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General introduction 

Refractories are mineral materials able to sustain high temperatures, typically above 

1000°C, required for many industrial processes. These materials should usually tolerate 

extreme conditions such as thermal and mechanical stresses as well as corrosion and 

erosions. The main applications of refractory materials are in steelmaking, cement 

making, ceramics, and glass production. The steelmaking industry is for sure the primary 

consumer of refractory materials (more than 70% of annual production) and refractories, 

are a vital element for all steps of steel processing.  

Since the industrial revolution in Europe, the steelmaking industry remains a backbone 

of economic growth and manufacturing development for European countries. This notion 

might not be tangible until knowing the fact that, even now, each European Union citizen 

consumes an average of 320 kilograms of steel per year, which highlights its importance 

in everyday life. In fact, steel is used in every aspect of our surroundings, from mobility 

(cars, trains…), structures (towers, bridges, …) even the culinary uses (kitchen sinks, 

cookware…). To keep this essential industry productive, the continuous process of 

supplying refractories should be guaranteed. In this way, constant engineering and 

innovations in refractories are needed to deal with new and more challenging steelmaking 

requirements. Therefore, it has been more than 15 years that the FIRE1 network 

(Federation for International Refractory Research and Education) gathered academic and 

industrial partners to promote refractory research programs and train skilled researchers 

and engineers for the next generations of this domain. Thanks to these collaborations, a 

significant experience has been acquired, which led to the creation of the ATHOR2 Marie 

Curie project (Advanced THermomechanical multi-scale mOdelling of Refractory 

linings), which is an Innovative European Training Network supported by the European 

Commission3. The ATHOR project aims to train 15 highly skilled early-stage researchers 

through PhD studies, and its consortium is consisting of seven academic poles (University 

of Limoges, University of Aachen, University of Leoben…) and eight industrial partners 

(Saint-Gobain, Safran, Imerys…). This project is focused on the thermomechanical 

investigation and behaviour prediction of refractory linings: from the grain scale to the 

whole steel ladle structure. This is due to the fact that the steel ladle is at the core of the 

steelmaking process and is the major refractory using structure in the whole steel 

production chain.  

In steel ladle, refractories face severe thermal shocks (rapid variation of temperature) 

due to the filling and emptying of melted steel. These thermal shocks induce stresses, 

which could weaken the refractory linings and potentially leads to complete failure of the 

ladle (breakthrough). When such a breakthrough occurs, it involves enormous cost, 

significant production loss, environmental pollution, and most importantly, huge risks for 

personals’ safety. 

 
1 http://fire-refractory.org/ 
2 https://www.etn-athor.eu/ 
3 https://ec.europa.eu/research/mariecurieactions/actions/research-networks_en 

http://fire-refractory.org/
https://www.etn-athor.eu/
https://ec.europa.eu/research/mariecurieactions/actions/research-networks_en
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As a part of the ATHOR project, this PhD aims to take advantage of advanced 

numerical tools to study the thermomechanical behaviour of refractory materials related 

to their microstructure design. To go in this way, it should be highlighted that the thermal 

shock resistance of refractories is closely related to the material ability to resist against 

crack propagation. Thus, in many cases, previous experimental studies already 

demonstrate that a voluntary introduction of a large number of microcracks within the 

microstructure of refractories during processing could strongly improve their thermal 

shock resistance, thanks to the promotion of a high non-linear tensile behaviour. From 

this experimental fact, the present PhD aims to better understand the relationship between 

microstructure design and macroscopic thermomechanical behaviour (non-linearity of 

stress-strain curves in tension and associated fracture energy). Thus, it is in particular 

targeted to model such fracturing behaviours, which involves a high number of 

microcracks, and the effect of these microcracks on the macroscopic thermomechanical 

behaviour. To tackle these general points, the Discrete Element Method (DEM) numerical 

approach is assigned for this PhD, thanks to its strong ability to manage a high number of 

cracks simultaneously during simulations. 

In fact, the development of DEM to better understand the microstructure effects on 

thermomechanical behaviour of refractory materials started just a couple of years ago at 

IRCER4 (recruitment of Dr. Damien André in 2014, the first PhD on this subject between 

2016 and 2019). Hence, there were no extensive previous experiences in this new domain 

at the starting point of this PhD. Therefore, in line with the ATHOR project, this PhD 

follows a pre-defined general goal to develop numerical tools based on the DEM approach 

to investigate the relationships between microstructure and thermomechanical properties 

of heterogeneous materials containing microcracks.  

The chosen DEM model of this study is the Flat Joint Model (FJM), thanks to its ability 

to mimic the microstructure of angular and interlocked grains, including fracturing 

processes in quasi-brittle materials. The framework of the FJM model is Particle Flow 

Code (PFC3D) from ITASCA5 company (partner of this PhD), which is different from 

GranOO workbench, developed and previously used at IRCER. To go in this way, this 

dissertation is organised into five chapters, and a brief insight into these chapters will be 

given here. 

Chapter I: This chapter will be dedicated to state of the art in line with the purpose of 

this PhD. It is divided into three main parts. Firstly, an introduction to the thermal shock 

resistance in refractories will be given. Then, a review about phenomenological fracture 

mechanics, dedicated to such heterogenous materials, will be provided. At the end of this 

first chapter, different numerical methods will be reviewed regarding their abilities for 

simulating fracture propagation and damaged materials. 

Chapter II: This chapter will be dedicated to the Flat Joint Model (FJM), which has 

been chosen as the main DEM contact model for the present study. At first, the PFC3D 

framework, where the FJM model is implemented, will be introduced. Then, a description 

of FJM and its related input parameters will be presented in detail. Afterwards, due to the 

necessity of calibration of input parameters in discrete models, sensitivity studies about 

the FJM input parameters influence on the apparent simulated properties will be 

 
4 https://www.ircer.fr/ 
5 https://www.itascacg.com/ 

https://www.ircer.fr/
https://www.itascacg.com/
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conducted. It is aimed here to obtain a rationalised calibration algorithm in order to 

precisely and efficiently reproduces, by FJM, the targeted macroscopic mechanical 

behaviour of the material.  

Chapter III: This chapter will be dedicated to proposing a DEM periodic 

homogenisation approach by using the notion of the Representing Volume Element 

(RVE) for modelling a pseudo infinite media. In this way, the multi-scale purpose of this 

study for upscaling the local properties (coming from heterogeneous microstructures) to 

the apparent elastic behaviour (macroscopic mechanical response) will be addressed. 

Implementing such a periodic homogenisation approach in DEM will allow working on 

a pseudo-infinite small domain, thus with a limited number of discrete elements. Such 

kind of homogenisation for a continuum media in DEM is not as robust as in FEM. In 

this chapter, the proposed model will investigate the quantitative prediction of 

macroscopic properties for bi-phase and porous materials by comparing to experimental 

data, analytical Hashin and Shtrikman model and numerical Finite Element Method 

(FEM). 

Chapter IV: This chapter will be dedicated to proposing a model for mimicking the 

non-linear mechanical behaviour by considering microcracking process in a continuum 

media. In fact, as previously mentioned, numerous microcracks can be intentionally 

induced within the microstructure of refractories to increase their thermal shock 

resistance. The presence of such microcracks usually induces a non-linear quasi-brittle 

mechanical behaviour. To numerically reproduce this phenomenon, a DEM model will 

be proposed based on the randomisation of local fracture criteria following a Weibull 

distribution. The results of the proposed model will be compared to reference Alumina 

Spinel experimental data. Subsequently, a meta-algorithm will be proposed to calibrate 

potentially any DEM model quantitatively for simulating such non-linear behaviour. This 

aims to tune the fracture energy and brittleness of the material in DEM simulations by 

promoting diffused damages and crack branching into the microstructure.  

Chapter V: This chapter will be dedicated to the applicability of the proposed 

numerical model of chapter IV to mimic the Wedge Splitting Test (WST), which is 

commonly used to quantify the brittleness of refractories. WST could be, in fact, an index 

for characterising the quasi-brittle behaviour of refractories. Again, this behaviour is 

closely linked to the presence of the mentioned pre-existing microcracks and their ability 

to promote crack branching during loading. Therefore, this chapter aims to examine the 

ability of the proposed statistical numerical approach to reproduce this fundamental 

phenomenon. The results of such simulations will be qualitatively compared to two model 

materials with different fracturing behaviour: a highly brittle pure Magnesia and a 

quasi-brittle Magnesia Hercynite. Besides, the obtained crack branching from these 

simulations will be qualitatively compared to the experimental cracking, captured by 

Digital Image Correlation (DIC). In the end, a discrete/continuous hybrid model will be 

proposed to optimise the WST simulations in order to save computational time. To go 

further in the optimisation way, rigid discrete blocks elements will be introduced to act 

as large aggregates within the microstructure. 

Finally, this dissertation will be close by concluding the overall achievements of this 

study, and the proposition of potential prospective studies, based on the obtained 

experience and results.
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I.1. Thermal shock resistance 

Based on the literature, thermal shock resistance is the ability of materials to tolerate 

thermal stresses, caused by rapid changes in temperature, without any failure (Schacht 

2004). Refractories are continually exposed to these thermal shocks during their service 

life, and these thermal cycles could induce stresses which could weaken the materials in 

application and potentially leads to complete failure. Therefore, to improve this very 

practical aspect, different authors have continuously developed theoretical concepts to 

quantify the thermal shock resistance of materials. Since more than half a century ago, 

different key approaches have been thus set up to quantify thermal shock resistance of 

ceramics. 

I.1.1. Key physical properties from Kingery’s approach 

In 1955, Kingery proposed a thermo-elastic approach to analyse the thermal shock 

resistance for undamaged materials (Kingery 1955). This approach was proposed for a 

simplified case of homogeneous and continuous material with a linear elastic mechanical 

behaviour. He assumed an infinite slab with an initial temperature of 𝑇1, suddenly 

exposed to the temperature of 𝑇2 which leads to a thermal gradient inside the slab. This 

thermal gradient will induce thermal stresses. If these thermal stresses become equal to 

the material’s strength, then the minimum temperature difference for crack initiation is 

reached. For a high rate of heat transfer (for example, cooling by a high flux of water), 

the first thermal shock resistance parameter, called R (in °C), can be written as: 

 
𝑅 =

𝜎𝑡 (1 − 𝜈)

𝐸 𝛼
 Eq. I-1 

 

where 𝜎𝑡 is tensile strength, 𝜈, 𝐸 and 𝛼 are Poisson’s ratio, Young’s modulus and thermal 

expansion coefficient of the material, respectively.  

This parameter is corresponding to the maximum temperature difference that the 

material could withstand without initiating any fracturing process.  

On the other hand, this temperature difference could depend on the thermal 

conductivity of the material for a low rate of heat transfer (for example, cooling by a low 

flux of air). 

Therefore, a second thermal shock resistance parameter 𝑅′ (in W/m), has been 

introduced by considering the thermal conductivity: 

 
𝑅′  =  

𝜆 𝜎𝑡 (1 − 𝜈)

𝐸 𝛼
 

Eq. I-2 

where 𝜆 is the thermal conductivity of the material.  

As interesting indicators, by increasing R and 𝑅′, the thermal shock resistance of the 

materials will increase, which means the material could tolerate a higher temperature 

difference without any failure. Taking into account Eq. I-1 and Eq. I-2, the most common 

influential factors on the thermal shock resistance from Kingery’s point of view are listed 

below (Askeland et al. 2016): 
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• thermal expansion coefficient (𝛼), low thermal expansion coefficient decreases 

dimensional changes and increases the ability to withstand thermal shock; 

• thermal conductivity (𝜆), high thermal conductivity helps to transfer heat and 

reduce temperature gradients within the material; 

• Young’s modulus (E), a low Young’s modulus reduces the stress level for a given 

strain generated by the temperature gradients and thus reduce the risk of failure; 

• tensile strength (𝜎𝑡), a high value of the tensile strength is commonly 

recommended since it allows larger thermal strains before failure.  

Considering these points, to obtain a material with high thermal shock resistance, 

𝛼 and E values should be low, while the 𝜆 and 𝜎𝑡 values should be high. Thus, the first 

step to finding such material with the mentioned desired macroscopic parameters is to 

check the property databases of the potential candidates. One of the most common charts, 

which considers these points to compare thermal shock resistance of different materials, 

has been proposed by Ashby (Ashby 1999). Based on Ashby’s approach, the mentioned 

influential parameters have been plotted specifically for the refractory materials  

well-documented in the GRANTA software. The normalised tensile strength 𝜎𝑡/𝐸, has 

been plotted against thermal expansion coefficient 𝛼 in Fig. I-1 (a) and against the 

normalised thermal expansion coefficient 𝛼/𝜆 in Fig. I-1 (b). It should be mentioned that 

certain refractories groups in the plotted charts had slightly different 𝜎𝑡 or 𝐸 values. 

However, here, the strongest properties were intentionally considered, in order to be as 

close as possible to pure compositions and/or to grains properties. Besides, such 

customised plots are mainly pedagogical, and to be more practical, it could be necessary 

to test other potential materials in order to build a suitable dedicated database. 

 

  

Fig. I-1. Simplified thermal shock resistance comparison chart for refractories:  

(a) normalised tensile strength 𝜎𝑡/𝐸 against thermal expansion coefficient 𝛼, and (b) 

against the normalised thermal expansion coefficient 𝛼/𝜆. 

In agreement with R and 𝑅′ Kingery’s parameters, the thermal expansion coefficient 

𝛼 and the normalised thermal expansion coefficient 𝛼/𝜆, presented in Fig. I-1 (a) and (b) 

should be low to decrease the thermal expansion gradient. On the other hand, the 
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normalised tensile strength 𝜎𝑡/𝐸 should be high to allow large strains without failure. 

Therefore, the top left-handed side of the charts is the region for thermal shock resistant 

materials. Comparing Fig. I-1 (a) and (b), it can be seen that, in both charts, Graphite 

exhibits a very good thermal shock resistance, which can explain why Graphite is 

commonly added to certain refractories. Also, at first glance, on Fig. I-1 (a), it appears 

that Magnesia (MgO) is not an appropriate candidate to be used in refractories (for 

thermal shock); however, by considering the normalised thermal expansion coefficient 

𝛼/𝜆 in Fig. I-1 (b), MgO is placed in a reasonable position among the others, showing 

the importance of considering the normalised thermal expansion coefficient too.  

After such comparisons (from intrinsic properties), if the desired material with 

specific macroscopic properties was not found in materials databases, it could also be 

possible to mix different constituents to design a specific microstructure in order to 

achieve the targeted macroscopic properties.  

I.1.2. Microstructure influence on critical physical properties 

It is quite common to mix different constituents to achieve the desired macroscopic 

behaviour for a given refractory material. For industrial applications, one of the critical 

aspects is also resistance against corrosion, especially for refractories, which are in 

contact with slags. Therefore, at this stage, refractory engineers must introduce corrosion-

resistant large grains such as Magnesia (MgO). On the other hand, although using these 

types of large grains will increase the corrosion resistance of the material, it will 

undesirably decrease its tensile strength. Depending on the microstructure (grain size, 

compacity…), other properties like Young’s modulus and strain at rupture, even thermal 

expansion, could be affected. Hence, a compromise between the different required 

properties should be found. 

If this approach (mixing the constituents) is not enough to achieve the targeted 

properties, it is also possible to modify or tune the microstructure of the material. For 

example, by introducing microcracks at the local scale, the macroscopic properties of the 

refractories will change due to the induced internal damages, and this could positively 

affect the thermal shock resistance of the material. In fact, the presence of local 

discontinuities will lead to a decrease of Young’s modulus (Hasselman 1969) and of the 

thermal expansion coefficient of the material (Chotard et al. 2008). Based on previous 

Kingery’s formulation (Eq. I-2), decreasing these two parameters can improve the 

thermal shock resistance of the material.  

Commonly, refractories are heterogeneous materials consisting of large grains within 

a bonding matrix. A microcracking process within the microstructure can be controlled 

by adding inclusions during the fabrication of the refractories in order to obtain the 

required macroscopic properties. Such microcracking process within the microstructure 

can be tuned, either during heating or cooling, through adjusting the Coefficient of 

Thermal Expansion (CTE) mismatch between the different constituents of the material. 

To simplify this complex media, let us assume a bi-phase model material composed 

of a continuum matrix and spherical inclusions. Such a system has been studied by 

Tessier-Doyen et al. (Nicolas Tessier-Doyen 2003). For such a system, three different 

scenarios could happen during the cooling stage after sintering by exhibiting different 
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thermal expansion coefficients. The thermal coefficient of the matrix (𝛼𝑚𝑎𝑡𝑟𝑖𝑥) could be 

smaller, equal or bigger than the thermal expansion coefficient of inclusion (𝛼𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛). 

These three cases are described in the Fig. I-2: 

a) when 𝛥𝛼 <  0, the matrix has a lower thermal expansion coefficient; therefore, it 

has a slower contraction during cooling in comparison to the inclusion, which 

leads to radial tensile and circumferential compressive stresses. If these stresses 

reach the debonding threshold, debonding of inclusion will occur. An example of 

this behaviour can be seen in the Cordierite Mullite refractories in Fig. I-2 (d). 

This refractory is mostly used for tiles making purposes, and the Cordierite matrix 

exhibits a lower thermal expansion coefficient in comparison to the Mullite 

inclusions.  

b) when 𝛥𝛼 =  0, there will be no induced thermal stress; therefore, no cracks or 

deboning. This theoretical concept is relatively rare to be observed in reality while 

mixing different constituents. 

c) when 𝛥𝛼 >  0, the matrix has a higher thermal expansion coefficient; therefore, 

it has a faster contraction during cooling in comparison to the inclusion, which 

leads to circumferential tensile and radial compressive stresses. If these stresses 

reach the fracturing threshold of the matrix, networks of the microcracks within 

the matrix will form (starting from the interface). An example of this behaviour 

can be seen in Magnesia Spinel refractories in Fig. I-2 (f). These refractories are 

mainly used in rotary kilns of the cement industry, and the Magnesia matrix 

exhibits a higher thermal expansion coefficient in comparison to the Spinel 

inclusions, which lead to microcrack within the matrix in the vicinity of the Spinel 

grains. 
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Fig. I-2. Three scenarios for CTE mismatches and corresponding stress development 

around inclusions: (a) matrix CTE smaller than inclusion, (b) matrix CTE equal to 

inclusion (c) matrix CTE bigger than inclusion. (d) the real case for Cordierite Mullite 

(Chotard et al. 2008) and (f) the real case for Magnesia Spinel (Renaud Grasset-Bourdel 

2011). 

This controlled network of microcracks could also improve materials thermal shock 

resistance and directly affect Kingery’s key parameters. In fact, such an initial 

microcracks network could allow the material to exhibit significant residual mechanical 

properties after thermal shock. This critical point is not taken into account by Kingery’s 

approach. Indeed, the severity of the damage arising from thermal shock determines the 

loss in mechanical properties. Hence, in order to quantify the thermal shock resistance of 

such damageable materials, a dedicated, energetic approach was introduced by 

Hasselman, which is explained in the next section. 

I.1.3. An energetical approach by Hasselman 

Hasselman introduced the energetic approach during the 1960s and 1970s (Hasselman 

1963, Hasselman 1969, Hasselman and Youngblood 1978). In this approach, the 

microcracks stability is studied by considering the induced thermal stresses. It is assumed 

that in the initial state, the material contains microcracks, and these microcracks are 

homogenously distributed; also, the stress field interactions of neighbouring cracks and 

stress relaxation are not considered. It was assumed that crack propagation is controlled 
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by the minimisation of the total energy of the system. This total energy 𝐸𝑡𝑜𝑡𝑎𝑙, is the sum 

of elastic energy and the surface energy of the cracks (Hasselman 1969): 

 𝐸total = 𝐸elastic + 𝐸surface Eq. I-3 

where 𝐸elastic is the stored energy in the case of linear elasticity and 𝐸surface is the surface 

energy, which corresponds to energy to create crack surfaces within the system.  

Later on, Hasselman proposed two parameters for thermal shock resistance. Firstly, 

as a measure to compare the damage level of different materials, the thermal shock 

damage resistance parameter 𝑅′′′′ was introduced, which is defined as: 

 
𝑅′′′′ =

𝐸 𝛾𝑠

𝜎𝑡
2  Eq. I-4 

where E is Young’s modulus, 𝜎𝑡 is the tensile strength, and 𝛾𝑠 is the fracture surface 

energy (in J/m2).  

By increasing this parameter, it is expected that unstable crack propagation within the 

sample decrease. It leads to promote a more quasi-brittle behaviour, rather than a highly 

brittle behaviour. Afterwards, Hasselman introduced a parameter to address the resistance 

against the growth of initial rather large cracks. This parameter was called thermal stress 

crack stability 𝑅𝑠𝑡: 

 
𝑅𝑠𝑡 = √

𝛾𝑠

𝐸 𝛼2
 Eq. I-5 

By increasing this parameter, it is expected that fracture propagation will be more 

difficult. Considering 𝑅′′′′ and 𝑅𝑠𝑡, these two parameters depend on Young’s modulus, 

fracture surface energy and tensile strength. By using a simple approximation of elastic 

energy, it can be assumed that 𝐸 𝛼2 ≅ 𝜎2/𝐸. Hence, both parameters will be inversely 

proportional to 𝜎2/𝐸, which is related to the stored elastic strain energy (Popov 1998). 

Indeed, this energy is the primary source of force for initiating and propagating cracks 

within the material. Hence, considering the Hasselman parameters, this energy should be 

decreased in order to increase the thermal shock resistance of the material; in other words, 

a low value of strength should be targeted by introducing some internal defects. 

To sum up, a high strength potentially leads to a low thermal shock resistance of 

refractories. In fact, the thermal shock resistance decreases proportionally to the square 

of the strength. That is why the refractory industry is not focusing on developing 

high-strength refractories (Schacht 2004).  

I.1.4. Crack growth in refractories 

After introducing the potential microcracking process and its influences on the 

thermal shock resistance of the materials, the crack growth process itself is a vital aspect 

to investigate. As mentioned, high thermal shock resistance is strongly connected to the 

material’s ability to resist against crack propagation through large energy dissipation by 

creating new surfaces and friction mechanisms. As shown in Fig. I-3, this dissipation 

process could occur within the fracture process zone (FPZ) in front of the growing crack 

or in following wake region, that follows the growing crack front (Schacht 2004).  
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Fig. I-3. Scheme of fracture propagation mechanism (Schacht 2004). 

In the crack’s tip, a large microcracking process should happen to promote crack 

branching. In the wake region (behind the advancing crack), the aggregate bridging 

should happen to increase crack opening resistance (Steinbrech et al. 1983). These points 

will have a crucial impact on the macroscopic mechanical behaviour of the material as it 

could lead to non-linear behaviour and will be explained more in details in the following 

section. 

I.1.5. Aggregates role in thermal shock resistance and non-linear 

behaviour 

Aggregates could have a positive influence on the thermal shock resistance of 

refractories. In fact, refractory producers use this point for a long time to increase the 

thermal shock damage resistance of fireclays by adding large hard aggregates as “thermal 

shock crack stoppers” (Schacht 2004). As mentioned in the previous section, aggregate 

bridging in the wake region of the crack could increase the fracture propagation resistance 

and, consequently, the thermal shock resistance. The other function of large aggregates is 

to induce microcracks within the refractory’s microstructure, reducing the overall 

strength of materials, and leading to increased thermal shock resistance, as mentioned in 

the Hasselman approach (see section I.1.3). Thus, it is preferred to have multi-phase 

refractories by introducing aggregates, as the aggregates (Schacht 2004): 

• increase microcracks level by introducing crack deviation around them and; 

• consume energy through bridging phenomena following the crack. 

Although adding aggregates to microstructure could positively impact the thermal 

shock resistance of refractories, it will have a considerable impact on macroscopic 

mechanical behaviour. In this regard, in a study by Grasset-Bourdel, this impact of 
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introducing aggregates on the thermal-induced microcracks and, consequently, on the 

mechanical behaviour of two-phase refractories was investigated (Renaud Grasset-

Bourdel et al. 2013). In the mentioned study, Magnesia Spinel refractories with different 

content of Spinel grains were tested. Due to the CTE mismatch between the two phases 

(Spinel grains and Magnesia matrix), radial microcracks around the inclusions were 

generated during the cooling phase, as shown in Fig. I-2 (see section I.1.2). It was shown 

that the amount of microcracks was correlated to the Spinel grains content. Afterwards, 

the macroscopic mechanical behaviour of these refractories was characterised by using 

the uniaxial tensile test. Fig. I-4 is showing the stress-strain curves with different Spinel 

grains content within the microstructure. 

 

Fig. I-4. The stress-strain curves with different Spinel grains contents within a Magnesia 

matrix (Renaud Grasset-Bourdel et al. 2013) 

As shown in Fig. I-4, pure Magnesia itself shows a relatively linear behaviour; 

however, by introducing and increasing the Spinel grains content, the two-phase 

refractories exhibit a considerable non-linear behaviour. This non-linearity increases as 

the Spinel grain contents increases. This increase is related to the amount of thermal-

induced microcracks. 

To sum up, it is evident that for improving the thermal shock resistance of refractories, 

it is essential to optimise the non-linearity of their mechanical behaviour (by inducing 

microcracks) and obtain an equilibrium between strength value and quasi-brittle 

behaviour. This point can be achieved by tailoring and designing suitable microstructures. 

Hence, designing and testing such new microstructures will require a combination of 

theoretical fracture mechanics basis, experimental approaches and numerical simulations 

in order to predict the efficiency of designed microstructures. These topics will be 

explained more in the following sections. 
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I.2. Phenomenological approach of fracture mechanics 

I.2.1. Linear fracture mechanics 

The general first approach to fracture mechanics is Linear Elastic Fracture Mechanics 

(LEFM), proposed by Griffith, which simply considers an elliptical crack propagating in 

an elastic, isotropic media (Griffith et al. 1921). The Griffith work was an energetic 

approach that describes fracture based on the balance between elastic energy and energy 

dissipation due to the creation of new crack surfaces. Hence, the parameter 𝐺𝑐, which is 

the critical energy release rate, was introduced. For an infinite plate under uniform axial 

tensile stress, containing a straight crack of length 2a, perpendicular to the stress, it can 

be written: 

 
𝐺𝑐 =

 𝜎𝑟
2 𝜋 𝑎

𝐸
 Eq. I-6 

where 𝜎𝑟 is the strength, E is the Young´s modulus, and a is the crack size. 

This Griffith approach is only valid for highly brittle materials such as glass and some 

fine grain ceramics due to the absence of other energy dissipating mechanisms (Griffith 

et al. 1921). Later in 1957, Irwin proposed a local asymptotic approach, which relies on 

singular stresses associated with a sharp crack by using the stress intensity factor. In this 

approach, the stress can be formulated according to the crack tip position and its vicinities 

for an isotropic linear elastic material, as shown in Fig. I-5 (Irwin 1957). 

 

Fig. I-5. Polar coordinate axis ahead of a crack tip adopted from (Anderson 2017). 

The stress fields ahead of a crack tip can be written as: 

 
𝜎𝑖𝑗 =

𝐾

√ 2 𝜋 𝑟
𝑓𝑖𝑗(𝜃) Eq. I-7 

where, 𝜎𝑖𝑗 is the stress, K is the stress intensity factor, r and θ are the polar coordinates 

from the crack tip, and 𝑓𝑖𝑗 is the dimensionless function depends on the geometry of the 

sample and test configurations. 

Regarding the Eq. I-7, theoretically, the stress in the immediate region around the 

crack tip (area 1) is infinite. Area 2 is a stress singularity zone, where the singularity near 
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the crack tip is proportional to 1/√𝑟 and area 3, is the far-field stress zone. In this way, 

by focusing on area 2 and using stress singularities in the asymptotic local approach, Irwin 

introduced a crack propagation criterion called critical stress intensity factor or fracture 

toughness: 

 𝐾𝐼𝐶 = 𝜎𝑟  𝑌 √ 𝜋 𝑎 Eq. I-8 

where, 𝐾𝐼𝐶 is the toughness, and Y is a geometrical factor.  

By assuming the crack in an infinite media, the geometrical factor, Y, will be equal to 

one (for plane stress). Then, taking into account Eq. I-6, Eq. I-8 and it can be written 

that: 

 
𝐺𝑐 =

𝐾𝐼𝐶
2

𝐸
 Eq. I-9 

This equation shows that fracture toughness is related to fracture energy; therefore, 

fracture toughness is considered as an index for the resistance of the material against crack 

propagation. However, both Griffith and Irwin approaches are considered as part of 

Linear Elastic Fracture Mechanics (LEFM), which mostly suits for purely brittle 

materials. Indeed, LEFM is mostly involved for materials with negligible non-linear 

behaviour (potentially resulting from diffused damage or plastic deformations). Thus, the 

linear elastic assumption is not suitable for refractories, as this class of materials can 

exhibit significant non-linear behaviour even at room temperature (see section I.1.5). This 

non-linear behaviour has been firstly studied in the case of metal alloys to consider the 

development of plasticity in the vicinity of crack (Rice 1968). The non-linear fracture 

mechanics coming from damages zones produced by microcracks within refractory 

microstructures will be introduced in the following section. 

I.2.2. Non-linear fracture mechanics 

The Elastic-Plastic Fracture Mechanics (EPFM) has been specifically developed for 

materials with non-linear behaviour resulting from plastic deformations in front of the 

crack tip, as shown in Fig. I-6 in the case of a compact tension test. In this test, a plate 

containing a single-edge notch undergoes tensile forces. ASTM standardised this test for 

measuring fracture toughness in metallic alloys (Slepetz et al. 1975).  

 

Fig. I-6. The schematic of the compact tension test, adopted from (Anderson 2017) 
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It should be mentioned that, although the EPFM models were initially proposed for 

metals, they can be extended for quasi-brittle materials, which are promoting the same 

macroscopic non-linear behaviour. In fact, such a mechanical behaviour could have two 

different phenomenological local reasons; firstly, the plastic zone ahead of the advancing 

crack, which is the case for metal alloys as mentioned earlier. Secondly, this non-linearity 

could also be observed in quasi-brittle materials such as refractories, where diffused 

microcracks are developing within the damaged fracture process zone (FPZ), as explained 

in section I.1.4. 

The most popular elastic-plastic parameter in EPFM for fracture criterion in 

non-linear materials is J counter integral, proposed by Rice (Rice 1968). In this approach, 

the plastic deformation has been taken into account to analyse fracturing in a quasi-brittle 

material. Rice proposed that the non-linear energy release rate, J, could be written as a 

path-independent line integral. Indeed, the J integral can be viewed as both an energy 

parameter and a stress intensity parameter, as J uniquely could characterise crack tip 

stresses and strains (Anderson 2017). Therefore, a higher J value will ultimately lead to 

higher energy for crack initiation in a stationary crack, which means a tougher material. 

A relationship was established between energy release rate and J-integral; for opening 

fracture, it can be written: 

 
𝐺𝑐 =

𝐾𝐼𝐶
2

𝐸
= 𝐽 

Eq. I-10 

In the case of quasi-brittle materials, the area around the crack tip (area 2 in Fig. I-5) 

generates most of the non-linear phenomena, which deals with the release of elastic 

energy during crack propagation through the FPZ. For refractories, in particular, Sakai et 

al., investigated this non-linear fracture behaviour (Sakai et al. 1986). Based on the 

mentioned study, the free energy (𝛥𝐺) corresponds to the energy balance during a crack 

extension over the area of Δa (as shown in Fig. I-7(a)) and can be described as:  

 𝛥𝐺 = 𝛥𝜋 + 𝛥𝛤 + 𝛥𝑈ir Eq. I-11 

where, 𝛥𝜋 corresponds to the potential energy change, which is, in fact, negative 

during the test. The term 𝛥𝛤 corresponds to the energy required to produce the new 

fracture surfaces area (𝛥𝐴), which is a linear function of cracked surface area, and can be 

written as: 

 𝛥𝛤 = 2 𝛾𝑆 𝛥𝐴 Eq. I-12 

where, as a reminder, the 𝛾S, is the materials surface energy (see section I.1.3.). 

Finally, 𝛥𝑈ir corresponds to additional energy consumption by irreversible processes. 

Now, as a quasi-static condition for a stable crack advancement, the free energy should 

be zero (𝛥𝐺 =  0) and by considering Eq. I-11, it can be written that (Sakai et al. 1986): 

 −𝛥𝜋 = 𝛥𝛤 + 𝛥𝑈ir Eq. I-13 
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In the same way, in order to normalise by the surface of the fracture, it can be written: 

 
−

𝛥𝜋

𝛥𝐴
=

𝛥𝛤

𝛥𝐴
+

𝛥𝑈𝑖𝑟

𝛥𝐴
 Eq. I-14 

This relation highlights that the change in the system’s potential energy during 

fracturing will be consumed in two ways; to produce new fracture surfaces and for 

additional irreversible processes (such as local plasticity, friction, interlocking aggregates 

and heat…). The schematic force-displacement response of such a quasi-brittle refractory 

is shown in Fig. I-7 (b). 

 

Fig. I-7. Conceptual aspects around compact tension test: (a) a schematic view of the 

crack advancement (Δa) under tensile loading, and (b) the load-displacement curve with 

areas corresponding to the energy consumed by surfaces creation (Δ𝛤) and to energy 

consumed by other irreversible processes (𝛥𝑈𝑖𝑟), adapted from (Sakai et al. 1986). 

To break down the shown load-displacement curve of Fig. I-7 (b), the total area of the 

BDEC (Δπ) is related to the total energy consumption (work of fracture), while loading 

the sample from B to D. The CBF area (𝛥𝛤) is the energy associated with fracture 

advancement (surfaces creation) in elastic and reversible conditions. This means that if 

the material would be unloaded in such a condition, the unloading curve would go back 

to point C, with no additional residual deformations (reversible). However, in reality, the 

unloading curve will go back to point E, because of other energy dissipation mechanisms 

which lead to the additional terms (𝛥𝑈𝑖𝑟), corresponding to irreversible processes. Now, 

the triangle CBQ and EDX are showing the stored energy for point B and D, respectively. 

Considering the line CF drown in parallel with ED, its intersection with the value of the 

force for point D, will be the point F. Now, the two triangles of CFY and EDX are equal, 
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and the area BDECF correspond in fact to energy consumption by irreversible processes 

(𝛥𝑈𝑖𝑟).  

This configuration was showing a stable fracture propagation process within a 

refractory. Nevertheless, compact tension configuration is not very suitable for 

refractories as it requires drilling holes to apply the load, which induce stress 

concentration, potentially leading to an unpredictable rupture. Therefore, later on, Wedge 

Splitting Test (WST), which is more adapted to characterise brittle materials such as 

concretes and refractories, has been introduced by Tschegg (Tschegg 1986). Compared 

to the compact tension test, WST is easier to manage, as there is no stress concentration, 

and it can produce a relatively big fracture area compared to the size of the sample 

(Brühwiler et al. 1990). In the next section, WST is explained more in detail. 

