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Résumé

Cette thèse a pour objet l’étude de la domination de graphes et des problèmes de reconfigura-
tion.

Un ensemble dominant d’un graphe est un sous-ensemble de sommets tel que tous les sommets
du graphe sont ou bien dans l’ensemble, ou bien sont voisins d’au moins un sommet dans
l’ensemble. Quant aux problèmes de reconfiguration, ils consistent, étant donné un problème
source, à étudier si il est possible, et comment, de passer d’une solution de ce problème source
à une autre en effectuant une séquence de changements élémentaires suivant une règle donnée
qui maintiennent une solution.

Le premier chapitre est une introduction générale, dans laquelle nous présentons de manière
informelle les notions principales de cette thèse, et en donnons l’organisation.

Le deuxième chapitre est un chapitre préliminaire, qui a pour but de fournir au lecteur les
notions élémentaires de théorie de la complexité, de théorie des graphes, et de domination,
dont nous aurons besoin au cours des chapitres suivants.

Le troisième chapitre est entièrement consacré aux problèmes de reconfiguration. Nous donnons
les définitions essentielles à la compréhension des problèmes de reconfiguration exposés dans
les chapitres suivants. Ces définitions sont illustrées par divers problèmes : le jeu du taquin et
ses généralisations, la reconfiguration d’ensembles indépendants et d’ensembles dominants
dans un graphe, la reconfiguration de colorations d’un graphe, la reconfiguration du problème
de satisfiabilité, ainsi que la reconfiguration de multigraphes connexes ayant la même séquence
de degrés.

Le quatrième chapitre se focalise sur ce dernier problème. Nous donnons un algorithme
d’approximation polynomial qui renvoit une séquence de reconfiguration entre deux multi-
graphes connexes ayant la même séquence de degrés, de longueur au plus 2.5 fois la longueur
minimale. L’opération élémentaire consiste à échanger une extremité entre deux arêtes disjointes.
Le meilleur ratio obtenu jusqu’ici était de 4, et cette amélioration est due à la découverte d’une
nouvelle borne supérieure. En revanche, nous gardons la même borne inférieure, et nous mon-
trons que tant qu’une meilleure borne inférieure ne sera pas trouvée, le ratio d’approximation
ne pourra pas être drastiquement meilleur que 2.5.

Le cinquième chapitre se recentre sur les problèmes de domination. Nous étudions la connex-
ité et le diamètre du graphe de reconfiguration, lorsque l’opération élémentaire consiste en
l’addition ou la suppression d’un sommet de l’ensemble dominant. En d’autres termes, nous
cherchons des conditions suffisantes pour qu’il existe toujours une séquence de reconfiguration
entre deux ensembles dominants, et donnons une borne supérieure sur la longueur de cette
séquence. En particulier, nous nous intéressons à la taille maximale des ensembles dominants
autorisés dans la séquence. Nous montrons qu’au delà d’une valeur dépendant du nombre
d’indépendance du graphe, le graphe de reconfiguration a un diamètre linéaire. Nous donnons
également une autre borne supérieure, qui dépend cette fois ci de la largeur arborescente du
graphe, à partir de laquelle le graphe de reconfiguration est connexe et a un diamètre linéaire.
Nous donnons également deux autres bornes supérieures pour les graphes planaires, ainsi que
les graphes dont le graphe complet Kℓ n’est pas un mineur.

Dans le sixième chapitre, nous changeons l’opération élémentaire, qui consiste alors en un
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glissement de jeton le long d’une arête (un sommet est retiré de l’ensemble, et un des ses
voisins y est ajouté). Nous étudions la complexité du problème d’atteignabilité, qui consiste à
déterminer si il existe une séquence de reconfiguration entre deux ensembles dominants donnés.
Nous montrons que le problème est PSPACE-complet pour les graphes planaires bipartis, pour
les graphes de disques unité, les circle graphs, et les line graphs. Nous donnons également un
algorithme polynomial pour les circular arc graphs.

Le septième chapitre est consacré au problème de domination éternelle. Dans ce problème, deux
joueurs s’affrontent sur un graphe : l’attaquant, et le défenseur. Le défenseur commence par
choisir un ensemble de sommets, où il place des gardes. Lors de chaque tour, l’attaquant choisit
un sommet inoccupé, et le défenseur doit déplacer un de ses gardes sur le sommet attaqué, en
le faisant glisser le long d’une arête (un garde doit donc être sur un voisin du sommet attaqué
avant le déplacement). Dans une première version, les autres gardes doivent rester immobiles,
et dans la deuxième, ils peuvent tous ou bien rester immobile, ou bien glisser le long d’une
arête. Le nombre de domination éternelle du graphe correspond alors au nombre minimum de
gardes nécessaires pour pouvoir défendre n’importe quelle séquence infinie d’attaques. Nous
introduisons une version du problème sur les graphes dirigés, où les gardes doivent suivre la
direction des arcs. Nous donnons des bornes sur la valeur des deux paramètres (correspondant
aux deux versions), qui généralisent des résultats sur les graphes non dirigés. Nous introduisons
ensuite un nouveau problème qui consiste à chercher l’orientation d’un graphe qui minimise
ces deux paramètres. Nous montrons que dans la première version, déterminer si le paramètre
correspondant est au plus un k donné est un problème co-NP-difficile. Nous étudions également
la valeur des deux paramètres sur différentes classes de graphes comme les cycles, les arbres,
les graphes complets et complets bipartis, et différents types de grilles. Nous caractérisons
enfin les graphes dont la valeur du deuxième paramètre est 2.

Enfin, le huitième chapitre est une conclusion générale, qui rappelle les travaux effectués ainsi
que les problèmes ouverts soulevés au cours des chapitres et qui semblent particulièrement
intéressants à étudier.

Mots clés : Théorie des graphes, reconfiguration, domination, ensembles dominants, séquence
de degrés, domination éternelle.
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Abstract

This object of this thesis is to study graph domination and reconfiguration problems.

A dominating set of a graph is a subset of vertices such that every vertex of the graph either is
in the set, or is a neighbor of at least one vertex in the set. As for reconfiguration problems, they
consist in, given a source problem, determining if it is possible, and how, to go from a solution
of this source problem to another by performing a sequence of elementary changes following a
given rule and that maintain a solution all along.

The first chapter is a general introduction, in which we present in an informal way the principal
notions of this thesis, and give its organization.

The second chapter is a preliminary chapter, whose goal is to give the reader some basic notions
of complexity theory, graph theory, and domination, which we will need in the following
chapters.

The third chapter is fully devoted to reconfiguration problems. We give the definitions that are
essential to understand the reconfiguration problems exposed in the following chapters. These
definitions are illustrated with several problems: the 15-puzzle game and its generalizations,
the reconfiguration of independent sets and dominating sets in a graph, the reconfiguration of
graph colorings, the reconfiguration of the satisfiability problem, as well as the reconfiguration
of connected multigraphs with the same degree sequence.

The fourth chapter focuses on this last problem. We give a polynomial approximation algorithm
that outputs a reconfiguration sequence between two connected multigraphs that have the same
degree sequence, of length at most 2.5 times the minimum length. The elementary operation
consists in exchanging an extremity between two disjoint edges. The best ratio known so far
was 4, and this improvement is due to the discover of a new upper bound. However, we keep
the same lower bound, and we show that as long as a better lower bound is not found, the
approximation ratio can not be drastically better than 2.5.

The fifth chapter goes back to domination problems. We study the connectivity and diameter of
the reconfiguration graph, when the elementary operation consists in the addition or removal
of a vertex of the set. In other words, we search for sufficient conditions that guarantee the
existence of a reconfiguration sequence between two dominating sets, and give an upper bound
on the length of this sequence. In particular, we are interested in the maximum size of the
dominating sets authorized in the sequence. We show that above a certain value, that depends
on the independence number of the graph, the reconfiguration graph has linear diameter. We
also give another upper bound, that depends on the treewidth of the graph, above which the
reconfiguration graph is connected and has linear diameter. We also give two other upper
bounds for planar graphs and for Kℓ-minor-free graphs.

In the sixth chapter, we change the elementary operation, that then consists in sliding a token
along an edge (a vertex is removed from the set, and one of its neighbors is added). We study
the complexity of the reachability problem, which consists in determining if there exists a
reconfiguration sequence between two given dominating sets. We show that the problem is
PSPACE-complete in planar bipartite graphs, unit disk graphs, circle graphs and line graphs.
We also give a polynomial algorithm for circular arc graphs.
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The seventh chapter is devoted to the eternal domination problem. In this problem, two players
are playing on a graph: the attacker, and the defender. The defender starts by choosing a set
of vertices, where they place some guards. At each turn, the attacker chooses an unoccupied
vertex, and the defender must move one of their guards to the attacked vertex, by sliding it
along an edge (a guard must therefore be placed on a neighbor of the attacked vertex). In a first
version, the other guards must stay on their position, and in a second version, they can all either
stay, or slide along an edge. The eternal domination number corresponds to the minimum
number of guards necessary to defend any infinite sequence of attacks. We introduce a version
of the problem on directed graphs, where the guards must follow the direction of the arcs. We
give some bounds on the value of both parameters (corresponding to the two versions), that
generalize results on undirected graphs. We then introduce a new problem that consists in
searching for the orientation of a graph that minimizes the two parameters. We show that in
the first version, determining if the parameter is at most a given k is a co-NP-hard problem. We
also study the value of both parameters in several graph classes such as cycles, trees, complete
and complete bipartite graphs, and different types of grids. We finally characterize the graphs
for which the value of the second parameter is 2.

Finally, the eighth chapter is a general conclusion, that goes back on the presented work and
the open problems raised along the previous chapter and that seem particularly interesting to
study.

Key words: graph theory, reconfiguration, domination, dominating sets, degree sequence,
eternal domination.
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Chapter 1

Introduction

My first encounter with graph theory and combinatorics happened very early. I got used to
bothering my mother for her to give me math problems to solve during our hikes, but my
father took it to another level by giving me a riddle called the House of Santa Claus. He asked
me if I could draw a house, with a cross in it as illustrated in Figure 1.1 without raising the
pen. He eventually showed me how to do it, but it did not satisfy my curiosity, as I started
wondering what could and could not be drawn without raising the pen. A few years later,
as I was cheating in Rubik’s cube by unsticking the colored stickers, I wondered if I coud
”break” it, i.e. make it impossible to solve by mixing up the colors. In school, when the teacher
asked the class how many diagonals a pentagon had, I wondered how the number of diagonals
depended on the number of vertices. I actually wrote a paper on it in the evening and gave it
to my teacher the next day, who had to inform me that, unfortunately, this result was already
proven. When I grew up, I had the opportunity to pursue scientific studies, and I was formally
introduced to graph theory. All these questions and so many others were answered, but even
more were raised. This has been particularly true during my thesis, where I have had the
chance to encounter a very large range of problems. In this manuscript, I chose to focus on the
reconfiguration problems and graph domination, which both represent an important part of
the work completed during this thesis.

Figure 1.1: The House of Santa Claus riddle.
Source: http://planund.com/

Graphs and domination

The reason why I came across graph problems so often in my childhood is simply because
graphs are everywhere. They allow to model a very wide range of problems, in various fields
such as social sciences, biology, logistics, chemistry or physics. Informally speaking, a graph is
a set of points called vertices, and a set of edges that link some pairs of vertices. Typically, in a
social network, the vertices can represent the persons, and two persons can share an edge if
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CHAPTER 1. INTRODUCTION

they know each other. In logistics, a vertex can represent a task to complete, and a task can be
linked to another when it needs to be done before the other. Note that this relationship is not
symmetrical, and one can add a direction to the edge, from the task that needs to be completed
first to the other. The graph then becomes a directed graph, or digraph, and the edges are
called arcs. In chemistry, the vertices can represent the atoms of a molecule, and the edges
the chemical bonds between them. Note that two atoms can share multiple bonds, and in this
case we model the molecule with a multigraph, where two vertices can share multiple edges.
This is equivalent to associating an natural number to each edge, and more generally, we can
associate any type of data (labels, real numbers, integers...) to the vertices or the edges of the
graph. However, in this thesis, unless specified, we work with undirected and simple graphs
(i.e. not multigraphs), where no data is attached to the vertices nor the edges. An example of a
graph is given in Figure 1.2.

Figure 1.2: A simple undirected graph

We use graphs to model real data and to answer problems on this data. In social sciences, the
question can for example be: what is the largest group of people that all know each other ? In
logistics, what is the minimum amount of time needed to complete all the tasks ? In chemistry,
how many different molecules have the same given formula ? Graphs allow to transform these
problems into purely mathematical problems. For instance, the largest group of people that all
know each other constitute what we call a clique in the graph, and finding the largest clique is
a very commonly studied problem. The minimum amount of time needed to complete a set of
tasks can be modeled through a graph problem called coloring. And the number of different
molecules that have the same formula corresponds to the number of non isomorphic graphs
(i.e. graphs that are not identical up to a permutation of the vertices) that have the same degree
sequence (the degree of a vertex is the number of other vertices it is linked to). As for the
problems mentionned earlier, the House of Santa Claus riddle is a particular case of a famous
graph problem called the Eulerian cycle problem, and the great mathematician Leonhard Euler
actually showed that it is possible to draw a graph without raising the pen if and only if every
vertex has even degree. And the number of diagonals in a polygon on n vertices is given by the
number of edges in the complete graph (i.e. the graph that contains all the possible edges) on n

vertices, which is n(n−1)
2 , minus the number of edges in a cycle on n vertices, which is n.

Graph theory is on the border between mathematics and theoretical computer science. In
particular, a whole area of graph theory focuses on finding algorithms to solve graph problems.
For instance, the problem of finding the largest clique in a graph has been extensively studied
from the algorithmic point of view. An algorithm is a sequence of instructions that solves a
problem. It can then be implemented in a computer, and used in any application of the problem.
But for the algorithm to be useful, we need it to be efficient. The complexity of an algorithm is,
informally speaking, the time or the space it takes to run on a computer, and the complexity of
a problem is the minimum complexity of an algorithm that solves it. Studying the complexity
of a problem is a useful tool when searching for efficient algorithms. In particular, when
the complexity is too high, we might want to focus on the search of efficient approximation
algorithms, which only give an approximation of the expected result, but whose complexity is
lower. For these reasons, the complexity of graph problems is a very interesting and widely
investigated problem.

In this thesis, we mostly study a graph problem called domination. A dominating set of a
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CHAPTER 1. INTRODUCTION

graph is a subset of its vertices, such that each vertex of the graph is either in the set, or shares
an edge with a vertex of the set. Dominating sets have many applications, for example in
network monitoring, where each vertex in the dominating set corresponds to a monitoring
element of the network. It is interesting to minimize the number of vertices in the dominating
set (taking the whole vertex set of the graph already gives a dominating set). For instance, the
monitoring elements in a network might be costly. We do not know any efficient algorithm (i.e.
no algorithm whose running time is polynomial in the number of vertices) that outputs the
minimum size of a dominating set of a given graph, and it is strongly believed that such an
algorithm does not exist (more precisely, if P �= NP, which is a common hypothesis of theoretical
computer science, then it does not exist). However, the domination problem can be restricted to
graphs that satisfy a given property (the graphs that satisfy this property then form a graph
class), and in some cases we obtain polynomial time algorithms. Variants of domination have
also been studied, for example the total domination in which a vertex does not dominate itself,
or connected domination in which the graph between the vertices of the dominating set must
be connected (i.e. there must be a path, from edge to edge, linking any pair of vertices).

Reconfiguration problems

As I was studying Graph Theory, my question about Rubik’s cube remained unanswered.
Until I was introduced to the reconfiguration framework during my thesis. In reconfiguration
problems, we are interested in the solutions of a problem called the source problem. We want
to find out if it is possible (and if it is, how) to go from a source solution to a target one by
performing what we call a reconfiguration sequence. A reconfiguration sequence is a sequence
of solutions of the source problem (which we call configurations), such that two solutions
that are consecutive in the sequence are seperated by a move. The definition of the move is
given by a rule called the adjacency rule. For example, one can study the reconfiguration of
dominating sets in graphs. Then, the source problem is the domination problem, and a move
can for example consist in adding or removing a vertex from the set. In the Rubik’s cube, the
configurations are the possible colorings of the cube with six colors, such that there are nine
stickers of each color. A move then corresponds to the rotation of a face of the Rubik’s cube.
And the player is searching for a reconfiguration sequence from the initial configuration to
the target configuration in which the stickers on each face all have the same color. Another
famous example is the 15-puzzle. The configurations are the possible positions of fifteen tiles
on a 4 × 4 grid, a move consists in sliding a tile from its position to the hole, and the player
needs to find a reconfiguration sequence from the initial configuration to the target one, which
creates an image. The last feature that defines a reconfiguration problem is the question we
want to answer, i.e. the problem itself. A lot of different problems have been studied in the
literature, but the four followings are the most commonly studied.

• Reachability. This is the most studied problem. It asks, given two feasible solutions of the
source problem, if there exists a reconfiguration sequence from the first to the second.

• Shortest transformation. Given two feasible solutions such that there exists a reconfigura-
tion sequence from the first to the second, this problem asks what is the minimum length
of such a sequence.

• Connectivity. The goal is then to determine if there exists a reconfiguration sequence
between any two feasible solutions of the source problem.

• Diameter. This problem asks what is the maximum length of a shortest transformation
between any two feasible solutions of the source problem.

In particular, the problem of the Rubik’s cube is close to reachability, but in this case we want to
find an explicit reconfiguration sequence from the initial configuration of the cube to the target
configuration, in which each face has only one color. It is also the problem of the 15-puzzle.
However, the question I was wondering about when I was a kid was about the connectivity
of the Rubik’s cube, as I was asking if the target configuration was reachable from any other
configuration. And I finally learned that it is not the case.
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Another way to represent a reconfiguration problem is with a graph called the reconfiguration
graph. The vertices of the reconfiguration graph are the feasible solutions of the source problem.
And two solutions share an edge in the graph if and only if we can go from one to the other in a
single move. A portion of the reconfiguration graph of the Rubik’s cube is given in Figure 1.3.

Figure 1.3: A portion of the reconfiguration graph of the Rubik’s cube.

Each of the previously mentioned problems can be expressed using the reconfiguration graph.
The reachability problem is then equivalent to asking, given two feasible solutions, if there exists
a path between them in the reconfiguration graph. The shortest transformation problem asks
what is the minimum length of such a path. The connectivity problem is about the connectivity
of the reconfiguration graph, and the diameter problem about its diameter.

The relationship between reconfiguration and graph theory is not limitated to the notion of
reconfiguration graph. In many cases, the source problem is a graph problem. For example,
the reconfiguration of graph colorings has been extensively studied. One of the reasons is that
it has important applications, in statistical physics or in communication. Another example is
the reconfiguration of connected graphs with the same degree sequence. In this problem, we
are given a sequence of integers. The feasible solutions are the connected multigraphs that
have this degree sequence. And two multigraphs are adjacent if and only if we can obtain
the second by applying a flip to the first, where a flip is an exchange of an endpoint between
two disjoint edges. This problem is a generalization of a problem called sorting by reversal,
which sorts a permutation of the integers from 1 to n and has many applications, particularly
in bioinformatics. Moreover, it has applications in chemistry, as it can be used to enumerate all
the molecules with a given formula. The reconfiguration of independent sets and dominating
sets are also famous examples of reconfiguration problems in graphs. These two problems can
be formulated as the reconfiguration of the position of tokens on the vertices of a graph (where
the tokens are placed on the vertices that belong to the set). This generalizes the 15-puzzle,
which is equivalent to the reconfiguration of tokens labeled from 1 to 15 on a 4 × 4 grid graph
(although an important difference is that the tokens in the reconfiguration of independent
sets and dominating sets are not labeled). For these tokens reconfiguration problems, three
adjacency rules have been studied:

• Token Addition-Removal. In this rule, a move can be either the removal or the addition
of a token on any vertex.

• Token Jumping. A move under token jumping consists in moving a token from a vertex
onto any other one.

• Token Sliding. A move then consists in sliding a token along an edge of the graph.

Note that if a configuration is reachable from another under the token sliding rule, then it also
is under token jumping. As we will see, there exist some problems for which the two rules
are actually equivalent. Similarly, if a configuration is reachable from another under the token
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jumping rule, then it also is under token addition-removal. Thus, the token sliding rule is the
most constrained one.

For the reconfiguration of dominating sets, the token sliding rule is the one used in another
problem recently studied, called eternal domination. It can be described as a game, played on a
graph between two players called the defender and the attacker. The defender chooses a set of
vertices of the graph where they place some guards. At each turn, the attacker attacks a vertex
where there is no guard. To defend, the defender must move one of their guard to the attacked
vertex, by sliding it along an edge of the graph. Two versions of this game have mainly been
studied, one where no other guard can move, and one where they can all either stay on their
vertex or slide along an edge, which is called m-eternal domination. In both cases, the game
continues indefinitely, and the defender wins if they can eternally defend against any attacks.
At each turn, the guards must be placed on a dominating set of the graph in order to defend
against the next attack, and when only one guard can move at a time, the moves that can be
performed by the defender correspond to a token sliding move. So in some sense, the game is
played on the same reconfiguration graph as in the reconfiguration of dominating sets under
token sliding. But in this case, we want to find an infinite walk on this reconfiguration graph,
such that at each turn, the chosen configuration contains the attacked vertex. The minimum
size of the dominating sets in such a walk, i.e. the minimum number of guards necessary for
the defender to win, is called the eternal domination number of the graph, and is the object of
many studies.

Like the Rubik’s cube or the 15-puzzle, many games can be expressed as reconfiguration
problems, and although the reconfiguration framework was introduced recently, reconfiguration
problems have been studied for a long time for this reason.There are also many scientific
applications. As previously mentioned, the reconfiguration of colorings has applications in
statistical physics. The properties of the reconfiguration graph in this case help sampling the set
of solutions, which represent the possible values of the spins in a ferromagnetic lattice. More
generally, reconfiguration problems are a useful tool for sampling. As for the reconfiguration of
connected graphs with the same degree sequence, it has important applications in chemistry,
since given a chemical formula, it can be used to enumerate the possible molecules with this
formula. Again, reconfiguration problems are a great tool when it comes to enumeration. All
these applications make reconfiguration very interesting to study, and since the framework is
recent, there remain a lot of open questions.

General Organization

In this thesis, we study both domination problems in graphs, and reconfiguration problems.
More precisely, we study the reconfiguration of connected graphs with the same degree se-
quence, the reconfiguration of dominating sets, and the eternal domination problem.

In Chapter 2, we give the preliminaries necessary to understand the upcoming chapters. We
start with some basic definitions of complexity theory. We formally introduce the notions of
algorithms, complexity, and we outline some common complexity classes. Then, we properly
define graphs, digraphs and multigraphs, and all the vocabulary around it. We also present
some usual graph classes and graph problems. Finally, we give more details about the domi-
nation problem. We define it formally, we review some fundmental results related to it, and
present a few concrete applications and variants of the problem.

In Chapter 3, we present the reconfiguration framework. We first define the components of a
reconfiguration problem: the source problem, the instance, the adjacency rule, the reconfigu-
ration graph, and the problem. We illustrate all these definitions with the running example
of the 15-puzzle. We then investigate the reconfiguration problems that can be formulated as
the reconfiguration of the position of some tokens on the vertices of a graph. In particular, we
give some results about several generalizations of the 15-puzzle, about the reconfiguration
of independent sets and the reconfiguration of dominating sets. Finally, we present other
reconfiguration problems, such as the reconfiguration of graph colorings, the reconfiguration of
variable assignments that satisfy a Boolean formula, and the reconfiguration of graphs with the
same degree sequence.
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In Chapter 4, we present a joint work with Nicolas Bousquet on the reconfiguration of connected
multigraphs with the same degree sequence. We already know that the reconfiguration graph
is connected for this problem, i.e. we can transform any connected multigraph with a given
degree sequence into any other one applying flips. We focus on the shortest transformation
problem. We provide a polynomial time algorithm which, given two multigraphs with the same
degree sequence, gives a transformation whose length is at most 5

2 times the length of a shortest
transformation. The best ratio known so far was 4. We also show that in order to improve this
ratio, we need to change the lower bound we use, i.e. the number of reconfiguration steps that
we know are needed.

In Chapter 5, we investigate the reconfiguration of dominating sets under the token addition-
removal rule. The results we expose come from a joint work with Nicolas Bousquet and Paul
Ouvrard. We study the threshold, which is the maximum size of the dominating sets we take in
the reconfiguration graph. More precisely, we investigate the value of this threshold such that
above this value, the reconfiguration graph is connected. We give several upper bounds on this
value, depending on several graph parameters. In each case, we provide a linear transformation
between any two feasible solutions.

In Chapter 6, we change the adjacency rule as we focus on the reconfiguration of dominating
sets under the token sliding rule. The results we present come from a joint work with Nicolas
Bousquet. In the literature, the reachability problem for the reconfiguration of dominating sets
has been studied under the token addition-removal rule, and more recently under the token
sliding rule. The problem is hard, and it has been studied in different graph classes. For some of
these classes, the problem remains hard, but for others, there exists a polynomial time algorithm.
We complete this picture, and answer two open questions on two graph classes. In particular,
for one of them, it was believed that the source problem was hard and the reachability problem
was easy, but we prove that it is not the case.

In Chapter 7, we present a joint work with Guillaume Bagan and Hamamache Kheddouci on
eternal domination. The eternal and m-eternal domination problems have only been studied on
undirected graphs. We introduce it on directed graphs, and oriented graphs (directed graphs
such that each edge has only one direction). We first generalize a lot of results that are true for
undirected graphs to directed graphs. We then introduce the oriented eternal and m-eternal
domination, which consist in finding an orientation of a graph that minimizes its eternal or
m-eternal domination number. The minimum (m-)eternal domination number is then called
the oriented (m-)eternal domination number. We prove that computing the oriented eternal
domination number is a hard problem. We also characterize the graphs for which the m-eternal
domination number is 2. And we study the value of both parameters in many graph classes.
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Chapter 2

Preliminaries

In this first chapter, we introduce the theoretical notions used in this thesis. In Section 1, we
give some notions of complexity theory, which we often use in the next chapters. Then, in
Section 2, we give some fundamental definitions and results of graph theory, the main field of
this thesis. Finally, Section 3 describes in details the DOMINATION problem in a graph, which
we study in Chapters 5, 6 and 7.

1 Complexity theory

Complexity theory is a wide field of theoretical computer science, and we can only give an
overview in this chapter. Therefore, the definitions we give here are not always rigourous,
the idea is to provide the information needed to understand the results we expose in the next
chapters. For more details about complexity theory, the reader is referred to the textbooks, like
[AB09] or [Sip96].

1.1 Definitions

When confronted to a new problem, the first question that comes is: how to solve it ? A series
of instructions that solves this problem is then called an algorithm. But finding an algorithm
to solve the problem is not always satisfying, we also want it to be efficient. One first has to
define formally what efficient means. The efficiency of algorithms, also called complexity, is
the object of study of complexity theory. In complexity theory, to describe how efficient an
algorithm is, we use two parameters: the time it takes to run it with a computer, which is the
time complexity of the algorithm, and the space it takes in the computer’s memory, which is the
space complexity of the algorithm. The time complexity (resp. space complexity) of a problem Π is
then the minimum, over all the possible algorithms that can solve Π, of the time complexity
of the algorithms. The problem Π is generally posed on a data, which we call the input of Π,
while the answer is called the output of Π. An instance of Π is an object that we test as the input.
Most of the problems we study in this thesis are decision problems, i.e. problems whose output is
TRUE or FALSE, or optimization problems, i.e. problems whose output is an object that minimizes
or maximizes a given function. A yes-instance of a decision problem is an instance such that
the corresponding output is TRUE, and otherwise it is a no-instance. To be able to evaluate the
complexity of a new problem, the problems which have similar complexities are grouped into
complexity classes. We review here some of the most common complexity classes.

1.2 Complexity classes

The P class. The first complexity class we introduce is the class P (where P stands for polyno-
mial). Formally, it is defined using the concept of Turing machines, which are often referred

7



CHAPTER 2. PRELIMINARIES

to as the ancestors of computers. The class P is then the class of decision problems that can be
solved by a deterministic Turing machine in polynomial time. For more details about Turing
machines, the reader is referred to [Sip96]. In this thesis, we simply say that P regroups the
decision problems whose time complexity is a polynomial function of the size of the input. If the
problems in P are often referred to as ”easy”, in some cases the degree of the polynomial might
be very high or the coefficients very large, thus making the running time of the algorithms very
long. For this reason, we sometimes distinguish between the problems in P by the degree of
their polynomial. The problems for which the degree of the polynomial is 1 are called linear.
A classical example of a problem that is in P, and that is actually linear, is the problem 2-SAT.
To define it, we need some notions of logic. A Boolean variable is a variable that is either TRUE

or FALSE. The negation of a variable x of a variable x is TRUE if and only if x is FALSE. A literal
is either a variable, or the negation of a variable. The conjunction of several variable, denoted
by the operator ∧, is TRUE if and only if each of the variables is TRUE. And their disjunction,
denoted by the operator ∨, is TRUE if and only if at least one of them is TRUE. A Boolean formula
is a formula whose variables are Boolean, and that can be expressed using only conjunctions,
disjunctions and negations of these variables. Every Boolean formula F has a conjunctive normal
form (CNF), which is a conjunction of clauses, where a clause is a disjunction of literals.

2-SAT

Input: A CNF Boolean formula F , where each clause contains at most two literals
Output: TRUE if and only if there exists an assignment of the variables of F such that F is TRUE

with this assignment.

The NP and co-NP classes. Some problems cannot be decided in polynomial time. But for
some of them, it is possible, given an instance I and an object of this instance which we call
a certificate, to check that the certificate ensures that I is a yes-instance of the problem Π, in
polynomial time. Typically, in the 2-SAT problem, a certificate could be an assignment of the
variables, and it is easy to verify that this assignment satisfies the formula F . The complexity
class NP contains the decision problems for which given an instance I and a certificate of I,
we can verify that the certificate makes I a yes-instance of Π in polynomial time. The ultimate
example of a NP problem is the SAT problem, defined as follows.

SAT

Input: A CNF Boolean formula F
Output: TRUE if and only if there exists an assignment of the variables of F such that F is TRUE

with this assignment.

More formally, NP is the class of decision problems that can be solved by a non-deterministic
Turing machine, with polynomial time. Given that a deterministic Turing machine is also a
non-deterministic Turing machine, it implies P ⊆ NP. It is also straightforward when observing
that if a problem can be solved in polynomial time, then a certificate of any instance can be
checked in polynomial time. However, the following conjecture is still at this day one of the
greatest challenge of computer science, although it is commonly used as an hypothesis.

Conjecture. We have P �= NP.

Similarly, there exist some problems for which given an instance and a certificate, it is ”easy”
(i.e. it can be done in polynomial time) to check that the certificate makes I a no-instance of the
problem. These problems form the co-NP class. The dual problem P of a decision problem Π in
NP, such that every yes-instance of Π is a no-instance of P and conversely, is in co-NP. We have
P ⊆ co − NP , but it is also unknown if P = co − NP.

The PSPACE class. In each of the three classes we introduced, the complexity of a problem is
expressed through the time it takes to solve it. But in some cases, we might prefer to focus on
the space needed to run an algorithm. The complexity class PSPACE gathers the problems whose
space complexity is polynomial in the input size. A typical example of a problem in PSPACE is the
QBF problem, defined as follows. A quantifier is either an existential quantifier ∃ , which is TRUE

when there exists an assignment of the variable that makes the formula that follows TRUE, or a
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universal quantifier ∀, which is TRUE when any assignment of the variable makes the formula that
follows TRUE. A quantified Boolean formula is a formula in which every variable is Boolean and
is introduced in the formula by a quantifier, and that only contains conjunctions, disjunctions
and negations of these variables after their introduction in the formula. A quantified Boolean
formula F can always be written in the form F = Q1x1 . . . Qnxnφ(x1, x2, x3, . . . , xn) where for
any i, xi is a Boolean variable, Qi is the quantifier ∃ if i is odd and ∀ otherwise, and φ is a CNF
Boolean formula.

QBF

Input: A quantified Boolean formula F
Output: TRUE if and only if F is TRUE.

More formally, PSPACE is the class of decision problems that can be solved in polynomial space,
using a non-deterministic Turing machine. If a certificate of an instance of Π can be checked in
polynomial time, then Π can be solved in polynomial space by testing every possible certificate
one by one and clearing the memory each time, since the size of a certificate is polynomial. Thus,
NP ⊆ PSPACE and co − NP ⊆ PSPACE. However, the following conjecture remains unsolved.

Conjecture. We have NP �= PSPACE.

It is also unknown if co − NP = PSPACE. Some intermediate classes are defined between NP and
PSPACE. For each of them, a typical problem is obtained by fixing the number of alternating
quantifiers in QBF. These classes form what we call the polynomial hierarchy.

The NPSPACE and co-NPSPACE classes. The complexity class NPSPACE is defined similarly to
NP, but considering the space complexity instead of the time complexity. More precisely, it is
the class of decision problems such that given an instance I and a certificate of I, one can verify
that the certificate makes I a yes-instance of the problem, with a space complexity polynomial
in the size of I. Similarly, the complexity class co-NPSPACE is the class of decision problems
such that given an instance I and a certificate of I, we can verify that the certificate makes I a
no-instance of the problem in polynomial space complexity.

It is easily seen that PSPACE ⊆ NPSPACE and PSPACE ⊆ co − NPSPACE, and Savitch actually
proved that PSPACE = NPSPACE [Sav70], and Immerman and Szelepcsényi that NPSPACE =
co − NPSPACE [Imm88, Sze88]. This means that the information of a certificate does not help
with the achievement of a polynomial space complexity. Figure 2.1 illustrates the inclusion
relationships between the complexity classes we introduced.

PNP co-NP

PSPACE

Figure 2.1: The inclusion relationships between the complexity classes P , NP , co-NP , and
PSPACE.

Hardness, completeness, and polynomial reductions. Two kinds of relationships can exist
between a problem Π and a complexity class C.

Firstly, Π can belong to C. To prove it, the method is generally to give an algorithm with the
stated complexity.

The problem Π can also be at least as hard as any problem in C. We say that Π is C-hard. To
show that Π is C-hard, we use what we call a polynomial reduction. A polynomial reduction is a
polynomial algorithm that, given an algorithm that solves Π, solves a given C-hard problem Π2
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with a polynomial complexity. The algorithm that solves Π is not explicitly given and is called
an oracle, or a black box. We generally create an instance of Π from any instance of Π2, then show
that the output of Π2 is TRUE if and only if the output of Π is TRUE . So being able to solve Π
makes us able to solve Π2, and Π is at least as hard as C.

A problem is C-complete if it belongs to C and it is C-hard.

As an example, we give a simple polynomial time reduction from SAT to QBF. Let F be an
instance of SAT and let x1, . . . , xn be the variables of F . We define the quantified Boolean
formula F ′ := ∃x1∀y1 . . . ∃xn∀ynF (x1, x2, . . . , xn). Since the variables yi are never used in F ,
F ′ is equivalent to ∃(x1, x2, . . . , xn)F (x1, x2, . . . , xn). So F ′ is a yes-instance of QBF if and only if
F is a yes-instance of SAT. And an oracle that can solve QBF can be used to solve SAT. Moreover,
the formula F ′ has twice the number of variables of F , so this reduction is polynomial. This
implies that QBF is at least as hard as SAT, as we already know from the PSPACE-completeness
of QBF, the NP-completeness of SAT, and the fact that NP ⊆ PSPACE.

1.3 Approximation algorithms

Suppose now that we are interested in the solutions of an optimization problem Π, but we
know that Π is ”hard” (i.e. at least NP-hard). Then, if we are willing to accept solutions that
are not necessarily optimal but only close to optimal, a way to get around the hardness of Π
is to use an approximation algorithm. A ρ-approximation algorithm of Π is an algorithm that
outputs a solution for which the value of the function we want to minimize (resp. maximize)
is at most (resp. at least) ρ times the value OPT of an optimal solution (note that in the case
of a maximization, we have ρ < 1). The constant ρ is called the approximation ratio of the
algorithm. For the approximation algorithm to be interesting, its complexity must be inferior to
the complexity of any existing algorithm for Π. Most of the time, we search for polynomial time
approximation algorithms. As an example, let us study the optimization problem MAX-3-SAT,
defined as follows.

MAX-3-SAT

Input: A CNF Boolean formula F , where each clause contains at most three literals
Output: An assignment of the variables of F such that a maximum number of clauses of F are
TRUE with this assignment.

The problem MAX-3-SAT is the canonical problem of a complexity class called MAX-SNP. The
decision version of MAX-3-SAT, which consists in determining if there exists an assignment
that satisfies at least k clauses for a given k, is NP-complete. So unless P = NP, there exists no
polynomial-time algorithm that solves MAX-3-SAT. That being said, outputing the best solution
among the one in which the variables are all TRUE and the one in which the variables are all
FALSE gives a polynomial time 1

2 -approximation algorithm. Indeed, each clause is TRUE in at
least one of these assignments so in one of them at least half the clauses are satisfied. Karloff
and Zwick actually designed a polynomial time 7

8 -approximation algorithm for this problem
[KZ97].

2 Graph theory

Graph theory is the main field of this thesis, but we only present here a few notions and results,
including the ones needed for the understanding of the following chapters. For more details,
the reader is referred to the textbooks [Ber01, Bol13, DSS10].

2.1 Definitions

Undirected graphs. A graph is a mathematical structure that represents the existence or the
absence of a given relationship between any pair in a group. For instance, in a group of people,
two persons may know each other or not. To model it, one can draw the name of each of the
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persons in this group, and draw a line between any two persons who know each other. This
representation constitutes a graph, where each person is a vertex of the graph, and each line is
an edge of the graph. An example, which will serve as a toy example through this section, is
given in Figure 2.2. More formally, an undirected graph G is a pair (V, E) where V is the vertex
set of G, and E is a set of pairs {u, v}, where u, v ∈ V , called the edge set of G.

A

B

C

D
E

(a)

A

B

C

D
E

(b)

A

B

C

D
E

(c)

Figure 2.2: The relationships between Alice (A), Bob (B), Claire (C), Denis (D) and Emily (E).
a) The graph modelizing the aquittance relationship. Alice knows Bob and Denis, Bob knows
Alice, Claire and Denis, Claire knows Bob and Denis, Denis knows Alice and Bob, and Emily
does not know anyone.
b) The digraph modelizing the appreciation relationship. Alice likes Bob and Denis, Bob likes
Claire, Claire likes Denis, Denis likes Alice and Emily does not like anyone.
c) The multigraph modelizing the handshakes between Alice, Bob, Claire, Denis and Emily.
Alice and Bob shook hands twice, Claire and Denis three times, and Bob and Claire, and Bob
and Denis once.

Through this thesis, by abuse of notation, a graph denotes an undirected graph. Moreover, the
graphs we work with have no loop, i.e. no edge {v, v} with v ∈ V . When there is no ambiguity
on the graph G, its vertex set will be denoted by V and its edge set by E, otherwise they are
respectively denoted by V (G) and E(G). Most of the time, the graphs we work with are up to
isomorphism. Intuitively, it means that we do not pay any attention to the names of the vertices,
so that in Figure 2.2, it does not matter if we exchange the people who Alice knows with the
people who Bob knows. More formally, two graphs G1 and G2 are isomorphic if their vertex set
is V = {v1, . . . , vn} and there exists a permutation σ of V such that vivj ∈ E(G1) if and only if
σ(vi)σ(vj) ∈ E(G2).

Let G = (V, E) be a graph. The order of G, denoted by n, is its number |V | of vertices, and
the size of G, denoted by m, is its number |E| of edges. The edge {u, v} is also denoted by uv,
and two vertices u, v ∈ V are adjacent if uv ∈ E. Let V = {v1, . . . , vn}. The graph G can be
equivalently represented by a n × n matrix A such that Ai,j = 1 for any integers i, j ∈ [1, n]
such that vi, vj ∈ E, and Ai,j = 0 otherwise. The matrix A is called the adjacency matrix, or
adjacency list, of G. Note that it is symmetrical. We say that G is empty if E = ∅. For any v ∈ V ,
the set of vertices that are adjacent to v is the neighborhood of v, denoted by N(v), and the degree
of v is d(v) := |N(v)|. The closed neighborhood of v is N [v] := N(v) ∪ {v}. A vertex of degree 0 is
called an isolated vertex, a vertex of degree 1 is called a pendant vertex, and a vertex of degree
n − 1 is called a universal vertex. We say that G is k-regular if every vertex in V has degree k. The
maximum, over all the vertices v of G, of the degrees of v, is called the maximum degree of G,
denoted by Δ(G).

A subgraph of G is a graph H such that V (H) ⊆ V and E(H) ⊆ E. The subgraph induced by S,
where S ⊆ V , is the subgraph whose vertices are in S, and whose edges have both endpoints
in S. A walk from v1 ∈ V to vℓ ∈ V is a sequence (v1, v2, . . . , vℓ) of vertices of G, such that for
any i such that 1 ≤ i ≤ ℓ − 1, vivi+1 ∈ E. A closed walk is a walk from v1 to v1. We say that G is
connected if for any two vertices u, v ∈ V , there exists a walk from u to v. And for any integer
k ≥ 1, G is k-connected if n ≥ k, and if G remains connected when one removes any set of at
most k −1 vertices. A connected component of G is a connected induced subgraph that is maximal
by inclusion with this property. For any two distinct vertices u, v ∈ V in the same connected
component, the distance between u and v is the length of a shortest walk from u to v. If G is
connected, its diameter is the maximum distance between any two vertices. A minor of G is a
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graph that can be constructed from G by deleting edges and vertices and by contracting edges,
where the contraction of an edge consists in removing the edge and merging its two vertices
(the neighborhood of the new vertex is thus the vertices that remain in the union of the two
neighborhoods).

The cycle Cn is the graph (V, E) such that V = {v0, . . . , vn−1} and E = {vivi+1 mod n, 0 ≤ i ≤
n − 1}. In other words, its vertices and edges form a closed walk where each vertex and each
edge appears exactly once. The path Pn is the graph (V, E) such that V = {v1, . . . , vn} and
E = {vivi+1, 1 ≤ i ≤ n − 1}. In other words, its vertices and edges form a walk from one vertex
to another where each vertex and each edge appear exactly once. The star Sn is the graph (V, E)
such that V = {v1, . . . , vn} and E = {v1vi, 2 ≤ i ≤ n}. The complete graph of order n, denoted
by Kn, is the graph such that every pair of vertices is an edge of Kn. Thus, it is the only graph
of order n and size n(n−1)

2 . A complete induced subgraph is called a clique. Figure 2.3 gives an
example of a cycle, a path, a star, and a complete graph.

C5 P3 S6 K5

Figure 2.3: A cycle, a path, a star, and a complete graph.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The complement of G1 is the graph whose
vertex sex is V1 and that contains all the edges that are not in G1 (except for the loops). The
cartesian product of G1 and G2, denoted by G1�G2, is the graph whose vertex set is the cartesian
product V1 × V2, and where two vertices (u1, u2) and (v1, v2) are adjacent if and only if either
u1 = v1 and u2 is adjacent to v2 in G2, or u2 = v2 and u1 is adjacent to v1 in G1. The cartesian
product is illustrated by an example in Figure 2.4. Similarly, the strong product of G1 and G2,
denoted by G1 ⊠ G2, is the graph whose vertex set is the cartesian product V1 × V2, and where
two vertices (u1, u2) and (v1, v2) are adjacent if and only if u1 = v1 and u2 is adjacent to v2 in
G2, or u2 = v2 and u1 is adjacent to v1 in G1, or u1 is adjacent to v1 in G1 and u2 is adjacent to
v2 in G2.

G1 G2 G1�G2

Figure 2.4: The cartesian product of two graphs.

Digraphs. Until now, the relationships we wanted to model were mutual, but it might not
always be the case. Indeed, we can consider that if Alice knows Bob, then Bob knows Alice, but
if we look at the appreciation relationship, it is different: Alice might appreciate Bob even if
Bob does not appreciate Alice. To represent these one-sided relationships, we can use arrows
instead of lines: if Alice likes Bob, we draw an arrow from Alice to Bob. This representation
constitutes a directed graph, or digraph. An illustration is given in Figure 2.2. More formally, a
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digraph G is a pair (V, A) where V is the vertex set of G, and A is a set of couples (in contrary
to a pair, the order of the two elements matters in a couple) (u, v), where u, v ∈ V , called the
arc set of G. The order, size and adjacency matrix are defined similarly as for graphs, but in this
case, the adjacency matrix is not necessarily symmetrical. An orientation of an undirected graph
G = (V, E) is a digraph G′ = (V, E′) such that for any (u, v) ∈ E′, uv ∈ E, and (v, u) /∈ E′. In
other words, it is an affectation of exactly one direction to each edge of G. An oriented graph is a
digraph G = (V, E) such that for any (u, v) ∈ E, we have (v, u) /∈ E. In other words, it is the
orientation of some undirected graph.

Let G = (V, E) be a digraph. The outgoing neighborhood of u is the set N+(u) = {v : (u, v) ∈ E}
and its closed outgoing neighborhood is N+[u] = N+(u) ∪ {u}. Similarly, the incoming neighborhood
of u is the set N−(u) = {v : (v, u) ∈ E} and its closed incoming neighborhood is N−[u] =
N−(u) ∪ {u}. For any v ∈ V , the outdegree of v is |N+(v)| and the indegree of v is |N−(v)|. A
strongly connected component of G is a subgraph H of G such that for any two vertices u and v of
H , there exists a walk from u to v in H (in which we follow the direction of the arcs), and H is
moreover inclusion-wise maximal with this property. We say that G is strongly connected if G
has one strongly connected component.

Multigraphs. We might also want to represent relationships that have occurences. For exam-
ple, if we want to represent how many times the pairs in a group of people shook hands, we
can draw an edge for each of these times. In this case, we obtain a multigraph, as illustrated in
Figure 2.2. More formally, the difference between a graph and a multigraph is that the edge set of
a multigraph is a multiset, i.e. a set where each element can appear more than once, the number
of times it appears being its multiplicity. The order, size and adjacency matrix are defined similarly
and the adjacency matrix is symmetrical, but it contains the multiplicities of each edge.

Most of the graph theory problems we encounter in this thesis focus on undirected graphs,
although we study directed and oriented graphs in Chapter 7, and multigraphs in Chapter 4.
The problems we study in graph theory are often hard to solve in the general case (i.e. NP-hard
or PSPACE-hard). Thus, we often focus on special cases, by studying the problem only on some
graphs that verify a given property. The set of graphs verifying this property then forms a class
of graphs.

2.2 Graph classes

We present here some graph classes that we encounter in this thesis.

Trees and treewidth. A forest is a graph that does not contain any cycle as a subgraph, and a
tree is a connected forest. A vertex of degree 1 in a tree is called a leaf . Note that paths and stars
are trees. A lot of graphs that model real data are trees, such as phylogenetic trees or decision
trees. Moreover, a lot of graph problems are easy to solve on trees, and this property led to the
definition of a graph parameter called the treewidth, whose aim is to describe how close to a
tree a graph is. More formally, a tree decomposition of a graph G = (V, E) is a pair (X, T ) where
X is a set of subsets of V called bags and T is a tree whose vertices are the bags of X , and that
satisfies:

• For any vertex v ∈ V , v belongs to at least one bag of X

• For any edge uv ∈ E, there exists a bag that contains both u and v

• For any vertex v ∈ V , the set of bags containing v forms a connected subgraph of T .

Figure 2.5 gives an example of a tree decomposition of a graph.
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Figure 2.5: On the left, a graph G. In the middle, a tree decomposition of G. On the right, a path
decomposition of G.

The minimum, over all the possible tree decompositions of G, of the maximum size of a bag,
to which we substract 1, is called the treewidth of G and is denoted by tw(G). Note that the
graphs of treewidth 1 are exactly the forests. Indeed, by rooting arbitrarily each tree of a forest,
and replacing each vertex of the tree by a bag containing the vertex and its parent, we otbain a
tree decomposition of treewidth 1. Conversely, if a graph contains a cycle, then any vertex u
of this cycle has two neighbors v and w in the cycle. A bag must contain u and v, and a bag
must contain u and w. Moreover, if the bags are different, they must be adjacent. By repeatining
this argument on every vertex u of the cycle, we obtain a cycle in any tree decomposition of
treewidth 1, a contradiction. In general, the treewidth is unbounded. The decision problem that
consists in determining whether a given graph has treewidth at most a given k is NP-complete
[ACP87]. A tree decomposition of G in which T is a path is called a path decomposition of G.
The minimum over all path decompositions of G, of the maximum size of a bag, to which we
substract 1, is the pathwidth of G, denoted by pw(G). Figure 2.5 gives an example of a path
decomposition.

