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Abstract/Résumé

Acoustic and elastic wave propagation in microstructured media with interfaces:
homogenization, simulation and optimization

� Abstract. In this thesis, the focus is on wave propagation in periodic microstructured media in
the presence of interfaces. The dynamic homogenization of these media and the design of the
microstructures to achieve a given macroscopic effect are studied. In a first part, homogenization
and optimization are carried out for thin microstructured layers. In a second part, the homogeniza-
tion of periodic microstructures in all spatial dimensions is addressed.
The first part concerns the case where the heterogeneities constitute a periodic row of inclusions
immersed in a homogeneous matrix. When the physical parameters of the inclusions are strongly
contrasted with those of the matrix, internal resonances can occur and be used to maximise
acoustic absorption. The homogenization of such a resonant microstructured layer is studied using
a method of matched asymptotic expansions and leads to non-local jump conditions. The intro-
duction of auxiliary variables allows to get a local evolution problem in time which is then solved
numerically by an ADER scheme coupled with an immersed interface method. This methodology is
validated (local truncation error analysis, comparison with analytical solutions) and makes possible
wave diffraction simulations by resonant meta-interfaces. Finally, the sensitivity of the effective
parameters to the geometry of the microstructure is determined using topological derivatives.
We then implement a topological optimization procedure for the design of non-resonant thin
microstructured layers.
On the other hand, it is often assumed that the contact between the inclusions and the homoge-
neous matrix is perfect. Some models, such as spring-mass conditions, account for the behaviour of
imperfect contacts between solids. In the second part of the thesis, low-frequency volume homog-
enization of such configurations is carried out to obtain the expression of the homogenized fields
at order 1, and an extension to non-linear contacts is presented. Finally, dispersion diagrams in 1D
solids with spring-mass conditions are studied. The framework of high-frequency homogenization
is used and an approximation of the fields to the leading order, as well as dispersion relations near
the edges of the Brillouin zone is obtained.

Keywords : Homogenization in dynamics, Resonant effective interfaces, Immersed interface method,
Auxiliary variables, Topological optimization, Imperfect interfaces.

Propagation d’ondes acoustiques et élastiques dans des milieux microstructurés avec
interfaces : homogénéisation, simulation et optimisation

� Résumé. Dans cette thèse, on s’intéresse à la propagation des ondes dans des milieux mi-
crostructurés périodiques en présence d’interfaces. On étudie l’homogénéisation en dynamique de
ces milieux ainsi que le design des microstructures pour obtenir un effet macroscopique donné. Dans
une première partie, l’homogénéisation et l’optimisation sont menées pour des couches minces
microstructurées. Dans une seconde partie, on traite de l’homogénéisation de microstructures
périodiques selon toutes les dimensions de l’espace.
La première partie concerne le cas où les hétérogénéités constituent une rangée périodique
d’inclusions plongées dans une matrice homogène. Lorsque les paramètres physiques des inclusions
sont fortement contrastés avec ceux de la matrice, des résonances internes peuvent se produire
et être utilisées pour maximiser l’absorption acoustique. L’homogénéisation d’une telle couche
microstructurée résonante est étudiée grâce à une méthode de développements asymptotiques



raccordés, et conduit à des conditions de saut non locales en temps. L’introduction de variables
auxiliaires permet de se ramener à un problème d’évolution local en temps qui est ensuite ré-
solu numériquement par un schéma ADER couplé à une méthode d’interface immergée. Cette
méthodologie est validée (analyse d’erreur locale de troncature, comparaison à des solutions analy-
tiques) et rend possible des simulations de diffraction d’ondes par des méta-interfaces résonantes.
Enfin, la sensibilité des paramètres effectifs à la géométrie de la microstructure est déterminée à
l’aide de dérivées topologiques. On met alors en œuvre une procédure d’optimisation topologique
en vue du design de couches minces microstructurées non résonantes.
D’autre part, il est souvent supposé que le contact entre les inclusions et la matrice homogène est
parfait. Certains modèles, par exemple les conditions masse-ressort, rendent compte du comporte-
ment des contacts imparfaits entre solides. Dans la deuxième partie de la thèse, l’homogénéisation
volumique à basse fréquence de telles configurations est menée pour obtenir l’expression des champs
homogénéisés à l’ordre 1, et une extension à des contacts non-linéaires est présentée. Enfin, on
étudie les diagrammes de dispersion dans des solides 1D avec conditions de masse-ressort. On se
place ainsi dans le cadre de l’homogénéisation haute fréquence et on obtient une approximation
des champs à l’ordre dominant, ainsi que des relations de dispersion près des bords de la zone de
Brillouin.

Mots-clés : Homogénéisation en dynamique, Interfaces effectives résonantes, Méthode d’interface
immergée, Champs auxiliaires, Optimisation topologique, Interfaces imparfaites.
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1.1 Context

The design of composite media allows to control wave propagation in a fine way and leads to exotic
effects that cannot be found in nature e.g. negative refraction, subwavelength imaging, lensing and
cloaking, noise and vibration control, to cite a few. It constitutes the paradigm of metamaterials,
which have undergone spectacular developments since the early 2000’s, see Deymier, 2012; Craster
and Guenneau, 2013 and references therein for an overview. They are most often constructed by
repeating periodically a unit cell.

When the periodicity is of the same order of magnitude than the characteristic wavelength, it
results in a structure of crystal type and this is known as the area of phononic metamaterials. These
materials present exotic behaviours due to Bragg scattering mechanism, the scattering of waves
by a periodic arrangement of scatterers of dimensions comparable to the wavelength. An example
is the sculpture described in Martinez-Sala et al., 1995, see Figure 1.1. It is a two-dimensional
periodic arrangement of steel tubes. They behave as scatterers for soundwaves and their periodic
arrangement leads to destructive interferences at some frequencies. Consequently, the amplitude
of transmitted waves is highly attenuated at these frequencies. The sculpture exhibits band gaps,
i.e. spectral bands where propagation of waves is forbidden. One drawback of the phononic crystals
is that their period is of order of magnitude of the wavelength associated with the first band gap.
For example, in the context of low-frequency sound reduction, a sound attenuation for frequencies
ranging from 10 Hz to 10 KHz would requiere a structure of a few meters to ensure band gaps in
this regime.

1
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Figure 1.1 – Eusebio Sempere’s sculpture in Madrid (after Martinez-Sala et al., 1995).

This motivates the use of another type of metamaterials: the locally resonant metamaterials.
These ones can also exhibit spectral gaps and particular behavior but at frequencies well below
those of Bragg scattering. The resonant structure is then characterized by a subwavelength unit
cell. In elasticity, an example is given by Liu, 2000 with a heavy material coated with a soft one
and embedded in a hard matrix, see Figure 1.2. A structure of some centimeters size then allows
gaps at low frequency.

Locally Resonant Sonic
Materials

Zhengyou Liu, Xixiang Zhang, Yiwei Mao, Y. Y. Zhu,
Zhiyu Yang, C. T. Chan, Ping Sheng*

We have fabricated sonic crystals, based on the idea of localized resonant
structures, that exhibit spectral gaps with a lattice constant two orders of
magnitude smaller than the relevant wavelength. Disordered composites made
from such localized resonant structures behave as a material with effective
negative elastic constants and a total wave reflector within certain tunable
sonic frequency ranges. A 2-centimeter slab of this composite material is shown
to break the conventional mass-density law of sound transmission by one or
more orders of magnitude at 400 hertz.

Complete sound attenuation for a certain
frequency range can be achieved through
the concept of a “classical wave spectral
gap,” originally introduced in relation to
the electromagnetic wave, denoted the
“photonic band gap” (1). Subsequently ex-
tended to elastic waves (2–5), the idea
states that a strong periodic modulation in
density and/or sound velocity can create
spectral gaps that forbid wave propaga-
tion. However, the spatial modulation must
be of the same order as the wavelength
in the gap. It is thus not practical for shield-
ing acoustic sound, because the structure
would have to be the size of outdoor sculp-
tures in order to shield environmental nois-
es (5).

We present a class of sonic crystals that
exhibit spectral gaps with lattice constants
two orders of magnitude smaller than the
relevant sonic wavelength. Our materials
are based on the simple realization that
composites with locally resonant structural
units can exhibit effective negative elastic
constants at certain frequency ranges. If a
wave with angular frequency v interacts
with a medium carrying a localized excita-
tion with frequency vo, the linear response
functions will be proportional to 1/(vo

2 –
v2). Such an effect is manifest in the elec-
tromagnetic frequency response of materi-
als with optical resonances, where a nega-
tive dielectric constant ε (generally on the
higher frequency side of the resonance)
implies a purely imaginary wave vector k 5
nv/c (where n is the index of refraction and
c is the speed of light) and hence exponen-
tial attenuation of the electromagnetic wave
(6). Here, we implement this idea in the
context of elastic composites at sonic fre-
quencies. By varying the size and geometry
of the structural unit, we can tune the fre-

quency ranges over which the effective
elastic constants are negative.

Our composites have a simple micro-
structure unit consisting of a solid core
material with relatively high density and a
coating of elastically soft material. In the
experiments described below, we used cen-
timeter-sized lead balls as the core materi-
al, coated with a 2.5-mm layer of silicone
rubber (Fig. 1A). The coated spheres are
arranged in an 8 3 8 3 8 simple cubic

crystal with a lattice constant of 1.55 cm
(Fig. 1B), with epoxy as the hard matrix
material. Sonic transmission was measured
using a modified Bruel & Kjaer (B&K)
two-microphone impedance measurement
tube, type 4206. The sound source was
mounted at one end of the tube. The sample
was placed at the other end of the tube, with
one microphone detector mounted on the
surface of the sonic crystal facing the sound
source and another a few centimeters to-
ward the sound source. A small hole was
drilled from the rear of the sample, along
the centerline of the sonic crystal to its
center. A detector was placed inside the
hole, with the sensitive part approximate-
ly located at the center of the sonic crystal.
Transmission was measured as a func-
tion of frequency from 250 Hz to .1600
Hz for effectively a four-layer sonic crys-
tal. The sound source intensity was adjust-
ed so as to maintain a nearly frequency-
independent measured amplitude at the
front of the crystal. The ratio of the ampli-
tude measured at the center to the incident
wave shows two dips, with a peak after
each dip (Fig. 1C).

To understand the experimental results,

Department of Physics, Hong Kong University of Sci-
ence and Technology, Clear Water Bay, Kowloon,
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Fig. 1. (A) Cross section of a coated lead sphere that forms the basic structure unit (B) for an 8 3
8 3 8 sonic crystal. (C) Calculated (solid line) and measured (circles) amplitude transmission
coefficient along the [100] direction are plotted as a function of frequency. The calculation is for
a four-layer slab of simple cubic arrangement of coated spheres, periodic parallel to the slab. The
observed transmission characteristics correspond well with the calculated band structure (D), from
200 to 2000 Hz, of a simple cubic structure of coated spheres. Three modes (two transverse and
one longitudinal) are distinguishable in the [110] direction, to the left of the G point. The two
transverse modes are degenerate along the [100] direction, to the right of the G point. Note the
expanded scale near the G point.
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Figure 1.2 – (a) Basic unit cell and (b) resulting structure (after Liu, 2000)

The materials being structured at subwavelength lengthscales, they can be seen as a homoge-
neous medium described by effective parameters. Then, it turns out that the band gaps can be
interpreted in terms of negative effective parameters (the mass density in elasticity, the perme-
ability in electromagnetism). These locally resonant metamaterials have been studied for various
applications: design of a perfect lense that allows to focus all Fourier components of an image
so that the sharpness of the image is not limited anymore (Pendry, 2000), optical cloaking (Cai,
Chettiar, Kildishev, & Shalaev, 2007), maximisation of sound absorption (Ma, Yang, Xiao, Yang,
& Sheng, 2014; Schwan, Umnova, & Boutin, 2017; Huang et al., 2019; Maurel, Mercier, Pham,
Marigo, & Ourir, 2019a), mitigation of waves (Su, Lu, & Norris, 2018), seismic shields (Colombi,
Roux, Guenneau, Gueguen, & Craster, 2016; Palermo, Vitali, & Marzani, 2018; Zaccherini et al.,
2019), etc.

Consequently, the interest for modeling microstructured media, performing numerical simu-
lations and designing microstructures has increased. Thanks to homogenization methods, the
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microstructure can be advantageously replaced, at the macro-scale, by a homogeneous effective
medium. From a numerical point of view, it avoids having to mesh fine spatial scales and thus
leads to enormous computational gains compared with full-field simulations. It is also a way to
obtain analytically some information (e.g. expression of the macroscopic field, of the scattering
coefficients, or dependance of the wave behaviour on the constitutive parameters or geometry) in
an explicit way since the effective medium obtained is homogeneous. Once these microstructured
media are modelled thanks to homogenization methods, it raises the question of mathematical
tools that can aid to design the microstructures in order to achieve a desired macroscopic effect.
On the one hand, when the geometry of the microstructure is imposed (periodic arrangement
of circles, rectangles,...), one aims at optimizing the physical or geometric parameters. On the
other hand, when the metamaterial is designed only from selected constitutive materials with
no requirement on the geometry, topological optimization is deployed to determine the material
distribution within the unit cell.

In this context, this thesis has focused on different aspects of homogenization (obtaining
effective media in different physical configurations, optimization of microstructures) and has
required the development of a numerical method to handle the resonant behaviour in the presence
of interfaces. Consequently, the next two sections give an overview of the usual homogenization
and numerical techniques in this context, with a more detailed description of the results to be used
in the rest of the dissertation.

1.2 Homogenization

1.2.1 Classical techniques

Homogenization is an up-scaling technique that allows to replace the microscopic description of a
given microstructured medium by a macroscopic model endowed with effective parameters. The
different homogenization methods can then be divided into analytical and computational categories
(Geers, Kouznetsova, & Brekelmans, 2010).

Among the analytical methods, the asymptotic homogenization (Sánchez-Palencia, 1980; Ben-
soussan, Lions, & Papanicolaou, 2011), which we use here, has been extensively used for periodic
microstructures. The effective homogeneous medium is obtained for a periodicity h > 0 of the
structure that tends to 0. The simplest problem is the classical elliptic equation in Ω ⊂ Rd

− div(Ah(X)∇uh)(X) � f (X) in Ω, (1.1)

with Ah : Rd 7→ Rd being uniformly bounded and h-periodic, and some boundary conditions to be
considered. One introduces the unit cell Y � (0, 1)d which is reproduced periodically. Then one
writes Ah(X) � A(X/h) such that the elliptic equation can be recast as

− div(A(X/h)∇uh)(X) � f (X) in Ω. (1.2)

The aim of homogenization is to study the limit of (uh)h as h tends to zero. This is obtained
assuming scale seperation, i.e. that X and Y � X/h are two independant variables. They account
for the slow continuous variations and the small-scale fast variations of the fields, respectively.
Then, the following two-scale expansion ansatz is written

uh(X) � u0(X ,X/h) + hu1(X ,X/h) + h2u2(X ,X/h) + · · · (1.3)

where the functions ui(X , Y ) are assumed to be periodic with respect to the second variable.
Assuming that f does not scale in h, an identification order by order leads to the homogenized
problem {

u0(X , Y ) � u0(X)
− div(Aeff∇u0)(X) � f (X) in Ω, (1.4)
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where the homogenized tensor Aeff does not depend on X . It only depends on the cell distribution,
the material properties and the determination of the periodic solutions Ψ j, j � 1, · · · , d, to the
cell problems

− div(A(Y )(∇YΨ j + e j))(Y ) � 0 in Y (1.5)

in the unit cell. Once u0 is computed, these cell problems also allow to get the first-order corrector
term u1 as

u1(X , Y ) �
d∑

j�1

∂u0
∂X j
(X)Ψ j(Y ). (1.6)

One notes that this method is heuristic since the ansatz (1.3) is postulated. The convergence can
then be proved using two-scale convergence (Nguetseng, 1989; Allaire, 1992) or Γ-convergence
(Dal Maso, 2012).

This multiscale expansion method has also been used to study problems in dynamics. Then, in
the so-called low-frequency/long-wavelength framework, the small parameter that tends to zero
is the ratio between the characteristic size of the microstructure and a typical wavelength. This is
illustrated by Figure 1.3 in a 2D setting where Ω is made of the periodic repetition of inclusions
Ωi embedded in a homogeneous matrix Ωm.

Homogenization

Aeff
(Ai)

(Am)

X1
X2

Figure 1.3 – Homogenization process for a 2D periodic medium. (left) Original configuration with zoom
on a unit cell, (right) Homogenized model.

Other analytical methods can be mentioned: for example, the Willis approach is based on
variational principles. First developped in statics (Hashin & Shtrikman, 1963; Willis, 1977), it has
then been adapted to dynamic problems (Willis, 1981; Willis, 2011; Nassar, He, & Auffray, 2015)
for random microstructures.

This thesis makes use of two-scale asymptotic expansions in different frameworks: the classical
low-frequency regime for periodic microstructures, but also the homogenization and optimization
of thin microstructured layers. The high-frequency homogenization is also used for media with
imperfect contacts. Consequently more details are given in the three next subsections about the
state of art and the main ideas of the homogenization in these three contexts.

1.2.2 Homogenization of thin microstructured layers

An active direction of research concerns the size reduction of microstructures. It is often advan-
tageous to replace a volume microstructure by a surface (in 3D) or a line (in 2D) one. This is
the idea of metasurfaces or meta-interfaces that are more compact and less lossy than their bulk
counterparts. Different metasurfaces and their exotic behaviour have been devised in acoustics:
tapered labyrinthine unit cells (Xie et al., 2014) allow wavefront modulation, conversion from bulk
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waves to surface waves, beam-steering and effective negative refraction; perfect absorption can be
reached thanks to a membrane in the unit cell (Ma et al., 2014; Yang, Ma, Yang, & Sheng, 2015).
Sound absorption can also be maximized thanks to an array of resonators (Schwan et al., 2017) or
of porous layers of resonant inclusions (Lagarrigue, Groby, Tournat, Dazel, & Umnova, 2013). In
elasticity, source illusion using space-coiling metasurfaces (Liu et al., 2017) is also possible as well
as the use of torus-like tapers for the design of acoustic metasurfaces to control elastic guided
waves (Zhu & Semperlotti, 2016). The periodic repetition of supercells made by several different
unit cells allows to reach wave trapping in an elastic waveguide and wave focusing in a semi-infinite
medium (Ahn, Lee, Lee, & Kim, 2019). One can also mention Su and Norris, 2016; Su et al., 2018
where the metasurface is an array of uniform parallel plate separated by equally spaced rectangular
cracks and is designed to focus SV-waves while remaining transparent for P-waves, see Figure 1.4.
This section therefore focuses on the homogenization of thin microstructured layers.

The COMSOL-generated simulated SV-wave field at

60 kHz is plotted in Fig. 10. The curl field is shown to repre-

sent the distortional wave. The focal spot is evident at the

right side of the metasurface. This suggests that our design

elements are suitable for rapidly changing phase profiles.

Similar to the previous focal metasurface for a line source,

this design also works over a broadband frequency range

from 45 to 65 kHz with focal distances varying with fre-

quency. It is also interesting to see the percentage of energy

carried by the mode converted P-wave in the transmitted

waves. Integration of the curl field and the strain was per-

formed along the y-direction near the metasurface to estimate

time-average of the power flux of the transmitted waves.

Nearly 38.7% of the transmitted energy is converted to P-

waves. The focal distance evaluated from the simulation

results at 60 kHz is 28.3 cm, which is 3.3 cm longer than the

design distance. Given that the focal distance in the previous

design is only 0.7 cm longer than the designed distance, our

model does not predict the transmitted phase accurately for

oblique incidence. The main reason is that the current model

does not consider the mode conversion which occurs for

oblique incidence. Improvement of the model to include

such effects will be considered later.

As a comparison, the COMSOL-generated simulated P-

wave field at 60 kHz is plotted in Fig. 11. The trace of the

strain tensor is plotted to show the dilatational wave. It is

clear that the phase change of the transmitted P-wave is

almost negligible, and the wavefront is still cylindrical on

the transmitted side. This is not surprising since the imped-

ance of the slab is close to that of the background medium.

Moreover, the slab width is sub-wavelength so that the phase

shifts are small when the waves transmit through the plate

array.

IV. CONCLUSION

In conclusion, we have presented a novel metasurface

design approach for controlling SV-wave motion in elastic

solids using plate-like waveguides of varying thickness. A

theoretical model based on the Mindlin plate theory is devel-

oped and compared with the FEM simulation results. The

model works well for thick plates in the high frequency

range and is therefore well suited to the metasurface design.

It is also found that the transmission properties for normally

incident P- and SV-waves are distinct. The transmitted phase

of a normally incident SV-wave can cover a full span of 2p.

However, the transmitted phase of a normally incident P-

wave is nearly constant. By taking advantage of these prop-

erties, we designed and numerically demonstrated several

metasurfaces that are capable of steering SV-waves while

remaining transparent to P-wave. The fundamental mode of

this type of wave in a thick plate is nondispersive and can

travel in a planar manner over long distances; thus, it is of

particular interest in nondestructive evaluations.27–29
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The COMSOL-generated simulated SV-wave field at

60 kHz is plotted in Fig. 10. The curl field is shown to repre-

sent the distortional wave. The focal spot is evident at the

right side of the metasurface. This suggests that our design

elements are suitable for rapidly changing phase profiles.

Similar to the previous focal metasurface for a line source,

this design also works over a broadband frequency range

from 45 to 65 kHz with focal distances varying with fre-

quency. It is also interesting to see the percentage of energy

carried by the mode converted P-wave in the transmitted

waves. Integration of the curl field and the strain was per-

formed along the y-direction near the metasurface to estimate

time-average of the power flux of the transmitted waves.

Nearly 38.7% of the transmitted energy is converted to P-

waves. The focal distance evaluated from the simulation

results at 60 kHz is 28.3 cm, which is 3.3 cm longer than the

design distance. Given that the focal distance in the previous

design is only 0.7 cm longer than the designed distance, our

model does not predict the transmitted phase accurately for

oblique incidence. The main reason is that the current model

does not consider the mode conversion which occurs for

oblique incidence. Improvement of the model to include
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As a comparison, the COMSOL-generated simulated P-

wave field at 60 kHz is plotted in Fig. 11. The trace of the
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clear that the phase change of the transmitted P-wave is

almost negligible, and the wavefront is still cylindrical on
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ance of the slab is close to that of the background medium.
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shifts are small when the waves transmit through the plate
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range and is therefore well suited to the metasurface design.

It is also found that the transmission properties for normally

incident P- and SV-waves are distinct. The transmitted phase

of a normally incident SV-wave can cover a full span of 2p.

However, the transmitted phase of a normally incident P-

wave is nearly constant. By taking advantage of these prop-

erties, we designed and numerically demonstrated several

metasurfaces that are capable of steering SV-waves while

remaining transparent to P-wave. The fundamental mode of

this type of wave in a thick plate is nondispersive and can

travel in a planar manner over long distances; thus, it is of

particular interest in nondestructive evaluations.27–29
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(b) Cylindrical P-wave incidence

Figure 1.4 – Simulations of Su, Lu, and Norris, 2018.

1.2.2.1 Previous works

The two-scale homogenization method is a privileged tool to simulate wave propagation in bulk
microstructured media (Sanchez-Hubert & Sanchez-Palencia, 1992; Bensoussan et al., 2011).
However, the usual homogenization methods used for volumic microstructures fail when considering
a thin row of scatterers (Lapine, McPhedran, & Poulton, 2016; Marigo & Maurel, 2016a; Marigo
& Maurel, 2017b): the behaviour of the fields is dominated by boundary layer effects which are not
taken into account by bulk effective medium theories. To recover their efficiency, these methods
must then be combined with matched-asymptotic expansions, yielding effective jump conditions
on an equivalent meta-interface.

These methods have been used in static elasticity (Marigo & Pideri, 2011; David, Pideri, &
Marigo, 2012). For wave propagation, they have been adapted in acoustics (Bonnet-Bendhia,
Drissi, & Gmati, 2004; Marigo & Maurel, 2016a; Marigo & Maurel, 2017b), and electromagnetism
(Delourme, Haddar, & Joly, 2012; Delourme, Haddar, & Joly, 2013; Ourir, Gao, Maurel, & Marigo,
2017). For wave propagation in elasticity, studies focused on rows of non-resonant inclusions
(Marigo, Maurel, Pham, & Sbitti, 2017a; Pham, Maurel, & Marigo, 2021) and then on resonant
inclusions (Pham, Maurel, & Marigo, 2017). One also notes that similar methods can also be used
to get effective jump conditions for stratified media (Marigo & Maurel, 2017c), metallic structures
(Marigo & Maurel, 2016b; Maurel, Marigo, & Ourir, 2016), Helmholtz resonators (Mercier, Marigo,
& Maurel, 2017; Maurel, Marigo, Mercier, & Pham, 2018), bubble screens (Pham, Mercier, Fuster,
Marigo, & Maurel, 2020), adhesive layers (Abdelmoula, Coutris, & Marigo, 1998; Burel, 2014;
Rizzoni, Dumont, Lebon, & Sacco, 2014; Rizzoni, Dumont, & Lebon, 2017) and for the latter
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the results are equivalent to those obtained with energy-based methods (Lebon & Rizzoni, 2011;
Dumont, Rizzoni, Lebon, & Sacco, 2018; Lebon & Rizzoni, 2018). The case of non-periodic layers
has also been studied for seismic waves (Capdeville & Marigo, 2012).

The first part of this thesis extensively uses the results of (Marigo et al., 2017a; Pham et
al., 2017), i.e. the results concerning the homogenization of a thin microstructured layer in the
time domain, and of a thin resonant microstructured layer in the frequency-domain, respectively.
Consequently, the Sections 1.2.2.2, 1.2.2.3, and 1.2.2.4 expose the framework and results of these
papers that will be used afterwards.

�
e

h

�

⌦m

⌦m

a

E↵ective
jump

conditions

Homogenization

⌦m (⇢m, µm)

⌦m (⇢m, µm)

⌦i (⇢i, µ i)

X1

X1

X2

X2

n

Figure 1.5 – Homogenization process for a single periodic array of inclusions. (top) Original configuration
with a thin microstructured layer, (bottom) Homogenized interface model.

1.2.2.2 Physical configuration

Let us consider the propagation of scalar waves in 2D across a periodic row of inclusions ∪iΩi
embedded within a homogeneous matrix Ωm, with both media being assumed to be isotropic.
The thickness and the period of the row are denoted by e and h, respectively, and we assume
that e � O(h). The time and the spatial coordinates are denoted by t and X � (X1 ,X2),
respectively, with X2 being the direction of periodicity of the inclusions as shown in Figure 1.5.
The microstructured medium is characterized by two constitutive parameters, the mass density
ρh and the shear modulus µh, that are piecewise constant:

(ρh , µh)(X) �
{(ρm , µm) in the matrix,

(ρi , µi) in the inclusions.

The problem is considered within the framework of the linear anti-plane elasticity model. The
time-domain governing equation for the scalar out-of-plane displacement Uh writes:

div
(
µh(X)∇Uh(X , t)

)
� ρh(X)

∂2Uh

∂t2 (X , t).
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Introducing the scalar velocity field Vh � ∂Uh/∂t, this system can be rewritten as a first-order
system in time for Vh and for the stress vector Σh � (Σ1h , Σ2h)T :

∂Σh

∂t
(X , t) � µh(X)∇Vh(X , t),

ρh(X)
∂Vh

∂t
(X , t) � ∇ · Σh(X , t),

(1.7)

with Vh and Σh · n being continuous at each matrix/inclusion interface ∂Ωi, given that n is the
inward unit normal on each ∂Ωi. The system (1.7) is also relevant to other physical phenomena,
such as acoustic waves for which the fields Σh, Vh, ρh and 1/µh would stand instead for velocity,
pressure, compressibility and mass density, respectively.

1.2.2.3 Homogenization in the non-resonant case

In this subsection, one is interested in the non-resonant case i.e. when the physical parameters
are comparable. One first reminds the assumptions of the homogenization process and then the
main steps and the results obtained in Marigo et al., 2017a.

� Hypotheses of the homogenization process. Considering an illumination by an incident wave or
external sources, a characteristic wavelength λ within the matrix is assumed to be much larger
than the period h. Defining the wavenumber within the matrix as km � 2π/λ, we introduce the
parameter

η � km h (1.8)

and we assume that η � 1 for the configurations of interest. This geometrical assumption allows
to homogenize the microstructure in the so-called long-wavelength regime.

Assumption 1.1

The configuration satisfies η � km h � 1 while ρi/ρm � O(1) and µi/µm � O(1).

� Main steps. Two-scale homogenization techniques and matched-asymptotic expansions are
applied to the microstructured problem defined above. They involve five steps:

1. two space coordinates are introduced to describe both the slow variations and the small-scale
fast variations of the fields;

2. the fields are expanded using the ansatz of a two-scale asymptotic expansion;

3. matching conditions between the far field in the outer region and the near field in the inner
region are formulated in an intermediate region close to the inclusions, see Figure 1.6;

4. an identification order by order provides the jump conditions for the effective fields up to
O(η2);

5. the interface of zero thickness on which the jump conditions apply is then replaced by
an equivalent enlarged interface of thickness a � O(h), as sketched in Figure 1.5. This
enlargement is needed for the final effective model to be stable.

� Notations. The fast scale of coordinates is y � X/h � (y1 , y2)>. The domain Ω is the
elementary cell R×[−1/2, 1/2] in y-coordinates that contains one single inclusion Ωi, and (e1 , e2)
is the canonical basis of R2. For any function f (x1), we define the jump and the mean value around
the (centered) enlarged interface of thickness a:�

f
�

a � f (a/2) − f (−a/2) and
〈〈

f
〉〉

a �
1
2
(

f (a/2) + f (−a/2)
)
. (1.9)
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Figure 1.6 – Inner, outer and intermediate regions.

� Cell problems. The homogenization process requires the computation of the fields Φ( j) for
j � 1, 2 which are y2-periodic and solutions of the following cell problems:

∇y ·
(
µ(y)

(
∇yΦ

( j)(y) + e j

))
� 0 in Ω,

µ(y)[∇yΦ
( j)(y) + e j] · n and Φ( j) continuous on ∂Ωi ,

lim
y1→±∞

∇yΦ
( j)(y1 , y2) � 0.

(1.10)

Consequently, Φ( j) ∈ L2
loc(Ω) and ∇Φ( j) ∈ L2(Ω), which allows the definition of the following

constants for j � 1, 2: 
B j � lim

y1→+∞

[
Φ( j)(y1 , y2) − Φ( j)(−y1 , y2)

]
,

Cj �

∫
Ω

µ(y)
µm

∂Φ( j)

∂y2
(y)dy.

(1.11)

Furthermore, one can notice that Φ( j) is defined up to a constant, which will not be a problem
since the quantities of interest are the constants defined in (4.2).

� Final homogenized model. From Marigo et al., 2017a, we know that the homogenization at
order O(η) of such a configuration yields the following homogenized model:
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Jump conditions 1.1: Non-resonant case



∂Σ
∂t

� µm∇V (|X1 | ≥ a/2, X2 ∈ R),

ρm
∂V
∂t

� ∇ · Σ (|X1 | ≥ a/2, X2 ∈ R),

~V�a � h
{
B

〈〈
∂V
∂X1

〉〉
a
+ B2

〈〈
∂V
∂X2

〉〉
a

}
(X2 ∈ R),

~Σ1�a � h
{
S 〈〈divΣ〉〉a − C1

〈〈
∂Σ1
∂X2

〉〉
a
− C

〈〈
∂Σ2
∂X2

〉〉
a

}
(X2 ∈ R).

(1.12)

with the effective parameters being defined as

B �
a
h
+ B1 ,

C �
a
h
+

(
µi

µm
− 1

) ∫
Ωi

dy + C2 ,

S �
a
h
+

(
ρi

ρm
− 1

) ∫
Ωi

dy.

(1.13)

1.2.2.4 Homogenization in the resonant case

As already discussed, interesting effects can be achieved when local resonances occur within the
microstructure and subwavelength design of metamaterials are then possible. In electromagnetism,
they yield doubly negative metamaterials on a range of frequencies, paving the way to negative
refraction (see Chapter 1-4 in Craster and Guenneau, 2013). In elasticity, the resonances are
exploited to maximise sound absorption (Ma et al., 2014; Schwan et al., 2017; Huang et al., 2019;
Maurel et al., 2019a) or to mitigate waves (Su et al., 2018). They can help to the design of
vibration suppression bands (D’Alessandro et al., 2017; Xu, Barnhart, Li, Chen, & Huang, 2019) or
of seismic shields (Colombi et al., 2016; Palermo et al., 2018; Zaccherini et al., 2019) as illustrated
in Figure 1.7.

These resonances can be induced by particular geometries (e.g. split ring resonators, Helmholtz
resonators) or by a large contrast of physical parameters (e.g. hard inclusions with a soft coating
embedded in a hard matrix, soft inclusions in stiff matrix). The latter case is considered here with
a unit cell made of a soft inclusion embedded in a hard matrix with a high contrast in the physical
parameters. In this case, the resonances are of the so-called Mie type and occur at frequencies
associated to wavelengths which are about the size of the inclusion and much smaller than the
wavelength in the matrix.

More precisely, when ρi/ρm � O(1) and µi/µm � O(η2), then the inclusion is the seat of local
resonances. When the microstructure occupies the whole space, this resonant configuration has
been studied in Auriault and Bonnet, 1985; Zhikov, 2000; Felbacq and Bouchitté, 2005; Zhikov,
2005; Auriault and Boutin, 2012; Bouchitté, Bourel, and Felbacq, 2015; Comi and Marigo, 2019.
The transmission problem between a highly contrasted microstructure and a homogeneous half-
plane has been tackled in Vinoles, 2016. When the microstructure is localized in a single thin row,
this additional scaling in the shear modulus leads to new effective jump conditions that have been
derived in the frequency domain in Pham et al., 2017. They are presented in this subsection.

First, the Fourier transform in time of a function 1(t) is defined by:

F [1](ω) � 1̂(ω) �
∫
R

1(t)e−iωt dt , (1.14)
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Figure 1.7 – (a) Surface to shear waves conversion - (b) Zoom on the metabarrier - (c) Zoom on one
resonator (after Palermo, Vitali, and Marzani, 2018)

where ω is the angular frequency.

� Hypotheses of the homogenization process. Secondly, the assumptions of the resonant case are
recalled.

Assumption 1.2

The configuration satisfies η � km h � 1 while ρi/ρm � O(1) and µi/µm � O(η2).

� Methodology. As in the non-resonant case, the jump conditions are derived thanks to matched
asymptotic expansions. The main lines of the methodology are unchanged.

� Cell problems. However, the occurence of resonances leads to a slight modification of the cell
problems. Indeed, instead of (1.10), for j � 1, 2 the fields Φ( j) are now y2-periodic and solutions
of: 

∆yΦ
( j)(y) � 0 in Ω\Ωi ,

[∇yΦ
( j)(y) + e j] · n � 0 on ∂Ωi ,

lim
y1→±∞

∇yΦ
( j)(y1 , y2) � 0.

(1.15)

As in the non-resonant case, it allows to introduce the following constants for j � 1, 2:
B j � lim

y1→+∞

[
Φ( j)(y1 , y2) − Φ( j)(−y1 , y2)

]
,

Cj � −
∫
Ω\Ωi

∂Φ( j)

∂y2
(y)dy.

(1.16)

� Elementary problem. Moreover, in the resonant case, the homogenized model also involves the
following Dirichlet problem:{

∆yψ∞(y , ω) + κ2
∞(ω)ψ∞(y , ω) � 0 (y ∈ Ωi),

ψ∞(y , ω) � 1 (y ∈ ∂Ωi),
(1.17)
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1.2. Homogenization

with

κ2
∞(ω) �

ρi h2

µi
ω2. (1.18)

Remark 1. The notation ∞ for ψ∞ or κ2
∞, stands for the fact that the inviscid case is considered

and the dissipation parameter γ that will be introduced later on then equals to +∞.

� Final homogenized model. The resulting jump conditions on the enlarged interface are

Jump conditions 1.2: Resonant case


�

V̂
�

a � h
{
B

〈〈
∂V̂
∂X1

〉〉
a
+ B2

〈〈
∂V̂
∂X2

〉〉
a

}
(X2 ∈ R)�

Σ̂1
�

a � h
{
S

〈〈
∂Σ̂1
∂X1

〉〉
a
+ C1

〈〈
∂Σ̂1
∂X2

〉〉
a
+ C2

〈〈
∂Σ̂2
∂X2

〉〉
a
+ D∞(ω)

〈〈
div Σ̂

〉〉
a

}
(X2 ∈ R),

(1.19)

with the constant effective parameters defined by (1.16) and
B �

a
h
+ B1 ,

S �
a
h
−

∫
Ωi

dy.
(1.20)

The frequency-dependent coefficient D∞(ω) is defined by

D∞(ω) �
ρi

ρm

∫
Ωi

ψ∞(y , ω)dy. (1.21)

The explicit dependency of D∞ on the frequency is reached through a modal expansion of ψ∞
on the basis of the eigensystems (λr , Pr)r≥1 that is associated with the following self-adjoint
eigenvalue problem posed on a single inclusion:{

∆yPr(y) + λrPr(y) � 0 (y ∈ Ωi),
Pr(y) � 0 (y ∈ ∂Ωi).

(1.22)

Let us define the real-valued coefficients {αr}r≥0 and the resonant frequencies {ωr}r≥1:

α0 �
ρi

ρm

∫
Ωi

dy αr �

√
ρi

ρm

∫
Ωi

Pr(y)dy and ωr �
1
h

√
µi

ρi
λr . (1.23)

It is proven in Pham et al., 2017 that the frequency-dependent coefficient D∞(ω) in (1.19) and
(1.21) can be recast as the infinite series

Jump conditions 1.3: Frequency-dependent coefficient

D∞(ω) � α0 −
∑
r≥1

α2
r

ω2

ω2 − ω2
r

. (1.24)

The coefficient D∞ depends on the constitutive parameters of the inclusions as well as their
geometries. On the contrary, the five other effective parameters in (1.19) depend only on the
geometry of the inclusions whereas in the non-resonant case (1.12) their constitutive properties
were also involved. Moreover, due to the expression of αr in (1.23), the eigenmodes Pr that have
zero mean value do not contribute to the effective model.
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Chapter 1. Introduction

1.2.3 High-frequency homogenization

While the previous section focused on a specific example of low-frequency homogenization, this
section will give an overview of the main ideas of high-frequency homogenization which will be
used in Chapter 6 of this thesis.

One introduces h the vector containing the periodicity of the medium among the different
directions of the space. It is well known from the Bloch-Floquet theory that for h-periodic media,
the displacement satisfies:

Û(X + h , k) � Û(X , k)e ik·h ,

where k is the Bloch wavenumber. Its real part represents the phase velocity and its imaginary part
accounts for the damping of waves. The Bloch wavenumber depends on the angular frequency
ω through dispersion relations. The part of the wavenumber domain defined by [0, π/hi] in each
direction completely defines the dispersion relation and is called the irreducible Brillouin zone.
Typically in such problems, the dispersion diagram displays band-gaps, i.e. regions in the angular
frequency domain where waves cannot propagate because the Bloch wavenumber is purely imaginary.
There are infinite number of branches of the dispersion diagram, i.e. for a given Bloch wavenumber,
one can find an infinite (countable) set of angular frequencies leading to propagating waves.
Figure 1.8 displays a dispersion diagram and illustrates the domain validity of the low-frequency
homogenization.

k (1/m)

f 
(H
z
)

Re(k) 
Im(k) 

low-frequency 
homogenization

Figure 1.8 – Example of dispersion diagram and approximation in the low-frequency regime.

These bandgaps and some of the exotic behaviours of wave phenomena in periodic media such
as negative refraction (Willis, 2016) or topologically protected states (Lee-Thorp, Weinstein, &
Zhu, 2018) occur at high frequencies. For these frequencies, the wavelength is comparable to the
periodicity of the microstructures. This is hence beyond the assumption of a wavelength much larger
than the periodicity which allows to introduce two scales in the low-frequency homogenization
framework. This problem is tackled by the high-frequency homogenization introduced in Craster,
Kaplunov, and Pichugin, 2010a.

The objective of the high-frequency homogenization is to approximate how the dispersion
relation and the wavefield behave for angular frequencies ω that are close to the angular frequencies
ω0 (eigenfrequencies) corresponding to an edge of the Brillouin zone on the dispersion diagram,
see Figure 1.9. The main idea of Craster et al., 2010a is to combine both Floquet-Bloch theory and
two-scale expansions. One main difference with the low-frequency framework is the type of scale
separation: the fast scale still represents the variation within a cell while the slow scale accounts
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FFLW FFFW

ω

k

ω0

h/

(a) Single eigenvalue

FFLW FFFW

ω

k

ω0

h/

(b) Double eigenvalue

Figure 1.9 – Example of dispersion diagram with the FFFW and FFLW case. The red star denotes an
eigenfrequency ω0 close to which we want to approximate the dispersion relation and wavefield. It is either
a single eigenvalue (a) or a double eigenvalue (b)

for the modulation of these rapide oscillations. This comes from the fact that there exist standing
waves at the wavenumbers ω0 corresponding to the edges of the Brillouin zone. Close to these
eigenfrequencies, the behaviour is the same up to a modulation. One can consider for the wavefield
its projection onto the associated highly oscillating Bloch eigenfunctions. These rapidly oscillating
solutions are modulated by a long-scale solution. The modulation length is denoted by L and is
much larger than the periodicity.

In a 1D case, and adopting the terminology of Guzina, Meng, and Oudghiri-Idrissi, 2019, we will
refer to the homogenization near the left edge of the Brillouin zone k ≈ 0 as Finite Frequency Low
Wavenumber (FFLW), while the homogenization near the right edge (k ≈ π/h) will be referred to
as Finite Frequency Finite Wavenumber (FFFW), see Figure 1.9. Upon introducing k̃ as

(FFLW) : k̃ � k and (FFFW) : k̃ � π/h − k , (1.25)

the end result of the high-frequency homogenization technique is an approximation of the type

ω2
� ω2

0 + T k̃2h2
+ o

(
h2 k̃2

L2

)
, (1.26)

where the parameter T ∈ R can be determined explicitly. This angular frequency approximation
comes together with an associated leading-order approximation of the wave field Uh(X) of the
form

Uh(X) � U(0)
(
X,

X
δ

)
+ O

(
hk̃
L

)
, (1.27)

with δ � h/L the small parameter which is the ratio between the periodicity and the modulation
length L. One the contrary, in the case of low-frequency homogenization, the zeroth-order field
can be shown to be independent of the fast variable; this is one of the main differences between
low- and high-frequency homogenization.

When ω0 is a double eigenfrequency, two branches of the dispersion diagrams intersect with
non-zero slope at an edge of de Brillouin zone, see Figure 1.9b. Such intersections are also known
in the literature (see e.g. Lee-Thorp et al., 2018, Ochiai and Onoda, 2009 and Guzina et al.,
2019) as Dirac points or Dirac cones. Then, the method has to be adapted to recover the sought
approximations. One advantage of this approach compared to the Bloch wave decomposition is
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that it allows to get additional information such as the nature of the modulation which differs for
the simple or double eigenvalue case.

In Guzina et al., 2019, the technique is generalized in any dimension, and the asymptotic
analysis is pushed one order further. A uniform approximation is also derived, considering the fact
that some branches do not intersect at the edges of the Brillouin zone but are close to each other.
Other works concerned the inclusion of a source term (Meng, Oudghiri-Idrissi, & Guzina, 2020)
and the derivation of the process in the time domain (Harutyunyan, Milton, & Craster, 2016).
The methodology has also been applied to several other configurations such as discrete lattice
media (Craster, Kaplunov, & Postnova, 2010b; Colquitt, Craster, & Makwana, 2015), frame struc-
tures (Nolde, Craster, & Kaplunov, 2011), optics (Craster, Kaplunov, Nolde, & Guenneau, 2011),
elastic plates (Antonakakis & Craster, 2012), full vector wave systems (Antonakakis, Craster, &
Guenneau, 2014), elastic composites (Boutin, Rallu, & Hans, 2014), reticulated structures (Rallu,
Hans, & Boutin, 2018).

1.2.4 Optimization

In the context of metamaterials, the optimization of the microstructures is a useful tool in order to
determine the designs that exhibit interesting macroscopic behaviours. To this purpose, different
types of optimization can be considered:

• the parametric optimization when the shapes are parameterised by a fixed number of variables
(thickness, dimensions, etc.)

• the shape optimization when, from an initial shape, the position of the boundaries of the
microstructure is changed without changing its topology

• the topological optimization when the best possible shape is sought, even if it means changing
the topology

trated in Fig. 1.1. Sizing, or parameter, optimization generally uses cross-sectional

properties, such as the diameter of a truss member or plate thickness, as design

variables. This technique is the most conventional approach of the three struc-

tural optimization approaches, where simple parameters such as height, length,

and thickness govern the design. Shape optimization is more complex in that the

coordinates of the boundary or surface of the structure are the design variables.

Typically shape optimization is utilized when optimizing the stress characteristics

of a structure. Often sizing and shape optimizations are employed as a second

phase of design after utilizing topology optimization. This third technique is typ-

ically used to generate an initial concept.

Figure 1.1. Three structural optimization categories: (a) sizing, (b) shape,
and (c) topology optimization. The initial designs are shown on the left
and the final designs are shown on the right (Bendsøe and Sigmund, 1989).

The field of topology optimization has been developed extensively over the

past two decades. A comprehensive review of topology optimization can be found

2

Figure 1.10 – Three types of optimization (a) parametric (b) shape (c) topological. Initial designs on the
left and final designs on the right. (Martin Ph. Bendsoe, 2003)

Figure 1.10 illustrates these differences. In this work, we are interested in topological opti-
mization which leaves more freedom compared to the first two methods. Indeed, these ones can
easily converge to a local minimum with poor performance. The mathematical tool allowing to
perform this type of optimization is the topological derivative (Martin Ph. Bendsoe, 2003). It
measures the sensitivity of a cost functional to topological perturbations. A perturbation is a small
inhomogeneity of size ε introduced at a point z of the unit cell that defines the microstructure.
This perturbation induces new material properties mz ,ε instead of the initial ones m. Then, the
so-called topological derivative of a given function f of the material properties m denoted by D f
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is defined thanks to the following asymptotic expansion in 2D:

f (mz ,ε) �
ε→0

f (m) + ε2D f (m , z ,P , ∆m) + o(ε2) (1.28)

with P the shape of the inhomogeneity and ∆m the material perturbation in the inhomogenity.
Therefore, the topological derivative describes the influence on the functional f of a perturba-
tion located at z, of shape P and material perturbation ∆m. Consequently, the more negative
D f (m , z ,P , ∆m) is, the more efficient a perturbation at z would be to decrease f .

Then, different numerical methods are possible to update the material properties based on
the knowledge of the topological derivatives. One method used in this dissertation is the level-set
method. For a two-phase material distribution, it relies on the characterization of this distribution
thanks to a level-set function which is stricly positive in one phase and strictly negative in the other
phase. This has first been introduced for shape optimization and is based on the fact that the
interface between phases, which corresponds to a level-set function which is equal to 0, can evolve
based on the shape derivative of the cost functional with respect to a perturbation of this interface
(Allaire, de Gournay, Jouve, & Toader, 2005; Allaire & Yamada, 2018). This methodology has
then been adapted to topological perturbation based on a projection algorithm (Amstutz & Andrä,
2006; Amstutz, Giusti, Novotny, & de Souza Neto, 2010; Giusti, Ferrer, & Oliver, 2016; Oliver,
Ferrer, Cante, Giusti, & Lloberas-Valls, 2017).

A strategy of optimization of microstructures, in line with the homogenization considered in
this dissertation, is to perform the optimization from the homogenized model that describes the
material. It relies on the expression of a cost function to be minimized in terms of the effective
coefficients that characterize the homogenized model. At low frequency, this method has been
used in statics (Amstutz et al., 2010; Giusti, Novotny, & de Souza Neto, 2010; Oliver et al.,
2017), in dynamics for a low constrast (Allaire & Yamada, 2018), and a high contrast (Vondřejc,
Rohan, & Heczko, 2017) of the physical properties. It has also been extended to high-frequency
homogenization (Noguchi, Yamada, Izui, & Nishiwaki, 2018).

In this framework, a topological optimization procedure is presented in Cornaggia and Bellis,
2020 to optimize dynamical properties for antiplane shear waves based on homogenization. The
main ingredients are the following ones:

1. the two-scale asymptotic homogenization method is deployed

2. a cost functional is considered on the basis of the homogenized model

3. topological derivatives are computed

4. the minimization is performed thanks to a level-set algorithm

5. each iteration of the level-set requires the computation of cell problems which are solved
using FFT-accelerated solvers

Works on the optimization in dynamics of microstructured thin layers are more scarce and recent:
Matsushima, Isakari, Takahashi, and Matsumoto, 2020 for an optimization of slabs based on far-
field behaviour and Noguchi and Yamada, n.d. for a design of acoustic metasurfaces based on a
homogenization model.

1.3 Discretization of interfaces

From a numerical point of view, the difficulty of the problems tackled in this thesis is the presence
of interfaces. In particular, Chapter 3 aims at presenting a numerical method to simulate the
interaction of transient waves with resonant meta-interfaces. By opposition with frequency-domain
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approaches, time-domain formulations have two main advantages: i) they allow to simulate wide-
band wave phenomena in a single computation; ii) they pave the way to problems involving
nonlinearities, for which even a monochromatic forcing would require to solve numerous Helmholtz
equations due to the generation of harmonics.

1.3.1 Existing methods

Without claiming to be exhaustive, below are the broad outlines of numerical methods that have
been developped to take into account interfaces.

� Finite differences on uniform grids. Finite differences are a commonly used discretization method
for the numerical simulation of wave propagation. It is an easy-to-implement method which involves
uniform Cartesian grids. However, this method suffers from considerable drawbacks when interfaces
are considered, see Figure 1.11. Indeed, it yields spurious diffractions, and a drop in order of
convergence. Moreover, if jump conditions, i.e. discontinuities of the fields, are considered at the
interfaces, these numerical methods also fail to satisfy them due to the stairstep approximation.

1.2. INTERFACES ET SCHÉMAS NUMÉRIQUES 13

mann, basée sur une analyse de Fourier des ondes, est alors inopérante ; les seules techniques
d’analyse consistent alors à définir une énergie à partir de la solution numérique, puis à étudier
l’évolution de cette énergie. Cette technique peut s’avérer particulièrement difficile pour des sché-
mas non linéaires, et conduit souvent seulement à des conditions nécessaires de stabilité [17]. En
pratique, on observe souvent des instabilités numériques naissant au voisinage des interfaces pour
des contrastes importants des paramètres physiques (exemple : eau/air), alors que les conditions
nécessaires de stabilité CFL (reliant les pas de temps, d’espace, et la célérité des ondes) sont
satisfaites dans chaque sous-domaine.
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Fig. 1.1 – Maillages adaptés (a) et en “marches d’escalier” (b).

Propriétés géométriques. En plus des défauts strictement numériques que nous venons de
citer, qui sont du ressort de l’Analyse Numérique, la présence d’interfaces conduit à des défauts
d’origine géométrique. En effet, pour prendre en compte des interfaces de forme quelconque dans

Figure 1.11 – Stairstep approximation of an interface Γ in green (Lombard, 2010).

� Numerical methods for boundary conditions.When an interface has to be considered for boundary
conditions, several methods can be mentioned. For example, with the fictitious domain method,
one introduces a Lagranger multiplier that can be interpreted as a surface current in order to deal
with boundary conditions (Collino, Joly, & Millot, 1997; Becache, Joly, & Tsogka, 2001). This
method allows to work with a uniform mesh whatever the geometry is. Another approach is the
penalization one: a source term is added to the evolution equations to account for the boundary
condition (Fornet & Guès, 2009). However, the extension of these methods for jump conditions
is not obvious.

� Avaraging the coefficients. An easy-to-implement solution is to average the coefficients of
the partial differential equation (from the values of the physical parameters on each part of the
interface) near the interface. The averaged coefficients can be chosen to optimize the stability
condition and the order of convergence, which is still reduced but controlled (Cohen & Joly, 1996).
However, this method does not allow to deal with the case of jump conditions at the interface
and even for perfect contacts the order of convergence is reduced to 1.

�Mesh refinement. A possibility with finite differences is to perform a local mesh refinement around
the interface. However, it will still lead to a failure to respect jump conditions. In the same spirit,
another possibility is to use an unstructured mesh to get a mesh adapted to the interface, which
is commonly used with finite elements, finite volumes and the discontinuous Galerkin method. For
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example, the spectral element method is an unstructured method that allows to take into account
jump conditions at the interface via a variational formulation (Komatitsch & Vilotte, 1998).Then,
one gets a good description of the geoemetry of the interface. However, if this geometry is complex,
see Figure 1.12, the meshing step can be difficult.
Furthermore, one main drawback of these methods is the requirement on the time step. Indeed,

1.2. INTERFACES ET SCHÉMAS NUMÉRIQUES 13

mann, basée sur une analyse de Fourier des ondes, est alors inopérante ; les seules techniques
d’analyse consistent alors à définir une énergie à partir de la solution numérique, puis à étudier
l’évolution de cette énergie. Cette technique peut s’avérer particulièrement difficile pour des sché-
mas non linéaires, et conduit souvent seulement à des conditions nécessaires de stabilité [17]. En
pratique, on observe souvent des instabilités numériques naissant au voisinage des interfaces pour
des contrastes importants des paramètres physiques (exemple : eau/air), alors que les conditions
nécessaires de stabilité CFL (reliant les pas de temps, d’espace, et la célérité des ondes) sont
satisfaites dans chaque sous-domaine.

(a)

DΓ

� �� � Γ� �� � � �� � � �� � � �	 	 
 
� �� � � �� �� �� � � �� � � �� �

� �� �� �� � � �� �

Ω

(b)

� �� � � �� �   ! ! " "# #$ $% %& & &' '( () )* *+ +
, ,- -

. ./ /
0 01 1

2 23 3
4 45 56 67 78 89 9

: :; ; < <= => >? ?@ @A AB BC C
D DE E

Γ F FG G Γ

Ω

D

Fig. 1.1 – Maillages adaptés (a) et en “marches d’escalier” (b).

Propriétés géométriques. En plus des défauts strictement numériques que nous venons de
citer, qui sont du ressort de l’Analyse Numérique, la présence d’interfaces conduit à des défauts
d’origine géométrique. En effet, pour prendre en compte des interfaces de forme quelconque dans

Figure 1.12 – Adaptative mesh for an interface Γ in green (Lombard, 2010).

when the meshes are of constant spatial step h and time step ∆t, the finite difference schemes
are stable under the Courant–Friedrichs–Lewy (CFL) condition

c∆t
h
≤ α (1.29)

where c denotes the propagation velocity and α is the CFL number that depends on the scheme
considered and the space dimension. This value α is a stability parameter and also an optimal
value in the sense that the ratio c∆t/h cannot be chosen too small since the numerical dispersion
increases when this ratio decreases. When a local refinement is considered, the stability condition
(1.29) will be given by the finest grid. As a result, the calculation time can increase significantly
due to a small time step ∆t. Another drawback is the fact that having a ratio c∆t/h much smaller
than its optimal value (1.29) in the regions where the grid is coarse will increase the dispersion
phenomena. With unstructured meshes and finite elements, the same drawback holds with a time
step linked by the CFL stability condition to the smallest step of the mesh. As a result, the
calculation time can increase significantly.

� Immersed Interface methods. With this type of methods, the interface is immersed in the
meshing, in the sense that it does not have to coincide with the mesh, see Figure 1.13. To do
so, at grid points in the vicinity of the interface, the numerical scheme is modified to ensure a
given local truncation error (Zhang & LeVeque, 1997). This is done by using the jump conditions
as well as the geometry of the interface (its relative position in the grid and its curvature). The
advantage is that discontinuities of the fields at the interfaces can be taken into account and that
there is no additional requirement on the time step. The drawback of this method is that the
stability issue is not addressed.

1.3.2 Explicit Simplified Interface Method

In this dissertation, we have chosen to work with an Immersed Interface Method which is the
Explicit Simplified Interface Method presented in this subsection. As previously said, the Immersed
Interface Methods is an efficient way to take into account jump conditions on an arbitrary interface.
A scheme is used far from the interface and a new scheme is applied at the calculation points

17



Chapter 1. Introduction

usual scheme

stencil at

modified scheme
Xi

Xi

interface

Figure 1.13 – Immersed Interface Method for a 1D setting.

close to the interfaces. This yields to a difficulty of generalization at higher-order schemes, and
a difference of nature between the scheme used at the interface and the one used near the
interface (in terms of numerical dispersion for example). These limitations have motivated the
development of the Explicit Simplified Interface Method (ESIM) and its application to a variety of
wave propagation problems (Lombard & Piraux, 2004, 2006; Lombard, Piraux, Gélis, & Virieux,
2008; Lombard, 2010; Chiavassa & Lombard, 2011).

The principle of the ESIM is the following: instead of building a new scheme in the vicinity
of the interfaces, we apply at any computational point the same scheme (i.e. the one chosen in
a homogeneous medium). This is possible thanks to a modification of the numerical values used
by the scheme to do the time-stepping at points near the interface. The main difficulty is then
to build these modified values while taking into account the jump conditions and the geometry
of the interface. Their expression are then independent of the scheme chosen and it is therefore
easier to extend the method to a large class of numerical schemes.

A local truncation error analysis can been performed to check that the order of the scheme in
a homogeneous medium can be reached if the parameters of the ESIM are well chosen. Regarding
stability, the classical Von Neumann analysis cannot be applied, as it is only valid in homogeneous
media. Energy techniques, valid in the case of variable coefficients, are well suited to discretisations
arising from a variational formulation, which is not the case for this method. The only way to study
the stability seems to be the Gustafsson, Kreiss, Sundstöm (GKS) analysis by discrete normal modes
(Lombard, 2010). One notes that it is purely numerical (given physical and numerical parameters)
and does not offer a theoretical expression such as the classical CFL condition. However, stability
under the usual CFL condition is generally observed in numerical experiments as well as an order
of convergence which is coherent with the local truncation error analysis.