I.2.3. Fracture energy quantification of refractories by Wedge Splitting 

Test (WST) 

The principle of WST is to break a brick in the opening mode of fracturing by 

applying a vertical force and its transformation in horizontal forces to produce a stable 

crack, as shown in Fig. I-8 (a). The typical force-displacement curve for the WST is also 

shown in Fig. I-8 (b).  

 

Fig. I-8. Wedge Splitting Test (WST): (a) schematic view of the device, (b) typical 

force-displacement curve. From (Belrhiti 2015). 

WST aims to obtain specific fracture energy (𝐺𝑓) and brittleness number (B) of 

materials (Tschegg 1986). Specific fracture energy is the amount of energy necessary to 

create a one-unit area of a crack, which is commonly determined by the area under of 

strain-softening curve. In order to calculate the specific fracture energy of materials, 

based on the obtained force-displacement curve, the following relationship was 

introduced by Harmuth et al. (Harmuth et al. 1997a):  
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𝐺′𝑓 =  
1

𝐴
  ∫ 𝐹ℎ𝑑𝛿

𝛿𝐹𝑚𝑎𝑥15%

0

 
Eq. I-15 

where G′f, A and Fh, are the specific fracture energy (J/m2), the fracture surface (m2) and 

the horizontal force (N), respectively. In such an experimental test, to avoid the loading 

wedge touches the sample while it is moving downward, the test is usually stopped at 

15% of the force peak. Thus, the full value of Gf cannot be precisely determined. This 

restriction to 15% of the force peak leads to introduce 𝐺′𝑓, instead of 𝐺𝑓. That is why in 

the case of WST, the term specific fracture energy is preferred to fracture energy. 

To evaluate the brittleness of the refractories, one of the earliest concepts was 

introduced by Gogotsi in 1973 (Gogotsi 1973). He introduced parameter X as a criterion 

for brittleness, which was defined on the stress-strain curve of a sample under mechanical 

loading. It can be written as: 

 
𝑋 =  

 𝑙𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦

𝑡𝑜𝑡𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑟𝑢𝑝𝑡𝑢𝑟𝑒
 Eq. I-16 

Later, in 1988 in the case of concretes, Bazant proposed a first brittleness number (B) 

as a shape-independent and size-independent index in order to characterise fracturing 

behaviour (Bazant et al. 1988). Afterwards, Harmuth et al. used a refined and adapted 

WST to obtain the Brittleness number (B) for refractories (Harmuth et al. 1997a). In this 

context, the Brittleness number (B) is proportional to energy stored elastically at crack 

initiation over total fracture energy: 

𝐵 ∝
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑎𝑡 𝑐𝑟𝑎𝑐𝑘 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛

𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒
 =  

𝑊𝐸𝑙𝑎𝑠𝑡𝑖𝑐

𝑊𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒
 

and, it was defined as: 

 
𝐵 =

𝑓𝑡
2. 𝑙

𝐺𝑓 . 𝐸
 Eq. I-17 

 
where ft, l, E are the tensile strength (Pa), the sample length (m), and Young’s 

modulus (Pa), respectively. 

As mentioned, WST results could be an index for characterising the fracture 

behaviour of quasi-brittle refractories. As an example of WST for such an application for 

refractories, in a study by Grasset-Bourdel et al., two refractory model materials have 

been compared using WST (Renaud Grasset-Bourdel et al. 2013). The first one was a 

pure Magnesia, which is a relatively brittle material, and the second one was a Magnesia 

Spinel with 15% of the spinel content, which exhibits a quasi-brittle behaviour. Their 

WST force-displacement curves are shown in Fig. I-9. 
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Fig. I-9. WST force-displacement curves for Magnesia and Magnesia Spinel  

(Renaud Grasset-Bourdel 2011). 

As explained in section I.1.2 and I.1.5, such a quasi-brittle behaviour of Magnesia 

Spinel is due to the presence of thermally induced microcracks within the material 

microstructure, resulting from introducing Spinel grains into a pure Magnesia matrix. 

Ultimately, WST force-displacement curves can be used to obtain the fracture energy and 

brittleness number of these refractories. In Table I-1, these two parameters have been 

compared. 

Table I-1. The fracture energy and brittleness number for Magnesia and Magnesia Spinel 

(Renaud Grasset-Bourdel 2011) 

Refractory Model Material Fracture Energy (𝐺𝑓, J/m2) Brittleness Number (B, - ) 

Pure Magnesia 196 0.47 

Magnesia Spinel (15% Spinel) 326 0.15 

  

As it can be seen, the fracture energy in the quasi-brittle Magnesia Spinel is higher 

than in pure Magnesia, which results in having a lower brittleness number. This point 

leads to higher resistance of Magnesia Spinel against fracture propagation thanks to the 

introduction of Spinel inclusions, which generates a network of microcracks within the 

Magnesia Spinel microstructure. However, the presence of such microcracks within a 

ceramic material is well-known to have a significant impact on strength values, and this 

impact is commonly studied through statistical approaches. 
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I.2.4. Contribution of the statistical approaches to  

the fracture mechanics  

In the case of ceramic materials, in order to account for the influence of the size of 

defects within the microstructure on the global strength of materials, the most famous 

statistical approach has been developed by Weibull, and it is based on the weakest link 

concept. It will be explained more in detail in the following section. 

I.2.4.1. Weibull statistical distribution 

Waloddi Weibull introduced this statistical distribution function in 1939 (Weibull 

1939), and later, he proposed a better summarisation of his work in 1951 (Weibull 1951). 

Afterwards, this distribution became widely used for different mechanical applications. 

By using Weibull distribution, the probability of failure for a solid material under a tensile 

load Pf (σ) is given as (Weibull 1951):  

 
𝑃𝑓(𝜎) = 1 − 𝑒

−(
𝜎
𝜎0

)
𝑚

  Eq. I-18 

where σ, m and σ0 are the tensile stress (MPa), the Weibull modulus, and the scaling 

parameter, respectively. 

The Weibull statistical distribution is commonly used as a macroscopic concept to 

describe the occurrence of random homogenised defects inside a 3D solid sample, which 

could cause a variation in the macroscopic tensile strength of the different specimens of 

a given material. In the field of ceramics, the Weibull modulus can have a wide range, 

typically below 30; the value of m for some ceramics is presented in Table I-2 (Tinschert 

et al. 2000). 

Table I-2. Weibull modulus (m) for certain ceramics (Tinschert et al. 2000)  

Ceramic Weibull modulus (m) 

Feldspathic porcelain 13.6 

Glass-infiltrated alumina 5.5 

Alumina-reinforced feldspathic porcelain 13 

zirconia ceramic 18.4 

I.2.4.2. Application of Weibull distribution to describe quasi-brittle behaviour 

As mentioned in section I.1.5, a very interesting quasi-brittle behaviour of refractories 

could be obtained when a suitable network of microcracks (numerous small 

discontinuities) is voluntarily introduced within the microstructure of materials. From 

already available experimental work reported in the literature, few authors recently started 

to develop numerical modelling approaches that could account for these numerous 

discontinuities. Even if such numerical approaches will be detailed in section I.3, 

developing a model that could accurately represent the influence of all these numerous 

discontinuities, up today, is still a challenging aspect. Nevertheless, in this way, Dai et al. 



Chapter I:State of art and context: Phenomenological approach of fracture mechanics 

 

27 

 

used a local Weibull approach for introducing such local stochastic defects. Indeed, the 

local Weibull approach brings the statistical distribution for local tensile strengths within 

each FEM simulation element (Dai et al. 2017). Such a model was applied to WST in 

order to examine the influence of local variability of strength on the global WST force-

displacement curve, trying to mimic the obtained experimental results using a reverse 

approach. In addition to the Weibull distribution of local strengths, Dai et al. used a 

simplified bilinear strain-softening behaviour, as shown in Fig. I-10 to simulate the 

material’s local microstructure behaviour during the WST. 

 

Fig. I-10. WST simulation in FEM: (a) the schematic diagram for strength distribution 

and assigned strain-softening behaviour for different groups of finite elements, and (b) the 

heterogeneous continuum model for WST; each set of colour is showing a group of the 

tensile strength (Dai et al. 2017). 

As shown in Fig. I-10 (a), ten classes (E1, E2, …, E10) of elements with different 

tensile strengths were assigned. The proportion of finite elements belonging to each class 

was following a Weibull distribution with a modulus of 3. Moreover, each of these classes 

follows a dedicated pre-defined bi-linear strain-softening behaviour. These elements were 

randomly distributed in the model geometry, as shown in Fig. I-10 (b). By using such a 

FEM model, including the Weibull approach, bi-linear strain-softening behaviour and 

optimisation loops, it was possible to successfully reproduce an experimental non-linear 

curve of WST for Magnesia Spinel refractory, as shown in Fig. I-11. 
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Fig. I-11. The non-linear curve of WST of Magnesia Spinel refractory: simulation vs 

experiment (Dai et al. 2017). 

Combining the fracture mechanics basis and numerical simulations could be a robust 

tool to virtually test and predict the thermo-mechanical performance of refractory 

material, accounting for their complex microstructures. Eventually, such an approach 

could help to design optimised microstructures. The next section will be dedicated to 

potential numerical tools that could be suitable for simulating such material containing 

numerous discontinuities. 

I.3. Different numerical models to simulate damaged 

materials and fracture propagation  

Empowering calculation computers and tools enables engineers to use numerical 

simulations for bigger (higher degrees of freedom) and/or more complicated problems 

(thermo-mechanics, multi-scale problems…), consequently increasing the calculation 

accuracy. This means by having high-performance calculation tools nowadays, it is 

possible to decrease the simplifying assumptions, and at the same time, to simulate 

complex problems with conditions much closer to reality.  

In this regard, the ATHOR project has taken advantage of numerical approaches in 

different scales to investigate further and predict thermomechanical behaviour of 

refractory linings: from the grain scale to the whole steel ladle structure. The simplified 

hierarchy of this multi-scale approach is shown in Fig. I-12. As mentioned before, this 

PhD study aimed to investigate the microstructure of refractories, which means that it will 

be focused on the grain scale, up to a single refractory brick scale. The numerical tools, 

which will be discussed later in this section, are mostly reviewed by considering their 

performances in such scales. 
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Fig. I-12. The simplified hierarchy of trans-scale modelling approach in  

the ATHOR project. 

There are many different numerical approaches previously proposed to simulate and 

solve complex engineering problems. Each numerical model has its own limitations and 

advantages. Considering this fact, an appropriate numerical model should be chosen and 

implemented to suit a particular engineering and scientific problem. Despite their 

differences, most numerical simulations follow a certain meta-algorithm to solve a 

targeted problem, as shown in Fig. I-13 (Jebahi 2013). 

 

Fig. I-13. General numerical simulations meta-algorithm (Jebahi 2013) 

There are many mathematical models for modelling a physical phenomenon, from 

continuous approaches to discrete ones. Depending on the nature of the physical 

phenomenon, each of these two general approaches could be used. An overview of the 

main numerical approaches is given in Fig. I-14. In the following sections, each of these 

numerical models will be introduced.  
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Fig. I-14. Overall categories of numerical techniques, inspired from (Gibaud 2017).  

I.3.1. Continuous approaches 

The thermo-mechanical continuous approaches are based on the process of 

subdividing the problems geometries to standard elements, for which mathematical 

models have been defined to describe a given physical behaviour. Then, the whole 

original system can be rebuilt from these elements. In this way, it let engineers model and 

predict complex behaviours and geometries (Zienkiewicz et al. 2013). Mathematicians 

have developed general techniques to discretise continuous problems since 1911 

(Richardson et al. 1911). This very first study had implemented finite difference 

approximations to solve a masonry problem governed by differential equations. 

Afterwards, different other methods have been developed, especially for continuum 

elastic problems in solid mechanics (Mchenry 1943, Grinter 1949). In these studies, it is 

assumed that the whole domain is discretised into smaller elements, and these elements 

are made of reference local points, called nodes. Therefore, to achieve trustworthy 

continuum solutions, the number of these nodes should be increased. 

All these continuum methods are following a general four-step algorithm as a method 

of approximating and/or solving the governing equations of continuum problems (Jebahi 

2013): 

• the continuum problem domain is approximated by a finite number of discrete 

components made up of reference points (nodes); 
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• the original mathematical models (governing equations) are changed into a system 

of algebraic equations; 

• the resolution of this system gives the solutions or approximations at nodes;  

• for other parts of the domain, the field variables can be approximated by 

interpolation or averaging the solutions at nodes. 

The continuum methods are the ones that are following the continuum mechanics 

formulations, and different continuum methods exist. Some of these are widely used 

methods such as:  

• Finite Element Methods (FEM), detailed in section I.3.1.1,  

• Extended Finite Element Method (XFEM), detailed in section I.3.1.2,  

• Finite Volume Method (FVM), detailed in section I.3.1.3, 

• Element Free Galerkin Method (EFGM), detailed in section I.3.1.4. 

These methods are used for different engineering applications, from fracture mechanics to 

fluid dynamics. Each of these methods uses different approaches for solving continuum problems:  

• using mesh (or grids) for FEM, XFEM and FVM methods and,  

• meshless methods for EFGM, which is a more recent technic.  

Meshes are sets of elementary volumes (in 3D) or surfaces (in 2D) which are named 

as elements, connecting the discretising nodes. The meshes are used to define the 

geometry of the models mostly by using an assembly of simple convex polygons. As an 

example, in Fig. I-15 (a), the 2D rabbit geometry is described by mesh and discretised by 

triangular surface segments connected at their common nodes. These surface segments, 

at the complex boundaries of the model (here, the rabbit’s fingers), will be defined smaller 

and with a higher number of connections to cover and shape the model boundaries 

properly. In meshing methods, the continuum problem’s solution starts with such 

discretising (meshing) into a finite number of elements (Zienkiewicz et al. 2013). In this 

approach, partial or differential governing equations will be applied to each mesh. Then, 

the algebraic equations system for the whole model can be obtained by gathering all the 

local algebraic equations from the meshes (Jebahi 2013). 

Since the 1970s, meshless methods became more popular (Gingold et al. 1977). These 

methods have the advantage to deal with arbitrarily distributed nodes without using any 

mesh or connectivity between them, as shown in (Fig. I-15 (b)). On the other hand, such 

methods are very time-consuming, and they suffer from several numerical problems, such 

as accuracy degradation near the boundaries and large approximation errors compared to 

the meshing methods (Jebahi et al. 2015). In the next section, some of the most popular 

continuum methods are summarised. 

 



Chapter I:State of art and context: Different numerical models to simulate damaged materials 

and fracture propagation 

 

32 

 

 

Fig. I-15. Discretisation for a rabbit geometry: (a) mesh discretisation (b) Meshfree 

discretisation (Jebahi 2013). 

I.3.1.1. Finite Element Method (FEM) 

The basis of FEM has been developed for many years, and its fundamentals have been 

explained in well-documented literature (Zienkiewicz et al. 2013). As a widespread 

mathematical technique for solving Partial Differential Equations (PDE), the Finite 

Element Method (FEM) is a well-known multidisciplinary numerical method for 

simulating and predicting the physical behaviours of continuum media driven by PDE. In 

such a way, engineering problems involving mechanical and thermomechanical 

phenomena are mainly solved by FEM.  

For solving mechanical problems, FEM uses constitutive laws between stress and 

strain fields. The FEM formulation reduces the problem to the solution of a system of 

algebraic equations in terms of the nodal variables, where the displacements are the 

unknown of the problem. The main advantage of the FEM is its ability to model complex 

geometries and complex constitutive laws (damage and fracture mechanics, plasticity 

approach, multi-physics such as thermomechanics and coupling with corrosion…). 

FEM could be used for classical thermomechanical applications to model temperature 

distributions and related stress and strain fields in refractories. In this way, by using a 

constitutive damage model, Damhof et al. investigated the thermal shock damages in a 

multi-scale study (Damhof et al. 2011). Their study was focused on a steel ladle for which 

the refractory lining is subjected to alternated thermal cycling (ladle being filled by 

molten steel in the first step and emptied in the next step); the key point was to investigate 

damage progression within the refractory lining. Thus, a scale transition was investigated 

from the steel ladle (structure scale, see Fig. I-16 (a)) to a particular section of the lining 

(material scale, see Fig. I-16 (b)). 
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Fig. I-16. Steel ladle and the slag ring: (a) the schematic axis-symmetric cross-section 

view of a steel ladle (Damhof et al. 2011) and (b) the damaged refractory bricks in the 

slag ring due to the thermal cycles (Andreev et al. 2001). 

The first step of calculations was to obtain the temperature distribution and the relative 

stress fields during the different sequences of filling and emptying processes at the 

structure scale and then at the material scale. The temperature distribution within a section 

of the lining is shown in Fig. I-17 (a), for the first loading cycle and for the beginning of 

the emptying stage. As a key result, Fig. I-17 (b) estimates damage distribution within 

the refractory brick close to the hot face. As mentioned by the author, these damage results 

were consistent with the observed failure zones within the real refractory lining.  



Chapter I:State of art and context: Different numerical models to simulate damaged materials 

and fracture propagation 

 

34 

 

 

Fig. I-17. Examples of results obtained by FEM using damage model in a multi-scale 

approach: (a) temperature distribution (°C) in a steel ladle lining during different 

sequences of filling (left) and emptying (right) processes, and (b) damage estimations for 

the same stages (Damhof et al. 2011). 

Despite this success, it should be noted that in case of material that could be 

progressively damaged during loading, it is relatively easy to account for this damage by 

considering a local variable (associated with the element) such as the Kachanov parameter 

(which can be isotropic or anisotropic) (Kachanov 1993). However, such an approach 

does not precisely represent the local discontinuities resulting from cracks within the 

microstructures.  

To describe the discontinuities resulting from fracturing in FEM in much more detail, 

one of the most common approaches is to use the cohesive elements within the model. 

The cohesive finite element method provides a practical approach for quantitative 

analysis of fracture behaviour through explicit simulation of the fracture processes (Chen 

et al. 2009). This approach is based on the cohesive zone concept proposed by Dugdale 

(Dugdale 1960) and Barenblatt (Barenblatt 1962). The cohesive zone approach 

characterizes the fracture process by a traction-separation law at the crack tip instead of 

assuming an elastic stiffness reduction in LEFM (as explained in section I.2.1). In this 

way, this approach prevents the stress singularity at the crack tip, which in classical 

fracture mechanics was considered to be infinite and causing certain numerical errors. By 

implementation of cohesive elements into the FEM model, Jin et al., investigated the 

fracture energy (see section I.1.3) and tensile strength of refractories in a WST (see 

section I.2.3) by inverse estimation (Jin et al. 2014). In the mentioned study, a 
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two-dimensional and symmetrical model was built based on the WST test configurations, 

as shown in Fig. I-18(a). Then, a strain-softening behaviour was assigned to the cohesive 

elements within the ligament area, where the fracturing process is supposed to be occurred 

(No.3 in Fig. I-18(a)). By running cycles of simulations, Young’s modulus and fracture 

parameters of the material were inversely fitted to the experimental results through an 

adaptive non-linear least-squares algorithm. As shown in Fig. I-18(b), the proposed 

model successfully reproduced the three experimental WST load-displacement curves by 

using cohesive elements in FEM. 

 

Fig. I-18. Using cohesive elements in FEM for WST simulation:  

(a) prepared geometry of the model and (b) experimental and simulated force-

displacement curves for three WST on the same material (Jin et al. 2014). 

It should be highlighted that in the previous example of WST, the crack location was 

very well-defined in advance and thus, dedicated, cohesive elements were uniquely 

placed in the ligament area. However, when it is needed to strictly mimic crack initiation 

and propagation within a real microstructure of material for which the crack path cannot 

be predicted, the obtained results using the standard FEM approach becomes usually 

extremely dependent on the mesh. This point means a considerable dependency of the 

obtained results to the mesh size and to its distribution around the crack tip (Lopes et al. 

2020). Hence, it could require dynamic re-meshing processes during the crack 

propagation and high mesh refinement toward the singularity, which are highly 

time-consuming. As an example, in Fig. I-19, the number of finite elements in the 

simulation of a tensile test drastically grows due to the presence of two cracks that are 

propagating (A. R. Khoei et al. 2008). Overall, these points make FEM inadequate for 

problems with a high number of discontinuities. 
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Fig. I-19. Crack propagation in direct tension modelled by FEM: mesh refinement and 

re-meshing are required around crack tips, increasing the number of elements from 807 to 

1762 elements, by Khoie et al. (A. R. Khoei et al. 2008)  

I.3.1.2. Extended Finite Element Method (XFEM) 

For solving the mentioned problems of FEM to manage the initiation and growth of 

random cracks within a regular mesh, the Extended Finite Element Method (XFEM) was 

introduced by Belytschko et al. and Moës et al. in 1999 (Belytschko and Black 1999, 

Belytschko et al. 2001, Moës, Dolbow, and Belytschko 1999). 

In this method, finite element discretisation is enriched with additional nodal degrees 

of freedom. This enrichment is managed by enrichment of each node (enriched nodes) 

where, in such case, discontinuities are supposed to occur within the enriched element. In 

other words, in comparison to the standard elements, the XFEM elements are enriched by 

equations of general displacement field that allows to account for local discontinuity 

describing crack tip and crack opening. This means that cracks can be described 

accurately in a single element, therefore, removing the need for iterative re-meshing to 

simulate crack propagation (Fig. I-20). Since the crack’s final position is not known in 

advance, with this approach, XFEM elements should be defined in the potential cracking 

area, and those enriched elements will be activated in the case of crack occurrence. 
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Fig. I-20. Overview of different nodes and elements within the XFEM model containing a 

crack (Amir R. Khoei 2015). 

As an application of using XFEM for crack propagation, Farukh et al. have used this 

method to simulate crack growth within the microstructure of a polycrystalline material 

under cyclic mechanical loading (Farukh et al. 2016). The first step was to reproduce the 

mechanical behaviour of the polycrystalline material accurately. To do so, a 

Representative Volume Element (RVE) (see section III.3.1), consisting of a limited 

number of grains (and by considering their properties), was used to reproduce the 

apparent mechanical behaviour of the material. In this way, the model’s microstructure 

was built from the real microstructure of the polycrystalline material, as shown in  

Fig. I-21 (a) and (b). The predicted crack propagation path within the XFEM model 

microstructure is shown in Fig. I-21 (c). As it can be seen, the model has successfully 

simulated the intergranular fracture propagation. As the authors reported, by using such 

an XFEM model, it was possible to observe the variation of crack growth speed, resulting 

from materials real microstructure and different grains properties.  
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Fig. I-21. Polycrystalline microstructure: (a) the real polycrystalline alloy, (b) XFEM 

meshing of the real polycrystalline alloy, and (c) prediction of XFEM model for the crack 

path within the microstructure (grains were assigned different colours in order to show 

the microstructure) (Farukh et al. 2016).  

As mentioned in section I.3.1.1, the cohesive zone approach can be introduced in the 

finite element models, including XFEM, by implementing cohesive elements in the 

model. By using cohesive elements within XFEM models, the highlighted limitation of 

the XFEM for the necessity of pre-defining the potential cracking zone will be improved. 

In this way, Mubashar et al. introduced an XFEM model coupled with cohesive elements 

to simulate an unknown crack path in a lap joint’s fillet area. As a benchmark, the joint 

was loaded in a direct tension configuration to observe the crack path in the adhesive 

joint’s fillet region, as shown in Fig. I-22 (a). The cohesive elements are placed in the 

interface layer between the aluminium bodies and the adhesive. The result of the defined 

model is shown in Fig. I-22 (b). Unlike the simple cohesive finite element models, the 
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crack was grown without needing to align the element edges to the crack path, as the 

XFEM method enables cracking within enriched elements. 

On the other hand, the crack initiation was managed thanks to the implementation of 

the cohesive elements in the contact layer between the aluminium bodies and the adhesive 

efficiently. Comparing these results to other literature, the authors reported good 

accordance with experimental results. However, it was also observed that the combination 

of XFEM with cohesive elements could potentially lead to an unrealistic discontinuity in 

the crack path when it moves from the cohesive elements to the XFEM domain. 

 

Fig. I-22. Crack propagation in a fillet area between two aluminium bodies: (a) initiation 

of the crack in the cohesive layer, and (b) propagation of crack from the cohesive layer to 

the XFEM domain (Mubashar et al. 2014). 

The point is that, in such studies, only one crack is propagating within the continuum 

media. On the other hand, dealing with refractories at a micro-scale requires simulating a 

large number of microcracks. To sum up, XFEM could be an option for simulating a 

limited number of discontinuities, but it is still not capable of easily managing multiple 

crack initiations and propagations simultaneously (Jebahi et al. 2015). 
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I.3.1.3. Finite Volume Method (FVM) 

The Finite Volume Method (FVM) is a discretisation method that has been 

extensively used in several engineering fields, specifically in fluid mechanics, heat and 

mass transfer. This method has been introduced in the early 1960s by Tichonov and 

Samarskii (Tikhonov et al. 1963). FVM basis has been well documented in recent years 

(Eymard et al. 2000). FVM is a method to solve PDEs (elliptic, parabolic, hyperbolic, 

multidimensional non-linear hyperbolic and…) in the form of algebraic equations. It is 

locally conservative because it is based on a balance approach, which means a local 

balance is written on each discretisation cell (zone), called a control volume. Then, by the 

divergence formula, an integral formulation of the fluxes over the control volume 

boundaries is obtained (Eymard et al. 2000).  

The fracturing simulations in FVM is mostly limited to the applications for which the 

fracturing process is caused by hydraulic fluid pressure, as this method is well-suited for 

fluid mechanic problems. In this way, Bryant et al. used FVM to simulate hydraulic 

fracture propagating in heterogeneous geological formations (Bryant et al. 2015). 

Hydraulic fracturing is the process of initiating and opening cracks, mostly within the 

rock formations, by injecting fluids at high pressure. In the mentioned study, the FVM 

showed the capability to simulate realistic fracture networks, taking into account the 

influence of fracture toughness (see section I.2.1) and fracture energy (see section I.2.3). 

In Fig. I-23, a starter notch was introduced in the model, and then the pressure is simulated 

by high normal stresses within the notch to propagate the fracture. This simulation was 

done in anisotropic media and by varying fracturing parameters (toughness and fracturing 

criteria). 

 

 

Fig. I-23. Fracture propagation using the FVM model (Bryant et al. 2015).  

The used FVM model was capable of simulating the propagation of single and 

multiple cracks in 3D in non-planar configurations within heterogeneous porous 

materials.  

To sum up, the FVM is known as a fast, robust method for industrial problems, thanks 

to its short and reliable computational process for simulating complicated systems. FVM 

and FEM (see section I.3.1.1) have similarities as both use generic variational 

formulations to solve PDEs. However, FVM has some shortages compared to FEM for 

simulation of complex geometries within the model due to the necessity of volumetric 
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discretisation with the FVM. Hence, in some cases, it is challenging to design schemes 

and geometries, which give enough precision in the calculations (Eymard et al. 2000). 

I.3.1.4. Element Free Galerkin Method (EFGM) 

The Element Free Galerkin Method (EFGM) is a meshless method mostly used for 

fracture mechanics problems. This method has been introduced by Belytschko et al. in 

1994 (Belytschko et al. 1994). The key idea of these meshless methods is to provide a 

numerical model with a set of randomly distributed nodes. In the EFGM, the partial 

differential equation system is solved in a variational weak form. In this variational weak 

form, the test and trial functions are the shape functions of moving least-squares 

approximation. The EFGM can be used on complex geometries because it requires only 

nodal data and does not use any volumetric elements (Dehghan et al. 2016). Due to its 

meshless nature, in case of the occurrence of a crack in EFGM, it is not required to pass 

the re-meshing process (such as the one that has been explained for FEM, see section 

I.3.1.1). Hence, this method suits fracture propagation modelling, especially for the linear 

elastic fracture mechanics (LEFM) assumptions (Ventura et al. 2002). Later, this method 

was developed for the non-linear materials and cohesive cracks as well (Rabczuk et al. 

2007). In this way, in a study by Shao et al., this method was used for 3D crack 

propagation, based on the phase-field model. In this case, the phase-field is a continuous 

spatial scalar function for describing the transition from an intact un-cracked material to 

a fully broken state (Shao et al. 2020). To verify the accuracy of such EFGM simulations, 

different benchmark tests such as the notched tensile test, the notched shear test, and the 

three-point bending test were investigated. In the three-point bending test case, the 

notched was introduced with a horizontal inclination of 45° to observe and verify the 

experimental observation of the crack twisting with EFGM. The EFGM nodes, the 

relative phase-field measure and crack paths are shown in Fig. I-24. 
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Fig. I-24. Inclined notch three-point bending test. In the right EFGM and phase-field 

model, and in the left, the crack propagation path. (a), (b) and (c) advancement steps of 

the simulations. From (Shao et al. 2020) 

As it can be seen in the Fig. I-24, the EFGM model was able to simulate the crack 

path and crack twisting phenomenon, which is in line with reality. 

EFGM simulation is very time-consuming and suffers from boundary inaccuracy and 

difficulties to impose Dirichlet boundary conditions due to meshless configuration. For 

example, considering Fig. I-15, it is not accurate to introduce the sharp edges of complex 

geometry (fingers of the rabbit) only by nodes cloud. Also, EFGM produces results with 

errors larger than those obtained using grid-based methods (Jebahi 2013).  

I.3.2. Discrete Methods 

The discrete methods involve assemblies of rigid elements or nodes that interact with 

each other through interaction laws. The basis of this approach is coming from the 

molecular dynamics models in the 1950s (Alder et al. 1959). The discrete methods are 

divided into two general groups, the global matrix model (lattice model) and the particle 

wise models. The principal difference between these two approaches is that the lattice 

model uses material points as elements (see section I.3.2.1), while in particle wise 

models, materials are modelled by discrete elements (see section I.3.2.3) (André et al. 

2019). The other difference is that the material points have no geometries while the 

discrete elements have well-defined geometries; therefore, it is necessary to detect the 

interactions between these discrete elements during simulations.  

In comparison with continuum-based methods, the discrete approaches are capable of 

modelling micro-mechanical behaviour of materials where the continuity assumption is 
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no longer valid because of the presence of microcracks. Hence, these discrete approaches 

enable the modelling of systems with a high number of evolving discontinuities, including 

crack initiation and propagation (Scholtès et al. 2012). Therefore, many fracture initiation 

and propagation problems have been modelled by these approaches (Scholtès et al. 2013) 

(Lemesle et al. 2020). However, it should be mention that there are some challenges for 

modelling continuum media with discrete methods: 

a) there are no continuity assumptions in these methods because of the discrete 

nature of these models. The constitutive equations coming from continuum 

thermo-mechanics, such as Hook’s law or Fourier’s equation, cannot directly be 

applied; 

b) in such case, choosing cohesive links and calibrating their properties to reproduce 

a desirable macroscopic behaviour are challenging; 

c) construction of initial model domains considering the structural properties of the 

material such as homogeneity and isotropy is challenging too (Jebahi 2013); 

d) and finally, dependencies of the results to the scale and the discretisation fineness 

of the domain could be observed and should be taken into account while analysing 

and post-treating results. 

Each of these drawbacks has been addressed dedicatedly for different discrete 

interaction models. For example, to address the calibration problem for the cohesive 

beams model, a direct calibration method has been proposed (T.-T. Nguyen et al. 2019), 

or for the flat joint model, a systematic algorithm has been proposed too (Vallejos Javier 

Andres et al. 2017 and Zhou et al. 2018). 

I.3.2.1. Lattice models 

Lattice models were developed by Herrmann et al. (Herrmann et al. 1989). In this 

approach, the solid body is modelled by a set of nodes connected with bonding elements. 

Generally, these nodes have neither masses nor volumes. Fig. I-25 is showing a simplified 

scheme of this method (Schlangen et al. 1992) where the nodes are connected with 2D 

Euler-Bernoulli bonding beams. Solving a mechanical problem with the lattice method is 

based on assembling a global stiffness matrix from the local bonds. In fact, lattice models 

often implement a lattice structure of Euler-Bernoulli beam finite elements, just like the 

FEM method. 
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Fig. I-25. A regular triangular lattice of beams (Schlangen et al. 1992). 

In this case, by knowing the global stiffness matrix ([K]) and displacements and 

rotation vectors of the nodes and, loading vector (F), which contains forces and torques 

in the beams, the problem can be written: 

 𝑭 =  [𝐾]  𝑿  Eq. I-19 

where X is an unknown vector that includes both displacements and rotations of the nodes 

(Jebahi et al. 2015). 

Lattice models can model discontinuities and fractures within a continuous material. 

For example, as shown in Fig. I-26, Leblond simulated a brittle fracture propagation in 

concrete by using a dedicated lattice model (beam particle model) in different loading 

modes (tension, shear and rotation) (Oliver-Leblond 2019). As one of the benchmarks, 

the mentioned study was done for a single notched specimen, which was undergoing 

complex shear-rotational forces, as shown in Fig. I-26 (a). In the mentioned study, digital 

image correlation was used to obtain the experimental vertical displacement field (in Fig. 

I-26 (b)), which was compared to simulation (in Fig. I-26 (c)).  

 

Fig. I-26. Vertical displacement field and crack propagation for a single notch sample 

subjected to shear and rotation test: (a) experimental device used to load the sample in 

shear and rotation at the same time, (b) experimental result from digital image correlation, 

(c) simulation output (Oliver-Leblond 2019). 
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As it can be seen in Fig. I-26, lattice model is capable of simulating such a complex 

cracking pattern which exhibits crack branching and crack bifurcation. It shows the high 

potential of lattice models for fracture-related problems. 

As previously pointed out, in this method, the nodes do not have mass and volumes, 

which causes difficulty to model fracture closure phenomena. To overcome this problem, 

Ibrahimbegovic et al. proposed assigning to each node a relative equivalent volume based 

on the spatial Voronoi tessellation (Ibrahimbegovic et al. 2003). However, this solution 

is potentially time-consuming for 3D problems (T. T. Nguyen 2019). 

I.3.2.2. Non-Smooth Contact Dynamic method (NSCD) 

This method has been introduced and developed by Jean and Moreau during the 1980s 

and 1990s (Moreau 1988, Jean 1999). NSCD is an implicit method that uses a formulation 

of non-smooth dynamics through unilateral contact and dry friction between the elements. 

