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RÉSUMÉ EN FRANÇAIS

Commençons par une définition traduite de Savelsbergh and Van Woensel (2016) 1:

“ La logistique urbaine consiste à trouver des moyens efficaces et efficients de
transporter des marchandises dans les zones urbaines tout en tenant compte des
effets négatifs sur la congestion, la sécurité et l’environnement. ”

Cette thèse s’inscrit dans le vaste courant de travaux en recherche opérationnelle qui définis­
sent des modèles et des méthodes pour améliorer le transport des marchandises sous de nom­
breux aspects. L’objectif de ce travail est de donner aux praticiens et aux universitaires un
aperçu de politiques de distributions urbaines possibles, d’algorithmes d’optimisation pour ces
dernières, et les simulations réalisées par ces algorithmes. Dans le cadre du projet OPUSS, nous
avons travaillé en étroite collaboration avec la chaire de gestion logistique de la Gutenberg
School of Management and Economics (Mayence, Allemagne), spécialisée dans les méthodes
exactes pour les problèmes d’optimisation combinatoire. Nous nous concentrons sur les déci­
sions opérationnelles de routage pour les petits commerces et les services privés dans les zones
urbaines. En d’autres termes, nous cherchons à concevoir une planification quotidienne efficace
pour les conducteurs, afin de remplir des tâches données à satisfaire dans une zone restreinte. A
titre d’exemples, présentons brièvement quelques problèmes standards que nous allons étendre,
recombiner et résoudre dans cette thèse :

— Le problème de tournées de véhicules (Vehicle Routing Problem, VRP, Dantzig and
Ramser (1959)) cherche à trouver les itinéraires les moins coûteux afin de distribuer un
ensemble donné de colis avec une flotte données de véhicules.

— Le problème de tournées de véhicules avec fenêtre de temps (Vehicle Routing Problem
with Time Windows, VRPTW, Savelsbergh (1985)) est un extension du VRP où chaque
client ne peut être servi que pendant une période prédéfinie, appelée fenêtre de temps.

— Le problème de tournées de véhicules avec trajets multiples (Multi­Trip Vehicle Routing
Problem, MTVRP, Fleischmann (1990)) est une relaxation du VRP dans laquelle chaque
véhicule est autorisé à effectuer plusieurs tournées successives dans la journée.

1. Traduction de l’anglais vers le français
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— Le problème de tournées de véhicules avec flux inverses (Vehicle Routing Problem with
Backhauls, VRPB, Gélinas et al. (1995)) est une extension du VRP où certaines marchan­
dises doivent être livrées et d’autres marchandises collectées.

— Le problème de tournées de véhicules généralisé (Generalized Vehicle Routing Problem,
GVRP, Ghiani and Improta (2000)) est une autre extension du VRP où les clients peuvent
être servis à différents endroits.

— Le problème de tournées de véhicules à deux échelons (2­Echelon Vehicles Routing Prob­
lem, 2E­VRP, Crainic et al. (2009)) considère également la livraison de marchandises à
moindre coût, mais via la coopération de deux flottes de véhicules. C’est­à­dire qu’une
flotte de camions achemine d’abord les marchandises du dépôt, situé en périphérie, vers
de petites plateformes logistiques proches du centre­ville, appelées satellites. Les colis
sont ensuite livrés aux clients par de petits véhicules depuis les satellites.

Pour combiner de manière efficace et réaliste ces caractéristiques, il est important de coor­
donner les opérations des différents véhicules. Ainsi, des contraintes de synchronisation appa­
raissent dans les modèles. Celles que nous traitons dans cette thèse sont nommées contraintes
de ressource inter­tour par Hempsch and Irnich (2008) ou contraintes de synchronisation de
ressources par Drexl (2012) 2 qui les définies tels que :

“ La consommation totale d’une ressource par tous les véhicules doit être in­
férieure ou égale à une limite spécifiée. ”

Au cours de cette thèse, nous définissons deux nouveaux problèmes d’optimisation. Tout
d’abord, le problème de tournées de véhicules avec options de livraisons (Vehicle Routing
Problem with Delivery Options, VRPDO, Dumez et al. (2021a); Tilk et al. (2020)) : il s’agit
d’une extension du GVRPTW dans lequel chaque client propose quelques lieux de livraison
possibles avec une fenêtre temporelle, correspondant aux lieux qu’il visitera dans la journée.
Certains peuvent être des lieux de livraison partagés, comme des magasins ou des consignes,
avec une capacité limitée partagée par tous les livreurs. Ensuite, le problème de tournées
de véhicules à deux échelons avec trajets multiples, capacités aux satellites et flux inverses
(2­Echelon Multi­Trip Vehicle Routing Problem with Capacitated Satellites and Reverse Flow,
2E­MTVRP­CSRF, Dumez et al. (2021b)) : il intègre le VRPTW et le VRPB dans le système
logistique du 2E­VRP tout en considérant des satellites de capacité limitée. Ainsi, les véhicules
des deux échelons doivent être synchronisés dans le temps et dans l’espace pour traiter les
marchandises à livrer et à collecter, tout en veillant à ce que la quantité de marchandises en

2. Traduction de l’anglais vers le français

4



attente de transfert entre les deux échelons à un satellite ne dépasse jamais sa capacité.

Pour résoudre ces problèmes, nous utilisons des méthodes approchées, tandis que l’équipe
de recherche de Mayence s’est concentrée sur les méthodes exactes. Glover and Kochenberger
(2003) 3 définissent les metaheuristiques par :

“ Des méthodes de résolution qui orchestrent des procédures d’amélioration
locale et des stratégies de niveau supérieur pour créer un processus capable
d’échapper aux optima locaux et d’effectuer une recherche robuste d’un espace de
solution. ”

De plus, dans le cadre d’une collaboration entre nos deux équipes, nous nous sommes in­
téressés de près aux matheurisitiques. Cette idée est décrite dans Fischetti and Fischetti (2018) 4

de la manière suivante:

“On peut insister sur l’approche de la programmation mathématique et essayer
d’obtenir des résultats de plus en plus satisfaisants en améliorant le modèle et en
enrichissant le solveur de fonctionnalités spécialisées. On peut aussi oublier la pro­
grammation mathématique et recourir à des heuristiques ad­hoc qui ne sont pas
basées sur le modèle de programmation mathématique. Dans ce dernier cas, le mod­
èle mathématique est complètement ignoré ou simplement utilisé pour illustrer les
caractéristiques du problème [...] Une troisième approche est cependant possible,
qui consiste à utiliser le solveur comme outil de base dans le cadre heuristique. Cette
hybridation de la programmation mathématique avec des métaheuristiques conduit
à l’approche matheuristique. ”

Nous utilisons la métaheuristique de recherche à voisinage large (Large Neighborhood
Search, LNS). Son idée est d’améliorer itérativement la solution courante en la ruinant (c’est­à­
dire en enlevant une partie) et en la réparant (c’est­à­dire en réinsérant les clients enlevées à un
endroit adéquat). Ce processus est répété jusqu’à ce qu’un critère d’arrêt soit satisfait (générale­
ment une limite de temps). Pour clarifier la position de notre travail, présentons un bref historique
de LNS pour les problèmes de routage :

1. Shaw (1998) a initialement proposé LNS dans un contexte de programmation par con­
traintes pour résoudre le VRP. Dans cette première version, les solutions étaient réparées
par un branch­and­bound utilisant un solveur de programmation par contraintes.

3. Traduction de l’anglais vers le français
4. Traduction de l’anglais vers le français
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2. Schrimpf et al. (2000) a développé indépendamment une méthode proche sous le nom de
ruiner et recréer (ruin and recreate) pour le VRPTW. Mais cette fois, les solutions étaient
réparées par une méthode heuristique.

3. Pisinger and Ropke (2007); Ropke and Pisinger (2006a,b) ont popularisé LNS en pro­
posant une méthode unifiée pour divers problèmes de routage (dont le VRPTW et le
VRPB). En effet, Ropke and Pisinger (2006a) a maintenant été cité 1514 fois 5 ! Cette nou­
velle version détruit et répare les solutions avec diverses heuristiques choisies de manière
probabiliste en fonction de leurs performances passées. Ainsi, la méthode proposée est
appelée recherche à voisinage large adaptative (Adaptive Large Neighborhood Search,
ALNS).

4. Au cours des années suivantes, la méthode (A)LNS a été développée pour résoudre des
problèmes variés et plus complexes (Pisinger and Ropke, 2019). Par exemple, pour le
2E­VRP, Hemmelmayr et al. (2012) ont développé plusieurs heuristiques travaillant sur
différents aspects des solutions et Grangier et al. (2018) ont développé davantage les hy­
bridations avec les solveurs de programmation mathématique.

5. A partir de ces nombreuses études, Santini et al. (2018) et Turkeš et al. (2020) ont réalisé
des méta­analyses sur des composants spécifiques de l’ALNS, respectivement le critère
d’acceptation et la couche adaptative. Ces études montrent que ce domaine de recherche
commence à mûrir autour des connaissances structurées, comme l’espère Sörensen et al.
(2018).

6. Christiaens and Vanden Berghe (2020) ont récemment proposé de réduire la méthode LNS
à des composants plus simples. Ainsi, ils n’utilisent que quelques heuristiques de répa­
ration simples et suppriment peu clients des solutions lors de chaque itération. Cela les
conduit à une méthode capable d’effectuer un très grand nombre d’itérations très rapides.

Le premier axe de notre contribution méthodologique concerne la configuration de LNS.
En effet, lors de notre revue de la littérature, de nombreuses heuristiques de destruction et de
réparation nous ont semblé pertinentes. Nous avons conçu un protocole expérimental rigoureux
basé sur des tests statistiques pour évaluer les redondances et les complémentarités entre les
heuristiques. Ceci nous a permis de décider d’une configuration restreinte et efficace de LNS.
Par ailleurs, au cours de ces nombreuses expériences, nous avons remarqué que, comme sug­
géré par Christiaens and Vanden Berghe (2020), des destructions limitées et une reconstruction
rapide conduisent à de bons résultats. Par conséquent, nous proposons une configuration LNS

5. Selon Google scholar le 13/04/2021
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qui combine des destructions de petite et de grande taille. L’algorithme SLNS (Small and Large
Neighborhood Search) ainsi développé s’est avéré être un algorithme performant sur quatre
problèmes généralisés de routage de véhicules avec fenêtres de temps.

Le deuxième axe de notre contribution méthodologique concerne l’orchestration de LNS
avec des composants exacts, créant ainsi des matheuristiques. Des couches adaptatives ont été
développées pour décider du moment où il faut utiliser ces outils. En effet, ces outils peuvent
améliorer significativement les résultats de LNS. En revanche, ils peuvent être trop lents à des
moments où LNS aurait obtenu de meilleurs résultats, tel que des phases d’intensification inten­
sive rapide. Au cours de cette thèse, nous avons développé des méthodes entrant dans chaque
classe de la classification des matheuristiques de Archetti and Speranza (2014) :

Approches basées sur la génération de colonnes : un modèle basé sur les routes a été écrit pour
le VRPDO et est résolu régulièrement par un solveur afin de recombiner les routes pro­
duites par LNS au cours de ses itérations.

Improvement heuristics : une approche de programmation dynamique a été adoptée pour
améliorer les routes prometteuses produites par LNS pour le VRPDO. Nous avons adapté
le voisinage de Balas­Simonetti (Balas, 1999).

Approches de décomposition : la méthode développée pour résoudre le 2E­MTVRP­CSRF est
basée sur une décomposition en trois sous­problèmes. Cette méthode alterne entre le tra­
vail sur le premier échelon avec SLNS, le travail sur le second échelon avec SLNS, et la
résolution d’un modèle pour recombiner les deux échelons.

La présentation des deux nouveaux problèmes et des deux contributions méthodologiques
est organisée comme suit :

Chapitre 1 il introduit le problème de tournées de véhicules avec options de livraison (VRPDO,
Dumez et al. (2021a); Tilk et al. (2020)) ainsi que la recherche par petits et grands voisi­
nages (SLNS) développée pour le résoudre. Nous questionnons rigoureusement l’impact
de chaque composant.

Chapitre 2 il présente l’hybridation du SLNS avec des solveurs MIP et la programmation dy­
namique pour résoudre une variété de problèmes généralisés de tournées de véhicules avec
fenêtres temporelles. L’utilité de chaque outil et les règles pour les orchestrer sont longue­
ment étudiées dans le contexte de quatre variantes de problème de tournées de véhicules
généralisé.

Chapitre 3 il présente le problème de tournées de véhicules à deux échelons avec trajets multi­
ples, capacités sur les satellites et flux inverses (2E­MTVRP­CSRF, Dumez et al. (2021b))

7



et la méthode de décomposition développée pour le résoudre. Cette méthode alterne entre
le travail sur chaque échelon avec SLNS et la résolution d’un modèle mathématique par
un solveur pour recombiner les deux échelons. Ainsi, ce chapitre réutilise les développe­
ments précédents pour résoudre un problème complexe.

Les deux premiers chapitres sont basés sur les articles Dumez et al. (2021a) et Dumez et al.
(2021c) publiés dans Transportation Research part B et EURO Journal in Transportation and
Logistics. Ces résultats ont été présentés dans les conférences suivantes : Dumez et al. (2019b),
Dumez et al. (2019a), Péton et al. (2019), Dumez et al. (2019c), Dumez et al. (2020). Le dernier
chapitre est basé sur l’article Dumez et al. (2021b), qui sera soumis prochainement à une revue
internationale.

8
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INTRODUCTION

Let us start with a definition from Savelsbergh and Van Woensel (2016):

“ City Logistic is about finding efficient and effective ways to transport goods
in urban areas while taking into account the negative effects on congestion, safety,
and environment. ”This thesis is part of the broad stream of studies in operations research which are defining

models and methods to improve the transportation of goods over many aspects. The goal of this
work is to give practitioners and academics an overview of possible urban distribution policies,
optimisation algorithms for these, and simulations performed by these algorithms. In the frame
of the OPUSS project, we worked in tight collaboration with the chair of logistics management
of the Gutenberg School ofManagement and Economics (Mainz, Germany) which is specialized
in exact methods for combinatorial optimization problems. We focus on the operational routing
decisions for small shops and private services in urban areas. That is to say, we seek to find
efficient day­to­day routes and planning for drivers in order to fulfill given tasks to perform in
a restricted zone. As examples, let us briefly present a few standard problems that we extend,
recombine and solve in this thesis:

— The Vehicle Routing Problem (VRP, Dantzig and Ramser (1959)) seeks to find the least­
cost routes in order to distribute a given set of parcels with a given fleet of vehicles

— The Vehicle Routing Problem with Time Windows (VRPTW, Savelsbergh (1985)) is a ex­
tention of the VRP where each customer can be served solely during a pre­defined period,
called time window.

— TheMulti­Trip Vehicle Routing Problem (MTVRP, Fleischmann (1990)) is a relaxation of
the VRP in which each vehicle is allowed to performed multiple successive tours during
the day.

— The Vehicle Routing Problem with Backhauls (VRPB, Gélinas et al. (1995)) is an exten­
sion of the VRP where some goods have to be delivered in addition to some goods to be
collected.

— The Generalized Vehicle Routing Problem (GVRP, Ghiani and Improta (2000)) is another
extension of the VRP where the customers can be served at different places, to be chosen

13



Introduction

by the delivery company.

— The 2­Echelon Vehicle Routing Problem (2E­VRP, Crainic et al. (2009)) also considers the
least­cost delivery of goods, but via the cooperation between two fleets of vehicles. That
is to say, a fleet of trucks first bring goods from the depot located in the outskirts to small
logistic platforms near the city center, called satellites. The parcels are then delivered to
the customers by small vehicles from the satellites.

In order to combine these features in an efficient and realistic way, it is important to coordi­
nate the operations of the different vehicles. Therefore, synchronization constraints arise in the
models. Those we treat in this thesis are named inter­tour resource constraint by Hempsch and
Irnich (2008) and as resources synchronization constraint by Drexl (2012), which propose the
following definition :

“The total consumption of a specified resource by all vehicles must be less than
or equal to a specified limit. ”

We define two new problems during this thesis. First, the Vehicle Routing Problem with
Delivery Options (VRPDO, Dumez et al. (2021a); Tilk et al. (2020)): it is a refinement of
the GVRPTW in which each customer gives several possible locations for delivering its
order along with a time windows, corresponding to places he/she will visit during the day.
Some can be shared delivery locations, such as shops or lockers, with a limited capacity
to be used by all deliverymen. Second, the 2­Echelon Multi­Trip Vehicle Routing Problem
with Capacitated Satellites and Reverse Flow (2E­MTVRP­CSRF, Dumez et al. (2021b)): it
integrates the VRPTW and the VRPB in the 2E­VRP logistic system while considering satellites
of limited capacity. Thus, the vehicles of the two echelons must be synchronised in time and
space to handle the goods to be delivered and collected, while integrating that the quantity of
goods waiting to be transferred between the two echelons at a satellite never exceeds its capacity.

To solve these problems we use approximate methods while theMainz’s research team focus
on exact methods. Glover and Kochenberger (2003) defines a metaheuristic such as:

“ Solution methods that orchestrate an interaction between local improvement
procedures and higher level strategies to create a process capable of escaping from
local optima and performing a robust search of a solution space. ”

Moreover, in the context of a collaboration between our two teams, we take a great interest in
matheurisitics. This idea is described in Fischetti and Fischetti (2018) in the following manner:

14



Introduction

“One can insist on the mathematical programming (MP) approach and try to ob­
tain better and better results by improving the model and by enhancing the solver by
specialized features. Or one can forget about MP and resort to ad­hoc heuristics not
based on the MP model. In this latter case, the MP model is completely disregarded
or just used for illustrating the problem characteristics [...] A third approach is how­
ever possible that consists in using the MP solver as a basic tool within the heuristic
framework. This hybridization of MP with metaheuristics leads to the matheuristic
approach. ”Weuse the LargeNeighborhood Search (LNS)metaheuristic. Its idea is to iteratively improve

the current solution by ruining it (i.e. removing a part of it) and repairing it (i.e reinserting the
removed customers at appropriated places). This process is repeated until a stopping criterion
(usually a time limit). To clarify the position of this work, let us present a brief history of LNS
for routing problems:

1. Shaw (1998) initially proposed LNS in a constraint programming context to solve the
VRP. In this first version, the solutions were repaired by a branch­and­bound using a
constraint programming solver.

2. Schrimpf et al. (2000) independently developed a very similar method under the name ruin
and recreate for the VRPTW. But this time the solutions were repaired by one heuristic
method.

3. Pisinger and Ropke (2007); Ropke and Pisinger (2006a,b) popularized LNS by proposing
an unified method for various routing problems (including the VRPTW and the VRPB).
Indeed Ropke and Pisinger (2006a) is now cited 1514 times 7 ! This new version destroys
and repairs the solutions with various heuristics chosen probabilistically based on their
past performance. This method is called Adaptive Large Neighborhood Search (ALNS).

4. During the following years, (A)LNS was further developed to solve various and more
complex problems (Pisinger and Ropke, 2019). For example, for 2E­VRPs, Hemmelmayr
et al. (2012) developed various heuristics working on different aspects of the solutions and
Grangier et al. (2018) integrated time windows and further developed the hybridizations
with MIP solvers.

5. From these numerous studies, Santini et al. (2018) and Turkeš et al. (2020) conducted
meta­analysis on specific components of ALNS, respectively the acceptance criterion and
the adaptive layer. These studies show that this field of research is starting to mature
around structured knowledge, as hoped by Sörensen et al. (2018).

7. According to Google scholar the 13/04/2021
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6. Christiaens andVanden Berghe (2020) recently proposed to narrow down the LNSmethod
to simpler components. Thus, they use only a few simple repair heuristics and remove only
a few customers from the solutions during each iteration. This leads them to a method
capable of performing a tremendous number of very fast iterations. The suggested philos­
ophy for LNS proved to be very competitive on the VRP and the VRPTW.

The first axis of our methodological contribution is about the configuration of LNS. Indeed,
during our literature review many ruin and recreate heuristics seemed relevant. We designed
a rigorous experimental protocol based on statistical tests to evaluate redundancies and com­
plementarities between heuristics. This allowed us to decide on a restricted and efficient con­
figuration of LNS. Besides, during these many experiments, we noticed that, as suggested by
Christiaens and Vanden Berghe (2020), limited destructions and fast reconstruction lead to good
results. As a result, we propose a LNS configuration that combines small and large destruction
sizes. The resulting developed Small and Large Neighborhood Search (SLNS) proved to be a
state of art algorithm on four generalized vehicle routing problems with time windows.

The second axis of our methodological contribution is about the orchestration of LNS with
exact components, thus creating matheuristics. Adaptive layers were developed to decide on
when to use these tools. Indeed, these tools can significantly improve the results on LNS. On
the other hand, they may be too slow at times when LNS would have performed better on its
own, ushc as during fast intensification phases. In the course of this thesis we developedmethods
falling into each class of Archetti and Speranza (2014) matheuristics classification:

Column generation­based approaches a route­based model is written for the VRPDO to be
solved regularly by a MIP solver in order to recombines routes produced by LNS in the
course of its iterations.

Improvement heuristics a dynamic programming approach is taken to improve promising routes
produced by LNS for the VRPDO. Namely, we adapt the Balas­Simonetti neighborhood
(Balas, 1999).

Decomposition approaches the method developed to solve the 2E­MTVRP­CSRF is based on a
threefold decomposition of the problem. This method alternates between working on the
second echelon with SLNS, working on the first echelon with SLNS, and solving a MIP
to recombine the two echelons.

The presentation of the two new problems and of the two methodological contributions is
organized as follow:

Chapter 1 introduces the Vehicle Routing Problem with Delivery Options (VRPDO, Dumez
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et al. (2021a); Tilk et al. (2020)) together with the Small and Large Neighborhood Search
(SLNS) developed to solve it. We rigorously question the impact of each component of
the developed method and the impact of the proposed parameters.

Chapter 2 presents the hybridization of the aforementioned SLNS with a column­generation­
based approach and dynamic programming to solve a variety of Generalized Vehicle Rout­
ing Problems with TimeWindows. The usefulness of each tool and the rules to orchestrate
them is extensively studied in the context of four variants of the GVRPTW.

Chapter 3 presents the 2­Echelon Multi­Trip Vehicle Routing Problem with Capacitated Satel­
lites and Reverse Flow (2E­MTVRP­CSRF, Dumez et al. (2021b)) and the decomposition
method developed to solve it. Thismethod alternates betweenworking on the each echelon
with SLNS and solving a MIP with a commercial solver to recombine the two echelons.
Thus, this chapter reuses the previous developments to solve a complex problem.

The first two chapters are a streamlines and updated versions of the articles Dumez et al.
(2021a) and Dumez et al. (2021c) published in Transportation Research part B and Euro Jour­
nal in Transportation and Logistics. These results were presented in the following conferences:
Dumez et al. (2019b), Dumez et al. (2019a), Péton et al. (2019), Dumez et al. (2019c), Dumez
et al. (2020). The last chapter is based on the article Dumez et al. (2021b), which is to be sub­
mitted soon to an international journal.
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Partie , Chapter 1 – Large Neighborhood Search heuristics for the Vehicle Routing Problem with
Delivery Options

1.1 Introduction

The revenue of online stores in Francewas 92.6 billion euros in 2018, after an average growth
of 13% per year during the last four years (Moyou, 2019). With this growth of e­commerce, an
increasing number of parcels have to be delivered each day. Consequently, several possibilities
have been developed so that distribution can be faster and cheaper. According to Morganti et al.
(2014), in 2012, 90% of the French and German population were within 10 minutes of a locker
or a pick­up point (often shops or post offices), and the number of such locations grew by 33%
between 2008 and 2012. Furthermore, trunk deliveries were recently tested on an industrial scale
(McFarland, 2018).

The customer is generally required to choose one delivery location. Nevertheless, people
move around during the day, for example, to go to work or take children to school. This is the
major cause of no­show in attended deliveries. According to Allen et al. (2016), in the UK, 14%
of all deliveries fail. In 2014, in the UK, the cost of these failed deliveries has been estimated
at £771 million. Consequently, it is very likely that a purchaser would like to choose between
several delivery options depending on the time of delivery.

The objective of carriers is to deliver all their parcels at a minimum cost. They also want to
maintain a good quality of service, but the time window width has a great impact on delivery
costs. Nevertheless, they are essential because 80% of the parcels delivered in the UK do not
fit into the letterbox (Allen et al., 2016) and nobody likes to wait all afternoon at home for a
parcel (Agatz et al., 2008). Accordingly, new strategies are developed to increase the number of
successful deliveries (Florio et al., 2018).

This chapter discusses the Vehicle Routing Problem with Delivery Options (VRPDO). It is
an extension of both the Vehicle Routing Problem with Time Windows (VRPTW, Savelsbergh
(1985)) and the Generalized Vehicle Routing Problem (GVRP, Ghiani and Improta (2000)). In
the VRPDO, each customer can choose to have a package delivered through several delivery
options. For example, a given parcel can be delivered at office during work hours, at home in
the evening or in a locker at any time.

From the standpoint of the carrier, these delivery options can be of two natures. They can
take place in individual delivery locations, like a home or a car trunk. Only one customer can
be delivered in that location. Otherwise, deliveries can take place at shared delivery locations
(SDL), like lockers or pick­up points. In this case, several parcels can be left at the same location,
while possibly satisfying some capacity constraints.

The contribution of this chapter is two­fold. First, from the managerial point of view, a
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new variant of the Vehicle Routing Problem (VRP) is introduced: the VRPDO combines deliv­
ery options to reduce delivery costs while guaranteeing a higher quality of service. From the
methodological point of view, a Large Neighborhood Search (LNS) metaheuristics that embeds
many recent and new ideas is proposed. This LNS includes many operators from the literature.
We compare them rigorously to determine an efficient and non­redundant configuration. We
introduce a new LNS framework which combines small and large destructions: the Small and
Large Neighborhood Search (SLNS). We show that this framework is particularly efficient to
escape local optima in case of complex constraints such as the synchronization constraints of
the VRPDO.

This chapter is structured as follows: In Section 1.2, the VRPDO is described and a mathe­
matical model is proposed. Section 1.3 exposes the literature on related problems. Section 1.4
details the first LNS developed to solve the VRPDO. In addition, our methodology to configure
the algorithm is explained. Section 1.5 present the SLNS. Finally, sections 1.6 and 1.7 develops
experiments, first to validate the method and second to draw managerial insights from randomly
generated instances of the VRPDO.
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1.2 The Vehicle Routing Problem with Delivery Options

This section details all components of the VRPDO (Section 1.2.1) and gives a mathematical
model (Section 1.2.2).

This problem was defined in collaboration with the Mainz research team. It is described in
Dumez et al. (2021a) and Tilk et al. (2020). The former develops a heuristic solution method
while the latter describes an exact algorithm.

1.2.1 Problem settings

The VRPDO is an operational optimization problem defined on a short time horizon, typ­
ically one day. In this problem, each customer can choose several delivery options. In the fol­
lowing, for the sake of conciseness, we will refer to them only as options.

An option is a tuple associated with a unique customer, composed of a location, a preference
level and a service duration, as follows:

— A location has a geographical address and a time window during which goods can be de­
livered. For each location, a fixed preparation time represents the time needed to park a
vehicle and access the delivery point. Two types of locations are considered: individual
delivery locations and shared delivery locations (SDLs). An individual delivery location
is typically a personal address. Only one option can be associated with this location. It
generally has a tight time window. An SDL is typically a pickup point or a locker. Several
options can be associated with this location. An SDL can be given a capacity, which is
defined as the maximum number of packages which can be delivered at this location dur­
ing the time horizon. For the sake of conciseness, SDLs and individual delivery locations
may be called “shared locations” and “individual locations”, respectively.

— The preference level of an option is an integer in {1, ..., p̄}, p̄ being the number of pref­
erence levels. 1 is the value associated with the customer’s preferred option and p̄ corre­
sponds to the least preferred option.

— The service duration of an option represents the time needed to deliver the customer’s
package after accessing the location.

Let us consider a homogeneous fleet of vehicles starting from a given depot and returning to
this depot within the time period. Travel time and routing costs between each pair of locations
are assumed to be known.
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The VRPDO consists in designing a route for each vehicle, serving each customer with one
of his/her options, and satisfying the SDL capacities and minimal service level constraints. For
each level p ∈ {1, ..., p̄− 1}, the service level SLp of a solution is defined as the percentage of
customers served with an option of level at most p. A minimal service level βp has to be achieved
for each level p ∈ {1, ..., p̄− 1}.

Similarly to many vehicle routing problems, the objective function is the minimization of
the number of vehicles and the sum of routing costs, in lexicographical order. Note that each
customer’s order has to be delivered by a single truck (i.e. split deliveries are not allowed).

When a customer orders a parcel, he/she chooses multiple options, sorted by preference
level. In theVRPDO, the timewindows relate to the delivery of parcels by vehicles. At individual
locations, these timewindows are selected by customers. At SDLs, they correspond to an interval
of time duringwhich the corresponding facilities can be accessed by vehicles. Thus, it is assumed
that all options delivered at SDLs have the same time windows. In practice, once a customer’s
order is delivered at an SDL or a remote location (i.e. car’s trunk), the customer is notified ;
he/she can collect the package at any time after being notified, including on the next days. Hence,
once an order is delivered at an SDL, it is considered to occupy a part of the SDL capacity until
the end of the period. There might be several policies to manage uncollected parcels, but this
question is out of the scope of the present study. Thus, we simply assume that the capacity of an
SDL is a priori adjusted before solving the VRPDO, according to the parcels remaining at this
location.

To illustrate the definition of the VRPDO, Figure 1.1 shows the options from the customer
perspective. Figure 1.1 shows the example of a customer with 3 delivery options. Delivery at
home between 7 p.m. and 9 p.m. is the preferred option, then delivery in a locker between 1 p.m.
and 5 p.m., then a delivery in the trunk of his/her car between 9 a.m. and 6 p.m.

Figure 1.2 presents the options from the carrier perspective. The individual options of each
customer are represented by a group of icons of identical colors. SDLs are represented by black
icons (locker🔒, store/postal office🏤. Each customer is represented by a number and its options
are surrounded by a line of the same color as the icons. The carrier has to serve all customers
via exactly one option. This amounts to define a set of routes that start from the carrier’s depot
(represented by the truck icon⛟) and visit exactly one option inside a colored line.

Like in the Generalized Vehicle Routing Problem (GVRP, Ghiani and Improta (2000)), the
set of options is composed of subsets, for each customer. Vehicles must visit exactly one option
in each subset. In the GVRP, subsets of options form a partition of the set of locations. In the
VRPDO, the subsets of options form a cover of the set of locations. This is because options
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Figure 1.1 – Example of a customer’s preferences in the VRPDO

⛟ 1
🏡

2

🏢

🏡
3

🏡

🏢

4

🚗

🏡
🚗

5

🏡

🏢

6🏡
I🔒

Ⅱ🔒

Ⅲ🏤

Figure 1.2 – An instance of the VRPDO from the carrier perspective

associated with distinct customers can take place at the same shared location. An instance of the
Generalized Vehicle Routing Problem with Time Windows (GVRPTW, Moccia et al. (2012)) is
an instance of the VRPDO without shared locations and a single preference level. Hence, the
VRPDO can be seen as a generalization of the GVRPTW.

Figure 1.3 represents a solution to the VRPDO instance introduced in Figure 1.2, with only
one route. An option that takes place in an individual location is depicted by a circle including
the customer’s identity and the location. This is the case of customer 2, who is delivered at office
rather than at home, thus avoiding a big detour. A shared location is depicted by a rectangle that
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includes the locations and identifies the delivered customers. For example, customers 1 and 3
are delivered at SDL I.

⛟
1🏡

2 🏢

2🏡

3🏡

3 🏢

4🚗

4🏡

4🚗

5🏡

5 🏢

6🏡

I🔒 | 1 3

Ⅱ🔒 | 5 6

Ⅲ🏤

Figure 1.3 – Example of a route in the VRPDO

The time spent by a vehicle at a location is equal to the preparation time of the location plus
the service duration of the visited options. The preparation time of a location corresponds to the
time to find a parking place. Hence, it is counted only once, regardless of the number of parcels
delivered. The service duration of an option corresponds to the time to deliver the parcel or to
put it in a box.

Figure 1.4 represents a solution to the VRPTW for the same instance, using home delivery
only.

We assume that a parcel always occupies one box in a locker, no matter its size. Indeed, a
locker is a rack of automatic boxes so there is at most one parcel per box, as long as it fits. Hence,
the capacity of the shared locations, generally expressed as a number of boxes, can equivalently
be expressed as a number of parcels. Due to uncertainty on when customers will pick up their
parcels, it is assumed that each box can be used only once per day. On the contrary, it is realistic
to consider that some shared locations (e.g. post offices) have unbinding capacity.

The assignment of parcels to boxes is not taken into account in the VRPDO, but it would be
possible to consider different sizes of boxes by duplicating options.

Figure 1.5 illustrates the capacity constraints induced by shared locations for the example
described in Figure 1.3. Not all shared locations must be visited. On the contrary, they can be
visited by different vehicles.
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⛟
1🏡
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4🚗

5🏡

5 🏢

6🏡

I🔒

Ⅱ🔒

Ⅲ🏤

Figure 1.4 – Example of a route in the VRPTW, with home delivery only

I🔒

Ⅱ🔒

Ⅱ🏤

1📦 3📦

6📦 5📦

...

Figure 1.5 – Capacity at shared delivery locations (SDL)

Considering the quality of the service, Figure 1.6 represents an example with a service level
constraint requiring that at least β1 = 50% of the customers are served with their preferred
options and that at least β2 = 75% of the customers are served with options of level 1 or 2. In
the example, 50% of the customers are served with their preferred option (SL1) and 83% of the
customers are served with an option of level 1 or 2 (SL2), so that the service level constraints
are satisfied.

The constraints related to SDL capacity and service level constraints can be seen as resource
constraints involving all the vehicles. They fall under the category of synchronized resources
defined by Drexl (2012) as: “At any point in time, the total utilization or consumption of a
specified resource by all vehicles must be less than or equal to a specified limit”.
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SL1 : 50% ⩾ β1

SL2 : 83% ⩾ β2

4😊 6😊 5😊 2😐 1😐 3😞
Level 1 Level 2 Level 3

β1 = 50% β2 = 75%

Figure 1.6 – Service level measured with respect to a set of selected options

1.2.2 Mathematical model

Let N be the set of customers and O the set of options. The options of customer c ∈ N ,
denoted by Oc ⊂ O, are specific to that customer only. Thus,

∪
c∈N

Oc = O and ∀c, c′ ∈ N : c ̸=

c′ ⇒ Oc ∩Oc′ = ∅.
Let L denote the set of locations and Ol ⊂ O be the subset of options that take place at

location l ∈ L.
The VRPDO is modeled on an option­based complete graphG = (V,A). The set of vertices,

denoted by V = O ∪ {0, 0′}, contains one vertex for each option plus the starting depot 0 and
the ending depot 0′. The routes are defined on the option­based graph G. A route is a sequence
of options belonging to distinct customers. Consequently, when multiple deliveries are made in
a shared location, it is represented by several vertices of V . Figure 1.7 is the representation of
the route from of Figure 1.3.

1 I🔒 3 I🔒 2🏢 5 Ⅱ🔒 6 Ⅱ🔒 4🏡⛟ ⛟
Figure 1.7 – Representation of the route from Figure 1.3 on Graph G

The travel time on arc (i, j) ∈ A is denoted by ti,j . It includes the preparation time at the
location of option j if the two locations are distinct. The cost of traveling on arc (i, j) is denoted
by ci,j . The service duration si at vertex i ∈ V represents the time necessary to visit the option
associated with this vertex. It is assumed to be null at depot vertices 0 and 0′. Each option i ∈ O is
associated with the time window [ai, bi] of its location.Moreover, it is assumed that a0 = a0′ = 0
and that b0 and b0′ correspond to the end of the working day.

Let p̄ be the number of preference levels. For a preference level p ∈ {1, ..., p̄}, βp is the
minimal percentage of customers that can be served with an option of level p or lower. By
definition βP = 100% and ∀p ∈ {1, ..., p̄− 1} : βp ⩽ βp+1.
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Let Cl be the capacity of location l ∈ L, expressed as a number of parcels. Each option
o ∈ O is associated with a preference level po and a demand qo which is equal to the demand
of its associated customer. The set of vehicle is denoted by K. It is assumed that the fleet is
homogeneous and the capacity of vehicles is denoted by Q.

Model 1 describes the VRPDO. xk
i,j is a binary variable that indicates if the vehicle k ∈ K

uses arc (i, j) ∈ A. yo is a binary variable that states whether option o ∈ O is visited. hk
i is the

service time of vehicle k ∈ K at vertex i ∈ V .

The first objective function (1.a) minimizes the number of vehicles. The second objective
function (1.b) minimizes the routing costs. Constraints (1.c) state that exactly one option must
be selected for each customer. Constraints (1.d) represent the satisfaction of vehicle capacity.
Recalling that the capacity of SDLs is expressed as a number of parcels, independently of their
size, constraints (1.e) state that the number of options delivered at location l ∈ L cannot exceed
its capacity Cl. Constraints (1.f) model the satisfaction of preference levels. For each preference
level p ∈ {1, ..., p̄}, at least βp% of the total number of customers must be served with an option
of level p or better. Constraints (1.g) state that an option can be used only if it is visited by
one vehicle. The remaining constraints are the classical VRPTW constraints (Desaulniers et al.,
2014): Constraints (1.h) ensure that a vehicle that leaves the depot returns it at the end of its
route, Constraints (1.i) ensure the continuity of the routes, Constraints (1.j) compute the service
time and Constraints (1.k) ensure the respect of the time windows. M is an arbitrarily large
positive value.

Model 1: option­based model

lex−min(z1, z2)

s.t. z1 =
∑
j∈V

xk
0,j (1.a)

z2 =
∑

k∈{1,...,K}

∑
(i,j)∈A

ci,jx
k
i,j (1.b)

∑
o∈Oc

yo = 1 ∀c ∈ N (1.c)

∑
o∈O

∑
(i,o)∈A

xk
i,oqo ⩽ Q ∀k ∈ K (1.d)

∑
o∈Ol

yo ⩽ Cl ∀l ∈ L (1.e)

∑
o∈O|po⩽p

yo ⩾ βp × |N | ∀p ∈ {1, ..., p̄− 1} (1.f)
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∑
(i,o)∈A

∑
k∈K

xk
i,o ⩾ yo ∀o ∈ O (1.g)

∑
j∈V

xk
0,j =

∑
i∈V

xk
i,0′ ∀k ∈ K (1.h)

∑
(i,j)∈A

xk
i,j −

∑
(j,i)∈A

xk
j,i = 0 ∀k ∈ K, ∀j ∈ O (1.i)

hk
i − hk

j + ti,j + si ⩽M.(1− xk
i,j) ∀k ∈ K, ∀(i, j) ∈ A (1.j)

ai ⩽ hk
i ⩽ bi ∀k ∈ K, ∀i ∈ V (1.k)

xk
i,j ∈ {0, 1} ∀k ∈ K, ∀(i, j) ∈ A

yo ∈ {0, 1} ∀o ∈ O

hk
i ⩾ 0 ∀k ∈ K, ∀i ∈ V
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1.3 State of the art

The VRPDO is a VRPTW with multiple delivery options and synchronized resources. This
section is organized according to these three aspects: VRPTW, delivery options and resource
synchronization. In addition, some closely related problems are laid out.

1.3.1 VRPTW

Since the introduction of the VRPTW by Savelsbergh (1985), a plethora of papers have
been published on this subject. We refer to Bräysy and Gendreau (2005a,b) for a review of the
applicable literature and to Vidal et al. (2013) for the latest advances. Many LNS heuristics have
been used to solve problems related to the VRPTW. They will be briefly discussed in Section
1.4.

1.3.2 Delivery options

In the VRPDO, customer requests can be satisfied at various locations. This characteristic
is shared by the Generalized Vehicle Routing Problem with Time Windows (GVRPTW, Moccia
et al. (2012)). The GVRPTW is a specific case of the VRPDOwithout shared locations and with
a single preference level. The literature on the GVRPTW is very scarce. We refer to Bektaş et al.
(2011) and Afsar et al. (2014) for details on the GVRP, and to Moccia et al. (2012) for details
of the GVRPTW. Moccia et al. (2012) proposed a tabu search able to tackle instances with
120 clusters within few minutes. Yuan et al. (2020a) and Yuan et al. (2020b) developed models
and a branch­and­cut algorithm for the GTSPTW (a single vehicle GVRPTW) that can solve
instances with 30 clusters. This method is extended in Yuan (2019) and Yuan et al. (2021) for
the GVRPTW as a heuristic­based branch­and­cut. This method provides high quality solutions
on instances with up to 120 customers in a few hundred seconds.

The Vehicle Routing Problem with Multiple Time Windows (VRPMTW, Favaretto et al.
(2007)) can be seen as a special case of the VRPDO and of the GVRPTW, where all options
of a customer take place at the same location and their time windows are disjointed. For more
detail, see Tricoire et al. (2010), Belhaiza et al. (2014) and Hoogeboom et al. (2020).

