>SB:?2@Q /2  bT2+i° H2H2K2Mi K2i?Q/b 7Q" i
Q7 +QKT 2bbB#H2 im #mH2Mi ~Qrb
LB++QHQ hQMB+2HHQ

hQ +Bi2 i?Bb p2 ' bBQM,

LB++QHQ hQMB+2HHQX >B:;?2@Q /2  bT2+i  H 2H2K2Mi K2i?Q/b 7Q"
#MH2Mi ~QrbX 6HmMB/ K2+? MB+b (T?vbB+bX+H bb@T?)X LQ K M/B2
kykRLP_J y9e X i2H@yj9y899Npk

> G A/, i2H@yYj9y899N
2iiTbh,ffi2HX "+?2Bp2b@Qmp2 i2bX7 fi2H@yj9y8!
am#KBii2/ QM kd P+i kykR

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X



THESE

Pour obtenir le dipl6me de doctorat
Spécialité MECANIQUE DES FLUIDES, ENERGETIQUE, THERMIQU
ACOUSTIQUE

Préparée au sein de |'Université de Rouen Normandie

—igh-¢rder spectral element meth¢ds f¢gr the simul
cempressible turbulent G ¢ws

Présentée et soutenue par
Niccolo TONICELLO

Théese soutenue le 28/09/2021
devant le jury composé de

M. ERIC LAMBALLAIS PROFESSEUR DES UNIVERSITERSa’p%'SIrIt\/E:IELJ$S(jluT'JEury
POITIERS
PROFESSEUR DES UNIVERSITE@, UNIVERSITE
M. FRANCK NICOUD MONTPELLIER 2 SCIENCES ET aEpCporteur du Jury

PROFESSEUR DES UNIVERSITES, INSA DE
ROUEN NORMANDIE J

MAITRE DE CONFERENCES, INSA DE ROUEN
NORMANDIE J

FESSEUR DES UNIVERSITEN'Fém nl’ievedruSijtuéry

M. ABDELLAH HADJADJ
M. GUIDO LODATO
M. GIANMARCO MENGAPagS?

ionale de Singapour (NUS)

PROFESSEUR DES UNIVERSITE'\]?émubnrieveijrusi.tuér
de Sherbrooke (Canada) jury

PROFESSEUR DES UNIVERSITEDSH’elc':\ItSeﬁdeEe thése
ROUEN NORMANDIE

Thése dirigée par LUC VERVISCH, COMPLEXE DE RECHERCHE
INTERPROFESSIONEL EN AEROTHERMOCHIMIE

M. STEPHANE MOREAU

M. LUC VERVISCH






High-order spectral element
methods for the simulation of
compressible turbulent 3ows

Thesis submitted for the degree of Doctor of Philosophy of theriversity of Rouen
Normandie

Niccol™ Tonicello

niccolo.tonicello@coria.fr

Jury:
Eric Lamballais UniversitZ de Poitiers Rapporteur
Franck Nicoud UniversitZ de Montpellier Rapporteur
Abdellah Hadjad] INSA de Rouen Normandie Examinateur
Gianmarco Mengaldo UniversitZ Nationale de Singapour Examinateur
Stephane Moreau UniversitZ de Sherbrooke Examinateur
Guido Lodato INSA de Rouen Normandie Co-Directeur de these
Luc Vervisch INSA de Rouen Normandie Directeur de these

CORIA UMR 6614 - University of Rouen Normandie
Technopole du Madrillet, B.P. 8

76801 Saint-Etienne du Rouvray - France






Acknowledgements

When | was about to nish my Master degree in Italy | had only one clear
idea for the future: apply for a PhD in a foreign country. Everyone who
did it knows how many applications are generally sent in the deep ocean,
hoping for a chance to play in the top league. It is now funny to remember
that when | received the rst interview request by Dr. Lodato, | almost
forgot | applied for that position in the rst place. As it often happens in
life, | didn't realise that mine was about to change radically. | had the best
three years of my life in France, diving into a similar, but at the same time
di erent, colourful culture, made by wonderful people and awful weather.

| wish to thank my Advisors, Prof. Luc Vervisch and Dr. Guido Lodato,
for giving me the opportunity to pursue my professional goals and for their
valuable guidance. | thank them for the independence and trust they gave
me since the very rst day. | thank them for treating me as a professional
and not as a student, as a man and not as a child, for trusting me along
these years, for leading me to the best possible version of myself. At the
same time, of course, | thank them for the fundamental role they had in
my work, for their advices and guidance, both scienti cally and personally.
| particularly thank Dr. Lodato for helping me in the many panic attacks
| had during these three years. He once told me: At a certain point, it
doesn't really matter how many papers you published or your h-index, but
the hours you spend playing with your son . | will keep these words with me
forever, as bedrock of my future professional life.

Secondly, | want to thank my family, for being a solid pylon in my life.
| thank my mom and dad, Cristina and Amedeo, for always believing in me
and for always supporting me to pursue my dreams (even outside our beloved
country). | also thank my sister and brother in law, Carlotta and Nicold, for
giving me critical advices both professionally but most importantly person-
ally.

Finally | thank all the people working at CORIA and INSA. | felt wel-
comed since the very rst day in such an amazing environment of inclusion
and vibrating diversity. In these years, | met great people (mostly foreigners)
that helped me so much in my everyday struggles. | want to thank, in par-
ticular, Diego and Sabina, for giving me shelter in many di erent occasions
from the many psychological (and physical) storms during my PhD. Along

3



them, | thank Cléante for bearing my persistently annoying and depressing
petulance. | thank Alberto and Lorenzo for giving me the priceless oppor-
tunity to hear my mother-tongue language and to nostalgically remember
those wonderful rain-free summers in Italy. | thank Victor for trying, in his
last few months in Normandy, to help me with my hopeless social awkward-
ness. | nally thank, from the bottom of my heart, Louise, for showing me
how to be brave and gentle in these challenging times.

| also thank everyone who was not physically here in Normandy but still
close to me from di erent corners of the world: Gabriele from Paris, Riccardo
from Barcelona and Dario from Trieste. Our long-distance discussions about
the scientic community and, in general, about the research environment
helped me a lot in my growth over the years. | nally thank my friends
from Italy, in particular Riccardo, Martino and Gianmarco. You made all
the many trips to Italy always enjoyable and each one of them special in a
unique way.

I do believe we all sit on the shoulders of giants and | can only hope | gave
my small contribution in the limitless eld of Computational Fluid Dynam-
ics. Adding that little pinnacle, apparently useless, on top of a magni cent
cathedral.

Enjoy the reading.



Abstract

This thesis is focused on the application of high-order methods to com-
pressible turbulent ows. Aspects such as numerical dissipation/dispersion,
dynamic Sub-Grid Scale modelling, shock-capturing techniques and com-
pressibility e ects on turbulence modelling are thoroughly discussed. The
thesis manuscript is organised for increasing levels of complexity, leading ul-
timately to the simulation of fully compressible turbulent ows where all the
up-mentioned di culties are simultaneously involved. The results presented
in this work t into development of reliable and robust high-order solvers for
computational uid dynamics applications.

An innovative generalisation of standard spectral analyses techniques ap-
plied to high-order methods is rst presented. Special attention is dedicated
to the Spectral Di erence scheme used for the numerical simulations per-
formed for this thesis. Spectral analyses of high-order methods are normally
based on the numerical discretisation of the one-dimensional linear advec-
tion equation. In the present work, such approach has been generalised for
non-constant advection velocities to gain more meaningful insights about
high-order numerical discretisations of non-linear equations, such as Navier-
Stokes or Euler equations. The Spectral Di erence method has shown some
signi cant di erences with respect to the correspondent Flux Reconstruc-
tion recovering scheme when non-constant advection velocities are consid-
ered. The general behaviour of dissipative curves has shown remarkable
deviations between SD, FR-SD and the Flux Reconstruction Discontinuous
Galerkin recovering scheme. Numerical experiments have been conducted to
highlight the role played by numerical uxes and order of approximation for
Spectral Di erence and FR-DG methods.

The informations gathered from spectral analyses are then used to present
the Spectral Element Dynamic Model. The SEDM has been developed by
Chapelier & Lodato [1] to link numerical dissipation, which represents a typ-
ical build-in feature of spectral element methods, and classical explicit SGS
dissipation within the framework of Large-Eddy Simulations of turbulent
ows. A series of relevant transitional turbulent ows are then considered to
better evaluate the performance of the SEDM in more complex conditions.
Namely, a zero-pressure-gradient ow over a at plate and a low-Reynolds
SD7003 airfoil simulation. Both computations are meant to study in deep

5



the dynamic nature of the SEDM for complex geometries and transitional
ows.

Within the framework of compressible ows, an innovative low dissi-
pative bulk-based arti cial viscosity shock-capturing technique is presented
and analysed in detail. Numerical simulations in one to three dimensions,
inviscid and viscous, laminar and turbulent ows are considered to provide
a su ciently wide range of ow con gurations where the proposed model
performs well. In particular, in comparison with another widely di used ar-
ti cial viscosity model based on a laplacian regularisation. The bulk-based
arti cial viscosity provides, in fact, considerably reduced levels of arti cial
dissipation of vortical structures, keeping, at the same time, the simulation
stable.

Finally, in the last part of the manuscript, the coexistence of all the
up-mentioned investigations and models presented throughout the thesis is
studied for more complex compressible turbulent ows. Among these, the
transonic ow around an RAE2822 airfoil and the interaction between a tur-
bulent boundary layer with a 24 compression ramp have been simulated
using an LES approach, where the SEDM has been coupled with the pro-
posed bulk-based AV technique. Both simulations provided results in good
agreement with other simulations and experiments, certifying the robustness
and reliability of the combined e ect of the two models.

In the end, in order to generalise even more the SEDM to more com-
pressible applications, a Direct Numerical Simulation study for a compres-
sion/expansion ramp con guration has been performed. The highly-resolved
data have been used to reveal insightful informations regarding the SGS
kinetic energy dissipation expected to take place in the presence of non-
negligible compressibility e ects for wall bounded ows. The impact of the
spherical part of the SGS tensor ie., the turbulent kinetic energy), often
not explicitly modelled for weakly compressible ows, appeared to have a
relevant role in kinetic energy transfer. The SGS dissipation term has shown
to be directly connected to the local levels of compressibility, identi ed by
the velocity dilatation eld. Compressions motions are more likely to expe-
rience classical direct kinetic energy cascade, whereas expansions promote
back-scatter phenomena. Such informations can be particularly useful in
the development of more compressible formulations of classical LES models,
including, for example, a model for the spherical part of the SGS tensor.

All the contributions, ideas and investigations presented in this thesis rep-
resent the rst step toward a uni ed LES model able to handle, at the same
time, both turbulence under-resolution and shock-waves with techniques and
strategies speci cally tailored for high-order numerical schemes.



Resumeé

Cette thése se concentre sur l'application des méthodes d'ordre élevé aux
écoulements turbulents compressibles. Des aspects tels que la dissipation/dispersion
numeérique, la modélisation dynamique a I'échelle de sous-maille (SGS), les
techniques de capture des chocs et les e ets de la compressibilité sur la
modélisation de la turbulence sont discutés. Le manuscrit de these est
organisé selon des niveaux de complexité croissants, menant a la simula-
tion d'écoulements turbulents entierement compressibles ou toutes les dif-
cultés mentionnées ci-dessus sont simultanément impliquées. Les résul-
tats présentés dans ce travail s'inscrivent dans le développement de solveurs
d'ordre élevé ables et robustes pour les applications de mécanique des u-
ides numérique.

Une généralisation innovante des techniques d'analyses spectrales stan-
dard appliquées aux méthodes d'ordre élevé est d'abord présentée. Une
attention particuliere est consacrée au schéma de di érence spectrale utilisé
pour les simulations numériques réalisées dans le cadre de cette thése. Les
analyses spectrales des méthodes d'ordre élevé sont généralement basées sur
la discrétisation numérique de I'équation d'advection linéaire unidimension-
nelle. Dans ce travail de these, cette approche a été généralisée pour des
vitesses d'advection non constantes a n d'obtenir des informations plus sig-
ni catives sur les discrétisations numériques d'ordre élevé des équations non
linéaires, telles que les équations de Navier-Stokes ou d'Euler. La méthode de
di érence spectrale a montré quelques di érences signi catives par rapport
au schéma correspondant de récupération par reconstruction de ux lorsque
des vitesses d'advection non constantes sont considérées. Le comportement
général des courbes dissipatives a montré des écarts remarquables entre la
méthode SD, la méthode FR-SD et le schéma de récupération par recon-
struction de ux de Galerkin discontinu. Des expériences numériques ont
été menées pour mettre en évidence le rdle joué par les ux numériques et
I'ordre d'approximation pour les méthodes SD et FR-DG.

Les informations recueillies & partir des analyses spectrales sont ensuite
utilisées pour présenter le modele dynamique des éléments spectraux. Le
modeéle SEDM a été développé par Chapelier & Lodato [1] pour relier la
dissipation numérique, qui représente une caractéristique intégrale typique
des méthodes par éléments spectraux, et la dissipation de sous-maille ex-
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plicite classique dans le cadre des simulations & grande échelle d'écoulements
turbulents. Une série d'écoulements turbulents transitoires pertinents sont
ensuite considérés pour mieux évaluer la performance du modéle SEDM dans
des conditions plus complexes. Il s'agit d'un écoulement a gradient de pres-
sion nul sur une plaque plane et d'une simulation d'un pro | aérodynamique
SD7003 a faible nombre de Reynolds. Les deux calculs sont destinés a étudier
en profondeur la nature dynamique du modele SEDM pour des géométries
complexes et des écoulements transitoires.

Dans le cadre des écoulements compressibles, une technigue innovante de
capture des chocs par viscosité arti cielle a faible dissipation est présentée
et analysée en détail. Des simulations numériques unidimensionnel et tridi-
mensionnel, inviscides et visqueuses, laminaires et turbulentes, sont consid-
érées comme fournissant une gamme su samment large de con gurations
d'écoulement ou le modele proposé donne de bons résultats. En particulier,
en comparaison avec un autre modele de viscosité arti cielle largement ré-
pandu basé sur une régularisation laplacienne. La viscosité arti cielle basée
sur le volume fournit des niveaux considérablement réduits de dissipation
arti cielle des structures tourbillonnaires, en gardant, en méme temps, la
simulation stable.

En n, dans la derniére partie du manuscrit, la coexistence de toutes les
recherches et modeles présentés tout au long de la thése est étudiée pour
des écoulements turbulents compressibles plus complexes. Parmi ceux-ci,
I'écoulement transsonique autour d'un pro 1é RAE2822 et l'interaction entre
une couche limite turbulente et une rampe de compression d24 ont été
simulés a l'aide d'une approche LES, ou le modéle SEDM a été couplé avec la
technique AV basée sur le volume proposée. Les deux simulations ont fourni
des résultats en accord avec d'autres simulations et expériences, certi ant la
robustesse et la abilité de I'e et combiné des deux modeles.

Enn, an de généraliser encore plus le modele SEDM a des applications
plus compressibles, une étude en simulation numérique directe pour une
con guration de rampe de compression/détente a été réalisée. Les données
hautement résolues ont été utilisées pour révéler des informations instructives
sur la dissipation de I'énergie cinétique de sous-maille qui devrait avoir lieu
en présence d'e ets de compressibilité non négligeables pour des écoulements
limités par des parois. L'impact de la partie sphérique du tenseur SGS.¢.,
I'énergie cinétique turbulente), souvent non modélisée explicitement pour les
écoulements faiblement compressibles, est apparu comme ayant un réle per-
tinent dans le transfert d'énergie cinétique. Le terme de dissipation SGS s'est
avéré étre directement lié aux niveaux locaux de compressibilité, identi és
par le champ de dilatation de la vitesse. Les mouvements de compression sont
plus susceptibles de connaitre une cascade d'énergie cinétique directe clas-
sique, tandis que les expansions favorisent les phénomenes de rétrodi usion.
Ces informations peuvent étre particulierement utiles dans le développement
de formulations plus compressibles des modéles LES classiques, y compris,



par exemple, un modéle pour la partie sphérique du tenseur SGS.

Toutes les contributions, idées et recherches présentées dans cette thése
représentent le premier pas vers un modeéle LES uni é capable de traiter, en
méme temps, la sous-résolution de la turbulence et les ondes de choc avec
des technigues et stratégies spéci quement adaptées aux schémas numeériques
d'ordre élevé.
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Chapter 1

Introduction

Contents
1.1 Background and motivations . . . . ... ... .. 27
12 Outline. ... ... ... . . ... ... . ... 28

1.1 Background and motivations

High-order methods for uid dynamics represent a trending topic in the
Computational Fluid Dynamics (CFD) community, gaining more and more
popularity in both academia and industry. Their computational e ciency
and geometric exibility make them promising candidates as building blocks
for the next generation of commercial solvers. In particular, high-order meth-
ods have shown encouraging results in the simulations of vortical ows due
to their intrinsic numerical properties, leading to a widespread use of them
in both Direct Numerical Simulations (DNS) and Large-Eddy Simulations
(LES). Nonetheless, the level of robustness and reliability provided by low-
order methods such as classical nite volumes approaches, is still currently
out of reach, at least for under-resolved ows as it happens in LES. The gen-
eral structure and the dynamics of numerical errors in under-resolved ows
still represents a major issue in high-order simulations, both in terms of sta-
bility and turbulent modelling. The interplay between the errors associated
to the spatial discretisation and turbulence dynamics plays a central role in
the development of high-order schemes. The community of high-order meth-
ods is consequently constantly looking for innovative and insightful numerical
analyses tools to gain a deep understanding of the intrinsic numerical proper-
ties of the scheme. Based on such knowledge, classical turbulence modelling
needs to be speci cally tailored to the numerical scheme in order to work
harmoniously in a wide range of di erent turbulent ows.

As a secondary note, the CFD community, driven by more and more de-
manding industrial queries, is rapidly shifting toward more and more com-

27



28 CHAPTER 1. INTRODUCTION

plex ows, involving, among many others, compressibility, multiple phases
and chemical reactions. Considering more complex applications, using the
same numerical scheme developed for simpler sets of equations, clearly brings
additional complications in terms of numerics and modelling. The present
work will consider the relevant di culties in the simulation of compressible
ows using high-order methods. In particular, as it is well-known, compress-
ible gas-dynamics is intrinsically characterised by the natural development
of discontinuities in the ow eld, also known as shock-waves. The numeri-
cal description of very sharp feature such as shock-waves represent another
major research branch in the high-order methods community.

Finally, considering compressible turbulent ows, not every numerical
treatment of shock-waves will be allowed, since numerics, turbulence mod-
elling and shock-capturing need to coexist at the same time. Each of them
cannot be developed individually as the whole ensemble needs to work as a
unity.

The present work aims at a rst step toward the development of a uni ed
LES model, able to deal with turbulence under-resolution and shock-waves
at the same time within the high-order framework of the Spectral Di erence
scheme.

1.2 Outline

The present thesis will be organised in agreement with the previous discus-
sion, gradually increasing the level of complexity, leading only at the end to
high-order simulations of fully compressible turbulent ows. The rst three
chapter will be introductory: chapter 2 will be focused on the set of continu-
ous equations used throughout the thesis, chapter 3 will introduce the main
turbulence modelling concepts within the framework of Large-Eddy Simula-
tions, and chapter 4 will introduce the speci ¢ numerical scheme employed
in the present work, the Spectral Di erence (SD) scheme.

Once the numerical and modelling set-up has been properly introduced,
the concepts of numerical dispersion and dissipation, along with classical and
innovative techniques to quantify them, will be discussed in chapter 5. Chap-
ter 5 will be focused on the numerical scheme only, on its properties and gen-
eral dynamics in the simulation of under-resolved turbulent ows. Chapter 5
is based on the published work A Comparative Study from Spectral Analyses
of High-Order Methods with Non-Constant Advection Velocities [15].

Chapter 6 will treat how numerical dissipation, introduced in the pre-
vious chapter, needs to be taken into account in the development of LES
models for high-order numerical schemes. The Spectral Element Dynamics
Model (SEDM), which is based on a well-balanced interaction between nu-
merical dissipation and classical explicit Sub-Grid Scales (SGS) modelling
will be introduced. A series of numerical experiments involving the SEDM
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will be presented and discussed. Chapter 6 is based on two di erent publica-
tions on Flow, Turbulence and Combustion . Namely, Large-Eddy Simula-
tion of Bypass Transition on a Zero-Pressure-Gradient Flat Plate Using the
Spectral-Element Dynamic Model [16] and Analysis of High-order Explicit
LES Dynamic Modeling Applied to Airfoil Flows [17].

Chapters 7 and 8 will be focused on the role played by compressibil-
ity in the simulation of turbulent ows. In particular, in chapter 7, a low
dissipative, bulk-based arti cial viscosity model will be introduced as suit-
able shock-capturing technique for the simulation of compressible turbulent
ows. Chapter 7 is based on the Computer & Fluids paper Entropy pre-
serving low dissipative shock capturing with wave-characteristic based sensor
for high-order methods [18].

The nal chapter 8 will include all the previously presented topics at
the same time. Both LES and DNS of compressible turbulent ows will be
considered. The LES computations will be mainly focused on the mutual
interaction between shock-capturing and turbulence model. On the other
hand, the DNS aims at a better understanding on the role played by com-
pressibility in terms of mathematical modelling.

Finally, the second part of the thesis collects the rst page of the archival
journal publications relevant to this Ph.D. Thesis.



30

CHAPTER 1.

INTRODUCTION



Chapter 2

Fundamentals

Contents
2.1 Fluid mechanics fundamentals . . . . . ... ... 31
2.2 The dimensionless formulation . ... ... ... 33
2.3 A brief introduction to turbulence . . ... ... 34

2.1 Fluid mechanics fundamentals

The motion of a compressible viscous uid is completely described by the im-
position of local conservation of mass, momentum and energy. Each of them,
in a cartesian framework, can be expressed as a Partial Di erential equation
(PDE). In the following Einstein summation convention for repeated indices
has been employed.

1. Conservation of mass,
@ + @ u J) =0
@t @x

where is the uid's density and u; is the velocity component along
the direction X;.

(2.1)

2. Conservation of momentum

@u,  Quiy) _ @;
@t @x @x

where jj = Aj p j is the tensor of surface stresses accounting for
viscous actionsAj; and thermodynamic pressurep, and f; denotes the
i-th component of body forces per unit of mass acting on the uid
element

+ fi; (i=1;2,3) (2.2)
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3. Conservation of total energy

@E, @QEuj) _ @ ju) L @@
ol oy or * U G 2.3)

whereE = e+ ugux=2 is the total energy (with e the internal energy),
and Qy is the k-th component of the heat ux vector.

The above ve equations, which constitute the Navier-Stokes (NS) sys-
tem of equations, are used to obtain the ve unknowns, represented by the
conserved variabled) =( ; u 1; U2, us; E )T. All the other terms appear-
ing in the equations ( j;, Q and f) are either analytical functions or they
can be expressed as functions a&f .

In particular, the following assumptions are usually made:

1. The uid is Newtonian and follows the Stokes Law for mono-atomic
gases:

Aij =25S ij (2-4)

where is the dynamic viscosity andS;; is the deviatoric part of the
velocity gradient tensor

1 eu @ 1 0O
Sjj > @}(+ @x 3 @x (2.5)

2. The uid evolves following the equation of state of calorically perfect

gas:
p= RT; (2.6)
e=¢T,; 2.7)
Cp=c+R; (2.8)
= =G/ (2.9)

whereT is the temperature, ¢, and ¢, are the the speci ¢ heat, respec-
tively, at constant pressure and volume R = R=My, is the gas constant
computed form the universal gas constanR = 8:31451)/(mol K) and
the gas molar weigthM,,, and = 1:4. The total energy density, in
particular, may be expressed as

1
E = Juguc+ ;
2k 1

(2.10)
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3. The heat ux Qg follows the Fourier's law

@T_ cp@T
@x Pr @x’

where is the thermal conductivity, and Pr is the Prandtl number.

Qk = (2.11)

4. The dynamic viscosity of the uid may be computed from the tem-
perature T using the Sutherland's law:

T 32T+ Ts

T)= —
( ) ref Tref T+ TS

(2.12)

5. Body forces can be neglected,e. f; =0.
In this way the problem can be written in a more compact vectorial form

as: . y
@ + @;ﬁ + 7@ =0;
@t @x @x

whereF and D denote, respectively, inviscid and viscous uxes, de ned as

(2.13)

0 U 1 0 0 1
Uilk + 1P 2S 1«
Fk=%u2uk+ kP D":% 2S 5 E: (2.14)
UsUk + 3¢ 2S 3
(E + p)uk 2U j S %@%r

2.2 The dimensionless formulation

In order to better understand the problem of turbulence, the non-dimensional
set of Navier-Stokes equations are introduced. The relevant normalisation
procedure is summarised below. To simplify the formulation, viscosity is
considered constant.

Let R, Ur, Ir and Tr be the reference density, velocity, length and
temperature respectively. The relevant dimensionless quantities are

= = Ry U = U=Ur; X =Xi=lg; T =T=Tg; (2.15)

where the subscript( ) is now used to address normalised non-dimensional
quantities. The reference time and pressure may be derived by dimensional
analysis as:

tr = Ir=UR; PR = RUA: (2.16)

Moreover, the dimensionless equation of state is obtained as:

p= RT; (2.17)
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with 1 y 4
R=-"_ and Ma= p—0 = —R: 2.18
Ma2 RT R aR ( )

where ar is the reference speed of sound.

Dividing the internal energy by u% and the total energy by Ru% and using

the identity R = RTR:qu, the following relations descend immediately:
RT

1 P
e = 1 =¢T; and E = > uu, + —l; (2.19)

wherec, = R =( 1) = c\,TR:uﬁ is related to and Ma. Evidently, the
dimensionless speci c heat at constant volume and pressure are related to
their dimensional counterparts by the following identities:

¢, = &Tr=Uz and ¢,= ¢, = ¢Tr=UA: (2.20)

Using Egs. (2.15), (2.16), (2.18), (2.19), (2.20) and related identities, the
dimensionless Navier-Stokes equations become:

Q+ Q@ u) 0

@t  @x ’
Qu, @ o1 @ 0
@ @ MY TP 1) RegyPH) (2.21)
@E) @ 1 @ ¢, @T

+ o[ E +p)yl=

whereRe = RruUgrlr= .

The dimensionless equations are formally identical to the dimensional
counterparts, with all the quantities replaced by starred ones. Based on this
consideration, in all the next sections, no distinction will be made anymore
between dimensional and dimensionless formulations.

2.3 A brief introduction to turbulence

Looking closer to Eq. (2.21), the rst thing that can be noticed is that for
high values of the parameterRe, the viscous e ects become less and less
important, hence the ow tends to be almost inviscid. On the other hand,
when Re is small, viscous e ects become more and more important with
respect to convective forces.

The importance of this parameter was rst pointed out by Reynolds while
making experimental observations of the ow along straight smooth pipes,
He notice that, for some certain values of the ratio

i, (2.22)
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with U the average uid velocity in the pipe and | its radius, the ow was
changing radically from direct motion into sinuous motions, indicating
what nowadays is commonly referred to ad laminar and turbulent ow
regimes.

If U is the typical velocity of the ow, I, is the typical length of the
streamline pattern and I, is the typical length of the cross-stream velocity
gradients, it is easily shown, by simple dimensional considerations, that the
inertial and viscous forces for unit of volume of uid scale asU 2=, and
U=l 2 respectively. Hence, provided thatl is properly chosen,

Re = U—I; (2.23)
namely the Reynolds number, represents the relative intensity of inertial
forces compared to the viscous ones. When inertial forces are predominant
over viscous forces, the uid motion is more prone to instabilities. And,
since the non-linear nature of Navier-Stokes equations expressed by the
convective term uju; makes them extremely sensitive to small di erences
in the initial conditions, chaotic, or turbulent, motion is generally the out-
come of those instabilities. In other words, uid ows are always naturally
unstable, and these instabilities can be properly controlled tuning the level of
viscosity. The Reynolds number quanti es the ratio between the convective
(non-linear) term in Navier-Stokes equations and the viscous forces, provid-
ing a qualitative recipe to distinguish between laminar and turbulent ows.
Nonetheless, the specic transition between the two phases is not always
easily determined as it strongly depends on the particular ow characteris-
tics. In fact, an intermediate state is usually identi ed as transition where
the ow is not laminar nor fully turbulent. It is then evident that a formal
de nition of turbulence is not trivial and possibly not even useful.

Sometimes, a practical example can reveal much more insight that any
mathematical formalism. Consider the ow around a cylinder for low enough
viscosity values and suppose that the velocity eld in a certain location of
the wake behind is available at any instant for a certain time. From an ex-
perimental point of view, repeating the measure for the same amount of time
and in the same conditions will provide always di erent results. Of course,
experimental uncertainties can be many and not necessarily related to turbu-
lence. Nevertheless, these di erences are commonly ampli ed by turbulence.
If instead, a time-averaging operation is applied to all the measurements, the
output will be the same. This is a fundamental point of turbulence under-
standing: every turbulence theory needs to be statistical. At each location
and each time instant, the ow eld will look random and chaotic, while
its statistical properties are smooth functions. It exists a fascinating coexis-
tence of randomness and determinism hidden inside Navier-Stokes equations.
With this in mind a general ow eld can be decomposed as:

u(x;t) = hu(x;t)i + uqx;t); (2.24)
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where the average operatorIf i) has been introduced. The averaged veloc-
ity hu(x;t)i needs to be interpreted as a statistical mean ow whileu{x; t)
represents velocity uctuations around the mean value. The mean ow is
smooth and it obeys to deterministic equations while velocities uctuations
are random variables varying at any instant of time and any spatial loca-
tion. In a physical sense, uctuations are intrinsically linked to vortical
structures. Geometrical properties of the ows, nevertheless, impose some
bounds on the amplitude and behaviour of such uctuations. Largest vor-
tices will have dimensions comparable to the characteristic length scales of
the problem, while the smallest are more universal and representative of
turbulence. Largest vortices are advected in the ow by the mean ow.
Due to non-linear instabilities smaller and smaller eddies are generated by
a break-up mechanism. The kinetic energy contained in the large scales is
then progressively transferred to smaller and smaller scales, until it is nally
dissipated by viscous forces. This process is commonly known asergy cas-
cade and it represents probably one of the most popular phenomenological
descriptions of turbulence as it was rst proposed by Richardson in 1922 [19].
It also highlights the dualism between convective and viscous forces. Con-
vective forces provide the large scale kinetic energy coming from the mean
ow; viscous forces, instead, are responsible of the dissipation at the smallest
scales. There exist then a set of characteristic lengths and velocities scales
such that the correspondent Reynolds number is close to 1.e., convective
and viscous forces are comparable:

I (2.25)

where is this small-scale characteristic length andu the correspondent
characteristic velocity. It is then necessary to relate such quantities to the
mean ow to have a quantitative measure of turbulence and its scales.

An important quantity, as already stated, is represented by the kinetic
energy and its viscous dissipation, which can be formally written, for incom-
pressible ows, as:

"=2S ij Sij . (2.26)
Since viscous dissipation is supposed to be strictly related to the smallest
scales, using simple dimensional analysis, it is possible to obtain:
u2
" —! (2.27)
At this point Kolmogorov's theory [20] can be introduced. According to
Kolmaogorov's rst similarity hypothesis, at smallest scales, the only relevant
gquantities in uencing the ow are the kinetic energy dissipation * and the
viscosity . From dimensional analysis is then possible to write explicitly
andu as
=+ 13 and u =( Y (2.28)
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This range of scales much smaller than the characteristic length scalie;

is normally called universal equilibrium range At the same time, under the
equilibrium hypothesis, the rate at which energy is passed down the cascade,
must be equal to the rate of energy dissipation:

f . @uguy)
2 @t

This expression gives the necessary link between large and small scales. In
particular, after some algebra, it is possible to write:

ud=lr (2.29)

IrkRe *** and u urRe ¥ (2.30)

It is then interesting to notice that high values of the Reynolds number
provide larger and larger separation between large and small scales of the
ow. For this reason, turbulence is often described as a strongly multiscale
problem: a wide range of scales are indeed involved in the dynamics of the
ow, varying from the large scales imposed by the geometry of the specic
ow, to the smallest viscous scales.

Kolmogorov's second similarity hypothesis assumes the existence of two
sub-ranges within the universal equilibrium range:inertial and viscous sub-
ranges. The latter involves the smallest scales and it satis es all the pre-
viously stated properties, while the latter involves intermediate scales
I Ir. Within this sub-range, the ow depends only on the scalel and
the dissipation rate *. This is commonly calledinertial subrange and it is
characterised by the energy cascade from large to small scales.

Another useful statistical tool in turbulence is the spatial cross correlation

Rijj (x;t) = huj(Xo; t)uj (Xo + X;1)i; (2.31)

as it quanti es the correlation, i.e., the mutual in uence, between velocities
at di erent locations. In order to express the di erent scales, it is sometimes
useful to work in Fourier space. The energy spectrum tensdg; () with the
wavenumber can be expressed as:

1 277,
, = i XR. .

Eij() 7BE . e Rjj (x)dx: (2.32)

Then, the scalar kinetic energy spectrum can be written as:

[
1

E()= éEii( )dS(); (2.33)
where = | jj. The kinetic energy spectrum quanti es the distribution

of energy along wavenumbers/frequencies instead of scales. The dimensional
analysis used in the previous calculations can be applied in the Fourier space
too. The energy spectrum within the universal equilibrium range, according
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to Kolmogorov's rst similarity hypothesis, may be written as a function of *
and only. Using dimensional analysis, it is possible to obtain the following
expression for the inertial subrange:

E=E(; ")=C "3 53 (2.34)

where C is commonly indicated as the Kolmogorov constant. Eq. (2.34) is
commonly known as the Kolmogorov's 573 law. For the viscous subrange,
dimensional analysis does not provide a solution and the kinetic energy spec-
trum takes the more general form:

E=C "3 538f( ) (2.35)

A schematic representation of a typical kinetic energy spectrum of a tur-
bulent ow is reported in Fig. 2.1. In such gure it is possible to observe

Figure 2.1: Schematic example of kinetic energy spectrum.

the consequences of the kinetic energy cascade. Most of the kinetic energy
is contained in the largest scales, where the spectrum reaches its maximum
values. Subsequently, an inertial range with constant slope, denoted as the
inertial sub-range, represents the kinetic energy transfer from the largest
scales to the viscous scales. At the beginning of the viscous sub-range, the
kinetic energy dissipation rate increases, and the modes associated to large
wavenumbers drop abruptly. The sudden decrease of such modes is repre-
sentative of the viscous dissipation acting on the kinetic energy transferred
from the large scales motion.



Chapter 3

Large Eddy Simulations
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3.1 Introduction

Turbulent ows are characterised by a wide range of time and spatial scales
which non-linearly interact with each other. Either the simulation or the
modelling of such interactions can be particularly complex. On one hand,
the grid size can be chosen small enough to catch the dynamics of even
the smallest scales involved in the physical problem. Such scales, however,
can be particularly small and cause the simulation to be computationally
very expensive, even for simple geometries. The numerical resolution of the
whole spectrum of scales, varying from the large ones, linked to boundary
conditions and geometry of the problem, to the smallest, viscous scales, is
commonly called Direct Numerical Simulation . Despite the rapidly growing
computational power of modern architectures, DNS is still out of reach for
many relatively simple ows.

39
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On the other hand, for industrial applications, it is not always necessary
to have very accurate temporal knowledge of the ow eld. Statistical quan-
tities are sometimes su cient for the design of engineering prototypes, as,
for example, the mean pressure load of a rigid boundary, or the mean heat
ux at the wall. The numerical resolution of the Reynolds-Averaged Navier-
Stokes (RANS) equations, aims at resolving only the statistical means of
relevant variables such as the velocity eld, pressure or temperature. Statis-
tical means are much smoother than the instantaneous ow eld and a much
reduced resolution is needed to represent them. Nonetheless, the local inter-
actions between scales, which would be directly solved in DNS, need to be
properly modelled in the RANS framework, where only the rst mode (.e.,
the mean) is available. The gain in computational e ciency, consequently,
is worth only if coupled with accurate turbulence modelling.

A possible midway solution between DNS and RANS is represented by
Large-Eddy Simulations . Large scales are the most energetic scales involved
in the problem. The large-scale motions are responsible for the production
of kinetic energy and are strongly dependent on the general ow con gu-
ration (boundary conditions, geometry, etc.). The smallest scales, instead,
are representative of viscous e ects which are normally assumed to be much
more universal and independent with respect to the speci ¢ turbulent ow.
The idea of LES consists in resolving the large scales and model the small,
universal scales. With respect to DNS, the computational cost is consider-
ably reduced. At the same time, since most of the scales are numerically
resolved, LES models are normally much less complex than RANS models.
Due to their exibility, LES are considered the natural evolution of RANS
approaches in the next generation of commercial codes for industrial appli-
cations.

3.2 The ltered Navier-Stokes Equations

Length-scale separation, on a generic quantity (x;t), is achieved in physical
space by means of the convolution product
(x;t) = ()G (x )d® (3.1)
1

whereG is the convolution kernel associated to the Iter operation at cuto
length . Using the superscript()? to indicate Fourier transformed quan-
tities, previous equation can be rewritten, using the Convolution Theorem,
to the point-wise multiplication in Fourier space:

()= 7CNGLO):; (3.2)

where G?_( ) is the transfer function, namely, the Fourier transform, asso-
ciated to the convolution kernelG (x), and! are the wavelength and the
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phase respectively and . =2 = is the cuto wave-number. The spectral
representation of may be then truncated at wave-number . by an ap-
propriately chosen low-pass Iter G?C. For the ltered Navier-Stokes to be
tractable, the Iter has to:

1. conserve constant values; this is equivalent to the normalization con-
dition: Z .,

G () =1 (3.3)
1

2. be linear,i.e. + = +

3. commute with derivation in space and time:
@z Q; Qz Q: (3.4)
@t @t @x @x
The rst two requirements are generally met with a properly de ned
Iter (the second condition, in particular, is ensured by the linearity of con-
volution operation). The third requirement is a bit more complex in nature.
Commutation errors arise when the lter is anisotropic [21] (e.g., when solid
boundaries are present or when the computational grid is not uniform) or,
for instance, when Favre- ltering (the relevant de nition will be given later)
is adopted. On this regard, additional approximations will be made case
by case. In all the developments which follow, it is assumed that the Iter
operator commutes with spatial and temporal di erentiation. Typical Iters
used to perform spatial scale separation are the top-hat, the Gaussian and
the spectral cuto lters.
Using the above de nitions and applying the commutation property, the
Itered Navier-Stokes equations are obtained:

— _—k —k
@ + —@: + @ =0 (3.5)
@t @x @x
with
0 1 0 1 0 1
LU " U1Uk + 1kP " 2S 1k
U = U=, F = UUx + 2kPg=; D = 2S % ; (3.6)
U3 U3lk + 3P 2S 3
E (E + p)uk 2uiSy W&l

the ltered energy and the Itered equation of state being given by the
following relations

=

P
1

+ —TUyUg; and p= RT: (3.7)

N
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Following the same methodology generally applied when solving the com-
pressible LES equations, in order to avoid unclosed SGS terms in the conti-
nuity equation, a density-weighted Favre lIter operator tilde may be intro-
duced; this operator, which represents density weighted lItering, is de ned
for a given quantity as:

e= . | = —e (3.8)

The advantage of using Favre- Itered equations is twofold:

1. The absence of SGS terms in the mass conservation equation where
the theoretically unclosed term U7 can be expressed as a function
of the Favre ltered velocity as ~&;. A smaller number of unclosed
SGS contributions, of course, gives a simpli ed theoretical modelling
of turbulence.

2. The Favre- ltered equations are structurally similar to their correspon-
dent incompressible formulations providing a natural generalization of
theoretical and modelling results of incompressible turbulence.

The non-linear interaction terms in the ux vector F* are then decom-
posed in resolved and SGS parts, the former being accessible from the ltered
solution and the latter, namely the SGS terms now included into the di u-
sive vectorD ¥, requiring modelling. The form of vectorsU,, F*andD" can
then be re-expressed with the explicit application of Favre ltering:

0o 1 0 1
—B, ) alak + 1kP 2S 1 1k
U=B &% F = azak + P 2SSk 2k (3.9)
g3 838k + 1P 2S3 3
E (CE+ pa 2UjSkj %@%T Ok

where j and ¢ are the unclosed SGS terms:

= (eg  wu;), (3.10)

& =("E+pec (E +puc=c (Fax Buy)
+pex Pl (3.11)
1
*5C(guec dujud));
Using the above decomposition and the Favre- ltering operator, the total
ltered energy becomes:

=P +lge 1. and p=wRE (3.12)

1 2

NI =
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Considering di erent sets of ltered quantities as unknowns can lead to dif-
ferent formulations of the ltered Navier-Stokes Equations, resulting in dif-
ferent sets of SGS terms to be modelled. The equations expressed in this
form naturally lead to the choice of —, g and E as unknowns. Such option
is equivalent to pick the Itered conservative variables U since botheg; and

E can be evaluated using the Itered density:

a; EH.]_*U]_, (I 1:2 3) (313)
E= U5=U1:
For this choice of variables, all terms included in the diusive uxes are
unclosed and proper modelling is needed to express them as functions of the
Favre- Itered quantities.

Sub-grid terms involving viscous or heat uxes are usually considered
relatively small for high Reynolds number ows. ltis, in fact, assumed that
viscous scales, which are considerably smaller than the cuto length, will be
only mildly a ected by the ltering operation. Mathematically, it is normally
assumed that

2SSy 275, (3.14)
2S kj Uj Tgkj g, (3.15)
and
Cp@T Tp@P

On the contrary, for similar reasons, inviscid sub-grid terms cannot be
neglected and proper modelling is needed. In particular, the unclosed SGS
terms are represented in Eq. 3.9 byj and o.

At this point a choice regarding the spherical part of the SGS tensorjj is
in order. Notice that the spherical part of j; appears not only in the momen-
tum conservation law but also in the energy equation. The choice regarding
the spherical part of the SGS tensor can lead to di erent forms of ltered
energy equation. In the present work, the solution proposed by Ducros [22]
and Lesieur [23] has been employed. The spherical part of the SGS tensor
is incorporated in a macropressure Hence, the spherical part of the SGS
tensor is not modelled. Nevertheless, such choice implies consequences on
the energy equation which will be brie y summarized.

The resolved macropressure is then de ned as

= — :
! P 3 KK - (3.17)
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In this way the convective and di usive uxes can be re-written as

1 0 1
0 g 0
. Bt wl o 2Sw  §
F =R &b+ 1l D* = 2S % Sk : (3.18)
B3 + 11" 2S a3 &
(TE + My 2uiA Wy %

Where the subscript ()9 denotes the deviatoric part of the SGS tensor
”d = i % kk ij - Since ltered pressure is no more accessible from Itered
variables, the SGS energy uxcg has been rede ned in terms of resolved
macropressure:

&=("E+Nex (E +pu (3.19)

Moreover, observing that the Itered total energy contains the trace of the
SGS tensor, a resolved macrotemperature needs to be de ned as well, such
that the total energy is computable from resolved quantities:

1 .
7o, K

1 .
B =71,f+ E*akak; with €=F (3.20)
The Itered state equation in terms of macropressure and macrotemperature
reads:
1

= = R+ R
3kk 2¢C,

r=R® kk:Pe'f' > KK » (3.21)

suggesting that, for ¢k su ciently small, macropressure and macrotemper-
ature may be related by the usual equation of statej.e.,

r=RE€ (3.22)

de ning the sub-grid Mach number as

kk Kk .
Més= =5 = i (3.23)
this condition becomes:
j3 5 .
s M &s L (3.24)
For = 1:4 for instance, this condition is 1:6 times less restrictive on

Msgs than just neglecting the e ects of the SGS stress' trace compared to
the ltered thermodynamic pressure:

[EEN
[EEN

P! Mg 1 (3.25)
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A nal remark needs to be done regarding the de nition of the SGS energy
ux, which is now de ned using macropressure and macrotemperature:

& =("E+MNex (E +pux=c (%ax Buy)
+ e plc (3.26)

1
+ 5(7(19 upgx  Uiujug));

Finally, the assumption on heat sub-grid ux applies to the macrotempera-
ture as well, namely,

cp@T T Tp @&

Pr @x Pr @x
A possible alternative which includes the spherical part of the SGS tensor can
be also obtained. In this work, it has been followed the guideline proposed by
Vreman et al. [24]. The mathematical modelling is almost identical with the
previous discussion except for the energy equation, which needs a specic
treatment. In particular, a conservation law for a large-scale total energy
can be written as:

@® ., @ p,ne1- 20eq @ To@
@t + @?((( @4— p)al) @}((2 gll Bl) @}( Pr @}( (328)

B1 B2+ Bz B4+ Bs+ Bg By,

(3.27)

where = ll + 5 8¢8¢ and additional unclosed terms are de ned as:

— 1 . \-
Bi1= 1@¥(pj pe;);
5, @0 @
2=Pax Pax’
@
Bs=@( ij t);
@
Ba=j @y’ (3.29)
@U @|,
Bs =25 g 28, ox

Bs :@(25 ia 2 Sje);

@ Cp@T @ Cp@‘a

B7 = @3( Pr @x @x Pr @x

This equation is obtained by the subtraction of the transport equation for
the turbulent kinetic energy (i.e., the spherical part of ;) from the Itered
energy equation. In this way, the pressure herein considered is the actual
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ltered pressure without the addition of the trace of j . Consequently, the
main advantage of such formulation consists in an easier interpretation of the
pressure eld. In the weakly compressible formulation, in fact, the specic
importance of the spherical part of the SGS tensor in the macropressure is
generally unknown. On the other hand, as it can be clearly noticed, a signif-
icantly larger number of unclosed terms appear in the equation. Still, most
of them are usually considered negligible and onl3; and B3 are commonly
modelled.

Notice that in this case no assumption on the spherical part of the SGS
tensor has been made. Consequently, each term involving englobes auto-
matically both deviatoric and spherical contributions. This is of course true
also for the SGS tensor in the Itered momentum balance equation. Notice
that the form of the equation is almost identical to the rst formulation,
where it has been chosen a di erent type of large-scale total energy. In the
weakly compressible formulation the unknown is

P 1
= _P A (3.30)

whereas in this latter approach it is

B = P 1 + %7Qk9kl (3.31)
A clear connection between the choice of resolved energy and the modelling
of the spherical part of SGS tensor can be easily identi ed. Finally, it is
worthwhile noticing that the relevance of the spherical part of the SGS tensor
is intimately linked to the SGS Mach number and the level of compressibility
will implicitly dictate which formulation is more suitable for a specic ow

eld. The role of compressibility, and in particular of the spherical part of
the SGS tensor, will be thoroughly discussed in chapter 8.

3.3 Mathematical modelling

The unclosed terms which need to be modelled are the SGS tensqr and
the SGS energy ux g, hamely,

i = (a8 wu); and &= ("E+pe (E +puc (3.32)

Only the deviatoric part of j needs to be modelled if the rst weakly com-
pressible approach is considered. Only this specic case will be considered
in the present section. The modelling of the spherical part, although widely
di used [25, 26], has been only mildly treated in the present work (see chap-
ter 8).

