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“I can only compare these great aquatic forests... with 
the terrestrial ones in the intertropical forests. Yet if in 

any country, a forest was destroyed, I do not believe 
nearly so many species of animals would perish as 

would here, from the destruction of the kelp. Amidst 
the leaves of this plant, numerous species of fish live, 

which nowhere else could find food or shelter; with 
their destruction the numerous cormorants and fishing 

birds, the otters, seals, and porpoise, would soon 
perish.” 

 
Charles Darwin 

 1 June 1834, Tierra del Fuego, Chile 

Photo by Arvid Åsen 
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Summary  

Kelps, algae of the order Laminariales, are important ecosystem engineers in temperate to Arctic coastal 

waters. They form marine forests that support complex communities by providing habitat for several 

taxa, they provide coastal defense by protecting against erosion and contribute significantly to climate 

change mitigation and adaptation by acting as carbon sink. However, these marine forests are threat-

ened by impacts of anthropogenic-driven climate change.  

 

The sugar kelp Saccharina latissima is widely distributed in the North Atlantic. Apart from its significant 

ecological value, S. latissima is one of the key species targeted in seaweed cultivation in the North Atlan-

tic, with several industrial applications. Along its distributional range it experiences high variability of 

abiotic factors that are expected to modulate fitness and survival. To what extent S. latissima copes with 

this environmental variation either by phenotypic plasticity or local adaptation has not yet been re-

solved. In this thesis the effect of the abiotic drivers temperature and salinity on the performance of 

sporophytes of S. latissima is explored. These two factors substantially influence S. latissima growth and 

survival and are both expected to change under future climate change scenarios. However, impacts of 

environmental variation often differ between macroscopic sporophytes and microscopic early life histo-

ry stages. The resilience of kelp gametophytes to environmental stress has been poorly explored so far, 

although they are expected to significantly determine recruitment and adult population dynamics. 

Hence, a better understanding of the acclimation mechanisms taking place in S. latissima across its life 

history stages is necessary to predict emerging environmental pressures, potential range shifts and, 

thus, future distributions. 

 

The combined effects of temperature and salinity on physiology, photosynthetic performance and gene 

expression on young sporophytes of S. latissima from Spitsbergen (Arctic) were investigated (Chapter 3). 

Young sporophytes were acclimated to three temperatures (0 °C, 8 °C and 15 °C) for one week. Then, 

algae were exposed to low salinity (SA 20) and control salinity (SA 30) at each temperature. High temper-

ature (15 °C) promoted growth and pigment composition. Low salinity significantly impacted growth at 

the end of the 11 days salinity exposure. In parallel, low salinity drove considerable reprogramming at 

the gene expression level. Several pathways were involved in the acclimation to salinity, including pho-

tosynthesis, pigment synthesis, carbon metabolism, stress related pathways and cell wall adjustment. 

Results suggest that S. latissima currently experiences sub-optimal temperatures in the Arctic and there-

fore will benefit from increasing temperatures due to climate change. However, low salinities due to 

increased freshwater input might compromise performance, as a likely scenario for Arctic fjord ecosys-

tems.  

A genome-wide transcriptomic analysis of geographical variation influence on the response to multiple 

stressors was conducted, for the first time in brown algae. Sporophytes of S. latissima from Roscoff, 

Brittany, temperate Atlantic and Spitsbergen, Norway, Arctic were raised under identical controlled 

conditions and subjected to the same temperature and salinity levels (Chapter 4). Both isolates revealed 

distinct transcriptomic profiles between the two locations. The expression of several genes related to 

cell wall and cytoskeleton organization differed between sporophytes from Roscoff and Spitsbergen 
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which could be associated with the distinct morphologies of the two isolates. The combination of low 

salinity and low temperature provoked a stronger response in temperate than in Arctic sporophytes. 

This response comprised a strong down-regulation of photosynthesis and pigment synthesis related 

genes. Taken together, our results suggest that a higher investment in transcriptomic reprogramming is 

required in sporophytes from Roscoff compared to Spitsbergen to acclimate to low temperature and low 

salinity. This can probably be explained by the fact that sporophytes from the Arctic often experience 

low temperature and hyposalinity and that in turn these are uncommon stressors to sporophytes from 

Roscoff.  

 

The effects of temperature on transcriptomic profiles of vegetative gametophytes of S. latissima were 

investigated, for the first time, by applying three temperature levels (4 °C, 12 °C and 20 °C) to both 

males and females for two weeks. The experiment revealed a female-biased gene expression that was 

increased with rising temperature. Induction of carbohydrate, lipid and nucleic acid metabolism togeth-

er with energy production in female gametophytes was consistent with an investment in cell growth. 

Concomitantly, up-regulation of signaling, cytoskeleton and organelle organization related genes in male 

gametophytes was reflected by high cell division activity. Gene expression profiles suggest that while 

vegetative, gametophyte cells are still metabolically active and they prepare for maturation in order to 

synchronize gamete release and ensure fertilization. In addition, the increase in stress related pathways 

in female gametophytes compared to males at 20 °C indicate that females are more sensitive to heat, 

which might have repercussions for reproductive success and compromise persistence of S. latissima 

under increasing temperatures. 

 

In conclusion, the study revealed novel insights into the molecular mechanisms of acclimation and adap-

tive responses of a keystone, but non-model species, for which only limited genomic information has 

been available previously. It also became evident that transcriptomic data do not necessarily match 

observations made on the physiological level, but are likely to reflect emerging constraints to cellular 

function and overall individual performance at an early stage. Furthermore, the differences in response 

towards environmental drivers across different latitudes, life history stages and sexes emphasize the 

need for integrative approaches in order to facilitate predictions on species performance in natural as 

well as aquaculture systems in the face of large-scale environmental change. 
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Zusammenfassung  

Braunalgen aus der Ordnung Laminariales sind wichtige Ökosystem-Ingenieure in gemäßigten bis 

arktischen Küstengewässern. Sie bilden Unterwasser-Wälder, welche komplexe Lebens-Gemeinschaften 

ausbilden, indem sie Lebensraum für mehrere Taxa bieten, sie dienen dem Küstenschutz und tragen 

durch ihre Funktion als Kohlenstoffsenke wesentlich zur Minderung und Anpassung an den Klimawandel 

bei. Diese Ökosysteme sind jedoch zunehmend durch die Auswirkungen des anthropogen bedingten 

Klimawandels bedroht.  

Der Zuckertang Saccharina latissima ist im Nordatlantik weit verbreitet. Entlang ihres 

Verteilungsgebietes ist die Alge einer großen Variabilität abiotischer Faktoren ausgesetzt, welche die 

individuelle Fitness und das Überleben der Art bestimmen. Inwieweit phänotypische Plastizität oder 

lokale Adaptation die Grundlage für den großen Toleranzbereich von S. latissima bildet, ist noch nicht 

geklärt. In dieser Arbeit werden die Auswirkungen der abiotischen Faktoren Temperatur und Salzgehalt 

auf die Leistung der Sporophyten von S. latissima untersucht. Diese beiden Faktoren beeinflussen das 

Wachstum und das Überleben von S. latissima erheblich und werden sich laut der Szenarien des 

Klimawandels signifikant verändern. Allerdings unterscheiden sich die Auswirkungen von 

Umweltvariationen auf Sporophyten einer Algenart oft von den Reaktionen der frühen 

Entwicklungsstadien. So wurde die Toleranz der Gametophyten gegen Umweltstress bislang nur 

unzureichend untersucht, obwohl erwartet wird, dass diese die Populationsdynamik erheblich 

mitbestimmen. Daher ist ein besseres Verständnis der Anpassungsmechanismen, die in den 

verschiedenen Entwicklungsphasen von S. latissima stattfinden, notwendig, um auftretende 

Umweltbelastungen und zukünftige Verbreitungsgebiete vorherzusagen.   

Die kombinierten Auswirkungen von Temperatur und Salzgehalt auf Physiologie, Photosynthese und 

Genexpression auf junge Sporophyten von S. latissima aus Spitzbergen (Arktis) wurden untersucht 

(Kapitel 3). Junge Sporophyten wurden eine Woche lang an drei Temperaturen (0° C, 8° C und 15° C) 

akklimatisiert. Anschließend wurden die Algen bei jeder Temperatur einem niedrigen Salzgehalt (SA 20) 

und einer Kontroll-Salinität (SA 30) ausgesetzt. Hohe Temperaturen (15° C) förderten das Wachstum und 

die Pigmentzusammensetzung. Ein niedriger Salzgehalt beeinträchtigte das Wachstum am Ende der 11-

tägigen Exposition signifikant. Parallel dazu führte der niedrige Salzgehalt zu einer erheblichen 

Umprogrammierung auf der Ebene der Genexpression. Mehrere Stoffwechselwege waren an der 

Akklimatisierung an den Salzgehalt beteiligt, darunter Photosynthese, Pigmentsynthese, 

Kohlenstoffstoffwechsel, Stressabwehr und Zellwandsynthese. Die Ergebnisse deuten darauf hin, dass S. 

latissima derzeit unter suboptimalen Temperaturen in der Arktis vorkommt und daher dort von 

steigenden Temperaturen aufgrund des Klimawandels profitieren wird. Niedrige Salinitäten aufgrund 

des erhöhten Süßwassereintrags, welcher für die Ökosysteme der arktischen Fjorde wahrscheinlich ist, 

könnten jedoch S. latissima beeinträchtigen.  

Um den Einfluss der geografischen Verbreitung auf die Stresstoleranz von S. latissima zu bewerten, 

wurden Sporophyten aus Roscoff (Bretagne, gemäßigter Atlantik) und Spitzbergen (Norwegen, Arktis) 

unter den gleichen kontrollierten Bedingungen angezogen und den gleichen Temperatur- und 

Salinitätsbedingungen ausgesetzt (Kapitel 4). Beide Isolate zeigte unterschiedliche Transkriptionsprofile 
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zwischen den beiden Standorten. Die Expression mehrerer Gene, die die Funktionalität der Zellwand 

und des Zytoskeletts steuern, unterschied sich zwischen Sporophyten von Roscoff und Spitzbergen. 

Diese Unterschiede scheinen mit den unterschiedlichen Morphologien der beiden Isolate assoziiert zu 

sein. Die Kombination aus niedrigem Salzgehalt und niedriger Temperatur rief eine stärkere Reaktion in 

den Sporophyten aus gemäßigten Regionen hervor, als bei arktischen Sporophyten. Diese Reizantwort 

umfasste eine starke Herunterregulation der Gene mit Funktion in der Photosynthese und der 

Pigmentsynthese. Zusammenfassend deuten die Ergebnisse darauf hin, dass bei Sporophyten aus 

Roscoff im Vergleich zu Spitzbergen eine höhere Investition in transkriptomische Umprogrammierung 

erforderlich ist, um sich an niedrige Temperaturen und niedrige Salzgehalte anzupassen. Dies lässt sich 

wahrscheinlich dadurch erklären, dass Sporophyten aus der Arktis oft niedrigen Temperaturen und 

Hyposalinität ausgesetzt sind und dass es sich andererseits dabei um Stressoren handelt, die für 

Sporophyten aus Roscoff ungewöhnlich sind.   

Der Einfluss der Temperatur auf die vegetativen Gametophyten von S. latissima wurde untersucht, 

indem männliche und weibliche Gametophyten für zwei Wochen drei Temperaturstufen (4° C, 12° C und 

20° C) exponiert wurden. Im Laufe des Experiments konnte eine Expression spezifisch weiblicher Gene 

beobachtet werden, die mit steigender Temperatur erhöht wurde.  Die Induktion des Energie-, 

Kohlenhydrat-, Lipid- und Nukleinsäurestoffwechsels in weiblichen Gametophyten spiegelte sich in der 

Investition in das Zellwachstum wider. Gleichzeitig wurde die Heraufregulation von Genen mit Funktion 

in der Signal-, Zytoskelett- und Organellenorganisation in männlichen Gametophyten durch eine hohe 

Zellteilungsaktivität reflektiert. Die beobachteten Genexpressionsprofile deuten darauf hin, dass 

vegetative Gametophytenzellen metabolisch aktiv sind, um sich auf die Reifung vorzubereiten und die 

Freisetzung von Gameten zu synchronisieren, um so die Befruchtung sicherzustellen. 

Folglich lieferte diese Studie neuartige Erkenntnisse über die molekularen Mechanismen der 

Akklimatisierung und die adaptiven Reaktionen einer ökologischen Schlüsselart, für die bislang allerdings 

nur begrenzte genomische Informationen verfügbar waren. Die Studie zeigt auch, dass 

transkriptomische Daten nicht unbedingt mit Beobachtungen auf physiologischer Ebene 

übereinstimmen, aber aufkommende Einschränkungen der Zellfunktion und der individuellen Leistung 

eines Organismus schon in einem frühen Stadium der Reizeinwirkung widerspiegeln können. Darüber 

hinaus unterstreichen die Unterschiede in der Reaktion von Individuen von verschiedener 

geographischer Herkunft, Entwicklungsstadium und Geschlecht die Notwendigkeit integrativer Ansätze, 

um Vorhersagen über die Leistung von Arten in natürlichen Ökosystemen und in der Aquakultur 

angesichts großer Umweltveränderungen zu erleichtern. 
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Résumé  

Les algues brunes, membres de l’ordre des Laminariales, sont des espèces-ingénieures dans la zone cô-

tière des océans tempérés jusqu’à l’Arctique. Elles forment des forêts sous-marines qui supportent des 

communautés complexes en fournissant des habitats à plusieurs espèces, elles assurent une protection 

des côtes contre l’érosion et contribuent de manière significative à l'atténuation du changement clima-

tique en agissant comme des puits de carbone. Cependant, ces forêts marines sont menacées par les 

impacts du changement climatique d'origine anthropique.   

Saccharina latissima est largement distribué dans l'Atlantique Nord. Tout au long de son aire de distribu-

tion, elle est confrontée à une grande variabilité des facteurs abiotiques qui devraient moduler sa valeur 

sélective et sa survie. Comment S. latissima s’acclimate par des phénomènes de plasticité phénoty-

piques ou est adaptée localement à ces facteurs environnementaux est une question encore non réso-

lue. Dans cette thèse, j’explore les effets des facteurs abiotiques, température et salinité, sur la perfor-

mance des sporophytes de S. latissima. Ces facteurs influencent de manière substantielle la croissance 

et la survie de S. latissima et sont tous deux impactés dans les scénarios de changements climatiques 

futurs. Leurs impacts sur les sporophytes diffèrent cependant souvent des effets sur les premiers stades 

du cycle de vie. La résilience des gamétophytes de Laminariales aux stress environnementaux a été peu 

explorée jusqu'à présent, bien qu’elle doive avoir un impact significatif sur la dynamique du recrutement 

sporophytique et des populations adultes. Par conséquent, une meilleure compréhension des méca-

nismes d’acclimatation chez S. latissima est nécessaire pour prévoir sa distribution future. 

Les effets combinés de la température et de la salinité sur la physiologie, la photosynthèse et l'expres-

sion des gènes chez les jeunes sporophytes de S. latissima issus de Spitsberg (Arctique) ont été étudiés 

en laboratoire et les résultats sont présentés dans le chapitre 3. Les jeunes sporophytes ont été acclima-

tés à trois températures (0 °C, 8 °C et 15 °C) pendant une semaine. Ensuite, les algues ont été exposées à 

une salinité réduite (SA 20) et à une salinité témoin (SA 30), pour chaque température de culture. La 

température élevée (15 °C) stimule la croissance et la composition des pigments. La salinité réduite a un 

impact significatif sur la croissance à la fin de l'exposition de 11 jours. En parallèle, une salinité réduite a 

entraîné une reprogrammation considérable au niveau de l'expression des gènes. Ces changements 

concernent plusieurs voies métaboliques vraisemblablement impliquées dans l'acclimatation à la salini-

té, comme la photosynthèse, la synthèse de pigments, le métabolisme du carbone, les voies liées au 

stress et à l'ajustement de la paroi cellulaire. Nos résultats suggèrent que S. latissima est actuellement 

exposée à des températures sous-optimales dans l'Arctique et bénéficiera donc de la hausse des tempé-

ratures. Cependant, les faibles salinités dues à un apport augmenté d'eau douce pourraient compro-

mettre ses performances. 

Pour évaluer l’effet de la localisation géographique sur la réponse aux multiples agents stressants chez 

S. latissima, les sporophytes originaires de Roscoff (Bretagne), de la région tempérée de l’Atlantique, et 

de Spitzberg (Norvège, Arctique) ont été élevés dans les mêmes conditions et soumis aux mêmes ni-

veaux de température et de salinité (Chapitre 4). Nous avons trouvé des profils transcriptomiques dis-

tincts entre les deux sites. Plusieurs gènes importants pour la paroi cellulaire et dans l'organisation du 

cytosquelette montrent des expressions différentes entre les sporophytes de Roscoff et du Spitzbergen, 
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qui sont potentiellement associés à des morphologies distinctes. La combinaison d'une faible salinité et 

d'une basse température a provoqué une régulation transcriptomique plus forte chez les sporophytes 

des régions tempérées que chez les sporophytes arctiques. Cette réponse entraîne une forte répression 

des gènes liés à la photosynthèse et à la synthèse de pigments. Dans l'ensemble, nos résultats suggèrent 

qu'un investissement plus important dans la reprogrammation transcriptomique est requis chez les spo-

rophytes de Roscoff par rapport à ceux ici de Spitzberg afin de s'acclimater à une température basse et à 

une salinité faible. Cela peut probablement s'expliquer par le fait que les sporophytes en Arctique sont 

soumis fréquemment à des basses températures et à une hyposalinité alors que ces agents stressants 

sont rares pour les sporophytes de Roscoff. 

Les effets de la température sur les profils transcriptomiques des gamétophytes végétatifs de S. latissi-

ma ont été étudiés, pour la première fois, à trois températures (4 ° C, 12 ° C et 20 ° C), à la fois sur les 

mâles et les femelles, pendant deux semaines. Les résultats de cette expérience ont montré que 

l’expression des gènes chez les femelles s’accroit avec l'augmentation de la température. L'induction du 

métabolisme des glucides, des lipides, des acides nucléiques et la production d'énergie chez les gaméto-

phytes femelles correspondaient à un investissement dans la croissance cellulaire. De façon concomi-

tante, une hausse de l’expression des gènes de gamétophytes males liés à la signalisation, au cytosque-

lette et aux organites suggère une activité élevée de division cellulaire. Les profils transcriptomiques 

suggèrent que bien que végétatives, les cellules de gamétophytes sont encore actives au niveau méta-

bolique et se préparent pour la maturation, afin de synchroniser la libération des gamètes et d'assurer la 

fécondation. De plus, l'induction des voies métaboliques liées au stress chez les gamétophytes femelles 

par rapport aux mâles, à 20 ° C, indique que les femelles sont plus sensibles à l’augmentation de tempé-

rature, avec des répercussions possibles sur le succès reproducteur et la persistance de S. latissima en 

réponse au réchauffement climatique. 

En conclusion, cette étude est à l’origine de nouvelles connaissances sur les mécanismes moléculaires 

d'acclimatation et les réponses adaptatives d'une espèce clé, mais non modèle, pour laquelle les infor-

mations génomiques disponibles étaient encore limitées auparavant. Il est également devenu évident 

que les données transcriptomiques ne correspondent pas nécessairement aux observations au niveau 

physiologique, mais sont susceptibles de refléter, à un stade précoce, les contraintes émergentes en lien 

avec les fonctions cellulaires et la performance globale de l'individu. De plus, les différences de réponse 

aux facteurs environnementaux à travers différentes latitudes, étapes du cycle de vie et sexes soulignent 

la nécessité d'approches intégratives afin de faciliter les prédictions sur la performance et la résilience 

des espèces dans les systèmes naturels et aquacoles face aux changements environnementaux impor-

tantes. 
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1 General introduction 

 Ecological relevance of kelps 1.1

Seaweeds (or marine macroalgae) are photosynthetic organisms that form extensive habitats along 

rocky coastlines and provide a number of vital ecosystem functions (Dijkstra et al., 2012). Brown sea-

weeds belong to the phylum Ochrophyta and are distributed worldwide. Kelps are the representatives 

of the order Laminariales in the strict taxonomical sense, however, the term often includes genera from 

the order of Fucales with similar ecological functions as Laminariales, such as Durvillaea and Himantho-

thallus (Dayton, 1985). Kelps are among the largest seaweed and are important components of benthic 

temperate to Arctic ecosystems (Teagle et al., 2017). They contribute greatly to the near-shore primary 

production and support food-webs through direct consumption by herbivores, but mostly through detri-

tus input (Bartsch et al., 2008; Wiencke and Bischof, 2012). Moreover, they contribute to coastal de-

fense by wave damping and attenuation, an ecosystem service that will be highly required in the future 

due to climate-change induced sea level rise and higher storm frequency (Løvås and Tørum, 2001; Smale 

et al., 2013). Some species are considered ecosystem engineers as they provide a complex habitat for 

several other organisms such as fish and crustaceans (Figure 1, Christie et al., 2009). These habitats 

might function as nurseries (Holbrook et al., 1990) and even as shelter for large charismatic species as 

illustrated by the case of the giant kelp Macrocystis pyrifera off California and the associated sea otters 

(Foster and Schiel, 1988). Therefore kelps have a disproportionate value to the ecosystem and changes 

in their distribution and abundance might have cascading effects throughout the food web (Graham, 

2004; Koenigs et al., 2015; Paar et al., 2019). Also, as photosynthetic organisms, they may contribute to 

climate change mitigation and adaptation (Duarte et al., 2017) when acting as carbon sink (Krause-

Jensen and Duarte, 2016). The potential for carbon sequestration of seaweeds surpasses that of other 

marine macrophytes, such as seagrasses and mangroves (Krause-Jensen and Duarte, 2016). Evidence for 

widespread macroalgal export to the deep-sea has recently been revealed, with the contribution of 

Laminariales increasing at depths 3,000 to 4,000 m (Ortega et al., 2019).  

 Figure 1 On the left, a giant kelp forest in San Diego, California with a visiting harbor seal. Photo by Kyle Mcburnie.  On the 
right: macroalgal forest at low tide in Roscoff, Brittany, France. Several species can be seen in this assemblage, including 
Saccharina latissima at the right bottom. Photo by Nora Diehl 
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 Economic value of kelps 1.2

Kelps hold increasing economic value as they can be exploited by several industries. Kelp compounds 

such as alginate, mannitol, laminarin, iodine, pigments, phenolics and lipids have diverse industrial ap-

plications (Stengel et al., 2011). Namely, alginate is used in food processing and textile industries and 

has been commercially extracted from seaweeds for decades (Tseng, 2001; Bixler and Porse, 2011). Re-

cently, research efforts have focused on uncovering bioactive compounds that can improve human 

health. Antioxidant, antiviral, anticancer and anticoagulant effects in in vitro and animal trials have been 

reported (Hafting et al., 2015; Sanjeewa et al., 2017). Moreover, seaweed compounds can be used as 

raw material for cosmeceutical, functional food, nutraceutical, and pharmaceutical production (Jiménez-

Escrig et al., 2012; Wells et al., 2017; Afonso et al., 2019). 