In this method, no elastic contact law is considered between the elements and the elements 

are assumed to be perfectly impenetrable. The contacting laws are non-differentiable 

laws. These laws are managed by an implicit method using a non-linear Gauss-Seidel 

algorithm at each calculation step. These laws manage contacts and friction, which are 

relevant in multi-bodies assemblies. (Dubois et al. 2018) 

Based on a study by Dubois et al. (Dubois et al. 2018), the NSCD method is well 

suited for the numerical treatment of frictional contact problems (such as cohesive or 

viscoelastic laws). Due to the implicit approach, NSCD is able to use large time steps. 

However, one single time-step requires a time-consuming calculation to solve the non-

linear system of equations. 

I.3.2.3. Discrete Element Method (DEM) 

The fundamentals of this approach are based on the molecular dynamics models, 

which was introduced in the 1950s (Alder et al. 1959). DEM numerical method was 

initially designed to reproduce intact rocks regarding their microstructure by Cundall in 

the 1970s (Cundall 1971, Cundall and Strack 1979), and later the contact representation, 

detection and interactions of discrete elements have been described (Cundall 1988b). 

In this explicit method, mass and geometry have been assigned to each discrete 

element. Newton’s second law is used to determine the translational and rotational 

movements of discrete elements taking into account their interactions coming from the 

overlapping contact forces. These force-displacement contact laws are used to update the 

forces coming from the relative motion at each contact. These force-interpenetration 

formulas are called “smooth contact”, which in the simplest case, use linear interaction 

laws (spring model), as shown in Fig. I-27.  
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Fig. I-27. The scheme of a smooth contact model 

The main difference between this method and NSCD (see section I.3.2.2) is that the 

DEM allows a finite penetration between the discrete elements through a penalty 

algorithm (Cundall 1971), which is not the case for the NSCD. In such a case, DEM is 

suitable for highly dynamic phenomena (short-time) whereas, NSCD is mostly used for 

long-time and quasi-static phenomena. 

To simulate a continuum media by DEM, the media could be built up from bonded 

discrete elements. Here, bonded refers to permanent contacts which will not be vanished 

if the discrete elements are not penetrating. This method’s main advantage is that it 

naturally considers the media as an assembly of individual discrete elements. Due to the 

discrete nature of this model, it could deal with discontinuous phenomena which are 

discrete by nature. Hence, there is no need for complicated transitional procedures from 

a continuum description of media to discontinuities, such as mentioned for the XFEM 

method (see section I.3.1.2). In this method, cracks could initiate and propagate through 

the numerical domain by breaking bonds. There are different approaches in bonding the 

particles in DEM: parallel bond model (Potyondy et al. 2004), flat joint model (Potyondy 

2012), and cohesive beams model (Schlangen et al. 1996) are among the most cited ones.  

A simple demonstration of the formation of de-bonding cracks induced by 

compression is shown in Fig. I-28. Here, a vertical load F is applied to different 

configurations of assemblies of discrete elements. Taking into account the different 

geometries of these assemblies, this imposed vertical loading leads to a separation of 

bodies in the horizontal direction. If these relative displacements reach a given pre-

defined threshold, the horizontal bond will be broken in order to simulate a microcrack 

in the discrete element assembly. As shown in Fig. I-28 (c), this mechanism could occur 

even with discrete circular/spherical elements (Potyondy et al. 2004). This point explains 

why this simple geometry is often used to increase the efficiency of DEM calculations.  
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Fig. I-28. Horizontal tensile cracking induced by vertical compression: two simplified 

experimental cases and idealisation as a bonded assemblies of spherical discrete elements  

(Potyondy et al. 2004). 

It is noteworthy to mention that, due to the lack of a robust theoretical basis, using 

DEM to simulate a continuum media has been limited until recent years (Jebahi et al. 

2015). Nowadays, this method is intensively under development to simulate continuum 

media, and as pointed out, especially for fracture-related problems (fracture initiation and 

propagations). For example, as shown in Fig. I-29, André et al. have modelled fracture 

propagation in the indentation tests for a continuum media by using the cohesive beam 

model. As it can be seen in this picture, a 2D Hertzian brittle cone fracture was reproduced 

for the indentation test on a silica glass with a blunt indenter loading. In 3D, these crack 

paths were qualitatively and quantitatively compatible with experimental observations 

(André et al. 2013). In this way, in another recent study with the cohesive beam model 

by Ammar et al., debonding and cracking process in 3D short glass fibre composite 

materials has been successfully simulated (Ammar et al. 2021). 

 

 

Fig. I-29. Crack propagation in the indentation tests for a continuum media by using 

Cohesive Beam Model (André et al. 2013). 



Chapter I:State of art and context: Different numerical models to simulate damaged materials 

and fracture propagation 

 

48 

 

As discussed, the DEM method is showing high potential in the simulation of 

fracturing processes. However, a relative drawback of the discrete methods is that they 

mostly require a high-performance calculation system since they are time-consuming. 

The other inconvenience of DEM for continuum problems is that a calibration step is 

required to reproduce the macroscopic material mechanical behaviour quantitatively. The 

last difficulty is that DEM uses a force-displacement approach instead of classical 

mechanics stress-strain description. 

I.3.3. Choosing an adequate numerical simulation method to model 

damaged materials and fracture propagation  

In the previous sections, different numerical models have been introduced for 

simulating physical phenomena. Each of them was using either the continuum approach 

or the discrete approach. On the other hand, as explained in section I.1, the present work 

aims to numerically investigate thermally induced damage and microcracking processes 

which could influence the apparent mechanical behaviour of refractory materials. 

Evidently, this investigation requires a numerical model that could deal with a high 

amount of microcracks, their initiations and propagations. Therefore, to narrow down the 

choices for applicable numerical methods, a comparative table has been proposed. For 

each method, the ability to model discontinuities, computational efficiency and suitability 

to model complex geometries has been summarised in Table I-3. This Table is based on 

each model’s mentioned features, as explained in section I.3 and (Jebahi 2013). 

Table I-3. A comparison between the simulation methods to model damaged materials 

and fracture propagation inspired from (Jebahi 2013). 

 Continuous methods Discrete methods 

Methods FEM XFEM FVM EFGM Lattice NSCD DEM 

Modelling 

discontinuities 
+ ++ + ++ +++ ++ +++ 

Large 

deformation 
+ + + +++ + +++ +++ 

Complex 

geometries 
+++ +++ + ++ ++ + + 

Computational 

efficiency 
+++ +++ ++ + + + + 

+: weak  ++: Good  +++:Excellent 

As shown in Table 3, two relatively advantageous methods for modelling the 

discontinuities are XFEM and DEM, which are commonly used in fracture mechanics. 

To focus more on these two mentioned adequate methods, the performance of these 

methods in fracture-related problems has been compared in more detail in Table I-4. 
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Table I-4. A comparison of the performance of XFEM and DEM in fracturing problems 

 XFEM DEM Comment 

Crack initiation +++ +++ 
Both methods can initiate cracks  

(Wang et al. 2017) 

Single crack propagation +++ + 
XFEM has a robust, proven ability to simulate 

discrete cracks (Spencer et al. 2015) 

Multiple cracks interaction + +++ 

DEM can produce secondary cracks, better 

agreement with the experimental results 

(Sharafisafa et al. 2014) 

Crack coalescence ++ +++ 

DEM has a better agreement with the 

experimental results  

(Sharafisafa et al. 2014) 

 

Considering the comparison between XFEM and DEM, regardless of their common 

strengths in simulating cracks, it should be highlighted that these two methods have a 

completely different numerical basis. XFEM, as mentioned, is a continuum method based 

on the initial FEM approach, following the continuity assumptions of mechanics. In this 

way, it is possible to use the fracture mechanics formulations that were developed for the 

continuum media, such as fracture toughness (see section I.2), directly in the model. 

However, the interaction of discontinuities, managing a high number of cracks and 

predicting complex cracking patterns is challenging in XFEM (Spencer et al. 2015). On 

the other side, because of the discontinuous nature of DEM, the initiation and propagation 

of a high number of cracks are not problematic for the model. For example, in a study by 

Alhajj et al., multiple crack initiation and propagation, induced by CTE mismatch, has 

been successfully modelled in the case of multi-inclusion composite (Alhajj Hassan et al. 

2020). In the case of the present PhD, the focus is more on modelling damageable 

materials with a high number of microcracks (see section I.1). Therefore, it has been 

preferred to use DEM, which is a simulation technique with the ability to handle such an 

interacting large number of discontinuities.  

In addition to the mentioned points, based on a study by Sharafisafa et al., for 

simulation of crack propagation in the brittle materials, it was shown that DEM could 

realistically simulate secondary cracks branching. In contrast, secondary cracks can not 

be observed in XFEM models. Furthermore, DEM could simulate the entire process of 

crack initiation, propagation and, more importantly, the fracture’s coalescence, which is 

not the case for XFEM (Sharafisafa et al. 2014). In another study, Wang et al. compared 

the fracturing process in glass, caused by a projectile impact by different numerical 

approaches, including DEM and XFEM. Based on this study, DEM results have shown 

satisfactory crack patterns and fragmentation process, while XFEM could not simulate 

such typical crack patterns, as shown in Fig. I-30 (Wang et al. 2017).  
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Fig. I-30. Simulations of crack propagation in a projectile impact on a brittle media:  

(a) by XFEM, and (b) by DEM (Wang et al. 2017). 

In the end, considering the above-mentioned points, the DEM approach will be used 

in this PhD for modelling the discontinuities and microcracking process within refractory 

materials. In the next chapter, the chosen DEM Flat Joint Model (FJM) and its platform, 

Particle Flow Code (PFC), will be introduced. 
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Chapter II:  Discrete element method numerical 

framework, algorithm, and model 
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II.1. Introduction 

In the early steps of this PhD, GranOO6 (a free DEM workbench) was used as the 

simulation tool. This was due to the fact that, in IRCER (Institut de Recherche sur les 

Céramiques, Limoges, France), the thermomechanical research group already had some 

experience in developing GranOO. However, by reviewing other potential DEM contact 

models, the recently developed Flat Joint Model (FJM) (Potyondy 2012) showed potential 

advantages for the goals of this PhD (studying the multi-scale microcracking process in 

brittle materials). Initially, the FJM was introduced to mimic the microstructure of 

angular, interlocked grains, similar to marble, in the context of geomechanics. This 

concept of mimicking such interlocked granular materials was, in fact, very close to the 

general microstructure of refractories, constituted of large interlocked aggregates within 

a finer matrix. This FJM is implemented within a software called Particle Flow Code 

(PFC)7 from ITASCA company. In fact, this PFC software is a well-known DEM 

framework in the civil engineering domain, mostly for geomechanical applications. 

Therefore, considering my personal background in geomechanical engineering and my 

competencies thanks to previous works with such type of codes, it was finally decided to 

choose the PFC software as the main numerical framework for the present thesis. In this 

way, this PhD was granted by an educational and research partnership with ITASCA 

company (Minneapolis, US and Lyon, France) to investigate the FJM potentials and 

applicability in the field of refractory ceramics. With such a partnership, it would be thus 

possible to evaluate and provide feedback about the potential of PFC and FJM within this 

new industrial domain for ITASCA.  

In this chapter, the PFC framework and FJM will be introduced. Firstly, the general 

PFC numerical scheme, including its modelling bodies and contacts, will be presented. 

Then, the computational steps of this framework will be summarised. Afterwards, the Flat 

Joint Model (FJM) and its input parameters will be introduced. Moreover, the influence 

of the FJM local fracture parameters and of the sample geometry will be investigated, and 

at the end, a rationalised trial and error calibration process for FJM local parameters will 

be proposed. 

II.2. Particle Flow Code (PFC) numerical scheme 

Particle Flow Code (PFC) is a general-purpose DEM framework developed by 

ITASCA company in Minneapolis, US. PFC supports its own programming language, 

called FISH, which is the common language for ITASCA codes. It enables a high level 

of interaction with the core of PFC, which is an interesting feature for scientific research. 

PFC allows large displacements and rotations of the discrete elements. PFC uses 

Newton’s second law and force-displacement laws at the contact points to calculate force 

 
6 https://www.granoo.org/ 
7 https://www.itascacg.com/software/PFC 

https://www.granoo.org/
https://www.granoo.org/
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and predict motions of discrete elements. At first, PFC was designed for interacting rigid 

granular assemblies without bonding (Cundall et al. 1979). Later, bonded particle models 

were introduced to this framework (Potyondy et al. 2004) in order to simulate continuum 

media, such as intact rocks or ceramics, like the present study. The detailed formulation 

and mathematical basis of this framework are explained in the PFC’s documentation 

(Itasca Consulting Group Inc. 2020); therefore, an overview of these bases will be 

presented here. 

II.2.1. PFC modelling bodies  

As mentioned, the PFC DEM code simulates the interaction of discrete rigid bodies 

called modelling objects. Basically, there are different types of model objects in PFC 

(Fig. II-1), as described below (Itasca Consulting Group Inc. 2020):  

a) balls are simple spherical objects, which are geometrically defined only by their 

radii. Balls could have translational and rotational movements. Balls are the 

classical model objects in PFC for simulating granular assemblies and the most used 

objects for building up a continuum media. Balls are often used in DEM because 

the computational performance for collision detection is high thanks to such a 

simple geometry. 

b) clumps are rigid objects composed of assemblies of spherical pebbles. Clumps are 

used to mimic complex geometries as a set of highly interpenetrated spheres. 

Clumps are not able to deform and act as single rigid bodies with translational and 

rotational movements. An example of an ellipsoid geometry built up as a clump is 

given in Fig. II-1 (b). 

c) rigid blocks have been recently introduced to PFC code in order to enable the DEM 

models to simulate convex shapes and manifolds by using complex polyhedra. The 

interest of using rigid blocks is to introduce a single discrete element with a complex 

shape within DEM simulations. Again, as an example, the ellipsoid is reproduced 

as a single rigid block, shaped directly as a single discrete element (Fig. II-1 (c)). 

d) walls are manifold surfaces made from triangular facets, which are defined by 

meshes (see section I.3.1). Walls could have translational and rotational 

movements. However, wall motions are not governed by the equation of motions 

as it is used only as boundaries with user-defined displacements.  

 

Fig. II-1. Different model objects in PFC: (a) a spherical ball, (b) an ellipsoid clump with 

its constituent pebbles and (c) an ellipsoid rigid block and (d) a planar wall consisting of 

two triangular facets 
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II.2.2. Modelling interactions between bodies 

In PFC, the model objects (balls, clumps, rigid blocks and walls) interact with each 

other through their contact overlaps. The mechanical response of these interactions is 

defined by different mechanical contact laws. These contacts are considered soft contacts, 

as previously introduced in Fig. I-27 (see section I.3.2.3). It means that the apparent 

deformation of the whole granular assembly is rendered due to the penetrations of discrete 

elements, which occur at the contact points. In fact, the mechanical response of modelled 

granular or continuum media is coming from these mechanical contacts. These 

mechanical contacts follow pre-defined force-displacement laws called contact models. 

Generally, most of the contact models implement normal stiffness, shear stiffness, 

rotational stiffness, cohesion and friction into their mathematical equations. 

In the same way, in order to simulate a continuum media by DEM, the media could 

be built up from bonded discrete elements. Here, bonded refers to a permanent mechanical 

link between two nearby discrete elements inducing compression when they overlap and 

tension when they are not touching anymore, as shown in Fig. II-2. As mentioned in 

section I.3.2.3, different contact models can be proposed for different applications. In 

PFC, the three main contact models are the linear contact bond model, the parallel bond 

model and the flat joint model.  

 

Fig. II-2. A bonded contact between two discrete elements in PFC 

II.3. Overview of the computational steps 

PFC uses an explicit dynamic numerical scheme to solve Newton’s laws of motions. 

The solution will be achieved for small increments (dt) of in-simulation time (t) in order 

to update the model state step by step. A simplified scheme of such a cycle is shown in 

Fig. II-3. 
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Fig. II-3. Overview of a computational cycle in PFC (Itasca Consulting Group Inc. 2020).  

As shown in Fig. II-3, one calculation step corresponds to one single complete cycle, 

including several sub-steps. Each of these sub-steps is summarised below (Itasca 

Consulting Group Inc. 2020). 

1. Time-step (dt) determination: it is a well-known fact that large time-steps lead to 

instability of the numerical scheme. On the other hand, too small time-steps cause 

an unnecessary increase in calculation time (Potyondy et al. 2004). That is why an 

automatic determination of the time-step is used in PFC. At the beginning of each 

cycle, the time-step will be determined based on the stiffness of the contacts and on 

the kinematic constraint of the discrete elements. This kinematic constraint is 

imposed to ensure that contacts are created between objects before the step that 

forces/moments are calculated (step 4). 

2. Law of motion: this step is divided into two parts. The first step is applying 

Newton’s second law to obtain translational and angular accelerations from the 

forces and torques. The second part is numerical integration, which updates linear 

and angular velocities as well as positions of each discrete elements. This update 

can be managed from current accelerations and previous velocities as well as 

positions (computed at the previous cycle). 

3. Advance time (dt): the in-simulation time advances by adding the current time-step 

to the previous in-simulation time. 

4. Contact detection: the contact detection process is automatically done for each 

cycle. An axis-aligned bounding box is associated with the whole computational 

domain. In this way, this axis-aligned bounding box is divided into several 

equidimensional sub-boxes called “spatial cells”. Each of these cells has a list of 

overlapping or approaching objects. By using such an approach, the computational 

time dedicated to contact detection could significantly decrease, as the contacts will 

be searched only for the objects in its cell and in neighbouring cells and not in the 

whole system. By the end of this step, new contacts will be formed, and inactive 

contacts will be deleted based on the updated positions. 
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5. Force-displacement law: at this point, the obtained contact list from the previous 

sub-step is used. By using the contact model (force-displacement laws), the forces 

and the moments at the contacts will be computed and updated from the relative 

angular and linear positions of the contacting objects. As mentioned before, the 

apparent mechanical response of the model comes from these force-displacement 

laws. Hence, choosing adequate laws are highly important in DEM. 

Such an algorithm is based on an infinite loop, and the calculation should be stopped 

thanks to different criteria, depending on the nature of the simulation. For example, the 

simulation can be stopped after a certain number of iterations or after a pre-defined in-

simulation time. Besides, it is also possible to define more complicated customised 

criteria such as dropping to 15% of the peak after failure in a uniaxial tensile test 

simulation or reaching a certain level of pressure in a triaxial compressive simulation. 

The present PhD being focused on bulk materials, as mentioned in Chapter I:, the 

targeted simulation media thus requires a bonded particle contact model. In 2004, the 

bonded particle model (BPM) approach was introduced to the PFC framework (Potyondy 

et al. 2004). In 2007, the two first bonded particle models of PFC were investigated by 

Cho et al. (Cho et al. 2007): the linear contact bond model and the parallel bond model. 

This study has clearly shown that these two models had noticeable limitations, in 

particular, for reproducing a realistic ratio between tensile and compressive strengths. In 

2012, Flat Joint contact Model (FJM) was introduced as another BPM in PFC (Potyondy 

2012) to tackle the previously mentioned limitation. This contact model will thus be 

explained more in detail in the next section. 

II.4. Flat Joint contact Model (FJM) 

The Flat Joint Model (FJM) was introduced to PFC in order to represent the apparent 

behaviour of bonded frictional contacts, which can contain partial damages (Potyondy 

2012). Therefore, FJM solved the common problem of other BPMs for predicting a 

realistic compressive to tensile strength ratio of materials (Potyondy 2018). Briefly, it can 

simulate the microstructure of angular and interlocked grains within a material thanks to 

flat contact interfaces, which allows the model to exhibit translational and rotational 

frictions between discrete elements. These features will be explained in detail in the 

following sections. Firstly, the general description and the input parameters of FJM will 

be introduced. Afterwards, the influences of the introduced parameters and the geometry 

of the numerical sample will be investigated. Finally, a customized rationalised 

calibration process will be proposed for FJM. 

II.4.1. General description and key parameters of FJM 

As mentioned, FJM can simulate the microstructure of interlocked grains within a 

material thanks to the flat contact interfaces. This feature allows the model to exhibit 

translational and rotational frictions between discrete elements. This key point made this 

contact model suitable for the present study, targeting multi-scale simulation of partially 

damaged grain-based materials (see section I.1) as shown in Fig. II-4. The detailed 
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formulation of FJM has been explained in the PFC code documentation (Itasca Consulting 

Group Inc. 2020); therefore, the main points of this model will be presented here. 

  

Fig. II-4. Grain-based materials: (a) simplified microstructure, (b) related model using flat 

joint, (c) focus on a single grain and its neighbours (Potyondy 2015).  

Commonly flat-jointed bonded numerical material is built up from a compacted 

granular assembly of spherical discrete elements as introduced in section II.2.2. Before 

assigning FJM between nearby discrete elements within this assembly, an initial small 

distance gap (g0) is set up to define which discrete elements should be bonded. An FJM 

bonded contact is thus created if the distance between two discrete elements is smaller 

than this assigned initial gap (g0) as shown in Fig. II-5 (b). This g0 value has a large 

influence on the connectivity of the discrete elements of the assembly and thus, could 

significantly influence the relation between local and apparent property. As an 

illustration, if g0 is initially set to zero, only the touching (or slightly overlapping) 

elements will be bonded. Therefore, it is preferable to assign a non-zero value as a 

bonding gap, usually set to a given ratio of the average of discrete elements size. This 

point will be detailed in the calibration section (see section II.4.4). 

Considering Fig. II-5, the full FJM contact geometry is a line in 2D and a disk in 3D. 

These geometries are different from most DEM contact models, which represent the 

contact as a point in both 2D and 3D. Besides, an FJM contact is built up from a certain 

number of contacting sub-surfaces (referred as “elements” in PFC technical 

documentation, which use thus superscript “e” in later formulations) which could carry 

forces and moments that obey the force-displacement law. For example, in Fig. II-5 (a), 

the FJM contact could be considered partially damaged as some of the sub-surfaces are 

“unglued”. In the unglued configuration, the concerned sub-surface is not able to transmit 

attractive tensile forces, while it can still transmit repulsive compressive forces. Thanks 

to this planar contact geometry associated with sub-surfaces, it is possible to model 

resisting against rotations in order to mimic a grain-based interlocked assembly. 
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Fig. II-5. The FJM contact: (a) focus on a partially damaged flat joint, and (b) the 

schematic basis of the FJM, adapted from (Itasca Consulting Group Inc. 2020). 

As it was shown in Fig. II-5 (a), a full FJM bonded contact in 3D is built up from 16 

sub-surfaces. The fracturing criterion of a single sub-surface in FJM is shown in  

Fig. II-6. This criterion is inspired from the classical truncated Mohr-Coulomb theory, 

which is represented in the shear stress (τ (e)) vs compression stress (-σ (e)) plane and 

adapted to rock mechanics, for which compression is considered positive (tension being 

thus negative). The parameters 𝑡𝑙𝑜𝑐, 𝑐𝑙𝑜𝑐 and 𝜙𝑙𝑜𝑐correspond to the tensile strength, the 

cohesion and the friction angle used locally as rupture criteria for each single sub-surface.  

Before rupture, each single sub-surface exhibits a linear elastic mechanical behaviour 

(based on  𝐾𝑛
𝑙𝑜𝑐 corresponding to the normal stiffness and 𝐾𝑠

𝑙𝑜𝑐 to the shear stiffness) until 

its equivalent stress in the Mohr-Coulomb stress space reaches the limit. Then, the 

sub-surface is considered unglued and detached. A detached FJM sub-surface can no 

longer carry tensile stresses. However, as mentioned previously, the detached sub-surface 

still can be active in compression with associated friction.  

 

Fig. II-6. Typical Mohr-Coulomb graph and associated different fracturing criteria used 

for a single FJM sub-surface 
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The global rheological model of each FJM sub-surface is summarised in Fig. II-7. 

For a given FJM bond, all of its 16 sub-surfaces follow the same rheological model and 

share the same parameter values of  𝐾𝑛
𝑙𝑜𝑐, 𝐾𝑠

𝑙𝑜𝑐, 𝑡𝑙𝑜𝑐, 𝑐𝑙𝑜𝑐 and 𝜙𝑙𝑜𝑐. These local input 

parameters are marked by superscript “loc”, in contrast with apparent macroscopic 

properties, marked by superscript “ap”. 

 

Fig. II-7. Bonded flat joint contact: the rheological model and the associated parameters, 

adapted from (Itasca Consulting Group Inc. 2020) 

Table II-1, is showing the list of FJM bonded contact parameters that were used in 

this study. An introduction to each parameter will be made afterwards.  

Table II-1. The input parameters in Flat Joint contact model 

Parameter description Symbol Elastic / fracture Unit 

Initial gap 𝑔𝑖
𝑙𝑜𝑐  - m 

Normal stiffness of bond 𝐾𝑛
𝑙𝑜𝑐 Elastic N/m 

Shear stiffness of bond 𝐾𝑠
𝑙𝑜𝑐 Elastic N/m 

Local Young’s modulus of bond 𝐸∗𝑙𝑜𝑐 Elastic GPa 

Local stiffness ratio (𝑲𝒏
𝒍𝒐𝒄/𝑲𝒔

𝒍𝒐𝒄) of bond 𝐾∗𝑙𝑜𝑐 Elastic - 

Local tensile strength of bond 𝑡𝑙𝑜𝑐 Fracture MPa 

Local cohesion of bond 𝑐𝑙𝑜𝑐  Fracture MPa 

Local friction angle  𝜙𝑙𝑜𝑐 Fracture Degrees 

 

Initial gap (𝑔𝑖
𝑙𝑜𝑐): as previously mentioned, this parameter defines the maximum 

distance between two discrete elements for having a bonded contact configuration.  

Normal stiffness of bond (𝐾𝑛
𝑙𝑜𝑐) and shear stiffness of bond (𝐾𝑠

𝑙𝑜𝑐): these two 

parameters define the stiffness of the two perpendicular springs (normal and tangential 

directions) in a smooth DEM contact. With such local parameters, the apparent 

macroscopic elastic properties are scale-size dependent, and this direct relation is not easy 

to handle. To solve this classical problem in DEM, PFC uses another intermediary 

parameter taking into account the size of the discrete elements. These intermediary 

parameters are the local Young’s modulus (𝐸∗𝑙𝑜𝑐) and the local stiffness ratio (𝐾∗𝑙𝑜𝑐). 

Local Young’s modulus of bond (𝐸∗𝑙𝑜𝑐): this elastic parameter is defined as the 

effective elastic modulus at the contact, as it is defined in Eq. II-1. 
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 𝐸∗𝑙𝑜𝑐  =  𝐾𝑛
𝑙𝑜𝑐  𝐿𝑙𝑜𝑐  Eq. II-1 

In Eq. II-1, Lloc is the local bond length (in the case of balls, the sum of the radii). By 

assigning 𝐸∗𝑙𝑜𝑐 and knowing the local bond length Lloc for the concerned contact, the 𝐾𝑛
𝑙𝑜𝑐 

can be calculated automatically. In this way, 𝐸∗𝑙𝑜𝑐 remain the same value for all contacts, 

but the 𝐾𝑛
𝑙𝑜𝑐 is locally adjusted to the size of the concerned discrete elements. This 𝐸∗𝑙𝑜𝑐 

parameter is thus one of the main controlling parameters of the apparent elastic modulus 

(Eap) of the assembly. 

Local stiffness ratio of bond (𝐾∗𝑙𝑜𝑐): this elastic parameter is defined as the ratio 

between the normal and the shear local stiffnesses and is given in Eq. II-2. 

 
𝐾∗𝑙𝑜𝑐  =  

𝐾𝑛
𝑙𝑜𝑐

𝐾𝑠
𝑙𝑜𝑐 Eq. II-2 

By assigning 𝐾∗𝑙𝑜𝑐 and knowing the 𝐾𝑛
𝑙𝑜𝑐, which was determined previously, the 𝐾𝑠

𝑙𝑜𝑐 

of the concerned contact can be calculated automatically. This 𝐾∗𝑙𝑜𝑐 parameter has, in 

fact, a strong influence on the apparent macroscopic Poisson’s ratio (νap) of the assembly. 

Local tensile strength of bond (𝑡𝑙𝑜𝑐): this fracture parameter is the local fracture 

criteria of the bond in pure tension, as shown in Fig. II-6 and Fig. II-7. The 𝑡𝑙𝑜𝑐 value 

defines a local tensile stress threshold. If the applied tensile stress of the bond exceeds 

this value, the related sub-surface will be detached and will later act only in compression. 

This 𝑡𝑙𝑜𝑐  parameter is directly linked to the apparent tensile strength (𝑡𝑎𝑝) of the 

assembly.  

local cohesion of bond (𝑐𝑙𝑜𝑐): this fracture parameter is related to the local cohesion 

of the bond in pure shear, as shown in Fig. II-6 and Fig. II-7. This 𝑐𝑙𝑜𝑐 parameter is 

directly linked to the apparent shear strength of the assembly. As expected, and after 

verification, the 𝑐𝑙𝑜𝑐 has a negligible influence for apparent macroscopic fracturing in 

mode I, governed by tension. 

Local friction angle (𝜙𝑙𝑜𝑐): this fracture parameter defines the friction angle at the 

bonds, which is related to a solicitation combining compression and shear. This 𝜙𝑙𝑜𝑐 

parameter is directly linked to the apparent friction angle of the assembly. As expected, 

and after verification, the 𝜙𝑙𝑜𝑐 has a negligible influence for apparent macroscopic 

fracturing in mode I, governed by tension. 

As mentioned, generally, DEM continuum models are assemblies of discrete elements 

that interact through contacts, and the response of the model at the macro-scale emerges 

from the interactions at the contact (local-)scale, which is the case for FJM too. This 

makes DEM simulations different from Finite Element Method (FEM) simulations, 

which generally comply with stress-strain constitutive laws at the macro-scale. Like the 

other DEM models, a drawback of the FJM is that it requires transitional steps and 

assumptions to obtain overall stress-strain behaviour for the apparent continuum media. 

To be more explicit, the introduced elastic input parameters in Table II-1 are different 

from the apparent elastic modulus (Eap) and the apparent Poisson’s ratio (νap) of the 

assembly. The influence of the local elastic parameters 𝐸∗𝑙𝑜𝑐 and 𝐾∗𝑙𝑜𝑐 is well established 

in the literature (Zhou et al. 2018) and will be discussed more in section II.4.4. 
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Similarly, the local fracture input parameters in Table II-1 will be different from the 

apparent strength of the assembly. The influence of these local fracture criteria will be 

reviewed in section II.4.2. In addition to the local input parameter, and even if it is not 

well documented in the literature, it should be noticed here that the geometry of the 

numerical sample could also have a noticeable influence on the apparent material 

properties. This point will also be reviewed in section II.4.3. Considering these influential 

points, the calibration process is an inevitable step of FJM. Hence, a rationalised trial and 

error calibration process will be proposed in section II.4.4. 

II.4.2. The influence of the local fracture parameters 

In this section, the influence of the local fracture parameters on the apparent strength 

in Uniaxial Tensile (UT) and Uniaxial Compression (UC) tests simulations will be 

investigated. This first sensitivity study will help to understand the local to apparent 

relationships, which will later lead to define a pertinent calibration process, as proposed 

in section II.4.4. 

For this investigation, a unique cubic numerical sample (10×10×10 cm3 containing 

13.7k of discrete elements) with the initial local input parameters of Table II-2 was 

considered. Then, for each local fracture parameter (𝑡𝑙𝑜𝑐 , 𝑐𝑙𝑜𝑐 , 𝜙𝑙𝑜𝑐), a set of simulations 

were done by varying one parameter at a time while keeping the other parameters 

constant. 

Table II-2. FJM local values used to study the influence on apparent fracture behaviour  

Description 
Local Young’s 

modulus  

Local stiffness 

ratio 

Local tensile 

strength 

Local 

cohesion 

Local friction 

angle 

Abbreviation 𝐸∗𝑙𝑜𝑐  𝐾∗𝑙𝑜𝑐 𝑡𝑙𝑜𝑐 𝑐𝑙𝑜𝑐  𝜙𝑙𝑜𝑐 

Type Elastic Elastic Fracture Fracture Fracture 

Initial value 20 GPa 2 10 MPa 40 MPa 30° 

Variation range - - 5-40 MPa 10-80 MPa 0°-60° 

 

Sensitivity study of the local tensile strength (𝑡𝑙𝑜𝑐) between 5 and 40 MPa: the 

influence of this parameter on the apparent tensile strength of the material has been firstly 

investigated by running uniaxial tensile test simulations. As expected this 𝑡𝑙𝑜𝑐 Value has 

no influence on the elastic behaviour in tension (slopes of the stress-strain curves, in Fig. 

II-8 (a)). In contrast, as shown in Fig. II-8 (a) and (b), 𝑡𝑙𝑜𝑐 has logically a direct effect on 

the apparent tensile strength, which can be considered as linear. In the present 

configuration, the ratio between local and apparent tensile strength is about 80%. 

However, this ratio may differ, depending on the other local parameters and on the 

considered numerical sample geometry. These considerations will be taken into account 

for the calibration procedure detailed in section II.4.4. 
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Fig. II-8. Results of uniaxial tensile test for different 𝑡𝑙𝑜𝑐 values: (a) stress-strain curves, 

and (b) apparent tensile strength vs 𝑡𝑙𝑜𝑐. 

Afterwards, the influence of 𝑡𝑙𝑜𝑐 on the apparent compressive strength of the material 

has been investigated by running uniaxial compression test simulations. Surprisingly, this 

𝑡𝑙𝑜𝑐 value, seems to have an influence on the global shape of the pre-peak behaviour in 

compression (first part of the stress-strain curves in Fig. II-9 (a)). As shown in Fig. II-9 

(a), 𝑡𝑙𝑜𝑐 has also logically an effect on the apparent compressive strength. Similarly to 

tension, the relation between 𝑡𝑙𝑜𝑐 and the apparent compressive strength seems to be 

linear, Fig. II-9 (b), but with an important intercept (more than 400 MPa). This can be 

explained by the dominancy of shear fracturing mode during compressive tests, which is 

in fact mostly controlled by 𝑐𝑙𝑜𝑐 value (which will be investigated later). 

Coming back to the loading part of the curves (Fig. II-9 (a)), and looking very 

carefully at the beginning of these curves, the slopes at the origin (initial elastic modulus) 

does not vary with changing 𝑡𝑙𝑜𝑐. During loading, it appears that the stress-strain curves 

deviate from the initial slope for a given stress threshold which is dependent of 𝑡𝑙𝑜𝑐 value. 

Thus, 𝑡𝑙𝑜𝑐 seems to have a direct influence on the microcracking process, in tension 

perpendicular to the applied uniaxial compressive load. This leads to a progressive 

decrease of the apparent Young’s modulus (Eap). These considerations will be taken into 

account for the calibration procedure detailed in section II.4.4. 
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Fig. II-9. Results of uniaxial compression test for different 𝑡𝑙𝑜𝑐 values: (a) stress-strain 

curves, and (b) apparent compressive strength vs 𝑡𝑙𝑜𝑐. 

