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Chapter 1

Introduction

To explain all nature is too difficult a task

for any one man or even for any one age.

Isaac Newton (1643-1727)

1.1 Numerical simulation and scientific computing

Understanding the physical laws that govern the world we live in is a vast project and quite an

ambitious task. Physicists over the centuries have endeavoured to describe physical phenomena

through mathematical models, which play the role of an approximate reality we can understand,

as opposed to the real world that we do not. A model’s goal is to predict the evolution of a

physical system, and is only as accurate as the predictions it provides. But even if understanding

nature in all its complexity is far out of our intellectual reach, apprehending the main lines of its

fabric through models has tremendous value. In a mathematical model, the system under study

is represented by a list of variable values linked together by a system of equations determining

their evolution in space and time. Once initial and boundary values are set, their progress can

be computed by solving the equations, thus yielding future states of the system. An accurate

model reproduces what nature does, and therefore shows that all the relevant mechanisms at

play have been identified and understood.

Mathematical models usually involve a large number of unknowns. Solving their equations

consequently requires a large computing power that only machines can provide. Making

predictions of physical phenomena, that is, simulating nature, by the means of numerical

operations performed on computers is then referred to as numerical simulation. Designing the

models, solving the equations, and making the best use of the available computing resources

places numerical simulation at the crossroad of physics, mathematics and computer science.

Jointly, they give rise to a scientific discipline known as scientific computing. Additionally

to understanding in what way physical laws explain our observations, making simulations on

computers instead of resorting to actual physical experiments, which usually require heavy

machinery or special instruments, as well as a tremendous amount of time, can drastically reduce

the cost of the studies.
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Numerical simulation can, in principle, be applied to any branch of physics, such as fluid

dynamics, structural mechanics, electromagnetism, combustion, or wave propagation. The

context of this dissertation is more specific, and focuses on applications relevant to Electricité

de France (EDF) in Computational Fluid Dynamics (CFD), in particular Darcy flow in porous

media and incompressible fluid mechanics.

1.2 On the way to more robust discretizations

Mathematical models of physical phenomena are usually expressed in the form of Partial

Differential Equations (PDEs), whose resolution presents its fair share of mathematical challenges.

One of them nourishes the active research field on discretization methods. Indeed, PDEs give

rise to so-called continuous problems, whose unknown is a function belonging to an infinite-

dimensional space. Unfortunately, except in very specific cases, the mathematical science in its

current state does not allow to solve continuous problems in an exact manner, that is, exhibit an

analytical formula describing the unknown function. However, it is possible to reduce the space

of research to a finite-dimensional one, and find amongst its elements the closest one (according

to a certain criterion) to the exact solution. This finite-dimensional space is called discrete

space, as opposed to continuous, and is spanned by so-called discrete, or approximate solutions.

The choice of the discrete space, as well as the properties enforced on the approximate solution,

characterize the discretization method.

No one discretization method has been so far able to adequetely manage every PDE problem

physics poses, and a broad spectrum of methods is therefore offered to engineers, according to

the features of the problem they want to solve. In this thesis, we especially focus on the open

issues of complex geometries and non-smooth solutions in CFD, which we tackle by considering

the recently introduced Hybrid High-Order (HHO) methods [43].

1.2.1 Meshes

Solving a differential equation over a complex domain requires that the domain be accurately

approximated by a mesh. Furthermore, that mesh must also enable an adequate representation

of the solution. So, before discussing discretization methods, we shall enumerate the features a

mesh can exhibit to help approximating a complex boundary and to improve the precision of

the solution in the neighbourhood of a singularity. We preliminary introduce classical elements

of terminology.

� Mesh size. Denoted by h, it corresponds to the largest element diameter and measures

the “resolution” of a mesh.

� Element shapes. The elements partitioning the domain can have various shapes; see

Figure 1.1. Whereas the simplest meshes are composed of Cartesian elements, less

constrained meshes can be built using other shapes, such as triangles (resp. tetrahedra),

quadrilaterals (resp. hexahedra), or general polygons (resp. polyhedra). It is also worth

mentioning elements with curved edges (resp. faces), though we leave them out of our

scope.

� Mesh topology. Adjacency relationships among elements, faces, edges, vertices.
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� Mesh structure. The mesh is called structured if the elements are arranged following a

recognizable pattern (Figures 1.1a to 1.1c). The sole position of an element in that pattern

then allows to deduce additional information, especially topological, that would otherwise

have to be stored. If, moreover, all elements have the same shape, then the mesh is called

uniform. Conversely, non-structured meshes are qualified as unstructured (Figures 1.1d

and 1.1e).

� Mesh quality. Numerical methods are often sensitive to the presence of stretched,

flattened or otherwise distorted elements. Each element T is then subject to a quality

criterion in the form of an aspect ratio defined as %T := dT /hT , where hT is the diameter

of T and dT the diameter of the largest ball embedded in T . This quality criterion is

extended to the mesh through the maximum value of all %T , called regularity parameter.

A mesh of good quality has a regularity parameter close to 1, while for a bad one it may

be close to 0.

� Local refinement. In order to improve accuracy in specific areas, the mesh can be locally

refined, meaning that a smaller mesh size is enforced in the corresponding part of the mesh.

See Figure 1.2.

� Hanging nodes and non-conformity. Performing local refinement can lead to the onset

of hanging nodes ; see Figures 1.2a and 1.2b for a Cartesian mesh. A mesh node is qualified

as such if it corresponds to one element’s vertex while hanging on another’s edge or face. As

this particular configuration is often not natively managed by usual discretization methods,

the presence of hanging nodes introduces the notion of non-conforming interfaces, and

subsequently of non-conforming meshes. Notice that the flexibility of unstructured meshes

allows mesh refinement without necessarily resorting to hanging nodes; see Figure 1.2c.

(a) Uniform, Cartesian (b) Structured, triangular (c) Structured, quadrilateral

(d) Unstructured, triangular (e) Unstructured, quadrilateral (f) Polygonal

Figure 1.1 Mesh examples by element type and structure

Let us consider the example of a square domain embedding a circular hole. Taking advantage

of their geometric flexibility, unstructured meshes constitute the most obvious and certainly the

most popular approach to discretize such domain; see Figure 1.3a. In order to better approximate

a curved boundary such as this one, the common approach is to locally refine the mesh around
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(a) Local refinement with Carte-
sian elements

•

(b) Hanging node (c) Local refinement with un-
structured elements

Figure 1.2 Local refinement

(a) Unstructured mesh (b) ...with local refinement (c) ...with polygonal elements (in red)

Figure 1.3 Approximation of a complex boundary

the circular hole (Figure 1.3b). If more general elements are allowed, then another way to achieve

the same geometric approximation is to use polygonal elements in the neighbourhood of the hole.

The red polygons in Figure 1.3c present, at the boundary, the same number of small edges as

generated by the local refinement of Figure 1.3b. Local refinement implies two drawbacks for a

numerical approach: (i) an increase in the number of elements, which makes the computational

burden heavier; (ii) the possible onset, especially in 3D, of streched or flattened elements, which

may dramatically affect the convergence of the discretization or that of the linear solver. On the

other hand, the use of polyhedral elements can achieve the same geometric accuracy without

sensibly altering the mesh granularity, while offering more flexibility to preserve the aspect

ratio of the elements, i.e. to build a high-quality mesh. Moreover, polyhedra allow the native

management of hanging nodes and, more generally, non-conforming elements, by viewing usual

element shapes, like tetrahedra or hexahedra, as identically shaped polyhedra with additional

vertices (e.g., the top square of Figure 1.2b would actually be viewed as a square-shaped pentagon

with two collinear edges).

Remark 1. Although unstructured meshes offer more flexibility, structured ones are not to

be discarded. Working with structured meshes may indeed offer compensations in terms of

computation later in the process, such as matrix-free implementations due to constant stencils.

1.2.2 Relevant features of discretization methods

Having stated (some) solutions to approximate complex domains and solutions with accuracy,

the ability of discretization methods to handle such solutions is to be evaluated. We then briefly

review the capabilities of classical and broadly used discretizations methods. As we identify their

weaknesses, we introduce other, non-conforming methods exhibiting more suitable properties,
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thus making our way to HHO discretizations. We emphasize that the goal is not to establish a

comparison of discretization methods, but rather to introduce HHO to the reader through the

obstacles met by well-known methods, which HHO and structurally similar methods can help

overcome.

Given the previous discussion about approximating complex geometries, the desirable features

we retain are the native support of non-conforming meshes, polyhedral elements, and higher-order

of approximation. In the context of CFD applications, we also require continuity of the numerical

fluxes.

The classical Finite Element and Finite Volume methods

The (continuous) Finite Element Method (FEM) [101] is certainly the most commonly employed

method in the mechanical community. Its purely elemental point of view allowing unstructured

meshes and local refinement, as well as the large collection of element shapes it can manage,

have made it a tool of choice for a wide range of problems. Nonetheless, the global continuity

properties of the approximation involve degrees of freedom (DoFs) shared between elements at

interface nodes, implying a number of complications in the presence of hanging nodes or for

mixing element shapes. The occurrence of a singularity also globally affects the convergence of

the method. Another weakness of the standard FEM is its inability to enforce flux conservation

at element interfaces, making it ill-suited to CFD applications. Note, however, that these remarks

apply to the canonical H1-conforming version of FEM. Mixed and non-conforming versions, less

widespread, offer extended capabilities.

The Finite Volume method (FV) [58] on the other hand, introduces the computation of

the fluxes at element interfaces and is therefore natively able to enforce their continuity across

interfaces. While the classical Two-Point Flux Approximation scheme requires strict conditions on

the mesh, Multi-Point Flux Approximation methods are more flexible. The DoFs, corresponding

to the solution average within the cells, make the very notion of hanging nodes irrelevant, thus

making non-conforming meshes admissible as well as polyhedral elements. However, these FV

methods do not easily allow higher orders, especially on general unstructured meshes.

Discontinuous methods

Enforcing flux conservation demands careful control of the fluxes going through the interfaces.

Additionally, the efficient approximation of non-smooth solutions requires to relax the regularity

of the approximation near singularities. Both considerations plead in favor of the introduction

of non-conforming methods in which element faces start playing a more significant role. We

recall that a discretization method is referred to as non-conforming when the discrete space is

not a subspace of the continuous one. As such, the Discontinuous Galerkin methods (DG) [46]

reproduce the elemental structure of FEM while satisfying the equation in a way closer to FV.

The method is based on spaces of piecewise polynomial functions that do not embed global

continuity properties. Also allowing polynomial approximation at any arbitrary degree, the

method can then be viewed either as a discontinuous FEM, or as a high-order FV method.

The discontinuous setting hinges on the duplication of the DoFs located on the faces, so that

the elements on each side can preserve independent control over them. However, that very

duplication of DoFs, at the source of DG’s robustness, is also considered as its main shortcoming,
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insofar as it significantly increases the number of unknowns to solve.

Hybrid methods

The need to reduce the number of DoFs is addressed by modern hybrid methods. Indeed, in

hybrid and hybridized methods, the cell unknowns are only locally coupled, i.e. coupled to the

unknowns of the same cell or those of the associated faces. This allows for their local elimination

from the global system, leaving the face unknowns as the only remaining ones in the resulting

Schur complement. A first example of method whose DoFs verify this structural property is

provided by the Hybridizable Discontinuous Galerkin (HDG) methods [39], directly originating

from DG. A second one is HHO. See [36] and [43, Section 5.1.6] for the links between HHO and

HDG. The basics of the mathematical construction of the HHO method are treated in Chapter 2.

1.3 Fast linear solvers for HHO discretizations

1.3.1 Research subject

Hybrid discretizations have gained growing interest in recent years. In this thesis, we focus on

HHO methods [43]. Amongst their key features, we can list the support of general polytopal

meshes and of arbitrary approximation orders, as well as the optimal orders of convergence.

Another built-in and defining feature of the HHO methods is the use, in the formulation of

the bilinear form, of a higher-order potential reconstruction operator, which allows the gain

of one additional order of approximation compared to, e.g., vanilla versions of HDG [36, 92].

Finally, the capability of HHO methods to adapt their design to the underlying physics, via

problem-dependent local formulations, allows for more robust solutions with respect to the

problem. To this day, HHO methods have been applied to a large variety of problems in fluid

dynamics (heterogeneous anisotropic diffusion [48], incompressible Navier-Stokes [21], phase

separation [34], creeping flows of non-Newtonian fluids [25], etc.) and structural mechanics

(linear and nonlinear elasticity [23, 47] and poroelasticity [18, 24], etc.). Now that the method

has gained sufficient maturity, its adoption for industrial applications depends on the availability

of efficient linear solvers. The goal of this Ph.D thesis is to bridge this gap.

HHO methods hinge on DoFs located inside elements and on faces (see Figure 1.4), which

can be globally viewed as broken polynomials respectively on the mesh and its skeleton (see

Figure 1.5). We exclusively focus on cases where the element-defined DoFs are only locally

coupled. As such, they can be expressed, element by element, in function of the DoFs on the

faces, and subsequently eliminated from the global HHO linear system. This gives rise to a Schur

complement of smaller size where only face unknowns remain. This process is known as static

condensation in the mechanical literature, and the resulting system as a statically condensed

system, or trace system, in reference to the mesh skeleton as the support for the set of globally

coupled unknowns. The solution of the trace system, yielding the face unknowns, remains

the costliest operation, after which the values of the element unknowns can be inexpensively

recovered by solving small, independent linear systems.

As a consequence, the practical usefulness of HHO discretizations in an industrial context,

where large problems have to be solved, depends on the existence of efficient linear solvers for the
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Figure 1.4 HHO DoFs of a polygonal element for a polynomial degree k in the cell and on faces

Figure 1.5 Representation of the HHO DoFs as broken polynomials of degree k = 1 on the mesh
(left) and its skeleton (right)

condensed system. In particular, the present research work is motivated by the aim to provide a

solver for the open-source CFD software code saturne1 [7], developed and released by EDF. It is

funded by the project Fast4HHO2 of the French National Research Agency (ANR).

Our focus is on scalar elliptic equations, whose HHO discretizations give rise to trace matrices

that are sparse, symmetric and positive-definite. Specifically, we aim at solving large systems

of this type by means of a multigrid method [31, 118]. The main difficulty in the design of a

geometric multigrid algorithm for trace systems resides in the location of the DoFs associated to

the set of unknowns that remain after static condensation, namely, the face unknowns. Supported

by the mesh skeleton, the broken polynomials defined by these DoFs are not suited for standard

intergrid transfer operators, designed for element-defined functions. Hence the need for novel,

skeleton-based multigrid methods.

1.3.2 Research objectives

We next state a list of criteria, relative to structure and performance, that a linear solver should

exhibit to be considered as an adequate answer to the problem at hand. Besides the proper

formalization of our research goals, this exercise will allow us to discuss existing solutions in

light of these criteria, and therefore justify the need for new solvers and identify the gaps filled

by this thesis.

We adopt the following objectives:

1. HHO-compliancy. More than the obvious criteria that the solver must be applicable to

HHO systems, we want to emphasize that HHO should be its primary target, so that it

can, if possible, take advantage of its defining features.

2. Face-defined discrete spaces at all levels. As it applies to a linear system with face

1www.code-saturne.org
2under contract ANR-17-CE23-0019

www.code-saturne.org
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unknowns, the solver should comply with this specific setting and hinge on skeleton-based

discrete spaces at every level.

3. Applicability to general polyhedral meshes. As the HHO discretization applies to

such general meshes, this should also be the case for the solver.

4. Algorithmic optimality. Primary goal of every multigrid method, and most important

property in order to achieve scalability and tackle large scale problems, the solver should

exhibit a convergence rate that is independent of the number of unknowns.

5. Fastness. Whereas the previous property is purely qualitative and refers to the asymptotic

behaviour of the solver, its practical usability also imposes two quantitative constraints

in order to ensure an acceptable time to solution: (i) convergence speed: the solver

should reach convergence after a “reasonable” number of iterations; (ii) iteration cost: the

computational work of an iteration must also remain “under control”.

6. Robustness with respect to the polynomial degree. Both of the above properties

must also hold for higher polynomial degrees of approximation (if not all, at least for

moderate values of practical interest).

7. Robustness with respect to non-smooth solutions. Reflecting the robustness of

the discretization, the solver should display good performance when the solution is not

smooth. Particularly, we consider in this work heterogeneous diffusion problems with

highly discontinuous coefficient.

While the criteria relative to performance and robustness are classical for a multigrid method,

the second one is arguable and deserves to be discussed, insofar as it may arbitrarily discard

otherwise valid and possibly efficient methods for philosophical reasons. Indeed, we adopt the

committed position that a solver should embrace the specificities of the problem to be better

suited, i.e., frontally tackle the difficulty, rather than attempt to transform the problem into

one for which solutions are already known. By taking this stand, we explicitely want to discard

strategies that convert face-defined functions into continuous finite element functions in order to

make use of a classical FEM solver.

Figure 1.6 illustrates the first issue underlying Criteria 2, i.e. the construction of a skeleton-

based prolongation operator. On the left, a given skeletal coarse function on a 4-by-4 Cartesian

grid. On the right, an illustration of an adequate representation of that coarse function on the

fine skeleton of an 8-by-8 grid, after application of a suited prolongation operator. As all coarse

edges are geometrically composed of two fine ones, the corresponding local coarse polynomials

can be straightforwardly injected into the respective fine local spaces. However, there are fine

edges absent from the coarse grid, namely, those that are geometrically embedded in coarse

elements. The expected result on those fine edges is represented in dashed line. The issue can

then be posed in these terms: how to reconstruct those dashed lines, given that no data exist at

their locations on the coarse skeleton?

1.3.3 State of the art

Before reviewing existing solvers applicable to trace systems such as our own, we briefly report

recent progress in multigrid algorithms for non-conforming methods.
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prolongation

Figure 1.6 Illustration of the issue underlying the construction of a skeleton-based prolongation
operator. How to reconstruct the dashed lines?

1.3.3.1 Multigrid for non-conforming methods

Let us begin with DG discretizations. As the lowest order case of DG can be interpreted as other

discretization methods such as FV, multigrid algorithms have been designed for this case over

the 1990s when working on those discretizations. Regarding the higher order cases, multigrid

methods dedicated to DG have emerged in the early 2000s with [13, 68], which introduced the

first h-multigrid algorithms for Interior Penaly (IP) formulations. At the same time, [70] performs

a Fourier analysis on the matrix arising from the DG discretization of the 2D Poisson problem.

Since then, p and hp-multigrid methods such as [4–6, 20, 60, 62, 91, 111] have especially retained

attention. Regarding algebraic multigrid methods (AMGs), the Ph.D thesis [53] introduces the

first algebraic multigrid algorithm for the solution of a DG system. Since then, other algebraic

solvers have also been designed: [12, 17, 98, 100], or, more recently, [3], all based on smoothed

aggregation.

We also mention recent advances on multigrid methods targeting other non-conforming

discretizations and/or focusing on problems our research subject takes a special interest in,

like diffusion in porous media or Darcy flows. As such, [9] proposes multigrid methods for

Darcy–Forchheimer flow in fractured porous media. [10] presents a solver for Multipoint

Flux Mixed Finite Element (MFMFE) schemes — based on the Brezzi-Douglas-Marini (BDM)

framework — applied to the Darcy problem. [114] tackles the Isogeometric Analysis (IGA)

discretizations, which are based on spline-type functions.

1.3.3.2 Trace system solvers

A literature review of trace system solvers shows the variety of paths one can follow to tackle this

particular setting. Although no existing geometric h-multigrid method has specifically targeted

HHO so far, a few trace system solvers — generally targeting HDG — have been designed over

the last years. As HHO hinges on a comparable set of DoFs, these methods are supposedly

applicable. With respect to Criterion 1, we, however, point out that no test report accounts for

their performances on HHO, and a fortiori, no specific adaptation to HHO systems has been

attempted.

In [37], the authors propose a geometric multigrid solver for general HDG discretizations of

elliptic equations and low order approximation, where the face-defined functions are recast, via

the adjoint of a trace operator, into globally continuous functions defined over the elements. This

conversion then allows to make use of a known efficient solver, typically a standard piecewise

linear continuous FEM multigrid solver. This special multigrid method actually takes its origin
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from the one previously designed for hybridized versions of the Raviart–Thomas and Brezzi–

Douglas–Marini methods in [69], from which the intergrid transfer operators are borrowed.

A variation using an underlying algebraic multigrid method instead of a geometric one was

experimented in [80]. These methods do not comply with Criterion 2.

A different approach is suggested in [123], where an hp-multigrid algorithm based on face

unknowns at every level (therefore meeting Criterion 2) is proposed for HDG discretizations.

It handles unstructured polyhedral meshes and is based on the use of Dirichlet-to-Neumann

(DtN) maps to preserve energy from coarse to fine levels. DtN maps perform, between each level,

the static condensation of the unknowns located on the fine faces interior to coarse elements.

The management of high orders is carried out in the traditional way of putting a p-multigrid

algorithm on top of a multigrid iteration in h. This fundamentally novel and otherwise simple,

clever approach reports good performance and a scalable behaviour. However, the multigrid

cycle is enhanced by the addition of a local subspace correction method at every level, and the

number of smoothing steps performed increases as the levels coarsen, which tends to mask the

performance of the method with a plain, standard multigrid cycle such as, e.g., V(1,1). Without

going into details, our in-house implementation of this algorithm reports a convergence with a

significant dependence on the mesh size with standard multigrid ingredients and on an HHO

system. This violates Criterion 4.

Also working with face unknowns at every level, [103] works in the context of Discontinuous

Petrov-Galerkin (DPG) discretizations. It relies on the natural idea of reversing the static

condensation at the coarse level to recover cell unknowns, before taking the trace of the

corresponding polynomials on the local interior fine faces. The recent convergence analysis [86]

proves, for the Poisson problem, the optimal asymptotic behaviour of multigrid algorithms for

HDG discretizations based on decondensation of the cell unknowns and trace on the fine faces.

Reversing the static condensation is also the approach we have adopted in our first and main

contribution. We however indicate that our work has been conducted independently of [86, 103]

(with [86] still in preprint state to present date). Notice also that, despite this common starting

point, our own contributions still differ in numerous ways, going from the HHO-dedicated

enhancement to the enlarged spectrum of application and the improved robustness, as we tackle

more complex problems and meshes.

Before closing this section, we also want to point out the efforts made to design p-multigrid

preconditioners for non-elliptic equations: one can cite [65, 109], and especially [22], inasmuch

as it directly targets HHO.

Finally, besides multigrid, other types of large scale solving methods devised for HDG deserve

to be mentioned, such as domain decomposition [108, 119] and nested dissection [88].
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1.3.4 Contributions and thesis outline

We next provide an executive summary of the manuscript highlighting the main contributions.

1.3.4.1 Model problem and HHO discretization

Chapter 2 is dedicated to the application of the HHO method on a scalar diffusion problem

including a possibly anisotropic and heterogeneous permeability tensor (see formulation (2.1)).

We introduce the high-order potential reconstruction operator (cf. (2.11)), which is the main

ingredient in the definition of the discrete bilinear form. This operator, based only on an

integration by parts formula, is locally defined. It allows, from a polynomial in the cell and

polynomials of same degree on the faces, to reconstruct a polynomial one degree higher in the

cell. This feature is advantageously employed in our geometric multigrid method to enhance its

overall performance.

Assembly Static condensation

Solving
face unknowns

Solving
cell unknowns

︸ ︷︷ ︸
Higher-order

reconstruction

Figure 1.7 Summary of the HHO process

The general HHO process, from assembly to the reconstruction of the discrete approximation

is summarized in Figure 1.7. Ordering the unknowns so that cell-defined ones come first and

face-defined ones come last, the global hybrid matrix is a 2-by-2 block matrix, whose block (1, 1)

is block-diagonal, owing to the local coupling of cell unknowns. Locally eliminating those

unknowns, the static condensation gives rise to a smaller system relying on the face unknowns

only. The following step, where this condensed system must be solved, marks the location of

our contributions within the HHO process. The solution represents a broken polynomial on the

mesh skeleton. The values of the face unknowns are then used to decondense the cell unknowns
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and recover their values. Finally, in a post-processing step, by applying the high-order potential

reconstruction to both cell and face unknowns, a broken, element-defined polynomial of one

degree higher is reconstructed, thus yielding the final HHO approximation of the scalar potential.

1.3.4.2 A geometric h-multigrid method

Chapter 3 is devoted to the first original contribution of this Ph.D thesis, published in SIAM

Journal on Scientific Computing [50]. In this contribution, we develop a novel, geometric

h-multigrid algorithm

� based on approximation spaces supported by the mesh skeleton at every level,

� targeting HHO discretizations by making use of the underlying high-order potential

reconstruction,

� natively handling higher orders (as opposed to, e.g., putting a p-multigrid on top of an h-

one).

To handle the issue raised by Figure 1.6, the method relies on the design of a special

prolongation operator that includes the construction of an intermediary state between the coarse

skeletal function and its prolongation onto the fine skeleton. Precisely, a cell-defined potential is

reconstructed on the coarse mesh, which allows, via a trace operator, a subsequent definition on

the fine skeleton. Figure 1.8 illustrates these steps.

coarse potential
reconstruction

trace on the
fine faces

Figure 1.8 Prolongation from coarse to fine faces

The cell reconstruction is the core of our method and what makes it original. It works

locally, and decomposes into two steps illustrated by Figure 1.9. First, a coarse cell-defined

polynomial of degree k is recovered from the face-defined polynomials of degree k through the

decondensation of the cell unknowns. Second, the higher-order reconstruction operator is applied

to both cell and face unknowns in order to gain one degree of approximation in the cell.

Given that the reconstructed polynomial is of degree k+1, recovering the original polynomial

degree k on the fine faces implies that the trace operation in the second step of Figure 1.8 must

also lower the degree. To do so, the trace comes with a subsequent L2-orthogonal projection

onto the polynomial space of lower order k. Moreover, on the fine faces at the boundary of coarse

elements, due to the discontinuous setting, the trace actually consists in taking the weighted

decondensation of
the cell unknowns

higher-order
reconstruction

Figure 1.9 Reconstruction of a polynomial of degree k + 1 from polynomials of degree k (here
for k = 1) on the four edges of a 2D square element



1.3 Fast linear solvers for HHO discretizations 13

average of the traces computed on each side. The weights incorporate a dependence on the

diffusion coefficient to smartly favor one or the other side according to the size of the possible

jump. This allows to ensure the solver’s robustness to the coefficient discontinuities. Notice that

our solution does not leverage the natural injection from the coarse faces to the embedded fine

ones, which our numerical experiments find less efficient, both in terms of convergence rate and

of robustness to discontinuities.

Notice that the prolongation operator preserves the polynomial degree. Consequently, no

p-multigrid method has to be involved. Instead, the same polynomial degree is preserved at

every level, at the sole cost of using a blockwise smoother, where the block size is determined by

the number of unknowns per face, so that all unknowns relative to the same local polynomial be

relaxed together.

The numerical tests include homogeneous and heterogeneous isotropic problems in 2D and

3D domains, discretized by structured and unstructured meshes. With structured (Cartesian or

simplicial) meshes on simple domains, the multigrid method, directly used as a solver, meets all

the criteria listed in Section 1.3.2 but the third:

� convergence in a limited number of iterations, seemingly independently of the mesh size;

see Figure 1.10;

� controlled computational cost through the rediscretization of the operator at the coarse

levels and the use of standard smoothers (block Gauss-Seidel or Jacobi);

� robustness with respect to discontinuities of the diffusion coefficient, whose magnitude

does not alter the convergence rate;

� robustness to higher orders, for which the solver exhibits the same properties.

103 104 105 106 107

5

10

15

2D cart

It
er

at
io

n
s

k = 0 k = 1 k = 2 k = 3

104 105 106 107

2D tri

104 105 106 107

5

10

15

3D cart

Number of DoFs

It
er

at
io

n
s

104 105 106 107

3D tetra

Number of DoFs

Figure 1.10 Number of iterations to reach a normalized residual of 10−8 for the homogeneous
diffusion problem on structured meshes: 2D Cartesian (top left), 2D triangular (top right), 3D
Cartesian (bottom left), 3D tetrahedral (bottom right). Refer to Section 3.2 for the details about
the experimental setup.

However, on complex domains requiring highly unstructured meshes, optimal convergence is

not achieved in general. The reason is twofold:
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Figure 1.11 Nested coarsening strategy by agglomeration

� optimal convergence relies on the faces being coarsened between levels (not only the

elements!);

� numerical experiments have shown the high sensitivity of the multigrid method to the

mesh quality, i.e. to the presence of elements with bad aspect ratio. Optimality then also

requires a hierarchy of high-quality meshes.

These demands may work against each other. Combined, they raise the issue of how to build

the mesh hierarchy. Indeed, multigrid hierarchies are commonly constructed by successive

refinements of an initial coarse mesh. If this ensures in a natural way the desired face coarsening

between every level, it can also affect mesh quality, especially in 3D. Numerical experiments with

Bey’s tetrahedral refinement method [16] on a complex domain have shown that the obtained fine

mesh was not of good enough quality for our multigrid solver to converge efficiently. Conversely,

starting from a good quality fine mesh, there is no obvious method allowing to construct a nested

coarse mesh while also enforcing face coarsening. For instance, Figure 1.11 illustrates the nested

coarsening of an unstructured triangular mesh by an agglomeration method. Note, in particular,

that the faces are not coarsened: fine faces remain at all levels. Such a hierarchy is not, then,

considered admissible for our multigrid method. Conserving nested meshes while coarsening

faces indeed requires coplanar fine faces (colinear edges in 2D) to be merged to form coarse ones.

Unstructured meshes do not generally offer many of such opportunities. Nonetheless, we observe

that if two fine faces are only nearly coplanar, they can still be merged to form one single, larger

face for the coarse mesh, and that this approximation technique does not significantly affect the

convergence of the solver. See Figure 1.12 for an admissble 2D example. This remark paves the

way to non-nested coarsening strategies using face collapsing to coarsen the faces.

1.3.4.3 Extension to non-nested meshes

Non-nestedness is the path we follow in our second contribution to overcome the limitations

of our multigrid method and successfully manage untructured 3D cases. Chapter 4 is then

dedicated to the adaptation of the nested version of our algorithm to non-nested mesh hierarchies

and its efficient implementation for practical use. Its scientific content was published in the

International Journal for Numerical Methods in Engineering [51].

Compliance to non-nested settings is performed by inserting an additional step in the
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Figure 1.12 Coarsening of nearly colinear edges. The fine mesh is represented in dotted lines,
the coarse mesh in solid lines. The non-nestedness is highlighted by colors: the blue fine edges
are coarsened into the red ones.

definition of the prolongation operator. Starting with polynomials lying on the coarse faces, the

nested version begins with the reconstruction of a broken element-defined polynomial on the

coarse mesh. This step is unchanged. We then propose to orthogonally project in L2-norm this

coarse broken polynomial onto the non-nested fine mesh. Finally, the end of the process also

follows the nested version: the trace of the result is computed on the fine faces.

An approximate L2-orthogonal projection operator

The numerical evaluation of this L2-orthogonal projection operator hinges on the projection

of the local coarse basis functions onto the fine bases, i.e., on the computation of the L2-inner

products of the coarse and fine basis functions over the fine elements. As a direct consequence,

the local definition of the functional bases makes the intersections of coarse and fine elements

the respective integration supports to these inner products. However, computing the geometric

intersections between coarse and fine elements can be prohibitive. So, instead of this exact

computation, we propose the implementation of an approximate operator that does not require

the explicit computation of intersections. It is based on the subdivision of the fine elements, by

adopting the simplifying hypothesis that each sub-element is fully included in the coarse element

that contains its barycenter. Formally, it translates to the following: assuming, for any fine

element Tf , a given subdivision Sub(Tf ), we then define, for any pair of coarse and fine elements

(Tc, Tf ), the approximate intersection

Tc ∩ Tf ≈
⋃

t∈Sub(Tf )
barycenter(t)∈Tc

t .

Figure 1.13 illustrates, on coarse and fine Delaunay meshes, the accuracy of the method according

to the subdivisions of the fine triangles: in (a), no subdivision is performed, i.e. Sub(Tf ) = Tf

for all Tf ; in (b), sub-triangles are obtained by connecting the middle-edges of the fine elements.

The fine elements can be refined multiple times for even better accuracy, though at the cost of an

increasing number of integrals to compute. In practice, the approximate operator derived from
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(a) No subdivision (b) Sub-triangulation obtained by connecting the
middle-edges of the fine elements

Figure 1.13 Distribution of the fine elements’ sub-triangles to their “closest” coarse element, i.e.
the one containing their barycenter. Without actual subdivision, (a) then shows the superposition
of the coarse and fine triangular meshes. The fine triangles are colored according to the coarse
one that contains their barycenter. (b) shows the same colored partioning, this time for a
standard triangulation of the fine elements.

the fine elements being subdivided only once is found to be sufficient to achieve good multigrid

results in 3D and for low polynomial orders.