1.4 Overview of the thesis

The design of media at a microstructured scale allows to control wave propagation in a fine way
and to obtain exotic effects at the macroscopic scale. Thanks to homogenization methods, the
microstructure can be advantageously replaced, at the macro scale, by a homogeneous effective
medium. Then, it raises the question of optimization tools in order to design the microstructure
that allows to achieve a desired macroscopic effect. In this context, the consideration of interfaces
(microstructured interfaces, imperfect interfaces) can lead to modifications in the homogenization
methods, the numerical methods, or the optimization methods classically used. Therefore, the
present thesis has focused on the study of waves propagation in microstructured media with inter-
faces through homogenization, time-domain simulations and optimization. The research described
in this dissertation has been performed at the Laboratory of Mechanics and Acoustics under the
supervision of Bruno Lombard and Cédric Bellis. Parts of this work were also carried out through
other collaborations which are detailed below. The dissertation is divided into two parts that are
independent.
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� Part I. The first part concerns the case where the heterogeneities constitute a periodic row of
inclusions embedded in a homogeneous matrix, see Section 1.2.2. When the physical parameters of
the inclusions are strongly contrasted with those of the matrix, internal resonances can occur and
can be used in turn to maximise acoustic absorption. In Chapter 2, the homogenization of such a
resonant microstructured layer in the time domain is studied using a method of matched asymptotic
expansions and leads to non-local jump conditions. The derivation of the jump conditions follows
the work Pham et al., 2017 in the frequency domain whose main results have been introduced
in Section 1.2.2.4. An energy analysis then provides a condition on the thickness of the enlarged
effective interface. Time-domain simulations are then performed in order to assess the validity of
the homogenized model. This chapter mainly reproduces [A2] and results from a collaboration
with Kim Pham (IMSIA, ENSTA Paris), Agnès Maurel (Institut Langevin, ESPCI ParisTech) and
Jean-Jacques Marigo (Laboratoire de Mécanique des Solides, Ecole Polytechnique). The next
section of this chapter, whose work appears in [A5], tackles the incorporation of dissipation: some
numerical simulations are presented to investigate the effect of this new parameter.

A large part of the work consists of developing a numerical method to perform time domain
simulations of wave propagation across resonant interfaces. Indeed, simulation of time-domain
acoustic wave propagation across enlarged effective interfaces have been previously addressed in
Lombard, Maurel, and Marigo, 2017 but in the case of non-resonant effective jump conditions
(1.12). In the present study, the central question therefore concerns the discretization of interfaces
characterized by resonant effective jump conditions (1.19) that are frequency-dependent in the
harmonic regime, along with their implementation for wave propagation simulations in the time
domain. This work is presented in Chapter 3 and mainly follows [A1]. The introduction of auxiliary
variables allows to get a local evolution problem in time which is then solved numerically by a
finite-difference scheme coupled with an immersed interface method. This methodology is validated
through a local truncation error analysis and comparison with analytical solutions. In the line of the
previous chapter, the modifications of the numerical method due to the incorporation of dissipation,
which have been presented in [A5], is at stake in the last section.

Eventually, in Chapter 4, the sensitivity of the effective parameters to the geometry of the
microstructure in the non-resonant case is determined using topological derivatives following
Bonnet, Cornaggia, and Guzina, 2018. Then, we implement a topological optimization procedure
for the design of non-resonant thin microstructured layers following Cornaggia and Bellis, 2020.
Some preliminary numerical results are presented. It also required to propose a numerical method
to solve cell problems on an infinite band. This was done thanks to FFT accelerated solvers
developped in collaboration with Rémi Cornaggia (now at Institut Jean Le Rond d’Alembert,
Sorbonne Université).

� Part II. It is often assumed that the contact between the inclusions and the homogeneous matrix is
perfect. Some models, such as linear spring-mass conditions, account for the behaviour of imperfect
contacts between solids. In Chapter 5, low-frequency homogenization of such configurations is first
carried out in 1D. The expression of the zeroth-order mean field and the first-order corrector is
obtained and some numerical comparisons with full-field simulations are presented. This 1D linear
case has led to an extension to non-linear contacts in [A4] so the main results of this paper are
also presented. Then, the homogenization in the linear case is performed for the full 3D elasticity
case.

Eventually, dispersion diagrams in 1D solids with linear spring-mass conditions are studied in
Chapter 6. Contrary to the previous chapters that study the propagation of waves in time-domain,
this chapter is a work in the frequency domain. The framework of high-frequency homogenization
(Craster et al., 2010a) is used and an approximation for the fields and for the dispersion rela-
tions near the edges of the Brillouin zone is obtained. This chapter mainly reproduces [A3] and
was initiated by a collaboration with Raphael Assier (Departement of Mathematics, University of
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Manchester). We both developed the theoretical analysis, performed the numerical implementation
and produced the figures jointly.
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This chapter aims at studying the propagation of waves across a periodic row of inclusions
whose high contrast with the background matrix yields local resonances. The homogeniza-

tion of such a resonant microstructure is performed in the transient regime, and effective jump
conditions are obtained in Section 2.1. The resulting model is then analyzed based on energy
balance in Section 2.2 and a condition on the thickness of the enlarged interface is obtained to
ensure the stability. Section 2.3 aims at both illustrating the effective dynamical behavior obtained
and at validating the effective model through comparisons with full-field, i.e. microstructure-based,
simulations. Damping is then considered in Section 2.4 to be closer from real devices and to
examine physical applications such as coherent perfect absoption. Appendix 2.A assesses the
equivalence with the frequency-domain formulation of Pham et al., 2017.

This work started as a joint work with Kim Pham (IMSIA, ENSTA Paris), Agnès Maurel
(Institut Langevin, ESPCI ParisTech) and Jean-Jacques Marigo (Laboratoire de Mécanique des
Solides, Ecole Polytechnique) which has allowed to write the energy of the homogenized problem
in a quadratic form and to discuss the results obtained in the inviscid case.
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Chapter 2. Homogenization and simulations for a row of highly contrasted inclusions

2.1 Effective jump conditions in the time domain

The homogenization of such a periodic row of highly-contrasted inclusions using matched asymp-
totic expansions has been investigated in (Pham et al., 2017) in the frequency domain. We follow
the same method here and underline the differences associated to the time-domain approach for
the derivation of the jump conditions at the second order.

2.1.1 Assumptions for the homogenization in the resonant case

As discussed in introduction, the microstructure of periodicity h and thickness e is homogenized
in the long-wavelength regime, which means that the dimensionless parameter η � km h defined in
(1.8) is much smaller than 1. The choice of a characteristic wavelength and the associated small
parameter is discussed in Section 2.3.1.3. With high material contrast, the microstructure can be
the seat of local resonances. Introducing the wavenumber ki � ω

√
ρi/µi within the inclusions, then

such resonances can occur when the wavelength within an inclusion is of order of h, i.e. ki h � O(1)
(Auriault & Boutin, 2012; Pham et al., 2017). In particular, this assumption is met for a low
contrast in mass density ρi/ρm � O(1) and a high contrast in shear modulus µi/µm � O(η2), a
configuration which we consider in the present study. These geometrical and material assumptions
are recalled there for the sake of completeness:

Assumption 2.1

The configuration satisfies η � km h � 1 while ρi/ρm � O(1) and µi/µm � O(η2). One
rewrites the parameter µi as µi � η2µ0 where µ0 is a reference modulus that satisfies
µ0/µm � O(1)

This Assumption of the resonant case differs from Assumption 1.1 in the non-resonant case
by the high material contrast in the shear modulus. This additional scaling leads to substantial
modifications in the homogenization process.

2.1.2 Nondimensionalization

New nondimensionalized space-time coordinates are introduced to formulate the homogenization

problem independently of the wavelength λ, i.e. one defines x � kmX and τ � km

√
µm
ρm

t. One

introduces the nondimensionalized fields vη(x , τ) �
√
ρm
µm

Vh(X , t) and ση(x , τ) � 1
µm
Σh(X , t). The

original system 
∂Σh

∂t
(X , t) � µh(X)∇Vh(X , t),

ρh(X)
∂Vh

∂t
(X , t) � ∇ · Σh(X , t),

(2.1)

is then transformed into: 
∂ση
∂τ
(x , τ) �

µh(x)
µm

∇x vη(x , τ),

ρh(x)
ρm

∂vη
∂τ
(x , τ) � ∇x · ση(x , τ),

(2.2)

while the continuity conditions on vη and ση · n at the matrix/inclusion interfaces are preserved.

Remark 2. In numerical examples, an initial condition or a point source will be added to the
original system. They will be kept as such in the final effective model, which means that there is
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2.1. Effective jump conditions in the time domain

an implicit assumption that the source point is located in the homogeneous medium, far enough
from the microstructured interface.

2.1.3 Matched asymptotic expansions

e

h

⌦m ⌦i

X1

X2

⌦m ⌦i ⌦m ⌦i

x1

x2

ke

kh y1

y2

1

e/h

Figure 2.1 – The different coordinate systems considered: (left) original coordinates, (center) nondimen-
sionalized coordinates, and (right) rescaled coordinates.

While the space coordinate x � (x1 , x2) is appropriate to describe the slow variations of the
wavefield, one introduces the rescaled coordinate y � x/η, see Figure 2.1, which will be used to
describe its small-scale fast variations. Note that, with a slight abuse of notation, the inclusion
domain is referred to as ∪iΩi in all three coordinate systems. Depending on the region of space
considered, the fields vη and ση will be assumed to have specific dependencies on x and y. In the
far field, only the slow coordinate x is needed to describe the propagating field. Near the inclusions,
dependence on the fast coordinate y is considered in order to describe field variations at the scale
of the microstructure while slower variations along the interface are also accounted for through a
dependence on x2. Three regions are thus defined: an outer region (far field) for which x ∈ R2,
an inner region (near field) that excludes the inclusions, i.e. y ∈ R2 \ ∪iΩi and x2 ∈ R, and the
inner region that coincides with the inclusions, i.e. y ∈ ∪iΩi and x2 ∈ R. In these three regions,
the velocity and stress fields are expanded using the following ansatz:

Outer region
(x ∈ R2)

vη �
∑
j≥0

η j v j(x , τ)

ση �
∑
j≥0

η jσ j(x , τ)

Inner region
(y ∈ R2 \ ∪iΩi , x2 ∈ R)

vη �
∑
j≥0

η j w j(y , x2 , τ)

ση �
∑
j≥0

η j s j(y , x2 , τ)

Inclusions region
(y ∈ ∪iΩi , x2 ∈ R)

vη �
∑
j≥0

η j w j
i (y , x2 , τ)

ση �
∑
j≥0

η j s j
i (y , x2 , τ).

(2.3)

The terms (w j , s j) j≥0 of the expansion of the solution (vη , ση) in the inner region are assumed to be
periodic with respect to y2. In addition, the continuity conditions on the inclusions interfaces read
w j � w j

i and s j ·n � s j
i ·n on ∂Ωi. We consider the bounded domain described in y-coordinates as

Ωb � [−yb
1 , yb

1 ]×[−1/2, 1/2] with yb
1 > e/h, see Figure 2.2. Later on, Ωi will denote the inclusion

in this bounded elementary cell. Moreover, one introduces the domain Ω � limyb
1→±∞

Ωb �

R × [−1/2, 1/2] which is the elementary cell generating the periodic row of inclusions.
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Figure 2.2 – Bounded elementary cell Ωb � [−yb
1 , yb

1 ] × [−
1
2 ,

1
2 ] with yb

1 >
e
h .

As is customary in the two-scale asymptotic expansion approach, the differential operators
featured in (2.2) are rewritten in the inner regions as:

∇x vη →
1
η
∇y vη +

∂vη
∂x2

e2 and ∇x · ση →
1
η
∇y · ση +

∂ση
∂x2
· e2

in terms of the canonical unit vectors e1 , e2.
Inserting (2.3) in (2.2) while using the previous differential operator identities, one obtains the

following recursive differential problems at the orders j ≥ 0 in the three regions:

∂σ j

∂τ
� ∇x v j , (2.4a)

∂v j

∂τ
� ∇x · σ j , (2.4b)

∂s j−1

∂τ
�
∂w j−1

∂x2
e2 + ∇y w j , (2.4c)

∂w j−1

∂τ
�
∂s j−1

∂x2
· e2 + ∇y · s j , (2.4d)

∂s j
i

∂τ
�
µ0

µm

(
∂w j−2

i

∂x2
e2 + ∇y w j−1

i

)
, (2.4e)

ρi

ρm

∂w j−1
i

∂τ
�
∂s j−1

i

∂x2
· e2 + ∇y · s j

i , (2.4f)

where s j , s j
i , w j and w j

i vanish if j < 0. Consequently, one can identify the O(η−1)-terms in the
inner region: {

∇y w0
� 0, (2.5a)

∇y · s0
� 0. (2.5b)
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2.1. Effective jump conditions in the time domain

Then, in all three regions, the O(1)-terms read

∂σ0

∂τ
� ∇x v0 , (2.6a)

∂v0

∂τ
� ∇x · σ0 , (2.6b)

∂s0

∂τ
�
∂w0

∂x2
e2 + ∇y w1 , (2.6c)

∂w0

∂τ
�
∂s0

∂x2
· e2 + ∇y · s1 , (2.6d)

∂s0
i

∂τ
� 0, (2.6e)

ρi

ρm

∂w0
i

∂τ
�
∂s0

i

∂x2
· e2 + ∇y · s1

i . (2.6f)

One notes that the stress vector in the inclusion (2.6e) equals zero at the order O(1) whereas
there is a contribution at the zeroth order for the stress vector in the matrix (2.6c). This is due
to the high contrast in η2 between µm and µi as described in Assumption 2.1. Assuming that at
the initial time s0

i (y , x2 , 0) � 0, then (2.6e) implies

s0
i (y , x2 , τ) � 0 ∀τ ≥ 0. (2.7)

Then the O(η)-term within the inclusions reads

∂s1
i

∂τ
�
µ0

µm
∇y w0

i . (2.8)

Finally, the outer and the inner solutions have to match in an intermediate region, see Figure 1.6.
Therefore, matching conditions are formulated in the limit y1 → ±∞ for the near-field solution
(inner region) and x1 → 0± for the far-field solution (outer region) which are expressed using the
ansatz (2.3): 

lim
x1→0±

∑
j≥0

η j v j(x , τ) � lim
y1→±∞

∑
j≥0

η j w j(y , x2 , τ), (2.9a)

lim
x1→0±

∑
j≥0

η jσ j(x , τ) � lim
y1→±∞

∑
j≥0

η j s j(y , x2 , τ). (2.9b)

Taylor expansions of the outer fields v j and σ j at x1 � 0 are written out for j � 0, 1:{
v j(x1 , x2 , τ) � v j(0± , x2 , τ) + η y1∂x1 v j(0± , x2 , τ),
σ j(x1 , x2 , τ) � σ j(0± , x2 , τ) + η y1∂x1σ

j(0± , x2 , τ).
(2.10)

Eventually, one inserts (2.10) in (2.9). The O(1)-terms are then identified:
v0(0± , x2 , τ) � lim

y1→±∞
w0(y , x2 , τ), (2.11a)

σ0(0± , x2 , τ) � lim
y1→±∞

s0(y , x2 , τ), (2.11b)

and the O(η)-terms give:
v1(0± , x2 , τ) � lim

y1→±∞

[
w1(y , x2 , τ) − y1

∂v0

∂x1
(0± , x2 , τ)

]
, (2.12a)

σ1(0± , x2 , τ) � lim
y1→±∞

[
s1(y , x2 , τ) − y1

∂σ0

∂x1
(0± , x2 , τ)

]
. (2.12b)

We will see in the following that these limits are independant of y2.
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2.1.3.1 Jump conditions at the order O(1)

Introducing for any function f (x1) the notation
�

f
�
� f (0+) − f (0−) then the jump condition for

v0 reads: �
v0(·, x2 , τ)

�
� 0, (2.13)

due to (2.11a) and (2.5a). More precisely, for the zeroth-order velocity field we have:

v0(0± , x2 , τ) � w0(x2 , τ). (2.14)

Integrating (2.5b) on Ωb\Ωi yields:∫ 1
2

− 1
2

[s0
1(+yb

1 , y2 , x2 , τ) − s0
1(−yb

1 , y2 , x2 , τ)]dy2 � 0, (2.15)

where we used the continuity of s0 · n on ∂Ωi, (2.6e) and the periodicity conditions with respect
to y2. Taking the limit when yb

1 → +∞, we get the integrated jump condition:�
σ0

1(·, x2 , τ)
�
� 0. (2.16)

Remark 3. We assume that v0 and σ0
1 are sufficiently smooth so that

∂
∂ζ

�
v0(·, x2 , τ)

�
�

�
∂
∂ζ v0(·, x2 , τ)

�
and ∂

∂ζ

�
σ0

1(·, x2 , τ)
�
�

�
∂
∂ζσ

0
1(·, x2 , τ)

�
for ζ � x2 or ζ � τ.

Hence equations (2.13) and (2.16) imply:�
∂
∂ζ

v0(·, x2 , τ)
�
� 0, (2.17)

and �
∂
∂ζ
σ0

1(·, x2 , τ)
�
� 0, (2.18)

for ζ � x2 or τ.

2.1.3.2 Jump conditions at the order O(η)

� Jump condition for v1. Due to the continuity condition (2.18) with ζ � τ and based on (2.6a),
we get that ∂v0/∂x1 is continuous at x1 � 0. Thus, from (2.12a), one obtains the jump condition:�

v1(·, x2 , τ)
�
� lim

y1→+∞

[
w1(y1 , y2 , x2 , τ) − w1(−y1 , y2 , x2 , τ) − 2y1

∂v0

∂x1
(0, x2 , τ)

]
. (2.19)

At this point, an expression for w1 is needed. For this purpose, we combine (2.5b), (2.6c), (2.14),
(2.11b), (2.6a) and the fact that ∂s0/∂τ · n � ∂s0

i /∂τ · n � 0 on ∂Ωi due to (2.6e). Then, one
obtains that the field w1 is part of the following problem:

∇y ·
∂s0

∂τ
� 0 in Ω\Ωi ,

∂s0

∂τ
�
∂v0

∂x2
(0, x2 , τ)e2 + ∇y w1 in Ω\Ωi ,

∂s0

∂τ
· n � 0 on ∂Ωi ,

lim
y1→±∞

∂s0

∂τ
� ∇x v0(0, x2 , τ).

(2.20)
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2.1. Effective jump conditions in the time domain

The problem above being linear with respect to ∂v0

∂x1
(0, x2 , τ) and ∂v0

∂x2
(0, x2 , τ), the field w1 can be

written as

w1(y , x2 , τ) �
∂v0

∂x1
(0, x2 , τ)[Φ(1)(y) + y1] +

∂v0

∂x2
(0, x2 , τ)Φ(2)(y) + w̃(x2 , τ), (2.21)

where the field w̃ does not depend on y and will not play any role in the following. For j � 1, 2
the fields Φ( j) are y2-periodic and solutions of:

∆yΦ
( j)(y) � 0 in Ω\Ωi ,

[∇yΦ
( j)(y) + e j] · n � 0 on ∂Ωi ,

lim
y1→±∞

∇yΦ
( j)(y1 , y2) � 0.

(2.22)

Owing to the third equation in (2.22), some constants B j are introduced for j � 1, 2 as

B j � lim
y1→+∞

[
Φ( j)(y1 , y2) − Φ( j)(−y1 , y2)

]
. (2.23)

Since Φ( j) ∈ L2
loc(Ω) and ∇Φ( j) ∈ L2(Ω) the constants are well defined. Furthermore, due to their

definition, the fact that Φ( j) is defined up to a constant in (2.22) will not be a problem. Finally,
inserting (2.21) in (2.19) leads to�

v1(·, x2 , τ)
�
� B1

∂v0

∂x1
(0, x2 , τ) + B2

∂v0

∂x2
(0, x2 , τ). (2.24)

� Jump condition for σ1
1. Using both (2.17) and (2.18) with ζ � x2 and ζ � τ together with (2.6a)

and (2.6b) implies that ∂
∂x1
σ0

1(·, x2 , τ) is continuous at x1 � 0. The equation (2.12b) integrated
along y2 ∈ [−1/2, 1/2] provides the jump condition for σ1

1:�
σ1

1(·, x2 , τ)
�
� lim

yb
1→+∞

∫ 1
2

− 1
2

[
s1

1(yb
1 , y2 , x2 , τ) − s1

1(−yb
1 , y2 , x2 , τ)

]
dy2 − 2yb

1
∂σ0

1
∂x1
(0, x2 , τ).

We start with (2.6d) integrated on Ωb\Ωi:∫
Ωb\Ωi

∂w0

∂τ
dy︸             ︷︷             ︸

I1

−
∫
Ωb\Ωi

∂s0

∂x2
· e2 dy︸                    ︷︷                    ︸

I2

−
∫
Ωb\Ωi

∇y · s1 dy︸                  ︷︷                  ︸
I3

� 0.

We introduce the parameter ϕ satisfying 0 < ϕ < 1 and such that Si �
eϕ
h is the surface of the

inclusion in y-coordinates. Due to (2.14), the first integral I1 can be computed:

I1 �
∂v0

∂τ
(0, x2 , τ)

[
2yb

1 −
eϕ
h

]
. (2.25)

The derivative ∂
∂τ s0

2(y , x2 , τ) can be expressed thanks to the cell functions defined in (2.22) using
the second equation of (2.20) together with (2.21) and (2.6a):

∂s0
2

∂τ
(y , x2 , τ) �

∂σ0
1

∂τ
(0, x2 , τ)

∂Φ(1)

∂y2
(y) +

∂σ0
2

∂τ
(0, x2 , τ)

[
∂Φ(2)

∂y2
(y) + 1

]
. (2.26)

Integrating (2.26) in time and differentiating it with respect to x2, the second integral I2 writes:
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I2 � −
∂σ0

1
∂x2
(0, x2 , τ)

∫
Ωb\Ωi

∂Φ(1)

∂y2
(y)dy −

∂σ0
2

∂x2
(0, x2 , τ)

[∫
Ωb\Ωi

∂Φ(2)

∂y2
(y)dy + 2yb

1 −
eϕ
h

]
.

(2.27)

Owing to the periodicity of s1 with respect to y2 and introducing the curvilinear abscissa ` on
∂Ωi, with n being the associated inward unit normal, then I3 can be expressed as

I3 � −
∫ 1

2

− 1
2

[s1
1(yb

1 , y2 , x2 , τ) − s1
1(−yb

1 , y2 , x2 , τ)]dy2 −
∫
∂Ωi

s1 · n d`.

Due to the continuity condition s1 · n � s1
i · n on ∂Ωi, the second term in I3 can be recast as

−
∫
∂Ωi

s1 · n d` �
∫
Ωi

∇y · s1
i dy.

We now use (2.6f) together with (2.7) and (2.8). For the boundary condition, the continuity
condition w j � w j

i on ∂Ωi and (2.5a) with (2.11a) is used. Then, the field s1
i satisfies

∂s1
i

∂τ
(y , x2 , τ) �

µ0

µm
∇y w0

i (y , x2 , τ) (y ∈ Ωi),

ρi

ρm

∂w0
i

∂τ
(y , x2 , τ) � ∇y · s1

i (y , x2 , τ) (y ∈ Ωi),

w0
i (y , x2 , τ) � v0(0, x2 , τ) (y ∈ ∂Ωi).

Therefore, one concludes that the field w0
i is solution of

ρi

ρm

∂2w0
i

∂τ2 (y , x2 , τ) −
µ0

µm
∆y w0

i (y , x2 , τ) � 0 (y ∈ Ωi),

w0
i (y , x2 , τ) � v0(0, x2 , τ) (y ∈ ∂Ωi),

(2.28)

and one can rewrite

I3 � −
∫ 1

2

− 1
2

[s1
1(yb

1 , y2 , x2 , τ) − s1
1(−yb

1 , y2 , x2 , τ)]dy2 +
ρi

ρm

∫
Ωi

∂w0
i

∂τ
dy. (2.29)

Collecting the three integrals (2.25), (2.27) and (2.29) and using (2.6b), one gets∫ 1
2

− 1
2

[s1
1(yb

1 , y2 , x2 , τ) − s1
1(−yb

1 , y2 , x2 , τ)]dy2 − 2yb
1
∂σ0

1
∂x1
(0, x2 , τ) � −

eϕ
h
∂σ0

1
∂x1
(0, x2 , τ)

−
∂σ0

1
∂x2
(0, x2 , τ)

∫
Ωb\Ωi

∂Φ(1)

∂y2
(y)dy −

∂σ0
2

∂x2
(0, x2 , τ)

∫
Ωb\Ωi

∂Φ(2)

∂y2
(y)dy +

ρi

ρm

∫
Ωi

∂w0
i

∂τ
dy.

(2.30)

Introducing the following two parameters

Cj � −
∫
Ω\Ωi

∂Φ( j)

∂y2
(y)dy for j � 1, 2 (2.31)

and taking the limit yb
1 → +∞ in (2.30) finally entails the following jump condition

�
σ1

1(·, x2 , τ)
�

� −
eϕ
h
∂σ0

1
∂x1
(0, x2 , τ) + C1

∂σ0
1

∂x2
(0, x2 , τ) + C2

∂σ0
2

∂x2
(0, x2 , τ) +

ρi

ρm

∫
Ωi

∂w0
i

∂τ
dy.

(2.32)
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2.1. Effective jump conditions in the time domain

2.1.3.3 Final effective jump conditions

The jump conditions derived in the previous sections are associated with an interface of zero
thickness as one considers jumps in the limit x1 → 0±. Yet, it is proven in Marigo and Maurel,
2016a and Marigo et al., 2017a that a non-zero thickness a allows to define an interface energy
Ea, which would in turn ensure the stability of the effective model which means that V and Σ
are bounded (Delourme et al., 2012). In practice, this condition prevents from instabilities which
appear when the interface term Ea → −∞ as time increases and is compensated by a bulk energy
term E → +∞ (Delourme et al., 2021).

Using such an energy-based argument, we will justify in the next section that an enlarged
interface is also required in the resonant case considered here. Meanwhile, the present section
establishes the final effective jump conditions expressed relatively to an enlarged interface of
thickness a > 0 in the original system of space coordinates with a/h � O(1). The effective jump
conditions thus obtained are equivalent up to order O(η2) to the ones formulated in Section
2.1.3.2.

One considers the definition (1.9) of the jump and the mean value around a centered enlarged
interface. Setting f � vη(·, x2 , τ) or f � σ1η(·, x2 , τ), we seek asymptotics of the form:�

f
�

km a �
�

f 0�
km a + η

�
f 1�

km a + O(η
2). (2.33)

To do so, we consider the following Taylor expansions between 0± and ±km a/2 for the function f
defined above 

�
f 0�

�
�

f 0�
km a − η

a
h

〈〈
∂ f 0

∂x1

〉〉
km a

+ O(η2),�
f 1�

�
�

f 1�
km a + O(η).

(2.34)

Likewise for 1 � ∂v0/∂x j(·, x2 , τ) or 1 � ∂σ0
k/∂x j(·, x2 , τ) with j, k � 1, 2 one considers

1(0) �
〈〈
1
〉〉

km a + O(η). (2.35)

Due to (2.35), the solution to (2.28) is expanded as w0
i � wi +O(η) where the field wi is solution

to the inner problem
ρi

ρm

∂2wi

∂τ2 (y , x2 , τ) −
µ0

µm
∆y wi(y , x2 , τ) � 0 (y ∈ Ωi),

wi(y , x2 , τ) � 〈〈v(·, x2 , τ)〉〉km a (y ∈ ∂Ωi).
(2.36)

Introducing the following coefficients

S �
a
h
−

eϕ
h

and B �
a
h
+ B1 , (2.37)

then combining the equations (2.33–2.35), (2.13), (2.24), (2.16), (2.32) and (2.36), we get
�

vη
�

km a � η

{
B

〈〈
∂vη
∂x1

〉〉
km a

+ B2

〈〈
∂vη
∂x2

〉〉
km a

}
+ O(η2),

�
σ1η

�
km a � η

{
S

〈〈
∂σ1η

∂x1

〉〉
km a

+ C1

〈〈
∂σ1η

∂x2

〉〉
km a

+ C2

〈〈
∂σ2η

∂x2

〉〉
km a

+
ρi

ρm

∫
Ωi

∂wi

∂τ
dy

}
+ O(η2).

We now consider the associated approximation of the fields, as (v , σ) � (v0 + ηv1 , σ0 + ησ1),
which are solution to (2.2) in the matrix domain while satisfying the jump conditions above but
truncated at the second order. These fields are then transposed to the original coordinate system
(X , t), as (V, Σ), see Figure 2.1. This finally yields the following effective model at order O(η):
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Result 2.1: Resonant jump conditions in the time domain



∂Σ
∂t

� µm∇V (|X1 | ≥ a/2, X2 ∈ R),

ρm
∂V
∂t

� ∇ · Σ (|X1 | ≥ a/2, X2 ∈ R),

~V�a � h
{
B

〈〈
∂V
∂X1

〉〉
a
+ B2

〈〈
∂V
∂X2

〉〉
a

}
(X2 ∈ R),

~Σ1�a � h
{
S

〈〈
∂Σ1
∂X1

〉〉
a
+ C1

〈〈
∂Σ1
∂X2

〉〉
a
+ C2

〈〈
∂Σ2
∂X2

〉〉
a
+ ρi

∫
Ωi

∂Wi

∂t
dy

}
(X2 ∈ R).

(2.38)

In (2.38), Wi(y ,X2 , t) �
√
µm
ρm

wi(y , x2 , τ) so that Wi is solution of
∂Σi

∂t
(y ,X2 , t) �

µi

h
∇yWi(y ,X2 , t) (y ∈ Ωi),

ρi
∂Wi

∂t
(y ,X2 , t) �

1
h
∇y · Σi(y ,X2 , t) (y ∈ Ωi),

Wi(y ,X2 , t) � 〈〈V(·,X2 , t)〉〉a (y ∈ ∂Ωi).

(2.39)

One notices that the field Wi is a function of X2 through the prescribed boundary condition
〈〈V(·,X2 , t)〉〉a. The five effective parameters B, B2, S, C1 and C2 are given by (2.37), (2.23),
and (2.31).

Remark 4. When ρi � 0, as it is in the case when the inclusions are replaced by voids, the resonant
term ρi

∫
Ωi

∂Wi
∂t dy in (2.38) vanishes. Therefore, when the contribution of the resonances is not

activated, one recovers the model of Marigo and Maurel, 2016a.

Remark 5. The equivalence between this model and the one obtained in the frequency-domain
(1.19) in Pham et al., 2017 is assessed in Appendix 2.A and is based on the fact that

F

[
ρi

∫
Ωi

∂Wi

∂t
dy

]
� D∞(ω)

〈〈
∇ · Σ̂

〉〉
a . (2.40)

2.2 Energy analysis

2.2.1 Balance of energy

One advantage of the time-domain formulation is the possibility to perform an energy analysis,
which is studied in this section. In the original microstructured configuration, a bounded domain
D � ∪iDi ∪ Dm is considered in order to define the elastic energy for all time t ≥ 0

Eh(t) �
1
2

∫
D

{
1

µh(X)
(Σh(X , t))2 + ρh(X)(Vh(X , t))2

}
dX , (2.41)

to get the conservation identity
d
dt
Eh(t) � 0. (2.42)

Accordingly, in the homogenized problem, the elastic energy has to be defined in the bounded
domain D\Da that excludes the enlarged interface of width a, see Figure 2.3. In this configuration,
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2.2. Energy analysis

Homogenization

Dm

Di Da

D\Da

Figure 2.3 – (left) Domain D � ∪iDi∪Dm considered for the energy analysis in the original microstructured
configuration, (right) domain D\Da for the analysis of the effective problem.

a term Ea will be associated to the jump conditions at the effective interface. We expect it to
account for the bulk energy of the microstructured region of thickness e in the original problem,
so that Ea ≥ 0 is expected.

Multiplying the first equation of (2.38) by Σ, the second by V, then after summation and
integration over D\Da one obtains:

d
dt

1
2

∫
D\Da

{
1
µm
(Σ)2 + ρm(V)2

}
dX︸                                     ︷︷                                     ︸

E

+

∫
I
~VΣ · e1�a dX2︸                 ︷︷                 ︸

d
dt Ea

+

∫
∂D

VΣ · n d` � 0, (2.43)

where the interval I is defined as I � {X2 : X ∈ Da} and n is the inward unit normal on ∂D. E and
Ea are respectively bulk and interface energy terms. The third term involves the velocity and the
normal component of the stress vector on the boundaries of the domain D. We assume that these
wavefields have a compact support so that this third term vanishes if D is chosen large enough.

Focusing on the term Ea, then using the relation
�

f 1
�

a �
�

f
�

a

〈〈
1
〉〉

a +
�
1

�
a

〈〈
f
〉〉

a together
with the jump conditions of (2.38) one obtains

d
dt
Ea �

∫
I

h
{
B

〈〈
∂V
∂X1

〉〉
a
+ B2

〈〈
∂V
∂X2

〉〉
a

}
〈〈Σ1〉〉a dX2

+

∫
I

h
{
S

〈〈
∂Σ1
∂X1

〉〉
a
+ C1

〈〈
∂Σ1
∂X2

〉〉
a
+ C2

〈〈
∂Σ2
∂X2

〉〉
a

}
〈〈V〉〉a dX2 + J ,

where one has defined

J � hρi

∫
I

{∫
Ωi

∂Wi

∂t
(y ,X2 , t)dy

}
〈〈V〉〉a dX2. (2.44)

The first two relations of (2.38) and integration by parts lead to

d
dt
Ea � β +

h
2

d
dt

∫
I

{
Sρm 〈〈V〉〉2a +

B
µm
〈〈Σ1〉〉2a +

S − C2
µm

〈〈Σ2〉〉2a
}

dX2

+ h(B2 − C1)
∫

I

〈〈
∂V
∂X2

〉〉
a
〈〈Σ1〉〉a + J ,

where β is a boundary term on ∂I.
Adapting the proof of Appendix A in Marigo et al., 2017a with an integration in the domain

Ω\Ωi, one proves the following property.
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Property 1. The effective parameters B2 and C1 defined in (2.23) and (2.31) satisfy

B2 � C1.

Proof. First, we establish a formal relation that will be used several times to perform the energy
analysis. To do so, we consider a function Φ̃ ∈ H1

loc(Ω\Ωi) which is at most constant when |y1 |
goes to infinity and which is y2-periodic. Then, the first equation of (2.22) is multiplied by Φ̃ and
integrated by parts. Using the boundary conditions, one obtains:∫

Ω\Ωi

[
∇yΦ

( j)(y)+e j
]
·∇yΦ̃(y)dy− lim

y1→+∞

∫ 1/2

−1/2

[
Φ̃(y1 , y2)−Φ̃(−y1 , y2)

]
e1 ·e j dy2 � 0. (2.45)

Remark 6. The equation (2.45) is a formal relation used in this part in order to obtain a lower
bound for the effective parameters. However, this does not constitute a well-posed variational
formulation. This would require to introduce suitable functional spaces and Dirichlet-to-Neumann
operators in order to reformulate the problem in a bounded domain.

� An expression for B2. First, we consider the formal relation (2.45) that is satisfied by the field
Φ(1) with Φ̃ � Φ(2). It yields

B2 �

∫
Ω\Ωi

∇yΦ
(1)(y) · ∇yΦ

(2)(y)dy +

∫
Ω\Ωi

∇yΦ
(2) · e1 dy. (2.46)

To have an explicit expression of the last term, we multiply the second cell problem (2.22) by the
function y1 and we integrate in the bounded domain Ωb\Ωi, i.e.∫

Ωb\Ωi

∆y(Φ(2) + y2)y1 dy � 0.

By integration by parts and due to the periodicity and boundary conditions for Φ(2), this equation
leads to∫ 1/2

−1/2

[
∇yΦ

(2)(−yb
1 , y2) + ∇yΦ

(2)(yb
1 , y2)

]
· yb

1 e1 dy2 −
∫
Ωb\Ωi

∇yΦ
(2) · e1 dy � 0. (2.47)

One can define the half-strips ] −∞;−e/h[×[−1/2; 1/2] and ]e/h;+∞[×[−1/2; 1/2] where Φ(2) is
harmonic. Then, due to the modal decomposition, it is straightforward that

lim
y1→±∞

[
y1∇yΦ

(2)(y1 , y2)
]
� 0.

Consequently, due to (2.47) and (2.46)

B2 �

∫
Ω\Ωi

∇yΦ
(1)(y) · ∇yΦ

(2)(y)dy. (2.48)

� An expression for C1. We now consider the formal relation (2.45) that is satisfied by the field
Φ(2) with Φ̃ � Φ(1). It yields

C1 �

∫
Ω\Ωi

∇yΦ
(1) · ∇yΦ

(2) dy.

Combined with (2.48) this concludes the proof. �
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As a consequence, the term involving Ea reduces to

d
dt
Ea � β +

h
2

d
dt

∫
I

{
Sρm 〈〈V〉〉2a +

B
µm
〈〈Σ1〉〉2a +

S − C2
µm

〈〈Σ2〉〉2a
}

dX2 + J . (2.49)

Next, we want to express J in (2.44) as a quadratic form. To do so, we use the field equations
and the boundary conditions in (2.39) to rewrite J as follows:

J � −
∫

I

∫
∂Ωi

Σi(y ,X2 , t) · n 〈〈V(·,X2 , t)〉〉a dy dX2 ,

�

∫
I

∫
Ωi

{
Wi ∇y · Σi + Σi · ∇yWi

}
dy dX2 ,

from which one gets

J �
1
2

d
dt

∫
I

∫
Ωi

{
hρiWi

2
+

h
µi

��Σi
��2} dy dX2.

Finally, the interface term (2.49) is recast as

d
dt
Ea � β +

h
2

d
dt

∫
I

{
Sρm 〈〈V〉〉2a +

B
µm
〈〈Σ1〉〉2a +

S − C2
µm

〈〈Σ2〉〉2a
}

dX2

+
h
2

d
dt

∫
I

∫
Ωi

{
ρiWi

2
+

1
µi

��Σi
��2} dy dX2.

(2.50)

To conclude, the bounded domain D is chosen sufficiently large so that the remaining boundary
terms on ∂D in (2.43) and β on ∂I in (2.50) vanish. The identity (2.43) finally reads as the
following conservation equation:

Result 2.2: Conservation equation

d
dt
(E + Ea) � 0, (2.51)

with E defined in (2.43) and

Ea �
h
2

∫
I

{
Sρm 〈〈V〉〉2a +

B
µm
〈〈Σ1〉〉2a +

S − C2
µm

〈〈Σ2〉〉2a +
∫
Ωi

(
ρiWi

2
+

1
µi

��Σi
��2) dy

}
dX2.

(2.52)

2.2.2 Positivity of the interface term Ea

Lastly, the term Ea has to be positive to represent an energy. In this case, (2.51) is a conservation
equation for the total energy (E + Ea), a sufficient condition for the continuous homogenized
problem considered to be stable. Since Ea is a quadratic form, a sufficient condition for Ea ≥ 0 is
B ≥ 0, S ≥ 0 and (S − C2) ≥ 0. These three terms can be bounded below as follows:

• S ≥ 0 if and only if a/e ≥ ϕ.

• B ≥ 0. This condition has been proved in the 3D case in Maurel, Pham, and Marigo, 2019b
when a � e. For completeness, it is proved for all a in the 2D case in Section 2.2.2.1.

• (S −C2) ≥ 0 if a ≥ e. This condition has been proved in the 3D case in Maurel et al., 2019b
when a � e. For completeness, it is proved for all a in the 2D case in Section 2.2.2.2.
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Chapter 2. Homogenization and simulations for a row of highly contrasted inclusions

Result 2.3: Stability

To sum up, provided that a ≥ e then Ea can be defined as an energy for all 0 < ϕ < 1,
which is associated with the effective interface of finite thickness a. In turn, Equation (2.51)
ensures that the homogenized problem (2.38) is stable.

2.2.2.1 Positivity of the parameter B

We seek a lower bound for the parameter B that is defined by (2.37) and (2.23). To do so, let us
define the following quadratic functional:

L
(
Φ̃

)
�

∫
Ω\Ωi

[
1
2∇yΦ̃(y) + e1

]
· ∇yΦ̃(y)dy − lim

y1→+∞

∫ 1/2

−1/2

[
Φ̃(y1 , y2) − Φ̃(−y1 , y2)

]
dy2.

Due to the formal relation (2.45) for Φ(1), one has for all Φ̃ ∈ H1
loc(Ω\Ωi) at most constant when

|y1 | 7→ ∞ and y2-periodic:

L
(
Φ(1) + Φ̃

)
− L

(
Φ(1)

)
�

1
2

∫
Ω\Ωi

|∇yΦ̃(y)|2 dy ≥ 0. (2.53)

Consequently,
L

(
Φ(1)

)
≤ L

(
Φ̃

)
(2.54)

for all Φ̃ ∈ H1
loc(Ω\Ωi) at most constant when |y1 | 7→ ∞ and y2-periodic. Moreover, one has

L
(
Φ(1)

)
� −B1

2 +
1
2

∫
Ω\Ωi

∇yΦ
(1) · e1 dy. (2.55)

To have an explicit expression of the second term, we multiply the first cell problem (2.22) by the
function y1 and we integrate in the bounded domain Ωb\Ωi, i.e.∫

Ωb\Ωi

∆y(Φ(1) + y1)y1 dy � 0.

By integration by parts and due to the periodicity and boundary conditions for Φ(1), this equation
leads to∫ 1/2

−1/2

[
∇yΦ

(1)(−yb
1 , y2)+∇yΦ

(1)(yb
1 , y2)

]
·yb

1 e1 dy2+2yb
1−

∫
Ωb\Ωi

∇yΦ
(1)·e1 dy−

∫
Ωb\Ωi

dy � 0.

Given that the last integral is equal to (2yb
1 − eϕ/h), then considering the previous identity in the

limit yb
1 → +∞ entails ∫

Ω\Ωi

∇yΦ
(1) · e1 dy �

eϕ
h
,

and thus, from (2.55), one gets

L
(
Φ(1)

)
� −B1

2 +
eϕ
2h

.

As a consequence and due to (2.54), one obtains the following lower bound for B1:

B1 ≥
eϕ
h
− 2L

(
Φ̃

)
(2.56)
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2.2. Energy analysis

for all Φ̃ ∈ H1
loc(Ω\Ωi), Φ̃ at most constant when |y1 | 7→ ∞ and y2-periodic. To have an explicit

bound, we define Φ̃ as the piecewise linear function:

Φ̃(y) � 2β̃h
y1

e
if 0 ≤ |y1 | ≤

e
2h

and Φ̃(y) � β̃ sign(y1) if |y1 | ≥
e

2h

with β̃ a constant, from which one gets:

L
(
Φ̃

)
� 2 h

e
(1 − ϕ)β̃2 − 2β̃ϕ.

As a quadratic function of β̃, then L
(
Φ̃

)
reaches a minimum for β̃ �

eϕ
2h(1−ϕ) , which inserted in

(2.56) yields:

B1 ≥
eϕ
h

+
eϕ2

h(1 − ϕ) .

To conclude, using (2.37), one finally obtains the following positive lower bound for B:

B ≥ a
h
+

eϕ
h

+
eϕ2

h(1 − ϕ) ≥ 0.

2.2.2.2 Positivity of the term (S − C2)

We seek a lower bound for the term (S − C2) that is featured in (2.52) and is defined by (2.37)
and (2.31). Let us introduce Ψ(2) � (∇yΦ(2) + e2) and the following admissibility space:

Wper(Ω\Ωi) �
{
( f − e2) ∈ L2

loc(Ω\Ωi) with f (y1 , y2 + 1) � f (y1 , y2) for all y ∈ Ω\Ωi

and such that ∇y · f � 0 in Ω\Ωi , f · n � 0 on ∂Ωi and lim
y1→±∞

f � e2

}
,

so that Ψ(2) ∈ Wper(Ω\Ωi). We also introduce for any Ψ̃ ∈ Wper(Ω\Ωi) the following func-
tional:

M
(
Ψ̃

)
�

1
2

∫
Ω\Ωi

��Ψ̃ − e2
��2 dy.

Upon noticing that for any admissible field Ψ̃ the derivative ofM inWper(Ω\Ωi) satisfies

M′
[
Ψ(2)

]
Ψ̃ �

∫
Ω\Ωi

∇yΦ
(2) · Ψ̃ dy �

∫
∂(Ω\Ωi)

Φ(2)Ψ̃ · n dy −
∫
Ω\Ωi

Φ(2)∇y · Ψ̃ dy � 0,

then Ψ(2) minimizes the quadratic functionalM. Moreover, from the formal relation (2.45) that
is satisfied by the field Φ(2) with Φ̃ � Φ(2) one has

C2 �

∫
Ω\Ωi

��∇yΦ
(2)��2 dy � 2M

(
Ψ(2)

)
.

As a consequence, we obtain that C2 ≤ 2M
(
Ψ̃

)
for all Ψ̃ ∈ Wper(Ω\Ωi). Finally, we define Ψ̃

as
Ψ̃(y) � 0 if 0 ≤ |y1 | <

e
2h

and Ψ̃(y) � e2 if |y1 | ≥
e

2h

from which one gets M(Ψ̃) � e(1 − ϕ)/(2h). From the minimization principle, we finally obtain
the following lower bound (S − C2) ≥ (a − e)/h, which proves that (S − C2) ≥ 0 if a ≥ e.
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Chapter 2. Homogenization and simulations for a row of highly contrasted inclusions

2.3 Numerical experiments

In the previous two sections we derived the resonant jump conditions in the time domain, and we
used this formulation to perform an energy analysis. This allowed to get a sufficient condition for
the problem to be stable. In this section, we now investigate numerically the propagation of waves
in the effective media so obtained.

2.3.1 Configuration and numerical methods

2.3.1.1 Microstructured configuration

We consider the propagation of waves across a straight and h-periodic row of elliptic inclusions
aligned with the X2-axis and placed at X1 � 0m, see top of Figure 1.5. One sets h � 2m and the
ellipses have semi-major axis R1 � 0.8m, semi-minor axis R2 � 0.5m and tilt angle θ � 40◦ with
respect to the X1-axis, which results in a row thickness e � 1.3838m. The inclusions are highly
contrasted, with shear modulus µi � 10−2µm � 108 kg · m−1 · s−2 while their mass density is such
that ρi � ρm � 4.44 · 103 kg · m−3. The corresponding wave velocities are cm � 1500m · s−1 and
ci � 150m · s−1.

A numerical approximation of the solution Uh � (Vh , Σh)> in this microstructured configuration
is obtained using the numerical method presented in Lombard et al., 2008. The system (2.1) is
discretized on a Cartesian grid and solved using the ADER-4 scheme (Schwartzkopff, Dumbser, &
Munz, 2004; Lorcher & Munz, 2006). As expected, the mesh size has to be much smaller than h
for the inclusions geometry to be suitably approximated, which in turn implies high numerical costs
in terms of computation time and memory requirements. Here, the interfaces ∂Ωi are discretized
using the Explicit Simplified Interface Method (ESIM).

2.3.1.2 Homogenized model

In the equivalent homogenized model (2.38), and owing to the analysis of Section 2.2, the interface
thickness has to be chosen as a ≥ e. Furthermore, in the non-resonant case the discrepancy on
the fields has been shown to be minimized for a � e (Marigo et al., 2017a). Consequently, the
same thickness of the enlarged interface a � e is chosen in the present numerical experiments for
the resonant case.

The effective parameter S in (2.37) is calculated from the physical parameter values while
the parameters B1, B2, C1 and C2 are computed numerically from the solutions Φ( j) of the cell
problems. They are approximated from the weak formulation (2.45) in a bounded domain Ωb\Ωi
instead of Ω\Ωi. The bounded domain is Ωb � [−yb , yb] × [−1

2 ,
1
2 ] with periodicity conditions

in y2 and Neumann conditions in y1. The value yb is chosen to be sufficiently large with yb � 5
in order to approximate the Neumann condition at infinity. These approximations are computed
using the finite-element method in FreeFem++ (Hecht, 2012) on a single cell. Once these two cell
problems are solved numerically, then the four coefficients B1, B2, C1 and C2 are approximated
based on (2.23) and (2.31). For the configuration considered, the obtained values are reported in
Table 2.1.

Table 2.1 – Numerical values of the effective interface parameters featured in (2.38).

B1 B B2 S C1 C2
0.911 1.603 -0.142 0.378 -0.142 0.2

Finally, the solution U � (V, Σ)> of the time-domain effective problem (2.38) is discretized
with a mesh size ∆X and a time step ∆t, and we denote by (U)ni , j the approximation of U at
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2.3. Numerical experiments

point (i∆X, j∆X) and time tn � n∆t. A specific numerical method has been developed in Touboul
et al., 2020a to handle the resonant jump conditions considered, which are non-local in time. The
latter relies on the introduction of a set of auxiliary variables, locally along the interface, to derive
equivalent jump conditions that are local in time. The resulting system is in turn discretized on a
Cartesian grid and solved using the ADER-4 scheme while the geometry of the interface is handled
using an extension of the ESIM to the resonant case. This numerical method is detailed in Chapter
3.

In the proposed numerical method, the auxiliary variables, which are introduced to derive a
local-in-time system, rely on the expression of D∞(ω) in (1.24). The values of the coefficients
(αr , ωr) that define D∞(ω) are obtained by solving numerically the eigenvalue problem (1.22) in
FreeFem++ (Hecht, 2012). The first four modes Pr of the eigenvalue problem (1.22) are shown in
Figure 2.4 for the elliptic inclusions case considered. Referring to the discussion in Section 1.2.2.4,
then the modes P1 and P4 in Figure 2.4a and 2.4d have non-null mean values and are linked to
resonances at ω1 and ω4. The modes P2 and P3 represented in Figures 2.4b and 2.4c have null
mean values and the associated resonances ω2 and ω3 are not taken into account in the effective
model. Numerically, the infinite sum in D∞(ω) is truncated to the first eight resonances associated
with modes that have non-null mean values. Computations have been performed to check that
the resonances not taken into account have a negligible influence on the effective solution. The
numerical values of the parameters α0 and (αr , ωr) for αr , 0, which are used numerically, are
reported in Table 2.2.

(a) P1 (b) P2 (c) P3 (d) P4

Figure 2.4 – First four modes Pr of the eigenvalue problem (1.22) for the elliptic inclusions considered.

Table 2.2 – Resonances parameters in (1.24).

r 0 1 4 8 9 13 16 21 23
αr 0.314 0.462 0.144 0.148 0.069 0.078 0.037 0.053 0.081

ωr (rad · s−1) 600 1101 1523 1637 1962 2178 2438 2463

2.3.1.3 Initial condition and forcing

To design the initial conditions or the forcing term, the following source function is introduced

F(ξ) �


3∑

k�0
αk sin(2k kmξ) if − cm

f0
≤ ξ ≤ 0

0 otherwise,

(2.57)

with f0 the central frequency, α0 � 1, α1 � −21/32, α2 � 63/768, and α3 � −1/512, which entails
that F is of class C6. Figure 2.5 displays the Fourier transform F̂ of F as a function of

η(k) � kh for f0 ∈ {25, 50, 100}Hz.
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Chapter 2. Homogenization and simulations for a row of highly contrasted inclusions

The dimensionless parameters corresponding to these central frequencies read

η0 :� η(2π f0/cm) ∈ {0.21, 0.42, 0.84}, (2.58)

respectively. While in Figure 2.5 the dashed line indicates the central small parameter η0, it should
be noted that the frequency content of F̂ extends to frequencies much higher than f0 thus resulting
in higher values of the parameter η for the associated wavelengths. In this figure, the blue crosses
denote the dimensionless parameters ηr :� η(ωr/cm) at the resonant frequencies ωr in D∞(ω)
defined in (1.24) and associated with modes with non-zero mean (resonant frequencies with
zero-mean modes are not displayed here).
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(a) f0 � 25Hz
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(b) f0 � 50Hz

0 0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

10-3

(c) f0 � 100Hz

Figure 2.5 – Fourier transform F̂ of the source function for the three different values f0 considered (the
associated dimensionless parameters η0 are indicated by the dashed lines). The blue crosses denote the
values ηr associated with resonances ωr , see (1.24), of non-zero mean modes.

� Incident plane wave. In a first case, an incident plane wave is considered and the initial conditions
read

Uh(X , 0) �

©«
1
µm

− 1
cm

0

ª®®®®®¬
F
(
(X − XI) · e1

)
(2.59)

where the initialization point XI � (−2, 0)m is chosen such that compactly supported initial
conditions (2.59) do not intersect the enlarged interface (or the inclusions for the microstructured
configuration). The initial velocity field and profile are displayed in Figure 2.6 for f0 � 100Hz. The
velocity profile is normalized by the maximum homogenized velocity. From now on, it will be the
case for each velocity profile displayed.
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0

5

10

(a) Waveform

-50 0 50

-1

-0.5

0

0.5

1

(b) X1-profile at X2 � −1m

Figure 2.6 – Velocity field at the time t � 0 for the incident plane wave given by (2.59) with f0 � 100Hz.
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� Point source. In a second case, we consider a point source located at XS � (−35, 0)m and such
that (2.1) reads: 

∂Σh

∂t
(X , t) � µh(X)∇Vh(X , t)

ρh(X)
∂Vh

∂t
(X , t) � ∇ · Σh(X , t) + ρm δ(X − Xs) F(tcm),

(2.60)

with δ(X − Xs) being a Dirac delta function at X � Xs .

2.3.1.4 Numerical errors

To assess whether the homogenized model provides a satisfying approximation of the original
problem in the microstructured configuration, we compare the corresponding numerical solutions.
With Uh and U being respectively the exact solution of the original problem in the microstructured
configuration and in the homogenized model, we denote byUh andU their numerical approximations.
Defining the total modeling error εT � ‖Uh −U ‖, then one has formally by triangular inequality:

εT ≤ ‖Uh −Uh ‖︸       ︷︷       ︸
ε1

+ ‖Uh −U‖︸     ︷︷     ︸
ε2

+ ‖U −U ‖︸    ︷︷    ︸
ε3

.

The term ε1 is the numerical error associated with the simulation in the microstructured configu-
ration while ε3 is the one associated with the simulation based on the homogenized model. Both
are governed and controlled by the numerical methods employed, see Lombard and Piraux, 2004,
and Touboul et al., 2020a or Chapter 3, respectively. In appropriate numerical implementations,
these errors are considered to be negligible compared to ε2. As a consequence, we consider that
the numerical error ε2 � ‖Uh − U‖ provides a reliable estimation of the total modeling error εT
and can be used to measure the validity of the homogenized model.

The homogenized model of Section 2.1 is derived under Assumptions 2.1, i.e., with asymptotics
being performed in the limit η→ 0 while it is assumed that µi/µm � O(η2) to preserve resonances.
In practice, we apply this model to a given geometric and material configuration for which the
parameters h, µi and µm are set. The signal (2.57) is also considered as a source term and the
latter carries a range of wavelengths λ that are in turn associated with a parameter η(2π/λ) �
2πh/λ � 2πh f /cm. For Assumptions 2.1 to hold then one must have both η(2π/λ) � 1 and
η(2π/λ) � O(

√
µi/µm).

As a consequence, the agreement between simulations for the microstructured and the ho-
mogenized problems are expected to deteriorate as η(2π/λ) approaches 1. For the source signal
(2.57) considered, we will only focus on η0 defined (2.58) but, as seen in Figure 2.5, the frequency
content of this source extends to higher frequencies for which the associated wavelengths may lie
beyond the validity domain of Assumptions 2.1.

2.3.2 Incident plane wave at normal incidence

In a first example, we consider an incident plane wave at normal incidence, see Section 2.3.1.3.
The velocity profiles of the numerical solutions in the original microstructured configuration are
presented in Figure 2.7a for different mesh sizes. Figure 2.7b compares the velocity profiles for
the homogenized model, computed either numerically on a grid of mesh size ∆X � 0.2m or semi-
analytically. The numerical method for the homogenized model will be described in Chapter 3. The
semi-analytical solution is described in Appendix 3.A.1. On the one hand, the numerical solution
for the microstructured configuration on the fine grid ∆X � 0.025m is assumed to have converged,
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(a) Microstructured configuration: numerical solutions
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Figure 2.7 – Velocity profiles for the microstructured configuration and using the homogenized model. The
source term is such that f0 � 100Hz.

see Fig. 2.7a. On the other hand, a coarse grid ∆X � 0.2m is enough when using the homogenized
model, see Fig. 2.7b. As an indication of the numerical gain, at f0 � 100Hz, a computational
time of 47 seconds for the homogenized model (∆X � 0.2m in Fig. 2.7b) corresponds to a
computational time of 4.8 hours for the original microstructured configuration (∆X � 0.025m in
Fig. 2.7a). The extra time needed for the original problem is due to the smaller mesh size but also
to the smaller time step imposed by the CFL condition for numerical stability. These two mesh
sizes will be used in numerical experiments from now on.

The velocity fields for the microstructured configuration and for the homogenized model
together with their respective profiles along X2 � −1m are reported in Figure 2.8 at time t �

31.7ms for f0 ∈ {25, 50, 100}Hz. The corresponding discrepancies between both solutions is
measured in the L2-norm for X1 ∈ [−50;−5]m and at X2 � −1m. The relative errors are of about
4%, 7% and 10%, respectively. For the stress component Σ1, these errors are of about 3%, 7% and
13%. Since the errors measurements are comparable for the velocity and stress fields, we will now
evaluate the agreement between the homogenized model and the microstructured problem only
in terms of the velocity field. As expected from the discussion in Section 2.3.1.4, the solutions
agree at low frequency but deviate from one another as the parameter η0 in (2.58) increases to 1
and does not conform to the shear modulus ratio of Assumptions 2.1. Finally, in Figure 2.8, it can
be observed that the dispersive nature of the material is amplified, in both the microstructured
configuration and in the homogenized model, as f0 increases. This behavior illustrates the fact that
resonances play an increasing role. At low frequency, the observed wavefield is almost comparable
to the case of a non-resonant interface (with low-constrasted inclusions), see Lombard et al., 2017,
while at higher frequencies some energy is still radiated by the interface after the incident wave
has crossed the former.

In the case f0 � 50 Hz, the velocity in the microstructured and homogenized configuration is
recorded from t � 0 to t � 475 ms at one receiver. This receiver is located on the right of the
enlarged interface at XT � (XT , 0) m, with XT � 10m. From these data, the Fourier transform of
the transmitted velocity V̂(XT , ω) is computed and its logarithm is displayed in Figure 2.9 after
normalization. The dashed line indicates the logarithm of the Fourier transform of the incident
wave. Around the resonances for the microstructured configuration, we can see within a small
frequency band a high transmission followed by a high reflexion. A zoom on the first two resonances
is also displayed. The first one is associated with a mode of non-null mean value, see Figure 2.4a,
while the mode of the second one has a null mean value, see Figure 2.4b, and thus is not accounted
for in the model. Around the first resonance taken into account in D∞(ω) (1.24), we have a good
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Figure 2.8 – (Top two rows) velocity fields for the microstructured configuration and for the homogenized
model for an illumination by an incident plane wave at normal incidence. (Third row) comparison of the
corresponding velocity profiles at X2 � −1m. (Bottom row) zoom in the inclusion. (left) f0 � 25Hz so
that η0 � 0.21, (center) f0 � 50Hz so that η0 � 0.42, and (right) f0 � 100Hz so that η0 � 0.84.

agreement between both Fourier transforms. On the contrary, the behaviour of the solution is
not well described by the homogenized solution around the second resonance. The same holds
for each resonance associated with a mode of null mean value. However, these missed resonant
frequencies also correspond to values of η which are around or higher than 1. Thus, even if the
behaviour of the solution is not well described, it is in any case for a range of frequencies that go
beyond the low-frequency hypothesis of homogenization. Furthermore, it can also be noticed that
these missed resonant frequencies are not solicited a lot by the frequency content of the incident
field. Therefore, it can be assumed that it does not induce a much greater error.