Sensitivity study of local cohesion (𝑐𝑙𝑜𝑐) between 10 and 80 MPa: As expected, the 

influence of this parameter on apparent tensile strength, given by the uniaxial tensile test 

(additional results not presented here), is negligible. Therefore, the influence of this 

parameter in a uniaxial compression test was investigated. By considering the results of 

simulations in Fig. II-10 (a) and Fig. II-10 (b), it confirms that 𝑐𝑙𝑜𝑐 is highly influential 

on uniaxial compressive strength value. As shown in Fig. II-10 (b), 𝑐𝑙𝑜𝑐 has a direct effect 

on the apparent uniaxial compressive strength, which can be considered as linear with a 

non-zero intercept (100 MPa). In the present configuration, the ratio between local and 

apparent uniaxial compressive strength is about 11%. This ratio may differ, depending on 

the other local parameters and on the considered numerical sample geometry. On the other 

hand, 𝑐𝑙𝑜𝑐 has no impact on apparent pre-peak mechanical behaviour. However, it should 

be highlighted that there is a subtle change in the stress-strain slopes (around 300 MPa in 

the present case), resulting from the initiation of the tensile microcracking process. This 

initiation point is the same for all the curves, as the assigned 𝑡𝑙𝑜𝑐 value was kept constant 

in these simulations.  
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Fig. II-10. Results of uniaxial compressive test for different 𝑐𝑙𝑜𝑐 values: (a) stress-strain 

curves, and (b) apparent compressive strength vs 𝑐𝑙𝑜𝑐. 

Sensitivity study of local friction angle (𝜙𝑙𝑜𝑐) between 0 to 60 degrees: As expected, 

the influence of this parameter on apparent tensile strength, given by the uniaxial tensile 

test (additional results not presented here), is negligible. Therefore, the influence of this 

parameter in a uniaxial compression test was investigated. By considering the results of 

simulations in Fig. II-11 (a), 𝜙𝑙𝑜𝑐 is mainly influential on the uniaxial compressive 

strength, as shown in Fig. II-11 (b). Besides, it is worth highlighting that 𝜙𝑙𝑜𝑐 has also 

an influence on the post-peak mechanical behaviour. It seems that increasing the 𝜙𝑙𝑜𝑐 

value could lead to an increase of fracture energy in the post-peak area. On the other 

hand, 𝜙𝑙𝑜𝑐 has no impact on apparent pre-peak mechanical behaviour. 

 

Fig. II-11. Results of uniaxial compressive test for different 𝜙𝑙𝑜𝑐 values: (a) stress-strain 

curves, and (b) apparent compressive strengths vs 𝜙𝑙𝑜𝑐. 
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As mentioned in section II.4.1, the tensile load in a single FJM sub-surface is carried 

only for a glued configuration. In contrast, a compressive load is carried only if the contact 

gap is negative, either the sub-surface is glued or not. For uniaxial tensile tests, where the 

tensile loads on the FJM sub-surfaces are dominant, the 𝑡𝑙𝑜𝑐 is directly controlling the 

apparent tensile strength. On the other hand, when the numerical sample is subjected to a 

compressive load, the dominant fracturing mode will be locally in the mixed mode, which 

is driven by 𝑡𝑙𝑜𝑐, 𝑐𝑙𝑜𝑐 and 𝜙𝑙𝑜𝑐 parameters of the Mohr-Coulomb criteria (Fig. II-6). 

Hence, the apparent compressive strength will be controlled by all these parameters. 

II.4.3. Influences of the numerical sample geometry 

Generally, in DEM, the numerical sample geometry, size, and discrete elements 

fineness (related to the level of discretisation) could affect the apparent properties of the 

material. It means that even by using the same input parameters, the apparent properties 

of the numerical sample could vary by changing its geometry, length and discrete 

elements sizes. Hence, to investigate the influence of these points, different 

configurations were considered. In this regard, by using the same set of local input 

parameter values, as shown in Table II-3, the main apparent mechanical properties 

(Young’s modulus, Poisson’s ratio, tensile strength) were compared for different sample 

geometries, length and fineness. These simulations were done only for the uniaxial tensile 

test case. 

Table II-3. The FJM input local parameters for studying the influence of geometry in the 

uniaxial tensile test case 

Description 

Local Young’s 

modulus  

(𝐸∗𝑙𝑜𝑐) 

Local stiffness 

ratio (𝐾∗𝑙𝑜𝑐) 

Local tensile 

strength (𝑡𝑙𝑜𝑐) 

Ball (discrete 

elements) 

radius  

Type Elastic Elastic Fracture - 

Value 20 GPa 2 10 MPa 2-3mm 

 

The influence of the shape and dimension of the numerical sample on the apparent 

mechanical behaviour was first investigated. As shown in Fig. II-12, different geometries 

with various fineness and sizes were investigated. The sample which is shown in  

Fig. II-12 (a), is a 10×10×10 cm3 cube containing 13.7k of discrete elements, is taken as 

the reference.  

This reference was compared to the cylindrical sample shown in Fig. II-12 (e). The 

length and the fineness of this cylindrical sample are comparable to the reference one. 

Therefore, for such a case, only the apparent shapes are considered to be different. As 

indicated in column (e) of Table II-4, the apparent Poisson’s ratio (νap) exhibits similar 

values, while the apparent Young’s modulus 𝐸𝑎𝑝 and apparent tensile strength tap are 

noticeably different (-3% for 𝐸𝑎𝑝and +7% for tap). 

Afterwards, this reference was also compared to a sample with a similar shape and 

fineness but with a different length in one direction, as shown in Fig. II-12 (d). Therefore, 

the influence of the shape length was studied. As indicated in column (d) of Table II-4, 

the apparent Poisson’s ratio (νap) exhibit similar values. On the other hand, the other 

mechanical parameters, 𝐸𝑎𝑝 and tap are noticeably different (-3% for 𝐸𝑎𝑝and +7% for tap). 
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Similar differences were observed for the cylindrical shapes (see Fig. II-12 (e), Fig. II-12 

(f) and Table II-4). 

The influence of the sample size was also investigated for similar values of fineness. 

As can be seen, by comparing the reference cube with a larger one, shown in  

Fig. II-12 (c), all the apparent parameters have acceptable accordance except for 𝐸𝑎𝑝, 

which is having a relative difference of -8%. 

Finally, the influence of the fineness was investigated for similar cubic shapes and 

lengths, as shown in Fig. II-12 (b). As indicated in column (b) of Table II-4, by 

decreasing the ball distribution range from 2-3 mm to 1.2-1.8 mm, the number of elements 

increases from 13.7k to 61.7k. Here again, the apparent Poisson’s ratio (νap) exhibit 

similar values. However, 𝐸𝑎𝑝 and tap are noticeably different (-3% for 𝐸𝑎𝑝and +4% for 

tap). 

 

Fig. II-12. Different tested geometries, size and fitness of the numerical sample. 
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Table II-4. Apparent brittle elastic properties for different geometries, size, and fineness 

Shape/size Cube  Cube  2×Cube  Parallelepiped  Cylinder  
Tall 

cylinder  

Fig. II-12 reference (a) (Ref) (b) (c) (d) (e) (f) 

Fineness level standard elevated standard standard standard standard 

Number of discrete 

elements 
13.7k 61.7k 105.0k 34.2k 10.5k 25.7k 

Apparent Young’s 

modulus (𝐸𝑎𝑝) (GPa) 
26.6 25.7 24.6 25.9 25.8 24.2 

Apparent Poisson’s 

ratio (νap) 
0.159 0.159 0.158 0.157 0.159 0.155 

Apparent tensile 

strength (tap) (MPa) 
10.1 10.5 10.0 10.9 10.9 10.0 

 

To conclude, it seems that numerical sample size and fineness variations mostly 

impact the apparent Young’s modulus (𝐸𝑎𝑝) while the apparent Poisson’s ratio (νap) 

remains constant. This means that the shear modulus (not directly measured here) is 

probably changing proportionally to the apparent Young’s modulus. However, in the 

cases of length variation, in addition to the apparent Young’s modulus (𝐸𝑎𝑝), the apparent 

tensile strength (tap) is impacted as well. In all cases, the apparent Poisson’s ratio (νap) is 

quite constant.  

These variations are well-known in the FJM, even if there is no well-documented 

study about them. In fact, as these variations are not so high (max 8%), the usual solution 

(discussing with other FJM users) is to fix the numerical sample prior to the calibration 

steps (see section II.4.4). In this way, the calibration process is involved dedicatedly for 

a given targeted numerical sample. If the targeted sample has a complex shape (such as 

WST, section I.2.3), then the calibration process should be done for a simple geometry 

close to the targeted one, as shown in Fig. II-13. However, the mentioned limitations 

could be fixed in the case of periodic boundary conditions, which will be explained in 

detail in section III.3.1. 

 

Fig. II-13. WST numerical sample and its related calibration numerical sample. 
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II.4.4. Rationalised trial and error calibration process  

of FJM local parameters  

As mentioned, the main disadvantage of such a DEM approach is the lack of 

well-defined relationships between the contact properties (the local parameters of the 

bonds between discrete elements) and the apparent brittle elastic properties, which are 

related to the simulated material. Hence, the FJM requires a calibration process to assign 

the correct values for the contact properties to reproduce the desired apparent brittle 

elastic properties. Generally, the calibration process can be done either by a rationalised 

trial and error (Zhou et al. 2018, Vallejos Javier Andres et al. 2017) or a direct calibration 

process (T.-T. Nguyen et al. 2019). Due to the high number of local input parameters of 

the FJM and of the complex interdependencies of these parameters on the apparent 

behaviour, no direct calibration process has been proposed for FJM yet. Nevertheless, an 

indirect calibration algorithm has been recently proposed by (Vallejos Javier Andres et 

al. 2017). From this work, an improved indirect calibration algorithm is proposed here in 

order to adjust the local input parameters to apparent targeted properties. The proposed 

algorithm (shown in Fig. II-14) considers the different calibrations steps for the most 

influential local parameters (see section II.4.2) involved in the targeted simulations of 

this PhD. 

As mentioned in section II.4.3, the very preliminary step for the calibration is to fix 

the numerical sample geometry. Then, the modelled sample should be mechanically 

loaded in order to obtain the apparent mechanical behaviour targeted for the material. It 

should be mentioned that the calibration process proposed in Fig. II-14 is exclusively 

focused here on tensile behaviour. In fact, the present PhD is dedicated to refractory 

materials, which are well-known to be more sensitive in tension (mode I). Thus, the local 

input parameters which have an influence on the apparent compressive strength (𝑐𝑙𝑜𝑐 and 

𝜙𝑙𝑜𝑐) have been intentionally excluded from the proposed calibration process. 

The proposed calibration of FJM contact model parameters follows a systematic step 

by step approach where each step is detailed below. 

1. Initial gap (𝑔𝑖
𝑙𝑜𝑐): assigning a small value for the bonding gap will result in an 

asymmetric rigidity between compression and tension, which is unwanted for the 

purpose of this study. Thus, this initial gap value should be set at a level high 

enough to prevent such asymmetry. This level has been, in fact, numerically 

quantified as a fraction of the average discrete element diameter (ball) by testing 

different values of this fraction. By this approach, the minimum value which 

satisfies the mentioned condition is about 40% of the average discrete element’s 

diameters. 

2. Local stiffness ratio (𝐾∗𝑙𝑜𝑐): in the second step, the local stiffness ratio (𝐾∗𝑙𝑜𝑐) is 

calibrated. As mentioned earlier, this parameter greatly influences the apparent 

Poisson’s ratio (νap). Hence, the local stiffness ratio (𝐾∗𝑙𝑜𝑐) should be set to a 

value that produces the targeted apparent Poisson’s ratio (νap). It should be 

mentioned that this step must be done before calibrating the local Young’s 
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modulus (𝐸∗𝑙𝑜𝑐) as the apparent Young’s modulus also depends on the 𝐾∗𝑙𝑜𝑐 

parameter (Zhou et al. 2018). 

3. Local Young’s modulus (𝐸∗𝑙𝑜𝑐): after calibrating and fixing the local stiffness ratio 

(𝐾∗𝑙𝑜𝑐), the local Young’s modulus (𝐸∗𝑙𝑜𝑐) should be set to a value that produces 

the targeted apparent Young’s modulus (𝐸𝑎𝑝). 

4. Local tensile strength (𝑡𝑙𝑜𝑐): finally, after calibrating the elastic properties, the 

targeted apparent tensile strength (𝑡𝑎𝑝) is calibrated by changing the local tensile 

strength (𝑡𝑙𝑜𝑐). The starting guess for 𝑡𝑙𝑜𝑐 can be the 𝑡𝑎𝑝 value itself. As 

highlighted in Fig. II-8, generally, the apparent tensile strength of the material is 

not so far from the local tensile strength.  

 

Fig. II-14. The modified algorithm to calibrate apparent brittle elastic parameters of the 

numerical sample inspired from (Vallejos Javier Andres et al. 2017). 

II.5. Conclusions 

As detailed in this section, the Flat Joint Model (FJM) shows a high potential for 

simulating fracturing processes in quasi-brittle materials. This type of DEM simulations 

mainly involves continuum mechanics, while my previous experience in geomechanics 

was primarily concerned with the rigid granular media, such as rockfalls simulations. 

Therefore, during these three years, I developed my expertise in fracture mechanics, 

continuum mechanics and materials science, as well as my competence in working with 

the PFC framework. 
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Here, to summarise the overall assessment of the PFC framework, it is noteworthy to 

mention that PFC provides a sufficient variety of modelling objects, resulting in a high 

capability of this DEM framework to model complex geometries and configurations (see 

section II.2). PFC provides the FJM contact model, which is adequate to simulate 

interlocked, angular grains microstructures (similar to large grain refractories), thanks to 

the bonded frictional contacts (see section II.4). On the other hand, PFC lacks an 

automated, direct calibration process for local FJM parameters, whereas such a fastidious 

calibration process is already developed in other frameworks, namely in GranOO. 

Finally, the introduced PFC framework and FJM contact model will be firstly used 

for the multiscale homogenisation modelling of elastic properties (Chapter III:). Then, 

the influence of microcracking on the apparent behaviour of refractory materials will be 

deeply investigated (Chapter IV: and Chapter V:) since it was, in fact, the main target of 

this PhD. The discussed points of this chapter were the foundations of the PFC framework 

and FJM contact model and were used to build up and calibrate considered models in the 

following chapters. 
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III.1. Introduction 

As discussed in detail in section I.1, the heterogeneous microstructure design of 

refractories significantly influences their ability to sustain thermal shocks in their 

application. As explained in section I.1.2, the thermal expansion mismatch between 

constituents (large aggregates within a matrix) leads to microcracking around the 

aggregates and allows to improve the thermal shock resistance. Therefore, to define the 

most suitable microstructure design, a rational experimental procedure of optimisation 

has been considered working with model materials containing only a limited number of 

constituents called “model material” (see section III.2.2). In fact, despite the simplified 

microstructure of model material, they could exhibit a thermomechanical behaviour that 

can mimic some aspects of industrial refractories behaviour. Hence, it is crucial to 

understand better the strong relationships between such microstructures and the 

macroscopic thermomechanical behaviour of these model materials. Beyond this 

experimental procedure of optimisation, evidently, numerical modelling, like DEM, can 

help to have a better view of such complex phenomena.  

In fact, the homogenisation aspect in DEM is still today not as robust as in FEM. In 

this way, one of the first goals of this PhD was to carefully investigate the elastic 

properties (Young’s modulus, Poisson’s ratio, and potential anisotropy) from the 

micro-scale (related to local inclusions or pores) to the macro-scale (related to the volume 

fraction of inclusions or pores). Hence, to achieve such local to apparent (micro to macro) 

multi-scale simulations in DEM, a dedicated numerical approach will be proposed in this 

chapter. This proposed numerical approach aims to simulate the elastic properties of 

bi-phase and porous materials by using periodic homogenisation technique (see section 

III.3.1), not taking into account any discontinuity at this stage. 

The implementation of the periodic homogenisation approach in DEM allows working 

on a pseudo-infinite domain with a limited number of discrete elements by replicating a 

representative volume cell (see section III.3.2). Thus, this approach enables such 

cross-scale transition from the unit cell to the infinite domain. Here, the elastic properties 

of bi-phase and porous materials will be investigated as a first study in order to validate 

such an original approach with DEM (not so well-documented at the moment). In fact, 

validating such an approach will be an opening to introduce later the thermal damages 

resulting from thermal expansion mismatch between constituents in order to study the 

effect on thermal shock resistance. This possible damage progression, which makes 

simulations much more complicated, could be thus introduced in the DEM model to 

mimic the real case of thermal damage. In such a perspective, the Flat Joint DEM contact 

model was chosen as it is capable of reproducing realistic crack initiation and propagation 

at micro-scale. This model was introduced in detail in section II.4. 

To compare the accuracy and the efficiency of this proposed homogenisation 

approach in DEM, the given apparent elastic properties will be compared to experimental 

results measured on real model materials: bi-phase and porous materials (see section 

III.2.2). In addition, the obtained numerical results will be compared to an analytical 

model and to FEM simulations. Finally, the apparent stiffnesses tensors for a given 

arrangement (Face-Centred Cubic) within the Representative Volume Element (RVE) 
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will be compared to the ones provided by analytical model and FEM simulations (see 

section III.4.4). 

III.2. Background of periodic homogenisation and description 

of the reference material 

In this section, a brief review on periodic homogenisation with DEM to describe the 

macroscopic behaviour of heterogenous materials will be discussed. Later, the reference 

bi-phase model material will be introduced. 

III.2.1. A brief review on periodic homogenisation with DEM 

The homogenisation technique was developed in 1978 by Papanicolau and 

Bensoussan (Papanicolau et al. 1978). This mathematical technique, coupled with 

numerical methods, is used for the scale transition of material properties from a local 

scale (micro) to a global scale (macro). For instance, in a particle-based simulation, even 

to upscale the behaviour of a clay matrix from the nanoscale, a self-consistent 

homogenisation approach could be used (Brochard et al. 2017). Homogenisation had 

been used for a long time in the FEM models. However, it is relatively less popular in the 

DEM approach applied to continuum media. During the 1980s, periodic conditions were 

introduced for molecular dynamics, which is quite close to DEM, to remove the 

boundaries limitations by (Parrinello et al. 1981) and (Allen et al. 1987). Later, it was 

proposed in DEM simulation to apply strains on specimens without imposing boundary 

effects (Cundall 1988a). 

In fact, today, there is a lack of studies about homogenisation technique in DEM for 

predicting the apparent elastic behaviour of materials, especially in 3D. Therefore, the 

primary motivation of this chapter was to implement a periodic homogenisation technique 

in the DEM model for predicting the apparent elastic properties of a simplified 

microstructure, such as bi-phase and porous materials. This study should be considered 

as the very first stage to validate such a homogenisation technique before introducing 

cracks propagation within the model.  

III.2.2. Description of reference (uncracked) bi-phase and porous 

model materials 

The microstructures of refractory materials are having complex couplings (for 

example, physicochemistry couplings) between aggregates and matrix, which affect 

different macroscopic properties of the material. Thus, to study the elastic properties of 

bi-phase materials, it was necessary to design and produce a simplified material called 

“model material”. In such simplified materials, only the thermomechanical interactions 

of two solid phases are expected. This simplification was required in order to clearly 

observe the effect of increasing the inclusions fraction (or porosity) on the elastic 

macroscopic response of the materials. 
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To study elastic behaviour of the bi-phase material regarding the inclusions fraction 

and porosity, Tessier-Doyen et al. (N. Tessier-Doyen et al. 2007) have designed and built 

two bi-phase “model materials”: 

• Bi-phase material with solid inclusions: Glass matrix with Alumina inclusions 

(G/A). This model material is made from the composition of a dense 

aluminosilicate glass matrix containing randomly distributed single-sized 

spherical alumina beads (with a mean diameter of 500 μm). The elastic properties 

of each phase are shown in Table III-1. These two solid-phase materials can 

reproduce a simple isotropic microstructure. The Coefficient of Thermal 

Expansions (CTE) of both phases are quite close to each other (6.5 × 10-6 𝐾−1 for 

glass and 7.6 × 10-6 𝐾−1 for alumina beads). This close CTE values prevent 

microcracking or debonding between matrix and inclusions during the cooling 

down process after the sintering of this bi-phase material (Nicolas Tessier-Doyen 

2003) (as shown in section I.1.2, Fig. I-2). Different samples of this material have 

been produced by varying inclusion fractions in order to observe the effect on the 

apparent elastic behaviour of the material. The microstructure of this model 

material has been shown in Fig. III-1 (a) for 28% of the inclusion volume fraction. 

• Porous bi-phase material: Glass matrix with Pores (G/P). This material is a dense 

aluminosilicate glass matrix (the same as for G/A material) containing randomly 

distributed isolated spherical pores (Nicolas Tessier-Doyen 2003). These pores 

were introduced by using pore-forming agents without inducing any microcracks. 

Different samples of this material have been produced by varying the porosity in 

order to observe the effect on the apparent elastic behaviour of the material. 

Nonetheless, due to experimental limitations, the maximum porosity was about 

42%. In fact, higher values were inducing interconnected pores. The 

microstructure of this model material has been shown in Fig. III-1 (b) for the 

porosity of 18%.  

 

Fig. III-1. Model bi-phase materials: (a) glass matrix with spherical alumina inclusions 

and (b) glass matrix with isolated spherical pores (Nicolas Tessier-Doyen 2003). 
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Table III-1. Measured properties of constituents of model bi-phase materials  

(Nicolas Tessier-Doyen 2003). 

Property Measured model material property 
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Young’s modulus 78 GPa 

Poisson’s ratio 0.206 
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Young’s modulus 340 GPa 

Poisson’s ratio 0.240 

III.3. Numerical foundations for homogenisation  

applied to DEM 

In this section, the numerical methods and techniques which are required to apply the 

homogenisation to DEM models are explained. At first, the periodic boundary conditions 

(PBC) will be explained (section III.3.1), then a Representative Volume Elements (RVE) 

will be chosen and built to be used with the Periodic Boundary Conditions (PBC) (section 

III.3.2). In order to obtain apparent properties of RVE, it was necessary to load the sample 

mechanically. Therefore, the required techniques to load the numerical sample in PBC 

and to measure the apparent properties will be discussed (sections III.3.3, III.3.4 and 

III.3.5). Afterwards, the calibration process with PBC will be explained (section III.3.6). 

At the end of this section, the computational method to calculate RVE’s apparent stiffness 

tensor will be introduced (section III.3.7). 

III.3.1. Periodic Boundary Conditions (PBC) in DEM 

In numerical models, periodic boundaries are often used to remove free boundary 

effects (Cundall 1988a). Theoretically, in a PBC applied to a DEM model, if a discrete 

element centroid goes outside the periodic boundary box, it translates back to the opposite 

face of the box. In order to ensure contacts between element located at opposite faces (or 

corners) of the boundary, “ghost” elements are introduced (Itasca Consulting Group Inc. 

2020). The ghost elements are shown in red in Fig. III-2 for a perfect 2D square RVE. 

The blue square at the centre of the picture is called a unit cell.  
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Fig. III-2. A square specimen in PBC (in 2D). Ghost elements and PBC borders are 

shown in red. The main RVE is in blue (only eight copies are shown here in 2D;  

However, 26 copies should be considered in 3D). 

III.3.2. Representative Volume Elements (RVEs) 

For building the unit cell in the periodic 3D space for homogenisation technique, it 

was necessary to choose a periodic microstructure arrangement that induces a low degree 

of anisotropy in order to reproduce a statistically isotropic behaviour of the bi-phase 

material (see section III.2.2). Based on the previous studies, a Face-Centered Cubic 

(FCC) arrangement had shown a low degree of anisotropy for periodic homogenisation 

(R. Grasset-Bourdel et al. 2011). Therefore, the FCC arrangement has been chosen for 

the present study to represent a bi-phase material (matrix-inclusion system) RVE. In Fig. 

III-3, the matrix is shown in blue, and the inclusions are in grey. 

For creating a bi-phase RVE with two different constituents, it was necessary to assign 

different contact (local) properties for the matrix and inclusions regions. As will be 

mentioned in the calibration part (see section III.3.6), local values were obtained 

independently by going through the calibration process in PBC for each constituent 

separately. The interface properties (the contacts between inclusion elements and matrix 

elements) could be assigned as the matrix, the inclusions, or other desired properties. In 

this study, for these interface contacts, the matrix properties have been assigned. In other 

words, no particular property was given to the interface. In fact, in the present case for 

which no particular properties have been targeted for the interface during the processing 

of the model material, and thus promoting a very well bond of the glass matrix (by 

sintering) on the surface of the Alumina beads, properties of the interface could assume 

similar to the matrix. The contact network is shown in Fig. III-3 (c), where the interface 

contacts are specifically shown in red.  
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Fig. III-3. FCC arrangement: (a) and (b) numerical sample produced by around 20k 

discrete elements, and (c) the contacts among the discrete elements. 

It is noteworthy to mention that the total number of 20k discrete elements was enough 

for this RVE, considering the computation time efficiency and accuracy of results. Further 

detail about the procedure to choose the number of elements is discussed in section 

III.4.2.2.  

The proposed study aims to compare the influence of the inclusion volume fraction 

on the apparent elastic properties of the model with an analytical model and experimental 

observations. In such a perspective, several inclusion radii were considered inside the 

RVEs (Fig. III-4). It should be mentioned that all these RVEs are built from the same 

spatial arrangement of discrete elements in order to avoid any influence of this spatial 

arrangement on the apparent properties coming from the calibration process (as discussed 

in section II.4.3). 

 

Fig. III-4. Illustrations of some numerical samples with different inclusion fractions, 

increasing from 0% to 57% in an FCC arrangement. 

In the same way, to study the porosity effect, another set of RVEs was built using the 

same FCC arrangement and replacing the inclusions with voids (Fig. III-5). 
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Fig. III-5. Side-by-side comparison of simulated FCC-arranged RVEs in periodic space:  

(a) bi-phase material (b) porous material. 

III.3.3. Distortion technique of PBC for applying strain to RVE 

In order to measure numerically apparent elastic properties of RVE, it was necessary 

to load the sample mechanically. In the case of periodic boundaries, this loading should 

be applied with particular conditions named “distortion technique”. Initially, the concept 

of distortion of boundary conditions was introduced by Parrinello and Rahaman for 

molecular dynamics in 1981 (Parrinello et al. 1981). Later, this technique was adapted to 

DEM simulation to apply strains on specimens without imposing boundary effects 

(Cundall 1988a).  

In this study, this method was used to load the RVEs by distorting the PBC in the 

loading direction while keeping the PBC shape parallelepipedic. The PBC is also 

distorted in the other directions to ensure pure loading modes (pure tension and 

pure/simple shear). In such a case, the deformation of the PBC is modelled by imposing 

a uniform velocity field over the discrete elements, which is coming from the equation of 

the motions. This point has been explained more in detail in section III.3.5.  

Theoretical description of the distortion of PBC in PFC was described by S. Emam as 

follows (Emam 2009). The coordinate vector {𝒙𝑏} gives the centroid position of an 

element “b”: 

 {𝒙𝑏} = (𝑥𝑖
𝑏)1≤𝑖≤3 Eq. III-1 

The lower and the upper corner of the PBC is P0 and P1, respectively. PBC can be 

distorted by assigning a diagonal strain-rate tensor [𝜀
.
]. For defining the PBC extents, the 

[L] matrix is introduced: 

 
[𝑳] = 𝐿𝑖𝑗 = [

𝑙𝑥 0 0
0 𝑙𝑦 0

0 0 𝑙𝑧

] Eq. III-2 

where lj is the extent of the PBC in the j direction. By introducing [L] to Eq. III-1, the 

position of the element can be written as: 
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 {𝒙𝑏} = {𝒙𝑃0} + [𝑳]{𝒔𝑏} Eq. III-3 

where {𝒙𝑃0} is the position of the lower corner of PBC, and {𝒔𝑏} = (𝑠𝑖
𝑏)1≤𝑖≤3 (reduced 

coordinate vector) is the reduced position of the vector of the element b centroid: 

 
𝑠𝑖

𝑏 =
𝑥𝑖

𝑏 − 𝑥𝑖
𝑃0

𝑙𝑖
 

Eq. III-4 

To illustrate these formulas, a transition from reduced coordinate to global coordinate 

in 2D is shown in Fig. III-6. 

 

Fig. III-6. Illustration of the transition from reduced coordinate to the global coordinate  

in 2D, from S. Emam (Emam 2009) 

Commonly in DEM, for loading a sample, a velocity may be applied. With PBC, a 

strain-rate is applied in order to impose a velocity on discrete elements. To apply the 

assigned strain-rate, the time derivative of tensor [𝑳] is introduced as [𝑳
.

]. In Eq. III-5, 

tensors [𝑳], [𝑳
.

] and reduced coordinate vector {𝒙
.

𝑏} are known. Also, {𝒔
.

𝑏} can be 

calculated from the integration of the acceleration of the elements, which is given by 

Newton’s second law. Therefore, the element velocity {𝒙
.

𝑏} can be determined as: 

 {𝒙
.

𝑏} = {𝒙
.

𝑃0} + [𝑳
.

]{𝒔𝑏} + [𝑳]{𝒔
.

𝑏} Eq. III-5 
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and can be simplified as: 

 {𝑨} = {𝒙
.

𝑃0} + [𝑳
.

]{𝒔𝑏} Eq. III-6 

 {𝑩} = [𝑳]{𝒔
.

𝑏} Eq. III-7 

 

where the vector {A} is the velocity of the spatial point {xb} during the distortion of the 

periodic domain and the vector {B} is the velocity of the element b centroid, with respect 

to PBC. Hence, to apply the distortion to PBC, the tensor [𝑳
.

] should be calculated. As an 

example, in the case of a uniaxial tensile test along the Z direction, this tensor should be: 

 
[𝑳

.

] = [

0 0 0
0 0 0

0 0 𝒍
.

𝑧

] Eq. III-8 

 

where 𝒍
.

𝑧 is the applied deformation rate in the tension direction.  

III.3.4. Measurement ball technique to obtain global stress within RVE 

In this study, the discrete domain is considered as a pseudo-continuum media. 

However, the medium is still discrete, so it is impossible to calculate stress directly, as 

stress is a continuum quantity. Hence, in order to measure apparent properties during a 

test, such as stresses or strains, the “measurement ball” technic was applied.  

The measurement ball consists of a virtual sphere that measures a given quantity such 

as stress or strain in a specified DEM model region. It gives the average values of the 

assigned measurable quantities, such as stress tensor, strain rate, and porosity (Itasca 

Consulting Group Inc. 2020). In this study, only the stress tensors were measured by using 

this technique, while the strain was computed from the imposed PBC strain-rate. 

To obtain the stress, an averaging procedure is used to convert local forces to a 

continuum apparent stress of the RVE. The average stress 𝜎𝑖𝑗̅̅̅̅  in a measurement region of 

volume V is computed as (Christoffersen et al. 1981): 

 
[𝜎̅] = −

1

𝑉
∑ 𝑭(𝑐)

𝑁𝑐

⊗ 𝑳(𝑐) Eq. III-9 

where Nc is the number of contacts in the specified region, F(c) is the contact force vector, 

L(c) is the branch vector between the centroids of the two bodies in contact and ⊗ is the 

outer product. 

III.3.5. Servo-control technique 

In this study, virtual uniaxial tensile and simple shear tests have to be considered. In 

the case of uniaxial tensile tests, they should be performed by distorting the PBC with a 

constant small user-defined strain-rate in order to load the sample. In PBC, this strain-
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controlled condition is applied by distorting the PBC in a given direction while using the 

servo-control mechanism to distort the two other perpendicular directions. In these 

perpendicular directions, the servo-control technique ensures maintaining a small 

constant value of confining stresses (also defined by user) during the test by distorting the 

PBC. These stresses, in perpendicular directions to the loading, are thus monitored 

continuously by using the measurement ball. Then, a strain-rate (in these perpendicular 

directions) is automatically adjusted (thanks to a controller gain) in order to keep constant 

these stresses at a level close to the user-defined value of confining stress. In this case of 

simple shear test, the same principle is applied. This mechanism of servo-control 

technique is explained in detail in documentations (Itasca Consulting Group Inc. 2020). 

III.3.6. Calibration of local properties in Periodic Boundary 

Conditions (PBC) 

As a reminder from section II.4, the FJM requires a calibration process to assign the 

correct values for the local properties to reproduce the desired apparent elastic properties. 

It should be highlighted that in this chapter, the calibration process was done for a 

non-damaged material in PBC. Therefore, here, as the focus is on the elastic properties of 

the material, the local fracture parameters (local tensile strength 𝑡𝑙𝑜𝑐 and local cohesion 

𝑐𝑙𝑜𝑐, see section II.4.2) were set to high values to ensure a fully elastic behaviour without 

any crack. Therefore, the proposed calibration algorithm in section II.4.4 (in Fig. II-14) 

can be simplified, just using the three first steps. In this chapter, the calibration process 

was done on a 4×4×4 cm3 cubic sample consisting of around 20k discrete elements in 

PBC. The process of choosing this number of elements will be explained in section 

III.4.2.2. 

To build up the bi-phase materials, firstly, it was necessary to go through the 

calibration process for each constituent separately (Glass matrix and Alumina inclusions) 

to reproduce their own apparent elastic properties, using the same spatial arrangement of 

discrete elements. In Table III-2, the input parameters and the apparent properties for 

each pure constituent are summarised. 
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Table III-2. The input parameters and apparent properties of the bi-phase material 

Targeted Experimental  

Material property 

FJM input  

parameter 

Simulated Apparent  

Material property 

Description Value Description Value Description Value 

Reproduce 

symmetrical elastic 

behaviour in tension 

and compression 

- Initial gap (𝑔𝑖
𝑙𝑜𝑐) 

40%  

of the ball 

radius 

Reproduce symmetrical 

elastic behaviour in 

tension and compression 

Achieved 

M
at
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x

 

(G
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ss
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Young’s 

modulus 
78 GPa 

local Young’s 

modulus  

(𝐸∗𝑙𝑜𝑐) 

88.2 GPa 
Apparent Young’s 

modulus (𝐸𝑎𝑝) 
78 GPa 

Poisson’s  

ratio 
0.206 

local stiffness ratio 

(𝐾∗𝑙𝑜𝑐) 
5.6 

Apparent Poisson’s  

ratio (νap) 
0.2060 
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  Young’s 

modulus 
340 GPa 

local Young’s 

modulus  

(𝐸∗𝑙𝑜𝑐) 

438.8 GPa 
Apparent Young’s 

modulus (𝐸𝑎𝑝) 
340 GPa 

Poisson’s  

ratio 
0.24 

local stiffness ratio 

(𝐾∗𝑙𝑜𝑐) 
12.1 

Apparent Poisson’s  

ratio (νap) 
0.2400 

 

It should be mentioned that with free boundary conditions (without considering the 

periodic homogenisation), the geometry of the specimen influences the calibration 

process (as discussed in section II.4.3) (Potyondy 2019). After investigation of some 

other geometries rather than a cube (parallelepiped two times larger in one direction), it 

should be noted that using periodic homogenisation strongly limits the influence of the 

shape of the sample in the calibration process. 