We evaluate the accuracy of this approximation by comparing with the exact operator, and we

assess the convergence of our multigrid method using non-nested meshes obtained by independent

retriangulation of the domain at each level. These tests demonstrate the sufficient accuracy of

the approximation for moderate polynomial degrees in 3D, as well as the substential gain in

setup time that the technique offers by avoiding the computation of geometric intersections. In

particular, we numerically demonstrate the optimal convergence of our non-nested multigrid

algorithm on an unstructured 3D test case that the nested version failed to solve; see Figure 1.14.
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Figure 1.14 3D test case using the geometry (a). The algorithmic scalability plot (b) of the
solver is obtained with the coarse meshes independently retriangulated at each level, and the
L2-orthogonal projection computed approximately using Bey’s method to subdivide the fine
tetrahedra. (Note that k = 0 is a special case, for which optimality is not necessarily achieved.
It was already so with the nested multigrid method on structured meshes.)

A polyhedral coarsening strategy

In practice, building a high-quality mesh for a real industrial case study can be a challenging

task, which may occupy a meshing engineer for several months. Requiring multiple high-quality
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Figure 1.15 Successive coarsenings of a triangulated square by agglomeration and interface
collapsing

meshes of the same geometry at different granularities in order to feed a multigrid solver is then

not always conceivable. From the user’s standpoint, providing the solver with the sole fine mesh

is a preferable option. To this end, we also want to pave the way for the construction of suitable

coarsening strategies for this type of multigrid method. Therefore, this chapter also includes the

abstract definition of a coarsening strategy in order to build, from a given fine mesh, a hierarchy

of non-nested coarse meshes in which faces are coarsened. In particular, the method is based

on element agglomeration, to which we add a step of face collapsing at the interfaces between

agglomerated elements. Figure 1.15 shows the result of such a strategy on a triangulated square.

Given that coarse operators come from rediscretization, this strategy based on agglomeration

is made possible by HHO being a polytopal method. We provide explicit details about our

implementation in 2D, explaining how the the approximate L2-orthogonal projection can be

made exact through a clever way of subtriangulating the fine elements; refer to Figure 1.16 for

more details. The non-nested multigrid method resulting from this coarsening strategy is finally

evaluated on the simplified geometry of a real industrial test case provided by EDF, which also

results in an asymptotically optimal behaviour.

1.3.4.4 Algebraic multigrid

The geometric multigrid algorithm and its non-nested extension that we have devised provide a

first option for the solution of HHO systems. In Chapter 5, we develop another approach, in the

form of an Algebraic Multigrid method (AMG). This contribution gave rise to the submitted

preprint [49].

AMG solvers [59, 112] are very popular for the solution of large scale linear systems arising

from the discretization of elliptic equations on unstructured meshes. Unlike geometric multigrid

methods, which require a hierarchy of meshes of different granularity, algebraic algorithms

classically do not need more information than the linear system to solve. Discarding all

geometric information as input parameter results in the most appreciated feature of these

methods, that is, their usability in a black-box fashion. Adopting a new discretization in an

industrial context requires heavy preliminary testing, that can be facilitated if the software for

the appropriate solver is already available on the market or if its development can easily be

externalized. Being isolated from the mesh, which can be generated, stored, and transferred

in numerous ways, AMG solvers ally interoperability and performance. Additionally, they are

generic solvers that can be used in various ways and for many advanced problems. They are
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(a) Distribution of the fine ele-
ments to their “closest” coarse el-
ement.

(b) The fine elements are subtrian-
gulated by a barycentric method.

(c) The fine elements are subtri-
angulated such that they do not
cross any coarse element’s edge.

(d) Zoom-in on a fine element over-
lapping two coarse ones.

(e) Barycentric triangulation. (f) Adapted triangulation prevent-
ing subtriangles from overlapping
two coarse elements.

Figure 1.16 The top figures show how the fine polygons (in (a)) or their subtriangulations (in
(b),(c)) are clustered in the process of approximating the coarse/fine intersection involved in
the computation of the L2-orthogonal projection. The coarse edges are represented by thick
black segments. In (b), the fine elements are triangulated by a barycentric method. In (c), the
triangulation is adapted to prevent subtriangles to overlap multiple coarse elements. The bottom
figures zoom in on a fine element overlapping two coarse ones. In (d), the whole fine element is
affected to one of them for the computation of the approximate L2-orthogonal projection. In (e)
and (f), the subtriangles are dispatched on one or the other coarse element according to the
location of their barycenters.
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particularly successful in the context of parallel computing [11], and can be employed as coarse

solver in another multigrid method [113] or in connection with other techniques such as domain

decomposition [76, 77].

Usual AMG solvers designed for low-order finite element or finite difference methods deduce

mesh information under the assumption that each row in the matrix corresponds to a DoF located

at a mesh node or element. Thus, the mesh connectivity graph can be reconstructed algebraically,

and coarsening strategies mimicking geometric algorithms can then be performed in order to

build the coarse levels. Especially focusing on aggregation-based methods, nodes/elements are

being aggregated in order to give rise to coarse DoFs. However, in our hybrid setting at the

lowest order, the unknowns of the system are actually linked to faces, i.e. neither nodes nor

elements. Consequently, at first glance it might seem peculiar, from a geometrical point of view,

to apply the above approach in this context. Indeed, aggregation-based coarsening can then

be interpreted as aggregating faces. Although it may give natural results for adjacent faces,

especially if they are close to being coplanar, it sometimes aggregates faces that do not even

touch. In this case, it is difficult to perceive a geometrical sense in this aggregation. Nonetheless,

numerical tests with a standard aggregation-based AMG method show that the approach still

works well, which can be geometrically justified by forgetting about the DoFs being actually

face-defined and considering them as mere nodal values located at the center of the faces. That

being said, one can legitimately wonder if a coarsening strategy making geometrical sense in

light of the actual meaning of the DoFs as face-defined values could not yield even better results.

Restricting our scope to lowest-order hybrid methods (not only HHO), the idea at the

origin of this work is the algebraic reconstruction of the mesh topology based no longer on the

condensed matrix, but on the uncondensed one. Indeed, like traditional AMG methods, we

retrieve geometric information on the coupling of the DoFs from algebraic data. However, as

the condensed matrix only provides information on the faces, we use the uncondensed version to

reconstruct the connectivity graph between elements and faces. Note that it means that this

method requires more information than the sole system to solve. Parts of the uncondensed

matrix must indeed be brought to the algorithm as additional information. This makes the

method less “black-box”, but still purely algebraic. Once the so-called algebraic mesh is retrieved,

especially the neighbouring information between elements, an element-based aggregation method

can be set up in order to mimic the behaviour of a geometric coarsening or semi-coarsening

strategy. Keeping in mind that, in our hybrid setting, faces must be coarsened between levels, we

complement the element aggregation with the face collapsing technique devised in Chapter 4. The

construction of the intergrid transfer operators follows plain aggregation principles and leverages

the decondensation of the cell unknowns already at the source of the special prolongation

operator devised in our geometric multigrid method.

AMG methods directly used as solvers may lack efficiency; see, e.g., [122, p. 663] or [89].

Using them as preconditioners for a Krylov method is generally favored. To build an efficient

solver, we adopt the choices made by AGMG [94]. Namely, we use the so-called K-cycle, which

introduces Krylov acceleration into the multigrid recursive cycle. Secondly, one such cycle is

used to precondition an outer Krylov method. More generally, the technical choices made in

this work are borrowed from AGMG (pairwise aggregation, strong negative coupling criterion,

K-cycle...) in order to establish a proper comparison with a standard AMG solver that works
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Figure 1.17 AMG solver comparison in CPU time. Refer to Table 5.1 for the details of the test
cases, all comprising several million unknowns.

only on the condensed system.

Our method is applied to the lowest order HHO discretizations of 2D and 3D diffusion

problems. The tests include homogeneous, heterogeneous, isotropic and anisotropic problems on

structured Cartesian and unstructured simplicial meshes. The methodology adopted compares our

novel method, denoted by U-AMG (standing for uncondensed AMG), to a standard aggregation-

based AMG, denoted by C-AMG (standing for condensed AMG). C-AMG views DoFs as nodes

and implements a node-defined coarsening strategy from the condensed system, while U-AMG

reconstructs the elements from the uncondensed matrix and implements an element-defined

coarsening strategy. The agglomeration criteria, cycle, smoothers, as well as every other technical

choices are identical for both solvers. The results of this comparison are provided in Figure 1.17.

We report equivalent performances in isotropic and in unstructured cases. The added value of

the new algorithm actually appears in anisotropic problems with Cartesian meshes, where the

solver exhibits an enhanced robustness (test case Cube-cart-aniso100). The element-based

aggregation strategy enables one to take advantage of the Cartesian structure of the mesh to

follow the direction of anisotropy, what a node-based strategy only succeeds to a lesser extent.

Although this very specific, trivial test case might seem restrictive, this feature can actually

be exploited in a larger range of applications. Namely, U-AMG can offer substantial added

value for solving problems comprising both isotropic and anisotropic regions, providing that the

anisotropic ones are discretized by Cartesian elements oriented in the direction of anisotropy.

This includes orthotropic diffusion problems. The solver, in this case, can ally the flexibility of

AMG to handle unstructured meshes on isotropic regions while exploiting the special element

shapes on anisotropic ones.

1.3.4.5 Scientific communications

The contributions of this Ph.D thesis have been made available to the scientific community

through journal papers, open-access preprints, and talks at international conferences. References

and download links are gathered at the end of the dissertation, page 103.



Chapter 2

The Hybrid High-Order method

Nature laughs at the difficulties of

integration.

Pierre-Simon de Laplace (1749-1827)

Originally introduced in [44] (see also [45] and the monograph [43]), HHO methods hinge

on discrete unknowns that are broken polynomials on the mesh and its skeleton. The adjective

hybrid refers to their union, in spite of their different natures, to form one set of unknowns.

Moreover, they are designed so that element-based unknowns are not directly coupled with each

other. As a result, the corresponding DoFs can be efficiently eliminated from the linear system

by computing a Schur complement element by element, a procedure known in the mechanical

literature as static condensation. The discrete solution can then be obtained in two steps: first,

the Schur complement system is solved, yielding the values of the face unknowns; second, cell

unknowns are recovered element-wise by solving a small local system. This second step is

inexpensive inasmuch as it can be parallelized, leaving the first step as the costliest operation.

Consequently, the problem matrix in the context of hybridized methods is usually the Schur

complement matrix obtained after static condensation, also called trace, statically condensed,

or sometimes Lagrange multiplier system (referring to the interpretation of face unknowns as

Lagrange multipliers enforcing a discrete flux continuity constraint, see [43, Section 5.4.6]). For

a more detailed introduction to hybridization, we refer the reader to the first pages of [39] and

also [43, Appendix B.3.2].

The defining feature of HHO methods is the embedding of a higher-order potential reconstruc-

tion into the definition of the discrete bilinear form. As a result, up to one order of convergence

is gained with respect to other hybrid methods [38, 40]; see, e.g., the discussion in [36] and also

[43, Section 5.1.6]. Once the values of the discrete unknowns, defining local polynomials of some

fixed maximum degree in cells and on faces, have been found, the application of the potential

reconstruction in a post-processing step reconstructs a discrete approximate that is one degree

higher.

In this chapter, we adopt a constructive approach to describe the HHO discretization of

scalar elliptic equations. Thus, after introducing general notations in Section 2.1 and the variable

diffusion equation as model problem in Section 2.2, we introduce the fundamental components of
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the HHO methods in Section 2.3. In particular, a local approximation of the continuous solution

can be defined through the projection of its gradient onto a polynomial space and the choice

of the missing constant by a closure condition. This so-called elliptic projection can, in fact,

be computed from the simple L2-orthogonal projections of the solution in the cell and on its

faces, through the application of a special higher-order reconstruction operator, cornerstone of

the method. We close this chapter in Section 2.4 with a list of theoretical results regarding the

convergence, robustness and computational properties of the HHO methods, as well as some

take-out ideas for the comprehension of the work described in the next chapters.

2.1 Notation

2.1.1 Domain and mesh

Let d ∈ {2, 3} be the space dimension and Ω a bounded polyhedral domain of Rd. We consider a

mesh (Th,Fh) of Ω in the sense of [43, Definition 1.4], with Th denoting the set of open polyhedral

elements, Fh the set of faces, and h := maxT∈Th diameter(T ) the mesh size. Meshes of practical

relevance included in this definition correspond to decompositions of the domain into polyhedra

not necessarily convex or star-shaped, and possibly including hanging nodes. The set Fh is

partitioned as F I
h ∪ FB

h , where F I
h denotes the set of internal faces and FB

h the set of boundary

faces. For all T ∈ Th, FT collects the mesh faces lying on the boundary of T . Reciprocally,

given a face F ∈ Fh, TF collects the elements which F is a face of. Notice that card(TF ) = 2 for

internal faces and card(TF ) = 1 for boundary faces. For all T ∈ Th and F ∈ FT , nTF denotes

the unit vector normal to F pointing out of T .

2.1.2 Lebesgue and Sobolev spaces

Let X ∈ Th ∪ Fh ∪ {Ω}. L2(X) denotes the Hilbert space of square-integrable functions over X,

equipped with its usual inner product

(u, v)X :=

∫
X
vw ∀v, w ∈ L2(X).

The same notation is also used for the inner product of [L2(X)]d, i.e.

(v,w)X :=

∫
X

v ·w ∀u,v ∈ [L2(X)]d.

Additionally, we denote by H1(X) the Sobolev space of order 1, that is, the space spanned

by functions of L2(X) whose partial derivatives are also square-integrable, and by H1
0 (X) its

subspace with vanishing trace on the boundary ∂X of X:

H1
0 (X) := {v ∈ H1(X) | v|∂X = 0}.

2.1.3 Polynomial spaces

Let ` ∈ N be a polynomial degree, and X ∈ Th ∪ Fh ∪ {Ω}. P`(X) denotes the space spanned

by the restriction to X of d-variate polynomials of degree at most `. When X ∈ Fh, P`(X) is
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isomorphic to the space of (d− 1)-variate polynomials of total degree ≤ `. Given the set of mesh

elements Th, we also introduce the broken polynomial space P`(Th) :=×T∈Th P
`(T ).

2.2 Model problem

Given a source function f ∈ L2(Ω), we consider the following diffusion problem with homogeneous

Dirichlet boundary conditions: {
−∇ · (K∇u) = f in Ω,

u = 0 on ∂Ω,
(2.1)

where the diffusion tensor K : Ω→ Rd×dsym (with Rd×dsym collecting symmetric d× d real matrices) is

assumed uniformly elliptic and piecewise constant over a fixed partition of Ω into polyhedra.

The variational formulation of problem (2.1) reads

Find u ∈ H1
0 (Ω) such that

a(u, v) =

∫
Ω
fv ∀v ∈ H1

0 (Ω),
(2.2)

where the bilinear form a : H1(Ω)×H1(Ω)→ R is such that, for all v, w ∈ H1(Ω),

a(v, w) := (K∇v,∇w)Ω =

∫
Ω

K∇u · ∇v.

We now consider a polyhedral mesh Th which partitions Ω in such a way that the diffusion

tensor is constant inside each element, and we denote KT := K|T . Decomposing both global

integrals in (2.2) as sums of local integrals over the elements of the mesh Th, problem (2.2)

becomes ∑
T∈Th

(KT∇u,∇v)T =
∑
T∈Th

(f, v)T ∀v ∈ H1
0 (Ω). (2.3)

2.3 Fundamentals of the HHO method

Following [43, Section 3.1], we introduce the spaces and operators used in HHO to discretize (2.3).

2.3.1 The elliptic projection

Let ` ∈ N denote a polynomial degree. Let X denote either a mesh element or face.

π`X : L2(X)→ P`(X) denotes the L2-orthogonal projector on P`(X). For all v ∈ L2(X), π`Xv is

characterized by the orthogonality condition

∀w ∈ P`(X), (π`Xv − v, w)X = 0. (2.4)

For all T ∈ Th, the oblique elliptic projector π̃`T : H1(T )→ P`(T ) also enforces an orthogonality

condition on the error, this time applied to the gradients of the operands, and taking the diffusion

tensor into account for the future purpose of mirroring the left-hand side of (2.3). Specifically,



24 The Hybrid High-Order method

given v ∈ H1(T ), we enforce the following condition:

∀w ∈ P`(T ), (KT∇(π̃`T v − v),∇w)T = 0. (2.5a)

Note that the adjective oblique refers to the introduction of the tensor into the formula. We can

show that given v ∈ H1(T ), (2.5a) defines a unique gradient ∇π̃`T v. π̃`T v is then determined up

to an additive constant, which we fix by imposing that π̃`T v and v have the same average value

over T , i.e.

(π̃`T v, 1)T = (v, 1)T . (2.5b)

Condition (2.5a) characterizes a projector in the sense that ∇π̃`T v minimizes the distance

of ∇v from the space ∇P`(T ) w.r.t. the norm induced by the oblique inner product (KT ·, ·)T .

Adding the constraint (2.5b) then yields an equivalent characterization of the oblique elliptic

projector π̃`T in terms of norm minimization:

π̃`T v = arg min
w∈P`(T )

(w,1)T =(v,1)T

‖K1/2
T (∇v −∇w)‖2T .

(Note that in the formulation above, ‖ · ‖T denotes the norm on the d-dimensional vector space

[L2(T )]d.) Additionally, we observe that the elliptic projector preserves polynomials of degree at

most `, i.e.,

π̃`T v = v ∀v ∈ P`(T ). (2.6)

Indeed, letting v ∈ P`(T ), we deduce from (2.5a) that ∇(π̃`T v − v) = 0, making π̃`T v − v a

constant polynomial, whose closure condition (2.5b) imposes to be zero, hence the result.

2.3.2 Computation of the elliptic projection from the L2-projections

Let T ∈ Th. Considering v ∈ H1(T ), we show that, for any polynomial degree k ∈ N arbitrarily

fixed, the elliptic projection of v of degree k + 1 can be fully determined knowing only its

L2-projections of degree k in the interior and on the faces of T .

First of all, let us recall the following integration by parts formula: for all w ∈ C∞(T ),

(KT∇v,∇w)T = −(v,∇ · (KT∇w))T +
∑
F∈FT

(v,KT∇w · nTF )F . (2.7)

According to (2.5a) with ` = k + 1, we have, for all w ∈ Pk+1(T ),

(KT∇π̃k+1
T v,∇w)T = (KT∇v,∇w)T .

Transforming the right-hand side of this expression by means of the integration by parts

formula (2.7), we have

(KT∇π̃k+1
T v,∇w)T = −(v,∇ · (KT∇w)︸ ︷︷ ︸

∈ Pk−1(T )

)T +
∑
F∈FT

(v,KT∇w · nTF︸ ︷︷ ︸
∈ Pk(F )

)F . (2.8)
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Noticing that w ∈ Pk+1(T ) implies ∇ · (KT∇w) ∈ Pk−1(T ) ⊂ Pk(T ), we can replace the term

(v,∇ · (KT∇w))T with (πkT v,∇ · (KT∇w))T thanks to (2.4). Similarly, KT∇w · nTF being of

degree k, we can replace v in the last inner product with πkT v. (2.8) then becomes

(KT∇π̃k+1
T v,∇w)T = −(πkT v,∇ · (KT∇w))T +

∑
F∈FT

(πkF v,KT∇w · nTF )F . (2.9a)

This equation points out how ∇π̃k+1
T v can be fully determined only knowing πkT v and (πkF v)F∈FT

.

The constant needed to recover π̃k+1
T v from∇π̃k+1

T v can be obtained through the constraint (2.5b),

enforcing that π̃k+1
T v and v have the same average value, i.e.,

(π̃k+1
T v, 1)T = (v, 1)T .

Now, seeing the constant function 1 as a polynomial in P0(T ) ⊂ Pk(T ), v can once again be

replaced with πkT v in the right-hand side, hence

(π̃k+1
T v, 1)T = (πkT v, 1)T . (2.9b)

2.3.3 Discrete spaces and operators

The preceding remarks lead us to introduce the following hybrid space of local DoFs, for all

T ∈ Th:

UkT :=
{
vT := (vT , (vF )F∈FT

) | vT ∈ Pk(T ), vF ∈ Pk(F ) ∀F ∈ FT
}
.

The hybrid adjective, associated with the underlined notation, is reminiscent of the fact that

vectors of UkT are defined as a collection of distinct objects in their natures, namely cell- and

face-defined functions.

The local interpolation operator IkT : H1(T )→ UkT is defined such that, for all v ∈ H1(T ),

IkT v :=
(
πkT v, (π

k
F v)F∈FT

)
. (2.10)

Inspired by (2.9), we define the local higher-order reconstruction operator pk+1
T : UkT →

Pk+1(T ) such that, for all vT := (vT , (vF )F∈FT
) ∈ UkT , pk+1

T vT is the only polynomial of degree

at most k + 1 verifying


(KT∇pk+1

T vT ,∇w)T = −(vT ,∇ · (KT∇w))T +
∑
F∈FT

(vF ,KT∇w · nTF )F

∀w ∈ Pk+1(T ),

(pk+1
T vT , 1)T = (vT , 1)T .

(2.11a)

(2.11b)

By definition, we have the identity

(pk+1
T ◦ IkT ) = π̃k+1

T . (2.12)
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Moreover, given the polynomial invariance of the elliptic projector (2.6), the following polynomial

consistency property directly follows from (2.12):

(pk+1
T ◦ IkT )w = w ∀w ∈ Pk+1(T ). (2.13)

The global hybrid discrete space is defined as

Ukh := {vh := ((vT )T∈Th , (vF )F∈Fh
) |vT ∈ Pk(T ) ∀T ∈ Th,

vF ∈ Pk(F ) ∀F ∈ Fh}.

For a generic vector of discrete unknowns vh ∈ Ukh expressed as vh := ((vT )T∈Th , (vF )F∈Fh
), we

denote its restriction to T by vT := (vT , (vF )F∈FT
) ∈ UkT . We also define Ukh,0 as the subset of

Ukh whose face-based functions vanish on ∂Ω, i.e.

Ukh,0 := {vh ∈ Ukh | vF = 0 ∀F ∈ FB
h }.

The global potential reconstruction operator pk+1
h : Ukh → Uk+1

Th is obtained patching the

corresponding local counterparts: for all vh ∈ Ukh, we set

(pk+1
h vh)|T := pk+1

T vT ∀T ∈ Th.

2.3.4 Discretization of the model problem

2.3.4.1 HHO formulation

The global bilinear form ah : Ukh×Ukh → R is assembled from elementary contributions as follows:

ah(uh, vh) :=
∑
T∈Th

aT (uT , vT ),

where for all T ∈ Th, the local bilinear form aT : UkT × UkT → R is defined as

aT (uT , vT ) := (KT∇pk+1
T uT ,∇pk+1

T vT )T + sT (uT , vT ). (2.14)

In this expression, the first term is responsible for consistency while the second, involving the

bilinear form sT : UkT ×UkT → R, is required to ensure stability of the scheme. The global discrete

problem then reads

Find uh ∈ Ukh,0 such that

ah(uh, vh) =
∑
T∈Th

(f, vT )T ∀vh ∈ Ukh,0.
(2.15)

2.3.4.2 Stabilization

Design conditions for the stabilization bilinear form sT are provided in [43, Assumption 3.9].

These conditions imply, in particular, that sT must depend on its argument only through the

difference operators δkT : UkT → Pk(T ) and, for all F ∈ FT , δkTF : UkT → Pk(F ) such that, for all



2.3 Fundamentals of the HHO method 27

vT ∈ UkT ,

δkT vT :=πkT (pk+1
T vT − vT ) (2.16a)

∀F ∈ FT , δkTF vT :=πkF (pk+1
T vT − vF ). (2.16b)

These operators capture the higher-order correction that the reconstruction pk+1
T adds to the

cell and face unknowns, respectively. Remark that they vanish whenever their argument is the

interpolate of a polynomial in Pk+1(T ). Indeed, letting w ∈ Pk+1(T ), we have

δkT I
k
Tw

(2.10)
= πkT (pk+1

T IkTw − πkTw)
(2.13)

= πkT (w − πkTw) = πkTw − πkTw = 0.

Likewise with δkTF .

A classical expression for sT is the following:

sT (vT , wT ) :=
∑
F∈FT

KTF

hF
((δkTF − δkT )vT , (δ

k
TF − δkT )wT )F ,

where KTF := KTnTF · nTF for all F ∈ FT . This stabilization penalizes the difference between

the higher-order correction inside the element and on its faces. By construction, it vanishes

when applied to polynomial functions of total degree ≤ k + 1, and it is symmetric positive

semi-definite. Consequently, it can safely be added to the otherwise unstable bilinear form defined

by the consistency term of (2.14) without loss of any important property, namely polynomial

consistency and symmetry.

Remark 2. (Links with Hybridizable Discontinuous Galerkin methods) In the present formula-

tion, cell and face unknowns represent local polynomials of equal degree k. A variant consists in

taking cell unknowns of degree k + 1 instead of k, in which case the method is linked to a special

formulation of Hybridizable Discontinuous Galerkin methods [83, 96]. As shown in [36], this

formulation admits a reduced stabilization enabling improved convergence properties comparable

to those of HHO methods. For a broad discussion on the links and differences between HHO and

Hybridizable Discontinuous Galerkin methods, see [43, Section 5.1.6].

2.3.5 Assembly and static condensation

2.3.5.1 Global system

The local contributions corresponding to the representations, in the selected basis for Ukh,0, of

the bilinear form aT (cf. (2.14)) and of the linear form UkT 3 vT 7→ (f, vT )T ∈ R are, respectively,

the matrix AT and the vector BT such that

AT :=

(
ATT ATFT

AFTT AFTFT

)
, BT :=

(
bT

0

)
, (2.17)

in which the unknowns have been numbered so that cell unknowns come first and face unknowns

come last; see [43, Appendix B] for further details. After assembling the local contributions

and eliminating the boundary unknowns by a strong enforcement of the Dirichlet boundary
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Local elimination of cell unknowns

Global matrix

-1

Schur complement

Figure 2.1 Static condensation

condition, we end up with a global linear system of the form(
AThTh AThF I

h

AF I
hTh

AF I
hF

I
h

)(
vTh
vF I

h

)
=

(
bTh
0

)
. (2.18)

2.3.5.2 Static condensation

Since cell-DoFs are coupled with each other only through face-DoFs, AThTh is block-diagonal,

therefore inexpensive to invert. The static condensation process takes advantage of this property

to locally eliminate the cell-DoFs: it goes by expressing vTh in terms of vF I
h

in the first equation

of (2.18):

vTh = −A−1
ThThAThF I

h
vF I

h
+ A−1

ThThbTh , (2.19)

and then replacing vTh with its expression (2.19) in the second equation:(
AF I

hF
I
h
−AF I

hTh
A−1
ThThAThF I

h

)
vF I

h
= −AF I

hTh
A−1
ThThbTh , (2.20)

thus yielding a smaller system, involving only face unknowns. See Figure 2.1 for a matrix

representation of the static condensation. The main advantage of this technique is the reduction

of the problem size, especially for high polynomial degrees k.

2.3.5.3 Post-processing: higher-order reconstruction

After solving (2.20) for the face unknowns vF I
h
, the cell unknowns are recovered element by

element by the local counterpart of (2.19):

vT = −A−1
TTATFT

vFT
+ A−1

TTbT , (2.21)

where vT denotes the restriction to T of vTh , and vFT
the restriction of vF I

h
to the faces of T

interior to the domain, completed by zeros for boundary faces to obtain vFh
.

Now that vh := (vTh , vFh
) ∈ Ukh is available via its algebraic counterpart, we can apply the

potential reconstruction operator pk+1
T to finally construct the discrete HHO solution.
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2.4 Conclusion and summary

This chapter presented the construction of the HHO method. With respect to the desirable

features mentioned in the introductory Chapter 1, we would also like to mention the following

important properties and cite the theoretical results they come from.

� Optimal convergence. For the Poisson problem, under standard elliptic regularity

hypotheses, and assuming a regular enough solution (namely, Hk+2(Th)), the error estimate

in L2-norm shows a convergence in hk+2 (refer to [43, Theorem 2.32]).

� Robustness. For the more general variable diffusion problem (2.1), [43, Theorem 3.19]

proves the full robustness of the scheme with respect to heterogeneity, in the sense that

the error estimate in energy norm does not depend on discontinuities occurring in the

diffusion tensor across mesh elements. The scheme is also partially robust to anisotropy, in

that the upper bound, although depending on each local anisotropy ratio, is not globally

conditioned by the maximum value of those local ratios. Note that in L2-norm, however,

the convergence in hk+2 cited above is no longer valid in the case of a piecewise constant

diffusion tensor, even if the solution is Hk+2(Th). Indeed, the elliptic regularity hypothesis

is not verified. For this model, elliptic regularity is only known if Ω is convex and K is

Lipschitz continuous (refer to [43, Remark 3.21]).

� Flux conservation. The method satisfies local balances with continuous normal trace of

the fluxes at element interfaces. See [43, Lemma 2.25] for the Poisson problem and [43,

Lemma 3.17] for the variable diffusion problem.

� Computational gain of hybridization. The possibility for hybridized methods of

statically condensing their cell unknowns allows for a drastic reduction of the globally

coupled DoFs. Compared to the plain non-hybridized DG method of degree k, the

downsizing can be substantial, and grows larger with k. Indeed, denoting by NHHO
k,d and

NDG
k,d the respective numbers of globally coupled DoFs for DG and HHO, we have

NDG
k,d =

∑
T∈Th

dim(Pk(T )) =

(
k + d

k

)
card(Th)

NHHO
k,d =

∑
F∈Fh

dim(Pk(F )) =

(
k + (d− 1)

k

)
card(Fh),

which gives, for d = 3,

NDG
k,3 =

1

6
(k + 3)(k + 2)(k + 1) card(Th)

NHHO
k,3 =

1

2
(k + 2)(k + 1) card(Fh).

Especially, the number of DoFs grows in k3 for DG and in k2 for HHO.

At last, we would like to conclude this chapter by briefly enumerating take-out ideas about

HHO, which we find the most relevant in view of the contributions contained in the next chapters.

� Interpretation of the DoFs. The element of Ukh associated to a function v ∈ H1(Ω)
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through the interpolator is
(
(πkT v)T∈Th , (π

k
F v)F∈Fh

)
, showing that the element and face

unknowns of the HHO method (2.15) can be interpreted as local L2-orthogonal projections

of the exact solution.

� Higher-order reconstruction. The application of pk+1
T to a local set of hybrid unknowns

of degree k allows the gain of one degree of approximation. Precisely, For any v ∈ H1(T ),

applying pk+1
T to the interpolate of v yields the local oblique elliptic projection of v on

Pk+1(T ) (cf. (2.12)).

� Discrete approximate. As a result, given DoFs of degree k, the approximation provided

by the HHO method is a broken polynomial of degree k + 1. Particularly, it is obtained

in a post-processing step by the computation of pk+1
h uh, where uh is the solution of the

discrete formulation (2.15).

� The global HHO process, from assembly to the reconstruction of the discrete approxi-

mate is summarized in Figure 2.2.

Assembly Static condensation

Solving
face unknowns

Solving
cell unknowns

︸ ︷︷ ︸
Higher-order

reconstruction

Figure 2.2 Summary of the HHO process



Chapter 3

A geometric multigrid method for HHO

discretizations

About a now-famous iterative method for

the solution of linear systems:

“I recommend this method to you for

imitation. You will hardly ever again

eliminate directly, at least not when you

have more than 2. The indirect procedure

can be done while half asleep, or while

thinking about other things.”

Carl Friedrich Gauß —

in a letter to Gerling on Dec. 26th 1823

The content of this chapter was published in SIAM Journal on Scientific Computing (Copper

Mountain Special Section 2020) [50].

Considering the HHO formulation (2.15) of the diffusion problem (2.1), we address in

this chapter the efficient solution of the trace system (2.20) by means of a novel, geometric,

h-multigrid algorithm. The method we propose hinges on face-defined functions at every grid

level, and works in synergy with the discretization through intergrid transfer operators leveraging

the higher-order potential reconstruction (2.11). It also applies to any polynomial degree of

approximation without resorting to an additional p-multigrid, which, in practice, can be seen as

a valuable reduction of the implementation cost.

Our algorithm development is based on the systematic approach proposed in the seminal

guide to multigrid development [28]. The method consists in identifying the individual difficulties

and obstacles that may inhibit the optimal performance of a multigrid algorithm. For each of

the difficulties, appropriate multigrid components are developed. Here, in particular, we start

from the Laplace problem discretized on the skeleton of a simple Cartesian mesh to first develop

a multigrid method that is scalable in the number of unknowns and robust with respect to the

polynomial degree. With this algorithm, we then proceed to work on more general problems

and meshes. One consequence of this approach is that we focus on multigrid as a solver, not as
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a preconditioner. When used only as preconditioner, this tends to obscure misconceptions in

the design of the multigrid components. The multigrid algorithms developed here can serve as

efficient stand-alone solvers, but they can also serve as preconditioners, as we will explore in

future research.