2.3.3 Source point

In the previous example of Section 2.3.2, the X2-invariance of the incident plane wave consid-
ered implies that the X2-derivatives vanish in the effective model (2.38) so that the associated
homogenized coefficients B2, C1 and C2 play no role. To deal with a full 2D configuration, we
consider the forcing by the source point described in (2.60). The physical and numerical param-
eters are the same as in the previous example. Moreover, the computational domain is defined
as [−70 m; 35 m] × [−132 m; 132 m], i.e. it is chosen large enough along the X2-axis to avoid
reflections from the top and bottom boundaries while Perfectly Matched Layers are used in the
background domain on the left and right boundaries.
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Figure 2.9 – (a) Logarithm of the Fourier transform V̂(XT , ω) for the microstructured and the homogenized
configuration. The dashed line indicates the logarithm of the Fourier transform of the incident velocity. The
blue crosses denote the resonant frequencies taken into account in D∞(ω) (1.24) and the green squares
denote the missed resonant frequencies of zero mean modes. (b) Zoom on the first two resonances.

The velocity fields for the microstructured configuration and for the homogenized model are
displayed at times t ∈ {t1 , t2 , t3 , t4} � {25.3, 38.0, 50.7, 63.3}ms on the figures 2.10, 2.11 and 2.12,
which correspond to a source central frequency f0 ∈ {25, 50, 100}Hz, respectively. The X1-profiles
of both solutions at X2 � 1 m are compared on Figure 2.13. Quantitatively, the discrepancies
between solutions are again measured in the L2-norm for X1 ∈ [−50 m ;−5 m ] and at X2 � 1m.
The associated relative errors are of about 2%, 9% and 13%, respectively, which is of same order
than the ones obtained in Section 2.3.2.

As in the previous example, the agreement between solutions deteriorates as η approaches 1.
Figure 2.13 also displays the velocity profiles zoomed in within a single inclusion in the microstruc-
tured configuration. As the frequency increases then shorter wavelengths are trapped within the
inclusion and more resonant frequencies featured in (1.24) are solicited, thereby explaining the
discrepancies between the two models.

2.4 Accounting for dissipation

In most of the works on homogenization of thin microstructured layers, dissipation is neglected.
An exception is the Section 3 of Pham et al., 2017 where damping is introduced heuristically in the
homogenized model. The assumption of inviscid media adopted in the previous sections simplifies
the theoretical analyses and the numerical modeling. However, dissipation always occurs in real
devices. It may modify notably the properties foreseen, degrade or amplify them. It may even been
exploited to control wave propagation (Li et al., 2017). This section therefore considers dissipation
in the full homogenization process and with the additional objective of presenting time-domain
simulations.

This work started with the mentoring of the internship of Xinzhao Gao at Ecole Centrale
Marseille which focused on the expression of the jump conditions and the development of a 1D
numerical method when dissipation is considered.
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Figure 2.10 – (Left) velocity fields for the microstructured configuration and (right) for the homogenized
model for f0 � 25Hz (so that η0 � 0.21) and at different times t ∈ {25.3, 38.0, 50.7, 63.3}ms. A source
point is located at (−35, 0)m and is symbolized by a black cross. Only a subset of the computational domain
is shown here.

2.4.1 Microstructured configuration

One introduces a dissipation parameter γh. The latter is inversely proportional to the damping, so
that γh � +∞ corresponds to an inviscid medium. Therefore, the microstructured configuration is
unchanged except the fact that there is now three positive and piecewise constant parameters:

(ρh , µh , γh)(X) �
{(ρm , µm ,+∞) in the matrix,

(ρi , µi , γ) in the inclusions.

The question adressed in this section is not to consider a particular constitutive dissipative mech-
anism but rather to exhibit a methodology and to present numerical experiments. Consequently,
we find it more relevant to consider a structural dissipation model, where damping is introduced
in the momentum equation. The evolution equations of linear anti-plane elasticity with damping
hence write as the first-order system:

∂tΣh(X , t) � µh∇Vh(X , t),

ρh ∂tVh(X , t) +
1
γh

Vh(X , t) � ∇ · Σh(X , t).
(2.61)
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Figure 2.11 – (Left) velocity fields for the microstructured configuration and (right) for the homogenized
model for f0 � 50Hz (so that η0 � 0.42) and at different times t ∈ {25.3, 38.0, 50.7, 63.3}ms. A source
point is located at (−35, 0)m and is symbolized by a black cross. Only a subset of the computational domain
is shown here.

2.4.2 Frequency-domain formulation

The homogenization steps followed in Pham et al., 2017 can be extended to the case γ , +∞.
For the sake of brevity, the full derivation is not detailed here, since the findings can be obtained
using the correspondence principle: see e.g. chapter 3 of Carcione, 2007. The microstructured
problem (2.61) can be recast in the frequency domain as{

iω Σ̂h(X , ω) � µh ∇V̂h(X , ω),
iω ρ̂γh V̂h(X , ω) � ∇ · Σ̂h(X , ω),

(2.62)

with

ρ̂
γ
h (X) �


ρm in the matrix,

ρi

(
1 +

1
iω γ ρi

)
in the inclusions,

which is exactly the same frequency-domain formulation as in the inviscid case. Consequently, one
expects to find the same effective jump conditions (1.19) by replacing the term ρi by ρi(1+ 1

iωγρi
)
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Figure 2.12 – (Left) velocity fields for the microstructured configuration and (right) for the homogenized
model for f0 � 100Hz (so that η0 � 0.84) and at different times t ∈ {25.3, 38.0, 50.7, 63.3}ms. A source
point is located at (−35, 0)m and is symbolized by a black cross. Only a subset of the computational domain
is shown here.

in the effective coefficients. This is possible because the contrast in the parameter ρ does not
depend on a scaling in η. The coefficients S, B, B2, C1 and C2 do not depend on ρi, thus they are
unchanged. On the contrary, D∞(ω) depends implicitly on ρi, and thus it is changed into Dγ(ω),
leading to the new homogenized model with damping:

iω Σ̂(X , ω) � µm ∇V̂(X , ω) (|X1 | ≥ a/2,X2 ∈ R)

iω ρm V̂(X , ω) � ∇ · Σ̂(X , ω) (|X1 | ≥ a/2,X2 ∈ R)�
V̂

�
a � h

{
B

〈〈
∂X1V̂

〉〉
a + B2

〈〈
∂X2V̂

〉〉
a

}
(X2 ∈ R)�

Σ̂1
�

a � h
{
S
〈〈
∂X1 Σ̂1

〉〉
a + C1

〈〈
∂X2 Σ̂1

〉〉
a + C2

〈〈
∂X2 Σ̂2

〉〉
a + Dγ(ω)

〈〈
∇ · Σ̂

〉〉
a

}
(X2 ∈ R).

(2.63)
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Figure 2.13 – Comparisons of the velocity profiles for the microstructured configuration and the homogenized
model at X2 � 1m. (Left) subset of the computational domain, and (right) zoom in the inclusion region.
From top to bottom rows: f0 ∈ {25, 50, 100}Hz, respectively, which corresponds to η0 ∈ {0.21, 0.42, 0.84}.

The new effective coefficient Dγ(ω) is obtained as follows. Replacing ρi by ρi(1 +
1

iωγρi
), the

Dirichlet problem (1.17) becomes{
∆yψγ(y , ω) + κ2

γ(ω)ψγ(y , ω) � 0 (y ∈ Ωi),
ψγ(y , ω) � 1 (y ∈ ∂Ωi),

(2.64)

where (1.18) is replaced by

κ2
γ(ω) �

ρi h2

µi
ω2

(
1 +

1
iω γ ρi

)
.

Then the frequency-dependent coefficient in (1.21) becomes

Dγ(ω) �
ρi

ρm

(
1 +

1
iω γ ρi

) ∫
Ωi

ψγ(y , ω)dy. (2.65)

Keeping the same definitions of α0, αr≥1 and ωr than in (1.23), the modal expansion of (2.65)
yields
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Result 2.4: Frequency-dependant coefficient with dissipation

Dγ(ω) �
(
1 +

1
iω γρi

) α0 −
∑
r≥1

α2
r

ω2 − iω
γρi

ω2 − iω
γρi
− ω2

r

 . (2.66)

The frequency-dependent effective coefficient (2.66) recovers (1.24) in the limit-case γ � +∞. As
in (1.24), the infinite series is truncated to a finite number NR of resonances, and the null-mean
modes lead to αr � 0, so that they do not contribute to the effective model obtained. The effect
of this limitation will be examined numerically in Section 3.6.

2.4.3 Time-domain formulation

2.4.3.1 Effective jump conditions

Replacing ρi by ρi(1 +
1

iωγρi
) in (2.39) yields the inner problem in the frequency domain:


iω Σ̂i(y ,X2 , ω) �

µi

h
∇yŴi(y ,X2 , ω) (y ∈ Ωi),

ρi

(
1 +

1
iω γρi

)
Ŵi(y ,X2 , ω) �

1
h
∇y · Σ̂i(y ,X2 , ω) (y ∈ Ωi),

Ŵi(y ,X2 , ω) �
〈〈

V̂(·,X2 , ω)
〉〉

a (y ∈ ∂Ωi).

(2.67)

Similarly, (2.40) becomes

iω ρi

(
1 +

1
iω γρi

) ∫
Ωi

Ŵi dy �
ρi

ρm

(
1 +

1
iω γρi

) ∫
Ωi

ψγ(y , ω)dy
〈〈
∇ · Σ̂

〉〉
a

� Dγ(ω)
〈〈
∇ · Σ̂

〉〉
a .

(2.68)

Inverse Fourier transforms of (2.63), (2.68) and (2.67) yield the homogenized model in the time
domain:

∂tΣ � µm ∇V (|X1 | ≥ a/2, X2 ∈ R),

∂tV �
1
ρm

∇ · Σ (|X1 | ≥ a/2, X2 ∈ R),

~V�a � h
{
B 〈〈∂X1V〉〉a + B2 〈〈∂X2V〉〉a

}
(X2 ∈ R),

~Σ1�a � h
{
S 〈〈∂X1Σ1〉〉a + C1 〈〈∂X2Σ1〉〉a + C2 〈〈∂X2Σ2〉〉a +ρi

∫
Ωi

∂tWi dy +
1
γ

∫
Ωi

Wi dy
}

(X2 ∈ R),
(2.69)

where Wi is solution in each inclusion of the inner problem:
∂tΣi(y ,X2 , t) �

µi

h
∇yWi(y ,X2 , t) (y ∈ Ωi),

ρi∂tWi(y ,X2 , t) +
1
γ

Wi(y ,X2 , t) �
1
h
∇y · Σi(y ,X2 , t) (y ∈ Ωi),

Wi(y ,X2 , t) � 〈〈V(·,X2 , t)〉〉a (y ∈ ∂Ωi).

(2.70)

In the limit-case γ � +∞, the equations (2.39) and (2.38) of the inviscid model are recovered.
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2.4.3.2 Energy identity

For all time t ≥ 0, one defines

F γ
h (t) �

1
γ

∫
∪iΩi

(Vh(X , t))2dX . (2.71)

Then, the energy identity in the microstructured configuration holds

d
dt
Eh(t) � −F γ

h (t) ≤ 0, (2.72)

with Eh defined in (2.41). When γ � +∞, the inviscid case (2.42) is recovered and the energy is
conserved.

For the homogenized model, the energy balance can be calculated in the same way as in the
case without dissipation. The expressions of E (2.43) and Ea (2.52) are unchanged. On the other
hand, the term γ modifies the energy balance, which is written as follows

Result 2.5: Energy identity with dissipation

d
dt
(E + Ea) � −Fγ , (2.73)

with

Fγ �
h
γ

∫
I

∫
Ωi

Wi
2dy dX2 ≥ 0. (2.74)

This underlines that E + Ea is decreasing due to the dissipation.

2.4.4 Numerical experiments

The physical and geometrical parameters are unchanged compared to Section 2.3. The additional
dissipation parameter γ is given for each numerical experiment later on. In the microstructured
configuration, dissipation is taken into account with a Strang’s splitting method (LeVeque, 2002).
The incorporation of the dissipation parameter in the numerical method is tackled in the next
chapter (see Section 3.6). The numerical method has been implemented for a dissipation parameter
which is greater than a minimal value, see Assumption 3.2, which equals to γ? � 1.87 10−7 kg−1·m3·s
in the present configuration. This numerical method is used here to assess the reliability of the
homogenized model and to investigate the effect of the dissipation parameter γ.

2.4.4.1 Validation of the homogenized model

� Incident plane wave at normal incidence. Numerical simulations are first performed with the
incident plane wave at normal incidence of Section 2.3.2. We compare the homogenized simulations
with full-field simulations performed in the microstructured configuration. The dissipation parameter
is γ � 2 · 10−6 kg−1 · m3 · s. One investigates the agreement between both configurations for
three values of central frequencies f0 � 36, 72, 108Hz in (2.57) in the initial conditions (2.59)
corresponding to dimensionless parameters η0 � 0.3, 0.6, 0.9, respectively. The velocity fields for
the microstructured configuration and for the homogenized model together with their respective
profiles along X2 � −1m are reported in Figure 2.14 at time t � 31.7ms. The corresponding
discrepancy between both solutions is measured in the L2-norm for X1 ∈ [−50;−5]m and at
X2 � −1m. The relative errors are of about 3.8%, 5.7% and 7.4%, respectively. As expected, the
solutions agree at low frequency but deviate from one another as the parameter η0 increases to 1
and does not conform to Assumption 2.1.
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Figure 2.14 – (Top two rows) velocity fields for the microstructured configuration and for the homogenized
model for an illumination by an incident plane wave at normal incidence when dissipation is considered
(γ � 2 · 10−6 kg−1 · m3 · s). (Bottom row) comparison of the corresponding velocity profiles at X2 � −1m.
(left) η0 � 0.3, (center) η0 � 0.6, and (right) η0 � 0.9.
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Figure 2.15 – Fourier transform F̂ of the source function for the three different values η0 considered (here
indicated by the dashed lines). The blue crosses denote the values ηr � ωr h/cm associated with resonances
ωr in (2.66).

As in the inviscid case, one has to remember that the frequency content of the source function
is a wide-band signal that involves frequencies higher than f0 for which the associated values η
lie beyond the hypothesis of the small parameter of Assumption 2.1. This is confirmed by Figure
2.15 that displays the Fourier spectrum of the source function for the three different central
frequencies considered here. Compared to Figure 2.5, only the central frequency changes but the
resonant frequencies denoted by the blue crosses are the same. The comparison of the homogenized
simulations with full-field simulations is then satisfying given the large values of η involved. In order
to have a more precise comparison frequency by frequency, the transmission coefficients are now
studied. To do so, the velocity of the microstructured configuration and of the homogenized model
in the case η0 � 0.6 is recorded from t � 0 to t � 475 ms at one receiver located at (10, 0)m.
The Fourier transform of the velocity is computed from these data and normalized by the one
of the source function. The resulting transmission coefficient is displayed in Figure 2.16. One
recovers the fact that the agreement between both transmission coefficients deteriorates around
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Figure 2.16 – Transmission coefficient for the microstructured configuration and the homogenized model.
The blue crosses and the green squares denote the resonant frequencies taken into account in Dγ(ω) and
the missed resonant frequencies of zero mean modes, respectively.

the resonant frequencies that are not taken into account in Dγ(ω). However, the agreement is
better than the ones presented in Figure 2.9 for the inviscid case, explaining the good quality of
the results in Figure 2.14 even for the higher values of η0.

� Source point. We now consider a full 2D configuration which solicits the five effective coef-
ficients in the homogenized model with the case of a source point of Section 2.3.3. The veloc-
ity fields on a subset of the computational domain are displayed at times t ∈ {t1 , t2 , t3 , t4} �
{25.3, 38.0, 50.7, 63.3} ms on the figures 2.17, 2.18 and 2.19 for η0 � 0.3, 0.6, 0.9, respectively.
The profiles at X2 � 1 m are then compared on Figure 2.20. Quantitatively, the discrepancies
between solutions of the microstructured problem and of the homogenized model are measured
in the L2-norm for X1 ∈ [−50 m ;−5 m ] and at X2 � 1m. The associated relative errors for
the three values of η0 are of about 2.7%, 7% and 14%, respectively. A good agreement is again
observed at low frequency and decreases as η0 increases to 1.

2.4.4.2 Investigation of the effect of damping

In the previous section, we illustrated that the homogenized model seems to be an accurate ap-
proximation of the microstructured configuration. Consequently, we now investigate the effect
of damping directly in the resonant homogenized model. This underlines the benefit of the ho-
mogenization process since simulations are much less costly and physical properties are easier to
analyze.

To begin with, we again consider the incident plane wave at normal incidence so that the
simulations can be performed in a 1D setting. Firstly, the velocity profiles of the effective model at
t � 31.7ms are presented in Figure 2.21 for different values of γ. In these examples, the central
frequency f0 of the source function (2.57) in the initial condition (2.59) is f0 � 72 Hz. The resonant
behaviour of the material leads to energy radiated by the enlarged interface even a long time after
the incident wave has passed it. Close to the limit value γ?, for example γ � 2 · 10−7 s · kg−1 · m3,
the dissipation is so high that we do not see this resonant behaviour anymore. On the other hand,
close to 100 γ?, for example γ � 2 · 10−5 kg−1 · m3 · s, the dissipation has barely any influence and
we almost recover the case γ � +∞.

We now focus on a possible physical application of this work through the so-called property of
Coherent Perfect Absorption. Schematically, resonant and dissipative scatterers behave as open
systems, characterized by their energy leakage and intrinsic losses. The equilibrium between these
two energy losses corresponds to a condition of critical coupling and gives rise to a maximum of
energy absorption. The study of critical coupling is an active research topic in acoustics, especially
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Figure 2.17 – (Left) velocity fields for the microstructured configuration and (right) for the homogenized
model for η0 � 0.3 and at different times t ∈ {25.3, 38.0, 50.7, 63.3}ms. A source point is located at the
black cross. Dissipation is considered (γ � 2 · 10−6 kg−1 · m3 · s).

when the resonances is induced by geometry. The main application is the design of subwavelength
panels made of Helmholtz resonators (Jiménez, Huang, Romero-Garcia, Pagneux, & Groby, 2016;
Romero-Garcia et al., 2016; Jiang, Li, & Zhang, 2017; Jiménez, Romero-Garcia, Pagneux, &
Groby, 2017; Leng et al., 2019; Romero-Garcia et al., 2020; Romero-Garcia et al., 2021). Here,
the method is adapted to local resonances induced by the contrast of the physical properties.
One recalls that the scattering matrix is defined by(

c
d

)
� S

(
a
b

)
with a and b the amplitudes of the incoming waves from the left and the right, respectively, and c
and d the amplitudes of the corresponding outgoing waves. In particular, when there is a mirror
symmetry, the scattering matrix writes

S �

(
T (ω) R(ω)
R(ω) T (ω)

)
, (2.75)

with R(ω) and T (ω) the reflection and transmission coefficients computed in the next chapter,
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Figure 2.18 – (Left) velocity fields for the microstructured configuration and (right) for the homogenized
model for η0 � 0.6 and at different times t ∈ {25.3, 38.0, 50.7, 63.3}ms. A source point is located at the
black cross. Dissipation is considered (γ � 2 · 10−6 kg−1 · m3 · s).

see(3.118). From their expressions for θI � 0, one can fill in the scattering matrix S (Romero-
Garcia et al., 2021). For a medium without dissipation, the zeros and poles of the determinant
of S are off the real axis and complex conjugate, around each resonant frequency ωr considered.
By convention, we have chosen a time dependence in e iωt , so that the poles are in the upper
half-plane of C, unlike (Romero-Garcia et al., 2021). This property is observed in Figure 2.22a,
where we represent log(|det(S)|) around the first four resonance frequencies ωr taken into account
in Dγ(ω).

When attenuation is considered in the scatterers, the position of these zeros and poles evolves
in the complex plane. The imaginary parts of the zeros grow strictly with the magnitude of the
dissipative effects. Associated to each resonance ωr , there is then a critical value of the attenuation
for which the zero of det(S) lies on the real axis, at a frequency ω̃r . Figure 2.22b illustrates this
property; for γ � 4.47 ·10−6, we observe that the zero of det(S) associated with the first resonance
frequency lies on the real axis. This is not the case for the three following resonances at this value
of γ. Figure 2.23 displays the trajectory of the zeros of det(S) in the complex plane. We note
that there is a slight shift between ωr and ω̃r .
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Figure 2.19 – (Left) velocity fields for the microstructured configuration and (right) for the homogenized
model for η0 � 0.9 and at different times t ∈ {25.3, 38.0, 50.7, 63.3}ms. A source point is located at the
black cross. Dissipation is considered (γ � 2 · 10−6 kg−1 · m3 · s).
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Figure 2.20 – comparison of the velocity profiles at X2 � 1m in the case of a source point and the three
different values of η0. Dissipation is considered (γ � 2 · 10−6 kg−1 · m3 · s).

The transmission and reflexion coefficients computed analytically in (3.118) are displayed in
Figure 2.24 for the two values γ � +∞ and γ � 4.47 · 10−6 kg−1 · m3 · s. As said previously,
this last value ensures the critical coupling at ω̃1. When dissipation is not considered, perfect
transmission is reached followed by perfect reflection within a small band width around the resonant
frequencies. With dissipation, these behaviors are smoothed. Besides, one notices that absorption
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Figure 2.21 – Velocity profiles of the homogenized problem at time t � t f for different values of γ.

(a) γ � +∞ (b) γ � 4.47 · 10−6

Figure 2.22 – Complex frequency map of log(|det(S)|) for the invisicid case (a) and for the critical value
of the dissipation parameter (b), where S is the scattering matrix. We observe three poles and three zeros,
in the vicinity of the first three resonance frequencies taken into account in Dγ.

α � 1 − |R|2 − |T |2 is maximal around these resonant frequencies (see Figure 2.24c): the optimal
value α � 0.5 is reached at ω̃1. It is consistent with the perfect absorption of symmetric systems
illuminated only on one side (Romero-Garcia et al., 2021).

To illustrate this behaviour around the resonant frequencies, we consider a causal monochro-
matic source point located at XS � −120m. In (2.60), the forcing F(tcm) is thus replaced by
A sin(ωSt) if t ≥ 0, and 0 if t < 0. The angular frequency ωS will be specified for each simulation
later on. The velocity profiles at t � 633ms are displayed in Figure 2.25. The magnitude A of the
source is such that the amplitude of the emitted velocity is 0.5 m/s, which is denoted by horizontal
dotted lines. At the considered time, the incident wave to the left of the source has almost left
the domain, and the front of the reflected wave is located near -800 m; it is marked by a green
arrow. For γ � +∞ (Figure 2.25a), the angular frequency of the forcing is ωS � ωmin which
corresponds to the minimum of the transmission coefficient. The time-domain simulations confirm
that there is almost no transmitted signal quite quickly. Attenuation is considered in Figure 2.25b
with γ � 4.47 · 10−6 s · kg−1 · m3, which ensures critical coupling around the first resonance, at ω̃1.
The angular frequency for the forcing is ωS � ω̃1. In this second subfigure, the transmitted wave
is greater, as expected. Between the front of the reflected wave (green arrow) and the interface,
the amplitude of V is greater than 0.5, which confirms that the reflected wave is not absorbed.
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Figure 2.23 – Zeros of det(S) in the complex plane, where S is the scattering matrix, for
various values of the dissipation parameter. The arrow shows the direction of the trajectory
as losses are increased (i.e. γ is decreased). The red circles denote the zeros for γ ∈{
+∞, 5 · 10−5 , 1 · 10−5 , 5 · 10−6 , 4.47 · 10−6 , 4 · 10−6 , 2 · 10−6} from bottom to top. The blue cross denotes

the resonant frequency.
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Figure 2.24 – Reflection, transmission and absorption coefficients (3.118). The blue crosses denote ωr in
Dγ(ω).

To obtain Coherent Perfect Absorption, it is necessary to illuminate the resonant interface
from both sides. To do this, two sources are placed symmetrically with respect to the interface
and switched on at the same time. Figure 2.26 represents V at t � 631 ms. The dotted horizontal
lines in ± 0.5 mark the amplitude of the incident wave emitted. At this moment, the incident
waves emitted by the two sources have almost left the domain. On the other hand, the fronts of
the reflected waves are visible and marked by green arrows. In the inviscid case (Figure 2.26a),
the reflected waves are observed, which leads to an increase in the amplitude of the reflected
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Figure 2.25 – Velocity profiles of the homogenized problem at t � 633ms with one source. Dissipation
parameter γ � +∞ (a) and γ � 4.47 · 10−6 s · kg−1 · m3 (b). The monochromatic source point is located at
the black cross and is switched on at t � 0. The angular frequency of the source is either ωmin for which T
is minimal without dissipation (a) or ω̃1 which is such that det(S)(ω̃1) � 0 if γ � 4.47 · 10−6 s · kg−1 · m3

(b). The green arrows denote the reflected wavefront.
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Figure 2.26 – Velocity profiles of the homogenized problem at t � 631ms with two sources. Dissipation
parameter γ � +∞ (a) and γ � 4.47 · 10−6 s · kg−1 · m3 (b). The two monochromatic source points are
located at the black crosses and are switched on at t � 0. The angular frequency of the source is ω̃1 is
such that det(S)(ω̃1) � 0 if γ � 4.47 · 10−6 s · kg−1 · m3. The green arrows denote the reflected wavefronts.

waves. In the dissipative case with critical coupling (Figure 2.26b), the wave amplitude does not
exceed 0.5 which is the amplitude of the emitted velocity. This means that the reflected waves
have disappeared and have been completely absorbed by the dissipative resonant interface.

2.5 Conclusion and perspectives

This chapter has focused on the propagation of waves across a periodic row of highly-contrasted
inclusions, a problem which has been tackled by a homogenization technique. More specifically,
the homogenization process has been performed directly in the time domain. The high contrast
between the inclusions and the matrix is described by a scaling of the shear moduli as η2, where η
is the usual small parameter corresponding to the long-wavelength regime. As a consequence, this
produces wavelengths within the inclusions that are comparable to the size of the latter.

The specific homogenization process has led to effective jump conditions that are (i) non-local
in time and (ii) apply on the boundaries of an equivalent interface possibly enlarged to main-
tain stability. One notes that no calculation is performed anymore within this region. Having the
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thickness of the effective interface larger than the width of the original microstructured array
has been shown to be a sufficient condition to have a stable effective problem. The agreement
of this time-domain effective model with the frequency-dependent jump conditions developed in
Pham et al., 2017 has also been established. Then, numerical examples have been provided to
illustrate the model obtained and to compare its solutions with simulations involving the original
microstructure. A good agreement has been found at low excitation frequency and it has been
discussed how it deteriorates as the frequency increases. Eventually, the effective jump conditions
have been rewritten in the frequency domain and the time domain when dissipation is considered.
Simulations of the homogenized problem incorporating dissipation have also been performed. They
have allowed to assess the reliability of the homogenized model when there is coexistence of reso-
nances and dissipation. The role played by dissipation has then been illustrated: for each resonant
frequency taken into account in the homogenized model, Coherent Perfect Absorption is observed
for a critical value of the dissipation parameter.

Different follows-up can be identified at the end of this chapter:

• A first perspective is to perform the derivation of an effective model at higher order, as
discussed in Felbacq and Bouchitté, 2005; Pham et al., 2017, to account for the resonances
associated with modes with zero mean, which are missed in the current model. However, it
seems that when dissipation is considered, this does not induce a large error compared to
full-field solutions. Thus, it is important to assess to what extent these resonances play a
role for the problem under consideration.

• The extension of this work to the full three-dimensional elasticity case is also of interest.
It requires to introduce a scaling in η2 for both Lamé’s parameters and to perform the
computation in a tensorial form but it should not pose major technical difficulties, see
(Auriault & Bonnet, 1985; Auriault & Boutin, 2012; Comi & Marigo, 2019) for volumic
microstructures.

• In the next chapter dedicated to the numerical modeling of resonant meta-interfaces, the
proposed numerical method is shown to be an efficient tool to handle curved enlarged interface.
However, the extension to curved interfaces will be purely heuristic. In the non-resonant case,
the validity of this extension was discussed through numerical experiments in Lombard et al.,
2017. This paper has illustrated that for small curvatures, the error remains the same as for
a straight array. However, for high curvatures, the error increases and the jump conditions
have to be modified. This numerical investigation could be performed for resonant interfaces
in order to identify the maximum curvature below which the heuristic extension is suitable. In
line with this point, a more demanding perspective would be to perform the homogenization
process for inclusions located along a curved line. The homogenized model would be more
complicated since, even in the non-resonant case, the local definition of the curvature will
lead to a local expression of the effective parameters, see Rizzoni and Lebon, 2013 for thin
curved interphases.

• Moreover, the discussion about Coherent Perfect Absorption was performed for normal
incidence. This study could be generalized for different incident angles. This is of particular
interest for the design of an optimal metasurface over a wide band of incidence angles
(Jiménez et al., 2016). In this purpose, it would also be useful to consider several rows of
inclusions in order to play with several geometries and reach wide bands of absorption instead
of a single value around each resonance.

• We considered the damping through a structural model. Depending on the solid under
consideration it may be relevant to model the energy dissipation by a Maxwell, Kelvin-Voigt,
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standard rheological model or more sophisticated model (Krushynska, Kouznetsova, & Geers,
2016; Lewińska, Kouznetsova, van Dommelen, Krushynska, & Geers, 2017). Our approach
was rather methodological but in order to describle precisely the dissipative process for a
given model it could be interesting to consider these models, which require to introduce the
damping in the constitutive equation instead of the balance of momentum.

• Finally, the thin microstructured layer was assumed to be infinite. However, as it is more
realistic, it could be of interest to consider a layer of finite length. It requires to take into
account both the boundary layer effects appearing near the microstructured layer and the
corner singularities in the neighborhood of the extremities of the layer, see for example Semin,
Delourme, and Schmidt, 2018 for a finite-length periodic array of holes.

2.A Agreement with the existing frequency-domain formulation

With the effective model (2.38) being derived in the time domain, this section focuses on assessing
its equivalence with the frequency-domain formulation (1.19) obtained in Pham et al., 2017. Due
to the final effective jump condition (2.38), we seek a closed-form identity for the field Wi solution
of (2.39). To do so, let us consider the time-domain Green’s function associated with the inclusion
domain Ωi and a source point y0, i.e. the field G : (y , t) 7→ G(y , y0 , t) that is the fundamental
solution of the problem:

∂2G
∂t2 (y , y0 , t) −

µi

ρi h2∆yG(y , y0 , t) � δ(y − y0)δ(t) (y ∈ Ωi),

G(y , y0 , t) � 0 (y ∈ ∂Ωi),

G(y , y0 , 0) �
∂G
∂t
(y , y0 , 0) � 0 (y ∈ Ωi).

We define the convolution product:

[ f ∗ 1](t) �
∫
R

f (t − t′)1(t)dt′.

Then, the equations (2.39) at time (t − t′) are multiplied by G taken at time t′ and integrated on
Ωi × [0, t], which leads to∫

Ωi

{[
∂2Wi

∂t2 ∗ G
]
(t) −

µi

ρi h2

[
∆yWi ∗ G

]
(t)

}
dy � 0.

Integrating by parts twice, the first term in time and the second term in space, respectively, and
using the boundary conditions for Wi and G yields:

Wi(y0 ,X2 , t) � −
µi

ρi h2

[
〈〈V(·,X2 , ·)〉〉a ∗

∫
∂Ωi

∇yG(y , y0 , ·) · n d`
]
(t), (2.76)

with d` the surface element associated to the y-variable. Going back to (2.38), using the Fourier
transform (4.70), we now get formally in the frequency domain:

F

[
ρi

∫
Ωi

∂Wi

∂t
dy

]
(X , ω) �

ρi

ρm

〈〈
∇ · Σ̂(·,X2 , ω)

〉〉
a

∫
Ωi

{
−
µi

ρi h2

∫
∂Ωi

∇y0 Ĝ(y , y0 , ω) · n d`0

}
dy , (2.77)
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where we have used the identity iωρmV̂ � ∇ · Σ̂ and the fact that Ĝ(y , y0 , ω) � Ĝ(y0 , y , ω). We
define the field ζ as

ζ(y , ω) � −
µi

ρi h2

∫
∂Ωi

∇y0 Ĝ(y , y0 , ω) · n d`0. (2.78)

Owing to the following relation satisfied by G in the frequency domain

∆yĜ(y , y0 , ω) +
ρiµm

ρmµ0
Ĝ(y , y0 , ω) � −

ρi h2

µi
δ(y − y0),

then it turns out that ζ is the solution of the following problem:
∆yζ(y , ω) +

ρi h2

µi
ω2 ζ(y , ω) � 0 (y ∈ Ωi),

ζ(y , ω) � 1 (y ∈ ∂Ωi),
(2.79)

Therefore, provided that the Fourier transforms are well-defined, then ζ � ψ∞ with ψ∞ defined
in (1.17). Consequently, once this identity is used in (2.77) together with (1.21), the agreement
of the time-domain effective model with the frequency-dependent jump conditions is established.
Nonetheless, thanks to the time-domain formulation, an energy analysis is now accessible, which
in turn provides a sufficient condition for the effective model to be stable.
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Chapter 3. Numerical modeling for wave propagation across resonant meta-interfaces

This chapter aims at building a numerical method to simulate the interaction of transient
waves with the effective resonant meta-interface studied in Chapter 2. The ESIM approach

has been motivated and briefly explained in Section 1.3. This methodology has been used in
Lombard et al., 2017 for the case of non-resonant effective interfaces. In the present study,
the central question therefore concerns the case of resonant effective jump conditions that are
frequency-dependent in the harmonic regime or non-local in time, along with their implementation
for wave propagation simulations in the time domain. This chapter will thus develop a specific
ESIM approach for the resonant case, based on the formalism of auxiliary variables.

In Section 3.1, this formalism is introduced and implemented to obtain an equivalent augmented
system of first-order equations in time with transformed jump conditions that are local in time.
Section 3.2 details the numerical implementation in 1D: the fourth-order finite-difference scheme
ADER is used in combination with the ESIM. An error analysis is performed and sufficient conditions
under which a given order of accuracy can be obtained are stated in Section 3.3. Then Section
3.4 extends the proposed numerical method to 2D. Numerical experiments in 1D and 2D are
finally presented in Section 3.5, while comparisons with semi-analytical solutions allow to assess
quantitatively the performance of the approach developed. The modifications of the numerical
method in the case where damping is considered are presented in Section 3.6.

3.1 Formalism of auxiliary variables

The effective jump conditions associated with the resonant meta-interfaces are characterized by
frequency-dependent terms in the harmonic regime (1.19) and consequently involve a convolution
product in the time domain, see (2.38) and (2.76). Their implementation would therefore require to
store the entire history of the traces of the solution at the enlarged interface while the computation
of the time convolution integral itself would substantially increase the computational cost in a
naive extension of the ESIM. As a consequence, it is required to develop a specific approach to
handle efficiently this type of resonant interface models numerically. For this purpose, the auxiliary
variables formalism has been previously employed in Tip, 1998; Gralak and Tip, 2010; Gralak
and Maystre, 2012; Cassier, Hazard, and Joly, 2017a; Cassier, Joly, and Kachanovska, 2017b for
Maxwell’s equations and in Bellis and Lombard, 2019 for bulk dispersive metamaterials in acoustics.
It is adapted here to deal with the resonant meta-interfaces considered.

First, let consider the effective jump conditions (1.19) in the harmonic regime. We assume
that the sum in (1.24) can be truncated to a finite number NR of resonances based on the analysis
of the frequency content of a given illuminating wave, see Figure 2.5 in Section 2.3.1.3.
Accordingly, let define locally (along the enlarged interface) the so-called auxiliary variables Ĵr and
Ĝr , which are associated with the resonance index r ∈ {1, . . . ,NR} and which satisfy the following
equations: {(ω2 − ω2

r ) Ĵr(X2 , ω) � α2
rω

2 〈〈
div Σ̂(X , ω)

〉〉
a

iω Ĵr(X2 , ω) � Ĝr(X2 , ω)
for X2 ∈ R. (3.1)

Setting 

B̃1 � hB
B̃2 � hB2

C̃11 � h(S + α0)
C̃12 � hC1

C̃22 � h(C2 + α0)

(3.2)

while combining (1.19) and (3.1) then yields the following system in the time domain for all t > 0
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by a formal application of the inverse Fourier transform:

∂tΣ(X , t) � µm ∇V(X , t) (|X1 | ≥ a/2,X2 ∈ R)

∂tV(X , t) �
1
ρm

divΣ(X , t) (|X1 | ≥ a/2,X2 ∈ R)

∂t Jr(X2 , t) � Gr(X2 , t) (X2 ∈ R, r � 1, . . . ,NR)

∂t Gr(X2 , t) � −ω2
r Jr(X2 , t) + µmα

2
r∂t 〈〈∆V〉〉a (X2 ∈ R, r � 1, . . . ,NR)

~V�a � B̃1 〈〈∂X1V〉〉a + B̃2 〈〈∂X2V〉〉a (X2 ∈ R)

~Σ1�a � C̃11 〈〈∂X1Σ1〉〉a + C̃12 〈〈∂X2Σ1〉〉a + C̃22 〈〈∂X2Σ2〉〉a − h
NR∑
r�1

Jr (X2 ∈ R).

(3.3)

To be consistent with the definition (3.1), the auxiliary variables Jr are not averaged in the last
equation of the above system.

Remark 7. The auxiliary variables { Ĵr} are defined through (3.1) for all ω , ωr . Therefore, in
order to apply the inverse Fourier transform, care must be taken and a suitable approach relies on
the introduction of an artificial damping parameter that is taken to zero once in the time domain.
Studying such a limit amounts to investigate the existence of a limiting absorption principle for
the system considered, which is beyond the scope of this work. Reference can be made to, e.g.,
Cassier et al., 2017b for such an anlysis for dispersive media in electromagnetism.

Starting from the original variable U � (V, Σ)>, the set w � ({ Jr}, {Gr})> of auxiliary variables
is introduced locally along the enlarged interface to allow the derivation of the system (3.3). The
latter consists of first-order equations in time that are complemented by jump conditions that are
local in time.

3.2 Numerical modeling in 1D

3.2.1 Preliminaries

In this section, we describe for simplicity the numerical implementation of the system (3.3) in a one-
dimensional configuration which is representative of the propagation of a plane wave illuminating
a straight enlarged interface at normal incidence. The stress reduces to the scalar field Σ(X) �
Σ(X) e1 where X � X · e1 with (e1 , e2) being the canonical basis of R2. In this setting, the system
(3.3) is recast for all t > 0 as:



∂tΣ(X, t) � µm ∂XV(X, t) (|X | ≥ a/2),

∂tV(X, t) �
1
ρm

∂XΣ(X, t) (X | ≥ a/2),

∂t Gr(t) � −ω2
r Jr(t) + µmα

2
r∂t

〈〈
∂2

XXV
〉〉

a (r � 1, . . . ,NR),

∂t Jr(t) � Gr(t) (r � 1, . . . ,NR),

~V�a � B̃1 〈〈∂XV〉〉a ,

~Σ�a � C̃11 〈〈∂XΣ〉〉a − h
NR∑
r�1

Jr .

(3.4a)

(3.4b)

(3.4c)

(3.4d)

(3.4e)

(3.4f)
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One introduces the matrix

A �

(
0 −1/ρm
−µm 0

)
(3.5)

so that concatenating (3.4a) and (3.4b) yields

∂tU +A ∂XU � 0 (|X | ≥ a/2). (3.6)

3.2.2 ADER-K scheme

The solution U is discretized on a uniform grid with a mesh size ∆X and a time step ∆t. We
denote by U n

i the approximation of U at the point Xi � i∆X and time tn � n∆t. The explicit
finite-difference ADER-K scheme (Schwartzkopff et al., 2004; Lorcher & Munz, 2006), with K an
even integer (to have centered finite differences), is used to solve numerically (3.6). When applied
to an equation such as (3.6) in a homogeneous domain, this scheme is of order K in both space
and time for sufficiently smooth initial data and, for K � 4, it is stable under the CFL condition
∆t ≤ ∆X/cm. Its time-marching writes:

U n+1
i � U n

i −
+K/2∑

s�−K/2

K∑
m�1

νK,m ,s

(
∆t
∆X

A

)m

U n
i+s , (3.7)

where the νK,m ,s are a set of coefficients such that, if the solution U is of class CK, then its m-th
order derivative can be approximated as (Lombard, 2010):

∂m
X U(X j , tn) �

(−1)m+1

∆Xm m!
K/2∑

s�−K/2
νK,m ,sU(X j+s , tn) + O(∆XK+1), m � 1, . . . , K. (3.8)

Inserting Taylor expansions for U(X j+s , tn) at (X j , tn) and up to the order K in the previous
expression leads to the following relations that are satisfied by the coefficients νK,m ,s for 0 ≤ k ≤ K
and 1 ≤ m ≤ K:

K/2∑
s�−K/2

νK,m ,s sk
�

{(−1)m+1 if k � m
0 else.

(3.9)

From now on, we choose the ADER-K scheme with K � 4 which we consider to allow a good
compromise between accuracy and computational cost.

3.2.3 Numerical scheme at the interfaces

Considering the time-marching (3.7), two types of points can be distinguished, see Figure 3.1:
(i) regular points that are the grid nodes for which the stencil does not intersect the enlarged
interface, and (ii) irregular points that are the nodes whose stencil includes at least one node
within the enlarged interface where the solution is actually not defined. Such grid nodes Xi lying
within the enlarged interface are referred to as ghost points. For time-marching at the irregular
points, the scheme (3.7) is modified: ghost values U ∗ have to be defined and used at the ghost
points Xi within the enlarged interface while standard numerical values can be used otherwise. In
the framework of the Explicit Simplified Interface Method (ESIM), these ghost values are defined
as smooth extrapolations of the solution at the ghost points from the values of the solution at
the physical points ±a/2. In the case of the ADER-4 scheme, they are given by

U ∗(Xi , tn) �
q∑

m�0

1
m!

(
Xi +

a
2

)m
∂m

X U
(
− a

2 , tn

)
for i � IL + 1, IL + 2,

U ∗(Xi , tn) �
q∑

m�0

1
m!

(
Xi −

a
2

)m
∂m

X U
( a

2 , tn

)
for i � IR − 1, IR − 2,

(3.10)
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where IL and IR are the indices of the grid nodes that are the closest to the enlarged interface on
each side and q ≥ 1 is a user-chosen parameter that controls the accuracy of the approximation.

Remark 8. In the definition (3.10) of the ghost values, the point Xi is a grid node that is in the
enlarged interface while ±a/2 is a physical point that may not coincide with a grid node. This is
the whole feature of the ESIM, which allows to implement jump conditions at interfaces whose
geometry may be independent of the computational grid of the finite-difference scheme considered.

This methodology has been implemented in the case of non-resonant effective interface models
in Lombard et al., 2017. It is extended here to the case of resonant models, which requires
substantial modifications due to the use of auxiliary variables. In the sections 3.2.4 and 3.2.5, it is
shown how the computation of the ghost values through (3.10) rely both on the use of the jump
conditions (3.4e-3.4f) and on Taylor expansions on both sides of the enlarged interface.

I

regular point

irregular point

stencil at

point used in Taylor expansions

phantom point

numerical solution

I I  XXX

X

Figure 3.1 – Stencil at XIL and nodes around the enlarged interface.

3.2.4 High-order jump conditions

The ghost values U ∗ in (3.10) are expressed in terms of the spatial derivatives ∂m
X U at ±a/2. To

estimate, one computes qth-order jump conditions relating the traces of the spatial derivatives
of the solution, up to its qth derivative. The vectors U q

+(tn) and U q
−(tn) are also introduced and

concatenate a number qU � 2q + 2 of unknowns which are the traces on each side of the spatial
derivatives of the fields V and Σ up to the order q:

U q
±(tn) �

(
V±(tn), ∂XV±(tn), . . . , ∂q

XV±(tn), Σ±(tn), ∂XΣ±(tn), . . . , ∂q
XΣ±(tn)

)> ∈ RqU , (3.11)

where V±(tn) ≡ V(±a/2, tn) and Σ±(tn) ≡ Σ(±a/2, tn) and the same notation is employed for the
spatial derivatives. The numbering of arrays begins at 1: for instance, U q

±(tn)[1] � V(±a/2, tn).
Moreover, the vector Z contains the 2NR auxiliary variables at time tn, i.e.

Z(tn) � (J1(tn), . . . , JNR (tn), G1(tn), . . . , GNR (tn))> ∈ R2NR . (3.12)

To obtain jump conditions at the order q, i.e. a relation between the vectors U q
+, U q

− and Z, the
zeroth-order jump conditions (3.4e) and (3.4f) are first differentiated in time and the equations
(3.4a) and (3.4b) are used to replace time derivatives by spatial derivatives. This yields a relation
between the vectors U1

+, U1
− and Z. This process of differentiating in time the jump conditions is

iterated up to the chosen value of q while the equation (3.4c) is used to express the term ∂t Gr
using Jr and ∂t

〈〈
∂2

XXV
〉〉

a when necessary. The qth-order jump conditions so obtained are written
as:

C
q
+U q

+(tn) + Rq
+(tn) � C

q
−U q
−(tn) + Rq

−(tn) +QqZ(tn), (3.13)

with C
q
± being qU × qU matrices that depend only on the interface parameters and C

q
+ being

invertible in the cases considered hereafter. Qq is a qU × 2NR matrix that depends only on the
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physical parameters and on the resonant frequencies. The qU-element vectors Rq
±(tn) contain the

(q + 1)-th order derivatives of V and Σ.
In the ensuing numerical examples, the values q � 3 and q � 5 are chosen and it is checked

numerically that the corresponding matrices Cq
+ are invertible. In the case q � 3 the entries of the

above matrices are given below:

C3
±[i , i] � 1, C3

±[5, 6] � ∓
C̃11
2 ,

C3
±[1, 2] � ∓

B̃1
2 , C3

±[6, 7] � ∓
B̃1
2 ,

C3
±[2, 3] � ∓

C̃11
2 , C3

±[7, 8] � ∓
1
2

(
C̃11 − h

NR∑
r�1

α2
r

)
,

C3
±[3, 4] � ∓

B̃1
2 , C3

±[i , j] � 0 else,

(3.14)



Q3[2, j] � − h
µm

if j ∈ {NR + 1, ..., 2NR}, Q3[7, j] �
hω2

j

c2
m

if j ∈ {1, ...,NR},

Q3[4, j] �
hω2

j−NR

µm c2
m

if j ∈ {NR + 1, ..., 2NR}, Q3[i , j] � 0 else,

Q3[5, j] � −h if j ∈ {1, ...,NR},

(3.15)

R3
±[4] � ∓

1
2

(
C̃11 − h

NR∑
r�1

α2
r

)
∂4

XV± , R3
±[8] � ∓

B̃1
2 ∂

4
XΣ± , R3

±[i] � 0 else. (3.16)

3.2.5 Computation of the ghost values

Let define T
q
i (±a/2) as the 2 × qU matrices of the polynomial forms of the Taylor expansions

at the order q between the grid node with index i and the physical point ±a/2, which may not
coincide with a grid point, see Remark 8, i.e.

T
q
i (±a/2) �

(
1 (Xi ± a/2) . . . (Xi ± a/2)q/q! 0 0 . . . 0
0 0 . . . 0 1 (Xi ± a/2) . . . (Xi ± a/2)q/q!

)
.

The equation (3.10) is now recast as
U ∗(Xi , tn) � T

q
i

(
− a

2

)
U q
−(tn) for i � IL + 1, IL + 2,

U ∗(Xi , tn) � T
q
i

( a
2

)
U q

+(tn) for i � IR − 1, IR − 2.
(3.17)

The vector U q
+(tn) can be expressed as a function of U q

−(tn) using the qth-order jump con-
ditions (3.13). In order to determine U q

−(tn), Taylor expansions are written at the qT nodes
Xi � XIL−qT+1 , . . . ,XIL on the left side of the enlarged interface as

U(Xi , tn) � T
q
i

(
− a

2

)
U q
−(tn) + O(∆Xq+1), (3.18)

and at the qT nodes Xi � XIR , . . . ,XIR+qT−1 on the right side of the enlarged interface as

U(Xi , tn) � T
q
i

( a
2

)
U q

+(tn) + O(∆Xq+1)

� T
q
i

( a
2

)
(Cq

+)
−1 [

C
q
−U q
−(tn) +QqZ(tn) + Rq

−(tn) − Rq
+(tn)

]
+ O(∆Xq+1).

(3.19)
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In (3.19), we made use of (3.13) and, by an abuse of notations, the term O(∆Xq+1) denotes a
vector with entries of the order of ∆Xq+1 and whose size may vary from line to line. The user-
chosen parameter qT will be specified later on. We introduce the 4qT × qU block matrices Mq and
F q by blocks:

Mq
�

©«

T
q
IL−qT+1(−

a
2 )

...
T

q
IL
(− a

2 )

T
q
IR
( a2 )(C

q
+)
−1
C

q
−

...
T

q
IR+qT−1(

a
2 )(C

q
+)
−1
C

q
−

ª®®®®®®®®®®®¬
, F q

�

©«

0
...
0

−T q
IR
( a2 )

...
−T q

IR+qT−1(
a
2 )

ª®®®®®®®®®®¬
(Cq

+)
−1
, (3.20)

and the 4qT-element vectors U(tn) and ∆(tn):

U(tn) �

©«

U(XIL−qT+1 , tn)
...

U(XIL , tn)
U(XIR , tn)

...
U(XIR+qT−1 , tn)

ª®®®®®®®®®¬
, ∆(tn) � −F q (Rq

−(tn) − Rq
+(tn)). (3.21)

Then, from (3.18) and (3.19), one obtains the following system:

Mq U q
−(tn) � U(tn)+F q QqZ(tn) − ∆(tn) + O(∆Xq+1). (3.22)

When the parameter qT is chosen as 4qT � qU , then Mq is a square matrix that is formally checked
to be invertible. This is possible only if q is odd which we assume in the 1D setting considered.
If 4qT > qU then Mq is not square and we denote by (Mq)−1 its Moore-Penrose pseudo-inverse.
Therefore, using the qth-order jump conditions (3.13), we obtain the following expressions for the
vectors U q

±(tn):

U q
−(tn) � (Mq)−1 (

U(tn) + F qQqZ(tn) − ∆(tn) + O(∆Xq+1)
)
, (3.23)

and
U q

+(tn) � (Cq
+)
−1[Cq

−(Mq)−1 (
U(tn) + F qQqZ(tn) − ∆(tn) + O(∆Xq+1)

)
+QqZ(tn) + Rq

−(tn) − Rq
+(tn)].

(3.24)

One neglects the terms that do not depend on U(tn) or Z(tn) in (3.23) and (3.24), and introduces
the qU × qU matrix Gq as

Gq
� C

q
−(Mq)−1

F q
+ IqU . (3.25)

This allows us to formulate the numerical approximation (U q
±)n of the vectors U q

±(tn):

(U q
−)n � (Mq)−1 [Un

+ F qQqZn], (3.26)

and
(U q

+)n � (Cq
+)
−1[Cq

−(Mq)−1
U

n
+GqQqZn]. (3.27)

Due to (3.17), we finally get the approximation below for the ghost values.
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Result 3.1: Numerical approximations of the ghost values

Approximation 1. The numerical approximations (U ∗)ni of the ghost values U ∗(Xi , tn) are
computed using the formulae

(U ∗)ni � T
q
i

(
− a

2

)
(Mq)−1 [Un

+ F qQqZn] for i � IL + 1, IL + 2,

(U ∗)ni � T
q
i

( a
2

)
(Cq

+)
−1[Cq

−(Mq)−1
U

n
+GqQqZn] for i � IR − 2, IR − 1,

(3.28)

in terms of the numerical approximations Un, Zn of U(tn), Z(tn), respectively.

The quality of this approximation is quantified in Section 3.3 through a local error analysis. In
practice, the matrices T q

i (±
a
2 ), C

q
±, F q, Gq, Qq and (Mq)−1 featured in (3.28) are computed in a

pre-processing step once for all.

The ghost values (3.28) are used in the ADER-K scheme (3.7) at irregular points. For example,
the time-stepping at the irregular point XIL on the left side of the enlarged interface is recast as

U n+1
IL
−U n

IL

∆t
+

1
∆t

0∑
s�−K/2

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

U n
IL+s +

1
∆t

K/2∑
s�1

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

U ∗nIL+s � 0,

(3.29)

which can be written as
U n+1

IL
� HL(U n , Zn) (3.30)

with U n � {U n
i }i being arranged as a vector and HL defined by

HL(U n , Zn) � U n
IL
−

0∑
s�−K/2

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

U n
IL+s

−
K/2∑
s�1

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

T
q
IL+s

(
− a

2

)
(Mq)−1

U
n

−
K/2∑
s�1

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

T
q
IL+s

(
− a

2

)
(Mq)−1

F q Qq Zn . (3.31)

The numerical approximation U
n of U(tn) defined in (3.21) can be expressed as a function of

U n. On the right side, we take the example of the irregular point IR, where the time-stepping is
written:

U n+1
IR

� HR(U n , Zn) (3.32)

with HR defined by

HR(U n , Zn) � U n
IR
−

K/2∑
s�0

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

U n
IR+s

−
−1∑

s�−K/2

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

T
q
IR+s

( a
2

)
(Cq

+)
−1
C

q
−(Mq)−1

U
n

−
−1∑

s�−K/2

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

T
q
IR+s

( a
2

)
(Cq

+)
−1
Gq Qq Zn . (3.33)
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Remark 9. In this section, the computation of the ghost values has been described for the ADER-4
scheme for the sake of simplicity. Yet, the only difference between the different ADER-K schemes
is the number of irregular points and ghost points to be considered. Therefore, HL and HR at XIL

and XIR , which are always irregular points, are introduced above for an arbitrary ADER-K scheme,
with K being an even integer.

3.2.6 Computation of the auxiliary variables

The computation of the ghost values U ∗ through Approximation 1 requires to determine an
approximation Zn of the vector Z(tn) of auxiliary variables (3.12) at each time step. Assuming
zero initial conditions for Jr and Gr , which is justified in the case where the enlarged interface is
illuminated by an initially remote source, then integrating (3.4c-3.4d) yields{

Jr(tn) � −Λ1
r (tn) cos(ωr tn) + Λ2

r (tn) sin(ωr tn),
Gr(tn) � ωr

(
Λ2

r (tn) cos(ωr tn) + Λ1
r (tn) sin(ωr tn)

)
,

(3.34)

where, owing to (3.4a-3.4b), one has for i � 1, 2:

Λi
r(tn) �

1
ωr

∫ tn

0
` i

r(τ) dτ with

{
`1

r (τ) � µmα
2
r∂t

〈〈
∂2

XV
〉〉

a (τ) sin(ωrτ),

`2
r (τ) � µmα

2
r∂t

〈〈
∂2

XV
〉〉

a (τ) cos(ωrτ).
(3.35)

In practice, the functions Λi
r in (3.35) are computed iteratively as
Λi

r(t0) � 0,

Λi
r(tn+1) � Λi

r(tn) +
1
ωr

∫ tn+1

tn

` i
r(τ) dτ,

(3.36)

where t0 � 0 and the integral being computed using the extrapolative Newton-Cotes formulae
(Vetterling, Teukolsky, Press, & Flannery, 1992), i.e.∫ tn+1

tn

` i
r(τ) dτ � ∆t

qI−2∑
w�0

δw`
i
r(tn−w) + O(∆tqI ). (3.37)

The values of the parameters δw for qI � 2, . . . , 5 are reported in Table 3.1.

qI 2 3 4 5
δ0 1 3/2 23/12 55/24
δ1 -1/2 -16/12 -59/24
δ2 5/12 37/24
δ3 -9/24

Table 3.1 – Numerical integration by the Newton-Cotes formulas: values of the parameter δw featured
in (3.37).

Moreover, the computation of the terms ` i
r(tn−w) defined through in (3.35) and used in (3.37)

requires to approximate the temporal derivative ∂t
〈〈
∂2

XV
〉〉

a (tn−w), which is achieved using the
following finite-difference approximation:

∂t
〈〈
∂2

XV
〉〉

a (tn−w) �
1
∆t

qD∑
z�0

βz
〈〈
∂2

XV
〉〉

a (tn−w−z) + O(∆tqD ). (3.38)

The values of βz for qD � 1, . . . , 4 are listed in Table 3.2.
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qD 1 2 3 4
β0 1 3/2 11/6 75/36
β1 -1 -4/2 -18/6 -144/36
β2 1/2 9/6 108/36
β3 -2/6 -48/36
β4 9/36

Table 3.2 – Numerical derivation: values of the parameter βz featured in (3.38).

Remark 10. Owing to (3.4c), the term
〈〈
∂3

XΣ
〉〉

a can be used in (3.35) instead of the quantity
∂t

〈〈
∂2

XV
〉〉

a with mixed derivatives in time and space. However, in practice, numerical instabilities
have been observed in 2D when the third-order spatial derivative is used, contrary to the mixed
approach described here. Such instabilities were not observed in 1D but we adopt this mixed
approach for the 1D case as well for consistency.

By inserting (3.37) and (3.38) in (3.36), while keeping track of the approximation order, we
get the following expression for Λi

r :
Λi

r(t0) � 0,

Λi
r(tn+1) � Λi

r(tn) +
µmα2

r

ωr

qI−2∑
w�0

δw

qD∑
z�0

βz
〈〈
∂2

XV
〉〉

a (tn−w−z)(κi
r)n−w

+ O(∆tmin(qD+1,qI))

(3.39)
with (κ1

r )s � sin(ωr ts) and (κ2
r )s � cos(ωr ts). For w � 0, ..., qI − 2 and z � 0, ..., qD, we know

from (3.11) that 〈〈
∂2

XV
〉〉

a (tn−w−z) �
1
2 (U

q
−(tn−w−z) + U q

+(tn−w−z))[3], (3.40)

where U[3] stands for the third term of the vector U . Using the numerical approximations (3.26)
and (3.27), we obtain the approximation of

〈〈
∂2

XV
〉〉

a (tn−w−z):〈〈
∂2

XV
〉〉n−w−z

a �
1
2

[
(IqU + (Cq

+)
−1
C

q
−)(Mq)−1

U
n−w−z

+ ((Mq)−1
F q

+ (Cq
+)
−1
Gq)Qq Zn−w−z

]
[3],
(3.41)

leading to the final approximation below.