III.3.7. Computational method of RVEs apparent stiffness tensor 

As mentioned in section III.3.2, for using the periodic homogenisation technique, it 

was necessary to build an RVE with a low degree of anisotropy to match the behaviour 

of the model materials. Therefore, the FCC arrangement was chosen for building the 

RVEs. On the other hand, the DEM is a model with a random spatial positioning of 

discrete elements which could not respect a perfect symmetry. In such a case, the random 

spatial positioning of discrete elements could lead to a certain level of mechanical 

anisotropy coming from this spatial asymmetry.  

To investigate this influence, the effective stiffness tensor of RVEs was calculated by 

two different approaches for the DEM model RVE: assuming a perfect geometrical planar 

symmetry in 3D of the sample or not. For the first case, the effective stiffness tensor of 

the FCC arrangement could be calculated as a cubic symmetry stiffness tensor (Hearmon 

1964). For the second case, to investigate the impact of asymmetry, it was essential to 

measure the apparent elastic properties of RVEs in each main direction of RVE, which 

are shown in Fig. III-7. Hence, the cubic symmetry assumption of the previous approach 

was not retained, and the orthotropic symmetry assumption was considered. The technical 

steps to calculate each of these approaches for the DEM models are explained in the 

following sections. 
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Fig. III-7. The main directions of the modelled FCC arranged RVE 

III.3.7.1. Cubic symmetry assumption 

By assuming a perfect geometrical planar symmetry in 3D, it was possible to calculate 

the effective stiffness tensor with three independent elastic elements, as shown in Eq. 

III-10. 
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For calculating the first two elastic elements in the cubic symmetric stiffness tensor 

(C11 and C12), it was required to measure the apparent properties, 𝐸𝑎𝑝 and νap. To measure 

apparent Young’s modulus (𝐸𝑎𝑝) a direct uniaxial tensile test was performed by distorting 

the PBC with a constant small strain-rate (Fig. III-8 (a)). By using the distortion of PBC 

technique (section III.3.3) and measurement ball (section III.3.4), the principal stress 

within the RVE was measured. Then by having the total applied strain, the apparent 

Young’s modulus (𝐸𝑎𝑝) was calculated. The apparent Poisson’s ratio (νap) could be 

obtained by measuring the perpendicular strains and by having the applied strain in the T 

direction, as shown in Fig. III-8 (a), which are coming from the distortion of the PBC.  
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For calculating the last elastic element in the cubic symmetric stiffness tensor (C44), 

the apparent shear modulus (𝐺𝑎𝑝) had to be measured. To do so, a simple shear test was 

performed by distorting the PBC with a constant small shear strain-rate, only in the S 

direction, as shown in Fig. III-8 (b).  

At a given applied shear strain, the shear stress was calculated within the RVE (with 

respect to the loading direction) using the measurement ball technique. By having the 

shear stress and the applied shear strain, the apparent shear modulus (𝐺𝑎𝑝) was calculated.  

 

Fig. III-8. The schematic of mechanical tests simulation: (a) a uniaxial tensile test 

simulation in T direction on the numerical sample, and (b) a simple shear test in  

S direction on the numerical sample. 

Finally, after obtaining the apparent Young’s modulus (𝐸𝑎𝑝), Poisson’s ratio (νap) and 

shear modulus (𝐺𝑎𝑝), it was possible to use the constitutive law for cubic symmetry as 

noted in Eq. III-10 to calculate C11, C12, and C44 elements and build the stiffness tensor of 

RVE (Bower 2009). The calculation time for each simulation took about 5 to 8 minutes 

for 20k discrete elements on a system with Intel Core Xeon E2186M 4.0 GHz, SSD, 16 

GB RAM, 12 parallel threads. 

III.3.7.2. Orthotropic symmetry assumption 

This time, it was assumed that there is no perfect geometrical planar symmetry in 3D 

due to the spatial randomness of the discrete elements positioning. Considering this 

asymmetry, the cubic symmetry assumption was not considered, and the same RVEs were 

considered orthotropic, with nine independent elastic coefficients and three mutually 

perpendicular symmetry planes (as noted in Eq. III-11 for the theoretical orthotropic 

assumption). 
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For calculating the first three elastic elements of the main diagonal (C11, C22, and C33), 

and three off-diagonal symmetric elements (C12, C13, and C23), it is required to perform 

three uniaxial tensile tests on each main axes (Fig. III-7). Each of these uniaxial tensile 

tests gave one of the mentioned main diagonals and one of the off-diagonal elements 

independently. These uniaxial tensile tests were performed, as explained earlier in the 

previous section. However, as mentioned in Eq. III-11 for orthotropic assumption, in the 

case of the geometrical cubic sample, the Poisson’s ratio (νap) should be measured in two 

perpendicular directions, independently. To satisfy this point, in each simulation for 

obtaining the elements of the orthotropic matrix, the Poisson’s ratio (νap) was measured 

in the two perpendicular directions. 

Finally, for calculating the last three independent elements of the main diagonal of 

orthotropic stiffness tensor (C44, C55, and C66), the apparent shear modulus (𝐺𝑎𝑝) had to 

be measured along the three main axes. The procedure of measuring the apparent shear 

modulus (𝐺𝑎𝑝) was explained earlier in the previous section.  

After obtaining the apparent Young’s modulus (𝐸𝑎𝑝), Poisson’s ratio (νap) and shear 

modulus (𝐺𝑎𝑝), it was possible to use the constitutive law for orthotropic materials as 

shown in Eq. III-11 to calculate the nine elements (C11, C22, C33, C44, C55, C66, C12, C13, 

and C23) and build the stiffness tensor of RVE. (Bower 2009) 

Note that the first three diagonal components (C11, C22, C33) are related to the tension-

compression stiffness of the material in the main three directions. The last three diagonal 

components (C44, C55, C66) are related to the shear stiffness of the material. Also, the three 

off-diagonal components (C12, C13, C23) are related to the extension-extension coupling. 

These relations are the same for the cubic assumption as well. 

The results of these different approaches were compared in section III.4.4 to check 

the difference between the two assumptions and evaluate the influence of spatial 

randomness of the discrete elements positioning on the anisotropy degree of the RVEs. 

Also, in other predictive methods, such as most FEM models, the first approach was used; 

hence, it was essential to make a comparison between these two approaches, FEM (R. 

Grasset-Bourdel et al. 2011) and analytical (Hashin et al. 1963) models, to check the 

validity of this model. 
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III.4. Modelling apparent elastic properties of bi-phase and 

porous materials 

Based on the numerical techniques of the previous sections, the applications and 

results of the DEM simulations in predicting the elastic properties of bi-phase and porous 

materials by using the periodic homogenisation approach are presented and discussed in 

the following parts.  

Firstly, the reference values coming from experimental, analytical, and numerical 

(FEM) results are introduced. Later, a series of numerical investigations are carried out 

to refine the DEM periodic models. In the end, to validate the accuracy of the DEM 

models, Young’s modulus and Poisson’s ratio obtained by DEM using PBC are 

confronted with reference values. 

III.4.1. Reference values coming from experimental data, analytical 

approach and numerical FEM model 

To verify the proposed periodic homogenisation in the DEM model for bi-phase and 

porous materials, it was essential to confront the obtained results to experimental data 

and/or other predictive methods such as FEM. Firstly, a comparison is made with 

experimental results. Secondly, the results are compared to other existing methods, such 

as an analytical method (by using Hashin and Shtrikman relationships) and a numerical 

approach (Finite Element Method simulations).  

III.4.1.1. Experimental technique for measuring elastic properties of model 

materials (EXP) 

As mentioned in section III.2.2, two kinds of model materials were studied: a Glass 

matrix with randomly distributed Alumina inclusions (G/A) and a Glass matrix with 

randomly distributed spherical Pores (G/P). For the material G/A, different samples were 

prepared in the study by Tessier-Doyen (N. Tessier-Doyen et al. 2007), with different 

inclusion fractions, as shown in Fig. III-9. Similarly, for material G/P, various porosity 

values were considered. 

 

Fig. III-9. Optical images of bi-phase model material with different inclusion volume 

fractions: (a) 7 %, (b) 28 % and (c) 48 % (N. Tessier-Doyen et al. 2007).  

For measuring elastic properties, these model materials were considered isotropic 

materials at the macroscopic scale. Their elastic properties, Young’s modulus and 

Poisson’s ratio, were measured by ultrasonic wave propagation technique with contact 
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transducers. Besides, to limit the attenuation of the waves causing by inclusions or pores, 

the measurements were done in transmission at low frequency (1 MHz). The same 

technique was used for G/P materials (Nicolas Tessier-Doyen 2003) (N. Tessier-Doyen 

et al. 2007).  

III.4.1.2. Hashin and Shtrikman (HS) bounds for model bi-phase and  

porous materials 

To predict analytically elastic properties of the bi-phase or porous model materials, 

Hashin and Shtrikman (HS) model was chosen for this study (Hashin et al. 1963). This 

analytical predictive approach defines two bounds for bi-phase materials: Hashin and 

Shtrikman upper bound (HS+) and Hashin and Shtrikman lower bound (HS-).  

For the G/A case, as it was mentioned in section III.2.2, the inclusions are nearly four 

times stiffer than the matrix: 78 GPa for matrix and 340 GPa for the inclusions. In such a 

case, as mentioned in previous studies, Young’s modulus and Poisson’s ratio should 

follow the lower HS bond (HS-) while increasing the inclusion volume fraction (Brisard 

et al. 2010) (N. Tessier-Doyen et al. 2007) (Tucker et al. 1999) (Lakes 1998).  

For G/P material, which is a porous material, it is assumed that void’s bulk modulus 

(K) and shear modulus (G) is zero; therefore, the bulk modulus (K) and shear modulus 

(G) of the matrix is considered as very high in comparison to the voids. In such a case, 

the reference given by HS bounds is inversed. This means the HS upper bound (HS+) will 

be the analytical reference for the porous material, whereas HS lower bound (HS-) is zero 

(Pabst et al. 2004) (Joliff et al. 2007) (Živcová et al. 2009). 

In the HS model, the apparent Young’s modulus (𝐸𝑎𝑝) and Poisson’s ratio (νap) can 

be predicted by knowing the volume fraction of inclusions (or porosity) as well as bulk 

and shear modulus of each constituent. The analytical relationships of the Hashin and 

Shtrikman (HS) model are shown in Table III-3. These relationships are used to plot upper 

and lower Hashin and Shtrikman bounds (HS+ and HS-). 

Table III-3. The main HS analytical relationships for the elastic properties of  

a bi-phase material 

Property 
Lower Hashin and Shtrikman  

bound (HS-) 

Upper Hashin and Shtrikman bound 

(HS+) 

Bulk 

modulus 

𝐾𝐻𝑆− = 𝐾𝑚 +
𝑓𝑖

1
𝐾𝑖 − 𝐾𝑚

+
3(1 − 𝑓𝑖)

3𝐾𝑚 + 4𝐺𝑚

 𝐾𝐻𝑆+ = 𝐾𝑖 +
1 − 𝑓𝑖

1
𝐾𝑚 − 𝐾𝑖

+
3𝑓𝑖

3𝐾𝑖 + 4𝐺𝑖

 

Shear 

modulus 

𝐺𝐻𝑆− = 𝐺𝑚 +
𝑓𝑖

1
𝐺𝑖 − 𝐺𝑚

+
6(𝐾𝑚 + 2𝐺𝑚)(1 − 𝑓𝑖)

5𝐺𝑚(3𝐾𝑚 + 4𝐺𝑚)

 𝐺𝐻𝑆+ = 𝐺𝑖 +
1 − 𝑓𝑖

1
𝐺𝑚 − 𝐺𝑖

+
6(𝐾𝑖 + 2𝐺𝑖)𝑓𝑖

5𝐺𝑖(3𝐾𝑖 + 4𝐺𝑖)

 

Young’s 

modulus 

𝐸𝐻𝑆− =
9𝐾𝐻𝑆− ⋅ 𝐺𝐻𝑆−

3𝐾𝐻𝑆− + 𝐺𝐻𝑆−
 𝐸𝐻𝑆+ =

9𝐾𝐻𝑆+ ⋅ 𝐺𝐻𝑆+

3𝐾𝐻𝑆+ + 𝐺𝐻𝑆+
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Table III-3 summarises the analytical formula given by HS where fi is the volume 

fraction of inclusions, Km and Ki are bulk moduli of matrix and inclusions, Gm and Gi are 

shear moduli of matrix and inclusions. 

III.4.1.3. Periodic Homogenisation by Finite Element Method (FEM) 

Another reference results come from the study of Grasset-Bourdel et al. (R. Grasset-

Bourdel et al. 2011). The mentioned bi-phase model materials (G/A and G/P) were 

modelled by finite element periodic homogenisation. Here, the FCC arrangement is 

considered for the RVEs (Fig. III-10) (R. Grasset-Bourdel et al. 2011). Therefore, both 

FEM and DEM models simulated the FCC arrangement that made a direct comparison 

between the FEM and DEM models possible. 

 

Fig. III-10. The continuum RVEs modelled with FEM in Face-Centred Cubic (FCC) 

arrangement (R. Grasset-Bourdel et al. 2011) 

III.4.2. Numerical investigations for producing DEM  

periodic homogenisation 

To build an accurate numerical DEM model, the impact of different numerical 

approaches and techniques has been investigated. In this regard, the influence of using 

periodic homogenisation technique, the impact of the number of discrete elements, and 

different possible numerical approaches to calculate experimental inclusion volume 

fraction (and porosity) are investigated. All these points are very well-documented in 

literature for FEM modelling, but in the specific case of DEM applied to continuous 

media, these concepts are, in fact, not well established yet. 

III.4.2.1. Periodic homogenisation  

The first comparison presented here is to ensure the efficiency and the accuracy of the 

homogenisation technique on the prediction of apparent elastic properties. In this aim, the 

results obtained by PBC is compared to the Free Boundary Condition (FBC), which is 

without any homogenisation. As mentioned in section III.4.1.2, the apparent elastic 

properties should follow: 

• the lower HS- bound in the case of G/A bi-phase material; 

• the upper HS+ bound in the case of G/P porous material. 
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Fig. III-11 (a) and (b) are showing the simulation results of the apparent Young’s 

modulus (𝐸𝑎𝑝) and Poisson’s ratio (νap) for the different considered volume fractions of 

inclusions. The analytical Hashin and Shtrikman (HS) bounds have been calculated and 

plotted for comparison. 

 

Fig. III-11. Comparison of PBC and FBC for (a) apparent Young’s modulus (𝐸𝑎𝑝) and 

(b) Poisson’s ratio (νap) in the case of G/A bi-phase materials. 

As shown in Fig. III-11 (a), the FBC model starts to deviate from the HS- lower 

bound, especially for high volume fractions of inclusion (higher than 25%). This 
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deviation tends to the middle range of the HS bounds, which is in line with previous 

studies by another DEM code, GranOO, which used randomly distributed inclusions 

(André et al. 2017). However, the model with the periodic homogenisation, which is used 

for this study, was in accordance with the theoretical HS- lower bound.  

As it was shown in Fig. III-11 (b), the apparent Poisson’s ratio (νap) simulations with 

the periodic homogenisation are closely following the lower bound (HS-) while the model 

without homogenisation is not following HS bounds. Additionally, these FBC apparent 

Poisson’s ratio results exhibit some irregularities. To explain this inaccuracy with FBC, 

it should be mentioned that, for measuring the apparent Poisson’s ratio (νap) in the 

simulations, uniform tensile displacements were applied on one of the main axes of the 

sample, and the strains were measured on the faces in perpendicular directions (for which 

some roughness could come from the spatial distribution of discrete elements). 

Nevertheless, a uniform strain hypothesis was used to compute the apparent Poisson’s 

ratio. This hypothesis remains questionable and may lead to these significant 

discrepancies. In the case of PBC, since the boundaries remain planar, this problem does 

not exist.  

To compare quantitatively FBC and PBC, the relative deviation of Young’s modulus 

(𝐸𝑒𝑟𝑟𝑜𝑟) and Poisson’s ratio (𝜈𝑒𝑟𝑟𝑜𝑟) from the HS- bound for each simulation has been 

calculated as follows: 

 
𝐸𝑒𝑟𝑟𝑜𝑟  =   

|𝐸𝑠𝑖𝑚𝑢  −  𝐸𝐻𝑆−| 

𝐸𝐻𝑆−
 Eq. III-12 

 

 
𝜈𝑒𝑟𝑟𝑜𝑟  =   

|𝜈𝑠𝑖𝑚𝑢  −  𝜈𝐻𝑆−|

𝜈𝐻𝑆−
 Eq. III-13 

Then by having relative deviation for each simulated inclusion fraction, the mean 

deviations for PBC and FBC were calculated. The mean deviation of Young’s modulus 

for the PBC model was 0.3% (min 0 % and max 0.7%), while for the FBC, it was 1.4% 

(min 0% and max 4.9%). In addition, the mean deviation for Poisson’s ratio for the PBC 

was 0.2% (min 0% and max 0.4%) while for the FBC, it was 1.5% (min 0% and max 

3.0%).  

Similar investigations were managed for the case of G/P porous material. Fig. III-12 

(a) and (b) are showing the simulation results of the apparent Young’s modulus (𝐸𝑎𝑝) 

and Poisson’s ratio (νap) for the different considered porosities, in this case. The analytical 

Hashin and Shtrikman (HS) bounds have also been calculated and plotted for comparison. 
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Fig. III-12. Comparison of PBC and FBC for (a) apparent Young’s modulus (𝐸𝑎𝑝) and 

(b) Poisson’s ratio (νap) in the case of G/P porous materials. 

As it is shown in Fig. III-12 (a), for the case of porous materials G/P, the FBC model 

tends again to deviate from the HS+ analytical reference for Young’s modulus, while the 

PBC model shows a better agreement, as previously. 

In the same way, in Fig. III-12 (b), the FBC model is progressively deviating from 

the HS+ analytical reference for Poisson’s ratio, while the PBC follows the upper bound 

(HS+) with good accordance. However, in the case of porous materials, these FBC 

discrepancies for Poisson’s ratio are more significant, probably due to higher contrast 

between the elastic properties of matrix and pores.  

Again, to quantitatively compare FBC and PBC, the relative deviations from the HS+ 

bound has been calculated in the same way. 
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The mean relative deviation 𝐸𝑒𝑟𝑟𝑜𝑟 for the PBC model was 4.5% (min 0% and max 

13.9%), while for the FBC model, it was 5.8% (min 0% and max 17.3%). The mean 

relative deviation 𝜈𝑒𝑟𝑟𝑜𝑟 for the PBC model was 4.9% (min 0% and max 12.0%) while 

for the FBC model, it was 24.1% (min 0% and max 43.6%). 

Overall, this study demonstrates that DEM models using periodic homogenisation 

exhibit much better agreement with the analytical HS bounds for both bi-phase and porous 

materials than using free boundary conditions. This study highlights the interest in using 

PBC for predicting apparent elastic properties of multiphase material within the DEM 

frameworks. 

III.4.2.2. Number of discrete elements 

In this section, the number of discrete elements to build an RVE is discussed. The 

primary motivation of using the presented homogenisation technique is to scale up the 

behaviour of the materials from micro to macro scale. This means that the apparent 

properties of a heterogeneous material could be reproduced by only simulating a small 

fraction of the whole specimen. Compared to FEM, this advantage is even more tangible 

due to the high calculation cost of DEM simulations. In DEM, an infinite heterogeneous 

media could be reproduced by a relatively small number of discrete elements in RVEs 

combined with PBC. However, even in building an RVE, the number of discrete elements 

could be influential. To study this influence, FCC-arranged RVEs have been produced 

with approximately 20k discrete elements, as shown in Fig. III-13 (a) and compared to 

68k discrete elements as shown in Fig. III-13 (b). It is worth mentioning that the input 

parameters of 20k and 68k samples were calibrated separately. However, the calibrated 

input values were relatively close (see section III.3.6 for 20k). 

For 20k discrete elements, the calculation time for each simulation took about 8 to 10 

minutes. For 68k discrete elements, the calculation time for each simulation took an 

average of 6 to 7 times longer than 20k (both on a system with Intel Core Xeon E2186M 

4.0 GHz, SSD, 16 GB RAM, 12 parallel threads). The results of simulations for different 

numbers of DEs (20k and 68k) are plotted in Fig. III-14. 

 

Fig. III-13. RVEs with a different number of DEs and fineness:  

(a) 20k discrete elements and (b) 68k discrete elements 
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Fig. III-14. Comparison of 20k and 68k RVEs with PBC for G/A bi-phase material:  

(a) apparent Young’s modulus (𝐸𝑎𝑝) and (b) apparent Poisson’s ratio (νap). 

As shown in Fig. III-14 (a), the relative deviation from Young’s modulus HS- lower 

bound is less than 1.0% for both 20k and 68k RVEs. Also, as shown in Fig. III-14 (b), the 

relative deviation from Poisson’s ratio HS- lower bound is less than 0.4% for both RVEs. 

By considering these deviations, both models exhibit a very similar high accuracy in 

representing the apparent elastic behaviour of bi-phase materials. This means, by having 

the same relative accuracy, the model with 20k DEs is more efficient in terms of 

calculation performance. It emphasises that, even with a relatively low number of DEs 

(20k DEs), the model is giving a valid response for the apparent elastic behaviour. These 

results demonstrate the importance of using periodic homogenisation for decreasing the 

computation time and cost by decreasing the number of DEs and the fineness of the 

models. It is a critical point in DEM models, where calculation efficiency is much more 
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demanding in comparison to the other numerical methods. For this reason, the RVEs with 

20k DEs considering PBC was mainly used in the present study. 

III.4.2.3. Inclusion fraction calculation 

As mentioned in section III.4.1.2, for positioning and comparing the simulated results 

of the apparent elastic properties of bi-phase or porous materials on the HS bounds 

diagrams, one of the influential parameters is the inclusion fraction. For precisely 

calculating the inclusion fractions of the simulated FCC arrangements of RVEs, two 

approaches were investigated. Firstly, it was calculated based on the volume of the DEs 

in each part (matrix and inclusion) as follows: 

 
𝑓𝑖

𝑉 =
∑ 𝑉inclu

𝐷𝐸

∑ 𝑉inclu
𝐷𝐸 + ∑ 𝑉matrix

𝐷𝐸  Eq. III-14 

where 𝑓𝑖
𝑉is the inclusion fraction calculated by volume fraction, ∑ 𝑉inclu

𝐷𝐸  is the total 

volume of DEs within the inclusions, and ∑ 𝑉matrix
𝐷𝐸  is the total volume of DEs within the 

matrix. With this formulation, the porosity between the DEs is supposed to be the same 

in the inclusions and in the matrix, allowing to simplify the porosity term from each. 

The second approach calculates the inclusion fraction by the relative number of the 

contacts in each part of the material, and this means the total number of contacts within 

the inclusions over the total number of existing contacts (Eq. III-15). Note that as 

mentioned in section III.3.2, the matrix-inclusion interface contacts were considered as a 

matrix-matrix contact. Therefore, the proposed inclusion fraction calculation is: 

 
𝑓𝑖

𝐶 =
𝑁inclu

𝐶

𝑁inclu
𝐶 + 𝑁matrix

𝐶  Eq. III-15 

where 𝑓𝑖
𝐶 is the inclusion fraction calculated by the number of contacts, 𝑁inclu

𝐶  is the total 

number of contacts within the inclusions, and 𝑁matrix
𝐶  is the total number of contacts within 

the matrix (including the interface contacts). 

In Fig. III-15, the comparison and the accuracy of these two methods have been 

compared regarding the HS bounds. 
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Fig. III-15. Comparison of DEs volume fraction and  

contact fraction approaches for calculating inclusion fractions:  

(a) apparent Young’s modulus (𝐸𝑎𝑝) and (b) apparent Poisson’s ratio (νap). 

As shown in Fig. III-15, the calculation of the inclusion fraction by contacts is much 

more closer to the HS- reference bound. The average deviation from HS- bound for the 

positioning of the apparent Young’s modulus(𝐸𝑎𝑝) by using contacts number is 0.3% 

(min 0% and max 0.7%) while this deviation reaches up to 4.7% (min 0% and max 8.4%) 

for the volume fraction approach. In the same way, for the apparent Poisson’s ratio (νap), 

this deviation for contacts number approach is 0.2% (min 0% and max 0.4%) while this 

deviation reaches up to for 2.6% (min 0% and max 4.2%) for the volume fraction 

approach. 



Chapter III:Modelling the elastic properties of bi-phase and porous materials by using periodic 

homogenisation approach (in DEM): Modelling apparent elastic properties of bi-phase and 

porous materials 

 

96 

 

At first sight, this better accuracy of the contacts number approach could appear 

surprising. However, it should be highlighted that in DEM, the apparent properties of 

materials are coming from the responses of the contacts and not from the discrete 

elements themselves since they are considered as rigid bodies. Hence, it is logical that in 

DEM, the most pertinent parameter to account for the experimental inclusion volume 

fraction is the contacts number (and not the volume of the elements). 

By considering the mentioned results in Fig. III-15, the contacts number approach was 

chosen later to calculate the inclusions fraction in the periodic homogenisation of DEM 

models. Regarding the porosity percentage calculation in the DEM models, this approach 

was used by simply replacing the total number of the inclusion contacts (𝑁inclu
𝐶 ) with the 

total number of the deleted contacts during the building procedure of porous material 

RVEs.  

III.4.3. Young’s modulus and Poisson’s ratio obtained by DEM using 

PBC confronted with reference values 

To quantitatively ensure the validity of the proposed DEM model, the obtained results 

using the periodic homogenisation have been confronted with the other reference values 

coming from experimental measurements, analytical approaches and FEM calculations. 

III.4.3.1. Stiffer inclusions case: G/A materials 

In this section, the results of the simulation of the model material with stiffer inclusions 

(glass matrix with alumina spherical inclusions G/A) have been investigated. As 

mentioned before, theoretically, by increasing the inclusion fraction in the RVEs, the 

results should follow the lower HS bound (HS-) (Brisard et al. 2010) (Lakes 1998) 

(Tucker et al. 1999). Therefore, the inclusion fraction in the DEM model RVEs increased 

as well as in the FEM model and then compared to the experimental reference values. 

Besides, both DEM and FEM models used RVEs in the FCC arrangement with periodic 

homogenisation. 
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Fig. III-16. DEM periodic homogenisation results  

confronted to HS bounds, FEM models and real experimental data:  

(a) apparent Young’s modulus (𝐸𝑎𝑝) and (b) apparent Poisson’s ratio (νap).  

As it can be seen in Fig. III-16 (a), the DEM simulation using PBC and FEM periodic 

homogenisation are in perfect accordance with HS lower bound (HS-). Also, the 

experimental points are following the HS lower bound too, but with a slight tendency to 

the middle range of HS bounds for the higher inclusion fractions. 

Regarding Fig. III-16 (b), although the HS bounds width was small (values between 

0.2 and 0.23), the DEM model exhibits better accordance with reference HS- bound for 

predicting the apparent Poisson’s ratio, which is more coherent with the experimental 

results as well. 



Chapter III:Modelling the elastic properties of bi-phase and porous materials by using periodic 

homogenisation approach (in DEM): Modelling apparent elastic properties of bi-phase and 

porous materials 

 

98 

 

A summary of the relative deviation of DEM using PBC, DEM using FBC, and FEM 

using PBC from HS- is shown in Table III-4. 

Table III-4. Summary of the relative deviations from HS- reference bound  

for DEM using PBC, DEM using FBC and FEM using PBC 

Method 

Deviation of apparent Young’s modulus 

from HS- 
Deviation of apparent Poisson’s ratio  

from HS- 

Minimum Maximum Average Minimum Maximum Average 

FEM PBC 0.03%    

0.91% 0.55% 0.02%    1.49% 0.88% 

DEM PBC 0.00%   

0.73% 0.29% 0.00%   0.42% 
 

0.17% 

DEM FBC 0.00% 
 

4.91% 1.44% 0.00% 3.01% 1.48% 

 

Considering Table III-4 for both apparent elastic parameters, the DEM model shows 

a smaller deviation compared to the FEM model, either mean or maximum values, 

especially for modelling the apparent Poisson’s ratio. These results highlight the potential 

of DEM for solving multiscale problems by using periodic homogenisation.  

III.4.3.2. Porous case: G/P materials 

In this section, the effect of porosity has been studied (glass matrix with spherical pores 

G/P). In this case, as mentioned in section III.4.1.2, the HS upper bound (HS+) will be 

the analytical reference for the porous material G/P, whereas HS lower bound (HS-) is 

zero (Pabst et al. 2004) (Joliff et al. 2007) (Živcová et al. 2009). 
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Fig. III-17. DEM periodic homogenisation results  

confronted to HS bounds, FEM models and real experimental data: 

 (a) apparent Young’s modulus (𝐸𝑎𝑝) and (b) apparent Poisson’s ratio (νap). 

As shown in Fig. III-17 (a), both DEM and FEM periodic homogenisations are in 

perfect accordance with the lower inclusion fraction values (up to 30%). It exhibits an 

increasingly small difference for higher values. On the other hand, both simulation results 

match with the tendency of the experimental values considering the discrepancy of 

measurements.  

In Fig. III-17 (b), the DEM model shows better accordance with HS upper bound 

(HS+) globally compared to the FEM model for apparent Poisson’s ratio, which confirms 

the results of the previous section. However, both models started to deviate from HS+ for 

high porosities (above 35% for FEM and above 45% for DEM). Despite the discrepancy 
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of the experimental measurements (fluctuating in the range of 0.19 to 0.22 around the 

HS+) and the slight deviation for high porosity, both FEM and DEM exhibit good 

accordance with experimental results. A summary of the relative deviation of DEM using 

PBC, DEM using FBC, and FEM using PBC from HS+ is shown in Table III-5. 

Table III-5. Summary of the relative deviations from HS+ reference bound  

for DEM using PBC, DEM using FBC and FEM using PBC 

Method 

Deviation of apparent Young’s modulus 

from HS+ 
Deviation of apparent Poisson’s ratio 

from HS+ 

Minimum Maximum Average Minimum Maximum Average 

FEM PBC 0.00%    

11.23% 3.99% 0.05%    15.85% 6.06% 

DEM PBC 0.00%   

13.88% 4.54% 0.00%   12.05%   
4.87% 

DEM FBC 0.00%   

17.25% 5.84% 0.00% 43.64% 24.06% 

 

Simulation of the porous media by using DEM periodic homogenisation results shows 

matching values with FEM simulations and experimental results. Hence, even if FEM 

modelling is well-known to predict elastic properties of porous materials (Pabst et al. 

2018), the DEM modelling with PBC can also be used to predict accurately such 

homogenised elastic properties. To verify further the proposed DEM approach, the 

stiffness tensors calculation will be discussed in the following section. 

III.4.4. Stiffness tensors investigations 

In this section, the apparent stiffness tensors given by DEM RVEs is investigated. As 

a first step, the potential anisotropy of the equivalent modelled media is discussed. To do 

so, the DEM model stiffness tensors were calculated by cubic and orthotropic symmetry 

assumptions (see section III.3.7). Then, the stiffness tensors obtained by DEM are 

compared to the reference values coming from the HS relationships and the FEM model. 

To be able to compare the values, the inclusion fraction of 50% for the RVEs was chosen 

as the comparison reference for all the cases.  

III.4.4.1.  Stiffness tensors obtained by cubic and  

orthotropic symmetry assumptions 

As previously explained for calculating the RVEs stiffness tensor in the DEM model, 

two different approaches were used: calculating the RVEs stiffness tensors by cubic 

symmetry assumption from Eq. III-10 and orthotropic symmetry assumption from Eq. 

III-11. A comparison was made between these two assumptions to reveal any potential 

influence of the random spatial positioning of discrete elements in RVEs, which could 

lead to a certain level of mechanical anisotropy coming from this asymmetry. The 

numerical steps for calculating the stiffness tensors in DEM by using PBC and distortion 
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of the boundaries have been explained in section III.3.7. The resulting stiffness tensors 

are given below: 

 

Fig. III-18. Stiffness tensors for DEM model in the case of the G/A with 50% inclusion: 

(a) cubic symmetry assumption, (b) orthotropic symmetry assumption. 

In order to compare these two stiffness tensors, the HS- reference will be used. By 

knowing the elastic properties of the constituents, the HS- bound elastic properties can be 

calculated. Finally, from these properties and considering an isotropic assumption, the 

stiffness tensor for the reference HS- is obtained as bellow: 

 

Fig. III-19. Stiffness tensors for the G/A model bi-phase material with 50% inclusion 

calculated for the reference HS-. 

Afterwards, to compare to the reference HS-, the differences of Cij matrices for the 

DEM using cubic and orthotropic assumptions with the reference tensor have been 

calculated: 

 

Fig. III-20. Differences matrices to HS- bound for DEM model:  

(a) cubic symmetry assumption (b) orthotropic symmetry assumption. 

Considering different approaches in the DEM model for calculating the stiffness 

tensors, as shown in Fig. III-20 (a) and (b), the obtained stiffness tensors for both 

assumptions are in accordance. The errors between cubic symmetry tensors and the 

orthotropic tensors for: 

• the main diagonal elements C11, C22, C33, was less than 0.2%, 

• the main diagonal elements C44, C55, C66, was less than 0.5% and 

• the off-diagonal elements C12, C13, C23, was less than 0.6%.  

These results show that the random spatial positioning of discrete elements in RVEs 

had a minimal impact on the anisotropy of the RVE, even with a relatively low number 
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of DEs for RVEs. It showed the sufficiency of 20k DEs for RVEs in the PBC, and yet 

validating the efficiency of using periodic homogenisation in DEM, for saving calculation 

time and resources. 

III.4.4.2. Stiffness tensors obtained by DEM using PBC  

confronted with reference values 

Here, the obtained values for the stiffness tensor of the DEM model is compared to 

the reference values coming from the HS- bound (in Fig. III-19) and FEM numerical 

model. The obtained stiffness tensors results are shown below: 

 

Fig. III-21. Stiffness tensors for the G/A model bi-phase material with 50% inclusion 

calculated for (a) the DEM model, (b) the FEM model.  