Sub-Grid Scale modelling of turbulence consists in identifying the general
algorithm that expresses the unclosed SGS terms as functions of the ltered
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variables which are directly available from the simulation. This process can
be represented by a simple analytical functional form of each term or by
a more complex algorithm taking the resolved variables as general inputs.
In simpler terms, turbulence modelling consists in an input-output relation
where the input are the resolved variables and the output are the unclosed
SGS terms. It is nally interesting to notice that also the choice of the
resolved variables is arbitrary and it can lead to di erent modelling choices.
If the conserved variables are the prescribed unknowns, then the available
quantities for a turbulence model are entirely contained in the vectorU. In
particular the set of unknowns that can be used is:

S UL U Uz E (3.33)

On the other hand, if the fully-compressible formulation is considered, also
the spherical part of the SGS tensor needs to be modelled and the choices
on the resolved variables could dier. In fact, the resolved energy will be
di erent as shown in Egs. (3.30) and (3.31).

Then, the formal way to write the turbulence closure modelling problem
is simply:

S =1 (U x;t);

G =g (U;x; 1)
Once this dependence is explicitly stated, the Itered equations can be nu-
merically discretised, causing an ulterior non-trivial in uence on turbulence
modelling as it will be deeply analysed in the next chapters. Under-resolved
ows, such as the ones normally modelled using the LES approach, are signif-
icantly in uenced by the numerical discretisation and any speci ¢ turbulence
model should be tailored based on the underlying numerical scheme used to
solve the Itered equations. This concept will be fundamental throughout
the whole thesis work and it will be deeply discussed in chapter 6.

Another fundamental di erence in SGS modelling relies on the tensor
or vector level of approximation of the unclosed terms. In fact, in order to
obtain satisfying LES results, it is not always necessary to model unclosed
terms on a tensor level (each component individually). Sometimes, SGS
models base on their divergence (vector level), which is the actual term ap-
pearing in the ltered equations, can su ce to predict the correct dynamics
of the resolved eld. In other words, a tensor level model such as

(3.34)

ijd = f (U;x;t) for ij =1;::3
can be substituted by a vector-level model of the form

d
g”}(zfi(u;x;t) for i=1;::3
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Since the SGS heat uxg is a vector, it can be modelled on a vector level
as
ok = g(U;x;t) for k=1;::3

or, on ascalar level, as

@q

@x
Vectorial and tensor level approximations de ne the di erence betweerfunc-
tional and stuctural models. More speci cally, the former aim to reproduce
the e ects of sub-grid terms on the resolved ow eld, while the latter seek
a good correlation on a tensor level too.

One of the most popular class of functional models is the Eddy-Viscosity
or Sub-Grid Viscosity approximation. Eddy-viscosity models are based on
the assumption of similarity between molecular di usion mechanics and sub-
grid scales energy transfers. The in uence of unresolved scales on the large
scale ow eld is assumed to be essentially dissipative. Such an assumption
was rst proposed by Richardson's theory [27] onenergy cascadeand lately
formalised by Kolmogorov [20]. The kinetic energy is produced by the large
scale motions, characterised by the problem/s geometry and boundary con-
ditions. Subsequently, the kinetic energy contained in the largest vortices is
transferred to smaller and smaller scales through the vortex-stretching mech-
anism. For small enough scales, the viscous e ects become comparable with
convective stresses and the accumulated kinetic energy is nally dissipated.
If these scales are excessively small, the computational cost of the numerical
simulation required to resolve them can become extremely high. Using the
assumption of energy cascade, instead, the in uence of viscous scales on the
resolved eld can be easily modelled as a dissipative process. The simplest
approach consists in the addition of turbulent dissipation:

=g (U;x;t):

=2 (8 23 S«): (3.35)

Furthermore, employing the hypothesis of Eidson [28], the SGS energy ux
can be directly related to the eddy-viscosity as

@
Pre @%

The closure problem is then solved when(x;t) and Pry(x;t) are de ned.
Notice that both can be spatially and time dependent. In fact, the eddy-
viscosity is a property of the turbulence itself and it needs to be di erently
active depending on the di erent nature of the turbulent structures within
the domain. The Prandtl number, instead, is generally taken as a constant
value varying between0:5 and 0:9 [29]. Among the advantages of eddy-
viscosity models, simplicity and robustness are certainly the most important.
The theoretical concept behind is intuitive and reliable. Nevertheless, in cer-
tain conditions, such assumptions can be dramatically simplistic, leading to

% = (3.36)
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excessive dissipation, in particular in combination with high-order meth-
ods. Along the years, more and more complex models have been developed
since the rise of LES. Most of them, leading to superior improvements with
respect to classical models such Smagorinsky model. Nevertheless, more ac-
curate predictions usually come along with more expensive algorithms and
more delicate stability which could fail for certain complex simulations. It

is in fact important to highlight how LES cannot be categorised neither as

a merely numerical problem nor as a turbulence physics one. A deep under-
standing of the dynamics of turbulent ows is crucial. A strong theoretical
background could potentially lead to very accurate models, but, if such mod-
els are extremely complex and expensive, the whole purpose of LES would be
pointless. A good equilibrium between complexity and computational cost

is pivotal for a successful SGS model.

3.4 A-priori and a-posteriori analyses

In order to evaluate the validity of particular SGS model, two main ap-
proaches are commonly practised in the literature:a-priori and a-posteriori
testing [30, 31]. In the rst approach, fully-resolved elds are available from
DNS of speci ¢ turbulent ows. Explicit ltering is then applied to the DNS
data in order to evaluate the unclosed SGS terms in the lItered equations.
Such quantities can then be used as reference for the development of a spe-
ci ¢ SGS model built using the ltered variables. In this way it is possible

to estimate the reliability and robustness of a certain SGS model without
actually perform any Large-Eddy Simulation (i.e., in a o ine fashion). Fol-
lowing an a-posteriori approach, the problem is tackled in the opposite way,
the theoretical Itered equations are simply discretised and the SGS model
is directly employed in a LES computations. Secondly, quantities extracted
from the LES can then be compared with measured mean velocity pro les
for which an extensive set of experimental and DNS data are available in
the literature. Of course, both approaches are needed in the development of
innovative SGS models.

A-priori testing based on DNS data has shown some discouraging results:
classical SGS models have shown poor correlation with respect to the SGS
unclosed terms obtained from explicit Itering of DNS data. Nevertheless,
it has also been noticed in multiple works ([32, 31, 33]) that poor a-priori
correlations do not necessarily translate in poor results when the model is
actually employed in a LES. In the same way, models which correlates very
well with explicitly Itered quantities are not always suitable for LES and
additional dissipative eddy-viscosity terms are usually needed (for example,
the gradient/tensor di usivity model [34] or Bardina's model [35]).

In ideal conditions the perfect equivalence between the two approaches
would be likely to take place. For a given set ltered DNS elds, it is
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reasonable to think that it would exists a certain SGS model capable of giving
the same exact outcomes when actually applied to a real LES. Finding the
exact model capable of such results, nevertheless has be theoretically proved
to be impossible ([36, 37]) due to inevitable commutation errors.

In fact, the comparison between the two approaches relies in a funda-
mental assumption: the explicit Itering operation applied to the DNS data
is representative of the numerical resolution of the ltered equations. In a
sense, the lter kernel, implicitly de ned through the discretisation of the
ltered equations, is assumed to have an a-priori known expression (such as
box-hat/gaussian/sharp spectral Iter). The role played by the numerics,
instead, is extremely complex and, in large part, characterised by unknown
outcomes in terms of dissipation and regularity of the solution. The con-
nection between the numerical scheme employed to solve the equations and
the physical-based SGS model is a crucial aspect in the success or failure
of the LES. Secondly, but not less importantly, the a-priori approach com-
pletely neglects the dynamics of the system, since the analysis is only based
on snapshots of DNS ltered data. It is then commonly assumed that such
de ciency would a ect the reliability of a-posteriori approaches.

In the present work, both a-priori and a-posteriori approaches will be
used to study the recently developed Spectral Element Dynamic Model
(SEDM) [1] which will be brie y introduced in the next sections and thor-
oughly discussed in chapter 6.

3.5 Eddy-viscosity models

The Eddy-viscosity models belong to the class of functional SGS models. In
fact, their goal is not reproducing exactly all the individual entries of the SGS
tensor, but to reproduce the e ect of such terms on the resolved elds. If
the energy transfer within the inertial range of the kinetic energy spectrum
is assumed to replicate classical molecular di usion, then it is possible to
model such transfer introducing a properly de ned eddy-viscosity term. In
other words, as already mentioned in the previous sections, the following
approximations are commonly invoked:

i}j =2 (8 273 S); (3.37)
and
. @
G = Pr. @x (3.38)

Of course, many di erent eddy-viscosity models have been proposed over the
years, each with speci c desirable properties. In the present section, a brief
overview on the most popular ones will be given.
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3.5.1 Smagorinsky Model

Among the most used sub-grid eddy-viscosity models, the Smagorinsky model [38]
computes the sub-grid viscosity ; as :

(= C2 ?jsq; (3.39)

where the tensor norm term is computed from the resolved strain rate tensor
with the following relation

j§% =28 S ) (3.40)

and is the grid level Iter width. The model constant Cs can be the-
oretically determined from Local Equilibrium Hypothesis considerations or
adapted for the speci c problem. Typical values range from0:1 to 0:2.

3.5.2 The wall-adapting local eddy-viscosity (WALE) model

The WALE model [39] was designed primarily to achieve the correct near-
wall scaling behaviour,O(y®3), for the sub-grid eddy-viscosity by using a new
operator Si? de ned as:

1 1
Sﬁ:§@§+ﬁ) éuﬁm (3.41)

where Si? is the traceless-symmetric part of the square of the velocity-
gradient tensor g; = @ =@y Since the term S{'S{ scales asO(y?), it
is possible to construct an eddy-viscosity:

(SfspH™=
(S) S;)%2+ (8] s])>=

1]

t=(Cw) 2

(3.42)

such that O(y®) scaling may be achieved near the wall. In the equation
above, Cy, is the coe cient of the WALE model and is a user specied
parameter. This coe cient has been calibrated using isotropic turbulence
to obtain the relation CVZ\, = 10:6C52, where Cs is the constant-coe cient
Smagorinsky coe cient. Based upon this expression and the value o€g =
0:1 (typical for wall-bounded ows), we set the coe cient of the WALE
model to 0:3 [40].

3.5.3 The SIGMA model

The SIGMA model [41] improves upon the behaviour of the WALE model
by using the singular-value-decomposition of the velocity-gradient tensor to
build the eddy-viscosity. This manner of constructing the sub-grid eddy-
viscosity provides the model with many useful properties. For example the
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SIGMA model vanishes completely in the presence of solid rotation and pure
shear. By comparison, the WALE model only vanishes in the presence of
pure shear. Furthermore, similar to the WALE model, O(y®) scaling of the
eddy-viscosity is achieved near the wall. The eddy-viscosity of the SIGMA
model may be de ned as:

¢=(C ) °D ; (3.43)

where:

31 22  3).
and where 2 3 0 are the three, singular-values of the velocity
gradient tensor g; (as de ned in Sec. 3.5.2) andC is the SIGMA model
coe cient which is a user speci ed parameter. The value of C has been
evaluated to be1:35in Ref. [41].

3.5.4 Spectral Element Dynamic Model
The Spectral Element Dynamic Model [1] de nes a constant kinematic eddy-
viscosity within the element of the SD discretisation as:
p __
= Céomf(n) n kn; (3.45)
where |, is an estimate of the local cuto length scale,f ( ) is a spectral

turbulence sensor,Csgpm is @ model constant andk,, is an estimate of the
SGS turbulent kinetic energy within the element de ned as:

1 . . .
Kn = > he, eni h e, heyi (3.46)

where h i denotes spatial averaging within the element.
The expression for the turbulent sensor reads:

8
51 for n<
1 : (¢ n)
"0 for n> i +2 ;

where | is a least square approximation of the decay exponent of the modes
associated to Legendre polynomials within then-th element.

Before the computation of the SGS terms, the eddy-viscosity is made
linear across the elements to avoid discontinuities of; within the domain.

Three parameters in uence the level of dissipation introduced by the SGS
model, namely, r, Csepm and . Their values have been calibrated using
low Mach number Taylor Green Vortex DNS data [1]. In all the simulations
presented hereafter, the following set of values have been used:

Csepm = 0:23; thr = 1:6; =0:3: (3.48)

Finally, the turbulent Prandlt number has been set to 0.5 [29]. A more
detailed overview on the SEDM will be provided in chapter 6.



Chapter 4

Spectral Di erence method

The constant increase of computing power in modern hardware architec-
tures made computational uid dynamics a widely-used virtual prototyping
tool [42]. Well established CFD softwares are now robust and reliable for
many engineering design processes. Although, they still lack in accuracy for
many delicate situations of high interest in engineering and applied sciences.
Along these lines, innovative numerical high-order schemes gained a lot of in-
terest in the last few decades, emerging as the building core of the next CFD
generation [43]. Among them, the Spectral Di erence method [44, 45, 46],
which has been used in the present work. In the following sections the Spec-
tral Di erence method will be rst introduced to discretise one-dimensional
conservation laws and subsequently generalised for the three-dimensional

Navier-Stokes equations. All the signi cant details about the numerical
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scheme will be brie y mentioned to provide a satisfactory overall charac-
terisation of the Spectral Di erence scheme.

4.2 1D Spectral Di erence method

The SD method solves the strong form of the di erential equation using
piecewise continuous functions as approximation space. Consequently, the
solution is assumed to be discontinuous at elements interface. In order to
have a consistent discretisation, the solution is interpolated using a poly-
nomial of degreeN while the ux, which is connected to the conservative
variables via a divergence operator, is approximated with a polynomial of
degreeN + 1. The most important ingredient of the SD discretisation is
the de nition of two di erent set of points: solution and ux points. The
numerical solution is de ned on the nodesx? with i=0 to N. Fluxes, in-
stead, are de ned on a di erent set of nodes{ , with i=0 to N +1, among
which element boundary points are included. It shall be noted that, in the
present study, the solution points are set as the Gauss-Legendre points of
order N +1, a sensible choice to minimise aliasing errors in the nonlinear case
while de ning a well conditioned basis set for the solution interpolation [47],
whereas the ux points are set as the Gauss-Legendre points of ordér plus
the two end points -1 and 1 to ensure linear stability [48]. An example of
solution and ux points for a polynomial approximation of degreeN =3 is
shown in Fig. 4.1.

Figure 4.1: Solution (red circles) and ux (blue squares) points of SD dis-
cretisation in the reference elementl = 3).

As in the FR scheme, the solution is approximated with a polynomial of
degreeN

X
a(R) = uil3(%): 4.1)
i=0
within the reference element , = f® 1 2R 1g. In the one-dimensional
case, the map linking the reference element to the physical element, and
consequently® with x, is a simple linear transformation, acting on the length
of the element.
At this point the FR scheme would use an interpolated ux (of degreeN)
on the same set of points and subsequently add a correction ux (of degree
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N +1) de ned on element extrema as well. In the SD scheme, instead, the
values of the solution are extrapolated at the ux points

X
a%))=  wild(®); j=0;u5N +1; (#:2)
i=0

and then used to compute uxes on the same collocation basis:
f; = (&) = f(0@&))): (4.3)

Then, a continuous ux polynomial of degreeN + 1 is constructed, by La-
grange interpolation, using the uxes evaluated from the interpolated so-
lution at the interior ux points and the numerical uxes at the element
interfaces:

X
&)= LI+ 11 R)+ TR (R): (4.4)
j=1
In other words, the interpolated values of the ux at elements extrema are

substituted by the interface numerical uxes f! and fY,. Finally, the ux
divergence is evaluated at the solution points,

df’ dif X dif dif,,
RO = LREN+ @)+ fe— (] (4.5)
j=1

and the numerical solution can be advanced in time using a suitable time
integration scheme discretising the following equation:

do  df" o
Frai Ty ): (4.6)
As example, in the case of linear advection equation, Eq. (4.6), for the
n-th element, can be written in matrix form as

d(?tn = 2D (fAL 19+ M 0n + fARlN"'l); (4.7)
where 8
dl-f(k-s) 20 for 1=0;
Dij = Jdkl ; Mij :>0 for i=N+1; (48)
IP(%;) otherwise,
ljo = jo and 1jN o= j(N+1) forj =0 to N +1. In the above formal-

ism, when the superscripts is used, the relevant index ranges from 0 tiN,
whereas, when the superscript is adopted, the index goes from 0 taN + 1.
Hence,D 2 RIN*D  (N*+2) gnd M 2 R(N*2) (N*1) resulting in a local linear
system of dimensiondN +1) (N +1). The subscript (), instead, denotes
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the element numbering. Notice how a clear distinction between the interior
di erential operator and the evaluation of the interface ux is evident in
Eq. (4.7).

The core of the method is hidden inside the de nition of the matrix
M, for which both nodal sets are needed, while the interface information is
contained in the f] g terms. A speci ¢ SD method is completely de ned by:

1. the location of both solution and ux points;
2. the expression of interface uxesf| =g .

In chapter 5, the Flux Reconstruction (FR) scheme will be introduced.
It will be shown that the di erent choice of correction functions in the FR
method can be directly linked to the location of the solution points in the SD
scheme. The interpolation operator between solution and ux points, in fact,
implicitly de nes the correction function of the corresponding FR recovering
scheme. Nodes coordinates are somehow a useful degree of freedom that can
be modied in order to increase accuracy and/or stability. In fact, some
recent work has been done in optimised nodes location for SD methods [49].

4.3 Multi-dimensional formulation

Once the one-dimensional strategy is properly outlined, the three-dimensional
SD discretisation of conservation laws can be easily generalised. The gov-
erning equations are once again transferred from the physical to the compu-
tational domain through the change of coordinates:

X
X = Mi(k)Xi (4.9)
i=0

where K is the number of points de ning the physical element, whereas
Xij and M; are the relevant position vectors (in physical space) and shape
functions, respectively. The change of coordinates, in the one-dimensional
case, consisted in a simple linear scaling of the element, whereas, in multiple
dimensions, more complex deformations of the reference element are allowed.
In this sense, using appropriate de nition of coordinates transformation, it is
possible to handle highly complex geometries with a reasonably small e ort.
Of course, the geometrical exibility of spectral element methods represents
a very powerful feature for realistic CFD con gurations.

The general multi-dimensional conservation law can be expressed in the
computational space as

%tﬂk G=0; (4.10)
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with Q =det(J)U, G = adj(J) F, wheredet(J) and adj(J) respectively
represent the determinant and the adjoint of the Jacobian of the transfor-
mation J = &.

Within the element, solution and ux points are de ned in a tensor prod-
uct fashion, leading to the following expression of the interpolated represen-
tation of conserved variables:

XX Qi

U (% 9:2) = det(3)

PR)IEMIR(2) (4.11)
i=0 j=0 k=0

where i (%), 1;(9), lk(2) represent one dimensional Lagrange polynomials
along the three dimensions of the reference element. Similarly to the one-
dimensional case, along each direction, the polynomial approximation de nes
immediately a strategy to evaluate the conserved variables at the ux points.
Namely,

Qijk s
Utk = (&) (4.12)
T Q)
Qijk s
Uip = Stk s 4.13
Qijk s
Uigr =~k sy (4.14)
4 k=0 det (‘])i:j;k <

with f = 0;::;;N +1. An example of tensor product locations of solution

Figure 4.2: Distribution of solution (red circles) and ux points (blue
squares) in the standard element for a 3-rd order spatial discretisation.

and ux points is shown in the reference element in Fig. 4.2.
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Fluxes, considered along, ¢ and 2, can be written as:

K+l

Gh(® = (adi(d) F)pjxlh&); (4.15)
p=0
+1

GA M= (@dj(J) F)Zulb®); (4.16)
p=0
K+1

G (2) = (adj(J) F)Z, 15(2); (4.17)
p=0

where (adj(J) F)Y is the d-th component of adj(J) F evaluated at the
p-th ux point for xed indices along the other two dimensions. Finally,

II) is the Lagrange polynomial de ned on thep-th ux point, constructed
on the ux points basis. Consequently, such polynomial is one order higher
than the ones used to de ne conserved variables on the solution points. The
point-wise values of the ux are computed using the reconstructed solution
evaluated at the ux points, namely, Uk , Uik , Ui from Egs. 4.12, 4.13
and 4.14 respectively. The reconstructed ux is only element-wise continuous
and discontinuous across element interfaces. With regards to the interface
contribution, a Riemann solver is employed to compute a common ux at
the cell interface to ensure conservation and stability. Theory and common
practices of Riemann solvers will be the focus of the next section. The ux
is then made continuous replacing the element interface uxe$jx and
Fn+1;jx (for uxes along R) with the one-valued numerical interface ux
given by the approximate solution of the interface Riemann problem. The
computation of the derivative along R is nally performed exactly in the
same way as in the one-dimensional case. Namely, given the interpolation
of the corrected uxes &(%), the derivative of € (%) along ®, ¥ and 2 is
computed simply applying the derivative operator to Egs. 4.15 4.16 and
4.17 respectively:

@ .1 Xt dif, (%)
= €, (®) = (adi(d) )b 2 (4.18)
@ ik =0 piik dz
@ .2 Xt . 2 dl;(y)
— G (9 = (adi(d) B)3: : (4.19)
@ T i dy
Xt dif
g €5 (2) = (adi(3) B3, gff): (4.20)

p=0
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All the previous expressions can be nally evaluated on the solutions points
of each direction:

g €k = g € (%) _with =0;N (4.21)

g @a‘;k = g @ﬁk(y) . with j =0;:;N (4.22)
i

g 6k = g &} (2) with k=0;::N (4.23)

2
Finally, the semi-discrete SD discretisation of the conservation law 4.10 can
be written as:

@Qé,)],tk . g e, + g €2, + g €y =0 (424)
In a similar manner, the same procedure can be repeated to compute vis-
cous uxes, where the extrapolation on the ux points is applied to uxes
involving rst derivatives. In fact, after the computation of inviscid uxes,
the rst derivatives of the conserved quantities are directly available within
the element, and they can be used to evaluate viscous uxes at the solution
points. Given such information, the same strategy, brie y presented in this
section, can be almost identically employed to compute the divergence of
viscous uxes. In analogy with respect to the computation of inviscid uxes,
an appropriate de nition of interface uxes will be needed. More details on
Riemann solvers and viscous uxes will be provided in the next sections.

4.4 Numerical uxes

In the previous sections the general strategy to discretise a general conser-
vation law using the SD scheme has been provided. It has been explained
that uxes are made continuous at the interface using numerical uxes. In
the three-dimensional discretisation of the Navier-Stokes equations, the nu-
merical uxes are obtained solving a Riemann problem.

Due to the intimate connection between upwinding uxes and numerical
dissipation, most of the present section will be focused on inviscid uxes.
In particular, Roe ux will be considered as one of the most representative
examples of inviscid numerical ux for spectral element methods. Many
other alternatives have been developed in the last decades giving a very
vast choice of uxes that can be used in solving compressible Navier-Stokes
equations in an high-order discretisation framework (see [50] for an extensive
review).

In a similar way, the literature on viscous numerical uxes for high-order
methods recently experienced a sensible grow [51, 52, 53]. Nevertheless,
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in terms of numerical dissipation at high wavenumbers, numerical viscous
uxes play a less relevant role (see also [54]). The eventual dissipative term
added to the numerical viscous ux is in fact usually proportional to the
conserved variables' jumps across the element's interface, leading, ultimately,
to a dissipative e ect which is identical to the one associated to inviscid
uxes.

4.4.1 Inviscid uxes
Characteristic Variables

Characteristic variables play a fundamental role in many di erent aspects
of CFD, from characteristic-based boundary conditions [55, 56, 57, 58] to
Godunov's methods for nite volume schemes [59]. In particular, as it will
be explained in more details in the following sections, characteristic variables
are very important in the theory and practice use of Riemann solvers as they
give a fundamental understanding on how information propagates within the
uid domain.

As rst building block, the eigenvalue formulation of the one-dimensional
form of Euler equations will be considered as a simpli ed example of hyper-
bolic conservation law. In this particular setting, the governing equations
can be written as:

Ui+ AUy = 0; (4.25)
where 2 3
u 0 p
A=40 u 1=95 with c= dp=d: (4.26)
0 c2 u

andU =( ;u;p)T.
One of the useful properties of the matrixA for hyperbolic conservation
laws is that it can be diagonalised. Namely, the matrixA can be written as:

A=L 'L (4.27)

whereL and L ! can have di erent forms based on the normalisation coef-
cients. One of the most popular options leads to the following expressions:

2 3 2 3
1 =2c =2 1 0 1=

L=40 1=2 1=25 and L =40 1 1xc)5; (4.28)
0 c=2 c=2 01 1=c)

whilst the corresponding eigenvalues are; = u, >=u+cand 3=u c.
Multiplying both sides of 4.25 by L ! Euler's equations read:

L 'u¢+L AL YHu,=o0: (4.29)
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In order to obtain an advantageous formulation, the matrix L is considered
constant. Such approximation is essentially equivalent to assume that the
equations can be locally linearised. Consequently, introducing the change of
variablesW = L U, which from now on will be denoted ascharacteristic
variables Euler's equations take a very simple and powerful form:

Wi+ Wy =0: (4.30)

All the equations are now completely decoupled and a simple analytical
solution is immediately available. Namely,

wilx;t)= wo(x it) i=1;::3 (4.31)

Consequently, it exists a local change of variables such that the new set of
unknowns assume always a constant value along a certain space-time di-
rection and the speed of propagation coincides with the magnitude of the
eigenvalues.

Obviously, the matrix A (and soL, L ! and ) is not constant, as it
depends on the local values ofJ. The present theory holds only locally.
Nonetheless, the characteristic decomposition gives very important informa-
tions on the solution's structure. The local values of characteristic variables,
as presented in the next sections, play a fundamental role in the framework
of Riemann solvers.

Finally, notice that, once the characteristic equations are solved, the
solution of conserved variables can be simply written as:

x3
uxt)= LW = wl(x tL®: (4.32)
i=1

Riemann Problem

The Riemann problem for the hyperbolic, constant coe cient system 4.25
can be de ned as the following Initial Value Problem:

Ui+ AUy = O; (4.33)
with initial conditions
(
U for <0
U o= -t X : (4.34)
Ur for x> 0

The general structure of the solution in the(x;t) plane is sketched in Fig. 4.3:
a nite number of space-time waves characterised by di erent slopes {.e.,

propagation velocities) represent the full solution of the Riemann problem.
Assuming that the matrix A is a constant, the Riemann problem can be
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Figure 4.3: General solution structure.

easily solved using the characteristic change of variables introduced in the
previous section.

As a rst step, left and right states are de ned using the vector space
spanned by the eigenvectors of the matrixA. Namely,

X3 _ X3 .
U, = LM and Ug = L (4.35)
i=1 i=1
The general solution is evaluated using the characteristic system which reads:

W+ W,=0; (4.36)
with initial data (
0/uy — i Xx<O0 G Ao .
w(X) = i=1;:53 ; 4.37
0= (4.37)

The solution of the characteristic system is then computed as:

v D _ i X it< 0
wi (X;t) = wy(x it) X t>0 (4.38)
and the solution in the primitive variables is simply de ned by Eq. (4.32).
In particular, whenever x it < 0, the solution is just U, and the linear
combination of the eigenvectors de ning the solution involves only coe -
cients. Instead, ifx  jt> Oonly coe cients will appear. In the middle,
combinations of left and right states will emerge. In particular, in the case

of three equations, the possible options are:
Upp= LD+ L@ 4+ LG
S ? ° (4.39)
Uyg = LO 4 51 @ 3|_(3):

This idea is graphically pictured in Fig. 4.3.
The actual expression of the coe cients and can be easily found from
Egs. 4.35 which represent two linear systems to be solved.
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Exact solvers

In the previous section a constant matrix A was considered to simplify the
mathematical setting. Euler equations, instead, are strongly non-linear and
the formulation becomes more complex. In other words, mathematically, the
equations should be written as :

Ui+ A(U)Uy = O (4.40)

Moreover, in the previous case, everything was de ned-priori , meaning that
the two waves were somehow intrinsically de ned in the constant matrixA.
In reality, the fully non-linear Riemann problem can lead to many di erent
con gurations. In the 1D case, three characteristics are present in the system
and each of them can be a shock, a rarefaction wave or a contact discontinuity
(so 10 alternative).

The basic idea of exact Riemann solvers relies on exact iterative methods,
designed to nd the intermediate state ( ;u ;p )', guessing a rst general
structure of the waves. Algebraic equations can be de ned for shocks, expan-
sions and contact discontinuities and the problem can ultimately be reduced
to a systems of non-linear algebraic equations. This approach imposes the
use of a Newton-type algorithm to solve them numerically.

Nevertheless, for the purposes of the present work, most of the attention
will be focused on approximate solvers.

Godunov's Method

Godunov's method is one of the most famous numerical discretisation of non-
linear systems. In order to deal with discontinuous solutions, an integral form
of the equations is considered. The general conservation law

Ui+ F(U)x = 0; (4.412)
can be integrated both in time and space, leading to the following expression:

4 Z,, Zy,

U(x;tp)dx = U(x;ty)dx + (F(U(x1;1)) F(U(x2;0)dt:  (4.42)

X1 X1 ty

X2

The canonical paradigm considers then an element-wise constant solution
as schematically shown in Fig. 4.4. After element-averaging, the Godunov
method can be written as:

t
uttt =yt + 7X[Fi 1= Fi+=2]; (4.43)

with F; 1 = F(U; 1) and t s— With S, the maximum wave
velocity in the whole domain.
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Figure 4.4: Graphical visualisation of Godunov's method.

A priori, the solution at interface is unknown, the only available infor-
mations are located at the cell center. Moreover, the solution is expected to
be in the self-similar form U,; o(x=t). Consequently, the evaluation of the
Riemann problem RPU;"; U}, ) solution at x=t = 0 is needed to advance in
time.

As already stated, it is possible to solve analytically the Riemann prob-
lem but most of the times this strategy can be very time-consuming and
computationally ine cient. In fact, the errors associated to the spatial or
temporal discretisation can be much larger than the errors arising from ap-
proximate Riemann solvers.

Approximate Riemann solvers

As previously state, the goal is to solve numerically the general initial bound-
ary value problem:
Ui+ F(U)x = 0; (4.44)

with initial data U (x; 0) = U@ (x), using the explicit conservative formula
Ut = Ui+ f)t((Fi 122 Fivi=); (4.45)
along with the Godunov intercell numerical ux
Fi 1=2= F(U; 1=2): (4.46)
Considering now the equation
Ui+ AUy = 0; (4.47)

the problem can be approximated imposing thatA A = AWUL;UR).
Once the matrix A is considered locally constant, the problem can be easily
solved using the ideas presented in the rst section for hyperbolic systems
of equations with constant coe cients.
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The choice ofA is only partially arbitrary. In fact, A needs to ful | some
speci ¢ constraints associated to the equations.

It can be proven that for a general hyperbolic system, numerically re-
solved using Godunov method, the intercell uxes can be generally de ned
as: 1 X

Fisn2 = 5(FL+ FR)

for some coe cients ~.

The di erent approximate Riemann solvers will di er from each other
according to the speci c de nition of A. Once the approximated Jacobian
is de ned, the coe cients ~, eigenvalues™; and eigenvectorst() can be
evaluated and used to compute the interface uxF;.; -, according to 4.48.

The coe cient ~'s are de ned through the eigenvectors expansion of the
primitive variables's jumps:

~i=ic®: (4.48)

X )
u=_ ~c (4.49)

Explicit calculations for the original Roe's ux are reported in the Ap-
pendix C. Furthermore, the application of Roe's ux to the three-dimensional
Euler equations is outlined in the Appendix D.

4.4.2 \iscous uxes

In order to introduce the numerical discretisation of viscous numerical uxes
in Navier-Stokes equations, the general one-dimensional scalar conservation
law will be used as guideline. How to generalise to three-dimensional systems
of conservation laws has been already outlines in previous sections. The
di erence with respect to the previous formulations relies on the ux explicit
dependence on the rst derivatives of the solution. Namely,

eu @, .@u

@t @x T@X
It can be useful to rewrite equation 4.50 as a system of rst order equations
as:

=0; (4.50)

@t Ox (4.51)

where g is commonly called auxiliary variable. Consequently, the rst equa-
tion is referred to as the principal equation and the second as the auxiliary
equation.

The classical procedure to compute viscous numerical uxes starts with
the resolution of the auxiliary equation in g which simply coincides with the
rst derivative of the conserved variable u. The rst step is essentially an
interpolation problem and it can be seen as the rst full step of SD resolution
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of a conservation law: the solution is extended to the edges of the element,
is corrected using the interface uxes and nally re-interpolated and derived
on the solution points providing the derivative of u at each solution point.
At this stage then, g and u are directly available on the solution points. This
rst step depends on the speci ¢c numerical ux for u used at interfaces. The
common ux can be written in the generic form as:

UR + UL Ur UL
0= + . 452

After the auxiliary equation is solved, both g and u are known. Consequently
the ux function can be easily evaluated at the solution points. At this point,
the procedure coincides with the standard SD strategy: the ux is interpo-
lated at the edges, corrected and nally re-interpolated and di erentiated on
the solution points. In a similar way with respect to the rst step, the only
needed information relies on the interface ux, which will depend on left and
right state of not only u but also q.

The interface value ofu has been already de ned in equation 4.52 but
no de nition has been given to the common value ofy at the interface. The
di erent choices on the interface value ofq will lead to di erent well-known
schemes used in the spectral element methods framework. Namely, in the
case of Local Discontinuous Galerkin (LDG) [51],

q=Ch+CIL R G, Ur UL;
2 2 2
where a penalty term proportional to the parameter can be added to control

the jump at the interface. A similar de nition is used in the internal penalty
approach [52] where =0, giving

(4.53)

UR + UL R+ QU Ur UL
= — - = + . .
4] > and @ 5 > (4.54)
An even easier choice is to simply consider centered uxes [60] of the form:
+ +
0= % and ¢= * > q_: (4.55)

It is then interesting to notice that the construction of the numerical viscous
ux is based on two choices: the de nition of an interface state for bothu
and g. Despite the similarities, the computation of the conserved variables
at the interface and the de nition of a common state is completely decoupled
with respect to the inviscid ux computation. In other words, the de nition

of inviscid and viscous uxes are independent one another.

4.5 Boundary conditions

A fundamental ingredient in any discretisation of compressible Navier-Stokes
equations is represented by the implementation of appropriate boundary con-
ditions. As commonly established in the research eld, di erent approaches
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can be followed in the imposition of boundary conditions in compressible
ows. Each of such techniques can signi cantly in uence the overall stability
and accuracy of the numerical simulation. A deep discussion on the speci c
consequences of each approach is far beyond the purpose of the present work.
The following considerations are meant to delineate a general guideline on
the e cient implementation of boundary conditions in the SD high-order
framework (see also [61] for an extensive summary).

As discussed in the previous sections, in the SD scheme, the solution is
extrapolated from the solution points to the ux points which include the
element's edge. The ux at the element's extrema is thencorrected using
a common interface ux. Within the general introduction of the numerical
scheme, the computation of the interface ux was speci ed to be a function of
the left and right states only, representing the combined information coming
from the two elements sharing a common face. Of course, such scenario is
not possible at the boundary elements, where boundary faces belong to only
one element. A proper de nition of the numerical ux at boundary faces
is consequently needed. Two di erent approaches can be followed in this
case. The interface ux can be de ned either introducing a convenienghost
state and compute the interface ux as result of the Riemann solver applied
to the interior and exterior (or ghost) states. Such approach is commonly
denoted asWeak-Riemann Alternatively, the common interface ux can
be directly prescribed knowing the exact, expected values of the solution at
the boundary. This latter approach is instead known asWeak-Prescribed
In the present work, both approaches will be discussed. A visual sketch of
the Weak-Riemann approach using a ghost state is represented in Fig. 4.5.
The de nition of the ghost state will clearly depend on the specic type of

Figure 4.5: Visualisation of the Weak-Riemann approach applied to a right
boundary edge. The green square represents the right (ghost) state which is
chosen according to the speci ¢ boundary condition.

boundary condition. In the following subsections the most common choices
of boundary conditions will be presented and an appropriate ghost state will
be introduced for each of them. Without any loss of generality, in agreement
with Fig. 4.5, the left state represents the interior of the domain and the
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ghost state coincides with the right state. More precisely, iff' denotes the
ux at the interface, Weak-Riemann, and Weak-Prescribed can be written
as

Weak Riemann: F' =RI(U_;UR)

4.56
Weak Prescribed: F' = F'(Ugc) (459

where RI( ; ) represent a standard approximate/exact Riemann solver and
Ugc the exact values of the conserved variables at the boundaries. In a
similar way, for the di usive uxes, the following notation can be used:

Weak Riemann: D' =VF(U_;Ug;r U;r Ug)

457
Weak Prescribed: D' = D'(Ugc;r Uge) (4.57)

where VF de nes the full strategy already presented in previous chapters
to compute viscous uxes at the edges using left/right states and respective
gradients.

451 Far eld

The far- eld boundary condition represent one of the most basic condition
which is imposed in the numerical resolution of Euler equations. Conse-
quently, in the case of the compressible Navier-Stokes equations, such con-
ditions are imposed in regions of the ow where viscous e ects are neg-
ligible. Normally, due to natural hyperbolic nature of Euler equations, a
characteristic-based imposition of boundary conditions is needed. In this
sense, the concept of Riemann invariant needs to be properly introduced. In
a three-dimensional setup, considering a speci ¢ directiom, the character-
istic variables take the form:

0 o u, 1
2a? 2aW
N & o+
W=L U=8n, R oF (4.58)
P W3
ns 2 T
P4+ Un
2a? 2a

whereu, = u nandw = u n (for additional details, see Sec. D).

The case of an upper boundary is considered as a representative example.
In fact, the far- eld boundary condition is often applied to the top edge

in boundary layer simulations. In other words, the casen = (0;1;0)" is
considered. In this conditions the characteristic variables reduce to:

OL Ql
2a? 2a
w1
W—Llu—% apg (4.59)
- - az 0 0
W 3
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Furthermore, using the isentropic assumptionp= = const it is possible to
write

2a

Wi=ux+ and Ws= up (4.60)

1;

which are commonly known as Riemann invariants associated to the in-
coming and outgoing acoustic waves. Based on the previous analysis, it is
possible to consider all the possible combinations of supersonic/subsonic in-
ow/out ow and use the knowledge on the characteristic waves to compute
explicitly the appropriate ux at the boundary. Namely, the correct values

at the boundary will be written as

0 1
b

(u1b
Usc = B(U2)p (4.61)
(u3)p

Ep

using appropriate values( ). The boundary ux can then be directly eval-
uated using a Weak-Prescribed approach. On the other hand, if a Weak-
Riemann approach is preferred, a suitable ghost state can be de ned as:

0 1
1

(U1
Ur=B(U2)1 (4.62)
(u3)1

E:

It can be proven, in fact, that any Riemann solver based on a characteristic
decomposition (such as Roe, HLL or HLLC uxes) automatically takes into
account the sign of the normal velocity and the local Mach number.

45.2 Inow/out ow

In regions of the ow where viscous e ects are not negligible, di erent con-
ditions with respect to the classical far- eld boundary conditions need to
be properly enforced. In particular, depending on the supersonic/subsonic
regime and on the sign of the normal velocity, di erent combinations of im-
posed( )gc and extrapolated (). values of the variables will be considered.
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In particular, the following choices of ghost states are normally considered:

0 1
BC
(u1)sc
Subsonic inow : Ug-= (u2)ec ;
(us)sc

E(pL; BC:UBC)

1
BC

(u1)sc

(u2)sc ;
(us)sc

E(psc; Bc:Usc)

Supersonic inow : Ugr=

QU ©

1

0
(U1)L
Subsonic outow (u2)L ;
(us3)L
E(psc; L:;uL)

0 1

L
(UL
Supersonic outow : Ugr = (u2)L :

(us)L
E(pL; L;uL)

Finally, since viscous e ects are not negligible, also proper boundary vis-
cous uxes need to be de ned. Recalling how viscous uxes are evaluated in
the Spectral Di erence scheme, the rst step consists in evaluating a com-
mon interface ux for the conserved variables. In the case of in ow/out ow
boundary conditions, it is often imposed to have an intermediate auxiliary

state
0 1

L

(UL
BC = (U2 ; (4.63)
(us)L

E(pL; L;uL)

which is merely used to compute the gradients Within the boundary element
and evaluate the boundary viscous uxes a®' = D' (U3¥;(r U).). Notice
that only the gradients on the left state are considered, smce at the boundary
gradients are, in general, unknown.
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4.5.3 Isothermal/Adiabatic no-slip wall

In addition to far- eld and in ow/out ow boundary conditions, in the nu-
merical discretisation of compressible Navier-Stokes equations, proper im-
position of wall boundary conditions is needed. Among these, in the large
majority of numerical simulations of engineering interest, isothermal and adi-
abatic no-slip wall conditions are the most commonly employed. In agree-
ment with the previous subsection, proper inviscid and viscous numerical
uxes need to be de ned at the wall using either Weak-Prescribed or Weak-
Riemann approach.

In the computation of the inviscid uxes, the following ghost state is used
to imposed zero velocity at the wall:

0 1

L
(uL

U R = ( u 2)|_ . (464)
(us)L
EL

Imposing as ghost state the interior velocity with opposite sign clearly re-
sembles the classical strategy commonly used in nite di erences discretisa-
tions. The common interface inviscid ux is subsequently computed using a
Weak-Riemann approach. The same ghost state is used for both isothermal
and adiabatic conditions, which will di er in the treatment of the viscous
numerical ux.

For the computation of the viscous uxes, a rst auxiliary inviscid step is
needed and an interface inviscid ux is imposed. At this point, the procedure
di ers depending on whether isothermal or adiabatic condition is imposed.
In particular, for the isothermal case the ghost state reads

0 1
Bc = (pL;Tec)

0
aux = 0 : (4.65)
0

E(p; Bc;0)

The prescribed wall temperature and the extrapolated pressure are used
to evaluate the value of density at the wall. Subsequently, these values,
combined with null velocity, are used to compute the total energy at the
wall boundary.

Afterwards, similarly to the previous subsection, the viscous boundary
ux is computed as D' = D' (U3¥; (r U).). Namely, only the extrapolated
gradients from the inner part of the element (left state) are used for the
computation of the viscous ux.
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In the case of adiabatic wall, instead, the auxiliary intermediate state
will read 0 1

L
0

aux — 0 : (4.66)
0

E(p.; L:0)

In this case, density and pressure are extrapolated and combined with null
velocities to compute the right ghost state. Di erently with respect to the
previous case, instead of imposing a prescribed temperature at the wall, null
values of temperature gradients are enforced. Consequently, the imposition
of adiabatic boundary condition appears explicitly in the computation of the
viscous numerical uxes.

After imposing the auxiliary state U3¢, all the gradients are directly
available at the solution points and, from direct extrapolation, on the wall
boundary too. Similarly to the previous point, viscous uxes are imposed
using a Weak-Prescribedapproach:

D' = D'(Ugc;(r U)); (4.67)

where in the computation of (r U) all the gradients of the left state are
used except the normal component of the heat ux, which is imposed to be
Zero:

(rT n)gc =0: (4.68)

4.6 Time-integration

In previous sections, a detailed strategy to approximate spatial derivatives
using the high-order Spectral Di erence scheme has been presented. In a
more general sense, in the one-dimensional formulation, a speci c approach
to evaluate the term ux divergence % at the solution points has been
introduced. The semi-discrete form of the SD discretisation of a general one-
dimensional conservation law within the elementn will take the following
form:

el = L(0y); (4.69)
where, and f}, respectively represent the discrete representation of con-
served variables and uxes. Since the relationshig, = f(0,) is often non-
linear, explicit time-integration schemes have an immediate and straight-
forward implementation, whereas implicit time-integration is more complex.
In the present work, only explicit time-integration schemes will be employed.

do,  @n(0n)
@
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For the sake of simplicity, if a standard explicit Euler scheme is employed,
the fully-discrete scheme will read:

On(t+ 1) = 0n()+  tL(On(1)) (4.70)

Of course, more complex explicit time integration schemes can be con-
sidered. In particular, in many of the simulations considered in the following
sections explicit Runge-Kutta (RK) schemes have been used.

For example, assuming the ux have no explicit dependence on time, the
standard fourth-order four stage explicit RK method can be written as:

07 = L(0a(1))
;=L 0n(t)+ = tof

03=L 0n(t)+ = t03

NI NI

(4.71)
0;=L 0n(t)+ t03

On(t+ t)= 0,(t)+ % t 07+203+2035+ 0F
Once a strategy to compute the residual () is given, any RK scheme can
be used to advance the solution over times.

As well known, explicit time-integration is limited by Courant-Friedrichs-
Lewy (CFL) and Fourier (FOU) conditions which are respectively associate
to the spatial discretisation of inviscid and viscous uxes. In particular, the
CFL and FOU time steps for the compressible Navier-Stokes equations are

de ned as:

h
tcrL = = and t = — 4.72
CFL CFL Fou FOU 55 = ( )
wherehg and h¢ quantify the spatial resolution of convective and di usive
uxes, a = = UgUg + p= is the spectral radius of the convective ux

jacobian, and D is the dimension of the problem. More speci cally, in the
high-order, three-dimensional framework that will be often considered in the
following sections, a measure of the local spatial resolution can be de ned
as:

hs=det(J) s and hf =det(J) ¢ (4.73)

where s and ¢ represent the smallest distance of solution and ux points
in the reference element.

The coe cients ¢cgL. and fgouy set the maximum allowed time-step for
each speci ¢ time-integration scheme. Once the two time steps are evaluated,
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and the minimum value in the whole domain is computed, the prescribed
time-step is selected as:

1
tmax = —— — (4.74)
tecrL * teou
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Spectral analysis for high-order
methods
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5.1 Introduction

The constant increase of computing power made computational uid dy-
namics a widely-used virtual prototyping tool [42]. Well established CFD
software are now robust, but they usually lack in accuracy for many deli-
cate situations of high interest in engineering and applied sciences. Along
these lines, innovative numerical high-order schemes gained a lot of interest

75
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in the last few decades, appearing as the building core of the next CFD
generation [43].

The theoretical analysis of such schemes is then of fundamental interest
to understand the interaction between the numerics and the simulated ow
physics, an interaction of paramount importance in the case of turbulent
ows. A high-order discretisation of convective dominated ows is usually
associated to two main numerical phenomena, respectively known as numeri-
cal di usion (or dissipation) and dispersion. The former, as suggested by the
name itself, consists in the introduction of numerical dissipation, usually at
the smallest resolved scales, while the latter in the phase-shifting of propagat-
ing waves in the computational domain. Much interest has been focused on
the numerical dissipation and multiple studies tried to use it as a built-in tur-
bulence model for speci ¢ choices of numerical uxes [62, 63, 64, 65, 66]. This
approach is commonly known as Implicit Large Eddy Simulation (ILES). De-
spite the advantages in terms of computational e ciency and simplicity of
implementation, it is not completely straightforward to match the level of
numerical dissipation according to turbulence theory. This is particularly
true for certain classes of high-order methods, such as the spectral element
methods [67], for which the order of accuracy is a user-selectable parameter
of the computation. In this challenging context, additional information on
the response of the numerical discretisation becomes useful.

The present work is based on three main approaches to address accuracy
and robustness of a numerical scheme: (a) temporal eigenanalysis, (b) spatial
eigenanalysis and (c) non-modal analysis.

The rst, temporal eigenanalysis, is the most popular technique to study
the characteristic properties of a numerical discretisation and it has been
employed to study a large variety of high-order methods [68, 69, 70, 71,
72, 73] varying from Compact Di erence schemes to, more recently, spectral
element methods, such as Discontinuous Galerkin (DG) [74, 75, 76], Flux
Reconstruction [77, 78] and Spectral Di erence [44, 45, 46] schemes.