Cacti, cographs and chordal graphs. A cactus is a connected graph in which any two simple
cycles have at most one vertex in common. In other words, it is a connected graph such that
every edge belongs to at most one cycle. Cacti can be recognized in linear time. An example of
a cactus is given in Figure 2.6.

A cograph is a graph that does not contain the path P4 as an induced subgraph. Cographs are
more commonly defined as the graphs that can be generated from a single vertex by using the
union operation and the complementation operation. For example, the cograph illustrated in
Figure 2.6 can be constructed by taking the union of two graphs: the complement of the union
of two single vertices, and the complement of the union of two such graphs. Cographs can be
recognized in linear time [CPS85].

A chordal graph is a graph G such that every cycle of G on at least 4 vertices has a chord, i.e. an
edge linking two vertices that are non-adjacent in the cycle. In other words, G has no induced
cycle of order other than 3. This is the reason why these graphs are also called triangulated
graphs. A chordal graph is given in Figure 2.6. Another way to define chordal graphs is with
perfect elimination orderings. A perfect elimination ordering of a graph G = (V, E) is an ordering
of V such that for every v ∈ V , v and the neighbors of v that are after v in the order induce a
clique. A graph is chordal if and only if it has a perfect elimination ordering, and Rose, Lueker
and Tarjan [RTL76] used this property to show that we can recognize a chordal graph in linear
time. If the graph is chordal, their algorithm outputs a perfect elimination ordering.

Cactus Cograph Chordal

Figure 2.6: A cactus, a cograph and a chordal graph.
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Bipartite graphs and split graphs. A bipartite graph is a graph (V, E) such that there exists
a partition of V into two parts A and B, such that for every edge e ∈ E, one extremity of e
is in A and the other is in B. Equivalently, a bipartite graph is a graph that does not contain
any induced cycle of odd order. Indeed, any walk in G alternates between vertices of A and
vertices of B, so in particular there can be no induced cycle of odd order in G. Conversely, if a
graph contains no induced cycle of odd order, then we can create two parts in G by alternating
between the two parts in any walk of G. In particular, every forest and cycle of even order is
bipartite. Bipartite graphs are often used in modelization, for instance in affiliation networks
where the two parts represent two different kind of objects (for example, a part can be a set
of people, the other part a set of companies, and a person is adjacent to the companies they
worked for). The complete bipartite graph Kp,q is the bipartite graph of parts A and B where
|A| = p, |B| = q, and such that each vertex of A is adjacent to every vertex of B. An example is
given in Figure 2.7.

A split graph is a graph whose vertices can be partitioned into a clique and an empty subgraph.
Foldes and Hammer proved that a graph G is split if and only if no induced subgraph of G
is a cycle of order four or five, or a pair of disjoint edges [FH76]. Hammer and Simeone then
provided an algorithm that recognizes split graphs in linear time [HS81]. An example of a split
graph is given in Figure 2.7.

K3,2
Split

Figure 2.7: A complete bipartite graph and a split graph.

Grid, planar and outerplanar graphs. The grid of dimensions p × q, where p and q are integers,
is the graph Pp�Pq. An example is given in Figure 2.8. The toroidal grid of dimensions p × q is
the graph Cp�Cq . The king’s grid of dimensions p × q is the graph Pp ⊠ Pq , and the toroidal king’s
grid of dimensions p × q is the graph Cp ⊠ Cq. The rook’s graphs of dimensions p × q is the graph
Kp�Kq . Even if there is only one grid of dimensions p × q for two given p and q, it is not always
straightforward to solve a graph problem for grids, as we will see in Section 3.

A planar graph G = (V, E) is a graph that can be drawn in the plane in such a way that no pair
of edges intersect. Such a drawing is called a planar drawing of G. The decision problem that
determines if a given graph is planar is linear, and if it is, a planar drawing can be found in linear
time [HT74]. Moreover, there exists a planar drawing of G such that every edge is represented
by a straight line [Ist48]. An example of such a planar drawing of K4 is given in Figure 2.8.
From now on, we assume that we are given a drawing of G. A face of G is a connected region
of the plane bounded by the edges of the graph, including the outer region which is the outer
face. A very famous result concerning planar graphs is Euler’s formula, proven by Leonard
Euler in its correspondance (a history of the formula can be found in [Deb10]), which states the
following:

Theorem. For any planar drawing of a graph G = (V, E), we have n − m + f = 2, where n is the
order of G, m is the size of G, and f is the number of faces in the drawing (including the outer face).

Another fundamental result about planar graphs is Wagner’s theorem [Wag37]. A graph class C
is minor-closed if for every graph G of C, every minor of G is also in C. Wagner’s theorem states
the following:

Theorem. [Wag37] A graph is planar if and only if it does not have K3,3 nor K5 as a minor.

This result raised the following question: can every minor-closed class be characterized by a
finite number of forbidden minors ? Robertson and Seymour [RS04] finally answered positively
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this question in 2004, after 10 years, 20 papers and more than 500 pages of proof, thus opening
a new area of graph theory which focuses on finding these forbidden minors.

An outerplanar graph is a graph that has a planar drawing in which all vertices belong to the
outer face of the drawing. Figure 2.8 gives an example of an outerplanar graph. The class of
outerplanar graphs is minor-closed, and its two forbidden minors are K4 and K3,2 [DSS10].
The treewidth of outerplanar graphs is bounded by 2, and an optimal tree decomposition is
easily found, which makes a lot of graph problems easy to solve with dynamic programming
for this class.

Note that forests, cycles and cacti are outerplanar graphs, and grids are planar graphs.

P3�P4 Planar Outerplanar

Figure 2.8: A grid, a planar and an outerplanar graph.

Intersection graphs and line graphs. An intersection graph is a graph whose vertices are sets,
and such that two vertices share an edge if and only if their corresponding sets intersect. Every
graph is an intersection graph [EGP66], but we list here some intersection graphs in which the
sets verify certain properties.

The most common example of intersection graphs is the interval graphs. An interval graph is an
intersection graph of intervals of the real line. A proper interval graph is an intersection graph
of intervals that are not included in each others. In particular, a proper interval graph is an
interval graph. Similarly, a circular arc graph is an intersection graph of intervals of a circle. In
other words, every vertex is associated an arc of the circle and there is an edge between two
vertices if their two corresponding arcs intersect. Recognizing an interval graph and giving
an interval representation can be done in linear time [BL76]. The same holds for circular arc
graphs [McC03].

A circle graph is an intersection graph of chords of a circle. In other words, every vertex is
defined with two points on a circle and there is an edge between two vertices if the chords
leaving their respective pair of points intersect. Note that this is different from a circular arc
graph, as two arcs can intersect while the chords between their extremities do not. Actually,
an equivalent way to represent a circle graph consists in defining one real interval for each
vertex and there is an edge between two intervals if their respective intervals intersect but do
not overlap. This second condition makes the class more complicated than interval graphs.
Spinrad gave a quadratic algorithm that determines if a graph is a circle graph, and outputs a
circle representation if it is [Spi94].

A unit disk graph is a graph such that there exists a set C of circles of radius 1 in the plan and a
bijection from V to C such that for any u, v ∈ V , uv ∈ E if and only if the two image circles of u
and v intersect. Most of the graph problems are hard on unit-disk graphs. Even determining if a
given graph is a unit disk graph is NP-hard [BK98]. Moreover, there exist some unit disk graphs
for which it is impossible to output a unit disk representation in polynomial time [MM13].

Let G = (V, E) be a graph. The line graph L(G) is the graph such that V (L) = E, and for any
e, f ∈ V (L), we have ef ∈ E(L) if and only if e and f share a vertex in G. A graph L is a
line graph if there exists a graph G such that L = L(G). Whitney [Whi92] proved that every
connected graph G is fully characterized by its line graph, with the exception of the two graphs
K3 and S4 which both have K3 as their line graph. Thus, every graph problem has an equivalent
formulation in terms of its line graph, and line graphs are useful tools in graph theory. Given a
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graph G, one can determine if G is a line graph, and output the graph it is the line graph of, in
linear time [Rou73].

Figure 2.9 illustrates these definitions with examples.

Interval Circle Unit Disk Line Graph

Figure 2.9: An interval, circle, unit disk and a line graph.

2.3 Graph problems and parameters

Since it models binary relationships, graphs can be used to study real networks, such as social
networks, physical contacts in a population, interactions between atoms, etc. For this reason,
graph theory has applications in social sciences, epidemiology, chemistry, and many other fields.
In these applications, the graph represents the data, and the problem on this data then becomes
a purely mathematical graph theory problem. One of the earliest and most famous application
of graph theory is the one of the seven bridges of Könisberg. Back in 1735, Königsberg was
a city in Prussia, that was crossed by the Pregel river, with two islands in the river. It thus
contained four lands, linked together by seven bridges, as illustrated in Figure 2.10. The folklore
tells that the following question was raised by the king: Is it possible to take a walk in the city,
cross each of the seven bridges exactly once, then come back to the starting point ? The great
mathematician Leonhard Euler answered this question by proving it was impossible [Eul41].

Figure 2.10: The seven bridges of Konigsberg.
Source: http://planund.com/

This problem is often referred to as the first problem of graph theory, and is now known as an
instance of the Eulerian cycle problem.
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EULERIAN CYCLE

Input: A graph G
Output: TRUE if and only if there exists a closed walk that goes through every edge of G exactly
once.

Euler showed that a graph G is a yes-instance of EULERIAN CYCLE if and only if every vertex in
G has even degree. But for many graph problems, the yes-instances do not have such a simple
characterization. We review here some of these problems, as well as the graph parameters that
are associated.

Hamiltonian cycle. The Hamiltonian cycle problem is similar to the Eulerian cycle problem,
but the walk has to go through each of the vertices, instead of the edges, exactly once.

HAMILTONIAN CYCLE

Input: A graph G
Output: TRUE if and only if there exists a closed walk that goes through every vertex of G
exactly once.

An example of Hamiltonian cycle in a graph is given in Figure 2.11.

Figure 2.11: An example of a graph G and a Hamiltonian cycle of G.

This problem is a special case of the TRAVELLING SALESMAN problem which, given a list of
cities and the distances between each pair of cities, asks what is the shortest closed walk visiting
each city. The TRAVELLING SALESMAN problem is a very well known problem that has many
applications. It is obviously used in planning and logistics, but also in DNA sequencing (the
cities represent DNA fragments and the distance between two fragments are their genetic
distance) or even in astronomy. Contrarily to EULERIAN CYCLE, no easy characterization of
the yes-instances of HAMILTONIAN CYCLE, called the Hamiltonian graphs, is known, and this
problem is NP-complete in general [PS03].

Maximum clique. To illustrate the remaining graph problems, we will use the running toy
example of the organization of a scientific event. Suppose first that for it to be a successful
event, we want everyone to know each other, and we want to invite a maximum number of
people. In the group of people of Figure 2.2, for instance, such an event could gather Alice, Bob
and Denis, or Alice, Claire and Denis. Using the graph representation, this problem consists in
finding a clique of maximum size in the graph, which is an optimization problem known as the
MAXIMUM CLIQUE problem. Its associated decision problem is the following.

CLIQUE

Input: A graph G, and integer k
Output: TRUE if and only if there exists a clique of order at least k in G.

The maximum order of a clique in G is the clique number of G, denoted by ω(G), and illustrated
in Figure 2.12.
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Figure 2.12: An example of a graph G and a maximum clique of G, which gives ω(G) = 3.

This problem has many applications in social sciences, where finding groups of people who all
know each other, or share a common interest, can be very useful in the understanding of social
behaviours. Note that the term clique actually comes from the term social clique. Deciding if
there exists a clique of order k in G is a NP-complete problem [Kar72].

Maximum independent set. Let us go back to our event. A scientific event where everybody
knows each other might not be very productive. So let us now consider the problem where we
want to organize our event in such a way that nobody knows each other, and with a maximum
number of convits. In the group of people of Figure 2.2, the only solution would be to invite
Alice, Claire and Emily. A set S ⊆ V is an independent set of G if uv �∈ E for every u, v in S, and
this problem actually consists in finding an independent set of maximum cardinality in the
associated graph. This problem is known as the MAXIMUM INDEPENDENT SET problem, and
the associated decision problem is defined as follows.

INDEPENDENT SET

Input: A graph G, an integer k
Output: TRUE if and only if there exists an independent set of G of order at least k.

The independence number α(G) is the size of a largest independent set of G. The notions of
independent set and independence number are illustrated in Figure 2.13.

Figure 2.13: An example of a graph G and two independent sets of G. The independent set
on the right is maximum, thus giving α(G) = 3. The two corresponding cliques in G are
represented below.

Note that, as illustrated in Figure 2.13, an independent set of G is a clique in the complement G.
So we have α(G) = ω(G). It implies that this problem is NP-complete [Kar72], even though the
problem of finding an independent set maximal by inclusion can be solved in polynomial time
with a greedy algorithm [Lub86].
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Graph coloring. Now, even though it is productive to gather people who do not know each
other, it is a shame not to be able to invite everyone, and a solution could be to simply gather
people in different rooms, such that every room only contains people who do not know each
other, and with a minimum number of rooms. For example, in the group of people of Figure 2.2,
the optimal solution would be a room with Alice and Claire, a room with Bob, and a room with
Denis, and Emily can be in any of these rooms. This problem describes the GRAPH COLORING

optimization problem. A proper coloring of G is an attribution of a color to each of the vertices of
G, such that no adjacent vertices have the same color. In other words, it is a partition of V into
independent sets, where each independent set is a color. The decision problem COLORABILITY

is defined as follows.

COLORABILITY

Input: A graph G, an integer k
Output: TRUE if and only if there exists a proper coloring of G with at most k colors.

The minimum number of colors in a proper coloring of G is called the chromatic number of G,
denoted by χ(G). It is illustrated in Figure 2.14. Note that the bipartite graphs are exactly the
graphs of chromatic number 2. The clique covering number θ(G) of G is the chromatic number of
the complement of G. In other words, it is the minimum number of cliques in which G can be
partitioned.

Figure 2.14: An example of a graph G and two proper colorings of G. The number of colors is
minimum on the right, thus giving χ(G) = 3.

For any graph G, in a clique of G, since every pair of vertices shares an edge, every vertex
must have distinct colors in a proper coloring. Thus, we have χ(G) ≥ ω(G). The graphs G
for which χ(H) = ω(H) for any induced subgraph H of G are called the perfect graphs. The
strong perfect graph theorem, proved by Chudnovsky, Robertson, Seymour, and Thomas in
2006, characterizes the perfect graphs as follows.

Theorem. [CRST06] A graph is perfect if and only if it contains no hole nor antihole, where a hole is an
induced cycle of odd order at least 5 and an antihole is the complement of a hole.

Since each color induces an independent set of G, and the size of an independent set is at most
α(G), we also have χ(G) ≥ n

α(G) .

The chromatic number is, in the general case, unbounded. However, it is bounded for some
graph classes. For instance, the four color theorem [AH76] states that for any planar graph G
we have χ(G) ≤ 4. It is a famous result concerning graph coloring, partly because it was the
first theorem with a computer assisted proof. It implies in particular that every geographic map
can be colored with four colors such that two countries that share a border do not have the same
color. Graph coloring has many other applications, particularly in logistics and scheduling. In
these applications, we are given a set of jobs that each require the same amount of time. For
some pairs of jobs, it is not possible to complete the two jobs at the same time (if, for example,
they use the same ressource). And we want to minimize the time taken to complete all the jobs.
Then, if we represent each job by a vertex and two vertex share an edge if the two jobs cannot
be completed at the same time, then minimizing the time corresponds to fiding the minimum
number of colors in a proper coloring of the graph.

In the general case, this problem is NP-complete. Actually, it is even NP-complete when
restricted to the case where k = 3 [Kar72].
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Vertex cover. Separating the people who know each other in our event might be a little strict,
and we may want to have more details about the relationship between two persons before
deciding to seperate them. To do so, we can ask any guest to describe the relationship they
have with every guest they know, and we want every relationship to be described, but we want
to ask a minimum number of people, not to bother them. For example, in Figure 2.2, the only
optimal solution would be to ask Bob and Denis. This problem corresponds to the MINIMUM

VERTEX COVER optimization problem, and its associated decision problem is defined as follows,
where a set C ⊆ V is a vertex cover of G if for any uv ∈ E, u ∈ C or v ∈ C (or both).

VERTEX COVER

Input: A graph G, an integer k
Output: TRUE if and only if there exist a vertex cover of G of size at most k.

The vertex cover number τ(G) is the size of a minimum vertex cover of G. The notions of vertex
cover and vertex cover number are illustrated in Figure 2.15.

Figure 2.15: An example of a graph G and two vertex covers of G. The vertex cover is minimum
on the right, thus giving τ(G) = 3.

Note that C is a vertex cover of G if and only if V \ C is an independent set of G. This implies
that τ(G) = n − α(G) for any graph G, and that the VERTEX COVER problem is NP-complete.

Matching. Let us finally consider the following problem. Concerning the accomodation for
our event, we need to place people in double and single rooms, but we want to pair up people
who know each other only, and we want to maximize the number of double rooms, for budget
reasons. Thus, an optimal solution in the example of Figure 2.2 would be to pair up Alice and
Denis, and Bob and Claire, and to place Emily in a single room. This optimization problem
is the MAXIMUM MATCHING problem. A matching of a graph G is a set of edges of G without
common vertices. The associated decision problem MATCHING is defined as follows.

MATCHING

Input: A graph G, an integer k
Output: TRUE if and only if there exists a matching of G of size at least k.

The maximum size of a matching of G is called the matching number μ(G) of G, illustrated in
Figure 2.16.

Figure 2.16: An example of a graph G and two matchings of G. The matching is maximum on
the right, and thus μ(G) = 2.

A matching of size n
2 , or in other words such that every vertex is adjacent to exactly one edge

of the matching, is called a perfect matching. The following theorem, called Hall’s marriage
Theorem, is a famous result concerning the existence of a perfect matching in a bipartite graph.
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Theorem. [Hal35] Let G be a bipartite graph of parts X and Y , such that |X| = |Y |. There exists a
perfect matching in G if and only if for every subset W of X , we have |W | ≤ |N(W )|.

The MATCHING problem has applications in chemistry, in which a matching between the carbon
atoms of an aromatic compound is called a Kekulé structure. Matchings are particularly studied
in bipartite graphs. In logistics, it is known as the graduation problem, in which we are given a
set of requirements to graduate from a university, and a set of classes that can each complete
several requirements, but can each be used to complete only one requirement.

The MATCHING problem can be solved in polynomial time in general graphs, using the so-called
blossom algorithm due to Edmonds [Edm65]. The running time of this algorithm is in O(

√
nm).

3 The Domination problem in graphs

As the domination problem is one of the main topics of this thesis, we give more details about
this particular graph problem. That being said, we only present a few results here, and for a
more complete state of the art, the reader is referred to the textbooks [HHS98].

3.1 Definitions

Let us come back to our scientific event. We would like now to have a description of every
guest, in order to choose a personalized gift for them. To do so, for each guest, we can obtain
this person’s description either from themselves, or from another guest who knows them. For
example, in the group of people of Figure 2.2, we need to ask Emily to describe herself, and
we can ask Alice to describe herself, and ask Claire to describe Bob, Denis and herself. This
problem is equivalent to finding a dominating set of the graph. More formally, a dominating set
of G = (V, E) is a set D ⊆ V such that every vertex of G either is in D or is adjacent to a vertex
of D. When the graph G is not empty, and n ≥ 2, there are more than one dominating set of G.
That being said, it might be interesting to search for a dominating set of minimum size. In our
group of people, for example, we may want to bother a minimum number of people. Bothering
Emily is unevitable, since nobody else knows her, but asking Bob is enough to get all the other
descriptions, thus we can ask two people instad of three. A dominating set of a graph G of
minimum size is called a minimum dominating set of G, and its size is the domination number of
G, denoted by γ(G). These two notions are illustrated in Figure 2.17.

Figure 2.17: An example of a graph G and two dominating sets of G. The dominating set on the
right is minimum, thus giving γ(G) = 2.

The problem of finding a minimum dominating set in a graph is a famous optimization problem
called the MINIMUM DOMINATING SET problem, and its associated decision problem DOMINA-
TION is defined as follows.

DOMINATION

Input: A graph G, an integer k
Output: TRUE if and only if there exists a dominating set of G of size at most k.
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3.2 State of the art

Domination problems in graphs were first studied in the 50s, but the notion of dominating set
was formally introduced by Ore in 1965 [Ore65]. In this same book, Ore proves the following
fundamental result.

Theorem. [Ore65] If G = (V, E) is a connected graph of order n ≥ 2, then γ(G) ≤ n
2 .

Proof. Let D be a dominating set of G, minimal by inclusion, and let us show that V \ D is a
dominating set of G. Assume for contradiction that there exists v ∈ V that is not dominated
by V \ D. Then, by definition, v is not in V \ D, and no vertex adjacent to v is in V \ D. Thus,
v ∈ D, and every vertex adjacent to v in G is in D. Since G is connected, at least one vertex is
adjacent to v in G and thus v is dominated by D \ v, as well as every vertex adjacent to v in
G. So D \ v is a dominating set of G, a contradiction with the minimality of D. Therefore, by
definition, γ(G) ≤ |D| and γ(G) ≤ n − |D|, which gives the result.

To see that this bound is sharp, let us consider, for an even n, a graph constructed from the path
P n

2
by adding a leaf on each of its vertices. Since each of the n

2 leaves is only adjacent to its path
vertex, it is easily seen that γ = n

2 . Baogen et al. actually gave a complete characterization of
the graphs for which the equality is reached [BCH+00].

The domination number can also be compared to other graph parameters such as the indepen-
dence, or the vertex cover number.

Observation. For any connected graph G, we have γ(G) ≤ τ(G).

Indeed, by definition, a vertex cover contains one of any two adjacent vertices of G, and since G
is connected, every vertex has at least one adjacent vertex, thus the vertex cover is a dominating
set. The example of stars, for which γ(Sn) = 1 and τ(Sn) = 1 for any n, shows that this bound
is tight.

Observation. For any graph G, we have γ(G) ≤ α(G).

Indeed, since in a maximum independent set I of G, adding any vertex induces an edge, it
means that each vertex of V \ I has a neighbor in I . So a maximum independent set is a
dominating set. The example of complete graphs, for which γ(Kn) = 1 and α(Kn) = 1 for any
n, shows that this bound is tight.

The value of the domination number has been particularly studied in grids, since it is a particular
case of the following conjecture by Vizing, which is one of the most studied domination
problems.

Conjecture. [Viz68] For any graphs G and H , we have γ(G�H) ≥ γ(G) · γ(H).

In 1992, Chang [Cha92] conjectured the following exact value of the domination number in the
grid Pp�Pq , which was then proved in 2011 by Gonçales, Pinlou, Rao and Thomassé [GPRT11].

Theorem. [GPRT11] For any p and q such that p ≥ 16 and q ≥ 16, we have γ(Pp�Pq) = ⌈ (p+2)(q+2)
5 ⌉−

4.

This result, and the computation of γ in the other cases, by Fisher [Fis93] with a computer,
confirms Vizing’s conjecture for grids.

In 1979, Garey and Johnson [GJ79] proved that the decision problem DOMINATION is NP-
complete. Since then, it has been studied in particular classes of graphs. For some graphe
classes such as outerplanar graphs [ABF+02] or circular arc graphs [HT91], the problem is
linear, but it is NP-complete in most of the studied classes such as bipartite graphs [Dew81],
line graphs [YG80], circle graphs [Kei93] or unit disks graphs [CCJ91].

3.3 Applications

Domination problems in graphs have been introduced in the early years of graph theory because
it is a very natural problem, with many applications, in various fields such as physics, biology,
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computer science or social sciences.

A common application in these fields is the surveilliance of a network, wheather it is an electrical,
biological, computer, or social network. The problem is always the same: we want to be able to
monitor every element of the network, by choosing the minimum number of elements to do
so, an element being able to monitor itself and its neighbors. It is easily seen, when seing the
network as a graph, that this corresponds to the dominating set problem.

Another well-known application is the facility location problem, an optimization problem
whose goal is to give the optimal location of facilities (hospitals, for example) in order to
make it accessible to the population, while minimizing the number of facilities. In the graph
whose vertices are districts, and where two districts share an edge if one is accessible from the
other (assuming that being accessible is defined, with a maximum distance for example), this
problems corresponds to the dominating set problem.

3.4 Variants

A lot of variants of the domination problem have been studied.

The first one that comes to mind is the total domination, more restrictive, since a total dominating
set is a set D ⊆ V such that every vertex of G is adjacent to a vertex of D. In other words,
in a total dominating set, a vertex does not dominate itself. The minimum size of a total
dominating set is called the total domination number of G, denoted by γt(G). For example, in
network monitoring, we might not want to trust an element to monitor itself, and thus use total
domination instead of domination to solve our problem. Note that the graph of Figure 2.17 has
no total dominating set. Indeed, such a set only exists in graphs that contain no isolated vertex.

Another variation that has been widely studied is the connected domination. A connected domi-
nating set of G is a dominating set that has the additional constraint of inducing a connected
subgraph of G. The connected domination number of G, denoted by γc(G), is the minimum size
of a connected dominating set of G. This problem is particularly useful in network monitor-
ing, when we want to transmit information between the elements of the network through the
monitoring elements, that thus have to be connected.

We have already seen that a maximum independent set of a graph G is also a dominating
set of G. An independent dominating set of G is a set that is both an independent set and a
dominating set of G. The independent domination number of G, denoted by i(G), is the size of
a smallest independent dominating set of G. This parameter introduced a graph class, the
domination-perfect graphs, for which γ(H) = i(H) in every induced subgraph H of G.

Among the other variants of the domination problem, we can also name the fractional domina-
tion, or the power domination. The domination problem has also been introduced on digraphs,
where for example a vertex u dominates v if and only if uv is an arc of G. A lot of results
on graphs have been extended to digraphs. Dynamic versions of the domination problems,
where we apply changes to the dominating sets, have also been studied, such as the eternal
domination presented in Chapter 7, and the reconfiguration of dominating sets presented in
Chapters 5 and 6.
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Chapter 3

Reconfiguration problems

In this chapter, we introduce some basic notions and classical results of the reconfiguration
framework. In Section 1, we define the features that characterize a reconfiguration problem,
and illustrate these definitions with the running example of the 15-puzzle. In Section 2, we
review some notable results about the reconfiguration of tokens in a graph, that can be seen as
a generalization of the 15-puzzle problem, among which the reconfiguration of INDEPENDENT

SET and DOMINATING SET. In Section 3, we present some results on three other problems: the
reconfiguration of COLORING and SATISFIABILITY, and the reconfiguration of graphs with the
same degree sequence. For more details about reconfiguration problems, the reader is referred
to the reviews of Jan Van den Heuvel [vdH13] and Naomi Nishimura [Nis18].

1 Definitions

The reconfiguration framework, although formally introduced recently, regroups a lot of math-
ematical problems that have been studied for decades in combinatorics and graph theory. A
reason is that the questions raised in reconfiguration are quite natural, and they have concrete
applications in fields such as physics [Mar99], robotics [PRST94, Sur09], as well as in popular
games [JS+79, Cul97]. Reconfiguration problems ask the question of if, and how, we can trans-
form a solution of a problem into another by applying changes which maintain the solution. A
classical example is the 15-puzzle. This popular puzzle consists in a set of 15 tiles, arranged in a
4 × 4 grid, with one hole. The player has to create an image, by repeatively sliding a tile next
to the hole, from its position onto the hole. In the mathematical model of the 15-puzzle, we
consider a set of 15 tokens, labeled from 1 to 15, on the vertices v1, . . . , v16 of the 4×4 grid graph.
The vertex that has no token is called the empty vertex. The player can apply moves, where a
move consists in sliding a token along an edge from its position to the empty vertex. The goal
is to find a sequence of moves from the current configuration of tokens, to the configuration
where any token labeled i is on the vertex vi, as illustrated in Figure 3.1.

13 14 15 12

9 10 11

5 6 7 8

1 2 3 4

→

1.

13 14 15 12

9 10 11

5 6 7 8

1 2 3 4

→

2.

13 14 15

9 10 11 12

5 6 7 8

1 2 3 4

3.

Figure 3.1: A sequence that solves a 15-puzzle in 2 steps.
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We use the example of the 15-puzzle to illustrate the classical notions of reconfiguration. As
underlined in [Nis18], a reconfiguration problem is defined by 5 features: the source problem,
the instance, the feasible solutions, the adjacency rule (these four features characterize the
reconfiguration graph), and the problematic. We define here each of these notions.

1.1 Source problem, instance and feasible solutions

The aim of reconfiguration is to transform a solution of a problem into another. The solutions
we reconfigurate are then the solutions of the source problem. For example, in the 15-puzzle,
the source problem can be formulated as follows. What are the possible placements of n − 1
labeled tokens on a given graph of order n ? The instance is the instance of this source problem
we are interested in. So in the 15-puzzle, the instance is the 4 × 4 grid. The solutions of this
instance are called the configurations, or feasible solutions. A variety of source problems has been
studied in the literature, such as INDEPENDENT SET [KMM12, IDH+11, HD05], DOMINATING

SET [HIM+16, HS14, BDO19], MATCHING [BBH+19], GRAPH COLORING [Cer07, BC09, BH19]
or SATISFIABILITY [GKMP09, MNPR17]. We review some of these results in Sections 2 and 3.
Additionally to the 15-puzzle, the INDEPENDENT SET reconfiguration problem will often serve
as an example in what follows. In this problem, the configurations are independent sets of a
graph.

1.2 Adjacency rule

To transform a solution of the source problem into another, one first needs to define the changes
that can be applied in such a transformation. The adjacency rule is the rule that describes the
change we can apply to a solution to go to another in a single step, also called move. In the
15-puzzle, the move we can apply to go from one placement of the 15 tokens to another is the
sliding of a token along an edge, from its position to the empty vertex. In the framework of
SATISFIABILITY reconfiguration, the move consists in changing the value of exactly one Boolean
variable. In the reconfiguration of graphs with the same degree sequence, the move consists in
flipping two disjoint edges, i.e. exchanging one of their endpoints. Note that in these examples,
the adjacency rule is mutual: if we can go from a first configuration to a second, we can go
from the second to the first. Most of the works on reconfiguration problems focus on mutual
adjacency rules, and it will always be the case in this chapter, but there is no reason why we
should restrict to this kind of studies.

1.3 Reconfiguration graph

Let Xs and Xt be two feasible solutions of a source problem Π. A reconfiguration sequence from
Xs to Xt is a sequence S =< X1 := Xs, . . . , Xℓ := Xt > such that for any Xi ∈ S, Xi is a
feasible solution, and for any two consecutive feasible solutions Xr and Xr+1 of S, there exists
a move (following the adjacency rule) from Xr to Xr+1. Thus, solving a 15-puzzle is equivalent
to finding a reconfiguration sequence from the initial position of the tokens to the target one
(in which every token i is on the vertex vi). Each element of this sequence is a position of the
tokens, reachable from the previous one by the sliding of a token along an edge to the empty
vertex.

Another way to represent a reconfiguration sequence from Xs to Xt is with a path on a graph
called the reconfiguration graph and denoted by R. The vertices of R are the feasible solutions
and two feasible solutions are adjacent in R if and only if there exists a move from one to the
other. A portion of the reconfiguration graph for the 15-puzzle is given in Figure 3.2.

Using this representation, solving a 15-puzzle consists in finding a path in the reconfiguration
graph from the initial configuration to the target one, as illustrated in Figure 3.2, where the red
path corresponds to the resolution presented in Figure 3.1.
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Figure 3.2: A portion of the reconfiguration graph R for the 15-puzzle.

1.4 Problematic

The last and most important part of the problem is the question we want to solve, i.e. what we
want to know given the feasible solutions, the adjacency rule and the instance. In this thesis, we
call this question the problematic. It can very often be described as a graph problem posed on the
reconfiguration graph R. In the 15-puzzle, the problematic is the existence of a reconfiguration
sequence from the initial configuration to the target one, or equivalently the existence of a
path from the initial to the target configuration in the reconfiguration graph R. Note that this
problem is not a structural problem posed on the reconfiguration graph R, it has an input
which is the initial configuration, and it is therefore an algorithmic problematic, in opposition
to a structural problematic. Most the algorithmic problematics are easy (i.e. in P) when the
reconfiguration graph is given. For instance, since solving a 15-puzzle is equivalent to finding a
path in R, if R is given then the result is straightforward. But the reconfiguration graph R is
not an input of the problem. However, in this thesis, we will always consider reconfiguration
problems where we can recognize a feasible solution and find all the feasible solutions adjacent
to it in polynomial time. In what follows, we review some of the most common problematics in
the reconfiguration framework.

Reachability. The algorithmic problematic reachability is the most extensively studied. It is
also the one that has the most applications in games. It can be formulated as follows.

REACHABILITY

Input: A source problem Π, an instance I of Π and two feasible solutions Xs and Xt.
Output: TRUE if and only if there exist a reconfiguration sequence from Xs to Xt (or, equiva-
lently, a path from Xs to Xt in R).

REACHABILITY is a decision problem, and we are generally interested in its complexity. In
particular, in Chapter 6, we are interested in the complexity of REACHABILITY for the source
problem DOMINATING SET in several graph classes. The REACHABILITY problem is classically
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PSPACE-complete [HD05, HIM+16, BC09, GKMP09], athough it is sometimes in NP [LM18] or
in P [KMM12, CVDHJ11, GKMP09].

Shortest transformation sequence. Another extensively studied algorithmic problematic is
shortest transformation sequence, which can be formulated as follows.

SHORTEST TRANSFORMATION

Input: A source problem Π, an instance I of Π and two feasible solutions Xs and Xt such that
Xt is reachable from Xs.
Output: The length (i.e. the number of moves) of a shortest reconfiguration sequence from Xs

to Xt (or, equivalently, the length of a shortest path from Xs to Xt in R).

Note that in the 15-puzzle game, it is interesting to minimize the number of times we slide a
tile before obtaining the target solution. The shortest transformation sequence problematic is
an optimization problem, and it is often not solvable in polynomial time. Thus, a lot of work
has been done on polynomial time approximation algorithms. To get the approximation ratio, a
lower bound can be obtained by noticing that some elements have to be modified from Xs to Xt.
These elements belong to the symmetric difference, i.e. the set of elements whose state is different
in Xs and Xt, denoted by Δ(Xs, Xt). Typically, in the reconfiguration of independent sets, the
symmetric difference is Δ(Is, It) = (Is \It)∪ (It \Is). In the 15-puzzle, the symmetric difference
is the set of tokens that do not have the same position in the initial and target configurations. A
trivial lower bound on the length of a transformation is then the size of the symmetric difference,
divided by the number of elements that can be removed from the symmetric difference in one
move. This is the technique we use to obtain a lower bound on the shortest transformation
between connected graphs with the same degree sequence in Chapter 4. While it is obvious
that the elements of the symmetric difference need to be changed in a reconfiguration sequence,
it is usually not true that there exists a shortest reconfiguration sequence that only changes
elements of the symmetric difference, thus this lower bound is usually not tight. Figure 3.3 gives
an example of a resolution of the 15-puzzle in 10 steps, where any reconfiguration sequence
requires to change the position of tokens that are not in the symmetric difference. In the initial
configuration, the only tokens that are placed differently than in the target configuration are
12, 14 and 15, but it is easily seen that if we only slide these tokens, none of the three can reach
their final position.

Connectivity. The structural problematic associated to REACHABILITY is connectivity, defined
as follows.

CONNECTIVITY

Given a source problem Π and an instance I of Π, does there exist a reconfiguration sequence
from Xs to Xt for any two feasible solutions Xs and Xt ? In other words, is R connected ?

In the 15-puzzle, this problematic can be formulated as follows: can we reach any placement of
the 15 tokens from any other one ? Note that up to a permutation on the labels of the tokens,
this is equivalent to asking the question: can we reach the target configuration from any initial
configuration ? As we will see in Section 2, there actually exist some configurations from which
the target configuration is not reachable [JS+79].

A classical method to show connectivity is to prove that any configuration is reachable from a
given ”canonical” configuration. We use this method in Chapter 5 to show the connectivity of
DOMINATING SET reconfiguration under certain conditions. On the other hand, a way to prove
that R is disconnected consists in finding frozen configurations. A configuration is frozen if it is
an isolated vertex of R. In other words, no move is possible from this configuration.

Diameter. The structural problematic related to SHORTEST TRANSFORMATION is the diameter
problematic.

DIAMETER

Given a source problem Π and an instance I of Π, what is the maximum length of a shortest
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Figure 3.3: A sequence that solves the 15-puzzle in 10 steps.

transformation between any two feasible solutions Xs and Xt ? In other words, what is the
diameter of R ?

In the 15-puzzle, it is equivalent to asking how many tiles we need to slide at most to reach the
target configuration, and the answer is 80 [BMFN99].

Other problematics. Other structural properties of the reconfiguration graph have been stud-
ied, such as its Hamiltonicity, which allows to visit each solution of the instance exactly once by
performing successive moves on an initial configuration.

Recently, an optimization variant of REACHABILITY has been introduced. Given an optimization
source problem and a configuration Xs, it consists in searching for the best solution among
the ones reachable from Xs. It has been studied for the source problems INDEPENDENT SET

[IMNS18] and DOMINATING SET [BMOS19]. This method allows to search for the best possible
solution while only performing local changes on a current solution. This is the principe of local
search, a heuristic method that approximates optimization problems by only performing local
changes, until a local optimum is reached. For more details about local search, the reader is
refered to [LMS03].

2 Reconfiguration of tokens

Similarly to the 15-puzzle, a lot of reconfiguration problems involve the positions of some
tokens in a graph G = (V, E). For example, in the reconfiguration of INDEPENDENT SET, a
feasible solution is an independent set of G, and we can represent this independent set by
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placing unlabeled tokens on the vertices that belong to it. Thus, the reconfiguration of the
independent sets is equivalent to the reconfiguration of the positions of the tokens in the graph.

2.1 Adjacency rules

We review here the most common adjacency rules among the token reconfiguration problems.

Token Sliding. The first adjacency rule we mention is the one of the 15-puzzle, called token
sliding, also denoted by TS. A move under TS consists in sliding a token along an edge of
the graph. For the INDEPENDENT SET reconfiguration, it means that two configurations I and
I ′ of R are adjacent if and only if there exist two vertices u, v ∈ V such that uv ∈ E, and
I ′ = (I ∪ v) \ u. We denote this move by u � v. Note that the number of tokens remains the
same after a move. Thus, we only study the reconfiguration graphs where the number of tokens
is a given k. We then denote the reconfiguration graph by Rk. Note that in the reconfiguration
of INDEPENDENT SET under TS, the graph G plays a double role, as it both indicates which are
the feasible solutions, and which are the allowed moves.

Token Jumping. To get rid of this last constraint, one can allow to move a token without
sliding it along an edge of G. This corresponds to the token jumping rule, also denoted by
TJ, where a move consists in changing the position of one token from a vertex to any other
one. Thus, in INDEPENDENT SET reconfiguration, two configurations I and I ′ are adjacent if
and only if there exist two vertices u, v ∈ V such that I ′ = (I ∪ v) \ u. Again, the number of
tokens remains the same, and we denote by Rk the reconfiguration graph in which the feasible
solutions have size exactly k. Note that in the 15-puzzle, allowing this kind of move is not of
great interest. Indeed, the edges of G do not have any impact on the feasible solutions and
are only useful to describe the allowed moves. Thus, the 15-puzzle with the token jumping
rule is equivalent to the reconfiguration of permutations of the integers from 1 to 16, where
the move is a transposition that involves 16 (which in the 15-puzzle represents the absence
of token). It is easily seen in this case that REACHABILITY is always TRUE and an optimal
algorithm consists in successively applying a transposition between 16 and each misplaced
integer (thus, here, applying only changes on the elements of the symmetric difference gives a
shortest transformation). Note that TS is a more constrained rule than TJ. Indeed, if a move can
be performed under TS then it can also be performed under TJ, and thus if a configuration is
reachable from another under TS, it also is under TJ.

Token Addition-Removal. In the case of INDEPENDENT SET reconfiguration, since the tokens
are not labeled, a move under TJ can be described as the removal of a token then the addition
of a token on any other vertex. In the token addition-removal rule, also denoted by TAR, a
move can be any of these two operations. Thus, in INDEPENDENT SET reconfiguration, two
configurations I and I ′ are adjacent if and only if there exists a vertex v ∈ V such that I ′ = I ∪ v
or I ′ = I \ v. Note that in this case, the number of tokens is necessarily changing and thus the
feasible solutions cannot be restricted to the ones of a given size. But if every independent set of
G is a feasible solution, then the reconfiguration problems become trivial. For example, to reach
an independent set from another, one can always remove every vertex of the first one then add
every vertex of the second, while maintaining an independent set of G. Thus, in general, we are
only interested in the independent sets of G of size at least a given k. More generally, when the
optimization source problem is a maximization problem, we only consider feasible solutions
of size at least a given k, and when it is a minimization problem, such as VERTEX COVER, we
consider feasible solutions of size at most k. The reconfiguration graph is then denoted by
Rk. The value of k is called the threshold and is the object of many studies. For example, it is
interesting to determine for which values of k the graph Rk is connected, as we do in Chapter
5 for the reconfiguration of DOMINATING SET. Note that if a move can be applied under TJ,
where the feasible solutions are of size k, then it can be applied under TAR, where the solutions
have size at most k + 1 if the source problem is a minimization problem and at least k − 1 if it is
a maximization problem.
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2.2 Generalizations of the 15-puzzle

The 15-puzzle was studied very early by mathematicians. In 1879, Johnson proved that the
reconfiguration graph for this problem is not connected [JS+79]. Then, some generalizations
were studied, beginning with the replacement of the instance into any p × p grid. In this case,
the reconfiguration graph is disconnected [Wil74], the diameter of the connected components
is less than 5p3 [Par95], and the shortest transformation problem is NP-complete [RW86]. The
15-puzzle was then generalized to any graph instance, in which the connectivity is characterized,
as stated in the following theorem.

Theorem. [Wil74] Consider the generalization of the 15-puzzle played on any graph G. The recon-
figuration graph R is connected if and only if G is 2-connected, and it is not one of the following
exceptions:

• bipartite graphs

• cycles of order n ≥ 4

• the following graph:

The fact that if G is disconnected then R is disconnected is straightforward when noticing that
a token cannot change the connected component of G it belongs to by sliding along edges.
Similarly, if G is 1-connected but not 2-connected, then there exists a vertex v ∈ V such that the
subgraph of G induced by V \ v is disconnected, and one can easily see that a token cannot
change the connected component of this subgraph it belongs to. When G is a cycle, only
cyclic permutations can be applied to the positions of the tokens on the non-empty vertices,
which implies that R has (n − 2)! connected components. The proof that G is disconnected for
the other exceptions is less straightforward. For this type of generalization, it is also proved
that the diameter is of order O(n3) [Spi84], the reachability problem is in P [Spi84], and the
shortest transformation problem is still NP-complete [Gol11]. Particular classes of graphs were
also studied, such as trees, for which reachability is linear [AMPP99]. Note that the case of
complete graphs is simlar to the 15-puzzle under TJ, since we can move any token to the empty
vertex. Thus, it is equivalent to the reconfiguration of permutations, where a move consists in
a transposition involving a given integer. So R is connected, and the shortest transformation
problem is in P.

Another generalization of the 15-puzzle problem consists in playing with indistinguishable
tokens. If the tokens are all pairwise indistinguishable, then solving the 15-puzzle is equivalent
to finding a path from the empty vertex of the initial configuration to the one of the target
configuration in the grid. Thus, R is connected, and the shortest sequence between any two
configurations corresponds to the shortest path between the two vertices in the grid, and the
same property actually holds on any instance that is a connected graph. Thus, we study a
generalization where the tokens have labels, but two tokens can have the same label, which
we then call colors. Moreover, we can also have several empty vertices, and the instance can
be any graph G. We denote such a problem by puz(G, k1, . . . , kℓ), where G is the instance,
and where we play with ki ≥ 1 tokens of color i for any integer i such that 1 ≤ i ≤ ℓ, with
k1+. . .+kℓ ≤ n−1. Brightwell, Van den Heuvel and Trakultraipruk proved that the connectivity
problematic is always in P by giving a full characterization of the connected components of R
depending on the values ki [vdH13], and Goldreich proved that the shortest transformation
problem is in P when the tokens all have the same color, i.e. when ℓ = 1, and that it is NP-
complete otherwise [Gol11]. The case where k1 = 1 and ℓ = 2 has been studied to model robot
motion [PRST94], where the token of color 1 represents a robot, the tokens of color 2 represent
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Figure 3.4: The reconfiguration graph R2 of a graph for the INDEPENDENT SET reconfiguration
problem under TJ.

obstacles that can be moved, and the goal is to move the robot from a vertex to a different one
with the shortest possible sequence while avoiding the obstacles and eventually moving them.
The authors found an efficient algorithm in the case where G is a tree. Many other variants of
robot motion were then studied, with for example multiple robots without obstacles [Sur09], or
the popular game Sokoban, where the obstacles can only be pushed by the robot, and for which
REACHABILITY is PSPACE-complete [Cul97].

2.3 Independent Set Reconfiguration and Vertex Cover Reconfiguration

The INDEPENDENT SET reconfiguration problem can somehow be seen as a generalization of
the 15-puzzle, where the tokens are all indistinguishable, the instance is a graph G, and the
feasible solutions are independent sets of G. It has been studied under the token sliding, token
jumping and token addition-removal rules. Actually, Kaminski et al. proved the following.

Theorem. [KMM12] There exists an independent set reconfiguration sequence between two configura-
tions of k tokens under TJ if and only if there exists an independent set reconfiguration sequence between
them under TAR where the feasible solutions have size at least k − 1.

We say that TJ and TAR are equivalent for the reconfiguration of independent sets.

In the VERTEX COVER reconfiguration problem, the feasible solutions are the vertex covers of G
of size k, or at most k when working under TAR. When it comes to classical complexity result,
one can easily check that the reconfigurations of VERTEX COVER and INDEPENDENT SET are
actually equivalent. Indeed, since V \ C is an independent set of G if and only if C is a vertex
cover of G, any reconfiguration sequence of independent sets can be seen as a reconfiguration
sequence of vertex covers, where the tokens are placed on the empty vertices.

Token Jumping. We give here some results on the reconfiguration of independent sets under
TJ (or, equivalently, under TAR). An example of reconfiguration graph is given in Figure 3.4.

Ito et al. proved that under TJ, REACHABILITY is PSPACE-complete [IDH+11]. They actually
studied the case k = α(G), i.e. the case where the independent sets are maximum. Let us define
the following decision problems.

MAXIMUM INDEPENDENT SET RECONFIGURATION UNDER TOKEN JUMPING (maxISRTJ )
Input: A graph G, two maximum independent sets Is and It of G

Output: Does there exist an independent set reconfiguration sequence from Is to It with the
token jumping rule ?
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MINIMUM VERTEX COVER RECONFIGURATION UNDER TOKEN JUMPING (minVCRTJ )
Input: A graph G, two minimum vertex covers Cs and Ct of G
Output: Does there exist a vertex cover reconfiguration sequence from Cs to Ct with the token
jumping rule ?

They proved that maxISRTJ, and thus minVCRTJ, is PSPACE-complete. They also restricted this
result to planar graphs of maximum degree at most 3.

Theorem. [IDH+11] maxISRTJ (or, equivalently, minVCRTJ) is PSPACE-complete in planar graphs of
maximum degree at most 3.

We use this result for several reductions in Chapter 6. Many other complexity results have
been obtained for particular graph classes. Some of these results are presented in Table 3.1.
Concerning shortest transformation, the problem is PSPACE-complete [KMM12].