FEM results from (R. Grasset-Bourdel et al. 2011)  

Considering the stiffness tensors obtained by DEM (Fig. III-21 (a)) and FEM (Fig. 

III-21 (b)) and comparing these values with HS- reference, both numerical methods are 

having good accordance with HS-. 

For the first three diagonal components (C11, C22, C33), DEM and FEM models had 

excellent accordance with HS-, by having 0.4% and 0.1% of errors, respectively. For the 

last three diagonal components (C44, C55, C66), the FEM model showed a better agreement 

with HS- compared to the DEM model by having 3.6% error while the DEM model error 

was 6.8%. Finally, the three off-diagonal components (C12, C13, C23) in the DEM model 

showed better accordance with HS- by having 0.6% error while the FEM model has 1.7% 

error. 

Overall, the material stiffness tensor matrix, obtained by the DEM model and using 

PBC, showed excellent accordance with HS- values and the FEM model. It verifies the 

accuracy and efficiency of DEM models with periodic homogenisation to predict the 

elastic properties and stiffness coefficients of bi-phase material. 

III.5. Conclusions 

In this chapter, the elastic properties of a model bi-phase and a porous material were 

accurately simulated by using a DEM numerical approach combined with a periodic 

homogenisation method. In fact, the homogenisation technique is usually a key point for 

multiscale modelling and reducing calculation times. Well-known in FEM, this approach 

is much less developed in DEM for continuum media. The proposed method and the 

associated algorithm procedures constitute a promising route for a better understanding 
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of the thermomechanical behaviour of heterogeneous materials. The first results 

presented here, only about elastic behaviour in non-damaged materials, validate the DEM 

efficiency and demonstrate its accuracy for homogenisation and up-scaling problems for 

bi-phase and porous materials. Also, this study highlights the importance of using 

periodic boundaries instead of free boundary conditions. 

The DEM periodic homogenisation simulation outputs, which were used to predict 

and to scale up the elastic behaviour of bi-phase and porous materials, were compared 

and were validated thanks to excellent accordance with experimental results as well as 

other predictive analytical and numerical methods: 

I. Experimental results: regarding the elastic behaviour of real model material with 

Alumina inclusions, the DEM simulations exhibit very good accordance with both 

Young’s modulus and Poisson’s ratio values versus the different percentage of 

inclusions. In the case of the elastic behaviour of real porous model material, the 

DEM simulations also exhibit very good accordance with Young’s modulus 

values versus porosity. About Poisson’s ratio, although the experimental results 

were a bit scattered, the DEM predictions were still in acceptable accordance with 

experimental values. 

II. Hashin and Shtrikman bounds: for both the DEM models, either the bi-phase 

material with Alumina inclusions and the porous model, Young’s modulus and 

Poisson’s ratio values exhibit excellent accordance with the HS bounds (HS- in 

the case of alumina inclusions and HS+ in the case of porous materials). This 

confirms the results of other related studies about the elastic behaviour of bi-phase 

materials with stiff inclusions in a soft matrix (Brisard et al. 2010) (Lakes 1998) 

(Tucker et al. 1999) and porous materials (Zerhouni et al. 2019). 

III. FEM simulation: comparison between FEM and DEM for simulating the same bi-

phase and porous materials demonstrates that the DEM approach leads to closer 

predictions for the elastic properties (considering both experimental and analytical 

values as reference) in comparison to the FEM simulations. It was especially the 

case for Poisson’s ratio in bi-phase and porous materials. In fact, in this case, the 

DEM approach seems to exhibit better accordance with the HS lower bound. 

Later, the stiffness tensor of each analytical (calculated from HS- values), FEM, and 

DEM methods were calculated and compared. It appears that DEM and FEM results 

exhibit an acceptable agreement with the stiffness tensor calculated from analytical HS- 

values. However, the FEM model showed a bit better accuracy in predicting the shear 

stiffness than the DEM model. At this stage, the reason for the better prediction of FEM 

in the shear stiffness requires further dedicated studies. 

The main limitation of the present study was the time-consuming trial-and-error 

process for calibrating the DEM input parameters to reproduce the apparent properties of 

real materials. Nevertheless, this well-known drawback in DEM could be later overcome 

by an automated calibration process, for example, using a machine learning approach. 

Overall, the proposed DEM approach, combined with periodic homogenisation 

technique, leads to valid elastic properties determination for bi-phase and porous 

materials. These key results open very interesting new ways to use DEM to predict the 

thermomechanical behaviour of heterogeneous materials containing numerous 

microcracks that could propagate simultaneously. In fact, the fracturing process and 
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microcracking simulations are among the key interests of using DEM in such a case 

compared to FEM. Therefore, the next chapter will be focused on the simulation of 

simultaneous microcracking in a continuum media that could be induced by thermal 

expansion mismatch between constituents. 
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Chapter IV: Modelling the non-linear behaviour of 

materials under tensile loadings by Weibull 

distribution of strength at the mesoscale  
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IV.1. Introduction 

As mentioned in section I.1, refractory ceramics are regularly subjected to thermal 

shocks and cycles. For example, during the steelmaking process, due to the filling and 

emptying of melted iron in the steel ladle, refractories are facing severe thermal cycles. 

Therefore, these refractories should be resistant to such thermal loadings. Experimentally, 

it is observed that pre-existing microcracks significantly impact this thermal shock 

resistance of refractories (as discussed in section I.1). However, the presence of these 

microcracks will induce a non-linear quasi-brittle mechanical behaviour (see section 

I.1.5). Therefore, this chapter aims to use the Discrete Element Method (DEM) to 

simulate such fracture mechanisms to reproduce this quasi-brittle behaviour. In fact, 

fracture propagation requires a large number of discontinuities, and the Finite Element 

Method (FEM) is not easily capable of managing this kind of microstructural effects (as 

discussed in section I.3.3). As mentioned in section I.3, using DEM to model fracture 

mechanisms in a pseudo-continuum media, especially in the ceramics field, is a new and 

promising approach under active development. Here again, the Flat Joint DEM Contact 

Model (FJM) is used (see section II.4). 

Even if PFC with FJM is well-adapted to account for multiple crack propagation 

within a quasi-brittle material, unfortunately, up to now, this model is not able to account 

for mechanical interactions and temperature variation simultaneously. This current 

limitation is a significant drawback to model refractory materials, which contain initial 

defects coming from CTE mismatch between constituents during the cooling stage after 

sintering. In fact, internal development within ITASCA is ongoing to account for 

mechanical interactions and temperature variation simultaneously and will be available 

soon. Considering this perspective and the fact that FJM has a high potential in simulating 

the fracturing process of quasi-brittle materials, it could nevertheless be a valuable 

approach in the near future. To overcome this temporary drawback, the present study 

investigated the randomisation of local fracture criteria within the virtual sample using a 

Weibull distribution (as explained in section I.2.4.1). The key idea is here to verify if the 

non-linear mechanical behaviour of a continuum media can be reproduced by initial well-

distributed damages with a strength dispersion following a Weibull distribution. This 

approach could allow studying the effect of pre-existing microcracks on the non-linear 

quasi-brittle behaviour of a numerical sample under uniaxial and cyclic tensile tests. 

Ultimately, this introduced approach will lead to a qualitative and quantitative DEM 

model to simulate the non-linear quasi-brittle of refractory materials. 

In this chapter, prior to focus on the numerical aspect, the reference material of this 

chapter, Alumina Spinel, and the technics to monitor its microcracking during the thermal 

cycles will be presented. Afterwards, the numerical foundation for this study will be 

introduced. At first, a reminder about the calibration of the FJM input parameter for 

perfect linear elastic brittle material will be done. This calibration process leads to a 

perfect brittle linear behaviour which will be compared to the real experimental uniaxial 

test of Alumina Spinel. Later, a randomisation process of bond strengths will be 

introduced following Weibull distributions. Then, the influence of this randomisation 

process on the apparent mechanical behaviour and microcracking will be studied. Finally, 
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a quantitative DEM numerical approach will be proposed to model the non-linear quasi-

brittle behaviour.  

IV.2. Description of the reference material and monitoring 

the microcracking process 

The chosen reference material for this study is an Alumina Spinel brick because it 

promotes a strong non-linear quasi-brittle behaviour which suits the overall goal of this 

chapter. This particular material is commonly used in the working lining of steel ladle (a 

very central point of the overall ATHOR project). The purpose of this short section is to 

illustrate (by a couple of key experimental results) where the microcracks (which 

constitute the central point of the present study) come from and how these microcracks 

lead to non-linear quasi-brittle behaviour. 

Kaczmarek et al. has investigated this material, and the experimental data of this 

material is taken from (Kaczmarek et al. 2019). This Alumina Spinel brick is composed 

of tabular Alumina grains (up to ~3 mm), Alumina Spinel matrix and 19.7 % of porosity. 

A typical microstructure of this Alumina Spinel is shown in Fig. IV-1. 

 

Fig. IV-1. SEM image of Alumina Spinel microstructure (Kaczmarek et al. 2019)  

The influence of the microcracking process on the elastic properties can be examined 

by using the ultrasonic method and acoustic emission. The ultrasonic method was used to 

detected and record the evolution of Young’s modulus versus temperature. This low-

frequency method uses a long bar configuration to perform measurements at high 

temperature. This method has high precision in measuring the impact of microcrack on 

the macroscopic elastic properties. 

The acoustic emission method records and analyses acoustic waves coming from the 

sample. An acoustic emission event is the result of the propagation of an elastic wave 

coming from a localised source within the sample. Each event is counted, which finally 
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lead to present the results as accumulative numbers of events versus temperature (Khlifi 

2019). 

Linking the ultrasonic measurements and acoustic emission events could help to have 

a better overview of the relationships between elastic properties and microcracking 

process. In this way, Young’s modulus and acoustic events evolutions of the referenced 

Alumina Spinel is plotted in Fig. IV-2 versus temperature. Just focusing on the cooling 

part of this curve, Young’s modulus increases from 1500°C to 700°C (rather normal 

evolution for most materials) and then decreases from 700°C to ambient temperature 

(quite abnormal behaviour). In fact, this decrease is due to microcrack initiation and 

propagation resulting from CTE mismatch between constituents (as discussed in section 

I.1.2), which lead to simultaneous acoustic emission (increase in acoustic events). 

 

Fig. IV-2. Young’s modulus and acoustic events evolutions during thermal treatment 

(Kaczmarek et al. 2019) 

Now, to focus on the mechanical behaviour of Alumina Spinel, a uniaxial tensile test 

was performed to characterise this material at ambient temperature. Fig. IV-3 is showing 

Alumina Spinel brick experimental results during incremental cyclic loadings. 
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Fig. IV-3. Experimental stress-strain behaviour during incremental cyclic loadings of 

Alumina Spinel (Kaczmarek et al. 2019) 

Considering Fig. IV-3, the Alumina Spinel brick is showing:  

a. a progressive decrease of its rigidity after each cycle; 

b. a hysteresis loop between each unloading and reloading; 

c. a residual strain after each unloading. 

In order to model this experimental behaviour accurately, a calibration process for 

simulating non-linear quasi-brittle behaviour should be defined. In the following section, 

such a quantitative calibration process will be proposed. 

IV.3. Numerical approach for simulating non-linear quasi-

brittle behaviour with DEM 

In this section, the numerical basis required for simulating non-linear behaviour using 

Weibull distribution with DEM will be introduced. At first, the calibration of the FJM 

input parameters for a perfect linear elastic brittle material will be reminded. Then, the 

apparent behaviour given by this calibration process will be compared to the experimental 

uniaxial test of Alumina Spinel. Later, a randomisation process of bond strengths will be 

introduced following Weibull distributions. Then, the influence of this randomisation 

process on the apparent mechanical behaviour and microcracking will be studied. 
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IV.3.1. A reminder to the calibration process for perfect brittle linear 

elastic material 

As a brief reminder to section II.4, the FJM requires a calibration process to assign 

the correct values for the local properties in order to reproduce the desired apparent 

perfect linear elastic properties. It should be highlighted that in this chapter, contrary to 

the previous chapter, the calibration process was done in a Free Boundary Conditions 

(FBC), without considering the periodic homogenisation. The reason is that this 

simulation is dealing here with mesoscale, corresponding to the scale of the real 

experimental sample without considering the real heterogeneous microstructure (which 

will be, in fact, later introduced by Weibull distribution of local bond strengths). 

Therefore, here, in addition to the elastic properties of the material, the apparent 

non-linear behaviour will be investigated as well, thanks to the implementation of 

Weibull statistical distribution.  

In this way, the local fracture parameters (local tensile strength 𝑡𝑙𝑜𝑐 and local cohesion 

𝑐𝑙𝑜𝑐, see section II.4.2) were considered for this model. Then, the proposed calibration 

algorithm in section II.4.4 (in Fig. II-14) were used to calibrate the apparent parameters. 

Regarding 𝑡𝑙𝑜𝑐 value, it will be calibrated by trial and error process (step 4 in Fig. II-14) 

and 𝑐𝑙𝑜𝑐 value will be set proportionally to 𝑡𝑙𝑜𝑐, around 5 times higher. Note that, as 

mentioned previously, the present PhD is dedicated to refractory materials, which are 

well-known to be more sensitive to tensile fracturing in mode I. Thus, this study is 

focusing on the behaviour of materials in tensile tests. In this way, almost all of the 

fracturing process will happen in mode I, governed by 𝑡𝑙𝑜𝑐 and making the influence of 

𝑐𝑙𝑜𝑐 negligible.  

It is important to highlight that the proposed calibration algorithm in section II.4.4 was 

for perfect brittle linear elastic materials. Therefore, in the case of Alumina Spinel (which 

is a quasi-brittle material), these calibration steps were used for the initial linear part of 

the tensile behaviour of the material, which is measured at the very beginning of the 

stress-strain curve (Fig. IV-3). 

In this chapter, the calibration process was managed on a 10×10×10 cm3 cubic sample 

consisting of around 14k discrete elements (with the radius range of 2 mm to 3 mm) in a 

non-periodic boundary condition. Fig. IV-4 shows the virtual sample prepared for the 

calibration process in a displacement-driven uniaxial tensile test.  
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Fig. IV-4. Uniaxial tensile test configuration: the top and bottom discrete element group 

(in red) move in opposite vertical directions. 

The FJM local parameters calibrated in order to fit the targeted Alumina Spinel initial 

linear properties are presented in Table IV-1. After calibrating the initial linear properties 

of Alumina Spinel, a uniaxial tensile test simulation was done and discussed in the next 

section. 

Table IV-1. Summary of Alumina Spinel initial linear properties, FJM input 

parameters coming from calibration and simulated apparent properties 

Targeted experimental  

material property 

FJM input  

parameter 

Simulated apparent  

material property 

Description Value Description Value Description Value 

Young’s modulus 10.37 GPa 

local Young’s 

modulus  

(𝐸∗𝑙𝑜𝑐) 

7.7 GPa 
Apparent Young’s 

modulus (𝐸𝑎𝑝) 
10.34 GPa 

Poisson’s  

ratio 
0.17 

local stiffness ratio 

(𝐾∗𝑙𝑜𝑐) 
4 

Apparent Poisson’s  

ratio (νap) 
0.16 

Uniaxial tensile 

strength 
1.57 MPa 

local bond tensile 

strength (𝑡𝑙𝑜𝑐) 
1.33 MPa 

Apparent tensile 

strength (𝑡𝑎𝑝) 
1.58 MPa 

Reproduce 

symmetrical 

elastic behaviour 

in tension and 

compression 

- Initial gap (𝑔𝑖
𝑙𝑜𝑐) 

40%  

of the ball 

radius 

Reproduce symmetrical 

elastic behaviour in 

tension and compression 

Achieved 
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IV.3.2. Uniaxial tensile test simulation with  

non-randomised (uniform) strength of bonds 

As described in the previous section, the calibration algorithm for a perfect brittle 

linear elastic material was used in order to achieve apparent Young’s modulus (𝐸𝑎𝑝), 

apparent Poisson’s ratio (νap) and apparent direct tensile strength (𝑡𝑎𝑝) of the material. It 

should be emphasised that at this stage, the 𝑡𝑙𝑜𝑐 has a uniform value of 1.33 MPa for all 

FJM bonds. Then, by using these FJM input parameters, a uniaxial tensile test was 

simulated and compared to the experimental Alumina Spinel results in Fig. IV-5.  

 

Fig. IV-5. Uniaxial tensile tests: preliminary perfect brittle linear elastic calibration result 

vs experimental results on Alumina Spinel brick. 

As shown in Fig. IV-5, this preliminary calibration step leads to a perfectly brittle 

elastic behaviour that successfully targets the right value of the macroscopic failure 

strength (1.58 MPa). At the very beginning of the stress-strain curve, the simulated curve 

tangent the experimental one, which means that the initial Young’s modulus value was 

successfully calibrated. On the other hand, the simulation is not showing any quasi-brittle 

behaviour, as expected, since no parameter was introduced into the model for that 

purpose. At this stage, the simulation simply exhibits an abrupt failure that is not in line 

with the real material behaviour. Therefore, it is necessary to introduce the Weibull 

distribution in order to model such non-linear behaviour quantitatively. In the following 

parts, a dedicated quantitative calibration procedure will be proposed and explained step 

by step.  



Chapter IV:Modelling the non-linear behaviour of materials under tensile loadings by Weibull 

distribution of strength at the mesoscale: Numerical approach for simulating non-linear quasi-

brittle behaviour with DEM 

 

113 

 

IV.3.3. Introduction of a Weibull distribution within bond strengths 

As a reminder of section I.2.4, by using Weibull distribution, the probability of failure 

for a solid material under a tensile load Pf (σ) is given as (Weibull 1951): 

 
𝑃𝑓(𝜎) = 1 − 𝑒

−(
𝜎
𝜎0

)
𝑚

  Eq. IV-1 

where σ, m and σ0 are the tensile stress (MPa), the Weibull modulus, and the scaling 

parameter, respectively.  

The Weibull statistical distribution is commonly used as a macroscopic concept to 

describe the occurrence of random defects within a 3D solid sample, which could cause 

a variation in the macroscopic tensile strength of different specimens for a given material. 

As a material parameter, the Weibull modulus (m) could be experimentally obtained from 

different mechanical tests (such as uniaxial tensile test or 3-point bending test) conducted 

on the same sample geometries.  

In the present study, this concept is used in the context of refractory ceramics under 

tension by varying the local bond tensile strength (𝑡𝑙𝑜𝑐) of the Flat Joint contact Model 

(as described in section II.4). Hence, it is proposed to reproduce the microscopic defects 

(coming from CTE mismatch during cooling after sintering) within the DEM numerical 

sample by randomisation of the local bond tensile strength (𝑡𝑙𝑜𝑐) values. In such 

perspective, the Weibull distribution law is chosen here to randomly set 𝑡𝑙𝑜𝑐 values, 

following Eq. IV-1, where σ corresponds thus to local bond tensile strength values (𝑡𝑙𝑜𝑐). 

Moreover, the scaling parameter 𝜎0 for these local tensile strengths is set, at this stage, to 

the 𝑡𝑙𝑜𝑐 value previously determined without any Weibull distribution (corresponding in 

fact to m = ∞ and thus will be noted later as 𝜎𝑚=∞
0  = 𝑡𝑚=∞

𝑙𝑜𝑐 ). In this way, the impact of 

this local randomisation will be investigated on the macroscopic non-linear behaviour of 

the Alumina Spinel refractory under tensile loadings. In reality, this non-linear effect 

comes from defects originated by thermal expansion mismatch between constituents 

within the microstructure.  

IV.3.4. Influence of Weibull distribution on the mechanical behaviour 

and microcracking process during loading 

The impact of applying randomisation on the local bond tensile strength (𝑡𝑙𝑜𝑐) is 

studied on Alumina Spinel brick as the reference material. As mentioned, Alumina Spinel 

exhibits a quasi-brittle behaviour with an apparent tensile strength of 1.57 MPa, which 

corresponds to the 𝑡𝑚=∞
𝑙𝑜𝑐  value of 1.33 MPa in the case of a uniform value. It is worth 

mentioning that this case (a uniform value) corresponds to an infinite Weibull modulus  

(m = ∞). This value of 1.33 MPa is used as the scaling parameter (𝜎𝑚=∞
0 ), in the Weibull 

equation (Eq. IV-1). It should be noted that, contrary to the normal distribution, the 

Weibull distribution is not a symmetrical statistical distribution. Hence, the scaling 

parameter (classically named 𝜎0) of Weibull distribution does not correspond to the mean 

value. Indeed, this point is one of the interests of choosing Weibull distribution for this 

study. Because, by using Weibull distribution, it is possible to distribute much smaller 

values asymmetrically to the scaling parameter by only decreasing the Weibull modulus. 
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This point will facilitate establishing a relationship between m and the non-linear 

behaviour in order to calibrate the quasi-brittleness of the referenced Alumina Spinel 

refractory (see section IV.4.2). 

To highlight the impact of Weibull modulus m on the behaviour, three different values 

of m were tested: 1.75, 5 and infinite. The Weibull distribution and its relative parameters 

were introduced to the initial numerical sample using the NumPy8 Python library. By 

keeping the scaling parameter constant (𝑡𝑚=∞
𝑙𝑜𝑐  = 1.33 MPa), the 𝑡𝑙𝑜𝑐 distributions for the 

different considered Weibull modulus (m = 1.75, 5 and infinite) are shown in the upper 

part of Fig. IV-6. In addition, the 3D distribution of  𝑡𝑙𝑜𝑐 value within the numerical 

sample is shown in the lower part of Fig. IV-6. 

 

Fig. IV-6. Weibull distribution curves and related 3D distributions  

of  𝑡𝑙𝑜𝑐 value within the numerical specimens: 

 (a) m = ∞, (b) m = 5 and (c) m = 1.75.  

In order to verify the  𝑡𝑙𝑜𝑐 distribution implemented in the model, they are represented 

as histograms on the top part of Fig. IV-6. It worth mentioning that these histogram bars 

are fitting well to the theoretical curve of Weibull distributions which are plotted by solid 

orange lines.  

The bottom part of Fig. IV-6 is showing the distributions of  𝑡𝑙𝑜𝑐 in the 3D samples. 

The bonds in the sample with a uniform value of 1.33 MPa for the 𝑡𝑙𝑜𝑐 (m = ∞) are shown 

in cream white (a), while the bonds in the sample with low Weibull modulus  

(m = 1.75) are in scaled colours, based on their differences from 1.33 MPa value (c). Case 

(b) simply corresponds to an intermediate case where m = 5. 

These samples were submitted to a uniaxial tensile test in order to study the influence 

of Weibull modulus on the stress-strain curve. The results, which include more cases for 

Weibull modulus, are shown in Fig. IV-7 (a). This figure shows that using Weibull 

distribution to randomise 𝑡𝑙𝑜𝑐 had a strong influence on the mechanical behaviour of the 

 
8 https://numpy.org/ 

https://numpy.org/
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numerical samples. Low values of Weibull modulus (m) promotes non-linearity in the 

behaviour of the sample during tension. During the progressive loading of the samples, 

the weakened bonds created by the randomisation process breaks earlier than the stronger 

ones, as expected. These weaker bonds can be considered as micro defects. While 

decreasing Weibull modulus (m), it increases the number of these micro defects that 

induces a progressive decrease in the apparent rigidity during loading (non-linear 

mechanical response). In addition to the stress-strain curves (Fig. IV-7 (a)), the number 

of detached FJM elements (see section II.4), which is related to microcracks, is shown in 

Fig. IV-7 (b) for different m values. It highlights that by decreasing m: 

(a)  the microcracking process starts for lower strains; 

(b)  the complete failure is achieved with a higher number of microcracks.  

 

Fig. IV-7. Influence of different Weibull modulus values on uniaxial tensile tests:  

(a) stress-strain curves and (b) microcracks number. 
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It could be noticed that a significant change in the apparent mechanical response and 

in the progression of microcracking can be observed for the lowest m value (m = 1.75). 

Even if no explanation can be given at this stage of the study, it probably indicates that it 

could be interesting to investigate further this range of low values of Weibull modulus 

(𝑚 = [0.5, 2]). This point could be particularly important because the fracture energy 

(surface below the green curve of m = 1.75 in Fig. IV-7 (a)) seems to become larger. 

Fig. IV-8 shows the position of microcracks within the numerical sample during these 

direct tensile tests for three different Weibull moduli (m = ∞, 5 and 1.75) at the same 

loading state corresponding to 40% of maximal stress after each peak (post-peak region). 

Note that for plotting these figures, the complete detachment of an FJM contact is 

considered as one microcrack (shown in yellow). It means that all the 16 FJM sub-surface 

elements have been broken (as explained in section II.4). On these figures, the red dashed 

areas show the macroscopic failures which come from the localisation of diffuse 

microcracks. The sample with a uniform value of 1.33 MPa for the 𝑡𝑙𝑜𝑐 distribution 

(where m = ∞, (a)) is showing a single fracture, which leads to an abrupt failure of the 

sample. While, the sample with low Weibull modulus (m = 1.75, (c)) is showing diffuse 

microcracking, which result in a quasi-brittle behaviour. Hence, lowering the Weibull 

modulus (m) promotes non-linear mechanical behaviour by increasing the occurrence of 

diffuse microcracks. 

 

Fig. IV-8. FJM cracks in uniaxial tensile tests for different Weibull modulus: 

(a) m = ∞ (uniform value), (b) m = 5 and (c) m = 1.75. 

This fracturing process is quite similar to the phenomena that explain the quasi-brittle 

behaviour of certain refractory materials (Khlifi 2019). In addition to the influence on 

non-linear mechanical behaviour, the Weibull modulus also has a strong influence on the 

ultimate apparent tensile strength (as shown in Fig. IV-7 (a)). By decreasing m, the 

ultimate apparent tensile strength decreases. Considering these points, in order to achieve 

quantitative simulations of the non-linear behaviour of such real material, a robust 

calibration method is proposed in the next section. 
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IV.4. Quantitative modelling of non-linear  

quasi- brittle behaviour  

As discussed in the previous section, the proposed numerical technique has shown the 

ability to qualitatively introduce non-linear behaviour to DEM by using Weibull 

distribution over the 𝑡𝑙𝑜𝑐 values. Although in literature, the Weibull distribution has been 

used to model damaged materials (Zhou et al. 2020) (Liu et al. 2015) (Li et al. 2012), 

there is no well-defined calibration procedure for tensile configuration. In order to achieve 

quantitative results, a new calibration process for reproducing the non-linear behaviour 

of refractories is proposed in the following sections. 

IV.4.1. Quantifying experimental non-linear behaviour 

The first step to calibrate the Alumina Spinel reference material is to quantify its non-

linear behaviour. In this regard, the secant modulus (Es
ap

) at the peak have been used, 

which corresponds to the slope between the origin and the stress-strain curve for 

maximum stress, described as follows:  

 𝐸𝑠
𝑎𝑝

 = 
𝜎𝑃𝑒𝑎𝑘

𝜀𝑃𝑒𝑎𝑘 
 Eq. IV-2 

 

where, 𝜎𝑃𝑒𝑎𝑘 and 𝜀𝑃𝑒𝑎𝑘 are the stress and strain at the peak of the curve, respectively. 

In fact, using the secant modulus for non-linear materials, such as soils, especially 

under cyclic tests, is common in the field of civil engineering for characterising and 

predicting the behaviour of such materials (Briaud 2001).  

By calculating this secant modulus (Es
ap

) and having the initial Young’s modulus 

(E𝑖
ap

), which has been measured at the early stages of loading, it is possible to quantify 

Young’s modulus decreasing rate. These two parameters were calculated for Alumina 

Spinel reference material, as shown in Fig. IV-9. 
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Fig. IV-9. Quantification of Alumina Spinel non-linear behaviour through  

initial Young’s modulus 𝐸𝑖
𝑎𝑝

and secant modulus 𝐸𝑠
𝑎𝑝

. 

As shown in Fig. IV-9, the initial Young’s modulus 𝐸𝑖
𝑎𝑝

is 10.37 GPa. After subjecting 

to six cycles of tensile loadings, the secant modulus 𝐸𝑠
𝑎𝑝

 of the peak was measured equal 

to 6.47 GPa. Instead of using absolute values, normalised values of the decreasing 

Young’s modulus rate are used to be more general and case-independent. Hence, this 

Young’s modulus normalised decreasing rate 𝐸𝑟
𝑎𝑝

 is defined as: 

 
𝐸𝑟

𝑎𝑝
 =  

𝐸𝑠
𝑎𝑝

𝐸𝑖
𝑎𝑝 

Eq. IV-3 

 

In the case of Alumina Spinel brick, this normalised decreasing rate 𝐸𝑟
𝑎𝑝

 was 62.4%. 

From this experimental rate, the way to mimic this decrease quantitatively in DEM will 

be explained in the next section. 

IV.4.2. Mimicking the apparent non-linear behaviour 

As already presented in Fig. IV-7 (a), the Weibull modulus (m) has a strong influence 

on the non-linear behaviour in tension. In order to go a step further, it could be valuable 

to find a reliable relationship between m and this non-linear behaviour through the secant 

modulus, as defined in the previous section. In this regard, eight uniaxial tensile test 

simulations on a cubic sample (as explained in section IV.3.1) with different values of 

Weibull modulus (m = 1, 2, 3, 5, 7, 10, 20, 30) have been performed. Therefore, all initial 

elastic parameters (Young’s modulus and Poisson’s ratio) for these series of simulations 
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were kept constant. Again, to remain independent from initial elastic values, the results 

were normalised and plotted in Fig. IV-10. 

 

Fig. IV-10. Evolution of Young’s modulus normalised decreasing rate (𝐸𝑟
𝑎𝑝

) vs 

Weibull modulus (m). 

For a better understanding of this curve (Fig. IV-10), 𝐸𝑟
𝑎𝑝

 value close to 100% means 

that the numerical sample exhibits very limited damage before its complete rupture. On 

the opposite, 𝐸𝑟
𝑎𝑝

 value very far from 100% (e.g. 35%) indicates that a large quantity of 

damage occurs within the numerical sample before its complete rupture (in the pre-peak 

region).  

Thus, for the infinite value of m, very limited damage is observed, and the final rupture 

takes place in a brittle way. This brittle behaviour remains rather similar by lowering m 

down to m = 8. For further decrease of m, a larger quantity of damage can be observed 

before the final rupture, which becomes, in these cases, quasi-brittle. From this curve, 

which can be used as a calibration chart, it becomes very easy to set the m value  

(m ≅ 1.78) in accordance with the targeted value of 𝐸𝑟
𝑎𝑝

 (𝐸𝑟
𝑎𝑝

 = 62.4%) in the case of 

Alumina Spinel reference material. In such a way, as shown in Fig. IV-11, the result of 

the simulation for this value of m (m = 1.78) perfectly fit the experimental results for both 

initial Young’s modulus 𝐸𝑖
𝑎𝑝

 and peak secant modulus 𝐸𝑠
𝑎𝑝

. Of course, at this stage, the 

ultimate tensile strength still needs to be adjusted. Therefore, the model should go through 

another step of calibration to reproduce the same ultimate apparent tensile strength of the 

Alumina Spinel reference material. 
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Fig. IV-11. Uniaxial tensile test simulation for m = 1.78 compared to  

Alumina Spinel reference material. 

IV.4.3. Calibrating ultimate apparent tensile strength 

In Fig. IV-11, it was shown that despite the accordance of the non-linear behaviour, 

the ultimate apparent tensile strength of the simulation was not equal to the experimental 

result. The reason is that considering Fig. IV-7 (a), decreasing the Weibull modulus m 

will decrease, at the same time, the ultimate apparent tensile strength (𝑡𝑎𝑝) of the 

numerical model. To quantify the impact of m on 𝑡𝑎𝑝, eight uniaxial tensile test 

simulations on a cubic sample, with different values of Weibull modulus (m = 1, 2, 3, 5, 

7, 10, 20, 30), have been performed and plotted in Fig. IV-12 (a). Instead of using 

absolute values of 𝑡𝑎𝑝, the normalised ultimate strength values (𝑡𝑟
𝑎𝑝

) have been again 

preferred, which is defined as follows: 

 
𝑡𝑟

𝑎𝑝
 =  

𝑡𝑎𝑝

𝑡𝑚=∞
𝑎𝑝  

Eq. IV-4 

where 𝑡𝑎𝑝 correspond to the apparent tensile strength for a given value of m and 𝑡𝑚=∞
𝑎𝑝

 

correspond to the apparent tensile strength in the case of m = ∞. 
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Fig. IV-12. Procedure to calibrate the apparent tensile strength:  

(a) decrease in ultimate apparent tensile strength 𝑡𝑟
𝑎𝑝

 coming from the decrease in 

Weibull modulus m value and (b) correction factor 𝐶𝑓 to be thus applied to the scaling 

parameter initially set to 𝜎𝑚=∞
0  = 𝑡𝑚=∞

𝑙𝑜𝑐  in order to keep finally the same  

apparent tensile strength 𝑡𝑚=∞
𝑎𝑝

. 

From Fig. IV-12 (a), it is obvious that large values of m (higher than 25) do not 

influence the apparent tensile strength significantly. On the other hand, for low values of 

m (lower than 5), a strong decrease in apparent tensile strength can be observed (more 

than 50% for m = 1). 

Therefore, globally, a decrease in m allows in one hand to generate a non-linear 

behaviour in the stress-strain curve (main initial target developed in the previous section), 

but on the other hand, it also leads to a strong decrease in the apparent tensile strength 

value (not the desired target). Thus, this decrease in apparent tensile strength should be 

compensated by an increase in the scaling parameter of the Weibull formulation. In this 

way, the inverse of 𝑡𝑟
𝑎𝑝

 has been plotted in Fig. IV-12 (b) in order to obtain a pertinent 

correction factor 𝐶𝑓 that need to be applied to the scaling parameter of the Weibull 

formulation initially set to 𝜎𝑚=∞
0  = 𝑡𝑚=∞

𝑙𝑜𝑐 . The objective here is to recover the same 

apparent tensile strength as 𝑡𝑚=∞
𝑎𝑝  by applying the following scaling parameter: 

 𝜎𝑚
0 =  𝐶𝑓  × 𝑡𝑚=∞

𝑙𝑜𝑐  Eq. IV-5 

 

In the present case of Alumina Spinel reference material, for which m = 1.78,  

Fig. IV-12 (b) allows to estimate this correction factor to 174% leading to a scaling 

parameter (𝜎𝑚
0 ) of 2.3 MPa. In order to validate the proposed approach, the numerical 

results obtained by the calibrated parameters have been compared to the real experimental 

results for Alumina Spinel brick in Fig. IV-13. 
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Fig. IV-13. Comparison of DEM simulation using proposed non-linear calibrated 

parameters to Alumina Spinel brick experimental result. 