In addition to the GVRP, some classes of vehicle routing problems include choices in the
locations to visit. The goal of these problems is to select locations to visit and find routes be­
tween these locations, such that requirements are met at minimum cost or such that profit is
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maximized. This category of problem includes the Team Orienteering Problem (TOP), the VRP
with profit (Archetti et al., 2014; Vansteenwegen et al., 2011), the Traveling Purchaser Problem
(TPP, Bernardino and Paias (2018); Gendreau et al. (2016)), and the Covering Tour Problem
(CTP, Kammoun et al. (2017)). For the interested reader, Yuan (2019) broadly discuss non­
Hamiltonian routing problems.

Among the heuristics that have been proposed to solve VRPwith choices in locations or time
windows, most of the authors include a perturbation component in their method. For variants of
the TOP, Hu and Lim (2014) developed a simulated annealing heuristic using ruin­and­recreate
perturbations and a set partitioning formulation, Souffriau et al. (2013) combined the Greedy
Randomized Adaptive Search Procedure (GRASP) with an Iterated Local Search (ILS) and Tri­
coire et al. (2010) used a Variable neighborhood Search (VNS) metaheuristic. For variants of the
CTP, Allahyari et al. (2015) combined GRASP with ILS, Takada et al. (2015) used ILS, Vargas
et al. (2015) worked with an Adaptive Large neighborhood Search (ALNS) and Kammoun et al.
(2017) proposed a VNS.

Besides, some papers propose using dynamic programming. In the context of a multi­period
TOP with multiple time windows, Tricoire et al. (2010) used dynamic programming to choose
which time window should be used in a given route. Moccia et al. (2012) solved a GVRPTW;
when a customer is inserted in a route, the options for the other customers of this route can be
changed through dynamic programming. Vargas et al. (2015) solved the CTP with an ALNS
algorithm that uses dynamic programming to decompose a giant tour into routes.

1.3.3 Resource synchronization

Drexl (2012) underlined that Hempsch and Irnich (2008) was almost the only paper consid­
ering synchronized resources. Few other heuristics have been proposed since then. In Hempsch
and Irnich (2008), Grangier et al. (2017), Froger et al. (2017), the resources are only temporarily
used during a limited period of time, before becoming available again. For example, in Grangier
et al. (2017), a truck uses a dock at a satellite facility only during the loading and unloading
operations.

In the VRPDO, the synchronized resources are permanently used during the whole time
horizon. Thus, it is only necessary to count the number of parcels in each locker and the number
of visited options of each preference level to check the satisfaction of the synchronized resource
constraints.

Souffriau et al. (2013) defined a variant of the TOP applied to tour planning for tourists. It is
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called the Multiconstraint TeamOrienteering Problem with Multiple TimeWindows (MC­TOP­
MTW). The routes represent the different days of the trip. The synchronized resource constraints
represent the budget and the maximal number of monuments of each type that can be visited.
These resources are considered in a local search with a label on the locations. These labels are
updated at each modification of the schedule. To get good solutions even with these resources,
their algorithm relies on perturbations through a combination of GRASPwith ILS. Besides, local
search moves are chosen with a score. It is a function of the increase in the objective function,
time shift, and resource consumption.

1.3.4 Closely related problems

Now that the three components of the VRPDO have been described, let us focus on very
close problems.

Reyes et al. (2017) defined the VRP with Roaming Delivery Locations (VRPRDL). This
problem involves delivering parcels into the trunks of cars, which move according to known
schedules. In the VRPRDL, there are no synchronized resources, the time windows of a cus­
tomer are disjointed and cars do not move faster than the delivery truck. This problem is solved
with an LNS heuristic. Classical operators are adapted and dynamic programming is used to
re­optimize routes by selecting better options without changing the customer sequence in the
route. The combination with home delivery is considered in a variant called VRP with Home and
Roaming Delivery Locations (VRPHRDL). It is defined by Ozbaygin et al. (2017) and solved to
optimality by a Branch­and­Price (B&P) algorithm for instances with up to 60 customers. All
these instances have been solved by (Yuan, 2019; Yuan et al., 2021) which present better results
for larger instances. Note that these two solution approaches can also be used to solve instances
of the GVRPTW.

Sitek and Wikarek (2019) defined the Capacitated VRP with Pick­up and Alternative Deliv­
ery (CVRPPAD). This paper considers multiple options for each parcel to be delivered. Lockers
and post offices are modeled with limited capacities. Customer preferences are modeled with a
penalty on the objective function if a non­desired option is used. No time windows are consid­
ered. Their method relies on a pre­processing phase done by constraint programming. A heuristic
then groups parcels together before assigning them to a route.

Zhou et al. (2018) defined the Multi­Depot Two­Echelon Vehicle Routing Problem with
Delivery Options (MD­2EVRP­DO). In this paper, a parcel can either be delivered at the
customer’s home or to a selected pick­up facility. Shared locations are incapacitated and
customer preferences are modeled through penalties in the objective function. Time windows
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are not considered. This problem is solved with a multi­population genetic algorithm that
embeds an ad­hoc local search.

Since the publication of the presentation of the VRPDO in Dumez et al. (2021a) and Tilk
et al. (2020) the interest of the research community about the utilization of lockers for parcel
delivery has increased, and a few paper were published on the topic.

Mancini and Gansterer (2021) defined the Vehicle Routing Problem with Private and Shared
Delivery Locations (VRPPSDL). The VRPPSDL seeks to deliver the parcels of each customer
either at home (under time windows constraint) or through a locker (with compensation cost).
In addition, lockers have a capacity expressed as the number of customer that can possibly be
delivered here. A fix­and­optimize method was developed to solve the VRPPSDL with an arc­
based MIP model of the problem. Instances were solved with up to 75 customers and 5 lockers
with a total capacity of 80.

Grabenschweiger et al. (2021) defined the Vehicle Routing Problem with Heterogeneous
Locker Boxes (VRPHLB). This problem assumes that parcels to be delivered and locker boxes
fall under size categories such that the demand of each customer can fit inside one or more locker
boxes. The VRPHLB seeks to deliver the parcels of each customer either at home (under time
windows constraint) or through a locker (with compensation cost). But lockers have a limited
size expressed as a number of boxes of each size. Their method integrates an ALNS heuristic to
decide on the routing and bin­packing tailored heuristics to decide on the assignment of parcels
to lockers or home delivery. They solved the instances of Mancini and Gansterer (2021), and
instances with up to 75 customers, 5 locker stations, and 3 sizes of parcels matching with the 3
sizes of locker boxes. They showed that the cost of taking into account the packing of parcels
into locker boxes is only of 1.3%.

Buzzega and Novellani (2021) defined the Vehicle Routing Problem with Lockers and Time
Windows (VRPLTW). This problem considers that locker are subject to fixed opening cost and
capacity expressed as the number of customer that can be delivered here. Multiple mathematical
formulations are detailed, and a branch­and­cut is developed. Instances with up 100 customers
and 10 lockers of size 5 were proposed, but only instances with up to 40 customers and 4 lockers
were consistently solved.

1.3.5 Synthesis

Table 1.1 summarizes the presented vehicles routing problems with resources synchroniza­
tion. The first columns groups studies according to the class of the problem solved. Column 2 is
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the reference to the study, Column 3 is the name of the solved problem, Column 4 is the name
of the solution method. Column 5 indicates whether the considered synchronized resources are
renewable, contrary to synchronized resources used during the full time period. The last column
briefly describes the core idea of the solution methods to manage the synchronized resource
constraints.

Tables 1.2 presents a non­exhaustive lists of scientific contribution related to the VRPDO,
in the sense that they are vehicle routing problems with time windows in which not all vertex
have to be visited. The first columns groups studies according to the class of the problem solved.
Column 2 is the reference to the study, Column 3 is the name of the solved problem, Column 4 is
the name of the solution method. The last column briefly describes the core idea of the solution
methods to manage the alternative options.

problem article sub­problem method time
dep.

treatment of the resource

VRP

Hempsch and Irnich (2008) MDVRPTW LS ✓ giant tour
Grangier et al. (2017) VRPCD­RC LNS­SPM ✓ branch and check
Froger et al. (2017) EVRP­NL­C 2 phase : ILS, MIP ✓ branch and check + benders decomposition
Mancini and Gansterer (2021) VRPPSDL ILS x LNS repair with MIP
Grabenschweiger et al. (2021) VRPLB ALNS­SPP bin­packing for the lockers
Buzzega and Novellani (2021) VRPLTW B&C flow­based model

MVTPP Gendreau et al. (2016) MVTPP­PIC B&P

TOPTW Souffriau et al. (2013) MC­TOP­MTW GRILS boolean variable for each pair (option,route)
and penalty in the objective for the infeasability

Table 1.1 – Vehicle routing problems with synchronized resources
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problem article sub­problem method treatment of the alternatives

GVRP

Bektaş et al. (2011) GVRP LNS then B&C graph on the cluster and cuts to choose an
option

Moccia et al. (2012) GVRPTW tabou change the option of the close clients
Afsar et al. (2014) GVRP­flex ILS alternate between the routes and the giant

tour
Yuan et al. (2020b) GTSPTW B&C
Yuan et al. (2021) GVRPTW B&P­LS exact choice of the options by DP change

the option of the adjacent clients

VRPMTW

Tricoire et al. (2010) MuP­OPTW VNS LS on the routes then choice of the time
window to use

Souffriau et al. (2013) MC­TOP­MTW GRILS penalized temporal infeasibility
Belhaiza et al. (2014) VRPMTW HVNTS temporal infeasibility (backward time

slack)
Hoogeboom et al. (2020) VRPMTW AVNS dynamic forward time interval in local

search

TOPTW
Tricoire et al. (2010) MuP­OPTW VNS perturbations
Souffriau et al. (2013) MC­TOP­MTW GRILS restarts et perturbations
Hu and Lim (2014) TOPTW SA+SPP perturbations and SPP

TPP Gendreau et al. (2016) MVTPP­PIC B&P
Bernardino and Paias (2018) UTPP GA product→ vendor association in the genes

CTP

Allahyari et al. (2015) MDCTVRP GRASP+ILS+SA specific neighborhoods; perturbations
Takada et al. (2015) m­CTP ILS dynamic penalty; specific neighborhoods;

DP
Vargas et al. (2015) CTP ALNS spited giant tour via SPPRC
Kammoun et al. (2017) m­CTP VNS perturbations

other
VRP

Reyes et al. (2017) VRPRDL LNS DP; perturbation
Zhou et al. (2018) MD­2EVRP­DO GA options are coded into the genes
Sitek and Wikarek (2019) CVRPPAD fix&optimize heuristic choice
Mancini and Gansterer (2021) VRPPSDL ILS x LNS customer→ location association by ILS
Grabenschweiger et al. (2021) VRPLB ALNS phase 1 : home only, phase 2 with options
Buzzega and Novellani (2021) VRPLTW B&C valid inequalities

Table 1.2 – Vehicle routing problems related to the VRPDO

35



Partie , Chapter 1 – Large Neighborhood Search heuristics for the Vehicle Routing Problem with
Delivery Options

1.4 Large Neighborhood Search for the VRPDO

Algorithm 1 presents the main steps of the Large Neighborhood Search (LNS) heuristic.
The main loop of the iterative process is from lines (2) to (11). In Line (4) to select a recreate
operator σ+ from a set Σ+ of operators. The same process is used in Line (5), a ruin operator σ−

is randomly selected from a set Σ− of operators. Each operator has a given constant probability
of being selected. In Line (6), the size Φ of the destruction is randomly chosen in a given inter­
val [δ,∆]. The destruction size is the percentage of customers to be removed from the current
solution.

The selected operators are applied to the current solution s′ in Line (7). First, Φ% of the
customers are removed from the solution with the chosen ruin operator σ−. These customers are
placed in the so­called request bank. Second, the customers from the request bank are inserted
in the solution by the recreate operator σ+. In Line (8), an acceptance criterion is used to decide
whether the new solution becomes the current solution for the next LNS iteration. The accep­
tance criterion, and the penalization the customers in the request bank, is presented in Section
1.4.4.

The VRPDO has two lexicographic objectives: (1) to minimize the number of vehicles, and
(2) to minimize the routing costs (described by the objective function 1.b). Similarly to Ropke
and Pisinger (2006a), Algorithm 1 is run twice, with half of the time budget for each part. During
the first phase, the number of vehicles is decreased by removing the smallest route from the solu­
tion each time a feasible solution is found (the customers are placed in the request bank). During
the second phase, the routing costs are minimized, using the minimum number of vehicles found
in a feasible solution obtained during the first phase. The configuration of our algorithm does
not change between the two phases.

1.4.1 Ruin operators

Ruin operators use different rules to remove customers from the solutions. Upon removal,
customers are placed in the request bank of the solution.

We divide ruin operators from the literature into two categories: local ruin operators and
large ruin operators. A local ruin operator deletes customers so that even if few customers are
deleted, it is likely that the solution will be improved on reconstruction. On the contrary, a large
ruin operator requires that more customers be deleted. Indeed, with a large ruin operator, if too
few customers are removed, it is likely that they will be re­inserted in the same position.

In the literature, large ruin operators are typically used with large destruction sizes. Whereas
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Algorithm 1: LNS
1: s : initial solution
2: while the time budget is not reached do
3: s′ ← s
4: randomly select a recreate operator σ+ ∈ Σ+

5: randomly select a ruin operator σ− ∈ Σ−

6: randomly select a destruction size Φ ∈ [δ,∆]
7: s′ ← σ+(σ−(s′,Φ))
8: if s′ meets the acceptance criterion then
9: s← s′

10: end if
11: end while
12: return the best feasible solution found

the local ruin operators are from papers favoring speed of reconstruction with low destruction
size but a larger number of iterations.

In the following, operators identified with [S] are the ones selected during the configuration
study presented in Section 1.4.3. On the contrary, the discarded ones are indicated with [D].

Local ruin operators

The local ruin operators implemented from the literature are:

[S] Distance­related removal (Ropke and Pisinger, 2006b) : removes customers that are close
to each other with respect to the Euclidean distance.

[D] Node neighborhood removal (Demir et al., 2012): removes customers that are close to
each other with respect to the infinity norm.

[D] Proximity removal (Prescott­Gagnon et al., 2009): removes customers that are close both
from a spatial and a temporal point of view, according to a parameterless formula. This is
an extension of Shaw removal (Shaw, 1998).

[S] (Split) String removal (Christiaens and Vanden Berghe, 2020): removes sequences of cus­
tomers in the routes of the current solution, either conserving, or not, a sub­string in the
middle.

Large ruin operators

The large ruin operators implemented from the literature are:
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[S] Random removal (Ropke and Pisinger, 2006b): randomly removes customers.

[D] Demand­related removal (Demir et al., 2012): removes customers that have demands of
similar size.

[S] Time­related removal (Pisinger and Ropke, 2007): removes customers that are delivered
at approximately the same time.

[S] Zone removal (Demir et al., 2012): randomly removes customers into predefined fixed
rectangular zones.

[S] Cluster removal (Pisinger and Ropke, 2007): removes customers that are served by the
same route in the current solution. A route is randomly selected and the Kruskal’s algo­
rithm is run on the arcs of this route until two clusters remain. All the customers in one of
them, randomly chosen, are removed.

[S] Route removal (Nagata and Bräysy, 2009): removes all the customers of a route.

[D] Distance worst removal (Ropke and Pisinger, 2006a): iteratively removes the customer
with the highest individual service cost. The individual service cost of a customer is the
cost of the arcs that enter and exit the location where the given customer is served in the
current solution, minus the cost of going directly from the previous location on the route
to the next one. If it is a shared location, this cost is divided by the number of customers
served at this location on the same route.

[D] Time worst removal (Demir et al., 2012): removes the customers that cause the largest
time loss.

[D] Neighborhood removal (Demir et al., 2012): first, the cost of each route divided by the
number of customers served by this route is computed. The customers are then removed
sequentially by decreasing order of the difference between their individual service cost
and the average service cost of their route.

[D] Node­pair history removal (Pisinger and Ropke, 2007): memorizes the cost of the best
solution that uses each arc. The operator removes the nodes that are reached via arcs with
the largest score.

[S] Historical knowledge node removal (Demir et al., 2012): this history removal memorizes
the lowest individual service cost of each customer. The operator removes the customers
with the largest difference between their current individual service cost and their lowest
individual service cost. It can be see as a history­biased worst removal.
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Ruin operators for the VRPTW can be adapted to the VRPDO in two ways: option­based
or customer­based. An option­based operator only takes in account the options that are cur­
rently visited to serve the customers. A customer­based operator takes all the options into ac­
count. Let us describe an example with distance­related removal. The distance between two
customers in distance option­based related removal is the distance between the options that are
currently visited to serve these customers. On the contrary, in distance customer­based related
removal, it is the minimal distance between any two options of these customers. That is to say,
the option­based version will remove customers that are currently served in close locations and
the customer­based one will delete customers that are potentially served in close locations.

VRPDO specific ruin operators

The new ruin operators specifically developed for the VRPDO are:

[D] Preference­oriented random removal: randomly selects customers and deletes themwith a
probability based on the preference level of the options currently visited to serve them. The
probability of deleting a selected customer, currently served with option o, is (1/P +1−po)3.
When there are three preference levels, the probability of deleting a customer served with
an option of level 3, 2 and 1 is 1.0, 0.125 and 0.04, respectively.

[S] SDL­oriented random removal (Shared Delivery Location­oriented random removal):
randomly selects customers in the solution. If the selected customer is delivered at an
individual location, the probability of being deleted is only 10%. Otherwise, if customers
are delivered at a shared location, they are always deleted.

[D] Random SDL removal: randomly selects a shared delivery location and removes all the
customers delivered at this location.

[D] SDL­related removal: selects a shared delivery location and randomly deletes customers
that have an option at this location.

[D] SDL­worst removal: a distance worst removal where the detour cost is fully assigned to
all the customers served at the shared delivery locations. The detour cost is not divided
by the number of customers served at this location.

All these ad­hoc ruin operators are large ruin operators. With the exception of the SDL related
removal, they are all option­based.
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1.4.2 Recreate operators

Most recreate operators follow the best insertion principle: any given customer is inserted
at the position that minimizes the increase of routing costs. To compute the best insertion of
customer c in route r, we try to insert all customer options in all positions of route r. Only
feasible insertions are performed by the algorithm. Hence, a solution always satisfies the vehicle
capacity constraints, time windows, shared location capacities, and service level constraints. The
only form of infeasibility considered in LNS is the fact that not all the customers are served, i.e
the request bank can be non­empty.

The forward time slacks (Savelsbergh, 1992) of all routes are stored in order to evaluate
insertions in constant time with respect to time windows. The usage of each shared location
and of each preference level is stored. Hence, testing the validity of insertions with respect to
synchronized resources is done in constant time. When an insertion is performed, the forward
time slacks of the corresponding route are updated in linear time with respect to the length of
the route. The update of capacity usage is done in constant time.

Recreate operators from the literature

The LNS recreate operators from the literature can be divided into two categories: list
heuristics and others. Most of the traditional LNS repair operators rely on the evaluation
of the insertion cost of each customer in the request bank at each position in the solution.
Typically, the insertion of each customer, in the request bank, into each route is evaluated
once at the beginning. After each modification, the insertion of the remaining customers in
the modified route is then re­evaluated. In their recent revisited version of LNS, Christiaens
and Vanden Berghe (2020) use exclusively list heuristics. For each insertions, list heuristics
first select a customer in the request bank according to some criterion and second, evaluate the
insertion cost of the selected customer in the solution routes. Accordingly, list heuristics are
often more naive but faster and easier to implement.

The list heuristics implemented from the literature are:

[S] Random order best insertions (Christiaens and Vanden Berghe, 2020): sequentially inserts
the customers in the request bank at their best insertion position in a random order.

[D] Oldest first best insertions (Christiaens and Vanden Berghe, 2020): sequentially inserts
the customers in the request bank at their best insertion position in non­increasing order
of the number of iterations since the last time the considered customer was served.
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[S] Largest first best insertions (Christiaens and Vanden Berghe, 2020): sequentially inserts
the customers in the request bank at their best insertion position in non­increasing order
of their demand.

[D] Farthest first best insertions (Christiaens and Vanden Berghe, 2020): sequentially inserts
the customers in the request bank at their best insertion position in non­increasing order
of distance to the depot.

[D] Closest first best insertions (Christiaens and Vanden Berghe, 2020): sequentially inserts
the customers in the request bank at their best insertion position in increasing order of
their distance to the depot.

The other operators implemented from the literature are:

[D] Best temporal insertions (Demir et al., 2012): inserts the customers so that the loss of time
is minimal. The loss of time is defined as the waiting time at the inserted option plus the
waiting time at the next option on the route. Customers can be processed either in random
order or by decreasing order of demand, respectively.

[D] Greedy best insertion (Ropke and Pisinger, 2006a): iteratively computes the cheapest in­
sertion for each customer and inserts the customers that have the lowest insertion cost.

[S] k­regret (Ropke and Pisinger, 2006a): iteratively computes the best insertion cost on each
route for each customer and inserts the one that has the largest difference between its best
insertion cost and next (k − 1) route’s best insertion costs.

[S] Ejection search (Nagata and Bräysy, 2009): first, all the customers in the request bank are
placed in a FIFO structure. The customers from this structure are inserted into the solution
by allowing some customers from the solution to be removed and put in the queue. As in
Curtois et al. (2018) the procedure is heuristically sped up. First, to insert one customer, at
most two customers can be removed from the solution. Second, insertions are tested with
an increasing number of removed customers. If a feasible insertion is found, insertions
with more removals will not be tested. Third, when customers must be removed to insert
a customer, the insertion that removes the customers with the smallest score is chosen.
The score of a customer is the number of times where no feasible insertion was found for
this customer during all the calls to ejection search. Finally, the number of iterations of
ejection search, at each call, is limited to five times the initial size of the request bank.

VRPDO specific recreate operators

The operators specifically developed for the VRPDO are:
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[S] Preferred best insertion: this operator is an adaption of the classical best insertion operator.
The only difference is that the insertion costs aremodified in a lexicographical manner: the
cost of all insertion positions with all delivery options are calculated, then these insertions
costs are lexicographically sorted by considering the preference levels po first and the
insertion costs second.

[D] Preference regret: the best insertion is computed for each customer and for each preference
level. Let Ci

p be the cost of the best insertion of a customer i with an option of level p or

lower. The preference regret score of customer i is
P −1∑
p=1

(Ci
P −Ci

p). Customers are always

inserted at their cheapest position and the customer with the largest regret is inserted first.

[D] Normalized best insertion: the normalized insertion cost of a customer at a given location
is the cost of the insertion divided by the capacity of the location. Normalized best inser­
tion is a greedy best insertion that uses an normalized insertion cost to select the insertion
possibility for each customer and select the first customer to insert.

[S] SDL­regret (Shared Delivery Location regret): customers are inserted at their cheapest
insertion in non­increasing order of regret. In this version, the regret of a customer is the
difference between the insertion cost when all options are allowed and its insertion cost
when only individual locations are authorized. For example, let us consider the partial
solution represented in Figure 1.8 (same instance as in Figure 1.3). Customers 5 and 6 are
not served. Both can be delivered at locker II, like customer 4. But this locker only has a
capacity of two, as in Figure 1.5. For both customers 5 and 6, the cheapest insertion is in
this locker, with a cost of 0. Figures 1.9 and 1.10 show the cheapest insertion of customers
5 and 6 without considering shared locations. Hence, SDL­regret for customer 6 is higher
than that of customer 5. In this case, the SDL­regret will select customer 6 first and insert
him/her in the locker.

1.4.3 Operator selection

As described in sections 1.4.1 and 1.4.2, a number of operators have been implemented.
Because it does not seem useful to keep them all, we searched for a configuration of LNS with
fewer operators. In this section, we define a configuration as a subset of ruin operators and a
subset of recreate operators.

A statistical study was performed to choose a configuration from the 20 ruin operators and
the 15 recreate operators that were implemented. Tests were performed on a representative set of
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Figure 1.8 – Example of a partial solution
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Figure 1.9 – Insertion of the brown (6) customer without lockers

randomly generated VRPDO instances. To determine whether one configuration is significantly
different from another, theWilcoxon pairwise test (Wilcoxon, 1992) was used with a threshold of
5%. This test compares two populations of results. In our case, it compares the results obtained by
two configurations on each instance of a set of VRPDO instances. This methodology is inspired
from Stützle (2018). Note that the automatic configuration package IRACE (López­Ibáñez et al.,
2016) was also used, but it did not converge after several days of computation.
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Figure 1.10 – Insertion of the purple (5) customer without lockers

Let us define a class of operators as a group of operators that have similar purposes. First,
the ruin operators are split into 4 classes: random removals, related removals, worst removals,
and history removals. Second, the recreate operators are split into 4 classes: list heuristics, time
best insertion heuristics, regret heuristics, and ejection search. This classification is detailed in
Tables 1.3 and 1.4.

This statistical study is decomposed in two phases: (1) a study of the impact of each class of
operators; (2) a study of the impact of each individual operator.

To study classes of operators, the reference configurations are: the full configuration with all
the operators, and a minimal configuration with as few operators as possible. All the operators
of each class are removed from the full configuration and added to the minimal configuration.
All these “sub­configurations” were tested on all instances of the test set and compared. This
first phase determines whether the considered operators are redundant with other operators of
the full configuration, and whether they improve the results of the minimal configuration.

Based on the previous results, we build an intermediate configuration. The operators from
this configuration are changed one by one. If a given operator was used, then it is deactivated,
otherwise it is added to the configuration. All these alternative configurations are compared with
the intermediate configuration. It determines if the assessed operator significantly improves the
results, or if it is redundant with used operators.

The results of the operators are summarized in Tables 1.3 and 1.4. Operators marked with ++

are considered essential. Operators marked with + slightly improve the results. Operators marked
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with ­ are useless or redundant with already kept operators, and adding them does not improve
the results. The selected operators are those rated ++ and +.

Option­based operators Customer­based operators

Random
removals

­ preference­oriented random removal
+ random option removal+ SDL­oriented random removal

­ random SDL removal

Related
removals

­ distance­related option removal + distance­related customer removal
­ node neighborhood removal + zone removal
­ time­related option removal + time­related customer removal
++ (split) string removal ­ proximity customer removal
++ cluster removal ­ demand­related removal
+ route removal ­ SDL­related removal

Worst
removals

­ distance worst removal
­ time worst removal
­ neighborhood removal
­ SDL worst removal

History
removals

­ node­pair history removal ++ historical knowledge node removal

Table 1.3 – Overview of configuration experiments for ruin operators

1.4.4 Acceptance Criterion

In line 8 of Algorithm 1, the acceptance criterion determines whether the newly generated
solution should be accepted as the current solution at the next iteration.

Ropke and Pisinger (2006b) used the Metropolis criterion from Simulated Annealing (Kirk­
patrick et al., 1983). To deal with partial solutions, a modified cost was proposed in Pisinger
and Ropke (2007). The modified cost of Equation (1.1) penalizes the unserved customers with
factor β. In this formula, B is the request bank of the current solution, cost is its routing cost
(described by 1.b) and N is the set of customers.

modified cost = cost×
(

1 + β.
|B|
|N|

)
(1.1)

Santini et al. (2018) conducted a comprehensive study on the acceptance criteria for the
LNS metaheuristic. In their conclusion about the CVRP, they advocated for the record­to­record

45



Partie , Chapter 1 – Large Neighborhood Search heuristics for the Vehicle Routing Problem with
Delivery Options

VRPTW operators VRPDO operators

List heuristics

++ random order best insertion
­ normalized best insertion
+ preferred best insertion

­ oldest first best insertion
++ largest first best insertion
­ farthest first best insertion
­ closest first best insertion

Time best insertions ­ time best insertion

Regrets

­ greedy best insertion
+ SDL­regret ­

preference regret
++ 2­regret
­ 3­regret
­ 4­regret

Ejection search + ejection search

Table 1.4 – Overview of configuration experiments for recreate operators

criterion (Dueck, 1993). With this criterion, the solution is accepted if its modified cost is less
than T% larger than the modified cost of the best known solution. Furthermore, they propose
decreasing the acceptance threshold T during the algorithm. T decreases linearly between its
initial value at the beginning and 0, when the time limit is reached. They conclude that the best
values of T and β depend of the type and size of instance.

Our implementation uses the record­to­record criterion with modified cost (1.1). To avoid
tuning parameters and get a reliable acceptance criterion, a simple adaptive procedure is pro­
posed.

Our experiments empirically show that LNS performs well if the ratio of accepted solutions
is between 4% and 14%. T and β are changed so as to maintain the ratio of accepted solutions
in this target. The ratio of accepted solutions is periodically evaluated. If the ratio of accepted
solutions is less than 4%, T is multiplied by 1.5 and β is divided by 1.5. On the contrary, if it is
larger than 14%, T is divided by 1.5 and β is multiplied by 1.5.

1.4.5 Parameters tunning

In our LNS, the probability of selecting each operator is constant throughout the algorithm.
Indeed, Turkeš et al. (2020) reviewed the LNS literature and conclude that the adaptive fea­
ture has, at best, a very little positive impact. This observation was confirmed for our case by
preliminary experiments.
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In the proposed implementation, all ruin operators are equiprobable. The probability of se­
lecting each recreate operator is inversely proportional to its average running time. Furthermore,
Christiaens and Vanden Berghe (2020) propose to perform a huge number of small and fast it­
erations in LNS in order to compensate the lack of local search in this metaheuristic. We added
this functionality as a special case: if a list heuristic is selected, there is a high probability ϕ that
the destruction size will be small (between δmini and ∆mini percent of the customer) and that the
ruin operator will be local, i.e string removal, split string removal or distance­related customer
removal. The probability of each operator, δ, ∆, δmini, ∆mini and ϕ was tuned according to the
recommendations of IRACE (López­Ibáñez et al., 2016).

Christiaens and Vanden Berghe (2020) introduced the ”blink” principle for recreate opera­
tors. It randomly ignores certain insertions with a given probability during the computation of
the best insertion. In the proposed implementation, this feature did not prove to have a signif­
icant impact. It introduces diversification through randomization. Nevertheless, this principle
has been applied to the ruin operators; for each removal evaluated there is a given probability
of simply ignoring it.

To summarize, on the one hand, the list heuristics and the small destructions favor a high
number of iterations. On the other hand, using regret heuristics and ejection search tends to
reduce the number of iterations. As observed by Christiaens and Vanden Berghe (2020), the
small destruction and list heuristic can compensate for a lack of local search. Furthermore, the
numerous iterations coupled with blink provide a good exploration of the search space in the
CVRP. To deal with time windows, we observe that it is worthwhile to perform larger destruction
and to take some time to anticipate constraint violation, like Ropke and Pisinger (2006a) and
Demir et al. (2012).

Our LNS always works in two phases: In the first phase, it reduces the number of routes,
and in the second phase, it minimizes the routing cost using the established number of routes.
The first phase is either stopped when half of the time budget has been used, or sooner when a
feasible solution with the given number of routes has been found.

To conclude this section, we indicate the values of the parameters used for LNS (tuned with
the help of IRACE) :

— The probability of selecting each ruin operator is the same for all operators. The proba­
bility to blink a deletion possibility is 30%.

— The probability of selecting a recreate operator is inversely proportional to its running
time. The probability of selecting list heuristics (random order best insertion, largest first
best insertion) is 0.4. The probability of selecting the other recreate operator (2­regret,
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ejection search, SDL­regret and preferred best insertion) is 0.05.

— The destruction size and removal operator selection rule is different for the list heuristics
and the other recreate operators. In general the destruction size is between δ = 10% and
∆ = 20% of the number of customers. For the list heuristic there is a 30% probability of
performing a classical destruction (using any ruin operator) and a ϕ = 70% probability of
performing a small, local destruction. That is to say, only between δsmall = 1% and∆small =
10% of customers are removed, and a local removal operator (distance­related removal,
(split) string removal) is used. For large instances, the destruction sizes are limited to 20
and 80 customers respectively.

— The initial values of the record­to­record acceptance criteria are T = 0.18 and β = 9.
These values are adjusted every 4500 iterations by a factor of 1.5.
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1.5 LNS with small destruction

After many rounds of tests the LNS presented in Section 1.4 was improved. In this section we
will focus on a better orchestration of small and large destruction phases. This LNS framework
is used in Dumez et al. (2021c).

The utilization of the LNS framework presented in the previous section mostly relies on
the ideas presented in Ropke and Pisinger (2006a), Demir et al. (2012), and Christiaens and
Vanden Berghe (2020). The modification of the framework presented in this section are inspired
from Hemmelmayr et al. (2012). They proposed an LNS heuristic for the two­echelons vehicles
routing problem. In their method, most of the iterations focuses on the routing at the second
echelon, and the first echelon is modified only if the solution was not improved during the last
iterations.

1.5.1 Algorithm

We can now present the synopsis of the proposed LNS heuristic in Algorithm 2: Small and
Large Neighborhood Search (SLNS). In this pseudo code, s is the current solution, s∗ is the best­
found solution, and s′ is a copy of the current solution to be modified. Moreover, Σ+ is the set
of repair operators, Σ− the set of destroy operators, and Σ−|local ⊂ Σ− is the set of local destroy
operators (see Section 1.4.3). The variable iter counts the number of iterations since the last
new best solution was found or the last large destroy was performed.

The algorithm is initialized by setting iter to zero (Line (2)). The main loop is given by
the Lines (3) to (24). In each iteration, either a local or large destruction operator is selected
depending on the value of iter and the input parameter ω: If iter < ω, the iteration counter is
increased, the current solution is copied and a small destruction using a local destroy operator in
σ− ∈ Σ−|local with destruction size in [δsmall,∆small] is performed (Lines (6) to (9)). Otherwise,
the counter iter is reset, the best­found solution is copied and a large destruction is performed,
i.e., the destroy operator is randomly selected inΣ− and the destruction size is chosen at random
in [δlarge,∆large] (Lines (11) to (14)). A repair operator is randomly selected in σ+ ∈ Σ+ (Line
(4)). Then, the combination of the selected operators, σ− and σ+, is applied to solution s′ in Line
(16).

The new solution becomes the current solution in Line (17) if its modified cost is smaller
than the current or a large destruction was performed. In Line (20), the best­found solution may
be updated and the counter iter is reset accordingly.
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Algorithm 2: SLNS
1: s : initial solution
2: iter = 0
3: while the time budget is not reached do
4: randomly select a recreate operator σ+ ∈ Σ+

5: if iter < ω then
6: s′ ← s
7: iter ← iter + 1
8: randomly select a local ruin operator σ− ∈ Σ−|local
9: randomly select a destruction size Φ ∈ [δsmall,∆small]
10: else
11: s′ ← s∗

12: iter = 0
13: randomly select a ruin operator σ− ∈ Σ−

14: randomly select a destruction size Φ ∈ [δlarge,∆large]
15: end if
16: s′ ← σ+(σ−(s′,Φ))
17: if f ′(s′) < f ′(s) or iter = 0 then
18: s← s′

19: end if
20: if f(s′) < f(s∗) and Bs′ = ∅ then
21: s∗ ← s′

22: iter ← 0
23: end if
24: end while
25: return s∗

In many applications, the strength of LNS relies on its speed. Pisinger and Ropke (2007)
reports that their ALNS takes 146 seconds, on average, for performing 50,000 iterations on the
Solomon instances for the VRPTWwith 100 customers. With the same time budget, on the same
instances, SLNS performs 7.4 million iterations on average, i.e., approximately 150 times more
iterations with a CPU that is only 1.91 times faster per thread according to (PassMark­Software,
2020).

Like SISR (Slack Induction by String Removals) proposed by Christiaens and Van­
den Berghe (2020), SLNS perform a tremendous number of fast iterations to locally improve
the solutions. But experiments showed that SISR lacks of exploration to be competitive on the
VRPDO. On the contrary the previously presented LNS is a lot more focused on diversifica­
tion, similarly to the ALNS of Ropke and Pisinger (2006a). But such configurations of LNS
significantly suffer from increase in size of instances.
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Algorithm 2 uses both the intensification capabilities of SISR and the explorations ones of
Algorithm 1. Thus, SLNS is both efficient and able to reach high quality solutions, allowing it
to be competitive on large VRPDO instances as we will see in Section 1.6.

1.5.2 Parameters tunning

In SLNS, the acceptance criterion is a threshold acceptance (Dueck and Scheuer, 1990) with
a constant temperature of 0: if the new solution improves the current one, it is accepted. In
addition, solutions produced by a large destruction are always accepted. In order to manage
solutions with non­empty request bank we still compare the solutions with the modified cost
1.1. We set a constant penalization factor β = 20 in Equation 1.1.

SLNS use the same operators as LNS with the same constant probability (see Section 1.4.5).
Moreover, we set the size of the small destruction interval to [δsmall,∆small] = [0.01|N |, 0.1|N |]
and the size of the large destruction interval to [δlarge,∆large] = [0.1|N |, 0.3|N |]. For large in­
stances, the destruction sizes are limited to 20 and 80 customers respectively. Finally, The num­
ber of iterations between two large destructions is set to ω = 10|N |1.5. For example, ω =10 000
iterations with 100 customers and 80 000 with 400 customers.
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1.6 Experiments on LNS

In this section, we compare the two proposed solution frameworks on the VRPTW bench­
mark instances and on the newly generated VRPDO instances.

The methods are coded in C++ and is compiled with g++ 5.4.0. Experiments on the VRPDO
instances were performed using Linux, Ubuntu 16.04 LTS, running on an Intel Xeon X5650 @
2.57 GHz. Experiments on the VRPTW instances were performed using Linux, Ubuntu 20.04.2
LTS, running on an Intel Xeon Gold 6230 @ 2.10GHz.

1.6.1 Results on the vehicle routing problem with time windows

The LNS (Algorithm 1) and SLNS (Algorithm 2) were evaluated on 176 benchmark in­
stances of the VRPTW, proposed by Solomon and Desrosiers (1988) (100 customers) and
Gehring and Homberger (1999) (200 and 400 customers). Instances of type R are composed
of randomly located customers. Instances of type C are composed of clustered customers. In­
stances of type RC are a mix of random and clustered customers. Each type of instance includes
two groups, in which routes visit a few customers and many customers, respectively.

Tables 1.5, 1.6 and 1.7 present the results for instances with 100, 200 and 400 customers,
respectively. In each table, the results found by LNS and SLNS are comparedwith those obtained
by the ALNS of Pisinger and Ropke (2007) and by the state of the art Hybrid Genetic Algorithm
with Adaptive Diversity Management (HGSADC) of Vidal et al. (2013). The parameters of our
methods, tuned for the VRPDO, were not changed for the VRPTW. Detailed results are available
in Appendix A.2.

Each line represents the average result for one type of instance. Instance groups are listed
in column 1. Columns 2, 3 represent the average number of routes in the solution of the ALNS
and the average cost, over all instances of each group (only the best result out of 5 runs is
considered). Columns 4, 5, and 6, 7 and 8, 9 give the same information for HGSADC, LNS, and
SLNS respectively. The last lines give the total over all instances for each algorithm considered,
and the time budget allocated to each algorithm, respectively.

Figure 1.11 shows the relative gap, in percentage, between the best known solutions and
the best solutions found by LNS and SLNS out of 5 runs. For some instances, solutions
with the optimal number of vehicles were not found during the first phase of LNS, thus, so­
lutionsmay have a travel distance lower than the optimal one with the lowest number of vehicles.

These experiments show that, although it has been tailored for the VRPDO, LNS and SLNS
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competes with state­of­the­art algorithms on instances with up to 200 customers. On larger in­
stances SLNS remains fairly close to optimal solution, but the performances of LNS severely
deteriorates. Indeed, in this chapter we solely focus on non­hybrid LNS, while the regular res­
olution of a set partitioning problem to recombine routes greatly improve the performances of
LNS on the VRPTW. We refer the interested reader to the results published in Dumez et al.
(2021a).

ALNS HGSADC LNS SLNS

Instance ∅veh ∅cost ∅veh ∅cost ∅veh ∅cost ∅veh ∅cost

C1 10.00 828.38 10.00 828.38 10.00 828.38 10.00 828.38
C2 3.00 589.86 3.00 589.86 3.00 589.86 3.00 589.86
R1 11.92 1 212.39 11.92 1 210.69 11.92 1 221.97 12.00 1 209.04
R2 2.73 957.72 2.73 951.51 2.73 957.19 2.73 957.41
RC1 11.50 1 385.78 11.50 1 384.17 11.63 1 374.77 11.75 1 367.10
RC2 3.25 1 123.49 3.25 1 119.24 3.25 1 131.04 3.25 1 131.78

Total 405 57 332 405 57 196 406 57 413 408 57 205
Time (s) 150 160 100

Table 1.5 – Solomon VRPTW instances with 100 customers

ALNS HGSADC LNS SLNS

Instance ∅veh ∅cost ∅veh ∅cost ∅veh ∅cost ∅veh ∅cost

C1 18.90 2 718.77 18.90 2 718.41 18.90 2 748.24 18.90 2 723.98
C2 6.00 1 831.59 6.00 1 831.59 6.00 1 834.29 6.00 1 831.76
R1 18.20 3 615.69 18.20 3 613.16 18.20 3 788.85 18.20 3 662.15
R2 4.00 2 937.67 4.00 2 929.41 4.00 2 962.08 4.00 2 960.04
RC1 18.00 3 192.56 18.00 3 180.48 18.00 3 338.69 18.00 3 221.54
RC2 4.30 2 559.32 4.30 2 536.20 4.30 2 580.04 4.30 2 581.79

Total 694 168 556 694 168 092 694 172 521 694 169 812
Time (s) 3 180 504 500

Table 1.6 – Homberger VRPTW instances with 200 customers
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ALNS HGSADC LNS SLNS

Instance ∅veh ∅cost ∅veh ∅cost ∅veh ∅cost ∅veh ∅cost

C1 37.60 7 182.75 37.60 7 170.47 37.60 7 987.74 37.70 7 236.68
C2 11.90 3 874.58 11.60 3 952.95 11.80 4 031.95 11.90 3 922.44
R1 36.40 8 420.52 36.40 8 402.57 36.40 10 165.36 36.40 8 571.28
R2 8.00 6 213.48 8.00 6 152.92 8.00 6 317.79 8.00 6 308.28
RC1 36.00 7 940.65 36.00 7 907.14 36.00 9 317.89 36.10 8 072.79
RC2 8.60 5 269.09 8.50 5 215.21 8.60 5 370.30 8.60 5 354.11

Total 1 385 389 011 1 381 388 013 1 384 431 910 1 387 394 655
Time (s) 5 340 2 046 1 900

Table 1.7 – Homberger VRPTW instances with 400 customers

Figure 1.11 – Relative deviation between the results of the LNS or SLNS and the best known
solution, on various VRPTW instances
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1.6.2 Results on the vehicle routing problem with delivery options

VRPDO instances were randomly generated. Three types of instances were generated: U, V
and UBC. For each type, instances with 50, 100, 200 and 400 customers were generated.

