. shape, maximum electrical length), the

measurement surface (planar, spherical, cylindrical) and has an impact on the number of

�eld samples required for its characterization. The expansion into Spherical Waves (SW)

is a widely spread choice in the antenna measurement community and its exploitation has

been addressed in Chapters II and III. The number of �eld samples to properly expand

the radiation of antennas into SW functions is tied to the radius of the minimal sphere

enclosing the sources. However, most antennas can be better described by other shapes

than a sphere, such as boxes/parallelepipeds or cylinders. The use of shapes tailored to the

AUT geometry combined with the numerical construction of appropriated basis functions

should lead to a reduction of the number of �eld samples required to represent the antenna

radiation pattern.

IV.1.b State of the art

The use of non-spherical surfaces to expand the �eld radiated by antennas and thereby

reduce the number of required �eld samples has been proposed and successfully validated

by Prof. Bucci et al. [2�5]. These basis functions better �t the true shape of the AUT

by enclosing it in convex surfaces with a symmetry of revolution. More importantly and

despite the geometrical limitations imposed by the use of analytical basis functions, this

fundamental and pioneer work ensures the minimal number of samples to reconstruct the

radiated �eld. Nevertheless, the truncation error of such a �eld expansion is not clearly

controlled even if an oversampling factor is added to mitigate this problem.

Instead of using analytical basis functions, recent works combine strong a priori know-

ledge and even numerical simulations of the AUT in order to expedite its characteriza-

tion. Full-wave electromagnetic simulations of the structure can be used to build either

a compressed [6] or an overcomplete [7] representation of the radiated �elds, enabling the

reconstruction of the AUT radiation pattern from a small number of �eld samples. When

94
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the prior knowledge about the AUT is very strong, both strategies are very e�cient and

lead to fast antenna testing. The illustration of the fast antenna characterization of a

re�ector antenna presented in [6] is given in Fig. IV.1. Simulations of a re�ector antenna

have been performed for various positions and orientations of the feed/re�ector, leading to

the construction of a basis enabling a reduced number of samples.

(a) Perturbations on the feed and re�ector positions.

(b) Reduced spherical sampling (red dots).

Figure IV.1: Fast antenna characterization using simulations of the AUT [6].

Finally, the construction and use of reduced-order models to speed up antenna char-

acterization is relatively new. Initially proposed to e�ciently characterize the radar cross

section of targets [8], this approach has been adapted in [9] to bring down the number of

samples for the characterization of antennas. The construction of the reduced order model

requires to know the AUT outer dimensions and the measurement surface geometry. This

reduced-order model can be derived from the radiation matrix, which is usually rather used

to back-propagate the �eld for antenna diagnostic [10�12] or spatial �ltering purposes [13].

IV.1.c Contributions

This work extends the preliminary investigations on the use of reduced order models for

fast antenna characterization [9], enabling the derivation of a minimum far-�eld sampling

criterion. It has been carried out in collaboration with Prof. M. Mattes from the DTU.

The rigorous construction of the radiation matrix that maps the equivalent currents on a

meshed surface surrounding the AUT to its radiated �eld is described. The approximation

of this matrix up to the measurement accuracy is achieved by truncating its singular value

decomposition accordingly. This methodology enables to build numerically a compressed
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basis that is customized to our antenna characterization problem. The dimension of this

basis and consequently the number of �eld samples is shown to be determined by the area of

the equivalent current surface over the squared wavelength. This result is in agreement and

somehow generalizes the fundamental works on the minimum non-redundant sampling [5].

Various numerical and experimental examples of the characterization of AUT validate the

proposed reduced-order model approach.

IV.2 Radiation matrix for antenna characterization

The construction and discretization of the radiation operator that maps the equivalent

currents on the surface enclosing the AUT to the radiated �eld are addressed in this

section.

IV.2.a Huygens' equivalence principle

In electromagnetics, the �elds (E,H) radiated by a set of �nite sources (J,M) can be

described by equivalent surface electric and magnetic current distributions that represent

the tangential magnetic and electric �elds, respectively [14]. This equivalence principle,

also known as Huygens' principle, states that the �eld emitted from the AUT enclosed by

a surface Σ is also radiated by equivalent surface currents (Jeq,Meq) over Σ, as shown in

Fig. IV.2.

E;H
J;M

E;H

V

§

n

E0;H0

E;H

V

§

n

Jeq = n £ H

Meq = ¡n £ E

,

Figure IV.2: Surface equivalence principle: the original problem (left) can be replaced by
an equivalent one (right). The electromagnetic �eld (E,H) outside a volume V enclosed
by a surface Σ containing all the sources is radiated by equivalent current distributions
Jeq = n×H,Meq = E× n over Σ, the vector n being its exterior normal vector.

There are di�erent variants of the surface equivalence principle depending on the con-

straints imposed on the internal �elds E′ and H′ of the equivalent model, as shown in

Fig. IV.2. The Love's formulation, also known as zero internal �elds constraint, for which

E′ ≡ 0 ≡ H′, has been shown to provide realistic current distributions [11, 15], which is

extremely relevant for diagnostic purposes. Besides, note that the use of only one type of

equivalent current (Jeq or Meq) su�ces provided that the volume V is �lled with either a

perfect magnetic or electric conductor, respectively.

The goal of this chapter is to interpolate at best the electric far �eld radiated by the

AUT enclosed by Σ. Therefore, we leave the internal �elds E′ and H′ unconstrained and

use both types of equivalent currents, as suggested in [13].
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IV.2.b Boundary integral equation

The electric �eld radiated by the equivalent surface currents (Jeq,Meq) on Σ into a source-

free region, characterized by its permeability µ and permittivity ε and employing the

Lorenz gauge, is given by

E(r) = jωµ

∫
Σ
g(r, r′)Jeq(r

′)dσ′

− 1

jωε

∫
Σ
gradrg(r, r′)div Jeq(r

′)dσ′

−
∫

Σ
rotr

(
g(r, r′)Meq(r

′)
)
dσ′

(IV.1)

where ω is the angular frequency and g the scalar free-space Green function, given by

g(r, r′) = e−jk|r−r′|

4π|r−r′| . The vector r is the observation point and r′ is the one used for the

integration over Σ, sometimes called the source vector. The positive time convention ejωt

has been used. The notations gradr and rotr mean that these operators are applied with

respect to the observation position r only. The equation IV.1 is valid for all observation

points r outside the volume V delimited by Σ.

IV.2.c Boundary element method

The goal is to determine the equivalent current distributions (Jeq,Meq) that are tangential

to the surface Σ. These currents radiate the same �eld as the sources (J,M) contained in

the volume V . We assume that these surface currents can be expanded into a set of known

basis functions fk, k = 1, . . . ,K de�ned over Σ:

Jeq(r
′) =

K∑
k=1

jkfk(r
′),

Meq(r
′) = η

K∑
k=1

mkfk(r
′).