In this work, the polynomial order of approximation is preserved at every level at the sole

cost of using a blockwise smoother instead of a pointwise one. This approach originates from

the remark that a high-order finite element discretization yields a block matrix, whose diagonal

blocks are formed by the degrees of freedom connected to the same cell. This configuration

usually destroys the desirable M- or H-matrix structure and, along with it, the convergence

of pointwise smoothers; on the other hand, the block structure paves the way to using block

versions of similar smoothers. In a more functional way of thinking, relaxing together the DoFs

related to the same polynomial comes as intuitive. The robustness of the multigrid algorithms

using block smoothers for high-order methods has been experimentally illustrated in [74] and

later used in practical solvers such as [98].

This chapter is organized as follows. Section 3.1 is devoted to the construction of the multigrid

algorithm and illustrates how it takes advantage of the HHO potential reconstruction operator.

Numerical results for various polynomial degrees are presented in Section 3.2, considering both

homogeneous and heterogeneous diffusion problems in two and three space dimensions. The

numerical experiments show that the number of iterations is nearly independent of the mesh

size and of the presence of jumps in the diffusion coefficient.

3.1 Multigrid algorithm

3.1.1 Coarsening strategy

The levels of the multigrid method are numbered from 1 to L, L being the finest and 1 the

coarsest. In what follows, we denote by ` the generic level and by h` the corresponding mesh

size. To simplify the notation, from this point on h` is replaced by ` in subscripts so we write,

e.g., T` instead of Th` , F` instead of Fh` , and so on.

Relative to those levels, we consider a hierarchy of nested polyhedral meshes (T`,F`)`=1...L.

We assume the hierarchy to successively coarsen not only elements, but also faces. This means

that, for all ` = 1 . . . L, letting hT` := maxT∈T` hT and hF`
:= maxF∈F`

hF , it holds

hT`−1
> hT` , hF`−1

> hF`
.

Standard coarsening of structured Cartesian and triangular meshes, as well as unstructured

meshes obtained from successive structured refinements of an initial coarse mesh fall under

the scope of these assumptions; examples of admissible coarsening strategies are illustrated in

Figure 3.1. Requiring that the faces be coarsened is justified by our algorithm being face-defined

at every level. Indeed, the smoother applies to faces the same way it applies to elements in a

classical element-defined multigrid method: once the high frequencies of the error have been

annihilated on the fine mesh, the smoother requires coarser elements to reach the low frequencies

on the coarse mesh. For the same reason, a multigrid working on the mesh skeleton needs the

faces to be coarsened: the consequence of a face not being coarsened between a fine and a coarse
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mesh would be to keep the smoother working on the same range of frequencies, leaving it unable

to efficiently reduce the lowest ones; see Figure 3.13 below.
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Figure 3.1 Coarsening examples. In the top row (2D), the first two coarsenings are admissible,
whereas the third one is not: edges have been removed, but none of the remaining ones has been
coarsened. Similar 3D examples in the bottom row. In the non-admissible case, the coarsened
cube has 6 sets of 4 coplanar faces, which have not been coarsened.

We will also assume that, for every ` = 1 . . . L, the diffusion coefficient is piecewise constant

on T`, so that jumps can occur at faces but not inside elements.

3.1.2 Discrete spaces

Let k ∈ N be a fixed polynomial degree. For all level ` = 1 . . . L, we introduce the following

broken polynomial spaces, respectively supported by the mesh and its skeleton:

Uk+δ
T` :=

{
vT` := (vT )T∈T` | vT ∈ Pk+δ(T ) ∀T ∈ T`

}
for δ ∈ {0, 1},

UkF`
:=
{
vF`

:= (vF )F∈F`
| vF ∈ Pk(F ) ∀F ∈ F`

}
.

The homogeneous Dirichlet boundary condition is strongly enforced in the following subspace of

UkF`
:

UkF`,0
:=
{
vF`
∈ UkF`

| vF = 0 ∀F ∈ FB
`

}
.

3.1.3 Prolongation

We consider two successive levels ` (fine) and `− 1 (coarse). In this algorithm, faces support

the functions at every level. To prolongate a coarse function onto the fine mesh skeleton,

which includes some faces that are not present in the coarse mesh, we propose an intermediary

step that passes through the cells (Figure 3.2). Following this idea, the prolongation operator

P : UkF`−1,0
→ UkF`,0

is defined as the composition

P = Π`
`−1 ◦Θ`−1, (3.1)

where the coarse level potential reconstruction operator Θ`−1 : UkF`−1,0
→ Uk+1

T`−1
reconstructs a

broken polynomial of degree k + 1 on T`−1 from face unknowns; then, the trace prolongation

operator Π`
`−1 : Uk+1

T`−1
→ UkF`,0

maps the polynomials of degree k + 1 defined on the coarse cells

to a broken polynomial function of degree k on the fine skeleton.
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potential
reconstruction

Θ`−1

trace on the
fine faces

Π`
`−1

Figure 3.2 Prolongation from coarse to fine edges.

3.1.3.1 Θ`: from faces to cells

This operator is at the core of the algorithm and is what makes it original. Given a trace error

function eF`
∈ UkF`,0

as the operand of Θ`, we recover a cell-defined error function eT` ∈ U
k+1
T`

by locally reversing the static condensation process, then take advantage of the potential

reconstruction operator introduced in Section 2.3.3 to gain one order of approximation inside

the cells.

As these operations are local, the process will be outlined for a generic mesh element T ∈ T`.
Defining eFT

:= (eF )F∈FT
, we let eFT

:= (eF )F∈FT
denote its algebraic representation as vectors

of coefficients in the selected polynomial bases. If we denote by (x>T` ,x
>
F`

)> the vector obtained

completing the solution vector of the global system (2.18) with boundary unknowns equal to

zero, then its restriction to T , namely (x>T ,x
>
FT

)>, is the solution of the local system defined

by (2.17), i.e. (
ATT ATFT

AFTT AFTFT

)(
xT

xFT

)
=

(
bT

0

)
,

from which the static condensation process expresses xT in terms of xFT
as

xT = −A−1
TTATFT

xFT
+ A−1

TTbT . (3.2)

We now introduce the local face-defined approximate solution vector x̃FT
such that eFT

= xFT
− x̃FT

,

and, inspired by (3.2), we define the associated cell-based approximate vector x̃T by

x̃T := −A−1
TTATFT

x̃FT
+ A−1

TTbT . (3.3)

Definition (3.3) ensures consistency in the sense that for x̃FT
= xFT

, it yields x̃T = xT by (3.2).

We can finally define the error on the cell by setting eT := xT − x̃T , and replace xT and x̃T with

their respective expressions (3.2) and (3.3), thus cancelling the terms involving bT and giving

eT = −A−1
TTATFT

(xFT
− x̃FT

) = −A−1
TTATFT

eFT
. (3.4)

Once eT is retrieved from its algebraic representation given by (3.4), the local potential

reconstruction pk+1
T defined in (2.11) is applied to the hybrid vector (eT , eFT

) to obtain an

approximate error of degree k + 1 on the cell:

(Θ`eF`
)|T := pk+1

T (eT , eFT
) ∀T ∈ Th. (3.5)

Figure 3.3 summarizes the process.
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local problem
solution

(3.4)

higher order
reconstruction

(3.5)

Figure 3.3 Reconstruction of a polynomial of degree k + 1 from polynomials of degree k (here
for k = 1) on the four edges of a 2D square element.

3.1.3.2 Π`
`−1: from cells to faces

For any v ∈ Uk+1
T`−1

and any F ∈ F`, (Π`
`−1v)|F is built as the L2-orthogonal projection on Pk(F )

of the weighted average of the traces of v on both sides of F if F is an internal face, while

(Π`
`−1v)|F is set equal to zero if F is a boundary face, i.e.,

(Π`
`−1v)|F :=

wT1F πkF (v|T1)|F + wT2F π
k
F (v|T2)|F if F ∈ F I

` ,

0 otherwise,
(3.6)

where T1, T2 denote the distinct elements in TF ⊂ T`, πkF is the L2-projector on Pk(F ), and the

weights satisfy

wT1F + wT2F = 1 (3.7a)

wT1F
wT2F

=
KT1F

KT2F
, (3.7b)

where we remind the reader that, for i ∈ {1, 2}, KTiF := KTinTiF · nTiF . Enforcing both

constraints (3.7) yields, for i ∈ {1, 2},

wTiF :=
KTiF

KT1F +KT2F
. (3.8)

3.1.4 Multigrid components

The prolongation operator P is defined by (3.1). The restriction operator R is defined as the

adjoint of P in the usual way. Interpreted algebraically as matrices (using the notations R

and P), it means R = P>. Note that Π`
`−1 does not make a distinction between the fine faces

contained in the skeleton of the coarse grid and those that are not; consequently, the polynomials

on coarse faces are not transferred identically to the fine grid, but instead take on new values

coming from the (weighted) average of the reconstructed cell-polynomials on each side. The

alternative way of prolongating coarse functions from coarse faces to their respective identical fine

faces, namely keeping them unchanged, has also been tested (cf. Section 3.2.4) and yields a less

efficient algorithm. This observation is consistent with the fact that solving the local problems

produces additional information that the coarse polynomials do not possess. In addition, the

reconstruction using higher degree polynomials also results in higher accuracy in the case where

two fine faces are agglomerated into a single coarse one: the polynomial of degree k + 1 on the

coarse cell can induce two different polynomials of degree k on the two corresponding fine faces,

which would not be the case if the reconstruction were only of degree k.
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The coarse grid operator at level `− 1 can be chosen either as the discretized operator on

the respective coarse mesh, or as the Galerkin construction: A`−1 := RA`P . The numerical

tests in the next section show equivalent performances.

In order to relax the DoFs related to the same polynomial function together, block versions

of standard fixed-point smoothers are chosen, whose block size corresponds to the number of

DoFs on each face.

3.2 Numerical results

3.2.1 Experimental setup

The numerical tests have been performed on the diffusion problem (2.1) in various d-dimensional

domains Ω ⊂ Rd, d ∈ {2, 3}. The unit square/cube Ω := (0, 1)d is used to study the algorithm

on structured meshes, whereas more complicated geometries shall be used for unstructured ones.

The source function f is chosen so that the analytical solution of the homogeneous problem

corresponds to (x, y) 7→ sin(4πx) sin(4πy) in 2D and (x, y, z) 7→ sin(4πx) sin(4πy) sin(4πz) in

3D. For structured cases, given an integer N > 0, the domain is discretized by a Cartesian

grid composed of Nd square/cubic elements of side length 1/N . Each of them is respectively

decomposed into 2 triangles or 6 tetrahedra if the mesh is simplicial. In what follows, k

denotes the polynomial degree on the faces (meaning that the HHO method ultimately yields an

approximation of degree k+ 1). Our multigrid algorithm is used to solve the statically condensed

linear system (2.20). The mesh is successively coarsened until the coarse system reaches a size

with less than 1000 unknowns. On the coarsest level, the system is solved by a direct solver.

The operators on the coarser levels are constructed directly as the discretization of the equation

on the respective coarse meshes. The prolongation operator is defined according to (3.1) and

the restriction operator is taken equal to its transpose in the usual sense. The smoother is a

block Gauss–Seidel method, in which the block size corresponds to the number of face-DoFs.

In pre-smoothing, the iteration is performed in lexicographic order, while in post-smoothing, it

is performed in anti-lexicographic order to ensure the symmetry of the overall iteration. Note

that experiments have also been performed with block-Jacobi with damping factor 2/3, showing

qualitatively equivalent results. This could be the basis for a parallel implementation. Here

we will only report detailed results for the block Gauss–Seidel smoother. The multigrid cycles

will vary depending on the test. An L2-orthogonal Legendre basis is chosen to represent the

local polynomials on cells and faces. The stopping criterion is set to ‖r‖2/‖b‖2 < 10−8, where r

denotes the residual vector, b the right-hand side of the linear system, and ‖ · ‖2 the Euclidean

norm on the vector space of coordinates.

3.2.2 Homogeneous diffusion on structured meshes

The diffusion tensor field is constant across the domain and equals the identity matrix. The

model problem is discretized using four structured meshes: Cartesian and triangular in 2D,

Cartesian and tetrahedral in 3D. The mesh hierarchies are constructed from the fine mesh by

standard coarsening. This strategy ensures the hierarchical nestedness as well as geometrically
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similar elements at every level. Note that the tetrahedral meshes are built from the Cartesian

ones, where each cube is divided into six geometrically similar tetrahedra (cf. [16, Figure 9]).

3.2.2.1 Preliminary tests using classical multigrid cycles

Figure 3.4 presents performance results of the multigrid algorithm as a solver, using the cheapest

symmetric V-cycle that ensures convergence in a reasonable number of iterations as well as good

scalability, namely V(1,1) for 2D meshes and the 3D Cartesian one, V(2,2) for the tetrahedral

mesh. Leaving the lowest order case aside for the moment, these results are consistent with

the desired multigrid property of a convergence rate that is independent of the mesh size

and the number of levels, provided that a sufficient (yet reasonable) number of smoothing

steps are performed. Moreover, although the number of iterations may increase moderately

with the polynomial degree, the algorithm still exhibits the same desirable properties for high

approximation orders.

For the lowest order case k = 0, the results are plotted throughout the tests in dashed lines.

Here the results are less clear. Although in case of k = 0 we still observe good scalability on

Cartesian meshes, the convergence on the triangular meshes deteriorates with growing mesh

size. For the tetrahedral mesh in 3D and k = 0 no data is shown in Figure 3.4 since this version

does not converge with the V(2,2) cycle. Here, more smoothing steps would be needed to ensure

convergence. Our hypothesis is that the difference lies in the approximation properties of the

HHO method, especially in the L2-error estimate for cell unknowns, where the case k = 0 is

discriminated (cf. [43, Lemma 2.33]). As a matter of fact, it is well known that the convergence

of geometric multigrid methods built on coarse rediscretizations depends on the convergence

properties of the underlying discretization through the coarse grid correction step.

3.2.2.2 Multigrid cycle optimization

While the above results demonstrate the asymptotic optimality of our new multigrid algorithm,

we now proceed to studying how the inherent design options of multigrid can be used to further

improve the real-life efficiency. In particular, we identify the most efficient cycle structure and

how much pre- and post-smoothing should be performed. To assess the performance impact of

these choices, it is necessary to define a criterion modeling the trade-off between convergence

rate and iteration cost. We emphasize that the sole number of iterations is not sufficient to

assess the solver’s overall efficiency, because the cost of each iteration must be taken into account.

Hence, Figure 3.5 compares the performance, measured in total computational work to reach

convergence, of different multigrid cycles on a 2D test problem (triangular mesh, N = 512, k = 1).

In the left plot, the numerical values have been obtained by taking the theoretical computational

work (in flops) of the multigrid algorithm, using the following simplifying rules: (i) the asymptotic

value of the work count is used, meaning that only the dominant term (in the matrix size or

non-zero entries) is kept; (ii) the work of the direct solver on the coarsest grid is neglected.

The total number of iterations required to achieve convergence is displayed for information in

the right plot. Recalling that all tests stop upon reaching the same convergence criterion, we

consider all the solutions produced to be equivalent: for instance, V(1,1) is about 50% more

computationally expensive than V(0,2) for the same quality result. Note that V- and W-cycles
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Figure 3.4 Number of iterations to achieve convergence for the homogeneous problem on
structured meshes: 2D Cartesian (top left), 2D triangular (top right), 3D Cartesian (bottom
left), 3D tetrahedral (bottom right). The first three are solved using the V(1,1) cycle, while the
last one (tetrahedral mesh) is solved using the V(2,2) cycle.

have been tested, and exhibit, for the same numbers of smoothing steps, the same convergence

rate. Since W-cycles are more computationally expensive by definition, the corresponding results

are not presented in further detail. The comparisons have also been made in terms of CPU

time in order to compare the estimates of computational work with respect to a hard practical

criterion. Again, these results show a similar ranking and allow to draw the same conclusions;

so they are not displayed in detail either.

Now, we can comment on the importance of post-smoothing: for example, amongst V(1,2),

V(2,1) and V(0,3), although they all have the same total number of smoothing steps, and

consequently the same cost per cycle iteration, V(0,3) is found to be the most efficient. More

generally, among all cycles V(ν1,ν2) with ν1 + ν2 = ν, the option ν1 = 0 and ν2 = ν appears

to be the most efficient. Moreover, we find that the extra cost of more post-smoothing is

compensated to a great extent by a better convergence rate. Particularly, moving away from

the sweet spot V(0,ν), e.g. by taking V(0,ν + 1) instead, only induces a minor overhead, which

grants a pragmatic flexibility in the actual choice of the number of post-smoothing steps.

Figure 3.6 presents the same tests in 3D on the tetrahedral mesh. They also clearly show

the superiority of cycles with post-smoothing only. Since both the lexicographic and the

antilexicographic Gauss-Seidel smoothers depend on the numbering of the DoFs, we have checked

whether these observations depend on a particular numbering of the unknowns. To this end, we

have additionally performed experiments with the damped block Jacobi smoother with ω = 2/3

as the under-relaxation parameter (see Figure 3.7). This test leads to the same qualitative

conclusions, but with a milder quantitative effect. Based on these measures, we settle for V(0,3)

in 2D and V(0,6) in 3D as the most efficient cycles when using block Gauss-Seidel. In Figure 3.8
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we present the results of the same scalability tests as in Figure 3.4 using these “optimized” cycles.

Besides the expected improved convergence rates, we point out that the iteration count for

different polynomial degrees are now almost the same: in all cases, the number of iterations

lies in a narrow interval regardless of the polynomial degree. Again the lowest order on the

tetrahedral mesh constitutes an exception, since the method still diverges in that case.
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Figure 3.5 Cycle comparison on the 2D test problem, triangular mesh, N = 512, k = 1
(≈ 1.6× 106 DoFs). The pre-smoother is the lexicographic block Gauss-Seidel, the post-smoother
is the antilexicographic block Gauss-Seidel. In the first plot, the numerical values in flops of the
computational work are normalized by the lowest one. V(0,1) and V(1,0), being very inefficient
in comparison to the others, are not presented here.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

V(2,2)
V(0,3)
V(1,3)
V(2,3)
V(3,3)
V(0,4)
V(1,4)
V(0,5)
V(0,6)
V(0,7)
V(0,8)

Normalized computational work
0 5 10 15 20 25

V(2,2)
V(0,3)
V(1,3)
V(2,3)
V(3,3)
V(0,4)
V(1,4)
V(0,5)
V(0,6)
V(0,7)
V(0,8)

Iterations

Figure 3.6 Cycle comparison on the 3D test problem, tetrahedral mesh, N = 32, k = 1
(≈ 1.2× 106 DoFs). The pre-smoother is the lexicographic Block Gauss-Seidel, the post-
smoother is the antilexicographic Gauss-Seidel. In the first plot, the numerical values in flops of
the computational work are normalized by the lowest one. The first cycles, with less than 3 or 4
total iterations are not efficient and therefore not presented here.

The multigrid algorithm can be used as a preconditioner for Krylov-space methods and in

particular for the Conjugate Gradient (CG) method. In the latter case, the algorithm requires

formally a symmetric positive definite preconditioner to ensure convergence. Consequently, the

choice of a symmetric and therefore suboptimal multigrid cycle seems to be necessary, unless

the conditions of [72] are met. A thorough investigation of the present multigrid algorithm as
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Figure 3.7 Cycle comparison on the 2D test problem, triangular mesh, N = 512, k = 1
(≈ 1.6× 106 DoFs). The pre- and post-smoothers are the damped block Jacobi smoother with
the relaxation parameter 2/3. In the first plot, the numerical values in flops of the computational
work are normalized by the lowest one. The first cycles, with less than 3 or 4 total smoothing
steps are not efficient and therefore not presented here.

preconditioner is outside the scope of this chapter.

3.2.3 Heterogeneous diffusion

The domain is split into four quadrants as illustrated in Figure 3.9a. The heterogeneity pattern

is such that each pair of opposite quadrants have the same, homogeneous, diffusion coefficient.

On each homogeneous part Ωi, i = 1, 2, the diffusion tensor is defined as K|Ωi := κiId, where κi

is a positive scalar constant and Id denotes the identity matrix of size d.

Our first test evaluates the convergence rate for varying values of the coefficient ratio

ρK := κ1/κ2 in the range 1 ≤ ρK ≤ 108. The results demonstrate robustness of the algorithm

with respect to the heterogeneity. Regardless of the magnitude of the coefficient ratio, the

convergence rate remains unchanged and matches that of the homogeneous case; see Figure 3.12a.

In [75], Kellogg studied the analytical solution of a specific case of such a configuration. The

source function is set f ≡ 0 and non-homogeneous Dirichlet boundary conditions are imposed.

The particular solution u exhibits a singularity at the center of the square and has reduced

regularity u ∈ H1+ε, 0 < ε ≤ 1. Since the strength of the singularity and thus the regularity 1+ ε

can be adjusted via the coefficient ratio, this problem is often used to benchmark discretizations

and solvers. Here we set the parameters of the Kellogg problem such that we have a strong

singularity of ε = 0.1, corresponding to ρK ≈ 161. The analytical solution u is illustrated in

Figure 3.9b, and Figure 3.10 shows the scalability of the multigrid solver and its robustness with

respect to the polynomial degree. Here, the V(1,1) cycle is used, but other cycle types exhibit

the same properties.

3.2.4 Impact of different choices in the algorithm

3.2.4.1 Alternative prolongation operators

Here we discuss alternatives in the coarse reconstruction of the cell-defined polynomial and in

the trace prolongation on the fine faces. Especially, in the definition of Θ`−1, reconstructing a
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Figure 3.8 Number of iterations to achieve convergence for the homogeneous problem on
structured meshes: 2D Cartesian (top left), 2D triangular (top right), 3D Cartesian (bottom
left), 3D tetrahedral (bottom right). The V(0,3) cycle is used for 2D problems, the V(0,6) for
3D. The absence of the lowest order case on the tetrahedral mesh is due to the divergence of the
multigrid method.
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(a) Chiasmus heterogeneity pattern. (b) Kellogg’s solution.

Figure 3.9 (a) Square domain partitioned into four quadrants defining an heterogeneity pattern
in the shape of a chiasmus. (b) Analytical solution of the Kellogg problem.

polynomial of higher degree may be optional. As a matter of fact, only solving the cell unknowns

by (3.4) and skipping the higher order reconstruction (3.5) could be enough to construct a

suitable cell-based polynomial from which to take the trace on the fine faces. In that second

step of the prolongation, namely Π`
`−1, we could also rely on the nestedness of the meshes to

identically transfer the polynomials on the coarse faces to the fine grid using the canonical

injection1, instead of taking the average of the traces of the cell-based polynomials on both

sides (see (3.6)). Table 3.1 summarizes these options. In order to quantify the impact of the

choices made, Figure 3.11 compares the performance in term of scalability of the four option

combinations applied to a homogeneous test problem. With the optimal V(0,3) cycle (left plot),

the results show the good scalability of all options, with a better convergence rate for the final

1Here, the canonical injection refers to the linear operator that identically transfers the elements from one
space to a larger one. It is not to be mistaken with the straight injection designating, in multigrid terminology, a
special type of restriction operator.
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Figure 3.10 Scalability results on the Kellogg problem. Number of V(1,1) iterations to achieve
convergence for a growing number of DoFs.

algorithm (about 15% better than with any other option combination). However, the results

with the V(1,2) cycle (right plot) indicate that the differences between options may amplify

when using non-optimal cycles. Indeed, in this case, it seems that taking the average on both

sides instead of using the canonical injection on the faces geometrically shared by the coarse

and fine meshes becomes an important criterion to achieve the most scalable behaviour. On the

other hand, the reconstruction of higher degree seems to simply improve the convergence rate,

with no visible impact on scalability.

Option label Description

Θ`−1

cell k + 1 Formula (3.5).

cell k
Formula (3.4), the higher-order reconstruction (using pk+1

T )
is skipped.

Π`
`−1

average Formula (3.6).

injection
The polynomials on the coarse faces are identically
transferred to the fine grid using the canonical injection.

Table 3.1 Summary of the 4 options defined for the algorithm.

104 105 106 107

10

20

30

40

50

V(0,3)

Number of DoFs

It
er

at
io

n
s

cell k and injection
cell k and average
cell k + 1 and injection

cell k + 1 and average (final algo.)

104 105 106 107

V(1,2)

Number of DoFs

Figure 3.11 Scalability comparison of different versions of the algorithm, applied on the 2D
homogeneous problem discretized with the structured triangular mesh for k = 1. On the left, the
V(0,3) cycle is used, on the right, V(1,2). The various option combinations are labeled according
to Table 3.1.
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3.2.4.2 Weighting strategy for heterogeneous problems

In the same way, in the case of a heterogeneous problem, we quantify the impact of weighting

the cell contribution in Π`
`−1 proportionally to its diffusion coefficient via (3.8). This strategy

is hereafter called heterogeneous weighting, as opposed to the alternative that is, given a

non-boundary face, to take from each cell of which it is the interface an equally weighted

contribution (i.e. to use weighting factors of 1/2). The first thing to be noted is that, if we do

not use the heterogeneous weighting (3.8), our algorithm diverges when the heterogeneity ratio

ρK ≥ 50. Now, if we use the Galerkin operator instead of the discretized operator on the coarse

grids, the algorithm becomes much more robust to high heterogeneity ratios and allows for a

quantitative comparison. Figure 3.12 illustrates the differences in the weighting strategies for an

increasing heterogeneity ratio, using the Galerkin operator. The heterogeneous weighting ensures

perfect robustness with respect to ρK regardless of the polynomial degree. But without it, the

convergence rate of the algorithm clearly becomes sensitive to the strength of the discontinuity.

Moreover, this sensitivity intensifies with the increase of the polynomial degree. We want to

clearly state that the sole purpose of this experiment without the diffusion-dependent weights is

to highlight their importance. To this end, the Galerkin operator is only used as a means to

establish a comparison, and therefore, in the context of this multigrid with all its features, must

not be considered more robust to heterogeneous test cases than the rediscretization.
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Figure 3.12 Robustness of our multigrid algorithm for the heterogeneous 2D test problem with
(a) and without (b) the heterogeneous weighting strategy (3.8), in terms of number of iterations
to achieve convergence for various orders of magnitude of the heterogeneity ratio ρK. The
square domain is discretized by a Cartesian mesh with N = 64, partitioned in four quadrants as
described in 3.2.3. The multigrid algorithm uses the Galerkin operator and the V(0,3) cycle.

3.2.4.3 Role of the face coarsening

We now investigate the need for coarsening the faces in the coarsening strategy and show that

without doing so, the solver’s performance degrades rapidly. In our standard coarsening of

uniform Cartesian meshes, two edges in 2D (or four faces in 3D) are ideally combined to become

a single one. Consequently, each mesh cell has four edges (or six faces in 3D), and this on all

levels. Alternatively, we also have the option that each coarse cell is represented with eight edges,

colinear by pairs (see the last (inadmissible) coarsening strategy described by Figure 3.1). One of

the effects of this alternative coarsening is that the number of unknowns per level is reduced less
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aggressively. Indeed, asymptotically, the number of unknowns is only decreasing by a factor of

two per level (whether in 2D or 3D), whereas the standard coarsening rate is four in 2D and eight

in 3D. For this nonstandard coarsening, the coarse grid spaces are then enlarged. In a Galerkin

setting, the usual coarse grid spaces are subspaces of these enlarged coarse grid spaces, and as a

consequence, we expect the two-grid convergence rates to improve. This is indeed verified, under

the condition that the Galerkin operator is invertible (which is not necessarily the case with

this coarsening strategy). However, this improvement cannot be observed in V-cycles with more

levels, and not at all if we step out of the Galerkin setting to use the rediscretized operator.

This observation is caused by the neglect of one important condition in multigrid convergence:

as the smoother only efficiently reduces the high-frequency components of the error, it is crucial

that the remaining low frequencies be seen as higher frequencies in the coarser spaces. And

this can happen only if the geometric entities on which the DoFs lie are coarsened in between

levels. As we work on the condensed system, whose unknowns rest on the mesh skeleton, this

condition means that the faces should be coarsened. Only in this appropriate setting can the

smoother at each level successfully target its own range of frequencies. If the faces are not

coarsened, the smoother on the coarser grids spends most of its effort to compute irrelevant

solution modes, which causes the convergence rate to deteriorate. Figure 3.13 illustrates this

convergence degradation as the number of DoFs (and therefore the number of levels) grows.

Note that the overall performance of the solver also reduces due to the increased amount of work

and the slower coarsening.
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Figure 3.13 On the right, scalability test of the algorithm using a coarsening strategy which does
not coarsen faces. The test problem is the homogeneous problem on the 2D Cartesian mesh,
solved by the V(0,3) cycle of our multigrid algorithm, using the coarsening strategy described
on the right-hand side of Figure 3.1. In the left plot, standard coarsening is used in comparison.

3.2.5 Unstructured meshes

The convergence of a geometric multigrid method relies on the approximation properties of the

underlying discretization scheme through its coarse grid correction step. Furthermore, most

discretization schemes are sensitive to the quality of the mesh, degrading in presence of flattened

or stretched elements. As a direct consequence, the convergence of a multigrid method is often

also sensitive to the mesh quality. The reader may refer to [2] for further details about the

sensitivity of the HHO method to the element shapes. Moreover, even when starting from a
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good-quality coarse (resp. fine) mesh, the construction of a suitable mesh hierarchy may be

difficult. In such an unstructured mesh hierarchy, the distortions of the elements must be kept

under control when refining (resp. coarsening) the mesh. This is less a problem in 2D, but it

remains difficult in 3D [32, 110]. Tetrahedral mesh refinement preserving mesh quality is still a

topic of recent research [99, 117]. These difficulties help explain why more costly cycles may be

required for highly unstructured 3D meshes.

In all the following tests, the mesh hierarchy is built by successive refinement of a coarse mesh.

In 2D, we find that the convergence on unstructured meshes is qualitatively and quantitatively

comparable to the convergence on structured meshes. Here the V(0,3) cycle is found to be

sufficient. In 3D, the lower quality of tetrahedral meshes forces us to use costlier cycles. First of

all, since the meshing method used to discretize the different refinements of the cubic domain

(described in 3.2.2) is not applicable on general geometries, we investigate the impact of another,

more generally applicable, tetrahedral refinement method. The method used is inspired by Bey’s

refinement algorithm [16]. Figure 3.14 shows that trading the refinement strategy for one that

does not conserve the topology of the tetrahedra causes a serious performance degradation,

which can be mitigated at the cost of substantially more smoothing steps. In order to quantify

the loss of performance with respect to the loss of mesh quality upon refinement, we use the

regularity indicator %h defined as

%h := max
T∈Th

%T with %T :=
dT
hT

∀T ∈ Th, (3.9)

where dT denotes the diameter of the largest ball included in T . A good regularity parameter is

close to 1 while a bad one may be close to 0. As a reference, a cube has a regularity parameter

of 0.64. Now, the original coarse mesh, namely the cubic domain divided into 6 geometrically

identical tetrahedra, has a %h of 0.21. The so-called Cartesian tetrahedral refinement method

described in 3.2.2 does not change the geometry of the refined tetrahedra, so the regularity

parameter is conserved on the refined meshes, and we have seen that the V(0,3) cycle exhibits

scalable behaviour and fast convergence. On the other hand, our custom Bey’s method degrades

the mesh quality during the first refinement (but not during the next ones), yielding in this case

a regularity parameter of 0.14, which corresponds to a loss of 1/3. Figure 3.14 shows that over

three times more smoothing steps are required to compensate for the poorer mesh quality and

to recover comparable performance.

Using this time the custom Bey’s refinement method, a cycle comparison in the model of

Figure 3.6 finds V(0,10) as the most efficient cycle in this context. V(0,10) is therefore used

for the test of the highly unstructured 3D mesh presented in Figure 3.15. In this test case, the

initial coarse mesh has %h = 0.10, which degrades to 0.06 after refinement. The poor initial mesh

quality and the further degradation of 40% result in sub-optimal performance: in spite of the

large number of smoothing steps, the convergence degrades for larger meshes. Thus, the desired

h-independent convergence cannot be confirmed. Table 3.2 summarizes the impact of the mesh

quality and the refinement method on the performance of the multigrid algorithm.

Having stated the sensitivity of the algorithm to the mesh quality, along with the known

problem of refining (resp. coarsening) unstructured tetrahedral meshes without (too much)

degradation, it is important to recall HHO as a polyhedral method. In this context, taking



46 Geometric Multigrid for HHO

104 105 106 107

10

20

30

Number of DoFs

It
er

a
ti

on
s

Custom Bey’s refinement, V(0,6)

Custom Bey’s refinement, V(0,8)

Custom Bey’s refinement, V(0,10)

Cartesian tet. refinement, V(0,6)

Figure 3.14 Comparison on the cubic domain of the Cartesian tetrahedral refinement method
described in 3.2.2 and the custom Bey’s refinement method, with different cycles, in terms of
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Figure 3.15 On the left: tetrahedral mesh of a plate with four polyhedral holes going through the
object from one side to the other. On the right: Scalability results of the multigrid algorithm,
using the V(0,10) cycle and Bey’s tetrahedral refinement. The case k = 0 is divergent.