All the delivery locations were randomly generated in a 50×50 square. The depot is located
at the bottom left­hand corner. Euclidean distances are considered. A unit of distance costs 1 and
takes a unit of time to be crossed. A time horizon of 12 hours, i.e. 720 time units, is considered.

In the U and UBC instances, each customer has between 1 and 3 options, with an average
of 2 options per customer. In the V instance, each customer has 1 or 2 options, with an average
of 1.5 options per customer.

In the U and V instances, the capacities are tight, both for the vehicles and the lockers. A
locker can accept between 3 and 5 parcels, and vehicle capacity is such that a route can serve
around 10 customers. In the UBC instances (U with Big Capacity), the vehicle capacity is such
that a route can serve around 25 customers. Furthermore, there are five times fewer lockers and
their capacity is five times larger.

The time window of individual locations can be either: the morning ([0; 360]), the afternoon
([360; 720]), random in the morning (i.e [ai, bi] such that 0 ⩽ ai ⩽ 240 and bi = ai + 120),
random in the afternoon (i.e [ai, bi] such that 360 ⩽ ai ⩽ 600 and bi = ai + 120) or random
in the whole day (i.e [ai, bi] such that 0 ⩽ ai ⩽ 480 and bi = ai + 240). The time window
of a shared location can be either: random in the day (i.e [ai, bi] such that 0 ⩽ ai ⩽ 240 and
bi = ai + 480) or the full day ([0; 720]).

By default, all these tests were conducted with a service level of 80% − 90%, i.e. at least
80% of the customers are served with their preferred option and at least 90% of the customers
are served with an option of level 1 or 2.

The characteristics of instance classes are summarized in Table 1.8. For each size and each
class, 10 instances were generated, leading to a total of 120 instances. All the instances are
available upon request.

Table 1.9 summarize the results of different LNS heuristics on the VRPDO instances. To
asses the performance the proposed configurations of LNS, we compare them to known config­
urations of the metaheuristic:

ALNS we configured our program as close as possible to the method presented in Pisinger and
Ropke (2007) for the VRPTW. With our implementation, the average relative deviation
between the best solutions found out of five runs and the best known solutions of the
VRPTW is of 1.31% on the Solomon instances with 100 customers. Pisinger and Ropke
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Instance Capacity Avg. number Time windows width

type of options per Individual Shared
customer locations Locations

U medium 2 2 to 6 hours 8 to 12 hours
UBC big 2 2 to 6 hours 8 to 12 hours
V medium 1.5 2 to 6 hours 8 to 12 hours

Table 1.8 – Classes of VRPDO instances

(2007) report a deviation to the optimum of 0.25% on these instances, with 146 seconds
of time budget.

SISR we configured our program as close as possible to the method presented in Christiaens
and Vanden Berghe (2020) for the VRPTW.With our implementation, the average relative
deviation between the best solutions found out of five runs and the best known solutions of
the VRPTW is of 1.08% on the Solomon instances with 100 customers. Christiaens and
Vanden Berghe (2020) do not report results on the 100 customers instances, but report
a relative diaviation to the optimum on the 200 customers instances of 0.25% with 11
minutes of time budget.

LNS we configured our method as described in Section 1.4.

SLNS we configured our method as described in Section 1.5.

Each line represents a group of instances. The type of instance, the number of customers, the
number of delivery locations and the number of options are specified in columns 1, 2, 3 and 4,
respectively. For each configuration we depict the total number of vehicles and the total routing
cost on all the considered instances. The best solution out of five runs is taken into account.
The computing time is indicated by Column 13.

Overall the VRPDO instances, SLNS clearly provides the best results. On average, it im­
proves the results of ALNS by 4.9%, those of SISR by 8.3%, and those of LNS by 10%. ALNS,
SISR, and LNS are able to find acceptable solution on instances with 100 customers, with an av­
erage relative deviations to the solutions of SLNS of 1.8%, 0.6%, and 0.2% respectively. On the
contrary, these LNS configurations are significantly outperformed on 400 customers instances,
with a average relative deviations to the solutions of SLNS of 9.4%, 23.4%, and 28.5% respec­
tively.
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ALNS SISR LNS SLNS

Type |N | |L| |O| Σveh Σcost Σveh Σcost Σveh Σcost Σveh Σcost Time(s)

U

100 120 200 105 6 627.91 105 6 592.01 105 6 605.10 105 6 537.50 300
200 240 400 205 12 492.15 205 12 744.03 205 13 522.29 205 11 853.02 2000
400 480 800 406 25 918.78 406 30 153.17 405 31 249.29 406 22 917.71 6000

V

100 96 150 104 7 174.38 104 7 033.73 104 6 998.78 104 7 072.73 300
200 192 300 204 14 601.32 204 14 505.64 204 15 031.16 204 13 677.11 2000
400 384 600 407 23 656.96 405 28 075.53 405 28 685.68 405 22 614.49 6000

UBC

100 104 200 40 3 673.21 40 3 636.98 40 3 598.91 40 3 580.71 300
200 209 400 80 6 420.59 80 6 366.18 80 6 362.56 80 6 077.53 2000
400 416 800 156 12 410.63 156 12 933.65 156 13 766.62 156 11 242.28 6000

Total 1707 112 975.93 1705 122 040.92 1704 125 820.40 1705 105 573.08

Table 1.9 – Results of different methods on the VRPDO instances
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1.7 Managerial insights on the VRPDO

In this sectionwe present managerial insights on theVRPDO about the impact of the delivery
options on the routing costs and on the quality of service. Note that these results are those pub­
lished in Dumez et al. (2021a), obtained by the standard LNS combined with a SPP (presented
in Chapter 2).

Economic impact of delivery options

To quantify the impact of delivery options, the solution of the VRPDO instances are com­
pared to those of their VRPTW counterpart. To transform a VRPDO instance into a VRPTW
instance, we consider only the home option of each customer. No preference level is taken into
account. In the VRPDO instances, home delivery options are assumed to be the preferred indi­
vidual locations. In the case of customers that only have a locker option, a random location is
added as a home location.

The total number of vehicles and the routing cost for each instance class are depicted in
Table 1.10.

VRPTW VRPDO

Gap % SDL
Type |N | Σveh Σcost Σveh Σcost (%) SDL fill rate

U
50 54 5 504.07 54 3 864.48 29.8 58% 67%
100 105 8 662.22 105 6 502.99 24.9 58% 67%
200 205 16 223.30 205 13 641.13 15.9 60% 67%

UBC
50 20 5 253.71 20 2 293.53 56.3 67% 71%
100 40 7 052.06 40 3 608.39 48.8 68% 67 %
200 80 10 681.93 80 6 384.29 40.2 66% 64%

V
50 54 5 192.10 54 3 742.59 27.9 57% 72%
100 104 9 877.77 104 7 089.06 28.2 56% 79%
200 205 18 945.38 205 14 781.23 22.0 54% 78%

Total 867 87 392.53 867 61 907.68 29.2

Table 1.10 – Economic impact of delivery options

Each line represents the average results over the 10 instances of each group. The first col­
umn indicates the type of instance and the second column the number of customers. Columns
3 and 4 indicate the total number of vehicles and the sum of routing costs over the instances of
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the group when only home delivery is considered. Columns 5 and 6 indicate the total number of
vehicles and the total routing cost over the instances of the group when all options are consid­
ered. Column 7 is the relative savings on the routing costs obtained by using delivery options.
Considering delivery options leads to a cost reduction of 29.2%, on average. Furthermore, on
the UBC instances, with large lockers, the savings are even larger. The number of routes is not
reduced, because it is determined by the binding vehicles’ capacities.

The use of SDLs is detailed in the last two columns, which detail the percentage of customers
delivered at SDLs and the average fill rate of SDLs, respectively. These results indicate that the
value of the gap in column 7 is related to the use of the shared locations. It is noticeable that a
larger part of customers are delivered at SDLs in UBC instances with big capacities. But the last
column shows that SDLs are not saturated. This suggests that alternative individual locations
play a non negligible role in the gap between the VRPTW and the VRPDO.

Additionally, looking at the actual service levels on a representative set of solutions, we
observe that the percentage of customers served with their option of level 1 (resp. level 2) is
very close to the thresholds of 80% and 90%. The service level constraints in the model are
often binding.

Delivery options are compatible with tight time windows

We performed a sensitivity analysis by modifying the width of individual locations time
windows. Considering a time window [ai, bi] at location i ∈ L, the modified time window is
still centered at time (ai + bi)/2 but its width is reduced by a factor α as shown in formula (1.2).

[a′
i, b

′
i] =

[
ai + bi

2
− bi − ai

2α
; ai + bi

2
+ bi − ai

2α

]
. (1.2)

The same experiments as in Table 1.10 were conducted with these tighter time windows.
Figure 1.12 represents the routing costs of the solutions of theVRPTW (red line) and theVRPDO
(blue line), respectively, when the width of time windows at individual locations varies.

The x­axis represent the width of time windows and the y­axis shows the routing costs The
time windows width was set by applying a factor α going from 1 and 10 in equation (1.2),
leading to time window width between 20 and 180 minutes. Note that some instances become
infeasible when the time windows are too tight. Thus, not all instances are taken into account
in this figure. The main conclusion of this figure is that the cost of both the VRPTW and the
VRPDO increase when time windows are tightened, but this increase is only 10% in the case of
the VRPDO. Similar managerial insights were also reported in Buzzega and Novellani (2021)
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Figure 1.12 – Impact on time windows on the routing costs

on the single vehicle case.
Figure 1.13 represents the number of vehicles used in the solution of the VRPTW (red line)

and the VRPDO (blue line), respectively, when the width of timewindows at individual locations
varies between 20 and 180 minutes.
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Figure 1.13 – Impact of time windows on the fleet size

With large time windows, each route can deliver many customers, so that the bottleneck is
the capacity of truck. This is the solutions of both the VRPTW and the VRPDO use 598 vehicles.
With very tight time window, the number of vehicles needed in the VRPTW grows dramatically,
while it increases from 598 to 604 for the VRPDO. The main conclusion is that considering
delivery options and SDLs makes it possible to serve customers at individual delivery locations
with very narrow time windows, at the cost of minor increase of the vehicle fleet and very
reasonable cost increase.

To illustrate this property, let us consider instance U_100_1, with 100 customers, small
trucks, and many small lockers. When the widths of original time windows are divided by 10,
the number of vehicles remains the same, with an average fill rate of 90%. The routing costs
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increase by only 2.8%. A first explanation is that the number of customers served at an SDL is
65 and 66, respectively, and these locations are not impacted by the time window reduction. A
second explanation is that 14 customers are delivered at another location and in another time
window in both cases. Finally, note that the general service level constraints are binding in the
two scenarios.

Delivery options and service level constraints

In order to quantify the impact of service level constraints, different values of parameters β1

and β2 were tested. Table 1.11 presents sum of the routing cost of all VRPDO instances, with
respect to the required service level. Columns 3, 4 and 5 correspond to solutions i which the
ratio of customers served with their preferred option (β1) is at least 70, 80 and 90, respectively.
Lines 3 to 6 correspond to the solutions where the ration of customers delivered with options 1
or 2 (β2) is equal to at least 80, 90, 95 and 100, respectively.

% of customers served with option 1 (β1)

70% 80% 90%

% of customers
served with
options 1 or 2

80 60 215.29 61 475.93 ∗ NA ∗

90 60 393.85 61 907.68 ∗ 66 155.67 ∗

95 60 710.38 61 980.41 ∗ 66 574.68 ∗

100 61 892.21 63 172.80 ∗ ­ ∗

Table 1.11 – Impact of service level on the routing costs

In most solutions of Table 1.11, the total number of vehicles used is 866. Sometimes, one
additional vehicle is necessary ; in these cases, the routing costs are followed by a *. The cell
corresponding to (β1, β2) = (90, 80) is left empty because the corresponding values of β1 and
β2 are incompatible. The cell of (β1, β2) = (90, 100) is left empty because some instances are
infeasible with such restrictive parameters.

This table shows that the service level can be greatly improved with no major increase of the
routing costs. Moreover, the service level has very limited impact on the fleet size. The impact
of β2 seems to be rather limited. Indeed, the average cost increase when β2 varies from 80 to
100 (with β1 = 70) is only 2.8%, whereas the cost increase when β1 varies from 70 to 90 (with
β2 = 90) is 9.5%.
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1.8 Conclusion

In this chapter, we proposed a new extension of the VRPTW allowing multiple delivery
options for each customer. The Vehicle Routing Problem with Delivery Options (VRPDO) in­
cludes the use of shared delivery locations, such as lockers, and takes into account customer
preferences. In addition, the model is general enough to include new modes of delivery, such as
trunk delivery. The VRPDO is theoretically challenging because it introduces synchronized re­
sources and a new structure of the search space, due to the presence of several delivery locations
for each customer.

The numerical experiments show that VRPDO can save considerable amounts of money
compared with VRPTW. Moreover, for a small cost increase, very high quality of service can
be achieved, especially with respect to the time window width.

To solve this problemwe developed a LNSmeta­heuristic based on small destructions: Small
and Large Neighborhood Search (SLNS). After implementing a large number of ruin and recre­
ate operators, a comprehensive tuning process resulted in the selection of a few relevant opera­
tors. The experiments show that combining local impact fast operators and global impact slower
operators is an efficient strategy. A key success factor of the underlying SLNS is the tremendous
number of iterations that can be performed thanks to the small destroy moves, while the search
is diversified by larger destroy moves if necessary. A comparison with previously developed
LNS metaheuristics on the VRPDO show that this combination of small and large destruction
provides much better results, especially for large instances.
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2.1 Introduction

In this chapter, we present a matheuristic based on SLNS which is used to solve several
vehicle routing problem with time windows and delivery options, generalizing the generalized
vehicle routing problem with time windows (GVRPTW, Moccia et al., 2012).

The most general considered problem is the vehicle routing problem with delivery options
(VRPDO). It extends the GVRPTW by service­level constraints defined by the customers’ pref­
erences for options and by location capacities that must be respected. It also generalizes other
problems such as the vehicle routing problem with roaming delivery locations (VRPRDL, Reyes
et al., 2017) in which options result from deliveries to a customer’s car trunk, and the vehicle
routing problem with multiple time windows (VRPMTW, Favaretto et al., 2007) in which all
options of a customer refer to the same physical location but have disjoint time windows.

The contribution of this work is the design of two exact components and their integration
in SLNS. The result is a powerfull matheuristic that offers good performances on all GVRPTW
variants mentionned above. First, a set­partitioning problem (SPP) is solved periodically to com­
bine previously found routes into new solutions. Second, the Balas­Simonetti (BS, Balas and
Simonetti, 2001) neighborhood is adapted to further improve already good solutions. The BS
neighborhood is an exponentially­sized neighborhood in which a best improving solution can be
found by solving a shortest­path problem in a layered graph. The two components are optional,
giving rise to four different configurations of the matheuristic.

The experimentation with the two exact components complementing SLNS follows the gen­
eral trend towards hybridization and matheuristics for difficult VRP variants. For example,
Tellez et al. (2018) solve a set­partitioning problem in an LNS for a time­consistent dial­a­ride
problem, Toffolo et al. (2019) use the BS neighborhood in a structural decomposition approach
for the capacitated vehicle routing problem, and Yuan et al. (2021) combine a route­based model
with dynamic programming and local searches for the GVRPTW. Our idea behind the two ex­
act components in SLNS is that delivery options require a ‘global view’ on the search space,
because the usefulness of an option is observable only when it is combined with suitable other
options. Thus, simple local modifications of a solution alone will typically not show the useful­
ness of an option. What is required is larger modifications that result from several simultaneous
changes in the assignment of customer requests to routes, the selection of possible options, and
the routing, i.e., sequence in which deliveries are performed.

In an exhaustive computational study, we evaluate the four configurations of our matheuris­
tic on several benchmark instances of the GVRPTW, VRPRDL, VRPMTW, and VRPDO. On all
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benchmark sets, at least one configuration of the matheuristic, often several, or even all config­
urations are competitive with the previous state­of­the­art methods. For the GVRPTW, the four
configurations of ourmatheuristic work almost equallywell: compared to the state of the art, they
find equivalent or slightly improving results with less computational effort. For the VRPMTV,
the comparision with the literature is even tighter: only two variants of our matheuristic out­
perform the ALNS competitor improving gaps only marginally. Compared to a recent exact
branch­price­and­cut algorithm for the VRPDL and VRPHDL, our best matheuristic configu­
ration finds all known optimal solutions except one and provides new best­known solutions for
all instances that were not solved to proven optimality. Finally, significant improvements are
provided for the VRPDO.

One might argue that a single matheuristic instead of four different matheuristic config­
urations would be preferable. However, as another contribution of our work, we will clearly
work out characteristics of GVRPTW variants and matheuristic components that either fit well
together or are cumbersome.

The remainder of this chapter is organized as follows. Section 2.2 formally defines the
GVRPTW variants. We describe the two exact components, i.e., the SPP formulation and the
BS neighborhood in sections 2.3 and 2.4 respectively. Section 2.5 presents the computational
experiments and their results. Final conclusions are drawn in Section 2.6.
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2.2 Generalized vehicle routing problems variants

In this section, we formally introduce the considered problem variants. We start with a re­
minder of the notations used for the VRPDO, introduced in Chapter 1, because it is the most
general variant. Afterwards, GVRPTW, VRPRDL and VRPMTW are briefly described and it
is explained how they can be modeled as special cases of the VRPDO. We also discuss of the
previous paper considering these problems to which we will compare our method.

2.2.1 Vehicle Routing Problem with Delivery Options

The VRPDO is the problem of selecting delivery options, exactly one for each customer, and
determining a cost­minimal set of feasible routes that serve the selected delivery options while
respecting location­capacity and service­level constraints.

Let N be the set of customers, L be the set of locations, and P = {1, 2, . . . , p̄} be the
priority levels. A delivery option is a triple composed of a customer, location, and priority level.
Formally, let O ⊂ N × L × P be the set of delivery options. For an option o ∈ O, we write
no ∈ N for its customer/delivery request, lo ∈ L for its location, and po ∈ P for its priority
level. Additionally, each option o has a service time so.

A request n ∈ N is characterized by a demand qn. The request is served by choosing one of
the options On = {(no, lo, po) ∈ O : no = n}.

We define Ol = {(no, lo, po) ∈ O : lo = l} as the set of options belonging to location
l ∈ L. Let Lm = {l ∈ L : |Ol| > 1} be the set of shared delivery locations. Shared locations
l ∈ Lm have a limited capacity Cl in terms of the number of shipments that can be delivered
there. Moreover, we assume that at all locations l ∈ L have an associated time window [al, bl]
that describes the time period in which deliveries can be performed.

A fleet of K homogeneous vehicles with capacity Q is housed at the depot location l0 ∈ L.
For each pair of locations l and l′ ∈ L, the travel time tll′ and the travel cost cll′ are given.

Service­level constraints are modeled with numbers βp ∈ [0, 1] for p ∈ P . The value βp is
the minimum percentage of options of service level not greater than p that must be chosen.

A route r = (0, o1, ..., oh, 0) is as sequence of options in which the artificial options
o0 = 0 and oh+1 = 0 represent the visit of the depot location ℓ0 at the start and end of
the route, respectively. The demand served by route r is q(r) = ∑h

j=1 qnoj
, so that r is

capacity­feasible if q(r) ≤ Q holds. A route is time­window feasible if there exists a sched­
ule (T0, T1, ..., Th, Th+1) ∈ Rh+2 which complies with the option service times, travel times,
and time windows, i.e., if Tj−1 + tℓoj−1 ,ℓoj

+soj−1 ≤ Tj for all 1 ≤ j ≤ h+1 (assuming so0 = 0)
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and [Tj, Tj + soj
] ⊆ [aℓoj

, bℓoj
] for all 0 ≤ j ≤ h + 1. A route r is feasible if it fulfills both

capacity and time­window constraints. The cost of a route is the sum of the travel cost between
the consecutively visited locations, i.e., cr = ∑h+1

j=1 cℓoj−1 ,ℓoj
.

A solutionS to VRPDO is a set of feasible routes that selects exactly one option per customer.
Let O(S) be the set of options selected in the solution S. Then, the requirement that S selects
exactly one option per request translates into |O(S)∩On| = 1 for all n ∈ N . The solution fulfills
the location capacity constraints if |O(S) ∩ Ol| ≤ Cl for all l ∈ Lm. It fulfills the service­level
constraints if, for all p ∈ P :

|{o ∈ O(S) : po ≤ p}| ≥ βp|N | ⇔ |{o ∈ O(S) : po > p}| ≤ (1− βp)|N | (2.1)

2.2.2 Generalized Vehicle Routing Problem with Time Windows

The GVRPTW (Moccia et al., 2012) is a direct generalization of the vehicle routing problem
with time windows (VRPTW, Desaulniers et al., 2014; Savelsbergh, 1985), in which customers
have to be served at one of their potential delivery locations respecting the corresponding time
window. Each potential delivery location defines a delivery option for the customer. Thus, the
GVRPTW can be modeled and solved as a VRPDO without synchronized resources.

Moccia et al. (2012) first designed a heuristic solution of the GVRPTW. They propose an
incremental tabu search using a dynamic­programming component that allows changing cus­
tomers’ locations when inserting a customer in a route. The tabu search provides solutions for
instances with up to 120 customers in a few hundred seconds. In addition, these instances were
recently solved by Yuan et al. (2021) with a column­generation based heuristic. On average, the
cost of the solutions was reduced by 0.17%, by 10 new best solutions out of the 20 instances,
with a computing time nearly divided by 2 (by taking into account the difference of processors).
The method presented by Ozbaygin et al. (2017) could deal with these instances, but they do not
present results.

2.2.3 Vehicle Routing Problem with (Home and) Roaming Delivery Loca­
tions

The VRPRDL, introduced by Reyes et al. (2017), specifically models the delivery to the
trunk of cars. Customers must specify where they plan to be during the planning horizon, thereby
defining different delivery options. The VRPRDL can be seen as a special case of the GVRPTW
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with non­overlapping time windows for the delivery options of each customer (Ozbaygin et al.,
2017).

The VRPHRDL is an extension of the VRPRDLwith an additional so­called home option for
each customer (Ozbaygin et al., 2017). This additional delivery option has a non­constraining
time window, e.g., identical to the planning horizon. Both problems are special cases of the
GVRPTW and can, therefore, be modeled and solved as VRPDO without synchronized re­
sources.

Reyes et al. (2017) propose a variable neighborhood search to solve the VRPRDL. It em­
beds a dynamic programming algorithm to optimize the travel distance of a given customer
sequence. Ozbaygin et al. (2017) develop a branch­and­price algorithm to solve the VRPRDL
and VRPHRDL with up to 120 customers. Yuan (2019) (Yuan et al., 2021) propose a heuristic­
based branch­and­price that solves instances with up to 120 customers, and find better results
than Ozbaygin et al. (2017) for 19 instances. In addition, Lombard et al. (2018) solve smaller
instances of a stochastic VRPRDL.

2.2.4 Vehicle Routing Problem with Multiple Time Windows

The VRPMTW was introduced by Favaretto et al. (2007) as an extension of the VRPTW
where each customer can have multiple time windows. If one considers each time window as
a different option, the VRPMTW is a special case of the VRPDO. All delivery locations of a
customer are at the same physical place. Options of two customers, however, always refer to
different physical places.

The objective of the VRPMTW is either minimizing the travel distance or travel duration
(total travel, service, and waiting time). In both cases, a fixed cost per route is included in the
objective function.

Belhaiza et al. (2017) propose a hybrid variable neighborhood tabu search and a set of bench­
mark instances with 100 customers. A revised version of the approach was described in Belhaiza
et al. (2017) as a hybrid genetic variable neighborhood search. Larsen and Pacino (2019) solve
the VRPMTW with an adaptive LNS with a problem­tailored insertion procedure. They gener­
alize the forward time slack procedure of Savelsbergh (1992) to take into account all the time
windows of the visited customers. Thus, the time windows used to visit the customers of a route
can be changed to insert a new customer in this route. Hoogeboom et al. (2020) describe an
adaptive variable neighborhood search relying on a generalization of the forward time slacks
for the VRPMTW with duration­minimization objective.
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2.3 Set Partioning Problem

The utilization of the Set Partitioning Problem (SPP) to solve vehicle routing problems was
first introduced by Foster (1976). It is nowadays widely used in column­generation approaches
for many variants of the VRP (Toth and Vigo, 2002). It can also be used to recombine routes
that are produced by a heuristic. The SPP is used as a post­optimization technique (Gschwind
and Drexl, 2019; Mancini, 2017; Rochat and Taillard, 1995), as well as inside hybrid heuris­
tics (Mendoza and Villegas, 2013; Parragh and Schmid, 2013; Prescott­Gagnon et al., 2009;
Subramanian et al., 2013a; Tellez et al., 2018).

Let R be a set of feasible routes. For each route r ∈ R and each option o ∈ O, the binary
parameter αo

r takes value 1 if the option o ∈ O is served by the route r ∈ R, and 0 otherwise.
The model uses binary variables λr for r ∈ R that indicate if route r is used in the solution:

Model 2: route­based model

min
∑
r∈R

crλr (2.a)

s.t.
∑
r∈R

∑
o∈On

αo
rλr = 1 ∀n ∈ N (2.b)

∑
r∈R

∑
o∈Ol

αo
rλr ⩽ C l ∀l ∈ Lm (2.c)

∑
r∈R

∑
o∈O:po>p

αo
rλr ⩽ (1− βp)|N | ∀p ∈ P \ {p̄} (2.d)

∑
r∈R

λr ⩽ K (2.e)

λr ∈ {0, 1} ∀r ∈ R

The objective (2.a) minimizes the total cost of the solution, i.e., the sum of the cost of the
routes used. The set­partitioning constraints (2.b) state that each customer must be served ex­
actly once. The capacity constraints for shared locations are given by (2.c) and the service­level
constraints by (2.d). The fleet­size constraint (2.e) sets the upper bound K on the number of
routes used in the solution. Finally, the variable domains are given.

For solving the model with aMIP solver, it is known that typically set­covering formulations
have shorter computation times than the respective set­partitioning formulations (Yıldırım and
Çatay, 2015). If the travel times and costs fulfill the triangle inequality (always true for the
benchmarks of Section 2.5), the partitioning constraints can be replaced by covering constraints,
i.e., ≥ 1 instead of = 1 in (2.b). In a set­covering solution, more than one option may be used
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to serve a customer. A simple greedy procedure can quickly repair and improve solutions which
overcover some customers. Note that the repaired solutions automatically respect the location­
capacity and service­level constraints.

To further reduce the solution times, we extend the formulation by introducing binary vari­
ables yo that indicate if option o ∈ O is selected. We prioritize branching on these variables
in the MIP solver. The new y variables are coupled with the route variables via the following
constraint

∑
r∈R

αo
rλr = yo ∀o ∈ O. (2.f)

To integrate the SPP solving into SLNS, we extend the procedure of Tellez et al. (2018)
used in their LNS­SPP for the fleet size and mix dial­a­ride problem with reconfigurable vehicle
capacity: Initially, the SPP is solved every 1000 iterations. If the solver fails to prove optimality
twice in a row the time between two calls is reduced by a quarter.

In the scope of SLNS, R is the pool of routes. This data­structure stores the routes of the
solutions generated by SLNS, whether or not they are accepted. We use the size |R| to decide on
when to solve Model 2 with the MIP solver, and the poolR is emptied after each call to the SPP
component. More precisely, it is solved when R contains at least max(100, 38000 − 180|N |)
different routes. This threshold size is increased by 60% if the solver has proven optimality
twice in a row. Conversely, it is reduced by the same factor if the solver has failed to prove
optimality twice in a row. In addition, it is solved only if the cost of the best­known solution
has improved by less than 1% over the last 5ω iterations (i.e. five times the number of iterations
without improvement before performing a large destruction, see Section 1.5). Besides, during
the experiments to tune these parameters, we noticed that it is more efficient to decide on when
to use the SPP based on the size of R rather than based on the number of iteration during which
R was filled.
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2.4 Balas­Simonetti neighborhood

Balas (1999) proposed and analyzed a family of large­scale neighborhoods that, for the asym­
metric traveling salesman problem (ATSP), can be searched efficiently (in linear time in the size
of the Hamiltonian path). The neighborhoods Nk

BS are parameterized by an integer k ≥ 2 and
Balas and Simonetti (2001) used them within a local­search algorithm for the ATSP and the
ATSP with time windows.

We very briefly summarize the Balas­Simonetti neighborhood for the ATSP: Given an TSP
Hamiltonian path x = (x0, x1, . . . , xn, xn+1) the neighborhoodNk

BS(x), for a given value k ≥ 2,
consists of all tours x′ = (x0, xπ(1), . . . , xπ(n), xn+1), where π is a permutation of {1, . . . , n}
that fulfills the following conditions: For any two indices i, j ∈ {1, . . . , n} with i + k ≤ j,
the inequality π(i) < π(j) holds. It means that if a vertex xi precedes a vertex xj by at least
k positions in the given path x, then xi must also precede xj in the neighbor x′. For a given
value of the parameter k, a best neighbor x′ ∈ Nk

BS(x) can be determined in O(k22k−2 n) by
solving a shortest­path problem in an auxiliary network (Balas, 1999), i.e., for a fixed value of
the parameter k the neighborhood exploration is linear in n.

An example of an auxiliary network is depicted in Figure 2.1 for k = 3 and n = 5. The graph
consist of layers (depicted from left to right in the figure) that correspond to the positions in the
Hamiltonian path. The vertices at each layer can be ordered into rows that are associated with
an offset value α. In the following, the vertices of the auxiliary network are called states. Thus,
each state in the auxiliary network is associated with the vertex xj+α where j is the layer of the
state and α the value associated with the state. Arcs exclusively go from states of a layer j to
states of the subsequent layer j + 1. The general structure of the auxiliary network is described
in several works, e.g., (Balas and Simonetti, 2001) and several subsequent articles (Hintsch and
Irnich, 2018; Irnich, 2008b; Tilk and Irnich, 2017).

Every source­sink path, from 0 to n+1, in the auxiliary network corresponds to a neighbor x′.
For example, the green sequence of states at the top row in Figure 2.1 corresponds to x′ = x =
(0, 1, 2, 3, 4, 5, 6). The red sequence of states corresponds to the neighbor x′ = (0, 2, 3, 1, 5, 4, 6),
i.e., a Hamiltonian path that respects the precedence constraint with respect to the initial tour x
and the given parameter k = 3.

The structure of the auxiliary network, i.e., states and connecting arcs, depends only on k and
n, but not on the given path x. The only difference between two auxiliary networks is the cost of
the arcs that must be set to the distance between the considered customers. Consequently, if the
BS neighborhood must be explored multiple times, the auxiliary network can be kept. Moreover,
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Figure 2.1 – Example of the auxiliary network for k = 3 and n = 5

the auxiliary network for k′ is always a state­induced subgraph of the auxiliary network for any
larger k > k′ (indicated by the separating lines in Figure 2.1).

Adaptions. Next, we explain how to adapt the Balas­Simonetti neighborhood such that it can
be used for all GVRPTW variants, including the VRPDO with the inter­route synchronization
constraints imposed by location capacities and service­level requirements.

First, we generalize the auxiliary network such that it can deal with options. Contrary to the
TSP, in the VRPDO, a delivery request n can be served using the different delivery options On.
Hence,meta states encompass sets of states that represent all options of the respective customer,
as shown in Figure 2.2. All states for options of a customer are linked to all states for options of
the subsequent customer.

1 2 3

1 2 3

Figure 2.2 –A sequence of customers in the auxiliary network for theATSP and its generalization
to delivery options in the GVRPTW

Second, a shortest­path problemwith resources constraints (SPPRC, Irnich and Desaulniers,
2005) must be solved on the generalized auxiliary network, in contrast to solving one without
resource constraints for the ATSP. We solve the corresponding SPPRCs with a label­setting
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algorithm as follows: A label Li = (i, Ci, Ti, Qi, (Rp
i )p∈P , (H l

i)l∈L) represents a partial path
from the depot 0 to a state i in the auxiliary network. Recall that a state i represents an option
and therefore a delivery request ni, a location li, a priority level pi, and a service time si are
associated. The components of the label Li are

(i) last state i of the partial path,

(ii) the accumulated routing cost Ci,

(iii) the earliest arrival time Ti at the location associated with i,

(iv) the accumulated demand (=load) Qi in the vehicle,

(v) the number H l
i of shipments for each shared delivery location (for all l ∈ Lm), and

(vi) the numberRp
i of options owith priority po greater than p served along the partial path (for

all p ∈ P \ {p̄}).

The initial partial path in the auxiliary network starts from the depot 0 and the label
L0 = (0, 0, al0 , 0, 0, 0). The label­setting algorithm extends labels along the arcs of the aux­
iliary network. Extending a label Li = (i, Ci, Ti, Qi, (Rp)p∈P \{p̄}

i , (Hl)l∈Lm

i ) along an arc (i, j)
results in the label Lj = (j, Cj, Tj, Qj, (Rp)p∈P \{p̄}

j , (Hl)l∈Lm

j ) defined by:

Cj = Ci + clilj

Qj = Qi + qnj

Tj = max{alj , Ti + tlilj + si}

H l
j =

H
l
i + 1, if lj = l

H l
i , otherwise

for all l ∈ L

Rp
j =

R
p
i + 1, if pj > p

Rp
i , otherwise

for all p ∈ P \ {p̄}

The extension is feasible, if the following constraints

Qj ≤ Q

Tj ≤ bj

H l
j ≤ Cl − H̄ l, for all l ∈ Lm

Rp
j ≤ (1− βp)|N | − R̄p, for all p ∈ P \ {p̄}

are fulfilled, where the values H̄ l for l ∈ L and R̄p for p ∈ P \ {p̄} are parameters that control
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the required slack in the location­capacity and service­level constraints.

The presented adaptation let us use the Balas­Simonetti neighborhood on the TSPDO, but
not on the VRPDO. We consider three different use cases for the BS component with multiple
routes:

(1) the local optimization of a single route

(2) the local optimization of a giant route that aggregates all routes of the solution

(3) the simultaneous local optimization each pairs of routes

In case of a single route r ∈ s taken from a current solution s, the parameters H̄ l and R̄p for
p ∈ P \ {p̄} can be set to the resource consumptions of all other routes r′ ∈ s \ {r}.

In the giant route case, all routes of a given solution s need to be joined as in (Irnich, 2008a)
and (Hintsch and Irnich, 2018). The parameters H̄ l and R̄p are set to 0. On arcs (0, 0) joining
two different routes, the resources T and Q are reset to al0 and 0, respectively. In contrast, the
resources H and R are kept at their current value enabling that the inter­route synchronization
constraints are incorporated correctly.

In case of pairs (r1, r2) of routes, the two routes are joined leading to a partial giant route.
The parameters H̄ l and R̄p are then set to the resource consumptions of all other routes r′ ∈
s \ {r1, r2}. Note that the BS neighborhood here also allows moving the depot vertices (in the
middle) so that the route length of r1 and r2 can change.

Since all resource extensions are non­decreasing and resource consumptions are bounded
from above, we can apply standard≤­dominance (Irnich, 2008b). Obviously, resourceH andR
are obsolete in the GVRPTW, VRPRDL, VRPHRDL, and VRPMTW. However, due to a possi­
bly large number of capacitated shared delivery locations and preference levels in the VRPDO,
the dominance relation can become rather weak in this variant.

We have conducted some preliminary experiments that have shown that the route­pairing
version is the most effective (note that it includes the single route optimization). Solving the
SPPRC for the giant route is excessively time­consuming, even on small instances and for small
BS parameters k ≥ 2. We therefore use the BS component only for all pairs of routes in the
following.

Acceleration Techniques. As computing time is essential, we devise six different acceleration
techniques, two exact (they do not change the output of the labeling algorithm) and four heuristic
acceleration methods (they may hinder the labeling algorithm to compute an optimal solution
of the SPPRC).
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On the exact side, we first use a bidirectional labeling algorithm (Righini and Salani, 2006).
Note that backward extension and merging of labels follows standard rules (Irnich, 2008a).

Second, when pairing routes, we solve an SPPRC on every pair of routes in the solution,
i.e., each route will be used in several combinations. Therefore, some of the labels computed at
the beginning of the forward and backward labeling are identical for pairs that share a common
route and must be computed only once.

On the heuristic side, we first restrict the labeling to a limited discrepancy search (Feillet
et al., 2007). Therein, we limit the number of customers that can change their delivery option.
The consequence is that all customer requests can still be permuted but only a limited number
of the currently used options can be replaced by an alternative option of the respective request.
In our experiments, we limit the number of customers that can change their delivery option to 3.

Second, we use a heuristic bounding strategy that discards labels if their cost is larger than
some threshold value. The threshold value is computed as the difference between the best known
cost and the sum of the best individual service cost of each non­served customer. For each so­
lution computed in the course of the new LNS, we compute a customer­specific service cost
of each customer and update the best one if necessary: If a customer is served in an individual
delivery location, its customer­specific service cost is the mean of the costs of the ingoing and
outgoing arcs used to access it. If a customer is served in a shared delivery location, the cost of
the ingoing and outgoing arcs is divided by two times the number of customers served at this
location by this route.

Third, a significant number of the resources of a label is dedicated to the capacity consump­
tion of shared delivery locations, which results in a relatively weak dominance. To strengthen
the dominance, we ignore some of the shared delivery locations in the dominance test. To de­
cide which shared delivery locations are ignored, the cost of the best solution that completely
utilizes the capacity of a location is recorded in the LNS. We ignore those locations used only
in solutions with a cost that is more than 10% higher than the cost of the current best­found
solution.

Fourth, routes are sequences of options and multiple options taking place at the same shared
delivery location can be swapped without changing the cost of the solution. We break these
symmetries by maintaining the order of the currently chosen options of the same shared delivery
locations.

Both exact components are only applied if the cost of the best­known solution has improved
by less than 1% over the last 5ω iterations. Moreover, a good solution­quality­to­time compro­
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mise is a small value of k = 5. With this value the BS component is applied exclusively to
solutions that serve all customers (i.e with an empty request bank Bs) and with a cost smaller
than 1.01 times of the cost of the best­known solution. These parameters were obtained from
preliminary experiments.
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2.5 Computational Experiments

To summarize, let us present Algorithm 3 which is the outline of SLNS with the two exact
components. It differs from Algorithm 2 by the following instructions:

Line (16) applies the Balas­Simonetti neighborhood on the current solution if it is promising.

Line (19) saves the routes of the current solution in the pool R.

Line (28) applies the SPP to recombine the routes of R and improve solution s.

Algorithm 3: Small and Large Neighborhood Search with Set Partitioning Problem
and Balas­Simonetti neighborhood

1: s : initial solution
2: iter = 0, R← ∅
3: while the time budget is not reached do
4: randomly select a recreate operator σ+ ∈ Σ+

5: if iter < ω then
6: s′ ← s
7: randomly select a local ruin operator σ− ∈ Σ−|local
8: randomly select a destruction size Φ ∈ [δsmall, ∆small]
9: else
10: iter = 0
11: s′ ← s∗

12: randomly select a ruin operator σ− ∈ Σ−

13: randomly select a destruction size Φ ∈ [δlarge, ∆large]
14: end if
15: s′ ← σ+(σ−(s′, Φ))
16: if f(s′) < (1 + ϵ)f(s∗) and s′ is feasible then
17: improve s′ with the Balas­Simonetti neighborhood
18: end if
19: add routes of s′ to pool R
20: iter ← iter + 1
21: if f ′(s′) < f ′(s) or iter = ω then
22: s← s′

23: end if
24: if f(s′) < f(s∗) and Bs′ = ∅ then
25: s∗ ← s′

26: iter ← 0
27: end if
28: if a sufficient number of routes is generated then
29: improve s with the SPP and route set R
30: R← ∅
31: end if
32: end while
33: return s∗
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In the following, we evaluate four configurations of Algorithm 3:

SLNS without any exact component Lines (16), (19), and (28) deactivated

SLNS+BS with only the BS component Lines (19), and (28) deactivated

SLNS+SPP with only the SPP component Line (16) deactivated

SLNS+SPP+BS with both SPP and BS

In this section, we report the results of computational experiments that were conducted
on GVRPTW, VRPRDL, VRPHRDL, VRPMTW, and VRPDO benchmarks with the four
configurations of the matheuristic. The algorithms have been coded in C++ and compiled
into 64­bit single­thread code with g++ 5.4.0. All experiments were performed using Linux,
Ubuntu 16.04 LTS, running on an Intel Xeon X5650 @ 2.57GHz. We use IBM Ilog
CPLEX 12.8.0 (IBM, 2018) to solve the SPP and activate the options branch_up_first and
emphasis_on_hidden_feasible_solutions.