The second approach, namely the spatial eigenanalysis, is less popu-
lar [79, 80, 81, 82] and represents a complementary analysis with respect
to the classical approach of temporal eigenanalysis. In particular, the tem-
poral eigenanalysis is used to characterise the temporal evolution of spatial
oscillations, whereas the spatial eigenanalysis studies the spatial evolution
of temporal perturbations. It is quite intuitive that both aspects are partic-
ularly important in under-resolved turbulent ows.

Finally, non-modal analysis has been considered as an ulterior approach
based on hydrodynamic instability theory [83, 84, 85]. It constitutes an
alternative strategy to study the di usive behaviour of a numerical scheme
without explicitly focussing on the spectral properties of the discretised equa-
tions. The short-term dynamics of the element-wise dynamical system is then
examined, in a more intuitive and straightforward manner.

All the above mentioned technigues have been generalised to the non-
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constant one-dimensional conservation law following the guideline presented
in [86, 87] for the non-homogeneous linear advection equation.

The chapter is organised as follows: temporal, spatial and non-modal
analyses are presented for the linear advection equation and later generalised
to the standard one-dimensional conservation law. In this latter case, all
the up-quoted techniques have been applied to a set of di erent advection
velocities. Finally, theoretical ndings are veri ed through a series of one-,
two-, and three-dimensional simulations.

The rst part of the chapter includes a detailed description of each tech-
nique, aimed to provide a su ciently general introduction, even for readers
who are not familiar with spectral analyses for high-order schemes.

It is worthwhile noting that the major focus of the present study is
about the FR and SD discretisations, whose properties and formalism are
summarised in Appendix A and chapter 4. Concerning the FR method-
ology, which can recover dierent types of schemes for linear advection
(cf.Appendix B), recovered schemes through the FR formalism will be
indicated hereafter by appending the label -FR to the relevant acronym
(e.g., SD-FR will refer to the FR scheme using the SD recovering correction
functions). The theoretical framework and numerical results presented in
this chapter have been published in Journal of Scientic Computing [15]
(https://doi.org/10.1007/s10915-021-01484-1).

5.2 Standard temporal eigenanalysis

The temporal eigenanalysis is here presented for the FR method . The same
procedure applied to the SD scheme would be almost identical.

In the standard temporal analysis, the linear advection equation is dis-
cretised looking for wave-like solutions in order to reduce the in nite dimen-
sional problem to a simple element-wise local description. Then, dispersion
and dissipation properties of any scheme follow directly from the correspond-
ing eigensolutions.

Let us now suppose the case of a constant unitary advection velocity:

g:+ gi: 0: (5.1)
This equation admits plane wave solutions of the form
u=e(x M) with = pT; (5.2)
provided that the temporal frequency! = ! () is such that
Re(!) = and Im(')=0; (5.3)

where is a real prescribed wave number. Equation 5.3 provides what are
respectively known as dispersion and di usion relations for the exact plane
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wave solution. Consider now a FR discretisation such that all elements ,
of the domain have a xed width h, = h=1. Under such assumptions, a
FR semi-discretisation of Eq. (5.1) within the standard element , can be
written as

do, _
dt

M
2 d" (k) (2f} zoL) (k) (2fL 2oR) (k) (5.4)

where 0t = %p( 1;t) and g = Y, (+1;1).
To examine a su ciently general framework, the following classes of nu-
merical uxes are now considered:

fl=@ )0 1(+1:0)+ 0a( Lt) (5.5)
and

fe=@  )0n(+1;t)+ Ona( L) (5.6)
Notice that, for = 0, a full-upwind scheme is recovered whereas, for =

0:5, a centered ux is obtained. Strongly negative values of ( 50),
instead, denote hyper-upwind numerical uxes. The parameter can be
used to mimic di erent levels of interface upwinding that result from the use
of di erent formulations of the actual numerical ux. Equation 5.4 can be
rewritten, in matrix form, as:

n
dc?t = 200" (ff 2TaMg. (fk 2T0"gr;  (6.7)

where 0 = &%), Dj = (&), oF " = LR (x) and r; = li(1), |
li( 1).

Within the set of approximate solutions in the form of Eq. (5.2), Bloch
wave-like functions are considered, namely:

0" = e(Xn=h ®y; (5.8)

where tilde accent denotes the numerical counterparts of continuum variables
and x,, indicates the left boundary of the elementn in the global reference
frame. OnceQ" is de ned in this way, due to periodicity, it is straightforward

to obtain a closed form for all the uxes expressed in Eq. (5.4). In fact,

0" 1= e(Xn 1= H)g = o (0 M= H)g = " (5.9)

and
"l = g (X =h #)g = o ((xn+h)=h k)g - o 7yn. (5.10)

which leads to an explicit expression for the uxes in vector form as:
fl=@ e " rTa"+ IT "

) (5.11)
fb=@ ) rfa"+ 1Te” o™
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It is also easy to notice thatda"=dt =  ~Q".

Finally, it can be seen that, due to solution periodicity, the in nite dimen-
sional problem has now been reduced to a simpler element-wise formulation,
i.e., numerical uxes now depend only on the local solutiond". Hence the
apexn can be dropped and the nal discretised equation can be written as

—~0=D0 (1 e rTa+ 1Ta 1To)g,
2 ) (5.12)
@ HyTa+ 1Te 0 rTo)gg;

or, in a more compact way:
FO= 2(C e +C%+cC*re)o; (5.13)
whereC°=D ( 1)gI" ggr'.,C =@ )g.r'andC* = ggl'.

Following the same steps presented above, the following expression can
be obtained for the SD scheme:

o= 2DM e +M%+ M*Te)o; (5.14)
with
(l 151 f i=0 (O f i6N+1
My = & @ for =0 or! (5.15)
) 0 for i60 ) 15( 1) for i=N+1
and 8
zljs( 1) for i=0;
MO = @ )IP@) for i=N+1; (5.16)
. f .
IP(%i) otherwise.
Notice that, by setting N%*: = DM %*' | a mathematical form similar to

Eqg. (5.13) can be easily recovered:
Fo= 2(N e +N°+N*e))o: (5.17)

For both schemes, the discretised system is now reduced to an eigenvalue
problem of dimensions(N +1) (N +1):

MO = H(Oo: (5.18)

For both the FR and SD schemes (Eqgs. (5.13) and (5.17), respectively),
the algebraic structure of the problem is almost identical: the middle term,
indicator of the in uence of the interior part of element (C° and N© for
the FR and the SD schemes, respectively) and the two boundary terms
representing the in uence of the interface numerical uxes from the left C
and N ) and right boundaries (C* and N*).
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The classical approach normally imposes a real nhumber for the phase
~2 [ ; ] and, for each value of~, the eigenvalue problem is solved to
obtain, as output, N +1 values forw, commonly calledmodes Only one of
these will be denoted as theprimary mode: this is the only mode which is
characterised by the convergence property

o for N1 : (5.19)

The remaining eigenvalues are considered spurious and are referred as sec-
ondary modes [72]. As a conseguence, all propagation properties are con-
tained in the primary mode, which will be the main focus in the remaining
part of the presented temporal analysis.

Given a null phase, the primary mode will assume a value equal to zero
but, moving away from the origin, the identi cation of the primary curve
becomes less straightforward due to the possible presence of complex dis-
tribution patterns of the eigenvalues. Nevertheless, considering low order
discretisations, this issue is less problematic due to the smaller number of
eigenvalues per phase value and an intuitive behaviour of the primary curve
can be easily recognised. By analogy, it is possible to construct primary
curves also for higher orders of approximation. Otherwise, a more method-
ical procedure to identify the primary mode has been proposed by Vincent,
et al. [71], involving an energy evaluation of the eigensolution coe cients in
the Legendre polynomial basis. In the present work, a simple geometrical
interpretation of the eigenvalue distribution has been used to construct the
primary curve.

The technique presented here is commonly known asmporal eigenanal-
ysis. In fact, for any given value of spatial phase, the capability of the
numerical scheme to describe them ovetime can be evaluated. In mathe-
matical terms, a real number for ~is assumed and~ = + () is consequently
calculated. The numerically solved dispersion relation will give informations
on the velocity of propagation of discretised waves within the domain, while
the di usion counterpart will quantify dissipation of spatial oscillations along
time. In order to highlight the link between the imaginary part of ~ and
numerical di usion, it is useful to observe that

u/ e(7( k) - elm(!")te(j( Re(!‘-)t): (520)

Therefore, for negative values of Inf~), the coe cient €M)t represents

a damping coe cient over time. Some level of numerical di usion can be

very useful whenever spatial under-resolution is expected. In fact, a well-
distributed amount of dissipation in the high wavenumbers region is very

convenient in high-order methods. This property can be helpful in terms of
stability and a valuable feature in the perspective of sub-grid scale (SGS)
modelling. In Fig. 5.1, some examples of dispersion-di usion relations are
shown for the DG-FR scheme using a full-upwind numerical ux.
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(a) Dispersion (b) Di usion

Figure 5.1: DG-FR numerical dispersion and di usion using temporal ap-
proach: in uence of the approximation order.

5.3 Spatial eigenanalysis

The relation between+ and ~is intrinsically de ned by Eq. (5.13) which,
except for some very particular cases, cannot be analytically inverted. In
order to obtain non-trivial solutions the condition ¢ 6 0 is needed. In other
words, an equivalent equation which de nes the relation betweert- and ~
can be expressed as

det(Hl 2(C e +C%°+C*'e))=0; (5.21)
that can be seen as an equation iz = e "
det( I 2(C z *+C%+C*z)=0: (5.22)

The same exact form can be obtained using the SD discretisation simply by
replacing the matricesC%*: with the previously de ned N®* . It can be
proven that this approach leads to a second order characteristic equation in
z which admits, consequently, two (in general complex) roots.

Usually, like in the temporal approach, one root is considered physical
and the other spurious. Given a xed value of*~, Eq. (5.22) can be solved
numerically in terms of z and, consequently,” can be evaluated. In the most
general casé- 2 C, however, as in the temporal approach, where a real value
is assumed for™, in the spatial approach, this assumption is applied to*.
Once Eg. (5.22) is solved, a criterion to distinguish physical and spurious
solutions is needed. In this work the same idea proposed by Mengaldo,
et al. [80] has been exploited: the ampli cation behaviour of a wave-like
solution is embedded in the imaginary part of the eigensolution and, as a
consequence, positive values of I(7) are expected for physical solutions and,
vice versa, negative values of Irfi") are expected for spurious ones.
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This can be clearly noticed giving a di erent interpretation of Eq. (5.20),
where roles of~and ~ are simply inverted:

u/ e(® %)= g ImOxg (Re(Ix k). (5.23)

Consequently, positive values of In0™) produce a damping factor inspace
Notice the change of sign with respect to temporal analysis.
Sincez = exp( 7), one has:

z = exp( Re())exp( Im(7)): (5.24)
Furthermore, the sign of Im(7) is strictly related to the absolute value of z:
Im(7)70,j zj? L (5.25)

Therefore, in order to see if a numerical solutionz is either spurious or
physical, a fast evaluation of its absolute value will give an e cient algorithm
to discard the spurious solution. The same idea can also be used to compute
an initial guess zg for Newton-like methods in the numerical resolution of
Eq. (5.22). In particular, an initial physical guess can be expressed ag =
riexp(2 r 2) with both r1 and r, real numbers in[0;1]. Then, the second
solution is automatically identi ed as spurious.

Once the physical solutionz is identi ed, it is easy to invert the expression
z= e in order to obtain the nal value of ~, namely:

Re()= In(z5zj)) and Im() = In(jzj): (5.26)

Finally, considering the real part, i.e., dispersion curves, periodicity of ~
needs to be taken into account. A simple check on the variation of the real
part with respect to ~will give a valid indicator to solve the problem: when-
ever the numerical derivative d(Re( ")) =d~ is negative, a vertical translation
of ~of 2 isimposed. The exact wave-like solution can be trivially re-written
in terms of ! as:

Re(!) = and Im(!)=0: (5.27)

In Fig. 5.2 examples of dispersion-di usion relations are shown for the DG-
FR scheme using a full-upwind numerical ux. Complementary features with
respect to the classical temporal analysis can be observed. The increase of
the approximation order produces smaller dispersion errors (left gure), in
analogy with temporal eigenanalysis. On the contrary, higher approximation
orders provide smaller levels of spatial di usion forany value of + (right g-
ure), whereas in temporal eigenanalysis a stronger level of numerical di usion
is usually present in the high wavenumbers region (compare with Fig. 5.1).
Furthermore, notice that in Fig. 5.2 the imaginary part of ~assumes only
positive values, whereas in Fig. 5.1 the imaginary part ot is always nega-
tive.
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(a) Dispersion (b) Di usion

Figure 5.2: DG-FR numerical dispersion and diusion using spatial ap-
proach: in uence of the approximation order.

5.4 Non-Modal analysis

Recently, a completely di erent approach to study numerical di usion has
been proposed by Fernandez, et al. [88] calledon-modal analysis The
principal aim of such analysis originates from the following proposition: given
an initial condition characterised by a certain spatial frequency, how does the
magnitude of oscillations evolve over time? Standard temporal eigenanalysis
answers this question though a spectral analysis of the discretised di erential
operator. Using temporal analysis, each eigenvalue is considered individually.
In particular, only the primary mode is examined while all the others are
supposed spurious. Non-modal analysis proposes a formulation in which
the in uence of the whole spectrum is taken into account. In this regard,
the theoretical framework is exactly the same until the discretised linear
dynamical system is obtained. In fact, if the explicit dependency on time by
the Bloch-wave solutions is not exploited, classical temporal analysis leads
to the local linear dynamical system:

u=H(u: (5.28)

Once the system is expressed in this form, the very wide literature of dynam-
ical systems can be used to study the in uence of numerics on the solution
behaviour.

Let us de ne the so-calledshort-term di usion as:

| o= dlog(jjunjj) : (5.29)
d -0
where jj jj denotes thelL? norm and = (N+1) = ta(N+1=hisa

characteristic non-dimensional time scale (which is simply = t(N +1)=2
with the assumptions introduced before).
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It can be noticed that the previous equation can be re-written as:
jiunii
Jiun;ol]

= Iimoi log (5.30)
This expression is more useful in terms of physical interpretation: as it will
be explained later, the quantity! depends on the wavenumber and on the
numerics (namely, the type of scheme, the order of approximation and the
upwinding parameter). Intuitively, ! gives an estimate of the initial decay
rate (per unit convection time) of the numerical solution between degrees of
freedom (DoF), starting from the initial condition exp ( x ).
In fact, inverting Eq. (5.30):

junC i i umoliexp(! ) (5.31)

At early times, the term exp(! ) can be seen as a damping factor per DoF,
giving an alternative interpretation of numerical di usion not based on an
eigenanalysis of the matrixH.

Finally, it can be noticed that, using the Legendre polynomials basis, the
following expression can be obtained:

1 uy.oHU nyo
TN +1

v ; (5.32)
Uh;oUh;0

where( )Y denotes conjugate transpose. The nal form involves the Rayleigh
quotient of the linear dynamical system. The Rayleigh quotient gives useful
informations regarding the dynamics of the system and it is particularly
popular in non-modal hydrodynamic instability theory [83, 84, 85].

In the original work by Fernandez, et al. [88], a classical DG scheme has
been employed and explicit formulas to evaluate Eq. (5.32) have been used.
In a collocation setting, instead, norms can be alternatively evaluated using
proper quadrature formulas:

Z,
udx = uA(xP)w;;
wherexjS denotes the set of solution points with the corresponding integration
weights w; . Accordingly, Eq. (5.32) can be actually computed as

1 uﬁ;OWHu h:0

L= e
N + 1 UK;OWU h:0

: (5.33)

with W = w; . Formally the L2 norm should be evaluated in(1 ;1 ),
but, thanks to the periodicity condition, the integral is simply ng times
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the element-wise one and, since only quotients of norms are considered, the
proportionality constant ng simpli es.

It is easy to notice that the matrix H is the exact same matrix of the
temporal approach (except for the complex sign). Then, the di erence be-
tween the classical temporal analysis and the present analysis is precisely
linked to the modal/non-modal character. The classic temporal eigenanaly-
sis studies the eigenvalues of the matrid in order to evaluate whether the
Fourier modes in the initial solution grow or are dissipated over time. Non-
modal analysis, instead, considers all the eigenvalues simultaneously for each
wavenumber. Notice that non-modal analysis does not necessitate distin-
guishing between primary and secondary modes exactly because all of them
are considered simultaneously. Finally, notice that, if the primary eigenvec-
tors of H are selected as initial condition, the Rayleigh quotient coincides
with the corresponding eigenvalue and the classical temporal eigenanalysis
is then recovered.

5.5 Non-constant advection velocities

A generalisation of the classical temporal approach for non-constant advec-
tion velocities has been recently proposed by Manzanero, et al. [86, 87].

For the sake of simplicity, positive advection velocities, periodic within
the reference element, have been considered. Without any loss of generality,
the inter-element value of the advection velocity has been set equal ta.
These conditions strongly simplify the numerical analysis and are equivalent
to apply the following approach to one element only. It is possible to de ne
generalised Bloch wave solutions of the form:

u(x;t) = e(G ) ). (5.34)

where non-homogeneity in the advection velocity is taken into account by
the function G(x).
For an appropriate choice of this function, classical dispersion/di usion re-
lations can be obtained:

I = a: (5.35)

where a denotes the average advection speed. Finally, in order to compare
relevant results for constant and non-constant advection velocities, scaled
wavenumber and frequency are usually considered:

=— and r=a"=2
g g

where Z,

g= a=a(%)dr:

1

NI =
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The C° matrix in Eq. (5.13) will be simply replaced by
C°=DA B ( 1glI"A grr'A; (5.36)

where Aj = a(x;) j and Bj = (Dika(xk)) jj. The term involving the ma-
trix A represents the derivative of the conservative part, namely@au)=@ x
while the term involving the matrix B is the discrete version of the operator
u@a=@xThen, a generalisation of the present approach to the full scalar

conservation
@u, @a(x)u) _,
@t @x
can be obtained simply by neglecting the termB. The nal expression of
the Cg matrix will be:

(5.37)

C'=DA ( 1gITA grr'A: (5.38)

The same reasoning can be applied to the SD discretisation, where only
the central term in Eg. (5.17) needs to be modi ed:

N°=DATMO; (5.39)

where matrix A" represents the values of the advection velocity at the ux
points: Aifj = a(xf) i -

In this way, both temporal and spatial analyses can be easily generalised
to non-constant advection velocity conservation laws. Non-modal analysis
can be generalised for non-homogeneous cases as well. The di erence is im-
plicitly de ned within Eqgs. (5.38) and (5.39): the central block of the matrix
H in Eqg. (5.28) will change and, consequently, the short-term di usion of
the dynamical system will change accordingly.

While linear stability has been mathematically proven for all the nu-
merical schemes herein considered [89, 48, 70], in the case of non-constant
advection velocities, numerical stability is not ensured. In this particular
case, the functional form of the advection velocity can lead to what are com-
monly known as aliasing errors. Such numerical errors are caused by an
under-sampling of the advection velocity nodal values. In the context of
FR schemes, the use of an exadt, projection in the ux approximation
can eliminate aliasing errors [47]. Nevertheless, such approach is computa-
tional expensive and it can strongly a ect e ciency and simplicity of the
FR scheme. Similarly, split form coe cient in DG method with summation
by parts and simultaneous-approximation-term properties have shown to be
of signi cant importance in non-linear stability analysis [87]. In particular,
the conservative form of the DG scheme is capable of removing aliasing er-
rors, preventing exponential growth of the solution. Such result suggests
the possibility of similar proofs for FR and SD schemes, which rely on the
conservative form of the equation. Nevertheless, a mathematical proof of
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non-linear stability is out of the scope of the present study and it will not

be discussed. Finally, most of the works studying non-constant advection
velocities have been primarily focused on DG schemes whereas, to the au-
thors' knowledge, such techniques have never been applied to FR and SD
schemes. Furthermore, the non-homogeneous case has never been studied
through spatial and non-modal analysis for any spectral element method.

5.6 Theoretical results

The large variety of spectral analysis techniques presented in the previous
sections allows a vast number of useful comparisons for each of them. Chang-
ing the order of approximation, the numerical scheme and the upwinding
parameter, a comprehensive study can be easily performed. The generalisa-
tion to non-constant advection velocities provides an extra degree of freedom
that can be used to analyse more complex ow con gurations.

Most of the numerical analysis results available in the literature are fo-
cused on nodal DG methods and, in particular, temporal analysis is per-
formed considering constant advection velocity. Hence the interest in per-
forming a comparative study between SD and DG schemes. In particular, the
FR recovered versions, SD-FR and DG-FR, respectively, will be considered
in the present analysis whenever the solved equation is of linear advection
type. This is justi ed by the fact that, as already mentioned, for linear ad-
vection problems, the SD-FR (resp. DG-FR) scheme coincides with the SD
(resp. DG) scheme ¢€f. Appendix B). It shall be noted that, although the
temporal analysis has been already performed on both methods, to the au-
thors' knowledge, no spatial or non-modal analysis has ever been performed
on the SD scheme.

The present section will be organised as follows: in the rst subsection, a
simple comparison between DG-FR and SD-FR is performed using temporal
and spatial analysis; in the second subsection, non-modal analysis is applied
to both schemes; nally, non-homogeneous advection velocity cases are anal-
ysed and DG-FR, SD-FR and SD schemes are compared. In particular, two
di erent type of advection velocities are considered: (a) a sinusoidal velocity
prole and (b) a random velocity signal. Concerning the interface uxes,
full-upwind, centered and hyper-upwind uxes will be adopted depending
on the performed analysis.

In all the gures presented in the following sections, imposed values of
frequency and wavenumber are denoted as and , respectively, whereas,
computed values are indicated a$- and ~, respectively.

5.6.1 Temporal and spatial analyses

In order to give a solid background, a rst comparison of dispersion/di usion
properties of DG-FR and SD-FR is here presented. Once this basic analy-
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sis is performed, complexity will be added by considering non-homogeneous
advection velocities. It is worthwhile pointing out that, the present analy-
sis being concerned with the linear advection case, the relevant results are
expected to hold true for the DG and SD schemes as well.

A full-upwind numerical ux has been considered rst. This is also a con-
venient choice in spatial analysis where no spurious solutions are expected,
as already proved by Hu, et al. [79]. Spatial and temporal analyses have
been performed for both schemes. Numerical di usion curves are shown in
Figs. 5.3 (temporal analysis) and 5.4 (spatial analysis).

It can be noticed that the di usive role of the two methods are inverted:
according to temporal analysis, for high wavenumber, DG-FR schemes are
more dissipative than SD-FR, whereas, in spatial analysis, the opposite hap-
pens. In other words, DG-FR has a stronger tendency to dampgempo-
ral developing high frequencies while SD-FR tends to dissipate more high
wavenumber spatial disturbances.

Dispersion counterparts are shown in Figs. 5.5 and 5.6. As already
observed in other papers [71, 90], according to temporal analysis, SD-FR
schemes are more accurate than DG-FR (in particular for high-order ap-
proximations). The classical peak in the high wavenumber region is, in fact,
less marked. Nevertheless, the wavenumbers responsible for such deviations
from the exact solution are supposedly su ciently dissipated not to in uence
the overall accuracy of the scheme. On the other hand, spatial dispersion
analysis gives almost indistinguishable results between the two schemes.

It is interesting to notice such evident di erences between spatial and
temporal approaches. The mathematical formulation would suggestpecular
results, i.e., a simple exchange ok and y axis. The eigenvalue problems,
Egs. (5.18) and (5.22), are in fact mathematically equivalent and the roles
of ~and ~ are simply inverted. Nevertheless, in the temporal analysis, a
real number is assumed for-and + 2 C is evaluated whereas, in the spatial
analysis, a real number is assumed fdr and ~2 C is computed. Most likely,
dropping the assumption of real values for-and ~ and consider more general
complex values for both would give the expected symmetry between the two
procedures.

In order to assess the in uence of the numerical ux, a quasi-centered nu-
merical ux has been considered by setting = 0:49in Eqgs. (5.5) and (5.6).

In the following analysis, and in the relevant gures, only physical modes
are considered.

Temporal analysis using quasi-centered (see Fig. 5.7) provides some dif-
ferent trends: dispersion curves are characterised by high accuracy in the
rst region following, instead, large deviations from the exact solution for
high wavenumbers. Numerical di usion, on the other hand, is extremely low
for both schemes. In other words, quasi-centered uxes provide very small
numerical di usion at the cost of sensible dispersion errors. Furthermore,
as already mentioned, lack of numerical di usion in the high wavenumbers
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(@ N =1 (b) N =4

Figure 5.3: Numerical di usion using temporal analysis: solid line, DG-FR;
dotted line, SD-FR; dashed line, exact wave-like solution.

@N=1 (b) N =4

Figure 5.4: Numerical di usion using spatial analysis: solid line, DG-FR;
dotted line, SD-FR; dashed line, exact wave-like solution.

region can lead to numerical instability and damage the robustness of the
scheme.

Small dierences are observed between DG-FR and SD-FR in spatial
numerical dispersion and diusion (see Fig. 5.8). As already noticed by
Mengaldo, et al. [80], dissipative bubbles are observed for certain frequencies
with both methods, as clearly evident in Fig. 5.8(b). Bubbles seem to be
slightly translated and enlarged when using the SD-FR scheme. This fact
further suggests that the SD-FR scheme is more dissipative according to the
spatial eigenanalysis.

5.6.2 Non-modal analysis

In this subsection a comparison between DG-FR and SD-FR is presented
using the non-modal analysis introduced by Fernandez, et al. [88]. The
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(@ N =1 (b) N =4

Figure 5.5: Numerical dispersion using temporal analysis: solid line, DG-FR;
dotted line, SD-FR; dashed line, exact wave-like solution.

(@ N =1 (b) N =4

Figure 5.6: Numerical dispersion using spatial analysis: solid line, DG-FR,;
dotted line, SD-FR; dashed line, exact wave-like solution.

application of non-modal analysis to FR and SD schemes, to the authors'
knowledge, have never been studied in previous works on spectral analyses
of spectral element methods.

The in uence of the order of approximation is shown in Fig. 5.9. Accord-
ing to Fernandez, et al. [88], desirable features of the short-term di usion
are monotonicity (d! =d < 0) and slowly varying curves. Both properties
should imply a more stable discretisation, in particular for strongly non-
linear systems, where the interaction between scales plays a more central
role. It can be clearly noticed that the SD-FR di usive curves are, from
this point of view, slightly atter, which suggests higher accuracy. This is
particularly evident whenever very high polynomial orders are used as shown
in Fig. 5.10. In agreement with [88], polynomial orders around 2 3 are the
most promising in the ILES framework, while higher approximation orders
tend to introduce insu cient levels of dissipation for high wavenumbers and
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(a) Dispersion (b) Di usion

Figure 5.7: Numerical dispersion and diusion for N = 4 using quasi-
centered uxes = 0:49 (temporal analysis): solid line, DG-FR; dotted
line, SD-FR; dashed line, exact wave-like solution.

(a) Dispersion (b) Di usion

Figure 5.8: Numerical dispersion and diusion for N = 4 using quasi-
centered uxes = 0:49 (spatial analysis): solid line, DG-FR; dotted line,
SD-FR; dashed line, exact wave-like solution.

are hence characterised by a more non-monotonic behaviour.

As a nal note, some positive values oft are observed when using the
SD-FR scheme, which could lead to a numerically induced growth of oscilla-
tions. Nevertheless, these are still quite small even for very high polynomial
order.

5.6.3 Comparison between methods for non-constant advec-
tion velocity

In order to consider more realistic conditions, previous analyses are here
generalised to the case of non-constant advection velocities. Departing from
the linear advection case, the improved SD method by Liang and Jame-
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(a) DG-FR (b) SD-FR

Figure 5.9: Short-term di usion term using nodal DG-FR and SD-FR
schemes.

Figure 5.10: Comparison of di usive curves using DG-FR and SD-FR scheme
for N = 8.

son [91, 92, 48] will be considered as well. In fact, as explained in Appendix B,
for a non-linear ux function, the SD-FR scheme does not coincides anymore
with the SD approach. As a consequence, common spectral analyses based
on linear equations are insu cient to properly study and highlight di erences
between these schemes and more advanced techniques are needed.
Concerning the numerical ux and the order of accuracy, a full-upwind
ux and an approximation order N +1 =6 have been chosen. Two di erent
prescribed spatial pro les are considered for the advection velocity. The for-
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mer and simplest is a sinusoidal velocity pro le, while the latter is a random
velocity signal with prescribed variance around the mean value (taken equal
to 1); see Fig. 5.11.

Deviations from the constant casea = 1 are de ned through the pa-
rameter . In particular, for the two advection velocities herein considered:

a(x)=1+ sin(x) and a(x)=1+ W (x) (5.40)

where W is a particular realisation of a random eld with null mean and
unitary variance such that W( 1) = 0. In the present subsection a value
of =0:6 has been chosen, imposing a relatively high level of inhomogene-
ity. The two selected pro les are deemed to be su ciently representative of

a wide range of applications where numerics play a key role in the physi-
cal description of the phenomenon and in the computation outcome. The
sinusoidal function is the classical simple form of perturbation, which can
be considered as the building block of more complex perturbations. For
instance, depending on the form of the ux, a sinusoidal perturbation can
lead to shock formation and, as a result, characterising the behaviour of
the numerical scheme is of paramount importance to ensure the necessary
robustness of the simulation.

Concerning the random signal, this can be viewed as a rst approxima-
tion of a turbulent ow. Dierently from the simple sinusoidal pro le, the
random signal has a rather broad spectrum. Characterising the behaviour of
the numerical scheme in such a case can promote a better understanding con-
cerning the suitability of spectral element methods for ILES or, conversely,
highlight the necessity of explicit SGS modeling.

In agreement with the continuous theory presented in Section 5.5, for
non-constant advection velocity computations, numerical dissipation and dis-
persion have been conveniently scaled bg.

Temporal eigenanalysis

A comparison of the results from temporal analysis obtained using the men-
tioned forms of advection velocity pro le is presented in this section. In
particular, dispersion and di usion plots are shown in Fig. 5.12.

(a) Sinusoidal pro le (b) Random pro le

Figure 5.11: Advection velocities.
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(a) Sinusoidal advection (b) Random advection

(c) Sinusoidal advection (d) Random advection

Figure 5.12: Temporal dispersion (a, b) and diusion (c, d) plots: solid
line, DG-FR; dotted line, SD-FR; dash-dotted line, SD; dashed line, exact
wave-like solution.

Di usion curves from the temporal analysis (Figs. 5.12 (c) and (d)) do
not di er signi cantly from those obtained in the linear case: the SD and the
SD-FR schemes have quite similar behaviours and they are characterised by
a lower dissipation for high wavenumbers compared to the DG-FR scheme.
In particular, in the sinusoidal velocity case, the SD scheme is always more
dissipative than the SD-FR method for any given value of , whereas in
the random advection case their roles are inverted and the SD-FR is more
di usive. Temporal dispersion shown in Figs. 5.12 (a) and (b) display well-
know features: the DG-FR scheme is characterised by a visible peak for high
wavenumbers (see also Fig. 5.1 (a)) while the SD and SD-FR schemes follow
more accurately the exact wave-like solution. Due to the inhomogeneity
in the advection velocity, small di erences between the SD-FR and the SD
schemes can be noticed, in particular for the sinusoidal prole where the
SD scheme appears to be slightly more accurate with respect to the SD-FR
method (Fig. 5.12 (a)).
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Spatial eigenanalysis

(a) Sinusoidal advection (b) Random advection

(c) Sinusoidal advection (d) Random advection

Figure 5.13: Spatial dispersion (a, b) and di usion (c, d) plots: solid line,
DG-FR; dotted line, SD-FR; dash-dotted line, SD; dashed line, exact wave-
like solution.

Di usion and dispersion curves from the spatial analysis are reported in
Fig. 5.13. Noticeable di erences are observed in the di usive curves only,
where it appears that the SD and the SD-FR schemes are overall more dis-
sipative than the DG-FR method. Nonetheless, in a similar way as in the
temporal analysis, the roles of the SD and the SD-FR are inverted in terms
of their di usive character for the two prescribed advection velocities: in the
sinusoidal case, the SD is more dissipative than the SD-FR, whereas the op-
posite behaviour is observed when a random signal advection velocity is used.
Consequently, the in uence of the functional form of the advection velocity
can signi cantly a ect the numerical di usion and highlight, for example,
noticeable di erences between the SD and the SD-FR schemes.

As a representative example of non-upwind uxes, spatial numerical dif-
fusion for the FR and the SD schemes has been evaluated in the case of
sinusoidal advection velocity and strongly upwind uxes ( = 50). In par-
ticular, increasing values of can be selected to promote a stronger deviation
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from the homogeneous case.

(a) DG-FR (b) SD-FR

(c) SD

Figure 5.14: Numerical di usion from DG-FR (a), SD-FR (b), and SD (c)
schemes (spatial approach).

In order to understand the role played by the numerical dissipation for
increasingly complex advection velocities, the spatial numerical di usion of
the FR and SD schemes has been plotted in Fig. 5.14 for di erent values of
the parameter . Itis worth recalling that, whenever non-constant advection
velocities are considered there is no simple way to distinguish between the
physical and the spurious modes; therefore, for this case, both modes have
been plotted.

Particular attention should be payed to the medium frequencies region
separating the two subsequent dissipative bubbles. With regards to the SD
and SD-FR schemes, for increasing values of, dissipative bubbles tend to
blend together as they atten along the horizontal direction. Such tendency
is even more pronounced for the SD scheme (Fig. 5.14 (c)). The DG-FR
scheme, on the other hand, is characterised by bubbles of similar shape and
only slightly shifted toward smaller frequencies.

It is important to stress out that the interpretation of di usive curves lies
in essentially two complementary aspects. The magnitude din(+) indicates
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the strength of numerical dissipation and it represents the primary measure
to di erentiate between more or less dissipative schemes. Nevertheless, how
numerical dissipation is distributed along the di erent frequencies can be
as much as relevant. Sharp pro les for such curves are in fact generally
not advisable and monotonic behaviours are preferable. Rapid variations of
numerical di usion within a limited range of frequencies could in fact trigger
unpredictable energy transfers between scales in realistic simulations.

Non-modal analysis

(a) Sinusoidal advection (b) Random advection

Figure 5.15: Short-term di usion curves: solid line, DG-FR; dotted line,
SD-FR; dash-dotted line, SD; dashed line, exact wave-like solution.

(a) Sinusoidal advection (b) Random advection

Figure 5.16: Short-term di usion for increasing values of (DG-FR).

Di usion curves from non-modal analysis are depicted in Figs. 5.155.17.
Positive values (.e., anti-di usion behaviour) are observed employing only
the SD and the SD-FR methods in the random signal case. As already
observed for the linear advection case, the SD-FR and SD curves are charac-



98CHAPTER 5. SPECTRAL ANALYSIS FOR HIGH-ORDER METHODS

(a) Sinusoidal advection (b) Random advection

Figure 5.17: Short-term di usion for increasing values of (SD).

terised by more regular pro les with respect to the DG-FR scheme, for which
some larger variations can be observed in the high wavenumbers region in
Figs. 5.15 and 5.16. It is interesting to notice that the sinusoidal advection
velocity pro le produces larger di erences between the SD and the SD-FR
methods with respect to the random signal advection velocity.

Concerning the in uence of the parameter, di usion plots for the DG-
FR and the SD schemes are reported in Figs 5.16 and 5.17. Considering
the sinusoidal advection velocity case rst, when is increased, the DG-
FR method tends to be more dissipative for all wavenumbers (the same
behaviour is observed for the SD scheme). On the other hand, in terms of
overall smoothness, an extra local minimum appears in the high wavenum-
bers region, reducing the regularity of di usion curves, whereas no relevant
pro le variations are noticed for the SD scheme. In general, sensitivity to

is milder when using the SD scheme, which is a desirable feature in term
of outcome predictability. Considering the random advection velocity case,
variations in the di usion curves for di erent values of  are smaller for both
the SD and the DG-FR schemes.

5.6.4 Summary

The use of non-homogeneous advection velocities, as shown in this section,
can lead to some di erences between the SD and SD-FR schemes. Accord-
ing to temporal analysis, the deviations between the SD and the SD-FR are
noticeable in both dispersion and di usion curves, whereas, in the spatial
analysis, di erences are mostly present in the di usion curves. Spatial dis-
persive errors are in fact less a ected by the inhomogeneity of the advection
velocity (Figs. 5.13 (a) and (b)) compared to their temporal counterparts
(Figs. 5.12 (a) and (b)).

The importance of the parameter has been studied through non-modal
analysis in the case of fully-upwind uxes. The overall in uence of the inho-
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mogeneity parameter appears to be milder using the SD scheme with respect
to the DG-FR, in particular for the sinusoidal advection velocity (Figs. 5.16
(a) and 5.17 (a)). For increasing values of the DG-FR develops additional
oscillations on the di usive curves whereas the behaviour of the SD di usive
curves are more regular.

In general, the SD and the SD-FR schemes behave similarly in the well-
resolved regions, both in terms of spatial and temporal eigenanalysis. Dif-
ferences are in fact larger for high wavenumbers, which are particularly im-
portant in under-resolved turbulent simulations. In this wavenumber region,
even little discrepancies between the two methods could ultimately lead to
complete dierent results in practical applications. This is certainly one
of the most limiting factors when performing ILES with these kind of nu-
merical methods: the combination between mesh size, numerical ux and
order of approximation needs to be carefully chosen in order to obtain a
level of dissipation which mimics the in uence of unresolved scales on the
large scale dynamics. Although, in the literature, third- and fourth-order
ILES with discontinuous nite element methods generally provide satisfac-
tory results, higher orders will certainly need additional dissipation in the
high-wavenumbers region. This kind of analysis is therefore a useful tool
for the design of dynamic SGS models which should be active only for high
wavenumbers. It is then relevant to highlight how numerical di usion, in
general, has neither a positive nor negative connotation in the present dis-
cussions. In some cases, for very specic choices, it can be used as an im-
plicit SGS model able to e ciently dissipate small scale uctuations. On
the other hand, if insu cient, can otherwise lead to unstable computations.
Thus, the objective of a broad comparative study of spectral techniques ap-
plied to di erent numerical schemes should not be interpreted as a precise
recipe to determine which numerical method is best. The nal aim, instead,
is a deeper knowledge oreach speci ¢ numerical scheme, providing a rich
set of tools that can be used to design tailored SGS models for high-order
discretisations.

5.7 Numerical results

5.7.1 Temporally evolving turbulence: Taylor-Green Vortex

The Taylor-Green Vortex (TGV) constitutes a well-established test case to
study vortex dynamics, turbulent transition, turbulent decay and energy dis-
sipation processes in a three-dimensional setting [93]. It represents a perfect
example of temporally evolving turbulence where classical temporal eigen-
analysis can be tested. The problem consist of a cubic domain L ;L J°
with periodic boundary conditions applied to all faces starting from the
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smooth initial condition

= o0
sin( ) cos( )cos( )

u=Uy@ cos()sin( )cos()A ;
0
oU¢
p= Po+ 16 [cos(2) +cos(2 )][cos(2)+ 2] ;
where = x=L, = y=L and = z=L. Unity has been assigned to both

Up and o, the reference velocity and density, respectively, and the initial
value of the pressurePy has been chosen such that the corresponding initial
Mach number is equal to0:1. For this value of the Mach number, the ow
is practically incompressible. The ow domain is subdivided in64% uniform
cubic elements and discretised with a third-order SD scheme.

Despite the rather idealised and simple initial ow eld, the TGV prob-
lem contains many di erent interesting features of turbulence. As the time
advances, the vortex stretching process leads to a natural transition to
isotropic turbulence, giving a perfect example of temporally evolving tur-
bulence. Due to the absence of physical viscosity (inviscid ow), the energy
of the uctuating eld cascades into smaller scales without any viscous dis-
sipation, making the TGV a stringent test case for evaluating numerical
dissipation [94].

Di erent phases of turbulence transition and development can be recog-
nised. Before reaching the characteristic time¢  4L=Ug, the ow is laminar
and it is fully resolved by the mesh and the numerical discretisation. After
a transitional period, at t  7L=Ug, the vortex stretching process breaks
down and sub-grid scales mechanisms start to a ect the solution. As pre-
dicted by the spectral analysis, the particular choice of the numerical ux
employed will strongly a ect the solution in the under-resolved phases (after
t  7L=Up). In order to assess the in uence of the numerical ux, ILES have
been performed using Roe and Rusanov uxes.

As pointed out in the previous test case, the former will lead to an upwind
ux and the latter, under almost incompressible regime, to a strong upwind-
ing. Therefore, in Figs. 5.18 numerical dissipation from temporal analysis
is shown using upwind ( = 0) and strong upwind uxes ( = 50); see
Egs. (5.5) (5.6). As already observed by Manzanero, et al. [54], varying the
upwind parameter , the maximum level of dissipation is achieved around

=0 (upwind uxes), while strongly negative values of yields the opposite
e ect. In fact, very negligible levels of numerical dissipation can be observed
using strongly upwinding uxes, whereas upwind uxes follow the classical
behaviour already discussed in the previous theoretical sections.

To understand the in uence of the Riemann solver on the di erent scales
of the TGV ow, kinetic energy spectra have been computed in the fully
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turbulent phase (namely, att = 9L=Up). As observed in multiple pa-

(@ =0:0 (b) = 500

Figure 5.18: Numerical di usion with standard upwind (left) and strong
upwind (right): solid line, DG-FR; dotted line, SD-FR; dashed line, exact
wave-like solution.

pers [62, 88, 95], and in total agreement with the herein presented analysis,
the particular choice of numerical ux does not a ect the large scales of the
ow eld. Closer to the inertial and dissipation range, instead, numerical
di usion plays a more important role. In this case, substantial di erences
between the two uxes can be noticed: as shown in Fig. 5.19 the Roe ux
is more dissipative for a wide range of scales while the Rusanov ux extends
the inertial range till very close to the Nyquist wavenumber. These charac-
teristics are well predicted by temporal eigenanalysis as shown in Figs. 5.18.

Figure 5.19: Kinetic energy spectra at = 9L=Ug: solid line, Roe ux; dotted
line, Rusanov ux.

A more detailed look of the high-wavenumber region is shown in Figs. 6.26
to emphasise such behaviour. Notice the similarity between Figs. 5.18 and
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the corresponding spectra in Fig. 6.26. When the Rusanov ux is adopted,
an extended inertial range can be observed till  70L, where a weak dissi-
pative region begins. On the other hand, using the Roe solver, dissipation is
more well-distributed, providing a smother dissipative range till almost the
Nyquist wavenumber. In the very high wavenumbers region, some kinetic
energy accumulation can be noticed. This is a clear indication that, for the
actual discretisation order and mesh resolution, additional di usion via a
SGS model is advisable.

(a) Roe (b) Rusanov

Figure 5.20: Detailed look of Fig. 5.19: solid line, Roe ux; dotted line,
Rusanov ux. Dashed lines have been used to highlight the di erent slopes
in the high-wavenumber region.

5.7.2 Spatially evolving turbulence: duct ow

Duct ow simulations have been performed using SD scheme and then com-
pared with DG simulations presented in [80]. The computational domain
consists of a rectangular domain of dimensionf_»;Ly] =[20 ; 2 ]. It could
be argued that an inviscid, two-dimensional simulation provides an unphys-
ical, under-resolved manufactured turbulence. Nevertheless, in order to un-
derstand the dissipative role of the numerical scheme, the current setting
gives the same macro-behaviour expected in more realistic three-dimensional
and viscous con gurations. Moreover, the use of Euler equations is a com-
mon technique to study the in uence of numerics, as the numerical method
itself is the only dissipative mechanism acting on the ow. In this way, it
can be isolated from molecular viscosity and SGS modelling (if present).

Free slip boundary conditions are applied toy = and inlet conditions
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Figure 5.21: Example of mesh and ow con guration adopted.

are prescribed as:

U= U 1+Asm(l;y)sm( t) ;

p=p1;

where 1 =1, u; =1 and p; is set in order to get a desired value of
in ow Mach number, p; =( 1 u?)=( Ma?). The parameters de ning the
in ow perturbations have been set asA =1=2, K =5, =1 . Finally, in
agreement with the simulations presented by Mengaldo, et al. [80], far- eld
conditions ( 1 , u1 and p; ) have been used to compute numerical uxes at
the outlet boundary.

In the following simulations two di erent Riemann solvers have been
used: the Roe's solver, representative of the classical upwinding approach,
and the Rusanov solver, which can lead to hyper-upwinding for low Mach
number simulations.

In order to trigger a su ciently wide range of scales, two meshes have
been considered: one consists of a homogeneous rectangular mest26f 12
elements and a second non-homogeneous mesh is modi ed with coarsening
in the nal part of the domain. Mesh coarsening starts at x = 12 , the
rst block is discretised with 72 12 elements while the second withil2 12
elements imposing a severe under-resolution. A sketch of the ow con gura-
tion is shown in Fig. 5.21. The simulations here considered use a 6th-order
accurate SD scheme. Of course, being the main objective the evaluation
of numerical dissipation, no SGS modelling has been added to the set of
equations.

The results obtained with the SD solver using the Rusanov and Roe
uxes are reported, respectively, in Figs. 5.22 and 5.23. As already observed
in [80], the Rusanov ux is less accurate than the Roe ux due to the presence
of spurious modes and numerical oscillations are clearly visible close to the
outlet and (to a minor extent) at the mesh coarsening interface. The Roe
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Figure 5.22: Vorticity magnitude using Rusanov Flux with and without
mesh coarsening Ma = 0:03). Black vertical line denotes the beginning of
the second block.

Figure 5.23: Vorticity magnitude using Roe Flux with and without mesh
coarsening Ma = 0:03). Black vertical line denotes the beginning of the
second block.

ux, instead, thanks to the absence of spurious modes, gives good results also
with the coarse mesh. Moreover, the smooth variation of dissipation across

frequencies shown in the previous sections, as opposed to the dissipative
bubbles observed using central uxes, suggests a smoother energy transition
between scales, providing better results.

For higher Mach numbers, the hyper-upwinding character of Rusanov
ux should be less pronounced and results are expected to be similar to
those obtained using the Roe ux. In order to verify such behaviour, the
same test has been performed at a higher Mach numbeMa = 0:3). As
clearly visible in Figs. 5.24 and 5.25, results do not di er excessively.

Finally, a direct comparison between SD3D and Nektar++ simulations is
presented. Nektar++ [96] is a tensor product-based nite element package,
based on the DG method formulation, designed to allow the construction
of e cient classical low polynomial order h-type solvers as well as higher
p-order piecewise polynomial order solvers. The test case simulation at
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Figure 5.24: Vorticity magnitude using Rusanov Flux with and without
mesh coarsening Ma = 0:3). Black vertical line denotes the beginning of
the second block.

Figure 5.25: Vorticity magnitude using Roe Flux with and without mesh
coarsening Ma = 0:3). Black vertical line denotes the beginning of the
second block.

Ma = 0:03 has been here considered using the Rusanov numerical ux.
As already said, spurious re ections are expected at the mesh coarsening
interface and at the outlet boundary. From Figs. 5.26 and 5.27, weaker re-
ections are observed using the SD scheme, compared to the DG method.
Di erent interpretations can arise from such results. From the theoretical
dispersion/di usion analysis, a stronger spatial dissipation has been observed
using the SD scheme compared to the DG schemef( Fig. 5.4), in particular

in the high-wavenumbers region. Accordingly, high-frequency oscillations
are smoothed out more e ciently by the dissipation of the SD numerical
scheme. A di erent interpretation can instead be sought in the non-constant
advection velocity analysis. In previous sections, spatial di usion curves us-
ing hyper-upwind have shown relevant di erences between the DG-FR and
the SD schemes (see Fig. 5.14). Indeed, a smoother distribution has been
noticed using the SD method for increasing levels of inhomogeneity in the
advection velocity. A higher regularity of spatial di usive curves could then
partially explain the reduced presence of spurious oscillations in the SD sim-
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ulations. The results reported in this section demonstrates how the spectral
analysis can provide some useful hints to the role of numerics in computing
under-resolved turbulent ows. Indeed, assumptions such as homogeneity,
linearity and one-dimensionality are certainly unsuitable to fully describe
complex turbulent ows. Nevertheless, such a simple modelling can still well
predict the macro-behaviour of the numerical scheme, so relevant for the
physical description of the problem.