Domain Mesh Refinement %1 %L Quality Required
method loss cycle

Cartesian Standard 0.64 0.64 0% V(0,3)
Cube Tetrahedral Cartesian tet. 0.21 0.21 0% V(0,6)

Tetrahedral Custom Bey 0.21 0.14 33% V(0,10)

Plate w/ holes Tetrahedral Custom Bey 0.10 0.06 40% > V(0,10)

Table 3.2 Numerical values of the mesh quality and the quality loss caused by the refinement
method, along with their consequences on the minimum cycle required to retrieve a close-to-
optimal convergence rate. %1 (resp. %L) corresponds to the quality indicator (3.9) of the initial
coarse mesh (resp. of the fine mesh obtained by the application of the refinement method). The
domain “Plate w/ holes” refers to Figure 3.15.

advantage of the flexibility of general polyhedral meshes is one way of overcoming these difficulties

and keep the mesh quality under control. For the same purpose, the use of non-nested meshes,

discussed in the next paragraph, can constitute an additional tool.

3.2.6 Non-nested meshes

In this section we relax the requirement that the meshes must be nested. Although no rigorous

redefinition of the algorithm is made here, we will explain the changes that are necessary for

non-nested meshes.

� Coarsening strategy: The hierarchy (T`)`=1...L is now non-nested, in which we consider
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two successive levels ` (fine) and `− 1 (coarse). Figure 3.16 presents an example of two

such levels. For a fine element T ∈ T`, we define its associated coarse element T `−1 ∈ T`−1

as the one coarse element that contains “most of” T , and we make the assumption that

the definition used for “most of” ensures existence and uniqueness of T `−1 for all T ∈ T`.
In our implementation, we have considered that a coarse element contains “most of” the

fine element T if it contains its centroid. Note that when the meshes are nested, T `−1

simply reduces to the coarse element that geometrically embeds T . Now, given a fine face

F ∈ F`, F is either absent from the coarse mesh (black dotted edges in Figure 3.16), or

still geometrically present in a coarsened form, which we denote by F `−1 (solid edges).

Non-nestedness implies that F may no longer be geometrically embedded in F `−1 (like

blue dotted edges are not embedded in the coarse red ones). If so, we talk of non-nested

faces. The assumption that discontinuities in the diffusion coefficient do not happen inside

elements consequently implies that the faces describing such discontinuities must still be

nested.

� Trace on the fine faces: Although the reconstruction from the coarse faces to the coarse

cells remains the same, inasmuch as the fine mesh is not involved, taking the trace of a

coarse cell-defined polynomial on a fine face which is not fully included in the closure of the

coarse cell is no longer possible. As example, consider in Figure 3.16 one coarse triangle

with a red edge and pointing to the center of the figure: the blue edges corresponding

to the refinement of the red edge are fully outside the coarse triangle, while two interior

fine edges (which are simply not present on the coarse mesh in a coarsened form) are only

partially included in the coarse triangle. In this case, we consider that the cell-defined

polynomial is extended outside of the cell boundaries to overlap the targeted fine cells,

which allows to take the trace on those faces. Considering v ∈ Uk+1
T`−1

and a face F ∈ F I
` ,

formula (3.6) then becomes

(Π`
`−1v)|F := wT1F π

k
F (v|T1)|F + wT2F π

k
F (v|T2)|F ,

where v is the extension of v|T `−1 to T1 ∪ T2.

These remarks are equivalent to stating that non-nested faces correspond to slight perturbations

of nested ones.

Our algorithm is tested on a hierarchy of non-nested 2D meshes obtained by successive

refinements for a domain containing a disk. The curved boundary of this disk is approximated

more accurately with each refinement, see Figure 3.17. The results of Figure 3.18 show that the

algorithm does not suffer from the non-nestedness in this form.

This observation is important regarding the design of coarsening strategies for unstructured

meshes. In this case, agglomerating faces that are close to being coplanar (close to colinear

in 2D) to form coarser ones seems possible. However, non-nested meshes must be employed

with great care in heterogeneous domains. The approximation of curved boundaries depends on

the granularity of the mesh (see the circle approximations in Figure 3.17). For the method to

preserve its performance and be oblivious of the coefficient jump at the interface, it is crucial

that no fine element of one physical region be associated to a coarse element of another, so that

no element-defined data can be transferred from one region to the other upon prolongation.
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Figure 3.16 Example of admissible non-nested coarsening. The fine mesh is represented in dotted
lines, the coarse mesh in solid lines. The non-nestedness is highlighted by colors: the blue fine
edges are coarsened into the red ones.

Figure 3.17 Geometry of a disk embedded in a square, coarsely meshed and successively refined by
a splitting method. Each refinement approximates more accurately the disk’s shape, consequently
yielding a mesh hierarchy that is non-nested at the disk’s boundary. The non-nestedness of the
first two meshes is highlighted in Figure 3.16.

With this constraint, the problem where different constant isotropic coefficients are set in the

elements located inside and outside of the circle approximation at every level of Figure 3.17 can

be solved efficiently, with results comparable to Figure 3.18.

3.3 Conclusion

The multigrid solver proposed and developed in this chapter is fast, scalable with respect to

the mesh size, and robust to heterogeneity, provided a good enough mesh is used. Moreover,

these desirable properties hold also for higher polynomial order. Adding a p-multigrid method

to lower the degree down to k = 1 before using the present h-algorithm is another way to handle

high orders. A comparison of both approaches in terms of overall cost deserves a dedicated

study which will be part of future work.

The algorithm proposed works for general meshes. However, the need to coarsen the faces can

make the design of admissible coarsening strategies more difficult. While excellent convergence

rates are observed for canonical nested mesh hierarchies, additional complexity must be expected

when the faces are not co-planar. We have shown that fine faces that are sufficiently close to

being co-planar may be approximated on coarse meshes by straight coarse faces without loss of

performance. This experiment points out non-nested meshes as a possible path in the search for

coarsening strategies in which the faces are also coarsened. Moreover, freeing ourselves from
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Figure 3.18 Number of iterations to achieve convergence for the homogeneous problem on the
non-nested mesh hierarchy described by Figure 3.17, solved by the V(0,3) cycle of our multigrid
algorithm.

the nestedness constraint offers more flexibility to ensure the conservation of the mesh quality

across levels. This path is therefore the one we choose to explore in Chapter 4.





Chapter 4

Extension of the multigrid method to

non-nested meshes

Computers are useless. They can only

give you answers.

Pablo Picasso (1881-1973)

The content of this chapter was published in the International Journal for Numerical Methods

in Engineering [51].

Used as a solver, the multigrid method developed in the previous chapter exhibits a near-

perfect h-independent convergence rate on structured 2D and 3D meshes, as well as robustness

with respect to the polynomial degree. However, on complex 3D geometries requiring highly

unstructured meshes, the average performance may degrade rapidly with the problem size.

Indeed, the algorithm requires a hierarchy of nested meshes (although it is experimentally shown

that slightly non-nested meshes do not affect the global performance), and such hierarchies are

usually obtained from successive refinements of an initial coarse mesh. Working with a hierarchy

of nested meshes obtained from successive refinements of an initial coarse mesh has, however,

some drawback. The first one is the loss of the flexibility offered by unstructured meshes to

accurately approximate complex regions, as the initial coarse mesh must already be a good

approximation of the geometry. Having stated this, provided an efficient coarse solver, starting

from an initial coarse grid that is nonetheless fine enough to adequately capture the geometry

can still offer possibilities of very efficient multigrid implementations, such as Hierarchical

Hybrid Grids [15, 78]. And to help in this approach, recent techniques [14] based on polynomial

mappings of the elements allow to better approximate curved boundaries upon each refinement.

The second drawback of the nested approach is linked to the fact that, in 3D, most methods of

tetrahedral subdivision generate elements of degraded shape quality [32, 109, 110, 117], which

most often affects the accuracy of the approximate solution as well as the performance of the

linear solvers. The nested multigrid method presented in Chapter 3 indeed shows high sensitivity

to the mesh regularity and therefore poor convergence on unstructured meshes obtained by

tetrahedral refinement. Exploring non-nested grids as an alternative to hierarchies produced
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by mesh refinement is the purpose of the present work. To that end, and before describing

our adaptation of the nested algorithm to non-nested grids, we state that existing non-nested

multigrid methods have been devised for the same motives as ours, although none of them

applicable to trace systems of hybrid discretizations: continuous Finite Element Methods (FEM)

are mostly targeted [1, 27, 61, 63, 73] and a recent one has been designed for Discontinuous

Galerkin (DG) methods [4], closer to our setting.

Compliance to non-nested settings is performed by inserting an additional step in the

definition of the prolongation operator: starting with polynomials lying on the coarse faces, the

nested version begins with the reconstruction of a broken element-defined polynomial on the

coarse mesh, which we propose (as already performed in the DG context by [4]) to orthogonally

project in L2-norm onto the non-nested fine mesh. In a next step, the trace of the result can be

computed on the fine faces. The numerical evaluation of this L2-orthogonal projection operator

hinges on the projection of the local coarse basis functions onto the fine bases, i.e. on the

computation of the L2-inner products of the coarse and fine basis functions over the fine elements.

As a direct consequence, the local definition of the functional bases makes the intersections

of coarse and fine elements the respective integration supports to these inner products. The

prerequisite of computing the geometric intersections between coarse and fine elements can

occur as computationally prohibitive. So instead of this exact computation, we propose the

implementation of an approximate operator that does not require intersections. We also refer to

a previous work [52] that tackles the practical computation of L2-orthogonal projections as well.

Our non-nested multigrid method is validated by numerical tests using independent retri-

angulations of the domain at every level. However, in practice, building a high-quality mesh

for a real, industrial case study can already be an arduous task, which may occupy a meshing

engineer for several months. Requiring multiple high-quality meshes of the same geometry at

different granularities in order to feed a multigrid solver is then not always conceivable. From

the user’s standpoint, providing the solver with the sole fine mesh is a preferable option. To this

end, we also want to pave the way for the construction of suitable coarsening strategies for this

type of multigrid method. We will provide guidelines by designing a full example of this strategy

implementing the relevant features. In particular, in a face-defined multigrid method, as the

smoother operates on the mesh skeleton, the efficient reduction of the low-frequency components

of the error relies on accessing coarse representations of the face-defined polynomials. This

implies that faces must be coarsened between levels (cf. Section 3.2.4.3), which is a new constraint

imposed to any suited coarsening strategy. Unfortunately, usual agglomeration methods [79],

typical candidates for the coarsening of unstructured meshes, do not meet this requirement.

More generally, methods that conserve embedded meshes do so by conserving fine faces on the

coarse mesh, which goes against this new constraint. This observation points out non-nested

methods as suitable alternatives. As such, strategies which build coarse tetrahedra from the

fine tetrahedra’s vertices [87] seem well-adapted to our problem, as long as the shape quality of

the coarse elements is sufficient. This condition drives us towards polytopal coarse elements in

order to make use of their shape flexibility to construct high-quality coarse meshes. Methods

based on Voronoi diagrams [85, 115] fulfill that purpose, as well as our face coarsening constraint.

Nonetheless, we choose to propose another option based on element agglomeration. Indeed,

additionally to being easy to understand and implement, these methods also benefit from simple
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derivations to anisotropic grids [64]. Thus, we suggest to add to any chosen agglomeration

process a step of face collapsing, already used in different fashions [97, 106]. Moreover, we will

show that agglomeration-based methods ease the construction of our approximate L2-orthogonal

projection.

Having established the reasons driving us to non-nested settings, this chapter is organized

around the adaptation of the nested solver of Chapter 3 and its efficient implementation for

the purpose of its practical use for the solution of condensed linear systems arising from the

HHO discretization of scalar elliptic equations on complex geometries. Thus, we begin, in

Section 4.1, we recall the ingredients in the construction of the nested multigrid method and

extend its range of application to non-nested meshes through the use of the L2-orthogonal

projection. This approach is validated by numerical tests using independent retriangulations at

every levels. Insofar as the newly used L2-orthogonal projection depends, in its exact evaluation,

on the expensive computation of the intersections between coarse and fine elements, we devote

Section 4.2 to the definition of a cheaper approximate operator. We also propose in Section 4.3

a suited non-nested and polytopal coarsening strategy based on element agglomeration and

face collapsing. Finally, numerical tests are presented in Section 4.4, which demonstrate the

optimality of our multigrid method, used as a solver, on 2D and 3D diffusion problems.

4.1 Multigrid method on non-nested meshes

Placing ourselves in the same context as the previous chapter, we consider the diffusion prob-

lem (2.1), its HHO discretization of degree k (2.15), and aim at solving the statically condensed

system (2.20). Extending the range of application of the multigrid method described in Chapter 3,

we now assume a non-nested hierarchy of polytopal meshes.

Consistently with the multigrid literature, we use the subscript ` ∈ {1, . . . , L} to index the

levels in the mesh hierarchy, and we denote by h` the meshsize at level `. We sort the levels so that

L refers to the finest mesh, whereas 1 corresponds to the coarsest one, i.e. hL < hL−1 < · · · < h1.

Importantly, we further assume that, from a level ` > 1 to the immediately coarser one (`− 1),

not only are the elements coarsened, but so are the faces. To ease the notation, the subscripts

h` may be replaced with `, so that the mesh hierarchy may be denoted by (T`,F`)`=L...1.

4.1.1 Prolongation operator

Considering two successive levels ` > 1 (fine) and ` − 1 (coarse), we define the prolongation

operator P : UkF`−1,0
→ UkF`,0

as the composition of three operators,

P := Π` ◦ J ``−1 ◦Θ`−1. (4.1)

In this formula,

� the coarse level potential reconstruction operator Θ`−1 : UkF`−1,0
→ Uk+1

T`−1
reconstructs,

from the face unknowns, a broken polynomial of degree k + 1 on T`−1. As its definition

does not change w.r.t. the nested algorithm, we refer the reader to Section 3.1.3.1.

� J ``−1 : Uk+1
T`−1

→ Uk+1
T` is now taken equal to the L2-orthogonal projection to include the

non-nested case.
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� The trace operator Π` : U
k+1
T` → UkF`,0

maps the polynomials of degree k + 1 defined on

the fine elements to a broken polynomial of degree k on the fine skeleton. Although in

the nested version, the trace on the fine faces could directly be computed from the coarse

cell-defined functions because of the embedding of the meshes, it is now computed from the

fine cell-defined functions after performing the L2-projection. However, the semantics of

this step remains unchanged. Consequently, a formula similar to (3.6) defines Π`. Namely,

for all v ∈ Uk+1
T` , F ∈ F`, and the two disctict elements T1, T2 of TF ⊂ T` in the case where

F ∈ F I
` ,

(Π`v)|F :=

wT1F πkF (v|T1)|F + wT2F π
k
F (v|T2)|F if F ∈ F I

` ,

0 otherwise,

with the scalar weights defined, for i ∈ {1, 2}, as

wTiF :=
KTiF

KT1F +KT2F
.

4.1.2 Multigrid components

Having defined the prolongation operator, the restriction is set to its adjoint in the usual fashion,

i.e. with respect to the coarse and fine face-defined global inner products. As such, the matrix of

one transfer operator in the chosen polynomial basis is the transpose of the other. Coarse grid

operators come from the rediscretization of the problem on the coarse meshes. In order to relax

together all the unknowns related to the same local polynomial, block versions of standard fixed

point iterations (like damped Jacobi or SOR) should be used, with a block size corresponding

to the number of DoFs per face. For instance, for a 3D problem with the polynomial degree

k = 1 chosen for the face-defined polynomials, the blocks will be of size 3× 3. For our numerical

tests, the relaxation method is set to the block Gauss-Seidel iteration. In order to keep the

computational cost as low as possible, we use the post-smoothing-only cycles that were found to

be the most efficient in terms of total theoretical work or CPU time (cf. Section 3.2.2.2). In

particular, we use V(0,3) in 2D and V(0,6) in 3D. Finally, on the coarsest level, the system is

exactly solved by a direct method.

4.2 Approximation of the L2-orthogonal projection

In the second step of the prolongation, the global broken polynomial, reconstructed on the coarse

mesh from the DoFs on the coarse faces, is projected onto the fine mesh via the L2-orthogonal

projection operator denoted J ``−1 : T`−1 → T`. The construction of this projection requires the

computation of the L2-inner products of all pairs of coarse/fine basis functions over the fine

elements. Locally, one such integral can only be non-zero if the supports of the fine and coarse

basis functions intersect, i.e. if the respective fine and coarse elements overlap. In this case, the

non-zero part of the integral is restricted to the intersection of the fine and coarse elements.

For any element T , we denote by BT the selected basis for Pk(T ). For all Tc ∈ T`−1 and

Tf ∈ T`, we then have

(ϕc, ϕf )Tf = (ϕc, ϕf )Tc∩Tf ∀(ϕc, ϕf ) ∈ BTc × BTf . (4.2)
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Consequently, the exact construction of J ``−1 preliminary requires the computation of the

geometric intersection of every pair of overlapping fine/coarse elements. We can see two

drawbacks to this method: firstly, the computation of the intersections adds a costly load to the

computational burden. Although the actual overhead depends on the efficiency of the algorithm

and its implementation, our numerical tests based on the state-of-the-art geometric library

CGAL [66] find it too heavy for practical use. Secondly, the intersection of usual element shapes,

even plain simplices, generally yields a polytope. In practice, if only simplicial meshes are used,

one might want to avoid introducing other shapes, over which integral computation may be

more expensive.

Given these practical limitations, we introduce a mechanism to compute the operator J ``−1 in

a cheaper and simpler way, though approximately, by avoiding computing element intersections

altogether. It is based on the following approximation (exact when the meshes are nested): For

any pair of coarse and fine elements (Tc, Tf ),

Tc ∩ Tf ≈

Tf if Tc is the coarse element which “embeds Tf the most”,

∅ otherwise.
(4.3)

According to the element shapes, determining which coarse element embeds the largest part

of a given fine one may have multiple interpretations, which may also be implemented in

different fashions. For simplicial elements, it suffices to choose the coarse element containing the

barycenter of the fine one.

Following this model, each integral over an intersection is either discarded or computed

over the whole fine element, in which case the support of the coarse basis function is implicitly

extended to include the entire fine element. The number of integrals to compute is then reduced

to the number of fine elements.

(a) Distribution of the fine elements to their “clos-
est” coarse element.

(b) Distribution of the fine elements’ sub-triangles
to their “closest” coarse element.

Figure 4.1 (a) shows the superposition of coarse and fine triangular meshes. The coarse edges
are represented by thick black segments. The fine triangles are colored according the coarse
triangle they are “closest” to, i.e. the one containing their barycenters. (b) shows the same
colored partioning, this time for the fine elements’ sub-triangles.

The validity of this method hinges on the assumption that, if the solution is smooth enough

and if the fine elements do not stick too much out of the coarse element they are associated

to, global approximation properties are preserved. Figure 4.1a shows on a triangulated 2D
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example how the fine elements are distributed among the coarse ones and how much they can

stick out. Graphically, the more the colored clusters of fine elements resemble their respective

coarse elements, the less the coarse basis functions must be extended outside of their supports,

thus losing accuracy, and therefore the better the approximation of the integrals. Especially,

the higher the polynomial degree, the greater the negative impact of the support extension.

Outside the element, a high degree polynomial may be an especially poor approximation of the

solution. For the same reason, local smoothness of the solution is required, which emphasizes

the restriction not to have elements crossing the boundaries of physical subdomains, i.e., where

coefficient discontinuities can occur.

Our numerical tests show that in 2D, on the triangulated square, the approximate operator

constructed by this method exhibits good enough accuracy to reproduce the results obtained

with the exact computation only for k ≤ 1, and fails to be a good approximate for higher orders.

In 3D, the method is unsuccessful for all orders. The method is improved the following way:

instead of approximating intersections by an all-or-nothing result (either the whole fine element

or the empty set) as in (4.3), we can increase the granularity by subdividing the fine elements,

and distribute the subshapes among the coarse elements the same way as before. Assuming, for

any fine element Tf ∈ T` a given subdivision Sub(Tf ), and denoting by closest(·) the function

associating to any element or subelement its “closest” coarse element, we then define the new

approximate intersection as

Tc ∩ Tf ≈
⋃

t∈Sub(Tf )
closest(t)=Tc

t . (4.4)

Figure 4.1b shows how sub-triangles obtained by connecting the middle-edges of the fine elements

now approach the coarse ones.

It is clear that the quality of the approximation depends on the granularity of the subdivision.

A fortiori, the higher the polynomial degree, the finer the subdivision must be. For that purpose,

the fine elements can then be refined multiple times for even better accuracy, though at the cost

of an increasing number of integrals to compute. However, the approximate operator derived

from the fine elements being subdivided only once is found to be sufficient to achieve good

multigrid results in 3D and for low polynomial orders. We refer to Section 4.4.2 for the details

of the numerical tests.

Remark 3. (Heterogeneous case with curved region boundary) If the geometry is partitioned

into multiple physical regions with curved boundary, the different levels of grid may approximate

this boundary in a non-nested way. Then, imposing that jumps in the coefficient do not occur

inside elements inevitably leads to coarse elements overlapping fine ones of different regions.

Figure 4.2 illustrates a two-region domain separated by a circular interface. The approximation

of the circle and therefore the discrete delimitation of the regions depend on the granularity of

the mesh. Figures 4.2a and 4.2b, respectively, show a fine and coarse mesh obtained by Delaunay

triangulation, while Figure 4.2c shows how coarse elements belonging to the red region overlap fine

triangles of the blue region. These cases must be handled with great care. In such a configuration,

it is crucial that values of DoFs belonging to one region should never be transferred to another

one. The L2-orthogonal projection must then keep this separation. Indeed, the solution cannot be

locally represented with accuracy unless it is kept smooth inside elements. In other words, the
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intersection between a coarse element and a fine one that belong to two different regions must

never be computed, and be assimilated to the empty set, even though, in fact, they geometrically

overlap. Infringing this guideline results in a quick deterioration of multigrid convergence, and

divergence can even occur for small-size problem provided a large jump in the coefficient.

(a) Fine mesh (b) Coarse mesh (c) Superposition at the interface

Figure 4.2 (a) (resp. (b)) presents a fine (resp. coarse) mesh obtained by Delaunay triangulation
of a square domain embedding a round physical region. In (c), the red coarse elements overlapping
fine blue ones are plotted.

4.3 Agglomeration-based coarsening strategy with face collaps-

ing

In this section, we lay the foundations of an abstract coarsening strategy for polytopal meshes

that also coarsens faces. The steps are descibed by Algorithm 4.1. We recall that in this abstract

setting, the generic term ‘face’ refers to the interface between elements (it being an actual face

in 3D or an edge in 2D), and the term ‘neighbours’ refers to a pair of elements sharing a face.

Step 1 is standard and defines any agglomeration method. The face coarsening comes from

Step 2, where multiple fine faces are collapsed into a single coarse one. Figure 4.3 illustates

the result of successive coarsenings in 2D. Recall that the created polygons are not necessarily

convex. Also, note that this algorithm does not ensure that every fine face is either removed

(being interior to an agglomerate) or coarsened (by face collapsing): some fine faces may find

themselves unaltered by the process. However, numerical experiments show that the number of

unaltered faces between two successive levels decreases with the number of times the coarsening

strategy is applied, i.e. the number of levels built.

Algorithm 4.1 Abstract coarsening strategy with face collapsing

Step 1. Agglomerate each fine element with its non-already agglomerated neighbours to form
one polytopal coarse element.
Step 2. Collapse into one single coarse face the interfaces between two neighbouring coarse
elements that are composed of multiple fine faces.

Remark 4. (Preventing domain erosion) The face collapsing step removes vertices from the

mesh. In order to keep the domain from “eroding” at its corners (whether at domain boundaries

or at interfaces between inner regions), one must make sure that the vertices that describe the
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Figure 4.3 Successive coarsenings of a triangulated square.

domain geometry do not vanish in a face collapsing operation. To do so, it suffices to prevent the

faces sharing such vertices from collapsing into one coarse face. Applied to a square domain or

inner region, it means that at each of the four corners, the two orthogonal corner edges should

never collapse together, so that the global squared shape would be preserved.

4.3.1 Coarsening in 2D

In 2D, the abstract Step 2 can be detailed as such: for all interfaces composed of multiple fine

edges, remove all vertices interior to that interface and connect the boundary vertices to form a

new coarse edge. This way, we ensure node-nestedness, i.e. that the set of vertices of the coarse

mesh is a subset of the fine vertices. Although having a node-nested hierarchy is not mandatory

to achieve good multigrid performance, it may help: assuming that the fine nodes adequately

capture the geometry, using subsets of those nodes at coarse levels should present some desirable

properties with respect to the geometric approximation.

Regarding the computation of the L2-orthogonal projection developed in the preceding

section, numerical experiments show that the rough approximation given by (4.3) is not viable;

see Figure 4.4a for a graphical illustration. The polygons must be subdivided to improve precision

and, clearly, the method of subdivision influences the ultimate accuracy of the approximation.

While a barycentric triangulation (Figures 4.4b and 4.4e) only offers practical usability for

k ≤ 1, an optimal triangulation (i.e. yielding an exact approximation; see Figures 4.4c and 4.4f)

can be derived in the context of a coarsening strategy, inasmuch as the intergrid relationships

are explicitly formed and can therefore be exploited. In the present coarsening strategy, the

agglomeration step does not cause non-nestedness, which can only occur during the edge

collapsing phase. Firstly, only fine elements possessing an edge that has been collapsed and

that crosses the coarse collapsed edge must be subject to a careful subdivision; the other fine

elements are fully embedded in a coarse one, and therefore do not need to be subdivided at all.

Then, for the relevant fine elements, it suffices to generate triangles keeping on one side of the

coarse edge. Algorithm 4.2 presents the details of the optimal subdivision we have used. Note

that it applies to convex polygons; the non-convex ones require a preliminary step of convex

partitioning before Algorithm 4.2 can be applied. This algorithm starts by triangulating the

polygon independently of the coarse edges. Each triangle is then subtriangulated in order not to

cross the coarse edges, following Algorithm 4.3. Note that this algorithm relies on evaluations of

intersections between coarse and fine edges, which node-nestedness can certainly ease, insofar as

a large part of the crossings between coarse and fine edges will then occur at mesh vertices.
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(a) Distribution of the fine ele-
ments to their “closest” coarse el-
ement.

(b) The fine elements are subtrian-
gulated by a barycentric method.

(c) The fine elements are subtri-
angulated such that they do not
cross any coarse element’s edge.

(d) Zoom-in on a fine element over-
lapping two coarse ones.

(e) Barycentric triangulation. (f) Adapted triangulation prevent-
ing subtriangles from overlapping
two coarse elements.

Figure 4.4 The top figures show how the fine polygons (in (a)) or their subtriangulations (in
(b),(c)) are clustered in the process of approximating the coarse/fine intersection involved in
the computation of the L2-orthogonal projection. The coarse edges are represented by thick
black segments. In (b), the fine elements are triangulated by a barycentric method. In (c), the
triangulation is adapted to prevent subtriangles to overlap multiple coarse elements. The bottom
figures zoom in on a fine element overlapping two coarse ones. In (d), the whole fine element is
affected to one of them for the computation of the approximate L2-orthogonal projection. In (e)
and (f), the subtriangles are dispatched on one or the other coarse element according to the
location of their barycenters.

4.3.2 Coarsening in 3D

We have not generalized the preceding coarsening strategy to 3D. Instead, we briefly state the

issue and propose directions.

In the 3D setting, it is generally not possible to collapse neighbouring faces into a single

one as straightforwardly as in 2D, because the edges framing the fine faces do not usually

describe a planar region that could define a new face. However, allowing the addition of new

vertices, one can derive a variety of face collapsing methods. A simple one consists in choosing

three non-colinear vertices amongst those of the fine faces, thus defining a 2D plane, and then

orthogonally projecting the frame’s vertices onto that plane to obtain the coarse face. However,

in an attempt to preserve, on the coarse mesh, the approximation of the geometry given by the

fine one, a more suitable choice for the plane defining the collapsed face would be one minimizing

the distance to the vertices lying on the edge frame of the fine faces.
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Algorithm 4.2 SubdivideConvexPolygon(V,E)

Input: V : set of vertices sorted in direct order, representing a convex polygon. E: set of
coarse edges not to cross.
Output: T : set of triangles partitioning the polygon and not crossing the coarse edges.

1: Let (v1, v2, v3) be the first 3 vertices in V
2: T := SubdivideTriangle(v1, v2, v3, E)
3: if card(V ) > 3 then
4: T := T ∪ SubdivideConvexPolygon(V \ {v2}, E) // see Figure 4.5a
5: end if

v1

v2

v3

v1

v2 v3

v1

v2

v3

(a) First three steps of the triangulation of a convex polygon.

vi vj

vk

w

(b) Division of a triangle according to
the intersection between the red coarse
edge and the triangle edge [vi, vj ].

Figure 4.5 Respective illustrations for Algorithm 4.2 and Algorithm 4.3.

4.4 Numerical results

4.4.1 Experimental setup

The numerical tests presented in this section have been performed on the diffusion problem (2.1),

on 2D and 3D domains, where the source f ∈ L2(Ω) is a discontinuous piecewise constant

function. The unit square and cube shall be used as preliminary tests before moving on to

more complicated domains. The problems are discretized by the HHO method described in

Chapter 2, in which the polynomial degree k of the element- and face-defined polynomials is

taken between 0 and 3. We recall that the discrete solution ultimately provided by the method

after higher-order reconstruction is a broken polynomial of degree k + 1. The local polynomial

bases in elements and on faces are L2-orthogonal Legendre bases.

The multigrid method defined in Section 4.1.2 is used as a solver for the solution of the

statically condensed system (2.20), and our main goal is to study its asymptotic behaviour so

that it can be used for large scale problems. The fine mesh is obtained by Delaunay triangulation

of the domain, and coarse meshes are built until the system reaches a maximum size of 1000

unknowns or if the mesh cannot be coarsened anymore. Two different strategies are employed

to build the coarse meshes: (i) independent remeshing: letting h be the meshsize of the fine

simplicial mesh, the coarse mesh is obtained independently by retriangulation of the domain,

enforcing a meshsize H ≈ 2h; (ii) for 2D problems, the agglomeration-based coarsening strategy

with face collapsing, described in Section 4.3. Table 4.1 summarizes, for each strategy, the

various methods evaluated in the numerical tests to compute the L2-orthogonal projection. The

stopping criterion is based on the backward error ‖r‖2/‖b‖2, where r denotes the residual of

the algebraic system, b the right-hand side, and ‖ · ‖2 the standard Euclidean norm on the
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Algorithm 4.3 SubdivideTriangle(v1, v2, v3, E)

Input: v1, v2, v3: the vertices of the triangle sorted in direct order. E: set of coarse edges not
to cross.
Output: T : set of subtriangles partitioning the triangle and not crossing the coarse edges.

1: if E = ∅ then T := {(v1, v2, v3)} // no need to subtriangulate
2: else
3: Let e ∈ E // take one coarse edge in the list, the others will be handled by recursion
4: noTriangleEdgeCrossesTheCoarseEdge := true
5: for i = 1, 2, 3 do
6: Given vi, let vj , vk be the other two s.t. (vi, vj , vk) are in direct order.
7: W := e ∩ [vi, vj ]
8: if W = ∅ or W = {vi} or W = {vj} or W = [vi, vj ] then continue for loop
9: else

10: noTriangleEdgeCrossesTheCoarseEdge := false
11: Define w s.t. W = {w}.
12: // division into two triangles and recursion; see Figure 4.5b
13: T := SubdivideTriangle(vi, w, vk, E)
14: T := T ∪ SubdivideTriangle(w, vj , vk, E)
15: break for loop
16: end if
17: end for
18: if noTriangleEdgeCrossesTheCoarseEdge then
19: T := SubdivideTriangle(v1, v2, v3, E \ {e})
20: end if
21: end if

vector space of coordinates. In all tests, we say that convergence is achieved when the criterion

‖r‖2/‖b‖2 < 10−8 is reached.

Coarsening strategy L2-orthogonal projection

Independent simplicial remeshing

Exact, by computing intersections (cf. (4.2))
Approximate, w/o subtriangulation (cf. (4.3))
Approximate, w/ subtriangulation (cf. (4.4))
by middle-edge connection in 2D, Bey’s method in 3D

Agglomeration w/ face collapsing
Exact, by computing intersections (cf. (4.2))
Approximate, w/ barycentric subtriangulation
(cf. (4.4) and Figure 4.4e)
Exact = Approximate w/ optimal subtriangulation
(cf. (4.4) and Figure 4.4f)

Table 4.1 Summary of the testing combinations.