Token Sliding. We review now some results with the TS rule. An example of reconfiguration
graph is given in Figure 3.5.

Figure 3.5: The reconfiguration graph R2 of a graph for the INDEPENDENT SET reconfiguration
problem under TS.

Hearn and Demaine proved that REACHABILITY is also PSPACE-complete under TS [HD05],
and it is still true when restricted to planar graphs of maximum degree at most 3 [KMM12].
Other results on REACHABILITY concerning particular instances are presented in Table 3.1.
The shortest transformation problem is also PSPACE-complete under TS [KMM12], even if
polynomial time algorithms exist for particular classes of graphs [YU16].

2.4 Dominating Set Reonfiguration

In the DOMINATING SET reconfiguration problem, the feasible solutions are dominating sets
of a graph G. It has been studied mostly under the TAR rule [HIM+16, HS14, SMN15, HS17,
MTR19b], although the TS rule was investigated recently [BDO19].

Token Addition-Removal. We present here some results on the reconfiguration of dominating
sets under the TAR rule. A reconfiguration graph is given in Figure 3.6.
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Class TJ TS

Any graph PSPACE-complete [IDH+11] PSPACE-complete [HD05]
Planar with Δ(G) ≥ 3 PSPACE-complete [KMM12] PSPACE-complete [KMM12]

Even hole-free P [KMM12, INZ16, MNR14] unknown
Tree P because even-hole free P [DDFE+15]

Bounded treewidth PSPACE-complete [Wro18] PSPACE-complete [Wro18]
Bounded pathwidth PSPACE-complete [Wro18] PSPACE-complete [Wro18]

Bipartite PSPACE-complete [LM18] NP-complete [LM18]
Chordal P because even-hole free PSPACE-complete [BKL+20]
Interval P because even-hole free P [BB17]

Table 3.1: The complexity of REACHABILITY in the reconfiguration of independent sets under TJ
and TS.

Figure 3.6: The reconfiguration graph R3 of a graph for the DOMINATING SET reconfiguration
problem under TAR.

Haddadan et al. proved that the reachability problem is PSPACE-complete under the addition-
removal rule, even when restricted to split graphs and bipartite graphs [HIM+16]. They also
give a linear time algorithm in trees and interval graphs.

A lot of attention has been given to the connectivity problem. In particular, several studies have
focused on the value d0 of the threshold such that for any k ≥ d0, the reconfiguration graph
Rk is connected. Haas and Seyffarth proved that if G has at least two independent edges, then
d0 ≤ min{n − 1, Γ(G) + γ(G)}, where Γ(G) is the maximum size of an inclusion-wise minimal
dominating set of G [HS14]. They also showed that d0 ≤ Γ(G) + 1 for bipartite and chordal
graphs, then asked if this is true in any graph. Suzuki et al. proved that it is not the case, by
constructing an infinite family of graphs such that RΓ(G)+1(G) is not connected [SMN15]. One
of these graphs is planar, thus implying the following result, which we use in Chapter 5:

Theorem. [SMN15] There exists a planar graph G such that RΓ(G)+1(G) is not connected.

Mynhardt et al. improved the result of Suzuki et al. by showing that there exists an infinite
family of graphs G for which d0 = 2Γ(G)−1 [MTR19a]. On the positive side, Haas and Seyffarth
proved the following:

Theorem. [HS17] If k = Γ(G) + α(G) − 1, then Rk(G) is connected.

In Chapter 5, we show that Rk(G) has moreover a linear diameter in this case. We also give
other upper bounds on d0 for specific graph classes.
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Token Sliding. Recently, Bonamy et al. investigated the reconfiguration of dominating sets
under TS [BDO19]. An example of reconfiguration graph is given in Figure 3.7.

Figure 3.7: The reconfiguration graph R3 of a graph for the DOMINATING SET reconfiguration
problem under TS.

Bonamy et al. studied the complexity of the reachability problem. We denote this problem by
DSRTS . In other words, DSRTS is defined as follows.

DOMINATING SET RECONFIGURATION UNDER TOKEN SLIDING (DSRTS )
Input: A graph G, two dominating sets Ds and Dt of G

Output: Does there exist a dominating set reconfiguration sequence from Ds to Dt with the
token sliding rule ?

Bonamy et al. proved that DSRTS is PSPACE-complete, even when restricted to split, bipartite or
bounded treewidth graphs [BDO19]. They also give a polynomial time algorithm for cographs
and for dually chordal graphs. In particular, their results implies the following:

Theorem. [BDO19] Let G be an interval graph, and Ds, Dt be two dominating sets of G of the same
size. There always exist a reconfiguration sequence under TS from Ds to Dt.

We use this result in Chapter 6, as we investigate the complexity of DSRTS in other graph classes
such as planar bipartite graphs, unit disk graphs, circle graphs, line graphs and circular arc
graphs.

3 Other reconfiguration problems

The formulation of every reconfiguration problem mentioned until now involves the position
of tokens on a graph. In this section, we are interested in different kinds of reconfiguration
problems, such as COLORING reconfiguration and SATISFIABILITY reconfiguration, as well as
the reconfiguration of graphs with the same degree sequence.

3.1 Coloring Reconfiguration

The COLORING reconfiguration problem is one of the most studied reconfiguration problems,
partly because it has important applications. In this problem, the instance is a graph G and the
feasible solutions are the proper colorings of G with k colors, where k is a given integer. The
reconfiguration graph is then denoted by Rk. Two adjacency rules have mostly been studied:
the Glauber dynamics, and the Kempe dynamics.
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Glauber dynamics. Under the Glauber dynamics, two colorings C1 and C2 are adjacent if
and only if exactly one vertex has a different color in C1 and C2. This kind of dynamics was
first used in statistical physics, in an algorithm designed by Roy J. Glauber [Mar99]. In this
application, the colorings represent the interacting spins of a ferromagnetic lattice, using the
Ising model. Glauber’s algorithm represents the possible evolution of the spins through time.
It belongs to the family of Markov Chain Monte Carlo algorithm, which are commonly used
to sample the possibles states of a variable. To do so, some transitions between the states are
allowed, with different probabilities, and we perform a random walk on these states. The
stationnary distribution then gives the probability to end up on each state after an infinite walk.
For the stationnary distribution to be uniform, we must be able to reach any state from any
other one in a walk. This is possible if and only if the reconfiguration graph, whose vertices are
the states and where two states are adjacent if and only if there is a non zero probability to go
from one to another in a walk, is connected. The number of steps needed to reach a distribution
close to stationnary is called the mixing time. Since we want to sample as efficiently as possible,
we want to evaluate this mixing time. The diameter of the reconfiguration graph then gives a
lower bound. For more details about sampling through Monte-Carlo Markov chains, the reader
is referred to [Jer03].

The reconfiguration graph R3 under Glauber dynamics for the graph P3 is illustrated in Figure
3.8.

Figure 3.8: The reconfiguration graph R3 of P3 under the Glauber dynamics rule.

Similarly to the token addition-removal rule in the reconfiguration of tokens on a graph, the
value of k has a great impact. For example, if k = n then we can reach any coloring from any
other one by reaching the same canonical coloring from both, where every vertex has a different
color. On the other hand, if k = 2, only the colors of isolated vertices can be changed while
maintaining a proper coloring, and thus a coloring C2 is reachable from a coloring C1 if and
only if C1 and C2 only differ on isolated vertices, and Rk is disconnected unless G is an empty
graph. Thus, most of the work on COLORING reconfiguration studies the properties of Rk

depending on the value of k.

The connectivity problematic has been extensively studied. In relation to the previously
mentioned application to Markov Chains, we say that a graph G such that its reconfiguration
graph Rk is connected is k-mixing. A lot of studies focus on the relationship between k and the
degeneracy of G, which is the maximum, over all induced subgraphs H of G, of the minimum
degree of H , denoted by deg(G). Firstly, if k ≥ deg(G) + 2, then G is k-mixing [DFFV06], and
Cereceda conjectured the following in his thesis [Cer07].

Conjecture. (Cereceda, [Cer07]) If k ≥ deg(G) + 2 then the diameter of Rk is in O(n2).

To support this conjecture, Cereceda proved it under the weaker assumptions k ≥ Δ(G)+2 (note
that deg(G) ≤ Δ(G)) and k ≥ 2deg(G) + 1, improved recently by Bousquet and Heinrich into
k ≥ 3

2 (deg(G) + 1) [BH19]. In 2011, Cereceda et al. proved that the diameter of each connected
component of R3 is in O(n2) [CVDHJ11]. It is also proved on specific graph classes such as
chordal graphs [BJL+14], bounded treewidth graphs [BB18] or bipartite planar graphs [BH19].
A more general result towards Cereceda’s conjecture is the one of Bousquet and Heinrich who
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gave the first proof of a polynomial diameter in 2019, proving that if k ≥ deg(G)+2 then Rk has
diameter O(ndeg(G)+1) [BH19]. Note that if Cereceda’s conjecture is true, then it is somehow the
best possible, as the diameter of Rk is quadratic when G is a path [BJL+14]. A related conjecture
of Bartier and Bousquet states that the diameter of R is linear if k ≥ deg(G) + 3 [BB19], as it is
the case when k ≥ 2deg(G) + 2 [BP16].

Other studies focused on the complexity of CONNECTIVITY and REACHABILITY. As previously
mentioned, for k = 2, REACHABILITY and CONNECTIVITY are in P. Cereceda et al. proved that
for k = 3, REACHABILITY is in P [CVDHJ11], while for k ≥ 4, it is PSPACE-complete [BC09].
On the other hand, the connectivity problem is co-NP-complete for k = 3 [CVdHJ09], and the
complexity is still unknown for k ≥ 4, even though the complexity of REACHABILITY gives a
hint. Since the problems related to coloring are generally easy on bipartite graphs, for which
the chromatic number is 2, these complexity questions have been studied in this graph class,
but surprisingly, it does not make the problems easier [CVdHJ09]. On the other hand, in planar
graphs, for k = 3 the connectivity problem is in P[CVdHJ09].

Kempe dynamics. Under Kempe dynamics, a move consists in the exchange of two colours
in a set of vertices that are each colored with one of the two colors and that induces a connected
subgraph of G, which we call a Kempe chain. The idea is that if we want to change the color of
a vertex v from i to j but there are neighbors of v that have color j, in order to keep a proper
coloring, we can change the color of these neighbors from j to i. But if they have neighbors
distinct from v that have color i, we also need to change their color to j, and we continue
this process until no color has to change anymore for the coloring to be proper. Note that if
we change the color of a single vertex while maintaining a proper coloring, then this vertex
is a Kempe chain in which we exchange the former and new color, and thus if a coloring is
reachable from another under Glauber dynamics, then it also is under Kempe dynamics. The
reconfiguration graph of P3 under Kempe dynamics for k = 3 is represented in Figure 3.9, and
we can see that every edge in Figure 3.8 is also an edge in Figure 3.9. The concept of Kempe
chains was introduced by Kempe in his attempt of proving the Four Color Theorem [Kem79]
and used later in the proofs of several important results concerning coloring such as Vizing’s
edge-colouring Theorem [Viz64].

Figure 3.9: The reconfiguration graph R3 of P3 under the Kempe dynamics rule

Even though recolorings under Kempe dynamics were studied before recolorings under Glauber
dynamics, there are significantly less results about COLORING reconfiguration under Kempe
dynamics than under Glauber dynamics. Most of the studies focused on the conditions that
ensure that a graph G is k-Kempe mixing, i.e. such that the reconfiguration graph Rk under
Kempe dynamics is connected.

Since any move under Glauber dynamics is a move under Kempe dynamics, if G is k-mixing
then it is k-Kempe-mixing. Thus, if k ≥ deg(G) + 2 then G is k-Kempe-mixing, and Las Vergnas
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and Meyniel actually proved it for k ≥ deg(G) + 1 [LVM81]. But if G is k-Kempe mixing then G
is not necessarily k-mixing, as proves the example of bipartite graphs that are k-Kempe-mixing
for any k ≥ 2 while there exist bipartite graphs of any order n that are not k-mixing [CVDHJ08].
Other results on connectivity have been obtained for particular graphs, such as planar graphs
that are 5-Kempe-mixing [Mey78], or k-regular graphs that are k-Kempe mixing for any k ≥ 3
except for the triangular prism and the triangle K3 that are not [FJP15, BBFJ19].

3.2 Satisfiability Reconfiguration

For a given instance F which is a Boolean formula of variables x1, . . . , xn, the feasible solutions
of SATISFIABILITY reconfiguration are the assignments of the variables that satisfy F , and two
assignments are adjacent if and only if they differ by the value of exactly one variable. The
reconfiguration graph R obtained with the formula F = (x1∨x2∨x3)∧x1∧(x1∨x2)∧(x1∨x2∨x4)
is illustrated in Figure 3.10, where each bit represents in this order the values of x1, x2, x3 and
x4.

1000

1001 1011

1010 1110

1111

Figure 3.10: An example of reconfiguration graph R of the SATISFIABILITY reconfiguration
problem.

In 1978, Schaefer proved a dichotomy result for the complexity of SATISFIABILITY [Sch78]. He
expressed any formula through a Boolean relation and gave necessary and sufficient conditions
on this relation for SATISFIABILITY to be in P, while it is NP-complete otherwise. The relations
that respect these conditions are now called Schaefer relations. We do not detail their definition
here but it can be found in [Sch78].

Gopalan et al. studied the reachability problematic for the source problem SATISFIABILITY. It is
defined as follows.

SATISFIABILITY RECONFIGURATION (SATR )
Input: A CNF Boolean formula F , two variable assignments As and At that satisfy F
Output: Does there exist a reconfiguration sequence from As to At that maintains F satisfied,
where the operation consists in a variable flip, i.e. a change of the assignment of one variable
from x = 0 to x = 1, or conversely ?

They gave the following complexity result.

Theorem. [GKMP09] SATR is PSPACE-complete.

They also obtained a dichotomy result similar to the one of Schaefer, corrected by Schwerdtfeger
[Sch12]. They provide necessary and sufficient conditions on the relation for REACHABILITY

to be in P. These conditions define the set of tight relations. The set of tight relations contains
the set of Schaefer relations. They also studied the connectivity and diameter problematics and
proved that the connectivity problem is in co-NP for tight relations, with a linear diameter, and
PSPACE-complete otherwise with exponential diameter.

The shortest transformation problem was studied by Mouawad et al. in 2017. They obtained a
trichotomy by introducing the set of navigable relations. The set of tight relations contains the
set of navigable relations. They proved that the shortest transformation problem is in P for
navigable relations, NP-complete for tight but not navigable relations, and PSPACE-complete
otherwise [MNPR17].
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3.3 Reconfiguration of graphs with the same degree sequence

The degree sequence of a multigraph G is the sequence of the degrees of its vertices in a non-
increasing order. Given a non-increasing sequence of integers S := (d1, . . . , dn) and a mul-
tugraph G = (V, E) whose vertices are labeled as V = {v1, . . . , vn}, we say that G realizes S
if d(vi) = di for all i ≤ n. Senior gave necessary and sufficient conditions ensuring, given a
sequence of integers S, that there exists a connected multigraph realizing S [Sen51b]. Hakimi
designed an algorithm that outputs such a multigraph if it exists and returns FALSE otherwise,
in polynomial time [Hak62b].

We study here the reconfiguration of multigraphs with the same degree sequence, where the
feasible solutions are the multigraphs that realize a given degree sequence (this degree sequence
is then the instance of the problem). The adjacency rule we study is called the flip rule. A flip
on two disjoint edges ab and cd consists in deleting the edges ab and cd and creating the edges
ac and bd (or ad and bc). One can easily see that applying a flip on G does not modify its degree
sequence. An example of reconfiguration graph is given in Figure 3.11.

Figure 3.11: The reconfiguration graph R of the degree sequence (3, 2, 1, 1, 1).

Hakimi proved that for any degree sequence S, if there exists a multigraph realizing S then R
is connected [Hak63b]. Taylor also showed that the reconfiguration graph remains connected
when we restrict the feasible solutions to connected multigraphs, simple graphs, and simple
connected graphs [Tay81b].

On the other hand, Caprara showed that the shortest transformation problem is NP-hard
[Cap97a]. Will however gave the following formula, where δ(G, H) is the number of edges in
the symmetric difference of G and H (i.e. the edges that belong to G but not to H or conversely),
and mnc(G, H) is the maximum number of alternating cycles in which this symmetric difference
can be partitioned (an alternating cycle is a cycle that alternates between edges of G and edges
of H).

Theorem. [Wil99a] Let G and H be two multigraphs with the same degree sequence. A shortest sequence

of flips that transforms G into H has length exactly δ(G,H)
2 − mnc(G, H).

When restricted to connected multigraphs, the shortest transformation problem can be formu-
lated as follows.

SHORTEST CONNECTED GRAPH TRANSFORMATION (SCGT )
Input: Two connected multigraphs G, H with the same degree sequence.

Output: The minimum number of flips needed to transform G into H while maintaining
connectivity.

Bousquet and Mary provide a 4-approximation algorithm for SCGT in [BM18a]. In Chapter 4,
we improve this approximation ratio into 5

2 . This problem has applications in chemistry and
bioinformatics. We give more details about these applications in Chapter 4.
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Chapter 4

Reconfiguration of Graphs with the
same Degree Sequence

1 Introduction

In this chapter, we study the reconfiguration of graphs with the same degree sequence. Recall
that the degree sequence of a graph G is the sequence of the degrees of its vertices in non-
increasing order. Given a non-increasing sequence of integers S = {d1, . . . , dn}, we say that a
graph G = (V, E) whose vertices are labeled as V = {v1, . . . , vn} realizes S if d(vi) = di for all
i ≤ n.

The problem of the realization of a given degree sequence has been studied in the early days of
graph theory. In 1951, Senior gave necessary and sufficient conditions to guarantee that, given a
sequence of integers S = {d1, . . . , dn}, there exists a connected multigraph realizing S [Sen51a].
Hakimi then proposed a polynomial time algorithm that outputs a connected (multi)graph
realizing S if such a graph exists or returns no otherwise [Hak62a]. This algorithm is based on
the notion of flips, also called swap or switch in the literature. A flip on two disjoint edges ab
and cd consists in deleting the edges ab and cd and creating the edges ac and bd (or ad and bc) 1.

In the framework of reconfiguration of graphs with the same degree sequence, the instance is a
degree sequence S, the feasible solutions are the multigraphs realizing S, and the adjacency rule
is such that two graphs that realize S are adjacent if they differ by a flip. The reconfiguration of
graphs with the same degree sequence has been widely studied. One of the reasons is that it can
be used to randomly sample the graphs that realize a given degree sequence [DGKTB10, MR95].
This is extremely useful in applications on real networks, for instance in epidemiology, when
the collected data only contains the degree sequence of a graph, and we want to retrieve
the graph. As it was the case in the application of the reconfiguration of graph colorings to
statistical physics mentionned in Chapter 3, the properties of the reconfiguration graph such
as its connectivity and diameter can be useful tools for sampling. In a second paper, Hakimi
proved that for any non-increasing sequence S, if the reconfiguration graph is not empty then it
is connected [Hak63a], which makes uniform sampling possible.

The shortest transformation problem was then raised. In 1999, Will [Wil99b] gave an explicit
formula for the shortest transformation between two graphs that realize S. To do so, he uses
the notion of symmetric difference. Since the problem is originally defined for multigraphs,
to define the symmetric difference, we need to define the intersection, union, and difference
of two multigraphs. The intersection of two multigraphs G and H on the same set of vertices
V is the graph G ∩ H with vertex set V , and such that e ∈ E(G ∩ H), with multiplicity m, if
the minimum multiplicity of e in both graphs is m. Their union, G ∪ H , has vertex set V , and
e ∈ E(G ∪ H), with multiplicity m, if and only if the maximum multiplicity of e in G and H is
m. Finally, the difference G − H has vertex set V and e ∈ E(G − H) with multiplicity m if and

1In the case of multigraphs, we simply decrease by one the multiplicities of ab and cd and increase by one the ones
of ac and bd.
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only if the difference between its multiplicities in G and H is m > 0. The symmetric difference
of G and H is Δ(G, H) = (G − H) ∪ (H − G). We denote by δ(G, H) the number of edges of
Δ(G, H).

Note that each flip removes at most 4 edges of the symmetric difference. Therefore, it is
straightforward that the length of a transformation from G to H is at least δ(G,H)

4 . To obtain the
exact formula of Will, we also need the following notions. A cycle C in Δ(G, H) is alternating
if edges of G and H alternate in C. Since the number of edges of G incident to v is equal to
the number of edge of H incident to v in Δ(G, H), the graph Δ(G, H) can be partitioned into a
collection of alternating cycles. We denote by mnc(G, H) the maximal number of cycles in a
partition C of Δ(G, H) into alternating cycles. The formula of Will is the following.

Theorem 4.1. [Wil99b] Let G, H be two graphs with the same degree sequence. A shortest sequence of
flips that transforms G into H (that does not necessarily maintain the connectivity of the intermediate

graphs) has length exactly δ(G,H)
2 − mnc(G, H).

This formula was reproved in 2013 by Erdős, Király and Miklós [EKM13], then in 2017 by Bereg
and Ito [BI17]. Bereg and Ito also proved that computing mnc(G, H) is NP-hard, which implies
that the shortest transformation problem is NP-hard for the reconfiguration of graphs with the
same degree sequence. They however provide a polynomial time 1.5-approximation algorithm.

Another famous application of the reconfiguration of graphs with the same degree sequence
concerns mass spectromerty [Hak62a]. Mass spectrometry is a technique used by chemists in
order to obtain the formula of a molecule. It provides the mass-to-charge (m/z) ratio spectrum
of the molecule from which we can deduce how many atoms of each element the molecule
has. With this formula, we would like to find out the nature of the molecule, i.e. the bonds
between the different atoms. But the existence of structural isomers points out that there could
exist several solutions for this problem. Thus, we would like to find all of them. Since the
valence of each atom is known, this problem actually consists in finding all the connected
loop-free multigraphs whose degree sequence is the sequence of the valences of those atoms.
The reconfiguration problem we are studying here can be a tool for an enumeration algorithm
consisting in visiting the reconfiguration graph. Note that in this case, since we are trying
to retrieve the formula of only one molecule, the multigraphs that realize S should have the
additional constraint of being connected. In this chapter, we focus on the reconfiguration
problem where the feasible solutions are only the connected multigraphs. An example of a
reconfiguration sequence is given in Figure 4.1.

G H

Figure 4.1: An example of reconfiguration sequence of connected multigraphs with the same
degree sequence.

Taylor proved that the reconfiguration graph remains connected when we restrict the feasible
solution to connected multigraphs, and it is also the case when we restrict them to simple
graphs, and simple connected graphs [Tay81a].

Since we know that the reconfiguration graph is connected when the feasible solutions are
connected multigraphs, we can then ask what is the minimum length of a reconfiguration
sequence. This problem is known to be NP-hard, even when restricted to paths [Cap97b].
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In the particular case of paths, the problem is equivalent to SORTING BY REVERSALS, which has
been widely studied in the last twenty years in genomics. The reversal of a sequence of DNA
is a common mutation of a genome, that can lead to major evolutionary events. It consists,
given a DNA sequence that can be represented as a labeled path x1, . . . , xn on n vertices, in
turning around a part of it. More formally, a reversal is a transformation that, given two integers
1 ≤ i < j ≤ n, transforms the path x1, . . . , xn into x1, . . . , xi−1, xj , xj−1, . . . , xi, xj+1, . . . , xn. It
is easy to prove that, given two paths on the same vertex set (and with the same leaves), there
exists a sequence of reversals that transforms the first into the second. But biologists want to
find the minimum number of reversals needed to transform a genome (i.e. a path) into another
in order to compute the evolutionary distance between different species. An input of SORTING

BY REVERSALS consists of two paths P, P ′ with the same vertex set (and the same leaves) and an
integer k. The output is positive if and only if there exists a sequence of at most k reversals that
transforms P into P ′. Note that a reversal can be equivalently defined as follows: given a path
P and two disjoint edges ab and cd of P , a reversal consists in the deletion of the edges ab and
cd and the addition of ac and bd, that moreover keeps the connectivity of the graph. Indeed,
when we transform x1, . . . , xn into x1, . . . , xi−1, xj , xj−1, . . . , xi, xj+1, . . . , xn, we have deleted
the edges xi−1xi and xjxj+1 and have created the edges xi−1xj and xixj+1. Thus, it is easily
seen that sorting by reversals is equivalent to finding a reconfiguration sequence from P to P ′

where the moves are flips, and the feasible solutions are paths. For this problem, Kececioglu
and Sankoff proposed an algorithm that computes a sequence of reversals of size at most twice
the length of an optimal solution in polynomial time [KS95]. Then, Christie improved it into a
1.5-approximation algorithm [Chr98]. The best polynomial time algorithm known so far is a
1.375-approximation due to Berman et al. [BHK02].

In this chapter, we study the following problem, which is a generalization of the SORTING

BY REVERSALS problem to any connected multigraphs. In other words, it corresponds to the
shortest transformation problematic for the reconfiguration of connected multigraphs realizing
a given degree sequence.

SHORTEST CONNECTED GRAPH TRANSFORMATION (SCGT )
Input: Two connected multigraphs G, H with the same degree sequence
Output: The minimum number of flips needed to transform G into H while maintaining
connectivity.

Since this problem is NP-hard [Cap97b], an approach consists in searching for polynomial
time approximation algorithms. Bousquet and Mary proposed a 4-approximation algorithm
[BM18b]. In this chapter, we present a result from a joint work with Nicolas Bousquet, in
which we provide a 2.5-approximation algorithm. We mainly focus on the SHORTEST TREE

TRANSFORMATION problem which is the same as SCGT except that the input consists of trees
with the same degree sequence. Informally speaking, it is due to the fact that if an edge of
the symmetric difference appears in some cycle, then we can reduce the size of the symmetric
difference in one flip, as observed in [BM18b].

2 Preliminaries

Let us first introduce some notions we use in this chapter.

The flip operation that transforms the edges ab and cd into the edges ac and bd is denoted by
(ab, cd) → (ac, bd). When the target edges are not important we simply say that we flip the
edges ab and cd.

The inverse σ−1 of a flip σ is the flip such that σ ◦ σ−1 = id, i.e. applying σ and then σ−1 leaves
the initial graph. The opposite −σ of a flip σ is the unique other flip that can be applied to the
two edges of σ. If we consider a flip σ = (ab, cd) → (ac, bd), then σ−1 = (ac, bd) → (ab, cd) and
−σ = (ab, cd) → (ad, bc). Note that −σ is a flip deleting the same edges as σ while σ−1 cancels
the flip σ. When we transform a graph G into another graph H , we can flip the edges of G or
the edges of H . Indeed, applying the sequence of flips (σ1, . . . , σi) to transform G into a graph
K, and the sequence of flips (τ1, . . . , τj) to transform H into K is equivalent to applying the
sequence (σ1, . . . , σi, τ−1

j , . . . , τ−1
1 ) to transform G into H .
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Let G = (V, E) be a connected graph and let H be a graph with the degree sequence of G. An
edge e of G is good if it is in G ∩ H and is bad otherwise. Note that since G and H have the
same degree sequence, the graph Δ(G, H) has even degree on each vertex and the number
of edges of G incident to v is equal to the number of edges of H incident to v. A flip is good
if it flips bad edges and creates at least one good edge. It is bad otherwise. A connected flip
is a flip such that its resulting graph is connected. Otherwise, it is disconnected. A path from
a ∈ V to b ∈ V is a sequence of vertices (v1, . . . , vk) such that a = v1, b = vk, for every integer
i ∈ [k − 1], vivi+1 ∈ E(G) and there is no repetition of vertices. Similarly, a path from e to f
with e, f ∈ E(G) is a path from an endpoint of e to an endpoint of f that does not contain the
other endpoint of e and of f . A path between x and y (vertices or edges) is a path from x to y or
a path from y to x. The content of a path is its set of vertices. We say that an edge e belongs to
(or is on) a path P if both endpoints of e appear consecutively in P . The intersection P1 ∩ P2 of
two paths P1 and P2 is the intersection of their contents. The vertices of a sequence (v1, . . . , vk)
are aligned in G if there exists a path P which is the concatenation of k − 1 paths P1P2 . . . Pk−1

where Pi is a path from vi to vi+1 for i ∈ [k − 1]. Note that we might have vi = vi+1 and then
Pi = vi.

Note that, for every connected graph G, if ab, cd ∈ E(G), ab �= cd, then (a, b, c, d), (a, b, d, c),
(b, a, c, d), or (b, a, d, c) are aligned. Moreover, if G is a tree, exactly one of them is aligned. Let
G be a connected graph and a, b, c, d ∈ V (G) such that (a, b, c, d) are aligned. The in-area of the
two edges ab and cd is the connected component of G \ {ab, cd} containing the vertices b and c.
The other components are called out-areas.

We now present a few basic results about alignments and flips. The following lemma links the
connectivity of a flip and the alignment of its vertices:

Lemma 4.1. Let G be a connected graph and ab, cd ∈ E(G) where a, b, c and d are pairwise distinct
vertices of G. If (a, b, c, d) or (b, a, d, c) are aligned in G, then the flip (ab, cd) → (ac, bd) is connected.
If G is a tree, then it is also a necessary condition.

Proof. The deletion of ab and cd leaves at most three connected components. Let us assume
that (a, b, c, d) are aligned, the other case being symmetrical. Let Gb,c be the in-area of ab, cd.
Let Ga (resp. Gd) be the connected component containing a (resp. d). Note that some of these
components might be identical. The addition of ac and bd connects Ga, Gb,c and Gd back again.
Thus, (ab, cd) → (ac, bd) is connected.

Assume now that G is a tree. Supposed that (a, b, c, d) and (b, a, d, c) are not aligned. Then,
(a, b, d, c) or (b, a, c, d) are. Thus, the deletion of ab and cd splits G into exactly three components
Ga, Gb,d and Gc, or Gb, Ga,c and Gd. In both cases, when we create ac and bd, we create an
edge in the in-aera of ab and cd. The resulting graph then contains a cycle, and thus cannot be
connected since the total number of edges is still |V | − 1.

Lemma 4.1 ensures that, for trees, exactly one of the two flips σ and −σ is connected. For paths,
we have seen that applying a connected flip is equivalent to reversing the portion of the path
between the two involved edges. A similar statement holds for trees:

Remark 4.1. Let T be a tree. Let e1, f1, e2, f2 be four pairwise distinct edges of T , and let σ1 be the flip
of e1, f1 such that the resulting tree T ′ is connected. Let P1 be the path from e1 to f1 in T , P2 be the
path from e2 to f2 in T , and P ′

2 be the path from e2 to f2 in T ′.

• If both e2 and f2 are in the in-area of e1 and f1, P2 = P ′
2.

• If both e2 and f2 are in the out-areas of e1 and f1, the contents of P2 and P ′
2 are the same, but the

order of the portion of the path that corresponds to P1 is reversed (if it exists).

• If e2 is in the in-area of e1 and f1, and f2 is in the out-areas (or the converse), the content of P ′
2 is

distinct from the content of P2. Indeed, the edges that belong to P1 ∩ P2 are changed for the edges
of P1 \ ((P1 ∩ P2) ∪ e2). (See Figure 4.2 for an illustration of this case).

We can also remark the following:

Remark 4.2. Let T be a tree and e1, f1, e be three pairwise distinct edges. The edge e is in the in-area of
e1, f1 if and only if it is in the in-area of e′

1, f ′
1 where e′

1, f ′
1 are the edges created by the unique connected
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flip on e1 and f1. Moreover e is on the path between e1 and f1 in T if and only if e is on the path between
e′

1 and f ′
1 in the resulting tree.

a +b

c
x

d

a c

b
d(ab, cd) → (ac, bd)

Figure 4.2: The consequences of a connected flip in a tree. The blue thick path goes from an
edge of the in-area of ab and cd to an edge of an out-area before the flip, and links the two same
edges afterwards.

Let e and f be two vertex-disjoint edges of a tree T , and let σ2 be a flip in T that does not flip
e nor f . The flip σ2 depends on e and f if applying the connected flip on e and f changes the
connectivity of σ2. By abuse of notation, for any two flips σ1 and σ2 on pairwise disjoint edges,
σ2 depends on σ1 if σ2 depends on the edges of σ1. The flip σ1 sees σ2 if exactly one of the edges
of σ2 is on the path linking the two edges of σ1 in G.

The following lemma links the dependency of two flips and the position of their edges in a tree:

Lemma 4.2. Let T be a tree and σ1 and σ2 be two flips on T , whose edges are pairwise distinct. The
three following points are equivalent:

1. σ2 depends on σ1,

2. σ1 depends on σ2,

3. σ2 sees σ1 and σ1 sees σ2.

Proof. Since T is a tree, Lemma 4.1 ensures that exactly one flip amongst σ1 and −σ1 is connected.
Moreover this connected flip modifies the connectivity of σ2 : (ab, cd) → (ac, bd) if and only
if σ1 modifies the alignment of a,b,c and d from (a, b, c, d) or (b, a, d, c) to (a, b, d, c) or (b, a, c, d)
(or conversely). Equivalently the orientation of one of the two edges ab and cd is modified
relatively to the other. Equivalently, by Remark 4.2, one of the edges ab and cd belongs to the
path between the two edges e1 and f1 of σ1 in T , and the other is in an out-area of e1 and f1.
Let us call this property (1′). We thus have (1 ⇔ 1′). Let us now show that (1′ ⇔ 3). It will
indeed give (1 ⇔ 3) and, by symmetry, (2 ⇔ 3).

(1′ ⇒ 3). If one of the edges ab and cd belongs to the path from e1 to f1 and the other is in a
out-area of e1 and f1, then in particular, one edge is the in-area of e1 and f1 and the other is in
an out-area. Thus, exactly one edge of σ1 is on the path from ab to cd, and σ2 sees σ1. Moreover,
one of the edges ab and cd belongs to the path from e1 to f1 and the other does not, so that σ1

sees σ2.

(3 ⇒ 1′). Since σ1 sees σ2, exactly one edge of σ2 is on the path from e1 to f1. We can assume
without loss of generality that ab is, and cd is not. Moreover, since σ2 sees σ1, exactly one edge
of σ1 is on the path from ab to cd, which means that one is in the in-area of e1 and f1, and the
other is in an out-area. Since ab is on the path from e1 to f1, ab is in the in-area of e1, f1. And
thus bc is in one out-area of e1, f1.

We now give two consequences of applying a connected flip.

Lemma 4.3. Let T be a tree and σ1 and σ2 be two flips on T with pairwise disjoint edges, where σ1 is
connected. Let T ′ be the tree obtained after applying σ1 to T . The flip σ−1

1 sees σ2 in T ′ if and only if σ1

sees σ2 in T . And σ2 sees σ−1
1 in T ′ if and only if σ2 sees σ1 in T .

45



CHAPTER 4. RECONFIGURATION OF GRAPHS WITH THE SAME DEGREE SEQUENCE

Proof. The flip σ1 sees σ2 in T whenever exactly one edge of σ2 is on the path between the edges
of σ1 in T . By Remark 4.2, the number of edges of {e2, f2} between the edges of σ1 is equal to
the number of edges of {e2, f2} between the edges of σ−1

1 in T ′. Thus σ1 sees σ2 in T if and only
if σ−1

1 sees σ2 in T ′.

On the other hand, σ2 sees σ1 if and only if exactly one edge of σ2 is in the in-area of the edges
of σ1, and the other is in an out-area. By Remark 4.2, the same holds in T ′ for the edges of σ−1

1 ,
and thus σ2 sees σ−1

1 in T ′ if and only if σ2 sees σ1 in T .

Lemma 4.4. Let T be a tree and σ1, σ2 and σ3 be three flips on T whose edges are pairwise disjoint and
such that σ1 sees σ2, σ2 sees σ3, and σ2 is connected. Let T ′ be the tree obtained by applying the flip σ2

to T . The flip σ1 sees σ3 in T if and only if σ1 does not see σ3 in T ′.

Proof. Let e1 and f1 (resp. e2, f2 and e3, f3) be the edges of σ1 (resp. σ2 and σ3). Let P1 be the
path from e1 to f1 in T , P ′

1 be the path from e1 to f1 in T ′, and P2 be the path from e2 to f2 in T .

Since σ1 sees σ2 in T , exactly one edge of σ2 is on the path P1. Thus, one edge of σ1 is in the
in-area of e2 and f2, and the other is in an out-area. We can assume without loss of generality
that f1 is in the in-area. Thus, as described in Remark 4.1, the edges that belong to P ′

1 differ
from the ones that belong to P1 in the following way: the portion P1 ∩ P2 is replaced by the
portion P2 \ ((P1 ∩ P2) ∪ f1).

Now, since σ2 sees σ3, exactly one edge of σ3 is on the path P2 in T . Thus, exactly one edge of
σ3 is either on P1 ∩ P2 or on P2 \ ((P1 ∩ P2) ∪ f1). Therefore, in T ′, P ′

1 has either exactly one
edge of σ3 which is added or removed compared to P1.

Thus, if exactly one edge of σ3 belongs to P1, either both or none of the edges of σ3 belong to
P ′

1, and if both or none of the edges of σ3 belong to P1, exactly one edge of σ3 belongs to P ′
1.

This concludes the proof.

3 Upper bound

In this section, we present the 2.5-approximation algorithm obtained in the joint work with
Nicolas Bousquet.

Let us first give a shorter proof of the 4-approximation obtained by Bousquet and Mary [BM18b].

Lemma 4.5. Let G, H be two connected graphs with the same degree sequence. There exists a sequence
of at most two flips that decreases δ(G, H) by at least 2. Moreover, if there is an alternating C4 in
Δ(G, H), it can be removed in at most 2 steps, without modifying the rest of the graph.

Proof. Let C be a partition of Δ(G, H) into alternating cycles, and u, v, w, x, y be five consecutive
vertices of a cycle C of C, with uv, wx ∈ E(G) and vw, xy ∈ E(H). Note that we may have y = u,
if C is a C4. At least one of the two flips σ1 : (uv, wx) → (uw, vx) and −σ1 : (uv, wx) → (ux, vw)
is connected in G. If −σ1 is connected, then we can apply it. Since vw ∈ E(H), δ(G, H) decreases
by at least 2 (resp. 4 if C is a C4). Similarly, at least one of the two flips σ2 : (vw, xy) → (vx, wy)
and −σ2 : (vw, xy) → (vy, wx) is connected in H . If −σ2 is connected then we can apply it and
δ(G, H) decreases by at least 2 (resp. 4 if C is a C4). Thus, we can assume that σ1 and σ2 are
the only flips that are connected. We apply σ1 to G and σ2 to H , and reduce δ(G, H) by 2, since
both flips create the edge vx (resp. 4 if C is a C4 since both flips also create the edge uw).

It immediately implies the following since, in an optimal solution, the size of the symmetric
difference decreases by at most 4 at each step.

Corollary 4.1. SCGT admits a polynomial time 4-approximation algorithm.

To improve the approximation ratio, the crucial lemma is the following:
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Lemma 4.6. Let G, H be two trees with the same degree sequence. There exists a sequence of at most 3
flips that decreases δ(G, H) by at least 4. Moreover, this sequence only flips bad edges.

Proof. Let G′ be the graph whose vertices are the connected components of G ∩ H and where
two vertices S1 and S2 of G′ are incident if there exists an edge in G between a vertex of S1 and
a vertex of S2. In other words, G′ is obtained from G by contracting every connected component
of G ∩ H into a single vertex. Note that the edges of G′ are the edges of G − H . Moreover, as
G is a tree, G′ also is. We can similarly define H ′. Note that G′ and H ′ have the same degree
sequence.

Let S1 be a leaf of G′ and S2 be its parent in G′. Let us show that S2 is not a leaf of G′. Indeed,
otherwise G′ would be reduced to a single edge. In particular, E(G − H) would contain only
one edge. Since the degree sequence of G−H and H −G are the same, the edge of H −G would
have to be the same, a contradiction. Thus, we can assume that S2 is not a leaf. Let u1u2 be the
edge of G − H between u1 ∈ S1 and u2 ∈ S2. Since G − H and H − G have the same degree
sequence and S1 is a leaf of G′, there exists a unique vertex v1 such that u1v1 ∈ E(H − G).
Moreover there exists a vertex v2 such that u2v2 ∈ E(H − G).

Let us first assume that v1 = v2. Then there exists a vertex w distinct from u1 and u2 such
that v1w ∈ E(G − H) since v1 has degree at least 2 in H − G. Since S1 is a leaf of G′, w /∈ S1

and either (u1, u2, v1, w) or (u1, u2, w, v1) are aligned in G. If (u1, u2, v1, w) are aligned then the
flip (u1u2, v1w) → (u1v1, u2w) in G is connected and creates the edge u1v1. If (u1, u2, w, v1)
are aligned then (u1u2, v1w) → (u1w, u2v1) is connected and creates the edge u2v1 = u2v2. In
both cases, we reduce the size of the symmetric difference by at least 2 in one flip, and we can
conclude with Lemma 4.5.

From now on, we assume that v1 �= v2. We focus on the alignment of u1, v1, u2 and v2 in
H . Since S1 is a leaf of G′, it is also a leaf of H ′. Thus, v1 is on the path from u1 to u2 and
either (u1, v1, u2, v2) or (u1, v1, v2, u2) are aligned. If (u1, v1, u2, v2) are aligned then Lemma
4.1 ensures that (u1v1, u2v2) → (u1u2, v1v2) is connected in H and reduces the size of the
symmetric difference by at least 2. We can conclude with Lemma 4.5. Thus, we can assume that
(u1, v1, v2, u2) are aligned in H (see Figure 4.3 for an illustration).

Let us first remark that if u2 has degree at least 2 in H − G (or equivalently in G − H), then we
are done. Indeed, if there exists w �= v2 such that u2w ∈ E(H − G) then, since (u1, v1, v2, u2) are
aligned, (u1, v1, u2, w) have to be aligned. Indeed, v2u2 is the only edge of H − G on the path
from v1 to u2 incident to u2. Thus the flip (u1v1, u2w) → (u1u2, v1w) is connected in H . Since it
reduces δ(G, H) by at least 2, we can conclude with Lemma 4.5.

From now on, we will assume that u2 has degree 1 in H − G. Let H3 (resp. H4) be the connected
component of v1 and v2 (resp. u2) in H \ {u1v1, u2v2}, which exists since (u1, v1, v2, u2) are
aligned. Note that the third component of H \ {u1v1, u2v2} is reduced to S1. By definition, H3

is the in-area of u1v1 and u2v2.

We now show that there exists an edge u3u4 ∈ E(G − H), with u3 ∈ H3, u4 ∈ H4, and such
that the connected component S4 of G ∩ H containing u4 is not a leaf of G′. Indeed, since G
is connected, there exists a path P from v1 to u2 in G. Since u1u2 is the only edge of G − H
that has an endpoint in S1, this path does not contain any vertex of S1. Thus, it necessarily
contains an edge u3u4 between a vertex u3 of H3 and a vertex u4 of H4. Since H3 and H4 are
anticomplete in G ∩ H , u3u4 ∈ E(G − H). Moreover, the connected component S4 of G ∩ H
containing u4 is not a leaf of G′, as it is either S2 which is not a leaf, or P has to leave S4 at some
point with an edge of G − H since P ends in u2 ∈ S2.

Since u3 and u4 have the same degree in G−H and H−G, there exist v3, v4 such that u3v3, u4v4 ∈
E(H − G). Moreover, since S4 is not a leaf of G′ (and thus of H ′), there exists an edge of H − G
between a vertex u5 ∈ S4 and a vertex v5 ∈ V \ S4 where u5v5 �= u4v4.

Let us prove that u3, v3, u4 and v4 are pairwise distinct. By definition, we have u3 �= v3, u4 �= v4

and u3 �= u4. Moreover, since u3u4 ∈ E(G − H), u3 �= v4 and u4 �= v3. Thus, the only vertices
that can be identical are v3 and v4. If v3 = v4, since u3 ∈ H3, u4 ∈ H4, and v2u2 is the only edge
of H − G from H3 to H4, then either v3 = v4 = v2 or v3 = v4 = u2. In the first case, u4 = u2

since v2u2 is the only edge of H − G from H3 to H4. Thus, u2 is the endpoint of both u1u2 and
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u2u3 in G − H . In the second case, u2 is the endpoint of both u2u3 and u2u4 in H − G. Thus, in
both cases, u2 has degree at least 2 in H − G, a contradiction.

We now focus on the alignment of u3, u4, v3 and v4 in H . If (v3, u3, v4, u4) or (u3, v3, u4, v4) are
aligned, then the flip (u3v3, u4v4) → (u3u4, v3v4) is connected in H and reduces the size of the
symmetric difference by at least 2, since u3u4 ∈ E(G − H). Note that the flip is well-defined
since all the vertices are distinct. Thus, we can conclude with Lemma 4.5. Therefore, we can
assume that (u3, v3, v4, u4) or (v3, u3, u4, v4) are aligned in H .

We give, in each case, a sequence of three flips that decreases the size of the symmetric difference
by at least 4. We first state the three flips that reduce the symmetric difference in each case and
then prove that these sequences of flips can be applied.

Case 1. (u3, v3, v4, u4) are aligned. (See Figure 4.3 for an illustration).
We successively apply the flips σ1 : (u2v2, u5v5) → (u2v5, u5v2), σ2 : (u3x, u4v4) → (u3u4, xv4)
where x = u5 if u3 = v2 and v3 = u2, and x = v3 otherwise, and σ3 : (u1v1, u2v5) → (u1u2, v1v5)
in H . Since u1u2, u3u4 ∈ E(G − H), this sequence of flips indeed reduces δ(G, H) by at least 4.

u1 v1

v3

u3

v2 u2

v4

u4

u5

v5

S1

S2

S4

H3 H4

u1 v1

v3

u3

v2 u5

u4

v4
v5

u2

S1

S2

S4

u1

v1

v3

v4

v2 u5

u4

u3v5

u2

S1

S2

S4

v5 v1

v3

v4

v2 u5

u4

u3u1

u2
S1

S2

S4

σ1

σ2

σ3

Figure 4.3: The three flips σ1 : (u2v2, u5v5) → (u2v5, u5v2), σ2 : (u3v3, u4v4) → (u3u4, v3v4) and
σ3 : (u1v1, u2v5) → (u1u2, v1v5) applied to the graph H where (u3, v3, v4, u4) are aligned. The
blue full edges are in E(H − G) and the red dashed edges are in E(G − H).

Let us now show that this sequence of flips can be applied. We first prove that the flip σ1 :
(u2v2, u5v5) → (u2v5, u5v2) is well-defined since the vertices are pairwise distinct. Indeed, by
definition, u5 �= v5 and u2 �= v2. Since u5 ∈ H4 and v2 �∈ H4, we have u5 �= v2. Similarly, let us
show that v5 ∈ H4, and thus v5 �= v2. Firstly, since u4 �= u2 (otherwise the degree of u2 in G − H
is at least 2, a contradiction), we have v4 �= v2 and thus v4 ∈ H4. Moreover, by hypothesis,
(u3, v4, u4) are aligned in H , and since u4, u5 ∈ S4 and v4, v5 �∈ S4 , (u3, v4, u5, v5) are aligned
in H . But u3 ∈ H3 and v4 ∈ H4 where v2u2 is the only edge from H3 to H4. This ensures that
(v2, u2, u5, v5) are aligned in H , and since v2u2 is the only edge from H3 to H4, v5 ∈ H4. Thus
we can only have u2 = u5 or u2 = v5. But, in both cases, u2 would have degree at least 2 in
H − G, a contradiction.
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We have shown that (v2, u2, u5, v5) are aligned in H . Thus, Lemma 4.1 ensures that σ1 is
connected.

Let Hσ1
be the graph obtained after applying σ1 to H (which is connected). We apply the flip

σ2 : (u3x, u4v4) → (u3u4, xv4) in Hσ1
, where x = u5 if u3 = v2 and v3 = u2 and where x = v3

otherwise.

Let us first prove that σ2 is well-defined. The vertices of σ2 are pairwise distinct. Indeed, we
have previously shown that the vertices u3, v3, u4 and v4 are pairwise distinct which gives the
conclusion in the second case. When x = u5, since v4 �∈ S4 and u3 �∈ H4, we also have u5 �= v4

and u5 �= u3. Moreover, if x = u5 and u5 = u4, by definition of x we have v2 = u3 and σ1

created the edge v2u5 = u3u4 ∈ G − H , so that we can conclude with Lemma 4.5. Therefore, all
the vertices of σ2 are distinct.