Figure 5.26: Vorticity magnitude using Rusanov Flux with Ma = 0:03 using
DG (up) and SD (down). Black vertical line denotes the beginning of the
second block and the horizontal dashed line indicates a symmetry axis to
facilitate the comparison.

Figure 5.27: Vorticity magnitude using Rusanov Flux with Ma = 0:03 using
DG (up) and SD (down) with mesh coarsening. Black vertical line denotes
the beginning of the second block and the horizontal dashed line indicates a
symmetry axis to facilitate the comparison.

5.8 Conclusions

A comprehensive spectral analysis of high-order schemes has been here per-
formed and numerically tested. In particular, the classical temporal ap-
proach [77] has been presented along with the more recent spatial and non-
modal analyses [79, 80, 88]. All these techniques have been applied to the
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Flux Reconstruction methods [77, 89], in particular, those recovering the
nodal Discontinuous Galerkin and the Spectral Di erence schemes for lin-
ear advection, as well as to the improved Spectral Di erence scheme by
Liang and Jameson [91, 92, 48]. A generalisation to the non-constant, one-
dimensional conservation law has been presented, following the guidelines
proposed by Manzanero et al. [86, 87] for non-homogeneous linear advec-
tion equations. Classical spectral analyses applied to the standard constant-
velocity advection equation provide useful insights in the role of the numer-
ical scheme in the simulation of complex physical systems. Each analysis
contributes singularly, highlighting di erent aspects of the interaction be-
tween physics and numerics. Nevertheless, such a simpli ed approximation
can be sometimes inappropriate. The generalisation to non-constant ad-
vection velocities yields deeper informations on dispersion and dissipation
errors induced by the numerical scheme in more realistic conditions, leading,
eventually, to a better understanding of the reliability of high-order ILES.
Furthermore, non-constant advection velocities allow to study a larger set
of numerical schemes which would act identically for the most simple linear
advection case (for example, SD-FR and SD).

In the comparison of numerical dispersion and di usion errors produced
by such schemes, it has been observed a stronger temporal dissipation using
the DG-FR scheme, compared to the SD-FR scheme, while this particular
behaviour is inverted considering spatial eigenanalysis, where SD-FR ap-
pears to be more dissipative. Furthermore, the DG-FR is more dissipative
for temporally evolving spatial oscillations, whereas the SD-FR is more dissi-
pative for spatially evolving temporal oscillations. Considering non-constant
advection velocities, two di erent functional forms have been considered: a
sinusoidal function and a random signal with unitary mean and prescribed
variance. Although they may be considered oversimpli ed choices to describe
realistic ows, the proposed advection velocities are su ciently complex to
give important hints in the role played by numerics in such conditions. Vary-
ing the level of inhomogeneity, the SD scheme has shown weaker sensitivity to
advection velocity variations with respect to FR methods. Temporal eigen-
analysis has show similar behaviours between the SD and the SD-FR schemes
both in terms of dispersion and di usion. In the spatial analysis, instead,
deviations between the two schemes have been mainly noticed in the di usive
curves, which have been studied in the case of standard and strongly upwind
numerical uxes. The general observation is that the SD scheme seems to be
more dissipative. Additionally, in the case of non-upwind uxes, smoother
pro les of numerical di usion has been reported. Typical dissipative bubbles
tend in fact to blend together for increasing levels of inhomogeneity in the
advection velocity. Such behaviour suggest a more robust discretisation for
complex ows.

Theoretical ndings have been veri ed through a series of numerical ex-
periments. The constant-velocity advection equation with a prescribed inlet
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condition has been discretised using the SD scheme in order to verify spa-
tial eigenanalysis results. Dissipative bubbles, typical of central uxes, have
been observed as in [80], in accordance with spatial eigenanalysis theory.

Considering more complex con gurations, the SD scheme has shown
stronger dissipation for spatially evolving turbulence. A duct ow with time-
dependent inlet boundary condition has been modelled using Euler equations
and two di erent type of numerical uxes have been employed: Roe and Ru-
sanov uxes. For low Mach numbers the latter produces uxes which mimic
strong upwinding. In such conditions, spurious re ections due to grid coars-
ening and outlet boundary conditions, already observed in [80], have been
noticed in the present simulations too. Nevertheless, the magnitude of these
spurious perturbations appears to be smaller, and in good agreement with
spatial eigenanalysis theoretical results, where the SD scheme is expected to
be more dissipative.

As an example of temporally evolving turbulence, simulations of Taylor-
Green vortex have been performed. Energy transfers between scales have
been evaluated through the kinetic energy spectrum in the fully-turbulent
phase { = 9L=Up). Results show a good agreement with temporal eigen-
analysis. The use of hyper-upwinding (Rusanov ux) provides a long inertial
range suddenly interrupted by a weak dissipative region at very small scales.
Classical upwinding (Roe ux), instead, is characterised by a smoother tran-
sition between the inertial and the dissipative ranges. In agreement with the
temporal eigenanalysis, excessive upwinding (Rusanov ux) produces coun-
terintuitive results, leading to lower dissipation compared to the classical
upwinding (Roe ux). Nevertheless, using the Roe ux, a slight accumu-
lation of kinetic energy for high wavenumbers has been noticed due to the
insu cient level of numerical dissipation in this region.

It is then clearly evident that upwind uxes are the most suitable choice
for ILES computations. In spite of this, the order of approximation and,
consequently, the level of accuracy of the approximation, plays a very impor-
tant role and can easily lead to insu cient or excessive levels of dissipation.
High-order discretisations, typically of order three to four, employing upwind
uxes are commonly used in the literature to perform ILES (mostly using
DG-based solvers). Higher orders are instead unfeasible due to the insu -
cient level of numerical dissipation at the smallest scales. Spectral analyses,
like those herein presented, can then be used as a very useful tool in the
design of dynamical explicit SGS models which adapt the level of dissipation
based on the order of approximation.
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6.1 Introduction: Implicit vs Explicit LES

In the previous chapter the general problem of turbulence has been treated
from a mathematical point of view. More speci cally, the approach com-
monly known as Large-Eddy Simulations has been introduced in chapter 3.
Concepts such as Itered equations and eddy-viscosity models have been
discussed from a theoretical perspective. Chapter 4, instead, was focused on
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the numerical set-up. The high-order Spectral Di erence scheme was anal-
ysed in detail, starting from the interpolation and di erentiation operators to
the de nition of inviscid and viscous numerical uxes. Sub-Grid Scales mod-
elling and the Spectral Di erence method have been presented separately to
simplify the discussion. Nonetheless, in practical under-resolved ows, the
interaction between spatial discretisation and turbulence modelling often
represent a crucial point in the reliability of the numerical simulation. In
chapter 5, the inuence of the numerical scheme for under-resolved ows
was analysed using spectral eigen-analsysis and relevant numerical experi-
ments. In the present chapter, instead, the discussion will take one more
step forward, analysing how intrinsic numerical properties such as numerical
dissipation and dispersion can be taken into account in the development of
SGS models.

In the practice of numerical simulations, truncation errors associated to
discretisation schemes can not be fully avoided whenever under-resolution
is present [21]. These errors can signi cantly perturb the ow physics ex-
pected from the solution of the rst principle equations. Normally, low order
spectral element methods lead to a strong, numerically-induced, dissipation
injected in the system. High robustness and implementational simplicity are
then paid at the price of a poor description of a non-negligible part of the
ow scales, which are irreversibly dissipated. High-order methods, instead,
introduce a very low level of numerical dissipation which, on the one hand,
implies a better representation of small scales and, on the other, makes the
computation more susceptible to undergo stability issues. Accordingly, one
of the stumbling-block in the high-order Large Eddy Simulations community
lies in the development of a robust theoretical framework, which would re-
late truncation errors of the numerical discretisation scheme and turbulence
under-resolution.

In the context of the so-called Implicit Large Eddy Simulations, the nu-
merical dissipation associated to the scheme is calibrated to model energy
transfers along scales [97, 62, 63, 64, 65, 66]. However, the choice of order
of accuracy, mesh resolution, and numerical ux may in uence strongly the
success or failure of these approaches. This is particularly true for certain
classes of high-order methods, such as the spectral element methods [67], for
which the order of accuracy is a user-selectable parameter of the computa-
tion.

The shortcomings and advantages of ILES have been widely discussed in
the last decades [98, 99, 100], with a rising interest in the theoretical relation
between upwinding/non-oscillatory high-order schemes and numerical dissi-
pation in under-resolved turbulent ows. Nevertheless, a fully generic and
clear connection between them is not yet fully understood for complex ows.

Within the framework of high-order discontinuous nite element meth-
ods, in particular, recent works on LES modeling strategies for the spectral
di erence scheme [44, 45, 46], have highlighted the inability of the ILES to
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provide consistent and controlled reproduction of sub-grid scale interactions
when di erent orders of accuracy are selected [101, 102, 103]. This, in turn, is
a major drawback in view of applications of high-order methods as predictive
tools for engineering.

The present chapter will start the discussion on this point. The Spectral
Element Dynamic Model, which was just brie y mentioned in chapter 3, will
be herein fully analysed and discussed. Firstly, the main concepts of the
original work by Chapelier & Lodato [1] will be introduced. Secondly, a se-
ries of Large-Eddy Simulations using the SEDM will be considered with
a special focus on transition to turbulence. Part of the work presented
in this chapter has been published in two di erent Flow, Turbulence and
Combustion papers [17, 16] (https://doi.org/10.1007/s10494-021-00273-y,
https://doi.org/10.1007/s10494-021-00262-1).

6.2 Spectral Element Dynamic Model

The Spectral Element Dynamic Model [1] de nes a constant kinematic eddy-
viscosity within the element of the SD discretisation as:

P 6.1)

- 2

{ = Csepmf( n) n
where , is an estimate of the local cuto length scale,f ( ) is a spectral
turbulence sensor,Csgpym IS @ model constant andk, is an estimate of the
SGS turbulent kinetic energy within the element de ned as:

kn=% e, eni h eni heni ; (6.2)

where h i denotes spatial averaging within the element.

6.2.1 Turbulence sensor

In chapter 3, the Spectral Element Dynamic was only brie y introduced be-
cause the concept of numerical di usion/dispersion had not been presented
yet. The functional form of the SEDM is, in fact, quite simple and straight-
forward, whereas the delicate point in terms of interpretation and calibration
is represented by the turbulence sensor. This particular object plays a fun-
damental role in the connection between the SGS model dissipation, which
is essentially not particularly di erent with respect to other classical SGS
models, and the numerical dissipation associated to numerical scheme.
The turbulence sensor, denoted a$( ), is a smooth function varying
from 0 to 1 designed to quantify the local level of resolution of the LES
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Itered eld. The expression for f ( ) reads:

8
3 1 for n < inr;
1 . (c+ n)
(=5 tesin St o ws2 i (63)
0 for n> @ +2 ;

The form of the turbulence sensor resembles the classical discontinuity sensor
used by [7] for sub-sell shock-capturing. De ning a turbulence sensor which
shares similarities with shock-capturing technigues can be an interesting fea-
ture in the development of a generalised SGS models for compressible ows,
where both shocks and turbulence under-resolution are treated in a similar
manner. More details and a deeper discussion on the connection between
these two aspects will be furnished in chapter 8.

The calibration of the parameters involved is based ora-priori studies
of isotropic turbulence decay. Details on the calibration procedure can be
found in the original work by Chapelier & Lodato [1].

On the other hand, in order to better understand the behaviour of the
SEDM, some further details will be provided on the computation of .
The power decay , is evaluated using the modal representation of the re-
solved velocity e. In particular, starting from the nodal values available
from the simulation, the modes within the functional space spanned by Leg-
endre polynomials are evaluated. Subsequently, one-dimensional spectra are
computed along each direction and later averaged to give a sense of three-
dimensionality. The nal output of such procedure is a single kinetic energy
spectrum representative of the velocity eld within the spectral element. In
more details, the modal projection can be very easily computed using the
Vandermonde matrix. A pseudo kinetic energy spectrum along each direc-
tion can be computed as:

1 3N 1 2
EQ‘ (9, 2) = > Vins8d(Rs; ¥ 2) (6.4)
d=1 s=0
1 X3 X 1 2
Eg' (Ris %) = > Vins8d(Ri: ¥s: 2) (6.5)
d=1 s=0
1 X3 X 1 2
EY (Ri1¥5) = 5 Vins8d(Ri; %5 25) (6.6)
d=1 s=0

where V represents the Vandermonde matrix for the Legendre polynomials
basis, and E™ indicate the m-th modal component of the kinetic energy
spectrum along a given direction. Subsequently, the kinetic energy spectra
along each direction are averaged within the element as follows:

1

m
& = 3N+1)2

X X
Ex (% &)+ Eg (% %) + EX(%i:%) © (6.7)
0 itk =0 ij =0
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An exponential representation is then assumed for the averaged kinetic en-
ergy spectrum on the element  intheform E , / m » (m=1;::;N).
The zero-th mode, which corresponds to the mean kinetic energy, is not con-
sidered for the evaluation of the modal energetic decay in order to evaluate
only the uctuating component of the velocity eld. Finally, the exponent
n IS estimated using a least square expression:
N P N=q In(m)In(E™ ) P N In(m) P M-y IN(E™ )
n = B 5 : (6.8)

P P
N N In(m) N, In(m)

6.2.2 Taylor-Green Vortex

In the original paper, both for the calibration and validation purposes, a
very useful canonical ow has been considered: the Taylor-Green Vortex [93].
Such test case is particularly useful to study transition to turbulence as it is
characterised by a rst laminar phase which ends in a fully turbulent con g-
uration after approximately 10 characteristic time steps. Such con guration
is therefore appealing to evaluate the ability of SGS models to accurately
represent laminar-to-turbulent transition. In the framework of Large-Eddy
Simulation of the Taylor-Green Vortex, the balance of total kinetic energy
averaged on the domain can be a useful source of informations on the dissi-
pative character of SGS model. For low Mach numbers, the balance of the
normalised integrated kinetic energy reads

dEy

at = "vis t "ses* "num; (6.9)
where Z
1 1
Ex = — E gad ; (6.10)
2 z
"vis = —  §;§jd ; (6.11)
5 Z
"ses= — 1§ §jd ; (6.12)
and "pum = dd% "vis "sgs. Particular attention is also focused on the

combined e ect of both numerical and SGS dissipation:

"$6s = "sest "num’ (6.13)
As already introduced in chapter 5, larger order of approximations are as-
sociated to a reduced level of numerical dissipation. How numerical dissipa-
tion is distributed in the wavenumber domain can vary signi cantly depend-
ing on the numerical scheme used for discretisation. This tendency applies
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also in more complex conditions such as in the case of the fully viscous
Navier-Stokes equations. In Fig. 6.1, numerical dissipation, evaluated as in
Eq. (6.13), is shown for the TGV case for dierent orders of approxima-
tion. The magnitude of ",um is larger for low orders whereas it gets smaller
and smaller increasing the order of approximation. Furthermore, numerical
dissipation follows the very desirable feature of null dissipation in the rst
laminar/transient phase for t < 4. It is then clear that the levels of dissipa-
tion injected by the SGS model need to vary consistently with the order. In
other words, for low orders of approximation, numerical dissipation can be
su ciently large to mimic the dissipative nature of unresolved scales. On the
other hand, for higher orders, numerical di usion gets weaker and explicit
SGS modelling is necessary to maintain the simulation stable and accurate.
At the same time, an hypothetical SGS model for the TGV ow should ide-
ally preserve the ability of numerical dissipation to grow signi cantly only
when the ow becomes under-resolved. In this sense, for the same simula-

Figure 6.1: Numerical dissipation of resolved kinetic energy,.m for varying
order of approximation. (Fig. from [1]).

tions, in Fig. 6.2 the explicit dissipation of the SEDM model is shown. As
already anticipated, the SEDM is capable of dynamically adapt the levels
of dissipation injected in the system. In the case of low order, the model is
essentially inactive, leaving to numerical di usion the role of build-in SGS
model, whereas, for higher orders, the model dissipation gets stronger and
stronger to maintain the simulation stable. Furthermore, for any order, the
use of a turbulence sensor able to detect under-resolution makes the model
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Figure 6.2: Explicit SGS dissipation of resolved kinetic energy sgs for vary-
ing order of approximation. (Fig. from [1]).

always inactive for times smallernt < 4. Classical models such as Smagorinsky
model, for example, are active also in the laminar/transient phase, causing
an over-dissipation of the ow eld. Of course, for some intermediate orders
of approximation, numerical dissipation can be su ciently large to keep the
simulation stable and, at the same time, small enough not to over-dissipate
the small scale uctuations. Finding such equilibrium point can be a very
di cult task to achieve. The SEDM tries to circumnavigate the issue pro-
viding adapting levels of dissipation based on the order of approximation
and on the local resolution of the numerical scheme.

6.3 Bypass transition on a zero-pressure-gradient
at plate

The prediction of laminar to turbulent transition is an important problem

in the eld of aerodynamics and turbo-machinery. One of the most exten-
sively studied cases of transition, is the transition of a zero-pressure-gradient
smooth at-plate boundary layer (ZPGSFPBL). Two principle transition
mechanisms exist in nature. At low levels of freestream turbulence inten-
sity (Tu < 1%), natural transition occurs [104]. This is characterised by
the development of two-dimensional Tollmien-Schlichting (TS) waves (pri-
mary instability), which grow in amplitude along the streamwise direction.
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When the amplitude of the TS waves reaches a certain magnitude (usually
at Reynolds numbers ofO(10°)), three-dimensional secondary instabilities
develop, which nally breakdown into fully turbulent ow. It is possible

to trigger transition further upstream simply by increasing the freestream
turbulence intensity. This produces bypass transition [105], in which the
mechanism of the TS waves is skipped and instead, the ow goes from lami-
nar to turbulent over a relatively narrow range of Reynolds numbers, usually
of O(10°).

Transitional ows have received a lot of attention in the recent past and
as a result the mechanism of transition is relatively well understood. The
predominant numerical approach to study bypass transition has been via
DNS studies which are computationally quite expensive. Alternative nu-
merical methods do exists in the form of Reynolds averaged Navier-Stokes
modelling, which is widely prevalent in the industry. However, RANS mod-
els require extensive tuning to produce acceptable results for transitional
cases. In recent years, large-eddy simulation in conjunction with high-order
solvers have shown much potential in being a truly predictive tool for tran-
sition. Thus, in keeping with this theme, the present work focusses entirely
upon the application and evaluation of LES models to bypass transition,
speci cally the experimental ERCOFTAC T3A test case (EXP-T3A), which
is a well known example of ZPGSFPBL bypass transition. Although we
work with a variety of LES models, our primary objective is to evaluate the
spectral-element dynamic model (SEDM) of Ref. [1], since it exhibits several
properties which are known to be useful in transitional ows.

The LES of ZPGSFPBL bypass transition was rst undertaken in Ref. [106],
using freestream turbulence of intensity6%, in an attempt to reproduce the
ERCOFTAC T3B test case. The model employed by them was the dynamic
Smagorinsky model. They also performed implicit large eddy simulations by
discarding the sub-grid model and instead using a signi cantly ner mesh.
These simulations were termed as low-resolution simulations (LRS). Despite
the low resolution, good qualitative agreement was achieved. They also
demonstrated the importance of the wall-normal component of the velocity
of the freestream turbulence in provoking the transition. The localized ver-
sion of the dynamic Smagorinsky model was made use of in Ref. [107] on
swept-wing boundary layers. Subsequently, [108] carried out one of the ear-
liest controlled transition studies using the Itered-structure-function (FSF)
model and a second-order nite di erence code. This was a modi ed version
of the original structure function model in Ref. [109], which was found to
be too dissipative for transitional ows. They produced good results even
with the limited grid resolution available. A more recent study on the ER-
COFTAC T3A test case, which used a freestream turbulence of intensityd%,
was performed in Ref. [4]. A second-order nite volume scheme served as
the numerical solver and a residual-based variational multi-scale (RB-VMS)
style LES model was used. In this work the grid-convergence properties
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of the VMS approach were clearly highlighted. More recently, several LES
models were tested in Ref. [110] on controlled H-type and K-type transition
using a 5" -order accurate nite-di erence code. A detailed comparison was
made against the DNS. It was found that all the models exhibited an under-
prediction of the skin-friction coe cient in both transitional and turbulent
regions. Their conclusion was that only those models which introduced neg-
ligible sub-grid viscosity prior to transition were capable of allowing the
transition process to occur. This is an important point whose e ects are
deeply discussed in this work. Finally, we mention the work in Ref. [111], on
bypass transition over an adverse pressure gradient at plate, wherein nu-
merous LES models (dynamic Smagorinsky, mixed-time scale and WALE)
were tested. They sought to test out the transition-prediction capabilities of
various models and found that only the mixed-time scale model could suc-
cessfully capture all the physical features and bore the strongest similarity
to the DNS data.

The key conclusion of several of these studies was that negligible amounts
of dissipation are required within the pre-transitional region of the ow. This
is because the primary disturbances, called the "Klebano modes', which are
usually well resolved even on coarse grids, must be allowed to grow in am-
plitude until they reach the stage at which secondary instabilities may begin
to develop. It is only within the transitional region, where the unresolved
scales begin to grow rapidly, that the sub-grid models must begin to act.
Thus in general, for ows which exhibit a high-degree of intermittency, the
sub-grid eddy-viscosity must be applied in a manner which is local, both in
physical and in wavenumber space. A distinct preference exists towards the
application of the sub-grid eddy-viscosity within regions of low-resolution in
physical space and upon the high wave-numbers. The bypass transition test
case is ideal for testing these behaviours in LES models, since there exists
two distinct regions of ow, one well-resolved and dominated by low wave-
numbers (laminar region) and the other poorly-resolved and dominated by
high wave-numbers (turbulent region).

The well documented behaviour of the ZPGSFPBL bypass transition [112,
113, 114, 2, 115, 116], makes an accurate comparison and evaluation possi-
ble. Despite this, LES studies of transition are quite rare in literature [111]
since they tend to give rise to numerous complications. The primary compli-
cation is the interaction between the numerical dissipation and the sub-grid
model dissipation, making it di cult to truly evaluate the model behaviour.

To overcome this obstacle we make use of a high-order Spectral Di erence
solver [117] which introduces low levels of numerical dissipation and dis-
persion errors [118, 73] and hence allows the model's e ects to dominate.
A secondary concern, pertains to the speci cation of the in ow and means
of forcing transition. When forcing transition by means of freestream dis-
turbances, this di culty encompasses not only the generation of synthetic
turbulence, on an auxiliary mesh, with a behaviour comparable with that of
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the experiment, but also the transfer of the synthetic turbulence to a highly
under-resolved, and non-uniform LES mesh. We have utilised the technique
put forth in Ref. [3]. The present approach makes use of synthetic turbulence,
generated by the digital Iter method in Ref. [119], of speci ¢ length-scale
and intensity, injected at the in ow, at a certain height above the at plate.
The resulting freestream disturbance exhibits a streamwise behaviour very
similar to that of the T3A case. Furthermore, the primary disturbance,
induced within the pre-transitional boundary layer, closely matches the ex-
perimental data. Thus with grid re nement, the overall transition behaviour
converges strongly towards the T3A experiment.

Thus with the tools outlined above, we seek to carry out LES studies
of ZPGSFPBL bypass transition with settings designed to reproduce the
conditions of the ERCOFTAC T3A test case. Our objective is to test the
transition-prediction capabilities of SEDM. We also utilise the WALE and
SIGMA models as reference. Direct comparisons are made between the LES
simulations and the experimental T3A data for quantities such as the skin-
friction coe cient, uctuating stresses and sub-grid eddy-viscosity. A grid-
convergence study is also performed to reveal the convergence characteristics
of the models.

6.3.1 Computational domain and boundary conditions

The simulations are carried out within a hexahedral computational domain,
starting downstream of the at plate leading edge. The domain exten-
sion is such that 10 Rey 5 10°, x being the distance from the
at plate leading edge. Transition for the T3A case, generally occurs for
1:1 10° Rex 311 10°. The domain height is three times the height
of the turbulent boundary layer at the out ow and the width of the do-
main is equal to the height of the turbulent boundary layer at the out ow.
While the streamwise and wall-normal dimensions are nearly identical to the
domain used in the DNS in Ref. [2], the spanwise width is only half that
of the DNS. This was done primarily to keep down computational costs,
however it is widely accepted that the spanwise scale of even the largest
eddies in a turbulent boundary layer are generally smaller than turbulent
boundary layer height [120]. The dimensions of the domain, normalised
by the in ow boundary layer displacement thickness (;,), are presented in
Tab. 6.1. A characteristic boundary condition is used at the inow and a
characteristic-based boundary condition, using extrapolated variables for the
ghost state and exit pressure speci ed, is used at the out ow and freestream
boundary. Finally, in the spanwise direction, periodic boundary conditions
are employed and an adiabatic no-slip boundary condition is applied to the
wall. The SD discretisation of the domain with these boundary conditions
has been observed to be stable, consistent and convergent using a laminar
Blasius pro le test case.
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Reynolds number range 1.0 10* 50 10°
Freestream density 1 1:0 kg=m?3
Kinematic Viscosity 10 > m?=s
Fluid properties Specic heat capacity Cp 1:006 kJFkgK
(const. pressure)
Speci ¢ heat ratio 14
Prandtl number Pr 0:72
Displacement thickness in 95 10 ®°m
) ) at in ow
Domain details Domain dimensions Hyx 2847
Hy 214
H, 71,
Freestream Mach num- || Maj 0:5
ber
Flow properties Freestream velocity U, 1880 m=s
Bulk velocity (laminar || Upyk 187.0 m=s
ow)
Freestream turbulence| Tu 30 35%
intensity
Freestream turbulence || L;; 10:92 ;,

integral length scale

Table 6.1: Parameters used in this study for the reproduction of the T3A
experiment.

Grids

The domain is discretised by hexahedral elements, kept uniform in the stream-
wise and spanwise direction and stretched in the wall-normal direction using

Name | No. elements | Stretching | Scheme| x* y* z*
factor order
(Ex Ey Ez) Cstr (N+l)
Coarse |40 6 3 0:03 6 70 "1 24
Medium| 60 8 5 0:04 6 47 "1 14
Fine 80 10 6 0:06 6 35 "1 11

Table 6.2: Computational grid details (the friction velocity, u , used for
normalisation is computed at Re = 3:1 10P, which is the skin-friction
peak. An equidistant distribution of solution points within the element was
assumed.)
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an algebraic stretching function [108], de ned as:

j =j=Ney; 8 0 j Ney, (6.14)
Cstr j

= H 1. 6.15

Y] Y1+ Cstr j ( )

where Ney is the number of elements in the wall-normal direction,Cgy is
the user speci ed stretching factor, Hy is the domain height andy; is the
co-ordinate of the upper boundary of element numbej. The stretching fac-
tor has been adjusted for all grids, such that the rst element has its upper
boundary located aty* ' 7. Thus, with the use of a6 -order SD scheme,
the rst solution point is always located at y* < 1 and at least 10 points
are present belowy* = 10, thus providing su cient wall resolution. It must
be noted that since the distribution of the solution points, interior to the
element, is unknown during the grid-generation process, we have calculated
x*; y*; z* assuming equidistant interior solution points. However, in
general due to the clustering of the solution points near the element bound-
aries, the true values are usually lower.

Three sets of grids are used for the LES computations, one coarse, one
medium and one ne. Their nomenclature may be justi ed by comparing
them with the DNS grid in Ref. [2] which utilises 2048 180 192 points.
Thus, as can be seen from Tab. 6.2, the coarse grid has approximately one-
tenth the number of points of the DNS in the streamwise and spanwise
dimension while having one- fth the number of points in the wall-normal
direction, with the medium grid having one and a half times and the ne
grid having two times the number of elements as the coarse grid, along
each direction. Thus overall the coarse grid contains nearly 500 times fewer
number of points and the ne grid possesses nearly 70 times fewer number of
points as compared to the DNS grid in Ref. [2]. This level of under-resolution
is signi cantly greater than that used in prior studies of this case. For the
sake of comparison, it must be pointed out, that the ne grid used in this
study is nearly equivalent to the coarse grid used in the LES study in Ref. [4].

Freestream Disturbance

The properties of the freestream turbulence are crucial to obtain the cor-
rect behaviour of the ZPGSFPBL bypass transition case. Earlier studies in
Ref. [3] have shown that it is possible to obtain a close agreement with the
experimental T3A data by injecting synthetic turbulence of speci ¢ length-
scale,L;, and turbulent intensity, Tu, over the laminar boundary layer at
the in ow. This synthetic turbulence is produced, upon an auxiliary grid
at the in ow plane, by the method put forth in Ref. [119]. This method
makes use of digital Iters in order to correlate three random elds of data,
R : = x;y:z, to produce a eld at the in ow plane, u®(j;k), whose prop-
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(@) Continuous modes of the Orr- (b) Damping function behaviour with pa-

Sommerfeld equation plotted at di erent rameter h = 1:5 g9;ir plotted at Re, = 10%.
Reynolds numbers (reproduced from
Ref. [2]).

Figure 6.3: A comparison between the wall-normal basis used in the synthetic
turbulence in Ref. [2] (gure on the left) and the damping function used
to suppress uctuations within the boundary layer (gure on the right).
Blasius streamwise v&locity componenty=U; (—) and wall-normal velocity
component,v=U; U; x= (---), also shown for reference.

erties closely resemble those of the desired turbulent eld:

Kix Xy Xz
ul(j k) = boaoR (i% +j%k+ K9; (6.16)
i% Nyj% Nyko= N,

with u% =0 and u? uj0 = jj and whereNy;Ny;N; represent the stencil of
the Iter bgoo. In order to account for the cross-correlations between the
various velocity components, the method proposed in Ref. [121] is used. We
de ne uj = T + gj uj0 where:
° R 0 0
aj = @ Ry=a;;  (Ryz a3;)'? 0 A, (6.17)

Ra1=a1 (Rsz anasi)=ae (Raz a3, a3,)*™>

and whereRj; is the correlation tensor knowna priori such as from experi-
mental or DNS data. By setting the cross-correlation coe cients to zero in
Rjj , homogeneous-isotropic synthetic turbulence may be obtained.

Finally, we can ensure that the uctuations are con ned solely within
the freestream by making use of a van Driest type damping functions, given

by

(1 e y=(0:137 h))lOOO.
which is multiplied by all three components of the synthetic turbulent uc-
tuations at the in ow plane. This function, as seen in Fig. 6.3(b), undergoes
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Name Tu L11= in — L22: in = L33: in h= 99:in
COARSE | 3:75% 10.92 15
MEDIUM | 3:65% 10.92 15

FINE 3:5% 10.92 15

Table 6.3: Parameters for the generation of freestream turbulence for each
grid used within this study.

a smooth change in value fromD to 1. More speci cally, it achieves a value
of 0:5 at a height of h. This parameter, h, is user speci ed and strongly
determines the transition behaviour as it controls the depth to which the
freestream disturbance penetrates into the boundary layer at the in ow. It
must be kept in mind that the choice of this function was completely ar-
bitrary and its behaviour merely designed to mimic the continuous modes
of the Orr-Sommerfeld spectrum as shown in Fig. 6.3(a). Experiments in
Ref. [3] have provided us with suitable values for the turbulence intensity
(835% Tu 3:75%), the length-scale ;i = 10:92 ;,) and the height of
injection of the synthetic turbulence (h = 1:5 ggi,). These values are pre-
sented within Table. 6.3. By using these parameters and &"-order ILES
approach, there is a strong trend of convergence towards the T3A experi-
mental data. Finally, by making use of a grid with 780 120 48 solution
points (which we call U-FINE since it has better resolution than the FINE
grid used within this study), a very close agreement is achieved with the
T3A experimental data as can be observed from the comparison of the skin-
friction coe cient and the streamwise component of the uctuating stress
(Fig. 6.4).

........

(@) Cs. (b) uls=u at several streamwise loca-

tions.

Figure 6.4: T3A reproduction upon the ultra- ne grid using synthetic tur-
bulence within the freestream (selected results from Ref. [3]).
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6.3.2 Results and Discussion

The results presented within this section contain data from the simula-
tions carried out with the three di erent LES models (WALE, SIGMA and
SEDM), as well as the ILES, upon the three dierent LES grids (coarse,
medium and ne). The data presented within this work represents the time-
averaged quantities over the course of forty ow turn-over times, similar to
that used in the study in Refs. [108] and [4] followed by a single spanwise
averaging of the quantities of interest at the solution points. The statistical
averaging has been commenced after a period of ve ow turn-over times
used to ush out any transients.

Behaviour of freestream intensity and uctuating stresses close to
in ow

(a) Variation with grid resolution. (b) Variation with sub-grid model (medium
grid).

Figure 6.5: %T u streamwise behaviour.

The grid and the numerical scheme have a strong in uence upon the
freestream behaviour. Once the parameters for the generation of the tur-
bulence upon the auxiliary grid have been set, there is very little that can
be done to control its streamwise evolution. The grid and numerical scheme
a ect, not only the total intensity, but also the homogeneity and isotropy of
the freestream turbulence.

The curves in Fig. 6.5(a) show the freestream turbulence intensity upon
the three di erent LES grids. The simulation is an ILES. We can easily ob-
serve the in uence of the grid resolution upon the freestream turbulence in-
tensity. In general, there appears to be a sharp initial drop in the freestream
turbulence intensity, followed by slower decay. With grid re nement, the
magnitude of the initial drop decreases, while the decay rate downstream of
the drop increases (approaching the reference decay rate). This phenomenon
tends to make it appear as if the freestream turbulence upon the coarser grid
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(a) ILES: isotropy. (b) SEDM: isotropy.

(c) ILES: homogeneity. (d) SEDM: homogeneity.

Figure 6.6: %T u comparison between the ILES and SEDM (medium grid).

possesses a length-scale greater than the prescribed one. This behaviour has
been well documented in Ref. [3], and grid convergence produces a distinc-
tive trend towards the reference T3A data. We now look at the in uence of
the model upon the freestream behaviour. A comparison of the freestream
turbulence intensity of the ILES and the SEDM on the medium grid is shown
in Fig. 6.5(b). In general, the model e ect is dissipative in nature, thus many
of the trends for the ILES, described in the previous paragraph, are expected
to be exaggerated for an LES using the model. The comparison between the
curves of the freestream turbulence intensity of the ILES and the SEDM,
as seen in Fig. 6.5(b), reveal that the sharp drop in intensity, near the in-
ow, is a bit more severe in the case where the model is applied. In general,
this drop in the turbulence intensity can be directly attributed to the drop
in the wall-normal intensity, Tuy, which is quite apparent when examining
the behaviour of the individual components of the freestream turbulence in
Figs. 6.6(a) and 6.6(b).

The reason for this behaviour is relatively simple to explain. Within
the turbulence injection technique, perturbations are rstly evaluated on an
auxiliary cartesian grid. Subsequently, the same quantities are interpolated
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(a) Variation with grid resolution. (b) Variation with sub-grid model (medium
grid).

Figure 6.7: u? .=u at location Re, =3:2 10°.

I;rms

on the high-order SD discretisation. Although such procedure is straightfor-
ward in the case of isotropic grids, it can be more complex whenever one of
the direction is stretched, like in the wall-normal direction for this particular
case. Velocity uctuations along this direction can then be a ected by the
anisotropy of the grid.

Furthermore, the presence of a model tends to exacerbate this trend, as seen
in the case of the SEDM in Fig. 6.6(b). This overall trend is indicative of
a relative loss in the isotropy of the freestream turbulence in the case of
ILES as seen in Fig. 6.6(a), with the situation being even more severe for
the case with a model Fig. 6.6(b), with deviations between the individual
components of the stresses as large @)% being seen. Moreover, when
viewing the turbulence intensities at several di erent wall-normal locations,

in Figs. 6.6(c) and 6.6(d), it becomes apparent that there is a relative loss in
the homogeneity as well. In general, at any given streamwise location, the
freestream turbulence intensity is lower the further we move away from the
boundary layer due to the coarsening of the grid due to stretching, with the
e ect being more signi cant for the SEDM than the ILES.

Despite the relatively large variations in the freestream behaviour due
to the grid and model, the e ect upon the uctuating stresses, within the
boundary layer, close to the in ow is relatively minor, as seen in Fig. 6.7.
A comparison of the boundary layer uctuating stresses among the three
di erent grids is shown in Fig. 6.7(a), for the ILES simulation. A similar
gure, showing a comparison of the boundary layer uctuating stresses, on
the medium grid, among the various models is shown in Fig. 6.7(b). We
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can observe in Fig. 6.7(a), that the e ect of the grid is relatively small
and, in general, the disturbance is well predicted. As can be expected, the
prediction upon the coarsest mesh is the least accurate, with the streamwise
uctuating stress exhibiting higher values than the T3A reference and the
other two components exhibiting lower values. However, on the medium and
ne grids, a much improved agreement is achieved. In a similar manner,
the curves in Fig. 6.7(b), show that the use of the LES models results only
in a minor deviation as compared to the ILES. A prominent discrepancy
between simulation and experiment is visible within the wall-normal and
spanwise components of the uctuating stresses close to the waly{ < 40).
This discrepancy was visible even within the simulations using the U-FINE
mesh, previously described in Sec. 6.3.1, within the study in Ref. [3]. It is
also present within the reference DNS [2] and to the best of our knowledge,
no simulation has been able to match these experimental curves exactly.
However, within the realm of existing literature, our representation of the
uctuating stresses close to the in ow is quite acceptable and thus, it is with
these conditions within the boundary layer and freestream that the following
LES transition studies will be carried out.

Transition behaviour

The transitional zone extends betweeril:1 10° Re, 31 10° andit
represents our main region of interest. However, in order to understand the
onset of the transition, it is important to study the trends present within
the pre-transitional zone, which occupiesRe, < 1:1  10°. A discussion
concerning this zone as well as the early portion of the transition zonel(1

10° Rey 2 10°) is presented in Sec. 6.3.2. A discussion concerning
the remainder of the transitional zone as well as the fully turbulent region
is subsequently presented within Sec. 6.3.2. Finally, a detailed look at the
trends of the sub-grid eddy-viscosity, useful for understanding the transition
behaviour, is presented within Sec. 6.3.2.

Pre-transitional region

Transition typically occurs when the amplitude of the uctuating stresses
(primary disturbance) within the boundary layer grows su ciently large so
that breakdown of the structures of the pre-transitional region into fully
turbulent ow can occur [2]. This growth, which should occur linearly with
respect to the square-root of Reynolds number, is presented in Fig. 6.8, for
the medium and ne grids. The gures indicate that, in general, the coarser
the grid, the lower is the rate at which the disturbance tends to grow. This
trend was seen in Ref. [3] and observations regarding its relevance to the
transition onset were made.

The inuence of the sub-grid dissipation upon the growth rate of the
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(a) Medium grid. (b) Fine grid.

Figure 6.8: UQ,s.max=U1 behaviour along the streamwise direction. Linear
growth with respect to Rel™ (---) shown for reference.

disturbance is what is of interest here. As pointed out in Ref. [110], models
which input minimal sub-grid dissipation within the pre-transitional region
tend to predict higher growth rates. In our simulations we do observe a
dependency of the growth rate upon the model type. Across all the grids
used, the growth rates of the disturbance were the highest for the ILES,
followed by the SEDM, then the WALE and nally the SIGMA model. Since
all the models used, introduce a dissipative e ect, it is to be expected that
the ILES will exhibit the highest growth rate. However, among the various
LES models used, the curves in Figs. 6.8(a) and 6.8(b) seem to indicate that
the SEDM is the least dissipative while the SIGMA is the most dissipative
within this region, with the behaviour of the WALE falling neatly between
the two. Evidence in support of this claim will be presented within Sec. 6.3.2,
where the eddy-viscosity behaviour at several streamwise stations has been
plotted. The graphs therein, do show that the SEDM has lower levels of
eddy-viscosity than either WALE or SIGMA models.

This in uence is felt not only upon the streamwise component of the
uctuating stress, but to a greater extent upon the wall-normal and span-
wise components. This can be observed in the behaviour of the uctuating
stresses, just downstream of the pre-transitional region, upon the medium
grid, as shown in Fig. 6.9. Three di erent streamwise locations are shown
which best exhibit the e ect of the sub-grid dissipation. We can observe
that although at the rst location there is not much of a distinction between
the curves of the various models, as we move downstream, large di erences
begin to evolve. This e ect is most apparent in the curves of the wall-normal
and spanwise components of the uctuating stresses as seen in Figs. 6.9(b)
and 6.9(c) respectively. In general, the ILES and the SEDM exhibit a higher
prediction of the peak stress, in keeping with the T3A reference, while the
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(a) Streamwise stress: 0:1(u%s =u )+ Rex.  (b) Wall-normal stress: 0:5(vi,s =u )+ Rex.

(c) Spanwise stress: 0:4(W2, =u )+ Rey. (d) Cross stress: 0:5(U%%=u?) + Rex.

Figure 6.9: Behaviour of the uctuating stresses within the pre-transitional
region of the boundary layer. ILES (—), SEDM (—), WALE ( ---), SIGMA
() and T3A reference ().

WALE and SIGMA exhibit a much lower value. This trend is di erent for
the curves representing the cross-stress shown in Fig. 6.9(d), where the ILES
and WALE tend to exhibit strong over-predictions deviating far from the
T3A reference, while the SEDM and SIGMA stay relatively close to the
reference.

However, in general the ILES and SEDM tend to maintain higher rates of
disturbance growth, which leads to them exhibiting an earlier transition as
compared to the WALE and SIGMA. The skin-friction coe cient, the quan-
tity most sensitive to the transition behaviour, is shown, for the three di er-
ent models as well as the ILES, for the medium and ne grids, in Fig. 6.10.
In keeping with the trend seen for the disturbance growth, the transition
onset takes place rst in the ILES simulation, followed by the SEDM, next
by the WALE model and, nally, by the SIGMA model.
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Transitional and fully turbulent region

(a) Medium grid. (b) Fine grid.

Figure 6.10: Friction coe cient behaviour for various grids and models. ILES
(—), SEDM (—), WALE ( ---), SIGMA (---) and T3A reference (). The
equivalent simulation in Ref. [4] ¢ -) is also shown in the gure on the right.

The results of the skin-friction, presented within Fig. 6.10, demonstrate
well the capabilities of the ILES computations when carried out with high-
order schemes. The computations upon the medium and ne grids are quite
accurate despite their poor resolution (relative to the DNS). The relative
power of the ILES computations performed here, are visible in Fig. 6.10(b),
when making a comparison with the ILES on the coarse grid in Ref. [4]
(a grid with an equivalent resolutions to the ne grid used in this study).
The relative di erence between the two curves indicates a dramatic improve-
ment in the prediction of the location of the transition onset as well as the
magnitude of the skin-friction coe cient between the two. While the ILES
simulations are relatively accurate, we seek to examine the in uence of the
LES models on the transition behaviour. Of the three LES models used
within this study, it was observed that the WALE and the SIGMA model
exhibited relatively similar behaviours to each other, while the SEDM exhib-
ited rather di erent behaviour, falling somewhere in between the behaviour
of the ILES and the WALE model. In general, on a given grid, the use of
a model tends to push the transition onset downstream while increasing the
range over which the transition occurs, as compared to the ILES (Fig. 6.10).
This e ect is the strongest in the case of the SIGMA model followed by
the WALE and nally the SEDM. For the medium grid ILES, the onset of
transition occurs far upstream of the reference and is completed slightly up-
stream of the reference, as seen in Fig. 6.10(a) . In the case of the SEDM
while the transition also commences close to the ILES, the transition range
overlaps that of the reference in a manner which provides a good matching
between the two. However, for the WALE and SIGMA models, despite the
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(a) Streamwise stress: 0:2(uds =u )+ Rex.  (b) Wall-normal stress: 0:5(vis =u )+ Rex.

(c) Spanwise stress: 0:5(W2,s =u )+ Rey. (d) Cross stress: 0:5(U%%=u?) + Rex.

Figure 6.11: Behaviour of the uctuating stresses within the transitional
and fully turbulent region of the boundary layer. ILES (—), SEDM (—),
WALE (---), SIGMA (---) and T3A reference ().

location of the transition onset being roughly similar to that of the SEDM,
the transition range is longer and as a result the matching of the WALE
and SIGMA, with the reference is noticeably worse. The di erences between
these models, within the transition region, may be related to the interaction
between the eddy-viscosity and the mechanism of transition. A more dissi-
pative model tends to inhibit the transition mechanism as compared to a less
dissipative model. The previous section, Sec. 6.3.2, had shown that, based
upon the growth-rate of the disturbance, the SEDM is the least dissipative
model followed by the WALE and nally the SIGMA model. Thus, the
length of the transition range progressively increases in this order. We will
elaborate upon this trend in Sec. 6.3.2, where the pro les of eddy-viscosity
in the wall-normal direction lend support to this reasoning.

Finally, we observe a discrepancy in the level of the skin-friction coe -
cient, within the fully turbulent region, for the WALE and SIGMA models on
both medium and ne grids (Fig. 6.10). We can see that for the medium grid,
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the simulation using the SEDM achieves a level of the skin-friction coe cient
close to that of the reference within the fully turbulent region (Fig. 6.10(a)).
However, this is clearly not the case for the WALE and SIGMA models. Even
upon the ne grid, although there is a de nite trend towards the reference,
the true level of the skin-friction coe cient in the fully turbulent region is
not achieved (Fig. 6.10(b)). The cause for this discrepancy is unknown.

The relatively poorer performance of the WALE and SIGMA models as
compared with the SEDM is also apparent in the behaviour of the uctu-
ating stresses at three di erent streamwise locations within the transitional
and fully turbulent regions. To illustrate this point, four components of the
uctuating stresses, on the medium grid, are shown in Fig. 6.11. A common
feature of all the curves is the relative over-prediction of the stress levels by
the ILES at all three streamwise locations. While the WALE and SIGMA
models usually under-predict the stresses at the downstream location, they
tend to also exhibit an over-prediction at the upstream location. It is inter-
esting that the SEDM exhibits the most consistent behaviour in mitigating
the over and under-prediction at all three streamwise locations.

Eddy-viscosity behaviour

With the impact of the sub-grid dissipation quite apparent within the results
presented above, it is of interest to examine this behaviour in detail. In
order to do this, we view directly the spatial behaviour of the sub-grid eddy-
viscosity, the physical manifestation of the sub-grid dissipation. In order to
achieve this, the wall-normal behaviour of the eddy-viscosity, for all three
sub-grid models, upon all three LES grids, at several streamwise locations,
are plotted in Fig. 6.12. The trends of the sub-grid eddy-viscosity, described
in the following sections, help in interpreting and understanding the results
presented in the sections above.

Wall-normal behaviour of eddy-viscosity at streamwise locations

In general, the behaviour of the sub-grid eddy-viscosity, as shown in Fig. 6.12,
di erentiates clearly between two di erent ow regions: the freestream and
the boundary layer. The magnitude of the sub-grid eddy-viscosity is very
strong within the freestream, while it is noticeably weaker within the bound-
ary layer. This is primarily because the freestream is a region with large gra-
dients and thus activates the WALE and SIGMA models, while the under-
resolution of the grid within this region (due to wall-normal stretching) ac-
tivates the SEDM. However, the behaviour of the sub-grid eddy-viscosity at
the edge of, as well as within the boundary layer, is of greater importance
as it dictates the transition behaviour. As we have pointed out previously in
Sec. 6.3.2, the boundary layer may be split into the pre-transitional, transi-
tional and fully turbulent regions.
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[ht!]