(IV.2)

where jk and mk are the complex coe�cients to be determined. Note that the equivalent

magnetic current is multiplied by the wave impedance η so that both currents (Jeq,Meq)

have the same order of magnitude, as often advocated [11].

The current expansions (IV.2) enable to cast the surface integrals (IV.1) into a weighted

sum of integrals of the known basis functions. Thus, the contribution of the basis function

fk to the radiated �eld, denoted Ek, is given by:

Ek(r) = jk

[
jωµ

∫
Σ
g(r, r′)fk(r

′)dσ′

− 1

jωε

∫
Σ
gradrg(r, r′)div fk(r

′)dσ′
]

− ηmk

∫
Σ
rotr

(
g(r, r′)fk(r

′)
)
dσ′.

(IV.3)

By doing so, the original integral equation (IV.1) is approximated by an easier to solve

coe�cient identi�cation problem, where the unknowns are the weights jk and mk.
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IV.2.d Radiation matrix construction

The boundary element method can be implemented in various manners. Our choices

regarding the basis functions fk, the numerical integration rule and the matrix construction

are now given.

Linear square elements

The equivalent surface Σ has �rst been approximated by square cells. The basis functions

are then de�ned by a couple of adjacent square cells. In each cell, the current �ows in the

two directions determined by each couple of parallel edges, as displayed in Fig. IV.3.

Figure IV.3: Illustration of two basis functions f1 and f2 in one direction and one square
cell.

Triangular cells and RWG basis functions

The equivalent surface Σ can also be approximated by triangles. This choice provides a

greater �exibility to approximate a given surface than the use of square cells as triangular

ones indeed enable to better �t curved surfaces (such as spheres or cylinders) than square

cells. The Rao-Wilton-Glisson (RWG) [16] basis functions are a widely spread choice for

its ease of computation while ensuring continuous normal �uxes across the common edge

of two adjacent triangles. Each couple of adjacent triangles, sharing an edge, de�nes a

basis function, as illustrated in Fig. IV.4, given by

f(r) =


`

2A+ r
+ if r ∈ T+

− `
2A− r

− if r ∈ T−

0 otherwise

(IV.4)

where A± are the areas of the triangles T±, respectively, and r± the position vectors

from the vertices of each triangle that are opposite to the common edge. Note that three

elements are required per triangle cell instead of four in the case of square cells.

Numerical integration

Each integral term in (IV.3) is approximated for a given observation position r using the

Gauss-Legendre quadrature rule. The 9-point version of the quadrature rule is used as given

in [17], either for triangles when using RWG functions or for square when using square cells.

These quadratures rules are illustrated in Fig, IV.5. In our antenna measurement context,
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Figure IV.4: Illustration of the support of a RWG basis function: ` is the length of the
common edge, T± denote the two triangles and r± the position vectors from the vertices
opposite to the common edge. A positive current is chosen to �ow from T+ to T−.

the observation point r is always far enough from the equivalent surface Σ and thus from

r′. Consequently, each term of (IV.3) is well-de�ned as singularities are avoided. Hence,

the integrands are smooth enough for the Gauss-Legendre quadrature to be su�cient for

an accurate approximation of the integrals.

(a) Integration points for the
square

(b) Integration points for the tri-
angle

Figure IV.5: Gauss-Legendre quadrature rules for the square and the equilateral triangle
with 9 points.

The integrals of a given function f over these domains are then approximated by a sum

of weighted evaluations of f at the points of the quadrature [17], as follows∫
S
f(x, y)dxdy ≈

9∑
l=1

ωlf(xl) (IV.5)

where S is a cell of the mesh, either a square or a triangle, xl are the points displayed in

Fig. IV.5 and ωl are the corresponding weights of the Gauss-Legendre quadrature. For the

square, they are simply de�ned as ωl = 16/81.

Matrix formulation

The equation (IV.3) is valid for any observation point r in the external region (outside V ).

Let us consider a set rm ofM observation points. The equation (IV.1) can be approximated
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and formulated in Cartesian coordinates as followsExEy
Ez

 =

AJ,x ηAM,x

AJ,y ηAM,y

AJ,z ηAM,z

[ j

m

]
(IV.6)

where Ex contains the x-component of E at the observation positions rm, AJ,x the x-

component of the electric current distribution in the equation (IV.3) for each basis functions

fk, AM,x is the same for the magnetic current distribution. The other components y and

z are de�ned similarly. Finally, the vectors j and m gather all the coe�cients of the

equivalent currents, jk and mk, to be determined. Systems of equations similar to (IV.6)

can be easily derived when other vector �eld representations are used.

In the sequel, the system (IV.6) is denoted by y = Ax, where the vector y contains

the measured �eld, A is the discretized radiation operator and x the equivalent currents.

IV.2.e Numerical examples

A few examples of reconstructions of equivalent currents are shown to illustrate and val-

idate the code developed during the thesis. These numerical examples use the theoretical

expressions available for canonical antennas from [18]. Additional tests have been carried

out to further validate the code, they are not shown for conciseness reasons.

Electric in�nitesimal dipole at 6 GHz

Let us consider an electric in�nitesimal dipole on the z-direction. The currents distributions

are derived from the formulas Jeq = n×H,Meq = E× n and projected into the function

basis created by a triangular mesh over a sphere. The results are displayed in Fig. IV.6.

The directions of the currents are coherent with the theoretical expressions of the �elds,

validating the function basis implementation.
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(a) Electric current Jeq
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(b) Magnetic current Meq

Figure IV.6: Magnetic and electric equivalent currents (imaginary part) projected on a
mesh over a sphere.

Rectangular radiating aperture (TE10 mode) at 30 GHz

Let us now consider a rectangular aperture of size a× b in a ground plane over (xOy). The

comparisons between the ideal current projected on the function basis and the currents

retrieved from the theoretical far �elds radiated by several apertures are shown in Fig.
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IV.7. No matter the shape of the aperture (square, larger width or larger length), the

currents are properly retrieved which validates the code.

(a) Retrieved currents. (b) Theoretical currents.

Figure IV.7: Equivalent magnetic currents Meq (real part) normalized with respect to the
theoretical ones on the aperture plane. The rectangular aperture is displayed and meshed
by squares of side λ/4.

E-plane horn at 3 GHz

Let us consider an E-plane horn whose aperture is on the plane z = 0. The equivalent

surface Σ surrounds the horn and the equivalent current distribution on this surface are

shown in Fig. IV.8. These currents have been retrieved from far-�eld samples generated

by the theoretical expressions. The aperture of the horn is correctly identi�ed and the

orthogonality between the electric and magnetic currents is observed and �ts the expected

behaviours.
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Figure IV.8: Electric and magnetic equivalent currents (imaginary part) over a box enclos-
ing a E-plane horn. These currents are computed from the theoretical far �eld samples.