A comparison with algorithms from the literature on standard benchmark sets for the
GVRPTW, VRPRDL, VRPHRDL, VRPMTW, and VRPDO is conducted in Sections 2.5.1
to 2.5.4, respectively. A synthesis of numerical results is proposed in Section 2.5.5. Finally,
Section 2.5.6 presents additional experimental results. Our results on the VRP(H)RDL and the
GVRPTW are compared to those recently published in Yuan et al. (2021), furthermore, the
scaling capabilities of our method are evaluated on 400 customers VRPDO instances.

The tables presented in the following sections provide the following information:

Instance(s): Name of the benchmark instance (group)

#: Number of instances in the group

|N |: Number of customer requests

#veh: Upper bound computed/set on the number of vehicle/the fleet size

Σveh: Sum of the number of vehicles over the group of instances

Cost: Overall cost of the best obtained solution

ΣCost: same, summed over the group of instances

#Best: Number of instances for which an algorithm has found a best­known solution

GAP: gap between the best solution value found by our algorithm (UB) and the one from the
literature (Sol) – computed as 100 · (UB − Sol)/Sol

∅Gap: Average GAP over the respective instance group
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2.5.1 Results for the GVRPTW

We compare all four configurations of SLNS with the Iterative Tabu Search (ITS) of Moccia
et al. (2012) on their benchmark containing instances with up to 120 customers. These instances
are named i-n-vmin-vmax where n is the number of customers, vmin the minimum, and vmax the
maximum number of options per customer.

Moccia et al. (2012) consider the single objective of routing­cost minimization. For a fair
comparison, we bound the number of available vehicles to the value reported in their work.

Moccia et al. (2012) performed their computational experiments on an Intel Core Duo @
1.83 GHz and limited their algorithm to 105 iterations taking a total computation time of 8,105
seconds. In our matheuristic, we allocate a quota for the computation time for each instance ac­
cording to the number of customers. In total, the SLNS consume 524 seconds for all 20 bench­
mark instances. According to PassMark­Software (2020), on single thread benchmarks, their
processor is 2.18 times slower than ours. It means that, on average, the SLNS is configured to
run approximately 7 times faster than the ITS.

ITS SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Instance #veh Cost Cost Gap Cost Gap Cost Gap Cost Gap

i­030­04­08 4 3 498 3 497 ­0.03 3 497 ­0.03 3 497 ­0.03 3 497 ­0.03
i­030­08­12 4 2 866 2 796 ­2.44 2 796 ­2.44 2 796 ­2.44 2 796 ­2.44
i­040­04­08 6 3 811 3 811 0.00 3 811 0.00 3 811 0.00 3 811 0.00
i­040­08­12 6 3 759 3 768 0.24 3 768 0.24 3 768 0.24 3 768 0.24
i­050­04­08 8 5 447 5 447 0.00 5 447 0.00 5 439 ­0.15 5 447 0.00
i­050­08­12 8 4 034 4 034 0.00 4 034 0.00 4 034 0.00 4 034 0.00
i­060­04­08 8 5 919 5 908 ­0.19 5 926 0.12 5 919 0.00 5 926 0.12
i­060­08­12 8 4 303 4 303 0.00 4 303 0.00 4 303 0.00 4 332 0.67
i­070­04­08 10 6 205 6 246 0.66 6 246 0.66 6 224 0.31 6 246 0.66
i­070­08­12 10 4 645 4 644 ­0.02 4 644 ­0.02 4 644 ­0.02 4 644 ­0.02
i­080­04­08 12 7 425 7 390 ­0.47 7 394 ­0.42 7 394 ­0.42 7 394 ­0.42
i­080­08­12 12 5 734 5 686 ­0.84 5 661 ­1.27 5 692 ­0.73 5 661 ­1.27
i­090­04­08 11 7 110 7 187 1.08 7 182 1.01 7 187 1.08 7 215 1.48
i­090­08­12 11 5 810 5 903 1.60 5 869 1.02 5 830 0.34 5 808 ­0.03
i­100­04­08 14 7 455 7 308 ­1.97 7 308 ­1.97 7 295 ­2.15 7 295 ­2.15
i­100­08­12 14 6 703 6 546 ­2.34 6 546 ­2.34 6 585 ­1.76 6 606 ­1.45
i­110­04­08 16 8 719 8 696 ­0.26 8 687 ­0.37 8 711 ­0.09 8 687 ­0.37
i­110­08­12 16 6 281 6 249 ­0.51 6 487 3.28 6 338 0.91 6 310 0.46
i­120­04­08 15 8 512 8 344 ­1.97 8 357 ­1.82 8 344 ­1.97 8 344 ­1.97
i­120­08­12 15 6 833 6 829 ­0.06 6 829 ­0.06 6 774 ­0.86 6 774 ­0.86

Total 208 115 069 114 592 ­0.38 114 792 ­0.22 114 585 ­0.39 114 595 ­0.37
# Best 6 11 9 10 11

Table 2.1 – Results for the GVRPTW benchmark of Moccia et al. (2012)
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The results are presented in Table 2.1. Note that Moccia et al. (2012) does not indicate
whether their results are the best results out of several runs. For the four SLNS configurations,
the best solution out of five runs is taken into account. The best solution values are marked in
bold.

All four SLNS configurations outperform the results of the ITS. The most best known solu­
tion (BKS) are found with SLNS and SLNS+SPP+BS. Regarding the routing cost, SLNS+SPP
performs best and improves the results of ITS by 0.39 % on average with a maximum improve­
ment of 2.44 %. Moreover, SLNS+SPP provides an equivalent or better solution than ITS on 15
of the 20 instances. However, all four configurations of SLNS perform rather similarly on the
GVRPTW benchmark. In total, we provide 14 new best­known solutions. Detailed instance­by­
instance results can be found in Appendix A.3.

2.5.2 Results for the VRPRDL and VRPHRDL

We next compare the four SLNS configurations with the exact branch­price­and­cut (BPC)
algorithm of Tilk et al. (2020) on a benchmark set originally proposed by (Reyes et al., 2017).
As suggested by Ozbaygin et al. (2017), the instances should be modified such that the triangle
inequality for travel cost and travel times holds. The modified benchmark that we also use con­
sists of 120 randomly generated instances with a size ranging from 15 to 120 delivery requests,
with a maximum of 6 options per request. The benchmark set is divided into 60 VRPRDL and
60 VRPHRDL instances.

Note that we cannot fairly compare with the variable neighborhood search of Reyes et al.
(2017), because we only have access to the modified instances provided by Ozbaygin et al.
(2017). Since the BPC of Tilk et al. (2020) minimizes routing costs, we only focus on routing­
cost minimization. To this end, we bound the number of vehicles by the number of routes given
in their solutions.

The time budget for the four configurations of the SLNS is now set to 60 seconds for in­
stances with up to 60 customers, and 300 seconds for the 120­customer instances. This is again
a rather small computation time compared to the 2 hour and 6 hour time limit used in Tilk et al.
(2020).

Aggregated results for the VRPRDL and the VRPHRDL are shown in Tables 2.2 and 2.3,
respectively. Each line refers to a group of instances with identical number |N | of customers. The
BPC algorithm solves all 60 VRPRDL instances and 53 of 60 VRPHRDL instances benchmark
set to proven optimality. The entry marked with ‡ indicates that best­known solution values have
been used here, because optimality could not be proven by the BPC algorithm for seven instances
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in this group. Again, the best solution values are marked in bold.

Comparing the four matheuristic configurations, SLNS+SPP performs best on both prob­
lem variants. For the VRPRDL, all optimal solutions could be found, while for the three other
configurations the results are between 0.01% and 0.04% worse than the optimal solutions. Re­
garding the VRPHRDL, the four configurations improve the cost over the non­optimal solutions
provided in Tilk et al. (2020). SLNS+SPP contributes with the largest improvement 0.36 % on
average. Moreover, SLNS+SPP finds all but two known optimal solution values and the gap is
2.2% for the instance group with 120 customers that contains all instances with unknown opti­
mal solutions. Moreover, seven new best­known solutions have been obtained. Detailed results
can be found in Appendix A.4.

BCP SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Instances # |N | Σveh Σcost Σcost ∅Gap Σcost ∅Gap Σcost ∅Gap Σcost ∅Gap

1­5 5 15 24 6 072 6 072 0.00 6 072 0.00 6 072 0.00 6 072 0.00
6­10 5 20 27 6 848 6 848 0.00 6 848 0.00 6 848 0.00 6 848 0.00
11­20 10 30 68 18 595 18 595 0.00 18 595 0.00 18 595 0.00 18 595 0.00
21­30 10 60 129 37 213 37 213 0.00 37 213 0.00 37 213 0.00 37 213 0.00
31­40 10 120 189 53 738 53 759 0.04 53 876 0.22 53 738 0.00 53 761 0.04

41­50_v1 10 40 94 29 838 29 838 0.00 29 842 0.02 29 838 0.00 29 838 0.00
41­50_v2 10 40 74 21 863 21 863 0.00 21 863 0.00 21 863 0.00 21 863 0.00

Total 60 605 174 167 174 188 0.01 174 309 0.04 174 167 0.00 174 190 0.01
# Best 60 59 55 60 59

Table 2.2 – Results for the VRPRDL benchmark of Ozbaygin et al. (2017)

BCP SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Instances # |N | Σveh ΣCost ΣCost ∅Gap ΣCost ∅Gap ΣCost ∅Gap ΣCost ∅Gap

1–5 5 15 19 5 450 5 450 0.00 5 450 0.00 5 450 0.00 5 450 0.00
6–10 5 20 20 5 604 5 604 0.00 5 604 0.00 5 604 0.00 5 604 0.00
11–20 10 30 52 15 128 15 128 0.00 15 128 0.00 15 128 0.00 15 128 0.00
21–30 10 60 83 26 800 26 800 0.00 26 800 0.00 26 800 0.00 26 800 0.00
31–40 10 120 128 38 107‡ 37 263 ­2.12 37 349 ­1.89 37 234 ­2.20 37 232 ­2.22
41–50_v1 10 40 87 27 996 27 996 0.00 27 996 0.00 27 996 0.00 27 996 0.00
41–50_v2 10 40 67 20 958 20 958 0.00 20 962 0.02 20 962 0.02 21 029 0.36

Total 60 456 140 043 139 199 ­0.35 139 289 ­0.31 139 174 ­0.36 139 239 ­0.31
53 57 54 58 56

Table 2.3 – Results for the VRPHRDL benchmark of Ozbaygin et al. (2017)
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2.5.3 Results for the VRPMTW

We compare the SLNS configurations with the ALNS of Larsen and Pacino (2019) on the
adapted Solomon benchmark instances for the VRPMTW provided by Belhaiza et al. (2014).
The algorithm of Belhaiza et al. minimizes the sum of the total routing cost and cost of the
vehicles used. Since vehicle costs are fairly large (between 200 and 1000), we run Algorithm 2
twice, first to minimize the number of vehicles (which is then bounded), and second to minimize
the routing cost, similarly to Ropke and Pisinger (2006a). The first phase tries to decrease the
number of vehicles by removing the smallest route from the solution each time a feasible solution
is found.

We report the best solution found out of 10 runs with an overall time budget of 600 seconds
for both phases per instance. Larsen and Pacino (2019) used the same time limit and number of
runs. Moreover, they performed their computational experiments on an Intel Core i7­4790K @
4.00GHz, which is 2.02 times faster than our processor (see PassMark­Software, 2020).

SLNS configurations

ALNS SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Group # Σveh ΣCost Σveh ΣCost Σveh ΣCost Σveh ΣCost Σveh ΣCost
∅Gap ∅Gap ∅Gap ∅Gap

rm 1 8 73 21 831.5 73 21 849.0 73 21 830.8 73 21 817.6 73 21 825.3
0.08 ­0.01 ­0.06 ­0.03

rm 2 8 16 21 477.3 16 21 489.3 16 21 486.8 16 21 500.4 16 21 499.3
0.05 0.04 0.11 0.10

cm 1 8 86 25 821.1 84 25 754.3 83 25 750.5 83 25 609.3 83 25 550.6
­0.30 ­0.29 ­0.85 ­1.08

cm 2 8 37 33 249.9 37 33 265.4 37 33 319.6 37 33 279.0 37 33 245.0
0.05 0.20 0.09 ­0.02

rcm 1 8 82 25 747.4 82 25 805.2 82 25 815.7 82 25 801.7 82 25 806.3
0.23 0.26 0.21 0.23

rcm 2 8 16 21 854.0 16 21 865.0 16 21 881.1 16 21 881.1 16 21 878.4
0.05 0.13 0.12 0.11

Total 48 310 149 981.2 308 150 028.1 307 150 084.6 307 149 889.1 307 149 804.9
0.03 0.06 ­0.06 ­0.11

# Best 18 17 16 20 24

Table 2.4 – Results for the VRPMTW benchmark of Belhaiza et al. (2014)

Table 2.4 shows aggregated results for the six groups of instances (R=random, C=clustered,
or RC=partly random, partly clustered; series 1 and 2 with tight and wide time windows,
respectively). Detailed results per instance are presented in Appendix A.5.
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Comparing all five algorithms, the ALNS produces solutions with more vehicles than our
SLNS configurations, which is caused by the different performance in the group cm1. Regarding
the overall­cost objective, results over all five algorithms are rather similar (total differences are
below 0.2%). SLNS+SPP+BS performs best, it improves the results of the ALNS by 0.11 % and
provides the most best­known solutions. Over the 48 instances, 23 new best solutions are found
by (at least) one of the four SLNS configurations. Note that the gap improvement is relatively
small due to the large fixed cost for the utilization of vehicles.

2.5.4 Results for the VRPDO

For the VRPDO, we test the SLNS configurations on the instances described in Section 1.6.
The required service levels are given by β1 = 80 % and β2 = 90 %. The time budget is set to
300 seconds for 100­customers instances and 2 000 seconds for 200­customers instances.

Recall that the VRPDO has a hierarchical objective. Thus, Algorithm 2 is run twice, first to
minimize the number of vehicles, and second to minimize the routing cost.

Table 2.5 presents the aggregated results. Each line refers to a group of instances with iden­
tical number of customers and options. Columns 3 and 4 indicate the total number of vehicles
and the total cost of the best solutions found out of five runs of SLNS. For each of its variant we
indicate the total cost and the average gap to the cost of the solutions of SLNS. ‡ indicates that
one route less was needed. Detailed results can be found in Appendix A.1.

SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Group # Σveh ΣCost ΣCost ∅Gap ΣCost ∅Gap ΣCost ∅Gap

U100 10 105 6 558.55 6 612.34 0.83 6 528.21 ­0.42 6 548.26 ­0.16
V100 10 104 7 078.08 7 070.62 ­0.10 7 026.62 ­0.71 7 052.34 ­0.39
UBC100 10 40 3 593.88 3 657.44 1.75 3 599.04 0.16 3 612.59 0.58
U200 10 205 11 959.32 11 983.34 0.27 11 768.85 ­1.51 11 786.57 ­1.39
V200 10 204 13 716.05 13 725.32 0.06 13 741.99 0.29‡ 13 540.19 ­1.29
UBC200 10 80 6 062.81 6 227.54 2.76 6 072.03 0.18 6,232.32 2.74

Total 738 48 968.68 49 276.59 0.93 48 736.74 ­0.34 48 772.27 0.01
# Best 16 7 27 27

Table 2.5 – Results for the VRPDO benchmark of Dumez et al. (2021a)

Among the SLNS configurations, SLNS+SPP produces the best results with the smallest
routing costs. Moreover, SLNS+SPP is the only configuration that is able to find a solution with
one less vehicle on instance V_200_3. For all other instances the minimum number of vehicles is
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identical over all configurations. SLNS+SPP improves the results compared to SLNS by 0.34%
on average and by up to 1.51% on the U instances with 200 customers. It finds the best­known
solution on 35 of the 60 instances.

Configuration SLNS+SPP+BS performs very similarly to SLNS+SPP. It finds two more
best­known solution and the solution quality is less than 0.5 % worse. Moreover, the detailed
results of Appendix A.1 show that configuration SLNS+SPP+BS exclusively finds new best
solutions for 14 instances.

2.5.5 Comparison of matheuristic configurations

To summarize the results for the four GVRPTW variants, we group all instances according
to different criteria to further assess the performance of the matheuristic configurations. To this
end, we report the gap to the best­known solution value and the number of best­known solutions
found. To determine the best­known solution value, we include our own results from the previous
tables. Formally, the gap (in percent) is computed as 100 · (UB−BKS)/BKS, whereBKS is
the best­known solution value from the literature, now including our results and UB is the best
solution value found by the algorithm considered.

For the VRPDO, we consider only instances for which all four configurations achieve a solu­
tion with the same number of vehicles. As a consequence, the instance V_200_3 is disregarded.
We group the instances according to the VRP variant, the number of customers per route in the
BKS, and the number of options per customer.

Table 2.6 shows aggregated results regarding the performance per group: The first column
indicates the category used for grouping the instances, the second column gives the value defin­
ing the group, and the third column shows the number of instances in that group. The next four
columns report the average gap and the last four columns report the number of best­known so­
lutions found. In each line, the smallest average gap and the largest number of BKSs found are
highlighted in bold.
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Results grouped by # % Gap # BKS

SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Variant

GVRPTW 20 0.27 0.42 0.25 0.27 11 9 10 11
VRPRDL 60 0.01 0.04 0.00 0.01 59 55 60 59
VRPHRDL 60 0.04 0.08 0.03 0.08 57 54 58 56
VRPMTW 48 0.32 0.35 0.23 0.18 17 16 20 24
VRPDO 59 1.28 2.24 0.73 1.31 16 7 27 27

Customers
per Route

[1;6[ 77 0.00 0.03 0.00 0.00 77 75 77 77
[6;10[ 83 0.37 0.44 0.21 0.20 50 44 56 59
[10;20[ 44 1.06 1.31 0.41 0.55 11 11 24 23
[20;∞[ 43 0.50 1.60 0.61 1.30 18 10 12 14

Options per
Customer

[1;2[ 32 0.95 0.95 0.46 0.44 4 9 11 14
[2;3[ 52 0.96 2.08 0.65 1.30 19 9 21 22
[3;4[ 97 0.04 0.09 0.03 0.02 90 83 91 91
[4;∞[ 66 0.22 0.27 0.14 0.19 43 39 46 46

Total 247 0.40 0.67 0.25 0.39 156 139 169 173

Table 2.6 – Comparison of the four matheuristic configurations
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Regarding the different problem variants, all configurations except SLNS+BS perform
rather similarly on the instances for the GVRPTW, VRPRDL, and VRPHRDL. For VRPMTW
instances, SLNS+SPP+BS is clearly the best configuration, and for the VRPDO instances,
SLNS+SPP is the best. In particular, regarding ‘# BKS’, the two configurations with the SPP
component outperform their counterparts without SPP component on the VRPMTW and VR­
PDO.

The rather bad performance of the BS component on VRPDO instances can be attributed to
the additional synchronizations constraints only present in this variant. These constraints imply
that a larger set of resources has to be taken into account in the label­setting algorithm. As a
result, the practical difficulty of the SPPRC increases substantially, making the BS component
too time­consuming relative to the improvements obtained with BS.

When instances are grouped according to route length, we can clearly see that the two exact
components (i.e., SLNS+SPP+BS) are beneficial for the route lengths between 6 and 20 cus­
tomers. There is nearly no difference between configurations for routes with 6 or less customers,
while the exact components worsen the results for more than 20 customers.

When grouped according to the number of options per request, it seems that gaps decrease
when the number of options per customer rises. However, this trend is not clear­cut.

To summarize, configuration SLNS+BS performs worst, while both configurations
SLNS+SPP and SLNS+SPP+BS are very competitive. The former produces the best gaps, while
the latter provides the most BKS. Both configurations are also complementing each other well,
because the overlap between the 169 and 173 BKS (see last two columns of Table 2.6) is only
145 instances. We can also conclude that the BS component is only beneficial in combination
with the SPP component.

We are able to support the above interpretations with the help of performance profiles (Dolan
and Moré, 2002). Performance profiles allow the comparison of a setA of algorithms which are
all applied to the same benchmark set. We use the four configurations A = {SLNS, SLNS +
BS, SLNS + SPP, SLNS + SPP + BS} as the algorithms to compare. The performance
profile ρA : [1,∞) → [0, 1] of configuration A ∈ A is a distribution function of the ratio
zA/zbest, where zA is the solution value of configuration A and zbest = minA∈A zA. In other
words, the value ρA(τ) is the fraction of instances for which algorithmA finds a solution within
a factor of τ > 1 of the cost of the considered solution relative to the cost of the best solution
found by all algorithms inA. In particular, ρA(1) is the proportion of instances for which A has
found the best solution among all matheuristic configurations.

We first compare performance profiles for all instances with those for groups of instances
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(c) Instances with [10, 20) customers per route
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(d) Instances with [20,∞) customers per route

Figure 2.3 – Performance profile of the four variants, grouped by average route length

differing in the average number of customers per route (like the second section in Table 2.6).
Figure 2.3 contains four performance profiles. Note that the group [0, 6), i.e., with a very small
number of average customers per route, has been omitted, since all but one configurations always
find the BKS. The comparison of the profiles reveals:

— SLNS+BS is inferior to all other configurations in all groups.

— Comparing SLNS+SPP and SLNS+SPP+BS, we can state that the Balas­Simonetti neigh­
borhood is only providing a small advantage for the group [6, 10) with rather short routes.
In the group [10, 20), the configuration SLNS+SPP+BS using BS neighborhood is com­
plementary to the configuration SLNS+SPP (note the overlapping profiles).
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— The longer the routes, the more obvious and pronounced is the difference between SLNS
and SLNS+BS as well as between SLNS+SPP and SLNS+SPP+BS.

— For the groups [6, 10) and [10, 20), it is evident that the set­partitioning component in
SLNS+SPP is indispensable to reach the high­quality solutions.

We also pointed out that the performance of the BS component strongly depends on the
number of resources to be included in the SPPRC. Recall that additional resources are needed
in the VRPDO to count the number of shipments delivered to every shared location and for
counting priorities. Hence, a deterioration of the BS component in the VRPDO can be expected
when compared to the other GVRPTW variants.
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(a) All GVRPTW except VRPDO instances
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Figure 2.4 – Performance profiles of the solution value relative to the best found solution grouped
by GVRPTW variant

The performance profiles shown in Figure 2.4 strongly support the given interpretation.

— Differences between SLNS and SLNS+BS as well as between SLNS+SPP and
SLNS+SPP+BS are small for non­VRPDO instances but substantial in the VRPDO case.

— The profiles of SLNS+SPP and SLNS+SPP+BS are almost identical for non­VRPDO
instances (Figure 2.4a). This is in line with the observation that the two configurations
are complementing each other. As observed for the VRPMTW, the BS component in
SLNS+SPP+BS can even lead to a superior performance.
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— The comparison between Figure 2.4a and 2.4b shows that all configurations perform infe­
rior on VRPDO instances. This is a strong indication that this GVRPTW variant is more
‘difficult’.

— For values of τ very close to 1, i.e., for finding high­quality solutions, the BS component
is generally useful.

— Also here the set­partitioning component is indispensable to reach the high­quality solu­
tions, in particular for the VRPDO.

2.5.6 Additional experiments

In addition to the results published in Dumez et al. (2021c), we would like to present some
latest results.

They were performed on Ubuntu 20.04 LTS running on an Intel Xeon Gold 6230 CPU @
2.10GHz with IBM Ilog CPLEX 20.1. The computing time was scaled down by a factor 1.7
according to PassMark­Software (2020).

VRPRDL and VRPHRDL

Very recently, Yuan et al. (2021) also solved these VRP(H)RDL instances with an heuris­
tic method. These solutions have a fleet size corresponding to the number of vehicles used in
Ozbaygin et al. (2017). We compare the solutions of these two studies with those of SLNS+SPP
with the same number of routes. Aggregated results are presented in Table 2.7 for the VRPRDL
and in Table 2.8 for the VRPHRDL. Each line corresponds to an instance group specified by the
first column. The second column indicates the number of instances in the group and the third
column, the number of customers. Columns 4 and 5 detail the results provided by Ozbaygin
et al. (2017): the total number of routes and the total cost of their solutions. Columns 6 and 7
show the results of the Column­Generation Based Heuristic (CGBH, Yuan (2019); Yuan et al.
(2021)): the total cost of their solutions and the total computing time. Columns 6 and 7 give the
same information for our SLNS+SPP.

First of all, let us underline that the results of the CGBH and those of SLNS+SPP are ex­
tremely close. Over all the instances of both problems, the largest relative deviation in the cost of
the solutions from both algorithms is of 0.81%. On average, the deviation between our method
results and those of Yuan et al. (2021) is 0.01% on the VRPRDL, and 0.02% on the VRPHRDL.
Thus, both are improving the results of Ozbaygin et al. (2017).
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Second, about the computing time, CGBH is faster on smaller instances but SLNS+SPP is
faster on the larger ones. Nonetheless, for these experiments, we used a processor 1.4 faster than
their (PassMark­Software, 2020).

BCP CGBH SLNS+SPP

Instances # |N | Σveh Σcost Σcost ΣTime Σcost ΣTime

1­5 5 15 24 6 072 6 072 1 6 072 15
6­10 5 20 28 6 848 6 848 2 6 848 20
11­20 10 30 68 18 595 18 595 10 18 595 50
21­30 10 60 129 37 213 37 213 44 37 213 70
31­40 10 120 195 53 881 53 768 621 53 738 350

41­50_v1 10 40 94 29 842 29 842 22 29 838 60
41­50_v2 10 40 75 21 863 21 863 43 21 863 60

Total 60 613 174 314 174 201 743 174 167 625

Table 2.7 – Comparison to Yuan et al. (2021) on the VRPRDL

BCP CGBH SLNS+SPP

Instances # |N | Σveh Σcost Σcost ΣTime Σcost ΣTime

1­5 5 15 19 5 450 5 450 1 5 450 15
6­10 5 20 20 5 604 5 604 3 5 604 20
11­20 10 30 52 15 128 15 128 20 15 128 50
21­30 10 60 83 26 829 26 801 163 26 800 70
31­40 10 120 132 38 610 37 296 2 445 37 234 350

Total 60 306 91 621 90 276 2 634 90 216 625

Table 2.8 – Comparison to Yuan et al. (2021) on the VRPHRDL

GVRPTW

In addition to results on the VRP(H)RDL, Yuan et al. (2021) also present results on the
GVRPTW instances of Moccia et al. (2012). Their method, CGHB, slightly reduces the average
cost of the solutions and significantly reduces the computing time compared to the results of
Moccia et al. (2012).

Table 2.9 details the best results obtained out of five runs by SLNS+SPP, compared with
the results of CGHB. Note that the authors did not indicate whether their results are the best
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results out of several runs. For each instance, the cost of the solution and the computing time (in
second) are reported for each of the two methods.

The two methods provide very similar results on this dataset. Indeed, the average gap be­
tween the cost of the solutions is only 0.06%. However, the computing time of SLNS+SPP is, in
average, 3.5 times smaller, with a processor 1.4 faster than theirs (PassMark­Software, 2020).

CGHB SLNS+SPP

Instance Cost Time Cost Time

i­030­04­08 3 498 8.74 3 497 5
i­030­08­12 2 796 15.37 2 796 5
i­040­04­08 3 811 6.46 3 811 8
i­040­08­12 3 768 7.80 3 768 8
i­050­04­08 5 439 10.08 5 447 11
i­050­08­12 4 054 12.35 4 034 11
i­060­04­08 5 908 49.10 5 926 14
i­060­08­12 4 303 26.26 4 303 14
i­070­04­08 6 228 24.78 6 246 22
i­070­08­12 4 694 45.27 4 644 22
i­080­04­08 7 420 179.33 7 394 27
i­080­08­12 5 613 43.65 5 661 27
i­090­04­08 7 108 328.34 7 182 32
i­090­08­12 5 893 307.66 5 869 32
i­100­04­08 7 339 85.78 7 308 38
i­100­08­12 6 788 419.38 6 546 38
i­110­04­08 8 618 128.12 8 687 45
i­110­08­12 6 343 120.46 6 487 45
i­120­04­08 8 455 190.67 8 357 60
i­120­08­12 6 772 151.67 6 829 60

Total 114 848 2 194.66 114 792 524

Table 2.9 – Comparison to Yuan et al. (2021) on the GVRPTW

Large VRPDO instances

Likewise, since the submission of the previously presented results, we ran experiments on
VRPDO instances with 400 customers.

Table 2.10 presents the aggregated results of each variant of the developed method on these
large instances. The best solutions out of five runs with 3500 seconds of time budget were taken
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into account. Each line correspond to an instance type. For each configuration of SLNS the table
shows the total number of vehicles and the total cost of the solutions of each type.

Overall the SPP improves the results of SLNS by 1.1%, while the Balas­Simonetti worsen
them by 2.4%, and the conjunction of the two worsen the results by 0.6%.

The tendencies observed on the other instances are confirmed, and even amplified, on these
larger instances. That is to say, SLNS provides good results overall. SLNS+SPP is able to slightly
improve the results. And SLNS+SPP+BS is able to find better solutions on some very specific
instances (it obtains a unique best solution on 2 instances). However, on average, the dynamic
programming component is too time consuming on these large instances.

SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Instances Σveh Σcost Σveh Σcost Σveh Σcost Σveh Σcost

U 400 406 22 836.55 406 23 334.82 406 22 358.59 406 22 856.93
V 400 405 22 554.79 405 22 884.42 405 22 342.08 405 22 470.25
UBC 400 156 11 223.36 156 11 756.99 156 11 288.26 156 11 629.41

Total 967 56 614.70 967 57 976.23 967 55 988.93 967 56 956.59

Table 2.10 – Results for the VRPDO instances with 400 customers
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2.6 Conclusions

In this chapter, we presented a SLNS­based matheuristic that can cope with GVRPTW vari­
ants, in particular also with the most general and more involved VRPDO. The matheuristic has
an adaptive layer that controls the use of two (optional) exact components. The Balas­Simonetti
neighborhood allows an improvement of solutions when the standard SLNS process stalls. The
Set Partionning Problem component utilizes a MIP solver to selects routes from a larger pool
of potential routes. The second component uses BS neighborhood that we adapt for the use in a
multiple vehicle context with capacity, time window, and inter­route constraints. Both compo­
nents are, compared to a single SLNS iteration, very time­consuming. Hence, the adaptive layer
very carefully controls how often and when the exact components are invoked.

The primary focus of our research is the evaluation of the adaptive layer as well as the two
exact components. We compare four different configurations of the new matheuristic (SLNS,
SLNS+BS, SLNS+SPP, and SLNS+SPP+BS, i.e., with and without SPP and BS components)
among each other and with state­of­the­art algorithms for the GVRPTW,VRPRDL, VRPHRDL,
VRPMTW, and VRPDO. The experiments are conducted on standard benchmarks for these
problems and lead to the following insights:

— The two configurations with the SPP component outperform their counterparts without
SPP component regarding average gaps to best­known solutions (BKS) and the number
of BKS computed (Table 2.6).

— The configuration with the BS component alone (SLNS+BS) is inferior. In particu­
lar, for the VRPDO, the presence of many inter­route constraints that must be handled
within the BS neighborhood exploration makes the BS component too time­consuming
(see Section 2.5.4). However, when combined with SPP the resulting configuration
SLNS+SPP+BS is competitive.

— The practical difficulty of the VRPDO is well reflected in the results delivered by all
matheuristic configurations. Average gaps of 0.73% for the VRPDO are much bigger
than gaps for the other GVRPTW variants which fall below 0.25% (Table 2.6).

— Compared to state­of­the­art metaheuristics from the literature, the new matheuristic is
much faster (factor 7 for the GVRPTW; factor 2 for the VRPMTW, see Sections 2.5.1
and 2.5.3).

— For the VRPRDL (VRPHRDL), the comparison against a recent exact branch­price­and­
cut algorithm shows that configuration SLNS+SPP finds all (all except one) known op­
timal solutions in a fraction of the computation time available for the exact algorithm. In
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addition, all configurations together provide new best­known solutions for all instances
that were not solved to proven optimality by the branch­price­and­cut algorithm (Section
2.5.2).

Thus, SLNS is an efficient method for generalized vehicle routing problems with time win­
dows. Hybridizing it with the SPP enhances its performances by a few percent, especially on
hard instances. Finally, the Balas­Simonetti can further improve these results, but only on in­
stances with short routes.

Furthermore, to be efficient on large instances, it is needed to speed­up the Balas­Simonetti
neighborhood for problemswith synchronized resources.We can think about the pulse algorithm
(Lozano and Medaglia, 2013). In addition, the computing time of all the configurations also
suggests to reduce the number of evaluated insertion positions for each customer, like proposed
by Toth and Vigo (2003).
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3.1 Introduction

In more and more cities, governmental regulations restrict the number and type of vehicles
allowed to access city centers because of the intense inner­city traffic, narrow streets, and the
lack of adequate parking spaces (Muñuzuri et al., 2013). Coordinated urban deliveries can be
part of the solution. We consider modern inner­city distributions systems that rely on a multi­
echelon structure to reduce the nuisances associated with freight transportation in urban areas
while supporting their economic and social development (Crainic et al., 2009).

One of the most common designs for handling and reducing the large number of freight
vehicles going into cities, often delivering small quantities per stop, is to consolidate this frag­
mented volume at urban distribution centers (UDCs) located in cities outskirts (Savelsbergh
and Van Woensel, 2016). In the two­echelon vehicle routing problem (2E­VRP), customers are
supplied from the UDC through intermediary satellites. First­echelon vehicles transport goods
from the UDC to satellites, at which second­echelon vehicles collect the goods and deliver
them to the customers. The flow of goods must respect operation and load synchronization
constraints (following the taxonomy of Drexl, 2012), i.e., one must decide on the assignment
of each customer’s demand to a satellite and ensure that incoming and outgoing quantities at
each satellite coincide.

We have identified three extensions of the basic 2E­VRP as highly relevant. These are: (i)
the integration of reverse flows, (ii) the consideration of several timing aspects (including time
windows and the possibility to perform multiple trips with the same vehicle), and (iii) satellite
capacities. We elaborate their importance in the following.

The goal to reduce traffic, pollution, and noise in city centers certainly requires a holistic
view on the logistics system including goods transportation into as well as out of the city. Bektaş
et al. (2017) pointed out that handling forward, reverse, and transiting flows is a key activity
within urban areas. In some fields of application, the consideration of forward and reverse flows
is therefore almost imperative. Examples include beverage­delivery services (Bruck and Iori,
2017) and package and urban courier services (Wong, 2008), where reverse quantities of some
customers can easily exceed their forward quantities.

Typical fleets on the second echelon comprise small trucks (vans, Sprinters) as well as lo­
cally emission­free vehicles such as battery electric vehicles (BEV, Desaulniers et al., 2016;
Schneider et al., 2014) and cargo bikes (Elbert and Friedrich, 2020). These vehicles typically
have a much smaller capacity than the trucks used on the first echelon. As a result, second­
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echelon routes are relatively short so that a vehicle can be cleared and replenished several times.
With a limited fleet, the associated problem is therefore aMulti­Trip VRP (Paradiso et al., 2020,
stress its relevance for city logistics and last­mile delivery). Moreover, when distances between
UDC and satellites are short, multiple trips of the first­echelon vehicles are also possible (see,
e.g., Nolz et al., 2020).

In their review, Cuda et al. (2015) highlight the steadily increasing number of publications
on the 2E­VRP. They conclude that mostly, basic versions of the 2E­VRP have been studied
and that many practical issues, in particular temporal interdependencies are still to be further
investigated both in heuristic and exact approaches. Temporal interdependencies may refer to
the requirement that:

(1) either first­echelon and second­echelon vehicles have to meet at the satellite in order to
transfer loads (no storage, exact operation synchronization as defined by Drexl, 2012)

(2) or satellite visits of first­echelon vehicles can precede those of second­echelon vehicles
(storage at satellites, operation synchronization with precedences, see also Drexl, 2012).

Furthermore, satellite capacities impose resource synchronization constraints (Drexl, 2012).
For case (1), Grangier et al. (2016) introduce the two­echelon multiple­trip vehicle rout­

ing problem with satellite synchronization (2E­MTVRP­SS) which extends the basic variant by
customer time windows and multiple trips on the second echelon. In their variant, there are no
storage possibilities at the satellites. For case (2), it is obvious that modeling and solving prob­
lems with satellite capacities is much more involved. Only very few works cover this aspect (see
literature review in Section 3.2).

In response to this research gap, we aim atmodeling and solving 2E­VRPwith time­windows
with a specific focus on incorporating the processes at the satellites in combination with the
requirement to handle both forward and reverse flows (goods and returns). Overall, we extend
the 2E­MTVRP­SS of Grangier et al. (2016) by three aspects:

— First, customers can have a pickup demand introducing reverse flows into the two­echelon
system. As a consequence, second­echelon vehicles need to simultaneously deliver goods
and collect pick­up goods at customers within their specified time window. The pickup
demand must be transported to a satellite and from this satellite to the UDC by a first­
echelon vehicle.

— Second, also first­echelon vehicles are allowed to perform multiple trips during the plan­
ning horizon.

— Third, satellites allow a temporary storage of goods, but they feature a limited capacity in
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terms of goods that can be stored at a time. The most prevalent situation is probably that
goods to be delivered (forward) and picked­up (reverse) are stored together, thus, they
share and compete for the satellite capacity.

We introduce the Two­Echelon Multiple­Trip Vehicle Routing Problem with Capacitated
Satellites and Reverse Flows (2E­MTVRP­CSRF) that addresses all three extensions together.
The 2E­MTVRP­CSRF models the time and quantity dependencies at capacitated satellites in a
more precise manner than previous works. It is, therefore, obvious that for 2E­MTVRP­CSRF
instances of realistic size, the only viable solution approach is heuristic.

To solve the 2E­MTVRP­CSRF, we propose an iterative algorithm that partially decom­
poses the problem into three different subproblems. For two of them, we present two Large
Neighborhood Search (LNS) algorithms, each of them optimizing one echelon while parts of
the other echelon are fixed. With one sub­problem per echelon, the method takes advantage
of the effectiveness of LNS to solve Multi­Trip Vehicle Routing Problem with Reverse Flow
and to integrate synchronization constraint with the other echelon. For the third subproblem, an
enhanced version of the path­based formulation is used to recombine trips found in both LNS
algorithms. This way, the method also takes advantage of the MIP­based approach to recombine
trips generated by the two LNSs, while having a global view on satellite­capacity constraints as
well as the spatial and time synchronization between first and second echelon.

On randomly generated instances with 100 customers and 4 satellites of medium capacity,
we find that the overhead cost of considering the satellites capacity is of 6.5%, which is worth
considering in regard of the meter square prices in large cities. In addition, on those instances,
we computed that integrating forward and reverse flow reduces the routing costs by up to 40%.

The remainder of the paper is structured as follows. Section 3.2 reviews the 2E­VRP lit­
erature focusing on those variants with reverse flows, timing aspects including multiple trips,
and satellite capacities. In Section 3.3, we formally introduce the 2E­MTVRP­CSRF, detail fea­
sibility conditions, and present a trip­based formulation. Section 3.4 presents the matheuristic
algorithm. Computational results and managerial insights are presented in Section 3.5, before
final conclusions are drawn in Section 3.6.
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3.2 Literature

The basic 2E­VRP implicitly assumes that all transfers between the first and second eche­
lon happen in separate periods and are therefore always operable, e.g., assuming a fixed cut­off
period during which all transfers are performed so that all first(second)­echelon vehicles must
arrive (depart) before (after) that period. Hence, operation synchronization is pure spatial in the
basic version (see Drexl, 2012). The first study on the 2E­VRPwas conducted byGonzalez­Feliu
et al. (2008) who introduced the problem into the literature. They proposed a commodity­flow
model and a branch­and­cut (BC) algorithm that was tested on instances with up to 50 customers
and 4 satellites. The 2E­VRP was surveyed by Cuda et al. (2015). More recent successful solu­
tion approaches are exact (Marques et al., 2020b; Perboli et al., 2018) and heuristic (Amarouche
et al., 2018; Breunig et al., 2016; Wang et al., 2017).

The standard assumption is that customers are served by a single visit so that demands are
not split on the second echelon. However, splitting customer demands on the first echelon is an
option.

