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Over the last half-century, the European eel stock declined by about 5% per year to an unprecedented level 

(Dekker, 2019). Today, the population has exceeded safe biological limits, and has been listed in the IUCN 

Red List as a critically endangered species (IUCN Red List, 2019). Therefore, gaining knowledge about the 

complex life cycle of European eels is of paramount importance and a prerequisite for the conservation of 

the population.  

European eel is a catadromous species with a long ocean migration route. They spawn in Sargasso Sea and 

the larvae (known as leptocephalus) migrate passively towards European and North African coastal areas 

(Tsukamoto et al., 2003; Schmidt, 1923). Once on the continental shelf, the European eel goes through 

successive stages of glass eel, yellow eel and silver eel, as well as a habitat transition and a series of 

physiological and behavioral adaptations. Catadromy should consist of an estuarine migration of glass eels 

to freshwater for a period of growth before silver eels migrate back to natal site to reproduce and die. 

However, some European eels have never entered freshwater and at least three ecotypes have been 

characterized, namely freshwater eels, marine eels, and nomadic eels (Daverat et al., 2005, 2006). 

Therefore, the migration of glass eel to fresh water is highly flexible, which has been defined as a facultative 

migration (Tzeng et al., 2000; Arai et al., 2006). However, these different patterns of migration can have a 

strong impact on the fate of the population. Indeed, sex determination in European eel is environmental: 

individuals remaining downstream mostly develop in males and return earlier to the Sargasso Sea, whereas 

individuals colonizing upstream develop mainly into females and stay longer on the continent (Davey and 

Jellyman, 2005; Geffroy and Bardonnet, 2016). Therefore, variations in propensity to migrate upstream can 

have major consequences on the phenotypic structure (sex and size distribution) and thus on the population 

dynamics.  

Glass eels almost cease feeding during their estuarine migration, where individual’s swimming activity 

highly depends on its energy condition. A theory of conditional strategy based on individual energy stores 

has been proposed to explain the facultative migration in European glass eels, according to which fish with 

a higher energy stores should have a higher migratory activity (Edeline, 2007; Edeline et al., 2006). 

However, this energy-based theory has been conflicted by data from both European eel (Bolliet et al., 2017) 

and American eel (Boivin et al., 2015; Gaillard et al., 2015). Thus, the role of energy in shaping the 

divergent migratory patterns in European glass eels needs to be further characterized in term of energy 

stores but also of abilities to mobilize the energy stores. Fish ability to mobilize energy can include 

metabolic rate representing the speed at which energy reserves are consumed, as well as metabolic pathways 

such as lipid/protein cytosolic catabolism, autophagy, mitochondrial activity, and antioxidant system. 

Characterizing a glass eel’s energetic status by these comprehensive indicators should help to bring forward 

our understandings about the conditional strategy. In addition, glass eel’s energy condition is also associated 
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with environmental stress. Once entering estuaries, which represent a highly stressful habitat due to a high 

variation of environmental conditions (including salinity, temperature, current, and contaminants), fish 

physiological responses to the stress factors should produce additional energy cost and possibly drive the 

occurrence of settlement in estuaries. For example, contaminant, as a remarkable stressor in estuarine 

environment, can induce energy consumption through a series of cellular responses such as detoxification 

process.  

In this context, this thesis is aiming to investigate the complex relationship between the energetic status and 

the migratory behavior during the estuarine migration in European glass eels in the framework of energy-

based conditional strategy. 
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1.1 European eel ecology and glass eel migration behavior 

The eel is a bony fish belonging to the superorder of elopomorphs and to the order of Anguilliformes (Forey 

et al., 1996). Nowadays, 19 species/subspecies of freshwater eels have been reported worldwide (Arai, 

2016; Castle and Williamson, 1974; Ege, 1939; Watanabe, 2003). They are mainly found in tropical and 

temperate waters, except in the Eastern Pacific and South Atlantic (Arai, 2016). The European eel (Anguilla 

anguilla Linnaeus 1758) can be found from the North Cape in Northern Norway, along the coasts of Europe, 

to the Mediterranean coasts and even the coasts of North Africa (Dekker, 2003; Schmidt, 1909). 

1.1.1 European eel life cycle 

The European eel is a catadromous fish with a complex life cycle between oceanic spawning sites and 

inland feeding grounds (Tsukamoto, 1998). In its remarkable life history, European eels experience two 

trans-Atlantic migrations, develop through four major stages (leptocephalus, glass eel, yellow eel and silver 

eel stages) and present two metamorphoses (Figure 1-1). 

1.1.1.1 Leptocephalus stage 

Based on the size distribution of newly hatched leptocephali, the spawning area of European eel has been 

traced back to frontal zone region of the southern Sargasso Sea (Schmidt, 1922, 1923). The leptocephalus 

larvae cross the Atlantic Ocean using the Gulf Stream during 6-10 months (Arai et al., 2000; Bishop and 

Torres, 1999, 2001;Lecomte-Finiger, 1994; Miller, 2009; Tsukamoto, 2009) or 21 months (Bonhommeau 

et al., 2009) depending on the author. During the oceanic migration, the leptocephalus larvae feed on 

plankton or ‘marine snow’ (Riemann et al., 2010; Tsukamoto, 2009) and accumulate energy reserves. 

1.1.1.2 Glass eel stage 

The metamorphosis of leptocephalus larvae into transparent glass eels occurs at the slope of the continental 

shelf and is accompanied by significant morphological and physiological changes that allow them to adapt 

to their new habitat and life style (Schmidt, 1909; Tesch, 1977). This stage is characterized by body shape 

change from willow-leaf to eel-shape (Tesch, 2008), reduction in length, weight, and body moisture content 

(Bertin, 1951; Otake, 2003), and change of the brain structure (Tomoda and Uematsu, 1996). Glass eels 

enter estuaries and then migrate up to reach rivers. Most individuals fast during estuarine migration 

(Bardonnet and Riera, 2005; Jegstrup and Rosenkilde, 2003) and the ageing process is accompanied by an 

increase in pigmentation: VA, VB, VIA0, VIA1, VIA2, VIA3, VIA4 and VIB stages, as defined by Elie et 

al. (1982) (Figure 1-2). Complete feeding resumption occurs around the pigment stage VIA3 (Charlon and 

Blanc, 1982; Elie, 1979).  
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1.1.1.3 Yellow eel stage 

Following migration to continental waters, glass eels turn into yellow eels via elver stages marked by full 

pigmentation (stage VII, according to Elie et al., 1982). The yellow eel stage corresponds to a growth phase 

of 6-8 years for male and 10-13 years for females to reach an average length of about 0.4 m and 0.7 m 

respectively (Moriarty and Dekker, 1997; Rossi and Villani, 1980). During this growth phase, eel feeding 

activity present seasonality: they feed voraciously in summer and become less active in winter, often lying 

dormant and half-buried in the muddy bottoms of the waters (Horne and Birnie, 1978). 

1.1.1.4 Silver eel stage 

When eels approach maturity, they become silver eels and begin their migration back to the Sargasso Sea 

to reproduce (Miller et al., 2015; Righton et al., 2016; Schmidt, 1923; Tesch, 1980, 2003). The silvering 

metamorphosis is signed by a change in belly colour (Pankhurst and Lythgoe, 1982; Tesch 2003), 

proliferation of the gonads (Pankhurst, 1982), enlargement of the eyes (Pankhurst, 1982; Pankhurst and 

Lythgoe, 1983), a change in visual sensitivity of the retina pigments from green-sensitive to blue-sensitive 

(Archer et al., 1995; Wood and Partridge, 1993) and a stop of food intake (Piper, 2007). All these changes 

have been documented as physiological and morphological adaptations to migrate to the Sargasso Sea, 6000 

km away from Europe (van Ginneken et al., 2007). The spawning migration may last one year or more and 

eels exhibit diel vertical migrations, moving from deeper water during the day into shallower water at night, 

with a range of migration speeds of 3 to 47 km day−1 (Righton et al., 2016). Reproduction in the Sargasso 

Sea likely begins in December, peaks in February and then eels probably die (Righton et al., 2016). 

1.1.2 An endangered species 

Today, many Anguillid eels are of conservation concern, including the European eel (A. Anguilla), the 

American eel (A. rostrata), the Japanese eel (A. japonica), the New Zealand Longfin eel (A. dieffenbachii), 

and the Indonesian longfinned eel (A. borneensis) (IUCN Red List, 2020). The European eel has been listed 

in the IUCN Red List as well as in CITES Appendix II in September 2008 and then in 2014, as a critically 

endangered species. The last three decades have witnessed a dramatic drop in eel recruitment to the 

European continent, which has fallen to as little as 1% of their previous levels (1960-1979) according to 

some estimates (Figure 1-3).  
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1.1.3 Management actions 

In order to prevent further decline of the eel stock to extinction, the European Commission has introduced 

national eel management plans for conservation purpose, such as restocking (Righton and Walker, 2013; 

Stacey et al., 2015). Restocking consists in transferring young eels (mostly glass eels), from estuaries to 

reception habitats that are most favorable to their growth and development, including the translocation of 

wild glass eels from crowded areas with high recruitment (donator) to sparse areas experiencing recruitment 

declines (recipient). As a recovery tool, restocking aims for a higher level of benefit than natural 

colonization, with an ultimate goal to contribute a higher number of spawning adults to the sea. The Bay of 

Biscay area receives approximately ninety per cent of all European glass eel recruitment, with the most 

abundance along the Atlantic coast of France (Dekker and Beaulaton, 2016). France, as an essential actor 

in restocking implementation, is the main provider of glass eels on the European scale, where 60% of all 

caught glass eels are reserved for restocking programs set up by Members States, and between 5 and 10% 

of the national production in each year is stocked in several suitable areas of various watersheds of the 

French Atlantic coast. 

In this management framework, the conservation stocking depends on the supply of wild glass eels and 

concerns the process of introducing glass eels from their natural sites to another new environment, which 

raise two concerns. Firstly, the changes of ambient conditions and life-history characteristics, including 

changes in growing salinity, temperature, density as well as inter/intra-specific interactions, represent 

stressful challenges on glass eels. Thus, the individual vulnerability to stressors and adaptive ability should 

be fundamentally relevant to the outcomes of restocking actions. Secondly, restocking is used as recovery 

tool but it is at the same time costing natural source of young eels, whereby a close monitoring on the risk, 

feasibility and achievement of restocking is needed. 

1.1.4 Glass eel migration behavior 

In the main areas of European eel distribution, recruitment occurs during the whole year with a peak period, 

which depends on latitude and oceanic factors (Harrison et al., 2014). Glass eels appear on French and 

Spanish coasts as early as September with the highest densities occurring between late autumn and spring 

(Arribas et al., 2012; Gascuel et al., 1995). In the Adour River in the south of France (Figure 1-4), the main 

migration season of glass eel lasts from November to March (Charlon and Blanc, 1982). 
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1.1.4.1 A migration synchronized to the tide: Selective tidal stream transport 

Species that migrate through estuaries are exposed to the alternation of ebb and flood and can present 

semidiurnal and vertical migrations in phase with tidal cycle (Forward and Tankersley, 2001; Shanks, 

1995). This rhythmic swimming activity consists of animals moving up in the water column during one tide 

and remaining on or near the bottom during the other one (Gibson, 1992; Neilson and Perry 1990). It has 

been called selective tidal-stream transport (STST) by Walker et al. (1978), and described for a variety of 

taxa and life stages, from invertebrates to fish and from juveniles to adults (De Veen, 1967, 1978; Forward 

and Tankersley, 2001; Harden Jones et al., 1979; Walker et al., 1978, 1980).  

When European glass eels enter estuary, they are exposed to tidal cycles and STST is widely accepted to 

be the main mechanism allowing them to migrate up estuaries (Elie and Rochard, 1994; McCleave and 

Kleckner, 1982; Sheldon and McCleave, 1985). They rise in the water column during the flood to swim 

with the current and go down near the substrate during the ebb (Figure 1-5). STST reduce energy 

expenditure and in comparison with a continuous migration, the energy spared in flatfishes using STST was 

estimated as much as 90% (Metcalfe et al., 1990; Weihs, 1978). This innate tendency to orient and swim 

with a current is called negative rheotaxis. However, both field and laboratory observations showed that 

glass eels can also respond to a current flow by using positive rheotaxis (swimming against the current). In 

situ observations evidenced that glass eels could swim against the current when the water flow was lower 

than 0.3 m s−1 (Adam et al., 2008; Prouzet et al., 2003). Creutzberg (1961) experimentally demonstrated 

that glass eels expressed a positive rheotaxis for ebb currents of 0.2 m s−1, and a negative one for currents 

higher than 0.36 m s−1, swimming close to or burying into the bottom. Experimental studies also provided 

evidences that European glass eels subjected to a change in water current direction every 6.2 h (current 

velocity of about 0.13 m s-1) could alternate swimming with and against the current at each water current 

reversal (Bolliet et al., 2007, 2008). The authors also showed that positive rheotaxis decreased with 

decreasing body weight likely because of the high energy cost of this behavior. The use of both positive 

and negative rheotaxis, may allow a sustained swimming activity to migrate up estuary when energy 

reserves are not limited and the tidal current is not too fast.  
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(Wippelhauser and McCleave, 1987, 1988) and European glass eels (Bolliet et al., 2007, 2008) sustained a 

swimming activity rhythm with a period close to 12.4 h. As for tidal activity, a clock also likely drives the 

nocturnal rhythmic swimming activity in glass eels. In both the studies of Wippelhauser and McCleave 

(1988) and Bolliet et al. (2007) a circadian periodicity of activity was detected (22.4 h~30 h) when fish 

were previously synchronized to a light dark cycle. Thus, two clock systems, one circatidal and the other 

circadian, probably interact to drive glass eel’s swimming activity during estuarine migration. 

If the main synchronizer of the circadian clock is known to be the photoperiod, tidal synchronizers are more 

complex. Indeed, to synchronize the tidal clock, several exogenous cues related to the tide have been 

hypothesized, such as current speed and turbulence (McCleave and Kleckner, 1982), odors (Creutzberg, 

1959, 1961), temperature and salinity gradients (Edeline et al., 2005; McCleave and Edeline, 2009; Tosi et 

al., 1990), water current reversal (Bolliet et al., 2007; Wippelhauser and McCleave, 1987) or the electrical 

fields, which may reflect the presence and direction of water currents moving through the earth's magnetic 

field (Cresci et al., 2017, 2019; Deelder, 1952; McCleave and Kleckner, 1982). In the shore crab (Carcinus 

moenas), artificial tidal cycles of salinity, temperature and pressure applied 120° out of phase with each 

other, all synchronized locomotor activity (Warman and Naylor, 1995). The activity rhythm persisted in 

constant conditions with three peaks corresponding to each cue. Such observations provide evidence that 

different cues might synchronize glass eel locomotor activity but the interaction between them and the 

underlying mechanisms of synchronization remain to be elucidated. In experimental conditions, glass eels 

have been submitted to change in odors or water current direction every 6.2 h (Bolliet et al., 2007; 

Creutzberg, 1961; Wippelhauser and McCleave, 1987). Both factors individually synchronized the 

swimming activity of some glass eels but we cannot exclude the fact that using more cues at the same time 

would allow more fish to synchronize.  

1.1.4.4 Swimming activity level 

Colonizing continent also needs glass eels to sustain swimming activity. Since glass eels fast during their 

estuarine migration, they can only rely on their endogenous reserves to provide the energy necessary for 

swimming activity, vital functions and osmoregulation (Wilson et al., 2004). Therefore, swimming activity 

level may differ between individuals because of different energetic status (including energy reserves, 

standard metabolic rate and/or their ability to mobilize energy reserves) but also of their swimming tactics 

(negative and/or positive rheotaxis). 
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Implications of glass eel’s highly plastic migration pattern for the demography of eel population have been 

outlined by some studies (Davey and Jellyman, 2005; Geffroy and Bardonnet, 2016; Geffroy et al., 2016). 

Indeed, eels colonize continent as sexually undifferentiated glass eels and then develop into males and 

females possibly at the yellow eel stage. Although it is not yet known to what extent genetic factors 

contribute to the final sexual phenotype, both field and laboratory observations have highlighted that the 

sex determinism in eels is mostly environmental (Davey and Jellyman, 2005; Egusa, 1979; Geffroy and 

Bardonnet, 2016; Roncarati et al., 1997; Wiberg, 1983). Population density in the habitat used by early 

stage eels has been identified as one factor being positively correlated to the male production (Colombo 

and Grandi, 1996; Colombo et al., 1984; Beullens et al., 1997; Davey and Jellyman, 2005; Geffroy and 

Bardonnet, 2016; Huertas and Cerda, 2006; Krueger and Oliveira, 1999). As described, males tend to 

predominate in crowded environment, often associated with estuarine or lower river reaches, whereas 

females have been documented to be more predominant in upstream locations where densities are much 

lower (Adam et al., 2008; Davey and Jellyman, 2005; Harrison et al., 2014; Krueger and Oliveira, 1999; 

Laffaille et al., 2006; Oliveira and McCleave, 2000; Parsons et al., 1977). Thus, glass eels migrating into 

freshwater habitat should mostly differentiate into female while fish that settle in the estuary should mostly 

developed into males. To explain these different migration strategies, some studies proposed a conditional 

strategy based on individual's energetic status in the European eels (Bureau du Colombier et al., 2007; 

Edeline, 2007; Edeline et al., 2006). In the framework of conditional strategy, higher propensity to migrate 

in glass eels is associated to higher body weight. 

1.2 Glass eel energetic status and metabolism 

1.2.1 Energy-based conditional strategy   

The underlying mechanisms of European glass eel’s facultative migration are far from being elucidated but 

the main hypothesis to date concerned an energy-based conditional strategy (Edeline, 2007). In this theory, 

a higher propensity to migrate up estuary in glass eels should be closely related to higher energy stores 

(Bureau du Colombier et al., 2007; Edeline, 2007; Edeline et al., 2006).  

What is energy-based ‘conditional strategy’? 

‘Conditional strategy’, a term first defined by Dawkins (1980) and then refined by Gross (1984, 1996), is a 

theoretical concept that postulates the existence within populations of individuals that express different 

behavioral, physical or life history tactics (phenotypes) (Gross and Repka, 1998; Hazel et al., 1990, 2004; 

Roff, 1996). The conditional traits, which cue the phenotypic tactics, could be the environment or individual 

status (Edeline, 2005; McCleave and Edeline, 2009). Conditional strategies are widespread in nature and 

reflect an important evolutionary force generating individual variation within a population. Especially in 
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populations displaying migration, which usually encounter habitat choice and environmental challenges, 

the phenotypic tactics of migratory patterns involve a fitness maximizing decision by the individual. 

To explain the facultative migration in glass eels, some studies proposed a conditional strategy based on 

energy. Edeline et al. (2006) first reported that European glass eels switched from a freshwater- to a 

saltwater-preference as their energetic status decreased. Similarly, in the estuary of the Vilaine river, glass 

eels caught on the bottom of the estuary during flood tide were smaller than upstream migrants caught 

climbing the eel ladder (Edeline et al., 2004). Another experiment conducted in an annular flow-through 

flume showed that glass eels that synchronized to the photoperiod, swimming with the current at dusk 

(called migrant), had a higher energetic content than those remaining hidden in the shelters (non-migrant) 

(Bureau du Colombier et al., 2007). However, in this last study, migrant glass eels were bigger than non-

migrant ones in February but not in November suggesting a seasonal variation in energy-based ‘conditional 

strategy’. In addition, neither experimental test nor field observation could support the conditional theory 

in American glass eels, results showing that salinity preferences were not influenced by body condition 

(Boivin et al., 2015) or lipid contents (Gaillard et al., 2015). Finally, in a recent study, Bolliet et al. (2017) 

did not observed any significant difference in the wet weight and length of European glass eels between 

fish that synchronized their swimming activity to the tide (change in water current direction every 6.2 h in 

experimental conditions)  and glass eels that remained in the substratum.  

Altogether, these contradictory results suggest that a conditional strategy based on energy cannot fully 

explain the facultative migration in glass eels. However, it is noteworthy that to express glass eels energetic 

status, studies mostly used a measure of wet weight/ dry weight (Bolliet et al., 2017; Bureau du Colombier 

et al. 2007), body condition (Boivin et al., 2015; Edeline et al., 2006) and lipid contents (Gaillard et al., 

2015) which may be not sufficient markers of the individual energetic status in glass eels. 

1.2.2 Glass eels energetic status 

Glass eels do not feed during their upstream migration and energy reserves must be sufficient to sustain 

their swimming activity in addition to vital functions and other physiological processes such as 

osmoregulation. However, for a fasting fish, indicators of its energetic status may be more complex than 

their energy content and may also concern the rate at which energy is expended for vital functions 

(expressed by the standard metabolic rate: SMR) and the ability to mobilize and/or use the energy stores 

via efficient coordination of various cellular pathways. 
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1.2.2.1 Energy stores 

Body lipids represent the main energy source that fish can mobilize to produce energy in prior to proteins, 

which can also be metabolized if lipid pool is not sufficient to sustain metabolic homeostasis and exercise 

(Cassidy et al., 2016). A. anguilla leptocephali acquire food and store energy in the Sargasso Sea (Riemann 

et al., 2010). Glycosaminoglycans and lipids make up most of their organic mass, with the former being 

metabolized when leptocephali approach the time of metamorphosis to the glass eel stage and the late form 

providing most of the energy required to undertake this crucial life history transformation (Lecomte-Finiger 

et al., 2004). It has been suggested in Anguilla japonica that the endogenous energy reserves of the 

subsequent glass eel stage are provided by the leptocephali depot lipids, which remain following 

metamorphosis (Kawakami et al., 1999). Furthermore, considerably higher quantities of energy reserves 

are observed in glass eels recruiting in autumn than the ones in spring, probably due to the seasonal changes 

in oceanic ecosystems productivity affecting the growth of leptocephalus larvae during transatlantic 

transport (Désaunay and Guerault, 1997). 

1.2.2.2 Standard metabolic rate 

As defined by Aschoff and Pohl (1970), the standard metabolic rate (SMR) of fish is the minimal 

maintenance metabolic rate representing the energy expenditure of an animal during the circadian rest 

phase. SMR is estimated through measuring the whole-organism oxygen consumption rate (Brett, 1962; 

Fry and Hart, 1948) and represents an integrative measure of the physiological energy expenditures 

involved in the anabolism and catabolism of tissues and organism homeostasis (Metcalfe et al., 2016). 

Inter-individual variation in SMR relates to fish behavioral performance 

SMR presents a high variability in fish and a positive link between SMR and behavioral performance has 

been established in a broad range of fish species and particularly in salmonids (for review see Metcalfe et 

al., 2016). The most studied behavior include foraging, predator avoidance, risk-taking, mating, aggression 

and dominance (Alvarez and Nicieza, 2005; Biro and Stamps, 2010; Cutts et al., 1998; Eliason and Farrell, 

2016; Huntingford et al., 2010; Killen et al., 2011; Metcalfe et al., 1995; 2016 for reviews), while studies 

investigating the propensity to migrate in fish remain scarce. In their review, Eliason and Farrell 

(2016) suggested in salmonids that energy reserves and energy depletion were important factors 

determining successful upriver migration. However, in glass eels, Bolliet et al. (2017) did not observed any 

significant differences between SMR of migrant and non-migrant marine and estuarine glass eels sampled 

in April.  
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The underlying mechanisms of the relationship between SMR and behavior are not fully understood in fish 

but a higher SMR may induce a higher efficiency to obtain food or territory as well as a better digestion or 

use of energy resources, maximizing the growth rate and fitness of individuals (see Metcalfe et al., 2016). 

On the other hand, high SMR and aerobic activities should also increase the rate at which energy substrates 

are oxidized and thus increase the oxidative stress. However, in brown trout (Salmo trutta), individual fish 

with higher SMR were evidenced to have lower in vivo content of reactive oxidative species (ROS) (Salin 

et al., 2015). This ability to reduce the accumulation of oxidative damage may be a selective advantage in 

situations when aerobic activity is intensively required, as during migration. 

On the other hand, when energy stores decrease as in fasting migratory fish, the ability to migrate 

might also be directly related to the maximum capacity of the fish to increase oxygen consumption 

reflected by the maximal aerobic metabolic rate (MMR) that can be reached by the organism, 

setting the threshold towards which the animal can perform aerobically in a given environmental 

context (Norin and Malte, 2012). MMR has been found to correlate positively with SMR in some 

species (Norin and Malte, 2012; Priede, 1985; Zhang et al., 2014), but not in others (see Metcalfe et al., 

2016). 

SMR, food availability and starvation 

As mentioned above, a high SMR may promote dominance and growth in fish but individuals may lose 

their advantage in a low food environment. Similarly, in fasting fish, advantages in behavioral performance 

related to a high SMR could be expected to diminish quickly even leading to a negative selective pressure 

on individual. Indeed, fish with a high SMR mobilize energy stores more quickly when compared to low 

SMR individuals (Cook et al., 2000; O’Connor et al., 2000) and a rapid depletion of energy reserves, caused 

by a high metabolic demand under starvation, has been observed in the crucian carp (Carassius auratus) 

(Zeng et al., 2017), the juvenile European sea bass (Dicentrarchus labrax) (Dupont-Prinet et al., 2010; 

Killen et al., 2011; McKenzie et al., 2014), and the brown trout (Salmo trutta) (Auer et al., 2016). 

Accordingly, it could be expected that in diadromous fish species which can undergo naturally fasting 

periods in their life cycle (Bardonnet and Riera, 2005; Jørgensen et al., 2013), active swimming during 

migration might be considered as risky when energy reserves are too low (Chabot et al., 2016). 

One adaptative mechanism to spare energy during starvation is to reduce SMR. Indeed, although SMR is 

generally repeatable over time when measured under constant condition (Nespolo and Franco, 2007), e.g. 

in salmon (O’Connor et al., 2000) and European eel (Boldsen et al., 2013) there are increasing evidence 

suggesting the flexibility of fish SMR in response to food availability (Guppy and Withers, 1999; McCue, 

2010; McKechnie, 2008; Metcalfe et al., 2016 for review; Rescan et al., 2007). Studies on juvenile Atlantic 
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salmon (O’Connor et al., 2000), brown trout (Salmo trutta) (Auer et al., 2015) and crucian carp (Carassius 

auratus) (Zeng et al., 2017) have shown that SMR decreased in starved fish and increased again once food 

was supplied, although a high variability was observed. Through reducing SMR, fish attempt to minimize 

energy investment in self-maintainance and spare energy stores (Armstrong et al., 1992). This flexible 

metabolic rate has mostly been considered as an adaptive mechanism to maximize fitness under the 

challenges of energy distress (Auer et al., 2015). Altogether, these studies suggest that SMR and its inter-

individual variability may be an important parameter to explore for a better understanding of the ability of 

glass eels to migrate. 

1.2.2.3 Energy mobilization ability 

In addition to their energy reserves and the speed at which they use them, fasting fish have also to own the 

ability to closely coordinate various cellular pathways to mobilize internal stores to sustain metabolism and 

activity. 

Main forms of energy reserves mobilized in migration 

Fish store energy primarily as triacylglycerides (TAGs) in adipose tissues and largely mobilize them during 

fasting to support energy requirements (Eaton, 2002; Finn and Dice, 2006; Kerner and Hoppel, 2000). Once 

lipid depletion reaches a critical threshold, animals enter in a depleted phase in which proteins can also be 

used as a fuel source to survive prolonged fasting (Bower et al., 2009). 

European glass eels arriving along European coast depend on the energy reserves accumulated during the 

larval stage to reach fresh water for growth. In the Adour estuary, glass eels would restart feeding at spring 

when individuals develop to the VIA3 stage (Charlon and Blanc, 1982). However, before refeeding, glass 

eels have to allocate a substantial part of their somatic and visceral energy reserves to meet the costs of 

migration. Thus, their ability to efficiently mobilize their energy stores may directly affect their swimming 

ability and migratory strategies. This implies the existence of tightly controlled mechanisms to mobilize 

the various energy reserves, which are still very little studied in glass eels. 

Mechanisms involved in substrate catabolism and energy production 

Organisms can survive starvation by inducing the breakdown of lipid stores and even those of proteins 

when the period of starvation is prolonged. Different routes exist for the degradation of energy reserves. 

Lipids and proteins breakdown via cytosolic lipases and the ubiquitin-proteasome system have been largely 

described, and most factors involved in these processes have been identified in mammals and teleosts 

(Collins and Goldberg, 2017; Mashek, 2013; Zechner et al., 2012). However, increasing evidences 

demonstrate the existence of an alternative pathway known as autophagy, which involved the lysosomal 
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Figure 1-8. Lipophagy. Degradation of LDs through lipophagy involves the classical autophagosome-
mediated pathway of budding off and sequestering LDs for their subsequent delivery to autolysosomes 
(Ward et al., 2016). 

 

 

Figure 1-9. Lipid droplet lipolysis through CMA-dependent degradation. PLINs, perilipin family members, 
are the best characterized LD-associated proteins. CMA promotes LD catabolism via the degradation of 
PLIN LD proteins, thus, allowing access for lipases and lipophagic organelles (Ward et al., 2016). 
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Lipophagy 

Autophagy is a highly conserved homeostatic mechanism that involves degradation and recycling of 

cellular constituents in lysosomes (Mizushima and Komatsu, 2011). Defective autophagy is associated with 

numerous diseases, including neurological disorders, cancer, cardiomyopathies and metabolic disorders 

(Levine and Kroemer, 2008). The major variants of autophagy include macroautophagy, chaperone-

mediated autophagy (CMA) and microautophagy (Mizushima and Komatsu, 2011). One form of 

macroautophagy, known as 'lipophagy', was discovered in 2009 and was shown to contribute to the 

hydrolysis of TAG stored in cytosolic LDs (Singh et al., 2009). As the general mechanisms of 

macroautophagy, lipophagy is also tightly regulated by signals of cellular energy status during fasting. 