IV.3 Construction of the reduced-order model

The radiation matrix from equivalent surfaces is built and its validity have been demon-

strated using several canonical examples. The construction of the reduced-order model is

now addressed.

IV.3.a Truncated singular value decomposition

The radiation matrix A is, in general, not of full rank. Many sets of currents x lead to

the same radiated �eld y. Therefore, the matrix A can be approximated by AT, for which

only the T largest singular values are kept:

AT ≈ USTV
H (IV.7)

where VH is the conjugate transpose (also called Hermitian transpose) of V. The columns

of V form an orthonormal basis of the equivalent current distributions over the surface

Σ while the columns of U are the corresponding orthonormal basis of the �elds that can

be radiated by the AUT. The diagonal matrix ST contains the �rst T singular values

σ1 ≥ σ2 ≥ · · · ≥ σT, the lower singular values being set to zero hence the truncation. The

�eld y radiated by the AUT can thus be approximated from the �rst T columns of U as

follows

y ≈ UTν (IV.8)

where ν is the new unknown vector of length T. The quality of the approximation (IV.8)

is determined by the truncation index T.

IV.3.b Physical interpretation

The SVD of the radiation matrix in (IV.7) produces 3 mathematical objects, each of them

has a physical interpretation. The columns of U can be seen as characteristic radiated

modes over the sampling positions for the given equivalent surface. The columns of V are

the coupled characteristic current distributions on the surface. The diagonal coe�cients

of S, the singular values, quantify the coupling signi�cance between the characteristic
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modes on the surface Σ and the radiated �eld modes. The eight �rst characteristic current

distributions over a box (the eight �rst columns of V) and their corresponding modes (the

eight �rst columns of U) are shown in Fig. IV.9 as an example. Several remarks can be

done regarding these distributions. A smaller index corresponds to slower variations of

the current distribution, also, due to the orthogonality of the columns and the numerical

construction of the basis, consecutive distributions show peculiar symmetries and current

�ows relations. Similar observations can be done on the characteristic radiated �eld modes.

Figure IV.9: Example of the �rst equivalent characteristic current distributions over a box
(real part).

(a) Eθ magnitude

(b) Eϕ magnitude

(c) E magnitude

Figure IV.10: Normalized magnitudes of the eight �rst characteristic radiated �eld modes,
in uv-maps, corresponding to the current distributions in Fig IV.9.
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IV.3.c Choice of the truncation index

The choice of the truncation index T, and consequently of the size of the radiated �eld

basis UT, is crucial to be able to reconstruct properly the radiated �eld y [19]. For the

antenna characterization problem, this index is connected to the noise �oor level of the

measurement system.

Let us consider a reference �eld measurement y and its estimation ỹ. For a measure-

ment noise �oor of R dB, we consider that y and ỹ are identical when the average di�erence

between each sample of these two �elds is smaller than R dB. This can be translated into

‖y − ỹ‖ ≤ δ with δ =
√
M‖y‖∞10R/20, where M is the size of the measurement vector y

or ỹ.1

The radiation matrix A is well approximated by AT provided that the following in-

equality holds true for all possible sets of equivalent currents x

‖Ax−ATx‖ ≤ δ. (IV.9)

The left hand side of (IV.9) is bounded by ‖A−AT‖‖x‖ = σT+1‖x‖ and ‖B‖ is equal to
the largest singular value of the matrix B. Using the same properties, ‖y‖ = ‖Ax‖ leads
to ‖y‖ ≤ ‖x‖σ1. By noticing that ‖y‖ ≤

√
M‖y‖∞, we can write

σT+1

σ1
≤ 10R/20. (IV.10)

Note that the criterion (IV.10) is not strictly equivalent to (IV.9). However, its validity is

numerically checked in the next section.

IV.3.d Numerical validation of the truncation index

Methodology

Let us consider the reference radiated �eld y and its estimation ỹ computed from the

truncated radiation matrix AT, both of size M . The Equivalence Noise Level (ENL)

introduced in (I.5) provides a convenient metric to compare these two radiation patterns.

The truncation index T is chosen such that ENL(y, ỹ) ≤ R for any �eld y radiated by an

AUT inside the equivalent current surface Σ.

Validation

The AUT is assumed to be enclosed by a spherical equivalent surface Σ. Any �elds radiated

by the AUT can then be expanded into SW. As already seen in Chapter II, these SW are

denoted Fsmn where s is the propagating mode, s ∈ {1, 2}, m the order and n the degree,

|m| ≤ n, 1 ≤ n, both being integers. The truncation order of this SW expansion in n is

given by [1]

N = bkac+ n1 (IV.11)

where k is the wavenumber, a the radius of the smallest sphere enclosing the sources, b·c is
the integer part function and n1 a positive integer. A safety margin of n1 = 10 is typically

chosen but this number can be lowered when expanding the electromagnetic far �eld.

1The notation ‖ · ‖ denotes the Euclidean norm, also often written ‖ · ‖2 or `2 norm and ‖y‖∞ the
maximum magnitude among the components of y.
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For numerical validation purposes, we consider a spherical equivalent surface Σ of radius

a = 2λ, λ = 0.1 m and a noise �oor R = −50 dB. The singular value distribution of the

resulting radiation matrix is shown in Fig. IV.11. The truncation index T given by the

criterion is also reported and corresponds to the number of SW for n1 = 7, or N = 19.

The radiation matrix A is well approximated by AT provided that any SW up to N = 19,

Fs,19,19, can be reconstructed with an ENL below R dB.
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Figure IV.11: Normalized singular value distribution of the far-�eld radiation matrix of a
sphere of radius 2λ = 0.2 m. The truncation index T for R = −50 dB corresponds to the
number of SW in the expansion for N = 19. The step widths correspond to the number
of SW for each degree n. A similar pattern can also be found in [13].