Seaweeds have been traditionally harvested in several coastal countries (Frangoudes, 2011) but current-

ly they are mostly produced by aquaculture (96.5%) in a  total of 31 million tons of seaweeds per year 

(FAO, 2018) a large part of this being Saccharina japonica. Particularly, cultivation of the sugar kelp Sac-

charina latissima (formerly Laminaria saccharina L. (Lamour)) (Lane et al., 2006) has been growing in 

European waters (Buck and Buchholz, 2004; Sanderson et al., 2012; Azevedo et al., 2016; Freitas et al., 

2016; Stévant et al., 2017) as its fast growth and high content of carbohydrates make it a suitable choice 

for cultivation with applications in food, feed and biofuels industries (Kraan, 2013; Manns et al., 2017; 

Zhang and Thomsen, 2019). Namely, the application of sulfated polysaccharides of S. latissima in phar-

maceutical industry is promising (Ehrig and Alban, 2015). Furthermore, the sugar alcohol mannitol has 

several uses in pharmaceutical, paint, leather, paper and plastics industries (Holdt and Kraan, 2011; 

Scullin et al., 2015). Fermentable sugars of S. latissima (mannitol, laminarin, and alginate) have been 

investigated for the production of bioethanol (Adams et al., 2008; Lopez-Contreras et al., 2016). Success-

ful production of biofuels would offer a sustainable alternative to fossil fuels and contribute to climate 

change mitigation. The consumption of seaweeds in Europe has also been rising as a result of popularity 

of seaweed-based Asian dishes but also on an interest in healthy, sustainable food products. Therefore, 

efforts have been made to improve nutritional value and quality of S. latissima to increase its appeal to 

the food industry (Chapman et al., 2015; Stévant, 2019). Moreover, cultivation of kelps such as S. latis-

sima may serve as a bio-mitigation measure, extracting nutrients from coastal systems. They might re-

move excessive nutrients from eutrophic waters and/or reduce nutrient input into the ecosystem by fish 

farming in an Integrated Multi-Trophic Aquaculture (IMTA) system (Kim et al., 2015; Marinho et al., 

2015; Bruhn et al., 2016).  

Several studies have revealed that seasons, geographical variation and site-specific variation of abiotic 

factors significantly affect chemical composition, hence impacting the content of highly valuable com-

pounds (e.g. Schiener et al., 2015; Fernandes et al., 2016; Bruhn et al., 2017). Therefore future research 

should target the range of environmental conditions (e.g. temperature, salinity, exposure) that allow 

optimization of S. latissima production to the requirements of the industries mentioned above.  
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 Life cycle of kelps 1.3

Kelps (order Laminariales) display a haplodiplontic (also termed haploid-diploid) heteromorphic life cycle 

(Figure 2, Hurd et al., 2014a). Moreover, they are dioecious: male and female individuals only occur dur-

ing the haploid phase (spores, gametophytes and gametes). Mature macroscopic sporophytes (2n) pro-

duce spores (=zoospores, = meiospores) (n) by meiosis that in Saccharina latissima accumulate at the 

surface of the thallus producing a sorus (Lüning, 1988). The spores are released into the water and 

quickly attach to an available substrate. Once they germinate they develop into female and male game-

tophytes that display sexually dimorphic traits. Female gametophyte cells are larger and rounder while 

male gametophytes cells are smaller and tend to form filaments with more cells (Lüning and Neushul, 

1978; Destombe and Oppliger, 2011). Once these gametophytes mature, male reproductive structures 

called antheridia produce male gametes (sperm), and respectively female reproductive structures (oo-

gonia) produce eggs. Upon encounter, egg and sperm will fertilize and produce a zygote that will grow 

into a young sporophyte. Kelp gametes are oogamous, meaning egg cells are significantly larger than 

male gametes, and are non-motile as opposed to male gametes (Luthringer et al., 2014). While sporo-

phytes are macroscopic and divided into morphological structures such as holdfast, stipe, lamina and 

blade (also termed rhizoid, cauloid and phylloid, Staufenberger et al., 2008); spores, gametophytes and 

gametes are microscopic structures often referred to as early life history stages (Charrier et al., 2012; 

Hurd et al., 2014c). As free-living stages, spores and gametes are the phases that allow for dispersal, 

even though dispersal is limited in kelps and therefore spores tend to settle within close proximity to 

parent sporophytes (Schiel and Foster, 2006). 

 

Figure 2 Schematic representation of the life cycle of kelps. The adult sporophyte is a representation of Saccharina latissima. 
From Visch et al. (2019) 
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Due to technical and sampling constraints microscopic stages are often overlooked in research, which 

results in most studies failing to include the whole life cycle and as so conclusions on the species survival 

and performance may be misleading. Moreover, the early developmental stages have been identified as 

the most vulnerable to a variety of environmental perturbations (Dring et al., 1996; Coelho et al., 2000; 

Roleda et al., 2007). On the contrary, other studies indicate higher sensitivity of sporophytes to temper-

ature changes. Gametophytes of several kelp species exhibit higher upper thermal tolerance of about 3-

4 °C than sporophytes (tom Dieck, 1993) and photosynthetic efficiency of gametophytes of the kelp 

Alaria crassifolia was less affected by low temperature than that of sporophytes (Borlongan et al., 2019). 

 

1.3.1  Gametophyte growth and maturation 

Gametophytes may undergo gametogenesis within approximately one week if conditions are right and 

produce gametes, or they may remain vegetative and grow to produce filaments of several cells (Lüning 

and Neushul, 1978; Lüning, 1980; Lüning, 1981; Schiel and Foster, 2006). In order to become fertile, 

female gametophytes require blue light and this requirement is dependent on temperature – at lower 

temperatures less blue light is necessary to induce maturation (Lüning and Dring, 1972). Moreover, high 

temperatures prevent gametogenesis – 20 °C in the case of S. latissima (Lüning and Dring, 1972; Lee and 

Brinkhuis, 1988). Therefore, in laboratory conditions, if only exposed to red light, gametophytes will 

tend to growth vegetatively, as growth is unaffected by light quality (Lüning and Dring, 1975). The upper 

temperature tolerance of S. latissima gametophytes is 23 °C (Bolton and Lüning, 1982; Lee and 

Brinkhuis, 1988). In addition, female gametophytes require iron to undergo oogenesis (Motomura and 

Sakai, 1981; Lewis et al., 2013). Once eggs are released, a pheromone, lamoxirene, is also produced that 

induces mature male gametophytes to discharge spermatozoids, and subsequently attracts spermatozo-

ids to the egg, facilitating synchronization of the maturation and reproduction process (Lüning and 

Müller, 1978; Maier et al., 2001). 

When the environmental conditions required for fertilization are not met, gametophytes remain vegeta-

tive (up to 30 years in laboratory conditions, Druehl et al., 2005; Martins et al., 2019) and this state in 

the field has been compared to plants’ “seed banks”. In natural conditions, vegetative gametophytes 

might resist adverse conditions and then develop once the environment is favorable. Therefore they can 

replenish populations after a disturbance, such as storm or heat wave; and are essential for the life cycle 

of annual plants (Schiel and Foster, 2006). Although typically perennial (Bartsch et al., 2008), S. latissima 

has been reported to behave as annual at the southern rear-edge of its distribution in USA, possibly due 

to die-off during the hot summer (Lee and Brinkhuis, 1986). The persistence of early-life history stages 

throughout summer ensures a successful recruitment in autumn (Lee and Brinkhuis, 1986).  

In laboratory conditions, control of the transitions between the life stages of kelps allows for scientific 

experimentation and has applications in seaweed aquaculture (Charrier et al., 2017). Namely, a combi-

nation of applying high temperatures, removing iron from the nutrient solution added and limiting ex-

posure to blue light (commonly by exposing to red light only) retain the gametophytes in a vegetative 

state. These stock cultures of gametophytes allow for the preservation of different genotypes until fur-

ther use or for conservation of genetic resources. In turn, offering the optimal set of conditions induces 

fertility and allows for sporophyte production at the convenience of the researcher and/or producer 
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(Scoggan et al., 1989). The establishment of separated male and female gametophyte cultures allows for 

hybridization experiments with the goal either to understand species boundaries or to develop better 

cultivars for aquaculture. This practice has been successful in aquaculture facilities in Asia and resulted 

in the selection of cultivars with the desired characteristics for production (Westermeier et al., 2010; 

Robinson et al., 2013; Bartsch, 2018). A very important trait to select for is high temperature tolerance 

that allows for continuous production throughout the summer months and expansion of aquaculture 

set-ups to warmer waters and it grants sporophytes the ability to withstand current and future warming 

trends (Pang et al., 2007; Zhang et al., 2011; Kim et al., 2017). Assessing the differential response of the 

gametophytes gender to temperature is relevant as crossing experiments have indicated that heat sensi-

tivity is transmitted through females (Martins et al., 2019), however further research is necessary on this 

topic. In addition, sex ratios in kelps have been shown to shift in response to temperature (Izquierdo et 

al., 2002; Nelson, 2005; Oppliger et al., 2011). Specifically, in S. latissima a higher proportion of males 

compared to female gametophytes was observed at higher temperatures (Lee and Brinkhuis, 1988).  

 

 The kelp Saccharina latissima 1.4

The systematic classification of the kelp Saccharina latissima is as follows: 

Empire: Eukaryota  
Kingdom: Chromista 

Infrakingdom: Heterokonta (=Stramenopiles)  
Phylum: Ochrophyta 

Class: Phaeophyceae 
Order: Laminariales  

Family: Laminariaceae 
Genus: Saccharina 

Species: Saccharina latissima 
(The UniProt Consortium, 2018; Guiry and Guiry, 2019; Horton et al., 2019) 
 
Saccharina latissima (Figure 3, Lane et al., 2006) has a wide latitudinal range in the Northern hemisphere 

from polar to temperate waters. In the eastern Atlantic, it can be found from the Arctic (>80°N) until the 

North of Portugal (41.5°N) and from the upper subtidal until 30 meters depth. The optimum growth 

range for S. latissima is between 10 °C and 15 °C and above 20 °C the mortality rate is high (Fortes and 

Lüning, 1980; Bolton and Lüning, 1982). Concomitantly, S. latissima exhibits optimum growth between 

absolute salinities (SA) 23 and 31, a strong reduction at SA 16 and a high mortality < SA 8 (Gerard et al., 

1986). Nevertheless, Saccharina latissima is present in the Baltic Sea where salinity reaches around SA 10 

at the South-west Baltic proper (Kautsky and Kautsky, 2000). The alga displays a remarkable dynamic 

acclimation capability (Bischof et al., 1998). Nevertheless, declines in its distribution and biomass are 

increasingly reported (Sweden: Eriksson et al., 2002; Germany: Pehlke and Bartsch, 2008; Norway: Moy 

and Christie, 2012; Canada: Filbee-Dexter et al., 2016; USA: Witman and Lamb, 2018; Portugal and 

Spain: Casado-Amezúa et al., 2019) and are especially concerning when declines lead to a shift to 

ephemeral turf algae with disproportionate changes in the coastal communities (Eriksson et al., 2002; 

Filbee-Dexter and Wernberg, 2018). Furthermore, niche modelling predicts a northward shift of the 



  General introduction 
 

6 
 

distributional range of S. latissima between 138 - 552 kilometers in Europe (Westmeijer et al., 2019) and 

0 - 203 km in Northwestern Atlantic (Wilson et al., 2019) by 2100 depending on the climate change sce-

nario being considered. Therefore, range contractions at the southern and central range will be paral-

leled with expansion into the Arctic as the ice cover retreats (Müller et al., 2009; Assis et al., 2018). 

Moreover, the occurrence and abundance of the species over large stretches of the European coast 

remains unknown (Araújo et al., 2016), which hinders our understanding of its conservation status.  

  

 
Figure 3 The sugar kelp Saccharina latissima. The species can be identified by an undivided frond with distinct bullations (= 
depressions) and a ruffled side. It has a claw-like holdfast and a short and flexible stipe (http://www.seaweed.ie/descriptions/ 
Saccharina_latissima.php). Left side: picture of S. latissima (center) at low tide in Roscoff, Brittany. Photo by Cátia Monteiro; 
right side: illustration of S. latissima by Harvey (1846) 

 

 Responses to the environment  1.5

1.5.1 Responses of seaweeds to climate change  

Climate change is significantly impacting the structure and function of marine ecosystems worldwide 

(Parmesan and Yohe, 2003; Harley et al., 2006). Continuous increase in temperature will result in chang-

es in species distribution ranges (Lima et al., 2007; Hawkins et al., 2009; Poloczanska et al., 2014). Higher 

temperatures drive species close to their thermal tolerance limits at the southern distribution range 

reducing their fitness and in some cases resulting in local extinction (Hampe and Petit, 2005). At the 

same time, warming allows species to move northwards as well as to improve productivity in areas 

where they have been living under sub-optimal temperatures, namely the Arctic (Bartsch et al., 2016). 

Species survival and success in this altered environment will depend on both biotic interactions and 

abiotic factors (Müller et al., 2009). Reports on the impacts of global warming on seaweeds are mount-

ing (e.g. Moy and Christie, 2012; Andersen et al., 2013; Mineur et al., 2015; Bartsch et al., 2016; 

Thomsen et al., 2019). As sessile organisms they cannot escape local environmental stress, therefore 

they need to acclimate to the new conditions or perish (Häder and Figueroa, 1997). Many studies have 

focused on the response of seaweeds to single stress factors, however this approach holds limited eco-

logical relevance as species are subjected to combined stress factors in the field (Mineur et al., 2015). 

The result may not simply be the addition of each single stress effect, but have a synergistic or antago-

nistic effect (Lotze and Worm, 2002). Moreover cross-acclimation may occur, where the acclimation to 
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one stressor improves the tolerance of the algae to a second, different stressor (Leshem and Kuiper, 

1996). Although described in plants, the prevalence of this phenomenon in seaweeds has only been 

investigated once, a study indicating that acclimation to low salinity in the kelp Alaria esculenta in-

creased the tolerance to UV stress (Springer et al., 2017). However, information on these interactions is 

still scarce. Some authors have shown the interactive effects of temperature and UV radiation on 

macroalgae and the single effects of these two factors have been extensively studied (e.g.Bischof et al., 

1998; Aguilera et al., 2002; Holzinger et al., 2011; Parages et al., 2013). 

Salinity is expected to change in coastal systems in the future under current climate change scenarios 

due to increased precipitation, increased wind speed and ice melting in polar environments, with likely 

significant impacts on the communities (Manabe and Stouffer, 1995; Wiencke et al., 2007; Holt et al., 

2010; Johannesson et al., 2011; Alexander et al., 2013; Vuorinen et al., 2015). Nonetheless, salinity is 

remarkably underrepresented in physiological studies despite its relevance to performance. Hypo- and 

hypersalinity require osmotic adjustment by the algae. First, water fluxes rapidly follow the osmotic 

gradient resulting in changes in cell turgor pressure and cell volume. This is followed shortly by changes 

in ionic balance (up to few hours) and later by changes in concentration of osmolytes (up to three days) 

(Kirst, 1990). A known osmolyte in brown algae is mannitol, that is also a major photosynthetic product 

and carbon storage compound (Iwamoto and Shiraiwa, 2005; Barboza et al., 2019). As a result of expo-

sure to salinity gradients, changes in phenolics, antioxidant enzymes, phycobiliproteins, and fatty acids 

in seaweeds were also reported (Kumar et al., 2010; Connan and Stengel, 2011; Stengel et al., 2011). 

Furthermore, salinity variation also impacts photosynthetic efficiency (Barboza et al., 2019) by processes 

such as inhibition of electron flow on the oxidizing side of photosystem II (Satoh et al., 1983), pigment 

content (Schubert et al., 1993), and stimulation of cyclic electron transport at photosystem I (Endo et al., 

1995).   

Impacts of climate change, however, are not equally distributed across the globe. The Arctic is warming 

faster than any other region and the resulting ice melting is inducing increases in freshwater input, 

changes in light regimes, sedimentation and carbon cycling in near-shore habitats. Therefore, changes in 

abundance and biomass of macroalgae species can be expected (Filbee-Dexter et al., 2018). The role of 

kelp in this boreal ecosystem is especially relevant as they persist through the dark winter unlike other 

primary producers, therefore continuously supporting the food webs during this period (Berge et al., 

2015). Kelps have developed adaptations to the polar environment by fine-tuning their phenology 

(=”the seasonal timing of species’ life-cycle events”) with the strong seasonal patterns experienced 

there (Wiencke et al., 2007; Wiencke et al., 2009). Shifts in phenology have been recorded in response 

to climate change. These shifts might result in mismatch between development and food availability and 

between different levels of the trophic web (Parmesan and Yohe, 2003; Poloczanska et al., 2013). A re-

cent review identified shifts in the timing of reproduction in temperate macroalgae driven by climate 

warming, revealing yet another impact of climate change on seaweeds (de Bettignies et al., 2018).  

In certain locations, in addition to climate change, pollution, biological invasions and habitat degradation 

amongst others are also threatening seaweed ecosystems. Therefore, it is of prime importance to con-

sider all these anthropogenically driven impacts in conservation efforts (Moy and Christie, 2012; Araújo 

et al., 2016; Small, 2018; Wernberg et al., 2019). 
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1.5.2 Local adaptation and phenotypic plasticity 

 

Species may respond to environmental change through phenotypic plasticity or by adaptation (for a list 

of relevant definitions please see above). Phenotypic plasticity takes place when changes in fitness in 

result of environmental variation are not genetically determined and the species is able to tolerate 

changes by temporarily adjusting its physiological mechanisms. Local adaptation occurs when there are 

genetically fixed differences between populations that result in the adjustment of optimal physiological 

ranges (fitness) to the conditions experienced locally. If there is evidence for adaptation of certain popu-

lations they can be defined as ecotypes (Conner and Hartl, 2004; Nicotra et al., 2010). An ecotype will 

perform better at the local conditions than another ecotype from a distant population and a given trait 

will be expressed irrespective of environmental variation (Kawecki and Ebert, 2004). These two different 

mechanisms (phenotypic plasticity and adaptation) play a role in establishing species distribution. Phe-

notypic plasticity happens in short-time scales and allows the species to respond quickly to environmen-

tal change, as opposed to adaptation that acts on long-term scales. Current rates of climate change 

might surpass species ability to adapt and therefore acclimation through phenotypic plasticity might be 

the key to allow for species’ persistence (Valladares et al., 2014). For adaptation to occur a selective 

force has to act on a population for sufficiently long period of time and it has to be stronger than the 

genetic homogenization driven by gene flow (Nicotra et al., 2010). Gene flow itself depends on the dis-

persal capacity of the species (i.e. the ability of individuals to move between populations) and on disper-

Definitions 

Rear edge = trailing edge = low-latitude limit = populations at the low latitude limit of species distri-

bution. In case of the northern hemisphere, it corresponds to the southernmost edge. (Hampe and 

Petit, 2005) 

Expanding edge = leading edge = high-latitude limit = populations at the high latitude limit of spe-

cies distribution. In case of the northern hemisphere, it corresponds to the northernmost edge. 

(Hampe and Petit, 2005) 

Peripheral populations = range margins = populations at both limits of the distributional range of a 

species. (Gibson et al., 2009) 

Fitness = the ability of an organisms to survive and reproduce. (Holderegger et al., 2006) 

Phenotype = “Phenotype refers to the outward appearance of a genotype; it is the outcome of the 

interaction between genotype and environment.” (Holderegger et al., 2006) 

Phenotypic plasticity = “the range of phenotypes a single genotype can express as a function of its 

environment.”  (Nicotra et al., 2010) 

Ecotype = “locally adapted populations that are phenotypically and genetically differentiated for 

adaptive traits.” Conner and Hartl (2004) 

Acclimation = “short-term physiological adjustments that occur during a lifetime in response to tran-

sitory changes in environmental conditions.” (Morgan-Kiss et al., 2006) Acclimation is the underlying 

mechanism resulting in phenotypic plasticity. 

Adaptation = “the process of genetic change that accumulates over a time scale of many generations 

in response to an organism’s specific environmental niche.” (Morgan-Kiss et al., 2006) 
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sal barriers. Dispersal capacity of kelps is restricted and considerably lower than for other marine organ-

isms. Moreover, dispersal barriers such as lack of rocky substrate are common occurrences (Valero et 

al., 2011; Durrant et al., 2014). Thus, significant population differentiation is common among kelps and 

we can expect local adaptation to occur frequently for these brown algae (King et al., 2018). Indeed, a 

recent review revealed that 90% of marine macrophytes (= seagrasses and macroalgae) present popula-

tion-specific responses to high temperatures (King et al., 2018). If locally adapted to the high tempera-

tures routinely experienced, populations at the southern edge might be more resilient than expected, 

and the opposite might hold true for central and northern populations. Therefore, deciphering which 

mechanism is at play for a certain species will inform species distribution models and conservation 

measures.  

 

1.5.3 Ecotypic differentiation in S. latissima 

Ecotypic differentiation has been reported between several populations of S. latissima in the Northeast- 

(Müller et al., 2008; Olischläger et al., 2014; Olischläger et al., 2017) and Northwest Atlantic (Gerard et 

al., 1986; Gerard and Du Bois, 1988; Gerard, 1988; Gerard, 1990). Furthermore, recent genetic data fur-

ther reveals the process of local adaptation in the North-east distribution of S. latissima to an extent 

that speciation might be in progress. The six populations tested by Guzinski et al. (2016) with microsatel-

lite markers (three French populations – southern Brittany, Northern Brittany; Denmark; Sweden; Spits-

bergen, Norway) were significantly genetically differentiated. In addition, absence of admixture be-

tween French and Norwegian populations was reported and within-population genetic diversity was 

low. Neiva et al. (2018) identified two phylogroups in Europe: a northern phylogroup constituted by 

Spitsbergen and Bergen in Norway, Greenland, Russia and Iceland; and a southern phylogroup (Brittany, 

France and northwest Spain) based both on mitochondrial DNA and microsatellite data. Furthermore, a 

study in a smaller geographical scale comparing brackish (Denmark) and marine (Norway and Sweden) 

populations of S. latissima revealed low genetic diversity within the brackish population and significant 

differences between brackish and marine populations (Møller Nielsen et al., 2016).  Moreover, differen-

tiation at the physiological level is already evident – the brackish Aarhus bay population of S. latissima 

showed a lower production when compared to other populations at the same latitude and authors sug-

gested that low salinity might be a contributing factor together with high summer temperatures (Nielsen 

et al., 2014).  

In the northwestern Atlantic, thermal ecotypes have been identified for algae from the populations of 

Maine (northern population) and New York (southern limit distribution) in laboratory common garden 

experiments with field sporophytes (Gerard et al., 1986; Gerard and Du Bois, 1988) and in field meas-

urements (Gerard and Du Bois, 1988). Specimens from the southern limit distribution that experience 

higher summer temperatures than the northern ones survived temperatures above 20 °C, while algae 

from the northern distribution did not. Moreover, differences were only apparent at high temperatures, 

while at lower temperatures growth and survival patterns were similar (Gerard and Du Bois, 1988). 