4.4.2 Assessment of the approximate L2-projection

We want to assess how the loss of accuracy implied by the approximate L2-orthogonal projection

(see Section 4.2) affects the convergence of the multigrid solver. In order not to add other

difficulties that would interfere with the results, we use the unit square as domain of study. The

coarse meshes are built independently from each other by retriangulation of the domain, ensuring

good quality at every level. As a reference to the best achievable result, a first test is made with
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the L2-orthogonal projection operator computed exactly, meaning that the intersections of fine

and coarse elements are actually computed, over which the required inner products are evaluated

(as per (4.2)). Our implementation uses the CGAL library [66] to compute intersections. In this

first setting, Figure 4.6a shows, for all polynomial degrees k, the scalable behaviour of the solver,

whose convergence rate appears to be independent of the number of unknowns. The number of

V(0,3)-cycles required to achieve convergence remains moderate (below 20), although higher

than with nested meshes. This first experiment shows the validity of our non-nested approach

to multigrid.
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(a) Exact L2-orthogonal projection
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(b) Approximate L2-orthogonal projection with sub-
triangulation

Figure 4.6 Number of V(0,3)-cycle iterations to achieve convergence according to the number
of unknowns in the system. The geometry is the unit square, and the hierarchy of meshes is
obtained by independent remeshing. Each caption states the method of computation of the
L2-orthogonal projection.

It is important to mention that — in our implementation — the computation of the

intersections consumes for k = 1 over 80% of the CPU time used during the setup phase. The

approximate L2-orthogonal projection we propose allows to reduce the setup cost by a factor

of 10 to 40, depending on the granularity of the fine element subdivisions. As an example,

Figure 4.7 compares, for a test problem with k = 1, the CPU time consumed to compute the

L2-orthogonal projections, according to the method used: exact evaluation, approximate without

subdivision (given by (4.3)), approximate with subdivision (given by (4.4)). One can clearly

see that the largest share is spent in the exact evaluation of the intersection, which makes

approximate methods remarkably more effective.

0 200 400 600 800 1,000 1,200 1,400

Exact

Approx. w/o subdivision

Approx. w/ subdivision

CPU time (s)

intersections subdivisions inner products

Figure 4.7 Comparison in CPU time of different methods for the computation of the L2-
orthogonal projection during the setup phase of the multigrid. Each bar is divided into sections
corresponding to subtasks. The test problem is the unit square meshed by 105 triangles, k = 1.
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In order to assess the usability of our approximate methods, we now compare to the

first scalability results the performance of the solver delivered by our approximations. The

approximate L2-orthogonal projection without subdivision (i.e. (4.3)) shows, in 2D, a lack of

robustness w.r.t. the polynomial degree. Although the approximation does not seem to degrade

the convergence rate for k ≤ 1, it worsens with k = 2, and the solver finally diverges for k = 3.

Moreover, the same test performed in 3D on the unit cube causes the solver to diverge for all

values of k, and so does the use of the 2D polygonal coarsening strategy defined in Section 4.3.

These limitations make us discard this simple method.

We next focus on the finer approximation (4.4), where the fine elements are subdivided

into subshapes to increase the granularity of the fine-coarse associations. In our tests, we use

standard refinement methods to subdivide simplicial elements: connection of the middle-edges

in 2D, and Bey’s tetrahedral refinement [16] in 3D. Only one step of refinement is performed.

Figure 4.6b presents the performance of the multigrid solver on the unit square using this

refined L2-orthogonal projection. We can see that the results given by the exact method are

now reproduced. On the unit cube (Figure 4.8), the solver exhibits good performance and

scalable behaviour for k ≤ 2, but diverges for k = 3. Note that these 3D results cannot be

compared to those of the exact method, as the latter has not been implemented. Referring to

the discussion in Section 4.2, we stress that higher orders can be managed with additional steps

of refinement in order to improve the accuracy of the approximate L2-orthogonal projection.

Given the CPU times of Figure 4.7, multiple refinements would still be beneficial compared to

an exact computation of the intersections.
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Figure 4.8 Number of V(0,6)-cycle iterations to achieve convergence according to the number of
unknowns in the system. The geometry is the unit cube, which is independently retriangulated
at each level. The L2-orthogonal projection is computed approximately with subtriangulation of
the fine elements via Bey’s method.

4.4.3 Assessment of the agglomeration coarsening strategy with face collaps-

ing

We now evaluate how the multigrid method responds to the coarsening strategy described in

Section 4.3, especially when coupled to the approximate L2-orthogonal projection. Figure 4.9

then presents the same scalability tests as the previous section, this time using the agglomeration

coarsening with face collapsing to successively build the coarse meshes from an initial fine

triangulation. As a reference, Figure 4.9a shows the results when the L2-orthogonal projection

is computed exactly. We can already remark that the convergence rate is slightly worse and the
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trend slightly less flat than with the independent remeshing (cf. Figure 4.6a). Various reasons

can explain these differences, the main one probably being the simplicity of implementation of

our coarsening strategy, where we do not control and subsequently improve the element shapes

and sizes.

Algorithmic scalability tests with the L2-orthogonal projection approximately computed

without subdivision of the fine elements are not presented here: except for k = 0, the solver

quickly diverges. In Figure 4.9b, we use the barycentric triangulation to subdivide the fine

elements (cf. Figure 4.4e) and implement the approximation (4.4). We can see that the good

perfomance of k = 1 is now recovered, while for k = 2, the solver still diverges at moderate

problem sizes. Finally, we stress that in the context of the coarsening strategy, the determination

of an optimal fine subtriangulation (i.e. whose subelements do not overlap the limits of the coarse

elements) is facilitated, which yields an exact implementation of the L2-orthogonal projection,

and therefore leads to results equivalent to Figure 4.9a.
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gulation

Figure 4.9 Algorithmic scalability plots: number of V(0,3)-cycle iterations to achieve convergence
according to the problem size. The geometry is the unit square. The coarse meshes are built
using the agglomeration coarsening strategy with face collapsing. The captions state the method
of computation for the L2-orthogonal projection. The absence of the curve k = 3 in (b) means a
very large number of iterations or divergence of the solver.

4.4.4 Complex geometry test cases

We now extend the experiments to geometries requiring unstructured meshes in order to validate

the method on a wider class of problems. Figures 4.10a and 4.11a respectively draw similar

geometries in 2D and 3D containing circular (resp. cylindric) holes, thus requiring unstructured

meshes in their discrete settings. Still focusing on the capablility of the multigrid solver to handle

large scale problems, Figures 4.10b and 4.11b present the respective algorithmic scalability plots

of the solver. Starting from a fine simplicial mesh obtained by Delaunay triangulation, the coarse

meshes are built using the coarsening strategy with face collapsing for the 2D tests, and by

independent remeshing for the 3D tests. Note that in 2D, the displayed mesh then corresponds

to a coarse triangulation that is actually not used (only the fine mesh is triangular); but it shows

how the holes are approximated by linear edges. In particular, whichever the method, the holes

are approximated, at each level, with respect to the mesh granularity, i.e. by polygons/polyhedra

with less and less edges/faces as the mesh grows coarser. The L2-orthogonal projection is
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computed exactly in 2D through the construction of an optimal subtriangulation of the elements.

In 3D, the L2-orthogonal projection is computed approximately with tetrahedral subdivision

by Bey’s method. The 2D results presented in Figure 4.10b show that our multigrid method

still exhibits the desired scalable behaviour for all k ≤ 3. In 3D, the results of Figure 4.11b

consistently show the same scalable behaviour for expected polynomial degrees, namely k = 1 and

2. The case k = 0 is a special case (cf. Section 3.2.2.1) which is not expected to necessarily work

on unstructured problems, while the approximation of the L2-orthogonal projection explains the

divergence of the solver for k = 3 (cf. Figure 4.8 for the test on the unit cube). Although the

displayed datapoints have been obtained with Dirichlet boundary conditions, the results with

Neumann conditions on the holes, not reported here for the sake of brevity, indicate the same

behaviour.
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(a) Bar with four circular holes.
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(b) Algorithmic scalability plot with the V(0,3)-cycle.

Figure 4.10 2D complex geometry and associated algorithmic scalability plot for the multigrid
solver. The coarse meshes are built using the agglomeration coarsening strategy with face
collapsing. The L2-orthogonal projection is computed exactly.

(a) Plate with four cylindric holes.
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(b) Algorithmic scalability plot with the V(0,6)-cycle.

Elements Hybrid DoFs Face unknowns
(system size)

Multigrid
levels

Iterations Asymptotic
convergence rate

17,848,483 177,511,492 106,117,560 5 20 0.45

(c) Details on the last datapoint of k = 1.

Figure 4.11 3D test case using the geometry (a). The algorithmic scalability plot (b) of the
solver is obtained with the coarse meshes independently retriangulated at each level, and the
L2-orthogonal projection computed approximately using Bey’s subdivision.
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4.4.5 Heterogeneous test case

The algorithm is finally tested on a heterogeneous domain, plotted in Figure 4.12a. This test

case, provided by EDF, is a proxy application for an industrial setting, which is characterized

by jumps in the diffusion coefficients of several orders of magnitude in an otherwise relatively

straightforward geometry. The proxy differs from the industrial setting in its geometry and its

diffusion coefficients. However, the most salient feature, the ratio between the largest and the

smallest diffusion coefficient, is close to the relevant regime. The domain is composed of four

homogeneous and isotropic subdomains. Having assigned a color to each of those regions, their

respective diffusion tensors κcolorI, where I denotes the identity matrix of dimension 2, define

a global discontinuous tensor. The values of the coefficients κcolor are given in the caption of

Figure 4.12a and lead to a maximum jump of 108 located at the interface between the gray and

blue regions. All meshes in the multigrid hierarchy align with the jumps, i.e. jumps only occur at

interfaces and not inside elements. When the coarse meshes come from independent remeshing

of the domain, the scalability plot of Figure 4.12b demonstrates a convergence rate that is

near-independent to the mesh size for all degrees except the lowest order. With the coarsening

strategy, on the other hand, (cf. Figure 4.12c), algorithmic scalability is achieved for all degrees.

Moreover, consistently with the results of Section 3.2.3 on nested meshes, the convergence rate

of the multigrid method is found to be independent of the size of the discontinuities in the

coefficient.

Remark 5. (Corner singularities) Heterogeneity in such a domain creates corner singularities

which make the discretization lose its optimal convergence rate in the general case. Consequently,

although the linear solver converges fast, it converges towards a solution that is not necessarily

accurate. It is therefore not imperative to impose the linear solver to reach such a low algebraic

error. In order to recover the optimal convergence rate of the discretization, techniques of local

mesh refinement or energy correction [56] must be used.

4.4.6 Computational insight

Having focused our numerical tests on the asymptotic convergence of the solver, we now also

comment on the computational cost of the iterations. We emphasize that the operation of

prolongation remains local, therefore, the corresponding matrix is sparse. Indeed, given a coarse

face interfacing two coarse neighbours, its prolongation stencil is limited to the faces linked

to the fine elements that overlap those two coarse neighbours. During the setup phase, the

prolongation operators are computed at every level and stored in memory. For the smoothers

(namely, block Gauss-Seidel methods), the factorization of the diagonal blocks is also computed

once and stored in memory to be reused at every iteration. With that setup, and using the

cycles described in the numerical tests, intergrid transfers compose about 30% of the total

computational work (in flops) of the multigrid iteration, regardless of the space dimension and

the polynomial degree. In our implementation, that corresponds to less than 10% of the CPU

time. Assuming negligible cost for coarse solving, the rest of the work is distributed among

smoothing and residual computation.
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(a) Heterogeneous domain with the coefficients κred = 30, κblue = 1, κgray = 108, κpink = 100.
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(b) Algorithmic scalability plot using indepen-
dent remeshing.
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(c) Algorithmic scalability plot using the coarsening
strategy with face collapsing.

Elements Hybrid DoFs Face unknowns
(system size)

Multigrid
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convergence rate

18,170,130 109,008,748 54,498,358 9 18 0.40

(d) Details on the last datapoint of (c) k = 1.

Figure 4.12 The heterogeneous domain described by (a) is composed of homogeneous, isotropic
regions. Their respective diffusion coefficients are given in the caption. In (b), the coarse meshes
are built by retriangulation and the L2-orthogonal projection is computed approximately with
subtriangulation of the fine elements. In (c), the coarsening strategy is used.

4.5 Conclusion

In this work, we have successfully extended to non-nested mesh hierarchies an efficient nested

multigrid solver. Indeed, without requiring stronger smoothing, our adaptation allows to preserve

the optimality of the convergence rate on a wider class of problems. The extra cost implied by

the numerical evaluation of the L2-orthogonal projection is also kept to a minimum thanks to an

efficient approximation enabling us to discard the expensive computation of intersections between

elements. The agglomeration coarsening strategy with face collapsing that we have developed,

although naively implemented here, gives promising results, thus offering leads to more advanced

methods fulfilling two purposes: coarsening the faces, and preparing the subtriangulation of

the fine elements for the purpose of the construction of an accurate approximation of the

L2-orthogonal projection operator.





Chapter 5

An algebraic multigrid method for

condensed systems arising from hybrid

discretizations

It is my experience that proofs involving

matrices can be shortened by 50% if one

throws the matrices out.

Emil Artin (1898-1962)

The content of this chapter is submitted to an international, peer-reviewed journal paper [49].

Hybrid discretizations have been part of the landscape of numerical methods to solve Partial

Differential Equations (PDEs) since the seventies. In his 1978 book [35, p. 421], P. G. Ciarlet

states the following definition: “we may define (...) as a hybrid method any finite element

method based on a formulation where one unknown is a function, or some of its derivatives, on

the set Ω, and the other unknown is the trace of some of its derivatives of the same function, or

the trace of the function itself, along the boundaries of the set K” (Ω representing the domain of

study and K a mesh element). Although hybridization of finite element methods first appeared as

an implementation trick [124], it was later proven [8] that the new unknowns at faces, introduced

as Lagrange multipliers, held additional information on the exact solution, which could be

exploited to improve the accuracy of the numerical approximation. A large number of finite

element schemes have given rise to hybrid counterparts, starting with the mixed formulations

of Raviart-Thomas (RT) [102] and Brezzi-Douglas-Marini (BDM) [30]. More recently, in the

context of Discontinuous Galerkin (DG) methods, hybridization was also used to overcome its

main drawback, namely, the large number of unknowns resulting from the lack of continuity at

element interfaces. Indeed, hybridization allows for the local elimination of cell-based unknowns

from the global system, leaving the face unknowns as the only remaining ones in the resulting

Schur complement, also called statically condensed or trace system. Examples of methods whose

DoFs verify this structural property include, in particular, Hybridizable Discontinuous Galerkin

(HDG), Compatible Discrete Operators (CDO) [19], Hybrid High-Order (HHO) methods [44, 45],
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Mimetic Finite Differences (MFD) [42], Mixed and Hybrid Finite Volumes (MHFV) [54, 55, 57].

For a more extensive introduction to hybrid methods and hybridization, we refer to the preface

of [43] and the first pages of [39].

Algebraic multigrid (AMG) solvers [59, 112] are very popular for the solution of large linear

systems arising from the discretization of elliptic equations on unstructured meshes. Unlike

geometric multigrid methods, which require a hierarchy of meshes of different granularity,

algebraic algorithms classically do not need more information than the linear system to solve.

Discarding all geometric information as input parameter results in the most appreciated feature

of these methods, that is, their usability in a black-box fashion.

The availability of an easy-to-use, scalable linear solver is essential to help popularize novel

discretization methods with the industrial actors, to whom it is crucial to efficiently solve

problems of large size. Adopting a new discretization in an industrial context requires heavy

preliminary testing, that can be facilitated if the software for the appropriate solver is already

available on the market or if its development can easily be externalized. Being isolated from

the mesh, which can be generated, stored, and transferred in numerous ways, AMG solvers

ally interoperability and performance. Although novel hybrid methods like HHO have gained

growing interest in recent years, thus pushing the development of ad-hoc geometric multigrid

algorithms [37, 50, 80, 123] or other iterative techniques [88, 119], we are not aware of any AMG

specifically targeting condensed systems arising from such discretizations at this time.

Usual AMG solvers designed for low-order finite element or finite difference methods infer

mesh information under the assumption that each row in the matrix corresponds to a DoF located

at a mesh node or element. Thus, the connectivity graph of the mesh can be reconstructed

algebraically, and coarsening strategies mimicking geometric algorithms can then be performed

in order to build the coarse levels. Algebraic algorithms are commonly separated in two families

according to how their coarsening strategies can be geometrically interpreted. In the first one, one

defines the coarse unknowns as a subset of the fine ones. Geometrically, in an isotropic setting,

it consists in selecting fine nodes to keep on the coarse mesh, in such a way that the domain

is still uniformly covered while the number of nodes is significantly reduced. This approach

have given rise to the so-called Classical AMG (also referred to as C/F AMG) [104, 105], of

which BoomerAMG [71] can be mentioned as a popular implementation. The other family

regroups aggregation-based methods [26, 33, 90, 94]. In such methods, unknowns are now

respectively assimilated to node-defined DoFs (or DoFs within distinct elements), which can then

be agglomerated to define a coarse mesh. Among the well-known representatives of aggregation-

based AMG software packages, one can cite AGMG [95]. We refer to [116] for a numerical

comparison of both approaches applied on a specific application of the Navier–Stokes equations.

In the present work, we especially focus on aggregation-based methods. In our hybrid setting

at the lowest order, the unknowns of the system are actually linked to faces, i.e. neither nodes

nor elements. Consequently, at first glance it might seem peculiar, from a geometrical point

of view, to apply the above approaches in this context. Indeed, looking at the example stencil

illustrated by Figure 5.1a, aggregation-based coarsening might (and sometimes actually does)

aggregate the red DoF with the blue one located the further on its right. As their respective

edges do not touch, it is difficult to perceive a geometrical sense in this aggregation. Nonetheless,

numerical tests with AGMG show that the approach still works well, which can be geometrically
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justified by forgetting about the DoFs being actually face-defined and considering them as mere

nodal values. See Figure 5.1b for an illustration of the algebraic stencil as perceived by standard

AMG methods. That being said, one can legitimately wonder if a coarsening strategy making

geometrical sense in light of the actual meaning of the DoFs as face-defined values could not

yield even better results.
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(a) Geometric, face-aware view of the stencil
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(b) Algebraic view of the stencil (unaware of
the faces), as perceived by a standard AMG
method

Figure 5.1 Stencil given by the statically condensed matrix at the lowest order. Solid points
represent DoFs, which, in this context, are located at faces (edges here). The stencil of the red
DoF corresponds to the set of blue ones.

The idea at the origin of the present work is the algebraic reconstruction of the mesh

information based, not on the condensed matrix, but on the uncondensed one, which contains

the connectivity graph between elements and faces. Note that it implies that this method

requires more information than the sole system to solve. Parts of the uncondensed matrix

must indeed be brought to the algorithm as additional information, which makes the method

less “black-box”, but still purely algebraic. Among similar approaches, one can cite AMGe [29].

Once the so-called algebraic mesh is retrieved, especially the neighbouring information between

elements, an element-based aggregation method can be set up in order to mimic the behaviour of

a geometric coarsening or semi-coarsening strategy. Although the construction of the coarse levels

is mainly based on plain aggregation principles, the prolongation operator also uses techniques

borrowed from smoothed aggregation methods [98, 120, 121].

AMG methods directly used as solvers may lack efficiency [122, p. 663][89]. Using them as

preconditioners for a Krylov method is generally favored. Moreover, plain aggregation methods

also suffer from slower convergence than Classical AMG in V-cycle. To handle these issues, we

adopt the choices made by AGMG [94]. Namely, we use the so-called K-cycle, which introduces

Krylov acceleration into the multigrid recursive cycle. Secondly, one such cycle is used to

precondition an outer Krylov method. As the K-cycle does not yield a constant preconditioner,

the outer iteration is required to be flexible. More generally, the technical choices made in

this work are borrowed from AGMG (pairwise aggregation, strong negative coupling criterion,

K-cycle...) in order to establish a proper comparison with a standard AMG solver that relies

only on the condensed system.

The rest of this work is organized as follows. Section 5.1 lists the features we assume

for the underlying discretization to fit our method. Section 5.2 describes the construction of

our algebraic multigrid algorithm. In Section 5.3, we apply our method to the lowest order

HHO discretization of homogeneous and heterogeneous diffusion problems in 2D and 3D. The

outer solver is a Flexible Conjugate Gradient, preconditioned with our algebraic multigrid in
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conjunction with the K-cycle: compared to a standard aggregation-based AMG, we report

equivalent performances in CPU time, an enhanced robustness to anisotropy on Cartesian

meshes, and a similar quasi-optimal asymptotic behaviour. Finally, we discuss limitations and

future work in the concluding Section 5.4.

5.1 Assumptions

We consider a scalar elliptic PDE over a domain discretized by a polytopal mesh. For simplicity,

we suppose Dirichlet boundary conditions. We assume that the PDE is discretized by a lowest-

order hybrid discretization method DoFs corresponding to one scalar value per cell and per face.

Throughout this work, the subscript T (resp. F ) will consistently refer to the cell-based (resp.

face-based) quantities. We also assume that the global uncondensed linear system arising from

the hybrid discretization at hand is symmetric positive definite, of the form(
ATT ATF

A>TF AFF

)(
xT

xF

)
=

(
bT

bF

)
, (5.1)

from which Dirichlet boundary unknowns have been eliminated, and where ATT represents

the coupling among cell-DoFs, ATF between cell- and face-DoFs, and AFF among face-DoFs.

Assuming the discretization is such that the cell unknowns are only locally coupled, ATT is

diagonal, and thus inexpensive to invert. The statically condensed system resulting from the

local elimination of the cell unknowns is

ÃxF = b̃, Ã := AFF −A>TFA−1
TTATF , b̃ := bF −A>TFA−1

TT bT . (5.2)

As a Schur complement, Ã is also symmetric positive definite.

5.2 Algebraic multigrid

We propose to construct an algebraic multigrid method to solve the condensed system (5.2) by

using the coupling information given in the uncondensed matrix (5.1). We base our multigrid

algorithm on ingredients classically used in aggregation-based AMG. AGMG [94] will serve as

a reference for specific technical choices such as the pairwise aggregation, the strong negative

coupling criterion, the Krylov acceleration in the multigrid cycle. We also take inspiration from

the good results of the geometric multigrid algorithm [51] for the adaptation of the coarsening

strategy to the hybrid setting, as well as for the multigrid prolongation operator.

5.2.1 Construction of the algebraic mesh

It is straightforward to algebraically reconstruct the geometric relationships using the connectivity

graph given by ATF . Rows of ATF correspond to elements, while columns correspond to faces.

Adopting the notation [1, n] := {1, . . . , n} for all n ∈ N∗+, we then define the set of element

indices T := [1, nT ] (resp. the set of face indices F := [1, nF ]) where nT (resp. nF ) is the number

of rows (resp. columns) of ATF . For each i ∈ T , the locations of the non-zero coefficients
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in the i-th row of ATF correspond to the associated face indices, which we collect in the set

Fi ⊂ F . Reciprocally, for all k ∈ F , we collect in Tk ⊂ T the element indices that contain in their

boundary the face of index k. In ATF , two different rows having a non-zero entry in the same

column correspond to neighbouring elements. Their interface is given by the faces algebraically

defined by the indices of such columns. Formally, for all (i, j) ∈ T 2, i and j are neighbours if

Fi∩Fj 6= ∅. Moreover, we define the function σi : Fi → T such that σi(k) =: σik is the neighbour

of the element of index i sharing the face of index k. Algorithm 5.1 summarizes the process.

Algorithm 5.1 BuildMesh

Input: ATF
Output: Mesh defined as the dataset M := (T, F, (Fi)i∈T , (Tk)k∈F , (σik)(i,k)∈T×F )

1: nT := rows(ATF ); T := [1, nT ]
2: nF := cols(ATF ); F := [1, nF ]
3: for i ∈ T do Fi := {k ∈ F | (ATF )ik 6= 0} end for
4: for k ∈ F do Tk := {i ∈ T | (ATF )ik 6= 0} end for
5: for i 6= j ∈ T do
6: if Fi ∩ Fj 6= ∅ then
7: ∀k ∈ Fi ∩ Fj , set σik := j and σjk := i
8: end if
9: end for

5.2.2 Mesh coarsening by element aggregation and face collapsing

Now that we have built the algebraic mesh, that is, a list of elements, a list of faces, as well

as the links between them and subsequently the neighbouring relationships, we are able to

algebraically reproduce a geometric element-based aggregation strategy. The framework of

the present contribution does not restrict the aggregation method, as long as the required

information for choosing the aggregates can be retrieved from the uncondensed system. That is

why the way the elements are agglomerated will remain abstract in the general algorithm. As

such, Algorithm 5.2, which describes the global process of element aggregation, refers to the

abstract function BuildAggregate (at step 6). BuildAggregate takes an element i ∈ T as an

argument and returns a list of elements (including i) chosen to form an aggregate. The simplest

aggregation method, corresponding to clustering i with all its unaggregated neighbours, would be

enough to put our algorithm to the test. However, it would only rely on the element connectivity

graph, i.e. on the location of the non-zero coefficients in the block ATF , regardless of their values.

In order to manage anisotropic problems and give an example of how semi-coarsening can be

performed in our hybrid setting, we give in Section 5.2.3 a hybrid counterpart of the node-defined

pairwise aggregation based on the strong negative coupling criterion, as it is formulated in the

early version of AGMG described by [94]. We denote by (GT,i)i∈[1,nT,c] the produced aggregates,

with nT,c defining the number of aggregates.

In a multigrid method that applies to trace systems, as the smoother operates on the face

unknowns, the efficient reduction of the low-frequency components of the error relies on accessing

coarse representations of the face-defined functions. This implies that faces must be coarsened

between levels (see Section 3.2.4.3), which is a new constraint imposed to any suited coarsening

strategy. Consequently, we combine the element aggregation with an additional step of face
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Algorithm 5.2 ElementAggregation

Input: Mesh, output of Algorithm 5.1
Output: Aggregation information GT , defined as the collection of data:

(GT,i)i∈[1,nT,c]: element aggregates
(gi)i∈[1,nT ]: association of the element i to the aggregate gi it belongs to

(F̊i)i∈[1,nT,c]: fine faces interior to the aggregates

(F̂i)i∈[1,nT,c]: fine faces at the boundary of the aggregates

1: Todo := T // remaining non-aggregated elements
2: n := 0 // aggregate index
3: while Todo 6= ∅ do
4: Select i ∈ Todo

5: n := n+ 1
6: GT,n := BuildAggregate(i, Todo) // see Algorithm 5.5 for a possible algo.
7: for j ∈ GT,n do // save for each fine element the aggregate it is in
8: gj := n
9: end for

10: F̊n := {k ∈
⋃

i∈GT,n

Fi | ∃i 6= j ∈ GT,n s.t. k ∈ Fi ∩ Fj} // interior faces

11: F̂n :=

( ⋃
i∈GT,n

Fi

)
\ F̊n // boundary faces

12: Todo := Todo \GT,n
13: end while
14: nT,c := n

aggregation, also called face collapsing. In particular, we reproduce the technique devised in [51],

which consists in merging into single faces the interfaces between aggregates.

During the element aggregation process, the fine faces are split into two disjoint subsets

F̊ ∪ F̂ = F according to their situation w.r.t. the aggregates. F̊ regroups the faces interior to

an aggregate, i.e. the faces shared by two elements aggregated together. Geometrically speaking,

those faces are “removed” to give rise to the aggregates. The remaining faces, which compose the

aggregates’ boundaries, are collected in F̂ . We also denote their local counterparts, with respect

to each aggregate, by (F̊i)i∈[1,nT,c] and (F̂i)i∈[1,nT,c]. See Figure 5.2a for a geometric illustration.

→ F̊

F̂

(a) Element aggregation

→

(b) Face collapsing

Figure 5.2 Aggregation process with face collapsing. In (a), elements are aggregated, yielding
two aggregates. “Removed” edges, represented in dashed red lines, are collected in F̊ , while the
remaining ones are collected in F̂ . Then, in (b), the interface between the two neighbouring
aggregates, here made of two edges (in dashed red lines), is collapsed into a single one (solid
blue line). The other edges yield singleton face aggregates.

Neighbouring relationships between element aggregates can be directly deduced from F̂ . We

can then collapse into one single face the interfaces between aggregates without altering the

coarse adjacency graph. Note that each interface, whether it is made of multiple faces or only
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one, gives rise to one face aggregate, so singleton aggregates are produced. Figure 5.2b gives a

geometric interpretation of the face collapsing, and Algorithm 5.3 formalizes the process.

Algorithm 5.3 FaceCollapsing

Input: Fine mesh, output of Algorithm 5.1
Aggregation information, output of Algorithm 5.2

Output: Face collapsing information GF , defined as the collection of data:
(GF,k)k∈[1,nF,c]: face aggregates
(Hi)i∈[1,nT,c]: collapsed faces defining the new boundaries of the aggregates

1: Todo := F̂ // remaining non-collapsed faces
2: m := 0 // face aggregate index
3: while Todo 6= ∅ do
4: Select k ∈ Todo

5: m := m+ 1
6: Let G :=

⋃
i∈Tk gi // element aggregates the face k is at the interface of

7: GF,m :=
⋂
n∈G F̂n // fine faces (including k) composing that interface

8: for n ∈ G do
9: Hn := Hn ∪ {m} // in the coarse mesh, m is now a face of the aggregate n

10: end for
11: Todo := Todo \GF,m
12: end while
13: nF,c := m

Algorithm 5.4 MeshCoarsening

Input: M : mesh, output of Algorithm 5.1

1: GT := ElementAggregation(M) // Algorithm 5.2
2: GF := FaceCollapsing(M,GT ) // Algorithm 5.3
3: Tc := [1, nT,c] // coarse elements := aggregates
4: Fc := [1, nF,c] // coarse faces := collapsed faces

Now that aggregates have been made for elements and faces by the global Algorithm 5.4,

they can be numbered and become the coarse elements and faces, thus defining a coarse mesh.

5.2.3 Pairwise aggregation by strong negative coupling

This strategy allows to aggregate pairs of neighbouring elements in the direction of strong

anisotropy, and gives an implementation of the abstract method BuildAggregate at step 6 of

Algorithm 5.2. The choice of the neighbours for the constitution of the aggregates follows an

adaptation to hybrid unknowns of the usual rule of negative coupling employed in standard AMG.

For each element, this rule allows to evaluate, for all of its neighbours, a numerical criterion

indicating their strength of connection. Only those which have a strong enough connection and

are not already aggregated are considered for aggregation. Among them, the strongest one is

chosen, and leads to a pair aggregate. However, if none of the strong neighbours are available,

i.e. they have all already been previously aggregated, then the element stays alone in a so-called

singleton aggregate.

Before introducing our hybrid criterion for the strong negative relationship, let us recall the

node-defined criterion used by standard AMG methods. As multiple variations of this criterion
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•i • j
Aij

(a) Coupling of nodes i and j in standard
AMG.

(ATF )ik
i jk

(b) Coupling of elements i and j via their common
face k in the hybrid setting.

Figure 5.3 Coupling values in standard and hybrid settings

exist, we follow the example of AGMG in the version of [94]. Given the stiffness matrix A and an

algebraic node i associated to the i-th row of A, the coupling coefficient modelling the connection

of j to i is provided by the matrix entry Aij (see Figure 5.3a). We say that j is negatively

coupled (or connected) to i if Aij < 0, and the strength of connection is defined by the modulus

of that coefficient. The strongest connection then corresponds to ci := maxj|Aij<0 |Aij |. Given a

weak/strong connection threshold 0 < β ≤ 1 (typically set to 0.25), the set of nodes strongly

connected to i is {j | Aij < 0 and |Aij | ≥ β ci}.

In our case, in hybrid form, elements are coupled through ATF . Specifically, given an element

of index i ∈ T and its neighbour of index j, the coupling coefficient is provided through their

common face of index k by the matrix coefficient (ATF )ik; see Figure 5.3b. We then introduce

the following definition for the negative coupling criterion: j is negatively coupled to i via k

if (ATF )ik < 0. Now, for the purpose of managing heterogeneous problems by preventing

aggregation across large jumps in the diffusion coefficient, we remark that this sole value is not

enough to detect a discontinuity between i and j. Indeed, (ATF )ik only bears information local

to i. We also notice that, in the heterogeneous isotropic diffusion case, the coefficient (ATF )ik

is scaled by the actual diffusion coefficient of the element of index i. We then introduce the

heterogeneity ratio between the elements of indices i and j connected by the face of index k as

ρij := max

(
(ATF )ik
(ATF )jk

,
(ATF )jk
(ATF )ik

)
> 1. (5.3)

Meaning to penalize aggregation across jumps, instead of simply defining the coupling strength

by |(ATF )ik|, we define it as

cik := |(ATF )ik|/ρiσik ,

where we recall that σik refers to the element index j that shares the face index k with i. According

to this criterion, the remaining definitions are straightforward. The strongest connection to i is

given by

ci := max
k∈Fi,(ATF )ik<0

cik,

and the set of faces strongly connected to i by

F i := {k ∈ Fi | (ATF )ik < 0 and cik ≥ β ci}. (5.4)

Finally, the strong neighbours of i may be retrieved in the set {σik, k ∈ F i}. The corresponding

implementation of the abstract function BuildAggregate is given by Algorithm 5.5.