Let us now show that its two edges, u3x and u4v4, exist in Hσ1
. In order to do it, we have

to prove that these edges are not the edges of σ1. By definition, we first have u4v4 �= u5v5.
Moreover, if u4v4 = u2v2, since v2 ∈ H3 and u4 �∈ H3, we then have v2 = v4 and u2 = u4. Thus,
u2 is the endpoint of both u1u2 and u2u3 in G − H , a contradiction with its degree assumption.
Thus we can assume that u4v4 �= u2v2 and u4v4 is not equal to any of the edges of σ1. Since
u4v4 is in H , it is in Hσ1

. If x = v3 then u3v3 �= u2v2 by definition of x. And u3v3 with both
endpoints in H3 is distinct from u5v5 which has both endpoints in H4. If x = u5, then u3 = v2

and v3 = u2. But in this case, u3x = v2u5 was created by σ1 and thus is in Hσ1
. So both edges of

σ2 exist in Hσ1
and then σ2 can be applied.

We now show that σ2 is connected in Hσ1
. By hypothesis, (u3, v3, v4, u4) are aligned in H .

Moreover, as u4, u5 ∈ S4 and v4, v5 �∈ S4, (v4, u4, u5, v5) are aligned. Therefore, if u3 = v2 and
v3 = u2, (u3, v3, v4, u4, u5, v5) are aligned in H and (u3, u5, u4, v4, v3, v5) are aligned in Hσ1

. In
particular, since x = u5 in this case, (u3, x, u4, v4) are aligned and σ2 is connected. Otherwise,
(u3, v3, v2, u2, v4, u4, u5, v5) are aligned in H and (u3, v3, v2, u5, u4, v4, u2, v5) are aligned in Hσ1

.
In particular, since x = v3 in this case, (u3, x, u4, v4) are aligned and σ2 is also connected.

Let Hσ2
be the graph obtained after applying σ2 to Hσ1

. We want to apply the flip σ3 :
(u1v1, u2v5) → (u1u2, v1v5) in Hσ2

. Let us first prove that it is well-defined. By definition,
we have u1 �= u2 and u1 �= v1. Since v1 ∈ H3 and u2 �∈ H3, v1 �= u2. Since v5 ∈ H4 while
u1, v1 �∈ H4, we have v5 �= u1 and v5 �= v1. Finally, v5 �= u2 was proven before applying σ1.
So the vertices of σ3 are pairwise distinct. Let us now prove that both u1v1 and u2v5 exist in
Hσ2

. Since u1 is the only vertex of S1 defined in our construction and u1 does not appear as
an endpoint in σ1 and σ2, u1v1 exits in Hσ2

. The edge u2v5 is created by σ1, so u2v5 ∈ E(Hσ1
).

Since u2, v5 ∈ H4 and u3 �∈ H4, we have u2v5 �= u3x. Moreover, v5 �∈ S4 and v5 �= v4 and then
u2v5 �= u4v4. Thus u2v5 is not an edge of σ2, and u2v5 ∈ E(Hσ2

).

In order to prove that σ3 is connected, we will use Lemma 4.2. Let us first prove that σ3 is con-
nected in Hσ1

. In H , (u1, v1, v2, u2) and (v2, u2, u5, v5) are aligned. Thus, in Hσ1
, (u1, v1, v2, u5, u2,

v5) are aligned. In particular, (u1, v1, u2, v5) are aligned and σ3 is connected in Hσ1
.

Finally, we prove that in Hσ1
, σ3 does not depend on σ2. We claim that σ2 does not see σ3, as

none of its two edges are on the path from u3x to u4v4. Since S1 is a leaf of G ∩ H , u1v1 is not
on it. If x = v3, since (u3, v3, v2, u5, u4, v4, u2, v5) are aligned in Hσ1

, u2v5 is not on it either, and
if x = u5, (u3, u5, u4, v4, v3, v5) are aligned in Hσ1

but since u2 = v3 in this case, u2v5 is not on
the path either. Thus, by Lemma 4.2, σ2 and σ3 are independent. Therefore, σ3 is still connected
in Hσ2

.

Case 2. (v3, u3, u4, v4) are aligned.
We apply σ1 : (u2v2, u4v4) → (u2v4, u4v2), σ2 : (u3v3, u4v2) → (u3u4, v2v3) then σ3 : (u1v1, u2v4)
→ (u1u2, v1v4) to H . Again, u1u2, u3u4 ∈ E(G − H) and it reduces δ(G, H) by at least 4.

Let us first prove that we can apply this sequence of flips. We first prove that the vertices of
σ1 are pairwise distinct. Since, by hypothesis, (v3, u3, u4, v4) are aligned in H , with u3 ∈ H3

and u4 ∈ H4, we have that (v2, u2, u4, v4) are aligned in H . By definition, v2 �= u2 and u4 �= v4.
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Thus, the only vertices that might be identical are u2 and u4. But if u2 = u4, then u2 is both the
endpoint of u1u2 and u2u3 in G − H . Thus, u2 has degree at least 2 in G − H , a contradiction.

Moreover, since (v2, u2, u4, v4) are aligned, σ1 is connected.

Let Hσ1
be the graph obtained after applying σ1 to H . We apply in Hσ1

the flip σ2 : (u3v3, u4v2) →
(u3u4, v2v3).

Let us show that its vertices are pairwise distinct. We have previously shown that u3, v3 �= u4.
By definition, we have u3 �= v3. Since u4 ∈ S4 and v2 �∈ S4, u4 �= v2. Now, if v2 = u3, then
σ1 created the edge u3u4 ∈ E(G − H) and we can conclude with Lemma 4.5. Finally, since
(v3, u3, u4, v4) are aligned in H with v3, u3 ∈ H3 and v4, u4 ∈ H4 and since v2u2 is the only edge
of H from H3 to H4, we know that (v3, u3, v2, u2, u4, v4) are aligned in H . As v3 �= u3, this gives
v3 �= v2.

Let us now show that the two edges of σ2, u3v3 and u4v2, exist in Hσ1
. We know that u4v2 is

created by σ1, so that u4v2 ∈ E(Hσ1
). Moreover, u3v3 ∈ E(H). Thus, we only have to show

that u3v3 is not an edge of σ1. Since u3, v3 �= u4 and u3, v3 �= v2, it is straightforward.

Finally, let us show that σ2 is connected in Hσ1
. We have seen that (v3, u3, v2, u2, u4, v4) are

aligned in H . Thus, in Hσ1
, (v3, u3, v2, u4, u2, v4) are aligned. In particular, (v3, u3, v2, u4) are

aligned and, by Lemma 4.1 σ2 is connected.

Let Hσ2
be the graph obtained after applying σ1 to Hσ1

. We apply in Hσ2
the flip σ3 :

(u1v1, u2v4) → (u1u2, v1v4). Let us prove that the endpoints of its edges are all distinct, that
both its edges exist in Hσ2

, and that it is connected.

We have seen that (u1, v1, v2, u2) are aligned in H , and since v4 ∈ H4, (u1, v1, u2, v4) are aligned
in H . Moreover, by definition, u1 �= v1, we have previously shown that u2 �= v4, and since
v1 ∈ H3 and u2 �∈ H3, u2 �= v1. Therefore, the vertices of σ3 are all pairwise distinct.

Let us now prove that its edges exist in Hσ2
. Since u1 is the only vertex of S1 we considered, we

know that it is distinct from all the other vertices and thus u1v1 is distinct from all the other
edges. Therefore, it is not an edge of σ1 nor σ2 and since u1v1 ∈ E(H), u1v1 ∈ E(Hσ2

). Since
u2v4 is created by σ1, we have u2v4 ∈ E(Hσ1

). Since u2, v4 ∈ H4 and u3, v2 �∈ H4, we have
u2v4 �= u3v3 and u2v4 �= u4v2. Thus, u2v4 is not identical to any edge of σ2, and u2v4 ∈ E(Hσ2

).

We now show that σ3 is connected in Hσ2
. Since (u1, v1, v2, u2) and (v2, u2, u4, v4) are aligned

in H , (u1, v1, v2, u2, u4, v4) are aligned in H and (u1, v1, v2, u4, u2, v4) are aligned in Hσ1
. In

particular, (u1, v1, u2, v4) are aligned and σ3 is connected in Hσ1
.

Let us prove that in Hσ1
, σ3 does not depend on σ2. We claim that σ2 does not see σ3. Since

S1 is a leaf of G ∩ H , u1v1 is not on the path from u3v3 to v2u4 in Hσ1
. Moreover, since

(v3, u3, v2, u4, u2, v4) are aligned in Hσ1
, u2v4 is not on it either. Thus, by Lemma 4.2, σ2 and σ3

are independent. Therefore, σ3 is still connected in Hσ2
.

Therefore, in all the cases, we have found a sequence of three flips whose edges are in the
symmetric difference and that reduce δ(G, H) by at least 4. Moreover, the proof immediately
provides a polynomial time algorithm to find such a sequence.

Note that Lemma 4.6 allows to obtain a 3-approximation algorithm for SCGT . Indeed, as shown
in the proof of Lemma 1 in [BM18b], as long as there exists an edge of the symmetric difference
in a cycle of G, one can reduce the size of the symmetric difference by 2 in one step. Afterwards,
we can assume that the remaining graphs G − H and H − G are trees. By Lemma 4.6, in
three flips, the symmetric difference of the optimal solution decreases by at most 12 while our
algorithm decreases it by at least 4. (Note that free to try all the flips, finding these flips is
indeed polynomial). But we can actually improve the approximation ratio. The idea consists in
treating differently short cycles. A short cycle is a C4, a long cycle is a cycle of length at least 6.
We now give the main result of this section.

Theorem 4.2. SCGT admits a 5/2-approximation algorithm running in polynomial time. It becomes a
9/4-approximation algorithm if Δ(G, H) does not contain any short cycle.
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Proof. Let C be an optimal partition of Δ(G, H) into alternating cycles, i.e. a partition with
mnc(G, H) cycles. Let c be the number of short cycles in C. Bereg and Ito [BI17] provide a
polynomial time algorithm to find a partition of Δ(G, H) into alternating cycles having at least
c
2 short cycles. Lemma 4.5 ensures that we can remove their 2c edges from the symmetric
difference in at most c flips. If an edge of the symmetric difference is in a cycle of G or H , then
in one step we can reduce the symmetric difference by 2 [BM18b]. Otherwise, by Lemma 4.6,
we can remove the remaining δ(G, H) − 2c edges using at most 3(δ(G,H)−2c)

4 flips in polynomial

time. Therefore, we can transform G into H with at most c + 3(δ(G,H)−2c)
4 flips.

Let us now provide a lower bound on the length of a shortest transformation from G to H . By
definition, C contains c short cycles. Theorem 4.1 ensures that we need at least c steps to remove
the short cycles, plus ℓ − 1 flips to remove each cycle of length 2ℓ. Therefore, we need at least
δ(G,H)−4c

3 flips to remove the δ(G, H) − 4c remaining edges from the symmetric difference.

The ratio between the upper bound and the lower bound is

f(c) :=
c + 3δ(G,H)−6c

4

c + δ(G,H)−4c
3

=
3(3δ(G, H) − 2c)

4(δ(G, H) − c)
.

The function f being increasing and since the number of short cycles in C cannot exceed δ(G,H)
4 ,

we have f(c) ≤ f( δ(G,H)
4 ) = 5

2 . It gives a 5
2 -approximation in polynomial time. Moreover,

when there is no alternating short cycle in Δ(G, H), c = 0. Since f(0) = 9
4 , we obtain a

9
4 -approximation.

4 Discussion on the tightness of the lower bound

In this section, we discuss the quality of the lower bound of Theorem 4.1. We first prove that
if we only flip bad edges of the same cycle of the symmetric difference then the length of a
shortest transformation can be almost twice longer than the one given by the lower bound
of Theorem 4.1. In order to prove it, we generalize several techniques and results of Christie
[Chr98], proved for the SORTING BY REVERSALS problem.

Note that the result of Hannenhalli and Pevzner [HP99] actually proves that in the case of
paths, when the symmetric difference only contains vertex-disjoint cycles, it is not necessarily
optimal to only flip edges of the same cycle. However, studying this restriction gives us a better
understanding of the general problem.

We also prove that, if we only flip bad edges (which are not necessarily in the same cycle
of the symmetric difference), then the length of a shortest transformation can be almost 3/2
times longer than the one given by the lower bound. Note that all the existing approximation
algorithms for SORTING BY REVERSALS and SCGT only flip bad edges. But again no formal proof
guarantees that there always exists a shortest transformation where we only flip bad edges.
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c v1,1 v1,2

v1,3 v1,4v3,1v3,2

v3,3v3,4

v4,1

v4,2

v4,3

v4,4

v2,1

v2,2

v2,3

v2,4

Figure 4.4: The graphs G4 and H4. The black thick edges are in E(G4 ∩ H4), the blue thin edges
are in E(G4 − H4) and the red dashed edges are in E(H4 − G4).

Both results are obtained with the same graphs Gk and Hk represented in Figure 4.4 for k =
4. For any k ≥ 2, let Gk = (Vk, E(Gk)) and Hk = (Vk, E(Hk)) be the graphs with Vk =
{vi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ 4} ∪ {c}, E(Gk) =

⋃

i∈[k]{cvi,1, vi,1vi,2, vi,2vi,3, vi,3vi,4}, and E(Hk) =
⋃

i∈[k]{cvi,1, vi,1vi+1,3, vi,2vi,3, vi,2vi+1,4}, where the additions are defined modulo k. One can
easily check that, in this construction, both Gk and Hk are the subdivisions of a star where each
branch has 4 vertices. Note that Δ(G, H) is the disjoint union of k short cycles. Moreover, the
partition of Δ(G, H) into alternating cycles is unique.

4.1 Flipping bad edges of the same cyle

σ4,1

σ1,2

σ2,3

σ3,4

D

D

D

D

Figure 4.5: The digraph of flips of G4 and H4, where σi,j := (vi,1vi,2, vj,3vj,4) → (vi,1vj,3, vi,2vj,4)
for any i and j, and the label D stands for disconnected.

Let G and H be two trees with the same degree sequence. The digraph of flips F(G, H) of G and
H is the labeled directed graph whose vertices are the good flips in G − H (i.e. the flips that
create at least one edge of G ∩ H , regardless of the fact that they maintain the connectivity of G
or not). Every vertex σ is labeled as a connected or non-connected flip. And (σ1, σ2) is an arc of
F(G, H) if and only if σ1 sees σ2. Note that every vertex of the digraph of flips corresponds to
a good flip σ in G − H and thus corresponds to a pair of edges of G − H . Since there exists a
connected flip between any pair of edges in a tree, if σ is disconnected, then −σ is connected
and thus any vertex of F(G, H) can be associated to a connected flip, either itself or its opposite.
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If G and H are paths, if exactly one of the two edges of a flip σ1 is on the path between the
two edges of a flip σ2, then exactly one of the two edges of σ2 is on the path between the two
edges of σ1. Thus, for paths, the digraph of flips is a non-oriented graph, and it corresponds
to the reversal graph introduced by Christie [Chr98]. The reversal graph is related to the
interleaving graph introduced in [HP99] for the sorting by reversals of signed permutations
(which corresponds to the case where G and H are paths and the partition C of Δ(G, H) into
alternating cycles is unique). The vertices of the interleaving graph are the cycles of C, labeled
as connected if there exists a connected good flip between two edges of C and disconnected
otherwise, and there is an edge between two cycles C1 and C2 if there exists a connected flip
between two edges of C1 that changes the connectivity of a flip between two edges of C2. Again,
for paths, the converse is also true and the graph is therefore non-directed.

For paths, Christie gives in [Chr98] a characterization of the resulting reversal graph when we
apply a flip (of bad edges). Unfortunately, his proof cannot be extended easily to the case of
trees for the digraph of flips. Indeed, the arcs and the labels above are not enough to determine
the connectivity of the flips in the resulting graph. However, when we restrict to the case
where the partition C of Δ(G, H) into alternating cycles is unique and only contains short cycles,
the model becomes simple enough to be understood. The first part of this section consists in
proving that, under these assumptions, we can characterize the resulting digraph of flips when
we apply a good flip (or, if the flip is disconnected, its opposite) on the digraph of flips.

Two graphs G and H with the same degree sequence are close if Δ(G, H) admits a unique
partition into alternating cycles C and all the cycles of C are short. Note that Gk and Hk are
close. All along the proofs of the section, we will implicitly use the following remarks:

Remark 4.3. Let G, H be two close trees. Let C be the unique partition of Δ(G, H) into alternating
cycles. The digraph of flips contains |C| flips and each vertex corresponds to the unique good flip that
removes some cycle C of the symmetric difference. Moreover, if we flip edges on the same cycle of the
symmetric difference, then we either use the flips of the digraph of flips or their opposite.

Remark 4.4. Let G, H be two close trees. If we apply any connected flip between edges of the same cycle
of G − H , then, the resulting graph G′ and H are still close.

Proof. Since G and H are close, the decomposition C of Δ(G, H) into alternating cycles is unique
and only contains short cycles. Thus, if we apply a connected flip (ab, cd) → (ac, bd), with ab
and cd in the same cycle of C, then (a, b, d, c, a) or (a, b, c, d, a) is an alternating C4 in Δ(G, H). In
the first case, σ is good and the corresponding C4 disappears from Δ(G, H) and in the second
case, it is replaced by (a, c, b, d, a). Since the edges of the other cycles are unchanged, in both
cases, the partition of Δ(G′, H) into alternating cycles remains unique and still contains only
short cycles (where G′ is the resulting graph).

A vertex σ′ of a digraph of flips F ′ replaces a vertex σ of a digraph of flips F if V (F ′) =
(V (F) \ σ) ∪ σ′, and the label, the incoming neighbors and the outgoing neighbors of σ′ in F ′

are exactly the label, the incoming neighbors and the outgoing neighbors of σ in F .

Lemma 4.7. Let G and H be two close trees and let F := F(G, H). Let σ ∈ V (F) and G′ be the graph
obtained from G by applying σ if it is connected and by applying −σ otherwise.

The graph F ′ := F(G′, H) is characterized as follows:

1. If σ is connected, then V (F ′) = V (F) \ {σ}. If σ is disconnected, then −((−σ)−1) replaces σ.

2. For every σ1 �∈ N−
F (σ) ∩ N+

F (σ), σ1 is connected in F if and only if σ1 is connected in F ′.

3. For every σ1 ∈ N−
F (σ) ∩ N+

F (σ), σ1 is connected in F if and only if σ1 is disconnected in F ′.

4. For every σ1, σ2 ∈ V (F ′), with σ1 �∈ N−
F (σ) or σ2 �∈ N+

F (σ), σ1σ2 ∈ E(F) if and only if
σ1σ2 ∈ E(F ′).

5. For every σ1 ∈ N−
F (σ) and every σ2 ∈ N+

F (v) such that σ1 �= σ2, σ1σ2 ∈ E(F) if and only if
σ1σ2 �∈ E(F ′).

Proof. Let a, b, c and d be the vertices of G such that σ = (ab, cd) → (ac, bd). First, notice that
since the partition of Δ(G, H) is unique and only contains short cycles, and since we only apply

53



CHAPTER 4. RECONFIGURATION OF GRAPHS WITH THE SAME DEGREE SEQUENCE

good flips, or opposites of good flips, all the different flips we consider here are on disjoint
edges.

Proof of (1).
First note that after applying the flip, all the flips of the graph of flips distinct from σ still exist.
Indeed, all the cycles of C distinct from the one of σ are still in C′. Thus, by Remark 4.3, the set
of vertices V (F) \ σ is in V (F ′). Moreover, all the cycles of C′ distinct from the one of the edges
created by σ are also in C. Thus, by Remark 4.3, V (F ′) \ {((−σ)−1), −((−σ)−1)} is in V (F).

If σ is connected, then the number of cycles in the partition decreases by one and the vertex is
removed. The vertex corresponding to σ disappears but all the other vertices still exist.

Let us now show that if σ is disconnected, then −((−σ)−1) replaces σ. Firstly, if σ is disconnected
in G, then −σ is applied to G. Since the partition of Δ(G, H) into alternating cycles is unique,
each vertex of Δ(G, H) is incident to exactly one edge of G − H and one edge of H − G, and
as σ is a good flip, −σ is not. Thus, the edges created by −σ are in Δ(G′, H). That being said,
(−σ)−1 is not a good flip of F ′. Indeed, (−σ)−1 = (ad, bc) → (ab, cd), and we know that ab and
cd are in Δ(G, H). On the other hand, the flip −((−σ)−1) = (ad, bc) → (ac, bd) is good, as it
creates the same edges as σ. Therefore, −((−σ)−1) ∈ V (F ′).

Moreover, −((−σ)−1) is disconnected. Indeed otherwise σ would be connected in F since σ
and −((−σ)−1) create the same edges. Thus, −((−σ)−1) has in F ′ the label of σ in F .

Finally, by Lemma 4.3, (−σ)−1 has the same in and out neighborhoods as −σ. Thus, as
−((−σ)−1) is flipping the same edges as (−σ)−1, and −σ is flipping the same edges as σ,
−((−σ)−1) and σ have the same in and out neighborhoods.

Proof of (2) and (3).
The points 2 and 3 are a direct consequence of Lemma 4.2: the label of σ is considering the fact
that the edges, and thus the incoming neighbors and outgoing neighbors, of σ and −σ are the
same.

Proof of (4).
By Remark 4.1, applying a flip on the edges e and f to a tree T can modify the content of a path
P only if one endpoint of P is in the in-area of e and f and the other is in their out-area. When
it changes, the portion P1 ∩ P of P is replaced by P1 \ (P1 ∩ P ), where P1 is the path from e to f
in T .

Suppose that an arc σ1σ2 is in F but not in F ′, or conversely, and let e1 and f1 be the edges of
σ1, and e2 and f2 be the edges of σ2. The content of the path P1 from e1 to f1 in G is different
from the content of the path P ′

1 from e1 to f1 in G′, as either P1 contains exactly one edge of σ2

and P ′
1 contains both or neither edges of σ2, or conversely. Thus, one of the edges of σ1 is in the

in-area of ab and cd, and the other is in an out-area. Therefore, σ1 sees σ in G.

Moreover, in P ′
1, exactly one edge of σ2 is either added or removed compared to the content of

P1. Thus, either one edge is on the portion of the path from ab to cd that is common to P1 and
none were on the other portion, or the opposite. Thus, exactly one edge of σ2 is on the path
from ab to cd in G, and σ sees σ2 in G.

Proof of (5).
Finally, point 5 is a consequence of Lemma 4.4.

Note that Lemma 4.7 generalizes the results of [Chr98] when G, H are paths. Indeed, in that
case, the graph is non-directed and then the subgraph induced by the neighborhood of σ in F
is complemented after the flip.

Lemma 4.8. Let G and H be two close trees. Every disconnected flip of F(G, H) belongs to an oriented
cycle in F(G, H).

Proof. Let F := F(G, H). Assume by contradiction that there exists a disconnected flip σ ∈
V (F) such that σ does not belong to any oriented cycle of F .
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Since the the partition of Δ(G, H) into alternating cycles only contains short cycles, the proof of
Lemma 4.5 ensures that there exists a sequence of flips transforming G into H that only flips
edges that are in the same short cycle. In other words, there always exists a sequence of flips
using flips of F that transforms G into H . By Remark 4.4, all the intermediate graphs and H are
close, so Lemma 4.7 holds at any step. Moreover, during such a transformation, every vertex
of F has to be removed at some point (since F(H, H) is empty). By Lemma 4.7.1, a vertex σ2

can be removed only if σ2 is connected and we apply σ2. Thus, the label of σ2 has to change at
some point. Lemma 4.7 ensures that for if the label of σ2 changes then σ2 is the in- and outgoing
neighborhood of one flip, and thus is in a oriented cycle of F (of size 2).

Let F1 be the last step where σ2 is not in a cycle of the digraph of flips. Assume that we apply a
flip σ1 and let F ′

1 be the new digraph of flips. Let us prove by contradiction that σ2 was in a
cycle of F1.

Let C ′ be a cycle of F ′
1 containing σ2. If σ2 does not belong to any oriented cycle in F1, since

no vertices have been added to F1, there exists an arc σ3σ4 of C ′ that is not in F1. By Lemma
4.7, σ3σ1, σ1σ4 ∈ E(F1). By replacing every arc σ3σ4 of C ′ that is not in F1 by the two arcs σ3σ1

and σ1σ4, we obtain a union of oriented cycles of F1, one of them containing σ2. Therefore, σ2

belongs to an oriented cycle in F1, a contradiction.

Note that Lemma 4.8 generalizes a result of Christie [Chr98] which ensures that when G, H are
paths, no disconnected flip is isolated in the graph of flips.

Lemma 4.9. Let G and H be two close trees. Let F := F(G, H) and C be the unique partition of
Δ(G, H) into alternating cycles. If we only flip pairs of edges that are in the same cycle of C, then
the shortest transformation from G to H has length at least |V (F)| + γ(F), where γ(F) is defined as
follows:

• If there is no oriented cycle in F , or if there exists an oriented cycle in F that only contains
connected flips, γ(F) = 0.

• Otherwise, γ(F) = nd(F) − 1, where nd(F) is the minimum number of disconnected flip in any
oriented cycle of F .

Proof. We prove Lemma 4.9 by induction on (|V (F)| + γ(F)). If (|V (F)| + γ(F)) = 0, then F is
the empty graph and thus G = H . Assume now that (|V (F)| + γ(F)) ≥ 1. Let σ be a good flip
between two edges that are in the same cycle of C. Either σ or −σ is connected. Let G′ be the
graph obtained after applying the connected flip, σ or −σ, and F ′ := F(G′, H). We will show
that (|V (F ′)| + γ(F ′)) − (|V (F)| + γ(F)) ≥ −1. Since we only flip edges of the same short cycle,
Remark 4.4 ensures that G′ and H are close and the proof immediately follows.

By Lemma 4.7.1, we have |V (F ′)| − |V (F)| = −1 if σ is connected and 0 if σ is disconnected.
We call this property the property (*). Let us now bound the quantity γ(F ′) − γ(F).

Assume that there exists σ1 ∈ V (F) such that σ1 ∈ N−
F (σ) ∩ N+

F (σ). Note that σ, σ1 forms a
cycle of size 2. If σ or σ1 are connected then γ(F) = 0. So we have γ(F ′) − γ(F) ≥ 0. If both σ
and σ1 are disconnected then γ(F) ≤ 1. And then γ(F ′) − γ(F) ≥ −1. Thus, in both cases, the
property (*) gives (|V (F ′)| + γ(F ′)) − (|V (F)| + γ(F)) ≥ −1 and the result is proven.

So we can assume that no vertex σ1 of F satisfies σ1 ∈ N−
F (σ) ∩ N+

F (σ). By Lemma 4.7.2 and
4.7.3, the labels of the vertices of F ′ and F are the same. Thus, if γ(F ′) < γ(F), it is because F ′

has no oriented cycle, or because at least one cycle of F ′ is not in F . Let us consider both cases.

Suppose that F ′ has no oriented cycle. Lemma 4.8 ensures that every flip of F ′ is connected.
Since the labels are the same in F and F ′, only σ can be disconnected in F if it has been
removed in F ′, but by Lemma 4.7, if σ has been removed, σ is connected in F . Thus, F only
contains connected flips, and either there are no oriented cycles in F , or the only oriented cycles
contain only connected flips. Thus, combining γ(F) = γ(F ′) = 0 with property (*), we have
(|V (F ′)| + γ(F ′)) − (|V (F)| + γ(F)) ≥ −1.

So we can assume that at least one oriented cycle C ′ of F ′ is not in F . Since V (F ′) ⊆ V (F) and
the labels are the same in F and F ′, at least one arc of C ′ is not in F . Let us prove that there
exists a cycle C in F such that V (C) ⊆ V (C ′) ∪ {σ}.
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If exactly one arc σ1σ2 of C ′ is not in F then, by Lemma 4.7.4 and 4.7.5, σ1 ∈ N−
F (σ) and

σ2 ∈ N+
F (σ). Moreover, the path P of C ′ from σ2 to σ1 is also in F , so that in F , P plus σ1σ

and σσ2 form an oriented cycle C in F , with V (C) ⊆ V (C ′) ∪ {σ}. If at least two distinct arcs
of C ′ are not in F , let σ1σ2 and σ3σ4 be two such arcs. We can choose σ1σ2 and σ3σ4 so that
the oriented path P from σ2 to σ3 in C ′ only contains arcs that are in F . Lemma 4.7 ensures
that σ1, σ3 ∈ N−

F (σ) and σ2, σ4 ∈ N+
F (σ). If σ2 = σ3 or σ4 = σ1, N−

F (σ) ∩ N+
F (σ) is not empty,

a contradiction with the assumptions. Thus, σ1σ2 and σ3σ4 are not consecutive in C ′. Since
σ3 ∈ N−

F (σ) and σ2 ∈ N+
F (σ), in F , P plus σ3σ and σσ2 forms an oriented cycle C in F , with

V (C) ⊆ V (C ′) ∪ {σ}.

Therefore, in both cases, there exists an oriented cycle C in F such that V (C) ⊆ V (C ′) ∪ {σ}.
Since all the vertices have the same label in F and F ′, the minimum number of disconnected
flips in an oriented cycle of F is therefore at most the number of disconnected flips in C if σ
is connected, and the number of disconnected flips in C +1 if σ is disconnected. Thus, if σ is
connected, γ(F ′) − γ(F) ≥ 0, and if σ is disconnected, γ(F ′) − γ(F) ≥ −1. Again, in both cases,
property (*) ensures that (|V (F ′)| + γ(F ′)) − (|V (F)| + γ(F)) ≥ −1.

Note that the lower bound given by Lemma 4.9 corresponds to the upper bound given by
Christie [Chr98] for paths when the graph of flips is connected. Indeed, Christie gives an
algorithm to transform any path G into another one H by using |V (F(G, H))| + s good flips,
where s is the number of connected components of F(G, H) that only have disconnected flips.
Thus, if the graph of flips is connected, s is equal to 0 if there exists a connected flip in it, and 1
otherwise. As the graph is undirected in this case, s is thus equal to γ(F(G, H))).

In our case, the lower bound given by Lemma 4.9 is not necessarily tight when we only flip bad
edges of the same cycle. Indeed, let us consider for example the graphs G′

k and H ′
k obtained

from Gk and Hk by adding a connected and a disconnected C4, that see each other, on the same
branch of the original subdivided star (see Figure 4.6).

c v1,1 v1,2

v1,3 v1,4 v1,5 v1,6

v1,7 v1,8

v1,9 v1,10

v1,11 v1,12

v3,1v3,2

v3,3v3,4

v4,1

v4,2

v4,3

v4,4

v2,1

v2,2

v2,3

v2,4

Figure 4.6: G′
4 and H ′

4. The black thick edges are in E(G′
4 ∩ H ′

4), the blue thin edges are in
E(G′

4 − H ′
4) and the red dashed edges are in E(H ′

4 − G′
4).

We claim that a proof similar to the one of Lemma 4.11 can be adapted to prove that the shortest
transformation from G′

k to H ′
k has length at least 3k

2 . On the other hand, the addition of the two
cycles on a leaf of a branch created in F(G′

k, H ′
k) an oriented cycle of length 2 with a connected

and a disconnected vertex. Thus, Lemma 4.9 gives the lower bound k + 2.

We can now apply Lemma 4.9 to prove the following. Recall that Gk and Hk were defined at
the beginning of the section.

Lemma 4.10. If we only flip pairs of edges that are in the same cycle of C, then the shortest transformation
from Gk to Hk has length at least 2k − 1.
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Proof. Let us first show that Gk and Hk are close. We thus need to prove that Δ(Gk, Hk) has a
unique partition into alternating cycles, containing only short cycles. In the proof all the indices
have to be read modulo k. By construction, the vertex c is not incident to any edge of Δ(Gk, Hk)
and all the other vertices are incident to one edge of Gk − Hk and one edge of Hk − Gk. For
every i, vi,1 is incident to an edge of Gk − Hk, namely vi,1vi,2. The vertex vi,2 is incident to an
edge of Hk − Gk, namely vi,2vi+1,4, which in turn is incident to an edge of Gk − Hk, vi+1,4vi+1,3.
And vi+1,3 is incident to an edge of Hk − Gk, vi+1,3vi,1. This set of four edges create a short
cycle, denoted by Ci. Since this property holds for every i, Δ(Gk, Hk) can be partitioned into
k short cycles. The uniqueness of the edges of Gk − Hk and Hk − Gk incident to a vertex vi,j

ensures the uniqueness of the decomposition into cycles.

Let us now prove that F := F(Gk, Hk) only contains disconnected flips. Since there are 4k
edges in Δ(Gk, Hk), there are therefore k vertices in F . Let us prove that, for every i, the
good flip σi ∈ F(Gk, Hk) for Ci is disconnected. Since vi,2vi+1,4 and vi+1,3vi,1 are the edges
of Hk − Gk in Ci, the good flip of F is σi : (vi,1vi,2, vi+1,4vi+1,3) → (vi,1vi+1,3, vi,2vi+1,4). By
construction, (vi,2, vi,1, vi+1,3, vi+1,4) are aligned in Gk and then Lemma 4.1 ensures that σi is
disconnected.

Let us finally show that F is an oriented cycle of length k. For every i, the path from vi,1vi,2 to
vi+1,4vi+1,3 in Gk is Pi := (vi,1, c, vi+1,1, vi+1,2, vi+1,3). The only edge of Gk − Hk that belongs
to Pi is vi+1,1vi+1,2, which is an edge of σi+1. So σi only sees σi+1.

Therefore, F is an oriented cycle of length k containing only disconnected flips.

Since Gk, Hk are close, Lemma 4.9 ensures that a shortest transformation when we only flip
pairs of edges that are in the same cycle of C has length at least |V (F)| + γ(F) = 2k − 1. Indeed
|V (F)| = k and γ(F) = k − 1.

We claim that the lower bound given by Lemma 4.10 is also an upper bound. Indeed, by
Lemma 4.5, every short cycle can be removed within two steps. We can apply this strategy for
k − 1 cycles which requires 2k − 2 steps. When there only remains one cycle in the symmetric
difference, then it is easy to check that the good flip indeed keeps the connectivity of the graph.
Thus the last short cycle can be removed in one step.

From Lemma 4.10, we can finally deduce the following corollary:

Corollary 4.2. There exist some connected graphs G and H with the same degree sequence for which, if
we only flip edges of the same cycle of any decomposition of Δ(G, H) into alternating cycles, the shortest

connected transformation from G to H has length at least 2( δ(G,H)
2 − mnc(G, H)) − 1.

4.2 Flipping bad edges

The restriction of flipping only edges that are in the same cycle of the partition of Δ(Gk, Hk)
into alternating cycles might seem strong.

That being said, we have also studied the transformation from Gk to Hk under a weaker
assumption, which is the one of only flipping bad edges.

Lemma 4.11. If at any time, we only flip pairs of bad edges, then the shortest transformation from Gk to
Hk has length at least ⌈ 3k

2 ⌉ − 1.

Proof. Let Gt be a graph obtained after applying t arbitrary flips, whose edges are in Δ(Gk, Hk),
to Gk. The branch Bi of Gt is the unique path from vi,1 to a leaf of Gt (that is therefore identified
as the leaf of the branch) that does not contain the vertex c. Note that since we only flip bad
edges, in Gt, one of the two edges incident to vi,1 is cvi,1. A core of a branch Bi is an edge vj,2vj,3

that belongs to the branch Bi. Note that a branch might contain no core. An edge of Gt − H is
external if is incident to a leaf of Gt, and internal otherwise. An inversion of Bi is a flip whose
edges are both on Bi. A displacement between two branches Bi and Bj is a flip between one
edge of Bi and one edge of Bj . Note that all the flips are either inversions or displacements.
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Let S be a sequence of flips that transforms Gk into Hk using only bad edges, and let us show
that S has length at least ⌈ 3k

2 ⌉ − 1.

Let us first show that S contains at least k − 2 displacements if k is even, and k − 1 if k is
odd. First note that the only way to change the leaf of the branch Bi consists in making a
displacement between Bi and another branch Bj . Indeed, an inversion flips two edges of the
same branch, and therefore does not change its content. On the other hand, a displacement
between the branches Bi and Bj permutes the leaves of the two branches.

Since the leaf of the branch Bi is vi,4 in Gk, and vi+2,4 in Hk (the addition being modulo k), the
leaves associated to the branches (B1, . . . , Bk) must be changed from (v1,4, v2,4, . . . , vk−2,4, vk−1,4

, vk,4) to (v3,4, v4,4, . . . , vk,4, v1,4, v2,4), only using displacements, i.e. transpositions of the leaves.
The canonical notation of the permutation (i.e partition into cycles) from (1, 2, . . . , k −2, k −1, k)
to (3, 4, . . . , k, 1, 2) is either (1, 3, . . . , k − 1)(2, 4, . . . , k) if k is even, or (1, 3, . . . , k, 2, 4, . . . , k − 1)
if k is odd. Thus, it is partitioned into 2 orbits if k is even, and 1 orbit if k is odd, and therefore
its decomposition into transpositions contains k − 2 transpositions if k is even, and k − 1 if k
is odd. Therefore, in order to put the leaves vi+2,4 on the branches Bi for any i, at least k − 2
transpositions are needed if k is even, and at least k − 1 transpositions are needed if k is odd.
Therefore, if ℓ is the number of inversions in S, then S has length at least ℓ + k − 2 if k is even,
and ℓ + k − 1 if k is odd.

Let us now prove that S has length at least 2k−ℓ. Assume that S contains ℓ inversions. First note
that, in both Gk and Hk, the vertices vi,2vi,3 appear in the same branch, but in Gk, (c, vi,2, vi,3)
are aligned and in Hk, (c, vi,3, vi,2) are aligned. Thus, the order of vi,2vi,3 in the branch has
to change during the transformation. The only way to change the order of vi,2 and vi,3 in a
branch is to make an inversion of a subpath containing the edge vi,2vi,3. Since S contains only
ℓ inversions, it means that there exist at least k − ℓ indices j for which the edge vj,1vj,2 has to
belong to a flip before its inversion. Moreover, after each inversion, at most one core belongs to
its final branch. Thus, there exist at least k − ℓ indices j such that the bad edge incident to vj,2

has to belong to a flip after the inversion of vj,1vj,2 in order to connect it with vj−1,1. So 2k − 2ℓ
internal edges have to be flipped during displacements.

Let us now focus on the leaves. Since S contains ℓ inversions, at most ℓ indices j satisfy that
vj,3 is incident to a leaf just before the inversion of vj,2vj,3. Since all the edges vi,2vi,3 have to be
inversed during the transformation and since in Gk, every vertex vi,3 is incident to a leaf, at
least k − ℓ external edges have to be belong to a flip before the inversion of the core they are
incident to in Gk. Similarly, at most ℓ indices j satisfy that vj,2 is incident to a leaf just after the
inversion of vj,2vj,3. Since in Hk, every vertex vi,2 is incident to a leaf, at least k − ℓ external
edges have to belong to a flip after the inversion of the core they are incident to in Hk. So at
least 2k − 2ℓ external edges have to be flipped during displacements.

Therefore, in total, we need to flip at least 4k − 4ℓ edges during displacements. So at leat 2k − 2ℓ
displacements are needed in addition to the ℓ inversions, and the total number of flips in S is at
least 2k − ℓ.

Thus, if k is even, S has length at least max(ℓ + k − 2, 2k − ℓ) and if k is odd, S has length at
least max(ℓ + k − 1, 2k − ℓ). In both cases, the two lower bounds meet for ℓ = ⌊ k

2 ⌋ + 1 at the
value ⌈ 3k

2 ⌉ − 1. Therefore, S has length at least ⌈ 3k
2 ⌉ − 1.

From Lemma 4.11, we can deduce the following:

Corollary 4.3. There exist some connected graphs G and H with the same degree sequence for which, if
we only flip edges of Δ(G, H), the shortest connected transformation from G to H has length at least
3
2 ( δ(G,H)

2 − mnc(G, H)) − 1.
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5 Conclusion

In this chapter, we presented some results about the reconfiguration of connected multigraphs
with the same degree sequence. We mostly focused on the case of trees, which is actually
the hard case. We presented a result from a joint work with Nicolas Bousquet, where we
study the shortest transformation problem and provide a polynomial time 2.5-approximation
algorithm, which improves the former ratio of 4. This improvement is due to a new upper
bound on the number of flips needed to transform a tree G into another H . On the other
hand, we left the lower bound unchanged, as we used the one provided by Will’s theorem
[Wil99b] (which is the exact value of the length of a shortest transformation when we do not
add the constraint of maintaining connectivity). We then discussed this lower bound. We
showed that if we only flip bad edges of the same cycle of the symmetric difference then the
length of a shortest transformation can be almost twice longer. To do so, we generalize some
results of Christie [Chr98] proved for the particular case of paths, which is equivalent to the
SORTING BY REVERSAL problem. We also show that if we only flip edges of the symmetric
difference then the length of a shortest transformation can be almost 3

2 times longer. So in order
to drastically improve the approximation ratio, one first needs to improve the lower bound.
Despite our efforts, we did not find a better lower bound and leave it as an open question.
Similarly, we do not know for sure that flipping edges that are common to G and H cannot
lead to a shortest transformation sequence, even if all the existing algorithms for SCGT and
SORTING BY REVERSALS only consider flips on edges of the symmetric difference. These two
open questions leave room for future improvements.
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Chapter 5

Reconfiguration of Dominating Sets
under the Token Addition-Removal
rule

1 Introduction

In this chapter, we change the source problem as we investigate the reconfiguration of dominat-
ing sets. In this problem, the instance is a graph G, and the feasible solutions are dominating
sets of G. Here, we focus on the Token Addition-Removal (TAR) rule. Recall that under TAR,
two dominating sets D and D′ are adjacent in the reconfiguration graph if there exists a vertex
u such that D′ = D ∩ {u} or D′ = D \ {u}. An example of reconfiguration sequence is given in
Figure 5.1.

D1 := Ds D2 D3 D4 D5 := Dt

Figure 5.1: An example of reconfiguration sequence of dominating sets under the TAR rule.

Most of the studies concerning the reconfiguration of dominating sets have focused on the TAR
rule (see [MN20] for a survey).

Haas and Seyffarth [HS14] first investigated the graphs that are realisable as reconfiguration
graphs. They proved that the reconfiguration graph of the star of order n is Sn itself when
the dominating sets are the ones of size at most 2. Alikhani et al. [AFK17] showed that this is
the only case where a reconfiguration graph is isomoprhic to its instance. Alikhani et al. also
showed that C6, C8, P1 and P3 are the only cycles and paths that are reconfiguration graphs
of connected graphs, and that for any graph G, the order of the reconfiguration graph is odd
when all the dominating sets of G are feasible solutions.

Haddadan et al.[HIM+16] studied the algorithmic complexity of the REACHABILITY problematic.
Recall that this problem consists in determining if there exists a reconfiguration sequence
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between two given dominating set Ds and Dt. They proved that this problem is PSPACE-
complete, even when restricted to bipartite graphs, split graphs and planar graphs. However,
they provide a linear algorithm if the input graph is a tree, an interval graph or a cograph.

Blanche et al.[BMOS19] focused on the complexity of an optimization variant of REACHABILITY.
It consists in searching for the dominating set of minimum size among the ones that are
reachable from a given dominating set Ds. They proved that this problem is PSPACE-complete
even when restricted to bipartite graphs, split graphs and bounded pathwidth graphs. They
also provide linear-time algorithms for trees, interval graphs and cographs.

Note that the size of the dominating sets is necessarily changing under TAR. Thus, as we stated
in Chapter 3, we do not restrict it to a given k in the reconfiguration graph. That being said, we
impose a maximum size k, which is called the threshold, and the feasible solutions are all the
dominating sets which have size at most k. The reconfiguration graph for the instance G is then
denoted by Rk(G). Note that if k = n, then we can always reconfigurate a dominating set Ds

into another Dt by adding all the vertices of Dt \ Ds to Ds, then removing all the vertices of
Ds \ Dt. So Rn is connected. It raises the following question. What is the value of k from which
it stops being the case ? In other words, what is the minimum value d0 of k such that Rk′(G) is
connected for any k′ ≥ k ? This question has been raised by Haas and Seyffarth [HS14], and
has been the object of many studies [HS14, SMN15, HS17, MTR19b].

Firstly, one might wonder if d0 is also the minimum value of k such that Rk(G) is connected.
Haas and Seyffarth actually proved that it is not necessarily the case [HS14]. They showed that
being reconfigurable is not a monotone property, which means that if Rk(G) is connected then
Rk+1(G) is not necessarily connected. To see it, let us consider the star Sn of order n. They
observed that, for every n ≥ 4, Rk(Sn) is connected if 1 ≤ k ≤ n − 2. But Rn−1(Sn) is not
connected since the dominating set of size n − 1 which contains all the leaves is frozen, i.e. it is
an isolated vertex in Rn−1(Sn). However, they also proved the following, where Γ(G) is the
maximum size of an inclusion-wise minimal dominating set of G (in the rest of this chapter, we
simply say minimal, in opposition to minimum).

Lemma 5.1. [HS14] Let G be a graph. If k > Γ(G) and Rk(G) is connected, then Rk+1(G) is
connected.

Moreover, they proved that if G has at least two independent edges (i.e. two edges that do not
share a vertex), then d0 ≤ min{n − 1, Γ(G) + γ(G)} (recall that γ(G) is the minimum size of
a dominating set of G). They also showed that this value can be lowered to Γ(G) + 1 if G is
bipartite or a chordal graph. This result is tight since Sn is bipartite and chordal and Rn−1(Sn)
is not connected, with Γ(Sn) = n − 1. They then asked if this result can be generalized to any
graph. Suzuki et al. [SMN15] answered negatively this question by constructing an infinite
family of graphs for which RΓ(G)+1(G) is not connected. Mynhardt et al. [MTR19b] improved
this result by constructing two infinite families of graphs:

• the first construction provides some graphs G with arbitrary Γ(G) ≥ 3 and arbitrary
domination number in the range 2 ≤ γ(G) ≤ Γ(G) such that d0 = Γ(G) + γ(G) − 1

• the second one gives some graphs G with arbitrary Γ(G) ≥ 3 and arbitrary domination
number in the range 1 ≤ γ(G) ≤ Γ(G) − 1 such that d0 = Γ(G) + γ(G).

In particular, this provides an infinite family of graphs for which d0 = 2Γ(G) − 1. The value of
d0 obtained by Mynhardt et al. is somehow the best we can hope for in the general case, since as
we already stated, if G has at least two independent edges, then d0 ≤ min{n − 1, Γ(G) + γ(G)}
[HS14].

Suzuki et al. [SMN14] actually generalized the upper bound of n − 1 on d0 when G has at least
two independent edges. They gave an upper bound depending on the matching number μ(G)
of G. Recall that this corresponds to the maximum number of independent edges in G. They
showed that if k = n − μ(G) + 1, then Rk(G) is connected and has linear diameter. This result
is somehow the best possible since μ(P2q) = q, and Γ(P2q) = q (where P2q denotes the path of
order 2q), thus if k = n − q = q, then Rk(P2q) is disconnected (the minimal dominating sets are
frozen).

Haas and Seyffarth [HS17] gave another upper bound on d0, depending on the independence
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number of G. They proved that if k = Γ(G) + α(G) − 1 (recall that α(G) is the maximum size
of an independent set of G), then Rk(G) is connected. To obtain this result, they show that all
the independent dominating sets of G are in the same connected component of RΓ(G)+1(G).

Alikhani, Fatehi, and Mynhardt [AFM17] also studied the value of d0, in the case where we
restrict the solutions to total dominating sets (recall that in such a set, a vertex does not dominate
itself). In particular, they characterized the graphs for which RΓ(G)t(G) is connected, where
Γ(G)t is the maximum size of an inclusion-wise minimum total dominating set.

In this chapter, we present a joint work with Nicolas Bousquet and Paul Ouvrard, in which
we complete these results by giving other upper bounds on d0 depending on several graph
parameters. In each case, we provide a linear transformation between any pair of dominating
sets, thus proving that the reconfiguration graph has linear diameter when k ≥ d0.