Result 3.2: Numerical approximation of (Λi
r)n

Approximation 2. The numerical approximation (Λi
r)n of Λi

r(tn) for i � 1, 2 is computed
by the recurrence relation

(Λi
r)0 � 0,

(Λi
r)n+1

� (Λi
r)n +

µmα2
r

ωr

qI−2∑
w�0

δw

qD∑
z�0

βz(
〈〈
∂2

XV
〉〉

a)
n−w−z(κi

r)n−w
(3.42)

with (
〈〈
∂2

XV
〉〉

a)
s denoting the numerical approximation (3.41).

For i � 1, 2, we introduce the function N i
r defined by
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N i
r

(
(Λi

r)n ,U n , ...,U n−w−z , Zn , ..., Zn−w−z , tn

)
� (Λi

r)n +
µmα2

r

2ωr

qI−2∑
w�0

δw

qD∑
z�0

βz[(IqU + (Cq
+)
−1
C

q
−)(Mq)−1

U
n−w−z][3](κi

r)n−w

+
µmα2

r

2ωr

qI−2∑
w�0

δw

qD∑
z�0

βz[((Mq)−1
F q

+ (Cq
+)
−1
Gq)QqZn−w−z][3](κi

r)n−w , (3.43)

which allows to write that

(Λi
r)n+1

� N i
r

(
(Λi

r)n ,U n , ...,U n−w−z , Zn , ..., Zn−w−z , tn

)
. (3.44)

We now introduce the 2NR × 2NR matrix P(tn) as follows:

for j ∈ {1, ...,NR}



P[ j, j] � − cos(ω j tn),
P[ j, j + NR] � sin(ω j tn),
P[ j + NR , j] � ω j sin(ω j tn),
P[ j + NR , j + NR] � ω j cos(ω j tn),
P[i , j] � 0 else.

(3.45)

so that, owing to (3.34), we have the following approximation.

Result 3.3: Numerical approximation of the auxiliary variables

Approximation 3. The numerical approximation Zn �

(
Jn
1 , . . . , Jn

NR
, Gn

1 , . . . , Gn
NR

)>
of the

auxiliary variables vector Z(tn) at the time step tn writes:

Zn
� P(tn)Λn (3.46)

with Λn �

( (
Λ1

1
)n
, . . . ,

(
Λ1

NR

)n
,
(
Λ2

1
)n
, . . . ,

(
Λ2

NR

)n)>
.

In practice, owing to the formula (3.42), the computation of the auxiliary variables Jn
r , Gn

r at
a given time step tn only requires the knowledge of (Λ1

r )n−1 , (Λ2
r )n−1 and (〈∂2

XV〉a)n−1−w−z for
w � 0, . . . , (qI − 2) and z � 0, . . . , qD. These quantities constitute a set of memory variables
which are necessary to store. We regroup them in the following vector

Ψn
�

(
Λn−1 , (〈∂2

XV〉a)n−1 , · · · , (〈∂2
XV〉a)n+1−qI−qD

)>
, (3.47)

of size (qD +1)× (qI −1)+2NR. The vector Ψn is stored and updated during the entire simulation.
For a given ghost point, once Zn is computed, the resonant case only requires an additional matrix-
vector product with a matrix computed in pre-processing. Therefore, in terms of computational
time, these additional computations are negligible compared to the cost of the numerical scheme.
Indeed, for the 1D examples investigated, the additional computational time for the resonant
meta-interface is of about 11% compared to finite differences in a homogeneous medium.

73



Chapter 3. Numerical modeling for wave propagation across resonant meta-interfaces

3.2.7 Summary of the algorithm

Algorithm 1 Time-marching scheme with auxiliary variables and ghost values

• Pre-processing:

– Detection of the irregular points surrounding the enlarged interface.

– Computation of the matrices (Mq)−1, Cq
−, (Cq

+)
−1
, F q, Gq and Qq.

– Computation of T q
i (−

a
2 )(Mq)−1 and T q

i (−
a
2 )(Mq)−1F qQq for ghost values at the left side

of the enlarged interface.

– Computation of T q
i (

a
2 )(C

q
+)
−1
C

q
−(Mq)−1 and T

q
i (

a
2 )(C

q
+)
−1
GqQq for ghost values at the

right side of the enlarged interface.

– Computation of (IqU + (Cq
+)
−1
C

q
−)(Mq)−1 and ((Mq)−1F q + (Cq

+)
−1
Gq)Qq.

• Initialization: set the solution U0
i at t0 � 0 while Ψ0 � 0 along the enlarged interface.

• Iterate in time n ≥ 0:

– Computation of the vector Λn from Ψn using Approximation 2.

– Computation of P(tn) and then of the auxiliary variables vector Zn from Λn using
Approximation 3.

– Computation of Un in (3.21) from U n
i .

– Computation of the ghost values (U ∗)ni using Approximation 1.

– Time-marching using (3.7) to compute the solution U n+1
i for all i with the ghost values

being used where necessary.

– Computation of
〈〈
∂2

XV
〉〉n

a using (3.41) and update of the memory variables vector
Ψn+1 in (3.47).

3.3 Numerical analysis in 1D

To our knowledge, there is no theoretical result available on the numerical stability of the ESIM. In
the non-resonant case, no stability issue has been observed on a large number of simulations that
involved interfaces with various constitutive parameters and positions within the finite-difference
grid (Lombard et al., 2017). In the resonant case considered in the present study, the stability is
observed in practice to depend on the order of integration qI in (3.37), on the order of derivation
qD in (3.38) and on the number qT of grid nodes considered for the Taylor expansions (3.18-3.19).
In practice, given (qD , qI), the stability is observed on numerical experiments for the minimal values
of qT that are reported in Table 3.3. The case (qD , qI) � (4, 5) is not reported because qT being
too large, the use of the pseudo-inverse of the associated matrix Mq yields unacceptable numerical
errors. When qT is chosen according to Table 3.3, then the CFL condition ∆t ≤ ∆X/cm of the
ADER-4 scheme in a homogeneous domain seems to be the critical threshold for stability here as
well.

In this context where no stability result is available then global error estimates, i.e. cumulative
error over the iterations, cannot be derived for the proposed scheme. Rather, we focus here on
a local in time error analysis. We assume that the numerical solution is the exact continuous
one at time tn and evaluate the error commited by the numerical scheme in one time step. The
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H
HHH

HHqD

qI 2 3 4 5

1 qU/4 qU/4 qU/4 qU/4
2 qU/4 qU/4 + 1 qU/4 + 1 qU/4 + 1
3 qU/4 qU/4 + 1 qU/4 + 2 qU/4 + 2
4 qU/4 qU/4 + 1 qU/4 + 2

Table 3.3 – Minimal value of the Taylor expansion parameter qT for which the scheme is observed to
be stable in the numerical experiments considered, given (qD , qI) and with qU � (2q + 2) as in (3.11) for
q ∈ {3, 5}.

expressions of the local errors L0,U , L0,Λ and L0,Z on U , Λ and Z, respectively, at time tn are
introduced as:

L0,U (XIL , tn) � U(XIL , tn+1) − HL(U(·, tn), Z(tn)),
L0,U (XIR , tn) � U(XIR , tn+1) − HR(U(·, tn), Z(tn)),

L0,Λi
r
(tn) � Λi

r(tn) − N
(
Λi

r(tn),U(·, tn), ...,U(·, tn−w−z), Z(tn), ..., Z(tn−w−z), tn

)
(for i � 1, 2, and r � 1, . . . ,NR),

L0,Λ(tn) �
(
L0,Λ1

1
(tn), · · · ,L0,Λ1

NR
(tn),L0,Λ2

1
(tn), · · · ,L0,Λ2

NR
(tn)

)>
,

L0,Z(tn) � P(tn+1)L0,Λ(tn).

(3.48)

These errors are analyzed at the irregular points in the general case of a ADER-K scheme. These
points are chosen as they necessitate a special treatment. For a regular point, the analysis is simply
the same as in a homogeneous medium. The example of the left irregular point XIL and the right
one XIR is chosen because they are irregular points regardless of the choice of the even integer K.

Assumption 3.1

Let us assume sufficiently smooth initial data, so that the local truncation error for the
ADER-K scheme in a homogeneous domain is O(∆XK). We consider the order q ∈ {3, 5}
and we set qT � qU/4 so that Mq in (3.20) is a square matrix.

Then, considering the approximations 1, 2 and 3, the local errors (3.48) are analysed in the three
next subsections.

3.3.1 Estimation of L0,U

Property 2. Under Assumptions 3.1, the local errors on U defined in (3.48) read
L0,U (XIL , tn) � O(∆Xmin(K+1, q)),

L0,U (XIR , tn) � O(∆Xmin(K+1, q)).
(3.49)

Proof. L0,U is defined in (3.48) for the two irregular points XIL and XIR . These local errors can
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be expressed as:

L0,U (XIL , tn) � U(XIL , tn+1) −U(XIL , tn) +
0∑

s�−K/2

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

U(XIL+s , tn)

+

K/2∑
s�1

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

Ũ ∗(XIL+s , tn),

(3.50)

and

L0,U (XIR , tn) � U(XIR , tn+1) −U(XIR , tn) +
−1∑

s�−K/2

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

Ũ ∗(XIR+s , tn)

+

K/2∑
s�0

K∑
m�1

νK,m ,s

(
A
∆t
∆X

)m

U(XIR+s , tn),

(3.51)

where Ũ ∗(Xi , tn) denotes the ghost value obtained when replacing the numerical values (U , Λ, Z)n
by their exact counterparts in Approximation 1. These fields are assumed to be as smooth as
necessary.
To estimate (3.50) and (3.51), one first evaluates the approximation of the ghost values Ũ ∗(Xi , tn).
From Approximation 1, these quantities write:

Ũ ∗(XIL+s , tn) � T
q
i

(
− a

2

)
(Mq)−1 [U(tn) + F qQqZ(tn)] for s � 1, . . . , K/2,

Ũ ∗(XIR+s , tn) � T
q
i

( a
2

)
(Cq

+)
−1[Cq

−(Mq)−1
U(tn) +GqQqZ(tn)] for s � −K/2, . . . ,−1.

(3.52)
Using (3.23) and (3.24), one gets

Ũ ∗(XIL+s , tn) � T
q
IL+s

(
− a

2

)
U q
−(tn) + T

q
IL+s

(
− a

2

)
(Mq)−1 [∆(tn) + O(∆Xq+1)]

for s � 1, . . . , K/2

Ũ ∗(XIR+s , tn) � T
q
IR+s

( a
2

)
U q

+(tn) − T q
IR+s

( a
2

)
(Cq

+)
−1[Gq(Rq

−(tn) − Rq
+(tn))

+C
q
− (Mq)−1O(∆Xq+1)] for s � −K/2, . . . ,−1.

(3.53)

Symbolic computations are then performed using Maple to estimate the leading contributions of
the entries of the vectors in (3.53). Doing so provides, for q � 3 or 5:

T
q
IL+s

(
− a

2

)
(Mq)−1∆(tn) � O(∆Xq),

T
q
IL+s

(
− a

2

)
(Mq)−1O(∆Xq+1) � O(∆Xq+1),

T
q
IR+s

( a
2

)
(Cq

+)
−1
Gq(Rq

−(tn) − Rq
+(tn)) � O(∆Xq),

T
q
IR+s

( a
2

)
(Cq

+)
−1
C

q
−(Mq)−1O(∆Xq+1) � O(∆Xq+1).

(3.54)

One notes that the first and third of the above estimates make use of the definition (3.16) of
Rq
±(tn), which are expressed in terms of the exact solution, and it is assumed that the latter is

sufficiently smooth. Therefore, for q � 3 or 5, we finally obtain the following estimate for the
approximation of the ghost values:

Ũ ∗(Xi , tn) � T
q
i

(
∓ a

2

)
U q
∓(tn) + O(∆Xq). (3.55)
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The top (resp. bottom) sign corresponds to the left (resp. right) case, the order of this approx-
imation being the same for both sides. Consequently, from now on we will only consider XIR to
evaluate the order of L0,U but the final result will apply to any irregular point. We use Taylor
expansions and (3.55) for each term of (3.51) to get:

U(XIR+s , tn) �
q∑̀
�0

1
`!

(
XIR+s −

a
2

) `
∂`XU

( a
2 , tn

)
+ O(∆Xq+1),

Ũ ∗(XIR+s , tn) �
q∑̀
�0

1
`!

(
XIR+s −

a
2

) `
∂`XU

( a
2 , tn

)
+ O(∆Xq).

(3.56)

Since ∆t � O(∆X) holds from the CFL condition of the ADER-K scheme, then one can write

L0,U (XIR , tn) � L
0
0,U (XIR , tn) +

K∑
m�1

L
m
0,U (XIR , tn) + O(∆Xq), (3.57)

when defining for m � 1, . . . , K :

L
0
0,U (XIR , tn) �U(XIR , tn+1) −U(XIR , tn),

L
m
0,U (XIR , tn) �

+K/2∑
s�−K/2

νK,m ,s

(
A
∆t
∆X

)m q∑̀
�0

1
`!

(
XIR+s −

a
2

) `
∂`XU

( a
2 , tn

)
.

(3.58)

From a Taylor expansion at the order K in time and using (3.6) in combination with Taylor
expansions at the order (q − m) in space, we can write

U(XIR , tn+1) � U(XIR , tn) +
K∑

m�1

∆tm

m! (−1)mAm
q−m∑̀
�0

1
`!

(
XIR −

a
2

) `
∂m+`

X U
( a

2 , tn

)
+ O(∆Xq+1) + O(∆XK+1). (3.59)

Combining (3.58) and (3.59), we can rewrite L0(XIR , tn) as follows:

L
0
0,U (XIR , tn) �

K∑
m�1

∆tm

m! (−1)mAm
q∑̀
�m

1
(` − m)!

(
XIR −

a
2

) `−m
∂`XU

( a
2 , tn

)
+ O(∆Xq+1) + O(∆XK+1). (3.60)

Summing L
0
0,U and the terms Lm

0,U yields:

L0,U (XIR , tn) �
K∑

m�1
Am∆tm

q∑̀
�0
ε`,m∂

`
XU

( a
2 , tn

)
+ O(∆Xmin(K+1,q)), (3.61)

where, for m � 1, . . . , K and ` � 0, . . . , q, the parameter ε`,m is defined as

ε`,m �
(−1)m

m !(` − m)!
(
XIR −

a
2

) `−m
δ`≥m +

K/2∑
s�−K/2

νK,m ,s
1

`!∆Xm

(
XIR −

a
2 + s∆X

) `
, (3.62)

with δ`≥m � 0 if ` < m and δ`≥m � 1 else. Expanding the second right-hand side term using the
binomial expansion entails

ε`,m �
(−1)m

m! (` − m)!
(
XIR −

a
2

) `−m
δ`≥m +

∑̀
j�0

∆X j−m

j! (` − j)!
(
XIR −

a
2

) `− j K/2∑
s�−K/2

νK,m ,s s j . (3.63)
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For 0 ≤ j ≤ K then (3.9) implies that it holds:

(−1)m
m! (` − m)!

(
XIR −

a
2

) `−m
δ`≥m +

min(`,K)∑
j�0

∆X j−m

j! (` − j)!
(
XIR −

a
2

) `− j K/2∑
s�−K/2

νK,m ,s s j
� 0. (3.64)

Therefore, if ` ≤ K then ε`,m � 0 and when ` > K then (3.62) reduces to

ε`,m �

∑̀
j�K+1

∆X j−m

j! (` − j)!
(
XIR −

a
2

) `− j K/2∑
s�−K/2

νK,m ,s s j
� O(∆X`−m)

∑̀
j�K+1

K/2∑
s�−K/2

νK,m ,s s j

j! (` − j)! .

For all (`,m) the results for these two cases can be summarized as follows:

ε`,m � O(∆X`−m)δ`>K . (3.65)

This allows to conclude the proof since, using (3.65) in (3.61), then for q � 3 and q � 5 one gets:

L0,U (XIR , tn) � O
(
∆Xmin(K+1,q)

)
, (3.66)

and the same holds for XIL , or any other irregular point. �

3.3.2 Estimation of L0,Λi
r

Property 3. Under Assumptions 3.1, the local error on the auxiliary variables Λi
r defined in (3.48)

is given by

L0,Λi
r
(tn) � O(∆Xmin(qI , qD+1)) + O(∆Xq−1)

qI−2∑
w�0
(κi

r)n−w (i � 1, 2, r � 1, . . . ,NR). (3.67)

Proof. L0,Λi
r
is defined in (3.48) and can be expressed using Approximation 2 as

L0,Λi
r
(tn) � Λi

r(tn+1) − Λi
r(tn) −

µmα2
r

ωr

qI−2∑
w�0

δw

qD∑
z�0

βz

〈〈
∂̃2

XV
〉〉

a
(tn−w−z)(κi

r)n−w , (3.68)

where
〈〈
∂̃2

XV
〉〉

a
(ts) denotes the trace value obtained when replacing the numerical values (U s , Λs , Zs)

by the exact continuous solutions in (3.41). This term writes:〈〈
∂̃2

XV
〉〉

a
(tn−w−z) �

1
2 [(IqU + (Cq

+)
−1
C

q
−)(Mq)−1

U(tn−w−z)

+ ((Mq)−1
F q

+ (Cq
+)
−1
Gq)QqZ(tn−w−z)][3], (3.69)

Using (3.40), (3.23) and (3.24), one gets〈〈
∂̃2

XV
〉〉

a
(tn−w−z) �

〈〈
∂2

XV
〉〉

a (tn−w−z)

+
1
2 [−(C

q
+)
−1
Gq(Rq

−(tn−w−z) −Rq
+(tn−w−z)) + (Mq)−1∆(tn−w−z)][3]

− 1
2 [(IqU + (Cq

+)
−1
C

q
−)(Mq)−1O(∆Xq+1)][3]

(3.70)

Symbolic computations are then performed using Maple to estimate the leading contributions of
the entries of the vectors in (3.53). Doing so for q � 3 or 5 yields:{

[−(Cq
+)
−1
Gq(Rq

−(tn−w−z) −Rq
+(tn−w−z)) + (Mq)−1∆(tn−w−z)][3] � O(∆Xq−1),

[(IqU + (Cq
+)
−1
C

q
−)(Mq)−1O(∆Xq+1)][3] � O(∆xq).

(3.71)

Using (3.70) and (3.71) combined with (3.39) in (3.68) concludes the proof. �
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3.3.3 Estimation of L0,Z

Property 4. Under Assumptions 3.1, the local error on the auxiliary variable vector Z defined in
(3.48) is given by

L0,Z(tn) �
(
O

(
∆Xmin (q , qI , qD+1)

)
,O

(
∆Xmin (q−1, qI , qD+1)

))>
, (3.72)

with O(∆Xs) standing here for a vector of size NR and whose entries are of order O(∆Xs).

Proof. L0,Z is defined in (3.48). To compute it, we first introduce the vectors of size 2NR

κn−w
�

( (
κ1

1
)n−w

, · · · ,
(
κ1

NR

)n−w
,
(
κ2

1
)n−w

, · · · ,
(
κ2

NR

)n−w)>
, (3.73)

and
Dw

� (ω1(w + 1)O(∆t), · · · , ωNR (w + 1)O(∆t), ω1O(1), · · · , ωNRO(1))> (3.74)

Then, using trigonometric formulas, one notices that

P(tn+1)κn−w
� Dw . (3.75)

Using (3.68) and (3.75), one gets the expected result. �

3.3.4 Computation of the cumulative error

Even if one lacks of a theoretical stability property for the proposed scheme, we assume that, if
applicable, the global error would be in agreement with the analysis of the local error and corre-
sponds to the accumulation of the latter over iterations. Accordingly, a cumulative error at time
tn can be found from Propositions 2, 3 and 4 by repeating the scheme O( 1

∆t ) times. In numerical
experiments, we measure global errors on U only. Consequently, in a second step of the analysis we
evaluate the effect of the cumulative error regarding Z on the local error regarding U . Therefore,
the final local error on U after two time steps is defined by:

LU (XIL , tn) � U(XIL , tn+2) − HL

(
U(·, tn+1) +L0,U (·, tn), Z(tn+1) +

1
∆t

L0,Z(tn)
)
,

LU (XIR , tn) � U(XIR , tn+2) − HR

(
U(·, tn+1) +L0,U (·, tn), Z(tn+1) +

1
∆t

L0,Z(tn)
)
,

(3.76)

and one arrives at the following result.

Result 3.4: Cumulative error

Property 5. Let us introduce the cumulative error E(tn) � 1
∆t LU (Xi , tn).

Then E(tn) � O(∆Xδ) is obtained with the parameter δ being given by

δ � min(K, q − 1, qI − 1, qD) for q ∈ {3, 5}. (3.77)

Proof. Due to the expression ofHL in (3.31) then LU (XIL , tn) defined in (3.76) can be expressed
as

LU (XIL , tn) � L0,U (XIL , tn+1) − HL

(
L0,U (·, tn),

1
∆t

L0,Z(tn)
)
, (3.78)
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and the same holds for the right side. Thus, we aim at evaluating the order of

HL(L0,U (·, tn),
1
∆t

L0,Z(tn)) and HR(L0,U (·, tn),
1
∆t

L0,Z(tn)).

To do so, symbolic computations are then performed using Maple to estimate the leading contri-
butions of the entries of the vectors in HL (3.31) and HR (3.33). Doing so provides, for q � 3 or
5: 

T
q
IL+s

(
− a

2

)
(Mq)−1

� O(1),

T
q
IL+s

(
− a

2

)
(Mq)−1

F qQq
� B∆X ,

T
q
IR+s

( a
2

)
(Cq

+)
−1
C

q
−(Mq)−1

� O(1),

T
q
IR+s

( a
2

)
(Cq

+)
−1
GqQq

� B∆X ,

(3.79)

with B∆X being a 2 × 2NR matrix defined by

B∆X[i , j] �


O(∆X2) for i ∈ {1, . . . ,NR} and j ∈ {NR + 1, . . . , 2NR},
O(∆X) for i ∈ {NR + 1, . . . , 2NR} and j ∈ {1, . . . ,NR},
0 else.

(3.80)

The term L0,U (Xi , tn) is determined in Property 2 for Xi an irregular point. For a regular
point, the error analysis of a ADER-K scheme in a homogeneous medium can be used and
L0,U (Xi , tn) � O(∆XK+1). L0,Z(tn) is also determined in Property 4. Using these results com-
bined with (3.79) in (3.31) and (3.33), we finally obtain

LU (XIL , tn) � O(∆Xmin(K+1,q ,qI ,qD+1)), (3.81)

and the same holds for XIR , or any other irregular point. Therefore, the final estimate given by
Property 5 writes:

E(tn) � O(∆Xmin(K,q−1,qI−1,qD)). (3.82)

�

If stability holds then we expect the cumulative error E(tn) to be consistent with the global
error. Considering Property 5 and the above discussion on the numerical stability, then one can
conclude that a third-order accuracy can be reached but the fourth-order accuracy of the ADER-4
scheme cannot be recovered. In the numerical experiments of Section 3.5.1, global errors are
measured and they are found to be in agreement with the analysis of the local error provided in
Property 5. Note that, even if Property 5 is relative to the 1D case, the numerical experiments of
Section 3.5.2 suggest that similar results also hold in the 2D case.

Remark 11. In the non-resonant case, no auxiliary variables need to be defined and Z(tn) � 0 can
be set in (3.13). In this case, the integration and derivation steps of Section 3.2.6 are irrelevant so
that the associated parameters qI and qD can be removed from the estimates of Property 5. As
a consequence, the error E(tn) � O(∆Xmin(K, q−1)) for all q is recovered, which meets the result
proven in Lombard and Piraux, 2003 for K � 2.
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3.4 Numerical modeling in 2D

3.4.1 Setting

⌦1

⌦0

�1

�0

D+

D�

regular point

irregular point

point used in Taylor exp.

phantom point

projected point

stencil

Taylor exp. domain

⌫

⌧

QQ+

Q�

Figure 3.2 – Smooth enlarged interface of width a that separates the domains Ω0 and Ω1 in 2D. A ghost
value is sought at the point Q whose orthogonal projections onto the interfaces Γ0 and Γ1 are denoted as
Q− , Q+ respectively.

In this section, we formally extend the 2D model (3.3) to a configuration with a curved
enlarged interface defined by two parallel curves Γj � Γj(X1(s),X2(s)), with j � 0, 1 and s being
the associated curvilinear abscissa, see Figure 3.2. The solution is defined in the domains on
each side, which are denoted as Ω0 and Ω1, while as previously no physical field is defined in the
interspace of width a between Γ0 and Γ1. The jump conditions in (3.3), which are expressed in
Cartesian coordinates, are directly transposed in the local frame defined by the normal and tangent
vectors ν and τ at the interfaces:



∂tΣ(X , t) � µm∇V(X , t) (X ∈ Ω0 ∪Ω1), (3.83a)

∂tV(X , t) �
1
ρm

divΣ(X , t) (X ∈ Ω0 ∪Ω1), (3.83b)

∂t Jr(s , t) � Gr(s , t) (s ∈ R, r � 1, . . . ,NR), (3.83c)

∂t Gr(s , t) � −ω2
r Jr(s , t) + (cmαr)2 〈〈∆divΣ〉〉a (s ∈ R, r � 1, . . . ,NR), (3.83d)

~V�a � hB 〈〈∂νV〉〉a + hB2 〈〈∂τV〉〉a (s ∈ R), (3.83e)

~Σν�a � hS 〈〈∂νΣν〉〉a + hC1 〈〈∂τΣν〉〉a + hC2 〈〈∂τΣτ〉〉a + hα0 〈〈divΣ〉〉a − h
NR∑
r�1

Jr . (3.83f)
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where Σν � Σ · ν/‖ν‖, Στ � Σ · τ/‖τ‖ and ∂ν f � ∇ f · ν/‖ν‖, ∂τ f � ∇ f · τ/‖τ‖. Moreover,�
f

�
a and

〈〈
f
〉〉

a stand for the 2D version of the jump and the mean value of f at the enlarged
interface respectively.

Remark 12. In the proposed extension (3.83) of the model (3.3) to a configuration involving a
curved enlarged interface, we have chosen to keep the term 〈〈divΣ〉〉a as such as it has a clear
interpretation relatively to a homogenization process, see Pham et al., 2017. However, we do not
claim that (3.83) is a homogenized model in the case of a curved enlarged interface. Indeed, to
obtain such a model, the curvature should be taken into account in the homogenization process
from the beginning, in line with the perspective mentioned at the end of Chapter 2. Our objective is
rather to show that such a model can be efficiently handled using the proposed numerical approach.

3.4.2 Numerical scheme at the interface

As previously, we use the ADER-4 scheme with a uniform Cartesian grid with U n
i , j denoting the

numerical value of the solution U � (V, Σ1 , Σ2)> at the point (Xi � i∆X,X j � j∆X) and time
tn. In this framework, the approach adopted is as in 1D: the irregular points are detected and
ghost values are computed at the grid points that are located in between Γ1 and Γ0 and used
by the stencil. For Q � (XI ,X J) being such a point, let Ω+ and Ω− denote the closest domain
and the farthest one respectively (there is no ambiguity in these definitions as the width of the
stencil is systematically chosen to be smaller than the width a of the enlarged interface). Then
Q± � (X±1 ,X±2 ) denotes the orthogonal projection of Q on Γ± � ∂Ω± (see Figure 3.2).

The coefficients of 2D Taylor expansions are put as the entries of the 3 × 3(q + 1)(q + 2)/2
matrix

T
q
i j(Q

±) �
(
I3 , · · · ,

1
β!(α − β)! (Xi − X±1 )α−β(X j − X±2 )βI3 , · · · ,

(X j − X±2 )q

q! I3

)
, (3.84)

with α � 0, · · · , q and β � 0, · · · , α. One also introduces the following vectors of size qU �

3(q + 1)(q + 2)/2 that contain the boundary values of the 2D derivatives of U up to the chosen
order q:

U q
±(tn) �

(
U± , · · · , ∂`

∂X`−m
1 ∂Xm

2
U± , · · · , ∂

q

∂Xq
2

U±
)>

(3.85)

with ` � 0, · · · , q and m � 0, · · · , `. U± stands for the value of U in Q± and the same holds for
the spatial derivatives. Extending to the 2D case the definition (3.10) and (3.17), a ghost value
U ∗ at the point Q is defined as a smooth expansion of the value U q

+(tn) of the solution on the
Γ+ interface at the time step tn:

U ∗I J � T
q
I J(Q

+)U q
+(tn). (3.86)

3.4.3 High-order jump conditions and compatibility conditions

To compute the ghost values, high-order jump conditions relating U q
+(tn) and U q

−(tn) have to be
used and these are obtained by differentiating in time the original jump conditions, as it was done
in Section 3.2.4 in the 1D case. For q ≥ 0, one introduces qB � (q + 1)(q + 2) and the vectors
and matrices required to write the jump conditions: two matrices C

q
± of size qB × qU , Rq

±(tn)
two qB-element vectors containing the (q + 1)-th order derivatives, Zq(tn) a (q + 1)(q + 2)NR-
element vector containing the auxiliary variables and their spatial derivatives until order q, and Qq

a qB × (q + 1)(q + 2)NR matrix.
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For example, at the zeroth order, the jump conditions (3.83e)-(3.83f) are written

C0
+U0

+(tn) + R0
+(tn) � C0

−U0
−(tn) + R0

−(tn) +Q0Z0(tn). (3.87)

The jump condition (3.87) is differentiated with respect to time, and then time derivatives are
replaced by spatial derivatives thanks to (3.83a)-(3.83b) for U0

± or (3.83d)-(3.83c) for Z0(tn). In
2D, the jump condition (3.87) is also differentiated with respect to the curvilinear abscissa s using
the chain rule as

∂
∂s
(C0
±U0
±(tn)) �

(
∂
∂s

C0
±

)
U0
±(tn) +C0

±

(
X′1

∂
∂X1

U0
±(tn) + X′2

∂
∂X2

U0
±(tn)

)
. (3.88)

This process is iterated q times and leads to qB equations overall:

C
q
+U q

+(tn) + Rq
+(tn) � C

q
−U q
−(tn) + Rq

−(tn) +QqZq(tn). (3.89)

Furthermore, the condition ∇∧Σ � 0 holds outside the support of the external sources considered
and writes

∂Σ2
∂X1

�
∂Σ1
∂X2

. (3.90)

This equation is differentiated with respect to X1 and X2 up to the qth order so that one gets
qC � q(q + 1)/2 compatibility conditions. These equations are used to reduce the number of
unknowns of U q

±(tn). Reduced vectors V q
± (tn) of size qU − qC are thus introduced and satisfy

U q
±(tn) � L

q
±V q
± (tn) (3.91)

where Lq
± are qU × (qU − qC) matrices. Inserting (3.91) in (3.89), the underdetermined system for

V q
− (tn) writes

S
q
−V q
− (tn) � S

q
+V q

+ (tn) + Rq
+(tn) − Rq

−(tn) −QqZq(tn). (3.92)

with S
q
± � C

q
±L

q
± qB × (qU − qC) matrices. A singular value decomposition of Sq

− is used to build
its least-squares pseudo-inverse (Sq

−)−1 and its kernel KS
q
− . Since (3.92) is underdetermined, the

solution V q
− (tn) is not unique and can be written

V q
− (tn) �

(
(Sq
−)−1 KS

q
−

) (
S

q
+V q

+ (tn) + Rq
+(tn) − Rq

−(tn) −QqZq(tn)
Λq

)
(3.93)

with (· ·) standing for the representation of a matrix by blocks, and Λq a set of qU − qC − qB
Lagrange multipliers. Then, U q

−(tn) follows from (3.91).

3.4.4 Computation of the ghost values

To determine the traces U q
+(tn) in (3.86), as it was done in Section (3.2.5), 2D Taylor expansions

are written out at the grid points that are contained in the domain D+ (resp. D−) defined as the
intersection of the disk centered at Q+ (resp. Q−) with the domain Ω+ (resp. Ω−), see Figure 3.2.
Using the definition (3.84) and the equation (3.91), these Taylor expansions write for a point
(Xi ,X j) in D+:

U(Xi ,X j) � T
q
i j(Q

+)Lq
+

(
IqU−qC 0

) (
V q
+ (tn)
Λq

)
+ O(∆Xq+1) (3.94)

with 0 the matrix of size (qU − qC) × (qU − qC − qB) filled with zeros. Using (3.93), the Taylor
expansions in D− write:
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U(Xi ,X j) � T
q
i j(Q

−)Lq
−
(
(Sq
−)−1 KS

q
−

) (
S

q
+V q

+ (tn) + Rq
+(tn) − Rq

−(tn) −QqZq(tn)
Λq

)
+ O(∆Xq+1) (3.95)

The derivatives of orders greater than q + 1, i.e. Rq
±(tn) and O(∆Xq+1), are neglected in the

expansions (3.94) and (3.95) that can be written in the matrix form:

U(tn) � Mq
(

V q
+ (tn)
Λq

)
+ F q

(
Zq(tn)

0

)
(3.96)

with U(tn) containing the values of U at the points in D+ ∪ D−. The radius of these half-disks
is chosen large enough, r � 3.2∆X for q � 3 for example, to ensure that the system (3.96) is

overdetermined. The least-squares inverse of Mq is denoted by (Mq)−1, and we consider �(Mq)−1

its restriction so that one finally gets:

V q
+ (tn) � �(Mq)−1

(
U(tn) − F q

(
Zq(tn)

0

))
. (3.97)

Finally the ghost values (3.86) are computed using (3.91) and (3.97) while taking the numerical
counterparts Un and (Zq)n of U(tn) and Zq(tn), respectively

Result 3.5: Numerical approximations of the ghost values in 2D

U ∗I J � T
q
I J(Q

+)Lq
+
�(Mq)−1

(
U

n − F q
(
(Zq)n

0

))
. (3.98)

This procedure constitutes an extension of the approach developed in Lombard et al., 2017 for
non-resonant interface problems.

3.4.5 Computation of the auxiliary variables

Unlike the non-resonant case, it remains to compute the numerical approximations (Zq)n of Zq(tn).
This vector contains the auxiliary variables Jr(s , t) and Gr(s , t) along the enlarged interface and
their spatial derivatives up to order q. However, one recalls that the source term of the equation
defining Jr and Gr (3.83d) is a third-order derivative. Therefore, when this equation is derived m
times, the source term is of order m + 3. Keeping in mind that the derivatives of order greater
than q + 1 will be neglected for the numerical computation when the ESIM is of order q, then this
source term and the resulting derivatives of Jr and Gr will be neglected if m ≥ q − 2. Therefore
Zn is reduced to a size of (q − 2)(q − 1)NR.

Here, we limit ourself to q � 3 to avoid the computation of new auxiliary variables in Zn.
These new variables would be the spatial derivatives of Jr and Gr . This can be done but given the
satisfying numerical results already obtained for q � 3 such technicalities will not be considered
here. In this case, Zn only contain the Jr and Gr , r � 1, · · · ,NR. Then, one just has to perform
numerical integration and numerical differentiation which extend Approximation 3 to 2D and allow
to compute Jr(s , t) and Gr(s , t), solution of (3.83d) and (3.83c). In terms of memory requirements,
the computation of the auxiliary variables in 2D requires the storage of the vector Ψ defined in
(3.47) for the 1D case at each orthogonal projection point Q±.

84



3.5. Numerical experiments

3.5 Numerical experiments

The derivation of the effective model has already been tackled in Chapter 2 and the latter is used in
this section to perform wave propagation simulations and validate the proposed numerical method.
In particular, the featured effective parameters will be chosen independently of a microstructure.

3.5.1 1D case

I

(a) Waveform

0 50 100 150 200
0

5

10

15

20

(b) Fourier spectrum

Figure 3.3 – Initial condition (3.99): (a) velocity field V and (b) associated spectrum with the red crosses
indicating the five resonant frequencies fr � ωr/2π considered.

B (m) S (m) h (m)
1.603 0.378 2

r 0 1 2 3 4 5
ωr (rad·s-1) 300 450 600 750 900

αr 0.314 0.462 0.4 0.2 0.1 0.1

Table 3.4 – Interface parameters for the 1D effective model (3.4).

µm (kg·m-1 · s-2) cm (m·s-1) f0 (Hz) XI (m) a (m) ∆X (m) ζ
10−3 1500 30 -9 6 1.5 0.95

Table 3.5 – Matrix properties and numerical parameters.

This section aims at validating the numerical method described in Section 3.2 in the 1D
case. The chosen constitutive parameters and numerical ones are provided in the Tables 3.4 and
3.5 considering a number NR � 5 of resonant frequencies. The time step follows from the CFL
condition ∆t � ζ∆X/cm taken for ζ � 0.95. The initial conditions are:

U(X, 0) �

©«
1
µm

− 1
cm

0

ª®®®®®¬
F
(
X − XI

)
(3.99)

where the source function F is defined in (2.57) and is of class C6. It depends on the choice of a
central frequency f0 given in Table 3.5. For the chosen values of cm and ∆X in Table 3.5 then the
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number of grid nodes is approximately 33 per wavelength at the central frequency f0. Moreover,
the initialization point XI is chosen so that the support of the initial time conditions (3.99) does
not intersect the enlarged interface. The corresponding initial velocity and its Fourier spectrum
are shown in Figure 3.3. The final simulation time is chosen so that the wave has not hit yet the
boundaries of the computational domain.

R

T

(a) Vref (blue) and V (red) at the final simulation time
tf � 94.05 ms. R: reflected wave, T: transmitted wave.

1

2

(b) Relative error εV (tf) in a log-log scale.

Figure 3.4 – Numerical results for velocity field V in the 1D case: comparison with a semi-analytical solution
Vref.

Figure 3.4(a) displays the associated velocity V computed at the final simulation time tf �
94.05 ms, together with a semi-analytical solution Vref, which is derived in Appendix 3.A.1. The
discrepancy between the two solutions is quantified by defining a global relative error at the final
simulation time tf as follows:

εV (tf) �
‖Vref(·, tf) − V(·, tf)‖L2(Ωobs)
‖Vref(·, tf)‖L2(Ωobs)

,

where Ωobs � [Xini; Xend]\[−a/2; a/2], with Xini and Xend the left and right boundaries of the
computational domain. One measures εV (tf) � 1.5 · 10−2 when q � 3, (qD , qI) � (2, 3) and
λ/∆X � 33 for the characteristic wavelength λ � cm/ f0. The relative error εV (tf) is represented
as a function of λ/∆X whose slope in a log-log scale graph characterizes the global order of
the scheme, see Figure 3.4(b) for q � 3 and two values of (qD , qI). The errors obtained in the
non-resonant case, with αr � 0 for r � 0, . . . , 5, are included in Fig. 3.4(b) for comparison. It
is seen that setting (qD , qI) � (1, 2) yields order 1, which is a drop in accuracy compared to the
non-resonant case for which the global error considered is of order 2. The choice (qD , qI) � (2, 3)
allows to recover this order with similar accuracy.

Table 3.6 reports the orders of accuracy measured using the global error metric εV (tf) for q � 3
and q � 5 depending on the chosen values (qD , qI). The parameter qT is chosen to be the minimal
value given by Table 3.3 for each value of (qD , qI). These orders, as well as Figure 3.4(b), are
obtained with the relative position of the interfaces within the Cartesian grid being kept while the
ratio λ/∆X is increased. Even if the one lacks of a theoretical stability property for the proposed
scheme, these numerical results are in agreement with the analysis of the local truncation error
in Property 5. Note that, in practice, for the largest values of (qD , qI) considered then the Taylor
expansion parameter qT must be increased to maintain the numerical stability. Doing so, the
matrix Mq is no longer a square matrix so that Property 5 does not apply anymore. However the
corresponding orders measured remain compatible with the estimates of Property 5. The right
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H
HHH

HHqD

qI 2 3 4 5

1 1 1 1 1
2 1 2 2 2
3 1 2 2 2
4 1 2 2

H
HHH

HHqD

qI 2 3 4 5

1 1 1 1 1
2 1 2 2 2
3 1 2 3 3
4 1 2 3

Table 3.6 – Convergence measurements in the 1D case: orders of accuracy for q � 3 (left) and q � 5
(right).

bottom boxes are not filled in Table 3.6 because the associated values qT being too large, the use
of the pseudo-inverse of the matrix Mq yields unacceptable numerical errors.

3.5.2 2D case

In this section, we validate the method dicussed in Section 3.4 on three test cases: i) incident plane
wave at normal incidence on a plane enlarged interface, ii) slanted incident plane wave on a tilted
enlarged interface, and iii) incident plane wave on a circular enlarged interface. Semi-analytical
solutions are computed in these three cases, see Sections 3.A.1 and 3.A.2. The initial conditions
are

U(X , 0) �
(
V, Σ1 , Σ2

)>(X , 0)
�

©«

1
µm

−cos θI

cm

−sin θI

cm

ª®®®®®®®¬
F((X − XI) · e1 cos θI + (X − XI) · e2 sin θI),

(3.100)

where F is defined in (2.57), θI is the angle between the direction of propagation of the plane wave
and the horizontal axis and the initialization point XI is chosen so that the support of the initial time
conditions does not intersect the enlarged interface. The constitutive and numerical parameters
are those of Tables 3.4 and 3.5 while the chosen additional effective interface parameters that
are requested in 2D are reported in Table 3.7. The proposed numerical method is implemented
taking q � 3 since, as previously discussed, the cases q ≥ 4 are very demanding in 2D and require
to handle additional auxiliary variables.

B2 (m) C1 (m) C2 (m)
0.142 0.142 0.2

Table 3.7 – Additional effective interface parameters for the 2D model (3.83).

3.5.2.1 Incident plane wave at normal incidence

First, we consider the case of normal incidence, i.e. θI � 0, with a wave impacting a plane enlarged
interface, in which case the fields are independent of X2. Periodicity conditions are imposed at the
bottom and top boundaries of the computational domain. Physically, the problem is 1D, but the
full 2D algorithm is employed and one sets (qD , qI) � (2, 3).

Figure 3.5 displays the velocity field V at the initial time t � 0, at which the initialization point
in (3.100) is XI � (−9m, 0m), and at time tf � 94.05 ms, while Figure 3.6 shows the profiles of
the solution at X2 � 0. The discrepancy between the numerical and the semi-analytical solutions
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(a) t � 0 (b) tf � 94.05 ms

Figure 3.5 – Velocity field V computed for an incident plane wave (I) at normal incidence on the enlarged
interface. R: reflected wave, T: transmitted wave.

is comparable with the 1D results with εV (tf) � 4.5 · 10−2 for λ/∆X � 33. Table 3.8 reports the
measured orders of accuracy, which are the same as in 1D.

T

R

Figure 3.6 – Incident plane wave at normal incidence in 2D: semi-analytical and numerical velocity fields
Vref (blue) and V (red) at X2 � 0 and for the final simulation time tf � 94.05 ms.

3.5.2.2 Slanted incident plane wave on a tilted enlarged interface

The case of an incident wave at oblique incidence, with θI � 10◦ in (3.100), on an enlarged
interface tilted from the vertical axis at −7.2◦ is now considered. It allows us to inspect both the
dependencies of the jump conditions on X2 and the capability of the numerical method to account
for the slope of the interface on a Cartesian grid. To perform the simulations, one imposes the
semi-analytical solution of the problem on the domain boundary.

Figure 3.7 displays the velocity field computed at the initial time, at which the initialization point
in (3.100) is XI � (−21m,−150m), and at time tf � 84.55 ms when (qD , qI) � (2, 3). Figure 3.8
compares the reference semi-analytical solution and the numerical one, with εV (tf) � 4.1 · 10−2

when λ/∆X � 33. This result is similar to that given in Section 3.5.2.1, which illustrates that
the dependency of the jump conditions on X2 and the slope of the interface are both accurately
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H
HHH

HHqD

qI 2 3 4 5

1 1 1 1 1
2 1 2 2 2
3 1 2 2 2
4 1 2 2

Table 3.8 – Convergence measurements in the 2D case: orders of accuracy for q � 3.

(a) t � 0 (b) tf � 84.55 ms

Figure 3.7 – Velocity field V computed for an incident plane wave (I) at oblique incidence on a tilted
enlarged interface. R: reflected wave, T: transmitted wave.

T

R

Figure 3.8 – Slanted incident plane wave on a tilted enlarged interface: semi-analytical and numerical velocity
fields Vref (blue) and V (red) at X2 � 0 and for the final simulation time tf � 84.55 ms.

accounted for by the proposed numerical method.

3.5.2.3 Incident plane wave on a circular enlarged interface

The case of an incident plane wave on a circular enlarged interface is now considered. This example
allows to inspect the capability of the method to take into account a curved enlarged interface. A
semi-analytical solution is derived in Section 3.A.2 in the resonant case with B2 � C1 � α0 � 0.
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Consequently, in this subsection, these interface parameters are set to zero to allow the comparison
with the semi-analytical solution. The numerical parameters are (qD , qI) � (2, 3).

(a) t � 0 (b) tf � 63.3 ms

Figure 3.9 – Velocity field V computed for an incident plane wave on a circular enlarged interface.

Figure 3.10 – Incident plane wave on a circular enlarged interface in 2D: semi-analytical and numerical
velocity fields Vref (blue) and V (red) at X2 � 0 and for the final simulation time tf � 63.3 ms. The vertical
black lines denote the position of the enlarged circular interface.

We consider an incident plane wave with propagation direction along X1 and periodicity con-
ditions imposed on the top and bottom boundaries of the computational domain. The enlarged
interface is defined by two circles of center (0, 0) and radii a− � 42 m and a+ � 36 m. The
velocity field at the initial time, at which the initialization point in (3.100) is XI � (−45m, 0m),
and at final simulation time tf � 63.3 ms are displayed in Figure 3.9. The comparison with the
semi-analytical solution is reported in Figure 3.10 at X2 � 0. The measured error is εV (tf) � 2 ·10−2

when λ/∆X � 33, which highlights the satisfying performances of the proposed approach with the
circular enlarged interface being accurately handled numerically.
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3.6 Accounting for dissipation

So far, the numerical method has been presented for jump conditions that relates to an inviscid
microstructured configuration. As discussed in Section 2.4, it is also possible to take into account
dissipation. The resulting jump conditions (2.63) can be discretized using the same numerical
strategy involving an ADER-4 scheme, the ESIM and auxiliary variables. However, the jump
conditions are substantially changed when dissipation is considered, and the main resulting changes
for the numerical method will be presented in this section.

3.6.1 Formalism of auxiliary fields

Following the same method as in Section 3.1, we introduce the auxiliary variables Ĵr and Ĝr
associated with the resonance index r ∈ {1, · · · ,NR} and which satisfy:

(
ω2 − 1

γρi
iω − ω2

r

)
Ĵr(X2 , ω) � α2

r

(
1 +

1
γρi iω

) (
ω2 − 1

γρi
iω

) 〈〈
div Σ̂

〉〉
a

iω Ĵr(X2 , ω) � Ĝr(X2 , ω)
(X2 ∈ R).

(3.101)
Combining (2.63), (2.66) and (3.101), a formal inverse Fourier transform yields the system

∂tΣ(X , t) � µm ∇V(X , t) (|X1 | ≥ a/2,X2 ∈ R),

∂tV(X , t) �
1
ρm

divΣ(X , t) (|X1 | ≥ a/2,X2 ∈ R),

∂t Jr(X2 , t) � Gr(X2 , t) (X2 ∈ R, r � 1, . . . ,NR),

∂t Gr(X2 , t) � −
1
γρi

Gr(X2 , t) − ω2
r Jr(X2 , t) + µmα

2
r

(
∂t +

2
γρi

)
〈〈∆V〉〉a +

(
αr

γρi

)2

〈〈divΣ〉〉a

(X2 ∈ R, r � 1, . . . ,NR),

~V�a � B̃1 〈〈∂X1V〉〉a + B̃2 〈〈∂X2V〉〉a (X2 ∈ R),

~Σ1�a � C̃11 〈〈∂X1Σ1〉〉a + C̃12 〈〈∂X2Σ1〉〉a + C̃22 〈〈∂X2Σ2〉〉a + D̃0 〈〈V〉〉a − h
NR∑
r�1

Jr (X2 ∈ R),
(3.102)

with the new parameter D̃0 � (hρmα0)/(γρi) due to dissipation. When γ � +∞, then the inviscid
case (3.3) is recovered.

91



Chapter 3. Numerical modeling for wave propagation across resonant meta-interfaces

3.6.2 Numerical approximation of the ghost values in 1D

The system (3.3) is recast in 1D for all t as

∂tΣ(X, t) � µm ∂XV(X, t) (|X | ≥ a/2)

∂tV(X, t) �
1
ρm

∂XΣ(X, t) (|X | ≥ a/2)

∂t Jr(t) � Gr(t) (r � 1, . . . ,NR)

∂t Gr(t) � −
1
γρi

Gr(t) − ω2
r Jr(t) + µmα

2
r

(
∂t +

2
γρi

) 〈〈
∂2

XXV
〉〉

a +

(
αr

γρi

)2

〈〈∂XΣ〉〉a

~V�a � B̃1 〈〈∂XV〉〉a

~Σ�a � C̃11 〈〈∂XΣ〉〉a + D̃0 〈〈V〉〉a − h
NR∑
r�1

Jr .

(3.103)
The method to derive the numerical approximations of the ghost values, see Sections 3.2.4 and
3.2.5 and Approximation 1, is unchanged but the expressions of the matrices are modified com-
pared to the case γ � +∞. Their expressions is given below for q � 3.

C3
±[i , i] � 1, C3

±[5, 1] � ∓
D̃0
2 ,

C3
±[1, 2] � ∓

B̃1
2 , C3

±[5, 6] � ∓
C̃11
2 ,

C3
±[2, 3] � ∓

C̃11
2 , C3

±[6, 7] � ∓
B̃1
2 ,

C3
±[2, 6] � ∓

D̃0
2ρmµm

, C3
±[7, 3] � ∓

hρm

γρi

(α0
2 −

NR∑
r�1

α2
r

)
,

C3
±[3, 4] � ∓

B̃1
2 , C3

±[7, 6] � ±
h

2(γρi cm)2
NR∑
r�1

α2
r ,

C3
±[4, 3] � ∓

h
2(γρi cm)2

NR∑
r�1

α2
r , C3

±[7, 8] � ∓
1
2

(
C̃11 − h

NR∑
r�1

α2
r

)
,

C3
±[4, 6] � ∓

h
2µm c2

m(γρi)3
NR∑
r�1

α2
r , C3

±[i , j] � 0 else.

C3
±[4, 8] � ∓

h
2µmγρi

(
α0 −

NR∑
r�1

α2
r

)
,

(3.104)
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Q3[2, j] � − h
µm

if j ∈ {NR + 1, ..., 2NR},

Q3[4, j] � −
hω2

j

µm c2
mγρi

if j ∈ {1, ...,NR},

Q3[4, j] � h
µm c2

m

(
ω2

j−NR
− 1
(γρi)2

)
if j ∈ {NR + 1, ..., 2NR},

Q3[5, j] � −h if j ∈ {1, ...,NR},

Q3[7, j] �
hω2

j

c2
m

if j ∈ {1, ...,NR},

Q3[7, j] � h
c2

mγρi
if j ∈ {NR + 1, ..., 2NR},

Q3[i , j] � 0 else.

(3.105)

R3
±[4] � ∓

1
2

(
C̃11 − h

NR∑
r�1

α2
r

)
∂4

XV± , R3
±[8] � ∓

B̃1
2 ∂

4
XΣ± , R3

±[i] � 0 else. (3.106)

When γ � +∞, one recovers the equations (3.14), (3.15) and (3.16) of the inviscid case.

3.6.3 Computation of the auxiliary variables in 1D

Compared with the inviscid case, the computation of the auxiliary variables is substantially changed
by dissipation, since the equation satisfied by the auxiliary variables is modified. Since it is a second-
order equation, there are three different possible cases depending on the sign of the discriminant.
From now on we will focus on only one of these cases. Indeed, the following assumption is used
regarding the dissipation parameter γ:

Assumption 3.2

γ > γ? � 1/(2 ρi ω1).

The infinite set of resonant frequencies is strictly increasing, see (1.23). Hence Assumption 3.2
implies that γ > 1/(2ρiωr) for all r ≥ 1. The case of high dissipation, such that γ ≤ γ?, yields
a finite set of purely damped eigenmodes. The forthcoming calculations, where low dissipation is
assumed, can easily be adapted to this regime. We introduce

ξ1
� −1/(2γρi)

ξ2
r �

√
4ω2

r − 1/(γρi)2 / 2

ϕ(τ) � µmα
2
r

(
∂t +

2
γρi

)
〈∂2

XV〉a(τ) +
(
αr

γρi

)2

〈∂XΣ〉a(τ).

(3.107)

Zero initial conditions are assumed for Jr and Gr . Using Assumption 3.2, then the auxiliary fields
write{

Jr(tn) � eξ1tn
[
−Λ1

r (tn) cos(ξ2
r tn) + Λ2

r (tn) sin(ξ2
r tn)

]
,

Gr(tn) � eξ1tn
[
Λ1

r (tn)(ξ2
r sin(ξ2

r tn) − ξ1 cos(ξ2
r tn)) + .Λ2

r (tn)(ξ2
r cos(ξ2

r tn) + ξ1 sin(ξ2
r tn))

]
,

(3.108)
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where one has for k � 1, 2:

Λk
r (tn) �

1
ξ2

r

∫ tn

0
`k

r (τ) dτ with

{
`1

r (τ) � ϕ(τ) sin(ξ2
rτ)e−ξ

1τ ,

`2
r (τ) � ϕ(τ) cos(ξ2

rτ)e−ξ
1τ.

(3.109)

This leads to an iterative computation of the functions Λk
r :

Λk
r (t0) � 0,

Λk
r (tn+1) � Λk

r (tn) +
1
ξ2

r

∫ tn+1

tn

`k
r (τ) dτ,

(3.110)

where t0 � 0. As in the inviscid case, the integral is computed using the extrapolative Newton-Cotes
formula (3.37) and the temporal derivative in (3.107) using the finite-difference approximation
(3.38). The numerical approximation of the traces at ts ≤ tn is computed thanks to the numerical
approximations (U q

±)s , see (3.41) for the velocity.
To compute the numerical approximation (Λk

r )n+1 of Λk
r (tn+1), the following iterative relation is

thus used:

(Λk
r )0 � 0,

(Λk
r )n+1

� (Λk
r )n +

α2
r∆t
ξ2

r

qI−2∑
w�0

δw×[
µm

∆t

qD∑
z�0

βz(〈∂2
XV〉a)n−w−z

+
2µm

γρi
(〈∂2

XV〉a)n−w
+

1
(γρi)2

(〈∂XΣ〉a)n−w

]
(κk

r )n−w ,

(3.111)
with (κ1

r )s � sin(ξ2
r ts)e−ξ

1ts , (κ2
r )s � cos(ξ2

r ts)e−ξ
1ts , (〈∂2

XV〉a)s and (〈∂XΣ〉a)s given by:
(〈∂2

XV〉a)s �
1
2

(
(U q
−)s + (U q

+)s
)
[3],

(〈∂XΣ〉a)s �
1
2

(
(U q
−)s + (U q

+)s
)
[q + 3].

(3.112)

Then, the numerical approximation of the auxiliary variables writes:

Result 3.6: Numerical approximations of the auxiliary variables with dissipation

{
Jn
r � eξ1tn

[
−(Λ1

r )n cos(ξ2
r tn) + (Λ2

r )n sin(ξ2
r tn)

]
,

Gn
r � eξ1tn

[
(Λ1

r )n(ξ2
r sin(ξ2

r tn) − ξ1 cos(ξ2
r tn)) + (Λ2

r )n(ξ2
r cos(ξ2

r tn) + ξ1 sin(ξ2
r tn))

]
.

(3.113)

It follows the vector Zn and consequently the ghost values. In the inviscid case, the local truncation
error was analysed in Section 3.3. The steps of the proof can be adapted directly to the dissipative
case, and are not repeated here. The result of Property 5 then still holds for the dissipative case.

3.6.4 Overview of the 2D case

The computation of the ghost values in the two-dimensional case has been detailed in the inviscid
case in Section 3.4. Compared with the one-dimensional case, a significant change occurs when the
jump conditions are derived q times. Indeed, the q-th order jump conditions are derived not only by
differentiating in time the jump conditions but also by differentiating with respect to the curvilinear
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abscissa s, see Section 3.4.3. For the inviscid case, as discussed in Section 3.4.5, one only needs to
compute (q − 2)(q − 1) × NR auxiliary variables since the second member of the equation defining
(Jr ,Gr) only involves the third-order derivative term. In the damped case, first-order derivatives
are also involved which requires the computation of q(q + 1) ×NR auxiliary variables. In particular,
the case q � 3 used in practice does not require to introduce additional auxiliary variables in the
inviscid case. Such technicalities cannot be avoided with dissipation and 12 auxiliary variables have
to be computed.

Without dissipation, the matrices in the ESIM separate the terms of stress and velocity, which
have very different orders of magnitude. In the dissipative case, these terms are mixed, which
induces a bad conditioning of the jump condition matrices and leads to numerical instabilities.
To overcome this difficulty, normalized physical parameters are used in our simulation software
when dissipation is considered. These quantities are denoted by tildes in the following. We define
the normalized time t̃ � N t and frequency f̃ � f /N and the normalized physical parameters
ρ̃ � N 3ρ, µ̃ � Nµ, c̃ � c/N , γ̃ � γ/N 2. The value of N is chosen so that all the normalized
quantities are of the same order of magnitude.

3.6.5 Numerical experiments

3.6.5.1 Setting

Numerical experiments are then performed to assess the validity of the numerical method when
dissipation is considered. The effective parameters are the ones of Tables 2.1 and 2.2, with
a � 1.3838m, µm � 1010 kg · m−1 · s−2 and cm � 1500m · s−1. In this configuration, the limit value
of Assumption 3.2 is γ? � 1.87 · 10−7 kg−1 · m3 · s. The value of the dissipation parameter is thus
chosen to be γ � 2 · 10−6 kg−1 · m3 · s > γ?.

The central frequency is f0 � 72 Hz in the source function (2.57) used in the initial conditions
(2.59). The point XI � (−2, 0)m is chosen such that the initial conditions do not intersect the
enlarged interface. The initial profile (normalized by its maximum) of the velocity is displayed in
Figure 3.11a.

The numerical parameters are ∆X � 0.2m for the mesh size and ∆t � ζ∆X/cm for the time
step. The CFL number ζ � 0.95 < 1 is chosen and ensures the stability of the ADER-4 scheme in
a homogeneous medium. The order of the ESIM is q � 3, and one chooses (qD , qI) � (2, 3) for
the computation of the auxiliary variables. The normalization parameter is set to N � 103.

3.6.5.2 1D case

One first uses the 1D numerical method and the profile of the numerical approximation of this
homogenized model is displayed at the final time t f � 31.7ms together with a semi-analytical
solution Vref in Figure 3.11b. The computation of this semi-analytical solution is detailed in
Section 3.A.1.