The SW of highest degree and order, Fs,19,19, is the hardest to reconstruct since it

exhibits the fastest variations with respect to both directions θ and ϕ. The results of the

reconstruction of several SW are shown in Fig. IV.12. The truncation index T for a noise

�oor R = −50 dB always leads to an ENL lower than R for all tested SW, validating

numerically the proposed criterion (IV.10).
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Figure IV.12: ENL between the SW, Fsmn, and ỹ, its estimation from the truncated
radiation matrix AT. The truncation index T = 798 ensures a proper reconstruction of
all SW up to N = 19. Unmarked dashed curves show the reconstruction performances of
other SW for degrees n ≤ 19.
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IV.3.e Truncation index and equivalent surface area

The truncation index T of the singular values is determined by the low-pass behaviour

of the singular value distribution. Previous analytical works on antenna characterization

relying on the radiated �eld expansion on analytical function basis have determined that

the number of coe�cients to retrieve is linked to the area of some canonical surface enclosing

the sources. More speci�cally, in the case of spherical near-�eld measurements as detailed

in [1], the truncation order N given in (IV.11) leads to a number of spherical coe�cients

nearly proportional to 4πa2, the area of the minimal sphere enclosing the antenna. The

work of Prof. Bucci et al. [5] provides an explicit relation between the number of so-called

degrees-of-freedom of the radiated �eld for surfaces Σ with some symmetry properties,

Ndeg =
A(Σ)

(λ/2)2
(IV.12)

where A(Σ) is the area of Σ.

We have numerically checked that two equivalent surfaces of same area, no matter their

shape, indeed exhibit the same low-pass behaviour of their singular value distribution, as

illustrated in Fig. IV.13. This implies and con�rms that the complexity of the reduced-

order model and consequently the number of unknowns in our characterization problem is

given by the area of the equivalent surface Σ.
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Figure IV.13: Normalized singular value distributions for two sets of equivalent surfaces
having the same area. The light grey curves correspond to surfaces whose area is twice
larger than the colored ones.

IV.3.f Discussions

Several parameters in�uence the distribution of the Singular Value (SV) distribution.

Mesh and cells

The SV distribution is in�uenced by the equivalent current surface mesh size. However,

this distribution converges when the mesh cells are small enough. The basis functions
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built from triangle or square cells of maximum length λ/3 have been empirically shown to

provide stable results in all investigated antenna characterization scenarios.

Field sample distribution

The �eld sampling strategy over the measurement surface has a signi�cant impact on the

SV distribution. The strategies inducing an oversampling in some regions of the sphere

generate a peculiar SV distribution. This behaviour with a sudden signi�cant drop of the

SV distribution translates the redundancy coming from the localized oversampling. This

typically happens when considering an equiangular far-�eld sampling. A closed measure-

ment surface, in the topological sense (a compact surface without boundary, like a sphere)

also modi�es the SVD but the proposed truncation criterion still holds.

The case of the spherical equivalent surface

The singular value distribution exhibit some steps as shown in Fig IV.11 and also reported

in [13]. When a Eθ, Eϕ description of the �eld is used, these steps increase the same

way as the number of SW having the same degree n grows with respect to n. When the

measurement surface is not closed (e.g. planar measurement or over an hemisphere), these

steps are smoothed or non-distinguishable, further indicating that they are most likely

tied to the spherical geometry. Indeed, it has been observed that using conformal cells or

taking smaller cells, i.e. having a better approximation of the sphere, further increase the

stair-like behaviour of the SW distribution. Note that this observation has no signi�cant

impact on the proposed method.

IV.4 Number of �eld samples

The steps to derive the minimum number of �eld samples from the reduced antenna char-

acterization model are described, validated numerically and experimentally.

IV.4.a From the number of spherical waves to the truncation index

The main and remarkable result is that the order T of the reduced antenna characterization

model depends only on the area of the surface Σ whatever its shape. Since the number

of SW denoted NSW is well known for a given sphere radius, we can derive the following

formula:

T =
A(Σ)

A(S)
NSW. (IV.13)

where A(S) is the area of the surface of the minimal sphere and NSW = 2(bkac+n1)(bkac+
n1)+2 with n1 a positive integer, as seen in Chapter II. The order of the antenna character-

ization model is deduced only from the area of the equivalent surface Σ and the maximum

dimension of the AUT. An illustration of this statement is shown in Fig. IV.14 and a com-

parison between the number of degrees of freedom given by Bucci et al. in [5] in (IV.12)

and the order of our model given by (IV.13) of T is provided in Fig. IV.15. We clearly

observe very close behaviours between both methods.
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Figure IV.14: Truncation index T (i.e. the number of unknowns) as a function of the area
of Σ, the surface enclosing the AUT, for various shapes and a noise �oor R = −50 dB.
Three di�erent margins for the number of SW, NSW, n1 = 5, 6, 7 are shown. Note that a
cube of side length 4λ has an area of 96 λ2.
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Figure IV.15: Comparison between the number of degrees of freedom in [5] and the order
of the reduced model T.

IV.4.b From the truncation index to the number of samples

The truncation index can be estimated from simple geometrical considerations, see (IV.13).

It remains to derive the number of �eld samples from this truncation index T to complete

our antenna characterization problem.
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Methodology

The �eld y radiated by the AUT can be expressed as follows:

y =
∑

k=1,...,T

νkuk + n (IV.14)

where the vector n stands for the part that is unexplained by the reduced order model, i.e.

the measurement noise and the truncation error. The norm of n is lower than R dB when

T has been properly set.

Our goal is to determine the unknown vector ν of length T from a minimum number

of �eld samples. Similarly to our approach with the SW in Section IV.3.d, we aim at

reconstructing each of the characteristic modes uk, k = 1, . . . ,T from only MS sampling

points by solving

ν(s) = arg min
ν
‖y(s)

k −U
(s)
T ν‖ (IV.15)

where yk = ukν + n for each tested k and the superscript (s) denotes the subsample.

To assess the quality of the reconstruction and thereby the choice of the number of

samples MS , we compute the mean of ENL(uk, ũk) for all k where ũk is the estimated

characteristic mode computed solving (IV.15) from Ms �eld samples. Similarly to Section

IV.3.d, the reconstruction is considered successful when the mean ENL is lower than the

noise �oor R dB.

Results

A sampling is de�ned by its size and its distribution. We use the measurement ratio

MS/T, where MS is the number of �eld samples. The proposed reduced order model

is applied using four sampling strategies and a spherical equivalent current surface Σ of

radius 2λ. The samplings are: Fibonacci [20], one of the most uniform distributions

on the sphere, the igloo sampling [21], close to being uniform while providing an easy

scan for positioning systems available at IETR, random sampling, where the points are

chosen randomly over the sphere (mean over 20 trials) and equiangular, also called constant

angular step sampling, commonly used in spherical near-�eld measurements [1].

As shown in Fig. IV.16(a), the uniformity of the sampling distribution is crucial to

minimize the number of samples as the Fibonacci and igloo sampling are clearly the �rst

ones to reach the noise �oor, at a measurement ratio around 1.17. This oversampling factor

corresponds to the intersection point of the curves with the horizontal line located at the

noise �oor R. From now on, we only consider the igloo sampling in the following as it is

the one applied in our anechoic chamber while keeping in mind that Fibonacci behaves

similarly.

In addition, this reliable oversampling factor is stable with respect to the measurement

noise �oor R, as shown by the grey curves in Fig. IV.16(a). Note that both Ms and T

logically increase when the noise �oor level R is reduced.