(a) Coarse grid (scale = 0:5).

(b) Medium grid (scale = 0:5). Closeup regions in Figs. 6.13(a)
and 6.14(a).

(c) Fine grid (scale = 0:5).

Figure 6.12: Behaviour of the eddy-viscosity ratio, sg= , at several stream-
wise locations for the SEDM (—), WALE ( —--), SIGMA (---). Also shown,
with a grey line, the boundary layer 99% thickness.

Ideally, we would like to have zero eddy-viscosity within the pre-transitional
region to allow for the undamped growth of the primary disturbance. Mod-
els such as the SIGMA and the WALE do vanish when the ow eld is two-
dimensional in nature. However, the pre-transitional region is not a region
of strictly two-dimensional ow, as can be seen from the uctuating stresses
close to the inow, in Fig. 6.7. Thus, as can be observed, upon all three
grids, shown in Fig. 6.12, starting from the edge of the boundary layer and
progressively moving towards the wall there is a strong growth in the mag-
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(a) 05 sgs: (b) O:S(VFmS =u )

Figure 6.13: Near-wall behaviour showing the peaks in sub-grid eddy-
viscosity and uctuating stress for the SEDM (—), WALE ( ---) and SIGMA
() at the streamwise locationRey = 2:035 10° upon the medium grid.

() SEDM (—), WALE ( ---), SIGMA (b) Coarse grid (----), Medium grid ( ---)
(). and Fine grid (—).

Figure 6.14: Behaviour of 0:5 sy~ at the streamwise locationsRey =
1:006 10° (a) and Re, = 3:093 1C° (b). In (a), model comparison close
to the edge of the boundary layer; in (b), grid convergence when using the
SEDM.

nitude of the sub-grid eddy-viscosity. By comparison, the pre-transitional
region is one where, except upon the coarse grid, the eddy-viscosity of the
SEDM is kept quite close to zero (Figs. 6.12(b) and 6.12(c)). This is due
to the fact that the grid in this region is quite ne due to the wall-normal
stretching and the uctuating stresses are of a su ciently low magnitude
such that they can be well resolved. The results of this are demonstrated in
growth of the uctuating stress as shown in Fig. 6.8 which for the SEDM
are closer to the ILES than those of either the WALE or SIGMA model.
When comparing the eddy-viscosity behaviour of the SEDM with the
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WALE and SIGMA models, we observe that the growth in the eddy-viscosity
of the SEDM occurs near the wall and subsequently remaining close to zero
over the bulk of the boundary layer, as can be seen in Fig. 6.12. This
behaviour can be understood by observing the correlations between the uc-
tuating stress and the eddy-viscosity. This has been highlighted in Fig. 6.13,
by plotting the eddy-viscosity (Fig. 6.13(a)) and the wall-normal component
of the uctuating stress (Fig. 6.13(b)) at a single streamwise location within
the transitional region. As can be observed, for the case of the SEDM, there
is a strong correlation between the position of the peak stress and the peak
eddy-viscosity. Furthermore, as the stress begins to decay away from the
wall, so does the sub-grid eddy-viscosity. This behaviour indicates that the
spectral sensor in the model is indeed being triggered by the behaviour of
the uctuating stress, within the boundary layer.

By comparison, the behaviour of the eddy-viscosity of the WALE and
SIGMA models are quite di erent from that of the SEDM as seen in Fig. 6.12.
They are noticeably non-zero over much of the boundary layer height, and
particularly at the interface between the boundary layer and freestream,
where the sub-grid eddy-viscosity levels of the WALE and the SIGMA are
noticeably higher than that of the SEDM. This behaviour has been high-
lighted in Fig. 6.14(a), which contains the plots of the eddy-viscosity be-
haviour near the edge of the boundary layer at a single streamwise station
within the transitional zone. Based upon the transition behaviour described
in Ref. [2], it is this region of the boundary layer that plays an impor-
tant role in the transition mechanism. Once the primary disturbances have
acquired a certain amplitude, high-frequency and high-wavenumber modes
within the freestream, normally damped within the boundary layer, may
interact with them to produce secondary instabilities which produce fully
turbulent ow. It is thus apparent that the eddy-viscosity behaviour in this
region will strongly in uence this interaction. As we have observed in the
behaviour of the skin-friction coe cient, in Fig. 6.10, the transition range of
all the models appears longer than that of the ILES. Furthermore, the tran-
sition range of the WALE and SIGMA models are noticeably longer than
that of the SEDM. We speculate that this di erence is due to the behaviour
of the eddy-viscosity within this region. One possible explanation is that the
higher levels of the sub-grid eddy-viscosity in this region, introduced by the
WALE and SIGMA models, suppresses the high-frequency, high-wavenumber
modes close to the edge of the boundary layer, thus inhibiting transition and
prolonging the range of the transitional region.

Grid convergence of the eddy-viscosity

The grid convergence study also highlights an interesting trend in the eddy-
viscosity behaviour. That of the convergence of the sub-grid eddy-viscosity to
zero with grid re nement. For the WALE and SIGMA models, approaching
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to convergence, non-null values of the eddy-viscosity will be locally found
also for ggs k (Where | represents the Kolmogorov length scale). Such
behaviour is clearly undesirable, since no model would be necessary under
these conditions. Instead, the dynamic nature of the SEDM, provided by
the spectral decay sensorf ( ¢, ), allows the model to be inactive whenever
the velocity eld is su ciently well-resolved. Then, at least in a qualitative
way, a di erent type of convergence is expected for the SEDM with respect
to the more classical SGS models.

This trend is visible when comparing at any given streamwise location,
the eddy-viscosity behaviour across the the coarse, medium and ne grids,
in Fig. 6.12(a), Fig. 6.12(b) and Fig. 6.12(c), respectively. By doing so
we observe, that with grid re nement, there is a strong trend of the eddy-
viscosity of the SEDM to vanish, within the bulk of the boundary layer.
This has been highlighted in Fig. 6.14(b), which shows the eddy-viscosity
behaviour for all the grids at a single streamwise location within the fully
turbulent zone. As the gure shows, upon the ne grid, except at locations
very close to the wall (due to the large uctuating stress peaks) the eddy-
viscosity is nearly zero throughout the entire boundary layer. By comparison,
although some convergence is observed in the eddy-viscosity of the WALE
and SIGMA models (particularly within the freestream), the rate at which
the eddy-viscosity vanishes is noticeably slower overall.

Since high-order schemes, such as the SD, typically converge rapidly in
space. It appears to be desirable to have sub-grid models that can match
this rate of convergence. The failure to do so, as is the case for the WALE
and SIGMA models, may be responsible for the discrepancy in the prediction
of the skin-friction coe cient in the fully turbulent region (Fig. 6.10). This
situation is not ideal since in most practical situations our grid resolution
is always limited and thus a slowly converging sub-grid model appears to
produces a sub-optimal solution at a given resolution.

Near-wall eddy-viscosity scaling behaviour

We had mentioned previously, that the ideal sub-grid eddy-viscosity must
exhibit a near-wall scaling ofO(y®). The WALE and SIGMA models exhibit
a theoretical scaling of of O(y®), while the SEDM exhibits a theoretical
scaling of O(y). We now look to see whether, the theoretical behaviours are
reproduced within the simulations.

In order to do this, we have plotted the wall-normal behaviour of the sub-
grid eddy-viscosity and uctuating stresses at a single streamwise location,
placed within the fully turbulent region, for the simulations on the ne grid,
in Fig. 6.15. We observe from Fig. 6.15(a), that while the SEDM exhibits
a linear scaling O(y), just like the theoretical scaling law, the WALE and
SIGMA models exhibit only a quadratic scalingO(y?), which is a departure
from the theoretical cubic scalingO(y®). This behaviour persists throughout
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(a) Eddy-viscosity ratio ( sgs= ). (b) Streamwise uctuating stress.

(c) Wall-normal uctuating stress. (d) Spanwise uctuating stress.

Figure 6.15: Near-wall scaling behaviour of relative sub-grid eddy viscosity
and uctuating stresses at streamwise stationRe, = 4:189 10°. Also shown
are the theoretical rates.

the transitional and turbulent regimes of all grids. The cause of the departure
between the practical and theoretical scaling for the WALE and SIGMA
models is unknown.

However, we observe that despite the deviation of the eddy-viscosity,
for all three models, from the ideal scaling behaviour, the near-wall scal-
ing of the uctuating stresses is una ected. To demonstrate this, we have
presented the uctuating streamwise, wall-normal and spanwise stresses in
Figs. 6.15(b), 6.15(c) and 6.15(d) respectively at the same streamwise sta-
tion. The slopes of the uctuating stresses are identical to their theoretical
values, taken from Ref. [122], and shown alongside in the gures. As yet,
we are unable to explain the reason why the uctuating stresses retain their
theoretical scaling behaviour, while the eddy-viscosity does not.
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6.4 SD7003 airfoil

6.4.1 Introduction

Accurate simulations of turbulent ow over airfoils and wings are of funda-
mental importance in modern aeronautical process design. Flow conditions
and geometrical parameters lead to a wide range of challenging situations
to be numerically modelled. Ultimately, CFD tools should address these
concerns with robustness and accuracy for e cient virtual prototyping of
advanced aerodynamical systems.

The SD7003 low Reynolds airfoil simulation is a classical test for transi-
tional ows [123, 124, 125, 126], in particular for spectral element high-order
methods [127, 128, 129, 130, 131]. In such conditions, dynamic turbulence
models should distinguish between smooth and under-resolved regions of the
ow and act accordingly. The capability of a turbulence model to remain
inactive in laminar ows is of fundamental importance for such complex ap-
plications. Classical RANS (Reynolds Averaged Navier-Stokes) approaches
may lack this property and additional models to detect/trigger transition
are needed [132, 133, 134, 135]. These are normally based on user-de ned
parameters or on simpli ed theories (two-dimensional ows and thin bound-
ary layers). Here, the Spectral Element Dynamic Model [1] is used, which is
based on a direct modal analysis of the simulated velocity signal.

The total simulated time is of 50c=u; convective times (with ¢ = 1
chord length). Statistics collection starts after 20c=u; . The most relevant
guantities to be evaluated are pressure and skin friction coe cients due to the
large amount of reference data. Notice that spectral element methods, due
to their intrinsic ux-based formulation, return automatically pressure and
viscous uxes on the elements' faces, including wall boundaries. Such values
can then be easily combined with the local geometric informations, such as
the wall normal direction, to compute pressure and friction coe cients.

Finally, averaged streamwise velocity and streamwise uctuations are
computed along the airfoil surface normal direction. Vortex structures are
visualised by means of theQ-criterion isosurfaces att  50c=u in Fig. 6.16.
The ow is characterised by a laminar region close to the leading edge of the
airfoil, followed by a rapid transition to turbulence in the detached boundary
layer. The vortical structures are then smoothed out in the rst region,
whereas they break up to smaller and smaller vortices in the second part of
the airfoil, where the local turbulent Reynolds number increases.

In order to better quantify the in uence of the SEDM, Implicit Large
Eddy Simulations have been performed on the same computational grid and
with identical solver's parameters. Unfortunately, for both orders of accu-
racy, the ILES have shown to be unstable. More precisely, starting from the
prescribed, uniform, initial condition, the two implicit LES fail right before
the transition to turbulence. Such behaviour is not totally unexpected as it
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Figure 6.16: Isosurface of th&Q-criterion (Q = 200) colored with instanta-
neous velocity eld magnitude.

is typical of such high-order turbulent simulations. In the authors' experi-
ence, in fact, similar unstable ILES have been observed both in free shear
and wall bounded ows [1, 136]. In particular, as in this case, the simulations
tend to fail just before the transition phase, when large-scale kinetic energy
starts owing toward the smallest (unresolved) scales. The failure of ILES
is, in fact, directly caused by the insu cient level of numerical dissipation

at such scales and the consequent buildup of energy at the highest wave-
numbers. Even restarting the simulation from a fully-established turbulent
ow eld, obtained from explicit LES computations, has lead to numerical
failure soon after. Such behaviours are even more exacerbated by high or-
ders of approximation and strongly anisotropic grids. Thus, despite of their
appealing e ciency, ILES are often very delicate in terms of both stability
and accuracy. It is quite well-established that for relatively low orders @3-rd

or 4-th) and proper choices of the numerical ux, spatial discretisation and
grid size, ILES can provide satisfactory results in a fairly wide range of tur-
bulent ows. Nevertheless, such conditions can be rather speci c and, more
importantly, in large part uncertain, in particular for complex con gurations

like the ones herein considered.

6.4.2 Simulation Setup

All relevant informations regarding present simulations are listed in Ta-
ble 6.4. Both grids have been generated on a two-dimensional geometry
and subsequently extruded along spanwise directioz. The rst solution
point along the wall-normal direction has been located such thay* < 1, in
order to achieve a wall-resolved LES. In particular, in Table 1,y* has been
evaluated at at x=c = 0:7 as reference. Nonetheless, the conditiop* < 1is
satis ed along the whole surface of both pro les.

The wing span to chord ratio is set to 0.2 for both cases, the same as
in Galibraith and Visbal [5] simulations of SD7003 prole. In both con-
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SD7003
Reynolds number Re 6 10°
Mach number Ma 0:1
Angle of attack AoOA 8
Wall BC - Twan =1:002 Ty
Number of elements|| Ny Np Nj 128 24 2
Polynomial degree N 5 7
Degrees of freedom DoF 1:3 10° 31 1c°
Wall distance Hhi 1:08 10°[635 10 °©
Wall scaling y* at x=c=0:7 0:05 0:03
Probe 1 location (X1;¥1;21) (0:5;0:11,0)
Probe 2 location (X2;¥2;22) (0:5; 0:05;0)
Probe 3 location (X3;y3;23) (1:3;0:00;0)

Table 6.4: Physical and computational set-up. All quantities are made di-
mensionless with respect to the chord length and free-stream values. A
nominal value c = 1 has been assigned to the airfoil length. Reference frame
is centred on the leading edge. Iry* calculations the closest solution point
to the wall has been considered. In particular, the notationhhi denotes the
averaged value of wall-distance along the whole pro le.

gurations the airfoil has been located approximately 15 chords away from
boundaries. For the SD7003 simulations two di erent polynomial degree
have been consideredN =5 and N = 7) to evaluate the in uence of the
scheme's accuracy on the numerical results.

The response of the shear viscosity versus temperature is expressed ac-
cording to Sutherland's law:

(T) = T T+ Ts,
- 0T, T+ T

(6.18)

where ¢=1:827 10 Skgm !s !, Ts=120K and T = 291:15K. Finally,
aspecic heatratio =1:4andaPr= gcp= =0:71are assumed. The
ow is initialised homogeneously in the whole domain according to the far-
eld conditions.

Notice that in both computations high-orders of approximation are cho-
sen N = 6 and 8). The reason for such choice is twofold. First of all,
the SGS model described in the previous section is based on a modal tur-
bulence sensor which is more suitable for high orders of approximation (at
leastN = 3) for which the decay exponent can be estimated more accurately.
The same applies to the shock-capturing scheme, whose modal sensor needs
a su ciently high order of approximation as well. Secondly, the use of the
SEDM model would be of very little interest for low order discretisations
since it would be almost constantly inactive, leading, in the end, to a low or-
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der implicit LES. For a deeper discussion on the SEDM and its relationship
with numerical dissipation see [1].

Notice that the reduced number of elements along the spanwise can have
a misleading interpretation. Of course, due to the high-order approximation,
the total number of degrees of freedom along is considerably larger. More-
over, the use of high-order spectral element methods has often shown super-
convergence properties (see [77]). In each element, the smallest resolved scale
can then be even smaller than the classical estimation z5N +1).

6.4.3 Pressure and skin friction coe cients

In Fig. 6.17, it can be clearly noticed how the Laminar Separation Bubble
(LSB) is the most dicult region of the ow to be predicted accurately.
Only in this zone, noticeable di erences can be identi ed with respect to the
reference data. Such deviations may be explained, to some extent, by the
di erent size of the domain, or by the di erent numerical discretisation em-
ployed (order of approximation, numerical ux, scheme, etc.). In particular,

in [137], a considerable in uence due to far eld boundary conditions has been
observed, along with some evident discrepancies using di erent orders of ap-
proximation, while keeping the same number of degrees of freedom (DoF).
The latter observation highlight the importance of the implicit features of
the spatial discretisation such as numerical dissipation and dispersion. These
observed di erences, with the consequential uncertainties, underline the gen-
eral need for reliable and robust theoretical studies on numerical di usion
and dispersion of high-order schemes in order to accurately predict the levels
of dissipation introduced in ILES. A minor in uence of the approximation
order has been observed in the present simulations too. FdX = 8, the
peak of friction coe cient at x 0:4 is slightly higher and the location of
the LSB is closer to the leading edge. In particular, the reattachment point
is moved upstream with respect to the6-th order simulation, whereas no
relevant di erences have been noticed for the separation point location. It is
also interesting to notice that the minimum value of the friction coe cient

is located atx  0:25for both simulations and it coincides with the pressure
peak on the left Fig. 6.17. Finally, it is worthwhile mentioning that most
of reference simulations used a compressible Navier-Stokes solver, whereas,
only Catalano and Tognaccini [138] used an incompressible solver. Averaged
guantities have a good agreement with respect to previously published works,
even though a considerably smaller number of DoF is used.

It is interesting to notice that all the reference simulations predict ac-
curately the location of the separation bubble, except for the computation
by Boom and Zingg [139], where the LSB is signi cantly shifted toward the
leading edge. Furthermore, considering the friction coe cient, shown on the
right of Fig. 6.17, only the present6-th order simulation along with the com-
putation by Catalano and Tognaccini [138] show slightly positive values of
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Cs around x  0:2.

The capability of the Spectral Element Dynamic Model to distinguish
between smooth and turbulent regions appears here as a key factor for a good
description of laminar, fully turbulent, and more importantly, transitional
regions. This can be noticed, in particular, in Fig. 6.18, where the ratio
between eddy-viscosity and molecular viscosity is shown. Very small values
are observed in the rst laminar region close to the leading edge, followed
by a gradual increase, up to the fully turbulent boundary layer. In the
separated ow the eddy-viscosity ratio takes values up to 4 indicating a
non-negligible in uence of the SGS model in this particular test case.

(a) Pressure coe cient (b) Skin friction coe cient (suction side)

Figure 6.17: Pressure and Skin friction coe cients.

In Table 6.5, the mean aerodynamic loads and separation bubble dimen-
sions are listed. The data extracted from the present simulation appear to be
in good agreement with respect to other reference simulations. All of them,
in agreement with the present analysis, are formally categorised as Large-
Eddy simulations. In particular, the most re ned computation by Garmann
and Visbal will be considered as reference. A fairly good grid convergence
was, in fact, reported in [5, 6].

Notice that high-order methods, such as Spectral Di erence used here,
Flux Reconstruction or Discontinuous Galerkin schemes, locate the solution
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| Author | Co Cb Xs=Xr Order DoF
Galbraith and Visbal [123] 0:910 Q043 Q040=0:280 6 570M
Catalano and Tognaccini [138]|| 0:940 Q044  Q030=0:290 2 863M
Boom and Zingg [139] 0:968 Q034 Q0370:200 4 448M
Beck et al. [137] 0:923 Q045 Q027=0:310 3 426M
Beck et al. [137] 0:932 Q050 Q030=0:336 7 455M
Garmann and Visbal [5] 0:.917 Q045 Q031=0:303 6 544M
Selig et al. (exp) [140] 0:920 0:029 - - -
Current (N =5) 0:947 Q048 Q027-0:316 6 130M
Current (N =7) 0:943 Q046  0028=0:288 8 310M

Table 6.5: Mean Aerodynamic loads and separationxs) and reattachment
(Xy) locations and computational details.

Figure 6.18: Averaged eddy-viscosity ratio N =5).

points in the inner part of the element while uxes are evaluated on a di erent
set of nodes (ux nodes) including the element's edges. Pressure values and
viscous uxes are then directly available at the wall boundaries and can be
used to compute the pressure and friction coe cient, respectively.

To quantify the dynamic nature of the SEDM, the turbulence sensor (the
function f ( ) in Eg. 6.3) has been computed on a fully-developed ow eld
in a post-processing fashion. In particular, a snapshot of th@&-th order sim-
ulation has been chosen. In Fig. 6.19 the instantaneous ow eld and the
turbulence sensor applied to it are consequently shown. Firstly, it can be
noticed that the turbulence sensor is almost completely inactive on the lower
side of the airfoil, where the ow does not separate. In fact, the numerical
algorithm correctly recognises such region of the ow as well-resolved due to
the negligible small scale uctuations. On the upper side, instead, a much
higher activation can be observed due to the detached ow characterising
this region. In particular, the very narrow shear layer developed closely
after the leading edge is detected by the turbulence sensor has a partially
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under-resolved region{  0:5). A detailed view of such region is shown in
Fig. 6.20. Subsequently, downstream the separation bubble, the ow com-
pletely separates and the turbulence sensor frequently assumes a unitary
value, indicating fully-developed turbulence. However, the turbulence sen-
sor can also occasionally take much smaller values in the detached region,
highlighting the presence of locally well-resolved structures even within the
separated ow.

(a) Instantaneous ow eld. (b) Turbulence sensor f .

Figure 6.19: Instantaneous ow eld (left) and spectral turbulence sensor
applied to the velocity eld (right).

(a) Instantaneous ow eld. (b) Turbulence sensor f .

Figure 6.20: Detailed view of Fig. 6.19 in proximity of the shear layer devel-
oped closely after the leading edge.

6.4.4 Averaged normal pro les

In addition to wall values, like pressure and viscous stresses, a set of wall-
normal slices are extracted and main variables are compared against those
of the most re ned simulation [5, 6] (the locations of the planes of measure
are shown in Fig. 6.21).

In Fig. 6.22, the averaged streamwise velocity is shown. It can be clearly
noticed that the fully turbulent and laminar regions are well described by
the SEDM model. Some discrepancies are still present in the transition re-
gion, however such di erences are reasonably expected due to the very large



144CHAPTER 6. EXPLICIT HIGH-ORDER SUB-GRID SCALES MODELLING

Figure 6.21: Pro le lines normal to the airfoil surface. These have been taken
every 10% of the chord except for the rst point located at x=c = 0:025

resolution di erence between the two simulations (more than one order of
magnitude in terms of DoF). The 6-th order simulation is marginally more
accurate in the transitional region, in particular at x = 0:2 and x = 0:3.
At x = 0:3, all the velocity pro les have almost null normal derivative, in-
dicating the proximity with the reattachment point. In particular, in the
6-th order simulation, the normal derivative assumes small negative values,
followed by the reference data and nally the 8-th order simulation, with
slightly positive values. In other words, the 6-th order simulation antici-
pates the separation, while the8-th order simulation delays it. The same
conclusions can be drawn from Fig. 6.17 and Table 6.5.

Figure 6.22: Averaged streamwise velocity along normal directionN =5,
solid line, N = 7, dot-dashed line). Red dots represent streamwise velocity
by the most accurate simulation [5, 6].

Analogous observations can be made from the streamwise velocity uc-
tuations shown in Fig. 6.23, where the two simulations show similar trends.
At x = 0:2, the predicted uctuations are larger than the reference whereas
at x = 0:3, both simulations show smaller uctuations, indicating a faster
transition with respect to the reference data. Namely, the largest uctua-
tions occur more upstream with respect to the DNS data in both simulations.
Nevertheless, for this level of resolution, results are su ciently satisfying.

Finally, in Fig. 6.24, the eddy-viscosity ratio is plotted. The ability of the
sensor to activate only in the transitional and fully turbulent regions, leaving
practically untouched the laminar part of the ow, is particularly evident. In
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Figure 6.23: Streamwise velocity uctuations along normal direction N =5,
solid line, N = 7, dot-dashed line). Red dots represent streamwise velocity
uctuations by the most accurate simulation [5, 6].

the fully turbulent region of the airfoil, the eddy viscosity reaches an almost
constant value along the streamwise direction, suggesting an expected self
similar behaviour of the ow eld. Itis nally interesting to notice a peculiar
characteristic of the SEDM: considering the8-th order simulation, the eddy
viscosity values are smaller with respect to thes-th order case. in fact, since
the level of resolution has been increased, the amount of kinetic energy to
be dissipated is smaller and the model is naturally tending to a progressive
deactivation. Such behaviour is a very desirable feature of turbulence models,
which should turn completely o in both laminar and su ciently resolved
turbulent regions of the ow.

Figure 6.24. Averaged eddy-viscosity ratio along normal directionl = 5,
solid line, N = 7, dot-dashed line).

6.4.5 Kinetic energy spectra

In order to assess the energy transfers and content in fully turbulent regions,
velocity data have been stored over time using virtual probes located in
di erent zones of the boundary layer and wake regions, as shown in Fig. 6.25.
Fast Fourier transform (FFT) has then been applied to time signals and
energy spectra are computed. It is then possible to relate the temporal
energy spectra with the spatial one assuming the applicability of the Taylor's
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hypothesis [141]. In the present section only thés-th order simulation has
been considered.

Figure 6.25: Instantaneous velocity magnitude. Numbers mark probes loca-
tions.

Once the full time signal processing is done, a possible estimate of the
wavenumber is provided as:

= i ; (6.19)

whereF is the temporal frequency andh i denotes temporal averaging oper-
ation. Subsequently, the dissipation rate can be directly computed in phase
space according to the well known relation:

()=2 °Z2E(); (6.20)

where E( ) denotes the kinetic energy spectrum.

In Fig. 6.26, the energy spectrum of two di erent probes is shown. Probes
1 and 2 are chosen in order to validate the applicability of Taylor's hypothesis.

A transition to spectral decay is expected right after the inertial range for
high wavenumbers, located approximately within the range =2 < <
with = x=(N +1). A good alignment between advection velocity and
the x-direction has been here assumed with the use of the streamwise grid
size x. Due to very high velocity uctuations, in the second probe, the
expected dissipative region close to the Nyqvist grid wavenumber is shifted.
On the other hand, analysing the spectrum of probe number 1, the natural
transition to the smooth region is located close to the maximum resolved
wavenumber. In Fig. 6.26, both curves are characterised by a very short
inertial range, typical for such small Reynolds numbers turbulence. Finally,
no energy accumulation has been observed in proximity of the Nyqvist grid
wavenumber, providing a smooth transition from inertial to dissipative range.
The SGS model is then capable of properly mimicking energy transfers be-
tween scales.
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(a) Probe 1 (b) Probe 2

Figure 6.26: Kinetic energy spectra in probe 1 and 2. Vertical lines denotes
an estimate of the dissipation region: =2< <

6.5 Conclusions

This work has presented the behaviour of various LES models, the WALE,
SIGMA and particularly the SEDM, upon a numerical reproduction of the
experimental ERCOFTAC T3A, ZPGSFPBL bypass transition test case. In
general, we conclude that at the nest grid resolutions (although coarser than
those of previous studies) the performance of all the models is acceptable.
In fact for the current test case, the sensitivity of the transition behaviour to
the grid far exceeds the sensitivity to the LES models used. However, when
we compare the behaviour of the models among each other we observe that
the SEDM performs better than either the WALE or SIGMA models. We
elaborate upon these conclusions and lay out a path for future work below.
As pointed out above, the quality of the LES simulation was quite sen-
sitive to the grid used. This is due to the use of the high-order spectral
di erence schemes. These schemes possess high-rates of convergence and
thus the results change dramatically in moving from coarse to ne grid as
the scheme exhibits rapid grid-convergence. The ILES computation on the
ne grid is quite revealing of this trend. The ne grid used by us is close,
in terms of the number of solution points used, to the coarse grid utilised
in Ref. [4]. This notwithstanding, better agreement with reference data is
shown in the present study. While it is quite possible that the di erent syn-
thetic turbulence used in the two cases may have played a role, it is more
likely that the di erence is due to the use of di erent numerical schemes,
low-order schemes Z'%-order nite volume) in Ref. [4] as compared to high-
order (6" -order SD) in our case. Thus it appears, that an ILES using a
high-order scheme will tend to produce better results than an LES using a
low-order scheme, irrespective of the type of model used, due to the rapid
grid-convergence of the high-order schemes. The strong dependency of the
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solution quality on the numerical scheme as compared to the sub-grid model,
leads us to believe that perhaps a test case must be chosen, for which the
in uence of the sub-grid model is comparable to that of the scheme. The
natural transition of the T3A- case (Tu ' 0:9%) appears to be a suitable
candidate as the transition occurs at Reynolds numbers an order of magni-
tude higher than either the T3A or T3B cases. To our knowledge there does
not appear to have been any simulation upon the T3A- case and perhaps it
may be used in future to obtain large di erences between the models.

We now focus upon the behaviour of the LES models. All three models,
WALE, SIGMA and SEDM, allow for transition to occur, but with varying
behaviour. In general, the WALE and SIGMA model are relatively more
dissipative than the SEDM. Within the pre-transitional region, the sub-grid
eddy-viscosity introduced by the WALE and SIGMA is signi cant. This
damps out the growth of the primary disturbance in the streamwise direction
and hence delays the onset of transition. For the SEDM however, particu-
larly on the medium and ne grids, the eddy-viscosity within this region is
noticeably lower. This in turn allows the disturbance to grow in a manner
similar to the ILES and thus the onset of transition is further upstream as
compared to the WALE or SIGMA models. Thus, from this fact we can con-
clude that it is indeed a desirable property to have vanishing or low-levels of
sub-grid eddy-viscosity in the pre-transitional region.

The grid convergence property of the SEDM is a property which has
proven to be quite useful in our simulations. With the rapid decrease in
the eddy-viscosity in the well-resolved regions of the domain (such as the
freestream-boundary layer interface), a proper transition range and skin-
friction level can be attained. With the rapid spread of high-order methods,
the property of super-linear grid convergence of the eddy-viscosity is likely to
become a more attractive feature in future LES modelling approaches. This
feature was also highlighted as one of the major advantages of the variational
multi-scale models (VMS), a technique speci c to the high-order FEM type
discretizations [142]. By comparison, for the WALE and SIGMA models,
the rate at which the eddy-viscosity vanishes is linear and the consequences
of this are quite apparent with a poorer prediction of the skin-friction in the
fully turbulent region as well as the transition range. At this point we must
bear in mind that the WALE and SIGMA models were developed during a
period when low-order methods dominated numerical simulations and thus
the need for the sub-grid eddy-viscosity to converge at high rates was never
considered.

Despite what was stated in the paragraph above, the WALE and SIGMA
models do provide reasonable accuracy. However, what is troubling is the
fact that the near-wall scaling of the eddy-viscosity is quadratic rather than
the cubic as is the theoretical rate. While we have been unable to identify
cause of this problem, it does not appear to a ect the scaling behaviour of
the uctuating stress. By comparison the eddy-viscosity of the SEDM scales
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linearly and since it is based upon the scaling of the uctuating stress, this is
the best scaling behaviour possible. Future work could be focused in di erent
combinations of functional forms of the eddy-viscosity operator multiplied by
the turbulence sensor in order to reproduce the correct scaling. Finally, we
recall the simulations in Ref. [111] involving the transition over a at plate
subjected to an adverse pressure gradient. In their simulations, they noticed
that only the mixed-time-scale (MTS) model [143] was capable of predicting
the presence of a recirculation zone, with the dynamic Smagorinsky and
WALE model being too dissipative. We have come to a similar conclusion,
about the WALE and SIGMA model, within this work as well. However,
what is interesting is that the MTS model scales its eddy-viscosity with
a test- Itered sub-grid scale energy and a time-scale and thus its overall
formulation bears a strong resemblance to the SEDM. Perhaps, these test
may point towards the bene ts of using sub-grid kinetic energy as part of the
eddy-viscosity formulation in the development of future turbulence models.

Considering the ow over the SD7003 airfoil, transition to turbulence
has been well predicted by the proposed dynamic turbulence model, both
in terms of bubble location and wall-normal proles. A good agreement
with previously published experimental and computational results has been
observed, despite the use of a fairly coarse mesh. Kinetic energy spectra
have been computed in both cases using the Taylor's hypothesis. Despite the
high order selected for the simulation and the associated very low numerical
dissipation introduced by the discretisation, no energy accumulation has
been observed in the proximity of the Nyqvist grid wavenumber, providing
a smooth transition from inertial to dissipative range.

Implicit large eddy simulation performed on the same computational grid
have been performed to better quantify the overall in uence of the Spectral
Element Dynamic Model on the resolved eld. However, all the implicit
computations have shown to be unstable due to the insu cient numerical
dissipation at the smallest scales. Implicit large eddy simulations, in fact,
despite the appealing computational e ciency, are often inaccurate and/or
unstable for a wide range of computational grids, numerical uxes, especially
when high orders of approximation are adopted on under-resolved meshes
(i.e., typical LES resolutions). Therefore, adaptive dynamic SGS models,
able to operate only in presence of insu cient numerical dissipation, rep-
resent a crucial step in the development of reliable and robust high-order
schemes for complex turbulent ows.
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7.1 Introduction

Compressible gas dynamics has motivated many studies [144] and shock
capturing techniques have been developed since the very beginning of the
application of computational uid dynamics. This research eld is still ex-
tremely active due to the necessity of a proper description of compress-
ibility e ects in various complex engineering applications. Many di erent
available numerical schemes are particularly susceptible to the treatment
of discontinuous solutions, especially when high-order approximations are
employed. In this case, the persistency of numerical oscillations in the
proximity of a shock (commonly known as Gibbs phenomenon) can lead
to unstable solutions implying accuracy and robustness reduction. Within
the framework of high-order Discontinuous Finite Element (DFE) meth-
ods, many di erent procedures have been constructed to mitigate this is-
sue. In particular, two of the most utilised approaches involve the use of
limiters [145, 146, 147, 148] including weighted essentially non-oscillatory
(WENO) schemes [149, 150, 151, 152, 153] or the injection of arti cial
viscosity (AV) [154, 155, 7, 156]. The former approach is based on the
proper numerical limitation of the amplitude of the gradients of the solu-
tion, whereas the latter consists in the local addition of an ad-hoc amount of
numerical dissipation. Both methods intend to limit or damp the presence
of oscillatory behaviours near shocks and discontinuities.

Depending on the geometrical, physical and mathematical setting, one
approach can be more suitable than the other: arti cial viscosities terms
are usually highly compact and can be easily computed even in higher di-
mensions, whereas limiters and WENO schemes cannot preserve the DFE
scheme compactness and an appropriate and e cient generalisation to mul-
tiple dimensions on unstructured grids can be extremely cumbersome, both
theoretically and computationally. On the other hand, the use of arti cial
viscosity does not provide full control on local minima and maxima of the
solution and can lead to the occurrence of negative densities or pressures.
Under such circumstances, it is necessary to couple the arti cial viscosity
with a positivity preserving scheme [157].

Regardless of which class of methods is employed, the identi cation and
localisation of sharp features in the uid ow is of fundamental importance
for the correct description of the physical system. To this end, the use of
shock sensors is widely di used: these are designed to detect if a discontinu-
ity is present or not in a certain region of the domain. Shock development
and dynamics could sometimes be extremely di cult to predict, leading to
a strong interest in the development of very accurate and highly automated
sensors. The detection of such structures can be directly performed using
nodal values of the solution (for example the divergence of the velocity [158])
or it can rely on modal sensors, which are based on the decay rate of the
expansion coe cients of the approximated solution [7, 8]. In the context of
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high-order approximations, the latter procedure is clearly more attractive,
as it basically exploits intrinsic information provided by the spatial discreti-
sation itself. Possible approaches include the use of the ratio between the
energy of highest mode and the energy of the whole spectrum [7], or a least-
square power t of the modal coe cients decay [156]. It is worthwhile noting
that an obvious limitation of the use of modal sensors is the necessity of a
su ciently high order approximation to get a meaningful modal spectrum.

In the present work, the recently proposed characteristic-based sensor is im-
plemented [159].

Once the discontinuity is identi ed the operative procedure to smooth out
or limit the shock can be applied locally, stabilising the solution. However
a careful attention should be paid on how spurious terms or numerical ma-
nipulations could a ect the physical phenomena. Di erent shock capturing
methods could lead to a similar mean behaviour of the solution but damage,
or eventually completely destroy, some key characteristic of the governing
equations.

On this particular regard, in the present work, a detailed comparison
is presented between shock capturing approaches based either on the addi-
tion of Laplacian terms in the Navier-Stokes equations or on the addition
of an amount of bulk viscosity in the stress tensor. Five canonical com-
pressible ows are considered, namely: the one-dimensional shock collision;
the two-dimensional inviscid strong-vortex/shock-wave interaction; the in-
viscid Taylor-Green vortex; the decaying compressible isotropic turbulence
and the shock/wavy-wall interaction. Both direct numerical simulation and
large-eddy simulation are performed depending on the selected test case.

The novelty of the work lies in the particular emphasis put in the assess-
ment of the shock capturing procedure in correctly reproducing the theo-
retically expected non-monotonic behaviour of the entropy across the shock
and on the capacity of the arti cial viscosity to deal with turbulence, when
present, and to interact with relevant models i.e., the sub-grid scale model
in the case of LES such as to provide physically accurate results.

The results of the present chapter have been published in Computers
and Fluids [18] (https://doi.org/10.1016/j.comp uid.2019.104357).

7.2 Shock capturing in high-order discretisations

The usual Navier-Stokes equations [160] for the density, the momentum
u, u being the velocity vector, and the speci c total energyE (internal +
kinetic) are solved in their compressible form using the high-order Spectral
Di erence method [161, 162, 48]. The SD scheme enables arbitrary high-
order computations over unstructured meshes and provides high resolution of
the ow with minimal numerical dissipation [163, 94]. It is worthwhile noting
that, the shock capturing formalisms discussed herein is based on the original
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work of Persson and Peraire [7] and subsequent developments [8, 164, 159],
and can be applied to any discretisation relying on a modal approximation
of the solution.

7.2.1 Laplacian viscosity

The Laplacian viscosity represents a very robust approach [7, 8, 165, 166,
167, 164, 168, 159] in which the right-hand-side of each advection-di usion
equation (including mass conservation) is augmented by a Laplacian term in
the form

r("avr ); (7.1)

where is the relevant transported quantity either the density, the mo-
mentum, or the total energy and "av is the added arti cial viscosity by
the shock capturing scheme. It is worth stressing that this approach treats
each equation in the same way and the same amount of di usion is added
to every transported quantity.

7.2.2 Physical arti cial viscosity

The physical arti cial viscosity approach, on the other end, formally intro-
duces arti cial viscous uxes in strict analogy to those representing molec-
ular viscosity. An arti cial viscosity sy, an arti cial bulk viscosity  ay
and an arti cial thermal conductivity ay are then added to the molecular
viscosities and to the ow thermal conductivity. 1 In particular, according to
previous works on physical models for the arti cial viscosity [169, 170], in
the present study an additional bulk viscosity is applied without any arti-
cial shear viscosity. Hence, using index notation and Einstein summation
convention, the viscous tensor and heat ux vector read, respectively,

@u @u 2@u @u @u
Aj = ot = agy ——4H == (72
) @ @ 3@x’ " Max' @x (7:2)
T
Q= (+ Av)%; with  ay = %Cp; (7.3)

L1t is worth noting that a previous work on modal detection approaches for discontinu-
ous Galerkin schemes [7] seem to suggest the use of the arti cial shear viscosity only, av ,
while keeping the Stokes's hypothesis valid for the arti cial viscous stresses ( av = 0).
Such a choice, which would prevent any arti cial dissipation in the momentum equa-
tion in the one-dimensional case, appearsto the authorsto be in conict with the
one-dimensional results presented in the same paper, where the physical model provides
su cient robustness even at relatively high Mach numbers. Indeed, in a subsequent recent
works [169, 170], not only the arti cial bulk viscosity is retained, but it is the arti cial
shear viscosity which is set to zero because, as the authors emphasise, shock waves are
stabilized through and only (the  superscript is adopted therein for arti cial
viscosity terms).



7.2. SHOCK CAPTURING IN HIGH-ORDER DISCRETISATIONS 155

where Pr is the arti cial viscosity Prandtl number and ¢, the constant-
pressure heat capacity. Notice that, to prevent the arti cial viscosity from
being triggered in ow regions undergoing expansionsife., where the diver-
gence of the velocity is positive), an additional switch based o (), the
Heaviside function, is embedded in the arti cial bulk viscosity expressed by
(7.2) [171, 172].

For the majority of the presented simulations, a constant value ofPr =
Pr =0:71is used, whereas, for the three-dimensional cases featuring quite
strong uctuations of the local Mach numbers, the expression proposed
in [170] is adopted:

Pr =Prfl+exp[ 4(Ma Mag)]g; (7.4)

where Ma is the local Mach number computed from the velocity magni-
tude and May,, = 3 is a xed threshold. This formulation avoids adding
unnecessary thermal dissipation for low Mach number regions of the ow
and provides a value ofPr that would tend asymptotically to Pr, the ow
Prandtl number for hypersonic problems. Concerning the suppression of the
shear AV term in favour of a bulk viscosity only, as it will be discussed in
more details in the results section, the addition of a shear viscosity implies an
extra dissipative term on vorticity equation, whereas the bulk viscosity adds
a similar term in the dilatation equation only. As a result, the former a ects
vorticity modes, while the latter acts on dilatational modes. The use of bulk
viscosity only appears to be very well suited for shock capturing for two main
reasons. First of all because, being multiplied by the divergence of velocity,
its functional form has an intrinsic compressible nature: even if shock de-
tection is not perfect, the additional bulk viscosity is still proportional to a
term which is big only in presence of strong compressibility e ects. Secondly,
the shear viscosity being linked to vorticity, it is more suited for turbulence
modelling, as it is well established by widely popular eddy-viscosity mod-
els for LES. In this sense an additional arti cial shear viscosity would lead
to unnecessary vorticity dissipation and, more importantly, it could lead to
unexpected interactions between an eddy-viscosity SGS model and the AV
model.

7.2.3 Discontinuity sensor

Within the context of high-order methods, discontinuities are usually de-
tected from the decay rate of the expansion coe cients of the solved signals
(the reader is referred to the original works in [7, 8, 159] for additional
details). In the current implementation, a recently proposed modal sensor
based on the acoustic characteristics and the density is used [159]. Letand
"~ be, respectively, the signal adopted for shock detection and its truncated
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polynomial expansion:

X - X1
()= iPi(), ()= iPi(); (7.5)
i=0 i=0
where Py is a polynomial of degreek from a suitable polynomial basis and
" is the relevant kth mode. Then, the modal sensors. can be computed
as:

() =log gy 76)
’ L2
where (; ), 2 is the standard L2 inner product within the element.?
Depending on the adopted approach namely, Laplacian or physical model
the arti cial viscosities, "as or av, are triggered in the neighbourhood of
discontinuities using a sinusoidal function of the modal sensose:

8
%O for se<sg |

f(se)=§2O 1+sin w for sop | se sp+ 1, (7.8)
"o for se>sg+ I

with f being either"a, or av = in the case of Laplacian or physical model,
respectively. The quantities sy and | are, respectively, a threshold and the
sensor tolerance, whereas the nominal maximum value of the arti cial vis-
cosity, "o, is computed from the spectral radius of the ux Jacobian and the
mesh element sizén as

"0 = C" amaxh:(N + 1) , (79)

where amax is the maximum wave speed in the whole domain. Unless ex-
plicitly stated otherwise, in the following computations, an automatic cali-
bration algorithm based on manufactured solutions [164, 159] is adopted to
determine optimal values of the shock capturing parametersgp, |, C-).

7.3  On non-monotonicity of entropy pro le across
an inviscid shock

Back in 1949, Morduchow and Libby [173] used an analytic solution for the
pro le of a weak shock in a viscous, heat-conducting, compressible ow to

2|n the case an orthonormal polynomial base is adopted (e.g. normalised Legendre
polynomials), the inner products in the sensor de nition assume the particularly simple
form "
(7 de= oand (5 2= N (7.7)
i=0
where the modes are obtained from nodal values via matrix multiplication with the inverse
Vandermonde matrix of the selected polynomial basis [52].
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demonstrate that the equilibrium thermodynamic entropy has a maximum
inside the propagating wave. Such overshoot of entropy within a shock layer
was then further investigated for inviscid ows using weak solutions of partial
di erential equations based on distribution theory and integral conservation
form of the equations [174, 175, 176, 177].

In the context of the Euler equations and Hugoniot jump conditions [178],
the underlying idea is that, since the (normalised) entropys = In( p= ) is
de ned using two functions (pressure and density) which are discontinuous
across the shock, it cannot be de ned by a single jump for, in such a case,
some information would be unavoidably lost. Along these lines, Salas and
lollo [175] have discussed a more adequate form for the entropy function
built from two Heaviside functions (Fig. 7.1)

s()=s+(s s)H()+(s s)H(); (7.10)

where is the coordinate in a frame moving with the shock. The subscript
r' denotes the shocked (compressed) gases antthe gases upstream of the
propagating interface, whereass is the maximum level of entropy approxi-
mated as

Pr 1+ In(y) —o

1 vi 1

s = In(pr) 1; (7.12)

where p denotes the pressure ands = 1= is the specic volume and the

left relevant values ofp; and v, without any loss of generality, have been set
equal to unity. The above relation provides the value of the theoretical peak

Figure 7.1: Sketch of the entropy pro le across an inviscid shock layer.

of entropy which is expected in the case of a shock in the inviscid limit.

157
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Such entropy peak is practically unattainable when the Euler equations
are numerically solved because, no matter how accurate is the scheme or how
ne is the mesh, a certain amount of numerical dissipation is unavoidable.
Such (numerical) departure from the inviscid limit is even more pronounced
when an arti cial viscosity is adopted in the neighbourhood of shocks and
discontinuities to guarantee a su cient resolution of the solution. Under such
circumstances and in the absence of a viscous counterpart of Eq. (7.11), this
last can be used to asses the entropy preserving nature of the numerical
scheme and the arti cial viscosity approach, the most performing ones being
those that provide the best approximation of the theoretical entropy pro le
across the shock. This is a crucial point which, to the authors' knowledge,
has not been considered in detail so far in the archival literature. On this
regard, however, it is worth noting that non-monotonic pro les in the entropy
across one-dimensional shocks were reported in [7] when using the physical
arti cial viscosity model with non-zero arti cial thermal conductivity  av,
whereas, this behaviour was lost when ay = 0 or in the case the Laplacian
viscosity model was used. In view of the present analysis, these two particular
choices in dealing with shocks would rise questions concerning their physical
consistency in terms of entropy.

It is nally worth pointing out that overheating errors which were ob-
served in [159] when performing one-dimensional shock collisions and for
which no remedy could be identi ed are indeed, as it will be shown in the
next sections, a direct consequence of the use of a Laplacian viscosity model
and the resulting error in the entropy across the shocks.