2 Independence number

In this section, we study the upper bound on d0 depending on the maximum size of a minimal
dominating set of G and the independence number of G. We present a result that improves the
following upper bound on d0, by Haas and Seyffarth.

Lemma 5.2. [HS17] Let G be a graph. If k ≥ Γ(G) + α(G) − 1 , then Rk(G) is connected.

In our result, we give a new proof of the same result, but that moreover implies that the
reconfiguration graph has linear diameter. The proof is constructive and provides an algorithm
that construct a path between two given dominating sets of size at most k of G.

Firstly, let us show some basic observations about maximal independent sets (i.e. independent
sets that are maximal by inclusion) which will be needed for the proof.

As stated in Chapter 2, computing a maximum independent set of a given graph G is a classical
NP-complete problem [Kar72], while computing a maximal one can trivially be done in linear
time by a greedy algorithm [Lub86]. Moreover, given an independent set S′ which is not
maximal, one can greedily complete it into a maximal independent set S such that S′ ⊆ S. In
particular, if there exist two vertices u and v such that uv �∈ E, then there exists a maximal
independent set of G which contains both u and v. Obviously, this is also true when S′ is
reduced to a single vertex. We will use this fact to prove the result we present in this section, as
well as for the following well-known observation.

Observation 5.1. Let G = (V, E) be a graph, and S ⊆ V be a maximal independent set of G. Then, S
is an inclusion-wise minimal dominating set.

Proof. Let u ∈ V be a vertex. If u ∈ S, u is dominated by itself. Otherwise, there exists
v ∈ N(u) ∩ S since S is maximal. Hence, u is dominated by v. Moreover, by definition of an
independent set, we have N(S \ u) does not contain u for every vertex u ∈ S. Therefore, u is
not dominated in S \ {u} and thus S is a minimal dominating set of G.

Note that Observation 5.1 implies that any inclusion-wise maximal independent set S of G
satisfies |S| ≤ α(G) ≤ Γ(G). We also need the following observation.

Observation 5.2. Let D be a minimal dominating set of G, and let S be a maximal independent set of G
such that D ∩ S �= ∅. If k ≥ Γ(G) + α(G) − 1, then there exists a path of length at most |D| + α(G) − 2
in Rk between D and S.

Proof. Recall that since S is a maximal independent set, |S| ≤ α(G) ≤ Γ(G). We first add to D
each vertex in S \ D one by one. Note that there are at most α(G) − 1 such vertices. We thus
obtain the set D′ = D ∪ S. We then remove one by one each vertex in D \ S. There are at most
|D| − 1 such vertices since S ∩ D �= ∅. Each intermediate solution is indeed a dominating set
since it either contains D or S which are both dominating sets. Moreover, each solution is of
size at most |D′| ≤ |D| + |S| − 1 ≤ k.
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We now move on to one of the main results of the work done with Nicolas Bousquet and Paul
Ouvrard, which is about the diameter of the reconfiguration graph when k = Γ(G) + α(G) − 1.

Theorem 5.1. Let G = (V, E) be a graph on n vertices. If k = Γ(G) + α(G) − 1 then Rk(G) has
diameter at most 10n.

Proof. Let D1 and D2 be two dominating sets, both of size at most k. Free to remove at most
2 · (Γ(G) + α(G) − 2) vertices in total, one can assume without loss of generality that D1 and
D2 are both inclusion-wise minimal dominating sets of G. Hence |D1| ≤ Γ(G) and |D2| ≤ Γ(G).
We outline a path between D1 and D2 in Rk(G). The next claim deals with the case where D1

and D2 have a non-empty intersection.

Claim 5.1. If D1 ∩ D2 �= ∅ then there exists a reconfiguration sequence from D1 to D2 of length at most
2 · (α(G) + Γ(G) − 2).

Proof. Let x be a vertex that belongs to both D1 and D2. One first constructs greedily (and thus
in polynomial-time) a maximal independent set S of G which contains x (which is then of size
at most α(G)). By Observation 5.2, one can transform D1 into S under the TAR rule. And the
length of the reconfiguration sequence is at most Γ(G) + α(G) − 2. Similarly, there exists a
reconfiguration sequence of length at most Γ(G) + α(G) − 2 from D2 to S. By combining these
two transformations, we obtain a reconfiguration sequence between D1 and D2 of length at
most 2 · (α(G) + Γ(G) − 2), as desired. ♦

In the remaining of this proof, we assume that D1 ∩ D2 = ∅ otherwise we can directly conclude
by Claim 5.1. If there exist ui ∈ D1 and vj ∈ D2 such that the set D′ = (D1 \ {ui}) ∪ {vj} is
a dominating set of G, then we can conclude by Claim 5.1 since D′ ∩ D2 �= ∅ and D′ can be
obtained from D1 in two steps. Suppose now that D′ = (D1 \ {ui}) ∪ {vj} is not a dominating
set of G. This means that ui is adjacent to a vertex x with no neighbors in (D1 \ {ui}) ∪ {vj}.
Hence, there exists a maximal independent set S1 of G which contains both x and a vertex
uk ∈ D1 \ {ui}. Similarly, there exists a maximal independent set S2 which contains both x and
vj . By Observation 5.2, there exists a reconfiguration sequence of length at most Γ(G)+α(G)−2
between S1 (respectively S2) and D1 (respectively D2) under the TAR rule. Finally, since S1 and
S2 intersect, we can again use Observation 5.2 that ensures that there exists a transformation
from S1 to S2 of length at most 2α(G) − 2.

Hence, we obtain a reconfiguration sequence from D1 to D2 of length at most 4 · (Γ(G) + α(G) −
2) + 2 · (α(G) − 1) < 10n.

3 H-minor free graphs

In this section, we present another upper bound on d0 for minor-free graphs. We say that a
graph is d-minor sparse if all its bipartite minors have average degree less than d. Note that it is
equivalent to say that the ratio between the number of edges and the number of vertices of any
bipartite minor of G is strictly less than d

2 . We first present the following essential lemma.

Lemma 5.3. Let G be a d-minor sparse graph. Let A and B be two dominating sets of G such that
|A| = |B| and |B \ A| ≥ d. Then, there exists a vertex a ∈ A \ B and a set S ⊂ B \ A with |S| = d − 1
such that (A ∪ S) \ {a} is a dominating set of G.

Proof. We prove it by contradiction. For every ai ∈ A \ B, let Si,1 be a subset of B \ A of size
d − 1. Let xi,1 be a vertex that is only dominated by ai in A and not dominated by Si,1 in B
(such a vertex must exist otherwise the conclusion follows). Note that this vertex might be a
vertex of A or of B. Let bi,1 be a vertex of (B \ A) \ Si,1 that dominates xi,1. This vertex exists
since B is a dominating set and xi,1 is only dominated by ai in A. Now, for every 2 ≤ j ≤ d,
we define recursively the set Si,j as a subset of size d − 1 of B \ A containing {bi,1, . . . , bi,j−1}.
We let xi,j be a vertex only dominated by ai in A that is not dominated by Si,j in B, and bi,j

be a vertex of (B \ A) \ Si,j that dominates xi,j . Note that, for every j, since xi,j is incident to
bi,j and not to Si,j , bi,j /∈ {bi,1, . . . , bi,j−1}. In particular, Bi := {bi,1, . . . , bi,d} has size exactly d.
Note that Bi ⊆ B \ A. The construction of the set Bi is illustrated in Figure 5.2.
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B \ A

A \ Baiaj

xi,1

bi,1

xi,2

bi,2

xi,3

bi,3 . . .

. . .

. . .

Figure 5.2: The set Bi. The dotted lines represent the non-edges, and the zigzags represent the
edges that are contracted in G′.

Let us construct a minor G′ of G of density at least d. For every ai ∈ A \ B, we contract the
edges aixi,j for any j such that xi,j �∈ B \ A and xi,j �∈ A \ B. (In particular, if xi,j ∈ B, we do
not contract the edge). By abuse of notations, we still denote by ai the resulting vertex. Note
that the vertices xi,j are pairwise disjoint. If xi,j = xi′,j′ then, since xi,j is only dominated
by ai and xi′,j′ by a′

i, we must have ai = a′
i. And by construction in the previous paragraph,

xi,j �= xi,j′ if j �= j′. So the contractions defined above are well defined. Moreover, the size of
A \ B is left unchanged. Similarly the size of B \ A is not modified. We finally remove from the
graph any vertex which is not in (A \ B) ∪ (B \ A), and any edge internal to A \ B and to B \ A.
The resulting graph G′ is a minor of G and is bipartite.

For every i, j, xi,j is adjacent to every vertex of Bi in G. Thus, ai is adjacent to every vertex of
Bi in G′. Therefore, for any ai ∈ A \ B, ai has degree at least d in G′. Thus, there are at least
d · |A \ B| edges in G′. Since G′ has |A \ B| + |B \ A| = 2|A \ B| vertices, it contradicts the fact
that G is a d-minor sparse graph.

Lemma 5.4. Let G be a d-minor sparse graph. If k = Γ(G) + d − 1, then Rk(G) is connected and the
diameter of Rk(G) is at most 2Γ(G) · (d − 1) + 2(Γ(G) − 1).

Proof. Firstly, if d > Γ(G), then the result follows from Theorem 5.1. So we assume d ≤ Γ(G).
We proceed by induction on |t \ Ds|. Let Ds and Dt be two dominating sets of G of size at
most k. Since Γ(G) is the maximum size of a dominating set minimal by inclusion, we can add
or remove vertices from Ds and Dt so that Ds and Dt both have size exactly Γ(G), keeping
dominating sets. Note that by assumption, we need to remove or add at most 2(Γ(G) − 1)
vertices in total. So from now on, we assume that |Ds| = |Dt| = Γ(G). Let us show that there is
a path from Ds to Dt in Rk(G) of length at most 2|Dt \ Ds| · (d − 1). Since |Dt \ Ds| ≤ Γ(G),
and by taking into account the 2(Γ(G) − 1) vertices eventually initially added or removed, this
will give the expected result. We proceed by induction on |Dt \ Ds|.
If |Dt \ Ds| ≤ d − 1 then, since |Ds| = Γ(G), we have |Ds ∪ Dt| ≤ Γ(G) + d − 1. Thus, we can
simply add all the vertices of Dt \ Ds to Ds and then remove the vertices of Ds \ Dt. We thus
obtain a path from Ds to Dt in Rk(G) of length at most 2d − 2 ≤ 2|Dt \ Ds| · (d − 1).

Assume now that |Dt \ Ds| ≥ d. By Lemma 5.3, there exists a vertex v ∈ Ds \ Dt and a set
S ⊂ Dt \ Ds with |S| = d − 1 such that D′

s := (Ds ∪ S) \ {v} is a dominating set of G. Let D′′
s

be any dominating set of size exactly Γ(G) obtained by removing vertices of D′
s, i.e. such that

D′′
s ⊆ D′

s. Since |S| = d − 1 and |Ds| = Γ(G), the transformation that consists in adding every
vertex of S to Ds and then removing v and every vertex of D′

s \ D′′
s is a path from Ds to D′′

s in
Rk(G). Moreover, |D′

s| = Γ(G) + d − 2. Thus, this path has length 2d − 2.

We have D′
s := (Ds ∪ S) \ {v} where v ∈ Ds \ Dt and S ⊂ Dt \ Ds with |S| = d − 1. Thus,

|Dt \ D′
s| = |Dt \ Ds| − d + 1. Since D′′

s ⊆ D′
s and |D′

s \ D′′
s | ≤ d − 2, it gives |Dt \ D′′

s | ≤
|Dt \ Ds| − 1. By induction hypothesis, there exists a path from D′′

s to Dt in Rk(G) of length
at most |Dt \ D′′

s | · (2d − 2). The concatenation of the two paths gives a path from Ds to Dt in
Rk(G) of length at most 2|Dt \ Ds| · (d − 1). This concludes the proof.

Let us now state two of our main results, which are immediate corollaries of Lemma 5.4:
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Corollary 5.1. Let G be a graph. Then, we have the following:

• if G is planar, then Rk(G) is connected and has linear diameter for every k ≥ Γ(G) + 3.

• if G is Kℓ-minor free, then there exists a constant C such that Rk(G) is connected and has linear
diameter for every k ≥ Γ(G) + Cℓ

√

log2 ℓ.

Proof. Every minor of a planar graph is planar. Moreover every bipartite planar graph has
at most 2n − 4 edges. Thus every planar graph is a 4-minor sparse graph and the first point
follows from Lemma 5.4.

A result of Thomason[Tho84] (improving a result of Mader[Mad68]) ensures that the average
degree of a Kℓ-minor free graph is at most 0.265 · ℓ

√

log2 ℓ(1 + o(1)). In particular, there exists
a constant C such that, for every ℓ and every Kℓ-minor free graph G, the average degree of
G is at most Cℓ

√

log2 ℓ. Thus G is Cℓ
√

log2 ℓ-minor sparse and the second point follows from
Lemma 5.4.

Concerning planar graphs, the result we give is almost tight. Indeed, we know that there exist
planar graphs for which Rk(G) is not connected if k = Γ(G) + 1. Suzuki et al [SMN15] gave an
example of such a planar graph G. The graph G is given in Figure 5.3.

Figure 5.3: The planar graph G such that RΓ(G)+1 is not connected.

It is easily seen that Γ(G) = 3. Moreover, if we consider the circled dominating set, in order to
remove a vertex, we must add the other vertices it is adjacent to, thus reaching a dominating
set of size Γ(G) + 2. Despite our efforts, we were not able to find an example where Γ(G) + 3 is
needed for the reconfiguration graph to be connected. Thus, we conjecture the following.

Conjecture 5.1. If G is planar and if k ≥ Γ(G) + 2, then Rk(G) is connected.

4 Bounded treewidth graphs

In this section, we present our last result, which provides an upper bound on d0 depending on
Γ(G) and the treewidth of G.

Theorem 5.2. Let G = (V, E) be a graph. If k = Γ(G) + tw(G) + 1, then Rk(G) is connected.
Moreover, the diameter of Rk(G) is at most 4(n + 1) · (tw(G) + 1).

Proof. Let (X, T ) be a tree decomposition of G such that the maximum size of a bag of X is
tw(G) + 1. Let b = |X|. We root the tree T in an arbitrary bag, then set X := {X1, . . . , Xb},
where for any Xi, Xj such that Xi is a child of Xj , we have i < j. In other words, X1, . . . , Xb

is an elimination ordering of the (rooted) tree T where at each step we remove a leaf of the
remaining tree. We say that a bag Xi is a descendant of Xj if Xj is on the unique path from
the root to Xi (in other words, Xi belongs to the subtree rooted in Xj in T ). Note that, free to
contract edges if a bag is included in another, we can assume b ≤ n. We denote by Vi the set of
vertices that do not appear in the set of bags ∪b

j=i+1Xj . We set V0 := ∅.

Let Ds and Dt be two dominating sets. Free to first remove vertices from Ds and Dt if possible
(which can be done in at most 2(tw(G) + 1) operations in total), we can assume that Ds and Dt

have size at most Γ(G). Let D be a minimum dominating set of G. Instead of proving directly
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that there exists a reconfiguration sequence from Ds to Dt, we will prove that that there exists
a reconfiguration sequence from Ds to D and from Dt to D of length at most 2n · (tw(G) + 1)
each. Since the reverse of a reconfiguration sequence also is reconfiguration sequence, that will
give the conclusion, that gives a reconfiguration sequence of the desired length. So the rest of
the proof is devoted to prove the following:

Lemma 5.5. Let G = (V, E) be a graph and let Ds be a dominating set of G of size at most Γ(G) and D
be a minimum dominating set of G. If k = Γ(G) + tw(G) + 1, then there is a reconfiguration sequence
from Ds to D. Moreover, the length of this reconfiguration sequence is at most 2n · (tw(G) + 1).

In order to prove Lemma 5.5, we prove that there exists a sequence 〈D1 := Ds, D2, . . . , Db〉 of
dominating sets such that, for every j, Dj satisfies the following property P :

(i) Dj is a dominating set of G of size at most Γ(G),

(ii) For every j > 1, there exists a transformation sequence of length at most 2(tw(G) + 1)
from Dj−1 to Dj in Rk(G),

(iii) Dj ∩Vj−1 ⊆ D. In other words, the vertices of Dj that only belong to bags in X1∪. . .∪Xj−1

are also in D.

So that will provide a reconfiguration sequence in Rk(G) from Ds to a dominating set Db

sufficiently close to D to ensure the existence of a transformation from Db to D of length at
most 2n · (tw(G) + 1). To prove the existence of the sequence, we use induction on j.

First note that since Ds is a dominating set of G of size at most Γ(G) and V0 is empty, Ds

satisfies property P . Let us now show that if Dj satisfies property P , then there exists a set
Dj+1 that satisfies property P . A vertex v is a left vertex (for Xj) if v only appears in bags that
are descendant of Xj . Note that by definition, Xj is a descendant of itself. Otherwise, we say
that v is a right vertex. When no confusion is possible, we will omit the mention of Xj .

Claim 5.2. If a left vertex u (for Xj) is adjacent to a right vertex v (for Xj), then v ∈ Xj .

Proof. Since u and v are adjacent in G, there exists a bag Xi which contains both u and v. Note
that since u is a left vertex, Xi is a descendant of Xj . Besides, since v is a right vertex, there
exists a bag Xi′ that contains v and which is not a descendant of Xi. Since the set of bags that
contain v induces a connected tree, v must belong to each bag on the unique path from Xi to
Xi′ . In particular, v ∈ Xj . ♦

To construct Dj+1, we define several subsets of vertices (see Figure 5.4 for an illustration).

• A is the set of left vertices of Xj ∩ (Dj \ D). In other words, A is the set of vertices of Xj

that are in Dj but not in D.

• B is the set of right vertices of Xj . In other words, B is the set of vertices of Xj that also
appear in a bag Xj′ with j′ > j.

• C is the set of left vertices of D \ Dj . In other words, C is the set of vertices of D at the left
of Xj that are missing in Dj .

We partition again B into three parts:

• B1 is the set of vertices of B \ D that are dominated by C

• B2 = B ∩ Dj

• B3 = B \ (B1 ∪ B2).
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Xj

Xb

. . .

A

C

B

Figure 5.4: The tree decomposition of G, and the sets A, B and C. The circles represent the bags
of the tree decomposition. The vertices are represented by lines, or dots, that go along the bags
they belong to. The thick full lines represent the vertices of B, the dashed lines represent the
vertices of D, and the dotted lines represent de vertices of Dj . By induction hypothesis, the left
vertices of Dj that do not belong to Xj belong to D.

We set D′
j = (Dj \ A) ∪ C ∪ B3. Let us first prove that D′

j is a dominating set of G.

Claim 5.3. The set D′
j is a dominating set of G.

Proof. Since Dj is a dominating set of G and Dj \ A ⊆ D′
j , the only vertices that can be

undominated in D′
j are the ones dominated only by vertices of A in Dj . Let Nr(A) (resp.

Nl(A))) be the right vertices (resp. left vertices) that are only dominated by A in Dj . Note that
Nl(A) might contain vertices of A, while Nr(A) does not, since by definition the vertices of A
are left vertices. Let us show that all the vertices in Nr(A) ∪ Nl(A) are dominated by D′

j .

We start with Nr(A). Since the vertices of A are left vertices and the vertices of Nr(A) are right
vertices, by Claim 5.2, we have Nr(A) ⊆ Xj . Since the vertices in Nr(A) are right vertices, we
have Nr(A) ⊆ B. Moreover, since every vertex of Nr(A) is only dominated by A in Dj but
does not belong to A, it is not in Dj and thus not in B2. Thus, the vertices of Nr(A) either
belong to B1 (and are by definition dominated by C), or they belong to B3. Therefore, Nr(A) is
dominated by C ∪ B3 and thus by D′

j .

Let us now focus on Nl(A). In D, Nl(A) is dominated by vertices that we partition into two
sets: the right vertices Y and the left vertices Z. We show that both Y and Z are included in
D′

j , which implies that D′
j dominates Nl(A). Since the vertices of Nl(A) are left vertices and

the vertices of Y are right vertices, Lemma 5.2 gives Y ⊆ Xj . Thus, by definition, Y ⊆ B.
Moreover, the vertices of Y that belong to Dj do not belong to A as they are right vertices, and
thus belong to Dj \ A, and the vertices of Y that do not belong to Dj belong by definition to
B ∩ (D \ Dj) ⊆ B3. Thus, Y ⊆ (Dj \ A) ∪ B3 ⊆ D′

j . Finally, the vertices of Z either belong to
Dj and thus by definition to Dj ∩ D ⊆ Dj \ A, or they do not belong to Dj and by definition
they thus belong to C. Therefore, Z ⊆ (Dj \ A) ∪ C ⊆ D′

j . Therefore, Nl(A) is dominated by
D′

j , which concludes the proof of this claim. ♦

Let us now prove the following:

Claim 5.4. |Dj ∪ C ∪ B3| ≤ Γ(G) + tw(G) + 1.

Proof. Let us first show that the set D′ := (D \ C) ∪ A ∪ B1 ∪ B2 is a dominating set of G. We
will then explain how to exploit this property to prove that |Dj ∪ C ∪ B3| ≤ Γ(G) + tw(G) + 1.

Since D is a dominating set, the only vertices that can be undominated in (D \ C) ∪ A ∪ B1 ∪ B2

are vertices that are only dominated by C in D. Let Nr(C) (resp. Nl(C)) be the subset of right
(resp. left) vertices that are only dominated by C in D. Note that Nl(C) might contain vertices
of C and Nr(C) does not, since the vertices of C are left vertices. We prove that Nr(C) and
Nl(C) are dominated by D′.

We first prove that the vertices of Nr(C) are dominated in D′. Since C only contains left vertices
and Nr(C) only contains right vertices, Claim 5.2 ensures that Nr(C) ⊆ Xj . Thus, by definition
of B, Nr(C) ⊆ B. Since the vertices of Nr(C) are only dominated by C in D, Nr(C) ⊆ B1.
Therefore (D \ C) ∪ A ∪ B1 ∪ B2 dominates Nr(C).
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Let us now prove that Nl(C) is dominated in D′. Every vertex v ∈ Nl(C) is dominated in Dj by
either a right vertex or a left vertex. Assume that v is dominated in Dj by a right vertex w. Since
v is a left vertex and w a right vertex, Claim 5.2 ensures that w ∈ Xj and thus w ∈ B. Since
w ∈ Dj , w ∈ B2 ⊆ D′. Assume now that v is dominated in Dj by a left vertex u. If u belongs to
D, it is in D ∩ Dj ⊆ D \ C ⊆ D′. So we can assume that u /∈ D. By induction hypothesis, Dj

satisfies (iii) and since u /∈ D, the vertex u necessarily belongs to Xj . So we finally have u ∈ A.
Thus, u ∈ (D \ C) ∪ A ⊆ D′. So Nl(C) is dominated in D′. And then D′ is a dominating set of
G.

We can now show that |Dj ∪ C ∪ B3| ≤ Γ(G) + tw(G) + 1. Since D is a minimum dominating set
of G and D′ = (D \C)∪ (A∪B1 ∪B2) also is a dominating set of G, we have |C| ≤ |A∪B1 ∪B2|.
Thus, |C ∪ B3| ≤ |A| + |B1 ∪ B2| + |B3|. But A, B1 ∪ B2 and B3 are pairwise disjoint subsets
of Xj . Thus, |A| + |B1 ∪ B2| + |B3| ≤ |Xj | ≤ tw(G) + 1, and |C ∪ B3| ≤ tw(G) + 1. Since, by
induction hypothesis, Dj has size at most Γ(G), this gives |Dj ∪ C ∪ B3| ≤ Γ(G) + tw(G) + 1. ♦

We now have a reconfiguration sequence of size at most tw(G) + 1 from Dj to D′
j by simply

adding all the vertices of C ∪ B3 and then removing all the vertices of A. All along the sequence,
the corresponding set is dominating. Indeed, it contains Dj during the first part and D′

j during
the second one. One is dominating by assumption and the other is dominating by Claim 5.3. By
Claim 5.4, this reconfiguration sequence exists in RΓ(G)+tw(G)+1(G).

The dominating set Dj+1 will be any dominating set of size at most Γ(G) obtained from D′
j

by removing vertices, i.e. any dominating set Dj+1 satisfying Dj+1 ⊆ D′
j and |Dj+1| = Γ(G),

which necessarily exist by definition of Γ(G). This can be done in at most tw(G) + 1 deletions.
Thus, there exist a sequence in RΓ(G)+tw(G)+1(G) from Dj to Dj+1 of length at most 2(tw(G)+1),
and Dj+1 thus satisfies (i) and (ii). Let us now justify why Dj+1 satisfies (iii).

Since Dj+1 is a subset of D′
j , if (iii) holds for D′

j it holds for Dj+1. We have D′
j = (Dj \A)∪C∪B3.

Since C ⊆ D, if a left vertex v (for Xj) appears in D′
j but not in D, it is either in Dj \ A or in

B3. Since B3 only contains right vertices, it must be in Dj \ A. Since A contains the left vertices
of Xj ∩ (Dj \ D), it means that v should be in Vj−1. But, by induction hypothesis, the vertices
of Dj that belong to Vj−1 belong to D. So v does not exists and D′

j satisfies (iii). Thus, Dj+1

satisfies property P , and by induction, there exists a set Db that satisfies property P . Moreover,
since for any i such that 2 ≤ i ≤ b, there is a path of length at most 2(tw(G) + 1) from Di−1 to
Di in Rk(G), there is transformation of length at most 2(b − 1) · (tw(G) + 1) from Ds to Db in
Rk(G).

To complete the construction of a path from Ds to D in Rk(G), we show that there exists a
transformation from Db to D in Rk(G) of length at most 2(tw(G) + 1). Let A′ = Db \ D, and
C ′ = D \ Db. We have D = (Db ∪ C ′) \ A′. Let S′

1 be the reconfiguration sequence from Db

to Db ∪ C ′ which consists in adding one by one every vertex of C ′. Since each of the sets
of S′

1 contains Db, they are all dominating sets of G. Note that S′
1 has length |C ′|. Let S′

2 be
the reconfiguration sequence from Db ∪ C ′ to D which consists in removing one by one each
vertex of A′. Since each of the sets of S′

2 contains D, they all are dominating sets. Note that S′
2

has length |A′|. Thus, applying S′
1 then S′

2 gives a reconfiguration sequence from Db to D of
length |C ′| + |A′|. Moreover, the maximum size of a dominating set reached in this sequence is
|Db ∪ C ′|. Let us show that |Db ∪ C ′| ≤ Γ(G) + tw(G) + 1. We have Db = (D \ C ′) ∪ A′. Thus,
since D is a minimum dominating set, |C ′| ≤ |A′|. Since Db satisfies (iii), every vertex of Db

that does not belong to Xb also belongs to D. Thus, A′ ⊆ Xb, and |A′| ≤ tw(G) + 1, which gives
|C ′| ≤ tw(G) + 1, as well as |C ′| + |A′| ≤ 2(tw(G) + 1). Since Db is a minimal dominating set
of G, we have therefore |Db ∪ C ′| ≤ Γ(G) + tw(G) + 1. Thus, there is a path of length at most
2(tw(G) + 1) from Db to D in Rk(G) which completes the transformation of length at most
2b · (tw(G) + 1) from Ds to D in Rk(G). Since b ≤ n, the conclusion follows.

The upper bound given by Theorem 5.2 is tight up to an additive constant factor. Indeed,
Mynhardt et al. [MTR19b] constructed an infinite family of graphs Gℓ,r (with ℓ ≥ 3 and
1 ≤ r ≤ ℓ − 1) for which 2Γ(G) − 1 tokens are necessary to guarantee the connectivity of the
reconfiguration graph. Let us describe their construction when r = ℓ − 1. The graph Gℓ,ℓ−1

contains ℓ − 1 cliques C1, C2, . . . , Cℓ−1 called inner cliques, each of size ℓ. We denote by cj
i the
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j-th vertex of the clique Ci. We then add a new clique C0 of size ℓ, called the outer clique and we
add a new vertex u0 adjacent to all the vertices of C0 (hence, C0 can be seen as a clique of size
ℓ + 1). For every 1 ≤ i ≤ ℓ − 1 and for every 1 ≤ j ≤ ℓ, we add an edge between cj

i and cj
0. This

completes the construction of Gℓ,ℓ−1 (see Figure 5.5 for an example). Mynhardt et al. [MTR19b]
showed that Γ(Gℓ,ℓ−1) = ℓ.

c2
1

c3
1

c1
1

c2
2

c3
2

c1
2

c1
0

c2
0

c3
0

u0

C0

Figure 5.5: The graph G3,2

They moreover show that R2ℓ−2(Gℓ,ℓ−1) is not connected. Let us prove that Gℓ,ℓ−1 has treewidth
ℓ. This implies that RΓ(G)+tw(G)−2 is not necessarily connected, and that our function of the
treewidth is tight up to an additive constant factor.

Claim 5.5. The graph Gℓ,ℓ−1 has treewidth ℓ.

Proof. First, observe that tw(Gℓ,ℓ−1) ≥ ℓ since G[C0 ∪ {u0}] is a clique of size ℓ + 1.

Let us now give a tree decomposition of Gℓ,ℓ−1 of width ℓ. We first create a ”central” bag B0

containing all the vertices of C0 and the vertex u0. For each inner clique Ci with 1 ≤ i ≤ ℓ − 1,
we attach to B0 a path B1

i B2
i . . . Bℓ

i where Bj
i contains the vertices (C0 \ ⋃j−1

k=0 ck
0) ∪ ⋃j

k=1 ck
i

(see Figure 5.6 for an example). Observe that for any 1 ≤ i ≤ ℓ − 1, the bag Bℓ
i contains all the

vertices of Ci. And the bag Bj
i contains both cj

0 and cj
i . Hence, each edge is contained in at

least one bag. For every 1 ≤ j ≤ ℓ, the vertex cj
0 is contained in the bags B0 ∪ ⋃ℓ−1

i=1

⋃j
k=1 Bk

i .
And for every 1 ≤ i ≤ ℓ − 1 and every 1 ≤ j ≤ ℓ, the vertex cj

i is contained in B1
i , B2

i , . . . , Bj
i .

It follows that for every vertex u ∈ V (Gℓ,ℓ−1) the set of bag containing u induces a connected
subtree. Finally, one can easily check that each bag contains exactly ℓ + 1 vertices. Hence, this
decomposition indeed is a tree decomposition of Gℓ,ℓ−1 of width ℓ and the conclusions follows.
♦
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Figure 5.6: Tree decomposition of G3,2 of width tw(G3,2).
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On the other hand, concerning the pathwidth of Gℓ,ℓ−1, we have the following.

Claim 5.6. The pathwidth of Gℓ,ℓ−1 is at most 2ℓ − 1.

Proof. We give a path decomposition of width at most 2ℓ − 1 of Gℓ,ℓ−1. We first create a bag
B0 which contains C0 ∪ {u0}. For every 1 ≤ i ≤ ℓ − 1, we create a bag Bi = C0 ∪ Ci such that
B1B2 . . . Bℓ−1 induces a path. One can easily check that it is a path decomposition of width
2ℓ − 1 of Gℓ,ℓ−1. ♦

However, it is not clear if and how we can obtain a better upper bound for bounded pathwidth
graphs. To summarize, Rk(G) is not necessarily connected if k < Γ(G) + pw(G)

2 + O(1) and is
connected if k ≥ Γ(G) + pw(G) + 1. We were not able to close this gap and leave it as an open
problem.

5 Conclusion

In this chapter, we studied the reconfiguration of dominating sets under the Token Addition-
Removal rule. More precisely, we investigated the values of the threshold k such that the
reconfiguration graph Rk(G) is connected. We presented several upper bounds on the minimum
threshold d0 such that above this value, all the reconfiguration graphs Rk(G) are connected.
Previously existing upper bounds included Γ(G) + γ(G) [HS14], n − μ(G) + 1 [SMN14], and
Γ(G) + α(G) − 1 [HS17]. We presented a joint work with Nicolas Bousquet and Paul Ouvrard,
in which we improve this last result, by proving that the reconfiguration graph moreover has a
linear diameter when k ≥ Γ(G)+α(G)−1. With the same authors, we also proved that if G is Kℓ-
minor free, then there exists a constant C such that Rk(G) is connected and has linear diameter
for every k ≥ Γ(G) + Cℓ

√

log2 ℓ. For planar graphs, we showed that Rk(G) is connected and
has linear diameter for any k ≥ Γ(G) + 3. We underlined that this result is almost tight since
Suzuki et al. proved that there exist some planar graphs for which if k = Γ(G) + 1 then Rk(G)
is disconnected [SMN14]. Thus, only the connectivity of RΓ(G)+2(G) remains unknown and we
leave it as an open question, although we strongly believe that the reconfiguration graph is also
connected in this case. We finally presented another upper bound depending on the treewidth
of G, by proving that if k ≥ Γ(G) + tw(G) + 1, then Rk(G) is connected, with a linear diameter.
We underlined that this result is almost tight, since RΓ(G)+tw(G)−2 is not necessarily connected.
The gap is left as an open question, as well as finding a better upper bound depending on the
pathwidth.

More generally, studying the dependency between d0 and other graph parameters can lead
to different upper bounds, that will lead to a better understanding of the connectivity of the
reconfiguration graph. There are also a lot of open questions on other problems related to
the reconfiguration of dominating sets under token addition-removal, such as the reachability
problem in many graph classes (other than the ones studied by Haddadan et al. [HIM+16]).
And there remains a lot of work to do on other adjacency rules for the reconfiguration of
dominating sets. In particular, we present some results on the reconfiguration of dominating
sets under the token sliding rule in the next chapter.
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Chapter 6

Reconfiguration of Dominating Sets
under the Token Sliding rule

1 Introduction

In this chapter, we switch the adjacency rule, as we study the reconfiguration of dominating
sets under Token Sliding (TS). The instance is still a graph G, and the feasible solutions are
the dominating sets of G of a given size k. Recall that under TS, two dominating sets D
and D′ are adjacent in the reconfiguration graph if there exists an edge uv ∈ E such that
D′ = (D ∩ {v}) \ {u}. An example of reconfiguration sequence is given in Figure 6.1.

D1 := Ds D2 D3 D4 D5 := Dt

Figure 6.1: An example of reconfiguration sequence of dominating sets under the TS rule.

The reconfiguration of dominating sets under the token sliding rule has been first studied in
2011, in the particular case where k = γ(G), i.e. the dominating sets are minimum. Fricke,
Hedetniemi, Hedetniemi, and Hutson [FHHH11] gave the reconfiguration graph when G is
a complete graph, a complete bipartite graph, a path or a cycle. Connelly, Hedetniemi and
Hutson [CHHH11] then showed that very graph is realisable as the reconfiguration graph of
infinitely many graphs G. They also proved that if n ≤ 5, then the reconfiguration graph is
connected. More recently, Edwards et al. [EMN18] investigated the particular case where G is a
tree. They were then able to determine the order, the diameter, and the maximum degree of the
reconfiguration graph. In particular, the diameter is linear. More details about the state of the
art on the reconfiguration of minimum dominating sets are given in [MN20].

Bonamy, Dorbec and Ouvrard were the first to investigate the general case, where the dominat-
ing sets are not necessarily minimum, in 2019. They studied the complexity of the reachability
problem in several graph classes. They proved that it is PSPACE-complete, even when restricted
to split, bipartite graphs, and bounded treewidth graphs [BDO19]. On the other hand, they
provide polynomial time algorithms for cographs and dually chordal graphs. In particular,
since dually chordal graphs contain circular interval graphs, the problem is in P for circular
interval graphs, and they actually prove the following.

73



CHAPTER 6. RECONFIGURATION OF DOMINATING SETS UNDER THE TOKEN SLIDING RULE

Theorem 6.1. [BDO19] Let G be a connected interval graph, and Ds, Dt be two dominating sets of G
of the same size. There always exist a TS-reconfiguration sequence from Ds to Dt.

They also raised two open questions, on the complexity of the reachability problem in circle
graphs and circular arc graphs. A more general open question asks if there exist some graph
classes for which the source problem is NP-complete, but the reachability problem is P, or for
which the source problem is in P while the reachability problem is PSPACE-complete. Circle
graphs and circular arc graphs are possible leads to answer this question.

In their paper, Bonamy et al. authorize the dominating sets to be multisets. In other words, they
authorize several tokens on a same vertex. This choice can have an impact on the output of the
reachability problem. They illustrate it with the example of the reconfiguration of dominating
sets of size 2 of the star Sn of order n ≥ 3. Indeed, any dominating set of size 2 contains the
center and a leaf, and it is not possible to go from one dominating set to another by sliding
tokens, if we do not authorize the token on the leaf to first slide to the center (which is already
occupied), then to the other leaf.

We follow the same choice in this chapter. Thus, a dominating set D of G is defined here as a
multiset of elements of V , such that for any v ∈ V , v ∈ D or there exists u ∈ D such that uv ∈ E.
Similarly, an edge-dominating set D′ of G is defined as a multiset of elements of E, such that
for any uv ∈ E, uv ∈ D′ or there exists uw or vw ∈ D′. A vertex cover C of G is a multiset of
elements of V such that for any uv ∈ E, u ∈ C or v ∈ C. An independent set I of G is a multiset
of elements of V such that for any uv ∈ E, u �∈ I or v �∈ I . By abuse of language, all along this
chapter we may refer to multisets as sets.

In this chapter, we present a joint work with Nicolas Bousquet where we continue the investiga-
tion on the complexity of the reachability problem in several graph classes. In other words, we
study the complexity of the following problem.

DOMINATING SET RECONFIGURATION UNDER TOKEN SLIDING (DSRTS )
Input: A graph G, two dominating sets Ds and Dt of G
Output: Does there exist a dominating set reconfiguration sequence from Ds to Dt with the
token sliding rule ?

2 Planar Bipartite Graphs and Unit Disk Graphs

We first investigate the complexity of DSRTS in planar bipartite graphs and unit disk graphs. We
prove that in both these classes, DSRTS is PSPACE-complete. We use the same polynomial-time
reduction from minVCRTS in planar graphs of degree at most 3 to DSRTS in both proofs. Recall
that the minVCRTS problem is defined as follows.

MINIMUM VERTEX COVER RECONFIGURATION UNDER TOKEN SLIDING (minVCRTS )
Input: A graph G, two minimum vertex covers Cs and Ct of G
Output: Does there exist a vertex cover reconfiguration sequence from Cs to Ct with the token
sliding rule ?

The reduction uses a combination of the ideas used in [BDO19] for bipartite graphs and in
[Ale82] for independent sets.

Let G = (V, E) be a planar graph of maximum degree at most 3 and V = {v1, . . . , vn}. Let
k = 3q + 1 for some integer q. We create the graph Gk as follows. We subdivide every edge of
G into paths containing k + 1 edges (i.e. We create k new vertices called the subdivided vertices).
The vertices already there before the subdivision of the edges are called the original vertices. For
every original vertex v, we finally add a pendant path only attached to v containing two new
vertices. The vertices of these pendant paths are called pendant vertices. The construction is
illustrated in Figure 6.2.
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v1 v2

v3

v4
v1 v2

v3

v4

G Gk

Figure 6.2: A planar graph G of maximum degree 3 and its associated graph Gk with k = 4. The
small white vertices are the subdivided vertices, the small blue ones are the pendant vertices,
and the big vertices are the original vertices.

More formally, we have V (Gk) = V ∪ V ′ ∪ V ′′
⋃

vivj∈E Vi,j and E(Gk) =
⋃

vivj∈E Ei,j

⋃

vi∈V Ei,
where:

• V ′ = {v′
1, . . . v′

n}
• V ′′ = {v′′

1 , . . . v′′
n}

• for every vivj ∈ E, Vi,j =
⋃

1≤p≤k{vp
i,j}

• for every vivj ∈ E, Ei,j = {viv
1
i,j , vk

i,jvj} ⋃

1≤p≤k−1{vp
i,jvp+1

i,j }
• for every vi ∈ V , Ei = {viv

′
i, v′

iv
′′
i }.

By abuse of notation, Vi,j and Vj,i will denote the same sets and the vertex vp
i,j can equivalently

be denoted by vk−p+1
j,i .

The following remark is straightforward.

Remark 6.1. If G is planar then the graph Gk is planar. Moreover, if k is odd then the graph Gk is
bipartite.

For any vertex cover C of G, let us create a dominating set D(C) of Gk called the dominating set
associated to C. We let D(C) := C

⋃

vivj∈E Di,j

⋃

vi∈V {v′
i} where for any i and j such that i < j,

Di,j = {vp
i,j : p = 0 mod 3} if vi ∈ C, and Di,j = {vp

i,j : p = 2 mod 3} otherwise.

Lemma 6.1. Let G = (V, E) be a planar graph of maximum degree at most 3, C be a minimum vertex
cover of G and k = 3q + 1 for some integer q. Then D(C) is a dominating set of Gk.

Proof. For every vi ∈ V , v′
i dominates vi, v′

i and v′′
i . Thus, the original vertices and the pending

vertices are all dominated in D(C). Now, for any vivj ∈ E such that i < j and vi ∈ C, vi

dominates v1
i,j , and vp

i,j dominates vp−1
i,j , vp

i,j and vp+1
i,j for any p = 0 mod 3. On the other hand,

for any vivj ∈ E such that i < j and vi �∈ C, we have vj ∈ C and thus vj dominates vk
i,j , and

vp
i,j dominates vp−1

i,j , vp
i,j and vp+1

i,j for any p = 2 mod 3. Thus, the subdivided vertices are all
dominated.

We can now show that the reduction is safe.

Lemma 6.2. Let G be a planar graph of degree at most 3, Cs and Ct be two minimum vertex covers
of G. Let Ds := D(Cs) and Dt := D(Ct). If k = 3q + 1 for some integer q, then (Gk, Ds, Dt) is a
yes-instance of DSRTS if and only if (G, Cs, Ct) is a yes-instance of minVCRTS.

Proof. (⇐) Let (G, Cs, Ct) be a yes-instance of VCRTS, and let S =< C1 := Cs, . . . , Cℓ := Ct >
be the associated reconfiguration sequence. We construct a reconfiguration sequence S′ =<
D1 := Ds, . . . , Dℓ′ := Dt > in Gk by replacing every move vi � vj from Cr to Cr+1 of S by the
following sequence of moves from D(Cr) to D(Cr+1). All along the sequence, for every i, the
token initially on v′

i will never move. Thus the pendant vertices as well as the original vertices
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are dominated all along the transformation. So we just have to prove that subdivided vertices
are dominated.

• We apply the sequence of moves (v2
x,i � v3

x,i, v5
x,i � v6

x,i, . . . , vk−2
x,i � vk−1

x,i ) for every
vx ∈ N(vi) such that i < x and vx �= vj . Since all the vertex covers of S are minimum
(since Cs is), vi /∈ Cr+1. So all the neighbors vx of vi distinct from vj are in Cr and thus
in D(Cr). Therefore, v1

x,i is dominated by vx in D(Cr) and we can apply the first move.
Similarly, by induction, for any p = 2 mod 3, vp−1

x,i is dominated by vp−2
x,i and we can

apply the move vp
x,i � vp+1

x,i . So all the intermediate sets are dominating sets of Gk. Let
D′ be the resulting dominating set.

• We then apply (vi � v1
i,j � v2

i,j , v3
i,j � v4

i,j � v5
i,j , . . . , vk−1

i,j � vk
i,j � vj). We have seen

that for any neighbor vx �= vj of vi in G, vx ∈ Cr. Thus, either x < i and vk−1
x,i ∈ D(Cr),

or i < x and the previous sequence ensures that vk−1
x,i ∈ D′. So for any neighbor vx �= vj

of vi in G, vk
x,i is dominated by vk−1

x,i . So vi � v1
i,j � v2

i,j keeps Gk dominated. Then, by

induction, for any p = 0 mod 3, vp
i,j is dominated by vp−1

i,j and thus vp
i,j � vp+1

i,j � vp+2
i,j ,

or vp
i,j � vp+1

i,j � vj if p = k − 1 keeps a dominating set. Let D′′ be the resulting
dominating set.

• We finally apply the sequence (vk−1
x,j � vk−2

x,j , . . . , v6
x,j � v5

x,j , v3
x,j � v2

x,j) for every
vx ∈ N(vj) such that j < x and vx �= vi. Since vj ∈ D′′, vk

x,j is dominated by vj in
D′′ and we can apply the first move. And by induction, for any p = 0 mod 3, vp+1

x,j is

dominated by vp+2
x,j and we can apply the move vp

x,i � vp−1
x,i . Thus all the intermediate

sets are dominating sets of Gk.

After these moves, the obtained dominating set is D(Cr+1), which concludes this direction of
the proof.

(⇒) Let (Gk, Ds, Dt) be a yes-instance of DSRTS , and let us prove that (G, Cs, Ct) is a yes-instance
of minVCRTS. There exists a reconfiguration sequence S′ =< D1 := Ds, . . . , Dℓ := Dt > in Gk.
Let D be a dominating set of S′. We define the following parameters of D. For any vi ∈ V , let
α(vi) be the multiplicity of vi in D, β(vi) be the sum of the multiplicities of v′

i and v′′
i minus 1,

and for any vj ∈ V such that vivj ∈ E, let γj(vi) be 0 if i > j, and the sum of the multiplicities
of the subdivided vertices vp

i,j in D minus q if i < j. All these values are non negative. Indeed,
for every vi ∈ V , we have α(vi) ≥ 0, and since v′′

i is dominated in D, β(vi) ≥ 0. Moreover,
every vertex vp

i,j with p = 2 mod 3 has to be dominated by a different vertex in D. So at least q
subdivided vertices vr

i,j are in D, and γj(vi) ≥ 0.

We define, for every i, φ(vi) = α(vi) + β(vi) +
∑

vivj∈E γj(vi). Note that φ(vi) ≥ 0 and that any
token move does not modify

∑

vi∈V φ(vi). Let us define the set C(D) of vertices of G associated
to D, where vi ∈ C(D) with multiplicity φ(vi) for every i. We construct the sequence S of
subsets of V by replacing any dominating set D of S′ by C(D). To conclude, we simply have to
prove that: (i) the sets associated to Ds and Dt are Cs and Ct and; (ii) that for every dominating
set D, C(D) is a vertex cover; and (iii) that a token slide in S′ corresponds to a token slide in S.

Proof of (i). Firstly, Ds = D(Cs). So α(vi) = 1 for any vi ∈ C and α(vi) = 0 otherwise. Moreover,
for any vi, β(vi) = 0 and for any vivj ∈ E, γj(vi) = 0. So if vi ∈ Cs, φ(vi) = 1, otherwise
φ(vi) = 0, which gives C(Ds) = Cs. Similarly, C(Dt) = Ct.

Proof of (ii). For any vivj ∈ E, if vi ∈ D then α(vi) ≥ 1. So φ(vi) ≥ 1 and vi ∈ C(D). If vi �∈ D,
to dominate v1

i,j either v1
i,j ∈ D or v2

i,j ∈ D. Moreover, for any p such that p = 1 mod 3 and
4 ≤ p ≤ k − 3, to dominate vp

i,j in D we have vp−1
i,j ∈ D, vp

i,j ∈ D or vp+1
i,j ∈ D, and to dominate

vk
i,j we have vk−1

i,j ∈ D, vk
i,j ∈ D or vj ∈ D. So either vj ∈ D, in which case vj ∈ C(D), or there

are at least q + 1 subdivided vertices vr
i,j in D, in which case either i < j and γj(vi) ≥ 1, or i > j

and γi(vj) ≥ 1. This gives either φ(vi) ≥ 1 so vi ∈ C(D), or φ(vj) ≥ 1 so vj ∈ C(D). Therefore,
for any edge vivj ∈ E, vi ∈ C(D) or vj ∈ C(D). So C(D) is a vertex cover of G.