The in�uence of the surface shape Σ on the measurement ratio has also been investig-

ated. The results, shown in Fig. IV.16(b), demonstrate that a measurement ratio of 1.25

is su�cient for all shapes and by extension most antenna geometries.
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Figure IV.16: Mean ENL reconstructions of the radiated modes for a noise �oor R = −50
dB. (a) Comparison between sampling strategies: the grey curves are obtained for R = −40
and −60 dB with an igloo sampling. (b) Comparison of various shapes using an igloo

sampling.

Number of �eld samples

From the previous studies and results, it follows that the number of samples can be safely

set to

MS = χT (IV.16)

where T can be estimated from (IV.13) and χ is an oversampling factor, as introduced

by Bucci et al. [5]. According to our results, an oversampling factor of around χ = 1.25

works satisfactorily in all investigated antenna characterization problems (antenna shape

and measurement noise �oor).
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IV.4.c Experimental validation

The methodology to derive the minimum number of �eld samples is assessed experiment-

ally with the characterization of two radiating structures of radically di�erent shapes and

operating frequencies.

Standard gain horn at X band

The antenna is measured at 10 GHz in the MVG multi-probe system StarLab [22] of

IETR-INSA, the measurement con�guration is shown in Fig. IV.17. The reference and the

measurement �eld samplings are generated in far �eld at any position using the spherical

coe�cients returned by the MVG software.

Figure IV.17: Picture of the X band horn in the MVG StarLab system.

Three equivalent current surfaces Σ enclosing the horn are considered: a box, a cylinder

and a sphere, placed as shown in Fig. IV.18(a). The corresponding singular values of the

radiation matrices are shown in Fig. IV.18(b). The sphere enclosing the AUT has a radius

a of 10 cm ≈ 3.3λ. The measurement noise �oor is estimated to be equal to R = −45 dB.

As shown by the singular value distributions, the orders of the model T for the box, the

cylinder and the sphere are 1141, 1389 and 1966 respectively.
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Figure IV.18: (a) Representation of the three equivalent current surfaces Σ (sphere, cylin-
der and box) used for the horn characterization. (b) Normalized singular value distribution
of the corresponding radiation matrices.
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The validity of the proposed minimum number of �eld samples (IV.16) is shown in

Fig. IV.19. The ENL metric between the reference �eld y and the one estimated from MS

samples is plotted for the three equivalent current surfaces as a function of MS . First, the

vertical lines, computed from (IV.16), indicate when the aimed reconstruction accuracy

should be achieved, ENL ≤ R = −45 dB. Second, the surface that best �ts the AUT (the

box in this case) is clearly the one leading to the minimum number of samples.
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Figure IV.19: ENL reconstruction metric between the reference �eld y and its estimation
ỹ using the reduced order model for a noise �oor of R = −45 dB for various sample sizes
MS . The vertical lines are the number of samples corresponding to an oversampling of
χ = 1.25 for the respective shapes.

The reconstructions of the far �eld over a cutting plane are shown in Fig. IV.20 in

order to further demonstrate the importance of the choice of the surface surrounding the

AUT. The minimum number of �eld samples advocated for the box has been chosen,MS =

1448 ≈ 1.25× 1141. An excellent agreement between the reference and the reconstruction

using the box is achieved whereas the two other surface shapes lead to inaccurate far �elds.
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Figure IV.20: Normalized copolar component magnitudes of the X band horn at 10 GHz.
The reference comes from the MVG software and others are reconstructions from only
Ms = 1448 �eld samples, as advocated for the box surface (blue vertical line of Fig.
IV.19).
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Pillbox antenna at 230 GHz

Let us consider the pillbox antenna designed by KTH and IETR [23] measured in far �eld

at 230 GHz in the M2ARS facilities at IETR. An image of the prototype is shown in

Fig. IV.21. The reference far-�eld pattern is provided by a high density measured �eld

sampling.

E-plane

45° plane

Figure IV.21: Picture of the pillbox antenna designed by KTH and IETR [23]. The
frequency bandwidth of operation spans from 220 to 300 GHz.

The considered equivalent surface is a box of dimensions 25× 25× 4 mm, i.e. approx-

imately 20λ × 20λ × 3λ. A noise �oor of R = −45 dB is assumed, leading to T around

4 × 103 coe�cients. We show in Fig. IV.22 the ENL metric between the reference �eld

and the reconstruction using the reduced order model as a function of the measurement

sampling ratios MS/T, or equivalently of the oversampling factor χ. An oversampling

factor χ = 1.25 is close to the optimal number of samples to reach the aimed accuracy,

which con�rms experimentally our previous studies.
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Figure IV.22: ENL reconstruction metric between the reference �eld and its estimation
using the reduced order model as a function of the measurement ratio (or oversampling
factor).

To provide a more intuitive illustration of the results, the reconstruction of the �eld

in the main cutting plane is displayed in Fig. IV.23 for several oversampling factors χ.
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No signi�cant changes on the reconstruction accuracy between the oversampling χ = 1.25

and 1.4 with respect to the reference are observed while the case χ = 1.1 displays more

numerical errors, even close to the main beam. The far-�eld cartography is available in

Fig. II.21.
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Figure IV.23: Normalized reconstruction of the �eld components in the main cutting plane
in ϕ for several oversampling factors.

IV.4.d Fast antenna measurements at IETR

The IETR spherical measurement systems have been described and illustrated in Section

I.2.c. The estimation of the duration of the �eld acquisition is detailed in Appendix A.

This duration estimation using SW has been discussed in Chapter II. The present

chapter has provided the number of �eld samples and the �eld sampling strategy using the

Reduced Order Model (ROM) from equivalent currents approach. Consequently, we can

perform the same estimation and the results are displayed in Fig. IV.24. It compares the
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duration of the �eld acquisition of an antenna that can be �tted into a cube. Thanks to

the tailored constructed reduced basis, this duration can be further reduced with respect

to the sparse Spherical Wave Expansion (SWE).
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Figure IV.24: Estimated �eld acquisition durations at IETR using the standard approach
and the proposed fast antenna characterization procedures.

IV.4.e Summary

The characterization of far-�eld patterns from a minimum number of samples has been

experimentally validated using two very di�erent antenna types, shapes and operating

frequencies. Indeed, two signi�cantly di�erent antennas in these aspects have been charac-

terized in two measurement systems; an all-in-one commercial system [22] and an academic

laboratory anechoic chamber [24].

Less �eld samples are required when the convex surface enclosing the AUT is tailored

to its shape, which con�rms the link between number of samples and area of this surface.

Moreover, an oversampling value of χ = 1.25 is shown to be a reasonable choice to �nd

the minimum number of samples as con�rmed by these experimental results.