Within the same populations, ecotypic differentiation was uncovered between individuals from shallow, 

deep and turbid environment in their light response characteristics, namely photosynthetic parameters, 

carbon assimilation and growth (Gerard, 1988). Further work targeting the same shallow, deep and tur-
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bid populations further corroborates ecotypic differentiation for these populations, this time for both 

sporophytes and gametophytes cultivated from spores in laboratory. Differences between populations 

across parameters tested were not always consistent for both gametophytes and sporophytes which 

revealed phase-specific adaptation (Gerard, 1990). In Alaska, USA, Spurkland and Iken (2011) did not 

detect ecotypes between glacially influenced and oceanic sites with contrasting irradiance and salinity 

levels in three-weeks laboratory experiments. However, in a follow-up study with in situ reciprocated 

transplants, seasonal growth patterns reflected the environment of origin irrespective of growth site 

and therefore authors suggested a genetic basis for these differences (Spurkland and Iken, 2012).   

The variability described above in phenotypic plasticity and ecotype formation in S. latissima is based 

partially in different approaches (laboratory experiments, reciprocal transplants, in situ measurements), 

in different factors being targeted (temperature, irradiance, salinity) and also different tested parame-

ters (growth, survival, fitness parameters: Fv/Fm, biochemical composition). These differences make it 

difficult to systematically compare these results and warrant discussion on what is the most sensible 

parameter to assess phenotypic plasticity/local adaptation. Field reciprocal transplants of specimens 

originating from two distinct populations are often used to test for local adaptation (Kawecki and Ebert, 

2004), however in the case of S. latissima reciprocal transplants cannot be applied in Spitsbergen be-

cause the area is protected  and sporophytes originated in other locations cannot be brought there 

(Svalbard Environmental Protection Act, 2001). Moreover, considering the high genetic differentiation 

between populations of S. latissima, concerns with genetic contamination are warranted (Guzinski et al., 

2016; Luttikhuizen et al., 2018). Therefore, a common garden experiment is the ideal experimental de-

sign to assess local adaptation by exposing individuals from different populations to the same environ-

mental conditions (Kawecki and Ebert, 2004).   

Overall, previous studies revealed that S. latissima has adapted to local conditions throughout its wide 

distributional range and therefore responses to stressors are site-specific and cannot be extrapolated 

from one population to the whole species complex. Consequently, efforts must be made to integrate 

data from as many populations as possible as environmental parameters at the local scale should be 

integrated in any modelling exercise (Bennett et al., 2015). Moreover, the selection pressures underlying 

this evolutionary adaptation are not well understood and understanding the future of the species under 

current environmental change is dependent on more knowledge on the topic.   

 

 Transcriptomic responses to abiotic stress  1.6

A widely used method to assess the genetic basis of stress response is transcriptomics. Transcriptomics 

(or gene expression) measures the abundance of mRNA in a tissue thereby providing expression levels of 

genes following a stimulus (Wang et al., 2009). Transcriptomic data has been mounting, especially for 

model-species such as the plant Arabidopsis thaliana (Honys and Twell, 2004; Gong et al., 2005; Rest et 

al., 2016; Zhang et al., 2017). In contrast, transcriptomics approaches in brown algae are still scarce and 

knowledge of their acclimation mechanisms to the changing conditions experienced in coastal environ-

ments can benefit from the application of RNA-sequencing. Previous work in the Laminariales S. latissi-

ma (Heinrich et al., 2012b; Heinrich et al., 2015; 2016), Laminaria digitata (Roeder et al., 2005; Ritter et 

al., 2008) and Saccharina japonica (Liu et al., 2014) as well as other brown seaweeds, such as Ectocarpus 
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(Dittami et al., 2009; Ritter et al., 2014) and Fucus (Pearson et al., 2010), revealed large reprogramming 

of gene expression by abiotic stress and provided the foundation for the research undertaken during 

this PhD. While survival, reproductive success and growth are obviously relevant parameters that inte-

grate all the metabolic processes taking place in the algae they lack insights into the underlying molecu-

lar mechanism of acclimation or adaptation. Moreover, while survival and growth might be maintained 

under contrasting conditions this might come at a cost for reproduction as energy might be deviated 

from reproduction to survival strategies. Therefore gene expression offers an opportunity to assess 

metabolic reorganization taking place after a stress exposure even before there is an obvious signal in 

physiological performance (Heinrich et al., 2015). Furthermore, although local adaptation is intensively 

studied, the molecular mechanisms underlying this process remain poorly understood, especially in non-

model species (Savolainen et al., 2013; Kenkel and Matz, 2016; Avia et al., 2017). Transcriptomics might 

help identifying the biological processes involved in adaptation. Moreover, it can contribute to the iden-

tification of populations relevant for conservation before they are seriously affected by ongoing anthro-

pogenic changes. In the seagrass Zostera marina, Franssen et al. (2011) reported diverging gene expres-

sion profiles during recovery after experimental heat-wave between northern and southern populations, 

but not during heat-wave. Specimens from the north population failed to recover from the heat stress 

and up-regulated genes related to protein degradation. In the coral Porites astreoides, Kenkel and Matz 

(2016) described clear differentiation between gene expression profiles between inshore and offshore 

populations. Moreover, by transcriptomic analysis of transplanted corals they identified high gene ex-

pression plasticity in corals originated from the more variable environment, inshore, than the more sta-

ble one, offshore. Therefore, transcriptomic analysis can elucidate biological mechanisms diverging be-

tween populations and underlying differential response to stress.  
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 Aim 1.7

The study presented here aims to understand the responses of Saccharina latissima in the Atlantic to 

multiple stressors. By including the largely overlooked life stage of gametophytes, we expect to signifi-

cantly contribute to the understanding of adaptive mechanisms defining distribution and success of the 

kelp S. latissima. By investigating populations covering the distribution range (Arctic, North Sea, North 

Atlantic) we expect to achieve a holistic understanding of the mechanistic base of abiotic stress toler-

ance of the species and the metabolic pathways supporting its high acclimation potential. These results 

will provide valuable information to predict shifts in the species’ distribution patterns in the future due 

to global warming. 

 

 Research questions and hypotheses 1.8

1. Does acclimation to temperature in sporophytes of S. latissima change tolerance towards salinity 

stress? 

Saccharina latissima specimens from Roscoff, France and Spitsbergen, Arctic were subjected to a hy-

posalinity treatment after temperature acclimation (0 °C, 8 °C and 15 °C). We hypothesized that tem-

perature and salinity stress would have interactive effects on algal performance. We further hypothe-

sized that algae cultured at 8 °C would perform better when subjected to salinity stress than the ones 

cultured at 0 °C and at 15 °C. An increase in temperature increases overall metabolic activity but when it 

reaches close to the upper tolerance limit stress responses might be too costly as synchronous activa-

tion of different stress pathways is not probable beyond a certain stress level. 

2. Do sporophytes of the populations from the Northern (Arctic) and Central (Brittany) distributional 

range present the same transcriptomics and/ or physiological responses to stress? 

 

We hypothesized that populations from Brittany would perform better under high temperatures than 

populations from the North and vice-versa. We also expected to find differences in the metabolic path-

ways expressed between the two populations, such as in the transcripts responsible for reactive oxygen 

species (ROS) scavenging mechanism and photosynthetic components that would be indicative of the 

strategies of adaptation to both low and high temperature. 

 

3. Is there a sex-biased gene expression in the vegetative gametophytes of S. latissima? 

Vegetative male and female gametophytes originated from spores collected in Helgoland, German Bight, 

North Sea were exposed in a laboratory experiment to a high temperature of 20 °C and a low tempera-

ture of 4 °C after a period of cultivation at 12 °C. We hypothesized that comparison of gene expression 

profiles between male and female gametophytes would reveal differences that can be connected with 

the sexual dimorphism and differences in physiology that anticipate sexual maturity.  
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4. Is there an interaction between temperature and sex effects in vegetative gametophytes of S. latis-

sima at the transcriptomic level? 

Based on the same laboratory experiment described in research Question 3, we addressed the question 

of how the vegetative gametophytes respond to changes in temperature and how sexes might respond 

differently to them. Previous studies demonstrated a differential response of male and female kelp ga-

metophytes to temperatures at the physiological level. Therefore we hypothesized that we can identify 

differences at the gene expression profiles as well, namely in stress response related pathways.  

 

 Thesis outline 1.9

Saccharina latissima faces environmental variation throughout its distributional range. Increasing tem-

peratures are experienced by S. latissima from the northern to the southern distribution, with relevant 

local anomalies (e.g. Helgoland). Moreover, large-scale salinity patterns are also observed – the Baltic 

sea is a brackish sea and the North Atlantic is a fully marine environment. Also regarding salinity, rele-

vant small-scale variation occurs after precipitation events and freshwater input from land that might 

lead to local reduction in salinity e.g. Arctic fjords. For the species to be able to survive and succeed in 

these fluctuating environments, acclimation mechanisms are necessary and those have been studied 

extensively at both physiological and biochemical level. However, the genetic basis underlying these 

acclimation mechanisms remains poorly understood. Furthermore, a considerable knowledge gap is 

observed for the microscopic life stages, for which the abiotic stress impacts are less understood. Differ-

ences in stress susceptibility between gametophytes and sporophytes have been documented warrant-

ing further investigation of specific life-stage responses. Moreover, it is during the microscopic life stag-

es that sexual reproduction takes place and therefore understanding abiotic stressors impact on repro-

ductive success is of paramount importance considering the mounting evidence of the relevance of this 

phase for species success.  

To assess the effect of geographical variation in S. latissima, sporophytes were raised from spores col-

lected in Roscoff (Brittany, North Atlantic, at the geographical centre of distribution) and spores collect-

ed in Spitsbergen (Svalbard, Norway, Arctic, at the northern limit of distribution) under the same condi-

tions in the laboratory (common garden). At the juvenile stage (after three months of cultivation, 5-10 

cm length), sporophytes were exposed to the same experimental design by location. Several physiologi-

cal measurements and RNA extractions were performed for sporophytes from both locations at differ-

ent time points. Considering the extent of the data gathered and in order to better address the research 

Questions, this data was tackled in three different Chapters (3, 4 and 5). The respective experimental 

design is presented in Figure 4.  

In Chapter 3, I assess responses of S. latissima from the Arctic to temperature and salinity variation at 

both physiological and transcriptomic level and target research Question 1 defined above. These re-

sponses are discussed in the context of the current warming rates in the Arctic. In Chapter 4, a compara-

tive analysis between the two geographical sites is provided solely at the transcriptomic level targeting 
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research Question 2. I discuss similarities and disparities in the gene expression profiles of algae from 

Roscoff and Spitsbergen and relate this to the environmental parameters of the original sites. Then, I 

explore how these responses might correlate with phenotypic plasticity and/or ecotypic differentiation 

in S. latissima at the transcriptomic level (chapter 4) and physiological level (chapter 5). In Chapter 5, 

physiological data obtained throughout the temperature and salinity experiment in the sporophytes 

from Roscoff is analysed. The acclimation mechanisms involved and how this relates to the physiological 

tolerance of the species to temperature and salinity variation is discussed. This Chapter further address-

es research Questions 1 and 2. Then, I performed a second laboratory experiment targeting gameto-

phytes, the microscopic, haploid life-history stage (Chapter 6). Considering the limited information avail-

able for this life stage, the experiment was focused on a single abiotic factor as interactions might prove 

too difficult to interpret. Gene expression profiles changes driven by temperature (4 °C, 12 °C and 20 °C) 

and sex (male and female) were evaluated (experimental design displayed on Figure 5). Temperature 

levels applied were chosen to mirror temperature range experience at the site of origin: Helgoland, 

German Bight, North Sea.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 Experimental design and parameters measured during the temperature and salinity acclimation experiment in sporo-
phytes of Saccharina latissima (Chapters 3, 4 and 5). In laboratory, sporophytes from Roscoff, North Atlantic and from Spitsber-
gen, Arctic were raised under the same conditions (cultivation 8 °C SA 30). At the start of the experiment, they were acclimated 
for seven days at 0 °C, 8 °C and 15 °C. After seven days, they were exposed to a low salinity of SA 20 for eleven days, in a total of 
eighteen days of experiment. Several parameters were measured at relevant time points during the experiment. Pigment con-
tent, growth, maximal quantum yield of photosystem II (Fv/Fm), mannitol content, carbon (C), nitrogen (N) and carbon to nitro-
gen ratio (C:N) and gene expression profiles after RNA-sequencing (RNA). 
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Figure 5 Experimental design applied during the temperature acclimation experiment in gametophytes of Saccharina latissima 
by sex. Gametophytes cultures were grown at 12 °C with sexes separated. At the start of the experiment, male and female 
gametophytes were exposed to 4 °C, 12 °C and 20 °C for fourteen days. Growth and Fv/Fm were measured at the start and at 
the end of the experiment. Samples for RNA extraction were taken at the end of the experiment. 
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2 Methodological aspects 
To investigate acclimation mechanisms to abiotic stress in Saccharina latissima I explored both physio-

logical parameters and transcriptomic analysis in a set of laboratory experiments. Physiological and bio-

chemical parameters included chlorophyll fluorescence measurements (Fv/Fm), growth and content of 

pigments, mannitol, carbon and nitrogen. The respective analytical procedures have been readily estab-

lished previously, and methodological details can be found in Chapter 3 (growth, chlorophyll fluores-

cence measurements (Fv/Fm), pigments) and Chapter 5 (growth, chlorophyll fluorescence measure-

ments (Fv/Fm), pigments, mannitol, carbon and nitrogen). For transcriptomic analysis, however, novel 

non-standardized approaches had to be developed. In this respect, the main challenge of the project 

was the in-depth analysis of a non-model species, for which only fragmented genomic information is at 

hand. Furthermore, due to some peculiar biochemical characteristics in kelp (i.e. cellular phlorotannin 

and high carbohydrate loads) even well-established extraction methods had to be optimized de novo 

and tailored to the system under investigation. Therefore, an overview of the methodology and work-

flow applied to the transcriptomic data resulting from RNA-sequencing from S. latissima is provided 

below.  

 RNA extraction and sequencing 2.1

Extracting good quality RNA from Phaeophyta is challenging due to the high content of polysaccharides 

and phenolic compounds (Pearson et al., 2006; Heinrich, 2012). We followed the protocol by Heinrich et 

al. (2012a) that has proved successful in S. latissima sporophytes. This thesis confirms that this protocol 

enables good quality RNA extraction for both sporophytes and gametophytes of the species. It is im-

portant to note that this protocol is time-consuming (four hours per four samples), involves working 

with liquid nitrogen and requires extractions to be performed within four weeks for optimal RNA quality. 

After extraction, RNA quality was analysed by the NanoDrop ND-1000 UV-Vis Spectrophotometer and 

Agilent 2100 Bioanalyzer (Agilent Technologies, Germany). For sequencing at Cologne Center for ge-

nomics (CCG), cDNA libraries were prepared with an Illumina TruSeq RNA Library Prep Kit according to 

the manufacturer protocol. The libraries were sequenced on an Illumina Hiseq 2500 and 75 bp paired 

reads were clipped using default values of the Illumina software.  

 Bioinformatics analysis of RNA-sequencing 2.2

Previous transcriptomic studies in S. latissima used microarrays (Heinrich et al., 2012a; Heinrich et al., 

2012b; Heinrich et al., 2015; 2016). In this study, instead we used RNA-sequencing to measure expres-

sion of genes in the experiments performed as this offers several advantages over microarrays (Wang et 

al., 2009). Namely, microarrays are dependent on existing knowledge of genome sequences; they pro-

duce a high background noise and are unable to detect lowly expressed genes (Wang et al., 2009). 

Hence, since RNA-sequencing is a novel technology that only recently became financially feasible and 

therefore accessible to non-model organisms, this thesis is to our knowledge the first to include tran-

scriptomic analysis  using RNA-sequencing following a (biotic or abiotic) stimulus in S. latissima and con-

tributes to a still limited pool of RNA-sequencing studies in seaweeds. Raw reads resulting from the se-
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quencing undertaken during this thesis are available on the Array express repository under the acces-

sion numbers E-MTAB-8267 for the gametophyte data and E-MTAB-7348 for the sporophyte data and 

therefore are valuable genomic resources that can be further analysed with several applications. For 

example, this data is currently being used to improve the annotation of the genome of S. latissima under 

the project Phaeoexplorer. Phaeoexplorer aims to generate a genomic data resource constituted of 

complete, annotated genome sequences for 69 strains corresponding to 47 species of brown algae (rep-

resenting all major orders) and four unicellular and multicellular sister species. 

As there is no available genome yet for the species studied, we performed a de novo transcriptome as-

sembly. In order to obtain the best remapping rates of the reads for downstream analysis, we assem-

bled two transcriptomes, one based on the experiment with sporophytes in response to salinity and 

temperature variation and a second one based on the experiment with gametophytes in response to 

temperature.  

The bioinformatics pipeline followed was similar for both de novo transcriptomes (see summary in Fig-

ure 6). For further details, see Material and Methods in Chapters 3, 4 and 6. 

  

 

 

 

Figure 6 Bioinformatics pipeline followed for the RNA-seq data obtained in this thesis. In numbers, the sequential steps since 
obtaining the DNA sequences until statistical analysis. First, raw reads were filtered according to defined quality parameters 
(1), the clean reads were normalized (2) before the de novo assembly (3). After filtering this assembly, statistical analysis was 
performed on the transcriptome. First, differential expression was analyzed (6), followed by GO enrichment (7). In red, the 
software used for each step. 
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 Interpretation and visualization of transcriptomic data 2.3

2.3.1 Functional annotation 

An important step in analysis of transcriptomic data is the annotation of expressed genes. Considerable 

efforts have been made to improve annotation rates and several databases and tools are now accessible 

(e.g. Buchfink et al., 2015; Bryant et al., 2017; Huerta-Cepas et al., 2017; The Gene Ontology 

Consortium, 2018). Annotation is mostly based on the search for orthologues, under the assumption 

that genes with similar sequences in other taxa will have similar functions as the taxa being studied. This 

assumption has been verified and enables poorly studied groups such as brown algae to benefit from 

functional information gathered by studies on model species (Gabaldón and Koonin, 2013). However, 

high annotation rates are hampered by the evolutionary distance between brown algae and plants, 

green and red algae (Cock et al., 2010) and the unique features that brown algae have developed in 

response to their environment (Barre et al., 2010; Michel et al., 2010a; b). Moreover, genetic transfor-

mation in brown algae has not been accomplished so far which hinders functional analysis in the group 

(Mikami, 2014). Hence, the function of a large proportion of identified expressed genes in this thesis as 

in other contemporary work remains unknown (e.g. Heinrich et al., 2012a; Salavarría et al., 2018). 

Therefore, interpretation of the data has to be performed in light of what is known in better-studied 

organisms and extrapolations need to be done cautiously. Nevertheless, the high coverage offered by 

current sequencing technologies means that several hundred genes per treatments have known func-

tions that provide important insight into acclimation mechanisms in brown algae.  

 

2.3.2 Gene Ontology analysis 

The Gene Ontology (GO) project provides a standardized vocabulary of the role of gene products and 

proteins that enables comparisons across organisms. Gene Ontology is divided in three independent 

domains: Biological process, Molecular function and Cellular component that comprise different aspects 

of a gene product. Biological process refers to “biological objective to which the gene or gene product 

contributes”, Molecular function to “the biochemical activity (including specific binding to ligands or 

structures) of a gene product” and Cellular component refers to “the place in the cell where a gene 

product is active” (Ashburner et al., 2000). A single gene or protein is expected to have at least one GO 

term within each ontology but it can have several dependent on the knowledge available. As an exam-

ple, to the protein “Heat shock 70 kDa protein 7, chloroplastic”, gene “HSP70-7” were attributed 9 GO 

terms within Biological process (e.g. GO:0009408, response to heat), 9 GO terms within Molecular func-

tion (e.g. GO:0005515, protein binding) and 7 within Cellular component (e.g. GO:0009579, thylakoid) 

(https://www.uniprot.org/uniprot/Q9LTX9). Moreover, the specificity of a term varies; and more gen-

eral processes are connected to more specific ones in a parent-child relationship within each ontology. 

For example, the GO term “response to heat” is a child (more specific) term of the term “response to 

stress” that in turn is a child term of “response to stimulus” and “response to stimulus” is a child-term of 

the ontology “Biological process” (Figure 7). Moreover, a GO term can have several parent-terms such as 

“response to heat” is a child-term of both “response to temperature stimulus” and “response to stress”. 
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Figure 7 Ancestor chart of the GO 
term “response to heat” revealing 
relationships between GO terms and 
their hierarchy within the Ontology 
“Biological process”. Specificity of the 
process increases from parent to child 
terms, from top to bottom respective-
ly. Figure was obtained from 
https://www.ebi.ac.uk/ 
QuickGO/term/GO:0009408 

 

Hence, interpreting biological meaning from GO terms can be 

challenging considering that GO terms can be at the same rank, 

meaning same depth within the graph, but have different levels 

of specificity. In addition, there is considerable redundancy be-

tween parent-child relationships that further complicate inter-

pretation. Moreover, GO terms are assigned based on available 

literature and therefore are biased towards the most well-

studied species, namely human and mouse. Several programs 

have been developed to help summarize and interpret the re-

sults of GO enrichment analysis in a meaningful way. Web-based 

approaches such as cateGOrizer can be used to summarize long 

lists of GO terms. This approach reduces the list of GO terms by 

categorizing and grouping them into more general terms accord-

ing to the user’s interest or based on available classification 

methods (Hu et al., 2008). An example is given on the table 1, 

from a list of 20 GO terms; cateGOrizer provides a list of 12 par-

ent GO terms that can be more easily interpreted. The counts 

column tells us how many of our input GO terms can be catego-

rized within each given GO term. We believe that this approach is 

useful when genome-wide analysis provides a long list of signifi-

cant GO terms particularly to reduce human-biased functions in 

non-model species. Therefore, this approach was used on Chap-

ters 3, 4 and 6.   

Based on the differentially expressed genes with assigned GO 

terms, a GO enrichment analysis was performed (Young et al., 

2010). This analysis reveals which GO terms are enriched (over-represented) under a certain condition 

(e.g. higher temperature) compared to others (e.g. control temperature). Hence, enriched GO terms 

under high temperature indicate the cellular processes that are induced in the algae when exposed to 

heat. This analysis is often easier to interpret than differential expression; however it is restricted to the 

genes with GO annotation.  

Another useful annotation tool is KOG (Eukaryotic Orthologous Groups) (Tatusov et al., 2003). KOG cat-

egories used to prepare the Figure 8 on Chapter 8.1.1. were obtained through the annotation tool egg-

NOG-mapper (Huerta-Cepas et al., 2017). 
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Table 1 Example of an output list from cateGOrizer (Hu et al., 2008) when the classification method “GO slim” was applied on 
the right, after a given input list of GO terms (on the left). 