Notice that the number of singleton aggregates can significantly vary depending on the
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Algorithm 5.5 BuildAggregate

Input: i ∈ T : element to aggregate
T̃ ⊂ T : non-aggregated elements

Output: G: aggregate

1: // Collect faces strongly connected to i through which neighbours are still available
2: F̃i := {k ∈ F i | σik ∈ T̃} // cf. (5.4) for the definition of F i
3: if F̃i 6= ∅ then
4: k := arg max

`∈F̃i
ci` // face with the strongest coupling

5: G := {i, σik} // aggregation of i and its neighbour relative to k
6: else
7: G := {i} // i forms a singleton aggregate
8: end if

order following which the elements are aggregated. So, to minimize the number of singleton

aggregates, the elements are beforehand parsed and attributed a priority value in order to favor

those that have the fewest strong neighbours. Especially, we follow the priority numbering

algorithm described in [41] and process elements by order of priority at step 4 of Algorithm 5.2.

5.2.4 Cell- and face-defined auxiliary prolongation operators

Given T := [1, nT ] (resp. F := [1, nF ]) the fine elements (resp. faces) indices in the algebraic mesh,

we denote by Tc := [1, nT,c] (resp. Fc := [1, nF,c]) the coarse elements (resp. faces) constructed

by the aggregation process of Section 5.2.2 (Algorithm 5.4). We start by defining an auxiliary

cell-defined prolongation matrix QT (of size nT × nT,c) in the manner of plain aggregation:

∀i ∈ T, ∀j ∈ Tc, (QT )ij :=

1 if i ∈ GT,j
0 otherwise.

(5.5a)

This highly sparse prolongation operator (exactly 1 non-zero per row) transfers the unknown

values respectively assigned to the coarse elements onto the fine elements they aggregate. Without

smoothed aggregation techniques, all fine elements of the same aggregate receive the same value.

Regarding the faces, we define the auxiliary prolongation matrix QF (of size nF × nF,c) such

that for k ∈ F ,

(i) if k ∈ F̂ , i.e. k belongs to a face aggregate,

∀` ∈ Fc, (QF )k` :=

1 if k ∈ GF,`
0 otherwise;

(5.5b)

(ii) if k ∈ F̊ , let m be the coarse element embedding k (i.e. k ∈ F̊m)) and Hm its set of

(potentially) collapsed faces; then,

∀` ∈ Fc, (QF )k` :=

1/ card(Hm) if ` ∈ Hm

0 otherwise.
(5.5c)
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Figure 5.4 Operator QF . The fine red DoFs are set by the coarse black ones.

To summarize, an aggregated face takes the value of the corresponding coarse aggregate (just

like the elements), and a “removed” face, embedded in a coarse element, takes the average value

of that coarse element’s faces; see Figure 5.4.

5.2.5 Multilevel hierarchy

As the method described in Section 5.2.2 does not necessarily yield an aggressive enough

coarsening [94], and also in order to build more levels for the multigrid hierarchy, we want to

repeat the coarsening process, thus defining the so-called multiple coarsening. To do so, one has

to define a coarse version of the uncondensed matrix (5.1) to allow recursive execution.

Given the initial blocks ATT , ATF and AFF of the fine uncondensed matrix, we use the

auxiliary prolongation operators introduced in Section 5.2.4 to define coarse counterparts in a

Galerkin fashion:(
ATT,c ATF,c

A>TF,c AFF,c

)
:=

(
QT

QF

)>(
ATT ATF

A>TF AFF

)(
QT

QF

)
. (5.6)

Note that in practice, only the blocks used in the algorithm must be assembled. In this work,

we only need ATF (for the coarsening strategy) and ATT (used in the multigrid prolongation

operator PF further described in Section 5.2.6).

Algorithm 5.6 describes one step of coarsening. In addition to building the coarse blocks

(step 4), the coarsening process also constructs the operator PF that will be used as prolongation

operator in the multigrid algorithm (step 5). Indeed, although QF could be employed for

that purpose, we choose to explore another, more efficient approach (the construction of the

operator PF is described in Section 5.2.6 below). Furthermore, the coarse operator for the lower

level of the multigrid algorithm is defined as the Galerkin operator, constructed from PF and

the condensed matrix Ã, initialized at the finest level by the Schur complement (5.2) (step

6). Finally, to be more consistent with this coarse operator, we recompute the coarse blocks

following formula (5.6) in which QF is replaced with PF , i.e.(
ATT,c ATF,c

A>TF,c AFF,c

)
:=

(
QT

PF

)>(
ATT ATF

A>TF AFF

)(
QT

PF

)
. (5.7)

Again, only the blocks actually needed, here ATF,c only, are recomputed; see step 7.

While Algorithm 5.6 performs one step of coarsening, Algorithm 5.7 handles the recursion
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until a targeted coarsening factor is reached. The end of the multiple coarsening process defines

one new multigrid level, and the two-level prolongation operator is defined by successively

chaining the prolongation operators coming out of each coarsening (step 7).

Algorithm 5.6 Coarsening

Input: ATT , ATF , Ã
Output: ATT,c, ATF,c, Ãc, PF

1: M := BuildMesh(ATF ) // Algorithm 5.1
2: [GT , GF ] := MeshCoarsening(M) // Algorithm 5.4
3: Compute QT and QF by (5.5)
4: ATT,c := Q>TATTQT ; ATF,c := Q>TATFQF // cf. (5.6)
5: Compute PF by (5.10)
6: Ãc := P>F ÃPF
7: ATF,c := Q>TATFPF // cf. (5.7)

Algorithm 5.7 MultipleCoarsening

Input: ATT , ATF , Ã, targetCF
Output: ATT,c, ATF,c, Ãc, PF

1: ATT,aux := ATT ; ATF,aux := ATF
2: Ãaux := Ã
3: PF := I
4: cf := 0 // coarsening factor
5: while cf < targetCF do
6: [ATT,c, ATF,c, Ãc, PF,aux] := Coarsening(ATT,aux, ATF,aux, Ãaux) // Algorithm 5.6
7: PF := PFPF,aux

8: ATT,aux := ATT,c; ATF,aux := ATF,c
9: Ãaux := Ãc

10: cf := cols(ATF )/ cols(ATF,c)
11: end while

5.2.6 Multigrid prolongation operator

Although QF could also be used as prolongation operator for the multigrid algorithm, we choose

to explore another approach, which happens to give better results. Thus, we would like to

emphasize that QF is only employed to build the coarse blocks during the setup phase, while

PF , described in this section, defines the prolongation operator used in the multigrid iterations.

It is meant to be an algebraic counterpart of the geometric prolongation operator defined in

Chapter 3, which relies on the decondensation of the cell unknowns.

First, we introduce a preliminary prolongation operator denoted by P
(0)
F . For all k ∈ F , its

k-th row (P
(0)
F )k is defined as

(P
(0)
F )k :=

(QF )k if k ∈ F̂

(Πf
cΘc)k if k ∈ F̊ .

(5.8)

In this definition, Θc ∈ RnT,c×nF,c locally computes the value on the coarse cells from their

respective coarse faces, while Πf
c ∈ RnF×nT,c transfers the value associated the coarse cells to
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their respective interior fine faces. We define

Θc := −A−1
TT,cATF,c, (5.9)

which reverses the static condensation by solving for the cell unknowns local problems on the

coarse cells given values on the faces. Next, for any face k ∈ F ,

∀n ∈ Tc, (Πf
c )kn :=

1 if k ∈ F̊n
0 otherwise.

Figure 5.5 illustrates P
(0)
F .

•

•

•• ••

• •

••

(a) QF for F̂

•

•

•

•

• → ••

(b) Πf
c Θc for F̊

Figure 5.5 Preliminary prolongation operator P
(0)
F . In these figures, we consider two fine elements

(dashed lines) aggregated into one (solid lines). The DoFs on the coarse faces are represented by
black dots, on the fine faces by red dots, on the coarse element by a blue dot.

Second, we remark that the stencil, in P
(0)
F , of the DoFs associated to removed fine faces (i.e.

k ∈ F̊ ) is local to coarse elements. Given that the stencil in Ã is also local to coarse elements

for those unknowns, one sweep of Jacobi smoothing can be applied to them without enlarging

the prolongation stencil. This allows to boost the convergence with virtually no additional

computational cost. Note that a second smoothing iteration would enlarge the stencil outside of

coarse elements, which we do not want. Setting the damping factor to ω := 2/3, the smoothing

matrix is defined by J := I − ωD̃−1Ã, where I is the identity matrix and D̃ the diagonal part of

Ã. The final multigrid prolongation operator P is then defined row-wise for all row k ∈ F as

(PF )k :=

(QF )k if k ∈ F̂

(JP
(0)
F )k if k ∈ F̊ .

(5.10)

To conclude about the formulation of PF , we want to point out its mixed construction with

respect to aggregation-based methods: plain aggregation is used for F̂ , while F̊ benefits from

smoothed prolongation.

5.2.7 Multigrid method

A hierarchy of L levels is built by multiple coarsening following Section 5.2.5, and numbered from

1 (the coarsest) to L (the finest). At each level `, the prolongation operator is given by (5.10),

which we simply denote by P` instead of PF,`. The other multigrid ingredients are chosen as per

the variational framework: namely, the restriction is set to P>` , and the coarse operator Ã`−1

to the Galerkin construction, initialized by the condensed matrix (5.2) as the finest operator
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ÃL (i.e. Ã`−1 := P>` Ã`P`, ∀` = 2, . . . , L). The other parameters of the method (smoothers,

cycle, coarsening factor, weak/strong coupling threshold, coarse grid solver) are left to the user’s

discretion; our choices are detailed in Section 5.3.1.

5.2.8 Usage as a preconditioner

Prolongation operators arising from plain aggregation are known to yield poor approximation

properties of the coarse grid correction. However, it is known [89] that this loss of approximation,

leading to bad convergence of the V-cycle, can be compensated by the use of the K-cycle ([94,

Algorithm 3.2]), and by preconditioning a Krylov method. The detail of the K-cycle at a generic

level ` is recalled in Algorithm 5.8, and is applied, in our context, on the hierarchy of condensed

matrices (Ã`)`=1...L and prolongation operators (P`)`=2...L.

Algorithm 5.8 KCyclePrec`
Data: Hierarchies of matrices (Ak)k=1...` and prolongation operators (Pk)k=2...`

Input: Residual r
Output: The approximate solution e of the linear system A` e = r

1: if ` = 1 then
2: Direct solving: e := A−1

` r
3: else
4: Relaxation using smoother M`: e := M−1

` r
5: Residual computation: r := r −A` e
6: Restriction of the residual: r`−1 := P>` r
7: The residual equation is solved at level `− 1 by 1 or 2 iterations of a Krylov method

preconditioned by KCyclePrec`−1 with 0 initial guess:
e`−1 := InnerKrylov(A`−1, r`−1,KCyclePrec`−1, 0)

8: Coarse grid correction: e := e+ P` e`−1

9: Residual computation: r := r −A` e
10: Relaxation using smoother M`: e := M−1

` r
11: end if

In this cycle, only the way the residual equation is solved on the coarse level (step 7) differs

from the standard V- and W-cycles. Instead of performing 1 (in V-cycle) or 2 (in W-cycle)

iterations of the same cycle at the lower level through a direct recursion, the K-cycle performs 1

or 2 iterations of an inner Krylov method, itself preconditioned by the current K-cycle algorithm

at the lower level. Inspired from [94], the number of iterations executed (1 or 2) is decided

dynamically, according to the effective reduction of the residual: if the residual norm is not

reduced by a factor of at least 4 after the first iteration, then a second one is performed.

The final solver is then built by using Algorithm 5.8 to precondition the same Krylov

method as for the (1 or 2) inner iterations performed within the the K-cycle. Note that the

variable number of Krylov iterations in the K-cycle makes the latter a variable preconditioner,

which implies that a flexible version of the Krylov method has to be used. Flexible versions

of Krylov methods are usually obtained by the use of a truncature-restart strategy regarding

the orthogonalization of the Krylov vectors. Algorithm 5.9 presents such a Flexible Conjugate

Gradient [93], the so-called FCG(1) (also referred to as IPCG), obtained by orthogonalization of

the research direction against only one previous Krylov vector, without restart.
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Algorithm 5.9 Preconditioned Flexible Conjugate Gradient FCG(1)

Input: Matrix A, right-hand side b, preconditioner Prec, initial guess x0

Output: The approximate solution x of the linear system Ax = b

1: x := x0

2: r := b−Ax
3: for i = 1, 2, . . . do
4: w := Prec(r)
5: if i = 1 then d := w
6: else d := w − w>Adold

d>oldAdold
dold

7: end if
8: α := d>r/d>Ad
9: x := x+ αd

10: r := r − αAd
11: dold := d
12: end for

5.3 Numerical tests

5.3.1 Experimental setup

Letting Ω be a bounded polytopal domain of Rd, d ∈ {2, 3}, we consider the diffusion problem{
−∇ · (K∇u) = f in Ω,

u = 0 on ∂Ω,

where f ∈ L2(Ω) is a given source term and K : Ω→ Rd×d is the diffusion tensor field, which

is assumed to be real, symmetric, uniformly elliptic. This problem is discretized by the HHO

method [43] at the lowest order, which matches the structural requirements of Section 5.1.

The homogeneous Dirichlet boundary condition is handled by elimination. The multigrid

preconditioner given by Algorithm 5.8 performs one sweep of Gauss–Seidel in lexicographic order

as pre-smoothing and one sweep of Gauss–Seidel in anti-lexicographic order as post-smoothing.

We refer to this cycle as the K(1,1)-cycle. As the arising system is symmetric positive definite, we

choose the Flexible Conjugate Gradient FCG(1) (cf. Algorithm 5.9) for the outer iteration as well

as for the inner iteration of the K-cycle, meaning that the FCG, as outer solver, is preconditioned

by the K(1,1)-cycle of our multigrid method. The preconditioner being symmetric positive

definite, convergence of the outer FCG is ensured. To build each coarse level, multiple pairwise

aggregations with the weak/strong coupling threshold β = 0.25 are performed (Section 5.2.3),

enforcing a coarsening factor ≥ 3.8. Coarse levels are built until the operator matrix has less

than 1000 rows, where the system is solved by a direct solver. Iterations stop when the backward

error, defined by the residual normalized by the right-hand-side, reaches a value lower than 10−8.

In the following results, note that the number of iterations refers to the outer solver, i.e. FCG.

5.3.2 Methodology

The main goal of the following numerical experiments is to establish a comparison between the

solver developed in this work and the equivalent one made in the way of standard AMG. The
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former uses the uncondensed matrix to devise an element-based coarsening strategy, while the

latter is directly working on the condensed system by implementing an node-defined coarsening

strategy. Consequently, additionally to our novel algorithm, which we will refer to as Uncondensed

AMG (U-AMG), we introduce the so-called Condensed AMG (C-AMG), which uses the nodewise-

equivalent coarsening strategy directly on the condensed system. The pairwise aggregation is then

performed according to the nodewise strong coupling relationship described in the introductory

paragraphs of Section 5.2.3, and we note that the multiple pairwise aggregation reduces in this

case to the double pairwise aggregation. The prolongation operator follows plain aggregation,

i.e. is built similarly to the operator QT in (5.5a). The rest of the method shall be parametrized

identically to U-AMG (same Krylov method, smoothers, cycle, etc.).

Comparing overall performances of two iterative methods is a difficult exercise. The conver-

gence rate or number of iterations, alone, is not sufficient to establish a fair comparison, because

the actual time to solution also depends on the iteration cost. Combining both criteria is usually

made in terms of computational work or CPU time. The plain aggregation prolongation matrices,

which contain only ones, is therefore applied to vectors without any theoretical flop, although

its practical application still consumes non-negligible CPU time. As a consequence, we find

the computational work not to be a good indicator in that case. As our U-AMG and C-AMG

implementations both benefit from identical software components and optimizations, we adopt

the CPU time (in sequential execution) as overall performance criterion. Additionally, classical

data used to assess convergence and cost of multigrid methods shall also be given. Especially,

we respectively introduce the operator and grid complexity values as

Cop :=
L∑
`=1

nnz(Ã`)

nnz(ÃL)
, Cgd :=

L∑
`=1

rows(Ã`)

rows(ÃL)
.

These indicators give insight into the memory requirement and the computational cost of

multigrid solvers.

Given the chosen parameters, namely FCG Krylov method, Gauss-Seidel smoothers, K(1,1)-

cycle, etc., C-AMG corresponds almost exactly to the algorithm implemented by AGMG in the

version of [94]. One minor difference is that our algorithm omits the special treatment of strongly

diagonal-dominant rows, made to manage Dirichlet boundary conditions enforced by penalization.

Furthermore, the current release of the software AGMG implements a quality control over the

aggregates described in [90], which may significantly improve its overall performance, especially

in anisotropic cases, where the “shape” of the coarse elements plays an essential role in the

convergence rate. Such a quality control preventing the formation of “bad” aggregates is omitted

in our C-AMG and U-AMG algorithms. Additionally, differences in the implementation prevents

a fair comparison, in terms of execution time, with the fully optimized AGMG, for which

better results can reasonably be expected. The term implementation here refers to any factor,

besides the algorithm itself, that can influence the CPU time. Typically, it includes the software

technologies employed (programming language, third-party libraries, compiling options, etc.) as

well as the efficiency of the coding itself. For those reasons, results obtained with the current

release of AGMG shall be included for information, more as a reference to a state-of-the-art

solver than as direct comparative data.
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5.3.3 Numerical results

5.3.3.1 Speed and robustness

Table 5.1 describes the test cases studied. Simple and complex geometries are used, discretized

by Cartesian or unstructured simplicial meshes. Tests with anisotropic and heterogeneous tensors

are performed. They all gather between 3 and 6 million face unknowns, ensuring at least 6

multigrid levels. Although all but the heterogeneous one are 3D problems, we point out that

the results are consistent in 2D. The test results are displayed in Table 5.2. They include the

following data: operator complexity (Cop); grid complexity (Cgd); number of multigrid levels (L);

number of iterations to reach the convergence criterion (it); asymptotic convergence rate (%),

defined as the geometric mean of the residual convergence ratios for the last five iterations; solve

CPU time in seconds, excluding setup (t). Figure 5.7 summarizes in a comparative chart the

solve CPU times of the solvers. As explained in Section 5.3.2, this figure shall concentrate most

of the comments in this section.

Test
case

Geometry Mesh Tensor Elements Unknowns

Cube-cart Cube Cartesian Isotropic,
homogeneous

2,097,152 6,242,304

Cube-tet Cube Unstruct.
tetrahedral

Isotropic,
homogeneous

1,224,179 2,418,910

Complex-tet Figure 5.6a Unstruct.
tetrahedral

Isotropic,
homogeneous

3,319,309 6,532,291

Heterog1e8 Square Unstruct.
triangular

Isotropic,
heterogeneous
according to
Figure 5.6b

2,431,032 3,644,496

Cube-cart-aniso100 Cube Cartesian Anisotropic in
the x direction,
coefficient 100

2,097,152 6,242,304

Cube-tet-aniso20 Cube Unstruct.
tetrahedral

Anisotropic in
the x direction,
coefficient 20

1,224,179 2,418,910

Table 5.1 Description of the test cases

X
Y

Z(a) Geometry of test case Complex-tet: 3D plate
with cylindrical holes

Ω2 Ω1

Ω1 Ω2

(b) Heterogeneity pattern of test case Heterog1e8:
for i = 1, 2, K|Ωi

:= κiI, with κ1/κ2 = 108

Figure 5.6 Supplementary figures for test cases Complex-tet (a) and Heterog1e8 (b)
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Figure 5.7 Solver comparison in CPU time

Let us first examine the dependency on the mesh. On a structured Cartesian mesh

(Cube-cart), we remark that U-AMG is significantly faster than C-AMG (−25%). However, on

the same geometry, this time with an unstructured tetrahedral mesh (Cube-tet), we get equiva-

lent solve time. Finally, on a tetrahedral mesh describing a complex geometry (Complex-tet),

the advantage of U-AMG fades out: U-AMG becomes slightly slower than C-AMG (+6%).

Next, on a heterogeneous problem with large coefficient jump (Heterog1e8), we see that both

methods perform equivalently. Finally, tackling anisotropic problems, U-AMG is considerably

faster than C-AMG on a Cartesian mesh (Cube-cart-aniso100), whereas they show comparable

performance on an unstructured one (Cube-tet-aniso20). This set of tests demonstrates that

U-AMG is favored by Cartesian meshes. To justify this result, we begin by recalling that the

remaining unknowns of the condensed system are located on the faces. Indeed, viewed as nodes

located at the center of the faces, these DoFs are not displayed, relative to each other, in a

Cartesian way. See the node locations in Figure 5.8a: geometrically speaking, compared to the

usual 2D Cartesian grid of element width h, the nodes form a set of rows evenly spaced by h/2,

and where every other row has been shifted by h/2, giving the impression that the nodes are

diagonally aligned. A fortiori, the Cartesian structure is partially lost in the sense that only one

Cartesian direction is present in the stencil of each node (see red and blue stencils in Figure 5.8a).

The problem for C-AMG becomes visible on an anisotropic setting, where the anisotropy follows

—for instance— the x-axis. Although one wants the aggregation process to produce horizontal

aggregates, the shapes actually formed are more diverse, and can even be vertical. Figure 5.8b

illustrates the aggregates obtained by the double pairwise aggregation in this case: while desired

horizontal aggregates are represented in red, one can also see vertical aggregates in blue, as well

as “waves” in green. Referring to the red stencil of Figure 5.8a, we notice that nodes located on

vertical grid lines have horizontal stencils, which allows them to be aggregated horizontally and

form red aggregates. Similarly, nodes located on horizontal grid lines have inherently vertical

stencils (in blue). Specifically, their stencils do not contain any node to aggregate with in the

horizontal direction in order to comply with the anisotropy. Nodes on the same grid line are

indeed not part of the stencil. Consequently, due to the values of coefficients and the game of

aggregation priorities, other shapes are formed instead: vertical aggregates in blue or, better
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Cube-cart Cop Cgd L it % t

U-AMG 1.33 1.30 7 19 0.38 31.0
C-AMG 1.51 1.34 8 15 0.25 41.1
AGMG 2.03 1.64 9 24 19.7

Cube-tet Cop Cgd L it % t

U-AMG 1.78 1.22 6 31 0.51 23.4
C-AMG 1.51 1.34 7 27 0.49 24.1
AGMG 1.98 1.79 7 28 15.3

Complex-tet Cop Cgd L it % t

U-AMG 1.76 1.22 7 31 0.51 83.8
C-AMG 1.51 1.34 8 27 0.46 79.1
AGMG 1.96 1.78 7 27 46.6

Heterog1e8 Cop Cgd L it % t

U-AMG 1.55 1.27 7 27 0.42 26.1
C-AMG 1.42 1.34 7 23 0.38 28.5
AGMG 1.52 1.40 7 20 18.8

Cube-cart-aniso100 Cop Cgd L it % t

U-AMG 1.32 1.33 7 10 0.15 13.8
C-AMG 1.95 1.33 8 30 0.54 81.5
AGMG 1.70 1.51 7 23 19.3

Cube-tet-aniso20 Cop Cgd L it % t

U-AMG 1.82 1.23 6 77 0.80 62.5
C-AMG 1.60 1.43 8 75 0.78 62.3
AGMG 2.97 2.78 6 55 49.7

Table 5.2 Test results

(because closer to horizontal), waves in green. On the other hand, the reconstruction of the

actual elements performed by U-AMG yields entities with fully Cartesian stencils, allowing the

desired semi-coarsening; see Figure 5.8c. This explains why U-AMG performs so much better

than C-AMG on the Cube-cart-aniso100 test case. Note that this advantage is not limited to

anisotropy directions that follow one of the axes; this profitable behaviour is also observed for

orthotropic diffusion, namely, when the elements line up in the anisotropy direction. They can

be rectangles in 2D and hexahedra in 3D, but also, more loosely, polytopes having two opposite

faces orthogonal to the direction of anisotropy. However, if the mesh is fully unstructured,

aggregating nodes probably offers more, or at least equivalent flexibility to follow the direction

of anisotropy than aggregating elements. Hence the results obtained on the Cube-tet-aniso20

test case, where U-AMG loses its superiority.

These remarks on the shapes of the aggregates allows us to interpret more closely the results

of AGMG. As stated in Section 5.3.2, AGMG implements a complex quality control preventing

bad aggregates to be formed, which we have not carried out in C-AMG. In particular, we think

that aggregates such as the blue ones in Figure 5.8b (namely, those orthogonal to the direction

of anisotropy) do not occur in AGMG thanks to that quality control, thus explaining the large
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(c) Element aggregation.

Figure 5.8 (a) Location of the face DoFs on a Cartesian grid. (b) and (c): result of the nodewise
and elementwise double pairwise aggregations, according to an anisotropic problem following
the x-axis.
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Figure 5.9 Asymptotic behaviour

performance gap between C-AMG and AGMG on the Cube-cart-aniso100 test case. We can

also suppose that, when the problem is isotropic and the mesh unstructured, there are not many

bad aggregates to prevent. In that case, we can then admit that the difference in CPU time

between C-AMG and AGMG results from other aspects of the implementation. Looking at the

results of the test cases Cube-tet, Complex-tet and Heterog1e8, we can attribute 35 to 50% of

the CPU time consumed by C-AMG to an implementation overhead. As U-AMG benefits from

the same implementation, this proportion gives a hint on how to compare U-AMG to AGMG.

Specifically, we remark that even in spite of this overhead, U-AMG still performs better than

AGMG on the test case Cube-cart-aniso100. This indicates that the new algorithm can lead

to an improved efficiency for such cases.

5.3.3.2 Asymptotic behaviour

Figure 5.9 presents, for the test case Cube-tet and for each solver, the number of iterations

required to achieve convergence according to the number of unknowns in the system. We remark

that U-AMG scales the same way as C-AMG, and slightly better than AGMG. This means

that the new algorithm offers equivalent robustness to the meshsize as the existing method, and

shares its algorithmic quasi-optimality.
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5.3.3.3 Convergence/cost trade-off

We remark from Table 5.2 that the number of iterations required by U-AMG to reach convergence

is generally higher than for C-AMG. We would like to discuss in this section the link between

convergence rate and aggressiveness of coarsening.

The so-called multiple coarsening performed by U-AMG and C-AMG recursively coarsens

until a desired coarsening factor (relative to the number of unknowns, i.e. the number of faces) is

achieved. Note that for C-AMG, the number of required steps of coarsening is always 2, whereras

for U-AMG, it needs to be higher to build the first levels, and decreases as the levels grow

coarser. For actual values, refer to the number of coarsening steps performed between each level,

indicated in Table 5.3 for the test case Cube-tet. The fact that unknowns are face unknowns,

again, explains this phenomenon. Indeed, one step of coarsening corresponds to aggregating

elements pairwise and collapsing faces between aggregates. Consequently, the efficient reduction

of unknowns heavily relies on opportunities to collapse faces. Now, starting from a simplicial

mesh, i.e. polytopes with minimal number of faces, the possibilities of collapsing faces is limited,

and so is the size of the subsequent face aggregates. The situation starts to improve as the levels

grow coarser because the elements then have a larger number of faces, which benefits the face

collapsing process.

Level
`

Coarsening
steps

Coarsening
factor

rows(Ã`) nnz(Ã`)

fine 6 - - 2,418,910 16,757,242
5 4 5.5 440,204 9,848,798
4 3 5.4 81,081 2,702,515
3 3 7.2 11,243 416,655
2 2 4.1 2725 97,405

coarse 1 2 4.3 626 19,258

Table 5.3 Details of the adaptive multiple coarsening strategy of U-AMG for the test case
Cube-tet

The downside of enforcing a coarsening factor, thus triggering multiple steps of coarsening, is

that element aggregates can be large between two levels, which deteriorates the accuracy of the

prolongation operator, and therefore that of the coarse grid correction. On the other hand, by

fixing the number of coarsening steps performed between each levels, we expect a better accuracy,

but costlier iterations. In order to compare both strategies, Table 5.4 presents the coarsening

details when a constant number of two coarsening steps is performed. Besides the larger number

of levels built due to the less aggressive coarsening, we emphasize that between the highest levels,

where the coarsening factor is low, the sparsity of the operator is barely improved, which implies

similar smoothing costs at those levels. Finally, we compare their respective multigrid results

in Table 5.5. As expected, the fixed double coarsening strategy induces a better convergence

rate than the multiple coarsening, with a number of iterations that is now lower than both

C-AMG and AGMG. However, the operator and grid complexities have increased. While the

grid complexity is still reasonable, in the sense that it is equivalent to that of AGMG, the

operator complexity is significantly larger than with the adaptive multiple coarsening strategy,

which reflects the high cost of smoothing and memory storage. All in all, the solver converges in
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more CPU time, hence our choice of the multiple coarsening method. Nonetheless, the double

coarsening is yet not to be discarded. Finding ways to sparsen the coarse operators in order to

optimize the trade-off between convergence rate and operator complexity is another research

path.

Level
`

Coarsening
steps

Coarsening
factor

rows(Ã`) nnz(Ã`)

fine 8 - - 2,418,910 16,757,242
7 2 2.2 1,101,412 15,003,704
6 2 2.5 444,030 10,002,480
5 2 3.0 148,892 4,530,558
4 2 3.5 43,078 1,515,066
3 2 3.8 11,357 416,155
2 2 4.0 2846 101,960

coarse 1 2 4.2 681 20,925

Table 5.4 Details of the fixed double coarsening strategy of U-AMG for the test case Cube-tet

Cube-tet Cop Cgd L it % t

U-AMG (multiple coarsening) 1.78 1.22 6 31 0.51 23.4
U-AMG (double coarsening) 2.88 1.72 8 25 0.46 25.5
C-AMG 1.51 1.34 7 27 0.49 24.1
AGMG 1.98 1.79 7 28 15.3

Table 5.5 Comparative solver results

5.3.4 Alternative algorithms

In order to justify our algorithmic choices, we present supplementary numerical results using

alternative prolongation operators. In particular, we want to compare the results of our method

with those obtained using QF as prolongation operator (cf. Section 5.2.6). Indeed, since QF is

used to build coarse levels in the setup phase, re-using it as the prolongation operator in the

multigrid iterations comes as a more straightforward solution than constructing a new operator.

Second, in order to evaluate the effect of the partial smoothing (cf. J in (5.10)), we also consider

the multigrid method without this enhancement. Namely, it corresponds to using P
(0)
F (cf. (5.8))

as prolongation operator instead of PF , and to introduce the operator Qsmooth
F as the counterpart

of QF , enhanced with the same partial smoothing. Let us first consider the results obtained

on the Cube-tet test case, given in the top half of Table 5.6. While plain QF provides a faster

solver than P
(0)
F , the addition of the partial smoothing makes the final PF and Qsmooth

F give

equivalent results. In particular, the addition of one Jacobi sweep significantly improves the

convergence rate of P
(0)
F , resulting in a non-negligible reduction of the CPU time, whereas no

notable improvement is observed with QF . Although the results given by PF and Qsmooth
F on

isotropic test cases do not present much difference, the better robustness of PF manifests itself on

the anisotropic test case Cube-cart-aniso100. Indeed, with or without additional smoothing,

the method based on PF gives significantly better results than that based on QF . This difference

can be explained by the simplicity of QF . Clearly, assigning the mere average value of the local
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boundary faces to the DoFs on the local interior faces does not take the anisotropic coefficient

into account. On the other hand, the decondensation of the cell unknowns performed by PF

through formula (5.9) successfully does so.

Cube-tet Cop Cgd L it % t

PF 1.78 1.22 6 31 0.51 23.4
Qsmooth
F 1.79 1.22 6 30 0.51 23.4

P
(0)
F 1.80 1.22 6 32 0.56 28.0
QF 1.80 1.22 6 31 0.51 24.1

Cube-cart-aniso100 Cop Cgd L it % t

PF 1.32 1.33 7 10 0.15 13.8
Qsmooth
F 1.32 1.32 7 15 0.36 22.1

P
(0)
F 1.32 1.32 7 19 0.47 28.8
QF 1.31 1.30 7 27 0.56 39.3

Table 5.6 Results with alternative prolongation operators

5.4 Conclusion

The solver developed in this work proposes an alternative AMG approach for the solution of

linear systems arising from lowest-order hybrid discretizations. Although not entirely “black-box”

(because it requires parts of the uncondensed system), it remains purely algebraic. Compared to

the equivalent aggregation-based AMG constructed in the standard way (i.e. by viewing system

unknowns as nodes), it shows similar performance in most cases, while being more robust with

respect to orthotropic anisotropy. Consequently, it can offer substantial added value for solving

problems comprising both isotropic and anisotropic regions, like, e.g., Darcy flows. The solver,

in this case, allies the flexibility of AMG to handle unstructured meshes on isotropic regions

while exploiting the special element shapes on anisotropic ones. The cost of this improvement is

payed during the setup phase: (i) more memory storage may be required because of the use of

the uncondensed matrix; but the blocks needed by the setup may be kept in storage anyway,

because they are also needed to recover the cell unknowns after solving the condensed system.

(ii) As it requires to reconstruct the elements unknowns, the coarsening strategy is less direct

than other AMG methods, which evidently implies a costlier setup.