3.2.1 Reverse flows

The integration of forward and reverse flows in a two­echelon distribution system was pre­
sented as an important challenge Crainic et al. (2012). Belgin et al. (2018) were the first to solve
a 2E­VRP variant with forward and reverse flows so that a customer can have both a delivery
and pickup demand. The vehicle routing problem at the second echelon is one with simultaneous
deliveries and pickups (Subramanian et al., 2013b). Additionally, Belgin et al. model satellite
capacity as the maximum total demand that can be served by the satellite during the planning
horizon (we also use the term total demand in the following to refer to delivery plus pickup
demand). The problem is solved heuristically by combining Variable Neighborhood Descent
(VND, Hansen et al., 2009) and local search. Additionally, they present a two­index model and
computationally evaluate the effect of additional valid inequalities on lower bounds. Tests were
conducted on a new instance set comprising up to 50 customers and 5 satellites.

3.2.2 Time windows and multiple trips

Crainic et al. (2009) were the first to consider timing aspects in 2E­VRP. The authors discuss
customer time windows and multiple trips on both echelons among other features of a general
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two­tier city logistic systems. The work also presents several modeling ideas and describes pos­
sible heuristics without computational testing.

Grangier et al. (2016) introduced the 2E­MTVRP­SSwhich features customer time windows
and multiple trips in the second echelon. They present a LNS algorithm with a fast and sophis­
ticated feasibility check. Computational experiments were conducted on instances with up to 8
satellites and 100 customers derived from the VRPTW benchmark instances of Solomon and
Desrosiers (1988).

Anderluh et al. (2017) extend the 2E­MTVRP­SS by allowing the first­echelon vehicle to
serve some customers. A two­phase greedy randomized adaptive search procedure with path
relinking is applied to solve the extended 2E­MTVRP­SS. Computational tests were conducted
on instances with up to 125 customers and 18 satellites.

Dellaert et al. (2019) suggest a two­path formulation for the single­trip multi­depot 2E­VRP
with time windows and exact synchronization (2E­VRPTW). They assume that the entire de­
mand delivered by a second­echelon vehicle must be provided by a single first­echelon trip.
A branch­and­price (BP) algorithm that enumerates configurations of first­echelon trips is a
key component. The BP algorithm is capable to exactly solve some instances with up to 100
customers and 5 satellites within the 3­hour time limit. Mhamedi et al. (2020) developed a so­
phisticated branch­price­and­cut (BPC) algorithm for the 2E­VRPTW. The algorithm performs
well on the instances generated by (Dellaert et al., 2019), computing 41 new optimal solutions in
the 3­hour time limit. Independently, Marques et al. (2020a) present BPC algorithms to solve the
2E­MTVRP­SS and 2E­VRPTW. They reported new optimal solutions for 9 of the 2E­MTVRP­
SS instances and 54 of the 2E­VRPTW instances.

The practical relevance of timing aspects has led to the introduction of several other 2E­
VRP variants covering new technologies and real­world features such as electric vehicles (Jie
et al., 2019), cargo bikes with swap containers (Mühlbauer and Fontaine, 2021), and multiple
commodities provided by different UDCs (Dellaert et al., 2021). Recently, Anderluh et al. (2020)
analyzed and discussed the impact of stochastic travel times on costs.

3.2.3 Satellite capacity

Two approaches for modelling the satellite capacities are common in the literature. In the
first approach, an upper bound on the number of second­echelon vehicles leaving the satellite is
imposed (first suggested by Crainic et al. (2009) and very recently employed by Mühlbauer and
Fontaine (2021)). The second approach limits the total demand that can be served by a satellite
(in the uni­demand case, this means limiting the number of served customers, see, e.g., Belgin

100



3.2. Literature

et al., 2018; Breunig et al., 2016). Both approaches have in common that they do not consider
the dynamics over the planning horizon, i.e., available or residual capacities depending on the
goods entering and leaving the satellite over time.

To the best of our knowledge, only three works use a more detailed time­dependent capac­
ity model. Li et al. (2018) study a 2E­VRP with customer time windows, a given assignment
of customers to satellites, and real­time transshipment capacities. The real­time transshipment
capacities describe the currently available capacity of the satellite defined as the difference be­
tween the maximum capacity and the quantity of goods currently waiting at a satellite to get
picked­up by a second­echelon vehicle. Additionally, the problem features split deliveries on
the first echelon and multiple trips on the second echelon. A MIP formulation is provided and a
two­stage heuristic based on variable neighborhood search (VNS, Hansen et al., 2009) is pro­
posed. Small­scale instances with up to 3 satellites and 5 customers per satellite were solved
to optimality with a MIP solver within a 4­hours time limit. The two­stage heuristic has been
tested on 99 larger instances with up to 30 satellites and 30 customers per satellite. Li et al.
(2020) slightly extend the problem by varying the maximum transshipment capacity for each
time period.

Recently, Nolz et al. (2020) considered a two­echelon distribution with a single capacitated
satellite, customer time windows, and multiple trips on both echelons. They propose a new
MIP model and a three­phase heuristic method which uses population­based meta­heuristics
and integer programs. Nolz et al. evaluate their methods on instances with up to 81 customers
generated from real­world data from the city of Vienna.

More generally, a time dependent satellite capacity involves synchronizing routes on shared
renewable capacitated resources at facilities. To our knowledge, this type of problem has re­
ceived little attention in the literature, most resource constrained routing and scheduling prob­
lems coming from the sharing of particular vehicles or personnel with different skills that need
to be routed to perform different tasks (Castillo­Salazar et al., 2016; Fikar and Hirsch, 2017;
Paraskevopoulos et al., 2017). Several cases are related to loading or unloading unary ressources
in forestry (El Hachemi et al., 2011, 2013), construction (Schmid et al., 2009) or public work
(Grimault et al., 2017). In Grangier et al. (2019), a constraint limit the number of dock that can
be used simultaneously in the VRP with cross­docking. Froger et al. (2017) integrate a limited
number of chargers at charging stations in electric VRPs. In the two later contributions, each
vehicle consumes one unit of the resource capacity for a given time when it uses it. But to our
knowledge, no paper investigate a synchronization constraint on a renewable resource that is
expressed on a transferred quantity, in particular in a problem with forward and reverse flows.
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3.3 The 2­Echelon Multi­Trip Vehicle Routing Problem with
Capacitated Satellites and Reverse Flow

We define the 2E­MTVRP­CSRF by formally describing customers, satellites, fleet, trips,
routes, and then satellite capacities. The three latter aspects require a detailed explanation pro­
vided in Sections 3.3.1, 3.3.2 and 3.3.3. An integer (linear) programming (IP) model is then
presented in Section 3.3.4.

Let N denote the set of customers, where each customer i ∈ N has a delivery (=forward
or linehaul) demand qfwi and a pick­up (=reverse or backhaul) demand qrvi . Both demands have
to be fulfilled by a single visit of a second­echelon vehicle. For the visit of customer i ∈ N , a
vehicle may wait at the customer before actually providing service, which must start within the
time­window [ai, bi].

Let S denote the set of satellites. We assume that satellites s ∈ S are available over the entire
planning horizon T = {0, . . . , t̄}, i.e., spanning the time window [as, bs] = [0, t̄]. Moreover,
each satellite s ∈ S has a limited capacityCsat

s and a constant processing time ps for transferring
goods from one echelon to the other. How the capacity and processing time have to be interpreted
is detailed in Section 3.3.3.

A homogeneous fleet F 1 of first­echelon vehicles is stationed at the UDC o1. Likewise, a
homogeneous fleet F 2 of second­echelon vehicles is hosted at the second­echelon depot o2. All
vehicles must start and end their routes at their depots o1 and o2, respectively. They are allowed to
perform multiple trips in between. Each first(second)­echelon vehicle has a capacity ofQ1 (Q2)
that has to be shared by forward and reverse demands when transported together.

The objective of the 2E­MTVRP­CSRF is to find cost­minimal sets of feasible first­echelon
and second­echelon trips (formally defined in Section 3.3.1) such that the following constraints
hold:

(F1) All customers are visited exactly once by exactly one second­echelon trip.

(F2) The set of first(second)­echelon trips can be combined to at most |F 1| (|F 2|) feasible
first(second)­echelon routes.

(F3) The forward flow of goods is conserved at each satellite s ∈ S and each point in time
t ∈ T, i.e., the forward flow that has reached satellite s by first­echelon trips until time
t−ps is at least as large as the forward demands leaving satellite s on second­echelon trips
until time t.

(F4) Likewise, the reverse flow of goods is conserved at each satellite s ∈ S and each point
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in time t ∈ T, i.e., the collected demands reaching satellite s on second­echelon trips
arriving until time t is at least as large as the reverse flow that has left from the satellite s
by first­echelon trips starting until time t+ ps.

(F5) The capacities of all satellites are never exceeded, i.e., at any point in time, the quantity of
goods stored or processed at a satellite is not larger than the satellites capacity.

Note that flow conservation via (F3) and (F4) allows a customer’s demand (either forward or
reverse demand) to be split on the first­echelon using two or more trips (with possibly different
vehicles), but that this demand cannot be split on the second echelon.

3.3.1 Trips

Next, we define feasible trips and routes in both echelons with the help of two directed
graphs. For the first echelon, let G1 = (V 1, A1) be the complete digraph with vertex set V 1 =
S ∪ {o1} and arc set A1. Each arc (i, j) ∈ A1 is associated with a non­negative travel time t1ij
and a non­negative travel cost c1

ij .

A first­echelon trip h = (P, T, L) consists of a closed directed walk P =
(i0, i1, . . . , in, in+1) with i0 = in+1 = o1 and i1, . . . , in ∈ S, a time schedule T =
(T0, T1, . . . , Tn, Tn+1) ∈ Tn+2, and a loading plan ((Lfw

1 , Lrv
1 ), . . . , (Lfw

n , Lrv
n )) ∈ ([0, Q1] ∩

Z)2×n. The attribute Tk ∈ T models the start of the service/operation at vertex ik for k ∈
{0, 1, . . . , n+ 1}.

Each pair (ik, Tk) of vertex and visit time is called First­Echelon Visit (FEV). Note that mul­
tiple FEVs at the same satellite are allowed within a walk, including consecutive operations hap­
pening at the same satellite at different times (these loops may model consecutive appointments
at the satellite, for example). Finally, the attributes Lfw

k and Lrv
k are the quantities dropped­off

and collected, respectively, at satellite ik for 1 ≤ k ≤ n.

A first­echelon trip h = (P, T, L) is feasible if the following three conditions hold:

(Tr1) all vertices are visited within the planning horizon:

Tk ∈ [0, tmax] for all k ∈ {0, 1, . . . , n+ 1},

(Tr2) the time schedule is consistent with respect to travel and processing times:

Tk + t1ik,ik+1
+ pik

≤ Tk+1 for all k ∈ {0, 1, . . . , n},
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(Tr3) and the load at each vertex is less than the capacity of a first­level truck:

n∑
k=l+1

Lfw
k +

l∑
k=1

Lrv
k ≤ Q1 for all l ∈ {0, 1, . . . , n},

where we assume a processing time po1 = 0 for the UDC. The cost c1
h of the first­echelon trip h

is given by
∑n

k=0 c
1
ik,ik+1

.

Similarly, let G2 = (V 2, A2) be the simple and complete digraph with vertex set V 2 =
S ∪ N ∪ {o2} and arc set A2. Each arc (i, j) ∈ A2 is associated with a non­negative travel
time t2ij and a non­negative travel cost c2

ij .
A second­echelon trip h = (P, T ) comprises a (closed or open) walk P =

(i0, i1, . . . , in, in+1) in G2 with i0, in+1 ∈ S ∪ {o2} and i1, . . . , in ∈ N , and a time schedule
(T0, . . . , Tn+1) ∈ Tn+2.

The second­echelon trip h = (P, T ) is feasible if the following five conditions hold:

(Tr4) the vertices are visited within their time windows:

Tk ∈ [aik
, bik

] for all k ∈ {0, 1, . . . n+ 1},

(Tr5) the time schedule respects travel times:

Tk + t2ik,ik+1
≤ Tk+1 for all k ∈ {0, 1, . . . , n},

(Tr6) the vehicle capacity is respected at each vertex on the trip:

n∑
k=l+1

qfwik
+

l∑
k=1

qrvik
≤ Q2 for all l ∈ {0, 1, . . . n},

(Tr7) if i0 = o2, then qfwik
= 0 must hold for all k ∈ {1, 2, . . . , n}, and

(Tr8) if in+1 = o2, then qrvik
= 0 must hold for all k ∈ {1, 2, . . . , n}.

The latter two conditions (Tr7) and (Tr8) impose that trips that start (end) at the depot o2 can­
not serve customers that have a positive delivery (reverse) demand. The cost c2

h of the second­
echelon trip h is given by c2

h = ∑n
k=0 c

2
ik,ik+1

.
Note that second­echelon vehicles and trips can start and end at different satellites. In par­

ticular, second­echelon trips that do not visit any customers are allowed (i.e., n = 0). These
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transfer trips model that a vehicle can change the starting satellite for its next trip. In addition,
service times at customers are integrated into travelling times.

3.3.2 Routes

A first(second)­echelon routeR is a sequence (h1, . . . , hm) ofm ≥ 1 feasible first(second)­
echelon trips hj . We denote the walks by Pj = (ij0, ij1, . . . , ij,nj

, ij,nj+1) and the time schedules
by Tj = (Tj0, Tj1, . . . , Tj,nj

, Tj,nj+1) for j ∈ {1, 2, . . . ,m}.
A first­echelon route is feasible if

(R1) two consecutive trips hj and hj+1 do not overlap in time:

Tj,nj+1 ≤ Tj+1,0 for all j ∈ {1, . . . ,m− 1}.

A second­echelon route is feasible if the following three conditions hold:

(R2) it starts and end at the second­echelon depot:

o2 = i1,0 = im,nm+1,

(R3) consecutive trips share identical end and start satellites:

ij,nj+1 = ij+1,0 ∈ S for all j ∈ {1, 2, . . . ,m− 1},

(R4) consecutive trips do not overlap in time:

Tj,nj+1 + pij,nj +1 ≤ Tj+1,0 for all j ∈ {1, 2, . . . ,m− 1}.

In particular, the processing time pij,nj +1 in (R4) for ij,nj+1 ∈ S ∪ {o2} can be used to model a
necessary time period needed to clear and load a second­echelon vehicle.

3.3.3 Flow conservation and satellite capacity

In this section, we show how to check whether a given set of feasible first­echelon and
second­echelon routes, including the quantities dropped off and collected by them over time,
respect the forward and reverse flows and whether the quantities stored at a satellite exceed the
satellite capacity. This shows how the feasibility conditions (F3)–(F5) can be tested.

105



Partie , Chapter 3 – An Iterative Two­Stage Heuristic for the 2­Echelon Multi­Trip Vehicle Routing
Problem with Capacitated Satellites and Reverse Flows

For that purpose, we denote by Ω1 the set of all feasible first­echelon trips and by Ω2 the
set of all feasible second­echelon trips. We introduce additional attributes for a first­echelon trip
h = (P, T ) ∈ Ω1:

— the quantity dropped off by the trip h at satellite s ∈ S at time t ∈ T:

γfwh,s,t =

 Lfw
k , there exists an index k ∈ {1, 2, . . . , n} with ik = s and Tk = t

0, otherwise,

— the quantity that trip h collects at satellite s ∈ S at time t ∈ T:

γrvh,s,t =

 Lrv
k , there exists an index k ∈ {1, 2, . . . , n} with ik = s and Tk = t

0, otherwise.

Similarly, we define for a second­echelon trip h = (P, T, L) ∈ Ω2:

— the quantity that trip h collects from satellite s ∈ S at time t ∈ T:

γfwh,s,t =


∑n

k=1 q
fw
ik
, i0 = s and T0 = t

0, otherwise,

— the quantity that trip h drops off at satellite s ∈ S at time t ∈ T:

γrvh,s,t =


∑n

k=1 q
rv
ik
, in+1 = s and Tn+1 = t

0, otherwise.

We also define the load profile of satellite s ∈ S: Λs
t is the quantity processed and stored at

satellite s at time t ∈ T.
Before, we formalize the feasibility conditions (F3)–(F5) (see constraints (3.e)–(3.g) of the

MIP model presented in the next section), we explain them with the help of an example.

Example 1 Figure 3.1 shows a solution for an instance of the 2E­MTVRP­CSRF with two satel­
lites, eight customers, one first­echelon vehicle, and two second­echelon vehicles. Forward and
reverse demands of each customer are depicted next to the corresponding vertex. We assume that
the customers have non­restricting time windows and that travel times and travel costs coincide
(depicted on the arcs). Moreover, the capacity of both satellites is Csat

s = 10 and the processing
time is ps = 1.

The first­echelon route performs two trips (in blue), while the two second­echelon routes
perform four (in orange) and three trips (in green), respectively. Table 3.1 shows a feasible
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time schedule and loading plan for the three routes.

o1

o2

s1 s2

1

2fw 2

1fw, 3rv

3

2fw

4
2rv

5

5fw

6
2rv

7
3rv

8

4rv

3

2

2

3
3

1 1
1

121

1

1

2

2

1

1

1

3 1

first­echelon route

1st second­echelon route

2nd second­echelon route

1st trip of a vehicle

2nd trip of a vehicle

3rd trip of a vehicle

4th trip of a vehicle

Figure 3.1 – 2E­MTVRP­CSRF solution used in Example 1

first­echelon
route (h1, h2)

trip index j 1 2

vertex ik o1 s1 s2 o1 o1 s1 o1

schedule Tk 0 3 6 9 9 14 18
quantity γfw

hj ,ik,Tk
– 10 0 – – 0 –

γrv
hj ,ik,Tk

– 0 5 – – 9 –

second­echelon
route
(h′

1, h′
2, h′

3)

j 1 2 3

vertex ik o2 s1 s1 3 4 s1 s1 5 o2

schedule Tk 0 2 4 6 7 8 9 12 14
quantity γfw

h′
j
,ik,Tk

0 – 2 – – – 5 – –
γrv

h′
j
,ik,Tk

– 0 – – – 2 – – 0

second­echelon
route
(h′′

1 , h′′
2 , h′′

3 , h′′
4)

j 1 2 3 4

vertex ik o2 6 7 s2 s2 8 s1 s1 1 2 s1 s1 o2

schedule Tk 0 1 2 3 4 5 9 10 11 12 13 14 17
quantity γfw

h′′
j

,ik,Tk
0 – – – 0 – – 3 – – – 0 –

γrv
h′′

j
,ik,Tk

– – – 5 – – 4 – – – 3 – 0

Table 3.1 – Time schedule and loading plan of the routes in Example 1
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Note that there must be at least ps = 1 time units between two consecutive second­level trips.
On a FEV, a first­echelon vehicle must stay at least ps = 1 time units at a satellite, however, there
is no dedicated time span between consecutive first­echelon trips at o1. To fulfill the feasibility
conditions (F3)–(F5), waiting is mandatory at three visits due to interdependencies: Trip h′

2 has
to wait for 1 time unit before starting at satellite s1, because there is no forward demand ready
before time 4, i.e., when the dropped­off forward demand of trip h1 has been processed. The
corresponding entries are marked in blue. Similarly, trip hf

2 has to wait for 2 time units at s1,
because it has to collect the reverse demand dropped off by trip h2

3 at time 13, which is ready
for collection at time 14 (red entries). Last, trip h′′

2 must wait for 2 time units before unloading
at s1, because there is no free capacity to store its reverse demand. Indeed, the trip has to wait
for trip h′

3 to free up capacity at s1 (green entries).
Figure 3.2a shows that these waiting times are necessary to ensure feasibility regarding

flows and capacities. The figure visualizes the load profile of satellite s1. Forward quantities
are depicted in red and reverse quantities in blue. Striped areas indicate that the quantities are
transferred to the satellite but not processed so that they are not yet ready to be collected. Pro­
cessed goods are solid. All quantities resulting from first­echelon operations are depicted with
arrows on the top of the diagram and all second­echelon operations at the bottom. Regarding
the three waiting times, we can see from the figure that:

— There is no forward quantity ready to collect at the satellite before time 4.

— The 9 units of reverse demand collected at time 14 cannot be collected earlier, since the
last 3 units dropped­off are not ready at an earlier point in time.

— The 4 units of reverse demand dropped off at time 9 cannot be dropped off earlier due to
the satellite capacity.

Conditions (F3)–(F5) are fulfilled, because for each point in time the stored quantity is not
greater than the satellites capacity (Csat = 10, see Figure 3.2b) and because both the available
forward quantities and available reverse quantities are non­negative (see figures 3.2c and 3.2d
respectively).
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Figure 3.2 – Load profiles of the satellite in Example 1

3.3.4 Trip­based formulation

The integer programming (IP) model of the 2E­MTVRP­CSRF presented next serves two
purposes: First, it precisely defines the 2E­MTVRP­CSRF. Second, the matheuristic explained
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in Section 3.4 uses a restricted and refined version of the IP as one of its components.

The IP can be characterized as a trip­based formulation. Clearly, both sets Ω1 (feasible first­
echelon trips) and Ω2 (feasible second­echelon trips) are finite but typically extremely large,
because trips are defined as combinations of a walk, time schedule, and loading plan (in case of
the first­echelon trips). For the IP model, we describe a first­echelon trip h = (P, T, L) ∈ Ω1

with the additional attribute βh,t ∈ {0, 1}, which indicates whether trip h takes place during
time t ∈ T, or not:

βh,t =

 1, if T0 ≤ t ≤ Tn+1

0, otherwise.

In a similar manner, a second­echelon trip h = (P, T ) has the additional attribute αh,i ∈ {0, 1},
which indicates whether trip h visits customer i ∈ N , or not:

αh,i =

 1, there exists an index k ∈ {1, 2, . . . , n} with ik = i

0, otherwise.

Additionally, it is convenient to define two subsets of second­echelon trips for satellites s ∈ S
at times t ∈ T:

Ω2+
s,t = {h ∈ Ω2 : T0 = t and i0 = s} and Ω2−

s,t = {h ∈ Ω2 : Tn+1 = t and in+1 = s}

Ω2+
s,t (Ω2−

s,t ) are those second­echelon trips that leave from (arrive at) satellite s at time t.

The IP that we present next comprises two types of variables: the integer variables x1
h for

h ∈ Ω1 count the number of times that trip h is performed (note that two or more first­echelon
vehicles can perform an identical trip), and the binary variables x2

h indicate whether trip h ∈ Ω2

is performed, or not.

Model 3: Integrated two echelons model

min
∑

h∈Ω1

c1
hx

1
h +

∑
h∈Ω2

c2
hx

2
h

s.t.
∑

h∈Ω2

αh,ix
2
h = 1 ∀i ∈ N (3.a)

∑
h∈Ω1

βh,tx
1
h ≤ |F 1| ∀t ∈ T (3.b)

∑
t∈T

∑
h∈Ω2+

o2,t

x2
h =

∑
t∈T

∑
h∈Ω2−

o2,t

x2
h = |F 2| (3.c)
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∑
t′≤t−ps

∑
h∈Ω2−

s,t′

x2
h −

∑
t′≤t

∑
h∈Ω2+

s,t′

x2
h ≥ 0 ∀s ∈ S, t ∈ T (3.d)

∑
t′≤t−ps

∑
h∈Ω1

γfwh,s,t′x1
h −

∑
t′≤t

∑
h∈Ω2+

s,t′

γfwh,s,t′x2
h ≥ 0 ∀s ∈ S, t ∈ T (3.e)

∑
t′≥t+ps

∑
h∈Ω1

γrvh,s,t′x1
h −

∑
t′≥t

∑
h∈Ω2−

s,t′

γrvh,s,t′x2
h ≥ 0 ∀s ∈ S, t ∈ T (3.f)

∑
t′≤t

∑
h∈Ω1

γfwh,s,t′x1
h −

∑
t′≤t

∑
h∈Ω2+

s,t′

γfwh,s,t′x2
h

+
∑
t′>t

∑
h∈Ω1

γrvh,s,t′x1
h −

∑
t′>t

∑
h∈Ω2−

s,t′

γrvh,s,t′x2
h ≤ Csat

s ∀s ∈ S, t ∈ T (3.g)

x1
h ∈ N0 ∀h ∈ Ω1

x2
h ∈ {0, 1} ∀h ∈ Ω2

The objective minimizes the routing costs of the chosen first­echelon and second­echelon
trips. Constraints (3.a) enforce that every customer is served by a second­echelon trip, i.e., con­
dition (F1). Constraints (3.b) and (3.c) are the fleet­size constraints, i.e., condition (F2). Con­
straints (3.d) guarantee feasible combinations of second­level trips, i.e., they ensure for every
satellite and point in time that the number of second­echelon trips that have already left a satellite
can never exceed the number of second­echelon trips that have arrived and are ready to leave
again. The coupling between the first and second echelon is enforced via constraints (3.e)–(3.g).
Forward flow conservation, i.e., condition (F3) is guaranteed by constraints (3.e), and reverse
flow conservation, i.e., condition (F4) by constraints (3.f). The satellite capacity constraints (3.g)
limit the quantity of goods that can simultaneously be stored at each satellite, see condition (F5).
Note that the third and fourth terms consider quantitys that will be collected by first­echelon
vehicles in the future and are not yet dropped­off at the satellite by second­echelon vehicles,
respectively. The domains of the trip variables are defined by the lasts constraints.

For the flow conservation, i.e., constraints (3.e) and (3.f), it is always feasible to increase the
quantities that first­echelon trips drop off and collect at satellites. By doing so, more flexibility
is granted to schedule second­echelon trips. However, increasing first­echelon quantities may
violate the satellite capacity constraints (3.g). We will exploit these observations in Section 3.4.3
when solving the model with a proper subset of all feasible trips. A restricted and refined model
will allow the increase of first­echelon quantities and granting more flexibility to the second
echelon, while the resulting surplus at the first echelon does not burden the satellite capacity
constraints.
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3.4 Solution method

This section presents the matheuristic that we designed to solve the 2E­MTVRP­CSRF. It
follows the fix­and­optimize paradigm (Helber and Sahling, 2010) with the fundamental idea
that the 2E­MTVRP­CSRF can be decomposed in different ways, where parts of the solution
are fixed while the remainder is exactly or heuristically optimized.

An overview of the decomposition that we use is provided in Table 3.2. The first subproblem,
denoted by SP1, optimizes the first­echelon while the second is fixed. Contrarily, the second
subproblem, denoted by SP2, optimizes the second echelon while the first is partly fixed. We
refer to the two LNS algorithms that solve the two subproblems as LNS1 and LNS2, respectively.
In addition, a MIP solver is used with a refined version of formulation 3 restricted to trip pools
generated by the two LNS algorithms.

SP1

Input: solution (x1, x2)

first­echelon trips [⋆]
· walks [⋆]
· schedules [⋆]
· loading plans [⋆]
first­echelon routes [⋆]

second­echelon trips [fixed]
· walks [fixed]
· schedules [fixed]
second­echelon routes [fixed]

Solution method: LNS1

Output: solution (x′1, x′2)
trips H2

⋆: Modifies

SP2

Input: solution (x1, x2)

first­echelon trips [+]
· walks [fixed]
· schedules [fixed]
· loading plans [⋆]
first­echelon routes [+]

second­echelon trips [⋆]
· walks [⋆]
· schedules [⋆]
second­echelon routes [⋆]

Solution method: LNS2

Output: solution (x′1, x′2)
trips H1

⋆: Modifies
+: Partly modifies

MIP

Input: Ω̄1, Ω̄2

first­echelon trips [⋆, set of]
· walks [fixed]
· schedules [fixed]
· loading plans [fixed]
first­echelon routes [impl. result]

second­echelon trips [⋆, set of]
· walks [fixed]
· schedules [fixed]
second­echelon routes [impl. result]

Solution method: MIP solver

Output: solution (x′1, x′2)

⋆: Selects a solution from sets of trips

Table 3.2 – Overview of the decomposition used in the matheuristic (Algorithm 4).

Algorithm 4 shows how the three subproblems and corresponding solution methods interact
in the matheuristic that we call Iterative Two­Stage Heuristic (ITSH).

ITSH starts with an initial solution x = (x1, x2) and empty trip pools Ω̄1 and Ω̄2 (Steps (1)
and (2)). The current solution is improved by repeating the main loop (Steps (4)–(14)) until the
given time limit Γtot is reached. In each iteration, SP2 is optimized first with LNS2 (Step (4)), and
all generated second­echelon trips are added to Ω̄2 (Step (5)). Next, SP1 is optimized with LNS1

(Step (6)) and all generated first­echelons trips are added to Ω̄1 (Step (7)). When both LNS1
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and LNS2 fail to improve the best found solution and the MIP execution conditions (defined in
Section 3.4.3) are satisfied, the refined version of formulation 3 is solved with trips setsH1 and
H2 (Step (11)). To keep the size of the MIP reasonable, the trip pools are re­initialized every
time a new best solution is found and after each call to the MIP solver (Step (9), described also
in Section 3.4.3).

Algorithm 4: Iterative Two­Stage Heuristic (ITSH)
1: (x1, x2)← initialization
2: Ω̄1 ← ∅, Ω̄2 ← ∅
3: while time limit Γtot not exceeded do
4: (x1, x2, H2)← LNS2(x1, x2)
5: Ω̄2 ← Ω̄2 ∪H2

6: (x1, x2, H1)← LNS1(x1, x2)
7: Ω̄1 ← Ω̄1 ∪H1

8: if the best solution has been improved then
9: (Ω̄1, Ω̄2)← re­initialize(Ω̄1, Ω̄2)
10: else if the MIP execution conditions are satisfied then
11: (x1, x2)←MIP(Ω̄1, Ω̄2)
12: (Ω̄1, Ω̄2)← re­initialize(Ω̄1, Ω̄2)
13: end if
14: end while
15: return (x1, x2)← the best found feasible solution

Details follow in the remainder of this longer section, which is structured as follows: Sec­
tion 3.4.1 elaborates on the two LNS algorithms. As the feasibility check used in LNS is of
high importance for the efficiency of the overall matheuristic, we present its details separately
in Section 3.4.2. The MIP component, its parameters, execution conditions, how it communi­
cates with the LNS, and the update of the trip pools is described in Section 3.4.3. For the sake of
brevity, details about LNS are presented in Appendix B.1, the computation of an initial solution
is detailed in Appendix B.1.5, and the refined MIP Model can be found in Appendix B.2.

3.4.1 LNS algorithms

In the LNS metaheuristic, first proposed by Shaw (1998) in a constraint programming con­
text, the current solution is iteratively destroyed and subsequently repaired until a stopping cri­
terion is reached. LNS algorithms have been shown to be successful in optimizing routes and
trips, in particular for VRP variants that only comprise standard resource constraints such as
route length, capacity, and time­window constraints (Pisinger and Ropke, 2019). Even more
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complicated inter­route constraints (an overview is provided in Irnich et al., 2014, Section 1.3.5)
can be integrated easily as long as the removal of a customer is always feasible and an efficient
feasibility test for the insertion of customers is available (see, e.g., Grangier et al., 2016).

Our LNS algorithms switches between large destruction steps and small destruction steps.
Small destruction steps are performed in most iterations to locally and quickly improve solutions
(Christiaens and Vanden Berghe, 2020). If the best solution has not been improved for several
iterations, a large destruction step is performed (diversification). This small­and­large strategy
has been proved highly successful on variants of the generalized vehicle routing problem with
time windows (Dumez et al., 2021c). A short synopsis of the types of operators used in our
LNS algorithms is provided in Table 3.3, where for each type of operator we indicate whether
it is used in LNS1 and LNS2 and who first introduced it. Additional information on the LNS
algorithms is provided in Appendix B.1 including pseudo code, details of the destroy and repair
operators, and the acceptance criterion.

Type Operator Algorithm Source
LNS1 LNS2

de
st
ro
y
op
er
at
or
s

sm
al
l

split string removal ✓ ✓ Christiaens and Vanden Berghe (2020)
satellite removal ✓ ✓ this paper
distance related removal ✓ Ropke and Pisinger (2006b)
visit removal ✓ this paper
cluster removal ✓ Pisinger and Ropke (2007)

la
rg
e

random customer removal ✓ Ropke and Pisinger (2006b)
random visit removal ✓ Ropke and Pisinger (2006b)
worst visit removal ✓ Ropke and Pisinger (2006a)
historical knowledge node removal ✓ Demir et al. (2012)
trip and route removal ✓ ✓ Nagata and Bräysy (2009)

re
pa
ir
op
er
at
or
s random order best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)

largest first best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)
farthest first best insertion ✓ Christiaens and Vanden Berghe (2020)
closest first best insertion ✓ Christiaens and Vanden Berghe (2020)
earliest first best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)
latest first best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)
narrow first best insertion ✓ ✓ Christiaens and Vanden Berghe (2020)

Table 3.3 – Destroy and Repair Operators
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Solving subproblem SP1

The first­echelon subproblem SP1 consists in defining routes for the first­echelon vehicles
such that each fixed second­echelon trip can be supplied with its forward demands, and such
that its reverse demand is transported to the UDC. To model these demands, we introduce the
concept of First­Echelon Demands (FEDs). More precisely, let h = (P, T ) be a second­echelon
trip starting at time t from a satellite s1 and ending at time t′ at a satellite s2. For each customer
i in this trip with a forward demand qfwi >0, we define a forward FED τ fwi = (qfwi , t − ps1 , s1).
It indicates that the quantity qfwi needs to be dropped off by a first­echelon vehicle at satellite s1

not later than time t − ps1 (called the FED due date). Similarly, for each customer i in the trip
with a pick­up demand qrvi >0, we define a reverse FED τ rvi = (qrvi , t′ + ps2 , s2). It indicates that
the quantity qrvi needs to be collected by a first­echelon vehicle at satellite s2 not earlier than
time t′ + ps2 (called the FED release date). Now, the LNS assign FEDs to FEVs to represent the
demand loaded and unloaded in the FEV, i.e., the assigned FEDs define the load plan. Note that
this modeling approach implies that the demand of one customer cannot be split over several
FEVs in SP1 and SP2.

Example 2 (cont’ed from Example 1) Trip h′′
3 starts at satellite s1 at time 10, serves customers 1

with demands qfw1 = 2 and qrv1 = 0 and customer 2 with demands qfw2 = 1 and qrv2 = 3, and ends
at time 13 at the same satellite. In this case, we create three FEDs for this trip: τ fw1 = (2, 9, s1),
τ fw2 = (1, 9, s1), and τ rv2 = (3, 14, s1) (recall that the processing time is ps1 = 1, which explains
the time offset). The FEDs τ fw1 and τ fw2 are assigned to the FEV (s1,3) in trip h1. The FED τ rv2 is
served in the FEV (s1, 14) of trip h2 .

Accordingly, SP1 consists of defining FEVs at satellites, the multi­trip routes of the first­
echelon vehicles that serve these visits and the assignments of FEDs to FEVs. In this problem,
the first­echelon vehicles capacities as well as the satellites capacities, the FEDs due dates, and
release dates must be respected. The objective is to minimize the sum of traveling costs. Hence,
SP1 belong to the class of resource constrained routing and scheduling problems (Paraskevopou­
los et al., 2017) with time­windows, multiple trips, and mixed backhauls.

LNS1 To solve SP1, the destroy operators in LNS1 remove FEDs from the solution. After­
wards, FEVs without any assigned FED are also removed. The repair operators assign unserved
FEDs to FEVs, possibly creating additional FEVs in first­echelon routes. We consider three
types of insertions for a FED τ at satellite s:

— Insertion in an existing visit assigns τ to an existing FEV at satellite s.
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— Insertion in a new visit in an existing trip creates a new FEV to the satellite s in an existing
trip and assigns τ to this FEV.

— Insertion in a new trip creates a new trip starting and ending at the UDC and performing
a FEV at satellite s in­between. The FED τ is assigned to this FEV.

For each insertion type, all possible insertion positions are evaluated in LNS1 according to
the evaluation process described in Section 3.4.2.

Solving subproblem SP2

The second­echelon subproblem optimizes the routing of the second­echelon vehicles given
a (partly) fixed first­echelon. More precisely, we presume the FEVs are fixed, but the satellite
and the release (due) date of an FED can be changed. Consequently, it is possible to change the
assignment of FEDs to FEVs.

Accordingly, SP2 consists of designing the second­echelon trips and routes, as well as the as­
signment of FEDs to (fixed) FEVs. The second­echelon routes must respect the second­echelon
vehicles capacities and the customers’ time­windows, while minimizing the sum of travelling
costs. The FED assignments must respect the first­echelon vehicles capacities. Finally, the re­
sulting schedule must respect the satellites capacities and the precedence constraints related
to transfers. Hence, SP2 belong to the class of Resource Constrained Routing and Scheduling
Problems (Paraskevopoulos et al., 2017) with time windows, multiple trips, multiple depots and
mixed backhauls.

LNS2 In all LNS2 destroy operators, when a customer is removed from a second­echelon route,
its FEDs are also removed from their FEVs. Conversely, in repair operators, an insertion consists
in inserting a customer i in a second­echelon route, update the forward FED τ fwi and the reverse
FED τ rvi accordingly (date and satellite), assign τ fwi to an appropriate FEV at the origin satellite
of the trip, and assign τ rvi to an appropriate FEV at the destination satellite of the trip.

LNS2 employs three types of insertions for a customer i into a second­echelon route:

— Insertion in an existing trip: inserts the customer vertex i between two vertices of an
existing trip.

— Insertion in a new trip: creates a new trip in a route, inserting its origin satellite, customer
i and its destination satellite.

— Split­trip insertions (Grangier et al., 2016): splits an existing trip by simultaneously in­
serting customer i into an existing trip and adding a visit to a satellite s between any two
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consecutive vertices in this trip. Hence, for each customer insertion position, this opera­
tors seeks the best splitting position. The forward FEDs associated with customers served
before s as well as the reverse FEDs associated with customers served after s needs to be
changed and possibly reassigned to FEVs.

For the three insertion types, all possible insertion positions are evaluated according the
feasibility check process explained in Section 3.4.2. This feasibility process also determines
how FEDs are assigned to FEVs.

3.4.2 Insertion evaluation

In both LNS, a repair operator considers all insertion positions for a given FED/customer.
Consequently, LNS relies on a large number of insertions and thus, an efficient feasibility eval­
uation is required. All insertions are first evaluated in terms of cost and a simple necessary
feasibility condition is checked. Afterwards, all remaining insertion possibilities are ranked in
non­decreasing order of their cost before the more elaborate feasibility tests are performed. Con­
sidering the complexity of the integrated scheduling and routing problem, the feasibility evalu­
ation procedure is based on heuristic tests. This type of approach was also used in Masson et al.
(2014) to improve the performance of an exact feasibility test in the dial­a­ride problem with
transfers. On the VRP with cross­docking and resource constraints, Grangier et al. (2019) show
that a heuristic feasibility test can offer a better compromise than a complete test using constraint
programming, allowing for more iterations of the matheuristic in the same time.

In LNS2, customers are inserted into routes, but, in addition, the generated FED must be
assigned to FEV, and the assignment of other FED may be changed. To better apprehend the
algorithms used to test insertions, we present a representation of the solutions as a precedence
graph with resource profiles in Section 3.4.2. This representation of the solution is incrementally
modified to evaluate the insertions, and is also modified accordingly with the modification of
the considered solution.

In this section, we illustrate the feasibility process with the following example:

Example 3 Figure 3.3 represents an incomplete solution for a simple problem with one depot
o, one satellite s and 5 customers.

We consider one first­echelon vehicle k1 of capacity 4 and two second­echelon vehicles (k2

and k3) of capacity 2. The satellite has capacity 3, it is the depot for the second­echelon vehicles.
Customers 1−, 2−, 3−, 5− have a forward demand of one unit and customer 4+ has a pick­up
demand of one unit. For the sake of simplicity, we assume that customers have no time window,
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o s

1−

1fw

2−

1fw

3−

1fw

4+

1rv
5−

1fw

Figure 3.3 – Example for the insertion of customer 3− in and incomplete solution

that the travel time between each pair of locations as well as the satellite service duration are
equal to one time unit, and that customers’ service duration is zero. The length of the planning
horizon t̄ is 9 time units.

In the incomplete solution of Figure 3.3, k1 performs two back­and­forth trips between the
depot and the satellite. It drops­off the demands of customers 1−, 2−, and 5− during its first
visit at the satellite. Vehicle k2 serves customers 1− and 2− during its first trip and customer
5− during its second trip. Vehicle k3 serves customers 4− during its only trip. This customer’s
reverse demand is collected at s by the second visit of k1. Customer 3− is not served.

Table 3.4 details the time schedule of the solution presented in Figure 3.3. Each column
corresponds to one unit of time in the planning horizon specified by the first line. The next
three lines describe the vehicles routes and schedules. The last line indicates the load profile of
satellite s.

Time 0 1 2 3 4 5 6 7 8 9

Vehicle k1 o s o o s o

Vehicle k2 s 1− 2− s s 5− s

Vehicle k3 s 4+ s

Satellite load 0 3 1 2 ­ ­ 0 ­ ­ ­

Table 3.4 – Time schedule of the solution of Figure 3.3
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This section details the mechanism of the evaluation of customer insertion in an incomplete
solution. Section 3.4.2 presents a representation of the solutions with a precedence graph. In
Section 3.4.2, we propose a necessary condition and two sufficient conditions for the feasibility
of an insertion.