Concerning Fig. IV-13, after calibrating the non-linear behaviour, the simulation 

shows a really good qualitative and quantitative accordance with the pushovers of the 

experimental results of Alumina Spinel brick. The stress-strain curve of the simulation 

starts with the same initial Young’s modulus. Afterwards, it promotes non-linear 

behaviour, following the pushovers of the cyclic loadings of the experimental curves. 

Then, it fails at the same ultimate tensile strength as the real material, and in the end, it 

potentially predicts a reasonable post-peak failure behaviour of the material. 

Overall, it can be said that the proposed procedure for calibrating the DEM model to 

reproduce the non-linear behaviour of the quasi-brittle materials is validated by 

comparing it to the real experimental results. This procedure has been summarised in the 

next section. 

IV.4.4. Proposed meta-algorithm for non-linear behaviour calibration 

The summary of the proposed calibration process for non-linear behaviour is shown 

in the following meta-algorithm (Fig. IV-14). In this meta-algorithm, additional steps are 

added to the initial calibration process for linear brittle behaviour (see section II.4.4) in 

order to achieve non-linear quasi-brittle behaviour. These additional steps can be 

summarised as:  

(a) implementing the Weibull distribution law in the DEM model; 

(b) producing Young’s modulus normalised decreasing rate (𝐸𝑟
𝑎𝑝

) vs Weibull 

modulus (m) chart; 

(c) producing the normalised ultimate strength decreasing rate (𝑡𝑟
𝑎𝑝

) vs Weibull 

modulus (m) chart. 
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Fig. IV-14. Proposed meta-algorithm for calibration of non-linear behaviour  

in DEM models 

The proposed calibration process is here independent of initial elastic brittle 

properties (Young’s modulus, Poisson’s ratio and apparent tensile strength) thanks to the 

normalisation of these parameters. Hence, if a similar DEM model is used (FJM model 

with Weibull distribution), the proposed charts (Fig. IV-10 and Fig. IV-12) can be used 

as references to calibrate both m and 𝜎𝑚
0  parameters which define the Weibull distribution 
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law. In the case of other DEM models, these charts must be re-computed, and the same 

meta-algorithm can be applied to simulate quantitatively non-linear quasi-brittle 

behaviour with DEM. Thus, this meta-algorithm could be potentially applied to other 

DEM bond models with other distribution laws of bond strength. 

IV.5. Influence of cyclic loadings on non-linearity  

In this section, the simulation of cyclic loadings will be reviewed. Firstly, the 

non-linear stress-strain curve during cyclic loading will be presented. Then the 

microcracking and elastic properties evolution during cyclic loading will be investigated. 

At the end of this section, the cyclic and monotonic uniaxial tensile test simulations will 

be compared. 

IV.5.1. Modelling non-linear stress-strain curve during cyclic loading  

For verification of the proposed DEM model accuracy, cyclic tensile loading tests are 

simulated with the same conditions, as explained in section IV.3.1. To fit the 

experimental curve (Fig. IV-3), five uniaxial tensile cycles were simulated, which target 

the experimental cyclic peaks at 0.8 MPa, 1.1 MPa, 1.3 MPa, 1.4 MPa and 1.6 MPa 

(where material failed at 1.57 MPa). In this regard, a series of stress-controlled cyclic 

tests were done by targeting these five experimental stress peaks. In this simulation, the 

vertical stresses were gradually applied until it reaches each targeted peak thanks to 

displacement-driven conditions. After reaching the targeted peak, the displacement 

directions were inversed to decrease the stress down to the relaxing state equivalent to 

zero stress. These steps were repeated for each loading cycles up to the failure point. The 

result of this simulation is quantitatively compared to the experimental test in Fig. IV-15. 

 

Fig. IV-15. Comparison of stress-strain curve for cyclic tensile loading:  

DEM simulation vs experimental Alumina Spinel results 
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By comparing the simulation results and the experimental curve in Fig. IV-15, it can 

be observed that the simulation is able to model the progressive decrease of rigidity after 

each cycle. The overall mechanical behaviour of simulated material and peak of each 

cycle are quantitatively close to the real material behaviour. This approach could also 

precisely model the failure peak (+ 0.9% error) of the material after undergoing five 

cycles. The post-failure behaviour of the material is also modelled reasonably. 

On the other hand, the residual strain after each unloading cannot be modelled by this 

approach. In reality, for Alumina Spinel material, these residual strains are due to internal 

stress relaxations, which happen during microcrack extensions. These internal stresses 

are coming from the cooling phase (after sintering the material), and they are due to the 

CTE mismatch between the different constituents of the material (see section I.1.2). At 

this stage, the proposed DEM model is not able to simulate these internal stresses coming 

from CTE mismatch and, consequently, the related apparent residual strains. This 

limitation is because, up to now, the FJM is not capable of modelling mechanical 

interactions and temperature variation simultaneously (as mentioned in section IV.1). 

Considering the ongoing development of FJM, this limitation could be solved soon.  

The other reason for not mimicking such residual strains could be the perfect fracture 

closure in the numerical model. This means that after creating a fracture surface during 

the loading stage, the fracture will close perfectly during unloading without exhibiting 

any surface mismatch. To simulate a certain level of surface mismatch, an additional 

artificial gap could potentially be introduced. However, this potential solution was not 

investigated as a part of this PhD. 

IV.5.2. Microcracking and elastic properties evolution  

during cyclic loading 

To investigate further this cyclic simulation, the stress, the microcracks number and 

the elastic properties evolutions are plotted versus the simulation time in Fig. IV-16. To 

analyse a given cycle, all four plots and the corresponded pictures that show the 

positioning of cracks should be considered. 

Each given cycle starts with a progressive increase of the uniaxial tensile stress up to 

the targeted peak stress. This progressive increase can be described in two stages:  

(I) from starting point up to the previous cycle stress peak value corresponding to 

points a, b, c, and d. 

(II) from previous cycle stress peak value to the targeted peak corresponding to points 

2, 3, 4 and 5. 

It is worth mentioning that during stage (I), the number of cracks, apparent Young’s 

modulus and Poisson’s ratio are constant. While during stage (II), new microcracks are 

formed, which lead to a non-reversible linear decrease of the apparent Young’s modulus. 

Besides, the slopes of microcrack number (versus time) during the (II) stages are quite 

similar. It means that the microcracking forming rate is relatively constant. This point is 

due to the constant displacement rate, which is applied for loading the sample. 

After reaching the targeted stress peak, the loading direction is inverted, and the stress 

decreases to the relaxation state (zero stress). Despite a numerical artefact in elastic 

properties measurements (which is due to very low values of strain at this point of the 
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curve), the number of microcracks, apparent Young’s modulus and Poisson’s ratio are 

quite constant during this stage (I).  

For the last cycle, the targeted stress peak was 1.6 MPa, but the sample failed at 

1.58 MPa (point 5 to 6) with a sudden drop in the stress. During the failure, the number 

of microcracks suddenly increases with a slope higher than the observed ones during the 

previous stages (II). The rising of microcracks number in a short time results in a sharper 

decrease in apparent Young’s modulus.  

Finally, in the post-failure part (point 6 to the end of the simulation), the stress tends 

to zero. During this stage, the microcrack forming rate decreases, and the number of 

microcracks tends to be constant because the complete failure happens. In this part, the 

apparent Young’s modulus and the apparent Poisson’s ratio turns to zero.  

To get a qualitative visualisation of the microcracking process, pictures of the sample 

with highlighted cracks are shown for each cycle peak on the top of the figure. These 

pictures highlight the progression of microcracks for each cycle due to the imposed 

increasing stress after each cycle. In the last cycle, these microcracks merge into a 

macroscopic fracture (shown in the red dashed area), leading to the complete failure of 

the sample. This numerical result is in perfect accordance with the localisation 

phenomenon, which typically is observed experimentally. As expected, this increase of 

microcracks leads to a progressive decrease in apparent Young’s modulus. Also, a 

noticeable decrease in Poisson’s ratio is observed (from 0.16 to 0.13). In fact, this 

observation is also in accordance with experimental measurements, which in many cases 

indicate a low value of Poisson’s ratio for highly damaged materials. Overall, these 

different points highlight the pertinence of the proposed model compared to physical 

phenomena observed experimentally in quasi-brittle materials. 
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Fig. IV-16. Evolution of stress, microcracks number, apparent Young’s modulus and 

Poisson’s ratio during the cyclic uniaxial test DEM simulation.  
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As introduced in section IV.2, the number of microcracks in simulation could 

qualitatively be associated with acoustic emission events. To verify this point, the 

presented simulation is qualitatively compared to experimental observations from (Yuan 

et al. 2018) of a cyclic tensile test on a quasi-brittle material (marble rock) in Fig. IV-17. 

 

Fig. IV-17. Cyclic tensile loadings: (a) experimental observation of  

stress and acoustic emissions on marble (Yuan et al. 2018) and  

(b) simulation of stress and microcracks number on Alumina Spinel brick. 

In experimental results, Fig. IV-17 (a), the drawn KE points refer to Kaiser Effect 

acoustic emission points. The Kaiser effect is defined as the absence of detectable 

acoustic emissions until the previous stress peak in a cyclic mechanical test was reached 

(Kaiser 1950). In fact, the Kaiser acoustic effect in tensile cyclic loading indicates damage 

accumulation in material under tensile stress (Yuan et al. 2018) and can be used as another 

verification parameter for the proposed numerical approach. 

It can be observed that the evolution of the number of microcracks in this simulation 

qualitatively resembles the experimental acoustic emission events of a similar 

experimental test. Moreover, the experimental Kaiser Effect (KE) points (in Fig. IV-17 

(a)) are qualitatively reproduced in the simulation during the forming microcrack stages 

(as introduced as stage (II)), which is corresponding to the points a, b, c and d in Fig. 

IV-17 (b).  

IV.5.3. Comparison of cyclic and monotonic uniaxial tensile tests 

In order to verify the absence of energy loss in the simulation, potentially due to 

friction during unloading, the cyclic and monotonic uniaxial tensile tests are compared in 

Fig. IV-18. It should be mention that these simulations have been done on the same 

numerical sample with the same input parameters. As can be seen here, the stress-strain 

curve of the monotonic test is following the cyclic simulation. The potential reason for 

this match is the absence of stress relaxation and energy loss in the system. In this way, 

the cycles will not dissipate more energy in comparison to a monotonic test. This point is 

confirmed by having the same way of increase in microcracks number. 
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Fig. IV-18. Cyclic and monotonic uniaxial tensile stress-strain curve and  

the associated evolution of microcracks number. 

The previous comparison demonstrates the high potential of DEM numerical models 

in simulating the acoustic emission events and their evolution. This point could strongly 

facilitate the interpretation of experimental acoustic emissions results and even, in the 

future, help to identify the type of defect associated with a given type of event recorded 

during mechanical tests. 

IV.6. Conclusions 

In this chapter, a qualitative and quantitative DEM approach was proposed to model 

the non-linear quasi-brittle behaviour of a continuum media by introducing in the bond 

strength distribution a randomisation process that follows a Weibull distribution. This 

proposed approach is able to take into account simultaneous microcrack initiations and 

propagations. Modelling these multi fracturing processes is of a high degree of interest 

for simulating refractories because such materials involve a high amount of microcracks 

which are induced by thermal expansion mismatches between constituents. This 

fracturing process and microcracking simulations are among the key interests of using 

DEM in such a case compared to FEM.  

In this study, the experimental reference material was Alumina Spinel brick which 

promotes a typical quasi-brittle behaviour highlighted by a strong non-linear response. 

To achieve this typical non-linear response, the proposed DEM approach involves a 

customised calibration process in two steps:  
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1. a preliminary calibration step capable of reproducing a linear elastic brittle 

behaviour without considering any randomisation of bond strength and,  

2. a complementary calibration step capable to quantitatively reproduce a non-

linear quasi-brittle behaviour by introducing bond strength randomisation, 

which follows an adjusted Weibull distribution.  

For the linear part, the calibration of the FJM input parameter was done for a perfect 

linear elastic brittle material (section IV.3.1). This calibration process led to a perfect 

brittle linear behaviour, reproducing the initial elastic behaviour of the real material. For 

the non-linear part, a randomisation process of bond strengths was introduced following 

a Weibull distribution. Depending on the assigned Weibull modulus (m), this 

randomisation process influenced the apparent mechanical behaviour resulting from the 

microcracking process within the simulated material. As investigated in section IV.3.3, 

by decreasing Weibull modulus (m), the microcracking process would increase, and 

consequently, it induced higher mechanical non-linearities and a lower apparent tensile 

strength. To achieve quantitative simulations, the secant modulus at the peak was 

introduced as the parameter able to quantify the experimental non-linear behaviour. 

Thanks to this parameter, it was possible to find a relationship between quasi-brittle 

behaviour and the Weibull modulus (m). In addition, a relationship between apparent 

tensile strength and the Weibull modulus (m) was defined. By having these two 

relationships, it was possible to propose a quantitative calibration process to model a 

targeted non-linear behaviour. To make this non-linear calibration method more general 

and applicable for other DEM contact models, a meta-algorithm was proposed in section 

IV.4.4.  

In the last part, a cyclic tensile test was investigated on the reference Alumina Spinel 

material. In this way, a numerical sample was calibrated by the proposed approach. 

Results of simulation applied on this numerical sample was compared to experimental 

observations. The related simulation was designed to reproduce the cyclic loading of the 

experimental one. The obtained result matched quantitatively to the experimental 

Alumina Spinel curve, as shown in section IV.5. Afterwards, to investigate further the 

obtained numerical results, the microcrack and elastic properties were monitored. A 

qualitative comparison with acoustic emissions measurements shown that the simulation 

was able to reproduce the experimental Kaiser effect. 

Overall, the proposed procedure for calibrating the DEM model to reproduce the non-

linear behaviour of the quasi-brittle materials is validated by comparing it to real 

experimental data. The proposed numerical algorithm could be potentially applied to 

other DEM bond models and other bond strength distribution laws. Also, this approach 

can potentially be used to tune the brittleness of material by promoting crack branching 

processes and diffused damage creation. Therefore, in the next chapter, this approach is 

applied to the Wedge Splitting Test, which is commonly used to quantify the brittleness 

of refractories, to verify this last point.  
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Chapter V: Towards mimicking microstructural 

aspects that enhance fracture toughness of refractory 

material - Application to Wedge Splitting Test (WST) 
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V.1. Introduction 

The key interest of DEM application in the refractory field is its ability to improve, in 

future, the microstructure design of heterogeneous materials for higher thermal shock 

resistance (linked to fracture toughness). In this way, as mentioned in section I.2.3, the 

widely used mechanical test used for mechanical fracture studies is the Wedge Splitting 

Test (WST). The principle of this test is to open a notch by a wedge in a displacement-

driven condition able to produce a stable fracture propagation. This test gives more 

information about fracture energy and brittleness number of the material. Hence, WST 

results could be an index for characterising the quasi-brittle behaviour of refractories. In 

fact, this quasi-brittle behaviour is closely linked to the presence of pre-existing 

microcracks and their ability to promote crack branching. 

This chapter aims to verify the ability of the proposed numerical approach (introduced 

in Chapter IV:) to reproduce key phenomena such as crack branching and diffused 

damage creation during WST. In this way, two model materials will be used as a 

reference: a highly brittle refractory and a quasi-brittle refractory with a strong 

mechanical non-linearity.  

In addition, dedicated Digital Image Correlation (DIC) measurements, able to 

highlight macroscopic cracks, will be used as references in order to compare the crack 

paths given by DEM simulations. Also, the impact of implementing the proposed 

numerical model (using Weibull modulus to randomise local tensile strengths) will be 

investigated. In the end, a discrete-continuous hybrid model will be proposed to optimise 

the WST simulations in order to save computational time and calculations resources. 

Hence, a coupled model of discrete DEM with a continuous Finite Volume Model (FVM, 

introduced in section I.3.1.3) will be proposed. 

V.2. Description of the reference materials 

The purpose of this chapter is to study two typical fracture behaviour through two 

reference materials:  

• a pure Magnesia (MgO) material which exhibits a highly brittle behaviour;  

• a Magnesia Hercynite with 15% of large Hercynite aggregates (MH15), which 

exhibits a strong non-linear quasi-brittle behaviour.  

V.2.1. Microstructures description 

The two investigated materials have been chosen because they exhibit simplified 

microstructures that focus on fracturing behaviour. In this way, the experimental fracture 

behaviour of pure MgO and MH15 has been studied by Khlifi et al. (Khlifi 2019). The 

typical microstructures of these materials are shown in Fig. V-1. 
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Fig. V-1. SEM images of (a) pure MgO and (b) MH15 composite (Khlifi et al. 2019).  

Fig. V-1 (a) shows the microstructure of a pure MgO material, where large aggregates 

are Magnesia grains (M in the figure) are embedded in a pure MgO matrix (finer MgO 

grains). Fig. V-1 (b) shows the microstructure of MH15 material, where some large MgO 

aggregates are substituted by large Hercynite grains (H in the figure) within the same pure 

MgO matrix. Besides, as highlighted in the figure, after sintering and passing the cooling 

stage, the resulting microstructure of MH15 exhibits microcracks. These microcracks are 

formed due to thermal stresses coming from the CTE mismatch between the MgO matrix 

(αMgO (400−200 °C) = 13.2 × 10-6 𝐾−1) and Hercynite aggregates (αFeAl2O4 (400−200 °C) = 6.96 × 

10-6 𝐾−1) (Khlifi et al. 2019). This phenomenon has been explained in detail in section 

I.1.2. On the other hand, compared to MH15, pure MgO has no microcrack due to its 

monophase microstructure. As shown in Fig. V-2, this point is confirmed by the acoustic 

emissions recorded during the cooling stage of a thermal cycle (up to 1400 °C). In fact, 

this figure clearly shows that MH15 exhibit huge cumulated hits (up to 45000) during 

cooling in comparison with pure MgO (no acoustic emission). As an intermediate case, 

MH5 (with 5% of Hercynite aggregates) is simply between the two mentioned cases. It 

highlights the impact of the amount of Hercynite content on the microcracking process. 

 

Fig. V-2. Acoustic emission evolution vs temperature for pure MgO, MH5 and MH15 

 (Khlifi et al. 2019). 
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Considering the high amount of acoustic emissions event for MH15 during the 

cooling stage, it is expected that this material promotes a quasi-brittle mechanical 

behaviour with a strong mechanical non-linearity (this point has been discussed in section 

I.1). On the other side, pure MgO does not promote any acoustic emission activity. 

Consequently, a quasi-perfect brittle mechanical behaviour is expected. 

V.2.2. Force-displacement curves for Wedge Splitting Tests (WST)  

The fracturing behaviour of these two materials was investigated through Wedge 

Splitting Test (WST). As introduced in section I.2.3, the WST is used to measure fracture 

parameters such as the specific fracture energy (𝐺′𝑓) and brittleness number (B), 

introduced in Eq. I-15 and Eq. I-17, respectively. The force-displacement curves of WST 

for four materials, including pure MgO and MH15, is plotted in Fig. V-3. In addition to 

pure MgO and MH15, MH5 and MH25 are also plotted to highlight the evolution of 

brittleness. It worth mentioning that, even if MH15 is not the most ‘quasi-brittle’ one, this 

material was chosen as the reference because more experimental data were available. 

 

Fig. V-3. Force-displacement curves for Wedge Splitting Tests (WST) of  

pure MgO, MH5, MH15 and MH25 (Khlifi et al. 2019). 

As shown in Fig. V-3, the specific fracture energy (the area under the force-

displacement curve) of pure MgO is lower than MH15 and MH25. To quantify these 

results, the specific fracture energies and the brittleness numbers for these two 

experimental reference materials samples are discussed in the next chapter.  
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V.2.3. Fracture energy and brittleness number 

As highlighted in the previous chapter, qualitatively, the specific fracture energy of 

pure MgO is lower than MH15. To characterise the fracture behaviour of these two 

materials, the specific fracture energies and the brittleness numbers for these two 

experimental reference materials samples are shown in Table V-1. 

Table V-1. Experimental fracture parameters for two reference samples (Khlifi 2019) 

Reference material Specific fracture energy 

(J/m2) 

Brittleness number (-) 

pure MgO 130 0.77 

MH15 266 0.44 

 

These results highlight the difference in the brittle behaviour for these two model 

materials, from a highly brittle one to a quasi-brittle one. In addition to the force-

displacement curves, the fracture propagation evolution has been monitored with Digital 

Image Correlation (DIC). It allows to observe some interesting phenomena such as crack 

branching or crack bifurcation, which can be associated with force-displacement curves, 

which will be discussed in the next section. 

V.2.4. Crack paths monitoring during Wedge Splitting Test (WST) 

with Digital Image Correlation (DIC) 

Digital Image Correlation (DIC) allows the evaluation of the displacement fields all 

over the specimen surface. Additional post treating techniques could be managed to track 

fracture propagation. In this regard, the Two Parts-DIC (2P-DIC) method (Dupré et al. 

2017) was used to detect and visualise the crack propagations during WST. Before 

presenting the experimental results, which are taken from (Khlifi 2019), the crack length 

notion should be introduced. According to Khlifi et al. (Khlifi 2019), thanks to the 

calculated strain field by 2P-DIC, the crack length can be evaluated in two ways, as shown 

in Fig. V-4: 

• equivalent crack length, which is defined as a straight line going from the notch of 

the sample down to the lowest detectable position of crack; 

• cumulated damage length, which is defined as the sum of all detectable crack 

lengths during WST. 
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Fig. V-4. Two different crack length types measured by 2P-DIC: equivalent crack length 

and cumulated damage length (Khlifi 2019). 

After introducing these two crack length quantification methods, the fracture 

behaviour of the two referenced materials during WST was characterised to compare two 

typical fracturing process from quasi-perfect brittle pure MgO to quasi-brittle MH15. In 

this way, force and fracture energy evolutions versus displacement were plotted in Fig. 

V-5 (a) and Fig. V-6 (a). Besides, at each loading stage, crack propagations are visualised, 

thanks to 2P-DIC, as shown in Fig. V-5 (c) and Fig. V-6 (c). From these visualisations, 

the difference between the equivalent crack length and the cumulated damage length can 

be considered as a damage evolution in these two materials, as shown in Fig. V-5 (b) and 

Fig. V-6 (b). As can be seen, this difference in MH15 is much higher than pure MgO, 

showing the ability of MH15 to develop far more fracture surfaces, which induce more 

fracture energy, as shown in Fig. V-6 (a). This fact is confirmed by the observation of 

numerous crack branching in MH15 (as highlighted in Fig. V-6 (c)) compared to pure 

MgO. 
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Fig. V-5. Fracture characterisation of pure MgO: (a) force-displacement curve and 

evolution of fracture energy, (b) evolution of damage and (c) 2P-DIC images of crack 

propagation during a WST (Khlifi 2019). 
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Fig. V-6. Fracture characterisation of MH15: (a) force-displacement curve and evolution 

of fracture energy, (b) evolution of damage and (c) 2P-DIC images of crack propagation 

during a WST (Khlifi 2019). 

As reported in (Khlifi 2019), the other practical extraction of data from these results is 

to confront the fracture energy at each loading state of the WST to the corresponding 

equivalent crack length (here, as an example, the visual results for MH5 is shown in Fig. 

V-7). It aims to use this approach to evaluate the evolution of the crack propagation 

resistance of a material. Therefore, in Fig. V-7, the evolution of fracture energy as a 

function of equivalent crack length during WST is plotted.  

For better understanding, it should be noted that horizontal parts in the curves 

correspond to straight crack propagation, going down from the notch during WST, which 

is relatively the case for a pure MgO curve. On the other hand, in a quasi-brittle material, 

such as MH5, there is an increase in the fracture energy, which is linked to a certain crack 

branching process, as highlighted in Fig. V-7. In fact, such experimental data could later 

open an interesting way to validate the current qualitative simulations of crack branching 

in WST.  
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Fig. V-7. Evolution of equivalent fracture energy (Geq) vs equivalent crack length for 

MgO, MS5, MH5 and MSH5 with the 2P-DIC illustration of crack branching in MH5 

(Khlifi 2019). 

V.3. DEM simulation of Wedge Splitting Test (WST)  

In the present section, the numerical modelling has been managed in order to mimic 

WST experiments qualitatively. In this way, firstly, the numerical techniques to represent 
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the apparent non-linear behaviour of these two materials will be discussed. Then, the 

impact of this proposed model on the fracture energy and brittleness of the modelled 

numerical samples will be studied. At the end of this section, the DEM crack branching 

simulation results for these two materials will be compared to the experimental DIC 

observations. 

V.3.1. Setting local parameters to mimic microstructure aspects 

To qualitatively simulate the crack propagations for the two reference materials (MgO 

and MH15), the same numerical sample was used with two different local parameter sets:  

• a uniform value of 10 MPa for the local tensile strength (m = ∞) to exhibit the 

pure MgO brittle behaviour; 

• a Weibull distribution (m = 3 and 𝜎0 = 10 MPa) of the local tensile strength to 

exhibit the MH15 quasi-brittle behaviour. 

It should be mentioned that, in order to only focus on the impact of using Weibull 

distribution to randomise local tensile strength, all elastic and fracture input parameters 

were the same, as shown in Table V-2. The following section will describe the 

implementation of these local parameters in the WST simulation. 

Table V-2. FJM input parameters for WST 

Description 

Local 

Young’s 

modulus 

Local 

stiffness 

ratio 

Local 

tensile 

strength 

Local 

tensile 

strength 

Local 

cohesion 

Local 

friction 

angle 

Material both both MgO MH15 both both 

Type Elastic Elastic Fracture Fracture Fracture Fracture 

Abbreviation 𝐸∗𝑙𝑜𝑐 𝐾∗𝑙𝑜𝑐 𝑡𝑙𝑜𝑐 m 𝜎0 𝑐𝑙𝑜𝑐  𝜙𝑙𝑜𝑐 

Initial value 20 4 10 3 10 25 0 

Unit GPa - MPa - MPa MPa Degrees 

V.3.2. Force-displacement curves for Wedge Splitting Test (WST) 

After assigning the local parameters, the preliminary cubic sample is shaped as the 

experimental WST geometry (see Fig. I-8) by removing discrete elements which are 

located in the notch region. Besides, to mimic the WST loading wedge, two rigid walls 

were added and put in contact with discrete elements in the loading region, as shown in 

Fig. V-8. Opposite displacements with a constant rate were applied to these rigid walls 

in order to open the sample in mode I. To obtain the force-displacement curve, the 

resulting force on walls, which are coming from the mechanical response of the sample, 

is monitored. 
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Fig. V-8. Prepared DEM numerical sample for WST. 

By using this numerical procedure, the force-displacement curves can be plotted as 

shown in Fig. V-9. In agreement with the real experimental procedure, these curves are 

voluntary stopped when the force decrease down to 15% of the force peak value (to 

calculate the specific fracture energy numerically in a similar way to the experimental 

procedure). Surprisingly, it seems that decreasing the Weibull modulus (m) does not 

significantly change the apparent pre-peak behaviour and the maximum value of the 

force-displacement curve. On the other hand, the low Weibull modulus (m) seems to 

enlarge the post-peak part and reaches 15% of the curve for a higher displacement.  

Concerning the evolution of the number of cracks, the model with Weibull 

distribution (m = 3) shows that: 

• the cracking process starts for a lower displacement; 

• the total number of cracks at 15% of the peak is much higher. 

These points show that for the model with Weibull distribution (m = 3, representing 

MH15), more energy should be consumed to produce and propagate a higher number of 

microcracks. In fact, in the model using Weibull distributions, the enlarged post-peak area 

in the force-displacement curve is correlated to higher fracture energy (as mentioned in 

section I.2.3).  

It should be highlighted that the goal of this section was to verify the impact of 

decreasing the Weibull modulus (m) on increasing the fracture energy. Hence, as 

explained, by only changing m, it is not possible to calibrate the overall behaviour of these 

materials for WST simulation. It will need an additional step to calibrate the decreased 

peak failure, which is not investigated here.  
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Fig. V-9. Comparison of the force-displacement curves and cracks evolutions during 

numerical DEM simulation of WST for two different Weibull moduli (m =3 and ∞). 

Overall, the impact of decreasing m in increasing post-peak area is evident. It is 

showing that in WST, contrary to the uniaxial tensile test, most of the crack branching 

phenomenon occurs after the force-displacement peak. This increase in the post-peak area 

of WST, which corresponds to the total fracture energy, will be quantified in the next 

section. 

V.3.3. Fracture energy and brittleness number 

Based on the curves obtained for the WST simulation, a quantitative verification for 

fracture behaviours was considered. For this purpose, firstly, the area under the force-

displacement curve up to 15% of the peak was calculated, as described in Eq. I-15. The 

calculated total energy is then separated into two parts: the stored elastic energy and the 

actual fracture energy, which relates to the energy consumption for crack propagation as 

described in Fig. V-10. Hence, the fracture energy is obtained from the difference 

between the total energy and the elastic energy. In this way, the elastic and fracture 

energies evolution for the two numerical results were plotted in Fig. V-11. As can be seen, 

the fracture energy for the sample using Weibull distribution (m = 3, representing MH15) 

is significantly higher compared to the sample with uniform local tensile strength value 

(m = ∞, representing MgO).  
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Fig. V-10. Typical WST force-displacement curve and area under the curve 

corresponding to: (a) total energy and (b) dividing total energy into  

fracture (red) and stored elastic (green) energies (Khlifi 2019). 

 

Fig. V-11. Force-displacement curves combined with elastic and fracture energies 

evolution during numerical DEM simulation of WST for two different Weibull moduli: 

(a) representing MgO (m = ∞) and (b) representing MH15 (m = 3).  

It should be noted that absolutely no work has been managed to mimic the energy 

consumption during WST quantitatively. Nevertheless, the numerical fracture energy 

(120 J/m2, as reported in Table V-3) resulting from uniform local tensile strength value 

(m = ∞, representing MgO) is in rather good accordance with the experimental result on 

pure MgO (130 J/m2, as reported in Table V-1). Moreover, in the case of the sample with 

Weibull distribution of m = 3 (representing MH15), the numerical fracture energy (158 

J/m2, as reported in Table V-3) is higher than the MgO-like sample which is in line with 

experimental observation. However, this value compared to the experimental result on 

pure MH15 (266 J/m2, as reported in Table V-1) is not high enough. By the way, if the 

quantitative calibration is aimed, it is possible to achieve higher fracturing by reducing 

further the Weibull modulus, as shown in Chapter IV:.  

Table V-3. Calculated fracture parameters for two numerical samples (m = 3 and ∞) 

Representative experimental 

material 

Weibull modulus 

(m) 

Specific fracture 

energy (J/m2) 
Brittleness number (-) 

pure MgO ∞ 120 0.56 

MH15 3 158 0.38 
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Afterwards, the brittleness number was used as an indicator for the brittleness of 

refractories (Harmuth et al. 1997b). The obtained force-displacement diagrams (Fig. V-9) 

were used to calculate the brittleness number in this numerical study. 

As a reminder, the brittleness number (B) is a shape-independent and size-

independent index in order to characterise fracturing behaviour (Bazant et al. 1988) 

(Harmuth et al. 1997a). In this context, the Brittleness number (B) is proportional to 

energy stored elastically at crack initiation over total fracture energy: 

𝐵 ∝
𝑒𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑒𝑙𝑎𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑎𝑡 𝑐𝑟𝑎𝑐𝑘 𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛

𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑓𝑜𝑟 𝑡𝑜𝑡𝑎𝑙 𝑓𝑟𝑎𝑐𝑡𝑢𝑟𝑒
 =  

𝑊𝐸𝑙𝑎𝑠𝑡𝑖𝑐

𝑊𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒
 

Using this concept in combination with previously introduce Eq. I-17 will allow 

computing the brittleness number of numerical samples. The calculated specific fracture 

energies and the brittleness numbers for these two numerical samples was shown in  

Table V-3. These results confirm that using Weibull distributions for local tensile 

strength decreases the brittleness of the sample.  

Overall, random local strength distributions in DEM models, such as Weibull 

distributions, which were used in the present study, could be used to calibrate the amount 

of fracture energy and its related brittleness number. It should be emphasised that, at this 

stage, this section aimed only to verify the impact of using Weibull modulus for 

randomisation of the local tensile strength on the brittleness number of the material 

qualitatively. Therefore, this comparison has been made only between two numerical 

samples, one of them using Weibull modulus (m = 3) determined previously from the 

pre-peak shape of the experimental stress-strain curve in tension. Nevertheless, the work 

of fracture is more related to the post-peak shape of the experimental load-displacement 

curve in WST. Therefore, it could be better in future to refine the Weibull modulus from 

this experimental WST curve. This would most probably lead to assigning a lower value 

of m. 

V.3.4. Crack branching simulation confronted to DIC results 

In this section, the crack propagation simulations during the WST for the two 

investigated numerical samples is qualitatively compared to the pure MgO and MH15 

DIC experimental outputs in Fig. V-12. Note that for plotting these figures, the complete 

detachment of an FJM contact is considered as one crack (shown in yellow) on the surface 

of the sample. It means that all the 16 FJM sub-surface elements have been broken (as 

explained in section II.4). Thus, other bonds with partial detachments of these 16 FJM 

sub-surfaces are not plotted here.  
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Fig. V-12. Comparison of the crack paths from DEM simulation vs DIC outputs (in the 

red frame, zoom of D cases from Fig. V-5 and Fig. V-6):  

(a) case of pure MgO with a relatively straight crack path, and (b) case of MH15 with a 

deviated crack path. DIC results from Khlifi et al. (Khlifi et al. 2019) 

Regarding Fig. V-12 (a), at first glance, it shows that in the simulation of the pure 

MgO, the sample was broken with a relatively straight fracture path, without any crack 

branching, which is in line with a highly brittle material. On the other hand, regarding 

Fig. V-12 (b), in the simulation of the MH15, the sample exhibits a rather deviated crack 

path and crack branching, which is in line with a quasi-brittle behaviour.  

Overall, these results are showing acceptable qualitative fracture behaviour in 

comparison to the real model materials, which confirms the ability of the proposed DEM 

numerical approach in reproducing the crack branching phenomenon during WST. These 

very first results on that matter should be seen as a first attempt to describe the 

micromechanical behaviour of pre-cracked materials with a DEM approach using local 

strength randomisation based on Weibull modulus. Of course, further steps should try to 

consider the thermal history of the material (generation of microcracks by CTE mismatch 

between constituents) and integrate local physical mechanisms responsible for energy 

consumption during cracking (involved surface energy during cracking and friction 

between unbonded elements).  