Briefly, during this process, autophagosomes engulf small or portion of LDs and, through the action of 

several autophagy-related factors, fuse with late-endosomes or lysosomes to form autolysosomes (Figure 

1-8; Itakur et al., 2012; Saftig et al., 2008). Within autolysosomes, lysosomal acid lipase (LAL) finally 

hydrolyses TAGs to release FFAs (Dubland and Francis, 2015). 

A substantial contribution of lipophagy to the catabolism of cellular TAGs and cholesteryl esters has been 

demonstrated in various cell types, including hepatocytes, enterocytes, macrophages, brown adipocytes and 

neurons (Cingolani and Czaja, 2016). Both autophagy inhibitors and genetic invalidation substantiated the 

crucial role of lipophagy in the breakdown of hepatic TAGs (Singh et al., 2009). Inhibition of neutral lipases 

or autophagy showed that both processes are activated in hepatocytes during fasting (Singh et al., 2009). 

The quantitative contribution of each of the lipolytic pathways (cytosolic lipolysis and lipophagy) to overall 

lipid catabolism is unknown and may vary considerably between different cell types, such as hepatocytes, 

macrophages and adipocytes. 

Cytosolic lipolysis–lipophagy crosstalk 

The recent findings that the key autophagy factor LC3-II binds ATGL on cytosolic LDs in brown adipocytes 

after cold exposure to promote TAG hydrolysis (Martinez-Lopez et al., 2016) strengthened the possibility 

of a functional link between autophagy and cytosolic lipolysis.  

Further evidence for a functional link between autophagy and lipolysis came from the discovery that CMA 

degrades cytosolic LD-associated proteins and thereby regulates neutral lipolysis (Figure 1-9; Kaushik and 

Cuervo, 2015; Ward et al., 2016). During CMA, cytosolic proteins are first recognized by HSPA8/HSC70 

(heat shock protein family A [Hsp70] member 8) and co-chaperones. The substrate-chaperone complex 

then docks at the lysosomal membrane through specific binding to the cytosolic tail of LAMP2A (lysosomal 

associated membrane protein 2A). LAMP2A then organizes into a multimeric complex that allows the 

substrate to translocate across the lysosomal membrane where it is degraded by acid hydrolases. Perilipin 
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2 and perilipin 3, which are abundant cytosolic LD-associated proteins that shield LD from lipases and 

lipolysis, are CMA targets (Kaushik and Cuervo, 2015). Consequently, the removal of perilipin 2 and 

perilipin 3 by CMA enables ATGL to efficiently access the LD surface, thereby increasing lipolytic rates. 

Interestingly, neutral lipolysis may also be directly involved in the regulation of autophagy, specifically 

through the effect of ATGL on the hepatic function of PPARα and SIRT1, both of which are well-

established activators of autophagy in the liver (Efeyan et al., 2015; Lee et al.. 2014). Together with the co-

regulation of lipophagy and neutral lipolysis by the major metabolic hormones and their associated 

regulatory hubs (mTOR, AMPK and the FOXO transcription factors), these data support the view that 

neutral lipolysis and lipophagy should not be considered distinct, but instead should be seen as two sides 

of the same coin. 

B. Protein degradation 

Eukaryotic cells mainly use two distinct mechanisms for the degradation of most proteins during nutrient 

stress: the ubiquitin-proteasome pathway and autophagy-lysosome system (Ciechanover et al., 1984; 

Mommsen, 2004). 

Ubiquitin-proteasome system 

The ubiquitin proteasome system (UPS) is responsible for the degradation of most cytosolic and nuclear 

proteins, including short- and long-lived proteins (Collins and Goldberg, 2017), as well as aberrant or 

misfolded proteins. The UPS mediates the proteolysis of target proteins by the conjugation of ubiquitin 

molecules in an ATP-requiring reaction (Ciechanover et al., 1984; Hershko and Heller, 1985; Murton et al., 

2008). Three enzymes control the processes of ubiquitin transfer and conjugation to substrate proteins: the 

E1 ubiquitin-activating enzyme first binds ubiquitin, then transfers it to the E2 ubiquitin-conjugating 

enzyme, and finally the ubiquitin molecule is transferred from the E2 to a lysine residue of the target protein. 

This last step is regulated by the E3 ubiquitin-ligase enzyme, which has a central role in achieving the 

selectivity and specificity of the UPS by recognizing and binding to specific substrate sequences (Figure 1-

10; Campello et al., 2013; Haas et al., 1982; Hershko and Ciechanover, 1998; Lecker et al., 1999; Passmore 

and Barford, 2004). Two most identified muscle-specific E3s are muscle RING finger-1 (MuRF-1) and 

muscle atrophy F-box (MAFbx) (Bodine et al., 2001; Gomes et al., 2001;), up-regulations of which were 

found to produce muscle loss and atrophy in both mammals and teleosts (Cleveland and Evenhuis, 2010; 

Lokireddy et al., 2011). The polyubiquitinated protein substrates are recognized and degraded by a protease 

complex, the 26S proteasome (Cassidy et al., 2016; Ciechanover et al., 1984). 
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Figure 1-10. Ubiquitin-proteasome system (UPS). Intracellular misfolded, damaged, and obsolete proteins 
are degraded by the UPS in a process in which major enzymatic components (E1 ubiquitin-activating 
enzyme, E2 ubiquitin-conjugating enzyme, E3 ubiquitin-ligase enzyme) poly-ubiquitinate the target 
proteins and allow a degradation by 26S proteasome (Campello et al., 2013). 

 

Autophagy 

In contrast to the UPS, autophagy-lysosome degradation is restricted to the cytoplasm, and tend to target 

long‐lived proteins. This system has been shown to degrade a wide spectrum of substrates, including 

functional or misfolded soluble proteins, protein complexes, oligomers and aggregates (Korolchuk et al., 

2009). Under stress stimuli, autophagy-lysosome pathway is highly inducible in muscle cells to induce 

protein catabolism, for instance in starvation (Bustamante et al., 2018; Mammucari et al., 2007; Mizushima 

et al., 2004) as well as endurance exercise (Grumati et al., 2011; Jamart et al., 2012). The autophagic protein 

degradation can be both non-selective and selective. In selective pathway, lysosomal degradation is also 

ubiquitin-dependent for protein targeting (Figure 1-11; Rabinowitz and White, 2010). Briefly, during 

selective autophagy, ubiquitin moieties added to the targeted proteins are recognized and bound by 

autophagy receptors, such as p62 or NBR1, which interact with LC3 to deliver cargo to autophagosomes 

(Kuma and Mizushima, 2010; Shaid et al., 2013). Enclosed proteins in autophogosome are then degraded 

in lysosome by cathepsins which have a wide range of specificities (De Duve and Wattiaux, 1966). Finally, 

amino acids produced are released into the cytoplasm and will be used for energy production and/or the 

synthesis of new molecules essential for survival. 
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Mitochondrial biogenesis consists of the addition of new proteins and/or lipids to the pre-existing 

mitochondrial reticulum, through the action of both mitochondrial and nuclear factors (Figure 1-13). 

Peroxisome proliferator-activated receptor gamma coactivator 1 α (PGC-1α) is a major regulator of 

mitochondrial biogenesis (Baar et al., 2002).  It is now well established that it activates different 

transcription factors, including nuclear respiratory factors 1 and 2 (NRF1, NRF2), that promote the 

expression of the mitochondrial transcription factor Tfam (Bruni et al., 2010), required for the transcription 

of mitochondrially encoded proteins and mtDNA replication (Campbell et al., 2012; Dhar and Wong-Riley, 

2009; Ongwijitwat et al., 2006). 

As stated above, mitochondria are highly dynamic cellular organelles, with the ability to change size, shape 

and position to adapt to their environment. Many of these changes are related to the ability of mitochondria 

to undergo the highly co-ordinated processes of fission (division of a single organelle into two or more 

independent structures) or fusion (the opposing reaction). These actions occur simultaneously and 

continuously in many cell types, and the balance between them regulates the overall morphology of 

mitochondria within any given cell. Fission and fusion are active processes which require many specialized 

proteins, including mechanical enzymes that physically alter mitochondrial membranes, and adaptor 

proteins that regulate the interaction of these mechanical proteins with organelles (Gomes et al., 2011; 

Rambold et al., 2011). Many of the proteins involved in mitochondrial fission/fusion dynamics have been 

identified in yeast, and most are conserved in mammals, including the fusion mediators mitofusins 1 and 2 

(Mfn1 and Mfn2) (on the outer mitochondrial membrane) and the optic atrophy protein 1 (Opa1) (on the 

inner mitochondrial membrane), and the fission mediators dynamin-related protein 1 (Drp1) (Hoppins and 

Nunnari, 2009; Hoppins et al., 2007; Westermann, 2008). 

In some circumstances, damaged mitochondria or parts of the mitochondrial network can also be digested 

through mitophagy (autophagy dependent mitochondria degradation; Figure 1-13). Several types of 

mitophagy (depending on the factors involved) have been described in mammals, two of which have been 

particularly studied: the NIX-dependent mitophagy and the PINK1/PARKIN-dependent mitophagy. The 

first mechanism involves mitochondrial receptors NIX (also known as BNIP3L) and FUNDC1 (mostly 

induced in hypoxia). During this process, the receptors are anchored in the outer mitochondrial membrane 

and contain an LC3-interacting region (LIR). By recognizing the autophagy-related protein LC3 at the 

phagophore surface, they facilitate the aggregation of autophogosomes around the target mitochondria 

(Melser et al., 2015). Different to the NIX-dependent mitophagy, the second mechanism is activated by 

PINK1 kinase at the outer mitochondrial membrane. PINK1 kinase recruits PARKIN to the mitochondria, 

which mediates the ubiquitination of mitochondrial substrates (Narendra et al., 2008, 2010). Organelles 
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1.3 Toxicity of methylmercury (MeHg) contaminant 

1.3.1 Estuary: a stressful environment 

Estuaries have long been regarded as environmentally stressed areas because of the high degree of 

variability in their physico-chemical characteristics, for example hydraulic conditions, oxygen, temperature 

and salinity in the water column, bed sediment dynamics, as well as pollution related to anthropogenic 

activity. Due to the proximity to urbanized and industrial areas, estuaries represent the major receptacle of 

a wide variety of potentially toxic chemical substances coming from upstream. 

Most reported pollutants include pesticides from agriculture waste (Leong et al., 2007), organic chemicals 

PAHs and PCBs (Vane et al., 2007), and heavy metals such as cadmium (Cd), copper (Cu), and lead (Pb) 

(Milenkovic et al., 2005; Vieira et al., 2009). Mercury (Hg) is one of the most hazardous pollutants present 

in aquatic environments (Grilo et al., 2015; Pereira et al., 2009). The presence of Hg in the estuaries raised 

many concerns about its influence on aquatic communities in these environments (Lawson and Mason, 

1998; Sunderland et al., 2004). Despite the strict Hg restrictions, anthropogenic release and historically 

contaminated sediments still act as sources of Hg to the aquatic environment, especially in areas requiring 

maintenance dredging or where sediments may be disturbed and resuspended into the water column (Alonso 

et al., 2000; De Marco et al., 2006; Meybeck et al., 2007; Sun et al., 2012). Hg compounds present in several 

estuaries across Europe have been shown to exceed the EU environmental quality standard (EQS) levels 

(Nguetseng et al., 2015) and research focused on Hg pollution has still been a hotspot in estuary during the 

last decade. 

1.3.2 Mercury occurrence in aquatic systems 

Hg is considered a devastating environmental pollutant, mainly due to its toxicity, persistence and 

biomagnification along the food webs and risk for human health (Cardoso et al., 2014; Mathews and Fisher, 

2008). Hg is released into environment from both anthropogenic and natural sources, such as industrial 

uses, the combustion of fossil fuels, the weathering of Hg-bearing rocks and ores (e.g. cinnabar), the fallout 

of atmospheric gases from volcanoes and geothermal vents and the emissions of deep-sea hydrothermal 

vents (Kennish, 1997; Wren et al., 1995). This metal compound occurs in diverse chemical forms, including 

inorganic (Hg(II)) and methylated (MeHg), which can be interconverted in a global Hg cycle among the 

aquatic systems, the atmosphere and the sediment (Figure 1-14; Clarkson, 1993; Pereira et al., 2019). 

Concentrated literature have presented the toxicological background of Hg with a lot of concerns over the 

organometal MeHg, often considered as a more toxic form than Hg(II). It is widely found in the aquatic 

environment (Ullrich et al., 2001) with the majority present in nature being derived from the biomethylation 

of Hg(II) by sulfate-reducing bacteria (Jensen and Jernelov, 1969; Compeau and Bartha, 1985).  
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Figure 1-14. Summary of the major transformations of mercury (Hg) in the environmental compartments 
(atmosphere, aquatic systems and sediment). Total Hg in the aquatic systems includes dissolved species of 
divalent mercury (Hg2+), dissolved elemental mercury (Hg0) and methylated forms (MeHg, CH3Hg+) in 
water-air surface. Hg0 is relatively volatile, supersaturated in water surface, and is the main form of Hg 
found in the atmosphere. Hg2+ is the generally predominant form found in water. The quantity of MeHg 
form is relatively large at greater depths in the water and sediment. Cycling pathways involve 
biogeochemical processes within each compartment and inter-compartmental movements (e.g. deposition, 
runoff, volatilization, sedimentation and sediment diffusion/advection/resuspension). Natural (e.g. 
volcanoes and forest fires) and anthropogenic (e.g. hydroelectric, pulp/paper and mining industries, 
incineration of municipal waste) sources of Hg are depicted by the red arrows (Pereira et al., 2019). 

 

1.3.3 MeHg effects on fish 

1.3.3.1 MeHg absorption by fish and tissue-specific toxicity 

Wild fish are exposed to MeHg by both food and water. Uptake of this toxin from diet accounts for 

approximately 80% to 90% of total uptake, with the remaining fraction coming from drinking water, gill 

intake, and skin absorption (Erickson et al., 2008; Hall et al., 1997; Hrenchuk et al., 2011; Sindayigaya et 

al., 1994). 

The ability of MeHg to distribute throughout the body is often attributed to its presumed lipid solubility. 

However, this explanation is untenable, given the physicochemical properties of MeHg (Clarkson, 1972). 

As a consequence of its high affinity for –SH groups, most of the MeHg in tissues is normally conjugated 

with water-soluble sulfhydryl-containing molecules, primarily L-cysteine, glutathione (GSH), hemoglobin, 

albumin and other thiol-containing polypeptides (Carty and Malone, 1979; Hughes, 1957). Hence, dietary 
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MeHg is first delivered to the liver through a portal system after uptake in the intestine (Bridges and Zalups, 

2010; Mela et al., 2014), then crosses the hepatocyte plasma membrane and bind to thiol groups before 

being eliminated by the bile or redistributed by blood stream to other target tissues as muscles (Harris et 

al., 2003; Leaner and Mason, 2004; Morcillo et al., 2017; Ribeyre and Boudou, 1984; Sweet and Zelikoff, 

2001). 

When fish cease eating and do not have to drink to maintain their osmolarity (as in glass eels during their 

migration in fresh water), the primary pathway of MeHg entering fish body is through gills. In Monperrus 

et al. (2020), the pathway of the uptake, transport, and accumulation over time of different Hg species in 

European glass eels have been imaged. This study suggested a preferential uptake of the MeHg than Hg(II) 

and a dynamic transport of MeHg within different organs: after rapid uptake through the gills, MeHg was 

first transported in the heart, the liver, and the brain, and finally transferred to the muscle. Metabolic and 

histopathological changes in MeHg-targeted tissues are of particular interest because these changes can 

trigger fish loss of endogenous homeostasis, abnormal motor coordination, altered behavior, and disrupted 

energy metabolism (Roos et al., 2012; Wolfe et al., 1998). 

Nervous system 

As in mammals, fish central nervous system (CNS) has been demonstrated as a primary target for MeHg 

(Pereira et al., 2019), especially in the developing stage (Yadetie et al., 2013). MeHg easily goes through 

the blood-brain barrier via a cysteine-facilitated transport, and reaches the CNS, particularly the astrocytes 

(Aschner, 1989; Cariccio et al., 2018; Pletz et al., 2016). In contrast to liver and muscle, which can regulate 

multiple genes to help detoxify MeHg, the brain is considered defenseless against this chemical (Cambier 

et al., 2012; Thacker, 2005). In fish brain, MeHg has been seen to alter several functions such as cell 

structural degeneration, Ca2+ homeostasis, oxidative system, metabolic markers, and the visual/sensory 

pathway (Berg et al., 2010; Berntssen et al., 2003; Cambier et al., 2012; Pereira et al., 2019; Weber et al., 

2008). 

Liver and skeletal muscle 

After MeHg crosses the epithelia, it is first carried with the bloodstream to the liver, which is an organ 

primarily involved in the storage, redistribution, detoxification, and transformation of this toxin (Bradley 

et al., 2017; Maulvault et al., 2016). Then, MeHg is redistributed by bloodstream to other target tissues, 

including muscle, the largest pool and final storage tissue of MeHg in fish (Guardiola et al., 2016; 

Monperrus et al., 2020). Induced oxidative stress and hampered energy metabolic activity in liver and 

skeletal muscle after MeHg exposure have been shown in different fish species, such as Atlantic cod (Gadus 

morhua) (Olsvik et al., 2015; Yadetie et al., 2016), rainbow trout (Mozhdeganloo et al., 2015), zebrafish 
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(Cambier et al., 2009; Gentes et al., 2015), and fathead minnow (Pimephales promelas) (Klaper et al., 

2008). Morphological and ultrastructural injuries after MeHg contaminant in these tissues were also 

reported by some histopathological studies, describing malformed hepatocytes, and disorganized myofibrils 

(Gentes et al., 2015; Guardiola et al., 2016; Lee et al., 2012;  Muller et al., 2015), as well as injured 

mitochondria and endoplasmic reticulum (Oliveira Ribeiro et al., 2008). 

Gill 

Gill is directly and constantly exposed to external environment (Pereira et al., 2019). As a pivot in various 

physiological functions, such as osmoregulation and respiration process, gill’s sensitivity to Hg has 

attracted some attentions. Indeed, there is increasing evidence suggesting a respiratory damage in 

mosquitofish (Gambusia affinis) and redear sunfish (Lepomis microlophus) induced by MeHg in gills 

(Pickhardt et al., 2006). The damage, i.e., disruption in gill epithelium, can potentially result in 

compensatory changes in ventilation frequency, increased energy demands, or altered gas exchange 

efficiency, and possibly increased metabolic rate and decreased swimming performance (Morcillo et al., 

2016; Tatara et al., 2001). 

Other tissues 

In addition to the tissues mentioned above, lesions and injuries elicited by MeHg were also recorded in 

other fish tissues, such as kidney (Lee et al., 2012; Oliveira Ribeiro et al., 2002, 2006), gut (Mela et al., 

2014), skin (Guardiola et al., 2016), spleen (Skak and Baatrup, 1993), and olfactory organs (Baatrup and 

Døving, 1990; Ribeiro et al., 2002; Skak and Baatrup, 1993). 

1.3.3.2 Behavioral effects in fish 

Effects of MeHg exposure on fish behavior have been largely documented, most of which focused on the 

locomotor activity (Pereira et al., 2019). For example, Atlantic salmon (Salmo salar) exposed to dietary 

MeHg (10 μg g-1) for 4 months displayed lower swimming activity (Berntssen et al, 2003); white seabream 

(Diplodus sargus) swam for a shorter time after 7 days of exposure to dietary MeHg (8.7 μg g-1) (Puga et 

al., 2016) and zebrafish exposed to waterborne MeHg (15 μg L-1) for 32 h displayed a reduced swimming 

distance and speed (Strungaru et al., 2018). Acute MeHg exposure (5.0 μg g-1 by injection) was also shown 

to trigger an anxiety-like status in adult zebrafish, accompanied with transient hyper-locomotion (Maximino 

et al., 2011). Some other studies have described the behavioral impairment induced by MeHg, concerning 

prey capture ability (Weis and Khan, 1990; Zhou and Weis, 1998), predator avoidance (Webber and Haines, 

2003), reproduction (Sandheinrich and Miller, 2006), habitat selection (Sampaio et al., 2016) and more 

recently on fish memory and aggressiveness (Strungaru et al., 2018). The disturbed swimming performance 
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documented in these cases was largely linked to neurophysiological and brain structural mechanisms, such 

as cellular damages in the brain (Berntssen et al, 2003) and brain morphometric alterations in some regions 

(Puga et al., 2016). 

1.3.3.3 Mechanims of MeHg toxicity 

MeHg is a soft electrophile that preferentially interacts with nucleophilic groups (mainly thiols and 

selenols) contained in biomolecules to form MeHgCys complexes (Bradley et al., 2017; Farina et al., 2011; 

Franco et al., 2006; Kaur et al., 2006, 2007). Such interactions occur in a stable way to form complexes of 

MeHg and targeted molecules, which severely block molecular function, induce accelerated formation of 

free radicals, such as ROS, and generate oxidative stress leading to cell damages (Farina et al., 2011; Franco 

et al., 2006; Kaur et al., 2006). 

Inactivation of antioxidant defence system: decreased ROS elimination 

Many important enzymatic and non-enzymatic compounds with antioxidant activities such as the 

glutaredoxin and thioredoxin enzyme systems are rich in thiol and selenol groups, which give primary 

access to MeHg affinity resulting in a depletion of antioxidant capacity (Branco et al., 2011; Carvalho et 

al., 2008; Franco et al., 2009). For example, GSH (a major thiol antioxidant) and thiol- or selenol-containing 

enzymes belonging to the GSH antioxidant system, such as glutathione peroxidase (GPx), glutathione 

reductase (GR) and GSH s-transferases (GST), represent key molecular targets involved in MeHg-toxicity 

(Figure 1-15; Farina and Aschner, 2019; Farina et al., 2011). Depletion of intracellular GSH levels via 

MeHg complexation and increased ROS have been observed in MeHg-exposed rainbow trout liver 

(Mozhdeganloo et al., 2015), in human neurons and astrocytes (Kaur et al., 2006; Shanker et al., 2005), and 

in mouse brain (Franco et al., 2010). MeHg was found to hamper the activities of GR and GPx in rodent 

CNS during the early postnatal period (Stringari et al., 2008), and also in adult animals studied using both 

in vivo and in vitro approaches (Farina et al., 2003; Franco et al., 2009). In addition, several studies have 

shown that MeHg exposure may inhibit the thioredoxin system (Figure 1-16), for instance, reduced 

activities of thioredoxin reductase (TrxR) and thioredoxin (Trx) following MeHg comtamination were 

observed in the liver of Atlantic cod (Gadus morhua) (Yadetie et al., 2016), the brain and liver of zebra-

seabream (Branco et al., 2011), the cultured human Hela cells (Carvalho et al., 2008), and the kidney and 

liver of mice (Wagner et al., 2010).  
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Impairment of mitochondrial metabolism and structure: increased ROS production 

Another primary route for MeHg-mediated oxidation and ROS production is to interact with thiol-

containing proteins located in cellular particulate fractions, e.g., mitochondria. MeHg can directly disrupt 

mitochondrial function by targeting mitochondrial respiratory chain complexes (Atchison and Hare, 1994; 

Shanker et al., 2005; Dreiem and Seegal, 2007; Yin et al., 2007; Usuki et al., 2008; Cambier et al., 2009; 

Glaser et al., 2010). The modifications of these complexes or enzymes can cause mitochondrial 

depolarization and swelling, leading to ROS overproduction (Figure 1-15; Farina et al., 2011; Mori et al., 

2007; Roos et al., 2011). Mitochondrial sensitivity to MeHg and dysfunction in metabolic organs (i.e. 

skeletal muscle and liver) are likely to result in a decreased respiration efficiency and an altered energy 

metabolism (Cambier et al., 2009). Accordingly, 49-day exposure of adult zebrafish to MeHg at 

environmentally relevant dose exerted a strong inhibition of muscle fibers mitochondrial activity, reflected 

by a decrease in both the cytochrome c oxidase (COX) activity and rate of ATP release (Bourdineaud et al., 

2013; Cambier et al., 2009). Similarly, integrated transcriptomic and proteomic analyses in Atlantic cod 

(Gadus morhua) liver after MeHg exposure have indicated severe effects of MeHg on major energy 

pathways, in particular the mitochondrial fatty acid metabolism (Karlsen et al., 2014; Yadetie et al., 2013, 

2016). In addition, MeHg was found to mediate mitochondrial structural abnormalities, which present a 

pattern of cristae disorganization, outer membrane bubbling and a decrease of total area (Cambier et al., 

2009; Gentes et al., 2015; Oliveira Ribeiro et al., 2008). Furthermore, these MeHg-induced damages 

provoke the release of cytochrome c from the mitochondria to the cytosol, subsequently leading to cell 

death by apoptosis, remarkably in sensitive organ like fish brain (Carratù and Signorile, 2015). 

Notably, MeHg-toxicity has also been linked to increased Na+ and Ca2+ efflux, resulting from MeHg-

induced glutamate dyshomeostasis (Choi, 1992). Increased intracellular Ca2+ levels are associated with 

ROS generation, consequently contributing to mitochondrial dysfunction (Franco et al., 2009; Lafon-Cazal 

et al., 1993; Stringari et al., 2008). The Ca2+ and mitochondrial dysregulation elicited by MeHg have been 

frequently highlighted in the event of neuronal death in animals (Limke et al., 2004; Roos et al., 2012). 

1.3.3.4 Cellular detoxification and repair 

Above all, MeHg exposure in vivo (Guardiola et al., 2016) or in vitro (Morcillo et al., 2015, 2017; Voccia 

et al., 1994) can induce a severe imbalance between ROS production and its clearance by the antioxidant 

system, leading to a remarkable increase of cellular ROS concentration. Indeed, oxidative stress is one of 

the best-studied causative factors associated to MeHg toxicity in fish, as demonstrated in other species 

(Antunes et al., 2018), which generates different types of cell damage such as lipid peroxidation, DNA 
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double-strand breaks, and even apoptosis (Farina et al., 2011; Roos et al., 2012). The cell tends to react to 

these aggressions by activating different detoxification mechanisms. 

First, given the substantial fraction of MeHg toxicity due to its avidity for thiol/selenol groups, a known 

mechanism of MeHg detoxification is to increase the cellular levels of different sulfur-containing protective 

molecules, mitigating the risk of MeHg bioaccumulation and toxicity (Navarro et al., 2009). This type of 

molecules commonly include metallothioneins (MTs, cysteine-rich, low-molecularweight proteins with 

high affinity for metals) and Se species (Dang et al., 2019; Stringari et al., 2008; Toyama et al., 2011; West 

et al., 2008). In particular the efficient protection by MTs faced to MeHg toxicity has been largely reported 

in several in vivo (Gentes et al., 2015; Gonzalez et al., 2005) and in vitro studies (Morcillo et al., 2016, 

2017), where increased MTs level and enhanced mt gene expression after MeHg exposure were found. 

These scavenger compounds interact with MeHg to form adducts of MeHg-MT and MeHg-Se, which are 

then transported to the lumen of digestive tract via bile (Loumbourdis and Danscher, 2004) and excreted 

by the urine (Gailer, 2007). 

Second, vitamin C and vitamin E can effectively neutralize free radicals via donating electrons to ROS and 

ultimately quenching their reactivity (Badgujar et al., 2014). They are considered as the most effective 

antioxidants to prevent lipid peroxidation, maintain the integrity of membrane, and thus buffer the MeHg-

elicited oxidation (Do Nascimento et al., 2008; Mozhdeganloo et al., 2015; Ricciarelli et al., 2001; Usuki 

et al., 2001). 

Third, there are numerous reports on the protective role of autophagy against MeHg-induced cytotoxicity: 

an in vitro study in rat primary astrocytes indicated that MeHg-induced neurotoxicity was partly reduced 

through the activation of autophagy (Yuntao et al., 2016); Takanezawa et al. (2016) explicated the 

protection of Atg5-dependent autophagy on mouse embryonic fibroblast cells from MeHg cytotoxicity. 

Finally, after incorporation into tissues, some MeHg can be transformed mainly in liver to Hg(II), which is 

less toxic and easier to be eliminated from body (Gonzalez et al., 2005; Yasutake and Hirayama 1990). 

Although this demethylation process is protective against MeHg toxicity, the ability to metabolize MeHg 

to Hg(II) varies from one species to another, and the participating enzymes or underlying mechanisms are 

largely unknown (Takanezawa et al., 2019). 