Precedence graph and load profile

Let us consider an incomplete solution x, with a set of routes Θx and a set of trips Ωx =
Ω1

x ∪ Ω2
x for the first and second echelon, respectively. The precedence graph Gx

P = (V x
P , A

x
P )

associated with x models all precedence relationships between transportation activities and lo­
gistic operations that take place at satellites. In addition, let us define the resources profiles Λs

t

and Ξr
t monitoring for each time t ∈ T the quantity of goods stored into each satellite s ∈ S and

in each vehicle r ∈ Θ, respectively. The load profile of the satellite was introduced in Figure
3.2.

The vertex set V x
P contains: a vertex O representing the start of the time horizon, a vertex

O′ representing the end of the time horizon, vertices {i ∈ Ph|h ∈ Ωx} representing each vertex
in the walks performed by both echelons vehicles, vertices {τ fw

i |i ∈ N : qfwi > 0} modeling
forward FEDs, and vertices {τ rv

i |i ∈ N : qrvi > 0} modeling reverse FEDs.
Let us denote by Tv, the time, to be determined, of the beginning of the operation associated

with each vertex v ∈ V x
P . In addition, a time window [av, bv] is associated with each vertex

v ∈ V x
P . It is equal to the time window of the location where the considered activity takes place.

Besides, we define [aO, bO] = [0, 0] and [aO′ , bO′ ] = [t̄, t̄]. The time Tτ at which a FED is served
is equal to the service time of the FEV to which it is assigned.

The arcs (v, v′) of the setAx
P model precedence constraints between Tv and Tv′ with a weight

Wv,v′ . This set consists of the following arcs:

— {(O, v)|v ∈ V x
P }: the arcs from vertex O to any vertex v ∈ V x

P , each associated with a
weightWO,v = 0.

— {(v,O′)|v ∈ V x
P }: the arcs from any vertex v ∈ V x

P to O′, each associated with a weight
Wv,O′ = 0.

— {(il, il+1)|il, il+1 ∈ Ph, h ∈ Ω1
x}: the arcs associated with every arc of each first­echelon

trip h ∈ Ω1
x. An arc (il, il+1) is associated with a weightWil,il+1 = t1il,il+1

+ pil
.

— {(il, il+1)|il, il+1 ∈ Ph, h ∈ Ω2
x}: the arcs associated with every arc of each second­

echelon trip h ∈ Ω2
x. An arc (il, il+1) is associated with a weightWil,il+1 = t2il,il+1

.
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— {(ihl
n+1, i

hl+1
0 )|(hl, hl+1) ∈ r, r ∈ Θx}: the arcs between any successive trip of a route,

associated with a weightW
i
hl
n+1,i

hl+1
0

= p
i
hl
n+1

.

— {(τ fw
i , ih0)|i ∈ N : qfwi > 0 ∧ i ∈ Ph}: the arcs associated with each forward demand,

from the drop­off at the satellite of the corresponding FED to the departure of the second­
echelon vehicle serving the customer, with a weightWτfw

i ,ih
0

= pih
0
.

— {(ihn+1, τ
rv
i )|i ∈ N : qrvi > 0∧i ∈ Ph}: the arcs associatedwith each reverse demand, from

the arrival at the satellite of the second­echelon trip serving the corresponding customer,
to the vertex representing the collection of this FED by a first­echelon vehicle, with a
weightWih

n+1,τrv
i

= pih
n+1

.

Finally, the operations modeled by the vertices v ∈ V x
P impact the resources profiles Λ and

Ξ at the time Tv as follows:

— A vertex Dr,h modeling the departure of the second­echelon vehicle r for the trip h from
the satellite s decreases Λs by

∑
i∈h q

fw
i and increases Ξr by the same quantity.

— A vertex Er,h modeling the arrival of the second­echelon vehicle r at the satellite s after
the trip h increases Λs by

∑
i∈h q

rv
i and increases Ξr by the same quantity.

— A vertex i modeling the service at customer i by the second­echelon vehicles r increases
Ξr by qrvi and decreases it by qfwi .

— A vertexDr,h modeling the departure from the depot of the first­echelon vehicle r for the
trip h set Ξr to

∑
i∈h L

fw
i .

— A vertex Er,h modeling the arrival of the first­echelon vehicle r at the depot after the trip
h reset Ξr to 0.

— A vertex Vi modeling the ith FEV to a satellite during the trip h of the first­echelon route
r increases Ξr by Lrv

i and decreases Ξr by Lfw
i .

— A vertex τ fw
i modeling a forward FED at the satellite s increases Λs by qfwi .

— A vertex τ rv
i modeling a reverse FED at the satellite s decreases Λs by qrvi .

Table 3.5 summarize the vertices of the precedence graph Gx
P , with their time windows and

their impact on the resources profiles Λs
t and Ξr

t .
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Name Set Time Windows Impact on ressources

Dr,h {ih0 |h ∈ Ω2
x} [0, t̄] decreases Λs and increases Ξr by

∑
i∈h q

fw
i

Er,h {ihl+1|h ∈ Ω2
x} [0, t̄] increases Λs and increases Ξr by

∑
i∈h q

rv
i

i {i ∈ h\{ih0 , ihl+1}|h ∈ Ω2
x} [ai, bi] increases Ξr by qrvi and decreases it by qfwi

Dr,h {ih0 |h ∈ Ω1
x} [0, t̄] sets Ξr to

∑
i∈h L

fw
i

Er,h {ihl+1|h ∈ Ω1
x} [0, t̄] resets Ξr to 0

Vi {i ∈ h\{ih0 , ihl+1}|h ∈ Ω1
x} [0, t̄] increases Ξr by Lrv

i and decreases Ξr by Lfw
i

τ fw
i {qfwi > 0|i ∈ h : h ∈ Ω2

x} [0, t̄] increases Λs by qfwi
τ rv

i {qrvi > 0|i ∈ h : h ∈ Ω2
x} [0, t̄] decreases Λs by qrvi

Table 3.5 – Vertices of the precedence graph

The following proposition establishes the relationship between a solution x and its associated
precedence graph Gx

P .

Proposition 1 The solution x, without split at the first echelon, is feasible with respect to con­
straints F1­F5, Tr1­Tr8, R1­R4 if and only if, for every vertex v ∈ V x

P , one can find a time Tv

such that:

— for each arc (v, v′) ∈ Ax
P , Tv +Wv,v′ ≤ Tv′ ,

— the time windows are respected: v ∈ V x
P : Tv ∈ [av, bv],

— the load profile of every first­echelon vehicle is compatible with its capacity: ∀t ∈ T, ∀r ∈
θ1

x : Ξr
t ≤ Q1,

— the load profile of every second­echelon vehicle is compatible with its capacity: ∀t ∈
T, ∀r ∈ θ2

x : Ξr
t ≤ Q2,

— the load profile of every satellite is compatible with its capacity: ∀t ∈ T,∀s ∈ S : Λs
t ≤

Csat
s .

Example 4 Figure 3.7 depicts the precedence graph of the solution presented in Figure 3.3.
For the sake of clarity, we did not print the vertices O and O′. Vertices 1 to 5 represents

the customers, along with their demand type denoted by “+” or “­”. Vertices of the form Di,j

represents the departure of the j th trip of the ith vehicle. Vertices of the form Ei,j represent the
arrival of the j th trip of the ith vehicle. Finally, V1 and V2 are visits to the satellite by the first­
echelon vehicle k1, τ fw

i , with i ∈ {1, 2, 3, 5} represents the drop­off of forward FEDs at the
satellite by k1 and τ rv

4 represents the collection of the reverse FED of customer 4 by k1. The arcs
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D1,1 E1,1 D1,2 E1,2

V1 V2

τfw
1 τfw

2 τfw
5 τrv

4

UCC trips
starts & ends

1st­echelon
FEVs &
FEDs

2nd­echelon
trips starts &
ends

Customers

D2,1 E2,1 D2,2 E2,2

1− 2− 5−

D3,1

4+

E3,1

Figure 3.4 – Precedence graph of the solution of Figure 3.3

represent the routes and the precedence relations between the operations at the satellite. The
colors identify the trips, as in Figure 3.3.

We define the precedence graph with fixed assignments Gx
P F of the solution x as its prece­

dence graphGx
P with additional arcs preventing modification of the order of events taking place

at each satellite. That is to say each FED is assigned to its FEV, and arcs with a weight 0 are
added between consecutive vertices taking place at the same location ({(k, k′)|Tk < Tk′ ∧ ik =
ik′ ∈ S : k ∈ h, k′ ∈ h′ : h, h′ ∈ Ωx}).

Insertions tests

Sequence of necessary and sufficient conditions Figure 3.5 summarizes how the necessary
condition and the sufficient conditions are called. For a given FED/customer, the condition NC1
checks the capacity of the vehicle performing the considered trip and a necessary condition for
the timing feasibility without synchronization. All insertions that do not satisfy NC1 are rejected.
The remaining insertions are sorted in non­decreasing cost order. Their feasibility is tested in
this order and the procedure stops as soon as one insertion is proven feasible. The considered
insertion is first tested with SC1. This condition tests whether the insertion can be performed
without modifing the assignment of FEDs to FEVs. If SC1 is unsuccessful, the considered in­
sertion is tested with SC2. This heuristic condition evaluates the same insertion by rescheduling
routes and changing the FEDs assignment. The insertion passes if either SC1 or SC2 are positive,
otherwise, it is rejected.

Some vertices of the precedence graphmay be fixed in time, while others can be rescheduled:
In LNS1 the fixed vertices are the start of the time horizon, the end of the time horizon, the
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departure and arrivals of second­echelon trips, and the customer service vertices. In LNS2 the
fixed vertices are the start of the time horizon, the end of the time horizon, and the FEV vertices.

insertions NC1 sort SC1 SC2

rejected

feasible

Figure 3.5 – Sequence of necessary and sufficient conditions in LNS feasibility tests.

Necessary feasibility condition The necessary condition, denoted NC1, is based on forward
time slacks (Savelsbergh, 1992). A pre­processing step calculates the earliest service time and
the latest service time of each vertex of each route, each route being considered independently
of the other routes. In LNS1, the time window of FEVs are defined as the intersection of their
assigned FEDs’ time windows. This time schedule depends solely on the time windows, the
travelling times and service durations on the route as well as the start and end of the time hori­
zon. For a vertex, route­EST denotes the earliest service time and route­LST denotes the latest
service time. If the considered insertion violates the route­LST when starting from the route­
EST, then the insertion is rejected. In addition, NC1 checks the vehicle capacity. Thus, NC1 can
be evaluated in constant time, after a pre­processing in O(|Ax

P |).

Insertion without re­assignment The first sufficient condition, SC1, is composed of two
parts: a constant time filter and a heuristic test. SC1 evaluates whether the considered inser­
tion can be performed without changing the assignment of FEDs to FEVs and without changing
the order of the operations taking place at each satellite.

The filter is a generalization of the forward time slack in the precedence graph with fixed
assignmentsGx

F P used in SC1. This method is formalized inMasson et al. (2013) for the pickup­
and­delivery problem with transfers and extended to the 2E­VRP in Grangier et al. (2016) to
take into account the synchronization between multiple vehicles. The algorithm of Savelsbergh
(1992) is extended by propagating the earliest service time of a vertex to all its successors in
Gx

F P and its latest service time to all its predecessors in Gx
F P . The calculated service times are

called solution earliest service time (solution­EST) and solution latest service time (solution­
LST). The filter evaluates whether performing the considered insertion respects the solution­
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LST when starting from the solution­EST. If it is not the case, then SC1 fails for the considered
insertion.

If the test filter is positive, the insertion is temporarily performed in the precedence graph
Gx

P . In SP2, an inserted forward FED is assigned to the latest possible (w.r.t the starting time of
the trip) FEV with sufficient capacity, and an inserted backward FED is assigned to the earliest
possible (w.r.t the ending time of the trip) FEV with sufficient capacity. If no such FEV could
be found or if the assignment does not respect the satellite capacity, SC1 fails. In the successful
case, the PERT procedure (Miller, 1963) is applied to the fixed precedence graph Gx

F P of the
resulting solution to compute new time values Tv. SC1 succeeds if the resulting time schedule
respects all time windows. Indeed, the satellite capacity was evaluated in the first step of the
condition, and the sequence of operations at satellites are maintained by Gx

F P structure in the
second step. Hence, the capacity of each satellite is necessarily verified. SC1 has a theoretical
complexity of O(|Ax

P |).

Example 5 Figure 3.6 depicts the solution of Figure 3.3 after inserting customer 3− in the trip
of vehicle k3. The solution­EST of the departure of k3 is 1, and the solution­LST of vertex 4+ is 4.
Consequently, a 1 time unit detour to visit customer 3− does not violate these forward time slack
and the filter included in SC1 passes. Customer 3− has a forward demand of 1, thus its forward
FED must be assigned to a FEV. The latest possible FEV is the first visit at time 1, and vehicle
k1 has enough remaining capacity. But this assignment does not respect the satellite capacity,
and SC1 fails to find a feasible schedule for this insertion. This is illustrated by Figure 3.7
which presents the time schedule of this solution if the forward FED of customer 3− is inserted
into the first FEV according to SC1 procedure. Table 3.6 details the time schedule and satellite
load profile that is obtained by the PERT procedure on this graph. The storage capacity of 3 of
satellite s is exceeded at time 1.

o s

1−
2−

3−

4+

5−

Figure 3.6 – Example: routing of a complete solution.
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D1,1 E1,1 D1,2 E1,2
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trips starts &
ends
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1− 2−
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E2,2D3,1
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Figure 3.7 – Precedence graph of the solution of Figure 3.6 with the time schedule of Table 3.6.

time 0 1 2 3 4 5 6 7 8 9

Vehicle k1 o s o o s o

Vehicle k2 s 1− 2− s s 5− s

Vehicle k3 s 3− 4+ s

Satellite load 0 4 1 ­ ­ 2 0 0 ­ ­

Table 3.6 – Temporary time schedule of the solution of Figure 3.6 after inserting customer 3

Insertion with re­assignments The second sufficient condition, denoted SC2, heuristically
performs the considered insertion while allowingmodification of the order of operations at satel­
lites and modification of the FEDs assignment to FEVs.

The evaluated insertion is first performed in the precedence graph, like in SC1 but without
checking the vehicles and satellite capacities. The inserted vertex is scheduled as early as possi­
ble after its predecessor in the route, and this service time is propagated to its successors in the
route. This may break some synchronizations between echelons, which need to to be repaired,
integrating some possible change in FEDs assignments to FEVs.

To reschedule the solution, SC2 relies on the double­justification (Wiest, 1964). This pro­
cedure is a two­phase algorithm shown to be very efficient to improve solutions of resource
constraint project scheduling problems (Valls et al., 2005). Starting from an existing schedule,
the first phase iteratively schedules all vertices as late as possible by decreasing order of their
current service time in the solution. The second phase iteratively re­schedules all vertices as
early as possible in non decreasing order of their new service time. For a more detailed and ped­
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agogical presentation of the double justification procedure, we refer to (Wiest, 1964). During
these processes, all constraints are checked and we do not allow their violations to be increased.

The double justification is applied to try to repair the schedule of every vertex ofGx
P . When

rescheduling forward/reverse FEDs at the same FEV, they are considered in an arbitrary order,
but linehaul FEDs are postponed first (as late as possible phase) and reverse FEDs are moved
as early as possible first. In this process, FEDs can be reassigned to FEVs as follows:

— in the as late as possible scheduling of a forward FED τ fw
i : the FED τ fw

i is assigned to
the latest FEV that serves the satellite earlier than the due date of τ fw

i and that is served
by a first­echelon vehicle with sufficient remaining capacity.

— in the as late as possible scheduling of a reverse FED τ rv
i : the FEVs of the satellite of

τ rv
i are considered in non­decreasing order of service time, starting from the current time
of τ rv

i . The capacity of the associated first­echelon vehicles are evaluated. The procedure
stops if the minimum remaining capacity of the satellite until the next FEV is lower than
qrv

i . Then, τ rv
i is assigned to the latest evaluated FEV with enough capacity.

— in the as early as possible scheduling of a forward FED τ fw
i : the FEVs of the satellite of

τ fw
i are considered in non­increasing order of service time, starting from the current time
of τ fw

i . The capacity of the associated first­echelon vehicles are evaluated. The procedure
stops if the minimum remaining capacity of the satellite until the next FEV is lower than
qfw

i . Then, τ fw
i is assigned to the earliest evaluated FEV with enough capacity.

— in the as early as possible scheduling of a reverse FED τ rv
i : the FED τ rv

i is assigned to the
earliest FEV that serves its satellite later than the release date of τ rv

i and that is served by
a vehicle with sufficient remaining capacity.

SC2 succeeds if the double justification succeeds in finding a schedule that respects the prece­
dence constraints, time windows and capacities of the problem. The theoretical complexity of
SC2 is also O(|Ax

P |), but it is considerably slower than SC1 in practice.

Example 6 Table 3.7 presents the time schedule of Table 3.6 after the first phase (right­
alignment) of the double­justification.

In this as late as possible schedule, the starting time of the second trip of k2 is postponed
from 6 to 7 and the forward FED of customer 5− is moved from the first visit to the second visit
of k1. In addition, the staring time of the first trip of k2 is postponed from 2 to 3. The trip of
vehicle k3 cannot be shifted. In this step, the satellite load becomes feasible due to the transfer
of the FED of customer 5− to the second visit of k1. The precedence graph of this solution is
represented by Figure 3.8.

126



3.4. Solution method

time 0 1 2 3 4 5 6 7 8 9

Vehicle k1 o s o o s o

Vehicle k2 s 1− 2− s s 5− s

Vehicle k3 s 3− 4+ s

Satellite load 0 3 2 0 ­ 1 1 0 ­ ­

Table 3.7 – As late as possible time schedule of the solution of Figure 3.6

D1,1 E1,1 D1,2 E1,2

V1 V2

τfw
1 τfw

2 τfw
3 τrv

4 τfw
5

UCC trips
starts & ends

1st­echelon
FEVs &
FEDs

2nd­echelon
trips starts &
ends

Customers

D2,1

1− 2−

E2,1 D2,2

5−

E2,2D3,1

3− 4+

E3,1

Figure 3.8 – Precedence graph of the solution of Figure 3.6

Table 3.8 presents the time schedule of Table 3.7 after the second phase (left­alignment) of
the double­justification. Compared to the as late as possible schedule, the first trip of k1 starts
at 2 instead of 3. Thus, this solution is both feasible and scheduled as early as possible.

time 0 1 2 3 4 5 6 7 8 9

Vehicle k1 o s o o s o

Vehicle k2 s 1− 2− s s 5− s

Vehicle k3 s 3− 4+ s

Satellite load 0 3 0 ­ ­ 1 1 0 ­ ­

Table 3.8 – Time schedule of the solution of Figure 3.6
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3.4.3 Mixed integer program (MIP)

The MIP component of ITSH is called in Algorithm 4, line 11, to assemble trips generated
in different iterations of LNS1 and LNS2. It is also able to provide a solution where some cus­
tomer orders are split at the first echelon. The solved MIP is a modified version of Model 3 (see
Section 3.3) in which the sets of all possible trips Ω1 and Ω2 are replaced by smaller subsets ,
the trip pools, Ω̄1 and Ω̄2.

In this section, we present how the MIP interacts with the LNS components: First, we de­
scribe the MIP execution conditions that determine when the MIP is solved and more generally
the general policy that is used to keep the pools sizes reasonable. Second, we introduce the
refined MIP which is solved, allowing some constraints violations penalized in the objective
function to allow for infeasible solutions to be explored and improve the solver performance.
Third, we introduce how the trip pools are filled and filtered. Finally, we describe how the MIP
solution is fed­back into the ITSH framework as a current solution for the next LNS iterations.

MIP execution strategy A common challenge in the hybridization of a VRP metaheuristic
with a MIP component that assemble trips, is the management of the pools of trips. Indeed,
if trip pools Ω̄1 and Ω̄2 contain too many trips, the MIP solver takes too long to improve the
best known solution or spends a lot of time proving optimality. Conversely, if the pools are too
small, the solver fails to find an interesting set of trips that can be recombined to form a feasible
solution. To handle this difficulty, ITSH uses: a MIP time limit, an adaptive MIP execution
conditions, and a pool re­initialization policy.
MIP time limit: The solver is given a limited time budget, denoted by ΓMIP, each time the
MIP is solved. ΓMIP depends on the size of the instance (given in Section 3.5.2). Preliminary
experiments have highlighted that solving the MIP is much harder when a solution serving all
customers has not been found yet. Thus, the value of ΓMIP is increased by 10 seconds for each
unserved customer at the second echelon and by 5 seconds for each unserved FED at the first
echelon in the current best­known solution. This additional time budget helps the solver, and
more generally, ITSH, to find feasible solutions.
MIP execution conditions: TheMIP is executed every η ITSH iterations, when the LNS2 – LNS1

sequence failed to improve the best known feasible solution. Initially, η = 1 and it is adjusted
after each MIP execution depending on the solver result:

— η is increased by 1 if the MIP solution is proven optimal within the time limit, or if the
best known feasible solution is improved on two successive MIP executions.
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— η is decreased by 1 if the solver fails to solve the root node before the time limit or fails
to improve the best­known feasible solution twice in a row. In addition, second­echelon
trip copies will not be created during the next call the MIP component.

Pool re­initialization policy: A pool re­initialization consists in clearing the trips pools Ω̄1 and
Ω̄2, keeping only the trips of the best known solution. In ITSH, this is done: (i) at the end of
the LNS2 – LNS1 sequence on one ITSH iteration, if the best known feasible solution has been
improved, (ii) every time the MIP is solved.

Restricted and refined MIP Restricting the trip sets in Model 3 to Ω̄1 and Ω̄2 has several
consequences: First, the restrictedmodel can be infeasible. To ensure the computation of a partial
solution, we introduce auxiliary variables σi for not serving customers i. The auxiliary variables
are penalized in the refined model’s objective function with a high penalty costM .

Second, in model Model 3, in a first­echelon trip, the quantities dropped off or collected
at each FEV of the trip is given. Hence, a first­echelon trip that drop off or collect more than
the forward/reverse demand of the second echelon may not be used in a solution if its load
planning generates some satellite capacity violation. To enable first­echelon trips to be used in
a solution even if their load planning exceeds the actual demand from the second echelon, we
introduce the auxiliary variables u, which models the surplus at the first echelon. More precisely,
the variable ufws,t (urvs,t) decreases the quantity of goods dropped­off (collected) by first­echelon
vehicles visiting the satellite s at time t in the reformulated flow­conservation (3.e) ((3.f)) and
satellite­capacity constraints (3.g).

Third, in model 3, fleet size, flow conservation and satellite capacity constraints (3.b), (3.c)–
(3.g) have to be defined for all possible points in time t ∈ T. In the restricted and refined MIP,
we reduce the number of these constraints by defining them only for times that correspond to
trip ends or trip starts in Ω̄1 and Ω̄2.

Fourth, to speed­up the early branching phases, for each satellite s ∈ S, we introduce the
binary variable ζs to decide whether the satellite s can be used or not. The solver is configured
to branch first on these variables. An additional constraint enforces that if ζs is set to 0, then no
first­echelon trip visiting satellite s, and no second­echelon trips starting or ending at s, can be
selected.

All technical details including the complete revised formulation, precise definition of vari­
ables, constraints, and index sets are elaborated in Appendix B.2.
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Pool accumulation and update All trips generated in the course of the LNS algorithms are
added to the trip pools Ω̄1 and Ω̄2 (Line 23 of Algorithm 5 in Appendix B.1). In the course of the
LNS, four time schedules are computed for each trip: route­EST, route­LST, solution­EST, and
solution­LST. To enable a synchronization with trips generated on various LNS iterations, we
create trip variables with identical walks but differences time schedules. For each first­echelon
trip and each second­echelon trip in the pool, we generate a trip variable with the solution­EST
schedule. For a second­echelon trip in the pool, we create additionally a trip variable with route­
EST time schedule and a trip with the route­LST time schedule, each with probability 50%.

We also modify the load plan of all first­echelon trips to grant more flexibility. More pre­
cisely, we build load plans that fulfill

∑n
k=1 L

fw
k = ∑n

k=1 L
rv
k = Q1. The missing forward

and reverse quantity to reach the vehicle capacity is computed and evenly distributed among
all visited satellites such that the vehicle capacity is never exceeded. Note that the load plan
of a first­echelon trip always remains feasible if we increase the dropped­off amount at the
first visited satellite and the collected amount at the last visited satellite to meet the condition∑n

k=1 L
fw
k = ∑n

k=1 L
rv
k = Q1. However, it is not always possible to evenly distribute the missing

loads and remain feasible. Thus, if it is impossible to increase evenly, the remaining quantities
are put on the first/last visits.

Communication of a MIP solution to the LNS Communicating the solution of the refined
MIP to both LNS algorithms amounts to perform the following tasks:

(1) Assemble the chosen trips into routes: this is done by solving a simple assignment problem:
assigning trip starts to trip ends, with an artificial route start vertex and artificial route end
vertex.

(2) Correct the quantities dropped­off and collected at each stop of the chosen first­echelon
trips: the value of the auxiliary u­variables is subtracted from the quantities dropped­off or
collected by first­echelon trips at their corresponding FEV . In case a u­variable impacts
several FEVs, the surplus quantity is iteratively removed from the FEDs, in the limit of the
quantities they drop­off/collect, in arbitrary order.

(3) Assign FEDs to FEVs: a generalized assignment problem is solved with the MIP solver to
assign the FEDs to the quantities dropped off and collected at each FEV . If it exists no com­
plete feasible assignment, we assign as many FEDs at possible and customers correspond­
ing to unassigned FEDs are removed and placed in the request bank. If this (incomplete)
assignment violates satellite capacity constraints, we iteratively remove pairs of FEDs and
customers until feasibility is restored. Removed customers are stored in the request bank.
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3.5 Computational results

In this section, we report the results of computational experiments. Section 3.5.1 describes
the new instances that we have generated. The LNS and MIP components are evaluated in Sec­
tion 3.5.2. In Section 3.5.3, we compare our algorithm on 2E­VRPTW instances of Marques
et al. (2020a). Finally, sensitivity analyses that provide managerial insights are conducted in
Section 3.5.4.

The algorithm is coded in C++ and compiledwith g++ 5.4.0.We use IBM Ilog CPLEX20.1.0
(IBM, 2018) as the MIP solver. Options ‘branch up first’ and ‘emphasize finding high quality
feasible solutions earlier’ of CPLEX are used. The experiments were performed on a PC running
Linux, Ubuntu 20.04.2 LTS, equippedwith an Intel XeonGold 6230@2.10GHz. A single thread
is used by our code and CPLEX. On the 2E­VRPTW, distances were round up to two digits, and
on the 2E­MTVRP­CSRF, distances were round up to zero digits (i.e. integer).

3.5.1 Instances

As there are no 2E­MTVRP­CSRF instances (with reverse flow, satellite capacities, and
multiple first­echelon trips), we have generated new ones with the following properties:

— The instances have a Euclidean representation over a [0, 100] × [0, 100] grid. Customers
are placed randomly with a uniform distribution on the grid, while the UDC is always
located at (50, 100). The second­echelon depot and all satellites are randomly placed in
[20, 80] × [20, 80] with a pairwise minimum distance of 20. Times (in minutes) and dis­
tances (=routing costs) are computed as rounded up Euclidean distances.

— The planning horizon is T = {0, 1, . . . , 600}. Customer time windows are assigned with
equal probability: early [0, 300], late [300, 600], or two­hours during the day as [60 +
120ψ, 180 + 120ψ] with ψ ∈ {0, 1, 2, 3}. The customer service time is 5 minutes, and all
satellites have a service time of 15 minutes.

— Customers have either only forward demand, only reverse demand, or both, with probabil­
ity 50%, 25%, and 25%, respectively. This demand is uniformly drawn from {1, 2, 3, 4}.
The first(second)­echelon vehicle capacity is set to 75 (10).

We systematically vary the following parameters to obtain 36 instance groups:

— The number of customers is either 50 or 100.

— 50­customer instances have a fleet of 1 (5) first(second)­echelon vehicle(s), and 100­
customer instances have a fleet of 2 (10) first(second)­echelon vehicles.

131



Partie , Chapter 3 – An Iterative Two­Stage Heuristic for the 2­Echelon Multi­Trip Vehicle Routing
Problem with Capacitated Satellites and Reverse Flows

— The number of satellites is 2, 4, or 8.

— For all satellites, the satellite capacity is set to the same value Csat ∈
{20, 25, 35, 50, 70, 500}. Since 500 is an upper bound for the total demand, this
value represents uncapacitated satellites, i.e., Csat =∞.

This gives 2 × 3 × 6 = 36 groups of instances. We generate ten instances
per group resulting in 360 2E­MTVRP­CSRF instances that are available at https:
//logistik.bwl.uni-mainz.de/research/benchmarks/.

3.5.2 Component Evaluation

First, we evaluate different configurations of the MIP component. We limit the test instance
set to the 60 instances with a tight satellite capacity of Csat = 25 (recall that 25 is one third of
the capacity of a first­echelon and 2.5 times the capacity of a second­echelon vehicle). Most of
these instances are feasible, but the determination of a feasible solution is non­trivial. The overall
time limit is 700(2000) seconds for 50(100)­customer instances and the MIP solver has a time
budget ΓMIP = 60(150) seconds in each iteration. We compare the performance of the complete
configuration (ITSH) as presented in Section 3.4.3 with the following restricted configurations:

— noMIP: the MIP is not used.

— noAdaptTime: the time budget of the MIP is not dynamically adapted, it is always set to
ΓMIP.

— noVAR­u: the additional variables u are not used. Nonetheless, variables σ, used for the
penalization of unserved customers, are necessary during early stages.

— noSplit: the MIP decomposition allows the split of customers’ demand over different
FEVs. Here, these split­solutions of the MIP are considered infeasible.

Table 3.9 presents the results, where for each instance, the best solution found out of 5 runs
is taken into account. Each line corresponds to a group of instances defined by the number
|N | of customers and number |S| of satellites. For each configuration, the entry #f describes the
number of instances for which a feasible solution has been computed with the configuration. For
each of the aforementioned feasible solution, we compare their cost to the cost of the respective
best solutions found by ITSH. While ITSH provides the reference solutions (average costs are
presented in column ‘cost’), the average percentage gap to the ITSH solution, computed as 100 ·
(zconf − zIT SH)/zIT SH , is presented in columns ‘Gap’ for all three alternative configurations.
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ITSH noMIP noAdaptTime noVAR­u noSplit

|N | |S| #inst #f cost #f Gap #f Gap #f Gap #f Gap

50 2 10 10 1 965.0 8 2.01 10 0.65 9 −1.03 10 0.71
4 10 10 1 725.7 9 2.36 10 0.65 10 2.36 10 0.83
8 10 10 1 663.1 10 2.54 10 0.35 10 1.24 10 0.09

Total 30 30 1 784.6 27 2.33 30 0.55 29 0.92 30 0.55

100 2 10 9 3 402.1 6 3.23 8 3.66 6 2.54 9 0.14
4 10 10 3 021.8 9 2.22 9 0.63 10 0.91 10 0.33
8 10 10 2 572.0 10 3.94 10 −0.21 10 1.66 10 0.03

Total 30 29 2 984.7 25 3.15 27 1.30 26 1.61 29 0.17

Table 3.9 – Comparison of different MIP configurations

The complete configuration ITSH computes feasible solutions for 59 of the 60 instances,
which is better than any restricted configuration.

The solutions computed with ITSH are better than the solutions computed with any other
configuration. The MIP appears as an essential components of ITSH, more particularly with
the adaptive time budget (average gap of approximately 2.7% over all instances). Moreover,
the additional variables improve the quality of the solutions compared to noMIP. Last, the split
of customers’ demand seems to have only a small impact on the solution quality. It was to be
expected since the largest gain from the split delivery VRP, compared to the VRP, occurs when
the customer demands are larger than half of the vehicle capacity (Archetti and Speranza, 2008),
while, in our case, customers demand are much smaller than first­echelon vehicle capacity.

Second, we evaluate the impact of the multi­level feasibility checking strategy for the
second­echelon LNS presented in Section 3.4.2. Recall that only LNS1uses both tests SC1 and
SC2 (LNS1uses only SC1). Figure 3.9 visualizes how potential insertions are filtered by the
insertion feasibility check. We considered an instance with 50 customers, two satellites, and
satellite capacity 25. The execution of the ITSH includes more than 17 millions insertions at­
tempts. Most infeasible insertions (>16 millions) are detected by NC1 and directly rejected. The
subsequent sort of the insertions further reduces the number of calls to SC1 from 1.42 million to
654k. Then, SC1 identifies approximately half (29k) of the feasible insertions that are performed.
Finally, the very time­consuming SC2 identifies the other half (27k).
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insertions NC1 sort SC1 SC2

rejected

feasible

17.67M 1.42M 654k

29k

625k

27k

16.25M 598k766k

Figure 3.9 – Example of the usage of the feasibility tests

We now analyze the impact of SC1 and SC2 on a restricted test set consisting of the 30
instances with 100 customers and satellite capacity 25:

— When SC1 is deactivated in LNS2, the average cost of a solution increases by 1.8%. The
impact on cost is even more striking given that approximately 90% of the computation
time is consumed by the MIP solver and not the LNS2. A single evaluation of SC2 takes
approximately 450 times more time than an evaluation of SC1. Hence, SC1 is a very
powerful speed­up procedure to to fastly detect feasible insertions without re­assignment.

— When SC2 is deactivated in LNS2, many feasible insertions remain undetected, because
all undecided insertions after SC1 are rejected. As a result, not a single feasible solution at
all is determined with ITSH. The solution process is stuck producing only new solutions
similar to the initial infeasible solution. Recall that SC1 assumes that the order of oper­
ations taking place at each satellite cannot change. In particular, without SC2 and only
SC1, the order of second­echelon arrivals and departure is fixed relative to the current
first­echelon visits, which is highly constrains the insertion of vertices into alternative
positions.

3.5.3 Comparison on 2E­MTVRPTW benchmark

We compare configuration ITSHwith state­of­the­art algorithms for the 2E­VRPTW.Grang­
ier et al. (2016) modified and extended instances from the well­known benchmark set of
Solomon by placing the UDC to the coordinate (50,150) and adding eight additional satellites.
Vertex 0 represents the second­echelon depot. Customer time windows are shifted to account for
first­echelon and satellite processes. Recently, Marques et al. (2020a) extended this benchmark
set by creating smaller instances with 25, 50, and 75 customers. They consider only the first
customers in the respective 100­customer instance. The smaller instances have between 4 and 6
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satellites.
We can directly compare our method with the results of the branch­price­and­cut (BPC)

algorithm of Marques et al. (2020a), who minimize the total cost including a fixed cost per
vehicle of 50 (25) per first(second)­echelon vehicle. For a fair comparison, we only consider the
instances for which Marques et al. report a feasible solution value, because we use their number
of vehicles as our fleet­size limit.

Table 3.10 summarizes the comparison with the exact BPC algorithm proposed in Marques
et al. (2020a) with a 10­hour time limit.

|N | = 25 |N | = 50 |N | = 75 |N | = 100
Γtot = 30 Γtot = 120 Γtot = 500 Γtot = 800

BPC BPC BPC BPC
Group # time Gap # time Gap # time Gap # time Gap

c100 0/9 23 0.50 0/9 161 0.29 3/8 9 621 1.01 0/7 16 503 1.91
r100 0/12 62 0.15 0/12 882 1.13 2/10 27 049 0.97 0/3 19 970 0.41
rc100 0/8 10 0.55 0/8 89 1.10 0/7 23 168 1.07 3/4 36 092 −0.75
c200 0/8 585 0.39 1/8 8 294 2.41 0/4 7 809 2.35 0/1 15 935 0.44
r200 0/8 5 169 3.34 0/1 1 714 0.07
rc200 0/8 356 5.16 0/6 7 847 2.12

All 0/53 942 1.54 1/44 2 907 1.30 5/29 18 932 1.19 3/15 22 382 0.80

Table 3.10 – Performance on the 2E­VRPTW instances compared to the BPC algorithm of Mar­
ques et al. (2020a).

The two numbers x/y in columns headed ‘#’ are the number y of instances considered and the
number x of new best solutions computed with ITSH (if no feasible solution was provided by the
BPC algorithm, the cells are left blank). Our algorithm has a fixed time budget Γtot(in seconds)
controlled by the number |N | of customers (see entries Γtot in the second line of the table’s
header; associated CPLEX time limits ΓMIP are set to 2, 10, 40, and 60 seconds, respectively).
In contrast, run times of the BPC algorithm are unpredictable, and average times (in seconds)
are presented in columns ‘BPC time’. Moreover, the table shows the average gaps (‘Gaps’; in
percent) between the best solutions found by our algorithm (five independent runs per instance)
and the best solutions found by Marques et al. (2020a). Detailed instance­by­instance results
can be found in Appendix C.1.

ITSH delivers feasible solutions to all instances for which the BPC algorithm also computes
feasible solutions. Moreover, ITSH finds nine new best solutions for the benchmark set (leading
to a negative gap in the group rc100 with |N | = 100). We further interpret the results in the
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following way. Instances with more customers, wider time windows and longer routes (series
2) are more difficult for the BPC. As a heuristic and in comparison to the BPC algorithm, ITSH
can better provide good feasible solutions so that average gaps are even decreasing for instances
with more customers. However, some larger gaps (up to 6.41% for a 25­customer instance in
group rc200 ) show that ITSH can still fail to reach some optimal solution values computed by
the BPC (in several hours of computation time).

3.5.4 Sensitivity analyses

The consideration of capacitated satellites and reverse flows in the two­echelon system are in
the focus of this work. We now study their impact on costs in sensitivity analyses. All results are
based on the best solution computed with the complete ITSH configuration in five independent
runs for each instance.

Cost of satellites capacity Figure 3.10 depicts the impact of satellites capacity. In both sub­
figures (for 50­ and 100­customer instances), the horizontal axis represents the capacity of the
satellites and the vertical axis represents the average increase in cost (in percent) compared to
the respective uncapacitated instance with Csat = ∞. The figures show three plots with the
result for 2, 4, and 8 satellites, respectively. To put these results in perspective, the average total
forward demand is of 188 and the average total reverse demand is of 124 on the instances with
100 customers. Detailed results can be found in Section C.2 of the Appendix.
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Figure 3.10 – Average cost increase (in percent) compared to the respective instance with no
satellite capacity restrictions.
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As expected, the average cost increase declines with larger satellite capacities. The fewer
satellites are available, the smaller the cost difference (with the exception that 4 and 8 satellites
make nearly no difference for 50­customer instances). In comparison, the cost increase is larger
for 100­customer than for 50­customer instances, which can be explained by the fact that the ca­
pacity of a satellite is constant in contrast to the doubled total demand. Note that we disregarded
some instances with two satellites and a capacity of 20 and 25, because no feasible solutions
could be found due to the (overly) restrictive capacity.

The convex shape of the curves indicates that the benefit from additional capacity units is
strongly decreasing: For the 100­customer instances, the five units more for extending the capac­
ity from 20 to 25 have a much higher impact (8.08%) than the 20­unit increase from capacity 50
to 70 (1.96%). Moreover, the difference between satellite capacity 70 and uncapacitated satel­
lites becomes negligible (0.32%).

Doubling the capacity leads to a much larger cost decrease than doubling the number of
satellites. Nevertheless, a small number and size of satellites can be a reasonable design given
the outstanding prices of space in some cities (e.g., £14355/m2/year in London, Furmanik,
2019).

Gain of simultaneously handling forward and reverse flows To evaluate the gain that re­
sults from the integration (i) of forward and reverse flows, we create two distinct instances with
only the forward demands and the reverse reverse demands, respectively. We denote by ci the
cost of a best solution found by ITSH for the original instances and by cfw, and crv the cost
found for the new instances with only forward or reverse demands. In Table 3.11, Columns 3 to
8 present the average gain of the integrated approach, computed as (cfw + crv − ci)/ci, grouped
by the number of customers and satellites as well as satellite capacity. Note that the compari­
son is biased, since we assumed that both forward flow and reverse flow can use the complete
satellites capacity when forward and reverse are managed independently.

On the opposite, Column 9 evaluates the gain from the integration by considering that the
integrated problem can use the full satellite capacity (50) while each sub­instance can use only
part of the capacity. Since the total forward demand is larger than the total reverse demand, we
decided that forward instances use satellites of capacity 35 while reverse instances use satellite
of capacity 25.
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Satellite capacity Csat

|N | |S| 20 25 35 50 70 ∞ 50→ 35 + 25

50 2 23.55% 27.99% 33.08% 35.74% 36.89% 37.33% 36.11%
4 30.80% 34.07% 35.85% 36.50% 37.45% 37.83% 37.16%
8 31.50% 33.12% 35.09% 36.08% 36.21% 36.59% 36.57%

Total 29.55% 31.73% 34.67% 36.11% 36.85% 37.25% 36.61%

100 2 11.27% 22.75% 31.04% 37.55% 39.74% 40.38% 39.96%
4 22.47% 27.02% 32.98% 36.05% 39.00% 39.13% 38.14%
8 33.74% 37.16% 39.53% 42.19% 42.95% 43.24% 43.63%

Total 25.30% 29.19% 34.52% 38.60% 40.56% 40.92% 40.58%

Table 3.11 – Average gain resulting from simultaneously handling forward and reverse flows.