V.4. DEM/FVM coupling for Wedge Splitting Test simulation 

For sure, DEM modelling is a promising approach that is currently under development 

by different research groups in order to provide a better description of micromechanical 

behaviour emerging from heterogeneous microstructure, which contains pre-existent 

microcracks. However, this type of modelling requires a large amount of calculations 

resources due to its discrete nature. For example, here, the presented WST numerical 

models of the previous section require 55 minutes on a rather powerful work station (Intel 

Core Xeon E2186M 4.0 GHz, SSD, 16 GB RAM, 12 parallel threads) even with a rather 



Chapter V:Towards mimicking microstructural aspects that enhance fracture toughness of 

refractory material - Application to Wedge Splitting Test (WST): DEM/FVM coupling for 

Wedge Splitting Test simulation 

 

146 

 

limited number of elements (36k). Therefore, in order to go a step further in the future 

(more complex local numerical treatments and larger concentration of discrete elements), 

the general strategy will be to concentrate the discrete elements to the zone of interest 

where potential fractures could occur and apply another more efficient numerical scheme 

(FEM, FVM…) for the zones where no cracks are expected.  

Since the 1980s, such different discrete/continuous coupling approaches were 

developed for different scales: from the molecular scales (Clementi et al. 1988) to the 

metric scales such as rock slopes simulations (Munjiza 2004). In recent years, these 

coupling approaches were intensively developed to be able to simulate complex 

phenomena such as fracturing (Zhang et al. 2017) (Leclerc et al. 2019). The main goal of 

this section is to investigate the application of a hybrid model by coupling a discrete DEM 

model with a continuous model for enhancing the simulation of WST. As mentioned, in 

fracture mechanics simulations, the main interest of discrete-continuous coupling is thus, 

to increase the performance of the model by replacing the potential non-damaging zones 

with a continuous model. Here, in the case of WST, the potential fracturing zone has a 

relatively small volume compared to the whole sample. Therefore, to make the 

simulations more efficient, it is proposed to replace the non-damaged zones with a 

continuous model, as shown in Fig. V-13. It should be noted that for this first attempt, the 

fracturing region thickness has been arbitrary set (for the sake of geometrical simplicity) 

to the thickness of the larger notch (24 mm, on top of the sample). This thickness will be 

enough for the demonstration of feasibility but probably should be enlarged later for the 

less brittle materials. 

In the PFC framework, the proposed continuous approach for coupling with DEM is 

the Finite Volume Method (FVM), as introduced in section I.3.1.3, provided by 

FLAC3D9 (Fast Lagrangian Analysis of Continua). In this way, the sample will be divided 

into three zones:  

• one central DEM region where it is possible to initiate and propagate numerous 

cracks; 

• two lateral FVM zones, which are considered purely elastic (without any 

cracks), where the boundary conditions are applied. 

The advantage of such an approach is to potentially increase the resolution of the DEM region, 

leading to a more precise fracturing simulation. Besides, thanks to this optimisation, it will be 

possible to introduce other types of discrete elements, such as rigid blocks, to simulate the 

microstructures closer to reality, as will be described in section V.4.6. 

 
9 https://www.itascacg.com/software/FLAC3D 

https://www.itascacg.com/software/FLAC3D


Chapter V:Towards mimicking microstructural aspects that enhance fracture toughness of 

refractory material - Application to Wedge Splitting Test (WST): DEM/FVM coupling for 

Wedge Splitting Test simulation 

 

147 

 

 

Fig. V-13. Description of the proposed hybrid DEM/FVM model for simulating WST. 

V.4.1. A brief reminder for DEM input parameters 

In this study, the same input DEM parameters were considered (m = ∞ and 3), used 

as in section V.3. As a reminder, an overview of these DEM input parameters is given in 

Table V-4. 

Table V-4. DEM region input parameters in the hybrid model for WST 

Description 

Density Local 

Young’s 

modulus 

Local 

stiffness 

ratio 

Local 

tensile 

strength 

Local 

tensile 

strength 

Local 

cohesion 

Local 

friction 

angle 

Material both both both MgO MH15 both both 

Abbreviation (𝜌) 𝐸∗𝑙𝑜𝑐  𝐾∗𝑙𝑜𝑐 𝑡𝑙𝑜𝑐 m 𝜎0 𝑐𝑙𝑜𝑐 𝜙𝑙𝑜𝑐 

Initial value 2600 20 4 10 3 10 25 0 

Unit Kg/cm3 GPa - MPa - MPa MPa Degrees 

 

It should be mentioned that, at this stage, the size of the elements has been voluntarily 

kept at the same value in order to conserve the same local parameters (calibration being 

dependant on the size of elements as pointed out in section II.4.3) and thus be able to 

compare the final results to previously presented full DEM model (section V.3). Of 
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course, for further studies, it could be more interesting to enlarge the number of elements 

by decreasing their size in the zone of interest (as mentioned previously). 

V.4.2. An overview of DEM/FVM coupling strategy 

In order to manage DEM/FVM coupling, DEM walls (section II.2.1) are introduced 

at the interfaces between DEM and FVM domains (see DEM walls wrapped FVM zones 

in Fig. V-14). This wrapping process, which is able to create DEM walls from FVM 

surface meshes, is possible thanks to the wall-zone interaction command in PFC3D. In 

this way, the surface FVM elements at the interfaces that come from FLAC3D will act as 

DEM walls with translational and rotational movement abilities (Itasca Consulting Group 

Inc. 2020) that follows the FVM surface meshes. In this way, it should be noted that each 

surface FVM elements, which are wrapped with DEM walls, consist of two triangular 

facets (as explained in II.2.1), and thus, the global DEM wall is flexible enough to strictly 

follow the strain of each FVM element. The contacting discrete elements at these interface 

walls were glued. These glued contacts are shown in red in Fig. V-14. Here, again, the 

FJM contact model is used for these glued contacts. The elastic parameters of these glued 

contacts were set equal to the values of the rest of the discrete domain (see Table V-4). 

However, to avoid any cracks at the interface, the fracture parameters of these glued FJM 

bonds were set to infinite values (𝑡𝑙𝑜𝑐 = 1 × 10100 MPa, 𝑐𝑙𝑜𝑐 = 1 × 10100 MPa). 

 

Fig. V-14. Proposed DEM/FVM hybrid model for WST. 
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In order to ensure continuity of stress and strain between DEM and FVM domains, 

special attention should be paid to the definition of material properties: 

• elastic parameters - both media should have the same elastic behaviour (Heider et 

al. 2012). In this way, both Young’s modulus and Poisson’s ratio of the FVM 

domains should be set to the DEM apparent elastic properties (Eap = 26 GPa and  

νap = 0.15); 

• density - to guarantee the continuity of the dynamic behaviour, the same density 

should be applied to both domains (Lempriere 2003). Special attention must be 

made in the case of the DEM domain by considering its apparent density, which 

does not correspond to the density of each element. In fact, the apparent density 

should be obtained by considering the local density of the discrete elements and the 

associated porosity. Therefore, the density of the elements should be voluntarily 

higher (𝜌 = 2600 Kg/cm3) in order to obtain the targeted apparent density  

(𝜌 = 2120 Kg/cm3) of the DEM domain (including porosity); 

• time step - to ensure a synchronized exchange of data in each time increment 

between the two domains, the same calculation time step values should be imposed 

for both discrete and continuous models. In this way, the information needed for 

the coupling between the two domains (the displacements of the discrete elements 

for DEM and the node displacements for and FVM zones) is transmitted at each 

time step from one code to another (Breugnot et al. 2016). 

V.4.3. Force-displacement curves for Wedge Splitting Test (WST) 

Similar to full DEM models (as explained in section V.3.2), these DEM/FVM hybrid 

simulations were done in displacements-driven loading at a constant rate. These 

displacements are applied to the rigid FVM loading zones (as shown in Fig. V-14) in 

opposite directions in order to open the sample in mode I. To obtain the 

force-displacement curves (see Fig. V-15), the resulting forces coming from the sample 

response on these loading zones are monitored. These force-displacement curves and the 

crack numbers evolution have been again compared for the two previously investigated 

Weibull moduli: m = 3 and m = ∞. As previously observed in full DEM simulations, the 

present DEM/FVM simulations are showing that: 

• low Weibull modulus (m) enlarges the post-peak part; 

• low Weibull modulus (m) does not significantly change the apparent pre-peak 

behaviour and the peak values (force and displacement); 

• the cracking process starts at lower displacements and leads to a higher number 

of cracks for low Weibull modulus (m). 

As expected, these points show that the proposed hybrid model is able to simulate 

higher fracture energy for the lower Weibull modulus (m = 3, representing MH15) 

compared to the numerical sample with high Weibull modulus (m = ∞, representing 

MgO).  

To validate this approach, the obtained force-displacement curves for the hybrid 

model are also compared to the full DEM simulations (see grey dashed curves in Fig. 

V-15). This comparison shows very similar behaviour between hybrid and full DEM 
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models. This observation highlights the interest in using the hybrid model to significantly 

decrease the calculation time while obtaining quite similar results. 

 

 

Fig. V-15. Comparison of the force-displacement curves of WST for hybrid DEM/FVM 

and full DEM simulations with the two different Weibull moduli (m = 3 and ∞). 

The main advantage of using such a hybrid model is, in the future, to decrease the 

computational time that could be required for more complex microstructure design in the 

zone of interest. In the present case, which should be seen as the simple demonstrator, the 

calculations time was decreased from 55 minutes for the full DEM model down to 8 

minutes in the hybrid model. Even if, in the present case, the number of discrete elements 

in the central part of the sample is not huge (8k discrete elements in all samples), the 

force-displacement and the crack number evolutions are rather similar to the full DEM 

model. A higher level of similarity would probably be obtained for a larger number of 

elements in the central part. 

V.4.4. Fracture energy and brittleness number 

Again here, the brittleness number notion was used as an indicator for the brittleness 

of these models. The obtained force-displacement diagrams of the DEM/FVM hybrid 

model (Fig. V-15) is used to calculate the brittleness number. The calculated specific 

fracture energies and the brittleness numbers are shown in Table V-5. These results show 

that using a Weibull distribution significantly influences brittleness number and the 

specific fracture energy. This is in line with the previous observations for full DEM 

models. Table V-5 allows to quantitatively compare the two proposed approaches (hybrid 

and full DEM). The brittleness numbers and the specific fracture energies are relatively 

in accordance with the full DEM model.  
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Table V-5. Calculated fracture parameters for hybrid and full DEM models with the two 

considered Weibull moduli (m =3 and ∞). 

Representative 

experimental 

material 

Weibull 

modulus 

(m) 

Specific fracture energy (J/m2) Brittleness number (-) 

Full DEM Hybrid Full DEM Hybrid 

pure MgO ∞ 120 128 0.56 0.44 

MH15 3 158 178 0.38 0.29 

 

V.4.5. Crack branching simulation 

As mentioned in section V.2, there is a strong link between microcracking process 

and fracture energy consumption, as highlighted by DIC observations (see Fig. V-5 (c) 

and Fig. V-6 (c)). In this way, the crack propagations for the two different Weibull moduli 

of the hybrid model are compared (see Fig. V-16). As expected: 

• the sample with m = ∞ (pure MgO like) exhibits a relatively straight brittle 

fracture path without any crack branching; 

• the sample with m = 3 (MH15 like) exhibits a deviated crack path with diffused 

damages and crack branching; 

which are in accordance with the full DEM model. 

Overall, these results show acceptable qualitative accordance between the hybrid 

model and the experimental observations shown in section V.3.4. It confirms the ability 

of the proposed DEM/FVM hybrid model to reproduce the crack branching phenomenon 

during WST. At this stage, the crack branching mechanisms are evidently limited to the 

central part (here defined to a width of 24 mm) managed by the DEM approach in the 

present work. In comparison to the real size of the process zone (30 to 40 mm, Grasset-

Bourdel, 2011) that could be experimentally observed by DIC (Khlifi 2019) on quasi-

brittle materials, the current size of crack branching in the presented numerical model is, 

in fact, rather limited. For sure, this area of crack branching development could be 

enlarged by a further decrease of Weibull modulus and by assigning a larger thickness to 

the central area to be treated by DEM. 
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Fig. V-16. Comparison of the simulated crack paths between the two considered Weibull 

moduli: (a) m = ∞ and (b) m = 3.  

These figures were taken at 40% of the peak in the post-peak phase. 

V.4.6. DEM/FVM WST simulation by using rigid blocks 

This section aims to investigate the potential feasibility of using Rigid Blocks (RB, 

as introduced in section II.2.1) to simulate accurately diffused damages and crack 

branching phenomena by considering the effect of the large aggregates which constitute 

the skeleton of the microstructure. It should be noted that aggregates in refractories are 

usually much stiffer than the matrix. In this way, as a reminder, RBs are a rigid single 

discrete element with complex (convex) geometries. By considering such complex 

geometries, these RBs could be advantageously used to mimic these large aggregates 

within the microstructure. In the case of MH15-like material, RBs could mimic the large 

rigid aggregates of both MgO and Hercynite, while the smaller discrete elements could 

mimic the brittle MgO matrix. As a first trial, random aggregates shapes (inspired from 

the real MgO and Hercynite aggregates) were distributed up to nearly 36% of the total 

volume. To do so: 

a) a sample only containing matrix discrete elements has been first prepared; 

b) the RBs were introduced randomly within the matrix until it reaches 36% of 

the total volume; 

c) the matrix discrete elements inside RBs were removed; 

d) finally, contacts between RBs and matrix were assigned with FJM bonds. 

This process is shown in Fig. V-17 for a single RB aggregate within the discrete element 

matrix.  
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Fig. V-17. Illustration of the four steps procedure for RB grain insertion:  

(a) Initial sample only containing discrete elements, (b) introduction of RB,  

(c) removing local discrete elements and (d) assigning the FJM bonds at the interface. 

In the same way as the previous section, two models (same positioning of discrete elements 

and RBs within the sample) were prepared with different Weibull moduli  

(m = ∞ and 3). All the other input parameters were set equal to values already mentioned in Table 

V-4. For aggregates/matrix contacts in this first attempt, FJM bonds have been used with the same 

properties as matrix/matrix, even if different local properties could be attributed later.  

Firstly, to only investigate the impact of introducing aggregates, the force-

displacement curve of the sample with m = ∞ (see Fig. V-18 (a)) is compared to the case 

m = ∞ without aggregates. As can be seen, by introducing aggregates to the model: 

• the apparent pre-peak rigidity decreases. This result is, in fact, quite surprising 

since RBs exhibit an infinite Young’s modulus and would need further 

investigations to understand the effect of the bond properties at the interface 

with discrete elements;  

• the force peak remains relatively the same; 

• the post-peak region is for sure much larger. This important result is completely 

in line with experimental results, for which it is clear that the aggregate 

skeleton of a refractory material also plays a key role in fracture energy. 

In the same way, the force-displacement curve of the sample with m = 3  

(see Fig. V-18 (b)) is compared to the case m = 3 without aggregates. Similarly to  

m = ∞ previously commented, the aggregates strongly increase the fracture energy. From 

these results, it appears that decreasing m to 3 does not significantly change the shape of 

the force-displacement curve (comparison between Fig. V-18 (a) and Fig. V-18 (b)). 

Nevertheless, it could be interesting in the future to consider lower values of Weibull 

modulus.  

Concerning the accumulated number of cracks which are plotted in both cases (Fig. 

V-18 (a) and Fig. V-18 (b)), it appears: 

• for the same Weibull modulus, the accumulated number of cracks is a little bit 

smaller when aggregates are introduced. This result is, in fact, quite surprising 

regarding the fracture energy (area below the force-displacement curve) but 

may result from the fact that rather flat surfaces of the aggregates lead to a 

decrease in the average density of contacts; 

• decreasing the Weibull modulus (with aggregates) again leads to a significant 

increase in the accumulated number of cracks (16k for m = ∞ and 24k for  

m = 3 at the same displacement level of ≈ 0.1 mm) 
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Fig. V-18. Comparison of the force-displacement curves of WST for the hybrid 

DEM/FVM model containing RBs with the two different Weibull moduli:  

(a) m = ∞ and (b) m = 3.  

In the end, the simulations of the crack propagation during the WST in the hybrid 

model containing RBs for different Weibull moduli (m = ∞ and 3) are shown in Fig. V-19 

(a) and (b). Note that for the sake of display of RBs, the same cross-section inside the 

material is shown. As expected: 

• the sample (a) with m = ∞ (pure MgO like) exhibits a relatively straight brittle 

fracture path that goes around the aggregates; 

• the sample (b) with m = 3 (MH15 like) exhibits a deviated crack path with 

some diffused damages and crack branching going around the aggregates. 

 

Fig. V-19. Comparison of the simulated crack paths produced by DEM/FVM hybrid 

model containing rigid blocks between the two considered Weibull moduli:  

(a) m = ∞ and (b) m = 3.  

These figures were taken at 40% of the peak in the post-peak phase. 

Overall, this part of the work should be seen as the first attempt of combining DEM 

using RBs, coupled with FVM continuous zones. This approach would allow to 

concentrate computing resources in the central part of the sample, trying to mimic as close 
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as possible microstructure effect on the macroscopic thermomechanical property. For 

sure, there still many points to be studied in that area in the future. At this stage, only very 

qualitative results were presented. More quantitative investigations should be managed to 

mimic: 

• the granular distribution of these aggregates within the microstructure of real 

refractory materials; 

• the different shape of these grains that could influence the fracture behaviour;  

• the pre-cracks which could be introduced within the microstructures by CTE 

mismatch; 

• the thermal history of the material that could affect the microstructure. 

V.5. Conclusions 

The main idea of the DEM approach proposed in Chapter IV was to use a statistical 

distribution of local strength. This approach aims to mimic the impact of the pre-existing 

microcracks, which strongly influence the macroscopic mechanical behaviour. This 

chapter aimed to investigate further the applicability of this proposed approach to 

reproduce key phenomena such as diffused damages and crack branching. In such a way, 

the Wedge Splitting Test (WST), commonly used in the refractory field to characterise 

the fracturing behaviour, was considered in this chapter as the reference test. Here, two 

typical refractories were considered: pure MgO, which is highly brittle and MH15 which 

exhibits strong mechanical non-linearities. The experimental data from WST coupled 

with Digital Image Correlation (DIC) measurements of these two materials were used as 

reference results. 

Firstly, two numerical samples with two different statistical distributions of local 

strengths were simulated in a WST configuration: 

• a sample with a single uniform value for local strength to represent pure MgO; 

• a sample with a Weibull distribution (m = 3) for local strength to represent MH15. 

The proposed DEM model showed good qualitative accordance to force-displacement 

curves, pre-peak and post-peak behaviours, specific fracture energies and brittleness 

numbers. Also, the fracture paths exhibited qualitatively good agreements in comparison 

with experimental DIC observations.  

However, such DEM calculations require huge computational resources and time. 

Hence, some solutions to improve the computational performance were investigated in 

this chapter. The first approach was to couple the DEM model with the Finite Volume 

Method (FVM). In this way, the DEM domain was localised only in the fracturing zone 

of the WST sample. It allows reducing the number of discrete elements significantly. The 

continuous FVM zones are placed in the regions where the damages are not expected. 

This technique allows to reduce up to 85% of the calculation time. To go further, an 

additional optimisation technique was considered using rigid blocks for mimicking large 

aggregates within the microstructure. A comparison with full DEM model simulations 

showed that these optimisation techniques did not significantly affect the results. 

Despite the good qualitative accordance, further works are needed to achieve more 

quantitative results. However, the significant gain in terms of calculation times 
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encourages further investigations in order to provide quantitative simulations of 

non-linear behaviour of refractories in WST configuration in a more reasonable time. 
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General conclusions and perspectives  

In different industrial fields, refractories are continually exposed to extreme 

conditions such as high temperature, mechanical loads, corrosion, and, more importantly, 

thermal shocks. Especially in the steel making industries, due to the filling and emptying 

of melted iron in the steel ladle, refractories face severe thermal cycles. These thermal 

cycles induce stresses, which could weaken the in-service refractories and potentially 

leads to complete failure. Such failures could be very costly and result in a significant 

loss of production, polluting the environment and, more importantly, threatening the 

personals’ safety. Therefore, focusing on designing and improving the thermal shock 

resistance of the refractories has gained increasing interest. In this way, the ATHOR 

project (Advanced THermomechanical multiscale mOdelling of Refractory linings, 

supported by the European Commission) was defined and focused on the 

thermomechanical investigation and behaviour prediction of refractory linings: from the 

grain scale to the whole steel ladle structure.  

In fact, the thermal shock resistance of refractories is closely related to the material 

ability to resist against crack propagation through significant energy dissipation by 

creating new surfaces and friction mechanisms. More specifically, as mentioned in the 

literature, voluntarily introducing a large number of microcracks within the 

microstructure of refractories could improve their thermal shock resistance through a high 

non-linear behaviour in tension. However, due to the complexity of the thermal shock 

phenomenon, it is difficult to predict it precisely. As a part of the ATHOR project, this PhD 

aimed to take advantage of advanced numerical tools to study further this thermal shock 

phenomenon and its impact on the mechanical behaviour of the materials. For this 

purpose, a suitable numerical method was required to be able to simulate such an extended 

microcracking process. In this way, a comparison between different numerical methods 

was done to choose the one that could initiate and propagate numerous discontinuities. 

Even if certain continuum methods had shown an accurate approach for fracturing 

modelling, the interaction of discontinuities, managing a high number of cracks and 

predicting complex cracking patterns is still a challenging point. On the other side, 

because of the discontinuous nature of DEM, initiation and propagation of a high number 

of cracks are not problematic for such a discrete model. Hence, the DEM approach was 

assigned as the main modelling approach in this PhD. 

In order to simulate microcracks in a continuous media by DEM, different models 

were investigated. In this way, the Flat Joint Model (FJM) was chosen because of its 

ability to mimic the microstructure of angular and interlocked grains. Based on the 

literature, this model had shown a high potential for simulating fracturing processes in 

quasi-brittle materials. Due to the necessity of calibration of the input parameters in the 

discrete models, a parametrical local to apparent study was managed in Chapter II:, which 

led to a rationalised calibration algorithm for FJM. This model is implemented in a DEM 

framework, called Particle Flow Code (PFC), from ITASCA company (partner of this 

PhD).  
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By choosing the modelling method and the framework, it was aimed to numerically 

investigate the heterogeneous microstructure of refractories, as their pre-defined 

microstructure significantly influence their ability to sustain thermal shocks. Therefore, 

it was crucial to model better the strong relationships between such heterogeneous 

microstructures and the macroscopic thermomechanical behaviour. For this multi-scale 

purpose, in Chapter III:, a DEM periodic homogenisation approach by using the notion 

of the Representing Volume Element (RVE) was proposed to model a pseudo-infinite 

media. It should be noted that up to now, the periodic homogenisation for a continuum 

media in DEM is not as robust as in FEM. The implementation of such periodic 

homogenisation approach in DEM is, in fact, advantageous as this approach allows 

working on a pseudo-infinite small domain, thus with a limited number of discrete 

elements. This proposed DEM periodic homogenisation approach was validated for 

bi-phase and porous materials by comparing the simulated apparent elastic properties to 

the referenced experimental results. In addition, the obtained numerical results were 

successfully compared to Hashin and Shtrikman analytical model and FEM simulations.  

By validating this approach, it is possible to accurately investigate the elastic 

properties (Young’s modulus, Poisson’s ratio, and potential anisotropy) from the 

micro-scale (related to local inclusions or pores) to the macro-scale. As a potential further 

application, this validated approach could be used to predict the thermomechanical 

behaviour of heterogeneous materials containing numerous microcracks. In fact, as 

mentioned, the fracturing process and microcracking simulations are among the main 

interests of using DEM compared to FEM. Therefore, the simulation of the mesoscale 

microcracking process in a continuum media was investigated for the next step.  

In reality, the numerous microcracks within the microstructure of refractories are 

induced by the Coefficient of Thermal Expansion (CTE) mismatch between constituents. 

The presence of these microcracks usually induces a non-linear quasi-brittle mechanical 

behaviour. To numerically reproduce this phenomenon, in Chapter IV:, a DEM model 

was proposed based on the randomisation of local fracture criteria, following a Weibull 

distribution. This proposed approach was aimed to reproduce the non-linear quasi-brittle 

mechanical behaviour under tensile monotonic and cyclic loads by varying the Weibull 

modulus. This approach was quantitatively validated by comparing simulated 

stress-strain curves to the reference Alumina Spinel experimental data. A meta-algorithm 

was proposed to calibrate potentially any DEM model qualitatively and quantitatively for 

simulating such non-linear quasi-brittle behaviour. In fact, this approach can tune the 

brittleness of the material by promoting diffused damages and crack branching into the 

microstructure. To verify this last point, the proposed approach was applied to mimic the 

Wedge Splitting Test (WST), which is commonly used to quantify the brittleness of 

refractories. 

WST could be, in fact, an index for characterising the quasi-brittle behaviour of 

refractories. Again, this behaviour is closely linked to the presence of pre-existing 

microcracks and their ability to promote crack branching. Therefore, Chapter V: was 

aimed to verify the ability of the proposed statistical numerical approach to reproduce this 

key phenomenon. In such a way, two model materials were used as references to highlight 

different fracturing behaviour: a highly brittle pure Magnesia and a quasi-brittle Magnesia 

Hercynite. Afterwards, by using different Weibull modulus, the proposed DEM approach 



 General conclusions and perspectives 

 

159 

 

for local strength randomisation simulated a wide range of fracture behaviour. Higher 

fracture energy can be achieved by lowering the Weibull modulus. These results were 

qualitatively compared to the fracture behaviour of the two reference materials. Besides, 

the crack branching obtained from these simulations were qualitatively compared to the 

experimental Digital Image Correlation (DIC) observations. In the end, a 

discrete/continuous hybrid model was proposed to optimise the WST simulations in order 

to save computational time. To go further in the optimisation way, rigid discrete blocks 

elements were introduced to act as large aggregates within the microstructures. 

Considering the fact that the development of DEM to better understand the 

microstructure effects on thermomechanical behaviour of refractory materials started just 

a couple of years ago at IRCER (recruitment of Dr. Damien André in 2014, a first PhD 

on this subject between 2016 and 2019, the present PhD started in 2018), there is still for 

sure many improvements to manage in the future. A lot of perspectives can be thus 

imagined at this stage. As top priority level for coming years, further developments should 

target: 

• to combine complex behaviour during mechanical loadings and temperature 

variations. Taking into account that the thermal history of materials is extremely 

important in the non-linear thermomechanical behaviour of heterogeneous 

refractories, the DEM tools should be able to couple this previous thermal history 

with the later mechanical response during loading. This is, in fact, the case for 

GranOO, which has been used in the thesis of Dr. Troung Thi Nguyen (defended in 

2019), but in fact, PFC with FJM, unfortunately, was not able (at this stage) to 

account for this thermal history. 

• to comfort the coupling between DEM and other continuum methods. As 

explained at the end of this work, the coupling between DEM and continuous 

methods could be very efficient to save computing resources and allocate a larger 

number of discrete elements for better simulating the zone of interest. In this aim, 

PFC coupled with FLAC3D have shown a great performance and produced valid 

results compared to the full DEM model. Unfortunately, at the beginning of this 

PhD, such coupling was not available in GranOO, but thanks to recent 

developments, the potential coupling is now available with FEM. 

• to go further with periodic homogenisation. As explained in chapter III, periodic 

homogenisation is very efficient to quantitatively predict apparent properties, 

accounting for local properties of each constituent and for the microstructure of the 

material. Such periodic homogenisation works very well in PFC while it was not 

available in GranOO during this PhD. Nevertheless, recent developments allow to 

manage today such an approach. It could be thus interesting to check this new 

possibility in GranOO. To go a step further (in comparison to present work), it could 

be, of course, interesting to include microcracks coming from CTE mismatch 

between constituents and previous thermal history within these future models. 

• to account better for microcracks coming from CTE mismatch. In the present 

work, microcracks from CTE mismatch has been represented thanks to the Weibull 

distribution of local strength values, and microcracks coming from the loading has 

been represented by partial rupture of the 16 local sub-surfaces of FJM bonds. PFC 

with FJM bond model is perfectly adapted to describe such microcracks during 
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loading, but that was a pity that such a sophisticated fracturing model was not able 

to model microcracks that could come from temperature variations. GranOO is able 

to work with both microcrack and temperature variation but with a simpler 

fracturing model. In fact, internal development within ITASCA is ongoing to 

account for mechanical interactions and temperature variation simultaneously and 

will be available soon. 

• to account better for the role of aggregates. The proposed DEM/FVM hybrid 

model clearly demonstrated the strong influence of aggregates on fracture energy 

recorded during WST simulations. This first very interesting numerical result seems 

to be in line with some experimental observations. This study should be comfort in 

the future with a systematic investigation of aggregates size distribution, aggregates 

morphology and aggregates potential orientations coming from the production 

process (uniaxial pressing). This first attempt has been managed here thanks to the 

rigid block approach, available in PFC, which has the advantage of a user-friendly 

implementation (management of their sizes and geometries) but also has some 

drawbacks (infinite rigidity, which does not correspond to the real elastic properties, 

way to manage the bonds at the interfaces which seems to significantly affect the 

elastic response). Alternative options could be the usage of clumps in PFC or the 

usage of the cluster in GranOO, at the cost of larger computing time and lower 

resolution for angular shapes. 

• to account better for the physical mechanism, which leads to dissipate energy. 

Up to now, no specific attention has been paid to the way in which the energy is 

consumed during cracking. In fact, from the physical point of view, one part of the 

energy could be consumed by the creation of new free surfaces (thermodynamic 

surface energy) and by frictional mechanisms (when two free surfaces are sliding). 

In general, nothing is currently managed in DEM tools to account for 

thermodynamic surface energy (during surface creation). This part of the energy 

consumption is probably integrated with the damping factor, which is commonly 

used to dissipate the vibrations. Concerning the second part of energy consumption, 

it could be tuned by local friction factors. Such a way may also allow adjusting 

macroscopic fracture energy during the WST.  

These improvements of DEM modelling should lead to model accurately refractories 

in a multi-scale approach to better understand the impact of their microstructure on the 

thermomechanical macroscopic behaviour. These modelling tools may be used in the 

future to optimise such materials microstructures and save natural resources. 
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Abstract 

This PhD is part of the Marie Skłodowska-Curie action ATHOR project (Advanced THermomechanical 

multiscale mOdelling of Refractory linings), supported by the European Commission. Refractories are heterogenous 

ceramics, resistant at high temperatures for which, in many cases, pre-existent microcracks within the microstructure 

play a key role in sustaining thermal shocks. The Discrete Element Method (DEM) is considered as a major numerical 

tool that can help, in future, to design high-performance microstructures. Thus, the present PhD is focused on 

numerical simulations of refractory ceramics by considering their microstructures, heterogeneities including cracks, 

and their influence on fracture mechanics. This work has been managed within a partnership with the company 

“ITASCA consultants”. Within the Particle Flow Code (PFC), as main numerical framework, the Flat Joint Model 

(FJM) is chosen since this contact model can mimic the microstructure of interlocked grains, like the microstructure 

of refractories. To develop numerical models that can help to investigate the role played by the microstructure in the 

macroscopic thermomechanical behaviour, it is essential to have an accurate micro to macro multiscale approach of 

each key physical properties for thermal shocks, starting with elastic properties. In this way, as DEM is not, at this 

stage, as robust as FEM, a periodic homogenisation approach is proposed for such continuum media. This approach 

has been validated by comparing the obtained results to model materials, analytical and FEM models. At mesoscale, 

a DEM model using a statistical approach to mimic the mechanical influence of pre-existing microcracks is 

investigated. This technique has also been validated by experimental mechanical data. Subsequently, to check the 

proposed DEM model applicability, Wedge Splitting Test (WST) simulations are managed to investigate the 

fracturing process and qualitatively compared to DIC experimental outputs. In the end, a discrete/continuous hybrid 

model is proposed to optimise the WST simulations in order to save computational time. These key results open very 

interesting new ways to use DEM in predicting the thermomechanical behaviour of heterogeneous materials 

containing numerous microcracks that could propagate simultaneously.  

Keywords: Refractories, Microcracks, DEM modelling, Periodic homogenisation, Fracture mechanics 
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Résumé 

Cette thèse s'inscrit dans le cadre du projet Européen ATHOR (Advanced THermomechanical 

Multiscale Modelling of Refractory Linings). Les matériaux réfractaires sont des céramiques hétérogènes, 

résistantes à des températures élevées pour lesquelles, dans de nombreux cas, des microfissures 

préexistantes au sein de la microstructure jouent un rôle clé dans la résistance aux chocs thermiques. La 

Méthode des Eléments Discrets (MED) est aujourd’hui considérée comme un outil numérique majeur qui 

peut contribuer, à l'avenir, à concevoir des microstructures plus performantes. Ainsi, cette thèse est dédiée 

à la simulation numérique de matériaux réfractaires intégrant leur microstructure, leurs hétérogénéités, ainsi 

que la présence de fissures, et leur influence sur le comportement mécanique macroscopique. Ces travaux 

ont par ailleurs été réalisés dans le cadre d'un partenariat avec la société "ITASCA consultants". Au sein de 

l’outil Particle Flow Code (PFC), utilisé comme plateforme numérique MED, le model de contact Flat Joint 

Model (FJM) a été choisi car celui-ci permet de modéliser des microstructures de grains imbriqués, 

analogues à celles des matériaux réfractaires. Afin de développer des modèles numériques permettant de 

décrire les relations entre la microstructure et le comportement thermomécanique macroscopique, il est 

essentiel de mettre en œuvre une approche multi-échelles, micro à macro, précise pour chacune des 

propriétés physiques clés intervenant dans la tenue aux chocs thermiques, en commençant par les propriétés 

d’élasticité. Dans cet objectif, la MED n'étant pas, à ce stade, aussi robuste que la Méthode des Eléments 

Finis (MEF), une approche d'homogénéisation périodique est proposée pour des milieux continus. Cette 

approche a ici été validée en comparant les résultats obtenus à des matériaux modèles, des modèles 

analytiques et MEF. A l’échelle méso-scopique, un modèle MED utilisant une approche statistique pour 

imiter l'influence mécanique des microfissures préexistantes est mis en œuvre. Cette approche a également 

été validée par des données mécaniques expérimentales. Par la suite, afin de vérifier l'applicabilité du 

modèle MED proposé, des simulations de Wedge Splitting Test (WST) sont proposées pour étudier le 

processus de fissuration et le comparer qualitativement aux résultats expérimentaux obtenus en DIC. 

Finalement, un modèle hybride discret/continu (MED/MVF) est proposé pour optimiser ces simulations de 

WST et réduire les temps de calculs. Ces résultats clés ouvrent de nouvelles voies très intéressantes 

d'utilisation de la MED pour prédire le comportement thermomécanique de matériaux hétérogènes 

contenant de nombreuses microfissures pouvant se propager simultanément. 

Mots clés: Réfractaires, Microfissures, Modélisation MED, Homogénéisation Périodique, Mécanique 

de la Rupture 

 

 