The discrepancy between the numerical and semi-analytical homogenized solutions is measured
in the L2-norm for X ∈ [−50;−5]m. The relative error in Figure 3.11b, i.e. for ∆X � 0.2 m, is
of 0.7%. The relative error is then represented in Figure 3.12 as a function of ∆X whose slope
in a log-log scale graph characterizes the global order of the scheme. This figure is obtained with
the relative position of the enlarged interface in the uniform Cartesian grid being kept while the
mesh size ∆X increases. The errors obtained with the numerical method previously described in
the inviscid case are also included in the figure for comparison and denoted by the legend γ � +∞.
As theoretically predicted, order 2 of convergence is measured.
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Figure 3.11 – Velocity profiles of the homogenized problem at time t � 0 and time t � t f for a plane wave
at normal incidence with f0 � 72Hz. The dashed lines denote the positions of the enlarged interface.
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Figure 3.12 – Relative error between the 1D numerical and semi-analytical velocities of the homogenized
problem in a log-log scale.

3.6.5.3 2D case

We still consider the same configuration of an incident plane wave at normal incidence but the full
2D algorithm is used for the homogenized problem. The same numerical parameters as in 1D are
used and periodic conditions are imposed at the top and the bottom of the computational domain.
Figure 3.13 shows the velocity fields at the initial time t � 0 and the final time t � t f � 31.7ms.
The profiles along X2 � −1m of the numerical and semi-analytical solutions of the homogenized
problem are displayed at t f in Figure 3.14a. The discrepancy is of same order as in 1D, with
a relative error of 1%. This relative error is displayed as a function of ∆X in Figure 3.14b and
confirms an order of 2. Consequently, we observe the same orders of accuracy as in 1D even if the
2D numerical method is much more intricate, involving 12 auxiliary variables computed instead of
2 for the one-dimensional problem.

3.7 Conclusion and perspectives

In this chapter, our objective was to handle enlarged interfaces characterized by frequency-
dependent jump conditions and consequently jump conditions that are non-local in time when
formulated in the time domain. A time-domain numerical method was proposed and implemented
for this type of model. The proposed approach relies on the following key points: (i) A set of
auxiliary variables is introduced locally along the enlarged interface, which allows to formulate a
first-order system in time with jump conditions that are local in time. (ii) An immersed interface
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Figure 3.13 – Velocity fields of the homogenized problem at time t � 0 and time t � t f at normal incidence
with f0 � 72 Hz. The black lines denote the enlarged interface.
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Figure 3.14 – Numerical and semi-analytical velocity profiles (a) of the homogenized problem at time t � t f
at normal incidence with f0 � 72 Hz and corresponding relative errors (b).

method is developed to handle numerically such a system by using a high-order finite differences
scheme on a Cartesian grid through a proper discretization of the enlarged interface.

Local error estimates were derived to assess the optimal values of the featured numerical param-
eters. The proposed numerical method was then illustrated and validated considering 1D and 2D
configurations involving plane waves illuminating straight or curved enlarged interfaces. Moreover,
semi-analytical solutions to these problems were derived and used for quantitative comparisons.
Eventually, in line with the previous chapter, the modifications induced by the incorporation of
dissipation in the resonant model was presented. Indeed, the computation of the auxiliary variables
is substantially changed and the 2D numerical experiments require the computation of additional
auxiliary variables.

This numerical method has been programmed from scratch in C++ (about 13000 lines) and
will be implemented in the PROSPERO platform (http://prospero-software.science/) in a near
future.

Different follow-ups can be identified at the end of this chapter from the mathematical, nu-
merical and modeling standpoints:

• In the inviscid case, the auxiliary variables { Ĵr} are defined through (3.1) for all ω , ωr .
Therefore, in order to apply the inverse Fourier transform, care must be taken and a suitable
approach relies on the introduction of an artificial damping parameter that is taken to zero
once in the time domain. Studying such a limit amounts to investigate the question of the
existence of a limiting absorption principle for the system considered (Cassier et al., 2017b).
This has been omitted in this chapter and the inverse Fourier transform has only been applied
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formally.

• Regarding stability in the framework of the ESIM method, the classical Von Neumann analysis
cannot be applied, as it is only valid in homogeneous media. Energy methods, valid in the case
of variable coefficients, are well suited to discretizations arising from a variational formulation,
which is not the case for this method. A way to study the stability is the GKS analysis by
discrete normal modes. This issue has been tackled in Lombard, 2010 for 1D problems with
linear jump conditions. An attempt could be made to adapt it to cases of resonant jump
conditions. This would not give a theoretical expression as the classical CFL condition but it
could provide a numerical tool to test the stability for a given set of numerical and physical
parameters.

• The treatment of the boundaries in the direction of the microstructured layer has been
disregarded: we consider either periodic conditions, or impose the semi-analytical solution
on the boundaries, or perform simulations on a sufficiently large domain so that the results
in the domain of interest are not affected by boundaries phenomena. A perspective could be
to add adequate Perfectly Matched Layers (Alvarez-Aramberri, Pardo, & Barucq, 2014)

• Some of the perspectives mentioned in the previous chapter concerning the homogenization
step would naturally lead to perspectives regarding the numerical method: extension to the
three dimensional case or to other dissipation models for example.

3.A Semi-analytical solutions for plane waves on a resonant meta-
interface

In this appendix, semi-analytical solutions are computed for resonant meta-interfaces. They are
used to inspect the validity of the numerical method developped in Chapter 3 and to compute

the reflexion and transmission coefficients of the homogenized problem in Chapter 2.

3.A.1 Semi-analytical solution for a slanted plane wave on a tilted plane interface

In this subsection, the analytical solution is computed in the general case where dissipation is
considered. One only has to take γ � +∞ in the expression of Dγ to obtain the inviscid case.
We consider an incident plane wave at an angle θI with the horizontal axis and an enlarged
interface located between the physical points X1 � −a/2 and X1 � a/2, see Figure 3.15. The
initial conditions are given in (3.100). To calculate the solution to the 2D problem (3.102) in
this configuration, we consider its frequency-domain formulation (2.63). The wavefield solution
Û(X , ω) is then decomposed into incident ÛI , reflected ÛR and transmitted ÛT waves, ie
Û � ÛI + ÛR + ÛT . It is assumed that these are plane waves that write

ÛI �
©«

1/µm
− cos θI/cm
− sin θI/cm

ª®¬ exp(−ikI · (X − XI)) F̂(ω),

ÛR �
©«

1/µm
− cos θR/cm
− sin θR/cm

ª®¬ exp(−i(kR · X − kI · XI)) F̂(ω) R(ω),

ÛT �
©«

1/µm
− cos θT/cm
− sin θT/cm

ª®¬ exp(−ikT · (X − XI)) F̂(ω) T (ω),

(3.114)
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Figure 3.15 – Incident plane wave (I) illuminating the enlarged interface and leading to reflected (R) and
transmitted (T) plane waves.

with θR � π − θI and θT � θI , and kI , kR and kT being the corresponding wavevectors that are
of norm ω/cm and whose direction is normal to the wave fronts. Using the jump conditions in
(2.63) and introducing the following parameters

α1(ω) �
h

2c2
m

( (
S + Dγ(ω)

)
cos(θR)2 + C1 sin θR cos θR +

(
C2 + Dγ(ω)

)
sin(θR)2

)
,

α2(ω) �
h

2c2
m

( (
S + Dγ(ω)

)
cos(θT)2 + C1 sin θT cos θT +

(
C2 + Dγ(ω)

)
sin(θT)2

)
,

β1 � − h
2cm
(B cos θR + B2 sin θR) ,

β2 � − h
2cm
(B cos θT + B2 sin θT),

δ(ω) � exp
(
−i ω

cm
acos θI

)
,

(3.115)

then we get the following system for the reflected coefficient R(ω) and transmitted coefficient
T (ω):

(
cos θR

cm
− iω α1(ω)

)
δ(ω)R(ω) −

(
cos θT

cm
+ iω α2(ω)

)
δ(ω)T (ω) � −cos θI

cm
+ iω α2(ω),(

1 + iω β1
)
δ(ω)R(ω) − (1 − iωβ2) δ(ω)T (ω) � −1 − iω β2.

(3.116)
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One makes use of B2 � C1, see Property 1, and introduces the parameters

L (ω) � h
(
(−S + B) cos(θI)2 − C2 sin(θI)2 −Dγ(ω)

)
,

G � −h(C1 + B2) cos(θI) sin(θI),

Z � 2cm cos θI ,

N (ω) � h
(
S cos(θI)2 + C2 sin(θI)2 + B cos(θI)2 + Dγ(ω)

)
,

M (ω) � h2

2cm

(
BS cos(θI)2 − B2C1 sin(θI)2 + BC2 sin(θI)2 + BDγ(ω)

)
cos(θI),

(3.117)

to get the reflection coefficient and the transmission coefficient
R(ω) � iωL (ω)

Z + iωN (ω) − ω2M (ω) exp
(
i ω
cm

a cos θI

)
,

T (ω) � Z + iω G + ω2M (ω)
Z + iωN (ω) − ω2M (ω) exp

(
i ω
cm

a cos θI

)
.

(3.118)

These expressions used in (3.114) give the sought expression for Û(X , ω). An inverse discrete
Fourier transform in time provides the semi-analytical time-domain solution considered in Sec-
tions 3.5 and 3.6. It can be shown that the 1D semi-analytical solution is recovered when setting
θI � 0, X2 � 0 and Σ2 � 0 in the 2D solution.

Remark 13. When the enlarged interface is tilted of an angle −φ with the horizontal axis then
the calculation of the associated scattering coefficients follows the same lines in the rotated
coordinate system (ζ, η) � (cosφ X1 − sinφ X2 , sinφ X1 + cosφ X2). A rotation of angle −φ is
then necessary after the inverse discrete Fourier transform to express the vectorial field Σ in the
basis (X1 ,X2).

3.A.2 Semi-analytical solution for a plane wave on a circular interface

We consider an incident plane wave at an angle θI with the horizontal axis and an enlarged circular
interface defined by two circles of centers (xc , yc) and radii a− and a+, with a− > a+. The initial
conditions are given in (3.100). The approach presented here applies to the particular interface
parameter values B2 � C1 � α0 � 0, the other parameters being arbitrary. The method employed
in Lombard and Piraux, 2004 for fluid-solid circular interface is applied here: to calculate the
solution, we consider its frequency-domain formulation (1.19). The wavefield solution Û(X , ω) is
then decomposed into incident, reflected and transmitted waves. They are written on a truncated
basis of Bessel functions using the Jacobi-Anger decomposition and the associated diffraction
coefficients are derived from the jump conditions. We start by introducing a polar coordinates
system (r, φ) such as X1 � xc + r cosφ and X2 � yc + r sinφ, and the harmonic potential Ψ̂ such
that

V̂ � i ω
µm

Ψ̂ , Σ̂ν � ∂r Ψ̂ , Σ̂τ �
1
r
∂φΨ̂ . (3.119)

The harmonic potential of the incident plane wave is:

Ψ̂I(X1 ,X2 , ω) � exp
(
− iω

cm
(X1 cos θI + X2 sin θI)

)
F̂(ω)
iω . (3.120)

The above potential reads:

Ψ̂I(X1 ,X2 , ω) � GS exp (−ikr cos α) , (3.121)
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with G � F̂(ω)/iω, S � exp(−ik(xc cos θI + yc sin θI), α � φ − θI and k � ω/cm. The Bessel
functions of the first-kind Jn satisfy the Jacobi-Anger expansion, see e.g. Harvey, Morse, and
Feschbach, 1955:

exp (−ir cos α) �
∞∑

n�0
εn(−i)n cos(nα)Jn(r), (3.122)

with εn � 1 if n � 0, 2 else. From (3.121) and (3.122), we therefore express the potential Ψ̂I as:

Ψ̂I(X1 ,X2 , ω) � GS
∞∑

n�0
εn(−i)n cos(nα) Jn(kr). (3.123)

To satisfy the Sommerfeld condition of the radiated wavefield at infinity in the acoustic medium,
the harmonic potential Ψ̂R of the reflected wave is written on the basis of Hankel functions of the
second-kind Hn. To prevent singularities from occurring at r � 0, the harmonic potential Ψ̂T of
transmitted waves is written on the basis of the Bessel functions of the first-kind, i.e.

Ψ̂R(X1 ,X2 , ω) �
∞∑

n�0
Rn cos(nα)Hn(kr), Ψ̂T(X1 ,X2 , ω) �

∞∑
n�0

Tn cos(nα) Jn(kr), (3.124)

where Rn and Tn are the coefficients of reflexion and transmission that have to be determined.
The stress vector Σ̂ � (Σ̂ν , Σ̂τ)> and the velocity V̂ are deduced from the potential Ψ̂ using
(3.121). From (3.119), (3.123) and (3.124), we deduce the components of the incident, reflected
and transmitted waves as follows:

V̂I � i ω
µm

GS
∞∑

n�0
εn(−i)n cos(nα) Jn(kr),

Σ̂Iν � k GS
∞∑

n�0
εn(−i)n cos(nα)J ′n (kr),

Σ̂Iτ � −
1
r

GS
∞∑

n�0
εn(−i)n n sin(nα) Jn(kr),



V̂R � i ω
µm

∞∑
n�0

Rn cos(nα)Hn(kr),

Σ̂Rν � k
∞∑

n�0
Rn cos(nα)H ′n(kr),

Σ̂Rτ � −
1
r

∞∑
n�0

Rn n sin(nα)Hn(kr),



V̂T � i ω
µm

∞∑
n�0

Tn cos(nα)Jn(kr),

Σ̂Tν � k
∞∑

n�0
Tn cos(nα)J ′n (kr),

Σ̂Tτ � −
1
r

∞∑
n�0

Tn n sin(nα)Jn(kr).

(3.125)

In the case where B2 � C1 � α0 � 0 an identification is possible, then the coefficients Rn and Tn
are deduced from the jump conditions in (1.19), which for all 0 ≤ φ ≤ 2π read:

V̂T(a+ , φ) − (V̂I + V̂R)(a− , φ) �
hB
2 (∂rV̂T(a+ , φ) + (∂rV̂I + ∂rV̂R)(a− , φ)),
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and

Σ̂Tν(a+ , φ) − (Σ̂Iν + Σ̂Rν)(a− , φ) �
hS
2 (∂r Σ̂Tν(a+ , φ) + (∂r Σ̂Iν + ∂r Σ̂Rν)(a− , φ))

+
hC2

2

(
1
a+
∂φΣ̂Tτ(a+ , φ) +

1
a−
(∂φΣ̂Iτ + ∂φΣ̂Rτ)(a− , φ)

)
+

k2hD∞(ω)
2 (V̂T(a+ , φ)+(V̂I+V̂R)(a− , φ)).

Then, one obtains the following system satisfied by the coefficients Rn and Tn for all n ≥ 0:

[
kJ ′n (ka+) − hS

2 k2J ′′n (ka+) + hC2
2

( n
a+

)2
Jn(ka+) − k2 h

2 D∞(ω)Jn(ka+)
]

Tn

+

[
−kH ′n(ka−) − hS

2 k2H ′′n (ka−) + hC2
2

( n
a−

)2
Hn(ka−) − k2 h

2 D∞(ω)Hn(ka−)
]

Rn

� GSεn(−i)n
[
kJ ′n (ka−) + hS

2 k2J ′′n (ka−) − hC2
2

( n
a−

)2
Jn(ka−) + k2 h

2 D∞(ω)Jn(ka−)
]
,

[
Jn(ka+) − hB

2 kJ ′n (ka+)
]

Tn +

[
−Hn(ka−) − hB

2 kH ′n(ka−)
]

Rn

� GSεn(−i)n
[
Jn(ka−) + hB

2 kJ ′n (ka−)
]

.

(3.126)
In practice, one considers a finite number NBessel of modes. The coefficients Rn and Tn are
computed from the associated systems (3.126) and (3.125) is finally used to obtain the wavefield
solution Û(X , ω) in the frequency domain. A discrete inverse Fourier transform in time yields the
semi-analytical solution considered in Section 3.5.2.3.
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In the context of metamaterials, the optimization is an important step in order to determine
the designs that exhibit interesting macroscopic behaviours. It can consist in optimizing the

physical or geometric parameters if the geometry of the metamaterial is fixed (e.g. Helmholtz
resonators (Romero-Garcia et al., 2021), multi-mass resonators (Palermo et al., 2018), slotted
cylinders (Lagarrigue et al., 2013)). As discussed in introduction, in this chapter, we are rather
interested in the topological optimization and this work was performed in collaboration with Rémi
Cornaggia (now at Institut Jean Le Rond d’Alembert, Sorbonne Université).

More precisely, we consider the topological optimization of thin microstructured layers based
on the corresponding homogenized models. Contrary to the previous two chapters, the row of
inclusions is considered in the non-resonant case, i.e. with a low contrast of the physical parameters,
see Assumption 1.1. Topological optimization in the case of resonant microstructures is an involved
task that we consider beyond the scope of this thesis.

In Section 4.1, we precise the considered optimization process based on the homogenized model.
In Section 4.2, the topological derivatives of the effectives parameters defining the homogenized
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model are computed. They allow to describe the sensitivity of the effective parameters to topological
perturbations in the unit cell. Section 4.3 describes the numerical methods used for the optimization
process. Indeed, the computation of the effectives parameters requires to solve cell problems on
an infinite strip. Their computation on a bounded cell is performed thanks to a FFT-based method
with boundary correctors. The strategy to update the material properties based on the knowledge
of the topolgical derivative is also described in this section. This is based either on a naive pixel
by pixel update or by a level-set method. Finally, some preliminary numerical results are presented
in Section 4.4.

4.1 Problem statement

We first recall the microstructured configuration and the associated homogenized model, and then
introduce the topological optimization framework.

4.1.1 Physical configuration and homogenized model

Let us consider again the propagation of scalar waves in 2D across a periodic row of inclusions
∪iΩi embedded within a homogeneous matrix Ωm. The configuration is the one of Section 1.2.2.2
and Section 1.2.2.3. Consequently, compared to the previous two chapters, we consider here the
non-resonant case, i.e. we assume a low contrast for both the mass density and the shear modulus,
see Assumption 1.1. We first recall the results of the associated homogenization process (Marigo
et al., 2017a), see Section 1.2.2.3 and especially the jump conditions 1.1.

To do so, we introduce for j � 1, 2 the fields Φ( j) which are y2-periodic and solutions of the
following cell problems:

∇y ·
(
µ(y)

(
∇yΦ

( j)(y) + e j

))
� 0 in Ω,

µ(y)[∇yΦ
( j)(y) + e j] · n and Φ( j) continuous on ∂Ωi ,

lim
y1→±∞

∇yΦ
( j)(y1 , y2) � 0,

(4.1)

with Ω the elementary cell R×[−1/2, 1/2]. Then, the following constants are defined, for j � 1, 2:
B j � lim

y1→+∞

[
Φ( j)(y1 , y2) − Φ( j)(−y1 , y2)

]
,

Cj �

∫
Ω

µ(y)
µm

∂Φ( j)

∂y2
(y)dy.

(4.2)

From Marigo et al., 2017a, we know that the homogenization at order O(η) of such a configuration
yields the following homogenized model:

∂Σ
∂t

� µm∇V (|X1 | ≥ a/2, X2 ∈ R),

ρm
∂V
∂t

� divΣ (|X1 | ≥ a/2, X2 ∈ R),

~V�a � h
{
B

〈〈
∂V
∂X1

〉〉
a
+ B2

〈〈
∂V
∂X2

〉〉
a

}
(X2 ∈ R),

~Σ1�a � h
{
S 〈〈divΣ〉〉a − C1

〈〈
∂Σ1
∂X2

〉〉
a
− C

〈〈
∂Σ2
∂X2

〉〉
a

}
(X2 ∈ R).

(4.3)

As in the resonant case, it consists in jump conditions for the velocity and the normal component
of the stress vector on an effective enlarged interface of width a ≥ e. However, due to the fact
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that there is no scaling in η between µi and µm, the expressions of the effective parameters used
in (4.3) are not the same and are recalled here:

B �
a
h
+ B1 ,

C �
a
h
+

(
µi

µm
− 1

) ∫
Ωi

dy + C2 ,

S �
a
h
+

(
ρi

ρm
− 1

) ∫
Ωi

dy.

(4.4)

The effective parameters characterizing the homogenized medium are collected in meff as:

meff � (B ,B2 ,S , C1 , C) . (4.5)

4.1.2 Topological optimization

As already mentionned, the thickness a of the enlarged effective interface in X-coordinates is
always chosen such that a ≥ e with e the thickness of the microstructured array. We introduce
the reference cell Ωa which is the bounded subset in y-coordinates of Ω defined by

Ωa
�

[
− a

2h
; a

2h

]
×

[
−1

2; 1
2

]
︸   ︷︷   ︸

I

such that m(y) � (ρ(y), µ(y)) � (ρm , µm) ∀y ∈ Ω\Ωa .

(4.6)
One aims at generating the phase distribution mopt in this bounded cell Ωa that defines a mi-
crostructure that optimizes an objective cost functional J(meff) that depends on the macroscopic
behavior. Based on the homogenized model, this macroscopic behaviour is described by the ef-
fective parameters meff (4.5) that themselves depend on m. We therefore consider the following
optimization problem:

Find mopt � arg min
m
J̃(m) with J̃(m) � J(meff). (4.7)

x

/

1 z

Pz,
z,

Figure 4.1 – Cell Ωa
z ,ε perturbed by the introduction of the inhomogeneity Pz ,ε.

To solve the problem (4.7), we allow topological perturbations of the microstructure. A pertur-
bation is a small inhomogeneity Pz ,ε � z+εP of size ε, normalized shape P and physical parameters
(µ + ∆µ, ρ + ∆ρ) introduced at a point z ∈ Ωa. The material perturbation is ∆m � (∆ρ, ∆µ)
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with ∆µ > −miny∈Ωa µ(y) and ∆ρ > −miny∈Ωa ρ(y) to satisfy the physical constraints. The
resulting perturbed cell is Ωa

z ,ε of parameters mz ,ε � (µz ,ε , ρz ,ε) � (µ + ∆µχPz ,ε , ρ + ∆ρχPz ,ε ),
with χPz ,ε the characteristic function of the perturbation domain Pz ,ε.

Let f be a function of the material properties. In this context, the so-called topological
derivative of a given function f denoted by D f is defined thanks to the following asymptotic
expansion in 2D:

fz ,ε B f (mz ,ε) �
ε→0

f (m) + ε2D f (m , z ,P , ∆m) + o(ε2). (4.8)

It describes the influence on the functional f of a perturbation located at z, of shape P and
material perturbation ∆m. Therefore, the more negative D f (m , z ,P , ∆m) is, the more efficient
a perturbation at z would be to decrease f .

In this context, and given the optimization problem (4.7), one looks for the topological derivative
DJ̃ . If J is differentiable with respect to the effective parameters, DJ̃ is computed thanks to
the chain rule:

DJ̃ �
∂J
∂B DB +

∂J
∂B2
DB2 +

∂J
∂S DS +

∂J
∂C1
DC1 +

∂J
∂C DC. (4.9)

The final objective is to have at hand an optimization algorithm in order to compute the optimal
material distribution in the sense of (4.7).

4.1.3 Main strategy

The main strategy follows Cornaggia and Bellis, 2020. This involves different steps:

1. Initialization: definition of the initial material properties m(y) for all y ∈ Ωa

2. Definition of the geometry P of the perturbation and its material properties (∆ρ, ∆µ).

3. Definition of a stopping criterion

4. Until the stopping criterion is satisfied, iteration of the following process:

(a) Computation of the cell problems solutions (4.1) which will appear in the expression
of the topological derivatives

(b) Computation of the topological derivatives of the effective parameters

(c) Computation of the topological derivative of the cost functional DJ̃ in Ωa from (4.9).

(d) The material properties are updated thanks to the information provided by DJ̃

The topological derivatives of the effectives parameters (DB ,DB2 ,DS ,DC1 ,DC) are computed
in Section 4.2 based on the expansion (4.8) and following Bonnet et al., 2018. The computation
of the cell problems is detailed in Section 4.3.1. The update of the material properties following
typically a gradient descent algorithm is discussed in Section 4.3.2.

4.2 Topological sensitivities of the effective parameters

For numerical purposes, since the optimization process will require the computation of many cell
problems, one wants to compute the cell problems in a bounded domain which is not the case
of the formulation (4.1). Consequently, we first reformulate the cell problem in a bounded cell in
Section 4.2.1. Then, one looks for an expansion of the cell problem solution Φz ,ε in the perturbed
cell Ωa

ε in Section 4.2.2. This finally allows the computation of the topological sensitivities of the
parameters DB, DS and DC in Sections 4.2.3, 4.2.4 and 4.2.5, respectively.
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4.2.1 Equivalent cell problem in a bounded cell

One introduces the vector Φ � (Φ(1) , Φ(2))T to work with compact notations. Due to (4.1), the
problem posed in an infinite strip for Φ reads

div
(
µ(y)

(
∇yΦ(y) + I2

) )
� 0 in Ω,

µ(y)[∇yΦ(y) + I2] · n and Φ continuous on ∂Ωi ,

Φ y2 periodic,

lim
y1→±∞

∇yΦ(y1 , y2) � 0,

(4.10)

with I2 the identity tensor. We remind that the variations of the physical parameters are restricted
to Ωa due to its definition in (4.6). We define the half-strips Ω+

a � [ a
2h ,+∞[×I and Ω−a � ] −

∞,− a
2h ] × I, see Figure 4.2, such that the restrictions Φ± � Φ|Ω±a satisfy:

∆Φ± � 0 in Ω±a ,

Φ± y2 periodic,

lim
y1→±∞

∇yΦ±(y1 , y2) � 0.
(4.11)

One writes the classical modal decomposition, also used in Marigo et al., 2017a, for Φ±, which is
harmonic in Ω±a :

Φ±(y1 , y2) �
∑
n∈Z

ϕ±n e∓|ξn |(y1∓ a
2h )Ψn(y2), with Ψn(y2) � eiξn y2 , ξn � 2nπ. (4.12)

The modes {Ψn} are orthonormal for the L2 scalar product on the vertical section I, i.e. they

/

1
+-

I I
- +

Figure 4.2 – Half strips Ω+
a � [ a

2h ,+∞[×I and Ω−a �] − ∞,− a
2h ] × I .

satisfy: (
Ψp , Ψq

)
I � δpq with

(
f , 1

)
I :�

∫
I

f (y2)1(y2)dy2. (4.13)

Consequently, choosing the particular section I+ �
{
(y1 , y2) ∈ Ω+

a , y1 �
a

2h

}
, see Figure 4.2, yields

the expression of the modal coefficients in the right half-strip:

ϕ+
n �

(
Φ+

( a
2h
, ·
)
, Ψn

)
I
�

∫
I
Φ+

( a
2h
, y2

)
Ψn(y2)dy2. (4.14)

One differentiates the decomposition (4.12) with respect to y1 and uses the expression of the
coefficients (4.14) to get the following Dirichlet-to-Neumann (DtN) operator linking the trace of
Φ and of its normal derivative on the section I+ where Φ � Φ+:

∂y1Φ
( a

2h
, ·
)
� Λ+

[
Φ

( a
2h
, ·
)]
, (4.15)

where
Λ+[ f ](y2) � −

∑
n∈Z
( f , Ψn)I |ξn |Ψn(y2). (4.16)
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Similarly, one can choose the particular section I− �
{
(y1 , y2) ∈ Ω−a , y1 � − a

2h

}
, see Figure 4.2,

to get the expression of the left modal coefficients

ϕ−n �

(
Φ−

(
− a

2h
, ·
)
, Ψn

)
I
�

∫
I
Φ−

(
− a

2h
, y2

)
Ψn(y2)dy2 (4.17)

and thus the left DtN relation

− ∂y1Φ
(
− a

2h
, ·
)
� Λ−

[
Φ

(
− a

2h
, ·
)]
, (4.18)

where
Λ−[ f ](y2) � −

∑
n∈Z
( f , Ψn)I |ξn |Ψn(y2). (4.19)

From (4.15) and (4.18), one can write the following DtN relation for both interfaces I±

∂nΦ
(
± a

2h
, ·
)
� Λ

[
Φ

(
± a

2h
, ·
)]
, where Λ � Λ+

� Λ− and ∂n � ±∂y1. (4.20)

The problem posed in the infinite band (4.10) can thus be rewritten as a problem with DtN
boundary conditions on the bounded cell (4.6)

∇ ·
(
µ(y) (∇Φ + I2)

)
� 0 in Ωa ,

Φ y2 periodic,

∂nΦ
(
± a

2h
, ·
)
� Λ

(
Φ

(
± a

2h
, ·
))

on I±.
(4.21)

We then establish a formal relation which will be used several times to compute the topological
derivatives. To do so, we consider a function v ∈ H1(Ωa ;R), v y2-periodic. The first equation
of (4.21) is then multiplied by v and integrated by parts. Using the periodic condition and the
boundary condition in (4.21), one obtains after a division by µm:

Aµ(Φ, v) � −Fµ(v) + J(v) ∀v ∈ H1(Ωa ;R), v y2-periodic. (4.22)

This required the introduction of the following functions

Aµ(u , v) �
∫
Ωa

µ(y)
µm

∇u(y)> · ∇v(y)dy + L−(u , v) + L+(u , v),

Fµ(v) �
∫
Ωa

µ(y)
µm

∇v(y)dy ,

J(v) �
∫

I

[
v
( a

2h
, y2

)
− v

(
− a

2h
, y2

)]
e1dy2 ,

(4.23)

with 
L−(u , v) �

∑
n>0

βn
(
ψn , v

)
I

(
u , ψn

)
I ,

L+(u , v) � −
∑
n<0

βn
(
ψn , v

)
I

(
u , ψn

)
I .

(4.24)

This vector-valued weak-formulation is a short-hand notation for the two uncoupled equations
satisfied by Φ(1) and Φ(2).
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4.2.2 Approximation of the solution of the cell problem in the perturbed cell

To begin with, due to (4.22), the field Φz ,ε satisfies for all v ∈ H1(Ωa ;R), v y2-periodic:

Aµz ,ε (Φz ,ε , v) � −Fµ(v) − δFz ,ε(v) + J(v), (4.25)

with

δFz ,ε(v) �
∆µ

µm

∫
Pz ,ε

∇v(y)dy. (4.26)

Then, one introduces the Green’s function G(·, x) created by a point source at x ∈ Ωa and solution
of 

− divy

(
µ(y)
µm

∇yG(y , x)
)
� δ(y − x) ∀y ∈ Ωa ,

G(·, x) y2-periodic,

− n · ∇yG(y , x)
����
y1�± a

2h

� Λ± [G(y , x)]
����
y1�± a

2h

∀y ∈ I±.

(4.27)

It can be decomposed as

G(y , x) � G∞

(
y − x;

µ(x)
µm

)
+ Gc(y , x) with G∞(r; µ) � − 1

2πµ ln(|r |), (4.28)

where G∞ is the full-space Green’s tensor and Gc is the complementary part to the Green’s function
solution so that the boundary conditions are satisfied. For w sufficiently smooth, one gets from
(4.27) the integral representation for all x ∈ Ωa:

w(x) � Aµ(w ,G(·, x)) (4.29)

with Aµ defined in (4.23). One introduces

N z ,ε f (x) �
∆µ

µm

∫
Pz ,ε

∇yG(y , x) · ∇ f (y)dy. (4.30)

Taking v � G(·, x) in (4.25) together with the definition (4.23) of Aµ then yields

Aµ(Φz ,ε ,G(·, x)) +N z ,εΦz ,ε(x) � −Fµ(G(·, x)) − δFz ,ε(G(·, x)) + J(G(·, x))
� Aµ(Φ,G(·, x)) − δFz ,ε(G(·, x)).

(4.31)

where in the last line we used v � G(·, x) in (4.22). Finally, one considers w � Φz ,ε and w � Φ
in (4.29). Together with (4.31) this leads to:

(I +N z ,ε)(Φz ,ε)(x) � Φ(x) − δFz ,ε(G(·, x)). (4.32)

Let introduce the scaled coordinates x � z+εx̄ and assume the following expansion for all x ∈ Pz ,ε:

Φz ,ε(x) � Φ(z) + εΦ1(x̄) + o(ε). (4.33)

One also writes the following Taylor expansion for the cell function

Φ(x) � Φ(z) + εx̄∇Φ(z) + o(ε). (4.34)

Inserting (4.33) and (4.34) in (4.32) yields, since N z ,εΦ(z) � 0:

(I +N z ,ε)
(
εΦ1

( · − z
ε

))
(x) � εx̄∇Φ(z) − δFz ,ε(G(·, x)). (4.35)
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Due to (4.28), the function G in (4.27) satisfies

∇yG(y , x) � ε−1
∇G∞

(
ȳ − x̄;

µ(z)
µm

)
+ o(ε−1), (4.36)

since ∇G∞ is homogeneous and Gc(·, x) is C∞. Once inserted in (4.35), one performs a change of
variable to rewrite the integral on P. Then, an identification of the contributions in O(ε) leads to:

(I +M)(Φ̃1)(x̄) � x̄ · (∇Φ(z) + I), (4.37)

with Φ̃1(x̄) � Φ1(x̄) + x̄ and M defined by

M f (x̄) �
∆µ

µm

∫
P
∇G∞

(
ȳ − x̄;

µ(z)
µm

)
· ∇ f (ȳ)dȳ. (4.38)

Consequently, if one introduces R solution of

(I +M)R(x̄) � x̄ (4.39)

then
Φ̃1(x̄) � R(x̄) · (∇Φ(z) + I). (4.40)

One inserts this in (4.33) to get at order O(ε)

Φz ,ε(x) � Φ(z) + ε(R(x̄) · (∇Φ(z) + I) − x̄) + o(ε). (4.41)

4.2.3 Computation of DB � (DB ,DB2)

To begin with, one wants to rewrite the parameters B1 and B2 defined in (4.2) on the bounded
cell Ωa. One considers the limit y1 → ±∞ in the decompositions (4.12), then the expression of
the coefficients (4.14) and (4.17) yields:

lim
y1→±∞

Φ±(y1 , y2) � ϕ±0 �

∫
I
Φ±

(
± a

2h
, y2

)
dy2. (4.42)

The effective parameter B � (B ,B2), with B defined in (4.4), is thus expressed on the bounded
cell Ωa as:

B(m) � a
h

e1 +

∫
I

[
Φ

( a
2h
, y2

)
−Φ

(
− a

2h
, y2

)]
dy2. (4.43)

Consequently, the effective parameter Bz ,ε associated with the perturbed cell writes

Bz ,ε � B(m) +
∫

I

[
δΦz ,ε

( a
2h
, y2

)
− δΦz ,ε

(
− a

2h
, y2

)]
dy2 , (4.44)

with the pertubation for the solution of the cell problem δΦz ,ε defined by

δΦz ,ε � Φz ,ε −Φ. (4.45)

The left-hand-side of (4.25) writes

Aµz ,ε (Φz ,ε , v) � Aµ(Φ, v) +Aµ(δΦz ,ε , v) +
∆µ

µm

∫
Pz ,ε

∇Φz ,ε(y)> · ∇v(y)dy. (4.46)

Inserting this equation in (4.25) and using (4.22), one gets for for all v ∈ H1(Ωa ;R), v y2-periodic:

Aµ(δΦz ,ε , v) +
∆µ

µm

∫
Pz ,ε

∇Φz ,ε(y)> · ∇v(y)dy � −δFz ,ε(v). (4.47)
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Furthermore, β � Φ(1) + y1 satisfies for all w ∈ H1(Ωa ;R2), w y2-periodic

Aµ(w , β) �
∫

I

[
w

( a
2h
, y2

)
− w

(
− a

2h
, y2

)]
dy2. (4.48)

Taking v � β in (4.47) and w � δΦz ,ε in (4.48), the expansion (4.44) writes

Bz ,ε � B(m) −
∆µ

µm

∫
Pz ,ε

∇β(y) · (∇Φz ,ε(y) + I)dy. (4.49)

Consequently, one looks for an asymptotic expansion for ∇Φz ,ε. For this purpose, one uses the
final expansion (4.41) of the previous section. One also writes the expansion ∇β(y) � ∇β(z)+ o(1)
for all y ∈ Pz ,ε and expresses the integral in the scaled coordinates as

Bz ,ε � B(m) −
∆µ

µm

∫
P
∇β(z) ·

(
1
ε
∇Φz ,ε(ȳ) + I

)
ε2dȳ + o(ε2). (4.50)

Inserting the expansion (4.41) in the above equation yields

Bz ,ε � B(m) − ε2∆µ

µm
∇β(z) ·

∫
P
∇ȳR(ȳ)dȳ · (∇Φ(z) + I) + o(ε2). (4.51)

We introduce the so-called polarization tensor A defined as

A(P , µ(z), ∆µ) �
∆µ

µm

∫
P
∇ȳR(ȳ)dȳ. (4.52)

The dependancy in µ(z) comes from the equation (4.39) satisfied by R. This polarization tensor
have been used in previous studies (Cedio-Fengya, Moskow, & Vogelius, 1998; Ammari & Kang,
2007; Bonnet et al., 2018). In particular, it is symmetric and it is known analytically for an elliptic
perturbation of semiaxes lengths (1,γ) and directions (a1 , a2). In this case, its expression is given by:

A(P , µ(z), ∆µ) � πγ(γ + 1)
∆µ

µm

©« 1
1 + γ + γ

∆µ
µ(z)

a1 ⊗ a1 +
1

1 + γ +
∆µ
µ(z)

a2 ⊗ a2
ª®¬ . (4.53)

Finally, the topological derivative of B writes

Result 4.1: Topological derivative of B

DB(m , z ,P , ∆m) � −(∇Φ1(z) + e1) · A(P , µ(z), ∆µ) · (∇Φ(z) + I), (4.54)

where we used the definition of β � Φ1 + y1.

4.2.4 Computation of DS

We first notice that, owing to the definition of S in (4.4), one has

S(m) �
∫
Ωa

ρ(y)
ρm

dy. (4.55)

Consequently, one gets

Sz ,ε � S(m) +
∫
Pz ,ε

∆ρ

ρm
dy

� S(m) + ε2∆ρ

ρm
|P|

(4.56)

which yields by identification with (4.8) the following result
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Result 4.2: Topological derivative of S

DS(m , z ,P , ∆m) �
∆ρ

ρm
|P|. (4.57)

4.2.5 Computation of DC � (DC1,DC)

One wants to express the effective parameter C � (C1 , C) on the bounded cell Ωa. To do so,
one notices that only Ωa contributes to the integral that defines C1 and C2 in (4.2). Indeed, the
decomposition (4.12) yields for all y∗1 >

a
2h∫

[ a
2h ,y

∗
1]×I

µ(y)
µm

∂Φ
∂y2
(y)dy � 0 (4.58)

and the same holds for the integral on
[
y∗1 ,−

a
2h

]
× I with y∗1 < −

a
2h . Therefore, C writes:

C(m) �
∫
Ωa

µ(y)
µm

(
∂Φ
∂y2
(y) + e2

)
dy. (4.59)

Consequently, the effective parameter C z ,ε associated with the perturbed cell writes

C z ,ε � C(m) +
∫
Ωa

µ(y)
µm

∂δΦz ,ε

∂y2
(y)dy +

∆µ

µm

∫
Pz ,ε

(
∂Φz ,ε

∂y2
(y) + e2

)
dy. (4.60)

We know that Φ2 satisfies for all w ∈ H1(Ωa ;R2), w y2-periodic

Aµ(w , Φ2) � −
∫
Ωa

µ(y)
µm

∂w
∂y2
(y)dy. (4.61)

One takes v � Φ2 in (4.47) and w � δΦz ,ε in (4.61) and gets∫
Ωa

µ(y)
µm

∂δΦz ,ε

∂y2
(y)dy �

∆µ

µm

∫
Pz ,ε

∇Φ2(y) · (∇Φz ,ε(y) + I)dy , (4.62)

which yields

C z ,ε � C(m) +
∆µ

µm

∫
Pz ,ε

(∇Φ2(y) + e2) · (∇Φz ,ε(y) + I)dy. (4.63)

Once again, we use the Taylor expansion ∇Φ2(y) � ∇Φ2(z)+ o(1) for all y in Pz ,ε, the expression
of the integral in the scaled coordinates and the expansion (4.41) to get the final expression for
the topological derivative

Result 4.3: Topological derivative of C

DC(m , z ,P , ∆m) � (∇Φ2(z) + e2) · A(P , µ(z), ∆µ) · (∇Φ(z) + I). (4.64)

4.2.6 Numerical validation

To validate numerically the found expressions of the topological derivatives, we can compute the
error made by the approximation of Bz ,ε and C z ,ε by B + ε2

DB and C + ε2
DC , respectively.

Indeed, due to (4.51) and (4.63), this error should be of order ε2 at least.
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One starts with an initial reference configuration (ε � 0), computes the solutions of the cell
problems (4.21) (their computation will be tackled in the next section), and thus the value of B
and C from (4.43) and (4.59). The initial configuration is chosen to be heterogenous in order to
avoid simplifications than can occur with a homogeneous medium as initialization. More precisely,
we choose a homogenous medium of physical parameters (ρm , µm) � (2500 kg ·m−3 , 12 · 109 Pa),
containing a circular inclusion of center (−0.35m, 0.35m), radius 0.1m and physical parameters
(ρi , µi) � (7800 kg ·m−3 , 78 · 109 Pa) (typical of steel in concrete).

Then one inserts a perturbation at z � (0, 0). Its physical parameters are (ρi , µi). Its shape is
a disk of radius ε. For ε � 0.3, the configuration is plotted in Figure 4.3a. For a given value of
ε, one computes the perturbed cell problems and thus the exact effective parameters Bz ,ε and
C z ,ε from (4.43) and (4.59). Their first-order approximations B + ε2

DB and C + ε2
DC are

computed from (4.54) and (4.64).
The errors between both the exact and approximated values are plotted as functions of ε

in log-log scale in Figure 4.3b. Since B2 � C1, the results for only one of these parameters are
plotted. The dotted line stands for an error of O(ε4). It seems that this is the actual order of
approximation of the effective parameters, the small variations for low values of ε being probably
due to numerical errors in the computation of the coefficients. This underlines the fact that the
leading order term and consequently the topological derivatives are well accounted for and that
the terms of order ε3 in the expansions (4.51) and (4.63) are probably equal to zero. This was
already observed for the volumic case in Bonnet et al., 2018, with the intuition that it occurs for
perturbations with a central symmetry. This remains however to be proved.

xz

(a)

0.1 0.15 0.2 0.25 0.3
10-5

100

(b)

Figure 4.3 – Test case for a circular perturbation: (a) Configuration for ε � 0.3. (b) Relative error between
the exact and approximated effectives parameters as a function of ε in a log-log scale.

4.3 Numerical methods

4.3.1 FFT-based computation of the cell problems with boundary correctors

The optimization process requires the computation of numerous cell problems since the update of
the material properties leads to new cell problems to solve at each iteration. The particularity in
the framework of thin microstructured layers is that they are band cell problems in an infinite strip.
In the case of cell problems with periodic conditions in a bounded domain, there are different ways
of computing numerically the solutions. One possibility is the Finite Element Method based on
weak formulations. Another possibility is to use a Fourier based formulation of the cell problem

113



Chapter 4. Topological optimization of the effective dynamics of microstructured interfaces

and an algorithm accelerated by Fast Fourier Transform (FFT) (Moulinec & Suquet, 1998).
The Fourier based formulation is used here for the band cell problems. In Section 4.2.1, these

cell problems have been reduced to cell problems in a bounded cell thanks to the introduction of
DtN operators. Therefore, their computation requires to adapt the FFT-based computation in
order to take into account the boundary conditions related to the DtN operators instead of the
classical conditions of periodicity.

One first introduces the following decomposition:

Φ � Φper +Φbound. (4.65)

The two terms of this decomposition are

• The bi-periodic function Φper that satisfies:

∇ ·
(
µ(y)

(
I2 + ∇Φbound + ∇Φper

) )
� 0 in Ωa . (4.66)

This is an usual cell problem, which appears in homogenization of bi-periodic media, with
a source term that is given by I2 + ∇Φbound. For a given function Φbound, this problem is
solved using a FFT-accelerated algorithm. This method is detailed in Section 4.3.1.1.

• The boundary corrector Φbound that ensures that the boundary conditions associated to the
DtN operator are satisfied:

(∂n − Λ)Φbound

(
± a

2h
, ·
)
� − (∂n − Λ)Φper

(
± a

2h
, ·
)

. (4.67)

An analytical expression of Φbound can be obtained and is presented in Section 4.3.1.2.

In this setting, one strategy to compute Φ is then to use a fixed-point algorithm detailed in
Section 4.3.1.3:

1. Choose initial fields Φ(0)per and Φ
(0)
bound.

2. Knowing Φ(i)bound, compute Φ(i+1)
per satisfying (4.66) (using a FFT-accelerated method).

3. Knowing Φ(i+1)
per , find Φ(i+1)

bound satisfying (4.67).

The convergence of this fixed-point algorithm has not been investigated theoretically but it has
been observed to converge in practice in numerical examples shown hereafter.

4.3.1.1 The classical FFT-accelerated algorithm

The approach of Moulinec and Suquet, 1998 used to solve cell problems with periodic conditions
has been used in Cornaggia and Bellis, 2020 for the 2D antiplane case and is briefly described in
this subsection. Let us consider the following cell problem

S(y) � µ(y) (E(y) + ∇P(y)) ∀y ∈ Ωa ,

∇ · S(y) � 0 ∀y ∈ Ωa ,

P periodic and S · n anti-periodic on ∂Ωa ,

〈P〉 � 0.

(4.68)

with E an imposed prestrain and P the unknown. One introduces a reference medium with constant
shear modulus µ? such that S can be rewritten as:

S(y) � µ?∇P(y) + T(y) with T(y) � µ(y)E(y) + δµ(y)∇P(y) (4.69)
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and δµ(y) � µ(y) − µ?.
First, the Fourier transform in space of a function 1(x) is defined by:

F [1](ξ) � 1̂(ξ) �
∫
R2
1(x)e−iξ·x dx , (4.70)

where ξ is the wavenumber in the Fourier space. Using the Fourier Transform, (4.68) and (4.69),
yields in the Fourier space

P̂(0) � 0,

P̂(ξ) � Γ̂0(T̂)(ξ) :� 1
µ?|ξ |2

(
iξ · T̂(ξ)

) ∀ξ , 0
(4.71)

The unit cell Ωa is discretized into a regular grid of N1 × N2 pixels. The coordinates of the pixels
are:

yd(i1 , i2) �
(
− a

2h
+ (i1 − 1) a

hN1
,−1

2 + (i2 − 1) 1
N2

)
, i1 � 1, · · · ,N1 , i2 � 1, · · · ,N2. (4.72)

If the N j, j � 1, 2 are odd, the corresponding N1 × N2 wavenumbers in the Fourier space are:

ξd(r, s) �
(
ξr h

a
, ξs

)
�

(
2πrh

a
, 2πs

)
, with


r � −N1 − 1

2 , · · · ,−1, 0, 1, · · · , N1 − 1
2 ,

s � −N2 − 1
2 , · · · ,−1, 0, 1, · · · , N2 − 1

2 .
(4.73)

In our case, we will always take odd values for the N j, so that the maximum positive frequency is
equal in absolute value to the minimum negative frequency.
The idea is to use alternatively (4.69) and (4.71) in the real and Fourier space with the following
fixed-point algorithm:

1. Initialization for all yd:

(a) ε0(yd) � E(yd)
(b) σ0(yd) � µ(yd)ε0(yd)

2. Iterate until convergence

(a) σ̂ i � FFT(σ i)
(b) P̂ i+1(ξd) � P̂ i(ξd) + Γ̂0(σ̂ i)(ξd) ∀ ξd , 0 and P̂ i+1(0) � 0

(c) ε̂i+1(ξd) � iξdP̂ i+1(ξd)
(d) εi+1 � FFT−1(ε̂i+1)
(e) σ i+1(yd) � σ0(yd) + µ(yd)εi+1(yd)

where "FFT" stands for the use of Fast Fourier Transform. Following Moulinec and Suquet, 1998,
the reference shear modulus is chosen as µ? � (µm + µi)/2 to ensure convergence of the fixed-
point. The algorithm is applied for each component of P and the associated stopping criteria
adopted here are

| |Pn+1
j − Pn

j | |L2(Ωa)

| |Pn
j | |L2(Ωa)

< δFFT , (4.74)

where δFFT is a user chosen parameter.
This method will be used to compute Φper with a prestrain E � I2 +∇Φbound which to be updated
at each time step thanks to the analytical expression developped in the next section.
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4.3.1.2 Analytical expression for the boundary corrector

The function Φper is discretized using the Fourier representation:

Φper(y1 , y2) �
∑

p

∑
q

ϕpqΨ
a
p (y1)Ψq(y2), with

{
Ψq(y2) � eiξq y2

Ψ a
p (y1) � Ψp(h y1/a)

(4.75)

where ξp � 2pπ, p ranges from −(N1 − 1)/2 to (N1 − 1)/2, and q ranges from −(N2 − 1)/2 to
(N2 − 1)/2 The boundary corrector Φbound is written on the basis of harmonic solutions in the
infinite strip (same convention as (4.12)) as

Φbound(y1 , y2) � y1z0 +
∑
q,0

(
z−q e|ξq |(y1+a/(2h))

+ z+
q e−|ξq |(y1−a/(2h))

)
Ψq(y2). (4.76)

One introduces the notation:
eq � e|ξq |a/h (4.77)

so that the boundary conditions (4.20) write at y1 � − a
2h :

− z0 −
∑
q,0
|ξq |

(
z−q − z+

q eq

)
Ψq +

∑
q,0
|ξq |

(
z−q + z+

q eq

)
Ψq �

∑
p

∑
q

(−1)p
[ iξp h

a
− |ξq |

]
ϕpqΨq

(4.78)
and at y1 �

a
2h

z0 +
∑
q,0
|ξq |

(
z−q eq − z+

q

)
Ψq +

∑
q,0
|ξq |

(
z−q eq + z+

q

)
Ψq �

∑
p

∑
q

(−1)p
[
−

iξp h
a
− |ξq |

]
ϕpqΨq .

(4.79)
Projecting onto Ψq, one gets the following equations for the coefficients (z0 , z−q , z+

q ):

z0 � −
∑

p

(−1)pi
ξp h

a
ϕp0 � −S(2)0

a
h
,

z−q �
1

2eq

∑
p

(−1)p
[
−

iξp h
a |ξq |

− 1
]
ϕpq �

1
2eq

(
− h

a |ξq |
S(2)q − S(1)q

)
,

z+
q �

1
2eq

∑
p

(−1)p
[ iξp h

a |ξq |
− 1

]
ϕpq �

1
2eq

(
h

a |ξq |
S(2)q − S(1)q

)
,

(4.80)

where S(1)q and S(2)q are weighted sums of the Fourier coefficients of Φper:
S(1)q �

∑
p

(−1)pϕpq ,

S(2)q � i
∑

p

(−1)pξpϕpq .
(4.81)

Remark 4.1. Since Φ is a real-valued function, (4.65),(4.75) and (4.76) imply that ϕpq � ϕ(−p)q.

Therefore S(1)q and S(2)q are real, and so are (z0 , z−q , z+
q ).

4.3.1.3 Final fixed-point algorithm

We summarize here the main steps to compute the cell problems (4.10) in the case of a thin
microstructured array.
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1. Initialization for all yd:

(a) ε0(yd) � I2

(b) σ0(yd) � µ(yd)ε0(yd)

2. Iterate until convergence with stopping criterion (4.74):

(a) σ̂ i � FFT(σ i)
(b) Φ̂i+1

per (ξd) � Φ̂i
per(ξd) + Γ̂0(σ̂ i)(ξd) ∀ ξd , 0 and Φ̂i+1

per (0) � 0

(c) ε̂i+1(ξd) � iξdΦ̂i+1
per (ξd)

(d) εi+1 � FFT−1(ε̂i+1)
(e) compute Φbound from (4.76) and (4.80)

(f) σ i+1(yd) � σ0(yd) + µ(yd)
(
εi+1(yd) + ∇Φbound(yd)

)
.

(a) First cell problem

(b) Second cell problem

Figure 4.4 – Periodic part, boundary corrector and total fields Φ.

Figures 4.4a and 4.4b display the solutions of the cell problems for µm � 1.25, µi � 7.69, and
a circular inclusion of radius R � 0.3. The cell Ωa is [−1/2; 1/2] × [−1/2; 1/2]. The numerical
parameters are δFFT � 10−8 and N1 � N2 � 77. For both cell problems, the periodic part, the
boundary correctors and the total fields are represented.
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4.3.1.4 Comparison with a finite element approach

Another method to compute the band cell problems is to choose a domain [−L; L] × [−1/2; 1/2]
with L large enough and to consider the variational formulation of

∇ ·
(
µ(y)

(
∇yΦ(y) + I2

) )
� 0 in [−L; L] × [−1/2; 1/2],

µ(y)[∇yΦ(y) + I2] · n and Φ continuous on ∂Ωi ,

Φ y2 periodic,

∇yΦ(±L, y2) � 0.

(4.82)

The Neumann condition in (4.82) models the limit condition lim
y1→±∞

∇yΦ(y1 , y2) � 0 in (4.10).

The formulation (4.82) allows a computation with a Finite Element Method in FreeFem++ (Hecht,
2012).

The results given by the fixed-point FFT algorithm with boundary correctors previously pre-
sented is compared with the solutions obtained with the Finite Element method. For the Finite
Element method, we set L � 6 while for the FFT method we chose N1 � N2 � 129 and δFFT � 10−8.
With both methods, the physical parameters are µm � 1.25 and µi � 7.69, and we investigated
two different geometries:

1. a rectangular inclusion, aligned with the axes, with length L1 � 0.9 and height L2 � 0.6. The
results for this geometry are presented in Table 4.1.

2. an ellipsoidal inclusion, tilted of 40◦, with semiaxes a1 � 0.4 and a2 � 0.24. The associated
results with both numerical methods are summarized in Table 4.2.

Table 4.1 – Comparison of the results given by the two methods for the rectangular inclusion.

Method Finite Element Method FFT
[min,max]Φ(1) [−0.351, 0.351] [−0.351, 0.351]
[min,max]Φ(2) [−0.196, 0.196] [−0.199, 0.199]
(B1 ,B2) (−0.645, −5.5 · 10−7) (−0.646, 0)
(C1 , C2) (7.0 · 10−6, −1.71) (0, −1.82)

Table 4.2 – Comparison of the results given by the two methods for the ellipsoidal inclusion.

Method Finite Element Method FFT
[min,max]Φ(1) [−0.250, 0.250] [−0.251, 0.251]
[min,max]Φ(2) [−0.198, 0.198] [−0.196, 0.196]
(B1 ,B2) (−0.372, −7.36 · 10−2) (−0.371, −6.96 · 10−2)
(C1 , C2) (7.00 · 10−2, −0.976) (6.96 · 10−2, −1.01)

For both geometries, the satisfying agreement of the results given by both methods allows to
validate the methodology and computation of the fixed-point FFT algorithm. The main advantage
of this strategy is that it allows to work with a bounded domain around the inclusion instead of a
large truncated domain that approximates the limit condition. This method will be used later on
when cell problems computations are required.

4.3.2 Optimization process and material updating

In the configuration mentioned above, there are only two phases: Ωm which is the homogeneous ma-
trix outside the microstructured array, and Ωi ⊂ Ωa which are the inclusions phase. Consequently
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the only material modification allowed in the optimization process is a phase conversion from
(ρi , µi) to (ρm , µm) or conversely. Accordingly, the material perturbation ∆m in the topological
derivatives (4.57), (4.54) and (4.64) is chosen as:

∆m � (ρi − ρm , µi − µm) in Ωm and ∆m � (ρm − ρi , µm − µi) in Ωi . (4.83)

Moreover, the shape of the perturbation P is a disk so that the expression of the polarization
tensor is given by (4.53) with γ � 1. The use of the boundary corrector approach described
above requires that the phase at the boundaries y1 � ± a

2h is Ωm. Consequently, one define an
optimization domain

Ωdes
� [−b; b] × [−1/2; 1/2] with b <

a
2h

in which material updates are allowed. The updating strategies for the material distribution are
the same as in Cornaggia and Bellis, 2020 and are exposed in this section for the case of thin
microstructured layers.

4.3.2.1 One pixel phase permutation

The simplest update of the optimization domain Ωdes is the following: a phase conversion is
applied to the pixel zP where the topological derivative DJ (n) is the most negative i.e.

zP � arg min
z∈Ωdes−

DJ(z),

with Ωdes
− �

{
z ∈ Ωdes such that DJ(z) ≤ 0

}
.

The correspondng stopping criterion is defined as:

min
z∈Ωdes

DJ(z) ≥ 0.

If a phase change is applied at two consecutive iterations to the same pixel, one considers that
the cost functional can not be decreased anymore even if a local minimum is not reached, and the
algorithm is stopped.
This procedure is very easy to implement but can also be very slow if the initialization is far from
an optimal microstructure and/or if the discretization is very fine.

4.3.2.2 Level-set method

Since the material is made of two phases, a common way to characterize it is to use a level-set
function Ψ that satisfies:{

Ψ (z) > 0 in Ωdes ∩Ωm

Ψ (z) < 0 in Ωdes ∩Ωi
and | |Ψ | |L2(Ωdes) � 1. (4.84)

A projection alogorithm introduced in Amstutz and Andrä, 2006 for topological optimization can
then be used (Amstutz et al., 2010; Amstutz, 2011; Giusti et al., 2016; Oliver et al., 2017). The
main steps are recalled in this subsection.

First, one defines a signed normalized topological derivative DJ (n) at iteration n as:

DJ (n)(z) �
{
DJ (n)(z)/| |DJ (n) | |L2(Ωdes) in Ω

des ∩Ωm

− DJ (n)(z)/| |DJ (n) | |L2(Ωdes) in Ω
des ∩Ωi .

(4.85)

When DJ (n) satisfies the sign condition (4.84), then DJ (n)(z) > 0 is satisfied in the whole
optimization domain Ωdes. Consequently, in this case, the leading-order approximation of the
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cost functional J cannot be decreased anymore by a phase change in Ωdes. Therefore, DJ (n)

satisfying (4.84), is a sufficient optimal condition that ensures that the material configuration
corresponds to a local minimum of J . The updating strategy of Amstutz and Andrä, 2006 aims
at fulfilling this condition. At each iteration, the new level-set function Ψ (n+1) is computed as:

Ψ (n+1)(z) � 1
sin(Θ(n))

[
sin((1 − κ(n))Θ(n))Ψ (n)(z) + sin(κ(n)Θ(n))DJ (n)(z)

]
, (4.86)

with the angle Θ(n) being defined by the projection

Θ(n) � cos−1
(
DJ (n) , Ψ (n)

)
L2(Ωdes)

. (4.87)

The parameter κ(n) in (4.86) is chosen so that the cost functional decreases at each iteration. In
practice, it is initialized to κ(0) � 1 and then at each iteration it is determined up to a minimal
value κmin within an inner optimization loop that writes as:

1. Initalization to κ(n) � min(2, κ(n−1))

2. While the cost functional does not decrease

• set κ(n) � κ(n)/2
• if κ < κmin, the level-set algorithm is stopped: the cost functional cannot be decreased
by the level-set projection

The stopping criterion of the level-set method associated with the updating (4.86) is:

|Θ(n) | < δΘ (4.88)

with δΘ a user-chosen tolerance parameter.