Input (list of GO terms) Output of cateGOrizer 

GO:0043167 ion binding 
GO Class ID 

molecular_function 
Counts 

Frac-
tions 

GO:0045335 phagocytic vesicle GO:0003674 binding 13 23.64% 

GO:0030139 endocytic vesicle 
GO:0005488 cellu-

lar_component 
11 20.00% 

GO:0016787 hydrolase activity GO:0005575 intracellular 7 12.73% 

GO:0032555 
purine ribonucleotide 
binding 

GO:0005622 cell 5 9.09% 

GO:0097708 intracellular vesicle GO:0005623 nucleotide binding 5 9.09% 

GO:0017076 
purine nucleotide 
binding 

GO:0000166 cytoplasm 4 7.27% 

GO:0097367 
carbohydrate deriva-
tive binding 

GO:0005737 catalytic activity 3 5.45% 

GO:0035639 
purine ribonucleoside 
triphosphate binding 

GO:0003824 cytoskeleton 2 3.64% 

GO:0032553 ribonucleotide binding 
GO:0005856 cytoskeletal pro-

tein binding 
1 1.82% 

GO:0031410 cytoplasmic vesicle GO:0008092 actin binding 1 1.82% 

GO:1901265 
nucleoside phosphate 
binding 

GO:0003779 protein binding 1 1.82% 

GO:0000166 nucleotide binding GO:0005515 hydrolase activity 1 1.82% 

GO:0003824 catalytic activity  Total 55 100.00% 

GO:0036094 
small molecule bind-
ing 

 
   

GO:0043168 anion binding     

GO:0044430 cytoskeletal part     

GO:0031982 vesicle     

GO:0043227 
membrane-bounded 
organelle 

    

GO:0003779 actin binding     

 



   
 

 

 



   
 

 
 

 

 

 

 

 

 

 

 

 

 

3 Responses of the kelp Saccharina latissima (Phaeophyceae) to the 

warming Arctic: from physiology to transcriptomics 
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Table S1. Results of the repeated measures ANOVA for effects of temperature and time on fresh 

weights measured during 7 days of temperature pre-acclimation for Saccharina latissima. Statistically 

significant values are indicated by asterisks (p ≤ 0.05). 

 

 

Table S2. Results of the repeated measures ANOVA for effects of temperature, salinity and time on 

fresh weights measured during 11 days of salinity treatment within three temperatures for Saccharina 

latissima. Statistically significant values are indicated by asterisks (p ≤ 0.05). The homogeneity of 

variance was violated for fresh weights on day 7. 

 

 

 

Variable Source df MS F ratio p value 

Fresh weight Within-subjects effects         

       Time 1.451 146930.909 52.056 < 0.001* 

       Time × Temperature 2.902 5165.85 1.83 0.173 

  Between-subjects effects         

       Temperature 2 11944.191 3.033 0.078 

       Error 15 3938.398     

Variable Source df MS F ratio p value 

Fresh weight Within-subjects effects         

       Time 1.419 536280.964 51.743 < 0.001* 

       Time × Temperature 2.839 63532.758 6.13 0.006* 

       Time × Salinity 1.419 77153.498 7.444 0.009* 

       Time × Temperature × Salinity 2.839 24108.379 2.326 0.114 

      Error 17.032 10364.419   

  Between-subjects effects         

       Temperature 2 388249.643 8.075 0.006* 

       Salinity 1 192541.13 4.005 0.069 

       Temperature × Salinity 2 11296.138 0.235 0.794 

       Error 12 48078.341     



  
 

46 
 

Table S3. Results of the repeated measures ANOVA for effects of temperature on Fv/Fm during 7 days 

of temperature pre-acclimation for Saccharina latissima. Statistically significant values are indicated 

by asterisks (p ≤ 0.05). 

 

Table S4. Results of the repeated measures ANOVA for effects of temperature and salinity on Fv/Fm 

during 11 days of salinity treatment for Saccharina latissima. Statistically significant values are indi-

cated by asterisks (p ≤ 0.05). The homogeneity of variance was violated for Fv/Fm on day 14. 

 

 

 

 

 

Variable Source df MS F ratio p value 

Fv/Fm Within-subjects effects 

           Time 1.371 0.015 192.542 < 0.001* 

       Time × Temperature 2.742 0.004 56.025 < 0.001* 

  Between-subjects effects 

  

    

      Temperature 2 0.005 9.894 0.003* 

      Error 12 0.001   

Variable Source df MS F ratio p value 

Fv/Fm Within-subjects effects 

           Time 2.598 0.002 4.373 0.010* 

       Time × Temperature 5.196 0.002 3.736 0.005* 

       Time × Salinity 2.598 0.005 10.922 < 0.001* 

       Time × Temperature × Salinity 5.196 0.003 5.846 < 0.001* 

  Between-subjects effects 

           Temperature  2 0.035 170.640 < 0.001* 

       Salinity 1 0.001  3.553 0.072 

      Temperature × Salinity 2 <0.001 0.543 0.588 

      Error 24 <0.001   
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Table S5. Results of the two-way ANOVA for effects of temperature and salinity on pigments meas-

ured on day 8 for Saccharina latissima. Statistically significant values are indicated by asterisks (p ≤ 

0.05). Acc and DPS were analysed by non-parametric tests as they had abnormal distributions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Factor df MS F ratio p value 

Chlorophyll a Temperature 2 0.522 3.503 0.047 

  Salinity 1 0.567 3.805 0.063 

  Temperature × Salinity 2 0.128 0.859 0.437 

  Error 23 0.149     

VAZ Temperature 2 0.012 8.019 0.002* 

  Salinity 1 0.008 5.332 0.03* 

  Temperature × Salinity 2 < 0.001 0.034 0.967 

  Error 23 0.001     

Acc Temperature Kruskal-Wallis Test   0.001* 

  Salinity Mann-Whitney U Test   0.290 

DPS Temperature Kruskal-Wallis Test 0.072 

  Salinity Mann-Whitney U Test 0.78 
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Table S6. Results of the two-way ANOVA for effects of temperature and salinity on pigments meas-

ured on day 18 for Saccharina latissima. Statistically significant values are indicated by asterisks (p ≤ 

0.05). Chlorophyll a was analysed by non-parametric tests as it had abnormal distributions. 

 

 

 

 

 

 

 

 

 

 

 

Variable Factor df MS F ratio p value 

Acc Temperature 2 0.683 5.187 0.013* 

  Salinity 1 0.165 1.253 0.274 

  Temperature × Salinity 2 0.508 3.859 0.035* 

  Error 24 0.132     

VAZ Temperature 2 0.001 1.078 0.356 

  Salinity 1 0.012 11.175 0.003* 

  Temperature × Salinity 2 0.001 0.743 0.486 

  Error 24 0.001     

DPS Temperature 2 0.009 41.098 < 0.001* 

  Salinity 1 0.004 17.247 < 0.001* 

  Temperature × Salinity 2 0.001 2.909 0.074 

  Error 24 < 0.001     

Chlorophyll a Temperature Kruskal-Wallis Test 0.525 

  Salinity Mann-Whitney U Test 0.174 
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Table S7. Transcripts per million (TPM) counts of Trinity genes (above the average TPM value: 22) in 

the control treatment (8°C - SA 30) encoding photosynthesis and photosynthetic components, heat 

shock proteins, ROS scavenging system and potential osmolytes. Most of them were constitutively 

expressed in all treatments. 

Trinity gene name Putative gene product Annotation  

e-Value 

TPM 

Photosynthesis and photosynthetic components  

TRINITY_DN30544_c6_g1 Fucoxanthin-chlorophyll a-c binding protein F 8.3e-34 16570 

TRINITY_DN30544_c6_g5 Fucoxanthin-chlorophyll a-c binding protein B 6.8e-56 5236 

TRINITY_DN29722_c7_g2 Fucoxanthin-chlorophyll a-c binding protein D 1.9e-40 4054 

TRINITY_DN29200_c1_g4 Fucoxanthin-chlorophyll a-c binding protein A 3.1e-33 3147 

TRINITY_DN28592_c7_g5 Fucoxanthin-chlorophyll a-c binding protein 2.5e-19 2150 

TRINITY_DN29729_c0_g1 Fucoxanthin-chlorophyll a-c binding protein B 1.7e-70 1882 

TRINITY_DN28702_c0_g1 Photosystem II 12 kDa extrinsic protein 3.3e-28 1876 

TRINITY_DN29000_c6_g1 Glyceraldehyde-3-phosphate dehydrogenase 1.1e-17 1824 

TRINITY_DN28961_c6_g1 Chlorophyll a-b binding protein 2 1.1e-12 1712 

TRINITY_DN28242_c3_g2 Light-harvesting complex I LH38 proteins 4.3e-10 1697 

TRINITY_DN28609_c9_g1 Chlorophyll a-b binding protein L1818 9.6e-16 1649 

TRINITY_DN28988_c7_g1 Phosphoglycerate kinase 2.6e-150 1491 

TRINITY_DN28856_c4_g1 Chlorophyll a-b binding protein 1B-21 3.8e-09 1439 

TRINITY_DN29200_c1_g5 Fucoxanthin-chlorophyll a-c binding protein E 3.7e-98 1310 

TRINITY_DN28777_c1_g5 Light-harvesting complex I LH38 proteins 9.9e-14 1248 

TRINITY_DN29649_c4_g2 Ferredoxin--NADP reductase 3.8e-105 1169 

TRINITY_DN29722_c7_g6 Fucoxanthin-chlorophyll a-c binding protein C 8.3e-06 1014 

TRINITY_DN29729_c0_g3 Fucoxanthin-chlorophyll a-c binding protein F 7.3e-27 975 

TRINITY_DN29881_c3_g3 Oxygen-evolving enhancer protein 1 1.3e-40 944 

TRINITY_DN28601_c5_g1 Photosystem I chlorophyll a/b-binding protein 5 1.4e-16 927 

TRINITY_DN29200_c1_g2 Fucoxanthin-chlorophyll a-c binding protein B 4.1e-77 913 

TRINITY_DN28012_c3_g2 Glucose-6-phosphate/phosphate translocator 2 1e-57 904 

TRINITY_DN29604_c2_g2 Magnesium-chelatase subunit ChlH 0 691 

TRINITY_DN29909_c5_g1 Sedoheptulose-1,7-bisphosphatase 3.1e-26 668 

TRINITY_DN29217_c3_g1 Fructose-1,6-bisphosphatase 1 7.1e-96 663 

TRINITY_DN26828_c0_g1 Glucose-6-phosphate/phosphate translocator 2 2.4e-56 648 

TRINITY_DN27134_c6_g1 Chlorophyll a-b binding protein 1B-21 1.5e-11 613 

TRINITY_DN27779_c10_g1 Phosphoribulokinase 1.6e-141 606 

TRINITY_DN28450_c6_g5 Cytochrome b6-f complex iron-sulfur subunit 5.9e-61 526 

TRINITY_DN27082_c10_g4 Chlorophyll a-b binding protein L1818 1e-06 505 

TRINITY_DN29151_c2_g1 Geranylgeranyl diphosphate reductase 2.4e-92 489 

TRINITY_DN26561_c13_g1 Chlorophyll a-b binding protein CP29.2 1e-14 456 

TRINITY_DN26390_c14_g1 Fucoxanthin-chlorophyll a-c binding protein D 4.4e-07 398 

TRINITY_DN28761_c0_g1 Chlorophyll a-b binding protein L1818 3e-11 322 

TRINITY_DN30607_c5_g5 Chlorophyll a-b binding protein L1818 1.4e-12 273 

TRINITY_DN28988_c5_g2 Phosphoglycerate kinase 5.3e-65 258 

TRINITY_DN30607_c4_g1 Chlorophyll a-b binding protein L1818 2.1e-10 253 

TRINITY_DN27874_c8_g1 Protein thylakoid formation 1 3.2e-22 237 

TRINITY_DN27117_c5_g2 ATP-dependent zinc metalloprotease FTSH 5 3.1e-114 190 

TRINITY_DN30235_c1_g4 Chlorophyll a-b binding protein L1818 3e-25 179 

TRINITY_DN28988_c5_g1 Phosphoglycerate kinase 6.1e-25 178 

TRINITY_DN30327_c7_g2 Chlorophyll a-b binding protein L1818 3.3e-10 170 

TRINITY_DN26697_c7_g1 Photosystem II repair protein PSB27-H1 3.1e-14 151 

TRINITY_DN27421_c2_g2 Magnesium protoporphyrin IX methyltransferase 9.8e-69 107 

TRINITY_DN27928_c3_g1 Zeaxanthin epoxidase 1.5e-69 95 

TRINITY_DN26767_c6_g1 Ferredoxin-1 1.1e-08 74 

TRINITY_DN20017_c0_g1 Inner membrane ALBINO3-like protein 2 3.1e-44 66 

TRINITY_DN29194_c2_g1 Light-harvesting complex-like protein OHP2 8.4e-07 53 

TRINITY_DN28229_c8_g2 Protoporphyrinogen oxidase 1 1.5e-47 51 

TRINITY_DN29519_c0_g1 Violaxanthin de-epoxidase 5.5e-82 44 
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TRINITY_DN30265_c9_g1 Chlorophyll synthase 2.9e-122 28 

TRINITY_DN27688_c8_g1 Fructose-1,6-bisphosphatase 1 1e-35 25 

TRINITY_DN27115_c9_g2 Violaxanthin de-epoxidase 4.1e-22 24 

TRINITY_DN29561_c9_g1 Fucoxanthin-chlorophyll a-c binding protein 1.9e-28 22 

Heat shock proteins    

TRINITY_DN30375_c6_g1 Heat shock protein 90-1 6.5e-113 823 

TRINITY_DN30464_c1_g1 Heat shock cognate 70 kDa protein 2.3e-25 756 

TRINITY_DN27078_c0_g1 Heat shock 70 kDa protein 5 2e-24 724 

TRINITY_DN28363_c10_g1 78 kDa glucose-regulated protein 4.9e-83 550 

TRINITY_DN27875_c2_g2 Heat shock 70 kDa protein 5 2.1e-137 254 

TRINITY_DN28998_c2_g2 Probable assembly chaperone of rpl4 4e-21 82 

TRINITY_DN27183_c5_g2 Chaperone protein DnaK 2.7e-231 80 

TRINITY_DN27762_c7_g1 Heat shock protein 90-5 6.7e-44 72 

TRINITY_DN60391_c0_g1 Hsp90 co-chaperone Cdc37 1.1e-35 49 

TRINITY_DN26569_c2_g4 Heat shock 70 kDa protein 1B 9.6e-64 46 

TRINITY_DN30250_c0_g1 Mitochondrial chaperone BCS1 4.8e-11 35 

TRINITY_DN27426_c10_g1 Mitochondrial chaperone BCS1 1.2e-10 30 

TRINITY_DN26698_c9_g3 Heat shock protein sti1 homolog 1.8e-16 27 

TRINITY_DN27313_c8_g1 Activator of 90 kDa heat shock protein ATPase homolog 

2 

2.8e-09 26 

TRINITY_DN26054_c0_g1 78 kDa glucose-regulated protein 2e-85 22 

TRINITY_DN26904_c6_g9 Chaperone protein DnaJ 2.3e-18 22 

ROS scavenging system    

TRINITY_DN30059_c1_g4 Vanadium-dependent bromoperoxidase 3.5e-11 3149 

TRINITY_DN27187_c7_g1 Vanadium-dependent bromoperoxidase 2.6e-25 1165 

TRINITY_DN30022_c1_g1 Vanadium-dependent bromoperoxidase 1.4e-56 789 

TRINITY_DN29878_c9_g2 Vanadium-dependent bromoperoxidase 1.6e-79 611 

TRINITY_DN26334_c3_g2 Superoxide dismutase (Mn) 1.9e-35 545 

TRINITY_DN30345_c4_g3 Vanadium-dependent bromoperoxidase 1.8e-19 265 

TRINITY_DN29226_c7_g3 Putative heme-binding peroxidase 7e-72 217 

TRINITY_DN27930_c7_g2 Glutaredoxin 5.5e-09 213 

TRINITY_DN26569_c2_g6 Superoxide dismutase (Fe) 4.5e-08 201 

TRINITY_DN28908_c2_g1 Vanadium-dependent bromoperoxidase 3.2e-36 200 

TRINITY_DN30390_c2_g1 Vanadium-dependent bromoperoxidase 2.5e-90 189 

TRINITY_DN29181_c1_g1 Vanadium-dependent bromoperoxidase 4.1e-58 165 

TRINITY_DN29577_c3_g2 Probable L-ascorbate peroxidase 6 3.4e-73 153 

TRINITY_DN26836_c8_g7 Superoxide dismutase (Cu-Zn) 3.8e-31 149 

TRINITY_DN29164_c10_g6 Probable L-ascorbate peroxidase 8 2.6e-11 135 

TRINITY_DN26999_c7_g3 Cytochrome c peroxidase 2.1e-58 132 

TRINITY_DN30053_c6_g5 Vanadium-dependent bromoperoxidase 2.5e-73 105 

TRINITY_DN28139_c1_g3 Monothiol glutaredoxin-S7 4.4e-31 97 

TRINITY_DN27538_c12_g4 L-ascorbate peroxidase T 8.2e-39 92 

TRINITY_DN28908_c2_g4 Vanadium-dependent bromoperoxidase 1.4e-10 92 

TRINITY_DN29181_c1_g2 Vanadium-dependent bromoperoxidase 1.5e-09 85 

TRINITY_DN30022_c1_g10 Vanadium-dependent bromoperoxidase 1e-38 84 

TRINITY_DN27187_c6_g2 Vanadium-dependent bromoperoxidase 4.7e-91 82 

TRINITY_DN27680_c4_g1 Catalase 1.5e-176 72 

TRINITY_DN29065_c7_g1 Vanadium-dependent bromoperoxidase 3e-08 68 

TRINITY_DN26517_c11_g3 Superoxide dismutase (Mn) 4.1e-70 64 

TRINITY_DN30390_c2_g14 Vanadium-dependent bromoperoxidase 8.3e-12 55 

TRINITY_DN26543_c4_g1 Thioredoxin 5.8e-16 55 

TRINITY_DN25903_c0_g1 Peroxiredoxin Q 1.5e-35 47 

TRINITY_DN26476_c10_g1 Glutaredoxin arsenate reductase 3.6e-39 45 

TRINITY_DN28091_c0_g2 Thioredoxin-like protein HCF164 1.7e-24 43 

TRINITY_DN39666_c0_g1 Thioredoxin-2 2e-10 38 

TRINITY_DN27355_c7_g1 Monothiol glutaredoxin-S15 3.1e-10 36 

TRINITY_DN26522_c10_g1 Thioredoxin H-type 1.9e-20 33 

TRINITY_DN26569_c2_g1 Superoxide dismutase (Fe) 1.4e-57 29 
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TRINITY_DN27832_c4_g1 Glutaredoxin 2 6.1e-28 27 

TRINITY_DN28040_c2_g1 Thioredoxin 7e-18 22 

Potential osmolytes    

TRINITY_DN25054_c0_g1 Oxygen-dependent choline dehydrogenase 2.7e-69 103 

TRINITY_DN29245_c5_g1 Mannitol 2-dehydrogenase 1.5e-93 60 

TRINITY_DN29689_c1_g1 Oxygen-dependent choline dehydrogenase 9.8e-29 60 

TRINITY_DN29689_c1_g2 Oxygen-dependent choline dehydrogenase 2.9e-13 24 
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Figure S1. Photograph of the spot-labeled sporophytes at 0°C - SA 20 (A),  0°C - SA 30 (B), 8°C - SA 20 

(C), 8°C - SA 30 (D), 15°C - SA 20 (E) and 15°C - SA 30 (F) on the last day of experiment (day 18). 
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Figure S2. Relative growth rates (day
-1

, mean ± standard deviation; n = 3) of fresh weights of Saccharina 

latissima after 7 days of temperature pre-acclimation (from day 0 to day 7; A) and 11 days of temperature 

and salinity treatment (from day 7 to day 18; B). Significant differences between temperature and salinity 

are shown by alphabetic characters and asterisk respectively (p ≤ 0.05). 

 

 

Figure S3. Chlorophyll a content (A), accessory pigment pool content (Acc; B), xanthophyll-cycle pool 

content (VAZ; C) (μg mg
-1

 DW; mean ± standard deviation; n = 5) and the de-epoxidation states of xan-

thophyll cycle (DPS; D) (mean ± standard deviation; n = 5) of Saccharina latissima after exposure to two 

salinity conditions (SA 20, 30) within three temperatures (0, 8, 15°C) on day 18. Significant differences 

between temperature and salinity are shown by alphabetic characters and asterisk respectively (p ≤ 0.05). 

The difference of Acc between each treatment was shown by alphabetic characters since the interaction of 

temperature × salinity was significant.  
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Figure S4. Functional categories derived from enriched GO terms of down-regulated genes of treatment 

0°C - SA 20 (A), 0°C - SA 30 (B), 8°C - SA 20 (C), 15°C - SA 20 (D) and 15°C - SA 30 (E) compared to the 

control (8°C - SA 30): Classification after EGAD2GO using cateGOrizer.  

 



    
 

 
 

 

 

 

 

 

 

 

 

 

4 Is geographical variation driving the transcriptomic responses to 

multiple stressors in the kelp Saccharina latissima?
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5 Physiological responses to temperature and salinity variation in ju-

venile sporophytes of Saccharina latissima from Roscoff, France
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Authors: Cátia Monteiro, Huiru Li, Nora Diehl, Inka Bartsch, Sandra Heinrich, Kai Bischof, Jonas Collén 

Abstract 

The kelp Saccharina latissima experiences a wide range of environmental variation along its geo-

graphical and vertical range. Temperature and salinity are two of the main abiotic factors influencing 

growth, photosynthesis and biochemical composition. Moreover, interactive effects might modify 

the results described for single effects. In shallow water coastal systems exposure to increased tem-

perature and low salinity are expected as consequence of global warming and increased precipitation 

and coastal run-off. 

To understand the acclimation mechanisms of S. latissima to changes in temperature and salinity, we 

performed a laboratory experiment in which juvenile sporophytes were exposed to a combination of 

temperature (0 °C, 8 °C and 15 °C) and salinity levels (SA 20 and SA 30). After a temperature acclima-

tion of seven days, sporophytes were exposed to low salinity (SA 20) for a period of eleven days. 

Growth, and maximal quantum yield of photosystem II (Fv/Fm), pigment, mannitol, C:N ratio, carbon 

and nitrogen content were measured at several time points.  

All physiological and biochemical parameters tested were significantly affected by low temperature. 

Chlorophyll a, accessory pigment pool and Fv/Fm were significantly lower at 0 °C, while the de-

epoxidation state was increased at both 0 °C and 8 °C. In contrast, pigment content and Fv/Fm were 

to a large extent irresponsive to salinity; however, mannitol content and growth decreased with de-

creased salinity. 

This study reveals a significant impact of temperature and salinity variation on S. latissima perfor-

mance. Negative effects of salinity are exacerbated at low temperatures. We report for the first time 

in S. latissima an increase in the osmolyte mannitol in response to low temperature that has ecologi-

cal and economic implications.  

 

 

Introduction 

Kelps (order Laminariales, class Phaeophyceae) are important primary producers and ecosystem en-

gineers in coastal ecosystems (Dayton, 1985; Bartsch et al., 2008). Moreover, kelps are rich in bioac-

tive compounds with applications in food (Wells et al., 2017), feed (Correa et al., 2016), energy (Fer-

nand et al., 2017), agrochemicals and pharmaceutical industries (Holdt and Kraan, 2011). Among 

those, certain pigments, such as carotenoids, are natural colorants and antioxidants with applications 

in human health (Wells et al., 2017). Moreover, the sugar alcohol mannitol has application in cosmet-

ics and pharmaceuticals. In Phaeophyceae, besides its role as storage compound (Scheschonk et al., 

2019), mannitol also has a function in osmotic adjustment and therefore changes in concentration 

follow variation in the salinity regime (Iwamoto and Shiraiwa, 2005; Gylle et al., 2009). Saccharina 

latissima is a kelp species common in temperate to polar rocky shores in the northern hemisphere. 
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Its distribution in Europe ranges from the Arctic (Spitsbergen, Svalbard) to the north of Portugal 

(Araújo et al., 2016; Neiva et al., 2018). Beyond its ecological relevance as primary producer and eco-

system engineer, interest in the cultivation of S. latissima has been rising given the several emergent 

industrial applications (e.g. Sanderson et al., 2012; Boderskov et al., 2016; Lopez-Contreras et al., 

2016). 