1.3.3.5 MeHg in estuarine glass eels 

Catadromous life cycle of European eels exposes them at different stages to different pollutants. Glass eels 

colonize different ecosystem types, from marine to estuaries and rivers/lakes, to further develop. Studies 

by Navarro et al. (2013) and Claveau et al. (2015b) showed a significant accumulation of MeHg in European 
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glass eels. Furthermore, the adverse interactions of Hg on glass eels’ estuarine migration have been 

identified in term of its metabolic and genotoxic pressures. For example, study of Claveau et al. (2015a) 

showed that MeHg exposure at ecologically relevant concentrations affected mitochondrial structure and 

metabolism, with a stronger effect in non-migrant glass eels. The authors propose that MeHg-induced 

oxidative stress and mitochondrial dysfunction could impair the energetic metabolism of glass eels and thus 

their migratory propensity. Similarly, in situ study by Castro et al. (2018) found an increased impact on 

genome integrity with increase of total Hg (THg) body burden in European glass eels, suggesting a harmful 

impact of Hg on glass eels' condition and ultimately the population sustainability. In addition, the adaptive 

responses to combat MeHg toxicity, such as detoxification/elimination actions, and repair of DNA damage 

and lipid peroxidation, have metabolic costs and require an increased expenditure of energy (Lock and 

Wendelaar Bonga, 2008). Taken together, all these studies suggest that environmental MeHg does exert an 

influence on the metabolic status in glass eels. 
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1.4 Objectives  

European glass eels arriving from the sea use different migratory tactics that can lead to the colonization of 

rivers or to an early settlement in marine or estuarine habitats. According to previous studies, the migratory 

behavior could be dependent on the body condition. Indeed, Edeline et al. (2005) proposed a theory of 

conditional strategy suggesting that individuals with higher energy stores should have a higher propensity 

to migrate up estuary. However, some studies do not support this hypothesis, suggesting that energy stores 

alone cannot explain the observed behavioral differences. In this context, the main objective of this thesis 

was to investigate the conditional strategy in the European glass eels, not only based on energy stores but 

also on the individual ability to mobilize these stores (energetic status). In addition, several studies provided 

evidence that energy stores of European glass eels fluctuated depending on the season, likely because of 

the fluctuation of food resources during the oceanic migration at the leptocephalus stage. Such different 

levels of energy reserves suggest that energetic strategies to migrate up estuary may also fluctuate 

depending on these reserves and to investigate this question, this study focused on both autumn and spring 

individuals. 

So, the first objective of this thesis was to: 

Characterize the energetic status in relation to the migration behavior of European marine glass eels 

arriving near the European coasts both in autumn and spring. 

Glass eels sampled in both seasons were submitted in experimental conditions to a change in water current 

direction every 6.2 h that mimic tides. Individuals were tagged so that their swimming behavior can be 

monitored individually and the swimming test allowed to distinguish fish with a high ability to migrate 

(synchronized to the change in water current direction), or a low ability to migrate (non-synchronized). 

Individual behaviors were then related to the energetic status of glass eels in terms of energy stores, 

metabolism and energy-related genes expression. 

Once marine fish were characterized depending on the season, the second objective was to better understand 

the underlying mechanisms of settling processes in the estuary in relation to the conditional strategy based 

on energy. In accordance to the facultative migration, estuarine glass eels were considered as a subsample 

of marine ones, some individuals stopping migration before reaching the river, possibly because of too low 

energy reserves.  

Thus in the second objective, we aimed to: 

Compare marine and estuarine glass eels migration behavior in relation to their energetic status in terms 

of energy stores, standard metabolism and energy-related gene expression. 
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For this purpose, marine and estuarine glass eels were sampled in autumn and spring and their migration 

behavior analyzed as described in the first objective. Then, behaviors were individually related to energetic 

status. 

Finally, since glass eels entering estuaries are exposed to different stressful factors that may increase energy 

expenditure and affect migration in glass eels, we tested in a third objective one of these factors and 

investigated: 

The effect of methylmercury on marine glass eels migration behavior and their energetic status. 

To do so, we exposed marine glass eels to MeHg (100 ng L-1) for 7 days, and then contaminated and non-

contaminated fish were submitted to a swimming test as described above. The energetic status was then 

analyzed in relation to the migration behavior.  
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Figure 2-1. Graphical abstract and highlights from Publication 1- Relationships between migration 
behavior and conditional strategy based on energy metabolism in the European glass eel (Anguilla 

anguilla). 

 

Highlights 

1. Autumn glass eels are more active and bigger than spring ones. 

2. Mitochondrial fission and autophagy are triggered in spring glass eels 

3. Swimming activity is related to SMR in autumn fish and weight in spring ones. 

4. Migration could be linked to energy in spring glass eels but not in the autumn ones 
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2.1 Characterization of the energetic status in terms of energy stores, standard metabolism and energy-

related genes expression in European marine glass eels in autumn and spring 

Presentation of Publication 1 

Looking at the complex relationships between migration behavior and conditional strategy based 

on energy metabolism in the European glass eel (Anguilla anguilla) 

Objective and methods 

In the studies up to date, energy store was often used as the single proxy for energetic status. We hypothesize 

that it may be too limited to fully explain glass eel’s diverse migratory patterns and that other factors as 

energy mobilization, may also be involved. In addition, glass eels energy profiles markedly differ depending 

on the season and individuals that arrive in autumn present higher energy stores than those reaching the 

coasts in spring. Therefore, the first objective was to characterize the energetic status of glass eels arriving 

in autumn and spring and to relate this status to their migration behavior. To do so, marine glass eels were 

successively sampled in autumn (November) and spring (April). Initial wet weight, as a proxy for energy 

stores, was compared between the two groups, then individual swimming behavior was observed in 

laboratory installation (as described in last chapter). The individual metabolism (expressed as oxygen 

consumption) and expression of energy metabolism-related genes were determined after swimming test. 

Finally, these energetic status indicators (energy stores, metabolism, gene expression) were linked to glass 

eel’s behavioral pattern. 

Results and Conclusions 

Autumn glass eels presented higher energy stores than spring individuals. Molecular data also showed that 

expression level of genes related to energy metabolism was higher in autumn glass eels than their spring 

conspecifics, while the stress related genes overexpressed in spring glass eels. These results suggest that 

autumn glass eels presented a higher ability to produce energy while the spring ones displayed an energy 

distress. This confirm that autumn and spring glass eels present strong differences in their energetic status 

and that they have to be studied separately (Figure 2-1). 

Concerning their migratory behavior, we observed a higher number of synchronized individuals and a 

higher swimming activity level in autumn glass eels than in spring ones which may support the conditional 

strategy based on energy. However, regardless of the season, no difference of energy stores or energy 

metabolism-related gene expression was observed between synchronized and non-synchronized glass eels. 

Interestingly, individual swimming activity was positively correlated to energy stores in spring glass eels, 

but not in the autumn group suggesting an energy-based conditional strategy in the former ecotype but not 
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in the latter one. We hypothesize that low energy stores may become limiting for swimming activity and 

force individuals to stop migration. However, when energy reserves are high as observed in autumn, this 

factor, and the gene expression levels of energy-related genes cannot explain our behavioral results (Figure 

2-1).  
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However, within each season, no wet weight difference was observed between active and non-active fish. In au-
tumn glass eels, migration behavior was weakly related to relative SMR while in spring, none of the parameters
analyzed allows discriminating active and non-active glass eels. The level of swimming activity in active fish was
related to their relative SMR in autumn and to their wet weight in spring. Altogether, our results could not vali-
date a conditional strategy but spring glass eels displayed some signs of energy distress and a lower level of
swimming activity than autumn ones.

© 2019 Elsevier B.V. All rights reserved.

Metabolism
Autophagy

1. Introduction

The life cycle of the European eels has been described as a catadro-
mous life history duringwhich theymigrate between oceanic spawning
areas and continental rearing habitats (Tesch, 2003). The leptocephalus
larvae drift with theGulf Stream to join the continental shelf where they
metamorphose and are then referred to as glass eels. Then, glass eels
migrate up estuaries to join rivers using selective flood transport: dur-
ing flood tide, glass eels move up in the water column and migrate
with the current while they go down and remain on or in the substra-
tum during ebb tide (Forward and Tankersley, 2001; Gascuel, 1986;
Jellyman, 1979). However, a high degree of geographical dispersion
crossing marine and riverine water has been documented regarding to
different migratory patterns of settlement and river colonization
(Daverat et al., 2006; Secor et al., 1995; Tsukamoto and Arai, 2001;
Tsukamoto et al., 1998; Tzeng, 1996). These different patterns of migra-
tion could have a strong impact on the fate of the population because of
the sex determinism in eels, which is environmental (Geffroy and
Bardonnet, 2016; Krueger and Oliveira, 1999). Briefly, in European
eels, males are generally observed to dominate in high-density environ-
ments, often associated with estuarine or lower river reaches, whereas
females tend to become increasingly dominant with increasing distance
from the sea (Adam et al., 2008; Davey and Jellyman, 2005; Harrison
et al., 2014; Laffaille et al., 2006; Parsons et al., 1977).

The underlying mechanisms of this facultative migration are far
from being elucidated but some studies proposed a conditional strategy
based on individual's energetic status in the European eels (Bureau du
Colombier et al., 2007; Edeline, 2007; Edeline et al., 2006). Indeed,
most glass eels do not feed during migration (Bardonnet and Riera,
2005) and energy reserves accumulated by the leptocephalus larvae
during oceanic migration are used to sustain activity and reach fresh
water (Kawakami et al., 1999; Tesch, 2003). According to the condi-
tional strategy, glass eels presenting high wet weight (Edeline, 2007;
Edeline et al., 2006) or high dry weight (Bureau du Colombier et al.,
2007) should have a higher propensity to migrate than those showing
low energy stores. However, some results appear to contradict the con-
ditional strategy hypothesis, either in experimental conditions (Bolliet
et al., 2017a) or in natural environments (Gaillard et al., 2015). The
European eel is listed in the IUCN red list as ‘critically endangered’ and
while the reasons for this tremendous decline of the eel population
are still not fully understood, anthropogenic causes are often pointed
out. In glass eels, global changes (pollution, increase in water tempera-
ture) may lead to an increase in energy expenditure because of a higher
metabolismor detoxication processes. The role of the energetic status of
glass eels on their ability to migrate has to be elucidated, particularly in
a contextwheremanagers do not account for variation in energetic con-
dition in their population exploitation and conservation policy.

It is noteworthy that inmost of the experiments supporting the con-
ditional strategy, the energetic status of individual was mainly evalu-
ated using integrative proxies like body mass and size. However, in
fasting andmigratingfish, energetic budgeting is a dynamic processme-
diated not only by energy reserves but also associated with a highly
interplaying network of energy metabolisms. For example, we recently
reported the existence of a non-random fluctuating expression dynam-
ics of autophagy- and lysosome-related genes during long term fasting
in A. anguilla glass eel and demonstrated a significant contribution of

these transcripts production over time to weight loss (Bolliet et al.,
2017b). Besides its function in the removal of altered or dysfunctional
proteins and organelles, autophagy plays also a critical role in energy
supply by allowing starved cells to mobilize their own constituents in-
cluding lipid and glycogen stores (Singh and Cuervo, 2012). Another
well-documented cellular energetic pivot is mitochondrial metabolic
system mediated through ATP production and antioxidant activity
(Bermejo-Nogales et al., 2015), but the detailed role of mitochondrial
functions as autophagy processes on mediating glass eel's locomotion
has been seldom studied.

Here, we sought to clarify the relationship between European glass
eel energetics and their pattern ofmigration behavior, in the framework
of the conditional strategy. For this purpose, we characterized the indi-
vidual's energetic status of glass eels in terms of wet weight (as a proxy
of energy stores), standard metabolic rate (SMR) and transcriptomic
profile of metabolism-related genes and determined the relationship
of these energy- and metabolism-related factors with the propensity
to migrate of glass eels, as evaluated in experimental condition. In
order to strengthen the possible link between energetic status of glass
eels and their propensity to migrate, we used glass eels arriving at the
mouth estuary in autumn and spring known to present high and low
energetic stores, respectively (Charlon and Blanc, 1982; Claveau et al.,
2015; De Casamajor et al., 2000; Elie, 1979).

2. Materials and methods

2.1. Ethics

Procedures used in this study have been validated by the ethics com-
mittee N°073 (ref: 2017012015086652). The experiment was carried
out in strict accordance with the EU legal frameworks, specifically
those relating to the protection of animals used for scientific purposes
(i.e., Directive 2010/63/EU), and under the French legislation governing
the ethical treatment of animals (Decret no. 2013-118, February 1st,
2013).

2.2. Origin and handling of fish

Themainmigration season of glass eel in South-West France coastal
area lasts fromNovember to April. In this study, one group of 72marine
glass eels was sampled using a dip-net at night and during flood tide on
November 3rd 2016 and the samenumber of glass eels were sampled in
the same way on November 17th (hereafter autumn glass eels). Simi-
larly, 72 glass eels were sampled on April 13th 2017 and the same num-
ber of glass eels were sampled again on April 28th (hereafter spring
glass eels). The sampling marine site is located at Moliets (43° 55′N, 1°
23′W, located 40 km north of the mouth of the Adour estuary, Fig. 1).
After each collection, glass eels were transferred to the laboratory and
maintained at 12 °C overnight in a tank containing aerated water from
the fishing site. In the next morning, all glass eels were anesthetized
and individually measured for initial wet weight (Sartorius CP 153 bal-
ance, ±1.0 mg) and length (±1.0 mm). Measurements of triglycerides
(TG) at the end of the experiment allowed us to highlight a significant
correlation between the final wet weight of individuals and their TG
levels in both seasons (Pearson's correlation test, p = 0.0002 and p =
0.00001, respectively). According to these results, wet weight was
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considered in this study as a good proxy of energy stores. Pigment
stages were determined according to the criteria of Elie et al. (1982),
who described eight stages: VA, VB, VIA0, VIA1, VIA2, VIA3, VIA4 and
VIB, in order of increasing pigmentation. 100% of marine glass eels pre-
sented a VB stage, regardless of the season.

36 of the 72 individuals were randomly selected and tagged using
Visible Implant Elastomer (VIE Tag) (combinations of one or two hypo-
dermic spots of different colors as described by Imbert et al., 2008) in
order to follow the swimming activity individually. Once tagged, glass
eelswere released towake up in thewater fromfishing sitewith the un-
tagged fish. During the next 48 h, the water was continuously aerated
and progressively diluted with fresh water. Water temperature (12 ±
0.5 °C) was regulated using an air conditioner.

2.3. Experimental design and protocol

For each experiment, 36 tagged animals were mixed with the same
number of untagged ones to facilitate synchronization of swimming ac-
tivity to the change in water current direction by increasing density
(Bolliet and Labonne, 2008; Bolliet et al., 2007). This group of 72 glass
eels was released to an annular tank (Fig. 2) installed in a
temperature-controlled room. To mimic the tides, the tank was
equipped with two pumps - located at its opposite ends - that alter-
nately generated clockwise or counterclockwise water flow every
6.2 h as described in Bolliet et al. (2007). The room was maintained
under a photoperiod of 12 L/12 D with a very low light intensity during
the photophase (0.2–0.3 μW/cm2) and a constant UV light (0.6 μW/
cm2). The water temperature was kept at 12 ± 0.5 °C and continuously
recorded by thermistors placed in the tank.

The swimming activity of glass eels was traced individually during
seven days by a camera programed to record 15 s every 40 min. The
UV light allowed the identification of each glass eel during the light
and dark phases by its elastomer mark. The sampling session duration
was chosen to allow fish to pass once through the camera's field of
view when swimming in the water column (see Bolliet and Labonne,
2008). A total of 177 sessions of 15 s were obtained for autumn glass
eels and the same number of sessions for spring ones.

To migrate up estuary, glass eels must synchronize their swimming
activity to the tide to use selective flood transport but they also have
to sustain swimming activity. So, to evaluate the propensity of glass

eels to migrate in our experimental conditions, we first analyzed the
synchronization of their swimming activity to the change in water cur-
rent direction (every 6.2 h). When the swimming activity was synchro-
nized to the water current reversal with a period of 12.4 h, glass eels
were considered as having a high propensity tomigrate andwere called
‘active’. In contrast, fish that did not synchronize and stayed in the sub-
stratum most of the time were called ‘non-active’. Then, the level of
swimming activity in active glass eels was quantitatively analyzed by
counting the total number of observations of each elastomer mark for
the 177 sessions of 15 s recorded in each experiment.

After the swimming test, we obtained 35 active glass eels in autumn
(19 and 16 in the two experiments, respectively) and 12 active glass eels
in spring (5 and 7 in the two experiments, respectively). Active and non
active glass eels were pooled per season for analyses.

2.4. Standard metabolic rate (SMR) assay

22 active and 13 non-active glass eels and 12 active and 24 non-
active glass eels in autumn and spring, respectively, were randomly re-
trieved for oxygen consumption determination. Briefly, glass eels were
acclimated in a same tank with still water for three days to stay at rest
and relative quiet before analysis. Then, theywere transferred to 12 res-
pirometry chambers (diameter: 11.2 mm, length: 90 mm) of an inter-
mittent flow respirometer as described by Régnier et al. (2010), where
oxygen consumption was measured individually (one fish per cham-
ber). Tagged glass eels were introduced in the chambers at 3 p.m. and
oxygen consumption was recorded continuously every minute until
10 a.m. the next day. The closed/open phase of the system was
20 min/20 min and the duration of the closed phase was determined
in order that oxygen level in the chamber was always kept above 80%
O2 saturation. After termination of the SMR measurements, the back-
ground respiration, i.e. oxygen consumption within the respirometer
due to microbial respiration, was estimated by measuring the oxygen
consumption rate in the respirometer without a fish (i.e. blank run for
2 h). Temperature and photoperiod used for the acclimatization phase
and oxygenmeasurement were similar to those used for the behavioral
test. The first 15 h were considered as a period of acclimatization and
the average oxygen consumption per eel was calculated using the last
4 h of recording. Measurements were conducted for three days in au-
tumn and spring. SMR (mm3O2/h)was expressed inmm3O2 consumed
per hour. We then regressed the logarithm of SMR on the logarithm of
wet weight, and used the residuals of this model (i.e., relative SMR)
for further analyses. Following oxygen consumption measurement,
glass eels were anesthetized, individually measured for wet weight
(Sartorius CP 153 balance,±1.0mg) and length (±1.0mm) and stocked
at−80 °C after immersion in liquid nitrogen.

Fig. 1. Sampling station of glass eels.

Fig. 2. Diagrammatic top view of the annular flume.
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2.5. High throughput quantitative RT-PCR

The extraction of total RNA from each glass eel analyzed for its oxy-
gen consumption was performed using TRIzol reagent (Invitrogen,
15596018) according to themanufacturer's recommendations. Onemi-
crogram of the resulting total RNA was reverse transcribed into cDNA
using the SuperScript III Reverse Transcriptase kit (Invitrogen,
18,080,085) with random primers (Promega, Charbonniéres, France)
according to the manufacturer's instructions.

Primers specific to 59 genes involved in either energymetabolism or
oxidative stress (Table 1) were newly designed using Primer3 software

(version 4.1.0) and based on the available genomic resources for the
European eel (GenBank assembly accession GCA_000695075.1).
Primerswere validated on a Roche LightCycler 480 System (RocheDiag-
nostics, Neuilly sur Seine, France). The assays were performed using a
reaction mix of 6 μl per sample, each of which contained 2 μl of diluted
cDNA template, 0.24 μl of each primer (10 μM), 3 μl Light Cycler 480 SY
GreenMastermix (Roche Diagnostics, 4887352001) and 0.52 μl DNAse/
RNAse-free water (5 Prime GmbH, 2500020). The PCR protocol was ini-
tiated at 95 °C for 10 min for initial denaturation of the cDNA and hot-
start Taq-polymerase activation, followedby 45 cycles of a 3-step ampli-
fication program (15 s at 95 °C; 10 s at 60 °C and 15 s at 72 °C). Melting

Table 1

Genes involved in each metabolism-related function and sequences of the primer pairs used for real-time quantitative RT-PCR.

Function Sub-function Gene abb. 5′/3′ forward primer 5′/3′ reverse primer

Autophagy-lysosome system Macroautophagy atg5 AGGGTCAGGTGGTCAATGAG CTGTCGCTCATCGTCTGGTA
atg7 CCTGAGCTCTCCCTGAACAC CAGATCCAAGGAAGGAACCA
atg12 GCAGTAGGGGACACTCCTAT CACTGCCAAAACATTCAAATAAC
lc3 TACAGGACATAGGCCGCTAA ACTCGCTGTTCAAATGTCCT
ulk1 GGACCTGTGGAGCATAGGAA GGAAAAACTCATCGAAGTCCAT

Lysosome

catha GGGAACAAGCACCTGCATTA CGCCATCATCCTGAATTAGA
cathd TCCAGGGAGAGTACATGGTTG ACATCTCCCAGAATCCACAG
cathf GGGATATGGACATCGTAATGG GCAGATGGGCGTTGTTTAAT
cathl TCAGTTCTACCAATCTGGAATCTAC CTTCCTGTCTTTGGCCATGT
tfeb TGTCCAGCAGTCACATGGAT CTTCCGACAGCTCCTTCTTGA
lipa GTGTGCGTTTGCTTGTGTCT TTTTCACAGTGGCTTCATGC

CMA

lamp2a CTGAGGAATGCCAAGCTGAT TGAAATAGGCCACCAACACA
phlpp1 GAGGAGGTGAAGAGGCACAG CAGACTGCAGCATGACAGGT
hsp90 GAAGGCAGAGGCTGACAA ATCAATTCCCAGGCCAAGTT
hsc70a ATGTCAAAGGGACCAGCAG ATCAGCCTCTCGGTGTCAGT
hsc70b AGCAGTTGGGATTGATCTGG CAACTTGATTCTTCGCTGCAT

Mitophagy

fundc1 TGGTGTGCAGGATATCTTTTTCA GCTTTGTTCACGTCCTTCTC
pink1 TAGCTGCCAACATTCTGCAC CCAGGAAGCACCTCTGTAGC
parkin CTGGACTGCTTCCACACGTA CGTACTGCTCCTCTCCAAGG
bnip3a GGGAAAATGAGTTGCACGTT CCCTTGCATTTTGGGTAGAA
bnip3b TAGCCAGGGTAAATGCAAGG TCCCAGCAGCAGGTCTATTT

Mitochondrial turnover Mito biogenesis pgc1α1 GATGAGAGACGGGTGGTGTA GTGTAGCGGTAGGTGATGAAG
pgc1α2 AGGTGGCAAGACACAAAACC CCGGACGTGAGGTACTTGAG
tfam CACAATGCCGGCAAAGTTGA CACAACGTCCTCTCGTCCAA
hsp60 TGGACGCTGGAGATCTTCTT TCACTGTGAAGGATGGCAAA

Mito Fusion
mfn1 GCTGAGAGACGACCTGGTTC AAAGTGTTTCTCCGTGTTCATC
mfn2 CCTGGTGCAATGTCTCTGGT TTTGATGTAGGCCGCCAACT
opa1 CCACTACTACCAGAGGGGCT CCAGGACCTCCTTCACGTTC

Mito Fission drp1 AAACTGGACCTGATGGATGC GGGAGGGGTACTTCTTCTGC
Mitochondrial metabolism Fatty acid catabolism cpt1α1 AGAGACCTGTGACCCCACAC TGAAGACATGTACCCCACCA

cpt1α2a TGATGTTCAGGAGCTTGTGC GTTCTGGCAAGTGCAACTCA
cpt1α2b AGGCAGGTGTACCTCTCTGG GCGCACTGAGAGACTGACTG
cpt1β CCAGGCTGTGGATGAATCTT GCCGAGTGCTTTTTGAAGTC
hadh CCTTCGATGCTCTCCTTGAC GGCCACATCAATGTCTTCCT

Amino acid catabolism

glud1 CGAGGATCCGAACTTCTTCA GACAGGCTCAAAACGTGGTT
got1 CAACAGATCGGCATGTTCAG TTATTGGACCTTGGTGACAGC
got2 GGAGTGTTACCGTCCAGAGC GTGTAGGCCTTGAGCTGCAT
gpt2a TTAAGAAGCCATTCACTGAGGT TGGGCATGTGCAGAGAGC
gpt2b ACTCCACATCCAAGTGCTACAT CGACACCAGTTTGGTGAGC

Mitochondrial respiratory chain complexes
mt-ATP6 CTAGGCCTGCTCCCATACAC CTGGTGTTCCTTCTGGCAGT
mt-nd5 CCTCTGTTCAGGCTCCAT GGGCTCAGGCGTTAAGGTA
cox1 TAGAGGCCGGAGCTGG GGGGAGTTTGGTACTGTGTAAT

Mito 12S rRNA 12s rRNA ACCCGTGAGAATGCCCT GTGGCTGGCACGAGTT
Antioxidant system sod1 TCAAGGACAGAATGCTCACG TTTTCAGGCTTTCCTCGTTG

sod2 CACCACGCCACATATGTCAA AGCTCCCCTTGAGGTTCC
catalase AGCAACCGATCAAATGAAATTATGG CAGCTCCCTTGGCGTG

mtl TGCACTACGTGTAAGAAAAGCTG TTCATGTTCAGGCAGGAATG
gstp CACTGGGGATGTAGGCTGTT GCCAGACTGATCAACTGCAA
gsr GCCCTATCGCTCTCAGTGAC GAGGTCACAGACCCCAGTGT
gpx1 CAAGTGCATCATCTGGAGCC GGGACGTTTTACTTCGCCAG
gfap TGGAGATCGAGAGGGACAAC CCTCTCCAACTGGACACGAT

Cytosol catabolism Lipid catabolism hsla GGTCACCTCCGGCATAAGTA AATGACCAACAGCAATGCAA
hslb CTGTCAGAGACGGAGCTGAT AGATGAGGCGCATGTTGAC
mgl TGCAGCACATAGACCAGATCA AACACCTTGACGGGTGAGAC
atgl1 CACCAACACCAGCATTCAGT CTCGATATTGCAGCAGTCCA
atgl2 GGTGATGGCAGAGATGTGTC CTTCTCAGGCACGGGTTG
atgl3 GCGCGCAAAATTTAGTGTTT TCCTCTTCACTCCCTTCAGC

Protein catabolism
fbxo32 TCCTCTTCTGGAAGGACACA TCCAGGAATCCATTGCACTA
murf1 CTGTGAAGTCTCGCCCCTAC CAACTGCTTCTGACGCTGAC

Reference gene luciferase CATTCTTCGCCAAAAGCACTCTG AGCCCATATCCTTGTCGTATCCC
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curves were systematically monitored (temperature gradient at 1.1 °C/
10 s from 65 to 94 °C) at the end of the last amplification cycle to con-
firm the specificity of the amplification reaction. Each PCR assay in-
cluded negative controls (reverse transcriptase- and cDNA template-
free samples, respectively). Finally, to confirm specificity of the de-
signed primers, the amplicons were purified and sequenced
(Beckman-Coulter Genomics, Takeley, UK). The validated primers are
listed in Table 1.

High-throughput qRT–PCR was performed by the Genotoul service
(https://get.genotoul.fr) in Toulouse (France) using the BioMark 96:96
Dynamic Array integrated fluidic circuits (Fluidigm Corporation, San
Francisco, USA) described in Cassan-Wang et al. (2012). The specificity
of the PCR products was confirmed by analyzing melting curves. Only
primers that produced a linear amplification and qPCR products with
a single-peak melting curves were used for further analyses. The
efficiency of each pair of primers was determined from the data of
amplification Ct value plot with a serial dilution of mixture cDNA.
2−ΔΔC
T method was used to calculate relative mRNA fold change using

formula 2ΔCt_target (control−sample)/2ΔCt_reference (control−sample) (Livak and
Schmittgen, 2001). The relative expression of Luciferase was used for
data normalization as described previously (Marandel et al., 2016).

2.6. Statistical analyses

To characterize the propensity of glass eels tomigrate,we first inves-
tigate the synchronization of glass eel's swimming activity to the change
in water current direction (active/non-active). We assumed that the
swimming activity of an individual i at time t AC(t, i) followed a
Bernoulli distribution of probability P(t, i) such as:

AC t; ið Þ � dbern P t; ið Þð Þ

We assumed that P(t, i) was a periodic function of time, since it has
been previously shown that glass eels display rhythmic swimming ac-
tivity in response to current reversal (Bolliet and Labonne, 2008):

logit P t; ið Þð Þ ¼ a ið Þ � sin t � b ið Þ þ c ið Þð Þ þ d ið Þ

where a(i) was the strength of the synchronized component of activity,
b(i) was related to period, c(i) was related to the trigonometric function
phase, d(i) was the non-synchronized component of activity. Fish hav-
ing a P value above the mean of Pmeanwhile having an activity period-
icity close to 12.4 h were considered synchronized and active, others
were considered non-active.

A Markov-chain Monte-Carlo (MCMC) sampling approach with
Gibbs algorithm in the Bayesian framework (Spiegelhalter et al., 2000,
Openbugs software, Version 3.2.3) was used to estimate parameters a,
b, c, d. Convergence of estimates was reached during a first set of
10,000 iterations. Another consecutive set of 5000 iterations was run

to approximate the posterior distribution of parameter estimates (see
Supplementary material 1).

The second parameter used to evaluate the propensity of glass eels
to migrate was the level of swimming activity in active glass eels,
expressed as themeannumber of times each individualwas seen swim-
ming in the water column during 7 days.

All other statistical analyses were performed using the R software
(v.3.3.1)/R Commander Package. Datawere presented asmeans± stan-
dard deviation. The comparison of number of active fish in the two sea-
sons was analyzed by chi-square test based on the counts of active/non-
active fish and the average swimming activity in the two seasons was
compared by Student's t-test. Normalized genes expressions were first
analyzed using a hierarchical clustering analysis based on correlation
between genes (R Pvclust package). We used the Approximately Unbi-
ased bootstrapping approach to detect clusters of genes (with an accu-
racy p-value N0.95) that displayed the same overall patterns throughout
the experimental conditions (see Supplementary material 2). Two-way
ANOVAwas used to analyze the varyingwet weight, length and relative
SMR in response to season and migration behavior. The interactions in
the responses were also evaluated. Differences were considered statisti-
cally significant at p b 0.05. For synchronized fish, the relationships of
swimming activity to wet weight, length and relative SMR were esti-
mated by simple linear regression model. The regression model was
considered significant at p b 0.05 level. Finally, we evaluated whether
genes expression level was correlated with swimming activity (for syn-
chronized fish) for both seasons. To do so, we first grouped genes into
five metabolism-related functions: autophagy-lysosome system, mito-
chondrial turnover, mitochondrial metabolism, antioxidant system
and cytosol catabolism (see Table 1). For each group of genes, we ran
a Principal Component Analysis (PCA), using a table providing the
gene expression levels for all individuals. We then retrieved the score
of individuals on the first axis of the PCA, and used these coordinates
as a synthetic indicator of the individual level of expression for the ge-
nomic function. We then assessed the effects of the swimming activity,
the season, and the interaction of both on this synthetic indicator of the
genomic function, using a linear regression model. Bonferroni's adjust-
ment formultiple comparisons (here five) lowered the statistical signif-
icance to p b 0.01 level.