Remark 14. Different initializations are possible for the level-set function Ψ (0), here we chose to
compute it as f /|| f | |L2(Ωdes) with f being defined by:

f (z) �
{
µ? − µ(z) if µm < µi ,

µ(z) − µ? if µm > µi ,
(4.89)

where we recall that µ? � (µm + µi)/2.

4.4 Numerical examples

This section is a work in progress. Accordingly, some preliminary results are presented below for
different cost functionals to be minimized.
The unit cell is Ωa � [−1/2; 1/2] × [−1/2; 1/2] which is discretized with N1 � N2 � 77. The toler-
ance for the FFT algorithm (4.74) is δFFT � 10−3. The optimization domain isΩdes � [−0.4; 0.4]×
[−1/2; 1/2]. The phase Ωi is represented in black and the phase Ωm in white. More precisely,
the color corresponds to the material at the center of each pixel delimited by four couples of
coordinates.
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4.4.1 Realizing some objective effective parameters

One chooses a reference configuration associated with some effective parameters mref
eff and intro-

duces the following cost functional

J(meff) �

5∑
i�1

(
meff[i] − mref

eff [i]
)2

5∑
i�1

(
mref

eff [i]
)2

. (4.90)

Here, we consider a reference configuration made of a square inclusion Ωi of side length 0.35, see
Figure 4.5a. The physical parameters are chosen so that µi/µm � ρm/ρi � 2. Two initializations
are considered in these figures: a circle of radius 0.18 (stricly included in the reference square),
or a circle of radius 0.25 (strictly including the reference square). These two initializations are
presented in Figures 4.5b and 4.5c.
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Figure 4.5 – Reference configuration and two different initializations.

The one-pixel phase permutation algorithm, see Section 4.3.2.1, is applied. The evolution of
the cost functional is displayed in Figures 4.6a and Figures 4.6b for each initialization, respectively.
In both cases, one can see that the cost functional decreases along the iterations. Figures 4.7a
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(b) Second initialization

Figure 4.6 – Evolution of the cost functional along the iterations.

and 4.7b display the final configurations obtained at the end of the optimization process. One
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should mention that the exact reference configuration is not reached in the second test. In the first
example, the algorithm has converged to the exact reference configuration while in the second case,
the cost-functional is greatly reduced (from 2.9 ·10−3 to 8.3 ·10−8), but the reference configuration
is not reached.
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Figure 4.7 – Final configurations.

In fact, the algorithms only converge to a local minimum and there is no guarantee that the
reference configuration is the only one. Consequently it strongly depends on the initialization. This
is not really suprising since some of the first-order effective parameters do not seem to be very
sensitive to the geometry to some extents. To illustrate this, Figure 4.8 displays the effective
parameters for an inclusion Ωi which is a tilted ellipse of fixed minor semi-axis 0.2, varying tilted
angle (from 0 to π/4) and varying major semi-axis (from 0.2 to 0.5). It clearly underlines that
some of the effective parameters are not very sensitive to the geometry and that the minimum is
probably not unique.

4.4.2 Minimizing the reflexion or transmission coefficient

In this second case, one chooses N incident angles (θj) j�1,··· ,N in which we want to minimize the
deviation from a target reflexion coefficient Rtargetj . To this end, one recalls that the reflexion
coefficient for an incident plane wave of incident angle θj associated to the homogenized model
(4.3) is given by:

R(θj , ω) �
iωL (ω)

Z + iωN (ω) − ω2M (ω) exp
(
i ω
cm

a cos θj

)
, (4.91)

with 

L (ω) � h
(
B cos(θj)2 + C sin(θj)2 − S

)
,

Z � 2cm cos θj ,

N (ω) � h
(
−C sin(θj)2 + B cos(θj)2 + S

)
,

M (ω) � h2

2cm

(
B2C1 sin(θj)2 − BC sin(θj)2 + BS

)
cos(θj).

(4.92)

Its derivation follows the same steps as in Appendix 3.A.1 for the case of resonant effective
interfaces. In fact, the result of the appendix can be transposed here with a formal change of
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(a) S (b) B (c) B2

(d) C1 (e) C

Figure 4.8 – Variation of the five effective parameters for a periodic cell containing an ellipse Ωi of varying
tilt angle and major semi-axis.

effective parameters.
Hence, we introduce the following cost functional

J(meff; θ1 , · · · , θN , ω) �
N∑

j�1
α j

(
|R(θj , ω)| − Rtargetj

)2
. (4.93)

with α j a coefficient to weight the contribution of the jth direction.
As first numerical investigations about this second cost functional, we consider N � 1 and

Rtarget1 � Rtarget is either equal to 0 or to 1 so that we aim at minimizing either the reflexion or
the transmission, respectively. Since there is no requirement about the phase ratio, whatever the
initialization is, we recover in one iteration of the level-set method the following expected results:
a homogeneous cell with no phase Ωi when Rtarget � 0, or an optimization domain Ωdes entirely
made of phase Ωi when Rtarget � 1.

� Volume constraint. Furthermore, one can aim at minimizing this cost functional for a given
objective ratio Vtarget between the two phases. In this case, one introduces the following modified
cost functional

J(meff; θ1 , · · · , θN , ω) �
N∑

j�1
α j

(
|R(θj , ω)| − Rtargetj

)2
+ λ

(
V

Vtarget
− 1

)2

(4.94)

where the parameter V � |Ωi |/|Ωm | is the surface of the phase Ωi divided by the total surface
of the unit cell Ωa.

The initialization of the Lagrange multiplier λ will be precised later on for each example. In
these first numerical investigations, we considered the following naive updating strategy within the
level-set method described in Section 4.3.2.2. First, one sets the following tolerance parameters:
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δΘ � 10−1, δVol � 2 · 10−1, κmin � 10−3. Secondly, the level-set method is applied and can be
stopped for two reasons according to Section 4.3.2.2:

1. |Θ | < δΘ: then,

• if
(

V
Vtarget

− 1
)
< δVol: the algorithm is stopped. A local minimum is found that satisfies

the phase ratio requirement with the desired precision.

• else, if
(

V
Vtarget

− 1
)
> δVol: the parameter λ is reset to λ � 2λ, κ is reset to 1, and the

level-set method is applied to the updated cost functional.

2. κ < κmin: then,

• if
(

V
Vtarget

− 1
)
> δVol: the parameter λ is reset to λ � 2λ, κ is reset to 1, and the

level-set method is applied to the updated cost functional.

• else, if
(

V
Vtarget

− 1
)
< δVol: the parameter λ is reset to λ � λ/2.5, κ is reset to 1 and

the level-set method is applied to the updated cost functional.

We add an additional criterion which allows to stop the procedure if the cost functional cannot
be decreased anymore: if at the ith update of λ, the configuration is the same as at its (i − 2)th
update, the algorithm is stopped.
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Figure 4.9 – Minimizing the reflexion coefficient under the constraint Vtarget � 0.3: final unit cells
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Figure 4.10 – Minimizing the reflexion coefficient under the constraint Vtarget � 0.6

We now consider a circular inclusion Ωi of radius 0.23 as an initialization. The physical
parameters are chosen so that µi/µm � ρm/ρi � 10 and kh � ωh/cm � 0.45. Figures 4.9 and
4.10 display the final configurations when one aims at minimizing the reflexion coefficient for
Vtarget � 0.3 and Vtarget � 0.6, respectively. The associated microstructured layers are displayed
in FIgures 4.11 and 4.12. In both examples, four incident angles θ1 � −45◦ , 0◦ , 45◦ , 81◦ are
considered. One can see a shift in the geometry as the incident angle increases and a symmetry
with respect to the normal incidence. In each case, convergence was obtained with the desired
phase ratio criterion after several updates of λ. To get the convergence, we have to play on the
initial value of λ. For Vtarget � 0.3, we started with λ � 5 · 10−2 , 5 · 10−3 , 5 · 10−2 , 5 · 10−2 for
θ1 � −45◦ , 0◦ , 45◦ , 81◦, respectively. For Vtarget � 0.6, the initialization was λ � 5, 0.1, 5, 1, for
θ1 � −45◦ , 0◦ , 45◦ , 81◦, respectively. To give an idea of the numerical cost, the result of Figure
4.9b was obtained in 23 iterations of the level-set and required the computation of 67 cell problems
(4.10).

4.5 Conclusion and perspectives

In this chapter, we considered wave propagation across a row of inclusions in the non-resonant
case, i.e. with a low contrast of the physical parameters. This microstructured configuration can
be replaced by a homogenized model characterized by effective jump conditions on an effective
enlarged interface. In this context, the objective was to propose a method to perform a topological
optimization of this row of inclusions based on the associated first-order homogenized model. The
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(a) θ1 � −45◦ or θ1 � 45◦ (b) θ1 � 0◦ (c) θ1 � 81◦

Figure 4.11 – Minimizing the reflexion coefficient under the constraint Vtarget � 0.3: final microstructured
layers (six unit cells are shown)

(a) θ1 � −45◦ or θ1 � 45◦ (b) θ1 � 0◦ (c) θ1 � 81◦

Figure 4.12 – Minimizing the reflexion coefficient under the constraint Vtarget � 0.6: final microstructured
layers (six unit cells are shown)

latter involves five effective parameters that themselves require the resolution of a cell problem
in an inifinite strip. Since, the optimization requires the resolution of numerous cell problems, a
first step was therefore to write an equivalent formulation of the cell problems in a bounded cell.
Then, the topological derivatives of the five effectives parameters were calculated. This step was
validated numerically in the case of a circular perturbation. Then, the numerical methods used
in the optimization process were presented. Each step of the optimization process requires the
resolution of the cell problems which were solved thanks to a FFT-based method. This method
was adapted to the case of the band cell problems through the introduction of boundary correctors.
The material updating was handled thanks to one pixel phase permutations or to a level-set method.
Eventually, some preliminary numerical results were presented for two kinds of cost functional.

Different perspectives or follow-ups can be highlighted:

• First, more numerical investigations are needed for example to see the influence of the choice
of the wavenumber when minimizing the reflexion coefficient.

• When a volume constraint is considered, an automatic initialization and updating of the
Lagrange multiplier can be carried out to replace the "user controlled" approach used for
the moment.

• In addition, one may wish to have smoother final geometries than those presented for
the minimisation of the reflexion coefficient. This can been obtained thanks to perimeter
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constraint in the the level set (Ambrosio & Buttazzo, 1993; Yamada, Izui, Nishiwaki, &
Takezawa, 2010).

• Then one can consider N > 1 in the second cost functional. This could allow to minimize
the reflexion for different incident angles, or to minimize the reflexion coefficient for one
angle and the transmission for another.

• The quality of the final configurations obtained could be checked through time-domain
simulations in the homogenized configuration with the final effective parameters.

• From a mathematical point of view, the topological derivatives are obtained thanks to the
ansatz (4.33) for the cell problem solution in the perturbed cell. Their justification could
be thought as already done for microstructures occupying the whole space (Bonnet et al.,
2018).

• Another more demanding perspective concerns the fact that the effective parameters have
been observed to be not very sensitive to the geometry. This could justify the derivation of a
higher order homogenized model that could be more sensitive to the geometry which would
be useful for optimization purposes.

• Eventually, one could be interested in the resonant case which was the framework of the
previous chapters. It would require more work on the optimization process since the resonant
homogenized model includes resonant frequencies that depend on the geometry of the
microstructure, see Vondřejc et al., 2017 for shape optimization. Consequently, the extension
of the topological derivatives calculation and their use in an optimization algorithm do not
seem incremental but would be of particular interest for example in the context of noise
reduction (Ma et al., 2014; Schwan et al., 2017).
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In this chapter, we are interested in the low-frequency homogenization of periodic media with
imperfect contacts. Indeed, the contacts between the different solids are often not perfect:

defects (e.g. air, cracks, voids) or thin layers of glue can be present. In this case, a jump of the
displacement and of the stress have to be considered in the contact region (between an inclusion
and the matrix or between two media). These situations have been modelled by spring-mass
conditions (Jones & Whittier, 1967; Tattersall, 1973; Sevostianov, Rodriguez-Ramos, Guinovart-
Diaz, Bravo-Castillero, & Sabina, 2012). These rheological models have been justified thanks to
finite element simulations (Vlasie & Rousseau, 2003) or asymptotic expansions (Licht, Lebon, &
Léger, 2009; Lebon & Rizzoni, 2018; Pham et al., 2021).

The homogenization of such periodic media with imperfect contacts has been conducted in the
static regime (Hashin, 1990; Hashin, 2002; Donato, Faella, & Monsurrò, 2007; López-Realpozo
et al., 2008; Argilaga, Papachristos, Caillerie, & Pont, 2016; Lochner & Peter, 2020) but it seems
that dynamic homogenization has seldom been treated. An exception is Andrianov, Danishevs’kyy,
Topol, and Weichert, 2011 which investigates theoretically the macroscopic motion of waves in a
1D periodic array of coated inclusions in a matrix, with both the media and the interfaces behaving
non-linearly. In this chapter, we rather consider a linear material, possibly heterogeneous, with
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Chapter 5. Low-frequency homogenization with imperfect interfaces

imperfect interfaces that are possibly governed by a smooth non-linear law. Furthermore, the stress
is also possibly discontinuous and time-domain simulations are presented.

The low-frequency homogenization of a 1D periodic medium with linear interfaces is first
conducted in Section 5.1. It allows to present the methodology in a simple way. This work has led
to an extension to non-linear contacts in Bellis et al., 2021. The framework and the main results
of this paper are also presented in Section 5.2. The homogenized model is eventually derived in
higher space dimensions in Section 5.3 in the elastic case where the contacts are linear.

5.1 1D array of linear interfaces

5.1.1 Microstructured problem

Figure 5.1 – Geometry settings in the X, x and y variables. A periodic cell is highlighted with a dashed line.

We consider the propagation of transient waves in a 1D h-periodic elastic medium containing
imperfect interfaces located at Xn � nh with n ∈ Z, see left part of Figure 5.1. The medium is
assumed to be linear elastic with mass density ρh(X) and Young’s modulus µh(X). Given a source
term F, the displacement field Uh is governed by the time-domain wave equation

ρh(X)
∂2Uh

∂t2 (X, t) �
∂Σh

∂X
(X, t) + F(X, t),

Σh(X, t) � µh(X)
∂Uh

∂X
(X, t),

(5.1)

with Σh being the stress field. The constitutive parameters characterizing the microstructured
medium considered are possibly heterogeneous and assumed to satisfy the following mathematical
assumptions.

Assumption 5.1

The mass density and the Young’s modulus write ρh(X) � ρ(X/h) and µh(X) � µ(X/h),
respectively, where

ρ, µ ∈ L∞per(0, 1) :�
{
1 ∈ L∞(R), 1(y + 1) � 1(y), a.e. y ∈ R

}
,

with ρ ≥ ρmin > 0, µ ≥ µmin > 0.

Moreover, the interfaces are assumed to be characterized by the interface mass and rigidity
parameters M ≥ 0 and K > 0, respectively, so that the following transmission conditions apply at
any interface point Xn: 

M
〈〈
∂2Uh

∂t2 (·, t)
〉〉

Xn

�
�
Σh(·, t)

�
Xn
, (5.2a)

〈〈Σh(·, t)〉〉Xn
� K

�
Uh(·, t)

�
Xn
, (5.2b)

where, for any function 1(X), we define the jump and mean operators ~·�Xn and 〈〈·〉〉Xn
as�

1
�

Xn
� 1(X+

n ) − 1(X−n ) and
〈〈
1
〉〉

Xn
�

1
2
(
1(X+

n ) + 1(X−n )
)
. (5.3)
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5.1. 1D array of linear interfaces

In addition, both the displacement Uh and the stress field Σh are assumed to be continuous on
the open intervals ]Xn ,Xn+1[.

Property 6. The problem (5.1) together with (5.2) is well posed. Indeed, one introduces the bulk
energy and the interface energy respectively as

E m
h (t) �

1
2

∫
I

{
ρh(X)Vh(X, t)2 +

1
µh(X)

Σh(X, t)2
}

dX, (5.4a)

E i
h (t) �

∑
n∈Z/Xn∈I

{
1
2 M 〈〈Vh(·, t)〉〉2Xn

+
1

2K
〈〈Σh(·, t)〉〉2Xn

}
, (5.4b)

for an interval I � [a , b] such that a and b do not coincide with an imperfect interface. Then, if
the source term F � 0 and I is large enough so that the boundary terms vanish, the following
conservation identity holds for the total energy

d
dt

(
E m

h + E i
h

)
� 0. (5.5)

Proof. One introduces Vh �
∂Uh
∂t , and one multiplies the first equation of (5.1) by Vh. Then, an

integration by parts on I yields when F � 0∫
I
ρh
∂Vh

∂t
Vh dX �

[
Σh(·, t)Vh(·, t)

] b

a
−

∑
n∈Z/Xn∈I

~ΣhVh�Xn −
∫

I

{
Σh
∂Vh

∂X

}
dX. (5.6)

The domain I is chosen large enough so that the boundary term vanishes. Due to the interface
conditions (5.2), the jump term writes

~ΣhVh�Xn � ~Σh�Xn 〈〈Vh〉〉Xn
+ 〈〈Σh〉〉Xn

~Vh�Xn

�M
d
dt
〈〈Vh〉〉Xn

〈〈Vh〉〉Xn
+

1
K
〈〈Σh〉〉Xn

d
dt
〈〈Σh〉〉Xn

.
(5.7)

where one has assumed sufficient smoothness for f � Uh or Vh so that�
∂ f
∂t

�
Xn

�
d
dt

�
f

�
Xn

and

〈〈
∂ f
∂t

〉〉
Xn

�
d
dt

〈〈
f
〉〉

Xn
. (5.8)

Then, using the second equation of (5.1), the last term in (5.6) writes∫
I
Σh(X)

∂Vh

∂X
(X)dX �

∫
I

1
µ(X)Σh(X)

∂Σh

∂t
(X)dX (5.9)

Consequently, the balance of energy holds. �

The framework of this chapter is again the low-frequency regime, and the corresponding
assumption is recalled:

133



Chapter 5. Low-frequency homogenization with imperfect interfaces

Assumption 5.2

We consider a reference wavelength λ? and the following adimensionalized parameter is
introduced

η � hk?, with k? �
2π
λ?

(5.10)

being the reference wavenumber. One assumes that η � 1.

Our objective is to derive an effective dynamical model, up to the first-order, for the waves
propagating in the periodic interface array considered. More precisely, we seek an approximation
U(1) of the solution Uh to (5.1–5.2) of the form:

Uh(X, t) � U(1)(X, t) + o(h).

5.1.2 Two-scale expansion

The derivation of the homogenized model follows the usual lines of two-scale asymptotic expansions,
see for example Sánchez-Palencia, 1980; Boutin and Auriault, 1993; Wautier and Guzina, 2015
for homogenization in dynamics with perfect contacts.
To begin with, we consider some reference material parameters ρ? and E? that define the wavespeed
c? �

√
E?/ρ?. These parameters will be specified later on. Accordingly and using (5.10), we

introduce the following nondimensionalized space and time variables x � k?X and τ � k?c?t,
respectively. One introduces the nondimensionalized fields

uη(x , τ) � k?Uh(X, t), vη(x , τ) �
1
c?

Vh(X, t) and ση(x , τ) �
1

E?
Σh(X, t),

and the parameters 

α �
ρ

ρ?
, β �

µ

E?
,

f (x , τ) � F(X, t)
k?E?

,

M �
M

hρ?
, and K �

Kh
E?

.

(5.11)

The wave equation (5.1) is recast as

α

(
x
η

)
∂2uη
∂τ2 (x , τ) �

∂
∂x

(
β

(
x
η

)
∂uη
∂x
(x , τ)

)
+ f (x , τ), (5.12)

and the interface conditions (5.2) are recast as
M η

〈〈
∂2uη
∂τ2 (·, τ)

〉〉
xn

�

�
β
∂uη
∂x
(·, τ)

�
xn

,〈〈
β
∂uη
∂x
(·, τ)

〉〉
xn

�
K
η

�
uη(·, τ)

�
xn
,

(5.13)

where we have extended the jump and mean notations at xn � nhk? � nη. The equations (5.12)
and (5.13) are the nondimensional counterparts of (5.1) and (5.2), respectively. As such, they fully
highlight the contributions of the parameter η. Therefore, unless particular assumptions are made
explicitly, the contribution of the terms in these equations, in particular that of the parameters α,
β,M and K , will be of order O(1) in the forthcoming asymptotic expansion.
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5.1. 1D array of linear interfaces

In the low-frequency regime, the material parameters α and β vary on a fine scale associated
with the rescaled coordinate y � x/η, see Figure 5.1. The wavefield is also assumed to have
small-scale features that are described by y, and slow continuous variations as well, which are
described by the variable x. Accordingly, the field uη is expanded using the following ansatz:

uη(x , τ) �
∑
j≥0

η j u j(x , x/η, τ). (5.14)

The fields u j are assumed to be continuous with respect to the first variable and 1-periodic with
respect to the second variable, i.e.

u j(x , y , τ) � u j(x , y + 1, τ)

for all y ∈]0, 1[. The fields u j being potentially discontinuous at the points yn, we extend at the
micro-scale the jump and mean notations (5.3) for a function 1(x , y) as�

1
�

yn
≡

�
1(x , ·)

�
yn

� 1(x , y+
n ) − 1(x , y−n+1),〈〈

1
〉〉

yn
≡

〈〈
1(x , ·)

〉〉
yn

�
1
2
(
1(x , y+

n ) + 1(x , y−n+1)
)
,

(5.15)

where we used the y-periodicity. Moreover, due to peridic assumptions, the index will be dropped
later on: the jump and mean will refer to the point yn � 0. One also introduces the average on
the unit periodic cell as 〈

1
〉
�

∫ 1

0
1(y)dy. (5.16)

In addition, for any continuous 1-periodic function on the open interval ]0, 1[, the following relation
holds 〈

d1
dy

〉
� −

�
1

�
. (5.17)

As customary in two-scale analysis, partial differentiation with respect to x has to be rewritten as(
∂/∂x +

1
η∂/∂y

)
due to the scale separation. Therefore, the nondimentionalized wave equation

(5.12) writes

α(y)
∂2uη
∂τ2 �

1
η2

∂
∂y

(
β(y)

∂uη
∂y

)
+

1
η

(
∂
∂y

(
β(y)

∂uη
∂x

)
+ β(y)

∂2uη
∂x∂y

)
+ β(y)

∂2uη
∂x2 + f (x , τ), (5.18)

and the associated interface conditions (5.13) are
M η

〈〈
∂2uη
∂τ2

〉〉
�

�
β

(
∂uη
∂x

+
1
η

∂uη
∂y

)�
, (5.19a)〈〈

β

(
∂uη
∂x

+
1
η

∂uη
∂y

)〉〉
�
K
η

�
uη

�
, (5.19b)

where the definitions (5.15) are being considered. Moreover, the continuity of the displacement
and the stress field within the periodic cells implies that for all j ≥ 0

u j and β

(
∂u j+1

∂y
+
∂u j

∂x

)
are continuous on every intervals ]yn , yn+1[. (5.20)
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5.1.3 Zeroth-order homogenization

5.1.3.1 Zeroth-order field

One identifies the terms of order O(η−2) in (5.18) together with these of order O(η−1) in (5.19a)
and (5.19b). It leads to the following system for the zeroth-order field u0:

∂
∂y

(
β(y)∂u0

∂y
(x , y , τ)

)
� 0, (5.21a)�

β
∂u0
∂y
(x , ·, τ)

�
� 0, (5.21b)〈〈

β
∂u0
∂y
(x , ·, τ)

〉〉
� K

�
u0(x , ·, τ)

�
. (5.21c)

Integration of (5.21a) with the continuity condition (5.21b) entails

∂u0
∂y
(x , y , τ) � 1

β(y)A0(x , τ). (5.22)

Using (5.17) and (5.22) yields 〈
1
β

〉
A0(x , τ) � − ~u0� .

Then using (5.21c) in the previous equation leads to〈
1
β

〉
A0(x , τ) � −

1
K

〈〈
β
∂u0
∂y
(x , ·, τ)

〉〉
� − 1
K A0(x , τ),

where we used (5.22) in the last equation. Therefore, A0(x , τ) � 0 and consequently

u0(x , y , τ) � u0(x , τ). (5.23)

5.1.3.2 First-order field

Next, identifying the terms of order O(η−1) in (5.18) together with those of order O(1) in (5.19a)
and (5.19b) leads to the following system for the first-order field u1:

∂
∂y

(
β(y)

(
∂u1
∂y
(x , y , τ) + ∂u0

∂x
(x , τ)

))
� 0, (5.24a)�

β

(
∂u1
∂y

+
∂u0
∂x

)
(x , ·, τ)

�
� 0, (5.24b)〈〈

β

(
∂u1
∂y

+
∂u0
∂x

)
(x , ·, τ)

〉〉
� K

�
u1(x , ·, τ)

�
. (5.24c)

Integration of (5.24a) with the continuity condition (5.24b) entails

∂u1
∂y
(x , y , τ) � −∂u0

∂x
(x , τ) + 1

β(y)σ0(x , τ) (5.25)

where σ0 has to be determined. One sets

E? �

〈
1
µ

〉−1

so that

〈
1
β

〉
� 1, (5.26)
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due to the definition (5.11) of β. Averaging the equation (5.25) and using (5.17) leads to

−
�

u1(x , ·, τ)
�
� −∂u0

∂x
(x , τ) + σ0(x , τ). (5.27)

Inserting (5.27) in (5.24c) and using (5.25) entails

σ0(x , τ) �
K
K + 1

∂u0
∂x
(x , τ). (5.28)

5.1.3.3 Second-order field

Considering the second-order field u2, then identifying the terms of order O(1) in (5.18) gives

∂
∂y

(
β(y)

(
∂u2
∂y
(x , y , τ) + ∂u1

∂x
(x , y , τ)

))
+ β(y) ∂

2u1
∂x∂y

(x , y , τ) + β(y)∂
2u0
∂x2 (x , τ) + f (x , τ)

� α(y)∂
2u0
∂τ2 (x , τ). (5.29)

Collecting the terms of order O(η) in (5.19a) leads to the jump conditions
�
β

(
∂u2
∂y

+
∂u1
∂x

)
(x , ·, τ)

�
�M

〈〈
∂2u0
∂τ2 (x , τ)

〉〉
, (5.30a)〈〈

β

(
∂u2
∂y

+
∂u1
∂x

)
(x , ·, τ)

〉〉
� K

�
u2(x , ·, τ)

�
. (5.30b)

One averages the equation (5.29) on the unit periodic cell ]0, 1[ while using the identity (5.17).
Given the continuity condition (5.20) for j � 1, together with the jump condition (5.30a), it implies

−M
〈〈
∂2u0
∂τ2 (x , τ)

〉〉
+
∂
∂x

〈
β

(
∂u1
∂y
(x , ·, τ) + ∂u0

∂x
(x , τ)

)〉
+ f (x , τ) � 〈α〉 ∂

2u0
∂τ2 (x , τ). (5.31)

Moreover, as in (5.26), the reference mass density entering the definition (5.11) of α is chosen as

ρ? �
〈
ρ
〉

so that 〈α〉 � 1. (5.32)

Finally, owing to the continuity of the field u0 and using (5.25) in (5.31) we obtain

(M + 1)∂
2u0
∂τ2 (x , τ) �

∂
∂x

(
σ0(x , τ)

)
+ f (x , τ). (5.33)

Using (5.28), one gets the following effective wave equation for the nondimensionalized macroscopic
field u0:

(M + 1)∂
2u0
∂τ2 (x , τ) �

K
K + 1

∂2u0
∂x2 (x , τ) + f (x , τ). (5.34)

5.1.4 First-order homogenization

Then, one looks for an effective model up to the first-order. Its derivation will follow the lines of
the previous section at the next order.
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5.1.4.1 Third-order field

One identifies the terms of order O(η) in (5.18):

∂
∂y

(
β(y)

(
∂u3
∂y
(x , y , τ) + ∂u2

∂x
(x , y , τ)

))
+ β(y) ∂

2u2
∂x∂y

(x , y , τ) + β(y)∂
2u1
∂x2 (x , y , τ)

� α(y)∂
2u1
∂τ2 (x , y , τ). (5.35)

The identification at the order O(η2) in (5.19a) leads to�
β

(
∂u3
∂y

+
∂u2
∂x

)
(x , ·, τ)

�
�M

〈〈
∂2u1
∂τ2 (x , ·, τ)

〉〉
. (5.36)

One averages (5.35) and uses (5.17), given the continuity condition (5.20) for j � 2, which yields

−M
〈〈
∂2u1
∂τ2 (x , ·, τ)

〉〉
+
∂
∂x

〈
β

(
∂u2
∂y
(x , ·, τ) + ∂u1

∂x
(x , ·, τ)

)〉
�

〈
α
∂2u1
∂τ2 (x , ·, τ)

〉
, (5.37)

where we have made use of (5.36). This identity will be used to derive an equation for the mean
field 〈u1〉. We now look for an expression for the three terms in (5.37).

� First term. First, the integration of (5.25), together with the continuity of y in ]0, 1[, yields the
following explicit expression of u1:

u1(x , y , τ) � −∂u0
∂x
(x , τ)y + σ0(x , τ)b(y) + q1(x , τ), (5.38)

with

b(y) �
∫ y

0

1
β(z) dz , (5.39)

and q1(x , τ) that still needs to be determined.
Averaging the identity (5.38) gives the following expression for q1:

q1(x , τ) � 〈u1(x , ·, τ)〉 +
1
2
∂u0
∂x
(x , τ) − B σ0(x , τ) (5.40)

with

B � 〈b〉 �
∫ 1

0

∫ y

0

1
β(z) dz dy.

Now, considering the first term in (5.37), one gets〈〈
∂2u1
∂τ2 (x , ·, τ)

〉〉
�
∂2

∂τ2 〈〈u1(x , ·, τ)〉〉 .

Moreover, due to (5.15), (5.38) and (5.26), we have

〈〈u1(x , ·, τ)〉〉 �
1
2
(
u1(x , 0+ , τ) + u1(x , 1− , τ)

)
� −1

2
∂u0
∂x
(x , τ) + 1

2σ0(x , τ) + q1(x , τ)

� 〈u1(x , ·, τ)〉 +
(

1
2 − B

)
σ0(x , τ),

(5.41)

where we used the identity (5.40) in the last line. Consequently, the first term in (5.37) writes〈〈
∂2u1
∂τ2 (x , ·, τ)

〉〉
�
∂2

∂τ2 〈u1(x , ·, τ)〉 +
(

1
2 − B

)
K
K + 1

∂3u0
∂x∂τ2 . (5.42)
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� Second term. In order to deal with the second term in (5.37), one inserts (5.25) into (5.29)
and one integrates the resulting equation to obtain:

β(y)
(
∂u2
∂y
(x , y , τ) + ∂u1

∂x
(x , y , τ)

)
+

(
∂σ0
∂x
(x , τ) + f (x , τ)

)
y � a(y)∂

2u0
∂τ2 (x , τ)+p2(x , τ), (5.43)

where the function p2(x , τ) is to be determined and a(y) is defined as

a(y) �
∫ y

0
α(z)dz.

To determine the function p2, one divides (5.43) by β and one averages the resulting equation.
The identities (5.17), together with (5.26), and the continuity of u2 on ]0, 1[ provide

−
�

u2(x , ·, τ)
�
+
∂
∂x
〈u1(x , ·, τ)〉+

(
∂σ0
∂x
(x , τ) + f (x , τ)

) 〈
y
β

〉
�
∂2u0
∂τ2 (x , τ)

〈
a
β

〉
+p2(x , τ). (5.44)

Moreover, from (5.30b) and taking the mean value of (5.43), one gets�
u2(x , ·, τ)

�
�

1
K

{
1
2
∂2u0
∂τ2 (x , τ) −

1
2

(
∂σ0
∂x
(x , τ) + f (x , τ)

)
+ p2(x , τ)

}
. (5.45)

Inserting this last equation in (5.44) leads to the following expression of p2:

p2(x , τ) �
1
K + 1

{
K ∂
∂x
〈u1(x , ·, τ)〉 −

(
1
2 +K

〈
a
β

〉)
∂2u0
∂τ2 (x , τ)

+

(
1
2 +K

〈
y
β

〉) (
∂σ0
∂x
(x , τ) + f (x , τ)

)}
. (5.46)

One averages (5.43) on ]0, 1[ and one uses the expression of p2 (5.46) to get the following relation
involving the second term of (5.37):〈
β

(
∂u2
∂y
(x , ·, τ) + ∂u1

∂x
(x , ·, τ)

)〉
�
K
K + 1

∂
∂x
〈u1(x , ·, τ)〉

+

{
A − 1

K + 1

(
1
2 +K

〈
a
β

〉)}
∂2u0
∂τ2 (x , τ)

+

{
−1

2 +
1
K + 1

(
1
2 +K

〈
y
β

〉)} (
∂σ0
∂x
(x , τ) + f (x , τ)

)
,

(5.47)

where we have defined

A � 〈a〉 �
∫ 1

0

∫ y

0
α(z)dz dy.

Finally, one uses (5.28) and (5.34) to express σ0 in terms of u0 in (5.47):〈
β

(
∂u2
∂y
(x , ·, τ) + ∂u1

∂x
(x , ·, τ)

)〉
�
K
K + 1

∂
∂x
〈u1(x , ·, τ)〉

+

{
A − 1

K + 1

(
1
2 +K

〈
a
β

〉)
+

(
−1

2 +
1
K + 1

(
1
2 +K

〈
y
β

〉))
(M + 1)

}
∂2u0
∂τ2 (x , τ). (5.48)
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� Third term. In a last step we focus on the right-hand side term in (5.37), i.e.〈
α
∂2u1
∂τ2 (x , ·, τ)

〉
�
∂2

∂τ2 〈α u1(x , ·, τ)〉 .

One uses the expression (5.38) for u1 to obtain the following expression of 〈αu1〉:

〈α u1(x , ·, τ)〉 � −
∂u0
∂x
(x , τ)

〈
α y

〉
+ σ0(x , τ) 〈α b〉 + q1(x , τ). (5.49)

Eventually, the expression (5.40) for q1 is used together with (5.28) in (5.49), which is then
differentiated twice with respect to τ to get:〈

α
∂2u1
∂τ2 (x , ·, τ)

〉
� 〈u1(x , ·, τ)〉 +

(
1
2 −

〈
α y

〉
+

(
〈α b〉 − B

) K
K + 1

)
∂3u0
∂x∂2τ

(x , τ). (5.50)

5.1.4.2 Equation for the mean field associated with the first-order corrector

To conclude, the identities (5.42), (5.48) differentiated with respect to x, and (5.50) are used
back in (5.37). Doing so we obtain the equation for the mean field 〈u1〉:

(M + 1) ∂
2

∂τ2 〈u1(x , ·, τ)〉 �
K
K + 1

∂2

∂x2 〈u1(x , ·, τ)〉 + s
(
u0(x , τ)

)
, (5.51)

where the source term s
(
u0(x , τ)

)
is given by

s
(
u0(x , τ)

)
� G ∂3u0

∂x∂τ2 (x , τ), (5.52)

with

G � A − 1
K + 1

(
1
2 +K

〈
a
β

〉)
+

(
−1

2 +
1
K + 1

(
1
2 +K

〈
y
β

〉))
(M + 1)

−M
(

1
2 − B

)
K
K + 1 −

1
2 +

〈
α y

〉
−

(
〈α b〉 − B

) K
K + 1. (5.53)

By integration by parts one proves that

〈
y
β

〉
� 1 − B ,〈

αy
〉
� 1 −A ,

〈αb〉 � 1 −
〈

a
β

〉
,

and consequently G � 0. Then, the source term in (5.51) vanishes and the final equation for 〈u1〉
is

(M + 1) ∂
2

∂τ2 〈u1(x , ·, τ)〉 �
K
K + 1

∂2

∂x2 〈u1(x , ·, τ)〉 . (5.54)

Finally, once the mean field is computed using the equation (5.54), then the local corrector u1 at
the micro-scale within the periodic array can be reconstructed by inserting (5.28) and (5.40) into
(5.38) as

u1(x , y , τ) � 〈u1(x , ·, τ)〉 +
{

1
2 − y +

K
K + 1

(
b(y) − B

)} ∂u0
∂x
(x , τ). (5.55)

140



5.1. 1D array of linear interfaces

5.1.5 Final homogenized model

Now that the homogenized models have been obtained for both the zeroth and first-order terms
u0 and u1 in the rescaled coordinate system, the final step is to formulate the sought first-order
approximation of the solution Uh in the original coordinate system. Considering the ansatz (5.14),
then from u0 and u1 we can define the approximation u(1) as

u(1)(x , τ) � u0(x , τ) + ηu1(x , x/η, τ) � u0(x , τ) + hk?u1(x , x/η, τ).

Once transposed in the original coordinate system, and due to the definition of the nondimension-
alized fields introduced in Section 5.1.2, one looks for an expression for U(1)(X, t) � u(1)(x , τ)/k?.
It is expressed as

U(1)(X, t) � U0(X, t) + hU1(X, t), (5.56)

where U0(X, t) � u0(x , τ)/k? and U1(X, t) � u1(x , x/η, τ). From the definition of the nondimen-
sionalized variables and fields introduced in Section 5.1.2 and owing to (5.26) and (5.32), the
equation (5.34) is transposed in the original coordinate system and the equation satisfied by U0
writes:

Result 5.1: Zeroth-order homogenized field

ρeff
∂2U0
∂t2 (X, t) � µeff

∂2U0
∂X2 (X, t) + F(X, t), (5.57)

with the effective mass density and shear modulus being defined as

ρeff �
〈
ρ
〉
+

M
h

and µeff �
Kh

Kh
〈
1/µ

〉
+ 1

. (5.58)

Remark 15. The case of perfect interfaces can be recovered by setting K → +∞ and M → 0,
which yields the well-known result ρeff �

〈
ρ
〉
and µeff �

〈
1/µ

〉−1
.

Considering the mean displacement field U1(X, t) � 〈u1(x , ·, τ)〉, and following the same trans-
position as for the zeroth-order field, then U1 turns out to be governed by the wave equation

Result 5.2: Mean field associated with the first-order homogenized field

ρeff
∂2U1
∂t2 (X, t) � µeff

∂2U1
∂X2 (X, t). (5.59)

Moreover, once the mean field U1(X, t) has been computed then the associated local corrector is
written. It is the total field U1(X, t) � u1(x , y , τ) that can be found by expressing (5.55) in the
original coordinate system. One introduces y � (X − nh)/h when X belongs to a given interval(
nh , (n + 1)h

)
, so that this local corrector writes

Result 5.3: First-order homogenized field

U1(X, t) � U1(X, t) +
{

1
2 − y +

(
b(y) − B

)
µeff

〈
1
µ

〉}
∂U0
∂X
(X, t). (5.60)
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� Hyperbolicity. One introduces

V0 �
∂U0
∂t

and E0 �
∂U0
∂X

. (5.61)

Then, it is straighforward to rewrite (5.57) as the following first-order system:
∂E0
∂t
(X, t) � ∂V0

∂X
(X, t)

∂V0
∂t
(X, t) � 1

ρeff

{
µeff

∂E0
∂t
(X, t) + F(X, t)

}
.

(5.62)

Upon introducing

Geff �

(
0 −1
−µeffρeff

0

)
and F �

(
0

F/ρeff

)
, (5.63)

it can be written in the condensend form as the strictly hyperbolic system

∂
∂t
Ψ0(X, t) +Geff

∂
∂X
Ψ0(X, t) � F(X, t) with Ψ0 �

(
E0 ,V0

)>. (5.64)

The same can be done for the mean field associated with the first-order correction U1 which is
solution of (5.59). Indeed, upon introducing

V1 �
∂U1
∂t

and E1 �
∂U1
∂X

, (5.65)

this can be recast as the first-order strictly hyperbolic system

∂
∂t
Ψ1(X, t) +Geff

∂
∂X
Ψ1(X, t) � 0 with Ψ1 �

(
E1 ,V1

)>. (5.66)

5.1.6 Numerical experiments

Numerical simulations are presented in this section to illustrate the first-order effective model
obtained. The microstructured configuration has periodicity h � 10m, with a homogeneous
periodic cell of physical parameters ρ � 1200 kg/m3, µ � 9.408 ·109 Pa, M � 0Pa.s2/m, and
K � 2.45·109 Pa/m.

In both the microstructured and the homogenized configurations, numerical simulations are
performed on a uniform grid using the Explicit Simplified Interface Method discussed in Section
1.3.2. The source term is defined as F(X, t) � δ(X −Xs) 1(t), with Xs � 505m and 1(t) given by:

1(t) �


A

4∑
m�1

am sin(βm ωc t) if 0 < t <
1
fc
,

0 otherwise,

(5.67)

where βm � 2m−1 and the coefficients am being a1 � 1, a2 � −21/32, a3 � 63/768, a4 � −1/512
so that 1 ∈ C6([0,+∞[). The central frequency fc is associated to a dimensionless parameter
η � 2π fc h

√
ρeff/µeff which should be very small compared to 1 in order to satisfy Assumption 5.2.

Figure 5.2 corresponds to an excitation at the central frequency fc � 10Hz, associated with
the value η � 0.26, and amplitude A � 0.1. One can see a good agreement between the velocity in
the microstructured configuration Vh and the result of the first-order homogenization V (1). More
precisely, one notes in Figure 5.2d, at the scale of the microstructure, the local fluctuations of Vh
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Figure 5.2 – Snapshots of the velocity fields (in m/s) at t � 0.16 s in the case of a homogeneous periodic
cell and an excitation by a pulse with central frequency fc � 10Hz (i.e. η � 0.26)

are correctly captured by the first-order corrector but not by the zeroth-order effective field which
only describes a mean field.

Figure 5.3 then illustrates the influence of the central frequency by considering two central
frequencies, fc � 10Hz (i.e. η � 0.26), and fc � 20Hz (i.e. η � 0.52). The first-order corrector
captures adequately the main wavefield variations. However, as expected, the agreement between
Vh and V (1) is deteriorating as the frequency increases and η goes to 1. Indeed, one can notice
that the homogenized model does not capture the high-frequency oscillations that appear after
the passing of the main wave front.

5.2 Extension to non-linear interfaces

The previous results have been extended to the case of non-linear contacts in Bellis et al., 2021.
Non-linear conditions can model complex interface phenomena, such as the generation of higher- or
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Figure 5.3 – Superposition of the fields Vh and V (1) (in m/s) at t � 0.16 s in the case of a homogeneous
periodic cell for two different central frequencies.

sub-harmonics, hysteretic or chaotic behaviors, slow dynamics (Gusev, Castagnède, & Moussatov,
2003; Pecorari, 2003; Broda, Staszewski, Martowicz, Uhl, & Silberschmidt, 2014). The study
focused on smooth non-linear interface laws, such as those that model elastic interphases or joints
(Achenbach & Norris, 1982; Bandis, Lumsden, & Barton, 1984).

5.2.1 Non-linear setting

More precisely, the interfaces are still characterized by the interface mass and rigidity parameters
M and K, but also by a non-linear, constitutive relation R, so that the following transmission
conditions apply at any interface point Xn:

M
〈〈
∂2Uh

∂t2 (·, t)
〉〉

Xn

�
�
Σh(·, t)

�
Xn

(5.68a)

〈〈Σh(·, t)〉〉Xn
� K R

(�
Uh(·, t)

�
Xn

)
. (5.68b)

In this non-linear setting, the interface parameters satisfy the following assumption.

Assumption 5.3

The imperfect interfaces are such that M ≥ 0 and K > 0, while R is a smooth function
satisfying

R : (−d ,+∞) −→ R such that R(0) � 0, R′ > 0 and (R′′ < 0 or R′′ � 0),

where d ∈ R+ ∪ {+∞} is a maximum compressibility length and R′, R′′ are the first and
second derivatives of R, respectively.

Remark 16. The linear behaviour of Section 5.1 is obtained for R being defined as R(ζ) � ζ. A
simple non-linear model satisfying Assumptions 5.3 and used in practice in Bellis et al., 2021 is
the hyperbolic model (Achenbach & Norris, 1982; Bandis et al., 1984) defined by

R(ζ) � ζ

1 + ζ/d . (5.69)
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Assumption 5.4

Moreover, as in the linear case (5.1), a source term F is considered. However, contrary to
the linear case, it is assumed that the forcing is of low-amplitude so that the amplitude does
not involve an additional scaling in η, at least at short times.

Property 7. These assumptions on the model parameters and constitutive function are sufficient
for the well-posedness of the solution in the case of an array of non-linear interfaces. Indeed, as
for Property 6, one can prove that the conservation energy (5.5) still holds in the non-linear case,
upon changing the interface energy into:

E i
h (t) �

∑
n∈Z/Xn∈I

{
1
2 M 〈〈Vh(·, t)〉〉2Xn

+ K
∫R−1

(
〈〈Σh(·,t)〉〉Xn /K

)
0

R
(
ζ
)

dζ

}
. (5.70)

5.2.2 Overview of the main homogenization results

A method similar to the one presented in the previous section for the linear case has been deployed
in Bellis et al., 2021. An overview of the resulting model is presented in this section.

5.2.2.1 Zeroth-order homogenized field

It is only assumed that the leading-order term u0 does not depend on the variable y whereas in
the linear case it can be proven rigourously as in Section 5.1.3.1. Then, one can prove that the
mean field U0(X, t) satisfies

Result 5.4: Zeroth-order homogenized field

ρeff
∂2U0
∂t2 (X, t) �

∂Σ0
∂X
(X, t) + F(X, t), (5.71)

with the effective mass density which is unchanged compared to the linear case and given by
(5.58). The macroscopic stress field now satisfies the following local but non-linear strain-
stress relation 〈

1
µ

〉
Σ0(X, t) +

1
h
R−1

(
1
K
Σ0(X, t)

)
� E0(X, t), (5.72)

where E0 � ∂U0/∂X. The latter macroscopic strain field is therefore related to the macro-
scopic stress field Σ0 by the effective non-linear constitutive relation (5.72), which we formally
write as Σ0 � Geff(E0).

Remark 5.1. In the case of the linear interface law, the effective strain-stress relation is linear
and writes as

Geff(E0) � C`eff E0 with C`eff �

(〈
1
µ

〉
+

1
Kh

)−1

. (5.73)
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5.2.2.2 First-order homogenized field

Result 5.5: Mean field associated with the first-order homogenized field

The mean displacement field U1(X, t) can be obtained as the solution of the following
equation

ρeff
∂2U1
∂t2 (X, t) �

∂Σ1
∂X
(X, t) + S

(
U0(X, t)

)
. (5.74)

Here the macroscopic stress field Σ1(X, t) satisfies the following linear and heterogeneous
constitutive relation

Σ1(X, t) � G′eff
(
E0(X, t)

) ∂U1
∂X
(X, t), (5.75)

while the source term S(U0) is given by

S
(
U0(X, t)

)
�

〈
ρ
〉 〈

1
µ

〉 {
B − 〈α b〉 + M

h
〈
ρ
〉 (
B − 1

2

)}
G′′eff(E0)

{(
∂2U0
∂X∂t

)2

− ∂
2U0
∂X2

∂2U0
∂t2

}
.

Eventually, the expression of the total field U1(X, t) � u1(x , y , τ) is

Result 5.6: First-order homogenized field

U1(X, t) � U1(X, t) + P
(
y , E0(X, t)

)
E0(X, t),

with P
(
y , E0(X, t)

)
�

(
1
2 − y

)
+

(
b(y) − B

) 〈 1
µ

〉 Geff (E0(X, t)
)

E0(X, t)
(5.76)

a cell function which depends explicitly and in a non-linear fashion on E0(X, t).

5.2.2.3 Main properties

In Bellis et al., 2021, we have shown that the following properties hold in the non-linear case.

� Hyperbolicity. As in the linear case in (5.64), the non-linear equations (5.71)–(5.72) for the
zeroth-order mean field U0(X, t) can be written in condensed form as

∂
∂t
Ψ0(X, t) +

∂
∂X

(
Geff

(
Ψ0(X, t)

) )
� F(X, t) with Ψ0 �

(
E0 ,V0

)>
, (5.77)

and where Geff is a function from R2 into itself, while F �
(
0, F/ρeff

)>. This is a first-order system
which is strictly hyperbolic and whose characteristic speeds are the eigenvalues of the Jacobian
matrix G′eff. They are strain-dependent and write as

ν±(E0) � ±

√
1
ρeff

∂Σ0
∂E0

.

Moreover, except in the limit case of linear interfaces, the system is genuinely non-linear. It implies
in particular that there exists a solution to the Cauchy problem, see Dafermos, 2005, and that
the waves connecting piecewise constant states are either shocks or rarefaction waves, a prop-
erty that is at the foundation of some efficient numerical methods, see Godlewski and Raviart, 2013.
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The equations (5.74–5.75) for the mean field U1(X, t) can be recast as the following first-order
system:

∂
∂t
Ψ1(X, t) +

∂
∂X

(
G′eff

(
Ψ0(X, t)

)
Ψ1(X, t)

)
� S

(
Ψ0(X, t)

)
with Ψ1 �

(
E1 ,V1

)>
,

(5.78)
while S �

(
0,S(U0)/ρeff

)>. This is a linear and strictly hyperbolic system, whose characteristic
speeds are identically equal to those of the first-order system (5.77) for the zeroth-order mean
field

(
E0 ,V0

)
.

� Energy analysis for the zeroth-order homogenized model. For an interval I ⊂ R and a time t ≥ 0,
the effective energy E0 � E m

0 + E i
0 with

E m
0 (t) �

1
2

∫
I

{〈
ρ
〉

V2
0 +

〈
1
E

〉
Σ2

0

}
dX, (5.79a)

E i
0 (t) �

1
h

∫
I

{
1
2 MV2

0 + K
∫R−1(Σ0/K)

0
R(ζ)dζ

}
dX, (5.79b)

is the effective mechanical energy associated with the zeroth-order homogenized model. These
terms are respectively associated with the bulk and interface energies of the microstructured
problem, and satisfy E m

0 (t) ≥ 0 and E i
0 (t) ≥ 0 for all time t ≥ 0.

Lastly, if V0 and E0 are both sufficiently smooth and compactly supported at time t � 0, then in
the absence of source term, i.e. F � 0, it holds d

dt E0 � 0 for all time t such that supp(V0(·, t)) ⊂ I
and supp(E0(·, t)) ⊂ I.
A fundamental difference occurs between the microstructured and homogenized models, due to
the non-linearity of the partial differential equation (5.77), which yields the formation of shocks in
a finite time. The total effective energy E0 is conserved as long as shocks do not appear and then
there is dissipation of energy contrary to the microstructured configuration.

� Estimation of the time of apparition of shocks. At small strains, the effective stress-strain
relation can be expanded at the second order as:

Σ0 ∼
E0→0

G′eff(0) E0
(
1 − γ E0

)
+ o(E2

0) with G′eff(0) > 0 and γ ≥ 0, (5.80)

since Geff(0) � 0 and given that Geff is a concave and strictly increasing function. Considering the
small strains quadratic non-linear constitutive law (5.80), then P. Lax derived an estimated time
t? when shocks would appear, see Lax, 1957; Lax, 1964. Given a Cauchy problem with sinusoidal
strain of amplitude Emax and angular frequency ωc � 2π fc, we obtain

t? ≈ 1
Emaxγ ωc

+
1

2 fc
, (5.81)

with the additional term 1/(2 fc) being the time required for the source to generate a complete
sinus arch. In the linear case, i.e. in the small strain limit, a monochromatic forcing of amplitude
A leads to Emax � Aρeff/C`

eff.
Logically, t? is inversely proportional to both the non-linearity coefficient γ of (5.80) and to the
amplitude Emax, as the larger these parameters are the stronger the non-linear effects are. Shocks
occur beyond t? and the total energy E0 then decreases, contrary to the case of the microstructured
medium. Consequently, (5.81) can be interpreted as an upper bound of the duration of validity of
the derived effective models.
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5.2.3 Overview of the numerical results

Numerical simulations have been performed for the hyperbolic non-linear constitutive relation (5.69)
of the interface function by Bruno Lombard in Bellis et al., 2021. An overview of the numerical
results obtained for the monolayered case is given in this subsection to illustrate the zeroth- and
first-order effective models presented previously. The microstructured configuration is the same
as in Section 5.1.6. The additional parameter characterizing the non-linearity is d � 10−4 m.

In both the microstructured and the homogenized configurations, numerical simulations are
performed on a uniform grid using a finite-volume scheme with flux limiters (LeVeque, 2002). In
the microstructured configuration, the interfaces are handled using the Explicit Simplified Interface
Method (Lombard & Piraux, 2007; Junca & Lombard, 2009; Junca & Lombard, 2012) discussed
in Section 1.3.2.
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(a) Field Vh in the microstructured medium.
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(b) First-order homogenized field V(1).
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(c) Superposition of the fields Vh and V(1).
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(d) Close-up showing the zeroth- and first-order homog-
enized fields V0 and V(1), respectively, and Vh .

Figure 5.4 – Snapshots of the velocity fields (in m/s) at t � 0.16 s in the case of a homogeneous periodic
cell and an excitation by a pulse with central frequency fc � 10Hz (i.e. η � 0.26) and amplitude A � 40.

The source term has been defined in (5.67). The difference in the non-linear case is that
increasing the source amplitude A induces stronger non-linear phenomena. However, in the model
derivation in Section 5.2.2, it is assumed that the forcing is of low-amplitude so that the amplitude
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5.2. Extension to non-linear interfaces

does not involve an additional scaling in η, at least at short times. This requirement does not
occur in the linear case treated in Section 5.1. Consequently, the influence of the central frequency
and the amplitude of the forcing is numerically investigated.

Figure 5.4 corresponds to an excitation at the central frequency fc � 10Hz, associated with
the value η � 0.26, and amplitude A � 40. As in the linear case, one can see a good agreement
between the velocity in the microstructured configuration Vh and the result of the first-order
homogenization V (1) with local fluctuations of Vh which are correctly captured by the first-order
corrector but not by the zeroth-order effective field.
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(a) fc � 15Hz (i.e. η � 0.39)
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(b) fc � 20Hz (i.e. η � 0.52)

Figure 5.5 – Superposition of the fields Vh and V (1) (in m/s) at t � 0.16 s with close-up on the right-going
waves in the case of a homogeneous periodic cell and a source of amplitude A � 40, for two different central
frequencies.
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(a) A � 60.
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Vh

(b) A � 120.

Figure 5.6 – Superposition of the fields Vh and V (1) (in m/s) at t � 0.16 s with close-up on the right-going
waves in the case of a homogeneous periodic cell and a source at central frequency fc � 10Hz (i.e. η � 0.26),
for two different amplitudes.

� Influence of the central frequency. At the amplitude value A � 40, as in Figure 5.4, Figure 5.5
illustrates the influence of the central frequency by considering relatively larger values of fc and
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Chapter 5. Low-frequency homogenization with imperfect interfaces

consequently of the parameter η. For both frequencies, fc � 15Hz (i.e. η � 0.39) and fc � 20Hz
(i.e. η � 0.52), the first-order corrector still captures adequately the main wavefield variations.
However, this homogenized model is non-dispersive and does not capture the high-frequency
oscillations that appear after the main wave front. As expected, at higher frequencies, the agreement
between Vh and V (1) is deteriorating and dispersive effects increase with time of propagation.
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(f)

Figure 5.7 – Case of a homogeneous periodic cell and an excitation by a pulse centered at fc � 10Hz with
amplitude A � 40 (left panels) and A � 60 (right panels). Top: seismograms of Vh in the microstructured
medium. Middle: seismograms of the homogenized field V0. Bottom: superposition and time evolution of
the energies Eh and E0. The dotted lines denote the estimated time t? for each case.

� Influence of the source amplitude. Then, the central frequency is kept as in Figure 5.4, i.e. fc �

10Hz so that η � 0.26, but the source amplitude is now increased to A � 60 and A � 120 in Figure

150



5.2. Extension to non-linear interfaces

5.6. As A increases, the stiffening of the wave fronts becomes more apparent and the oscillations
increase at the scale of the microstructure. The latter are not captured by the homogenized model
and this illustrates that the associated configurations are beyond the implicit assumption of a
relatively low source amplitude in the non-linear case.

� Formation of shocks. It has been discussed in Section 5.2.2.3 that the zeroth-order homogenized
model allows the formation of shocks in a finite time, unlike the microstructured media. As it can
be seen from the figures 5.5b and 5.6b, shocks can also develop in a finite time with the first-order
model.
This discussion is now illustrated numerically in Figure 5.7. The computational domain is [0, 2000]m
and the source with central frequency fc � 10Hz and amplitude A � 40 (left column) or A � 60
(right column) is placed at Xs � 1010m, i.e. at the center of a cell. The top (resp. middle)
panels correspond to seismograms of the velocity field Vh (resp. V0). The bottom panels show
the temporal evolutions of the energies in the microstructured medium and in the homogenized
one, i.e. Eh and E0 respectively.
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(b) A � 60 and Xr1.
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(d) A � 60 and Xr2.

Figure 5.8 – Case of a homogeneous periodic cell and an excitation by a pulse centered at fc � 10Hz with
amplitude A � 40 (left panels) and A � 60 (right panels), as in Figure 5.7. Spectra of the velocity fields
Vh and V0 recorded at two receivers placed at Xr1 � 1205m and Xr2 � 1705m. The vertical dashed line
indicates the value of the frequency that corresponds to η � 1.

In each case, the dotted lines denote the estimated time t? which is an estimation of the time
of apparition of shocks for the small strain limit and a monochromatic forcing (5.81). This time
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Chapter 5. Low-frequency homogenization with imperfect interfaces

is therefore assumed to be an estimation of the time of apparition of shocks and consequently
of the duration of validity of the homogenized model. For t < t∗ a good agreement is observed
for both the wavefields and the energies. Near t � t?, the effective energy E0 starts to decrease,
which is typical of a shock formation, as can be observed in Fig. 5.7c and 5.7d. In the mean time,
the energy Eh in the microstructured media is conserved, as expected. Dispersive effects are again
clearly visible in Fig.5.7a and 5.7b with high-frequency oscillations.