7.4 Flow con gurations and computational set-up

Five canonical test cases are considered to evaluate the two shock cap-
turing approaches and their physical consistency in term of entropy be-
haviour: (a) stationary one-dimensional weak shock; (b) the collision of one-
dimensional shocks; (c) the interaction between a two-dimensional strong-
vortex and a shock-wave; (d) the inviscid Taylor-Green vortex; (e) the com-
pressible, decaying, homogeneous, isotropic turbulence and (f) the interac-
tion between a shock and a wavy-wall. Time integration is performed using
a three step explicit Runge-Kutta scheme. The order of accuracy of the SD
spatial discretisation varies with the cases. Whenever needed depending on
the test cases, the Spectral-Element Dynamic Model (SEDM) for turbulence
modelling has been employed [1]. It is worth noting that this SGS model fea-
tures a modal turbulence sensor to detect ow under-resolution and locally
activate the eddy-viscosity when needed.
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7.4.1 Stationary one-dimensional weak shock

The simulation of a weak one-dimensional shock dla = 1:1 is here consid-
ered. The domain is 0.02 units long, equivalent to approximately 650, with

the mean free path. The initial value of density, pressure and velocities are
de ned through Rankine-Hugoniot conditions and the system is let evolve
toward the expected stationary solution. A very re ned, shock-resolving
simulation is here considered as reference: a uniform grid of 405 8th-order
elements has been used, leading to approximately 90 solutions points located
within the shock. For this level of resolution, shock capturing models are not
needed. A dynamic behaviour of shear viscosity according to Sutherland's
law has been assumed:

(T) = T T+ Ts,
- 0T T+ T

(7.12)

where ¢=1:827 10 °kgm s 1, Ts = 120K and Ty = 291:15K. Finally,

a Specic heat ratio = 1:4 and aPr = ocp= = 0:71 are assumed.
Coarser 8-th order inviscid simulations have been performed on a 45 element
grid with the two models active. For this discretization, approximately 8
solutions points are located in the inner part of the shock.

7.4.2 One-dimensional shock collision

Let a unitary long one-dimensional domain be initialised with two identical
shocks moving towards each other, initialised respectively ak = 0:2 and

X = 0:8. Two Mach numbers, Ma =5 and Ma = 10 are considered. The
domain is discretised in 60 uniformly distributed elements and Euler equa-
tions are solved using a 6th-order SD scheme. The initial values of density,
pressure and velocity upstream the shocks, de ned by the Rankine-Hugoniot
conditions, along with the re ected shocks properties are summarised in Ta-
ble 7.1. For all one-dimensional test cases, a slightly higher activation value
has been chosen for the physical model in order to make it more sensitive to
shock detection and, consequently, more aggressive in damping oscillations.
Regarding the Laplacian approach, nominal parameters have been used.

7.4.3 Two-dimensional inviscid strong-vortex/shock-wave in-
teraction

The physical domainis = (0 ;2L) (0;L) and a stationary shock is lo-
cated at xs = L=2, whereL is a reference length scale (unity in the present
case). The inow Mach number isMa; = 1:5 and a compressible, isother-
mal, zero-circulation vortex with external radius b= 0:179_ and inner core
a = 0:078L is initially centred at (x;y) = (L=4;L=2). The initialisation
procedure of velocity, temperature, density and pressure can be found in
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|Ma| 5 | 10
5:000 5:714
Incident | juj 4:733 9:762
p 29:000 | 116500
Ma, 2:408 2:579
r 16:110 | 19550
jusj 5:916 | 10:946
pr | 191400 | 884500

Re ected

Table 7.1. One-dimensional shock collision (all the quantities are normalised
with respect to the initial density and pressure of the uid at rest between
the initial shocks).

multiple articles [179, 180, 181, 170], based on isothermal, isochoric or isen-
tropic conditions. As in [179], an isothermal initial condition is prescribed
and the vortex Mach number May is set to 0.9 (based on the maximum
tangential velocity in the vortex' inner core). Considering a reference frame
with the origin in the initial position of the vortex centre, the initial velocity
vector eld upstream of the shock is obtained as the superposition of a uni-
form horizontal velocity corresponding to upstream shock conditions and the
vortex velocity eld, namely, u(r) = u (r)& + u; &, where& is a unitary
vector in the tangential direction around the centre andu is the relevant
tangential velocity component. The velocity components then read

p
up =Maj RToé (7.13)
%rza for r a;
p—— r b
u((r)y=May RTo_ - - - for a r b (7.14)
; 2 b r
0 for r>b;

where

=2(b=9=1 (b=97:
The thermodynamic variables in the vortex zone are evaluated combining the
balance of the pressure gradients with the centripetal force and isothermal
condition for ideal gases,
2

dp _ v .
T= = p=RTg (7.15)
leading to 8
2 2
% Ma, 12, b, 2In b for r a
0 22 a A a a
In =— = Ma; , (r=b* 1 r . (7.16)
Py E > 4(=D)2 In 5 for a r b;

-1 for r>b;
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The spatial domain is subdivided in256 128uniform quadrilateral elements
with a 5th-order SD discretisation. Free-slip and adiabatic walls are imposed
on the top and bottom sides of the domain and characteristic-based, non-
re ecting boundary conditions are applied on the in ow and out ow [182,
183].

7.4.4 Inviscid Taylor-Green vortex

The Taylor-Green Vortex constitutes a well-established test case to study
vortex dynamics, turbulent transition, turbulent decay and energy dissipa-
tion processes in a three-dimensional setting [93]. The problem consist of a
cubic domain[ L ;L ]3 with periodic boundary conditions applied to all
faces starting from the smooth initial condition

8
= o
. X y yA
= Upsin — cos = cos —
uz oS! L L L
X .y z
u= Upcos — sin = cos — ; 7.17
2 0 1 1 i (7.17)
us=0;
oo 2 2y 2z
= Po+ — + = = +2
p 0 16 cos 3 cos 3 cos 3

Unity has been assigned to botiJy and ¢, the reference velocity and density,
respectively, and the initial value of the pressurePy has been chosen such
that the corresponding initial Mach number is equal to 0.1. For this value
of the Mach number, the ow is practically incompressible. The objective
of the present simulation is thus to evaluate how dissipative are the two
arti cial viscosity models discussed in Section 7.2 when they are applied to
an inviscid ow free from shocks. The ow domain is subdivided in 328
uniform cubic elements and discretised with a 6th-order SD scheme. The
solution obtained without arti cial viscosity will serve as reference. In all
the simulations, considering the actual resolution of the employed mesh, the
SEDM model has been activated due to turbulent nature of the developed
ow eld in later times of the simulation.

7.4.5 Under-resolved compressible isotropic turbulence

The objective of this test case is to investigate the performance of Laplacian
and physical shock capturing models when shocks and turbulence coexist and
both the SGS model and the shock capturing viscosity are activated. The
computational domain consists in a periodic cube =[ L:L ]° contain-
ing decaying homogeneous and isotropic turbulence. Pressure, temperature
and density elds are initially constant and the velocity is solenoidal with
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a turbulent kinetic energy spectrum E(k)  k*exp[ 2(k=ky )?], wherek is
the wavenumber andky, corresponds to the most energetic wavenumber (in
this caseky = 4=L). The initial turbulent Mach number and Taylor-scale
Reynolds number are evaluated on the initial ow led as:

o0 3 hi .

Mago= ™0 ° =06 and Re o= om0 0-100;  (7.18)
’ hai ’ hi
where a is the speed of sound andh i denotes spatial averaging, whereas
q s
: hu,2i
— 1 —

Umso =  zhujuji and = 7.19
rms;0 3THIY <0 0 K@@:@¥)2| o ( )

are, respectively, the initial root-mean-square velocity uctuations and the
Taylor micro-scale. A power-law is assumed for the dynamic viscosity,

= o(T=To)**

It's easy to show that the initial condition is such that ¢ = 1=ky. The
domain has been discretised usin@6® hexahedra elements with a 6-th order
polynomial approximation. Considering state-of-the-art LES of compress-
ible isotropic turbulence [169] [184] [185] this resolution gives a purposely
slightly under-resolved simulation in order to enhance the impact of numeri-
cal dissipation, this last including the dissipation coming from the numerical
discretization, the arti cial shock capturing viscosity and the SGS modeling
viscosity. De ning the Nyquist wavenumber asky = =h, corresponding to
the smallest resolvable scales, the chosen grid giv&gy = 48=L, which is in
good agreement with commonly used values for LES of this con guration.
The value h has been approximated a2 L=N where N is the number of
degrees of freedom (DoF) along one direction. It shall be noticed that this
resolution corresponds, in terms of DoF, to the one used in [170] for 3rd-order
computation of the same test case. Results have been compared with a DNS
on 256° DoF [186]. According to [186], higher resolution data 884® DoF)
have been employed to evaluate kinetic energy contributions. The simulation
is performed fromt =0 to t = 4Ag, with Ag = 0=Ums:0-

7.4.6 Shock/wavy-wall interaction

The interaction between a shock wave and a sinusoidal wavy wall is a more
challenging test case, simultaneously featuring complex shock re ections and
a background low-Mach number ow with very speci c small scale patterns
[187, 188, 168]. The problem has been chosen to match the experiment
reported in [187]. In this experiment, a vertical planar shock propagating
at Mach number 1:5 in air is re ected on a sinusoidal wall with amplitude
1.0mm and wavelength 2.0 cm. The Navier-Stokes equations are integrated
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Figure 7.2: Geometrical set-up and initial conditions for shock/wavy-wall
interaction.

over a computational domain 10cm long and 2cm high with600 140 un-
structured quadrilateral elements. A 5th-order SD scheme is adopted and
the total number of degrees of freedom i2:1 10°. The left wall is char-
acterised by a no-slip condition while top and bottom boundaries are set
as periodic. The initial setup is schematically represented in Fig. 7.2. The
typical properties for air have been used in the simulation, hence the specic
heat ratio is set equal to 1.4, while the Prandtl number is set equal to 0.72.
The dynamic viscosity is modelled using a Sutherland's law, namely,

(T) = T T+ Ts,
- 0T, T+ T

(7.20)

where o = 1:827 10 ®kgm s 1, Ts = 120K and Tg = 291:15K. A
second, more challenging, situation has been considered where the incident
shock Mach number is increased up to 5.0 and the speci ¢ heat ratio is re-
duced down to 1.15, thus approaching the Newtonian limit [168]. The other
physical parameters are the same as in the Mach 1.5 case. All the main com-
putational and physical parameters are listed in Table 7.2 for convenience.

7.5 Results and discussion

7.5.1 Stationary one-dimensional weak shock

This particular test case is focused on the shock-shape across a viscous weak
shock. It is well-known that a non-monotonic behaviour should be observed
whenever a viscous-thermal conductive uid is considered [173]. Moreover,
even if this property can be observed for strong shocks as well, a weak shock
allows to easily run shock-resolved simulations, which do not need any shock
capturing procedure. Accordingly, a highly resolved simulation of a weak
shock has been performed and considered here as a reference. In order to
evaluate the capability of the two shock capturing models to describe the
physical properties of the shock, two coarser inviscid simulations have been
tested. An example of coarse grid solution is shown in Fig. 7.3, where ap-
proximately 8 solution points are contained within the shock. The density
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Domain size L H 100 2:0 cm?
Number of elements Nyx Ny 600 140
Discretisation order n 5
Degrees of freedom DoF 21 10°
Wavy-wall amplitude Aww 1.0 mm
Wavy-wall wavelength ww 2.0 cm
Speci ¢ heat ratio 1.4 1.15
Incident shock Mach Ma; 1.5 5.0
Incident shock speed D, 5140 15530 | ms 1
Re ected shock Mach Ma; 1.43 3.16
Incident shock speed D, 324.9 2715 | ms!?
1 1:208 kgm 3
Initial left state ug 0:0 ms 1
p1 101325 kPa
5 2:25 1129 [ kgm 3
Initial right state us 23796 138688 | ms !
p2 249091 2703344 kPa

Table 7.2: Physical and computational set-up of shock wavy-wall interaction.
Velocities are indicated on the laboratory reference frame.

and the entropy pro les from the coarse grid computations are compared
to the reference solution in Fig. 7.4 From the observation of the reference
solution, the non-monotonic behaviour of the entropy is clearly evident, with
a very strong overshoot located almost exactly atx= = 0; cf. Fig. 7.4(b).

It can be noted how the relative jump in the entropy overshoot is extremely
large compared to the shock-generated entropy, s= s; s;. In particular,
Smax S 23 s, which is slightly higher than the expected value given
by Eqg. (7.11), namely, Smax S| 15 s. This is not really surprising:
the presence of thermal conductivity gives an additional increase of entropy
within the shock, which adds to the inviscid overshoot. Regarding the two
coarser simulations, non-monotonicity is preserved by the physical model
while the Laplacian AV gives an almost at prole. Moreover, concerning
the Laplacian approach, the small, persisting, numerical oscillations close to
the shock force the entropy to take values smaller thars;. In other words,
the use of the Laplacian model leads, for this test case, to a local decrease of
entropy, which is clearly unphysical. The Physical arti cial viscosity gives
the expected behaviour of entropy across the shock, even if it is not able to
reach the exact peak of entropy production.

7.5.2 One-dimensional shock collision

The present analysis focuses mainly on three aspects which are strictly
connected to the accuracy and reliability of the shock capturing scheme:
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Figure 7.3: Example of coarse grid with 8 solution points in the shock
region. The x-axis is normalized with respect to the mean free path .
Dashed lines indicate element interfaces; symbols indicate the location of
the solution points.

(a) density (b) entropy

Figure 7.4: Density and entropy shock pro les: solid line, reference solution;
dashed line, physical AV model; dotted line, Laplacian AV model; the black
dot on the entropy pro le indicates the theoretical maximum in the inviscid
limit ( cf. Eq. (7.11)).

(a) the correct reproduction of the theoretically expected behaviour of en-
tropy across the shock front, (b) the presence of spurious post-collision os-
cillations and (c) the onset of overheating errors in the solution and their
connection to entropy preservation. In Fig. 7.5(a), the density eld is shown
before collision. No particular di erence is present between the Laplacian
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(a) density (b) entropy

Figure 7.5: Ma = 5 shocks before collision: solid line, physical arti -
cial viscosity model; dotted line, Laplacian AV model; the black dot on
the entropy pro le indicates the theoretical maximum in the inviscid limit
(cf. Eq. (7.11)).

and physical models, which both smooth adequately the shocks. Looking
at the normalised entropy pro le in Fig. 7.5(b), however, more marked dif-
ferences between the two approaches appear. Using the physical model, the
behaviour of the entropy across the shock is non-monotonic, whereas the
Laplacian arti cial viscosity produces a simple entropy jump. Hence, the
expected non-monotonic theoretical pro le of entropy is preserved by the
physical model due to its capability to secure the proper physical coupling
between the viscous work, the thermal dissipation and the entropy itself. In
Fig. 7.5(b) the entropy jump is compared with the theoretical value obtained
from the inviscid Eq. (7.11). The purely numerical nature of the Laplacian
approach becomes evident, with the lack of knowledge on the energy trans-
fers within the shock (without mentioning the arti cial di usion of density).
Turning the attention to the behaviour of the two models after the shock
collide, the relevant density and entropy pro les are depicted in Figs. 7.6(a)
and 7.6(b), respectively. At the location of the impact between the shocks,
another notable di erence between physical and Laplacian viscosities is visi-
ble. In particular, when the Laplacian approach is adopted, an unphysical de-
crease of density is generated. This phenomena is commonly known @ager-
heating error, which motivated multiple studies [189, 190, 191, 192, 193, 194].
It was concluded that the onset of overheating errors is directly related to the
numerical scheme and its inability to preserve exactly the entropy convection
at the moment of collision. The consequent increase in entropy would then
be the main responsible of these spurious e ects. This is readily con rmed by
looking at Fig. 7.6(b), where the two shock capturing approaches report very
di erent entropy behaviours. As already mentioned, the same type of over-
heating errors were observed in [159] for the same test case when using the
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(a) density (b) entropy
Figure 7.6: Ma = 5 shocks after collision: solid line, physical AV model; dot-

ted line, Laplacian AV model; the black dot on the entropy pro le indicates
the theoretical maximum in the inviscid limit ( cf. Eq. (7.11)).

(a) physical AV, density (b) Laplacian AV, density

(c) physical AV, entropy (d) Laplacian AV, entropy

Figure 7.7. Mach =5 shock collision. Density (a, b) and entropy (c, d) time
history pro les. Solid line, x = 0:5; dotted line x = 0:58
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Laplacian model. However, overheating errors can be observed in multiple
other test cases, even in absence of shocks, such as in the case, for example,
of the receding ow [191, 193]. This phenomenon is not directly related to
the shock capturing procedure unless, of course, this last impacts, negatively,
entropy conservation. On the contrary, a wise choice of arti cial viscosity
can lead to the mitigation, or even to the complete removal, of overheating
errors. It is clear from Fig. 7.6(b) that the physical approach appears as a
better option, simply because the physical model uses an arti cial thermal
conductivity related to the bulk viscosity, which features an elliptic/di usive
nature. Therefore, every temperature gradient (in the absence of any forcing
term) tends to be dissipated due to thermal conduction.

The damping of the overheating error is quantitatively evaluated in Fig. 7.7,
where the time history of the density and the entropy at two di erent lo-
cations (x = 0:5 and x = 0:58) is shown. These plots provide additional
evidence of di erences in the value of the density and the entropy at the
point of impact (x = 0:5) and away from it (x = 0:58). A gap between the
two lines can be clearly noticed when using the Laplacian model: under-
estimation of the density and over-estimation of the entropy. The physical
model, on the other hand, does not produce overheating errors and no di er-
ence is visible between the relevant values recorded at=0:5 and x = 0:58.

Finally, a more challenging situation is considered increasing the Mach
number up to 10. Results are reported in Fig. 7.8, where the density and en-
tropy pro les after collision are shown. Overall, no major di erences between
the Ma =5 and the Ma = 10 test cases are found.

(a) Density (b) Entropy

Figure 7.8: Ma = 10 shocks after collision: solid line, physical AV model,
dotted line, Laplacian AV model; the black dot on the entropy pro le indi-
cates the theoretical maximum in the inviscid limit (cf. Eq. (7.11)).
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(a) physical AV, density (b) Laplacian AV, density

(c) physical AV, entropy (d) Laplacian AV, entropy

Figure 7.9: M = 10 shock collision. Density (a, b) and entropy (c, d) time
history pro les. Solid line, x = 0:5; dotted line x = 0:58.

7.5.3 Two-dimensional inviscid strong-vortex/shock-wave in-
teraction

In the shock-vortex interaction, particular attention will be paid on the lo-
cality of the arti cial viscosity and on the low dissipative character of the
physical model. To evaluate the accuracy of the shock capturing procedure,
snapshots of the density eld are shown in Fig. 7.10(a), right after the vor-
tex traverses the shock, and in Fig. 7.10(b), when the vortex splits into two
smaller vortices as a result of its interaction with the shock front. After the
interaction, complex acoustic structures arise. Some interesting di erences
between the two AV approaches are observed in Fig. 8.9. The higher dissipa-
tion of the Laplacian approach does not allow for the vortex to breakdown,
whereas the physical arti cial viscosity captures this feature. In other words,
when the Laplacian viscosity is used, the uid behaves as a more viscous gas,
thereby jeopardising the development of the smallest ow structures. Con-
cerning the localization of the arti cial viscosity when using the physical
model, Figs. 7.12(a) and 7.12(b) show the contours of arti cial bulk viscos-
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(@) t1 =0:085s

(b) to = 0:245s

Figure 7.10: Shock-vortex interaction. Density eld.

(a) physical (b) Laplacian

Figure 7.11: Shock-vortex interaction. Density eld detail at t, = 0:245s.

ity right after interaction and at the moment the vortex breaks down. As

it can be seen, the arti cial bulk viscosity is zero almost everywhere, except
in the shock region. This is, of course, of paramount importance to avoid
the injection of unnecessary dissipation in the system away from the shock.
Finally, as already mentioned in the mono-dimensional test case, entropy
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(a) t1 =0:085s

(b) to =0:245

Figure 7.12: Shock-vortex interaction. Physical arti cial viscosity. Image
resolution is low due to the lack of smoothness of the arti cial viscosity itself
(which is only linear).
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shocks should be non-monotonic. This characteristic property is clearly sat-
is ed by the physical model in this two-dimensional case too (see Fig. 7.13).

Figure 7.13. Shock-vortex interaction. Entropy eld at t; = 0:085 (see
Fig. 7.10(a) for vortex position) along the line y=0.4L. Solid line, physical AV
model; dotted line, Laplacian AV model; the black dot on the entropy pro le
indicates the theoretical maximum in the inviscid limit ( cf. Eq. (7.11)).

7.5.4 Inviscid Taylor-Green Vortex

Despite the rather idealized and simple initial ow eld, the TGV problem
contains many di erent interesting features of turbulence. As the time ad-
vances, the vortex stretching process leads to a natural transition to isotropic
turbulence. Due to the absence of physical viscosity (inviscid ow), the en-
ergy of the uctuating eld cascades to smaller and smaller scales without
any viscous dissipation, making it a stringent test case for calibrating arti -
cial numerical dissipation.

Di erent phases of turbulence transition and development can be recog-
nised. Before reaching the characteristic tim&  4L=Up, the ow is laminar
and it is fully resolved by the mesh. After a transitional period, att  7L=Uj
the vortex stretching process breaks down and sub-grid scales mechanisms
start to a ect the solution.

Figs. 7.14 and 7.15 show the time evolutions of four main quantities,
namely the mean kinetic energy ratiok = (1=2) uui=kes (Where Kk is
the mean kinetic energy theoretically present in the ow), the mean square
vorticity = L?2!;!{=UZ, the temperature varianceczhT °T4=Ug (wherec, is
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the speci ¢ heat at constant volume) and the dilatation varianceL ?h 0 4 =U2
with = @u=@x Note that the prime denotes deviations from the mean
value over the whole domain, namely, given any generic quantity , °=

h i.

In this inviscid ow, the mean kinetic energy should stay constant. As it
can be seen in Fig. 7.14(a), this is observed when the physical arti cial viscos-
ity is used. The Laplacian model, on the other hand, is found to be too dissi-
pative and promotes a rapid decay of the kinetic energy. Similarly, applying
the Laplacian arti cial viscosity, the mean-square vorticity is not increasing
as it should in this inviscid ow ( cf. Fig. 7.14(b)), whereas the physical arti-
cial viscosity allows for the vorticity to raise as expected. The temperature
variance also su ers from a too rapid decay with the Laplacian formulation,
which is not the case with the physical formulation (Fig. 7.15(a)). Turning
to the compressible character of the ow €f. Fig. 7.15(b)), the Laplacian
form of the arti cial viscosity does not allow for the variance of dilatation to
grow in a signi cant manner. Because of the bulk character of the physical
model for the arti cial viscosity, part of this variance is unavoidably damped;
nonetheless, a signi cant growth is yet captured.

(a) Normalised mean kinetic energy (b) Normalised mean-square vorticity

Figure 7.14: Inviscid Taylor-Green Vortex. Kinetic energy and vorticity.

7.5.5 Under-resolved compressible isotropic turbulence

To further progress on the evaluation of arti cial viscosity in the presence
of both turbulence and compressibility e ects, results with the compressible
isotropic turbulent test case are now examined. The unstable initial con-
guration leads quickly to the development of strong vortical, entropy and
acoustic modes in the whole domain. Weak shock waves, commonly known
as eddy shocklets [195], appear spontaneously from the turbulent motions
as well. An example of a shocklet is shown in Fig. 7.16, where the relevant
pro les of dilatation, density and Mach number are plotted. Simulations
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(a) Variance of temperature (b) Variance of dilatation

Figure 7.15: Inviscid Taylor-Green Vortex. Variance of temperature and
dilatation.

(a) Normalised dilatation (b) Normalised density (solid line) and
Mach number (dash-dotted)

Figure 7.16: Example of shocklet occurring at normalised time&  0:557 at
(x;y) (4:3; ) plotted along z direction.

performed without arti cial viscosity and using the Laplacian or physical
models are compared to DNS results. The relevant results are reported in
Figs 7.17 7.19. It shall be noted that the simulation performed without
arti cial viscosity, due to the accumulation of kinetic energy at the unre-
solved scales, became unstable at a normalised time of about 0.56. This
notwithstanding, the relevant (partial) curves are retained for reference in
all plots. Concerning the SEDM model, it is worth pointing out that, due to
the actual order of accuracy of the employed discretization and due to the
relevant enhanced resolution of the SD scheme, the SEDM turbulence sensor
seldom detected any appreciable under-resolution. As a consequence, negli-
gible amounts of eddy-viscosity were injected throughout the computation.
This indicates that the numerical dissipation from the spatial discretization
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operators su ciently describes the energy transfers between resolved and
under-resolved scales.

Using the physical arti cial viscosity, the time evolution of the normalised
mean kinetic energy (Fig. 7.17(a)) is in perfect agreement with the reference
DNS [186], while the Laplacian form overestimates the dissipation, which
con rms once again the over-dissipative character of the Laplacian model.
The mean-square vorticity is also well reproduced with the physical arti cial
viscosity (dashed line in Fig. 7.17(b)), while the Laplacian form misses the
vorticity response and returns a constant decay (dotted line in Fig. 7.17(b)).
Turning the attention to quantities more related to compressibility e ects,

(a) Normalised mean kinetic energy (b) Normalised mean-square vorticity

(c) Normalised variance of temperature (d) Normalised variance of dilatation

Figure 7.17: Under-resolved isotropic compressible turbulence.

such as the variance of temperature (Fig. 7.17(c)) and the variance of dilata-
tion (Fig. 7.17(d)), the Laplacian AV yields results which depart signi cantly
from the DNS, yet some weakness of the physical AY model become also ap-
parent. The variance of temperature from the physical model is slightly un-
derestimated, which suggests a slight overestimation of thermal dissipation.
Unfortunately, the bulk viscosity is known to damp acoustic modes [171]
and this is clearly visible in Fig. 7.17(d). The use of divergence-based sen-
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sors should improve the results [170, 171].
The kinetic energy balance (under the periodic boundary condition ap-
plied here) can be written as

Variation on iPetic energ;{ z Viscous ﬁ'ssipation _ {
% % uiudv = 2SS % gi dv
Z (7.21)
0 @y av + "

ok

Dilatation work
where the dissipation term" contains the three contributions stemming from
the sub-grid scale model, the arti cial viscosity and the numerical dissipa-
tion:

I }

"= "sest "av t "num: (7.22)

Fig. 7.18(a) shows the viscous dissipation from Eqg. (7.21), which is well

(a) Viscous dissipation (b) Dilatation dissipation
Figure 7.18: Under-resolved isotropic compressible turbulence.

reproduced by the physical arti cial viscosity due to the small damping of
vortical modes, which is not the case when using the Laplacian form. As far
as the dilatation term is concerned (see Fig. 7.18(b)), this is not perfectly
reproduced due to the use of the bulk viscosity. Even if acoustic damping
using bulk viscosity is clearly visible and theoretically known, it is worth
noticing that using a Laplacian approach gives no advantage at all for this
test case. In Fig. 7.19, the additional spurious dissipation is analysed. The
di erence in energy, which is arti cially dissipated in the system between
Laplacian and physical approach, becomes here clearly evident and further
con rms the lower dissipation overall promoted by the use of the physical
model. Concerning the in uence of the shock capturing parameters, these
can be changed within reasonable limits, yet the main results of our discus-
sion remain unchanged: the Laplacian viscosity tends to be more dissipa-
tive overall and cannot preserve the expected entropy behaviour. Finally it
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Figure 7.19: Under-resolved isotropic compressible turbulence. Spurious dis-
sipation (in absolute value scaled by Ey).

should be pointed out that similar results have been shown in [184], where
some drawbacks when using an arti cial bulk viscosity were pointed out.
The presence of a bulk viscosity implies a certain amount of dissipation on
dilatational modes. Such dissipation is more or less strong depending on the
speci ¢ parameters chosen, as clearly con rmed in Fig. 7.17(d). Nonetheless,
whenever moderately compressible turbulent ows are considered, the use of
a bulk viscosity over a shear viscosity shall be preferred, as the latter could
lead to an excessive dissipation on vorticity modes, a ecting energy transfers
of turbulence. Moreover, the coexistence of a shear arti cial viscosity and
an eddy-viscosity SGS model could lead to unpredictable outcomes in both
shock stabilization and turbulence modelling.

7.5.6 Shock/wavy-wall interaction in the Newtonian limit

The interaction between a shock wave and a wavy-wall involves a rather
broad range of scales: the complex ow patterns arising in proximity of the
wall are characterised by velocities many order of magnitudes smaller than
the macroscopic shock speed. This wide spectrum of scales implies chal-
lenging di culties in the experimental detection of such structures. On the
other hand, numerical experiments are computationally very expensive in
order to get a su cient level of detail. A more detailed analysis on the pecu-
liar physical features of this particular test case at an initial Mach number
of 1.5, based on the companion experiment by Biamino [187], can be found
in [188]. Other similar computations at higher Mach numbers (3.0 and 5.0)
are reported in [168]. The present study focuses on the 1.5 and 5.0 Mach
number tests only. Compared to the results reported in [188, 168] the present
simulation has been performed with the physical shock capturing procedure
instead of the Laplacian based approach.

A rst validation for the lower Mach number case is reported in Fig. 7.20,
where experimental Schlieren photography images are compared with nu-
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merical results at times 120 s, 200 s and 280 s giving a qualitatively good
agreement with respect to experimental data. Clearly, even the physical
model for the shock capturing procedure is able to stabilise the numerical
simulation without damaging the complex pattern of re ections arising from
the collision with the wavy wall. As in the one-dimensional case no partic-
ular di erence can be noticed between the two models: they both represent
accurately shocks re ection and collision. The only characteristic feature
preserved by the physical approach is the shape of entropy across the shocks
both before the impact, att = 0s (Fig. 7.21) and after, att = 120 s
(Fig. 7.22). A more challenging situation as been studied as well, consider-

Figure 7.20: Qualitative comparison between experimental (left) and nu-
merical Schileren using physical AV model (right) at times 120 s, 200 s and
280 s (up to bottom).

ing an incident Mach number Ma; = 5:0 and a specic heat ratio = 1:15
These choices lead to stronger re ected shocks and to even more complex
patterns into the shocked gas region. In these extreme conditions the diver-
gence switch has been turned o while instead all the other AV parameters
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Figure 7.21: Entropy eld at t = 0:0s along y=0. Solid line, physical AV
model; dotted line, Laplacian AV model; the black dot on the entropy pro le
indicates the theoretical maximum in the inviscid limit ( cf. Eq. (7.11)).

Figure 7.22: Entropy eld at t = 120 s along y=0. Solid line, physical AV
model; dotted line, Laplacian AV model; the black dot on the entropy pro le
indicates the theoretical maximum in the inviscid limit ( cf. Eqg. (7.11)).

are the same as in one-dimensional tests. It is worth mentioning that the
additional divergence check a ects only partially the results: it implies less
dilatational modes dissipation but other quantities are only slightly a ected.
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In this particular test case, more marked di erences between Laplacian and
physical approaches can be noticed. First of all, in Fig. 7.23 it is evident
the tendency of the Laplacian approach to englobe many smaller vorticity
structures and over-smooth the velocity eld while instead the physical arti-
cial viscosity gives sharper pro les. Furthermore, higher values of vorticity
have been computed using the physical approach in agreement with previous
tests results, indicating a di erent in uence on vortical modes. More inter-
esting, is the peculiar loss of symmetry in the shocked gas: in the very rst
instants after the impact the boundary layer near the wall gets unstable and
a strong burst of vorticity is injected in the far-wall region (Fig. 7.24). This
phenomenon propagates in time a ecting larger and larger regions of the
domain. Both numerical and laboratory experiments of this particular test
case are very rare so the detailed physics is still not completely known. In
this sense, it is still premature to say if this phenomenon is just a numerical
artefact or rather a physically realistic hydrodynamic instability of the ow.

On the other hand, results exposed in this paper suggest a certain level of
physical reliability regarding the proposed arti cial viscosity procedure.

Figure 7.23: Wavy Wall (M=5.0): vorticity eld at t=160s . Up, physical
approach, bottom Laplacian approach.
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Figure 7.24: Wavy Wall (M=5.0): vorticity eld at t =40s. Up, physical

approach, bottom Laplacian approach.
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Chapter 8

Compressible turbulent ows
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8.1 Introduction

In the rst chapter of the present work the problem of turbulence was intro-
duced and the main techniques to tackle it were presented, with particular

183
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attention to Large Eddy Simulations. Subsequently, the role played by the
numerical scheme was taken into account, highlighting the important link
between physics and numerics in SGS modelling. The interaction between
the numerical scheme and sub-grid modelling lead to the presentation of
the SEDM, which has been used in this work. Finally, a chapter has been
dedicated to a characteristic-based low dissipative bulk arti cial viscosity as
shock-capturing technique.

Considering compressible turbulent ows, each of these three aspects are
of major importance for the reliability of numerical simulations. In this chap-
ter, then, attention will be particularly focused on the interaction between
SGS modelling and AV techniques. The combined presence of both models
will be not only analysed in terms of dissipative contributions to resolved
guantities such as kinetic or internal energy, but also in terms of their inter-
pretation as under-resolved quantities in a ltered LES formalism. In this
sense, similarities between these two aspects will be presented and discussed
thoroughly.

Following the same concept, the interaction between turbulence and
shock-waves will be analysed in terms of coexistence of SGS and AV mod-
elling. A series of increasingly complex numerical simulations have been con-
sidered. In particular, as representative example of shock-induced boundary
layer separation, the transonic ow over a RAE2822 airfoil has been sim-
ulated using both SEDM and AV models active. Secondly, the interaction
between a fully-developed turbulent boundary layer and a shock-wave has
been simulated considering a classic compression ramp con guration. The
former case is characterised by a less complex physics since turbulence is
essentially generated downstream the shock-wave and no real superposition
of turbulent and shocked regions is present. In the latter case, instead, the
interaction is stronger as it triggers a richer range of physical phenomena
characterising shock wave-turbulence interaction. Considering the compres-
sion ramp geometry, botha-posteriori LES and a-priori analyses on DNS
data have been performed.

8.2 RAE2822 airfoll

8.2.1 Ducros modi cation

With the increasing popularity of high-order methods in CFD, the devel-
opment of e cient, low-dissipative shock-capturing techniques gained a lot
of interest in recent years. As a matter of fact, the in uence of shock-
capturing algorithms on the overall accuracy of compressible ow simula-
tions has shown to be far from negligible. For example, WENO schemes,
if not carefully designed, can seriously damage the quality of the solution
due to excessive numerical dissipation [184]. In a similar way, Laplacian
arti cial viscosity has shown to be extremely dissipative if applied to under-
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resolved turbulent ows [18, 170]. Therefore, the methodical design of shock-
capturing techniques, speci cally tailored for spectral element methods, rep-
resents a key feature in the development of reliable and robust numerical
solvers for compressible turbulent ows. Arti cial viscosity approaches are
more common in spectral element methods, as, in a similar way, WENO
techniques are more suited for compact nite di erences schemes. Even if
spectral element methods and compact nite di erences have a compara-
ble computational cost [196], the geometrical exibility of the former can
be particularly attractive for the simulation of complex geometries such as
external ows around airfoils. The shock-capturing procedure herein consid-
ered is based on the concept of modal decay by Persson and Peraire [7, 8]
for Discontinuous Galerkin schemes, combined with the recently proposed
characteristic-based sensor by Lodato [159]. The specics on the arti cial
viscosity technique have been presented in chapter 7.

A further improvement of the present AV model in the case of wall
bounded ows is employed. While eddy viscosity needs to be set to zero
at the wall, as dictated by turbulent boundary layer theory, arti cial viscos-
ity has no constraint from this point of view. Nevertheless, it is common
practise turning o the AV model at wall boundaries [172]. There are two
main reasons to do so. First of all, high values of the arti cial viscosity in the
inner layer (where grid spacing is necessarily small) would impose extremely
small time-steps due to viscous Courant-Friedrichs-Lewy conditions. This
problem is even more accentuated by bulk arti cial viscosity, which usually
assumes quite high values with respect to its shear counterpart. Secondly,
due to the strong mesh anisotropy close to the wall, the approximation of
the cell grid size, and consequently of the CFL stable time-step, can be par-
ticularly inaccurate. High values of the arti cial viscosity exacerbate even
more such numerical issue.

To avoid unnecessary arti cial viscosity activation, it is proposed to cou-

ple a Ducros-type of sensor [158] with the standard modal shock detection.
The local element shock sensor by Persson and Peraire [7] is thus modi ed
as follows:
[0:5(Ghr uij hr  ui)]?
hr ui2+ hjjr  ujjiz+"’
whereh i denotes element averaging and] is usually a constant of order ma-
chine epsilon squared. However, in the following simulations the correction
proposed by Pirozzoli [197] has been employed, namely,

"= (up =) (8.2)

(8.1)

Se = Se

which is a global measure of a large scale velocity gradient squared. In the
present work, the chord of the airfoil has been used as characteristic length
scalel.

The gain in such generalisation is twofold. It provides a smooth transition
to null values of AV at the wall boundaries, increasing stability and e ciency.
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Furthermore, the Ducros sensor avoids the injection of unnecessary arti cial
dissipation in strongly vortical regions of the ow characterised by negligible
compressibility e ects. Finally, the numerator in Eq. (8.1) has been modi ed

in order to be zero in expansion regionsr( u > 0). The additional modi-
cations applied to the modal sensor can surely increase the computational
expense of the baseline shock-capturing scheme. Nonetheless, achieving a
simple and yet e cient shock-capturing algorithm for high-order turbulent
simulations has always been a very elusive goal to reach [184, 172]. Handling
shock-waves, in fact, similarly to turbulence modeling, is a task intrinsically
numerical and physical at the same time. Finding a reasonable equilib-
rium between these two aspects is a crucial challenge for shock-capturing
techniques. The combined use of modal [7, 8] and physical [158] sensors is
then representative of the delicate balance between numerics and physics.
A physical correction have been deemed essential to di erentiate between
turbulence under-resolution and shock waves, which are often undistinguish-
able from a merely numerical point of view. In particular, a modal decay
sensor would likely be active in both cases, even for di erent choices of target
variables. The application of the Ducros sensor, instead, o ers a more phys-
ical insight on the nature itself of under-resolved quantities, providing better
shock detection and consequently reduced levels of arti cial dissipation.

8.2.2 Simulation setup

The features of a turbulent boundary layer can be strongly a ected by the
interaction with shock waves. A wide range of coupled length and time scales
are then involved and either su ciently high resolution or precise modeling
is necessary. For example, the interaction with a fully developed boundary
layer and a compression corner presents an unsteady oscillation of the shock
wave, which involves time scales much larger than the ones characterising tur-
bulent uctuations. RANS models have been widely tested for this particular
case with evident limitations [198, 199, 200, 201], whereas LES [202, 203, 204]
and of course DNS [14, 205] show a better agreement with experimental data.
With respect to a compression corner, the present con guration is less chal-
lenging since the boundary layer interacting with the shock wave has been
forced to be laminar. However, the inherent unsteadiness of the detached
ow generated by the interaction has a non-negligible in uence on the shock
wave itself, which oscillates around a mean location [206, 207]. The com-
bined action of SGS and AV model is then particularly important in terms of
dissipation injected in the system: over-dissipation would damp excessively
the shock motion whereas insu cient energy draining could cause spurious
oscillations. Like in the SD7003 simulation, statistics are collected between
20 and 50 convective times. Probes locations are the same as in the previous
case (Table 8.1).

The response of the shear viscosity versus temperature is expressed ac-
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RAE 2822
Reynolds number Re 65 10°
Mach number Ma 0:729
Angle of attack AoOA 2:31
Wall BC - adiabatic
Number of elements|| Ny N, N, | 166 30 2
Polynomial degree N 5
Degrees of freedom DoF 215 10°
Wall distance Hhi 816 10 °©
Wall scaling y* at x=c=0:7 0:2
Probe 1 location (X1;¥1;21) (0:5;0:11,0)
Probe 2 location (X2;¥2;22) (0:5; 0:05;0)
Probe 3 location (X3;y3;2Z3) (1:3;0:00;0)

Table 8.1: Physical and computational set-up. All quantities are made di-
mensionless with respect to the chord length and free-stream values. A
nominal value c = 1 has been assigned to the airfoil length. Reference frame
is centred on the leading edge. Iry* calculations the closest solution point
to the wall has been considered. In particular, the notationhhi denotes the
averaged value of wall-distance along the whole pro le.

cording to Sutherland's law:

(T) = T T+ Ts,
- 0T, T+Ts'

(8.3)

where ¢=1:827 10 ®kgm s 1, Ts = 120K and Ty = 291:15K. Finally,
aspecic heatratio =1:4andaPr= gcp= =0:71are assumed. The
ow is initialised homogeneously in the whole domain according to the far-
eld conditions.

8.2.3 Pressure coe cient

For this particular case, an extensive set of experimental measurements are
present in the literature [208]. The pressure coe cient is known to be a good
indicator of the reliability of the simulation. From its behaviour, it is possible

to evaluate the accuracy of both shock-capturing and turbulence modeling,
depending on the ow regions that they a ect. A clearly desirable feature of
the shock capturing technique is to produce pressure pro les as steep as the
numerical scheme can possibly achieve. The width of the shock wave, which
is inherently a ected by both the AV model and the accuracy of the numerical
scheme, can strongly impact on the shock oscillation due to the interaction
with the subsequent turbulent region. A very small region of break down
turbulence, in fact, is present right after the shock wave. The location of the
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shock is then another relevant measure of how well transition to turbulence is
captured. In the present simulation the shock location is in good agreement
with experiments, implying a good description of transition and a low level
of dissipation injected by the arti cial viscosity model (cf. Eq. 7.2). Fig. 8.1
displays a snapshot of the simulation results. In proximity of the shock
wave roll-ups structures start to develop, and nally, downstream of the
shock wave, they break up in fully turbulent vortices. Fig. 8.2 shows the

Figure 8.1: Isosurface of the)-criterion (Q = 20) colored with instantaneous
velocity eld magnitude. The Ma = 1 isosurface has been used to visualise
the shock wave on the upper side.

pressure coe cient with a good agreement against experiments along the
whole airfoil length. The upstream region and the location of the shock
itself are fairly well predicted, despite the absence of a geometrical trip. In
the proximity of the leading edge, the small pressure peak on the upper
side is not perfectly captured due to lack of transition mechanism. The
turbulence generated by this test case is visibly di erent with respect to the
SD7003 simulation (see Fig. 8.1). The thickness of the boundary layer is
much smaller due to the higher Reynolds number and the smaller angle of
attack. The shock-induced boundary layer separation point near the mid-
chord region on the upper surface can be clearly noticed in Fig. 8.3. In fact,
as a result of the adverse pressure gradient across the shock, the thickness
of the boundary layer increases in the second part of the suction side. Wall-
normal slices of the streamwise velocity highlight such behaviour (Fig. 8.4).
The boundary layer is very steep in the rst, laminar region of the ow,
whereas it thickens considerably after the interaction with the shock wave
where detachment occurs. Finally, mean aerodynamic loads are listed in
Table 8.2 and are in good agreement with the reference data by Cook and
Mcdonald [208]. Averaged eddy-viscosity and arti cial bulk viscosity are
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Figure 8.2: Pressure Coe cient.

(@) (b)

Figure 8.3: Instantaneous velocity magnitude. On the right, a closer look of
the shock wave region (averaged velocity).

Figure 8.4: Averaged streamwise velocity along normal direction. Red-
dashed line denotes the approximate mean location of the shock wave. The
9% boundary layer thickness is shown using red dots to highlight detach-
ment.

shown in Figs. 8.5 and 8.40, respectively, where the di erent zones in which
they are activated can be clearly noticed. As expected, the SGS model is
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’ Author H CL Cp ‘
Cook and Mcdonald [208]|| 0:743 Q0127
Current 0:704 Q0110

Table 8.2: Mean Aerodynamic loads.

mainly active close to the airfoil tail, in the turbulent boundary layer and
wake, while the AV assumes nonzero values mostly in proximity of the shock.
The eddy viscosity assumes small values in a very narrow region close to the
trailing edge, coinciding with an highly re ned zone. The SGS model is,
in fact, weakly active in this area for multiple reasons related to the local
level of resolution. Firstly, the eddy-viscosity is proportional to the grid size
(see Eqg. 6.1). Secondly, the estimate of turbulent kinetic energy given by
Eq. (6.2), for su ciently small cells, is very close to zero. Finally, in the case
of highly re ned grids, the decay exponent used in the turbulence sensor's
de nition is particularly high, indicating well resolved velocity elds. As
already discussed by Tonicello et al. [18], the present arti cial bulk viscosity
without Ducros sensor has a quite high activation. Due to its functional form,
nevertheless, the inuence is limited to dilatational modes only, whereas
vorticity is well preserved. The present modi cation using the Ducros sensor
(Eq. 8.1) improves the AV model providing a much better activation. In
fact, in the RAE2822 simulation, excessive levels of AV had been observed
inside the boundary layer in absence of the Ducros correction (cf. Fig. 8.12).
It is nally worthwhile mentioning that in multiple works (mainly RANS
simulations), a similar behaviour of the eddy-viscosity activation has been
observed [209, 210, 211, 212, 213, 214] (see Fig. 8.5). Finally, in Figs. 8.7

Figure 8.5: Average eddy-viscosity ratio. Notice that, due to the high
Reynolds number, the eddy-viscosity ratio is considerably larger than in
the previous test case.

and 8.44, Reynolds shear stresses and turbulent kinetic energy are shown.
As expected, the turbulence is restricted to a very narrow region close the
airfoil tail. The rapid transition to turbulence appears right after the shock
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Figure 8.6: Average arti cial bulk viscosity.

wave, causing an increase of both turbulent kinetic energy and Reynolds
stresses (a detailed look is shown in Fig. 8.9). Supercritical transonic air-

Figure 8.7: Reynolds shear stresseghgd/9j =u? ).

Figure 8.8 Turbulent kinetic energy (3 (huug + uud + ududi)=(3 1 uf)).

foils are usually characterised by streamwise shock oscillations (or bu eting)
on the upper side of the wing. In the present con guration, however, the ow
experiences only a mild bu eting phenomenon, which is expected for very
low angles of attack [215] as the one herein considered. The oscillation of
the shock wave is then highlighted in Fig. 8.10 through a turbulent kinetic
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(a) Reynolds stress anisotropic part (b) Turbulent kinetic energy

Figure 8.9: Closeup of Reynolds shear stresses (left) and turbulent kinetic
energy (right) in the neighborhood of the shock wave location.

energy closeup in proximity of the shock wave. Outside of the separated
boundary layer, the turbulent kinetic energy assumes non-zero values only
in a very narrow region around the mean shock location, indicating only
mild oscillations of the shock front. The same analysis used for Fig. 6.19

Figure 8.10: Closeup of turbulent kinetic energy in proximity of the shock-
wave.

has been applied to the RAE2822 airfoil in Fig. 8.11. Namely, the turbu-
lence sensor has been used as a post-processing tool and computed on a
given instantaneous ow eld. Similarly to the previous SD7003 case, the
turbulence sensor is mostly active in the detached region of the ow, where
the velocity eld is expected to be under-resolved. It is interesting to notice
that the turbulence sensor never reaches a unitary value, indicating that the
algorithm recognises the separated ow as only partially under-resolved. A
possible explanation of such behaviour could be partially linked to the pres-
ence of an additional smoothing mechanism, represented by the arti cial
viscosity model. In a similar way, in fact, the turbulence sensor is essentially
inactive in proximity of the shock wave since the bulk arti cial viscosity is
su ciently large not to necessitate any additional shear viscosity. In order to
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(a) Instantaneous ow eld. (b) Turbulence sensor f .

Figure 8.11: Instantaneous ow eld (left) and spectral turbulence sensor
applied to the velocity eld (right).

assess the major impact of the Ducros modi cation on the shock-capturing
technique, a comparison between the baseline modal sensor and its modi ed
version applied to an instantaneous ow eld is shown in Fig. 8.12. It can
be clearly noticed that the modal sensor is extremely active in the separated
region of the ow eld. Turbulence under-resolution is in fact erroneously de-
tected as a shock wave discontinuity. The physical information provided by
the Ducros sensor represent the key ingredient to distinguish between shock
waves and turbulence under-resolution (which can be numerically similar).
The modi ed arti cial viscosity model, in fact, as observed also in Fig. 8.40,
is active only in proximity of the shock wave. In other words, the Ducros
modi cation is able to remove all the unnecessary arti cial viscosity in the
detached region preserving, at the same time, the correct detection of the
main shock wave. Due to the high complexity of the present transonic sim-

(a) Baseline modal sensor. (b) Ducros-modi ed sensor.