3. Results

3.1. Seasonal variation in glass eel swimming activity

Onedead glass eelwas found in autumnglass eels and two in spring-
time glass eels after the swimming test, which left a total of 71 and 70
glass eels in autumn and spring, respectively. The propensity of glass
eels to migrate was investigated by their ability to synchronize their
swimming activity to the change in water current direction every
6.2 h. Glass eels presenting a swimming activity with a period of

Fig. 3. Swimming behavior of autumn and spring glass eels. (a) Number of active glass eels, (b) level of swimming activity of active glass eels expressed as themean number of times each
individual was seen swimming in thewater column during 7 days. Data is presented bymeans± standard deviation. Statistical significance p-values are indicated at 0.05% level. Numbers
in the x-axis text represent sample sizes for each group.
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12.4 h were considered as active and the others as non-active. Results
showed that the number of active glass eels was higher in autumn
than in spring (chi-square test, X2 = 15.0, p b 0.001; Fig. 3a). Then,
the level of swimming activity was analyzed in active glass eels using
the mean number of times each individual was seen swimming in the
water column during 7 days. Swimming activity level was higher in au-
tumn than in spring with a mean of 68 ± 41 and 32 ± 21 observations
in autumn and spring, respectively (Student's t-test, p b 0.001; Fig. 3b).
The mean number of observations in inactive glass eels (not synchro-
nized to the change in water current direction) was 3 ± 4 in autumn
and 2 ± 3 in spring.

3.2. Energetic status of glass eels depending on season and migration

behavior

The energetic status (wet weight, length, standard metabolic rate
(relative SMR) and transcriptomic profile of metabolism-related
genes) was investigated in 35 autumn glass eels (22 active and 13
non-active) and in 36 spring glass eels (12 active and 24 non-active).

3.2.1. Wet weight, length and relative SMR

The initial wet weight of autumn glass eels measured before the
swimming test ranged from 315 to 398 mg and was higher than that
measured in spring glass eels (124 to 285 mg, Fig. 4a, two-way
ANOVA, p b 0.001). Similar results were observed for length ranging
from 70 to 76 mm in autumn and from 60 to 72 mm in spring (Fig. 4b,
two-way ANOVA, p b 0.001). No significant difference in length or
weight was observed between active and non-active fish in autumn or
spring (Fig. 4a, b, two-way ANOVA, p = 0.902 in wet weight, p =
0.565 in length). There was also no interaction between migration be-
havior and season for these two parameters. Relative SMR, showed no
significant difference depending on season (Fig. 4c, two-way ANOVA,
p = 0.666) or migration behavior (p = 0.441). However, a weakly sig-
nificant interaction between these two factors was observed (p =
0.048), wherein active glass eels presented a slightly higher relative
SMR than non-active ones in autumn but not in spring.

3.2.2. Expressions of genes involved in energetic metabolism

We analyzed mRNA levels of 59 genes and showed the results by a
heat map in a red-white scale (from lower to higher mRNA-expression
level, Fig. 5). Some of these genes code for proteins involved in the
autophagy/lysosome-related functions, including Macroautophagy (the
best characterized sub-class of autophagy involving the formation of
double-membrane organelles, or autophagosomes,which engulf portions
of cytoplasm for subsequent degradation via lysosomes), Mitophagy (a
macroautophagy-dependent specific degradation of mitochondria) and
Chaperone-mediated autophagy (a specific autophagic route, known as
CMA, that involves the direct delivery of cytosolic proteins targeted for
degradation to the lysosomes). The other genes code for proteins involved
inmitochondrial turnover andmetabolism, the cytosol catabolism and fi-
nally the antioxidant system.mRNA levels of these genes were compared
in response to season and migration behavior. Using clustering analyses
and bootstrapping on normalized individual gene expression data we de-
tected two clusters of genes (and some genes outside) that displayed the
same overall patterns throughout the experimental conditions. Overall,
the genes involved in energy stress resistance (macroautophagy and
mitophagy) clustered in the group of genes overexpressed in spring
glass eels compared to autumn ones, while genes involved in energy pro-
duction and use (mitochondrial metabolism and CMA) showed an oppo-
site trend. In detail, four macroautophagy genes (atg5, atg7, atg12, ulk1)
and fourmitophagy receptors (fundc1, pink1, bnip3a, bnip3b), showed sig-
nificantly higher transcript levels in spring than in autumn, reflecting ad-
vanced energy distress in spring glass eels. In this regard, higher
expression was also evidenced in spring glass eels for the gene drp1,
known as themain player in the process of mitochondrial fragmentation,
and three genes involved in mitochondrial biogenesis (pgc1α1, pgc1α2,

hsp60), suggesting high mitochondrial turnover to compensate to the
loss of mitochondria through mitophagy. In contrast, two genes (mfn1

andmfn2) involved in mitochondrial fusion and cooperation were signif-
icantly more expressed in autumn than in spring. Likewise, most studied
mitochondrial metabolism related genes, i.e., two genes coding for sub-
units of the mitochondrial membrane respiratory chain (mt-ATP6, mt-
nd5), two genes involved in fatty acid catabolism (cpt1α1, hadh) and

Fig. 4. Box-plots (median, 25–75% CI, min-max) of the wet weight (a), length (b) and
relative SMR (c) of glass eels in response to season (autumn and spring) and
differentiated migration behavior (A = active, NA = non-active). Statistical significance
p-values and the interactions in the responses are indicated. Numbers in the x-axis text
represent sample sizes for each group.
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five genes involved in amino acid catabolism (glud1, got1, got2, gpt2a,
gpt2b), exhibited higher expression in autumn than in spring. Interest-
ingly, a similar trend was also observed for the genes related to CMA
(hsc70a, hsc70b, lamp2a, hsp90, phlpp1), which has been demonstrated
to play a major role in the regulation of the hepatic intermediary metab-
olism. Similarly, five genes involved in the oxidative stress defense (sod1,
sod2,mtl, gstp and catalase) clustered in the group of genes overexpressed
in autumn glass eels, possibly as a consequence of higher mitochondrial
activity in these animals compared to their spring counterparts. Alto-
gether, these results highlighted the existence of strong differences of
the metabolic status between autumn and spring glass eels. However,
no clear difference was evidenced between active and non-active glass
eels whatever the season considered.

3.3. Relationships of the swimming activity levels of each active glass eel

with its energetic status

The individual swimming activity level, expressed as the number of
observations for each active glass eel swimming in the water column,
ranged from 11 to 161 in autumn and from 11 to 79 in spring.

Linear regression models showing the correlations between the
level of swimming activity in active glass eels and the individual wet
weight, length and relative SMR are presented in Fig. 6. In autumn
glass eels, activity levels were positively correlated to relative SMR
(Fig. 6c) but not with wet weight or length (Fig. 6a, b), while spring

glass eels displayed a positive correlation between activity and body
weight and length, but not with relative SMR (Fig. 6a, b, c).

Among the five genomic functions of interest (autophagy-lysosome
system, mitochondrial metabolism, mitochondrial turnover, antioxi-
dant system and cytosol catabolism), the expression levels ofmitochon-
drialmetabolismgenes and antioxidant system geneswere significantly
related to swimming activity (Fig. 7). We found a positive relationship
between thefirst axis of the PCA for bothof the functions and swimming
activity level (two-way ANOVA, p = 0.008 for mitochondrial metabo-
lism and p = 0.007 for antioxidant system), with no effect of season
(p = 0.772 and 0.074, respectively) and no significant interaction (p
= 0.560 and 0.384, respectively; See Supplementary material 3). For
both functions, the first axis of the PCA explained 51% of the total gene
expression variance. For mitochondrial metabolism function, this first
axis was mainly correlated to genes of fatty acid catabolism (cpt1α2b
and hadh), amino acid catabolism (got1, got2, gpt2a, gpt2b and glud1),
mitochondrial respiratory chain complexes (mt-nd5 and mt-ATP6) and
12s rRNA, while for antioxidant system, this first axis was mainly corre-
lated to sod1, sod2, catalase, gstp andmtl genes (see Supplementary ma-
terial 4).

4. Discussion

The main objective of this study was to investigate the relationship
between European glass eel energetics and their pattern of migration
behavior, in the framework of the conditional strategy. For this purpose,

Fig. 5.Heatmap ofmean gene expressions calculatedper season andmigration behavior (A=active, NA=non-active). The heatmap is organized through hierarchical clustering based on
correlation of expression between genes among individuals. Two clustersweredetectedusing bootstrapping resampling to estimate approximatedunbiased values. Theywere statistically
supported with accuracy p-values N0.95. Six other genes did not fit in any of the two clusters.
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we used autumn and spring marine glass eels known to present high
and low energetic stores, respectively. We did observe a higher propen-
sity to migrate in autumn as predicted by the conditional strategy, and
individual swimming activity level was also higher in autumn. How-
ever, when we compared the energy status of active and non-active
glass eels within each seasonal group, we found no support for the con-
ditional strategy: both behavioral groups showed similar wet weight
and length. At the individual level, we also found little support for the
conditional strategy: energy storeswere correlated to the level of swim-
ming activity in active glass eels only in spring, not in autumn. These

results are further explained partly by variation in metabolic rates be-
tween individuals, and partly by the transcriptome analyses, that indi-
cate striking contrasts in the metabolic states of autumn versus spring
eels.

4.1. Autumn and spring glass eels: highly contrasting metabolic states

Final wet weight was highly correlated to triglycerides (see
Section 2.2) and wet weight was considered in this study as a good
proxy of energy stores. Here we show that autumn glass eels displayed

Fig. 6. Scatter plot for the observed individual swimming activity of active autumn and spring glass eels against thewetweight (a), length (b) and relative SMR (c). Empty circle=autumn,
full circle = spring.
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higher wetweight than spring ones, which is in close agreement to pre-
vious observations made in A. anguilla glass eels (Charlon and Blanc,
1982; Claveau et al., 2015; De Casamajor et al., 2000; Elie, 1979). Such
seasonal differences in biomass and energetic stores have been sug-
gested to be due to the seasonal variations in oceanic ecosystems pro-
ductivity affecting the growth of leptocephalus larvae during
transatlantic transport (Désaunay and Guerault, 1997).

To further characterize the glass eels studied here, we measured
their relative standardmetabolism but no significant differencewas ob-
served between seasons. A high-throughput qRT-PCR analysis was then
performed allowing the simultaneous assessment of the expression of
59 genes involved in energy metabolism and oxidative stress. They in-
clude genes of the autophagy-related pathways (including
macroautophagy, mitophagy and CMA), genes involved in mitochon-
drial turnover andmetabolism and genes of the cellular antioxidant sys-
tem. Our results show that most of the monitored mitochondrial
metabolism-related genes clustered in the group of genes
overexpressed in glass eels caught in autumn compared to those sam-
pled in spring. Similarly, the two genes mfn1 and mfn2, known to pro-
mote mitochondrial fusion and therefore the cooperation between
these organelles (Chen et al., 2003) also grouped to this cluster. These
data strongly support that autumn glass eels displayed higher energy
production capacity and use than the spring ones. Interestingly, autumn
glass eels also presented higher expression of genes related to CMA,
known as a master regulator of intermediary metabolism (Tasset and
Cuervo, 2016), which support this idea.

In contrast, genes involved in energy stress resistance
(macroautophagy and mitophagy) grouped in the cluster of genes
overexpressed in spring glass eels compared to autumn glass eels.
Macroautophagy is nowwidely recognized to play amajor role inmobi-
lizing diverse cellular energy and nutrient stores (including proteins,
carbohydrates and lipids) as well as cellular organelles (includingmito-
chondria, peroxisome, endoplasmic reticulum, the nucleus and ribo-
somes) during starvation in a large panel of taxa (Kaur and Debnath,
2015). This process is described as a key adaptive response to modulate
the metabolism and provides energy when nutrients are scarce.
Macroautophagy increases during periods of cellular stress in many eu-
karyotic species (from yeast to mammals) in order to conserve energy
and promote survival. In this regard, we recently reported a significant
contribution of macroautophagy-related transcripts production during
long-term fasting to weight loss in glass eels (Bolliet et al., 2017b).
The over-representation of genes involved in macroautophagy but
also in mitophagy in the cluster of genes highly expressed in spring
glass eels compared to their autumn counterpart would therefore re-
flect a higher catabolic state and an energy distress in spring glass eels.

Overall, the data clearly show that autumn and spring marine glass
eels exhibit strong differences in term of both energetic stores and
transcriptomic profile of metabolism-related genes, making them rele-
vant models for a better understanding of the relationship between
glass eel's organism energetics and their pattern of migration behavior.

4.2. Active vs non-active glass eels

Tomigrate up estuary, glass eels synchronize to the flood and mobi-
lize energy stores accumulated by the leptocephalus stage to sustain ac-
tivity (Forward and Tankersley, 2001; Gascuel, 1986; Jellyman, 1979;
McCleave and Kleckner, 1982; Wippelhauser and McCleave, 1987). In
our experimental conditions, fish that synchronized their swimming ac-
tivity to the change in water current direction with a period close to
12.4 h were considered as having a high probability to migrate. They
were called active glass eels. In contrast, non-active glass eels did not
synchronized to thewater current reversal andwere considered as hav-
ing a low propensity to migrate.

As most glass eels do not feed during migration (Bardonnet and
Riera, 2005), energy stores have been considered as a physiological
driver in fueling the landward colonization (Edeline, 2007; Edeline
et al., 2006). Using salinity preference experiment, it has been suggested
that European glass eels choosing fresh water should present a higher
energetic status and migration activity than those choosing salt water
(Edeline et al., 2005). According to these studies, it was expected here
that active glass eels would have a higher wet weight that non-active
ones. However, although the higher number of active glass eels and ac-
tivity level observed in autumn glass eels were associated to a higher
initial wet weight when compared to spring fish, active and non-
active glass eels did not show any difference in wet weight in autumn
nor in spring. This suggests that energy stores might possibly enhance
migration but also that a conditional strategy based on an individual's
energetic status cannot fully explain the European glass eel migration
behavior observed in our experimental conditions.

Another factor thatmay be involved in the underlyingmechanism of
migration concerns relative SMR that represents an integrativemeasure
of the energy expenditure and the celerity at which energy stores are
consumed. In salmonids, it is known to fluctuate among individuals in
correlation to dominance, aggression, growth rate or starvation
(Finstad et al., 2007; Eliason and Farrell, 2016; Metcalfe et al., 2016 for
reviews). Studies investigating the relationships between SMR and pro-
pensity to migrate in fish remain scarce but there is some evidence that
low energy condition and excessive energy depletion are important fac-
tors determining successful uprivermigration in salmonids (Eliason and
Farrell, 2016 and references herein). In the present study, active glass

Fig. 7.Relationship between the first axis of the PCA for genes related tomitochondrialmetabolism (a) and antioxidant system (b) and the swimming activity level. Empty circle: autumn,
full circle: spring. The prediction plotted on the figure corresponds to a simple linear regression between thefirst PCA axis and the swimming activity level (considering no effect of season
was detected) with associated R2 and p-value.
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eels presented a slightly higher relative SMR than non-active ones in au-
tumn but not in spring. Links between metabolic rate and fish behavior
show a high intra-specific plasticity and are far from being understood
(Auer et al., 2016; Careau et al., 2008; Metcalfe et al., 2016). During
fasting, fish with a high SMRmay have less energy available to allocate
to activity but SMR may also reflect their capacity to perform activity
(Biro and Stamps, 2010; Careau et al., 2008). In addition, fasting fish
with a high SMR will deplete their energy stores more quickly that
could decide them to migrate in order to switch their habitat and
reach growth area. On the other hand, relative SMR was measured
after the swimming test and although fish were kept in a tank during
three days before oxygen measurement, one cannot exclude the fact
that it was not long enough for active fish to fully recover to a resting
metabolic rate after 7 days of activity. Zhang et al. (2018) evidenced
that exercise training increased excess post-exercise oxygen consump-
tion in exhausted Salmo salarwhen compared to control exhausted fish.
Duration of recovering reached 15 h which was longer than previously
found in the literature (Zhang et al., 2018) but still below the resting pe-
riod fixed in our experiment before oxygen measurement. Further ex-
periment comparing oxygen consumption before and after behavioral
test are now required to validate the link between relative SMR and de-
cision to synchronize to the change in water current direction in glass
eels.

To further investigate the difference betweenmigration patterns,we
thenmonitored the transcriptomic profile of active and non-active glass
eels within and between seasonal groups. However, no clear difference
was observed between active and non-active glass eels whatever the
considered season. Altogether, our data challenged the conditional
strategy based on individual's energetic status for the European glass
eels. The relationship between relative SMR andmigration behavior re-
mains to be elucidated and although no clear molecular evidence was
observed between active and non-active fish, it is not excluded that
the genes analyzed and the associated metabolic pathways may be in-
volved in the different behavior observed. Indeed, we focused on gene
expression at a single time point that does not give a real picture of
the dynamic aspect of the different events at play during complex and
integrative metabolic processes such as energy expenditure at rest,
which include not only gene transcription but also protein translation
and enzyme activity.

4.3. Variability in swimming activity level

Although the swimming activity of all active glass eels was synchro-
nized to the change in water current direction, we observed a high
inter-individual variability in activity level as expressed by the total
number of observations of each individual swimming in the water col-
umn.When the activity level was plotted to the relative SMR, a positive
correlationwas found in autumnglass eels but not in spring ones, which
may support hypothesis proposed in the previous section concerning
SMR in active and non-active autumn fish. In contrast, when the activity
level was individually plotted to the weight, a positive correlation was
found in spring but not in autumn. Interestingly, the wet weight was
higher in autumn glass eels than in spring ones and no overlapping
was observed in their distributions. This could suggests a threshold in
energy stores below which energy becomes a limiting factor for swim-
ming efficiency. In regarding to gene expression analysis, whatever
the season, the genes related to mitochondrial metabolism and antiox-
idant system positively correlated to swimming activity level. During
endurance exercise, the increase of mitochondrial respiration induces
the production of reactive oxygen species (ROS), which can lead to the
accumulation of cellular damage, unless it can be counterbalanced by
antioxidants that act to quench ROS and prevent the oxidation of
other important biological molecules (Powers et al., 2011). This finding
is also supported by a recent report on birds,where the authors summa-
rized an upregulated antioxidant system coping with the oxidative

challenges associated with migratory flight (Cooper-Mullin and
McWilliams, 2016).

4.4. Consequences for eel management

As we demonstrated, there is strong seasonal effect on both condi-
tion of eels and their behavior. Whereas autumn eels displayed high
wet weight and activity, spring eels were strongly constrained energy
wise, and displayed reducedmigration activity. Population monitorings
and management actions should therefore be evaluated in the light of
these results. For instance, because of being in energy distress, spring
glass eels might be more vulnerable to stress, whereas autumn glass
eels could provide a higher plasticity to cope with variation in environ-
mental conditions. In the context of global change, wherein fluctuations
in temperatures, hydraulic conditions or pollutantsmay increase energy
expenditure, the spring component of populations should be carefully
monitored. Measures for the recovery of the stock of European eel as
presented by the EU (Council Regulation (EC) 1100/2007) propose
stocking of eels i.e. a transfer of glass eels from their fishing area to an-
other placemore suitable to their survival and/or growth. Suchmanage-
ment actions should however be planned by carefully balancing their
costs and benefits: the spring eels should probably be avoided, for
they might have limited ability to adapt to the new environments and
also because they represent a distinct yet threatened part of the pheno-
typic variation in the population. Autumn glass eels might adapt with
more efficiency to new environments. In any case, if any restocking ac-
tion is to be implemented, themanagerswould bewell inspired to track
the effect of glass eels origins (i.e., season) on the success of their action.

5. Conclusion

Autumn and spring glass eels displayed different energy status that
may affect migration behavior in different ways. Autumn fish displayed
high energy reserves and capacity for energy production that may have
triggered migration behavior in our experimental conditions. However,
in both seasons, a conditional strategy based on individual's energy sta-
tus could not explainwhy somefishdecided to synchronize to thewater
current direction while some others stayed sheltering in the substra-
tum. The relative SMRmay be a possible candidate to explain the differ-
ent patterns of behavior in autumn glass eels but further studies are
now needed to clearly elucidate this point. Spring glass eels presented
a higher energy distress than the autumn ones and molecular results
also evidenced a higher expression of genes involved in fission,
macroautophagy and mitophagy. These processes may have helped
glass eels to maintain standard metabolism for vital functions but may
be not sufficient to allow a high swimming activity. Indeed, migration
requires energy in addition to others physiological tasks and when en-
ergy stores dwindle, the ability to migrate may be directly related to
the fish's maximum capacity to increase oxygen consumption. Investi-
gating the metabolic scope in active and non-active fish could be an-
other interesting avenue to explore. Finally, it is also paramount for
stocks and biodiversity managers to recognize that the physiological
status of glass eels arriving on the oceanic shelf change drastically
throughout the seasons, making them nonrandom parts of the whole
phenotypic variation at the species level.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

Wewish to thank the IE ECP for the technical support and the China
Scholarship Council for the grant to H.L.

10 H. Liu et al. / Science of the Total Environment 696 (2019) 134039



Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2019.134039.

References

Adam, G., Feunteun, E., Prouzet, P., Rigaud, C., 2008. L'anguille EUROPÉENNE: indicateurs
d'abondance et de colonisation. 1st ed. Coll. Savoir-faire, Versailles.

Auer, S.K., Bassar, R.D., Salin, K., Metcalfe, N.B., 2016. Repeatability of metabolic rate is
lower for animals living under field versus laboratory conditions. J. Exp. Biol. 219
(5), 631–634. https://doi.org/10.1242/jeb.133678.

Bardonnet, A., Riera, P., 2005. Feeding of glass eels (Anguilla anguilla) in the course of their
estuarine migration: new insights from stable isotope analysis. Estuar. Coast. Shelf
Sci. 63 (1–2), 201–209. https://doi.org/10.1016/j.ecss.2004.11.009.

Bermejo-Nogales, A., Calduch-Giner, J.A., Perez-Sanchez, J., 2015. Unraveling the molecu-
lar signatures of oxidative phosphorylation to cope with the nutritionally changing
metabolic capabilities of liver and muscle tissues in farmed fish. PLoS One 10 (4).
https://doi.org/10.1371/journal.pone.0122889.

Biro, P.A., Stamps, J.A., 2010. Do consistent individual differences in metabolic rate pro-
mote consistent individual differences in behavior? Trends Ecol. Evol. 25 (11),
653–659. https://doi.org/10.1016/j.tree.2010.08.003.

Bolliet, V., Labonne, J., 2008. Individual patterns of rhythmic swimming activity in Anguilla
anguilla glass eels synchronised to water current reversal. J. Exp. Mar. Biol. Ecol. 362
(2), 125–130. https://doi.org/10.1016/j.jembe.2008.06.017.

Bolliet, V., Lambert, P., Rives, J., Bardonnet, A., 2007. Rhythmic swimming activity in An-
guilla anguilla glass eels: synchronisation to water current reversal under laboratory
conditions. J. Exp. Mar. Biol. Ecol. 344 (1), 54–66. https://doi.org/10.1016/j.
jembe.2006.12.027.

Bolliet, V., Claveau, J., Jarry, M., Gonzalez, P., Beaudrimont, M., Monperrus, M., 2017a. Mi-
gratory behavior, metabolism, oxidative stress and mercury concentrations inmarine
and estuarine European eels (Anguilla Anguilla). Physiol. Behav. 169, 33–40. https://
doi.org/10.1016/physbeh.2016.11.008.

Bolliet, V., Labonne, J., Olazcuaga, L., Panserat, S., Seiliez, I., 2017b. Modeling of
autophagy-related gene expression dynamics during long term fasting in
European eel (Anguilla anguilla). Sci. Rep. 7 (1), 17896. https://doi.org/
10.1038/s41598-017-18164-6.

Bureau du Colombier, S.B., Bolliet, V., Lambert, P., Bardonnet, A., 2007. Energy and migra-
tory behavior in glass eels (Anguilla anguilla). Physiol. Behav. 92 (4), 684–690.
https://doi.org/10.1016/j.physbeh.2007.05.013.

Careau, V., Thomas, D., Humphries, M.M., Reale, D., 2008. Energy metabolism and an-
imal personality. Oikos 117 (5), 641–653. https://doi.org/10.1111/j.0030-
1299.2008.16513.x.

Cassan-Wang, H., Soler, M., Yu, H., Camargo, E.L.O., Carocha, V., Ladouce, N., Grima-
Pettenati, J., 2012. Reference genes for high-throughput quantitative reverse
transcription-PCR analysis of gene expression in organs and tissues of eucalyptus
grown in various environmental conditions. Plant Cell Physiol. 53 (12), 2101–2116.
https://doi.org/10.1093/pcp/pcs152.

Charlon, N., Blanc, J.M., 1982. Etude des civelles d'Anguilla anguilla L. dans la région du
bassin de l'Adour. 1. Caractéristiques biométriques de longueur et de poids en
fonction de la pigmentation. Arch. Hydrobiol. 93 (2), 238–255.

Chen, H.C., Detmer, S.A., Ewald, A.J., Griffin, E.E., Fraser, S.E., Chan, D.C., 2003. Mitofusins
Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for em-
bryonic development. J. Cell Biol. 160 (2), 189–200. https://doi.org/10.1083/
jcb.200211046.

Claveau, J., Monperrus, M., Jarry, M., Pinaly, H., Baudrimont, M., Gonzalez, P., Bolliet, V.,
2015. Spatial and seasonal variations of methylmercury in European glass eels
(Anguilla anguilla) in the Adour estuary (France) and relation to their migratory be-
haviour. Environ. Sci. Pollut. Res. 22 (14), 10721–10732. https://doi.org/10.1007/
s11356-015-4303-3.

Cooper-Mullin, C., McWilliams, S.R., 2016. The role of the antioxidant system during in-
tense endurance exercise: lessons from migrating birds. J. Exp. Biol. 219,
3684–3695. https://doi.org/10.1242/jeb.123992.

Daverat, F., Limburg, K.E., Thibault, I., Shiao, J.C., Dodson, J.J., Caron, F.O., Wickstrom, H.,
2006. Phenotypic plasticity of habitat use by three temperate eel species, Anguilla an-
guilla, A-japonica and A-rostrata. Mar. Ecol. Prog. Ser. 308, 231–241. https://doi.org/
10.3354/meps308231.

Davey, A.J.H., Jellyman, D.J., 2005. Sex determination in freshwater eels and management
options for manipulation of sex. Rev. Fish Biol. Fish. 15 (1–2), 37–52. https://doi.org/
10.1007/s11160-005-7431-x.

De Casamajor, M., Prouzet, P., Lazure, P., 2000. Identification des flux de civelles (Anguilla
anguilla) à partir des relations d'allométrie en fonction des conditions
hydrodynamiques de l'estuaire de l'Adour. Aquat. Living Resour. 13 (6), 411–420.
https://doi.org/10.1016/S0990-7440(00)01092-5.

Désaunay, Y., Guerault, D., 1997. Seasonal and long-term changes in biometrics of eel lar-
vae: a possible relationship between recruitment variation and North Atlantic ecosys-
tem productivity. J. Fish Biol. 51, 317–339. https://doi.org/10.1111/j.1095-8649.1997.
tb06106.x.

Edeline, E., 2007. Adaptive phenotypic plasticity of eel diadromy. Mar. Ecol. Prog. Ser. 341,
229–232. https://doi.org/10.3354/meps341229.

Edeline, E., Dufour, S., Elie, P., 2005. Role of glass eel salinity preference in the control of
habitat selection and growth plasticity in Anguilla anguilla. Mar. Ecol. Prog. Ser. 304,
191–199. https://doi.org/10.3354/meps304191.

Edeline, E., Lambert, P., Rigaud, C., Elie, P., 2006. Effects of body condition and water tem-
perature on Anguilla anguilla glass eel migratory behavior. J. Exp. Mar. Biol. Ecol. 331
(2), 217–225. https://doi.org/10.1016/j.jembe.2005.10.011.

Eliason, E.J., Farrell, A.P., 2016. Oxygen uptake in Pacific salmon Oncorhynchus spp.: when
ecology and physiology meet. J. Fish Biol. 88 (1), 359–388. https://doi.org/10.1111/
jfb.12790.

Elie, P., 1979. Contribution à l'étude des montées de civelles d'Anguilla Anguilla L., dans
l'estuaire de la Loire: Pêche écophysiologie et élevage. Ph.D. thesis. University of
Rennes I (383 p).

Elie, P., Lecomte-Finiger, R., Cantrelle, I., Charlon, N., 1982. Définition des limites des dif-
férents stades pigmentaires durant la phase civelle d'Anguilla anguilla L. (Poisson
Téléostéen Anguilliforme). Vie et Milieu 32 (3), 149–157. https://prodinra.inra.fr/re-
cord/78575.

Finstad, A.G., Forseth, T., Ugedal, O., Naesje, T.F., 2007. Metabolic rate, behaviour and win-
ter performance in juvenile Atlantic salmon. Funct. Ecol. 21 (5), 905–912. https://doi.
org/10.1111/j.1365-2435.2007.01291.x.