Figure 5.8 illustrates the influence of the shocks on the spectral content of the waves. Consid-
ering the configuration of Figure 5.7, two receivers are placed at Xr1 � 1205m and Xr2 � 1705m,
i.e. both at the center of a cell near the source and further away. The propagation distance at
Xr1 (resp. Xr2) is about one (resp. three) wavelength relatively to the central frequency fc. Fig-
ure 5.8 then represents the discrete Fourier spectra of the recorded time-domain signals for the
two forcing amplitudes A � 40 and A � 60 considered. The waves reach the receiver Xr1 before
the time t?, so that no shock has formed yet in the homogenized media. We then note a satisfying
agreement between the microstructured and the effective spectra at low frequency, see Fig. 5.8a
and 5.8b. When recorded at the receiver Xr2, the wavefield V0 has now formed a shock while
Vh is characterized by stronger dispersive effects, as previously observed. Accordingly, we notice
significant enrichments of the associated spectra, see Fig. 5.8c and 5.8d. In particular, the spectra
associated with V0 now behave as sinc functions, which is characteristic of the Fourier transforms
of discontinuous functions. While at frequencies f ≥ 37Hz, which corresponds to η � 1, the
Fourier contents associated with these two models are clearly different, they still agree relatively
well for lower frequencies f ≤ 37Hz.

5.3 2D/3D elastic media with linear interfaces

In this section, we now generalize to RN , with N � 2 or 3 (see Figure 5.9 for N � 2), the results of
Section 5.1 concerning linear interfaces. The space coordinate is denoted by X and one introduces
Xi � X · ei, for i ∈ {1 · · ·N}. The 1D setting is particular in the sense that integrations can be
performed explicitely instead of computing solutions of cell problems, which cannot be avoided in
higher dimensions. Therefore, the extension to higher dimensions is not straightforward and is the
subject of this section.

1

2

X1

X2 MK

n

Figure 5.9 – Microstructured configuration in the 2D case with imperfect interfaces.
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5.3. 2D/3D elastic media with linear interfaces

5.3.1 Setting

We consider the propagation of transient waves in a elastic medium made of inclusions ∪iΩi
embedded periodically in a homogeneous matrix Ωm. The elastic medium is assumed to be h-
periodic, with hi � h · ei and h � max

i�1,··· ,N
hi. The medium is linear elastic with mass density ρh(X)

and fourth-order elasticity tensor Ch(X). Given a source term F, the displacement field Uh is
governed by the time-domain wave equation

ρh(X)
∂2Uh

∂t2 (X , t) � ∇ · Σh(X , t) + F(X , t) (5.82)

where
Σh(X , t) � Ch(X) : ε [Uh] (X , t), (5.83)

with Σh being the stress tensor and εX [Uh] being the strain tensor. Moreover, the interfaces ∂Ωi
are assumed to be linear and characterized by the interface mass and rigidity second-order tensors
M and K so that the following transmission conditions apply at each interface ∂Ωi:

M ·
〈〈
∂2Uh

∂t2 (·, t)
〉〉

X
�

�
Σh(·, t) · n

�
X (X ∈ ∂Ωi),

〈〈Σh(·, t) · n〉〉X � K ·
�

Uh(·, t)
�

X (X ∈ ∂Ωi),
(5.84)

where n is the outward normal to the inclusion. For any function 1(X), one generalizes the
definitions of the jump and mean in RN as�

1
�

X � 1(X+) − 1(X−) and
〈〈
1
〉〉

X �
1
2
(
1(X+) + 1(X−)

)
, (5.85)

for X ∈ ∂Ωi and where the superscript + (resp. −) stands for the Ωm (resp. Ωi) side.
The constitutive parameters characterizing the microstructured medium considered satisfy the
following mathematical assumptions.

Assumption 5.5

The mass density is expressed as ρh(X) � ρ(X/h) and the fourth-order elasticity tensor reads
Ch(X) � C(X/h), where

ρ, C jklm ∈ L∞per(Y) :�
{
1 ∈ L∞(RN), ∀i ∈ {1, · · · ,N}, 1

(
y +

hi

h
ei

)
� 1(y) a.e. y ∈ RN

}
(5.86)

with ρ ≥ ρmin > 0, and C positive definite.

Assumption 5.6

The second-order tensors M and K can be written M � Mn n ⊗ n + Mt t ⊗ t and
K � Kn n ⊗ n+Kt t ⊗ t with n and t the normal and the tangent unitary vectors, respectively,
at the interfaces matrix/inclusion. We assume that Mn ≥ 0, Mt ≥ 0, Kn > 0 and Kt > 0.

Property 8. The problem (5.82)–(5.83) together with (5.84) is well posed. Indeed, one introduces
the bulk energy and the interface energy respectively as

E m
h (t) �

1
2

∫
D

{
ρh(X)Vh(X , t)2 + ε [Uh] (X , t) : Ch(X) : ε [Uh] (X , t)

}
dX , (5.87a)

E i
h (t) �

∑
∂Ωi∈D

∫
∂Ωi

1
2 {〈〈Vh〉〉X ·M · 〈〈Vh〉〉X + ~Uh�X · K · ~Uh�X } dX , (5.87b)
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Chapter 5. Low-frequency homogenization with imperfect interfaces

with Vh �
∂Uh
∂t . The domain D is chosen such that the boundary ∂D does not intersect an

interface ∂Ωi. Then, if the source term F � 0, and if D is large enough so that the boundary
terms vanish, the following conservation identity holds for the total energy

d
dt

(
E m

h + E i
h

)
� 0. (5.88)

Proof. One considers the dot product of (5.82) and Vh, one uses (5.83), and one integrates over
D. Then, when F � 0 and when D is chosen large enough so that the boundary terms vanish, an
integration by parts yields:∫

D
ρh
∂Vh

∂t
· Vh dX � −

∑
∂Ωi∈D

∫
∂Ωi

~Σh · n · Vh�X dX −
∫
D
ε [Vh] : Ch : ε [Uh] . (5.89)

Due to the interface conditions (5.84), the jump term writes

~Σh · n · Vh�X � ~Σh · n�X · 〈〈Vh〉〉X + 〈〈Σh · n〉〉X · ~Vh�X

�

(
M ·

〈〈
∂Vh

∂t

〉〉
X

)
· 〈〈Vh〉〉X + (K · ~Uh�X ) ·

�
Uh

∂t

�
X

.
(5.90)

Furthermore, one assumes sufficient smoothness for f � Uh or Vh so that�
∂ f
∂t

�
X
�

d
dt

�
f

�
X and

〈〈
∂ f
∂t

〉〉
X
�

d
dt
〈〈 f 〉〉X . (5.91)

Consequently, the balance of energy holds. �

Eventually, the low-frequency hypothesis Assumption 5.2 η � hk? � 1 still holds.

5.3.2 Two-scale expansion

One considers some reference material parameters ρ? and E?, for example (5.32) and (5.26), that
define the wavespeed c? �

√
E?/ρ?. Then we follow the same steps as in the 1D case to establish

the wave equation and interface conditions satisfied in the nondimensionalized coordinates. We
present here the main steps in higher dimensions:

• Definition of non-dimensionalized variables, fields and parameters:

x � k?X , τ � k?c?t , uη(x , τ) � k?Uh(X , t), f (x , τ) � F(X , t)
k?E?

,

α �
ρ

ρ?
, β �

C
E?
, M �

M
h ρ?

, K �
Kh
E?

. (5.92)

• The rescaled coordinate y � x/η is introduced. The parameters α and β are assumed to
vary on this fast fine scale.

• The field uη is expanded using the following ansatz:

uη(x , τ) �
∑
j≥0

η j u j(x , y , τ), (5.93)

where the fields u j are assumed to be continuous with respect to the first variable and
h/h-periodic with respect to the second variable.
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5.3. 2D/3D elastic media with linear interfaces

• The jump and mean notations are extended at the micro-scale as�
u j

�
y ≡

�
u j(x , ·, τ)

�
y � u j(x , y+ , τ) − u j(x , y− , τ),〈〈

u j
〉〉

y ≡
〈〈

u j(x , ·, τ)
〉〉

y �
1
2
(
u j(x , y+ , τ) + u j(x , y− , τ)

)
,

(5.94)

for x ∈ RN and y ∈ ∂Ωi.

• The differential operator with respect to x is rewritten as

∇x +
1
η
∇y and εx +

1
η
εy .

• One also introduces the unit periodic cell

Y :�
{

y ∈ RN , ∀i ∈ {1, · · · ,N}, yi � y · ei ∈
[
0, hi

h

]}
(5.95)

and later on,
〈
1
〉
�

∫
Y 1(y)dy.

These steps yield the nondimentionalized wave equation

α(y)
∂2uη
∂τ2 �

1
η2∇y ·

(
β(y) : εy[uη]

)
+

1
η

(
∇y ·

(
β(y) : εx[uη]

)
+ ∇x ·

(
β(y) : εy[uη]

) )
+ ∇x ·

(
β(y) : εx[uη]

)
+ f (x , τ), (5.96)

and the associated interface conditions for y ∈ ∂Ωi
ηM ·

〈〈
∂2uη
∂τ2

〉〉
y

�

�
β :

(
εx[uη] +

1
η
εy[uη]

)
· n

�
y
, (5.97a)〈〈

β :
(
εx[uη] +

1
η
εy[uη]

)
· n

〉〉
y
�

1
η
K ·

�
uη

�
y . (5.97b)

The equations (5.96) and (5.97) are used in the next section together with the ansatz (5.93) to
derive a homogenized model.

5.3.3 Zeroth-order homogenization

5.3.3.1 Zeroth-order field

One identifies the terms at order O(η−2) in (5.96) and O(η−1) in (5.97a) and (5.97b) and gets
the following system for the zeroth-order field u0:

∇y ·
(
β : εy[u0]

)
� 0 (y ∈ Y) , (5.98a)�

β : εy[u0] · n
�

y � 0 (y ∈ ∂Ωi) , (5.98b)〈〈
β : εy[u0] · n

〉〉
y � K · ~u0�y (y ∈ ∂Ωi) . (5.98c)

We take the dot product of (5.98a) and u0 and integrate over the unit periodic cell Y. Integrating
by parts and using the periodicity conditions on the boundaries of the cell Y leads to:∫

Y

(
β : εy[u0]

)
: ∇y u0 +

∫
∂Ωi

�(
β : εy[u0] · n

)
· u0

�
y � 0. (5.99)
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The first term writes by minor symmetry of β∫
Y

(
β : εy[u0]

)
: ∇y u0 �

∫
Y
εy[u0] : β : εy[u0] (5.100)

and the second one writes∫
∂Ωi

�(
β : εy[u0] · n

)
· u0

�
y �

∫
∂Ωi

[�
β : εy[u0] · n

�
y · 〈〈u0〉〉y +

〈〈
β : εy(u0) · n

〉〉
y · ~u0�y

]
�

∫
∂Ωi

~u0�y ·K · ~u0�y ,

(5.101)
where we use the interface conditions (5.98b) and (5.98c). Both terms in (5.99) are thus positive
owing to Assumptions 5.5 and 5.6. Therefore, the first term equals to 0 and from (5.100), one gets
εy(u0) � 0 in Y. The decomposition of the gradient of ∇y u0 into symmetric and antisymmetric
parts reads:

∇y u0 � εy(u0) + A(u0),

with A(u0) � 1
2
(
∇y u0 − ∇y u>0

)
. We know that the symmetric part vanishes, and the antisymmetric

satisfies
∂Ai j

∂yk
�
∂εik

∂y j
−
∂ε jk

∂yi
� 0.

Together with the periodic conditions, this yields ∇y u0 � 0. So, one obtains as in 1D:

u0(x , y , τ) � u0(x , τ). (5.102)

5.3.3.2 First-order field

Next, one identifies the terms of order O(η−1) in (5.96) together with those of order O(1) in
(5.97a) and (5.97b). Given (5.102), this leads to the following system for the first-order field u1:

∇y ·
(
β : εy[u1]

)
+ ∇y ·

(
β : εx[u0]

)
� 0 (y ∈ Y) , (5.103a)�

β :
(
εy[u1] + εx[u0]

)
· n

�
y � 0 (y ∈ ∂Ωi) , (5.103b)〈〈

β :
(
εy[u1] + εx[u0]

)
· n

〉〉
y � K · ~u1�y (y ∈ ∂Ωi) . (5.103c)

Due to the linearity of (5.103a) and the separation of variables of the forcing term ∇y · β : εx[u0],
u1 can be written:

u1(x , y , τ) � U1(x , τ) + P(y) : εx[u0], (5.104)

with P a third-order tensor. The symmetry of εx[u0] implies the following symmetry for P:
Pipq � Piqp. We then introduce the vector Ppq � Pipq ei which is the solution of the following
cell-problem due to (5.103):

∇y ·
(
β : εy[Ppq]

)
+ ∇y ·

(
β : Ipq )

� 0 (y ∈ Y) , (5.105a)�
β :

(
εy[Ppq] + Ipq ) · n�

y � 0 (y ∈ ∂Ωi) , (5.105b)〈〈
β :

(
εy[Ppq] + Ipq ) · n〉〉

y � K ·
�

Ppq�
y (y ∈ ∂Ωi) , (5.105c)

with Ipq the second-order tensor defined by Ipq � ep⊗eq. The fields Ppq and β :
(
εy[Ppq] + Ipq ) ·n

also satisfy the periodicity conditions on the boundaries of the periodic cell Y. Moreover, Ppq is
chosen such that 〈Ppq〉 � 0 and consequently 〈u1〉 � U1(x , τ).
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5.3. 2D/3D elastic media with linear interfaces

5.3.3.3 Second-order field

One identifies the terms at order O(1) in (5.96) and O(η) in (5.97a) and (5.97b). It yields the
following system for the second-order field u2:
∇y ·

(
β :

(
εy[u2] + εx[u1]

) )
+ ∇x ·

(
β :

(
εy[u1] + εx[u0]

) )
+ f (x , τ) � α∂

2u0
∂τ2 (y ∈ Y)(5.106a)�

β :
(
εy[u2] + εx[u1]

)
· n

�
y � M · ∂

2u0
∂τ2 (y ∈ ∂Ωi)(5.106b)〈〈

β :
(
εy[u2] + εx[u1]

)
· n

〉〉
y � K · ~u2�y (y ∈ ∂Ωi) (5.106c)

5.3.3.4 Wave equation for the zeroth-order field

Averaging the equation (5.106a) over the unit periodic cell Y, while using the periodicity conditions
on its boundaries and the interface condition (5.106b), implies(

〈α〉 I +
∫
∂Ωi

Mdy
)
· ∂

2u0
∂τ2 � ∇x ·

〈
β :

(
εy[u1] + εx[u0]

)〉
+ f (x , τ). (5.107)

Result 5.7: Effective equation for the nondimensionalized zeroth-order field

One introduces the effective nondimensionalized fourth-order tensor β̄ defined by

β̄ �

〈
βi jmn

(
∂Pnkl

∂ym
+ δmk δnl

)〉
ei ⊗ e j ⊗ ek ⊗ el , (5.108)

and the effective nondimensionalized mass density ᾱ defined by

ᾱ �

(
〈α〉 I +

∫
∂Ωi

Mdy
)

. (5.109)

Finally, owing to (5.104) and (5.107) one obtains

ᾱ · ∂
2u0
∂τ2 � ∇x ·

(
β̄ : εx[u0]

)
+ f (x , τ). (5.110)

This equation is the effective wave equation satisfied by the nondimensionalized macroscopic field
u0 in the rescaled coordinate system.

� Symmetries of ᾱ and β̄.

Result 5.8: Symmetries of the effective tensors

The effective tensor ᾱ is symmetric.
The effective tensor β̄ satisfies the usual minor symmetries and major symmetry.

Proof.

• The symmetry of M yields the symmetry for ᾱ

• β jikl � βi jkl proves that β̄ jikl � β̄i jkl.
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• Using that Pnlk � Pnkl and βi jlk � βi jkl yields β̄i jlk � β̄i jkl.

• One considers the dot product of equation (5.105a) for (p , q) � (i , j) and Pkl. One integrates
it by parts over Y and one uses the periodic conditions to get:〈

εy[Pkl] : β :
(
εy[P i j] + I i j

)〉
+

∫
∂Ωi

�
β :

(
εy[P i j] + I i j

)
· n · Pkl

�
� 0. (5.111)

Due to the jump conditions (5.105b)–(5.105c), this writes:〈
εy[Pkl] : β :

(
εy[P i j] + I i j

)〉
+

∫
∂Ωi

�
Pkl� ·K · �P i j�

� 0. (5.112)

Similarly, the dot product of equation (5.105a) for (p , q) � (k , l) and P i j yields〈
εy[P i j] : β :

(
εy[Pkl] + Ikl

)〉
+

∫
∂Ωi

�
P i j� ·K · �Pkl�

� 0. (5.113)

Due to the symmetries of β and K , the difference of the two resulting equations yields〈
βi jmn

∂Pnkl

∂ym

〉
�

〈
βklmn

∂Pni j

∂ym

〉
.

Combined with the fact that βi jkl � βkli j, this leads to the major symmetry β̄kli j � β̄i jkl.

�

5.3.4 First-order homogenization

The purpose of this section is to derive an effective model up to the first order. The latter will
enrich the model obtained in the previous section that only involves a zeroth-order mean field.

5.3.4.1 An explicit form for the second-order field

Due to (5.106a), u2 can be written as

u2(x , y , τ) � U2(x , τ) + P(y) : εx [U1] + Q(y) ...∇xεx [u0] + G(y) · f (x , τ), (5.114)

where
... is the notation when contracting three indices, Q is a fourth-order tensor, and G a second-

order tensor. One can assume that Qpqrs � Qpqsr due to the symmetries of ∇xεx [u0].
We introduce Qqrs � Qpqrs ep and Gs � Gps ep. Using (5.106), Qqrs is solution of the following
equation for y ∈ Y

ᾱ ·
[
∇y ·

(
β : εy [Qqrs] + β · eq · Prs )

+
(
β : εy [Prs]

)
· eq + β

... Iqrs
]
� αβ̄qrs , (5.115)

together with the interface conditions for y ∈ ∂Ωi
ᾱ ·

�(
β : εy [Qqrs] + β · eq · Prs ) · n�

y � M · β̄qrs , (5.116a)〈〈(
β : εy [Qqrs] + β · eq · Prs ) · n〉〉

y � K ·
�

Qqrs�
y , (5.116b)

with β̄qrs � β̄pqrs ep and Iqrs � eq ⊗ er ⊗ es . Similarly, Gs satisfies the following cell-problem
ᾱ ·

(
∇y ·

(
β : εy [Gs]

) )
� (αI − ᾱ) · es (y ∈ Y) , (5.117a)

ᾱ ·
�
β : εy [Gs] · n

�
y � M · es (y ∈ ∂Ωi) , (5.117b)〈〈

β : εy [Gs] · n
〉〉

y � K ·
�

Gs�
y (y ∈ ∂Ωi) . (5.117c)
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5.3.4.2 Third-order field

Next, identifying the terms of order O(η) in (5.96) together with those of order O(η2) in (5.97a)
and (5.97b), leads to the following system for the third-order field u3:



∇y ·
(
β :

(
εy[u3] + εx[u2]

) )
+ ∇x ·

(
β :

(
εy[u2] + εx[u1]

) )
� α

∂2u1
∂τ2 (y ∈ Y) , (5.118a)�

β :
(
εy[u3] + εx[u2]

)
· n

�
y � M ·

〈〈
∂2u1
∂τ2

〉〉
y

(y ∈ ∂Ωi) , (5.118b)〈〈
β :

(
εy[u3] + εx[u2]

)
· n

〉〉
y � K · ~u3�y (y ∈ ∂Ωi) . (5.118c)

The equation (5.118a) is integrated over the unit periodic cell Y using the periodicity conditions
on the boundaries of Y and the interface condition (5.118b):

−
∫
∂Ωi

M ·
〈〈
∂2u1
∂τ2

〉〉
y

dy + ∇x ·
〈
β :

(
εy[u2] + εx[u1]

)〉
�

〈
α
∂2u1
∂τ2

〉
. (5.119)

The equations (5.104) and (5.114) are used in (5.119) and one obtains the equation below for
the mean field U1:

Result 5.9: Nondimensionalized mean field associated with the first-order corrector

ᾱ · ∂
2
U1
∂τ2 � ∇x ·

(
β̄ : εx [U1]

)
+S(u0), (5.120)

where the source term S(u0) depends explicitely on the zeroth-order field and is given by

S(u0) � −
(
〈αP〉 +

∫
∂Ωi

M · 〈〈P〉〉y dy
)

: εx

[
∂2u0
∂τ2

]
+ ∇x ·

〈
β :

(
εy

[
Q

...∇xεx[u0]
]
+ εy [G · f ] + εx [P : εx [u0]]

)〉
.

(5.121)

Remark 17. For numerical purposes, one can prefer an expression of the source term S(u0) which
is independant of the tensors Q and G. Indeed, it seems less costly to avoid the computation of
these additional cell problems to have a first-order homogenized field. Using (5.116) and (5.117)
allows to get the following expression for the source term:

S(u0) j �
〈
βpqmn

(
Pmst

∂Pp jk

∂yq
− Pm jk

∂Ppst

∂yq

)〉
∂2(εx[u0])st

∂xn∂xk
+

〈
β jkmnPmls

〉 ∂2(εx[u0])ls
∂xn∂xk

−
〈
βpqmnPp jk

〉 ∂2(εx[u0])mn

∂xq∂xk
+

∫
∂Ωi

Mpq
〈〈

Pp jk
〉〉

dy
∂3(u0)q
∂τ2∂xk

−
∫
∂Ωi

M jn 〈〈Pnkm〉〉 dy
∂3(u0)m
∂τ2∂xk

+
〈
αPp jk

〉 ∂3(u0)p
∂τ2∂xk

−
〈
αP jkm

〉 ∂3(u0)m
∂τ2∂xk

.

(5.122)

This expression avoids the computation of additional cell problems. However, it is more intricate
so it will not be used in the following.

5.3.5 Final homogenized model

Following the same lines as in Section 5.1.5, one gets the following first-order approximation of
the wavefield. Let define

U (1)(X , t) � U0(X , t) + hU1(X , t).
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It requires to introduce the effective fourth-order tensor

C̄ �

〈
Ci jmn

(
∂Pnkl

∂ym
+ δmk δnl

)〉
ei ⊗ e j ⊗ ek ⊗ el , (5.123)

and the effective mass density

ρ̄ �
〈
ρ
〉

I +
1
h

∫
∂Ωi

Mdy. (5.124)

Result 5.10: Final homogenized field

Then, the mean field U0(X , t) is governed by the equation

ρ̄ · ∂
2U0
∂t2 � ∇X ·

(
C̄ : εX [U0]

)
+ F(X , t). (5.125)

The first order corrector U1 is computed from

U1(X , t) � U1(X , t) + P
(

X
h

)
: εX [U0] . (5.126)

The latter is valid for X ∈ hY and the field for all X ∈ RN is recovered using the periodicity. The
equation (5.126) requires the computation of P, which is solution of the cell problem (5.105) and
of the mean field U1(X , t) solution of

ρ̄ · ∂
2U1
∂t2 � ∇X ·

(
C̄ : εX

[
U1

] )
+ S(U0), (5.127)

where the source term is given by

S(U0) � −
(〈
ρP

〉
+

1
h

∫
∂Ωi

M · 〈〈P〉〉y dy
)

: εX

[
∂2U0
∂t2

]
+ ∇X ·

〈
C :

(
εy

[
Q

...∇X εX [U0]
]
+ εy [G · F] + εX [P : εX [U0]]

)〉
.

(5.128)

Remark 18. The case of perfect interfaces, see for example (Boutin & Auriault, 1993), can be
recovered by setting K � +∞ and M � 0 in the interface model considered when F � 0.

� Energy identity for the zeroth-order homogenized model. For a domain D and a time t ≥ 0,
one defines

E m
0 (t) �

1
2

∫
D

{〈
ρ
〉

V0(X , t)2 + ε [U0] (X , t) : 〈C〉 : ε [U0] (X , t)
}

dX , (5.129a)

E i
0 (t) �

1
2

∫
D

{
V0(X , t) · ρint · V0(X , t) + ε [U0] (X , t) : Cint : ε [U0] (X , t)

}
dX ,(5.129b)

with 
ρint

�
1
h

∫
∂Ωi

Mdy

Cint
�

〈
Ci jmn

∂Pnkl

∂ym

〉
ei ⊗ e j ⊗ ek ⊗ el .

The effective energy E0 � E m
0 + E i

0 is the effective mechanical energy associated with the zeroth-
order homogenized model. The terms (5.129a) and (5.129b) are respectively associated with the
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bulk and interface energies of the microstructured problem (5.87), and satisfy E m
0 (t) ≥ 0 and

E i
0 (t) ≥ 0 for all time t ≥ 0.

Lastly, if D is large enough and if F � 0, it holds d
dt E0 � 0 for all time t.

5.4 Conclusion

In this chapter, we studied periodic media with imperfect contact of the spring-mass type in the
framework of low-frequency homogenization. We first considered a 1D periodic array of linear
interfaces. Thanks to two-scale asymptotic expansions, a first-order homogenized model was
obtained. The zeroth-order contribution of the displacement is a mean field that is solution of a
wave equation with the original source term. This wave equation involves a homogeneous effective
mass density and shear modulus that depend on the physical parameters, as in the case of perfect
bonding, and on the interface parameters. The mean field associated with the first-order corrector
is solution of the same wave equation without source term. The associated cell problem is found
analytically due to 1D specificity.

Then, an overview of the extension of this work to non-linear interfaces was presented. In
this case, the zeroth-order mean field is solution of a wave equation with non-linear constitutive
stress-strain relation. Consequently, shocks occur in the homogenized model in finite time contrary
to the case of the microstructured configuration. From the instant where shocks appear, there
is dissipation of energy in the homogenized model contrary to the microstructured configuration.
The first order corrector term involves a mean field solution of a wave equation and a corrector.
The corrector, the source term for the mean field and its constitutive relation depend non-linearly
on the zeroth-order field. Numerical experiments have shown a good agreement before shocks
appear. This agreement deteriorates as the frequency or the amplitude of the source increase.

Eventually, the derivation of a first-oder homogenized model was tackled for the full elasticity
configuration in RN with N � 2, 3. The mean fields satisfy a wave equation involving an effective
mass density which turns out to be a tensor and an effective tensor of elasticity which satisfies
the usual properties of symmetry. Contrary to the 1D case, the source term for the first-order
mean field does not vanish without further assumption. The computation of the solution to cell
problems is also required.

This work raises the following open questions and perspectives:

• The first natural perspective is to complete the work started in the last section about the case
of higher spatial dimensions. Indeed, the first-order homogenized model has been derived but
we still need to perform numerical simulations in order to assess its valididty by comparisons
with full-field simulations. While the computation of the zeroth-order homogenized field
should not pose any difficulty, the computation of the first-order corrector with the resolution
of cell problems in each point is more intricate. In this framework, we analized the symmetries
of the effective tensors but we will also look at the properties of isotropy thanks to Christoffel
tensor.

• Another perspective is the deployement of the homogenization method, with one time-scale
and two length-scales, up to the second order, in the three cases studied. This is required
in order to describe the dispersive nature of the fields. In linear dynamic homogenization,
the long-term behavior of the microstructured wavefields is not well captured by first-order
effective models, in particular due to the dispersive nature of the former that develops with
time (Santosa & Symes, 1991; Lamacz, 2011). It is even more true in the non-linear case
since the "long term" notion is correlated to the amplitude of the source. Another possibility
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to the prospect of "long term" behaviour is to introduce a slow and a fast time-scales in
the asymptotics (Chen & Fish, 2001).

• For non-linear interfaces, a relatively low amplitude of the source term is assumed. An
effective model for waves of relatively larger amplitudes would also be interesting and would
require the consideration of an additional scaling in the classical small parameter η relatively
to the amplitude.
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Chapter 6. High-frequency homogenization for a 1D medium with imperfect interfaces

The framework considered in this chapter is this of Section 1.2.3 with waves propagating
in h−periodic media at angular frequencies that are not necessary small, which does not

correspond to the setting of low-frequency homogenization. More precisely, we are interested in
the dispersion relations in periodic media that describe how the angular frequency ω depends
on the the Bloch wavenumbers k. These relations can be studied through dispersion diagrams
that restrict the Bloch wavenumbers to the first Brillouin zone [0, π/h] in the one-dimensional
case. The version of high-frequency homogenization considered aims at approximating how the
dispersion relation behaves near the edges of this Brillouin zone. Adopting the terminology of
Guzina et al., 2019, we will refer to the homogenization near the left edge of the Brillouin zone
k ≈ 0 as Finite Frequency Low Wavenumber (FFLW), while the homogenization near the right
edge (k ≈ π/h) will be referred to as Finite Frequency Finite Wavenumber (FFFW). Accordingly,
one introduces k̃ as

(FFLW) : k̃ � k and (FFFW) : k̃ � π/h − k , (6.1)

In this chapter, following the methodology of Craster et al., 2010a, we apply the high-frequency
homogenization technique to a one-dimensional periodic medium that have imperfect interfaces
at the edges of the periodic cell. In line with the previous chapter, the imperfect contacts are
modelled by linear spring-mass interface conditions. These imperfect conditions typically arise from
the homogenization of a thin interphase. The results presented in the paper are hence relevant for
wavelength comparable to the periodicity, but much larger than the thin interphase approximated
by the imperfect contact laws.

In Section 6.1 the physical problem at hand is presented. The two-scale asymptotic expansion
method is developed in Section 6.2. Then, Section 6.3 provides an approximation of both the
dispersion diagram and the wavefield at the edges of the band gaps. The case where two branches of
the dispersion diagrams intersect with non-zero slopes is studied in Section 6.4. Section 6.5 provides
a smooth transition between the two previous cases and therefore provides an approximation in
the case of narrow band gaps. Eventually, in Section 6.6 two examples are considered and treated
both by a Bloch-Floquet analysis and by the approximation previously obtained. It illustrates the
validity of the homogenization method.

6.1 Problem under study

6.1.1 Physical setting

Figure 6.1 – Geometry settings in the X, x and y variables, a periodic cell is highlighted with a dashed line.

The medium is now one-dimensional with periodicity h > 0, and a macroscopic length L > 0
which can be seen as the modulation length. We denote the physical space variable X, the density
ρh(X) and the Young’s modulus µh(X). The edges of the periodic cell are located at Xn � nh,
with n ∈ Z, see left part of Figure 6.1. The interfaces at the edges are assumed to be imperfect,
of the linear spring-mass type. More precisely, they are characterized by a mass parameter and a
stiffness parameter denoted M and K, respectively, see (5.2) in the previous chapter. Consequently,
the governing equation and jump conditions for the displacement Uh(X) read in the frequency
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domain: 

d
dX

(
µh(X)

dUh

dX

)
+ ρh(X)ω2Uh � 0 (X ∈ R),

~Uh�Xn �
1
K

〈〈
µh

dUh

dX

〉〉
Xn

(n ∈ Z),�
µh

dUh

dX

�
Xn

� −Mω2 〈〈Uh〉〉Xn
(n ∈ Z),

(6.2)

with ω the angular frequency at which waves propagate in the medium, and the jump ~·� and the
mean value 〈〈·〉〉 at the interface Xn being defined in (5.3).
Due to the h-periodicity, the physical parameters can be written ρh(X) � ρ

(X
h

)
and µh(X) � µ

(X
h

)
,

with ρ and µ some 1-periodic functions. They satisfy Assumption 5.1 as in the previous chapter.
We also assume that, even if discontinuity is possible for the physical parameters in ]0, 1[, the
displacement Uh(X) and the stress µh(X)dUh

dX are continuous on a periodic cell.

6.1.2 Bloch-Floquet analysis

The Bloch-Floquet analysis allows to study wave propagation in periodic media through a spectral
problem in one single cell. It consists in seeking solutions propagating at the Bloch wavenumber k
of the form

Uh(X) � Uh(X)e ikX , (6.3)

with Uh(X) being h-periodic. In some cases, see Sections 6.6.1 and 6.6.2, it is possible to get from
this analysis an explicit dispersion relation between the frequency ω and the Bloch wavenumber k.
Its graphical representation is the so-called dispersion diagram.
From (6.3), one notes that for k � 0, we have Uh(X) � Uh(X + h), i.e. the solution is periodic,
while for k �

π
h , we have Uh(X) � −Uh(X + h), i.e. the solution is antiperiodic. These values of k

correspond to the edges of the so-called Brillouin zone. The aim of this chapter is to approximate
the Bloch-Floquet solutions around these edges, i.e. close to k � 0 (FFLW) or k �

π
h (FFFW)

with finite angular frequencies satisfying ω � O(1).

6.2 Methodology

6.2.1 Nondimensionalization

We start by a nondimensionalization of the physical problem (6.2). Firstly, we recall the charac-
teristic density ρ? � 〈ρ〉, Young’s modulus µ? � 〈1/µ〉−1 and wavespeed c? �

√
µ?/ρ?, with

the average operator 〈·〉 defined in (5.16). Then, one can define the following non-dimensional
quantities

x �
X
L
, δ �

h
L
, η �

ωh
c?
, κ � Lk , α �

ρ

ρ?
, β �

µ

µ?
,

K �
Kh
µ?
, M �

M
hρ?

, uδ(x) �
Uh(X)

L
. (6.4)

Remark 19. The non-dimensionalization of the parameters is the same as in the previous chapter,
see (5.11). The differences are for the variables and the wavefield.

Remark 20. One notices that the notation η is consistent with the small parameter of the previous
chapters. The difference in this chapter is that, in the framework of high-frequency homogenization,
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η is not supposed to be much smaller than one contrary to δ.

Remark 21. The choice of ρ? and µ? is arbitrary. They are chosen here to be the effective
properties obtained by low-frequency homogenization, see Chapter 5. In practice, this implies that
〈α〉 � 〈1/β〉 � 1.

Consequently, the physical parameters read

ρh(X) � ρ
(

X
h

)
� ρ

( x
δ

)
and µh(X) � µ

(
X
h

)
� µ

( x
δ

)
,

with x corresponding to the geometrical setting of Figure 6.1 (center). Using these quantities,
(6.2) can be rewritten as the non-dimensional governing equation

δ2 d
dx

(
β
( x
δ

) duδ
dx
(x)

)
+ η2α

( x
δ

)
uδ(x) � 0, (6.5)

subject to the jump conditions for n ∈ Z:
~uδ�xn �

δ
K

〈〈
β
( x
δ

) duδ
dx

〉〉
xn

,

δ

�
β
( x
δ

) duδ
dx

�
xn

� −Mη2 〈〈uδ〉〉xn
.

(6.6)

The equations (6.5)-(6.6) constitute our non-dimensional problem. They fully highlight the con-
tributions of the parameter δ. In particular, the order of magnitude of the parameters α, β, M
and K will be assumed to be of order O(1).
In this non-dimensional setting, the Bloch-Floquet analysis (6.3) consists in looking for solutions
of the form

uδ(x) � uδ(x)e iκx , (6.7)

where κ is the non-dimensional Bloch wavenumber and uδ is δ-periodic. It implies that uδ and its
derivative u′δ satisfy

uδ(x + δ) � uδ(x)e iκδ and u′δ(x + δ) � u′δ(x)e
iκδ. (6.8)

Remark 6.1. The FFLW case corresponds to κδ ≈ 0 and the FFFW case corresponds to κδ ≈ π.
When κδ is exactly 0 (resp. π), then the solution uδ(x) is δ-periodic (resp. δ-antiperiodic).

6.2.2 Two-scale asymptotic expansion

Assumption 6.1

As discussed in introduction, one assumes that the macroscopic characteristic length L is
much larger than the periodicity h, implying that δ � 1.

Then, the dimensionless material parameters α and β will vary on a fine scale associated with the
rescaled coordinate y � x/δ, see Figure 6.1 (right) for the associated geometrical configuration.
Furthermore, the displacement field is also assumed to have small scale features described by y,

166



6.2. Methodology

and slow continuous variations described by x. Following the two-scale expansion technique, we
hence expand the wavefield uδ and the reduced frequency η according to the following ansatzes:

uδ(x) �
∑
j>0

δ j u j(x , y) and η2
�

∑̀
>0
δ`η2

` . (6.9)

According to Remark 6.1, u j is assumed to be 1-periodic (resp. antiperiodic) in y in the FFLW
(resp. FFFW) case. The space coordinates x and y are treated as two independent variables (scale
separation), implying that

d
dx
→ ∂

∂x
+

1
δ
∂
∂y

. (6.10)

Inserting (6.9) and (6.10) in (6.5)–(6.6) yields∑
j>0

[
δ j ∂
∂y

(
β
∂u j

∂y

)
+ δ j+1

{
β
∂2u j

∂x∂y
+
∂
∂y

(
β
∂u j

∂x

)}
+ δ j+2β

∂2u j

∂x2

+

∑̀
>0
δ`+ jη2

`αu j

]
� 0, (6.11)

subject to the jump conditions at yn � n, n ∈ Z:∑
j>0

δ j �
u j(x , y)

�
yn

�
δ
K

∑
j>0

δ j
〈〈
β(y)

(
∂u j

∂x
+

1
δ

∂u j

∂y

)〉〉
yn

, (6.12)

and

δ
∑
j>0

δ j
�
β(y)

(
∂u j

∂x
+

1
δ

∂u j

∂y

)�
yn

� −M
(∑̀
>0
δ`η2

`

) ©«
∑
j>0

δ j 〈〈u j
〉〉

yn

ª®¬ . (6.13)

For any function 1(x , y), the jump and mean brackets in y-coordinates are defined in (5.15).
Due to the 1-periodicity (or anti-periodicity) in y for all the fields in (6.11)–(6.13), these three
equations will be studied for y ∈]0, 1[. Consequently, the subscript yn will be dropped later on
since we will only consider the case n � 0. We also assume that the displacement and the stress
are continuous within the unit cell. This leads to the following assumptions of continuity:

u0, β
∂u0
∂y

, u j and β

(
∂u j

∂y
+
∂u j−1

∂x

)
for j > 1 are continuous functions of y on ]0, 1[. (6.14)

One recalls two properties of the jump and mean brackets that will be used later on. Firstly, for
any two functions f (x , y) and 1(x , y), the following relation holds:�

f 1
�
�

�
f

� 〈〈
1
〉〉

+
〈〈

f
〉〉 �
1

�
. (6.15)

Secondly, for any function 1per(x , y) that is 1-periodic in y�
1per�

� 1per(x , 0+) − 1per(x , 1−) and
〈〈
1per〉〉

�
1
2 (1

per(x , 0+) + 1per(x , 1−)) (6.16)

while for a function 1anti(x , y) that is 1-antiperiodic in y�
1anti�

� 1anti(x , 0+) + 1anti(x , 1−) and
〈〈
1anti〉〉

�
1
2 (1

anti(x , 0+) − 1anti(x , 1−)). (6.17)

In particular, (6.16) allows to relate the average operator (??) and the jump bracket for any
function 1per(x , y) that is 1-periodic and continuous for y ∈]0, 1[ as:〈

∂1per

∂y

〉
� −~1per� (6.18)
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Notation 6.2.1. From now on, in order to efficiently deal with the FFLW (Finite Frequency
Low Wavenumber, κδ ≈ 0) and the FFFW (Finite Frequency Finite Wavenumber, κδ ≈ π) cases
simultaneously, we will assume that whenever the symbols ± or ∓ are used, the top sign corresponds
to FFLW while the bottom sign corresponds to FFFW.

An identification of the contributions of (6.11)–(6.13) at the orders δ0, δ1 and δ2 is now
performed to derive the sought approximations.

6.2.3 Zeroth-order field: an eigenvalue problem

At the leading order δ0 in (6.11)–(6.13), the system obtained is:

∂
∂y

(
β
∂u0
∂y

)
+ η2

0αu0 � 0 (x ∈ R, y ∈]0, 1[), (6.19a)

~u0� �
1
K

〈〈
β
∂u0
∂y

〉〉
(x ∈ R), (6.19b)�

β
∂u0
∂y

�
� −Mη2

0 〈〈u0〉〉 (x ∈ R). (6.19c)

The eigenvalue in the boundary condition (6.19c) is a bit unusual compared to classical eigenvalue
problems where η2

0 appears only in the governing equation (6.19a). Hence,one introduces the inner
product (· ·) defined for some functions f (y) and 1(y) (either both FFLW or both FFFW) by(

f 1
)
� 〈α f 1̄〉 +M

〈〈
f
〉〉 〈〈
1̄
〉〉
, (6.20)

ant the (Sturm-Liouville) differential operator

L �
−1
α

d
dy

(
β

d
dy

)
. (6.21)

Property 9. The system (6.19) constitutes an eigenvalue problem for L using the tailored inner
product (6.20).

Proof. The system (6.19) can be formulated as follows: find λ such that

L[ f ] � λ f , (6.22a)�
f

�
�

1
K

〈〈
β

d f
dy

〉〉
, (6.22b)�

β
d f
dy

�
� −Mλ

〈〈
f
〉〉
, (6.22c)

for some function f that is periodic (FFLW) or antiperiodic (FFFW). The second jump condition
(6.22c) is rewritten so that it does not involve λ explicitely anymore:

L[ f ] � λ f , (6.23a)�
f

�
�

1
K

〈〈
β

d f
dy

〉〉
, (6.23b)�

β
d f
dy

�
� −M

〈〈
L[ f ]

〉〉
. (6.23c)

One wants to prove that finding (λ, f ) satisfying (6.23) with f periodic or antiperiodic is an
eigenvalue problem. For this purpose, one needs to prove that the operator L subjected to the
jump and periodicity conditions is both symmetric and non-negative for the inner product (6.20).
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� Symmetry. Proving the symmetry consists in proving that
(
L[ f ] 1

)
�

(
f L[1]

)
for any functions

f and 1 satisfying both jump and periodic (FFLW) or antiperiodic (FFFW) conditions. We will
hence prove that the quantity Sym( f , 1) �

(
L[ f ] 1

)
−

(
f L[1]

)
is zero. First by definition of the

inner product (6.20) we have

Sym( f , 1) � 〈αL[ f ]1̄〉 +M
〈〈
L[ f ]

〉〉 〈〈
1̄
〉〉
− 〈α fL[1]〉 −M

〈〈
f
〉〉 〈〈
L[1]

〉〉
�

〈
f

d
dy

(
β

d1̄
dy

)
− d

dy

(
β

d f
dy

)
1̄

〉
+

〈〈
f
〉〉 �

β
d1̄
dy

�
−

�
β

d f
dy

� 〈〈
1̄
〉〉
, (6.24)

where we have used the equation (6.23c) and the definition (6.21). Now, using the fact that

f
d

dy

(
β

d1̄
dy

)
− d

dy

(
β

d f
dy

)
1̄ �

d
dy

(
f β

d1̄
dy
− β

d f
dy
1̄

)
,

the equation (6.24) becomes

Sym( f , 1) �

〈
d

dy

(
f β

d1̄
dy
− β

d f
dy
1̄

)〉
+

〈〈
f
〉〉 �

β
d1̄
dy

�
−

�
β

d f
dy

� 〈〈
1̄
〉〉

�
Eq. (6.18)

−
�

f β
d1̄
dy
− β

d f
dy
1̄

�
+

〈〈
f
〉〉 �

β
d1̄
dy

�
−

�
β

d f
dy

� 〈〈
1̄
〉〉

�
Eq. (6.15)

〈〈
β

d f
dy

〉〉 �
1̄

�
−

�
f

� 〈〈
β

d1̄
dy

〉〉
�

Jump (6.23b)
K

�
f

� �
1̄

�
−K

�
f

� �
1̄

�
� 0,

and hence the problem is symmetric.

� Non-negativity. The non-negativity property is satisfied if
(
L[ f ] f

)
> 0 for any functions f

satisfying both jump and periodic (FFLW) or antiperiodic (FFFW) conditions. By definition of the
inner product (6.20), we have(

L[ f ] f
)
� 〈αL[ f ] f̄ 〉 +M

〈〈
L[ f ]

〉〉 〈〈
f̄
〉〉

� −
〈

d
dy

(
β

d f
dy

)
f̄
〉
−

�
β

d f
dy

� 〈〈
f̄
〉〉
, (6.25)

where we have used both (6.23c) and (6.21). Now, using the fact that

d
dy

(
β

d f
dy

)
f̄ �

d
dy

(
β

d f
dy

f̄
)
− β

����d f
dy

����2 ,
then the equation (6.25) becomes(

L[ f ] f
)

�

〈
β

����d f
dy

����2〉 − 〈
d

dy

(
β

d f
dy

f̄
)〉
−

�
β

d f
dy

� 〈〈
f̄
〉〉

�
Eq. (6.18)

〈
β

����d f
dy

����2〉 +

�
β

d f
dy

f̄
�
−

�
β

d f
dy

� 〈〈
f̄
〉〉

�
Eq. (6.15)

〈
β

����d f
dy

����2〉 +

〈〈
β

d f
dy

〉〉 �
f̄

�
�

Jump (6.23b)

〈
β

����d f
dy

����2〉 +K|
�

f
�
|2 > 0,

hence the problem is non-negative.
In conclusion, the operator L, together with the jump and periodicity conditions, is self-adjoint
and non-negative in both the FFLW and FFFW cases. �
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Chapter 6. High-frequency homogenization for a 1D medium with imperfect interfaces

Therefore the problem (6.22) has a discrete set of (possibly repeated) real positive eigenvalues
associated to real eigenfunctions that are orthogonal for the inner product (6.20). We choose
one of these eigenvalues, and denote its square root by η0. This adimensionalized frequency η0
corresponds to an intersection of the dispersion diagram with the left (FFLW) or the right (FFFW)
border of the Brillouin zone. Our aim is to approximate the solutions for some parameters (η, κ̃)
close to (η0 , 0), where we define κ̃ to be

(FFLW) : κ̃ � κ and (FFFW) : κ̃ � π/δ − κ, (6.26)

allowing us to treat the FFLW and FFFW cases simultaneously.

6.3 Case of simple eigenvalues

6.3.1 A form for u0

First, we assume in this section that η0 is a simple eigenvalue (multiplicity 1) and û0(y) is an
associated eigenfunction that is either periodic (FFLW) or antiperiodic (FFFW). The case of a
double eigenvalue will be treated in Section 6.4. Consequently, (λ, f ) � (η2

0 , û0) is solution of
(6.22). The resulting solution u0 to (6.19) can thus be written

u0(x , y) �U0(x)û0(y), (6.27)

for some function U0(x).
The main aim of this section is to derive a differential equation with constant coefficients satisfied
by U0(x). Note that in the case of low-frequency homogenization, the zeroth-order field u0(x , y)
h as been shown to be independent of y; this is one of the main differences between low- and
high-frequency homogenization.

6.3.2 Proving that η1 � 0

We now collect the terms of order δ1 in (6.11)–(6.13) to obtain the following system governing
the first-order field u1:

∂
∂y

(
β

(
∂u1
∂y

+
∂u0
∂x

))
+ β

∂2u0
∂x∂y

+ α(η2
0u1 + η

2
1u0) � 0, (6.28a)

~u1� �
1
K

〈〈
β

(
∂u0
∂x

+
∂u1
∂y

)〉〉
, (6.28b)�

β

(
∂u0
∂x

+
∂u1
∂y

)�
� −M(η2

0 〈〈u1〉〉 + η2
1 〈〈u0〉〉). (6.28c)

We will show below that η1 � 0. Following Craster et al., 2010a, we consider
〈u1 · (6.19a) − u0 · (6.28a)〉. The terms in αη2

0u0u1 cancel out, and using the fact that

u1
∂
∂y

(
β
∂u0
∂y

)
− u0

∂
∂y

(
β

(
∂u1
∂y

+
∂u0
∂x

))
�

∂
∂y

(
u1β

∂u0
∂y
− u0β

(
∂u1
∂y

+
∂u0
∂x

))
+ β

∂u0
∂y

∂u0
∂x

,

one obtains〈
∂
∂y

(
u1β

∂u0
∂y
− u0β

(
∂u1
∂y

+
∂u0
∂x

))〉
�

〈
β

(
u0
∂2u0
∂x∂y

− ∂u0
∂x

∂u0
∂y

)〉
︸                           ︷︷                           ︸

�0

+η2
1〈αu2

0〉. (6.29)
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6.3. Case of simple eigenvalues

Due to (6.27), we have u0
∂2u0
∂x∂y −

∂u0
∂x

∂u0
∂y � 0, so the first bracket in the right-hand side of the

equation above is actually zero. Now, using (6.14) and (6.18), then (6.29) becomes

−
�

u1β
∂u0
∂y
− u0β

(
∂u1
∂y

+
∂u0
∂x

)�
� η2

1〈αu2
0〉. (6.30)

When perfect interfaces are considered, the jump bracket term in (6.30) is automatically zero, a
fact that is used in (Craster et al., 2010a) to conclude that η1 � 0. This jump bracket does not
cancel out when imperfect interfaces are considered. Instead, one makes use of (6.15) to rewrite
(6.30) as

η2
1〈αu2

0〉 � − ~u1�

〈〈
β
∂u0
∂y

〉〉
− 〈〈u1〉〉

�
β
∂u0
∂y

�
+ ~u0�

〈〈
β

(
∂u1
∂y

+
∂u0
∂x

)〉〉
+ 〈〈u0〉〉

�
β

(
∂u1
∂y

+
∂u0
∂x

)�
� −K ~u0� ~u1� +Mη2

0 〈〈u1〉〉 〈〈u0〉〉 +K ~u0� ~u1� −M 〈〈u0〉〉 (η2
0 〈〈u1〉〉 + η2

1 〈〈u0〉〉),

where the jump conditions (6.19b)–(6.19c) and (6.28b)–(6.28c) have been used. This yields

η2
1(〈αu2

0〉 +M 〈〈u0〉〉2) � 0, (6.31)

implying that η1 � 0, becauseM and α are strictly positive, and, in the representation (6.27), U0
cannot be identically zero and û0 is a real function.

6.3.3 A form for u1(x , y)

We can now simplify the equation (6.28a) governing u1 to

∂
∂y

(
β
∂u1
∂y

)
+ αη2

0u1 � −U′0(x)(2β(y)û′0(y) + β′(y)û0(y)). (6.32)

Upon noting that, because û0 is solution to (6.19a), the field −yU′0(x)û0(y) is a particular solution
to (6.32), and that the differential operator applied to u1 is exactly the same as that of (6.19a),
we can conclude that u1 can be written as

u1(x , y) �U1(x)û0(y) +U′0(x)
(
v1(y) − yû0(y)

)
. (6.33)

The function U1(x) will be shown to play no role in what follows. We will also prove that the
function v1(y), that is another solution to (6.19a), independent of û0(y), is chosen to ensure that
the jump conditions 

~u1� �
1
K

〈〈
β

(
∂u0
∂x

+
∂u1
∂y

)〉〉
, (6.34a)�

β

(
∂u0
∂x

+
∂u1
∂y

)�
� −Mη2

0 〈〈u1〉〉 , (6.34b)

are satisfied. These jump conditions come from (6.28b)–(6.28c), where we have used that η1 � 0.
Note that because of (6.33), and the periodicity properties of u1 and û0, the function v1(y)−yû0(y)
has to be periodic (FFLW) or antiperiodic (FFFW). Because this function will appear many times
in what follows, it is worth giving it a name. Hence, we define

f1(y) � v1(y) − yû0(y). (6.35)

Inputting the form (6.33) into (6.34), leads to two conditions on f1:
�

f1
�
�

1
K

〈〈
β f ′1

〉〉
+

1
K

〈〈
βû0

〉〉
, (6.36a)

−Mη2
0
〈〈

f1
〉〉

�
�
β f ′1

�
+

�
βû0

�
. (6.36b)
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Chapter 6. High-frequency homogenization for a 1D medium with imperfect interfaces

One should notice, in particular, that no terms involving U1(x) appear in these conditions.
For practical computations of the function v1(y), which are required when dealing with specific

examples, we can use (6.16)–(6.16) to rewrite the two jump conditions (6.36a) and (6.36b) as

L1 [v1] � K1[û0] and L2 [v1] � K2[û0], (6.37)

where 

L1 [v1] � v1(0+) ∓ v1(1−) −
1

2K
(
β(0+)v′1(0+) ± β(1−)v′1(1−)

)
,

K1[û0] � ∓û0(1−) ∓
1

2K β(1
−)û′0(1−),

L2 [v1] � −
Mη2

0
2 (v1(0+) ± v1(1−)) −

(
β(0+)v′1(0+) ∓ β(1−)v′1(1−)

)
,

K2[û0] � ∓
Mη2

0
2 û0(1−) ± β(1−)û′0(1−),

and Notation 6.2.1 has been used. Note that L1,2 are the same operators as those applied to û0
when determining η0, though in this case the right-hand side was 0.

6.3.4 An ODE for U0(x)

We can now collect the terms of order δ2 in (6.11)–(6.13) to obtain the following equations
governing the second-order field u2:

∂
∂y

(
β

(
∂u2
∂y

+
∂u1
∂x

))
+ η2

0αu2 + β
∂2u1
∂x∂y

+ β
∂2u0
∂x2 + η2

2αu0 � 0, (6.38a)

~u2� �
1
K

〈〈
β

(
∂u2
∂y

+
∂u1
∂x

)〉〉
, (6.38b)�

β

(
∂u2
∂y

+
∂u1
∂x

)�
� −M(η2

0 〈〈u2〉〉 + η2
2 〈〈u0〉〉). (6.38c)

Similarly to the manipulation in (6.3.2) to prove η1 � 0, we consider the quantity
〈u2 · (6.19a) − u0 · (6.38a)〉. The terms in αη2

0u0u2 cancel out, and, using the fact that

u2
∂
∂y

(
β
∂u0
∂y

)
− u0

∂
∂y

(
β

(
∂u2
∂y

+
∂u1
∂x

))
�

∂
∂y

(
u2β

∂u0
∂y
− u0β

(
∂u2
∂y

+
∂u1
∂x

))
+ β

∂u0
∂y

∂u1
∂x

,

we obtain〈
∂
∂y

(
u2β

∂u0
∂y
− u0β

(
∂u2
∂y

+
∂u1
∂x

))〉
�

〈
β

(
u0
∂2u1
∂x∂y

− ∂u0
∂y

∂u1
∂x

+ u0
∂2u0
∂x2

)〉
+ η2

2〈αu2
0〉. (6.39)

Now, by directly using (6.27), (6.33) and (6.35) we can show that

u0
∂2u1
∂x∂y

− ∂u0
∂y

∂u1
∂x

+ u0
∂2u0
∂x2 �U0(x)U′′0 (x)w1(y), (6.40)

where we define

w1 � û0 f ′1 − û′0 f1 + (û0)2. (6.41)

Moreover, the first bracket of (6.39) can be simplified using (6.14) and (6.18) and, therefore,
using (6.40), the identity (6.39) becomes

−
�

u2β
∂u0
∂y
− u0β

(
∂u2
∂y

+
∂u1
∂x

)�
�U0(x)U′′0 (x)〈βw1〉 + η2

2〈αu2
0〉. (6.42)
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6.3. Case of simple eigenvalues

Remark 6.2. Inputting (6.35) into (6.41), one shows that w1 � û0v′1−û′0v1, which is the Wronskian
associated to the second-order ODE (β1′)′ + η2

0α1 � 0, and hence satisfies the first-order ODE
(βw1)′ � 0. Moreover, the hypothesis made in (6.14) regarding potential material properties

discontinuities within the interior of the unit cell implies that û0, βû′0, u1 and β
(
∂u1
∂y +U′0(x)û0

)
are continuous in y on ]0, 1[. Using the form (6.33) of u1, this implies that both v1 and βv′1
should be continuous on ]0, 1[. Hence, βw1 is continuous on ]0, 1[. Moreover, using the fact that
(βw1)′ � 0, this implies that βw1 is constant on ]0, 1[. Therefore 〈βw1〉 � β(0+)w1(0+) and its
computation does not require any integration. Moreover, since û0 and v1 are independent, it is
clear that 〈βw1〉 , 0.

As in Section 6.3.2, we can now make use of (6.15) to simplify the left-hand side of (6.42):

−
�

u2β
∂u0
∂y
− u0β

(
∂u2
∂y

+
∂u1
∂x

)�
(6.43)

� − ~u2�

〈〈
β
∂u0
∂y

〉〉
− 〈〈u2〉〉

�
β
∂u0
∂y

�
+ ~u0�

〈〈
β

(
∂u2
∂y

+
∂u1
∂x

)〉〉
+ 〈〈u0〉〉

�
β

(
∂u2
∂y

+
∂u1
∂x

)�
� −K ~u2� ~u0� +Mη2

0 〈〈u2〉〉 〈〈u0〉〉 +K ~u0� ~u2� −M 〈〈u0〉〉 (η2
0〈〈u2〉〉 + η2

2〈〈u0〉〉) (6.44)

� −Mη2
2 〈〈u0〉〉2 , (6.45)

where the jump conditions (6.19b)–(6.19c) and (6.38b)–(6.38c) have been used. Finally, using
(6.45) and dividing by U0(x), (6.42) can be rewritten as

TU′′0 (x) + η2
2U0(x) � 0, where T �

〈βw1〉
〈α(û0)2〉 +M〈〈û0〉〉2

, (6.46)

which is the effective equation for U0 with η2 that still needs to be determined

6.3.5 Computation of η2 and final approximations

Note that in (6.46) T , 0, but it can be either negative or positive. Since we have assumed to
be close to an edge of the Brillouin zone, we are looking for standing waves, we seek η2

2 such
that η2

2/T > 0. Remember that η2 is a correction term to the reduced frequency η, such that
η2 � η2

0 + δ
2η2

2 + o(δ2). This means that for each branch of the dispersion diagram (determined by
our initial choice of eigenvalue η0), we look for a function η2(κ) that will lead to an approximation
of η(κ) at the second order in δ, where κ is the reduced Bloch wavenumber. In particular, by
definition of the FFLW and FFFW cases, we should have

(FFLW) η2(κ) →
κ→0

0 and (FFFW) η2(κ) →
κ→ π

δ

0. (6.47)

In order for our asymptotic representation (6.9) to be compatible with the fact that uδ should
satisfy the Bloch-Floquet conditions (6.8), it is sufficient to impose that all the u j

(
x , x

δ

)
should

also satisfy these conditions. For j � 0, this means that

U0(x + δ)û0

( x
δ
+ 1

)
�U0(x)û0

( x
δ

)
e iκδ. (6.48)

Hence, due to fact that û0 is periodic (FFLW) or antiperiodic (FFFW), we can cancel out the
terms in û0 in (6.48) to get

U0(x + δ) � ±U0(x)e iκδ , (6.49)
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where, in (6.49) and below, Notation 6.2.1 is being used. The second Bloch-Floquet condition in
(6.8), combined with (6.49), implies that

U′0(x + δ) � ±U′0(x)e iκδ. (6.50)

Furthermore, because U0 is solution to (6.46), it can be written U0(x) � Ae i
√
η2

2/Tx
+ Be−i

√
η2

2/Tx

for some constants A and B. The Bloch-Floquet conditions (6.49) and (6.50) lead to

A
(
1 ∓ e iδ

(√
η2

2/T−κ
) )

� 0 and B
(
1 ∓ e−iδ

(√
η2

2/T+κ
) )

� 0. (6.51)

One recalls that κ is restricted to
[
0, πδ

]
, i.e. to the first Brillouin zone in the dispersion diagram.