IV.5 Conclusion

The steps to determine the minimum number of �eld samples to characterize antenna

far-�eld radiation patterns have been detailed. The proposed methodology calls for the

construction of the radiation matrix involved in the antenna characterization problem.

By appropriately truncating its singular value decomposition, a reduced dictionary of the

possible far-�elds radiated by the antenna under test is built for a chosen accuracy level.

Instead of using all-purpose analytical basis functions exhibiting intrinsic symmetries, the

proposed strategy enables to generate numerically a compressed basis tailored to the an-

tenna characterization problem. The practical relevance of the so-customized basis has

been thoroughly investigated. The in�uence of the �eld sampling strategy, its robustness

with respect to noise and equivalent current surface shape surrounding the antenna under

test leads to a minimum number of �eld samples that takes into account practical meas-
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urement considerations. This number depends on the area of the surface enclosing the an-

tenna under test. This work con�rms, and somehow extends by means of numerical tools,

the fundamental and pioneering analytical derivations on the minimum non-redundant

sampling by Bucci et al. [5]. The proposed method has been applied to characterize the

far �eld of two antennas at 10 and 230 GHz, respectively. These measurements, carried

out in two di�erent facilities, validate experimentally the proposed approach and show its

potentialities.
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General conclusion

Summary and outcomes

The main goal of this work has been to develop methods for improving the characterization

of antennas and thereby make a more e�cient use of measurement facilities. These meth-

ods encompass a measurement procedure combined to a dedicated processing in order to

accelerate and/or increase the accuracy of the measurement of antenna radiation patterns.

The characterization of antenna radiation patterns can be speeded up by reducing the

number of �eld samples to be measured. For that purpose, two di�erent strategies have

been proposed.

The �rst one relies on the sparse spherical wave expansion of the �eld radiated by

antennas. It only requires the maximum electrical dimension of the antenna under test.

An automatic procedure, that combines a coarse �eld sampling and a sparse recovery al-

gorithm, has been developed and described. By leveraging the sparsity of the spherical

wave expansion of the �eld, this approach enables to signi�cantly reduce by a factor of

about 3 the number of �eld samples as compared to standard (Nyquist based) approaches.

Although providing an approximation of the antenna reconstructed radiation patterns,

this strategy turns out to be very e�cient, as demonstrated both numerically and experi-

mentally in a number of representative radiating structures of various types and operating

in diverse frequency bands. Moreover, estimations of the �eld acquisition duration are

provided in order to assess the gain in measurement time. It is shown that the duration of

the �eld acquisition time can be approximately halved in our anechoic chambers between

the fast measurement technique and the Nyquist sampling rate approach.

The second approach, to speed up antenna pattern measurements, is based on the con-

struction of a reduced order model corresponding to the antenna characterization problem.

This strategy calls for stronger prior knowledge about the antenna under test than the �rst

one, since both the antenna outer dimensions and the measurement surface are required

to build the radiation matrix. This matrix links the inputs to the outputs of the system,

namely the equivalent currents representing the antenna to the radiated �eld. By appro-

priately truncating the singular value decomposition of this matrix, a reduced-order model

of the antenna characterization problem is constructed. In other words, the proposed ap-

proach generates a compressed numerical basis tailored to the antenna to be characterized.

The in�uence of the �eld sampling strategy and its robustness with respect to noise has

been investigated to demonstrate the e�ciency of the approach and provide a realistic

minimum number of �eld samples. This latter con�rms and somehow extends the existing

analytical derivations on the non-redundant sampling: the number of samples is roughly

given by A(Σ)/λ2 where A(Σ) is the area of the equivalent current surface enclosing the

sources. Various numerical and experimental antenna characterizations carried out in di-
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verse frequency bands con�rm the potentialities and practical relevance of this technique.

In addition and complementarily to these two fast antenna characterization approaches,

post-processing procedures have been developed to improve the quality of the antenna pat-

tern reconstruction without resorting to any additional measurement. More speci�cally,

techniques to optimize the positioning of the antenna under test from the spherical wave

spectrum of its radiated �eld, have been developed and described. In a nutshell, the appro-

priate choice of the antenna position and orientation produces a more compact spherical

wave spectrum which eases the radiated �eld interpolation. These approaches harness

the analytical formulas for translation and rotation of the spherical waves. This antenna

positioning technique has been validated numerically and experimentally in various rep-

resentative and frequently encountered scenarios including the case where antennas are

mounted on a structure that inevitably contributes to the radiation.

The achievement of this PhD work has required the development, the implementation

and validation of several codes as well as the use and adaptation of existing mathemat-

ical routines. Thus, electromagnetic modelling methods have been developed such as the

spherical wave expansion of the radiated �eld and a surface integral equation method of

moment. Mathematical tools related to spherical waves have been implemented such as

the translation and rotation of the spherical waves. Finite element based tools have been

used, adapted and implemented such as the surface meshing and the current visualization.

Finally, optimization solvers have been exploited and tuned to our needs such as sparse re-

covery methods, Gaussian processes and gradient descent algorithms. In addition to these

mathematical and theoretical developments, experimental validations have been carried

out in the measurement facilities of the IETR laboratory in order to validate each step of

the proposed antenna characterization procedures.

Perspectives

Following this PhD work, several extensions seem natural and are currently under invest-

igation. Others are considered as promising and could be endeavoured in a near future.

Fast near-�eld antenna measurements

The work on fast antenna characterization via the construction of a reduced order model

has been validated in this PhD thesis on far-�eld measurements. The near-�eld validations

have been driven on theoretical or simulation dataset. However, in the whole methodology

and speci�cally in the construction of the radiation matrix, there is nothing that restricts

the use of the proposed reduced order model approach to the far �eld. Therefore, this work

can be extended to speed up the near-�eld characterization of antennas. The main foreseen

di�culty lies in our opinion in the sampling strategy that depends on the near-�eld surface

scan.

Phaseless antenna characterization with a reduced number of samples

Phaseless antenna characterization has recently attracted a lot of attention for many reas-

ons, including the lower cost of the required hardware and the general increase of operating

frequency which makes the accurate phase measurement di�cult. Phaseless characteriz-

ation techniques generally require the measurement of the �eld intensity on at least two

surfaces in order to be able to retrieve the phase while mitigating ambiguity issues. This
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(double) measurement would therefore greatly bene�t from a reduction of the number of

�eld samples. We believe that combining the fast antenna measurement strategies pro-

posed in this thesis to phaseless antenna measurement approaches previously developed in

our laboratory makes sense.