Forward, R.B., Tankersley, R.A., 2001. Selective tidal-stream transport of marine animals.
Oceanogr. Mar. Biol. 39 (39), 305–353.

Gaillard, M., Bernatchez, L., Tremblay, R., Audet, C., 2015. Regional variation in energy
storage strategies in American glass eels from Eastern Canada. Comp. Biochem. Phys-
iol. A Mol. Integr. Physiol. 188, 87–95. https://doi.org/10.1016/j.cbpa.2015.06.019.

Gascuel, D., 1986. Flow-carried and active swimming migration of the glass eel (Anguilla-
anguilla) in the tidal area of a small estuary on the French Atlantic coast. Helgoländer
Meeresun. 40 (3), 321–326. https://doi.org/10.1007/bf01983739.

Geffroy, B., Bardonnet, A., 2016. Sex differentiation and sex determination in eels: conse-
quences for management. Fish Fish. 17 (2), 375–398. https://doi.org/10.1111/
faf.12113.

Harrison, A.J., Walker, A.M., Pinder, A.C., Briand, C., Aprahamian, M.W., 2014. A review of
glass eel migratory behaviour, sampling techniques and abundance estimates in estu-
aries: implications for assessing recruitment, local production and exploitation. Rev.
Fish Biol. Fish. 24 (4), 967–983. https://doi.org/10.1007/s11160-014-9356-8.

Imbert, H., Arrowsmith, R., Dufour, S., Elie, P., 2008. Relationships between locomotor be-
havior, morphometric characters and thyroid hormone levels give evidence of stage-
dependent mechanisms in European eel upstream migration. Horm. Behav. 53 (1),
69–81. https://doi.org/10.1016/j.yhbeh.2007.06.011.

Jellyman, D.J., 1979. Upstream migration of glass-eels (Anguilla spp) in the Waikato
River. N. Z. J. Mar. Freshw. Res. 13 (1), 13–22. https://doi.org/10.1080/
00288330.1979.9515776.

Kaur, J., Debnath, J., 2015. Autophagy at the crossroads of catabolism and anabolism. Nat.
Rev. Mol. Cell Biol. 16 (8), 461–472. https://doi.org/10.1038/nrm4024.

Kawakami, Y., Mochioka, N., Nakazono, A., 1999. Immigration patterns of glass-eels An-
guilla japonica entering river in northern Kyushu, Japan. Bull. Mar. Sci. 64 (2),
315–327.

Krueger, W.H., Oliveira, K., 1999. Evidence for environmental sex determination in the
American eel, Anguilla rostrata. Environ. Biol. Fish 55 (4), 381–389. https://doi.org/
10.1023/A:1007575600789.

Laffaille, P., Acou, A., Guioullet, J., Mounaix, B., Legault, A., 2006. Patterns of silver eel
(Anguilla anguilla L.) sex ratio in a catchment. Ecol. Freshw. Fish 15 (4), 583–588.
https://doi.org/10.1111/j.1600-0633.2006.00195.x.

Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-
time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25 (4),
402–408. https://doi.org/10.1006/meth.2001.1262.

Marandel, L., Lepais, O., Arbenoits, E., Veron, V., Dias, K., Zion, M., Panserat, S., 2016. Re-
modelling of the hepatic epigenetic landscape of glucose-intolerant rainbow trout
(Oncorhynchus mykiss) by nutritional status and dietary carbohydrates. Sci. Rep. 6.
https://doi.org/10.1038/srep32187.

McCleave, J.D., Kleckner, R.C., 1982. Selective tidal stream transport in the estuarine mi-
gration of glass eels of the american eel (Anguilla-rostrata). J. Conseil. 40 (3),
262–271.

Metcalfe, N.B., Van Leeuwen, T.E., Killen, S.S., 2016. Does individual variation in metabolic
phenotype predict fish behaviour and performance. J. Fish Biol. 88 (1), 298–321.
https://doi.org/10.1111/jfb.126.

Parsons, J., Vickers, K.U., Warden, Y., 1977. Relationship between elver recruitment and
changes in sex-ratio of silver eels Anguilla-anguilla-L migrating from Lough Neagh,
northern-Ireland. J. Fish Biol. 10 (3), 211–229. https://doi.org/10.1111/j.1095-
8649.1977.tb05127.x.

Powers, S.K., Nelson, W.B., Hudson, M.B., 2011. Exercise-induced oxidative stress in
humans: cause and consequences. Free Radic. Biol. Med. 51, 942–950. https://doi.
org/10.1016/j.freeradbiomed.2010.12.009.

Régnier, T., Bolliet, V., Labonne, J., Gaudin, P., 2010. Assessing maternal effects on meta-
bolic rate dynamics along early development in brown trout (Salmo trutta): an
individual-based approach. J. Comp. Physiol. B. 180 (1), 25–31. https://doi.org/
10.1007/s00360-009-0385-x.

Secor, D.H., Hendersonarzapalo, A., Piccoli, P.M., 1995. Can otolith microchemistry chart
patterns of migration and habitat utilization in anadromous fishes. J. Exp. Mar. Biol.
Ecol. 192 (1), 15–33. https://doi.org/10.1016/0022-0981(95)00054-u.

Singh, R., Cuervo, A.M., 2012. Lipophagy: connecting autophagy and lipid metabolism. Int.
J. Cell Biol. 2012, 282041. https://doi.org/10.1155/2012/282041.

Spiegelhalter, D.J., Myles, J.P., Jones, D.R., Abrams, K.R., 2000. Bayesian methods in health
technology assessment: a review. Health Technol. Assess. 4 (38), 1–130.

Tasset, I., Cuervo, A.M., 2016. Role of chaperone-mediated autophagy inmetabolism. FEBS
J. 283, 2403–2413. https://doi.org/10.1111/febs.13677.

Tesch, F.W., 2003. The Eel. fifth ed. Wiley, New York.
Tsukamoto, K., Arai, T., 2001. Facultative catadromy of the eel Anguilla japonica between

freshwater and seawater habitats. Mar. Ecol. Prog. Ser. 220, 265–276. https://doi.org/
10.3354/meps220265.

11H. Liu et al. / Science of the Total Environment 696 (2019) 134039



Tsukamoto, K., Nakai, I., Tesch, W.V., 1998. Do all freshwater eels migrate? Nature 396
(6712), 635–636. https://doi.org/10.1038/25264.

Tzeng, W.N., 1996. Effects of salinity and ontogenetic movements on strontium: calcium
ratios in the otoliths of the Japanese eel, Anguilla japonica Temminck and Schlegel.
J. Exp. Mar. Biol. Ecol. 199 (1), 111–122. https://doi.org/10.1016/0022-0981(95)
00185-9.

Wippelhauser, G.S., McCleave, J.D., 1987. Precision of behavior of migrating juvenile
American eels (Anguilla-rostrata) utilizing selective tidal stream transport. J. Conseil.
44 (1), 80–89.

Zhang, Y., Claireaux, G., Takle, H., Jorgensen, S.M., Farrell, A.P., 2018. A three-phase excess
post-exercise oxygen consumption in Atlantic salmon Salmo salar and its response to
exercise training. J. Fish Biol. 92 (5), 1385–1403. https://doi.org/10.1111/jfb.13593.

12 H. Liu et al. / Science of the Total Environment 696 (2019) 134039







- 61 - 

 

2.2  Estuarine migration behavior in relation to the energetic status of glass eels in terms 
of energy stores, standard metabolism and energy-related gene expression 

Presentation of Publication 2 

Rethinking the role of selective pressure upon estuarine migration behavior in European glass eel 

(Anguilla anguilla) 

Objective and methods 

The conditional strategy based on energy suggests that once entering estuaries, glass eels will migrate up 

estuary if they have enough energy reserves. Accordingly, estuarine glass eels should represent a subsample 

of marine fish. In order to test this hypothesis, we compared marine and estuarine glass eels in terms of 

swimming behavior and energy stores. We also hypothesize that the ability to mobilize energy could be 

involved in the migration propensity and thus investigated individual metabolism and energy related genes 

expression. In addition, as glass eels energy stores strongly differ between autumn and spring individuals, 

both seasons were investigated. 

The propensity to migrate of glass eels and the relationships with their energetic status were individually 

investigated in each groups (autumn and spring marine and estuarine glass eels) as described in the 

precedent chapter.  

Results and Conclusions 

Autumn glass eels lost weight during upstream migration reflected by a decrease in wet weight, probably 

because of the 22 km covered without feeding between the sea and the estuarine site of sampling.  In 

contrast, spring estuarine glass eels presented no different weight to the marine ones, which may indicate a 

progressive process of settlement or death of some smallest individuals during migration. These results 

confirm those obtained in the first chapter and are in accordance with an energy-based conditional strategy 

in this ecotype, characterized by very low energy reserves (Figure 2-2). 

Behavioral results showed that estuarine glass eels presented a higher number of synchronized individuals 

than marine glass eels, suggesting that their ability to synchronize their swimming behavior to the rhythmic 

environmental cues may represent another factor involved in the facultative migration of glass eels (Figure 

2-2). 

In estuary, glass eels are challenged by a combination of changed temperature, salinity, hydraulic 

conditions, or pollutants which may induce a stress. Stress should increase metabolism which was supported 

in both seasons by the higher energy expenditure and metabolism observed in estuarine glass eels than in 
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marine ones. Genes related to stressful catabolism processes, including lysosomal catabolism and CMA, 

were also overexpressed in estuarine fish than in marine ones while the expression of genes related to 

mitochondrial turnover was lower in the former.  

Interestingly, in both seasons and sites, and regardless of the swimming activity levels, non-synchronized 

glass eels lost more weight than synchronized ones suggesting a higher stress or vulnerability to stress. 

Stress should increase energy expenditure but may also affect rhythmic function and endogenous clock(s). 

We hypothesize that glass eels may present a variability in their ability to cope with stress and during 

estuarine migration, the most sensitive to stress may not be able to achieve migration and would settle in 

the estuary (Figure 2-2). 
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ABSTRACT 

To investigate the facultative estuarine migration of the European glass eel, marine and estuarine 

individuals were collected in autumn and spring and their migration behavior was assessed in facilities 

mimicking the tide by a change in water current direction every 6.2 h. For each glass eel, migration behavior 

was expressed by its swimming synchronization to the water current reversal, its probability of swimming, 

and swimming rheotaxis. We then analyzed their energetic status expressed as weight, standard metabolism 

(SMR) and transcriptomic profiles of metabolism-related genes. Spring glass eels presented lower energy 

condition than autumn ones. Estuarine individuals displayed lower weight than marine ones in autumn but 

not in spring suggesting that a conditional strategy based on energy may explain facultative migration when 

energy reserves become a limiting factor. We observed a higher percentage of individuals synchronized to 

the current direction in estuarine fish than in marine ones suggesting that the selection may also target their 

ability to synchronize swimming activity to the tide. Weight loss, SMR and the expression of metabolism-

related genes suggested that estuarine glass eels were more stressed and had a lower capacity of energy 

production than marine fish. The non-synchronized glass eels also presented a higher energy expenditure 

than synchronized individuals possibly reflecting a higher stress and/or vulnerability to stress in the former. 

These results provide new insights on the facultative estuarine migration in glass eels and suggest that stress 

might represent an important factor to consider in the settlement process. 
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1 INTRODUCTION 

Threatened by a markedly dropped population size since the 1980s (ICES, 2018; Jacoby & Gollock, 2014), 

the European eel is currently classified as critically endangered on the red list of the International Union 

for Conservation of Nature (IUCN). European eels display a catadromous life history involving oceanic 

spawning in the Sargasso Sea and continental growth (Tesch, 2003).  After hatching, Leptocephalus larvae 

use ocean currents (mainly the Gulf Stream) to migrate to the European coasts. Then, larvae metamorphose 

into glass eels at the slope of the continental shelf and migrate up estuaries to reach rivers for growth (Tesch, 

2003). However, it is now well accepted that some glass eels do not migrate to freshwater and complete 

their life cycle between marine and brackish waters (Daverat et al., 2006; Tsukamoto, Aoyama, & Miller, 

2002; Tsukamoto, Nakai, & Tesch, 1998; Tzeng, Wang, Wickstrom, & Reizenstein, 2000). Demographic 

studies suggest an environmental sex determinism in the European eel closely associating the colonization 

of freshwater habitats to female production while settlement in marine or estuarine areas is mostly 

associated to males (Geffroy & Bardonnet, 2016; Tesch, 2003). Thus, the propensity to colonize rivers in 

glass eels may have strong effects on the sex ratio of the population and it is therefore crucial to understand 

both ecosystems occupation by the species and the evolutionary consequences on the population structure. 

Most glass eels fast during estuarine migration (Bardonnet & Riera, 2005) and depend upon energy stores 

accumulated by the Leptocephalus larvae to sustain swimming activity. Accordingly, a theoretical model 

of energy-based conditional strategy has been proposed as a major mechanism of the facultative migration 

in the European glass eels (Edeline, 2007). In this theory, migrant glass eels should present higher energy 

reserves than non-migrant ones but some studies, performed in experimental conditions, failed to confirm 

such difference (Bureau Du Colombier, Bolliet, Lambert, & Bardonnet, 2007; Liu et al., 2019). In addition, 

neither experimental tests nor field observations could support the conditional theory in American glass 

eels (Boivin et al., 2015; Gaillard, Bernatchez, Tremblay, & Audet, 2015). These contradictory results 

suggest that a conditional strategy based on energy, at least with the energy markers used to date, cannot 

fully explain the facultative migration in glass eels. In addition, we recently evidenced strong seasonal 

variations in the wet weight and the expression of energy-related genes in marine glass eels, spring 

individuals showing an high energy distress when compared to autumn ones (Liu et al., 2019). Such 

variations may also suggest different energy-related strategies in glass eels during estuarine migration that 

remain to be elucidated.   

Besides the energy needed to sustain swimming activity during migration, glass eels also require a good 

synchronization of activity with the environmental cues. Indeed, glass eels migrate up estuaries using 

selective flood transport: during flood tide, they move up in the water column and migrate with the current 

while they go down and remain on or in the substratum during ebb tide (Forward & Tankersley, 2001; 
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Gascuel, 1986; Jellyman, 1979). Glass eels are also synchronized to the photoperiod, avoiding light and 

swimming mainly during the night (Tesch, 2003). Both tidal and photoperiodic cues synchronize swimming 

activity through endogenous clock(s) which remain to be identified for the tidal one(s) (Bolliet & Labonne, 

2008; Bolliet, Lambert, Rives, & Bardonnet, 2007; Wippelhauser & McCleave, 1987, 1988). In a recent 

study, it has been reported that estuarine glass eels submitted to a light/dark cycle in experimental conditions 

presented a higher proportion of synchronized individuals (glass eels ascending in the water column at dusk 

to swim with the water current) than marine glass eels (Bolliet et al., 2017). As estuarine glass eels represent 

a naturally subsampled population of the total marine arrivals, the increased proportion of synchronized 

fish between the two sites may reflect a selection on their ability to synchronize their swimming activity 

with the environmental cues. Selection here is defined as the product of decision of individuals to settle in 

a given environment, and their subsequent success (i.e., survival) in doing so.  

To better understand the processes of selection during estuarine migration in the European glass eels, 

marine and estuarine individuals were collected both in autumn and spring and introduced in an 

experimental facility mimicking the alternation of tides with a change in water current direction every 6.2 

h. Their migration behaviors, mainly expressed by the swimming synchronization to the water current 

reversal and the level of swimming activity, were analyzed in relation to their energetic status including 

energy reserves, rate of oxygen consumption and expression of energy-related genes. 

2 MATERIALS AND METHODS 

2.1 Ethics 

Procedures used in this study have been validated by the ethics committee N°073 (ref: 2017012015086652). 

The experiment was carried out in strict accordance with the EU legal frameworks, specifically those 

relating to the protection of animals used for scientific purposes (i.e., Directive 2010/63/EU), and under the 

French legislation governing the ethical treatment of animals (Decret no. 2013-118, February 1st, 2013). 

2.2 Fish collection and tagging  

The peak of glass eel migration to the coastal area of South-West France occurs from November to April. 

In this study, four samplings were carried out respectively in marine and estuarine sites in November 2016 

(hereafter autumn glass eels) and April 2017 (hereafter spring glass eels). The marine site is located at 

Moliets (43° 55′N, 1° 23′W, located 40 km north of the mouth of the Adour estuary) and the estuarine site 

is located at Urt (43° 28′N, 1° 17′W, located 22 km from the mouth of the Adour estuary, Supplementary 

Figure S1). The samplings were operated using a dip-net at night and during flood tide. Once collected, fish 

were transferred to the laboratory and maintained at 12 ± 0.5°C overnight in a tank containing aerated water 
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from the fishing site. In the next morning, all glass eels were anesthetized (Benzocaine, 0.01 mg L-1) and 

individually measured for initial wet weight (± 1.0 mg) and length (± 0.5 mm). In both autumn and spring 

experiments, groups of 72 and 36 glass eels (collected from marine and estuarine sites, respectively) were 

tagged using Visible Implant Elastomer (VIE Tag) in order to follow the swimming activity individually 

under UV light (combinations of one or two hypodermic spots of different colors as described by Imbert, 

Arrowsmith, Dufour, and Elie, 2008). Previous data showed more active glass eels in estuary than marine 

(Bolliet et al., 2017) and we tested more fish in marine site than estuarine site to get sufficient sample size 

for the comparative analyses between synchronized and non-synchronized fish. Once tagged, glass eels 

were released to wake up in the water from fishing site. During the next 48 h, the water was continuously 

aerated and progressively diluted with fresh water.  

2.3 Swimming test 

In both seasons, two swimming tests were conducted for marine glass eels and one for estuarine ones. They 

were performed in an annular tank installed in a temperature-controlled room as described in Liu et al. 

(2019). The room was maintained under a photoperiod of 12 L/ 12 D with a very low light intensity during 

the photophase (0.2-0.3 µW/cm2) and a constant UV light (0.6 µW/cm2) to see the VIE Tag. The water 

temperature was kept at 12 ± 0.5°C and continuously recorded by thermistors placed in the tank.  

After acclimatization, glass eels were transferred into the annular tank and exposed to a change in water 

current direction every 6.2 h (alternately clockwise and counterclockwise water flow projected by two 

pumps fixed on the opposite ends of the tank). For each experiment, tagged animals were mixed with the 

same number of untagged ones to facilitate synchronization of swimming activity to the change in water 

current direction by increasing density (Bolliet et al., 2007). The swimming behaviour of glass eels was 

traced individually during 7 days by a camera programed to record 15 s every 40 min. The duration of 15 s 

was chosen so that a same glass eel swimming in the water column can only be observed once during a 

session. A total of 177 sessions of 15 s were obtained for each glass eel.  

In similar experimental conditions than in the present study, we previously showed that glass eels could 

synchronize to the change in water current direction by swimming with the flow (negative rheotaxis), 

against the flow (positive rheotaxis) or by alternating both behavior at each water current reversal (Bolliet 

et al., 2007; Bolliet & Labonne, 2008). Thus, the propensity to migrate of each glass eel was described in 

the present study by: (i) its level of swimming activity, (ii) its ability to synchronize its swimming activity 

to a tidal rhythm with a period of 12.4 h (hereafter called synchronized glass eels); (iii) for a synchronized 

fish, its rheotaxis (swimming with and/or against the current).  
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After the swimming test, a subsample of synchronized and non-synchronized fish were kept for oxygen 

consumption measurement (see below) and all others glass eels were anaesthetized, killed using a lethal 

bath of anaesthesia (Benzocaine, 0.05 mg L-1),  individually measured for wet weight (± 1.0 mg) and length 

(± 0.5 mm) and then flash-frozen in liquid nitrogen, and stored at -80˚C.  

2.4 Standard metabolic rate (SMR) assay 

After 7 days of swimming test, subsamples of 35 and 20 tagged glass eels in autumn and 36 and 24 tagged 

glass eels in spring, originated from marine and estuarine site respectively, were retrieved to determine 

resting oxygen consumption as described in Liu et al. (2019). Briefly, an intermittent flow respirometer 

with 16 respirometry chambers (diameter: 11.2 mm, length: 90 mm) was used. Measurements were 

conducted over four days under temperature and photoperiod conditions similar to those used for the 

swimming test. Tagged glass eels were introduced in the chambers at 3 p.m. and oxygen consumption was 

recorded continuously every minute until 10 a.m. the next day. After the first 15-hours of acclimatization 

in the chambers, the average oxygen consumption per eel was calculated using the last 4 h of recording. 

SMR was expressed in mm3 O2 consumed per hour. We then regressed the logarithm of SMR on the 

logarithm of wet weight and used the residuals of this model (i.e., relative SMR) for further analyses. 

Following the measurement of oxygen consumption, glass eels were anesthetized as described above and 

stocked at -80 °C after immersion in liquid nitrogen until RNA extraction. 

2.5 Gene expression analysis by high-throughput RT-qPCR 

The protocol conditions for sample preparation and the high-throughput RT-qPCR have been previously 

published (Liu et al., 2019). The primers used have been previously described (Liu et al., 2019) and targeted 

59 energy-related genes involved in cytosol catabolism (including lipid and protein degradation), 

mitochondria-related functions (including mitochondrial metabolism and turnover), autophagy and 

antioxidant system. For the expression analysis, relative quantification of target gene expression was done 

using the ΔCT method described by  Pfaffl, Horgan, and Dempfle (2002). The relative expression of 

Luciferase was used for data normalization as described previously (Marandel et al., 2016). 

2.6 Statistical analyses 

After the 7-day swimming test, one marine glass eel died in autumn experiment, and two marine ones in 

spring, which left a total of 71 and 70 marine glass eels in autumn and spring, respectively. No death was 

recorded in estuarine glass eels. 

 

 

https://www.frontiersin.org/articles/10.3389/fphys.2019.00263/full#B37


H. Liu et al.                                                                                                             Publication under review 

7 
 

2.6.1 Propensity of glass eels to migrate 

To characterize the propensity of glass eels to migrate, we first assessed their swimming activity. To do so, 

we fitted a General Linear Model (GLM) based on binomial distribution, using as successes the number of 

observations where the eel was seen swimming in the water column, and as failures the number of 

observations where the eel was not observed in the water column and likely hidden in the substratum. For 

each season, the effect of site (Marine or Estuary) on swimming activity was included in the GLM as a 

categorical factor and its effect was assessed using Chi² test applied on deviance analysis.  

We then investigated the synchronization of glass eel’s swimming activity by a change in water current 

direction every 6.2 h (synchronized / non-synchronized glass eels). Based on the 177 sessions of 15 seconds 

of video recording in each experiment, we categorized all tagged glass eels into synchronized ones and non-

synchronized ones by a modeling method, as previously described by Liu et al. (2019) (See Supplementary 

Text S1). From this model, two parameters identifying individual’s tidal activity rhythm were derived: the 

probability of being swimming of an individual i at time t, 𝑃(𝑡, 𝑖)  and the periodicity of swimming 

occurrence of an individual i, 𝑝𝑒𝑟(𝑖). Fish having a P value above the mean of P meanwhile having an 

activity periodicity close to 12.4 h were considered synchronized, others were considered non-synchronized. 

The comparison of number of synchronized fish between marine and estuarine groups was analyzed by 

Fisher’s exact test for count data in both seasons. 

Finally, the probability of negative rheotaxis used by synchronized glass eels was analyzed. Again, we 

fitted a GLM based on binomial distribution, using as successes the number of observations where the eel 

was seen active and swimming with the current, and as failures the number of observations where the eel 

was seen active and swimming against the current. For each season, the effect of site (Marine or Estuary) 

on negative rheotaxis probability was included in the GLM as a categorical factor and its effect was assessed 

using Chi² test applied on deviance analysis.  

2.6.2 Energy reserves, weight loss and SMR 

Two-way Anova was used to analyze the effect of site (Marine and Estuary) and synchronization behavior 

(synchronized and non-synchronized) on energy reserves, weight loss and SMR, followed by Tukey HSD 

post-hoc test. 

Equations: 

Weight loss and weight loss efficiency were calculated as follows: 

Weight loss (%) = (Initial wet weight – Final wet weight) * 100 / Initial wet weight 
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Weight loss efficiency = Weight loss (%) / Swimming activity 

2.6.3. Principal Component Analysis (PCA) of gene transcriptional profiles 

To determine the transcriptional profiles of studied genes, PCA was used as a multivariate statistical 

approach to reduce the number of the variables considered. We ran a PCA analysis for each genetic function 

considered to evaluate the global transcriptional response of the genes involved in this function. 

Supplementary Figure S2 (A, B, C, D) shows the relevance of all the genes involved in each function to the 

first axis of PCA. The score of individuals on the first axis of the PCA was retrieved as a synthetic indicator 

of the individual level of expression for each genetic function. Supplementary Table S1 listed the 

percentage of explained variance on the first axis of PCA. All the statistical analyses relevant to gene 

transcriptions were examined using the first axis of PCA for each genomic function. Two-way Anova was 

used to analyze the varying gene transcriptional profiles in response to site and synchronization behavior. 

The interactions in the responses were also evaluated. To test whether each single gene is differently 

expressed between the two sites and/or the two synchronization behavioral patterns, we performed a two-

way Anova (Supplementary Table S2 and Figure S3). 

All the statistical analyses and modeling were carried out using the statistical software R (v.3.3.1) and 

OpenBUGS (v.3.2.3). Differences were considered significant at p < 0.05. 

3 RESULTS 

3.1 Swimming test   

Glass eels propensity to migrate was first assessed by their swimming activity. Regardless of the season, 

estuarine glass eels displayed a higher probability of swimming than the marine fish (P(swimming) = 0.26 

for estuarine eels and 0.20 for marine eels in autumn; P(swimming) = 0.12 for estuarine eels and 0.04 for 

marine eels in spring; Chi2 test, p < 0.001; Figure 1A and 1B; Supplementary Table S3A). It is noteworthy 

that despite being significant, the site effect explained only 1.2% of the total variation in swimming activity 

in autumn against 13% in spring. Then, using ability of eels to synchronize swimming activity to the change 

in water current direction with a period close to 12.4 h, we determined the percentage of synchronized eels:  

regardless of the season, we observed a trend that the percentage of synchronized fish was higher in the 

estuarine group than in the marine one (66% and 49%, respectively in autumn; 33% and 17%, respectively 

in spring; Figure 1C and 1D), although such trend cannot be statistically supported because low sample 

numbers in each season (Fisher’s test, p = 0.22 in autumn, p = 0.10 in spring). These results altogether 

suggest that a higher proportion of estuarine glass eels than marine ones present a good ability to migrate, 

this observation being more pronounced in spring. 
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Finally, the swimming tactic displayed by the synchronized glass eels was compared between marine and 

estuarine sites (Figure 1E and 1F). Most of the fish alternated negative rheotaxis (swimming with the current) 

and positive rheotaxis (swimming against the current) at each change in water current direction, although 

some individuals used only one of the two tactics. In autumn, marine fish had a higher probability to use 

negative rheotaxis than the estuarine ones (P(negative rheotaxis) = 0.42 and 0.35, respectively; Chi2 test, p 

< 0.001; Figure 1E; Supplementary Table S3B) while in spring, marine fish had a lower probability to use 

negative rheotaxis than the estuarine ones (P(negative rheotaxis) = 0.29 and 0.67, respectively; Chi2 test, p 

< 0.001; Figure 1F; Supplementary Table S3B).  
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glass eels lost more wet weight than their marine counterparts (p < 0.001, Figure 3A and 3B). Results also 

showed that non-synchronized fish lost less weight than synchronized fish, with the exception of estuarine 

glass eels collected in spring and displaying a similar weight loss in non-synchronized and synchronized 

fish (Figure 3A and 3B). However, regardless of the site or the season, when the weight loss was corrected 

by the swimming activity, non-synchronized glass eels lost more wet weight than the synchronized ones 

(for a same scale of activity, p < 0.001; Figure 3C and 3D).  An interacting effect of the site and the 

behavioral pattern was also observed in autumn fish, showing that weight loss was higher in estuarine non-

synchronized glass eels than in their marine counterpart (Tukey’s test, p < 0.001; Figure 3C). 

Rate of oxygen consumption was recorded as an integrative measure of the individual energy expenditure. 

Interestingly, no significant effect of the site nor of the behavior could be observed on the relative SMR in 

autumn (Figure 3E). In contrast, a higher individual SMR was observed in estuarine glass eels than in 

marine ones in spring (p = 0.013, Figure 3F) while the behavioral effect was not significant.  

Overall, these results provide evidences that estuarine glass eels expended more energy than marine glass 

eels. After correction for their activity level, non-synchronized fish also used more energy than 

synchronized ones. 
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as proposed by Bolliet et al. (2017), the resumption of feeding behavior may allow estuarine fish to 

compensate the energy expenditure related to migration. However, in this last study, 71% of glass eels 

presented food in the digestive tract after catching while no food residual was observed in the present one. 

Thus, in accordance to the conditional strategy, the similar weight observed in spring estuarine and marine 

glass eels may rather result from a selection process, the smallest glass eels progressively settling or dying 

in the estuary before reaching the estuarine site of collection. We already shown in marine glass eels (Liu 

et al., 2019), and confirm in the present study in estuarine fish, that spring glass eels displayed an energy 

distress which was not observed in autumn. These results support the idea that the role of energy in glass 

eels migration may depend on the season and suggest that energy may represent a limiting factor for 

migration under a given threshold of reserves. 