Moreover, it is assumed that η2
2/T > 0, (6.51). These two points imply that, using (6.26), we

have √
η2

2/T � κ̃ and U0(x) � e±iκ̃x , (6.52)

which gives the following approximation for the reduced frequency η(κ)

η2
� η2

0 + T(κ̃δ)2 + o(κ̃2δ2) or equivalently η � η0 +
T

2η0
(κ̃δ)2 + o(κ̃2δ2). (6.53)

The non-dimensional wavefield is approximated by

uδ(x) �U0(x)û0(x/δ)︸           ︷︷           ︸
u0(x ,x/δ)

+O(κ̃δ). (6.54)

In Section 6.6, we will find it more convenient to test the validity of (6.54) when it is written in
terms of the variable y as follows

uδ(δy) � e±iκ̃δy û0(y)︸        ︷︷        ︸
u0(δy ,y)

+O(κ̃δ), (6.55)

with û0 the eigenfunction of (6.19) associated with either periodic or antiperiodic conditions.
Hence, as anticipated, using (6.4), our results can be summarized in dimensional form by (1.26)
and (1.27):

Result 6.1: Final approximations for a simple eigenvalue
ω2

� ω2
0 + T k̃2h2

+ o
(

h2 k̃2

L2

)
,

Uh(X) � U(0)(X) + O
(

hk̃
L

)
,

(6.56)

where the parameter T and the leading-order wavefield U(0) are given by

T �
(c?)2

h2 T, ω0 �
c?η0

h
and U(0)h (X) � e±ik̃X û0(X/h).

These equations are the sought approximations in the case where η0 is assumed to be a simple
eigenvalue. The quality of these approximations will be investigated through two examples in
Section 6.6. The purpose of the next section is to deal with the case of a double eigenvalue, i.e.
when two branches of the dispersion diagrams intersect with non-zero slopes.
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6.4. Case of a double eigenvalue

6.4 Case of a double eigenvalue

6.4.1 A new form for u0

In order to write (6.27), we assumed that η0 was a simple eigenvalue. If instead we assume that
η0 has multiplicity 2 say, then we write

u0(x , y) �U (1)0 (x)û
(1)
0 (y)︸           ︷︷           ︸

u(1)0 (x ,y)

+U (2)0 (x)û
(2)
0 (y)︸           ︷︷           ︸

u(2)0 (x ,y)

, (6.57)

where û(1,2)0 (y) are two independent eigenfunctions associated with the double eigenvalue η0 and

U (1,2)0 (x) are some functions of x to be determined. Note that both û(1)0 (y) and û(2)0 (y) satisfy
(6.19). In what follows, for any j ∈ {1, 2}, we will use the notation (6.19)( j) to specify that we

consider (6.19) as applied to û( j)0 (y).

6.4.2 In this case, we cannot conclude that η1 � 0

We will now apply the same methodology as in Section 6.3.2 and consider the quantity
〈u1 · (6.19a)(1) − u(1)0 · (6.28a)〉. The exact same reasoning leads to the following counterpart to
(6.29):〈

∂
∂y

(
u1β

∂u(1)0
∂y
− u(1)0 β

(
∂u1
∂y

+
∂u0
∂x

))〉
�

〈
β

(
u(1)0

∂2u0
∂x∂y

− ∂u0
∂x

∂u(1)0
∂y

)〉
+ η2

1〈αu(1)0 u0〉. (6.58)

The only difference being that this time, the first bracket in the right-hand side of (6.58) is not
zero. Instead, it can be shown directly using (6.57) that

u(1)0
∂2u0
∂x∂y

− ∂u0
∂x

∂u(1)0
∂y

�U (1)0 (x)U
(2)′
0 (x)w0(y), (6.59)

where w0 is the Wronskian defined by

w0(y) � û(1)0 (y)û
(2)′
0 (y) − û(1)′0 (y)û

(2)
0 (y). (6.60)

The same methodology to simplify the left-hand side bracket in (6.58) as that used in Section 6.3.2
can be used:

1. use (6.18) to reduce the average bracket to a jump bracket

2. use (6.15) to decompose the jump bracket into four simpler jump/mean brackets

3. compute them using the jump conditions (6.19b)(1)–(6.19c)(1) and (6.28b)–(6.28c).

This leads to

−Mη2
1〈〈u

(1)
0 〉〉〈〈u0〉〉 �U (1)0 (x)U

(2)′
0 (x)〈βw0〉 + η2

1〈αu(1)0 u0〉, (6.61)

which, upon regrouping the terms, dividing through by U (1)0 (x) and using (6.57), can be rewritten
as

〈βw0〉U (2)′0 (x) � −η
2
1

(
{MB2

1 + C1}U (1)0 (x) + {MB1B2 + D}U (2)0 (x)
)
, (6.62)
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where we have defined

B1 � 〈〈û(1)0 〉〉, B2 � 〈〈û(2)0 〉〉, C1 � 〈α(û(1)0 )
2〉, C2 � 〈α(û(2)0 )

2〉, D � 〈αû(1)0 û(2)0 〉. (6.63)

In the exact same way, we consider the quantity 〈u1 · (6.19a)(2) − u(2)0 · (6.28a)〉 to obtain

〈βw0〉U (1)′0 (x) � η
2
1

(
{MB1B2 + D}U (1)0 (x) + {MB2

2 + C2}U (2)0 (x)
)

. (6.64)

Note that w0 is the Wronskian associated with (6.19a), and βw0 can be shown to be continuous on
the unit cell, hence we conclude that βw0 is actually constant, and hence we can see that

〈
βw0

〉
�

β(0+)w0(0+). Since û(1)0 and û(2)0 are linearly independent, w0 (being the associated Wronskian) is
also non-zero and in this case, we cannot conclude that η1 � 0.

6.4.3 A first-order ODE for the slow variations of the wavefield

Upon introducing the function vector U � (U (1)0 , U (2)0 )T , the two equations (6.62) and (6.64)
can be recast as the first-order ODE system

U
′(x) �

η2
1〈

βw0
〉NU(x), where N �

(
MB1B2 + D MB2

2 + C2
−(MB2

1 + C1) −(MB1B2 + D)

)
. (6.65)

The two eigenvalues λ1,2 of N are given by

λ j � i(−1) j
√
(MB2

1 + C1)(MB2
2 + C2) − (MB1B2 + D)2 , (6.66)

where, by the Cauchy-Schwarz inequality associated to the inner product (6.20), the quantity inside
the square root is positive. The associated eigenvectors are given by

Uλ1 �

(
−(MB1B2 + D) + λ2

MB2
1 + C1

, 1

)T

and Uλ2 �

(
−(MB1B2 + D) + λ1

MB2
1 + C1

, 1

)T

(6.67)

and hence, upon introducing Td to be

Td �
〈
βw0

〉
/
√
(MB2

1 + C1)(MB2
2 + C2) − (MB1B2 + D)2 , (6.68)

the solution to (6.65) can be written as

U(x) � c1Uλ1 e
η2

1
〈βw0〉

λ1x
+ c2Uλ2 e

η2
1
〈βw0〉

λ2x

� c1Uλ1 e−i
η2

1
Td

x
+ c2Uλ2 e i

η2
1

Td
x
,

for some constants c1,2 and η1 that still needs to be determined.

6.4.4 Computation of η1

At this stage, we need to remember the Bloch-Floquet conditions (6.8), which, when applied to
u0, imply that

û(1)0 (y){±U
(1)
0 (x + δ) − e iκδU (1)0 (x)} + û(2)0 (y){±U

(2)
0 (x + δ) − e iκδU (2)0 (x)} � 0,
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where Notation 6.2.1 has been used. Since û(1)0 and û(2)0 are linearly independent, this implies that
±U(x + δ) � e iκδ

U(x). Applying this condition to (6.69), leads to the value of η2
1 as follows{

δη2
1 � ±Td κ̃δ

c1 � 0
or

{
δη2

1 � ∓Td κ̃δ

c2 � 0
(6.69)

Hence, using (6.69) and (6.69) the value of U � (U (1)0 , U (2)0 )T writes as

U(x) � c1Uλ1 e±iκ̃x or U(x) � c2Uλ2 e±iκ̃x . (6.70)

Result 6.2: Final approximations for a double eigenvalue

Consequently, using (6.67), the non-dimensional wavefield (6.57) is written in terms of the
variable y as:

u0(δy , y) �



e±iκ̃δy

(
−(MB1B2 + D) + λ2

MB2
1 + C1

û(1)0 (y) + û(2)0 (y)
)

or

e±iκ̃δy

(
−(MB1B2 + D) + λ1

MB2
1 + C1

û(1)0 (y) + û(2)0 (y)
) (6.71)

with λ j given by (6.66). And since η2 � η2
0 + δη

2
1 + o(δ), we obtain the linear approximations

η �


η0 +

Td

2η0
(κ̃δ) + o(κ̃δ).

or

η0 −
Td

2η0
(κ̃δ) + o(κ̃δ).

(6.72)

Therefore, near each double eigenvalue η0 of the dispersion diagram, we have two linear approxima-
tions with opposite slopes emerging from η0. Such behaviour of the dispersion diagram corresponds
to the so-called Dirac points (Ochiai & Onoda, 2009; Lee-Thorp et al., 2018; Guzina et al., 2019).

6.5 Case of two nearby eigenvalues

In what has been done above, there is no uniform transition from the simple eigenvalue case
to the double eigenvalue case. As will be seen in the examples of Section 6.6, when two simple
eigenvalues are close to each other, the agreement between the dispersion diagram and the
asymptotic of Section 6.3 is somewhat short-lived. In order to remedy to this issue, following some
ideas developed in Moukhomodiarov, Pichugin, and Rogerson, 2009; Guzina et al., 2019, we will
derive an asymptotic expansion for two nearby eigenvalues.

6.5.1 Modified system at the zero-th order

Let us assume that we have two nearby eigenvalues η(1)0 and η(2)0 with their associated eigenfunc-

tions û(1)0 (y) and û(2)0 (y) that solve (6.19) and such that η(1)0 < η(2)0 . Since we are seeking an
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approximation that remains valid when two eigenvalues merge into one, we assume that η(1,2)0 both
belong to the same side of the dispersion diagram, i.e. they are either both FFLW or both FFFW.
Their proximity is characterised by a positive parameter γ � O(1) defined by

γ �

(
η(2)0

)2
−

(
η(1)0

)2

δ
. (6.73)

In the vicinity of these eigenvalues we seek expansions of the form (6.9), in which we choose
η0 � η(1)0 . In order to consider the competing nature of the two eigenvalues, we seek u0 in the

form (6.57), introducing the functions U (1,2)0 (x) and u(1,2)0 (x , y) accordingly. With such choice of
u0, one can show directly that we have

∂
∂y

(
β
∂u0
∂y

)
+ (η(1)0 )

2αu0 � −δγαu(2)0 ,

~u0� �
1
K

〈〈
β
∂u0
∂y

〉〉
,�

β
∂u0
∂y

�
� −M(η(1)0 )

2〈〈u0〉〉 −Mδγ〈〈u(2)0 〉〉.

(6.74)

6.5.2 A first-order ODE for U

The terms involving δ in the right-hand sides of (6.74) should be considered when collecting the
terms of order δ in (6.11)–(6.13) to obtain the equations governing u1:

∂
∂y

(
β

(
∂u1
∂y

+
∂u0
∂x

))
+ β

∂2u0
∂x∂y

+ α

((
η(1)0

)2
u1 + η

2
1u0 − γu(2)0

)
� 0, (6.75a)

~u1� �
1
K

〈〈
β

(
∂u0
∂x

+
∂u1
∂y

)〉〉
, (6.75b)�

β

(
∂u0
∂x

+
∂u1
∂y

)�
� −M((η(1)0 )

2〈〈u1〉〉 + η2
1〈〈u0〉〉 − γ〈〈u(2)0 〉〉). (6.75c)

After following the exact same strategy as in Section 6.4, consider first the term〈
u1 · (6.19a)(1) − u(1)0 · (6.75a)

〉
, and then the term

〈
u1 · (6.19a)(2) − u(2)0 · (6.75a)

〉
, to obtain two

equations that can be recast in the first-order ODE system

U
′(x) �

η2
1〈

βw0
〉NγU(x). (6.76)

Here we used U � (U (1)0 , U (2)0 )T , the function w0 is defined as in (6.60) and Nγ is given by

Nγ �
©«
MB1B2 + D

(
1 − γ

η2
1

)
(MB2

2 + C2)

−(MB2
1 + C1) −

(
1 − γ

η2
1

)
(MB1B2 + D)

ª®¬ � N +
γ

η2
1

(
0 −MB2

2 − C2
0 MB1B2 + D

)
, (6.77)

the parameters B1,2, C1,2 and D being defined as in (6.63). Note that when taking γ→ 0 in (6.76),
we recover exactly (6.65), showing the consistency of our approach. Note that when deriving the
second line of (6.76), we neglect the term δγ〈u1 , û

(2)
0 〉 that occurs in the process since it is of

order δ. The eigenvalues λ(γ)1,2 of Nγ are
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λ
(γ)
j �

1
2η2

1

[
(MB1B2 + D)γ

+(−1) j
√
(MB1B2 + D)2(γ − 2η2

1)2 + 4(MB2
1 + C1)(MB2

2 + C2)η2
1(γ − η2

1)
]
,

while the associated eigenvectors are

U
λ
(γ)
1

�

(
−(MB1B2 + D) + λ(γ)2

(MB2
1 + C1)

, 1

)T

and U
λ
(γ)
2

�

(
−(MB1B2 + D) + λ(γ)1

(MB2
1 + C1)

, 1

)T

. (6.78)

6.5.3 Computation of η1

We can hence follow what we have done in Section 6.4.3, and use the Bloch-Floquet conditions
to obtain 

η2
1λ
(γ)
2〈

βw0
〉 � ±iκ̃

c1 � 0

or


η2

1λ
(γ)
1〈

βw0
〉 � ±iκ̃

c2 � 0

(6.79)

which are implicit relationships between η2
1 and κ. Fortunately, these can be inverted exactly to

obtain

η2
1 �



1
2

(
γ −

√
4T2

d κ̃
2 + 4iT2

d
(MB1B2 + D)〈

βw0
〉 κ̃γ + γ2

)
,

or

1
2

(
γ +

√
4T2

d κ̃
2 + 4iT2

d
(MB1B2 + D)〈

βw0
〉 κ̃γ + γ2

)
,

(6.80)

where (6.26) has been used, and where Td is defined as in (6.68). One issue with (6.80) is that,
in its current form, it implies that η2

1 is actually complex. However, this issue is settled by realizing
that upon using the inner product defined in (6.20), we can write

MB1B2 + D �

〈
û(1)0 , û(2)0

〉
.

Hence, since û(1,2)0 correspond to two different eigenvalues, they are orthogonal and we getMB1B2+
D � 0. Therefore, the complex part of (6.80) disappears and it simplifies to the following final
approximation.
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Result 6.3: Final approximation of the dispersion relation for two nearby eigenvalues

δη2
1 �



1
2

(
δγ −

√
4T2

d(κ̃δ)2 + (δγ)2
)

or

1
2

(
δγ +

√
4T2

d(κ̃δ)2 + (δγ)2
) (6.81)

and
η2

� (η(1)0 )
2
+ δη2

1 + o(δ).

In the limit γ→∞ or κ̃→ 0, then η2
1 behaves like η2

1 → 0 or η2
1 ∼ γ, depending on the sign

chosen in (6.80). This allows us to conclude that the − sign corresponds to the branch emanating
from η(1)0 , while the + sign corresponds to the branch emanating from η(2)0 . There are two other
interesting limits to consider.

The first is to see what happens when two eigenvalues are merging, i.e., we fix κ̃δ and let
δγ → 0. In this case (6.81) simplifies to η2 ≈ (η(1)0 )2 +

δγ
2 ∓ Td κ̃δ, which, when plotted against

κ̃δ are two straight lines with opposite slopes emanating from a point between the two nearby
eigenvalues. When the two eigenvalues merge (i.e. δγ � 0), we recover exactly the double
eigenvalue approximation (6.69).

The second interesting limit case is to understand how well (6.81) approximates the dispersion
diagram at the edges of the Brillouin zone for a given δγ , 0. So we fix δγ and let κ̃δ → 0. In
this case, (6.81) simplifies to

η2 ≈ (η(1)0 )
2
+

1
2

(
δγ ∓ δγ

)
∓

T2
d

δγ
(κ̃δ)2. (6.82)

Hence, for the lower branch it becomes η2 ≈ (η(1)0 )2 −
T2

d
δγ (κ̃δ)2, while for the upper branch, it

reads η2 ≈ (η(2)0 )2 +
T2

d
δγ (κ̃δ)2. This approximation looks like (6.53), but with an incorrect quadratic

coefficient (since in general ∓ T2
d
δγ , T), so (6.82) is only a first-order approximation, slightly less

accurate than the simple eigenvalue approximation.
Hence, (6.81) is a uniform approximation, in the sense that it is valid for both the simple and

the double eigenvalue cases. Moreover, we will see in the next section that using (6.81) leads to a
much longer-lived fit to the exact dispersion diagram than the simple eigenvalue method.

Result 6.4: Final approximation of the wavefield for two nearby eigenvalues

Eventually, the zeroth order wavefield writes as

u0(δy , y) � e±iκ̃δy

(
±

〈βw0〉
(MB2

1 + C1)
iκ̃δ
δη2

1
û(1)0 (y) + û(2)0 (y)

)
, (6.83)

with the expression of δη2
1 on the two branches given by (6.81).
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6.6 Examples and numerical experiments

The theory developed above has the advantage to be valid for any spatially varying periodic
material properties, even in cases when the dispersion diagram cannot be obtained analytically or is
computationally intricate to obtain. However, in order to validate the method, we now consider two
simple examples, for which the dispersion diagram can be obtained directly by the Bloch-Floquet
analysis.

6.6.1 Monolayer

The simplest example that can be considered is the case of a monolayer material with imperfect
interface. By this we mean that the density and Young’s modulus are constant, so that ρh(X) � ρ?
and µh(X) � µ?. This implies that α � β � 1. The geometry of the physical problem is represented
in Figure 6.2.

Figure 6.2 – Geometry of the monolayer problem in the physical (left) and nondimensional (right) settings.

The Bloch-Floquet analysis (see Appendix 6.A) gives the following dispersion relation

cos(κδ) � 1

1 +
Mη2

4K

[(
1 −
Mη2

4K

)
cos(η) − 1

2

( η
K +Mη

)
sin(η)

]
. (6.84)

Remark 22. When M � 0 and K � +∞ in 6.84, one recovers κ � f racηδ which holds for
homogeneous media.

The dispersion diagram classically displays band gaps as can be seen in Figure 6.3. We will
now apply the high-frequency homogenization technique to derive an analytical approximation to
the higher branches of the diagram and to the associated wavefields.

In the case of a single eigenvalue, using (6.19), we find that û0 can be written as û0 �

A cos(η0 y) + B sin(η0 y) for some constants A and B, and, using (6.16)–(6.17), it is subjected to
the jump conditions 

û0(0+) ∓ û0(1−) �
1

2K (û
′
0(0+) ± û′0(1−)),

û′0(0+) ∓ û′0(1−) �
−Mη2

0
2 (û0(0+) ± û0(1−)),

(6.85)

where here and throughout the section, Notation 6.2.1 is being used. This leads to the relation

Mmo(A, B)T � (0, 0)T , (6.86)

where the 2 × 2 matrix Mmo � (Mmo
i j ) is given by

Mmo
�

©«
1 ∓ cos(η0) ± 1

2K η0 sin(η0) ∓ sin(η0) − η0
2K (1 ± cos(η0))

∓η0 sin(η0) −
Mη2

0
2 (1 ± cos(η0)) −η0(1 ∓ cos(η0)) ∓

Mη2
0

2 sin(η0)
ª®¬ .
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The only way for non-trivial solutions to (6.86) to exist is for the determinant of Mmo to be zero,
which after some algebraic manipulations, leads to a dispersion relation of the form

Dmo(η0;M ,K) � 2(1 ∓ cos(η0)) +
M
2K η

2
0(1 ± cos(η0)) ± η0 sin(η0)

(
M +

1
K

)
� 0,

where the fact that η0 , 0 has been used (we are not here interested in the low frequency limit).
In practice, when calculating η0 and reconstructing û0, it can be useful to note that

Mmo[2, 2] � ± sin(η0)
1±cos(η0)M

mo[2, 1], Mmo[1, 2] � 1±cos(η0)
∓ sin(η0) M

mo[1, 1], (6.87)

Mmo[1, 1]Mmo[2, 1] � ∓ sin(η0)
2 Dmo(η0;M ,K), (6.88)

so that η0 is either a zero of Mmo[1, 1] or Mmo[2, 1], and in the former (resp. latter) case, the top
(resp bottom) line of Mmo is zero (it can be shown that sin(η0) , 0). The computed eigenvalues
coincide with the edges of the Brillouin zone of the dispersion diagram of Figure 6.3. To obtain
û0, we set A � 1, so that û0(0+) � 1, and compute B using the first (resp. second) line in (6.86)
if Mmo[1, 1] , 0 (resp. Mmo[2, 1] , 0).

Because we are ultimately interested in the value of T in (6.53), we need to calculate 〈βw1〉
in (6.46). One reminds that w1 � û0v′1 − û′0v1 and hence the computation of v1 on the interval
]0, 1[ is required. It satisfies the same second-order equation (6.19a) as û0 and can hence be
written v1(y) � C cos(η0 y) + D sin(η0 y), for some constants C and D. These constants are
determined using the jump conditions (6.37) satisfied by v1. Thus, they can be found by solving
Mmo(C,D)T � bmo , where

bmo
�

(
∓û0(1−) ∓ 1

2K û′0(1−)
∓Mη2

0
2 û0(1−) ± û′0(1−)

)
. (6.89)

Since Mmo is singular, (6.89) does not have a unique solution so we set C � 1 say and use the
non-trivial line of the system to determine D. This works well since it can be shown that bmo is
such that bmo

j � 0 whenever M[ j, 1] � 0.

Figure 6.3 – Dispersion diagram for the monolayer case with K � 1 and M � 0.5. In red (resp. blue)
dashed line are the periodic (resp. antiperiodic) second-order approximations (6.53) using the computed
values of T (left) and nearby eigenvalue approximations (6.81) using the computed values of Td and δγ
(right).
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Figure 6.4 – Imaginary part of κδ in the band gaps of the monolayer dispersion diagram for K � 1 and
M � 0.5. In red (resp. blue) dashed lines are the periodic (resp. antiperiodic) second-order approximations
(6.53) using the computed values of T (left) and nearby eigenvalue approximations (6.81) using the
computed values of Td and δγ (right).

Once v1 is found, the resulting value of T is directly obtained using (6.46). Note that, in this
simple case, no numerical integration is required and calculations can be performed analytically.
The resulting second-order approximations η ≈ η0 +

T
2η0
(κ̃δ)2 are superposed to the dispersion

diagram in Figure 6.3 (left), and one can see that they approximate well the branches in the
vicinity of the edges of the Brillouin zone. One should also note that, as seen in Figure 6.4 (left),
this approximation remains valid within the band gaps, where κδ is complex and is such that
Re(κδ) � 0. This is expected since in these cases, (κ̃δ)2 remains real. Having computed all the
eigenvalues and eigenfunctions, it is now straightforward to compute Td as per (6.68) and δγ as
per (6.73), where the pairs of eigenvalues are chosen naturally according to the dispersion diagram
(first-second) and (third-fourth) in both the FFLW and FFFW cases. Hence we can evaluate
the nearby eigenvalue approximation (6.81) derived in Section 6.5. It is displayed in Figure 6.3
(right), and as can clearly be seen, even if this approximation is only first-order in the vicinity of
the edges of the Brillouin zone, its agreement with the dispersion diagram is much longer lived
than that of the simple eigenvalue approximation. Similar observations are true within the band
gaps as can be seen in Figure 6.4 (right) We will now investigate the accuracy of the zeroth-order

Figure 6.5 – Illustration of the convergence of the method in the monolayer case by comparing û0 and
uδ(δy) in the FFLW (left) and the FFFW (right) cases. We plotted uδ for 20 values of κ̃δ equidistributed
in the log scale between 10−5 and 1. The red arrows indicate how uδ(δy) is changing as κ̃δ→ 0.
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field approximation obtained in the simple eigenvalue case. Using the Bloch-Floquet analysis (see
Appendix 6.A), we can have access to the exact standing wavefield uδ(x) � uδ(δy), and, to be
compatible with the asymptotic expansion (6.9), we normalize it such that uδ(0+) � u0(0, 0+).
Note that because of (6.7) and (6.55), the difference between the exact and approximated field
can be written as

uδ(x) − u0

(
x ,

x
δ

)
� uδ(δy) − u0(δy , y)

�

{
e iκδy(uδ(δy) − û0(y)) (FFLW),

e iκδy(uδ(δy) − e−iπy û0(y)) (FFFW).

(6.90)

To illustrate the validity of our approximation, we hence compare uδ(δy) and û0(y) for various
values of κδ in Figure 6.5, showing, as expected, that as κ̃δ gets smaller the zeroth-order field is
a good approximation to the exact field.

A similar investigation can be carried out for the nearby eigenvalue approximation of the field.
As can be seen in Figure 6.6, the approximation is good even for a value of κ̃δ � 0.5 that is not
particularly small, and for which the agreement of the simple eigenvalue zeroth-order field is poor.

Figure 6.6 – Superposition of real parts of the exact (uδ), simple eigenvalue zeroth-order (û0) and nearby
eigenvalue approximation normalised wavefields in the FFLW (left) and FFFW (right) for κ̃δ � 0.5 in the
monolayer case.
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Figure 6.7 – Loglog plot of the error between the exact (Bloch Floquet) and the homogenized fields for
various values of κδ with K � 1 and M � 0.5 in the monolayer case. (Left) FFLW. (Right) FFFW. The
slope depicted by a black triangle denotes a slope of 1. Dotted (resp. plain) lines correspond to the simple
(resp. nearby) eigenvalue approximations.
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In Figure 6.7, we plot the error between the exact field and the homogenized fields obtained
using both the simple and nearby eigenvalue approximations. Due to the periodicity properties of
uδ and û0 and (6.90), the error is relatively easy to compute in the simple eigenvalue case and is
defined as follows:

(FFLW): EFFLWsimple � max
R
|uδ(δy) − u0(δy , y)| � max

[0,1]
|uδ(δy) − û0(y)|, (6.91)

(FFFW): EFFFWsimple � max
R
|uδ(δy) − u0(δy , y)| � max

[0,1]
|uδ(δy) − e−iπy û0(y)|. (6.92)

In the nearby eigenvalue approximation, using (6.83), the errors can be written as

(FFLW): EFFLWnearby � max
[0,1]

�����uδ(δy) −
(
−

〈βw0〉
(MB2

1 + C1)
iκ̃δ
δη2

1
û(1)0 (y) + û(2)0 (y)

)����� , (6.93)

(FFFW): EFFFWnearby � max
[0,1]

�����uδ(δy) − e−iπy

(
〈βw0〉

(MB2
1 + C1)

iκ̃δ
δη2

1
û(1)0 (y) + û(2)0 (y)

)����� . (6.94)

One can see that we recover the expected behaviour uδ(δy) � u0(δy , y) + O(κ̃δ), but that
the nearby eigenvalue approximation performs much better for the whole range of values of κ̃δ
used in Figure 6.7.

We now endeavour to study how the eigenvalues η0 depend onM and K . In order to visualise
this we display a heat map of the first and second FFLW (periodic) η0(M ,K) in Figure 6.8. One
can clearly see two distinct regions, on the left and on the right of the curve K � 1/M. On each
side of these curves, the eigenvalue depend solely on one of the two parameters (M ,K), which
correspond to either the top or the bottom line of Mmo being zero. On the curve K � 1/M, both
lines of Mmo are zero, and hence, the eigenvalue η0 is a double eigenvalue.

Figure 6.8 – Filled contour plot of the first (left) and second (right) periodic eigenvalues η0 asM and K
vary for the monolayer case. The thick red line represents the locus of double eigenvalues, while the thin
black lines are isolines of η0.

The other eigenvalues in the the FFLW (periodic) and FFFW (antiperiodic) case have very
similar heatmaps, in particular they are all double eigenvalues when K � 1/M, as displayed on
the dispersion diagram in Figure 6.9 (left).

In the case of a double eigenvalue, we have to follow the procedure of Section 6.4 by representing
u0 as in (6.57). We hence need to find two independent solutions û(1,2)0 of (6.19), which can both

be written û(1,2)0 (y) � A(1,2) cos(η0 y) + B(1,2) sin(η0 y). Because of the dimension of the system,
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any two independent vectors (A(1) , B(1))T and (A(2) , B(2))T would work, and we can hence choose
(A(1) , B(1))T � (1, 0)T and (A(2) , B(2))T � (0, 1)T . As seen in Section 6.4, the two functionsU (1,2)0 (x)
appearing in (6.57) satisfy the first-order ODE system (6.65), where in our case we have

B1 � 〈〈û(1)0 〉〉 �
1 ± cos(η0)

2 , B2 � 〈〈û(2)0 〉〉 �
± sin(η0)

2 ,

C1 � 〈α(û(1)0 )
2〉 �

η0 + sin(η0) cos(η0)
2η0

, C2 � 〈α(û(2)0 )
2〉 �

η0 − sin(η0) cos(η0)
2η0

,

D � 〈αû(1)0 û(2)0 〉 �
sin2(η0)

2η0
,

〈
βw0

〉
� η0.

Using these, one can easily compute the associated eigenvalues λ1,2 and eigenvectors Uλ1,2 via
(6.66) and (6.67). Note that in this case, one can show that

MB1B2 + D � 0 and MB2
1 + C1 �MB2

2 + C2 ,

so that the eigenvalues λ1,2 and eigenvectors Uλ1,2 of the matrix of the ODE system are simply

λ j � i(−1) j(MB2
1 + C1) and Uλ j � (−i(−1) j , 1)T ,

and Td � η0/(MB2
1 + C1). We can hence superpose the resulting linear approximation (6.72) onto

the dispersion diagram, revealing an excellent fit, as can be seen in Figure 6.9 (right). It is quite
remarkable that in this case, every eigenvalues η0 correspond to Dirac points. In fact this can be
understood by considering a homogeneous material with only one spring-mass interface. Upon
sending a wave onto this interface, one can naturally derive a coefficient of reflection Ref(η) and
a coefficient of transmission Trans(η). It turns out that

Ref(η) �
−iη

( 1
K −M

)
2
(
1 − Mη2

4K

)
− iη

( 1
K +M

) and Trans(η) �
2
(
1 +

Mη2

4K

)
2
(
1 − Mη2

4K

)
− iη

( 1
K +M

) ,
and therefore the reflection coefficient is zero if and only if the condition K � 1/M is satisfied.
Hence, in the periodic medium considered, no internal reflection can be present, no destruc-
tive/constructive interference can take place and no band gaps occur.

6.6.2 Bilayer

We now consider the case of a bilayer material characterised by the phase fraction r ∈]0, 1[, and
hence provide the imperfect interface extension to the example given in Craster et al., 2010a. The
unit cell is made up of two homogeneous materials. The first one has a length rh, density ρ1
and Young’s modulus µ1, while the second has length (1 − r)h, density ρ2 and Young’s Modulus
µ2. The two respective wave speeds are c1 �

√
µ1/ρ1 and c2 �

√
µ2/ρ2. The important non

dimensional functions α and β are hence defined by

α(y) �
{
α(1) � ρ1/ρ? for y ∈]0, r[,
α(2) � ρ2/ρ? for y ∈]r, 1[, (6.95)

β(y) �
{
β(1) � µ1/µ? for y ∈]0, r[,
β(2) � µ2/µ? for y ∈]r, 1[, (6.96)

where ρ? � rρ1 + (1 − r)ρ2 and µ? � (r/µ1 + (1 − r)/µ2)−1. The interface at y � r is assumed
perfect, and the geometry of this physical problem is summarized in Figure 6.10.
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Figure 6.9 – Dispersion diagram for the monolayer case with K � 2 andM � 0.5 corresponding to double
eigenvalues. (Left) In red (resp. blue) dashed lines are the periodic (resp. antiperiodic) eigenvalues η0
calculated by finding the roots of (6.87). (Right) In red (resp. blue) dashed lines are the periodic (resp.
antiperiodic) resulting first-order approximations (6.72).

Figure 6.10 – Geometry of the bilayer problem (left) and non-dimensional (right) settings.

The classic Bloch-Floquet analysis will, in this case, give the following dispersion relation

cos(κδ) � 1

1 +
Mη2

4K

[(
1 −
Mη2

4K

) (
C1C2 −

1
2

(
Z1
Z2

+
Z2
Z1

)
S1S2

)
−
Mη

2

(
S1C2Z?

Z1
+

S2C1Z?

Z2

)
−

η

2K

(
Z1S1C2

Z?
+

Z2S2C1
Z?

)]
,

where Zi � ρi ci, Z? � ρ?c?, and Ci � cos(ηHi), Si � sin(ηHi), H1 � rc?/c1, H2 � (1 − r)c?/c2
and, naturally, c? �

√
µ?/ρ? . As per the monolayer case, the dispersion diagram displays band gaps

as can be seen in Figure 6.11. We will now apply the high-frequency homogenization technique to
derive an analytical approximation to the higher branches of the diagram and to the associated
wavefields.

Remark 23. When M � 0 and K � +∞ in (6.97), one recovers the dispersion relation for a
bilayered medium with perfect interfaces.

Using (6.19a) and (6.27), we find that û0 should satisfy{
û′′0 + (Ω(1))2û0 � 0 on ]0, r[,
û′′0 + (Ω(2))2û0 � 0 on ]r, 1[,

so that {
û0(y) � A(1) cos(Ω(1)y) + B(1) sin(Ω(1)y) on ]0, r[,
û0(y) � A(2) cos(Ω(2)y) + B(2) sin(Ω(2)y) on ]r, 1[, (6.97)
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where A(1,2) and B(1,2) are some constants to be determined, and Ω(1,2) � η0

√
α(1,2)

β(1,2)
� η0

c?
c1,2

. The

interface at y � r is assumed perfect, and hence, û0 is also subject to the interface conditions{
û0(r−) � û0(r+),

β(1)û′0(r−) � β(2)û′0(r+),
and

{
û0(0+) ∓ û0(1−) � 1

2K (β(1)û′0(0+) ± β(2)û′0(1−)),
β(1)û′0(0+) ∓ β(2)û′0(1−) � −

Mη2
0

2 (û0(0+) ± û0(1−)),

where here and throughout this section, Notation 6.2.1 is being used. This results in a system of
the form

Mbi(A(1) , B(1) , A(2) , B(2))T � (0, 0, 0, 0)T , (6.98)

where the 4 × 4 matrix Mbi is given by

Mbi[1, 1] � 1, Mbi[3, 1] � − cos(Ω(1)r),

Mbi[1, 2] � −
β(1)Ω(1)

2K , Mbi[3, 2] � − sin(Ω(1)r),

Mbi[1, 3] � ∓ cos(Ω(2)) ±
β(2)Ω(2) sin(Ω(2))

2K , Mbi[3, 3] � cos(Ω(2)r),

Mbi[1, 4] � ∓ sin(Ω(2)) ∓
β(2)Ω(2) cos(Ω(2))

2K , Mbi[3, 4] � sin(Ω(2)r),

Mbi[2, 1] � −
Mη2

0
2 , Mbi[4, 1] � β(1)Ω(1) sin(Ω(1)r),

Mbi[2, 2] � −β(1)Ω(1) , Mbi[4, 2] � −β(1)Ω(1) cos(Ω(1)r),

Mbi[2, 3] � ∓β(2)Ω(2) sin(Ω(2)) ∓
Mη2

0
2 cos(Ω(2)), Mbi[4, 3] � −β(2)Ω(2) sin(Ω(2)r),

Mbi[2, 4] � ±β(2)Ω(2) cos(Ω(2)) ∓
Mη2

0
2 sin(Ω(2)), Mbi[4, 4] � β(2)Ω(2) cos(Ω(2)r).

The equation (6.98) can only have non-trivial solutions if det(Mbi) � 0, which gives a relation of
the form

Dbi(η0;M ,K , β(1) , β(2) , Ω(1) , Ω(2) , r) � 0, (6.99)

the roots of which correspond to the eigenvalues η0. The numerically computed eigenvalues
coincide with the edges of the Brillouin zone on the dispersion diagram in Figure 6.11. To obtain
û0, we find a vector in ker(Mbi) using the null function in Matlab, and use it as the coefficients
(A(1) , B(1) ,A(2) , B(2)).

We now need to find v1 to obtain a second-order approximation. Since it is solution to the
same equation (6.19a), we can write

v1(y) �

{
C(1) cos(Ω(1)y) + D(1) sin(Ω(1)y) on ]0, r[,
C(2) cos(Ω(2)y) + D(2) sin(Ω(2)y) on ]r, 1[. (6.100)

Using (6.37) for the conditions at the unit cell interfaces, and remembering that, according to
Remark 6.2, both v1 and βv′1 should be continuous at y � r, one obtains a system of the form
Mbi(C(1) ,D(1) , C(2) ,D(2))T � bbi, where

bbi
�

(
∓û0(1−) ∓

1
2K β

(2)û′0(1−),∓
Mη2

0
2 û0(1−) ± β(2)û′0(1−), 0, 0

)T

.
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Because the matrix Mbi is singular, we compute (C(1) ,D(1) , C(2) ,D(2))T via the Moore-Penrose
Pseudo-inverse. Once v1 is found, the resulting value of T is directly obtained using (6.46). The
resulting approximations η ≈ η0 +

T
2η0
(κ̃δ)2 are superposed to the Bloch-Floquet diagram in Figure

6.11 (left), and one can see that they approximate the branches well in the vicinity of the edges
of the band gaps of the dispersion diagram. It is apparent from Figure 6.11 that the highest
antiperiodic eigenvalue displayed seems to be a double eigenvalue (in fact we will see further that
it is not exactly a double eigenvalue), and that the approximation is particularly short-lived in
this neighbourhood. Having computed all the eigenvalues and eigenfunctions, we can once again
evaluate the nearby eigenvalue approximation (6.81). It is displayed in Figure 6.11 (right), and as
can clearly be seen, its agreement with the dispersion diagram is much longer-lived that of the
simple eigenvalue approximation, even more so for the near-double eigenvalue.

Figure 6.11 – Non-dimensional dispersion diagram for the bilayer case with ρ1 � 1200 kg.m−3, ρ2 �

1800 kg.m−3, c1 � 2800m.s−1, c2 � 3500 m.s−1, µ1 � ρ1c2
1, µ2 � ρ2c2

2, M � 2 × 104 kg.m2, K � 2.45 ×
109 Pa.m−1, r � 0.202 and h � 10 m, corresponding to K ≈ 1.41 andM ≈ 1.19, α(1) ≈ 0.71, α(2) ≈ 1.071,
β(1) ≈ 0.54 and β(2) ≈ 1.27. The red (resp. blue) dashed lines are the periodic (resp. antiperiodic) second-
order approximations (6.53) using the computed values of T (left) and nearby eigenvalue approximations
(6.81) using the computed values of Td and δγ (right).

Using the Bloch-Floquet analysis, in a very similar way to the monolayer case, we can have access
to the exact standing wavefield uδ(x) � uδ(δy), and we normalize it such that uδ(0+) � u0(0, 0+).
As per the monolayer case, and because of (6.90), we illustrate the convergence of the simple
eigenvalue method by comparing uδ(δy) and û0(y) for various values of κδ in Figure 6.12.

A similar investigation can be carried out for the nearby eigenvalue approximation. As can be
seen in Figure 6.13, the approximation is good even for a value of κ̃δ � 0.5 that is not particularly
small, and for which the agreement of the simple eigenvalue zeroth-order field is poor.

In Figure 6.14, we plot the error between the exact field and the homogenized fields obtained
using both the simple and nearby eigenvalue approximations. The errors can be expressed as in
(6.91)–(6.94). Again, one can see that we recover the expected behaviour uδ(δy) � u0(δy , y) +
O(κ̃δ), but that the nearby eigenvalue approximation performs better for the whole range of values
of κ̃δ used in Figure 6.14.

As for the monolayer example displayed in Figure 6.9, it is possible to find physical parameters
such that all the eigenvalues become simultaneously double eigenvalues (Dirac points). In order
to do so one needs to ensure that K � 1/M, and that ρ1c1 � ρ2c2. The first condition imposes
that the reflection coefficient due to the imperfect interface is zero, and the second imposes that
the two homogeneous materials are “impedance matched” so that no reflection occurs from their
perfect interface either.

However, for the bilayer, it appears that certain parameters lead to only two of the eigenvalues
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Figure 6.12 – Illustration of the convergence of the method in the bilayer case by comparing û0 and uδ(δy)
in the FFLW (left) and the FFFW (right) cases. We plotted uδ for 20 values of κ̃δ equidistributed in the
log scale between 10−5 and 1. The red arrows indicate how uδ(δy) is changing as κ̃δ→ 0, while the vertical
dashed blue line indicates the position of the perfect interface between the two homogeneous materials.

Figure 6.13 – Superposition of real parts of the exact (uδ), simple eigenvalue zeroth-order (û0) and nearby
eigenvalue approximation normalised wavefields in the FFLW (left) and FFFW (right) for κ̃δ � 0.5 in the
bilayer case and for the same parameters used in Figure 6.11.

merging into a double eigenvalue, as appears to be the case in Figure 6.11. In order to visualize
this phenomena, one could look at the evolution of the eigenvalues η0 for fixed physical parameter,
but for varying r within ]0, 1[. The results are displayed in Figure 6.15, and it seems that double
eigenvalues or near-double eigenvalues may occur for some specific values of r, though, in this case,
all the eigenvalues do not become double simultaneously. In fact, as illustrated in Figure 6.15, if one
zooms on the areas of the graphs where eigenvalues seem to coincide, it appears that the curves
do not actually touch each other. We will call these points almost-Dirac points. As highlighted
above, the nearby eigenvalue approximation to the dispersion diagram is excellent for such almost-
Dirac points, while the simple eigenvalue method leads to a very short-lived approximation, see
Figure reffig:biBFdiag.

To explore the parameter space further, we will keep the values of r, α(1,2) and β(1,2) used in
Figure 6.11 and study the variation of the fifth and sixth antiperiodic eigenvalues η0 that correspond
to an almost-Dirac point according to Figure 6.15. As can be seen in Figure 6.16, in this case, we
observe a similar behaviour as that of Figure 6.8, where two distinct regions seem to be separated
by a smooth curve, on which the values of M and K chosen in Figure 6.11 (represented by a
black star) seem to lie.
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Figure 6.14 – Loglog plot of the error between the exact (Bloch Floquet) and the homogenized fields for
various values of κδ and for the same parameters of the bilayer case used in Figure 6.11. (Left) FFLW.
(Right) FFFW. The slope depicted by a black triangle denotes a slope of 1. Dotted (resp. plain) lines
correspond to the simple (resp. nearby) eigenvalue approximation.

Figure 6.15 – Evolution of the first six FFLW (left) and FFFW (right) eigenvalues η0 for the exact same
parameters as those used in Figure 6.11, but for r ∈ [0.05, 0.95]. A vertical dashed line represents the
value of r used in Figure 6.11. Zoom boxes are provided to show that near the almost-Dirac points, the
eigenvalues remain simple

6.7 Conclusion

In this chapter, the high-frequency homogenization technique is extended to the case of one-
dimensional periodic media with linear imperfect interfaces of the spring-mass type. The zeroth-
order equations led to an eigenvalue problem and three cases were considered: a simple eigenvalue,
a double eigenvalue, and two nearby eigenvalues. We obtained an approximation of both the
wavefield and the dispersion diagram near the edges of the Brillouin zone. In the case of double
eigenvalues, we then described the specific case of Dirac points whereas the nearby case allowed to
propose a uniform approximation between the simple and the double case. We have illustrated the
validity of the approximations with the two examples of monolayered and bilayered materials. In the
case of the monolayered material, we quantified the error between the exact and the homogenized
fields, and we found a simple condition on the nondimensional stiffness and mass values K andM
for all the points at the edges of the Brillouin zone to become Dirac points. With both examples,
we observed that the nearby eigenvalue approximation led to a much-longer-lived approximation
to both the dispersion diagram and the wavefields.

The following perspectives can be considered:
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Figure 6.16 – Filled Contour Plot of the variations of the fifth (left) and sixth (right) antiperiodic eigenvalues
in the bilayer case for the same values of r, α(1,2) and β(1,2) used in Figure 6.11. The black star corresponds
to the values ofM and K used in Figure 6.11.

• the extension of this 1D work to multidimensional cases, see for example Guzina and Bonnet,
2021 for the anti-plane elasticity case. One main difference compared with the work of this
chapter is that when the eigenvalue is repeated, its multiplicity can be higher than 2 which
leads to a higher order system to compute the wavefield. Accordingly, in the nearby case,
one has to consider a cluster of eigenvalues instead of two nearby eigenvalues. Eventually,
numerical examples to validate the approximations obtained are more intricate to developp
since analytical solutions are harder to obtain.

• in the spirit of the other chapters, it could be interesting to perform time-domain simulations
to compare the agreement between homogenized and full-field simulations as time increases.
This would require to formulate the homogenized problem in the time-domain (Harutyunyan
et al., 2016) and to consider a source term, see Meng et al., 2020 for perfect interfaces.

• the extension of the asymptotics presented in this paper to higher order, i.e. to propose first-
and maybe second-order corrections to the leading-order wavefields, see Guzina et al., 2019
for a first-order approximation with perfect interfaces.

• a more intricate possibility would be to consider non-linear imperfect interfaces as in the
low-frequency framework of the previous chapter.

• another interesting direction is the consideration of scalings in the interface parameters,
see Donato et al., 2007 in the static case where memory effects appear with an adequate
scaling.

6.A Bloch-Floquet analysis of the monolayer case

In this case, uδ satisfies (6.5)–(6.6) with α ≡ β ≡ 1, hence, on ]0, δ[, we have
uδ(x) � ABF cos

( ηx
δ

)
+ BBF sin

( ηx
δ

)
, (6.101a)

u′δ(x) � −
ABFη

δ
sin

( ηx
δ

)
+

BBFη

δ
cos

( ηx
δ

)
, (6.101b)
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subject to the two jump conditions 
~uδ�0

�
δ
K 〈〈u

′
δ〉〉

0 ,

δ~u′δ�
0
� −Mη2〈〈uδ〉〉0 ,

(6.102)

relating the value of uδ and u′δ at 0
+ and 0−. Moreover, according to Bloch-Floquet theory (6.7),

we know that we can write uδ(x) � uδ(x)e iκx, for a δ-periodic function uδ, implying that, in
particular, we have {

uδ(δ−) � uδ(0−)e iκδ ,

u′δ(δ
−) � u′δ(0

−)e iκδ.

This, combined with the jump conditions (6.102), relates the values of uδ and u′δ at 0+ and δ−,
and hence it gives two equations on ABF and BBF. These equations can be summarized by a matrix
equation of the form Mmo

BF (η, κδ,M ,K)(ABF , BBF)T � (0, 0)T , where

Mmo
BF [1, 1] � 1 − e−iκδ cos(η) +

η

2K sin(η)e−iκδ ,

Mmo
BF [1, 2] � − sin(η)e−iκδ −

η

2K (1 + cos(η)e−iκδ),

Mmo
BF [2, 1] � −η sin(η)e−iκδ −

Mη2

2 (1 + cos(η)e−iκδ),

Mmo
BF [2, 2] � −η(1 − cos(η)e−iκδ) −

Mη2

2 sin(η)e−iκδ.

One notes that, as expected, for κδ � 0 or κδ � π we have Mmo
BF � Mmo with the relevant sign.

Of course, this system has only non-trivial solutions if det(Mmo
BF ) � 0. One can show that

det(Mmo
BF ) � η

(
−B + 2e−iκδ

(
C cos(η) − 1

2

(
1
K +M

)
η sin(η)

)
− Be−2iκδ

)
,

where B � 1 +
Mη2

4K and C � 1 − Mη2

4K . Equating it to zero and multiplying by e iκδ/(Bη) leads to
the dispersion relation (6.84).
For a value of η satisfying the dispersion relation, we have infinitely many possible vectors
(ABF , BBF)T . To find one, just fix ABF � 1, and use either the first or second line of Mmo

BF to
get BBF as follows:

BBF �
1 + e−iκδ (

− cos(η) + η
2K sin(η)

)
η

2K + e−iκδ
(
sin(η) + η

2K cos(η)
) or BBF �

Mη
2 + e−iκδ

(
sin(η) + Mη

2 cos(η)
)

−1 + e−iκδ
(
cos(η) − Mη

2 sin(η)
) ,

depending on which one has a non-zero denominator. It then leads to the exact Bloch-Floquet
solution uδ(x) on ]0, δ[. From this we recover uδ(x) � uδ(x)e−iκx on ]0, δ[, which we can extend
to x ∈ R by periodicity. We can therefore get uδ(x) everywhere by uδ(x) � uδ(x)e iκx.
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The design of media at a microscopic scale allows to control wave propagation in a fine way
and to obtain exotic effects at the macroscopic scale. Thanks to homogenization methods,

the microstructure can be advantageously replaced, at the macro scale, by a homogeneous effective
medium. Then, as announced in the introduction, it raises the question of optimization tools in order
to design the microstructure that allows to achieve a desired macroscopic effect. In this context,
the consideration of interfaces (microstructured interfaces, imperfect interfaces) can lead to
modifications in the homogenization methods, the numerical methods, or the optimization methods
classically used. Therefore, the present thesis has focused on the study of waves propagation in
microstructured media with interfaces through homogenization, time-domain simulations and
optimization.

7.1 Conclusion

The first part of this thesis has focused on the propagation of waves across a periodic row of
inclusions. The overall contribution on this topic is threefold:

• The aim was first to tackle the case of highly-contrasted inclusions that allow local resonances
to occur. In Chapter 2, the homogenization process has been performed in the time-domain
thanks to two-scale expansions and matched asymptotic methods. This has led to effective
jump conditions that are non-local in time and that apply on the boundaries of an equivalent
enlarged interface in which no field are defined anymore. Having the thickness of the effective
interface larger than the width of the original microstructured array has been shown to be
a sufficient condition to have a stable effective problem. The correspondence of this time-
domain effective model with the frequency-dependent jump conditions developed in Pham
et al., 2017 has also been established. Then, numerical examples have been provided to
illustrate the model obtained and to compare its solutions with simulations involving the
original microstructure. A good agreement has been found at low excitation frequency. This
agreement deteriorates as the frequency increases and as the excitation consequently solicits
resonant frequencies that are missed by the first order effective jump conditions. Eventually,
dissipation of energy has been considered and for each resonant frequency taken into account
in the homogenized model, Coherent Perfect Aborption was observed for a critical value of
the dissipation parameter.
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• The numerical method developped to simulate the interaction of transient waves with the
effective resonant meta-interface has been described in Chapter 3. A set of auxiliary variables
has been introduced locally along the enlarged interface in order to formulate an equivalent
first-order system in time with jump conditions that are local in time. An immersed interface
method has then been developed in 1D and 2D to handle numerically such a system by
using a high-order finite differences scheme on a Cartesian grid. Local error estimates have
been derived in 1D to assess the optimal values of the featured numerical parameters.
The proposed numerical method has then been illustrated and validated considering 1D
and 2D configurations involving plane waves illuminating both straight and curved enlarged
interfaces. Moreover, the solutions to these problems have been derived analytically and used
for quantitative comparisons. The modifications of the method induced by the consideration
of dissipation of energy have also been presented.

• In Chapter 4, we have considered wave propagation across a row of inclusions in the non-
resonant case, i.e. with a low contrast of the physical parameters. In this context, the
objective was to propose a method to perform a topological optimization of this row of
inclusions based on the associated non-resonant first-order homogenized model. The topo-
logical derivatives of the five scalar effective parameters have been calculated and this step
have been validated numerically. As in the case of bulk microstructures, the expression of
the effective parameters involves the solution to cell problems. However, in the case of
a microstructured array, these cell problems are posed in an infinite strip. Since the opti-
mization requires the resolution of numerous cell problems, the cell problems have been
reformulated on a bounded cell. Then, a numerical method dedicated to this problem have
been presented. This relies on the adaptation of the FFT-based method through the intro-
duction of boundary correctors. Within the optimization process, the material update has
then been handled thanks to one pixel phase permutations or to a level-set method. Even-
tually, some preliminary numerical results have been presented for two kinds of cost functional.

In a second part, we have studied media where imperfect interfaces are repeated periodically.
The imperfect contact at these interfaces is modelled by spring-mass conditions. The contribution
concerns two homogenization regimes:

• In Chapter 5, the low-frequency homogenization of these media was considered. We first
considered a 1D periodic array of linear interfaces. Thanks to two-scale asymptotic expansions,
a first-order homogenized model have been obtained: the mean fields satisfy a wave equation
and the first-order corrector is found analytically. Then, an overview of the extension of
this work to the case of non-linear interfaces has been presented. In this case, shocks
occur and energy decreases in the homogenized model contrary to the microstructured
configuration. For both linear and non-linear interfaces, numerical experiments have shown
a good agreeement. As expected, this agreement deteriorates as the frequency increases
in both the linear and non-linear cases. In the non-linear case, the same phenomenon has
also been observed as the amplitude of the source increases. Eventually, the derivation of
a first-oder homogenized model has been tackled for the full elasticity configuration in RN

with N � 2, 3. The mean fields then satisfy a wave equation involving an effective mass
density which turns out to be a tensor and an effective elasticity tensor which satisfies the
usual symmetry properties.

• The framework of high-frequency homogenization was at stake in Chapter 6. The technique
has been extended to the case of one-dimensional periodic media with linear imperfect
interfaces of the spring-mass type. The zeroth-order equations has led to an eigenvalue
problem whose eigenvalues are the edges of the irreducible Brillouin zone corresponding to
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standing waves. Three cases have been considered: a simple eigenvalue, a double eigenvalue,
two nearby eigenvalues. In the three cases, an approximation of the dispersion diagram and
the wave fields has been obtained for a frequency close to an eigenvalue and consequently
to an edge of the Brillouin zone. In the case of double eigenvalues, we then described
the specific case of Dirac points whereas the nearby case allowed to propose a uniform
approximation between the simple and the double case. We have illustrated the validity of
the approximations and we have observed that the nearby eigenvalue approximation led to a
much-longer-lived approximation to both the dispersion diagram and the wave fields.

On the modeling side, several homogenized models have been derived: for a highly contrasted
row of inclusions in the time domain at low-frequency, and for imperfect interfaces of the spring-
mass type at either low-frequency or high-frequency. In the case of a row of low-contrasted
inclusions, the topological optimization has also been studied based on the homogenized model
available from the literature. The benefits of homogenization have also been observed: time-domain
simulations for the homogenized model were much less costly in terms of computational time as
full-field simulations in the microstructured configuration, and physical properties were explored
analytically thanks to the effective model.
On the numerical side, a dedicated numerical method has been developped in 1D and 2D to
simulate waves propagation in a homogeneous medium containing an enlarged interface on the
boundaries of which resonant jump conditions apply. It has been programmed from scratch in C++
and its performance has been assessed. In a near future, the numerical method presented in this
dissertation will be implemented in the PROSPERO platform http://prospero-software.science/.

7.2 Perspectives

Different follow-ups or perspectives have been identified and detailed at the end of each chapter.
They can mostly be summarized in the following research lines.

1. In the very near future, two works in progress will be completed. Firstly, more numerical
investigations and work on the final optimization algorithm has been identified in Chapter
4. Secondly, when imperfect interfaces are considered in the 2D or 3D case, we still need
to perform numerical simulations in order to assess the validity of the homogenized model
obtained by comparisons with full-field simulations.

2. A large part of the effective models obtained in this dissertation concerned a 1D configuration
or the antiplane elasticity framework. The extension of this work to the full three dimensional
elasticity case is a natural perspective that should not pose major technical difficulties, see
Auriault and Bonnet, 1985; Auriault and Boutin, 2012; Comi and Marigo, 2019 for volumic
microstructures in the resonant case or Guzina and Bonnet, 2021 for the anti-plane elasticity
case in the high-frequency framework.

3. Another perspective is to perform the derivation of the effective models obtained in this
thesis at higher order. In the resonant case, this could allow to account for the resonances
associated with modes with zero mean, as discussed in Felbacq and Bouchitté, 2005; Pham
et al., 2017. In the other low-frequency cases, this could be useful to describe the dispersive
nature of the fields that appear when considering longer times (Santosa & Symes, 1991;
Lamacz, 2011) or higher frequencies.

4. Another possibility is the consideration of additional scalings or small parameters. For example,
to the prospect of "long term" behaviour, it is useful to introduce a slow and a fast time-
scales in the asymptotics (Chen & Fish, 2001). For non-linear interfaces, a relatively low
amplitude of the source term was assumed. An effective model for waves of relatively larger
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amplitudes would also be interesting and would require the consideration of an additional
scaling in the classical small parameter η relatively to the amplitude. For imperfect interfaces,
another fruitful direction is the consideration of scalings in the mass and stiffness, see Donato
et al., 2007 in the static case where memory effects appear with an adequate scaling.

5. In the first part of the dissertation, the microstructured array is assumed to be a single infinite
array of inclusions. Perspectives regard the limitations of these geometric assumptions. Firstly,
one could consider two rows of inclusions in order to play with two geometries and reach,
for example, wide bands of high absorption instead of a unique value around each resonance.
Secondly, the homogenization process could be performed for inclusions located along a
curved line. The homogenized model would be more involved since, even in the non-resonant
case, the local definition of the curvature will lead to a local expression of the effective
parameters. Thirdly, as it is more realistic, it could be of interest to consider a layer of finite
length. It requires to take into account both the boundary layer effects appearing near the
microstructured layer and the corner singularities in the neighborhood of the extremities of
the layer, see for example Semin et al., 2018 for a finite-length periodic array of holes.

6. Eventually, one could be interested in the topological optimization of thin microstructured
arrays in the resonant case. It would require more work on the optimization process since
the resonant homogenized model includes resonant frequencies that depend on the geometry
of the microstructure, see Vondřejc et al., 2017 for shape optimization. Consequently, the
extension of the topological derivatives calculation and their use in an optimization algorithm
is a perspective in the longer term but would be of particular interest for example in the
context of noise reduction (Ma et al., 2014; Schwan et al., 2017) or for coherent perfect
absorption (Romero-Garcia et al., 2021).
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