The gain from the integration tends to increase with the total space provided by all satellites
and the total quantity of goods to carry. It increases from 11% with two small satellites for 100
customers, to 43% with 8 large satellites for 100 customers. On one hand, the gain consistently
increases with the satellite capacity. On the other hand, the gain tends to increase with the number
of satellites, but this trend is not consistent for the 50­customer instances and |S| = 4 or 8. We
can only explain this with the fact that the instances with eight satellites are much more difficult
for ITSH compared to those with only four satellites. The point is that, for instances with |S| = 8,
not all satellite have to be used.

Furthermore, gains presented in columns 3 to 8 assume that both forward flow and backward
flow can use the satellites entirely when they are managed independently. This would result
in clearly unrealistic solutions in practice. Thus, in Column 9, we evaluate the gain from the
integration if each type of flow could use only a part of the satellites capacity . The gain from
the integration then rises to 43% if 8 satellites are used for 100 customers.

3.5.5 Insights on instances

To better apprehend the previous tables, this section focuses on the time spent by goods at
the satellites. We compute the average time between the arrival of a FED at a satellite and the
departure of its associated second­echelon vehicle (or the opposite for a backward demand).
This time includes the service duration at the satellite (15 units out of a planning horizon of 600

138



3.5. Computational results

units). Table 3.12 shows the average time spent by goods at the satellites, in instances with 100
customers, with respect to the number of satellites and their capacity. Infeasible instances are
not taken into account.

Satellite capacity Csat

# satellites 20 25 35 50 70 ∞

2 38.5 44.3 58.3 85.0 116.5 135.2
4 53.9 70.6 89.7 101.0 126.1 128.8
8 67.0 82.1 95.0 114.8 117.6 118.1

All 56.1 66.4 81.0 100.3 120.1 127.4

Table 3.12 – Average time spent by the goods at satellites

In general, the waiting time of goods at satellites increases with the satellites capacity or
the number of satellites, the impact of the number of satellites being significantly greater with
tighter satellites capacities.

Finally, figures 3.11a and 3.11b show the quantity of goods stored at each satellite over
time with a satellite capacity of 25 and 500, respectively. In the following, the first instance is
called the tight capacity 2E­MTVRP­CSRF, while the second is called the uncapacitated 2E­
MTVRP­CSRF. Each curve corresponds to a satellite, the colors are the same in the two figures.
In addition, time­series at the top indicate which type of vehicle operates at each satellite: a
square for a first­echelon visit, a triangle for a second­echelon vehicle arrival, and a pentagon
for a second­echelon vehicle departure. This comes from the best solutions found for an instance
of class B with 100 customers. In this instance, the total forward demand is of 188 and the total
backward demand is of 138. Because both solutions use four satellites, the average quantity of
goods passing by each satellite is of 81.5.

The cost of the tight­capacity 2E­MTVRP­CSRF solution represented by Figure 3.11a is
3321: 570 for the first echelon and 2751 for the second­echelon. The cost of the uncapacitated
2E­MTVRP­CSRF solution represented by Figure 3.11b is 2694: 474 for the first echelon and
2220 for the second­echelon. The second­echelon fleet has 10 vehicles. They are all used in the
constrained case and only 7 vehicles are used in the uncapacitated 2E­MTVRP­CSRF.

Both solutions are using approximately the same number of trips: 3 and 4 first­echelon trips
with 10 and 12 first­echelon visits, and 39 and 40 second­echelon trips. But when the satellite
capacity is tight, all trips must be synchronized accurately to avoid exceeding these capacities.
Indeed, the average time spend by goods at satellite in the tight capacity 2E­MTVRP­CSRF is
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of 81, while it is of 44 in the uncapacitated case.
Let us consider how goods are spread over satellites in these solutions: In the tight capacity

2E­MTVRP­CSRF, the quantity of goods processed by each satellite is: 82, 127, 68, 49. In the
uncapacitated 2E­MTVRP­CSRF, the quantity of goods processed by each satellite is: 52, 154,
72, 48. With a tight capacity, the goods have to be spread over satellites because the best satellite
location is overloaded. The goods are better spread in time to take account of the tight capacity.
Indeed, the quantity of goods arriving at satellites during each block of 100 time units in the tight
capacity 2E­MTVRP­CSRF solution are: 70, 68, 41, 104, 38, 9. In the uncapacitated case, these
values are: 135, 24, 72, 46, 17, 36. The standard deviations of these two sequences are 32 and 43,
respectively, showing a significantly higher dispersion in the uncapacitated 2E­MTVRP­CSRF.
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Figure 3.11 – Satellite usage over time
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3.6 Conclusion

Two­echelon distribution systems are often introduced as the cornerstone of city logistics. In
this paper, we study major functionalities that are generally ignored in most operations research
algorithms for this type of system: forward and reverse flows, multiple vehicle trips and storage
capacities at satellites. We introduce the 2­Echelon Multi­Trip Vehicle Routing Problem with
Capacitated Satellites and Reverse Flows (2E­MTVRP­CSRF), which models how these new
features can be integrated in an optimization problem.

To solve this problem, we designed a decomposition­basedmatheuristic: Iterative Two­Stage
Heuristic (ITSH). ITSH uses LNS to improve the routes at both echelons, taken separately, and
a solver to solve a MIP model which recombines trips generated for the two echelons on distinct
LNS iterations. To efficiently test the feasibility of insertions in a partial solution of the problem,
the LNSs rely on incremental implementation of algorithms inspired from the scheduling litera­
ture: the PERT algorithm and the double­justification. The MIP is formulated and adapted such
that it is able to recombine many trips generated by the LNS algorithms in a reasonable amount
of time. Both types of methods have been integrated using adaptive mechanisms so that ITSH
adequately shares its solving time between the search for efficient new trips and the combination
of existing trips.

To evaluate ITSH on the 2E­MTVRP­CSRF, we generated instances with up to 100 cus­
tomers and 8 satellites 1. In our experiments we find that:

— ITSH provides good results on instances of the 2E­MTVRPTW in a comparison to the
exact algorithm of Marques (2020).

— The combination of the heuristic and exact components is a key success factor of the
algorithm.

— The routing costs are very sensitive to the satellite capacity. On 100 customers instances
with two satellites, moving from a large capacity of 70 to a tight capacity of 20 generates
a 30% cost increase on average and feasibility issues.

— Doubling the capacity of well located satellites leads to amuch larger routing cost decrease
than doubling the number of satellites.

— Integrating forward and backward flow can generate considerable savings (at least 40%
on average for 100 customer instances and infinite satellite capacities). This saving goes
decreasing with the satellites capacities and the number of satellites but always remains
significant.

1. These instances will be made available to the scientific community for further research
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Given the complexity of the 2E­MTVRP­CSRF, there are clearly many avenues to explore in
order to improve its resolution, whether exact or heuristic. In particular, the feasibility problem
related to the satellite capacity with forward and backward flows is a complex scheduling prob­
lem. For future studies, different backhauling policies could be compared at the second echelon
and customers service at the first echelon could be integrated to model more practices evolving
on the field (Nolz et al., 2020).
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CONCLUSION AND PERSPECTIVES

In this thesis we proposed theoretical models for routing problems in city logistics, inte­
grating synchronized resources to take into account the tight constraints induced by the urban
environment.

We first proposed the Vehicle Routing Problemwith Delivery Options (VRPDO) to integrate
alternative delivery modes. Second, we proposed the 2­Echelon Multiple­Trip Vehicle Routing
Problem with Capacitated Satellite and Reverse Flow (2E­MTVRP­CSRF). This problem inte­
grates linehaul and backhauls in a 2­echelon system where satellites have limited storage capac­
ity. To solve these problems, we developed a Large Neighborhood Search framework based on
small and fast iterations: the Small and Large Neighborhood Search (SLNS). Furthermore, we
hybridized this framework with MIP solved by commercial solvers and dynamic programming,
thus showing that matheuristics are relevant for vehicle routing problems with synchronized
resources.
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4.1 Applicative contributions and perspectives

Figure 4.1 illustrates the managerial contributions and perspectives of this thesis: multiple
delivery options, 2­echelon system with capacitated satellites, and multi­modality.

The utilization of multiple delivery options per customer was explored in Chapter 1. The
Vehicle Routing Problem with Delivery Option (VRPDO) integrates the delivery in private and
shared locations while taking into account customer’s time windows and preferences, as well
as the capacity of shared delivery locations. Experiments performed on randomly generated
instances suggest that this can reduce the routing cost by 30% and improve the quality of service
compared to the single­option per customer usual policy.

In Chapter 3, we defined the 2­Echelons Multi­Trip Vehicle Routing Problem with Capaci­
tated Satellites and Reverse Flows (2E­MTVRP­CSRF). This problem integrates the collection
and the delivery of goods in a two­echelon system with limited capacity satellites. Experiments
performed on randomly generated instances with medium size satellites suggest that the inte­
gration of the linehaul and backhaul flows in this context lead to a 43% decrease of the routing
costs.

The VRPDO and the 2E­MTVRP­CSRF could be firstly combined to further reduce the
costs and take advantage of the many opportunities arising in cities. This integration could then
be further strengthened by using multi­modality. That is to say, we could use different types
of vehicles at the second echelon, from cargo­bikes to light electric vans through sidewalk
drones or walking trips. It would also be possible to associate the first­echelon vehicles with
scheduled lines networks accessing the city center, such as public transport or waterways. Such
a complete integration of city modalities would be beneficial for both the delivery company
and the residents. In addition, it would be very challenging to consider time dependency and
robustness to improve the realizability of such a system.

1 Designed by Quentin Le Gouvello De La Porte using assets distributed by http://thenounproject.com
under Creative Commons license created by RROOK, mohkamil, jeff, GreenHill, Jony, indra anis, Teuku Syahrizal
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Figure 4.1 – Integration and perspectives of the managerial contributions 1
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4.2 Methodological contributions and perspectives

Figure 4.2 presents the methodological contributions and perspectives of this thesis: Small
and Large Neighborhood Search (SLNS), and Iterative Two­Stage Heuristic (ITSH).

We began Chapter 1 with a rigorous comparison of many operators developed over the first
year of the thesis for LNS heuristics.We studied their impact on the quality of the final solution as
well as the redundancy between them in order to propose an efficient set of operators. After many
rounds of tests, we developed a configuration of LNS orchestrating small and large destructions:
SLNS. This framework mostly performs small and local destructions allowing for fast repair.
Many of these iterations can be quickly performed to successively improve parts of the solution.
In addition, large destructions are performed for exploration if the solution was not improved
by the preceding iterations. This new configuration of LNS was proven to be very efficient on
the VRPDO compared to previously developed configurations of LNS.

In Chapter 2 we studied the hybridization of SLNS with exact methods: a Set Partitioning
Problem (SPP) solved by a MILP solver, and the Balas­Simonetti neighborhood used with dy­
namic programming. First, we worked on the utilization of a SPP formulation of the VRPDO to
recombine routes generated by SLNS. To get the best of this method, we developed an adaptive
criterion to decide on when to call the solver. It is based on past performance of SLNS and those
of the solver during the run. Second, we tried to improve solutions with dynamic programming
by adapting the Balas­Simonetti (BS) neighborhood to the VRPDO. As for the SPP, we designed
an adaptive layer to decide on when to use this technology. The strengths and weaknesses of each
component of the newly developed SLNS+SPP+BS were then evaluated on multiple general­
ized vehicle routing problems with time windows. We concluded that SLNS was already very
efficient on its own, that SPP could improve its results on hard instances, and that BS could also
be useful on some specific instances.

To solve the 2E­MTVRP­CSRF, we developed the Iterative Two­Stages Heuristic (ITSH).
This method iteratively improves the second­echelon routes, the first­echelon routes, and
recombines them. The first two sub­problems are solved by SLNS heuristics and the re­
combination phase is ensured by the solving of a trip­based MIP model. Thus, ITSH relies
on the tools we previously developed. In addition, to take into account the synchronization
between the two echelons and the satellites capacity in SLNS, we had to integrate algorithms
from the Resource Constraint Project Scheduling Problem (RCPSP) literature. Indeed, the
insertion feasibility tests are based on the PERT algorithm and the double­justification principle.
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Several ideas developed during this thesis could not be fully investigated. We conclude this
manuscript by enumerating these research avenues:

— Exact reconstruction with Miller­Tucker­Zemlin (MTZ) MIP models: during my stay at
Mainz, we explored the possibility of a MIP­based recreate heuristic for the SLNS de­
veloped for the VRPDO. This operator was intended to repair the solution by solving an
MTZ­based model of the VRPDO. Unfortunately, the time required by CPLEX to find
a better solution increases non­linearly with respect to the destruction size. Thus, we did
not succeed in making it more profitable than list recreate operators even for promising
solutions. Nonetheless, the question of exact LNS operators is still to be explored.

— Improvement of solutions via dynamic programming through giant tour representation:
during our study on the Balas­Simonetti neighborhood for the VRPDO, we tried to use it
on a giant tour representation of the solutions. Thus, the dynamic programming was able
to choose the delivery option for all the customers. But it proved to be too computationally
requiring to be efficient. Nonetheless, we still believe that it can be a promising idea by
using advanced techniques from the split literature.

— Acceptance criterion limiting solution copy: the spirit of SLNS is to greatly decrease the
time spent in repairing solutions in order to perform more iterations. However, at the
beginning of each iteration, the time spent to copy the solution remains constant compared
to an LNS with larger destructions. Thus, the proportion of the time budget spent in copies
gets significant in SLNS. We tried to develop an acceptance criterion to limit the number
of solution copies, but we did not come up with something effective both limiting the copy
and providing enough intensification. Consequently, the question of a method to limit the
time spent in solution copy remains unsolved.

— Granular insertion schemes: when we were working on improving LNS for the VRPDO
in order to tackle larger instances, we tried to limit the number of insertion evaluations.
The developed LNS was modified in a granular sense. That is to say, for each customer
to be inserted, only the insertions next to pre­computed nearby locations were evaluated.
But this component was not easy to tune for the VRPDO. Besides, this functionality was
introduced in the code much too late to be efficiently implemented. Consequently, the
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preliminary results were not conclusive, but we still believe that such an idea could be
improving for some problems.

— Improving the main loop in ITSH: in the decomposition method developed for the 2E­
MTVRP­CSRF, the method always solves the second­echelon, the first one, and possi­
bly the MIP. We think that it can be of some use to dynamically adapt the speed of the
communication between the first two subproblems to better balance intensification and
diversification. We could think of a local­search drop­like procedure that would remove
first­echelon visits or even satellites from the solution, quickly solve the second­echelon
and the first­echelon, in order to generate a diversity of routes for the MIP.

— Adapting the cuts for the 2E­VRPTWofMarques et al. (2020b) to the 2E­MTVRP­CSRF:
in his thesis some new cuts for the 2E­VRPTW proved to be very effective. It could signif­
icantly improve the performance of the MIP in our decomposition method to adapt them
to the 2E­MTVRP­CSRF.

— Exactly build the first echelon in theMIP for the 2E­MTVRP­CSRF: in our decomposition
method there are often a small number of first­echelon visits at satellites. However, when
there are too many visits, the LNSs has difficulties to delete some. Thus, we thought about
using anMTZ­based formulation to construct the first­echelon in theMIP, instead of using
a column based­model.

— Dynamic definition of the FED in ITSH: in our 2E­MTVRP­CSRF results we observe a
correlation intertwining the gap between the cost of the solution with and without split at
the first echelon and the gap between the cost of the best­found solution and the average
cost. An interpretation is that the former gap indicates a difficult instance. The capacity of
our method to deal with this form of complexity could be improved by allowing the LNS
for the first­echelon to use split delivery in a restricted way. We thought about defining
FED with wisely chosen splits of some demand so that LNS could be used to improve the
solutions with splits computed by the MIP.
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Figure 4.2 – Mind­map of the methodological contributions and perspectives
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As I started this manuscript with a citation of a leading scientist of the VRP community, I
would like to do the same for ending it, with this feeling expressed in Laporte (2009):

“There is, however, a sense that several of themost successful metaheuristics are
over­engineered and one should now attempt to produce simple and more flexible
algorithms capable of handling a larger variety of constraints, even if this were to
translate into a small loss in accuracy. ”

Indeed, the development of a state­of­the­art method for the generalized vehicle routing
problems based on easy­to­implement list heuristics goes in this direction. Likewise, the pro­
posed hybridizations for SLNS are based on simple adaptive layers and can be performed by
existing software. But, on the contrary, facing the complexity of the 2E­MTVRP­CSRF, we de­
veloped a complex method, thus, improving it through simplifications is a major research area
to interest companies in integrating our algorithms for city logistics optimization.
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A.1 Detailed results on the VRPDO instances

Instance LNS SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost Route Cost

U_100_1 11 482.07 11 481.82 11 482.77 11 481.82 11 479.97
U_100_2 10 682.81 10 690.49 10 703.56 10 672.93 10 691.13
U_100_3 11 629.93 11 638.34 11 637.30 11 631.51 11 630.02
U_100_4 10 594.53 10 612.78 10 614.97 10 607.13 10 609.72
U_100_5 10 673.31 10 680.54 10 701.20 10 673.31 10 673.31
U_100_6 10 598.61 10 592.42 10 601.70 10 598.61 10 598.61
U_100_7 11 747.26 11 747.05 11 749.35 11 763.74 11 763.64
U_100_8 11 844.42 11 856.52 11 852.73 11 843.29 11 845.89
U_100_9 10 677.69 10 683.95 10 693.10 10 680.25 10 682.76
U_100_10 11 572.75 11 574.63 11 575.64 11 575.62 11 573.20
V_100_1 11 647.57 11 654.42 11 647.57 11 647.57 11 647.57
V_100_2 10 863.15 10 857.68 10 855.53 10 851.12 10 848.57
V_100_3 10 696.71 10 707.80 10 700.69 10 686.65 10 706.33
V_100_4 10 593.82 10 597.02 10 596.84 10 594.61 10 594.61
V_100_5 10 768.99 10 778.42 10 790.63 10 771.77 10 802.72
V_100_6 11 597.29 11 599.46 11 599.28 11 597.29 11 597.29
V_100_7 11 702.18 11 705.06 11 703.77 11 707.93 11 703.34
V_100_8 11 744.85 11 749.42 11 747.44 11 750.10 11 745.35
V_100_9 10 786.05 10 811.91 10 805.64 10 804.28 10 800.96
V_100_10 10 606.26 10 616.88 10 623.24 10 615.31 10 605.62
UBC_100_1 4 368.07 4 365.80 4 368.24 4 368.24 4 368.24
UBC_100_2 4 353.70 4 344.62 4 346.32 4 353.10 4 350.97
UBC_100_3 4 335.92 4 323.46 4 323.46 4 323.46 4 323.46
UBC_100_4 4 334.61 4 334.61 4 334.61 4 334.61 4 334.61
UBC_100_5 4 372.29 4 371.04 4 391.88 4 371.55 4 371.55
UBC_100_6 4 356.68 4 349.58 4 379.38 4 346.91 4 363.77
UBC_100_7 4 337.90 4 337.90 4 337.90 4 337.90 4 337.90
UBC_100_8 4 417.08 4 422.48 4 423.28 4 422.48 4 415.07
UBC_100_9 4 388.49 4 388.04 4 396.03 4 384.46 4 384.46
UBC_100_10 4 350.03 4 356.33 4 356.33 4 356.33 4 362.56

Table A.1 – Detailed results on the VRPDO instances with 100 customers in 300 seconds
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Instance LNS SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost Route Cost

U_200_1 21 1 503.79 21 1 542.48 21 1 536.11 21 1 508.56 21 1 491.37
U_200_2 21 1 194.72 21 1 208.02 21 1 214.84 21 1 195.00 21 1 189.36
U_200_3 20 1 287.07 20 1 310.72 20 1 324.30 20 1 289.18 20 1 289.47
U_200_4 21 914.78 21 932.00 21 939.91 21 924.91 21 920.70
U_200_5 21 1 051.40 21 1 072.84 21 1 056.72 21 1 052.94 21 1 050.60
U_200_6 20 1 085.91 20 1 106.35 20 1 106.79 20 1 081.08 20 1 087.79
U_200_7 21 988.37 21 1 007.64 21 1 035.93 21 1 001.94 21 1 007.83
U_200_8 20 1 077.32 20 1 095.71 20 1 105.12 20 1 093.05 20 1 079.74
U_200_9 20 1 165.87 20 1 197.17 20 1 183.06 20 1 177.17 20 1 191.32
U_200_10 20 1 462.33 20 1 486.39 20 1 480.56 20 1 445.02 20 1 478.39
V_200_1 21 1 284.06 21 1 293.37 21 1 307.26 21 1 292.04 21 1 293.09
V_200_2 20 1 229.74 20 1 241.74 20 1 246.82 20 1 212.85 20 1 203.66
V_200_3 21 1 240.69 21 1 255.86 21 1 250.38 20 1 397.31 21 1 243.62
V_200_4 21 1 336.35 21 1 368.87 21 1 378.37 21 1 349.48 21 1 329.73
V_200_5 20 1 360.36 20 1 409.91 20 1 398.44 20 1 364.60 20 1 369.24
V_200_6 21 1 416.77 21 1 446.09 21 1 431.78 21 1 453.41 21 1 445.76
V_200_7 20 1 151.02 20 1 166.02 20 1 158.90 20 1 166.34 20 1 163.27
V_200_8 20 1 479.69 20 1 499.91 20 1 489.01 20 1 491.97 20 1 486.38
V_200_9 20 1 624.73 20 1 636.77 20 1 652.39 20 1 623.12 20 1 623.93
V_200_10 20 1 387.98 20 1 397.51 20 1 411.97 20 1 390.87 20 1 381.51
UBC_200_1 8 586.28 8 570.26 8 573.34 8 572.46 8 590.56
UBC_200_2 8 516.30 8 491.97 8 508.50 8 491.52 8 493.49
UBC_200_3 8 808.03 8 781.20 8 801.10 8 783.61 8 802.84
UBC_200_4 8 628.91 8 647.94 8 669.28 8 639.34 8 647.17
UBC_200_5 8 639.55 8 616.84 8 619.18 8 620.45 8 633.66
UBC_200_6 8 637.66 8 620.04 8 644.27 8 620.75 8 627.20
UBC_200_7 8 616.77 8 589.95 8 592.14 8 590.60 8 607.54
UBC_200_8 8 637.51 8 613.41 8 620.69 8 608.58 8 642.49
UBC_200_9 8 538.78 8 525.49 8 559.02 8 537.65 8 525.66
UBC_200_10 8 650.15 8 605.71 8 640.04 8 607.07 8 661.72

Table A.2 – Detailed results on the VRPDO instances with 200 customers in 2000 seconds
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Instance LNS SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost Route Cost

U_400_1 41 1 895.00 41 1 943.08 41 1 971.02 41 1 877.14 41 1 920.64
U_400_2 41 3 182.56 41 3 125.90 41 3 242.58 41 3 067.01 41 3 136.19
U_400_3 41 2 240.91 41 2 245.68 41 2 294.83 41 2 205.32 41 2 251.91
U_400_4 40 1 827.88 40 1 822.91 40 1 867.62 40 1 783.72 40 1 801.16
U_400_5 40 2 219.25 40 2 256.24 40 2 277.34 40 2 218.57 40 2 227.34
U_400_6 40 2 006.75 40 2 001.19 40 2 084.98 40 1 967.86 40 1 993.56
U_400_7 41 2 608.05 41 2 545.98 41 2 605.71 41 2 483.67 41 2 549.34
U_400_8 41 1 949.08 41 1 972.34 41 1 994.32 41 1 940.24 41 1 976.39
U_400_9 40 2 703.21 40 2 682.11 40 2 715.64 40 2 645.95 40 2 768.49
U_400_10 41 2 188.59 41 2 241.12 41 2 280.78 41 2 169.11 41 2 231.91
V_400_1 41 2 504.80 41 2 517.53 41 2 556.16 41 2 499.38 41 2 516.62
V_400_2 41 2 728.18 41 2 725.34 41 2 729.75 41 2 709.91 41 2 719.09
V_400_3 40 1 898.97 40 1 884.05 40 1 939.59 40 1 862.73 40 1 862.73
V_400_4 40 1 919.80 40 1 924.06 40 1 962.68 40 1 891.02 40 1 903.72
V_400_5 41 1 743.08 41 1 748.98 41 1 776.06 41 1 731.56 41 1 746.66
V_400_6 40 2 824.44 40 2 777.59 40 2 820.20 40 2 745.29 40 2 772.18
V_400_7 41 2 066.69 41 2 074.31 41 2 098.70 41 2 067.62 41 2 051.71
V_400_8 41 1 901.45 41 1 934.74 41 1 948.57 41 1 881.84 41 1 908.00
V_400_9 40 2 303.40 40 2 322.51 40 2 359.74 40 2 298.65 40 2 324.23
V_400_10 40 2 665.05 40 2 645.68 40 2 692.97 40 2 654.08 40 2 665.31
UBC_400_1 16 1 042.41 16 976.29 16 1 017.37 16 1 001.78 16 1 009.93
UBC_400_2 16 1 226.77 16 1 149.60 16 1 194.05 16 1 141.70 16 1 163.04
UBC_400_3 15 1 430.09 15 1 160.43 15 1 215.95 15 1 122.51 15 1 158.75
UBC_400_4 16 1 264.99 16 1 153.68 16 1 198.04 16 1 162.55 16 1 193.29
UBC_400_5 16 1 077.65 16 1 004.50 16 1 064.95 16 1 035.19 16 1 058.48
UBC_400_6 15 1 576.22 15 1 283.89 15 1 338.55 15 1 283.39 15 1 329.49
UBC_400_7 15 1 104.06 15 981.88 15 1 046.79 15 987.64 15 1 026.01
UBC_400_8 16 1 280.05 16 1 199.68 16 1 243.71 16 1 188.97 16 1 231.85
UBC_400_9 16 1 243.39 16 1 148.06 16 1 154.68 16 1 142.94 16 1 162.20
UBC_400_10 15 1 550.53 15 1 165.35 15 1 282.90 15 1 221.59 15 1 296.37

Table A.3 – Detailed results on the VRPDO instances with 400 customers in 6000 seconds
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A.2 Detailed results on the VRPTW instances

Instance LNS SLNS

Route Cost Route Cost
c101 10 828.937 10 828.937
c102 10 828.937 10 828.937
c103 10 828.065 10 828.065
c104 10 824.777 10 824.777
c105 10 828.937 10 828.937
c106 10 828.937 10 828.937
c107 10 828.937 10 828.937
c108 10 828.937 10 828.937
c109 10 828.937 10 828.937
c201 3 591.557 3 591.557
c202 3 591.557 3 591.557
c203 3 591.173 3 591.173
c204 3 590.599 3 590.599
c205 3 588.876 3 588.876
c206 3 588.493 3 588.493
c207 3 588.286 3 588.286
c208 3 588.324 3 588.324

Instance LNS SLNS

Route Cost Route Cost
r101 19 1 657.180 19 1 650.800
r102 17 1 490.250 17 1 486.120
r103 13 1 315.230 14 1 213.620
r104 9 1 032.080 9 1 007.310
r105 14 1 377.110 14 1 377.110
r106 12 1 253.210 12 1 252.030
r107 10 1 113.010 10 1 112.370
r108 9 972.969 9 964.472
r109 11 1 204.250 11 1 197.420
r110 10 1 142.560 10 1 151.680
r111 10 1 099.300 10 1 096.740
r112 9 1 006.470 9 998.858
r201 4 1 253.230 4 1 252.370
r202 3 1 196.620 3 1 195.300
r203 3 942.978 3 946.624
r204 2 842.440 2 837.950
r205 3 994.428 3 994.428
r206 3 907.337 3 913.682
r207 2 904.432 2 905.440
r208 2 726.823 2 727.687
r209 3 914.342 3 917.132
r210 3 955.341 3 942.106
r211 2 891.115 2 898.839

Instance LNS SLNS

Route Cost Route Cost
rc101 14 1 696.950 14 1 696.950
rc102 12 1 554.750 12 1 554.750
rc103 11 1 268.360 11 1 262.020
rc104 10 1 138.410 10 1 135.830
rc105 14 1 542.460 14 1 540.180
rc106 11 1 424.730 12 1 376.260
rc107 11 1 232.120 11 1 230.950
rc108 10 1 140.360 10 1 139.820
rc201 4 1 413.520 4 1 423.510
rc202 3 1 419.240 3 1 389.090
rc203 3 1 052.350 3 1 064.140
rc204 3 799.061 3 798.464
rc205 4 1 302.930 4 1 302.420
rc206 3 1 146.320 3 1 161.280
rc207 3 1 086.160 3 1 081.230
rc208 3 828.709 3 834.077

Table A.4 – Results on the VRPTW instances with 100 customers of Solomon and Desrosiers (1988)
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Instance LNS SLNS

Route Cost Route Cost
C1­2­1 20 2 704.570 20 2 704.570
C1­2­2 18 2 944.350 18 2 960.380
C1­2­3 18 2 761.630 18 2 720.570
C1­2­4 18 2 715.100 18 2 643.310
C1­2­5 20 2 702.050 20 2 702.050
C1­2­6 20 2 701.040 20 2 701.040
C1­2­7 20 2 701.040 20 2 701.040
C1­2­8 19 2 783.260 19 2 775.480
C1­2­9 18 2 745.530 18 2 687.830
C1­2­10 18 2 723.810 18 2 643.550
C2­2­1 6 1 931.440 6 1 931.440
C2­2­2 6 1 863.160 6 1 863.160
C2­2­3 6 1 779.200 6 1 775.080
C2­2­4 6 1 715.990 6 1 703.430
C2­2­5 6 1 878.850 6 1 878.850
C2­2­6 6 1 857.830 6 1 857.350
C2­2­7 6 1 849.460 6 1 849.460
C2­2­8 6 1 826.210 6 1 820.530
C2­2­9 6 1 832.590 6 1 830.050
C2­2­10 6 1 808.210 6 1 808.210

Instance LNS SLNS

Route Cost Route Cost
R1­2­1 20 4 930.290 20 4 803.860
R1­2­2 18 4 210.250 18 4 104.080
R1­2­3 18 3 560.410 18 3 431.850
R1­2­4 18 3 254.720 18 3 068.710
R1­2­5 18 4 274.960 18 4 180.840
R1­2­6 18 3 798.920 18 3 653.530
R1­2­7 18 3 327.550 18 3 238.870
R1­2­8 18 3 129.640 18 2 968.910
R1­2­9 18 3 942.540 18 3 817.750
R1­2­10 18 3 459.170 18 3 353.130
R2­2­1 4 4 574.000 4 4 550.230
R2­2­2 4 3 704.770 4 3 657.540
R2­2­3 4 2 945.690 4 2 933.710
R2­2­4 4 1 986.510 4 1 981.300
R2­2­5 4 3 380.950 4 3 439.170
R2­2­6 4 2 926.880 4 2 947.940
R2­2­7 4 2 470.610 4 2 454.290
R2­2­8 4 1 850.950 4 1 849.870
R2­2­9 4 3 112.010 4 3 120.260
R2­2­10 4 2 668.400 4 2 666.100

Instance LNS SLNS

Route Cost Route Cost
RC1­2­1 18 3 745.840 18 3 681.470
RC1­2­2 18 3 386.070 18 3 276.270
RC1­2­3 18 3 175.820 18 3 084.070
RC1­2­4 18 3 020.800 18 2 868.030
RC1­2­5 18 3 514.090 18 3 426.660
RC1­2­6 18 3 485.920 18 3 414.240
RC1­2­7 18 3 298.840 18 3 206.370
RC1­2­8 18 3 287.400 18 3 140.410
RC1­2­9 18 3 278.170 18 3 098.680
RC1­2­10 18 3 193.990 18 3 019.240
RC2­2­1 6 3 147.340 6 3 131.380
RC2­2­2 5 2 848.820 5 2 869.580
RC2­2­3 4 2 675.000 4 2 652.240
RC2­2­4 4 2 087.180 4 2 093.570
RC2­2­5 4 2 926.200 4 2 942.120
RC2­2­6 4 3 007.900 4 3 040.370
RC2­2­7 4 2 556.900 4 2 556.840
RC2­2­8 4 2 331.490 4 2 316.380
RC2­2­9 4 2 201.030 4 2 192.460
RC2­2­10 4 2 018.530 4 2 022.950

Table A.5 – Results on the VRPTW instances with 200 customers of Gehring and Homberger (1999)
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Instance LNS SLNS

Route Cost Route Cost
C1­4­1 40 7 152.060 40 7 152.060
C1­4­2 36 9 190.420 37 7 337.870
C1­4­3 36 8 214.670 36 7 170.080
C1­4­4 36 8 328.280 36 6 848.330
C1­4­5 40 7 164.680 40 7 152.060
C1­4­6 40 7 154.620 40 7 153.450
C1­4­7 39 7 622.700 39 7 561.490
C1­4­8 37 8 065.370 37 7 680.290
C1­4­9 36 8 765.160 36 7 320.370
C1­4­10 36 8 219.410 36 6 990.770
C2­4­1 12 4 126.560 12 4 116.140
C2­4­2 12 4 002.360 12 3 963.930
C2­4­3 12 3 880.370 12 3 807.490
C2­4­4 11 4 347.170 11 3 965.950
C2­4­5 12 3 977.900 12 4 084.320
C2­4­6 12 3 908.970 12 3 917.060
C2­4­7 12 3 940.830 12 3 933.210
C2­4­8 12 3 875.500 12 3 818.870
C2­4­9 12 3 936.450 12 3 884.330
C2­4­10 11 4 323.370 12 3 733.090

Instance LNS SLNS

Route Cost Route Cost
R1­4­1 40 11 399.200 40 10 507.700
R1­4­2 36 10 969.100 36 9 255.950
R1­4­3 36 9 655.580 36 7 965.040
R1­4­4 36 8 929.910 36 7 441.770
R1­4­5 36 11 169.400 36 9 490.850
R1­4­6 36 10 514.500 36 8 585.210
R1­4­7 36 9 337.540 36 7 746.990
R1­4­8 36 8 846.730 36 7 370.790
R1­4­9 36 10 908.600 36 8 999.640
R1­4­10 36 9 922.990 36 8 348.890
R2­4­1 8 9 416.910 8 9 423.990
R2­4­2 8 7 827.640 8 7 760.080
R2­4­3 8 6 098.400 8 6 144.680
R2­4­4 8 4 372.600 8 4 378.920
R2­4­5 8 7 365.950 8 7 300.280
R2­4­6 8 6 292.330 8 6 299.700
R2­4­7 8 5 145.110 8 5 172.360
R2­4­8 8 4 121.390 8 4 096.350
R2­4­9 8 6 570.770 8 6 556.620
R2­4­10 8 5 966.820 8 5 949.860

Instance LNS SLNS

Route Cost Route Cost
RC1­4­1 36 9 677.710 37 8 695.190
RC1­4­2 36 9 328.230 36 8 195.670
RC1­4­3 36 9 251.250 36 7 728.120
RC1­4­4 36 8 882.520 36 7 445.720
RC1­4­5 36 9 419.890 36 8 365.380
RC1­4­6 36 9 471.730 36 8 391.220
RC1­4­7 36 9 405.240 36 8 218.630
RC1­4­8 36 9 270.340 36 7 990.170
RC1­4­9 36 9 290.340 36 7 926.390
RC1­4­10 36 9 181.690 36 7 771.380
RC2­4­1 11 6 950.180 11 6 890.840
RC2­4­2 10 6 059.030 10 6 063.870
RC2­4­3 8 5 133.490 8 5 154.130
RC2­4­4 8 3 739.760 8 3 750.300
RC2­4­5 9 6 275.300 9 6 207.720
RC2­4­6 8 5 999.660 8 6 071.860
RC2­4­7 8 5 525.090 8 5 499.460
RC2­4­8 8 4 950.320 8 4 895.760
RC2­4­9 8 4 655.850 8 4 665.900
RC2­4­10 8 4 414.350 8 4 341.230

Table A.6 – Results on the VRPTW instances with 400 customers of Gehring and Homberger (1999)
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A.3 Detailed results on the GVRPTW instances

Instance SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost Time (s)

i­030­04­08 4 3 497 4 3 497 4 3 497 4 3 497 5
i­030­08­12 4 2 796 4 2 796 4 2 796 4 2 796 5
i­040­04­08 6 3 811 6 3 811 6 3 811 6 3 811 8
i­040­08­12 6 3 768 6 3 768 6 3 768 6 3 768 8
i­050­04­08 8 5 447 8 5 447 8 5 439 8 5 447 11
i­050­08­12 8 4 034 8 4 034 8 4 034 8 4 034 11
i­060­04­08 8 5 908 8 5 926 8 5 919 8 5 926 14
i­060­08­12 8 4 303 8 4 303 8 4 303 8 4 332 14
i­070­04­08 10 6 246 10 6 246 10 6 224 10 6 246 22
i­070­08­12 10 4 644 10 4 644 10 4 644 10 4 644 22
i­080­04­08 12 7 390 12 7 394 12 7 394 12 7 394 27
i­080­08­12 12 5 686 12 5 661 12 5 692 12 5 661 27
i­090­04­08 11 7 187 11 7 182 11 7 187 11 7 215 32
i­090­08­12 11 5 903 11 5 869 11 5 830 11 5 808 32
i­100­04­08 14 7 308 14 7 349 14 7 295 14 7 295 38
i­100­08­12 14 6 546 14 6 546 14 6 585 14 6 606 38
i­110­04­08 16 8 696 16 8 720 16 8 711 16 8 687 45
i­110­08­12 16 6 249 16 6 487 16 6 338 16 6 310 45
i­120­04­08 15 8 344 15 8 357 15 8 344 15 8 344 60
i­120­08­12 15 6 829 15 6 829 15 6 774 15 6 774 60

Table A.7 –Detailed results on the GVRPTW instances ofMoccia et al. (2012) with their number
of vehicles
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A.4 Detailed results on the VRPRDL and VRPHRDL in­
stances

Instance SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost Time (s)

instance_0 10 3 203 10 3 203 10 3 203 10 3 203 10
instance_1 9 2 799 9 2 799 9 2 799 9 2 799 10
instance_2 8 2 603 8 2 607 8 2 603 8 2 603 10
instance_3 7 2 261 7 2 261 7 2 261 7 2 261 10
instance_4 10 3 217 10 3 217 10 3 217 10 3 217 10
instance_5 9 2 805 9 2 805 9 2 805 9 2 805 10
instance_6 10 3 339 10 3 339 10 3 339 10 3 339 10
instance_7 10 3 325 10 3 325 10 3 325 10 3 325 10
instance_8 11 3 534 11 3 534 11 3 534 11 3 534 10
instance_9 10 2 752 10 2 752 10 2 752 10 2 752 10
variant2_instance_0 7 2 133 7 2 133 7 2 133 7 2 133 10
variant2_instance_1 6 1 946 6 1 946 6 1 946 6 1 946 10
variant2_instance_2 8 1 966 8 1 966 8 1 966 8 1 966 10
variant2_instance_3 6 1 610 6 1 610 6 1 610 6 1 610 10
variant2_instance_4 8 2 478 8 2 478 8 2 478 8 2 478 10
variant2_instance_5 8 2 469 8 2 469 8 2 469 8 2 469 10
variant2_instance_6 7 1 946 7 1 946 7 1 946 7 1 946 10
variant2_instance_7 8 2 380 8 2 380 8 2 380 8 2 380 10
variant2_instance_8 8 2 492 8 2 492 8 2 492 8 2 492 10
variant2_instance_9 8 2 443 8 2 443 8 2 443 8 2 443 10

Table A.8 –Detailed results on the VRPRDL instances of Ozbaygin et al. (2017) with the number
of vehicles of Tilk et al. (2020)
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Instance SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost Time (s)

instance_0­triangle 4 901 4 901 4 901 4 901 3
instance_1­triangle 5 1 286 5 1 286 5 1 286 5 1 286 3
instance_2­triangle 4 991 4 991 4 991 4 991 3
instance_3­triangle 5 1 062 5 1 062 5 1 062 5 1 062 3
instance_4­triangle 6 1 832 6 1 832 6 1 832 6 1 832 3
instance_5­triangle 5 1 294 5 1 294 5 1 294 5 1 294 4
instance_6­triangle 4 1 155 4 1 155 4 1 155 4 1 155 4
instance_7­triangle 6 1 455 6 1 455 6 1 455 6 1 455 4
instance_8­triangle 5 1 260 5 1 260 5 1 260 5 1 260 4
instance_9­triangle 7 1 684 7 1 684 7 1 684 7 1 684 4
instance_10­triangle 7 1 922 7 1 922 7 1 922 7 1 922 8
instance_11­triangle 8 2 324 8 2 324 8 2 324 8 2 324 8
instance_12­triangle 6 1 747 6 1 747 6 1 747 6 1 747 8
instance_13­triangle 6 1 273 6 1 273 6 1 273 6 1 273 8
instance_14­triangle 6 1 694 6 1 694 6 1 694 6 1 694 8
instance_15­triangle 7 1 938 7 1 938 7 1 938 7 1 938 8
instance_16­triangle 8 1 965 8 1 965 8 1 965 8 1 965 8
instance_17­triangle 7 1 827 7 1 827 7 1 827 7 1 827 8
instance_18­triangle 7 2 083 7 2 083 7 2 083 7 2 083 8
instance_19­triangle 6 1 822 6 1 822 6 1 822 6 1 822 8
instance_20­triangle 13 3 761 13 3 761 13 3 761 13 3 761 12
instance_21­triangle 10 2 828 10 2 828 10 2 828 10 2 828 12
instance_22­triangle 16 4 440 16 4 440 16 4 440 16 4 440 12
instance_23­triangle 11 3 378 11 3 378 11 3 378 11 3 378 12
instance_24­triangle 11 3 161 11 3 161 11 3 161 11 3 161 12
instance_25­triangle 16 4 536 16 4 536 16 4 536 16 4 536 12
instance_26­triangle 10 2 865 10 2 865 10 2 865 10 2 865 12
instance_27­triangle 14 4 173 14 4 173 14 4 173 14 4 173 12
instance_28­triangle 14 3 964 14 3 964 14 3 964 14 3 964 12
instance_29­triangle 14 4 107 14 4 107 14 4 107 14 4 107 12
instance_30­triangle 17 4 935 17 4 935 17 4 935 17 4 935 60
instance_31­triangle 18 5 258 18 5 267 18 5 258 18 5 258 60
instance_32­triangle 18 5 061 18 5 061 18 5 061 18 5 061 60
instance_33­triangle 17 5 218 17 5 220 17 5 218 17 5 218 60
instance_34­triangle 20 5 498 20 5 498 20 5 498 20 5 521 60
instance_35­triangle 22 6 498 22 6 621 22 6 498 22 6 498 60
instance_36­triangle 17 4 830 17 4 830 17 4 830 17 4 830 60
instance_37­triangle 22 5 604 22 5 604 22 5 604 22 5 604 60
instance_38­triangle 21 5 841 21 5 841 21 5 841 21 5 841 60
instance_39­triangle 17 5 016 17 4 999 17 4 995 17 4 995 60