Proof of (iii). Let Dr and Dr+1 be two adjacent sets of S′. There exist two adjacent vertices u and
v in Gk such that Dr+1 = Dr ∪v\u. The pairs of vertices that are adjacent in Gk are two pendant
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vertices, or a pendant vertex and an original vertex, or two subdivided vertices, or a subdivided
vertex and an original vertex. If both u and v are pendant vertices, then they are pendant on
the same original vertex. In that case, φ(x) is left unchanged for every x and C(Dr+1) = C(Dr).
Similarly, if u and v are subdivided vertices, they belong to the same original edge and φ(v)
is left unchanged for every v so C(Dr+1) = C(Dr). If one vertex is pendant and the other is
original then, free to permute Dr and Dr+1, we can assume that u is a pendant vertex and v
is an original vertex. So there exists i such that v = vi and u = v′

i. Thus α(vi) increases by
1 from Dr to Dr+1 but β(vi) decreases by 1, which gives C(Dr+1) = C(Dr). Finally, if one is
a subdivided vertex and the other an original vertex, we can assume u is subdivided and v
original. So there exist i and j such that v = vi and u = v1

i,j . So α(vi) increases by 1 from Dr to
Dr+1, if i < j then γj(vi) decreases by 1, and if i > j then γi(vj) decreases by 1. Thus, if i < j
then C(Dr+1) = C(Dr), and if i > j then C(Dr+1) = C(Dr) ∪ vi \ vj , which corresponds to the
move vj � vi.

Let us now explain how to use Lemma 6.2 to show that DSRTS is PSPACE-complete in planar
bipartite graphs and in unit disk graphs.

2.1 Planar Bipartite Graphs

The first result we show concerns planar bipartite graphs. We prove the following.

Theorem 6.2. DSRTS is PSPACE-complete in planar bipartite graphs.

Proof. Let G be a planar graph of maximum degree at most 3. Since G is planar, Remark 6.1
ensures that the graph G1 of the reduction of Lemma 6.2 is a bipartite planar graph. So if
minVCRTS is PSPACE-complete in planar graphs of maximum degree 3 the same holds for
DSRTS in planar bipartite graphs by Lemma 6.2.

The TAR-MAXIMUM INDEPENDENT SET RECONFIGURATION problem is PSPACE-complete in
planar graphs of maximum degree 3 [IDH+11]. For INDEPENDENT SET RECONFIGURATION,
TAR and TJ models are equivalent [KMM12]. Moreover, for maximum independent sets, TS
and TJ models are equivalent (since a token can only be moved on one of its neighbors because
of the maximality). Thus MAXIMUM INDEPENDENT SET RECONFIGURATION is PSPACE-complete
in planar graphs of maximum degree 3 with the token sliding rule. Since the complement of a
maximum independent set of a graph H is a minimum vertex cover, MINIMUM VERTEX COVER

RECONFIGURATION is PSPACE-complete in planar graphs of maximum degree 3 with the token
sliding rule. Thus, by Lemma 6.2, DSRTS is PSPACE-complete in planar bipartite graphs.

2.2 Unit Disk Graphs

We now show that DSRTS is PSPACE-complete in unit disk graphs. To do so, we will use the
reduction presented in Section 2. But first, we need to prove that there exists a polynomial k for
which Gk is a unit disk graph. We use the following lemma, which refines of a result of Valiant
[Val81].

Lemma 6.3. Any planar graph G of maximum degree at most 4 can be embedded in the plane in such a
way that the vertices are at integer coordinates, and the edges are non-crossing paths composed of unions
of vertical and horizontal segments with integer coordinates and all have the same polynomial length λ.
Such an embedding can be obtained in polynomial time. We can moreover ensure that λ = 2 mod 3.

Proof. Valiant [Val81] proved that any planar graph G can be embedded on a 2-dimensional
grid with integral coordinates, in such a way that every edge is associated a path in the grid,
such that the paths are non-crossing, i.e. if two paths share a common point, it is an extremity
of both paths. This embedding can be obtained in polynomial time [IPS82], and it has an area
in O(n). We strengthen this result by showing that we can modify this embedding in order to
ensure that the paths all have the same (polynomial in n) length λ.
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Let ℓmax be the maximum length of an edge in the embedding given by [Val81]. Note that ℓmax

is at most the area, which is in O(n). Let L := ℓmax or, if we want to ensure that λ = 2 mod 3,
L := 3ℓmax + 1. Let u := 1

8L . For every edge e ∈ E of length ℓ < L, we change the embedding
of e by replacing exactly one line segment of length 1 of the path associated to e by the curve Z
represented in Figure 6.3.

1
8

1
8

u

u

1
4

4u(L − ℓ)

Figure 6.3: The curve Z .

The sum of the lengths of the horizontal segments in Z is 1, and there are 8(L − ℓ) vertical
segments of length 1

8 , thus the length of the curve Z is 1 + L − ℓ. So by changing exactly one
segments of length 1 in the path associated to e and leaving the ℓ − 1 other ones unchanged, the
length of the path associated to e is now L. So every edge now has the same length L.

Since u = 1
8L and L − ℓ < L, we have 4u(L − ℓ) < 1

2 . So in Z , the vertical lines are at distance at
least 1

4 from each extremity of the original straight line. Since the height of the rectangles is 1
8 ,

the curves Z of different line segments therefore only intersect where the original line segments
intersect. So the new paths representing different edges remain non-crossing.

Let us now rescale the embedding. Note that all the coordinate of the points defined in the
reduction are of the form a

8L . So if we rescale by 8L, all the vertices will now have integral
coordinates. So this rescaling ensures that the vertical and horizontal lines of each path are
edges of an integral grid. Finally, the path associated to each edge has length λ = L

u = 8L2,
which is polynomial. And if we took L := 3ℓmax + 1, we have L = 1 mod 3, so λ = 2 mod 3.
This concludes the proof.

Lemma 6.4. For any planar graph G of maximum degree at most 4, there exists an integer k with k = 1
mod 3 such that the k-subdivision of G is a unit disk graph. Moreover, the value of k is polynomial.

Proof. By Lemma 6.3, we can compute in polynomial time an embedding of G in the plane such
that the vertices of G are at integer coordinates, and such that the edges are unions of vertical
and horizontal segments with integer coordinates, and all have the same polynomial length
λ, with λ = 2 mod 3. Let us draw disks of radius 1

8 on this embedding, such that there is a
center of a disk on every integer coordinates that belongs to an edge, as well as on every 1

4 of
integer coordinates that belongs to an edge (thus placing 3 centers between two consecutive
integer coordinates on an edge). Since the angle between two line segments in the drawing is
more than π

3 , two non consecutive disks on an edge cannot intersect, while consecutive ones
indeed intersect. Thus, the unit disk graph obtained with this set of disks is a k-subdivision of
G, where k = 4λ − 1 and thus k = 1 mod 3.

Theorem 6.3. DSRTS is PSPACE-complete in unit disk graphs.

Proof. Let G be a planar graph of maximum degree at most 3, and let us add a pendant vertex
to any vertex of G. The resulting graph G′ is planar and has degree at most 4. By Lemma 6.4,
there exists a polynomial function k with k = 1 mod 3 such that the k-subdivision G′′ of G′

is a unit disk graph. One can remark that the graph Gk of the construction of Lemma 6.2 is a
subgraph of G′′ (the paths pending on G′′ are too long, we simply have to cut them into paths
with two edges). So Gk is a unit disk graph. Since minVCRTS is PSPACE-complete in planar
graphs of degree at most 3 [IDH+11], Lemma 6.2 ensures that DSRTS is PSPACE-complete in
unit disk graphs.
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3 Circle Graphs

Recall that a way to reprsent a circle graph consists in defining one real interval for each vertex
and there is an edge between two intervals if their relative intervals intersect but do not overlap.
In this section, we use this representation of circle graphs. Moreover, for every interval I , ℓ(I)
denotes the left extremity of I , and r(I) the right extremity of I .

We show that DSRTS is PSPACE-complete in circle graphs. We provide a polynomial time
reduction from SATR to DSRTS . This reduction is very similar to the one used in [Kei93] to show
that the minimum dominating set problem is NP-complete on circle graphs. Recall that the
SATR problem is defined as follows:

SATISFIABILITY RECONFIGURATION (SATR )
Input: A Boolean formula F in conjunctive normal form, two variable assignments As and At

that satisfy F .
Output: Does there exist a reconfiguration sequence from As to At that maintains F satisfied,
where the operation consists in a variable flip, i.e. the change of the assignment of exactly one
variable from x = 0 to x = 1, or conversely ?

Let (F, As, At) be an instance of the SATR problem. Let x1 . . . , xn be the variables of the Boolean
formula F . Since F is in conjunctive normal form, it is by definition a conjunction of clauses
c1, . . . , cm which are disjunctions of literals. Recall that a literal is a variable or the negation of a
variable, and we denote by xi ∈ cj the fact that xi is a literal of cj , and xi ∈ cj the fact that the
negation of xi is a literal of cj . Since duplicating clauses does not modify the satisfiability of a
formula, we can assume without loss of generality that m is a multiple of 4. We can also assume
that for every i ≤ n and j ≤ m, xi or xi is not in cj since otherwise the clause is indeed satisfied.

The reduction. Let us construct an instance (GF , DF (As), DF (At)) of the DSRTS problem from
(F, As, At). We start by constructing the circle graph GF from F . All along this construction,
we repeatedly refer to real number as points. We say that a point p is at the left of a point q (or q
is at the right of p) if p < q. We say that p is just at the left of q, (or q is just at the right of p) if p is at
the left of q, and no interval defined so far has an extremity in [p, q].

Finally, we say that an interval I frames a set of points P if ℓ(I) is just at the left of the minimum
of P and r(I) is just at the right of the maximum of P .

One can easily check that by adding an interval that frames one extremity of the interval of a
vertex u of a graph H , we add one vertex to H which is only connected to u. So:

Remark 6.2. If H is a circle graph and u is a vertex of H , then the graph H plus a new vertex only
connected to u is circle graph.

We construct GF step by step. Each step consists in creating new intervals, giving their positions
regarding to the previously constructed intervals. We also outline some of the edges and non
edges in GF that have an impact on the upcoming proofs. Figures 6.4, 6.5 and 6.6 illustrate the
positions of most of the intervals of GF .

For each variable xi, we create m base intervals Bi
j where 1 ≤ j ≤ m. The base intervals Bi

j are
pairwise disjoint for any i and j, and are ordered by increasing i, then increasing j for a same i.

For each variable xi, we then create m
2 intervals Xi

j called the positive bridge intervals of xi, and
m
2 intervals X

i

j called the negative bridge intervals of xi, where 1 ≤ j ≤ m
2 . A bridge interval is

a positive or a negative bridge interval. Let us give the positions of these intervals. They are
illustrated in Figure 6.4.
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Figure 6.4: The base, positive and negative bridge intervals obtained with n = 2 and m = 8.

Let q be such that m = 4q. For every i and every 0 ≤ r < q, the interval X
i

2r+1 starts just at

the right of ℓ(Bi
4r+1) and ends just at the right of ℓ(Bi

4r+3), and X
i

2r+2 starts just at the right of
ℓ(Bi

4r+2) and ends just at the right of ℓ(Bi
4r+4). The interval Xi

1 starts just at the left of r(Bi
1)

and ends just at the left of r(Bi
2). For every 1 ≤ r < q, the interval Xi

2r starts just at the left
of r(Bi

4r−1) and ends just at the left of r(Bi
4r+1), and Xi

2r+1 starts just at the left of r(Bi
4r) and

ends just at the left of r(Bi
4r+2). Finally, Xi

m
2

starts just at the left of r(Bi
m−1) and ends just at

the left of r(Bi
m).

Let us outline some of the edges induced by these intervals. Base intervals are pairwise non
adjacent. Moreover, every positive (resp. negative) bridge interval is incident to exactly two
base intervals. And all the positive (resp. negative) bridge intervals of xi are incident to pairwise
distinct base intervals. In particular, the positive (resp. negative) bridge intervals dominate the
base intervals. Thus, every base interval is adjacent to exactly one positive and one negative
bridge interval. All the positive (resp. negative) bridge intervals but Xi

1 and Xi
m
2

have exactly
one other positive (resp. negative) bridge interval neighbor. Finally, for every i, every negative

bridge interval X
i

j has exactly two positive bridge interval neighbors which are Xi
j−1 and Xi

j

except for X
i

1 which does not have any for any i. Note that a bridge interval of xi is not adjacent
to a bridge interval or a base interval of xj for j �= i.

Now for any clause cj , we create two identical clause intervals Cj and C ′
j . The clause intervals

Cj are pairwise disjoint and ordered by increasing j, and we have ℓ(C1) > r(Bn
m). Thus, they

are not adjacent to any intervals constructed so far.

For any j such that xi is in the clause cj , we also create four intervals T i
j , U i

j , V i
j and W i

j ,
called the positive path intervals of xi, and for any j such that xi is in the clause cj , we create

four intervals T
i

j , U
i

j , V
i

j and W
i

j , called the negative path intervals of xi. These intervals are
represented in Figure 6.5. To better see the relative position of the extremities, a zoom is given
in Figure 6.6. The interval T i

j frames the right extremity of Bi
j and the extremity of the positive

bridge interval that belongs to Bi
j . The interval T

i

j frames the left extremity of Bi
j and the

extremity of the negative bridge interval that belongs to Bi
j . The interval U i

j starts just at the

left of r(T i
j ), the interval U

i

j starts just at the right of l(T
i

j), and they both end between the right
of the last base interval of the variable xi and the left of the next base or clause interval. We
moreover construct the intervals U i

j (resp. U
i

j) in such a way r(U i
j) (resp. r(U

i

j)) is increasing

when j is increasing. In other words, the U i
j (resp. U

i

j) are pairwise adjacent. The interval V i
j

(resp. V i
j ) frames the right extremity of U i

j (resp. U i
j ). And the interval W i

j (resp. W i
j ) starts just

at the left of r(V i
j ) (resp. r(V i

j )) and ends in an arbitrary point of Cj . Moreover, for any i �= i′,

W i
j (resp. W i

j ) and W i′

j (resp. W i′

j ) end on the same point of Cj . This ensures that they overlap
and are therefore not adjacent.
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Figure 6.5: The intervals obtained for the formula F = (x1 ∨ x2) ∧ (x1 ∨ x2) ∧ (x1) ∧ (x2 ∨ x1)
with m = 4 clauses and n = 2 variables. The dead-end intervals and the pending intervals are
not represented here.
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Figure 6.6: A zoom on some intervals of the variable x1.

A path interval is a positive or a negative path interval. The intervals of xi are the base, bridge
and path intervals of xi. The T intervals of xi refers to the intervals T i

j for any j. The T , U , U ,
V , V , W and W intervals of xi are defined similarly.

Let us outline some neighbors of the path intervals. The neighborhood of every clause interval

Cj is the set of intervals W i
j with xi ∈ cj and intervals W

i

j with xi ∈ cj . Since V i
j spans the left

extremity of W i
j and the right extremity of U i

j and since no interval starts or ends between these

two points, the interval V i
j is only adjacent to U i

j and W i
j . Similarly V

i

j is only adjacent to U
i

j

and W
i

j . Moreover, T i
j is only adjacent to Bi

j , U i
j and one positive bridge interval (the same one

that is adjacent to Bi
j), and T

i

j is only adjacent to Bi
j , U

i

j and one negative bridge interval (the
same one that is adjacent to Bi

j). Moreover, since U i
j and W i

j are not adjacent, Bi
j , T i

j , U i
j , V i

j ,

W i
j and Cj induce a path, and since U

i

j and W
i

j are not adjacent, Bi
j , T

i

j , U
i

j , V
i

j , W
i

j and Cj

induce a path. Finally, for any two variables xi and x′
i such that xi �= x′

i, the only path intervals
of respectively xi and x′

i that can be adjacent are the W and W intervals adjacent to different
clause intervals.

Now, for every bridge interval and every U , U , W and W interval, we create a dead-end interval,
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that is only adjacent to it. Remark 6.2 ensures that it can be done while keeping a circle graph.
Then, for any dead-end interval, we create 6mn pending intervals that are each only adjacent to
it. Again, Remark 6.2 ensures that the resulting graph is a circle graph. Informally speaking,
since the dead-end intervals have a lot of pending intervals, they will be forced to be in any
dominating set. Thus, in any dominating set, we will know that bridge, U , U , W and W
intervals (as well as dead-end an pending vertices) are already dominated. So the other vertices
in the dominating set will only be there to dominate the other vertices of the graph, which are
called the important vertices.

Finally, we create a junction interval J , that frames ℓ(C1) and r(Cm). By construction, it is
adjacent to every W or W interval, and to no other interval. This completes the construction of
the graph GF .

Basic properties of GF . Let us now give a couple of properties satisfied by GF .

Lemma 6.5. The graph GF is connected.

Proof. Let xi be a variable. Let us first prove that the intervals of xi are in the same connected
component of GF . (Recall that they are the base, bridge and path intervals of xi). Firstly, for

any j such that xi ∈ Cj (resp. xi ∈ Cj), Bi
jT i

j U i
jV i

j W i
j (resp. Bi

jT
i

jU
i

jV
i

jW
i

j) is a path of GF .
Since every base interval of xi is adjacent to a positive and a negative bridge interval of xi, it is
enough to show that all the bridge intervals of xi are in the same connected component. Since

for every j ≥ 2, X
i

j is adjacent to Xi
j−1 and Xi

j , we know that Xi
1X

i

2, Xi
2 . . . X

i
m
2

Xi
m
2

is a path

of GF . Moreover, X
i

1 is adjacent to X
i

2. So all the intervals of xi are in the same connected
component of GF ..

Now, since the junction interval J is adjacent to every W and W interval (and that each variable
appears in at least one clause), J is in the connected component of every path variable, so the
intervals of xi and xi′ are in the same connected component for every i �= i′. Since each clause

contains at least one variable, Cj is adjacent to at least one interval W i
j or W

i

j . Finally, each
dead-end interval is adjacent to a bridge interval or a U , U , W or W interval, and each pendant
interval is adjacent to a dead-end interval. Therefore, GF is connected.

For any variable assignment A of F , let DF (A) be the set of intervals of GF defined as follows.
The junction interval J belongs to DF (A) and all the dead-end intervals belong to DF (A). For
any variable xi such that xi = 1 in A, the positive bridge, W and U intervals of xi belong to
DF (A). Finally, for any variable xi such that xi = 0 in A, the negative bridge, W and U intervals
of xi belong to DF (A). The multiplicity of each of these intervals in DF (A) is one. Thus, we
have |DF (A)| = 3mn

2 + 3
∑n

i=1 ℓi + 1 where for any variable xi, ℓi is the number of clauses that
contain xi or xi.

Lemma 6.6. If A satisfies F , then DF (A) \ J is a dominating set of GF .

Proof. Since every dead-end interval belongs to DF (A)\J , every pending and dead-end interval
is dominated, as well as every bridge, U , U , W and W interval. Since for each variable xi,
the positive (resp. negative) bridge intervals of xi dominate the base intervals of xi, the base
intervals are dominated. Moreover, the positive (resp. negative) bridge intervals of xi and
the U (resp. U ) intervals of xi both dominate the T (resp. T ) intervals of xi. Thus, the T and
T intervals are all dominated. Moreover, for any variable xi, the U and W (resp. U and W )
intervals of xi both dominate the V (resp. V ) intervals of xi. Thus, the V and V intervals are all
dominated. Finally, since A satisfies F , each clause has at least one of its literal in A. Thus, each

Cj and C ′
j has at least one adjacent interval W i

j or W
i

j in DF (A)\J and are therefore dominated
by it, as well as the junction interval.

Before continuing further, let us prove a few results that are of importance in our proof. Let
K := 3mn

2 + 3
∑n

i=1 ℓi + 1. Since the number 6mn of leaves attached on each dead-end interval
is strictly more than K (as ℓi ≤ m), the following holds.
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Remark 6.3. Any dominating set of size at most K contains all the (mn+2
∑n

i=1 ℓi) dead-end intervals.

So in particular, if we have a dominating set of size K, it must contain the dead-end vertices.
And then all the pending, dead-end, bridge, U , U , W and W intervals are dominated. So we
will simply have to focus on the domination of base, T , T , V , V and junction intervals (i.e. the
important intervals).

Lemma 6.7. If D is a dominating set of G, then for any variable xi, D contains at least ℓi intervals that
dominate the V and V intervals of xi, and at least m

2 intervals that dominate the base intervals of xi.
Moreover, these two sets of intervals are disjoint. And for every i �= j, the set of vertices that dominates
the base, V and V intervals of xi and xj are disjoint.

Proof. For any variable xi, each interval V i
j (resp. V

i

j) can only be dominated by U i
j , V i

j or W i
j

(resp. U
i

j , V
i

j or W
i

j). Indeed V i
j spans the left extremity of W i

j and the right extremity of U i
j

and since no interval starts or ends between these two points, the interval V i
j is only adjacent to

U i
j and W i

j . And similarly V
i

j is only adjacent to U
i

j and W
i

j . Thus, at least ℓi intervals dominate
the V and V intervals of xi. Moreover, only the base, bridge, T and T intervals of xi are adjacent
to the base intervals. Since each bridge interval is adjacent to two base intervals, and each T
and T interval of xi is adjacent to one base interval of xi, D must contain at least m

2 of such
intervals to dominate the m base intervals.

By combining Remark 6.3 and Lemma 6.7, we obtain that any dominating set D of size K
contains (mn + 2

∑n
i=1 ℓi) dead-end intervals, as well as (ℓi + m

2 ) intervals of xi for any variable
xi. Since K = 3mn

2 + 3
∑n

i=1 ℓi + 1, this leaves only one remaining token in D. Thus, for any
variable xi but at most one, there are exactly (ℓi + m

2 ) intervals of xi in D. If there exists a
variable xk for which it is not the case, then there are exactly (ℓk + m

2 + 1) intervals of xk in D,
and we call this variable the moving variable of D, denoted by σ(D).

For any variable xi, we denote by Xi the set of positive bridge variables of xi and by Xi the set
of negative bridge variables of xi. Similarly, we denote by Wi the set of W variables of xi and
by Wi the set of W variables of xi. Let us now give some precision about the intervals of xi that
belong to D.

Lemma 6.8. If D is a dominating set of size K, then for any variable xi �= σ(D), either Xi ⊂ D and
Xi ∩ D = ∅, or Xi ⊂ D and Xi ∩ D = ∅.

Proof. Since xi �= σ(D), there are exactly ℓi + m
2 variables of xi in D. Thus, by Lemma 6.7,

exactly m
2 intervals of xi in D dominate the bridge intervals of xi. Only the bridge, T and T

intervals of xi are adjacent to the base intervals. Moreover, bridge intervals are adjacent to two
base intervals and T or T intervals are adjacent to only one. Since there are m base intervals
of xi, each interval of D must dominate a pair of base intervals (or none of them). So these
intervals of D should be some bridge intervals of xi.

Note that, by cardinality, each pair of bridge intervals of D must dominate pairwise disjoint base
intervals. Let us now show by induction that these bridge intervals are either all the positive
bridge intervals, or all the negative bridge intervals. We study two cases: either Xi

1 ∈ D, or
Xi

1 �∈ D.

Assume that Xi
1 ∈ D. In D, Xi

1 dominates Bi
1 and Bi

2. Thus, since X
i

1 dominates Bi
1 and X

i

2

dominates Bi
2, none of X

i

1, X
i

2 are in D (since their neighborhood in the set of base intervals is

not disjoint with Xi
1). But Bi

3 (resp Bi
4) is only adjacent to X

i

1 and Xi
2 (resp. X

i

2 and Xi
3). Thus

both Xi
2, Xi

3 are in D. Suppose now that for a given j such that j is even and j ≤ m
2 −2, we have

Xi
j , Xi

j+1 ∈ D. Then, since a base interval dominated by Xi
j (resp. Xi

j+1) also is dominated by

X
i

j+1 (resp. X
i

j+2), the intervals X
i

j+1, X
i

j+2 are not in D. But there is a base interval adjacent

only to X
i

j+1 and Xi
j+2 (resp. X

i

j+2 and Xi
j+3 if j �= m

2 − 2, or X
i

j+2 and Xi
j+2 if j = m

2 − 2).
Therefore, if j + 2 < m

2 we have Xi
j+2, Xi

j+3 ∈ D, and Xi
m
2

∈ D. By induction, if Xi
1 ∈ D

then each of the m
2 positive bridge intervals belong to D and thus none of the negative bridge

intervals do.
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Assume now that Xi
1 �∈ D. Then, to dominate Bi

1 and Bi
2, we must have X

i

1, X
i

2 ∈ D. Let us

show that if for a given odd j such that j ≤ m
2 −3 we have X

i

j , X
i

j+1 ∈ D, then X
i

j+2, X
i

j+3 ∈ D.

Since X
i

j (resp. X
i

j+1) dominates base intervals also dominated by Xi
j+1 (resp. Xi

j+2), we have

Xi
j+1, Xi

j+2 �∈ D. But there exists a base interval only adjacent to Xi
j+1 and X

i

j+2 (resp. Xi
j+2

and X
i

j+3). Thus, X
i

j+2, X
i

j+3 ∈ D. By induction, if Xi
1 �∈ D then each of the m

2 negative bridge
intervals belong to D. Thus, none of the positive bridge intervals belong to D.

Lemma 6.9. If D is a dominating set of size K, then for any variable xi �= σ(D), if Xi ⊂ D then
Wi ∩ D = ∅, otherwise Wi ∩ D = ∅.

Proof. By Lemma 6.8, D either contains Xi or contains Xi.

If Xi ⊂ D, Lemma 6.8 ensures that Xi ∩ D = ∅. So the intervals T
i

j have to be dominated by
other intervals.

By Lemma 6.7, ℓi intervals must dominate the V and V intervals of xi. Since no interval

dominates two of them, each T
i

j has to be dominated by an interval that is also dominating a V

or V interval. The only interval that dominates both T
i

j and a V or V interval is U
i

j . So all the U

intervals are in D and W ∩ D = ∅ (since the only V or V interval dominated by a W interval is
a V interval, which is already dominated).

Similarly if Xi ⊂ D, Lemma 6.8 ensures that Xi ∩ D = ∅. So the intervals T i
j have to be

dominated by other intervals. And one can prove similarly that these intervals should be the U
intervals and then the W intervals are not in D.

Safeness of the reduction. Let (F, As, At) be an instance of SATR, and let Ds = DF (As) and
Dt = DF (At). By Lemma 6.6, (GF , Ds, Dt) is an instance of DSRTS . We can now show the first
direction of our reduction.

Lemma 6.10. If (F, As, At) is a yes-instance of SATR, then (GF , Ds, Dt) is a yes-instance of DSRTS .

Proof. Let (F, As, At) be a yes-instance of SATR, and let S =< A1 := As, . . . , Aℓ := At > be the
reconfiguration sequence from As to At. We construct a reconfiguration sequence S′ from Ds to
Dt by replacing any flip of variable xi � xi of S from Ar to Ar+1 by the following sequence of
token slides from DF (Ar) to DF (Ar+1) (and a xi � xi move is replaced by the converse of this
sequence).

• We perform a sequence of slides that moves the token on J to X
i

1. By Lemma 6.5, GF is
connected, and by Lemma 6.6, DF (Ar) \ J is a dominating set. So any sequence of moves

from J to X
i

1 keeps a dominating set.

• For any j such that xi ∈ Cj , we first move the token from W i
j to V i

j then from V i
j to U i

j . Let
us show that this keeps GF dominated. The important intervals that can be dominated by
W i

j are V i
j , Cj , and J . The vertex V i

j is dominated anyway during the sequence since it
is also dominated by V i

j and U i
j . Moreover, since xi � xi keeps F satisfied, each clause

containing xi has a literal different from xi that also satisfies the clause. Thus, for each Cj

such that xi ∈ Cj , there exists an interval W i′

j or W
i′

j , with i′ �= i, that belongs to DF (Ar),
and then dominates both Cj and J during these two moves.

• For j from 1 to m
2 − 1, we apply the move Xi

j � X
i

j+1. This move is possible since Xi
j

and X
i

j+1 are neighbors in GF . Let us show that this move keeps a dominating set. For
j = 1, the important intervals that are dominated by Xi

1 are Bi
1, Bi

2, and T i
1. Since U i

1 is
in the current dominating set (by the second point), T i

1 is dominated. Moreover Bi
1 is

dominated by X
i

1, and Bi
2 is a neighbor of X

i

2. Thus, Xi
1 � X

i

2 maintains a dominating
set. For 2 ≤ j ≤ m

2 − 1, the important intervals that are dominated by Xi
j are Bi

k, Bi
k−2

and T i
j where k = 2j + 1 if j is even and k = 2j otherwise. Again T i

j is dominated by the
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U intervals. Moreover Bi
k−2 is dominated by X

i

j−1 (on which there is a token since we

perform this sequence for increasing j), and Bi
k is also dominated by X

i

j+1.

• For any j such that xi ∈ Cj , we move the token from U
i

j to V
i

j and then from V
i

j to W
i

j .

The important intervals dominated by U
i

j are the intervals T
i

j , V
i

j . But T
i

j is dominated

by a negative bridge interval, and V
i

j stays dominated by V
i

j then W
i

j .

• The previous moves lead to the dominating set (DF (Ar+1) \ J) ∪ Xi
m
2

. We finally perform

a sequence of moves that slide the token on Xi
m
2

to J . It can be done since Lemma 6.5
ensures that GF is connected. And all along the transformation, we keep a dominating
set by Lemma 6.6. As wanted, it leads to the dominating set DF (Ar+1).

We now prove the other direction of the reduction. Let us prove the following lemma.

Lemma 6.11. If there exists a reconfiguration sequence S from Ds to Dt, then there exists a reconfigura-
tion sequence S′ from Ds to Dt such that for any two adjacent dominating sets Dr and Dr+1 of S′, if
both Dr and Dr+1 have a moving variable, then it is the same one.

Proof. Assume that, in S, there exist two adjacent dominating sets Dr and Dr+1 such that
both Dr and Dr+1 have a moving variable, and σ(Dr) �= σ(Dr+1). Let us modify slightly the
sequence in order to avoid this move.

Since Dr and Dr+1 are adjacent in S, we have Dr+1 = Dr ∪ v \ u, where uv is an edge of GF .
Since σ(Dr) �= σ(Dr+1), u is an interval of σ(Dr), and v an interval of σ(Dr+1). By construction,
the only edges of GF between intervals of different variables are between their {W, W} intervals.
Thus, both u and v are W or W intervals and, in particular they are adjacent to the junction
interval J . Moreover, the only important intervals that are adjacent to u (resp. v) are the V
or V intervals of the same variable as u, W or W intervals, clause intervals, or the junction
interval J . Since u and v are adjacent, and since they are both W or W intervals, they cannot be
adjacent to the same clause interval. But the only intervals that are potentially not dominated
by Dr \ u = Dr+1 \ v should be dominated both by u in Dr and by v in Dr+1. So these intervals
are included in the set of W or W intervals and the junction interval, which are all dominated
by J . Thus, Dr ∪ J \ u is a dominating set of GF . Therefore, we can add in S the dominating set
Dr ∪ J \ u between Dr and Dr+1. This intermediate dominating set has no moving variable. By
repeating this procedure while there are adjacent dominating sets in S with different moving
variables, we obtain the desired reconfiguration sequence S′.

Lemma 6.12. If (GF , Ds, Dt) is a yes-instance of DSRTS , then (F, As, At) is a yes-instance of SATR.

Proof. Let (GF , Ds, Dt) be a yes-instance of DSRTS. There exists a reconfiguration sequence S′

from Ds to Dt. Moreover, by Lemma 6.11, we can assume that for any two adjacent dominating
sets Dr and Dr+1 of S′, if both Dr and Dr+1 have a moving variable, then it is the same one.

Let us construct a reconfiguration sequence S from As to At. To any dominating set D of GF ,
we associate a variable assignment A(D) of F defined as follows. For any variable xi �= σ(D),
either Xi ⊂ D or Xi ⊂ D by Lemma 6.8. If Xi ⊂ D then we set xi = 1. Otherwise, we set
xi = 0. Let xk be such that σ(D) = xk if it exists. If there exists a clause interval Cj such that
W k

j ∈ D, and if for any xi �= xk with xi ∈ cj , we have Xi ⊂ D, and for any xi �= xk with xi ∈ cj ,
we have Xi ⊂ D, then we set xk = 1. Otherwise xk = 0.

Let S be the sequence of assignments obtained by replacing in S′ any dominating set D by
the assignment A(D). In order to conclude, we must show that the assignments associated
to Ds and Dt are precisely As and At. Moreover, for every dominating set D, the assignment
associated to D has to satisfy F . Finally, for every move in GF , we must be able to associate a
(possibly empty) variable flip. Let us first show a useful claim, then proceed with the end of the
proof.

Claim 6.1. For any consecutive dominating sets Dr and Dr+1 and any variable xi that is not the moving
variable of Dr nor Dr+1, the value of xi is identical in A(Dr) and A(Dr+1).
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Proof. Lemma 6.8 ensures that for any xi such that xi �= σ(Dr) and xi �= σ(Dr+1), either Xi ⊂ Dr

and Xi ∩ Dr = ∅ or Xi ⊂ Dr and Xi ∩ Dr = ∅, and the same holds in Dr+1. Since the number
of positive and negative bridge intervals is at least 2 (since by assumption m is a multiple of
4), and Dr+1 is reachable from Dr in a single step, either both Dr and Dr+1 contain Xi, or
both contain Xi. Thus, by definition of A(D), for any variable xi such that xi �= σ(Dr) and
xi �= σ(Dr+1), xi has the same value in A(Dr) and A(Dr+1). ♦

Claim 6.2. We have A(Ds) = As and A(Dt) = At.

Proof. By definition, Ds = DF (As) and thus Ds contains the junction interval, which means that
it does not have any moving variable. Moreover, Ds contains Xi for any variable xi such that
xi = 1 in As and Xi for any variable xi such that xi = 0 in As. Therefore, for any variable xi,
xi = 1 in As if and only if xi = 1 in A(Ds). Similarly, A(Dt) = At. ♦

Claim 6.3. For any dominating set D of S′, A(D) satisfies F .

Proof. Since the clause intervals are only adjacent to W and W intervals, they are dominated by
them, or by themselves in D. But only one clause interval can belong to D. Thus, for any clause
interval Cj , if Cj ∈ D, then C ′

j must be dominated by a W or a W interval, that also dominates
Cj . So in any case, Cj is dominated by a W or a W interval. We study four possible cases and
show that in each case, cj is satisfied by A(D).

If Cj is dominated in D by an interval W i
j , where xi �= σ(D), then by Lemmas 6.8 and 6.9,

Xi ⊂ D and by definition of A(D), xi = 1. Since W i
j exists, it means that xi ∈ cj , thus cj is

satisfied by A(D).

Similarly, if Cj is dominated in D by an interval W
i

j , where xi �= σ(D), then by Lemmas 6.8 and

6.9, Xi ⊂ D. So xi = 0. Since W
i

j exists, xi ∈ cj , and therefore cj is satisfied by A(D).

If Cj is only dominated by W k
j in D, where xk = σ(D). Then, if there exists xi �= xk with xi ∈ cj

and Xi ⊂ D (resp. xi ∈ cj and Xi ⊂ D), then xi = 1 (resp. xi = 0) and cj is satisfied by A(D).
So we can assume that, for any xi �= xk with xi ∈ cj we have Xi �⊂ D. By Lemma 6.8, Xi ⊂ D.
And for any xi �= xk such that xi ∈ cj we have Xi �⊂ D, and thus Xi ⊂ D. So, by definition of
A(D), we have xk = 1. Since xk ∈ cj (since W k

j exists), cj is satisfied by A(D).

Finally, assume that Cj is only dominated by W
k

j in D, where xk = σ(D). If there exists xi �= xk

such that xi ∈ cj and Xi ⊂ D (resp. xi ∈ cj and Xi ⊂ D), then xi = 1 (respectively xi = 0) so cj

is satisfied by A(D). Thus, by Lemma 6.8, we can assume that for any xi �= xk such that xi ∈ cj

(resp. xi ∈ cj), we have Xi ⊂ D (resp. Xi ⊂ D). Let us show that there is no clause interval
Cj′ dominated by a W k

i interval of xk in D and that satisfies, for any xi �= xk, if xi ∈ cj′ then
Xi ⊂ D, and if xi ∈ cj′ then Xi ⊂ D. This will imply xk = 0 by construction and then the fact
that cj is satisfied.

Since Ds has no moving variable, there exists a dominating set before D in S′ with no moving
variable. Let Dr be the the latest in S′ amongst such dominating sets. By assumption, σ(Dq) =
xk for any set Dq that comes earlier than D but later than Dr. Thus, by Claim 6.1, for any
variable xi �= xk, xi has the same value in A(Dr) and A(D).

Now, by assumption, for any xi �= xk with xi ∈ cj (resp. xi ∈ cj) we have Xi ⊂ D (resp.
Xi ⊂ D). Thus, since xi has the same value in D and Dr, if xi ∈ cj (resp. xi ∈ cj) then Xi ⊂ Dr

(resp. Xi ⊂ Dr) and then, by Lemma 6.9, W i
j �∈ Dr (resp. W

i

j �∈ Dr). Therefore, Cj is only

dominated by W
k

j in Dr. But since Dr has no moving variable, Xk ⊂ Dr by Lemma 6.8 and
Lemma 6.9. Thus, by Lemma 6.9, for any j′ �= j, W k

j′ �∈ Dr. So for any j′ �= j such that xk ∈ cj′ ,

Cj′ is dominated by at least one interval W i
j′ or W

i

j′ in Dr, where xi �= xk. Lemma 6.9 ensures

that if Cj′ is dominated by W i
j′ (resp. W

i

j′ ) in Dr then Xi ⊂ Dr (resp. Xi ⊂ Dr), and since xi

has the same value in D and Dr, it gives Xi ⊂ D (resp. Xi ⊂ D). Therefore, by Lemma 6.8, if
a clause interval Cj′ is dominated by a W interval of xk in D, then either there exists xi �= xk

such that xi ∈ cj′ and D(xi) �⊂ D, or there exists xi �= xk such that xi ∈ c′
j and D(xi) �⊂ D. By
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definition of A(D), this implies that xk = 0 in A(D). Since W
k

j exists, xk ∈ cj thus cj is satisfied
by A(D).

Therefore, every clause of F is satisfied by A(D), which concludes the proof. ♦

Claim 6.4. For any two dominating sets Dr and Dr+1 of S′, either A(Dr+1) = A(Dr), or A(Dr+1) is
reachable from A(Dr) with a variable flip move.

Proof. By Claim 6.1, for any variable xi such that xi �= σ(Dr) and xi �= σ(Dr+1), xi has the
same value in A(Dr) and A(Dr+1). Moreover, by definition of S′, if both Dr and Dr+1 have
a moving variable then σ(Dr) = σ(Dr+1). Therefore, at most one variable change its value
between A(Dr) and A(Dr+1), which concludes the proof. ♦

Theorem 6.4. DSRTS is PSPACE-complete in circle graphs.

Proof. Let Ds = DF (As) and Dt = DF (At). Lemma 6.10 and 6.12 ensure that (GF , Ds, Dt)
is a yes-instance of DSRTSif and only if (F, As, At) is a yes-instance of SATR. Since SATR is
PSPACE-complete [GKMP09], it gives the result.

4 Line Graphs

We are interested here in the complexity of DSRTS in line graphs. An equivalent way to define
the DSRTS problem in line graphs is to use edge-dominating sets. Two edge-dominating sets
F, F ′ are TS-adjacent if F ′ = (F \ e) ∪ f and e and f share an endpoint. The DSRTS problem on
line graphs is indeed equivalent to the EDSRTS problem defined as follows.

EDGE DOMINATING SET RECONFIGURATION UNDER TOKEN SLIDING ( EDSRTS )
Input: A graph G, two edge-dominating sets D′

s and D′
t of G

Output: Does there exist an edge-dominating set reconfiguration sequence from D′
s to D′

t in
which any two consecutive dominating sets are TS-adjacent ?

We prove here the following.

Theorem 6.5. DSRTS is PSPACE-complete in line graphs. In other words EDSRTS is PSPACE-complete.

To do so, we use a polynomial time reduction from minVCRTS in graphs of maximum degree 3
to EDSRTS. As discussed in Section 2.1, minVCRTS is PSPACE-complete in graphs of maximum
degree 3, even when restricted to planar graphs [IDH+11], which gives the result.

The reduction. From any graph G = (V, E) of maximum degree 3, we construct the associated
graph G′ as follows. For every vertex u ∈ V , we create the vertex-gadget Γu represented in
Figure 6.7. The vertices u1, u2 and u3 of Γu are called the exit vertices of Γu as they will be the
only ones (possibly) connected with the rest of the graph. Let us arbitrarily order the edges of
G and obtain, for every vertex u ∈ V , a natural ordering of the (at most three) edges incident to
it in G.

For every edge uv ∈ E, we create the edge-gadget Γuv represented in Figure 6.7. If uv is the i-th
edge incident to u and the j-th edge incident to v then Γuv contains the exit vertices ui of Γu

and vj of Γv, as well as three new vertices. Note that each exit vertex belongs to at most one
edge-gadget of G′. By abuse of notations, all along the proof, Γuv and Γvu will refer to the same
edge-gadget. The construction is illustrated in Figure 6.8.
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u1 u2 u3

u4 u5 u6

u10 u11 u12

u7 u8 u9

u13 u14

u15 u16

Γu Γuv

ui vj

euv

eu ev

Figure 6.7: The gadgets Γu and Γuv

a b

c

d a3 a2 a1 b1 b2 b3 d1 d2 d3

c1 c3 c2

G G′

Figure 6.8: An example of a graph G and its associated graph G′ obtained after the reduction.
Note that since d has degree one, only one of its exit vertices is connected to the rest of the
graph.

Let C be a minimum vertex cover of G. We construct a set D(C) of edges of G′ as follows.

• For any vertex u ∈ C, the set of edges of Γu in D(C) is exactly the set Eu, with Eu =
{u1u4, u2u5, u3u6, u13u15, u14u16}, represented in Figure 6.9. Each of these edges has
multiplicity 1 in C.

• For any vertex u �∈ C, the set of edges of Γu in D(C) is exactly the set Fu, with Fu =
{u4u10, u5u11, u6u12, u15u16}, represented in Figure 6.9. Each of these edges has multiplic-
ity 1 in D(C).

• For every edge uv such that u, v ∈ C, the only edge of Γuv in D(C) is euv , with multiplicity
1.

• For any edge uv such that u �∈ C, the only edge of Γuv in D(C) is eu, with multiplicity 1.

• For any edge uv such that v �∈ C, the only edge of Γuv in D(C) is ev , with multiplicity 1.

Since C is a vertex cover of G, exactly one of the three last conditions holds. One can easily
check that for any u ∈ V , Eu (resp. Fu) dominates Γu. Moreover, for any uv ∈ E, if u ∈ C then
the two edges of Γuv incident to an exit vertex ui are dominated by an edge of Eu, and the three
others are dominated either by ev, or by euv and an edge of Γv, and similarly if v ∈ C. Thus,
since C is a vertex cover of G, D(C) is an edge-dominating set of G′. We say that D(C) is the
edge-dominating set associated to C.
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u1 u2

Eu

u3

u4 u5 u6

u10 u11 u12

u7 u8 u9

u13 u14

u15 u16

u1 u2

Fu

u3

u4 u5 u6

u10 u11 u12

u7 u8 u9

u13 u14

u15 u16

Figure 6.9: The edge sets Eu and Fu.

Theorem 6.5 is a direct consequence of the following lemma.

Lemma 6.13. Let G be a graph of maximum degree 3. Let Cs, Ct be two minimum vertex covers of G
and let Ds = D(Cs) and Dt = D(Ct). Then (G′, Ds, Dt) is a yes-instance of EDSRTS if and only if
(G, Cs, Ct) is a yes-instance of minVCRTS.

Proof. (⇐) Let (G, Cs, Ct) be a yes-instance of minVCRTS. There exists a reconfiguration se-
quence S =< C1 := Cs, C2 . . . , Cℓ := Ct > in G. Let us prove that, for every r ≤ ℓ − 1, there
exists a reconfiguration sequence S′ from D(Cr) to D(Cr+1), which gives the conclusion.

We perform the following sequence of edge slides:

• For every edge ux with x �= v, we move eux onto eu. Note that there is a token on eux

since Cr \ u is a vertex cover of G[E \ {uv}] and thus x ∈ Cr. Note moreover that all the
edges of Γux are and will be dominated regardless of the modifications we will perform
in Γu (since an edge incident to xj is in D(Cr) as x ∈ Cr).

• If ui is the exit vertex of Γu such that ui ∈ Γuv , then we make the following moves. The
first two moves are upup+3 � up+3up+9 and uquq+3 � uq+3uq+9 in Γu, where up and uq

are the two exit vertices of Γu different from ui. The next moves are u13u15 � u13ui+9

, u14u16 � u15u16, u13ui+9 � ui+3ui+9, then uiui+3 � eu where eu is the edge of Γuv

incident to ui. Note that these moves are indeed possible since u ∈ Cr. Note that the
tokens of Γu are the ones desired in D(Cr+1). Moreover, all along the transformation, all
the edges in Γu are dominated and so all the intermediate sets are edge-dominating.

• In Γu, we currently have tokens on the edges u15u16, u4u10, u5u11 and u6u12 and the
edge eu on Γuv. Note that we have exactly the same in Γv. So we can perform on
Γv the converse of the sequence we just applied in Γu in order to get the tokens on
{v1v4, v2v5, v3v6, v13v15, v14v16} in Γv. Note that there is a token on ev in Γvx for every
x �= v since v /∈ Cr by minimality of Cr+1. Thus all the edges of Γvx are dominated all
along the transformation.

• Finally, for every edge vx with x �= u, we move ev onto evx.

One can easily notice that the resulting set is D(Cr+1), which completes this part of the proof.

(⇒) Let (G′, Ds, Dt) be a yes-instance of EDSRTS, and let us prove that (G, Cs, Ct) is a yes-
instance of minVCRTS. To do so let us prove that we can associate a vertex cover of G to each
edge-dominating set of G′ and that every move of a token either does not modify the associated
vertex cover or corresponds to a token slide.

For any uv ∈ E, we define an arbitrary order such that either u < v or v < u. Let D be an
edge-dominating set of G′. For any vertex-gadget Γu, let p(u) be the number of edges of Γu

in D. For k ∈ {1, 2, 3}, let qk(u) be 0 if uk does not belong to any edge-gadget (i.e. u has
degree less than three and the exit vertex is unused) or if v > u where v is such that the edge
gadget Γuv containing uk, and let qk(u) be the number of tokens in Γuv containing uk, minus
one, otherwise. To the edge-dominating set D of G′, we associate a set C(D) of vertices of G,
such that for any u ∈ V , if p(u) +

∑3
k=1 qk(u) ≥ 5 then u belongs to C(D) with multiplicity

p(u) +
∑3

k=1 qk(u) − 4, and u �∈ C(D) otherwise. In order to conclude, we have to show that the
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sets associated to Ds and Dt are precisely the initial and target vertex covers of G. Moreover,
for every edge-dominating set D, the set associated to D has to be a vertex cover of G. And
finally, for every move in G′, we must be able to associate a (possibly empty) move in G.

Firstly, Ds = D(Cs) and thus by definition Ds contains exactly one edge in each edge-gadget,
four edges in each vertex-gadget Γu such that u �∈ Cs, and five edges in each vertex-gadget Γu

such that u ∈ Cs. Therefore, if u �∈ Cs then in Ds, p(u) +
∑3

k=1 qk(u) = 4, thus u �∈ C(Ds), and if
u ∈ Cs (necessarily with multiplicity 1 since Cs is minimum) then in Ds, p(u) +

∑3
k=1 qk(u) = 5

and then u ∈ C(Ds) with multiplicity 1. The same arguments holds for Ct. Thus, C(Ds) = Cs

and C(Dt) = Ct.

Let us show that for every edge-dominating set D of G′, C(D) is a vertex cover of G. By
construction, for any vertex u ∈ V , in the vertex-gadget Γu, only the edges u1u4, u2u5 and
u3u6 can be dominated by edges outside of Γu. But even if we remove these edges, the only
minimum edge-dominating set of Γu is Fu (see Figure 6.9 for an illustration), which contains
four edges. Thus, for any uv ∈ E, if D contains only 4 edges of Γu and 4 edges of Γv, then
D contains Fu and Fv, which implies that D contains at least two edges of Γuv to dominate
Γuv. Thus, qi(u) ≥ 1 or qj(v) ≥ 1, where ui and vj are the exit vertices that belong to Γuv,
and therefore p(u) +

∑3
k=1 qk(u) ≥ 5 or p(v) +

∑3
k=1 qk(u) ≥ 5, which implies u ∈ C(D) or

v ∈ C(D). Therefore, for any edge uv ∈ E, u ∈ C(D) or v ∈ C(D) and by definition, C(D) is a
vertex cover of G.