Figure 8.12: Comparison between the baseline modal sensor [7, 8] (left) and
its modi ed version (Eqg. 8.1) using the Ducros correction (right).

ulation, some further discussions are necessary. In particular, the nature of
the boundary layer interacting with the shock wave needs to be speci ed. In
the experimental setup, the ow was geometrically tripped at x=c = 0:03.
However, it is relevant to observe that su ciently satisfying results have been
reported also without an explicit transition mechanism. The ultimate goal
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of the present work was in fact to analyse the interaction between a tur-
bulent boundary layer and a large scale shock wave. For such purpose, the
accurate prediction of separation-induced transition has been considered ad-
equate to evaluate the combined e ects of the two models herein employed.
The present setup is meant to highlight the capability of the two models to
coexist and in uence di erent regions of the ow eld. A more re ned sim-
ulation, with a more accurate description of transition, would give similar
results and conclusions on the interaction between AV and SGS modeling.
On the upper side of the airfoil a very narrow region of non-zero values of
eddy-viscosity would likely appear, region in which AV would be essentially
zero due to the proximity to the wall. In the authors' experience, a coarse
mesh as the one herein considered is adequately capable of providing useful
insights on the mutual interaction between the two models. Furthermore,
such a coarse resolution highlights even more the delicate stability of the
numerical computation. In particular, both the Ducros correction on the
AV and the explicit SGS modeling have shown to be necessary to keep the
computation stable.

8.2.4 Kinetic energy spectra

Using the same technique previously introduced, kinetic energy spectra have
been computed for the RAE2822 pro le as well. The location of the virtual
probes is the same as before. In Fig. 8.13 they are shown in superposition
with the instantaneous ow in the fully turbulent regime. There is no real
interest in the study of turbulence in probes 1 and 2, where the ow is either
laminar (probe 1) or not suitable to Taylor's hypothesis (probe 2). On the
other hand, probe 3 gives some insights on compressible turbulence. The

Figure 8.13: Instantaneous velocity magnitude. Numbers mark probes loca-
tions.

di erence between these ow regimes can be seen in Fig. 8.36(b), where the
kinetic energy spectra of probes 1 and 3 are plotted. The di erence is clearly
evident: the ow eld at location 1 is laminar and even if a small transition

is seen close to the estimated dissipative region, the whole spectrum under-
goes an almost perfect spectral convergence for all wavenumbers. Di erently,
observing the kinetic energy spectrum of probe 3, the expected turbulent be-
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haviour is present. It is interesting to point out that no particular di erence
can be reported in the spectrum between the SD7003 case and the present
one. Both show an inertial range, followed by a spectral convergence region
close to the range =2 < < . The dierent levels of smoothness mainly
depends on the sampling rate and on the characteristic time scales, which
are di erent in the two airfoil simulations.

(a) Probe 1 (b) Probe 3

Figure 8.14: Kinetic energy spectra in probe 1 and 3. Vertical lines denotes
an estimate of the dissipation region: =2< <

8.3 Compression ramp: Large-Eddy Simulation

Shock-wave turbulence interaction is of fundamental importance in many dif-
ferent applications of aerospace engineering, such as propulsion and aerody-
namic systems. These highly compressible ows are characterised by multi-
scale phenomena, which are still highly challenging for numerical simulation.
Despite a rapidly increasing interest in the simulation of such complex con-
gurations, fundamental questions on the underlying ow physics, the cor-
responding modeling and the most appropriate numerical discretisation are
still open.

Along these lines, innovative numerical high-order schemes such as the
Discontinuous Galerkin [52, 51], the Flux Reconstruction [77, 89], and the
Spectral Di erence [44, 117], gained a lot of interest in the last few decades.
High-order discretisation of convective dominated ows are indeed charac-
terised by many useful features in terms of numerical dissipation and are
widely used to simulate turbulent ows [62, 137].

In particular, much interest has been focused on the numerical dissipation
and multiple studies tried to use it as a built-in turbulence model for specic
choices of numerical uxes [62, 63, 64, 65, 66] . This approach is commonly
known as Implicit Large Eddy Simulation. Despite the advantages in terms
of computational e ciency and simplicity of implementation, the choice of
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order, grid size, and numerical ux strongly in uences the success or failure
of such procedures. This is particularly true for certain classes of high-order
methods, such as the spectral element methods [67], for which the order of
accuracy is a user-selectable parameter of the computation.

Explicit large-eddy simulations using standard SGS models, on the other
hand, may inject too high levels of dissipation, ignoring the informations
coming from the numerical discretisation. It is then crucial to design explicit
turbulence models that take into account not only the ow physics, but
also the intrinsic characteristics of the numerical scheme used to solve the
equations.

Furthermore, considering high speed ows, performing reliable numeri-
cal simulations becomes even more challenging due to the presence of non-
negligible compressibility e ects, which can eventually lead to the formation
of shock waves. Under these conditions, the SGS model needs not only to
distinguish between laminar and fully turbulent regions, tuning accurately
the level of dissipation, but it also interacts with shock capturing techniques,
which can strongly a ect in return the turbulence properties.

All these ow modeling features are involved in the simulation of a com-
pression ramp, which is thus a perfect test case to evaluate the capability of
the recently developed SEDM [1] to accurately predict the rapid variations
of turbulence, typical of the problem, and to study its interaction with the
shock capturing technique herein employed.

The following results will be shown in comparison with a DNS by Priebe
et al. [12] and a LES at similar conditions by Dawson et al. [216].

8.3.1 Simulation setup

The test case considered has been deeply analysed in many di erent works,
both numerical [202, 203, 217, 205, 204, 14] and experimental [218, 13], with
a particular attention to the unsteadiness of the shock-wave front. Most
of the numerical simulations rely on WENO-type schemes [219] to handle
shock waves, with recycling/rescaling techniques [220, 221] for the incoming
turbulent boundary layer. In all the previously cited works, di erent resolu-
tion levels and a large variety of analyses has been performed on the same
con guration.

The problem consists in a supersonic, fully-turbulent boundary layer in-
teracting with a 24 degrees compression ramp. The unsteady nature of the
boundary layer causes the shock to wrinkle and oscillate near the corner.
The adverse pressure gradient, caused by the main shock, creates a sepa-
ration bubble in proximity of the corner. Such bubble, due to the motion
of the shock front, tends to increase and decrease in dimensions with low
frequency oscillations. Downstream of the corner, the boundary layer is su-
periorly bounded by the main shock, while additional shocks arise from the
large structures in the wake of the boundary layer, to nally merge with the
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Ma Re + Up H
291 2900 340 610ms 71mm 258mm 047 mm 549

Table 8.3: Characteristic of the incoming boundary layer.

main shock downstream.

The computational domain is parametrised using the 99% thickness of the
incoming boundary layer , as shown in Fig. 8.30; the main ow properties
of the boundary layer are listed in Table 8.5.

[

Figure 8.15: Computational domain. In the background, Q-criterion
coloured by velocity magnitude @ = 1:0U? = 2).

The Reynolds number is de ned asRe = U; = ; , where is the mo-
mentum thickness, U; the free-stream velocity and ; is the kinematic
viscosity in the free-stream. The Karman numberisdenedas™ = u =,
whereu is the friction velocity and , is the kinematic viscosity at the wall.
Finally, is the displacement thickness andH = = is the shape factor.
Dynamic viscosity has been modelled using the Sutherland's law:

— T =2 (Tref + S).
ref Tref (T + S) ’

(8.4)

where ¢ =1:834 10 kg m=s, Tref =291:15K and S = 120 K.

No slip, isothermal boundary conditions have been applied to the wall,
with a temperature at the wall xed at T,, = 307K. The free-stream density
has been set to the nominal value ; = 7:7 10 2 kg=m3. Consequently,
pressure can be evaluated through the mach numbep; = 2:41678 10° Pa.
The temperature of the free-stream ow is equal toT; = 109:1 K. Finally,
the reference dynamic viscosity has been chosen in order to provide the
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N N « Ny N; x* y* zt DoF
6 70+84 18 8 55 40 (018 43 13 525M

Table 8.4: Grid properties.

prescribed Reynolds number. Since pressure is assumed to be constant, the
density at the wall can be evaluated as \, = 2:736 10 2 kg=m?, then all
the remaining variables can be evaluated:

w= w=w=7:0460 10 *m?=s;, and u = *= ,, =33:741m=s

Many di erent approaches are present in the literature to prescribe turbulent

in ow generation (see Wu [222] for an extensive summary). In the present
study, the Klein's digital Iter technique [119] which has been recently gen-
eralised and validated to the present numerical setup [223, 16] has been
employed for the turbulent in ow condition. The mean pro les, to which
perturbations are superimposed, have been evaluated using closed form re-
lations involving Van Driest transformed velocity pro les as described by
Touber [224].

The correlation tensor of the uid velocity and the characteristic turbu-
lence length scales are the control parameters used to generate the synthetic
turbulent boundary layer at the inlet. The technique herein applied is the one
proposed by Klein [119], which has been recently generalised and validated
to the present numerical setup [223, 16]. A constant value has been chosen
for the length scales alongy and z (spanwise) equal toly;; = 1:3 mm which
is approximately one sixth of the inlet 99% displacement andyx = 2:6 mm
(streamwise) for the length scale along. The values of the correlation ten-
sor have been extrapolated from the DNS by Pirozzoli and Bernardini [225]
at a similar Reynolds number.

Regarding the numerical discretisation, grid properties are listed in Ta-
ble 8.4. The number of total degrees of freedom suits a typical LES resolution
for such con gurations [202, 204, 216, 226].

The LES solves the Favre- Itered Navier-Stokes on a coarse grid. In
particular the system (1) by Vreman [24] has been considered. The deviatoric
part of the SGS tensor and the SGS heat ux have been modelled using the
SEDM by Chapelier et al. [1] whereas a modi cation of Yoshizawa model [25]
has been used for the isotropic part of the SGS tensor.

The shock capturing technique is based on the modal sensor by Persson
and Peraire [7], combined with the physical, bulk-based, arti cial viscosity by
Fernandez et al. [169], recently generalised to the SD method using charac-
teristic based sensors [159, 18]. Furthermore, to avoid unnecessary arti cial
viscosity activation in strongly vortical regions, a Ducros-type sensor [158]
has been coupled with the standard modal shock detection.

Finally, due to the very high complexity of such test case, a positivity-
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preserving scheme [227] has been employed to maintain stability of the sim-
ulation.

8.3.2 Validation of turbulent boundary layer injection

The very rst step in results analysis consists in a proper validation of the
incoming turbulent boundary layer which needs to satisfy the imposed prop-
erties at the inlet. In order to evaluate quantities along the wall-normal
direction, the planex = xg 7 has been considered. In Fig. 8.34 are shown
the Van-Driest transformed streamwise velocity (left) and Reynolds stresses
(right). Secondly, in Fig. 8.33 the velocity pro les along wall-normal direc-
tion and Reynolds stresses have been evaluated after the interaction with
the shock wave k = xpo+4 ).

Incoming velocity pro les are in very good agreement with previous sim-
ulations and experiments in this con guration. Velocity uctuations are rea-
sonably similar to the ones imposed at the inlet. On this particular point,
it is important to highlight that Reynolds stresses have been extrapolated
by Pirozzoli [225] where di erent ow parameters have been used. A perfect
convergence of Fig. 8.34 is then not expected.

(a) Streamwise velocity. (b) Reynolds stresses.
Figure 8.16: streamwise velocity and Reynolds stresses &t= xg 7 .

In Fig. 8.33 the streamwise velocity component and Reynolds stresses
have been plotted along the wall-normal direction in the outer region. Both
pro les are in good agreement with the reference data. Accurate predictions
downstream the interaction with the shock-wave are particularly meaningful,
since the turbulent ow, in this particular region, is characterised by even
smaller length scales.

As downstream Reynolds stresses reference data, the DNS data by Chen [228]
have been used.

Finally, the main properties of the incoming boundary layer are sum-
marised in Table 8.5. Most of them are in fairly good agreement with the



200 CHAPTER 8. COMPRESSIBLE TURBULENT FLOWS

(a) Streamwise velocity. (b) Reynolds stresses..

Figure 8.17: streamwise velocity and Reynolds stresses at= xp+4 .

- Re * H C: 10°
ref 2900 710mm 340 258 mm 047 mm 549 2.16
Xo 7 2907 771mm 362 302mm G477 mm 642 2.22

Table 8.5: Characteristic of the incoming boundary layer: reference vs com-
puted.

reference values of Priebe's simulation.

The di erences observed in Fig. 8.34 a ect the properties of the incoming
boundary layer, leading, for example, to larger99% displacement. The mo-
mentum thickness and consequently the Reynolds number are accurately
reproduced.

8.3.3 Friction coe cient & wall pressure

In order to validate the test case here presented, friction coe cient and wall
pressure have been compared with previous simulations and experimental
data respectively in Figs. 8.18(a) and 8.18(b). Simulations results are in
good agreement with the DNS by Priebe et al. [217, 12] and a comparable
LES by Dawson et al. [226].

In particular, considering the friction coe cient, the present simulation
seems to be located more or less halfway, in terms of accuracy, in between
the LES by Dawson and the DNS by Priebe. Analysing the wall pressure,
instead, an almost perfect agreement between the DNS reference data and
the present LES has been obtained.

The friction coe cient, in agreement with all the reference data, is char-
acterised by 5 local extrema: a minimum right after the separation point,

a local maximum at approximately (x  Xg) = , and a rapid sequence
of two minimum separated by at maximum located exactly at the corner.
Such peak can be explained by the sudden variation of the normal direc-
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(a) Friction coe cient (b) Wall pressure

tion, whereas the ow varies smoothly at this location. It is then commonly
considered a mere consequence of the inexact geometry description of the
problem and it has no relevant physical meaning. Instead, the central in-
crease of friction coe cient can be related to the low-frequency unsteadiness
of the shock front [12].

Before proceeding to more complex analysis, it is worthwhile mention-
ing some relevant results regarding the coexistence of shock-capturing and
SGS model. It is reasonable to think that a shock-capturing technique
should be as local as possible and inject the exact right amount of dissi-
pation necessary to stabilise numerical description of shock waves. Consid-
ering shock-wave/turbulence interaction problems, di erent type of under-
resolution can be present: one related to the inability of the numerical scheme
to accurately resolve shock waves and another related to turbulence under-
resolution. These two aspects should be treated and, more importantly,
detected separately. It is, in fact, advisable to have a clear distinction, if the
problem allows it, between the two. As already mentioned in previous sec-
tions, in order to decrease the activation of the modal AV sensor in turbulent
regions, a Ducros type correction has been applied. Hence, for this partic-
ular test case, the shock wave is situated mainly far from the wall except
for a very narrow region located right before the separation bubble. On the
other hand, turbulence is mainly located close to the wall, in the boundary
layer. The ratio between eddy and physical viscosity is shown in Fig. 8.18(c)
while arti cial bulk viscosity is shown in Fig. 8.18(d). The activation re-
gions are almost perfectly complementary one another: AV is active mainly
at the shock location, far from the wall, whereas eddy-viscosity assumes non
zero values only in the turbulent boundary layer. A small overlapping zone
is still present where the interaction occurs, nevertheless, the shock gets
weaker and weaker approaching the wall and AV is sensibly smaller in this
region. Furthermore, notice that neither AV or SGS model is active in the
separation bubble: in this zone, in fact, no shock wave is present and the
ow is su ciently well-resolved to not necessitate the activation of an SGS
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model. Finally, the eddy-viscosity is also active in some elements containing
the shock wave: the addition of the Ducros sensor is extremely relevant in
the present AV since it has been already shown in previous works how con-
siderably deteriorating can be the in uence of a bulk viscosity on the levels
of compressibility of turbulent ows [18, 184, 229]. On the other hand, the
presence of additional shear-viscosity in proximity of a shock-wave, if not ex-
tremely high, will only implicate another secondary dissipative mechanism
in the smoothing operation of the discontinuity. It is in fact, important to
remind that a bulk-viscosity is much more in uent in proximity of a shock
wave since it acts on the most relevant components of the velocity gradient,
i.e., the dilatation.

(c) Eddy-viscosity ratio. (d) Arti cial viscosity.

It is nally worthwhile mentioning that due to the very high complexity
of such test case, a positivity-preserving scheme [227] has been employed to
maintain stability of the simulation. The limiter, nevertheless, has a very
low and localised activation as shown in Fig. 8.18. To visualise its activation
levels it has been introduced an element-wise constant ag which assumes
unitary value if the limiter is active and zero if it is not. Consequently, it
can be noticed that the maximum value assumed is approximatel@:9 10 3
meaning that the limiter is not only active in a very small region of the ow
but it is mostly temporally inactive too. As it is reasonable to expect, the
region where the limiter is mostly active is nearby the interaction between
the boundary layer and the shock wave.

Finally it is interesting to study the behaviour of the SGS tensor com-
ponent along the streamwise direction (Fig. 8.19). As predicted from clas-
sical Shock Wave-Turbulence Interaction (SWTI) problems, the magnitude
of each component should increase across the shock-wave, in particular the
streamwise velocity uctuations get almost 4 times larger in the middle of
the interaction. It is also evident the increase of turbulent kinetic energy
(which is simply the trace of the SGS tensor with a minus sign).

8.3.4 Probes

Main variables have been collected over time through virtual probes in di er-
ent locations. Subsequently, temporal and spatial kinetic energy spectra can
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Figure 8.18: Limiter activation.

Figure 8.19: Reynolds stresses along (y* = 30).

be related through Taylor hypothesis. All the probes have been located far
enough from the wall, in order to make such hypothesis reasonably suitable.
Probes location are shown in Fig. 8.20. Probes number 1 is located in the log
region of the incoming boundary layer, number 2 in the separation bubble
and the remaining two (number 3 and 4) in the log region of the turbulent
boundary layer developed after the interaction with the shock wave.

As it can clearly understood, probe number 2 is not suitable for Taylor's
hypothesis application, in fact, oscillations are comparable to the mean ow
in the separation bubble region. So, in order to evaluate the resolution of the
present simulation only probes 1 and 3 have been considered. Their kinetic
energy spectra are respectively shown in Fig. 8.36(a). Furthermore, due to
periodicity along the spanwise direction, kinetic energy spectrum along has
been evaluated too and it is shown in Fig. 8.36(b). Inertial range is clearly
visible in all of the kinetic energy spectra, followed by a steeper viscous range
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Figure 8.20: Probes location. Velocity magnitude in background.

where dissipation takes place. Notice that no accumulation of kinetic energy
in proximity of the Nyquist grid wavenumber is present. The SGS model

is then fully capable to dissipate the extra kinetic energy associated to the
smallest scales.

(a) Kinetic energy spectra (tempo- (b) Kinetic energy spectra along z
ral). (y = 0:7 ). Vertical dashed-line in-

dicates the Nyquist grid wavenum-
ber.

Figure 8.21: Kinetic energy spectra. Blue line, probe 1; red line, probe 3.

Observing the kinetic spectra evaluated using the Taylor's hypothesis
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some relevant deviations can be noticed looking at the dierent probes.
Firstly, the inertial range occupying the medium wavenumber region is more
evident after the interaction with the shock (i.e.for probes3 and 4). In other
words, a larger part of kinetic energy is present in the higher wavenumber
region, indicator of smaller length scales characterising the downstream tur-
bulence. Moreover, longer inertial range is typically associated with higher
Reynolds number ows. In agreement with such observation, in many stud-
ies of SWTI, intensity and anisotropy of the incoming turbulence strongly
increase after the interaction with the shock wave.

Knowing the time history of main variables it is possible to construct
discrete PDF (Probability Density Function) of the main quantities. Fur-
thermore, it has been observed that at location 4 the ow locally passes from
subsonic to supersonic frequently. The same PDFs have been consequently
conditioned to the local Mach number in order to highlight features typical
of such conditions. These are shown in Fig 8.22.

(a) Density PDF. (b) Pressure PDF.

Figure 8.22: PDF of density and pressure. Dashed vertical lines denote
the mean value in the di erent regimes. Pressure PDFs have been centered
around zero because their mean values were practically identical.

It is interesting to notice that the probability density function of the pres-
sure (Fig 8.39(a)) is not particularly in uenced by the supersonic/subsonic
regime. Its shape follows the classical behaviour of this quantity in com-
pressible ows with a slight tendency to promote negative values. On the
other hand, in Fig 8.39(a), a relevant di erence is observed in subsonic and
supersonic regimes: whenever the Mach number is higher than 1 density
PDF tends to extend to higher values, whereas in subsonic conditions it is
more symmetric with respect to the mean value. This can be related to the
presence of local shocklets in the boundary layer causing local compression
events, and, consequently, local increase of density.
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8.3.5 Wall-normal pro les

In order to analyse in more detail the behaviour of both SGS and AV model,
a series of wall-normal pro les have been evaluated in proximity of the sep-
aration point. In particular, in Fig. 8.23, the value of the eddy-viscosity
ratio is shown. In agreement with previous simulations using the same tur-
bulence model [1, 136], a local maximum is present in proximity of the wall.
Such behaviour is clearly related to the de nition of the model itself, where
an approximation of the turbulent kinetic energy is used. Consequently, in
proximity of high velocity uctuations the SGS model is more active. It
is interesting to stress that such behaviour can be particularly important
in the Large Eddy Simulation of wall-bounded ows since the peak of tur-
bulent kinetic energy is usually coinciding with the local maximum of SGS
kinetic energy transfer [230, 231] at approximatelyy™  10. This is evident

Figure 8.23: Eddy-viscosity ratio along the wall-normal direction. Blue line
represents the maximum value of ; at each location.

in Fig. 8.24, where the streamwise component of the Reynolds stresses is
shown. To facilitate the comparison the location of the maximum value of
eddy-viscosity ratio and streamwise component of the Reynolds stresses are
respectively represented by the blue and dotted-line.

The superposition between these two lines is visible as higher values of
velocity uctuations lead to larger values of eddy-viscosity.

Likewise, the arti cial viscosity is shown in Fig. 8.25. In a similar way
with respect to the previous gures, the location of the maximum value of

av is shown by the red line, whereas the blue line indicates the location of

the maximum value of eddy-viscosity. Such representation is useful to high-
light the separation between the two regularisation techniques. Close to the
interaction the two maxima are close since both turbulence and shock-wave
coexist in a very narrow region close to the wall. Moving downstream, the
eddy-viscosity is mainly active in the separated ow, where vortical struc-
tures develop, whereas a clear departure toward the free-stream region can
be noticed for the arti cial viscosity.

Such tendency is obviously related to the Ducros correction applied to
the present AV technique. In Fig. 8.26, the dilatation is shown following
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Figure 8.24: Streamwise component of the Reynolds stresses along the wall-
normal direction. Dotted-line represents the maximum value of 1; at each
location, whereas the blue line indicates the location of maximum value of

t-

Figure 8.25: Arti cial viscosity along the wall-normal direction. Red line
represents the maximum value of sy at each location, whereas the blue
line indicates location of the maximum value of ;.

the same visualisation paradigm introduced before: the dotted line repre-
sents the location of minimum dilatation, whereas the red line indicates the
correspondent maximum of AV. The two lines are almost perfectly overlap-
ping, showing that the arti cial viscosity is much larger in presence of strong
compressions, whereas it assumes very small values in the shear layer, where
turbulence is more intense.

8.3.6 Reynolds Stress Anisotropy Invariant Map (RSAIM)

One of the most popular technique to visualise the anisotropic behaviour
of Reynolds stresses is commonly known as Lumley triangle introduced
by Lumley and Newman in 1977 [232]. In the original work and in many
followings scienti ¢ paper the main objective was identi ed in a better un-
derstanding of isotropic turbulence recovery which is represented by the ref-
erence frame's origin of the Lumley triangle map.

The Reynolds stress anisotropy tensorb; , is calculated as :

N B 8.5
b= (8.5)
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Figure 8.26: Dilatation along the wall-normal direction. Dotted-line repre-
sents the maximum value of the dilatation at each location, whereas the red
line indicates the location of maximum value of Ay .

Its corresponding second and third invariants can be calculated as:

Il = by bi =2 (8.6)

= by b by =3: (8.7)

The states highlighted here asxi, X, and x3 represent the limit values as-
sumed by the invariants of ;. The origin, X3, corresponds to the isotropic
case, X, the axisymmetric two-component case andk, the one-component
case.

An example of such representation is shown in Fig. 8.27.

Figure 8.27: Example of Lumley triangle for a channel ow DNS [9] (blue
circles) and experimental turbulent mixing layer [10] (red circles).

Due to the rich variety of turbulence topologies characterising the present
con guration, RSAIM can be a very useful tool in the physical analysis of
SWTI ows. Itis then interesting to visualise the Reynolds Stress anisotropy
map invariant for a certain set of points such as wall-normal proles. In
Figs. 8.28(a) and 8.28(b) the RSAIM is shown atx = xog 7 and x =
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Xop+4 for varying values of wall-normal distance. The resemblances between
Fig. 8.28(a) and the classical behaviour of turbulent channel ow shown in
Fig. 8.27 are evident. In proximity of the wall, turbulence lies on the two-
component line connectingx; and x». Moving toward the free-stream, in-
stead, turbulence converges toward the expected isotropic state. Considering
instead Fig. 8.28(b), the behaviour is considerably di erent. In proximity of
the wall, turbulence state lies very close to the axisymmetric contraction line,
it passes through an isotropic state aty* 28 and it nally moves toward
the one-component state through an axisymmetric expansion. The upstream
region turbulence structures resemble classical boundary layer turbulence like
channel ow simulations, occupying essentially the second quadrant of the
RSAIM, whereas, after the interaction negative values oflll are observed
as well, which are usually associated to mixing layers [233]. The similarity
between mixing layers and downstream turbulence has been already reported
by Priebe et al. [12]. Finally, within the SWTI framework, similar behaviours

of RSAIM has been observed in other previous studies [234, 235, 236].

(@ x=xo 7. (b) x=x%x0+4 .

Figure 8.28: Reynolds Stress Anisotropy Invariant Map along the wall nor-
mal direction at two di erent location upstream and downstream the shock-
wave interaction.

In a similar way it is possible to analyse the variation of turbulence across
the interaction plotting the RSAIM along x for a xed value of y* =30. Such
visualisation is show in Fig. 8.29. As already observed in Fig. 8.19 a strong
variation is expected aroundx xg 2 where the shock-wave interacts
with the incoming boundary layer. In Fig. 8.29 it can be noticed that such
variation is represented as a sharp tendency toward the one-component case,
meaning that streamwise uctuations are considerably larger then the other
two components. After the interaction, turbulence rapidly moves toward
isotropy due to ow separation.
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Figure 8.29: Reynolds Stress Anisotropy Invariant Map along the streamwise
direction at y* = 30.

8.3.7 Conclusions

A Large Eddy Simulation of a 24 compression ramp has been performed
using a high-order Spectral Di erence solver. Turbulence modelling has been
handled using the Spectral Element Dynamic model by Chapelier et al. [1],
whereas shock capturing has been performed using a low dissipative, bulk-
based, arti cial viscosity technique [18]. For turbulence in ow generation,
Klein's digital Iter approach [119] has been used. Numerical results have
been compared with both simulations and experimental data available for
this particular test case. In particular, mean pro les, variances and wall
coe cients have shown to be in fairly good agreement with the references.
The combination of SGS and AV is well balanced thanks to the addition
of Ducros sensor [22] to the standard modal sensor by Peraire and Persson [7]
within the shock-capturing procedure. The activation of the AV is mainly
limited to the outer layer, where the shock is laminar and una ected by tur-
bulence. The SGS model, in the same way, thanks to its dynamical natural
is mainly active in the turbulent boundary layer. An extensive validation of
the present test case has been performed, including temporal/spatial kinetic
energy spectra, wall-normal pro les and Reynolds Stress Anisotropy Invari-
ant Maps ow representation. The next section will be focused on a series of
physical and numerical analyses based on a DNS of a similar con guration.

8.4 Compression/expansion ramp: Direct Numeri-
cal Simulation

Shock wave-turbulence interaction is a major challenge in many di erent
applications of aerospace engineering, varying from external ows around
supersonic/hypersonic vehicles to rocket nozzles and scramjet engines. The
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intrinsic unsteadiness of SWTI problems often imposes severe thermal and
mechanical loads, which can strongly a ect the structural integrity and ef-
ciency of high-speed vehicles, thus playing a fundamental role in the aero-
nautical design process. The rst attempts of studying the mutual interac-
tion between shock waves and laminar or turbulent boundary layers started
with the experimental works by Ackeret [237] and Liepmann [238]. In the
following decades, most of the research on SWTI advanced by virtue of ex-
perimental data of both compression ramps and impinging shocks (see [239]
and references therein for an extensive overview). More recently, the uprising
computational power allowed to tackle the ow physics of the compression
ramp via direct numerical simulation for reasonably low Reynolds numbers
[14, 240, 241, 242].

The interaction between a large scale structure, such as a shock wave,
and the small scale turbulence contained in an incoming boundary layer
triggers a wide range of length and time scales characterising the physics of
the problem. The capability of accurately representing the intricate dynam-
ics of such scales is a fundamental step in the development of high- delity
computational uid dynamics simulations of turbulent ows.

The e ect of compressibility alone can be particularly challenging in
terms of turbulence modelling. It is commonly conjectured that, for in-
compressible ows, in statistical mean, the in uence of the smallest scales
on the large scales can be represented as a fully-dissipative process, justify-
ing the widespread use of eddy-viscosity models. In practical applications
to compressible turbulent ows, the use of fully-dissipative models can be
controversial, speci cally when the Reynolds-averaging operator adopted in
Reynolds-averaged Navier-Stokes equations is replaced by the Itering oper-
ator of large-eddy simulation. The general assumption of similarity between
incompressible and compressible turbulence has lead to a series of generalisa-
tions of popular turbulence models for the sub-grid scale tensor (in LES) and
Reynolds stresses (in RANS). Nevertheless, with the Navier-Stokes equations
in their compressible form, a new set of unclosed SGS terms arise from both
the RANS and the LES formalisms. Some previous works addressed the im-
portance of such terms ina-priori DNS analyses (see for instance [24] and
reference therein), however modelling can still be considered signi cantly
under-developed for most of those unclosed terms. Furthermore, even for in-
compressible contributions, such as the kinetic energy SGS dissipation term,
their dependency on compressibility and thermodynamics remains, at this
date, in great measure unknown.

Since the very beginning of turbulence modelling, the kinetic energy dy-
namics has always been identied as one of the primary driving force of
turbulent ows. A comprehensive understanding of how kinetic energy is
distributed along scales and how turbulent structures interact one another
is of fundamental importance to understand turbulent ows physics. In the
context of LES, the phenomenon known as kinetic energy backscatter (also
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known as inverse energy cascade) has been extensively studied in the last
decades [230, 231, 243, 244]. Based on explicitly Itered DNS data, it is in
fact possible to directly evaluate the kinetic energy transfer contributions as-
sociated to the unresolved scales of the ow. The main results presented by
Piomelli et al. [230] highlighted the predominance of a forward energy cas-
cade as the one rst conjectured by Richardson [27] and later formalised by
Kolmogorov [20] for three-dimensional turbulence. However, a large amount
of the ow eld is instead characterised by backscatter events,.e., an inverse
energy cascade, where small scales contribute as a source term for the large
scale kinetic energy. After these rst results, the presence of backscatter has
been observed in many di erent applications [245, 246, 247, 248, 249, 250].
Both a-posteriori and a-priori analyses of turbulent ows have soon been
applied to more complex conditions, such as reactive and compressible ows.
In such circumstances, thermodynamics plays a much more relevant role in
the total energy balance. Thus, the description of total energy transfers
in turbulence soon evolved from the canonical formulation involving kinetic
energy only to more generalised forms, where the in uence of internal en-
ergy cannot be neglected anymore. The interconnection between kinetic and
internal energy has been consequently studied in deep, analysing the role
played by pressure-dilatation work as the predominant conversion mecha-
nism between the two forms of energy [251, 252, 253, 254, 255]. Along these
lines, shock waves represent a conventional process of energy redistribution
in compressible ows. Shock waves have been shown to have a major impact
on the turbulence characteristics.

The rst theoretical attempts to treat SWTI were formulated in the
50's [256, 257, 258, 259] and they were all based on the classical decomposi-
tion of disturbances introduced by Kovasznay [260]. Only many years later,
as a result of the increasing computational capabilities, DNS of isotropic
turbulence-normal shock wave interaction were within reach for relatively
weak shocks [261, 262]. It was observed that the interaction was charac-
terised by an abrupt increase in turbulence anisotropy and intensity, trigger-
ing strong energy transfers in proximity of the shock-wave. A long series of
works followed, analysing the di erent aspects of SWTI, ranging from the
e ect of the shock strength [263] to the variations of the upstream turbu-
lence [264, 265, 266].

Many of these computations considered small enough Mach numbers to
numerically resolve the inner structure of the viscous shock wave. However,
for su ciently strong shocks, like the ones frequently encountered in com-
plex engineering applications, an accurate resolution of the shock pro le is
often computationally impossible and an additional regularisation mecha-
nism is needed. The canonical approaches to address such matter in tur-
bulent ows are usually categorised in ENO/WENO/TENO schemes [149,
267, 150], shock- tting techniques [268, 269, 270, 271] and arti cial viscosi-
ties [272, 155, 7, 169, 18]. Each of them needs to be properly designed to
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regularise shock waves, preserving, at the same time, the delicate properties
of turbulence. Each shock-capturing technique is characterised by two main
steps: identi cation and regularisation. In particular, in turbulent ows, the
detection of shock waves can be particularly challenging due to the presence
of highly unsteady and rapidly varying turbulent structures. An inaccu-
rate identi cation of ow discontinuities can then easily lead to a signi cant
degradation of small scale uctuations [184, 172].

The present work addresses the up-mentioned fundamental features of
compressible turbulence in a unied setting. The compression/expansion
ramp herein considered is, in fact, a particularly interesting setup charac-
terised by complex compressible turbulence dynamics in a self-contained con-
guration.

8.4.1 Simulation setup

The canonical compression ramp setup features all the ingredients of shock
wave-turbulent boundary layer interaction. The arising ow eld can be par-
ticularly complex, containing many challenging physical phenomena among
which shock waves, turbulence, ow separation and unsteady heat transfer.
All of these factors have been extensively studied in the literature as each of
them requires speci ¢ numerical treatments, in particular, if they strongly
interact with each other. For example, standard shock-capturing techniques
need to be carefully tailored whenever applied to compressible turbulent
ows, in order to avoid excessive arti cial dissipation [184, 172]. In a similar
way, low-dissipative numerical schemes are often essential to reduce as much
as possible detrimental e ects by numerical dissipation.

The test case herein considered has been extensively studied in many
works, both experimental [218, 13] and numerical [14, 12, 202, 204, 203],
with particular attention to the unsteady nature of the main shock-wave
front. The majority of the up-cited numerical simulations rely on di erent
forms of WENO schemes to handle shock waves [273] and recycling/rescaling
techniques to reproduce the incoming turbulent boundary layer [221]. An-
other relevant simulation of the same con guration, which will be used as
an additional reference, has been presented by Li et al. [274]. Starting from
this, a series of related studies have been proposed in the following years, in-
cluding a large number of investigations, such as, wall temperature/turning
angle in uence, Reynolds stress anisotropy maps and turbulent kinetic en-
ergy balance [235, 275, 11]. Most of these works are characterised by the
same parameters and techniques used by Martin, except for the turbulent
boundary layer inlet condition. In the simulation by Li et al [274], the tran-
sition to turbulence has been simulated without any arti cial turbulence
injection nor recycling/rescaling technique. Instead, a blow-and-suction dis-
turbance has been used to trigger the transition su ciently far away from
the compression corner.
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To the authors' knowledge, the interaction between a fully-developed tur-
bulent boundary layer and an oblique shock-wave generated by a compres-
sion ramp has never been simulated using the high-order spectral element
method [161, 162, 48].

In all the previously cited works, di erent resolution levels and a large
variety of analyses have been performed on the same con guration, provid-
ing an extensive framework for validation. The canonical problem consists in
a supersonic, fully-turbulent, boundary layer interacting with a 24 degrees
compression/expansion ramp. The computational domain (see gure 8.30)
has been parametrised using th®%% thickness of the incoming boundary
layer (here denoted as ). The classical geometry of the present con gura-
tion is commonly limited to the compression ramp only. The subsequent
expansion corner has been added to study the e ect of strong expansions on
the turbulence.

As geometrical reference, the origin is located at the corner of the com-
pression ramp and thex-coordinates are measured starting from this point
following wall-tangent directions. In agreement with the DNS by Priebe &
Martin [12], the reference supersonic boundary layer has been evaluated at
x = 8 . Upstream of this location the generation of the turbulent bound-
ary layer itself takes place. In the work by Priebe & Martin [12], a secondary
simulation based on recycling/rescaling has been used in order to prescribe
a realistic inlet condition at x = 8 . In the present simulation, instead, an
extended domain has been considered, in which the digital Iter technique
for turbulence generation by Klein et al. [119] has been applied at = 20 .

Figure 8.30: Q-criterion contours coloured by velocity magnitude Q =
1:0u = ?). In the background, numerical Schlieren is displayed to highlight
the primary shock-wave. : incoming boundary layer thickness.
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N N « Ny N, x*t y* z* DoF
6 120+120+120 28 27 45 15 03 9 42 54v

Table 8.6: Numerical discretisation details.N, order of approximation; Ny,
Ny,Nz, number of elements along the stream-wise, wall-normal and span-
wise directions respectively;x *,y*, z*, wall-normalised grid spacings.

Regarding the turbulent inlet condition, many di erent approaches have
been proposed in the literature of SWTI to prescribe turbulent in ow gen-
eration (see [222] for an extensive summary). Using the digital Iter tech-
nique by Klein [119], generalised and validated to the present numerical
setup [223, 16], the mean pro les, to which perturbations are superposed,
have been evaluated using closed form relations involving Van Driest trans-
formed velocity as described by Touber [224]. Given the correlation tensor of
the uid velocity and typical length scales of the desired turbulence eld, re-
alistic velocity uctuations are prescribed at the inlet boundaries, far enough
from the ow zone of interest. The values of the correlation tensor have been
extrapolated from a turbulent boundary layer DNS performed by Pirozzoli
& Bernardini [225] at a similar Reynolds number. Finally, density and tem-
perature uctuations have been imposed using the strong Reynolds analogy
(SRA).

Details regarding the 6th-order accurate numerical discretisation are listed
in Table 8.6. The number of total degrees of freedom (DoF) has been chosen
in order to match the same accuracy of the DNS by Priebe & Martin [12].
As common practice for high-order spectral element schemes, the grid spac-
ings in Table 8.6 have been evaluated using the length of the elements along
each direction divided by the order of approximation (denoted asN ). Wall
resolution is enforced locating the rst solution point at y*  0:3 and the
entire rst element within the viscous sub-layer (y* < 10). The computa-
tional domain (gure 8.31) has been enlarged with respect to most of the
previously cited works based on recycling/rescaling techniques. Indeed, the
inlet forcing method for turbulence injection necessitates of a certain length
to develop the desired boundary layer statistical properties, which measures
approximately 2=3 as previously observed by Adler et al [276].

8.4.2 Simulation validation and physical analysis

In this section, a detailed validation of the the main ow features is presented.
Once the reliability of the simulation is established, further analyses on the
resolved ow eld are discussed in subsequent sections.
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Figure 8.31: Compression/expansion ramp: computational grid. : incoming
boundary layer thickness.

Wall coe cients and mean pro les

In order to validate the proposed DNS, the averaged friction coe cient
and wall pressure have been computed and compared with previous sim-
ulations and experimental data of the same con guration in gures 8.32(a)
and 8.32(b). In many other works, a perfect agreement within the rich lit-
erature of compression ramp simulations has proven to be a very dicult
task to achieve. This is commonly true not only in the detached region
of the ow, which can be very challenging to be accurately predicted, but
also in the upstream region where large deviations of the skin friction coef-
cient are normally reported in the literature. To highlight such tendency,
the DNS by Zhu et al. [11] along with experimental data by Ringuette et
al. [13] have been added to gures 8.32(a) and 8.32(b). The simulation by
Zhu et al. [11] was performed in the same conditions of the experiments by
Ringuette et al. [13] and DNS by Wu & Martin [14], which were characterised
by a slightly smaller Reynolds number with respect to the present compu-
tation (namely, Re = 2400). Another relevant di erence can be identi ed

in the upstream boundary layer: the DNS performed by Zhu et al. [11] did
not rely on any arti cial injection of turbulence. In fact, the full laminar-to-
turbulent transition of the incoming boundary layer was explicitly simulated
using a blow-and-suction disturbance technique.

In gure 8.32(a), in the upstream region, the friction coe cient is slightly
higher than the reference DNS by Priebe & Martin [12], whereas the sim-
ulation by Zhu et al. [11] reports an even larger value. The experimental
separation point is much better predicted by both Zhu et al. [11] and the
present simulation rather than by Priebe & Martin [12]. Furthermore, both
simulations tend to provide smaller values of the friction coe cient in the
downstream region, in agreement with the experimental location of the reat-
tachment point. In gure 8.32(b), the computed wall pressure pro le follows
nicely the one obtained by Zhu et al. [11], which departs from the DNS by
Priebe & Martin [12] within the interaction region around 3 <x= < 0.
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In order to asses the quality of the incoming boundary layer, mean pro les

(a) Friction coe cient. (b) Wall pressure.

Figure 8.32: Averaged friction coe cient and wall pressure along the stream-
wise direction. Solid line, present simulation; dashed line, DNS by Zhu et
al. [11], dashed-dotted line, DNS by Priebe & Martin [12]. Black circles,
measurements by Ringuette et al. [13].

along wall-normal planes at di erent locations have been extracted. First,
in gure 8.33, velocity pro les have been evaluated before the interaction
with the shock wave x = 3 ) and after (x =4 ). Secondly, in gure 8.34,
the Van-Driest transformed stream-wise velocity atx = 8 is shown. In
gure 8.34, the rst 6 solution points of the high-order discretisation are
shown to highlight wall resolution. Notice that the rst element is entirely
contained in the viscous sub-layer y* < 10). The Van-Driest transformed
velocity follows accurately the experimental data in the log-region whereas
some small di erences with respect to the reference DNS are visible, in par-
ticular in the bu er layer.

At x = 3 the pro le extracted from the present simulation shows a per-
fect agreement with the reference DNS. Downstream of the shock-interaction
region, instead, some discrepancies can be noticed, where a much better
agreement with the experimental data by Ringuette et al. [13] has been ob-
tained. Similar results in the detached region have been reported only by
Kokkinakis et al. [277] using a9-th order WENO scheme. In the same work,

di erent schemes were employed and compared. Compared to lower order
methods, the 9-th order WENO scheme resulted in higher values of the skin
friction in the upstream boundary layer and smaller ones in the downstream
region, in agreement with the results shown in Fig 8.32(a).

Finally, the main features of the incoming boundary layer are summarised
in Table 8.7. Most of them are in fairly good agreement with the reference
values of Priebe's simulation.
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@x= 3. (b) x=4 .

Figure 8.33: Tangential velocity pro le along the wall-normal direction at
x = 3 (left) and x = 4 (right). On the left gure, solid line, present

simulation; dashed line, DNS by Priebe & Martin [12]. On the right g-

ure, solid line, present simulation; dashed line, DNS by Wu & Martin [14];
symbols, experimental data by Ringuette et al. [13]. On the right gure the
stream-wise velocity is normalised by the outer velocityue downstream of
the main shock.

Figure 8.34: Van-Driest transformed stream-wise velocity ak = 8 . Solid
line, present simulation; dashed line, DNS by Wu & Martin [14]; symbols,
experimental data by Ringuette et al. [13]; dash-dotted Iine,u(’,D = y* and
uyp =5:25+log(y*)=0:41.

Probes

The main variables have been collected over the simulated time through
virtual probes located in regions characterised by di erent thermodynamic

states and turbulence structure (see gure 8.35). Subsequently, temporal and
spatial kinetic energy spectra have been related using the Taylor's hypoth-
esis. All the probes have been taken far enough from the wall, in order to
make the Taylor's hypothesis reasonably realistic. The rst probe has been
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- Re * H c¢¢ 10°
reference 2900 710mm 340 258 mm 047 mm 549 2.16
x= 8 2873 743 mm 355 272mm 0O047mm 586 2.17

Table 8.7: Characteristic of the incoming boundary layer: reference vs com-
puted.

located in the log region of the incoming boundary layer and the second in
the detached ow downstream of the interaction with the shock wave. The

Figure 8.35: Probes location. In the background, instantaneous normalised
velocity magnitude eld.

kinetic energy spectra, computed using the Taylor's hypothesis, are shown in
gure 8.36(a). In addition, due the periodic conditions along z, the kinetic
energy spectra in the span-wise direction have been evaluated at the same
locations and they are shown in gure 8.36(b). To reduce numerical noise,
the spatial kinetic energy spectra have been computed at multiple time steps
and subsequently averaged.

The inertial range is clearly visible in all the spectra, followed by a steeper
viscous range where viscous dissipation takes place. Notice that no accumu-
lation of kinetic energy in the proximity of the Nyquist grid wavenumber is
observed. The molecular viscosity is then su ciently large to dissipate the
kinetic energy associated to the smallest grid size, indicating a fairly good
resolution of the dissipative scales. It is interesting to notice that the inertial
range is evidently elongated after the interaction with the shock wave. This
feature is in good agreement with the widely known evolution of isotropic
turbulence across large scale shock waves. The turbulence downstream of the
interaction is, in fact, characterised by smaller scales (see also gure 8.37),
pushing the dissipative range to larger wave-numbers. Another well-known
e ect of shock waves on isotropic turbulence is the strong ampli cation of
the transverse vorticity component. As a qualitative visualisation of such
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(a) Kinetic energy spectra applying Tay- (b) Kinetic energy spectra along z (y =
lor's hypothesis to temporal signals. 0:7 ). The vertical dashed line represents
the Nyquist grid wavenumber.

Figure 8.36: Kinetic energy spectra. Dashed linex = 8 ; solid line,
x =4 . E denotes the kinetic energy Fourier spectrum of the temporal (left)
and span-wise (right) velocity signal. represents the wavenumber which is
evaluated along the span-wise direction as, = 0:5=z and, using Taylor's

hypothesis, as = 2 f= hjjujji,, with f the temporal frequency of the time
signal.

Figure 8.37: Numerical Schlieren.

behaviour, a wall view of the vorticity eld is shown in gure 8.38. From
this gure, the recovery of velocity uctuations right after the turbulent inlet
condition is also seen.

Knowing the time history of the main variables, the discrete Probability
Density Function (PDF) of quantities of interest may be built in a time-
averaged statistical sense. At the downstream probe location, the ow regu-
larly oscillates between subsonic and supersonic regimes. Consequently, the
PDFs have been conditioned to the local Mach number. The discrete PDFs
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Figure 8.38: Instantaneous absolute value of the normalised span-wise com-
ponent of the vorticity eld (wall view). Vertical white lines represent com-
pression and expansion corners. Three periods along the span-wise direction
have been plotted.

of density and pressure are shown in Fig 8.39. The PDF of pressure, shown

(a) Pressure PDF. (b) Density PDF.