Table A.9 – Detailed results on the VRPRDL instances of Reyes et al. (2017) with the number
of vehicles of Tilk et al. (2020)
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Instance SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost Time (s)

instance_0­triangle 3 773 3 773 3 773 3 773 3
instance_1­triangle 4 1 065 4 1 065 4 1 065 4 1 065 3
instance_2­triangle 3 988 3 988 3 988 3 988 3
instance_3­triangle 3 914 3 914 3 914 3 914 3
instance_4­triangle 6 1 710 6 1 710 6 1 710 6 1 710 3
instance_5­triangle 4 1 099 4 1 099 4 1 099 4 1 099 4
instance_6­triangle 3 996 3 996 3 996 3 996 4
instance_7­triangle 5 1 346 5 1 346 5 1 346 5 1 346 4
instance_8­triangle 4 997 4 997 4 997 4 997 4
instance_9­triangle 4 1 166 4 1 166 4 1 166 4 1 166 4
instance_10­triangle 5 1 596 5 1 596 5 1 596 5 1 596 8
instance_11­triangle 6 1 808 6 1 808 6 1 808 6 1 808 8
instance_12­triangle 6 1 563 6 1 563 6 1 563 6 1 563 8
instance_13­triangle 4 1 058 4 1 058 4 1 058 4 1 058 8
instance_14­triangle 5 1 347 5 1 347 5 1 347 5 1 347 8
instance_15­triangle 5 1 517 5 1 517 5 1 517 5 1 517 8
instance_16­triangle 5 1 445 5 1 445 5 1 445 5 1 445 8
instance_17­triangle 5 1 627 5 1 627 5 1 627 5 1 627 8
instance_18­triangle 5 1 461 5 1 461 5 1 461 5 1 461 8
instance_19­triangle 6 1 715 6 1 715 6 1 715 6 1 715 8
instance_20­triangle 8 2 598 8 2 586 8 2 580 8 2 580 12
instance_21­triangle 7 2 206 7 2 206 7 2 206 7 2 206 12
instance_22­triangle 10 3 363 10 3 363 10 3 363 10 3 363 12
instance_23­triangle 8 2 569 8 2 569 8 2 569 8 2 569 12
instance_24­triangle 8 2 384 8 2 383 8 2 381 8 2 389 12
instance_25­triangle 9 2 845 9 2 845 9 2 845 9 2 845 12
instance_26­triangle 8 2 518 8 2 518 8 2 518 8 2 518 12
instance_27­triangle 8 2 758 8 2 758 8 2 758 8 2 758 12
instance_28­triangle 9 2 892 9 2 892 9 2 892 9 2 892 12
instance_29­triangle 8 2 691 8 2 691 8 2 691 8 2 691 12
instance_30­triangle 12 3 666 12 3 765 12 3 666 12 3 726 60
instance_31­triangle 13 3 885 13 3 885 13 3 885 13 3 885 60
instance_32­triangle 13 3 554 13 3 588 13 3 543 13 3 557 60
instance_33­triangle 12 3 767 12 3 783 12.2 3 784 12 3 751 60
instance_34­triangle 11 3 184 11 3 185 11 3 184 11 3 175 60
instance_35­triangle 15 4 287 15 4 379 15 4 273 15 4 303 60
instance_36­triangle 10 3 225 10.5 3 370 10 3 217 10 3 217 60
instance_37­triangle 14 3 935 14 3 939 14 3 936 14 3 937 60
instance_38­triangle 15 4 300 15 4 335 15 4 300 15 4 300 60
instance_39­triangle 13 3 556 13 3 557 13 3 550 13 3 556 60

Table A.10 – Detailed results on the VRPHRDL instances of Reyes et al. (2017) with the number
of vehicles of Tilk et al. (2020)
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Instance SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost Time (s)

instance_0 8 2 662 8 2 662 8 2 662 8 2 662 10
instance_1 8 2 610 8 2 610 8 2 610 8 2 610 10
instance_2 7 2 260 7 2 260 7 2 260 7 2 260 10
instance_3 7 2 147 7 2 147 7 2 147 7 2 147 10
instance_4 10 3 172 10 3 172 10 3 172 10 3 172 10
instance_5 8 2 616 8 2 616 8 2 616 8 2 616 10
instance_6 9 3 010 9 3 010 9 3 010 9 3 010 10
instance_7 10 3 278 10 3 278 10 3 278 10 3 278 10
instance_8 11 3 514 11 3 514 11 3 514 11 3 514 10
instance_9 9 2 727 9 2 727 9 2 727 9 2 727 10
variant2_instance_0 6.6 2 070 6.6 2 109 6.2 2 019 6.8 2 096 10
variant2_instance_1 6 1 931 6 1 931 6 1 931 6 1 930 10
variant2_instance_2 6 1 830 6 1 830 6 1 830 6 1 830 10
variant2_instance_3 5 1 478 5 1 478 5 1 478 5 1 478 10
variant2_instance_4 8 2 466 8 2 466 8 2 466 8 2 466 10
variant2_instance_5 8 2 388 8 2 388 8 2 388 8 2 388 10
variant2_instance_6 6 1 848 6 1 854 6 1 854 6 1 861 10
variant2_instance_7 7 2 264 7 2 266 7 2 265 7 2 266 10
variant2_instance_8 8 2 457 8 2 457 8 2 457 8 2 457 10
variant2_instance_9 7.5 2 419 7.5 2 364 7.5 2 330 7 2 302 10

Table A.11 – Detailed results on the VRPHRDL instances of Ozbaygin et al. (2017) with the
number of vehicles of Tilk et al. (2020)
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Instance VRPRDL VRPHRDL

Route Cost Route Cost Time (s)

instance_0­triangle 4 901 3 773 3
instance_1­triangle 5 1286 4 1065 3
instance_2­triangle 4 991 3 988 3
instance_3­triangle 5 1062 3 914 3
instance_4­triangle 6 1832 6 1710 3
instance_5­triangle 5 1294 4 1099 4
instance_6­triangle 4 1155 3 996 4
instance_7­triangle 6 1455 5 1346 4
instance_8­triangle 5 1260 4 997 4
instance_9­triangle 8 1684 4 1166 4
instance_10­triangle 7 1922 5 1587 5
instance_11­triangle 8 2324 6 1808 5
instance_12­triangle 6 1747 6 1563 5
instance_13­triangle 6 1273 4 1058 5
instance_14­triangle 6 1694 5 1347 5
instance_15­triangle 7 1938 5 1517 5
instance_16­triangle 8 1965 5 1445 5
instance_17­triangle 7 1827 5 1627 5
instance_18­triangle 7 2083 5 1461 5
instance_19­triangle 6 1822 6 1715 7
instance_20­triangle 13 3761 8 2580 7
instance_21­triangle 10 2828 7 2206 7
instance_22­triangle 16 4440 10 3363 7
instance_23­triangle 11 3378 8 2569 7
instance_24­triangle 11 3161 8 2378 7
instance_25­triangle 16 4536 9 2845 7
instance_26­triangle 10 2865 8 2518 7
instance_27­triangle 14 4173 8 2758 7
instance_28­triangle 14 3964 9 2892 7
instance_29­triangle 14 4107 8 2691 35
instance_30­triangle 18 4935 14 3666 35
instance_31­triangle 19 5258 13 3885 35
instance_32­triangle 18 5061 13 3543 35
instance_33­triangle 17 5218 13 3694 35
instance_34­triangle 20 5498 11 3184 35
instance_35­triangle 22 6498 15 4273 35
instance_36­triangle 17 4830 11 3217 35
instance_37­triangle 21 5604 14 3935 35
instance_38­triangle 24 5841 15 4300 35
instance_39­triangle 19 4995 13 3537 35

Table A.12 –Detailed results of SLNS+SPP on the VRPRDL andVRPHRDL instances of Reyes
et al. (2017) with the number of vehicles of Ozbaygin et al. (2017)
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Instance VRPRDL VRPHRDL

Route Cost Route Cost Time (s)

instance_0 10 3203 8 2662 6
instance_1 9 2799 8 2610 6
instance_2 8 2603 7 2260 6
instance_3 7 2261 7 2147 6
instance_4 10 3217 10 3172 6
instance_5 9 2805 8 2616 6
instance_6 10 3339 9 3010 6
instance_7 10 3325 10 3278 6
instance_8 11 3534 11 3514 6
instance_9 10 2752 10 2727 6
variant2_instance_0 7 2133 6 1998 6
variant2_instance_1 7 1946 6 1927 6
variant2_instance_2 8 1966 6 1830 6
variant2_instance_3 6 1610 5 1478 6
variant2_instance_4 8 2478 8 2466 6
variant2_instance_5 8 2469 8 2388 6
variant2_instance_6 7 1946 6 1848 6
variant2_instance_7 8 2380 7 2264 6
variant2_instance_8 8 2492 8 2457 6
variant2_instance_9 8 2443 7 2302 6

Table A.13 – Detailed results of SLNS+SPP on the VRPRDL and VRPHRDL instances of
Ozbaygin et al. (2017) with the number of vehicles of Ozbaygin et al. (2017)
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A.5 Detailed results on the VRPMTW instances

Instance SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost

rm101 10 972.31 10 969.68 10 967.83 10 967.83
rm102 9 930.81 9 915.26 9 903.94 9 911.56
rm103 9 882.51 9 882.51 9 882.51 9 882.51
rm104 9 888.28 9 888.28 9 888.28 9 888.28
rm105 9 882.04 9 882.04 9 882.04 9 882.04
rm106 9 899.98 9 899.98 9 899.98 9 899.98
rm107 9 879.37 9 879.37 9 879.37 9 879.37
rm108 9 913.71 9 913.71 9 913.71 9 913.71
rm201 2 756.19 2 752.93 2 761.66 2 758.98
rm202 2 682.56 2 683.55 2 685.61 2 687.11
rm203 2 679.19 2 679.20 2 679.20 2 679.67
rm204 2 672.83 2 672.83 2 672.83 2 672.83
rm205 2 671.26 2 671.02 2 671.02 2 671.35
rm206 2 678.96 2 678.96 2 678.96 2 678.96
rm207 2 674.39 2 674.39 2 674.39 2 674.73
rm208 2 673.93 2 673.93 2 676.73 2 675.71
cm101 10 1 112.17 10 1 120.81 10 1 091.12 10 1 060.20
cm102 12 1 045.34 11 1 170.01 11 1 126.31 11 1 105.40
cm103 11 1 216.32 11 1 220.73 11 1 215.32 11 1 229.29
cm104 13 1 259.63 13 1 273.44 13 1 259.63 13 1 259.63
cm105 10 999.28 10 999.28 10 999.28 10 999.28
cm106 9 1 175.63 9 1 208.55 9 1 176.08 9 1 153.11
cm107 10 1 077.08 10 1 077.08 10 1 077.08 10 1 077.08
cm108 9 1 068.82 9 1 080.61 9 1 064.46 9 1 066.65

Table A.14 –Detailed results on the VRPMTW instances of Belhaiza et al. (2014) in 600 seconds
(part 1)
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Instance SLNS SLNS+BS SLNS+SPP SLNS+SPP+BS

Route Cost Route Cost Route Cost Route Cost

cm201 5 865.56 5 895.87 5 876.06 5 871.14
cm202 6 782.41 6 791.36 6 782.41 6 782.41
cm203 5 938.63 5 952.90 5 946.79 5 932.78
cm204 5 817.48 5 817.48 5 817.48 5 817.48
cm205 4 1 032.08 4 1 022.36 4 1 020.57 4 1 000.65
cm206 4 895.99 4 899.93 4 895.99 4 895.99
cm207 4 1 119.35 4 1 125.86 4 1 125.86 4 1 130.66
cm208 4 913.88 4 913.88 4 913.88 4 913.88
rcm101 10 1 074.01 10 1 074.04 10 1 074.01 10 1 074.01
rcm102 10 1 121.62 10 1 121.62 10 1 121.62 10 1 121.62
rcm103 10 1 120.89 10 1 120.89 10 1 120.89 10 1 120.89
rcm104 10 1 124.29 10 1 124.29 10 1 124.29 10 1 124.29
rcm105 10 1 165.35 10 1 165.35 10 1 165.35 10 1 165.35
rcm106 10 1 165.74 10 1 167.73 10 1 165.74 10 1 165.74
rcm107 11 1 290.83 11 1 296.36 11 1 290.83 11 1 295.38
rcm108 11 1 342.45 11 1 345.45 11 1 339.00 11 1 339.00
rcm201 2 716.49 2 735.76 2 698.33 2 727.35
rcm202 2 719.48 2 727.25 2 732.48 2 722.86
rcm203 2 704.76 2 704.76 2 710.67 2 704.76
rcm204 2 692.62 2 692.21 2 692.62 2 692.21
rcm205 2 711.63 2 718.93 2 723.65 2 718.77
rcm206 2 732.36 2 721.86 2 736.89 2 721.86
rcm207 2 864.97 2 857.63 2 863.73 2 867.93
rcm208 2 722.68 2 722.68 2 722.68 2 722.68

Table A.15 –Detailed results on the VRPMTW instances of Belhaiza et al. (2014) in 600 seconds
(part 2)
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Appendix B

DETAILS ON ITERATIVE TWO-STAGES

HEURISTIC
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B.1 Details about the SLNS for the 2E­MTVRP­CSRF used
in ITSH

In this section, we detail the Large Neighborhood Search heuristics LNS1 and LNS2. They
are both based on Algorithm 5, but present slight differences in the LNS operators and parame­
ters.

B.1.1 LNS Algorithm

The algorithm starts from an initial solution x, obtained as described in Section B.1.5. x∗

denotes the best solution found ; it is returned at the end of the algorithm. The poolH stores the
trips of the considered echelon. The index i counts the number of iterations performed since the
best­found solution x∗ was improved or since the last large destruction happened. We denote
by Σ+ the set of repair operators and by Σ− the set of destroy operators. Σ−|local denotes the
set of local destroy operators, i.e operators used for small destructions. The operators used for
each echelon are presented later.

Line (6) shows the LNS stopping criterion.We call a cycle a sequence of iterations with small
destruction followed by an iteration with large destruction. LNS stops after a predefined number
ζ of such cycles. In addition, we also stop the algorithm if no feasible solution (serving all
customers/FEDs) were found after ζ ′ cycles.We set ζ ′ << ζ in order to speed­up the interactions
between the two LNS to find a feasible solution during the earlier stages.

On each iteration, a repair operator is randomly selected inΣ+ (line (7)). A small destruction
is performed on a copy of the current solution (line (9)). Then a local destroy operator is selected
in Σ−|local and the destruction size is randomly selected in [δsmall,∆small]. The selected operators,
σ− and σ+, are then applied to the solution x′ at line (19).

A large destruction is performed if i = ω at line (8). This happens if the best­found solution
has not been improved for ω successive iterations with small destruction. In this case, the destroy
operator is randomly selected in Σ− and the destruction size in [δlarge,∆large], at lines (14) and
(15) respectively. We assume that δlarge > δsmall and that ∆large > ∆small. In addition, a large
destruction starts from the best­found solution x∗. The new solution x′ is then produced at line
(19). Note that, after a large destruction, the produced solution is unreservedly accepted as the
new current solution x on line (24).

At line (23), the trips of the newly generated solution are added to the pool of trips H .
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Following a small destruction, the new solution x′ is accepted as the new current solution x
(line (27)) only if it is not ϵ% worse than the best solution x∗. At lines (31)–(33), the value of x∗

is updated and the counter i is set to the value 0 when a new best solution is found.

Algorithm 5: LNS with large and small destruction
1: x, x∗ : initial solution
2: pool of trips H ← ∅
3: i← 0
4: cycle← 0
5: i′ ← 0
6: while cycle < ζ and i′ < ζ ′ do
7: randomly select a repair operator σ+ ∈ Σ+

8: if i < ω then
9: x′ ← x
10: randomly select a destroy operator σ− ∈ Σ−|local
11: randomly select a destruction size Φ ∈ [δsmall,∆small]
12: else
13: x′ ← x∗

14: randomly select a destroy operator σ− ∈ Σ−

15: randomly select a destruction size Φ ∈ [δlarge,∆large]
16: cycle← cycle+ 1
17: i′ ← i′ + 1
18: end if
19: x′ ← σ+(σ−(x′,Φ))
20: if x′ is feasible then
21: i′ ← 0
22: end if
23: store the trips of x′ into the pool H
24: if i = ω then
25: x← x′

26: i← 0
27: else if f ′(x′) < (1 + ϵ) · f ′(x∗) then
28: x← x′

29: i← i+ 1
30: end if
31: if f ′(x′) < f ′(x∗) then
32: x∗ ← x′

33: i← 0
34: end if
35: end while
36: return x∗
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B.1.2 Operators

Below, we list all LNS operators used by the LNS algorithm. The symbols [1], [2] and [1,2]
identify the operators used only to solve SP1 SP2or both subproblems, respectively. In the list
below, the LNS operators listed with [1,2] are used to solve both SP1 and SP2, .

The local destroy operators are:

[1,2] (Split) String removal (Christiaens and Vanden Berghe, 2020): removes sequences of
FEDs/customers in different routes of the considered solution. We also implement the
Split String Removal version of this operator, which conserve a sub­string of vertices in
the middle of considered string to be removed.

[1,2] Satellite removal: for each satellite, we call satellite schedule the list of vertices taking
place at this satellite ordered in non­decreasing date T . This operator removes sequences
of operations in the satellite schedules of the considered solution, either conserving, or
not, a sub­string of operations in the middle of the string to be removed. In SP2 if a FED
is removed, the associate customer is removed from its second­echelon trip. This operator
is equivalent to the (split) string removal on satellite schedules.

[2] Distance related removal (Ropke and Pisinger, 2006b): removes customers that are close
to each other with respect to the Euclidean distance.

[2] FEV removal: randomly selects a first­echelon FEV to a satellite and removes it as­well­as
all the FEDs assigned to this visit.

[2] Cluster removal (Pisinger and Ropke, 2007): removes customers that are served by the
same trip in the considered solution. A trip is randomly selected and the Kruskal’s al­
gorithm is run on the arcs of this trip until two clusters remain. One cluster is randomly
chosen and all its customers are removed from the solution.

The large destroy operators are:

[2] Random removal (Ropke and Pisinger, 2006b): randomly removes customers.

[1] Random visit removal: randomly selects FEVs at satellites and remove them. It is equiv­
alent to random removal applied to FEVs.

[1] Worst visit removal (derived fromworst removal, Ropke and Pisinger (2006a)): iteratively
remove the FEV which removal decreases the objective function the most.

[2] Historical knowledge node removal (Demir et al., 2012): for this removal, the minimum
cost of each customer is recorded over all past LNS iterations. The cost of a customer in a
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solution x is the difference f(x)− f(x′), where x′ is x without the service of the consid­
ered customer. The operator iteratively removes the customers with the largest difference
between their current cost and their lowest cost. It can be seen as a history­biased worst
removal.

[1,2] Trip removal and Route removal (Nagata and Bräysy, 2009): remove all the
FEDs/customers and visits of a randomly selected trip/route.

Following Christiaens and Vanden Berghe (2020), the used repair operators are all lists
heuristics. In these operators, unserved FEDs/customers are first sorted according to one of the
following simple rules and then inserted one by one with the procedure described in Section
3.4.2. At each iteration, one rule is selected at random with the same selection probability for
each rule.

[1,2] Random order: the FEDs/customers are not sorted before insertion.

[1,2] Largest first: FEDs/customers are sorted in non­increasing order of total demand quantity.

[2] Farthest first: customers are sorted in non­increasing order of distance to their nearest
satellite.

[2] Closest first: customers are sorted in non­decreasing order of distance to their nearest
satellite.

[1,2] Earliest first: FEDs/customers are sorted in non­decreasing order of ready­date or opening
of time­window.

[1,2] Latest first: FEDs/customers are sorted in non­increasing order of due­date or time­
window end.

[1,2] Narrow first: FEDs/customers are sorted in non­decreasing order of time­window width.

B.1.3 Acceptance criterion

We use the record­to­record acceptance criterion, we use the modified cost proposed in
(Pisinger and Ropke, 2007):

f ′(x) = z(x) ·
(

1 + β · B(x)
|N |

)
, (B.1)

where z(x) is the objective function as defined in Model 3, B(x) is the number of unserved
customers and FEDs, and β a penalty factor. In addition, in LNS1, we replace z(x) by z′(x). This
modified objective function is equal to z(x) plus a penalty for successive visits of first­echelon
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vehicles at the same satellite. This penalty is used to mitigate some unrealistic solutions in which
first­echelon vehicles use some satellites as waiting stations where they have repeated visits.

B.1.4 LNS parameters

The numeric parameters for both LNS1 and LNS2 are summarized in Table B.1. The values
of these parameters were obtained from preliminary experiments on 2E­MTVRP­CSRF and
2E­VRP instances.

Parameter Notation LNS1 LNS2

Large destruction frequency ω 9|N |0.75 9|N |1.0

Number of large destructions ζ 30 5
Number of large destructions without improvement ζ ′ 5 1
Minimal size of a small destructions δsmall 1% 1%
Maximal size of a small destructions ∆small 15% 10%
Minimal size of a large destructions δlarge 20% 10%
Maximal size of a large destructions ∆large 100% 30%
Penalty for unserved FED/customer β 10 25
Range of acceptance ϵ 2% 2%

Table B.1 – LNS parameters

The other parameters are as follows:

— Penalty for successive visits at satellite by the first­echelon vehicles: 1.

— All the recreate operators are equiprobable in LNS1 and LNS2. All the local destroy opera­
tors are equiprobable in LNS1 and LNS2. All the large destroy operators are equiprobable
in LNS1 and LNS2. During a large destruction, there is 20% chance of taking a local de­
stroy operator.

B.1.5 Initial solution

During the first iteration of ITSH (Algorithm 4), SP2 is solved first by LNS2(line 4). Thus,
no routing of the first­echelon vehicles has been build yet. For each satellite, 4 single­trip routes
are created. These trips are round trips from the depot to the satellite, evenly scheduled over the
time horizon. This procedure is repeated F 1 times for each satellite. Thus, the initial dummy
first­echelon solution uses far too many vehicles. In this way, the second­echelon can rely on
nearly unlimited supply of the satellite by the first­echelon but still needs to consolidate its
demand on given visits.
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To initialize the second­echelon routes using the dummy first­echelon, each customer de­
mand is assigned to its nearest satellite. Then, second­echelon vehicles are assigned to satellites
such that the proportion of vehicles assigned to a satellite is proportional to the proportion of
customers demands assigned to it. Each second­echelon vehicle route is initialized by: an empty
trip from the second­level depot to its assigned satellite, an empty trip starting and ending at this
satellite and finally, an empty trip from its satellite back to the depot. The customers are inserted
in this empty second­echelon solution by the first call to a repair operator.

The supproblem SP1 is solved with LNS1for the first time at Line 6. The first­echelon routes
are initialized with an empty trip from the depot to the depot. The first call to a repair operator
initializes the trips.

During the subsequent iteration of Algorithm 4, the current solution (x1, x2) is passed on to
be improved. The first­echelon routes x1 will be used by LNS2and the second­echelon routes
x2 will be translated in FED in LNS1. Each algorithm starting from the routes of x2 and x1

respectively.
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B.2 Details about the modified model of the 2E­MTVRP­
CSRF used in ITSH

The refined Model use the following additional variables:

σi ≥ 0 : Penalty­variable for not­serving customer i.

ufws,t ≥ 0 : Surplus amount that is not dropped off at satellite s at time t by first­echelon trips.

urvs,t ≥ 0 : Surplus amount that is not collected at satellite s at time t by first­echelon trips.

ζs ∈ {0, 1} : State if satellite s is utilized or not.

Let Ω̄1 be the set of the computed first­echelon trips and let Ω̄2 be the set of all created
second­echelon trips. We introduce the following sets of time periods to reduce the number of
constraints:

1. T1,st := {t ∈ T : ∃h = (P, T, L) ∈ Ω̄1 with s0 = s and T0 = t}, the time periods at
which a first­echelon vehicle starts from the CDC.

2. T1,vis
s := {t ∈ T : ∃h = (P, T, L) ∈ Ω̄1 with s = ik ∈ P and Tik

= t}, the time periods
at which a first­echelon vehicle visits a satellite s.

3. T2,st
s := {t ∈ T : H Ω̄2+

s,t ̸= ∅}, the time periods at which a second­echelon vehicle starts
at satellite s.

4. T2,end
s := {t ∈ T : H Ω̄2−

s,t ̸= ∅}, the time periods at which a second­echelon vehicle ends
at satellite s.

Moreover, we remove constraints (3.b)–(3.g) for those time periods which are dominated. A
≤­constraint for a time period t is considered dominated if the≤­constraint for time period t+1
is tighter, i.e., the left­hand side contains more positive and/or less negative terms. Similarly, a
≥­constraint is tighter if the left­hand side contains less positive and/or more negative terms.
For example, in constraints (3.e) for satellite s, it suffices to consider only those points in time,
at which a second­echelon vehicle starts a trip to deliver customers.

Model 4: Enhanced Formulation

min
∑

h∈Ω̄1

c1
hx

1
h +

∑
h∈Ω̄2

c2
hx

2
h +

∑
i∈N

Mσi

s.t.
∑

h∈Ω̄2

αh,ix
2
h + σi = 1 ∀i ∈ N (4.a)

∑
h∈Ω̄1

βh,tx
1
h ≤ |F 1| ∀t ∈ T1,st (4.b)
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∑
t′≤t

∑
h∈HΩ̄2+

s,t′

x2
h −

∑
t′≤t

∑
h∈HΩ̄2−

s,t′

x2
h ≤ 0 ∀s ∈ S, t ∈ T2,st

s (4.c)

∑
t∈T

∑
h∈HΩ̄2+

o2,t

x2
h =

∑
t∈T

∑
h∈HΩ̄2−

o2,t

x2
h = F 2 (4.d)

∑
t′≤t−ps

t′∈T1,vis
s

(
∑

h∈Ω1

γfwh,s,t′x1
h − ufws,t′)−

∑
t′≤t

∑
h∈Ω2

γfwh,s,t′x2
h ≥ 0 ∀s ∈ S, t ∈ T2,st

s (4.e)

∑
t′≥t+ps

t′∈T1,vis
s

(
∑

h∈Ω1

γrvh,s,t′x1
h − urvs,t′)−

∑
t′≥t

∑
h∈Ω2

γrvh,s,t′x2
h ≥ 0 ∀s ∈ S, t ∈ T2,end

s (4.f)

∑
t′≤t

t′∈T1,vis
s

(
∑

h∈Ω1

γfwh,s,t′x1
h − ufws,t′)−

∑
t′≤t

∑
h∈Ω2

γfwh,s,t′x2
h+

∑
t′≥t

t′∈T1,vis
s

(
∑

h∈Ω1

γrvh,s,t′x1
h − urvs,t′)−

∑
t′≥t

∑
h∈Ω2

γrvh,s,t′x2
h ≤ Csat

s ∀s ∈ S, t ∈ T1,vis
s (4.g)

∑
h∈Ω1

γfwh,s,tx
1
h − ufws,t ≥ 0 ∀s ∈ S, t ∈ T1,vis

s (4.h)

∑
h∈Ω1

γrvh,s,tx
1
h − urvs,t ≥ 0 ∀s ∈ S, t ∈ T1,vis

s (4.i)

∑
h∈ω1

s

x1
h +

∑
h∈ω2+

s ∪ω2−
s

x2
h ⩽M.ζs ∀s ∈ S (4.j)

x1
h ∈ N0 ∀h ∈ Ω̄1

x2
h ∈ {0, 1} ∀h ∈ Ω̄2

ufws,t, u
rv
s,t ≥ 0 ∀s ∈ S, t ∈ T1,vis

s

σi ≥ 0 ∀i ∈ N

ζs ∈ {0, 1} ∀s ∈ S

The objective integrate to the one of Model 3, the new penalty variables with Big­M co­
efficients for unserved customer identified with σ variables. Constraints (4.a) states that a cus­
tomer is either served by a second­echelon trip or the penalty has to be paid, through the σ
variables. Fleet­size Constraints (4.b)–(4.d) are identical to Formulation 3 except for the use
of sets Ω̄1 and Ω̄2. Constraints (4.e)­(4.g) are the same flow balancing and capacity equations
as in Model 3, with the subtraction the new variables u to manage the surplus quantities. Con­
straints (4.h) and (4.i) limit the variables u to the quantity dropped­off (collected) at satellite s at
time t by first­echelon trips. In addition, the constraints (4.j) allow trips to visit a satellite only if
the satellite is utilized, according to the new ζ variables. Finally, the variable domains are given.
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Appendix C

DETAILED RESULTS ON 2-ECHELON

VEHICLE ROUTING PROBLEMS
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C.1 Detailed results on the 2E­VRPTW instances

Instance name Cost
c101 471.03
c102 459.75
c103 443.16
c104 435.11
c105 471.03
c106 471.03
c107 465.75
c108 461.93
c109 440.13
c201 455.81
c202 445.23
c203 441.62
c204 438.10
c205 453.27
c206 453.27
c207 449.68
c208 445.70

Instance name Cost
r101 872.37
r102 800.18
r103 703.95
r104 666.01
r105 801.67
r106 714.36
r107 673.67
r108 652.33
r109 701.08
r110 695.84
r111 677.73
r112 648.10
r201 717.33
r202 661.68
r203 641.77
r205 648.51
r206 659.74
r207 642.39
r208 574.47
r210 651.19

Instance name Cost
rc101 802.84
rc102 757.23
rc103 743.34
rc104 709.95
rc105 828.21
rc106 759.81
rc107 718.17
rc108 700.96
rc201 619.93
rc202 592.38
rc203 607.06
rc204 595.39
rc205 564.54
rc206 579.80
rc207 576.01
rc208 524.35

Table C.1 – Performance on the 2E­VRPTW instances with 25 customers compared to the BPC
algorithm of Marques et al. (2020a)
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Instance name Cost
c101 1 008.91
c102 978.24
c103 947.95
c104 916.21
c105 995.86
c106 1 011.95
c107 975.37
c108 968.11
c109 934.44
c201 744.20
c202 740.53
c203 759.51
c204 706.63
c205 741.87
c206 741.32
c207 754.60
c208 727.20

Instance name Cost
r101 1 316.38
r102 1 185.01
r103 1 086.47
r104 963.87
r105 1 198.87
r106 1 080.09
r107 1 033.93
r108 937.21
r109 1 065.14
r110 1 036.03
r111 993.24
r112 1 002.22
r201 1 064.08

Instance name Cost
rc101 1 505.31
rc102 1 429.51
rc103 1 383.80
rc104 1 265.18
rc105 1 487.50
rc106 1 453.06
rc107 1 431.03
rc108 1 315.12
rc201 968.99
rc202 916.46
rc203 866.15
rc205 934.23
rc206 911.71
rc207 890.79

Table C.2 – Performance on the 2E­VRPTW instances with 50 customers compared to the BPC
algorithm of Marques et al. (2020a)
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Instance name Cost
c101 1 480.58
c102 1 434.96
c103 1 443.70
c104 1 309.81
c105 1 431.34
c106 1 455.36
c107 1 403.53
c108 1 393.20
c201 985.71
c202 1 007.61
c205 946.99
c206 944.77

Instance name Cost
r101 2 033.36
r102 1 863.84
r103 1 604.68
r104 1 428.00
r105 1 792.73
r106 1 707.32
r107 1 537.08
r110 1 608.41
r111 1 522.28
r112 1 539.07

Instance name Cost
rc101 2 019.64
rc102 1 915.65
rc103 1 790.81
rc105 1 959.16
rc106 1 879.94
rc107 1 795.84
rc108 1 731.54

Table C.3 – Performance on the 2E­VRPTW instances with 75 customers compared to the BPC
algorithm of Marques et al. (2020a)

Instance name Cost
c101 2 007.48
c102 1 933.68
c105 1 911.79
c106 1 920.90
c107 1 864.91
c108 1 867.74
c109 1 939.84
c201 1 283.63

Instance name Cost
r101 2 302.51
r102 2 131.33
r105 2 064.17

Instance name Cost
rc101 2 548.11
rc102 2 403.70
rc105 2 549.57
rc106 2 375.75
rc106 2 375.75

Table C.4 – Performance on the 2E­VRPTW instances with 100 customers compared to the BPC
algorithm of Marques et al. (2020a)
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C.2 Detailed results on the 2E­VRPTW­CSRF instances

Instance name Capa 20 Capa 25 Capa 35 Capa 50 Capa 70 Capa 500
A­50­1 1 876 1 759 1 642 1 598 1 598 1 598
A­50­2 ­ 1 956 1 907 1 847 1 847 1 842
A­50­3 1 976 1 870 1 798 1 753 1 753 1 753
A­50­4 ­ 2 042 1 914 1 862 1 862 1 862
A­50­5 ­ 2 260 2 116 2 081 2 066 2 066
A­50­6 1 993 1 988 1 973 1 973 1 973 1 973
A­50­7 1 988 1 905 1 819 1 818 1 798 1 738
A­50­8 ­ 1 854 1 854 1 791 1 727 1 727
A­50­9 ­ 2 170 2 030 1 986 1 936 1 936
A­50­10 1 931 1 846 1 776 1 714 1 700 1 700
B­50­1 1 960 1 881 1 835 1 835 1 802 1 802
B­50­2 1 857 1 857 1 787 1 749 1 749 1 749
B­50­3 1 888 1 733 1 713 1 713 1 713 1 699
B­50­4 1 765 1 647 1 641 1 566 1 566 1 566
B­50­5 1 768 1 721 1 713 1 712 1 660 1 641
B­50­6 1 762 1 684 1 664 1 664 1 616 1 616
B­50­7 1 625 1 573 1 533 1 533 1 521 1 521
B­50­8 1 875 1 822 1 752 1 752 1 752 1 746
B­50­9 1 760 1 738 1 710 1 710 1 710 1 710
B­50­10 1 661 1 601 1 585 1 566 1 566 1 547
C­50­1 1 746 1 666 1 666 1 666 1 666 1 666
C­50­2 1 772 1 762 1 733 1 677 1 631 1 631
C­50­3 1 637 1 571 1 546 1 546 1 513 1 513
C­50­4 1 845 1 732 1 654 1 654 1 654 1 654
C­50­5 1 800 1 800 1 711 1 689 1 689 1 624
C­50­6 1 783 1 781 1 703 1 703 1 703 1 700
C­50­7 1 553 1 449 1 449 1 449 1 449 1 449
C­50­8 1 815 1 770 1 692 1 636 1 636 1 636
C­50­9 1 578 1 578 1 578 1 542 1 542 1 534
C­50­10 1 555 1 522 1 487 1 487 1 487 1 487

Table C.5 – Results on the 2E­MTVRP­CSRF instances with 50 customers
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Instance name Capa 20 Capa 25 Capa 35 Capa 50 Capa 70 Capa 500
A­50­1 ­ 3 384 3 110 2 992 2 821 2 782
A­50­2 ­ 3 756 3 525 3 273 3 180 3 180
A­50­3 ­ 3 167 2 840 2 744 2 671 2 660
A­50­4 3 921 3 685 3 319 3 086 3 086 3 086
A­50­5 3 789 3 338 2 999 2 822 2 783 2 783
A­50­6 ­ ­ 3 380 3 187 3 093 3 036
A­50­7 ­ 3 588 3 214 3 027 2 956 2 935
A­50­8 3 835 3 354 3 128 2 870 2 813 2 813
A­50­9 3 682 3 380 3 196 2 921 2 869 2 848
A­50­10 3 279 2 967 2 727 2 637 2 566 2 566
B­50­1 3 313 3 157 2 932 2 769 2 669 2 669
B­50­2 3 490 3 358 3 112 3 041 2 865 2 865
B­50­3 3 268 3 096 2 934 2 831 2 767 2 767
B­50­4 3 064 2 952 2 816 2 605 2 605 2 605
B­50­5 3 164 3 124 2 923 2 846 2 728 2 728
B­50­6 3 073 2 837 2 547 2 547 2 516 2 516
B­50­7 3 660 3 464 3 235 3 083 2 961 2 933
B­50­8 2 541 2 526 2 412 2 391 2 391 2 373
B­50­9 3 344 3 166 2 933 2 745 2 667 2 667
B­50­10 2 702 2 538 2 423 2 423 2 406 2 406
C­50­1 2 948 2 831 2 631 2 531 2 524 2 514
C­50­2 2 686 2 546 2 483 2 410 2 363 2 326
C­50­3 2 811 2 565 2 485 2 485 2 473 2 456
C­50­4 2 704 2 508 2 429 2 408 2 370 2 370
C­50­5 2 476 2 476 2 422 2 367 2 367 2 367
C­50­6 2 554 2 513 2 462 2 354 2 354 2 354
C­50­7 2 449 2 449 2 340 2 340 2 279 2 279
C­50­8 2 732 2 707 2 629 2 479 2 479 2 477
C­50­9 2 383 2 326 2 287 2 265 2 265 2 265
C­50­10 2 895 2 799 2 659 2 593 2 593 2 593

Table C.6 – Results on the 2E­MTVRP­CSRF instances with 100 customers
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Titre : Approches matheuristiques pour la résolution de problèmes d’optimisation des trans-
ports en logistique urbaine

Mot clés : logistique urbaine, tournée de véhicules, matheuristique, recherche à voisinage

large, ressources synchronisées

Résumé : Dans cette thèse, nous nous
intéressons aux problématiques soulevées
par l’optimisation des tournées de véhicules
pour la livraison en milieu urbain. Nous nous
sommes attachés à la problématique des
ressources synchronisées. Le contexte ur-
bain impose des contraintes sur l’espace uti-
lisable. Dans les modèles théoriques dévelop-
pés, cela se traduit par des contraintes de res-
sources communes à tous les véhicules.

Le premier problème que nous avons dé-
veloppé traite de la livraison de colis avec
fenêtres horaire en considérant de multiples
options de livraison pour chaque commande.
La synchronisation de ressources vient de la

prise en compte d’un niveau de service global
ainsi que de la capacité de lieux de livraison
partagé, tels que des consignes. Le second
problème traité vise à optimiser la collecte et
la livraison de colis via un système logistique
à deux échelons. Les ressources synchroni-
sées sont alors la capacité de stockage des
entrepôts intermédiaires, appelé satellites.

Pour résoudre ces problèmes, nous avons
développé des méthodes de recherche à voi-
sinage large basé sur de petites destructions.
Nous avons aussi étudié leur hybridation avec
la résolution de modèles MIP et de la program-
mation dynamique. Ainsi, nos méthodes sont
catégorisées comme matheuristiques.

Title: Matheuristic approaches for solving transport optimization problems in urban logistics

Keywords: city logistics, vehicle routing, matheuristic, large neighborhood search, ressources

synchronizations

Abstract: In this thesis, we are interested in
the problems raised by the optimization of ve-
hicle routing for delivery in urban areas. We
pay close attention to problems with synchro-
nized resources. Indeed, the urban context im-
poses hard constraints on the usable space. In
the theoretical models developed, this trans-
lates into resource constraints common to all
vehicles.

The first problem deals with the delivery
of parcels with time windows while consider-
ing multiple delivery options for each order.
The synchronization of resources between ve-
hicles comes from the consideration of the
global quality of service according to the cus-

tomers’ preferences as well as the capacity
of shared delivery locations, such as lockers.
The second problem addresses the optimiza-
tion of the collection and delivery of parcels
via a two-echelon logistics system. The syn-
chronized resources between all vehicles are
then the limited storage capacity of intermedi-
ate warehouses, called satellites.

To solve these problems, we develope a
large neighborhood search methods based on
small destructions. We also study their hy-
bridization with MIP models and dynamic pro-
gramming. Thus, our methods are categorized
as matheuristics.
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