The biochemical composition of seaweeds is modulated by environmental factors, such as tempera-

ture, salinity, light and nutrients (Stengel et al., 2011). Therefore, several studies provide chemical 

composition profiles of field kelps by season and geographical location (Fernandes et al., 2016; 

Schmid et al., 2017). However, links to the specific abiotic factors and their interactions driving 

changes in biochemical composition remain poorly explored. Laboratory experiments with cultivated 

material limit the confounding effects of multivariate abiotic factors at play in the field (Davison, 

1987). Moreover, laboratory experiments with multifactorial designs allow the exploration of interac-

tive effects that can be related to field conditions.  

Temperature is a major factor driving distributional ranges both at global and local scale by modulat-

ing survival, growth and reproduction of macroalgae (Lüning, 1990a; Lima et al., 2007; Harley et al., 

2012). Temperature influences photosynthesis of macroalgae by regulating photosynthetic efficiency 

and pigment concentrations (Davison, 1987; Andersen et al., 2013). Furthermore, salinity variation 

drives significant modulation at the physiological and biochemical level in seaweeds, with effects in 

growth and survival (Gordillo et al., 2002; Spurkland and Iken, 2011); for example salinity effects in 

photochemistry have been reported (Scherner et al., 2013). Subtidal seaweeds, such as S. latissima, 

are expected to inhabit a more stable saline environment in comparison with intertidal species. 

Therefore, they are expected to be less tolerant to salinity changes than seaweeds living upper in the 

shore (Kirst, 1990; Gordillo et al., 2002). However, subtidal kelps are locally and intermittently sub-

jected to hyposalinity driven by precipitation events, tidal ranges and freshwater input (Lüning, 

1990b; Borum et al., 2002; Mortensen, 2017). Moreover, S. latissima is known to inhabit brackish 

waters such as the Baltic sea (Nielsen et al., 2016) and the intertidal in British Columbia, Canada 

(Druehl, 1967; Druehl and Hsiao, 1977). Hence, S. latissima has been reported to survive salinities of 

SA 10 and to grow from SA 13 on (Karsten, 2007; Spurkland and Iken, 2011). Nevertheless, the interac-

tion of temperature and salinity effects on macroalgae performance has been rarely investigated. 

Understanding acclimation strategies to both temperature and salinity changes will inform conserva-

tion practices and ecological consequences of local environmental changes.  

Saccharina latissima has been traditionally harvested and it is recently also commercially cultivated 

in Brittany, France (Mesnildrey et al., 2012; Bernard et al., 2019). S. latissima in Roscoff, Brittany is 

exposed to high tidal coefficients (Gévaert et al., 2003) and low tides might lead to exposure to low 

salinity (Lüning, 1990a). Therefore, understanding how chemical profiles of S. latissima react to 

changes in abiotic factors can support site selection for commercial purposes (Hafting et al., 2015). 

To investigate physiological and biochemical responses of the sugar kelp S. latissima to variations in 

temperature and salinity juvenile sporophytes were exposed under controlled laboratory conditions 

and samples were taken at several time points within 18 days. Hence, this study explores the time-

dependent acclimation mechanisms to temperature and salinity in S. latissima that underline the 

species wide distribution.  
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Material and Methods 

Algal material and experimental design 

Young sporophytes of S. latissima were raised from stock cultures of uniparental male and female 

gametophytes (#3 2013 Roscoff) at the Alfred Wegener Institute Helmholtz Centre for Polar and Ma-

rine Research (AWI, Bremerhaven, Germany) as described by Heinrich et al. (2012). Vegetative game-

tophytes were isolated from spores of one fertile sporophyte collected at Roscoff (48° 43′ 39″ N, 3° 

59′ 13.2″ W; Brittany, France). Sporophytes were cultivated in 5 L glass beakers at 8 °C under a pho-

ton fluence rate of 20 µmol photons m-2 s-1 of photosynthetically active radiation (PAR) (Mitras 

Lightbar Daylight 150, GHL, Germany) with a 18h-light:6h-dark photoperiod in an environmentally 

controlled room. Algae were cultivated for three months in sterile seawater enriched with Provasoli 

(Starr and Zeikus, 1993) with an absolute salinity (SA) of approx. 30 until they reached a length of 5-7 

cm with an average fresh weight of 0.58 g.  

At the start of the experiment, sporophytes were exposed to the temperatures 0 °C, 8 °C and 15 °C 

for seven days (n = 5). After seven days, sporophytes were exposed to a low salinity treatment (SA 20) 

and a control one (SA 30) by each temperature for eleven days in a total of eighteen experimental 

days.  

 

Growth and maximal quantum yield of photosystem II (Fv/Fm) 

During the experimental phase (18 days) fresh weight (n = 3) and maximal quantum yield of photo-

system II (Fv/Fm, n = 5) were measured twice a week. Maximal quantum yield of photosystem II 

(Fv/Fm) was measured with an Imaging PAM (Pulse Amplitude Fluorometer; Walz, Effeltrich, Germa-

ny) after 10 min dark acclimation (n = 5). Fv/Fm values measured with imaging PAM are often slightly 

lower than with other PAM instruments (Nielsen and Nielsen, 2008), therefore initial values of Fv/Fm 

(~ 0.5) were slightly lower than the range considered healthy for brown algae (~ 0.7) (Dring et al., 

1996; Hanelt, 1998). Fresh weight was measured by an analytical digital balance after blotting (Sarto-

rius LA310S) (n = 3). Growth was calculated as percentage of initial to account for variability among 

replicates at the start of the experiment. Area was measured at the start of the experiment using 

ImageJ based on pictures taken (n = 5) (Schneider et al., 2012).  

 

Biochemical parameters 

Samples for biochemical analysis (pigments, mannitol, C and N content) were frozen in liquid nitro-

gen, stored at -80 °C and then lyophilized with a freeze-dryer alpha 1-4 LD plus (Martin Christ Ge-

friertrocknungsanlagen GmbH, Osterode am Harz, Germany) for 24 hours at 1 mbar and -55 °C. Man-

nitol content was measured on days 8, 11 and 18. For the extraction, lyophilized and homogenized 8-

10 mg samples were incubated with 1 mL aqueous ethanol (70%, v/v) for 3-4 hours in a water bath at 

70 °C. After centrifugation (5 min; 13,000 rpm), 800 µL of the supernatant was transferred to a new 

Eppendorf tube and evaporated to dryness with a Speed Vac (Alpha 1-4 LSC plus and RVC 2-25 

CDplus, Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany). Once samples 

were dried, we added 800 µL of HPLC grade water to the dried samples and re-dissolved in an ultra-
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sonic bath and frequent vortexing. When dissolved, samples were centrifuged again (5 min; 13,000 

rpm). 750 µL of the supernatant was transferred to vials for analysis with a HPLC Agilent Technolo-

gies system (1200 Series, Santa Clara, California, USA) with an Aminex Fast Carbohydrate Analysis 

Column HPAP (100x7.8 mm, 9 µm, BioRad, Munich, Germany), protected by a guard cartridge (Phe-

nomenex, Carbo-Pb-2+ 4 x 3.00 mm I.D., Aschaffenburg, Germany) with 100% Milli-Q water as a mo-

bile phase, following the method of Karsten et al. (1991a). D(-)-mannitol standards (C6H14O6, Roth) 

of 1, 6 and 10 mmol were used for calibration. A RI-Detector (35 °C) and the software ‘ChemStation 

for LC 3D systems’ (Agilent Technologies, Waldbronn, Germany) were used to analyze the samples. 

Mannitol contents were calculated in µmol g-1 dry weight (DW). 

C:N ratio, total carbon (C) and total nitrogen (N) contents were analyzed following Graiff et al. (2015) 

on samples taken on days 8, 11 and 18. 2-3 mg of lyophilized and ground samples (n = 4) were 

weighed and packed into tin cartridges (6 x 6 x 12 mm) and combusted at 950 °C. The content of C 

and N were quantified automatically in an elemental analyzer (Vario EL III, Elementar, Langenselbold, 

Germany). As standard acetanilide (C8H9NO) was used (Verardo et al. 1990). Total C and total N con-

tent were calculated in mg g-1 dry weight (DW). The C:N ratio was calculated based on these results.  

Pigment content was determined using a high performance liquid chromatography (HPLC) following 

the protocol by Koch et al. (2016), on days 8 and 18 (n = 5). The accessory pigment pool (Acc.) was 

calculated by adding chlorophyll c2 and fucoxanthin. The xanthophyll cycle pigment pool (VAZ) is the 

sum of the pigments violaxanthin (V), antheraxanthin (A) and zeaxanthin (Z). The de-epoxidation 

state (DPS) was calculated based on the formula DPS=  ((Z+0.5A))/(V+A+Z) as described in Colombo-

Pallotta et al. (2006).  

 

Statistical analysis 

Statistical analyses were performed with the software IBM SPSS statistics version 25. The normality 

assumption was tested with the Shapiro-Wilk test and the homogeneity of variances assumption with 

the Levene’s test. When data complied with the assumptions, a two-way ANOVA was applied to pig-

ment content on days 8 and 18 and to Fv/Fm with temperature and salinity as fixed factors. A re-

peated measures ANOVA was applied to fresh weight with between-subjects effects of temperature 

and salinity and within-subjects effect of time. A three-way ANOVA for the effect of time, tempera-

ture and salinity was applied to mannitol, C:N ratio, total carbon and total nitrogen. When the factor 

time was not significant, a two-way ANOVA for the effect of temperature and salinity was applied to 

mannitol, C:N, total carbon and total nitrogen for each time point measured. When data failed to 

comply with the normality and homogeneity of variances assumptions, non-parametric tests were 

applied – independent samples Kruskal-Wallis test for the effect of temperature and Mann-Whitney 

U test for the effect of salinity. Considering the high standard deviation observed for some biochemi-

cal parameters, we performed a Grubb’s test to detect outliers (Grubbs, 1969) through the webpage 

GraphPad (https://www.graphpad. 

com/quickcalcs/grubbs1/). For subsequent analysis these outlier values were excluded.  
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Results 

Maximal quantum yield of photosystem II (Fv/Fm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Maximal quantum yield of photosystem II (Fv/Fm) of S. latissima from Roscoff after 0, 4, 7, 8, 11, 14 and 18 days of 
experiment at 0 °C, 8 °C and 15 °C (mean ± SD; n = 5). Black boxes mark SA 30, white boxes SA 20. On the left, temperature 
acclimation phase – 7 days at 0 °C, 8 °C, 15 °C and control salinity SA 30; and on the right, salinity x temperature acclimation 
–exposure to low salinity (SA 20) started on day 7, while  control samples were maintained at SA 30 within 0 °C, 8 °C, 15 °C 
for 11 days. Asterisks stand for the significant differences between salinities (p < 0.05).  
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Fv/Fm was not significantly affected by temperature at day 4 (p = 0.826) (Figure 1, Table S1). On day 

7, Fv/Fm was significantly higher at 15 °C than at 8 °C and higher at 8 °C than at 0 °C (p = 0.000). 

Temperature had a significant impact on Fv/Fm on each measurement day during the 11 days of 

temperature and salinity acclimation (Figure 1, Table S2). On day 8, Fv/Fm values were significantly 

lower at 0 °C) than at 8 °C and at 15 °C (p = 0.000). On day 11, Fv/Fm was significantly affected by 

temperature (p = 0.000), salinity (p = 0.007), and the interaction of temperature and salinity (p = 

0.010). Fv/Fm was significantly higher at SA 30 than SA 20 at 0 °C, but not at 8 °C and 15 °C. On days 

11 and 14, Fv/Fm values were significantly lower at 0 °C than at 8 °C and at 15 °C. On day 18, Fv/Fm 

measured at 15 °C was significantly higher than at 8 °C.  
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Growth  

  

 

Figure 2. Fresh weight of S. latissima from Roscoff after 0, 4, 7, 11, 14 and 18 days of experiment at 0 °C, 8 °C and 15 °C (% 
of initial weights; mean ± SD; n = 3). Black boxes mark SA 30, white boxes SA 20. On the left, temperature acclimation phase 
– 7 days at 0 °C, 8 °C, 15 °C and control salinity SA 30; and on the right, salinity x temperature acclimation –exposure to low 
salinity (SA 20) started on day 7, while control samples were maintained at SA 30 within 0°C, 8°C, 15°C for 11 days.  

During temperature acclimation, growth (as percentage of initial) was significantly affected by time 

(p = 0.000), the interaction of time and temperature (p = 0.018), but not by temperature alone (p = 

0.165) (Table S3). Fresh weight was higher after 7 days than at day 4. After 7 days, fresh weight at 8 
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°C was higher than at 0 °C and non-significant (p = 0.062, pairwise comparisons, Bonferroni adjust-

ment) (Figure 2). 

During salinity acclimation, growth was significantly affected by time (p = 0.000), the interaction of 

time and temperature (p = 0.014), the interaction of time and salinity (p = 0.011), temperature (p = 

0.025) and salinity (p = 0.026) (Table S4). Fresh weight was higher at SA 30 than at SA 20 at 11 days 

and 18 days of the experiment. Growth was significantly lower at 0 °C than at 8 °C. Fresh weight at 0 

°C and 15 °C significantly increase from day 7 to day 11, but subsequent increase in growth was not 

significant. Growth at 8 °C increased significantly between days 7 and 11, 11 and 14 and 14 and 18 

(Figure 2). 

Pigments 

Day 8 

 

 Figure 3 Chl a content (A), Acc. (B), VAZ (C) (μg mg−1 DW; mean ± SD; n = 5) and DPS (D) (mean ± SD; n = 5) of S. latissima 
from Roscoff after exposure to two salinity conditions (SA 20, 30) within three temperatures (0 °C, 8 °C, 15 °C) on day 8. 
Black boxes mark SA 30, white boxes SA 20. Significant differences between treatments are shown by different letters (p < 
0.05). Significant differences were identified for Chl a and Acc. after exponential transformation. 

Chl a (chlorophyll a), Acc., VAZ and DPS were all significantly affected by temperature at day 8 (24h of 

salinity exposure), except for VAZ which was only affected by the interaction of temperature and 
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salinity (Table S5). In turn, salinity did not significantly affected pigments except for the above men-

tioned interaction term for VAZ. VAZ was significantly higher at SA 20 than SA 30 at 0 °C (Figure 3). 

DPS was significantly lower at 15 °C than at 0 °C and 8 °C. Chlorophyll a and accessory pigments were 

significantly lower at 0 °C than at 8 °C and 15 °C.  

Day 18 

 

 Figure 4 Chl a content (A), Acc. (B), VAZ (C) (μg mg−1 DW) and DPS (D) (mean ± SD; n = 5) of S. latissima from Roscoff after 
exposure to two salinity conditions (SA 20, 30) within three temperatures (0 °C, 8 °C, 15 °C) on day 18. Significant differences 
between treatments are depicted by different letters (p < 0.05).  

Acc. and DPS were significantly affected by temperature at day 18 (11 days of salinity acclimation), 

but not chl a and VAZ (Table S6, Figure 4). In turn, salinity did not significantly affected pigments at 

day 18. DPS was significantly lower at 15 °C than at 0 °C and 8 °C. Acc. content was significantly high-

er at 15 °C than at 0 °C.  
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Mannitol 

 

Figure 5 Mannitol concentration (mg g−1 DW; mean ± SD; n = 3) of S. latissima from Roscoff after exposure to two salinity 
conditions (SA 20, 30) within three temperatures (0 °C, 8 °C, 15 °C) on days 8, 11 and 18. Different lower case letters indicate 
significant differences between temperatures (p < 0.05). Different upper case letters indicate significant differences be-
tween salinities (p < 0.05). Significant differences were identified at day 18 after log10 transformation. 

Time did not have a significant effect on mannitol concentrations (p = 0.155; Figure 5, Table S7). 

Overall, mannitol content was significantly lower at low salinity (SA 20) than at the control - SA 30 (p = 

0.010). Overall, mannitol concentration at 0 °C was significantly higher than at 8 °C and 15 °C (p = 

0.000). On day 8, mannitol content at 0 °C was significantly higher than at 15 °C (p = 0.001) while on 

day 11, significant differences between 0 °C and 8 °C were observed (p = 0.001). On day 18, mannitol 

content was significantly lower at SA 20 than at SA 30 (p = 0.001), but significance was not detected 

on days 8 and 11. On day 18, mannitol content at 0 °C was significantly higher than both 8 °C and 15 

°C (p = 0.000).   
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C:N, total C and total N content 

 

Figure 6 C:N ratio (mean ± SD; n = 4) of S. latissima from Roscoff after exposure to two salinity conditions (SA 20, 30) within 
three temperatures (0 °C, 8 °C, 15 °C) on days 8, 11 and 18. Different lower case letters indicate significant differences 
between temperatures (p < 0.05). Different upper case letters indicate significant differences between salinities (p < 0.05). 
Significant differences were identified at day 8 and 11 after log10 transformation. 

 

On day 8 and day 11, the C:N ratios were significantly affected by temperature and salinity (Figure 6, 

Table S8). On day 8, differences between the three temperatures were significant (p = 0.000). Addi-

tionally, the C:N ratios on day 8 were affected by salinity, resulting in higher C:N ratios at lower salini-

ties (p = 0.006), but no temperature × salinity interaction was found. On day 11, the C:N ratio was 

significantly higher at 0 °C and 15 °C than at 8 °C (p = 0.000). Furthermore, interactions revealed sig-

nificant differences between SA 20 and SA 30 at both 0 °C and 15 °C (p = 0.001) on day 11. On day 18 

significant differences were observed between 8 °C and 15 °C (p = 0.020). Day 18 could not be tested 

for interactions.  
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Figure 7 Carbon concentration (mg g−1 DW; mean ± SD; n = 4) of S. latissima from Roscoff after exposure to two salinity 

conditions (SA 20, 30) within three temperatures (0 °C, 8 °C, 15 °C) on days 8, 11 and 18. Different lower case letters indicate 

significant differences between temperatures (p < 0.05). Different upper case letters indicate significant differences be-

tween salinities (p < 0.05).  

The total carbon (C) content varied between the different treatments (Figure 7, Table S8). After 24h 

of salinity stress (day 8), significant differences were detected between temperature and salinity. At 

all temperatures the samples at SA 20 had higher C concentrations than at SA 30 (p = 0.017). Addi-

tionally, samples exposed to 0 °C contained significantly more C than 8 °C (p = 0.001). On day 11, the 

C content differed between 8 °C and 15 °C, as well as 8°C and 0 °C (p = 0.001), while 0 °C and 15 °C do 

not differ significantly. There was no significant decrease or increase in C detected over time. Never-

theless, C concentrations varied slightly between treatments during the experiment. Hence, on day 

18 significant differences between treatments were no longer detected.  
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Figure 8 Nitrogen concentration (mg g−1 DW; mean ± SD; n = 4) of S. latissima from Roscoff after exposure to two salinity 
conditions (SA 20, 30) within three temperatures (0 °C, 8 °C, 15 °C) across time (days 8, 11 and 18). Different lower case 
letters indicate significant differences between temperatures (p < 0.05). Different upper case letters indicate significant 
differences between time points (p < 0.05).  

There was a significant effect of time on the total nitrogen (N) content (p = 0.000; Figure 8, Table S8). 

Between day 8 and day 11, as well as day 8 and day 18 the N concentration increased significantly. 

Salinity did not significantly impact the N content (p = 0.575). There was a significant effect of tem-

perature (p = 0.000) and of the interaction between time and temperature (p = 0.001) on N content. 

Significant differences across temperatures in the total Nitrogen (N) content were observed on day 8 

(Figure 8). The 0 °C treatments featured significantly lower N concentrations compared to 8 °C and 

15 °C (p = 0.000). On day 11 and day 18, N at 0 °C differed from the content at 8 °C (p < 0.001), but 

not from 15 °C. N content at 0 °C significantly increased from day 8 to day 11 and from day 8 to day 

18, while N content at 8 °C increased significantly from day 8 to day 18. 
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Comparison with sporophytes from Spitsbergen 

The data presented in this Chapter for sporophytes originated in Roscoff can be compared with the 

results described in Chapter 3 (Li et al. 2019) as we followed the same approach in both Chapters.  

Fv/Fm  

Algae from both geographical origins showed initial values of Fv/Fm within the range 0.5 to 0.6. Dur-

ing the experiment, overall higher temperatures lead to higher Fv/Fm values in sporophytes from 

both locations, Roscoff and Spitsbergen (Chapter 3 – Figure 2 and this Chapter Figure 1). Hyposaline 

conditions resulted in a reduction in Fv/Fm values in algae from both origins, however significant 

differences arose at different time points. On day 18 Fv/Fm values were significant lower at 15 °C SA 

20 than at 15 °C SA 30 in Spitsbergen samples while on day 18 only temperature had a significant 

effect on Fv/Fm measured in Roscoff algae. In turn, on day 11 a significant effect of temperature, 

salinity and the interaction of both on Fv/Fm values of sporophytes from Roscoff was observed. 

Growth 

Growth (measured as percentage of initial) was higher in Spitsbergen sporophytes than Roscoff ones. 

On the last day of the salinity x temperature experiment, algae from Spitsbergen reached average 

800% of the initial weight for the 15 °C control salinity treatment (Chapter 3 – Figure 1), while algae 

from Roscoff only reached 400% for the 8 °C control salinity treatment (this Chapter – Figure 2). Hy-

posalinity resulted in a decrease in growth in both Roscoff and Spitsbergen algae. However, while in 

Roscoff a significant decrease in weight was observed already at day 11, in Spitsbergen the reduction 

was only significant on day 18. Moreover, the hyposalinity-driven reduction in growth was less pro-

nounced in Roscoff than in Spitsbergen. While in Spitsbergen mean fresh weight at day 18 was 427% 

of initial at SA 20 and 648% at SA 30, in Roscoff it was 230% and 300% respectively.  

Pigments 

On day 8, temperature did not affect chl a and DPS in algae from Spitsbergen (Chapter 3 – Figure 3) 

but it affected algae from Roscoff. In sporophytes from Roscoff, chl a content was significantly lower 

at 0 °C than 8 °C and 15 °C, while DPS was significantly lower at 15 °C than at 0 °C and 8 °C. Accessory 

pigment pool increased with temperature in sporophytes from both locations. Salinity significantly 

affected VAZ pool in algae from both sites. In sporophytes from Spitsbergen the overall VAZ content 

was higher in the SA 20 treatments compared to the control and no significant interaction between 

temperature and salinity was observed. In turn, in sporophytes from Roscoff, VAZ was only signifi-

cantly higher in SA 20 at 0 °C.  