Finally, let us show that for any two adjacent edge-dominating sets Dr and Dr+1 of G′, either
C(Dr) = C(Dr+1), or there exists uv ∈ E(G) such that u ∈ Cr and Cr+1 = Cr ∪ v \ u. We have
Dr+1 = Dr ∪ e \ f , where e, f ∈ E and e and f share a vertex. Note that if e belongs to the
vertex gadget Γu then f can only belong to Γu or to Γuv with uv ∈ E. Similarly, if e ∈ Γuv either
f also belongs to it or it belongs to Γu or Γv. If u and v belong to the same gadget, neither the
p nor the q functions are modified and thus C(Dr+1) = C(Dr). So, free to permute Dr and
Dr+1 we can assume that e ∈ Γu and f ∈ Γuv. Note that p(u) decreases by 1 and p(v) is not
modified. If u > v then qi(u) increases by one and qj(v) is not modified, where ui and vj are the
exit vertices that belong to Γuv . So C(Dr+1) = C(Dr). If u < v, qj(v) increases by one and qi(u)
is not modified, so the multiplicity of u decreases by one and the multiplicity of v increases by
one, which corresponds to a move u � v in G. So any move in G′ corresponds to a move in G,
which completes the proof.

5 Circular Arc Graphs

As stated in Theorem 6.1, there always exists a transformation between two dominating sets of
identical size in interval graphs. Since the class of circular arc graphs strictly contain the class
of interval graphs (since a long cycle is a circular arc graph while it is not an interval graph),
one can naturally wonder if this result can be extended to circular arc graphs. The answer is
negative since, for every k, the cycle C3k of length 3k is a circular arc graph and it contains three
isolated dominating sets of size exactly k (the ones containing vertices i mod 3 for i ∈ {0, 1, 2}).
However, we show here the following:

Theorem 6.6. DSRTS is polynomial in circular arc graphs.

The rest of this section is devoted to prove Theorem 6.6. Let G = (V, E) be a circular arc graph
and Ds, Dt be two dominating sets of G of the same size.

Assume first that an arc A ∈ V contains the whole circle. So A dominates G and then for any
two dominating sets Ds and Dt of G, we can move a token from Ds to A, then move every
other other token of Ds to a vertex of Dt (in at most two steps passing through A), and finally
move A to the last vertex of Dt. Since a token is on A all along the transformation, we indeed
have a dominating set. Thus, there exists a reconfiguration sequence from Ds to Dt. From now
on we assume that no arc of V contains the whole circle.

For any arc Ai ∈ V , we call left extremity of Ii the first extremity of Ai we meet when we follow
the circle clockwise, starting from a point outside of Ai. The other extremity of Ai is called the
right extremity of Ai.
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Let us first prove the following straightforward lemma.

Lemma 6.14. Let G be a graph, and let u and v be two vertices of G such that N(u) ⊆ N(v). If S is a
dominating set reconfiguration sequence in G, and S′ is obtained from S by replacing every occurrence
of u by v in the dominating sets of S, then S′ is also a dominating set reconfiguration sequence in G.

Proof. Every neighbor of u also is a neighbor of v. Thus, replacing u by v in a dominating set
keeps the domination of G. Moreover, any move that involves u can be applied if we replace it
by v, which gives the result.

For the proof of Theorem 6.6, we need to define a graph Gu which is an interval graph. We
construct it in the following way. Let u be an interval of G that is maximal by inclusion. For
any arc v ∈ V such that v �= u, replace v by v′ := (v \ u) ∪ P where P is the set of extremities
of u that belong to v (if it exists). Since, by maximality of u, v does not contain u, v′ is indeed
an arc. Let G′

u be the resulting circular arc graph. Note that the set of edges in G′
u might be

smaller than the one of G but any dominating set of G containing u is still dominating in G′
u.

Now remove from G′
u the vertex u, as well as any vertex whose interval is now empty (in other

words, the intervals of G that are strictly included in u). And create two new vertices, u′ and
u′′, that correspond to each extremity of u. Since no arc intersects u in G′

u but on its extremities,
we can also create (n + 2) new vertices which are only adjacent to u′ and (n + 2) new vertices
that are only adjacent to u′′ (these vertices are called leaves). The resulting graph is the interval
graph Gu. Note that we can assume that Gu is connected (otherwise G is an interval graph and
we can conclude with Theorem 6.1). The construction is illustrated on Figure 6.10.

u

− +

− +

u′ u′′

G Gu

Figure 6.10: The linear interval graph Gu obtained from the circular arc graph G.

Let us prove three useful lemmas.

Lemma 6.15. Let D be a dominating set of G such that u ∈ D, and let Du be the set D ∪ {u′, u′′} \ {u}.
The set Du is a dominating set of Gu.

Proof. Every vertex of N(u) in the original graph G is either not in Gu, or is dominated by u′ or
u′′. The neighborhood of all the other vertices have not been modified. Moreover, all the new
vertices are dominated since they are all adjacent to u′ or u′′.

Note that Du has size |D| + 1.

Lemma 6.16. The following holds:

(i) All the dominating sets of Gu of size |D| + 1 contain u′ and u′′.

(ii) For every dominating set X of Gu of size |D| + 1, (X ∩ V ) ∪ {u} is a dominating set of G of size
at most |D|.

(iii) Every reconfiguration sequence in Gu between two dominating sets Ds, Dt of Gu of size at most
|D| + 1 and that does not contain any leaf can be adapted into a reconfiguration sequence in G
between (Ds \ {u′, u′′}) ∪ {u} and (Dt \ {u′, u′′}) ∪ {u}.

Proof. The point (i) holds since there are n + 2 pending vertices attached to each of u′ and u′′

and |D| ≤ n.
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The point (ii) is indeed true since we have not created any edge between vertices of V in the
construction of Gu, since u′ and u′′ only dominate vertices of V dominated by u in G, and since
u′ and u′′ are in any dominating set of size at most |D| + 1 of Gu.

The point (iii) follows since we simply have to slide the tokens along the same edge (no edge is
created) and move the token on (resp. from) u if a token is slid on (resp. from) u′ or u′′ (and do
nothing is a token is slid on or from a leaf attached to u′ or u′′).

By Lemma 6.16 and Theorem 6.1, we immediately obtain the following corollary:

Corollary 6.1. Let G be a circular interval graph, u ∈ V (G), and k be an integer. All the k-dominating
sets of G containing u are in the same connected component of the reconfiguration graph.

Let us now prove Theorem 6.6. Let G = (V, E) be a circular arc graph, and let Ds and Dt be two
dominating sets of G. Free to slide tokens, we can assume that all the intervals of Ds and Dt

are maximal by inclusion. Moreover, by Lemma 6.14, the vertices of all the dominating sets we
will consider from now on will be maximal by inclusion. By abuse of notation, we will say that
in G, an arc v is the first arc on the left (resp. on the right) of another arc u if the first left extremity
of an inclusion-wise maximal arc (of G, or of the stated dominating set) we encounter when
browsing the circle counter clockwise (resp. clockwise) from the left extremity of u is the one
of v. On the other hand, in interval graphs, we say that an interval v is at the left (resp. at the
right) of an interval u if the left extremity of v is inferior (resp. superior) to the one of u. Note
that since the intervals we consider here are maximal by inclusion, it implies that it is also the
case for their right extremities.

Let u1 be a vertex of Ds. Let v be the first vertex at the right of u1 in Dt. We perform the
following algorithm, called the Right Sliding Algorithm. By Lemma 6.16, all the dominating
sets of size |Ds| + 1 in Gu1

contain u′
1. Let D′

2 be a dominating set of the interval graph Gu1

of size |Ds| + 1, such that the first vertex at the right of u′
1 has the lowest left extremity (we

can indeed find such a dominating set in polynomial time). By Theorem 6.1, there exists a
transformation from (Ds ∪ {u′

1, u′′
1}) \ {u1} to D′

2 in Gu1
. And thus by Lemma 6.16, there exists

a transformation from Ds to D2 := (D′
2 ∪ {u1}) \ {u′

1, u′′
1} in G. We apply this transformation.

Informally speaking, this ensures that the first vertex on the left of u1 in D2 is as close to u1

as possible. Now, we fix all the vertices of D2 but u1, and we try to slide the token on u1 onto
the first arc on the right of u1 in G. Let u2 be this arc. We now repeat these operations with
u2 instead of u1, i.e. we apply a reconfiguration sequence towards a dominating set of G in
which the first vertex on the left of u2 is the closest to u2, then try to slide u2 to the right, onto u3.
We repeat these operations until ui = ui+1 (i.e. we cannot move to the right anymore) or until
ui = v. Let u1, . . . , uℓ be the resulting sequence of vertices. Note that this algorithm is indeed
polynomial since after at most n steps we arrive to v or we cannot move to the right anymore.

We can similarly define the Left Sliding Algorithm by replacing the leftmost dominating set of
Gui

by the rightmost, and then slide ui to the left for any i. We stop when we cannot slide to
the left anymore, or when ui = v′, where v′ is the first vertex at the left of u1 in Dt. Let u′

ℓ be the
last vertex of the sequence of vertices given by the Left Sliding Algorithm.

Let us prove that there exists a transformation from Ds to Dt if and only if uℓ = v or u′
ℓ = v′.

Firstly, if uℓ = v, then Corollary 6.1 ensures that there exists a transformation from Dℓ to Dt

and thus from Ds to Dt, and similarly if u′
ℓ = v′. Now, if uℓ �= v and u′

ℓ �= v′, assume for
contradiction that there exists a transformation sequence S from Ds to Dt. By Lemma 6.14 we
can assume that all the vertices in any dominating set of S are maximal by inclusion. Moreover,
free to decompose the moves in S, we can assume that in S, the moves are always from a vertex
to the first vertex at its right or its left in G.

Let us consider the first dominating set C of S where the token initially on u1 is on the first
vertex on the right of uℓ in G, or on the first vertex on the left of u′

ℓ in G. Such a dominating set
exists since v is the first vertex on the right of u in Dt and v′ the first vertex on the left of u in
Dt, and since the Right Sliding Algorithm and Left Sliding Algorithm stopped before reaching
a vertex of Dt. Without loss of generality, we can assume that it is on the right of uℓ (the case
where it is on the left of u′

ℓ is symmetrical). Let C ′ be the dominating set just before C in S.
Note that uℓ ∈ C ′. Let x be the first vertex on the right of uℓ in G, i.e. the vertex on which the
token on uℓ slides from C ′ to C. Let y be the first vertex of C ′ at the left of uℓ.
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The dominating set D′
ℓ of the interval graph Guℓ

has size |Ds|+1 and is such that the first vertex
at the right of u′

ℓ has the lowest left extremity. We denote by z this vertex. In particular, y is at
the right of z in Guℓ

. We claim that, in Dℓ, uℓ can be slid on x. Indeed, since the token on uℓ

slides to the first vertex on the right, if a vertex is not dominated, it is a vertex that contains the
left extremity of uℓ. But any such vertex is dominated by y in C and thus by z in Dℓ, since z is
at the left of y in Guℓ

. Thus sliding uℓ on x is possible. It gives a contradiction with uℓ = uℓ+1.

6 Conclusion

In this chapter, we investigated the reconfiguration of dominating sets under the token sliding
rule. We studied the complexity of the reachability problem in several classes of graphs. With
the same reduction from minVCRTS in planar graphs of maximum degree at most 3, we proved
that the problem is PSPACE-complete in both planar bipartite graphs and unit disk graphs. Note
that Bonamy, Dorbec and Ouvrard [BDO19] already proved that it was PSPACE-complete in
planar graphs and bipartite graphs. We then showed that it is also PSPACE-complete in circle
graphs, answering an open question raised by Bonamy, Dorbec and Ouvrard [BDO19]. To do
so, we used an adaptation of the proof of the NP-completeness of the source problem [Kei93].
We then focused on line graphs, and proved that the problem is also PSPACE-complete for
this class, using a reduction from minVCRTS in graphs of maximum degree at most 3. This
is equivalent to saying that the reachability problem is PSPACE-complete in general for the
reconfiguration of edge-dominating sets under the token sliding rule. On the positive side, we
provide a polynomial time algorithm for circular arc graphs, using a result of Bonamy et al.
stating that there always exists a reconfiguration sequence in interval graphs. Note that the
class of circular arc graphs contains the class of circular interval graphs, and this result thus
answers another question raised by Bonamy, Dorbec and Ouvrard [BDO19]. All these results
complete their work on the complexity of the reachability problem in other graph classes, and
both are illustrated in Figure 6.11.

The questions raised by Bonamy, Dorbec and Ouvrard about circle graphs was a possible lead to
answer the following question: does there exist a graph class for which computing a minimum
dominating set is NP-complete but the reachability problem is polynomial ? In this chapter, we
proved that the reachability problem is PSPACE-complete in circle graphs, with an adaptation of
the proof of the NP-completeness of the source problem. Therefore, the question remains open,
and the complexity of the reachability problem needs to be studied in other graph classes. In
particular, for outerplanar graphs, which is a maximal subclass of circle graphs, the complexity
of the reachability problem is open, even if finding a minimum dominating set is polynomial.
We strongly believe that the problem is in P, but we were not able to prove it.

Since the reconfiguration of dominating sets under the token sliding rule has been studied only
recently, there remains a lot of work to be done. For example, one could study the complexity
of the shortest transformation problem, or the diameter when the reconfiguration graph is
connected (for interval graphs, for example). A version where only one token can be on each
vertex could also be investigated. This version has somehow been undirectly studied through
eternal domination. In this problem, the goal is to start from a dominating set and to go to
another that has to contain a given vertex, then to another containing another vertex, etc. The
next chapter is devoted to the eternal domination problem and its variants.
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Figure 6.11: The complexity of DSRTS in several graph classes. The rectangles in blue are the
results we show in this chapter and the other ones are previously known results.
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Chapter 7

Eternal Domination

1 Introduction

In this chapter, we are interested in the eternal domination problem. It can be seen as an infinite
game played on a graph G between two players: the defender and the attacker. The defender
starts by choosing a set D0 of vertices of G, where they place some guards. Then, at each turn i,
the attacker chooses a vertex ri called the attack in V \ Di−1, and the defender must defend
against the attack, by moving to ri a guard on a vertex vi adjacent to ri (thus sliding exactly one
guard along an edge of G). The new guards configuration is therefore Di = (Di−1 ∪ {ri}) \ {vi}.
The defender wins the game if it can defend against any infinite sequence of attacks. The eternal
domination number, denoted by γ∞(G), is the minimum number of guards necessary for the
defender to win. An eternal dominating set is a set that can initially be chosen by the defender
in a winning strategy.

Let us give a more formal definition of these notions. Let G = (V, E) be a graph. The set EDS(G)
of eternal dominating sets of G is the greatest set of subsets of V such that for every S ∈ EDS(G)
and every r ∈ V \ S, there exists v ∈ S such that vr ∈ E and (S ∪ {r}) \ {v} ∈ EDS(G). The
eternal domination number of G is defined as γ∞(G) = min{|S| : S ∈ EDS(G)}.

Another variant of the eternal domination problem is the m-eternal domination problem. Note
that the m of m-eternal does not represent a parameter, but stands for multiple, as in multiple
guards can move at a time. In this variant, every turn, the defender is authorized to move any
number of guards at a time. Each guard thus either stays on its current vertex, or moves to a
neighbor of its current vertex, provided that the vertices occupied by the guards are all distinct.
The attack is defended against if and only if one guard moves to the attacked vertex.

More formally, we give the following definitions. Given two sets S1, S2 ⊆ V , a multimove f
from S1 to S2 is a one-to-one mapping from S1 to S2 such that for every x ∈ S1, we have
f(x) = x or xf(x) ∈ E. The set MEDS(G) of m-eternal dominating sets of G is the greatest
set of subsets of V such that for every S ∈ MEDS(G) and every r ∈ V (G) \ S, there is a
multimove f such that r ∈ f(S) and f(S) ∈ MEDS(G). The m-eternal domination number of G
is γ∞

m (G) = min{|S| : S ∈ MEDS(G)}.

Figure 7.1 illustrates the game played between the defender and the attacker in both eternal
domination and m-eternal domination.
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Figure 7.1: Above, an example of eternal domination of a graph. Below, an example of m-eternal
domination of a graph. Each number represents a guard, and the attack is circled.

The study of eternal domination finds its origins in its application to military defense introduced
in the 90’s. The goal was to investigate the military strategy of Emperor Constantine used to
defend the Roman Empire [AF95, ReV97, RR00, Ste99]. It was then formally introduced by
Burger et al. [BCG+04] in 2004, and has been widely studied ever since. The first studies mainly
focused on the search of general bounds on the eternal domination number, depending on
usual graph parameters. Burger et al. made the following observation in their paper. Recall
that θ(G) denotes the minimum number of cliques in which G can be partitioned.

Observation 7.1. [BCG+04] Given a graph G, we have α(G) ≤ γ∞(G) ≤ θ(G).

Indeed, if the attacker attacks consecutively all the vertices of a maximum independent set I of
G, and if the defender is able to defend G, then each vertex of I is occupied by a guard when
the attacker is done. And the second inequality is straightforward when considering that each
clique of G can be defended by one guard. However, Klostermeyer and MacGillivray proved
that none of these two bounds are tight, as stated in the following theorem.

Theorem 7.1. [KM09] For any integers k and k′, there exists a graph G such that γ∞(G) ≥ α(G) + k
and θ(G) ≥ γ∞(G) + k′.

Goddard et al. gave the first example of a graph G such that α(G) < γ∞(G) < θ(G) [GHH05].
On the other hand, for any k ≥ 3, Klostermeyer and MacGillivray [KM05] proved the existence
of graphs with γ∞(G) = α(G) and θ(G) = k.

Observation 7.1 is particularly interesting when G is a perfect graph. Then, since the com-
plement G of G is also perfect [LC05], by definition, ω(G) = χ(G), which is equivalent
to α(G) = θ(G). Thus, it gives γ∞(G) = α(G) = θ(G). Finding the graphs for which
γ∞(G) = θ(G) have been the object of many studies and several necessary conditions have
been found [ABB+07, BCG+04, KM09, Reg07]. In particular, circular arc graphs [Reg07] and
K4-minor free graphs [ABB+07] verify this property.

Another famous bound on γ∞(G) is given by the following theorem, proved by Klostermeyer
and MacGillivray [KM07].

Theorem 7.2. [KM07] For any graph G, we have γ∞(G) ≤
(

α(G)+1
2

)

.

Goldwasser and Klostermeyer gave some graphs for which the equality is reached [GK08].

In the paper of Burger et al. [BCG+04], the exact value of γ∞(G) is given for paths, cycles,
multipartite graphs, grids and rook’s graphs. In toroidal grids, they obtain the following
bounds.
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Theorem 7.3. [BCG+04] For any integers p and q, we have 7nm
23 ≤ γ∞(Pn�Pm) ≤ ⌈ nm

2 ⌉.

More generally, in cartesian product of graphs, a Vizing-like question asks if it is always true
that γ∞(G�H) ≥ γ∞(G) · γ∞(H). No counter example is known to this day. This type of
question was studied in [DKK+20]. For the strong products, the authors proved that for any
graphs G and H , we have γ∞(G ⊠ H) ≥ α(G) · γ∞(H). They also provided some families of
graphs attaining the strict inequality γ∞(G�H) > γ∞(G) · γ∞(H) for the cartesian product.

The m-eternal domination problem was introduced a year later than the eternal domination
one. The first paper to mention it is the one of Goddard et al. [GHH05]. In the same paper, they
give the following bounds on the value of γ∞

m (G).

Theorem 7.4. [GHH05] For any graph G, we have γ(G) ≤ γ∞
m (G) ≤ α(G).

The upper bound α(G) is not always reached, as proves the example of the star Sn for which
γ∞

m (Sn) = 2 and α(Sn) = n − 1. That being said, some graphs reach the equality, for instance
the complete graphs, for which γ∞

m (Kn) = α(Kn) = 1.

With Obervation 7.1, Theorem 7.2 and Theorem 7.4, we get the following nice sequence of
inequalities.

Theorem 7.5. [BCG+04, GHH05, KM07] For any graph G, we have

γ(G) ≤ γ∞
m (G) ≤ α(G) ≤ γ∞(G) ≤

(

α(G) + 1

2

)

.

Other upper bounds on γ∞
m (G) include ⌊ n

2 ⌋ [CKP06], 2γ(G) [KM16], and 2τ(G) [KM12b] (recall
that τ(G) denotes the size of a minimum vertex cover of G).

In the paper that introduces the m-eternal domination problem, Goddard et al. studied the value
of γ∞

m (G) in several graph classes. They obtained the exact value for cycles, paths, complete
graphs and complete bipartite graphs [GHH05]. In 2015, Braga, de Souza and Lee also solved
the problem in proper interval graphs [BdSL15], generalized in 2019 to interval graphs by
Rinemberg and Soulignac [RS19]. The value of the m-eternal domination number is also known
in split graphs [BDE+17], and upper bounded in cacti [BKV19].

As it is often the case in domination problems, a lot attention has been given to grid graphs.
Godwasser, Klostermeyer and Mynhardt obtained the value of γ∞

m (G) for grids of dimensions
2 × n [GKM13]. They also provided an upper bound for grids of dimensions 3 × n, improved
later by Finbow, Messinger and van Bommel, who also gave a lower bound [FMvB15]. Beaton,
Finbow and MacDonald [BFM13] continued this investigation and gave the exact value for
the dimensions 6 × n, and lower and upper bounds for the dimensions 4 × n. The 5 × n grid
was studied by Van Bommel and Van Bommel who found lower and upper bounds [vBvB16].
Recently, the asymptotic value of γ∞

m (G) was obtained for any dimensions. Indeed, Lamprou,
Martin and Schewe proved that γ∞

m (Pn�Pm) = ⌈ mn
5 ⌉ + O(n + m) [LMS19]. Concerning

king’s grids (i.e. strong products of paths), McInerney, Nisse and Pérennes proved in 2019
that γ∞

m (Pn ⊠ Pm) = ⌈ n
3 ⌉⌈ m

3 ⌉ + O(m
√

n) [MINP19], and Virgile et al. that γ∞
m (Pn ⊠ Pm) ≤

mn
7 + O(m + n) [VSZ+20].

The complexity of deciding whether the m-eternal domination number of a graph is at most
a given k has been recently studied. It was proven to be NP-complete when restricted to
Hamiltonian split graphs [BDE+17]. In the general case, we do not know if the problem is in
NP. For other graph classes such as strongly chordal split graphs [BDE+17], the problem is in P,
and even linear in interval graphs [RS19] and cacti [BKV19].

Several variants of the eternal and m-eternal domination problems have been studied. For
instance, Klostermeyer and Mynhardt [KM12a] introduced the eternal total domination and
eternal connected domination problems. More recenty, an eviction model was introduced,
where a guarded vertex is attacked at each turn and the guards have to avoid it [KMAA17].
It was also recently proved [FGMO18] that in the m-eternal domination problem, contrarily
to what stated a conjecture of Goddard in [GHH05], allowing multiple guards to occupy a
same vertex is an advantage for the defender. This led to several studies in which such guards
configurations are authorized [B+19, BKV19]. For a more complete state of the art concerning
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eternal domination and its variants, the reader is referred to the review of Klostermeyer and
Mynhardt [KM16]. In this chapter, we present a joint work with Guillaume Bagan and Hama-
mache Kheddouci, where we investigate a directed and an oriented version of the eternal and
m-eternal domination problems.

2 Eternal domination on digraphs

We present here the eternal domination and m-eternal domination problems on directed graphs.
The definitions of EDS(G), γ∞(G), MEDS(G) and γ∞

m (G) are straightforward, the only differ-
ence is that whenever an edge is considered, we consider an arc instead, and the movements of
the guards must follow the direction of the arcs.

Note that the notion of domination in digraphs has been defined in multiple ways in the
literature, also, we use the definition where a vertex can only be dominated by itself or its
incoming neighbors, also called out-domination.

It is straightforward that the (m-)eternal domination number of a graph is the sum of the
(m-)eternal domination number of each of its connected components. We prove that this result
can be extended to the strongly connected components (s.c.c) of a digraph.

Lemma 7.1. Let G be a digraph with strongly connected components S1, . . . Sl. Then

γ∞(G) =

l
∑

i=1

γ∞(G[Si])

and

γ∞
m (G) =

l
∑

i=1

γ∞
m (G[Si]).

Proof. The statement γ∞(G) ≤ ∑l
i=1 γ∞(G[Si]) (resp. γ∞

m (G) ≤ ∑l
i=1 γ∞

m (G[Si])) is straightfor-
ward, as the defender can always defend independently each strongly connected components
Si, using γ∞(G[Si]) (resp. γ∞

m (G[Si])) guards. Let us prove the other two inequalities.

We define the following relation ≤r on the vertices of G: x ≤r y if there exists a directed path
from y to x in G. Since G is finite, ≤r is a wqo. Let us represent a guards configuration of k
guards by the tuple of the k vertices they are placed on, and extend the relation ≤r on (ordered)
guards configurations: (x1, . . . , xk) ≤r (y1, . . . , yk) if and only if xi ≤r yi for every i ∈ [1, k].
This relation is a subset of the direct product of k wqos, where a wqo (for well-quasi-ordering)
is a preorder such that any infinite sequence of elements x0, x1, x2, . . . contains an increasing
pair xi ≤P xj with i < j. Thus, it also is a wqo. For both eternal domination and m-eternal
domination, if the guards configuration c2 is reachable from the guards configuration c1, then
c1 ≥r c2.

Assume now that the defender plays with less than
∑l

i=1 γ∞(G[Si]) (resp.
∑l

i=1 γ∞
m (G[Si]))

guards. Let D0 be the initial configuration. There exists a s.c.c. Si such that |Si∩D0| < γ∞(G[Si])
(resp. |Si ∩ D0| < γ∞

m (G[Si])). So the attacker can apply a strategy in G[Si] such that they can
either win, or the defender moves a guard from outside of Si into Si. In the second case,
we obtain a configuration Dj such that D0 �<r Dj , and there exists in Dj a s.c.c. Si′ with
|Si′ ∩ Dj | < γ∞(G[Si′ ]) (resp. |Si′ ∩ Dj | < γ∞

m (G[Si′ ])). The attacker can apply the same
strategy over again. Since ≤r is a wqo, any infinite sequence of elements contains an increasing
pair, and thus the attacker eventually wins.

This leads to the value of the two parameters for directed acyclic graphs.

Corollary 7.1. If G is an acyclic digraph with n vertices, then γ∞(G) = γ∞
m (G) = n.

A useful result concerns the monotonicity of γ∞.

Lemma 7.2. Let G be a digraph and H be an induced subgraph of G. Then, γ∞(H) ≤ γ∞(G).
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Proof. Let D0 be an eternal dominating set of size γ∞(G) of G, such that the intersection
|D0 ∩ V (H)| is maximum with this property. Consider any infinite sequence of attacks in H ,
and defend it in G, by taking D0 as the initial guards configuration. At each turn, only one
guard is moved, towards the attacked vertex, which belongs to H . Thus, no guard ever leaves
H . Moreover, by maximality of |D0 ∩ V (H)|, no guard ever arrives in H from outside of H .
So any movement of the guards in this defense can be reproduced in H to defend against the
sequence of attacks (more precisely, at each turn, the guards configuration in H to defend again
the attack is the intersection between V (H) and the guards configuration in G), which gives
γ∞(H) ≤ γ∞(G).

Note that it is not true for γ∞
m . Indeed, consider the m-eternal domination of the star Sn of

order n ≥ 4, where each edge is replaced by a double arc. It is easily seen that it can not be
defended with only one guard, as attacking two leaves in a row gives a winning strategy for
the attacker. But it can be defended with two guards, if the defender always move a guard
from a leaf to the center, and the other guard from the center to a leaf (precisely the attacked
vertex). So γ∞

m (Sn) = 2. But the set L of leaves of Sn is an independent set, so by Lemma 7.1,
γ∞

m (Sn[L]) = n − 1, which gives γ∞
m (Sn[L]) > γ∞

m (Sn).

The main result of this section is the generalization of Theorem 7.5 to directed graphs.

We define α for digraphs as the order of the greatest induced acyclic subgraph of G. This defini-
tion is illustrated in Figure 7.2. Note that this definition of α is, in some sense, a generalization
of the independence number to undirected graphs. Indeed, if we replace every edge of a graph
G by two arcs, thus creating the digraph

←→
G , we have the equality α(G) = α(

←→
G ).

Theorem 7.6. Given a digraph G, we have

γ(G) ≤ γ∞
m (G) ≤ α(G).

Proof. To see that γ(G) ≤ γ∞
m (G), note that in order to defend against the first attack, D0 must

be a dominating set of G.

The proof of the second inequality γ∞
m (G) ≤ α(G) is similar to the one of Goddard et al.

[GHH05] for undirected graphs. We consider two cases.

Case 1. Assume that for any v ∈ V , v belongs to an acyclic subgraph of G of order α(G). We
prove that for any A, B ⊆ V such that A and B both induce acyclic subgraphs of order α(G) (i.e.
maximum induced acyclic subgraphs), there exists a multimove from A to B. This will imply
that we can always defend against an attacked vertex r by going from a guards configuration
that induces an acyclic subgraph of order α(G) to another, that contains r. Let us construct a
bipartite undirected graph G′ in the following way. Its parts are the sets A′ and B′, where A′

(resp. B′) contains a copy of each of the vertices of A (resp. B). Note that the vertices of A ∩ B
have a copy in both A′ and B′. By abuse of notation, we sometimes refer to a vertex of A′ or B′

by the vertex of V it is a copy of. Thus, we for example consider that A′ ∩ B′ = A ∩ B. The edge
set of G′ is E′ = {ab, a ∈ A′, b ∈ B′, (a, b) ∈ E} ∪ {ab, a ∈ A′, b ∈ B′, a = b}. This construction
is illustrated in Figure 7.2.

v1

v2

v3

v4

v5

v1

v2

v5

v2

v3

v5

Figure 7.2: On the left, a graph G for which G[{v1, v2, v5}] and G[{v2, v3, v5}] are maximum
induced acyclic subgraphs. Thus, α(G) = 3. On the right, the bipartite graph constructed in the
proof of Theorem 7.6.
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We show that for any set S ⊆ A′, |N(S)| ≥ |S|, where N(S) is the set of neighbors of vertices of
S in G′. We will then be able to use Hall’s marriage theorem [Hal35] to prove that there exists a
perfect matching between A′ and B′ in G′, and therefore a multimove from A to B in G (since
every vertex in A is therefore associated to a vertex in B that is either identical, or that is its
neighbor in G).

Assume for contradiction that there exists S ⊆ A′ such that |N(S)| < |S|. Let X := S \ B′,
Y := N(S) \ A′, and C := (B′ ∪ X) \ Y . By construction, S ∩ B′ ⊆ N(S) ∩ A′ (the vertices that
are in S and in B′ are both in A′ and B′, thus they are neighbors with their copy in B′). So
|S ∩ B′| ≤ |N(S) ∩ A′|. Thus, since |S| > |N(S)| by assumption, and since |X| = |S| − |S ∩ B′|
and |Y | = |N(S)| − |N(S) ∩ A′|, this gives |X| > |Y |. Since X ∩ B′ = ∅, C ≥ |B′| + |X| − |Y | so
|C| > |B′|, i.e. |C| > α(G).

Let us now prove that G[C] is acyclic. Since G[A] and G[B] are acyclic, it is enough to show that
for any a ∈ C ∩ (A \ B), b ∈ C ∩ (B \ A), we have (a, b) �∈ E. The only vertices of A \ B in C are
the ones of S \ B (i.e. of X). But the vertices of C ∩ (B \ A) that are neighbors of vertices of
S \ B in G′ are in N(S) \ A (i.e. in Y ) and thus are not in C. Thus, G[C] is an induced acyclic
subgraph of order greater than α(G), a contradiction. So Hall’s condition is verified. Therefore,
there exists a perfect matching between A′ and B′ in G′, and a multimove from A to B in G.

Case 2. Assume now that there exists v ∈ V such that v does not belong to any acyclic
subgraph of G of order α(G). We proceed by induction on n.

For n = 1, we have γ∞
m (G) = α(G) = 1, so γ∞

m (G) ≤ α(G). Assume now that n > 1. We define
the graph G′ as follows: G′ = (V ′, E′) with V ′ = V \ {v} and E′ = E(G[V ′]) ∪ {(u, w) ∈ V ′2 :
u �= w, (u, v), (v, w) ∈ E}.

By induction hypothesis, we have γ∞
m (G′) ≤ α(G′).

Let us show that α(G′) ≤ α(G) − 1. Let S ⊆ V ′ be a set of cardinality α(G). We prove that G′[S]
is cyclic. Firstly, if G[S] is cyclic then G′[S] is cyclic too. Now, if G[S] is acyclic, since |S| = α(G),
G[S ∪ {v}] is cyclic. Thus, there exist u, w ∈ S such that (u, v), (v, w) ∈ E, and (u, v) and (v, w)
belong to a cycle of G[S]. If w = u, since by assumption v does not belong to any of the greatest
induced acyclic subgraphs of G, then G[(S \ {u}) ∪ {v}] is cyclic and so there exists u′, w′ ∈ S
such that u′ �= u, w′ �= u and (u′, v) ∈ E and (v, w′) belong to a cycle in G[S]. If u′ = w′, then
(u, u′) and (u′, u) form a cycle in G′. Otherwise (u′, w′) belongs to a cycle of G′, and similarly, if
w �= u, (u, w) belongs to a cycle of G′. In any case, G′[S] is cyclic. So there exists no induced
acyclic subgraph of G′ of order α(G), and α(G′) ≤ α(G) − 1.

Moreover, γ∞
m (G) ≤ γ∞

m (G′) + 1. Indeed, if G′ can be defended with k guards, then G can
be defended with k + 1 guards by adding a guard on v and copying the strategy in G. If the
defender of G′ moves a guard from u to w using an edge (u, w) that has been added in G′ (and,
thus, not present in G), then the two edges (u, v) and (v, w) belong to G. Thus the defender of
G moves a guard from v to w and another one from u to v.

Combining γ∞
m (G′) ≤ α(G′) with α(G′) ≤ α(G) − 1 and γ∞

m (G) ≤ γ∞
m (G′) + 1 finally gives

γ∞
m (G) ≤ α(G).

To prove the second part of the analogue of Theorem 7.5, we need the following lemma.

Lemma 7.3. Let G be a digraph. Any set S ⊆ V that induces a maximum acyclic subgraph of G is a
dominating set of G.

Proof. Let S induce a maximum acyclic subgraph of G. Assume for contradiction that there
exists v ∈ V such that N [v] ∩ S = ∅. Then, there is no incoming neighbor of v in S, thus
G[S ∪ {v}] is acyclic. Since v �∈ S, S ∪ {v} = |S| + 1, a contradiction with the maximality of
G[S].

Theorem 7.7. Given a digraph G, we have

α(G) ≤ γ∞(G) ≤
(

α(G) + 1

2

)

.
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Proof. The inequality α(G) ≤ γ∞(G) follows from Corollary 7.1 and Lemma 7.2.

The proof of the second inequality γ∞(G) ≤
(

α(G)+1
2

)

is similar to the proof given for undirected
graphs in [KM07], in which α denotes the independence number. Firstly, if n ≤

(

α(G)+1
2

)

, since
γ∞(G) ≤ n, we are done. So we assume n >

(

α(G)+1
2

)

. We show that we can defend against any
attack v ∈ V with a strategy that preserves the following invariants for any guards configuration
D:

(i) we can partition D into α(G) pairwise disjoint sets Sα(G), Sα(G)−1, . . . , S1 such that:

• Sα(G) induces an acyclic subgraph of order α(G)

• For any i < α(G), Si = ∅ or Si induces an acyclic subgraph of order i

(ii) |D| is maximum with respect to these constraints.

Note that
∑α(G)

i=1 |Si| ≤
(

α(G)+1
2

)

, and thus this will imply the result. Moreover, since |D| is
maximum, since any vertex set of size 1 induces an acyclic subgraph, and since n >

(

α(G)+1
2

)

,
we necessarily have S1 �= ∅.

We start with any set D0 that verifies the invariant. We know that such a set exists since the
set Sα(G) exists and we can always take Si = ∅ for any i < α(G). Let Dt verify the invariant,
and let v �∈ Dt be the next attack. Let Sj be the smallest set of the partition of Dt such that there
exists u ∈ Sj where (u, v) ∈ E. We know that such a set exists, since Sα(G) induces a maximum
acyclic subgraph and by Lemma 7.3 it is therefore a dominating set of G. We defend against
v by moving to v a guard from the vertex u of Sj . Let us show that Dt+1 = (Dt \ {u}) ∪ {v}
verifies the invariant. As |(Dt \{u})∪{v}| = |Dt|, we only have to show that it verifies Property
(i).

Firstly, if (Sj \ {u}) ∪ {v} induces an acyclic subgraph, we just replace Sj by (Sj \ {u}) ∪ {v}
and obtain a partition of Dt+1 that satisfies Property (i). Otherwise, v necessarily has at least
two distinct incoming neighbors in Sj (including u), and thus j > 1. Let Sk be the greatest
set of the partition of Dt such that k < j. Since S1 �= ∅, we have Sk �= ∅. By definition of Sj ,
since k < j, there exists no arc from a vertex of Sk to v and thus Sk ∪ {v} induces an acyclic
subgraph of order k + 1. Assume for contradiction that k < j − 1. Then, Sk+1 = ∅, and taking
Sk+1 = Sk ∪ {v} and Sk = ∅ would create a set of size |Dt| + 1 respecting Property (i) and
therefore contradict the maximality of |Dt|. Thus, k = j − 1, Sj−1 �= ∅, we can replace in our
partition Sj by Sj−1 ∪ {v} and Sj−1 by Sj \ {u} and still verify Property (i).

By Combining Theorems 7.6 and 7.7, we get γ(G) ≤ γ∞
m (G) ≤ α(G) ≤ γ∞(G) ≤

(

α(G)+1
2

)

,
which is the analogue of Theorem 7.5 for undirected graphs.

3 Eternal domination on orientations of graphs

We now introduce a new problem that consists in orientating an undirected graph in order to
minimize its eternal domination number, or its m-eternal domination number. Recall that an
orientation of an undirected graph G is an assignment of exactly one direction to each of the
edges of G. This leads to the introduction of three new parameters for undirected graphs:

Given an undirected graph G:

•
−→
γ∞(G) = min{γ∞(H) : H is an orientation of G}

•
−→
γ∞

m (G) = min{γ∞
m (H) : H is an orientation of G}

• −→α (G) = min{α(H) : H is an orientation of G}.

We call
−→
γ∞(G) the oriented eternal domination number of G, and

−→
γ∞

m (G) the oriented m-eternal
domination number of G.
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3.1 Oriented eternal domination

For now, we only focus on the oriented eternal domination problem, i.e. only one guard can
move every turn. We first show that for non-trivial graphs,

−→
γ∞ can never be equal to γ, as

implied by the following proposition:

Proposition 7.1. Let G be a graph with at least one edge. Then, γ(G) ≤ α(G) < −→α (G) ≤ −→
γ∞(G).

Proof. The inequality γ(G) ≤ α(G) follows from Theorem 7.5. To see the inequality −→α (G) ≤−→
γ∞(G), observe that, by Theorem 7.7, the inequality α(H) ≤ γ∞(H) is true for any orientation
H of G. So we only need to prove that α(G) < −→α (G). Let H be an orientation of G and S be a
maximum independent set of G. Let S′ = S ∪ {v} where v is an arbitrary vertex in V \ S. The
graph G[S′] is a union of stars and isolated vertices. Thus, H[S′] is acyclic.

We conjecture a stronger result.

Conjecture 7.1. Let G be a graph with at least one edge. Then, θ(G) < −→α (G).

The conjecture would imply that there is no non-trivial graph G with γ∞(G) =
−→
γ∞(G) (since,

by Theorem 7.1, γ∞(G) ≤ θ(G)). It is true if G is a perfect graph since α(G) = γ∞(G) = θ(G).

Hardness results

We give here some hardness results for the computation of
−→
γ∞(G).

Let G be an undirected graph. Let C(G) be the graph constructed from G by adding one vertex
per edge and connecting each new vertex to the extremities of the associated edge. In C(G), we
call v1, . . . vn the vertices of G, and ui,j , for any i < j, the vertex added from the edge vivj . We
call P the set of all added vertices ui,j in C(G). See Figure 7.3 for an example.

v1 v2

v3 v4

v5

v1 v2

v3 v4

v5

u1,2

u1,3 u2,4u3,4

u3,5 u4,5

Figure 7.3: The house graph G on the left and C(G) on the right.

Lemma 7.4. Let G be an undirected graph with m edges. Then, −→α (C(G)) = α(G) + m.

Proof. Let us first prove that α(G) ≥ −→α (C(G)) − m. Let H be an orientation of C(G) such
that α(H) = −→α (C(G)). Let us show that we can assume without loss of generality that all
triplets {ui,j , vi, vj} in H induce an oriented triangle. Assume that it is the case, and consider a
maximum induced acyclic subgraph H[S] in such an orientation. Then, changing the orientation
of some edges {ui,j , vi} or {ui,j , vj} does not create new minimal oriented cycles in H . Thus,
H[S] stays acyclic, and α(H) cannot decrease. So at most two of the three vertices of each triplet
{vi, vj , ui,j} belong to S. Moreover, if vi, vj ∈ S then H[(S \ {vi}) ∪ {ui,j}] is also acyclic, and if
vi /∈ S then H[S ∪ {ui,j}] is also acyclic. So we assume without loss of generality that P ⊆ S.
Thus, |S ∩ V | = −→α (C(G)) − m. Moreover, by assumption we do not have vi, vj ∈ S, and |S ∩ V |
is an independent set of G. Therefore, α(G) ≥ −→α (C(G)) − m.

To see that −→α (C(G)) ≥ α(G) + m, consider a maximum independent set S of G. Take S′ =
S ∪ P . We have |S′| = α(G) + m. Let us show that C(G)[S′] is acyclic. There are no cycles in
C(G)[S] = G[S], and an added vertex ui,j of P cannot create any cycle since it is only linked to
vi and vj , and vi or vj is not in S. Thus, for any orientation H of C(G), H[S′] is acyclic.
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Lemma 7.5. Let G be an undirected graph with m edges. Then,
−→
γ∞(C(G)) = γ∞(G) + m.

Proof. Let us first prove that
−→
γ∞(C(G)) ≤ γ∞(G) + m. We show that there exists an orientation

H of C(G) that can be defended by γ∞(G) + m guards. Let us orientate H as follows: every
edge vivj ∈ E is from vi to vj where i < j, then vi, vj , and ui,j induce an oriented triangle.
We consider a strategy that preserves the following invariant: we can partition the guards
configuration D into a set A of m guards defending each one of the m added vertices ui,j (i.e.
are either on ui,j or on vj) and a set B ⊆ V which is an eternal dominating set of G.

We start with D0 = A0 ∪ B0 where B0 is a minimum eternal dominating set of G and A0 = P .
Consider a guards configuration D = A ∪ B that verifies the invariant and let r be the attack.
If r = ui,j , then the defender moves the guard from vj to ui,j . If r = vi, then there is a vertex
vj ∈ B adjacent to r such that (B ∪ {vi}) \ {vj} is an eternal dominating set of G. We have two
possible cases depending on the orientation of vivj . If vjvi ∈ E(H), then the defender moves
the guard from vj to vi. If vivj ∈ E(H), then the defender moves the guard from ui,j to vi. By
choosing B′ = (B ∪ {vi}) \ {vj}, and A′ = (A ∪ {vj}) \ {ui,j}, it is easily seen that D′ = A′ ∪ B′

satisfies the invariant.

Let us now prove that
−→
γ∞(C(G)) ≥ γ∞(G)+m. We prove that there exists an eternal dominating

set X of G such that |X| =
−→
γ∞(C(G)) − m. Let H be an orientation of C(G) such that γ∞(H) =−→

γ∞(C(G)). We call a clean configuration of H any eternal dominating set S of H such that P ⊆ S.
In H , the

−→
γ∞(C(G)) guards can always be brought to a clean configuration. Indeed, the attacker

can successively attack every vertex of P and be sure that they will all be occupied since P is an
independent set. We prove that if a set S is a clean configuration of H , then S ∩ V is an eternal
dominating set of G.

We first prove that S ∩V is a dominating set of G. Firstly, S is a dominating set of H . Any vertex
of G dominated by S ∩ V (G) in H is still dominated by it in G. Moreover, a vertex ui,j ∈ P can
only dominate vi and vj . If ui,j is the only vertex dominating vi in S, then if vi is attacked, a
guard has to move from ui,j to vi. So ui,j is dominated by vj in H , and vj ∈ S. Since vivj ∈ E,
vj dominates vi in G, so S ∩ V is a dominating set of G.

Now for every attack r in G, let us attack r in H and then ui,j if ui,j became unoccupied. If a
guard moves from v ∈ V to r in H , the guard can do the same in G, and we obtain the clean
configuration S′ = (S \ {v}) ∪ {r}. If a guard moves from ui,j to r = vi in H , then vj is the
only vertex dominating ui,j , so when ui,j is attacked, a guard must move from vj to ui,j . We
therefore obtain a clean configuration S′ = (S \ {vj}) ∪ {vi}, and a guard can directly move
from vj to r = vi in G to obtain the configuration S′ ∩ V .

Therefore, if we take a clean configuration S of H such that |S| =
−→
γ∞(C(G)), we have that S ∩V

is an eternal dominating set of G, and since |S ∩ V | =
−→
γ∞(C(G)) − m, it gives

−→
γ∞(C(G)) ≥

γ∞(G) + m.

Note that Lemma 7.5 is not true if we replace
−→
γ∞ with

−→
γ∞

m . Indeed,
−→
γ∞

m (C(G)) ≤ γ∞
m (G) + m

remains true but
−→
γ∞

m (C(G)) ≥ γ∞
m (G) + m is not necessarily true. For example, if we consider

the graph P3, we let the reader verify that γ∞
m (G) = 2 and

−→
γ∞

m (C(G)) = 3 < γ∞
m (G) + m.

The consequences of Lemma 7.4 and Lemma 7.5 are particularly interesting, leading to com-
plexity results. The first consequence is about the coNP-hardness of computing

−→
γ∞(G). To

our knowledge, there is no known hardness result about the complexity of computing γ∞(G).
However, given a graph G and a set S, deciding whether S is an eternal dominating set of G is
a ΠP

2 -hard problem [Klo07].

We first prove that given a graph G and an integer k, deciding whether γ∞(G) ≤ k is coNP-hard.
We use a reformulation of a theorem saying that α(G) is hard to approximate with a polynomial
ratio.

Theorem 7.8. [Zuc06] Let ǫ > 0 and Π be a problem with a graph G and an integer k > 0 as the input
and such that:

• every instance (G, k) with α(G) < k is negative;
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• every instance (G, k) with α(G) ≥ k1/ǫ is positive.

Then, Π is NP-hard.

Theorem 7.9. Given an undirected graph G and an integer k, deciding whether γ∞(G) ≤ k is coNP-
hard.

Proof. We use Theorem 7.8 with ǫ = 1
2 . We consider the problem Π : given G and k, do we have

γ∞(G) >
(

k+1
2

)

?

Clearly, there is a polynomial reduction from the complement of Π to the stated problem.
Thus, it suffices to prove that Π satisfies the conditions of Theorem 7.8. If α(G) < k, then
γ∞(G) ≤

(

α(G)+1
2

)

<
(

k+1
2

)

(by Theorem 7.5), and thus (G, k) is a negative instance of Π . If
α(G) ≥ k2, then γ∞(G) ≥ k2 >

(

k+1
2

)

(by Theorem 7.5). Thus (G, k) is a positive instance of Π
.