Hybrid discretizations achieve their full potential in high order of approximation. Yet, this

solver only applies to the lowest order. Even for more classical, non-hybrid discretizations, purely

algebraic solvers for higher orders are still an open problem. In aggregation-based methods, the

difficulty lies in the transfer of high order components from the coarse unknowns to the fine ones

they aggregate. In this context, the elementwise view of the aggregation process is certainly

easier to work with and geometrically interpret than a face aggregation.



Chapter 6

Conclusion and perspectives

For every problem, there is one solution

which is simple, neat, and wrong.

H. L. Mencken (1880-1956)

This Ph.D thesis adds to the broad spectrum of multigrid methods two novel skeleton-based

algorithms for statically condensed systems: one geometric, the other algebraic. To HHO, it

brings efficient options for the solution of large systems arising from elliptic equations. As

such, these solvers contribute to extend the HHO ecosystem and favor its practical usability for

industrial applications. Equipped with efficient solvers, hybrid discretizations may also have a

role to play in the pursuit of exascale computing. Indeed, their compact stencils and, therefore,

local assemblies and local reconstructions of the solution, make them well-suited to parallel

implementation. Furthermore, leveraging high orders of approximation can be done at lower

cost thanks to the static condensation. This could allow to reach the same accuracy as other

discretization methods for less unknowns to solve. For instance, what would be acknowledged as

an exascale problem in FEM may not be considered as such in HHO, provided a high degree of

approximation.

More generally, this thesis focuses on the definition of the solvers from a mathematical

standpoint, leaving aside their implementation for parallel architectures. Applying state-of-the-

art computer science techniques is the next step to prove their practical scalability and pave

the way towards efficient industrial software applications. Novel code generation techniques

[82, 84, 107], matrix-free implementations thanks to hierarchical hybrid grids [67, 81], hardware

optimization through the generation of block structured grids [125], especially retain attention.

Although our geometric multigrid method, by conserving the same polynomial degree at every

level, exhibits asymptotic optimality for high orders, one may want to compare its performance,

in terms of overall cost, against the usual alternative, namely, the p-multigrid approach. This

comparison deserves a dedicated study, which will be part of future work.

Scalar elliptic equations constituted the natural starting point of the research for efficient

solvers. Symmetry, positive-definiteness and ellipticity are indeed aggreeable properties to

multigrid methods. More difficult settings lie ahead with the Stokes and Navier-Stokes equations,

logical sequels of this thesis in the context of CFD applications.
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J. L. Lions and Philippe Ciarlet, editors, Solution of Equation in Rn (Part 3), Techniques
of Scientific Computing (Part 3), volume 7 of Handbook of Numerical Analysis, pages
713–1020. Elsevier, 2000. doi:10.1016/S1570-8659(00)07005-8.

[59] Robert D Falgout. An Introduction to Algebraic Multigrid. Computing in Science &
Engineering, 8(6):24–33, 2006. doi:10.1109/MCSE.2006.105.

[60] Niklas Fehn, Peter Munch, Wolfgang A. Wall, and Martin Kronbichler. Hybrid multigrid
methods for high-order discontinuous Galerkin discretizations. Journal of Computational
Physics, 415:109538, 2020. doi:10.1016/j.jcp.2020.109538.
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Algebraic multigrid preconditioner for statically condensed systems arising from lowest-

order hybrid discretizations.

Submitted. Preprint: https://hal.archives-ouvertes.fr/hal-03272468

� D. A. Di Pietro, F. Hülsemann, P. Matalon, P. Mycek, U. Rüde, D. Ruiz.
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Symbols

d Space dimension: 1, 2 or 3

Rd×dsym Space of symmetric real matrices of size d× d
Ω Domain of study ⊂ Rd

∂Ω Domain boundary

∇ Gradient operator Ω→ Rd

∇· Divergence operator Rd → R
v ·w Euclidean inner product of v and w ∈ Rd

f Source function Ω→ R
K Diffusion tensor Ω→ Rd×dsym

h Mesh size

Th Set of mesh elements

Fh Set of mesh faces

F I
h Set of internal faces

FB
h Set of boundary faces

T Generic element ∈ Th
F Generic face ∈ Fh
FT Set of faces of element T

TF Set of elements that F is a face of

nTF Unit vector normal to F pointing out of T

KT Restriction of K to the element T

KTF KTnTF · nTF
C∞(X) Functional space of inifinitely differentiable functions defined on X ⊂ Rd

L2(X) Functional space of square-integrable functions defined on X ⊂ Rd

(v, w)X L2(X)-inner product:
∫
X vw if v, w ∈ L2(X), or

∫
X v · w if v, w ∈ [L2(X)]d

H1(X) Sobolev space of order 1

H1
0 (Ω) Subspace of H1(Ω) with vanishing trace on the boundary ∂Ω

k Parameter of the HHO method defining the polynomial degree on the faces

Pk(T ) Space of d-variate polynomials local to element T of total degree at most k

Pk(F ) Space of (d− 1)-variate polynomials local to face F of total degree at most k

πkX L2-orthogonal projector onto the polynomial space Pk(X), X being a cell or a face

π̃k+1
T Elliptic projector onto the polynomial space Pk+1(T )
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UkT Local hybrid space of DoFs: Pk(T )×
(
×F∈FT

Pk(F )
)

vT Local hybrid DoFs: vT := (vT , (vF )F∈FT
)

Ukh Global hybrid space of DoFs:
(
×T∈Th P

k(T )
)
×
(
×F∈Fh

Pk(F )
)

vh Global hybrid DoFs: vh := ((vT )T∈Th , (vF )F∈Fh
)

UkTh Global space of cell-DoFs:×T∈Th P
k(T )

vTh Global cell-DoFs: vTh := (vT )T∈Th
UkFh

Global space of face-DoFs:×F∈Fh
Pk(F )

vFh
Global face-DoFs: vFh

:= (vF )F∈Fh



Acronyms

AGMG Name of a specific AMG software: AGgregation-based AMG

AMG Algebraic Multigrid
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C-AMG Condensed Algebraic Multigrid (as opposed to U-AMG)
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CG Conjugate Gradient

CGAL Name of geometric software library

DG Discontinuous Galerkin

DoF Degree of Freedom

DtN Dirichlet-to-Neumann

EDF Electricité de France

FCG Flexible Conjugate Gradient

FEM Finite Element Method

FV Finite Volumes

HDG Hybridizable Discontinuous Galerkin

HHO Hybrid High-Order

IGA Isogeometric Analysis

MFMFE Multipoint Flux Mixed Finite Elements

PDE Partial Differential Equation

RT Raviart-Thomas

SOR Successive Over-Relaxation

U-AMG Uncondensed Algebraic Multigrid
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Summary

The present thesis focuses on fast numerical solutions of partial differential equations discretized

by the recent Hybrid High-Order (HHO) method. The arising linear systems are solved by

the means of novel, efficient multigrid methods. This research work is funded by the project

Fast4HHO1 of the French National Research Agency, granted to Electricité de France (EDF).

Context and motivation

HHO discretizations [43] have gained growing interest in recent years. Amongst their key features,

we can list the support of general polytopal meshes and of arbitrary approximation orders, as well

as their optimal orders of convergence. Another built-in and defining feature of the HHO methods

is the use, in the formulation of the bilinear form, of a higher-order potential reconstruction

operator, which allows the gain of one additional order of approximation compared to similar

hybrid methods, like Hybridized Discontinuous Galerkin (HDG) [36, 92]. Finally, the capability

of HHO methods to adapt their design to the underlying physics, via problem-dependent local

formulations, allows for more robust solutions with respect to the problem. Up to this day,

HHO methods have been successfully derived for a large variety of problems in fluid dynamics

(heterogeneous anisotropic diffusion [48], incompressible Navier-Stokes [21], creeping flows of

non-Newtonian fluids [25]) and structural mechanics (linear and nonlinear elasticity [23, 47] and

poroelasticity [18, 24]). Now that the method has gained sufficient maturity, its adoption for

industrial applications hangs on the availability of efficient linear solvers. The goal of this Ph.D

thesis is to bridge this gap. More precisely, this dissertation focuses on relevant applications to

EDF in Computational Fluid Dynamics (CFD), in particular Darcy flow in porous media and

incompressible fluid mechanics.

HHO methods hinge on degrees of freedom (DoFs) located inside elements and on faces,

which can be globally viewed as broken polynomials respectively on the mesh and its skeleton.

We exclusively focus on cases where the element-defined DoFs are only locally coupled. As such,

they can be expressed, element by element, in function of the DoFs on the faces, and subsequently

eliminated from the global HHO linear system. This gives rise to a Schur complement of smaller

size where only face unknowns remain. This process is known as static condensation in the

mechanical literature, and the resulting system as a statically condensed system, or trace system,

in reference to the mesh skeleton as the support for the set of globally coupled unknowns. The

solution of the trace system, yielding the face unknowns, remains the costliest operation, after

which the values of the element unknowns can be inexpensively recovered by solving small,

independent linear systems.

1under contract ANR-17-CE23-0019
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As a consequence, the practical usefulness of HHO discretizations in an industrial context,

where large problems have to be solved, depends on the existence of efficient linear solvers for

the condensed system. Especially, the present research work is motivated by the aim to provide

a solver for the free, open-source CFD software code saturne1 [7], developed and released by

EDF.

In this Ph.D thesis, we focus on scalar, second order, elliptic equations, whose HHO discretiza-

tions give rise to trace matrices that are sparse, symmetric and positive-definite. Specifically,

we aim at solving large systems of this type by means of a multigrid method [31, 118]. The

main difficulty in the design of a geometric multigrid algorithm for a trace system resides in the

location of the DoFs associated to the set of unknowns that remain after static condensation,

namely, the face unknowns. Supported by the mesh skeleton, the broken polynomials defined by

these DoFs are not suited for standard intergrid transfer operators, applicable to element-defined

functions. Multigrid algorithms designed for Discontinuous Galerkin (DG) discretizations are

therefore excluded, hence the need for novel, skeleton-based multigrid methods.

Thesis outline and contributions

Introduction

In Chapter 1, we first justify the need for novel discretizations such as HHO to tackle the open

issues of complex geometries and non-smooth solutions in CFD. We next state a list of criteria,

relative to structure and performance, that a linear solver should exhibit to be considered as

an adequate answer to the problem at hand. Besides the proper formalization of our research

goals, this exercise allows us to discuss existing solutions in light of these criteria, and therefore

justify the need for new solvers and identify the gaps filled by the contributions of this thesis.

Then follows a thorough state-of-the-art of existing solvers, especially multigrid, targeting trace

systems. Finally, a detailed summary of our contributions is presented.

Model problem and HHO discretization

Chapter 2 is dedicated to the application of the HHO method on a model problem for scalar

second-order elliptic equations, namely, the diffusion problem including a uniformly elliptic

permeability tensor. We especially introduce the high-order potential reconstruction operator,

which is the main ingredient in the definition of the discrete bilinear form. This operator, based

only on an integration by parts formula, is locally defined. It allows, from a polynomial in

the cell and polynomials of same degree on the faces, to reconstruct a polynomial one degree

higher in the cell. This feature is advantageously employed in our geometric multigrid method

to enhance its overall performance.

A geometric h-multigrid method

Chapter 3 is devoted to the first original contribution of this Ph.D thesis, namely the development

of a novel, geometric h-multigrid algorithm (i) based on approximation spaces supported by the

1www.code-saturne.org

www.code-saturne.org
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mesh skeleton at every level, (ii) targeting HHO discretizations by making use of the underlying

high-order potential reconstruction, (iii) natively handling higher orders (as opposed to, e.g.,

putting a p-multigrid on top of an h- one). The method relies on the design of a special

prolongation operator that includes the construction of an intermediary state between the coarse

skeletal function and its prolongation onto the fine skeleton. Precisely, a cell-defined potential is

reconstructed on the coarse mesh, which allows, via a trace operator, a subsequent definition on

the fine skeleton.

The cell reconstruction is the core of our method and what makes it original. It works locally,

and decomposes into two steps. Firstly, a coarse cell-defined polynomial of degree k is recovered

from the face-defined polynomials of degree k through the decondensation of the cell unknowns.

Secondly, the higher-order reconstruction operator is applied to both cell and face unknowns in

order to gain one degree of approximation in the cell. Given that the reconstructed polynomial

is of degree k + 1, recovering the original polynomial degree k on the fine faces implies that

the trace operation must also lower the degree. To do so, the trace comes with a subsequent

L2-orthogonal projection onto the polynomial space of lower order k. Moreover, on the fine

faces at the boundary of coarse elements, due to the discontinuous setting, the trace actually

consists in taking the weighted average of the traces computed on each side. The weights take

the diffusion coefficient into account to ensure robustness to discontinuities.

The numerical tests include homogeneous and heterogeneous isotropic problems in 2D and

3D domains, discretized by structured and unstructured meshes. With structured meshes on

simple domains, whether with Cartesian or simplicial elements, the multigrid method, directly

used as a solver, exhibits the following properties: (i) convergence in a limited number of

iterations, seemingly independently of the mesh size; (ii) controlled computational cost through

the rediscretization of the operator at the coarse levels and the use of standard smoothers (namely,

block Gauss-Seidel or Jacobi); (iii) robustness to discontinuities of the diffusion coefficient, whose

magnitude does not alter the convergence rate; (iv) robustness to higher orders, for which the

solver exhibits the same properties.

However, on complex domains requiring highly unstructured meshes, optimal convergence is

not achieved in general. The reason is twofold: (i) optimal convergence relies on the faces being

coarsened between levels (not only the elements!); (ii) numerical experiments have shown the

high sensitivity of the multigrid method to the mesh quality, i.e. to the presence of elements with

bad aspect ratio. Optimality then also requires a hierarchy of high-quality meshes. Combined,

these demands raise the issue of how to build the mesh hierarchy. Indeed, multigrid hierarchies

are commonly constructed by successive refinements of an initial coarse mesh. If refinement

ensures face coarsening between every level from the fine mesh to the coarse one, it also often

has the nasty habit to affect mesh quality, especially in 3D. Conversely, starting from a good

quality fine mesh, there is no obvious method allowing to construct a nested coarse mesh while

also enforcing face coarsening. Non-nestedness is indeed the path we choose to follow in our

second contribution to overcome the limitations of our multigrid method and successfully manage

untructured 3D cases.
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Extension to non-nested meshes

Chapter 4 is dedicated to the adaptation of the nested version of our algorithm to non-nested

mesh hierarchies and its efficient implementation for practical use. Compliance to non-nested

settings is performed by inserting an additional step in the definition of the prolongation

operator: starting with polynomials lying on the coarse faces, the nested version begins with

the reconstruction of a broken element-defined polynomial on the coarse mesh. This step is

unchanged. We then propose to orthogonally project in L2-norm this coarse broken polynomial

onto the non-nested fine mesh. Finally, the end of the process also follows the nested version:

the trace of the result is computed on the fine faces.

The numerical evaluation of this L2-orthogonal projection operator hinges on the projection

of the local coarse basis functions onto the fine bases, i.e. on the computation of the L2-inner

products of the coarse and fine basis functions over the fine elements. As a direct consequence,

the local definition of the functional bases makes the intersections of coarse and fine elements

the respective integration supports to these inner products. However, computing the geometric

intersections between coarse and fine elements can be computationally prohibitive. So, instead

of this exact computation, we propose the implementation of an approximate operator that does

not require the explicit computation of intersections. It is based on the subdivision of the fine

elements, by adopting the simplifying hypothesis that each sub-element is fully included in the

coarse element that contains its barycenter. We evaluate the accuracy of this approximation

through comparative experiments with the exact operator, in which we assess the convergence of

our multigrid method where the non-nested meshes are obtained by independent retriangulation

of the domain at each level. These tests demonstrate the sufficient accuracy of the approximation

for moderate polynomial degrees in 3D, as well as the substential gain in setup time that the

technique offers by avoiding the computation of geometric intersections. In particular, we

demonstrate the optimal convergence of our non-nested multigrid algorithm on an unstructured

3D test case that the nested version failed to solve.

In practice, building a high-quality mesh for a real, industrial case study can be an arduous

task, which may occupy a meshing engineer for several months. Requiring multiple high-quality

meshes of the same geometry at different granularities in order to feed a multigrid solver is

then not always conceivable. From the user’s standpoint, providing the solver with the sole

fine mesh is a preferable option. This is why this chapter also includes the abstract definition

of a coarsening strategy in order to build, from a given fine mesh, a hierarchy of non-nested

coarse meshes in which faces are coarsened. In particular, the method is based on element

agglomeration, to which we add a step of face collapsing at the interfaces between agglomerates.

We provide explicit details about our implementation in 2D, among which we especially explain

how the the approximate L2-orthogonal projection can be made exact through a clever way of

subtriangulating the fine elements. The non-nested multigrid method yielded by this coarsening

strategy is finally evaluated on the simplified geometry of a real, industrial test case provided by

EDF, which also results in an asymptotically optimal behaviour.
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Algebraic multigrid

The geometric multigrid algorithm and its non-nested extension that we have devised provide a

first option for the solution of HHO systems. In Chapter 5, we develop another approach, in the

form of an Algebraic Multigrid method (AMG).

Usual AMG solvers designed for low-order finite element or finite difference methods deduce

mesh information under the assumption that each row in the matrix corresponds to an unknown

related to a DoF located at a mesh node or elements. Thus, the mesh connectivity graph can

be reconstructed algebraically, and coarsening strategies mimicking geometric algorithms can

then be performed in order to build the coarse levels. Especially focusing on aggregation-based

methods, nodes are being aggregated in order to give rise to coarse DoFs. However, in our hybrid

setting at the lowest order, the unknowns of the system are actually linked to faces, i.e. neither

nodes nor elements. Consequently, at first glance it might seem peculiar, from a geometrical point

of view, to apply the above approach in this context. Indeed, aggregation-based coarsening can

then be interpreted as aggregating faces. Although it may give natural results for neighbouring

faces, especially if they are close to being colinear, it sometimes aggregate faces that do not even

touch. In this case, it is difficult to perceive a geometrical sense in this aggregation. Nonetheless,

numerical tests with a standard aggregation-based AMG method show that the approach still

works well, which can be geometrically justified by forgetting about the DoFs being actually

face-defined and considering them as mere node values located at the center of the faces. That

being said, one can legitimately wonder if a coarsening strategy making geometrical sense in

light of the actual significance of the DoFs as face-defined values could not yield even better

results.

Restricting our scope to lowest-order hybrid methods (not only HHO), the idea at the origin

of this work is the algebraic reconstruction of the mesh information based, no longer on the

condensed matrix, but on the uncondensed one. Indeed, like traditional AMG methods, we

retrieve geometric information on the coupling of the DoFs from algebraic data. However, as

the condensed matrix only gives information on the faces, we use the uncondensed version to

reconstruct the connectivity graph between elements and faces. Once the so-called algebraic

mesh is retrieved, especially the neighbouring information between elements, an element-based

aggregation method can be set up in order to mimic the behaviour of a geometric coarsening or

semi-coarsening strategy. Keeping in mind that, in our hybrid setting, faces must be coarsened

between levels, we complement the element aggregation with the face collapsing technique devised

in Chapter 4. The method is used in conjonction with the so-called K-cycle to precondition an

outer Krylov method. The technical choices made in this work are borrowed from AGMG [95]

(pairwise aggregation, strong negative coupling criterion, K-cycle...) in order to establish a

proper comparison with a standard AMG solver that works only on the condensed system.

Our method is applied to the lowest order HHO discretizations of 2D and 3D diffusion

problems. The test spectrum includes homogeneous, heterogeneous, isotropic and anisotropic

problems on structured Cartesian and unstructured simplicial meshes. The methodology adopted

compares our novel method to a standard aggregation-based AMG that views DoFs as nodes

and implements a node-defined coarsening strategy from the condensed system. The aggregation

criteria, cycle, smoothers, as well as every other technical choices are identical for both solvers
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to establish a comparison. We report equivalent performances in isotropic and in unstructured

cases. The added value of the new algorithm actually appears in anisotropic problems with

Cartesian meshes, where the solver exhibits an enhanced robustness. Although this very specific,

trivial test case might seem restrictive, this feature can actually be exploited in a larger range of

cases. Namely, the method can offer substantial added value for solving problems comprising

both isotropic and anisotropic regions, providing that the anisotropic ones are discretized by

Cartesian elements oriented in the direction of anisotropy. The solver, in this case, uses the

flexibility of AMG to handle unstructured meshes on isotropic regions while exploiting the

special element shapes on anisotropic ones.

Scientific communications

The contributions of this Ph.D thesis have been made available to the scientific community

through journal papers, open-access preprints, and talks at international conferences. References

and download links are gathered page 103.



Résumé

Cette thèse a pour objet la résolution rapide d’équations aux dérivées partielles discrétisées

avec la méthode Hybrid High-Order (HHO), ou méthode hybride d’ordre élevé. Les systèmes

linéaires obtenus sont résolus au moyen d’efficaces nouvelles méthodes multigrilles. Ce travail de

recherche est financé par le projet ANR Fast4HHO1, sous la gestion d’EDF.

Contexte et motivation

Les discrétisations HHO [43] suscitent un intérêt croissant depuis quelques années. Parmi leurs

caractéristiques principales, on peut citer le support des maillages polyédriques généraux et des

ordres polynomiaux arbitrairement élevés, ainsi que l’optimalité de leur convergence. Un autre

ingrédient, sur lequel repose la construction de ces méthodes, est l’utilisation, dans la formulation

de la forme bilinéaire, d’un opérateur de reconstruction à l’ordre élevé, ce qui permet le gain d’un

degré d’approximation par rapport à des méthodes hybrides similaires, telles que les méthodes

de Garlerkin discontinues hybridisées (HDG) [36, 92]. Pour finir, la capacité des méthodes

HHO à adapter leur formulation à la physique du problème rendent leurs approximations plus

robustes. Jusqu’à aujourd’hui, les méthodes HHO ont été explicitées pour une grande variété de

problèmes de la mécanique des fluides (diffusion hétérogène et anisotropique [48], équations de

Navier-Stokes incompressibles [21], écoulements visqueux de fluides non newtoniens [25]) et de

la mécanique des structures (élasticité et poroélsticité linéaire et non linéaire [18, 23, 24, 47]).

Maintenant que la méthode est suffisamment mature, son adoption par l’industrie dépend de

l’existence de solveurs linéaires efficaces. L’objectif de cette thèse est de remplir ce vide. Plus

précisément, cette dissertation se concentre sur les problèmes de mécanique des fluides numérique

d’intérêt pour EDF, à savoir les écoulements darcéens en milieu poreux et la mécanique des

fluides incompressibles.

Les degrés de liberté (DDLs) des méthodes HHO sont situés dans les éléments sur les faces.

Ils peuvent être interprétés globalement comme des polynômes brisés sur le maillage et son

squelette. Nous nous concentrons exclusivement sur les problèmes où les DDLs d’éléments sont

uniquement couplés localement. Dans ce cas, ils peuvent être exprimés, élément par élément, en

fonction des DDLs de faces, et peuvent donc être éliminés du système linéaire HHO global. Cela

engendre un complément de Schur de taille réduite au sein duquel ne restent que les inconnues

de faces. Ce processus est connu dans la littérature mécanique sous le nom de condensation

statique, et le système résultat sous le nom de système condensé statiquement, ou système aux

traces, en référence au fait que le squelette du maillage correspond au support des inconnues

couplées globalement. Résoudre ce système aux traces, donnant les valeurs des inconnues de

1contrat ANR-17-CE23-0019
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faces, reste l’opération la plus coûteuse, après quoi les valeurs des inconnues de cellules peuvent

être retrouvées en résolvant à faible coût des petits systèmes linéaires indépendants.

Conséquemment, l’utilité pratique des discrétisations HHO dans un contexte industriel, dans

lequel il faut résoudre des problèmes de grande taille, dépend de l’existence de solveurs linéaires

efficaces pour le système condensé. En outre, ce travail de recherche trouve sa motivation dans

l’objectif de fournir un solveur au logiciel de mécanique des fluides numérique open-source et

gratuit code saturne1 [7], développé et distribué par EDF.

Dans cette thèse, nous nous concentrons sur les équations scalaires elliptiques du second

ordre, dont la discrétisation HHO engendre des matrices aux traces creuses, symétriques et

définies positives. Notre objectif est de résoudre de tels systèmes de grande taille au moyen

de méthodes multigrilles [31, 118]. La difficulté principale dans l’élaboration d’un algorithme

multigrille géométrique pour un système aux traces tient à la localisation des DDLs associés

aux inconnues qui restent après la condensation statique, c’est-à-dire les inconnues de faces.

Supportés par le squelette du maillage, les polynômes brisés définis par ces DDLs ne sont pas

adaptés aux opérateurs de transfert intergrilles standards, qui s’appliquent sur des fonctions

définies sur les éléments. Les algorithmes multigrilles construits pour les discrétisations de

Galerkin discontinues (DG) sont donc exclus, d’où le besoin de nouvelles méthodes multigrilles

construites sur le squelette.

Plan de la thèse et contributions

Introduction

Dans le chapitre 1, nous commençons par justifier le besoin de nouvelles discrétisations telles

qu’HHO pour traiter les problèmes encore ouverts des géométries complexes et des solutions non

régulières en mécanique des fluides numérique. Ensuite, nous définissons une liste de critères

structurels et de performance qu’un solveur linéaire doit remplir afin d’être considéré comme une

réponse adéquate au problème à résoudre. A part la formalisation de nos objectifs de recherche,

cet exercice nous permet de discuter des solutions existantes au regard de ces critères, et par

conséquent de justifier le besoin de nouveaux solveurs et d’identifier les lacunes comblées par

les contributions de cette thèse. Il s’ensuit un état de l’art minutieux des solveurs existants, en

particulier multigrilles, qui ciblent les systèmes aux traces. Enfin, un résumé détaillé de nos

contributions est présenté.

Problème modèle et discrétisation HHO

Le chapitre 2 est dédié à l’application de la méthode HHO à un problème modèle pour les

équations scalaires elliptiques du second ordre. En l’occurrence, le problème de la diffusion

incluant un tenseur de perméabilité. On introduit en particulier l’opérateur de reconstruction

de potentiel d’ordre supérieur, l’ingrédient principal dans la définition de la forme bilinéaire.

Cet opérateur, uniquement construit à partir d’une formule d’intégration par parties, se définit

localement. Il permet, à partir d’un polynôme défini dans la cellule et de polynômes de même

degré sur les faces, de reconstruire un polynôme d’un degré supérieur dans la cellule. Cette

1www.code-saturne.org

www.code-saturne.org
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reconstruction est exploitée dans notre multigrille géométrique pour améliorer ses performances

générales.

Une méthode h-multigrille géométrique

Le chapitre 3 est dédié à la première contribution originale de cette thèse de doctorat :

le développement d’un nouvel algorithm h-multigrille géométrique (i) basé sur des espaces

d’approximation supportés par le squelette du maillage à tous les niveaux, (ii) ciblant les

discrétisations HHO grâce à l’utilisation de la reconstruction de potentiel d’ordre supérieur, (iii)

prenant en compte de façon native les ordres élevés (contrairement à, par exemple, l’ajout d’un

multigrille en p au-dessus de celui en h). La méthode est basée sur le design d’un opérateur de

prolongation particulier, qui inclut la construction d’un état intermédiaire entre celui de fonction

sur le squelette grossier et celui de fonction sur le squelette fin. Plus précisément, un potentiel

est reconstruit sur les cellules du maillage coarse permettant, grâce à un opérateur de trace,

d’en définir un sur le squelette fin.

La reconstruction sur la cellule est le cœur de la méthode et ce qui la rend originale. Elle

fonctionne localement, et se décompose en deux temps. Premièrement, un polynôme de degré

k, défini sur les cellules grossières, est retrouvé grâce aux polynômes de degré k sur les faces.

Deuxièmement, l’opérateur de reconstruction d’ordre supérieur est appliqué conjointement au

polynôme de cellule et aux polynômes de faces afin de gagner un degré d’approximation dans la

cellule. Etant donné que le polynôme ainsi reconstruit est de degré k + 1, retrouver le degré

polynomial k de départ implique que l’opération de trace fasse également baisser le degré. Pour

ce faire, la trace s’accompagne d’une projection L2-orthogonale sur l’espace polynomial de degré

inférieur k. Par ailleurs, sur les faces fines à la frontière des éléments grossiers, à cause des

discontinuités, la trace est choisie comme la moyenne pondérée des traces calculées de chaque

côté. Les poids prennent en compte le coefficient de diffusion afin d’assurer un comportement

robuste aux discontinuités.

Les tests numériques contiennent des problèmes isotropiques homogènes et hétérogènes

sur des domaines 2D et 3D, discrétisés avec des maillages structurés et non structurés. Avec

des maillages structurés sur domaines simples, qu’ils soient faits d’éléments cartésiens ou de

simplexes, la méthode multigrille, directement utilisée comme solveur, présente les propriétés

suivantes: (i) convergence en un nombre raisonnable d’itérations; (ii) coût de calcul mâıtrisé grâce

à la rediscrétisation de l’opérateur aux niveaux grossiers et à l’utilisation de lisseurs standards

(Gauss-Seidel ou Jacobi par blocs); (iii) robustesse aux discontinuités du coefficient de diffusion,

dont l’ordre de grandeur n’affecte pas le taux de convergence; (iv) robustesse aux ordres élevés,

pour lesquels le solveur présente les mêmes propriétés.

Cependant, sur les domaines complexes qui requièrent des maillages fortement non structurés,

la convergence optimale n’est généralement pas atteinte. Cela tient à deux observations:

(i) l’optimalité requiert que les faces (et non uniquement les éléments) aient également une

représentation grossière; (ii) les expériences numériques ont montré la sensibilité élevée de la

méthode multigrille à la qualité du maillage, c’est-à-dire à la présence d’éléments présentant

un mauvais rapport de forme. L’optimalité requiert alors une hiérarchie de maillage de haute

qualité. Combinées, ces demandes pose le problème de la façon dont la hiérarchie de maillages



122 Résumé

est obtenue. En effet, pour le multigrille, elles sont généralement construites par raffinements

successifs d’un maillage grossier initial. Si le raffinement garantit une représentation grossière des

faces entre chaque niveau, il a souvent la mauvaise habitude de dégrader la qualité du maillage

de départ, particulièrement en 3D. A l’inverse, en démarrant d’un maillage fin de bonne qualité,

il n’y a pas de méthode évidente de construction d’un maillage grossier imbriqué tout en assurant

une représentation grossière des faces. Le passage aux maillages non imbriqués est en effet le

chemin que nous suivons dans notre seconde contribution afin de dépasser les limitations de

notre multigrille et de réussir à gérer les cas 3D non structurés.

Extension aux maillages non embôıtés

Le chapitre 4 est dévolu à l’adaptation de la version imbriquée de notre algorithme aux maillages

non imbriqués, ainsi qu’à son implémentation efficace en vue d’une utilisation pratique.

La gestion de la non imbrication se fait par l’insertion d’une étape de plus dans la définition

de l’opérateur de prolongation : démarrant des polynômes sur les faces grossières, la version

embôıtée commence par la reconstruction d’un polynôme brisé sur les éléments du maillage

grossier. Cette étape reste inchangée. Nous proposons ensuite de projeter orthogonalement, en

norme L2, ce polynôme brisé sur le maillage fin non embôıté. Pour finir, la fin du processus suit

également la version embôıtée : la trace du résultat est calculée sur les faces fines.

L’évaluation numérique de cette projection L2-orthogonale repose sur la projection des

fonctions de base locales grossières sur les bases fines, c’est-à-dire sur le calcul des produits

scalaires L2 des fonctions de base grossières et fines sur les éléments fins. Conséquemment,

la définition locale des fonctions de base définit les intersections des éléments grossiers et fins

comme les supports d’intégration respectifs de ces produits scalaires. Toutefois, calculer les

intersections géométriques entre les éléments grossiers et fins peut présenter un coût de calcul

prohibitif. C’est pourquoi, à la place de ce calcul exact, nous proposons l’implémentation d’un

opérateur approximatif qui ne requiert pas le calcul explicite des intersections. Celui-ci est basé

sur la subdivision des éléments fins, en adoptant l’hypothèse simplificatrice selon laquelle chaque

sous-élément est entièrement inclus dans l’élément grossier contenant son barycentre. Nous

estimons la précision de cette approximation par des expériences comparatives avec l’opérateur

exact, dans lesquelles est évaluée la convergence de notre méthode multigrille où les maillages

non imbriqués sont obtenus par une retriangulation indépendante à tous les niveaux. Ces tests

démontrent la précision suffisante de l’approximation pour les ordres polynomiaux modérés en

3D, ainsi que le gain substantiel en temps de préparation que la technique offre en s’affranchissant

du calcul des intersections. En outre, on y démontre la convergence optimale de notre algorithme

non imbriqué sur un cas de test 3D non structuré que la version imbriquée ne parvenait pas à

résoudre.

En pratique, construire un maillage de haute qualité pour une étude industrielle réelle peut

s’avérer une tâche ardue, capable d’occuper un ingénieur de maillages pour plusieurs mois.