Frequency interpolation

Antenna patterns are usually not characterized at a single frequency but over a given

bandwidth. In order to make such antenna characterization as e�cient as possible, the

electrical axis (i.e. the frequency axis) should be, in addition to the 3D spatial domain,

smartly sampled. Since the duration of both continuous and step-by-step �eld acquisition

is impacted by the number of sampled frequencies, reducing the frequency axis sampling

appears as a logical step to further speed up the antenna characterization.

Phase center estimation

The optimization of the antenna position with respect to the measurement system, has

been driven by the concentration of its SW spectrum towards low degree spherical modes.

This procedure leads to smooth out the phase variation of the �eld in the main beam of

the radiated pattern. This let us think that our antenna positioning procedure could be

adapted in order to determine the antenna phase center.



Appendices

A Spherical �eld acquisition duration estimation at IETR

This appendix explains how the duration of the �eld acquisition is estimated for the meas-

urements in the anechoic chambers of IETR, especially for CACENDRA, dedicated to the

measurement of antennas working in the centimetric wavelength range.

Geometrical description

The measurement system is a roll-over-azimuth one. It allows a scan of the full sphere.

The coordinate system associated to the Antenna Under Test (AUT) and rotation axis

are illustrated in Fig. V.2. The �elds are measured using the Vertical/Horizontal vector

description of the �eld, de�ned in Fig V.1.

Figure V.1: The transformation between the spherical basis and the third de�nition of co-
and cross-polarization by Ludwig.

Summary of the procedure

The igloo sampling strategy is used at IETR for reasons described in Section I.3.c. AS a

reminder, it is de�ned as δϕ = δθ/ sin θ, so it has a constant azimuth step δϕ per sampled

Θ position, which is also sampled with a constant step. Each θ, or latitude cut, is scanned

twice, once for each polarization. The scan is done step-by-step, the positioning system

stops completely at each sampling position to perform the measurement of the �eld at the

desired frequencies. The result estimation duration are given by: the time required to run

through the whole sampling according to the IETR measurement procedure, the change of

122



APPENDICES 123

Figure V.2: Roll-over-azimuth positioning system for spherical measurements of IETR-
UR1.

polarization and the time spent at each point for the signal acquisition (frequency sweep

and data transfer). Finally, the engines always operate sequentially: two engines never act

at the same time.

Modelling of the positioning system engines

Each engine movement is described by 2 or 3 phases, considering only non-elastic move-

ments, as shown in Fig. V.3. The engine speed increases linearly according to a certain

slope a. If the cruising speed vmax is reached, i.e. the angular step is large enough, the

speed stays at this maximum value. Finally the rotation speed decreases with the oppos-

ite acceleration to the �rst phase, −a. This model is used for both rotation axis of the

AUT: azimuth θ and roll ϕ. Four parameters are thus required to compute the duration

of any angular movement for these two axis. For the change of polarization, the duration

is constant as the rotation angle is always equal to 90°. Consequently, the parameters of

this rotation axis are not required.

Figure V.3: Modelling of the speed variation through time

Let tα the required time for the rotation engine in the direction α to perform a given

angular step dα. This elapsed time satis�es:

dα =

∫ tα

0
v(t)dt.
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In all cases, the function v(t) has an axial symmetry according to t = tα
2 , thus:

dα = 2

∫ tα
2

0
v(t)dt.

The speed satis�es v(t) = min{vmax, at} for t ∈
[
0, tα2

]
where a and vmax are illustrated in

Fig. V.3. As already mentioned, there are two cases to consider.

� The cruising speed vmax is not reached: then v(t) = at for t ∈
[
0, tα2

]
. So dα = a

(
tα
2

)2
and tα = 2

√
dα
a . If

1
2atα > vmax, the other case is considered.

� The cruising speed vmax is reached: v(t) = at for t ∈ [0, t0] where t0 = vmax
a and

v(t) = vmax for t ∈
[
t0,

tα
2

]
. Thus dα = vmaxtα− v2max

a and �nally: tα =
(

dα
vmax

+ vmax
a

)
.

Let us assume that the AUT is at the position θi and at the �rst desired point in ϕ.

Let Mi the number of sampling points located in this θ-cut and Ti the required time to go

through the Mi ϕ-points. We have:

Ti = (Mi − 1)tϕ,i +Mitstop.

where tϕ,i is the time required between two consecutive ϕ-points of the sampling for the

i-th θ cut, tstop the stopping time. The total time T of the whole �eld acquisition is

T =

K∑
i=1

(2Ti + 2tpol + tθ)− 2tpol − tθ,

where K = bθ
δθ + 1 is the number of latitude cuts, bθ is the upper bound of the required θ

interval (bθ = π/2 for an hemisphere), tpol is the time for polarization change (90° along the

ω rotation axis according to Fig. V.2) and tθ is the time required for going from θi to θi+1.

Note that each θ cut has to be run through twice, hence the factor 2, but we only change

θ once per cycle, except for the last one. Similarly, we do not count polarization change

at the beginning and at the end, hence the −2tpol. More speci�cally, for an equiangular

sampling, Ti is the same for every i and Ti = 2π
δϕ (tϕ + tstop)− tϕ.

Estimation of the parameters

A time-stamped measurement of a Luneburg antenna designed for 12 GHz has been used to

deduce the velocity and acceleration of the engines and check the reliability of the estimated

duration. All durations reported in this table are for one polarization measurement.

Angle Angular step (deg) Number of points Duration (s)

ϕ 60 6 62

ϕ 5 72 335

ϕ 3 120 498

θ 177 ∅ 44

θ 1 181 763

Table V.1: Measurement time for various cuts in CACENDRA, the centimetric anechoic
chamber at IETR.
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The sampling follows the Igloo sampling strategy with 4873 points over the full sphere

(hence 4873 × 2 data samples because of polarization change). The procedure described

at the beginning has been used, with 12 periodical additional measurements at θ = 0 for

72 points in ϕ to control the thermal drift. The full sphere acquisition took 53,256 s (≈
14h50), while the hemisphere took 27,025 s (≈ 7h50).

These data allow to estimate the engines parameters and the time required for the �eld

acquisition and the polarization change. We indeed have 7 independent durations for 6

parameters to estimate. They are gathered into the following tables:

Angle Acceleration (deg/s2) Cruising speed (deg/s)

ϕ 5.2 17.5

θ 1.4 4.3

Table V.2: Estimated engines parameters.

Time considered Value (s)

Stop at each point tstop 2.5

Polarization change tpol 13

Table V.3: Additional estimated duration.

Conclusion

All quantities needed by our modelling have been determined, they enableto estimate

reliably the �eld acquisition phases for equiangular or Igloo sampling techniques in the

IETR anechoic chamber CACENDRA.
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B Automatic search algorithm of the BPDN error tolerance

parameter

This section gives the algorithm to automatically �nd the error tolerance parameter of σ

when using the sparse recovery problem BPDN. We recall the BPDN problem

min
x
‖x‖1 subject to ‖Ax− y‖2 ≤ σ

where σ is the data �tting parameter to be set. This algorithm has been adapted from [1],

we note xσ the solution returned by the BPDN with σ as the data �tting parameter.