In addition, estuaries are considered as stressful environments with a combination of different stressors 

including large variations of temperature, hydraulic conditions, salinities, oxygen availability and/or 

contaminants. Stress responses such as detoxification and cellular repairment to avoid cellular and 

organismal damages may lead to energy over-consumption in addition to the energy require for other 

physiological processes (Riahi et al., 2019). Our results support this idea, suggesting that estuarine glass 

eels were more stressed than marine ones, as evidenced in the former by the greater weight loss and SMR 

after swimming test and by the higher expression of genes involved in CMA and lysosomal catabolism (two 

pathways known to be activated by stress) (Dash, Aydin, & Moroz, 2019; Kagedal, Johansson, & Ollinger, 

2001; Kiffin, Christian, Knecht, & Cuervo, 2004). Results also showed lower expression levels of genes 

involved in mitochondrial turnover and mitophagy in estuarine glass eels than in the marine ones, possibly 

reflecting a lower capacity of energy production and use in estuarine fish. However, although a higher 

weight loss was observed in both autumn and spring estuarine glass eels when compared to their marine 

counterpart, difference in transcriptional profiles and SMR were only observed in spring. This suggests that 

the higher energy distress reported in this season (Liu et al., 2019), in addition to stressful conditions of 

migration in estuary, might drive stronger responses and trigger a selection based on energy condition.  

Interestingly, the behavioral results of swimming rheotaxis, which could be both negative (swimming with 

the current) and positive (swimming against the current), showed that spring glass eels changed their 

swimming tactic between marine and estuarine sites. Estuarine fish mainly shift from a positive to a 

negative swimming rheotaxis which may represent an adaptive mechanism to spare energy and migrate up 

estuary in this season. 

Altogether, these results strengthened the idea that a conditional strategy based on energy may contribute 

to explain the facultative migration in glass eels but likely when energy reserves become a limiting factor 

to sustain activity. Surprisingly, in both seasons, synchronized glass eels, considered to present a high 
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probability to migrate did not display higher wet weight than non-synchronized ones in our experimental 

conditions. This may first suggest that the initial variability in wet weight inside each group was not strong 

enough to separate migrant phenotypes from non-migrant ones on the basis of energy content in our 

experimental conditions. But it also suggests that other factors may be involved in settlement processes.  

Selection on the ability to synchronize the swimming activity to the tide 

Regardless of the migratory season, estuarine glass eels were more numerous to synchronize to the change 

in water current direction than marine glass eels, a result previously reported in a study using photoperiod 

as a synchronizer (Bolliet et al., 2017). The rhythmic swimming behavior of glass eels during estuarine 

migration is known to be controlled by endogenous clock(s) which synchronize fish activity with 

environmental cues related to the tide and the photoperiod (Bolliet et al., 2007; Forward & Tankersley, 

2001). Several exogenous cues related to the tide have been proposed, such as odour (Creutzberg, 1961), 

turbulence (McCleave & Kleckner, 1982), salinity (Edeline, Dufour, & Elie, 2005), electrical fields (Cresci 

et al., 2019) and water current reversal (Bolliet et al., 2007; Wippelhauser & McCleave, 1987). In the shore 

crab (Carcinus maenas), artificial tidal cycles of salinity, temperature and pressure applied 120° out of 

phase with each other, all synchronized locomotor activity (Warman & Naylor, 1995). The activity rhythm 

persisted in free-running conditions with three peaks corresponding to each cue which supported the idea 

that different cues might synchronize tidal activity. In the present study, only one cue was used as 

synchronizer (water current reversal every 6.2 h) and it cannot be ruled out that this synchronizer may be 

more efficient in estuarine glass eels than in marine ones. 

On the other hand, we can also hypothesize that glass eels could be selected based on their ability to 

synchronize their swimming activity to the tide during estuarine migration. As explain above, estuaries 

represent stressful environment and several studies have reported that stress may cause arhythmicity and 

loss of oscillation in clock networks in both mammals (Tahara et al., 2015) and fish (Prokkola & Nikinmaa, 

2018). In fish, the circatidal system has not yet been identified but the main circadian clock(s) as well as 

their molecular mechanism involving transcriptional/translational loops of several clock genes (per, clock, 

bmal, cry, ror, and reverb) and their rhythmic secretion of melatonin are well documented (Falcón, 1999; 

Falcón, Besseau, Sauzet, & Boeuf, 2007; Steindal & Whitmore, 2019; Vatine, Vallone, Gothilf, & Foulkes, 

2011; Zhdanova & Reebs, 2006). Decreased amplitude and mean expression levels for most of the clock 

genes have been reported in stressed rainbow trout (Oncorhynchus mykiss) coupled with an increase in 

cortisol production, a stress hormone (Hernández-Pérez et al., 2019; Naderi et al., 2018). Naderi et al. (2018) 

suggested that cortisol may not directly modulate clock gene expression in the trout but this hormone may 

have a key role in mediating stress-effects on pineal melatoninergic system, thus on rhythmicity persistence 

(López-Patiño, Gesto, Conde-Sieira, Soengas, & Miguez, 2014; see Sánchez-Vázquez et al., 2019 for 
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review). All these studies were conducted on circadian systems but it cannot be excluded that circatidal 

systems may present similar stress-clock interactions. In such a case, it would suggest that the higher 

proportion of synchronized fish observed in estuarine than in marine glass eels may reflect a selection based 

on stress, targeting the ability of glass eels to synchronize their swimming activity to the tide during the 

migration process. Interestingly, our results showed that non-synchronized glass eels lost more weight than 

their synchronized conspecifics suggesting that they could be more stressed or affected by stress. This 

assumption is in accordance with the studies of Claveau et al. (2015) and Liu et al. (2020), showing that 

non-synchronized glass eels may be more vulnerable to stress as they reacted more markedly to stressors 

in experimental conditions. Altogether, these results suggest that glass eels may have varying degrees of 

sensitivity to stress and that in a stressful environment such as estuaries, the most vulnerable individuals 

may stop migration and settle. Underlying mechanisms such as direct effect of stress on the internal clock(s) 

remain to be demonstrated. 

5 CONCLUSION 

Our results provide new insights on the facultative estuarine migration in the European glass eels. 

Regardless of the season, a selection based on stress may be an interesting avenue to explore in future 

research. Stress could be involved in both the decision to settle in an environment, and on the odds of 

surviving in the chosen environment (Crowley & Labonne, submitted). In the American eel, it has been 

suggested that a divergent natural selection of phenotypes and/or genotype-dependent habitat choice by 

individuals may results in genetic differences between fresh water and marine habitats (Gagnaire, 

Normandeau, Cote, Hansen, & Bernatchez, 2012; Gaillard et al., 2016; Pavey et al., 2015). Whether the 

ability to deal with stress may differ between individuals on a genetic basis in the European glass eels 

remains to be clarified. On the other hand, a conditional strategy based on energy may also contribute to 

the selection, possibly depending on a threshold in energy reserves below which energy may become a 

limiting factor for migration.  
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Text S1. Modeling analysis of swimming behavior 

We assumed that the swimming activity of an individual i at time t 𝐴𝐶(𝑡, 𝑖)  followed a Bernoulli 
distribution of probability 𝑃(𝑡, 𝑖) such as: 

 𝐴𝐶(𝑡, 𝑖)~𝑑𝑏𝑒𝑟𝑛(𝑃(𝑡, 𝑖)) 

We assumed that 𝑃(𝑡, 𝑖) was a periodic function of time, since it has been previously shown that glass eels 
display rhythmic swimming activity in response to current reversal (Bolliet & Labonne, 2008): 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑡, 𝑖)) = 𝑎(𝑖) × sin(𝑡 × 𝑏(𝑖) + 𝑐(𝑖)) + 𝑑(𝑖) 

where 𝑎(𝑖) was the strength of the synchronized component of activity, 𝑏(𝑖) was related to period, 𝑐(𝑖) 
was related to the trigonometric function phase, 𝑑(𝑖) was the non-synchronized component of activity. Fish 
having a P value above the mean of P meanwhile having an activity periodicity close to 12.4 h were 
considered synchronized, others were considered non-synchronized. 

A Markov-chain Monte-Carlo (MCMC) sampling approach with Gibbs algorithm in the Bayesian 
framework (Spiegelhalter et al., 2000, Openbugs software, Version 3.2.3) was used to estimate 
parameters 𝑎, 𝑏, 𝑐, 𝑑. Convergence of estimates was reached during a first set of 10 000 iterations. Another 
consecutive set of 5000 iterations was run to approximate the posterior distribution of parameter estimates. 

 

################# 

### MODEL ###### 

################ 

# 
model { 
#likelihood 
#building synchronized swimming activity model 
             for( t in 1 : T ) {  
      for (i in 1:N) {  
          AC[t,i] ~ dbern(P[t,i])       
          logit(P[t,i])<-a[i] *sin(t*b[i]+c[i]) +d[i] 
   }  
  } 
      for (i in 1:N) {    
  per[i]<-(2*3.1415927/b[i])*(2/3) 
  mP[i]<-mean(P[,i]) 
  sdP[i]<-sd(P[,i])  
             } 
 
 
  
Table S1. Proportion of variance of PCA first axis. 



 

 

 

 

 

 

 

 

 

 

 

 

 

  

Genomic function Sub-function PC1 variances% 

Cytosol catabolism Lipid and protein catabolism 27.2 

Mitochondria-related functions 

Mitochondrial biogenesis 38.7 

Mitochondrial fusion 51.8 

Mitochondrial metabolism 46.6 

Autophagy 

Macroautophagy 46.7 

Lysosomal catabolism 43.2 

CMA 66.2 

Mitophagy 55.7 

Antioxidant system Antioxidant system 45.3 



Table S2. List of genes involved in each metabolism-related function; effects of synchronization behavior 
and sampling site on the expression level of each gene are assessed using two-way Anova analyses in 
autumn and spring, p values indicating the effects of synchronization behavior and sampling site and the 
interaction of both are listed on the table. *p < 0.05, **p < 0.01, ***p < 0.001. 

 

      Autumn Spring 

Genomic function Sub-function Gene ID p (Site) p (Behavior) p (Int) p (Site) p (Behavior) p (Int) 

Cytosol catabolism 

hsl-a 0.334 0.524 0.639 0.659 0.179 0.298 
hsl-b 0.773 0.721 0.138 0.060 0.222 0.501 
mgl 0.409 0.510 0.728 0.008** 0.869 0.777 

pnpla2a 0.552 0.393 0.045* 0.336 0.511 0.651 
pnpla2b 0.988 0.204 0.256 0.283 0.206 0.723 
pnpla2c 0.636 0.004** 0.209 0.002** 0.478 0.223 
fbxo32 0.119 0.385 0.035* 0.262 0.807 0.029* 
murf1 0.513 0.194 0.178 0.002** 0.205 0.219 

Mitochondria-related 
functions 

Mitochondrial 
biogenesis 

pgc1α1 0.242 0.836 0.980 0.008** 0.096 0.717 
pgc1α2 0.263 0.263 0.320 0.007** 0.581 0.053 

tfam 0.301 0.350 0.222 0.010* 0.686 0.854 
hsp60 0.674 0.670 0.074 0.348 0.830 0.577 

Mitochondrial 
fusion 

mfn1 0.921 0.586 0.708 0.198 0.303 0.466 
mfn2 0.226 0.691 0.905 0.411 0.131 0.625 
opa1 0.318 0.030* 0.246 0.143 0.273 0.118 

Mitochondrial 
fission 

drp1 0.442 0.145 0.423 0.040* 0.534 0.125 

Mitochondrial 
metabolism 

mt-ATP6 0.414 0.101 0.642 0.417 0.910 0.983 
mt-nd5 0.735 0.242 0.827 0.241 0.498 0.977 
cox1 0.088 0.016* 0.703 0.003** 0.664 0.979 

12s rRNA 0.502 0.404 0.348 0.915 0.784 0.919 
cpt1α1 0.058 0.722 0.871 < 0.001*** 0.359 0.566 
cpt1α2a 0.002** 0.041* 0.673 0.145 0.049* 0.245 
cpt1α2b 0.297 0.940 0.145 0.898 0.670 0.767 
cpt1β 0.038* 0.074 0.385 < 0.001*** 0.431 0.530 
hadh 0.106 0.844 0.692 0.715 0.511 0.166 
glud1 0.794 0.885 0.878 0.174 0.788 0.992 
got1 0.731 0.443 0.497 0.028* 0.629 0.690 
got2 0.293 0.889 0.903 0.574 0.664 0.502 
gpt2a 0.775 0.944 0.458 0.338 0.604 0.376 
gpt2b 0.992 0.872 0.692 0.875 0.634 0.792 

Autophagy 

Macroautophagy 

atg5 0.065 0.574 0.779 0.291 0.139 0.365 
atg7 0.177 0.588 0.266 0.476 0.909 0.799 
atg12 0.166 0.414 0.343 0.538 0.811 0.908 

lc3 0.511 0.598 0.589 0.101 0.844 0.726 
ulk1 0.971 0.917 0.260 0.096 0.683 0.535 

Lysosomal 
catabolism 

catha 0.460 0.672 0.910 < 0.001*** 0.193 0.802 
cathd 0.783 0.304 0.668 0.510 0.274 0.391 
cathf 0.251 0.331 0.062 0.832 0.261 0.413 
cathl 0.035* 0.363 0.845 0.025* 0.645 0.774 
lipa 0.565 0.999 0.107 0.031* 0.776 0.683 
tfeb 0.974 0.735 0.728 0.014* 0.754 0.424 

CMA 

lamp2a 0.271 0.818 0.863 0.009** 0.583 0.244 
phlpp1 0.181 0.199 0.342 0.177 0.324 0.485 
hsp90 0.865 0.031* 0.606 0.525 0.126 0.062 
hsc70a 0.256 0.370 0.658 0.042* 0.533 0.040* 
hsc70b 0.374 0.971 0.472 0.001** 0.289 0.971 

Mitophagy 

fundc1 0.780 0.654 0.045* 0.061 0.296 0.905 
pink1 0.313 0.049* 0.668 0.231 0.095 0.145 
parkin 0.035* 0.405 0.707 0.008** 0.271 0.944 
bnip3a 0.701 0.227 0.296 0.002** < 0.001*** 0.844 
bnip3b 0.694 0.015* 0.237 0.101 0.525 0.268 

Antioxidant system 

catalase 0.497 0.220 0.498 0.574 0.195 0.903 
sod1 0.172 0.390 0.132 0.076 0.879 0.850 
sod2 0.764 0.415 0.589 0.859 0.825 0.451 
mtl 0.012* 0.241 0.058 0.012* 0.723 0.105 
gstp 0.065 0.226 0.174 0.859 0.981 0.235 
gpx1 0.424 0.036* 0.965 0.111 0.128 0.245 
gsr 0.038* 0.300 0.454 0.648 0.929 0.963 

gfap 0.986 0.759 0.659 0.523 0.154 0.169 



Table S3. Analysis of deviance table for GLM fitted to  (A) Swimming activity data, and (B) Swimming 
rheotaxis data, with site (Marine and Estuary) as a categorical factor. One GLM was fitted for each season 
(Autumn and Spring). 

 

A             

  Source d.f. Deviance Resid. D.f. Resid. Dev P (> Chi) 

Autumn 
data 

Null model   106 6967.3  

Site effect 1 85.2 105 6882.1 < 0.001*** 

Spring 
data 

Null model   105 3375.1  

Site effect 1 437.2 104 2938.0 < 0.001*** 
       

B       
  Source d.f. Deviance Resid. D.f. Resid. Dev P (> Chi) 

Autumn 
data 

Null model   57 923.5  

Site effect 1 14.8 56 908.7 < 0.001*** 

Spring 
data 

Null model   23 674.8  

Site effect 1 257.4 22 417.4 < 0.001*** 

Note: *p < 0.05, **p < 0.01, ***p < 0.001. 
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2.3 Effect of Methymercury on marine glass eels migration behavior and their energetic 
status 

Presentation of Publication 3 

New insights into methylmercury induced behavioral and energy related gene transcriptional 

responses in European glass eel (Anguilla anguilla) 

Objective and methods 

In estuarine ecosystem, a remarkable stress factor is chemical pollutants, one of which MeHg is largely 

emphasized as its severe cytotoxicity. In this chapter, we aimed to assess the effects of MeHg exposure on 

glass eel’s migratory behavior and energy metabolism. To investigate this question, we first carried out a 

test of the kinetics of MeHg (100 ng L-1) accumulation in glass eel, and results showed an increase of MeHg 

accumulation in the first 7 days after exposure, followed by a plateau until 30 days. Accordingly, we then 

exposed another group of glass eels to MeHg (100 ng L-1) for 7 days, followed by a 10-day swimming test 

as described in the precedent chapters. The propensity to migrate was then related to metabolism and 

energy-related metabolism. However, because of the recurrent lack of molecular difference between 

synchronized and non-synchronized fish, gene expression levels were analyzed separately in the head, the 

viscera and the muscles. 

Results and Conclusions 

MeHg exposure induced a decrease in the number of synchronized glass eels. The swimming activity level 

also decreased in exposed glass eels, non-synchronized individuals being more affected than the 

synchronized ones. This result support the conclusion of the precedent chapters concerning a possible 

higher sensitivity of non-synchronized individuals to stress. MeHg exposure triggered no change in the 

expression level of genes related to energy metabolism and antioxidant, regardless of the tissues. However, 

when swimming activity was individually correlated to transcriptional profiles of metabolism and 

antioxidant related genes, a significant positive correlation was presented in contaminated glass eels in head 

and viscera but not in the muscle. Indeed, the expression of genes involved in the antioxidant system, 

mitochondrial respiratory chains and catabolism and macroautophagy presented in the head a significant 

positive correlation to swimming activity after MeHg exposure but not in the control group. In the viscera, 

except for mitochondrial catabolism, all others functions in addition to mitophagy displayed a positive 

correlation to swimming activity in the contaminated group but not in the control. These results suggest 

that contaminated glass eels needed to increase energy metabolism more than non-contaminated fish to 

cope with increasing swimming activity. Regardless of MeHg treatment, higher expression levels of gene 

involved in antioxidant and energy metabolism in synchronized glass eels than their non-synchronized 
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conspecifics were observed in head. It is the first time we observed difference between the two behavioral 

phenotypes on molecular level, which might be masked by whole body analyses carried out previously 

(Figure 2-3).  

In conclusion, our results suggest that MeHg could reduce the migratory propensity in glass eels and 

particularly affect non-synchronized individuals, possibly more vulnerable to stress factors. Results also 

support the interest of focusing on head to investigate facultative migration behavior and the effect of 

environmental stressors on this rhythmic behavior. 
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a b s t r a c t

The effect of methylmercury (MeHg) was investigated in glass eel migration behavior and metabolism. To

migrate up estuary, glass eels synchronize their swimming activity to the flood tide and remain on or in

the substratum during ebb tide. Following seven days of exposure to MeHg (100 ng L�1), glass eels

migration behavior was expressed by their swimming synchronization to the water current reversal

every 6.2 h (mimicking the alternation of flood and ebb tides) and their swimming activity level. In

relation to their behavior, we then analyzed the energy-related gene expression levels in individual head,

viscera and muscle. Results showed that MeHg decreased the number of glass eels synchronized to the

change in water current direction and their swimming activity level. This last effect was more pro-

nounced in non-synchronized fish than in synchronized ones, supporting the idea that non-

synchronized glass eels could be more vulnerable to stress. As regard the expression of energy-related

genes, no significant difference was observed between control and MeHg-exposed fish. In contrast,

when the swimming activity levels were plotted against transcriptional responses, positive correlations

were evidenced in viscera and especially in the head of exposed glass eels but not in control. Finally, it is

noteworthy that non-synchronized glass eels displayed lower expression level of metabolism genes than

their synchronized counterpart, but only in the head. Altogether, these results support the interest of
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focusing on the head to investigate the facultative migration behavior in glass eels and the effect of

environmental stressors on this rhythmic behavior.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

The status of European eel (Anguilla anguilla) remains critical

since the recruitment of glass eels strongly declined from 1980 to

about 2010, and have remained at a low level since, which has

urged Euro-wide European eel regulation (council regulation (EC)

no. 1100/2007) for the protection and recovery of the stock (ICES,

2018). The European eel is a facultative catadromous species that

crosses the Atlantic Ocean twice during its life. The present

knowledge clearly indicate that the species reproduces in the Sar-

gasso Sea, where the leptocephalus larval stage is first observed

(Schmidt, 1923; van Ginneken and Maes, 2005). The larvae move

with ocean currents more than 5000 km toward the European

continent, after which they transform into a juvenile stage, the

glass eel. Then, glass eels migrate up estuary to reach freshwater

habitats where they grow and develop into yellow eels. At an age of

5e20 years they commence the silvering process and become silver

eels at which point they begin their migration back to the Sargasso

Sea to reproduce and probably die (Miller et al., 2015; Righton et al.,

2016; Schmidt, 1923; Tesch, 1980, 2003).

Glass eels migrate up estuaries to ascend rivers using selective

flood transport: during flood tide, glass eels move up in the water

column and migrate with the current while they go down and

remain on or in the substratum during ebb tide (Forward and

Tankersley, 2001; Gascuel, 1986; Jellyman, 1979). They are also

synchronized to the photoperiod, avoiding light and swimming

mainly during the night when the water is clear. However, a high

degree of geographical dispersion crossing marine and riverine

water has been documented regarding to different migratory pat-

terns of settlement and river colonization (Daverat et al., 2006;

Secor et al., 1995; Tsukamoto and Arai, 2001; Tsukamoto et al.,

1998; Tzeng, 1996). These different patterns of migration could

have a strong impact on the fate of the population because of the

environmental sex determinism in eels (Geffroy and Bardonnet,

2016; Krueger and Oliveira, 1999). Briefly, in European eels, males

are generally observed to dominate in high-density environments,

often associated with estuarine or lower river reaches, whereas

individuals that migrated upstream to the river tend to become

mostly females (Adam et al., 2008; Davey and Jellyman, 2005;

Harrison et al., 2014; Laffaille et al., 2006; Parsons et al., 1977).

Although there is no consensus on the reason for the diverse

migratory patterns, it has been suggested that early settlement in

estuary or coast, if taking place, is partly due to low energy con-

dition (Bureau du Colombier et al., 2007; Edeline, 2007; Edeline

et al., 2006; Liu et al., 2019). Indeed, most glass eels do not feed

throughout estuarine migration and they depend on energy re-

serves accumulated by the leptocephalus larvae during oceanic

migration to reach the river (Kawakami et al., 1999; Tesch, 2003;

Bardonnet and Riera, 2005). Moreover, estuary is a highly stressful

ecosystem, where a combination of different stressors including

large variations in the temperature, hydraulic conditions, salinities,

oxygen availability or contaminants may influence the energy

metabolic processes of glass eels during migration. Due to its

proximity to urbanized and industrial areas, estuary represents a

major sink for various contaminants including various forms of

mercury (Hg), both inorganic (Hg(II)) and methylated (MeHg), this

latest form being recognized to adversely affect fish physiology,

growth, health and behavior (Cambier et al., 2009, 2012; Lee et al.,

2011; Murphy et al., 2008; Scheulhammer et al., 2007).

Behavioral effects of MeHg exposure in fish have been largely

documented, with a lot of concerns on prey capture ability (Weis

and Khan, 1990; Zhou et al., 2001), predator avoidance (Webber

and Haines, 2003), reproduction (Sandheinrich and Miller, 2006),

habitat selection (Sampaio et al., 2016) and more recently on

memory and aggressiveness (Strungaru et al., 2018). The underly-

ing molecular mechanisms of MeHg toxicity are predominantly

related with oxidative stress, which in turn may induce lipid per-

oxidation and DNA damages (Berntssen et al., 2003; Gonzalez et al.,

2005). In glass eels, MeHg toxicity could increase energy expendi-

ture through the processes of cellular repairment and detoxifica-

tion which may thereby reduce glass eels fitness and their

migratory success through estuary. Claveau et al. (2015) reported

that glass eels exposed to MeHg (50 ng L�1) for 11 days exhibited

some perturbations of mitochondrial structures and metabolism

associated to an activation of antioxidative defence systems.

However, the effect of MeHg differed between behavioral pheno-

types of glass eels, those displaying a low propensity to migrate up

estuaries being more affected than their ‘migrant’ counterpart.

These findings suggested the existence of differences in sensitivity

to MeHg exposure among glass eels that remained to be elucidated.

In the present study we aimed to identify the MeHg-induced

repercussions in synchronization of glass eels to the water cur-

rent reversal, their level of swimming activity and the tran-

scriptomic profiles of energy-related genes. This was achieved by

transcriptome analyses related to energy metabolism and direct

observations of swimming behavior.

2. Materials and methods

2.1. Ethics

Procedures used in this study have been validated by the ethics

committee N�073 (ref: 2017012015086652). The experiment was

carried out in strict accordance with the EU legal frameworks,

specifically those relating to the protection of animals used for

scientific purposes (i.e., Directive, 2010/63/EU), and under the

French legislation governing the ethical treatment of animals

(Decret no. 2013e118, February 1st, 2013).

2.2. Primary test for MeHg accumulation kinetics over 30 days

2.2.1. Fish collection

The glass eels were collected at the mouth of a small estuary

(courant d’Huchet) located 40 km north of the mouth of the Adour

estuary, France (43� 550N,1� 230W). Theywere sampled using a dip-

net at night and during flood tide in February 2018. Then, theywere

transferred to the laboratory and maintained in a tank containing

water from the fishing site. During the next 48 h, the water was

continuously aerated and progressively diluted with fresh water.

Fish were kept under 12 �C and a photoperiod of 12 L/12 D with a

very low light intensity during the photophase (0.2e0.3 mW/cm2).

2.2.2. MeHg exposure and kinetic sampling

After acclimation, glass eels were randomly selected and
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allocated by groups of three into a series of seven aquariums (1.5 L

of aerated fresh water) with initial compartment concentration of

100 ng L�1 of MeHg. Glass eels were exposed to this single spike of

MeHg prepared as follow: The stock solution of MeHg at

1000 mg L�1 was prepared by dissolving MeHg chloride obtained

from Strem Chemicals (Newburyport, MA, USA) in methanol. The

spiking solution at 100 mg L�1 was then prepared by diluting the

stock solution in 1% hydrochloric acid.

Three glass eels were collected in the beginning of this test as

controls. All the aquariums were sealed with a transparent cover to

prevent water volatilization and to guarantee the photoperiod. The

aeration, temperature and photoperiod were maintained as

described for the acclimation period. During the exposure period,

no mortality neither erratic swimming (abrupt change of direction

or swimming speed) were observed.

The MeHg-exposed fish were sampled at 1, 2, 3, 7, 11, 18 and 30

days. One aquarium was recovered on each sampling time point

and the three fish in this aquarium were considered to be three

replicates. Sampled fish were killed by anesthetic and quickly

washed with distilled water. After biometry, all the fish were

immediately frozen into liquid nitrogen and stored at �80 �C for

future mercury speciation analysis.

2.2.3. Mercury speciation analysis

Each glass eel was lyophilized, mashed using an agate mortar

and then submitted to microwave extraction according to the

procedure previously published by Navarro et al. (2013). The su-

pernatant was spiked with known amounts of standard solution of

MeHg and Hg(II) and submitted to propylation. Mercury speciation

analysis was performed by GC-ICPMS using the method with pa-

rameters, which are detailed by Navarro et al. (2013). Mercury

species concentrations were determined by speciated isotope

dilution (Monperrus et al., 2005). Analytical performances were

evaluated using the Certified Reference Material DOLT- 4 (Dogfish

Liver, NRCC, Ottawa, Canada). Good agreement with certified values

was obtained with recoveries of 105 ± 8% and 95 ± 7% for MeHg and

Hg(II), respectively. Detection limits of 0.1 and 0.2 ng g�1 were

found for MeHg and Hg(II), respectively. All concentrations were

expressed in ng Hg.g�1 dry weight.

2.3. Seven-day MeHg exposure

The kinetics experiment ran over 30 days showed that glass eels

exposed to MeHg presented an increase in MeHg concentration

measured inwhole body for up to seven days which then reached a

plateau (Fig. 1). The increase in Hg(II) concentration remained low

and stabilized very quickly. According to these results, we chose 7

days as exposure duration to investigate the effect of MeHg on

migration behavior and energy metabolism.

2.3.1. Fish collection and tagging

140 glass eels were collected in March 2018 at the same fishing

site and using the same capturemethod described above (see 2.2.1).

They were transferred to the laboratory and maintained at 12 �C

overnight in an aerated tank containing water from the fishing site.

In the morning following their capture, all glass eels were anes-

thetized (Benzocaine, 0.01 mg L�1) and individually tagged using

Visible Implant Elastomer (VIE Tag) (combinations of one or two

hypodermic spots of different colors as described by Imbert et al.,

2008) in order to trace the swimming behavior individually. Once

tagged, glass eels were released to wake up in the water from

fishing site. During the next 48 h, the water was continuously

aerated and progressively diluted with fresh water.

2.3.2. MeHg exposure

After acclimation, fish were randomly divided into two groups:

control group without Hg addition and MeHg-group exposed to an

initial MeHg concentration of 100 ng L�1. Seven glass aquariums

(5 L of aerated freshwater) were used for each group, with 10 fish in

each aquarium. The exposure lasted for seven days. During the

entire experimental period, both control and MeHg-exposed fish

were kept under the same conditions as those during the accli-

mation period. No mortality neither erractic swimming were

observed during the experiment.