On day 18, chl a content remained constant across treatments and across geographical origin (chap-

ter 3 – Figure S3 and this Chapter Figure 4). While accessory pigments, VAZ and DPS, were affected 

by salinity or the interaction of temperature and salinity in algae from Spitsbergen, there was no 

effect on algae from Roscoff. Moreover, Acc. was significantly higher at 15 °C than 0 °C in algae from 

Spitsbergen and Roscoff. While DPS was significantly higher at 0 °C than at higher temperatures in 

sporophytes from Spitsbergen, in algae from Roscoff DPS measured at 0 °C and 8 °C was not signifi-

cantly different.  
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Mannitol, C:N ratio, C and N content were only measured in sporophytes from Roscoff.  

Differences driven by geographical variation 

In order to assess differences in responses between algae from Roscoff and Spitsbergen, we tested 

for the effect of origin in the initial values (day 0) before the start of the experiment. For all the phys-

iological parameters measured (Fv/Fm, pigments and area) there was a significant difference be-

tween initial values of algae from Roscoff and Spitsbergen (Table S9). Initial absolute values of area, 

photoprotective/light harvesting pigments, VAZ/chl a and Fv/Fm were significantly higher in Roscoff 

than Spitsbergen. Initial values of chl a were significantly higher in Spitsbergen than Roscoff (Figure 

9).   

 

 Figure 9 Chl a (µg mg -1), VAZ:chl a, ratio of photoprotection/ light harvesting ((VAZ + ß-carotin)/ (fucoxanthin + chl. c2)), 
area (cm2) and Fv/Fm measured at the beginning of the experiment (day 0) in algae from Roscoff and Spitsbergen. Algae 
were cultivated at 8 °C SA 30 for three months. Results are given as mean ± SD. 

 

Discussion 

Salinity significantly affected mannitol content and growth, which reveals a relevant impact on phys-

iology. In turn, salinity had little impact on photo-ecophysiological parameters measured. The low 

temperature tested here (0 °C) significantly affected the physiological and biochemical response var-

iables under investigation (Fv/Fm, growth, pigment, mannitol, C and N content and C:N ratio). In 

turn, little differences were observed between the temperatures 8 °C and 15 °C. Furthermore, a 

stronger impact was detected after short-term stress treatments (day 8). This is in accordance to the 

optimal temperature range for S. latissima being between 10-15 °C (Fortes and Lüning, 1980; Bolton 

and Lüning, 1982). Even though 8 °C is slightly lower than this range, algae responded very similarly 

to both 8 °C and 15 °C. In turn, exposure to 0 °C led to lower Fv/Fm values at several time points and 

lower growth. In addition, the content of pigments such as chlorophyll a, accessory pigments was 
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lower at 0 °C on day 8 (accessory pigment pool also on day 18). This response indicates compromised 

fitness at low temperature.  

Pigment content measured in young cultivated sporophytes of S. latissima in this study fall within the 

range measured by Olischläger et al. (2017) for the same species at similar life stage. In contrast, 

pigment content measured in this study is one order of magnitude higher than reported in field adult 

sporophytes in Denmark (Boderskov et al., 2016; Nielsen et al., 2016). These differences suggest a 

possible effect of age (young vs. adult) or origin (cultivated vs. field samples) in pigment content, 

warranting further investigation on the topic. We observed a decrease of the de-epoxidation state 

(DPS) at 15 °C when compared to 0 °C and 8 °C in algae from Roscoff. In algae from Spitsbergen, DPS 

did not differ significantly at day 8, but on day 18 was significantly higher at 0 °C (Li et al., 2019). Simi-

larly, Olischläger et al. (2017) observed a decrease in DPS at higher temperatures for sporophytes 

from Spitsbergen (4 °C to 10 °C) and sporophytes from Helgoland (10 °C to 17 °C) after 18 days of 

exposure to a combination of temperature and pCO2 levels. The xanthophyll cycle pigment pool 

(VAZ) was unaffected by temperature in this study. In turn, an increase at 15 °C in algae from Spits-

bergen was observed (Li et al., 2019). Different modulation of VAZ content between algae originating 

in different locations (Spitsbergen and Helgoland) has already been observed (Olischläger et al., 

2017). VAZ was also significantly affected by salinity. Higher VAZ content was measured at SA 20 at 0 

°C on day 8. In algae from Spitsbergen this effect was more extensive as VAZ was higher at SA 20 at all 

temperatures (Li et al., 2019). The xanthophyll cycle is a component of stress response of plants, 

brown and green seaweeds (Goss and Jakob, 2010). High DPS values provide protection from photo-

oxidative damage by energy dissipation and therefore it is expected to be higher under stressful con-

ditions, such as the low temperature applied in this study (Müller et al., 2001; Fernández-Marín et al., 

2011). 

Mannitol concentrations were considerably higher at 0 °C than at 8 °C and 15 °C across the experi-

mental period. Sugar alcohols, such as mannitol, have been reported as cryoprotectant agents – con-

ferring protection against anti-freezing in several organisms (Elliott et al., 2017). In fungi, cold toler-

ance in polar habitats is associated, among other mechanisms, with sugar alcohol content (Robinson, 

2001). Although the role of mannitol as cryoprotectant has not been described in brown algae so far, 

a survey of seasonal variation on mannitol concentrations in Sargassum mangarevense and Turbi-

naria ornata revealed that the content was higher in winter (Zubia et al., 2008). Similarly, in a marine 

ecotype of Fucus vesiculosus, mannitol content was higher at 0 °C than at 10 °C, although there were 

no significant changes in the brackish ecotype (Gylle et al., 2009). Using mannitol as cryoprotectant 

seems to be a fast response to cold shock, explaining the high mannitol concentrations on day 8 at 0 

°C and low salinities. The role of mannitol as osmolyte and compatible solute has already been de-

scribed in several studies (e.g. Kirst, 1990; Eggert et al., 2007, Diehl et al. submitted). As expected, 

hypoosmotic conditions led to a decrease in mannitol content in this study to prevent water inflow 

into the cell. Osmotic acclimation is a two phased process. The first step is a fast change in turgor 

pressure and changes in cellular concentrations of potassium, sodium and chloride (Karsten et al., 

1991b), which can last between minutes to hours in macroalgae (Kirst, 1990). Adjustment in osmo-

lyte concentration has been described as the second stage, being a slow and long-term response to 

changing osmotic conditions, taking up to a few days and being energy demanding (Kirst, 1990). We 

measured differences in mannitol content already after a 24h exposure (yet not significantly) to low 

salinities, similar to was reported for Fucus vesiculosus (Gylle et al., 2009) and Pilayella littoralis 
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(Reed et al., 1985). With longer exposure to low salinities, the mannitol concentration decreased 

significantly, especially at 0 °C. Hence, cold shock is exceeding salinity stress. On day 18, the mannitol 

concentration at SA 20 was significantly lower than at SA 30, bearing out that adjustment in osmolyte 

concentrations is a long-term process. While there was no significant difference between 8 °C and 15 

°C on day 18, the trend shows increasing mannitol concentrations at 15 °C. Since mannitol is the 

main photosynthetic product of brown algae, it might be positively affected by temperature increase 

(Ji et al., 2016). Gene expression revealed that the mannitol-1-P dehydrogenase gene was not signifi-

cantly downregulated under hyposaline stress, while choline dehydrogenase, enzyme with a role in 

biosynthesis of glycine betaine, was (Li et al., 2019). In further studies, glycine betaine should be ana-

lysed to shed light on its role on acclimation to salinity stress. 

The C:N ratio is commonly used as an indicator for N limitation. In a study from 1983, Atkinson and 

Smith reported that temperate and tropical benthic macroalgae feature a mean C:N ratio of 20. They 

considered a C:N ratio of 10 to be very low, reflecting sufficient N supply. The samples measured in 

this study have a C:N ratio of approx. 6-10, meaning that the algae did not suffer from N limitation in 

any experimental condition. Considering the study of Peters et al. (2005) who detected C:N ratios 

below 10 only in red and green macroalgae and the results of Scheschonk et al. (2019), S. latissima in 

this study has considerably lower C:N ratios than reported before in other Phaeophyceae. Several 

studies report increasing C:N ratios due to heat stress on brown macroalgae (e.g. Gordillo et al., 

2006; Graiff et al., 2015). In this study, C:N ratio was significantly higher at 0 °C on day 8, however on 

day 18 mean values of C:N measured at three temperatures were more similar, with significantly 

higher values at 15 °C than 8 °C. Conclusively, results suggest that S. latissima is negatively affected 

by the low temperature of 0°C, which can also be seen in the results of mannitol content and Fv/Fm. 

However, sufficient N uptake was still ensured as the C:N ratio remained below 10. Furthermore, 

samples kept at the control temperature of 8 °C showed significantly lower C:N ratios than 0 °C and 

15 °C on days 11 and 18, indicating that short-term temperature changes are stressful for S. latissi-

ma. 

Carbon assimilation and utilization can be affected by tissue structure, photosynthetic activity or 

growth (Gómez and Wiencke, 1998; Gévaert et al., 2001; Peters et al., 2005). However, the signifi-

cant variations in total C content detected in this study cannot be explained neither by changes in 

Fv/Fm nor growth. Contrarily to previous reports, the C concentration at SA 30 was significantly lower 

(while e.g. Fv/Fm is higher) at all temperatures compared to SA 20 on day 8. Lower salinity decreases 

the pH in seawater, related to a change in the CO2:H2CO3 ratio (Saraswat et al., 2011). Moreover, 

solubility of gases, such as CO2 is also dependent on temperature. CO2 dissolves better in liquids at 

low temperatures (Dickson, 2010). More available CO2 in the medium led to increasing C fixation in 

Gracilaria lemaneiformis (Chen et al., 2018). Therefore, a possible explanation for the higher content 

of C at 0°C and at SA 20 is that the resulting higher CO2 concentrations in seawater reduces energy 

costs in carbon acquisition, since CO2 concentrating mechanisms (CCMs) are not needed (Harley et 

al., 2012). Additionally, the impact of temperature on RuBisCO kinetics and on CCMs might play a 

role (Raven et al., 2002). C concentration appears to acclimate over the experimental period (alt-

hough changes are not significant) resulting in no observable differences in C on day 18 in any treat-

ment. Summarizing, significant changes in C content are mainly found after 24h in the hyposalinity 

treatment. This could indicate the synergistic effect of short-term low temperature/low salinity ex-

posure.  
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Beside C content, also N content showed significant variation due to temperature changes, but not 

between the different salinities. Saccharina latissima growing in Arctic regions is reported to have a 

lower N content and higher C:N ratio (Henley and Dunton, 1995; Scheschonk et al., 2019, Diehl et al. 

submitted, Diehl et al. in prep) than recorded in this study. On day 8, the N concentration is signifi-

cantly lower at 0 °C than at 8 °C and 15 °C, being indicative for a low-temperature response in S. latis-

sima. The N uptake seems to be inhibited in S. latissima after short-term exposure to the lowest ex-

perimental temperature. Since the activity of enzymes is temperature dependent, decreases in N 

concentrations might be explained by decreased nitrate reductase activity or protein synthesis (Reay 

et al., 1999). Furthermore, there was a significant increase in N over time, while C content stabilized, 

which reveals that S. latissima can acclimate to low temperatures within eighteen days.  

The responses of all biochemical and physiological parameter indicate compromised fitness and en-

hanced stress at very low temperatures, especially after short-term stress exposure in Saccharina 

latissima from Roscoff. Low salinity leads to physiological stress in S. latissima, which resulted in de-

creased photosynthetic efficiency and growth and increase in the osmolyte mannitol.  

Differences driven by geographical variation 

The existence of ecotypes has been described for S. latissima across its latitudinal range (Gerard and 

Du Bois, 1988; Gerard, 1988; Müller et al., 2008). An ecotype is defined to perform better at the local 

conditions than another ecotype from a distant population (Kawecki and Ebert, 2004). Therefore, we 

compared data gathered in this Chapter for Roscoff, Brittany to the data gathered on Chapter 3 (Li et 

al. 2019) for specimens from Spitsbergen, Arctic. Algae from both locations were cultivated at similar 

conditions from the gametophyte stage and were exposed to the same temperature and salinity 

levels during the experiment. In case of ecotypes, we expected algae from Spitsbergen to perform 

better at low temperature and low salinity (0 °C SA 20), while algae from Roscoff would grow better 

at 15 °C and saline conditions. However, samples from Spitsbergen grew faster than algae from Ros-

coff at all treatments. For both locations, growth, pigment content, Fv/Fm was generally higher at 

higher temperatures than at 0 °C. Overall, low salinity led to a decrease in growth and Fv/Fm (at cer-

tain time points) and significantly impacted VAZ in both algae from Roscoff and Spitsbergen. There-

fore, ecotypic differentiation cannot be implied from the results of biochemical and physiological 

parameters measured during this experiment. Nonetheless, we observed differences in several pa-

rameters at day 0, at the end of the cultivation phase (Figure 6). In addition, morphology differed 

considerably between algae from Roscoff and Spitsbergen. Sporophytes from Spitsbergen were nar-

rower and longer while algae from Roscoff were wider and shorter. Moreover, even though similar 

trends in pigment content variation were observed for both locations, there were differences across 

exposure time. A stronger short-term response was observed in sporophytes from Roscoff as chl a, 

DPS, Acc. and VAZ significantly changed in response to temperature after 24 hours (VAZ in response 

to the interaction of temperature and salinity), but chl a and DPS did not significantly change in algae 

from Spitsbergen. At day 18, only DPS and Acc. were significantly modulated in algae from both loca-

tions; however salinity effects were only significant in Spitsbergen. Moreover, significant decrease in 

growth due to low salinity was evident already at day 11 in algae from Roscoff but only at day 18 for 

algae from Spitsbergen. Furthermore, at the transcriptomic level, short-term transcriptomic respons-

es between the locations diverged both in magnitude and metabolic pathways involved that corre-

late to a certain extent with local conditions (Chapter 4, Monteiro et al., 2019). Therefore, we sug-

gest that population differentiation is already taking place and could be revealed at the physiological 
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and biochemical level by studies targeting extreme abiotic factor levels and/or longer exposure 

times.  

Supplementary material 

Table S1 Results of the one-way ANOVA or non-parametric test for effects of temperature on Fv/Fm 

during 7 days of temperature acclimation for S. latissima from Roscoff. Statistically significant values 

are indicated by asterisks (p < 0.05).  

 

Table S2. Results of the two-way ANOVA or non-parametric tests for effects of temperature and sa-

linity on Fv/Fm during 11 days of salinity acclimation for S. latissima from Roscoff. Statistically signifi-

cant values are indicated by asterisks (p < 0.05). 

The assumption of normality is not met for Fv/Fm on days 14 and 18. On day 11 the homogeneity of 

variances is marginally violated (p = 0.045). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Source df MS F ratio p value 

Fv/Fm day 4 Temperature Kruskal-Wallis test  0.826 

Fv/Fm day 7 Temperature  2 0.004 19.738 0.000* 

 Error 12 0.000   

Variable Source df MS F ratio p value 

Fv/Fm day 8 Temperature Kruskal-Wallis Test  0.000* 

 Salinity Mann-Whitney U Test 0.161 

Fv/Fm day 11 Temperature  2 0.013 27.897 0.000* 

  Salinity 1 0.004 8.632 0.007* 

 Temperature × Salinity 2 0.003 5.558 0.010* 

 Error 24 0.000   

Fv/Fm day 14 Temperature  2 0.020 28.739 0.000* 

  Salinity 1 0.000 0.197 0.661 

 Temperature × Salinity 2 0.000 0.092 0.913 

 Error 24 0.001   

Fv/Fm day 18 Temperature Kruskal-Wallis Test  0.000* 

 Salinity Mann-Whitney U Test 0.217 
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Table S3. Results of the repeated measures ANOVA for effects of temperature and time on the fresh 
weight measured during 7 days of temperature acclimation for S. latissima from Roscoff. Statistically 
significant values are indicated by asterisks (p < 0.05). 

 
Table S4. Results of the repeated measures ANOVA for effects of temperature, salinity and time on 
the fresh weight measured during 11 days of salinity acclimation within three temperatures for S. 
latissima from Roscoff. Statistically significant values are indicated by asterisks (p < 0.05). The homo-
geneity of variance was violated for fresh weights on day 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Source df MS F ratio p value 

Fresh weight Within-subjects effects         

       Time 1 6520.131 50.088 0.000* 

       Time × Temperature 2 686.803 5.276 0.018* 

  Between-subjects effects     

       Temperature 2 2478.342 2.04 0.165 

       Error 15 1214.693   

Variable Source df MS F ratio p value 

Fresh weight Within-subjects effects         

       Time 1.727 47899.896 56.069 0.000* 

       Time × Temperature 3.455 3609.099 4.225 0.014* 

       Time × Salinity 1.727 5160.091 6.040 0.011* 

       Time × Temperature × Salinity 3.455 598.548 .701 0.651 

      Error 20.730 854.303   

  Between-subjects effects         

       Temperature 2 32067.664 5.068 0.025* 

       Salinity 1 40622.945 6.419 0.026* 

       Temperature × Salinity 2 15668.730 2.476 0.126 

       Error       
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Table S5. Results of the two-way ANOVA or non-parametric tests for effects of temperature and sa-

linity on pigments measured at day 8 for S. latissima from Roscoff. Statistically significant values are 

indicated by asterisks (p < 0.05).  

a after exponential transformation 

Table S6. Results of the two-way ANOVA or non-parametric tests for effects of temperature and sa-

linity on pigments measured on day 18 for S. latissima from Roscoff. Statistically significant values are 

indicated by asterisks (p < 0.05).  

 

Variable Factor Df MS F ratio p value 

Chl aa Temperature 2 87609.966 6.015 0.008* 

  Salinity 1 41711.920 2.864 0.104 

  Temperature × Salinity 2 20440.669 1.403 0.265 

  Error 24 14565.630   

VAZ Temperature 2 0.002 0.831 0.448 

  Salinity 1 0.004 1.509 0.231 

  Temperature × Salinity 2 0.009 3.583 0.043* 

  Error 24 0.002    

Acca Temperature 2 6736.289 6.186 0.007* 

 Salinity 1 3426.996 3.147 0.089 

 Temperature × Salinity 2 1284.950 1.180 0.325 

 Error 24 1089.032   

DPS Temperature Kruskal-Wallis Test 0.006* 

  Salinity Mann-Whitney U Test 0.345 

Variable Factor Df MS F ratio p value 

Chl a Temperature 2 5.393 2.425 .110 

 Salinity 1 0.018 0.008 .929 

 Temperature × Salinity 2 0.282 .127 .882 

 Error 22 2.224   

Acc. Temperature 2 9.321 5.108 0.014* 

  Salinity 1 0.083 0.046 0.833 

  Temperature × Salinity 2 0.173 0.095 0.910 

  Error 24 1.825   

VAZ Temperature 2                 0.012 1.128 0.340 

  Salinity 1                 0.000 0.030 0.865 

 Temperature × Salinity 2                 0.001 0.114 0.892 

 Error 24              0.010   

DPS Temperature Kruskal-Wallis Test  0.002* 

  Salinity Mann-Whitney U Test  0.870 
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Table S7 Results of the two-way ANOVA or non-parametric tests for effects of time, temperature and 
salinity on mannitol (mg g-1 DW) measured on days 8, 11 and 18 for S. latissima from Roscoff. Effects 
of temperature and salinity were also tested independently by day. Statistically significant values are 
indicated by asterisks (p < 0.05). 

a after log 10 transformation 
 

Variable Factor Df MS F ratio p value 

Mannitol Time Kruskal-Wallis Test 0.155 

 Temperature Kruskal-Wallis Test  0.000* 

 Salinity Mann-Whitney U Test 0.010* 

Mannitol_day8 Temperature Kruskal-Wallis Test 0.001* 

  Salinity Mann-Whitney U Test 0.136 

Mannitol_day11 Temperature Kruskal-Wallis Test  0.001* 

  Salinity Mann-Whitney U Test  0.136 

Mannitol_day18a Temperature 2 1.138 217.744 0.000* 

  Salinity 1 0.375 71.737 0.000* 

 Temperature × Salinity 2 0.005 0.891 0.436 

 Error 12 0.005   
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Table S8 Results of the two-way ANOVA or non-parametric tests for effects of time, temperature and 

salinity on C:N, C (mg g-1 DW) and N (mg g-1 DW) measured on days 8, 11 and 18 for S. latissima from 

Roscoff. Effects of temperature and salinity were also tested independently by day. Statistically signifi-

cant values are indicated by asterisks (p < 0.05). For N the assumption of normality is marginally violated 

(p = 0.045). 

 

a after log 10 transformation 
 

Variable Factor Df MS F ratio p value 

C:N Time Kruskal-Wallis Test 0.521 

 Temperature Kruskal-Wallis Test 0.000* 

 Salinity Mann-Whitney U Test 0.021* 

C Time Kruskal-Wallis Test  0.094 

 Temperature Kruskal-Wallis Test  0.002* 

 Salinity Mann-Whitney U Test  0.000* 

N Time 2 63.333 17.303 0.000* 

 Temperature 2 185.780 50.757 0.000* 

 Salinity 1 1.168 .319 0.575 

 Time x Temperature 4 21.112 5.768 0.001* 

 Time x Salinity 2 9.952 2.719 0.076 

 Temperature x Salinity 2 9.504 2.596 0.085 

 Day x Temperature x Salinity 4 6.848 1.871 0.131 

C:N_day 8a Temperature 2 .040 100.220 0.000* 

 Salinity 1 .004 9.519 0.006* 

 Temperature × Salinity 2 1.254E-5 .031 0.969 

 Error 18 .000   

C:N_day 11a Temperature 2 .013 46.635 0.000* 

 Salinity 1 .014 50.200 0.000* 

 Temperature × Salinity 2 .003 10.061 0.001* 

 Error 16 .000   

C:N_day 18 Temperature Kruskal-Wallis Test  0.020* 

 Salinity Mann-Whitney U Test  0.203 

C _day 8 Temperature Kruskal-Wallis Test  0.001* 

 Salinity Mann-Whitney U Test  0.017* 

C _day 11 Temperature 2 849.356 6.220 0.010* 

 Salinity 1 2220.106 16.258 0.001* 

 Temperature × Salinity 2 390.934 2.863 0.087 

 Error 16 136.554   

C _day 18   Temperature Kruskal-Wallis Test  0.691 

 Salinity Mann-Whitney U Test  0.283 
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Table S9 Results of the one-way ANOVA for the effect of geographical origin on Fv/Fm, fresh weight and 
pigment content measured on day 0 for Saccharina latissima from Roscoff and Spitsbergen. Statistically 
significant values are indicated by asterisks (p < 0.05).  
     Sig. 
Day 0_Area Independent-Samples Mann-Whitney U Test 0.000* 
Day 0_Photoprotection/ light harvest-
ing Independent-Samples Mann-Whitney U Test 0.008* 

 Sum of Squares df Mean Square F Sig. 