Demander plusieurs maillages de haute qualité de la même géométrie avec des granularités

différentes afin d’alimenter un solveur multigrille n’est donc pas toujours envisageable. Du point de

vue de l’utilisateur, fournir au solveur le seul maillage fin est une meilleure option. C’est pourquoi

ce chapitre inclut également la définition abstraite d’une stratégie de coarsening afin de contruire,
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pour un maillage fin donné, une hiérarchie de maillages non embôıtés avec représentation

grossière des faces. En outre, la méthode est basée sur l’agglomération d’éléments, à laquelle

vient s’ajouter une étape de simplification de faces aux interfaces entre les agglomérats. Notre

implémentation en 2D est explicitée, où nous expliquons en particulier comment l’approximation

de la projection L2 peut être rendue exacte grâce à une façon intelligente de sous-trianguler les

éléments fins. Pour finir, la méthode multigrille non imbriquée qui en résulte est évaluée sur la

simplification d’une géométrie industrielle réelle utilisée par EDF. Elle manifeste également un

comportement asymptotique optimal.

Multigrille algébrique

Le multigrille géométrique et son extension aux maillages non imbriqués fournissent une première

option pour résoudre les systèmes HHO. Dans le chapitre 5, nous développons une autre approche,

qui prend la forme d’un multigrille algébrique (AMG).

Les solveurs AMG habituels, faits pour les éléments finis ou différences finies d’ordre bas,

déduisent des informations sur le maillage sous l’hypothèse que chaque ligne de la matrice

correspond à une inconnue liée à un DDL localisé sur un nœud de maillage ou un élément. Ainsi,

le graphe de connectivité du maillage peut être reconstruit algébriquement, et des stratégies de

coarsening copiant des algorithmes géométriques peuvent donc être exécutés pour construire les

niveaux grossiers. En se focalisant sur les méthodes d’agrégation, les nœuds sont agrégés entre

eux afin de définir les DDLs grossiers. Cependant, dans notre configuration hybride d’ordre

bas, les inconnues du système sont liées aux faces, donc ni aux nœuds ni aux éléments. En

conséquence, il peut sembler étrange à première vue, d’un point de vue géométrique, d’appliquer

l’approche précédente dans ce contexte. En effet, l’agrégation peut alors être interprétée comme

une agrégation de faces. Bien que cela puisse donner des résultats naturels pour des faces

voisines, surtout si elles sont presque coplanaires, il arrive aussi parfois que le processus agrège

des faces qui ne sont même pas en contact. Dans ce cas, il est difficile de percevoir un sens

géométrique à cette agrégation. Néanmoins, des tests numériques avec une méthode standard

d’AMG basée sur l’agrégation démontre que l’approche fonctionne tout de même correctement,

ce qui peut être justifié de façon géométrique en oubliant que les DDLs sont localisés aux faces

pour les considérer comme de simple valeurs de nœuds (qui s’avèrent être situés aux centres des

faces). Ceci étant dit, on peut légitimement se demander si une stratégie de coarsening ayant un

sens géométrique au regard de la véritable nature des DDLs en tant que valeurs aux faces ne

pourrait pas donner de meilleurs résultats.

En restreignant notre périmètre aux méthodes hybrides d’ordre le plus bas (pas uniquement

HHO), l’idée à l’origine de ce travail est la reconstruction algébrique des informations de maillage

en se basant, non plus sur la matrice condensée, mais sur la matrice non condensée. En effet,

comme les méthodes AMG traditionnelles, on récupère les informations géométriques sur le

couplage des DDLs à partir de données algébriques. Néanmoins, comme la matrice condensée ne

possède d’informations que sur les faces, on utilise la version non condensée pour reconstruire

le graphe de connectivité entre les éléments et les faces. Une fois ce qu’on appelle le maillage

algébrique retrouvé, en particulier les informations de voisinage entre les éléments, une méthode

d’agrégation des éléments peut être mise en place pour reproduire le comportement d’une méthode



124 Résumé

de coarsening ou semi-coarsening géométrique. En se rappelant que dans notre configuration

hybride, les faces doivent être représentées de façon plus grossière entre les niveaux, on adjoint à

l’agrégation des éléments la technique de simplification de faces définie dans le chapitre 4. La

méthode est utilisée en conjonction avec le K-cycle pour préconditionner une méthode de Krylov.

Les choix techniques qui ont été faits sont empruntés d’AGMG [95] (agrégation par paires, critère

de couplage fortement négatif, etc.) dans le but d’établir une comparaison convenable avec un

solveur AMG standard qui travaille uniquement sur le système condensé.

Notre méthode est appliquée aux discrétisations HHO d’ordre k = 0 de problèmes de

diffusion 2D et 3D. Les tests incluent des problèmes homogènes, hétérogènes, isotropiques

et anisotropiques sur des maillages cartésiens structurés et des maillages de simplexes non

structurés. La méthodologie adoptée compare notre nouvelle méthode à un AMG standard

basé sur l’agrégation qui regarde les DDLs comme des nœuds et implémente une stratégie de

coarsening nodale à partir du système condensé. Le critère d’agrégation, le cycle, les lisseurs,

ainsi que tout autre choix technique sont identiques pour les deux solveurs afin de pouvoir

établir une comparaison. Les tests rendent compte de performances équivalentes dans les cas

isotropiques et dans les cas non structurés. La valeur ajoutée du nouvel algorithme est mise

en évidence sur les problèmes anisotropiques avec maillages cartésiens, pour lesquels le solveur

offre une meilleure robustesse. Bien que ce test soit trivial et très spécifique, ce qui peut sembler

restrictif, ce résultat peut en réalité être exploité dans un panel de cas de test plus large. En

l’occurrence, la méthode offre une valeur ajoutée substantielle pour la résolution de problèmes

comprenant à la fois des régions isotropiques et anisotropiques, sous réserve que les régions

anisotropiques soit discrétisées par des éléments cartésiens orientés dans le sens de l’anisotropie.

Le solveur, dans ce cas, utilise la flexibilité des AMGs pour gérer les maillages non structurés

des régions isotropiques tout en exploitant la forme particulière des éléments dans les régions

anisotropiques.

Communications scientifiques
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Zusammenfassung

Kontext und Motivation

HHO-Diskretisierungen [43] haben in den letzten Jahren zunehmend ein breiteres Interesse

gefunden. Zu ihren Hauptmerkmalen zählen die Unterstützung allgemeiner Polytopgitter und

beliebiger Approximationsordnungen sowie ihre optimale Konvergenzordnung. Ein weiteres

inhärentes und definierendes Merkmal der HHO-Methoden ist die Verwendung eines Rekon-

struktionsoperators höherer Ordnung für das Potential in der Formulierung der bilinearen Form,

so dass die Approximationsordnung im Vergleich zu ähnlichen hybriden Methoden, wie der

Hybridized Discontinuous Galerkin Methode (HDG) [36, 92], um eins erhöht wird. Schließlich

können HHO-Methoden über problemabhängige lokale Formulierungen an die zugrunde liegende

Physik angepasst werden, so dass robustere Lösungsverfahren möglich werden. Bis heute wurden

HHO-Methoden erfolgreich für eine Vielzahl von Problemen in der Strömungsdynamik (het-

erogene anisotrope Diffusion [48], inkompressible Navier-Stokes-Gleichhungen [21], kriechende

Strömungen nicht-newtonscher Flüssigkeiten [25]) und Strukturmechanik (lineare und nichtlineare

Elastizität [23, 47] und Poroelastizität [18, 24]) entwickelt. Damit hat die Methode inzwischen

eine ausreichende Reife erlangt, sodass industrielle Anwendungen von der Verfügbarkeit ef-

fizienter linearer Löser abhängt. Das Ziel dieser Dissertation ist es, diese Lücke zu schließen.

Insbesondere ist diese Dissertation auf relevante Anwendungen von EDF in der numerischen

Strömungsmechanik (CFD) fokussiert und dabei speziell auf Darcy-Strömungen in porösen

Medien und die inkompressible Strömungsmechanik.

HHO-Methoden basieren auf Freiheitsgraden (DoFs) innerhalb von Elementen und auf

den Interfaceflächen, die global als gebrochene Polynome bzw. auf dem Gitter und seinem

Skelett betrachtet werden können. Wir konzentrieren uns ausschließlich auf Fälle, in denen die

elementdefinierten Freiheitsgrade nur lokal gekoppelt sind. Als solche können sie, Element für

Element, in Funktion der Freiheitsgrade auf den Interfaces ausgedrückt und anschließend aus

dem globalen linearen HHO-System eliminiert werden. Dies führt zu einem Schur-Komplement

verringerter Größe, bei dem nur noch Interface-Unbekannte übrig bleiben. Dieser Prozess ist

in der Mechanikliteratur als statische Kondensation bekannt und das resultierende System

als statisch kondensiertes System oder Trace-System, wobei das Gitterskelett der Träger für

die Menge der global gekoppelten Unbekannten ist. Die Lösung des Spursystems, die die

Unbekannten auf den Interfaces liefert, bleibt die kostspieligste Operation. Die Werte der

Unbekannten in den Elementen selbst können durch die Lösung kleiner, unabhängiger linearer

Systeme effizient rekonstruiert werden.

Damit hängt die praktische Nutzbarkeit von HHO-Diskretisierungen in einem industriellen

Kontext, in dem große Probleme gelöst werden müssen, von der Existenz effizienter linearer
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Löser für das kondensierte System ab. Die vorliegende Forschungsarbeit ist insbesondere durch

das Ziel motiviert, einen Löser für das freie, quelloffenen CFD-Programm code saturne1 [7] zu

realisieren, das von EDF entwickelt und freigegeben wurde.

In dieser Dissertation konzentrieren wir uns auf skalare, elliptische Gleichungen zweiter

Ordnung, deren HHO-Diskretisierungen zu dünn besetzten symmetrischen und positiv- definiten

Spurmatrizen führen. Konkret geht es darum, große Systeme dieses Typs mit Hilfe eines Mehrgit-

terverfahrens [31, 118] zu lösen. Die Hauptschwierigkeit bei der Entwicklung eines geometrischen

Mehrgitteralgorithmus für ein Trace-System liegt in der geometrischen Lage der Freiheitsgrade

und der Unbekannten, die nach der statischen Kondensation übrig bleiben, nämlich der Interface-

Unbekannten. Da sie auf dem Gitterskelett liegen, sind die gebrochenen Polynome, die durch

diese Freiheitsgrade definiert sind, nicht geeignet um Standard-Mehrgittertransferoperatoren

anzuwenden, da diese nur für elementdefinierte Funktionen anwendbar sind. Mehrgitteralgorith-

men, die für Discontinuous Galerkin (DG)-Diskretisierungen entwickelt wurden, können daher

nicht verwendet werden, so dass neuartige, skelettbasierte Mehrgitterverfahren benötigt werden.

Gliederung der Dissertation und Beiträge

Einleitung

In Kapitel 1 begründen wir zunächst den Bedarf an neuartigen Diskretisierungen wie HHO, um

die ungelösten Probleme komplexer Geometrien und nicht-glatter Lösungen in CFD zu behandeln.

Als nächstes nennen wir eine Liste von Kriterien, die ein linearer Löser aufweisen sollte, damit er

als adäquate Antwort auf das vorliegende Problem betrachtet werden kann. Neben der korrekten

Formalisierung unserer Forschungsziele können wir damit bestehende Lösungen im Hinblick

auf diese Kriterien zu diskutieren und somit den Bedarf an neuen Lösern begründen, sowie

die Lücken zu identifizieren, die durch die Beiträge dieser Arbeit geschlossen werden. Es folgt

ein gründlicher Überblick über den Stand der Technik bestehender Löser, insbesondere von

Mehrgitterverfahren für Trace-Systeme. Schließlich wird eine detaillierte Zusammenfassung

unserer Beiträge präsentiert.

Modellproblem und HHO-Diskretisierung

Kapitel 2 widmet sich der Anwendung der HHO-Methode auf ein Modellproblem für skalare

elliptischen Gleichungen zweiter Ordnung, nämlich dem Diffusionsproblem mit einem uniform

elliptischen Permeabilitätstensor. Wir führen insbesondere den Potentialrekonstruktionsoperator

hoher Ordnung ein, der der Hauptbestandteil der Definition der diskreten bilinearen Form ist.

Dieser Operator, der nur auf einer Formel für partielle Integration basiert, ist lokal definiert. Er

erlaubt es, aus einem Polynom in der Zelle und Polynomen gleichen Grades auf den Interfaces

ein Polynom höheren Grades in der Zelle zu rekonstruieren. Diese Eigenschaft wird in unserem

geometrischen Mehrgitterverfahren vorteilhaft eingesetzt um seine Effizienz zu verbessern.

1www.code-saturne.org

www.code-saturne.org
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Geometrisch h-Mehrgitter-Algorithmus

Kapitel 3 ist dem ersten originären Beitrag dieser Doktorarbeit gewidmet, nämlich der En-

twicklung eines neuartigen, geometrischen h-Mehrgitter-Algorithmus, der (i) auf Approxima-

tionsräumen basiert, die auf jeder Ebene durch das Gitterskelett unterstützt werden, (ii) auf

HHO-Diskretisierungen abzielt, indem er die zugrundeliegende Potentialrekonstruktion hoher

Ordnung nutzt, (iii) höhere Ordnungen nativ handhabt (im Gegensatz z.B. zum Aufsetzen eines

p-Mehrgitterverfahrens auf ein h-Mehrgitterverfahren). Die Methode beruht auf dem Entwurf

eines speziellen Prolongationsoperators, der die Konstruktion eines Zwischenzustandes zwischen

der groben Skelettfunktion und ihrer Prolongation auf das Feinskelett beinhaltet. Konkret wird

auf dem Grobgitter ein zelldefiniertes Potential rekonstruiert, das über einen Trace-Operator

eine anschließende Definition auf dem Feinskelett ermöglicht.

Die Zellrekonstruktion ist die zentrale Komponente unserer Methode und das, was sie originell

macht. Sie arbeitet lokal und gliedert sich in zwei Schritte. Erstens wird ein grobes zelldefiniertes

Polynom vom Grad k aus den interface-definierten Polynomen vom Grad k durch die Dekon-

densation der Zellunbekannten zurückgewonnen. Zweitens wird der Rekonstruktionsoperator

höherer Ordnung sowohl auf die Zell- als auch auf die Interfaceunbekannten angewendet, um

einen Grad der Approximation in der Zelle zu gewinnen. Da das rekonstruierte Polynom vom

Grad k + 1 ist, impliziert die Rückgewinnung des ursprünglichen Polynoms vom Grad k auf den

feinen Flächen, dass die Trace-Operation auch den Grad verringern muss. Um dies zu tun, wird

die Spur mit einer anschließenden L2-orthogonalen Projektion auf den Polynomraum niedrigerer

Ordnung k versehen. Darüber hinaus besteht die Spur auf den feinen Flächen am Rand der

groben Elemente aufgrund der diskontinuierlichen Einstellung eigentlich darin, den gewichteten

Durchschnitt der auf jeder Seite berechneten Spuren zu berechnen. Die Gewichte berücksichtigen

den Diffusionskoeffizienten, um Robustheit gegenüber Unstetigkeiten zu gewährleisten.

Die numerischen Tests umfassen homogene und heterogene isotrope Probleme in 2D- und

3D-Gebieten, die durch strukturierte und unstrukturierte Gitter diskretisiert werden. Bei

strukturierten Gittern auf einfachen Gebieten, ob mit kartesischen oder simpliziellen Elementen,

zeigt das Mehrgitterverfahren wenn es direkt als Löser verwendet wird, folgende Eigenschaften:

(i) Konvergenz in einer beschränkten Anzahl von Iterationen, annähernd unabhängig von der

Gittergröße; (ii) kontrollierte Rechenkosten durch die Rediskretisierung des Operators auf den

groben Ebenen und die Verwendung von Standard-Glättungen (nämlich Block-Gauß-Seidel

oder Jacobi); (iii) Robustheit gegenüber Unstetigkeiten des Diffusionskoeffizienten, wobei die

Sprunggröße die Konvergenzrate nicht verändert; (iv) Robustheit gegenüber höheren Ordnungen,

für die der Löser die gleichen Eigenschaften aufweist.

Auf komplexen Gebieten, die stark unstrukturierte Gitter erfordern, wird jedoch im Allge-

meinen keine optimale Konvergenz erreicht. Der Grund dafür ist ein zweifacher: (i) optimale

Konvergenz beruht darauf, dass die Interfaces zwischen den Ebenen vergröbert werden (nicht

nur die Elemente!); (ii) numerische Experimente haben die hohe Empfindlichkeit des Mehrgit-

terverfahrens gegenüber der Gitterqualität gezeigt, d. h. gegenüber dem Vorhandensein von

Elementen mit ungünstigem Seitenverhältnis. Optimalität erfordert dann auch eine Hierarchie

von qualitativ hochwertigen Gittern. Kombiniert werfen diese Anforderungen die Frage auf, wie

man die Gitterhierarchie aufbaut. In der Tat werden Mehrgitterhierarchien üblicherweise durch
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sukzessive Verfeinerungen eines anfänglichen groben Gitters aufgebaut. Wenn die Verfeinerung

eine Interfacevergröberung zwischen jeder Ebene vom feinen Gitter zum groben Gitter sicherstellt,

hat sie auch oft die unangenehme Eigenschaft dass die Qualität des Gitters beeinträchtigt wird.

Dies gilt besonders in 3D. Umgekehrt gibt es keine offensichtliche Methode, die es erlaubt,

ausgehend von einem feinen Gitter guter Qualität ein grobes Teilgitter zu konstruieren und

gleichzeitig eine Interfacevergröberung zu erzwingen. Deshalb betrachten wir in der Tat in

unserem zweiten Beitrag nichtverschachtelte Gitter, um die Limitierung unserer bisherigen

Mehrgittermethode zu überwinden und unstrukturierte 3D-Probleme erfolgreich zu lösen.

Erweiterung auf nicht-verschachtelte Gitter

Kapitel 4 widmet sich der Anpassung der verschachtelten Version unseres Algorithmus an nicht-

verschachtelte Gitterhierarchien und dessen effizienten Implementierung für den praktischen

Einsatz. Die Anpassung an das nicht-geschachtelte Szenario erfolgt durch das Einfügen eines

zusätzlichen Schrittes in die Definition des Prolongationsoperators: Ausgehend von Polynomen,

die auf den groben Interfaces liegen, beginnt die geschachtelte Version mit der Rekonstruktion

eines gebrochenen elementdefinierten Polynoms auf dem groben Gitter. Dieser Schritt bleibt

unverändert. Wir schlagen dann vor, dieses grobe gebrochene Polynom orthogonal in der L2-

Norm auf das nicht-geschachtelte feine Gitter zu projizieren. Der Abschluss des Prozesses folgt

schließlich ebenfalls der verschachtelten Variante: Die Spur des Ergebnisses wird auf den feinen

Interfaces berechnet.

Die numerische Auswertung dieses L2-orthogonalen Projektionsoperators hängt von der

Projektion der lokalen Grobbasisfunktionen auf die Feinbasen ab, d. h. von der Berechnung der

L2-Skalarprodukte der Grob- und Feinbasisfunktionen über die Feinelemente. In direkter Folge

macht die lokale Definition der Funktionsbasen die Schnittpunkte von Grob- und Feinelementen

zu den jeweiligen Integrationsstützen dieser inneren Produkte. Die Berechnung der geometrischen

Schnittpunkte zwischen Grob- und Feinelementen kann jedoch sehr rechenaufwändig sein. Daher

schlagen wir anstelle dieser exakten Berechnung die Implementierung eines approximativen

Operators vor, der keine explizite Berechnung der Schnittpunkte erfordert. Er basiert auf der

Unterteilung der feinen Elemente, indem die vereinfachende Hypothese angenommen wird, dass

jedes Unterelement vollständig in dem groben Element enthalten ist, das sein Baryzentrum

enthält. Wir bewerten die Genauigkeit dieser Näherung durch Vergleichsexperimente mit dem

exakten Operator, in denen wir die Konvergenz unserer Mehrgittermethode bewerten, bei der

die nicht verschachtelten Netze durch unabhängige Retriangulation des Gebiets auf jeder Ebene

erhalten werden. Diese Tests zeigen die ausreichende Genauigkeit der Approximation für moderate

Polynomgrade in 3D, sowie die substanziellen Verkürzung der Rechenzeit, die das Verfahren durch

die Vermeidung der Berechnung geometrischer Schnittpunkte bietet. Insbesondere demonstrieren

wir die optimale Konvergenz unseres nicht-verschachtelten Mehrgitter- Algorithmus an einem

unstrukturierten 3D-Testfall, den die Version mit geschachtelten Gittern nicht lösen konnte.

In der Praxis kann die Erstellung eines hochwertigen Gitters für eine reale, industrielle

Fallstudie eine mühsame Aufgabe sein, so dass ein Ingenieur mehrere Monate lang mit der

Gittergenerierung beschäftigt sein kann. Es ist dann nicht realistisch, dass mehrere hochwertige

Gitter für die gleiche Geometrie aber mit unterschiedlicher Feinheit verfügbar sind, wie es ein



129

Mehrgitterlöser benötigen würde. Aus Sicht des Anwenders sollte besser nur ein einziges feines

Gitter für den Löser benötigt werden. Deshalb enthält dieses Kapitel auch die abstrakte Definition

einer Vergröberungsstrategie, um aus einem gegebenen feinen Gitter eine Hierarchie von nicht

verschachtelten Grobgittern aufzubauen, in denen auch die Interfaces vergröbert werden. Die

Methode basiert insbesondere auf der Agglomeration von Elementen, zu der wir einen Schritt des

Zusammenfassens von Interfaces an den Schnittstellen zwischen Agglomeraten hinzufügen. Wir

liefern explizite Details zu unserer Implementierung in 2D, wobei wir insbesondere erklären, wie

die approximative L2-Orthogonalprojektion durch eine geschickte Art der Subtriangulierung der

feinen Elemente exakt gemacht werden kann. Das durch diese Vergröberungsstrategie gewonnene

nicht verschachtelte Mehrgitterverfahren wird schließlich auf der vereinfachten Geometrie eines

realen, industriellen Testfalls von EDF evaluiert, was ebenfalls zu einem asymptotisch optimalen

Verhalten führt.

Algebraisches Mehrgitterverfahren

Der von uns entwickelte geometrische Mehrgitteralgorithmus und seine nicht verschachtelte

Erweiterung stellen eine erste Möglichkeit zur Lösung von HHO-Systemen dar. In Kapitel 5

entwickeln wir einen weiteren Ansatz in Form eines algebraischen Mehrgitterverfahrens (AMG).

Übliche AMG-Löser, die für Finite-Elemente- oder Finite-Differenzen-Methoden niedriger Ord-

nung entwickelt wurden, leiten die Gitterinformationen unter der Annahme ab, dass jede Zeile

in der Matrix einer Unbekannten entspricht, die sich auf einen Freiheitsgrad bezieht, der sich an

einem Netzknoten oder Elementen befindet. Auf diese Weise kann der Konnektivitätsgraph des

Gitters algebraisch rekonstruiert werden. Vergröberungsstrategien, die geometrische Algorith-

men nachahmen, können dann durchgeführt werden um die Grobgitterhierarchie aufzubauen.

Insbesondere bei den aggregationsbasierten Methoden werden Knoten aggregiert, um grobe

Freiheitsgrade zu erzeugen. In unserem hybriden Ansatz niedrigster Ordnung liegen die Un-

bekannten des Systems jedoch auf den Interfaces d. h. weder auf den Knoten noch in den

Elementen. Daher mag es auf den ersten Blick aus geometrischer Sicht merkwürdig erscheinen,

den obigen Ansatz in diesem Kontext anzuwenden. In der Tat kann die aggregationsbasierte

Vergröberung dann als Aggregation von Interfaces interpretiert werden. Obwohl sie natürliche

Ergebnisse für benachbarte Interfaces liefern kann, insbesondere wenn sie nahezu kollinear sind,

werden manchmal Flächen aggregiert, die sich nicht einmal berühren. In diesem Fall ist es dann

schwierig, in dieser Aggregation eine geometrische Interpretation zu erkennen. Nichtsdestotrotz

zeigen numerische Tests mit einer standardmäßigen aggregationsbasierten AMG-Methode, dass

der Ansatz immer noch gut funktioniert, was geometrisch gerechtfertigt werden kann, wenn

man vergisst, dass die Freiheitsgrade tatsächlich auf den Interfaces definiert sind und wenn man

sie als Knotenwerte interpretiert, die sich in der Mitte der Interfaces befinden. Dennoch kann

man sich berechtigterweise fragen, ob eine Vergröberungsstrategie nicht noch bessere Ergebnisse

liefern könnte, wenn man die tatsächlichen Bedeutung der Freiheitsgrade als interface-definierte

Werte nutzen würde.

Wir beschränken uns auf hybride Methoden niedrigster Ordnung (nicht nur HHO). Die Idee,

die dieser Arbeit zugrunde liegt, ist die algebraische Rekonstruktion der Gitterinformation, die

nicht mehr auf der kondensierten, sondern auf der nicht kondensierten Matrix basiert. Wie



130 Zusammenfassung

bei traditionellen AMG-Methoden gewinnen wir die geometrische Information über die Kop-

plung der Freiheitsgrade aus den algebraischen Daten. Da die kondensierte Matrix jedoch nur

Informationen über die Interfaces liefert, verwenden wir die unkondensierte Version, um den

Konnektivitätsgraphen zwischen Elementen und Flächen zu rekonstruieren. Sobald das sogenan-

nte algebraische Gitter rekonstruiert wurde und insbesondere die Nachbarschaftsinformationen

zwischen den Elementen verfügbar ist, kann eine elementbasierte Aggregationsmethode genutzt

werden, um das Verhalten einer geometrischen Vergröberungs- oder Semi-Vergröberungsstrategie

zu imitieren. Da in unserer hybriden Umgebung die Interfaces zwischen den Stufen vergröbert

werden müssen, ergänzen wir die Element-Aggregation durch die in Kapitel 4 entwickelte Technik

der Agglomeration der Interfaces. Die Methode wird in Verbindung mit dem sogenannten

K-Zyklus zur Vorkonditionierung eines äußeren Krylov-Verfahrens verwendet. Die in dieser

Arbeit getroffenen technischen Entscheidungen sind dem AGMG-Verfahren [95] entlehnt (paar-

weise Aggregation, starkes negatives Kopplungskriterium, K-Zyklus...), so dass ein angemessener

Vergleich mit einem Standard-AMG-Löser möglich wird, der nur auf dem kondensierten System

arbeitet.

Unsere Methode wird auf die HHO-Diskretisierungen niedrigster Ordnung von 2D- und 3D-

Diffusionsproblemen angewendet. Das Testspektrum umfasst homogene, heterogene, isotrope und

anisotrope Probleme auf strukturierten kartesischen Gittern und unstrukturierten Simplexgit-

tern. Die angewandte Methodik vergleicht unsere neue Methode mit einer standardmäßigen

aggregationsbasierten AMG, die Freiheitsgrade als Knoten betrachtet und eine knotendefinierte

Vergröberungsstrategie aus dem kondensierten System nutzt. Die Aggregationskriterien, der

Zyklus, die Glätter sowie alle anderen technischen Entscheidungen sind für beide Löser identisch,

um einen Vergleich zu ermöglichen. Wir können über eine gleichwertige Leistung in isotropen

und in unstrukturierten Fällen berichten. Der Mehrwert des neuen Algorithmus zeigt sich

tatsächlich bei anisotropen Problemen mit kartesischen Netzen, wo der Löser eine verbesserte

Robustheit aufweist. Obwohl dieser sehr spezifische, triviale Testfall restriktiv erscheinen mag,

kann diese Eigenschaft tatsächlich in einem größeren Bereich von Fällen ausgenutzt werden. Die

Methode kann nämlich einen erheblichen Mehrwert für die Lösung von Problemen bieten, die

sowohl isotrope als auch anisotrope Regionen umfassen, vorausgesetzt, die anisotropen Regionen

werden durch kartesische Elemente diskretisiert, die in Richtung der Anisotropie orientiert sind.

Der Löser nutzt in diesem Fall die Flexibilität von AMG, um unstrukturierte Netze in isotropen

Regionen zu behandeln, während er die speziellen Elementformen in anisotropen Regionen

ausnutzt.
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Abstract: We consider a second-order, elliptic partial differential equation (PDE) discretized by the Hybrid

High-Order (HHO) method. HHO is a polyhedral method that handles arbitrary polynomial orders, and for which

globally coupled unknowns are located at faces. To efficiently solve the linear system arising after static condensation,

this work proposes novel, skeleton-based multigrid methods. One is geometric, the other is algebraic. The geometric

algorithm is an h-multigrid method that conserves the polynomial degree at every level. It handles non-nested,

unstructured, polyhedral meshes. Numerical tests on homogeneous and heterogeneous diffusion problems show fast

convergence, scalability in the mesh size and polynomial order, and robustness with respect to heterogeneity of

the diffusion coefficient. The algebraic multigrid method (AMG) applies to the lowest order hybrid methods. It

leverages the uncondensed matrix to extract the connectivity graph between elements and faces, and subsequently

implements an element-defined aggregation-based coarsening strategy. Used as a preconditioner, this AMG conserves

the performance and scalability of standard plain aggregation AMGs that directly work on the condensed system,

while exhibiting notable improvement on anisotropic problems with Cartesian meshes.

Keywords: Partial differential equations, Hybrid High-Order, multigrid, static condensation, non-nested

meshes, L2-orthogonal projection.
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Abrégé: On considère une équation aux dérivées partielles (EDP) elliptique du second ordre discrétisée par

la méthode Hybrid High-Order (HHO). HHO est une méthode polyédrique qui supporte les ordres polynomiaux

arbitraires, et pour laquelle les inconnues globalement couplées sont situées aux faces. Afin de résoudre efficacement

le système linéaire obtenu après condensation statique, ce travail propose de nouvelles méthodes multigrilles basées

sur le squelette du maillage. L’une est géométrique, l’autre algébrique. L’algorithme géométrique est un h-multigrille

qui conserve le degré polynomial à tous les niveaux. Il gère les maillages polyédriques non structurés et non

imbriqués. Les tests numériques sur des problèmes de diffusion homogènes et hétérogènes montrent une convergence

rapide, un comportement asymptotique optimal par rapport à la taille du problème et les ordres polynomiaux, ainsi

qu’une grande robustesse aux discontinuités du coefficient de diffusion. Le multigrille algébrique (AMG) s’applique

aux méthodes hybrides d’ordre bas. Le graphe de connectivité entre éléments et faces est extrait de la matrice non

condensée, ce qui permet l’implémentation du méthode de coarsening basée sur l’agrégation des éléments. Utilisé

comme préconditionneur, cet AMG conserve les performance et scalabilité des AMGs basés sur l’agrégation simple

qui travaillent directement sur le système condensé, tout en affichant une amélioration notable sur les problèmes

anisotropiques avec maillage cartésien.

Mots clés : Equations aux dérivées partielles, méthodes hybrides d’ordre élevé, multigrille, condensation

statique, maillages non imbriqués, projection L2-orthogonale.
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Kurzfassung: Wir betrachten eine elliptische partielle Differentialgleichung (PDE) zweiter Ordnung, die

mit der Hybrid High-Order (HHO)-Methode diskretisiert wird. HHO ist eine polyedrische Methode, die beliebige

Polynomordnungen erlaubt und bei der global gekoppelte Unbekannte auf den Interfaces zwischen den Elementen

liegen. Um das nach der statischen Kondensation entstehende lineare System effizient zu lösen, werden in dieser

Arbeit neuartige, skelettbasierte Mehrgitterverfahren vorgeschlagen. Das eine ist geometrisch, das andere algebraisch.

Der geometrische Algorithmus ist ein h-Mehrgitterverfahren, das den Polynomgrad auf jeder Hierarchieebene gleich

lässt. Es verwendet nicht ineinander geschachtelte, unstrukturierte, polyedrische Gitter. Numerische Tests an

homogenen und heterogenen Diffusionsproblemen zeigen schnelle Konvergenz, Skalierbarkeit in der Gittergröße

und Polynomordnung, sowie Robustheit gegenüber der Heterogenität des Diffusionskoeffizienten. Das algebraische

Mehrgitterverfahren (AMG) gehört zu den Hybridverfahren niedrigster Ordnung. Sie nutzt die unkondensierte

Matrix, um den Konnektivitätsgraphen zwischen Elementen und Interfaces zu extrahieren, und implementiert

anschließend eine elementdefinierte aggregationsbasierte Vergröberungsstrategie. Als Vorkonditionierer verwendet,

erhält dieses AMG-Verfahren die Leistung und Skalierbarkeit des aggegrationsbasierten Standard-AMG-Verfahrens,

das direkt auf dem kondensierten System arbeiten. Es zeigt darüber hinaus eine bemerkenswerte Verbesserung bei

anisotropen Problemen mit kartesischen Netzen.

Schlüsselwörter: Partielle Differentialgleichungen, Hybrid High-Order, Mehrgitter, statische Kondensa-

tion, nicht-verschachtelte Netze, L2-orthogonale Projektion.
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