2.3.3. Observations of the post-exposure swimming behavior

After seven-day exposure, one aquarium of 10 glass eels from

the control group and one aquarium of 10 specimens from the

MeHg-exposed group were recovered for mercury speciation

analysis. Procedures of sample preparation and mercury mea-

surement were the same as primary test (see 2.2.3). All the other

control and MeHg-exposed glass eels (n ¼ 6 x 10 glass eels in each

group) were transferred into two annular tanks (30 glass eels of

both the control and MeHg groups in each tank) installed in two

temperature-controlled rooms. The rooms were kept under the

same conditions as describes above, except that we added a con-

stant UV light (0.6 mW/cm2) in order to see the VIE Tag. The water

temperature was kept at 12 ± 0.5 �C and continuously recorded by

thermistors placed in the tank. The annular tank system was

specially designed to mimic tidal rhythm by being equipped with

two pumps at its opposite ends (Liu et al., 2019; Supplementary

Fig. S1). The two pumps were programmed to alternately work to

generate clockwise or counterclockwise water flow every 6.2 h. In

each tank, the swimming activity of glass eels was traced contin-

uously during 10 days by a camera programed to record 15 s every

40 min. The UV light allowed the identification of each glass eel

during the light and dark phases by its elastomer mark. During the

10 days, a total of 360 sessions of 15 s were obtained.

Glass eels use selective tidal-stream transport to migrate up

estuary, wherein individuals synchronize their swimming activity

to tidal current, but they also have to sustain the level of swimming

activity. Thus, in our experimental conditions, the propensity of

glass eels to migrate was firstly evaluated by their capacity to

synchronize the swimming activity to the change in water current

direction by a period of 12.4 h. Then, their activity levels were

Fig. 1. Kinetics of MeHg (blue circles) and Hg(II) (red triangles) concentrations

(mean ± sd) in glass eels along 0e30 days of exposure to MeHg. Data for 0 d are from

control fish (n ¼ 3). (For interpretation of the references to color in this figure legend,

the reader is referred to the Web version of this article.)
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quantitatively analyzed by counting the total number of observa-

tions of each elastomer mark in the water column in the 360 ses-

sions of 15 s videos.

2.3.4. Gene expression analysis

2.3.4.1. Sampling procedure. After swimming test, all the glass eels

in annular tank were recovered, anaesthetized and then killed by a

lethal bath of anaesthesia (Benzocaine, 0.05mg L�1), flash-frozen in

liquid nitrogen, and stored at �80 �C.

2.3.4.2. RNA extraction and quantitative real-time PCR. Frozen glass

eels were cut in three sections, containing (i) the head including the

gills, (ii) the heart, the liver, the spleen and the stomach and (iii)

most of the muscle tissue with the intestine (hereafter referred to

as head, viscera and muscle, respectively, Fig. 2). Then, each section

was immediately stored in TRIzol reagent for total RNA extraction.

The protocol conditions for quantitative RT-PCR have been

previously published (Lansard et al., 2010). The primers specific to

27 genes involved in antioxidant system, mitochondrial function

and autophagy activity have been described in previous study by

Liu et al. (2019). For the expression analysis, relative quantification

of target gene expression was done using the DCT method

described by Pfaffl (2001). The relative expression of Luciferase was

used for data normalization as described previously (Marandel

et al., 2016).

2.4. Statistical analyses

2.4.1. Propensity of glass eels to migrate

To characterize the propensity of glass eels to migrate, we first

investigated the synchronization of glass eel’s swimming activity to

the change in water current direction every 6.2h (synchronized/

non-synchronized). For this purpose, we used a modeling method

to categorize all the recovered glass eels into synchronized ones

and non-synchronized ones, which has been previously described

by Liu et al. (2019) (See Supplementary Text S1). Since it has been

previously shown that glass eels display rhythmic swimming ac-

tivity in response to current reversal (Bolliet and Labonne, 2008),

two parameters, the probability of being swimming of an individual

i at time t, Pðt; iÞ and the periodicity of swimming occurrence of an

individual i, perðiÞ, were derived from the model. Fish having a P

value above themean of Pmeanwhile having an activity periodicity

close to 12.4 h were considered synchronized, others were consid-

ered non-synchronized. Finally, the number of synchronized fish in

the control and MeHg-exposed groups was compared by chi-

squared test.

The second aspect to investigate the propensity of glass eels to

migrate was the level of swimming activity, expressed as the total

number of observations of glass eels swimming in the water col-

umn during the 360 sessions of 15 s, regardless of synchronization.

The comparison between control and MeHg-exposed groups were

conducted using chi-squared test.

2.4.2. Principal component analysis (PCA) of gene transcriptional

profiles

To determine the transcriptional profile of studied genes, PCA

was used as a multivariate statistical approach to reduce the

number of the variables considered. The data set of gene expression

levels was compressed by PCA procedure without much loss of

information. In detail, to evaluate the global transcriptional

response in each pathway, we ran a PCA analysis for each cellular

function, using a table providing the normalized gene expression

levels for all individuals. The first axis of PCA performed on each

function in each tissue explained 47%e77% of the total variances of

all the genes involved, making it an acceptable syntheticmeasure of

gene expression level of each function (See Supplementary

Table S1). Supplementary Fig. S2 ~ Fig. S4 showed the relevance

of all the genes involved in each function to the first axis of PCA.We

then retrieved the score of individuals on the first axis of the PCA,

and used these coordinates as a synthetic indicator of the individual

level of expression for the cellular function.

All the statistical analyses relevant to gene transcriptions were

examined using the first axis of PCA for each genomic function.

Two-way ANOVA was used to analyze the varying gene transcrip-

tional profiles in response to MeHg exposure and synchronization

behavior. The interactions in the responses were also evaluated.

Differences were considered significant at p < 0.05. The relation-

ships of swimming activity to gene transcriptional profiles were

estimated by Spearman’s Rank Order Correlation test. The corre-

lationwas considered significant at p < 0.05 level. Then, the slope of

the correlations observed in control and MeHg-exposed groups

were compared by a Fisher’s Z transformation method.

3. Results

3.1. MeHg exposure and accumulation in glass eels

After seven days of exposure, concentrations of MeHgmeasured

in the whole body of glass eels were 3.6 times higher than those

measured in the control fish (476 ± 58 and 132 ± 31 ng Hg g�1 dry

weight, respectively, p < 0.001). Concentrations in Hg(II) remained

similar with 9 ± 3 and 7 ± 2 ng Hg g�1 dry weight in the control and

exposed group, respectively.

3.2. MeHg-induced behavioral changes

Two dead glass eels were found in both the control and the

exposed groups after swimming test, which left a total of 58 glass

eels in each group.

The propensity of glass eels to migrate was first evaluated by

their ability to synchronize to the change inwater current direction

every 6.2 h. Glass eels exhibiting swimming activity with a period

of approximately 12.4 h were considered as synchronized and the

others as non-synchronized. As shown in Fig. 3a, the number of

synchronized fish was lower inMeHg-exposed group relative to the

control (30 and 35 individuals, respectively corresponding to 52%

and 60% of the total group, respectively), although the difference

Fig. 2. Sections of glass eel.
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was not significant using a chi-squared test (X2 ¼ 0.56, p ¼ 0.454).

The level of swimming activity was then expressed by the total

number of observations of glass eels swimming in the water col-

umn during the 360 sessions of 15 s. MeHg treatment significantly

decreased the total number of observations when compared to

control (chi-squared test, X2 ¼ 55.55, p < 0.001, Fig. 3b). When

analyzing separately the two behavioral phenotypes, the decrease

in the total swimming activity level was significant in non-

synchronized glass eels but not in synchronized ones (Table 1). In

addition, the maximum number of observations per fish decreased

in the exposed group when compared to the control one (222 and

163 observations during the 360 sessions, respectively).

3.3. MeHg- and behavior-induced gene transcriptional responses

The transcriptional profiles of 27 genes involved in five meta-

bolic functions were analyzed. Some of these genes code for pro-

teins involved in the mitochondrial respiratory chain complexes,

mitochondrial catabolism and the antioxidant system. The other

genes code for proteins involved in macroautophagy (the best-

characterized autophagy subclass) and mitophagy (a

macroautophagy-dependent specific degradation of mitochondria).

As outlined in Materials and Methods, the data set of gene

expression levels was compressed by PCA procedure to reduce the

number of the variables considered. All the statistical analyses were

then examined using the score of individuals on the first axis of the

PCA for each function considered.

We first analyzed the transcriptional responses of the five

metabolic functions to both MeHg exposure and synchronization

behavior. As shown in Table 2, none of the functions considered

appear to have been significantly affected by the treatment of glass

eels with MeHg, regardless of the tissue examined. In contrast,

significant different transcriptional responses were evidenced in

head tissues between synchronized and non-synchronized glass

eels. Of the five functions considered, only one (mitophagy) did not

differ between the two behavioral groups. The expression of genes

from the other four functions was significantly higher in synchro-

nized glass eels than the non-synchronized ones (Table 2 and

Fig. 3. Swimming behavior of control (blue bar, n ¼ 58) and MeHg-exposed (orange bar, n ¼ 58) glass eels over 10 days. (a) Bar chart showing the total number of glass eels which

synchronized their swimming activity to the change in water current direction every 6.2 h, Pearson’s chi-squared test, X2 ¼ 0.56, p ¼ 0.454 (b) Bar chart showing the total number of

observations of all glass eels, Pearson’s chi-squared test, X2 ¼ 0.56, p < 0.001. (For interpretation of the references to color in this figure legend, the reader is referred to the Web

version of this article.)

Table 1

Assessment of the MeHg-induced effects on swimming activity within two behavioral phenotypes. Synchronized glass eels: Fish which synchronized their swimming activity

to the change in water current direction every 6.2 h. Number of fish: Total number of synchronized or non-synchronized glass eels observed during the behavioral test (for a

total of 58 glass eels in both groups). Number of observations: Total number of observations of glass eels swimming in the water column during the 360 sessions recorded. A

tagged glass eel can be observed only once during a recorded session. Significant values are in bold.

Behavioral phenotype

Treatment Number of fish Number of observations Pearson’s chi-squared test

df X2 p-value

Non-synchronized Control 23 819 1 40.63 < 0.001

MeHg 28 731

Synchronized Control 35 2999 1 0.80 0.372

MeHg 30 2516

Table 2

Statistical results of the two-way ANOVA for detecting transcriptional profiles of

each genomic function in response toMeHg exposure and synchronization behavior.

P-values of ANOVA are presented in the table. Significant values are in bold. Factor

‘Treatment’ is MeHg treatment (control vs MeHg exposure), factor ‘Behavior’ is

behavioral phenotype (non-synchronized vs synchronized), ‘Int’ is interaction of

both factors. H- head, V- viscera, M � muscle.

Genomic function Tissue p (Treatment) p (Behavior) p (Int)

Antioxidant system H 0.338 0.003 0.663

V 0.637 0.344 0.239

M 0.268 0.636 0.650

Mitochondrial respiratory chain H 0.585 0.003 0.107

V 0.679 0.135 0.377

M 0.242 0.489 0.945

Mitochondrial catabolism H 0.776 0.006 0.206

V 0.762 0.329 0.626

M 0.753 0.597 0.806

Mitophagy H 0.307 0.051 0.509

V 0.784 0.499 0.903

M 0.375 0.561 0.833

Macroautophagy H 0.673 0.004 0.689

V 0.958 0.163 0.886

M 0.513 0.376 0.796

H. Liu et al. / Chemosphere 255 (2020) 127020 5



Supplementary Fig. S5).

In order to consider in our analysis the effect of glass eels

swimming activity, which could mask (or at least influence) the

effect of MeHg, we then performed a Spearman’s Rank Order Cor-

relation test between individual swimming activity level and the

first axis of PCA for each function in both control and MeHg-

exposed fish. As locomotor activity is expected to increase energy

expenditure, correlations were tested using glass eels displaying

similar range of activity. Although no significant difference could be

evidenced between correlations observed in the control and the

contaminated groups (using a Fisher’s Z transformation), Table 3

shows that all the functions considered, except mitophagy, pre-

sented in the head a significant positive correlation to swimming

activity after MeHg exposure but not in the control group. In the

viscera, except mitochondrial catabolism, all others functions dis-

played a positive correlation to swimming activity in the contam-

inated group but not in the control. Finally, in the muscle, no

correlation could be observed for the antioxidant system, the

mitochondrial chain and themitochondrial catabolism, while genes

involved in mitophagy and macroautophagy responded positively

to the activity in both groups.

4. Discussion

To clarify the adverse behavioral andmetabolic responses due to

MeHg exposure, changes in migration behavior and tissue-level

transcriptions related to energetics were assessed with MeHg

treatment in glass eels.

After a 7-day exposure, average MeHg concentration in whole

body of glass eels was 476 ± 58 ng Hg g�1 dry weight, revealing the

ability of the whole body to accumulate MeHg in a short-term

exposure. In contrast, the concentrations of Hg(II) remained low,

supporting a previous study using isotopic tracers and showing a

low potential of demethylation in glass eels after 11 days of expo-

sure to MeHg (50 ng L�1) (Claveau et al., 2015).

4.1. Effect of MeHg on glass eels swimming activity and energy-

related genes expression

Exposure to MeHg significatively decreased the total number of

observations of glass eels swimming in the water column and

reduced the maximum number of observations per fish (222 and

163 in the control and the exposed group, respectively). These

results are consistent with previous studies conducted in Salmo

salar and Diplodus sargus displaying lower swimming activity after

dietary exposure to MeHg at 10 mg kg�1 during 4 months and

8.7 mg g�1 during seven days, respectively (Berntssen et al., 2003;

Puga et al., 2016). Interstingly, when analyzing separately the

synchronized and non-synchronized glass eels, the decrease in

swimming activity level after MeHg exposure was only significant

in the non-synchronized group, which supports the idea that glass

eels presenting a low propensity to migrate might be more

vulnerable to stress than those displaying a high probability to

migrate (Bolliet et al., 2017; Claveau et al., 2015).

A number of studies reported the toxic effects of MeHg, notably

on the oxidative status, themitochondrial function and the Calcium

homeostasis in fish (Cambier et al., 2009, 2010; Claveau et al., 2015;

Graves et al., 2017; Gonzalez et al., 2005; Nøstbakken et al., 2012;

Rasinger et al., 2017; Richter et al., 2011; Yadetie et al., 2016). Sur-

prisingly, we did not observe any effect of MeHg on transcriptional

profiles of the studied genes involved inmitochondrial metabolism,

antioxidant system or autophagy. Our results contrast with a pre-

vious study in glass eels showing an activation of antioxidative

defence system at the transcriptomic level after eleven days of

exposure toMeHg (50 ng l�1) (Claveau et al., 2015). However, in this

last study, gene expression was analyzed just after exposure while

in the present one analyses were conducted after the behavioral

test, i.e., 10 days after the end of exposure. In addition, both studies

focused on gene expression at a single time point that does not give

a real picture of the dynamic aspect of the different events at play

during complex and integrative processes such as antioxidant

system, energy metabolism or autophagy. Furthermore, depending

on the genes studied, the levels of transcripts do not always

correlate with the amount or the activity of the corresponding

proteins (Vogel and Marcotte, 2012; Yadetie et al., 2016). Future

functional studies will therefore be necessary to draw definitive

conclusions on the effect of MeHg in the functions monitored in

glass eels.

Interestingly, we evidenced a significant positive correlation

between individual swimming activity levels and the expression of

the genes studied. The expression of genes related to autophagy

and mitophagy increased with activity in the muscle, both in the

control and exposed groups, probably reflecting an increase in

energy requirement related to activity. However, in the head and

viscera, most of the genomic functions related to antioxidant sys-

tem and metabolism showed a positive correlation in the

contaminated group, but not in the control one. As mentioned

above, oxydative stress and mitochondrial impairment are among

the most studied effects of MeHg in fish. MeHg targets some spe-

cific thiol containing proteins such as gluthatione peroxydase

involved in the anti-oxydant system, predisposing cell to oxidative

stress and generation of Reactive Oxygen Species (known as ROS)

(Farina et al., 2011). In addition, MeHg can also directly target

specific thiol-containing enzymes of the respiratory chain complex

and both effects may affect cellular energy pathways (Farina et al.,

2011; Glaser et al., 2010; Yadetie et al., 2016). Thus, although our

results must be taken with caution (because the differences be-

tween correlations obtained for the control and contaminated

groups were not strong enough to be significant), they strongly

suggest that contaminated glass eels were affected by MeHg and

needed to increase energy metabolism more than non-

contaminated fish to cope with increasing swimming activity.

It is also noteworthy that the head was themost affected section

byMeHg, a positive correlation being observed between swimming

activity and all genomic functions. Although the head section

include not only the brain but also the gills, this result seems

consistent with the literature reporting that the brain is a pre-

dominant target for MeHg in fish (Gonzalez et al., 2005; Graves

Table 3

Spearman’s Rank Order Correlation test between individual swimming activity level

and the first axis of PCA for each function in both control and MeHg-exposed fish. R

and p values of Spearman’s correlation test are presented in the table. Significant

values are in bold. H- head, V- viscera, M � muscle.

Function

Tissue Control MeHg

r p-value r p-value

Antioxidant system H 0.32 0.169 0.65 <0.001

V 0.05 0.826 0.53 0.014

M 0.33 0.156 0.32 0.135

Mitochondrial respiratory chain H 0.22 0.346 0.57 0.005

V 0.30 0.193 0.43 0.049

M 0.27 0.251 0.27 0.205

Mitochondrial catabolism H 0.23 0.326 0.68 <0.001

V �0.10 0.686 0.28 0.223

M �0.07 0.772 0.06 0.774

Mitophagy H 0.63 0.003 0.76 <0.001

V 0.40 0.078 0.51 0.019

M 0.67 0.001 0.75 <0.001

Macroautophagy H 0.39 0.091 0.72 <0.001

V 0.38 0.099 0.62 0.002

M 0.75 <0.001 0.68 <0.001

H. Liu et al. / Chemosphere 255 (2020) 1270206



et al., 2017; Pereira et al., 2014, for review 2019). Indeed, MeHg has

been reported to cross the blood-brain-barrier and accumulates in

the brain having serious toxic effects including proteome changes

related to oxidative stress and mitochondrial dysfunction, morpho-

structural changes and dysfunction in neurotransmission processes

(Cariccio et al., 2019; for review see Pereira et al., 2019; Pletz et al.,

2016). In addition, in both control and exposed glass eels, the

expression levels of metabolism-related genes were lower in non-

synchronized glass eels than in synchronized ones in the head but

not in the other sections. Also in eels sampled below and above

successive obstacles along a river, Podgorniak et al. (2015) reported

different gene transcription profiles in brain but not in liver or

muscle. Altogether, these results suggest that the head may

represent the one to focus on for a better understanding of glass

eel’s migration and the effect of environmental stressors on this

migration.

4.2. Effect of MeHg on the rhythmic swimming activity in glass eels

To migrate up estuary, glass eels use selective tidal stream

transport and synchronize their swimming activity to the flood

thanks to an endogenous clock (Bolliet et al., 2007; Forward and

Tankersley, 2001; Hickman, 1981; McCleave and Kleckner, 1982;

Wippelhauser and McCleave, 1987). They are also known to avoid

light and mainly migrate during the night, likely using a circadian

clock (Bolliet et al., 2007). In our experimental conditions, a very

low light intensity during photophase was used to avoid synchro-

nization of glass eels activity to photoperiod that could have

masked synchronization to the tidal cue. Thus, in the present study,

synchronized glass eels corresponded to fish that synchronized

their swimming activity to the change in water current direction

with a period close to 12.4 h. A lower number of glass eels syn-

chronizing to tidal period were observed in contaminated condi-

tion compared to control one, even though it was not statistically

significant using a chi-squared test. Xenobiotics have been shown

to disturb the circadian system in different fish species (Prokkola

and Nikinmaa, 2018) and a couple of studies showed that MeHg

disrupted circadian rhythms in rodents, the crayfish Astacus astacus

and the freshwater crab Potamon potamios (Arito et al., 1983;

Parmalee and Aschner, 2017; Styrishave and Depledge, 1996). In

addition, Depledge (1984) evidenced an effect of mercury exposure

on tidal rhythmicity in the heart rate of the shorecrab Carcinus

maenas. Though the location of the circatidal clock is still unknown

in fish, the pacemaker regulating circadian rhythms has been

located in the pineal gland. Interestingly, Korbas et al. (2012, 2013)

reported an accumulation of inorganic Hg in the pineal gland of

zebrafish exposed to MeHg. Thus, the relationship between mer-

cury species and the endogenous clock(s) driving the rhythmic

swimming activity in glass eels appears as an interesting avenue to

explore.

5. Conclusion

Our results suggest that MeHg may affect the estuarine migra-

tion of glass eels by reducing their ability to synchronize to the tide

and their level of swimming activity. They also support the idea that

non-synchronized fish may be more vulnerable to stress and the

first affected by contamination. A decrease in the propensity to

migrate in naturawould lead to an increase in glass eels settlement

in estuary and consequently a decrease in population recruitment

in upper reaches. Non-migrant glass eels becoming mostly males,

such effect would change the fate of the population by influencing

the sex ratio in this species. A better understanding of the effect of

MeHg on the maximum swimming activity in glass eels and their

biological clocks is now required to clearly assess the impact of this

contaminant on their synchronization to environmental cues and

migration.

The results also support the interest of focusing on the head to

investigate facultative migration behavior in glass eels and the ef-

fect of environmental stressors on this rhythmic behavior. How-

ever, as head samples include the entire brain tissue, eyes but also

the gills, they also question the relationships between the ability to

migrate and osmoregulatory functions.
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European eels arrive to European coasts all year round with highest recruitment between late autumn and 

spring in tne south west of France. As known, the estuarine migration in European glass eels is facultative 

and before returning to the Sargasso Sea to spawn, some glass eels migrate to freshwater, some reside in 

marine or brackish coastal waters while some others move between marine, estuarine and freshwater 

habitats (Daverat et al., 2006; Tsukamoto et al., 2002; Tzeng et al., 2000). Energy has been considered as 

a limiting factor in this facultative migration, given the fasting and endurance swimming period in glass 

eels. Therefore, this thesis was aiming to investigate the role of energy in eels’ migration and settlement 

processes by monitoring the energetic status of glass eels from distinct seasons (autumn and spring) as well 

as from different habitats (marine and estuary). Meanwhile, other potential hypotheses in addition to energy 

aspect have also been discussed. 

3.1 Conditional strategy based on individual energy stores 

Given the specific life history of eels, which accumulate energy during larval oceanic drift and do not or 

hardly eat throughout estuarine migration in glass eel stage, endogenous energy stores were previously 

thought to closely condition glass eel’s migratory ability. The energy-based conditional strategy suggests 

that individuals with higher energetic stores would present a higher migratory propensity to reach rivers 

(Edeline, 2007). Supporting this hypothesis is the study of Edeline et al. (2006) showing an increase in 

saltwater-seeking locomotor activity as glass eels’ weight and length decrease. Study by Bureau du 

Colombier et al. (2007) also showed that migrant European glass eels exhibited higher energy content than 

the inactive ones in February. However, this result was not confirmed in glass eels caught in November, 

which support only partly a causal role of energy stores in the facultative migration of glass eels. In addition, 

several other findings in both European and American eels conflicted with the concept of conditional 

strategy. For example, Bolliet et al. (2017) showed no difference in wet weight and length between migrant 

and non-migrant European glass eels caught in April and others studies in American glass eels suggested 

that salinity preference were not influenced by index of body condition (Boivin et al., 2015) or wet mass 

and total lipid content (Gaillard et al., 2015). 

Looking at swimming behavior and weight in autumn and spring glass eels, our results showed that autumn 

glass eels displayed higher energy stores, a higher proportion of synchronized fish and a higher level of 

swimming activity than spring individuals. In addition, we also showed that spring estuarine fish displayed 

similar weight than marine fish despite the 22 km covered from the sea without feeding, suggesting that the 

smallest marine individuals possibly settled or died during  migration. Both results may support the energy-

based conditional strategy. However, whatever the season or the habitat, no weight difference was 

evidenced between synchronized and non-synchronized fish in our behavioral trials. Although we cannot 

rule out the possibility that the synchronized and non-synchronized swimming behavior discriminated in 
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our experimental conditions may not totally reflect glass eels’ behavioral performance in the wild (see 

section 3), the low heterogeneity in weight within each experiment could also explain the absence of link 

between weight and behavior. Indeed, there was high differences and no weight overlap between autumn 

and spring glass eels, while individuals within autumn or spring groups showed much less variability. 

Accordingly, we hypothesize that when energy stores are too low, it may become a limiting factor for 

swimming activity and then trigger settlement. On the other hand, our results also clearly indicate that the 

observed differences in migration behavior cannot be only linked to differences in energy reserves and that 

other factors must be at play in the ability of glass eels to migrate or not. 

Conclusions and perspectives 

Altogether, these findings suggest that a conditional strategy based on energy stores cannot fully explain 

the facultative migration in glass eels. Energy stores may limit glass eels’ migration but only when this 

factor become limiting, wherein a threshold of energy stores may exist. This hypothesis could be tested, 

for example, by analyzing the migratory behavior of glass eels caught monthly during the season. This 

would allow to determine if there is a gradient of migratory propensity or if the propensity to migrate 

increases markedly in parallel to increased weight below a limit (Figure 3-1). 
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3.2 Energy mobilization 

In addition to energy stores, we hypothesized that the ability to mobilize energy could also be involved in 

the propensity of glass eels to migrate (individuals with a more efficient energy mobilization would display 

a higher migratory capacity). 

Surprisingly, in the present thesis, and regardless of the swimming activity, non-synchronized glass eels 

were found to lose more weight than the synchronized fish after the swimming test suggesting a higher 

energy expenditure (Publication 2). In fish, the use of energy could be associated to: standard metabolism 

(SMR), swimming activity and digestive cost, whereby the last two cases are not relevant to sedentary and 

fasting glass eels. Thus, in order to test whether the higher weight loss in non-synchronized glass eels may 

result from a higher metabolism than in synchronized fish, we measured the oxygen consumption of glass 

eels at the individual level as a proxy of SMR. Metabolic results showed that synchronized fish in autumn 

displayed higher SMR than the non-synchronized ones, while no difference of this factor was observed in 

spring groups (Publication 2). At first glance, this result seems contradictory, but experimental biases 

related to our protocol cannot be excluded. Indeed, SMR was measured after the swimming test that may 

have increased the SMR of synchronized fish in relation to their activity, possibly masking a higher SMR 

of non-synchronized fish. Thus, index of SMR here may not be informative enough to conclude. 

On the other hand, SMR is only one of the parameters reflecting metabolic status, where maximum 

metabolism (MMR) and aerobic scope (AS, the difference between MMR and SMR) are also included. AS 

predicts animal capacity to increase its oxygen consumption and aerobic exercise (Norin and Clark, 2016) 

and may be a better proxy to be used to compare the energy mobilization ability of glass eels during 

migration.  

Altogether, this suggests that future studies would be necessary to measure individual standard 

metabolism before and after a swimming test, but also to evaluate AS in synchronized and non-

synchronized glass eels. 

We then measured the expression of several energy-related genes as another proxy for glass eel’s ability of 

energy mobilization (Publications 1 and 2) but no clear difference between synchronized and non-

synchronized fish was evidenced. In American glass eels captured from Mersey River and Grande-Rivière-

Blanche (Canada), Gaillard et al. (2015, 2016) evidenced a lower expression level of triacylglycerol lipase, 

and higher energy stores and higher triacylglycerol content in the Mersey River than the other site, 

indicating an association between transcriptional response and energy storage strategy depending on the 

site of capture. The absence of differential expression in metabolism-related genes observed in our results 

may be first related to the homogeneity in body mass and energy contents (i.e. lipid contents) between 



- 119 - 

 

synchronized and non-synchronized glass eels. In addition, as for the SMR, the transcriptional analysis was 

performed after the swimming test, which may have induced a bias in the results obtained. Furthermore, 

these analyses were also performed at a single time point that does not give a real picture of the dynamic 

aspect of the different events at play during complex and integrative metabolic processes such as energy 

expenditure (which, in addition, include not only gene transcription but also protein translation and enzyme 

activity). Finally, analyses have been carried out on the whole fish and we cannot rule out the existence of 

a dilution effect that could mask some effects in particular tissues. Evidence supporting this idea was 

provided in the Publication 3 showing higher levels of transcripts related to antioxidant system, 

mitochondrial activity and autophagy in the head of synchronized fish than in the head of non-synchronized 

ones. Obviously, this result cannot explain the higher energy consumption in non-synchronized glass eels 

than the other behavioral phenotype. However, we could hypothesize that this result may be due to the 

specific role of energy metabolism in brain. Indeed, energy consumption in brain mainly serves to maintain 

cellular and systemic function, and has been shown to be critical to the CNS networks and normal 

behavioral rhythms (Cavey et al., 2016; Harris et al., 2012). In this context, the different gene transcription 

profiles we detected in head of glass eels prompted us to hypothesize that the enhanced genetic regulation 

related to energy metabolism and antioxidant functions may contribute to an enhanced synchronization 

capacity in European glass eels. In this regard, different gene transcription profiles were previously 

evidenced in in the brain of European glass eels (Podgorniak et al., 2015): genes related to signaling 

pathways such as calcium-mediated synaptic connections that control neuronal activity expressed 

differentially among glass eels sampled from different locations on their upstream migration. But, an 

evidenced metabolism-neuron-synchronization interaction is lacking in glass eels. Our results together with 

these mentioned studies probably support a future interest to investigate this potential interaction to help 

understand glass eels’ migratory behavior. 