Day 0_ Fv/Fm Between Groups .005 1 .005 26.3
74 

0.001* 

 Within Groups .002 8 .000   
 Total .007 9    

Day 0_ VAZ/ Chl a Between Groups .003 1 .003 9.029 0.020* 
 Within Groups .002 7 .000   
 Total .005 8    

Day 0_ Chl a Between Groups 9.833 1 9.833 97.3
07 

0.000* 

Within Groups .606 6 .101   

Total 10.439 7    
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6 Temperature modulates sex-biased gene expression in the gameto-

phytes of the kelp Saccharina latissima 
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7 Synoptic discussion 

 Kelp transcriptomics under temperature stress 7.1

7.1.1 Transcriptomics for revealing stress responses in plants, seaweeds and kelp 

Transcriptomics is a widely used tool to assess responses of organisms to environmental change. Signal-

ling pathways inform the cell of new conditions that require and trigger extensive regulation at both 

transcriptional and post-transcriptional level. Hence, gene expression profiles reveal which metabolic 

pathways are induced and/or repressed following an environmental cue. Furthermore, key genes in 

stress response can be identified (López-Maury et al., 2008; Evans, 2015). A set of genes is commonly 

induced under stress and is conserved across distantly related organisms. This set referred to as “cellular 

stress response” is involved in several processes such as protein chaperoning and repair, DNA repair, 

redox regulation, cell cycle control, lipid and energy metabolism (Kültz, 2005). This cellular stress re-

sponse is common to several stress factors (thus also designated as core stress response), however 

some components are stressor- and species- specific (Collén et al., 2007; Evans and Hofmann, 2012; 

Holzinger et al., 2014).  Molecular chaperones are involved in several processes enabling protein home-

ostasis, such as transport, correct folding and unfolding and assembly of aggregated proteins. Among 

chaperones, heat-shock proteins (HSPs) are well-known examples of genes expressed under stress con-

ditions across taxa and are therefore considered stress biomarkers (Sørensen et al., 2003). Another 

component of this response is redox regulation (Hurd et al., 2014b). Several stressors induce the pro-

duction of reactive oxygen species (ROS) in the cell. In photosynthetic organisms, ROS are the by-

product of photorespiration, photosynthesis and mitochondrial respiration. Accumulation of ROS may 

lead to lipid peroxidation, protein oxidation, DNA damage and eventually to cell death. Thus to counter-

act these effects, ROS-scavenging enzymes scavenge peroxide and reduce the levels of ROS in the cells 

and antioxidants such as glutathione and ascorbic acid are produced. Common ROS-scavenging enzymes 

in plants include superoxide dismutase, ascorbate peroxidase and catalase. Caution must be taken when 

correlating induction of redox regulation processes with environmental stress, as ROS are important 

messengers in signaling and are therefore involved in other biological processes (Mittler, 2002). Moreo-

ver, response to stress and cellular differentiation share signaling pathways in Eukaryota (Wuest et al., 

2010). Therefore, induction of cellular stress response in female over male gametophytes (Chapter 6) 

might be connected to differentiation processes rather than to response to temperature or might func-

tion in both processes. Similarly, other metabolic pathways are induced and/or repressed in response to 

more than one environmental or internal cue and therefore dissecting the exact role under specific 

stress conditions is challenging. While some genes are induced in response to stress, others are com-

monly repressed. Repressed genes often function within translation, ribosome and protein synthesis 

that ultimately have an impact on growth. Above a species-specific stress threshold, energy will be com-

pletely diverted to a stress response and growth will be impaired (López-Maury et al., 2008).  

Furthermore, modulation of gene expression is dependent on the severity of applied stress. While a 

moderate stress level induces transcriptional reprogramming that nevertheless allows the organism to 

survive and even maintain their physiological performance, severe stress levels will lead to proteolysis 

and eventually cell death.  
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Several studies have confirmed that stress biomarkers, such as HSPs and antioxidant enzymes are also 

modulated by stress in seaweeds as in other taxa, e.g. the red alga Chondrus crispus (Collén et al., 2007), 

Fucales Fucus vesiculosus (Mota et al., 2018), F. serratus (Jueterbock et al., 2016) and kelps Saccharina 

japonica (Liu et al., 2014), S. latissima (Heinrich et al., 2015) Laminaria digitata (Roeder et al., 2005). 

Part of this work was carried out by measuring only certain HSPs genes by quantitative polymerase chain 

reaction (qPCR) (Jueterbock et al., 2014; Mota et al., 2018). This targeted analysis has advantages com-

pared to genome-wide analysis (e.g. reduced costs). However, several lines of evidence suggest that 

other pathways beyond the cellular stress response are often also triggered by stress (Sørensen and 

Loeschcke, 2007; Hwang et al., 2008). Thus, the approach taken in this thesis – to study global expres-

sion by RNA-sequencing – provides a wide picture of metabolic pathways at play in response to stress 

that might be overlooked with other approaches.  

Transcriptomic analysis targeting S. latissima is currently limited to the work of Heinrich and colleagues 

(2012) and this thesis. While Heinrich et al. explored interactive effects of temperature, irradiance 

and/or UV, the present thesis targets interactive effects of temperature vs. salinity and temperature vs. 

sex. These studies have in common the response to the temperature factor as one of the most relevant 

environmental drivers influencing fitness, survival and reproduction, and ultimately geographic distribu-

tion (Breeman, 1988; Parmesan and Yohe, 2003; Bartsch et al., 2008; Andrews et al., 2014). Comparison 

between the present and former studies is challenging considering that two different methodologies 

were applied: RNA-sequencing here and microarrays in the former. This might result in a higher annota-

tion rate in the data originating from microarrays as the number of total transcripts is usually lower 

(Wang et al., 2009). Moreover, experimental temperatures applied differed between Heinrich et al and 

this thesis and between sporophytes (Chapter 4) and gametophytes (Chapter 6). Sporophytes from the 

Arctic and Brittany were exposed to ecologically relevant temperatures in either one or the other loca-

tion (0 °C, 8 °C and 15 °C; Chapters 3, 4 and 5). Experimental temperatures applied to male and female 

gametophytes were chosen to mirror the temperature range experienced at the site of origin: Helgo-

land, German Bight, North Sea (4 °C, 12 °C and 20 °C; Chapter 6). This precludes a direct comparison of 

response to temperature between life stages. Nevertheless, it provides valuable ecological information 

on the gametophytes of the Helgoland population that can also be applied to more southern popula-

tions as summer temperatures are similar. Still, we attempt to summarize common patterns of response 

to temperature across these experiments by using KOG categories (Figure 8). The Clusters of Ortholo-

gous Groups of proteins (COGs) database with its extension Eukaryotic Orthologous Groups (KOG) is a 

common tool used for gene annotation (Tatusov et al., 2003). The KOGs assigned to proteins are further 

classified into 25 functional categories independent of each other (Figure 8). These categories provide 

an overview of expressed pathways and have been used to compare gene expression profiles across 

different experimental set-ups and even species (e.g. Strader et al., 2016).   

KOG categories with the highest percentage of expressed genes across all treatments were [J] Transla-

tion, ribosomal structure and biogenesis, [K] Transcription, [L] Replication, recombination and repair, [T] 

Signal transduction mechanisms, [O] Posttranslational modification, protein turnover, chaperones, [G] 

Carbohydrate transport and metabolism and [I] Lipid transport and metabolism. This pattern reveals 

that the algal response to temperature involves a wide range of pathways. In turn, KOG categories with 

very little expression were [V] Defense mechanisms, [N] Cell motility, [W] Extracellular structures, [Q] 

Secondary metabolites biosynthesis, transport and catabolism (Figure 8). In addition, temperature varia-
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tion promoted expression of genes functioning within a wider array of KOG categories in gametophytes 

than in sporophytes. Both up and down regulation in gametophytes covered genes expressed in almost 

all KOG categories, which reveal that although gametophytes are anatomically simpler than sporo-

phytes, they display a complex set of cellular processes. Moreover, the number of expressed genes in 

response to temperature was higher in gametophytes than in sporophytes (Table 2).  This is in accord-

ance with a recent comparison between sporophyte and gametophyte expression profiles in two species 

of Laminariales that revealed that gametophyte-biased expressed genes were surprisingly relatively high 

even though a correlation was found between the extent to which life stages differ in size and complexi-

ty and the number of life stage biased expressed genes (Lipinska et al., 2019). Furthermore, the model 

brown alga Ectocarpus, with sporophyte and gametophyte morphologically similar, expresses a higher 

number of genes at the gametophyte than at the sporophyte stage (Arun et al., 2019). Overall, an in-

crease in temperature leads to stronger changes in gene expression than a decrease in temperature 

(Figure 8). An exception can be noted for sporophytes for Spitsbergen at 0 °C and 2 °C, where several 

categories belonging to metabolism were expressed. In addition, when comparing patterns of expres-

sion in sporophytes of Roscoff and Spitsbergen at 0 °C, categories such as lipid transport and metabo-

lism, ion transport and metabolism and coenzyme transport and metabolism are only up-regulated in 

Spitsbergen, suggesting that S. latissima in the Arctic is able to maintain metabolic activities and use, for 

example, energy from lipids to maintain fitness at lower temperatures. At the gametophyte level, as 

already described in Chapter 6, female gametophytes responded in a stronger fashion to high tempera-

tures than male gametophytes, both in number of DEGs and in number of cellular processes involved 

(Table 2 and Figure 8). This differential response between sexes to temperature has already been re-

ported in kelps (Lee and Brinkhuis, 1988; tom Dieck, 1993; Liu et al., 2016), but remains poorly explored. 

Global warming induced changes in reproduction through namely shifts in sex-ratios and compromised 

reproductive success has been considered one of the most relevant impacts compromising species per-

formance and survival (Ospina-Alvarez and Piferrer, 2008; Hedhly et al., 2009; Zinn et al., 2010; 

Johnstone et al., 2017). 
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Figure 8 KOG category distributions of differentially expressed genes in response to temperature. The figure displays the KOG 
category distribution of up (blue, upper part of the graph) and down (red, lower part of the graph) in comparison to the control 
treatment of each experiment. Control temperature was 8 °C for the experiments with sporophyte (S), 12 °C for the gameto-
phytes (G) and for Heinrich et al.’s data (SH). Color intensities reflect the amount of genes per group calculated in percent of 
total DEGs grouped into KOGs with known or general function prediction. S: sporophyte, G: gametophyte, SP: Spitsbergen, RO: 
Roscoff, SH: Heinrich et al.’s data (Heinrich et al., 2012b), F: female, M: male 

J A K L B D Y V T M N Z W U O C G E F H I P Q R S

G_F_20°C_up 4.4 0.4 0.7 0.4 0.3 0.5 0.0 0.3 2.1 0.8 0.0 2.4 0.0 1.0 4.8 1.1 0.9 0.7 0.2 0.3 1.1 0.5 0.4 0.0 3.7

G_M_20°C_up 7.5 0.0 0.2 0.4 0.1 0.1 0.0 0.1 0.6 0.4 0.0 0.9 0.0 0.2 2.2 0.9 0.2 0.4 0.1 0.3 0.3 0.0 0.6 0.0 1.7

S_SP_17°C_SH_up 3 2 1 1 1 1 0 0 3 0 0 0 0 1 9 1 37 2 0 0 2 1 1 6 11

S_SP_15°C_up 0.0 0.0 1.0 1.9 0.0 0.0 0.0 0.0 1.0 0.5 0.0 0.5 0.0 0.5 0.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.4

S_RO_15°C_up 0.0 0.0 0.3 0.3 0.3 0.0 0.0 0.0 0.6 3.1 0.0 0.3 0.0 0.6 0.9 0.6 0.6 0.0 0.0 0.0 0.0 0.9 0.0 0.0 2.2

G_F_4°C_up 0.0 0.5 0.5 0.7 0.2 0.0 0.0 0.0 1.2 0.5 0.0 0.2 0.0 1.5 2.0 0.2 0.7 1.0 0.0 0.0 1.0 0.2 0.5 0.0 1.0

G_M_4°C_up 1.2 1.9 1.0 1.1 0.4 0.7 0.0 0.3 1.7 0.3 0.1 1.5 0.0 0.9 3.4 1.1 1.2 1.7 0.2 0.6 0.6 0.7 0.5 0.0 4.6

S_SP_2°C_SH_up 6 4 2 1 0 0 0 0 2 0 0 1 0 1 5 3 25 4 1 1 1 2 0 6 10

S_SP_0°C_up 0.8 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.5 4.5 0.8 0.0 0.8 1.5 4.5 0.0 3.0 0.0 9.8

S_RO_0°C_up 0.0 5.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 0.0 0.0 2.7 0.0 2.7 2.7 0.0 0.0 0.0 0.0 0.0 0.0 8.1

G_F_20°C_down 2.7 1.6 1.4 0.7 0.4 0.8 0.0 0.2 7.0 0.6 0.0 1.7 0.3 3.3 4.5 1.7 4.1 2.2 0.6 0.5 3.0 1.6 1.2 0.0 7.7

G_M_20°C_down 0.1 0.0 1.0 1.1 0.5 0.8 0.1 0.0 1.7 0.2 0.0 0.4 0.0 0.8 0.4 0.1 0.6 0.2 0.1 0.1 0.4 0.7 0.2 0.0 1.8

S_SP_17°C_SH_down 4 0 1 0 0 0 0 0 1 0 0 3 0 1 3 3 32 2 0 3 3 1 2 3 7

S_SP_15°C_down 0.2 0.5 2.7 2.9 0.0 0.7 0.0 0.8 2.4 0.8 0.0 0.5 0.0 3.0 2.5 1.4 1.4 0.5 0.0 0.5 1.2 0.3 1.2 0.0 5.9

S_RO_15°C_down 0.4 0.9 2.6 1.7 0.0 1.3 0.0 1.3 2.6 0.4 0.0 0.0 0.0 2.6 3.0 1.3 0.9 1.3 0.0 0.4 1.7 0.4 1.3 0.0 3.9

G_F_4°C_down 4.2 0.2 0.5 0.4 0.0 0.2 0.0 0.0 1.2 0.1 0.0 0.6 0.0 2.3 0.5 0.4 0.1 0.1 0.0 0.0 0.0 0.1 0.1 0.0 2.0

G_M_4°C_down 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.4 0.6 0.4 0.4 0.6 0.0 0.0 0.3 0.3 0.3 0.0 2.7

S_RO_0°C_down 0.0 2.4 4.2 1.8 0.0 2.4 0.0 0.0 1.8 1.8 0.0 0.0 0.0 1.8 0.6 3.6 1.8 0.0 0.0 0.0 0.0 0.6 0.0 0.0 4.8

S_SP_0°C_down 0.0 0.0 2.8 1.4 0.0 0.0 0.0 0.0 2.8 5.6 0.0 0.7 0.0 0.0 0.7 1.4 4.9 0.7 0.0 0.0 0.0 0.0 0.0 0.0 3.5

S_SP_2°C_SH_down 3 0 1 1 0 1 0 0 2 0 0 0 0 0 9 2 46 1 0 0 2 1 1 2 8

INFORMATION STORAGE AND PROCESSING 

[J] Translation, ribosomal structure and biogenesis 

[A] RNA processing and modification 

[K] Transcription 

[L] Replication, recombination and repair  

[B] Chromatin structure and dynamics 

CELLULAR PROCESSES AND SIGNALING 

[D] Cell cycle control, cell division, chromosome partitioning 

[Y] Nuclear structure 

[V] Defense mechanisms  

[T] Signal transduction mechanisms  

[M] Cell wall/membrane/envelope biogenesis  

[N] Cell motility  

[Z] Cytoskeleton  

[W] Extracellular structures  

[U] Intracellular trafficking, secretion, and vesicular transport  

[O] Posttranslational modification, protein turnover, chaperones  

METABOLISM 

[C] Energy production and conversion  

[G] Carbohydrate transport and metabolism  

[E] Amino acid transport and metabolism  

[F] Nucleotide transport and metabolism  

[H] Coenzyme transport and metabolism  

[I] Lipid transport and metabolism  

[P] Inorganic ion transport and metabolism  

[Q] Secondary metabolites biosynthesis, transport and catabolism  

POORLY CHARACTERIZED 

[R] General function prediction only  

[S] Function unknown  
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Table 2 Number of DEGs regulated (DEseq2, p < 0.001; log2FC > 2) in comparison to the control temperature of each experi-
ment. Control temperature was 8 °C for the experiments with sporophytes (S) and 12 °C for the gametophytes (G). S: sporo-
phyte, G: gametophyte, SP: Spitsbergen, RO: Roscoff, F: female, M: male 

 up-regulated 
DEGs 

down-regulated 
DEGs 

G_F_20 °C 2377 2095 
G_M_20 °C 1107 836 
G_F_4 °C 406 667 
G_M_4 °C 1163 592 
S_SP_15 °C 211 230 
S_RO_15 °C 319 1063 
S_SP_0 °C 130 166 
S_RO_0 °C 37 133 

 

7.1.2 Is there evidence for local adaptation in kelps? 

Genetic analysis of S. latissima throughout the distributional range revealed significant genetic differen-

tiation between populations. This degree of genetic differentiation is suggested to underlie a complex of 

incipient species (= a subspecies in the process of becoming permanent and thus changing to a true spe-

cies) in Europe (Guzinski et al., 2016; Neiva et al., 2018). Likewise, McDevit and Saunders (2010) identi-

fied three mitotypes in S. latissima – Pacific, European and (Northwestern) Atlantic – that are consistent 

with an incipient species complex hypothesis. Moreover, observations of low genetic diversity within 

populations and isolation between them limit the breadth of responses available for the species in terms 

of phenotypic plasticity and adaptation. Aligned with the molecular evidence, several studies reported 

ecotypes based on physiological and biochemical measurements. Müller et al. (2008) identified differ-

ences in germination between zoospores originating in Helgoland and Spitsbergen: germination was 

inhibited at 18 °C in Spitsbergen while remaining at 80% for the Helgoland samples. Moreover, hybridi-

zation experiments between gametophytes of the two populations resulted in significantly lower sporo-

phyte production than crossings within same population. Ecotypic differentiation between Spitsbergen 

and Helgoland populations is further supported by findings by Olischläger et al. (2014) that uncovered 

significant differences in biochemical composition at 10 °C and a differential response to CO2 between 

sporophytes from the two populations. In a later study, differences between growth and photosynthetic 

performance were also revealed for the same populations (Olischläger et al., 2017). In contrast, Bolton 

and Lüning (1982) detected no population specific response to temperature (0 °C, 5 °C, 10 °C, 15 °C, 20 

°C and 23 °C) between S. latissima populations of Helgoland (Germany), Brest (France), Isle of Man 

(United Kingdom) and Espegrend (Norway) in cultured sporophytes and gametophytes. The contrasting 

gene expression profiles reported in this thesis between sporophytes from Roscoff (Brittany, center of 

distribution) and Spitsbergen (Arctic, northern limit of distribution) further suggest the existence of eco-

types in S. latissima (Chapter 4). Although it is not possible to draw definitive conclusions about local 

adaptation from our experiment, this work is the first to contribute to the current body of information 

with transcriptomic data. Our results suggest that responses to temperature and salinity variation have 

diverged between sporophytes from Roscoff and Spitsbergen. This is supported by the findings A) gene 

expression profiles of sporophytes from Roscoff and Spitsbergen were clearly distinct (as revealed by 
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the principal component analysis), B) several differentially expressed genes were identified between 

algae from the two locations at the control conditions and C) transcriptomic reprogramming was to a 

certain extent performed differently by algae from Brittany and the Arctic.  

As observed at the transcriptomic level, physiological measurements also diverged between sporo-

phytes from the two locations. For all physiological measurements obtained (e.g. Fv/Fm, pigments and 

growth) there was a significant difference between algae from Roscoff and Spitsbergen at the start of 

the experiment (Chapter 5). Growth (measured as percentage of initial) was higher in Spitsbergen spo-

rophytes than Roscoff ones at the end of the experiment. However, initial fresh weight was higher in 

Roscoff specimens than Spitsbergen. During cultivation, algae have been growing under the same tem-

perature and irradiance conditions (8 °C, 20 µmol photons m–2 s–1 of photosynthetically active radiation 

(PAR)) but in higher density therefore with fewer nutrients and less light available than during the exper-

iment. We would expect that the Spitsbergen population would perform better under low light as they 

are exposed to less irradiance in the Arctic than Roscoff; therefore it is surprising that at first sporo-

phytes from Roscoff grew faster and then slowed down growth compared to Spitsbergen. We do not 

expect the nutrients to be a major factor here as the Provasoli solution added in full (20ml for 1L) is well 

above natural seawater available nutrient levels. Is it possible that given that Spitsbergen sporophytes 

are usually exposed to sub-optimal conditions with high seasonal restrictions, they react faster to opti-

mal conditions in order to maximize growth. In the case of local adaptation, we would expect Spitsber-

gen’s sporophytes to grow better at 0 °C than Roscoff ones but the opposite should hold true at 15 °C 

(reflecting the environment of origin), which was not the case. It is also puzzling that Roscoff sporo-

phytes grew slightly better at 8 °C than 15 °C. However, this difference was not significant, and only a 

significant decrease in growth rate at 0 °C was observed when compared to 8 °C and 15 °C.  In conclu-

sion, ecotypic differentiation between algae from Roscoff and Spitsbergen in growth could not be con-

firmed by this experiment.  

Parallel with the differential expression analysis, we identified several constitutively expressed genes 

under the control condition of our experiment (Chapters 3 and 4). Differential expression analysis might 

fail to detect significant fold changes if genes are already expressed at high levels under the control 

treatment (meaning constitutively expressed genes). Constitutively expression of stress response related 

genes, such as HSPs and ROS might underlie phenotypic plasticity in response to stress and therefore 

lead to the wide acclimation potential of the species. However, mRNA production comes with an ener-

getic cost – several ATP molecules are required during production of pre-mRNA and for the processing 

from pre-mRNA to mature RNA. Some studies have shown that increases in gene expression leads to a 

reduced fitness (Dekel and Alon, 2005; Lang et al., 2009). Namely, a trade-off between growth rate and 

sexual reproduction was observed in the yeast Saccharomyces cerevisiae. Sterile individuals had higher 

growth rates and this was the result of down-regulation of the mating signaling pathway genes (Lang et 

al., 2009). Dekel and Alon (2005) compared the cost (protein expression) to the benefit (higher growth 

rate) of the utilization of lactose by Escherichia coli based on the lac system. They reported that benefit 

of lactose is decreased in high lactose environments due to the high cost of protein expression. Moreo-

ver, they reported a rapid evolutionary adaptation towards an optimal cost-benefit scenario (Dekel and 

Alon, 2005). On the contrary, Chan et al. (2012) reported a lack of correlation between the magnitude of 



 Synoptic discussion 
 

118 
 

transcriptomic changes and the effects in phenotype and fitness in two of the three transgenic plants of 

Arabidopsis thaliana manipulated to increase tolerance to salt stress. Plants overexpressing the gene 

CBF3 suffered a significant reduction in growth, reproductive development, leaf number, rosette diame-

ter, plant height, dry weight and seed yield. These extensive impacts on fitness and reproduction have 

already been reported in other studies (Liu et al., 1998; Achard et al., 2008), where increased tolerance 

to freezing was associated with retarded growth. However, transgenic plants overexpressing M6PR and 

SOS1 exhibited little effects on phenotype. Differences can be explained by the fact that the three genes 

modulate salt tolerance through different mechanisms. Higher impact on fitness in plants over-

expressing CBF3 is probably due to the fact that this gene is a transcription factor hence its expression 

affects a wider range of metabolic pathways (Gilmour et al., 2004). Chan et al. (2012) also reported dif-

ferences in response between their study that targeted long-term response and previous results focus-

ing on short-term effects. This study highlights the intricate relationship between gene expression and 

fitness and that it is gene-specific. Tani et al. (2019) compared the responses of two species of shrub of 

the same genus with different tolerance to drought stress. Higher tolerance to drought of Medicago 

arborea was associated with higher expression of antioxidant related genes and slower growth when 

compared to the less tolerant M. alborea and their hybrid. 