The curvature computation routine noted C has three parameters P1, P2, P3 which are

the points of the underlying curve, the returned number of C(P1, P2, P3) is the curvature

estimation at the second point P2. The parabola method [2] is used to achieve this estim-

ation.

Algorithm 2 Search algorithm of the L-curve corner

Require: [σ1, σ4] the search interval, ε the update tolerance, A the SW matrix, y the
measurement data vector.

1: Initialization

2: ϕ← (1 +
√

5)/2 (Golden ratio)
3: x1 ← log10(σ1), x4 ← log10(σ4)
4: σ2 ← 10(x4+ϕx1)/(1+ϕ), x2 ← log10(σ2)
5: σ3 ← 10x1+(x4−x2)

6: for i = 1 to 4 do do
7: Pi = (‖Axσi − y‖2, ‖xσi‖1) Point of the L-curve with σi.
8: while σ4−σ1

σ4
> ε do

9: C2 ← C(P1, P2, P3), Curvature at P2

10: C3 ← C(P2, P3, P4), Curvature at P3

11: while C3 < 0 do
12: σ4 ← σ3, P4 ← P3

13: σ3 ← σ2, P3 ← P2

14: σ2 ← 10(x4+ϕx1)/(1+ϕ)

15: P2 = (‖Axσ2 − y‖2, ‖xσ2‖1)
16: Computing the curvature C2 at σ2, C2 ← C(P1, P2, P3)
17:

18: if C2 > C3 then

19: σ ← σ2

20: σ4 ← σ3, P4 ← P3

21: σ3 ← σ2, P3 ← P2

22: σ2 ← 10(x4+ϕx1)/(1+ϕ)

23: P2 = (‖Axσ2 − y‖2, ‖xσ2‖1)
24: else

25: σ ← σ3

26: σ1 ← σ2, P1 ← P2

27: σ2 ← σ3, P2 ← P3

28: σ3 ← 10x1+(x4−x2)

29: P3 = (‖Axσ3 − y‖2, ‖xσ3‖1)
30: return σ
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C Computation of the Spherical Waves

A SW expansion code of the radiated �eld has been developed during the thesis. A na-

ive implementation of the formula in (II.8) and (II.9) leads to three main problems. The

factorial terms in the de�nition of the normalized associated Legendre polynomial in (II.7)

induce over�ows for high truncation orders N (typically when N goes beyond 80 for the

standard complex128 implementation in Python). The term 1
sin θ has to be considered care-

fully to avoid a division by 0 at θ = 0 or π. Finally a non-optimized implementation of the

SW matrices or transformation coe�cients rapidly induces unnecessary large computation

times. These considerations led to writing a full code for spherical wave evaluation and

transformation.

Normalized associated Legendre polynomials

The associated Legendre Polynomials Pmn are computed from the following relations

Pmn+1(x) =
1

n−m+ 1

[
(2n+ 1)xPmn (x)− (n+m)Pmn−1(x)

]
,

Pn+1
n+1 (x) =− (2n+ 1)

√
1− x2Pnn (x).

Knowing that P 0
0 (x) = 1 and P 0

1 (x) = x, one can deduce the value of Pmn (x) for any

n,m ≥ 0 and 1 ∈ [0, 1]. The over�owing problem can be avoided by dividing the former

expression by n + 1, when computing the values recursively. This results in computing
1
m!P

m
n instead, avoiding the over�ow problem. The polynomials for which −n ≤ m < 0

are computed using

P−mn (x) = (−1)m
(n−m)!

(n+m)!
Pmn (x).

Now that the associated polynomials are computed, the normalization is performed. Be-

cause of 1
m!P

m
n , the normalization constant is

√
2n+1

2
(n−m)!
(n+m)!m!, which can be computed

safely recursively since
√
ab =

√
a
√
b.

Recurrence relations for SW computation

The expressions involved in the de�nition of the SW are not directly the normalized asso-

ciated Legendre polynomials but values derived from them. Fortunately, there expressions

can also be computed recursively using our previous code for the evaluation of the Legendre

polynomials, they also avoid the problematic factor 1
sin θ . They are for the �rst terms [3]

mP
m
n (cos θ)

sin θ
=


0 if m = 0
1
2 cos θ

[
(n−m+ 1)(n+m)P

m−1
n (cos θ) + P

m+1
n (cos θ)

]
+m sin θP

m
n (cos θ) if m > 0

and for the other term

dP
m
n (cos θ)

dθ
=

−P
1
n(cos θ) if m = 0

1
2

[
(n−m+ 1)(n+m)P

m−1
n (cos θ)−m sin θP

m
n (cos θ)

]
if m > 0
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The values for m < 0 are simply derived from the relations mP
m
n (cos θ)
sin θ = − |m|P

|m|
n (cos θ)
sin θ and

dP
m
n (cos θ)
dθ = dP

|m|
n (cos θ)
dθ .

Optimization of the SW matrix computation

The implementation of the recurrence relations can be optimized to speed up the computa-

tion time but the main point is to go through all the indexes of the SW, s,m, n so to avoid

computing the same quantity multiple times. Let us recall that the SW are a product of

three independent functions, their computation cost is greatly reduced by appropriately

computing each dependency, especially for the equiangular or igloo samplings. Indeed,

computing the elevation dependency in θ is costly, but for these types of samplings, there

are only a few di�erent θ values with respect to the total number of points. It is also worth

pointing out that the SW F1mn in (II.8) and F2mn in (II.9) have the same but switched θ

dependency between the components in θ̂ and ϕ̂ up to a multiplicative factor depending

on the distance.

Computation of the SW transformation coe�cients

The origin and the orientation of the SW basis can be changed, leading to the trans-

formation formulas for rotation (III.1) and translation (III.2). These transformations

can be achieved in practice by a modi�cation of a SW matrix A by coe�cients, namely

Dn
µm(χ0, θ0, ϕ0) for the rotation and C

sn(c)
σµν for the translation. Computing these coef-

�cients is costly and a naive implementation is not suitable for a practical use of these

transformations, leading to numerous coding tricks and tweaks. The interested reader can

refer to [4] for computing the translation coe�cients and the rotation coe�cients have been

computed using the Jacobi evaluation routine from the SciPy library [5] since there was

no particular problem with it. The translation coe�cients have to be handled carefully to

avoid over�ows for similar reasons as in the Legendre polynomials, the equation involves

the ratio of two factorial terms mitigating each others. There are also symmetrical relations

available in [3] to avoid unnecessary recursive computations for both coe�cient types.
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