As seen above, neither the SMR nor the expression of genes considered, allow understanding the apparent 

higher weight loss of non-synchronized fish compared to their synchronized counterparts during the 

swimming test. However, some of our results showing a higher energy consumption in non-sunchronized 

fish than the synchronized ones tend to support an attractive hypothesis related to a higher vulnerability to 

stress of non-synchronized glass eels than synchronized ones. This hypothesis was first proposed by 

Claveau et al. (2015a) who used the photoperiod as a synchronizer of swimming activity instead of the 

water current reversal used in this thesis. In this study, the authors showed that after exposure to isotopically 

enriched 201MeHg (50 ng L-1), cat and gstr expression levels were significantly higher in non-synchronized 

glass eels than in synchronized ones suggesting that non-synchronized glass eels may be more sensitive to 

contamination than synchronized individuals. In a more recent study, Bolliet et al. (2017) using the same 
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synchronizer, also presented evidence that non-synchronized glass eels displayed higher levels of cat and 

gstr expression than synchronized individuals caught both in marine and estuarine sites in spring.  

Thus the higher weight loss observed in non-synchronized glass eels than in synchronized ones may result 

from a higher stress/vulnerability to stress in the former. In accordance with this hypothesis, our data also 

showed that exposure to MeHg (100 ng L-1) during seven days decreased the total swimming activity in 

non-synchronized glass eels but not in synchronized ones. Estuaries are known to represent a stressful 

environment as discussed in the Publication 3. In this context, we hypothesize that in addition to the 

conditional strategy, individual’s vulnerability to stress may be involved in facultative migration: the most 

sensitive would be no longer able to continue the migration and would have to settle down before reaching 

the river. The underlying mechanisms remain to be elucidated but we already showed that marine non-

synchronized glass eels displayed lower expression levels of metabolism-related genes than their 

synchronized counterpart in the head (but not in viscera nor in muscle). 
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Figure 3-3. Transcriptional/translational feedback loops (TTFL) in mammalian circadian clock. Circadian 
locomotor output cycles kaput-aryl hydrocarbon receptor nuclear translocator- like protein 1 (CLOCK-
BMAL1) and neuronal PAS domain protein 2 (NPAS2)-BMAL1 heterodimers activate the transcription of 
PER, CRY, REV-ERBA and ROR genes. Period (PER) and cryptochrome (CRY) proteins repress CLOCK-
BMAL1-dependent and NPAS2–BMAL1-dependent transcription. Nuclear receptor subfamily 1 group D 
(REV-ERBA) and RAR- related orphan receptor (ROR) proteins drive rhythmic BMAL1 transcription from 
ROR response elements (ROREs) in the promoter region (Reinke and Asher, 2019). 
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3.3 Clocks 

Once recruited to the coast, European glass eels migrate up estuary using a selective tidal stream transport 

(STST) as a main mechanism moving towards rivers. They synchronize their swimming activity to the tide 

with a period of 12.4 h, as well as to a diurnal cycle with a period of 24 h, avoiding light and swimming 

mainly during the night (Forward and Tankersley, 2001; Tesch, 2003). This circatidal/circadian rhythmic 

migration has been recognized to be controlled through endogenous clock(s) (Bolliet et al., 2007; 

Wippelhauser and McCleave, 1987). 

The essential role of the circadian clock is to synchronize cellular, physiological, and behavioral processes, 

such as eating habits and locomotor activity (Isorna et al., 2017). In mammals, the molecular circadian 

oscillators in both central and peripheral tissues are controlled by the several transcriptional-translational 

events driven by the so-called “CLOCK” genes. In details, the products of the genes BMAL1 (also known 

as ARNTL), CLOCK and NPAS2 form CLOCK-BMAL1 and NPAS2-BMAL1 heterodimers, which activate 

the transcription of the genes PERIOD (PER) and CRYPTOCHROME (CRY). Once PER and CRY have 

reached a critical concentration, they in turn repress CLOCK-BMAL1-dependent and NPAS2-BMAL1-

dependent transcription. The alternating activation and suppression of the BMAL1/CLOCK/NPAS2-driven 

positive loop and PER/CRY-controlled negative loop result in a circadian oscillation in the molecular clock 

(Figure 3-3; Lande-Diner et al., 2013; Reinke and Asher, 2019; Shearman et al., 2000). Expression of these 

core clock genes inside cells influence many signaling pathways which allows the cells to identify the time 

of day and perform appropriate function, thus organize behavior and physiology to adapt to daily 

environmental cycles (Allada and Chung, 2010). In fish, circadian clocks were initially thought to be 

located in the central nervous system. However, there is now strong evidences that the circadian system is 

formed by a network of central and peripheral oscillators that are coordinated to control circadian rhythms 

(Albrecht, 2012; Schibler et al., 2015).  

In contrast to the well-mapped circadian clock, knowledges on the circatidal system, the location of the 

clock(s) and its molecular orchestration remain scarce. Different to the circadian pacemaker driven mainly 

by light cues, there are evidences showing that circatidal clock are adjusted to more complex external cues 

- i.e. odour, turbulence, salinity, electrical fields and water current reversal (Bolliet et al., 2007; Cresci et 

al., 2019; Creutzberg, 1961; Edeline et al., 2005; McCleave and Kleckner, 1982; Wippelhauser and 

McCleave, 1987), and different cues may probably act synergistically to synchronize a tidal function or 

behaviour (Warman and Naylor, 1995). Given the gap in the mechanistic knowledge concerning circatidal 

clock, circadian clock genes have been studied to investigate their potential interaction with circatidal 

rhythms. Intertidal fiddler crabs (Uca pugnax) and green shore crabs (Carcinus maenas) held in constant 

conditions can continue their locomotor activity bouts at the times of expected low water or high water with 
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a 12.4 h interval between peaks (Wilcockson and Zhang, 2008). Similar robust circatidal locomotor rhythms 

in constant conditions have been also monitored in smaller crustacea such as the cirolanid isopod Eurydice 

pulchra (Zhang et al., 2013). This free running behavior suggests the existence of circatidal endogenous 

oscillator in these animals. In E. pulchra, RNAi mediated disruption of the circadian clock had no effect on 

circatidal swimming rhythms, suggesting that the pacemakers driving circatidal rhythms is distinct from 

the circadian system of this species (Zhang et al., 2013). However, some interactions between these clocks 

regarding metabolic control has been evidenced. In O'Neill et al. (2015), the overoxidation of peroxiredoxin 

(PRX), whose oxidation–reduction cycles constitute a marker for circadian rhythms, and the expression of 

10 mitochondrially encoded genes (such as subunits of NADH dehydrogenase, cytochrome b, and 

cytochrome c oxidase), both follows a circatidal (approximately 12.4 h) pattern in E. pulchra. But, to date, 

insight into the cellular or physiological basis of the tidal oscillators in fish is very limited, and it remains 

to be determined whether circatidal clocks share some common substrates with circadian clocks, or whether 

these two types of clocks are totally dissociated. 

In the present thesis, we used one cue, the change in water current direction every 6.2 h, to mimic tide and 

synchronize the clock(s) and glass eels swimming activity. This allowed to distinguish two main swimming 

behaviors: glass eels which synchronized to the cue and swam in the water column in one direction during 

one period of 6.2 h and fish that did not synchronized and stayed buried in the substratum. The use of only 

one synchronizer to mimic tides may have not be strong enough to identify all individuals with a good 

propensity to migrate, explaining the lack of differences between synchronized and non-synchronized fish 

in some of our experiments. However, in an experiment that we conducted but did not include in the present 

thesis, three groups of glass eels originating from a same catch were submitted successively to a change in 

water current direction during 6.2 h. Results showed that the number of synchronized fish was not 

significantly different between the groups revealing at least the repeatability of the synchronizer. Thus, we 

hypothesize that although glass eels may present a heterogeneity in their ability to synchronize to the 

environmental cues, those which synchronize to only one cue should represent individuals with a high 

ability to synchronize to the tide. On the other hand, it is possible that our experimental design led to identify 

a group of non-synchronized fish more heterogeneous, including fish with low to medium ability to 

synchronize to the tide or, at least, fish which need several synchronizers to strengthen the synchronization 

of their swimming activity. 

Energy-clock interaction 

Interestingly, our results showed a higher number of glass eels synchronized to the change in water current 

direction in autumn than in spring (Publications 1 and 2). Our results also provided evidences that the 

strongest difference between autumn and spring fish concern their energetic status, autumn individuals 
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presenting higher energy reserves and likely a higher ability to produce energy. This raises the question of 

the potential relationships between energy and clocks mechanisms. Previous finding in mammals 

demonstrated the existence of such a crosstalk between metabolism and the circadian clock. AMP-activated 

protein kinase (AMPK), a critical sensor of energy status that maintains cellular energy homeostasis, has 

thus been reported to transmit energy-dependent signals to the mammalian circadian clock (Jordan and 

Lamia, 2013). AMPK does so, not only by driving the phosphorylation and destabilization of CRY and 

PER proteins (Lamia et al., 2009; Um et al., 2011), but also by inducing autophagy, which has been shown 

to affect the circadian clock by selectively degrading CRY (Toledo et al., 2018). Another fuel-sensing 

molecule positioned at the crossroads of nutritional status and circadian regulation is SIRT1 (silent mating 

type information regulation 2 homolog 1). Like AMPK, SIRT1 has emerged as a critical cellular energy 

sensor (Bordone and Guarente, 2005; Haigis and Guarente, 2006). SIRT1 is a class III histone deacetylase 

(HDAC) that, in addition to histones, deacetylates numerous transcription factors and co-regulators (Imai 

et al., 2000; Landry et al., 2000). The circadian transcription factor CLOCK has been reported to have 

histone acetyltransferase (HAT) activity, and SIRT1 was identified as the HDAC that counteracts the HAT 

activity of CLOCK (Asher et al., 2008; Nakahata et al., 2008). Together, these findings clearly demonstrate 

the existence of a close link between energy status and clock machinery at least in mammals. It is then 

tempting to speculate that such interactions may be at play in the observed higher number of synchronized 

glass eels in autumn than in spring. However, an important research effort still needs (i) to determine the 

conservation in European eel of the link between energy metabolism and clock regulation, and (ii) to 

precisely characterize the factors involved in circatidal rhythm. 

Stress-clock interaction 

Our results also showed that estuarine glass eels presented a higher number of synchronized individuals 

than marine one suggesting a possible selection of glass eels during migration based on their ability to 

synchronize to local environmental cues (Publication 2). In addition, glass eels exposed to MeHg presented 

a lower percentage of synchronized individuals than controls (Publication 3). Both migration in an estuary 

and exposure to contaminants may be considered as a stress for glass eels, and numerous studies link stress 

to the arhythmicity and loss of oscillation in clock networks (Hernández-Pérez et al., 2019; Koch et al., 

2017). The influence of stress on circadian rhythms has been addressed in rodents and Tahara et al. (2015) 

reported that an acute stress at the photoperiod onset causes a phase advance shift in mRNA expression 

rhythms of several core clock genes in peripheral organs. Meanwhile, when the stress was applied at 

different times during the photophase, it causes a phase delay or even loss of synchrony in the expression 

of these clock genes (Tahara et al., 2015) as well as loss of activity rhythms (Bartlang et al., 2015), 

indicating that the influence of stress on circadian clocks depends on the time of day. In fish, the most 



- 126 - 

 

frequent stressors are those related to changes in water quality such as temperature, salinity, oxygenation, 

and contaminants (Gesto et al., 2013; Wendelaar-Bonga, 1997), as well as stocking-density stress brought 

by intensive fish aquaculture (Hernández-Pérez et al., 2019). Short-term exposure to treated sewage and a 

sub-lethal PPCP mixture were reported to completely abolish the diurnal activity pattern in male 

mosquitofish (Gambusia holbrooki) reflected by reduced daytime locomotor activity (Melvin et al., 2016). 

Several studies have shown that exposure of fish to waterborne copper (Kim et al., 2017), bisphenol A 

(Rhee et al., 2014), ammonia (Jung et al., 2016), and the anti-inflammatory drug diclofenac (Lubiana et al., 

2016; Prokkola et al., 2015) induces a strong disruption in the expression of "rhythm-generating" 

genes.Hypoxia can also reverse circadian rhythms in the spontaneous activity of fish (Svendsen et al., 

2014), where the mechanism probably lies in the interplay of HIF-CLOCK-PER as demonstrated in mouse 

(Chilov et al., 2001). 

Stress-induced phase resetting also occurs through the crosstalk between clock system and fish 

hypothalamic‐pituitary‐interrenal axis (HPI axis, comparable to hypothalamic-pituitary-adrenal (HPA) axis 

in mammals), which is a neurohormonal pathway mediating the adaptive response to stressors through the 

rhythmic activity of its end-effector, the glucocorticoid receptor. Circadian system imposes a daily rhythm 

on the HPI axis resulting in rhythmic synthesis and release of glucocorticoids (GCs, i.e. cortisol) (Lamia et 

al., 2011). In a reciprocal fashion, the HPI axis strongly influences the activity/circadian rhythm of the clock 

system through GCs (Helfrich-Forster, 2017). These hormones affect the peripheral clocks in almost all 

organs and tissues via the action of glucocorticoid receptor (GR) (Chrousos and Kino, 2005; Nader et al., 

2010). As reported by Sánchez-Bretaño et al. (2016), GCs treatment enhances the expression of per1 and 

inhibit clock and bmal1 in the liver of goldfish. In addition, GRs signal on various kinases, among which 

are mitogen-activated protein kinases (MAPKs). Several MAPKs have been shown to affect clock function 

in various context in mammals (Akashi and Nishida, 2000), in birds (Sanade et al., 2000), and in flies 

(Dusik et al., 2014). Thus, we could hypothesize in fish that kinases activated by GC signaling may directly 

affect molecules of the circadian clock and constitute the crosstalk between the stress and circadian systems. 

Taken together, these reports suggest a possible negative role of stress influencing animal clock rhythm 

through the regulation of HPI axis produces. 

The stress-induced change in melatonin synthesis may be another pathway that prevents fish from 

integrating environmental rhythmic information (Lopez-Patino et al., 2014). Melatonin is known as ‘time-

keeper-hormone’ acting in the circadian system of vertebrates, and mainly produced by the pineal gland 

and the retina (Besseau et al., 2006; Cahill, 1996; Falcon and Meissl, 1981; Vuilleumier et al., 2007). 

Photoperiodic information is transduced by the retina/pineal organ into a rhythmic secretion of melatonin, 

which is released into blood circulation with high concentrations at night and low during day (Sanchez-
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Vazquez et al., 2019). The pineal melatoninergic system in vertebrates has been reported to be influenced 

by stress (Benyassi et al., 2001; Zhao and Touitou, 1993) and in rodents, stress of physical activity every 2 

h for the 24 h around the clock resulted in lower melatonin levels at night (Paredes et al., 2005). In fish, 

rainbow trout transferred from freshwater conditions (6 ‰) to isosmotic (12 ‰) and hyperosmotic 

conditions (18 ‰) showed an increased melatonin level at night in both short-term (6 h) and long-term (5 

days) exposure (Lopez-Patino et al., 2011). Exposure to waterborne copper decreased plasma levels of 

serotonin and arylalkylamine N-acetyltransferase (AANAT2) proteins, which are two indicators of 

melatonin synthesis (Kim et al., 2017). Lopez-Patino et al. (2014) also indicated that stress of chasing and 

high-stocking density in rainbow trout decreased serotonin content in pineal, aanat2 gene expression level, 

and AANAT enzyme activity at night.  

Taken together, these studies argue in favor of a strong relationship between stress and circadian clocks. 

To my knowledge, such relationship has never been investigated with the circatidal system but it cannot be 

excluded that stress-clocks interactions may also exist in circatidal rhythms. Our results showed that both 

stressful environment and MeHg exposure markedly decreased the number of tidally synchronized 

individuals suggesting that stress may affect circatidal activity rhythm in glass eels. As proposed in the 

previous section, glass eels may present different sensitivity to stress. Concerning rhythmic behavior and 

considering that stress may affect the clock system, the most vulnerable individuals to stress may not be 

able to adopt selective tidal transport to migrate up estuary and be obliged to stop migration and settle in 

the estuary. In order to test the putative link of stress and tidal clock in glass eels, it is challenging but 

crucial to firstly identify the elements at play in modulating behavioral and physiological function in tune 

to tidal cycle, and then determine whether these elements respond to different stressors. 
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Conclusions and perspectives 

To sum up, our results suggest that the ability of glass eels to synchronize to the environment cues may 

be closely linked to both energetic status and stress, which may influence circatidal clocks. We 

hypothesize that stress derived from either endogenous energy condition or external environments may 

play a negative role in synchronization ability, wherein the most stressed /sensitive to stress may stop 

their migration.  

To test this hypothesis, we should first test our experimental design and eliminate a potential bias from 

the synchronizer used. We could test fish swimming behavior using two tidal synchronizers such as water 

current direction and salinity changes and compare the strength of these combined synchronizers in 

terms of synchronized fish. Alternatively, we could synchronize glass eels to LD cycle, as what has been 

done in Bureau du Colombier et al. (2007, 2008), Claveau et al. (2015a) and Bolliet et al. (2017), and 

then submit the sorted synchronized and non-synchronized glass eels to the change in water current 

direction to check if the synchronized individuals under the two migratory cues are the same. Then, in 

order to test the relationship between glass eel’s synchronization ability and its energy and stress 

conditions, we could carry out a gradient sampling from marine to estuary as described in the previous 

section (Figure 3-2), and the parameters would be focused here on energy metabolism-related gene 

expression,  stress indicators, and clock-related gene expression. Parallel experiments need to be carried 

out in both autumn and spring. 

To investigate the molecular mechanism of clock, we should first identify the potential clock genes in 

glass eel. We have already monitored the expression profile of several marker genes involved in circadian 

clock between synchronized and non-synchronized glass eels after 7-day MeHg exposure in a 

photoperiod controlled condition (unpublished data). It is interesting to note that three genes (bmal1, 

bmal2 and cry2) were differentially expressed in head, but not in viscera or muscle. These genes 

expressed more in synchronized fish than the non-synchronized fish, particularly when the fish were 

contaminated by MeHg (Figure 3-4). This result suggests a probability that the marker genes in 

circadian system, at least bmal and cry2, may also have a contribution to circatidal rhythm of glass eel’s 

swimming, and environmental stress may influence these pacemakers. Given the large knowledge gap 

in circatidal pacemakers in aquatic organisms, initiating the investigation from circadian makers to seek 

out the makers of circatidal clock could be worth trying. 
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3.4 Potential genetic basis for divergent sensitivities to stress 

Above all, we have stated the potential roles of energy stores, energy mobilization and clock system in glass 

eel’s facultative migration, and our results strongly direct at their close associations with stress sensitivity: 

individuals which are more sensitive to stress factors may subsequently settle, instead of reaching in 

freshwater habitat. However, the underlying mechanisms behind the interindividual variability in stress 

sensitivity, and the process of local selection on this phenotypic trait remain unclear. 

Because of panmixia, the existence of different eel lines varying in allele frequencies at some loci suggest 

a natural selection occurring in this species (Koehn and William, 1978). Indeed, large geographic range 

occupied by eel brings dramatically different environmental conditions corresponding to different local 

selection, i.e. latitudinal variation in temperature (Gagnaire et al., 2012). Meanwhile, eel also occupies a 

wide variety of freshwater, brackish and saltwater habitats, which also represent selective forces (Pavey et 

al., 2015). Thus, it is believed in American eel that a genetic basis exists behind the dispersal and habitat 

choice in this species (Babin et al., 2017). Gagnaire et al. (2012) have advanced the understanding of the 

genetic basis of local adaption through identifying several genes that present spatially varying selection 

associated with habitat heterogeneity, where these genes are related to lipid/saccharide/protein metabolism, 

defense response and molecular function. Pavey et al. (2015) collected genetic samples from yellow eel at 

freshwater and brackish/saltwater habitats, two known ecotypes, and through a genome-wide association 

study demonstrated a polygenic discrimination of habitat ecotypes in American eels. In this study, 331 

SNPs out of 42,424 were associated with the divergent ecotypes. These 331 SNPs are associated with 101 

genes encoding proteins: the freshwater module subset is characterized by enrichment of transcription 

factors and calcium ion regulation, while the brackish/saltwater module subset is enriched in growth factor 

receptor, vascular and morphological development. This study brings support to the hypothesis that genetic 

variation is at play behind the ecotypic differences in American eels. In a genome scan study based on 

50,354 RAD-seq markers in European glass eels collected from eight locations between 34 and 64 ˚N, 

Pujolar et al. (2014) identified 754 loci probably influenced by local selection. These 754 SNPs include 

genetic functions of calcium signaling, neuroactive ligand-receptor interaction and circadian rhythm. It is 

interesting that within the circadian rhythm pathway, a central clock gene PERIOD (per) shows the 

strongest pattern of covariance with two environmental variables, temperature and latitude, may indicate a 

genetic basis of associated local selection and European glass eel clock system  (Pujolar et al., 2014). This 

finding is consistent with our hypothesis about the selection occurring on clock regulation during glass eel’s 

estuarine migration. Although the link between these genetic functions identified in these genotyping 

studies and stress response is not clear, in European eel as a sister species of American eel we probably 
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Facultative migration in European eels is closely associated with diverse habitat use between individuals 

and has likely a profound impact on the species sex determination. The present thesis investigated the role 

of a conditional strategy based on energy on the propensity to migrate in glass eels. Energy stores but also 

the ability of energy mobilization were analyzed in relation to individual’s swimming behavior when 

submitted to water current reversal every 6.2 h to mimic tide. 

Our results showed that the theory of conditional strategy based on energy stores cannot fully explain the 

facultative migration in glass eels. We proposed that energy stores may limit glass eels’ migration but only 

when this factor become limiting, wherein a threshold of energy stores may exist (Figure 4-1). 

Results also provided some evidences that glass eels may present different sensitivity to physiological 

(energetic) and/or environmental stress. Individuals showing a low ability to cope with stress may have a 

higher propensity to settle before reaching freshwater than fish less sensitive to stress.  

Inter-individual variations in the sensitivity to stress, mechanisms involved in the effect of stress on glass 

eels (metabolism, clocks…) and the potential relationships with the conditional strategy represent 

interesting and exciting avenues to explore in the future to better understand facultative migration. The head 

may be particularly interesting to focus on in relation to rhythmic behavior and/or metabolism regulation. 
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The relationship between migration behavior and energetic status in the European glass eel 
(Anguilla anguilla) 

ABSTRACT: The European eel (Anguilla anguilla) present a complex life cycle with a glass eel stage 
migrating up estuary to reach river for growth. However, this estuarine migration is known to be 
facultative, with some individuals settling at sea, in estuaries or alternating stays in rivers and estuaries. 
As glass eels feed little or not at all during their migration, their divergent migration patterns may be 
closely associated with individual’s body condition. To date, one major theory of conditional strategy 
proposed that the facultative migration in European glass eels is based on energy stores, the individuals 
with a high migratory capacity presenting high energy stores. However, this theory has been proved 
controversial and the aim of this thesis was to investigate the conditional strategy in European glass eels 
based on more comprehensive measures of energetic status, including not only energy stores but also 
energy mobilization (metabolism and energy-related genes expression). We also focused on both 
autumn and spring glass eels, which present dramatic difference in energy stores. 

We first characterized the individual energetic status of marine glass eels sampled in autumn and spring 
and related this status to their migration behavior assessed in experimental facilities. Autumn glass eels 
presented higher energy stores than spring individuals. Molecular analyses suggested that autumn glass 
eels present a higher ability to produce energy while the spring ones display an energy distress. This 
confirmed that autumn and spring glass eels present strong differences in their energetic status and that 
they have to be studied separately. We hypothesized that a potential threshold in energetic status may 
exist below which migration could be conditioned by energetics.  

Then, to unveil the underlying mechanisms of settlement processes in estuaries in relation to energy-
based conditional strategy, we investigated the relationship between energetic status and migration 
behavior in both marine and estuarine glass eels. Estuarine individuals displayed lower weight than 
marine ones in autumn but not in spring supporting the idea that a conditional strategy based on energy 
may explain facultative migration when energy reserves become a limiting factor. We also observed a 
higher percentage of individuals synchronized to the current direction in estuarine fish than in marine 
ones suggesting that the selection may also target their ability to synchronize swimming activity to the 
tide. Weight loss, standard metabolism and the expression of metabolism-related genes suggested that 
estuarine glass eels were more stressed and had a lower capacity of energy production than marine fish. 
The non-synchronized glass eels also presented a higher energy expenditure than synchronized 
individuals possibly reflecting a higher stress and/or vulnerability to stress in the former. 

 In this regard, we further exposed glass eels to a potential stressor in estuaries ie methylmercury 
(MeHg) in order to investigate the effects of this contaminant on glass eels’ migratory behavior and 
energetic status. Our results first suggest that non-synchronized glass eels were more vulnerable to 
MeHg contaminant reflected by a decrease in swimming activity. MeHg also affected the relation 
between individual metabolism-related genes expression level and swimming activity, supporting our 
hypothesis that stress factors may influence the settlement processes in glass eels.  Finally, it is 
noteworthy that non-synchronized glass eels displayed lower expression level of metabolism genes than 
their synchronized counterpart in the head but not in muscle nor in the viscera.  

Altogether, these results provided evidences that the energetic status and sensitivity to stress may 
condition estuarine migration in glass eels but the underlying mechanisms and relationships between 
these factors but also with the endogenous clocks driving migration remain to be elucidated.  

 

Keywords: Anguilla anguilla, glass eel, facultative migration, metabolism, autophagy, methylmercury, 
stress 

 

 



- 174 - 

 

Relation entre le comportement migratoire et le statut énergétique de la civelle d'anguille 
européenne (Anguilla anguilla) 

RÉSUMÉ : L'anguille européenne (Anguilla anguilla) présente un cycle de vie complexe avec un stade 
civelle qui remonte les estuaires pour atteindre les rivières et entamer une phase de croissance. 
Cependant, cette migration estuarienne est connue pour être facultative, certains individus s'installant 
en mer, en estuaire ou alternant les séjours en rivière et en estuaire. Les civelles ne se nourrissent pas 
ou peu pendant leur migration et leurs schémas migratoires pourraient donc être étroitement associés 
aux réserves énergétiques des individus. La migration facultative des civelles pourrait donc reposer sur 
une stratégie conditionnelle, les individus présentant d’importantes réserves d'énergie ayant une 
capacité migratoire élevée. Cependant, certaines études s’avèrent contradictoires et l’objectif de cette 
thèse était ? d'étudier la stratégie conditionnelle chez les civelles européennes en se basant non 
seulement sur les réserves d'énergie mais également sur la mobilisation de l'énergie (métabolisme et 
expression des gènes liés à l'énergie). L’essentiel des travaux a été mené à la fois sur des civelles 
d'automne et de printemps, car elles présentent d’importantes différences de réserves énergétiques. 

Nous avons tout d'abord caractérisé le statut énergétique individuel des civelles marines échantillonnées 
en automne et au printemps et l’avons relié à leur comportement migratoire évalué dans des installations 
expérimentales. Les civelles d'automne présentaient des réserves énergétiques plus élevées que celles 
de printemps. Les analyses moléculaires suggèrent que les civelles d'automne présentent une plus 
grande capacité à produire de l'énergie alors que les civelles de printemps affichent une importante 
détresse énergétique. Ces résultats confirment que les civelles d'automne et de printemps présentent de 
fortes différences dans leur statut énergétique et qu'elles doivent être étudiées séparément. Nous 
émettons l'hypothèse qu'il pourrait exister un seuil énergétique en dessous duquel la migration pourrait 
être conditionnée par ce facteur.  

Afin de mieux comprendre les mécanismes de sédentarisation dans les estuaires, la relation entre le 
statut énergétique et le comportement migratoire des civelles marines et estuariennes a ensuite été étudié 
parallèlement en automne et au printemps. Nos résultats soutiennent l’hypothèse d’une stratégie 
conditionnelle basée sur l'énergie lorsque les réserves énergétiques deviennent un facteur limitant 
(civelles de printemps). Nous avons également observé un pourcentage plus élevé d'individus 
synchronisés avec la direction du courant (considérés comme migrants) chez les civelles estuariennes 
que chez les marines, suggérant que la sélection pourrait aussi cibler leur capacité à synchroniser leur 
activité de nage avec la marée. La perte de poids, la mesure du métabolisme et l'expression de gènes 
liés au métabolisme suggèrent également que les civelles estuariennes étaient plus stressées et avaient 
une capacité de production d'énergie plus faible que les marines. Les civelles non synchronisées au 
courant (considérées comme ayant une faible probabilité de migration) présentaient une dépense 
énergétique plus élevée que les individus synchronisés, ce qui pourrait refléter un stress et/ou une 
vulnérabilité au stress plus élevés chez les premières.  

Afin de tester cette hypothèse, des civelles ont été exposées à un facteur de stress potentiel dans les 
estuaires, à savoir le méthylmercure (MeHg), et les effets de ce contaminant sur le comportement 
migratoire et le statut énergétique des individus a été étudié. Nos résultats mettent en évidence une 
diminution de l’activité de nage chez les civelles non synchronisées mais pas chez les synchronisés, 
suggérant que les premières pourraient être plus sensibles au MeHg. Le MeHg a également affecté la 
relation entre le niveau d'expression des gènes liés au métabolisme et l'activité de natation, ce qui 
soutient l’idée que les facteurs de stress pourraient influencer la migration des civelles.  Enfin, les 
civelles non synchronisées présentaient un niveau d'expression des gènes du métabolisme inférieur à 
celui de leurs homologues synchronisées dans la tête et pas dans le muscle ni dans les viscères.  

Les travaux réalisés dans le cadre de cette thèse suggèrent que le statut énergétique et la sensibilité au 
stress pourraient conditionner la migration estuarienne des civelles mais les mécanismes sous-jacents 
et les relations entre ces facteurs ainsi qu’avec les horloges endogènes qui contrôlent la migration restent 
à élucider. 

Keywords: Anguilla anguilla, civelle, migration facultative, metabolisme, autophagie, méthylmercure, 
stress 
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