From Lemma 7.5 and Theorem 7.9, we obtain:

Corollary 7.2. Deciding whether
−→
γ∞(G) ≤ k is coNP-hard.

Since deciding whether α(G) ≥ k is NP-hard [Kar72], from Lemma 7.4, we also obtain:

Corollary 7.3. Deciding whether −→α (G) ≥ k is NP-hard.

Theorem 7.1 states that there can exist an arbitrary gap between α and γ∞. From this and as a
consequence of Lemma 7.4 and Lemma 7.5, we show the same result between −→α and

−→
γ∞.

Corollary 7.4. For every integer k > 0, there exists a graph G such that
−→
γ∞(G) ≥ −→α (G) + k.

Results on some classes of graphs

We now study the value of
−→
γ∞ for particular classes of graphs.

Cycles and forests. The first class we consider are cycles and forests, for which the results are
straightforward.

Corollary 7.5. For any n ≥ 3, we have
−→
γ∞(Cn) = n − 1.

Proof. By Corollary 7.1, for any acyclic orientation H of Cn, we have γ∞(H) = n. Consider now
the cyclic orientation H of Cn.

Since α(H) = n − 1, by Lemma 7.7 we have γ∞(H) ≥ n − 1.

To see that γ∞(H) ≤ n − 1, consider the following strategy with n − 1 guards: every time
a vertex is attacked, the guard on its unique incoming neighbor moves to it. Since only the
attacked vertex is unoccupied, we know that the neighbor is occupied so this defense is always
possible, and leads to an identical guards configuration.

Corollary 7.6. Let G be a graph of order n. Then,
−→
γ∞(G) = n if and only if G is a forest.

Proof. If G is a forest, then every orientation of G is acyclic and thus
−→
γ∞(G) = n by Corollary

7.1. If G is not a forest, then G admits a cycle C of k vertices. Consider an orientation H of G
where the edges of C form an oriented cycle. One can protect C with at most k − 1 guards and
G − C can be protected by at most n − k guards. Thus, γ∞(H) ≤ n − 1.
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Complete graphs. We now consider complete graphs. Surprisingly, the exact value of
−→
γ∞ for

complete graphs seems hard to find. However, we can obtain lower and upper bounds using a
result from Erdös and Moser concerning −→α .

Theorem 7.10. [EM64] For any n > 0, ⌊log2 n⌋ + 1 ≤ −→α (Kn) ≤ 2 ⌊log2 n⌋ + 1.

By combining this theorem with Theorem 7.7, we obtain:

Corollary 7.7. For any n > 0, ⌊log2 n⌋ + 1 ≤ −→
γ∞(Kn) ≤

(

2⌊log
2

n⌋+2
2

)

.

Complete bipartite graphs. For complete bipartite graphs, finding the exact value of the
oriented eternal domination number is however much easier.

Theorem 7.11. For any n, m ≥ 1, we have
−→
γ∞(Kn,m) = max{n, m} + 1.

Proof. Denote by A and B the two parts of Kn,m. First, we prove that
−→
γ∞(Kn,m) ≥ max{n, m}+

1. Without loss of generality, we assume that |A| ≥ |B|. Let T := G[A ∪ {v}] where v is a vertex
of B. It is easily seen that T is a tree. Thus, any orientation of T is acyclic. So −→α (Kn,m) ≥ |A| + 1
and Proposition 7.1 gives the result.

Let us now prove that
−→
γ∞(Kn,m) ≤ max{n, m} + 1. Without loss of generality, we can assume

that n ≥ m. Let us show that
−→
γ∞(Kn,n) ≤ n + 1. Since Kn,m is an induced subgraph of Kn,n,

by Lemma 7.2, it will imply the result. Let M be a perfect matching of Kn,n. We construct
an orientation H of Kn,n as follows: let u ∈ A, and v ∈ B. If {u, v} ∈ M then (u, v) ∈ E(H).
Otherwise (v, u) ∈ E(H). We start by putting a guard on every vertex of A and one guard on an
arbitrary vertex of B. In the strategy, we preserve the following invariant: there is at least one
guard in every edge of the matching M , and exactly one edge e∗ of M has a guard on its two
extremities. We denote by v∗ the extremity of e∗ in B. Suppose that a vertex v of B is attacked.
Let u be the vertex such that uv ∈ M . Then, we move the guard on u to v. Suppose now that a
vertex u of A is attacked. Then we move the guard on v∗ to u. It is easily seen that the invariant
is preserved.

Grids and products of graphs. We now investigate the value of
−→
γ∞ on grids. We think that

the exact value of
−→
γ∞ cannot be expressed by a simple formula. We give here lower and upper

bounds.

The following proposition has been verified using a greedy algorithm. We tested all the
possible orientations H of P3�P3 (up to isomorphism), and computed the value of the eternal
domination number of H each time, by testing all the possible attacks for all the possible guards
configurations.

Proposition 7.2.
−→
γ∞(P3�P3) = 7.

The unique orientation H with γ∞(H) = 7 (up to isomorphism) is shown in Figure 7.4.

Figure 7.4: An orientation H of P3�P3 with γ∞(H) = 7.

We show that 2nm
3 ≤ −→

γ∞(Pn�Pm) ≤ 7nm
9 +O(n+m). The next two theorems give more precise

bounds 1.
1Note that Theorem 7.12 is not necessarily optimized according to the respective values of n and m, but, since

−→

γ∞(Pn�Pm) =
−→

γ∞(Pm�Pn), we can always take the maximum of the two obtained lower bounds.
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Theorem 7.12.
⌈n

2

⌉

m +
⌊n

2

⌋ ⌈m

3

⌉

≤ −→
γ∞(Pn�Pm).

Proof. Consider the graph G = Pn�Pm with n lines and m columns. We denote by vi,j the
vertex at line i and column j. We show that α(H) ≥

⌈

n
2

⌉

m +
⌊

n
2

⌋ ⌈

m
3

⌉

for any orientation H

of G. This will give −→α (Pn�Pm) ≥
⌈

n
2

⌉

m +
⌊

n
2

⌋ ⌈

m
3

⌉

, which by Proposition 7.1 gives the result.
We construct a set S such that H[S] is acyclic as follows. First, we put odd lines vertices into S.
Obviously, H[S] is acyclic and |S| =

⌈

n
2

⌉

m. Now, let us show that one can add
⌈

m
3

⌉

vertices of
each even line and keep H[S] acyclic. Let i ∈ [1, n] be even. If i = n, clearly, we can add to S the
vertices vi,j with j odd without creating cycles. Assume that i < n. We partition the vertices of
the line i into 3 sets: A is the set of vertices vi,j such that (vi−1,j , vi,j) and (vi,j , vi+1,j) are arcs
of H ; B is the set of vertices vi,j such that (vi+1,j , vi,j) and (vi,j , vi−1,j) are arcs of H ; and C is
the set of vertices vi,j that do not belong to A nor B.

Three cases can occur.
Case 1: |A| ≥

⌈

m
3

⌉

. We add all vertices of A to S and we do not create any cycle.
Case 2: |B| ≥

⌈

m
3

⌉

. Similarly, we add all vertices of B to S and we do not create any cycle.
Case 3: |A| <

⌈

m
3

⌉

and |B| <
⌈

m
3

⌉

. Without loss of generality, we assume that |A| ≥ |B|. We
construct a set D from A ∪ C by picking one vertex out of two in the ordered sequence of
vertices of A ∪ C (ordered by increasing j). Since |A ∪ C| ≥

⌈

2m
3

⌉

, we have D ≥
⌈

m
3

⌉

. We add
every vertex of D in S. The only possible way to create cycles with elements of A ∪ C is to
choose two consecutive vertices vi,j and vi,j+1, which is not possible in D by construction.

Theorem 7.13. For m = 3p + 2x and n = 3q + 2y with p, q ∈ N and x, y ∈ {0, 1, 2}, we have:

−→
γ∞(Pn�Pm) ≤ 7pq +

⌈

9p

2

⌉

y +

⌈

9q

2

⌉

x + 3xy

Proof. We divide the grid into 4 parts of size 3p × 3q, 3p × 2y, 2x × 3q and 2x × 2y respectively.
We already know from Proposition 7.2 that

−→
γ∞(P3�P3) = 7 and from Corollary 7.5 that−→

γ∞(P2�P2) = 3. Thus, the grid of size 3p × 3q can be protected with 7pq guards by dividing it
into squares of size 3 × 3. Similarly, the grid of size 2x × 2y can be protected with 3xy guards.
The two remaining parts can be covered by squares of size 2 × 2 then 1 × 1 and can therefore be
protected with

⌈

9p
2

⌉

y and
⌈

9q
2

⌉

x guards respectively.

For grids of size 2 × n, 3 × n and 4 × n, the lower bound of Theorem 7.12 and the upper bound
of Theorem 7.13 coincide and we have the exact value of

−→
γ∞.

Corollary 7.8. Let n ≥ 2. Then,−→
γ∞(P2�Pn) =

⌈

3n
2

⌉

,
−→
γ∞(P3�Pn) =

⌈

7n
3

⌉

,
−→
γ∞(P4�Pn) = 2

⌈

3n
2

⌉

.

We don’t know the value of
−→
γ∞(P5�P5). Using Theorems 7.12 and 7.13, we obtain 19 ≤−→

γ∞(P5�P5) ≤ 20.

3.2 Oriented m-Eternal domination

We now switch to oriented m-eternal domination, where any number of guards can move every
turn, providing that one of them defends against the attack, and that they are all on different
vertices. We study the value of

−→
γ∞

m in several classes of graphs.

Cycles and forests. The case of cycles and forests is also straightforward for the m-eternal
domination problem.

Corollary 7.9. For any n ≥ 3, we have
−→
γ∞

m (Cn) =
⌈

n
2

⌉

.
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Proof. We know from Corollary 7.1 that for any acyclic orientation H of Cn, γ∞
m (H) = n.

Consider now the cyclic orientation H of Cn.

Assume for contradiction that γ∞
m (H) <

⌈

n
2

⌉

. Let D ⊆ V (H) be a dominating set of size γ∞
m (H).

Since γ∞
m (H) < ⌈ n

2 ⌉, there exist u, v ∈ V (H) \ D such that (u, v) ∈ E(H). The only vertex
dominating v in H is u, and u �∈ D. So D is not a dominating set of H , a contradiction.

To see that γ∞
m (H) ≤

⌈

n
2

⌉

, consider a strategy with ⌈ n
2 ⌉ guards respecting the following invariant

: there is one guard every two vertices on H (with two consecutive vertices if n is odd). When a
vertex is attacked, move every guard to the unique outgoing neighbor of their current vertex.
Since the attacked vertex is unoccupied, we know that its incoming neighbor is occupied so we
defend against the attack, and the new guards configuration verifies the invariant.

Corollary 7.10. Let G be a graph of order n. Then,
−→
γ∞

m (G) = n if and only if G is a forest.

Proof. If G is a forest then by Corollary 7.1,
−→
γ∞

m (G) = n. If G is not a forest, G admits a cycle
C. Let k be the number of vertices in C and consider an orientation H of G where C is an
oriented cycle. We can defend C with k − 1 guards and G − C with n − k guards, which gives
the result.

Graphs of oriented m-eternal domination number 2. We now characterize the graphs G

such that
−→
γ∞

m (G) = 2. To that end, we prove two simple but essential lemmas.

Lemma 7.6. Let G = (V, E) be a graph of order n ≥ 2. Then,
−→
γ∞

m (G) ≥ 2.

Proof. Let H = (V, E′) be an orientation of G, and assume for contradiction that γ∞
m (H) = 1.

Let the guard be on the vertex u and the attack on the vertex v. For the defender to defend
against v, we must have (u, v) ∈ E′. But then if the next attack is on u, the defender cannot
defend since there is no arc (v, u) in E′, a contradiction.

Lemma 7.7. Let H = (V, E) be the orientation of a graph of order n ≥ 3, with γ∞
m (H) = 2. Let

u, v ∈ V . If neither (u, v) nor (v, u) are arcs of H , then {u, v} is a dominating set of H . Moreover, the
attacker can force the defender to put their two guards on {u, v}.

Proof. Let D be a m-eternal dominating set of H with |D| = 2. Consider an attack on u and
let D′ be the guards configuration that follows. We have u ∈ D′. Now, consider an attack on
v. Since (u, v) /∈ E, the guard on u cannot move to v, so the second guard must do it. If the
defender moves the guard on u to a neighbor u+, then {v, u+} is not a dominating set since
neither of u+ nor v dominates u. So D′ = {u, v} and {u, v} is a dominating set.

Theorem 7.14. Let G = (V, E) be a graph of order n ≥ 3. Then,
−→
γ∞

m (G) = 2 if and only if either:

• n = 2k and G is a complete graph from which at most k disjoint edges are removed

• n = 2k + 1 and G is a complete graph from which at most k − 1 disjoint edges are removed.

Proof. (⇒) We first prove that for n = 2k or n = 2k +1, if
−→
γ∞

m (G) = 2 then G is a complete graph
from which a matching, i.e. at most k disjoint edges, are removed. Let H be an orientation of G
such that γ∞

m (H) = 2. Assume for contradiction that there exists u,v and w such that uv, uw /∈ E.
By Lemma 7.7, {u, v} and {u, w} are dominating sets of H . Since uw /∈ E and uv /∈ E, this gives
(v, w) ∈ E(H) and (w, v) ∈ E(H), a contradiction.

It remains to show that for n = 2k + 1, at most k − 1 edges are removed. Let G be the
complete graph from which exactly k disjoint edges are removed, where n = 2k + 1. Let
x1, . . . , xk, y1, . . . , yk, z be the vertices of G, such that the non-edges of G are the pairs xiyi for
i ∈ [k]. We show that

−→
γ∞

m (G) > 2. Assume for contradiction that
−→
γ∞

m (G) = 2, and let H be an
orientation of G such that γ∞

m (H) = 2. Consider an attack on the vertex z. Free to exchange
the labels of xi and yi, we can assume that the guards configuration that follows is {z, xi}. So
yi is dominated by {z, xi} in H , but xiyi �∈ E, thus z dominates yi in H . Moreover, since by
Lemma 7.7, {xi, yi} is a dominating set of H , xi dominates z. Now by Lemma 7.7, the attacker
can force the guards to go on {xi, yi}. Then, if they attack z again, only the guard on xi can go
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to z since z dominates yi. Moreover, the guard on yi cannot move to xi. So the new guards
configuration is {z, v} where v �= xi. Free to exchange the labels of xj and yj if j �= i, we can
assume that v = yj (note that we might have v = yi). Since xjyj �∈ E, z dominates xj in H . And
since, by Lemma 7.7, {xj , yj} is a dominating set of H , yj therefore dominates z. So both xi and
yj dominate z, with xi �= yj . But {z, xi} dominates yj and {z, yj} dominates xi,so xi dominates
yj and yj dominates xi, a contradiction.

v0

v1v2

v3

v4

v5

z

Figure 7.5: The orientation H of the complete graph Kn from which k − 1 edges are removed,
with n = 2k + 1 and k = 3.

(⇐) Let us first prove that if n = 2k + 1 and G is the complete graph of order n from which
at most k − 1 disjoint edges are removed, then

−→
γ∞

m (G) = 2. Since adding edges to G cannot
make

−→
γ∞

m (G) increase, and since, by Lemma 7.6,
−→
γ∞

m (G) ≥ 2, we can assume without loss of
generality that exactly k − 1 disjoint edges are removed. So G has exactly 3 universal vertices.
Let z be one of them and let v0 . . . v2k−1 be the vertices in V \ {z}, where v0 and vk are the
two other universal vertices, and vivi+k is not an edge of E for every i ∈ [k − 1]. We create an
orientation H of G as follows. For any i and j such that i < j, except for (i, j) = (0, k), we take
(vj , vi) ∈ E(H) if and only if j − i < k, and (vi, vj) ∈ E(H) if and only if j − i > k. Then, for
any i, except for i = k and i = 0, we take (vi, z) ∈ E(H) if and only if i < k, and (vj , z) ∈ E(H)
if and only if i > k. Finally, (v0, vk), (vk, z), (z, v0) ∈ E(H). The orientation H is represented in
Figure 7.5.

We use a strategy that preserves the following invariant: either there exists i ∈ [0, k−1] such that
D = {vi, vi+k}, or D = {z, vk}. We start with D0 = {v0, vk}. Let D be a guards configuration
that verifies the invariant. There are five possible cases. In each case, we let the reader check
that the moves we make are allowed in H .

• if D = {vi, vi+k} and the attack is vr, if i < r < i + k, then we move a guard from vi+k to
vr and the other from vi to vr′ with r′ = r + k mod 2k, otherwise we move a guard from
vi to vr and the other from vi+k to vr′ .

• if D = {vi, vi+k} with i ∈ [1, k − 1] and the attack is z, we move a guard from vi to z and
the other from vi+k to vk.

• if D = {v0, vk} and the attack is z, we move the guard on v0 to vk and the guard on vk to
z.

• if D = {z, vk} and the attack is vr with r > 0, if 0 < r < k, then we move a guard from vk

to vr and the other from z to vr′ with r′ = r + k mod 2k. Otherwise we move a guard
from z to vr and the other from vk to vr′ .

• if D = {z, vk} and the attack is v0 we only move the guard on z to v0.

In each case, we defend against the attack and the new guards configuration respects the
invariant, which gives the expected result.

Let us now show that if n = 2k and G is the complete graph of order n from which at most k

disjoint edges are removed, then
−→
γ∞

m (G) = 2. Without loss of generality, we can assume that
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exactly k disjoint edges are removed. Observe that in the previously described orientation H ,
removing z gives an orientation of the complete graph of order n = 2k from which exactly
k − 1 disjoint edges are removed, and the only disjoint edge remaining is v0vk. Moreover, in the
described defense with 2 guards, if the attacker never attacks z, then the guards configuration
never contains z, and the arc (v0, vk) is never used by the guards (only the first case occurs). So
H[V \ {z}], to which we remove the arc (v0, vk), is an orientation of G that can be defended
with 2 guards with this strategy. This concludes the proof.

Complete bipartite graphs. The exact value of the parameter is also given for complete
bipartite graphs. We prove the following.

Theorem 7.15. For every n ≥ 2, and m ≥ 4, we have
−→
γ∞

m (Kn,m) = 4. Moreover,
−→
γ∞

m (K2,2) = 2 and−→
γ∞

m (K2,3) =
−→
γ∞

m (K3,3) = 3.

In order to prove it, we split this result into four lemmas.

Lemma 7.8. We have
−→
γ∞

m (K2,2) = 2 and
−→
γ∞

m (K2,3) =
−→
γ∞

m (K3,3) = 3.

Proof. The graph K2,2 is isomorphic to C4 so, by Corollary 7.9,
−→
γ∞

m (K2,2) = 2. It is easily
seen that K2,3 and K3,3 don’t satisfy the conditions of Theorem 7.14, so

−→
γ∞

m (K2,3) ≥ 3 and−→
γ∞

m (K3,3) ≥ 3. Let us show that
−→
γ∞

m (K2,3) ≤ 3. Denote by A and B the two parts of K2,3,
A = {a1, a2, a3}, B = {b1, b2}. We consider the following defense: we make one guard stay
on a3, and the subgraph induced by the other vertices is isomorphic to K2,2, and can thus be
defended with the two other guards. Finally, C6 is a spanning subgraph of

−→
γ∞

m (K3,3) so by
Corollary 7.9,

−→
γ∞

m (K3,3) ≤ 3.

Lemma 7.9. Let G be a complete bipartite graph of parts A and B, with |A| ≥ 4 and |B| ≥ 2. If−→
γ∞

m (G) ≤ 3, then the attacker can always force the defender to reach a guards configuration D such that
|D ∩ A| = 2.

Proof. Let D be a guards configuration. We have four possibilities:

• If |D ∩ A| = 3, then since |A| ≥ 4, there exists a vertex in A that is not dominated by D, a
contradiction.

• If |D ∩ A| = 2, then we are done.

• If |D ∩ A| = 1, let b1, b2 ∈ B and a1, a2, a3 ∈ A. The vertices and arcs we outline in this
proof are represented in Figure 7.6.

A

Bb1 b2

a1 a2 a3

Figure 7.6: The vertices b1, b2, a1, a2, a3, and some of their induced arcs in H .

We assume without loss of generality that D = {b1, b2, a1}. Consider an attack on a2. Only
the guards on b1 or b2 can move to a2. We can assume without loss of generality, that the
guard on b1 does (thus, b1 dominates a2). Now the guards on b2 and a1 can either stay on
their vertex or go to an outgoing neighbor. So we can obtain four guards configurations:
{a2, b2, a1}, {a2, b+

2 , a1}, {a2, b2, a+
1 } or {a2, b+

2 , a+
1 }, where b+

2 (resp. a+
1 ) is an outgoing
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neighbor of b2 (resp. a1). Note that b+
2 ∈ A and a+

1 ∈ B, and they can be identical to
previously introduced vertices.

In the first and last configurations, |D ∩A| = 2 and we are done. Assume for contradiction
that it is not the case. In the second configuration, since a2, b+

2 , a1 ∈ A, and |A| ≥ 4, there
exists a vertex in A that is not dominated. So D = {a2, b2, a+

1 }. But since a+
1 , b2 ∈ B and

b1 dominates a2, to dominate b1 we must have a+
1 = b1 and D = {a2, b2, b1}, where a1

dominates b1.

Now similarly, if the next attack is a3, we must reach {b1, b2, a3}, and either b1 or b2

dominates a3 and is dominated by a2. Since b1 dominates a2, it must be b2. Then similarly,
attacking a1 ensures that either b1 or b2 dominates a1 and is dominated by a3. Since b2

dominates a3, and a1 dominates b1, we obtain a contradiction.

• If |D∩A| = 0, then if the next attack is on a vertex of A, the following guards configuration
contains a vertex of A and we obtain one of the previous cases.

Lemma 7.10. For every n ≥ 2, and m ≥ 4, we have
−→
γ∞

m (Kn,m) ≥ 4.

Proof. Assume for contradiction that
−→
γ∞

m (Kn,m) ≤ 3, i.e. there exists an orientation H of Kn,m

that can be defended by 3 guards. Denote by A and B the two parts of Kn,m, |A| = m, |B| = n.
Note that a vertex of A (resp. B) cannot dominate another vertex of A (resp. B).

By Lemma 7.9, the attacker can force the defender to reach a guards configuration D where
|D ∩ A| = 2 and |D ∩ B| = 1. Let a1, a2, a3, a4 ∈ A and b1 ∈ B. All the vertices and the arcs we
outline during the proof are represented in Figure 7.7.

A

Bb1 a+
2

a1 a2 a3 a4

Figure 7.7: The vertices a1, a2, a3, a4, b1, a+
2 , and some of their induced arcs in H .

Without loss of generality, assume that D = {a1, a2, b1}. Suppose that the attack is a3. Then,
only the guard on b1 can move to a3, so b1 dominates a3 in H . The other guards can either stay
on a1 and a2, or go to one of their outgoing neighbors. We can therefore obtain four different
guards configurations: {a1, a2, a3}, {a+

1 , a2, a3}, {a1, a+
2 , a3} or {a+

1 , a+
2 , a3}, where a+

1 (resp.
a+

2 ) is an outgoing neighbor of a1 (resp. a2). Note that a+
1 and a+

2 belong to B, and they might
be identical to b1.

In the first case, no vertex dominates a4, in the second, none dominates a1, and in the third
one, none dominates a2. So we necessarily obtain {a+

1 , a+
2 , a3}. But since a+

1 , a+
2 , b1 ∈ B and b1

dominates a3, to dominate b1 we must have a+
1 = b1 or a+

2 = b1. We consider without loss of
generality that a+

1 = b1. So a1 dominates b1, and since {b1, a+
2 , a3} is a dominating set, where

a3 ∈ A, then a+
2 must dominate a1 and b1 must dominate a2.

Assume for contradiction that a+
2 dominates a3, and attack a1. Only a+

2 can go to a1, so we can
obtain four different guards configurations: {b1, a1, a3}, {b+

1 , a1, a3}, {b1, a1, a+
3 } or {b+

1 , a1, a+
3 },

where b+
1 (resp. a+

3 ) is an outgoing neighbor of b1 (resp. a3). In the first and third configurations,
no vertex dominates a+

2 and in the second, none dominates either a2 or a4 (if b+
1 = a2). The

only possibility for the last one to dominate a3 is if b+
1 = a3, but then a+

2 is not dominated, a
contradiction. So a3 dominates a+

2 , as represented in Figure 7.7.

Since D = {a1, a2, b1} dominates H , b1 dominates A \ {a1, a2}. And since b1 dominates a2, only
a1 dominates b1 in H . So for any guards configuration D′, a1 ∈ D′ or b1 ∈ D′. Similarly, since
{b1, a+

2 , a3} is a dominating set, a3 dominates B \ {b1, a+
2 }. And since a3 dominates a+

2 , only b1
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dominates a3 in H . So for any guards configuration D′, b1 ∈ D′ or a3 ∈ D′. Similarly, since we
could have attacked a4 instead of a3 in the first place, b1 ∈ D′ or a4 ∈ D′. So for any guards
configuration D′, either D′ = {a1, a3, a4} or b1 ∈ D′. But in {a1, a3, a4}, no vertex dominates
a2. So b1 ∈ D′. But from our second guards configuration {b1, a+

2 , a3}, if the attack is a2, only
b1 can move to a2, and since neither a3 nor a+

2 dominates b1, b1 cannot be in the next guards
configuration, a contradiction.

Lemma 7.11. For every n ≥ 2, and m ≥ 4, we have
−→
γ∞

m (Kn,m) ≤ 4.

Proof. Consider the following strategy with 4 guards: partition A into two non-empty sets A1

and A2, and B into two non-empty sets B1 and B2. Orientate the edges of Kn,m from A1 to B1,
from B1 to A2, from A2 to B2 and from B2 to A1. Start with one guard in each of the four sets.
We preserve the following invariant: exactly one guard dominates one set. Every time a vertex
is attacked, move the guard who dominates its corresponding set to the attack, and move the
three other guards to the set they dominate.

By combining Lemma 7.8, Lemma 7.10 and Lemma 7.11, we get the result of Theorem 7.15.

Grids and products of graphs. We now investigate the value of
−→
γ∞

m on various kinds of grids.

Theorem 7.16. For every n ≥ 2 and m ≥ 2, we have

−→
γ∞

m (Pn�Pm) ≤
⌈nm

2

⌉

.

Proof. If n or m are even, Pn�Pm is Hamiltonian, so
−→
γ∞

m (Pn�Pm) ≤ nm
2 by Corollary 7.9. Oth-

erwise, Pn�Pm is Hamiltonian if we remove a corner vertex. The corresponding Hamiltonian
cycles are illustrated in Figure 7.8. So if we keep a guard on the corner vertex and defend the
remaining vertices with nm−1

2 vertices, we obtain the desired bound.

Figure 7.8: On the left, the Hamiltonian cycle of Pn�Pm when n is even. On the right, the
Hamiltonian cycle of Pn�Pm to which we remove a corner, when both n and m are odd.

We do not have lower bounds except for the straightforward bound
⌈

nm
4

⌉

(obtained by observ-
ing that any vertex either has indegree 0 and a guard must always be on it, or dominates at
most 4 vertices). On the other hand, the upper bound seems loose but we have verified, using a
computer, that

−→
γ∞

m (Pn�Pm) =
⌈

nm
2

⌉

for every n and m between 2 and 5. No counter example
has been found for other values. We lack tools to find tight lower bounds.

We now consider upper bounds on
−→
γ∞

m for toroidal grids, rook’s graphs, toroidal king’s grids
and toroidal hypergrids. We present a general method based on the neighborhood-equitable
coloring (NE-coloring), a notion we introduce. Let k and ℓ be two integers and G be a ℓ · (k − 1)-
regular graph. A (k, ℓ)-NE coloring of G is a proper coloring (V1, . . . , Vk) of G with k colors such
that for every vertex v and color i ∈ [1, k] such that v /∈ Vi, we have |N(v) ∩ Vi| = ℓ, i.e. every
vertex has exactly ℓ neighbors of each color but its own.

Lemma 7.12. Let G = (V, E) be a graph that admits a (k, 2ℓ)-NE coloring. Then
−→
γ∞

m (G) ≤ n
k .
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Proof. Consider a (k, 2ℓ)-NE coloring (V1, . . . Vk) of G. Let Gij be the subgraph of G induced
by Vi ∪ Vj . By construction, Gij is a 2ℓ-regular bipartite graph. We orientate Gij such that
the indegree and outdegree of every vertex is ℓ. Indeed, by Euler’s condition [Eul41], each
component Gij is Eulerian. So we can orientate each component to obtain Eulerian orientations
(we orientate each edge with the direction used in the Eulerian walk). We do this for every
distinct i and j in [1, k] and obtain an orientation H of G. Let us prove that γ∞

m (H) ≤ n
k . We

initially put the guards on all the vertices of an arbitrary color class Vi. If a vertex v ∈ Vj is
attacked, we move all guards from Vi to Vj . Indeed, consider the graph Bij with vertices Vi ∪ Vj

and where we put an edge between two vertices u ∈ Vi and v ∈ Vj if and only if (u, v) ∈ E(H).
The graph Bij is l-regular by construction. Thus, by application of Hall’s marriage theorem
[Hal35], Bij admits a perfect matching. So there is a multimove from Vi to Vj in H . And for
any i, we have |Vi| = n

k . Indeed, the number of edges between a vertex of color i and a vertex
of color j �= i is |Vi| · 2ℓ, or, equivalently, |Vj | · 2ℓ. Thus, |Vi| = |Vj | for any pair of colors i and j,
which concludes the proof.

Products of graphs admit the following nice property.

Lemma 7.13. Let G1 be a graph that admits a (k, ℓ1)-NE coloring and G2 be a graph that admits a
(k, ℓ2)-NE coloring. Then, G1�G2 admits a (k, ℓ1 + ℓ2)-NE coloring.

Proof. We assume that the vertices of G1 and G2 are colored with integers chosen in the set
[1, k − 1]. Let v1, . . . , vn be the vertices of G1, and u1, . . . , um be the vertices of G2. For a vertex
vi of G1 and a vertex uj of G2, we denote by wi,j the vertex associated to (vi, uj) in G1�G2. Let
p be the color of vi and q be the color of uj . Then, we assign to wi,j the color r = p + q mod k.
Let r′ be a color different from r. Then wi,j has exactly ℓ1 (resp. ℓ2) neighbors wi′,j′ of color r′

with i = i′ (resp. j = j′) and thus ℓ1 + ℓ2 neighbors of color r′.

This notion of NE-coloring has direct consequences on toroidal grids and rook’s graphs.

Theorem 7.17. When m and n are both multiples of 3, we have:

−→
γ∞

m (Cn�Cm) ≤ nm

3
.

In general, we have:
−→
γ∞

m (Cn�Cm) ≤
⌈nm

3

⌉

+ O(n + m).

Proof. A cycle of order n, where n is a multiple of 3, admits a (3, 1)-NE coloring (we alternate
between the three colors). So the first inequality follows from Lemma 7.12 and Lemma 7.13.

If n or m is not a multiple of 3, consider the grid C3n+x�C3m+y with x, y ∈ {0, 1, 2} and
x > 0 or y > 0. Let H ′ be an orientation of C3n�C3m as described in the previous case.
We construct an orientation H of C3n+x�C3m+y as follows. We orientate each edge between
the vertices of coordinates (i, j) and (i, j + 1) for i ∈ [1, 3n], j ∈ [1, 3m − 1], and between
the ones of coordinates (i, j) and (i + 1, j) for i ∈ [1, 3n − 1] and j ∈ [1, 3m], in the same
direction as in H ′. For every i ∈ [1, 3n], if (vi,3m, vi,1) ∈ E(H ′), then we orientate H such
that (vi,3m, vi,3m+1, . . . , vi,3m+y, vi,1) is an oriented path. Otherwise, we orientate H such that
(vi,1, vi,3m+y, vi,3m+y−1, . . . , vi,3m) is an oriented path. We do the same for every edge v3n,jv1,j

with j ∈ [1, 3m]. We arbitrarily orientate the remaining edges. An example of an orientation is
given in Figure 7.9.

Consider the set of vertices S of H including an m-eternal dominating set of H ′, as described
in the previous case, and containing every vertex (i, j) with i > 3n or j > 3m. Then, S is an
m-eternal dominating set of H . Indeed, we mimic the strategy of the defender for H ′. The only
difference is when a guard in H ′ goes from a "border" of the grid to the opposite border. For
example, if a guard goes from a vertex (i, 3m) to the vertex (i, 1). Then, we push every guard,
except for the last one, in the path (vi,3m, vi,3m+1, . . . , vi,3m+y, vi,1) to the next vertex. One can
easily generalize to the other borders.

For square rook’s graphs, we obtain the exact value of
−→
γ∞

m .
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Figure 7.9: orientation of the toroidal grid C7�C8.

Theorem 7.18. For every n ≥ 1, we have
−→
γ∞

m (Kn�Kn) = γ(Kn�Kn) = n.

Proof. It easily seen that γ(Kn�Kn) ≥ n. Indeed, a set of size lower than n does not dominate
at least a line and a column. Thus, it does not dominate the vertex which is at the intersection of
this line and this column. The upper bound is a direct consequence of Lemma 7.12 and Lemma
7.13 with the fact that a complete graph of order n admits a (n, 1)-NE coloring.

Toroidal king’s grids are the strong product of two cycles. For this class of graphs, we obtain
the following result.

Theorem 7.19. Let m and n be two multiples of 5. Then, we have:

−→
γ∞

m (Cn ⊠ Cm) ≤ nm

5
.

Proof. If we split the grid in squares of size 5 × 5, each square can be colored as in Figure 7.10.
We let the reader check that we obtain a (5, 2)-NE coloring. So Lemma 7.12 gives the result.
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Figure 7.10: (5, 2)-NE coloring of a square of a king’s grid.
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We can obtain an upper bound nm
5 + O(n + m) when there is no condition on n and m. The

idea is similar to the proof of Theorem 7.17. However, the proof is quite complicated and the
result not essential so we omit it.

We also generalize the first statement of Theorem 7.17 to toroidal hypergrids.

Theorem 7.20. If for any i, ni is a multiple of k + 1, then
−→
γ∞

m (Cn1
� . . .�Cnk

) ≤ n
k+1 where n is the

order of the graph.

Proof. Let v be a vertex at position (i1, . . . , ik) in the hypergrid. We affect to v the color

(

k
∑

j=1

j · ij) mod (k + 1).

It is easily seen that this coloring is proper. Moreover, for every distinct colors i, j, and vertex v of
color i, v has exactly two neighbors of color j. Indeed, if v is at position (i1, . . . , ik), then the two
neighbors are at positions (i1, . . . , ip−1, ip + 1, ip+1, . . . , ik) where p = (j − i) mod (k + 1) and
(i1, . . . , iq−1, iq − 1, iq+1, . . . , ik) where q = (i − j) mod (k + 1). Thus, we obtain a (k + 1, 2)-NE
coloring. So Lemma 7.12 gives the result.

We conjecture that the upper bounds in Theorems 7.19, 7.20, and 7.17 correspond to the exact
value of

−→
γ∞

m . A way to prove this would be to show that any orientation that minimizes
−→
γ∞

m is
Eulerian. More generally, we think that the following is true.

Conjecture 7.2. Let G be a graph that admits a (k, 2)-NE coloring. Then
−→
γ∞

m (G) = n
k .

This conjecture is verified for even cycles (Theorem 7.9) and for square rook’s grids (Theorem
7.18).

4 Conclusion

In this chapter, we presented the eternal domination framework. We introduced a version on
digraphs, in which the guards must follow the direction of the arcs. We gave several bounds
on the eternal and m-eternal domination number of digraphs. These results are analogues of
results already obtained for undirected graphs. We then introduced a new problem that consists
in finding an orientation of an undirected graph which minimizes the eternal, or m-eternal
domination number. These minimum values allowed to define new graph parameters,

−→
γ∞ and−→

γ∞
m . We first got interested in the complexity of determining if

−→
γ∞(G) ≤ k for a given k. We

proved that it is a co-NP-hard problem, using a simple reduction from the unoriented version of
the problem. On the other hand, the complexity of deciding whether

−→
γ∞

m (G) ≤ k for a given k

remains open. We then studied the value of the parameters
−→
γ∞ and

−→
γ∞

m in various graph classes.
We obtained the exact value of

−→
γ∞ in trees, cycles, and complete bipartite graphs. Despite our

efforts, we did not find its value in complete graphs. We gave an upper and a lower bound but
the gap between them is quite large, and even finding better bounds would be a significant
improvement. We also gave several bounds for different kinds of grids, and we would like to
improve these bounds. In particular, we proved that

−→
γ∞ = −→α for the 2×n, 3×n, and 4×n grids,

so one might wonder if it is always the case in rectangular grids. It is also true in other graphs
such as trees, cycles and complete bipartite graphs, and one might wonder if it is the case in
other graph classes, such as complete graphs. Similarly, we obtained the exact value of

−→
γ∞

m in
trees, cycles, complete graphs, complete bipartite graphs, and we obtained upper and lower
bounds in different kinds of grid, using in particular the notion of neighborhood-equitable
coloring. To improve these bounds, a lead would consist in proving that for any graph G that
admits a (k, 2)-NE coloring, we have

−→
γ∞

m (G) = n
k , as we conjectured. We also gave a complete

characterization of the graphs for which the oriented m-eternal domination number is 2. In
particular, the non-complete graphs with

−→
γ∞

m = 2 verify
−→
γ∞

m = γ. It would be interesting to
characterize the graphs that verify this property. Other examples are rook’s graphs.

114



CHAPTER 7. ETERNAL DOMINATION

More generally, a lot of problems remain open concerning eternal domination. For instance, it
would be interesting to fully characterize the graphs for which γ∞(G) = α(G) or γ∞(G) = θ(G).
The Vizing-like conjecture γ∞(G�H) ≥ γ∞(G) · γ∞(H) also remains open. As for m-eternal
domination, characterizing the graphs for which γ∞

m (G) = γ(G), γ∞
m (G) = γ∞(G), or γ∞

m (G) =
α(G) could be a lead for future work. Finally, other generalizations of the problems can be
considered. For instance, one could allow a given number k of guards to move at each turn,
and a given number k′ of guards to be on the same vertex at each turn. The reconfiguration of
eternal dominating sets could also be studied from the perspective of classical reconfiguration
problems. For example, one could study the connectivity problems for the reconfiguration of
eternal dominating sets, under the token sliding rule or even the token addition-removal rule.
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Chapter 8

Conclusion

In this thesis, we focused mainly on graph domination, and reconfiguration problems.

The first reconfiguration problem we focused on concerned the reconfiguration of connected
multigraphs with the same degree sequence. We obtained a polynomial time 2.5-approximation
algorithm for the shortest transformation problem. The best algorithm known so far was a
4-approximation, and the improvement is due the upper bound we found. On the other hand,
we also showed that under several reasonable hypothesis (in particular, if we only perform flips
on the elements of the symmetric difference), we cannot drastically improve the approximation
ratio unless we change the lower bound.

We then moved on to the reconfiguration of dominating sets. We first focused on the token
addition-removal rule, and the connectivity problem. More precisely, we studied the maxi-
mum size k of the dominating sets allowed in the reconfiguration graph. We investigated the
minimum value above which the reconfiguration graph is always connected. We first proved
that the reconfiguration graph has a linear diameter when k ≥ Γ(G) + α(G) − 1 (it was already
known that the reconfiguration graph is connected in this case). We then proved that if G is
Kℓ-minor free, then there exists a constant C such that the reconfiguration graph is connected
and has linear diameter for every k ≥ Γ(G) + Cℓ

√

log2 ℓ. We also showed that it is connected
and has linear diameter for any k ≥ Γ(G) + 3 when G is a planar graph. Finally, we showed
that for any graph G, if k ≥ Γ(G) + tw(G) + 1, then the reconfiguration graph is connected and
has a linear diameter.

Then, we investigated the reconfiguration of dominating sets under the token sliding rule, and
studied the complexity of the reachability problem in several graph classes. We showed that
the problem is PSPACE-complete in planar bipartite graphs, unit disk graphs, circle graphs and
line graphs. On the other hand, we gave a polynomial time algorithm for circular arc graphs,
by using the connectivity of the reconfiguration graph for interval graphs.

Finally, we studied the eternal domination problem. We introduced a version on digraphs,
where the guards follow the direction of the arcs. We obtained several bounds on the eternal
and m-eternal domination number of digraphs, that generalized results on undirected graphs.
We then introduced the oriented and m-oriented eternal domination problems, which consist in
finding an orientation of an undirected graph that minimizes its eternal or m-eternal domination
number. These numbers then define the oriented and m-oriented eternal domination number of
the graph. We studied the complexity of determining if the oriented eternal domination number
is at most a given k and proved that it is a co-NP-hard problem. We then studied the value
of the parameters in various graph classes such as trees, cycles, complete graphs, complete
bipartite graphs and different kinds of grids. We also gave a complete characterization of the
graphs for which the oriented m-eternal domination number is 2.

Along these chapters, a lot of questions remained open.

Concerning the reconfiguration of connected multigraphs with the same degree sequence,
we spent some time trying to find a better lower bound on the shortest transformation but
did not succeed. When discussing the lower bound, we also made the hypothesis that there
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always exists a shortest sequence that only flips edges of the symmetric difference, but we have
no proof of this statement, although the best algorithms always flip such edges. Both these
questions leave room for future improvements.

On the reconfiguration of dominating sets under the token addition-removal rule, there are
several gaps that we would like to close. In particular, we conjectured that for planar graphs,
the reconfiguration graph is connected as long as k ≥ Γ(G)+2, and only the value k = Γ(G)+2
is missing. Similarly, we would like to find out if the reconfiguration graph is connected when
k = Γ(G) + tw(G) and k = Γ(G) + tw(G) − 1.

Under the token sliding rule, it remains to find out if there exists a graph class for which com-
puting a minimum dominating set is NP-complete but the reachability problem is polynomial,
or for which computing a minimum dominating set is in P but the reachability problem is
PSPACE-complete. Any results on the reachability problem in specific graph classes would be
an improvement, and we suggest outerplanar graphs, for instance.

Finally, mainy questions remain open on the oriented and m-eternal oriented eternal domination
problem. In particular, we would like to know the complexity of deciding whether the oriented
m-eternal domination number is at most a given k. We would also like to find the value of the
oriented eternal domination number in complete graphs.

More generally, the reconfiguration framework is very rich and interesting, and after my thesis,
I intend to work on a larger range of source problems, such as graph colorings, graph matchings,
or the token swapping problem.

118



Bibliography

[AB09] Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
Cambridge University Press, 2009.

[ABB+07] Mark Anderson, Christian Barrientos, Robert C Brigham, Julie R Carrington,
Richard P Vitray, and Jay Yellen. Maximum-demand graphs for eternal security.
Journal of Combinatorial Mathematics and Combinatorial Computing, 61:111, 2007.

[ABF+02] Jochen Alber, Hans L Bodlaender, Henning Fernau, Ton Kloks, and Rolf Nieder-
meier. Fixed parameter algorithms for dominating set and related problems on
planar graphs. Algorithmica, 33(4):461–493, 2002.

[ACP87] Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of
finding embeddings in ak-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–
284, 1987.

[AF95] John Arquilla and Hal Fredricksen. " graphing" an optimal grand strategy. Military
Operations Research, pages 3–17, 1995.

[AFK17] Saeid Alikhani, Davood Fatehi, and Sandi Klavžar. On the structure of dominating
graphs. Graphs and Combinatorics, 33(4):665–672, 2017.

[AFM17] Saeid Alikhani, Davood Fatehi, and Kieka Mynhardt. On k-total dominating
graphs. arXiv preprint arXiv:1711.04363, 2017.

[AH76] Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. Bulletin
of the American mathematical Society, 82(5):711–712, 1976.

[Ale82] V. E. Alekseev. The effect of local constraints on the complexity of determination
of the graph independence number. Combinatorial-Algebraic Methods in Applied
Mathematics, pages 3–13, 1982. in Russian.

[AMPP99] Vincenzo Auletta, Angelo Monti, Mimmo Parente, and Pino Persiano. A linear-
time algorithm for the feasibility of pebble motion on trees. Algorithmica, 23(3):223–
245, 1999.

[B+19] Andrei de Almeida Sampaio Braga et al. An eternal domination problem: graph
classes, solving methods, and practical standpoint. 2019.

[BB17] Marthe Bonamy and Nicolas Bousquet. Token sliding on chordal graphs. In
International Workshop on Graph-Theoretic Concepts in Computer Science, pages 127–
139. Springer, 2017.

[BB18] Marthe Bonamy and Nicolas Bousquet. Recoloring graphs via tree decompositions.
European Journal of Combinatorics, 69:200–213, 2018.

[BB19] Nicolas Bousquet and Valentin Bartier. Linear transformations between colorings
in chordal graphs. arXiv preprint arXiv:1907.01863, 2019.

[BBFJ19] Marthe Bonamy, Nicolas Bousquet, Carl Feghali, and Matthew Johnson. On a
conjecture of mohar concerning kempe equivalence of regular graphs. Journal of
Combinatorial Theory, Series B, 135:179–199, 2019.

119



BIBLIOGRAPHY

[BBH+19] Marthe Bonamy, Nicolas Bousquet, Marc Heinrich, Takehiro Ito, Yusuke Kobayashi,
Arnaud Mary, Moritz Mühlenthaler, and Kunihiro Wasa. The perfect matching
reconfiguration problem. arXiv preprint arXiv:1904.06184, 2019.

[BC09] Paul Bonsma and Luis Cereceda. Finding paths between graph colourings:
Pspace-completeness and superpolynomial distances. Theoretical Computer Science,
410(50):5215–5226, 2009.

[BCG+04] AP Burger, EJ Cockayne, WR Grundlingh, CM Mynhardt, JH Van Vuuren, and
W Winterbach. Infinite order domination in graphs. Journal of Combinatorial
Mathematics and Combinatorial Computing, 50:179–194, 2004.

[BCH+00] Xu Baogen, Ernest J Cockayne, Teresa W Haynes, Stephen T Hedetniemi, and Zhou
Shangchao. Extremal graphs for inequalities involving domination parameters.
Discrete Mathematics, 216(1-3):1–10, 2000.

[BDE+17] STEFAN Bard, CHRIS Duffy, MICHELLE Edwards, GARY Macgillivray, and
FEIRAN Yang. Eternal domination in split graphs. J. Comb. Math. Comb. Comput,
101:121–130, 2017.

[BDO19] Marthe Bonamy, Paul Dorbec, and Paul Ouvrard. Dominating sets reconfiguration
under token sliding. arXiv preprint arXiv:1912.03127, 2019.

[BdSL15] Andrei Braga, Cid C de Souza, and Orlando Lee. The eternal dominating set
problem for proper interval graphs. Information Processing Letters, 115(6-8):582–587,
2015.

[Ber01] Claude Berge. The theory of graphs. Courier Corporation, 2001.

[BFM13] I Beaton, S Finbow, and JA MacDonald. Eternal domination numbers of 4× n grid
graphs. J. Combin. Math. Combin. Comput, 85:33–48, 2013.

[BH19] Nicolas Bousquet and Marc Heinrich. A polynomial version of cereceda’s conjec-
ture. arXiv preprint arXiv:1903.05619, 2019.

[BHK02] Piotr Berman, Sridhar Hannenhalli, and Marek Karpinski. 1.375-Approximation
Algorithm for Sorting by Reversals. In Rolf Möhring and Rajeev Raman, editors,
Algorithms — ESA 2002, page 200–210, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

[BI17] Sergey Bereg and Hiro Ito. Transforming graphs with the same graphic sequence.
Journal of Information Processing, 25:627–633, 2017.

[BJL+14] Marthe Bonamy, Matthew Johnson, Ioannis Lignos, Viresh Patel, and Daniël
Paulusma. Reconfiguration graphs for vertex colourings of chordal and chordal
bipartite graphs. Journal of Combinatorial Optimization, 27(1):132–143, 2014.

[BK98] Heinz Breu and David G Kirkpatrick. Unit disk graph recognition is np-hard.
Computational Geometry, 9(1-2):3–24, 1998.

[BKL+20] Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, Yota Otachi, and
Florian Sikora. Token sliding on split graphs. Theory of Computing Systems, pages
1–25, 2020.
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