Figure 8.39: PDF of density and pressure. Dash-dotted line, conditional
PDF with Ma < 1; dashed line, conditional PDF with Ma > 1; solid line,

total PDF. Vertical dotted line on the left gure represents the pressure mean
value.

in gure 8.39(a), is not particularly in uenced by the supersonic/subsonic
regime. On the other hand, in gure 8.39(b), a signi cant dependance on the
sonic regime is observed for the density: whenever the Mach number exceeds
a unitary value, the density PDF tends to extend to larger values, whereas,
in subsonic conditions, it is more symmetric with respect to the mean value.
This tendency can be partially explained by the presence of shocklets [278] in
the detached ow, causing local compressions, and, consequently, an abrupt
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increase of the uid's density.

In these simulations, the shock-capturing arti cial viscosity must be es-
sentially inactive in the separated ow, which is characterised by strong vor-
tical structures. This is conrmed in gure 8.40, where the averaged value
of the arti cial viscosity is shown. The model is active only in the proximity
of the shock wave, whereas vanishing values are observed in the rest of the
domain. Similarly, the positivity-preserving scheme, has a relatively low and

Figure 8.40: Snapshot of averaged arti cial viscosity (n?=s).

localised activation, as shown in gure 8.41. To visualise its activation levels,
an element-wise constant ag has been introduced, taking a unitary value if
the limiter is active and zero if it is not. Such ag indicator is then averaged
in time and along the span-wise direction following the classical paradigm
for statistically steady state and span-wise periodic ows. The maximum
value assumed by the limiter ag is approximately 1 10 4 meaning that
the limiter is not only active in a very small region of the ow but also mostly
inactive in time as well.

Figure 8.41: Averaged limiter activation.
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8.4.3 Analysis of the resolved kinetic energy balance

The space ltered mass and momentum balance equations are obtained ap-
plying a density weighted spatial Itering operation f) = ()= to equa-
tions (2.1) and (2.2):

gt —@( 8)=0; (8.8)
h
@ s @)= @ @ @j i

where Si‘jj is the deviatoric part of the strain-rate tensor, computed from the
resolved velocity eld,

g-1 @, @ 1@
72 @x @x 3@x'’
and the terms representative of transport by unresolved uctuations read,

(8.10)

i = “eg Uu, (8.11)

Y= 2s¢ 2 (BE: (8.12)
The total kinetic energy may be written
1 1

Ek—éuu E*iei+¢<; (8.13)

where k = (Uj0; T 8)=2 denotes the unresolved part of the kinetic

energy.

The contribution of i}’ (8.12) is often neglected, based on the assumption
that terms involving molecular viscosity are mostly restricted to the smallest
scales and then weakly a ected by the averaging or Itering operations. Most
common turbulence models for the unresolved Reynolds stress tensqr rely
on the so-called Boussinesq's hypothesis (eddy-viscosity hypothesis):

2
j =27 (S 3K i (8.14)
where  is the eddy-viscosity.

The balance equation for the resolved part of the kinetic energy may be

written as
@2 Tayey)

@t Kot Ki Kot Ks Ka (8.15)
with
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The rst term on the RHS of (8.15) represents a transport term, which
only redistributes kinetic energy. The last four terms, instead, act as sources
and sinks of the kinetic energy of the resolved scales.K; denotes the
pressure-dilatation work, which quanti es the exchange of energy between
kinetic and internal energy balances. The ternK , represents the large-scale
viscous dissipation.K 3 is the dissipation term of the resolved part of the ki-
netic energy (.e., the so-called production term ofk, the unresolved kinetic
energy) andK 4 denotes the contribution of the unclosed viscous term due
to the non-linearity of molecular viscosity.

In a similar manner, the transport equation for the unresolved part of
the kinetic energy (i.e., the last term in equation 8.13) reads,

@k @ 1
ot o ke S(Ukukl; Bue;)
o - -
* B pu +pg + 2 (T)Sdu 2 (T)S%e, I8 (g1g)
& & @ Mg ., @
+ p@}( F?@?( (T)S;§ @x (T)S; @x * li%@_}i'
K3

As in the resolved kinetic energy balance, all the terms on the RHS can
be cast in ux terms, which only redistribute the turbulent kinetic energy
in space, and in source/sink contributions. The most interesting term, for
the purposes of the present work, is certainly the last one in equation 8.18,
which coincides exactly with the term K 3 of (8.15) with inverted sign. Such
term is, in fact, representative of the interchange of kinetic energy between
the resolved and unresolved scales within the LES formalism or mean and
uctuating elds in the RANS framework. In other words, the dissipation
of the resolved kinetic energy, denoted a¥ 3, directly coincides with the
production of unresolved kinetic energy. Most of the following analyses will
be focused on the resolved kinetic energy balance rather than on the unre-
solved kinetic energy conservation law. Such decision is mainly justi ed by
the fundamental importance of the resolved kinetic energy within the LES
framework. The main task of LES is, in fact, providing a generally satisfying
description of the large scale motions and only model the in uence of the
smallest scales on the resolved eld.

If not explicitly stated di erently, all the terms of the resolved kinetic
energy balance will be considered as normalised by the quantity; u$ = .

Averaged elds

In the DNS featuring an homogeneous direction, the density-weighted ensemble-
averaging is de ned from an integration in time and along the statistically
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homogeneous direction:

R R
“ 4 dxadt
€(x1;x2) = — = R—Rs ; (8.19)
L o dxsdt

for a su ciently large duration T and whereL denotes the length of thexs
homogeneous direction. The term ; (pressure-dilatation) and K 3 (dissi-
pation) of equation (8.15) are thus rst considered in a RANS context, for
which the balance equations formally take the exact same form as the ltered
ones.

Pressure-dilatation (K ;) represents a quantity which can be directly ex-
pressed as a function of the resolved variables, as opposed to the unresolved
dissipation (K 3), for which explicit turbulence modelling is needed. The
pressure-dilatation term, despite being a large-scale quantity, is particularly
important as it represents the primary mechanism of energy exchange be-
tween kinetic and internal energies.

Each of these terms is plotted in the whole domain in gures 8.42 and 8.43.
In the rst gure, showing the dissipation, black and red lines have been
added to highlight zones of negative and positive values, respectively. Clearly,
most of the ow eld is characterised by forward transfer of kinetic energy
from the mean ow to the turbulent kinetic energy, as expected in RANS.
The dissipation term reaches its smallest values right after the interaction
with the shock wave, indicating that most of the unresolved dissipation takes
place at this location. The presence of non-zero values of dissipation in prox-
imity of the shock wave is instead caused by the unsteadiness of the shock
front which oscillates along the stream-wise direction. As already mentioned,
backscatter is rarely observed in mean whereas it is a more common feature
in an explicit Itering setup. However, in the present con guration, even in
mean, a large portion of the ow experiences an inverse energy transfer, from
the uctuating eld to the mean ow, in proximity of the expansion corner.

The correlation between expansion/compression motions and inverse/direct
energy cascade observed by O'Brien et al. [245] and Wang et al. [246, 279]
is then con rmed also in mean. A deeper discussion on the interpretation of
such behaviour will be presented in the next sections.

The pressure-dilatation term p(@=@x) is shown in gure 8.43. The
large-scale compression and expansion are clearly visible in proximity of the
corresponding corners. In the detached region, most of the ow is mildly
compressed due to the presence of local shocklets. Closely after the main
shock/turbulence interaction, the secondary shocks caused by the separated
ow (visible also in gure 8.37) produce a relatively extended compression
region downstream of the main shock. The presence of secondary shocks
is also responsible for the main shock de ection, coinciding in the gure
with the intersection between the two white lines. The pressure-dilatation
work interacts only partially with the incoming turbulent boundary layer in
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Figure 8.42: Dissipation of the kinetic energy of the resolved scalé(s term
of equation 8.15).

a very narrow region of the ow, coinciding with the shock in the vicinity
of the wall. The Reynolds number is in fact not large enough for the shock
wave to penetrate entirely in the turbulent boundary layer. To highlight

Figure 8.43: Pressure-dilatation term K 1 term of equation 8.15).

the interaction, the evolution of the most relevant terms of the resolved ki-
netic energy balance have been computed along the stream-wise direction,
at height y* 30 ( gure 8.45). As already observed in gure 8.43, the dis-
sipation reaches its local minimum right after the shock. Upstream of the
shock, turbulence interacts with the shock wave generating uctuations at
smaller scales, thereby promoting a large amount of dissipation immediately
after. For the same reason, downstream of the primary shock, turbulent ki-
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netic energy is locally produced and subsequently advected in the detached
region (see gure 8.44). Similarly to the kinetic energy dissipation, non-zero
values of turbulent kinetic energy in proximity of the shock wave are mainly
caused by the oscillation of the shock wave. It is worth mentioning that the

Figure 8.44: Normalised turbulent kinetic energy:2k=( 1 u? ).

pressure-dilatation work assumes non-negligible values only in proximity of
the shock wave. Across the shock, in fact, kinetic energy is locally converted
in internal energy, precisely, through the pressure-dilatation term. In terms
of resolved kinetic energy balance, the negative values of dissipation and
pressure-dilatation work are mainly compensated by the ux termK g which
assumes mostly positive values along the stream-wise direction. The sum of
all the terms on the RHS of (8.15) has been evaluated and it is additionally
shown in gure 8.45 as solid black line. The local balance of resolved kinetic
energy is very close to zero, indicating an accurate prediction not only of
the large-scale terms such as pressure-dilatation and viscous dissipation, but
also of the unclosed uctuating contributions such as the unresolved dissi-
pation term K 3. Furthermore, an accurate local balance of resolved kinetic
energy is also indicative of negligible numerical dissipation, con rming the
high resolution of the present DNS. An additional term in equation 8.15, rep-
resenting the contribution of the arti cial viscosity model, has been taken
into account in the evaluation of the resolved kinetic energy balance shown
in gure 8.45. Such term can be written as

. @ @, @ °
@x “Vax’ NVoex

Its contribution on the total balance of resolved kinetic energy has shown
to be quite smaller than the other relevant terms. Nonetheless, it has been
found necessary to include it in order to achieve an accurate balance, in

Ks (8.20)
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Figure 8.45: Main terms of the resolved kinetic energy balance (equa-
tion 8.15) along the stream-wise direction at heighty*  30. Dashed line,
ux term K; dotted line, pressure-dilatation work K 1; dash-dotted line, dis-
sipation term of the resolved part of Qe kinetic energyK 3; solid line, local
balance of the resolved kinetic energy _, K; (K5 from equation 8.20). All
the terms are normalised by ; u3 = .

particular in proximity of the shock wave. (The expression of such term has
been omitted in equation (8.15) for clarity purposes.)

Space ltered vs averaged elds

The dierential Iter proposed by Germano [280] is applied, in which the
resolution of a heat-type equation is performed with the spectral di erence
scheme employed for simulating the ow. Filter widths of =2 h, =4 h
and =8 h have been considered in the following analysis, witlh the DNS
resolution.

The role of compressibility in kinetic energy transfers has been exten-
sively investigated [279, 281, 282, 246, 283, 284, 245], where the most relevant
studies have been focused on the interconnection between large scale dilata-
tion, turbulent Mach number and the dissipation. The rst two represent
the most relevant indicators of local levels of compressibility and the last one
drives the canonical mechanism of kinetic energy redistribution along scales
in turbulent ows.

In gure 8.46, the PDF of the dissipation term of the resolved eld (term
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K 3 in equation 8.15) is shown using both averaging and lItering approaches.
Some peculiar di erences can be noticed. The rst, more relevant, can

Figure 8.46: PDF of the SGS kinetic energy dissipation term K 3). Black
line, averaging; shades of greys, lItering with =2 h, =4 h,and =8 h
for increasing darkening

be identi ed in an evident prevalence of negative contributions ofK 3 using
averaged elds (see gure 8.47). In mean, within reasonable bounds, the as-
sumption of classic kinetic energy cascade holds, whereas, using the ltering
operation, a much larger amount of both positive and negative values are
observed. Still, the left tail of the PDF is clearly longer than the right one,
indicating that forward transfer is still more likely to occur than backscat-
ter. Even if the general behaviour of averaged and Itered PDFs is clearly
di erent, mean values are similar. Such observation is in agreement with the
suitability of eddy-viscosity models: their dissipative nature is in fact able to
represent mean kinetic energy transfers (but not local ones). The in uence
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Figure 8.47: Detailed view of gure 8.46.

of the small scales on the resolved ow eld is then fairly well approximated,
despite the absence of explicit backscatter mechanisms.

Secondly, as expected, local interactions allow much larger values of both
inverse and direct energy cascade due to a less regular ow eld. Smaller
Iter widths lead, in fact, to larger gradients and therefore larger values of
dissipation. Such behaviour is clearly visible in gure 8.46, where a narrower
PDF is observed for the largest Iter size ( =8 h). Similar trends have been
already reported in the case of compressible forced isotropic turbulence by
Wang et al. [246]. Finally, the negligible di erence between the PDFs for =
2h and =4 his a good accuracy indicator for the present computation. A
very small amount of kinetic energy is, in fact, transferred between the two
scales, showing that the total kinetic energy can be considered fairly well
resolved by the Nyquist grid size (see also gure 8.36(h)).

In the present work, as classical indicator of small scale compressibility
activity, the SGS Mach number has been considered. Namely, the SGS Mach
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number is de ned as: s
Masgs = g—kp . (821)
The averaged SGS Mach number throughout the domain is shown in
gure 8.48. In gures 8.49 and 8.50, the ltered SGS Mach number is dis-
played for increasing lIter size. The maximum value of the averaged SGS
Mach number is approximately equal to0:32. Using explicit Itering, instead,
slightly higher values can be observed (aroun@:42for =4 hand =8 h).
Non-negligible compressibility e ects are expected for values approximately
larger than 0:3 [285, 286, 287, 288]. Such values have been reported mainly
in the detached region of the ow, where compressibility is expected to have
a much stronger in uence. Non-zero values of the turbulent kinetic energy

Figure 8.48: Averaged SGS Mach number (equation 8.21).

Figure 8.49: Filtered SGS Mach number (=4 h).
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Figure 8.50: Filtered SGS Mach number (=8 h).

are observed not only in the detached region but also in proximity of the
shock wave, where the ow is essentially laminar. In average, the generation
of turbulent kinetic energy at the shock location is explained by the oscilla-
tion of the shock wave in the stream-wise direction. Considering LES space
Itering, such tendency is simply caused by the spatial regularisation of the
discontinuity.

To focus on the mutual in uence between kinetic energy transfers and
compressibility, the correlation between large scale pressure-dilation work
and SGS kinetic energy dissipation is analysed in gure 8.51, where the
joint-PDF (JPDF) of the K3 and K, terms is depicted. In mean, a large
amount of the ow eld is characterised by a classical direct energy cascade,
as the kinetic energy dissipation term is evidently skewed toward negative
values. The evident branch of positive values of dissipation in the second
quadrant is instead caused by the expansion fan downstream of the compres-
sion ramp (see gure 8.42 for comparison). Considering Itered quantities,
both di erences and analogies can be noticed. Dierently with respect to
the JPDF of the averaged eld, a larger amount of backscatter is present,
in particular, in compression regions. Expansion motions are still mainly
characterised by backscatter, whereas compressions enhance a direct energy
cascade. Such tendency is more evident for larger Iter widths and is in-
trinsically connected to the previous gures 8.49 and 8.50: for larger lIter
widths the unresolved kinetic energy is higher, leading to larger SGS Mach
numbers and a consequently stronger in uence of compressibility in kinetic
energy transfers.

A more intuitive visualisation of pressure-dilatation work and dissipa-
tion of the resolved scales is shown in gure 8.52, where local interactions

A shock wave, from a numerical point of view, will still represent an unresolved feature
of the ow even if not directly linked to the classical concept of turbulence under-resolution.
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Figure 8.51: JPDF of dissipation of resolved scalesK(z) and resolved
pressure-dilatation work (K1). Left plot, averaged data; middle plot, I-
tered data with =4 h; right plot, Itered data with =8 h.

are highlighted: compression regions are characterised by classical forward
kinetic energy cascade, whereas, vice-versa, expansion regions are more likely
to experience backscatter.

Notice that the JPDF of the averaged eld in gure 8.51 is in large
amount restricted to a very narrow region along theK; = 0 line, mean-
ing that, in mean, most of the unresolved activity is restricted to regions of
negligible pressure dilatation work. The strongest kinetic energy transfers
are located right downstream of the interaction with the shock wave, where
the ow is only mildly compressed due to the presence of shocklets gener-
ated by the detached ow. Considering Itered elds, the JPDFs are much
wider and characterised by a large amount of both positive and negative
pressure-dilatation work. The shape of the JPDF of the averaged eld can
be explained by the highly intermittent character of the separated ow. The
averaging operation causes an overall compensation between compression
and expansion regions. Such e ect is an example of the kind of information
which is lost studying averaged elds only. It is then relevant to highlight
that the importance of compressibility in the modeling is not entirely im-
posed by the physics of the problem, but it is also strongly in uenced by
the Iter width and thus by the ow resolution chosen for the simulation.
Relatively coarse LES are then more likely to experience a stronger in uence
of compressibility in the modeling rather than well-resolved simulations.

Another way to study the relation between compressibility and kinetic
energy transfer is to relate the SGS Mach number with the SGS kinetic
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Figure 8.52: Visual comparison of dissipation (bottom,K 3) and pressure-
dilatation work (top, K) for a given instantaneous ltered eld ( =4 h).
The two quantities are shown in a specular way to ease the comparison.
White and black circles highlight regions of intense back and forward scat-

tering respectively.

energy dissipation. In gure 8.53 the JPDFs of these two quantities are
shown considering both averaging and ltering approaches. The amount

Figure 8.53: JPDF of SGS kinetic energy dissipation andMasgs. Left plot,
averaged data; middle plot, Itered data with = 4 h; right plot, Itered
data with =8 h.

of forward kinetic energy transfer gets stronger and stronger for increasing
values of Masgs, indicating that larger turbulent Mach numbers enhance
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Figure 8.54: Visual comparison of SGS dissipation (bottom) and SGS Mach
number (top) for a given instantaneous Itered eld ( = 4 h). The two
guantities are shown in a specular way to ease the comparison. Circles
highlight strong energy transfer regions.

dissipation of the resolved scales.

Considering the ltered counterparts, a large amount of backscatter is
present, even if the JPDF is still clearly asymmetric toward negative values
of K3. In a similar way with respect to the averaged terms, both forward
and backscatter tend to increase for larger SGS Mach numbers. This can be
clearly observed in gure 8.54 as well, where a direct comparison of the two
guantities is shown for a given instantaneous ltered eld.

Figure 8.53 links two quantities which are both unresolved, since the
de nition of SGS Mach number involves the turbulent kinetic energy. On
the contrary, gure 8.51 relates an unclosed term, such as the dissipation
of the resolved kinetic energy, with the large scale pressure-dilatation work,
giving more useful informations in terms of turbulence modelling.

8.4.4 Eddy-viscosity hypothesis

In the previous discussions, the dissipation of the resolved kinetic energy
has been used as the sole indicator of backscatter. Still, due to the intrinsic
compressible character of the equations, it is reasonable to decompose the
dissipation term in two separate contributions,

(@:] g, 1 @3 @ 1 @
i— = S - - = S = — —_— 8.22
' @x T3 @y l@x 3%“ex (8.22)
where if' = §j % j is the deviatoric part of the SGS tensor. Under

incompressible conditions, such decomposition is redundant from an ener-
getic point of view, due to the solenoidal nature of the velocity eld. In
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other words, the in uence of the trace of the SGS tensor on the large-scale
kinetic energy is directly proportional to the level of compressibility of the
ow, quanti ed by the velocity eld dilatation. To recover a traceless tensor,

in compressible LES, only the deviatoric part of the SGS tensor is commonly
modelled using an eddy-viscosity hypothesis (see equation 8.14). The in u-
ence of this hypothesis on the total resolved kinetic energy is then expressed

as:
@i 1 @I d @i

L= 4 = == 2 Si, 8.23
ij @}( 3 kk @x tJjj @}( ( )

(see [289]) which leads to the following expression of eddy-viscosity:
= Kd3 * : (8.24)

Tgij (@i=@y

where = (2=3)k (@ =@¥. Such formulation can be interpreted in both

ltered and averaged sense.

The term  represents the turbulent kinetic energy transfer due to the
spherical part of the SGS tensor. It is usually modelled following the [25]
approach, also with a dynamic formulation [26]. This term, involving the
turbulent kinetic energy, vanishes in the incompressible case and the pres-
ence of negative/positive eddy-viscosities is entirely caused by the sign of
the dissipation term (i.e., backscatter implies negative eddy-viscosities and,
vice-versa, forward kinetic energy transfer causes positive eddy-viscosities).
Consequently, the unresolved part of the turbulent kinetic energy does not
play a role in terms of dissipation of the resolved part of the kinetic energy
in incompressible conditions. For non-spectral lters, as observed by Vre-
man et al. [290], the turbulent kinetic energy always takes positive values.
Consequently, in the compressible case, the term is negative in expansion
regions and positive in compression regions, thus following an opposite trend
with respect to K 3.

In gure 8.55 the joint probability density function of these two terms
has been plotted for both averaging and explicit Iltering. The solid black
line denotes the line { = 0 (i.e., K3 = ). Below such line, the eddy-
viscosity assumes positive values, whereas, above of it, the eddy-viscosity is
negative. Regarding the JPDF within the RANS context, a clear prevalence
of forward kinetic energy cascade can be observed. The terk; assumes
mostly negative values and it is particularly clustered around the vertical
line =0 . This property indicates that most of the energy transfers are
located in regions of negligible dilatation (at least in mean). Furthermore, a
distinct bandwidth of non-null values of the JPDF is almost perfectly aligned
with the =0 line. This narrow stripe is located slightly below the =0
line, as it extends for relatively large values of . Finally, the JPDF is
almost entirely con ned below the ; =0 line, indicating that, in statistical
mean, the assumption of positive eddy-viscosity can be fairly accurate, even
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in presence of backscatter. The term , in fact, compensates the backscatter
phenomenon, preventing the occurrence of negative eddy-viscosities. With
the space ltered elds, the same tendencies are present but in a less evident
form. Even if a forward kinetic energy cascade is generally more likely to
occur than backscatter, a large amount of the ow eld is characterised by
negative values of the eddy-viscosity.

Figure 8.55: JPDF of SGS dissipation and . The solid black line denotes the

line { =0. Left plot, averaged data; middle plot, Itered data with =4 h;

right plot, ltered data with =8 h. Both K3 and are normalised by
3 =

1 Ul - .

To highlight the di erence between K3 and the sumKs + | their av-
eraged values are shown in gure 8.56. Following the classical de nition of
kinetic energy transfer based orK 3, the expansion region experiences strong
backscatter (left gure), but, if the compressible contribution  is accounted
for, only negative values are observed in the whole domain. It is then rea-
sonable to conclude, that the deviatoric part of the SGS tensor, in average,
has an essentially dissipative role, whereas the trace is directly responsible
for the backscatter observed in proximity of the expansion corner.

To evaluate the contribution of the spherical part on the total SGS kinetic
energy dissipation, the joint probability function of the deviatoric contribu-
tion K3+ with respect to the large scale pressure-dilatation workk ; has
been computed and shown in gure 8.57. Starting from the JPDF of the
averaged eld, in agreement with gure 8.56, the deviatoric contribution of
the SGS kinetic energy dissipation takes negative values only. The backscat-
ter region observed in the left side of gure 8.51 completely disappears when
the spherical part is subtracted. In the Itered case, instead, a mild correla-
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(@) Ks. (b) Ks+

Figure 8.56: Comparison between averaged termks and K3z + . Both
terms are normalised by 1 u$ = .

tion between the two terms can still be observed even though considerably
weaker, in particular for small Iter widths. These observations highlight

a clearly di erent behaviour between averaged and ltered approaches. On
the one hand, the correlation, once observed, completely vanishes in mean
when the spherical part is subtracted. On the other, the same correlation
persists when evaluated on ltered elds.

Figure 8.57: JPDF of deviatoric SGS dissipation and large scale pressure-
dilatation work. Left plot, averaged data; middle plot, ltered data with
=4 h; right plot, Itered data with =8 h.

To facilitate the comparison, gure 8.58 shows the JPDFs of the averaged
eld accounting, respectively, for both deviatoric and spherical contributions
or for deviatoric contributions only. A spherical bulk term, as the one intro-
duced by the arti cial viscosity scheme, can be interestingly interpreted as



8.4. COMPRESSION/EXPANSION RAMP: DIRECT NUMERICAL SIMULATION

Figure 8.58: Averaged JPDF of standard and deviatoric SGS dissipation and
large scale pressure-dilatation work. LeftK3; right, K3+

some kind of approximation of the turbulent kinetic energy itself. In fact,
close to the shock wave, the ow eld divergence is negative and the term

@
@x
is consistently negative too, where is a bulk viscosity. From a direct com-
parison of such term with the spherical part of the SGS tensor the following
heuristic expression can be easily obtained:
2, O
3 @x
Away from the shock, such similarity is less evident. Nevertheless, the
parallelism between compression regions and positive turbulent kinetic en-
ergy can be conveniently used for modelling purposes. In fact, it can be
easily proved that a bulk viscosity term in the momentum equation causes
large scale kinetic energy dissipation. Therefore, the additional bulk term
would ideally reproduce only the dissipative character of the turbulent ki-
netic energy on the large scales, in a fashion which resembles eddy-viscosity
models, where only the direct kinetic energy transfers are modelled. In a
similar way, [246, 279] proposed a simpli ed relation between SGS dissipa-
tion and dilatation, reporting a scaling close to (@yx=@x)? in compression
regions, which is the same form of a bulk viscosity term. In their work, the
total SGS dissipation was analysed, including both deviatoric and spherical
contributions. The bulk viscosity, furthermore, has a well-knows dissipative

(8.25)
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character on the dilatation eld, reinforcing the idea of SGS modelling as
essentially a regularisation technique.

In the incompressible case, vorticity is smoothed thorough explicit Iter-
ing of DNS data and an analogous mechanism needs to be present in under-
resolveda-priori simulations, for example, through an augmented shear vis-
cosity. In the same way, a similar tendency is expected for the dilatation as
well. The Itered dilatation will result less singular and irregular. Thus, a
regularisation of it would be successfully produced by an arti cial bulk term
in the resolution of the Itered momentum equation. The natural decoupling
between dilatational and solenoidal contributions in compressible turbulence
(see [229)) clearly indicates a convenient dichotomy based on Helmholtz de-
composition. The contraposition between solenoidal and dilatational eld
(and consequently vorticity and divergence) could possibly suggest a paral-
lelism in the SGS modelling as well, based on the di erence between devi-
atoric and spherical components of the SGS tensor, that could be possibly
modelled using their respective natural choices of shear and bulk viscosities.
A methodical development of such a model is far beyond the scope of the
present work. Nevertheless, the preliminary results herein presented can be
interpreted as very rst step in this direction and future research will be
focused on this matter.

8.4.5 Conclusions

A Direct Numerical Simulation of a 24 compression/expansion ramp has
been performed using a high-order spectral di erence code. The presented
setup has been chosen as a popular example of shock wave-turbulence in-
teraction. Despite its relatively simple geometry, the interaction between a
supersonic boundary layer and compression/expansion ramps is representa-
tive of many di erent complex features of compressible turbulent ows.

After a thorough validation, considering mean pro les and wall coe -
cients, a series of a-priori analyses have been considered. The present work
has been developed using both averaging and explicit Itering, providing a
clear dualism between RANS and LES approaches, respectively. Most of the
attention has been focused on speci ¢ terms which appear in the resolved
kinetic energy balance in both ltered and averaged sense. In particular, the
well-known dissipation term has been analysed in detail. It has been shown
that, in the present setup, following both the averaging and lItering for-
malisms, the presence of both direct and reverse kinetic energy cascade was
observed. In agreement with previous observations [246, 245], compression
regions are mostly characterised by forward kinetic energy transfers whereas
an inverse cascade is promoted by expansion motions.

Subsequently, the dissipation term has been decomposed in deviatoric
and spherical contributions. Such procedure has been used to evaluate the
suitability of eddy-viscosity models for the deviatoric part of the SGS ten-
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sor in compressible ows. Averaged results have shown that the expression
of equivalent eddy-viscosity rarely assumes negative values throughout the
whole domain. It is then evident that the correlation, already observed, be-
tween large scale dilatation and SGS dissipation is, in large part, caused by
the spherical part of the SGS tensor. Its corresponding term in the total
kinetic energy balance is, in fact, directly proportional to the divergence of
the velocity eld. The importance of proper modelling of the spherical part
of the SGS tensor is then highlighted.

For su ciently high turbulent Mach numbers, the in uence of expan-
sion/compression motions and, consequently, of the spherical part of the
SGS tensor, increases, revealing a clear mechanism of backscatter based on
the local levels of compressibility. It has been observed that, inspired by
classical eddy-viscosity models for the deviatoric part, a bulk viscosity could
be used as an SGS model for the turbulent kinetic energy. Further analyses
will be focused on a better understanding of solenoidal and dilatational con-
tributions on kinetic energy transfers. The ultimate goal of such analyses is
identi ed in the development of SGS models (in particular for the turbulent
kinetic energy) more suitable to high-order simulations of compressible ows.
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Chapter 9

Conclusions and perspectives

High-order methods represent an expanding eld in the CFD community.
Their use is becoming more and more widespread both in academia and
industry. Still, aspects such as numerical stability, turbulence modelling
and shock-capturing, represent the real bottle-neck for their de nitive blos-
soming in the industry. Along these lines, the present work was structured
touching all these fundamental topics of high-order methods. In the rst
chapter 2 was focused on the fundamental equations considered in this work,
such as Euler and Navier-Stokes equations. Later, the problem of turbu-
lence modelling, within the framework of Large-Eddy Simulations, was rst
introduced in chapter 3. Finally, the speci ¢ numerical scheme herein stud-
ied (i.e., the Spectral Di erence scheme) was presented in chapter 4. All
the relevant details on its implementation, from the interpolation and dif-
ferentiation operators to inviscid and viscous uxes, have been thoroughly
discussed. These three rst chapters aim at providing a su ciently extensive
background knowledge on high-order simulations of turbulent ows.

Continuing with the reading, more and more complex systems have been
considered. In chapter 5, a series of spectral analyses have been applied, not
only to the Spectral Di erence scheme but also on two di erent variations
of the Flux-Reconstruction scheme. Such analyses aim at providing a better
understanding on the general behaviour of high-order schemes in the simula-
tion of under-resolved ows. The current state-of-the-art of spectral analyses
for high-order methods is mainly composed by temporal eigen-analysis, spa-
tial eigen-analysis and non-model analysis. These three techniques are all
based on the numerical discretisation of the one-dimensional linear advection
equation using Bloch wave-like functions. Nonetheless, high-order methods,
employed in three-dimensional, strongly non-linear problems can behave very
di erently. In the present work, a generalisation of the up-cited techniques
for non-constant advection velocity was proposed as a rst step toward more
complex systems. A deep theoretical study, considering di erent schemes
and di erent classes of numerical uxes has been used to gain useful insights
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about the spatial discretisation and its dependency on non-linear uxes. A
series of relevant numerical experiments have been considered, con rming
the theoretical ndings. The Spectral Di erence scheme has shown to be
more dissipative for spatially evolving turbulence with respect to the nodal
Discontinuous Galerkin recovering Flux Reconstruction scheme. The dy-
namics of numerical dissipation for increasing levels of inhomogeneity in the
advection velocities was considered responsible of such behaviour.

In chapter 6, once known the concept of numerical dissipation and the
most commonly used techniques to quanti ed it, the informations gathered
in the previous chapter have been used in connection with Sub-Grid Scales
modelling. The Spectral Element Dynamic Model (SEDM) has been now
properly introduced with all the implementational details and its intrinsic
connection with numerical dissipation has been thoroughly discussed. The
aim of the SEDM is to develop an SGS model, within the high-order SD dis-
cretisation, which is aware of the local levels of numerical dissipation. The
SEDM can be, in fact, interpreted as a linking point between Implicit LES
and Explicit LES. For su ciently low orders of approximation numerical
dissipation is used to mimic the dissipative in uence of the smallest scales
on the resolved eld. On the other hand, increasing the order, and conse-
quently decreasing numerical di usion, explicit SGS dissipation is injected in
the system to keep the simulation accurate and stable. In chapter 6, two nu-
merical simulations of transitional ows have been considered to highlight the
capabilities of the SEDM. Namely, the bypass transition on a zero-pressure-
gradient at plate simulation and the ow transitional ow over an SD7003
airfoil. Both computations where considered in almost incompressible con-
ditions. The aim of such computations was highlighting the behaviour of
the SEDM for complex ows where dierent levels of resolution coexisted
within the domain. The SEDM, in fact, has shown a signi cant improve-
ment with respect to standard SGS models in transitional ow was observed.
Its ability to automatically distinguish between laminar and turbulent ows
has shown to be a crucial point in simulating transition. Furthermore, in
particular for the SD7003 simulation, the drawbacks of Implicit LES have
been highlighted: the SEDM has shown to keep the simulation stable also
for relatively high-order of approximation (N =6 and N = 8).

The last two chapters were dedicated to the generalisation of the previ-
ously presented concepts to compressible ows. The rst obstacle in simu-
lating compressible turbulence ows is certainly represented by the natural
development of shock-waves in the ow eld. The numerical discretisation
of discontinuities such as shock waves can be particularly complex in the
framework of high-order numerical scheme. Consequently, in chapter 7, the
notion of shock-capturing techniques was introduced. More speci cally, a
bulk-based, low dissipative, arti cial viscosity (AV) approach was proposed
and compared with a more classical laplacian regularisation model. It was
shown that the bulk-based arti cial viscosity was able to present the non-
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monotonic behaviour of the entropy eld across the shock-wave and to dras-
tically reduce the levels of dissipation for under-resolved turbulent ows. It
was, in fact, shown that the laplacian approach caused a signi cantly strong
dissipation of vorticity modes, leading to an extremely fast decay of kinetic
energy. Instead, the bulk viscosity has shown to leave almost untouched the
vorticity eld. On the other hand, the bulk arti cial viscosity caused a non-
negligible deterioration of temperature and dilatation uctuations, although
smaller than the one provoked by the laplacian model.

Consequently, chapter 8 starts with the introduction of a Ducros-based
correction on the proposed AV technique. The improved model was then
applied to a turbulent transonic airfoil simulation in combination with the
SEDM. In such scenario, it was shown the correct activation of both arti cial
viscosity and SGS model within the domain. The bulk viscosity eld was
observed to take high values only in proximity of the shock-wave developing
on the upper side of the airfoil. The SGS model, in a similar way, was
active only in the narrow detached region of the ow eld. The transonic
airfoil simulation was used a rst, simpli ed example of shock-turbulence
interaction.

In the second part of chapter 8 the interaction between a fully-developed
turbulent boundary layer and a compression ramp was presented.

Firstly, in order to develop more generalised versions of the SEDM for
compressible ows, a Direct Numerical Simulation study has been performed
on a compression/expansion ramp. In particular, the transfer of kinetic en-
ergy has been evaluated using explicit Itering and Reynolds averaging. Such
analyses have been performed with the goal of a better understanding on
the general form of turbulence SGS models in the presence of non-negligible
compressibility e ects. Most of the attention has been focused on specic
terms which appear in the resolved kinetic energy balance in both Itered
and averaged sense. In particular, the well-known dissipation term has been
analysed in detail. It has been shown that, in the present setup, follow-
ing both the averaging and ltering formalisms, the presence of both direct
and reverse kinetic energy cascade was observed. In agreement with previ-
ous observations [246, 245], compression regions are mostly characterised by
forward kinetic energy transfers whereas an inverse cascade is promoted by
expansion motions.

Subsequently, the dissipation term has been decomposed in deviatoric
and spherical contributions. Such procedure has been used to evaluate the
suitability of eddy-viscosity models for the deviatoric part of the SGS ten-
sor in compressible ows. Averaged results have shown that the expression
of equivalent eddy-viscosity rarely assumes negative values throughout the
whole domain. It is then evident that the correlation, already observed, be-
tween large scale dilatation and SGS dissipation is, in large part, caused by
the spherical part of the SGS tensor. Its corresponding term in the total
kinetic energy balance is, in fact, directly proportional to the divergence of
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the velocity eld. The importance of proper modelling of the spherical part
of the SGS tensor is then highlighted.

Finally, an LES computation was performed to evaluate, once again, the
coexistence between the shock-capturing and SGS model. The combination
of SGS and AV is well balanced thanks to the addition of Ducros sensor [22]
to the standard modal sensor by Peraire and Persson [7] within the shock-
capturing procedure. The activation of the AV is mainly limited to the outer
layer, where the shock is laminar and una ected by turbulence. The SGS
model, in the same way, thanks to its dynamical natural is mainly active in
the turbulent boundary layer. An extensive validation of the present test
case has been performed, including temporal/spatial kinetic energy spectra,
wall-normal proles and Reynolds Stress Anisotropy Invariant Maps ow
representation.

The present work, as mentioned at the beginning of this section, was
structured in order to touch the three main aspects of high-order simu-
lations of compressible turbulent ows: numerical dissipation/dispersion
(chapter 5), Sub-Grid Scales modelling (chapter 6), compressibility e ects
(chapters 7 and 8). As a whole, the work presented in each of these chap-
ters continues and expands the eld of high-order methods for compressible
turbulence. Each of the sub-topics therein presented can evolve in several
di erent ways, exploring a large variety of new techniques and applications.
More and more complex spectral analyses techniques are likely to appear
in the eld, considering more complex sets of equations and mathematical
tools to study them. In addition, for example, a fully-discrete version of the
present techniques focused on the interaction between spatial and temporal
errors in currently in development by the author.

Di erent improvements of the bulk arti cial viscosity model can be ex-
plored. In particular, possible future work could be focused on the identi-
cation of optimal sets of variables to better detect shock wave and reduce
the arti cial dissipation as much as possible. Finally, the DNS database gen-
erated with the compression/expansion ramp can be extremely useful in the
development of more sophisticated SGS models for compressible ows. The
highly resolved ow eld can provide useful informations on the local struc-
ture of wall-bounded, compressible turbulence. In similarity with respect to
the shock-capturing technique, also the SEDM could be easily modi ed in a
more generalised form, detecting turbulence under-resolution using not only
the velocity eld but also thermodynamic variables. The global knowledge on
numerical dissipation/dispersion, shock-capturing and compressibility e ects
could lead to a uni ed SGS model able to detect under-resolution associated
to shock waves and turbulence using di erent sets of variables and treat them
using models speci cally design to interact with each other.
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Appendix A

Flux Reconstruction schemes

Collocation based nodal DG and SD have been widely used in the last few
years due to their simplicity. The FR method [77, 78] provides a simple and
general framework among which popular schemes like DG and SD can be
recovered for linear advection problems.

The FR scheme, apart from being a robust and promising numerical
scheme for aerodynamics simulations, is also a very useful tool to study
a wide range of dierent high-order numerical schemes. Like nodal DG
schemes, FR schemes exploit a high-order (nodal) polynomial basis to ap-
proximate the solution within each element of the computational domain,
and like nodal DG schemes, inter-element continuity is not strongly enforced.
However, unlike nodal DG schemes, FR methods are based solely on the gov-
erning system in a di erential form. A description of the FR approach in
one dimension is presented below.

For simplicity, let us consider a reference element, = f} 1 2R 1g
in which the general one-dimensional conservation law is de ned

@u, @f () _
@t @

0: (A1)

The FR approach to solve Eq. (A.1) within the standard element can be
described in ve stages. The rst stage involves the representation of the
approximated solution ¢ in terms of a nodal basis function:

X
aR) = uili(%); (A.2)
=0

wherel; are the Lagrange polynomials de ned on a certain set of point®;
(with i=0to N) called solution points. Notice that this implies a polynomial
representation oft of degreek. The second stage consists in the construction
of a degreeN polynomial ux f° = fP(&;t) which is based on the same
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collocation basis asi:

O (%) = X 21 (%); (A.3)
i=0

where ux nodal values can be easily evaluated directly from the approxi-
mated solution. The third stage involves the evaluation of the approximate
solution at the end points of the standard element (namelyd( 1)). Subse-
quently, this information is used to compute the numerical ux at the left
fl and right f interfaces. The fourth stage involves the construction of
the degreeN +1 polynomial f*, by adding a correction ux f¢ = f¢(%;t) of
degreeN +1 to f"D, such that their sum recovers the numerical interface ux
at 2 = 1, yet in some sense follow§® within the interior of . This is
the key step of FR schemes since an higher order polynomial (degriie+1)
is summed to the interpolated one, leading to a di erence in approximation
order that plays a fundamental role in the whole procedure.

In order to de ne f'¢ such that it satis es the above requirements, con-
sider rst two degree N +1 correction functionsg, = g (%) and gr = gr (%)
approximating zero (in some sense) within s and satisfying the following
conditions:

a( 1)=1; g()=0; (A.4)
gr( 1)=0; or(1)=1; (A.5)
and
aL(®) = gr( R): (A.6)
Then a suitable formulation for f¢ can now be written as
fC=(fl Do +(fk Rk (A7)

where f? = fP( 1;t) and R = fP(1;t). Using this expression, the de-
greeN + 1 approximate total ux f within s can be constructed from the
discontinuous and correction uxes as follows

=P+ =P +(fl D)o +(fk FR)Iok: (A.8)

The fth and nal stage of the FR approach involves the evaluation of the
ux divergence at each solution point ®; using the expression

df X dl dg. dgr

a®= PG+ (L D) @)+ (k. RS (A9)
These values can then be used to advanakin time via a suitable temporal
discretisation of the following semi-discrete expression

do; _ it
dt ~  dr
The nature of a particular FR scheme depends solely on three factors:

(%i): (A.10)
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1. the location of the solution points %;;
2. the methodology for calculating the interface uxesf’l and f';

3. the form of the ux correction functions g and gr.

It has been shown by Huynh [77] that, for particular choices of the correc-
tion functions, it is possible to recover some well known collocation methods
(among which, nodal DG and SD) for the linear advection equation. In par-

ticular, Vincent-Catonguay-Jameson-Huynh Flux Reconstruction schemes
can be obtained with the following choice of correction functions:

o (x) = 2" Ln (x) NEN 1ix+)+ bva (o)
1 Ly 1(X)+ L N(x) (A11)
gR()= 5 Ln0)+ SRS =R
where (2N +1)(ayN1)? (2N);
C a ! !
N = 5 N and ay = oy N2 (A.12)

In the above relations, Ly is a Legendre polynomial of degre®l, and cis a
free scalar parameter that must lie within the range
_ 2

~ (2N +1)(ayN1)?2
For the particular choice of the parameterc nodal DG and SD schemes are
recovered. In particular:

and ¢ =1:

C <c<ci; with ¢

2(N +1) _
(2N +1)N(ayN 12’
In this way, the respective correction functions for DG and SD simplify in
the following expressions:

cog =0 and cgp =

N N

0 00= C L Lua )i B200= C 2 (n 00+ L 00
N

6000= Lo 0led @00 = S+ X)Ln ()

(A.13)
An example of correction functions recovering DG and SD schemes, namely,
the DG-FR and SD-FR schemes, respectively, is shown in Fig. A.1.
In the particular case of the linear advection equation with unitary ad-
vection velocity, the FR scheme can be expressed in a matrix form as
‘3? = 2D0 (2f] 2To)gt  @fy  2rTo)gR; (A.14)
. = dg =
where 0; = (&), Dj = Tk®), gF " = == (%) and = (1), | =
i( 1).
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Figure A.1: FR correction functions (g.) of degreeN =5 recovering DG
and SD schemes: solid line, DG-FR; dotted line, SD-FR.



Appendix B

SD scheme versus SD-FR
scheme

In order to highlight the connection between the SD method and the corre-
sponding FR recovering scheme, it is interesting to rewrite Eq. (4.5) at the
general location® as

de IX+1 d|f+
FOEE f'd @+ 1)L (k)+(r’“ fn) g (8); (B.1)

where the contributions of the interpolated uxes at® = 1 have been added
and subtracted. Observing this formulation, it is clearly evident the analogy
with Eq. (A.9). In particular, it is easy to show that the rst summation
of the two equations is exactly the same for a linear ux function. In fact,
considering the linear advection equation with unitary advection velocity,
namely f (&) u(®R):

L AN R N RASIE R )d ®) =
j ) = Uj i h& — (%) = Uj X ) =
j=0 d» j=0  i=0 : d» i=0 j=0
_ d X7 X s
= Uigy DI (®) = Ui g (R):
i=0 j=0 i=0

(B.2)
The last equality has been obtained by noting that the Lagrange interpola-
tion over N + 2 points of the Lagrange polynomial of orderN + 1, namely
[¥(%), coincides with this last.

Notice that, if a non-constant advection velocity is considered and the
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ux is de ned as ' = a(®)u(®), following the original SD case:

I+ . di If A I+ ) XN ISR dljf (%) = X . I+1 a(k )|S(k ) (k) )
j=0 L d# =0 izo S de o =0

X1 X :

=T u s T g g = o SHEOTRD ),
dr ! 1 dr
i=0 i =0 i-0
r 2 )
I [a(x)I? (%)]
(B.3)

wherel [ ] denotes the Lagrange interpolation operation over theN +2 ux
points. Eq. (B.3) evidently di ers from what would be obtained from the
FR procedure:

S )(\l S
nStw =" athu ) (8.4)

i=0 i=0
Clearly the two right-hand sides are equal only when the advection velocity
is constant.

Considering now the second part of Eq. (B.1), it is evident that, in order
for the FR method to recover the SD schemeg, (%) = Ig(k) and gr(%) =
II\J+1 (%). So, just changing polynomial basis, the classical expressions fgr
and gr are recovered:

( 1)N

R (1 R)Ln(®) and gr°(R) = ,(1 +X)Ln(R);  (B.5)
where Ly is the Legendre polynomial of degreé .

It is worthwhile stressing that the de nition of ux points is a key in-
gredient in the SD method. In fact, considering the SD discretisation of the
linear advection equation, according to the particular choice of ux nodes, a
correction function in the FR framework is implicitly de ned. This link will
be of fundamental importance in the proof of equivalence between the two
schemes under such conditions.
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Original Roe's solver

The idea of Roe is the de nition of a parameter vectorQ such that both
variables and uxes can be de ned through it:

U=U(Q) F=F(@Q) (C.1)

then is useful to use two matrices which, depending on the choice of A and
Q, are able to describe the jumps of primitive variables and uxes linearly:

U=B Q F=C Q (C.2)
this implicitly de nes A= CB 1.

Let's consider the one-dimensional isothermal case as an example. Notice
that in this case the speed of sound is a constant value.

Ui+ F(U)x =0 (C.3)
with
_ U _ I E ui
U= U, - U1 - fo B u§+a2 (C'4)

The exact jacobian can be easily computed as:

0 1

A(U) = a2 u? 2u (C.5)
with eigenvalues 1 = u; aand = ui+ a, and eigenvectors:
L= 1 L@ - 1 (C.6)
u c u+c
We can now choose the parameter vector as:
Q= & =gl 1)
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In this way we can de ne the jumps of variables and uxes using the
matrices B and C:

= 24 0. . @ & . (C.8)

& & © 2a%m 2

whereQ = 5(Q_ + Qr). Now it's easy to derive that

0 1

AU)= 2 2 oy (C.9)
with P—, ,P—
u u

b = pki ij: (C.10)

So, known A, is possible to compute the correspondent eigenvalue and
eigenvectors (exactly the same as before but using the averaged veloci.

Once this is done, as we have seen we can nd the coe cients consid-
ering the jump between the primitive variables and nally compute the ux
using (4.48).

Finally, all these results can be generalized to the x-split three dimen-
sional time dependent Euler equations for real gases.
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