Therefore, also for S. latissima it is likely that a trade-off arises between a broader tolerance based on 

costly constitutive gene expression versus a local-driven response to environmental fluctuation that 

reduces transcriptomic costs but narrows the tolerance range (Latta et al., 2012). Moreover, from an 

early stage of cultivation the sporophytes developed clear distinct morphologies (Chapter 4). Algae from 

Roscoff were wider and shorter while algae from Spitsbergen presented long but narrow lamina. At the 

transcriptomic level, several genes related to cell wall and membrane adjustment were identified to be 

differentially expressed between sporophytes from Roscoff and Spitsbergen at the control conditions 

which might underlie the differences in morphology. Differences in morphology across the distributional 

range of seaweeds is common and often reflect environmental variation (Serisawa et al., 2002; Matson 

and Edwards, 2006; Rothman et al., 2017). In the brown alga Fucus guiryi morphologies vary across a 

northern to southern gradient accompanied with an increase in temperature (Monteiro et al., 2017). In 

F. vesiculosus inhabiting the Baltic sea morphology is a function of salinity and exposure (Kalvas and 

Kautsky, 1993). Here, distinct morphologies between populations were evident although genetic differ-

entiation was missing, suggesting that morphology is a plastic trait (Rinne et al., 2018). In S. latissima, 

the effect of wave exposure in morphology has also been described both in field (Chapman, 1974; 

Peteiro and Freire, 2013) and laboratory observations (Gerard, 1987). Spurkland and Iken (2012) de-

scribed morphological variation between S. latissima populations from an oceanic and a glacially-

influenced site in Canada. Sporophytes from the glacially influenced site were narrower and longer than 

the oceanic sporophytes. This morphology is in accordance with the morphology described here for the 

glacially influenced site (Spitsbergen, Arctic). Reciprocal transplants and in situ growth measurements in 

Canada suggest that these differences are genetically fixed (Spurkland and Iken, 2012), as it has been 

described in other brown algae (e.g. Stengel and Dring, 1997), and similarities with our study indicate 

that this trait is maintained even across large geographical scales.  

Variation in seaweed morphology affects nutrient uptake (Wallentinus, 1984) photosynthetic capacity 

(Stewart and Carpenter, 2003; Miller et al., 2006), sensitivity to mechanical stress (Buck and Buchholz, 

2005; Koehl et al., 2008), among others, and are thus likely to significantly impact species performance 
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(Stengel and Dring, 1997; Hurd et al., 2014d). Although morphology variation in response to water 

movement has been extensively described, the relationship between morphology and temperature is 

less well understood (Gerard, 1987; Hurd, 2000). Nevertheless, we can expect that S. latissima exposed 

to different temperatures will display different photosynthetic rates and nutrient requirements 

(Davison, 1991; Machalek et al., 1996; Gerard, 1998) and hence morphological variation might compen-

sate for this (Kübler and Dudgeon, 1996). Thus further research targeting modulation of morphology 

along latitudinal clines should elucidate which factors regulate morphology and the relevance of this 

trait in the response to environmental variation (Gao et al., 2016). Furthermore, correlating commercial-

ly desirable morphological traits with location would inform aquaculture site selection (Peteiro and 

Freire, 2013). 

Taken together, hints of local adaptation in our experiment might indicate that, given enough time, S. 

latissima might fully adapt to the site environmental conditions and will then reduce stress responses 

and be able to redistribute energy expenditure to processes such as growth and reproduction. While 

local adaptation allows species to thrive in the different sites it might limit species response to new, 

unexpected stressors. Therefore, the apparent acclimation potential of S. latissima within a framework 

of ongoing local adaptation might allow for the resilience of the species under current environmental 

conditions. However, it is already abundantly evident that this resilience has limits that have been 

crossed in several locations and led to decreases in S. latissima occurrence and abundance (e.g. Eriksson 

et al., 2002; Pehlke and Bartsch, 2008; Casado-Amezúa et al., 2019). Future research should include 

temperature levels higher than the ones tested here and closer to the upper thermal tolerance of the 

species as this might provide a better picture of possible adaptation to the local conditions.  

 

7.1.3 Does transcriptomics match physiology? 

Previous work suggested that S. latissima might experience sub-optimal environmental conditions in the 

Arctic as its temperature optimum for growth lies between 10 and 15 °C (Fortes and Lüning, 1980; 

Bolton and Lüning, 1982). Our work supports this statement as the higher temperature tested in our 

experiments with sporophytes revealed that 15 °C promoted physiological performance, namely growth, 

accessory pigments content and maximum quantum yield (Fv/Fm) of photosystem II (Chapter 3). The 

gene expression results also reveal that 15 °C was not particularly stressful. 15°C promoted more differ-

entially expressed genes than  0 °C, however the number of up-regulated genes were similar (130 for 0 

°C and 211 for 15 °C) since a high proportion of DEGs regulated at 15 °C were down-regulated. Function-

al analysis supported by GO enrichment revealed that up-regulated DEGs at 15°C functioning mostly 

within the classes “Metabolism”, “Signaling”, “Transport” and “Stress response” represented only 9%. 

Moreover, genes belonging to the cellular stress response (discussed above) were very seldom induced 

at 15 °C. Therefore, the species might benefit from warming in the Arctic and this might pose a competi-

tive advantage over the endemic kelp Laminaria solidungula (Iñiguez et al., 2016; Scheschonk et al., 

2019). Similar results were obtained for the algae from Roscoff (Chapter 5).  

However, increased ice melting due to increasing temperatures in the Arctic has other consequences 

that might counteract the apparent beneficial effect of temperature. Namely, increasing ice melt will 

result in increased turbidity and therefore degradation of the light climate and increased sedimentation 
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which has already been shown to negatively impact S. latissima (Spurkland and Iken, 2011; Bartsch et 

al., 2016; Zacher et al., 2016). Moreover, increased freshwater input and precipitation events will reduce 

the salinity experienced by the species. Hyposalinity effects in S. latissima have also already been de-

scribed (Karsten, 2007; Spurkland and Iken, 2011; Nielsen et al., 2016; Mortensen, 2017) and were re-

vealed in our study at both physiological and transcriptomic level (Chapters 3, 4 and 5).   

After 24 hours of exposure to low salinity, extensive reprogramming took place at the transcriptomic 

level. On the contrary, effects of hyposalinity on Fv/Fm values, a measure of algal fitness, were more 

subtle (nonetheless, significant at certain time points) and only the xanthophyll-cycle pool, among the 

pigments measured, was affected in algae from both Roscoff and Spitsbergen (Chapters 3 and 5). Never-

theless, growth rate was significantly reduced at low salinity after 11 days of treatment in algae from 

both locations. Although no data on gene expression are available for this time point, we can hypothe-

size that effects at the physiological level are revealed later than at the transcriptomic level. An alterna-

tive hypothesis is that algae were able to acclimate to short-term hyposalinity (one day) by metabolic 

reorganization that ensured no negative effects in the physiological parameters. However, when ex-

posed for longer periods (eleven days), the algae are no longer able to withstand the effects of low salin-

ity.   

An ameliorating effect of high temperature was observed at the transcriptomic level for algae from both 

locations (Chapters 3 and 4). The treatment 15 °C and low salinity drove less DEGs than low salinity at 0 

°C and 8 °C. In contrast, interactive effects at the photo-physiological level were less prominent. In algae 

from Roscoff higher VAZ on day 8 and lower Fv/Fm on day 11 at 0 °C low salinity was observed but not 

at higher temperatures. Accessory pigments on day 11 were lower at 0 °C than at higher temperatures 

only at low salinity in the Arctic algae. However, overall the extensive repression of photosynthesis re-

lated DEGs was not mirrored in the pigments and Fv/Fm measured. Similarly, even though we detected 

a stronger response of female compared to male gametophytes to 20 °C, no significant response was 

observed on Fv/Fm and fresh weight (Chapter 6). Other studies have already reported significant chang-

es at the transcriptomic level without a significant change in physiology in seaweeds (Heinrich et al., 

2015; Iñiguez et al., 2017). Hence, gene expression is a more sensitive parameter than several physiolog-

ical parameters measured to date. However, studies combining these approaches are still limited, and 

more research integrating different levels of organization (e.g. proteomics, metabolomics) is needed to 

understand how the responses are modulated from the gene to the physiology level (Dittami et al., 

2011; Ritter et al., 2014; Liu et al., 2019).  

Interactive effects at the gene expression level in S. latissima have been described previously. In culti-

vated sporophytes, 2 °C and 7 °C promoted the double of differential expressed genes than 12 °C in re-

sponse to UVR after 24 hours (Heinrich et al., 2016) and similarly, after two weeks exposure under the 

same conditions (Heinrich et al., 2015). At the functional level, a stronger oxidative stress response to 

UVR happened at the lower temperature 2 °C compared to 12 °C. In addition, interactive effects be-

tween temperature and light levels were also revealed for S. latissima, with high temperature (17 °C) 

and high PAR representing the treatment with the largest impact at the transcriptional level (Heinrich et 

al., 2012b). The previous studies highlight the relevance of studying the interaction of abiotic factors 

since the outcome can substantially diverge from single factor experiments. Temperature seemed to 

have an ameliorating effect until a certain level, but very high temperatures resulted in stress related 
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responses. Similarly, we described the interaction of temperature and salinity effects in this study and, 

to the best of our knowledge, for the first time at the transcriptomic level in kelps (Chapters 3 and 4).  

We observed that transcriptomics and physiology are not always clearly related. Hence, the choice of 

parameter to measure depends on the goal of the study and should be considered carefully. As invest-

ment in RNA production is energetically costly for the cell, gene expression is a relevant indicator to 

detect an early-response that might lead to reduced fitness.  

 

 Sex-specific differences in kelp transcriptomics 7.2

Brown algae (Phaeophyceae) display a complexity of life cycles with variable degree of phenotypic dif-

ferentiation, reproductive systems and different levels of sexual dimorphism. Therefore they constitute 

an interesting group to study from an ecological and evolutionary perspective (Coelho et al., 2019). The 

life cycle of algae within the order of Laminariales includes a macroscopic life stage, the sporophyte, and 

several microscopic stages: spores, gametophytes and gametes (see Figure 2 in Introduction). Sex is 

expressed at the haploid stage (gametophyte and gamete) that presents sexual dimorphism. Sexual di-

morphism is displayed across the tree of life. The same genome has to express either male or female 

phenotypic traits and therefore sexual dimorphism is to a large extent dependent on differential gene 

expression between sexes. A large proportion of the genome has been described to be differentially 

expressed between males and females (Ellegren and Parsch, 2007). The degree of sexual dimorphism 

has been shown to be connected to the extent of gene expression – taxa with more evident sexual di-

morphism show a larger transcriptomic reprogramming (Jiang and Machado, 2009; Pointer et al., 2013; 

Lipinska et al., 2015a). In brown algae, it has also been show that higher morphological distinction be-

tween sporophytes and gametophytes is broadly associated with higher life stage-specific gene expres-

sion (Lipinska et al., 2019). In Chapter 6, we describe evident sex-biased gene expression in S. latissima 

with a higher proportion of differentially expressed genes up-regulated in females. This can be connect-

ed with morphological and physiological differences observed in male and female gametophytes of 

S. latissima. Female gametophyte cells tend to be larger than male gametophyte cells and male gameto-

phyte filaments are constituted of more cells than female ones. This sexual dimorphism can be associat-

ed in our dataset with an enrichment of general metabolism (carbohydrate and nucleic acid metabolism, 

generation of energy) in female gametophytes and with an enrichment of GO terms related to cell divi-

sion and signaling in male samples. Moreover, we identified several genes that are sex-specific (only 

expressed in one of the sexes) and/or sex-biased (expressed in higher proportion in one of the sexes) in 

S. latissima. These genes represent potential sex markers that have several applications, such as breed-

ing programs in aquaculture, population and demography research and evolutionary studies of sexual 

reproduction and therefore warrant further investigation (Lipinska et al., 2015b; Zhang et al., 2018). In 

addition, we studied the effect of temperature on sex-biased transcriptome profiles of gametophytes of 

S. latissima. Sex-specific transcriptomic responses to abiotic stress have, to the best of our knowledge, 

not been studied in seaweeds so far. However, evidence from land plants indicates that resilience to 

abiotic stress can vary significantly between males and females and this is also revealed at the gene ex-

pression level (Zinn et al., 2010; Jiang et al., 2012; Sage et al., 2015). Temperature is one of the main 

factors determining reproductive success in kelps (Lüning, 1990; Demes and Graham, 2011; Liu et al., 
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2017) as in several other organisms, such as plants (Zinn et al., 2010). Namely, temperature was the 

main factor driving spore germination, female gametophyte growth and female fecundity in S. latissima 

(Lee and Brinkhuis, 1988). In addition, seasonality seems to play a role in gametophyte growth and mat-

uration. Lee and Brinkhuis (1986) reported that the time of the year the meiospores were produced 

subsequently influenced the optimal temperature and light conditions for the survival, growth and re-

production of gametophytes. Although female gametophyte growth was possible at 20 °C, the growth 

rate depended on the season the spores were collected: growth rate at 20 °C was higher in summer 

than winter, which reveals a seasonal adaptation to temperature that ensures year-round gamete pro-

duction.  In addition, a shift from sexual to asexual reproduction in stressful environments was observed 

in several plants and algae, namely a tendency for asexual reproduction at the species geographical 

margins (Peck et al., 1998; Eckert, 2002). Therefore, the susceptibility of reproduction to temperature is 

cause for concern under the current and future warming scenarios (Hedhly et al., 2009). Considering 

that several environmental conditions (nutrients, temperature, light quality and light intensity) play a 

role in determining gametogenesis success and gametophyte growth and that these processes seem to 

follow a seasonal pattern that might change between established ecotypes, further research that in-

cludes more populations, more abiotic factor levels and the interactive effects of those is needed to 

complement current knowledge. 
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 Conclusions 7.3

The aim of this thesis was to explore acclimation to abiotic stress in the sugar kelp Saccharina latissima 

under current environmental and future scenarios resulting from global warming. S. latissima currently 

experiences highly variable environments along its distributional range and several acclimation mecha-

nisms have already been described. The study contributes to the current body of knowledge of physio-

logical and biochemical responses to the abiotic factors temperature and salinity.  In addition, the tran-

scriptomic data contributes to the understanding of the genomic basis of acclimation in brown algae 

that has so far been mostly limited to the well-studied Ectocarpus sp. and Saccharina japonica. Conclu-

sively, the research Questions put forward in Chapter 1.8. can be answered as follows: 

1. Does acclimation to temperature in sporophytes of S. latissima increases tolerance towards salinity 

stress? 

Interactive effects of temperature and salinity on gene expression profiles were identified for sporo-

phytes of S. latissima after 24 hours (Chapters 3 and 4). Low salinity treatments promoted more tran-

scriptional changes than temperature alone. Higher temperatures reduced the effect of hyposalinity. 

However, a temperature acclimation before the low salinity treatment did not seem to reduce the nega-

tive effect of salinity variation. At the physiological level, interactive effects were less evident. Overall, 

higher temperatures promoted growth, pigment content, and maximal quantum yield of photosystem II 

(Fv/Fm). In turn, hyposalinity decreased growth and Fv/Fm. In addition, mannitol content increased in 

response to low temperature and decreased in response to low salinity in sporophytes from Roscoff. 

Therefore, we predict that hyposalinity events expected to be more frequent and extreme in the future 

due to global warming will affect S. latissima performance. This would be most relevant to the hydro-

graphic conditions in Arctic fjord systems or coastlines characterized by semi-enclosed embayments 

with limited water exchange. Further studies should include more severe salinity variation and its inter-

actions with other abiotic factors as this will inform predictions of range shifts in S. latissima.  

 

2. Do sporophytes of the populations from the North (Arctic) and Center (Brittany) distributional range 

present the same transcriptomics and/ or physiological responses to stress? 

Differences between the transcriptomic profiles of sporophytes originating in the central (Roscoff, 

Northeast Atlantic) and northern distribution (Spitsbergen, Arctic) of the sugar kelp Saccharina latissima 

were revealed (Chapter 2). In a common garden laboratory experiment, sporophytes raised from game-

tophytes under similar controlled temperature and salinity conditions responded differently to changes 

in these abiotic factors that reflect the environmental conditions of the original sites. Specifically, Ros-

coff sporophytes exhibited a stronger response to low temperature and low salinity at the transcriptom-

ic level, while in sporophytes from Spitsbergen higher temperatures exerted a stronger effect.  

At the physiological level, growth rates of sporophytes from Spitsbergen and Roscoff did not reflect an 

enhanced fitness at conditions of the site of origin. Nevertheless, some physiological responses diverged 

between sporophytes of the two locations and morphological differentiation was evident from an early 

stage of cultivation. Hence, we cannot undoubtedly conclude that there is ecotypic differentiation be-
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tween Roscoff and Spitsbergen. Nonetheless, considering the extent to which both transcriptomics and 

physiological parameters diverge, we suggest that ecotypes could be revealed with further experiments. 

Physiological performance of S. latissima sporophytes originated in the Arctic was enhanced at 15 °C 

revealing that the species might benefit from increasing temperatures predicted for the region. Howev-

er, lower salinities had the opposite effect suggesting that this abiotic factor might compromise the suc-

cess of the species in a warming Arctic (Chapter 3). 

 

3. Is there a sex-biased gene expression in the vegetative gametophytes of S. latissima? 

Transcriptomic profiles differ between sexes and underlie differences in morphology, physiology and 

ecology (Chapter 6). A female-biased gene expression was observed. Genes up-regulated in females 

generally function within general metabolism and energy production while genes up-regulated in males 

participate in cell cycle and signaling. This reveals an effort into cell growth in females in contrast with 

an effort in cell division and signal perception in male gametophytes. In addition, we identified sex-

biased genes that can be applied in sex determination to facilitate breeding in seaweed cultivation and 

in evolutionary and ecologically studies in seaweeds as species-specific sex-biased gene expression was 

identified. 

 

4. Is there an interaction between temperature and sex effects in vegetative gametophytes of S. latis-

sima at the transcriptomic level? 

Temperature modulated sex-dependent gene expression responses in gametophytes of S. latissima. 

Proportion of female-biased genes increased with increasing temperature. Higher temperatures (20 °C) 

drove more metabolic reorganization in females, including stress related pathways, revealing that fe-

male gametophytes are more heat sensitive than males (Chapter 6). The differential heat tolerance be-

tween sexes has a potential effect in reproductive success at the rear edge of distribution and will be 

increasingly relevant under the current warming trends. Thus, this finding has strong implications on 

species reproductive success in the face of global warming and on breeding programs for aquaculture.  

 

In conclusion, transcriptomics can be used as an early warning indicator of emerging stress before ad-

verse effects on physiology are detected. However, it should be considered that interpretation of results 

is more intricate than the interpretation of physiological measurements. Moreover, molecular mecha-

nisms driving acclimation in S. latissima are many fold and go beyond known cellular stress responses, 

with likely high energetic costs. S. latissima sensitivity to hyposalinity is likely to impact performance at 

the leading edge and locally throughout the distributional range where freshwater input and precipita-

tion events are likely to increase, such as in the Baltic sea. Furthermore, sex-dependent sensitivity to 

high temperatures in gametophytes of S. latissima might compromise sexual reproduction at the rear 

edge of distribution and in sites where the species is close to the upper thermal tolerance limit. These 

results have implications in predictions of range shifts in the species distribution.  
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 Future perspectives 7.4

The applications of the transcriptomic data generated during this thesis do not expire here. As sequenc-

ing costs continue to drop and research interest continues to rise, more genomic resources of brown 

algae can expected to be available in the near future. These resources, namely the genome of 

S. latissima, will broaden the applications of the current data. Transcriptomic data can be integrated 

with relevant proteomics, metabolomics and genomics data in system biology approaches that will pro-

vide a view of the complex interplay of the different systems (Dittami et al., 2011; Ritter et al., 2014; Liu 

et al., 2019). Furthermore, modulation of gene expression by epigenetics (= “all mechanisms that 

potentially regulate gene expression, such as DNA methylation, histone modifications and variants, and 

noncoding and antisense RNAs.”, Torda et al., 2017) has recently been demonstrated in brown algae, 

namely histone modifications (Bourdareau, 2018) and DNA methylation (Fan et al., 2019). The coupling 

of RNA-sequencing with techniques that detect histone modifications (e.g. chromatin immunoprecipita-

tion (ChIP)) pave the way for a better understanding of regulation of gene expression, namely in life-

history transitions (Bourdareau, 2018; Fan et al., 2019) and potentially in response to stress (Maumus et 

al., 2011). Moreover, gene expression information gathered here can be further applied to evolutionary 

studies, namely the rate of evolutionary divergence between sex-biased and non-biased genes, as per-

formed in Ectocarpus sp. (Lipinska et al., 2015a). On the other hand, gene expression data can be inte-

grated with phenotypic traits through approaches such as weighted gene co-expression network analy-

sis (WGCNA) (Massa et al., 2013; Kenkel and Matz, 2016; Morandin et al., 2016). In addition, detecting 

Single Nucleotide Polymorphisms (SNPs) from expressed genes offers advantages over genomic data 

and can be applied in population genomics (De Wit et al., 2012; Jueterbock et al., 2016).  

To uncover phase-specific responses to environmental factors further studies shall include direct com-

parisons between life-history stages. As stated before, microscopic life-history stages are still considera-

bly understudied compared to the sporophyte stage (Bartsch et al., 2008). Further studies should in-

clude spores, other phases of the gametophyte development, gametes and microscopic sporophytes. A 

complete picture of sensitivity/resilience across the life cycle will reveal the weak link in kelps’ resilience 

to ongoing anthropogenic threats.  

To better understand geographical gradients in S. latissima investigations throughout the distributional 

range of the species will contribute to distinguish between contributions of phenotypic plasticity and 

adaptation underlying the biogeography of the species and its possible modulation by climate change 

scenarios. Studies including temporal patterns will reveal the critical time-point in species survival and 

uncover the relevance of seasonality in shaping species response to environmental changes.  
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APX L-ascorbate peroxidase 

C:N Carbon to nitrogen ratio 

CAT Catalase 

Chl Chlorophyll 

DEGs Differentially expressed genes 

DNA Deoxyribonucleic acid 

DW Dry weight 

FAD2 Delta-fatty-acid desaturase 

FAD7 Sn-2 acyl-lipid omega-3 desaturase 

Fv/Fm Maximal quantum yield of photosystem II 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GO Gene ontology 

GSTs Glutathione S-transferases 

HPLC High-performance liquid chromatography 

HSPs Heat shock proteins 
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MsrA Peptide methionine sulfoxide reductase 

N Nitrogen  

mRNA Messenger Ribonucleic Acid 

NTRC Thioredoxin reductaseNTRC 

PAR Photosynthetic active radiation 

PAR Photosynthetically active radiation 

PCA Principal component analysis 

PES Provasoli enriched seawater 

PS II Photosystem II 

qPCR quantitative polymerase chain reaction  

RNA Ribonucleic acid 

ROS Reactive oxygen species 
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SD Standard deviation 
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